1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/gro.h> 41 #include <net/ip.h> 42 #include <net/tcp.h> 43 #include <net/udp.h> 44 #include <net/checksum.h> 45 #include <net/ip6_checksum.h> 46 #include <net/udp_tunnel.h> 47 #include <linux/workqueue.h> 48 #include <linux/prefetch.h> 49 #include <linux/cache.h> 50 #include <linux/log2.h> 51 #include <linux/bitmap.h> 52 #include <linux/cpu_rmap.h> 53 #include <linux/cpumask.h> 54 #include <net/pkt_cls.h> 55 #include <net/page_pool/helpers.h> 56 #include <linux/align.h> 57 #include <net/netdev_lock.h> 58 #include <net/netdev_queues.h> 59 #include <net/netdev_rx_queue.h> 60 #include <linux/pci-tph.h> 61 #include <linux/bnxt/hsi.h> 62 63 #include "bnxt.h" 64 #include "bnxt_hwrm.h" 65 #include "bnxt_ulp.h" 66 #include "bnxt_sriov.h" 67 #include "bnxt_ethtool.h" 68 #include "bnxt_dcb.h" 69 #include "bnxt_xdp.h" 70 #include "bnxt_ptp.h" 71 #include "bnxt_vfr.h" 72 #include "bnxt_tc.h" 73 #include "bnxt_devlink.h" 74 #include "bnxt_debugfs.h" 75 #include "bnxt_coredump.h" 76 #include "bnxt_hwmon.h" 77 78 #define BNXT_TX_TIMEOUT (5 * HZ) 79 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \ 80 NETIF_MSG_TX_ERR) 81 82 MODULE_IMPORT_NS("NETDEV_INTERNAL"); 83 MODULE_LICENSE("GPL"); 84 MODULE_DESCRIPTION("Broadcom NetXtreme network driver"); 85 86 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 87 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 88 89 #define BNXT_TX_PUSH_THRESH 164 90 91 /* indexed by enum board_idx */ 92 static const struct { 93 char *name; 94 } board_info[] = { 95 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 96 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 97 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 98 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 99 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 100 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 101 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 102 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 103 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 104 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 105 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 106 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 107 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 108 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 109 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 110 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 111 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 112 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 113 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 114 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 115 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 116 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 117 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 118 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 119 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 120 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 121 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 122 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 123 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 124 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 125 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 126 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 127 [BCM57608] = { "Broadcom BCM57608 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 128 [BCM57604] = { "Broadcom BCM57604 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 129 [BCM57602] = { "Broadcom BCM57602 NetXtreme-E 10Gb/25Gb/50Gb/100Gb Ethernet" }, 130 [BCM57601] = { "Broadcom BCM57601 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 131 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 132 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 133 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 134 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 135 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 136 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 137 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 138 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 139 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 140 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 141 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 142 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 143 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 144 [NETXTREME_E_P7_VF] = { "Broadcom BCM5760X Virtual Function" }, 145 }; 146 147 static const struct pci_device_id bnxt_pci_tbl[] = { 148 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 149 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 150 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 151 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 152 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 153 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 154 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 155 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 156 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 157 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 158 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 159 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 160 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 161 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 162 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 163 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 164 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 165 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 166 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 167 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 168 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 169 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 170 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 171 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 172 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 173 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 174 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 175 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 176 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 177 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 178 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 179 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 180 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 181 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 182 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 183 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 184 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 185 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 186 { PCI_VDEVICE(BROADCOM, 0x1760), .driver_data = BCM57608 }, 187 { PCI_VDEVICE(BROADCOM, 0x1761), .driver_data = BCM57604 }, 188 { PCI_VDEVICE(BROADCOM, 0x1762), .driver_data = BCM57602 }, 189 { PCI_VDEVICE(BROADCOM, 0x1763), .driver_data = BCM57601 }, 190 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR }, 191 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 192 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR }, 193 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR }, 194 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 195 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR }, 196 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 197 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 198 #ifdef CONFIG_BNXT_SRIOV 199 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 200 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 201 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 202 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 203 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 204 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 205 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 206 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 207 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 208 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 209 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 210 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 211 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 212 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 213 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 214 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 215 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 216 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 217 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 218 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 219 { PCI_VDEVICE(BROADCOM, 0x1819), .driver_data = NETXTREME_E_P7_VF }, 220 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 221 #endif 222 { 0 } 223 }; 224 225 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 226 227 static const u16 bnxt_vf_req_snif[] = { 228 HWRM_FUNC_CFG, 229 HWRM_FUNC_VF_CFG, 230 HWRM_PORT_PHY_QCFG, 231 HWRM_CFA_L2_FILTER_ALLOC, 232 }; 233 234 static const u16 bnxt_async_events_arr[] = { 235 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 236 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 237 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 238 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 239 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 240 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 241 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 242 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 243 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 244 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 245 ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE, 246 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 247 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 248 ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP, 249 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT, 250 ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE, 251 ASYNC_EVENT_CMPL_EVENT_ID_DBG_BUF_PRODUCER, 252 }; 253 254 const u16 bnxt_bstore_to_trace[] = { 255 [BNXT_CTX_SRT] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_SRT_TRACE, 256 [BNXT_CTX_SRT2] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_SRT2_TRACE, 257 [BNXT_CTX_CRT] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CRT_TRACE, 258 [BNXT_CTX_CRT2] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CRT2_TRACE, 259 [BNXT_CTX_RIGP0] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_RIGP0_TRACE, 260 [BNXT_CTX_L2HWRM] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_L2_HWRM_TRACE, 261 [BNXT_CTX_REHWRM] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_ROCE_HWRM_TRACE, 262 [BNXT_CTX_CA0] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CA0_TRACE, 263 [BNXT_CTX_CA1] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CA1_TRACE, 264 [BNXT_CTX_CA2] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CA2_TRACE, 265 [BNXT_CTX_RIGP1] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_RIGP1_TRACE, 266 }; 267 268 static struct workqueue_struct *bnxt_pf_wq; 269 270 #define BNXT_IPV6_MASK_ALL {{{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, \ 271 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }}} 272 #define BNXT_IPV6_MASK_NONE {{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }}} 273 274 const struct bnxt_flow_masks BNXT_FLOW_MASK_NONE = { 275 .ports = { 276 .src = 0, 277 .dst = 0, 278 }, 279 .addrs = { 280 .v6addrs = { 281 .src = BNXT_IPV6_MASK_NONE, 282 .dst = BNXT_IPV6_MASK_NONE, 283 }, 284 }, 285 }; 286 287 const struct bnxt_flow_masks BNXT_FLOW_IPV6_MASK_ALL = { 288 .ports = { 289 .src = cpu_to_be16(0xffff), 290 .dst = cpu_to_be16(0xffff), 291 }, 292 .addrs = { 293 .v6addrs = { 294 .src = BNXT_IPV6_MASK_ALL, 295 .dst = BNXT_IPV6_MASK_ALL, 296 }, 297 }, 298 }; 299 300 const struct bnxt_flow_masks BNXT_FLOW_IPV4_MASK_ALL = { 301 .ports = { 302 .src = cpu_to_be16(0xffff), 303 .dst = cpu_to_be16(0xffff), 304 }, 305 .addrs = { 306 .v4addrs = { 307 .src = cpu_to_be32(0xffffffff), 308 .dst = cpu_to_be32(0xffffffff), 309 }, 310 }, 311 }; 312 313 static bool bnxt_vf_pciid(enum board_idx idx) 314 { 315 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 316 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 317 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || 318 idx == NETXTREME_E_P5_VF_HV || idx == NETXTREME_E_P7_VF); 319 } 320 321 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 322 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 323 324 #define BNXT_DB_CQ(db, idx) \ 325 writel(DB_CP_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 326 327 #define BNXT_DB_NQ_P5(db, idx) \ 328 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | DB_RING_IDX(db, idx),\ 329 (db)->doorbell) 330 331 #define BNXT_DB_NQ_P7(db, idx) \ 332 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_MASK | \ 333 DB_RING_IDX(db, idx), (db)->doorbell) 334 335 #define BNXT_DB_CQ_ARM(db, idx) \ 336 writel(DB_CP_REARM_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 337 338 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 339 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | \ 340 DB_RING_IDX(db, idx), (db)->doorbell) 341 342 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 343 { 344 if (bp->flags & BNXT_FLAG_CHIP_P7) 345 BNXT_DB_NQ_P7(db, idx); 346 else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 347 BNXT_DB_NQ_P5(db, idx); 348 else 349 BNXT_DB_CQ(db, idx); 350 } 351 352 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 353 { 354 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 355 BNXT_DB_NQ_ARM_P5(db, idx); 356 else 357 BNXT_DB_CQ_ARM(db, idx); 358 } 359 360 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 361 { 362 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 363 bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL | 364 DB_RING_IDX(db, idx), db->doorbell); 365 else 366 BNXT_DB_CQ(db, idx); 367 } 368 369 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 370 { 371 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 372 return; 373 374 if (BNXT_PF(bp)) 375 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 376 else 377 schedule_delayed_work(&bp->fw_reset_task, delay); 378 } 379 380 static void __bnxt_queue_sp_work(struct bnxt *bp) 381 { 382 if (BNXT_PF(bp)) 383 queue_work(bnxt_pf_wq, &bp->sp_task); 384 else 385 schedule_work(&bp->sp_task); 386 } 387 388 static void bnxt_queue_sp_work(struct bnxt *bp, unsigned int event) 389 { 390 set_bit(event, &bp->sp_event); 391 __bnxt_queue_sp_work(bp); 392 } 393 394 static void bnxt_sched_reset_rxr(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 395 { 396 if (!rxr->bnapi->in_reset) { 397 rxr->bnapi->in_reset = true; 398 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 399 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 400 else 401 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 402 __bnxt_queue_sp_work(bp); 403 } 404 rxr->rx_next_cons = 0xffff; 405 } 406 407 void bnxt_sched_reset_txr(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 408 u16 curr) 409 { 410 struct bnxt_napi *bnapi = txr->bnapi; 411 412 if (bnapi->tx_fault) 413 return; 414 415 netdev_err(bp->dev, "Invalid Tx completion (ring:%d tx_hw_cons:%u cons:%u prod:%u curr:%u)", 416 txr->txq_index, txr->tx_hw_cons, 417 txr->tx_cons, txr->tx_prod, curr); 418 WARN_ON_ONCE(1); 419 bnapi->tx_fault = 1; 420 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 421 } 422 423 const u16 bnxt_lhint_arr[] = { 424 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 425 TX_BD_FLAGS_LHINT_512_TO_1023, 426 TX_BD_FLAGS_LHINT_1024_TO_2047, 427 TX_BD_FLAGS_LHINT_1024_TO_2047, 428 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 429 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 430 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 431 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 432 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 433 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 434 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 435 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 436 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 437 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 438 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 439 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 440 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 441 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 442 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 443 }; 444 445 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 446 { 447 struct metadata_dst *md_dst = skb_metadata_dst(skb); 448 449 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 450 return 0; 451 452 return md_dst->u.port_info.port_id; 453 } 454 455 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 456 u16 prod) 457 { 458 /* Sync BD data before updating doorbell */ 459 wmb(); 460 bnxt_db_write(bp, &txr->tx_db, prod); 461 txr->kick_pending = 0; 462 } 463 464 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 465 { 466 struct bnxt *bp = netdev_priv(dev); 467 struct tx_bd *txbd, *txbd0; 468 struct tx_bd_ext *txbd1; 469 struct netdev_queue *txq; 470 int i; 471 dma_addr_t mapping; 472 unsigned int length, pad = 0; 473 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 474 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 475 struct pci_dev *pdev = bp->pdev; 476 u16 prod, last_frag, txts_prod; 477 struct bnxt_tx_ring_info *txr; 478 struct bnxt_sw_tx_bd *tx_buf; 479 __le32 lflags = 0; 480 skb_frag_t *frag; 481 482 i = skb_get_queue_mapping(skb); 483 if (unlikely(i >= bp->tx_nr_rings)) { 484 dev_kfree_skb_any(skb); 485 dev_core_stats_tx_dropped_inc(dev); 486 return NETDEV_TX_OK; 487 } 488 489 txq = netdev_get_tx_queue(dev, i); 490 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 491 prod = txr->tx_prod; 492 493 #if (MAX_SKB_FRAGS > TX_MAX_FRAGS) 494 if (skb_shinfo(skb)->nr_frags > TX_MAX_FRAGS) { 495 netdev_warn_once(dev, "SKB has too many (%d) fragments, max supported is %d. SKB will be linearized.\n", 496 skb_shinfo(skb)->nr_frags, TX_MAX_FRAGS); 497 if (skb_linearize(skb)) { 498 dev_kfree_skb_any(skb); 499 dev_core_stats_tx_dropped_inc(dev); 500 return NETDEV_TX_OK; 501 } 502 } 503 #endif 504 free_size = bnxt_tx_avail(bp, txr); 505 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 506 /* We must have raced with NAPI cleanup */ 507 if (net_ratelimit() && txr->kick_pending) 508 netif_warn(bp, tx_err, dev, 509 "bnxt: ring busy w/ flush pending!\n"); 510 if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 511 bp->tx_wake_thresh)) 512 return NETDEV_TX_BUSY; 513 } 514 515 if (unlikely(ipv6_hopopt_jumbo_remove(skb))) 516 goto tx_free; 517 518 length = skb->len; 519 len = skb_headlen(skb); 520 last_frag = skb_shinfo(skb)->nr_frags; 521 522 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 523 524 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 525 tx_buf->skb = skb; 526 tx_buf->nr_frags = last_frag; 527 528 vlan_tag_flags = 0; 529 cfa_action = bnxt_xmit_get_cfa_action(skb); 530 if (skb_vlan_tag_present(skb)) { 531 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 532 skb_vlan_tag_get(skb); 533 /* Currently supports 8021Q, 8021AD vlan offloads 534 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 535 */ 536 if (skb->vlan_proto == htons(ETH_P_8021Q)) 537 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 538 } 539 540 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && ptp && 541 ptp->tx_tstamp_en) { 542 if (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) { 543 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 544 tx_buf->is_ts_pkt = 1; 545 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 546 } else if (!skb_is_gso(skb)) { 547 u16 seq_id, hdr_off; 548 549 if (!bnxt_ptp_parse(skb, &seq_id, &hdr_off) && 550 !bnxt_ptp_get_txts_prod(ptp, &txts_prod)) { 551 if (vlan_tag_flags) 552 hdr_off += VLAN_HLEN; 553 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 554 tx_buf->is_ts_pkt = 1; 555 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 556 557 ptp->txts_req[txts_prod].tx_seqid = seq_id; 558 ptp->txts_req[txts_prod].tx_hdr_off = hdr_off; 559 tx_buf->txts_prod = txts_prod; 560 } 561 } 562 } 563 if (unlikely(skb->no_fcs)) 564 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 565 566 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && 567 skb_frags_readable(skb) && !lflags) { 568 struct tx_push_buffer *tx_push_buf = txr->tx_push; 569 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 570 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 571 void __iomem *db = txr->tx_db.doorbell; 572 void *pdata = tx_push_buf->data; 573 u64 *end; 574 int j, push_len; 575 576 /* Set COAL_NOW to be ready quickly for the next push */ 577 tx_push->tx_bd_len_flags_type = 578 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 579 TX_BD_TYPE_LONG_TX_BD | 580 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 581 TX_BD_FLAGS_COAL_NOW | 582 TX_BD_FLAGS_PACKET_END | 583 TX_BD_CNT(2)); 584 585 if (skb->ip_summed == CHECKSUM_PARTIAL) 586 tx_push1->tx_bd_hsize_lflags = 587 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 588 else 589 tx_push1->tx_bd_hsize_lflags = 0; 590 591 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 592 tx_push1->tx_bd_cfa_action = 593 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 594 595 end = pdata + length; 596 end = PTR_ALIGN(end, 8) - 1; 597 *end = 0; 598 599 skb_copy_from_linear_data(skb, pdata, len); 600 pdata += len; 601 for (j = 0; j < last_frag; j++) { 602 void *fptr; 603 604 frag = &skb_shinfo(skb)->frags[j]; 605 fptr = skb_frag_address_safe(frag); 606 if (!fptr) 607 goto normal_tx; 608 609 memcpy(pdata, fptr, skb_frag_size(frag)); 610 pdata += skb_frag_size(frag); 611 } 612 613 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 614 txbd->tx_bd_haddr = txr->data_mapping; 615 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2); 616 prod = NEXT_TX(prod); 617 tx_push->tx_bd_opaque = txbd->tx_bd_opaque; 618 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 619 memcpy(txbd, tx_push1, sizeof(*txbd)); 620 prod = NEXT_TX(prod); 621 tx_push->doorbell = 622 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | 623 DB_RING_IDX(&txr->tx_db, prod)); 624 WRITE_ONCE(txr->tx_prod, prod); 625 626 tx_buf->is_push = 1; 627 netdev_tx_sent_queue(txq, skb->len); 628 wmb(); /* Sync is_push and byte queue before pushing data */ 629 630 push_len = (length + sizeof(*tx_push) + 7) / 8; 631 if (push_len > 16) { 632 __iowrite64_copy(db, tx_push_buf, 16); 633 __iowrite32_copy(db + 4, tx_push_buf + 1, 634 (push_len - 16) << 1); 635 } else { 636 __iowrite64_copy(db, tx_push_buf, push_len); 637 } 638 639 goto tx_done; 640 } 641 642 normal_tx: 643 if (length < BNXT_MIN_PKT_SIZE) { 644 pad = BNXT_MIN_PKT_SIZE - length; 645 if (skb_pad(skb, pad)) 646 /* SKB already freed. */ 647 goto tx_kick_pending; 648 length = BNXT_MIN_PKT_SIZE; 649 } 650 651 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 652 653 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 654 goto tx_free; 655 656 dma_unmap_addr_set(tx_buf, mapping, mapping); 657 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 658 TX_BD_CNT(last_frag + 2); 659 660 txbd->tx_bd_haddr = cpu_to_le64(mapping); 661 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2 + last_frag); 662 663 prod = NEXT_TX(prod); 664 txbd1 = (struct tx_bd_ext *) 665 &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 666 667 txbd1->tx_bd_hsize_lflags = lflags; 668 if (skb_is_gso(skb)) { 669 bool udp_gso = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4); 670 u32 hdr_len; 671 672 if (skb->encapsulation) { 673 if (udp_gso) 674 hdr_len = skb_inner_transport_offset(skb) + 675 sizeof(struct udphdr); 676 else 677 hdr_len = skb_inner_tcp_all_headers(skb); 678 } else if (udp_gso) { 679 hdr_len = skb_transport_offset(skb) + 680 sizeof(struct udphdr); 681 } else { 682 hdr_len = skb_tcp_all_headers(skb); 683 } 684 685 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 686 TX_BD_FLAGS_T_IPID | 687 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 688 length = skb_shinfo(skb)->gso_size; 689 txbd1->tx_bd_mss = cpu_to_le32(length); 690 length += hdr_len; 691 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 692 txbd1->tx_bd_hsize_lflags |= 693 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 694 txbd1->tx_bd_mss = 0; 695 } 696 697 length >>= 9; 698 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 699 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 700 skb->len); 701 i = 0; 702 goto tx_dma_error; 703 } 704 flags |= bnxt_lhint_arr[length]; 705 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 706 707 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 708 txbd1->tx_bd_cfa_action = 709 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 710 txbd0 = txbd; 711 for (i = 0; i < last_frag; i++) { 712 frag = &skb_shinfo(skb)->frags[i]; 713 prod = NEXT_TX(prod); 714 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 715 716 len = skb_frag_size(frag); 717 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 718 DMA_TO_DEVICE); 719 720 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 721 goto tx_dma_error; 722 723 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 724 netmem_dma_unmap_addr_set(skb_frag_netmem(frag), tx_buf, 725 mapping, mapping); 726 727 txbd->tx_bd_haddr = cpu_to_le64(mapping); 728 729 flags = len << TX_BD_LEN_SHIFT; 730 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 731 } 732 733 flags &= ~TX_BD_LEN; 734 txbd->tx_bd_len_flags_type = 735 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 736 TX_BD_FLAGS_PACKET_END); 737 738 netdev_tx_sent_queue(txq, skb->len); 739 740 skb_tx_timestamp(skb); 741 742 prod = NEXT_TX(prod); 743 WRITE_ONCE(txr->tx_prod, prod); 744 745 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) { 746 bnxt_txr_db_kick(bp, txr, prod); 747 } else { 748 if (free_size >= bp->tx_wake_thresh) 749 txbd0->tx_bd_len_flags_type |= 750 cpu_to_le32(TX_BD_FLAGS_NO_CMPL); 751 txr->kick_pending = 1; 752 } 753 754 tx_done: 755 756 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 757 if (netdev_xmit_more() && !tx_buf->is_push) { 758 txbd0->tx_bd_len_flags_type &= 759 cpu_to_le32(~TX_BD_FLAGS_NO_CMPL); 760 bnxt_txr_db_kick(bp, txr, prod); 761 } 762 763 netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 764 bp->tx_wake_thresh); 765 } 766 return NETDEV_TX_OK; 767 768 tx_dma_error: 769 last_frag = i; 770 771 /* start back at beginning and unmap skb */ 772 prod = txr->tx_prod; 773 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 774 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 775 skb_headlen(skb), DMA_TO_DEVICE); 776 prod = NEXT_TX(prod); 777 778 /* unmap remaining mapped pages */ 779 for (i = 0; i < last_frag; i++) { 780 prod = NEXT_TX(prod); 781 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 782 frag = &skb_shinfo(skb)->frags[i]; 783 netmem_dma_unmap_page_attrs(&pdev->dev, 784 dma_unmap_addr(tx_buf, mapping), 785 skb_frag_size(frag), 786 DMA_TO_DEVICE, 0); 787 } 788 789 tx_free: 790 dev_kfree_skb_any(skb); 791 tx_kick_pending: 792 if (BNXT_TX_PTP_IS_SET(lflags)) { 793 txr->tx_buf_ring[RING_TX(bp, txr->tx_prod)].is_ts_pkt = 0; 794 atomic64_inc(&bp->ptp_cfg->stats.ts_err); 795 if (!(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) 796 /* set SKB to err so PTP worker will clean up */ 797 ptp->txts_req[txts_prod].tx_skb = ERR_PTR(-EIO); 798 } 799 if (txr->kick_pending) 800 bnxt_txr_db_kick(bp, txr, txr->tx_prod); 801 txr->tx_buf_ring[RING_TX(bp, txr->tx_prod)].skb = NULL; 802 dev_core_stats_tx_dropped_inc(dev); 803 return NETDEV_TX_OK; 804 } 805 806 /* Returns true if some remaining TX packets not processed. */ 807 static bool __bnxt_tx_int(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 808 int budget) 809 { 810 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 811 struct pci_dev *pdev = bp->pdev; 812 u16 hw_cons = txr->tx_hw_cons; 813 unsigned int tx_bytes = 0; 814 u16 cons = txr->tx_cons; 815 skb_frag_t *frag; 816 int tx_pkts = 0; 817 bool rc = false; 818 819 while (RING_TX(bp, cons) != hw_cons) { 820 struct bnxt_sw_tx_bd *tx_buf; 821 struct sk_buff *skb; 822 bool is_ts_pkt; 823 int j, last; 824 825 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 826 skb = tx_buf->skb; 827 828 if (unlikely(!skb)) { 829 bnxt_sched_reset_txr(bp, txr, cons); 830 return rc; 831 } 832 833 is_ts_pkt = tx_buf->is_ts_pkt; 834 if (is_ts_pkt && (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) { 835 rc = true; 836 break; 837 } 838 839 cons = NEXT_TX(cons); 840 tx_pkts++; 841 tx_bytes += skb->len; 842 tx_buf->skb = NULL; 843 tx_buf->is_ts_pkt = 0; 844 845 if (tx_buf->is_push) { 846 tx_buf->is_push = 0; 847 goto next_tx_int; 848 } 849 850 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 851 skb_headlen(skb), DMA_TO_DEVICE); 852 last = tx_buf->nr_frags; 853 854 for (j = 0; j < last; j++) { 855 frag = &skb_shinfo(skb)->frags[j]; 856 cons = NEXT_TX(cons); 857 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 858 netmem_dma_unmap_page_attrs(&pdev->dev, 859 dma_unmap_addr(tx_buf, 860 mapping), 861 skb_frag_size(frag), 862 DMA_TO_DEVICE, 0); 863 } 864 if (unlikely(is_ts_pkt)) { 865 if (BNXT_CHIP_P5(bp)) { 866 /* PTP worker takes ownership of the skb */ 867 bnxt_get_tx_ts_p5(bp, skb, tx_buf->txts_prod); 868 skb = NULL; 869 } 870 } 871 872 next_tx_int: 873 cons = NEXT_TX(cons); 874 875 dev_consume_skb_any(skb); 876 } 877 878 WRITE_ONCE(txr->tx_cons, cons); 879 880 __netif_txq_completed_wake(txq, tx_pkts, tx_bytes, 881 bnxt_tx_avail(bp, txr), bp->tx_wake_thresh, 882 READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING); 883 884 return rc; 885 } 886 887 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 888 { 889 struct bnxt_tx_ring_info *txr; 890 bool more = false; 891 int i; 892 893 bnxt_for_each_napi_tx(i, bnapi, txr) { 894 if (txr->tx_hw_cons != RING_TX(bp, txr->tx_cons)) 895 more |= __bnxt_tx_int(bp, txr, budget); 896 } 897 if (!more) 898 bnapi->events &= ~BNXT_TX_CMP_EVENT; 899 } 900 901 static bool bnxt_separate_head_pool(struct bnxt_rx_ring_info *rxr) 902 { 903 return rxr->need_head_pool || PAGE_SIZE > BNXT_RX_PAGE_SIZE; 904 } 905 906 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 907 struct bnxt_rx_ring_info *rxr, 908 unsigned int *offset, 909 gfp_t gfp) 910 { 911 struct page *page; 912 913 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 914 page = page_pool_dev_alloc_frag(rxr->page_pool, offset, 915 BNXT_RX_PAGE_SIZE); 916 } else { 917 page = page_pool_dev_alloc_pages(rxr->page_pool); 918 *offset = 0; 919 } 920 if (!page) 921 return NULL; 922 923 *mapping = page_pool_get_dma_addr(page) + *offset; 924 return page; 925 } 926 927 static netmem_ref __bnxt_alloc_rx_netmem(struct bnxt *bp, dma_addr_t *mapping, 928 struct bnxt_rx_ring_info *rxr, 929 unsigned int *offset, 930 gfp_t gfp) 931 { 932 netmem_ref netmem; 933 934 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 935 netmem = page_pool_alloc_frag_netmem(rxr->page_pool, offset, BNXT_RX_PAGE_SIZE, gfp); 936 } else { 937 netmem = page_pool_alloc_netmems(rxr->page_pool, gfp); 938 *offset = 0; 939 } 940 if (!netmem) 941 return 0; 942 943 *mapping = page_pool_get_dma_addr_netmem(netmem) + *offset; 944 return netmem; 945 } 946 947 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping, 948 struct bnxt_rx_ring_info *rxr, 949 gfp_t gfp) 950 { 951 unsigned int offset; 952 struct page *page; 953 954 page = page_pool_alloc_frag(rxr->head_pool, &offset, 955 bp->rx_buf_size, gfp); 956 if (!page) 957 return NULL; 958 959 *mapping = page_pool_get_dma_addr(page) + bp->rx_dma_offset + offset; 960 return page_address(page) + offset; 961 } 962 963 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 964 u16 prod, gfp_t gfp) 965 { 966 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 967 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 968 dma_addr_t mapping; 969 970 if (BNXT_RX_PAGE_MODE(bp)) { 971 unsigned int offset; 972 struct page *page = 973 __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 974 975 if (!page) 976 return -ENOMEM; 977 978 mapping += bp->rx_dma_offset; 979 rx_buf->data = page; 980 rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset; 981 } else { 982 u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, rxr, gfp); 983 984 if (!data) 985 return -ENOMEM; 986 987 rx_buf->data = data; 988 rx_buf->data_ptr = data + bp->rx_offset; 989 } 990 rx_buf->mapping = mapping; 991 992 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 993 return 0; 994 } 995 996 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 997 { 998 u16 prod = rxr->rx_prod; 999 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1000 struct bnxt *bp = rxr->bnapi->bp; 1001 struct rx_bd *cons_bd, *prod_bd; 1002 1003 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 1004 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1005 1006 prod_rx_buf->data = data; 1007 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 1008 1009 prod_rx_buf->mapping = cons_rx_buf->mapping; 1010 1011 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 1012 cons_bd = &rxr->rx_desc_ring[RX_RING(bp, cons)][RX_IDX(cons)]; 1013 1014 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 1015 } 1016 1017 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1018 { 1019 u16 next, max = rxr->rx_agg_bmap_size; 1020 1021 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 1022 if (next >= max) 1023 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 1024 return next; 1025 } 1026 1027 static int bnxt_alloc_rx_netmem(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1028 u16 prod, gfp_t gfp) 1029 { 1030 struct rx_bd *rxbd = 1031 &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 1032 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 1033 u16 sw_prod = rxr->rx_sw_agg_prod; 1034 unsigned int offset = 0; 1035 dma_addr_t mapping; 1036 netmem_ref netmem; 1037 1038 netmem = __bnxt_alloc_rx_netmem(bp, &mapping, rxr, &offset, gfp); 1039 if (!netmem) 1040 return -ENOMEM; 1041 1042 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 1043 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 1044 1045 __set_bit(sw_prod, rxr->rx_agg_bmap); 1046 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 1047 rxr->rx_sw_agg_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 1048 1049 rx_agg_buf->netmem = netmem; 1050 rx_agg_buf->offset = offset; 1051 rx_agg_buf->mapping = mapping; 1052 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 1053 rxbd->rx_bd_opaque = sw_prod; 1054 return 0; 1055 } 1056 1057 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 1058 struct bnxt_cp_ring_info *cpr, 1059 u16 cp_cons, u16 curr) 1060 { 1061 struct rx_agg_cmp *agg; 1062 1063 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 1064 agg = (struct rx_agg_cmp *) 1065 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1066 return agg; 1067 } 1068 1069 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 1070 struct bnxt_rx_ring_info *rxr, 1071 u16 agg_id, u16 curr) 1072 { 1073 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 1074 1075 return &tpa_info->agg_arr[curr]; 1076 } 1077 1078 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 1079 u16 start, u32 agg_bufs, bool tpa) 1080 { 1081 struct bnxt_napi *bnapi = cpr->bnapi; 1082 struct bnxt *bp = bnapi->bp; 1083 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1084 u16 prod = rxr->rx_agg_prod; 1085 u16 sw_prod = rxr->rx_sw_agg_prod; 1086 bool p5_tpa = false; 1087 u32 i; 1088 1089 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1090 p5_tpa = true; 1091 1092 for (i = 0; i < agg_bufs; i++) { 1093 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 1094 struct rx_agg_cmp *agg; 1095 struct rx_bd *prod_bd; 1096 netmem_ref netmem; 1097 u16 cons; 1098 1099 if (p5_tpa) 1100 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 1101 else 1102 agg = bnxt_get_agg(bp, cpr, idx, start + i); 1103 cons = agg->rx_agg_cmp_opaque; 1104 __clear_bit(cons, rxr->rx_agg_bmap); 1105 1106 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 1107 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 1108 1109 __set_bit(sw_prod, rxr->rx_agg_bmap); 1110 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 1111 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1112 1113 /* It is possible for sw_prod to be equal to cons, so 1114 * set cons_rx_buf->netmem to 0 first. 1115 */ 1116 netmem = cons_rx_buf->netmem; 1117 cons_rx_buf->netmem = 0; 1118 prod_rx_buf->netmem = netmem; 1119 prod_rx_buf->offset = cons_rx_buf->offset; 1120 1121 prod_rx_buf->mapping = cons_rx_buf->mapping; 1122 1123 prod_bd = &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 1124 1125 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 1126 prod_bd->rx_bd_opaque = sw_prod; 1127 1128 prod = NEXT_RX_AGG(prod); 1129 sw_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 1130 } 1131 rxr->rx_agg_prod = prod; 1132 rxr->rx_sw_agg_prod = sw_prod; 1133 } 1134 1135 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp, 1136 struct bnxt_rx_ring_info *rxr, 1137 u16 cons, void *data, u8 *data_ptr, 1138 dma_addr_t dma_addr, 1139 unsigned int offset_and_len) 1140 { 1141 unsigned int len = offset_and_len & 0xffff; 1142 struct page *page = data; 1143 u16 prod = rxr->rx_prod; 1144 struct sk_buff *skb; 1145 int err; 1146 1147 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1148 if (unlikely(err)) { 1149 bnxt_reuse_rx_data(rxr, cons, data); 1150 return NULL; 1151 } 1152 dma_addr -= bp->rx_dma_offset; 1153 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1154 bp->rx_dir); 1155 skb = napi_build_skb(data_ptr - bp->rx_offset, BNXT_RX_PAGE_SIZE); 1156 if (!skb) { 1157 page_pool_recycle_direct(rxr->page_pool, page); 1158 return NULL; 1159 } 1160 skb_mark_for_recycle(skb); 1161 skb_reserve(skb, bp->rx_offset); 1162 __skb_put(skb, len); 1163 1164 return skb; 1165 } 1166 1167 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 1168 struct bnxt_rx_ring_info *rxr, 1169 u16 cons, void *data, u8 *data_ptr, 1170 dma_addr_t dma_addr, 1171 unsigned int offset_and_len) 1172 { 1173 unsigned int payload = offset_and_len >> 16; 1174 unsigned int len = offset_and_len & 0xffff; 1175 skb_frag_t *frag; 1176 struct page *page = data; 1177 u16 prod = rxr->rx_prod; 1178 struct sk_buff *skb; 1179 int off, err; 1180 1181 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1182 if (unlikely(err)) { 1183 bnxt_reuse_rx_data(rxr, cons, data); 1184 return NULL; 1185 } 1186 dma_addr -= bp->rx_dma_offset; 1187 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1188 bp->rx_dir); 1189 1190 if (unlikely(!payload)) 1191 payload = eth_get_headlen(bp->dev, data_ptr, len); 1192 1193 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 1194 if (!skb) { 1195 page_pool_recycle_direct(rxr->page_pool, page); 1196 return NULL; 1197 } 1198 1199 skb_mark_for_recycle(skb); 1200 off = (void *)data_ptr - page_address(page); 1201 skb_add_rx_frag(skb, 0, page, off, len, BNXT_RX_PAGE_SIZE); 1202 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 1203 payload + NET_IP_ALIGN); 1204 1205 frag = &skb_shinfo(skb)->frags[0]; 1206 skb_frag_size_sub(frag, payload); 1207 skb_frag_off_add(frag, payload); 1208 skb->data_len -= payload; 1209 skb->tail += payload; 1210 1211 return skb; 1212 } 1213 1214 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 1215 struct bnxt_rx_ring_info *rxr, u16 cons, 1216 void *data, u8 *data_ptr, 1217 dma_addr_t dma_addr, 1218 unsigned int offset_and_len) 1219 { 1220 u16 prod = rxr->rx_prod; 1221 struct sk_buff *skb; 1222 int err; 1223 1224 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1225 if (unlikely(err)) { 1226 bnxt_reuse_rx_data(rxr, cons, data); 1227 return NULL; 1228 } 1229 1230 skb = napi_build_skb(data, bp->rx_buf_size); 1231 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1232 bp->rx_dir); 1233 if (!skb) { 1234 page_pool_free_va(rxr->head_pool, data, true); 1235 return NULL; 1236 } 1237 1238 skb_mark_for_recycle(skb); 1239 skb_reserve(skb, bp->rx_offset); 1240 skb_put(skb, offset_and_len & 0xffff); 1241 return skb; 1242 } 1243 1244 static u32 __bnxt_rx_agg_netmems(struct bnxt *bp, 1245 struct bnxt_cp_ring_info *cpr, 1246 u16 idx, u32 agg_bufs, bool tpa, 1247 struct sk_buff *skb, 1248 struct xdp_buff *xdp) 1249 { 1250 struct bnxt_napi *bnapi = cpr->bnapi; 1251 struct skb_shared_info *shinfo; 1252 struct bnxt_rx_ring_info *rxr; 1253 u32 i, total_frag_len = 0; 1254 bool p5_tpa = false; 1255 u16 prod; 1256 1257 rxr = bnapi->rx_ring; 1258 prod = rxr->rx_agg_prod; 1259 1260 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1261 p5_tpa = true; 1262 1263 if (skb) 1264 shinfo = skb_shinfo(skb); 1265 else 1266 shinfo = xdp_get_shared_info_from_buff(xdp); 1267 1268 for (i = 0; i < agg_bufs; i++) { 1269 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1270 struct rx_agg_cmp *agg; 1271 u16 cons, frag_len; 1272 netmem_ref netmem; 1273 1274 if (p5_tpa) 1275 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1276 else 1277 agg = bnxt_get_agg(bp, cpr, idx, i); 1278 cons = agg->rx_agg_cmp_opaque; 1279 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1280 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1281 1282 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1283 if (skb) { 1284 skb_add_rx_frag_netmem(skb, i, cons_rx_buf->netmem, 1285 cons_rx_buf->offset, 1286 frag_len, BNXT_RX_PAGE_SIZE); 1287 } else { 1288 skb_frag_t *frag = &shinfo->frags[i]; 1289 1290 skb_frag_fill_netmem_desc(frag, cons_rx_buf->netmem, 1291 cons_rx_buf->offset, 1292 frag_len); 1293 shinfo->nr_frags = i + 1; 1294 } 1295 __clear_bit(cons, rxr->rx_agg_bmap); 1296 1297 /* It is possible for bnxt_alloc_rx_netmem() to allocate 1298 * a sw_prod index that equals the cons index, so we 1299 * need to clear the cons entry now. 1300 */ 1301 netmem = cons_rx_buf->netmem; 1302 cons_rx_buf->netmem = 0; 1303 1304 if (xdp && netmem_is_pfmemalloc(netmem)) 1305 xdp_buff_set_frag_pfmemalloc(xdp); 1306 1307 if (bnxt_alloc_rx_netmem(bp, rxr, prod, GFP_ATOMIC) != 0) { 1308 if (skb) { 1309 skb->len -= frag_len; 1310 skb->data_len -= frag_len; 1311 skb->truesize -= BNXT_RX_PAGE_SIZE; 1312 } 1313 1314 --shinfo->nr_frags; 1315 cons_rx_buf->netmem = netmem; 1316 1317 /* Update prod since possibly some netmems have been 1318 * allocated already. 1319 */ 1320 rxr->rx_agg_prod = prod; 1321 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1322 return 0; 1323 } 1324 1325 page_pool_dma_sync_netmem_for_cpu(rxr->page_pool, netmem, 0, 1326 BNXT_RX_PAGE_SIZE); 1327 1328 total_frag_len += frag_len; 1329 prod = NEXT_RX_AGG(prod); 1330 } 1331 rxr->rx_agg_prod = prod; 1332 return total_frag_len; 1333 } 1334 1335 static struct sk_buff *bnxt_rx_agg_netmems_skb(struct bnxt *bp, 1336 struct bnxt_cp_ring_info *cpr, 1337 struct sk_buff *skb, u16 idx, 1338 u32 agg_bufs, bool tpa) 1339 { 1340 u32 total_frag_len = 0; 1341 1342 total_frag_len = __bnxt_rx_agg_netmems(bp, cpr, idx, agg_bufs, tpa, 1343 skb, NULL); 1344 if (!total_frag_len) { 1345 skb_mark_for_recycle(skb); 1346 dev_kfree_skb(skb); 1347 return NULL; 1348 } 1349 1350 return skb; 1351 } 1352 1353 static u32 bnxt_rx_agg_netmems_xdp(struct bnxt *bp, 1354 struct bnxt_cp_ring_info *cpr, 1355 struct xdp_buff *xdp, u16 idx, 1356 u32 agg_bufs, bool tpa) 1357 { 1358 struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp); 1359 u32 total_frag_len = 0; 1360 1361 if (!xdp_buff_has_frags(xdp)) 1362 shinfo->nr_frags = 0; 1363 1364 total_frag_len = __bnxt_rx_agg_netmems(bp, cpr, idx, agg_bufs, tpa, 1365 NULL, xdp); 1366 if (total_frag_len) { 1367 xdp_buff_set_frags_flag(xdp); 1368 shinfo->nr_frags = agg_bufs; 1369 shinfo->xdp_frags_size = total_frag_len; 1370 } 1371 return total_frag_len; 1372 } 1373 1374 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1375 u8 agg_bufs, u32 *raw_cons) 1376 { 1377 u16 last; 1378 struct rx_agg_cmp *agg; 1379 1380 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1381 last = RING_CMP(*raw_cons); 1382 agg = (struct rx_agg_cmp *) 1383 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1384 return RX_AGG_CMP_VALID(agg, *raw_cons); 1385 } 1386 1387 static struct sk_buff *bnxt_copy_data(struct bnxt_napi *bnapi, u8 *data, 1388 unsigned int len, 1389 dma_addr_t mapping) 1390 { 1391 struct bnxt *bp = bnapi->bp; 1392 struct pci_dev *pdev = bp->pdev; 1393 struct sk_buff *skb; 1394 1395 skb = napi_alloc_skb(&bnapi->napi, len); 1396 if (!skb) 1397 return NULL; 1398 1399 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copybreak, 1400 bp->rx_dir); 1401 1402 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1403 len + NET_IP_ALIGN); 1404 1405 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copybreak, 1406 bp->rx_dir); 1407 1408 skb_put(skb, len); 1409 1410 return skb; 1411 } 1412 1413 static struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1414 unsigned int len, 1415 dma_addr_t mapping) 1416 { 1417 return bnxt_copy_data(bnapi, data, len, mapping); 1418 } 1419 1420 static struct sk_buff *bnxt_copy_xdp(struct bnxt_napi *bnapi, 1421 struct xdp_buff *xdp, 1422 unsigned int len, 1423 dma_addr_t mapping) 1424 { 1425 unsigned int metasize = 0; 1426 u8 *data = xdp->data; 1427 struct sk_buff *skb; 1428 1429 len = xdp->data_end - xdp->data_meta; 1430 metasize = xdp->data - xdp->data_meta; 1431 data = xdp->data_meta; 1432 1433 skb = bnxt_copy_data(bnapi, data, len, mapping); 1434 if (!skb) 1435 return skb; 1436 1437 if (metasize) { 1438 skb_metadata_set(skb, metasize); 1439 __skb_pull(skb, metasize); 1440 } 1441 1442 return skb; 1443 } 1444 1445 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1446 u32 *raw_cons, void *cmp) 1447 { 1448 struct rx_cmp *rxcmp = cmp; 1449 u32 tmp_raw_cons = *raw_cons; 1450 u8 cmp_type, agg_bufs = 0; 1451 1452 cmp_type = RX_CMP_TYPE(rxcmp); 1453 1454 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1455 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1456 RX_CMP_AGG_BUFS) >> 1457 RX_CMP_AGG_BUFS_SHIFT; 1458 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1459 struct rx_tpa_end_cmp *tpa_end = cmp; 1460 1461 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1462 return 0; 1463 1464 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1465 } 1466 1467 if (agg_bufs) { 1468 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1469 return -EBUSY; 1470 } 1471 *raw_cons = tmp_raw_cons; 1472 return 0; 1473 } 1474 1475 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1476 { 1477 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1478 u16 idx = agg_id & MAX_TPA_P5_MASK; 1479 1480 if (test_bit(idx, map->agg_idx_bmap)) 1481 idx = find_first_zero_bit(map->agg_idx_bmap, 1482 BNXT_AGG_IDX_BMAP_SIZE); 1483 __set_bit(idx, map->agg_idx_bmap); 1484 map->agg_id_tbl[agg_id] = idx; 1485 return idx; 1486 } 1487 1488 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1489 { 1490 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1491 1492 __clear_bit(idx, map->agg_idx_bmap); 1493 } 1494 1495 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1496 { 1497 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1498 1499 return map->agg_id_tbl[agg_id]; 1500 } 1501 1502 static void bnxt_tpa_metadata(struct bnxt_tpa_info *tpa_info, 1503 struct rx_tpa_start_cmp *tpa_start, 1504 struct rx_tpa_start_cmp_ext *tpa_start1) 1505 { 1506 tpa_info->cfa_code_valid = 1; 1507 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1508 tpa_info->vlan_valid = 0; 1509 if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) { 1510 tpa_info->vlan_valid = 1; 1511 tpa_info->metadata = 1512 le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1513 } 1514 } 1515 1516 static void bnxt_tpa_metadata_v2(struct bnxt_tpa_info *tpa_info, 1517 struct rx_tpa_start_cmp *tpa_start, 1518 struct rx_tpa_start_cmp_ext *tpa_start1) 1519 { 1520 tpa_info->vlan_valid = 0; 1521 if (TPA_START_VLAN_VALID(tpa_start)) { 1522 u32 tpid_sel = TPA_START_VLAN_TPID_SEL(tpa_start); 1523 u32 vlan_proto = ETH_P_8021Q; 1524 1525 tpa_info->vlan_valid = 1; 1526 if (tpid_sel == RX_TPA_START_METADATA1_TPID_8021AD) 1527 vlan_proto = ETH_P_8021AD; 1528 tpa_info->metadata = vlan_proto << 16 | 1529 TPA_START_METADATA0_TCI(tpa_start1); 1530 } 1531 } 1532 1533 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1534 u8 cmp_type, struct rx_tpa_start_cmp *tpa_start, 1535 struct rx_tpa_start_cmp_ext *tpa_start1) 1536 { 1537 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1538 struct bnxt_tpa_info *tpa_info; 1539 u16 cons, prod, agg_id; 1540 struct rx_bd *prod_bd; 1541 dma_addr_t mapping; 1542 1543 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1544 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1545 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1546 } else { 1547 agg_id = TPA_START_AGG_ID(tpa_start); 1548 } 1549 cons = tpa_start->rx_tpa_start_cmp_opaque; 1550 prod = rxr->rx_prod; 1551 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1552 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 1553 tpa_info = &rxr->rx_tpa[agg_id]; 1554 1555 if (unlikely(cons != rxr->rx_next_cons || 1556 TPA_START_ERROR(tpa_start))) { 1557 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1558 cons, rxr->rx_next_cons, 1559 TPA_START_ERROR_CODE(tpa_start1)); 1560 bnxt_sched_reset_rxr(bp, rxr); 1561 return; 1562 } 1563 prod_rx_buf->data = tpa_info->data; 1564 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1565 1566 mapping = tpa_info->mapping; 1567 prod_rx_buf->mapping = mapping; 1568 1569 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 1570 1571 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1572 1573 tpa_info->data = cons_rx_buf->data; 1574 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1575 cons_rx_buf->data = NULL; 1576 tpa_info->mapping = cons_rx_buf->mapping; 1577 1578 tpa_info->len = 1579 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1580 RX_TPA_START_CMP_LEN_SHIFT; 1581 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1582 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1583 tpa_info->gso_type = SKB_GSO_TCPV4; 1584 if (TPA_START_IS_IPV6(tpa_start1)) 1585 tpa_info->gso_type = SKB_GSO_TCPV6; 1586 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1587 else if (!BNXT_CHIP_P4_PLUS(bp) && 1588 TPA_START_HASH_TYPE(tpa_start) == 3) 1589 tpa_info->gso_type = SKB_GSO_TCPV6; 1590 tpa_info->rss_hash = 1591 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1592 } else { 1593 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1594 tpa_info->gso_type = 0; 1595 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1596 } 1597 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1598 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1599 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) 1600 bnxt_tpa_metadata(tpa_info, tpa_start, tpa_start1); 1601 else 1602 bnxt_tpa_metadata_v2(tpa_info, tpa_start, tpa_start1); 1603 tpa_info->agg_count = 0; 1604 1605 rxr->rx_prod = NEXT_RX(prod); 1606 cons = RING_RX(bp, NEXT_RX(cons)); 1607 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 1608 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1609 1610 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1611 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1612 cons_rx_buf->data = NULL; 1613 } 1614 1615 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1616 { 1617 if (agg_bufs) 1618 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1619 } 1620 1621 #ifdef CONFIG_INET 1622 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1623 { 1624 struct udphdr *uh = NULL; 1625 1626 if (ip_proto == htons(ETH_P_IP)) { 1627 struct iphdr *iph = (struct iphdr *)skb->data; 1628 1629 if (iph->protocol == IPPROTO_UDP) 1630 uh = (struct udphdr *)(iph + 1); 1631 } else { 1632 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1633 1634 if (iph->nexthdr == IPPROTO_UDP) 1635 uh = (struct udphdr *)(iph + 1); 1636 } 1637 if (uh) { 1638 if (uh->check) 1639 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1640 else 1641 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1642 } 1643 } 1644 #endif 1645 1646 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1647 int payload_off, int tcp_ts, 1648 struct sk_buff *skb) 1649 { 1650 #ifdef CONFIG_INET 1651 struct tcphdr *th; 1652 int len, nw_off; 1653 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1654 u32 hdr_info = tpa_info->hdr_info; 1655 bool loopback = false; 1656 1657 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1658 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1659 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1660 1661 /* If the packet is an internal loopback packet, the offsets will 1662 * have an extra 4 bytes. 1663 */ 1664 if (inner_mac_off == 4) { 1665 loopback = true; 1666 } else if (inner_mac_off > 4) { 1667 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1668 ETH_HLEN - 2)); 1669 1670 /* We only support inner iPv4/ipv6. If we don't see the 1671 * correct protocol ID, it must be a loopback packet where 1672 * the offsets are off by 4. 1673 */ 1674 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1675 loopback = true; 1676 } 1677 if (loopback) { 1678 /* internal loopback packet, subtract all offsets by 4 */ 1679 inner_ip_off -= 4; 1680 inner_mac_off -= 4; 1681 outer_ip_off -= 4; 1682 } 1683 1684 nw_off = inner_ip_off - ETH_HLEN; 1685 skb_set_network_header(skb, nw_off); 1686 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1687 struct ipv6hdr *iph = ipv6_hdr(skb); 1688 1689 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1690 len = skb->len - skb_transport_offset(skb); 1691 th = tcp_hdr(skb); 1692 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1693 } else { 1694 struct iphdr *iph = ip_hdr(skb); 1695 1696 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1697 len = skb->len - skb_transport_offset(skb); 1698 th = tcp_hdr(skb); 1699 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1700 } 1701 1702 if (inner_mac_off) { /* tunnel */ 1703 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1704 ETH_HLEN - 2)); 1705 1706 bnxt_gro_tunnel(skb, proto); 1707 } 1708 #endif 1709 return skb; 1710 } 1711 1712 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1713 int payload_off, int tcp_ts, 1714 struct sk_buff *skb) 1715 { 1716 #ifdef CONFIG_INET 1717 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1718 u32 hdr_info = tpa_info->hdr_info; 1719 int iphdr_len, nw_off; 1720 1721 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1722 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1723 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1724 1725 nw_off = inner_ip_off - ETH_HLEN; 1726 skb_set_network_header(skb, nw_off); 1727 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1728 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1729 skb_set_transport_header(skb, nw_off + iphdr_len); 1730 1731 if (inner_mac_off) { /* tunnel */ 1732 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1733 ETH_HLEN - 2)); 1734 1735 bnxt_gro_tunnel(skb, proto); 1736 } 1737 #endif 1738 return skb; 1739 } 1740 1741 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1742 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1743 1744 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1745 int payload_off, int tcp_ts, 1746 struct sk_buff *skb) 1747 { 1748 #ifdef CONFIG_INET 1749 struct tcphdr *th; 1750 int len, nw_off, tcp_opt_len = 0; 1751 1752 if (tcp_ts) 1753 tcp_opt_len = 12; 1754 1755 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1756 struct iphdr *iph; 1757 1758 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1759 ETH_HLEN; 1760 skb_set_network_header(skb, nw_off); 1761 iph = ip_hdr(skb); 1762 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1763 len = skb->len - skb_transport_offset(skb); 1764 th = tcp_hdr(skb); 1765 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1766 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1767 struct ipv6hdr *iph; 1768 1769 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1770 ETH_HLEN; 1771 skb_set_network_header(skb, nw_off); 1772 iph = ipv6_hdr(skb); 1773 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1774 len = skb->len - skb_transport_offset(skb); 1775 th = tcp_hdr(skb); 1776 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1777 } else { 1778 dev_kfree_skb_any(skb); 1779 return NULL; 1780 } 1781 1782 if (nw_off) /* tunnel */ 1783 bnxt_gro_tunnel(skb, skb->protocol); 1784 #endif 1785 return skb; 1786 } 1787 1788 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1789 struct bnxt_tpa_info *tpa_info, 1790 struct rx_tpa_end_cmp *tpa_end, 1791 struct rx_tpa_end_cmp_ext *tpa_end1, 1792 struct sk_buff *skb) 1793 { 1794 #ifdef CONFIG_INET 1795 int payload_off; 1796 u16 segs; 1797 1798 segs = TPA_END_TPA_SEGS(tpa_end); 1799 if (segs == 1) 1800 return skb; 1801 1802 NAPI_GRO_CB(skb)->count = segs; 1803 skb_shinfo(skb)->gso_size = 1804 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1805 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1806 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1807 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1808 else 1809 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1810 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1811 if (likely(skb)) 1812 tcp_gro_complete(skb); 1813 #endif 1814 return skb; 1815 } 1816 1817 /* Given the cfa_code of a received packet determine which 1818 * netdev (vf-rep or PF) the packet is destined to. 1819 */ 1820 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1821 { 1822 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1823 1824 /* if vf-rep dev is NULL, it must belong to the PF */ 1825 return dev ? dev : bp->dev; 1826 } 1827 1828 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1829 struct bnxt_cp_ring_info *cpr, 1830 u32 *raw_cons, 1831 struct rx_tpa_end_cmp *tpa_end, 1832 struct rx_tpa_end_cmp_ext *tpa_end1, 1833 u8 *event) 1834 { 1835 struct bnxt_napi *bnapi = cpr->bnapi; 1836 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1837 struct net_device *dev = bp->dev; 1838 u8 *data_ptr, agg_bufs; 1839 unsigned int len; 1840 struct bnxt_tpa_info *tpa_info; 1841 dma_addr_t mapping; 1842 struct sk_buff *skb; 1843 u16 idx = 0, agg_id; 1844 void *data; 1845 bool gro; 1846 1847 if (unlikely(bnapi->in_reset)) { 1848 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1849 1850 if (rc < 0) 1851 return ERR_PTR(-EBUSY); 1852 return NULL; 1853 } 1854 1855 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1856 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1857 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1858 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1859 tpa_info = &rxr->rx_tpa[agg_id]; 1860 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1861 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1862 agg_bufs, tpa_info->agg_count); 1863 agg_bufs = tpa_info->agg_count; 1864 } 1865 tpa_info->agg_count = 0; 1866 *event |= BNXT_AGG_EVENT; 1867 bnxt_free_agg_idx(rxr, agg_id); 1868 idx = agg_id; 1869 gro = !!(bp->flags & BNXT_FLAG_GRO); 1870 } else { 1871 agg_id = TPA_END_AGG_ID(tpa_end); 1872 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1873 tpa_info = &rxr->rx_tpa[agg_id]; 1874 idx = RING_CMP(*raw_cons); 1875 if (agg_bufs) { 1876 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1877 return ERR_PTR(-EBUSY); 1878 1879 *event |= BNXT_AGG_EVENT; 1880 idx = NEXT_CMP(idx); 1881 } 1882 gro = !!TPA_END_GRO(tpa_end); 1883 } 1884 data = tpa_info->data; 1885 data_ptr = tpa_info->data_ptr; 1886 prefetch(data_ptr); 1887 len = tpa_info->len; 1888 mapping = tpa_info->mapping; 1889 1890 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1891 bnxt_abort_tpa(cpr, idx, agg_bufs); 1892 if (agg_bufs > MAX_SKB_FRAGS) 1893 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1894 agg_bufs, (int)MAX_SKB_FRAGS); 1895 return NULL; 1896 } 1897 1898 if (len <= bp->rx_copybreak) { 1899 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1900 if (!skb) { 1901 bnxt_abort_tpa(cpr, idx, agg_bufs); 1902 cpr->sw_stats->rx.rx_oom_discards += 1; 1903 return NULL; 1904 } 1905 } else { 1906 u8 *new_data; 1907 dma_addr_t new_mapping; 1908 1909 new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, rxr, 1910 GFP_ATOMIC); 1911 if (!new_data) { 1912 bnxt_abort_tpa(cpr, idx, agg_bufs); 1913 cpr->sw_stats->rx.rx_oom_discards += 1; 1914 return NULL; 1915 } 1916 1917 tpa_info->data = new_data; 1918 tpa_info->data_ptr = new_data + bp->rx_offset; 1919 tpa_info->mapping = new_mapping; 1920 1921 skb = napi_build_skb(data, bp->rx_buf_size); 1922 dma_sync_single_for_cpu(&bp->pdev->dev, mapping, 1923 bp->rx_buf_use_size, bp->rx_dir); 1924 1925 if (!skb) { 1926 page_pool_free_va(rxr->head_pool, data, true); 1927 bnxt_abort_tpa(cpr, idx, agg_bufs); 1928 cpr->sw_stats->rx.rx_oom_discards += 1; 1929 return NULL; 1930 } 1931 skb_mark_for_recycle(skb); 1932 skb_reserve(skb, bp->rx_offset); 1933 skb_put(skb, len); 1934 } 1935 1936 if (agg_bufs) { 1937 skb = bnxt_rx_agg_netmems_skb(bp, cpr, skb, idx, agg_bufs, 1938 true); 1939 if (!skb) { 1940 /* Page reuse already handled by bnxt_rx_pages(). */ 1941 cpr->sw_stats->rx.rx_oom_discards += 1; 1942 return NULL; 1943 } 1944 } 1945 1946 if (tpa_info->cfa_code_valid) 1947 dev = bnxt_get_pkt_dev(bp, tpa_info->cfa_code); 1948 skb->protocol = eth_type_trans(skb, dev); 1949 1950 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1951 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1952 1953 if (tpa_info->vlan_valid && 1954 (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1955 __be16 vlan_proto = htons(tpa_info->metadata >> 1956 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1957 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1958 1959 if (eth_type_vlan(vlan_proto)) { 1960 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1961 } else { 1962 dev_kfree_skb(skb); 1963 return NULL; 1964 } 1965 } 1966 1967 skb_checksum_none_assert(skb); 1968 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1969 skb->ip_summed = CHECKSUM_UNNECESSARY; 1970 skb->csum_level = 1971 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1972 } 1973 1974 if (gro) 1975 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1976 1977 return skb; 1978 } 1979 1980 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1981 struct rx_agg_cmp *rx_agg) 1982 { 1983 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1984 struct bnxt_tpa_info *tpa_info; 1985 1986 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1987 tpa_info = &rxr->rx_tpa[agg_id]; 1988 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1989 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1990 } 1991 1992 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1993 struct sk_buff *skb) 1994 { 1995 skb_mark_for_recycle(skb); 1996 1997 if (skb->dev != bp->dev) { 1998 /* this packet belongs to a vf-rep */ 1999 bnxt_vf_rep_rx(bp, skb); 2000 return; 2001 } 2002 skb_record_rx_queue(skb, bnapi->index); 2003 napi_gro_receive(&bnapi->napi, skb); 2004 } 2005 2006 static bool bnxt_rx_ts_valid(struct bnxt *bp, u32 flags, 2007 struct rx_cmp_ext *rxcmp1, u32 *cmpl_ts) 2008 { 2009 u32 ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); 2010 2011 if (BNXT_PTP_RX_TS_VALID(flags)) 2012 goto ts_valid; 2013 if (!bp->ptp_all_rx_tstamp || !ts || !BNXT_ALL_RX_TS_VALID(flags)) 2014 return false; 2015 2016 ts_valid: 2017 *cmpl_ts = ts; 2018 return true; 2019 } 2020 2021 static struct sk_buff *bnxt_rx_vlan(struct sk_buff *skb, u8 cmp_type, 2022 struct rx_cmp *rxcmp, 2023 struct rx_cmp_ext *rxcmp1) 2024 { 2025 __be16 vlan_proto; 2026 u16 vtag; 2027 2028 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 2029 __le32 flags2 = rxcmp1->rx_cmp_flags2; 2030 u32 meta_data; 2031 2032 if (!(flags2 & cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN))) 2033 return skb; 2034 2035 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 2036 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 2037 vlan_proto = htons(meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT); 2038 if (eth_type_vlan(vlan_proto)) 2039 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 2040 else 2041 goto vlan_err; 2042 } else if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2043 if (RX_CMP_VLAN_VALID(rxcmp)) { 2044 u32 tpid_sel = RX_CMP_VLAN_TPID_SEL(rxcmp); 2045 2046 if (tpid_sel == RX_CMP_METADATA1_TPID_8021Q) 2047 vlan_proto = htons(ETH_P_8021Q); 2048 else if (tpid_sel == RX_CMP_METADATA1_TPID_8021AD) 2049 vlan_proto = htons(ETH_P_8021AD); 2050 else 2051 goto vlan_err; 2052 vtag = RX_CMP_METADATA0_TCI(rxcmp1); 2053 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 2054 } 2055 } 2056 return skb; 2057 vlan_err: 2058 skb_mark_for_recycle(skb); 2059 dev_kfree_skb(skb); 2060 return NULL; 2061 } 2062 2063 static enum pkt_hash_types bnxt_rss_ext_op(struct bnxt *bp, 2064 struct rx_cmp *rxcmp) 2065 { 2066 u8 ext_op; 2067 2068 ext_op = RX_CMP_V3_HASH_TYPE(bp, rxcmp); 2069 switch (ext_op) { 2070 case EXT_OP_INNER_4: 2071 case EXT_OP_OUTER_4: 2072 case EXT_OP_INNFL_3: 2073 case EXT_OP_OUTFL_3: 2074 return PKT_HASH_TYPE_L4; 2075 default: 2076 return PKT_HASH_TYPE_L3; 2077 } 2078 } 2079 2080 /* returns the following: 2081 * 1 - 1 packet successfully received 2082 * 0 - successful TPA_START, packet not completed yet 2083 * -EBUSY - completion ring does not have all the agg buffers yet 2084 * -ENOMEM - packet aborted due to out of memory 2085 * -EIO - packet aborted due to hw error indicated in BD 2086 */ 2087 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2088 u32 *raw_cons, u8 *event) 2089 { 2090 struct bnxt_napi *bnapi = cpr->bnapi; 2091 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2092 struct net_device *dev = bp->dev; 2093 struct rx_cmp *rxcmp; 2094 struct rx_cmp_ext *rxcmp1; 2095 u32 tmp_raw_cons = *raw_cons; 2096 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 2097 struct skb_shared_info *sinfo; 2098 struct bnxt_sw_rx_bd *rx_buf; 2099 unsigned int len; 2100 u8 *data_ptr, agg_bufs, cmp_type; 2101 bool xdp_active = false; 2102 dma_addr_t dma_addr; 2103 struct sk_buff *skb; 2104 struct xdp_buff xdp; 2105 u32 flags, misc; 2106 u32 cmpl_ts; 2107 void *data; 2108 int rc = 0; 2109 2110 rxcmp = (struct rx_cmp *) 2111 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2112 2113 cmp_type = RX_CMP_TYPE(rxcmp); 2114 2115 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 2116 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 2117 goto next_rx_no_prod_no_len; 2118 } 2119 2120 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2121 cp_cons = RING_CMP(tmp_raw_cons); 2122 rxcmp1 = (struct rx_cmp_ext *) 2123 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2124 2125 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2126 return -EBUSY; 2127 2128 /* The valid test of the entry must be done first before 2129 * reading any further. 2130 */ 2131 dma_rmb(); 2132 prod = rxr->rx_prod; 2133 2134 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP || 2135 cmp_type == CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 2136 bnxt_tpa_start(bp, rxr, cmp_type, 2137 (struct rx_tpa_start_cmp *)rxcmp, 2138 (struct rx_tpa_start_cmp_ext *)rxcmp1); 2139 2140 *event |= BNXT_RX_EVENT; 2141 goto next_rx_no_prod_no_len; 2142 2143 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2144 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 2145 (struct rx_tpa_end_cmp *)rxcmp, 2146 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 2147 2148 if (IS_ERR(skb)) 2149 return -EBUSY; 2150 2151 rc = -ENOMEM; 2152 if (likely(skb)) { 2153 bnxt_deliver_skb(bp, bnapi, skb); 2154 rc = 1; 2155 } 2156 *event |= BNXT_RX_EVENT; 2157 goto next_rx_no_prod_no_len; 2158 } 2159 2160 cons = rxcmp->rx_cmp_opaque; 2161 if (unlikely(cons != rxr->rx_next_cons)) { 2162 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 2163 2164 /* 0xffff is forced error, don't print it */ 2165 if (rxr->rx_next_cons != 0xffff) 2166 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 2167 cons, rxr->rx_next_cons); 2168 bnxt_sched_reset_rxr(bp, rxr); 2169 if (rc1) 2170 return rc1; 2171 goto next_rx_no_prod_no_len; 2172 } 2173 rx_buf = &rxr->rx_buf_ring[cons]; 2174 data = rx_buf->data; 2175 data_ptr = rx_buf->data_ptr; 2176 prefetch(data_ptr); 2177 2178 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 2179 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 2180 2181 if (agg_bufs) { 2182 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 2183 return -EBUSY; 2184 2185 cp_cons = NEXT_CMP(cp_cons); 2186 *event |= BNXT_AGG_EVENT; 2187 } 2188 *event |= BNXT_RX_EVENT; 2189 2190 rx_buf->data = NULL; 2191 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 2192 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 2193 2194 bnxt_reuse_rx_data(rxr, cons, data); 2195 if (agg_bufs) 2196 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 2197 false); 2198 2199 rc = -EIO; 2200 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 2201 bnapi->cp_ring.sw_stats->rx.rx_buf_errors++; 2202 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 2203 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 2204 netdev_warn_once(bp->dev, "RX buffer error %x\n", 2205 rx_err); 2206 bnxt_sched_reset_rxr(bp, rxr); 2207 } 2208 } 2209 goto next_rx_no_len; 2210 } 2211 2212 flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); 2213 len = flags >> RX_CMP_LEN_SHIFT; 2214 dma_addr = rx_buf->mapping; 2215 2216 if (bnxt_xdp_attached(bp, rxr)) { 2217 bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp); 2218 if (agg_bufs) { 2219 u32 frag_len = bnxt_rx_agg_netmems_xdp(bp, cpr, &xdp, 2220 cp_cons, 2221 agg_bufs, 2222 false); 2223 if (!frag_len) 2224 goto oom_next_rx; 2225 2226 } 2227 xdp_active = true; 2228 } 2229 2230 if (xdp_active) { 2231 if (bnxt_rx_xdp(bp, rxr, cons, &xdp, data, &data_ptr, &len, event)) { 2232 rc = 1; 2233 goto next_rx; 2234 } 2235 if (xdp_buff_has_frags(&xdp)) { 2236 sinfo = xdp_get_shared_info_from_buff(&xdp); 2237 agg_bufs = sinfo->nr_frags; 2238 } else { 2239 agg_bufs = 0; 2240 } 2241 } 2242 2243 if (len <= bp->rx_copybreak) { 2244 if (!xdp_active) 2245 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 2246 else 2247 skb = bnxt_copy_xdp(bnapi, &xdp, len, dma_addr); 2248 bnxt_reuse_rx_data(rxr, cons, data); 2249 if (!skb) { 2250 if (agg_bufs) { 2251 if (!xdp_active) 2252 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 2253 agg_bufs, false); 2254 else 2255 bnxt_xdp_buff_frags_free(rxr, &xdp); 2256 } 2257 goto oom_next_rx; 2258 } 2259 } else { 2260 u32 payload; 2261 2262 if (rx_buf->data_ptr == data_ptr) 2263 payload = misc & RX_CMP_PAYLOAD_OFFSET; 2264 else 2265 payload = 0; 2266 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 2267 payload | len); 2268 if (!skb) 2269 goto oom_next_rx; 2270 } 2271 2272 if (agg_bufs) { 2273 if (!xdp_active) { 2274 skb = bnxt_rx_agg_netmems_skb(bp, cpr, skb, cp_cons, 2275 agg_bufs, false); 2276 if (!skb) 2277 goto oom_next_rx; 2278 } else { 2279 skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, 2280 rxr->page_pool, &xdp); 2281 if (!skb) { 2282 /* we should be able to free the old skb here */ 2283 bnxt_xdp_buff_frags_free(rxr, &xdp); 2284 goto oom_next_rx; 2285 } 2286 } 2287 } 2288 2289 if (RX_CMP_HASH_VALID(rxcmp)) { 2290 enum pkt_hash_types type; 2291 2292 if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2293 type = bnxt_rss_ext_op(bp, rxcmp); 2294 } else { 2295 u32 itypes = RX_CMP_ITYPES(rxcmp); 2296 2297 if (itypes == RX_CMP_FLAGS_ITYPE_TCP || 2298 itypes == RX_CMP_FLAGS_ITYPE_UDP) 2299 type = PKT_HASH_TYPE_L4; 2300 else 2301 type = PKT_HASH_TYPE_L3; 2302 } 2303 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 2304 } 2305 2306 if (cmp_type == CMP_TYPE_RX_L2_CMP) 2307 dev = bnxt_get_pkt_dev(bp, RX_CMP_CFA_CODE(rxcmp1)); 2308 skb->protocol = eth_type_trans(skb, dev); 2309 2310 if (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) { 2311 skb = bnxt_rx_vlan(skb, cmp_type, rxcmp, rxcmp1); 2312 if (!skb) 2313 goto next_rx; 2314 } 2315 2316 skb_checksum_none_assert(skb); 2317 if (RX_CMP_L4_CS_OK(rxcmp1)) { 2318 if (dev->features & NETIF_F_RXCSUM) { 2319 skb->ip_summed = CHECKSUM_UNNECESSARY; 2320 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 2321 } 2322 } else { 2323 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 2324 if (dev->features & NETIF_F_RXCSUM) 2325 bnapi->cp_ring.sw_stats->rx.rx_l4_csum_errors++; 2326 } 2327 } 2328 2329 if (bnxt_rx_ts_valid(bp, flags, rxcmp1, &cmpl_ts)) { 2330 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 2331 u64 ns, ts; 2332 2333 if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { 2334 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2335 2336 ns = bnxt_timecounter_cyc2time(ptp, ts); 2337 memset(skb_hwtstamps(skb), 0, 2338 sizeof(*skb_hwtstamps(skb))); 2339 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 2340 } 2341 } 2342 } 2343 bnxt_deliver_skb(bp, bnapi, skb); 2344 rc = 1; 2345 2346 next_rx: 2347 cpr->rx_packets += 1; 2348 cpr->rx_bytes += len; 2349 2350 next_rx_no_len: 2351 rxr->rx_prod = NEXT_RX(prod); 2352 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 2353 2354 next_rx_no_prod_no_len: 2355 *raw_cons = tmp_raw_cons; 2356 2357 return rc; 2358 2359 oom_next_rx: 2360 cpr->sw_stats->rx.rx_oom_discards += 1; 2361 rc = -ENOMEM; 2362 goto next_rx; 2363 } 2364 2365 /* In netpoll mode, if we are using a combined completion ring, we need to 2366 * discard the rx packets and recycle the buffers. 2367 */ 2368 static int bnxt_force_rx_discard(struct bnxt *bp, 2369 struct bnxt_cp_ring_info *cpr, 2370 u32 *raw_cons, u8 *event) 2371 { 2372 u32 tmp_raw_cons = *raw_cons; 2373 struct rx_cmp_ext *rxcmp1; 2374 struct rx_cmp *rxcmp; 2375 u16 cp_cons; 2376 u8 cmp_type; 2377 int rc; 2378 2379 cp_cons = RING_CMP(tmp_raw_cons); 2380 rxcmp = (struct rx_cmp *) 2381 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2382 2383 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2384 cp_cons = RING_CMP(tmp_raw_cons); 2385 rxcmp1 = (struct rx_cmp_ext *) 2386 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2387 2388 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2389 return -EBUSY; 2390 2391 /* The valid test of the entry must be done first before 2392 * reading any further. 2393 */ 2394 dma_rmb(); 2395 cmp_type = RX_CMP_TYPE(rxcmp); 2396 if (cmp_type == CMP_TYPE_RX_L2_CMP || 2397 cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2398 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2399 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2400 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2401 struct rx_tpa_end_cmp_ext *tpa_end1; 2402 2403 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 2404 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 2405 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 2406 } 2407 rc = bnxt_rx_pkt(bp, cpr, raw_cons, event); 2408 if (rc && rc != -EBUSY) 2409 cpr->sw_stats->rx.rx_netpoll_discards += 1; 2410 return rc; 2411 } 2412 2413 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 2414 { 2415 struct bnxt_fw_health *fw_health = bp->fw_health; 2416 u32 reg = fw_health->regs[reg_idx]; 2417 u32 reg_type, reg_off, val = 0; 2418 2419 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 2420 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 2421 switch (reg_type) { 2422 case BNXT_FW_HEALTH_REG_TYPE_CFG: 2423 pci_read_config_dword(bp->pdev, reg_off, &val); 2424 break; 2425 case BNXT_FW_HEALTH_REG_TYPE_GRC: 2426 reg_off = fw_health->mapped_regs[reg_idx]; 2427 fallthrough; 2428 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 2429 val = readl(bp->bar0 + reg_off); 2430 break; 2431 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 2432 val = readl(bp->bar1 + reg_off); 2433 break; 2434 } 2435 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 2436 val &= fw_health->fw_reset_inprog_reg_mask; 2437 return val; 2438 } 2439 2440 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 2441 { 2442 int i; 2443 2444 for (i = 0; i < bp->rx_nr_rings; i++) { 2445 u16 grp_idx = bp->rx_ring[i].bnapi->index; 2446 struct bnxt_ring_grp_info *grp_info; 2447 2448 grp_info = &bp->grp_info[grp_idx]; 2449 if (grp_info->agg_fw_ring_id == ring_id) 2450 return grp_idx; 2451 } 2452 return INVALID_HW_RING_ID; 2453 } 2454 2455 static u16 bnxt_get_force_speed(struct bnxt_link_info *link_info) 2456 { 2457 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2458 2459 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 2460 return link_info->force_link_speed2; 2461 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4) 2462 return link_info->force_pam4_link_speed; 2463 return link_info->force_link_speed; 2464 } 2465 2466 static void bnxt_set_force_speed(struct bnxt_link_info *link_info) 2467 { 2468 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2469 2470 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2471 link_info->req_link_speed = link_info->force_link_speed2; 2472 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2473 switch (link_info->req_link_speed) { 2474 case BNXT_LINK_SPEED_50GB_PAM4: 2475 case BNXT_LINK_SPEED_100GB_PAM4: 2476 case BNXT_LINK_SPEED_200GB_PAM4: 2477 case BNXT_LINK_SPEED_400GB_PAM4: 2478 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2479 break; 2480 case BNXT_LINK_SPEED_100GB_PAM4_112: 2481 case BNXT_LINK_SPEED_200GB_PAM4_112: 2482 case BNXT_LINK_SPEED_400GB_PAM4_112: 2483 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4_112; 2484 break; 2485 default: 2486 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2487 } 2488 return; 2489 } 2490 link_info->req_link_speed = link_info->force_link_speed; 2491 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2492 if (link_info->force_pam4_link_speed) { 2493 link_info->req_link_speed = link_info->force_pam4_link_speed; 2494 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2495 } 2496 } 2497 2498 static void bnxt_set_auto_speed(struct bnxt_link_info *link_info) 2499 { 2500 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2501 2502 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2503 link_info->advertising = link_info->auto_link_speeds2; 2504 return; 2505 } 2506 link_info->advertising = link_info->auto_link_speeds; 2507 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 2508 } 2509 2510 static bool bnxt_force_speed_updated(struct bnxt_link_info *link_info) 2511 { 2512 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2513 2514 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2515 if (link_info->req_link_speed != link_info->force_link_speed2) 2516 return true; 2517 return false; 2518 } 2519 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 2520 link_info->req_link_speed != link_info->force_link_speed) 2521 return true; 2522 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 2523 link_info->req_link_speed != link_info->force_pam4_link_speed) 2524 return true; 2525 return false; 2526 } 2527 2528 static bool bnxt_auto_speed_updated(struct bnxt_link_info *link_info) 2529 { 2530 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2531 2532 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2533 if (link_info->advertising != link_info->auto_link_speeds2) 2534 return true; 2535 return false; 2536 } 2537 if (link_info->advertising != link_info->auto_link_speeds || 2538 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 2539 return true; 2540 return false; 2541 } 2542 2543 bool bnxt_bs_trace_avail(struct bnxt *bp, u16 type) 2544 { 2545 u32 flags = bp->ctx->ctx_arr[type].flags; 2546 2547 return (flags & BNXT_CTX_MEM_TYPE_VALID) && 2548 ((flags & BNXT_CTX_MEM_FW_TRACE) || 2549 (flags & BNXT_CTX_MEM_FW_BIN_TRACE)); 2550 } 2551 2552 static void bnxt_bs_trace_init(struct bnxt *bp, struct bnxt_ctx_mem_type *ctxm) 2553 { 2554 u32 mem_size, pages, rem_bytes, magic_byte_offset; 2555 u16 trace_type = bnxt_bstore_to_trace[ctxm->type]; 2556 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 2557 struct bnxt_ring_mem_info *rmem, *rmem_pg_tbl; 2558 struct bnxt_bs_trace_info *bs_trace; 2559 int last_pg; 2560 2561 if (ctxm->instance_bmap && ctxm->instance_bmap > 1) 2562 return; 2563 2564 mem_size = ctxm->max_entries * ctxm->entry_size; 2565 rem_bytes = mem_size % BNXT_PAGE_SIZE; 2566 pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 2567 2568 last_pg = (pages - 1) & (MAX_CTX_PAGES - 1); 2569 magic_byte_offset = (rem_bytes ? rem_bytes : BNXT_PAGE_SIZE) - 1; 2570 2571 rmem = &ctx_pg[0].ring_mem; 2572 bs_trace = &bp->bs_trace[trace_type]; 2573 bs_trace->ctx_type = ctxm->type; 2574 bs_trace->trace_type = trace_type; 2575 if (pages > MAX_CTX_PAGES) { 2576 int last_pg_dir = rmem->nr_pages - 1; 2577 2578 rmem_pg_tbl = &ctx_pg[0].ctx_pg_tbl[last_pg_dir]->ring_mem; 2579 bs_trace->magic_byte = rmem_pg_tbl->pg_arr[last_pg]; 2580 } else { 2581 bs_trace->magic_byte = rmem->pg_arr[last_pg]; 2582 } 2583 bs_trace->magic_byte += magic_byte_offset; 2584 *bs_trace->magic_byte = BNXT_TRACE_BUF_MAGIC_BYTE; 2585 } 2586 2587 #define BNXT_EVENT_BUF_PRODUCER_TYPE(data1) \ 2588 (((data1) & ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA1_TYPE_MASK) >>\ 2589 ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA1_TYPE_SFT) 2590 2591 #define BNXT_EVENT_BUF_PRODUCER_OFFSET(data2) \ 2592 (((data2) & \ 2593 ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA2_CURR_OFF_MASK) >>\ 2594 ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA2_CURR_OFF_SFT) 2595 2596 #define BNXT_EVENT_THERMAL_CURRENT_TEMP(data2) \ 2597 ((data2) & \ 2598 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_CURRENT_TEMP_MASK) 2599 2600 #define BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2) \ 2601 (((data2) & \ 2602 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_MASK) >>\ 2603 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_SFT) 2604 2605 #define EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1) \ 2606 ((data1) & \ 2607 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_MASK) 2608 2609 #define EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1) \ 2610 (((data1) & \ 2611 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR) ==\ 2612 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR_INCREASING) 2613 2614 /* Return true if the workqueue has to be scheduled */ 2615 static bool bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2) 2616 { 2617 u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1); 2618 2619 switch (err_type) { 2620 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL: 2621 netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n", 2622 BNXT_EVENT_INVALID_SIGNAL_DATA(data2)); 2623 break; 2624 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM: 2625 netdev_warn(bp->dev, "Pause Storm detected!\n"); 2626 break; 2627 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD: 2628 netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n"); 2629 break; 2630 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_THERMAL_THRESHOLD: { 2631 u32 type = EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1); 2632 char *threshold_type; 2633 bool notify = false; 2634 char *dir_str; 2635 2636 switch (type) { 2637 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_WARN: 2638 threshold_type = "warning"; 2639 break; 2640 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_CRITICAL: 2641 threshold_type = "critical"; 2642 break; 2643 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_FATAL: 2644 threshold_type = "fatal"; 2645 break; 2646 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_SHUTDOWN: 2647 threshold_type = "shutdown"; 2648 break; 2649 default: 2650 netdev_err(bp->dev, "Unknown Thermal threshold type event\n"); 2651 return false; 2652 } 2653 if (EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)) { 2654 dir_str = "above"; 2655 notify = true; 2656 } else { 2657 dir_str = "below"; 2658 } 2659 netdev_warn(bp->dev, "Chip temperature has gone %s the %s thermal threshold!\n", 2660 dir_str, threshold_type); 2661 netdev_warn(bp->dev, "Temperature (In Celsius), Current: %lu, threshold: %lu\n", 2662 BNXT_EVENT_THERMAL_CURRENT_TEMP(data2), 2663 BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2)); 2664 if (notify) { 2665 bp->thermal_threshold_type = type; 2666 set_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event); 2667 return true; 2668 } 2669 return false; 2670 } 2671 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DUAL_DATA_RATE_NOT_SUPPORTED: 2672 netdev_warn(bp->dev, "Speed change not supported with dual rate transceivers on this board\n"); 2673 break; 2674 default: 2675 netdev_err(bp->dev, "FW reported unknown error type %u\n", 2676 err_type); 2677 break; 2678 } 2679 return false; 2680 } 2681 2682 #define BNXT_GET_EVENT_PORT(data) \ 2683 ((data) & \ 2684 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 2685 2686 #define BNXT_EVENT_RING_TYPE(data2) \ 2687 ((data2) & \ 2688 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 2689 2690 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 2691 (BNXT_EVENT_RING_TYPE(data2) == \ 2692 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 2693 2694 #define BNXT_EVENT_PHC_EVENT_TYPE(data1) \ 2695 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\ 2696 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT) 2697 2698 #define BNXT_EVENT_PHC_RTC_UPDATE(data1) \ 2699 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\ 2700 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT) 2701 2702 #define BNXT_PHC_BITS 48 2703 2704 static int bnxt_async_event_process(struct bnxt *bp, 2705 struct hwrm_async_event_cmpl *cmpl) 2706 { 2707 u16 event_id = le16_to_cpu(cmpl->event_id); 2708 u32 data1 = le32_to_cpu(cmpl->event_data1); 2709 u32 data2 = le32_to_cpu(cmpl->event_data2); 2710 2711 netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n", 2712 event_id, data1, data2); 2713 2714 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2715 switch (event_id) { 2716 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2717 struct bnxt_link_info *link_info = &bp->link_info; 2718 2719 if (BNXT_VF(bp)) 2720 goto async_event_process_exit; 2721 2722 /* print unsupported speed warning in forced speed mode only */ 2723 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2724 (data1 & 0x20000)) { 2725 u16 fw_speed = bnxt_get_force_speed(link_info); 2726 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2727 2728 if (speed != SPEED_UNKNOWN) 2729 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2730 speed); 2731 } 2732 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2733 } 2734 fallthrough; 2735 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2736 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2737 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2738 fallthrough; 2739 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2740 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2741 break; 2742 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2743 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2744 break; 2745 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2746 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2747 2748 if (BNXT_VF(bp)) 2749 break; 2750 2751 if (bp->pf.port_id != port_id) 2752 break; 2753 2754 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2755 break; 2756 } 2757 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2758 if (BNXT_PF(bp)) 2759 goto async_event_process_exit; 2760 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2761 break; 2762 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2763 char *type_str = "Solicited"; 2764 2765 if (!bp->fw_health) 2766 goto async_event_process_exit; 2767 2768 bp->fw_reset_timestamp = jiffies; 2769 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2770 if (!bp->fw_reset_min_dsecs) 2771 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2772 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2773 if (!bp->fw_reset_max_dsecs) 2774 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2775 if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) { 2776 set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state); 2777 } else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2778 type_str = "Fatal"; 2779 bp->fw_health->fatalities++; 2780 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2781 } else if (data2 && BNXT_FW_STATUS_HEALTHY != 2782 EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) { 2783 type_str = "Non-fatal"; 2784 bp->fw_health->survivals++; 2785 set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 2786 } 2787 netif_warn(bp, hw, bp->dev, 2788 "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2789 type_str, data1, data2, 2790 bp->fw_reset_min_dsecs * 100, 2791 bp->fw_reset_max_dsecs * 100); 2792 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2793 break; 2794 } 2795 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2796 struct bnxt_fw_health *fw_health = bp->fw_health; 2797 char *status_desc = "healthy"; 2798 u32 status; 2799 2800 if (!fw_health) 2801 goto async_event_process_exit; 2802 2803 if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) { 2804 fw_health->enabled = false; 2805 netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n"); 2806 break; 2807 } 2808 fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2809 fw_health->tmr_multiplier = 2810 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2811 bp->current_interval * 10); 2812 fw_health->tmr_counter = fw_health->tmr_multiplier; 2813 if (!fw_health->enabled) 2814 fw_health->last_fw_heartbeat = 2815 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2816 fw_health->last_fw_reset_cnt = 2817 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2818 status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 2819 if (status != BNXT_FW_STATUS_HEALTHY) 2820 status_desc = "unhealthy"; 2821 netif_info(bp, drv, bp->dev, 2822 "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n", 2823 fw_health->primary ? "primary" : "backup", status, 2824 status_desc, fw_health->last_fw_reset_cnt); 2825 if (!fw_health->enabled) { 2826 /* Make sure tmr_counter is set and visible to 2827 * bnxt_health_check() before setting enabled to true. 2828 */ 2829 smp_wmb(); 2830 fw_health->enabled = true; 2831 } 2832 goto async_event_process_exit; 2833 } 2834 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2835 netif_notice(bp, hw, bp->dev, 2836 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2837 data1, data2); 2838 goto async_event_process_exit; 2839 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2840 struct bnxt_rx_ring_info *rxr; 2841 u16 grp_idx; 2842 2843 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 2844 goto async_event_process_exit; 2845 2846 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2847 BNXT_EVENT_RING_TYPE(data2), data1); 2848 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2849 goto async_event_process_exit; 2850 2851 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2852 if (grp_idx == INVALID_HW_RING_ID) { 2853 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2854 data1); 2855 goto async_event_process_exit; 2856 } 2857 rxr = bp->bnapi[grp_idx]->rx_ring; 2858 bnxt_sched_reset_rxr(bp, rxr); 2859 goto async_event_process_exit; 2860 } 2861 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2862 struct bnxt_fw_health *fw_health = bp->fw_health; 2863 2864 netif_notice(bp, hw, bp->dev, 2865 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2866 data1, data2); 2867 if (fw_health) { 2868 fw_health->echo_req_data1 = data1; 2869 fw_health->echo_req_data2 = data2; 2870 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2871 break; 2872 } 2873 goto async_event_process_exit; 2874 } 2875 case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: { 2876 bnxt_ptp_pps_event(bp, data1, data2); 2877 goto async_event_process_exit; 2878 } 2879 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: { 2880 if (bnxt_event_error_report(bp, data1, data2)) 2881 break; 2882 goto async_event_process_exit; 2883 } 2884 case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: { 2885 switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) { 2886 case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE: 2887 if (BNXT_PTP_USE_RTC(bp)) { 2888 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2889 unsigned long flags; 2890 u64 ns; 2891 2892 if (!ptp) 2893 goto async_event_process_exit; 2894 2895 bnxt_ptp_update_current_time(bp); 2896 ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) << 2897 BNXT_PHC_BITS) | ptp->current_time); 2898 write_seqlock_irqsave(&ptp->ptp_lock, flags); 2899 bnxt_ptp_rtc_timecounter_init(ptp, ns); 2900 write_sequnlock_irqrestore(&ptp->ptp_lock, flags); 2901 } 2902 break; 2903 } 2904 goto async_event_process_exit; 2905 } 2906 case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: { 2907 u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff; 2908 2909 hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED); 2910 goto async_event_process_exit; 2911 } 2912 case ASYNC_EVENT_CMPL_EVENT_ID_DBG_BUF_PRODUCER: { 2913 u16 type = (u16)BNXT_EVENT_BUF_PRODUCER_TYPE(data1); 2914 u32 offset = BNXT_EVENT_BUF_PRODUCER_OFFSET(data2); 2915 2916 bnxt_bs_trace_check_wrap(&bp->bs_trace[type], offset); 2917 goto async_event_process_exit; 2918 } 2919 default: 2920 goto async_event_process_exit; 2921 } 2922 __bnxt_queue_sp_work(bp); 2923 async_event_process_exit: 2924 bnxt_ulp_async_events(bp, cmpl); 2925 return 0; 2926 } 2927 2928 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2929 { 2930 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2931 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2932 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2933 (struct hwrm_fwd_req_cmpl *)txcmp; 2934 2935 switch (cmpl_type) { 2936 case CMPL_BASE_TYPE_HWRM_DONE: 2937 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2938 hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE); 2939 break; 2940 2941 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2942 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2943 2944 if ((vf_id < bp->pf.first_vf_id) || 2945 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2946 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2947 vf_id); 2948 return -EINVAL; 2949 } 2950 2951 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2952 bnxt_queue_sp_work(bp, BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT); 2953 break; 2954 2955 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2956 bnxt_async_event_process(bp, 2957 (struct hwrm_async_event_cmpl *)txcmp); 2958 break; 2959 2960 default: 2961 break; 2962 } 2963 2964 return 0; 2965 } 2966 2967 static bool bnxt_vnic_is_active(struct bnxt *bp) 2968 { 2969 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 2970 2971 return vnic->fw_vnic_id != INVALID_HW_RING_ID && vnic->mru > 0; 2972 } 2973 2974 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2975 { 2976 struct bnxt_napi *bnapi = dev_instance; 2977 struct bnxt *bp = bnapi->bp; 2978 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2979 u32 cons = RING_CMP(cpr->cp_raw_cons); 2980 2981 cpr->event_ctr++; 2982 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2983 napi_schedule(&bnapi->napi); 2984 return IRQ_HANDLED; 2985 } 2986 2987 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2988 { 2989 u32 raw_cons = cpr->cp_raw_cons; 2990 u16 cons = RING_CMP(raw_cons); 2991 struct tx_cmp *txcmp; 2992 2993 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2994 2995 return TX_CMP_VALID(txcmp, raw_cons); 2996 } 2997 2998 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2999 int budget) 3000 { 3001 struct bnxt_napi *bnapi = cpr->bnapi; 3002 u32 raw_cons = cpr->cp_raw_cons; 3003 bool flush_xdp = false; 3004 u32 cons; 3005 int rx_pkts = 0; 3006 u8 event = 0; 3007 struct tx_cmp *txcmp; 3008 3009 cpr->has_more_work = 0; 3010 cpr->had_work_done = 1; 3011 while (1) { 3012 u8 cmp_type; 3013 int rc; 3014 3015 cons = RING_CMP(raw_cons); 3016 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 3017 3018 if (!TX_CMP_VALID(txcmp, raw_cons)) 3019 break; 3020 3021 /* The valid test of the entry must be done first before 3022 * reading any further. 3023 */ 3024 dma_rmb(); 3025 cmp_type = TX_CMP_TYPE(txcmp); 3026 if (cmp_type == CMP_TYPE_TX_L2_CMP || 3027 cmp_type == CMP_TYPE_TX_L2_COAL_CMP) { 3028 u32 opaque = txcmp->tx_cmp_opaque; 3029 struct bnxt_tx_ring_info *txr; 3030 u16 tx_freed; 3031 3032 txr = bnapi->tx_ring[TX_OPAQUE_RING(opaque)]; 3033 event |= BNXT_TX_CMP_EVENT; 3034 if (cmp_type == CMP_TYPE_TX_L2_COAL_CMP) 3035 txr->tx_hw_cons = TX_CMP_SQ_CONS_IDX(txcmp); 3036 else 3037 txr->tx_hw_cons = TX_OPAQUE_PROD(bp, opaque); 3038 tx_freed = (txr->tx_hw_cons - txr->tx_cons) & 3039 bp->tx_ring_mask; 3040 /* return full budget so NAPI will complete. */ 3041 if (unlikely(tx_freed >= bp->tx_wake_thresh)) { 3042 rx_pkts = budget; 3043 raw_cons = NEXT_RAW_CMP(raw_cons); 3044 if (budget) 3045 cpr->has_more_work = 1; 3046 break; 3047 } 3048 } else if (cmp_type == CMP_TYPE_TX_L2_PKT_TS_CMP) { 3049 bnxt_tx_ts_cmp(bp, bnapi, (struct tx_ts_cmp *)txcmp); 3050 } else if (cmp_type >= CMP_TYPE_RX_L2_CMP && 3051 cmp_type <= CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 3052 if (likely(budget)) 3053 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 3054 else 3055 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 3056 &event); 3057 if (event & BNXT_REDIRECT_EVENT) 3058 flush_xdp = true; 3059 if (likely(rc >= 0)) 3060 rx_pkts += rc; 3061 /* Increment rx_pkts when rc is -ENOMEM to count towards 3062 * the NAPI budget. Otherwise, we may potentially loop 3063 * here forever if we consistently cannot allocate 3064 * buffers. 3065 */ 3066 else if (rc == -ENOMEM && budget) 3067 rx_pkts++; 3068 else if (rc == -EBUSY) /* partial completion */ 3069 break; 3070 } else if (unlikely(cmp_type == CMPL_BASE_TYPE_HWRM_DONE || 3071 cmp_type == CMPL_BASE_TYPE_HWRM_FWD_REQ || 3072 cmp_type == CMPL_BASE_TYPE_HWRM_ASYNC_EVENT)) { 3073 bnxt_hwrm_handler(bp, txcmp); 3074 } 3075 raw_cons = NEXT_RAW_CMP(raw_cons); 3076 3077 if (rx_pkts && rx_pkts == budget) { 3078 cpr->has_more_work = 1; 3079 break; 3080 } 3081 } 3082 3083 if (flush_xdp) { 3084 xdp_do_flush(); 3085 event &= ~BNXT_REDIRECT_EVENT; 3086 } 3087 3088 if (event & BNXT_TX_EVENT) { 3089 struct bnxt_tx_ring_info *txr = bnapi->tx_ring[0]; 3090 u16 prod = txr->tx_prod; 3091 3092 /* Sync BD data before updating doorbell */ 3093 wmb(); 3094 3095 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 3096 event &= ~BNXT_TX_EVENT; 3097 } 3098 3099 cpr->cp_raw_cons = raw_cons; 3100 bnapi->events |= event; 3101 return rx_pkts; 3102 } 3103 3104 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi, 3105 int budget) 3106 { 3107 if ((bnapi->events & BNXT_TX_CMP_EVENT) && !bnapi->tx_fault) 3108 bnapi->tx_int(bp, bnapi, budget); 3109 3110 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 3111 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3112 3113 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 3114 bnapi->events &= ~BNXT_RX_EVENT; 3115 } 3116 if (bnapi->events & BNXT_AGG_EVENT) { 3117 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3118 3119 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 3120 bnapi->events &= ~BNXT_AGG_EVENT; 3121 } 3122 } 3123 3124 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 3125 int budget) 3126 { 3127 struct bnxt_napi *bnapi = cpr->bnapi; 3128 int rx_pkts; 3129 3130 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 3131 3132 /* ACK completion ring before freeing tx ring and producing new 3133 * buffers in rx/agg rings to prevent overflowing the completion 3134 * ring. 3135 */ 3136 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 3137 3138 __bnxt_poll_work_done(bp, bnapi, budget); 3139 return rx_pkts; 3140 } 3141 3142 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 3143 { 3144 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3145 struct bnxt *bp = bnapi->bp; 3146 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3147 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3148 struct tx_cmp *txcmp; 3149 struct rx_cmp_ext *rxcmp1; 3150 u32 cp_cons, tmp_raw_cons; 3151 u32 raw_cons = cpr->cp_raw_cons; 3152 bool flush_xdp = false; 3153 u32 rx_pkts = 0; 3154 u8 event = 0; 3155 3156 while (1) { 3157 int rc; 3158 3159 cp_cons = RING_CMP(raw_cons); 3160 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 3161 3162 if (!TX_CMP_VALID(txcmp, raw_cons)) 3163 break; 3164 3165 /* The valid test of the entry must be done first before 3166 * reading any further. 3167 */ 3168 dma_rmb(); 3169 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 3170 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 3171 cp_cons = RING_CMP(tmp_raw_cons); 3172 rxcmp1 = (struct rx_cmp_ext *) 3173 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 3174 3175 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 3176 break; 3177 3178 /* force an error to recycle the buffer */ 3179 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 3180 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 3181 3182 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 3183 if (likely(rc == -EIO) && budget) 3184 rx_pkts++; 3185 else if (rc == -EBUSY) /* partial completion */ 3186 break; 3187 if (event & BNXT_REDIRECT_EVENT) 3188 flush_xdp = true; 3189 } else if (unlikely(TX_CMP_TYPE(txcmp) == 3190 CMPL_BASE_TYPE_HWRM_DONE)) { 3191 bnxt_hwrm_handler(bp, txcmp); 3192 } else { 3193 netdev_err(bp->dev, 3194 "Invalid completion received on special ring\n"); 3195 } 3196 raw_cons = NEXT_RAW_CMP(raw_cons); 3197 3198 if (rx_pkts == budget) 3199 break; 3200 } 3201 3202 cpr->cp_raw_cons = raw_cons; 3203 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 3204 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 3205 3206 if (event & BNXT_AGG_EVENT) 3207 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 3208 if (flush_xdp) 3209 xdp_do_flush(); 3210 3211 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 3212 napi_complete_done(napi, rx_pkts); 3213 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3214 } 3215 return rx_pkts; 3216 } 3217 3218 static int bnxt_poll(struct napi_struct *napi, int budget) 3219 { 3220 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3221 struct bnxt *bp = bnapi->bp; 3222 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3223 int work_done = 0; 3224 3225 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3226 napi_complete(napi); 3227 return 0; 3228 } 3229 while (1) { 3230 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 3231 3232 if (work_done >= budget) { 3233 if (!budget) 3234 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3235 break; 3236 } 3237 3238 if (!bnxt_has_work(bp, cpr)) { 3239 if (napi_complete_done(napi, work_done)) 3240 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3241 break; 3242 } 3243 } 3244 if ((bp->flags & BNXT_FLAG_DIM) && bnxt_vnic_is_active(bp)) { 3245 struct dim_sample dim_sample = {}; 3246 3247 dim_update_sample(cpr->event_ctr, 3248 cpr->rx_packets, 3249 cpr->rx_bytes, 3250 &dim_sample); 3251 net_dim(&cpr->dim, &dim_sample); 3252 } 3253 return work_done; 3254 } 3255 3256 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 3257 { 3258 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3259 int i, work_done = 0; 3260 3261 for (i = 0; i < cpr->cp_ring_count; i++) { 3262 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3263 3264 if (cpr2->had_nqe_notify) { 3265 work_done += __bnxt_poll_work(bp, cpr2, 3266 budget - work_done); 3267 cpr->has_more_work |= cpr2->has_more_work; 3268 } 3269 } 3270 return work_done; 3271 } 3272 3273 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 3274 u64 dbr_type, int budget) 3275 { 3276 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3277 int i; 3278 3279 for (i = 0; i < cpr->cp_ring_count; i++) { 3280 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3281 struct bnxt_db_info *db; 3282 3283 if (cpr2->had_work_done) { 3284 u32 tgl = 0; 3285 3286 if (dbr_type == DBR_TYPE_CQ_ARMALL) { 3287 cpr2->had_nqe_notify = 0; 3288 tgl = cpr2->toggle; 3289 } 3290 db = &cpr2->cp_db; 3291 bnxt_writeq(bp, 3292 db->db_key64 | dbr_type | DB_TOGGLE(tgl) | 3293 DB_RING_IDX(db, cpr2->cp_raw_cons), 3294 db->doorbell); 3295 cpr2->had_work_done = 0; 3296 } 3297 } 3298 __bnxt_poll_work_done(bp, bnapi, budget); 3299 } 3300 3301 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 3302 { 3303 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3304 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3305 struct bnxt_cp_ring_info *cpr_rx; 3306 u32 raw_cons = cpr->cp_raw_cons; 3307 struct bnxt *bp = bnapi->bp; 3308 struct nqe_cn *nqcmp; 3309 int work_done = 0; 3310 u32 cons; 3311 3312 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3313 napi_complete(napi); 3314 return 0; 3315 } 3316 if (cpr->has_more_work) { 3317 cpr->has_more_work = 0; 3318 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 3319 } 3320 while (1) { 3321 u16 type; 3322 3323 cons = RING_CMP(raw_cons); 3324 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 3325 3326 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 3327 if (cpr->has_more_work) 3328 break; 3329 3330 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL, 3331 budget); 3332 cpr->cp_raw_cons = raw_cons; 3333 if (napi_complete_done(napi, work_done)) 3334 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 3335 cpr->cp_raw_cons); 3336 goto poll_done; 3337 } 3338 3339 /* The valid test of the entry must be done first before 3340 * reading any further. 3341 */ 3342 dma_rmb(); 3343 3344 type = le16_to_cpu(nqcmp->type); 3345 if (NQE_CN_TYPE(type) == NQ_CN_TYPE_CQ_NOTIFICATION) { 3346 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 3347 u32 cq_type = BNXT_NQ_HDL_TYPE(idx); 3348 struct bnxt_cp_ring_info *cpr2; 3349 3350 /* No more budget for RX work */ 3351 if (budget && work_done >= budget && 3352 cq_type == BNXT_NQ_HDL_TYPE_RX) 3353 break; 3354 3355 idx = BNXT_NQ_HDL_IDX(idx); 3356 cpr2 = &cpr->cp_ring_arr[idx]; 3357 cpr2->had_nqe_notify = 1; 3358 cpr2->toggle = NQE_CN_TOGGLE(type); 3359 work_done += __bnxt_poll_work(bp, cpr2, 3360 budget - work_done); 3361 cpr->has_more_work |= cpr2->has_more_work; 3362 } else { 3363 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 3364 } 3365 raw_cons = NEXT_RAW_CMP(raw_cons); 3366 } 3367 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget); 3368 if (raw_cons != cpr->cp_raw_cons) { 3369 cpr->cp_raw_cons = raw_cons; 3370 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 3371 } 3372 poll_done: 3373 cpr_rx = &cpr->cp_ring_arr[0]; 3374 if (cpr_rx->cp_ring_type == BNXT_NQ_HDL_TYPE_RX && 3375 (bp->flags & BNXT_FLAG_DIM) && bnxt_vnic_is_active(bp)) { 3376 struct dim_sample dim_sample = {}; 3377 3378 dim_update_sample(cpr->event_ctr, 3379 cpr_rx->rx_packets, 3380 cpr_rx->rx_bytes, 3381 &dim_sample); 3382 net_dim(&cpr->dim, &dim_sample); 3383 } 3384 return work_done; 3385 } 3386 3387 static void bnxt_free_one_tx_ring_skbs(struct bnxt *bp, 3388 struct bnxt_tx_ring_info *txr, int idx) 3389 { 3390 int i, max_idx; 3391 struct pci_dev *pdev = bp->pdev; 3392 3393 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 3394 3395 for (i = 0; i < max_idx;) { 3396 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[i]; 3397 struct sk_buff *skb; 3398 int j, last; 3399 3400 if (idx < bp->tx_nr_rings_xdp && 3401 tx_buf->action == XDP_REDIRECT) { 3402 dma_unmap_single(&pdev->dev, 3403 dma_unmap_addr(tx_buf, mapping), 3404 dma_unmap_len(tx_buf, len), 3405 DMA_TO_DEVICE); 3406 xdp_return_frame(tx_buf->xdpf); 3407 tx_buf->action = 0; 3408 tx_buf->xdpf = NULL; 3409 i++; 3410 continue; 3411 } 3412 3413 skb = tx_buf->skb; 3414 if (!skb) { 3415 i++; 3416 continue; 3417 } 3418 3419 tx_buf->skb = NULL; 3420 3421 if (tx_buf->is_push) { 3422 dev_kfree_skb(skb); 3423 i += 2; 3424 continue; 3425 } 3426 3427 dma_unmap_single(&pdev->dev, 3428 dma_unmap_addr(tx_buf, mapping), 3429 skb_headlen(skb), 3430 DMA_TO_DEVICE); 3431 3432 last = tx_buf->nr_frags; 3433 i += 2; 3434 for (j = 0; j < last; j++, i++) { 3435 int ring_idx = i & bp->tx_ring_mask; 3436 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 3437 3438 tx_buf = &txr->tx_buf_ring[ring_idx]; 3439 netmem_dma_unmap_page_attrs(&pdev->dev, 3440 dma_unmap_addr(tx_buf, 3441 mapping), 3442 skb_frag_size(frag), 3443 DMA_TO_DEVICE, 0); 3444 } 3445 dev_kfree_skb(skb); 3446 } 3447 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, idx)); 3448 } 3449 3450 static void bnxt_free_tx_skbs(struct bnxt *bp) 3451 { 3452 int i; 3453 3454 if (!bp->tx_ring) 3455 return; 3456 3457 for (i = 0; i < bp->tx_nr_rings; i++) { 3458 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3459 3460 if (!txr->tx_buf_ring) 3461 continue; 3462 3463 bnxt_free_one_tx_ring_skbs(bp, txr, i); 3464 } 3465 3466 if (bp->ptp_cfg && !(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) 3467 bnxt_ptp_free_txts_skbs(bp->ptp_cfg); 3468 } 3469 3470 static void bnxt_free_one_rx_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3471 { 3472 int i, max_idx; 3473 3474 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 3475 3476 for (i = 0; i < max_idx; i++) { 3477 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 3478 void *data = rx_buf->data; 3479 3480 if (!data) 3481 continue; 3482 3483 rx_buf->data = NULL; 3484 if (BNXT_RX_PAGE_MODE(bp)) 3485 page_pool_recycle_direct(rxr->page_pool, data); 3486 else 3487 page_pool_free_va(rxr->head_pool, data, true); 3488 } 3489 } 3490 3491 static void bnxt_free_one_rx_agg_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3492 { 3493 int i, max_idx; 3494 3495 max_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 3496 3497 for (i = 0; i < max_idx; i++) { 3498 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 3499 netmem_ref netmem = rx_agg_buf->netmem; 3500 3501 if (!netmem) 3502 continue; 3503 3504 rx_agg_buf->netmem = 0; 3505 __clear_bit(i, rxr->rx_agg_bmap); 3506 3507 page_pool_recycle_direct_netmem(rxr->page_pool, netmem); 3508 } 3509 } 3510 3511 static void bnxt_free_one_tpa_info_data(struct bnxt *bp, 3512 struct bnxt_rx_ring_info *rxr) 3513 { 3514 int i; 3515 3516 for (i = 0; i < bp->max_tpa; i++) { 3517 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 3518 u8 *data = tpa_info->data; 3519 3520 if (!data) 3521 continue; 3522 3523 tpa_info->data = NULL; 3524 page_pool_free_va(rxr->head_pool, data, false); 3525 } 3526 } 3527 3528 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, 3529 struct bnxt_rx_ring_info *rxr) 3530 { 3531 struct bnxt_tpa_idx_map *map; 3532 3533 if (!rxr->rx_tpa) 3534 goto skip_rx_tpa_free; 3535 3536 bnxt_free_one_tpa_info_data(bp, rxr); 3537 3538 skip_rx_tpa_free: 3539 if (!rxr->rx_buf_ring) 3540 goto skip_rx_buf_free; 3541 3542 bnxt_free_one_rx_ring(bp, rxr); 3543 3544 skip_rx_buf_free: 3545 if (!rxr->rx_agg_ring) 3546 goto skip_rx_agg_free; 3547 3548 bnxt_free_one_rx_agg_ring(bp, rxr); 3549 3550 skip_rx_agg_free: 3551 map = rxr->rx_tpa_idx_map; 3552 if (map) 3553 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 3554 } 3555 3556 static void bnxt_free_rx_skbs(struct bnxt *bp) 3557 { 3558 int i; 3559 3560 if (!bp->rx_ring) 3561 return; 3562 3563 for (i = 0; i < bp->rx_nr_rings; i++) 3564 bnxt_free_one_rx_ring_skbs(bp, &bp->rx_ring[i]); 3565 } 3566 3567 static void bnxt_free_skbs(struct bnxt *bp) 3568 { 3569 bnxt_free_tx_skbs(bp); 3570 bnxt_free_rx_skbs(bp); 3571 } 3572 3573 static void bnxt_init_ctx_mem(struct bnxt_ctx_mem_type *ctxm, void *p, int len) 3574 { 3575 u8 init_val = ctxm->init_value; 3576 u16 offset = ctxm->init_offset; 3577 u8 *p2 = p; 3578 int i; 3579 3580 if (!init_val) 3581 return; 3582 if (offset == BNXT_CTX_INIT_INVALID_OFFSET) { 3583 memset(p, init_val, len); 3584 return; 3585 } 3586 for (i = 0; i < len; i += ctxm->entry_size) 3587 *(p2 + i + offset) = init_val; 3588 } 3589 3590 static size_t __bnxt_copy_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem, 3591 void *buf, size_t offset, size_t head, 3592 size_t tail) 3593 { 3594 int i, head_page, start_idx, source_offset; 3595 size_t len, rem_len, total_len, max_bytes; 3596 3597 head_page = head / rmem->page_size; 3598 source_offset = head % rmem->page_size; 3599 total_len = (tail - head) & MAX_CTX_BYTES_MASK; 3600 if (!total_len) 3601 total_len = MAX_CTX_BYTES; 3602 start_idx = head_page % MAX_CTX_PAGES; 3603 max_bytes = (rmem->nr_pages - start_idx) * rmem->page_size - 3604 source_offset; 3605 total_len = min(total_len, max_bytes); 3606 rem_len = total_len; 3607 3608 for (i = start_idx; rem_len; i++, source_offset = 0) { 3609 len = min((size_t)(rmem->page_size - source_offset), rem_len); 3610 if (buf) 3611 memcpy(buf + offset, rmem->pg_arr[i] + source_offset, 3612 len); 3613 offset += len; 3614 rem_len -= len; 3615 } 3616 return total_len; 3617 } 3618 3619 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3620 { 3621 struct pci_dev *pdev = bp->pdev; 3622 int i; 3623 3624 if (!rmem->pg_arr) 3625 goto skip_pages; 3626 3627 for (i = 0; i < rmem->nr_pages; i++) { 3628 if (!rmem->pg_arr[i]) 3629 continue; 3630 3631 dma_free_coherent(&pdev->dev, rmem->page_size, 3632 rmem->pg_arr[i], rmem->dma_arr[i]); 3633 3634 rmem->pg_arr[i] = NULL; 3635 } 3636 skip_pages: 3637 if (rmem->pg_tbl) { 3638 size_t pg_tbl_size = rmem->nr_pages * 8; 3639 3640 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3641 pg_tbl_size = rmem->page_size; 3642 dma_free_coherent(&pdev->dev, pg_tbl_size, 3643 rmem->pg_tbl, rmem->pg_tbl_map); 3644 rmem->pg_tbl = NULL; 3645 } 3646 if (rmem->vmem_size && *rmem->vmem) { 3647 vfree(*rmem->vmem); 3648 *rmem->vmem = NULL; 3649 } 3650 } 3651 3652 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3653 { 3654 struct pci_dev *pdev = bp->pdev; 3655 u64 valid_bit = 0; 3656 int i; 3657 3658 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 3659 valid_bit = PTU_PTE_VALID; 3660 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 3661 size_t pg_tbl_size = rmem->nr_pages * 8; 3662 3663 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3664 pg_tbl_size = rmem->page_size; 3665 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 3666 &rmem->pg_tbl_map, 3667 GFP_KERNEL); 3668 if (!rmem->pg_tbl) 3669 return -ENOMEM; 3670 } 3671 3672 for (i = 0; i < rmem->nr_pages; i++) { 3673 u64 extra_bits = valid_bit; 3674 3675 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 3676 rmem->page_size, 3677 &rmem->dma_arr[i], 3678 GFP_KERNEL); 3679 if (!rmem->pg_arr[i]) 3680 return -ENOMEM; 3681 3682 if (rmem->ctx_mem) 3683 bnxt_init_ctx_mem(rmem->ctx_mem, rmem->pg_arr[i], 3684 rmem->page_size); 3685 if (rmem->nr_pages > 1 || rmem->depth > 0) { 3686 if (i == rmem->nr_pages - 2 && 3687 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3688 extra_bits |= PTU_PTE_NEXT_TO_LAST; 3689 else if (i == rmem->nr_pages - 1 && 3690 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3691 extra_bits |= PTU_PTE_LAST; 3692 rmem->pg_tbl[i] = 3693 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 3694 } 3695 } 3696 3697 if (rmem->vmem_size) { 3698 *rmem->vmem = vzalloc(rmem->vmem_size); 3699 if (!(*rmem->vmem)) 3700 return -ENOMEM; 3701 } 3702 return 0; 3703 } 3704 3705 static void bnxt_free_one_tpa_info(struct bnxt *bp, 3706 struct bnxt_rx_ring_info *rxr) 3707 { 3708 int i; 3709 3710 kfree(rxr->rx_tpa_idx_map); 3711 rxr->rx_tpa_idx_map = NULL; 3712 if (rxr->rx_tpa) { 3713 for (i = 0; i < bp->max_tpa; i++) { 3714 kfree(rxr->rx_tpa[i].agg_arr); 3715 rxr->rx_tpa[i].agg_arr = NULL; 3716 } 3717 } 3718 kfree(rxr->rx_tpa); 3719 rxr->rx_tpa = NULL; 3720 } 3721 3722 static void bnxt_free_tpa_info(struct bnxt *bp) 3723 { 3724 int i; 3725 3726 for (i = 0; i < bp->rx_nr_rings; i++) { 3727 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3728 3729 bnxt_free_one_tpa_info(bp, rxr); 3730 } 3731 } 3732 3733 static int bnxt_alloc_one_tpa_info(struct bnxt *bp, 3734 struct bnxt_rx_ring_info *rxr) 3735 { 3736 struct rx_agg_cmp *agg; 3737 int i; 3738 3739 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 3740 GFP_KERNEL); 3741 if (!rxr->rx_tpa) 3742 return -ENOMEM; 3743 3744 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 3745 return 0; 3746 for (i = 0; i < bp->max_tpa; i++) { 3747 agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL); 3748 if (!agg) 3749 return -ENOMEM; 3750 rxr->rx_tpa[i].agg_arr = agg; 3751 } 3752 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 3753 GFP_KERNEL); 3754 if (!rxr->rx_tpa_idx_map) 3755 return -ENOMEM; 3756 3757 return 0; 3758 } 3759 3760 static int bnxt_alloc_tpa_info(struct bnxt *bp) 3761 { 3762 int i, rc; 3763 3764 bp->max_tpa = MAX_TPA; 3765 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 3766 if (!bp->max_tpa_v2) 3767 return 0; 3768 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 3769 } 3770 3771 for (i = 0; i < bp->rx_nr_rings; i++) { 3772 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3773 3774 rc = bnxt_alloc_one_tpa_info(bp, rxr); 3775 if (rc) 3776 return rc; 3777 } 3778 return 0; 3779 } 3780 3781 static void bnxt_free_rx_rings(struct bnxt *bp) 3782 { 3783 int i; 3784 3785 if (!bp->rx_ring) 3786 return; 3787 3788 bnxt_free_tpa_info(bp); 3789 for (i = 0; i < bp->rx_nr_rings; i++) { 3790 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3791 struct bnxt_ring_struct *ring; 3792 3793 if (rxr->xdp_prog) 3794 bpf_prog_put(rxr->xdp_prog); 3795 3796 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 3797 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3798 3799 page_pool_destroy(rxr->page_pool); 3800 if (bnxt_separate_head_pool(rxr)) 3801 page_pool_destroy(rxr->head_pool); 3802 rxr->page_pool = rxr->head_pool = NULL; 3803 3804 kfree(rxr->rx_agg_bmap); 3805 rxr->rx_agg_bmap = NULL; 3806 3807 ring = &rxr->rx_ring_struct; 3808 bnxt_free_ring(bp, &ring->ring_mem); 3809 3810 ring = &rxr->rx_agg_ring_struct; 3811 bnxt_free_ring(bp, &ring->ring_mem); 3812 } 3813 } 3814 3815 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 3816 struct bnxt_rx_ring_info *rxr, 3817 int numa_node) 3818 { 3819 const unsigned int agg_size_fac = PAGE_SIZE / BNXT_RX_PAGE_SIZE; 3820 const unsigned int rx_size_fac = PAGE_SIZE / SZ_4K; 3821 struct page_pool_params pp = { 0 }; 3822 struct page_pool *pool; 3823 3824 pp.pool_size = bp->rx_agg_ring_size / agg_size_fac; 3825 if (BNXT_RX_PAGE_MODE(bp)) 3826 pp.pool_size += bp->rx_ring_size / rx_size_fac; 3827 pp.nid = numa_node; 3828 pp.netdev = bp->dev; 3829 pp.dev = &bp->pdev->dev; 3830 pp.dma_dir = bp->rx_dir; 3831 pp.max_len = PAGE_SIZE; 3832 pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV | 3833 PP_FLAG_ALLOW_UNREADABLE_NETMEM; 3834 pp.queue_idx = rxr->bnapi->index; 3835 3836 pool = page_pool_create(&pp); 3837 if (IS_ERR(pool)) 3838 return PTR_ERR(pool); 3839 rxr->page_pool = pool; 3840 3841 rxr->need_head_pool = page_pool_is_unreadable(pool); 3842 if (bnxt_separate_head_pool(rxr)) { 3843 pp.pool_size = min(bp->rx_ring_size / rx_size_fac, 1024); 3844 pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 3845 pool = page_pool_create(&pp); 3846 if (IS_ERR(pool)) 3847 goto err_destroy_pp; 3848 } 3849 rxr->head_pool = pool; 3850 3851 return 0; 3852 3853 err_destroy_pp: 3854 page_pool_destroy(rxr->page_pool); 3855 rxr->page_pool = NULL; 3856 return PTR_ERR(pool); 3857 } 3858 3859 static void bnxt_enable_rx_page_pool(struct bnxt_rx_ring_info *rxr) 3860 { 3861 page_pool_enable_direct_recycling(rxr->head_pool, &rxr->bnapi->napi); 3862 page_pool_enable_direct_recycling(rxr->page_pool, &rxr->bnapi->napi); 3863 } 3864 3865 static int bnxt_alloc_rx_agg_bmap(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3866 { 3867 u16 mem_size; 3868 3869 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 3870 mem_size = rxr->rx_agg_bmap_size / 8; 3871 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 3872 if (!rxr->rx_agg_bmap) 3873 return -ENOMEM; 3874 3875 return 0; 3876 } 3877 3878 static int bnxt_alloc_rx_rings(struct bnxt *bp) 3879 { 3880 int numa_node = dev_to_node(&bp->pdev->dev); 3881 int i, rc = 0, agg_rings = 0, cpu; 3882 3883 if (!bp->rx_ring) 3884 return -ENOMEM; 3885 3886 if (bp->flags & BNXT_FLAG_AGG_RINGS) 3887 agg_rings = 1; 3888 3889 for (i = 0; i < bp->rx_nr_rings; i++) { 3890 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3891 struct bnxt_ring_struct *ring; 3892 int cpu_node; 3893 3894 ring = &rxr->rx_ring_struct; 3895 3896 cpu = cpumask_local_spread(i, numa_node); 3897 cpu_node = cpu_to_node(cpu); 3898 netdev_dbg(bp->dev, "Allocating page pool for rx_ring[%d] on numa_node: %d\n", 3899 i, cpu_node); 3900 rc = bnxt_alloc_rx_page_pool(bp, rxr, cpu_node); 3901 if (rc) 3902 return rc; 3903 bnxt_enable_rx_page_pool(rxr); 3904 3905 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 3906 if (rc < 0) 3907 return rc; 3908 3909 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 3910 MEM_TYPE_PAGE_POOL, 3911 rxr->page_pool); 3912 if (rc) { 3913 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3914 return rc; 3915 } 3916 3917 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3918 if (rc) 3919 return rc; 3920 3921 ring->grp_idx = i; 3922 if (agg_rings) { 3923 ring = &rxr->rx_agg_ring_struct; 3924 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3925 if (rc) 3926 return rc; 3927 3928 ring->grp_idx = i; 3929 rc = bnxt_alloc_rx_agg_bmap(bp, rxr); 3930 if (rc) 3931 return rc; 3932 } 3933 } 3934 if (bp->flags & BNXT_FLAG_TPA) 3935 rc = bnxt_alloc_tpa_info(bp); 3936 return rc; 3937 } 3938 3939 static void bnxt_free_tx_rings(struct bnxt *bp) 3940 { 3941 int i; 3942 struct pci_dev *pdev = bp->pdev; 3943 3944 if (!bp->tx_ring) 3945 return; 3946 3947 for (i = 0; i < bp->tx_nr_rings; i++) { 3948 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3949 struct bnxt_ring_struct *ring; 3950 3951 if (txr->tx_push) { 3952 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3953 txr->tx_push, txr->tx_push_mapping); 3954 txr->tx_push = NULL; 3955 } 3956 3957 ring = &txr->tx_ring_struct; 3958 3959 bnxt_free_ring(bp, &ring->ring_mem); 3960 } 3961 } 3962 3963 #define BNXT_TC_TO_RING_BASE(bp, tc) \ 3964 ((tc) * (bp)->tx_nr_rings_per_tc) 3965 3966 #define BNXT_RING_TO_TC_OFF(bp, tx) \ 3967 ((tx) % (bp)->tx_nr_rings_per_tc) 3968 3969 #define BNXT_RING_TO_TC(bp, tx) \ 3970 ((tx) / (bp)->tx_nr_rings_per_tc) 3971 3972 static int bnxt_alloc_tx_rings(struct bnxt *bp) 3973 { 3974 int i, j, rc; 3975 struct pci_dev *pdev = bp->pdev; 3976 3977 bp->tx_push_size = 0; 3978 if (bp->tx_push_thresh) { 3979 int push_size; 3980 3981 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 3982 bp->tx_push_thresh); 3983 3984 if (push_size > 256) { 3985 push_size = 0; 3986 bp->tx_push_thresh = 0; 3987 } 3988 3989 bp->tx_push_size = push_size; 3990 } 3991 3992 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 3993 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3994 struct bnxt_ring_struct *ring; 3995 u8 qidx; 3996 3997 ring = &txr->tx_ring_struct; 3998 3999 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 4000 if (rc) 4001 return rc; 4002 4003 ring->grp_idx = txr->bnapi->index; 4004 if (bp->tx_push_size) { 4005 dma_addr_t mapping; 4006 4007 /* One pre-allocated DMA buffer to backup 4008 * TX push operation 4009 */ 4010 txr->tx_push = dma_alloc_coherent(&pdev->dev, 4011 bp->tx_push_size, 4012 &txr->tx_push_mapping, 4013 GFP_KERNEL); 4014 4015 if (!txr->tx_push) 4016 return -ENOMEM; 4017 4018 mapping = txr->tx_push_mapping + 4019 sizeof(struct tx_push_bd); 4020 txr->data_mapping = cpu_to_le64(mapping); 4021 } 4022 qidx = bp->tc_to_qidx[j]; 4023 ring->queue_id = bp->q_info[qidx].queue_id; 4024 spin_lock_init(&txr->xdp_tx_lock); 4025 if (i < bp->tx_nr_rings_xdp) 4026 continue; 4027 if (BNXT_RING_TO_TC_OFF(bp, i) == (bp->tx_nr_rings_per_tc - 1)) 4028 j++; 4029 } 4030 return 0; 4031 } 4032 4033 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr) 4034 { 4035 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4036 4037 kfree(cpr->cp_desc_ring); 4038 cpr->cp_desc_ring = NULL; 4039 ring->ring_mem.pg_arr = NULL; 4040 kfree(cpr->cp_desc_mapping); 4041 cpr->cp_desc_mapping = NULL; 4042 ring->ring_mem.dma_arr = NULL; 4043 } 4044 4045 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n) 4046 { 4047 cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL); 4048 if (!cpr->cp_desc_ring) 4049 return -ENOMEM; 4050 cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping), 4051 GFP_KERNEL); 4052 if (!cpr->cp_desc_mapping) 4053 return -ENOMEM; 4054 return 0; 4055 } 4056 4057 static void bnxt_free_all_cp_arrays(struct bnxt *bp) 4058 { 4059 int i; 4060 4061 if (!bp->bnapi) 4062 return; 4063 for (i = 0; i < bp->cp_nr_rings; i++) { 4064 struct bnxt_napi *bnapi = bp->bnapi[i]; 4065 4066 if (!bnapi) 4067 continue; 4068 bnxt_free_cp_arrays(&bnapi->cp_ring); 4069 } 4070 } 4071 4072 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp) 4073 { 4074 int i, n = bp->cp_nr_pages; 4075 4076 for (i = 0; i < bp->cp_nr_rings; i++) { 4077 struct bnxt_napi *bnapi = bp->bnapi[i]; 4078 int rc; 4079 4080 if (!bnapi) 4081 continue; 4082 rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n); 4083 if (rc) 4084 return rc; 4085 } 4086 return 0; 4087 } 4088 4089 static void bnxt_free_cp_rings(struct bnxt *bp) 4090 { 4091 int i; 4092 4093 if (!bp->bnapi) 4094 return; 4095 4096 for (i = 0; i < bp->cp_nr_rings; i++) { 4097 struct bnxt_napi *bnapi = bp->bnapi[i]; 4098 struct bnxt_cp_ring_info *cpr; 4099 struct bnxt_ring_struct *ring; 4100 int j; 4101 4102 if (!bnapi) 4103 continue; 4104 4105 cpr = &bnapi->cp_ring; 4106 ring = &cpr->cp_ring_struct; 4107 4108 bnxt_free_ring(bp, &ring->ring_mem); 4109 4110 if (!cpr->cp_ring_arr) 4111 continue; 4112 4113 for (j = 0; j < cpr->cp_ring_count; j++) { 4114 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 4115 4116 ring = &cpr2->cp_ring_struct; 4117 bnxt_free_ring(bp, &ring->ring_mem); 4118 bnxt_free_cp_arrays(cpr2); 4119 } 4120 kfree(cpr->cp_ring_arr); 4121 cpr->cp_ring_arr = NULL; 4122 cpr->cp_ring_count = 0; 4123 } 4124 } 4125 4126 static int bnxt_alloc_cp_sub_ring(struct bnxt *bp, 4127 struct bnxt_cp_ring_info *cpr) 4128 { 4129 struct bnxt_ring_mem_info *rmem; 4130 struct bnxt_ring_struct *ring; 4131 int rc; 4132 4133 rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages); 4134 if (rc) { 4135 bnxt_free_cp_arrays(cpr); 4136 return -ENOMEM; 4137 } 4138 ring = &cpr->cp_ring_struct; 4139 rmem = &ring->ring_mem; 4140 rmem->nr_pages = bp->cp_nr_pages; 4141 rmem->page_size = HW_CMPD_RING_SIZE; 4142 rmem->pg_arr = (void **)cpr->cp_desc_ring; 4143 rmem->dma_arr = cpr->cp_desc_mapping; 4144 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 4145 rc = bnxt_alloc_ring(bp, rmem); 4146 if (rc) { 4147 bnxt_free_ring(bp, rmem); 4148 bnxt_free_cp_arrays(cpr); 4149 } 4150 return rc; 4151 } 4152 4153 static int bnxt_alloc_cp_rings(struct bnxt *bp) 4154 { 4155 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 4156 int i, j, rc, ulp_msix; 4157 int tcs = bp->num_tc; 4158 4159 if (!tcs) 4160 tcs = 1; 4161 ulp_msix = bnxt_get_ulp_msix_num(bp); 4162 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 4163 struct bnxt_napi *bnapi = bp->bnapi[i]; 4164 struct bnxt_cp_ring_info *cpr, *cpr2; 4165 struct bnxt_ring_struct *ring; 4166 int cp_count = 0, k; 4167 int rx = 0, tx = 0; 4168 4169 if (!bnapi) 4170 continue; 4171 4172 cpr = &bnapi->cp_ring; 4173 cpr->bnapi = bnapi; 4174 ring = &cpr->cp_ring_struct; 4175 4176 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 4177 if (rc) 4178 return rc; 4179 4180 ring->map_idx = ulp_msix + i; 4181 4182 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4183 continue; 4184 4185 if (i < bp->rx_nr_rings) { 4186 cp_count++; 4187 rx = 1; 4188 } 4189 if (i < bp->tx_nr_rings_xdp) { 4190 cp_count++; 4191 tx = 1; 4192 } else if ((sh && i < bp->tx_nr_rings) || 4193 (!sh && i >= bp->rx_nr_rings)) { 4194 cp_count += tcs; 4195 tx = 1; 4196 } 4197 4198 cpr->cp_ring_arr = kcalloc(cp_count, sizeof(*cpr), 4199 GFP_KERNEL); 4200 if (!cpr->cp_ring_arr) 4201 return -ENOMEM; 4202 cpr->cp_ring_count = cp_count; 4203 4204 for (k = 0; k < cp_count; k++) { 4205 cpr2 = &cpr->cp_ring_arr[k]; 4206 rc = bnxt_alloc_cp_sub_ring(bp, cpr2); 4207 if (rc) 4208 return rc; 4209 cpr2->bnapi = bnapi; 4210 cpr2->sw_stats = cpr->sw_stats; 4211 cpr2->cp_idx = k; 4212 if (!k && rx) { 4213 bp->rx_ring[i].rx_cpr = cpr2; 4214 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_RX; 4215 } else { 4216 int n, tc = k - rx; 4217 4218 n = BNXT_TC_TO_RING_BASE(bp, tc) + j; 4219 bp->tx_ring[n].tx_cpr = cpr2; 4220 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_TX; 4221 } 4222 } 4223 if (tx) 4224 j++; 4225 } 4226 return 0; 4227 } 4228 4229 static void bnxt_init_rx_ring_struct(struct bnxt *bp, 4230 struct bnxt_rx_ring_info *rxr) 4231 { 4232 struct bnxt_ring_mem_info *rmem; 4233 struct bnxt_ring_struct *ring; 4234 4235 ring = &rxr->rx_ring_struct; 4236 rmem = &ring->ring_mem; 4237 rmem->nr_pages = bp->rx_nr_pages; 4238 rmem->page_size = HW_RXBD_RING_SIZE; 4239 rmem->pg_arr = (void **)rxr->rx_desc_ring; 4240 rmem->dma_arr = rxr->rx_desc_mapping; 4241 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 4242 rmem->vmem = (void **)&rxr->rx_buf_ring; 4243 4244 ring = &rxr->rx_agg_ring_struct; 4245 rmem = &ring->ring_mem; 4246 rmem->nr_pages = bp->rx_agg_nr_pages; 4247 rmem->page_size = HW_RXBD_RING_SIZE; 4248 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 4249 rmem->dma_arr = rxr->rx_agg_desc_mapping; 4250 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 4251 rmem->vmem = (void **)&rxr->rx_agg_ring; 4252 } 4253 4254 static void bnxt_reset_rx_ring_struct(struct bnxt *bp, 4255 struct bnxt_rx_ring_info *rxr) 4256 { 4257 struct bnxt_ring_mem_info *rmem; 4258 struct bnxt_ring_struct *ring; 4259 int i; 4260 4261 rxr->page_pool->p.napi = NULL; 4262 rxr->page_pool = NULL; 4263 rxr->head_pool->p.napi = NULL; 4264 rxr->head_pool = NULL; 4265 memset(&rxr->xdp_rxq, 0, sizeof(struct xdp_rxq_info)); 4266 4267 ring = &rxr->rx_ring_struct; 4268 rmem = &ring->ring_mem; 4269 rmem->pg_tbl = NULL; 4270 rmem->pg_tbl_map = 0; 4271 for (i = 0; i < rmem->nr_pages; i++) { 4272 rmem->pg_arr[i] = NULL; 4273 rmem->dma_arr[i] = 0; 4274 } 4275 *rmem->vmem = NULL; 4276 4277 ring = &rxr->rx_agg_ring_struct; 4278 rmem = &ring->ring_mem; 4279 rmem->pg_tbl = NULL; 4280 rmem->pg_tbl_map = 0; 4281 for (i = 0; i < rmem->nr_pages; i++) { 4282 rmem->pg_arr[i] = NULL; 4283 rmem->dma_arr[i] = 0; 4284 } 4285 *rmem->vmem = NULL; 4286 } 4287 4288 static void bnxt_init_ring_struct(struct bnxt *bp) 4289 { 4290 int i, j; 4291 4292 for (i = 0; i < bp->cp_nr_rings; i++) { 4293 struct bnxt_napi *bnapi = bp->bnapi[i]; 4294 struct bnxt_ring_mem_info *rmem; 4295 struct bnxt_cp_ring_info *cpr; 4296 struct bnxt_rx_ring_info *rxr; 4297 struct bnxt_tx_ring_info *txr; 4298 struct bnxt_ring_struct *ring; 4299 4300 if (!bnapi) 4301 continue; 4302 4303 cpr = &bnapi->cp_ring; 4304 ring = &cpr->cp_ring_struct; 4305 rmem = &ring->ring_mem; 4306 rmem->nr_pages = bp->cp_nr_pages; 4307 rmem->page_size = HW_CMPD_RING_SIZE; 4308 rmem->pg_arr = (void **)cpr->cp_desc_ring; 4309 rmem->dma_arr = cpr->cp_desc_mapping; 4310 rmem->vmem_size = 0; 4311 4312 rxr = bnapi->rx_ring; 4313 if (!rxr) 4314 goto skip_rx; 4315 4316 ring = &rxr->rx_ring_struct; 4317 rmem = &ring->ring_mem; 4318 rmem->nr_pages = bp->rx_nr_pages; 4319 rmem->page_size = HW_RXBD_RING_SIZE; 4320 rmem->pg_arr = (void **)rxr->rx_desc_ring; 4321 rmem->dma_arr = rxr->rx_desc_mapping; 4322 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 4323 rmem->vmem = (void **)&rxr->rx_buf_ring; 4324 4325 ring = &rxr->rx_agg_ring_struct; 4326 rmem = &ring->ring_mem; 4327 rmem->nr_pages = bp->rx_agg_nr_pages; 4328 rmem->page_size = HW_RXBD_RING_SIZE; 4329 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 4330 rmem->dma_arr = rxr->rx_agg_desc_mapping; 4331 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 4332 rmem->vmem = (void **)&rxr->rx_agg_ring; 4333 4334 skip_rx: 4335 bnxt_for_each_napi_tx(j, bnapi, txr) { 4336 ring = &txr->tx_ring_struct; 4337 rmem = &ring->ring_mem; 4338 rmem->nr_pages = bp->tx_nr_pages; 4339 rmem->page_size = HW_TXBD_RING_SIZE; 4340 rmem->pg_arr = (void **)txr->tx_desc_ring; 4341 rmem->dma_arr = txr->tx_desc_mapping; 4342 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 4343 rmem->vmem = (void **)&txr->tx_buf_ring; 4344 } 4345 } 4346 } 4347 4348 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 4349 { 4350 int i; 4351 u32 prod; 4352 struct rx_bd **rx_buf_ring; 4353 4354 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 4355 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 4356 int j; 4357 struct rx_bd *rxbd; 4358 4359 rxbd = rx_buf_ring[i]; 4360 if (!rxbd) 4361 continue; 4362 4363 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 4364 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 4365 rxbd->rx_bd_opaque = prod; 4366 } 4367 } 4368 } 4369 4370 static void bnxt_alloc_one_rx_ring_skb(struct bnxt *bp, 4371 struct bnxt_rx_ring_info *rxr, 4372 int ring_nr) 4373 { 4374 u32 prod; 4375 int i; 4376 4377 prod = rxr->rx_prod; 4378 for (i = 0; i < bp->rx_ring_size; i++) { 4379 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 4380 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n", 4381 ring_nr, i, bp->rx_ring_size); 4382 break; 4383 } 4384 prod = NEXT_RX(prod); 4385 } 4386 rxr->rx_prod = prod; 4387 } 4388 4389 static void bnxt_alloc_one_rx_ring_netmem(struct bnxt *bp, 4390 struct bnxt_rx_ring_info *rxr, 4391 int ring_nr) 4392 { 4393 u32 prod; 4394 int i; 4395 4396 prod = rxr->rx_agg_prod; 4397 for (i = 0; i < bp->rx_agg_ring_size; i++) { 4398 if (bnxt_alloc_rx_netmem(bp, rxr, prod, GFP_KERNEL)) { 4399 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d pages only\n", 4400 ring_nr, i, bp->rx_ring_size); 4401 break; 4402 } 4403 prod = NEXT_RX_AGG(prod); 4404 } 4405 rxr->rx_agg_prod = prod; 4406 } 4407 4408 static int bnxt_alloc_one_tpa_info_data(struct bnxt *bp, 4409 struct bnxt_rx_ring_info *rxr) 4410 { 4411 dma_addr_t mapping; 4412 u8 *data; 4413 int i; 4414 4415 for (i = 0; i < bp->max_tpa; i++) { 4416 data = __bnxt_alloc_rx_frag(bp, &mapping, rxr, 4417 GFP_KERNEL); 4418 if (!data) 4419 return -ENOMEM; 4420 4421 rxr->rx_tpa[i].data = data; 4422 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 4423 rxr->rx_tpa[i].mapping = mapping; 4424 } 4425 4426 return 0; 4427 } 4428 4429 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 4430 { 4431 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 4432 int rc; 4433 4434 bnxt_alloc_one_rx_ring_skb(bp, rxr, ring_nr); 4435 4436 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 4437 return 0; 4438 4439 bnxt_alloc_one_rx_ring_netmem(bp, rxr, ring_nr); 4440 4441 if (rxr->rx_tpa) { 4442 rc = bnxt_alloc_one_tpa_info_data(bp, rxr); 4443 if (rc) 4444 return rc; 4445 } 4446 return 0; 4447 } 4448 4449 static void bnxt_init_one_rx_ring_rxbd(struct bnxt *bp, 4450 struct bnxt_rx_ring_info *rxr) 4451 { 4452 struct bnxt_ring_struct *ring; 4453 u32 type; 4454 4455 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 4456 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 4457 4458 if (NET_IP_ALIGN == 2) 4459 type |= RX_BD_FLAGS_SOP; 4460 4461 ring = &rxr->rx_ring_struct; 4462 bnxt_init_rxbd_pages(ring, type); 4463 ring->fw_ring_id = INVALID_HW_RING_ID; 4464 } 4465 4466 static void bnxt_init_one_rx_agg_ring_rxbd(struct bnxt *bp, 4467 struct bnxt_rx_ring_info *rxr) 4468 { 4469 struct bnxt_ring_struct *ring; 4470 u32 type; 4471 4472 ring = &rxr->rx_agg_ring_struct; 4473 ring->fw_ring_id = INVALID_HW_RING_ID; 4474 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 4475 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 4476 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 4477 4478 bnxt_init_rxbd_pages(ring, type); 4479 } 4480 } 4481 4482 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 4483 { 4484 struct bnxt_rx_ring_info *rxr; 4485 4486 rxr = &bp->rx_ring[ring_nr]; 4487 bnxt_init_one_rx_ring_rxbd(bp, rxr); 4488 4489 netif_queue_set_napi(bp->dev, ring_nr, NETDEV_QUEUE_TYPE_RX, 4490 &rxr->bnapi->napi); 4491 4492 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 4493 bpf_prog_add(bp->xdp_prog, 1); 4494 rxr->xdp_prog = bp->xdp_prog; 4495 } 4496 4497 bnxt_init_one_rx_agg_ring_rxbd(bp, rxr); 4498 4499 return bnxt_alloc_one_rx_ring(bp, ring_nr); 4500 } 4501 4502 static void bnxt_init_cp_rings(struct bnxt *bp) 4503 { 4504 int i, j; 4505 4506 for (i = 0; i < bp->cp_nr_rings; i++) { 4507 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 4508 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4509 4510 ring->fw_ring_id = INVALID_HW_RING_ID; 4511 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4512 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4513 if (!cpr->cp_ring_arr) 4514 continue; 4515 for (j = 0; j < cpr->cp_ring_count; j++) { 4516 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 4517 4518 ring = &cpr2->cp_ring_struct; 4519 ring->fw_ring_id = INVALID_HW_RING_ID; 4520 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4521 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4522 } 4523 } 4524 } 4525 4526 static int bnxt_init_rx_rings(struct bnxt *bp) 4527 { 4528 int i, rc = 0; 4529 4530 if (BNXT_RX_PAGE_MODE(bp)) { 4531 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 4532 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 4533 } else { 4534 bp->rx_offset = BNXT_RX_OFFSET; 4535 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 4536 } 4537 4538 for (i = 0; i < bp->rx_nr_rings; i++) { 4539 rc = bnxt_init_one_rx_ring(bp, i); 4540 if (rc) 4541 break; 4542 } 4543 4544 return rc; 4545 } 4546 4547 static int bnxt_init_tx_rings(struct bnxt *bp) 4548 { 4549 u16 i; 4550 4551 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 4552 BNXT_MIN_TX_DESC_CNT); 4553 4554 for (i = 0; i < bp->tx_nr_rings; i++) { 4555 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4556 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 4557 4558 ring->fw_ring_id = INVALID_HW_RING_ID; 4559 4560 if (i >= bp->tx_nr_rings_xdp) 4561 netif_queue_set_napi(bp->dev, i - bp->tx_nr_rings_xdp, 4562 NETDEV_QUEUE_TYPE_TX, 4563 &txr->bnapi->napi); 4564 } 4565 4566 return 0; 4567 } 4568 4569 static void bnxt_free_ring_grps(struct bnxt *bp) 4570 { 4571 kfree(bp->grp_info); 4572 bp->grp_info = NULL; 4573 } 4574 4575 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 4576 { 4577 int i; 4578 4579 if (irq_re_init) { 4580 bp->grp_info = kcalloc(bp->cp_nr_rings, 4581 sizeof(struct bnxt_ring_grp_info), 4582 GFP_KERNEL); 4583 if (!bp->grp_info) 4584 return -ENOMEM; 4585 } 4586 for (i = 0; i < bp->cp_nr_rings; i++) { 4587 if (irq_re_init) 4588 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 4589 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 4590 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 4591 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 4592 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 4593 } 4594 return 0; 4595 } 4596 4597 static void bnxt_free_vnics(struct bnxt *bp) 4598 { 4599 kfree(bp->vnic_info); 4600 bp->vnic_info = NULL; 4601 bp->nr_vnics = 0; 4602 } 4603 4604 static int bnxt_alloc_vnics(struct bnxt *bp) 4605 { 4606 int num_vnics = 1; 4607 4608 #ifdef CONFIG_RFS_ACCEL 4609 if (bp->flags & BNXT_FLAG_RFS) { 4610 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 4611 num_vnics++; 4612 else if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4613 num_vnics += bp->rx_nr_rings; 4614 } 4615 #endif 4616 4617 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 4618 num_vnics++; 4619 4620 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 4621 GFP_KERNEL); 4622 if (!bp->vnic_info) 4623 return -ENOMEM; 4624 4625 bp->nr_vnics = num_vnics; 4626 return 0; 4627 } 4628 4629 static void bnxt_init_vnics(struct bnxt *bp) 4630 { 4631 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 4632 int i; 4633 4634 for (i = 0; i < bp->nr_vnics; i++) { 4635 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 4636 int j; 4637 4638 vnic->fw_vnic_id = INVALID_HW_RING_ID; 4639 vnic->vnic_id = i; 4640 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 4641 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 4642 4643 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 4644 4645 if (bp->vnic_info[i].rss_hash_key) { 4646 if (i == BNXT_VNIC_DEFAULT) { 4647 u8 *key = (void *)vnic->rss_hash_key; 4648 int k; 4649 4650 if (!bp->rss_hash_key_valid && 4651 !bp->rss_hash_key_updated) { 4652 get_random_bytes(bp->rss_hash_key, 4653 HW_HASH_KEY_SIZE); 4654 bp->rss_hash_key_updated = true; 4655 } 4656 4657 memcpy(vnic->rss_hash_key, bp->rss_hash_key, 4658 HW_HASH_KEY_SIZE); 4659 4660 if (!bp->rss_hash_key_updated) 4661 continue; 4662 4663 bp->rss_hash_key_updated = false; 4664 bp->rss_hash_key_valid = true; 4665 4666 bp->toeplitz_prefix = 0; 4667 for (k = 0; k < 8; k++) { 4668 bp->toeplitz_prefix <<= 8; 4669 bp->toeplitz_prefix |= key[k]; 4670 } 4671 } else { 4672 memcpy(vnic->rss_hash_key, vnic0->rss_hash_key, 4673 HW_HASH_KEY_SIZE); 4674 } 4675 } 4676 } 4677 } 4678 4679 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 4680 { 4681 int pages; 4682 4683 pages = ring_size / desc_per_pg; 4684 4685 if (!pages) 4686 return 1; 4687 4688 pages++; 4689 4690 while (pages & (pages - 1)) 4691 pages++; 4692 4693 return pages; 4694 } 4695 4696 void bnxt_set_tpa_flags(struct bnxt *bp) 4697 { 4698 bp->flags &= ~BNXT_FLAG_TPA; 4699 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 4700 return; 4701 if (bp->dev->features & NETIF_F_LRO) 4702 bp->flags |= BNXT_FLAG_LRO; 4703 else if (bp->dev->features & NETIF_F_GRO_HW) 4704 bp->flags |= BNXT_FLAG_GRO; 4705 } 4706 4707 static void bnxt_init_ring_params(struct bnxt *bp) 4708 { 4709 unsigned int rx_size; 4710 4711 bp->rx_copybreak = BNXT_DEFAULT_RX_COPYBREAK; 4712 /* Try to fit 4 chunks into a 4k page */ 4713 rx_size = SZ_1K - 4714 NET_SKB_PAD - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4715 bp->dev->cfg->hds_thresh = max(BNXT_DEFAULT_RX_COPYBREAK, rx_size); 4716 } 4717 4718 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 4719 * be set on entry. 4720 */ 4721 void bnxt_set_ring_params(struct bnxt *bp) 4722 { 4723 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 4724 u32 agg_factor = 0, agg_ring_size = 0; 4725 4726 /* 8 for CRC and VLAN */ 4727 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 4728 4729 rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) + 4730 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4731 4732 ring_size = bp->rx_ring_size; 4733 bp->rx_agg_ring_size = 0; 4734 bp->rx_agg_nr_pages = 0; 4735 4736 if (bp->flags & BNXT_FLAG_TPA || bp->flags & BNXT_FLAG_HDS) 4737 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 4738 4739 bp->flags &= ~BNXT_FLAG_JUMBO; 4740 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 4741 u32 jumbo_factor; 4742 4743 bp->flags |= BNXT_FLAG_JUMBO; 4744 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 4745 if (jumbo_factor > agg_factor) 4746 agg_factor = jumbo_factor; 4747 } 4748 if (agg_factor) { 4749 if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) { 4750 ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA; 4751 netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n", 4752 bp->rx_ring_size, ring_size); 4753 bp->rx_ring_size = ring_size; 4754 } 4755 agg_ring_size = ring_size * agg_factor; 4756 4757 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 4758 RX_DESC_CNT); 4759 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 4760 u32 tmp = agg_ring_size; 4761 4762 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 4763 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 4764 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 4765 tmp, agg_ring_size); 4766 } 4767 bp->rx_agg_ring_size = agg_ring_size; 4768 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 4769 4770 if (BNXT_RX_PAGE_MODE(bp)) { 4771 rx_space = PAGE_SIZE; 4772 rx_size = PAGE_SIZE - 4773 ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) - 4774 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4775 } else { 4776 rx_size = max3(BNXT_DEFAULT_RX_COPYBREAK, 4777 bp->rx_copybreak, 4778 bp->dev->cfg_pending->hds_thresh); 4779 rx_size = SKB_DATA_ALIGN(rx_size + NET_IP_ALIGN); 4780 rx_space = rx_size + NET_SKB_PAD + 4781 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4782 } 4783 } 4784 4785 bp->rx_buf_use_size = rx_size; 4786 bp->rx_buf_size = rx_space; 4787 4788 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 4789 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 4790 4791 ring_size = bp->tx_ring_size; 4792 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 4793 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 4794 4795 max_rx_cmpl = bp->rx_ring_size; 4796 /* MAX TPA needs to be added because TPA_START completions are 4797 * immediately recycled, so the TPA completions are not bound by 4798 * the RX ring size. 4799 */ 4800 if (bp->flags & BNXT_FLAG_TPA) 4801 max_rx_cmpl += bp->max_tpa; 4802 /* RX and TPA completions are 32-byte, all others are 16-byte */ 4803 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 4804 bp->cp_ring_size = ring_size; 4805 4806 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 4807 if (bp->cp_nr_pages > MAX_CP_PAGES) { 4808 bp->cp_nr_pages = MAX_CP_PAGES; 4809 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 4810 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 4811 ring_size, bp->cp_ring_size); 4812 } 4813 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 4814 bp->cp_ring_mask = bp->cp_bit - 1; 4815 } 4816 4817 /* Changing allocation mode of RX rings. 4818 * TODO: Update when extending xdp_rxq_info to support allocation modes. 4819 */ 4820 static void __bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 4821 { 4822 struct net_device *dev = bp->dev; 4823 4824 if (page_mode) { 4825 bp->flags &= ~(BNXT_FLAG_AGG_RINGS | BNXT_FLAG_NO_AGG_RINGS); 4826 bp->flags |= BNXT_FLAG_RX_PAGE_MODE; 4827 4828 if (bp->xdp_prog->aux->xdp_has_frags) 4829 dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU); 4830 else 4831 dev->max_mtu = 4832 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 4833 if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) { 4834 bp->flags |= BNXT_FLAG_JUMBO; 4835 bp->rx_skb_func = bnxt_rx_multi_page_skb; 4836 } else { 4837 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 4838 bp->rx_skb_func = bnxt_rx_page_skb; 4839 } 4840 bp->rx_dir = DMA_BIDIRECTIONAL; 4841 } else { 4842 dev->max_mtu = bp->max_mtu; 4843 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 4844 bp->rx_dir = DMA_FROM_DEVICE; 4845 bp->rx_skb_func = bnxt_rx_skb; 4846 } 4847 } 4848 4849 void bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 4850 { 4851 __bnxt_set_rx_skb_mode(bp, page_mode); 4852 4853 if (!page_mode) { 4854 int rx, tx; 4855 4856 bnxt_get_max_rings(bp, &rx, &tx, true); 4857 if (rx > 1) { 4858 bp->flags &= ~BNXT_FLAG_NO_AGG_RINGS; 4859 bp->dev->hw_features |= NETIF_F_LRO; 4860 } 4861 } 4862 4863 /* Update LRO and GRO_HW availability */ 4864 netdev_update_features(bp->dev); 4865 } 4866 4867 static void bnxt_free_vnic_attributes(struct bnxt *bp) 4868 { 4869 int i; 4870 struct bnxt_vnic_info *vnic; 4871 struct pci_dev *pdev = bp->pdev; 4872 4873 if (!bp->vnic_info) 4874 return; 4875 4876 for (i = 0; i < bp->nr_vnics; i++) { 4877 vnic = &bp->vnic_info[i]; 4878 4879 kfree(vnic->fw_grp_ids); 4880 vnic->fw_grp_ids = NULL; 4881 4882 kfree(vnic->uc_list); 4883 vnic->uc_list = NULL; 4884 4885 if (vnic->mc_list) { 4886 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 4887 vnic->mc_list, vnic->mc_list_mapping); 4888 vnic->mc_list = NULL; 4889 } 4890 4891 if (vnic->rss_table) { 4892 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 4893 vnic->rss_table, 4894 vnic->rss_table_dma_addr); 4895 vnic->rss_table = NULL; 4896 } 4897 4898 vnic->rss_hash_key = NULL; 4899 vnic->flags = 0; 4900 } 4901 } 4902 4903 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 4904 { 4905 int i, rc = 0, size; 4906 struct bnxt_vnic_info *vnic; 4907 struct pci_dev *pdev = bp->pdev; 4908 int max_rings; 4909 4910 for (i = 0; i < bp->nr_vnics; i++) { 4911 vnic = &bp->vnic_info[i]; 4912 4913 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 4914 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 4915 4916 if (mem_size > 0) { 4917 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 4918 if (!vnic->uc_list) { 4919 rc = -ENOMEM; 4920 goto out; 4921 } 4922 } 4923 } 4924 4925 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 4926 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 4927 vnic->mc_list = 4928 dma_alloc_coherent(&pdev->dev, 4929 vnic->mc_list_size, 4930 &vnic->mc_list_mapping, 4931 GFP_KERNEL); 4932 if (!vnic->mc_list) { 4933 rc = -ENOMEM; 4934 goto out; 4935 } 4936 } 4937 4938 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4939 goto vnic_skip_grps; 4940 4941 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 4942 max_rings = bp->rx_nr_rings; 4943 else 4944 max_rings = 1; 4945 4946 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 4947 if (!vnic->fw_grp_ids) { 4948 rc = -ENOMEM; 4949 goto out; 4950 } 4951 vnic_skip_grps: 4952 if ((bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && 4953 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 4954 continue; 4955 4956 /* Allocate rss table and hash key */ 4957 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 4958 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4959 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 4960 4961 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 4962 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 4963 vnic->rss_table_size, 4964 &vnic->rss_table_dma_addr, 4965 GFP_KERNEL); 4966 if (!vnic->rss_table) { 4967 rc = -ENOMEM; 4968 goto out; 4969 } 4970 4971 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 4972 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 4973 } 4974 return 0; 4975 4976 out: 4977 return rc; 4978 } 4979 4980 static void bnxt_free_hwrm_resources(struct bnxt *bp) 4981 { 4982 struct bnxt_hwrm_wait_token *token; 4983 4984 dma_pool_destroy(bp->hwrm_dma_pool); 4985 bp->hwrm_dma_pool = NULL; 4986 4987 rcu_read_lock(); 4988 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) 4989 WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED); 4990 rcu_read_unlock(); 4991 } 4992 4993 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 4994 { 4995 bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev, 4996 BNXT_HWRM_DMA_SIZE, 4997 BNXT_HWRM_DMA_ALIGN, 0); 4998 if (!bp->hwrm_dma_pool) 4999 return -ENOMEM; 5000 5001 INIT_HLIST_HEAD(&bp->hwrm_pending_list); 5002 5003 return 0; 5004 } 5005 5006 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 5007 { 5008 kfree(stats->hw_masks); 5009 stats->hw_masks = NULL; 5010 kfree(stats->sw_stats); 5011 stats->sw_stats = NULL; 5012 if (stats->hw_stats) { 5013 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 5014 stats->hw_stats_map); 5015 stats->hw_stats = NULL; 5016 } 5017 } 5018 5019 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 5020 bool alloc_masks) 5021 { 5022 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 5023 &stats->hw_stats_map, GFP_KERNEL); 5024 if (!stats->hw_stats) 5025 return -ENOMEM; 5026 5027 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 5028 if (!stats->sw_stats) 5029 goto stats_mem_err; 5030 5031 if (alloc_masks) { 5032 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 5033 if (!stats->hw_masks) 5034 goto stats_mem_err; 5035 } 5036 return 0; 5037 5038 stats_mem_err: 5039 bnxt_free_stats_mem(bp, stats); 5040 return -ENOMEM; 5041 } 5042 5043 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 5044 { 5045 int i; 5046 5047 for (i = 0; i < count; i++) 5048 mask_arr[i] = mask; 5049 } 5050 5051 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 5052 { 5053 int i; 5054 5055 for (i = 0; i < count; i++) 5056 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 5057 } 5058 5059 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 5060 struct bnxt_stats_mem *stats) 5061 { 5062 struct hwrm_func_qstats_ext_output *resp; 5063 struct hwrm_func_qstats_ext_input *req; 5064 __le64 *hw_masks; 5065 int rc; 5066 5067 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 5068 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 5069 return -EOPNOTSUPP; 5070 5071 rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT); 5072 if (rc) 5073 return rc; 5074 5075 req->fid = cpu_to_le16(0xffff); 5076 req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 5077 5078 resp = hwrm_req_hold(bp, req); 5079 rc = hwrm_req_send(bp, req); 5080 if (!rc) { 5081 hw_masks = &resp->rx_ucast_pkts; 5082 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 5083 } 5084 hwrm_req_drop(bp, req); 5085 return rc; 5086 } 5087 5088 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 5089 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 5090 5091 static void bnxt_init_stats(struct bnxt *bp) 5092 { 5093 struct bnxt_napi *bnapi = bp->bnapi[0]; 5094 struct bnxt_cp_ring_info *cpr; 5095 struct bnxt_stats_mem *stats; 5096 __le64 *rx_stats, *tx_stats; 5097 int rc, rx_count, tx_count; 5098 u64 *rx_masks, *tx_masks; 5099 u64 mask; 5100 u8 flags; 5101 5102 cpr = &bnapi->cp_ring; 5103 stats = &cpr->stats; 5104 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 5105 if (rc) { 5106 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 5107 mask = (1ULL << 48) - 1; 5108 else 5109 mask = -1ULL; 5110 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 5111 } 5112 if (bp->flags & BNXT_FLAG_PORT_STATS) { 5113 stats = &bp->port_stats; 5114 rx_stats = stats->hw_stats; 5115 rx_masks = stats->hw_masks; 5116 rx_count = sizeof(struct rx_port_stats) / 8; 5117 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 5118 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 5119 tx_count = sizeof(struct tx_port_stats) / 8; 5120 5121 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 5122 rc = bnxt_hwrm_port_qstats(bp, flags); 5123 if (rc) { 5124 mask = (1ULL << 40) - 1; 5125 5126 bnxt_fill_masks(rx_masks, mask, rx_count); 5127 bnxt_fill_masks(tx_masks, mask, tx_count); 5128 } else { 5129 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 5130 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 5131 bnxt_hwrm_port_qstats(bp, 0); 5132 } 5133 } 5134 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 5135 stats = &bp->rx_port_stats_ext; 5136 rx_stats = stats->hw_stats; 5137 rx_masks = stats->hw_masks; 5138 rx_count = sizeof(struct rx_port_stats_ext) / 8; 5139 stats = &bp->tx_port_stats_ext; 5140 tx_stats = stats->hw_stats; 5141 tx_masks = stats->hw_masks; 5142 tx_count = sizeof(struct tx_port_stats_ext) / 8; 5143 5144 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 5145 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 5146 if (rc) { 5147 mask = (1ULL << 40) - 1; 5148 5149 bnxt_fill_masks(rx_masks, mask, rx_count); 5150 if (tx_stats) 5151 bnxt_fill_masks(tx_masks, mask, tx_count); 5152 } else { 5153 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 5154 if (tx_stats) 5155 bnxt_copy_hw_masks(tx_masks, tx_stats, 5156 tx_count); 5157 bnxt_hwrm_port_qstats_ext(bp, 0); 5158 } 5159 } 5160 } 5161 5162 static void bnxt_free_port_stats(struct bnxt *bp) 5163 { 5164 bp->flags &= ~BNXT_FLAG_PORT_STATS; 5165 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 5166 5167 bnxt_free_stats_mem(bp, &bp->port_stats); 5168 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 5169 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 5170 } 5171 5172 static void bnxt_free_ring_stats(struct bnxt *bp) 5173 { 5174 int i; 5175 5176 if (!bp->bnapi) 5177 return; 5178 5179 for (i = 0; i < bp->cp_nr_rings; i++) { 5180 struct bnxt_napi *bnapi = bp->bnapi[i]; 5181 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5182 5183 bnxt_free_stats_mem(bp, &cpr->stats); 5184 5185 kfree(cpr->sw_stats); 5186 cpr->sw_stats = NULL; 5187 } 5188 } 5189 5190 static int bnxt_alloc_stats(struct bnxt *bp) 5191 { 5192 u32 size, i; 5193 int rc; 5194 5195 size = bp->hw_ring_stats_size; 5196 5197 for (i = 0; i < bp->cp_nr_rings; i++) { 5198 struct bnxt_napi *bnapi = bp->bnapi[i]; 5199 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5200 5201 cpr->sw_stats = kzalloc(sizeof(*cpr->sw_stats), GFP_KERNEL); 5202 if (!cpr->sw_stats) 5203 return -ENOMEM; 5204 5205 cpr->stats.len = size; 5206 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 5207 if (rc) 5208 return rc; 5209 5210 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 5211 } 5212 5213 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 5214 return 0; 5215 5216 if (bp->port_stats.hw_stats) 5217 goto alloc_ext_stats; 5218 5219 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 5220 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 5221 if (rc) 5222 return rc; 5223 5224 bp->flags |= BNXT_FLAG_PORT_STATS; 5225 5226 alloc_ext_stats: 5227 /* Display extended statistics only if FW supports it */ 5228 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 5229 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 5230 return 0; 5231 5232 if (bp->rx_port_stats_ext.hw_stats) 5233 goto alloc_tx_ext_stats; 5234 5235 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 5236 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 5237 /* Extended stats are optional */ 5238 if (rc) 5239 return 0; 5240 5241 alloc_tx_ext_stats: 5242 if (bp->tx_port_stats_ext.hw_stats) 5243 return 0; 5244 5245 if (bp->hwrm_spec_code >= 0x10902 || 5246 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 5247 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 5248 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 5249 /* Extended stats are optional */ 5250 if (rc) 5251 return 0; 5252 } 5253 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 5254 return 0; 5255 } 5256 5257 static void bnxt_clear_ring_indices(struct bnxt *bp) 5258 { 5259 int i, j; 5260 5261 if (!bp->bnapi) 5262 return; 5263 5264 for (i = 0; i < bp->cp_nr_rings; i++) { 5265 struct bnxt_napi *bnapi = bp->bnapi[i]; 5266 struct bnxt_cp_ring_info *cpr; 5267 struct bnxt_rx_ring_info *rxr; 5268 struct bnxt_tx_ring_info *txr; 5269 5270 if (!bnapi) 5271 continue; 5272 5273 cpr = &bnapi->cp_ring; 5274 cpr->cp_raw_cons = 0; 5275 5276 bnxt_for_each_napi_tx(j, bnapi, txr) { 5277 txr->tx_prod = 0; 5278 txr->tx_cons = 0; 5279 txr->tx_hw_cons = 0; 5280 } 5281 5282 rxr = bnapi->rx_ring; 5283 if (rxr) { 5284 rxr->rx_prod = 0; 5285 rxr->rx_agg_prod = 0; 5286 rxr->rx_sw_agg_prod = 0; 5287 rxr->rx_next_cons = 0; 5288 } 5289 bnapi->events = 0; 5290 } 5291 } 5292 5293 void bnxt_insert_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5294 { 5295 u8 type = fltr->type, flags = fltr->flags; 5296 5297 INIT_LIST_HEAD(&fltr->list); 5298 if ((type == BNXT_FLTR_TYPE_L2 && flags & BNXT_ACT_RING_DST) || 5299 (type == BNXT_FLTR_TYPE_NTUPLE && flags & BNXT_ACT_NO_AGING)) 5300 list_add_tail(&fltr->list, &bp->usr_fltr_list); 5301 } 5302 5303 void bnxt_del_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5304 { 5305 if (!list_empty(&fltr->list)) 5306 list_del_init(&fltr->list); 5307 } 5308 5309 static void bnxt_clear_usr_fltrs(struct bnxt *bp, bool all) 5310 { 5311 struct bnxt_filter_base *usr_fltr, *tmp; 5312 5313 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) { 5314 if (!all && usr_fltr->type == BNXT_FLTR_TYPE_L2) 5315 continue; 5316 bnxt_del_one_usr_fltr(bp, usr_fltr); 5317 } 5318 } 5319 5320 static void bnxt_del_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5321 { 5322 hlist_del(&fltr->hash); 5323 bnxt_del_one_usr_fltr(bp, fltr); 5324 if (fltr->flags) { 5325 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 5326 bp->ntp_fltr_count--; 5327 } 5328 kfree(fltr); 5329 } 5330 5331 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool all) 5332 { 5333 int i; 5334 5335 netdev_assert_locked(bp->dev); 5336 5337 /* Under netdev instance lock and all our NAPIs have been disabled. 5338 * It's safe to delete the hash table. 5339 */ 5340 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 5341 struct hlist_head *head; 5342 struct hlist_node *tmp; 5343 struct bnxt_ntuple_filter *fltr; 5344 5345 head = &bp->ntp_fltr_hash_tbl[i]; 5346 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 5347 bnxt_del_l2_filter(bp, fltr->l2_fltr); 5348 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 5349 !list_empty(&fltr->base.list))) 5350 continue; 5351 bnxt_del_fltr(bp, &fltr->base); 5352 } 5353 } 5354 if (!all) 5355 return; 5356 5357 bitmap_free(bp->ntp_fltr_bmap); 5358 bp->ntp_fltr_bmap = NULL; 5359 bp->ntp_fltr_count = 0; 5360 } 5361 5362 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 5363 { 5364 int i, rc = 0; 5365 5366 if (!(bp->flags & BNXT_FLAG_RFS) || bp->ntp_fltr_bmap) 5367 return 0; 5368 5369 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 5370 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 5371 5372 bp->ntp_fltr_count = 0; 5373 bp->ntp_fltr_bmap = bitmap_zalloc(bp->max_fltr, GFP_KERNEL); 5374 5375 if (!bp->ntp_fltr_bmap) 5376 rc = -ENOMEM; 5377 5378 return rc; 5379 } 5380 5381 static void bnxt_free_l2_filters(struct bnxt *bp, bool all) 5382 { 5383 int i; 5384 5385 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) { 5386 struct hlist_head *head; 5387 struct hlist_node *tmp; 5388 struct bnxt_l2_filter *fltr; 5389 5390 head = &bp->l2_fltr_hash_tbl[i]; 5391 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 5392 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 5393 !list_empty(&fltr->base.list))) 5394 continue; 5395 bnxt_del_fltr(bp, &fltr->base); 5396 } 5397 } 5398 } 5399 5400 static void bnxt_init_l2_fltr_tbl(struct bnxt *bp) 5401 { 5402 int i; 5403 5404 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) 5405 INIT_HLIST_HEAD(&bp->l2_fltr_hash_tbl[i]); 5406 get_random_bytes(&bp->hash_seed, sizeof(bp->hash_seed)); 5407 } 5408 5409 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 5410 { 5411 bnxt_free_vnic_attributes(bp); 5412 bnxt_free_tx_rings(bp); 5413 bnxt_free_rx_rings(bp); 5414 bnxt_free_cp_rings(bp); 5415 bnxt_free_all_cp_arrays(bp); 5416 bnxt_free_ntp_fltrs(bp, false); 5417 bnxt_free_l2_filters(bp, false); 5418 if (irq_re_init) { 5419 bnxt_free_ring_stats(bp); 5420 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 5421 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 5422 bnxt_free_port_stats(bp); 5423 bnxt_free_ring_grps(bp); 5424 bnxt_free_vnics(bp); 5425 kfree(bp->tx_ring_map); 5426 bp->tx_ring_map = NULL; 5427 kfree(bp->tx_ring); 5428 bp->tx_ring = NULL; 5429 kfree(bp->rx_ring); 5430 bp->rx_ring = NULL; 5431 kfree(bp->bnapi); 5432 bp->bnapi = NULL; 5433 } else { 5434 bnxt_clear_ring_indices(bp); 5435 } 5436 } 5437 5438 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 5439 { 5440 int i, j, rc, size, arr_size; 5441 void *bnapi; 5442 5443 if (irq_re_init) { 5444 /* Allocate bnapi mem pointer array and mem block for 5445 * all queues 5446 */ 5447 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 5448 bp->cp_nr_rings); 5449 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 5450 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 5451 if (!bnapi) 5452 return -ENOMEM; 5453 5454 bp->bnapi = bnapi; 5455 bnapi += arr_size; 5456 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 5457 bp->bnapi[i] = bnapi; 5458 bp->bnapi[i]->index = i; 5459 bp->bnapi[i]->bp = bp; 5460 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5461 struct bnxt_cp_ring_info *cpr = 5462 &bp->bnapi[i]->cp_ring; 5463 5464 cpr->cp_ring_struct.ring_mem.flags = 5465 BNXT_RMEM_RING_PTE_FLAG; 5466 } 5467 } 5468 5469 bp->rx_ring = kcalloc(bp->rx_nr_rings, 5470 sizeof(struct bnxt_rx_ring_info), 5471 GFP_KERNEL); 5472 if (!bp->rx_ring) 5473 return -ENOMEM; 5474 5475 for (i = 0; i < bp->rx_nr_rings; i++) { 5476 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5477 5478 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5479 rxr->rx_ring_struct.ring_mem.flags = 5480 BNXT_RMEM_RING_PTE_FLAG; 5481 rxr->rx_agg_ring_struct.ring_mem.flags = 5482 BNXT_RMEM_RING_PTE_FLAG; 5483 } else { 5484 rxr->rx_cpr = &bp->bnapi[i]->cp_ring; 5485 } 5486 rxr->bnapi = bp->bnapi[i]; 5487 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 5488 } 5489 5490 bp->tx_ring = kcalloc(bp->tx_nr_rings, 5491 sizeof(struct bnxt_tx_ring_info), 5492 GFP_KERNEL); 5493 if (!bp->tx_ring) 5494 return -ENOMEM; 5495 5496 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 5497 GFP_KERNEL); 5498 5499 if (!bp->tx_ring_map) 5500 return -ENOMEM; 5501 5502 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 5503 j = 0; 5504 else 5505 j = bp->rx_nr_rings; 5506 5507 for (i = 0; i < bp->tx_nr_rings; i++) { 5508 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5509 struct bnxt_napi *bnapi2; 5510 5511 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 5512 txr->tx_ring_struct.ring_mem.flags = 5513 BNXT_RMEM_RING_PTE_FLAG; 5514 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 5515 if (i >= bp->tx_nr_rings_xdp) { 5516 int k = j + BNXT_RING_TO_TC_OFF(bp, i); 5517 5518 bnapi2 = bp->bnapi[k]; 5519 txr->txq_index = i - bp->tx_nr_rings_xdp; 5520 txr->tx_napi_idx = 5521 BNXT_RING_TO_TC(bp, txr->txq_index); 5522 bnapi2->tx_ring[txr->tx_napi_idx] = txr; 5523 bnapi2->tx_int = bnxt_tx_int; 5524 } else { 5525 bnapi2 = bp->bnapi[j]; 5526 bnapi2->flags |= BNXT_NAPI_FLAG_XDP; 5527 bnapi2->tx_ring[0] = txr; 5528 bnapi2->tx_int = bnxt_tx_int_xdp; 5529 j++; 5530 } 5531 txr->bnapi = bnapi2; 5532 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 5533 txr->tx_cpr = &bnapi2->cp_ring; 5534 } 5535 5536 rc = bnxt_alloc_stats(bp); 5537 if (rc) 5538 goto alloc_mem_err; 5539 bnxt_init_stats(bp); 5540 5541 rc = bnxt_alloc_ntp_fltrs(bp); 5542 if (rc) 5543 goto alloc_mem_err; 5544 5545 rc = bnxt_alloc_vnics(bp); 5546 if (rc) 5547 goto alloc_mem_err; 5548 } 5549 5550 rc = bnxt_alloc_all_cp_arrays(bp); 5551 if (rc) 5552 goto alloc_mem_err; 5553 5554 bnxt_init_ring_struct(bp); 5555 5556 rc = bnxt_alloc_rx_rings(bp); 5557 if (rc) 5558 goto alloc_mem_err; 5559 5560 rc = bnxt_alloc_tx_rings(bp); 5561 if (rc) 5562 goto alloc_mem_err; 5563 5564 rc = bnxt_alloc_cp_rings(bp); 5565 if (rc) 5566 goto alloc_mem_err; 5567 5568 bp->vnic_info[BNXT_VNIC_DEFAULT].flags |= BNXT_VNIC_RSS_FLAG | 5569 BNXT_VNIC_MCAST_FLAG | 5570 BNXT_VNIC_UCAST_FLAG; 5571 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp) && (bp->flags & BNXT_FLAG_RFS)) 5572 bp->vnic_info[BNXT_VNIC_NTUPLE].flags |= 5573 BNXT_VNIC_RSS_FLAG | BNXT_VNIC_NTUPLE_FLAG; 5574 5575 rc = bnxt_alloc_vnic_attributes(bp); 5576 if (rc) 5577 goto alloc_mem_err; 5578 return 0; 5579 5580 alloc_mem_err: 5581 bnxt_free_mem(bp, true); 5582 return rc; 5583 } 5584 5585 static void bnxt_disable_int(struct bnxt *bp) 5586 { 5587 int i; 5588 5589 if (!bp->bnapi) 5590 return; 5591 5592 for (i = 0; i < bp->cp_nr_rings; i++) { 5593 struct bnxt_napi *bnapi = bp->bnapi[i]; 5594 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5595 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5596 5597 if (ring->fw_ring_id != INVALID_HW_RING_ID) 5598 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5599 } 5600 } 5601 5602 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 5603 { 5604 struct bnxt_napi *bnapi = bp->bnapi[n]; 5605 struct bnxt_cp_ring_info *cpr; 5606 5607 cpr = &bnapi->cp_ring; 5608 return cpr->cp_ring_struct.map_idx; 5609 } 5610 5611 static void bnxt_disable_int_sync(struct bnxt *bp) 5612 { 5613 int i; 5614 5615 if (!bp->irq_tbl) 5616 return; 5617 5618 atomic_inc(&bp->intr_sem); 5619 5620 bnxt_disable_int(bp); 5621 for (i = 0; i < bp->cp_nr_rings; i++) { 5622 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 5623 5624 synchronize_irq(bp->irq_tbl[map_idx].vector); 5625 } 5626 } 5627 5628 static void bnxt_enable_int(struct bnxt *bp) 5629 { 5630 int i; 5631 5632 atomic_set(&bp->intr_sem, 0); 5633 for (i = 0; i < bp->cp_nr_rings; i++) { 5634 struct bnxt_napi *bnapi = bp->bnapi[i]; 5635 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5636 5637 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 5638 } 5639 } 5640 5641 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 5642 bool async_only) 5643 { 5644 DECLARE_BITMAP(async_events_bmap, 256); 5645 u32 *events = (u32 *)async_events_bmap; 5646 struct hwrm_func_drv_rgtr_output *resp; 5647 struct hwrm_func_drv_rgtr_input *req; 5648 u32 flags; 5649 int rc, i; 5650 5651 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR); 5652 if (rc) 5653 return rc; 5654 5655 req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 5656 FUNC_DRV_RGTR_REQ_ENABLES_VER | 5657 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5658 5659 req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 5660 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 5661 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 5662 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 5663 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 5664 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 5665 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 5666 if (bp->fw_cap & BNXT_FW_CAP_NPAR_1_2) 5667 flags |= FUNC_DRV_RGTR_REQ_FLAGS_NPAR_1_2_SUPPORT; 5668 req->flags = cpu_to_le32(flags); 5669 req->ver_maj_8b = DRV_VER_MAJ; 5670 req->ver_min_8b = DRV_VER_MIN; 5671 req->ver_upd_8b = DRV_VER_UPD; 5672 req->ver_maj = cpu_to_le16(DRV_VER_MAJ); 5673 req->ver_min = cpu_to_le16(DRV_VER_MIN); 5674 req->ver_upd = cpu_to_le16(DRV_VER_UPD); 5675 5676 if (BNXT_PF(bp)) { 5677 u32 data[8]; 5678 int i; 5679 5680 memset(data, 0, sizeof(data)); 5681 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 5682 u16 cmd = bnxt_vf_req_snif[i]; 5683 unsigned int bit, idx; 5684 5685 idx = cmd / 32; 5686 bit = cmd % 32; 5687 data[idx] |= 1 << bit; 5688 } 5689 5690 for (i = 0; i < 8; i++) 5691 req->vf_req_fwd[i] = cpu_to_le32(data[i]); 5692 5693 req->enables |= 5694 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 5695 } 5696 5697 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 5698 req->flags |= cpu_to_le32( 5699 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 5700 5701 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 5702 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 5703 u16 event_id = bnxt_async_events_arr[i]; 5704 5705 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 5706 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 5707 continue; 5708 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE && 5709 !bp->ptp_cfg) 5710 continue; 5711 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 5712 } 5713 if (bmap && bmap_size) { 5714 for (i = 0; i < bmap_size; i++) { 5715 if (test_bit(i, bmap)) 5716 __set_bit(i, async_events_bmap); 5717 } 5718 } 5719 for (i = 0; i < 8; i++) 5720 req->async_event_fwd[i] |= cpu_to_le32(events[i]); 5721 5722 if (async_only) 5723 req->enables = 5724 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5725 5726 resp = hwrm_req_hold(bp, req); 5727 rc = hwrm_req_send(bp, req); 5728 if (!rc) { 5729 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 5730 if (resp->flags & 5731 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 5732 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 5733 } 5734 hwrm_req_drop(bp, req); 5735 return rc; 5736 } 5737 5738 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 5739 { 5740 struct hwrm_func_drv_unrgtr_input *req; 5741 int rc; 5742 5743 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 5744 return 0; 5745 5746 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR); 5747 if (rc) 5748 return rc; 5749 return hwrm_req_send(bp, req); 5750 } 5751 5752 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa); 5753 5754 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 5755 { 5756 struct hwrm_tunnel_dst_port_free_input *req; 5757 int rc; 5758 5759 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN && 5760 bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID) 5761 return 0; 5762 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE && 5763 bp->nge_fw_dst_port_id == INVALID_HW_RING_ID) 5764 return 0; 5765 5766 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE); 5767 if (rc) 5768 return rc; 5769 5770 req->tunnel_type = tunnel_type; 5771 5772 switch (tunnel_type) { 5773 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 5774 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 5775 bp->vxlan_port = 0; 5776 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 5777 break; 5778 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 5779 req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 5780 bp->nge_port = 0; 5781 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 5782 break; 5783 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE: 5784 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_gpe_fw_dst_port_id); 5785 bp->vxlan_gpe_port = 0; 5786 bp->vxlan_gpe_fw_dst_port_id = INVALID_HW_RING_ID; 5787 break; 5788 default: 5789 break; 5790 } 5791 5792 rc = hwrm_req_send(bp, req); 5793 if (rc) 5794 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 5795 rc); 5796 if (bp->flags & BNXT_FLAG_TPA) 5797 bnxt_set_tpa(bp, true); 5798 return rc; 5799 } 5800 5801 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 5802 u8 tunnel_type) 5803 { 5804 struct hwrm_tunnel_dst_port_alloc_output *resp; 5805 struct hwrm_tunnel_dst_port_alloc_input *req; 5806 int rc; 5807 5808 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC); 5809 if (rc) 5810 return rc; 5811 5812 req->tunnel_type = tunnel_type; 5813 req->tunnel_dst_port_val = port; 5814 5815 resp = hwrm_req_hold(bp, req); 5816 rc = hwrm_req_send(bp, req); 5817 if (rc) { 5818 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 5819 rc); 5820 goto err_out; 5821 } 5822 5823 switch (tunnel_type) { 5824 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 5825 bp->vxlan_port = port; 5826 bp->vxlan_fw_dst_port_id = 5827 le16_to_cpu(resp->tunnel_dst_port_id); 5828 break; 5829 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 5830 bp->nge_port = port; 5831 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 5832 break; 5833 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE: 5834 bp->vxlan_gpe_port = port; 5835 bp->vxlan_gpe_fw_dst_port_id = 5836 le16_to_cpu(resp->tunnel_dst_port_id); 5837 break; 5838 default: 5839 break; 5840 } 5841 if (bp->flags & BNXT_FLAG_TPA) 5842 bnxt_set_tpa(bp, true); 5843 5844 err_out: 5845 hwrm_req_drop(bp, req); 5846 return rc; 5847 } 5848 5849 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 5850 { 5851 struct hwrm_cfa_l2_set_rx_mask_input *req; 5852 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5853 int rc; 5854 5855 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK); 5856 if (rc) 5857 return rc; 5858 5859 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5860 if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) { 5861 req->num_mc_entries = cpu_to_le32(vnic->mc_list_count); 5862 req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 5863 } 5864 req->mask = cpu_to_le32(vnic->rx_mask); 5865 return hwrm_req_send_silent(bp, req); 5866 } 5867 5868 void bnxt_del_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5869 { 5870 if (!atomic_dec_and_test(&fltr->refcnt)) 5871 return; 5872 spin_lock_bh(&bp->ntp_fltr_lock); 5873 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 5874 spin_unlock_bh(&bp->ntp_fltr_lock); 5875 return; 5876 } 5877 hlist_del_rcu(&fltr->base.hash); 5878 bnxt_del_one_usr_fltr(bp, &fltr->base); 5879 if (fltr->base.flags) { 5880 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 5881 bp->ntp_fltr_count--; 5882 } 5883 spin_unlock_bh(&bp->ntp_fltr_lock); 5884 kfree_rcu(fltr, base.rcu); 5885 } 5886 5887 static struct bnxt_l2_filter *__bnxt_lookup_l2_filter(struct bnxt *bp, 5888 struct bnxt_l2_key *key, 5889 u32 idx) 5890 { 5891 struct hlist_head *head = &bp->l2_fltr_hash_tbl[idx]; 5892 struct bnxt_l2_filter *fltr; 5893 5894 hlist_for_each_entry_rcu(fltr, head, base.hash) { 5895 struct bnxt_l2_key *l2_key = &fltr->l2_key; 5896 5897 if (ether_addr_equal(l2_key->dst_mac_addr, key->dst_mac_addr) && 5898 l2_key->vlan == key->vlan) 5899 return fltr; 5900 } 5901 return NULL; 5902 } 5903 5904 static struct bnxt_l2_filter *bnxt_lookup_l2_filter(struct bnxt *bp, 5905 struct bnxt_l2_key *key, 5906 u32 idx) 5907 { 5908 struct bnxt_l2_filter *fltr = NULL; 5909 5910 rcu_read_lock(); 5911 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 5912 if (fltr) 5913 atomic_inc(&fltr->refcnt); 5914 rcu_read_unlock(); 5915 return fltr; 5916 } 5917 5918 #define BNXT_IPV4_4TUPLE(bp, fkeys) \ 5919 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5920 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4) || \ 5921 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5922 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4)) 5923 5924 #define BNXT_IPV6_4TUPLE(bp, fkeys) \ 5925 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5926 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6) || \ 5927 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5928 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6)) 5929 5930 static u32 bnxt_get_rss_flow_tuple_len(struct bnxt *bp, struct flow_keys *fkeys) 5931 { 5932 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 5933 if (BNXT_IPV4_4TUPLE(bp, fkeys)) 5934 return sizeof(fkeys->addrs.v4addrs) + 5935 sizeof(fkeys->ports); 5936 5937 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4) 5938 return sizeof(fkeys->addrs.v4addrs); 5939 } 5940 5941 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 5942 if (BNXT_IPV6_4TUPLE(bp, fkeys)) 5943 return sizeof(fkeys->addrs.v6addrs) + 5944 sizeof(fkeys->ports); 5945 5946 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6) 5947 return sizeof(fkeys->addrs.v6addrs); 5948 } 5949 5950 return 0; 5951 } 5952 5953 static u32 bnxt_toeplitz(struct bnxt *bp, struct flow_keys *fkeys, 5954 const unsigned char *key) 5955 { 5956 u64 prefix = bp->toeplitz_prefix, hash = 0; 5957 struct bnxt_ipv4_tuple tuple4; 5958 struct bnxt_ipv6_tuple tuple6; 5959 int i, j, len = 0; 5960 u8 *four_tuple; 5961 5962 len = bnxt_get_rss_flow_tuple_len(bp, fkeys); 5963 if (!len) 5964 return 0; 5965 5966 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 5967 tuple4.v4addrs = fkeys->addrs.v4addrs; 5968 tuple4.ports = fkeys->ports; 5969 four_tuple = (unsigned char *)&tuple4; 5970 } else { 5971 tuple6.v6addrs = fkeys->addrs.v6addrs; 5972 tuple6.ports = fkeys->ports; 5973 four_tuple = (unsigned char *)&tuple6; 5974 } 5975 5976 for (i = 0, j = 8; i < len; i++, j++) { 5977 u8 byte = four_tuple[i]; 5978 int bit; 5979 5980 for (bit = 0; bit < 8; bit++, prefix <<= 1, byte <<= 1) { 5981 if (byte & 0x80) 5982 hash ^= prefix; 5983 } 5984 prefix |= (j < HW_HASH_KEY_SIZE) ? key[j] : 0; 5985 } 5986 5987 /* The valid part of the hash is in the upper 32 bits. */ 5988 return (hash >> 32) & BNXT_NTP_FLTR_HASH_MASK; 5989 } 5990 5991 #ifdef CONFIG_RFS_ACCEL 5992 static struct bnxt_l2_filter * 5993 bnxt_lookup_l2_filter_from_key(struct bnxt *bp, struct bnxt_l2_key *key) 5994 { 5995 struct bnxt_l2_filter *fltr; 5996 u32 idx; 5997 5998 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5999 BNXT_L2_FLTR_HASH_MASK; 6000 fltr = bnxt_lookup_l2_filter(bp, key, idx); 6001 return fltr; 6002 } 6003 #endif 6004 6005 static int bnxt_init_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr, 6006 struct bnxt_l2_key *key, u32 idx) 6007 { 6008 struct hlist_head *head; 6009 6010 ether_addr_copy(fltr->l2_key.dst_mac_addr, key->dst_mac_addr); 6011 fltr->l2_key.vlan = key->vlan; 6012 fltr->base.type = BNXT_FLTR_TYPE_L2; 6013 if (fltr->base.flags) { 6014 int bit_id; 6015 6016 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 6017 bp->max_fltr, 0); 6018 if (bit_id < 0) 6019 return -ENOMEM; 6020 fltr->base.sw_id = (u16)bit_id; 6021 bp->ntp_fltr_count++; 6022 } 6023 head = &bp->l2_fltr_hash_tbl[idx]; 6024 hlist_add_head_rcu(&fltr->base.hash, head); 6025 bnxt_insert_usr_fltr(bp, &fltr->base); 6026 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 6027 atomic_set(&fltr->refcnt, 1); 6028 return 0; 6029 } 6030 6031 static struct bnxt_l2_filter *bnxt_alloc_l2_filter(struct bnxt *bp, 6032 struct bnxt_l2_key *key, 6033 gfp_t gfp) 6034 { 6035 struct bnxt_l2_filter *fltr; 6036 u32 idx; 6037 int rc; 6038 6039 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 6040 BNXT_L2_FLTR_HASH_MASK; 6041 fltr = bnxt_lookup_l2_filter(bp, key, idx); 6042 if (fltr) 6043 return fltr; 6044 6045 fltr = kzalloc(sizeof(*fltr), gfp); 6046 if (!fltr) 6047 return ERR_PTR(-ENOMEM); 6048 spin_lock_bh(&bp->ntp_fltr_lock); 6049 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 6050 spin_unlock_bh(&bp->ntp_fltr_lock); 6051 if (rc) { 6052 bnxt_del_l2_filter(bp, fltr); 6053 fltr = ERR_PTR(rc); 6054 } 6055 return fltr; 6056 } 6057 6058 struct bnxt_l2_filter *bnxt_alloc_new_l2_filter(struct bnxt *bp, 6059 struct bnxt_l2_key *key, 6060 u16 flags) 6061 { 6062 struct bnxt_l2_filter *fltr; 6063 u32 idx; 6064 int rc; 6065 6066 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 6067 BNXT_L2_FLTR_HASH_MASK; 6068 spin_lock_bh(&bp->ntp_fltr_lock); 6069 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 6070 if (fltr) { 6071 fltr = ERR_PTR(-EEXIST); 6072 goto l2_filter_exit; 6073 } 6074 fltr = kzalloc(sizeof(*fltr), GFP_ATOMIC); 6075 if (!fltr) { 6076 fltr = ERR_PTR(-ENOMEM); 6077 goto l2_filter_exit; 6078 } 6079 fltr->base.flags = flags; 6080 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 6081 if (rc) { 6082 spin_unlock_bh(&bp->ntp_fltr_lock); 6083 bnxt_del_l2_filter(bp, fltr); 6084 return ERR_PTR(rc); 6085 } 6086 6087 l2_filter_exit: 6088 spin_unlock_bh(&bp->ntp_fltr_lock); 6089 return fltr; 6090 } 6091 6092 static u16 bnxt_vf_target_id(struct bnxt_pf_info *pf, u16 vf_idx) 6093 { 6094 #ifdef CONFIG_BNXT_SRIOV 6095 struct bnxt_vf_info *vf = &pf->vf[vf_idx]; 6096 6097 return vf->fw_fid; 6098 #else 6099 return INVALID_HW_RING_ID; 6100 #endif 6101 } 6102 6103 int bnxt_hwrm_l2_filter_free(struct bnxt *bp, struct bnxt_l2_filter *fltr) 6104 { 6105 struct hwrm_cfa_l2_filter_free_input *req; 6106 u16 target_id = 0xffff; 6107 int rc; 6108 6109 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 6110 struct bnxt_pf_info *pf = &bp->pf; 6111 6112 if (fltr->base.vf_idx >= pf->active_vfs) 6113 return -EINVAL; 6114 6115 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 6116 if (target_id == INVALID_HW_RING_ID) 6117 return -EINVAL; 6118 } 6119 6120 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 6121 if (rc) 6122 return rc; 6123 6124 req->target_id = cpu_to_le16(target_id); 6125 req->l2_filter_id = fltr->base.filter_id; 6126 return hwrm_req_send(bp, req); 6127 } 6128 6129 int bnxt_hwrm_l2_filter_alloc(struct bnxt *bp, struct bnxt_l2_filter *fltr) 6130 { 6131 struct hwrm_cfa_l2_filter_alloc_output *resp; 6132 struct hwrm_cfa_l2_filter_alloc_input *req; 6133 u16 target_id = 0xffff; 6134 int rc; 6135 6136 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 6137 struct bnxt_pf_info *pf = &bp->pf; 6138 6139 if (fltr->base.vf_idx >= pf->active_vfs) 6140 return -EINVAL; 6141 6142 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 6143 } 6144 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC); 6145 if (rc) 6146 return rc; 6147 6148 req->target_id = cpu_to_le16(target_id); 6149 req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 6150 6151 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 6152 req->flags |= 6153 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 6154 req->dst_id = cpu_to_le16(fltr->base.fw_vnic_id); 6155 req->enables = 6156 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 6157 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 6158 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 6159 ether_addr_copy(req->l2_addr, fltr->l2_key.dst_mac_addr); 6160 eth_broadcast_addr(req->l2_addr_mask); 6161 6162 if (fltr->l2_key.vlan) { 6163 req->enables |= 6164 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN | 6165 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN_MASK | 6166 CFA_L2_FILTER_ALLOC_REQ_ENABLES_NUM_VLANS); 6167 req->num_vlans = 1; 6168 req->l2_ivlan = cpu_to_le16(fltr->l2_key.vlan); 6169 req->l2_ivlan_mask = cpu_to_le16(0xfff); 6170 } 6171 6172 resp = hwrm_req_hold(bp, req); 6173 rc = hwrm_req_send(bp, req); 6174 if (!rc) { 6175 fltr->base.filter_id = resp->l2_filter_id; 6176 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 6177 } 6178 hwrm_req_drop(bp, req); 6179 return rc; 6180 } 6181 6182 int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 6183 struct bnxt_ntuple_filter *fltr) 6184 { 6185 struct hwrm_cfa_ntuple_filter_free_input *req; 6186 int rc; 6187 6188 set_bit(BNXT_FLTR_FW_DELETED, &fltr->base.state); 6189 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE); 6190 if (rc) 6191 return rc; 6192 6193 req->ntuple_filter_id = fltr->base.filter_id; 6194 return hwrm_req_send(bp, req); 6195 } 6196 6197 #define BNXT_NTP_FLTR_FLAGS \ 6198 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 6199 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 6200 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 6201 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 6202 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 6203 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 6204 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 6205 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 6206 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 6207 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 6208 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 6209 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 6210 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 6211 6212 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 6213 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 6214 6215 void bnxt_fill_ipv6_mask(__be32 mask[4]) 6216 { 6217 int i; 6218 6219 for (i = 0; i < 4; i++) 6220 mask[i] = cpu_to_be32(~0); 6221 } 6222 6223 static void 6224 bnxt_cfg_rfs_ring_tbl_idx(struct bnxt *bp, 6225 struct hwrm_cfa_ntuple_filter_alloc_input *req, 6226 struct bnxt_ntuple_filter *fltr) 6227 { 6228 u16 rxq = fltr->base.rxq; 6229 6230 if (fltr->base.flags & BNXT_ACT_RSS_CTX) { 6231 struct ethtool_rxfh_context *ctx; 6232 struct bnxt_rss_ctx *rss_ctx; 6233 struct bnxt_vnic_info *vnic; 6234 6235 ctx = xa_load(&bp->dev->ethtool->rss_ctx, 6236 fltr->base.fw_vnic_id); 6237 if (ctx) { 6238 rss_ctx = ethtool_rxfh_context_priv(ctx); 6239 vnic = &rss_ctx->vnic; 6240 6241 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 6242 } 6243 return; 6244 } 6245 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 6246 struct bnxt_vnic_info *vnic; 6247 u32 enables; 6248 6249 vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE]; 6250 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 6251 enables = CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_RFS_RING_TBL_IDX; 6252 req->enables |= cpu_to_le32(enables); 6253 req->rfs_ring_tbl_idx = cpu_to_le16(rxq); 6254 } else { 6255 u32 flags; 6256 6257 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 6258 req->flags |= cpu_to_le32(flags); 6259 req->dst_id = cpu_to_le16(rxq); 6260 } 6261 } 6262 6263 int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 6264 struct bnxt_ntuple_filter *fltr) 6265 { 6266 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 6267 struct hwrm_cfa_ntuple_filter_alloc_input *req; 6268 struct bnxt_flow_masks *masks = &fltr->fmasks; 6269 struct flow_keys *keys = &fltr->fkeys; 6270 struct bnxt_l2_filter *l2_fltr; 6271 struct bnxt_vnic_info *vnic; 6272 int rc; 6273 6274 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC); 6275 if (rc) 6276 return rc; 6277 6278 l2_fltr = fltr->l2_fltr; 6279 req->l2_filter_id = l2_fltr->base.filter_id; 6280 6281 if (fltr->base.flags & BNXT_ACT_DROP) { 6282 req->flags = 6283 cpu_to_le32(CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DROP); 6284 } else if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 6285 bnxt_cfg_rfs_ring_tbl_idx(bp, req, fltr); 6286 } else { 6287 vnic = &bp->vnic_info[fltr->base.rxq + 1]; 6288 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 6289 } 6290 req->enables |= cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 6291 6292 req->ethertype = htons(ETH_P_IP); 6293 req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 6294 req->ip_protocol = keys->basic.ip_proto; 6295 6296 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 6297 req->ethertype = htons(ETH_P_IPV6); 6298 req->ip_addr_type = 6299 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 6300 *(struct in6_addr *)&req->src_ipaddr[0] = keys->addrs.v6addrs.src; 6301 *(struct in6_addr *)&req->src_ipaddr_mask[0] = masks->addrs.v6addrs.src; 6302 *(struct in6_addr *)&req->dst_ipaddr[0] = keys->addrs.v6addrs.dst; 6303 *(struct in6_addr *)&req->dst_ipaddr_mask[0] = masks->addrs.v6addrs.dst; 6304 } else { 6305 req->src_ipaddr[0] = keys->addrs.v4addrs.src; 6306 req->src_ipaddr_mask[0] = masks->addrs.v4addrs.src; 6307 req->dst_ipaddr[0] = keys->addrs.v4addrs.dst; 6308 req->dst_ipaddr_mask[0] = masks->addrs.v4addrs.dst; 6309 } 6310 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 6311 req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 6312 req->tunnel_type = 6313 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 6314 } 6315 6316 req->src_port = keys->ports.src; 6317 req->src_port_mask = masks->ports.src; 6318 req->dst_port = keys->ports.dst; 6319 req->dst_port_mask = masks->ports.dst; 6320 6321 resp = hwrm_req_hold(bp, req); 6322 rc = hwrm_req_send(bp, req); 6323 if (!rc) 6324 fltr->base.filter_id = resp->ntuple_filter_id; 6325 hwrm_req_drop(bp, req); 6326 return rc; 6327 } 6328 6329 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 6330 const u8 *mac_addr) 6331 { 6332 struct bnxt_l2_filter *fltr; 6333 struct bnxt_l2_key key; 6334 int rc; 6335 6336 ether_addr_copy(key.dst_mac_addr, mac_addr); 6337 key.vlan = 0; 6338 fltr = bnxt_alloc_l2_filter(bp, &key, GFP_KERNEL); 6339 if (IS_ERR(fltr)) 6340 return PTR_ERR(fltr); 6341 6342 fltr->base.fw_vnic_id = bp->vnic_info[vnic_id].fw_vnic_id; 6343 rc = bnxt_hwrm_l2_filter_alloc(bp, fltr); 6344 if (rc) 6345 bnxt_del_l2_filter(bp, fltr); 6346 else 6347 bp->vnic_info[vnic_id].l2_filters[idx] = fltr; 6348 return rc; 6349 } 6350 6351 static void bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 6352 { 6353 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 6354 6355 /* Any associated ntuple filters will also be cleared by firmware. */ 6356 for (i = 0; i < num_of_vnics; i++) { 6357 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 6358 6359 for (j = 0; j < vnic->uc_filter_count; j++) { 6360 struct bnxt_l2_filter *fltr = vnic->l2_filters[j]; 6361 6362 bnxt_hwrm_l2_filter_free(bp, fltr); 6363 bnxt_del_l2_filter(bp, fltr); 6364 } 6365 vnic->uc_filter_count = 0; 6366 } 6367 } 6368 6369 #define BNXT_DFLT_TUNL_TPA_BMAP \ 6370 (VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GRE | \ 6371 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV4 | \ 6372 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV6) 6373 6374 static void bnxt_hwrm_vnic_update_tunl_tpa(struct bnxt *bp, 6375 struct hwrm_vnic_tpa_cfg_input *req) 6376 { 6377 u32 tunl_tpa_bmap = BNXT_DFLT_TUNL_TPA_BMAP; 6378 6379 if (!(bp->fw_cap & BNXT_FW_CAP_VNIC_TUNNEL_TPA)) 6380 return; 6381 6382 if (bp->vxlan_port) 6383 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN; 6384 if (bp->vxlan_gpe_port) 6385 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN_GPE; 6386 if (bp->nge_port) 6387 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GENEVE; 6388 6389 req->enables |= cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_TNL_TPA_EN); 6390 req->tnl_tpa_en_bitmap = cpu_to_le32(tunl_tpa_bmap); 6391 } 6392 6393 int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6394 u32 tpa_flags) 6395 { 6396 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 6397 struct hwrm_vnic_tpa_cfg_input *req; 6398 int rc; 6399 6400 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 6401 return 0; 6402 6403 rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG); 6404 if (rc) 6405 return rc; 6406 6407 if (tpa_flags) { 6408 u16 mss = bp->dev->mtu - 40; 6409 u32 nsegs, n, segs = 0, flags; 6410 6411 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 6412 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 6413 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 6414 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 6415 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 6416 if (tpa_flags & BNXT_FLAG_GRO) 6417 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 6418 6419 req->flags = cpu_to_le32(flags); 6420 6421 req->enables = 6422 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 6423 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 6424 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 6425 6426 /* Number of segs are log2 units, and first packet is not 6427 * included as part of this units. 6428 */ 6429 if (mss <= BNXT_RX_PAGE_SIZE) { 6430 n = BNXT_RX_PAGE_SIZE / mss; 6431 nsegs = (MAX_SKB_FRAGS - 1) * n; 6432 } else { 6433 n = mss / BNXT_RX_PAGE_SIZE; 6434 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 6435 n++; 6436 nsegs = (MAX_SKB_FRAGS - n) / n; 6437 } 6438 6439 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6440 segs = MAX_TPA_SEGS_P5; 6441 max_aggs = bp->max_tpa; 6442 } else { 6443 segs = ilog2(nsegs); 6444 } 6445 req->max_agg_segs = cpu_to_le16(segs); 6446 req->max_aggs = cpu_to_le16(max_aggs); 6447 6448 req->min_agg_len = cpu_to_le32(512); 6449 bnxt_hwrm_vnic_update_tunl_tpa(bp, req); 6450 } 6451 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6452 6453 return hwrm_req_send(bp, req); 6454 } 6455 6456 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 6457 { 6458 struct bnxt_ring_grp_info *grp_info; 6459 6460 grp_info = &bp->grp_info[ring->grp_idx]; 6461 return grp_info->cp_fw_ring_id; 6462 } 6463 6464 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 6465 { 6466 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6467 return rxr->rx_cpr->cp_ring_struct.fw_ring_id; 6468 else 6469 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 6470 } 6471 6472 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 6473 { 6474 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6475 return txr->tx_cpr->cp_ring_struct.fw_ring_id; 6476 else 6477 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 6478 } 6479 6480 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp) 6481 { 6482 int entries; 6483 6484 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6485 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 6486 else 6487 entries = HW_HASH_INDEX_SIZE; 6488 6489 bp->rss_indir_tbl_entries = entries; 6490 bp->rss_indir_tbl = 6491 kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), GFP_KERNEL); 6492 if (!bp->rss_indir_tbl) 6493 return -ENOMEM; 6494 6495 return 0; 6496 } 6497 6498 void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp, 6499 struct ethtool_rxfh_context *rss_ctx) 6500 { 6501 u16 max_rings, max_entries, pad, i; 6502 u32 *rss_indir_tbl; 6503 6504 if (!bp->rx_nr_rings) 6505 return; 6506 6507 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6508 max_rings = bp->rx_nr_rings - 1; 6509 else 6510 max_rings = bp->rx_nr_rings; 6511 6512 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 6513 if (rss_ctx) 6514 rss_indir_tbl = ethtool_rxfh_context_indir(rss_ctx); 6515 else 6516 rss_indir_tbl = &bp->rss_indir_tbl[0]; 6517 6518 for (i = 0; i < max_entries; i++) 6519 rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 6520 6521 pad = bp->rss_indir_tbl_entries - max_entries; 6522 if (pad) 6523 memset(&rss_indir_tbl[i], 0, pad * sizeof(*rss_indir_tbl)); 6524 } 6525 6526 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 6527 { 6528 u32 i, tbl_size, max_ring = 0; 6529 6530 if (!bp->rss_indir_tbl) 6531 return 0; 6532 6533 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6534 for (i = 0; i < tbl_size; i++) 6535 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 6536 return max_ring; 6537 } 6538 6539 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 6540 { 6541 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6542 if (!rx_rings) 6543 return 0; 6544 return bnxt_calc_nr_ring_pages(rx_rings - 1, 6545 BNXT_RSS_TABLE_ENTRIES_P5); 6546 } 6547 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6548 return 2; 6549 return 1; 6550 } 6551 6552 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6553 { 6554 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 6555 u16 i, j; 6556 6557 /* Fill the RSS indirection table with ring group ids */ 6558 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 6559 if (!no_rss) 6560 j = bp->rss_indir_tbl[i]; 6561 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 6562 } 6563 } 6564 6565 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 6566 struct bnxt_vnic_info *vnic) 6567 { 6568 __le16 *ring_tbl = vnic->rss_table; 6569 struct bnxt_rx_ring_info *rxr; 6570 u16 tbl_size, i; 6571 6572 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6573 6574 for (i = 0; i < tbl_size; i++) { 6575 u16 ring_id, j; 6576 6577 if (vnic->flags & BNXT_VNIC_NTUPLE_FLAG) 6578 j = ethtool_rxfh_indir_default(i, bp->rx_nr_rings); 6579 else if (vnic->flags & BNXT_VNIC_RSSCTX_FLAG) 6580 j = ethtool_rxfh_context_indir(vnic->rss_ctx)[i]; 6581 else 6582 j = bp->rss_indir_tbl[i]; 6583 rxr = &bp->rx_ring[j]; 6584 6585 ring_id = rxr->rx_ring_struct.fw_ring_id; 6586 *ring_tbl++ = cpu_to_le16(ring_id); 6587 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6588 *ring_tbl++ = cpu_to_le16(ring_id); 6589 } 6590 } 6591 6592 static void 6593 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req, 6594 struct bnxt_vnic_info *vnic) 6595 { 6596 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6597 bnxt_fill_hw_rss_tbl_p5(bp, vnic); 6598 if (bp->flags & BNXT_FLAG_CHIP_P7) 6599 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_IPSEC_HASH_TYPE_CFG_SUPPORT; 6600 } else { 6601 bnxt_fill_hw_rss_tbl(bp, vnic); 6602 } 6603 6604 if (bp->rss_hash_delta) { 6605 req->hash_type = cpu_to_le32(bp->rss_hash_delta); 6606 if (bp->rss_hash_cfg & bp->rss_hash_delta) 6607 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE; 6608 else 6609 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE; 6610 } else { 6611 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 6612 } 6613 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 6614 req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 6615 req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 6616 } 6617 6618 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6619 bool set_rss) 6620 { 6621 struct hwrm_vnic_rss_cfg_input *req; 6622 int rc; 6623 6624 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) || 6625 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 6626 return 0; 6627 6628 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6629 if (rc) 6630 return rc; 6631 6632 if (set_rss) 6633 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6634 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6635 return hwrm_req_send(bp, req); 6636 } 6637 6638 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, 6639 struct bnxt_vnic_info *vnic, bool set_rss) 6640 { 6641 struct hwrm_vnic_rss_cfg_input *req; 6642 dma_addr_t ring_tbl_map; 6643 u32 i, nr_ctxs; 6644 int rc; 6645 6646 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6647 if (rc) 6648 return rc; 6649 6650 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6651 if (!set_rss) 6652 return hwrm_req_send(bp, req); 6653 6654 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6655 ring_tbl_map = vnic->rss_table_dma_addr; 6656 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 6657 6658 hwrm_req_hold(bp, req); 6659 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 6660 req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 6661 req->ring_table_pair_index = i; 6662 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 6663 rc = hwrm_req_send(bp, req); 6664 if (rc) 6665 goto exit; 6666 } 6667 6668 exit: 6669 hwrm_req_drop(bp, req); 6670 return rc; 6671 } 6672 6673 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp) 6674 { 6675 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6676 struct hwrm_vnic_rss_qcfg_output *resp; 6677 struct hwrm_vnic_rss_qcfg_input *req; 6678 6679 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG)) 6680 return; 6681 6682 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6683 /* all contexts configured to same hash_type, zero always exists */ 6684 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6685 resp = hwrm_req_hold(bp, req); 6686 if (!hwrm_req_send(bp, req)) { 6687 bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg; 6688 bp->rss_hash_delta = 0; 6689 } 6690 hwrm_req_drop(bp, req); 6691 } 6692 6693 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6694 { 6695 u16 hds_thresh = (u16)bp->dev->cfg_pending->hds_thresh; 6696 struct hwrm_vnic_plcmodes_cfg_input *req; 6697 int rc; 6698 6699 rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG); 6700 if (rc) 6701 return rc; 6702 6703 req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT); 6704 req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID); 6705 req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size); 6706 6707 if (!BNXT_RX_PAGE_MODE(bp) && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 6708 req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 6709 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 6710 req->enables |= 6711 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 6712 req->hds_threshold = cpu_to_le16(hds_thresh); 6713 } 6714 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 6715 return hwrm_req_send(bp, req); 6716 } 6717 6718 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, 6719 struct bnxt_vnic_info *vnic, 6720 u16 ctx_idx) 6721 { 6722 struct hwrm_vnic_rss_cos_lb_ctx_free_input *req; 6723 6724 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE)) 6725 return; 6726 6727 req->rss_cos_lb_ctx_id = 6728 cpu_to_le16(vnic->fw_rss_cos_lb_ctx[ctx_idx]); 6729 6730 hwrm_req_send(bp, req); 6731 vnic->fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 6732 } 6733 6734 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 6735 { 6736 int i, j; 6737 6738 for (i = 0; i < bp->nr_vnics; i++) { 6739 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 6740 6741 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 6742 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 6743 bnxt_hwrm_vnic_ctx_free_one(bp, vnic, j); 6744 } 6745 } 6746 bp->rsscos_nr_ctxs = 0; 6747 } 6748 6749 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, 6750 struct bnxt_vnic_info *vnic, u16 ctx_idx) 6751 { 6752 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp; 6753 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req; 6754 int rc; 6755 6756 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC); 6757 if (rc) 6758 return rc; 6759 6760 resp = hwrm_req_hold(bp, req); 6761 rc = hwrm_req_send(bp, req); 6762 if (!rc) 6763 vnic->fw_rss_cos_lb_ctx[ctx_idx] = 6764 le16_to_cpu(resp->rss_cos_lb_ctx_id); 6765 hwrm_req_drop(bp, req); 6766 6767 return rc; 6768 } 6769 6770 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 6771 { 6772 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 6773 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 6774 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 6775 } 6776 6777 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6778 { 6779 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6780 struct hwrm_vnic_cfg_input *req; 6781 unsigned int ring = 0, grp_idx; 6782 u16 def_vlan = 0; 6783 int rc; 6784 6785 rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG); 6786 if (rc) 6787 return rc; 6788 6789 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6790 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 6791 6792 req->default_rx_ring_id = 6793 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 6794 req->default_cmpl_ring_id = 6795 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 6796 req->enables = 6797 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 6798 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 6799 goto vnic_mru; 6800 } 6801 req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 6802 /* Only RSS support for now TBD: COS & LB */ 6803 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 6804 req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6805 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6806 VNIC_CFG_REQ_ENABLES_MRU); 6807 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 6808 req->rss_rule = cpu_to_le16(vnic0->fw_rss_cos_lb_ctx[0]); 6809 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6810 VNIC_CFG_REQ_ENABLES_MRU); 6811 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 6812 } else { 6813 req->rss_rule = cpu_to_le16(0xffff); 6814 } 6815 6816 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 6817 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 6818 req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 6819 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 6820 } else { 6821 req->cos_rule = cpu_to_le16(0xffff); 6822 } 6823 6824 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 6825 ring = 0; 6826 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 6827 ring = vnic->vnic_id - 1; 6828 else if ((vnic->vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 6829 ring = bp->rx_nr_rings - 1; 6830 6831 grp_idx = bp->rx_ring[ring].bnapi->index; 6832 req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 6833 req->lb_rule = cpu_to_le16(0xffff); 6834 vnic_mru: 6835 vnic->mru = bp->dev->mtu + ETH_HLEN + VLAN_HLEN; 6836 req->mru = cpu_to_le16(vnic->mru); 6837 6838 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6839 #ifdef CONFIG_BNXT_SRIOV 6840 if (BNXT_VF(bp)) 6841 def_vlan = bp->vf.vlan; 6842 #endif 6843 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 6844 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 6845 if (vnic->vnic_id == BNXT_VNIC_DEFAULT && bnxt_ulp_registered(bp->edev)) 6846 req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 6847 6848 return hwrm_req_send(bp, req); 6849 } 6850 6851 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, 6852 struct bnxt_vnic_info *vnic) 6853 { 6854 if (vnic->fw_vnic_id != INVALID_HW_RING_ID) { 6855 struct hwrm_vnic_free_input *req; 6856 6857 if (hwrm_req_init(bp, req, HWRM_VNIC_FREE)) 6858 return; 6859 6860 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 6861 6862 hwrm_req_send(bp, req); 6863 vnic->fw_vnic_id = INVALID_HW_RING_ID; 6864 } 6865 } 6866 6867 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 6868 { 6869 u16 i; 6870 6871 for (i = 0; i < bp->nr_vnics; i++) 6872 bnxt_hwrm_vnic_free_one(bp, &bp->vnic_info[i]); 6873 } 6874 6875 int bnxt_hwrm_vnic_alloc(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6876 unsigned int start_rx_ring_idx, 6877 unsigned int nr_rings) 6878 { 6879 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 6880 struct hwrm_vnic_alloc_output *resp; 6881 struct hwrm_vnic_alloc_input *req; 6882 int rc; 6883 6884 rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC); 6885 if (rc) 6886 return rc; 6887 6888 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6889 goto vnic_no_ring_grps; 6890 6891 /* map ring groups to this vnic */ 6892 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 6893 grp_idx = bp->rx_ring[i].bnapi->index; 6894 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 6895 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 6896 j, nr_rings); 6897 break; 6898 } 6899 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 6900 } 6901 6902 vnic_no_ring_grps: 6903 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 6904 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 6905 if (vnic->vnic_id == BNXT_VNIC_DEFAULT) 6906 req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 6907 6908 resp = hwrm_req_hold(bp, req); 6909 rc = hwrm_req_send(bp, req); 6910 if (!rc) 6911 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 6912 hwrm_req_drop(bp, req); 6913 return rc; 6914 } 6915 6916 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 6917 { 6918 struct hwrm_vnic_qcaps_output *resp; 6919 struct hwrm_vnic_qcaps_input *req; 6920 int rc; 6921 6922 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 6923 bp->flags &= ~BNXT_FLAG_ROCE_MIRROR_CAP; 6924 bp->rss_cap &= ~BNXT_RSS_CAP_NEW_RSS_CAP; 6925 if (bp->hwrm_spec_code < 0x10600) 6926 return 0; 6927 6928 rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS); 6929 if (rc) 6930 return rc; 6931 6932 resp = hwrm_req_hold(bp, req); 6933 rc = hwrm_req_send(bp, req); 6934 if (!rc) { 6935 u32 flags = le32_to_cpu(resp->flags); 6936 6937 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 6938 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 6939 bp->rss_cap |= BNXT_RSS_CAP_NEW_RSS_CAP; 6940 if (flags & 6941 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 6942 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 6943 6944 /* Older P5 fw before EXT_HW_STATS support did not set 6945 * VLAN_STRIP_CAP properly. 6946 */ 6947 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 6948 (BNXT_CHIP_P5(bp) && 6949 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 6950 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 6951 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP) 6952 bp->rss_cap |= BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA; 6953 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_PROF_TCAM_MODE_ENABLED) 6954 bp->rss_cap |= BNXT_RSS_CAP_RSS_TCAM; 6955 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 6956 if (bp->max_tpa_v2) { 6957 if (BNXT_CHIP_P5(bp)) 6958 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 6959 else 6960 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P7; 6961 } 6962 if (flags & VNIC_QCAPS_RESP_FLAGS_HW_TUNNEL_TPA_CAP) 6963 bp->fw_cap |= BNXT_FW_CAP_VNIC_TUNNEL_TPA; 6964 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV4_CAP) 6965 bp->rss_cap |= BNXT_RSS_CAP_AH_V4_RSS_CAP; 6966 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV6_CAP) 6967 bp->rss_cap |= BNXT_RSS_CAP_AH_V6_RSS_CAP; 6968 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV4_CAP) 6969 bp->rss_cap |= BNXT_RSS_CAP_ESP_V4_RSS_CAP; 6970 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV6_CAP) 6971 bp->rss_cap |= BNXT_RSS_CAP_ESP_V6_RSS_CAP; 6972 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPV6_FLOW_LABEL_CAP) 6973 bp->rss_cap |= BNXT_RSS_CAP_IPV6_FLOW_LABEL_RSS_CAP; 6974 if (flags & VNIC_QCAPS_RESP_FLAGS_RE_FLUSH_CAP) 6975 bp->fw_cap |= BNXT_FW_CAP_VNIC_RE_FLUSH; 6976 } 6977 hwrm_req_drop(bp, req); 6978 return rc; 6979 } 6980 6981 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 6982 { 6983 struct hwrm_ring_grp_alloc_output *resp; 6984 struct hwrm_ring_grp_alloc_input *req; 6985 int rc; 6986 u16 i; 6987 6988 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6989 return 0; 6990 6991 rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC); 6992 if (rc) 6993 return rc; 6994 6995 resp = hwrm_req_hold(bp, req); 6996 for (i = 0; i < bp->rx_nr_rings; i++) { 6997 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 6998 6999 req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 7000 req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 7001 req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 7002 req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 7003 7004 rc = hwrm_req_send(bp, req); 7005 7006 if (rc) 7007 break; 7008 7009 bp->grp_info[grp_idx].fw_grp_id = 7010 le32_to_cpu(resp->ring_group_id); 7011 } 7012 hwrm_req_drop(bp, req); 7013 return rc; 7014 } 7015 7016 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 7017 { 7018 struct hwrm_ring_grp_free_input *req; 7019 u16 i; 7020 7021 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7022 return; 7023 7024 if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE)) 7025 return; 7026 7027 hwrm_req_hold(bp, req); 7028 for (i = 0; i < bp->cp_nr_rings; i++) { 7029 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 7030 continue; 7031 req->ring_group_id = 7032 cpu_to_le32(bp->grp_info[i].fw_grp_id); 7033 7034 hwrm_req_send(bp, req); 7035 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 7036 } 7037 hwrm_req_drop(bp, req); 7038 } 7039 7040 static void bnxt_set_rx_ring_params_p5(struct bnxt *bp, u32 ring_type, 7041 struct hwrm_ring_alloc_input *req, 7042 struct bnxt_ring_struct *ring) 7043 { 7044 struct bnxt_ring_grp_info *grp_info = &bp->grp_info[ring->grp_idx]; 7045 u32 enables = RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID | 7046 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID; 7047 7048 if (ring_type == HWRM_RING_ALLOC_AGG) { 7049 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 7050 req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 7051 req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 7052 enables |= RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID; 7053 } else { 7054 req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 7055 if (NET_IP_ALIGN == 2) 7056 req->flags = 7057 cpu_to_le16(RING_ALLOC_REQ_FLAGS_RX_SOP_PAD); 7058 } 7059 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 7060 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 7061 req->enables |= cpu_to_le32(enables); 7062 } 7063 7064 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 7065 struct bnxt_ring_struct *ring, 7066 u32 ring_type, u32 map_index) 7067 { 7068 struct hwrm_ring_alloc_output *resp; 7069 struct hwrm_ring_alloc_input *req; 7070 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 7071 struct bnxt_ring_grp_info *grp_info; 7072 int rc, err = 0; 7073 u16 ring_id; 7074 7075 rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC); 7076 if (rc) 7077 goto exit; 7078 7079 req->enables = 0; 7080 if (rmem->nr_pages > 1) { 7081 req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 7082 /* Page size is in log2 units */ 7083 req->page_size = BNXT_PAGE_SHIFT; 7084 req->page_tbl_depth = 1; 7085 } else { 7086 req->page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 7087 } 7088 req->fbo = 0; 7089 /* Association of ring index with doorbell index and MSIX number */ 7090 req->logical_id = cpu_to_le16(map_index); 7091 7092 switch (ring_type) { 7093 case HWRM_RING_ALLOC_TX: { 7094 struct bnxt_tx_ring_info *txr; 7095 u16 flags = 0; 7096 7097 txr = container_of(ring, struct bnxt_tx_ring_info, 7098 tx_ring_struct); 7099 req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 7100 /* Association of transmit ring with completion ring */ 7101 grp_info = &bp->grp_info[ring->grp_idx]; 7102 req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 7103 req->length = cpu_to_le32(bp->tx_ring_mask + 1); 7104 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 7105 req->queue_id = cpu_to_le16(ring->queue_id); 7106 if (bp->flags & BNXT_FLAG_TX_COAL_CMPL) 7107 req->cmpl_coal_cnt = 7108 RING_ALLOC_REQ_CMPL_COAL_CNT_COAL_64; 7109 if ((bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) && bp->ptp_cfg) 7110 flags |= RING_ALLOC_REQ_FLAGS_TX_PKT_TS_CMPL_ENABLE; 7111 req->flags = cpu_to_le16(flags); 7112 break; 7113 } 7114 case HWRM_RING_ALLOC_RX: 7115 case HWRM_RING_ALLOC_AGG: 7116 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 7117 req->length = (ring_type == HWRM_RING_ALLOC_RX) ? 7118 cpu_to_le32(bp->rx_ring_mask + 1) : 7119 cpu_to_le32(bp->rx_agg_ring_mask + 1); 7120 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7121 bnxt_set_rx_ring_params_p5(bp, ring_type, req, ring); 7122 break; 7123 case HWRM_RING_ALLOC_CMPL: 7124 req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 7125 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 7126 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7127 /* Association of cp ring with nq */ 7128 grp_info = &bp->grp_info[map_index]; 7129 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 7130 req->cq_handle = cpu_to_le64(ring->handle); 7131 req->enables |= cpu_to_le32( 7132 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 7133 } else { 7134 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 7135 } 7136 break; 7137 case HWRM_RING_ALLOC_NQ: 7138 req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 7139 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 7140 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 7141 break; 7142 default: 7143 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 7144 ring_type); 7145 return -EINVAL; 7146 } 7147 7148 resp = hwrm_req_hold(bp, req); 7149 rc = hwrm_req_send(bp, req); 7150 err = le16_to_cpu(resp->error_code); 7151 ring_id = le16_to_cpu(resp->ring_id); 7152 hwrm_req_drop(bp, req); 7153 7154 exit: 7155 if (rc || err) { 7156 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 7157 ring_type, rc, err); 7158 return -EIO; 7159 } 7160 ring->fw_ring_id = ring_id; 7161 return rc; 7162 } 7163 7164 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 7165 { 7166 int rc; 7167 7168 if (BNXT_PF(bp)) { 7169 struct hwrm_func_cfg_input *req; 7170 7171 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 7172 if (rc) 7173 return rc; 7174 7175 req->fid = cpu_to_le16(0xffff); 7176 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 7177 req->async_event_cr = cpu_to_le16(idx); 7178 return hwrm_req_send(bp, req); 7179 } else { 7180 struct hwrm_func_vf_cfg_input *req; 7181 7182 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); 7183 if (rc) 7184 return rc; 7185 7186 req->enables = 7187 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 7188 req->async_event_cr = cpu_to_le16(idx); 7189 return hwrm_req_send(bp, req); 7190 } 7191 } 7192 7193 static void bnxt_set_db_mask(struct bnxt *bp, struct bnxt_db_info *db, 7194 u32 ring_type) 7195 { 7196 switch (ring_type) { 7197 case HWRM_RING_ALLOC_TX: 7198 db->db_ring_mask = bp->tx_ring_mask; 7199 break; 7200 case HWRM_RING_ALLOC_RX: 7201 db->db_ring_mask = bp->rx_ring_mask; 7202 break; 7203 case HWRM_RING_ALLOC_AGG: 7204 db->db_ring_mask = bp->rx_agg_ring_mask; 7205 break; 7206 case HWRM_RING_ALLOC_CMPL: 7207 case HWRM_RING_ALLOC_NQ: 7208 db->db_ring_mask = bp->cp_ring_mask; 7209 break; 7210 } 7211 if (bp->flags & BNXT_FLAG_CHIP_P7) { 7212 db->db_epoch_mask = db->db_ring_mask + 1; 7213 db->db_epoch_shift = DBR_EPOCH_SFT - ilog2(db->db_epoch_mask); 7214 } 7215 } 7216 7217 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 7218 u32 map_idx, u32 xid) 7219 { 7220 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7221 switch (ring_type) { 7222 case HWRM_RING_ALLOC_TX: 7223 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 7224 break; 7225 case HWRM_RING_ALLOC_RX: 7226 case HWRM_RING_ALLOC_AGG: 7227 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 7228 break; 7229 case HWRM_RING_ALLOC_CMPL: 7230 db->db_key64 = DBR_PATH_L2; 7231 break; 7232 case HWRM_RING_ALLOC_NQ: 7233 db->db_key64 = DBR_PATH_L2; 7234 break; 7235 } 7236 db->db_key64 |= (u64)xid << DBR_XID_SFT; 7237 7238 if (bp->flags & BNXT_FLAG_CHIP_P7) 7239 db->db_key64 |= DBR_VALID; 7240 7241 db->doorbell = bp->bar1 + bp->db_offset; 7242 } else { 7243 db->doorbell = bp->bar1 + map_idx * 0x80; 7244 switch (ring_type) { 7245 case HWRM_RING_ALLOC_TX: 7246 db->db_key32 = DB_KEY_TX; 7247 break; 7248 case HWRM_RING_ALLOC_RX: 7249 case HWRM_RING_ALLOC_AGG: 7250 db->db_key32 = DB_KEY_RX; 7251 break; 7252 case HWRM_RING_ALLOC_CMPL: 7253 db->db_key32 = DB_KEY_CP; 7254 break; 7255 } 7256 } 7257 bnxt_set_db_mask(bp, db, ring_type); 7258 } 7259 7260 static int bnxt_hwrm_rx_ring_alloc(struct bnxt *bp, 7261 struct bnxt_rx_ring_info *rxr) 7262 { 7263 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 7264 struct bnxt_napi *bnapi = rxr->bnapi; 7265 u32 type = HWRM_RING_ALLOC_RX; 7266 u32 map_idx = bnapi->index; 7267 int rc; 7268 7269 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7270 if (rc) 7271 return rc; 7272 7273 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 7274 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 7275 7276 return 0; 7277 } 7278 7279 static int bnxt_hwrm_rx_agg_ring_alloc(struct bnxt *bp, 7280 struct bnxt_rx_ring_info *rxr) 7281 { 7282 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 7283 u32 type = HWRM_RING_ALLOC_AGG; 7284 u32 grp_idx = ring->grp_idx; 7285 u32 map_idx; 7286 int rc; 7287 7288 map_idx = grp_idx + bp->rx_nr_rings; 7289 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7290 if (rc) 7291 return rc; 7292 7293 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 7294 ring->fw_ring_id); 7295 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 7296 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 7297 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 7298 7299 return 0; 7300 } 7301 7302 static int bnxt_hwrm_cp_ring_alloc_p5(struct bnxt *bp, 7303 struct bnxt_cp_ring_info *cpr) 7304 { 7305 const u32 type = HWRM_RING_ALLOC_CMPL; 7306 struct bnxt_napi *bnapi = cpr->bnapi; 7307 struct bnxt_ring_struct *ring; 7308 u32 map_idx = bnapi->index; 7309 int rc; 7310 7311 ring = &cpr->cp_ring_struct; 7312 ring->handle = BNXT_SET_NQ_HDL(cpr); 7313 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7314 if (rc) 7315 return rc; 7316 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 7317 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 7318 return 0; 7319 } 7320 7321 static int bnxt_hwrm_tx_ring_alloc(struct bnxt *bp, 7322 struct bnxt_tx_ring_info *txr, u32 tx_idx) 7323 { 7324 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 7325 const u32 type = HWRM_RING_ALLOC_TX; 7326 int rc; 7327 7328 rc = hwrm_ring_alloc_send_msg(bp, ring, type, tx_idx); 7329 if (rc) 7330 return rc; 7331 bnxt_set_db(bp, &txr->tx_db, type, tx_idx, ring->fw_ring_id); 7332 return 0; 7333 } 7334 7335 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 7336 { 7337 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 7338 int i, rc = 0; 7339 u32 type; 7340 7341 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7342 type = HWRM_RING_ALLOC_NQ; 7343 else 7344 type = HWRM_RING_ALLOC_CMPL; 7345 for (i = 0; i < bp->cp_nr_rings; i++) { 7346 struct bnxt_napi *bnapi = bp->bnapi[i]; 7347 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7348 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 7349 u32 map_idx = ring->map_idx; 7350 unsigned int vector; 7351 7352 vector = bp->irq_tbl[map_idx].vector; 7353 disable_irq_nosync(vector); 7354 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7355 if (rc) { 7356 enable_irq(vector); 7357 goto err_out; 7358 } 7359 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 7360 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 7361 enable_irq(vector); 7362 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 7363 7364 if (!i) { 7365 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 7366 if (rc) 7367 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 7368 } 7369 } 7370 7371 for (i = 0; i < bp->tx_nr_rings; i++) { 7372 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 7373 7374 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7375 rc = bnxt_hwrm_cp_ring_alloc_p5(bp, txr->tx_cpr); 7376 if (rc) 7377 goto err_out; 7378 } 7379 rc = bnxt_hwrm_tx_ring_alloc(bp, txr, i); 7380 if (rc) 7381 goto err_out; 7382 } 7383 7384 for (i = 0; i < bp->rx_nr_rings; i++) { 7385 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 7386 7387 rc = bnxt_hwrm_rx_ring_alloc(bp, rxr); 7388 if (rc) 7389 goto err_out; 7390 /* If we have agg rings, post agg buffers first. */ 7391 if (!agg_rings) 7392 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 7393 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7394 rc = bnxt_hwrm_cp_ring_alloc_p5(bp, rxr->rx_cpr); 7395 if (rc) 7396 goto err_out; 7397 } 7398 } 7399 7400 if (agg_rings) { 7401 for (i = 0; i < bp->rx_nr_rings; i++) { 7402 rc = bnxt_hwrm_rx_agg_ring_alloc(bp, &bp->rx_ring[i]); 7403 if (rc) 7404 goto err_out; 7405 } 7406 } 7407 err_out: 7408 return rc; 7409 } 7410 7411 static void bnxt_cancel_dim(struct bnxt *bp) 7412 { 7413 int i; 7414 7415 /* DIM work is initialized in bnxt_enable_napi(). Proceed only 7416 * if NAPI is enabled. 7417 */ 7418 if (!bp->bnapi || test_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 7419 return; 7420 7421 /* Make sure NAPI sees that the VNIC is disabled */ 7422 synchronize_net(); 7423 for (i = 0; i < bp->rx_nr_rings; i++) { 7424 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 7425 struct bnxt_napi *bnapi = rxr->bnapi; 7426 7427 cancel_work_sync(&bnapi->cp_ring.dim.work); 7428 } 7429 } 7430 7431 static int hwrm_ring_free_send_msg(struct bnxt *bp, 7432 struct bnxt_ring_struct *ring, 7433 u32 ring_type, int cmpl_ring_id) 7434 { 7435 struct hwrm_ring_free_output *resp; 7436 struct hwrm_ring_free_input *req; 7437 u16 error_code = 0; 7438 int rc; 7439 7440 if (BNXT_NO_FW_ACCESS(bp)) 7441 return 0; 7442 7443 rc = hwrm_req_init(bp, req, HWRM_RING_FREE); 7444 if (rc) 7445 goto exit; 7446 7447 req->cmpl_ring = cpu_to_le16(cmpl_ring_id); 7448 req->ring_type = ring_type; 7449 req->ring_id = cpu_to_le16(ring->fw_ring_id); 7450 7451 resp = hwrm_req_hold(bp, req); 7452 rc = hwrm_req_send(bp, req); 7453 error_code = le16_to_cpu(resp->error_code); 7454 hwrm_req_drop(bp, req); 7455 exit: 7456 if (rc || error_code) { 7457 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 7458 ring_type, rc, error_code); 7459 return -EIO; 7460 } 7461 return 0; 7462 } 7463 7464 static void bnxt_hwrm_tx_ring_free(struct bnxt *bp, 7465 struct bnxt_tx_ring_info *txr, 7466 bool close_path) 7467 { 7468 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 7469 u32 cmpl_ring_id; 7470 7471 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7472 return; 7473 7474 cmpl_ring_id = close_path ? bnxt_cp_ring_for_tx(bp, txr) : 7475 INVALID_HW_RING_ID; 7476 hwrm_ring_free_send_msg(bp, ring, RING_FREE_REQ_RING_TYPE_TX, 7477 cmpl_ring_id); 7478 ring->fw_ring_id = INVALID_HW_RING_ID; 7479 } 7480 7481 static void bnxt_hwrm_rx_ring_free(struct bnxt *bp, 7482 struct bnxt_rx_ring_info *rxr, 7483 bool close_path) 7484 { 7485 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 7486 u32 grp_idx = rxr->bnapi->index; 7487 u32 cmpl_ring_id; 7488 7489 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7490 return; 7491 7492 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 7493 hwrm_ring_free_send_msg(bp, ring, 7494 RING_FREE_REQ_RING_TYPE_RX, 7495 close_path ? cmpl_ring_id : 7496 INVALID_HW_RING_ID); 7497 ring->fw_ring_id = INVALID_HW_RING_ID; 7498 bp->grp_info[grp_idx].rx_fw_ring_id = INVALID_HW_RING_ID; 7499 } 7500 7501 static void bnxt_hwrm_rx_agg_ring_free(struct bnxt *bp, 7502 struct bnxt_rx_ring_info *rxr, 7503 bool close_path) 7504 { 7505 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 7506 u32 grp_idx = rxr->bnapi->index; 7507 u32 type, cmpl_ring_id; 7508 7509 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7510 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 7511 else 7512 type = RING_FREE_REQ_RING_TYPE_RX; 7513 7514 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7515 return; 7516 7517 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 7518 hwrm_ring_free_send_msg(bp, ring, type, 7519 close_path ? cmpl_ring_id : 7520 INVALID_HW_RING_ID); 7521 ring->fw_ring_id = INVALID_HW_RING_ID; 7522 bp->grp_info[grp_idx].agg_fw_ring_id = INVALID_HW_RING_ID; 7523 } 7524 7525 static void bnxt_hwrm_cp_ring_free(struct bnxt *bp, 7526 struct bnxt_cp_ring_info *cpr) 7527 { 7528 struct bnxt_ring_struct *ring; 7529 7530 ring = &cpr->cp_ring_struct; 7531 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7532 return; 7533 7534 hwrm_ring_free_send_msg(bp, ring, RING_FREE_REQ_RING_TYPE_L2_CMPL, 7535 INVALID_HW_RING_ID); 7536 ring->fw_ring_id = INVALID_HW_RING_ID; 7537 } 7538 7539 static void bnxt_clear_one_cp_ring(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 7540 { 7541 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 7542 int i, size = ring->ring_mem.page_size; 7543 7544 cpr->cp_raw_cons = 0; 7545 cpr->toggle = 0; 7546 7547 for (i = 0; i < bp->cp_nr_pages; i++) 7548 if (cpr->cp_desc_ring[i]) 7549 memset(cpr->cp_desc_ring[i], 0, size); 7550 } 7551 7552 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 7553 { 7554 u32 type; 7555 int i; 7556 7557 if (!bp->bnapi) 7558 return; 7559 7560 for (i = 0; i < bp->tx_nr_rings; i++) 7561 bnxt_hwrm_tx_ring_free(bp, &bp->tx_ring[i], close_path); 7562 7563 bnxt_cancel_dim(bp); 7564 for (i = 0; i < bp->rx_nr_rings; i++) { 7565 bnxt_hwrm_rx_ring_free(bp, &bp->rx_ring[i], close_path); 7566 bnxt_hwrm_rx_agg_ring_free(bp, &bp->rx_ring[i], close_path); 7567 } 7568 7569 /* The completion rings are about to be freed. After that the 7570 * IRQ doorbell will not work anymore. So we need to disable 7571 * IRQ here. 7572 */ 7573 bnxt_disable_int_sync(bp); 7574 7575 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7576 type = RING_FREE_REQ_RING_TYPE_NQ; 7577 else 7578 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 7579 for (i = 0; i < bp->cp_nr_rings; i++) { 7580 struct bnxt_napi *bnapi = bp->bnapi[i]; 7581 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7582 struct bnxt_ring_struct *ring; 7583 int j; 7584 7585 for (j = 0; j < cpr->cp_ring_count && cpr->cp_ring_arr; j++) 7586 bnxt_hwrm_cp_ring_free(bp, &cpr->cp_ring_arr[j]); 7587 7588 ring = &cpr->cp_ring_struct; 7589 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 7590 hwrm_ring_free_send_msg(bp, ring, type, 7591 INVALID_HW_RING_ID); 7592 ring->fw_ring_id = INVALID_HW_RING_ID; 7593 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 7594 } 7595 } 7596 } 7597 7598 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7599 bool shared); 7600 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7601 bool shared); 7602 7603 static int bnxt_hwrm_get_rings(struct bnxt *bp) 7604 { 7605 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7606 struct hwrm_func_qcfg_output *resp; 7607 struct hwrm_func_qcfg_input *req; 7608 int rc; 7609 7610 if (bp->hwrm_spec_code < 0x10601) 7611 return 0; 7612 7613 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7614 if (rc) 7615 return rc; 7616 7617 req->fid = cpu_to_le16(0xffff); 7618 resp = hwrm_req_hold(bp, req); 7619 rc = hwrm_req_send(bp, req); 7620 if (rc) { 7621 hwrm_req_drop(bp, req); 7622 return rc; 7623 } 7624 7625 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7626 if (BNXT_NEW_RM(bp)) { 7627 u16 cp, stats; 7628 7629 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 7630 hw_resc->resv_hw_ring_grps = 7631 le32_to_cpu(resp->alloc_hw_ring_grps); 7632 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 7633 hw_resc->resv_rsscos_ctxs = le16_to_cpu(resp->alloc_rsscos_ctx); 7634 cp = le16_to_cpu(resp->alloc_cmpl_rings); 7635 stats = le16_to_cpu(resp->alloc_stat_ctx); 7636 hw_resc->resv_irqs = cp; 7637 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7638 int rx = hw_resc->resv_rx_rings; 7639 int tx = hw_resc->resv_tx_rings; 7640 7641 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7642 rx >>= 1; 7643 if (cp < (rx + tx)) { 7644 rc = __bnxt_trim_rings(bp, &rx, &tx, cp, false); 7645 if (rc) 7646 goto get_rings_exit; 7647 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7648 rx <<= 1; 7649 hw_resc->resv_rx_rings = rx; 7650 hw_resc->resv_tx_rings = tx; 7651 } 7652 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 7653 hw_resc->resv_hw_ring_grps = rx; 7654 } 7655 hw_resc->resv_cp_rings = cp; 7656 hw_resc->resv_stat_ctxs = stats; 7657 } 7658 get_rings_exit: 7659 hwrm_req_drop(bp, req); 7660 return rc; 7661 } 7662 7663 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 7664 { 7665 struct hwrm_func_qcfg_output *resp; 7666 struct hwrm_func_qcfg_input *req; 7667 int rc; 7668 7669 if (bp->hwrm_spec_code < 0x10601) 7670 return 0; 7671 7672 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7673 if (rc) 7674 return rc; 7675 7676 req->fid = cpu_to_le16(fid); 7677 resp = hwrm_req_hold(bp, req); 7678 rc = hwrm_req_send(bp, req); 7679 if (!rc) 7680 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7681 7682 hwrm_req_drop(bp, req); 7683 return rc; 7684 } 7685 7686 static bool bnxt_rfs_supported(struct bnxt *bp); 7687 7688 static struct hwrm_func_cfg_input * 7689 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7690 { 7691 struct hwrm_func_cfg_input *req; 7692 u32 enables = 0; 7693 7694 if (bnxt_hwrm_func_cfg_short_req_init(bp, &req)) 7695 return NULL; 7696 7697 req->fid = cpu_to_le16(0xffff); 7698 enables |= hwr->tx ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7699 req->num_tx_rings = cpu_to_le16(hwr->tx); 7700 if (BNXT_NEW_RM(bp)) { 7701 enables |= hwr->rx ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 7702 enables |= hwr->stat ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7703 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7704 enables |= hwr->cp ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 7705 enables |= hwr->cp_p5 ? 7706 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7707 } else { 7708 enables |= hwr->cp ? 7709 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7710 enables |= hwr->grp ? 7711 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7712 } 7713 enables |= hwr->vnic ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 7714 enables |= hwr->rss_ctx ? FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 7715 0; 7716 req->num_rx_rings = cpu_to_le16(hwr->rx); 7717 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7718 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7719 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7720 req->num_msix = cpu_to_le16(hwr->cp); 7721 } else { 7722 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7723 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7724 } 7725 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7726 req->num_vnics = cpu_to_le16(hwr->vnic); 7727 } 7728 req->enables = cpu_to_le32(enables); 7729 return req; 7730 } 7731 7732 static struct hwrm_func_vf_cfg_input * 7733 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7734 { 7735 struct hwrm_func_vf_cfg_input *req; 7736 u32 enables = 0; 7737 7738 if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG)) 7739 return NULL; 7740 7741 enables |= hwr->tx ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7742 enables |= hwr->rx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 7743 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7744 enables |= hwr->stat ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7745 enables |= hwr->rss_ctx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7746 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7747 enables |= hwr->cp_p5 ? 7748 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7749 } else { 7750 enables |= hwr->cp ? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7751 enables |= hwr->grp ? 7752 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7753 } 7754 enables |= hwr->vnic ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 7755 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 7756 7757 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 7758 req->num_tx_rings = cpu_to_le16(hwr->tx); 7759 req->num_rx_rings = cpu_to_le16(hwr->rx); 7760 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7761 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7762 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7763 } else { 7764 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7765 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7766 } 7767 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7768 req->num_vnics = cpu_to_le16(hwr->vnic); 7769 7770 req->enables = cpu_to_le32(enables); 7771 return req; 7772 } 7773 7774 static int 7775 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7776 { 7777 struct hwrm_func_cfg_input *req; 7778 int rc; 7779 7780 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 7781 if (!req) 7782 return -ENOMEM; 7783 7784 if (!req->enables) { 7785 hwrm_req_drop(bp, req); 7786 return 0; 7787 } 7788 7789 rc = hwrm_req_send(bp, req); 7790 if (rc) 7791 return rc; 7792 7793 if (bp->hwrm_spec_code < 0x10601) 7794 bp->hw_resc.resv_tx_rings = hwr->tx; 7795 7796 return bnxt_hwrm_get_rings(bp); 7797 } 7798 7799 static int 7800 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7801 { 7802 struct hwrm_func_vf_cfg_input *req; 7803 int rc; 7804 7805 if (!BNXT_NEW_RM(bp)) { 7806 bp->hw_resc.resv_tx_rings = hwr->tx; 7807 return 0; 7808 } 7809 7810 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 7811 if (!req) 7812 return -ENOMEM; 7813 7814 rc = hwrm_req_send(bp, req); 7815 if (rc) 7816 return rc; 7817 7818 return bnxt_hwrm_get_rings(bp); 7819 } 7820 7821 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7822 { 7823 if (BNXT_PF(bp)) 7824 return bnxt_hwrm_reserve_pf_rings(bp, hwr); 7825 else 7826 return bnxt_hwrm_reserve_vf_rings(bp, hwr); 7827 } 7828 7829 int bnxt_nq_rings_in_use(struct bnxt *bp) 7830 { 7831 return bp->cp_nr_rings + bnxt_get_ulp_msix_num(bp); 7832 } 7833 7834 static int bnxt_cp_rings_in_use(struct bnxt *bp) 7835 { 7836 int cp; 7837 7838 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7839 return bnxt_nq_rings_in_use(bp); 7840 7841 cp = bp->tx_nr_rings + bp->rx_nr_rings; 7842 return cp; 7843 } 7844 7845 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 7846 { 7847 return bp->cp_nr_rings + bnxt_get_ulp_stat_ctxs(bp); 7848 } 7849 7850 static int bnxt_get_total_rss_ctxs(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7851 { 7852 if (!hwr->grp) 7853 return 0; 7854 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7855 int rss_ctx = bnxt_get_nr_rss_ctxs(bp, hwr->grp); 7856 7857 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7858 rss_ctx *= hwr->vnic; 7859 return rss_ctx; 7860 } 7861 if (BNXT_VF(bp)) 7862 return BNXT_VF_MAX_RSS_CTX; 7863 if (!(bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && bnxt_rfs_supported(bp)) 7864 return hwr->grp + 1; 7865 return 1; 7866 } 7867 7868 /* Check if a default RSS map needs to be setup. This function is only 7869 * used on older firmware that does not require reserving RX rings. 7870 */ 7871 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 7872 { 7873 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7874 7875 /* The RSS map is valid for RX rings set to resv_rx_rings */ 7876 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 7877 hw_resc->resv_rx_rings = bp->rx_nr_rings; 7878 if (!netif_is_rxfh_configured(bp->dev)) 7879 bnxt_set_dflt_rss_indir_tbl(bp, NULL); 7880 } 7881 } 7882 7883 static int bnxt_get_total_vnics(struct bnxt *bp, int rx_rings) 7884 { 7885 if (bp->flags & BNXT_FLAG_RFS) { 7886 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7887 return 2 + bp->num_rss_ctx; 7888 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7889 return rx_rings + 1; 7890 } 7891 return 1; 7892 } 7893 7894 static bool bnxt_need_reserve_rings(struct bnxt *bp) 7895 { 7896 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7897 int cp = bnxt_cp_rings_in_use(bp); 7898 int nq = bnxt_nq_rings_in_use(bp); 7899 int rx = bp->rx_nr_rings, stat; 7900 int vnic, grp = rx; 7901 7902 /* Old firmware does not need RX ring reservations but we still 7903 * need to setup a default RSS map when needed. With new firmware 7904 * we go through RX ring reservations first and then set up the 7905 * RSS map for the successfully reserved RX rings when needed. 7906 */ 7907 if (!BNXT_NEW_RM(bp)) 7908 bnxt_check_rss_tbl_no_rmgr(bp); 7909 7910 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 7911 bp->hwrm_spec_code >= 0x10601) 7912 return true; 7913 7914 if (!BNXT_NEW_RM(bp)) 7915 return false; 7916 7917 vnic = bnxt_get_total_vnics(bp, rx); 7918 7919 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7920 rx <<= 1; 7921 stat = bnxt_get_func_stat_ctxs(bp); 7922 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 7923 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 7924 (hw_resc->resv_hw_ring_grps != grp && 7925 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))) 7926 return true; 7927 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && BNXT_PF(bp) && 7928 hw_resc->resv_irqs != nq) 7929 return true; 7930 return false; 7931 } 7932 7933 static void bnxt_copy_reserved_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7934 { 7935 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7936 7937 hwr->tx = hw_resc->resv_tx_rings; 7938 if (BNXT_NEW_RM(bp)) { 7939 hwr->rx = hw_resc->resv_rx_rings; 7940 hwr->cp = hw_resc->resv_irqs; 7941 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7942 hwr->cp_p5 = hw_resc->resv_cp_rings; 7943 hwr->grp = hw_resc->resv_hw_ring_grps; 7944 hwr->vnic = hw_resc->resv_vnics; 7945 hwr->stat = hw_resc->resv_stat_ctxs; 7946 hwr->rss_ctx = hw_resc->resv_rsscos_ctxs; 7947 } 7948 } 7949 7950 static bool bnxt_rings_ok(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7951 { 7952 return hwr->tx && hwr->rx && hwr->cp && hwr->grp && hwr->vnic && 7953 hwr->stat && (hwr->cp_p5 || !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)); 7954 } 7955 7956 static int bnxt_get_avail_msix(struct bnxt *bp, int num); 7957 7958 static int __bnxt_reserve_rings(struct bnxt *bp) 7959 { 7960 struct bnxt_hw_rings hwr = {0}; 7961 int rx_rings, old_rx_rings, rc; 7962 int cp = bp->cp_nr_rings; 7963 int ulp_msix = 0; 7964 bool sh = false; 7965 int tx_cp; 7966 7967 if (!bnxt_need_reserve_rings(bp)) 7968 return 0; 7969 7970 if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) { 7971 ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want); 7972 if (!ulp_msix) 7973 bnxt_set_ulp_stat_ctxs(bp, 0); 7974 7975 if (ulp_msix > bp->ulp_num_msix_want) 7976 ulp_msix = bp->ulp_num_msix_want; 7977 hwr.cp = cp + ulp_msix; 7978 } else { 7979 hwr.cp = bnxt_nq_rings_in_use(bp); 7980 } 7981 7982 hwr.tx = bp->tx_nr_rings; 7983 hwr.rx = bp->rx_nr_rings; 7984 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 7985 sh = true; 7986 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7987 hwr.cp_p5 = hwr.rx + hwr.tx; 7988 7989 hwr.vnic = bnxt_get_total_vnics(bp, hwr.rx); 7990 7991 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7992 hwr.rx <<= 1; 7993 hwr.grp = bp->rx_nr_rings; 7994 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 7995 hwr.stat = bnxt_get_func_stat_ctxs(bp); 7996 old_rx_rings = bp->hw_resc.resv_rx_rings; 7997 7998 rc = bnxt_hwrm_reserve_rings(bp, &hwr); 7999 if (rc) 8000 return rc; 8001 8002 bnxt_copy_reserved_rings(bp, &hwr); 8003 8004 rx_rings = hwr.rx; 8005 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8006 if (hwr.rx >= 2) { 8007 rx_rings = hwr.rx >> 1; 8008 } else { 8009 if (netif_running(bp->dev)) 8010 return -ENOMEM; 8011 8012 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 8013 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 8014 bp->dev->hw_features &= ~NETIF_F_LRO; 8015 bp->dev->features &= ~NETIF_F_LRO; 8016 bnxt_set_ring_params(bp); 8017 } 8018 } 8019 rx_rings = min_t(int, rx_rings, hwr.grp); 8020 hwr.cp = min_t(int, hwr.cp, bp->cp_nr_rings); 8021 if (hwr.stat > bnxt_get_ulp_stat_ctxs(bp)) 8022 hwr.stat -= bnxt_get_ulp_stat_ctxs(bp); 8023 hwr.cp = min_t(int, hwr.cp, hwr.stat); 8024 rc = bnxt_trim_rings(bp, &rx_rings, &hwr.tx, hwr.cp, sh); 8025 if (bp->flags & BNXT_FLAG_AGG_RINGS) 8026 hwr.rx = rx_rings << 1; 8027 tx_cp = bnxt_num_tx_to_cp(bp, hwr.tx); 8028 hwr.cp = sh ? max_t(int, tx_cp, rx_rings) : tx_cp + rx_rings; 8029 bp->tx_nr_rings = hwr.tx; 8030 8031 /* If we cannot reserve all the RX rings, reset the RSS map only 8032 * if absolutely necessary 8033 */ 8034 if (rx_rings != bp->rx_nr_rings) { 8035 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 8036 rx_rings, bp->rx_nr_rings); 8037 if (netif_is_rxfh_configured(bp->dev) && 8038 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 8039 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 8040 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 8041 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 8042 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 8043 } 8044 } 8045 bp->rx_nr_rings = rx_rings; 8046 bp->cp_nr_rings = hwr.cp; 8047 8048 if (!bnxt_rings_ok(bp, &hwr)) 8049 return -ENOMEM; 8050 8051 if (old_rx_rings != bp->hw_resc.resv_rx_rings && 8052 !netif_is_rxfh_configured(bp->dev)) 8053 bnxt_set_dflt_rss_indir_tbl(bp, NULL); 8054 8055 if (!bnxt_ulp_registered(bp->edev) && BNXT_NEW_RM(bp)) { 8056 int resv_msix, resv_ctx, ulp_ctxs; 8057 struct bnxt_hw_resc *hw_resc; 8058 8059 hw_resc = &bp->hw_resc; 8060 resv_msix = hw_resc->resv_irqs - bp->cp_nr_rings; 8061 ulp_msix = min_t(int, resv_msix, ulp_msix); 8062 bnxt_set_ulp_msix_num(bp, ulp_msix); 8063 resv_ctx = hw_resc->resv_stat_ctxs - bp->cp_nr_rings; 8064 ulp_ctxs = min(resv_ctx, bnxt_get_ulp_stat_ctxs(bp)); 8065 bnxt_set_ulp_stat_ctxs(bp, ulp_ctxs); 8066 } 8067 8068 return rc; 8069 } 8070 8071 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 8072 { 8073 struct hwrm_func_vf_cfg_input *req; 8074 u32 flags; 8075 8076 if (!BNXT_NEW_RM(bp)) 8077 return 0; 8078 8079 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 8080 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 8081 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 8082 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 8083 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 8084 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 8085 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 8086 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 8087 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 8088 8089 req->flags = cpu_to_le32(flags); 8090 return hwrm_req_send_silent(bp, req); 8091 } 8092 8093 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 8094 { 8095 struct hwrm_func_cfg_input *req; 8096 u32 flags; 8097 8098 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 8099 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 8100 if (BNXT_NEW_RM(bp)) { 8101 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 8102 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 8103 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 8104 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 8105 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 8106 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 8107 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 8108 else 8109 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 8110 } 8111 8112 req->flags = cpu_to_le32(flags); 8113 return hwrm_req_send_silent(bp, req); 8114 } 8115 8116 static int bnxt_hwrm_check_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 8117 { 8118 if (bp->hwrm_spec_code < 0x10801) 8119 return 0; 8120 8121 if (BNXT_PF(bp)) 8122 return bnxt_hwrm_check_pf_rings(bp, hwr); 8123 8124 return bnxt_hwrm_check_vf_rings(bp, hwr); 8125 } 8126 8127 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 8128 { 8129 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 8130 struct hwrm_ring_aggint_qcaps_output *resp; 8131 struct hwrm_ring_aggint_qcaps_input *req; 8132 int rc; 8133 8134 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 8135 coal_cap->num_cmpl_dma_aggr_max = 63; 8136 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 8137 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 8138 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 8139 coal_cap->int_lat_tmr_min_max = 65535; 8140 coal_cap->int_lat_tmr_max_max = 65535; 8141 coal_cap->num_cmpl_aggr_int_max = 65535; 8142 coal_cap->timer_units = 80; 8143 8144 if (bp->hwrm_spec_code < 0x10902) 8145 return; 8146 8147 if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS)) 8148 return; 8149 8150 resp = hwrm_req_hold(bp, req); 8151 rc = hwrm_req_send_silent(bp, req); 8152 if (!rc) { 8153 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 8154 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 8155 coal_cap->num_cmpl_dma_aggr_max = 8156 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 8157 coal_cap->num_cmpl_dma_aggr_during_int_max = 8158 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 8159 coal_cap->cmpl_aggr_dma_tmr_max = 8160 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 8161 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 8162 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 8163 coal_cap->int_lat_tmr_min_max = 8164 le16_to_cpu(resp->int_lat_tmr_min_max); 8165 coal_cap->int_lat_tmr_max_max = 8166 le16_to_cpu(resp->int_lat_tmr_max_max); 8167 coal_cap->num_cmpl_aggr_int_max = 8168 le16_to_cpu(resp->num_cmpl_aggr_int_max); 8169 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 8170 } 8171 hwrm_req_drop(bp, req); 8172 } 8173 8174 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 8175 { 8176 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 8177 8178 return usec * 1000 / coal_cap->timer_units; 8179 } 8180 8181 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 8182 struct bnxt_coal *hw_coal, 8183 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 8184 { 8185 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 8186 u16 val, tmr, max, flags = hw_coal->flags; 8187 u32 cmpl_params = coal_cap->cmpl_params; 8188 8189 max = hw_coal->bufs_per_record * 128; 8190 if (hw_coal->budget) 8191 max = hw_coal->bufs_per_record * hw_coal->budget; 8192 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 8193 8194 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 8195 req->num_cmpl_aggr_int = cpu_to_le16(val); 8196 8197 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 8198 req->num_cmpl_dma_aggr = cpu_to_le16(val); 8199 8200 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 8201 coal_cap->num_cmpl_dma_aggr_during_int_max); 8202 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 8203 8204 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 8205 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 8206 req->int_lat_tmr_max = cpu_to_le16(tmr); 8207 8208 /* min timer set to 1/2 of interrupt timer */ 8209 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 8210 val = tmr / 2; 8211 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 8212 req->int_lat_tmr_min = cpu_to_le16(val); 8213 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 8214 } 8215 8216 /* buf timer set to 1/4 of interrupt timer */ 8217 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 8218 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 8219 8220 if (cmpl_params & 8221 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 8222 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 8223 val = clamp_t(u16, tmr, 1, 8224 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 8225 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 8226 req->enables |= 8227 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 8228 } 8229 8230 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 8231 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 8232 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 8233 req->flags = cpu_to_le16(flags); 8234 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 8235 } 8236 8237 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 8238 struct bnxt_coal *hw_coal) 8239 { 8240 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req; 8241 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8242 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 8243 u32 nq_params = coal_cap->nq_params; 8244 u16 tmr; 8245 int rc; 8246 8247 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 8248 return 0; 8249 8250 rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8251 if (rc) 8252 return rc; 8253 8254 req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 8255 req->flags = 8256 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 8257 8258 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 8259 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 8260 req->int_lat_tmr_min = cpu_to_le16(tmr); 8261 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 8262 return hwrm_req_send(bp, req); 8263 } 8264 8265 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 8266 { 8267 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx; 8268 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8269 struct bnxt_coal coal; 8270 int rc; 8271 8272 /* Tick values in micro seconds. 8273 * 1 coal_buf x bufs_per_record = 1 completion record. 8274 */ 8275 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 8276 8277 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 8278 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 8279 8280 if (!bnapi->rx_ring) 8281 return -ENODEV; 8282 8283 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8284 if (rc) 8285 return rc; 8286 8287 bnxt_hwrm_set_coal_params(bp, &coal, req_rx); 8288 8289 req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 8290 8291 return hwrm_req_send(bp, req_rx); 8292 } 8293 8294 static int 8295 bnxt_hwrm_set_rx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 8296 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 8297 { 8298 u16 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 8299 8300 req->ring_id = cpu_to_le16(ring_id); 8301 return hwrm_req_send(bp, req); 8302 } 8303 8304 static int 8305 bnxt_hwrm_set_tx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 8306 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 8307 { 8308 struct bnxt_tx_ring_info *txr; 8309 int i, rc; 8310 8311 bnxt_for_each_napi_tx(i, bnapi, txr) { 8312 u16 ring_id; 8313 8314 ring_id = bnxt_cp_ring_for_tx(bp, txr); 8315 req->ring_id = cpu_to_le16(ring_id); 8316 rc = hwrm_req_send(bp, req); 8317 if (rc) 8318 return rc; 8319 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 8320 return 0; 8321 } 8322 return 0; 8323 } 8324 8325 int bnxt_hwrm_set_coal(struct bnxt *bp) 8326 { 8327 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx; 8328 int i, rc; 8329 8330 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8331 if (rc) 8332 return rc; 8333 8334 rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8335 if (rc) { 8336 hwrm_req_drop(bp, req_rx); 8337 return rc; 8338 } 8339 8340 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx); 8341 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx); 8342 8343 hwrm_req_hold(bp, req_rx); 8344 hwrm_req_hold(bp, req_tx); 8345 for (i = 0; i < bp->cp_nr_rings; i++) { 8346 struct bnxt_napi *bnapi = bp->bnapi[i]; 8347 struct bnxt_coal *hw_coal; 8348 8349 if (!bnapi->rx_ring) 8350 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 8351 else 8352 rc = bnxt_hwrm_set_rx_coal(bp, bnapi, req_rx); 8353 if (rc) 8354 break; 8355 8356 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 8357 continue; 8358 8359 if (bnapi->rx_ring && bnapi->tx_ring[0]) { 8360 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 8361 if (rc) 8362 break; 8363 } 8364 if (bnapi->rx_ring) 8365 hw_coal = &bp->rx_coal; 8366 else 8367 hw_coal = &bp->tx_coal; 8368 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 8369 } 8370 hwrm_req_drop(bp, req_rx); 8371 hwrm_req_drop(bp, req_tx); 8372 return rc; 8373 } 8374 8375 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 8376 { 8377 struct hwrm_stat_ctx_clr_stats_input *req0 = NULL; 8378 struct hwrm_stat_ctx_free_input *req; 8379 int i; 8380 8381 if (!bp->bnapi) 8382 return; 8383 8384 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8385 return; 8386 8387 if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE)) 8388 return; 8389 if (BNXT_FW_MAJ(bp) <= 20) { 8390 if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) { 8391 hwrm_req_drop(bp, req); 8392 return; 8393 } 8394 hwrm_req_hold(bp, req0); 8395 } 8396 hwrm_req_hold(bp, req); 8397 for (i = 0; i < bp->cp_nr_rings; i++) { 8398 struct bnxt_napi *bnapi = bp->bnapi[i]; 8399 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8400 8401 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 8402 req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 8403 if (req0) { 8404 req0->stat_ctx_id = req->stat_ctx_id; 8405 hwrm_req_send(bp, req0); 8406 } 8407 hwrm_req_send(bp, req); 8408 8409 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 8410 } 8411 } 8412 hwrm_req_drop(bp, req); 8413 if (req0) 8414 hwrm_req_drop(bp, req0); 8415 } 8416 8417 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 8418 { 8419 struct hwrm_stat_ctx_alloc_output *resp; 8420 struct hwrm_stat_ctx_alloc_input *req; 8421 int rc, i; 8422 8423 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8424 return 0; 8425 8426 rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC); 8427 if (rc) 8428 return rc; 8429 8430 req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 8431 req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 8432 8433 resp = hwrm_req_hold(bp, req); 8434 for (i = 0; i < bp->cp_nr_rings; i++) { 8435 struct bnxt_napi *bnapi = bp->bnapi[i]; 8436 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8437 8438 req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 8439 8440 rc = hwrm_req_send(bp, req); 8441 if (rc) 8442 break; 8443 8444 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 8445 8446 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 8447 } 8448 hwrm_req_drop(bp, req); 8449 return rc; 8450 } 8451 8452 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 8453 { 8454 struct hwrm_func_qcfg_output *resp; 8455 struct hwrm_func_qcfg_input *req; 8456 u16 flags; 8457 int rc; 8458 8459 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 8460 if (rc) 8461 return rc; 8462 8463 req->fid = cpu_to_le16(0xffff); 8464 resp = hwrm_req_hold(bp, req); 8465 rc = hwrm_req_send(bp, req); 8466 if (rc) 8467 goto func_qcfg_exit; 8468 8469 flags = le16_to_cpu(resp->flags); 8470 #ifdef CONFIG_BNXT_SRIOV 8471 if (BNXT_VF(bp)) { 8472 struct bnxt_vf_info *vf = &bp->vf; 8473 8474 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 8475 if (flags & FUNC_QCFG_RESP_FLAGS_TRUSTED_VF) 8476 vf->flags |= BNXT_VF_TRUST; 8477 else 8478 vf->flags &= ~BNXT_VF_TRUST; 8479 } else { 8480 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 8481 } 8482 #endif 8483 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 8484 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 8485 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 8486 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 8487 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 8488 } 8489 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 8490 bp->flags |= BNXT_FLAG_MULTI_HOST; 8491 8492 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 8493 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 8494 8495 if (flags & FUNC_QCFG_RESP_FLAGS_ENABLE_RDMA_SRIOV) 8496 bp->fw_cap |= BNXT_FW_CAP_ENABLE_RDMA_SRIOV; 8497 8498 switch (resp->port_partition_type) { 8499 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 8500 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_2: 8501 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 8502 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 8503 bp->port_partition_type = resp->port_partition_type; 8504 break; 8505 } 8506 if (bp->hwrm_spec_code < 0x10707 || 8507 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 8508 bp->br_mode = BRIDGE_MODE_VEB; 8509 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 8510 bp->br_mode = BRIDGE_MODE_VEPA; 8511 else 8512 bp->br_mode = BRIDGE_MODE_UNDEF; 8513 8514 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 8515 if (!bp->max_mtu) 8516 bp->max_mtu = BNXT_MAX_MTU; 8517 8518 if (bp->db_size) 8519 goto func_qcfg_exit; 8520 8521 bp->db_offset = le16_to_cpu(resp->legacy_l2_db_size_kb) * 1024; 8522 if (BNXT_CHIP_P5(bp)) { 8523 if (BNXT_PF(bp)) 8524 bp->db_offset = DB_PF_OFFSET_P5; 8525 else 8526 bp->db_offset = DB_VF_OFFSET_P5; 8527 } 8528 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 8529 1024); 8530 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 8531 bp->db_size <= bp->db_offset) 8532 bp->db_size = pci_resource_len(bp->pdev, 2); 8533 8534 func_qcfg_exit: 8535 hwrm_req_drop(bp, req); 8536 return rc; 8537 } 8538 8539 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_type *ctxm, 8540 u8 init_val, u8 init_offset, 8541 bool init_mask_set) 8542 { 8543 ctxm->init_value = init_val; 8544 ctxm->init_offset = BNXT_CTX_INIT_INVALID_OFFSET; 8545 if (init_mask_set) 8546 ctxm->init_offset = init_offset * 4; 8547 else 8548 ctxm->init_value = 0; 8549 } 8550 8551 static int bnxt_alloc_all_ctx_pg_info(struct bnxt *bp, int ctx_max) 8552 { 8553 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8554 u16 type; 8555 8556 for (type = 0; type < ctx_max; type++) { 8557 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8558 int n = 1; 8559 8560 if (!ctxm->max_entries || ctxm->pg_info) 8561 continue; 8562 8563 if (ctxm->instance_bmap) 8564 n = hweight32(ctxm->instance_bmap); 8565 ctxm->pg_info = kcalloc(n, sizeof(*ctxm->pg_info), GFP_KERNEL); 8566 if (!ctxm->pg_info) 8567 return -ENOMEM; 8568 } 8569 return 0; 8570 } 8571 8572 static void bnxt_free_one_ctx_mem(struct bnxt *bp, 8573 struct bnxt_ctx_mem_type *ctxm, bool force); 8574 8575 #define BNXT_CTX_INIT_VALID(flags) \ 8576 (!!((flags) & \ 8577 FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_ENABLE_CTX_KIND_INIT)) 8578 8579 static int bnxt_hwrm_func_backing_store_qcaps_v2(struct bnxt *bp) 8580 { 8581 struct hwrm_func_backing_store_qcaps_v2_output *resp; 8582 struct hwrm_func_backing_store_qcaps_v2_input *req; 8583 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8584 u16 type; 8585 int rc; 8586 8587 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS_V2); 8588 if (rc) 8589 return rc; 8590 8591 if (!ctx) { 8592 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8593 if (!ctx) 8594 return -ENOMEM; 8595 bp->ctx = ctx; 8596 } 8597 8598 resp = hwrm_req_hold(bp, req); 8599 8600 for (type = 0; type < BNXT_CTX_V2_MAX; ) { 8601 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8602 u8 init_val, init_off, i; 8603 u32 max_entries; 8604 u16 entry_size; 8605 __le32 *p; 8606 u32 flags; 8607 8608 req->type = cpu_to_le16(type); 8609 rc = hwrm_req_send(bp, req); 8610 if (rc) 8611 goto ctx_done; 8612 flags = le32_to_cpu(resp->flags); 8613 type = le16_to_cpu(resp->next_valid_type); 8614 if (!(flags & BNXT_CTX_MEM_TYPE_VALID)) { 8615 bnxt_free_one_ctx_mem(bp, ctxm, true); 8616 continue; 8617 } 8618 entry_size = le16_to_cpu(resp->entry_size); 8619 max_entries = le32_to_cpu(resp->max_num_entries); 8620 if (ctxm->mem_valid) { 8621 if (!(flags & BNXT_CTX_MEM_PERSIST) || 8622 ctxm->entry_size != entry_size || 8623 ctxm->max_entries != max_entries) 8624 bnxt_free_one_ctx_mem(bp, ctxm, true); 8625 else 8626 continue; 8627 } 8628 ctxm->type = le16_to_cpu(resp->type); 8629 ctxm->entry_size = entry_size; 8630 ctxm->flags = flags; 8631 ctxm->instance_bmap = le32_to_cpu(resp->instance_bit_map); 8632 ctxm->entry_multiple = resp->entry_multiple; 8633 ctxm->max_entries = max_entries; 8634 ctxm->min_entries = le32_to_cpu(resp->min_num_entries); 8635 init_val = resp->ctx_init_value; 8636 init_off = resp->ctx_init_offset; 8637 bnxt_init_ctx_initializer(ctxm, init_val, init_off, 8638 BNXT_CTX_INIT_VALID(flags)); 8639 ctxm->split_entry_cnt = min_t(u8, resp->subtype_valid_cnt, 8640 BNXT_MAX_SPLIT_ENTRY); 8641 for (i = 0, p = &resp->split_entry_0; i < ctxm->split_entry_cnt; 8642 i++, p++) 8643 ctxm->split[i] = le32_to_cpu(*p); 8644 } 8645 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_V2_MAX); 8646 8647 ctx_done: 8648 hwrm_req_drop(bp, req); 8649 return rc; 8650 } 8651 8652 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 8653 { 8654 struct hwrm_func_backing_store_qcaps_output *resp; 8655 struct hwrm_func_backing_store_qcaps_input *req; 8656 int rc; 8657 8658 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || 8659 (bp->ctx && bp->ctx->flags & BNXT_CTX_FLAG_INITED)) 8660 return 0; 8661 8662 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 8663 return bnxt_hwrm_func_backing_store_qcaps_v2(bp); 8664 8665 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS); 8666 if (rc) 8667 return rc; 8668 8669 resp = hwrm_req_hold(bp, req); 8670 rc = hwrm_req_send_silent(bp, req); 8671 if (!rc) { 8672 struct bnxt_ctx_mem_type *ctxm; 8673 struct bnxt_ctx_mem_info *ctx; 8674 u8 init_val, init_idx = 0; 8675 u16 init_mask; 8676 8677 ctx = bp->ctx; 8678 if (!ctx) { 8679 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8680 if (!ctx) { 8681 rc = -ENOMEM; 8682 goto ctx_err; 8683 } 8684 bp->ctx = ctx; 8685 } 8686 init_val = resp->ctx_kind_initializer; 8687 init_mask = le16_to_cpu(resp->ctx_init_mask); 8688 8689 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8690 ctxm->max_entries = le32_to_cpu(resp->qp_max_entries); 8691 ctxm->qp_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 8692 ctxm->qp_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 8693 ctxm->qp_fast_qpmd_entries = le16_to_cpu(resp->fast_qpmd_qp_num_entries); 8694 ctxm->entry_size = le16_to_cpu(resp->qp_entry_size); 8695 bnxt_init_ctx_initializer(ctxm, init_val, resp->qp_init_offset, 8696 (init_mask & (1 << init_idx++)) != 0); 8697 8698 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8699 ctxm->srq_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 8700 ctxm->max_entries = le32_to_cpu(resp->srq_max_entries); 8701 ctxm->entry_size = le16_to_cpu(resp->srq_entry_size); 8702 bnxt_init_ctx_initializer(ctxm, init_val, resp->srq_init_offset, 8703 (init_mask & (1 << init_idx++)) != 0); 8704 8705 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8706 ctxm->cq_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 8707 ctxm->max_entries = le32_to_cpu(resp->cq_max_entries); 8708 ctxm->entry_size = le16_to_cpu(resp->cq_entry_size); 8709 bnxt_init_ctx_initializer(ctxm, init_val, resp->cq_init_offset, 8710 (init_mask & (1 << init_idx++)) != 0); 8711 8712 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8713 ctxm->vnic_entries = le16_to_cpu(resp->vnic_max_vnic_entries); 8714 ctxm->max_entries = ctxm->vnic_entries + 8715 le16_to_cpu(resp->vnic_max_ring_table_entries); 8716 ctxm->entry_size = le16_to_cpu(resp->vnic_entry_size); 8717 bnxt_init_ctx_initializer(ctxm, init_val, 8718 resp->vnic_init_offset, 8719 (init_mask & (1 << init_idx++)) != 0); 8720 8721 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8722 ctxm->max_entries = le32_to_cpu(resp->stat_max_entries); 8723 ctxm->entry_size = le16_to_cpu(resp->stat_entry_size); 8724 bnxt_init_ctx_initializer(ctxm, init_val, 8725 resp->stat_init_offset, 8726 (init_mask & (1 << init_idx++)) != 0); 8727 8728 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8729 ctxm->entry_size = le16_to_cpu(resp->tqm_entry_size); 8730 ctxm->min_entries = le32_to_cpu(resp->tqm_min_entries_per_ring); 8731 ctxm->max_entries = le32_to_cpu(resp->tqm_max_entries_per_ring); 8732 ctxm->entry_multiple = resp->tqm_entries_multiple; 8733 if (!ctxm->entry_multiple) 8734 ctxm->entry_multiple = 1; 8735 8736 memcpy(&ctx->ctx_arr[BNXT_CTX_FTQM], ctxm, sizeof(*ctxm)); 8737 8738 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8739 ctxm->max_entries = le32_to_cpu(resp->mrav_max_entries); 8740 ctxm->entry_size = le16_to_cpu(resp->mrav_entry_size); 8741 ctxm->mrav_num_entries_units = 8742 le16_to_cpu(resp->mrav_num_entries_units); 8743 bnxt_init_ctx_initializer(ctxm, init_val, 8744 resp->mrav_init_offset, 8745 (init_mask & (1 << init_idx++)) != 0); 8746 8747 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8748 ctxm->entry_size = le16_to_cpu(resp->tim_entry_size); 8749 ctxm->max_entries = le32_to_cpu(resp->tim_max_entries); 8750 8751 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 8752 if (!ctx->tqm_fp_rings_count) 8753 ctx->tqm_fp_rings_count = bp->max_q; 8754 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 8755 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 8756 8757 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 8758 memcpy(ctxm, &ctx->ctx_arr[BNXT_CTX_STQM], sizeof(*ctxm)); 8759 ctxm->instance_bmap = (1 << ctx->tqm_fp_rings_count) - 1; 8760 8761 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_MAX); 8762 } else { 8763 rc = 0; 8764 } 8765 ctx_err: 8766 hwrm_req_drop(bp, req); 8767 return rc; 8768 } 8769 8770 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 8771 __le64 *pg_dir) 8772 { 8773 if (!rmem->nr_pages) 8774 return; 8775 8776 BNXT_SET_CTX_PAGE_ATTR(*pg_attr); 8777 if (rmem->depth >= 1) { 8778 if (rmem->depth == 2) 8779 *pg_attr |= 2; 8780 else 8781 *pg_attr |= 1; 8782 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 8783 } else { 8784 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 8785 } 8786 } 8787 8788 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 8789 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 8790 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 8791 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 8792 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 8793 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 8794 8795 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 8796 { 8797 struct hwrm_func_backing_store_cfg_input *req; 8798 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8799 struct bnxt_ctx_pg_info *ctx_pg; 8800 struct bnxt_ctx_mem_type *ctxm; 8801 void **__req = (void **)&req; 8802 u32 req_len = sizeof(*req); 8803 __le32 *num_entries; 8804 __le64 *pg_dir; 8805 u32 flags = 0; 8806 u8 *pg_attr; 8807 u32 ena; 8808 int rc; 8809 int i; 8810 8811 if (!ctx) 8812 return 0; 8813 8814 if (req_len > bp->hwrm_max_ext_req_len) 8815 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 8816 rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len); 8817 if (rc) 8818 return rc; 8819 8820 req->enables = cpu_to_le32(enables); 8821 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 8822 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8823 ctx_pg = ctxm->pg_info; 8824 req->qp_num_entries = cpu_to_le32(ctx_pg->entries); 8825 req->qp_num_qp1_entries = cpu_to_le16(ctxm->qp_qp1_entries); 8826 req->qp_num_l2_entries = cpu_to_le16(ctxm->qp_l2_entries); 8827 req->qp_entry_size = cpu_to_le16(ctxm->entry_size); 8828 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8829 &req->qpc_pg_size_qpc_lvl, 8830 &req->qpc_page_dir); 8831 8832 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD) 8833 req->qp_num_fast_qpmd_entries = cpu_to_le16(ctxm->qp_fast_qpmd_entries); 8834 } 8835 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 8836 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8837 ctx_pg = ctxm->pg_info; 8838 req->srq_num_entries = cpu_to_le32(ctx_pg->entries); 8839 req->srq_num_l2_entries = cpu_to_le16(ctxm->srq_l2_entries); 8840 req->srq_entry_size = cpu_to_le16(ctxm->entry_size); 8841 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8842 &req->srq_pg_size_srq_lvl, 8843 &req->srq_page_dir); 8844 } 8845 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 8846 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8847 ctx_pg = ctxm->pg_info; 8848 req->cq_num_entries = cpu_to_le32(ctx_pg->entries); 8849 req->cq_num_l2_entries = cpu_to_le16(ctxm->cq_l2_entries); 8850 req->cq_entry_size = cpu_to_le16(ctxm->entry_size); 8851 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8852 &req->cq_pg_size_cq_lvl, 8853 &req->cq_page_dir); 8854 } 8855 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 8856 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8857 ctx_pg = ctxm->pg_info; 8858 req->vnic_num_vnic_entries = cpu_to_le16(ctxm->vnic_entries); 8859 req->vnic_num_ring_table_entries = 8860 cpu_to_le16(ctxm->max_entries - ctxm->vnic_entries); 8861 req->vnic_entry_size = cpu_to_le16(ctxm->entry_size); 8862 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8863 &req->vnic_pg_size_vnic_lvl, 8864 &req->vnic_page_dir); 8865 } 8866 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 8867 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8868 ctx_pg = ctxm->pg_info; 8869 req->stat_num_entries = cpu_to_le32(ctxm->max_entries); 8870 req->stat_entry_size = cpu_to_le16(ctxm->entry_size); 8871 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8872 &req->stat_pg_size_stat_lvl, 8873 &req->stat_page_dir); 8874 } 8875 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 8876 u32 units; 8877 8878 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8879 ctx_pg = ctxm->pg_info; 8880 req->mrav_num_entries = cpu_to_le32(ctx_pg->entries); 8881 units = ctxm->mrav_num_entries_units; 8882 if (units) { 8883 u32 num_mr, num_ah = ctxm->mrav_av_entries; 8884 u32 entries; 8885 8886 num_mr = ctx_pg->entries - num_ah; 8887 entries = ((num_mr / units) << 16) | (num_ah / units); 8888 req->mrav_num_entries = cpu_to_le32(entries); 8889 flags |= FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 8890 } 8891 req->mrav_entry_size = cpu_to_le16(ctxm->entry_size); 8892 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8893 &req->mrav_pg_size_mrav_lvl, 8894 &req->mrav_page_dir); 8895 } 8896 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 8897 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8898 ctx_pg = ctxm->pg_info; 8899 req->tim_num_entries = cpu_to_le32(ctx_pg->entries); 8900 req->tim_entry_size = cpu_to_le16(ctxm->entry_size); 8901 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8902 &req->tim_pg_size_tim_lvl, 8903 &req->tim_page_dir); 8904 } 8905 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8906 for (i = 0, num_entries = &req->tqm_sp_num_entries, 8907 pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl, 8908 pg_dir = &req->tqm_sp_page_dir, 8909 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP, 8910 ctx_pg = ctxm->pg_info; 8911 i < BNXT_MAX_TQM_RINGS; 8912 ctx_pg = &ctx->ctx_arr[BNXT_CTX_FTQM].pg_info[i], 8913 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 8914 if (!(enables & ena)) 8915 continue; 8916 8917 req->tqm_entry_size = cpu_to_le16(ctxm->entry_size); 8918 *num_entries = cpu_to_le32(ctx_pg->entries); 8919 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 8920 } 8921 req->flags = cpu_to_le32(flags); 8922 return hwrm_req_send(bp, req); 8923 } 8924 8925 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 8926 struct bnxt_ctx_pg_info *ctx_pg) 8927 { 8928 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8929 8930 rmem->page_size = BNXT_PAGE_SIZE; 8931 rmem->pg_arr = ctx_pg->ctx_pg_arr; 8932 rmem->dma_arr = ctx_pg->ctx_dma_arr; 8933 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 8934 if (rmem->depth >= 1) 8935 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 8936 return bnxt_alloc_ring(bp, rmem); 8937 } 8938 8939 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 8940 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 8941 u8 depth, struct bnxt_ctx_mem_type *ctxm) 8942 { 8943 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8944 int rc; 8945 8946 if (!mem_size) 8947 return -EINVAL; 8948 8949 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 8950 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 8951 ctx_pg->nr_pages = 0; 8952 return -EINVAL; 8953 } 8954 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 8955 int nr_tbls, i; 8956 8957 rmem->depth = 2; 8958 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 8959 GFP_KERNEL); 8960 if (!ctx_pg->ctx_pg_tbl) 8961 return -ENOMEM; 8962 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 8963 rmem->nr_pages = nr_tbls; 8964 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 8965 if (rc) 8966 return rc; 8967 for (i = 0; i < nr_tbls; i++) { 8968 struct bnxt_ctx_pg_info *pg_tbl; 8969 8970 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 8971 if (!pg_tbl) 8972 return -ENOMEM; 8973 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 8974 rmem = &pg_tbl->ring_mem; 8975 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 8976 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 8977 rmem->depth = 1; 8978 rmem->nr_pages = MAX_CTX_PAGES; 8979 rmem->ctx_mem = ctxm; 8980 if (i == (nr_tbls - 1)) { 8981 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 8982 8983 if (rem) 8984 rmem->nr_pages = rem; 8985 } 8986 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 8987 if (rc) 8988 break; 8989 } 8990 } else { 8991 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 8992 if (rmem->nr_pages > 1 || depth) 8993 rmem->depth = 1; 8994 rmem->ctx_mem = ctxm; 8995 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 8996 } 8997 return rc; 8998 } 8999 9000 static size_t bnxt_copy_ctx_pg_tbls(struct bnxt *bp, 9001 struct bnxt_ctx_pg_info *ctx_pg, 9002 void *buf, size_t offset, size_t head, 9003 size_t tail) 9004 { 9005 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 9006 size_t nr_pages = ctx_pg->nr_pages; 9007 int page_size = rmem->page_size; 9008 size_t len = 0, total_len = 0; 9009 u16 depth = rmem->depth; 9010 9011 tail %= nr_pages * page_size; 9012 do { 9013 if (depth > 1) { 9014 int i = head / (page_size * MAX_CTX_PAGES); 9015 struct bnxt_ctx_pg_info *pg_tbl; 9016 9017 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 9018 rmem = &pg_tbl->ring_mem; 9019 } 9020 len = __bnxt_copy_ring(bp, rmem, buf, offset, head, tail); 9021 head += len; 9022 offset += len; 9023 total_len += len; 9024 if (head >= nr_pages * page_size) 9025 head = 0; 9026 } while (head != tail); 9027 return total_len; 9028 } 9029 9030 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 9031 struct bnxt_ctx_pg_info *ctx_pg) 9032 { 9033 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 9034 9035 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 9036 ctx_pg->ctx_pg_tbl) { 9037 int i, nr_tbls = rmem->nr_pages; 9038 9039 for (i = 0; i < nr_tbls; i++) { 9040 struct bnxt_ctx_pg_info *pg_tbl; 9041 struct bnxt_ring_mem_info *rmem2; 9042 9043 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 9044 if (!pg_tbl) 9045 continue; 9046 rmem2 = &pg_tbl->ring_mem; 9047 bnxt_free_ring(bp, rmem2); 9048 ctx_pg->ctx_pg_arr[i] = NULL; 9049 kfree(pg_tbl); 9050 ctx_pg->ctx_pg_tbl[i] = NULL; 9051 } 9052 kfree(ctx_pg->ctx_pg_tbl); 9053 ctx_pg->ctx_pg_tbl = NULL; 9054 } 9055 bnxt_free_ring(bp, rmem); 9056 ctx_pg->nr_pages = 0; 9057 } 9058 9059 static int bnxt_setup_ctxm_pg_tbls(struct bnxt *bp, 9060 struct bnxt_ctx_mem_type *ctxm, u32 entries, 9061 u8 pg_lvl) 9062 { 9063 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 9064 int i, rc = 0, n = 1; 9065 u32 mem_size; 9066 9067 if (!ctxm->entry_size || !ctx_pg) 9068 return -EINVAL; 9069 if (ctxm->instance_bmap) 9070 n = hweight32(ctxm->instance_bmap); 9071 if (ctxm->entry_multiple) 9072 entries = roundup(entries, ctxm->entry_multiple); 9073 entries = clamp_t(u32, entries, ctxm->min_entries, ctxm->max_entries); 9074 mem_size = entries * ctxm->entry_size; 9075 for (i = 0; i < n && !rc; i++) { 9076 ctx_pg[i].entries = entries; 9077 rc = bnxt_alloc_ctx_pg_tbls(bp, &ctx_pg[i], mem_size, pg_lvl, 9078 ctxm->init_value ? ctxm : NULL); 9079 } 9080 if (!rc) 9081 ctxm->mem_valid = 1; 9082 return rc; 9083 } 9084 9085 static int bnxt_hwrm_func_backing_store_cfg_v2(struct bnxt *bp, 9086 struct bnxt_ctx_mem_type *ctxm, 9087 bool last) 9088 { 9089 struct hwrm_func_backing_store_cfg_v2_input *req; 9090 u32 instance_bmap = ctxm->instance_bmap; 9091 int i, j, rc = 0, n = 1; 9092 __le32 *p; 9093 9094 if (!(ctxm->flags & BNXT_CTX_MEM_TYPE_VALID) || !ctxm->pg_info) 9095 return 0; 9096 9097 if (instance_bmap) 9098 n = hweight32(ctxm->instance_bmap); 9099 else 9100 instance_bmap = 1; 9101 9102 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_CFG_V2); 9103 if (rc) 9104 return rc; 9105 hwrm_req_hold(bp, req); 9106 req->type = cpu_to_le16(ctxm->type); 9107 req->entry_size = cpu_to_le16(ctxm->entry_size); 9108 if ((ctxm->flags & BNXT_CTX_MEM_PERSIST) && 9109 bnxt_bs_trace_avail(bp, ctxm->type)) { 9110 struct bnxt_bs_trace_info *bs_trace; 9111 u32 enables; 9112 9113 enables = FUNC_BACKING_STORE_CFG_V2_REQ_ENABLES_NEXT_BS_OFFSET; 9114 req->enables = cpu_to_le32(enables); 9115 bs_trace = &bp->bs_trace[bnxt_bstore_to_trace[ctxm->type]]; 9116 req->next_bs_offset = cpu_to_le32(bs_trace->last_offset); 9117 } 9118 req->subtype_valid_cnt = ctxm->split_entry_cnt; 9119 for (i = 0, p = &req->split_entry_0; i < ctxm->split_entry_cnt; i++) 9120 p[i] = cpu_to_le32(ctxm->split[i]); 9121 for (i = 0, j = 0; j < n && !rc; i++) { 9122 struct bnxt_ctx_pg_info *ctx_pg; 9123 9124 if (!(instance_bmap & (1 << i))) 9125 continue; 9126 req->instance = cpu_to_le16(i); 9127 ctx_pg = &ctxm->pg_info[j++]; 9128 if (!ctx_pg->entries) 9129 continue; 9130 req->num_entries = cpu_to_le32(ctx_pg->entries); 9131 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 9132 &req->page_size_pbl_level, 9133 &req->page_dir); 9134 if (last && j == n) 9135 req->flags = 9136 cpu_to_le32(FUNC_BACKING_STORE_CFG_V2_REQ_FLAGS_BS_CFG_ALL_DONE); 9137 rc = hwrm_req_send(bp, req); 9138 } 9139 hwrm_req_drop(bp, req); 9140 return rc; 9141 } 9142 9143 static int bnxt_backing_store_cfg_v2(struct bnxt *bp, u32 ena) 9144 { 9145 struct bnxt_ctx_mem_info *ctx = bp->ctx; 9146 struct bnxt_ctx_mem_type *ctxm; 9147 u16 last_type = BNXT_CTX_INV; 9148 int rc = 0; 9149 u16 type; 9150 9151 for (type = BNXT_CTX_SRT; type <= BNXT_CTX_RIGP1; type++) { 9152 ctxm = &ctx->ctx_arr[type]; 9153 if (!bnxt_bs_trace_avail(bp, type)) 9154 continue; 9155 if (!ctxm->mem_valid) { 9156 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, 9157 ctxm->max_entries, 1); 9158 if (rc) { 9159 netdev_warn(bp->dev, "Unable to setup ctx page for type:0x%x.\n", 9160 type); 9161 continue; 9162 } 9163 bnxt_bs_trace_init(bp, ctxm); 9164 } 9165 last_type = type; 9166 } 9167 9168 if (last_type == BNXT_CTX_INV) { 9169 if (!ena) 9170 return 0; 9171 else if (ena & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) 9172 last_type = BNXT_CTX_MAX - 1; 9173 else 9174 last_type = BNXT_CTX_L2_MAX - 1; 9175 } 9176 ctx->ctx_arr[last_type].last = 1; 9177 9178 for (type = 0 ; type < BNXT_CTX_V2_MAX; type++) { 9179 ctxm = &ctx->ctx_arr[type]; 9180 9181 if (!ctxm->mem_valid) 9182 continue; 9183 rc = bnxt_hwrm_func_backing_store_cfg_v2(bp, ctxm, ctxm->last); 9184 if (rc) 9185 return rc; 9186 } 9187 return 0; 9188 } 9189 9190 /** 9191 * __bnxt_copy_ctx_mem - copy host context memory 9192 * @bp: The driver context 9193 * @ctxm: The pointer to the context memory type 9194 * @buf: The destination buffer or NULL to just obtain the length 9195 * @offset: The buffer offset to copy the data to 9196 * @head: The head offset of context memory to copy from 9197 * @tail: The tail offset (last byte + 1) of context memory to end the copy 9198 * 9199 * This function is called for debugging purposes to dump the host context 9200 * used by the chip. 9201 * 9202 * Return: Length of memory copied 9203 */ 9204 static size_t __bnxt_copy_ctx_mem(struct bnxt *bp, 9205 struct bnxt_ctx_mem_type *ctxm, void *buf, 9206 size_t offset, size_t head, size_t tail) 9207 { 9208 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 9209 size_t len = 0, total_len = 0; 9210 int i, n = 1; 9211 9212 if (!ctx_pg) 9213 return 0; 9214 9215 if (ctxm->instance_bmap) 9216 n = hweight32(ctxm->instance_bmap); 9217 for (i = 0; i < n; i++) { 9218 len = bnxt_copy_ctx_pg_tbls(bp, &ctx_pg[i], buf, offset, head, 9219 tail); 9220 offset += len; 9221 total_len += len; 9222 } 9223 return total_len; 9224 } 9225 9226 size_t bnxt_copy_ctx_mem(struct bnxt *bp, struct bnxt_ctx_mem_type *ctxm, 9227 void *buf, size_t offset) 9228 { 9229 size_t tail = ctxm->max_entries * ctxm->entry_size; 9230 9231 return __bnxt_copy_ctx_mem(bp, ctxm, buf, offset, 0, tail); 9232 } 9233 9234 static void bnxt_free_one_ctx_mem(struct bnxt *bp, 9235 struct bnxt_ctx_mem_type *ctxm, bool force) 9236 { 9237 struct bnxt_ctx_pg_info *ctx_pg; 9238 int i, n = 1; 9239 9240 ctxm->last = 0; 9241 9242 if (ctxm->mem_valid && !force && (ctxm->flags & BNXT_CTX_MEM_PERSIST)) 9243 return; 9244 9245 ctx_pg = ctxm->pg_info; 9246 if (ctx_pg) { 9247 if (ctxm->instance_bmap) 9248 n = hweight32(ctxm->instance_bmap); 9249 for (i = 0; i < n; i++) 9250 bnxt_free_ctx_pg_tbls(bp, &ctx_pg[i]); 9251 9252 kfree(ctx_pg); 9253 ctxm->pg_info = NULL; 9254 ctxm->mem_valid = 0; 9255 } 9256 memset(ctxm, 0, sizeof(*ctxm)); 9257 } 9258 9259 void bnxt_free_ctx_mem(struct bnxt *bp, bool force) 9260 { 9261 struct bnxt_ctx_mem_info *ctx = bp->ctx; 9262 u16 type; 9263 9264 if (!ctx) 9265 return; 9266 9267 for (type = 0; type < BNXT_CTX_V2_MAX; type++) 9268 bnxt_free_one_ctx_mem(bp, &ctx->ctx_arr[type], force); 9269 9270 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 9271 if (force) { 9272 kfree(ctx); 9273 bp->ctx = NULL; 9274 } 9275 } 9276 9277 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 9278 { 9279 struct bnxt_ctx_mem_type *ctxm; 9280 struct bnxt_ctx_mem_info *ctx; 9281 u32 l2_qps, qp1_qps, max_qps; 9282 u32 ena, entries_sp, entries; 9283 u32 srqs, max_srqs, min; 9284 u32 num_mr, num_ah; 9285 u32 extra_srqs = 0; 9286 u32 extra_qps = 0; 9287 u32 fast_qpmd_qps; 9288 u8 pg_lvl = 1; 9289 int i, rc; 9290 9291 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 9292 if (rc) { 9293 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 9294 rc); 9295 return rc; 9296 } 9297 ctx = bp->ctx; 9298 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 9299 return 0; 9300 9301 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 9302 l2_qps = ctxm->qp_l2_entries; 9303 qp1_qps = ctxm->qp_qp1_entries; 9304 fast_qpmd_qps = ctxm->qp_fast_qpmd_entries; 9305 max_qps = ctxm->max_entries; 9306 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 9307 srqs = ctxm->srq_l2_entries; 9308 max_srqs = ctxm->max_entries; 9309 ena = 0; 9310 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 9311 pg_lvl = 2; 9312 if (BNXT_SW_RES_LMT(bp)) { 9313 extra_qps = max_qps - l2_qps - qp1_qps; 9314 extra_srqs = max_srqs - srqs; 9315 } else { 9316 extra_qps = min_t(u32, 65536, 9317 max_qps - l2_qps - qp1_qps); 9318 /* allocate extra qps if fw supports RoCE fast qp 9319 * destroy feature 9320 */ 9321 extra_qps += fast_qpmd_qps; 9322 extra_srqs = min_t(u32, 8192, max_srqs - srqs); 9323 } 9324 if (fast_qpmd_qps) 9325 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD; 9326 } 9327 9328 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 9329 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 9330 pg_lvl); 9331 if (rc) 9332 return rc; 9333 9334 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 9335 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, srqs + extra_srqs, pg_lvl); 9336 if (rc) 9337 return rc; 9338 9339 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 9340 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->cq_l2_entries + 9341 extra_qps * 2, pg_lvl); 9342 if (rc) 9343 return rc; 9344 9345 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 9346 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 9347 if (rc) 9348 return rc; 9349 9350 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 9351 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 9352 if (rc) 9353 return rc; 9354 9355 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 9356 goto skip_rdma; 9357 9358 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 9359 if (BNXT_SW_RES_LMT(bp) && 9360 ctxm->split_entry_cnt == BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1) { 9361 num_ah = ctxm->mrav_av_entries; 9362 num_mr = ctxm->max_entries - num_ah; 9363 } else { 9364 /* 128K extra is needed to accommodate static AH context 9365 * allocation by f/w. 9366 */ 9367 num_mr = min_t(u32, ctxm->max_entries / 2, 1024 * 256); 9368 num_ah = min_t(u32, num_mr, 1024 * 128); 9369 ctxm->split_entry_cnt = BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1; 9370 if (!ctxm->mrav_av_entries || ctxm->mrav_av_entries > num_ah) 9371 ctxm->mrav_av_entries = num_ah; 9372 } 9373 9374 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, num_mr + num_ah, 2); 9375 if (rc) 9376 return rc; 9377 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 9378 9379 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 9380 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 1); 9381 if (rc) 9382 return rc; 9383 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 9384 9385 skip_rdma: 9386 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 9387 min = ctxm->min_entries; 9388 entries_sp = ctx->ctx_arr[BNXT_CTX_VNIC].vnic_entries + l2_qps + 9389 2 * (extra_qps + qp1_qps) + min; 9390 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries_sp, 2); 9391 if (rc) 9392 return rc; 9393 9394 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 9395 entries = l2_qps + 2 * (extra_qps + qp1_qps); 9396 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries, 2); 9397 if (rc) 9398 return rc; 9399 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 9400 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 9401 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 9402 9403 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 9404 rc = bnxt_backing_store_cfg_v2(bp, ena); 9405 else 9406 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 9407 if (rc) { 9408 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 9409 rc); 9410 return rc; 9411 } 9412 ctx->flags |= BNXT_CTX_FLAG_INITED; 9413 return 0; 9414 } 9415 9416 static int bnxt_hwrm_crash_dump_mem_cfg(struct bnxt *bp) 9417 { 9418 struct hwrm_dbg_crashdump_medium_cfg_input *req; 9419 u16 page_attr; 9420 int rc; 9421 9422 if (!(bp->fw_dbg_cap & DBG_QCAPS_RESP_FLAGS_CRASHDUMP_HOST_DDR)) 9423 return 0; 9424 9425 rc = hwrm_req_init(bp, req, HWRM_DBG_CRASHDUMP_MEDIUM_CFG); 9426 if (rc) 9427 return rc; 9428 9429 if (BNXT_PAGE_SIZE == 0x2000) 9430 page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_8K; 9431 else if (BNXT_PAGE_SIZE == 0x10000) 9432 page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_64K; 9433 else 9434 page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_4K; 9435 req->pg_size_lvl = cpu_to_le16(page_attr | 9436 bp->fw_crash_mem->ring_mem.depth); 9437 req->pbl = cpu_to_le64(bp->fw_crash_mem->ring_mem.pg_tbl_map); 9438 req->size = cpu_to_le32(bp->fw_crash_len); 9439 req->output_dest_flags = cpu_to_le16(BNXT_DBG_CR_DUMP_MDM_CFG_DDR); 9440 return hwrm_req_send(bp, req); 9441 } 9442 9443 static void bnxt_free_crash_dump_mem(struct bnxt *bp) 9444 { 9445 if (bp->fw_crash_mem) { 9446 bnxt_free_ctx_pg_tbls(bp, bp->fw_crash_mem); 9447 kfree(bp->fw_crash_mem); 9448 bp->fw_crash_mem = NULL; 9449 } 9450 } 9451 9452 static int bnxt_alloc_crash_dump_mem(struct bnxt *bp) 9453 { 9454 u32 mem_size = 0; 9455 int rc; 9456 9457 if (!(bp->fw_dbg_cap & DBG_QCAPS_RESP_FLAGS_CRASHDUMP_HOST_DDR)) 9458 return 0; 9459 9460 rc = bnxt_hwrm_get_dump_len(bp, BNXT_DUMP_CRASH, &mem_size); 9461 if (rc) 9462 return rc; 9463 9464 mem_size = round_up(mem_size, 4); 9465 9466 /* keep and use the existing pages */ 9467 if (bp->fw_crash_mem && 9468 mem_size <= bp->fw_crash_mem->nr_pages * BNXT_PAGE_SIZE) 9469 goto alloc_done; 9470 9471 if (bp->fw_crash_mem) 9472 bnxt_free_ctx_pg_tbls(bp, bp->fw_crash_mem); 9473 else 9474 bp->fw_crash_mem = kzalloc(sizeof(*bp->fw_crash_mem), 9475 GFP_KERNEL); 9476 if (!bp->fw_crash_mem) 9477 return -ENOMEM; 9478 9479 rc = bnxt_alloc_ctx_pg_tbls(bp, bp->fw_crash_mem, mem_size, 1, NULL); 9480 if (rc) { 9481 bnxt_free_crash_dump_mem(bp); 9482 return rc; 9483 } 9484 9485 alloc_done: 9486 bp->fw_crash_len = mem_size; 9487 return 0; 9488 } 9489 9490 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 9491 { 9492 struct hwrm_func_resource_qcaps_output *resp; 9493 struct hwrm_func_resource_qcaps_input *req; 9494 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9495 int rc; 9496 9497 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS); 9498 if (rc) 9499 return rc; 9500 9501 req->fid = cpu_to_le16(0xffff); 9502 resp = hwrm_req_hold(bp, req); 9503 rc = hwrm_req_send_silent(bp, req); 9504 if (rc) 9505 goto hwrm_func_resc_qcaps_exit; 9506 9507 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 9508 if (!all) 9509 goto hwrm_func_resc_qcaps_exit; 9510 9511 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 9512 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 9513 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 9514 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 9515 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 9516 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 9517 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 9518 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 9519 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 9520 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 9521 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 9522 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 9523 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 9524 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 9525 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 9526 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 9527 9528 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 9529 u16 max_msix = le16_to_cpu(resp->max_msix); 9530 9531 hw_resc->max_nqs = max_msix; 9532 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 9533 } 9534 9535 if (BNXT_PF(bp)) { 9536 struct bnxt_pf_info *pf = &bp->pf; 9537 9538 pf->vf_resv_strategy = 9539 le16_to_cpu(resp->vf_reservation_strategy); 9540 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 9541 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 9542 } 9543 hwrm_func_resc_qcaps_exit: 9544 hwrm_req_drop(bp, req); 9545 return rc; 9546 } 9547 9548 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) 9549 { 9550 struct hwrm_port_mac_ptp_qcfg_output *resp; 9551 struct hwrm_port_mac_ptp_qcfg_input *req; 9552 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 9553 u8 flags; 9554 int rc; 9555 9556 if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5_PLUS(bp)) { 9557 rc = -ENODEV; 9558 goto no_ptp; 9559 } 9560 9561 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG); 9562 if (rc) 9563 goto no_ptp; 9564 9565 req->port_id = cpu_to_le16(bp->pf.port_id); 9566 resp = hwrm_req_hold(bp, req); 9567 rc = hwrm_req_send(bp, req); 9568 if (rc) 9569 goto exit; 9570 9571 flags = resp->flags; 9572 if (BNXT_CHIP_P5_AND_MINUS(bp) && 9573 !(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { 9574 rc = -ENODEV; 9575 goto exit; 9576 } 9577 if (!ptp) { 9578 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); 9579 if (!ptp) { 9580 rc = -ENOMEM; 9581 goto exit; 9582 } 9583 ptp->bp = bp; 9584 bp->ptp_cfg = ptp; 9585 } 9586 9587 if (flags & 9588 (PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK | 9589 PORT_MAC_PTP_QCFG_RESP_FLAGS_64B_PHC_TIME)) { 9590 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); 9591 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); 9592 } else if (BNXT_CHIP_P5(bp)) { 9593 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; 9594 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; 9595 } else { 9596 rc = -ENODEV; 9597 goto exit; 9598 } 9599 ptp->rtc_configured = 9600 (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0; 9601 rc = bnxt_ptp_init(bp); 9602 if (rc) 9603 netdev_warn(bp->dev, "PTP initialization failed.\n"); 9604 exit: 9605 hwrm_req_drop(bp, req); 9606 if (!rc) 9607 return 0; 9608 9609 no_ptp: 9610 bnxt_ptp_clear(bp); 9611 kfree(ptp); 9612 bp->ptp_cfg = NULL; 9613 return rc; 9614 } 9615 9616 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 9617 { 9618 struct hwrm_func_qcaps_output *resp; 9619 struct hwrm_func_qcaps_input *req; 9620 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9621 u32 flags, flags_ext, flags_ext2; 9622 int rc; 9623 9624 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS); 9625 if (rc) 9626 return rc; 9627 9628 req->fid = cpu_to_le16(0xffff); 9629 resp = hwrm_req_hold(bp, req); 9630 rc = hwrm_req_send(bp, req); 9631 if (rc) 9632 goto hwrm_func_qcaps_exit; 9633 9634 flags = le32_to_cpu(resp->flags); 9635 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 9636 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 9637 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 9638 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 9639 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 9640 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 9641 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 9642 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 9643 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 9644 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 9645 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 9646 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 9647 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 9648 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 9649 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 9650 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 9651 if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED) 9652 bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS; 9653 9654 flags_ext = le32_to_cpu(resp->flags_ext); 9655 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 9656 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 9657 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED)) 9658 bp->fw_cap |= BNXT_FW_CAP_PTP_PPS; 9659 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED) 9660 bp->fw_cap |= BNXT_FW_CAP_PTP_RTC; 9661 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT)) 9662 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF; 9663 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED)) 9664 bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH; 9665 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_NPAR_1_2_SUPPORTED) 9666 bp->fw_cap |= BNXT_FW_CAP_NPAR_1_2; 9667 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_DFLT_VLAN_TPID_PCP_SUPPORTED)) 9668 bp->fw_cap |= BNXT_FW_CAP_DFLT_VLAN_TPID_PCP; 9669 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_BS_V2_SUPPORTED) 9670 bp->fw_cap |= BNXT_FW_CAP_BACKING_STORE_V2; 9671 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_TX_COAL_CMPL_CAP) 9672 bp->flags |= BNXT_FLAG_TX_COAL_CMPL; 9673 9674 flags_ext2 = le32_to_cpu(resp->flags_ext2); 9675 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED) 9676 bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS; 9677 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_UDP_GSO_SUPPORTED) 9678 bp->flags |= BNXT_FLAG_UDP_GSO_CAP; 9679 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_TX_PKT_TS_CMPL_SUPPORTED) 9680 bp->fw_cap |= BNXT_FW_CAP_TX_TS_CMP; 9681 if (flags_ext2 & 9682 FUNC_QCAPS_RESP_FLAGS_EXT2_SW_MAX_RESOURCE_LIMITS_SUPPORTED) 9683 bp->fw_cap |= BNXT_FW_CAP_SW_MAX_RESOURCE_LIMITS; 9684 if (BNXT_PF(bp) && 9685 (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_ROCE_VF_RESOURCE_MGMT_SUPPORTED)) 9686 bp->fw_cap |= BNXT_FW_CAP_ROCE_VF_RESC_MGMT_SUPPORTED; 9687 9688 bp->tx_push_thresh = 0; 9689 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 9690 BNXT_FW_MAJ(bp) > 217) 9691 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 9692 9693 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 9694 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 9695 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 9696 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 9697 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 9698 if (!hw_resc->max_hw_ring_grps) 9699 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 9700 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 9701 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 9702 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 9703 9704 hw_resc->max_encap_records = le32_to_cpu(resp->max_encap_records); 9705 hw_resc->max_decap_records = le32_to_cpu(resp->max_decap_records); 9706 hw_resc->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 9707 hw_resc->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 9708 hw_resc->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 9709 hw_resc->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 9710 9711 if (BNXT_PF(bp)) { 9712 struct bnxt_pf_info *pf = &bp->pf; 9713 9714 pf->fw_fid = le16_to_cpu(resp->fid); 9715 pf->port_id = le16_to_cpu(resp->port_id); 9716 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 9717 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 9718 pf->max_vfs = le16_to_cpu(resp->max_vfs); 9719 bp->flags &= ~BNXT_FLAG_WOL_CAP; 9720 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 9721 bp->flags |= BNXT_FLAG_WOL_CAP; 9722 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { 9723 bp->fw_cap |= BNXT_FW_CAP_PTP; 9724 } else { 9725 bnxt_ptp_clear(bp); 9726 kfree(bp->ptp_cfg); 9727 bp->ptp_cfg = NULL; 9728 } 9729 } else { 9730 #ifdef CONFIG_BNXT_SRIOV 9731 struct bnxt_vf_info *vf = &bp->vf; 9732 9733 vf->fw_fid = le16_to_cpu(resp->fid); 9734 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 9735 #endif 9736 } 9737 bp->tso_max_segs = le16_to_cpu(resp->max_tso_segs); 9738 9739 hwrm_func_qcaps_exit: 9740 hwrm_req_drop(bp, req); 9741 return rc; 9742 } 9743 9744 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp) 9745 { 9746 struct hwrm_dbg_qcaps_output *resp; 9747 struct hwrm_dbg_qcaps_input *req; 9748 int rc; 9749 9750 bp->fw_dbg_cap = 0; 9751 if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS)) 9752 return; 9753 9754 rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS); 9755 if (rc) 9756 return; 9757 9758 req->fid = cpu_to_le16(0xffff); 9759 resp = hwrm_req_hold(bp, req); 9760 rc = hwrm_req_send(bp, req); 9761 if (rc) 9762 goto hwrm_dbg_qcaps_exit; 9763 9764 bp->fw_dbg_cap = le32_to_cpu(resp->flags); 9765 9766 hwrm_dbg_qcaps_exit: 9767 hwrm_req_drop(bp, req); 9768 } 9769 9770 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 9771 9772 int bnxt_hwrm_func_qcaps(struct bnxt *bp) 9773 { 9774 int rc; 9775 9776 rc = __bnxt_hwrm_func_qcaps(bp); 9777 if (rc) 9778 return rc; 9779 9780 bnxt_hwrm_dbg_qcaps(bp); 9781 9782 rc = bnxt_hwrm_queue_qportcfg(bp); 9783 if (rc) { 9784 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 9785 return rc; 9786 } 9787 if (bp->hwrm_spec_code >= 0x10803) { 9788 rc = bnxt_alloc_ctx_mem(bp); 9789 if (rc) 9790 return rc; 9791 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 9792 if (!rc) 9793 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 9794 } 9795 return 0; 9796 } 9797 9798 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 9799 { 9800 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 9801 struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req; 9802 u32 flags; 9803 int rc; 9804 9805 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 9806 return 0; 9807 9808 rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS); 9809 if (rc) 9810 return rc; 9811 9812 resp = hwrm_req_hold(bp, req); 9813 rc = hwrm_req_send(bp, req); 9814 if (rc) 9815 goto hwrm_cfa_adv_qcaps_exit; 9816 9817 flags = le32_to_cpu(resp->flags); 9818 if (flags & 9819 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 9820 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 9821 9822 if (flags & 9823 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V3_SUPPORTED) 9824 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V3; 9825 9826 if (flags & 9827 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_NTUPLE_FLOW_RX_EXT_IP_PROTO_SUPPORTED) 9828 bp->fw_cap |= BNXT_FW_CAP_CFA_NTUPLE_RX_EXT_IP_PROTO; 9829 9830 hwrm_cfa_adv_qcaps_exit: 9831 hwrm_req_drop(bp, req); 9832 return rc; 9833 } 9834 9835 static int __bnxt_alloc_fw_health(struct bnxt *bp) 9836 { 9837 if (bp->fw_health) 9838 return 0; 9839 9840 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 9841 if (!bp->fw_health) 9842 return -ENOMEM; 9843 9844 mutex_init(&bp->fw_health->lock); 9845 return 0; 9846 } 9847 9848 static int bnxt_alloc_fw_health(struct bnxt *bp) 9849 { 9850 int rc; 9851 9852 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 9853 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 9854 return 0; 9855 9856 rc = __bnxt_alloc_fw_health(bp); 9857 if (rc) { 9858 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 9859 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 9860 return rc; 9861 } 9862 9863 return 0; 9864 } 9865 9866 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 9867 { 9868 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 9869 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 9870 BNXT_FW_HEALTH_WIN_MAP_OFF); 9871 } 9872 9873 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 9874 { 9875 struct bnxt_fw_health *fw_health = bp->fw_health; 9876 u32 reg_type; 9877 9878 if (!fw_health) 9879 return; 9880 9881 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 9882 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9883 fw_health->status_reliable = false; 9884 9885 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]); 9886 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9887 fw_health->resets_reliable = false; 9888 } 9889 9890 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 9891 { 9892 void __iomem *hs; 9893 u32 status_loc; 9894 u32 reg_type; 9895 u32 sig; 9896 9897 if (bp->fw_health) 9898 bp->fw_health->status_reliable = false; 9899 9900 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 9901 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 9902 9903 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 9904 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 9905 if (!bp->chip_num) { 9906 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 9907 bp->chip_num = readl(bp->bar0 + 9908 BNXT_FW_HEALTH_WIN_BASE + 9909 BNXT_GRC_REG_CHIP_NUM); 9910 } 9911 if (!BNXT_CHIP_P5_PLUS(bp)) 9912 return; 9913 9914 status_loc = BNXT_GRC_REG_STATUS_P5 | 9915 BNXT_FW_HEALTH_REG_TYPE_BAR0; 9916 } else { 9917 status_loc = readl(hs + offsetof(struct hcomm_status, 9918 fw_status_loc)); 9919 } 9920 9921 if (__bnxt_alloc_fw_health(bp)) { 9922 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 9923 return; 9924 } 9925 9926 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 9927 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 9928 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 9929 __bnxt_map_fw_health_reg(bp, status_loc); 9930 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 9931 BNXT_FW_HEALTH_WIN_OFF(status_loc); 9932 } 9933 9934 bp->fw_health->status_reliable = true; 9935 } 9936 9937 static int bnxt_map_fw_health_regs(struct bnxt *bp) 9938 { 9939 struct bnxt_fw_health *fw_health = bp->fw_health; 9940 u32 reg_base = 0xffffffff; 9941 int i; 9942 9943 bp->fw_health->status_reliable = false; 9944 bp->fw_health->resets_reliable = false; 9945 /* Only pre-map the monitoring GRC registers using window 3 */ 9946 for (i = 0; i < 4; i++) { 9947 u32 reg = fw_health->regs[i]; 9948 9949 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 9950 continue; 9951 if (reg_base == 0xffffffff) 9952 reg_base = reg & BNXT_GRC_BASE_MASK; 9953 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 9954 return -ERANGE; 9955 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 9956 } 9957 bp->fw_health->status_reliable = true; 9958 bp->fw_health->resets_reliable = true; 9959 if (reg_base == 0xffffffff) 9960 return 0; 9961 9962 __bnxt_map_fw_health_reg(bp, reg_base); 9963 return 0; 9964 } 9965 9966 static void bnxt_remap_fw_health_regs(struct bnxt *bp) 9967 { 9968 if (!bp->fw_health) 9969 return; 9970 9971 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) { 9972 bp->fw_health->status_reliable = true; 9973 bp->fw_health->resets_reliable = true; 9974 } else { 9975 bnxt_try_map_fw_health_reg(bp); 9976 } 9977 } 9978 9979 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 9980 { 9981 struct bnxt_fw_health *fw_health = bp->fw_health; 9982 struct hwrm_error_recovery_qcfg_output *resp; 9983 struct hwrm_error_recovery_qcfg_input *req; 9984 int rc, i; 9985 9986 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 9987 return 0; 9988 9989 rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG); 9990 if (rc) 9991 return rc; 9992 9993 resp = hwrm_req_hold(bp, req); 9994 rc = hwrm_req_send(bp, req); 9995 if (rc) 9996 goto err_recovery_out; 9997 fw_health->flags = le32_to_cpu(resp->flags); 9998 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 9999 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 10000 rc = -EINVAL; 10001 goto err_recovery_out; 10002 } 10003 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 10004 fw_health->master_func_wait_dsecs = 10005 le32_to_cpu(resp->master_func_wait_period); 10006 fw_health->normal_func_wait_dsecs = 10007 le32_to_cpu(resp->normal_func_wait_period); 10008 fw_health->post_reset_wait_dsecs = 10009 le32_to_cpu(resp->master_func_wait_period_after_reset); 10010 fw_health->post_reset_max_wait_dsecs = 10011 le32_to_cpu(resp->max_bailout_time_after_reset); 10012 fw_health->regs[BNXT_FW_HEALTH_REG] = 10013 le32_to_cpu(resp->fw_health_status_reg); 10014 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 10015 le32_to_cpu(resp->fw_heartbeat_reg); 10016 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 10017 le32_to_cpu(resp->fw_reset_cnt_reg); 10018 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 10019 le32_to_cpu(resp->reset_inprogress_reg); 10020 fw_health->fw_reset_inprog_reg_mask = 10021 le32_to_cpu(resp->reset_inprogress_reg_mask); 10022 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 10023 if (fw_health->fw_reset_seq_cnt >= 16) { 10024 rc = -EINVAL; 10025 goto err_recovery_out; 10026 } 10027 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 10028 fw_health->fw_reset_seq_regs[i] = 10029 le32_to_cpu(resp->reset_reg[i]); 10030 fw_health->fw_reset_seq_vals[i] = 10031 le32_to_cpu(resp->reset_reg_val[i]); 10032 fw_health->fw_reset_seq_delay_msec[i] = 10033 resp->delay_after_reset[i]; 10034 } 10035 err_recovery_out: 10036 hwrm_req_drop(bp, req); 10037 if (!rc) 10038 rc = bnxt_map_fw_health_regs(bp); 10039 if (rc) 10040 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 10041 return rc; 10042 } 10043 10044 static int bnxt_hwrm_func_reset(struct bnxt *bp) 10045 { 10046 struct hwrm_func_reset_input *req; 10047 int rc; 10048 10049 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET); 10050 if (rc) 10051 return rc; 10052 10053 req->enables = 0; 10054 hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT); 10055 return hwrm_req_send(bp, req); 10056 } 10057 10058 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 10059 { 10060 struct hwrm_nvm_get_dev_info_output nvm_info; 10061 10062 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 10063 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 10064 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 10065 nvm_info.nvm_cfg_ver_upd); 10066 } 10067 10068 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 10069 { 10070 struct hwrm_queue_qportcfg_output *resp; 10071 struct hwrm_queue_qportcfg_input *req; 10072 u8 i, j, *qptr; 10073 bool no_rdma; 10074 int rc = 0; 10075 10076 rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG); 10077 if (rc) 10078 return rc; 10079 10080 resp = hwrm_req_hold(bp, req); 10081 rc = hwrm_req_send(bp, req); 10082 if (rc) 10083 goto qportcfg_exit; 10084 10085 if (!resp->max_configurable_queues) { 10086 rc = -EINVAL; 10087 goto qportcfg_exit; 10088 } 10089 bp->max_tc = resp->max_configurable_queues; 10090 bp->max_lltc = resp->max_configurable_lossless_queues; 10091 if (bp->max_tc > BNXT_MAX_QUEUE) 10092 bp->max_tc = BNXT_MAX_QUEUE; 10093 10094 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 10095 qptr = &resp->queue_id0; 10096 for (i = 0, j = 0; i < bp->max_tc; i++) { 10097 bp->q_info[j].queue_id = *qptr; 10098 bp->q_ids[i] = *qptr++; 10099 bp->q_info[j].queue_profile = *qptr++; 10100 bp->tc_to_qidx[j] = j; 10101 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 10102 (no_rdma && BNXT_PF(bp))) 10103 j++; 10104 } 10105 bp->max_q = bp->max_tc; 10106 bp->max_tc = max_t(u8, j, 1); 10107 10108 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 10109 bp->max_tc = 1; 10110 10111 if (bp->max_lltc > bp->max_tc) 10112 bp->max_lltc = bp->max_tc; 10113 10114 qportcfg_exit: 10115 hwrm_req_drop(bp, req); 10116 return rc; 10117 } 10118 10119 static int bnxt_hwrm_poll(struct bnxt *bp) 10120 { 10121 struct hwrm_ver_get_input *req; 10122 int rc; 10123 10124 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 10125 if (rc) 10126 return rc; 10127 10128 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 10129 req->hwrm_intf_min = HWRM_VERSION_MINOR; 10130 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 10131 10132 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT); 10133 rc = hwrm_req_send(bp, req); 10134 return rc; 10135 } 10136 10137 static int bnxt_hwrm_ver_get(struct bnxt *bp) 10138 { 10139 struct hwrm_ver_get_output *resp; 10140 struct hwrm_ver_get_input *req; 10141 u16 fw_maj, fw_min, fw_bld, fw_rsv; 10142 u32 dev_caps_cfg, hwrm_ver; 10143 int rc, len, max_tmo_secs; 10144 10145 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 10146 if (rc) 10147 return rc; 10148 10149 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 10150 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 10151 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 10152 req->hwrm_intf_min = HWRM_VERSION_MINOR; 10153 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 10154 10155 resp = hwrm_req_hold(bp, req); 10156 rc = hwrm_req_send(bp, req); 10157 if (rc) 10158 goto hwrm_ver_get_exit; 10159 10160 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 10161 10162 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 10163 resp->hwrm_intf_min_8b << 8 | 10164 resp->hwrm_intf_upd_8b; 10165 if (resp->hwrm_intf_maj_8b < 1) { 10166 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 10167 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 10168 resp->hwrm_intf_upd_8b); 10169 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 10170 } 10171 10172 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 10173 HWRM_VERSION_UPDATE; 10174 10175 if (bp->hwrm_spec_code > hwrm_ver) 10176 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 10177 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 10178 HWRM_VERSION_UPDATE); 10179 else 10180 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 10181 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 10182 resp->hwrm_intf_upd_8b); 10183 10184 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 10185 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 10186 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 10187 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 10188 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 10189 len = FW_VER_STR_LEN; 10190 } else { 10191 fw_maj = resp->hwrm_fw_maj_8b; 10192 fw_min = resp->hwrm_fw_min_8b; 10193 fw_bld = resp->hwrm_fw_bld_8b; 10194 fw_rsv = resp->hwrm_fw_rsvd_8b; 10195 len = BC_HWRM_STR_LEN; 10196 } 10197 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 10198 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 10199 fw_rsv); 10200 10201 if (strlen(resp->active_pkg_name)) { 10202 int fw_ver_len = strlen(bp->fw_ver_str); 10203 10204 snprintf(bp->fw_ver_str + fw_ver_len, 10205 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 10206 resp->active_pkg_name); 10207 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 10208 } 10209 10210 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 10211 if (!bp->hwrm_cmd_timeout) 10212 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 10213 bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000; 10214 if (!bp->hwrm_cmd_max_timeout) 10215 bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT; 10216 max_tmo_secs = bp->hwrm_cmd_max_timeout / 1000; 10217 #ifdef CONFIG_DETECT_HUNG_TASK 10218 if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT || 10219 max_tmo_secs > CONFIG_DEFAULT_HUNG_TASK_TIMEOUT) { 10220 netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog (kernel default %ds)\n", 10221 max_tmo_secs, CONFIG_DEFAULT_HUNG_TASK_TIMEOUT); 10222 } 10223 #endif 10224 10225 if (resp->hwrm_intf_maj_8b >= 1) { 10226 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 10227 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 10228 } 10229 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 10230 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 10231 10232 bp->chip_num = le16_to_cpu(resp->chip_num); 10233 bp->chip_rev = resp->chip_rev; 10234 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 10235 !resp->chip_metal) 10236 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 10237 10238 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 10239 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 10240 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 10241 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 10242 10243 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 10244 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 10245 10246 if (dev_caps_cfg & 10247 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 10248 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 10249 10250 if (dev_caps_cfg & 10251 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 10252 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 10253 10254 if (dev_caps_cfg & 10255 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 10256 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 10257 10258 hwrm_ver_get_exit: 10259 hwrm_req_drop(bp, req); 10260 return rc; 10261 } 10262 10263 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 10264 { 10265 struct hwrm_fw_set_time_input *req; 10266 struct tm tm; 10267 time64_t now = ktime_get_real_seconds(); 10268 int rc; 10269 10270 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 10271 bp->hwrm_spec_code < 0x10400) 10272 return -EOPNOTSUPP; 10273 10274 time64_to_tm(now, 0, &tm); 10275 rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME); 10276 if (rc) 10277 return rc; 10278 10279 req->year = cpu_to_le16(1900 + tm.tm_year); 10280 req->month = 1 + tm.tm_mon; 10281 req->day = tm.tm_mday; 10282 req->hour = tm.tm_hour; 10283 req->minute = tm.tm_min; 10284 req->second = tm.tm_sec; 10285 return hwrm_req_send(bp, req); 10286 } 10287 10288 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 10289 { 10290 u64 sw_tmp; 10291 10292 hw &= mask; 10293 sw_tmp = (*sw & ~mask) | hw; 10294 if (hw < (*sw & mask)) 10295 sw_tmp += mask + 1; 10296 WRITE_ONCE(*sw, sw_tmp); 10297 } 10298 10299 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 10300 int count, bool ignore_zero) 10301 { 10302 int i; 10303 10304 for (i = 0; i < count; i++) { 10305 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 10306 10307 if (ignore_zero && !hw) 10308 continue; 10309 10310 if (masks[i] == -1ULL) 10311 sw_stats[i] = hw; 10312 else 10313 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 10314 } 10315 } 10316 10317 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 10318 { 10319 if (!stats->hw_stats) 10320 return; 10321 10322 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 10323 stats->hw_masks, stats->len / 8, false); 10324 } 10325 10326 static void bnxt_accumulate_all_stats(struct bnxt *bp) 10327 { 10328 struct bnxt_stats_mem *ring0_stats; 10329 bool ignore_zero = false; 10330 int i; 10331 10332 /* Chip bug. Counter intermittently becomes 0. */ 10333 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10334 ignore_zero = true; 10335 10336 for (i = 0; i < bp->cp_nr_rings; i++) { 10337 struct bnxt_napi *bnapi = bp->bnapi[i]; 10338 struct bnxt_cp_ring_info *cpr; 10339 struct bnxt_stats_mem *stats; 10340 10341 cpr = &bnapi->cp_ring; 10342 stats = &cpr->stats; 10343 if (!i) 10344 ring0_stats = stats; 10345 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 10346 ring0_stats->hw_masks, 10347 ring0_stats->len / 8, ignore_zero); 10348 } 10349 if (bp->flags & BNXT_FLAG_PORT_STATS) { 10350 struct bnxt_stats_mem *stats = &bp->port_stats; 10351 __le64 *hw_stats = stats->hw_stats; 10352 u64 *sw_stats = stats->sw_stats; 10353 u64 *masks = stats->hw_masks; 10354 int cnt; 10355 10356 cnt = sizeof(struct rx_port_stats) / 8; 10357 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 10358 10359 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10360 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10361 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10362 cnt = sizeof(struct tx_port_stats) / 8; 10363 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 10364 } 10365 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 10366 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 10367 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 10368 } 10369 } 10370 10371 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 10372 { 10373 struct hwrm_port_qstats_input *req; 10374 struct bnxt_pf_info *pf = &bp->pf; 10375 int rc; 10376 10377 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 10378 return 0; 10379 10380 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 10381 return -EOPNOTSUPP; 10382 10383 rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS); 10384 if (rc) 10385 return rc; 10386 10387 req->flags = flags; 10388 req->port_id = cpu_to_le16(pf->port_id); 10389 req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 10390 BNXT_TX_PORT_STATS_BYTE_OFFSET); 10391 req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 10392 return hwrm_req_send(bp, req); 10393 } 10394 10395 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 10396 { 10397 struct hwrm_queue_pri2cos_qcfg_output *resp_qc; 10398 struct hwrm_queue_pri2cos_qcfg_input *req_qc; 10399 struct hwrm_port_qstats_ext_output *resp_qs; 10400 struct hwrm_port_qstats_ext_input *req_qs; 10401 struct bnxt_pf_info *pf = &bp->pf; 10402 u32 tx_stat_size; 10403 int rc; 10404 10405 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 10406 return 0; 10407 10408 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 10409 return -EOPNOTSUPP; 10410 10411 rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT); 10412 if (rc) 10413 return rc; 10414 10415 req_qs->flags = flags; 10416 req_qs->port_id = cpu_to_le16(pf->port_id); 10417 req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 10418 req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 10419 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 10420 sizeof(struct tx_port_stats_ext) : 0; 10421 req_qs->tx_stat_size = cpu_to_le16(tx_stat_size); 10422 req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 10423 resp_qs = hwrm_req_hold(bp, req_qs); 10424 rc = hwrm_req_send(bp, req_qs); 10425 if (!rc) { 10426 bp->fw_rx_stats_ext_size = 10427 le16_to_cpu(resp_qs->rx_stat_size) / 8; 10428 if (BNXT_FW_MAJ(bp) < 220 && 10429 bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY) 10430 bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY; 10431 10432 bp->fw_tx_stats_ext_size = tx_stat_size ? 10433 le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0; 10434 } else { 10435 bp->fw_rx_stats_ext_size = 0; 10436 bp->fw_tx_stats_ext_size = 0; 10437 } 10438 hwrm_req_drop(bp, req_qs); 10439 10440 if (flags) 10441 return rc; 10442 10443 if (bp->fw_tx_stats_ext_size <= 10444 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 10445 bp->pri2cos_valid = 0; 10446 return rc; 10447 } 10448 10449 rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG); 10450 if (rc) 10451 return rc; 10452 10453 req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 10454 10455 resp_qc = hwrm_req_hold(bp, req_qc); 10456 rc = hwrm_req_send(bp, req_qc); 10457 if (!rc) { 10458 u8 *pri2cos; 10459 int i, j; 10460 10461 pri2cos = &resp_qc->pri0_cos_queue_id; 10462 for (i = 0; i < 8; i++) { 10463 u8 queue_id = pri2cos[i]; 10464 u8 queue_idx; 10465 10466 /* Per port queue IDs start from 0, 10, 20, etc */ 10467 queue_idx = queue_id % 10; 10468 if (queue_idx > BNXT_MAX_QUEUE) { 10469 bp->pri2cos_valid = false; 10470 hwrm_req_drop(bp, req_qc); 10471 return rc; 10472 } 10473 for (j = 0; j < bp->max_q; j++) { 10474 if (bp->q_ids[j] == queue_id) 10475 bp->pri2cos_idx[i] = queue_idx; 10476 } 10477 } 10478 bp->pri2cos_valid = true; 10479 } 10480 hwrm_req_drop(bp, req_qc); 10481 10482 return rc; 10483 } 10484 10485 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 10486 { 10487 bnxt_hwrm_tunnel_dst_port_free(bp, 10488 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 10489 bnxt_hwrm_tunnel_dst_port_free(bp, 10490 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 10491 } 10492 10493 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 10494 { 10495 int rc, i; 10496 u32 tpa_flags = 0; 10497 10498 if (set_tpa) 10499 tpa_flags = bp->flags & BNXT_FLAG_TPA; 10500 else if (BNXT_NO_FW_ACCESS(bp)) 10501 return 0; 10502 for (i = 0; i < bp->nr_vnics; i++) { 10503 rc = bnxt_hwrm_vnic_set_tpa(bp, &bp->vnic_info[i], tpa_flags); 10504 if (rc) { 10505 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 10506 i, rc); 10507 return rc; 10508 } 10509 } 10510 return 0; 10511 } 10512 10513 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 10514 { 10515 int i; 10516 10517 for (i = 0; i < bp->nr_vnics; i++) 10518 bnxt_hwrm_vnic_set_rss(bp, &bp->vnic_info[i], false); 10519 } 10520 10521 static void bnxt_clear_vnic(struct bnxt *bp) 10522 { 10523 if (!bp->vnic_info) 10524 return; 10525 10526 bnxt_hwrm_clear_vnic_filter(bp); 10527 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) { 10528 /* clear all RSS setting before free vnic ctx */ 10529 bnxt_hwrm_clear_vnic_rss(bp); 10530 bnxt_hwrm_vnic_ctx_free(bp); 10531 } 10532 /* before free the vnic, undo the vnic tpa settings */ 10533 if (bp->flags & BNXT_FLAG_TPA) 10534 bnxt_set_tpa(bp, false); 10535 bnxt_hwrm_vnic_free(bp); 10536 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10537 bnxt_hwrm_vnic_ctx_free(bp); 10538 } 10539 10540 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 10541 bool irq_re_init) 10542 { 10543 bnxt_clear_vnic(bp); 10544 bnxt_hwrm_ring_free(bp, close_path); 10545 bnxt_hwrm_ring_grp_free(bp); 10546 if (irq_re_init) { 10547 bnxt_hwrm_stat_ctx_free(bp); 10548 bnxt_hwrm_free_tunnel_ports(bp); 10549 } 10550 } 10551 10552 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 10553 { 10554 struct hwrm_func_cfg_input *req; 10555 u8 evb_mode; 10556 int rc; 10557 10558 if (br_mode == BRIDGE_MODE_VEB) 10559 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 10560 else if (br_mode == BRIDGE_MODE_VEPA) 10561 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 10562 else 10563 return -EINVAL; 10564 10565 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 10566 if (rc) 10567 return rc; 10568 10569 req->fid = cpu_to_le16(0xffff); 10570 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 10571 req->evb_mode = evb_mode; 10572 return hwrm_req_send(bp, req); 10573 } 10574 10575 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 10576 { 10577 struct hwrm_func_cfg_input *req; 10578 int rc; 10579 10580 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 10581 return 0; 10582 10583 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 10584 if (rc) 10585 return rc; 10586 10587 req->fid = cpu_to_le16(0xffff); 10588 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 10589 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 10590 if (size == 128) 10591 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 10592 10593 return hwrm_req_send(bp, req); 10594 } 10595 10596 static int __bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10597 { 10598 int rc; 10599 10600 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 10601 goto skip_rss_ctx; 10602 10603 /* allocate context for vnic */ 10604 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 0); 10605 if (rc) { 10606 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 10607 vnic->vnic_id, rc); 10608 goto vnic_setup_err; 10609 } 10610 bp->rsscos_nr_ctxs++; 10611 10612 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10613 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 1); 10614 if (rc) { 10615 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 10616 vnic->vnic_id, rc); 10617 goto vnic_setup_err; 10618 } 10619 bp->rsscos_nr_ctxs++; 10620 } 10621 10622 skip_rss_ctx: 10623 /* configure default vnic, ring grp */ 10624 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10625 if (rc) { 10626 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 10627 vnic->vnic_id, rc); 10628 goto vnic_setup_err; 10629 } 10630 10631 /* Enable RSS hashing on vnic */ 10632 rc = bnxt_hwrm_vnic_set_rss(bp, vnic, true); 10633 if (rc) { 10634 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 10635 vnic->vnic_id, rc); 10636 goto vnic_setup_err; 10637 } 10638 10639 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 10640 rc = bnxt_hwrm_vnic_set_hds(bp, vnic); 10641 if (rc) { 10642 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 10643 vnic->vnic_id, rc); 10644 } 10645 } 10646 10647 vnic_setup_err: 10648 return rc; 10649 } 10650 10651 int bnxt_hwrm_vnic_update(struct bnxt *bp, struct bnxt_vnic_info *vnic, 10652 u8 valid) 10653 { 10654 struct hwrm_vnic_update_input *req; 10655 int rc; 10656 10657 rc = hwrm_req_init(bp, req, HWRM_VNIC_UPDATE); 10658 if (rc) 10659 return rc; 10660 10661 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 10662 10663 if (valid & VNIC_UPDATE_REQ_ENABLES_MRU_VALID) 10664 req->mru = cpu_to_le16(vnic->mru); 10665 10666 req->enables = cpu_to_le32(valid); 10667 10668 return hwrm_req_send(bp, req); 10669 } 10670 10671 int bnxt_hwrm_vnic_rss_cfg_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10672 { 10673 int rc; 10674 10675 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic, true); 10676 if (rc) { 10677 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 10678 vnic->vnic_id, rc); 10679 return rc; 10680 } 10681 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10682 if (rc) 10683 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 10684 vnic->vnic_id, rc); 10685 return rc; 10686 } 10687 10688 int __bnxt_setup_vnic_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10689 { 10690 int rc, i, nr_ctxs; 10691 10692 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 10693 for (i = 0; i < nr_ctxs; i++) { 10694 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, i); 10695 if (rc) { 10696 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 10697 vnic->vnic_id, i, rc); 10698 break; 10699 } 10700 bp->rsscos_nr_ctxs++; 10701 } 10702 if (i < nr_ctxs) 10703 return -ENOMEM; 10704 10705 rc = bnxt_hwrm_vnic_rss_cfg_p5(bp, vnic); 10706 if (rc) 10707 return rc; 10708 10709 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 10710 rc = bnxt_hwrm_vnic_set_hds(bp, vnic); 10711 if (rc) { 10712 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 10713 vnic->vnic_id, rc); 10714 } 10715 } 10716 return rc; 10717 } 10718 10719 static int bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10720 { 10721 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10722 return __bnxt_setup_vnic_p5(bp, vnic); 10723 else 10724 return __bnxt_setup_vnic(bp, vnic); 10725 } 10726 10727 static int bnxt_alloc_and_setup_vnic(struct bnxt *bp, 10728 struct bnxt_vnic_info *vnic, 10729 u16 start_rx_ring_idx, int rx_rings) 10730 { 10731 int rc; 10732 10733 rc = bnxt_hwrm_vnic_alloc(bp, vnic, start_rx_ring_idx, rx_rings); 10734 if (rc) { 10735 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 10736 vnic->vnic_id, rc); 10737 return rc; 10738 } 10739 return bnxt_setup_vnic(bp, vnic); 10740 } 10741 10742 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 10743 { 10744 struct bnxt_vnic_info *vnic; 10745 int i, rc = 0; 10746 10747 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 10748 vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE]; 10749 return bnxt_alloc_and_setup_vnic(bp, vnic, 0, bp->rx_nr_rings); 10750 } 10751 10752 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10753 return 0; 10754 10755 for (i = 0; i < bp->rx_nr_rings; i++) { 10756 u16 vnic_id = i + 1; 10757 u16 ring_id = i; 10758 10759 if (vnic_id >= bp->nr_vnics) 10760 break; 10761 10762 vnic = &bp->vnic_info[vnic_id]; 10763 vnic->flags |= BNXT_VNIC_RFS_FLAG; 10764 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 10765 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 10766 if (bnxt_alloc_and_setup_vnic(bp, &bp->vnic_info[vnic_id], ring_id, 1)) 10767 break; 10768 } 10769 return rc; 10770 } 10771 10772 void bnxt_del_one_rss_ctx(struct bnxt *bp, struct bnxt_rss_ctx *rss_ctx, 10773 bool all) 10774 { 10775 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10776 struct bnxt_filter_base *usr_fltr, *tmp; 10777 struct bnxt_ntuple_filter *ntp_fltr; 10778 int i; 10779 10780 if (netif_running(bp->dev)) { 10781 bnxt_hwrm_vnic_free_one(bp, &rss_ctx->vnic); 10782 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) { 10783 if (vnic->fw_rss_cos_lb_ctx[i] != INVALID_HW_RING_ID) 10784 bnxt_hwrm_vnic_ctx_free_one(bp, vnic, i); 10785 } 10786 } 10787 if (!all) 10788 return; 10789 10790 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) { 10791 if ((usr_fltr->flags & BNXT_ACT_RSS_CTX) && 10792 usr_fltr->fw_vnic_id == rss_ctx->index) { 10793 ntp_fltr = container_of(usr_fltr, 10794 struct bnxt_ntuple_filter, 10795 base); 10796 bnxt_hwrm_cfa_ntuple_filter_free(bp, ntp_fltr); 10797 bnxt_del_ntp_filter(bp, ntp_fltr); 10798 bnxt_del_one_usr_fltr(bp, usr_fltr); 10799 } 10800 } 10801 10802 if (vnic->rss_table) 10803 dma_free_coherent(&bp->pdev->dev, vnic->rss_table_size, 10804 vnic->rss_table, 10805 vnic->rss_table_dma_addr); 10806 bp->num_rss_ctx--; 10807 } 10808 10809 static bool bnxt_vnic_has_rx_ring(struct bnxt *bp, struct bnxt_vnic_info *vnic, 10810 int rxr_id) 10811 { 10812 u16 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 10813 int i, vnic_rx; 10814 10815 /* Ntuple VNIC always has all the rx rings. Any change of ring id 10816 * must be updated because a future filter may use it. 10817 */ 10818 if (vnic->flags & BNXT_VNIC_NTUPLE_FLAG) 10819 return true; 10820 10821 for (i = 0; i < tbl_size; i++) { 10822 if (vnic->flags & BNXT_VNIC_RSSCTX_FLAG) 10823 vnic_rx = ethtool_rxfh_context_indir(vnic->rss_ctx)[i]; 10824 else 10825 vnic_rx = bp->rss_indir_tbl[i]; 10826 10827 if (rxr_id == vnic_rx) 10828 return true; 10829 } 10830 10831 return false; 10832 } 10833 10834 static int bnxt_set_vnic_mru_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic, 10835 u16 mru, int rxr_id) 10836 { 10837 int rc; 10838 10839 if (!bnxt_vnic_has_rx_ring(bp, vnic, rxr_id)) 10840 return 0; 10841 10842 if (mru) { 10843 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic, true); 10844 if (rc) { 10845 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 10846 vnic->vnic_id, rc); 10847 return rc; 10848 } 10849 } 10850 vnic->mru = mru; 10851 bnxt_hwrm_vnic_update(bp, vnic, 10852 VNIC_UPDATE_REQ_ENABLES_MRU_VALID); 10853 10854 return 0; 10855 } 10856 10857 static int bnxt_set_rss_ctx_vnic_mru(struct bnxt *bp, u16 mru, int rxr_id) 10858 { 10859 struct ethtool_rxfh_context *ctx; 10860 unsigned long context; 10861 int rc; 10862 10863 xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) { 10864 struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx); 10865 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10866 10867 rc = bnxt_set_vnic_mru_p5(bp, vnic, mru, rxr_id); 10868 if (rc) 10869 return rc; 10870 } 10871 10872 return 0; 10873 } 10874 10875 static void bnxt_hwrm_realloc_rss_ctx_vnic(struct bnxt *bp) 10876 { 10877 bool set_tpa = !!(bp->flags & BNXT_FLAG_TPA); 10878 struct ethtool_rxfh_context *ctx; 10879 unsigned long context; 10880 10881 xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) { 10882 struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx); 10883 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10884 10885 if (bnxt_hwrm_vnic_alloc(bp, vnic, 0, bp->rx_nr_rings) || 10886 bnxt_hwrm_vnic_set_tpa(bp, vnic, set_tpa) || 10887 __bnxt_setup_vnic_p5(bp, vnic)) { 10888 netdev_err(bp->dev, "Failed to restore RSS ctx %d\n", 10889 rss_ctx->index); 10890 bnxt_del_one_rss_ctx(bp, rss_ctx, true); 10891 ethtool_rxfh_context_lost(bp->dev, rss_ctx->index); 10892 } 10893 } 10894 } 10895 10896 static void bnxt_clear_rss_ctxs(struct bnxt *bp) 10897 { 10898 struct ethtool_rxfh_context *ctx; 10899 unsigned long context; 10900 10901 xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) { 10902 struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx); 10903 10904 bnxt_del_one_rss_ctx(bp, rss_ctx, false); 10905 } 10906 } 10907 10908 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 10909 static bool bnxt_promisc_ok(struct bnxt *bp) 10910 { 10911 #ifdef CONFIG_BNXT_SRIOV 10912 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 10913 return false; 10914 #endif 10915 return true; 10916 } 10917 10918 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 10919 { 10920 struct bnxt_vnic_info *vnic = &bp->vnic_info[1]; 10921 unsigned int rc = 0; 10922 10923 rc = bnxt_hwrm_vnic_alloc(bp, vnic, bp->rx_nr_rings - 1, 1); 10924 if (rc) { 10925 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 10926 rc); 10927 return rc; 10928 } 10929 10930 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10931 if (rc) { 10932 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 10933 rc); 10934 return rc; 10935 } 10936 return rc; 10937 } 10938 10939 static int bnxt_cfg_rx_mode(struct bnxt *); 10940 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 10941 10942 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 10943 { 10944 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 10945 int rc = 0; 10946 unsigned int rx_nr_rings = bp->rx_nr_rings; 10947 10948 if (irq_re_init) { 10949 rc = bnxt_hwrm_stat_ctx_alloc(bp); 10950 if (rc) { 10951 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 10952 rc); 10953 goto err_out; 10954 } 10955 } 10956 10957 rc = bnxt_hwrm_ring_alloc(bp); 10958 if (rc) { 10959 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 10960 goto err_out; 10961 } 10962 10963 rc = bnxt_hwrm_ring_grp_alloc(bp); 10964 if (rc) { 10965 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 10966 goto err_out; 10967 } 10968 10969 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 10970 rx_nr_rings--; 10971 10972 /* default vnic 0 */ 10973 rc = bnxt_hwrm_vnic_alloc(bp, vnic, 0, rx_nr_rings); 10974 if (rc) { 10975 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 10976 goto err_out; 10977 } 10978 10979 if (BNXT_VF(bp)) 10980 bnxt_hwrm_func_qcfg(bp); 10981 10982 rc = bnxt_setup_vnic(bp, vnic); 10983 if (rc) 10984 goto err_out; 10985 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 10986 bnxt_hwrm_update_rss_hash_cfg(bp); 10987 10988 if (bp->flags & BNXT_FLAG_RFS) { 10989 rc = bnxt_alloc_rfs_vnics(bp); 10990 if (rc) 10991 goto err_out; 10992 } 10993 10994 if (bp->flags & BNXT_FLAG_TPA) { 10995 rc = bnxt_set_tpa(bp, true); 10996 if (rc) 10997 goto err_out; 10998 } 10999 11000 if (BNXT_VF(bp)) 11001 bnxt_update_vf_mac(bp); 11002 11003 /* Filter for default vnic 0 */ 11004 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 11005 if (rc) { 11006 if (BNXT_VF(bp) && rc == -ENODEV) 11007 netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n"); 11008 else 11009 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 11010 goto err_out; 11011 } 11012 vnic->uc_filter_count = 1; 11013 11014 vnic->rx_mask = 0; 11015 if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state)) 11016 goto skip_rx_mask; 11017 11018 if (bp->dev->flags & IFF_BROADCAST) 11019 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 11020 11021 if (bp->dev->flags & IFF_PROMISC) 11022 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 11023 11024 if (bp->dev->flags & IFF_ALLMULTI) { 11025 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 11026 vnic->mc_list_count = 0; 11027 } else if (bp->dev->flags & IFF_MULTICAST) { 11028 u32 mask = 0; 11029 11030 bnxt_mc_list_updated(bp, &mask); 11031 vnic->rx_mask |= mask; 11032 } 11033 11034 rc = bnxt_cfg_rx_mode(bp); 11035 if (rc) 11036 goto err_out; 11037 11038 skip_rx_mask: 11039 rc = bnxt_hwrm_set_coal(bp); 11040 if (rc) 11041 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 11042 rc); 11043 11044 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 11045 rc = bnxt_setup_nitroa0_vnic(bp); 11046 if (rc) 11047 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 11048 rc); 11049 } 11050 11051 if (BNXT_VF(bp)) { 11052 bnxt_hwrm_func_qcfg(bp); 11053 netdev_update_features(bp->dev); 11054 } 11055 11056 return 0; 11057 11058 err_out: 11059 bnxt_hwrm_resource_free(bp, 0, true); 11060 11061 return rc; 11062 } 11063 11064 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 11065 { 11066 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 11067 return 0; 11068 } 11069 11070 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 11071 { 11072 bnxt_init_cp_rings(bp); 11073 bnxt_init_rx_rings(bp); 11074 bnxt_init_tx_rings(bp); 11075 bnxt_init_ring_grps(bp, irq_re_init); 11076 bnxt_init_vnics(bp); 11077 11078 return bnxt_init_chip(bp, irq_re_init); 11079 } 11080 11081 static int bnxt_set_real_num_queues(struct bnxt *bp) 11082 { 11083 int rc; 11084 struct net_device *dev = bp->dev; 11085 11086 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 11087 bp->tx_nr_rings_xdp); 11088 if (rc) 11089 return rc; 11090 11091 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 11092 if (rc) 11093 return rc; 11094 11095 #ifdef CONFIG_RFS_ACCEL 11096 if (bp->flags & BNXT_FLAG_RFS) 11097 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 11098 #endif 11099 11100 return rc; 11101 } 11102 11103 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 11104 bool shared) 11105 { 11106 int _rx = *rx, _tx = *tx; 11107 11108 if (shared) { 11109 *rx = min_t(int, _rx, max); 11110 *tx = min_t(int, _tx, max); 11111 } else { 11112 if (max < 2) 11113 return -ENOMEM; 11114 11115 while (_rx + _tx > max) { 11116 if (_rx > _tx && _rx > 1) 11117 _rx--; 11118 else if (_tx > 1) 11119 _tx--; 11120 } 11121 *rx = _rx; 11122 *tx = _tx; 11123 } 11124 return 0; 11125 } 11126 11127 static int __bnxt_num_tx_to_cp(struct bnxt *bp, int tx, int tx_sets, int tx_xdp) 11128 { 11129 return (tx - tx_xdp) / tx_sets + tx_xdp; 11130 } 11131 11132 int bnxt_num_tx_to_cp(struct bnxt *bp, int tx) 11133 { 11134 int tcs = bp->num_tc; 11135 11136 if (!tcs) 11137 tcs = 1; 11138 return __bnxt_num_tx_to_cp(bp, tx, tcs, bp->tx_nr_rings_xdp); 11139 } 11140 11141 static int bnxt_num_cp_to_tx(struct bnxt *bp, int tx_cp) 11142 { 11143 int tcs = bp->num_tc; 11144 11145 return (tx_cp - bp->tx_nr_rings_xdp) * tcs + 11146 bp->tx_nr_rings_xdp; 11147 } 11148 11149 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 11150 bool sh) 11151 { 11152 int tx_cp = bnxt_num_tx_to_cp(bp, *tx); 11153 11154 if (tx_cp != *tx) { 11155 int tx_saved = tx_cp, rc; 11156 11157 rc = __bnxt_trim_rings(bp, rx, &tx_cp, max, sh); 11158 if (rc) 11159 return rc; 11160 if (tx_cp != tx_saved) 11161 *tx = bnxt_num_cp_to_tx(bp, tx_cp); 11162 return 0; 11163 } 11164 return __bnxt_trim_rings(bp, rx, tx, max, sh); 11165 } 11166 11167 static void bnxt_setup_msix(struct bnxt *bp) 11168 { 11169 const int len = sizeof(bp->irq_tbl[0].name); 11170 struct net_device *dev = bp->dev; 11171 int tcs, i; 11172 11173 tcs = bp->num_tc; 11174 if (tcs) { 11175 int i, off, count; 11176 11177 for (i = 0; i < tcs; i++) { 11178 count = bp->tx_nr_rings_per_tc; 11179 off = BNXT_TC_TO_RING_BASE(bp, i); 11180 netdev_set_tc_queue(dev, i, count, off); 11181 } 11182 } 11183 11184 for (i = 0; i < bp->cp_nr_rings; i++) { 11185 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 11186 char *attr; 11187 11188 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 11189 attr = "TxRx"; 11190 else if (i < bp->rx_nr_rings) 11191 attr = "rx"; 11192 else 11193 attr = "tx"; 11194 11195 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 11196 attr, i); 11197 bp->irq_tbl[map_idx].handler = bnxt_msix; 11198 } 11199 } 11200 11201 static int bnxt_init_int_mode(struct bnxt *bp); 11202 11203 static int bnxt_change_msix(struct bnxt *bp, int total) 11204 { 11205 struct msi_map map; 11206 int i; 11207 11208 /* add MSIX to the end if needed */ 11209 for (i = bp->total_irqs; i < total; i++) { 11210 map = pci_msix_alloc_irq_at(bp->pdev, i, NULL); 11211 if (map.index < 0) 11212 return bp->total_irqs; 11213 bp->irq_tbl[i].vector = map.virq; 11214 bp->total_irqs++; 11215 } 11216 11217 /* trim MSIX from the end if needed */ 11218 for (i = bp->total_irqs; i > total; i--) { 11219 map.index = i - 1; 11220 map.virq = bp->irq_tbl[i - 1].vector; 11221 pci_msix_free_irq(bp->pdev, map); 11222 bp->total_irqs--; 11223 } 11224 return bp->total_irqs; 11225 } 11226 11227 static int bnxt_setup_int_mode(struct bnxt *bp) 11228 { 11229 int rc; 11230 11231 if (!bp->irq_tbl) { 11232 rc = bnxt_init_int_mode(bp); 11233 if (rc || !bp->irq_tbl) 11234 return rc ?: -ENODEV; 11235 } 11236 11237 bnxt_setup_msix(bp); 11238 11239 rc = bnxt_set_real_num_queues(bp); 11240 return rc; 11241 } 11242 11243 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 11244 { 11245 return bp->hw_resc.max_rsscos_ctxs; 11246 } 11247 11248 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 11249 { 11250 return bp->hw_resc.max_vnics; 11251 } 11252 11253 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 11254 { 11255 return bp->hw_resc.max_stat_ctxs; 11256 } 11257 11258 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 11259 { 11260 return bp->hw_resc.max_cp_rings; 11261 } 11262 11263 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 11264 { 11265 unsigned int cp = bp->hw_resc.max_cp_rings; 11266 11267 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 11268 cp -= bnxt_get_ulp_msix_num(bp); 11269 11270 return cp; 11271 } 11272 11273 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 11274 { 11275 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 11276 11277 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 11278 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 11279 11280 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 11281 } 11282 11283 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 11284 { 11285 bp->hw_resc.max_irqs = max_irqs; 11286 } 11287 11288 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 11289 { 11290 unsigned int cp; 11291 11292 cp = bnxt_get_max_func_cp_rings_for_en(bp); 11293 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 11294 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 11295 else 11296 return cp - bp->cp_nr_rings; 11297 } 11298 11299 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 11300 { 11301 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 11302 } 11303 11304 static int bnxt_get_avail_msix(struct bnxt *bp, int num) 11305 { 11306 int max_irq = bnxt_get_max_func_irqs(bp); 11307 int total_req = bp->cp_nr_rings + num; 11308 11309 if (max_irq < total_req) { 11310 num = max_irq - bp->cp_nr_rings; 11311 if (num <= 0) 11312 return 0; 11313 } 11314 return num; 11315 } 11316 11317 static int bnxt_get_num_msix(struct bnxt *bp) 11318 { 11319 if (!BNXT_NEW_RM(bp)) 11320 return bnxt_get_max_func_irqs(bp); 11321 11322 return bnxt_nq_rings_in_use(bp); 11323 } 11324 11325 static int bnxt_init_int_mode(struct bnxt *bp) 11326 { 11327 int i, total_vecs, max, rc = 0, min = 1, ulp_msix, tx_cp, tbl_size; 11328 11329 total_vecs = bnxt_get_num_msix(bp); 11330 max = bnxt_get_max_func_irqs(bp); 11331 if (total_vecs > max) 11332 total_vecs = max; 11333 11334 if (!total_vecs) 11335 return 0; 11336 11337 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 11338 min = 2; 11339 11340 total_vecs = pci_alloc_irq_vectors(bp->pdev, min, total_vecs, 11341 PCI_IRQ_MSIX); 11342 ulp_msix = bnxt_get_ulp_msix_num(bp); 11343 if (total_vecs < 0 || total_vecs < ulp_msix) { 11344 rc = -ENODEV; 11345 goto msix_setup_exit; 11346 } 11347 11348 tbl_size = total_vecs; 11349 if (pci_msix_can_alloc_dyn(bp->pdev)) 11350 tbl_size = max; 11351 bp->irq_tbl = kcalloc(tbl_size, sizeof(*bp->irq_tbl), GFP_KERNEL); 11352 if (bp->irq_tbl) { 11353 for (i = 0; i < total_vecs; i++) 11354 bp->irq_tbl[i].vector = pci_irq_vector(bp->pdev, i); 11355 11356 bp->total_irqs = total_vecs; 11357 /* Trim rings based upon num of vectors allocated */ 11358 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 11359 total_vecs - ulp_msix, min == 1); 11360 if (rc) 11361 goto msix_setup_exit; 11362 11363 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 11364 bp->cp_nr_rings = (min == 1) ? 11365 max_t(int, tx_cp, bp->rx_nr_rings) : 11366 tx_cp + bp->rx_nr_rings; 11367 11368 } else { 11369 rc = -ENOMEM; 11370 goto msix_setup_exit; 11371 } 11372 return 0; 11373 11374 msix_setup_exit: 11375 netdev_err(bp->dev, "bnxt_init_int_mode err: %x\n", rc); 11376 kfree(bp->irq_tbl); 11377 bp->irq_tbl = NULL; 11378 pci_free_irq_vectors(bp->pdev); 11379 return rc; 11380 } 11381 11382 static void bnxt_clear_int_mode(struct bnxt *bp) 11383 { 11384 pci_free_irq_vectors(bp->pdev); 11385 11386 kfree(bp->irq_tbl); 11387 bp->irq_tbl = NULL; 11388 } 11389 11390 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 11391 { 11392 bool irq_cleared = false; 11393 bool irq_change = false; 11394 int tcs = bp->num_tc; 11395 int irqs_required; 11396 int rc; 11397 11398 if (!bnxt_need_reserve_rings(bp)) 11399 return 0; 11400 11401 if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) { 11402 int ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want); 11403 11404 if (ulp_msix > bp->ulp_num_msix_want) 11405 ulp_msix = bp->ulp_num_msix_want; 11406 irqs_required = ulp_msix + bp->cp_nr_rings; 11407 } else { 11408 irqs_required = bnxt_get_num_msix(bp); 11409 } 11410 11411 if (irq_re_init && BNXT_NEW_RM(bp) && irqs_required != bp->total_irqs) { 11412 irq_change = true; 11413 if (!pci_msix_can_alloc_dyn(bp->pdev)) { 11414 bnxt_ulp_irq_stop(bp); 11415 bnxt_clear_int_mode(bp); 11416 irq_cleared = true; 11417 } 11418 } 11419 rc = __bnxt_reserve_rings(bp); 11420 if (irq_cleared) { 11421 if (!rc) 11422 rc = bnxt_init_int_mode(bp); 11423 bnxt_ulp_irq_restart(bp, rc); 11424 } else if (irq_change && !rc) { 11425 if (bnxt_change_msix(bp, irqs_required) != irqs_required) 11426 rc = -ENOSPC; 11427 } 11428 if (rc) { 11429 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 11430 return rc; 11431 } 11432 if (tcs && (bp->tx_nr_rings_per_tc * tcs != 11433 bp->tx_nr_rings - bp->tx_nr_rings_xdp)) { 11434 netdev_err(bp->dev, "tx ring reservation failure\n"); 11435 netdev_reset_tc(bp->dev); 11436 bp->num_tc = 0; 11437 if (bp->tx_nr_rings_xdp) 11438 bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp; 11439 else 11440 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 11441 return -ENOMEM; 11442 } 11443 return 0; 11444 } 11445 11446 static void bnxt_tx_queue_stop(struct bnxt *bp, int idx) 11447 { 11448 struct bnxt_tx_ring_info *txr; 11449 struct netdev_queue *txq; 11450 struct bnxt_napi *bnapi; 11451 int i; 11452 11453 bnapi = bp->bnapi[idx]; 11454 bnxt_for_each_napi_tx(i, bnapi, txr) { 11455 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 11456 synchronize_net(); 11457 11458 if (!(bnapi->flags & BNXT_NAPI_FLAG_XDP)) { 11459 txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 11460 if (txq) { 11461 __netif_tx_lock_bh(txq); 11462 netif_tx_stop_queue(txq); 11463 __netif_tx_unlock_bh(txq); 11464 } 11465 } 11466 11467 if (!bp->tph_mode) 11468 continue; 11469 11470 bnxt_hwrm_tx_ring_free(bp, txr, true); 11471 bnxt_hwrm_cp_ring_free(bp, txr->tx_cpr); 11472 bnxt_free_one_tx_ring_skbs(bp, txr, txr->txq_index); 11473 bnxt_clear_one_cp_ring(bp, txr->tx_cpr); 11474 } 11475 } 11476 11477 static int bnxt_tx_queue_start(struct bnxt *bp, int idx) 11478 { 11479 struct bnxt_tx_ring_info *txr; 11480 struct netdev_queue *txq; 11481 struct bnxt_napi *bnapi; 11482 int rc, i; 11483 11484 bnapi = bp->bnapi[idx]; 11485 /* All rings have been reserved and previously allocated. 11486 * Reallocating with the same parameters should never fail. 11487 */ 11488 bnxt_for_each_napi_tx(i, bnapi, txr) { 11489 if (!bp->tph_mode) 11490 goto start_tx; 11491 11492 rc = bnxt_hwrm_cp_ring_alloc_p5(bp, txr->tx_cpr); 11493 if (rc) 11494 return rc; 11495 11496 rc = bnxt_hwrm_tx_ring_alloc(bp, txr, false); 11497 if (rc) 11498 return rc; 11499 11500 txr->tx_prod = 0; 11501 txr->tx_cons = 0; 11502 txr->tx_hw_cons = 0; 11503 start_tx: 11504 WRITE_ONCE(txr->dev_state, 0); 11505 synchronize_net(); 11506 11507 if (bnapi->flags & BNXT_NAPI_FLAG_XDP) 11508 continue; 11509 11510 txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 11511 if (txq) 11512 netif_tx_start_queue(txq); 11513 } 11514 11515 return 0; 11516 } 11517 11518 static void bnxt_irq_affinity_notify(struct irq_affinity_notify *notify, 11519 const cpumask_t *mask) 11520 { 11521 struct bnxt_irq *irq; 11522 u16 tag; 11523 int err; 11524 11525 irq = container_of(notify, struct bnxt_irq, affinity_notify); 11526 11527 if (!irq->bp->tph_mode) 11528 return; 11529 11530 cpumask_copy(irq->cpu_mask, mask); 11531 11532 if (irq->ring_nr >= irq->bp->rx_nr_rings) 11533 return; 11534 11535 if (pcie_tph_get_cpu_st(irq->bp->pdev, TPH_MEM_TYPE_VM, 11536 cpumask_first(irq->cpu_mask), &tag)) 11537 return; 11538 11539 if (pcie_tph_set_st_entry(irq->bp->pdev, irq->msix_nr, tag)) 11540 return; 11541 11542 netdev_lock(irq->bp->dev); 11543 if (netif_running(irq->bp->dev)) { 11544 err = netdev_rx_queue_restart(irq->bp->dev, irq->ring_nr); 11545 if (err) 11546 netdev_err(irq->bp->dev, 11547 "RX queue restart failed: err=%d\n", err); 11548 } 11549 netdev_unlock(irq->bp->dev); 11550 } 11551 11552 static void bnxt_irq_affinity_release(struct kref *ref) 11553 { 11554 struct irq_affinity_notify *notify = 11555 container_of(ref, struct irq_affinity_notify, kref); 11556 struct bnxt_irq *irq; 11557 11558 irq = container_of(notify, struct bnxt_irq, affinity_notify); 11559 11560 if (!irq->bp->tph_mode) 11561 return; 11562 11563 if (pcie_tph_set_st_entry(irq->bp->pdev, irq->msix_nr, 0)) { 11564 netdev_err(irq->bp->dev, 11565 "Setting ST=0 for MSIX entry %d failed\n", 11566 irq->msix_nr); 11567 return; 11568 } 11569 } 11570 11571 static void bnxt_release_irq_notifier(struct bnxt_irq *irq) 11572 { 11573 irq_set_affinity_notifier(irq->vector, NULL); 11574 } 11575 11576 static void bnxt_register_irq_notifier(struct bnxt *bp, struct bnxt_irq *irq) 11577 { 11578 struct irq_affinity_notify *notify; 11579 11580 irq->bp = bp; 11581 11582 /* Nothing to do if TPH is not enabled */ 11583 if (!bp->tph_mode) 11584 return; 11585 11586 /* Register IRQ affinity notifier */ 11587 notify = &irq->affinity_notify; 11588 notify->irq = irq->vector; 11589 notify->notify = bnxt_irq_affinity_notify; 11590 notify->release = bnxt_irq_affinity_release; 11591 11592 irq_set_affinity_notifier(irq->vector, notify); 11593 } 11594 11595 static void bnxt_free_irq(struct bnxt *bp) 11596 { 11597 struct bnxt_irq *irq; 11598 int i; 11599 11600 #ifdef CONFIG_RFS_ACCEL 11601 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 11602 bp->dev->rx_cpu_rmap = NULL; 11603 #endif 11604 if (!bp->irq_tbl || !bp->bnapi) 11605 return; 11606 11607 for (i = 0; i < bp->cp_nr_rings; i++) { 11608 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 11609 11610 irq = &bp->irq_tbl[map_idx]; 11611 if (irq->requested) { 11612 if (irq->have_cpumask) { 11613 irq_update_affinity_hint(irq->vector, NULL); 11614 free_cpumask_var(irq->cpu_mask); 11615 irq->have_cpumask = 0; 11616 } 11617 11618 bnxt_release_irq_notifier(irq); 11619 11620 free_irq(irq->vector, bp->bnapi[i]); 11621 } 11622 11623 irq->requested = 0; 11624 } 11625 11626 /* Disable TPH support */ 11627 pcie_disable_tph(bp->pdev); 11628 bp->tph_mode = 0; 11629 } 11630 11631 static int bnxt_request_irq(struct bnxt *bp) 11632 { 11633 struct cpu_rmap *rmap = NULL; 11634 int i, j, rc = 0; 11635 unsigned long flags = 0; 11636 11637 rc = bnxt_setup_int_mode(bp); 11638 if (rc) { 11639 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 11640 rc); 11641 return rc; 11642 } 11643 #ifdef CONFIG_RFS_ACCEL 11644 rmap = bp->dev->rx_cpu_rmap; 11645 #endif 11646 11647 /* Enable TPH support as part of IRQ request */ 11648 rc = pcie_enable_tph(bp->pdev, PCI_TPH_ST_IV_MODE); 11649 if (!rc) 11650 bp->tph_mode = PCI_TPH_ST_IV_MODE; 11651 11652 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 11653 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 11654 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 11655 11656 if (IS_ENABLED(CONFIG_RFS_ACCEL) && 11657 rmap && bp->bnapi[i]->rx_ring) { 11658 rc = irq_cpu_rmap_add(rmap, irq->vector); 11659 if (rc) 11660 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 11661 j); 11662 j++; 11663 } 11664 11665 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 11666 bp->bnapi[i]); 11667 if (rc) 11668 break; 11669 11670 netif_napi_set_irq_locked(&bp->bnapi[i]->napi, irq->vector); 11671 irq->requested = 1; 11672 11673 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 11674 int numa_node = dev_to_node(&bp->pdev->dev); 11675 u16 tag; 11676 11677 irq->have_cpumask = 1; 11678 irq->msix_nr = map_idx; 11679 irq->ring_nr = i; 11680 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 11681 irq->cpu_mask); 11682 rc = irq_update_affinity_hint(irq->vector, irq->cpu_mask); 11683 if (rc) { 11684 netdev_warn(bp->dev, 11685 "Update affinity hint failed, IRQ = %d\n", 11686 irq->vector); 11687 break; 11688 } 11689 11690 bnxt_register_irq_notifier(bp, irq); 11691 11692 /* Init ST table entry */ 11693 if (pcie_tph_get_cpu_st(irq->bp->pdev, TPH_MEM_TYPE_VM, 11694 cpumask_first(irq->cpu_mask), 11695 &tag)) 11696 continue; 11697 11698 pcie_tph_set_st_entry(irq->bp->pdev, irq->msix_nr, tag); 11699 } 11700 } 11701 return rc; 11702 } 11703 11704 static void bnxt_del_napi(struct bnxt *bp) 11705 { 11706 int i; 11707 11708 if (!bp->bnapi) 11709 return; 11710 11711 for (i = 0; i < bp->rx_nr_rings; i++) 11712 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_RX, NULL); 11713 for (i = 0; i < bp->tx_nr_rings - bp->tx_nr_rings_xdp; i++) 11714 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_TX, NULL); 11715 11716 for (i = 0; i < bp->cp_nr_rings; i++) { 11717 struct bnxt_napi *bnapi = bp->bnapi[i]; 11718 11719 __netif_napi_del_locked(&bnapi->napi); 11720 } 11721 /* We called __netif_napi_del_locked(), we need 11722 * to respect an RCU grace period before freeing napi structures. 11723 */ 11724 synchronize_net(); 11725 } 11726 11727 static void bnxt_init_napi(struct bnxt *bp) 11728 { 11729 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 11730 unsigned int cp_nr_rings = bp->cp_nr_rings; 11731 struct bnxt_napi *bnapi; 11732 int i; 11733 11734 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 11735 poll_fn = bnxt_poll_p5; 11736 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 11737 cp_nr_rings--; 11738 11739 set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 11740 11741 for (i = 0; i < cp_nr_rings; i++) { 11742 bnapi = bp->bnapi[i]; 11743 netif_napi_add_config_locked(bp->dev, &bnapi->napi, poll_fn, 11744 bnapi->index); 11745 } 11746 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 11747 bnapi = bp->bnapi[cp_nr_rings]; 11748 netif_napi_add_locked(bp->dev, &bnapi->napi, bnxt_poll_nitroa0); 11749 } 11750 } 11751 11752 static void bnxt_disable_napi(struct bnxt *bp) 11753 { 11754 int i; 11755 11756 if (!bp->bnapi || 11757 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 11758 return; 11759 11760 for (i = 0; i < bp->cp_nr_rings; i++) { 11761 struct bnxt_napi *bnapi = bp->bnapi[i]; 11762 struct bnxt_cp_ring_info *cpr; 11763 11764 cpr = &bnapi->cp_ring; 11765 if (bnapi->tx_fault) 11766 cpr->sw_stats->tx.tx_resets++; 11767 if (bnapi->in_reset) 11768 cpr->sw_stats->rx.rx_resets++; 11769 napi_disable_locked(&bnapi->napi); 11770 } 11771 } 11772 11773 static void bnxt_enable_napi(struct bnxt *bp) 11774 { 11775 int i; 11776 11777 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 11778 for (i = 0; i < bp->cp_nr_rings; i++) { 11779 struct bnxt_napi *bnapi = bp->bnapi[i]; 11780 struct bnxt_cp_ring_info *cpr; 11781 11782 bnapi->tx_fault = 0; 11783 11784 cpr = &bnapi->cp_ring; 11785 bnapi->in_reset = false; 11786 11787 if (bnapi->rx_ring) { 11788 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 11789 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 11790 } 11791 napi_enable_locked(&bnapi->napi); 11792 } 11793 } 11794 11795 void bnxt_tx_disable(struct bnxt *bp) 11796 { 11797 int i; 11798 struct bnxt_tx_ring_info *txr; 11799 11800 if (bp->tx_ring) { 11801 for (i = 0; i < bp->tx_nr_rings; i++) { 11802 txr = &bp->tx_ring[i]; 11803 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 11804 } 11805 } 11806 /* Make sure napi polls see @dev_state change */ 11807 synchronize_net(); 11808 /* Drop carrier first to prevent TX timeout */ 11809 netif_carrier_off(bp->dev); 11810 /* Stop all TX queues */ 11811 netif_tx_disable(bp->dev); 11812 } 11813 11814 void bnxt_tx_enable(struct bnxt *bp) 11815 { 11816 int i; 11817 struct bnxt_tx_ring_info *txr; 11818 11819 for (i = 0; i < bp->tx_nr_rings; i++) { 11820 txr = &bp->tx_ring[i]; 11821 WRITE_ONCE(txr->dev_state, 0); 11822 } 11823 /* Make sure napi polls see @dev_state change */ 11824 synchronize_net(); 11825 netif_tx_wake_all_queues(bp->dev); 11826 if (BNXT_LINK_IS_UP(bp)) 11827 netif_carrier_on(bp->dev); 11828 } 11829 11830 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 11831 { 11832 u8 active_fec = link_info->active_fec_sig_mode & 11833 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 11834 11835 switch (active_fec) { 11836 default: 11837 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 11838 return "None"; 11839 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 11840 return "Clause 74 BaseR"; 11841 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 11842 return "Clause 91 RS(528,514)"; 11843 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 11844 return "Clause 91 RS544_1XN"; 11845 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 11846 return "Clause 91 RS(544,514)"; 11847 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 11848 return "Clause 91 RS272_1XN"; 11849 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 11850 return "Clause 91 RS(272,257)"; 11851 } 11852 } 11853 11854 void bnxt_report_link(struct bnxt *bp) 11855 { 11856 if (BNXT_LINK_IS_UP(bp)) { 11857 const char *signal = ""; 11858 const char *flow_ctrl; 11859 const char *duplex; 11860 u32 speed; 11861 u16 fec; 11862 11863 netif_carrier_on(bp->dev); 11864 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 11865 if (speed == SPEED_UNKNOWN) { 11866 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 11867 return; 11868 } 11869 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 11870 duplex = "full"; 11871 else 11872 duplex = "half"; 11873 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 11874 flow_ctrl = "ON - receive & transmit"; 11875 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 11876 flow_ctrl = "ON - transmit"; 11877 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 11878 flow_ctrl = "ON - receive"; 11879 else 11880 flow_ctrl = "none"; 11881 if (bp->link_info.phy_qcfg_resp.option_flags & 11882 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 11883 u8 sig_mode = bp->link_info.active_fec_sig_mode & 11884 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 11885 switch (sig_mode) { 11886 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 11887 signal = "(NRZ) "; 11888 break; 11889 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 11890 signal = "(PAM4 56Gbps) "; 11891 break; 11892 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4_112: 11893 signal = "(PAM4 112Gbps) "; 11894 break; 11895 default: 11896 break; 11897 } 11898 } 11899 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 11900 speed, signal, duplex, flow_ctrl); 11901 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 11902 netdev_info(bp->dev, "EEE is %s\n", 11903 bp->eee.eee_active ? "active" : 11904 "not active"); 11905 fec = bp->link_info.fec_cfg; 11906 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 11907 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 11908 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 11909 bnxt_report_fec(&bp->link_info)); 11910 } else { 11911 netif_carrier_off(bp->dev); 11912 netdev_err(bp->dev, "NIC Link is Down\n"); 11913 } 11914 } 11915 11916 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 11917 { 11918 if (!resp->supported_speeds_auto_mode && 11919 !resp->supported_speeds_force_mode && 11920 !resp->supported_pam4_speeds_auto_mode && 11921 !resp->supported_pam4_speeds_force_mode && 11922 !resp->supported_speeds2_auto_mode && 11923 !resp->supported_speeds2_force_mode) 11924 return true; 11925 return false; 11926 } 11927 11928 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 11929 { 11930 struct bnxt_link_info *link_info = &bp->link_info; 11931 struct hwrm_port_phy_qcaps_output *resp; 11932 struct hwrm_port_phy_qcaps_input *req; 11933 int rc = 0; 11934 11935 if (bp->hwrm_spec_code < 0x10201) 11936 return 0; 11937 11938 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS); 11939 if (rc) 11940 return rc; 11941 11942 resp = hwrm_req_hold(bp, req); 11943 rc = hwrm_req_send(bp, req); 11944 if (rc) 11945 goto hwrm_phy_qcaps_exit; 11946 11947 bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8); 11948 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 11949 struct ethtool_keee *eee = &bp->eee; 11950 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 11951 11952 _bnxt_fw_to_linkmode(eee->supported, fw_speeds); 11953 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 11954 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 11955 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 11956 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 11957 } 11958 11959 if (bp->hwrm_spec_code >= 0x10a01) { 11960 if (bnxt_phy_qcaps_no_speed(resp)) { 11961 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 11962 netdev_warn(bp->dev, "Ethernet link disabled\n"); 11963 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 11964 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 11965 netdev_info(bp->dev, "Ethernet link enabled\n"); 11966 /* Phy re-enabled, reprobe the speeds */ 11967 link_info->support_auto_speeds = 0; 11968 link_info->support_pam4_auto_speeds = 0; 11969 link_info->support_auto_speeds2 = 0; 11970 } 11971 } 11972 if (resp->supported_speeds_auto_mode) 11973 link_info->support_auto_speeds = 11974 le16_to_cpu(resp->supported_speeds_auto_mode); 11975 if (resp->supported_pam4_speeds_auto_mode) 11976 link_info->support_pam4_auto_speeds = 11977 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 11978 if (resp->supported_speeds2_auto_mode) 11979 link_info->support_auto_speeds2 = 11980 le16_to_cpu(resp->supported_speeds2_auto_mode); 11981 11982 bp->port_count = resp->port_cnt; 11983 11984 hwrm_phy_qcaps_exit: 11985 hwrm_req_drop(bp, req); 11986 return rc; 11987 } 11988 11989 static void bnxt_hwrm_mac_qcaps(struct bnxt *bp) 11990 { 11991 struct hwrm_port_mac_qcaps_output *resp; 11992 struct hwrm_port_mac_qcaps_input *req; 11993 int rc; 11994 11995 if (bp->hwrm_spec_code < 0x10a03) 11996 return; 11997 11998 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_QCAPS); 11999 if (rc) 12000 return; 12001 12002 resp = hwrm_req_hold(bp, req); 12003 rc = hwrm_req_send_silent(bp, req); 12004 if (!rc) 12005 bp->mac_flags = resp->flags; 12006 hwrm_req_drop(bp, req); 12007 } 12008 12009 static bool bnxt_support_dropped(u16 advertising, u16 supported) 12010 { 12011 u16 diff = advertising ^ supported; 12012 12013 return ((supported | diff) != supported); 12014 } 12015 12016 static bool bnxt_support_speed_dropped(struct bnxt_link_info *link_info) 12017 { 12018 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 12019 12020 /* Check if any advertised speeds are no longer supported. The caller 12021 * holds the link_lock mutex, so we can modify link_info settings. 12022 */ 12023 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 12024 if (bnxt_support_dropped(link_info->advertising, 12025 link_info->support_auto_speeds2)) { 12026 link_info->advertising = link_info->support_auto_speeds2; 12027 return true; 12028 } 12029 return false; 12030 } 12031 if (bnxt_support_dropped(link_info->advertising, 12032 link_info->support_auto_speeds)) { 12033 link_info->advertising = link_info->support_auto_speeds; 12034 return true; 12035 } 12036 if (bnxt_support_dropped(link_info->advertising_pam4, 12037 link_info->support_pam4_auto_speeds)) { 12038 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 12039 return true; 12040 } 12041 return false; 12042 } 12043 12044 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 12045 { 12046 struct bnxt_link_info *link_info = &bp->link_info; 12047 struct hwrm_port_phy_qcfg_output *resp; 12048 struct hwrm_port_phy_qcfg_input *req; 12049 u8 link_state = link_info->link_state; 12050 bool support_changed; 12051 int rc; 12052 12053 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG); 12054 if (rc) 12055 return rc; 12056 12057 resp = hwrm_req_hold(bp, req); 12058 rc = hwrm_req_send(bp, req); 12059 if (rc) { 12060 hwrm_req_drop(bp, req); 12061 if (BNXT_VF(bp) && rc == -ENODEV) { 12062 netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n"); 12063 rc = 0; 12064 } 12065 return rc; 12066 } 12067 12068 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 12069 link_info->phy_link_status = resp->link; 12070 link_info->duplex = resp->duplex_cfg; 12071 if (bp->hwrm_spec_code >= 0x10800) 12072 link_info->duplex = resp->duplex_state; 12073 link_info->pause = resp->pause; 12074 link_info->auto_mode = resp->auto_mode; 12075 link_info->auto_pause_setting = resp->auto_pause; 12076 link_info->lp_pause = resp->link_partner_adv_pause; 12077 link_info->force_pause_setting = resp->force_pause; 12078 link_info->duplex_setting = resp->duplex_cfg; 12079 if (link_info->phy_link_status == BNXT_LINK_LINK) { 12080 link_info->link_speed = le16_to_cpu(resp->link_speed); 12081 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 12082 link_info->active_lanes = resp->active_lanes; 12083 } else { 12084 link_info->link_speed = 0; 12085 link_info->active_lanes = 0; 12086 } 12087 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 12088 link_info->force_pam4_link_speed = 12089 le16_to_cpu(resp->force_pam4_link_speed); 12090 link_info->force_link_speed2 = le16_to_cpu(resp->force_link_speeds2); 12091 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 12092 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 12093 link_info->support_speeds2 = le16_to_cpu(resp->support_speeds2); 12094 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 12095 link_info->auto_pam4_link_speeds = 12096 le16_to_cpu(resp->auto_pam4_link_speed_mask); 12097 link_info->auto_link_speeds2 = le16_to_cpu(resp->auto_link_speeds2); 12098 link_info->lp_auto_link_speeds = 12099 le16_to_cpu(resp->link_partner_adv_speeds); 12100 link_info->lp_auto_pam4_link_speeds = 12101 resp->link_partner_pam4_adv_speeds; 12102 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 12103 link_info->phy_ver[0] = resp->phy_maj; 12104 link_info->phy_ver[1] = resp->phy_min; 12105 link_info->phy_ver[2] = resp->phy_bld; 12106 link_info->media_type = resp->media_type; 12107 link_info->phy_type = resp->phy_type; 12108 link_info->transceiver = resp->xcvr_pkg_type; 12109 link_info->phy_addr = resp->eee_config_phy_addr & 12110 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 12111 link_info->module_status = resp->module_status; 12112 12113 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 12114 struct ethtool_keee *eee = &bp->eee; 12115 u16 fw_speeds; 12116 12117 eee->eee_active = 0; 12118 if (resp->eee_config_phy_addr & 12119 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 12120 eee->eee_active = 1; 12121 fw_speeds = le16_to_cpu( 12122 resp->link_partner_adv_eee_link_speed_mask); 12123 _bnxt_fw_to_linkmode(eee->lp_advertised, fw_speeds); 12124 } 12125 12126 /* Pull initial EEE config */ 12127 if (!chng_link_state) { 12128 if (resp->eee_config_phy_addr & 12129 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 12130 eee->eee_enabled = 1; 12131 12132 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 12133 _bnxt_fw_to_linkmode(eee->advertised, fw_speeds); 12134 12135 if (resp->eee_config_phy_addr & 12136 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 12137 __le32 tmr; 12138 12139 eee->tx_lpi_enabled = 1; 12140 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 12141 eee->tx_lpi_timer = le32_to_cpu(tmr) & 12142 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 12143 } 12144 } 12145 } 12146 12147 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 12148 if (bp->hwrm_spec_code >= 0x10504) { 12149 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 12150 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 12151 } 12152 /* TODO: need to add more logic to report VF link */ 12153 if (chng_link_state) { 12154 if (link_info->phy_link_status == BNXT_LINK_LINK) 12155 link_info->link_state = BNXT_LINK_STATE_UP; 12156 else 12157 link_info->link_state = BNXT_LINK_STATE_DOWN; 12158 if (link_state != link_info->link_state) 12159 bnxt_report_link(bp); 12160 } else { 12161 /* always link down if not require to update link state */ 12162 link_info->link_state = BNXT_LINK_STATE_DOWN; 12163 } 12164 hwrm_req_drop(bp, req); 12165 12166 if (!BNXT_PHY_CFG_ABLE(bp)) 12167 return 0; 12168 12169 support_changed = bnxt_support_speed_dropped(link_info); 12170 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 12171 bnxt_hwrm_set_link_setting(bp, true, false); 12172 return 0; 12173 } 12174 12175 static void bnxt_get_port_module_status(struct bnxt *bp) 12176 { 12177 struct bnxt_link_info *link_info = &bp->link_info; 12178 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 12179 u8 module_status; 12180 12181 if (bnxt_update_link(bp, true)) 12182 return; 12183 12184 module_status = link_info->module_status; 12185 switch (module_status) { 12186 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 12187 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 12188 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 12189 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 12190 bp->pf.port_id); 12191 if (bp->hwrm_spec_code >= 0x10201) { 12192 netdev_warn(bp->dev, "Module part number %s\n", 12193 resp->phy_vendor_partnumber); 12194 } 12195 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 12196 netdev_warn(bp->dev, "TX is disabled\n"); 12197 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 12198 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 12199 } 12200 } 12201 12202 static void 12203 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 12204 { 12205 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 12206 if (bp->hwrm_spec_code >= 0x10201) 12207 req->auto_pause = 12208 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 12209 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 12210 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 12211 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 12212 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 12213 req->enables |= 12214 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 12215 } else { 12216 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 12217 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 12218 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 12219 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 12220 req->enables |= 12221 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 12222 if (bp->hwrm_spec_code >= 0x10201) { 12223 req->auto_pause = req->force_pause; 12224 req->enables |= cpu_to_le32( 12225 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 12226 } 12227 } 12228 } 12229 12230 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 12231 { 12232 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 12233 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 12234 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 12235 req->enables |= 12236 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEEDS2_MASK); 12237 req->auto_link_speeds2_mask = cpu_to_le16(bp->link_info.advertising); 12238 } else if (bp->link_info.advertising) { 12239 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 12240 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 12241 } 12242 if (bp->link_info.advertising_pam4) { 12243 req->enables |= 12244 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 12245 req->auto_link_pam4_speed_mask = 12246 cpu_to_le16(bp->link_info.advertising_pam4); 12247 } 12248 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 12249 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 12250 } else { 12251 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 12252 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 12253 req->force_link_speeds2 = cpu_to_le16(bp->link_info.req_link_speed); 12254 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_LINK_SPEEDS2); 12255 netif_info(bp, link, bp->dev, "Forcing FW speed2: %d\n", 12256 (u32)bp->link_info.req_link_speed); 12257 } else if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 12258 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 12259 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 12260 } else { 12261 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 12262 } 12263 } 12264 12265 /* tell chimp that the setting takes effect immediately */ 12266 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 12267 } 12268 12269 int bnxt_hwrm_set_pause(struct bnxt *bp) 12270 { 12271 struct hwrm_port_phy_cfg_input *req; 12272 int rc; 12273 12274 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 12275 if (rc) 12276 return rc; 12277 12278 bnxt_hwrm_set_pause_common(bp, req); 12279 12280 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 12281 bp->link_info.force_link_chng) 12282 bnxt_hwrm_set_link_common(bp, req); 12283 12284 rc = hwrm_req_send(bp, req); 12285 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 12286 /* since changing of pause setting doesn't trigger any link 12287 * change event, the driver needs to update the current pause 12288 * result upon successfully return of the phy_cfg command 12289 */ 12290 bp->link_info.pause = 12291 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 12292 bp->link_info.auto_pause_setting = 0; 12293 if (!bp->link_info.force_link_chng) 12294 bnxt_report_link(bp); 12295 } 12296 bp->link_info.force_link_chng = false; 12297 return rc; 12298 } 12299 12300 static void bnxt_hwrm_set_eee(struct bnxt *bp, 12301 struct hwrm_port_phy_cfg_input *req) 12302 { 12303 struct ethtool_keee *eee = &bp->eee; 12304 12305 if (eee->eee_enabled) { 12306 u16 eee_speeds; 12307 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 12308 12309 if (eee->tx_lpi_enabled) 12310 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 12311 else 12312 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 12313 12314 req->flags |= cpu_to_le32(flags); 12315 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 12316 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 12317 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 12318 } else { 12319 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 12320 } 12321 } 12322 12323 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 12324 { 12325 struct hwrm_port_phy_cfg_input *req; 12326 int rc; 12327 12328 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 12329 if (rc) 12330 return rc; 12331 12332 if (set_pause) 12333 bnxt_hwrm_set_pause_common(bp, req); 12334 12335 bnxt_hwrm_set_link_common(bp, req); 12336 12337 if (set_eee) 12338 bnxt_hwrm_set_eee(bp, req); 12339 return hwrm_req_send(bp, req); 12340 } 12341 12342 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 12343 { 12344 struct hwrm_port_phy_cfg_input *req; 12345 int rc; 12346 12347 if (!BNXT_SINGLE_PF(bp)) 12348 return 0; 12349 12350 if (pci_num_vf(bp->pdev) && 12351 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 12352 return 0; 12353 12354 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 12355 if (rc) 12356 return rc; 12357 12358 req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 12359 rc = hwrm_req_send(bp, req); 12360 if (!rc) { 12361 mutex_lock(&bp->link_lock); 12362 /* Device is not obliged link down in certain scenarios, even 12363 * when forced. Setting the state unknown is consistent with 12364 * driver startup and will force link state to be reported 12365 * during subsequent open based on PORT_PHY_QCFG. 12366 */ 12367 bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN; 12368 mutex_unlock(&bp->link_lock); 12369 } 12370 return rc; 12371 } 12372 12373 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 12374 { 12375 #ifdef CONFIG_TEE_BNXT_FW 12376 int rc = tee_bnxt_fw_load(); 12377 12378 if (rc) 12379 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 12380 12381 return rc; 12382 #else 12383 netdev_err(bp->dev, "OP-TEE not supported\n"); 12384 return -ENODEV; 12385 #endif 12386 } 12387 12388 static int bnxt_try_recover_fw(struct bnxt *bp) 12389 { 12390 if (bp->fw_health && bp->fw_health->status_reliable) { 12391 int retry = 0, rc; 12392 u32 sts; 12393 12394 do { 12395 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12396 rc = bnxt_hwrm_poll(bp); 12397 if (!BNXT_FW_IS_BOOTING(sts) && 12398 !BNXT_FW_IS_RECOVERING(sts)) 12399 break; 12400 retry++; 12401 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 12402 12403 if (!BNXT_FW_IS_HEALTHY(sts)) { 12404 netdev_err(bp->dev, 12405 "Firmware not responding, status: 0x%x\n", 12406 sts); 12407 rc = -ENODEV; 12408 } 12409 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 12410 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 12411 return bnxt_fw_reset_via_optee(bp); 12412 } 12413 return rc; 12414 } 12415 12416 return -ENODEV; 12417 } 12418 12419 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset) 12420 { 12421 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 12422 12423 if (!BNXT_NEW_RM(bp)) 12424 return; /* no resource reservations required */ 12425 12426 hw_resc->resv_cp_rings = 0; 12427 hw_resc->resv_stat_ctxs = 0; 12428 hw_resc->resv_irqs = 0; 12429 hw_resc->resv_tx_rings = 0; 12430 hw_resc->resv_rx_rings = 0; 12431 hw_resc->resv_hw_ring_grps = 0; 12432 hw_resc->resv_vnics = 0; 12433 hw_resc->resv_rsscos_ctxs = 0; 12434 if (!fw_reset) { 12435 bp->tx_nr_rings = 0; 12436 bp->rx_nr_rings = 0; 12437 } 12438 } 12439 12440 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset) 12441 { 12442 int rc; 12443 12444 if (!BNXT_NEW_RM(bp)) 12445 return 0; /* no resource reservations required */ 12446 12447 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 12448 if (rc) 12449 netdev_err(bp->dev, "resc_qcaps failed\n"); 12450 12451 bnxt_clear_reservations(bp, fw_reset); 12452 12453 return rc; 12454 } 12455 12456 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 12457 { 12458 struct hwrm_func_drv_if_change_output *resp; 12459 struct hwrm_func_drv_if_change_input *req; 12460 bool resc_reinit = false; 12461 bool caps_change = false; 12462 int rc, retry = 0; 12463 bool fw_reset; 12464 u32 flags = 0; 12465 12466 fw_reset = (bp->fw_reset_state == BNXT_FW_RESET_STATE_ABORT); 12467 bp->fw_reset_state = 0; 12468 12469 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 12470 return 0; 12471 12472 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE); 12473 if (rc) 12474 return rc; 12475 12476 if (up) 12477 req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 12478 resp = hwrm_req_hold(bp, req); 12479 12480 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 12481 while (retry < BNXT_FW_IF_RETRY) { 12482 rc = hwrm_req_send(bp, req); 12483 if (rc != -EAGAIN) 12484 break; 12485 12486 msleep(50); 12487 retry++; 12488 } 12489 12490 if (rc == -EAGAIN) { 12491 hwrm_req_drop(bp, req); 12492 return rc; 12493 } else if (!rc) { 12494 flags = le32_to_cpu(resp->flags); 12495 } else if (up) { 12496 rc = bnxt_try_recover_fw(bp); 12497 fw_reset = true; 12498 } 12499 hwrm_req_drop(bp, req); 12500 if (rc) 12501 return rc; 12502 12503 if (!up) { 12504 bnxt_inv_fw_health_reg(bp); 12505 return 0; 12506 } 12507 12508 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 12509 resc_reinit = true; 12510 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE || 12511 test_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) 12512 fw_reset = true; 12513 else 12514 bnxt_remap_fw_health_regs(bp); 12515 12516 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 12517 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 12518 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12519 return -ENODEV; 12520 } 12521 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_CAPS_CHANGE) 12522 caps_change = true; 12523 12524 if (resc_reinit || fw_reset || caps_change) { 12525 if (fw_reset || caps_change) { 12526 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 12527 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 12528 bnxt_ulp_irq_stop(bp); 12529 bnxt_free_ctx_mem(bp, false); 12530 bnxt_dcb_free(bp); 12531 rc = bnxt_fw_init_one(bp); 12532 if (rc) { 12533 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 12534 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12535 return rc; 12536 } 12537 /* IRQ will be initialized later in bnxt_request_irq()*/ 12538 bnxt_clear_int_mode(bp); 12539 } 12540 rc = bnxt_cancel_reservations(bp, fw_reset); 12541 } 12542 return rc; 12543 } 12544 12545 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 12546 { 12547 struct hwrm_port_led_qcaps_output *resp; 12548 struct hwrm_port_led_qcaps_input *req; 12549 struct bnxt_pf_info *pf = &bp->pf; 12550 int rc; 12551 12552 bp->num_leds = 0; 12553 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 12554 return 0; 12555 12556 rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS); 12557 if (rc) 12558 return rc; 12559 12560 req->port_id = cpu_to_le16(pf->port_id); 12561 resp = hwrm_req_hold(bp, req); 12562 rc = hwrm_req_send(bp, req); 12563 if (rc) { 12564 hwrm_req_drop(bp, req); 12565 return rc; 12566 } 12567 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 12568 int i; 12569 12570 bp->num_leds = resp->num_leds; 12571 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 12572 bp->num_leds); 12573 for (i = 0; i < bp->num_leds; i++) { 12574 struct bnxt_led_info *led = &bp->leds[i]; 12575 __le16 caps = led->led_state_caps; 12576 12577 if (!led->led_group_id || 12578 !BNXT_LED_ALT_BLINK_CAP(caps)) { 12579 bp->num_leds = 0; 12580 break; 12581 } 12582 } 12583 } 12584 hwrm_req_drop(bp, req); 12585 return 0; 12586 } 12587 12588 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 12589 { 12590 struct hwrm_wol_filter_alloc_output *resp; 12591 struct hwrm_wol_filter_alloc_input *req; 12592 int rc; 12593 12594 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC); 12595 if (rc) 12596 return rc; 12597 12598 req->port_id = cpu_to_le16(bp->pf.port_id); 12599 req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 12600 req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 12601 memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN); 12602 12603 resp = hwrm_req_hold(bp, req); 12604 rc = hwrm_req_send(bp, req); 12605 if (!rc) 12606 bp->wol_filter_id = resp->wol_filter_id; 12607 hwrm_req_drop(bp, req); 12608 return rc; 12609 } 12610 12611 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 12612 { 12613 struct hwrm_wol_filter_free_input *req; 12614 int rc; 12615 12616 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE); 12617 if (rc) 12618 return rc; 12619 12620 req->port_id = cpu_to_le16(bp->pf.port_id); 12621 req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 12622 req->wol_filter_id = bp->wol_filter_id; 12623 12624 return hwrm_req_send(bp, req); 12625 } 12626 12627 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 12628 { 12629 struct hwrm_wol_filter_qcfg_output *resp; 12630 struct hwrm_wol_filter_qcfg_input *req; 12631 u16 next_handle = 0; 12632 int rc; 12633 12634 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG); 12635 if (rc) 12636 return rc; 12637 12638 req->port_id = cpu_to_le16(bp->pf.port_id); 12639 req->handle = cpu_to_le16(handle); 12640 resp = hwrm_req_hold(bp, req); 12641 rc = hwrm_req_send(bp, req); 12642 if (!rc) { 12643 next_handle = le16_to_cpu(resp->next_handle); 12644 if (next_handle != 0) { 12645 if (resp->wol_type == 12646 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 12647 bp->wol = 1; 12648 bp->wol_filter_id = resp->wol_filter_id; 12649 } 12650 } 12651 } 12652 hwrm_req_drop(bp, req); 12653 return next_handle; 12654 } 12655 12656 static void bnxt_get_wol_settings(struct bnxt *bp) 12657 { 12658 u16 handle = 0; 12659 12660 bp->wol = 0; 12661 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 12662 return; 12663 12664 do { 12665 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 12666 } while (handle && handle != 0xffff); 12667 } 12668 12669 static bool bnxt_eee_config_ok(struct bnxt *bp) 12670 { 12671 struct ethtool_keee *eee = &bp->eee; 12672 struct bnxt_link_info *link_info = &bp->link_info; 12673 12674 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 12675 return true; 12676 12677 if (eee->eee_enabled) { 12678 __ETHTOOL_DECLARE_LINK_MODE_MASK(advertising); 12679 __ETHTOOL_DECLARE_LINK_MODE_MASK(tmp); 12680 12681 _bnxt_fw_to_linkmode(advertising, link_info->advertising); 12682 12683 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 12684 eee->eee_enabled = 0; 12685 return false; 12686 } 12687 if (linkmode_andnot(tmp, eee->advertised, advertising)) { 12688 linkmode_and(eee->advertised, advertising, 12689 eee->supported); 12690 return false; 12691 } 12692 } 12693 return true; 12694 } 12695 12696 static int bnxt_update_phy_setting(struct bnxt *bp) 12697 { 12698 int rc; 12699 bool update_link = false; 12700 bool update_pause = false; 12701 bool update_eee = false; 12702 struct bnxt_link_info *link_info = &bp->link_info; 12703 12704 rc = bnxt_update_link(bp, true); 12705 if (rc) { 12706 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 12707 rc); 12708 return rc; 12709 } 12710 if (!BNXT_SINGLE_PF(bp)) 12711 return 0; 12712 12713 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 12714 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 12715 link_info->req_flow_ctrl) 12716 update_pause = true; 12717 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 12718 link_info->force_pause_setting != link_info->req_flow_ctrl) 12719 update_pause = true; 12720 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 12721 if (BNXT_AUTO_MODE(link_info->auto_mode)) 12722 update_link = true; 12723 if (bnxt_force_speed_updated(link_info)) 12724 update_link = true; 12725 if (link_info->req_duplex != link_info->duplex_setting) 12726 update_link = true; 12727 } else { 12728 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 12729 update_link = true; 12730 if (bnxt_auto_speed_updated(link_info)) 12731 update_link = true; 12732 } 12733 12734 /* The last close may have shutdown the link, so need to call 12735 * PHY_CFG to bring it back up. 12736 */ 12737 if (!BNXT_LINK_IS_UP(bp)) 12738 update_link = true; 12739 12740 if (!bnxt_eee_config_ok(bp)) 12741 update_eee = true; 12742 12743 if (update_link) 12744 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 12745 else if (update_pause) 12746 rc = bnxt_hwrm_set_pause(bp); 12747 if (rc) { 12748 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 12749 rc); 12750 return rc; 12751 } 12752 12753 return rc; 12754 } 12755 12756 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 12757 12758 static int bnxt_reinit_after_abort(struct bnxt *bp) 12759 { 12760 int rc; 12761 12762 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 12763 return -EBUSY; 12764 12765 if (bp->dev->reg_state == NETREG_UNREGISTERED) 12766 return -ENODEV; 12767 12768 rc = bnxt_fw_init_one(bp); 12769 if (!rc) { 12770 bnxt_clear_int_mode(bp); 12771 rc = bnxt_init_int_mode(bp); 12772 if (!rc) { 12773 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12774 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 12775 } 12776 } 12777 return rc; 12778 } 12779 12780 static void bnxt_cfg_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 12781 { 12782 struct bnxt_ntuple_filter *ntp_fltr; 12783 struct bnxt_l2_filter *l2_fltr; 12784 12785 if (list_empty(&fltr->list)) 12786 return; 12787 12788 if (fltr->type == BNXT_FLTR_TYPE_NTUPLE) { 12789 ntp_fltr = container_of(fltr, struct bnxt_ntuple_filter, base); 12790 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 12791 atomic_inc(&l2_fltr->refcnt); 12792 ntp_fltr->l2_fltr = l2_fltr; 12793 if (bnxt_hwrm_cfa_ntuple_filter_alloc(bp, ntp_fltr)) { 12794 bnxt_del_ntp_filter(bp, ntp_fltr); 12795 netdev_err(bp->dev, "restoring previously configured ntuple filter id %d failed\n", 12796 fltr->sw_id); 12797 } 12798 } else if (fltr->type == BNXT_FLTR_TYPE_L2) { 12799 l2_fltr = container_of(fltr, struct bnxt_l2_filter, base); 12800 if (bnxt_hwrm_l2_filter_alloc(bp, l2_fltr)) { 12801 bnxt_del_l2_filter(bp, l2_fltr); 12802 netdev_err(bp->dev, "restoring previously configured l2 filter id %d failed\n", 12803 fltr->sw_id); 12804 } 12805 } 12806 } 12807 12808 static void bnxt_cfg_usr_fltrs(struct bnxt *bp) 12809 { 12810 struct bnxt_filter_base *usr_fltr, *tmp; 12811 12812 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) 12813 bnxt_cfg_one_usr_fltr(bp, usr_fltr); 12814 } 12815 12816 static int bnxt_set_xps_mapping(struct bnxt *bp) 12817 { 12818 int numa_node = dev_to_node(&bp->pdev->dev); 12819 unsigned int q_idx, map_idx, cpu, i; 12820 const struct cpumask *cpu_mask_ptr; 12821 int nr_cpus = num_online_cpus(); 12822 cpumask_t *q_map; 12823 int rc = 0; 12824 12825 q_map = kcalloc(bp->tx_nr_rings_per_tc, sizeof(*q_map), GFP_KERNEL); 12826 if (!q_map) 12827 return -ENOMEM; 12828 12829 /* Create CPU mask for all TX queues across MQPRIO traffic classes. 12830 * Each TC has the same number of TX queues. The nth TX queue for each 12831 * TC will have the same CPU mask. 12832 */ 12833 for (i = 0; i < nr_cpus; i++) { 12834 map_idx = i % bp->tx_nr_rings_per_tc; 12835 cpu = cpumask_local_spread(i, numa_node); 12836 cpu_mask_ptr = get_cpu_mask(cpu); 12837 cpumask_or(&q_map[map_idx], &q_map[map_idx], cpu_mask_ptr); 12838 } 12839 12840 /* Register CPU mask for each TX queue except the ones marked for XDP */ 12841 for (q_idx = 0; q_idx < bp->dev->real_num_tx_queues; q_idx++) { 12842 map_idx = q_idx % bp->tx_nr_rings_per_tc; 12843 rc = netif_set_xps_queue(bp->dev, &q_map[map_idx], q_idx); 12844 if (rc) { 12845 netdev_warn(bp->dev, "Error setting XPS for q:%d\n", 12846 q_idx); 12847 break; 12848 } 12849 } 12850 12851 kfree(q_map); 12852 12853 return rc; 12854 } 12855 12856 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12857 { 12858 int rc = 0; 12859 12860 netif_carrier_off(bp->dev); 12861 if (irq_re_init) { 12862 /* Reserve rings now if none were reserved at driver probe. */ 12863 rc = bnxt_init_dflt_ring_mode(bp); 12864 if (rc) { 12865 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 12866 return rc; 12867 } 12868 } 12869 rc = bnxt_reserve_rings(bp, irq_re_init); 12870 if (rc) 12871 return rc; 12872 12873 rc = bnxt_alloc_mem(bp, irq_re_init); 12874 if (rc) { 12875 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 12876 goto open_err_free_mem; 12877 } 12878 12879 if (irq_re_init) { 12880 bnxt_init_napi(bp); 12881 rc = bnxt_request_irq(bp); 12882 if (rc) { 12883 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 12884 goto open_err_irq; 12885 } 12886 } 12887 12888 rc = bnxt_init_nic(bp, irq_re_init); 12889 if (rc) { 12890 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 12891 goto open_err_irq; 12892 } 12893 12894 bnxt_enable_napi(bp); 12895 bnxt_debug_dev_init(bp); 12896 12897 if (link_re_init) { 12898 mutex_lock(&bp->link_lock); 12899 rc = bnxt_update_phy_setting(bp); 12900 mutex_unlock(&bp->link_lock); 12901 if (rc) { 12902 netdev_warn(bp->dev, "failed to update phy settings\n"); 12903 if (BNXT_SINGLE_PF(bp)) { 12904 bp->link_info.phy_retry = true; 12905 bp->link_info.phy_retry_expires = 12906 jiffies + 5 * HZ; 12907 } 12908 } 12909 } 12910 12911 if (irq_re_init) { 12912 udp_tunnel_nic_reset_ntf(bp->dev); 12913 rc = bnxt_set_xps_mapping(bp); 12914 if (rc) 12915 netdev_warn(bp->dev, "failed to set xps mapping\n"); 12916 } 12917 12918 if (bp->tx_nr_rings_xdp < num_possible_cpus()) { 12919 if (!static_key_enabled(&bnxt_xdp_locking_key)) 12920 static_branch_enable(&bnxt_xdp_locking_key); 12921 } else if (static_key_enabled(&bnxt_xdp_locking_key)) { 12922 static_branch_disable(&bnxt_xdp_locking_key); 12923 } 12924 set_bit(BNXT_STATE_OPEN, &bp->state); 12925 bnxt_enable_int(bp); 12926 /* Enable TX queues */ 12927 bnxt_tx_enable(bp); 12928 mod_timer(&bp->timer, jiffies + bp->current_interval); 12929 /* Poll link status and check for SFP+ module status */ 12930 mutex_lock(&bp->link_lock); 12931 bnxt_get_port_module_status(bp); 12932 mutex_unlock(&bp->link_lock); 12933 12934 /* VF-reps may need to be re-opened after the PF is re-opened */ 12935 if (BNXT_PF(bp)) 12936 bnxt_vf_reps_open(bp); 12937 bnxt_ptp_init_rtc(bp, true); 12938 bnxt_ptp_cfg_tstamp_filters(bp); 12939 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 12940 bnxt_hwrm_realloc_rss_ctx_vnic(bp); 12941 bnxt_cfg_usr_fltrs(bp); 12942 return 0; 12943 12944 open_err_irq: 12945 bnxt_del_napi(bp); 12946 12947 open_err_free_mem: 12948 bnxt_free_skbs(bp); 12949 bnxt_free_irq(bp); 12950 bnxt_free_mem(bp, true); 12951 return rc; 12952 } 12953 12954 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12955 { 12956 int rc = 0; 12957 12958 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 12959 rc = -EIO; 12960 if (!rc) 12961 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 12962 if (rc) { 12963 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 12964 netif_close(bp->dev); 12965 } 12966 return rc; 12967 } 12968 12969 /* netdev instance lock held, open the NIC half way by allocating all 12970 * resources, but NAPI, IRQ, and TX are not enabled. This is mainly used 12971 * for offline self tests. 12972 */ 12973 int bnxt_half_open_nic(struct bnxt *bp) 12974 { 12975 int rc = 0; 12976 12977 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12978 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); 12979 rc = -ENODEV; 12980 goto half_open_err; 12981 } 12982 12983 rc = bnxt_alloc_mem(bp, true); 12984 if (rc) { 12985 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 12986 goto half_open_err; 12987 } 12988 bnxt_init_napi(bp); 12989 set_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12990 rc = bnxt_init_nic(bp, true); 12991 if (rc) { 12992 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12993 bnxt_del_napi(bp); 12994 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 12995 goto half_open_err; 12996 } 12997 return 0; 12998 12999 half_open_err: 13000 bnxt_free_skbs(bp); 13001 bnxt_free_mem(bp, true); 13002 netif_close(bp->dev); 13003 return rc; 13004 } 13005 13006 /* netdev instance lock held, this call can only be made after a previous 13007 * successful call to bnxt_half_open_nic(). 13008 */ 13009 void bnxt_half_close_nic(struct bnxt *bp) 13010 { 13011 bnxt_hwrm_resource_free(bp, false, true); 13012 bnxt_del_napi(bp); 13013 bnxt_free_skbs(bp); 13014 bnxt_free_mem(bp, true); 13015 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 13016 } 13017 13018 void bnxt_reenable_sriov(struct bnxt *bp) 13019 { 13020 if (BNXT_PF(bp)) { 13021 struct bnxt_pf_info *pf = &bp->pf; 13022 int n = pf->active_vfs; 13023 13024 if (n) 13025 bnxt_cfg_hw_sriov(bp, &n, true); 13026 } 13027 } 13028 13029 static int bnxt_open(struct net_device *dev) 13030 { 13031 struct bnxt *bp = netdev_priv(dev); 13032 int rc; 13033 13034 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 13035 rc = bnxt_reinit_after_abort(bp); 13036 if (rc) { 13037 if (rc == -EBUSY) 13038 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 13039 else 13040 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 13041 return -ENODEV; 13042 } 13043 } 13044 13045 rc = bnxt_hwrm_if_change(bp, true); 13046 if (rc) 13047 return rc; 13048 13049 rc = __bnxt_open_nic(bp, true, true); 13050 if (rc) { 13051 bnxt_hwrm_if_change(bp, false); 13052 } else { 13053 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 13054 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 13055 bnxt_queue_sp_work(bp, 13056 BNXT_RESTART_ULP_SP_EVENT); 13057 } 13058 } 13059 13060 return rc; 13061 } 13062 13063 static bool bnxt_drv_busy(struct bnxt *bp) 13064 { 13065 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 13066 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 13067 } 13068 13069 static void bnxt_get_ring_stats(struct bnxt *bp, 13070 struct rtnl_link_stats64 *stats); 13071 13072 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 13073 bool link_re_init) 13074 { 13075 /* Close the VF-reps before closing PF */ 13076 if (BNXT_PF(bp)) 13077 bnxt_vf_reps_close(bp); 13078 13079 /* Change device state to avoid TX queue wake up's */ 13080 bnxt_tx_disable(bp); 13081 13082 clear_bit(BNXT_STATE_OPEN, &bp->state); 13083 smp_mb__after_atomic(); 13084 while (bnxt_drv_busy(bp)) 13085 msleep(20); 13086 13087 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 13088 bnxt_clear_rss_ctxs(bp); 13089 /* Flush rings and disable interrupts */ 13090 bnxt_shutdown_nic(bp, irq_re_init); 13091 13092 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 13093 13094 bnxt_debug_dev_exit(bp); 13095 bnxt_disable_napi(bp); 13096 timer_delete_sync(&bp->timer); 13097 bnxt_free_skbs(bp); 13098 13099 /* Save ring stats before shutdown */ 13100 if (bp->bnapi && irq_re_init) { 13101 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 13102 bnxt_get_ring_err_stats(bp, &bp->ring_err_stats_prev); 13103 } 13104 if (irq_re_init) { 13105 bnxt_free_irq(bp); 13106 bnxt_del_napi(bp); 13107 } 13108 bnxt_free_mem(bp, irq_re_init); 13109 } 13110 13111 void bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 13112 { 13113 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 13114 /* If we get here, it means firmware reset is in progress 13115 * while we are trying to close. We can safely proceed with 13116 * the close because we are holding netdev instance lock. 13117 * Some firmware messages may fail as we proceed to close. 13118 * We set the ABORT_ERR flag here so that the FW reset thread 13119 * will later abort when it gets the netdev instance lock 13120 * and sees the flag. 13121 */ 13122 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 13123 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 13124 } 13125 13126 #ifdef CONFIG_BNXT_SRIOV 13127 if (bp->sriov_cfg) { 13128 int rc; 13129 13130 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 13131 !bp->sriov_cfg, 13132 BNXT_SRIOV_CFG_WAIT_TMO); 13133 if (!rc) 13134 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete, proceeding to close!\n"); 13135 else if (rc < 0) 13136 netdev_warn(bp->dev, "SRIOV config operation interrupted, proceeding to close!\n"); 13137 } 13138 #endif 13139 __bnxt_close_nic(bp, irq_re_init, link_re_init); 13140 } 13141 13142 static int bnxt_close(struct net_device *dev) 13143 { 13144 struct bnxt *bp = netdev_priv(dev); 13145 13146 bnxt_close_nic(bp, true, true); 13147 bnxt_hwrm_shutdown_link(bp); 13148 bnxt_hwrm_if_change(bp, false); 13149 return 0; 13150 } 13151 13152 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 13153 u16 *val) 13154 { 13155 struct hwrm_port_phy_mdio_read_output *resp; 13156 struct hwrm_port_phy_mdio_read_input *req; 13157 int rc; 13158 13159 if (bp->hwrm_spec_code < 0x10a00) 13160 return -EOPNOTSUPP; 13161 13162 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ); 13163 if (rc) 13164 return rc; 13165 13166 req->port_id = cpu_to_le16(bp->pf.port_id); 13167 req->phy_addr = phy_addr; 13168 req->reg_addr = cpu_to_le16(reg & 0x1f); 13169 if (mdio_phy_id_is_c45(phy_addr)) { 13170 req->cl45_mdio = 1; 13171 req->phy_addr = mdio_phy_id_prtad(phy_addr); 13172 req->dev_addr = mdio_phy_id_devad(phy_addr); 13173 req->reg_addr = cpu_to_le16(reg); 13174 } 13175 13176 resp = hwrm_req_hold(bp, req); 13177 rc = hwrm_req_send(bp, req); 13178 if (!rc) 13179 *val = le16_to_cpu(resp->reg_data); 13180 hwrm_req_drop(bp, req); 13181 return rc; 13182 } 13183 13184 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 13185 u16 val) 13186 { 13187 struct hwrm_port_phy_mdio_write_input *req; 13188 int rc; 13189 13190 if (bp->hwrm_spec_code < 0x10a00) 13191 return -EOPNOTSUPP; 13192 13193 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE); 13194 if (rc) 13195 return rc; 13196 13197 req->port_id = cpu_to_le16(bp->pf.port_id); 13198 req->phy_addr = phy_addr; 13199 req->reg_addr = cpu_to_le16(reg & 0x1f); 13200 if (mdio_phy_id_is_c45(phy_addr)) { 13201 req->cl45_mdio = 1; 13202 req->phy_addr = mdio_phy_id_prtad(phy_addr); 13203 req->dev_addr = mdio_phy_id_devad(phy_addr); 13204 req->reg_addr = cpu_to_le16(reg); 13205 } 13206 req->reg_data = cpu_to_le16(val); 13207 13208 return hwrm_req_send(bp, req); 13209 } 13210 13211 /* netdev instance lock held */ 13212 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 13213 { 13214 struct mii_ioctl_data *mdio = if_mii(ifr); 13215 struct bnxt *bp = netdev_priv(dev); 13216 int rc; 13217 13218 switch (cmd) { 13219 case SIOCGMIIPHY: 13220 mdio->phy_id = bp->link_info.phy_addr; 13221 13222 fallthrough; 13223 case SIOCGMIIREG: { 13224 u16 mii_regval = 0; 13225 13226 if (!netif_running(dev)) 13227 return -EAGAIN; 13228 13229 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 13230 &mii_regval); 13231 mdio->val_out = mii_regval; 13232 return rc; 13233 } 13234 13235 case SIOCSMIIREG: 13236 if (!netif_running(dev)) 13237 return -EAGAIN; 13238 13239 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 13240 mdio->val_in); 13241 13242 case SIOCSHWTSTAMP: 13243 return bnxt_hwtstamp_set(dev, ifr); 13244 13245 case SIOCGHWTSTAMP: 13246 return bnxt_hwtstamp_get(dev, ifr); 13247 13248 default: 13249 /* do nothing */ 13250 break; 13251 } 13252 return -EOPNOTSUPP; 13253 } 13254 13255 static void bnxt_get_ring_stats(struct bnxt *bp, 13256 struct rtnl_link_stats64 *stats) 13257 { 13258 int i; 13259 13260 for (i = 0; i < bp->cp_nr_rings; i++) { 13261 struct bnxt_napi *bnapi = bp->bnapi[i]; 13262 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 13263 u64 *sw = cpr->stats.sw_stats; 13264 13265 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 13266 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 13267 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 13268 13269 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 13270 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 13271 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 13272 13273 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 13274 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 13275 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 13276 13277 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 13278 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 13279 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 13280 13281 stats->rx_missed_errors += 13282 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 13283 13284 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 13285 13286 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 13287 13288 stats->rx_dropped += 13289 cpr->sw_stats->rx.rx_netpoll_discards + 13290 cpr->sw_stats->rx.rx_oom_discards; 13291 } 13292 } 13293 13294 static void bnxt_add_prev_stats(struct bnxt *bp, 13295 struct rtnl_link_stats64 *stats) 13296 { 13297 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 13298 13299 stats->rx_packets += prev_stats->rx_packets; 13300 stats->tx_packets += prev_stats->tx_packets; 13301 stats->rx_bytes += prev_stats->rx_bytes; 13302 stats->tx_bytes += prev_stats->tx_bytes; 13303 stats->rx_missed_errors += prev_stats->rx_missed_errors; 13304 stats->multicast += prev_stats->multicast; 13305 stats->rx_dropped += prev_stats->rx_dropped; 13306 stats->tx_dropped += prev_stats->tx_dropped; 13307 } 13308 13309 static void 13310 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 13311 { 13312 struct bnxt *bp = netdev_priv(dev); 13313 13314 set_bit(BNXT_STATE_READ_STATS, &bp->state); 13315 /* Make sure bnxt_close_nic() sees that we are reading stats before 13316 * we check the BNXT_STATE_OPEN flag. 13317 */ 13318 smp_mb__after_atomic(); 13319 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13320 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 13321 *stats = bp->net_stats_prev; 13322 return; 13323 } 13324 13325 bnxt_get_ring_stats(bp, stats); 13326 bnxt_add_prev_stats(bp, stats); 13327 13328 if (bp->flags & BNXT_FLAG_PORT_STATS) { 13329 u64 *rx = bp->port_stats.sw_stats; 13330 u64 *tx = bp->port_stats.sw_stats + 13331 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 13332 13333 stats->rx_crc_errors = 13334 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 13335 stats->rx_frame_errors = 13336 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 13337 stats->rx_length_errors = 13338 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 13339 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 13340 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 13341 stats->rx_errors = 13342 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 13343 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 13344 stats->collisions = 13345 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 13346 stats->tx_fifo_errors = 13347 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 13348 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 13349 } 13350 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 13351 } 13352 13353 static void bnxt_get_one_ring_err_stats(struct bnxt *bp, 13354 struct bnxt_total_ring_err_stats *stats, 13355 struct bnxt_cp_ring_info *cpr) 13356 { 13357 struct bnxt_sw_stats *sw_stats = cpr->sw_stats; 13358 u64 *hw_stats = cpr->stats.sw_stats; 13359 13360 stats->rx_total_l4_csum_errors += sw_stats->rx.rx_l4_csum_errors; 13361 stats->rx_total_resets += sw_stats->rx.rx_resets; 13362 stats->rx_total_buf_errors += sw_stats->rx.rx_buf_errors; 13363 stats->rx_total_oom_discards += sw_stats->rx.rx_oom_discards; 13364 stats->rx_total_netpoll_discards += sw_stats->rx.rx_netpoll_discards; 13365 stats->rx_total_ring_discards += 13366 BNXT_GET_RING_STATS64(hw_stats, rx_discard_pkts); 13367 stats->tx_total_resets += sw_stats->tx.tx_resets; 13368 stats->tx_total_ring_discards += 13369 BNXT_GET_RING_STATS64(hw_stats, tx_discard_pkts); 13370 stats->total_missed_irqs += sw_stats->cmn.missed_irqs; 13371 } 13372 13373 void bnxt_get_ring_err_stats(struct bnxt *bp, 13374 struct bnxt_total_ring_err_stats *stats) 13375 { 13376 int i; 13377 13378 for (i = 0; i < bp->cp_nr_rings; i++) 13379 bnxt_get_one_ring_err_stats(bp, stats, &bp->bnapi[i]->cp_ring); 13380 } 13381 13382 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 13383 { 13384 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 13385 struct net_device *dev = bp->dev; 13386 struct netdev_hw_addr *ha; 13387 u8 *haddr; 13388 int mc_count = 0; 13389 bool update = false; 13390 int off = 0; 13391 13392 netdev_for_each_mc_addr(ha, dev) { 13393 if (mc_count >= BNXT_MAX_MC_ADDRS) { 13394 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 13395 vnic->mc_list_count = 0; 13396 return false; 13397 } 13398 haddr = ha->addr; 13399 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 13400 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 13401 update = true; 13402 } 13403 off += ETH_ALEN; 13404 mc_count++; 13405 } 13406 if (mc_count) 13407 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 13408 13409 if (mc_count != vnic->mc_list_count) { 13410 vnic->mc_list_count = mc_count; 13411 update = true; 13412 } 13413 return update; 13414 } 13415 13416 static bool bnxt_uc_list_updated(struct bnxt *bp) 13417 { 13418 struct net_device *dev = bp->dev; 13419 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 13420 struct netdev_hw_addr *ha; 13421 int off = 0; 13422 13423 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 13424 return true; 13425 13426 netdev_for_each_uc_addr(ha, dev) { 13427 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 13428 return true; 13429 13430 off += ETH_ALEN; 13431 } 13432 return false; 13433 } 13434 13435 static void bnxt_set_rx_mode(struct net_device *dev) 13436 { 13437 struct bnxt *bp = netdev_priv(dev); 13438 struct bnxt_vnic_info *vnic; 13439 bool mc_update = false; 13440 bool uc_update; 13441 u32 mask; 13442 13443 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 13444 return; 13445 13446 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 13447 mask = vnic->rx_mask; 13448 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 13449 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 13450 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 13451 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 13452 13453 if (dev->flags & IFF_PROMISC) 13454 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 13455 13456 uc_update = bnxt_uc_list_updated(bp); 13457 13458 if (dev->flags & IFF_BROADCAST) 13459 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 13460 if (dev->flags & IFF_ALLMULTI) { 13461 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 13462 vnic->mc_list_count = 0; 13463 } else if (dev->flags & IFF_MULTICAST) { 13464 mc_update = bnxt_mc_list_updated(bp, &mask); 13465 } 13466 13467 if (mask != vnic->rx_mask || uc_update || mc_update) { 13468 vnic->rx_mask = mask; 13469 13470 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 13471 } 13472 } 13473 13474 static int bnxt_cfg_rx_mode(struct bnxt *bp) 13475 { 13476 struct net_device *dev = bp->dev; 13477 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 13478 struct netdev_hw_addr *ha; 13479 int i, off = 0, rc; 13480 bool uc_update; 13481 13482 netif_addr_lock_bh(dev); 13483 uc_update = bnxt_uc_list_updated(bp); 13484 netif_addr_unlock_bh(dev); 13485 13486 if (!uc_update) 13487 goto skip_uc; 13488 13489 for (i = 1; i < vnic->uc_filter_count; i++) { 13490 struct bnxt_l2_filter *fltr = vnic->l2_filters[i]; 13491 13492 bnxt_hwrm_l2_filter_free(bp, fltr); 13493 bnxt_del_l2_filter(bp, fltr); 13494 } 13495 13496 vnic->uc_filter_count = 1; 13497 13498 netif_addr_lock_bh(dev); 13499 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 13500 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 13501 } else { 13502 netdev_for_each_uc_addr(ha, dev) { 13503 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 13504 off += ETH_ALEN; 13505 vnic->uc_filter_count++; 13506 } 13507 } 13508 netif_addr_unlock_bh(dev); 13509 13510 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 13511 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 13512 if (rc) { 13513 if (BNXT_VF(bp) && rc == -ENODEV) { 13514 if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 13515 netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n"); 13516 else 13517 netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n"); 13518 rc = 0; 13519 } else { 13520 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 13521 } 13522 vnic->uc_filter_count = i; 13523 return rc; 13524 } 13525 } 13526 if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 13527 netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n"); 13528 13529 skip_uc: 13530 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 13531 !bnxt_promisc_ok(bp)) 13532 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 13533 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 13534 if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) { 13535 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 13536 rc); 13537 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 13538 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 13539 vnic->mc_list_count = 0; 13540 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 13541 } 13542 if (rc) 13543 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 13544 rc); 13545 13546 return rc; 13547 } 13548 13549 static bool bnxt_can_reserve_rings(struct bnxt *bp) 13550 { 13551 #ifdef CONFIG_BNXT_SRIOV 13552 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 13553 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 13554 13555 /* No minimum rings were provisioned by the PF. Don't 13556 * reserve rings by default when device is down. 13557 */ 13558 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 13559 return true; 13560 13561 if (!netif_running(bp->dev)) 13562 return false; 13563 } 13564 #endif 13565 return true; 13566 } 13567 13568 /* If the chip and firmware supports RFS */ 13569 static bool bnxt_rfs_supported(struct bnxt *bp) 13570 { 13571 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 13572 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 13573 return true; 13574 return false; 13575 } 13576 /* 212 firmware is broken for aRFS */ 13577 if (BNXT_FW_MAJ(bp) == 212) 13578 return false; 13579 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 13580 return true; 13581 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 13582 return true; 13583 return false; 13584 } 13585 13586 /* If runtime conditions support RFS */ 13587 bool bnxt_rfs_capable(struct bnxt *bp, bool new_rss_ctx) 13588 { 13589 struct bnxt_hw_rings hwr = {0}; 13590 int max_vnics, max_rss_ctxs; 13591 13592 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 13593 !BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 13594 return bnxt_rfs_supported(bp); 13595 13596 if (!bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings) 13597 return false; 13598 13599 hwr.grp = bp->rx_nr_rings; 13600 hwr.vnic = bnxt_get_total_vnics(bp, bp->rx_nr_rings); 13601 if (new_rss_ctx) 13602 hwr.vnic++; 13603 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 13604 max_vnics = bnxt_get_max_func_vnics(bp); 13605 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 13606 13607 if (hwr.vnic > max_vnics || hwr.rss_ctx > max_rss_ctxs) { 13608 if (bp->rx_nr_rings > 1) 13609 netdev_warn(bp->dev, 13610 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 13611 min(max_rss_ctxs - 1, max_vnics - 1)); 13612 return false; 13613 } 13614 13615 if (!BNXT_NEW_RM(bp)) 13616 return true; 13617 13618 /* Do not reduce VNIC and RSS ctx reservations. There is a FW 13619 * issue that will mess up the default VNIC if we reduce the 13620 * reservations. 13621 */ 13622 if (hwr.vnic <= bp->hw_resc.resv_vnics && 13623 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 13624 return true; 13625 13626 bnxt_hwrm_reserve_rings(bp, &hwr); 13627 if (hwr.vnic <= bp->hw_resc.resv_vnics && 13628 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 13629 return true; 13630 13631 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 13632 hwr.vnic = 1; 13633 hwr.rss_ctx = 0; 13634 bnxt_hwrm_reserve_rings(bp, &hwr); 13635 return false; 13636 } 13637 13638 static netdev_features_t bnxt_fix_features(struct net_device *dev, 13639 netdev_features_t features) 13640 { 13641 struct bnxt *bp = netdev_priv(dev); 13642 netdev_features_t vlan_features; 13643 13644 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp, false)) 13645 features &= ~NETIF_F_NTUPLE; 13646 13647 if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog) 13648 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 13649 13650 if (!(features & NETIF_F_GRO)) 13651 features &= ~NETIF_F_GRO_HW; 13652 13653 if (features & NETIF_F_GRO_HW) 13654 features &= ~NETIF_F_LRO; 13655 13656 /* Both CTAG and STAG VLAN acceleration on the RX side have to be 13657 * turned on or off together. 13658 */ 13659 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 13660 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 13661 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13662 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 13663 else if (vlan_features) 13664 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 13665 } 13666 #ifdef CONFIG_BNXT_SRIOV 13667 if (BNXT_VF(bp) && bp->vf.vlan) 13668 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 13669 #endif 13670 return features; 13671 } 13672 13673 static int bnxt_reinit_features(struct bnxt *bp, bool irq_re_init, 13674 bool link_re_init, u32 flags, bool update_tpa) 13675 { 13676 bnxt_close_nic(bp, irq_re_init, link_re_init); 13677 bp->flags = flags; 13678 if (update_tpa) 13679 bnxt_set_ring_params(bp); 13680 return bnxt_open_nic(bp, irq_re_init, link_re_init); 13681 } 13682 13683 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 13684 { 13685 bool update_tpa = false, update_ntuple = false; 13686 struct bnxt *bp = netdev_priv(dev); 13687 u32 flags = bp->flags; 13688 u32 changes; 13689 int rc = 0; 13690 bool re_init = false; 13691 13692 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 13693 if (features & NETIF_F_GRO_HW) 13694 flags |= BNXT_FLAG_GRO; 13695 else if (features & NETIF_F_LRO) 13696 flags |= BNXT_FLAG_LRO; 13697 13698 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 13699 flags &= ~BNXT_FLAG_TPA; 13700 13701 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13702 flags |= BNXT_FLAG_STRIP_VLAN; 13703 13704 if (features & NETIF_F_NTUPLE) 13705 flags |= BNXT_FLAG_RFS; 13706 else 13707 bnxt_clear_usr_fltrs(bp, true); 13708 13709 changes = flags ^ bp->flags; 13710 if (changes & BNXT_FLAG_TPA) { 13711 update_tpa = true; 13712 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 13713 (flags & BNXT_FLAG_TPA) == 0 || 13714 (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 13715 re_init = true; 13716 } 13717 13718 if (changes & ~BNXT_FLAG_TPA) 13719 re_init = true; 13720 13721 if (changes & BNXT_FLAG_RFS) 13722 update_ntuple = true; 13723 13724 if (flags != bp->flags) { 13725 u32 old_flags = bp->flags; 13726 13727 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13728 bp->flags = flags; 13729 if (update_tpa) 13730 bnxt_set_ring_params(bp); 13731 return rc; 13732 } 13733 13734 if (update_ntuple) 13735 return bnxt_reinit_features(bp, true, false, flags, update_tpa); 13736 13737 if (re_init) 13738 return bnxt_reinit_features(bp, false, false, flags, update_tpa); 13739 13740 if (update_tpa) { 13741 bp->flags = flags; 13742 rc = bnxt_set_tpa(bp, 13743 (flags & BNXT_FLAG_TPA) ? 13744 true : false); 13745 if (rc) 13746 bp->flags = old_flags; 13747 } 13748 } 13749 return rc; 13750 } 13751 13752 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, 13753 u8 **nextp) 13754 { 13755 struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); 13756 struct hop_jumbo_hdr *jhdr; 13757 int hdr_count = 0; 13758 u8 *nexthdr; 13759 int start; 13760 13761 /* Check that there are at most 2 IPv6 extension headers, no 13762 * fragment header, and each is <= 64 bytes. 13763 */ 13764 start = nw_off + sizeof(*ip6h); 13765 nexthdr = &ip6h->nexthdr; 13766 while (ipv6_ext_hdr(*nexthdr)) { 13767 struct ipv6_opt_hdr *hp; 13768 int hdrlen; 13769 13770 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || 13771 *nexthdr == NEXTHDR_FRAGMENT) 13772 return false; 13773 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, 13774 skb_headlen(skb), NULL); 13775 if (!hp) 13776 return false; 13777 if (*nexthdr == NEXTHDR_AUTH) 13778 hdrlen = ipv6_authlen(hp); 13779 else 13780 hdrlen = ipv6_optlen(hp); 13781 13782 if (hdrlen > 64) 13783 return false; 13784 13785 /* The ext header may be a hop-by-hop header inserted for 13786 * big TCP purposes. This will be removed before sending 13787 * from NIC, so do not count it. 13788 */ 13789 if (*nexthdr == NEXTHDR_HOP) { 13790 if (likely(skb->len <= GRO_LEGACY_MAX_SIZE)) 13791 goto increment_hdr; 13792 13793 jhdr = (struct hop_jumbo_hdr *)hp; 13794 if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 || 13795 jhdr->nexthdr != IPPROTO_TCP) 13796 goto increment_hdr; 13797 13798 goto next_hdr; 13799 } 13800 increment_hdr: 13801 hdr_count++; 13802 next_hdr: 13803 nexthdr = &hp->nexthdr; 13804 start += hdrlen; 13805 } 13806 if (nextp) { 13807 /* Caller will check inner protocol */ 13808 if (skb->encapsulation) { 13809 *nextp = nexthdr; 13810 return true; 13811 } 13812 *nextp = NULL; 13813 } 13814 /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ 13815 return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; 13816 } 13817 13818 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 13819 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) 13820 { 13821 struct udphdr *uh = udp_hdr(skb); 13822 __be16 udp_port = uh->dest; 13823 13824 if (udp_port != bp->vxlan_port && udp_port != bp->nge_port && 13825 udp_port != bp->vxlan_gpe_port) 13826 return false; 13827 if (skb->inner_protocol == htons(ETH_P_TEB)) { 13828 struct ethhdr *eh = inner_eth_hdr(skb); 13829 13830 switch (eh->h_proto) { 13831 case htons(ETH_P_IP): 13832 return true; 13833 case htons(ETH_P_IPV6): 13834 return bnxt_exthdr_check(bp, skb, 13835 skb_inner_network_offset(skb), 13836 NULL); 13837 } 13838 } else if (skb->inner_protocol == htons(ETH_P_IP)) { 13839 return true; 13840 } else if (skb->inner_protocol == htons(ETH_P_IPV6)) { 13841 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 13842 NULL); 13843 } 13844 return false; 13845 } 13846 13847 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) 13848 { 13849 switch (l4_proto) { 13850 case IPPROTO_UDP: 13851 return bnxt_udp_tunl_check(bp, skb); 13852 case IPPROTO_IPIP: 13853 return true; 13854 case IPPROTO_GRE: { 13855 switch (skb->inner_protocol) { 13856 default: 13857 return false; 13858 case htons(ETH_P_IP): 13859 return true; 13860 case htons(ETH_P_IPV6): 13861 fallthrough; 13862 } 13863 } 13864 case IPPROTO_IPV6: 13865 /* Check ext headers of inner ipv6 */ 13866 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 13867 NULL); 13868 } 13869 return false; 13870 } 13871 13872 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 13873 struct net_device *dev, 13874 netdev_features_t features) 13875 { 13876 struct bnxt *bp = netdev_priv(dev); 13877 u8 *l4_proto; 13878 13879 features = vlan_features_check(skb, features); 13880 switch (vlan_get_protocol(skb)) { 13881 case htons(ETH_P_IP): 13882 if (!skb->encapsulation) 13883 return features; 13884 l4_proto = &ip_hdr(skb)->protocol; 13885 if (bnxt_tunl_check(bp, skb, *l4_proto)) 13886 return features; 13887 break; 13888 case htons(ETH_P_IPV6): 13889 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), 13890 &l4_proto)) 13891 break; 13892 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) 13893 return features; 13894 break; 13895 } 13896 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 13897 } 13898 13899 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 13900 u32 *reg_buf) 13901 { 13902 struct hwrm_dbg_read_direct_output *resp; 13903 struct hwrm_dbg_read_direct_input *req; 13904 __le32 *dbg_reg_buf; 13905 dma_addr_t mapping; 13906 int rc, i; 13907 13908 rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT); 13909 if (rc) 13910 return rc; 13911 13912 dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4, 13913 &mapping); 13914 if (!dbg_reg_buf) { 13915 rc = -ENOMEM; 13916 goto dbg_rd_reg_exit; 13917 } 13918 13919 req->host_dest_addr = cpu_to_le64(mapping); 13920 13921 resp = hwrm_req_hold(bp, req); 13922 req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 13923 req->read_len32 = cpu_to_le32(num_words); 13924 13925 rc = hwrm_req_send(bp, req); 13926 if (rc || resp->error_code) { 13927 rc = -EIO; 13928 goto dbg_rd_reg_exit; 13929 } 13930 for (i = 0; i < num_words; i++) 13931 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 13932 13933 dbg_rd_reg_exit: 13934 hwrm_req_drop(bp, req); 13935 return rc; 13936 } 13937 13938 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 13939 u32 ring_id, u32 *prod, u32 *cons) 13940 { 13941 struct hwrm_dbg_ring_info_get_output *resp; 13942 struct hwrm_dbg_ring_info_get_input *req; 13943 int rc; 13944 13945 rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET); 13946 if (rc) 13947 return rc; 13948 13949 req->ring_type = ring_type; 13950 req->fw_ring_id = cpu_to_le32(ring_id); 13951 resp = hwrm_req_hold(bp, req); 13952 rc = hwrm_req_send(bp, req); 13953 if (!rc) { 13954 *prod = le32_to_cpu(resp->producer_index); 13955 *cons = le32_to_cpu(resp->consumer_index); 13956 } 13957 hwrm_req_drop(bp, req); 13958 return rc; 13959 } 13960 13961 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 13962 { 13963 struct bnxt_tx_ring_info *txr; 13964 int i = bnapi->index, j; 13965 13966 bnxt_for_each_napi_tx(j, bnapi, txr) 13967 netdev_info(bnapi->bp->dev, "[%d.%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 13968 i, j, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 13969 txr->tx_cons); 13970 } 13971 13972 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 13973 { 13974 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 13975 int i = bnapi->index; 13976 13977 if (!rxr) 13978 return; 13979 13980 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 13981 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 13982 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 13983 rxr->rx_sw_agg_prod); 13984 } 13985 13986 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 13987 { 13988 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 13989 int i = bnapi->index; 13990 13991 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 13992 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 13993 } 13994 13995 static void bnxt_dbg_dump_states(struct bnxt *bp) 13996 { 13997 int i; 13998 struct bnxt_napi *bnapi; 13999 14000 for (i = 0; i < bp->cp_nr_rings; i++) { 14001 bnapi = bp->bnapi[i]; 14002 if (netif_msg_drv(bp)) { 14003 bnxt_dump_tx_sw_state(bnapi); 14004 bnxt_dump_rx_sw_state(bnapi); 14005 bnxt_dump_cp_sw_state(bnapi); 14006 } 14007 } 14008 } 14009 14010 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 14011 { 14012 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 14013 struct hwrm_ring_reset_input *req; 14014 struct bnxt_napi *bnapi = rxr->bnapi; 14015 struct bnxt_cp_ring_info *cpr; 14016 u16 cp_ring_id; 14017 int rc; 14018 14019 rc = hwrm_req_init(bp, req, HWRM_RING_RESET); 14020 if (rc) 14021 return rc; 14022 14023 cpr = &bnapi->cp_ring; 14024 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 14025 req->cmpl_ring = cpu_to_le16(cp_ring_id); 14026 req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 14027 req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 14028 return hwrm_req_send_silent(bp, req); 14029 } 14030 14031 static void bnxt_reset_task(struct bnxt *bp, bool silent) 14032 { 14033 if (!silent) 14034 bnxt_dbg_dump_states(bp); 14035 if (netif_running(bp->dev)) { 14036 bnxt_close_nic(bp, !silent, false); 14037 bnxt_open_nic(bp, !silent, false); 14038 } 14039 } 14040 14041 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 14042 { 14043 struct bnxt *bp = netdev_priv(dev); 14044 14045 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 14046 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 14047 } 14048 14049 static void bnxt_fw_health_check(struct bnxt *bp) 14050 { 14051 struct bnxt_fw_health *fw_health = bp->fw_health; 14052 struct pci_dev *pdev = bp->pdev; 14053 u32 val; 14054 14055 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 14056 return; 14057 14058 /* Make sure it is enabled before checking the tmr_counter. */ 14059 smp_rmb(); 14060 if (fw_health->tmr_counter) { 14061 fw_health->tmr_counter--; 14062 return; 14063 } 14064 14065 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 14066 if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) { 14067 fw_health->arrests++; 14068 goto fw_reset; 14069 } 14070 14071 fw_health->last_fw_heartbeat = val; 14072 14073 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 14074 if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) { 14075 fw_health->discoveries++; 14076 goto fw_reset; 14077 } 14078 14079 fw_health->tmr_counter = fw_health->tmr_multiplier; 14080 return; 14081 14082 fw_reset: 14083 bnxt_queue_sp_work(bp, BNXT_FW_EXCEPTION_SP_EVENT); 14084 } 14085 14086 static void bnxt_timer(struct timer_list *t) 14087 { 14088 struct bnxt *bp = timer_container_of(bp, t, timer); 14089 struct net_device *dev = bp->dev; 14090 14091 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 14092 return; 14093 14094 if (atomic_read(&bp->intr_sem) != 0) 14095 goto bnxt_restart_timer; 14096 14097 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 14098 bnxt_fw_health_check(bp); 14099 14100 if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) 14101 bnxt_queue_sp_work(bp, BNXT_PERIODIC_STATS_SP_EVENT); 14102 14103 if (bnxt_tc_flower_enabled(bp)) 14104 bnxt_queue_sp_work(bp, BNXT_FLOW_STATS_SP_EVENT); 14105 14106 #ifdef CONFIG_RFS_ACCEL 14107 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) 14108 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 14109 #endif /*CONFIG_RFS_ACCEL*/ 14110 14111 if (bp->link_info.phy_retry) { 14112 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 14113 bp->link_info.phy_retry = false; 14114 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 14115 } else { 14116 bnxt_queue_sp_work(bp, BNXT_UPDATE_PHY_SP_EVENT); 14117 } 14118 } 14119 14120 if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 14121 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 14122 14123 if ((BNXT_CHIP_P5(bp)) && !bp->chip_rev && netif_carrier_ok(dev)) 14124 bnxt_queue_sp_work(bp, BNXT_RING_COAL_NOW_SP_EVENT); 14125 14126 bnxt_restart_timer: 14127 mod_timer(&bp->timer, jiffies + bp->current_interval); 14128 } 14129 14130 static void bnxt_lock_sp(struct bnxt *bp) 14131 { 14132 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 14133 * set. If the device is being closed, bnxt_close() may be holding 14134 * netdev instance lock and waiting for BNXT_STATE_IN_SP_TASK to clear. 14135 * So we must clear BNXT_STATE_IN_SP_TASK before holding netdev 14136 * instance lock. 14137 */ 14138 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14139 netdev_lock(bp->dev); 14140 } 14141 14142 static void bnxt_unlock_sp(struct bnxt *bp) 14143 { 14144 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14145 netdev_unlock(bp->dev); 14146 } 14147 14148 /* Only called from bnxt_sp_task() */ 14149 static void bnxt_reset(struct bnxt *bp, bool silent) 14150 { 14151 bnxt_lock_sp(bp); 14152 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 14153 bnxt_reset_task(bp, silent); 14154 bnxt_unlock_sp(bp); 14155 } 14156 14157 /* Only called from bnxt_sp_task() */ 14158 static void bnxt_rx_ring_reset(struct bnxt *bp) 14159 { 14160 int i; 14161 14162 bnxt_lock_sp(bp); 14163 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 14164 bnxt_unlock_sp(bp); 14165 return; 14166 } 14167 /* Disable and flush TPA before resetting the RX ring */ 14168 if (bp->flags & BNXT_FLAG_TPA) 14169 bnxt_set_tpa(bp, false); 14170 for (i = 0; i < bp->rx_nr_rings; i++) { 14171 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 14172 struct bnxt_cp_ring_info *cpr; 14173 int rc; 14174 14175 if (!rxr->bnapi->in_reset) 14176 continue; 14177 14178 rc = bnxt_hwrm_rx_ring_reset(bp, i); 14179 if (rc) { 14180 if (rc == -EINVAL || rc == -EOPNOTSUPP) 14181 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 14182 else 14183 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 14184 rc); 14185 bnxt_reset_task(bp, true); 14186 break; 14187 } 14188 bnxt_free_one_rx_ring_skbs(bp, rxr); 14189 rxr->rx_prod = 0; 14190 rxr->rx_agg_prod = 0; 14191 rxr->rx_sw_agg_prod = 0; 14192 rxr->rx_next_cons = 0; 14193 rxr->bnapi->in_reset = false; 14194 bnxt_alloc_one_rx_ring(bp, i); 14195 cpr = &rxr->bnapi->cp_ring; 14196 cpr->sw_stats->rx.rx_resets++; 14197 if (bp->flags & BNXT_FLAG_AGG_RINGS) 14198 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 14199 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 14200 } 14201 if (bp->flags & BNXT_FLAG_TPA) 14202 bnxt_set_tpa(bp, true); 14203 bnxt_unlock_sp(bp); 14204 } 14205 14206 static void bnxt_fw_fatal_close(struct bnxt *bp) 14207 { 14208 bnxt_tx_disable(bp); 14209 bnxt_disable_napi(bp); 14210 bnxt_disable_int_sync(bp); 14211 bnxt_free_irq(bp); 14212 bnxt_clear_int_mode(bp); 14213 pci_disable_device(bp->pdev); 14214 } 14215 14216 static void bnxt_fw_reset_close(struct bnxt *bp) 14217 { 14218 /* When firmware is in fatal state, quiesce device and disable 14219 * bus master to prevent any potential bad DMAs before freeing 14220 * kernel memory. 14221 */ 14222 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 14223 u16 val = 0; 14224 14225 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 14226 if (val == 0xffff) 14227 bp->fw_reset_min_dsecs = 0; 14228 bnxt_fw_fatal_close(bp); 14229 } 14230 __bnxt_close_nic(bp, true, false); 14231 bnxt_vf_reps_free(bp); 14232 bnxt_clear_int_mode(bp); 14233 bnxt_hwrm_func_drv_unrgtr(bp); 14234 if (pci_is_enabled(bp->pdev)) 14235 pci_disable_device(bp->pdev); 14236 bnxt_free_ctx_mem(bp, false); 14237 } 14238 14239 static bool is_bnxt_fw_ok(struct bnxt *bp) 14240 { 14241 struct bnxt_fw_health *fw_health = bp->fw_health; 14242 bool no_heartbeat = false, has_reset = false; 14243 u32 val; 14244 14245 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 14246 if (val == fw_health->last_fw_heartbeat) 14247 no_heartbeat = true; 14248 14249 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 14250 if (val != fw_health->last_fw_reset_cnt) 14251 has_reset = true; 14252 14253 if (!no_heartbeat && has_reset) 14254 return true; 14255 14256 return false; 14257 } 14258 14259 /* netdev instance lock is acquired before calling this function */ 14260 static void bnxt_force_fw_reset(struct bnxt *bp) 14261 { 14262 struct bnxt_fw_health *fw_health = bp->fw_health; 14263 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 14264 u32 wait_dsecs; 14265 14266 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 14267 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 14268 return; 14269 14270 /* we have to serialize with bnxt_refclk_read()*/ 14271 if (ptp) { 14272 unsigned long flags; 14273 14274 write_seqlock_irqsave(&ptp->ptp_lock, flags); 14275 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14276 write_sequnlock_irqrestore(&ptp->ptp_lock, flags); 14277 } else { 14278 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14279 } 14280 bnxt_fw_reset_close(bp); 14281 wait_dsecs = fw_health->master_func_wait_dsecs; 14282 if (fw_health->primary) { 14283 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 14284 wait_dsecs = 0; 14285 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 14286 } else { 14287 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 14288 wait_dsecs = fw_health->normal_func_wait_dsecs; 14289 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14290 } 14291 14292 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 14293 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 14294 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 14295 } 14296 14297 void bnxt_fw_exception(struct bnxt *bp) 14298 { 14299 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 14300 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 14301 bnxt_ulp_stop(bp); 14302 bnxt_lock_sp(bp); 14303 bnxt_force_fw_reset(bp); 14304 bnxt_unlock_sp(bp); 14305 } 14306 14307 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 14308 * < 0 on error. 14309 */ 14310 static int bnxt_get_registered_vfs(struct bnxt *bp) 14311 { 14312 #ifdef CONFIG_BNXT_SRIOV 14313 int rc; 14314 14315 if (!BNXT_PF(bp)) 14316 return 0; 14317 14318 rc = bnxt_hwrm_func_qcfg(bp); 14319 if (rc) { 14320 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 14321 return rc; 14322 } 14323 if (bp->pf.registered_vfs) 14324 return bp->pf.registered_vfs; 14325 if (bp->sriov_cfg) 14326 return 1; 14327 #endif 14328 return 0; 14329 } 14330 14331 void bnxt_fw_reset(struct bnxt *bp) 14332 { 14333 bnxt_ulp_stop(bp); 14334 bnxt_lock_sp(bp); 14335 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 14336 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 14337 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 14338 int n = 0, tmo; 14339 14340 /* we have to serialize with bnxt_refclk_read()*/ 14341 if (ptp) { 14342 unsigned long flags; 14343 14344 write_seqlock_irqsave(&ptp->ptp_lock, flags); 14345 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14346 write_sequnlock_irqrestore(&ptp->ptp_lock, flags); 14347 } else { 14348 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14349 } 14350 if (bp->pf.active_vfs && 14351 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 14352 n = bnxt_get_registered_vfs(bp); 14353 if (n < 0) { 14354 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 14355 n); 14356 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14357 netif_close(bp->dev); 14358 goto fw_reset_exit; 14359 } else if (n > 0) { 14360 u16 vf_tmo_dsecs = n * 10; 14361 14362 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 14363 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 14364 bp->fw_reset_state = 14365 BNXT_FW_RESET_STATE_POLL_VF; 14366 bnxt_queue_fw_reset_work(bp, HZ / 10); 14367 goto fw_reset_exit; 14368 } 14369 bnxt_fw_reset_close(bp); 14370 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 14371 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 14372 tmo = HZ / 10; 14373 } else { 14374 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14375 tmo = bp->fw_reset_min_dsecs * HZ / 10; 14376 } 14377 bnxt_queue_fw_reset_work(bp, tmo); 14378 } 14379 fw_reset_exit: 14380 bnxt_unlock_sp(bp); 14381 } 14382 14383 static void bnxt_chk_missed_irq(struct bnxt *bp) 14384 { 14385 int i; 14386 14387 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 14388 return; 14389 14390 for (i = 0; i < bp->cp_nr_rings; i++) { 14391 struct bnxt_napi *bnapi = bp->bnapi[i]; 14392 struct bnxt_cp_ring_info *cpr; 14393 u32 fw_ring_id; 14394 int j; 14395 14396 if (!bnapi) 14397 continue; 14398 14399 cpr = &bnapi->cp_ring; 14400 for (j = 0; j < cpr->cp_ring_count; j++) { 14401 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 14402 u32 val[2]; 14403 14404 if (cpr2->has_more_work || !bnxt_has_work(bp, cpr2)) 14405 continue; 14406 14407 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 14408 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 14409 continue; 14410 } 14411 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 14412 bnxt_dbg_hwrm_ring_info_get(bp, 14413 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 14414 fw_ring_id, &val[0], &val[1]); 14415 cpr->sw_stats->cmn.missed_irqs++; 14416 } 14417 } 14418 } 14419 14420 static void bnxt_cfg_ntp_filters(struct bnxt *); 14421 14422 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 14423 { 14424 struct bnxt_link_info *link_info = &bp->link_info; 14425 14426 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 14427 link_info->autoneg = BNXT_AUTONEG_SPEED; 14428 if (bp->hwrm_spec_code >= 0x10201) { 14429 if (link_info->auto_pause_setting & 14430 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 14431 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 14432 } else { 14433 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 14434 } 14435 bnxt_set_auto_speed(link_info); 14436 } else { 14437 bnxt_set_force_speed(link_info); 14438 link_info->req_duplex = link_info->duplex_setting; 14439 } 14440 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 14441 link_info->req_flow_ctrl = 14442 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 14443 else 14444 link_info->req_flow_ctrl = link_info->force_pause_setting; 14445 } 14446 14447 static void bnxt_fw_echo_reply(struct bnxt *bp) 14448 { 14449 struct bnxt_fw_health *fw_health = bp->fw_health; 14450 struct hwrm_func_echo_response_input *req; 14451 int rc; 14452 14453 rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE); 14454 if (rc) 14455 return; 14456 req->event_data1 = cpu_to_le32(fw_health->echo_req_data1); 14457 req->event_data2 = cpu_to_le32(fw_health->echo_req_data2); 14458 hwrm_req_send(bp, req); 14459 } 14460 14461 static void bnxt_ulp_restart(struct bnxt *bp) 14462 { 14463 bnxt_ulp_stop(bp); 14464 bnxt_ulp_start(bp, 0); 14465 } 14466 14467 static void bnxt_sp_task(struct work_struct *work) 14468 { 14469 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 14470 14471 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14472 smp_mb__after_atomic(); 14473 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 14474 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14475 return; 14476 } 14477 14478 if (test_and_clear_bit(BNXT_RESTART_ULP_SP_EVENT, &bp->sp_event)) { 14479 bnxt_ulp_restart(bp); 14480 bnxt_reenable_sriov(bp); 14481 } 14482 14483 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 14484 bnxt_cfg_rx_mode(bp); 14485 14486 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 14487 bnxt_cfg_ntp_filters(bp); 14488 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 14489 bnxt_hwrm_exec_fwd_req(bp); 14490 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 14491 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 14492 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 14493 bnxt_hwrm_port_qstats(bp, 0); 14494 bnxt_hwrm_port_qstats_ext(bp, 0); 14495 bnxt_accumulate_all_stats(bp); 14496 } 14497 14498 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 14499 int rc; 14500 14501 mutex_lock(&bp->link_lock); 14502 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 14503 &bp->sp_event)) 14504 bnxt_hwrm_phy_qcaps(bp); 14505 14506 rc = bnxt_update_link(bp, true); 14507 if (rc) 14508 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 14509 rc); 14510 14511 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 14512 &bp->sp_event)) 14513 bnxt_init_ethtool_link_settings(bp); 14514 mutex_unlock(&bp->link_lock); 14515 } 14516 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 14517 int rc; 14518 14519 mutex_lock(&bp->link_lock); 14520 rc = bnxt_update_phy_setting(bp); 14521 mutex_unlock(&bp->link_lock); 14522 if (rc) { 14523 netdev_warn(bp->dev, "update phy settings retry failed\n"); 14524 } else { 14525 bp->link_info.phy_retry = false; 14526 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 14527 } 14528 } 14529 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 14530 mutex_lock(&bp->link_lock); 14531 bnxt_get_port_module_status(bp); 14532 mutex_unlock(&bp->link_lock); 14533 } 14534 14535 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 14536 bnxt_tc_flow_stats_work(bp); 14537 14538 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 14539 bnxt_chk_missed_irq(bp); 14540 14541 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 14542 bnxt_fw_echo_reply(bp); 14543 14544 if (test_and_clear_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event)) 14545 bnxt_hwmon_notify_event(bp); 14546 14547 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 14548 * must be the last functions to be called before exiting. 14549 */ 14550 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 14551 bnxt_reset(bp, false); 14552 14553 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 14554 bnxt_reset(bp, true); 14555 14556 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 14557 bnxt_rx_ring_reset(bp); 14558 14559 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) { 14560 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) || 14561 test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state)) 14562 bnxt_devlink_health_fw_report(bp); 14563 else 14564 bnxt_fw_reset(bp); 14565 } 14566 14567 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 14568 if (!is_bnxt_fw_ok(bp)) 14569 bnxt_devlink_health_fw_report(bp); 14570 } 14571 14572 smp_mb__before_atomic(); 14573 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14574 } 14575 14576 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 14577 int *max_cp); 14578 14579 /* Under netdev instance lock */ 14580 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 14581 int tx_xdp) 14582 { 14583 int max_rx, max_tx, max_cp, tx_sets = 1, tx_cp; 14584 struct bnxt_hw_rings hwr = {0}; 14585 int rx_rings = rx; 14586 int rc; 14587 14588 if (tcs) 14589 tx_sets = tcs; 14590 14591 _bnxt_get_max_rings(bp, &max_rx, &max_tx, &max_cp); 14592 14593 if (max_rx < rx_rings) 14594 return -ENOMEM; 14595 14596 if (bp->flags & BNXT_FLAG_AGG_RINGS) 14597 rx_rings <<= 1; 14598 14599 hwr.rx = rx_rings; 14600 hwr.tx = tx * tx_sets + tx_xdp; 14601 if (max_tx < hwr.tx) 14602 return -ENOMEM; 14603 14604 hwr.vnic = bnxt_get_total_vnics(bp, rx); 14605 14606 tx_cp = __bnxt_num_tx_to_cp(bp, hwr.tx, tx_sets, tx_xdp); 14607 hwr.cp = sh ? max_t(int, tx_cp, rx) : tx_cp + rx; 14608 if (max_cp < hwr.cp) 14609 return -ENOMEM; 14610 hwr.stat = hwr.cp; 14611 if (BNXT_NEW_RM(bp)) { 14612 hwr.cp += bnxt_get_ulp_msix_num_in_use(bp); 14613 hwr.stat += bnxt_get_ulp_stat_ctxs_in_use(bp); 14614 hwr.grp = rx; 14615 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 14616 } 14617 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 14618 hwr.cp_p5 = hwr.tx + rx; 14619 rc = bnxt_hwrm_check_rings(bp, &hwr); 14620 if (!rc && pci_msix_can_alloc_dyn(bp->pdev)) { 14621 if (!bnxt_ulp_registered(bp->edev)) { 14622 hwr.cp += bnxt_get_ulp_msix_num(bp); 14623 hwr.cp = min_t(int, hwr.cp, bnxt_get_max_func_irqs(bp)); 14624 } 14625 if (hwr.cp > bp->total_irqs) { 14626 int total_msix = bnxt_change_msix(bp, hwr.cp); 14627 14628 if (total_msix < hwr.cp) { 14629 netdev_warn(bp->dev, "Unable to allocate %d MSIX vectors, maximum available %d\n", 14630 hwr.cp, total_msix); 14631 rc = -ENOSPC; 14632 } 14633 } 14634 } 14635 return rc; 14636 } 14637 14638 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 14639 { 14640 if (bp->bar2) { 14641 pci_iounmap(pdev, bp->bar2); 14642 bp->bar2 = NULL; 14643 } 14644 14645 if (bp->bar1) { 14646 pci_iounmap(pdev, bp->bar1); 14647 bp->bar1 = NULL; 14648 } 14649 14650 if (bp->bar0) { 14651 pci_iounmap(pdev, bp->bar0); 14652 bp->bar0 = NULL; 14653 } 14654 } 14655 14656 static void bnxt_cleanup_pci(struct bnxt *bp) 14657 { 14658 bnxt_unmap_bars(bp, bp->pdev); 14659 pci_release_regions(bp->pdev); 14660 if (pci_is_enabled(bp->pdev)) 14661 pci_disable_device(bp->pdev); 14662 } 14663 14664 static void bnxt_init_dflt_coal(struct bnxt *bp) 14665 { 14666 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 14667 struct bnxt_coal *coal; 14668 u16 flags = 0; 14669 14670 if (coal_cap->cmpl_params & 14671 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 14672 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 14673 14674 /* Tick values in micro seconds. 14675 * 1 coal_buf x bufs_per_record = 1 completion record. 14676 */ 14677 coal = &bp->rx_coal; 14678 coal->coal_ticks = 10; 14679 coal->coal_bufs = 30; 14680 coal->coal_ticks_irq = 1; 14681 coal->coal_bufs_irq = 2; 14682 coal->idle_thresh = 50; 14683 coal->bufs_per_record = 2; 14684 coal->budget = 64; /* NAPI budget */ 14685 coal->flags = flags; 14686 14687 coal = &bp->tx_coal; 14688 coal->coal_ticks = 28; 14689 coal->coal_bufs = 30; 14690 coal->coal_ticks_irq = 2; 14691 coal->coal_bufs_irq = 2; 14692 coal->bufs_per_record = 1; 14693 coal->flags = flags; 14694 14695 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 14696 } 14697 14698 /* FW that pre-reserves 1 VNIC per function */ 14699 static bool bnxt_fw_pre_resv_vnics(struct bnxt *bp) 14700 { 14701 u16 fw_maj = BNXT_FW_MAJ(bp), fw_bld = BNXT_FW_BLD(bp); 14702 14703 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 14704 (fw_maj > 218 || (fw_maj == 218 && fw_bld >= 18))) 14705 return true; 14706 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 14707 (fw_maj > 216 || (fw_maj == 216 && fw_bld >= 172))) 14708 return true; 14709 return false; 14710 } 14711 14712 static int bnxt_fw_init_one_p1(struct bnxt *bp) 14713 { 14714 int rc; 14715 14716 bp->fw_cap = 0; 14717 rc = bnxt_hwrm_ver_get(bp); 14718 /* FW may be unresponsive after FLR. FLR must complete within 100 msec 14719 * so wait before continuing with recovery. 14720 */ 14721 if (rc) 14722 msleep(100); 14723 bnxt_try_map_fw_health_reg(bp); 14724 if (rc) { 14725 rc = bnxt_try_recover_fw(bp); 14726 if (rc) 14727 return rc; 14728 rc = bnxt_hwrm_ver_get(bp); 14729 if (rc) 14730 return rc; 14731 } 14732 14733 bnxt_nvm_cfg_ver_get(bp); 14734 14735 rc = bnxt_hwrm_func_reset(bp); 14736 if (rc) 14737 return -ENODEV; 14738 14739 bnxt_hwrm_fw_set_time(bp); 14740 return 0; 14741 } 14742 14743 static int bnxt_fw_init_one_p2(struct bnxt *bp) 14744 { 14745 int rc; 14746 14747 /* Get the MAX capabilities for this function */ 14748 rc = bnxt_hwrm_func_qcaps(bp); 14749 if (rc) { 14750 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 14751 rc); 14752 return -ENODEV; 14753 } 14754 14755 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 14756 if (rc) 14757 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 14758 rc); 14759 14760 if (bnxt_alloc_fw_health(bp)) { 14761 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 14762 } else { 14763 rc = bnxt_hwrm_error_recovery_qcfg(bp); 14764 if (rc) 14765 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 14766 rc); 14767 } 14768 14769 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 14770 if (rc) 14771 return -ENODEV; 14772 14773 rc = bnxt_alloc_crash_dump_mem(bp); 14774 if (rc) 14775 netdev_warn(bp->dev, "crash dump mem alloc failure rc: %d\n", 14776 rc); 14777 if (!rc) { 14778 rc = bnxt_hwrm_crash_dump_mem_cfg(bp); 14779 if (rc) { 14780 bnxt_free_crash_dump_mem(bp); 14781 netdev_warn(bp->dev, 14782 "hwrm crash dump mem failure rc: %d\n", rc); 14783 } 14784 } 14785 14786 if (bnxt_fw_pre_resv_vnics(bp)) 14787 bp->fw_cap |= BNXT_FW_CAP_PRE_RESV_VNICS; 14788 14789 bnxt_hwrm_func_qcfg(bp); 14790 bnxt_hwrm_vnic_qcaps(bp); 14791 bnxt_hwrm_port_led_qcaps(bp); 14792 bnxt_ethtool_init(bp); 14793 if (bp->fw_cap & BNXT_FW_CAP_PTP) 14794 __bnxt_hwrm_ptp_qcfg(bp); 14795 bnxt_dcb_init(bp); 14796 bnxt_hwmon_init(bp); 14797 return 0; 14798 } 14799 14800 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 14801 { 14802 bp->rss_cap &= ~BNXT_RSS_CAP_UDP_RSS_CAP; 14803 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 14804 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 14805 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 14806 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 14807 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 14808 bp->rss_hash_delta = bp->rss_hash_cfg; 14809 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 14810 bp->rss_cap |= BNXT_RSS_CAP_UDP_RSS_CAP; 14811 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 14812 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 14813 } 14814 } 14815 14816 static void bnxt_set_dflt_rfs(struct bnxt *bp) 14817 { 14818 struct net_device *dev = bp->dev; 14819 14820 dev->hw_features &= ~NETIF_F_NTUPLE; 14821 dev->features &= ~NETIF_F_NTUPLE; 14822 bp->flags &= ~BNXT_FLAG_RFS; 14823 if (bnxt_rfs_supported(bp)) { 14824 dev->hw_features |= NETIF_F_NTUPLE; 14825 if (bnxt_rfs_capable(bp, false)) { 14826 bp->flags |= BNXT_FLAG_RFS; 14827 dev->features |= NETIF_F_NTUPLE; 14828 } 14829 } 14830 } 14831 14832 static void bnxt_fw_init_one_p3(struct bnxt *bp) 14833 { 14834 struct pci_dev *pdev = bp->pdev; 14835 14836 bnxt_set_dflt_rss_hash_type(bp); 14837 bnxt_set_dflt_rfs(bp); 14838 14839 bnxt_get_wol_settings(bp); 14840 if (bp->flags & BNXT_FLAG_WOL_CAP) 14841 device_set_wakeup_enable(&pdev->dev, bp->wol); 14842 else 14843 device_set_wakeup_capable(&pdev->dev, false); 14844 14845 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 14846 bnxt_hwrm_coal_params_qcaps(bp); 14847 } 14848 14849 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); 14850 14851 int bnxt_fw_init_one(struct bnxt *bp) 14852 { 14853 int rc; 14854 14855 rc = bnxt_fw_init_one_p1(bp); 14856 if (rc) { 14857 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 14858 return rc; 14859 } 14860 rc = bnxt_fw_init_one_p2(bp); 14861 if (rc) { 14862 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 14863 return rc; 14864 } 14865 rc = bnxt_probe_phy(bp, false); 14866 if (rc) 14867 return rc; 14868 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 14869 if (rc) 14870 return rc; 14871 14872 bnxt_fw_init_one_p3(bp); 14873 return 0; 14874 } 14875 14876 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 14877 { 14878 struct bnxt_fw_health *fw_health = bp->fw_health; 14879 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 14880 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 14881 u32 reg_type, reg_off, delay_msecs; 14882 14883 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 14884 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 14885 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 14886 switch (reg_type) { 14887 case BNXT_FW_HEALTH_REG_TYPE_CFG: 14888 pci_write_config_dword(bp->pdev, reg_off, val); 14889 break; 14890 case BNXT_FW_HEALTH_REG_TYPE_GRC: 14891 writel(reg_off & BNXT_GRC_BASE_MASK, 14892 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 14893 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 14894 fallthrough; 14895 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 14896 writel(val, bp->bar0 + reg_off); 14897 break; 14898 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 14899 writel(val, bp->bar1 + reg_off); 14900 break; 14901 } 14902 if (delay_msecs) { 14903 pci_read_config_dword(bp->pdev, 0, &val); 14904 msleep(delay_msecs); 14905 } 14906 } 14907 14908 bool bnxt_hwrm_reset_permitted(struct bnxt *bp) 14909 { 14910 struct hwrm_func_qcfg_output *resp; 14911 struct hwrm_func_qcfg_input *req; 14912 bool result = true; /* firmware will enforce if unknown */ 14913 14914 if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF) 14915 return result; 14916 14917 if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG)) 14918 return result; 14919 14920 req->fid = cpu_to_le16(0xffff); 14921 resp = hwrm_req_hold(bp, req); 14922 if (!hwrm_req_send(bp, req)) 14923 result = !!(le16_to_cpu(resp->flags) & 14924 FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED); 14925 hwrm_req_drop(bp, req); 14926 return result; 14927 } 14928 14929 static void bnxt_reset_all(struct bnxt *bp) 14930 { 14931 struct bnxt_fw_health *fw_health = bp->fw_health; 14932 int i, rc; 14933 14934 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 14935 bnxt_fw_reset_via_optee(bp); 14936 bp->fw_reset_timestamp = jiffies; 14937 return; 14938 } 14939 14940 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 14941 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 14942 bnxt_fw_reset_writel(bp, i); 14943 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 14944 struct hwrm_fw_reset_input *req; 14945 14946 rc = hwrm_req_init(bp, req, HWRM_FW_RESET); 14947 if (!rc) { 14948 req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG); 14949 req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 14950 req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 14951 req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 14952 rc = hwrm_req_send(bp, req); 14953 } 14954 if (rc != -ENODEV) 14955 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 14956 } 14957 bp->fw_reset_timestamp = jiffies; 14958 } 14959 14960 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 14961 { 14962 return time_after(jiffies, bp->fw_reset_timestamp + 14963 (bp->fw_reset_max_dsecs * HZ / 10)); 14964 } 14965 14966 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) 14967 { 14968 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14969 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) 14970 bnxt_dl_health_fw_status_update(bp, false); 14971 bp->fw_reset_state = BNXT_FW_RESET_STATE_ABORT; 14972 netif_close(bp->dev); 14973 } 14974 14975 static void bnxt_fw_reset_task(struct work_struct *work) 14976 { 14977 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 14978 int rc = 0; 14979 14980 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 14981 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 14982 return; 14983 } 14984 14985 switch (bp->fw_reset_state) { 14986 case BNXT_FW_RESET_STATE_POLL_VF: { 14987 int n = bnxt_get_registered_vfs(bp); 14988 int tmo; 14989 14990 if (n < 0) { 14991 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 14992 n, jiffies_to_msecs(jiffies - 14993 bp->fw_reset_timestamp)); 14994 goto fw_reset_abort; 14995 } else if (n > 0) { 14996 if (bnxt_fw_reset_timeout(bp)) { 14997 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14998 bp->fw_reset_state = 0; 14999 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 15000 n); 15001 goto ulp_start; 15002 } 15003 bnxt_queue_fw_reset_work(bp, HZ / 10); 15004 return; 15005 } 15006 bp->fw_reset_timestamp = jiffies; 15007 netdev_lock(bp->dev); 15008 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 15009 bnxt_fw_reset_abort(bp, rc); 15010 netdev_unlock(bp->dev); 15011 goto ulp_start; 15012 } 15013 bnxt_fw_reset_close(bp); 15014 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 15015 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 15016 tmo = HZ / 10; 15017 } else { 15018 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 15019 tmo = bp->fw_reset_min_dsecs * HZ / 10; 15020 } 15021 netdev_unlock(bp->dev); 15022 bnxt_queue_fw_reset_work(bp, tmo); 15023 return; 15024 } 15025 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 15026 u32 val; 15027 15028 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 15029 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 15030 !bnxt_fw_reset_timeout(bp)) { 15031 bnxt_queue_fw_reset_work(bp, HZ / 5); 15032 return; 15033 } 15034 15035 if (!bp->fw_health->primary) { 15036 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 15037 15038 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 15039 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 15040 return; 15041 } 15042 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 15043 } 15044 fallthrough; 15045 case BNXT_FW_RESET_STATE_RESET_FW: 15046 bnxt_reset_all(bp); 15047 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 15048 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 15049 return; 15050 case BNXT_FW_RESET_STATE_ENABLE_DEV: 15051 bnxt_inv_fw_health_reg(bp); 15052 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 15053 !bp->fw_reset_min_dsecs) { 15054 u16 val; 15055 15056 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 15057 if (val == 0xffff) { 15058 if (bnxt_fw_reset_timeout(bp)) { 15059 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 15060 rc = -ETIMEDOUT; 15061 goto fw_reset_abort; 15062 } 15063 bnxt_queue_fw_reset_work(bp, HZ / 1000); 15064 return; 15065 } 15066 } 15067 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 15068 clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 15069 if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) && 15070 !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state)) 15071 bnxt_dl_remote_reload(bp); 15072 if (pci_enable_device(bp->pdev)) { 15073 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 15074 rc = -ENODEV; 15075 goto fw_reset_abort; 15076 } 15077 pci_set_master(bp->pdev); 15078 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 15079 fallthrough; 15080 case BNXT_FW_RESET_STATE_POLL_FW: 15081 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 15082 rc = bnxt_hwrm_poll(bp); 15083 if (rc) { 15084 if (bnxt_fw_reset_timeout(bp)) { 15085 netdev_err(bp->dev, "Firmware reset aborted\n"); 15086 goto fw_reset_abort_status; 15087 } 15088 bnxt_queue_fw_reset_work(bp, HZ / 5); 15089 return; 15090 } 15091 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 15092 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 15093 fallthrough; 15094 case BNXT_FW_RESET_STATE_OPENING: 15095 while (!netdev_trylock(bp->dev)) { 15096 bnxt_queue_fw_reset_work(bp, HZ / 10); 15097 return; 15098 } 15099 rc = bnxt_open(bp->dev); 15100 if (rc) { 15101 netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); 15102 bnxt_fw_reset_abort(bp, rc); 15103 netdev_unlock(bp->dev); 15104 goto ulp_start; 15105 } 15106 15107 if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) && 15108 bp->fw_health->enabled) { 15109 bp->fw_health->last_fw_reset_cnt = 15110 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 15111 } 15112 bp->fw_reset_state = 0; 15113 /* Make sure fw_reset_state is 0 before clearing the flag */ 15114 smp_mb__before_atomic(); 15115 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 15116 bnxt_ptp_reapply_pps(bp); 15117 clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state); 15118 if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) { 15119 bnxt_dl_health_fw_recovery_done(bp); 15120 bnxt_dl_health_fw_status_update(bp, true); 15121 } 15122 netdev_unlock(bp->dev); 15123 bnxt_ulp_start(bp, 0); 15124 bnxt_reenable_sriov(bp); 15125 netdev_lock(bp->dev); 15126 bnxt_vf_reps_alloc(bp); 15127 bnxt_vf_reps_open(bp); 15128 netdev_unlock(bp->dev); 15129 break; 15130 } 15131 return; 15132 15133 fw_reset_abort_status: 15134 if (bp->fw_health->status_reliable || 15135 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 15136 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 15137 15138 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 15139 } 15140 fw_reset_abort: 15141 netdev_lock(bp->dev); 15142 bnxt_fw_reset_abort(bp, rc); 15143 netdev_unlock(bp->dev); 15144 ulp_start: 15145 bnxt_ulp_start(bp, rc); 15146 } 15147 15148 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 15149 { 15150 int rc; 15151 struct bnxt *bp = netdev_priv(dev); 15152 15153 SET_NETDEV_DEV(dev, &pdev->dev); 15154 15155 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 15156 rc = pci_enable_device(pdev); 15157 if (rc) { 15158 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 15159 goto init_err; 15160 } 15161 15162 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 15163 dev_err(&pdev->dev, 15164 "Cannot find PCI device base address, aborting\n"); 15165 rc = -ENODEV; 15166 goto init_err_disable; 15167 } 15168 15169 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 15170 if (rc) { 15171 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 15172 goto init_err_disable; 15173 } 15174 15175 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 15176 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 15177 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 15178 rc = -EIO; 15179 goto init_err_release; 15180 } 15181 15182 pci_set_master(pdev); 15183 15184 bp->dev = dev; 15185 bp->pdev = pdev; 15186 15187 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 15188 * determines the BAR size. 15189 */ 15190 bp->bar0 = pci_ioremap_bar(pdev, 0); 15191 if (!bp->bar0) { 15192 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 15193 rc = -ENOMEM; 15194 goto init_err_release; 15195 } 15196 15197 bp->bar2 = pci_ioremap_bar(pdev, 4); 15198 if (!bp->bar2) { 15199 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 15200 rc = -ENOMEM; 15201 goto init_err_release; 15202 } 15203 15204 INIT_WORK(&bp->sp_task, bnxt_sp_task); 15205 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 15206 15207 spin_lock_init(&bp->ntp_fltr_lock); 15208 #if BITS_PER_LONG == 32 15209 spin_lock_init(&bp->db_lock); 15210 #endif 15211 15212 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 15213 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 15214 15215 timer_setup(&bp->timer, bnxt_timer, 0); 15216 bp->current_interval = BNXT_TIMER_INTERVAL; 15217 15218 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 15219 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 15220 15221 clear_bit(BNXT_STATE_OPEN, &bp->state); 15222 return 0; 15223 15224 init_err_release: 15225 bnxt_unmap_bars(bp, pdev); 15226 pci_release_regions(pdev); 15227 15228 init_err_disable: 15229 pci_disable_device(pdev); 15230 15231 init_err: 15232 return rc; 15233 } 15234 15235 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 15236 { 15237 struct sockaddr *addr = p; 15238 struct bnxt *bp = netdev_priv(dev); 15239 int rc = 0; 15240 15241 netdev_assert_locked(dev); 15242 15243 if (!is_valid_ether_addr(addr->sa_data)) 15244 return -EADDRNOTAVAIL; 15245 15246 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 15247 return 0; 15248 15249 rc = bnxt_approve_mac(bp, addr->sa_data, true); 15250 if (rc) 15251 return rc; 15252 15253 eth_hw_addr_set(dev, addr->sa_data); 15254 bnxt_clear_usr_fltrs(bp, true); 15255 if (netif_running(dev)) { 15256 bnxt_close_nic(bp, false, false); 15257 rc = bnxt_open_nic(bp, false, false); 15258 } 15259 15260 return rc; 15261 } 15262 15263 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 15264 { 15265 struct bnxt *bp = netdev_priv(dev); 15266 15267 netdev_assert_locked(dev); 15268 15269 if (netif_running(dev)) 15270 bnxt_close_nic(bp, true, false); 15271 15272 WRITE_ONCE(dev->mtu, new_mtu); 15273 15274 /* MTU change may change the AGG ring settings if an XDP multi-buffer 15275 * program is attached. We need to set the AGG rings settings and 15276 * rx_skb_func accordingly. 15277 */ 15278 if (READ_ONCE(bp->xdp_prog)) 15279 bnxt_set_rx_skb_mode(bp, true); 15280 15281 bnxt_set_ring_params(bp); 15282 15283 if (netif_running(dev)) 15284 return bnxt_open_nic(bp, true, false); 15285 15286 return 0; 15287 } 15288 15289 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 15290 { 15291 struct bnxt *bp = netdev_priv(dev); 15292 bool sh = false; 15293 int rc, tx_cp; 15294 15295 if (tc > bp->max_tc) { 15296 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 15297 tc, bp->max_tc); 15298 return -EINVAL; 15299 } 15300 15301 if (bp->num_tc == tc) 15302 return 0; 15303 15304 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 15305 sh = true; 15306 15307 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 15308 sh, tc, bp->tx_nr_rings_xdp); 15309 if (rc) 15310 return rc; 15311 15312 /* Needs to close the device and do hw resource re-allocations */ 15313 if (netif_running(bp->dev)) 15314 bnxt_close_nic(bp, true, false); 15315 15316 if (tc) { 15317 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 15318 netdev_set_num_tc(dev, tc); 15319 bp->num_tc = tc; 15320 } else { 15321 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 15322 netdev_reset_tc(dev); 15323 bp->num_tc = 0; 15324 } 15325 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 15326 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 15327 bp->cp_nr_rings = sh ? max_t(int, tx_cp, bp->rx_nr_rings) : 15328 tx_cp + bp->rx_nr_rings; 15329 15330 if (netif_running(bp->dev)) 15331 return bnxt_open_nic(bp, true, false); 15332 15333 return 0; 15334 } 15335 15336 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 15337 void *cb_priv) 15338 { 15339 struct bnxt *bp = cb_priv; 15340 15341 if (!bnxt_tc_flower_enabled(bp) || 15342 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 15343 return -EOPNOTSUPP; 15344 15345 switch (type) { 15346 case TC_SETUP_CLSFLOWER: 15347 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 15348 default: 15349 return -EOPNOTSUPP; 15350 } 15351 } 15352 15353 LIST_HEAD(bnxt_block_cb_list); 15354 15355 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 15356 void *type_data) 15357 { 15358 struct bnxt *bp = netdev_priv(dev); 15359 15360 switch (type) { 15361 case TC_SETUP_BLOCK: 15362 return flow_block_cb_setup_simple(type_data, 15363 &bnxt_block_cb_list, 15364 bnxt_setup_tc_block_cb, 15365 bp, bp, true); 15366 case TC_SETUP_QDISC_MQPRIO: { 15367 struct tc_mqprio_qopt *mqprio = type_data; 15368 15369 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 15370 15371 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 15372 } 15373 default: 15374 return -EOPNOTSUPP; 15375 } 15376 } 15377 15378 u32 bnxt_get_ntp_filter_idx(struct bnxt *bp, struct flow_keys *fkeys, 15379 const struct sk_buff *skb) 15380 { 15381 struct bnxt_vnic_info *vnic; 15382 15383 if (skb) 15384 return skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 15385 15386 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 15387 return bnxt_toeplitz(bp, fkeys, (void *)vnic->rss_hash_key); 15388 } 15389 15390 int bnxt_insert_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr, 15391 u32 idx) 15392 { 15393 struct hlist_head *head; 15394 int bit_id; 15395 15396 spin_lock_bh(&bp->ntp_fltr_lock); 15397 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, bp->max_fltr, 0); 15398 if (bit_id < 0) { 15399 spin_unlock_bh(&bp->ntp_fltr_lock); 15400 return -ENOMEM; 15401 } 15402 15403 fltr->base.sw_id = (u16)bit_id; 15404 fltr->base.type = BNXT_FLTR_TYPE_NTUPLE; 15405 fltr->base.flags |= BNXT_ACT_RING_DST; 15406 head = &bp->ntp_fltr_hash_tbl[idx]; 15407 hlist_add_head_rcu(&fltr->base.hash, head); 15408 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 15409 bnxt_insert_usr_fltr(bp, &fltr->base); 15410 bp->ntp_fltr_count++; 15411 spin_unlock_bh(&bp->ntp_fltr_lock); 15412 return 0; 15413 } 15414 15415 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 15416 struct bnxt_ntuple_filter *f2) 15417 { 15418 struct bnxt_flow_masks *masks1 = &f1->fmasks; 15419 struct bnxt_flow_masks *masks2 = &f2->fmasks; 15420 struct flow_keys *keys1 = &f1->fkeys; 15421 struct flow_keys *keys2 = &f2->fkeys; 15422 15423 if (keys1->basic.n_proto != keys2->basic.n_proto || 15424 keys1->basic.ip_proto != keys2->basic.ip_proto) 15425 return false; 15426 15427 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 15428 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 15429 masks1->addrs.v4addrs.src != masks2->addrs.v4addrs.src || 15430 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst || 15431 masks1->addrs.v4addrs.dst != masks2->addrs.v4addrs.dst) 15432 return false; 15433 } else { 15434 if (!ipv6_addr_equal(&keys1->addrs.v6addrs.src, 15435 &keys2->addrs.v6addrs.src) || 15436 !ipv6_addr_equal(&masks1->addrs.v6addrs.src, 15437 &masks2->addrs.v6addrs.src) || 15438 !ipv6_addr_equal(&keys1->addrs.v6addrs.dst, 15439 &keys2->addrs.v6addrs.dst) || 15440 !ipv6_addr_equal(&masks1->addrs.v6addrs.dst, 15441 &masks2->addrs.v6addrs.dst)) 15442 return false; 15443 } 15444 15445 return keys1->ports.src == keys2->ports.src && 15446 masks1->ports.src == masks2->ports.src && 15447 keys1->ports.dst == keys2->ports.dst && 15448 masks1->ports.dst == masks2->ports.dst && 15449 keys1->control.flags == keys2->control.flags && 15450 f1->l2_fltr == f2->l2_fltr; 15451 } 15452 15453 struct bnxt_ntuple_filter * 15454 bnxt_lookup_ntp_filter_from_idx(struct bnxt *bp, 15455 struct bnxt_ntuple_filter *fltr, u32 idx) 15456 { 15457 struct bnxt_ntuple_filter *f; 15458 struct hlist_head *head; 15459 15460 head = &bp->ntp_fltr_hash_tbl[idx]; 15461 hlist_for_each_entry_rcu(f, head, base.hash) { 15462 if (bnxt_fltr_match(f, fltr)) 15463 return f; 15464 } 15465 return NULL; 15466 } 15467 15468 #ifdef CONFIG_RFS_ACCEL 15469 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 15470 u16 rxq_index, u32 flow_id) 15471 { 15472 struct bnxt *bp = netdev_priv(dev); 15473 struct bnxt_ntuple_filter *fltr, *new_fltr; 15474 struct flow_keys *fkeys; 15475 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 15476 struct bnxt_l2_filter *l2_fltr; 15477 int rc = 0, idx; 15478 u32 flags; 15479 15480 if (ether_addr_equal(dev->dev_addr, eth->h_dest)) { 15481 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 15482 atomic_inc(&l2_fltr->refcnt); 15483 } else { 15484 struct bnxt_l2_key key; 15485 15486 ether_addr_copy(key.dst_mac_addr, eth->h_dest); 15487 key.vlan = 0; 15488 l2_fltr = bnxt_lookup_l2_filter_from_key(bp, &key); 15489 if (!l2_fltr) 15490 return -EINVAL; 15491 if (l2_fltr->base.flags & BNXT_ACT_FUNC_DST) { 15492 bnxt_del_l2_filter(bp, l2_fltr); 15493 return -EINVAL; 15494 } 15495 } 15496 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 15497 if (!new_fltr) { 15498 bnxt_del_l2_filter(bp, l2_fltr); 15499 return -ENOMEM; 15500 } 15501 15502 fkeys = &new_fltr->fkeys; 15503 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 15504 rc = -EPROTONOSUPPORT; 15505 goto err_free; 15506 } 15507 15508 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 15509 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 15510 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 15511 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 15512 rc = -EPROTONOSUPPORT; 15513 goto err_free; 15514 } 15515 new_fltr->fmasks = BNXT_FLOW_IPV4_MASK_ALL; 15516 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 15517 if (bp->hwrm_spec_code < 0x10601) { 15518 rc = -EPROTONOSUPPORT; 15519 goto err_free; 15520 } 15521 new_fltr->fmasks = BNXT_FLOW_IPV6_MASK_ALL; 15522 } 15523 flags = fkeys->control.flags; 15524 if (((flags & FLOW_DIS_ENCAPSULATION) && 15525 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 15526 rc = -EPROTONOSUPPORT; 15527 goto err_free; 15528 } 15529 new_fltr->l2_fltr = l2_fltr; 15530 15531 idx = bnxt_get_ntp_filter_idx(bp, fkeys, skb); 15532 rcu_read_lock(); 15533 fltr = bnxt_lookup_ntp_filter_from_idx(bp, new_fltr, idx); 15534 if (fltr) { 15535 rc = fltr->base.sw_id; 15536 rcu_read_unlock(); 15537 goto err_free; 15538 } 15539 rcu_read_unlock(); 15540 15541 new_fltr->flow_id = flow_id; 15542 new_fltr->base.rxq = rxq_index; 15543 rc = bnxt_insert_ntp_filter(bp, new_fltr, idx); 15544 if (!rc) { 15545 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 15546 return new_fltr->base.sw_id; 15547 } 15548 15549 err_free: 15550 bnxt_del_l2_filter(bp, l2_fltr); 15551 kfree(new_fltr); 15552 return rc; 15553 } 15554 #endif 15555 15556 void bnxt_del_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr) 15557 { 15558 spin_lock_bh(&bp->ntp_fltr_lock); 15559 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 15560 spin_unlock_bh(&bp->ntp_fltr_lock); 15561 return; 15562 } 15563 hlist_del_rcu(&fltr->base.hash); 15564 bnxt_del_one_usr_fltr(bp, &fltr->base); 15565 bp->ntp_fltr_count--; 15566 spin_unlock_bh(&bp->ntp_fltr_lock); 15567 bnxt_del_l2_filter(bp, fltr->l2_fltr); 15568 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 15569 kfree_rcu(fltr, base.rcu); 15570 } 15571 15572 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 15573 { 15574 #ifdef CONFIG_RFS_ACCEL 15575 int i; 15576 15577 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 15578 struct hlist_head *head; 15579 struct hlist_node *tmp; 15580 struct bnxt_ntuple_filter *fltr; 15581 int rc; 15582 15583 head = &bp->ntp_fltr_hash_tbl[i]; 15584 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 15585 bool del = false; 15586 15587 if (test_bit(BNXT_FLTR_VALID, &fltr->base.state)) { 15588 if (fltr->base.flags & BNXT_ACT_NO_AGING) 15589 continue; 15590 if (rps_may_expire_flow(bp->dev, fltr->base.rxq, 15591 fltr->flow_id, 15592 fltr->base.sw_id)) { 15593 bnxt_hwrm_cfa_ntuple_filter_free(bp, 15594 fltr); 15595 del = true; 15596 } 15597 } else { 15598 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 15599 fltr); 15600 if (rc) 15601 del = true; 15602 else 15603 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 15604 } 15605 15606 if (del) 15607 bnxt_del_ntp_filter(bp, fltr); 15608 } 15609 } 15610 #endif 15611 } 15612 15613 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 15614 unsigned int entry, struct udp_tunnel_info *ti) 15615 { 15616 struct bnxt *bp = netdev_priv(netdev); 15617 unsigned int cmd; 15618 15619 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 15620 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN; 15621 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 15622 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE; 15623 else 15624 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE; 15625 15626 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd); 15627 } 15628 15629 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 15630 unsigned int entry, struct udp_tunnel_info *ti) 15631 { 15632 struct bnxt *bp = netdev_priv(netdev); 15633 unsigned int cmd; 15634 15635 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 15636 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 15637 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 15638 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 15639 else 15640 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE; 15641 15642 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 15643 } 15644 15645 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 15646 .set_port = bnxt_udp_tunnel_set_port, 15647 .unset_port = bnxt_udp_tunnel_unset_port, 15648 .flags = UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 15649 .tables = { 15650 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 15651 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 15652 }, 15653 }, bnxt_udp_tunnels_p7 = { 15654 .set_port = bnxt_udp_tunnel_set_port, 15655 .unset_port = bnxt_udp_tunnel_unset_port, 15656 .flags = UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 15657 .tables = { 15658 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 15659 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 15660 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN_GPE, }, 15661 }, 15662 }; 15663 15664 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 15665 struct net_device *dev, u32 filter_mask, 15666 int nlflags) 15667 { 15668 struct bnxt *bp = netdev_priv(dev); 15669 15670 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 15671 nlflags, filter_mask, NULL); 15672 } 15673 15674 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 15675 u16 flags, struct netlink_ext_ack *extack) 15676 { 15677 struct bnxt *bp = netdev_priv(dev); 15678 struct nlattr *attr, *br_spec; 15679 int rem, rc = 0; 15680 15681 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 15682 return -EOPNOTSUPP; 15683 15684 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 15685 if (!br_spec) 15686 return -EINVAL; 15687 15688 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 15689 u16 mode; 15690 15691 mode = nla_get_u16(attr); 15692 if (mode == bp->br_mode) 15693 break; 15694 15695 rc = bnxt_hwrm_set_br_mode(bp, mode); 15696 if (!rc) 15697 bp->br_mode = mode; 15698 break; 15699 } 15700 return rc; 15701 } 15702 15703 int bnxt_get_port_parent_id(struct net_device *dev, 15704 struct netdev_phys_item_id *ppid) 15705 { 15706 struct bnxt *bp = netdev_priv(dev); 15707 15708 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 15709 return -EOPNOTSUPP; 15710 15711 /* The PF and it's VF-reps only support the switchdev framework */ 15712 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 15713 return -EOPNOTSUPP; 15714 15715 ppid->id_len = sizeof(bp->dsn); 15716 memcpy(ppid->id, bp->dsn, ppid->id_len); 15717 15718 return 0; 15719 } 15720 15721 static const struct net_device_ops bnxt_netdev_ops = { 15722 .ndo_open = bnxt_open, 15723 .ndo_start_xmit = bnxt_start_xmit, 15724 .ndo_stop = bnxt_close, 15725 .ndo_get_stats64 = bnxt_get_stats64, 15726 .ndo_set_rx_mode = bnxt_set_rx_mode, 15727 .ndo_eth_ioctl = bnxt_ioctl, 15728 .ndo_validate_addr = eth_validate_addr, 15729 .ndo_set_mac_address = bnxt_change_mac_addr, 15730 .ndo_change_mtu = bnxt_change_mtu, 15731 .ndo_fix_features = bnxt_fix_features, 15732 .ndo_set_features = bnxt_set_features, 15733 .ndo_features_check = bnxt_features_check, 15734 .ndo_tx_timeout = bnxt_tx_timeout, 15735 #ifdef CONFIG_BNXT_SRIOV 15736 .ndo_get_vf_config = bnxt_get_vf_config, 15737 .ndo_set_vf_mac = bnxt_set_vf_mac, 15738 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 15739 .ndo_set_vf_rate = bnxt_set_vf_bw, 15740 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 15741 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 15742 .ndo_set_vf_trust = bnxt_set_vf_trust, 15743 #endif 15744 .ndo_setup_tc = bnxt_setup_tc, 15745 #ifdef CONFIG_RFS_ACCEL 15746 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 15747 #endif 15748 .ndo_bpf = bnxt_xdp, 15749 .ndo_xdp_xmit = bnxt_xdp_xmit, 15750 .ndo_bridge_getlink = bnxt_bridge_getlink, 15751 .ndo_bridge_setlink = bnxt_bridge_setlink, 15752 }; 15753 15754 static void bnxt_get_queue_stats_rx(struct net_device *dev, int i, 15755 struct netdev_queue_stats_rx *stats) 15756 { 15757 struct bnxt *bp = netdev_priv(dev); 15758 struct bnxt_cp_ring_info *cpr; 15759 u64 *sw; 15760 15761 if (!bp->bnapi) 15762 return; 15763 15764 cpr = &bp->bnapi[i]->cp_ring; 15765 sw = cpr->stats.sw_stats; 15766 15767 stats->packets = 0; 15768 stats->packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 15769 stats->packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 15770 stats->packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 15771 15772 stats->bytes = 0; 15773 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 15774 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 15775 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 15776 15777 stats->alloc_fail = cpr->sw_stats->rx.rx_oom_discards; 15778 } 15779 15780 static void bnxt_get_queue_stats_tx(struct net_device *dev, int i, 15781 struct netdev_queue_stats_tx *stats) 15782 { 15783 struct bnxt *bp = netdev_priv(dev); 15784 struct bnxt_napi *bnapi; 15785 u64 *sw; 15786 15787 if (!bp->tx_ring) 15788 return; 15789 15790 bnapi = bp->tx_ring[bp->tx_ring_map[i]].bnapi; 15791 sw = bnapi->cp_ring.stats.sw_stats; 15792 15793 stats->packets = 0; 15794 stats->packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 15795 stats->packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 15796 stats->packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 15797 15798 stats->bytes = 0; 15799 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 15800 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 15801 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 15802 } 15803 15804 static void bnxt_get_base_stats(struct net_device *dev, 15805 struct netdev_queue_stats_rx *rx, 15806 struct netdev_queue_stats_tx *tx) 15807 { 15808 struct bnxt *bp = netdev_priv(dev); 15809 15810 rx->packets = bp->net_stats_prev.rx_packets; 15811 rx->bytes = bp->net_stats_prev.rx_bytes; 15812 rx->alloc_fail = bp->ring_err_stats_prev.rx_total_oom_discards; 15813 15814 tx->packets = bp->net_stats_prev.tx_packets; 15815 tx->bytes = bp->net_stats_prev.tx_bytes; 15816 } 15817 15818 static const struct netdev_stat_ops bnxt_stat_ops = { 15819 .get_queue_stats_rx = bnxt_get_queue_stats_rx, 15820 .get_queue_stats_tx = bnxt_get_queue_stats_tx, 15821 .get_base_stats = bnxt_get_base_stats, 15822 }; 15823 15824 static int bnxt_queue_mem_alloc(struct net_device *dev, void *qmem, int idx) 15825 { 15826 struct bnxt_rx_ring_info *rxr, *clone; 15827 struct bnxt *bp = netdev_priv(dev); 15828 struct bnxt_ring_struct *ring; 15829 int rc; 15830 15831 if (!bp->rx_ring) 15832 return -ENETDOWN; 15833 15834 rxr = &bp->rx_ring[idx]; 15835 clone = qmem; 15836 memcpy(clone, rxr, sizeof(*rxr)); 15837 bnxt_init_rx_ring_struct(bp, clone); 15838 bnxt_reset_rx_ring_struct(bp, clone); 15839 15840 clone->rx_prod = 0; 15841 clone->rx_agg_prod = 0; 15842 clone->rx_sw_agg_prod = 0; 15843 clone->rx_next_cons = 0; 15844 clone->need_head_pool = false; 15845 15846 rc = bnxt_alloc_rx_page_pool(bp, clone, rxr->page_pool->p.nid); 15847 if (rc) 15848 return rc; 15849 15850 rc = xdp_rxq_info_reg(&clone->xdp_rxq, bp->dev, idx, 0); 15851 if (rc < 0) 15852 goto err_page_pool_destroy; 15853 15854 rc = xdp_rxq_info_reg_mem_model(&clone->xdp_rxq, 15855 MEM_TYPE_PAGE_POOL, 15856 clone->page_pool); 15857 if (rc) 15858 goto err_rxq_info_unreg; 15859 15860 ring = &clone->rx_ring_struct; 15861 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 15862 if (rc) 15863 goto err_free_rx_ring; 15864 15865 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 15866 ring = &clone->rx_agg_ring_struct; 15867 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 15868 if (rc) 15869 goto err_free_rx_agg_ring; 15870 15871 rc = bnxt_alloc_rx_agg_bmap(bp, clone); 15872 if (rc) 15873 goto err_free_rx_agg_ring; 15874 } 15875 15876 if (bp->flags & BNXT_FLAG_TPA) { 15877 rc = bnxt_alloc_one_tpa_info(bp, clone); 15878 if (rc) 15879 goto err_free_tpa_info; 15880 } 15881 15882 bnxt_init_one_rx_ring_rxbd(bp, clone); 15883 bnxt_init_one_rx_agg_ring_rxbd(bp, clone); 15884 15885 bnxt_alloc_one_rx_ring_skb(bp, clone, idx); 15886 if (bp->flags & BNXT_FLAG_AGG_RINGS) 15887 bnxt_alloc_one_rx_ring_netmem(bp, clone, idx); 15888 if (bp->flags & BNXT_FLAG_TPA) 15889 bnxt_alloc_one_tpa_info_data(bp, clone); 15890 15891 return 0; 15892 15893 err_free_tpa_info: 15894 bnxt_free_one_tpa_info(bp, clone); 15895 err_free_rx_agg_ring: 15896 bnxt_free_ring(bp, &clone->rx_agg_ring_struct.ring_mem); 15897 err_free_rx_ring: 15898 bnxt_free_ring(bp, &clone->rx_ring_struct.ring_mem); 15899 err_rxq_info_unreg: 15900 xdp_rxq_info_unreg(&clone->xdp_rxq); 15901 err_page_pool_destroy: 15902 page_pool_destroy(clone->page_pool); 15903 if (bnxt_separate_head_pool(clone)) 15904 page_pool_destroy(clone->head_pool); 15905 clone->page_pool = NULL; 15906 clone->head_pool = NULL; 15907 return rc; 15908 } 15909 15910 static void bnxt_queue_mem_free(struct net_device *dev, void *qmem) 15911 { 15912 struct bnxt_rx_ring_info *rxr = qmem; 15913 struct bnxt *bp = netdev_priv(dev); 15914 struct bnxt_ring_struct *ring; 15915 15916 bnxt_free_one_rx_ring_skbs(bp, rxr); 15917 bnxt_free_one_tpa_info(bp, rxr); 15918 15919 xdp_rxq_info_unreg(&rxr->xdp_rxq); 15920 15921 page_pool_destroy(rxr->page_pool); 15922 if (bnxt_separate_head_pool(rxr)) 15923 page_pool_destroy(rxr->head_pool); 15924 rxr->page_pool = NULL; 15925 rxr->head_pool = NULL; 15926 15927 ring = &rxr->rx_ring_struct; 15928 bnxt_free_ring(bp, &ring->ring_mem); 15929 15930 ring = &rxr->rx_agg_ring_struct; 15931 bnxt_free_ring(bp, &ring->ring_mem); 15932 15933 kfree(rxr->rx_agg_bmap); 15934 rxr->rx_agg_bmap = NULL; 15935 } 15936 15937 static void bnxt_copy_rx_ring(struct bnxt *bp, 15938 struct bnxt_rx_ring_info *dst, 15939 struct bnxt_rx_ring_info *src) 15940 { 15941 struct bnxt_ring_mem_info *dst_rmem, *src_rmem; 15942 struct bnxt_ring_struct *dst_ring, *src_ring; 15943 int i; 15944 15945 dst_ring = &dst->rx_ring_struct; 15946 dst_rmem = &dst_ring->ring_mem; 15947 src_ring = &src->rx_ring_struct; 15948 src_rmem = &src_ring->ring_mem; 15949 15950 WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages); 15951 WARN_ON(dst_rmem->page_size != src_rmem->page_size); 15952 WARN_ON(dst_rmem->flags != src_rmem->flags); 15953 WARN_ON(dst_rmem->depth != src_rmem->depth); 15954 WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size); 15955 WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem); 15956 15957 dst_rmem->pg_tbl = src_rmem->pg_tbl; 15958 dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map; 15959 *dst_rmem->vmem = *src_rmem->vmem; 15960 for (i = 0; i < dst_rmem->nr_pages; i++) { 15961 dst_rmem->pg_arr[i] = src_rmem->pg_arr[i]; 15962 dst_rmem->dma_arr[i] = src_rmem->dma_arr[i]; 15963 } 15964 15965 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 15966 return; 15967 15968 dst_ring = &dst->rx_agg_ring_struct; 15969 dst_rmem = &dst_ring->ring_mem; 15970 src_ring = &src->rx_agg_ring_struct; 15971 src_rmem = &src_ring->ring_mem; 15972 15973 WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages); 15974 WARN_ON(dst_rmem->page_size != src_rmem->page_size); 15975 WARN_ON(dst_rmem->flags != src_rmem->flags); 15976 WARN_ON(dst_rmem->depth != src_rmem->depth); 15977 WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size); 15978 WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem); 15979 WARN_ON(dst->rx_agg_bmap_size != src->rx_agg_bmap_size); 15980 15981 dst_rmem->pg_tbl = src_rmem->pg_tbl; 15982 dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map; 15983 *dst_rmem->vmem = *src_rmem->vmem; 15984 for (i = 0; i < dst_rmem->nr_pages; i++) { 15985 dst_rmem->pg_arr[i] = src_rmem->pg_arr[i]; 15986 dst_rmem->dma_arr[i] = src_rmem->dma_arr[i]; 15987 } 15988 15989 dst->rx_agg_bmap = src->rx_agg_bmap; 15990 } 15991 15992 static int bnxt_queue_start(struct net_device *dev, void *qmem, int idx) 15993 { 15994 struct bnxt *bp = netdev_priv(dev); 15995 struct bnxt_rx_ring_info *rxr, *clone; 15996 struct bnxt_cp_ring_info *cpr; 15997 struct bnxt_vnic_info *vnic; 15998 struct bnxt_napi *bnapi; 15999 int i, rc; 16000 u16 mru; 16001 16002 rxr = &bp->rx_ring[idx]; 16003 clone = qmem; 16004 16005 rxr->rx_prod = clone->rx_prod; 16006 rxr->rx_agg_prod = clone->rx_agg_prod; 16007 rxr->rx_sw_agg_prod = clone->rx_sw_agg_prod; 16008 rxr->rx_next_cons = clone->rx_next_cons; 16009 rxr->rx_tpa = clone->rx_tpa; 16010 rxr->rx_tpa_idx_map = clone->rx_tpa_idx_map; 16011 rxr->page_pool = clone->page_pool; 16012 rxr->head_pool = clone->head_pool; 16013 rxr->xdp_rxq = clone->xdp_rxq; 16014 rxr->need_head_pool = clone->need_head_pool; 16015 16016 bnxt_copy_rx_ring(bp, rxr, clone); 16017 16018 bnapi = rxr->bnapi; 16019 cpr = &bnapi->cp_ring; 16020 16021 /* All rings have been reserved and previously allocated. 16022 * Reallocating with the same parameters should never fail. 16023 */ 16024 rc = bnxt_hwrm_rx_ring_alloc(bp, rxr); 16025 if (rc) 16026 goto err_reset; 16027 16028 if (bp->tph_mode) { 16029 rc = bnxt_hwrm_cp_ring_alloc_p5(bp, rxr->rx_cpr); 16030 if (rc) 16031 goto err_reset; 16032 } 16033 16034 rc = bnxt_hwrm_rx_agg_ring_alloc(bp, rxr); 16035 if (rc) 16036 goto err_reset; 16037 16038 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 16039 if (bp->flags & BNXT_FLAG_AGG_RINGS) 16040 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 16041 16042 if (bp->flags & BNXT_FLAG_SHARED_RINGS) { 16043 rc = bnxt_tx_queue_start(bp, idx); 16044 if (rc) 16045 goto err_reset; 16046 } 16047 16048 bnxt_enable_rx_page_pool(rxr); 16049 napi_enable_locked(&bnapi->napi); 16050 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 16051 16052 mru = bp->dev->mtu + ETH_HLEN + VLAN_HLEN; 16053 for (i = 0; i < bp->nr_vnics; i++) { 16054 vnic = &bp->vnic_info[i]; 16055 16056 rc = bnxt_set_vnic_mru_p5(bp, vnic, mru, idx); 16057 if (rc) 16058 return rc; 16059 } 16060 return bnxt_set_rss_ctx_vnic_mru(bp, mru, idx); 16061 16062 err_reset: 16063 netdev_err(bp->dev, "Unexpected HWRM error during queue start rc: %d\n", 16064 rc); 16065 napi_enable_locked(&bnapi->napi); 16066 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 16067 bnxt_reset_task(bp, true); 16068 return rc; 16069 } 16070 16071 static int bnxt_queue_stop(struct net_device *dev, void *qmem, int idx) 16072 { 16073 struct bnxt *bp = netdev_priv(dev); 16074 struct bnxt_rx_ring_info *rxr; 16075 struct bnxt_cp_ring_info *cpr; 16076 struct bnxt_vnic_info *vnic; 16077 struct bnxt_napi *bnapi; 16078 int i; 16079 16080 for (i = 0; i < bp->nr_vnics; i++) { 16081 vnic = &bp->vnic_info[i]; 16082 16083 bnxt_set_vnic_mru_p5(bp, vnic, 0, idx); 16084 } 16085 bnxt_set_rss_ctx_vnic_mru(bp, 0, idx); 16086 /* Make sure NAPI sees that the VNIC is disabled */ 16087 synchronize_net(); 16088 rxr = &bp->rx_ring[idx]; 16089 bnapi = rxr->bnapi; 16090 cpr = &bnapi->cp_ring; 16091 cancel_work_sync(&cpr->dim.work); 16092 bnxt_hwrm_rx_ring_free(bp, rxr, false); 16093 bnxt_hwrm_rx_agg_ring_free(bp, rxr, false); 16094 page_pool_disable_direct_recycling(rxr->page_pool); 16095 if (bnxt_separate_head_pool(rxr)) 16096 page_pool_disable_direct_recycling(rxr->head_pool); 16097 16098 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 16099 bnxt_tx_queue_stop(bp, idx); 16100 16101 /* Disable NAPI now after freeing the rings because HWRM_RING_FREE 16102 * completion is handled in NAPI to guarantee no more DMA on that ring 16103 * after seeing the completion. 16104 */ 16105 napi_disable_locked(&bnapi->napi); 16106 16107 if (bp->tph_mode) { 16108 bnxt_hwrm_cp_ring_free(bp, rxr->rx_cpr); 16109 bnxt_clear_one_cp_ring(bp, rxr->rx_cpr); 16110 } 16111 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 16112 16113 memcpy(qmem, rxr, sizeof(*rxr)); 16114 bnxt_init_rx_ring_struct(bp, qmem); 16115 16116 return 0; 16117 } 16118 16119 static const struct netdev_queue_mgmt_ops bnxt_queue_mgmt_ops = { 16120 .ndo_queue_mem_size = sizeof(struct bnxt_rx_ring_info), 16121 .ndo_queue_mem_alloc = bnxt_queue_mem_alloc, 16122 .ndo_queue_mem_free = bnxt_queue_mem_free, 16123 .ndo_queue_start = bnxt_queue_start, 16124 .ndo_queue_stop = bnxt_queue_stop, 16125 }; 16126 16127 static void bnxt_remove_one(struct pci_dev *pdev) 16128 { 16129 struct net_device *dev = pci_get_drvdata(pdev); 16130 struct bnxt *bp = netdev_priv(dev); 16131 16132 if (BNXT_PF(bp)) 16133 bnxt_sriov_disable(bp); 16134 16135 bnxt_rdma_aux_device_del(bp); 16136 16137 unregister_netdev(dev); 16138 bnxt_ptp_clear(bp); 16139 16140 bnxt_rdma_aux_device_uninit(bp); 16141 16142 bnxt_free_l2_filters(bp, true); 16143 bnxt_free_ntp_fltrs(bp, true); 16144 WARN_ON(bp->num_rss_ctx); 16145 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 16146 /* Flush any pending tasks */ 16147 cancel_work_sync(&bp->sp_task); 16148 cancel_delayed_work_sync(&bp->fw_reset_task); 16149 bp->sp_event = 0; 16150 16151 bnxt_dl_fw_reporters_destroy(bp); 16152 bnxt_dl_unregister(bp); 16153 bnxt_shutdown_tc(bp); 16154 16155 bnxt_clear_int_mode(bp); 16156 bnxt_hwrm_func_drv_unrgtr(bp); 16157 bnxt_free_hwrm_resources(bp); 16158 bnxt_hwmon_uninit(bp); 16159 bnxt_ethtool_free(bp); 16160 bnxt_dcb_free(bp); 16161 kfree(bp->ptp_cfg); 16162 bp->ptp_cfg = NULL; 16163 kfree(bp->fw_health); 16164 bp->fw_health = NULL; 16165 bnxt_cleanup_pci(bp); 16166 bnxt_free_ctx_mem(bp, true); 16167 bnxt_free_crash_dump_mem(bp); 16168 kfree(bp->rss_indir_tbl); 16169 bp->rss_indir_tbl = NULL; 16170 bnxt_free_port_stats(bp); 16171 free_netdev(dev); 16172 } 16173 16174 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 16175 { 16176 int rc = 0; 16177 struct bnxt_link_info *link_info = &bp->link_info; 16178 16179 bp->phy_flags = 0; 16180 rc = bnxt_hwrm_phy_qcaps(bp); 16181 if (rc) { 16182 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 16183 rc); 16184 return rc; 16185 } 16186 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 16187 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 16188 else 16189 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 16190 16191 bp->mac_flags = 0; 16192 bnxt_hwrm_mac_qcaps(bp); 16193 16194 if (!fw_dflt) 16195 return 0; 16196 16197 mutex_lock(&bp->link_lock); 16198 rc = bnxt_update_link(bp, false); 16199 if (rc) { 16200 mutex_unlock(&bp->link_lock); 16201 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 16202 rc); 16203 return rc; 16204 } 16205 16206 /* Older firmware does not have supported_auto_speeds, so assume 16207 * that all supported speeds can be autonegotiated. 16208 */ 16209 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 16210 link_info->support_auto_speeds = link_info->support_speeds; 16211 16212 bnxt_init_ethtool_link_settings(bp); 16213 mutex_unlock(&bp->link_lock); 16214 return 0; 16215 } 16216 16217 static int bnxt_get_max_irq(struct pci_dev *pdev) 16218 { 16219 u16 ctrl; 16220 16221 if (!pdev->msix_cap) 16222 return 1; 16223 16224 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 16225 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 16226 } 16227 16228 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 16229 int *max_cp) 16230 { 16231 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 16232 int max_ring_grps = 0, max_irq; 16233 16234 *max_tx = hw_resc->max_tx_rings; 16235 *max_rx = hw_resc->max_rx_rings; 16236 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 16237 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 16238 bnxt_get_ulp_msix_num_in_use(bp), 16239 hw_resc->max_stat_ctxs - 16240 bnxt_get_ulp_stat_ctxs_in_use(bp)); 16241 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 16242 *max_cp = min_t(int, *max_cp, max_irq); 16243 max_ring_grps = hw_resc->max_hw_ring_grps; 16244 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 16245 *max_cp -= 1; 16246 *max_rx -= 2; 16247 } 16248 if (bp->flags & BNXT_FLAG_AGG_RINGS) 16249 *max_rx >>= 1; 16250 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 16251 int rc; 16252 16253 rc = __bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 16254 if (rc) { 16255 *max_rx = 0; 16256 *max_tx = 0; 16257 } 16258 /* On P5 chips, max_cp output param should be available NQs */ 16259 *max_cp = max_irq; 16260 } 16261 *max_rx = min_t(int, *max_rx, max_ring_grps); 16262 } 16263 16264 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 16265 { 16266 int rx, tx, cp; 16267 16268 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 16269 *max_rx = rx; 16270 *max_tx = tx; 16271 if (!rx || !tx || !cp) 16272 return -ENOMEM; 16273 16274 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 16275 } 16276 16277 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 16278 bool shared) 16279 { 16280 int rc; 16281 16282 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 16283 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 16284 /* Not enough rings, try disabling agg rings. */ 16285 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 16286 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 16287 if (rc) { 16288 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 16289 bp->flags |= BNXT_FLAG_AGG_RINGS; 16290 return rc; 16291 } 16292 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 16293 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 16294 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 16295 bnxt_set_ring_params(bp); 16296 } 16297 16298 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 16299 int max_cp, max_stat, max_irq; 16300 16301 /* Reserve minimum resources for RoCE */ 16302 max_cp = bnxt_get_max_func_cp_rings(bp); 16303 max_stat = bnxt_get_max_func_stat_ctxs(bp); 16304 max_irq = bnxt_get_max_func_irqs(bp); 16305 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 16306 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 16307 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 16308 return 0; 16309 16310 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 16311 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 16312 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 16313 max_cp = min_t(int, max_cp, max_irq); 16314 max_cp = min_t(int, max_cp, max_stat); 16315 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 16316 if (rc) 16317 rc = 0; 16318 } 16319 return rc; 16320 } 16321 16322 /* In initial default shared ring setting, each shared ring must have a 16323 * RX/TX ring pair. 16324 */ 16325 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 16326 { 16327 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 16328 bp->rx_nr_rings = bp->cp_nr_rings; 16329 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 16330 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 16331 } 16332 16333 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 16334 { 16335 int dflt_rings, max_rx_rings, max_tx_rings, rc; 16336 int avail_msix; 16337 16338 if (!bnxt_can_reserve_rings(bp)) 16339 return 0; 16340 16341 if (sh) 16342 bp->flags |= BNXT_FLAG_SHARED_RINGS; 16343 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 16344 /* Reduce default rings on multi-port cards so that total default 16345 * rings do not exceed CPU count. 16346 */ 16347 if (bp->port_count > 1) { 16348 int max_rings = 16349 max_t(int, num_online_cpus() / bp->port_count, 1); 16350 16351 dflt_rings = min_t(int, dflt_rings, max_rings); 16352 } 16353 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 16354 if (rc) 16355 return rc; 16356 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 16357 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 16358 if (sh) 16359 bnxt_trim_dflt_sh_rings(bp); 16360 else 16361 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 16362 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 16363 16364 avail_msix = bnxt_get_max_func_irqs(bp) - bp->cp_nr_rings; 16365 if (avail_msix >= BNXT_MIN_ROCE_CP_RINGS) { 16366 int ulp_num_msix = min(avail_msix, bp->ulp_num_msix_want); 16367 16368 bnxt_set_ulp_msix_num(bp, ulp_num_msix); 16369 bnxt_set_dflt_ulp_stat_ctxs(bp); 16370 } 16371 16372 rc = __bnxt_reserve_rings(bp); 16373 if (rc && rc != -ENODEV) 16374 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 16375 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 16376 if (sh) 16377 bnxt_trim_dflt_sh_rings(bp); 16378 16379 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 16380 if (bnxt_need_reserve_rings(bp)) { 16381 rc = __bnxt_reserve_rings(bp); 16382 if (rc && rc != -ENODEV) 16383 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 16384 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 16385 } 16386 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 16387 bp->rx_nr_rings++; 16388 bp->cp_nr_rings++; 16389 } 16390 if (rc) { 16391 bp->tx_nr_rings = 0; 16392 bp->rx_nr_rings = 0; 16393 } 16394 return rc; 16395 } 16396 16397 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 16398 { 16399 int rc; 16400 16401 if (bp->tx_nr_rings) 16402 return 0; 16403 16404 bnxt_ulp_irq_stop(bp); 16405 bnxt_clear_int_mode(bp); 16406 rc = bnxt_set_dflt_rings(bp, true); 16407 if (rc) { 16408 if (BNXT_VF(bp) && rc == -ENODEV) 16409 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 16410 else 16411 netdev_err(bp->dev, "Not enough rings available.\n"); 16412 goto init_dflt_ring_err; 16413 } 16414 rc = bnxt_init_int_mode(bp); 16415 if (rc) 16416 goto init_dflt_ring_err; 16417 16418 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 16419 16420 bnxt_set_dflt_rfs(bp); 16421 16422 init_dflt_ring_err: 16423 bnxt_ulp_irq_restart(bp, rc); 16424 return rc; 16425 } 16426 16427 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 16428 { 16429 int rc; 16430 16431 netdev_ops_assert_locked(bp->dev); 16432 bnxt_hwrm_func_qcaps(bp); 16433 16434 if (netif_running(bp->dev)) 16435 __bnxt_close_nic(bp, true, false); 16436 16437 bnxt_ulp_irq_stop(bp); 16438 bnxt_clear_int_mode(bp); 16439 rc = bnxt_init_int_mode(bp); 16440 bnxt_ulp_irq_restart(bp, rc); 16441 16442 if (netif_running(bp->dev)) { 16443 if (rc) 16444 netif_close(bp->dev); 16445 else 16446 rc = bnxt_open_nic(bp, true, false); 16447 } 16448 16449 return rc; 16450 } 16451 16452 static int bnxt_init_mac_addr(struct bnxt *bp) 16453 { 16454 int rc = 0; 16455 16456 if (BNXT_PF(bp)) { 16457 eth_hw_addr_set(bp->dev, bp->pf.mac_addr); 16458 } else { 16459 #ifdef CONFIG_BNXT_SRIOV 16460 struct bnxt_vf_info *vf = &bp->vf; 16461 bool strict_approval = true; 16462 16463 if (is_valid_ether_addr(vf->mac_addr)) { 16464 /* overwrite netdev dev_addr with admin VF MAC */ 16465 eth_hw_addr_set(bp->dev, vf->mac_addr); 16466 /* Older PF driver or firmware may not approve this 16467 * correctly. 16468 */ 16469 strict_approval = false; 16470 } else { 16471 eth_hw_addr_random(bp->dev); 16472 } 16473 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 16474 #endif 16475 } 16476 return rc; 16477 } 16478 16479 static void bnxt_vpd_read_info(struct bnxt *bp) 16480 { 16481 struct pci_dev *pdev = bp->pdev; 16482 unsigned int vpd_size, kw_len; 16483 int pos, size; 16484 u8 *vpd_data; 16485 16486 vpd_data = pci_vpd_alloc(pdev, &vpd_size); 16487 if (IS_ERR(vpd_data)) { 16488 pci_warn(pdev, "Unable to read VPD\n"); 16489 return; 16490 } 16491 16492 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 16493 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); 16494 if (pos < 0) 16495 goto read_sn; 16496 16497 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 16498 memcpy(bp->board_partno, &vpd_data[pos], size); 16499 16500 read_sn: 16501 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 16502 PCI_VPD_RO_KEYWORD_SERIALNO, 16503 &kw_len); 16504 if (pos < 0) 16505 goto exit; 16506 16507 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 16508 memcpy(bp->board_serialno, &vpd_data[pos], size); 16509 exit: 16510 kfree(vpd_data); 16511 } 16512 16513 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 16514 { 16515 struct pci_dev *pdev = bp->pdev; 16516 u64 qword; 16517 16518 qword = pci_get_dsn(pdev); 16519 if (!qword) { 16520 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 16521 return -EOPNOTSUPP; 16522 } 16523 16524 put_unaligned_le64(qword, dsn); 16525 16526 bp->flags |= BNXT_FLAG_DSN_VALID; 16527 return 0; 16528 } 16529 16530 static int bnxt_map_db_bar(struct bnxt *bp) 16531 { 16532 if (!bp->db_size) 16533 return -ENODEV; 16534 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 16535 if (!bp->bar1) 16536 return -ENOMEM; 16537 return 0; 16538 } 16539 16540 void bnxt_print_device_info(struct bnxt *bp) 16541 { 16542 netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n", 16543 board_info[bp->board_idx].name, 16544 (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr); 16545 16546 pcie_print_link_status(bp->pdev); 16547 } 16548 16549 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 16550 { 16551 struct bnxt_hw_resc *hw_resc; 16552 struct net_device *dev; 16553 struct bnxt *bp; 16554 int rc, max_irqs; 16555 16556 if (pci_is_bridge(pdev)) 16557 return -ENODEV; 16558 16559 if (!pdev->msix_cap) { 16560 dev_err(&pdev->dev, "MSIX capability not found, aborting\n"); 16561 return -ENODEV; 16562 } 16563 16564 /* Clear any pending DMA transactions from crash kernel 16565 * while loading driver in capture kernel. 16566 */ 16567 if (is_kdump_kernel()) { 16568 pci_clear_master(pdev); 16569 pcie_flr(pdev); 16570 } 16571 16572 max_irqs = bnxt_get_max_irq(pdev); 16573 dev = alloc_etherdev_mqs(sizeof(*bp), max_irqs * BNXT_MAX_QUEUE, 16574 max_irqs); 16575 if (!dev) 16576 return -ENOMEM; 16577 16578 bp = netdev_priv(dev); 16579 bp->board_idx = ent->driver_data; 16580 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 16581 bnxt_set_max_func_irqs(bp, max_irqs); 16582 16583 if (bnxt_vf_pciid(bp->board_idx)) 16584 bp->flags |= BNXT_FLAG_VF; 16585 16586 /* No devlink port registration in case of a VF */ 16587 if (BNXT_PF(bp)) 16588 SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port); 16589 16590 rc = bnxt_init_board(pdev, dev); 16591 if (rc < 0) 16592 goto init_err_free; 16593 16594 dev->netdev_ops = &bnxt_netdev_ops; 16595 dev->stat_ops = &bnxt_stat_ops; 16596 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 16597 dev->ethtool_ops = &bnxt_ethtool_ops; 16598 pci_set_drvdata(pdev, dev); 16599 16600 rc = bnxt_alloc_hwrm_resources(bp); 16601 if (rc) 16602 goto init_err_pci_clean; 16603 16604 mutex_init(&bp->hwrm_cmd_lock); 16605 mutex_init(&bp->link_lock); 16606 16607 rc = bnxt_fw_init_one_p1(bp); 16608 if (rc) 16609 goto init_err_pci_clean; 16610 16611 if (BNXT_PF(bp)) 16612 bnxt_vpd_read_info(bp); 16613 16614 if (BNXT_CHIP_P5_PLUS(bp)) { 16615 bp->flags |= BNXT_FLAG_CHIP_P5_PLUS; 16616 if (BNXT_CHIP_P7(bp)) 16617 bp->flags |= BNXT_FLAG_CHIP_P7; 16618 } 16619 16620 rc = bnxt_alloc_rss_indir_tbl(bp); 16621 if (rc) 16622 goto init_err_pci_clean; 16623 16624 rc = bnxt_fw_init_one_p2(bp); 16625 if (rc) 16626 goto init_err_pci_clean; 16627 16628 rc = bnxt_map_db_bar(bp); 16629 if (rc) { 16630 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 16631 rc); 16632 goto init_err_pci_clean; 16633 } 16634 16635 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 16636 NETIF_F_TSO | NETIF_F_TSO6 | 16637 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 16638 NETIF_F_GSO_IPXIP4 | 16639 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 16640 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 16641 NETIF_F_RXCSUM | NETIF_F_GRO; 16642 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 16643 dev->hw_features |= NETIF_F_GSO_UDP_L4; 16644 16645 if (BNXT_SUPPORTS_TPA(bp)) 16646 dev->hw_features |= NETIF_F_LRO; 16647 16648 dev->hw_enc_features = 16649 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 16650 NETIF_F_TSO | NETIF_F_TSO6 | 16651 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 16652 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 16653 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 16654 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 16655 dev->hw_enc_features |= NETIF_F_GSO_UDP_L4; 16656 if (bp->flags & BNXT_FLAG_CHIP_P7) 16657 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels_p7; 16658 else 16659 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 16660 16661 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 16662 NETIF_F_GSO_GRE_CSUM; 16663 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 16664 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 16665 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 16666 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 16667 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 16668 if (BNXT_SUPPORTS_TPA(bp)) 16669 dev->hw_features |= NETIF_F_GRO_HW; 16670 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 16671 if (dev->features & NETIF_F_GRO_HW) 16672 dev->features &= ~NETIF_F_LRO; 16673 dev->priv_flags |= IFF_UNICAST_FLT; 16674 16675 netif_set_tso_max_size(dev, GSO_MAX_SIZE); 16676 if (bp->tso_max_segs) 16677 netif_set_tso_max_segs(dev, bp->tso_max_segs); 16678 16679 dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 16680 NETDEV_XDP_ACT_RX_SG; 16681 16682 #ifdef CONFIG_BNXT_SRIOV 16683 init_waitqueue_head(&bp->sriov_cfg_wait); 16684 #endif 16685 if (BNXT_SUPPORTS_TPA(bp)) { 16686 bp->gro_func = bnxt_gro_func_5730x; 16687 if (BNXT_CHIP_P4(bp)) 16688 bp->gro_func = bnxt_gro_func_5731x; 16689 else if (BNXT_CHIP_P5_PLUS(bp)) 16690 bp->gro_func = bnxt_gro_func_5750x; 16691 } 16692 if (!BNXT_CHIP_P4_PLUS(bp)) 16693 bp->flags |= BNXT_FLAG_DOUBLE_DB; 16694 16695 rc = bnxt_init_mac_addr(bp); 16696 if (rc) { 16697 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 16698 rc = -EADDRNOTAVAIL; 16699 goto init_err_pci_clean; 16700 } 16701 16702 if (BNXT_PF(bp)) { 16703 /* Read the adapter's DSN to use as the eswitch switch_id */ 16704 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 16705 } 16706 16707 /* MTU range: 60 - FW defined max */ 16708 dev->min_mtu = ETH_ZLEN; 16709 dev->max_mtu = bp->max_mtu; 16710 16711 rc = bnxt_probe_phy(bp, true); 16712 if (rc) 16713 goto init_err_pci_clean; 16714 16715 hw_resc = &bp->hw_resc; 16716 bp->max_fltr = hw_resc->max_rx_em_flows + hw_resc->max_rx_wm_flows + 16717 BNXT_L2_FLTR_MAX_FLTR; 16718 /* Older firmware may not report these filters properly */ 16719 if (bp->max_fltr < BNXT_MAX_FLTR) 16720 bp->max_fltr = BNXT_MAX_FLTR; 16721 bnxt_init_l2_fltr_tbl(bp); 16722 __bnxt_set_rx_skb_mode(bp, false); 16723 bnxt_set_tpa_flags(bp); 16724 bnxt_init_ring_params(bp); 16725 bnxt_set_ring_params(bp); 16726 bnxt_rdma_aux_device_init(bp); 16727 rc = bnxt_set_dflt_rings(bp, true); 16728 if (rc) { 16729 if (BNXT_VF(bp) && rc == -ENODEV) { 16730 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 16731 } else { 16732 netdev_err(bp->dev, "Not enough rings available.\n"); 16733 rc = -ENOMEM; 16734 } 16735 goto init_err_pci_clean; 16736 } 16737 16738 bnxt_fw_init_one_p3(bp); 16739 16740 bnxt_init_dflt_coal(bp); 16741 16742 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 16743 bp->flags |= BNXT_FLAG_STRIP_VLAN; 16744 16745 rc = bnxt_init_int_mode(bp); 16746 if (rc) 16747 goto init_err_pci_clean; 16748 16749 /* No TC has been set yet and rings may have been trimmed due to 16750 * limited MSIX, so we re-initialize the TX rings per TC. 16751 */ 16752 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 16753 16754 if (BNXT_PF(bp)) { 16755 if (!bnxt_pf_wq) { 16756 bnxt_pf_wq = 16757 create_singlethread_workqueue("bnxt_pf_wq"); 16758 if (!bnxt_pf_wq) { 16759 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 16760 rc = -ENOMEM; 16761 goto init_err_pci_clean; 16762 } 16763 } 16764 rc = bnxt_init_tc(bp); 16765 if (rc) 16766 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 16767 rc); 16768 } 16769 16770 bnxt_inv_fw_health_reg(bp); 16771 rc = bnxt_dl_register(bp); 16772 if (rc) 16773 goto init_err_dl; 16774 16775 INIT_LIST_HEAD(&bp->usr_fltr_list); 16776 16777 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 16778 bp->rss_cap |= BNXT_RSS_CAP_MULTI_RSS_CTX; 16779 if (BNXT_SUPPORTS_QUEUE_API(bp)) 16780 dev->queue_mgmt_ops = &bnxt_queue_mgmt_ops; 16781 dev->request_ops_lock = true; 16782 dev->netmem_tx = true; 16783 16784 rc = register_netdev(dev); 16785 if (rc) 16786 goto init_err_cleanup; 16787 16788 bnxt_dl_fw_reporters_create(bp); 16789 16790 bnxt_rdma_aux_device_add(bp); 16791 16792 bnxt_print_device_info(bp); 16793 16794 pci_save_state(pdev); 16795 16796 return 0; 16797 init_err_cleanup: 16798 bnxt_rdma_aux_device_uninit(bp); 16799 bnxt_dl_unregister(bp); 16800 init_err_dl: 16801 bnxt_shutdown_tc(bp); 16802 bnxt_clear_int_mode(bp); 16803 16804 init_err_pci_clean: 16805 bnxt_hwrm_func_drv_unrgtr(bp); 16806 bnxt_free_hwrm_resources(bp); 16807 bnxt_hwmon_uninit(bp); 16808 bnxt_ethtool_free(bp); 16809 bnxt_ptp_clear(bp); 16810 kfree(bp->ptp_cfg); 16811 bp->ptp_cfg = NULL; 16812 kfree(bp->fw_health); 16813 bp->fw_health = NULL; 16814 bnxt_cleanup_pci(bp); 16815 bnxt_free_ctx_mem(bp, true); 16816 bnxt_free_crash_dump_mem(bp); 16817 kfree(bp->rss_indir_tbl); 16818 bp->rss_indir_tbl = NULL; 16819 16820 init_err_free: 16821 free_netdev(dev); 16822 return rc; 16823 } 16824 16825 static void bnxt_shutdown(struct pci_dev *pdev) 16826 { 16827 struct net_device *dev = pci_get_drvdata(pdev); 16828 struct bnxt *bp; 16829 16830 if (!dev) 16831 return; 16832 16833 rtnl_lock(); 16834 netdev_lock(dev); 16835 bp = netdev_priv(dev); 16836 if (!bp) 16837 goto shutdown_exit; 16838 16839 if (netif_running(dev)) 16840 netif_close(dev); 16841 16842 bnxt_ptp_clear(bp); 16843 bnxt_clear_int_mode(bp); 16844 pci_disable_device(pdev); 16845 16846 if (system_state == SYSTEM_POWER_OFF) { 16847 pci_wake_from_d3(pdev, bp->wol); 16848 pci_set_power_state(pdev, PCI_D3hot); 16849 } 16850 16851 shutdown_exit: 16852 netdev_unlock(dev); 16853 rtnl_unlock(); 16854 } 16855 16856 #ifdef CONFIG_PM_SLEEP 16857 static int bnxt_suspend(struct device *device) 16858 { 16859 struct net_device *dev = dev_get_drvdata(device); 16860 struct bnxt *bp = netdev_priv(dev); 16861 int rc = 0; 16862 16863 bnxt_ulp_stop(bp); 16864 16865 netdev_lock(dev); 16866 if (netif_running(dev)) { 16867 netif_device_detach(dev); 16868 rc = bnxt_close(dev); 16869 } 16870 bnxt_hwrm_func_drv_unrgtr(bp); 16871 bnxt_ptp_clear(bp); 16872 pci_disable_device(bp->pdev); 16873 bnxt_free_ctx_mem(bp, false); 16874 netdev_unlock(dev); 16875 return rc; 16876 } 16877 16878 static int bnxt_resume(struct device *device) 16879 { 16880 struct net_device *dev = dev_get_drvdata(device); 16881 struct bnxt *bp = netdev_priv(dev); 16882 int rc = 0; 16883 16884 netdev_lock(dev); 16885 rc = pci_enable_device(bp->pdev); 16886 if (rc) { 16887 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 16888 rc); 16889 goto resume_exit; 16890 } 16891 pci_set_master(bp->pdev); 16892 if (bnxt_hwrm_ver_get(bp)) { 16893 rc = -ENODEV; 16894 goto resume_exit; 16895 } 16896 rc = bnxt_hwrm_func_reset(bp); 16897 if (rc) { 16898 rc = -EBUSY; 16899 goto resume_exit; 16900 } 16901 16902 rc = bnxt_hwrm_func_qcaps(bp); 16903 if (rc) 16904 goto resume_exit; 16905 16906 bnxt_clear_reservations(bp, true); 16907 16908 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 16909 rc = -ENODEV; 16910 goto resume_exit; 16911 } 16912 if (bp->fw_crash_mem) 16913 bnxt_hwrm_crash_dump_mem_cfg(bp); 16914 16915 if (bnxt_ptp_init(bp)) { 16916 kfree(bp->ptp_cfg); 16917 bp->ptp_cfg = NULL; 16918 } 16919 bnxt_get_wol_settings(bp); 16920 if (netif_running(dev)) { 16921 rc = bnxt_open(dev); 16922 if (!rc) 16923 netif_device_attach(dev); 16924 } 16925 16926 resume_exit: 16927 netdev_unlock(bp->dev); 16928 bnxt_ulp_start(bp, rc); 16929 if (!rc) 16930 bnxt_reenable_sriov(bp); 16931 return rc; 16932 } 16933 16934 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 16935 #define BNXT_PM_OPS (&bnxt_pm_ops) 16936 16937 #else 16938 16939 #define BNXT_PM_OPS NULL 16940 16941 #endif /* CONFIG_PM_SLEEP */ 16942 16943 /** 16944 * bnxt_io_error_detected - called when PCI error is detected 16945 * @pdev: Pointer to PCI device 16946 * @state: The current pci connection state 16947 * 16948 * This function is called after a PCI bus error affecting 16949 * this device has been detected. 16950 */ 16951 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 16952 pci_channel_state_t state) 16953 { 16954 struct net_device *netdev = pci_get_drvdata(pdev); 16955 struct bnxt *bp = netdev_priv(netdev); 16956 bool abort = false; 16957 16958 netdev_info(netdev, "PCI I/O error detected\n"); 16959 16960 bnxt_ulp_stop(bp); 16961 16962 netdev_lock(netdev); 16963 netif_device_detach(netdev); 16964 16965 if (test_and_set_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 16966 netdev_err(bp->dev, "Firmware reset already in progress\n"); 16967 abort = true; 16968 } 16969 16970 if (abort || state == pci_channel_io_perm_failure) { 16971 netdev_unlock(netdev); 16972 return PCI_ERS_RESULT_DISCONNECT; 16973 } 16974 16975 /* Link is not reliable anymore if state is pci_channel_io_frozen 16976 * so we disable bus master to prevent any potential bad DMAs before 16977 * freeing kernel memory. 16978 */ 16979 if (state == pci_channel_io_frozen) { 16980 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 16981 bnxt_fw_fatal_close(bp); 16982 } 16983 16984 if (netif_running(netdev)) 16985 __bnxt_close_nic(bp, true, true); 16986 16987 if (pci_is_enabled(pdev)) 16988 pci_disable_device(pdev); 16989 bnxt_free_ctx_mem(bp, false); 16990 netdev_unlock(netdev); 16991 16992 /* Request a slot reset. */ 16993 return PCI_ERS_RESULT_NEED_RESET; 16994 } 16995 16996 /** 16997 * bnxt_io_slot_reset - called after the pci bus has been reset. 16998 * @pdev: Pointer to PCI device 16999 * 17000 * Restart the card from scratch, as if from a cold-boot. 17001 * At this point, the card has experienced a hard reset, 17002 * followed by fixups by BIOS, and has its config space 17003 * set up identically to what it was at cold boot. 17004 */ 17005 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 17006 { 17007 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 17008 struct net_device *netdev = pci_get_drvdata(pdev); 17009 struct bnxt *bp = netdev_priv(netdev); 17010 int retry = 0; 17011 int err = 0; 17012 int off; 17013 17014 netdev_info(bp->dev, "PCI Slot Reset\n"); 17015 17016 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 17017 test_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state)) 17018 msleep(900); 17019 17020 netdev_lock(netdev); 17021 17022 if (pci_enable_device(pdev)) { 17023 dev_err(&pdev->dev, 17024 "Cannot re-enable PCI device after reset.\n"); 17025 } else { 17026 pci_set_master(pdev); 17027 /* Upon fatal error, our device internal logic that latches to 17028 * BAR value is getting reset and will restore only upon 17029 * rewriting the BARs. 17030 * 17031 * As pci_restore_state() does not re-write the BARs if the 17032 * value is same as saved value earlier, driver needs to 17033 * write the BARs to 0 to force restore, in case of fatal error. 17034 */ 17035 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 17036 &bp->state)) { 17037 for (off = PCI_BASE_ADDRESS_0; 17038 off <= PCI_BASE_ADDRESS_5; off += 4) 17039 pci_write_config_dword(bp->pdev, off, 0); 17040 } 17041 pci_restore_state(pdev); 17042 pci_save_state(pdev); 17043 17044 bnxt_inv_fw_health_reg(bp); 17045 bnxt_try_map_fw_health_reg(bp); 17046 17047 /* In some PCIe AER scenarios, firmware may take up to 17048 * 10 seconds to become ready in the worst case. 17049 */ 17050 do { 17051 err = bnxt_try_recover_fw(bp); 17052 if (!err) 17053 break; 17054 retry++; 17055 } while (retry < BNXT_FW_SLOT_RESET_RETRY); 17056 17057 if (err) { 17058 dev_err(&pdev->dev, "Firmware not ready\n"); 17059 goto reset_exit; 17060 } 17061 17062 err = bnxt_hwrm_func_reset(bp); 17063 if (!err) 17064 result = PCI_ERS_RESULT_RECOVERED; 17065 17066 /* IRQ will be initialized later in bnxt_io_resume */ 17067 bnxt_ulp_irq_stop(bp); 17068 bnxt_clear_int_mode(bp); 17069 } 17070 17071 reset_exit: 17072 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 17073 bnxt_clear_reservations(bp, true); 17074 netdev_unlock(netdev); 17075 17076 return result; 17077 } 17078 17079 /** 17080 * bnxt_io_resume - called when traffic can start flowing again. 17081 * @pdev: Pointer to PCI device 17082 * 17083 * This callback is called when the error recovery driver tells 17084 * us that its OK to resume normal operation. 17085 */ 17086 static void bnxt_io_resume(struct pci_dev *pdev) 17087 { 17088 struct net_device *netdev = pci_get_drvdata(pdev); 17089 struct bnxt *bp = netdev_priv(netdev); 17090 int err; 17091 17092 netdev_info(bp->dev, "PCI Slot Resume\n"); 17093 netdev_lock(netdev); 17094 17095 err = bnxt_hwrm_func_qcaps(bp); 17096 if (!err) { 17097 if (netif_running(netdev)) { 17098 err = bnxt_open(netdev); 17099 } else { 17100 err = bnxt_reserve_rings(bp, true); 17101 if (!err) 17102 err = bnxt_init_int_mode(bp); 17103 } 17104 } 17105 17106 if (!err) 17107 netif_device_attach(netdev); 17108 17109 netdev_unlock(netdev); 17110 bnxt_ulp_start(bp, err); 17111 if (!err) 17112 bnxt_reenable_sriov(bp); 17113 } 17114 17115 static const struct pci_error_handlers bnxt_err_handler = { 17116 .error_detected = bnxt_io_error_detected, 17117 .slot_reset = bnxt_io_slot_reset, 17118 .resume = bnxt_io_resume 17119 }; 17120 17121 static struct pci_driver bnxt_pci_driver = { 17122 .name = DRV_MODULE_NAME, 17123 .id_table = bnxt_pci_tbl, 17124 .probe = bnxt_init_one, 17125 .remove = bnxt_remove_one, 17126 .shutdown = bnxt_shutdown, 17127 .driver.pm = BNXT_PM_OPS, 17128 .err_handler = &bnxt_err_handler, 17129 #if defined(CONFIG_BNXT_SRIOV) 17130 .sriov_configure = bnxt_sriov_configure, 17131 #endif 17132 }; 17133 17134 static int __init bnxt_init(void) 17135 { 17136 int err; 17137 17138 bnxt_debug_init(); 17139 err = pci_register_driver(&bnxt_pci_driver); 17140 if (err) { 17141 bnxt_debug_exit(); 17142 return err; 17143 } 17144 17145 return 0; 17146 } 17147 17148 static void __exit bnxt_exit(void) 17149 { 17150 pci_unregister_driver(&bnxt_pci_driver); 17151 if (bnxt_pf_wq) 17152 destroy_workqueue(bnxt_pf_wq); 17153 bnxt_debug_exit(); 17154 } 17155 17156 module_init(bnxt_init); 17157 module_exit(bnxt_exit); 17158