1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/ip.h> 41 #include <net/tcp.h> 42 #include <net/udp.h> 43 #include <net/checksum.h> 44 #include <net/ip6_checksum.h> 45 #include <net/udp_tunnel.h> 46 #include <linux/workqueue.h> 47 #include <linux/prefetch.h> 48 #include <linux/cache.h> 49 #include <linux/log2.h> 50 #include <linux/aer.h> 51 #include <linux/bitmap.h> 52 #include <linux/ptp_clock_kernel.h> 53 #include <linux/timecounter.h> 54 #include <linux/cpu_rmap.h> 55 #include <linux/cpumask.h> 56 #include <net/pkt_cls.h> 57 #include <linux/hwmon.h> 58 #include <linux/hwmon-sysfs.h> 59 #include <net/page_pool.h> 60 61 #include "bnxt_hsi.h" 62 #include "bnxt.h" 63 #include "bnxt_ulp.h" 64 #include "bnxt_sriov.h" 65 #include "bnxt_ethtool.h" 66 #include "bnxt_dcb.h" 67 #include "bnxt_xdp.h" 68 #include "bnxt_ptp.h" 69 #include "bnxt_vfr.h" 70 #include "bnxt_tc.h" 71 #include "bnxt_devlink.h" 72 #include "bnxt_debugfs.h" 73 74 #define BNXT_TX_TIMEOUT (5 * HZ) 75 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW) 76 77 MODULE_LICENSE("GPL"); 78 MODULE_DESCRIPTION("Broadcom BCM573xx network driver"); 79 80 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 81 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 82 #define BNXT_RX_COPY_THRESH 256 83 84 #define BNXT_TX_PUSH_THRESH 164 85 86 enum board_idx { 87 BCM57301, 88 BCM57302, 89 BCM57304, 90 BCM57417_NPAR, 91 BCM58700, 92 BCM57311, 93 BCM57312, 94 BCM57402, 95 BCM57404, 96 BCM57406, 97 BCM57402_NPAR, 98 BCM57407, 99 BCM57412, 100 BCM57414, 101 BCM57416, 102 BCM57417, 103 BCM57412_NPAR, 104 BCM57314, 105 BCM57417_SFP, 106 BCM57416_SFP, 107 BCM57404_NPAR, 108 BCM57406_NPAR, 109 BCM57407_SFP, 110 BCM57407_NPAR, 111 BCM57414_NPAR, 112 BCM57416_NPAR, 113 BCM57452, 114 BCM57454, 115 BCM5745x_NPAR, 116 BCM57508, 117 BCM57504, 118 BCM57502, 119 BCM57508_NPAR, 120 BCM57504_NPAR, 121 BCM57502_NPAR, 122 BCM58802, 123 BCM58804, 124 BCM58808, 125 NETXTREME_E_VF, 126 NETXTREME_C_VF, 127 NETXTREME_S_VF, 128 NETXTREME_C_VF_HV, 129 NETXTREME_E_VF_HV, 130 NETXTREME_E_P5_VF, 131 NETXTREME_E_P5_VF_HV, 132 }; 133 134 /* indexed by enum above */ 135 static const struct { 136 char *name; 137 } board_info[] = { 138 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 139 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 140 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 141 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 142 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 143 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 144 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 145 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 146 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 147 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 148 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 149 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 150 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 151 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 152 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 153 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 154 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 155 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 156 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 157 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 158 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 159 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 160 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 161 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 162 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 163 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 164 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 165 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 166 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 167 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 168 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 169 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 170 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 171 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 172 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 173 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 174 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 175 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 176 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 177 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 178 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 179 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 180 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 181 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 182 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 183 }; 184 185 static const struct pci_device_id bnxt_pci_tbl[] = { 186 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 187 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 188 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 189 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 190 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 191 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 192 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 193 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 194 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 195 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 196 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 197 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 198 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 199 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 200 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 201 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 202 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 203 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 204 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 205 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 206 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 207 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 208 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 209 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 210 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 211 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 212 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 213 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 214 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 215 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 216 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 217 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 218 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 219 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 220 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 221 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 222 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 223 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 224 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR }, 225 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 226 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR }, 227 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR }, 228 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 229 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR }, 230 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 231 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 232 #ifdef CONFIG_BNXT_SRIOV 233 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 234 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 235 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 236 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 237 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 238 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 239 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 240 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 241 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 242 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 243 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 244 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 245 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 246 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 247 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 248 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 249 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 250 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 251 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 252 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 253 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 254 #endif 255 { 0 } 256 }; 257 258 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 259 260 static const u16 bnxt_vf_req_snif[] = { 261 HWRM_FUNC_CFG, 262 HWRM_FUNC_VF_CFG, 263 HWRM_PORT_PHY_QCFG, 264 HWRM_CFA_L2_FILTER_ALLOC, 265 }; 266 267 static const u16 bnxt_async_events_arr[] = { 268 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 269 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 270 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 271 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 272 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 273 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 274 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 275 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 276 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 277 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 278 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 279 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 280 ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP, 281 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT, 282 }; 283 284 static struct workqueue_struct *bnxt_pf_wq; 285 286 static bool bnxt_vf_pciid(enum board_idx idx) 287 { 288 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 289 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 290 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || 291 idx == NETXTREME_E_P5_VF_HV); 292 } 293 294 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 295 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 296 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) 297 298 #define BNXT_CP_DB_IRQ_DIS(db) \ 299 writel(DB_CP_IRQ_DIS_FLAGS, db) 300 301 #define BNXT_DB_CQ(db, idx) \ 302 writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell) 303 304 #define BNXT_DB_NQ_P5(db, idx) \ 305 writeq((db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), (db)->doorbell) 306 307 #define BNXT_DB_CQ_ARM(db, idx) \ 308 writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell) 309 310 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 311 writeq((db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx), (db)->doorbell) 312 313 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 314 { 315 if (bp->flags & BNXT_FLAG_CHIP_P5) 316 BNXT_DB_NQ_P5(db, idx); 317 else 318 BNXT_DB_CQ(db, idx); 319 } 320 321 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 322 { 323 if (bp->flags & BNXT_FLAG_CHIP_P5) 324 BNXT_DB_NQ_ARM_P5(db, idx); 325 else 326 BNXT_DB_CQ_ARM(db, idx); 327 } 328 329 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 330 { 331 if (bp->flags & BNXT_FLAG_CHIP_P5) 332 writeq(db->db_key64 | DBR_TYPE_CQ_ARMALL | RING_CMP(idx), 333 db->doorbell); 334 else 335 BNXT_DB_CQ(db, idx); 336 } 337 338 const u16 bnxt_lhint_arr[] = { 339 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 340 TX_BD_FLAGS_LHINT_512_TO_1023, 341 TX_BD_FLAGS_LHINT_1024_TO_2047, 342 TX_BD_FLAGS_LHINT_1024_TO_2047, 343 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 344 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 345 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 346 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 347 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 348 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 349 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 350 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 351 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 352 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 353 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 354 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 355 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 356 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 357 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 358 }; 359 360 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 361 { 362 struct metadata_dst *md_dst = skb_metadata_dst(skb); 363 364 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 365 return 0; 366 367 return md_dst->u.port_info.port_id; 368 } 369 370 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 371 { 372 struct bnxt *bp = netdev_priv(dev); 373 struct tx_bd *txbd; 374 struct tx_bd_ext *txbd1; 375 struct netdev_queue *txq; 376 int i; 377 dma_addr_t mapping; 378 unsigned int length, pad = 0; 379 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 380 u16 prod, last_frag; 381 struct pci_dev *pdev = bp->pdev; 382 struct bnxt_tx_ring_info *txr; 383 struct bnxt_sw_tx_bd *tx_buf; 384 __le32 lflags = 0; 385 386 i = skb_get_queue_mapping(skb); 387 if (unlikely(i >= bp->tx_nr_rings)) { 388 dev_kfree_skb_any(skb); 389 return NETDEV_TX_OK; 390 } 391 392 txq = netdev_get_tx_queue(dev, i); 393 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 394 prod = txr->tx_prod; 395 396 free_size = bnxt_tx_avail(bp, txr); 397 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 398 netif_tx_stop_queue(txq); 399 return NETDEV_TX_BUSY; 400 } 401 402 length = skb->len; 403 len = skb_headlen(skb); 404 last_frag = skb_shinfo(skb)->nr_frags; 405 406 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 407 408 txbd->tx_bd_opaque = prod; 409 410 tx_buf = &txr->tx_buf_ring[prod]; 411 tx_buf->skb = skb; 412 tx_buf->nr_frags = last_frag; 413 414 vlan_tag_flags = 0; 415 cfa_action = bnxt_xmit_get_cfa_action(skb); 416 if (skb_vlan_tag_present(skb)) { 417 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 418 skb_vlan_tag_get(skb); 419 /* Currently supports 8021Q, 8021AD vlan offloads 420 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 421 */ 422 if (skb->vlan_proto == htons(ETH_P_8021Q)) 423 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 424 } 425 426 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 427 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 428 429 if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) && 430 atomic_dec_if_positive(&ptp->tx_avail) >= 0) { 431 if (!bnxt_ptp_parse(skb, &ptp->tx_seqid, 432 &ptp->tx_hdr_off)) { 433 if (vlan_tag_flags) 434 ptp->tx_hdr_off += VLAN_HLEN; 435 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 436 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 437 } else { 438 atomic_inc(&bp->ptp_cfg->tx_avail); 439 } 440 } 441 } 442 443 if (unlikely(skb->no_fcs)) 444 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 445 446 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && 447 !lflags) { 448 struct tx_push_buffer *tx_push_buf = txr->tx_push; 449 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 450 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 451 void __iomem *db = txr->tx_db.doorbell; 452 void *pdata = tx_push_buf->data; 453 u64 *end; 454 int j, push_len; 455 456 /* Set COAL_NOW to be ready quickly for the next push */ 457 tx_push->tx_bd_len_flags_type = 458 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 459 TX_BD_TYPE_LONG_TX_BD | 460 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 461 TX_BD_FLAGS_COAL_NOW | 462 TX_BD_FLAGS_PACKET_END | 463 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 464 465 if (skb->ip_summed == CHECKSUM_PARTIAL) 466 tx_push1->tx_bd_hsize_lflags = 467 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 468 else 469 tx_push1->tx_bd_hsize_lflags = 0; 470 471 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 472 tx_push1->tx_bd_cfa_action = 473 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 474 475 end = pdata + length; 476 end = PTR_ALIGN(end, 8) - 1; 477 *end = 0; 478 479 skb_copy_from_linear_data(skb, pdata, len); 480 pdata += len; 481 for (j = 0; j < last_frag; j++) { 482 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 483 void *fptr; 484 485 fptr = skb_frag_address_safe(frag); 486 if (!fptr) 487 goto normal_tx; 488 489 memcpy(pdata, fptr, skb_frag_size(frag)); 490 pdata += skb_frag_size(frag); 491 } 492 493 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 494 txbd->tx_bd_haddr = txr->data_mapping; 495 prod = NEXT_TX(prod); 496 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 497 memcpy(txbd, tx_push1, sizeof(*txbd)); 498 prod = NEXT_TX(prod); 499 tx_push->doorbell = 500 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod); 501 txr->tx_prod = prod; 502 503 tx_buf->is_push = 1; 504 netdev_tx_sent_queue(txq, skb->len); 505 wmb(); /* Sync is_push and byte queue before pushing data */ 506 507 push_len = (length + sizeof(*tx_push) + 7) / 8; 508 if (push_len > 16) { 509 __iowrite64_copy(db, tx_push_buf, 16); 510 __iowrite32_copy(db + 4, tx_push_buf + 1, 511 (push_len - 16) << 1); 512 } else { 513 __iowrite64_copy(db, tx_push_buf, push_len); 514 } 515 516 goto tx_done; 517 } 518 519 normal_tx: 520 if (length < BNXT_MIN_PKT_SIZE) { 521 pad = BNXT_MIN_PKT_SIZE - length; 522 if (skb_pad(skb, pad)) { 523 /* SKB already freed. */ 524 tx_buf->skb = NULL; 525 return NETDEV_TX_OK; 526 } 527 length = BNXT_MIN_PKT_SIZE; 528 } 529 530 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 531 532 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) { 533 dev_kfree_skb_any(skb); 534 tx_buf->skb = NULL; 535 return NETDEV_TX_OK; 536 } 537 538 dma_unmap_addr_set(tx_buf, mapping, mapping); 539 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 540 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 541 542 txbd->tx_bd_haddr = cpu_to_le64(mapping); 543 544 prod = NEXT_TX(prod); 545 txbd1 = (struct tx_bd_ext *) 546 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 547 548 txbd1->tx_bd_hsize_lflags = lflags; 549 if (skb_is_gso(skb)) { 550 u32 hdr_len; 551 552 if (skb->encapsulation) 553 hdr_len = skb_inner_network_offset(skb) + 554 skb_inner_network_header_len(skb) + 555 inner_tcp_hdrlen(skb); 556 else 557 hdr_len = skb_transport_offset(skb) + 558 tcp_hdrlen(skb); 559 560 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 561 TX_BD_FLAGS_T_IPID | 562 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 563 length = skb_shinfo(skb)->gso_size; 564 txbd1->tx_bd_mss = cpu_to_le32(length); 565 length += hdr_len; 566 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 567 txbd1->tx_bd_hsize_lflags |= 568 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 569 txbd1->tx_bd_mss = 0; 570 } 571 572 length >>= 9; 573 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 574 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 575 skb->len); 576 i = 0; 577 goto tx_dma_error; 578 } 579 flags |= bnxt_lhint_arr[length]; 580 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 581 582 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 583 txbd1->tx_bd_cfa_action = 584 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 585 for (i = 0; i < last_frag; i++) { 586 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 587 588 prod = NEXT_TX(prod); 589 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 590 591 len = skb_frag_size(frag); 592 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 593 DMA_TO_DEVICE); 594 595 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 596 goto tx_dma_error; 597 598 tx_buf = &txr->tx_buf_ring[prod]; 599 dma_unmap_addr_set(tx_buf, mapping, mapping); 600 601 txbd->tx_bd_haddr = cpu_to_le64(mapping); 602 603 flags = len << TX_BD_LEN_SHIFT; 604 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 605 } 606 607 flags &= ~TX_BD_LEN; 608 txbd->tx_bd_len_flags_type = 609 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 610 TX_BD_FLAGS_PACKET_END); 611 612 netdev_tx_sent_queue(txq, skb->len); 613 614 skb_tx_timestamp(skb); 615 616 /* Sync BD data before updating doorbell */ 617 wmb(); 618 619 prod = NEXT_TX(prod); 620 txr->tx_prod = prod; 621 622 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) 623 bnxt_db_write(bp, &txr->tx_db, prod); 624 625 tx_done: 626 627 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 628 if (netdev_xmit_more() && !tx_buf->is_push) 629 bnxt_db_write(bp, &txr->tx_db, prod); 630 631 netif_tx_stop_queue(txq); 632 633 /* netif_tx_stop_queue() must be done before checking 634 * tx index in bnxt_tx_avail() below, because in 635 * bnxt_tx_int(), we update tx index before checking for 636 * netif_tx_queue_stopped(). 637 */ 638 smp_mb(); 639 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh) 640 netif_tx_wake_queue(txq); 641 } 642 return NETDEV_TX_OK; 643 644 tx_dma_error: 645 if (BNXT_TX_PTP_IS_SET(lflags)) 646 atomic_inc(&bp->ptp_cfg->tx_avail); 647 648 last_frag = i; 649 650 /* start back at beginning and unmap skb */ 651 prod = txr->tx_prod; 652 tx_buf = &txr->tx_buf_ring[prod]; 653 tx_buf->skb = NULL; 654 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 655 skb_headlen(skb), PCI_DMA_TODEVICE); 656 prod = NEXT_TX(prod); 657 658 /* unmap remaining mapped pages */ 659 for (i = 0; i < last_frag; i++) { 660 prod = NEXT_TX(prod); 661 tx_buf = &txr->tx_buf_ring[prod]; 662 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 663 skb_frag_size(&skb_shinfo(skb)->frags[i]), 664 PCI_DMA_TODEVICE); 665 } 666 667 dev_kfree_skb_any(skb); 668 return NETDEV_TX_OK; 669 } 670 671 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts) 672 { 673 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 674 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 675 u16 cons = txr->tx_cons; 676 struct pci_dev *pdev = bp->pdev; 677 int i; 678 unsigned int tx_bytes = 0; 679 680 for (i = 0; i < nr_pkts; i++) { 681 struct bnxt_sw_tx_bd *tx_buf; 682 bool compl_deferred = false; 683 struct sk_buff *skb; 684 int j, last; 685 686 tx_buf = &txr->tx_buf_ring[cons]; 687 cons = NEXT_TX(cons); 688 skb = tx_buf->skb; 689 tx_buf->skb = NULL; 690 691 if (tx_buf->is_push) { 692 tx_buf->is_push = 0; 693 goto next_tx_int; 694 } 695 696 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 697 skb_headlen(skb), PCI_DMA_TODEVICE); 698 last = tx_buf->nr_frags; 699 700 for (j = 0; j < last; j++) { 701 cons = NEXT_TX(cons); 702 tx_buf = &txr->tx_buf_ring[cons]; 703 dma_unmap_page( 704 &pdev->dev, 705 dma_unmap_addr(tx_buf, mapping), 706 skb_frag_size(&skb_shinfo(skb)->frags[j]), 707 PCI_DMA_TODEVICE); 708 } 709 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 710 if (bp->flags & BNXT_FLAG_CHIP_P5) { 711 if (!bnxt_get_tx_ts_p5(bp, skb)) 712 compl_deferred = true; 713 else 714 atomic_inc(&bp->ptp_cfg->tx_avail); 715 } 716 } 717 718 next_tx_int: 719 cons = NEXT_TX(cons); 720 721 tx_bytes += skb->len; 722 if (!compl_deferred) 723 dev_kfree_skb_any(skb); 724 } 725 726 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes); 727 txr->tx_cons = cons; 728 729 /* Need to make the tx_cons update visible to bnxt_start_xmit() 730 * before checking for netif_tx_queue_stopped(). Without the 731 * memory barrier, there is a small possibility that bnxt_start_xmit() 732 * will miss it and cause the queue to be stopped forever. 733 */ 734 smp_mb(); 735 736 if (unlikely(netif_tx_queue_stopped(txq)) && 737 (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) { 738 __netif_tx_lock(txq, smp_processor_id()); 739 if (netif_tx_queue_stopped(txq) && 740 bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh && 741 txr->dev_state != BNXT_DEV_STATE_CLOSING) 742 netif_tx_wake_queue(txq); 743 __netif_tx_unlock(txq); 744 } 745 } 746 747 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 748 struct bnxt_rx_ring_info *rxr, 749 gfp_t gfp) 750 { 751 struct device *dev = &bp->pdev->dev; 752 struct page *page; 753 754 page = page_pool_dev_alloc_pages(rxr->page_pool); 755 if (!page) 756 return NULL; 757 758 *mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir, 759 DMA_ATTR_WEAK_ORDERING); 760 if (dma_mapping_error(dev, *mapping)) { 761 page_pool_recycle_direct(rxr->page_pool, page); 762 return NULL; 763 } 764 *mapping += bp->rx_dma_offset; 765 return page; 766 } 767 768 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping, 769 gfp_t gfp) 770 { 771 u8 *data; 772 struct pci_dev *pdev = bp->pdev; 773 774 data = kmalloc(bp->rx_buf_size, gfp); 775 if (!data) 776 return NULL; 777 778 *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset, 779 bp->rx_buf_use_size, bp->rx_dir, 780 DMA_ATTR_WEAK_ORDERING); 781 782 if (dma_mapping_error(&pdev->dev, *mapping)) { 783 kfree(data); 784 data = NULL; 785 } 786 return data; 787 } 788 789 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 790 u16 prod, gfp_t gfp) 791 { 792 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 793 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod]; 794 dma_addr_t mapping; 795 796 if (BNXT_RX_PAGE_MODE(bp)) { 797 struct page *page = 798 __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp); 799 800 if (!page) 801 return -ENOMEM; 802 803 rx_buf->data = page; 804 rx_buf->data_ptr = page_address(page) + bp->rx_offset; 805 } else { 806 u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp); 807 808 if (!data) 809 return -ENOMEM; 810 811 rx_buf->data = data; 812 rx_buf->data_ptr = data + bp->rx_offset; 813 } 814 rx_buf->mapping = mapping; 815 816 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 817 return 0; 818 } 819 820 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 821 { 822 u16 prod = rxr->rx_prod; 823 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 824 struct rx_bd *cons_bd, *prod_bd; 825 826 prod_rx_buf = &rxr->rx_buf_ring[prod]; 827 cons_rx_buf = &rxr->rx_buf_ring[cons]; 828 829 prod_rx_buf->data = data; 830 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 831 832 prod_rx_buf->mapping = cons_rx_buf->mapping; 833 834 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 835 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)]; 836 837 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 838 } 839 840 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 841 { 842 u16 next, max = rxr->rx_agg_bmap_size; 843 844 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 845 if (next >= max) 846 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 847 return next; 848 } 849 850 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 851 struct bnxt_rx_ring_info *rxr, 852 u16 prod, gfp_t gfp) 853 { 854 struct rx_bd *rxbd = 855 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 856 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 857 struct pci_dev *pdev = bp->pdev; 858 struct page *page; 859 dma_addr_t mapping; 860 u16 sw_prod = rxr->rx_sw_agg_prod; 861 unsigned int offset = 0; 862 863 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 864 page = rxr->rx_page; 865 if (!page) { 866 page = alloc_page(gfp); 867 if (!page) 868 return -ENOMEM; 869 rxr->rx_page = page; 870 rxr->rx_page_offset = 0; 871 } 872 offset = rxr->rx_page_offset; 873 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE; 874 if (rxr->rx_page_offset == PAGE_SIZE) 875 rxr->rx_page = NULL; 876 else 877 get_page(page); 878 } else { 879 page = alloc_page(gfp); 880 if (!page) 881 return -ENOMEM; 882 } 883 884 mapping = dma_map_page_attrs(&pdev->dev, page, offset, 885 BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE, 886 DMA_ATTR_WEAK_ORDERING); 887 if (dma_mapping_error(&pdev->dev, mapping)) { 888 __free_page(page); 889 return -EIO; 890 } 891 892 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 893 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 894 895 __set_bit(sw_prod, rxr->rx_agg_bmap); 896 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 897 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod); 898 899 rx_agg_buf->page = page; 900 rx_agg_buf->offset = offset; 901 rx_agg_buf->mapping = mapping; 902 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 903 rxbd->rx_bd_opaque = sw_prod; 904 return 0; 905 } 906 907 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 908 struct bnxt_cp_ring_info *cpr, 909 u16 cp_cons, u16 curr) 910 { 911 struct rx_agg_cmp *agg; 912 913 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 914 agg = (struct rx_agg_cmp *) 915 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 916 return agg; 917 } 918 919 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 920 struct bnxt_rx_ring_info *rxr, 921 u16 agg_id, u16 curr) 922 { 923 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 924 925 return &tpa_info->agg_arr[curr]; 926 } 927 928 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 929 u16 start, u32 agg_bufs, bool tpa) 930 { 931 struct bnxt_napi *bnapi = cpr->bnapi; 932 struct bnxt *bp = bnapi->bp; 933 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 934 u16 prod = rxr->rx_agg_prod; 935 u16 sw_prod = rxr->rx_sw_agg_prod; 936 bool p5_tpa = false; 937 u32 i; 938 939 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 940 p5_tpa = true; 941 942 for (i = 0; i < agg_bufs; i++) { 943 u16 cons; 944 struct rx_agg_cmp *agg; 945 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 946 struct rx_bd *prod_bd; 947 struct page *page; 948 949 if (p5_tpa) 950 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 951 else 952 agg = bnxt_get_agg(bp, cpr, idx, start + i); 953 cons = agg->rx_agg_cmp_opaque; 954 __clear_bit(cons, rxr->rx_agg_bmap); 955 956 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 957 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 958 959 __set_bit(sw_prod, rxr->rx_agg_bmap); 960 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 961 cons_rx_buf = &rxr->rx_agg_ring[cons]; 962 963 /* It is possible for sw_prod to be equal to cons, so 964 * set cons_rx_buf->page to NULL first. 965 */ 966 page = cons_rx_buf->page; 967 cons_rx_buf->page = NULL; 968 prod_rx_buf->page = page; 969 prod_rx_buf->offset = cons_rx_buf->offset; 970 971 prod_rx_buf->mapping = cons_rx_buf->mapping; 972 973 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 974 975 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 976 prod_bd->rx_bd_opaque = sw_prod; 977 978 prod = NEXT_RX_AGG(prod); 979 sw_prod = NEXT_RX_AGG(sw_prod); 980 } 981 rxr->rx_agg_prod = prod; 982 rxr->rx_sw_agg_prod = sw_prod; 983 } 984 985 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 986 struct bnxt_rx_ring_info *rxr, 987 u16 cons, void *data, u8 *data_ptr, 988 dma_addr_t dma_addr, 989 unsigned int offset_and_len) 990 { 991 unsigned int payload = offset_and_len >> 16; 992 unsigned int len = offset_and_len & 0xffff; 993 skb_frag_t *frag; 994 struct page *page = data; 995 u16 prod = rxr->rx_prod; 996 struct sk_buff *skb; 997 int off, err; 998 999 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1000 if (unlikely(err)) { 1001 bnxt_reuse_rx_data(rxr, cons, data); 1002 return NULL; 1003 } 1004 dma_addr -= bp->rx_dma_offset; 1005 dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir, 1006 DMA_ATTR_WEAK_ORDERING); 1007 page_pool_release_page(rxr->page_pool, page); 1008 1009 if (unlikely(!payload)) 1010 payload = eth_get_headlen(bp->dev, data_ptr, len); 1011 1012 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 1013 if (!skb) { 1014 __free_page(page); 1015 return NULL; 1016 } 1017 1018 off = (void *)data_ptr - page_address(page); 1019 skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE); 1020 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 1021 payload + NET_IP_ALIGN); 1022 1023 frag = &skb_shinfo(skb)->frags[0]; 1024 skb_frag_size_sub(frag, payload); 1025 skb_frag_off_add(frag, payload); 1026 skb->data_len -= payload; 1027 skb->tail += payload; 1028 1029 return skb; 1030 } 1031 1032 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 1033 struct bnxt_rx_ring_info *rxr, u16 cons, 1034 void *data, u8 *data_ptr, 1035 dma_addr_t dma_addr, 1036 unsigned int offset_and_len) 1037 { 1038 u16 prod = rxr->rx_prod; 1039 struct sk_buff *skb; 1040 int err; 1041 1042 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1043 if (unlikely(err)) { 1044 bnxt_reuse_rx_data(rxr, cons, data); 1045 return NULL; 1046 } 1047 1048 skb = build_skb(data, 0); 1049 dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1050 bp->rx_dir, DMA_ATTR_WEAK_ORDERING); 1051 if (!skb) { 1052 kfree(data); 1053 return NULL; 1054 } 1055 1056 skb_reserve(skb, bp->rx_offset); 1057 skb_put(skb, offset_and_len & 0xffff); 1058 return skb; 1059 } 1060 1061 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, 1062 struct bnxt_cp_ring_info *cpr, 1063 struct sk_buff *skb, u16 idx, 1064 u32 agg_bufs, bool tpa) 1065 { 1066 struct bnxt_napi *bnapi = cpr->bnapi; 1067 struct pci_dev *pdev = bp->pdev; 1068 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1069 u16 prod = rxr->rx_agg_prod; 1070 bool p5_tpa = false; 1071 u32 i; 1072 1073 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 1074 p5_tpa = true; 1075 1076 for (i = 0; i < agg_bufs; i++) { 1077 u16 cons, frag_len; 1078 struct rx_agg_cmp *agg; 1079 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1080 struct page *page; 1081 dma_addr_t mapping; 1082 1083 if (p5_tpa) 1084 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1085 else 1086 agg = bnxt_get_agg(bp, cpr, idx, i); 1087 cons = agg->rx_agg_cmp_opaque; 1088 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1089 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1090 1091 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1092 skb_fill_page_desc(skb, i, cons_rx_buf->page, 1093 cons_rx_buf->offset, frag_len); 1094 __clear_bit(cons, rxr->rx_agg_bmap); 1095 1096 /* It is possible for bnxt_alloc_rx_page() to allocate 1097 * a sw_prod index that equals the cons index, so we 1098 * need to clear the cons entry now. 1099 */ 1100 mapping = cons_rx_buf->mapping; 1101 page = cons_rx_buf->page; 1102 cons_rx_buf->page = NULL; 1103 1104 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 1105 struct skb_shared_info *shinfo; 1106 unsigned int nr_frags; 1107 1108 shinfo = skb_shinfo(skb); 1109 nr_frags = --shinfo->nr_frags; 1110 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL); 1111 1112 dev_kfree_skb(skb); 1113 1114 cons_rx_buf->page = page; 1115 1116 /* Update prod since possibly some pages have been 1117 * allocated already. 1118 */ 1119 rxr->rx_agg_prod = prod; 1120 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1121 return NULL; 1122 } 1123 1124 dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, 1125 PCI_DMA_FROMDEVICE, 1126 DMA_ATTR_WEAK_ORDERING); 1127 1128 skb->data_len += frag_len; 1129 skb->len += frag_len; 1130 skb->truesize += PAGE_SIZE; 1131 1132 prod = NEXT_RX_AGG(prod); 1133 } 1134 rxr->rx_agg_prod = prod; 1135 return skb; 1136 } 1137 1138 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1139 u8 agg_bufs, u32 *raw_cons) 1140 { 1141 u16 last; 1142 struct rx_agg_cmp *agg; 1143 1144 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1145 last = RING_CMP(*raw_cons); 1146 agg = (struct rx_agg_cmp *) 1147 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1148 return RX_AGG_CMP_VALID(agg, *raw_cons); 1149 } 1150 1151 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1152 unsigned int len, 1153 dma_addr_t mapping) 1154 { 1155 struct bnxt *bp = bnapi->bp; 1156 struct pci_dev *pdev = bp->pdev; 1157 struct sk_buff *skb; 1158 1159 skb = napi_alloc_skb(&bnapi->napi, len); 1160 if (!skb) 1161 return NULL; 1162 1163 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh, 1164 bp->rx_dir); 1165 1166 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1167 len + NET_IP_ALIGN); 1168 1169 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh, 1170 bp->rx_dir); 1171 1172 skb_put(skb, len); 1173 return skb; 1174 } 1175 1176 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1177 u32 *raw_cons, void *cmp) 1178 { 1179 struct rx_cmp *rxcmp = cmp; 1180 u32 tmp_raw_cons = *raw_cons; 1181 u8 cmp_type, agg_bufs = 0; 1182 1183 cmp_type = RX_CMP_TYPE(rxcmp); 1184 1185 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1186 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1187 RX_CMP_AGG_BUFS) >> 1188 RX_CMP_AGG_BUFS_SHIFT; 1189 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1190 struct rx_tpa_end_cmp *tpa_end = cmp; 1191 1192 if (bp->flags & BNXT_FLAG_CHIP_P5) 1193 return 0; 1194 1195 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1196 } 1197 1198 if (agg_bufs) { 1199 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1200 return -EBUSY; 1201 } 1202 *raw_cons = tmp_raw_cons; 1203 return 0; 1204 } 1205 1206 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 1207 { 1208 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 1209 return; 1210 1211 if (BNXT_PF(bp)) 1212 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 1213 else 1214 schedule_delayed_work(&bp->fw_reset_task, delay); 1215 } 1216 1217 static void bnxt_queue_sp_work(struct bnxt *bp) 1218 { 1219 if (BNXT_PF(bp)) 1220 queue_work(bnxt_pf_wq, &bp->sp_task); 1221 else 1222 schedule_work(&bp->sp_task); 1223 } 1224 1225 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 1226 { 1227 if (!rxr->bnapi->in_reset) { 1228 rxr->bnapi->in_reset = true; 1229 if (bp->flags & BNXT_FLAG_CHIP_P5) 1230 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 1231 else 1232 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 1233 bnxt_queue_sp_work(bp); 1234 } 1235 rxr->rx_next_cons = 0xffff; 1236 } 1237 1238 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1239 { 1240 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1241 u16 idx = agg_id & MAX_TPA_P5_MASK; 1242 1243 if (test_bit(idx, map->agg_idx_bmap)) 1244 idx = find_first_zero_bit(map->agg_idx_bmap, 1245 BNXT_AGG_IDX_BMAP_SIZE); 1246 __set_bit(idx, map->agg_idx_bmap); 1247 map->agg_id_tbl[agg_id] = idx; 1248 return idx; 1249 } 1250 1251 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1252 { 1253 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1254 1255 __clear_bit(idx, map->agg_idx_bmap); 1256 } 1257 1258 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1259 { 1260 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1261 1262 return map->agg_id_tbl[agg_id]; 1263 } 1264 1265 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1266 struct rx_tpa_start_cmp *tpa_start, 1267 struct rx_tpa_start_cmp_ext *tpa_start1) 1268 { 1269 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1270 struct bnxt_tpa_info *tpa_info; 1271 u16 cons, prod, agg_id; 1272 struct rx_bd *prod_bd; 1273 dma_addr_t mapping; 1274 1275 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1276 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1277 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1278 } else { 1279 agg_id = TPA_START_AGG_ID(tpa_start); 1280 } 1281 cons = tpa_start->rx_tpa_start_cmp_opaque; 1282 prod = rxr->rx_prod; 1283 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1284 prod_rx_buf = &rxr->rx_buf_ring[prod]; 1285 tpa_info = &rxr->rx_tpa[agg_id]; 1286 1287 if (unlikely(cons != rxr->rx_next_cons || 1288 TPA_START_ERROR(tpa_start))) { 1289 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1290 cons, rxr->rx_next_cons, 1291 TPA_START_ERROR_CODE(tpa_start1)); 1292 bnxt_sched_reset(bp, rxr); 1293 return; 1294 } 1295 /* Store cfa_code in tpa_info to use in tpa_end 1296 * completion processing. 1297 */ 1298 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1299 prod_rx_buf->data = tpa_info->data; 1300 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1301 1302 mapping = tpa_info->mapping; 1303 prod_rx_buf->mapping = mapping; 1304 1305 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 1306 1307 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1308 1309 tpa_info->data = cons_rx_buf->data; 1310 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1311 cons_rx_buf->data = NULL; 1312 tpa_info->mapping = cons_rx_buf->mapping; 1313 1314 tpa_info->len = 1315 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1316 RX_TPA_START_CMP_LEN_SHIFT; 1317 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1318 u32 hash_type = TPA_START_HASH_TYPE(tpa_start); 1319 1320 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1321 tpa_info->gso_type = SKB_GSO_TCPV4; 1322 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1323 if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1)) 1324 tpa_info->gso_type = SKB_GSO_TCPV6; 1325 tpa_info->rss_hash = 1326 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1327 } else { 1328 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1329 tpa_info->gso_type = 0; 1330 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1331 } 1332 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1333 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1334 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1335 tpa_info->agg_count = 0; 1336 1337 rxr->rx_prod = NEXT_RX(prod); 1338 cons = NEXT_RX(cons); 1339 rxr->rx_next_cons = NEXT_RX(cons); 1340 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1341 1342 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1343 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1344 cons_rx_buf->data = NULL; 1345 } 1346 1347 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1348 { 1349 if (agg_bufs) 1350 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1351 } 1352 1353 #ifdef CONFIG_INET 1354 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1355 { 1356 struct udphdr *uh = NULL; 1357 1358 if (ip_proto == htons(ETH_P_IP)) { 1359 struct iphdr *iph = (struct iphdr *)skb->data; 1360 1361 if (iph->protocol == IPPROTO_UDP) 1362 uh = (struct udphdr *)(iph + 1); 1363 } else { 1364 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1365 1366 if (iph->nexthdr == IPPROTO_UDP) 1367 uh = (struct udphdr *)(iph + 1); 1368 } 1369 if (uh) { 1370 if (uh->check) 1371 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1372 else 1373 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1374 } 1375 } 1376 #endif 1377 1378 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1379 int payload_off, int tcp_ts, 1380 struct sk_buff *skb) 1381 { 1382 #ifdef CONFIG_INET 1383 struct tcphdr *th; 1384 int len, nw_off; 1385 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1386 u32 hdr_info = tpa_info->hdr_info; 1387 bool loopback = false; 1388 1389 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1390 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1391 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1392 1393 /* If the packet is an internal loopback packet, the offsets will 1394 * have an extra 4 bytes. 1395 */ 1396 if (inner_mac_off == 4) { 1397 loopback = true; 1398 } else if (inner_mac_off > 4) { 1399 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1400 ETH_HLEN - 2)); 1401 1402 /* We only support inner iPv4/ipv6. If we don't see the 1403 * correct protocol ID, it must be a loopback packet where 1404 * the offsets are off by 4. 1405 */ 1406 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1407 loopback = true; 1408 } 1409 if (loopback) { 1410 /* internal loopback packet, subtract all offsets by 4 */ 1411 inner_ip_off -= 4; 1412 inner_mac_off -= 4; 1413 outer_ip_off -= 4; 1414 } 1415 1416 nw_off = inner_ip_off - ETH_HLEN; 1417 skb_set_network_header(skb, nw_off); 1418 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1419 struct ipv6hdr *iph = ipv6_hdr(skb); 1420 1421 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1422 len = skb->len - skb_transport_offset(skb); 1423 th = tcp_hdr(skb); 1424 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1425 } else { 1426 struct iphdr *iph = ip_hdr(skb); 1427 1428 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1429 len = skb->len - skb_transport_offset(skb); 1430 th = tcp_hdr(skb); 1431 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1432 } 1433 1434 if (inner_mac_off) { /* tunnel */ 1435 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1436 ETH_HLEN - 2)); 1437 1438 bnxt_gro_tunnel(skb, proto); 1439 } 1440 #endif 1441 return skb; 1442 } 1443 1444 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1445 int payload_off, int tcp_ts, 1446 struct sk_buff *skb) 1447 { 1448 #ifdef CONFIG_INET 1449 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1450 u32 hdr_info = tpa_info->hdr_info; 1451 int iphdr_len, nw_off; 1452 1453 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1454 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1455 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1456 1457 nw_off = inner_ip_off - ETH_HLEN; 1458 skb_set_network_header(skb, nw_off); 1459 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1460 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1461 skb_set_transport_header(skb, nw_off + iphdr_len); 1462 1463 if (inner_mac_off) { /* tunnel */ 1464 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1465 ETH_HLEN - 2)); 1466 1467 bnxt_gro_tunnel(skb, proto); 1468 } 1469 #endif 1470 return skb; 1471 } 1472 1473 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1474 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1475 1476 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1477 int payload_off, int tcp_ts, 1478 struct sk_buff *skb) 1479 { 1480 #ifdef CONFIG_INET 1481 struct tcphdr *th; 1482 int len, nw_off, tcp_opt_len = 0; 1483 1484 if (tcp_ts) 1485 tcp_opt_len = 12; 1486 1487 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1488 struct iphdr *iph; 1489 1490 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1491 ETH_HLEN; 1492 skb_set_network_header(skb, nw_off); 1493 iph = ip_hdr(skb); 1494 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1495 len = skb->len - skb_transport_offset(skb); 1496 th = tcp_hdr(skb); 1497 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1498 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1499 struct ipv6hdr *iph; 1500 1501 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1502 ETH_HLEN; 1503 skb_set_network_header(skb, nw_off); 1504 iph = ipv6_hdr(skb); 1505 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1506 len = skb->len - skb_transport_offset(skb); 1507 th = tcp_hdr(skb); 1508 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1509 } else { 1510 dev_kfree_skb_any(skb); 1511 return NULL; 1512 } 1513 1514 if (nw_off) /* tunnel */ 1515 bnxt_gro_tunnel(skb, skb->protocol); 1516 #endif 1517 return skb; 1518 } 1519 1520 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1521 struct bnxt_tpa_info *tpa_info, 1522 struct rx_tpa_end_cmp *tpa_end, 1523 struct rx_tpa_end_cmp_ext *tpa_end1, 1524 struct sk_buff *skb) 1525 { 1526 #ifdef CONFIG_INET 1527 int payload_off; 1528 u16 segs; 1529 1530 segs = TPA_END_TPA_SEGS(tpa_end); 1531 if (segs == 1) 1532 return skb; 1533 1534 NAPI_GRO_CB(skb)->count = segs; 1535 skb_shinfo(skb)->gso_size = 1536 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1537 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1538 if (bp->flags & BNXT_FLAG_CHIP_P5) 1539 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1540 else 1541 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1542 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1543 if (likely(skb)) 1544 tcp_gro_complete(skb); 1545 #endif 1546 return skb; 1547 } 1548 1549 /* Given the cfa_code of a received packet determine which 1550 * netdev (vf-rep or PF) the packet is destined to. 1551 */ 1552 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1553 { 1554 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1555 1556 /* if vf-rep dev is NULL, the must belongs to the PF */ 1557 return dev ? dev : bp->dev; 1558 } 1559 1560 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1561 struct bnxt_cp_ring_info *cpr, 1562 u32 *raw_cons, 1563 struct rx_tpa_end_cmp *tpa_end, 1564 struct rx_tpa_end_cmp_ext *tpa_end1, 1565 u8 *event) 1566 { 1567 struct bnxt_napi *bnapi = cpr->bnapi; 1568 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1569 u8 *data_ptr, agg_bufs; 1570 unsigned int len; 1571 struct bnxt_tpa_info *tpa_info; 1572 dma_addr_t mapping; 1573 struct sk_buff *skb; 1574 u16 idx = 0, agg_id; 1575 void *data; 1576 bool gro; 1577 1578 if (unlikely(bnapi->in_reset)) { 1579 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1580 1581 if (rc < 0) 1582 return ERR_PTR(-EBUSY); 1583 return NULL; 1584 } 1585 1586 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1587 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1588 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1589 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1590 tpa_info = &rxr->rx_tpa[agg_id]; 1591 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1592 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1593 agg_bufs, tpa_info->agg_count); 1594 agg_bufs = tpa_info->agg_count; 1595 } 1596 tpa_info->agg_count = 0; 1597 *event |= BNXT_AGG_EVENT; 1598 bnxt_free_agg_idx(rxr, agg_id); 1599 idx = agg_id; 1600 gro = !!(bp->flags & BNXT_FLAG_GRO); 1601 } else { 1602 agg_id = TPA_END_AGG_ID(tpa_end); 1603 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1604 tpa_info = &rxr->rx_tpa[agg_id]; 1605 idx = RING_CMP(*raw_cons); 1606 if (agg_bufs) { 1607 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1608 return ERR_PTR(-EBUSY); 1609 1610 *event |= BNXT_AGG_EVENT; 1611 idx = NEXT_CMP(idx); 1612 } 1613 gro = !!TPA_END_GRO(tpa_end); 1614 } 1615 data = tpa_info->data; 1616 data_ptr = tpa_info->data_ptr; 1617 prefetch(data_ptr); 1618 len = tpa_info->len; 1619 mapping = tpa_info->mapping; 1620 1621 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1622 bnxt_abort_tpa(cpr, idx, agg_bufs); 1623 if (agg_bufs > MAX_SKB_FRAGS) 1624 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1625 agg_bufs, (int)MAX_SKB_FRAGS); 1626 return NULL; 1627 } 1628 1629 if (len <= bp->rx_copy_thresh) { 1630 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1631 if (!skb) { 1632 bnxt_abort_tpa(cpr, idx, agg_bufs); 1633 return NULL; 1634 } 1635 } else { 1636 u8 *new_data; 1637 dma_addr_t new_mapping; 1638 1639 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC); 1640 if (!new_data) { 1641 bnxt_abort_tpa(cpr, idx, agg_bufs); 1642 return NULL; 1643 } 1644 1645 tpa_info->data = new_data; 1646 tpa_info->data_ptr = new_data + bp->rx_offset; 1647 tpa_info->mapping = new_mapping; 1648 1649 skb = build_skb(data, 0); 1650 dma_unmap_single_attrs(&bp->pdev->dev, mapping, 1651 bp->rx_buf_use_size, bp->rx_dir, 1652 DMA_ATTR_WEAK_ORDERING); 1653 1654 if (!skb) { 1655 kfree(data); 1656 bnxt_abort_tpa(cpr, idx, agg_bufs); 1657 return NULL; 1658 } 1659 skb_reserve(skb, bp->rx_offset); 1660 skb_put(skb, len); 1661 } 1662 1663 if (agg_bufs) { 1664 skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true); 1665 if (!skb) { 1666 /* Page reuse already handled by bnxt_rx_pages(). */ 1667 return NULL; 1668 } 1669 } 1670 1671 skb->protocol = 1672 eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code)); 1673 1674 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1675 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1676 1677 if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) && 1678 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1679 __be16 vlan_proto = htons(tpa_info->metadata >> 1680 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1681 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1682 1683 if (eth_type_vlan(vlan_proto)) { 1684 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1685 } else { 1686 dev_kfree_skb(skb); 1687 return NULL; 1688 } 1689 } 1690 1691 skb_checksum_none_assert(skb); 1692 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1693 skb->ip_summed = CHECKSUM_UNNECESSARY; 1694 skb->csum_level = 1695 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1696 } 1697 1698 if (gro) 1699 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1700 1701 return skb; 1702 } 1703 1704 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1705 struct rx_agg_cmp *rx_agg) 1706 { 1707 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1708 struct bnxt_tpa_info *tpa_info; 1709 1710 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1711 tpa_info = &rxr->rx_tpa[agg_id]; 1712 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1713 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1714 } 1715 1716 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1717 struct sk_buff *skb) 1718 { 1719 if (skb->dev != bp->dev) { 1720 /* this packet belongs to a vf-rep */ 1721 bnxt_vf_rep_rx(bp, skb); 1722 return; 1723 } 1724 skb_record_rx_queue(skb, bnapi->index); 1725 napi_gro_receive(&bnapi->napi, skb); 1726 } 1727 1728 /* returns the following: 1729 * 1 - 1 packet successfully received 1730 * 0 - successful TPA_START, packet not completed yet 1731 * -EBUSY - completion ring does not have all the agg buffers yet 1732 * -ENOMEM - packet aborted due to out of memory 1733 * -EIO - packet aborted due to hw error indicated in BD 1734 */ 1735 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1736 u32 *raw_cons, u8 *event) 1737 { 1738 struct bnxt_napi *bnapi = cpr->bnapi; 1739 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1740 struct net_device *dev = bp->dev; 1741 struct rx_cmp *rxcmp; 1742 struct rx_cmp_ext *rxcmp1; 1743 u32 tmp_raw_cons = *raw_cons; 1744 u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 1745 struct bnxt_sw_rx_bd *rx_buf; 1746 unsigned int len; 1747 u8 *data_ptr, agg_bufs, cmp_type; 1748 dma_addr_t dma_addr; 1749 struct sk_buff *skb; 1750 u32 flags, misc; 1751 void *data; 1752 int rc = 0; 1753 1754 rxcmp = (struct rx_cmp *) 1755 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1756 1757 cmp_type = RX_CMP_TYPE(rxcmp); 1758 1759 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 1760 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 1761 goto next_rx_no_prod_no_len; 1762 } 1763 1764 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1765 cp_cons = RING_CMP(tmp_raw_cons); 1766 rxcmp1 = (struct rx_cmp_ext *) 1767 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1768 1769 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1770 return -EBUSY; 1771 1772 prod = rxr->rx_prod; 1773 1774 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) { 1775 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp, 1776 (struct rx_tpa_start_cmp_ext *)rxcmp1); 1777 1778 *event |= BNXT_RX_EVENT; 1779 goto next_rx_no_prod_no_len; 1780 1781 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1782 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 1783 (struct rx_tpa_end_cmp *)rxcmp, 1784 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 1785 1786 if (IS_ERR(skb)) 1787 return -EBUSY; 1788 1789 rc = -ENOMEM; 1790 if (likely(skb)) { 1791 bnxt_deliver_skb(bp, bnapi, skb); 1792 rc = 1; 1793 } 1794 *event |= BNXT_RX_EVENT; 1795 goto next_rx_no_prod_no_len; 1796 } 1797 1798 cons = rxcmp->rx_cmp_opaque; 1799 if (unlikely(cons != rxr->rx_next_cons)) { 1800 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 1801 1802 /* 0xffff is forced error, don't print it */ 1803 if (rxr->rx_next_cons != 0xffff) 1804 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 1805 cons, rxr->rx_next_cons); 1806 bnxt_sched_reset(bp, rxr); 1807 if (rc1) 1808 return rc1; 1809 goto next_rx_no_prod_no_len; 1810 } 1811 rx_buf = &rxr->rx_buf_ring[cons]; 1812 data = rx_buf->data; 1813 data_ptr = rx_buf->data_ptr; 1814 prefetch(data_ptr); 1815 1816 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 1817 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 1818 1819 if (agg_bufs) { 1820 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1821 return -EBUSY; 1822 1823 cp_cons = NEXT_CMP(cp_cons); 1824 *event |= BNXT_AGG_EVENT; 1825 } 1826 *event |= BNXT_RX_EVENT; 1827 1828 rx_buf->data = NULL; 1829 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 1830 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 1831 1832 bnxt_reuse_rx_data(rxr, cons, data); 1833 if (agg_bufs) 1834 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 1835 false); 1836 1837 rc = -EIO; 1838 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 1839 bnapi->cp_ring.sw_stats.rx.rx_buf_errors++; 1840 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 1841 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 1842 netdev_warn_once(bp->dev, "RX buffer error %x\n", 1843 rx_err); 1844 bnxt_sched_reset(bp, rxr); 1845 } 1846 } 1847 goto next_rx_no_len; 1848 } 1849 1850 flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); 1851 len = flags >> RX_CMP_LEN_SHIFT; 1852 dma_addr = rx_buf->mapping; 1853 1854 if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) { 1855 rc = 1; 1856 goto next_rx; 1857 } 1858 1859 if (len <= bp->rx_copy_thresh) { 1860 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 1861 bnxt_reuse_rx_data(rxr, cons, data); 1862 if (!skb) { 1863 if (agg_bufs) 1864 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 1865 agg_bufs, false); 1866 rc = -ENOMEM; 1867 goto next_rx; 1868 } 1869 } else { 1870 u32 payload; 1871 1872 if (rx_buf->data_ptr == data_ptr) 1873 payload = misc & RX_CMP_PAYLOAD_OFFSET; 1874 else 1875 payload = 0; 1876 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 1877 payload | len); 1878 if (!skb) { 1879 rc = -ENOMEM; 1880 goto next_rx; 1881 } 1882 } 1883 1884 if (agg_bufs) { 1885 skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false); 1886 if (!skb) { 1887 rc = -ENOMEM; 1888 goto next_rx; 1889 } 1890 } 1891 1892 if (RX_CMP_HASH_VALID(rxcmp)) { 1893 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 1894 enum pkt_hash_types type = PKT_HASH_TYPE_L4; 1895 1896 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1897 if (hash_type != 1 && hash_type != 3) 1898 type = PKT_HASH_TYPE_L3; 1899 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 1900 } 1901 1902 cfa_code = RX_CMP_CFA_CODE(rxcmp1); 1903 skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code)); 1904 1905 if ((rxcmp1->rx_cmp_flags2 & 1906 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) && 1907 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1908 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 1909 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1910 __be16 vlan_proto = htons(meta_data >> 1911 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1912 1913 if (eth_type_vlan(vlan_proto)) { 1914 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1915 } else { 1916 dev_kfree_skb(skb); 1917 goto next_rx; 1918 } 1919 } 1920 1921 skb_checksum_none_assert(skb); 1922 if (RX_CMP_L4_CS_OK(rxcmp1)) { 1923 if (dev->features & NETIF_F_RXCSUM) { 1924 skb->ip_summed = CHECKSUM_UNNECESSARY; 1925 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 1926 } 1927 } else { 1928 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 1929 if (dev->features & NETIF_F_RXCSUM) 1930 bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++; 1931 } 1932 } 1933 1934 if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) == 1935 RX_CMP_FLAGS_ITYPE_PTP_W_TS)) { 1936 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1937 u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); 1938 u64 ns, ts; 1939 1940 if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { 1941 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 1942 1943 spin_lock_bh(&ptp->ptp_lock); 1944 ns = timecounter_cyc2time(&ptp->tc, ts); 1945 spin_unlock_bh(&ptp->ptp_lock); 1946 memset(skb_hwtstamps(skb), 0, 1947 sizeof(*skb_hwtstamps(skb))); 1948 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 1949 } 1950 } 1951 } 1952 bnxt_deliver_skb(bp, bnapi, skb); 1953 rc = 1; 1954 1955 next_rx: 1956 cpr->rx_packets += 1; 1957 cpr->rx_bytes += len; 1958 1959 next_rx_no_len: 1960 rxr->rx_prod = NEXT_RX(prod); 1961 rxr->rx_next_cons = NEXT_RX(cons); 1962 1963 next_rx_no_prod_no_len: 1964 *raw_cons = tmp_raw_cons; 1965 1966 return rc; 1967 } 1968 1969 /* In netpoll mode, if we are using a combined completion ring, we need to 1970 * discard the rx packets and recycle the buffers. 1971 */ 1972 static int bnxt_force_rx_discard(struct bnxt *bp, 1973 struct bnxt_cp_ring_info *cpr, 1974 u32 *raw_cons, u8 *event) 1975 { 1976 u32 tmp_raw_cons = *raw_cons; 1977 struct rx_cmp_ext *rxcmp1; 1978 struct rx_cmp *rxcmp; 1979 u16 cp_cons; 1980 u8 cmp_type; 1981 1982 cp_cons = RING_CMP(tmp_raw_cons); 1983 rxcmp = (struct rx_cmp *) 1984 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1985 1986 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1987 cp_cons = RING_CMP(tmp_raw_cons); 1988 rxcmp1 = (struct rx_cmp_ext *) 1989 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1990 1991 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1992 return -EBUSY; 1993 1994 cmp_type = RX_CMP_TYPE(rxcmp); 1995 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1996 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 1997 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 1998 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1999 struct rx_tpa_end_cmp_ext *tpa_end1; 2000 2001 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 2002 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 2003 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 2004 } 2005 return bnxt_rx_pkt(bp, cpr, raw_cons, event); 2006 } 2007 2008 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 2009 { 2010 struct bnxt_fw_health *fw_health = bp->fw_health; 2011 u32 reg = fw_health->regs[reg_idx]; 2012 u32 reg_type, reg_off, val = 0; 2013 2014 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 2015 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 2016 switch (reg_type) { 2017 case BNXT_FW_HEALTH_REG_TYPE_CFG: 2018 pci_read_config_dword(bp->pdev, reg_off, &val); 2019 break; 2020 case BNXT_FW_HEALTH_REG_TYPE_GRC: 2021 reg_off = fw_health->mapped_regs[reg_idx]; 2022 fallthrough; 2023 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 2024 val = readl(bp->bar0 + reg_off); 2025 break; 2026 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 2027 val = readl(bp->bar1 + reg_off); 2028 break; 2029 } 2030 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 2031 val &= fw_health->fw_reset_inprog_reg_mask; 2032 return val; 2033 } 2034 2035 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 2036 { 2037 int i; 2038 2039 for (i = 0; i < bp->rx_nr_rings; i++) { 2040 u16 grp_idx = bp->rx_ring[i].bnapi->index; 2041 struct bnxt_ring_grp_info *grp_info; 2042 2043 grp_info = &bp->grp_info[grp_idx]; 2044 if (grp_info->agg_fw_ring_id == ring_id) 2045 return grp_idx; 2046 } 2047 return INVALID_HW_RING_ID; 2048 } 2049 2050 static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2) 2051 { 2052 switch (BNXT_EVENT_ERROR_REPORT_TYPE(data1)) { 2053 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL: 2054 netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n", 2055 BNXT_EVENT_INVALID_SIGNAL_DATA(data2)); 2056 break; 2057 default: 2058 netdev_err(bp->dev, "FW reported unknown error type\n"); 2059 break; 2060 } 2061 } 2062 2063 #define BNXT_GET_EVENT_PORT(data) \ 2064 ((data) & \ 2065 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 2066 2067 #define BNXT_EVENT_RING_TYPE(data2) \ 2068 ((data2) & \ 2069 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 2070 2071 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 2072 (BNXT_EVENT_RING_TYPE(data2) == \ 2073 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 2074 2075 static int bnxt_async_event_process(struct bnxt *bp, 2076 struct hwrm_async_event_cmpl *cmpl) 2077 { 2078 u16 event_id = le16_to_cpu(cmpl->event_id); 2079 u32 data1 = le32_to_cpu(cmpl->event_data1); 2080 u32 data2 = le32_to_cpu(cmpl->event_data2); 2081 2082 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2083 switch (event_id) { 2084 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2085 struct bnxt_link_info *link_info = &bp->link_info; 2086 2087 if (BNXT_VF(bp)) 2088 goto async_event_process_exit; 2089 2090 /* print unsupported speed warning in forced speed mode only */ 2091 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2092 (data1 & 0x20000)) { 2093 u16 fw_speed = link_info->force_link_speed; 2094 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2095 2096 if (speed != SPEED_UNKNOWN) 2097 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2098 speed); 2099 } 2100 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2101 } 2102 fallthrough; 2103 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2104 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2105 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2106 fallthrough; 2107 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2108 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2109 break; 2110 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2111 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2112 break; 2113 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2114 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2115 2116 if (BNXT_VF(bp)) 2117 break; 2118 2119 if (bp->pf.port_id != port_id) 2120 break; 2121 2122 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2123 break; 2124 } 2125 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2126 if (BNXT_PF(bp)) 2127 goto async_event_process_exit; 2128 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2129 break; 2130 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2131 char *fatal_str = "non-fatal"; 2132 2133 if (!bp->fw_health) 2134 goto async_event_process_exit; 2135 2136 bp->fw_reset_timestamp = jiffies; 2137 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2138 if (!bp->fw_reset_min_dsecs) 2139 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2140 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2141 if (!bp->fw_reset_max_dsecs) 2142 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2143 if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2144 fatal_str = "fatal"; 2145 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2146 } 2147 netif_warn(bp, hw, bp->dev, 2148 "Firmware %s reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2149 fatal_str, data1, data2, 2150 bp->fw_reset_min_dsecs * 100, 2151 bp->fw_reset_max_dsecs * 100); 2152 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2153 break; 2154 } 2155 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2156 struct bnxt_fw_health *fw_health = bp->fw_health; 2157 2158 if (!fw_health) 2159 goto async_event_process_exit; 2160 2161 fw_health->enabled = EVENT_DATA1_RECOVERY_ENABLED(data1); 2162 fw_health->master = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2163 if (!fw_health->enabled) { 2164 netif_info(bp, drv, bp->dev, 2165 "Error recovery info: error recovery[0]\n"); 2166 break; 2167 } 2168 fw_health->tmr_multiplier = 2169 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2170 bp->current_interval * 10); 2171 fw_health->tmr_counter = fw_health->tmr_multiplier; 2172 fw_health->last_fw_heartbeat = 2173 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2174 fw_health->last_fw_reset_cnt = 2175 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2176 netif_info(bp, drv, bp->dev, 2177 "Error recovery info: error recovery[1], master[%d], reset count[%u], health status: 0x%x\n", 2178 fw_health->master, fw_health->last_fw_reset_cnt, 2179 bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG)); 2180 goto async_event_process_exit; 2181 } 2182 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2183 netif_notice(bp, hw, bp->dev, 2184 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2185 data1, data2); 2186 goto async_event_process_exit; 2187 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2188 struct bnxt_rx_ring_info *rxr; 2189 u16 grp_idx; 2190 2191 if (bp->flags & BNXT_FLAG_CHIP_P5) 2192 goto async_event_process_exit; 2193 2194 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2195 BNXT_EVENT_RING_TYPE(data2), data1); 2196 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2197 goto async_event_process_exit; 2198 2199 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2200 if (grp_idx == INVALID_HW_RING_ID) { 2201 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2202 data1); 2203 goto async_event_process_exit; 2204 } 2205 rxr = bp->bnapi[grp_idx]->rx_ring; 2206 bnxt_sched_reset(bp, rxr); 2207 goto async_event_process_exit; 2208 } 2209 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2210 struct bnxt_fw_health *fw_health = bp->fw_health; 2211 2212 netif_notice(bp, hw, bp->dev, 2213 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2214 data1, data2); 2215 if (fw_health) { 2216 fw_health->echo_req_data1 = data1; 2217 fw_health->echo_req_data2 = data2; 2218 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2219 break; 2220 } 2221 goto async_event_process_exit; 2222 } 2223 case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: { 2224 bnxt_ptp_pps_event(bp, data1, data2); 2225 goto async_event_process_exit; 2226 } 2227 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: { 2228 bnxt_event_error_report(bp, data1, data2); 2229 goto async_event_process_exit; 2230 } 2231 default: 2232 goto async_event_process_exit; 2233 } 2234 bnxt_queue_sp_work(bp); 2235 async_event_process_exit: 2236 bnxt_ulp_async_events(bp, cmpl); 2237 return 0; 2238 } 2239 2240 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2241 { 2242 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2243 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2244 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2245 (struct hwrm_fwd_req_cmpl *)txcmp; 2246 2247 switch (cmpl_type) { 2248 case CMPL_BASE_TYPE_HWRM_DONE: 2249 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2250 if (seq_id == bp->hwrm_intr_seq_id) 2251 bp->hwrm_intr_seq_id = (u16)~bp->hwrm_intr_seq_id; 2252 else 2253 netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id); 2254 break; 2255 2256 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2257 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2258 2259 if ((vf_id < bp->pf.first_vf_id) || 2260 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2261 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2262 vf_id); 2263 return -EINVAL; 2264 } 2265 2266 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2267 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event); 2268 bnxt_queue_sp_work(bp); 2269 break; 2270 2271 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2272 bnxt_async_event_process(bp, 2273 (struct hwrm_async_event_cmpl *)txcmp); 2274 break; 2275 2276 default: 2277 break; 2278 } 2279 2280 return 0; 2281 } 2282 2283 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2284 { 2285 struct bnxt_napi *bnapi = dev_instance; 2286 struct bnxt *bp = bnapi->bp; 2287 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2288 u32 cons = RING_CMP(cpr->cp_raw_cons); 2289 2290 cpr->event_ctr++; 2291 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2292 napi_schedule(&bnapi->napi); 2293 return IRQ_HANDLED; 2294 } 2295 2296 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2297 { 2298 u32 raw_cons = cpr->cp_raw_cons; 2299 u16 cons = RING_CMP(raw_cons); 2300 struct tx_cmp *txcmp; 2301 2302 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2303 2304 return TX_CMP_VALID(txcmp, raw_cons); 2305 } 2306 2307 static irqreturn_t bnxt_inta(int irq, void *dev_instance) 2308 { 2309 struct bnxt_napi *bnapi = dev_instance; 2310 struct bnxt *bp = bnapi->bp; 2311 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2312 u32 cons = RING_CMP(cpr->cp_raw_cons); 2313 u32 int_status; 2314 2315 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2316 2317 if (!bnxt_has_work(bp, cpr)) { 2318 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); 2319 /* return if erroneous interrupt */ 2320 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) 2321 return IRQ_NONE; 2322 } 2323 2324 /* disable ring IRQ */ 2325 BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell); 2326 2327 /* Return here if interrupt is shared and is disabled. */ 2328 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 2329 return IRQ_HANDLED; 2330 2331 napi_schedule(&bnapi->napi); 2332 return IRQ_HANDLED; 2333 } 2334 2335 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2336 int budget) 2337 { 2338 struct bnxt_napi *bnapi = cpr->bnapi; 2339 u32 raw_cons = cpr->cp_raw_cons; 2340 u32 cons; 2341 int tx_pkts = 0; 2342 int rx_pkts = 0; 2343 u8 event = 0; 2344 struct tx_cmp *txcmp; 2345 2346 cpr->has_more_work = 0; 2347 cpr->had_work_done = 1; 2348 while (1) { 2349 int rc; 2350 2351 cons = RING_CMP(raw_cons); 2352 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2353 2354 if (!TX_CMP_VALID(txcmp, raw_cons)) 2355 break; 2356 2357 /* The valid test of the entry must be done first before 2358 * reading any further. 2359 */ 2360 dma_rmb(); 2361 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) { 2362 tx_pkts++; 2363 /* return full budget so NAPI will complete. */ 2364 if (unlikely(tx_pkts > bp->tx_wake_thresh)) { 2365 rx_pkts = budget; 2366 raw_cons = NEXT_RAW_CMP(raw_cons); 2367 if (budget) 2368 cpr->has_more_work = 1; 2369 break; 2370 } 2371 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2372 if (likely(budget)) 2373 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2374 else 2375 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 2376 &event); 2377 if (likely(rc >= 0)) 2378 rx_pkts += rc; 2379 /* Increment rx_pkts when rc is -ENOMEM to count towards 2380 * the NAPI budget. Otherwise, we may potentially loop 2381 * here forever if we consistently cannot allocate 2382 * buffers. 2383 */ 2384 else if (rc == -ENOMEM && budget) 2385 rx_pkts++; 2386 else if (rc == -EBUSY) /* partial completion */ 2387 break; 2388 } else if (unlikely((TX_CMP_TYPE(txcmp) == 2389 CMPL_BASE_TYPE_HWRM_DONE) || 2390 (TX_CMP_TYPE(txcmp) == 2391 CMPL_BASE_TYPE_HWRM_FWD_REQ) || 2392 (TX_CMP_TYPE(txcmp) == 2393 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) { 2394 bnxt_hwrm_handler(bp, txcmp); 2395 } 2396 raw_cons = NEXT_RAW_CMP(raw_cons); 2397 2398 if (rx_pkts && rx_pkts == budget) { 2399 cpr->has_more_work = 1; 2400 break; 2401 } 2402 } 2403 2404 if (event & BNXT_REDIRECT_EVENT) 2405 xdp_do_flush_map(); 2406 2407 if (event & BNXT_TX_EVENT) { 2408 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 2409 u16 prod = txr->tx_prod; 2410 2411 /* Sync BD data before updating doorbell */ 2412 wmb(); 2413 2414 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 2415 } 2416 2417 cpr->cp_raw_cons = raw_cons; 2418 bnapi->tx_pkts += tx_pkts; 2419 bnapi->events |= event; 2420 return rx_pkts; 2421 } 2422 2423 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi) 2424 { 2425 if (bnapi->tx_pkts) { 2426 bnapi->tx_int(bp, bnapi, bnapi->tx_pkts); 2427 bnapi->tx_pkts = 0; 2428 } 2429 2430 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 2431 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2432 2433 if (bnapi->events & BNXT_AGG_EVENT) 2434 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2435 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2436 } 2437 bnapi->events = 0; 2438 } 2439 2440 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2441 int budget) 2442 { 2443 struct bnxt_napi *bnapi = cpr->bnapi; 2444 int rx_pkts; 2445 2446 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 2447 2448 /* ACK completion ring before freeing tx ring and producing new 2449 * buffers in rx/agg rings to prevent overflowing the completion 2450 * ring. 2451 */ 2452 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 2453 2454 __bnxt_poll_work_done(bp, bnapi); 2455 return rx_pkts; 2456 } 2457 2458 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 2459 { 2460 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2461 struct bnxt *bp = bnapi->bp; 2462 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2463 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2464 struct tx_cmp *txcmp; 2465 struct rx_cmp_ext *rxcmp1; 2466 u32 cp_cons, tmp_raw_cons; 2467 u32 raw_cons = cpr->cp_raw_cons; 2468 u32 rx_pkts = 0; 2469 u8 event = 0; 2470 2471 while (1) { 2472 int rc; 2473 2474 cp_cons = RING_CMP(raw_cons); 2475 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2476 2477 if (!TX_CMP_VALID(txcmp, raw_cons)) 2478 break; 2479 2480 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2481 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 2482 cp_cons = RING_CMP(tmp_raw_cons); 2483 rxcmp1 = (struct rx_cmp_ext *) 2484 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2485 2486 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2487 break; 2488 2489 /* force an error to recycle the buffer */ 2490 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2491 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2492 2493 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2494 if (likely(rc == -EIO) && budget) 2495 rx_pkts++; 2496 else if (rc == -EBUSY) /* partial completion */ 2497 break; 2498 } else if (unlikely(TX_CMP_TYPE(txcmp) == 2499 CMPL_BASE_TYPE_HWRM_DONE)) { 2500 bnxt_hwrm_handler(bp, txcmp); 2501 } else { 2502 netdev_err(bp->dev, 2503 "Invalid completion received on special ring\n"); 2504 } 2505 raw_cons = NEXT_RAW_CMP(raw_cons); 2506 2507 if (rx_pkts == budget) 2508 break; 2509 } 2510 2511 cpr->cp_raw_cons = raw_cons; 2512 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 2513 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2514 2515 if (event & BNXT_AGG_EVENT) 2516 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2517 2518 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 2519 napi_complete_done(napi, rx_pkts); 2520 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2521 } 2522 return rx_pkts; 2523 } 2524 2525 static int bnxt_poll(struct napi_struct *napi, int budget) 2526 { 2527 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2528 struct bnxt *bp = bnapi->bp; 2529 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2530 int work_done = 0; 2531 2532 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 2533 napi_complete(napi); 2534 return 0; 2535 } 2536 while (1) { 2537 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 2538 2539 if (work_done >= budget) { 2540 if (!budget) 2541 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2542 break; 2543 } 2544 2545 if (!bnxt_has_work(bp, cpr)) { 2546 if (napi_complete_done(napi, work_done)) 2547 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2548 break; 2549 } 2550 } 2551 if (bp->flags & BNXT_FLAG_DIM) { 2552 struct dim_sample dim_sample = {}; 2553 2554 dim_update_sample(cpr->event_ctr, 2555 cpr->rx_packets, 2556 cpr->rx_bytes, 2557 &dim_sample); 2558 net_dim(&cpr->dim, dim_sample); 2559 } 2560 return work_done; 2561 } 2562 2563 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 2564 { 2565 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2566 int i, work_done = 0; 2567 2568 for (i = 0; i < 2; i++) { 2569 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2570 2571 if (cpr2) { 2572 work_done += __bnxt_poll_work(bp, cpr2, 2573 budget - work_done); 2574 cpr->has_more_work |= cpr2->has_more_work; 2575 } 2576 } 2577 return work_done; 2578 } 2579 2580 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 2581 u64 dbr_type) 2582 { 2583 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2584 int i; 2585 2586 for (i = 0; i < 2; i++) { 2587 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2588 struct bnxt_db_info *db; 2589 2590 if (cpr2 && cpr2->had_work_done) { 2591 db = &cpr2->cp_db; 2592 writeq(db->db_key64 | dbr_type | 2593 RING_CMP(cpr2->cp_raw_cons), db->doorbell); 2594 cpr2->had_work_done = 0; 2595 } 2596 } 2597 __bnxt_poll_work_done(bp, bnapi); 2598 } 2599 2600 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 2601 { 2602 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2603 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2604 u32 raw_cons = cpr->cp_raw_cons; 2605 struct bnxt *bp = bnapi->bp; 2606 struct nqe_cn *nqcmp; 2607 int work_done = 0; 2608 u32 cons; 2609 2610 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 2611 napi_complete(napi); 2612 return 0; 2613 } 2614 if (cpr->has_more_work) { 2615 cpr->has_more_work = 0; 2616 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 2617 } 2618 while (1) { 2619 cons = RING_CMP(raw_cons); 2620 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2621 2622 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 2623 if (cpr->has_more_work) 2624 break; 2625 2626 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL); 2627 cpr->cp_raw_cons = raw_cons; 2628 if (napi_complete_done(napi, work_done)) 2629 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 2630 cpr->cp_raw_cons); 2631 return work_done; 2632 } 2633 2634 /* The valid test of the entry must be done first before 2635 * reading any further. 2636 */ 2637 dma_rmb(); 2638 2639 if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) { 2640 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 2641 struct bnxt_cp_ring_info *cpr2; 2642 2643 cpr2 = cpr->cp_ring_arr[idx]; 2644 work_done += __bnxt_poll_work(bp, cpr2, 2645 budget - work_done); 2646 cpr->has_more_work |= cpr2->has_more_work; 2647 } else { 2648 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 2649 } 2650 raw_cons = NEXT_RAW_CMP(raw_cons); 2651 } 2652 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ); 2653 if (raw_cons != cpr->cp_raw_cons) { 2654 cpr->cp_raw_cons = raw_cons; 2655 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 2656 } 2657 return work_done; 2658 } 2659 2660 static void bnxt_free_tx_skbs(struct bnxt *bp) 2661 { 2662 int i, max_idx; 2663 struct pci_dev *pdev = bp->pdev; 2664 2665 if (!bp->tx_ring) 2666 return; 2667 2668 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 2669 for (i = 0; i < bp->tx_nr_rings; i++) { 2670 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 2671 int j; 2672 2673 for (j = 0; j < max_idx;) { 2674 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 2675 struct sk_buff *skb; 2676 int k, last; 2677 2678 if (i < bp->tx_nr_rings_xdp && 2679 tx_buf->action == XDP_REDIRECT) { 2680 dma_unmap_single(&pdev->dev, 2681 dma_unmap_addr(tx_buf, mapping), 2682 dma_unmap_len(tx_buf, len), 2683 PCI_DMA_TODEVICE); 2684 xdp_return_frame(tx_buf->xdpf); 2685 tx_buf->action = 0; 2686 tx_buf->xdpf = NULL; 2687 j++; 2688 continue; 2689 } 2690 2691 skb = tx_buf->skb; 2692 if (!skb) { 2693 j++; 2694 continue; 2695 } 2696 2697 tx_buf->skb = NULL; 2698 2699 if (tx_buf->is_push) { 2700 dev_kfree_skb(skb); 2701 j += 2; 2702 continue; 2703 } 2704 2705 dma_unmap_single(&pdev->dev, 2706 dma_unmap_addr(tx_buf, mapping), 2707 skb_headlen(skb), 2708 PCI_DMA_TODEVICE); 2709 2710 last = tx_buf->nr_frags; 2711 j += 2; 2712 for (k = 0; k < last; k++, j++) { 2713 int ring_idx = j & bp->tx_ring_mask; 2714 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2715 2716 tx_buf = &txr->tx_buf_ring[ring_idx]; 2717 dma_unmap_page( 2718 &pdev->dev, 2719 dma_unmap_addr(tx_buf, mapping), 2720 skb_frag_size(frag), PCI_DMA_TODEVICE); 2721 } 2722 dev_kfree_skb(skb); 2723 } 2724 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 2725 } 2726 } 2727 2728 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr) 2729 { 2730 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 2731 struct pci_dev *pdev = bp->pdev; 2732 struct bnxt_tpa_idx_map *map; 2733 int i, max_idx, max_agg_idx; 2734 2735 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 2736 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 2737 if (!rxr->rx_tpa) 2738 goto skip_rx_tpa_free; 2739 2740 for (i = 0; i < bp->max_tpa; i++) { 2741 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 2742 u8 *data = tpa_info->data; 2743 2744 if (!data) 2745 continue; 2746 2747 dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping, 2748 bp->rx_buf_use_size, bp->rx_dir, 2749 DMA_ATTR_WEAK_ORDERING); 2750 2751 tpa_info->data = NULL; 2752 2753 kfree(data); 2754 } 2755 2756 skip_rx_tpa_free: 2757 for (i = 0; i < max_idx; i++) { 2758 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 2759 dma_addr_t mapping = rx_buf->mapping; 2760 void *data = rx_buf->data; 2761 2762 if (!data) 2763 continue; 2764 2765 rx_buf->data = NULL; 2766 if (BNXT_RX_PAGE_MODE(bp)) { 2767 mapping -= bp->rx_dma_offset; 2768 dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE, 2769 bp->rx_dir, 2770 DMA_ATTR_WEAK_ORDERING); 2771 page_pool_recycle_direct(rxr->page_pool, data); 2772 } else { 2773 dma_unmap_single_attrs(&pdev->dev, mapping, 2774 bp->rx_buf_use_size, bp->rx_dir, 2775 DMA_ATTR_WEAK_ORDERING); 2776 kfree(data); 2777 } 2778 } 2779 for (i = 0; i < max_agg_idx; i++) { 2780 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 2781 struct page *page = rx_agg_buf->page; 2782 2783 if (!page) 2784 continue; 2785 2786 dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping, 2787 BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE, 2788 DMA_ATTR_WEAK_ORDERING); 2789 2790 rx_agg_buf->page = NULL; 2791 __clear_bit(i, rxr->rx_agg_bmap); 2792 2793 __free_page(page); 2794 } 2795 if (rxr->rx_page) { 2796 __free_page(rxr->rx_page); 2797 rxr->rx_page = NULL; 2798 } 2799 map = rxr->rx_tpa_idx_map; 2800 if (map) 2801 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 2802 } 2803 2804 static void bnxt_free_rx_skbs(struct bnxt *bp) 2805 { 2806 int i; 2807 2808 if (!bp->rx_ring) 2809 return; 2810 2811 for (i = 0; i < bp->rx_nr_rings; i++) 2812 bnxt_free_one_rx_ring_skbs(bp, i); 2813 } 2814 2815 static void bnxt_free_skbs(struct bnxt *bp) 2816 { 2817 bnxt_free_tx_skbs(bp); 2818 bnxt_free_rx_skbs(bp); 2819 } 2820 2821 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len) 2822 { 2823 u8 init_val = mem_init->init_val; 2824 u16 offset = mem_init->offset; 2825 u8 *p2 = p; 2826 int i; 2827 2828 if (!init_val) 2829 return; 2830 if (offset == BNXT_MEM_INVALID_OFFSET) { 2831 memset(p, init_val, len); 2832 return; 2833 } 2834 for (i = 0; i < len; i += mem_init->size) 2835 *(p2 + i + offset) = init_val; 2836 } 2837 2838 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 2839 { 2840 struct pci_dev *pdev = bp->pdev; 2841 int i; 2842 2843 for (i = 0; i < rmem->nr_pages; i++) { 2844 if (!rmem->pg_arr[i]) 2845 continue; 2846 2847 dma_free_coherent(&pdev->dev, rmem->page_size, 2848 rmem->pg_arr[i], rmem->dma_arr[i]); 2849 2850 rmem->pg_arr[i] = NULL; 2851 } 2852 if (rmem->pg_tbl) { 2853 size_t pg_tbl_size = rmem->nr_pages * 8; 2854 2855 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 2856 pg_tbl_size = rmem->page_size; 2857 dma_free_coherent(&pdev->dev, pg_tbl_size, 2858 rmem->pg_tbl, rmem->pg_tbl_map); 2859 rmem->pg_tbl = NULL; 2860 } 2861 if (rmem->vmem_size && *rmem->vmem) { 2862 vfree(*rmem->vmem); 2863 *rmem->vmem = NULL; 2864 } 2865 } 2866 2867 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 2868 { 2869 struct pci_dev *pdev = bp->pdev; 2870 u64 valid_bit = 0; 2871 int i; 2872 2873 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 2874 valid_bit = PTU_PTE_VALID; 2875 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 2876 size_t pg_tbl_size = rmem->nr_pages * 8; 2877 2878 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 2879 pg_tbl_size = rmem->page_size; 2880 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 2881 &rmem->pg_tbl_map, 2882 GFP_KERNEL); 2883 if (!rmem->pg_tbl) 2884 return -ENOMEM; 2885 } 2886 2887 for (i = 0; i < rmem->nr_pages; i++) { 2888 u64 extra_bits = valid_bit; 2889 2890 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 2891 rmem->page_size, 2892 &rmem->dma_arr[i], 2893 GFP_KERNEL); 2894 if (!rmem->pg_arr[i]) 2895 return -ENOMEM; 2896 2897 if (rmem->mem_init) 2898 bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i], 2899 rmem->page_size); 2900 if (rmem->nr_pages > 1 || rmem->depth > 0) { 2901 if (i == rmem->nr_pages - 2 && 2902 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 2903 extra_bits |= PTU_PTE_NEXT_TO_LAST; 2904 else if (i == rmem->nr_pages - 1 && 2905 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 2906 extra_bits |= PTU_PTE_LAST; 2907 rmem->pg_tbl[i] = 2908 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 2909 } 2910 } 2911 2912 if (rmem->vmem_size) { 2913 *rmem->vmem = vzalloc(rmem->vmem_size); 2914 if (!(*rmem->vmem)) 2915 return -ENOMEM; 2916 } 2917 return 0; 2918 } 2919 2920 static void bnxt_free_tpa_info(struct bnxt *bp) 2921 { 2922 int i; 2923 2924 for (i = 0; i < bp->rx_nr_rings; i++) { 2925 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2926 2927 kfree(rxr->rx_tpa_idx_map); 2928 rxr->rx_tpa_idx_map = NULL; 2929 if (rxr->rx_tpa) { 2930 kfree(rxr->rx_tpa[0].agg_arr); 2931 rxr->rx_tpa[0].agg_arr = NULL; 2932 } 2933 kfree(rxr->rx_tpa); 2934 rxr->rx_tpa = NULL; 2935 } 2936 } 2937 2938 static int bnxt_alloc_tpa_info(struct bnxt *bp) 2939 { 2940 int i, j, total_aggs = 0; 2941 2942 bp->max_tpa = MAX_TPA; 2943 if (bp->flags & BNXT_FLAG_CHIP_P5) { 2944 if (!bp->max_tpa_v2) 2945 return 0; 2946 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 2947 total_aggs = bp->max_tpa * MAX_SKB_FRAGS; 2948 } 2949 2950 for (i = 0; i < bp->rx_nr_rings; i++) { 2951 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2952 struct rx_agg_cmp *agg; 2953 2954 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 2955 GFP_KERNEL); 2956 if (!rxr->rx_tpa) 2957 return -ENOMEM; 2958 2959 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 2960 continue; 2961 agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL); 2962 rxr->rx_tpa[0].agg_arr = agg; 2963 if (!agg) 2964 return -ENOMEM; 2965 for (j = 1; j < bp->max_tpa; j++) 2966 rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS; 2967 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 2968 GFP_KERNEL); 2969 if (!rxr->rx_tpa_idx_map) 2970 return -ENOMEM; 2971 } 2972 return 0; 2973 } 2974 2975 static void bnxt_free_rx_rings(struct bnxt *bp) 2976 { 2977 int i; 2978 2979 if (!bp->rx_ring) 2980 return; 2981 2982 bnxt_free_tpa_info(bp); 2983 for (i = 0; i < bp->rx_nr_rings; i++) { 2984 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2985 struct bnxt_ring_struct *ring; 2986 2987 if (rxr->xdp_prog) 2988 bpf_prog_put(rxr->xdp_prog); 2989 2990 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 2991 xdp_rxq_info_unreg(&rxr->xdp_rxq); 2992 2993 page_pool_destroy(rxr->page_pool); 2994 rxr->page_pool = NULL; 2995 2996 kfree(rxr->rx_agg_bmap); 2997 rxr->rx_agg_bmap = NULL; 2998 2999 ring = &rxr->rx_ring_struct; 3000 bnxt_free_ring(bp, &ring->ring_mem); 3001 3002 ring = &rxr->rx_agg_ring_struct; 3003 bnxt_free_ring(bp, &ring->ring_mem); 3004 } 3005 } 3006 3007 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 3008 struct bnxt_rx_ring_info *rxr) 3009 { 3010 struct page_pool_params pp = { 0 }; 3011 3012 pp.pool_size = bp->rx_ring_size; 3013 pp.nid = dev_to_node(&bp->pdev->dev); 3014 pp.dev = &bp->pdev->dev; 3015 pp.dma_dir = DMA_BIDIRECTIONAL; 3016 3017 rxr->page_pool = page_pool_create(&pp); 3018 if (IS_ERR(rxr->page_pool)) { 3019 int err = PTR_ERR(rxr->page_pool); 3020 3021 rxr->page_pool = NULL; 3022 return err; 3023 } 3024 return 0; 3025 } 3026 3027 static int bnxt_alloc_rx_rings(struct bnxt *bp) 3028 { 3029 int i, rc = 0, agg_rings = 0; 3030 3031 if (!bp->rx_ring) 3032 return -ENOMEM; 3033 3034 if (bp->flags & BNXT_FLAG_AGG_RINGS) 3035 agg_rings = 1; 3036 3037 for (i = 0; i < bp->rx_nr_rings; i++) { 3038 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3039 struct bnxt_ring_struct *ring; 3040 3041 ring = &rxr->rx_ring_struct; 3042 3043 rc = bnxt_alloc_rx_page_pool(bp, rxr); 3044 if (rc) 3045 return rc; 3046 3047 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 3048 if (rc < 0) 3049 return rc; 3050 3051 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 3052 MEM_TYPE_PAGE_POOL, 3053 rxr->page_pool); 3054 if (rc) { 3055 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3056 return rc; 3057 } 3058 3059 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3060 if (rc) 3061 return rc; 3062 3063 ring->grp_idx = i; 3064 if (agg_rings) { 3065 u16 mem_size; 3066 3067 ring = &rxr->rx_agg_ring_struct; 3068 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3069 if (rc) 3070 return rc; 3071 3072 ring->grp_idx = i; 3073 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 3074 mem_size = rxr->rx_agg_bmap_size / 8; 3075 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 3076 if (!rxr->rx_agg_bmap) 3077 return -ENOMEM; 3078 } 3079 } 3080 if (bp->flags & BNXT_FLAG_TPA) 3081 rc = bnxt_alloc_tpa_info(bp); 3082 return rc; 3083 } 3084 3085 static void bnxt_free_tx_rings(struct bnxt *bp) 3086 { 3087 int i; 3088 struct pci_dev *pdev = bp->pdev; 3089 3090 if (!bp->tx_ring) 3091 return; 3092 3093 for (i = 0; i < bp->tx_nr_rings; i++) { 3094 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3095 struct bnxt_ring_struct *ring; 3096 3097 if (txr->tx_push) { 3098 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3099 txr->tx_push, txr->tx_push_mapping); 3100 txr->tx_push = NULL; 3101 } 3102 3103 ring = &txr->tx_ring_struct; 3104 3105 bnxt_free_ring(bp, &ring->ring_mem); 3106 } 3107 } 3108 3109 static int bnxt_alloc_tx_rings(struct bnxt *bp) 3110 { 3111 int i, j, rc; 3112 struct pci_dev *pdev = bp->pdev; 3113 3114 bp->tx_push_size = 0; 3115 if (bp->tx_push_thresh) { 3116 int push_size; 3117 3118 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 3119 bp->tx_push_thresh); 3120 3121 if (push_size > 256) { 3122 push_size = 0; 3123 bp->tx_push_thresh = 0; 3124 } 3125 3126 bp->tx_push_size = push_size; 3127 } 3128 3129 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 3130 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3131 struct bnxt_ring_struct *ring; 3132 u8 qidx; 3133 3134 ring = &txr->tx_ring_struct; 3135 3136 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3137 if (rc) 3138 return rc; 3139 3140 ring->grp_idx = txr->bnapi->index; 3141 if (bp->tx_push_size) { 3142 dma_addr_t mapping; 3143 3144 /* One pre-allocated DMA buffer to backup 3145 * TX push operation 3146 */ 3147 txr->tx_push = dma_alloc_coherent(&pdev->dev, 3148 bp->tx_push_size, 3149 &txr->tx_push_mapping, 3150 GFP_KERNEL); 3151 3152 if (!txr->tx_push) 3153 return -ENOMEM; 3154 3155 mapping = txr->tx_push_mapping + 3156 sizeof(struct tx_push_bd); 3157 txr->data_mapping = cpu_to_le64(mapping); 3158 } 3159 qidx = bp->tc_to_qidx[j]; 3160 ring->queue_id = bp->q_info[qidx].queue_id; 3161 if (i < bp->tx_nr_rings_xdp) 3162 continue; 3163 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1)) 3164 j++; 3165 } 3166 return 0; 3167 } 3168 3169 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr) 3170 { 3171 kfree(cpr->cp_desc_ring); 3172 cpr->cp_desc_ring = NULL; 3173 kfree(cpr->cp_desc_mapping); 3174 cpr->cp_desc_mapping = NULL; 3175 } 3176 3177 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n) 3178 { 3179 cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL); 3180 if (!cpr->cp_desc_ring) 3181 return -ENOMEM; 3182 cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping), 3183 GFP_KERNEL); 3184 if (!cpr->cp_desc_mapping) 3185 return -ENOMEM; 3186 return 0; 3187 } 3188 3189 static void bnxt_free_all_cp_arrays(struct bnxt *bp) 3190 { 3191 int i; 3192 3193 if (!bp->bnapi) 3194 return; 3195 for (i = 0; i < bp->cp_nr_rings; i++) { 3196 struct bnxt_napi *bnapi = bp->bnapi[i]; 3197 3198 if (!bnapi) 3199 continue; 3200 bnxt_free_cp_arrays(&bnapi->cp_ring); 3201 } 3202 } 3203 3204 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp) 3205 { 3206 int i, n = bp->cp_nr_pages; 3207 3208 for (i = 0; i < bp->cp_nr_rings; i++) { 3209 struct bnxt_napi *bnapi = bp->bnapi[i]; 3210 int rc; 3211 3212 if (!bnapi) 3213 continue; 3214 rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n); 3215 if (rc) 3216 return rc; 3217 } 3218 return 0; 3219 } 3220 3221 static void bnxt_free_cp_rings(struct bnxt *bp) 3222 { 3223 int i; 3224 3225 if (!bp->bnapi) 3226 return; 3227 3228 for (i = 0; i < bp->cp_nr_rings; i++) { 3229 struct bnxt_napi *bnapi = bp->bnapi[i]; 3230 struct bnxt_cp_ring_info *cpr; 3231 struct bnxt_ring_struct *ring; 3232 int j; 3233 3234 if (!bnapi) 3235 continue; 3236 3237 cpr = &bnapi->cp_ring; 3238 ring = &cpr->cp_ring_struct; 3239 3240 bnxt_free_ring(bp, &ring->ring_mem); 3241 3242 for (j = 0; j < 2; j++) { 3243 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3244 3245 if (cpr2) { 3246 ring = &cpr2->cp_ring_struct; 3247 bnxt_free_ring(bp, &ring->ring_mem); 3248 bnxt_free_cp_arrays(cpr2); 3249 kfree(cpr2); 3250 cpr->cp_ring_arr[j] = NULL; 3251 } 3252 } 3253 } 3254 } 3255 3256 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp) 3257 { 3258 struct bnxt_ring_mem_info *rmem; 3259 struct bnxt_ring_struct *ring; 3260 struct bnxt_cp_ring_info *cpr; 3261 int rc; 3262 3263 cpr = kzalloc(sizeof(*cpr), GFP_KERNEL); 3264 if (!cpr) 3265 return NULL; 3266 3267 rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages); 3268 if (rc) { 3269 bnxt_free_cp_arrays(cpr); 3270 kfree(cpr); 3271 return NULL; 3272 } 3273 ring = &cpr->cp_ring_struct; 3274 rmem = &ring->ring_mem; 3275 rmem->nr_pages = bp->cp_nr_pages; 3276 rmem->page_size = HW_CMPD_RING_SIZE; 3277 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3278 rmem->dma_arr = cpr->cp_desc_mapping; 3279 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 3280 rc = bnxt_alloc_ring(bp, rmem); 3281 if (rc) { 3282 bnxt_free_ring(bp, rmem); 3283 bnxt_free_cp_arrays(cpr); 3284 kfree(cpr); 3285 cpr = NULL; 3286 } 3287 return cpr; 3288 } 3289 3290 static int bnxt_alloc_cp_rings(struct bnxt *bp) 3291 { 3292 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 3293 int i, rc, ulp_base_vec, ulp_msix; 3294 3295 ulp_msix = bnxt_get_ulp_msix_num(bp); 3296 ulp_base_vec = bnxt_get_ulp_msix_base(bp); 3297 for (i = 0; i < bp->cp_nr_rings; i++) { 3298 struct bnxt_napi *bnapi = bp->bnapi[i]; 3299 struct bnxt_cp_ring_info *cpr; 3300 struct bnxt_ring_struct *ring; 3301 3302 if (!bnapi) 3303 continue; 3304 3305 cpr = &bnapi->cp_ring; 3306 cpr->bnapi = bnapi; 3307 ring = &cpr->cp_ring_struct; 3308 3309 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3310 if (rc) 3311 return rc; 3312 3313 if (ulp_msix && i >= ulp_base_vec) 3314 ring->map_idx = i + ulp_msix; 3315 else 3316 ring->map_idx = i; 3317 3318 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 3319 continue; 3320 3321 if (i < bp->rx_nr_rings) { 3322 struct bnxt_cp_ring_info *cpr2 = 3323 bnxt_alloc_cp_sub_ring(bp); 3324 3325 cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2; 3326 if (!cpr2) 3327 return -ENOMEM; 3328 cpr2->bnapi = bnapi; 3329 } 3330 if ((sh && i < bp->tx_nr_rings) || 3331 (!sh && i >= bp->rx_nr_rings)) { 3332 struct bnxt_cp_ring_info *cpr2 = 3333 bnxt_alloc_cp_sub_ring(bp); 3334 3335 cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2; 3336 if (!cpr2) 3337 return -ENOMEM; 3338 cpr2->bnapi = bnapi; 3339 } 3340 } 3341 return 0; 3342 } 3343 3344 static void bnxt_init_ring_struct(struct bnxt *bp) 3345 { 3346 int i; 3347 3348 for (i = 0; i < bp->cp_nr_rings; i++) { 3349 struct bnxt_napi *bnapi = bp->bnapi[i]; 3350 struct bnxt_ring_mem_info *rmem; 3351 struct bnxt_cp_ring_info *cpr; 3352 struct bnxt_rx_ring_info *rxr; 3353 struct bnxt_tx_ring_info *txr; 3354 struct bnxt_ring_struct *ring; 3355 3356 if (!bnapi) 3357 continue; 3358 3359 cpr = &bnapi->cp_ring; 3360 ring = &cpr->cp_ring_struct; 3361 rmem = &ring->ring_mem; 3362 rmem->nr_pages = bp->cp_nr_pages; 3363 rmem->page_size = HW_CMPD_RING_SIZE; 3364 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3365 rmem->dma_arr = cpr->cp_desc_mapping; 3366 rmem->vmem_size = 0; 3367 3368 rxr = bnapi->rx_ring; 3369 if (!rxr) 3370 goto skip_rx; 3371 3372 ring = &rxr->rx_ring_struct; 3373 rmem = &ring->ring_mem; 3374 rmem->nr_pages = bp->rx_nr_pages; 3375 rmem->page_size = HW_RXBD_RING_SIZE; 3376 rmem->pg_arr = (void **)rxr->rx_desc_ring; 3377 rmem->dma_arr = rxr->rx_desc_mapping; 3378 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 3379 rmem->vmem = (void **)&rxr->rx_buf_ring; 3380 3381 ring = &rxr->rx_agg_ring_struct; 3382 rmem = &ring->ring_mem; 3383 rmem->nr_pages = bp->rx_agg_nr_pages; 3384 rmem->page_size = HW_RXBD_RING_SIZE; 3385 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 3386 rmem->dma_arr = rxr->rx_agg_desc_mapping; 3387 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 3388 rmem->vmem = (void **)&rxr->rx_agg_ring; 3389 3390 skip_rx: 3391 txr = bnapi->tx_ring; 3392 if (!txr) 3393 continue; 3394 3395 ring = &txr->tx_ring_struct; 3396 rmem = &ring->ring_mem; 3397 rmem->nr_pages = bp->tx_nr_pages; 3398 rmem->page_size = HW_RXBD_RING_SIZE; 3399 rmem->pg_arr = (void **)txr->tx_desc_ring; 3400 rmem->dma_arr = txr->tx_desc_mapping; 3401 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 3402 rmem->vmem = (void **)&txr->tx_buf_ring; 3403 } 3404 } 3405 3406 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 3407 { 3408 int i; 3409 u32 prod; 3410 struct rx_bd **rx_buf_ring; 3411 3412 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 3413 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 3414 int j; 3415 struct rx_bd *rxbd; 3416 3417 rxbd = rx_buf_ring[i]; 3418 if (!rxbd) 3419 continue; 3420 3421 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 3422 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 3423 rxbd->rx_bd_opaque = prod; 3424 } 3425 } 3426 } 3427 3428 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 3429 { 3430 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 3431 struct net_device *dev = bp->dev; 3432 u32 prod; 3433 int i; 3434 3435 prod = rxr->rx_prod; 3436 for (i = 0; i < bp->rx_ring_size; i++) { 3437 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 3438 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n", 3439 ring_nr, i, bp->rx_ring_size); 3440 break; 3441 } 3442 prod = NEXT_RX(prod); 3443 } 3444 rxr->rx_prod = prod; 3445 3446 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 3447 return 0; 3448 3449 prod = rxr->rx_agg_prod; 3450 for (i = 0; i < bp->rx_agg_ring_size; i++) { 3451 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) { 3452 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n", 3453 ring_nr, i, bp->rx_ring_size); 3454 break; 3455 } 3456 prod = NEXT_RX_AGG(prod); 3457 } 3458 rxr->rx_agg_prod = prod; 3459 3460 if (rxr->rx_tpa) { 3461 dma_addr_t mapping; 3462 u8 *data; 3463 3464 for (i = 0; i < bp->max_tpa; i++) { 3465 data = __bnxt_alloc_rx_data(bp, &mapping, GFP_KERNEL); 3466 if (!data) 3467 return -ENOMEM; 3468 3469 rxr->rx_tpa[i].data = data; 3470 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 3471 rxr->rx_tpa[i].mapping = mapping; 3472 } 3473 } 3474 return 0; 3475 } 3476 3477 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 3478 { 3479 struct bnxt_rx_ring_info *rxr; 3480 struct bnxt_ring_struct *ring; 3481 u32 type; 3482 3483 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 3484 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 3485 3486 if (NET_IP_ALIGN == 2) 3487 type |= RX_BD_FLAGS_SOP; 3488 3489 rxr = &bp->rx_ring[ring_nr]; 3490 ring = &rxr->rx_ring_struct; 3491 bnxt_init_rxbd_pages(ring, type); 3492 3493 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 3494 bpf_prog_add(bp->xdp_prog, 1); 3495 rxr->xdp_prog = bp->xdp_prog; 3496 } 3497 ring->fw_ring_id = INVALID_HW_RING_ID; 3498 3499 ring = &rxr->rx_agg_ring_struct; 3500 ring->fw_ring_id = INVALID_HW_RING_ID; 3501 3502 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 3503 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 3504 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 3505 3506 bnxt_init_rxbd_pages(ring, type); 3507 } 3508 3509 return bnxt_alloc_one_rx_ring(bp, ring_nr); 3510 } 3511 3512 static void bnxt_init_cp_rings(struct bnxt *bp) 3513 { 3514 int i, j; 3515 3516 for (i = 0; i < bp->cp_nr_rings; i++) { 3517 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 3518 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3519 3520 ring->fw_ring_id = INVALID_HW_RING_ID; 3521 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3522 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3523 for (j = 0; j < 2; j++) { 3524 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3525 3526 if (!cpr2) 3527 continue; 3528 3529 ring = &cpr2->cp_ring_struct; 3530 ring->fw_ring_id = INVALID_HW_RING_ID; 3531 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3532 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3533 } 3534 } 3535 } 3536 3537 static int bnxt_init_rx_rings(struct bnxt *bp) 3538 { 3539 int i, rc = 0; 3540 3541 if (BNXT_RX_PAGE_MODE(bp)) { 3542 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 3543 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 3544 } else { 3545 bp->rx_offset = BNXT_RX_OFFSET; 3546 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 3547 } 3548 3549 for (i = 0; i < bp->rx_nr_rings; i++) { 3550 rc = bnxt_init_one_rx_ring(bp, i); 3551 if (rc) 3552 break; 3553 } 3554 3555 return rc; 3556 } 3557 3558 static int bnxt_init_tx_rings(struct bnxt *bp) 3559 { 3560 u16 i; 3561 3562 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 3563 MAX_SKB_FRAGS + 1); 3564 3565 for (i = 0; i < bp->tx_nr_rings; i++) { 3566 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3567 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 3568 3569 ring->fw_ring_id = INVALID_HW_RING_ID; 3570 } 3571 3572 return 0; 3573 } 3574 3575 static void bnxt_free_ring_grps(struct bnxt *bp) 3576 { 3577 kfree(bp->grp_info); 3578 bp->grp_info = NULL; 3579 } 3580 3581 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 3582 { 3583 int i; 3584 3585 if (irq_re_init) { 3586 bp->grp_info = kcalloc(bp->cp_nr_rings, 3587 sizeof(struct bnxt_ring_grp_info), 3588 GFP_KERNEL); 3589 if (!bp->grp_info) 3590 return -ENOMEM; 3591 } 3592 for (i = 0; i < bp->cp_nr_rings; i++) { 3593 if (irq_re_init) 3594 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 3595 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 3596 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 3597 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 3598 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 3599 } 3600 return 0; 3601 } 3602 3603 static void bnxt_free_vnics(struct bnxt *bp) 3604 { 3605 kfree(bp->vnic_info); 3606 bp->vnic_info = NULL; 3607 bp->nr_vnics = 0; 3608 } 3609 3610 static int bnxt_alloc_vnics(struct bnxt *bp) 3611 { 3612 int num_vnics = 1; 3613 3614 #ifdef CONFIG_RFS_ACCEL 3615 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 3616 num_vnics += bp->rx_nr_rings; 3617 #endif 3618 3619 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 3620 num_vnics++; 3621 3622 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 3623 GFP_KERNEL); 3624 if (!bp->vnic_info) 3625 return -ENOMEM; 3626 3627 bp->nr_vnics = num_vnics; 3628 return 0; 3629 } 3630 3631 static void bnxt_init_vnics(struct bnxt *bp) 3632 { 3633 int i; 3634 3635 for (i = 0; i < bp->nr_vnics; i++) { 3636 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 3637 int j; 3638 3639 vnic->fw_vnic_id = INVALID_HW_RING_ID; 3640 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 3641 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 3642 3643 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 3644 3645 if (bp->vnic_info[i].rss_hash_key) { 3646 if (i == 0) 3647 prandom_bytes(vnic->rss_hash_key, 3648 HW_HASH_KEY_SIZE); 3649 else 3650 memcpy(vnic->rss_hash_key, 3651 bp->vnic_info[0].rss_hash_key, 3652 HW_HASH_KEY_SIZE); 3653 } 3654 } 3655 } 3656 3657 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 3658 { 3659 int pages; 3660 3661 pages = ring_size / desc_per_pg; 3662 3663 if (!pages) 3664 return 1; 3665 3666 pages++; 3667 3668 while (pages & (pages - 1)) 3669 pages++; 3670 3671 return pages; 3672 } 3673 3674 void bnxt_set_tpa_flags(struct bnxt *bp) 3675 { 3676 bp->flags &= ~BNXT_FLAG_TPA; 3677 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 3678 return; 3679 if (bp->dev->features & NETIF_F_LRO) 3680 bp->flags |= BNXT_FLAG_LRO; 3681 else if (bp->dev->features & NETIF_F_GRO_HW) 3682 bp->flags |= BNXT_FLAG_GRO; 3683 } 3684 3685 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 3686 * be set on entry. 3687 */ 3688 void bnxt_set_ring_params(struct bnxt *bp) 3689 { 3690 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 3691 u32 agg_factor = 0, agg_ring_size = 0; 3692 3693 /* 8 for CRC and VLAN */ 3694 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 3695 3696 rx_space = rx_size + NET_SKB_PAD + 3697 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3698 3699 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 3700 ring_size = bp->rx_ring_size; 3701 bp->rx_agg_ring_size = 0; 3702 bp->rx_agg_nr_pages = 0; 3703 3704 if (bp->flags & BNXT_FLAG_TPA) 3705 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 3706 3707 bp->flags &= ~BNXT_FLAG_JUMBO; 3708 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 3709 u32 jumbo_factor; 3710 3711 bp->flags |= BNXT_FLAG_JUMBO; 3712 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 3713 if (jumbo_factor > agg_factor) 3714 agg_factor = jumbo_factor; 3715 } 3716 if (agg_factor) { 3717 if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) { 3718 ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA; 3719 netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n", 3720 bp->rx_ring_size, ring_size); 3721 bp->rx_ring_size = ring_size; 3722 } 3723 agg_ring_size = ring_size * agg_factor; 3724 3725 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 3726 RX_DESC_CNT); 3727 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 3728 u32 tmp = agg_ring_size; 3729 3730 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 3731 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 3732 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 3733 tmp, agg_ring_size); 3734 } 3735 bp->rx_agg_ring_size = agg_ring_size; 3736 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 3737 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 3738 rx_space = rx_size + NET_SKB_PAD + 3739 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3740 } 3741 3742 bp->rx_buf_use_size = rx_size; 3743 bp->rx_buf_size = rx_space; 3744 3745 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 3746 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 3747 3748 ring_size = bp->tx_ring_size; 3749 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 3750 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 3751 3752 max_rx_cmpl = bp->rx_ring_size; 3753 /* MAX TPA needs to be added because TPA_START completions are 3754 * immediately recycled, so the TPA completions are not bound by 3755 * the RX ring size. 3756 */ 3757 if (bp->flags & BNXT_FLAG_TPA) 3758 max_rx_cmpl += bp->max_tpa; 3759 /* RX and TPA completions are 32-byte, all others are 16-byte */ 3760 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 3761 bp->cp_ring_size = ring_size; 3762 3763 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 3764 if (bp->cp_nr_pages > MAX_CP_PAGES) { 3765 bp->cp_nr_pages = MAX_CP_PAGES; 3766 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 3767 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 3768 ring_size, bp->cp_ring_size); 3769 } 3770 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 3771 bp->cp_ring_mask = bp->cp_bit - 1; 3772 } 3773 3774 /* Changing allocation mode of RX rings. 3775 * TODO: Update when extending xdp_rxq_info to support allocation modes. 3776 */ 3777 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 3778 { 3779 if (page_mode) { 3780 if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU) 3781 return -EOPNOTSUPP; 3782 bp->dev->max_mtu = 3783 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 3784 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 3785 bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE; 3786 bp->rx_dir = DMA_BIDIRECTIONAL; 3787 bp->rx_skb_func = bnxt_rx_page_skb; 3788 /* Disable LRO or GRO_HW */ 3789 netdev_update_features(bp->dev); 3790 } else { 3791 bp->dev->max_mtu = bp->max_mtu; 3792 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 3793 bp->rx_dir = DMA_FROM_DEVICE; 3794 bp->rx_skb_func = bnxt_rx_skb; 3795 } 3796 return 0; 3797 } 3798 3799 static void bnxt_free_vnic_attributes(struct bnxt *bp) 3800 { 3801 int i; 3802 struct bnxt_vnic_info *vnic; 3803 struct pci_dev *pdev = bp->pdev; 3804 3805 if (!bp->vnic_info) 3806 return; 3807 3808 for (i = 0; i < bp->nr_vnics; i++) { 3809 vnic = &bp->vnic_info[i]; 3810 3811 kfree(vnic->fw_grp_ids); 3812 vnic->fw_grp_ids = NULL; 3813 3814 kfree(vnic->uc_list); 3815 vnic->uc_list = NULL; 3816 3817 if (vnic->mc_list) { 3818 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 3819 vnic->mc_list, vnic->mc_list_mapping); 3820 vnic->mc_list = NULL; 3821 } 3822 3823 if (vnic->rss_table) { 3824 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 3825 vnic->rss_table, 3826 vnic->rss_table_dma_addr); 3827 vnic->rss_table = NULL; 3828 } 3829 3830 vnic->rss_hash_key = NULL; 3831 vnic->flags = 0; 3832 } 3833 } 3834 3835 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 3836 { 3837 int i, rc = 0, size; 3838 struct bnxt_vnic_info *vnic; 3839 struct pci_dev *pdev = bp->pdev; 3840 int max_rings; 3841 3842 for (i = 0; i < bp->nr_vnics; i++) { 3843 vnic = &bp->vnic_info[i]; 3844 3845 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 3846 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 3847 3848 if (mem_size > 0) { 3849 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 3850 if (!vnic->uc_list) { 3851 rc = -ENOMEM; 3852 goto out; 3853 } 3854 } 3855 } 3856 3857 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 3858 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 3859 vnic->mc_list = 3860 dma_alloc_coherent(&pdev->dev, 3861 vnic->mc_list_size, 3862 &vnic->mc_list_mapping, 3863 GFP_KERNEL); 3864 if (!vnic->mc_list) { 3865 rc = -ENOMEM; 3866 goto out; 3867 } 3868 } 3869 3870 if (bp->flags & BNXT_FLAG_CHIP_P5) 3871 goto vnic_skip_grps; 3872 3873 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 3874 max_rings = bp->rx_nr_rings; 3875 else 3876 max_rings = 1; 3877 3878 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 3879 if (!vnic->fw_grp_ids) { 3880 rc = -ENOMEM; 3881 goto out; 3882 } 3883 vnic_skip_grps: 3884 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 3885 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 3886 continue; 3887 3888 /* Allocate rss table and hash key */ 3889 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 3890 if (bp->flags & BNXT_FLAG_CHIP_P5) 3891 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 3892 3893 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 3894 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 3895 vnic->rss_table_size, 3896 &vnic->rss_table_dma_addr, 3897 GFP_KERNEL); 3898 if (!vnic->rss_table) { 3899 rc = -ENOMEM; 3900 goto out; 3901 } 3902 3903 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 3904 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 3905 } 3906 return 0; 3907 3908 out: 3909 return rc; 3910 } 3911 3912 static void bnxt_free_hwrm_resources(struct bnxt *bp) 3913 { 3914 struct pci_dev *pdev = bp->pdev; 3915 3916 if (bp->hwrm_cmd_resp_addr) { 3917 dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr, 3918 bp->hwrm_cmd_resp_dma_addr); 3919 bp->hwrm_cmd_resp_addr = NULL; 3920 } 3921 3922 if (bp->hwrm_cmd_kong_resp_addr) { 3923 dma_free_coherent(&pdev->dev, PAGE_SIZE, 3924 bp->hwrm_cmd_kong_resp_addr, 3925 bp->hwrm_cmd_kong_resp_dma_addr); 3926 bp->hwrm_cmd_kong_resp_addr = NULL; 3927 } 3928 } 3929 3930 static int bnxt_alloc_kong_hwrm_resources(struct bnxt *bp) 3931 { 3932 struct pci_dev *pdev = bp->pdev; 3933 3934 if (bp->hwrm_cmd_kong_resp_addr) 3935 return 0; 3936 3937 bp->hwrm_cmd_kong_resp_addr = 3938 dma_alloc_coherent(&pdev->dev, PAGE_SIZE, 3939 &bp->hwrm_cmd_kong_resp_dma_addr, 3940 GFP_KERNEL); 3941 if (!bp->hwrm_cmd_kong_resp_addr) 3942 return -ENOMEM; 3943 3944 return 0; 3945 } 3946 3947 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 3948 { 3949 struct pci_dev *pdev = bp->pdev; 3950 3951 bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE, 3952 &bp->hwrm_cmd_resp_dma_addr, 3953 GFP_KERNEL); 3954 if (!bp->hwrm_cmd_resp_addr) 3955 return -ENOMEM; 3956 3957 return 0; 3958 } 3959 3960 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp) 3961 { 3962 if (bp->hwrm_short_cmd_req_addr) { 3963 struct pci_dev *pdev = bp->pdev; 3964 3965 dma_free_coherent(&pdev->dev, bp->hwrm_max_ext_req_len, 3966 bp->hwrm_short_cmd_req_addr, 3967 bp->hwrm_short_cmd_req_dma_addr); 3968 bp->hwrm_short_cmd_req_addr = NULL; 3969 } 3970 } 3971 3972 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp) 3973 { 3974 struct pci_dev *pdev = bp->pdev; 3975 3976 if (bp->hwrm_short_cmd_req_addr) 3977 return 0; 3978 3979 bp->hwrm_short_cmd_req_addr = 3980 dma_alloc_coherent(&pdev->dev, bp->hwrm_max_ext_req_len, 3981 &bp->hwrm_short_cmd_req_dma_addr, 3982 GFP_KERNEL); 3983 if (!bp->hwrm_short_cmd_req_addr) 3984 return -ENOMEM; 3985 3986 return 0; 3987 } 3988 3989 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 3990 { 3991 kfree(stats->hw_masks); 3992 stats->hw_masks = NULL; 3993 kfree(stats->sw_stats); 3994 stats->sw_stats = NULL; 3995 if (stats->hw_stats) { 3996 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 3997 stats->hw_stats_map); 3998 stats->hw_stats = NULL; 3999 } 4000 } 4001 4002 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 4003 bool alloc_masks) 4004 { 4005 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 4006 &stats->hw_stats_map, GFP_KERNEL); 4007 if (!stats->hw_stats) 4008 return -ENOMEM; 4009 4010 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 4011 if (!stats->sw_stats) 4012 goto stats_mem_err; 4013 4014 if (alloc_masks) { 4015 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 4016 if (!stats->hw_masks) 4017 goto stats_mem_err; 4018 } 4019 return 0; 4020 4021 stats_mem_err: 4022 bnxt_free_stats_mem(bp, stats); 4023 return -ENOMEM; 4024 } 4025 4026 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 4027 { 4028 int i; 4029 4030 for (i = 0; i < count; i++) 4031 mask_arr[i] = mask; 4032 } 4033 4034 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 4035 { 4036 int i; 4037 4038 for (i = 0; i < count; i++) 4039 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 4040 } 4041 4042 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 4043 struct bnxt_stats_mem *stats) 4044 { 4045 struct hwrm_func_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr; 4046 struct hwrm_func_qstats_ext_input req = {0}; 4047 __le64 *hw_masks; 4048 int rc; 4049 4050 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 4051 !(bp->flags & BNXT_FLAG_CHIP_P5)) 4052 return -EOPNOTSUPP; 4053 4054 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QSTATS_EXT, -1, -1); 4055 req.fid = cpu_to_le16(0xffff); 4056 req.flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4057 mutex_lock(&bp->hwrm_cmd_lock); 4058 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4059 if (rc) 4060 goto qstat_exit; 4061 4062 hw_masks = &resp->rx_ucast_pkts; 4063 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 4064 4065 qstat_exit: 4066 mutex_unlock(&bp->hwrm_cmd_lock); 4067 return rc; 4068 } 4069 4070 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 4071 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 4072 4073 static void bnxt_init_stats(struct bnxt *bp) 4074 { 4075 struct bnxt_napi *bnapi = bp->bnapi[0]; 4076 struct bnxt_cp_ring_info *cpr; 4077 struct bnxt_stats_mem *stats; 4078 __le64 *rx_stats, *tx_stats; 4079 int rc, rx_count, tx_count; 4080 u64 *rx_masks, *tx_masks; 4081 u64 mask; 4082 u8 flags; 4083 4084 cpr = &bnapi->cp_ring; 4085 stats = &cpr->stats; 4086 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 4087 if (rc) { 4088 if (bp->flags & BNXT_FLAG_CHIP_P5) 4089 mask = (1ULL << 48) - 1; 4090 else 4091 mask = -1ULL; 4092 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 4093 } 4094 if (bp->flags & BNXT_FLAG_PORT_STATS) { 4095 stats = &bp->port_stats; 4096 rx_stats = stats->hw_stats; 4097 rx_masks = stats->hw_masks; 4098 rx_count = sizeof(struct rx_port_stats) / 8; 4099 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4100 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4101 tx_count = sizeof(struct tx_port_stats) / 8; 4102 4103 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 4104 rc = bnxt_hwrm_port_qstats(bp, flags); 4105 if (rc) { 4106 mask = (1ULL << 40) - 1; 4107 4108 bnxt_fill_masks(rx_masks, mask, rx_count); 4109 bnxt_fill_masks(tx_masks, mask, tx_count); 4110 } else { 4111 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4112 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 4113 bnxt_hwrm_port_qstats(bp, 0); 4114 } 4115 } 4116 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 4117 stats = &bp->rx_port_stats_ext; 4118 rx_stats = stats->hw_stats; 4119 rx_masks = stats->hw_masks; 4120 rx_count = sizeof(struct rx_port_stats_ext) / 8; 4121 stats = &bp->tx_port_stats_ext; 4122 tx_stats = stats->hw_stats; 4123 tx_masks = stats->hw_masks; 4124 tx_count = sizeof(struct tx_port_stats_ext) / 8; 4125 4126 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4127 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 4128 if (rc) { 4129 mask = (1ULL << 40) - 1; 4130 4131 bnxt_fill_masks(rx_masks, mask, rx_count); 4132 if (tx_stats) 4133 bnxt_fill_masks(tx_masks, mask, tx_count); 4134 } else { 4135 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4136 if (tx_stats) 4137 bnxt_copy_hw_masks(tx_masks, tx_stats, 4138 tx_count); 4139 bnxt_hwrm_port_qstats_ext(bp, 0); 4140 } 4141 } 4142 } 4143 4144 static void bnxt_free_port_stats(struct bnxt *bp) 4145 { 4146 bp->flags &= ~BNXT_FLAG_PORT_STATS; 4147 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 4148 4149 bnxt_free_stats_mem(bp, &bp->port_stats); 4150 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 4151 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 4152 } 4153 4154 static void bnxt_free_ring_stats(struct bnxt *bp) 4155 { 4156 int i; 4157 4158 if (!bp->bnapi) 4159 return; 4160 4161 for (i = 0; i < bp->cp_nr_rings; i++) { 4162 struct bnxt_napi *bnapi = bp->bnapi[i]; 4163 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4164 4165 bnxt_free_stats_mem(bp, &cpr->stats); 4166 } 4167 } 4168 4169 static int bnxt_alloc_stats(struct bnxt *bp) 4170 { 4171 u32 size, i; 4172 int rc; 4173 4174 size = bp->hw_ring_stats_size; 4175 4176 for (i = 0; i < bp->cp_nr_rings; i++) { 4177 struct bnxt_napi *bnapi = bp->bnapi[i]; 4178 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4179 4180 cpr->stats.len = size; 4181 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 4182 if (rc) 4183 return rc; 4184 4185 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 4186 } 4187 4188 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 4189 return 0; 4190 4191 if (bp->port_stats.hw_stats) 4192 goto alloc_ext_stats; 4193 4194 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 4195 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 4196 if (rc) 4197 return rc; 4198 4199 bp->flags |= BNXT_FLAG_PORT_STATS; 4200 4201 alloc_ext_stats: 4202 /* Display extended statistics only if FW supports it */ 4203 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 4204 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 4205 return 0; 4206 4207 if (bp->rx_port_stats_ext.hw_stats) 4208 goto alloc_tx_ext_stats; 4209 4210 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 4211 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 4212 /* Extended stats are optional */ 4213 if (rc) 4214 return 0; 4215 4216 alloc_tx_ext_stats: 4217 if (bp->tx_port_stats_ext.hw_stats) 4218 return 0; 4219 4220 if (bp->hwrm_spec_code >= 0x10902 || 4221 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 4222 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 4223 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 4224 /* Extended stats are optional */ 4225 if (rc) 4226 return 0; 4227 } 4228 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 4229 return 0; 4230 } 4231 4232 static void bnxt_clear_ring_indices(struct bnxt *bp) 4233 { 4234 int i; 4235 4236 if (!bp->bnapi) 4237 return; 4238 4239 for (i = 0; i < bp->cp_nr_rings; i++) { 4240 struct bnxt_napi *bnapi = bp->bnapi[i]; 4241 struct bnxt_cp_ring_info *cpr; 4242 struct bnxt_rx_ring_info *rxr; 4243 struct bnxt_tx_ring_info *txr; 4244 4245 if (!bnapi) 4246 continue; 4247 4248 cpr = &bnapi->cp_ring; 4249 cpr->cp_raw_cons = 0; 4250 4251 txr = bnapi->tx_ring; 4252 if (txr) { 4253 txr->tx_prod = 0; 4254 txr->tx_cons = 0; 4255 } 4256 4257 rxr = bnapi->rx_ring; 4258 if (rxr) { 4259 rxr->rx_prod = 0; 4260 rxr->rx_agg_prod = 0; 4261 rxr->rx_sw_agg_prod = 0; 4262 rxr->rx_next_cons = 0; 4263 } 4264 } 4265 } 4266 4267 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit) 4268 { 4269 #ifdef CONFIG_RFS_ACCEL 4270 int i; 4271 4272 /* Under rtnl_lock and all our NAPIs have been disabled. It's 4273 * safe to delete the hash table. 4274 */ 4275 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 4276 struct hlist_head *head; 4277 struct hlist_node *tmp; 4278 struct bnxt_ntuple_filter *fltr; 4279 4280 head = &bp->ntp_fltr_hash_tbl[i]; 4281 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 4282 hlist_del(&fltr->hash); 4283 kfree(fltr); 4284 } 4285 } 4286 if (irq_reinit) { 4287 kfree(bp->ntp_fltr_bmap); 4288 bp->ntp_fltr_bmap = NULL; 4289 } 4290 bp->ntp_fltr_count = 0; 4291 #endif 4292 } 4293 4294 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 4295 { 4296 #ifdef CONFIG_RFS_ACCEL 4297 int i, rc = 0; 4298 4299 if (!(bp->flags & BNXT_FLAG_RFS)) 4300 return 0; 4301 4302 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 4303 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 4304 4305 bp->ntp_fltr_count = 0; 4306 bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR), 4307 sizeof(long), 4308 GFP_KERNEL); 4309 4310 if (!bp->ntp_fltr_bmap) 4311 rc = -ENOMEM; 4312 4313 return rc; 4314 #else 4315 return 0; 4316 #endif 4317 } 4318 4319 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 4320 { 4321 bnxt_free_vnic_attributes(bp); 4322 bnxt_free_tx_rings(bp); 4323 bnxt_free_rx_rings(bp); 4324 bnxt_free_cp_rings(bp); 4325 bnxt_free_all_cp_arrays(bp); 4326 bnxt_free_ntp_fltrs(bp, irq_re_init); 4327 if (irq_re_init) { 4328 bnxt_free_ring_stats(bp); 4329 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 4330 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 4331 bnxt_free_port_stats(bp); 4332 bnxt_free_ring_grps(bp); 4333 bnxt_free_vnics(bp); 4334 kfree(bp->tx_ring_map); 4335 bp->tx_ring_map = NULL; 4336 kfree(bp->tx_ring); 4337 bp->tx_ring = NULL; 4338 kfree(bp->rx_ring); 4339 bp->rx_ring = NULL; 4340 kfree(bp->bnapi); 4341 bp->bnapi = NULL; 4342 } else { 4343 bnxt_clear_ring_indices(bp); 4344 } 4345 } 4346 4347 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 4348 { 4349 int i, j, rc, size, arr_size; 4350 void *bnapi; 4351 4352 if (irq_re_init) { 4353 /* Allocate bnapi mem pointer array and mem block for 4354 * all queues 4355 */ 4356 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 4357 bp->cp_nr_rings); 4358 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 4359 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 4360 if (!bnapi) 4361 return -ENOMEM; 4362 4363 bp->bnapi = bnapi; 4364 bnapi += arr_size; 4365 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 4366 bp->bnapi[i] = bnapi; 4367 bp->bnapi[i]->index = i; 4368 bp->bnapi[i]->bp = bp; 4369 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4370 struct bnxt_cp_ring_info *cpr = 4371 &bp->bnapi[i]->cp_ring; 4372 4373 cpr->cp_ring_struct.ring_mem.flags = 4374 BNXT_RMEM_RING_PTE_FLAG; 4375 } 4376 } 4377 4378 bp->rx_ring = kcalloc(bp->rx_nr_rings, 4379 sizeof(struct bnxt_rx_ring_info), 4380 GFP_KERNEL); 4381 if (!bp->rx_ring) 4382 return -ENOMEM; 4383 4384 for (i = 0; i < bp->rx_nr_rings; i++) { 4385 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 4386 4387 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4388 rxr->rx_ring_struct.ring_mem.flags = 4389 BNXT_RMEM_RING_PTE_FLAG; 4390 rxr->rx_agg_ring_struct.ring_mem.flags = 4391 BNXT_RMEM_RING_PTE_FLAG; 4392 } 4393 rxr->bnapi = bp->bnapi[i]; 4394 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 4395 } 4396 4397 bp->tx_ring = kcalloc(bp->tx_nr_rings, 4398 sizeof(struct bnxt_tx_ring_info), 4399 GFP_KERNEL); 4400 if (!bp->tx_ring) 4401 return -ENOMEM; 4402 4403 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 4404 GFP_KERNEL); 4405 4406 if (!bp->tx_ring_map) 4407 return -ENOMEM; 4408 4409 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 4410 j = 0; 4411 else 4412 j = bp->rx_nr_rings; 4413 4414 for (i = 0; i < bp->tx_nr_rings; i++, j++) { 4415 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4416 4417 if (bp->flags & BNXT_FLAG_CHIP_P5) 4418 txr->tx_ring_struct.ring_mem.flags = 4419 BNXT_RMEM_RING_PTE_FLAG; 4420 txr->bnapi = bp->bnapi[j]; 4421 bp->bnapi[j]->tx_ring = txr; 4422 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 4423 if (i >= bp->tx_nr_rings_xdp) { 4424 txr->txq_index = i - bp->tx_nr_rings_xdp; 4425 bp->bnapi[j]->tx_int = bnxt_tx_int; 4426 } else { 4427 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP; 4428 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp; 4429 } 4430 } 4431 4432 rc = bnxt_alloc_stats(bp); 4433 if (rc) 4434 goto alloc_mem_err; 4435 bnxt_init_stats(bp); 4436 4437 rc = bnxt_alloc_ntp_fltrs(bp); 4438 if (rc) 4439 goto alloc_mem_err; 4440 4441 rc = bnxt_alloc_vnics(bp); 4442 if (rc) 4443 goto alloc_mem_err; 4444 } 4445 4446 rc = bnxt_alloc_all_cp_arrays(bp); 4447 if (rc) 4448 goto alloc_mem_err; 4449 4450 bnxt_init_ring_struct(bp); 4451 4452 rc = bnxt_alloc_rx_rings(bp); 4453 if (rc) 4454 goto alloc_mem_err; 4455 4456 rc = bnxt_alloc_tx_rings(bp); 4457 if (rc) 4458 goto alloc_mem_err; 4459 4460 rc = bnxt_alloc_cp_rings(bp); 4461 if (rc) 4462 goto alloc_mem_err; 4463 4464 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG | 4465 BNXT_VNIC_UCAST_FLAG; 4466 rc = bnxt_alloc_vnic_attributes(bp); 4467 if (rc) 4468 goto alloc_mem_err; 4469 return 0; 4470 4471 alloc_mem_err: 4472 bnxt_free_mem(bp, true); 4473 return rc; 4474 } 4475 4476 static void bnxt_disable_int(struct bnxt *bp) 4477 { 4478 int i; 4479 4480 if (!bp->bnapi) 4481 return; 4482 4483 for (i = 0; i < bp->cp_nr_rings; i++) { 4484 struct bnxt_napi *bnapi = bp->bnapi[i]; 4485 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4486 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4487 4488 if (ring->fw_ring_id != INVALID_HW_RING_ID) 4489 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 4490 } 4491 } 4492 4493 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 4494 { 4495 struct bnxt_napi *bnapi = bp->bnapi[n]; 4496 struct bnxt_cp_ring_info *cpr; 4497 4498 cpr = &bnapi->cp_ring; 4499 return cpr->cp_ring_struct.map_idx; 4500 } 4501 4502 static void bnxt_disable_int_sync(struct bnxt *bp) 4503 { 4504 int i; 4505 4506 if (!bp->irq_tbl) 4507 return; 4508 4509 atomic_inc(&bp->intr_sem); 4510 4511 bnxt_disable_int(bp); 4512 for (i = 0; i < bp->cp_nr_rings; i++) { 4513 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 4514 4515 synchronize_irq(bp->irq_tbl[map_idx].vector); 4516 } 4517 } 4518 4519 static void bnxt_enable_int(struct bnxt *bp) 4520 { 4521 int i; 4522 4523 atomic_set(&bp->intr_sem, 0); 4524 for (i = 0; i < bp->cp_nr_rings; i++) { 4525 struct bnxt_napi *bnapi = bp->bnapi[i]; 4526 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4527 4528 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 4529 } 4530 } 4531 4532 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type, 4533 u16 cmpl_ring, u16 target_id) 4534 { 4535 struct input *req = request; 4536 4537 req->req_type = cpu_to_le16(req_type); 4538 req->cmpl_ring = cpu_to_le16(cmpl_ring); 4539 req->target_id = cpu_to_le16(target_id); 4540 if (bnxt_kong_hwrm_message(bp, req)) 4541 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr); 4542 else 4543 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr); 4544 } 4545 4546 static int bnxt_hwrm_to_stderr(u32 hwrm_err) 4547 { 4548 switch (hwrm_err) { 4549 case HWRM_ERR_CODE_SUCCESS: 4550 return 0; 4551 case HWRM_ERR_CODE_RESOURCE_LOCKED: 4552 return -EROFS; 4553 case HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED: 4554 return -EACCES; 4555 case HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR: 4556 return -ENOSPC; 4557 case HWRM_ERR_CODE_INVALID_PARAMS: 4558 case HWRM_ERR_CODE_INVALID_FLAGS: 4559 case HWRM_ERR_CODE_INVALID_ENABLES: 4560 case HWRM_ERR_CODE_UNSUPPORTED_TLV: 4561 case HWRM_ERR_CODE_UNSUPPORTED_OPTION_ERR: 4562 return -EINVAL; 4563 case HWRM_ERR_CODE_NO_BUFFER: 4564 return -ENOMEM; 4565 case HWRM_ERR_CODE_HOT_RESET_PROGRESS: 4566 case HWRM_ERR_CODE_BUSY: 4567 return -EAGAIN; 4568 case HWRM_ERR_CODE_CMD_NOT_SUPPORTED: 4569 return -EOPNOTSUPP; 4570 default: 4571 return -EIO; 4572 } 4573 } 4574 4575 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len, 4576 int timeout, bool silent) 4577 { 4578 int i, intr_process, rc, tmo_count; 4579 struct input *req = msg; 4580 u32 *data = msg; 4581 u8 *valid; 4582 u16 cp_ring_id, len = 0; 4583 struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr; 4584 u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN; 4585 struct hwrm_short_input short_input = {0}; 4586 u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER; 4587 u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM; 4588 u16 dst = BNXT_HWRM_CHNL_CHIMP; 4589 4590 if (BNXT_NO_FW_ACCESS(bp) && 4591 le16_to_cpu(req->req_type) != HWRM_FUNC_RESET) 4592 return -EBUSY; 4593 4594 if (msg_len > BNXT_HWRM_MAX_REQ_LEN) { 4595 if (msg_len > bp->hwrm_max_ext_req_len || 4596 !bp->hwrm_short_cmd_req_addr) 4597 return -EINVAL; 4598 } 4599 4600 if (bnxt_hwrm_kong_chnl(bp, req)) { 4601 dst = BNXT_HWRM_CHNL_KONG; 4602 bar_offset = BNXT_GRCPF_REG_KONG_COMM; 4603 doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER; 4604 resp = bp->hwrm_cmd_kong_resp_addr; 4605 } 4606 4607 memset(resp, 0, PAGE_SIZE); 4608 cp_ring_id = le16_to_cpu(req->cmpl_ring); 4609 intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1; 4610 4611 req->seq_id = cpu_to_le16(bnxt_get_hwrm_seq_id(bp, dst)); 4612 /* currently supports only one outstanding message */ 4613 if (intr_process) 4614 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id); 4615 4616 if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) || 4617 msg_len > BNXT_HWRM_MAX_REQ_LEN) { 4618 void *short_cmd_req = bp->hwrm_short_cmd_req_addr; 4619 u16 max_msg_len; 4620 4621 /* Set boundary for maximum extended request length for short 4622 * cmd format. If passed up from device use the max supported 4623 * internal req length. 4624 */ 4625 max_msg_len = bp->hwrm_max_ext_req_len; 4626 4627 memcpy(short_cmd_req, req, msg_len); 4628 if (msg_len < max_msg_len) 4629 memset(short_cmd_req + msg_len, 0, 4630 max_msg_len - msg_len); 4631 4632 short_input.req_type = req->req_type; 4633 short_input.signature = 4634 cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD); 4635 short_input.size = cpu_to_le16(msg_len); 4636 short_input.req_addr = 4637 cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr); 4638 4639 data = (u32 *)&short_input; 4640 msg_len = sizeof(short_input); 4641 4642 /* Sync memory write before updating doorbell */ 4643 wmb(); 4644 4645 max_req_len = BNXT_HWRM_SHORT_REQ_LEN; 4646 } 4647 4648 /* Write request msg to hwrm channel */ 4649 __iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4); 4650 4651 for (i = msg_len; i < max_req_len; i += 4) 4652 writel(0, bp->bar0 + bar_offset + i); 4653 4654 /* Ring channel doorbell */ 4655 writel(1, bp->bar0 + doorbell_offset); 4656 4657 if (!pci_is_enabled(bp->pdev)) 4658 return -ENODEV; 4659 4660 if (!timeout) 4661 timeout = DFLT_HWRM_CMD_TIMEOUT; 4662 /* Limit timeout to an upper limit */ 4663 timeout = min(timeout, HWRM_CMD_MAX_TIMEOUT); 4664 /* convert timeout to usec */ 4665 timeout *= 1000; 4666 4667 i = 0; 4668 /* Short timeout for the first few iterations: 4669 * number of loops = number of loops for short timeout + 4670 * number of loops for standard timeout. 4671 */ 4672 tmo_count = HWRM_SHORT_TIMEOUT_COUNTER; 4673 timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER; 4674 tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT); 4675 4676 if (intr_process) { 4677 u16 seq_id = bp->hwrm_intr_seq_id; 4678 4679 /* Wait until hwrm response cmpl interrupt is processed */ 4680 while (bp->hwrm_intr_seq_id != (u16)~seq_id && 4681 i++ < tmo_count) { 4682 /* Abort the wait for completion if the FW health 4683 * check has failed. 4684 */ 4685 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 4686 return -EBUSY; 4687 /* on first few passes, just barely sleep */ 4688 if (i < HWRM_SHORT_TIMEOUT_COUNTER) { 4689 usleep_range(HWRM_SHORT_MIN_TIMEOUT, 4690 HWRM_SHORT_MAX_TIMEOUT); 4691 } else { 4692 if (HWRM_WAIT_MUST_ABORT(bp, req)) 4693 break; 4694 usleep_range(HWRM_MIN_TIMEOUT, 4695 HWRM_MAX_TIMEOUT); 4696 } 4697 } 4698 4699 if (bp->hwrm_intr_seq_id != (u16)~seq_id) { 4700 if (!silent) 4701 netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n", 4702 le16_to_cpu(req->req_type)); 4703 return -EBUSY; 4704 } 4705 len = le16_to_cpu(resp->resp_len); 4706 valid = ((u8 *)resp) + len - 1; 4707 } else { 4708 int j; 4709 4710 /* Check if response len is updated */ 4711 for (i = 0; i < tmo_count; i++) { 4712 /* Abort the wait for completion if the FW health 4713 * check has failed. 4714 */ 4715 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 4716 return -EBUSY; 4717 len = le16_to_cpu(resp->resp_len); 4718 if (len) 4719 break; 4720 /* on first few passes, just barely sleep */ 4721 if (i < HWRM_SHORT_TIMEOUT_COUNTER) { 4722 usleep_range(HWRM_SHORT_MIN_TIMEOUT, 4723 HWRM_SHORT_MAX_TIMEOUT); 4724 } else { 4725 if (HWRM_WAIT_MUST_ABORT(bp, req)) 4726 goto timeout_abort; 4727 usleep_range(HWRM_MIN_TIMEOUT, 4728 HWRM_MAX_TIMEOUT); 4729 } 4730 } 4731 4732 if (i >= tmo_count) { 4733 timeout_abort: 4734 if (!silent) 4735 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n", 4736 HWRM_TOTAL_TIMEOUT(i), 4737 le16_to_cpu(req->req_type), 4738 le16_to_cpu(req->seq_id), len); 4739 return -EBUSY; 4740 } 4741 4742 /* Last byte of resp contains valid bit */ 4743 valid = ((u8 *)resp) + len - 1; 4744 for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) { 4745 /* make sure we read from updated DMA memory */ 4746 dma_rmb(); 4747 if (*valid) 4748 break; 4749 usleep_range(1, 5); 4750 } 4751 4752 if (j >= HWRM_VALID_BIT_DELAY_USEC) { 4753 if (!silent) 4754 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n", 4755 HWRM_TOTAL_TIMEOUT(i), 4756 le16_to_cpu(req->req_type), 4757 le16_to_cpu(req->seq_id), len, 4758 *valid); 4759 return -EBUSY; 4760 } 4761 } 4762 4763 /* Zero valid bit for compatibility. Valid bit in an older spec 4764 * may become a new field in a newer spec. We must make sure that 4765 * a new field not implemented by old spec will read zero. 4766 */ 4767 *valid = 0; 4768 rc = le16_to_cpu(resp->error_code); 4769 if (rc && !silent) 4770 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n", 4771 le16_to_cpu(resp->req_type), 4772 le16_to_cpu(resp->seq_id), rc); 4773 return bnxt_hwrm_to_stderr(rc); 4774 } 4775 4776 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout) 4777 { 4778 return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false); 4779 } 4780 4781 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len, 4782 int timeout) 4783 { 4784 return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true); 4785 } 4786 4787 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout) 4788 { 4789 int rc; 4790 4791 mutex_lock(&bp->hwrm_cmd_lock); 4792 rc = _hwrm_send_message(bp, msg, msg_len, timeout); 4793 mutex_unlock(&bp->hwrm_cmd_lock); 4794 return rc; 4795 } 4796 4797 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len, 4798 int timeout) 4799 { 4800 int rc; 4801 4802 mutex_lock(&bp->hwrm_cmd_lock); 4803 rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true); 4804 mutex_unlock(&bp->hwrm_cmd_lock); 4805 return rc; 4806 } 4807 4808 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 4809 bool async_only) 4810 { 4811 struct hwrm_func_drv_rgtr_output *resp = bp->hwrm_cmd_resp_addr; 4812 struct hwrm_func_drv_rgtr_input req = {0}; 4813 DECLARE_BITMAP(async_events_bmap, 256); 4814 u32 *events = (u32 *)async_events_bmap; 4815 u32 flags; 4816 int rc, i; 4817 4818 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1); 4819 4820 req.enables = 4821 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 4822 FUNC_DRV_RGTR_REQ_ENABLES_VER | 4823 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4824 4825 req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 4826 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 4827 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 4828 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 4829 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 4830 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 4831 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 4832 req.flags = cpu_to_le32(flags); 4833 req.ver_maj_8b = DRV_VER_MAJ; 4834 req.ver_min_8b = DRV_VER_MIN; 4835 req.ver_upd_8b = DRV_VER_UPD; 4836 req.ver_maj = cpu_to_le16(DRV_VER_MAJ); 4837 req.ver_min = cpu_to_le16(DRV_VER_MIN); 4838 req.ver_upd = cpu_to_le16(DRV_VER_UPD); 4839 4840 if (BNXT_PF(bp)) { 4841 u32 data[8]; 4842 int i; 4843 4844 memset(data, 0, sizeof(data)); 4845 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 4846 u16 cmd = bnxt_vf_req_snif[i]; 4847 unsigned int bit, idx; 4848 4849 idx = cmd / 32; 4850 bit = cmd % 32; 4851 data[idx] |= 1 << bit; 4852 } 4853 4854 for (i = 0; i < 8; i++) 4855 req.vf_req_fwd[i] = cpu_to_le32(data[i]); 4856 4857 req.enables |= 4858 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 4859 } 4860 4861 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 4862 req.flags |= cpu_to_le32( 4863 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 4864 4865 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 4866 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 4867 u16 event_id = bnxt_async_events_arr[i]; 4868 4869 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 4870 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 4871 continue; 4872 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 4873 } 4874 if (bmap && bmap_size) { 4875 for (i = 0; i < bmap_size; i++) { 4876 if (test_bit(i, bmap)) 4877 __set_bit(i, async_events_bmap); 4878 } 4879 } 4880 for (i = 0; i < 8; i++) 4881 req.async_event_fwd[i] |= cpu_to_le32(events[i]); 4882 4883 if (async_only) 4884 req.enables = 4885 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4886 4887 mutex_lock(&bp->hwrm_cmd_lock); 4888 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4889 if (!rc) { 4890 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 4891 if (resp->flags & 4892 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 4893 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 4894 } 4895 mutex_unlock(&bp->hwrm_cmd_lock); 4896 return rc; 4897 } 4898 4899 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 4900 { 4901 struct hwrm_func_drv_unrgtr_input req = {0}; 4902 4903 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 4904 return 0; 4905 4906 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1); 4907 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4908 } 4909 4910 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 4911 { 4912 u32 rc = 0; 4913 struct hwrm_tunnel_dst_port_free_input req = {0}; 4914 4915 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1); 4916 req.tunnel_type = tunnel_type; 4917 4918 switch (tunnel_type) { 4919 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 4920 req.tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 4921 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 4922 break; 4923 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 4924 req.tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 4925 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 4926 break; 4927 default: 4928 break; 4929 } 4930 4931 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4932 if (rc) 4933 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 4934 rc); 4935 return rc; 4936 } 4937 4938 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 4939 u8 tunnel_type) 4940 { 4941 u32 rc = 0; 4942 struct hwrm_tunnel_dst_port_alloc_input req = {0}; 4943 struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr; 4944 4945 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1); 4946 4947 req.tunnel_type = tunnel_type; 4948 req.tunnel_dst_port_val = port; 4949 4950 mutex_lock(&bp->hwrm_cmd_lock); 4951 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4952 if (rc) { 4953 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 4954 rc); 4955 goto err_out; 4956 } 4957 4958 switch (tunnel_type) { 4959 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 4960 bp->vxlan_fw_dst_port_id = 4961 le16_to_cpu(resp->tunnel_dst_port_id); 4962 break; 4963 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 4964 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 4965 break; 4966 default: 4967 break; 4968 } 4969 4970 err_out: 4971 mutex_unlock(&bp->hwrm_cmd_lock); 4972 return rc; 4973 } 4974 4975 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 4976 { 4977 struct hwrm_cfa_l2_set_rx_mask_input req = {0}; 4978 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 4979 4980 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1); 4981 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id); 4982 4983 req.num_mc_entries = cpu_to_le32(vnic->mc_list_count); 4984 req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 4985 req.mask = cpu_to_le32(vnic->rx_mask); 4986 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4987 } 4988 4989 #ifdef CONFIG_RFS_ACCEL 4990 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 4991 struct bnxt_ntuple_filter *fltr) 4992 { 4993 struct hwrm_cfa_ntuple_filter_free_input req = {0}; 4994 4995 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1); 4996 req.ntuple_filter_id = fltr->filter_id; 4997 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4998 } 4999 5000 #define BNXT_NTP_FLTR_FLAGS \ 5001 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 5002 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 5003 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \ 5004 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 5005 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 5006 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 5007 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 5008 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 5009 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 5010 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 5011 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 5012 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 5013 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 5014 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 5015 5016 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 5017 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 5018 5019 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 5020 struct bnxt_ntuple_filter *fltr) 5021 { 5022 struct hwrm_cfa_ntuple_filter_alloc_input req = {0}; 5023 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 5024 struct flow_keys *keys = &fltr->fkeys; 5025 struct bnxt_vnic_info *vnic; 5026 u32 flags = 0; 5027 int rc = 0; 5028 5029 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1); 5030 req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx]; 5031 5032 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 5033 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 5034 req.dst_id = cpu_to_le16(fltr->rxq); 5035 } else { 5036 vnic = &bp->vnic_info[fltr->rxq + 1]; 5037 req.dst_id = cpu_to_le16(vnic->fw_vnic_id); 5038 } 5039 req.flags = cpu_to_le32(flags); 5040 req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 5041 5042 req.ethertype = htons(ETH_P_IP); 5043 memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN); 5044 req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 5045 req.ip_protocol = keys->basic.ip_proto; 5046 5047 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 5048 int i; 5049 5050 req.ethertype = htons(ETH_P_IPV6); 5051 req.ip_addr_type = 5052 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 5053 *(struct in6_addr *)&req.src_ipaddr[0] = 5054 keys->addrs.v6addrs.src; 5055 *(struct in6_addr *)&req.dst_ipaddr[0] = 5056 keys->addrs.v6addrs.dst; 5057 for (i = 0; i < 4; i++) { 5058 req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 5059 req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 5060 } 5061 } else { 5062 req.src_ipaddr[0] = keys->addrs.v4addrs.src; 5063 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 5064 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst; 5065 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 5066 } 5067 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 5068 req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 5069 req.tunnel_type = 5070 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 5071 } 5072 5073 req.src_port = keys->ports.src; 5074 req.src_port_mask = cpu_to_be16(0xffff); 5075 req.dst_port = keys->ports.dst; 5076 req.dst_port_mask = cpu_to_be16(0xffff); 5077 5078 mutex_lock(&bp->hwrm_cmd_lock); 5079 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5080 if (!rc) { 5081 resp = bnxt_get_hwrm_resp_addr(bp, &req); 5082 fltr->filter_id = resp->ntuple_filter_id; 5083 } 5084 mutex_unlock(&bp->hwrm_cmd_lock); 5085 return rc; 5086 } 5087 #endif 5088 5089 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 5090 u8 *mac_addr) 5091 { 5092 u32 rc = 0; 5093 struct hwrm_cfa_l2_filter_alloc_input req = {0}; 5094 struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr; 5095 5096 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1); 5097 req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 5098 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 5099 req.flags |= 5100 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 5101 req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id); 5102 req.enables = 5103 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 5104 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 5105 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 5106 memcpy(req.l2_addr, mac_addr, ETH_ALEN); 5107 req.l2_addr_mask[0] = 0xff; 5108 req.l2_addr_mask[1] = 0xff; 5109 req.l2_addr_mask[2] = 0xff; 5110 req.l2_addr_mask[3] = 0xff; 5111 req.l2_addr_mask[4] = 0xff; 5112 req.l2_addr_mask[5] = 0xff; 5113 5114 mutex_lock(&bp->hwrm_cmd_lock); 5115 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5116 if (!rc) 5117 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] = 5118 resp->l2_filter_id; 5119 mutex_unlock(&bp->hwrm_cmd_lock); 5120 return rc; 5121 } 5122 5123 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 5124 { 5125 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 5126 int rc = 0; 5127 5128 /* Any associated ntuple filters will also be cleared by firmware. */ 5129 mutex_lock(&bp->hwrm_cmd_lock); 5130 for (i = 0; i < num_of_vnics; i++) { 5131 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 5132 5133 for (j = 0; j < vnic->uc_filter_count; j++) { 5134 struct hwrm_cfa_l2_filter_free_input req = {0}; 5135 5136 bnxt_hwrm_cmd_hdr_init(bp, &req, 5137 HWRM_CFA_L2_FILTER_FREE, -1, -1); 5138 5139 req.l2_filter_id = vnic->fw_l2_filter_id[j]; 5140 5141 rc = _hwrm_send_message(bp, &req, sizeof(req), 5142 HWRM_CMD_TIMEOUT); 5143 } 5144 vnic->uc_filter_count = 0; 5145 } 5146 mutex_unlock(&bp->hwrm_cmd_lock); 5147 5148 return rc; 5149 } 5150 5151 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags) 5152 { 5153 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5154 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 5155 struct hwrm_vnic_tpa_cfg_input req = {0}; 5156 5157 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 5158 return 0; 5159 5160 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1); 5161 5162 if (tpa_flags) { 5163 u16 mss = bp->dev->mtu - 40; 5164 u32 nsegs, n, segs = 0, flags; 5165 5166 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 5167 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 5168 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 5169 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 5170 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 5171 if (tpa_flags & BNXT_FLAG_GRO) 5172 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 5173 5174 req.flags = cpu_to_le32(flags); 5175 5176 req.enables = 5177 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 5178 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 5179 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 5180 5181 /* Number of segs are log2 units, and first packet is not 5182 * included as part of this units. 5183 */ 5184 if (mss <= BNXT_RX_PAGE_SIZE) { 5185 n = BNXT_RX_PAGE_SIZE / mss; 5186 nsegs = (MAX_SKB_FRAGS - 1) * n; 5187 } else { 5188 n = mss / BNXT_RX_PAGE_SIZE; 5189 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 5190 n++; 5191 nsegs = (MAX_SKB_FRAGS - n) / n; 5192 } 5193 5194 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5195 segs = MAX_TPA_SEGS_P5; 5196 max_aggs = bp->max_tpa; 5197 } else { 5198 segs = ilog2(nsegs); 5199 } 5200 req.max_agg_segs = cpu_to_le16(segs); 5201 req.max_aggs = cpu_to_le16(max_aggs); 5202 5203 req.min_agg_len = cpu_to_le32(512); 5204 } 5205 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5206 5207 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5208 } 5209 5210 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 5211 { 5212 struct bnxt_ring_grp_info *grp_info; 5213 5214 grp_info = &bp->grp_info[ring->grp_idx]; 5215 return grp_info->cp_fw_ring_id; 5216 } 5217 5218 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 5219 { 5220 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5221 struct bnxt_napi *bnapi = rxr->bnapi; 5222 struct bnxt_cp_ring_info *cpr; 5223 5224 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL]; 5225 return cpr->cp_ring_struct.fw_ring_id; 5226 } else { 5227 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 5228 } 5229 } 5230 5231 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 5232 { 5233 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5234 struct bnxt_napi *bnapi = txr->bnapi; 5235 struct bnxt_cp_ring_info *cpr; 5236 5237 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL]; 5238 return cpr->cp_ring_struct.fw_ring_id; 5239 } else { 5240 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 5241 } 5242 } 5243 5244 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp) 5245 { 5246 int entries; 5247 5248 if (bp->flags & BNXT_FLAG_CHIP_P5) 5249 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 5250 else 5251 entries = HW_HASH_INDEX_SIZE; 5252 5253 bp->rss_indir_tbl_entries = entries; 5254 bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), 5255 GFP_KERNEL); 5256 if (!bp->rss_indir_tbl) 5257 return -ENOMEM; 5258 return 0; 5259 } 5260 5261 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp) 5262 { 5263 u16 max_rings, max_entries, pad, i; 5264 5265 if (!bp->rx_nr_rings) 5266 return; 5267 5268 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5269 max_rings = bp->rx_nr_rings - 1; 5270 else 5271 max_rings = bp->rx_nr_rings; 5272 5273 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 5274 5275 for (i = 0; i < max_entries; i++) 5276 bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 5277 5278 pad = bp->rss_indir_tbl_entries - max_entries; 5279 if (pad) 5280 memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16)); 5281 } 5282 5283 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 5284 { 5285 u16 i, tbl_size, max_ring = 0; 5286 5287 if (!bp->rss_indir_tbl) 5288 return 0; 5289 5290 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5291 for (i = 0; i < tbl_size; i++) 5292 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 5293 return max_ring; 5294 } 5295 5296 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 5297 { 5298 if (bp->flags & BNXT_FLAG_CHIP_P5) 5299 return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5); 5300 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5301 return 2; 5302 return 1; 5303 } 5304 5305 static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 5306 { 5307 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 5308 u16 i, j; 5309 5310 /* Fill the RSS indirection table with ring group ids */ 5311 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 5312 if (!no_rss) 5313 j = bp->rss_indir_tbl[i]; 5314 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 5315 } 5316 } 5317 5318 static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 5319 struct bnxt_vnic_info *vnic) 5320 { 5321 __le16 *ring_tbl = vnic->rss_table; 5322 struct bnxt_rx_ring_info *rxr; 5323 u16 tbl_size, i; 5324 5325 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5326 5327 for (i = 0; i < tbl_size; i++) { 5328 u16 ring_id, j; 5329 5330 j = bp->rss_indir_tbl[i]; 5331 rxr = &bp->rx_ring[j]; 5332 5333 ring_id = rxr->rx_ring_struct.fw_ring_id; 5334 *ring_tbl++ = cpu_to_le16(ring_id); 5335 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5336 *ring_tbl++ = cpu_to_le16(ring_id); 5337 } 5338 } 5339 5340 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 5341 { 5342 if (bp->flags & BNXT_FLAG_CHIP_P5) 5343 __bnxt_fill_hw_rss_tbl_p5(bp, vnic); 5344 else 5345 __bnxt_fill_hw_rss_tbl(bp, vnic); 5346 } 5347 5348 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss) 5349 { 5350 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5351 struct hwrm_vnic_rss_cfg_input req = {0}; 5352 5353 if ((bp->flags & BNXT_FLAG_CHIP_P5) || 5354 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 5355 return 0; 5356 5357 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1); 5358 if (set_rss) { 5359 bnxt_fill_hw_rss_tbl(bp, vnic); 5360 req.hash_type = cpu_to_le32(bp->rss_hash_cfg); 5361 req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 5362 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 5363 req.hash_key_tbl_addr = 5364 cpu_to_le64(vnic->rss_hash_key_dma_addr); 5365 } 5366 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5367 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5368 } 5369 5370 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss) 5371 { 5372 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5373 struct hwrm_vnic_rss_cfg_input req = {0}; 5374 dma_addr_t ring_tbl_map; 5375 u32 i, nr_ctxs; 5376 5377 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1); 5378 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5379 if (!set_rss) { 5380 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5381 return 0; 5382 } 5383 bnxt_fill_hw_rss_tbl(bp, vnic); 5384 req.hash_type = cpu_to_le32(bp->rss_hash_cfg); 5385 req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 5386 req.hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 5387 ring_tbl_map = vnic->rss_table_dma_addr; 5388 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 5389 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 5390 int rc; 5391 5392 req.ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 5393 req.ring_table_pair_index = i; 5394 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 5395 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5396 if (rc) 5397 return rc; 5398 } 5399 return 0; 5400 } 5401 5402 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id) 5403 { 5404 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5405 struct hwrm_vnic_plcmodes_cfg_input req = {0}; 5406 5407 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1); 5408 req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT | 5409 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 5410 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 5411 req.enables = 5412 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID | 5413 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 5414 /* thresholds not implemented in firmware yet */ 5415 req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 5416 req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 5417 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5418 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5419 } 5420 5421 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id, 5422 u16 ctx_idx) 5423 { 5424 struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0}; 5425 5426 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1); 5427 req.rss_cos_lb_ctx_id = 5428 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]); 5429 5430 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5431 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 5432 } 5433 5434 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 5435 { 5436 int i, j; 5437 5438 for (i = 0; i < bp->nr_vnics; i++) { 5439 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 5440 5441 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 5442 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 5443 bnxt_hwrm_vnic_ctx_free_one(bp, i, j); 5444 } 5445 } 5446 bp->rsscos_nr_ctxs = 0; 5447 } 5448 5449 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx) 5450 { 5451 int rc; 5452 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0}; 5453 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp = 5454 bp->hwrm_cmd_resp_addr; 5455 5456 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1, 5457 -1); 5458 5459 mutex_lock(&bp->hwrm_cmd_lock); 5460 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5461 if (!rc) 5462 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = 5463 le16_to_cpu(resp->rss_cos_lb_ctx_id); 5464 mutex_unlock(&bp->hwrm_cmd_lock); 5465 5466 return rc; 5467 } 5468 5469 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 5470 { 5471 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 5472 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 5473 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 5474 } 5475 5476 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id) 5477 { 5478 unsigned int ring = 0, grp_idx; 5479 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5480 struct hwrm_vnic_cfg_input req = {0}; 5481 u16 def_vlan = 0; 5482 5483 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1); 5484 5485 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5486 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 5487 5488 req.default_rx_ring_id = 5489 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 5490 req.default_cmpl_ring_id = 5491 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 5492 req.enables = 5493 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 5494 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 5495 goto vnic_mru; 5496 } 5497 req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 5498 /* Only RSS support for now TBD: COS & LB */ 5499 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 5500 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5501 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5502 VNIC_CFG_REQ_ENABLES_MRU); 5503 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 5504 req.rss_rule = 5505 cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]); 5506 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5507 VNIC_CFG_REQ_ENABLES_MRU); 5508 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 5509 } else { 5510 req.rss_rule = cpu_to_le16(0xffff); 5511 } 5512 5513 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 5514 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 5515 req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 5516 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 5517 } else { 5518 req.cos_rule = cpu_to_le16(0xffff); 5519 } 5520 5521 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 5522 ring = 0; 5523 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 5524 ring = vnic_id - 1; 5525 else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 5526 ring = bp->rx_nr_rings - 1; 5527 5528 grp_idx = bp->rx_ring[ring].bnapi->index; 5529 req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 5530 req.lb_rule = cpu_to_le16(0xffff); 5531 vnic_mru: 5532 req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN); 5533 5534 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5535 #ifdef CONFIG_BNXT_SRIOV 5536 if (BNXT_VF(bp)) 5537 def_vlan = bp->vf.vlan; 5538 #endif 5539 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 5540 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 5541 if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP)) 5542 req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 5543 5544 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5545 } 5546 5547 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id) 5548 { 5549 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) { 5550 struct hwrm_vnic_free_input req = {0}; 5551 5552 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1); 5553 req.vnic_id = 5554 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id); 5555 5556 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5557 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID; 5558 } 5559 } 5560 5561 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 5562 { 5563 u16 i; 5564 5565 for (i = 0; i < bp->nr_vnics; i++) 5566 bnxt_hwrm_vnic_free_one(bp, i); 5567 } 5568 5569 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id, 5570 unsigned int start_rx_ring_idx, 5571 unsigned int nr_rings) 5572 { 5573 int rc = 0; 5574 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 5575 struct hwrm_vnic_alloc_input req = {0}; 5576 struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr; 5577 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5578 5579 if (bp->flags & BNXT_FLAG_CHIP_P5) 5580 goto vnic_no_ring_grps; 5581 5582 /* map ring groups to this vnic */ 5583 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 5584 grp_idx = bp->rx_ring[i].bnapi->index; 5585 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 5586 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 5587 j, nr_rings); 5588 break; 5589 } 5590 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 5591 } 5592 5593 vnic_no_ring_grps: 5594 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 5595 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 5596 if (vnic_id == 0) 5597 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 5598 5599 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1); 5600 5601 mutex_lock(&bp->hwrm_cmd_lock); 5602 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5603 if (!rc) 5604 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 5605 mutex_unlock(&bp->hwrm_cmd_lock); 5606 return rc; 5607 } 5608 5609 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 5610 { 5611 struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 5612 struct hwrm_vnic_qcaps_input req = {0}; 5613 int rc; 5614 5615 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 5616 bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP); 5617 if (bp->hwrm_spec_code < 0x10600) 5618 return 0; 5619 5620 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1); 5621 mutex_lock(&bp->hwrm_cmd_lock); 5622 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5623 if (!rc) { 5624 u32 flags = le32_to_cpu(resp->flags); 5625 5626 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 5627 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 5628 bp->flags |= BNXT_FLAG_NEW_RSS_CAP; 5629 if (flags & 5630 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 5631 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 5632 5633 /* Older P5 fw before EXT_HW_STATS support did not set 5634 * VLAN_STRIP_CAP properly. 5635 */ 5636 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 5637 (BNXT_CHIP_P5_THOR(bp) && 5638 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 5639 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 5640 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 5641 if (bp->max_tpa_v2) { 5642 if (BNXT_CHIP_P5_THOR(bp)) 5643 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 5644 else 5645 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2; 5646 } 5647 } 5648 mutex_unlock(&bp->hwrm_cmd_lock); 5649 return rc; 5650 } 5651 5652 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 5653 { 5654 u16 i; 5655 u32 rc = 0; 5656 5657 if (bp->flags & BNXT_FLAG_CHIP_P5) 5658 return 0; 5659 5660 mutex_lock(&bp->hwrm_cmd_lock); 5661 for (i = 0; i < bp->rx_nr_rings; i++) { 5662 struct hwrm_ring_grp_alloc_input req = {0}; 5663 struct hwrm_ring_grp_alloc_output *resp = 5664 bp->hwrm_cmd_resp_addr; 5665 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 5666 5667 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1); 5668 5669 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 5670 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 5671 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 5672 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 5673 5674 rc = _hwrm_send_message(bp, &req, sizeof(req), 5675 HWRM_CMD_TIMEOUT); 5676 if (rc) 5677 break; 5678 5679 bp->grp_info[grp_idx].fw_grp_id = 5680 le32_to_cpu(resp->ring_group_id); 5681 } 5682 mutex_unlock(&bp->hwrm_cmd_lock); 5683 return rc; 5684 } 5685 5686 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 5687 { 5688 u16 i; 5689 struct hwrm_ring_grp_free_input req = {0}; 5690 5691 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5)) 5692 return; 5693 5694 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1); 5695 5696 mutex_lock(&bp->hwrm_cmd_lock); 5697 for (i = 0; i < bp->cp_nr_rings; i++) { 5698 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 5699 continue; 5700 req.ring_group_id = 5701 cpu_to_le32(bp->grp_info[i].fw_grp_id); 5702 5703 _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5704 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 5705 } 5706 mutex_unlock(&bp->hwrm_cmd_lock); 5707 } 5708 5709 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 5710 struct bnxt_ring_struct *ring, 5711 u32 ring_type, u32 map_index) 5712 { 5713 int rc = 0, err = 0; 5714 struct hwrm_ring_alloc_input req = {0}; 5715 struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr; 5716 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 5717 struct bnxt_ring_grp_info *grp_info; 5718 u16 ring_id; 5719 5720 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1); 5721 5722 req.enables = 0; 5723 if (rmem->nr_pages > 1) { 5724 req.page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 5725 /* Page size is in log2 units */ 5726 req.page_size = BNXT_PAGE_SHIFT; 5727 req.page_tbl_depth = 1; 5728 } else { 5729 req.page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 5730 } 5731 req.fbo = 0; 5732 /* Association of ring index with doorbell index and MSIX number */ 5733 req.logical_id = cpu_to_le16(map_index); 5734 5735 switch (ring_type) { 5736 case HWRM_RING_ALLOC_TX: { 5737 struct bnxt_tx_ring_info *txr; 5738 5739 txr = container_of(ring, struct bnxt_tx_ring_info, 5740 tx_ring_struct); 5741 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 5742 /* Association of transmit ring with completion ring */ 5743 grp_info = &bp->grp_info[ring->grp_idx]; 5744 req.cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 5745 req.length = cpu_to_le32(bp->tx_ring_mask + 1); 5746 req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5747 req.queue_id = cpu_to_le16(ring->queue_id); 5748 break; 5749 } 5750 case HWRM_RING_ALLOC_RX: 5751 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5752 req.length = cpu_to_le32(bp->rx_ring_mask + 1); 5753 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5754 u16 flags = 0; 5755 5756 /* Association of rx ring with stats context */ 5757 grp_info = &bp->grp_info[ring->grp_idx]; 5758 req.rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 5759 req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5760 req.enables |= cpu_to_le32( 5761 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5762 if (NET_IP_ALIGN == 2) 5763 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD; 5764 req.flags = cpu_to_le16(flags); 5765 } 5766 break; 5767 case HWRM_RING_ALLOC_AGG: 5768 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5769 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 5770 /* Association of agg ring with rx ring */ 5771 grp_info = &bp->grp_info[ring->grp_idx]; 5772 req.rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 5773 req.rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 5774 req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5775 req.enables |= cpu_to_le32( 5776 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID | 5777 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5778 } else { 5779 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5780 } 5781 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 5782 break; 5783 case HWRM_RING_ALLOC_CMPL: 5784 req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 5785 req.length = cpu_to_le32(bp->cp_ring_mask + 1); 5786 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5787 /* Association of cp ring with nq */ 5788 grp_info = &bp->grp_info[map_index]; 5789 req.nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 5790 req.cq_handle = cpu_to_le64(ring->handle); 5791 req.enables |= cpu_to_le32( 5792 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 5793 } else if (bp->flags & BNXT_FLAG_USING_MSIX) { 5794 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5795 } 5796 break; 5797 case HWRM_RING_ALLOC_NQ: 5798 req.ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 5799 req.length = cpu_to_le32(bp->cp_ring_mask + 1); 5800 if (bp->flags & BNXT_FLAG_USING_MSIX) 5801 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5802 break; 5803 default: 5804 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 5805 ring_type); 5806 return -1; 5807 } 5808 5809 mutex_lock(&bp->hwrm_cmd_lock); 5810 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5811 err = le16_to_cpu(resp->error_code); 5812 ring_id = le16_to_cpu(resp->ring_id); 5813 mutex_unlock(&bp->hwrm_cmd_lock); 5814 5815 if (rc || err) { 5816 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 5817 ring_type, rc, err); 5818 return -EIO; 5819 } 5820 ring->fw_ring_id = ring_id; 5821 return rc; 5822 } 5823 5824 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 5825 { 5826 int rc; 5827 5828 if (BNXT_PF(bp)) { 5829 struct hwrm_func_cfg_input req = {0}; 5830 5831 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 5832 req.fid = cpu_to_le16(0xffff); 5833 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5834 req.async_event_cr = cpu_to_le16(idx); 5835 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5836 } else { 5837 struct hwrm_func_vf_cfg_input req = {0}; 5838 5839 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1); 5840 req.enables = 5841 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5842 req.async_event_cr = cpu_to_le16(idx); 5843 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5844 } 5845 return rc; 5846 } 5847 5848 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 5849 u32 map_idx, u32 xid) 5850 { 5851 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5852 if (BNXT_PF(bp)) 5853 db->doorbell = bp->bar1 + DB_PF_OFFSET_P5; 5854 else 5855 db->doorbell = bp->bar1 + DB_VF_OFFSET_P5; 5856 switch (ring_type) { 5857 case HWRM_RING_ALLOC_TX: 5858 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 5859 break; 5860 case HWRM_RING_ALLOC_RX: 5861 case HWRM_RING_ALLOC_AGG: 5862 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 5863 break; 5864 case HWRM_RING_ALLOC_CMPL: 5865 db->db_key64 = DBR_PATH_L2; 5866 break; 5867 case HWRM_RING_ALLOC_NQ: 5868 db->db_key64 = DBR_PATH_L2; 5869 break; 5870 } 5871 db->db_key64 |= (u64)xid << DBR_XID_SFT; 5872 } else { 5873 db->doorbell = bp->bar1 + map_idx * 0x80; 5874 switch (ring_type) { 5875 case HWRM_RING_ALLOC_TX: 5876 db->db_key32 = DB_KEY_TX; 5877 break; 5878 case HWRM_RING_ALLOC_RX: 5879 case HWRM_RING_ALLOC_AGG: 5880 db->db_key32 = DB_KEY_RX; 5881 break; 5882 case HWRM_RING_ALLOC_CMPL: 5883 db->db_key32 = DB_KEY_CP; 5884 break; 5885 } 5886 } 5887 } 5888 5889 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 5890 { 5891 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 5892 int i, rc = 0; 5893 u32 type; 5894 5895 if (bp->flags & BNXT_FLAG_CHIP_P5) 5896 type = HWRM_RING_ALLOC_NQ; 5897 else 5898 type = HWRM_RING_ALLOC_CMPL; 5899 for (i = 0; i < bp->cp_nr_rings; i++) { 5900 struct bnxt_napi *bnapi = bp->bnapi[i]; 5901 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5902 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5903 u32 map_idx = ring->map_idx; 5904 unsigned int vector; 5905 5906 vector = bp->irq_tbl[map_idx].vector; 5907 disable_irq_nosync(vector); 5908 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5909 if (rc) { 5910 enable_irq(vector); 5911 goto err_out; 5912 } 5913 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 5914 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5915 enable_irq(vector); 5916 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 5917 5918 if (!i) { 5919 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 5920 if (rc) 5921 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 5922 } 5923 } 5924 5925 type = HWRM_RING_ALLOC_TX; 5926 for (i = 0; i < bp->tx_nr_rings; i++) { 5927 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5928 struct bnxt_ring_struct *ring; 5929 u32 map_idx; 5930 5931 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5932 struct bnxt_napi *bnapi = txr->bnapi; 5933 struct bnxt_cp_ring_info *cpr, *cpr2; 5934 u32 type2 = HWRM_RING_ALLOC_CMPL; 5935 5936 cpr = &bnapi->cp_ring; 5937 cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL]; 5938 ring = &cpr2->cp_ring_struct; 5939 ring->handle = BNXT_TX_HDL; 5940 map_idx = bnapi->index; 5941 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 5942 if (rc) 5943 goto err_out; 5944 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 5945 ring->fw_ring_id); 5946 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 5947 } 5948 ring = &txr->tx_ring_struct; 5949 map_idx = i; 5950 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5951 if (rc) 5952 goto err_out; 5953 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id); 5954 } 5955 5956 type = HWRM_RING_ALLOC_RX; 5957 for (i = 0; i < bp->rx_nr_rings; i++) { 5958 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5959 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 5960 struct bnxt_napi *bnapi = rxr->bnapi; 5961 u32 map_idx = bnapi->index; 5962 5963 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5964 if (rc) 5965 goto err_out; 5966 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 5967 /* If we have agg rings, post agg buffers first. */ 5968 if (!agg_rings) 5969 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 5970 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 5971 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5972 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5973 u32 type2 = HWRM_RING_ALLOC_CMPL; 5974 struct bnxt_cp_ring_info *cpr2; 5975 5976 cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL]; 5977 ring = &cpr2->cp_ring_struct; 5978 ring->handle = BNXT_RX_HDL; 5979 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 5980 if (rc) 5981 goto err_out; 5982 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 5983 ring->fw_ring_id); 5984 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 5985 } 5986 } 5987 5988 if (agg_rings) { 5989 type = HWRM_RING_ALLOC_AGG; 5990 for (i = 0; i < bp->rx_nr_rings; i++) { 5991 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5992 struct bnxt_ring_struct *ring = 5993 &rxr->rx_agg_ring_struct; 5994 u32 grp_idx = ring->grp_idx; 5995 u32 map_idx = grp_idx + bp->rx_nr_rings; 5996 5997 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5998 if (rc) 5999 goto err_out; 6000 6001 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 6002 ring->fw_ring_id); 6003 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 6004 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 6005 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 6006 } 6007 } 6008 err_out: 6009 return rc; 6010 } 6011 6012 static int hwrm_ring_free_send_msg(struct bnxt *bp, 6013 struct bnxt_ring_struct *ring, 6014 u32 ring_type, int cmpl_ring_id) 6015 { 6016 int rc; 6017 struct hwrm_ring_free_input req = {0}; 6018 struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr; 6019 u16 error_code; 6020 6021 if (BNXT_NO_FW_ACCESS(bp)) 6022 return 0; 6023 6024 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1); 6025 req.ring_type = ring_type; 6026 req.ring_id = cpu_to_le16(ring->fw_ring_id); 6027 6028 mutex_lock(&bp->hwrm_cmd_lock); 6029 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6030 error_code = le16_to_cpu(resp->error_code); 6031 mutex_unlock(&bp->hwrm_cmd_lock); 6032 6033 if (rc || error_code) { 6034 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 6035 ring_type, rc, error_code); 6036 return -EIO; 6037 } 6038 return 0; 6039 } 6040 6041 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 6042 { 6043 u32 type; 6044 int i; 6045 6046 if (!bp->bnapi) 6047 return; 6048 6049 for (i = 0; i < bp->tx_nr_rings; i++) { 6050 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 6051 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 6052 6053 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6054 u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr); 6055 6056 hwrm_ring_free_send_msg(bp, ring, 6057 RING_FREE_REQ_RING_TYPE_TX, 6058 close_path ? cmpl_ring_id : 6059 INVALID_HW_RING_ID); 6060 ring->fw_ring_id = INVALID_HW_RING_ID; 6061 } 6062 } 6063 6064 for (i = 0; i < bp->rx_nr_rings; i++) { 6065 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6066 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 6067 u32 grp_idx = rxr->bnapi->index; 6068 6069 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6070 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6071 6072 hwrm_ring_free_send_msg(bp, ring, 6073 RING_FREE_REQ_RING_TYPE_RX, 6074 close_path ? cmpl_ring_id : 6075 INVALID_HW_RING_ID); 6076 ring->fw_ring_id = INVALID_HW_RING_ID; 6077 bp->grp_info[grp_idx].rx_fw_ring_id = 6078 INVALID_HW_RING_ID; 6079 } 6080 } 6081 6082 if (bp->flags & BNXT_FLAG_CHIP_P5) 6083 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 6084 else 6085 type = RING_FREE_REQ_RING_TYPE_RX; 6086 for (i = 0; i < bp->rx_nr_rings; i++) { 6087 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6088 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 6089 u32 grp_idx = rxr->bnapi->index; 6090 6091 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6092 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6093 6094 hwrm_ring_free_send_msg(bp, ring, type, 6095 close_path ? cmpl_ring_id : 6096 INVALID_HW_RING_ID); 6097 ring->fw_ring_id = INVALID_HW_RING_ID; 6098 bp->grp_info[grp_idx].agg_fw_ring_id = 6099 INVALID_HW_RING_ID; 6100 } 6101 } 6102 6103 /* The completion rings are about to be freed. After that the 6104 * IRQ doorbell will not work anymore. So we need to disable 6105 * IRQ here. 6106 */ 6107 bnxt_disable_int_sync(bp); 6108 6109 if (bp->flags & BNXT_FLAG_CHIP_P5) 6110 type = RING_FREE_REQ_RING_TYPE_NQ; 6111 else 6112 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 6113 for (i = 0; i < bp->cp_nr_rings; i++) { 6114 struct bnxt_napi *bnapi = bp->bnapi[i]; 6115 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6116 struct bnxt_ring_struct *ring; 6117 int j; 6118 6119 for (j = 0; j < 2; j++) { 6120 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 6121 6122 if (cpr2) { 6123 ring = &cpr2->cp_ring_struct; 6124 if (ring->fw_ring_id == INVALID_HW_RING_ID) 6125 continue; 6126 hwrm_ring_free_send_msg(bp, ring, 6127 RING_FREE_REQ_RING_TYPE_L2_CMPL, 6128 INVALID_HW_RING_ID); 6129 ring->fw_ring_id = INVALID_HW_RING_ID; 6130 } 6131 } 6132 ring = &cpr->cp_ring_struct; 6133 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6134 hwrm_ring_free_send_msg(bp, ring, type, 6135 INVALID_HW_RING_ID); 6136 ring->fw_ring_id = INVALID_HW_RING_ID; 6137 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 6138 } 6139 } 6140 } 6141 6142 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 6143 bool shared); 6144 6145 static int bnxt_hwrm_get_rings(struct bnxt *bp) 6146 { 6147 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 6148 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6149 struct hwrm_func_qcfg_input req = {0}; 6150 int rc; 6151 6152 if (bp->hwrm_spec_code < 0x10601) 6153 return 0; 6154 6155 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1); 6156 req.fid = cpu_to_le16(0xffff); 6157 mutex_lock(&bp->hwrm_cmd_lock); 6158 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6159 if (rc) { 6160 mutex_unlock(&bp->hwrm_cmd_lock); 6161 return rc; 6162 } 6163 6164 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 6165 if (BNXT_NEW_RM(bp)) { 6166 u16 cp, stats; 6167 6168 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 6169 hw_resc->resv_hw_ring_grps = 6170 le32_to_cpu(resp->alloc_hw_ring_grps); 6171 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 6172 cp = le16_to_cpu(resp->alloc_cmpl_rings); 6173 stats = le16_to_cpu(resp->alloc_stat_ctx); 6174 hw_resc->resv_irqs = cp; 6175 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6176 int rx = hw_resc->resv_rx_rings; 6177 int tx = hw_resc->resv_tx_rings; 6178 6179 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6180 rx >>= 1; 6181 if (cp < (rx + tx)) { 6182 bnxt_trim_rings(bp, &rx, &tx, cp, false); 6183 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6184 rx <<= 1; 6185 hw_resc->resv_rx_rings = rx; 6186 hw_resc->resv_tx_rings = tx; 6187 } 6188 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 6189 hw_resc->resv_hw_ring_grps = rx; 6190 } 6191 hw_resc->resv_cp_rings = cp; 6192 hw_resc->resv_stat_ctxs = stats; 6193 } 6194 mutex_unlock(&bp->hwrm_cmd_lock); 6195 return 0; 6196 } 6197 6198 /* Caller must hold bp->hwrm_cmd_lock */ 6199 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 6200 { 6201 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 6202 struct hwrm_func_qcfg_input req = {0}; 6203 int rc; 6204 6205 if (bp->hwrm_spec_code < 0x10601) 6206 return 0; 6207 6208 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1); 6209 req.fid = cpu_to_le16(fid); 6210 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6211 if (!rc) 6212 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 6213 6214 return rc; 6215 } 6216 6217 static bool bnxt_rfs_supported(struct bnxt *bp); 6218 6219 static void 6220 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req, 6221 int tx_rings, int rx_rings, int ring_grps, 6222 int cp_rings, int stats, int vnics) 6223 { 6224 u32 enables = 0; 6225 6226 bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1); 6227 req->fid = cpu_to_le16(0xffff); 6228 enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6229 req->num_tx_rings = cpu_to_le16(tx_rings); 6230 if (BNXT_NEW_RM(bp)) { 6231 enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 6232 enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6233 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6234 enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 6235 enables |= tx_rings + ring_grps ? 6236 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6237 enables |= rx_rings ? 6238 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6239 } else { 6240 enables |= cp_rings ? 6241 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6242 enables |= ring_grps ? 6243 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS | 6244 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6245 } 6246 enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 6247 6248 req->num_rx_rings = cpu_to_le16(rx_rings); 6249 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6250 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6251 req->num_msix = cpu_to_le16(cp_rings); 6252 req->num_rsscos_ctxs = 6253 cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6254 } else { 6255 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6256 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6257 req->num_rsscos_ctxs = cpu_to_le16(1); 6258 if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 6259 bnxt_rfs_supported(bp)) 6260 req->num_rsscos_ctxs = 6261 cpu_to_le16(ring_grps + 1); 6262 } 6263 req->num_stat_ctxs = cpu_to_le16(stats); 6264 req->num_vnics = cpu_to_le16(vnics); 6265 } 6266 req->enables = cpu_to_le32(enables); 6267 } 6268 6269 static void 6270 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, 6271 struct hwrm_func_vf_cfg_input *req, int tx_rings, 6272 int rx_rings, int ring_grps, int cp_rings, 6273 int stats, int vnics) 6274 { 6275 u32 enables = 0; 6276 6277 bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1); 6278 enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6279 enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 6280 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6281 enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6282 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6283 enables |= tx_rings + ring_grps ? 6284 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6285 } else { 6286 enables |= cp_rings ? 6287 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6288 enables |= ring_grps ? 6289 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 6290 } 6291 enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 6292 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 6293 6294 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 6295 req->num_tx_rings = cpu_to_le16(tx_rings); 6296 req->num_rx_rings = cpu_to_le16(rx_rings); 6297 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6298 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6299 req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6300 } else { 6301 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6302 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6303 req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX); 6304 } 6305 req->num_stat_ctxs = cpu_to_le16(stats); 6306 req->num_vnics = cpu_to_le16(vnics); 6307 6308 req->enables = cpu_to_le32(enables); 6309 } 6310 6311 static int 6312 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6313 int ring_grps, int cp_rings, int stats, int vnics) 6314 { 6315 struct hwrm_func_cfg_input req = {0}; 6316 int rc; 6317 6318 __bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps, 6319 cp_rings, stats, vnics); 6320 if (!req.enables) 6321 return 0; 6322 6323 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6324 if (rc) 6325 return rc; 6326 6327 if (bp->hwrm_spec_code < 0x10601) 6328 bp->hw_resc.resv_tx_rings = tx_rings; 6329 6330 return bnxt_hwrm_get_rings(bp); 6331 } 6332 6333 static int 6334 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6335 int ring_grps, int cp_rings, int stats, int vnics) 6336 { 6337 struct hwrm_func_vf_cfg_input req = {0}; 6338 int rc; 6339 6340 if (!BNXT_NEW_RM(bp)) { 6341 bp->hw_resc.resv_tx_rings = tx_rings; 6342 return 0; 6343 } 6344 6345 __bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps, 6346 cp_rings, stats, vnics); 6347 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6348 if (rc) 6349 return rc; 6350 6351 return bnxt_hwrm_get_rings(bp); 6352 } 6353 6354 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp, 6355 int cp, int stat, int vnic) 6356 { 6357 if (BNXT_PF(bp)) 6358 return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat, 6359 vnic); 6360 else 6361 return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat, 6362 vnic); 6363 } 6364 6365 int bnxt_nq_rings_in_use(struct bnxt *bp) 6366 { 6367 int cp = bp->cp_nr_rings; 6368 int ulp_msix, ulp_base; 6369 6370 ulp_msix = bnxt_get_ulp_msix_num(bp); 6371 if (ulp_msix) { 6372 ulp_base = bnxt_get_ulp_msix_base(bp); 6373 cp += ulp_msix; 6374 if ((ulp_base + ulp_msix) > cp) 6375 cp = ulp_base + ulp_msix; 6376 } 6377 return cp; 6378 } 6379 6380 static int bnxt_cp_rings_in_use(struct bnxt *bp) 6381 { 6382 int cp; 6383 6384 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6385 return bnxt_nq_rings_in_use(bp); 6386 6387 cp = bp->tx_nr_rings + bp->rx_nr_rings; 6388 return cp; 6389 } 6390 6391 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 6392 { 6393 int ulp_stat = bnxt_get_ulp_stat_ctxs(bp); 6394 int cp = bp->cp_nr_rings; 6395 6396 if (!ulp_stat) 6397 return cp; 6398 6399 if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp)) 6400 return bnxt_get_ulp_msix_base(bp) + ulp_stat; 6401 6402 return cp + ulp_stat; 6403 } 6404 6405 /* Check if a default RSS map needs to be setup. This function is only 6406 * used on older firmware that does not require reserving RX rings. 6407 */ 6408 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 6409 { 6410 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6411 6412 /* The RSS map is valid for RX rings set to resv_rx_rings */ 6413 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 6414 hw_resc->resv_rx_rings = bp->rx_nr_rings; 6415 if (!netif_is_rxfh_configured(bp->dev)) 6416 bnxt_set_dflt_rss_indir_tbl(bp); 6417 } 6418 } 6419 6420 static bool bnxt_need_reserve_rings(struct bnxt *bp) 6421 { 6422 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6423 int cp = bnxt_cp_rings_in_use(bp); 6424 int nq = bnxt_nq_rings_in_use(bp); 6425 int rx = bp->rx_nr_rings, stat; 6426 int vnic = 1, grp = rx; 6427 6428 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 6429 bp->hwrm_spec_code >= 0x10601) 6430 return true; 6431 6432 /* Old firmware does not need RX ring reservations but we still 6433 * need to setup a default RSS map when needed. With new firmware 6434 * we go through RX ring reservations first and then set up the 6435 * RSS map for the successfully reserved RX rings when needed. 6436 */ 6437 if (!BNXT_NEW_RM(bp)) { 6438 bnxt_check_rss_tbl_no_rmgr(bp); 6439 return false; 6440 } 6441 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6442 vnic = rx + 1; 6443 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6444 rx <<= 1; 6445 stat = bnxt_get_func_stat_ctxs(bp); 6446 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 6447 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 6448 (hw_resc->resv_hw_ring_grps != grp && 6449 !(bp->flags & BNXT_FLAG_CHIP_P5))) 6450 return true; 6451 if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) && 6452 hw_resc->resv_irqs != nq) 6453 return true; 6454 return false; 6455 } 6456 6457 static int __bnxt_reserve_rings(struct bnxt *bp) 6458 { 6459 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6460 int cp = bnxt_nq_rings_in_use(bp); 6461 int tx = bp->tx_nr_rings; 6462 int rx = bp->rx_nr_rings; 6463 int grp, rx_rings, rc; 6464 int vnic = 1, stat; 6465 bool sh = false; 6466 6467 if (!bnxt_need_reserve_rings(bp)) 6468 return 0; 6469 6470 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 6471 sh = true; 6472 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6473 vnic = rx + 1; 6474 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6475 rx <<= 1; 6476 grp = bp->rx_nr_rings; 6477 stat = bnxt_get_func_stat_ctxs(bp); 6478 6479 rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic); 6480 if (rc) 6481 return rc; 6482 6483 tx = hw_resc->resv_tx_rings; 6484 if (BNXT_NEW_RM(bp)) { 6485 rx = hw_resc->resv_rx_rings; 6486 cp = hw_resc->resv_irqs; 6487 grp = hw_resc->resv_hw_ring_grps; 6488 vnic = hw_resc->resv_vnics; 6489 stat = hw_resc->resv_stat_ctxs; 6490 } 6491 6492 rx_rings = rx; 6493 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 6494 if (rx >= 2) { 6495 rx_rings = rx >> 1; 6496 } else { 6497 if (netif_running(bp->dev)) 6498 return -ENOMEM; 6499 6500 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 6501 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 6502 bp->dev->hw_features &= ~NETIF_F_LRO; 6503 bp->dev->features &= ~NETIF_F_LRO; 6504 bnxt_set_ring_params(bp); 6505 } 6506 } 6507 rx_rings = min_t(int, rx_rings, grp); 6508 cp = min_t(int, cp, bp->cp_nr_rings); 6509 if (stat > bnxt_get_ulp_stat_ctxs(bp)) 6510 stat -= bnxt_get_ulp_stat_ctxs(bp); 6511 cp = min_t(int, cp, stat); 6512 rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh); 6513 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6514 rx = rx_rings << 1; 6515 cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings; 6516 bp->tx_nr_rings = tx; 6517 6518 /* If we cannot reserve all the RX rings, reset the RSS map only 6519 * if absolutely necessary 6520 */ 6521 if (rx_rings != bp->rx_nr_rings) { 6522 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 6523 rx_rings, bp->rx_nr_rings); 6524 if ((bp->dev->priv_flags & IFF_RXFH_CONFIGURED) && 6525 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 6526 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 6527 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 6528 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 6529 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 6530 } 6531 } 6532 bp->rx_nr_rings = rx_rings; 6533 bp->cp_nr_rings = cp; 6534 6535 if (!tx || !rx || !cp || !grp || !vnic || !stat) 6536 return -ENOMEM; 6537 6538 if (!netif_is_rxfh_configured(bp->dev)) 6539 bnxt_set_dflt_rss_indir_tbl(bp); 6540 6541 return rc; 6542 } 6543 6544 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6545 int ring_grps, int cp_rings, int stats, 6546 int vnics) 6547 { 6548 struct hwrm_func_vf_cfg_input req = {0}; 6549 u32 flags; 6550 6551 if (!BNXT_NEW_RM(bp)) 6552 return 0; 6553 6554 __bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps, 6555 cp_rings, stats, vnics); 6556 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 6557 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6558 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6559 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6560 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 6561 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 6562 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6563 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6564 6565 req.flags = cpu_to_le32(flags); 6566 return hwrm_send_message_silent(bp, &req, sizeof(req), 6567 HWRM_CMD_TIMEOUT); 6568 } 6569 6570 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6571 int ring_grps, int cp_rings, int stats, 6572 int vnics) 6573 { 6574 struct hwrm_func_cfg_input req = {0}; 6575 u32 flags; 6576 6577 __bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps, 6578 cp_rings, stats, vnics); 6579 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 6580 if (BNXT_NEW_RM(bp)) { 6581 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6582 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6583 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6584 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 6585 if (bp->flags & BNXT_FLAG_CHIP_P5) 6586 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 6587 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 6588 else 6589 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6590 } 6591 6592 req.flags = cpu_to_le32(flags); 6593 return hwrm_send_message_silent(bp, &req, sizeof(req), 6594 HWRM_CMD_TIMEOUT); 6595 } 6596 6597 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6598 int ring_grps, int cp_rings, int stats, 6599 int vnics) 6600 { 6601 if (bp->hwrm_spec_code < 0x10801) 6602 return 0; 6603 6604 if (BNXT_PF(bp)) 6605 return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings, 6606 ring_grps, cp_rings, stats, 6607 vnics); 6608 6609 return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6610 cp_rings, stats, vnics); 6611 } 6612 6613 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 6614 { 6615 struct hwrm_ring_aggint_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 6616 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6617 struct hwrm_ring_aggint_qcaps_input req = {0}; 6618 int rc; 6619 6620 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 6621 coal_cap->num_cmpl_dma_aggr_max = 63; 6622 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 6623 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 6624 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 6625 coal_cap->int_lat_tmr_min_max = 65535; 6626 coal_cap->int_lat_tmr_max_max = 65535; 6627 coal_cap->num_cmpl_aggr_int_max = 65535; 6628 coal_cap->timer_units = 80; 6629 6630 if (bp->hwrm_spec_code < 0x10902) 6631 return; 6632 6633 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_AGGINT_QCAPS, -1, -1); 6634 mutex_lock(&bp->hwrm_cmd_lock); 6635 rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6636 if (!rc) { 6637 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 6638 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 6639 coal_cap->num_cmpl_dma_aggr_max = 6640 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 6641 coal_cap->num_cmpl_dma_aggr_during_int_max = 6642 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 6643 coal_cap->cmpl_aggr_dma_tmr_max = 6644 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 6645 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 6646 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 6647 coal_cap->int_lat_tmr_min_max = 6648 le16_to_cpu(resp->int_lat_tmr_min_max); 6649 coal_cap->int_lat_tmr_max_max = 6650 le16_to_cpu(resp->int_lat_tmr_max_max); 6651 coal_cap->num_cmpl_aggr_int_max = 6652 le16_to_cpu(resp->num_cmpl_aggr_int_max); 6653 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 6654 } 6655 mutex_unlock(&bp->hwrm_cmd_lock); 6656 } 6657 6658 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 6659 { 6660 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6661 6662 return usec * 1000 / coal_cap->timer_units; 6663 } 6664 6665 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 6666 struct bnxt_coal *hw_coal, 6667 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 6668 { 6669 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6670 u32 cmpl_params = coal_cap->cmpl_params; 6671 u16 val, tmr, max, flags = 0; 6672 6673 max = hw_coal->bufs_per_record * 128; 6674 if (hw_coal->budget) 6675 max = hw_coal->bufs_per_record * hw_coal->budget; 6676 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 6677 6678 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 6679 req->num_cmpl_aggr_int = cpu_to_le16(val); 6680 6681 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 6682 req->num_cmpl_dma_aggr = cpu_to_le16(val); 6683 6684 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 6685 coal_cap->num_cmpl_dma_aggr_during_int_max); 6686 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 6687 6688 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 6689 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 6690 req->int_lat_tmr_max = cpu_to_le16(tmr); 6691 6692 /* min timer set to 1/2 of interrupt timer */ 6693 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 6694 val = tmr / 2; 6695 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 6696 req->int_lat_tmr_min = cpu_to_le16(val); 6697 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6698 } 6699 6700 /* buf timer set to 1/4 of interrupt timer */ 6701 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 6702 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 6703 6704 if (cmpl_params & 6705 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 6706 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 6707 val = clamp_t(u16, tmr, 1, 6708 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 6709 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 6710 req->enables |= 6711 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 6712 } 6713 6714 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 6715 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 6716 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 6717 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 6718 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 6719 req->flags = cpu_to_le16(flags); 6720 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 6721 } 6722 6723 /* Caller holds bp->hwrm_cmd_lock */ 6724 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 6725 struct bnxt_coal *hw_coal) 6726 { 6727 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0}; 6728 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6729 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6730 u32 nq_params = coal_cap->nq_params; 6731 u16 tmr; 6732 6733 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 6734 return 0; 6735 6736 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, 6737 -1, -1); 6738 req.ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 6739 req.flags = 6740 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 6741 6742 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 6743 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 6744 req.int_lat_tmr_min = cpu_to_le16(tmr); 6745 req.enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6746 return _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6747 } 6748 6749 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 6750 { 6751 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0}; 6752 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6753 struct bnxt_coal coal; 6754 6755 /* Tick values in micro seconds. 6756 * 1 coal_buf x bufs_per_record = 1 completion record. 6757 */ 6758 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 6759 6760 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 6761 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 6762 6763 if (!bnapi->rx_ring) 6764 return -ENODEV; 6765 6766 bnxt_hwrm_cmd_hdr_init(bp, &req_rx, 6767 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1); 6768 6769 bnxt_hwrm_set_coal_params(bp, &coal, &req_rx); 6770 6771 req_rx.ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 6772 6773 return hwrm_send_message(bp, &req_rx, sizeof(req_rx), 6774 HWRM_CMD_TIMEOUT); 6775 } 6776 6777 int bnxt_hwrm_set_coal(struct bnxt *bp) 6778 { 6779 int i, rc = 0; 6780 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0}, 6781 req_tx = {0}, *req; 6782 6783 bnxt_hwrm_cmd_hdr_init(bp, &req_rx, 6784 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1); 6785 bnxt_hwrm_cmd_hdr_init(bp, &req_tx, 6786 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1); 6787 6788 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, &req_rx); 6789 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, &req_tx); 6790 6791 mutex_lock(&bp->hwrm_cmd_lock); 6792 for (i = 0; i < bp->cp_nr_rings; i++) { 6793 struct bnxt_napi *bnapi = bp->bnapi[i]; 6794 struct bnxt_coal *hw_coal; 6795 u16 ring_id; 6796 6797 req = &req_rx; 6798 if (!bnapi->rx_ring) { 6799 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6800 req = &req_tx; 6801 } else { 6802 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 6803 } 6804 req->ring_id = cpu_to_le16(ring_id); 6805 6806 rc = _hwrm_send_message(bp, req, sizeof(*req), 6807 HWRM_CMD_TIMEOUT); 6808 if (rc) 6809 break; 6810 6811 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6812 continue; 6813 6814 if (bnapi->rx_ring && bnapi->tx_ring) { 6815 req = &req_tx; 6816 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6817 req->ring_id = cpu_to_le16(ring_id); 6818 rc = _hwrm_send_message(bp, req, sizeof(*req), 6819 HWRM_CMD_TIMEOUT); 6820 if (rc) 6821 break; 6822 } 6823 if (bnapi->rx_ring) 6824 hw_coal = &bp->rx_coal; 6825 else 6826 hw_coal = &bp->tx_coal; 6827 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 6828 } 6829 mutex_unlock(&bp->hwrm_cmd_lock); 6830 return rc; 6831 } 6832 6833 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 6834 { 6835 struct hwrm_stat_ctx_clr_stats_input req0 = {0}; 6836 struct hwrm_stat_ctx_free_input req = {0}; 6837 int i; 6838 6839 if (!bp->bnapi) 6840 return; 6841 6842 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6843 return; 6844 6845 bnxt_hwrm_cmd_hdr_init(bp, &req0, HWRM_STAT_CTX_CLR_STATS, -1, -1); 6846 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1); 6847 6848 mutex_lock(&bp->hwrm_cmd_lock); 6849 for (i = 0; i < bp->cp_nr_rings; i++) { 6850 struct bnxt_napi *bnapi = bp->bnapi[i]; 6851 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6852 6853 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 6854 req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 6855 if (BNXT_FW_MAJ(bp) <= 20) { 6856 req0.stat_ctx_id = req.stat_ctx_id; 6857 _hwrm_send_message(bp, &req0, sizeof(req0), 6858 HWRM_CMD_TIMEOUT); 6859 } 6860 _hwrm_send_message(bp, &req, sizeof(req), 6861 HWRM_CMD_TIMEOUT); 6862 6863 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 6864 } 6865 } 6866 mutex_unlock(&bp->hwrm_cmd_lock); 6867 } 6868 6869 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 6870 { 6871 int rc = 0, i; 6872 struct hwrm_stat_ctx_alloc_input req = {0}; 6873 struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr; 6874 6875 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6876 return 0; 6877 6878 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1); 6879 6880 req.stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 6881 req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 6882 6883 mutex_lock(&bp->hwrm_cmd_lock); 6884 for (i = 0; i < bp->cp_nr_rings; i++) { 6885 struct bnxt_napi *bnapi = bp->bnapi[i]; 6886 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6887 6888 req.stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 6889 6890 rc = _hwrm_send_message(bp, &req, sizeof(req), 6891 HWRM_CMD_TIMEOUT); 6892 if (rc) 6893 break; 6894 6895 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 6896 6897 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 6898 } 6899 mutex_unlock(&bp->hwrm_cmd_lock); 6900 return rc; 6901 } 6902 6903 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 6904 { 6905 struct hwrm_func_qcfg_input req = {0}; 6906 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 6907 u32 min_db_offset = 0; 6908 u16 flags; 6909 int rc; 6910 6911 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1); 6912 req.fid = cpu_to_le16(0xffff); 6913 mutex_lock(&bp->hwrm_cmd_lock); 6914 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6915 if (rc) 6916 goto func_qcfg_exit; 6917 6918 #ifdef CONFIG_BNXT_SRIOV 6919 if (BNXT_VF(bp)) { 6920 struct bnxt_vf_info *vf = &bp->vf; 6921 6922 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 6923 } else { 6924 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 6925 } 6926 #endif 6927 flags = le16_to_cpu(resp->flags); 6928 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 6929 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 6930 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 6931 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 6932 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 6933 } 6934 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 6935 bp->flags |= BNXT_FLAG_MULTI_HOST; 6936 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 6937 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 6938 6939 switch (resp->port_partition_type) { 6940 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 6941 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 6942 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 6943 bp->port_partition_type = resp->port_partition_type; 6944 break; 6945 } 6946 if (bp->hwrm_spec_code < 0x10707 || 6947 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 6948 bp->br_mode = BRIDGE_MODE_VEB; 6949 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 6950 bp->br_mode = BRIDGE_MODE_VEPA; 6951 else 6952 bp->br_mode = BRIDGE_MODE_UNDEF; 6953 6954 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 6955 if (!bp->max_mtu) 6956 bp->max_mtu = BNXT_MAX_MTU; 6957 6958 if (bp->db_size) 6959 goto func_qcfg_exit; 6960 6961 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6962 if (BNXT_PF(bp)) 6963 min_db_offset = DB_PF_OFFSET_P5; 6964 else 6965 min_db_offset = DB_VF_OFFSET_P5; 6966 } 6967 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 6968 1024); 6969 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 6970 bp->db_size <= min_db_offset) 6971 bp->db_size = pci_resource_len(bp->pdev, 2); 6972 6973 func_qcfg_exit: 6974 mutex_unlock(&bp->hwrm_cmd_lock); 6975 return rc; 6976 } 6977 6978 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx, 6979 struct hwrm_func_backing_store_qcaps_output *resp) 6980 { 6981 struct bnxt_mem_init *mem_init; 6982 u16 init_mask; 6983 u8 init_val; 6984 u8 *offset; 6985 int i; 6986 6987 init_val = resp->ctx_kind_initializer; 6988 init_mask = le16_to_cpu(resp->ctx_init_mask); 6989 offset = &resp->qp_init_offset; 6990 mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; 6991 for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) { 6992 mem_init->init_val = init_val; 6993 mem_init->offset = BNXT_MEM_INVALID_OFFSET; 6994 if (!init_mask) 6995 continue; 6996 if (i == BNXT_CTX_MEM_INIT_STAT) 6997 offset = &resp->stat_init_offset; 6998 if (init_mask & (1 << i)) 6999 mem_init->offset = *offset * 4; 7000 else 7001 mem_init->init_val = 0; 7002 } 7003 ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size; 7004 ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size; 7005 ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size; 7006 ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size; 7007 ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size; 7008 ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size; 7009 } 7010 7011 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 7012 { 7013 struct hwrm_func_backing_store_qcaps_input req = {0}; 7014 struct hwrm_func_backing_store_qcaps_output *resp = 7015 bp->hwrm_cmd_resp_addr; 7016 int rc; 7017 7018 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx) 7019 return 0; 7020 7021 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_QCAPS, -1, -1); 7022 mutex_lock(&bp->hwrm_cmd_lock); 7023 rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7024 if (!rc) { 7025 struct bnxt_ctx_pg_info *ctx_pg; 7026 struct bnxt_ctx_mem_info *ctx; 7027 int i, tqm_rings; 7028 7029 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 7030 if (!ctx) { 7031 rc = -ENOMEM; 7032 goto ctx_err; 7033 } 7034 ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries); 7035 ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 7036 ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 7037 ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size); 7038 ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 7039 ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries); 7040 ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size); 7041 ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 7042 ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries); 7043 ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size); 7044 ctx->vnic_max_vnic_entries = 7045 le16_to_cpu(resp->vnic_max_vnic_entries); 7046 ctx->vnic_max_ring_table_entries = 7047 le16_to_cpu(resp->vnic_max_ring_table_entries); 7048 ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size); 7049 ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries); 7050 ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size); 7051 ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size); 7052 ctx->tqm_min_entries_per_ring = 7053 le32_to_cpu(resp->tqm_min_entries_per_ring); 7054 ctx->tqm_max_entries_per_ring = 7055 le32_to_cpu(resp->tqm_max_entries_per_ring); 7056 ctx->tqm_entries_multiple = resp->tqm_entries_multiple; 7057 if (!ctx->tqm_entries_multiple) 7058 ctx->tqm_entries_multiple = 1; 7059 ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries); 7060 ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size); 7061 ctx->mrav_num_entries_units = 7062 le16_to_cpu(resp->mrav_num_entries_units); 7063 ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size); 7064 ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries); 7065 7066 bnxt_init_ctx_initializer(ctx, resp); 7067 7068 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 7069 if (!ctx->tqm_fp_rings_count) 7070 ctx->tqm_fp_rings_count = bp->max_q; 7071 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 7072 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 7073 7074 tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS; 7075 ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL); 7076 if (!ctx_pg) { 7077 kfree(ctx); 7078 rc = -ENOMEM; 7079 goto ctx_err; 7080 } 7081 for (i = 0; i < tqm_rings; i++, ctx_pg++) 7082 ctx->tqm_mem[i] = ctx_pg; 7083 bp->ctx = ctx; 7084 } else { 7085 rc = 0; 7086 } 7087 ctx_err: 7088 mutex_unlock(&bp->hwrm_cmd_lock); 7089 return rc; 7090 } 7091 7092 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 7093 __le64 *pg_dir) 7094 { 7095 if (!rmem->nr_pages) 7096 return; 7097 7098 BNXT_SET_CTX_PAGE_ATTR(*pg_attr); 7099 if (rmem->depth >= 1) { 7100 if (rmem->depth == 2) 7101 *pg_attr |= 2; 7102 else 7103 *pg_attr |= 1; 7104 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 7105 } else { 7106 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 7107 } 7108 } 7109 7110 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 7111 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 7112 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 7113 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 7114 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 7115 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 7116 7117 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 7118 { 7119 struct hwrm_func_backing_store_cfg_input req = {0}; 7120 struct bnxt_ctx_mem_info *ctx = bp->ctx; 7121 struct bnxt_ctx_pg_info *ctx_pg; 7122 u32 req_len = sizeof(req); 7123 __le32 *num_entries; 7124 __le64 *pg_dir; 7125 u32 flags = 0; 7126 u8 *pg_attr; 7127 u32 ena; 7128 int i; 7129 7130 if (!ctx) 7131 return 0; 7132 7133 if (req_len > bp->hwrm_max_ext_req_len) 7134 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 7135 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_CFG, -1, -1); 7136 req.enables = cpu_to_le32(enables); 7137 7138 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 7139 ctx_pg = &ctx->qp_mem; 7140 req.qp_num_entries = cpu_to_le32(ctx_pg->entries); 7141 req.qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries); 7142 req.qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries); 7143 req.qp_entry_size = cpu_to_le16(ctx->qp_entry_size); 7144 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7145 &req.qpc_pg_size_qpc_lvl, 7146 &req.qpc_page_dir); 7147 } 7148 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 7149 ctx_pg = &ctx->srq_mem; 7150 req.srq_num_entries = cpu_to_le32(ctx_pg->entries); 7151 req.srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries); 7152 req.srq_entry_size = cpu_to_le16(ctx->srq_entry_size); 7153 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7154 &req.srq_pg_size_srq_lvl, 7155 &req.srq_page_dir); 7156 } 7157 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 7158 ctx_pg = &ctx->cq_mem; 7159 req.cq_num_entries = cpu_to_le32(ctx_pg->entries); 7160 req.cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries); 7161 req.cq_entry_size = cpu_to_le16(ctx->cq_entry_size); 7162 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, &req.cq_pg_size_cq_lvl, 7163 &req.cq_page_dir); 7164 } 7165 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 7166 ctx_pg = &ctx->vnic_mem; 7167 req.vnic_num_vnic_entries = 7168 cpu_to_le16(ctx->vnic_max_vnic_entries); 7169 req.vnic_num_ring_table_entries = 7170 cpu_to_le16(ctx->vnic_max_ring_table_entries); 7171 req.vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size); 7172 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7173 &req.vnic_pg_size_vnic_lvl, 7174 &req.vnic_page_dir); 7175 } 7176 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 7177 ctx_pg = &ctx->stat_mem; 7178 req.stat_num_entries = cpu_to_le32(ctx->stat_max_entries); 7179 req.stat_entry_size = cpu_to_le16(ctx->stat_entry_size); 7180 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7181 &req.stat_pg_size_stat_lvl, 7182 &req.stat_page_dir); 7183 } 7184 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 7185 ctx_pg = &ctx->mrav_mem; 7186 req.mrav_num_entries = cpu_to_le32(ctx_pg->entries); 7187 if (ctx->mrav_num_entries_units) 7188 flags |= 7189 FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 7190 req.mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size); 7191 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7192 &req.mrav_pg_size_mrav_lvl, 7193 &req.mrav_page_dir); 7194 } 7195 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 7196 ctx_pg = &ctx->tim_mem; 7197 req.tim_num_entries = cpu_to_le32(ctx_pg->entries); 7198 req.tim_entry_size = cpu_to_le16(ctx->tim_entry_size); 7199 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7200 &req.tim_pg_size_tim_lvl, 7201 &req.tim_page_dir); 7202 } 7203 for (i = 0, num_entries = &req.tqm_sp_num_entries, 7204 pg_attr = &req.tqm_sp_pg_size_tqm_sp_lvl, 7205 pg_dir = &req.tqm_sp_page_dir, 7206 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP; 7207 i < BNXT_MAX_TQM_RINGS; 7208 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 7209 if (!(enables & ena)) 7210 continue; 7211 7212 req.tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size); 7213 ctx_pg = ctx->tqm_mem[i]; 7214 *num_entries = cpu_to_le32(ctx_pg->entries); 7215 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 7216 } 7217 req.flags = cpu_to_le32(flags); 7218 return hwrm_send_message(bp, &req, req_len, HWRM_CMD_TIMEOUT); 7219 } 7220 7221 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 7222 struct bnxt_ctx_pg_info *ctx_pg) 7223 { 7224 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7225 7226 rmem->page_size = BNXT_PAGE_SIZE; 7227 rmem->pg_arr = ctx_pg->ctx_pg_arr; 7228 rmem->dma_arr = ctx_pg->ctx_dma_arr; 7229 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 7230 if (rmem->depth >= 1) 7231 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 7232 return bnxt_alloc_ring(bp, rmem); 7233 } 7234 7235 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 7236 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 7237 u8 depth, struct bnxt_mem_init *mem_init) 7238 { 7239 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7240 int rc; 7241 7242 if (!mem_size) 7243 return -EINVAL; 7244 7245 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7246 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 7247 ctx_pg->nr_pages = 0; 7248 return -EINVAL; 7249 } 7250 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 7251 int nr_tbls, i; 7252 7253 rmem->depth = 2; 7254 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 7255 GFP_KERNEL); 7256 if (!ctx_pg->ctx_pg_tbl) 7257 return -ENOMEM; 7258 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 7259 rmem->nr_pages = nr_tbls; 7260 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7261 if (rc) 7262 return rc; 7263 for (i = 0; i < nr_tbls; i++) { 7264 struct bnxt_ctx_pg_info *pg_tbl; 7265 7266 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 7267 if (!pg_tbl) 7268 return -ENOMEM; 7269 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 7270 rmem = &pg_tbl->ring_mem; 7271 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 7272 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 7273 rmem->depth = 1; 7274 rmem->nr_pages = MAX_CTX_PAGES; 7275 rmem->mem_init = mem_init; 7276 if (i == (nr_tbls - 1)) { 7277 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 7278 7279 if (rem) 7280 rmem->nr_pages = rem; 7281 } 7282 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 7283 if (rc) 7284 break; 7285 } 7286 } else { 7287 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7288 if (rmem->nr_pages > 1 || depth) 7289 rmem->depth = 1; 7290 rmem->mem_init = mem_init; 7291 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7292 } 7293 return rc; 7294 } 7295 7296 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 7297 struct bnxt_ctx_pg_info *ctx_pg) 7298 { 7299 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7300 7301 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 7302 ctx_pg->ctx_pg_tbl) { 7303 int i, nr_tbls = rmem->nr_pages; 7304 7305 for (i = 0; i < nr_tbls; i++) { 7306 struct bnxt_ctx_pg_info *pg_tbl; 7307 struct bnxt_ring_mem_info *rmem2; 7308 7309 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 7310 if (!pg_tbl) 7311 continue; 7312 rmem2 = &pg_tbl->ring_mem; 7313 bnxt_free_ring(bp, rmem2); 7314 ctx_pg->ctx_pg_arr[i] = NULL; 7315 kfree(pg_tbl); 7316 ctx_pg->ctx_pg_tbl[i] = NULL; 7317 } 7318 kfree(ctx_pg->ctx_pg_tbl); 7319 ctx_pg->ctx_pg_tbl = NULL; 7320 } 7321 bnxt_free_ring(bp, rmem); 7322 ctx_pg->nr_pages = 0; 7323 } 7324 7325 static void bnxt_free_ctx_mem(struct bnxt *bp) 7326 { 7327 struct bnxt_ctx_mem_info *ctx = bp->ctx; 7328 int i; 7329 7330 if (!ctx) 7331 return; 7332 7333 if (ctx->tqm_mem[0]) { 7334 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 7335 bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]); 7336 kfree(ctx->tqm_mem[0]); 7337 ctx->tqm_mem[0] = NULL; 7338 } 7339 7340 bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem); 7341 bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem); 7342 bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem); 7343 bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem); 7344 bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem); 7345 bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem); 7346 bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem); 7347 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 7348 } 7349 7350 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 7351 { 7352 struct bnxt_ctx_pg_info *ctx_pg; 7353 struct bnxt_ctx_mem_info *ctx; 7354 struct bnxt_mem_init *init; 7355 u32 mem_size, ena, entries; 7356 u32 entries_sp, min; 7357 u32 num_mr, num_ah; 7358 u32 extra_srqs = 0; 7359 u32 extra_qps = 0; 7360 u8 pg_lvl = 1; 7361 int i, rc; 7362 7363 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 7364 if (rc) { 7365 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 7366 rc); 7367 return rc; 7368 } 7369 ctx = bp->ctx; 7370 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 7371 return 0; 7372 7373 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 7374 pg_lvl = 2; 7375 extra_qps = 65536; 7376 extra_srqs = 8192; 7377 } 7378 7379 ctx_pg = &ctx->qp_mem; 7380 ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries + 7381 extra_qps; 7382 if (ctx->qp_entry_size) { 7383 mem_size = ctx->qp_entry_size * ctx_pg->entries; 7384 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; 7385 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7386 if (rc) 7387 return rc; 7388 } 7389 7390 ctx_pg = &ctx->srq_mem; 7391 ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs; 7392 if (ctx->srq_entry_size) { 7393 mem_size = ctx->srq_entry_size * ctx_pg->entries; 7394 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ]; 7395 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7396 if (rc) 7397 return rc; 7398 } 7399 7400 ctx_pg = &ctx->cq_mem; 7401 ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2; 7402 if (ctx->cq_entry_size) { 7403 mem_size = ctx->cq_entry_size * ctx_pg->entries; 7404 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ]; 7405 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7406 if (rc) 7407 return rc; 7408 } 7409 7410 ctx_pg = &ctx->vnic_mem; 7411 ctx_pg->entries = ctx->vnic_max_vnic_entries + 7412 ctx->vnic_max_ring_table_entries; 7413 if (ctx->vnic_entry_size) { 7414 mem_size = ctx->vnic_entry_size * ctx_pg->entries; 7415 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC]; 7416 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); 7417 if (rc) 7418 return rc; 7419 } 7420 7421 ctx_pg = &ctx->stat_mem; 7422 ctx_pg->entries = ctx->stat_max_entries; 7423 if (ctx->stat_entry_size) { 7424 mem_size = ctx->stat_entry_size * ctx_pg->entries; 7425 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT]; 7426 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); 7427 if (rc) 7428 return rc; 7429 } 7430 7431 ena = 0; 7432 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 7433 goto skip_rdma; 7434 7435 ctx_pg = &ctx->mrav_mem; 7436 /* 128K extra is needed to accommodate static AH context 7437 * allocation by f/w. 7438 */ 7439 num_mr = 1024 * 256; 7440 num_ah = 1024 * 128; 7441 ctx_pg->entries = num_mr + num_ah; 7442 if (ctx->mrav_entry_size) { 7443 mem_size = ctx->mrav_entry_size * ctx_pg->entries; 7444 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV]; 7445 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init); 7446 if (rc) 7447 return rc; 7448 } 7449 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 7450 if (ctx->mrav_num_entries_units) 7451 ctx_pg->entries = 7452 ((num_mr / ctx->mrav_num_entries_units) << 16) | 7453 (num_ah / ctx->mrav_num_entries_units); 7454 7455 ctx_pg = &ctx->tim_mem; 7456 ctx_pg->entries = ctx->qp_mem.entries; 7457 if (ctx->tim_entry_size) { 7458 mem_size = ctx->tim_entry_size * ctx_pg->entries; 7459 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL); 7460 if (rc) 7461 return rc; 7462 } 7463 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 7464 7465 skip_rdma: 7466 min = ctx->tqm_min_entries_per_ring; 7467 entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries + 7468 2 * (extra_qps + ctx->qp_min_qp1_entries) + min; 7469 entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple); 7470 entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries); 7471 entries = roundup(entries, ctx->tqm_entries_multiple); 7472 entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring); 7473 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) { 7474 ctx_pg = ctx->tqm_mem[i]; 7475 ctx_pg->entries = i ? entries : entries_sp; 7476 if (ctx->tqm_entry_size) { 7477 mem_size = ctx->tqm_entry_size * ctx_pg->entries; 7478 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, 7479 NULL); 7480 if (rc) 7481 return rc; 7482 } 7483 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 7484 } 7485 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 7486 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 7487 if (rc) { 7488 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 7489 rc); 7490 return rc; 7491 } 7492 ctx->flags |= BNXT_CTX_FLAG_INITED; 7493 return 0; 7494 } 7495 7496 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 7497 { 7498 struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 7499 struct hwrm_func_resource_qcaps_input req = {0}; 7500 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7501 int rc; 7502 7503 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1); 7504 req.fid = cpu_to_le16(0xffff); 7505 7506 mutex_lock(&bp->hwrm_cmd_lock); 7507 rc = _hwrm_send_message_silent(bp, &req, sizeof(req), 7508 HWRM_CMD_TIMEOUT); 7509 if (rc) 7510 goto hwrm_func_resc_qcaps_exit; 7511 7512 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 7513 if (!all) 7514 goto hwrm_func_resc_qcaps_exit; 7515 7516 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 7517 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7518 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 7519 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7520 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 7521 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7522 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 7523 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7524 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 7525 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 7526 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 7527 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7528 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 7529 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7530 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 7531 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7532 7533 if (bp->flags & BNXT_FLAG_CHIP_P5) { 7534 u16 max_msix = le16_to_cpu(resp->max_msix); 7535 7536 hw_resc->max_nqs = max_msix; 7537 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 7538 } 7539 7540 if (BNXT_PF(bp)) { 7541 struct bnxt_pf_info *pf = &bp->pf; 7542 7543 pf->vf_resv_strategy = 7544 le16_to_cpu(resp->vf_reservation_strategy); 7545 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 7546 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 7547 } 7548 hwrm_func_resc_qcaps_exit: 7549 mutex_unlock(&bp->hwrm_cmd_lock); 7550 return rc; 7551 } 7552 7553 /* bp->hwrm_cmd_lock already held. */ 7554 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) 7555 { 7556 struct hwrm_port_mac_ptp_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 7557 struct hwrm_port_mac_ptp_qcfg_input req = {0}; 7558 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 7559 u8 flags; 7560 int rc; 7561 7562 if (bp->hwrm_spec_code < 0x10801) { 7563 rc = -ENODEV; 7564 goto no_ptp; 7565 } 7566 7567 req.port_id = cpu_to_le16(bp->pf.port_id); 7568 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_MAC_PTP_QCFG, -1, -1); 7569 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7570 if (rc) 7571 goto no_ptp; 7572 7573 flags = resp->flags; 7574 if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { 7575 rc = -ENODEV; 7576 goto no_ptp; 7577 } 7578 if (!ptp) { 7579 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); 7580 if (!ptp) 7581 return -ENOMEM; 7582 ptp->bp = bp; 7583 bp->ptp_cfg = ptp; 7584 } 7585 if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) { 7586 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); 7587 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); 7588 } else if (bp->flags & BNXT_FLAG_CHIP_P5) { 7589 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; 7590 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; 7591 } else { 7592 rc = -ENODEV; 7593 goto no_ptp; 7594 } 7595 rc = bnxt_ptp_init(bp); 7596 if (!rc) 7597 return 0; 7598 7599 netdev_warn(bp->dev, "PTP initialization failed.\n"); 7600 7601 no_ptp: 7602 bnxt_ptp_clear(bp); 7603 kfree(ptp); 7604 bp->ptp_cfg = NULL; 7605 return rc; 7606 } 7607 7608 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 7609 { 7610 int rc = 0; 7611 struct hwrm_func_qcaps_input req = {0}; 7612 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 7613 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7614 u32 flags, flags_ext; 7615 7616 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1); 7617 req.fid = cpu_to_le16(0xffff); 7618 7619 mutex_lock(&bp->hwrm_cmd_lock); 7620 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7621 if (rc) 7622 goto hwrm_func_qcaps_exit; 7623 7624 flags = le32_to_cpu(resp->flags); 7625 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 7626 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 7627 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 7628 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 7629 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 7630 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 7631 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 7632 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 7633 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 7634 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 7635 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 7636 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 7637 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 7638 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 7639 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 7640 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 7641 7642 flags_ext = le32_to_cpu(resp->flags_ext); 7643 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 7644 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 7645 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED)) 7646 bp->fw_cap |= BNXT_FW_CAP_PTP_PPS; 7647 7648 bp->tx_push_thresh = 0; 7649 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 7650 BNXT_FW_MAJ(bp) > 217) 7651 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 7652 7653 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7654 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7655 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7656 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7657 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 7658 if (!hw_resc->max_hw_ring_grps) 7659 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 7660 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7661 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7662 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7663 7664 if (BNXT_PF(bp)) { 7665 struct bnxt_pf_info *pf = &bp->pf; 7666 7667 pf->fw_fid = le16_to_cpu(resp->fid); 7668 pf->port_id = le16_to_cpu(resp->port_id); 7669 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 7670 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 7671 pf->max_vfs = le16_to_cpu(resp->max_vfs); 7672 pf->max_encap_records = le32_to_cpu(resp->max_encap_records); 7673 pf->max_decap_records = le32_to_cpu(resp->max_decap_records); 7674 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 7675 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 7676 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 7677 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 7678 bp->flags &= ~BNXT_FLAG_WOL_CAP; 7679 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 7680 bp->flags |= BNXT_FLAG_WOL_CAP; 7681 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { 7682 __bnxt_hwrm_ptp_qcfg(bp); 7683 } else { 7684 bnxt_ptp_clear(bp); 7685 kfree(bp->ptp_cfg); 7686 bp->ptp_cfg = NULL; 7687 } 7688 } else { 7689 #ifdef CONFIG_BNXT_SRIOV 7690 struct bnxt_vf_info *vf = &bp->vf; 7691 7692 vf->fw_fid = le16_to_cpu(resp->fid); 7693 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 7694 #endif 7695 } 7696 7697 hwrm_func_qcaps_exit: 7698 mutex_unlock(&bp->hwrm_cmd_lock); 7699 return rc; 7700 } 7701 7702 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 7703 7704 static int bnxt_hwrm_func_qcaps(struct bnxt *bp) 7705 { 7706 int rc; 7707 7708 rc = __bnxt_hwrm_func_qcaps(bp); 7709 if (rc) 7710 return rc; 7711 rc = bnxt_hwrm_queue_qportcfg(bp); 7712 if (rc) { 7713 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 7714 return rc; 7715 } 7716 if (bp->hwrm_spec_code >= 0x10803) { 7717 rc = bnxt_alloc_ctx_mem(bp); 7718 if (rc) 7719 return rc; 7720 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 7721 if (!rc) 7722 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 7723 } 7724 return 0; 7725 } 7726 7727 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 7728 { 7729 struct hwrm_cfa_adv_flow_mgnt_qcaps_input req = {0}; 7730 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 7731 int rc = 0; 7732 u32 flags; 7733 7734 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 7735 return 0; 7736 7737 resp = bp->hwrm_cmd_resp_addr; 7738 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS, -1, -1); 7739 7740 mutex_lock(&bp->hwrm_cmd_lock); 7741 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7742 if (rc) 7743 goto hwrm_cfa_adv_qcaps_exit; 7744 7745 flags = le32_to_cpu(resp->flags); 7746 if (flags & 7747 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 7748 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 7749 7750 hwrm_cfa_adv_qcaps_exit: 7751 mutex_unlock(&bp->hwrm_cmd_lock); 7752 return rc; 7753 } 7754 7755 static int __bnxt_alloc_fw_health(struct bnxt *bp) 7756 { 7757 if (bp->fw_health) 7758 return 0; 7759 7760 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 7761 if (!bp->fw_health) 7762 return -ENOMEM; 7763 7764 return 0; 7765 } 7766 7767 static int bnxt_alloc_fw_health(struct bnxt *bp) 7768 { 7769 int rc; 7770 7771 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 7772 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 7773 return 0; 7774 7775 rc = __bnxt_alloc_fw_health(bp); 7776 if (rc) { 7777 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 7778 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 7779 return rc; 7780 } 7781 7782 return 0; 7783 } 7784 7785 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 7786 { 7787 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 7788 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 7789 BNXT_FW_HEALTH_WIN_MAP_OFF); 7790 } 7791 7792 bool bnxt_is_fw_healthy(struct bnxt *bp) 7793 { 7794 if (bp->fw_health && bp->fw_health->status_reliable) { 7795 u32 fw_status; 7796 7797 fw_status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 7798 if (fw_status && !BNXT_FW_IS_HEALTHY(fw_status)) 7799 return false; 7800 } 7801 7802 return true; 7803 } 7804 7805 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 7806 { 7807 struct bnxt_fw_health *fw_health = bp->fw_health; 7808 u32 reg_type; 7809 7810 if (!fw_health || !fw_health->status_reliable) 7811 return; 7812 7813 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 7814 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 7815 fw_health->status_reliable = false; 7816 } 7817 7818 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 7819 { 7820 void __iomem *hs; 7821 u32 status_loc; 7822 u32 reg_type; 7823 u32 sig; 7824 7825 if (bp->fw_health) 7826 bp->fw_health->status_reliable = false; 7827 7828 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 7829 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 7830 7831 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 7832 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 7833 if (!bp->chip_num) { 7834 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 7835 bp->chip_num = readl(bp->bar0 + 7836 BNXT_FW_HEALTH_WIN_BASE + 7837 BNXT_GRC_REG_CHIP_NUM); 7838 } 7839 if (!BNXT_CHIP_P5(bp)) 7840 return; 7841 7842 status_loc = BNXT_GRC_REG_STATUS_P5 | 7843 BNXT_FW_HEALTH_REG_TYPE_BAR0; 7844 } else { 7845 status_loc = readl(hs + offsetof(struct hcomm_status, 7846 fw_status_loc)); 7847 } 7848 7849 if (__bnxt_alloc_fw_health(bp)) { 7850 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 7851 return; 7852 } 7853 7854 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 7855 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 7856 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 7857 __bnxt_map_fw_health_reg(bp, status_loc); 7858 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 7859 BNXT_FW_HEALTH_WIN_OFF(status_loc); 7860 } 7861 7862 bp->fw_health->status_reliable = true; 7863 } 7864 7865 static int bnxt_map_fw_health_regs(struct bnxt *bp) 7866 { 7867 struct bnxt_fw_health *fw_health = bp->fw_health; 7868 u32 reg_base = 0xffffffff; 7869 int i; 7870 7871 bp->fw_health->status_reliable = false; 7872 /* Only pre-map the monitoring GRC registers using window 3 */ 7873 for (i = 0; i < 4; i++) { 7874 u32 reg = fw_health->regs[i]; 7875 7876 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 7877 continue; 7878 if (reg_base == 0xffffffff) 7879 reg_base = reg & BNXT_GRC_BASE_MASK; 7880 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 7881 return -ERANGE; 7882 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 7883 } 7884 bp->fw_health->status_reliable = true; 7885 if (reg_base == 0xffffffff) 7886 return 0; 7887 7888 __bnxt_map_fw_health_reg(bp, reg_base); 7889 return 0; 7890 } 7891 7892 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 7893 { 7894 struct hwrm_error_recovery_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 7895 struct bnxt_fw_health *fw_health = bp->fw_health; 7896 struct hwrm_error_recovery_qcfg_input req = {0}; 7897 int rc, i; 7898 7899 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 7900 return 0; 7901 7902 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_ERROR_RECOVERY_QCFG, -1, -1); 7903 mutex_lock(&bp->hwrm_cmd_lock); 7904 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7905 if (rc) 7906 goto err_recovery_out; 7907 fw_health->flags = le32_to_cpu(resp->flags); 7908 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 7909 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 7910 rc = -EINVAL; 7911 goto err_recovery_out; 7912 } 7913 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 7914 fw_health->master_func_wait_dsecs = 7915 le32_to_cpu(resp->master_func_wait_period); 7916 fw_health->normal_func_wait_dsecs = 7917 le32_to_cpu(resp->normal_func_wait_period); 7918 fw_health->post_reset_wait_dsecs = 7919 le32_to_cpu(resp->master_func_wait_period_after_reset); 7920 fw_health->post_reset_max_wait_dsecs = 7921 le32_to_cpu(resp->max_bailout_time_after_reset); 7922 fw_health->regs[BNXT_FW_HEALTH_REG] = 7923 le32_to_cpu(resp->fw_health_status_reg); 7924 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 7925 le32_to_cpu(resp->fw_heartbeat_reg); 7926 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 7927 le32_to_cpu(resp->fw_reset_cnt_reg); 7928 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 7929 le32_to_cpu(resp->reset_inprogress_reg); 7930 fw_health->fw_reset_inprog_reg_mask = 7931 le32_to_cpu(resp->reset_inprogress_reg_mask); 7932 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 7933 if (fw_health->fw_reset_seq_cnt >= 16) { 7934 rc = -EINVAL; 7935 goto err_recovery_out; 7936 } 7937 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 7938 fw_health->fw_reset_seq_regs[i] = 7939 le32_to_cpu(resp->reset_reg[i]); 7940 fw_health->fw_reset_seq_vals[i] = 7941 le32_to_cpu(resp->reset_reg_val[i]); 7942 fw_health->fw_reset_seq_delay_msec[i] = 7943 resp->delay_after_reset[i]; 7944 } 7945 err_recovery_out: 7946 mutex_unlock(&bp->hwrm_cmd_lock); 7947 if (!rc) 7948 rc = bnxt_map_fw_health_regs(bp); 7949 if (rc) 7950 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 7951 return rc; 7952 } 7953 7954 static int bnxt_hwrm_func_reset(struct bnxt *bp) 7955 { 7956 struct hwrm_func_reset_input req = {0}; 7957 7958 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1); 7959 req.enables = 0; 7960 7961 return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT); 7962 } 7963 7964 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 7965 { 7966 struct hwrm_nvm_get_dev_info_output nvm_info; 7967 7968 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 7969 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 7970 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 7971 nvm_info.nvm_cfg_ver_upd); 7972 } 7973 7974 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 7975 { 7976 int rc = 0; 7977 struct hwrm_queue_qportcfg_input req = {0}; 7978 struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr; 7979 u8 i, j, *qptr; 7980 bool no_rdma; 7981 7982 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1); 7983 7984 mutex_lock(&bp->hwrm_cmd_lock); 7985 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7986 if (rc) 7987 goto qportcfg_exit; 7988 7989 if (!resp->max_configurable_queues) { 7990 rc = -EINVAL; 7991 goto qportcfg_exit; 7992 } 7993 bp->max_tc = resp->max_configurable_queues; 7994 bp->max_lltc = resp->max_configurable_lossless_queues; 7995 if (bp->max_tc > BNXT_MAX_QUEUE) 7996 bp->max_tc = BNXT_MAX_QUEUE; 7997 7998 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 7999 qptr = &resp->queue_id0; 8000 for (i = 0, j = 0; i < bp->max_tc; i++) { 8001 bp->q_info[j].queue_id = *qptr; 8002 bp->q_ids[i] = *qptr++; 8003 bp->q_info[j].queue_profile = *qptr++; 8004 bp->tc_to_qidx[j] = j; 8005 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 8006 (no_rdma && BNXT_PF(bp))) 8007 j++; 8008 } 8009 bp->max_q = bp->max_tc; 8010 bp->max_tc = max_t(u8, j, 1); 8011 8012 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 8013 bp->max_tc = 1; 8014 8015 if (bp->max_lltc > bp->max_tc) 8016 bp->max_lltc = bp->max_tc; 8017 8018 qportcfg_exit: 8019 mutex_unlock(&bp->hwrm_cmd_lock); 8020 return rc; 8021 } 8022 8023 static int __bnxt_hwrm_ver_get(struct bnxt *bp, bool silent) 8024 { 8025 struct hwrm_ver_get_input req = {0}; 8026 int rc; 8027 8028 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1); 8029 req.hwrm_intf_maj = HWRM_VERSION_MAJOR; 8030 req.hwrm_intf_min = HWRM_VERSION_MINOR; 8031 req.hwrm_intf_upd = HWRM_VERSION_UPDATE; 8032 8033 rc = bnxt_hwrm_do_send_msg(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT, 8034 silent); 8035 return rc; 8036 } 8037 8038 static int bnxt_hwrm_ver_get(struct bnxt *bp) 8039 { 8040 struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr; 8041 u16 fw_maj, fw_min, fw_bld, fw_rsv; 8042 u32 dev_caps_cfg, hwrm_ver; 8043 int rc, len; 8044 8045 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 8046 mutex_lock(&bp->hwrm_cmd_lock); 8047 rc = __bnxt_hwrm_ver_get(bp, false); 8048 if (rc) 8049 goto hwrm_ver_get_exit; 8050 8051 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 8052 8053 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 8054 resp->hwrm_intf_min_8b << 8 | 8055 resp->hwrm_intf_upd_8b; 8056 if (resp->hwrm_intf_maj_8b < 1) { 8057 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 8058 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 8059 resp->hwrm_intf_upd_8b); 8060 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 8061 } 8062 8063 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 8064 HWRM_VERSION_UPDATE; 8065 8066 if (bp->hwrm_spec_code > hwrm_ver) 8067 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 8068 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 8069 HWRM_VERSION_UPDATE); 8070 else 8071 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 8072 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 8073 resp->hwrm_intf_upd_8b); 8074 8075 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 8076 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 8077 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 8078 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 8079 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 8080 len = FW_VER_STR_LEN; 8081 } else { 8082 fw_maj = resp->hwrm_fw_maj_8b; 8083 fw_min = resp->hwrm_fw_min_8b; 8084 fw_bld = resp->hwrm_fw_bld_8b; 8085 fw_rsv = resp->hwrm_fw_rsvd_8b; 8086 len = BC_HWRM_STR_LEN; 8087 } 8088 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 8089 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 8090 fw_rsv); 8091 8092 if (strlen(resp->active_pkg_name)) { 8093 int fw_ver_len = strlen(bp->fw_ver_str); 8094 8095 snprintf(bp->fw_ver_str + fw_ver_len, 8096 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 8097 resp->active_pkg_name); 8098 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 8099 } 8100 8101 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 8102 if (!bp->hwrm_cmd_timeout) 8103 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 8104 8105 if (resp->hwrm_intf_maj_8b >= 1) { 8106 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 8107 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 8108 } 8109 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 8110 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 8111 8112 bp->chip_num = le16_to_cpu(resp->chip_num); 8113 bp->chip_rev = resp->chip_rev; 8114 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 8115 !resp->chip_metal) 8116 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 8117 8118 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 8119 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 8120 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 8121 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 8122 8123 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 8124 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 8125 8126 if (dev_caps_cfg & 8127 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 8128 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 8129 8130 if (dev_caps_cfg & 8131 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 8132 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 8133 8134 if (dev_caps_cfg & 8135 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 8136 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 8137 8138 hwrm_ver_get_exit: 8139 mutex_unlock(&bp->hwrm_cmd_lock); 8140 return rc; 8141 } 8142 8143 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 8144 { 8145 struct hwrm_fw_set_time_input req = {0}; 8146 struct tm tm; 8147 time64_t now = ktime_get_real_seconds(); 8148 8149 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 8150 bp->hwrm_spec_code < 0x10400) 8151 return -EOPNOTSUPP; 8152 8153 time64_to_tm(now, 0, &tm); 8154 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1); 8155 req.year = cpu_to_le16(1900 + tm.tm_year); 8156 req.month = 1 + tm.tm_mon; 8157 req.day = tm.tm_mday; 8158 req.hour = tm.tm_hour; 8159 req.minute = tm.tm_min; 8160 req.second = tm.tm_sec; 8161 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8162 } 8163 8164 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 8165 { 8166 u64 sw_tmp; 8167 8168 hw &= mask; 8169 sw_tmp = (*sw & ~mask) | hw; 8170 if (hw < (*sw & mask)) 8171 sw_tmp += mask + 1; 8172 WRITE_ONCE(*sw, sw_tmp); 8173 } 8174 8175 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 8176 int count, bool ignore_zero) 8177 { 8178 int i; 8179 8180 for (i = 0; i < count; i++) { 8181 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 8182 8183 if (ignore_zero && !hw) 8184 continue; 8185 8186 if (masks[i] == -1ULL) 8187 sw_stats[i] = hw; 8188 else 8189 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 8190 } 8191 } 8192 8193 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 8194 { 8195 if (!stats->hw_stats) 8196 return; 8197 8198 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 8199 stats->hw_masks, stats->len / 8, false); 8200 } 8201 8202 static void bnxt_accumulate_all_stats(struct bnxt *bp) 8203 { 8204 struct bnxt_stats_mem *ring0_stats; 8205 bool ignore_zero = false; 8206 int i; 8207 8208 /* Chip bug. Counter intermittently becomes 0. */ 8209 if (bp->flags & BNXT_FLAG_CHIP_P5) 8210 ignore_zero = true; 8211 8212 for (i = 0; i < bp->cp_nr_rings; i++) { 8213 struct bnxt_napi *bnapi = bp->bnapi[i]; 8214 struct bnxt_cp_ring_info *cpr; 8215 struct bnxt_stats_mem *stats; 8216 8217 cpr = &bnapi->cp_ring; 8218 stats = &cpr->stats; 8219 if (!i) 8220 ring0_stats = stats; 8221 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 8222 ring0_stats->hw_masks, 8223 ring0_stats->len / 8, ignore_zero); 8224 } 8225 if (bp->flags & BNXT_FLAG_PORT_STATS) { 8226 struct bnxt_stats_mem *stats = &bp->port_stats; 8227 __le64 *hw_stats = stats->hw_stats; 8228 u64 *sw_stats = stats->sw_stats; 8229 u64 *masks = stats->hw_masks; 8230 int cnt; 8231 8232 cnt = sizeof(struct rx_port_stats) / 8; 8233 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 8234 8235 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8236 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8237 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8238 cnt = sizeof(struct tx_port_stats) / 8; 8239 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 8240 } 8241 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 8242 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 8243 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 8244 } 8245 } 8246 8247 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 8248 { 8249 struct bnxt_pf_info *pf = &bp->pf; 8250 struct hwrm_port_qstats_input req = {0}; 8251 8252 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 8253 return 0; 8254 8255 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 8256 return -EOPNOTSUPP; 8257 8258 req.flags = flags; 8259 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1); 8260 req.port_id = cpu_to_le16(pf->port_id); 8261 req.tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 8262 BNXT_TX_PORT_STATS_BYTE_OFFSET); 8263 req.rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 8264 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8265 } 8266 8267 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 8268 { 8269 struct hwrm_port_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr; 8270 struct hwrm_queue_pri2cos_qcfg_input req2 = {0}; 8271 struct hwrm_port_qstats_ext_input req = {0}; 8272 struct bnxt_pf_info *pf = &bp->pf; 8273 u32 tx_stat_size; 8274 int rc; 8275 8276 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 8277 return 0; 8278 8279 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 8280 return -EOPNOTSUPP; 8281 8282 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1); 8283 req.flags = flags; 8284 req.port_id = cpu_to_le16(pf->port_id); 8285 req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 8286 req.rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 8287 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 8288 sizeof(struct tx_port_stats_ext) : 0; 8289 req.tx_stat_size = cpu_to_le16(tx_stat_size); 8290 req.tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 8291 mutex_lock(&bp->hwrm_cmd_lock); 8292 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8293 if (!rc) { 8294 bp->fw_rx_stats_ext_size = le16_to_cpu(resp->rx_stat_size) / 8; 8295 bp->fw_tx_stats_ext_size = tx_stat_size ? 8296 le16_to_cpu(resp->tx_stat_size) / 8 : 0; 8297 } else { 8298 bp->fw_rx_stats_ext_size = 0; 8299 bp->fw_tx_stats_ext_size = 0; 8300 } 8301 if (flags) 8302 goto qstats_done; 8303 8304 if (bp->fw_tx_stats_ext_size <= 8305 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 8306 mutex_unlock(&bp->hwrm_cmd_lock); 8307 bp->pri2cos_valid = 0; 8308 return rc; 8309 } 8310 8311 bnxt_hwrm_cmd_hdr_init(bp, &req2, HWRM_QUEUE_PRI2COS_QCFG, -1, -1); 8312 req2.flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 8313 8314 rc = _hwrm_send_message(bp, &req2, sizeof(req2), HWRM_CMD_TIMEOUT); 8315 if (!rc) { 8316 struct hwrm_queue_pri2cos_qcfg_output *resp2; 8317 u8 *pri2cos; 8318 int i, j; 8319 8320 resp2 = bp->hwrm_cmd_resp_addr; 8321 pri2cos = &resp2->pri0_cos_queue_id; 8322 for (i = 0; i < 8; i++) { 8323 u8 queue_id = pri2cos[i]; 8324 u8 queue_idx; 8325 8326 /* Per port queue IDs start from 0, 10, 20, etc */ 8327 queue_idx = queue_id % 10; 8328 if (queue_idx > BNXT_MAX_QUEUE) { 8329 bp->pri2cos_valid = false; 8330 goto qstats_done; 8331 } 8332 for (j = 0; j < bp->max_q; j++) { 8333 if (bp->q_ids[j] == queue_id) 8334 bp->pri2cos_idx[i] = queue_idx; 8335 } 8336 } 8337 bp->pri2cos_valid = 1; 8338 } 8339 qstats_done: 8340 mutex_unlock(&bp->hwrm_cmd_lock); 8341 return rc; 8342 } 8343 8344 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 8345 { 8346 if (bp->vxlan_fw_dst_port_id != INVALID_HW_RING_ID) 8347 bnxt_hwrm_tunnel_dst_port_free( 8348 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 8349 if (bp->nge_fw_dst_port_id != INVALID_HW_RING_ID) 8350 bnxt_hwrm_tunnel_dst_port_free( 8351 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 8352 } 8353 8354 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 8355 { 8356 int rc, i; 8357 u32 tpa_flags = 0; 8358 8359 if (set_tpa) 8360 tpa_flags = bp->flags & BNXT_FLAG_TPA; 8361 else if (BNXT_NO_FW_ACCESS(bp)) 8362 return 0; 8363 for (i = 0; i < bp->nr_vnics; i++) { 8364 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags); 8365 if (rc) { 8366 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 8367 i, rc); 8368 return rc; 8369 } 8370 } 8371 return 0; 8372 } 8373 8374 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 8375 { 8376 int i; 8377 8378 for (i = 0; i < bp->nr_vnics; i++) 8379 bnxt_hwrm_vnic_set_rss(bp, i, false); 8380 } 8381 8382 static void bnxt_clear_vnic(struct bnxt *bp) 8383 { 8384 if (!bp->vnic_info) 8385 return; 8386 8387 bnxt_hwrm_clear_vnic_filter(bp); 8388 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) { 8389 /* clear all RSS setting before free vnic ctx */ 8390 bnxt_hwrm_clear_vnic_rss(bp); 8391 bnxt_hwrm_vnic_ctx_free(bp); 8392 } 8393 /* before free the vnic, undo the vnic tpa settings */ 8394 if (bp->flags & BNXT_FLAG_TPA) 8395 bnxt_set_tpa(bp, false); 8396 bnxt_hwrm_vnic_free(bp); 8397 if (bp->flags & BNXT_FLAG_CHIP_P5) 8398 bnxt_hwrm_vnic_ctx_free(bp); 8399 } 8400 8401 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 8402 bool irq_re_init) 8403 { 8404 bnxt_clear_vnic(bp); 8405 bnxt_hwrm_ring_free(bp, close_path); 8406 bnxt_hwrm_ring_grp_free(bp); 8407 if (irq_re_init) { 8408 bnxt_hwrm_stat_ctx_free(bp); 8409 bnxt_hwrm_free_tunnel_ports(bp); 8410 } 8411 } 8412 8413 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 8414 { 8415 struct hwrm_func_cfg_input req = {0}; 8416 8417 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 8418 req.fid = cpu_to_le16(0xffff); 8419 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 8420 if (br_mode == BRIDGE_MODE_VEB) 8421 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 8422 else if (br_mode == BRIDGE_MODE_VEPA) 8423 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 8424 else 8425 return -EINVAL; 8426 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8427 } 8428 8429 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 8430 { 8431 struct hwrm_func_cfg_input req = {0}; 8432 8433 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 8434 return 0; 8435 8436 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 8437 req.fid = cpu_to_le16(0xffff); 8438 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 8439 req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 8440 if (size == 128) 8441 req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 8442 8443 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8444 } 8445 8446 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8447 { 8448 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 8449 int rc; 8450 8451 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 8452 goto skip_rss_ctx; 8453 8454 /* allocate context for vnic */ 8455 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0); 8456 if (rc) { 8457 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8458 vnic_id, rc); 8459 goto vnic_setup_err; 8460 } 8461 bp->rsscos_nr_ctxs++; 8462 8463 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8464 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1); 8465 if (rc) { 8466 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 8467 vnic_id, rc); 8468 goto vnic_setup_err; 8469 } 8470 bp->rsscos_nr_ctxs++; 8471 } 8472 8473 skip_rss_ctx: 8474 /* configure default vnic, ring grp */ 8475 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8476 if (rc) { 8477 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8478 vnic_id, rc); 8479 goto vnic_setup_err; 8480 } 8481 8482 /* Enable RSS hashing on vnic */ 8483 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true); 8484 if (rc) { 8485 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 8486 vnic_id, rc); 8487 goto vnic_setup_err; 8488 } 8489 8490 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8491 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8492 if (rc) { 8493 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8494 vnic_id, rc); 8495 } 8496 } 8497 8498 vnic_setup_err: 8499 return rc; 8500 } 8501 8502 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id) 8503 { 8504 int rc, i, nr_ctxs; 8505 8506 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 8507 for (i = 0; i < nr_ctxs; i++) { 8508 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i); 8509 if (rc) { 8510 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 8511 vnic_id, i, rc); 8512 break; 8513 } 8514 bp->rsscos_nr_ctxs++; 8515 } 8516 if (i < nr_ctxs) 8517 return -ENOMEM; 8518 8519 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true); 8520 if (rc) { 8521 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 8522 vnic_id, rc); 8523 return rc; 8524 } 8525 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8526 if (rc) { 8527 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8528 vnic_id, rc); 8529 return rc; 8530 } 8531 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8532 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8533 if (rc) { 8534 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8535 vnic_id, rc); 8536 } 8537 } 8538 return rc; 8539 } 8540 8541 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8542 { 8543 if (bp->flags & BNXT_FLAG_CHIP_P5) 8544 return __bnxt_setup_vnic_p5(bp, vnic_id); 8545 else 8546 return __bnxt_setup_vnic(bp, vnic_id); 8547 } 8548 8549 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 8550 { 8551 #ifdef CONFIG_RFS_ACCEL 8552 int i, rc = 0; 8553 8554 if (bp->flags & BNXT_FLAG_CHIP_P5) 8555 return 0; 8556 8557 for (i = 0; i < bp->rx_nr_rings; i++) { 8558 struct bnxt_vnic_info *vnic; 8559 u16 vnic_id = i + 1; 8560 u16 ring_id = i; 8561 8562 if (vnic_id >= bp->nr_vnics) 8563 break; 8564 8565 vnic = &bp->vnic_info[vnic_id]; 8566 vnic->flags |= BNXT_VNIC_RFS_FLAG; 8567 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 8568 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 8569 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1); 8570 if (rc) { 8571 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8572 vnic_id, rc); 8573 break; 8574 } 8575 rc = bnxt_setup_vnic(bp, vnic_id); 8576 if (rc) 8577 break; 8578 } 8579 return rc; 8580 #else 8581 return 0; 8582 #endif 8583 } 8584 8585 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 8586 static bool bnxt_promisc_ok(struct bnxt *bp) 8587 { 8588 #ifdef CONFIG_BNXT_SRIOV 8589 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 8590 return false; 8591 #endif 8592 return true; 8593 } 8594 8595 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 8596 { 8597 unsigned int rc = 0; 8598 8599 rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1); 8600 if (rc) { 8601 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8602 rc); 8603 return rc; 8604 } 8605 8606 rc = bnxt_hwrm_vnic_cfg(bp, 1); 8607 if (rc) { 8608 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8609 rc); 8610 return rc; 8611 } 8612 return rc; 8613 } 8614 8615 static int bnxt_cfg_rx_mode(struct bnxt *); 8616 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 8617 8618 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 8619 { 8620 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 8621 int rc = 0; 8622 unsigned int rx_nr_rings = bp->rx_nr_rings; 8623 8624 if (irq_re_init) { 8625 rc = bnxt_hwrm_stat_ctx_alloc(bp); 8626 if (rc) { 8627 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 8628 rc); 8629 goto err_out; 8630 } 8631 } 8632 8633 rc = bnxt_hwrm_ring_alloc(bp); 8634 if (rc) { 8635 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 8636 goto err_out; 8637 } 8638 8639 rc = bnxt_hwrm_ring_grp_alloc(bp); 8640 if (rc) { 8641 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 8642 goto err_out; 8643 } 8644 8645 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8646 rx_nr_rings--; 8647 8648 /* default vnic 0 */ 8649 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings); 8650 if (rc) { 8651 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 8652 goto err_out; 8653 } 8654 8655 rc = bnxt_setup_vnic(bp, 0); 8656 if (rc) 8657 goto err_out; 8658 8659 if (bp->flags & BNXT_FLAG_RFS) { 8660 rc = bnxt_alloc_rfs_vnics(bp); 8661 if (rc) 8662 goto err_out; 8663 } 8664 8665 if (bp->flags & BNXT_FLAG_TPA) { 8666 rc = bnxt_set_tpa(bp, true); 8667 if (rc) 8668 goto err_out; 8669 } 8670 8671 if (BNXT_VF(bp)) 8672 bnxt_update_vf_mac(bp); 8673 8674 /* Filter for default vnic 0 */ 8675 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 8676 if (rc) { 8677 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 8678 goto err_out; 8679 } 8680 vnic->uc_filter_count = 1; 8681 8682 vnic->rx_mask = 0; 8683 if (bp->dev->flags & IFF_BROADCAST) 8684 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 8685 8686 if (bp->dev->flags & IFF_PROMISC) 8687 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 8688 8689 if (bp->dev->flags & IFF_ALLMULTI) { 8690 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 8691 vnic->mc_list_count = 0; 8692 } else { 8693 u32 mask = 0; 8694 8695 bnxt_mc_list_updated(bp, &mask); 8696 vnic->rx_mask |= mask; 8697 } 8698 8699 rc = bnxt_cfg_rx_mode(bp); 8700 if (rc) 8701 goto err_out; 8702 8703 rc = bnxt_hwrm_set_coal(bp); 8704 if (rc) 8705 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 8706 rc); 8707 8708 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8709 rc = bnxt_setup_nitroa0_vnic(bp); 8710 if (rc) 8711 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 8712 rc); 8713 } 8714 8715 if (BNXT_VF(bp)) { 8716 bnxt_hwrm_func_qcfg(bp); 8717 netdev_update_features(bp->dev); 8718 } 8719 8720 return 0; 8721 8722 err_out: 8723 bnxt_hwrm_resource_free(bp, 0, true); 8724 8725 return rc; 8726 } 8727 8728 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 8729 { 8730 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 8731 return 0; 8732 } 8733 8734 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 8735 { 8736 bnxt_init_cp_rings(bp); 8737 bnxt_init_rx_rings(bp); 8738 bnxt_init_tx_rings(bp); 8739 bnxt_init_ring_grps(bp, irq_re_init); 8740 bnxt_init_vnics(bp); 8741 8742 return bnxt_init_chip(bp, irq_re_init); 8743 } 8744 8745 static int bnxt_set_real_num_queues(struct bnxt *bp) 8746 { 8747 int rc; 8748 struct net_device *dev = bp->dev; 8749 8750 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 8751 bp->tx_nr_rings_xdp); 8752 if (rc) 8753 return rc; 8754 8755 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 8756 if (rc) 8757 return rc; 8758 8759 #ifdef CONFIG_RFS_ACCEL 8760 if (bp->flags & BNXT_FLAG_RFS) 8761 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 8762 #endif 8763 8764 return rc; 8765 } 8766 8767 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 8768 bool shared) 8769 { 8770 int _rx = *rx, _tx = *tx; 8771 8772 if (shared) { 8773 *rx = min_t(int, _rx, max); 8774 *tx = min_t(int, _tx, max); 8775 } else { 8776 if (max < 2) 8777 return -ENOMEM; 8778 8779 while (_rx + _tx > max) { 8780 if (_rx > _tx && _rx > 1) 8781 _rx--; 8782 else if (_tx > 1) 8783 _tx--; 8784 } 8785 *rx = _rx; 8786 *tx = _tx; 8787 } 8788 return 0; 8789 } 8790 8791 static void bnxt_setup_msix(struct bnxt *bp) 8792 { 8793 const int len = sizeof(bp->irq_tbl[0].name); 8794 struct net_device *dev = bp->dev; 8795 int tcs, i; 8796 8797 tcs = netdev_get_num_tc(dev); 8798 if (tcs) { 8799 int i, off, count; 8800 8801 for (i = 0; i < tcs; i++) { 8802 count = bp->tx_nr_rings_per_tc; 8803 off = i * count; 8804 netdev_set_tc_queue(dev, i, count, off); 8805 } 8806 } 8807 8808 for (i = 0; i < bp->cp_nr_rings; i++) { 8809 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 8810 char *attr; 8811 8812 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 8813 attr = "TxRx"; 8814 else if (i < bp->rx_nr_rings) 8815 attr = "rx"; 8816 else 8817 attr = "tx"; 8818 8819 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 8820 attr, i); 8821 bp->irq_tbl[map_idx].handler = bnxt_msix; 8822 } 8823 } 8824 8825 static void bnxt_setup_inta(struct bnxt *bp) 8826 { 8827 const int len = sizeof(bp->irq_tbl[0].name); 8828 8829 if (netdev_get_num_tc(bp->dev)) 8830 netdev_reset_tc(bp->dev); 8831 8832 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx", 8833 0); 8834 bp->irq_tbl[0].handler = bnxt_inta; 8835 } 8836 8837 static int bnxt_init_int_mode(struct bnxt *bp); 8838 8839 static int bnxt_setup_int_mode(struct bnxt *bp) 8840 { 8841 int rc; 8842 8843 if (!bp->irq_tbl) { 8844 rc = bnxt_init_int_mode(bp); 8845 if (rc || !bp->irq_tbl) 8846 return rc ?: -ENODEV; 8847 } 8848 8849 if (bp->flags & BNXT_FLAG_USING_MSIX) 8850 bnxt_setup_msix(bp); 8851 else 8852 bnxt_setup_inta(bp); 8853 8854 rc = bnxt_set_real_num_queues(bp); 8855 return rc; 8856 } 8857 8858 #ifdef CONFIG_RFS_ACCEL 8859 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 8860 { 8861 return bp->hw_resc.max_rsscos_ctxs; 8862 } 8863 8864 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 8865 { 8866 return bp->hw_resc.max_vnics; 8867 } 8868 #endif 8869 8870 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 8871 { 8872 return bp->hw_resc.max_stat_ctxs; 8873 } 8874 8875 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 8876 { 8877 return bp->hw_resc.max_cp_rings; 8878 } 8879 8880 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 8881 { 8882 unsigned int cp = bp->hw_resc.max_cp_rings; 8883 8884 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 8885 cp -= bnxt_get_ulp_msix_num(bp); 8886 8887 return cp; 8888 } 8889 8890 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 8891 { 8892 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 8893 8894 if (bp->flags & BNXT_FLAG_CHIP_P5) 8895 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 8896 8897 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 8898 } 8899 8900 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 8901 { 8902 bp->hw_resc.max_irqs = max_irqs; 8903 } 8904 8905 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 8906 { 8907 unsigned int cp; 8908 8909 cp = bnxt_get_max_func_cp_rings_for_en(bp); 8910 if (bp->flags & BNXT_FLAG_CHIP_P5) 8911 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 8912 else 8913 return cp - bp->cp_nr_rings; 8914 } 8915 8916 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 8917 { 8918 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 8919 } 8920 8921 int bnxt_get_avail_msix(struct bnxt *bp, int num) 8922 { 8923 int max_cp = bnxt_get_max_func_cp_rings(bp); 8924 int max_irq = bnxt_get_max_func_irqs(bp); 8925 int total_req = bp->cp_nr_rings + num; 8926 int max_idx, avail_msix; 8927 8928 max_idx = bp->total_irqs; 8929 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 8930 max_idx = min_t(int, bp->total_irqs, max_cp); 8931 avail_msix = max_idx - bp->cp_nr_rings; 8932 if (!BNXT_NEW_RM(bp) || avail_msix >= num) 8933 return avail_msix; 8934 8935 if (max_irq < total_req) { 8936 num = max_irq - bp->cp_nr_rings; 8937 if (num <= 0) 8938 return 0; 8939 } 8940 return num; 8941 } 8942 8943 static int bnxt_get_num_msix(struct bnxt *bp) 8944 { 8945 if (!BNXT_NEW_RM(bp)) 8946 return bnxt_get_max_func_irqs(bp); 8947 8948 return bnxt_nq_rings_in_use(bp); 8949 } 8950 8951 static int bnxt_init_msix(struct bnxt *bp) 8952 { 8953 int i, total_vecs, max, rc = 0, min = 1, ulp_msix; 8954 struct msix_entry *msix_ent; 8955 8956 total_vecs = bnxt_get_num_msix(bp); 8957 max = bnxt_get_max_func_irqs(bp); 8958 if (total_vecs > max) 8959 total_vecs = max; 8960 8961 if (!total_vecs) 8962 return 0; 8963 8964 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); 8965 if (!msix_ent) 8966 return -ENOMEM; 8967 8968 for (i = 0; i < total_vecs; i++) { 8969 msix_ent[i].entry = i; 8970 msix_ent[i].vector = 0; 8971 } 8972 8973 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 8974 min = 2; 8975 8976 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs); 8977 ulp_msix = bnxt_get_ulp_msix_num(bp); 8978 if (total_vecs < 0 || total_vecs < ulp_msix) { 8979 rc = -ENODEV; 8980 goto msix_setup_exit; 8981 } 8982 8983 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); 8984 if (bp->irq_tbl) { 8985 for (i = 0; i < total_vecs; i++) 8986 bp->irq_tbl[i].vector = msix_ent[i].vector; 8987 8988 bp->total_irqs = total_vecs; 8989 /* Trim rings based upon num of vectors allocated */ 8990 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 8991 total_vecs - ulp_msix, min == 1); 8992 if (rc) 8993 goto msix_setup_exit; 8994 8995 bp->cp_nr_rings = (min == 1) ? 8996 max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 8997 bp->tx_nr_rings + bp->rx_nr_rings; 8998 8999 } else { 9000 rc = -ENOMEM; 9001 goto msix_setup_exit; 9002 } 9003 bp->flags |= BNXT_FLAG_USING_MSIX; 9004 kfree(msix_ent); 9005 return 0; 9006 9007 msix_setup_exit: 9008 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc); 9009 kfree(bp->irq_tbl); 9010 bp->irq_tbl = NULL; 9011 pci_disable_msix(bp->pdev); 9012 kfree(msix_ent); 9013 return rc; 9014 } 9015 9016 static int bnxt_init_inta(struct bnxt *bp) 9017 { 9018 bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL); 9019 if (!bp->irq_tbl) 9020 return -ENOMEM; 9021 9022 bp->total_irqs = 1; 9023 bp->rx_nr_rings = 1; 9024 bp->tx_nr_rings = 1; 9025 bp->cp_nr_rings = 1; 9026 bp->flags |= BNXT_FLAG_SHARED_RINGS; 9027 bp->irq_tbl[0].vector = bp->pdev->irq; 9028 return 0; 9029 } 9030 9031 static int bnxt_init_int_mode(struct bnxt *bp) 9032 { 9033 int rc = -ENODEV; 9034 9035 if (bp->flags & BNXT_FLAG_MSIX_CAP) 9036 rc = bnxt_init_msix(bp); 9037 9038 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) { 9039 /* fallback to INTA */ 9040 rc = bnxt_init_inta(bp); 9041 } 9042 return rc; 9043 } 9044 9045 static void bnxt_clear_int_mode(struct bnxt *bp) 9046 { 9047 if (bp->flags & BNXT_FLAG_USING_MSIX) 9048 pci_disable_msix(bp->pdev); 9049 9050 kfree(bp->irq_tbl); 9051 bp->irq_tbl = NULL; 9052 bp->flags &= ~BNXT_FLAG_USING_MSIX; 9053 } 9054 9055 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 9056 { 9057 int tcs = netdev_get_num_tc(bp->dev); 9058 bool irq_cleared = false; 9059 int rc; 9060 9061 if (!bnxt_need_reserve_rings(bp)) 9062 return 0; 9063 9064 if (irq_re_init && BNXT_NEW_RM(bp) && 9065 bnxt_get_num_msix(bp) != bp->total_irqs) { 9066 bnxt_ulp_irq_stop(bp); 9067 bnxt_clear_int_mode(bp); 9068 irq_cleared = true; 9069 } 9070 rc = __bnxt_reserve_rings(bp); 9071 if (irq_cleared) { 9072 if (!rc) 9073 rc = bnxt_init_int_mode(bp); 9074 bnxt_ulp_irq_restart(bp, rc); 9075 } 9076 if (rc) { 9077 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 9078 return rc; 9079 } 9080 if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) { 9081 netdev_err(bp->dev, "tx ring reservation failure\n"); 9082 netdev_reset_tc(bp->dev); 9083 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 9084 return -ENOMEM; 9085 } 9086 return 0; 9087 } 9088 9089 static void bnxt_free_irq(struct bnxt *bp) 9090 { 9091 struct bnxt_irq *irq; 9092 int i; 9093 9094 #ifdef CONFIG_RFS_ACCEL 9095 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 9096 bp->dev->rx_cpu_rmap = NULL; 9097 #endif 9098 if (!bp->irq_tbl || !bp->bnapi) 9099 return; 9100 9101 for (i = 0; i < bp->cp_nr_rings; i++) { 9102 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9103 9104 irq = &bp->irq_tbl[map_idx]; 9105 if (irq->requested) { 9106 if (irq->have_cpumask) { 9107 irq_set_affinity_hint(irq->vector, NULL); 9108 free_cpumask_var(irq->cpu_mask); 9109 irq->have_cpumask = 0; 9110 } 9111 free_irq(irq->vector, bp->bnapi[i]); 9112 } 9113 9114 irq->requested = 0; 9115 } 9116 } 9117 9118 static int bnxt_request_irq(struct bnxt *bp) 9119 { 9120 int i, j, rc = 0; 9121 unsigned long flags = 0; 9122 #ifdef CONFIG_RFS_ACCEL 9123 struct cpu_rmap *rmap; 9124 #endif 9125 9126 rc = bnxt_setup_int_mode(bp); 9127 if (rc) { 9128 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 9129 rc); 9130 return rc; 9131 } 9132 #ifdef CONFIG_RFS_ACCEL 9133 rmap = bp->dev->rx_cpu_rmap; 9134 #endif 9135 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) 9136 flags = IRQF_SHARED; 9137 9138 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 9139 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9140 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 9141 9142 #ifdef CONFIG_RFS_ACCEL 9143 if (rmap && bp->bnapi[i]->rx_ring) { 9144 rc = irq_cpu_rmap_add(rmap, irq->vector); 9145 if (rc) 9146 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 9147 j); 9148 j++; 9149 } 9150 #endif 9151 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 9152 bp->bnapi[i]); 9153 if (rc) 9154 break; 9155 9156 irq->requested = 1; 9157 9158 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 9159 int numa_node = dev_to_node(&bp->pdev->dev); 9160 9161 irq->have_cpumask = 1; 9162 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 9163 irq->cpu_mask); 9164 rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask); 9165 if (rc) { 9166 netdev_warn(bp->dev, 9167 "Set affinity failed, IRQ = %d\n", 9168 irq->vector); 9169 break; 9170 } 9171 } 9172 } 9173 return rc; 9174 } 9175 9176 static void bnxt_del_napi(struct bnxt *bp) 9177 { 9178 int i; 9179 9180 if (!bp->bnapi) 9181 return; 9182 9183 for (i = 0; i < bp->cp_nr_rings; i++) { 9184 struct bnxt_napi *bnapi = bp->bnapi[i]; 9185 9186 __netif_napi_del(&bnapi->napi); 9187 } 9188 /* We called __netif_napi_del(), we need 9189 * to respect an RCU grace period before freeing napi structures. 9190 */ 9191 synchronize_net(); 9192 } 9193 9194 static void bnxt_init_napi(struct bnxt *bp) 9195 { 9196 int i; 9197 unsigned int cp_nr_rings = bp->cp_nr_rings; 9198 struct bnxt_napi *bnapi; 9199 9200 if (bp->flags & BNXT_FLAG_USING_MSIX) { 9201 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 9202 9203 if (bp->flags & BNXT_FLAG_CHIP_P5) 9204 poll_fn = bnxt_poll_p5; 9205 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 9206 cp_nr_rings--; 9207 for (i = 0; i < cp_nr_rings; i++) { 9208 bnapi = bp->bnapi[i]; 9209 netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64); 9210 } 9211 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 9212 bnapi = bp->bnapi[cp_nr_rings]; 9213 netif_napi_add(bp->dev, &bnapi->napi, 9214 bnxt_poll_nitroa0, 64); 9215 } 9216 } else { 9217 bnapi = bp->bnapi[0]; 9218 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64); 9219 } 9220 } 9221 9222 static void bnxt_disable_napi(struct bnxt *bp) 9223 { 9224 int i; 9225 9226 if (!bp->bnapi || 9227 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 9228 return; 9229 9230 for (i = 0; i < bp->cp_nr_rings; i++) { 9231 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 9232 9233 if (bp->bnapi[i]->rx_ring) 9234 cancel_work_sync(&cpr->dim.work); 9235 9236 napi_disable(&bp->bnapi[i]->napi); 9237 } 9238 } 9239 9240 static void bnxt_enable_napi(struct bnxt *bp) 9241 { 9242 int i; 9243 9244 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 9245 for (i = 0; i < bp->cp_nr_rings; i++) { 9246 struct bnxt_napi *bnapi = bp->bnapi[i]; 9247 struct bnxt_cp_ring_info *cpr; 9248 9249 cpr = &bnapi->cp_ring; 9250 if (bnapi->in_reset) 9251 cpr->sw_stats.rx.rx_resets++; 9252 bnapi->in_reset = false; 9253 9254 if (bnapi->rx_ring) { 9255 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 9256 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 9257 } 9258 napi_enable(&bnapi->napi); 9259 } 9260 } 9261 9262 void bnxt_tx_disable(struct bnxt *bp) 9263 { 9264 int i; 9265 struct bnxt_tx_ring_info *txr; 9266 9267 if (bp->tx_ring) { 9268 for (i = 0; i < bp->tx_nr_rings; i++) { 9269 txr = &bp->tx_ring[i]; 9270 txr->dev_state = BNXT_DEV_STATE_CLOSING; 9271 } 9272 } 9273 /* Drop carrier first to prevent TX timeout */ 9274 netif_carrier_off(bp->dev); 9275 /* Stop all TX queues */ 9276 netif_tx_disable(bp->dev); 9277 } 9278 9279 void bnxt_tx_enable(struct bnxt *bp) 9280 { 9281 int i; 9282 struct bnxt_tx_ring_info *txr; 9283 9284 for (i = 0; i < bp->tx_nr_rings; i++) { 9285 txr = &bp->tx_ring[i]; 9286 txr->dev_state = 0; 9287 } 9288 netif_tx_wake_all_queues(bp->dev); 9289 if (bp->link_info.link_up) 9290 netif_carrier_on(bp->dev); 9291 } 9292 9293 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 9294 { 9295 u8 active_fec = link_info->active_fec_sig_mode & 9296 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 9297 9298 switch (active_fec) { 9299 default: 9300 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 9301 return "None"; 9302 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 9303 return "Clause 74 BaseR"; 9304 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 9305 return "Clause 91 RS(528,514)"; 9306 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 9307 return "Clause 91 RS544_1XN"; 9308 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 9309 return "Clause 91 RS(544,514)"; 9310 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 9311 return "Clause 91 RS272_1XN"; 9312 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 9313 return "Clause 91 RS(272,257)"; 9314 } 9315 } 9316 9317 static void bnxt_report_link(struct bnxt *bp) 9318 { 9319 if (bp->link_info.link_up) { 9320 const char *signal = ""; 9321 const char *flow_ctrl; 9322 const char *duplex; 9323 u32 speed; 9324 u16 fec; 9325 9326 netif_carrier_on(bp->dev); 9327 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 9328 if (speed == SPEED_UNKNOWN) { 9329 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 9330 return; 9331 } 9332 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 9333 duplex = "full"; 9334 else 9335 duplex = "half"; 9336 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 9337 flow_ctrl = "ON - receive & transmit"; 9338 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 9339 flow_ctrl = "ON - transmit"; 9340 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 9341 flow_ctrl = "ON - receive"; 9342 else 9343 flow_ctrl = "none"; 9344 if (bp->link_info.phy_qcfg_resp.option_flags & 9345 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 9346 u8 sig_mode = bp->link_info.active_fec_sig_mode & 9347 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 9348 switch (sig_mode) { 9349 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 9350 signal = "(NRZ) "; 9351 break; 9352 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 9353 signal = "(PAM4) "; 9354 break; 9355 default: 9356 break; 9357 } 9358 } 9359 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 9360 speed, signal, duplex, flow_ctrl); 9361 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 9362 netdev_info(bp->dev, "EEE is %s\n", 9363 bp->eee.eee_active ? "active" : 9364 "not active"); 9365 fec = bp->link_info.fec_cfg; 9366 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 9367 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 9368 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 9369 bnxt_report_fec(&bp->link_info)); 9370 } else { 9371 netif_carrier_off(bp->dev); 9372 netdev_err(bp->dev, "NIC Link is Down\n"); 9373 } 9374 } 9375 9376 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 9377 { 9378 if (!resp->supported_speeds_auto_mode && 9379 !resp->supported_speeds_force_mode && 9380 !resp->supported_pam4_speeds_auto_mode && 9381 !resp->supported_pam4_speeds_force_mode) 9382 return true; 9383 return false; 9384 } 9385 9386 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 9387 { 9388 int rc = 0; 9389 struct hwrm_port_phy_qcaps_input req = {0}; 9390 struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 9391 struct bnxt_link_info *link_info = &bp->link_info; 9392 9393 if (bp->hwrm_spec_code < 0x10201) 9394 return 0; 9395 9396 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1); 9397 9398 mutex_lock(&bp->hwrm_cmd_lock); 9399 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9400 if (rc) 9401 goto hwrm_phy_qcaps_exit; 9402 9403 bp->phy_flags = resp->flags; 9404 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 9405 struct ethtool_eee *eee = &bp->eee; 9406 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 9407 9408 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9409 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 9410 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 9411 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 9412 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 9413 } 9414 9415 if (bp->hwrm_spec_code >= 0x10a01) { 9416 if (bnxt_phy_qcaps_no_speed(resp)) { 9417 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 9418 netdev_warn(bp->dev, "Ethernet link disabled\n"); 9419 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 9420 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 9421 netdev_info(bp->dev, "Ethernet link enabled\n"); 9422 /* Phy re-enabled, reprobe the speeds */ 9423 link_info->support_auto_speeds = 0; 9424 link_info->support_pam4_auto_speeds = 0; 9425 } 9426 } 9427 if (resp->supported_speeds_auto_mode) 9428 link_info->support_auto_speeds = 9429 le16_to_cpu(resp->supported_speeds_auto_mode); 9430 if (resp->supported_pam4_speeds_auto_mode) 9431 link_info->support_pam4_auto_speeds = 9432 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 9433 9434 bp->port_count = resp->port_cnt; 9435 9436 hwrm_phy_qcaps_exit: 9437 mutex_unlock(&bp->hwrm_cmd_lock); 9438 return rc; 9439 } 9440 9441 static bool bnxt_support_dropped(u16 advertising, u16 supported) 9442 { 9443 u16 diff = advertising ^ supported; 9444 9445 return ((supported | diff) != supported); 9446 } 9447 9448 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 9449 { 9450 int rc = 0; 9451 struct bnxt_link_info *link_info = &bp->link_info; 9452 struct hwrm_port_phy_qcfg_input req = {0}; 9453 struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 9454 u8 link_up = link_info->link_up; 9455 bool support_changed = false; 9456 9457 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1); 9458 9459 mutex_lock(&bp->hwrm_cmd_lock); 9460 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9461 if (rc) { 9462 mutex_unlock(&bp->hwrm_cmd_lock); 9463 return rc; 9464 } 9465 9466 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 9467 link_info->phy_link_status = resp->link; 9468 link_info->duplex = resp->duplex_cfg; 9469 if (bp->hwrm_spec_code >= 0x10800) 9470 link_info->duplex = resp->duplex_state; 9471 link_info->pause = resp->pause; 9472 link_info->auto_mode = resp->auto_mode; 9473 link_info->auto_pause_setting = resp->auto_pause; 9474 link_info->lp_pause = resp->link_partner_adv_pause; 9475 link_info->force_pause_setting = resp->force_pause; 9476 link_info->duplex_setting = resp->duplex_cfg; 9477 if (link_info->phy_link_status == BNXT_LINK_LINK) 9478 link_info->link_speed = le16_to_cpu(resp->link_speed); 9479 else 9480 link_info->link_speed = 0; 9481 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 9482 link_info->force_pam4_link_speed = 9483 le16_to_cpu(resp->force_pam4_link_speed); 9484 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 9485 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 9486 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 9487 link_info->auto_pam4_link_speeds = 9488 le16_to_cpu(resp->auto_pam4_link_speed_mask); 9489 link_info->lp_auto_link_speeds = 9490 le16_to_cpu(resp->link_partner_adv_speeds); 9491 link_info->lp_auto_pam4_link_speeds = 9492 resp->link_partner_pam4_adv_speeds; 9493 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 9494 link_info->phy_ver[0] = resp->phy_maj; 9495 link_info->phy_ver[1] = resp->phy_min; 9496 link_info->phy_ver[2] = resp->phy_bld; 9497 link_info->media_type = resp->media_type; 9498 link_info->phy_type = resp->phy_type; 9499 link_info->transceiver = resp->xcvr_pkg_type; 9500 link_info->phy_addr = resp->eee_config_phy_addr & 9501 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 9502 link_info->module_status = resp->module_status; 9503 9504 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 9505 struct ethtool_eee *eee = &bp->eee; 9506 u16 fw_speeds; 9507 9508 eee->eee_active = 0; 9509 if (resp->eee_config_phy_addr & 9510 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 9511 eee->eee_active = 1; 9512 fw_speeds = le16_to_cpu( 9513 resp->link_partner_adv_eee_link_speed_mask); 9514 eee->lp_advertised = 9515 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9516 } 9517 9518 /* Pull initial EEE config */ 9519 if (!chng_link_state) { 9520 if (resp->eee_config_phy_addr & 9521 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 9522 eee->eee_enabled = 1; 9523 9524 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 9525 eee->advertised = 9526 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9527 9528 if (resp->eee_config_phy_addr & 9529 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 9530 __le32 tmr; 9531 9532 eee->tx_lpi_enabled = 1; 9533 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 9534 eee->tx_lpi_timer = le32_to_cpu(tmr) & 9535 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 9536 } 9537 } 9538 } 9539 9540 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 9541 if (bp->hwrm_spec_code >= 0x10504) { 9542 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 9543 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 9544 } 9545 /* TODO: need to add more logic to report VF link */ 9546 if (chng_link_state) { 9547 if (link_info->phy_link_status == BNXT_LINK_LINK) 9548 link_info->link_up = 1; 9549 else 9550 link_info->link_up = 0; 9551 if (link_up != link_info->link_up) 9552 bnxt_report_link(bp); 9553 } else { 9554 /* alwasy link down if not require to update link state */ 9555 link_info->link_up = 0; 9556 } 9557 mutex_unlock(&bp->hwrm_cmd_lock); 9558 9559 if (!BNXT_PHY_CFG_ABLE(bp)) 9560 return 0; 9561 9562 /* Check if any advertised speeds are no longer supported. The caller 9563 * holds the link_lock mutex, so we can modify link_info settings. 9564 */ 9565 if (bnxt_support_dropped(link_info->advertising, 9566 link_info->support_auto_speeds)) { 9567 link_info->advertising = link_info->support_auto_speeds; 9568 support_changed = true; 9569 } 9570 if (bnxt_support_dropped(link_info->advertising_pam4, 9571 link_info->support_pam4_auto_speeds)) { 9572 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 9573 support_changed = true; 9574 } 9575 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 9576 bnxt_hwrm_set_link_setting(bp, true, false); 9577 return 0; 9578 } 9579 9580 static void bnxt_get_port_module_status(struct bnxt *bp) 9581 { 9582 struct bnxt_link_info *link_info = &bp->link_info; 9583 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 9584 u8 module_status; 9585 9586 if (bnxt_update_link(bp, true)) 9587 return; 9588 9589 module_status = link_info->module_status; 9590 switch (module_status) { 9591 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 9592 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 9593 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 9594 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 9595 bp->pf.port_id); 9596 if (bp->hwrm_spec_code >= 0x10201) { 9597 netdev_warn(bp->dev, "Module part number %s\n", 9598 resp->phy_vendor_partnumber); 9599 } 9600 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 9601 netdev_warn(bp->dev, "TX is disabled\n"); 9602 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 9603 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 9604 } 9605 } 9606 9607 static void 9608 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9609 { 9610 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 9611 if (bp->hwrm_spec_code >= 0x10201) 9612 req->auto_pause = 9613 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 9614 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9615 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 9616 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9617 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 9618 req->enables |= 9619 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9620 } else { 9621 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9622 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 9623 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9624 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 9625 req->enables |= 9626 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 9627 if (bp->hwrm_spec_code >= 0x10201) { 9628 req->auto_pause = req->force_pause; 9629 req->enables |= cpu_to_le32( 9630 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9631 } 9632 } 9633 } 9634 9635 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9636 { 9637 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 9638 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 9639 if (bp->link_info.advertising) { 9640 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 9641 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 9642 } 9643 if (bp->link_info.advertising_pam4) { 9644 req->enables |= 9645 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 9646 req->auto_link_pam4_speed_mask = 9647 cpu_to_le16(bp->link_info.advertising_pam4); 9648 } 9649 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 9650 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 9651 } else { 9652 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 9653 if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 9654 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9655 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 9656 } else { 9657 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9658 } 9659 } 9660 9661 /* tell chimp that the setting takes effect immediately */ 9662 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 9663 } 9664 9665 int bnxt_hwrm_set_pause(struct bnxt *bp) 9666 { 9667 struct hwrm_port_phy_cfg_input req = {0}; 9668 int rc; 9669 9670 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); 9671 bnxt_hwrm_set_pause_common(bp, &req); 9672 9673 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 9674 bp->link_info.force_link_chng) 9675 bnxt_hwrm_set_link_common(bp, &req); 9676 9677 mutex_lock(&bp->hwrm_cmd_lock); 9678 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9679 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 9680 /* since changing of pause setting doesn't trigger any link 9681 * change event, the driver needs to update the current pause 9682 * result upon successfully return of the phy_cfg command 9683 */ 9684 bp->link_info.pause = 9685 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 9686 bp->link_info.auto_pause_setting = 0; 9687 if (!bp->link_info.force_link_chng) 9688 bnxt_report_link(bp); 9689 } 9690 bp->link_info.force_link_chng = false; 9691 mutex_unlock(&bp->hwrm_cmd_lock); 9692 return rc; 9693 } 9694 9695 static void bnxt_hwrm_set_eee(struct bnxt *bp, 9696 struct hwrm_port_phy_cfg_input *req) 9697 { 9698 struct ethtool_eee *eee = &bp->eee; 9699 9700 if (eee->eee_enabled) { 9701 u16 eee_speeds; 9702 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 9703 9704 if (eee->tx_lpi_enabled) 9705 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 9706 else 9707 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 9708 9709 req->flags |= cpu_to_le32(flags); 9710 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 9711 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 9712 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 9713 } else { 9714 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 9715 } 9716 } 9717 9718 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 9719 { 9720 struct hwrm_port_phy_cfg_input req = {0}; 9721 9722 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); 9723 if (set_pause) 9724 bnxt_hwrm_set_pause_common(bp, &req); 9725 9726 bnxt_hwrm_set_link_common(bp, &req); 9727 9728 if (set_eee) 9729 bnxt_hwrm_set_eee(bp, &req); 9730 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9731 } 9732 9733 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 9734 { 9735 struct hwrm_port_phy_cfg_input req = {0}; 9736 9737 if (!BNXT_SINGLE_PF(bp)) 9738 return 0; 9739 9740 if (pci_num_vf(bp->pdev) && 9741 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 9742 return 0; 9743 9744 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); 9745 req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 9746 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9747 } 9748 9749 static int bnxt_fw_init_one(struct bnxt *bp); 9750 9751 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 9752 { 9753 #ifdef CONFIG_TEE_BNXT_FW 9754 int rc = tee_bnxt_fw_load(); 9755 9756 if (rc) 9757 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 9758 9759 return rc; 9760 #else 9761 netdev_err(bp->dev, "OP-TEE not supported\n"); 9762 return -ENODEV; 9763 #endif 9764 } 9765 9766 static int bnxt_try_recover_fw(struct bnxt *bp) 9767 { 9768 if (bp->fw_health && bp->fw_health->status_reliable) { 9769 int retry = 0, rc; 9770 u32 sts; 9771 9772 mutex_lock(&bp->hwrm_cmd_lock); 9773 do { 9774 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 9775 rc = __bnxt_hwrm_ver_get(bp, true); 9776 if (!BNXT_FW_IS_BOOTING(sts) && 9777 !BNXT_FW_IS_RECOVERING(sts)) 9778 break; 9779 retry++; 9780 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 9781 mutex_unlock(&bp->hwrm_cmd_lock); 9782 9783 if (!BNXT_FW_IS_HEALTHY(sts)) { 9784 netdev_err(bp->dev, 9785 "Firmware not responding, status: 0x%x\n", 9786 sts); 9787 rc = -ENODEV; 9788 } 9789 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 9790 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 9791 return bnxt_fw_reset_via_optee(bp); 9792 } 9793 return rc; 9794 } 9795 9796 return -ENODEV; 9797 } 9798 9799 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 9800 { 9801 struct hwrm_func_drv_if_change_output *resp = bp->hwrm_cmd_resp_addr; 9802 struct hwrm_func_drv_if_change_input req = {0}; 9803 bool fw_reset = !bp->irq_tbl; 9804 bool resc_reinit = false; 9805 int rc, retry = 0; 9806 u32 flags = 0; 9807 9808 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 9809 return 0; 9810 9811 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_IF_CHANGE, -1, -1); 9812 if (up) 9813 req.flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 9814 mutex_lock(&bp->hwrm_cmd_lock); 9815 while (retry < BNXT_FW_IF_RETRY) { 9816 rc = _hwrm_send_message(bp, &req, sizeof(req), 9817 HWRM_CMD_TIMEOUT); 9818 if (rc != -EAGAIN) 9819 break; 9820 9821 msleep(50); 9822 retry++; 9823 } 9824 if (!rc) 9825 flags = le32_to_cpu(resp->flags); 9826 mutex_unlock(&bp->hwrm_cmd_lock); 9827 9828 if (rc == -EAGAIN) 9829 return rc; 9830 if (rc && up) { 9831 rc = bnxt_try_recover_fw(bp); 9832 fw_reset = true; 9833 } 9834 if (rc) 9835 return rc; 9836 9837 if (!up) { 9838 bnxt_inv_fw_health_reg(bp); 9839 return 0; 9840 } 9841 9842 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 9843 resc_reinit = true; 9844 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE) 9845 fw_reset = true; 9846 else if (bp->fw_health && !bp->fw_health->status_reliable) 9847 bnxt_try_map_fw_health_reg(bp); 9848 9849 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 9850 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 9851 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 9852 return -ENODEV; 9853 } 9854 if (resc_reinit || fw_reset) { 9855 if (fw_reset) { 9856 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9857 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 9858 bnxt_ulp_stop(bp); 9859 bnxt_free_ctx_mem(bp); 9860 kfree(bp->ctx); 9861 bp->ctx = NULL; 9862 bnxt_dcb_free(bp); 9863 rc = bnxt_fw_init_one(bp); 9864 if (rc) { 9865 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9866 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 9867 return rc; 9868 } 9869 bnxt_clear_int_mode(bp); 9870 rc = bnxt_init_int_mode(bp); 9871 if (rc) { 9872 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9873 netdev_err(bp->dev, "init int mode failed\n"); 9874 return rc; 9875 } 9876 } 9877 if (BNXT_NEW_RM(bp)) { 9878 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9879 9880 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 9881 if (rc) 9882 netdev_err(bp->dev, "resc_qcaps failed\n"); 9883 9884 hw_resc->resv_cp_rings = 0; 9885 hw_resc->resv_stat_ctxs = 0; 9886 hw_resc->resv_irqs = 0; 9887 hw_resc->resv_tx_rings = 0; 9888 hw_resc->resv_rx_rings = 0; 9889 hw_resc->resv_hw_ring_grps = 0; 9890 hw_resc->resv_vnics = 0; 9891 if (!fw_reset) { 9892 bp->tx_nr_rings = 0; 9893 bp->rx_nr_rings = 0; 9894 } 9895 } 9896 } 9897 return rc; 9898 } 9899 9900 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 9901 { 9902 struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 9903 struct hwrm_port_led_qcaps_input req = {0}; 9904 struct bnxt_pf_info *pf = &bp->pf; 9905 int rc; 9906 9907 bp->num_leds = 0; 9908 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 9909 return 0; 9910 9911 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1); 9912 req.port_id = cpu_to_le16(pf->port_id); 9913 mutex_lock(&bp->hwrm_cmd_lock); 9914 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9915 if (rc) { 9916 mutex_unlock(&bp->hwrm_cmd_lock); 9917 return rc; 9918 } 9919 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 9920 int i; 9921 9922 bp->num_leds = resp->num_leds; 9923 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 9924 bp->num_leds); 9925 for (i = 0; i < bp->num_leds; i++) { 9926 struct bnxt_led_info *led = &bp->leds[i]; 9927 __le16 caps = led->led_state_caps; 9928 9929 if (!led->led_group_id || 9930 !BNXT_LED_ALT_BLINK_CAP(caps)) { 9931 bp->num_leds = 0; 9932 break; 9933 } 9934 } 9935 } 9936 mutex_unlock(&bp->hwrm_cmd_lock); 9937 return 0; 9938 } 9939 9940 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 9941 { 9942 struct hwrm_wol_filter_alloc_input req = {0}; 9943 struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr; 9944 int rc; 9945 9946 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1); 9947 req.port_id = cpu_to_le16(bp->pf.port_id); 9948 req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 9949 req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 9950 memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN); 9951 mutex_lock(&bp->hwrm_cmd_lock); 9952 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9953 if (!rc) 9954 bp->wol_filter_id = resp->wol_filter_id; 9955 mutex_unlock(&bp->hwrm_cmd_lock); 9956 return rc; 9957 } 9958 9959 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 9960 { 9961 struct hwrm_wol_filter_free_input req = {0}; 9962 9963 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1); 9964 req.port_id = cpu_to_le16(bp->pf.port_id); 9965 req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 9966 req.wol_filter_id = bp->wol_filter_id; 9967 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9968 } 9969 9970 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 9971 { 9972 struct hwrm_wol_filter_qcfg_input req = {0}; 9973 struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 9974 u16 next_handle = 0; 9975 int rc; 9976 9977 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1); 9978 req.port_id = cpu_to_le16(bp->pf.port_id); 9979 req.handle = cpu_to_le16(handle); 9980 mutex_lock(&bp->hwrm_cmd_lock); 9981 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9982 if (!rc) { 9983 next_handle = le16_to_cpu(resp->next_handle); 9984 if (next_handle != 0) { 9985 if (resp->wol_type == 9986 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 9987 bp->wol = 1; 9988 bp->wol_filter_id = resp->wol_filter_id; 9989 } 9990 } 9991 } 9992 mutex_unlock(&bp->hwrm_cmd_lock); 9993 return next_handle; 9994 } 9995 9996 static void bnxt_get_wol_settings(struct bnxt *bp) 9997 { 9998 u16 handle = 0; 9999 10000 bp->wol = 0; 10001 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 10002 return; 10003 10004 do { 10005 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 10006 } while (handle && handle != 0xffff); 10007 } 10008 10009 #ifdef CONFIG_BNXT_HWMON 10010 static ssize_t bnxt_show_temp(struct device *dev, 10011 struct device_attribute *devattr, char *buf) 10012 { 10013 struct hwrm_temp_monitor_query_input req = {0}; 10014 struct hwrm_temp_monitor_query_output *resp; 10015 struct bnxt *bp = dev_get_drvdata(dev); 10016 u32 len = 0; 10017 int rc; 10018 10019 resp = bp->hwrm_cmd_resp_addr; 10020 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1); 10021 mutex_lock(&bp->hwrm_cmd_lock); 10022 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 10023 if (!rc) 10024 len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */ 10025 mutex_unlock(&bp->hwrm_cmd_lock); 10026 if (rc) 10027 return rc; 10028 return len; 10029 } 10030 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0); 10031 10032 static struct attribute *bnxt_attrs[] = { 10033 &sensor_dev_attr_temp1_input.dev_attr.attr, 10034 NULL 10035 }; 10036 ATTRIBUTE_GROUPS(bnxt); 10037 10038 static void bnxt_hwmon_close(struct bnxt *bp) 10039 { 10040 if (bp->hwmon_dev) { 10041 hwmon_device_unregister(bp->hwmon_dev); 10042 bp->hwmon_dev = NULL; 10043 } 10044 } 10045 10046 static void bnxt_hwmon_open(struct bnxt *bp) 10047 { 10048 struct hwrm_temp_monitor_query_input req = {0}; 10049 struct pci_dev *pdev = bp->pdev; 10050 int rc; 10051 10052 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1); 10053 rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 10054 if (rc == -EACCES || rc == -EOPNOTSUPP) { 10055 bnxt_hwmon_close(bp); 10056 return; 10057 } 10058 10059 if (bp->hwmon_dev) 10060 return; 10061 10062 bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev, 10063 DRV_MODULE_NAME, bp, 10064 bnxt_groups); 10065 if (IS_ERR(bp->hwmon_dev)) { 10066 bp->hwmon_dev = NULL; 10067 dev_warn(&pdev->dev, "Cannot register hwmon device\n"); 10068 } 10069 } 10070 #else 10071 static void bnxt_hwmon_close(struct bnxt *bp) 10072 { 10073 } 10074 10075 static void bnxt_hwmon_open(struct bnxt *bp) 10076 { 10077 } 10078 #endif 10079 10080 static bool bnxt_eee_config_ok(struct bnxt *bp) 10081 { 10082 struct ethtool_eee *eee = &bp->eee; 10083 struct bnxt_link_info *link_info = &bp->link_info; 10084 10085 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 10086 return true; 10087 10088 if (eee->eee_enabled) { 10089 u32 advertising = 10090 _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0); 10091 10092 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 10093 eee->eee_enabled = 0; 10094 return false; 10095 } 10096 if (eee->advertised & ~advertising) { 10097 eee->advertised = advertising & eee->supported; 10098 return false; 10099 } 10100 } 10101 return true; 10102 } 10103 10104 static int bnxt_update_phy_setting(struct bnxt *bp) 10105 { 10106 int rc; 10107 bool update_link = false; 10108 bool update_pause = false; 10109 bool update_eee = false; 10110 struct bnxt_link_info *link_info = &bp->link_info; 10111 10112 rc = bnxt_update_link(bp, true); 10113 if (rc) { 10114 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 10115 rc); 10116 return rc; 10117 } 10118 if (!BNXT_SINGLE_PF(bp)) 10119 return 0; 10120 10121 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 10122 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 10123 link_info->req_flow_ctrl) 10124 update_pause = true; 10125 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 10126 link_info->force_pause_setting != link_info->req_flow_ctrl) 10127 update_pause = true; 10128 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 10129 if (BNXT_AUTO_MODE(link_info->auto_mode)) 10130 update_link = true; 10131 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 10132 link_info->req_link_speed != link_info->force_link_speed) 10133 update_link = true; 10134 else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 10135 link_info->req_link_speed != link_info->force_pam4_link_speed) 10136 update_link = true; 10137 if (link_info->req_duplex != link_info->duplex_setting) 10138 update_link = true; 10139 } else { 10140 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 10141 update_link = true; 10142 if (link_info->advertising != link_info->auto_link_speeds || 10143 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 10144 update_link = true; 10145 } 10146 10147 /* The last close may have shutdown the link, so need to call 10148 * PHY_CFG to bring it back up. 10149 */ 10150 if (!bp->link_info.link_up) 10151 update_link = true; 10152 10153 if (!bnxt_eee_config_ok(bp)) 10154 update_eee = true; 10155 10156 if (update_link) 10157 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 10158 else if (update_pause) 10159 rc = bnxt_hwrm_set_pause(bp); 10160 if (rc) { 10161 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 10162 rc); 10163 return rc; 10164 } 10165 10166 return rc; 10167 } 10168 10169 /* Common routine to pre-map certain register block to different GRC window. 10170 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows 10171 * in PF and 3 windows in VF that can be customized to map in different 10172 * register blocks. 10173 */ 10174 static void bnxt_preset_reg_win(struct bnxt *bp) 10175 { 10176 if (BNXT_PF(bp)) { 10177 /* CAG registers map to GRC window #4 */ 10178 writel(BNXT_CAG_REG_BASE, 10179 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); 10180 } 10181 } 10182 10183 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 10184 10185 static int bnxt_reinit_after_abort(struct bnxt *bp) 10186 { 10187 int rc; 10188 10189 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 10190 return -EBUSY; 10191 10192 if (bp->dev->reg_state == NETREG_UNREGISTERED) 10193 return -ENODEV; 10194 10195 rc = bnxt_fw_init_one(bp); 10196 if (!rc) { 10197 bnxt_clear_int_mode(bp); 10198 rc = bnxt_init_int_mode(bp); 10199 if (!rc) { 10200 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10201 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 10202 } 10203 } 10204 return rc; 10205 } 10206 10207 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10208 { 10209 int rc = 0; 10210 10211 bnxt_preset_reg_win(bp); 10212 netif_carrier_off(bp->dev); 10213 if (irq_re_init) { 10214 /* Reserve rings now if none were reserved at driver probe. */ 10215 rc = bnxt_init_dflt_ring_mode(bp); 10216 if (rc) { 10217 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 10218 return rc; 10219 } 10220 } 10221 rc = bnxt_reserve_rings(bp, irq_re_init); 10222 if (rc) 10223 return rc; 10224 if ((bp->flags & BNXT_FLAG_RFS) && 10225 !(bp->flags & BNXT_FLAG_USING_MSIX)) { 10226 /* disable RFS if falling back to INTA */ 10227 bp->dev->hw_features &= ~NETIF_F_NTUPLE; 10228 bp->flags &= ~BNXT_FLAG_RFS; 10229 } 10230 10231 rc = bnxt_alloc_mem(bp, irq_re_init); 10232 if (rc) { 10233 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 10234 goto open_err_free_mem; 10235 } 10236 10237 if (irq_re_init) { 10238 bnxt_init_napi(bp); 10239 rc = bnxt_request_irq(bp); 10240 if (rc) { 10241 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 10242 goto open_err_irq; 10243 } 10244 } 10245 10246 rc = bnxt_init_nic(bp, irq_re_init); 10247 if (rc) { 10248 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 10249 goto open_err_irq; 10250 } 10251 10252 bnxt_enable_napi(bp); 10253 bnxt_debug_dev_init(bp); 10254 10255 if (link_re_init) { 10256 mutex_lock(&bp->link_lock); 10257 rc = bnxt_update_phy_setting(bp); 10258 mutex_unlock(&bp->link_lock); 10259 if (rc) { 10260 netdev_warn(bp->dev, "failed to update phy settings\n"); 10261 if (BNXT_SINGLE_PF(bp)) { 10262 bp->link_info.phy_retry = true; 10263 bp->link_info.phy_retry_expires = 10264 jiffies + 5 * HZ; 10265 } 10266 } 10267 } 10268 10269 if (irq_re_init) 10270 udp_tunnel_nic_reset_ntf(bp->dev); 10271 10272 set_bit(BNXT_STATE_OPEN, &bp->state); 10273 bnxt_enable_int(bp); 10274 /* Enable TX queues */ 10275 bnxt_tx_enable(bp); 10276 mod_timer(&bp->timer, jiffies + bp->current_interval); 10277 /* Poll link status and check for SFP+ module status */ 10278 bnxt_get_port_module_status(bp); 10279 10280 /* VF-reps may need to be re-opened after the PF is re-opened */ 10281 if (BNXT_PF(bp)) 10282 bnxt_vf_reps_open(bp); 10283 return 0; 10284 10285 open_err_irq: 10286 bnxt_del_napi(bp); 10287 10288 open_err_free_mem: 10289 bnxt_free_skbs(bp); 10290 bnxt_free_irq(bp); 10291 bnxt_free_mem(bp, true); 10292 return rc; 10293 } 10294 10295 /* rtnl_lock held */ 10296 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10297 { 10298 int rc = 0; 10299 10300 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 10301 rc = -EIO; 10302 if (!rc) 10303 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 10304 if (rc) { 10305 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 10306 dev_close(bp->dev); 10307 } 10308 return rc; 10309 } 10310 10311 /* rtnl_lock held, open the NIC half way by allocating all resources, but 10312 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline 10313 * self tests. 10314 */ 10315 int bnxt_half_open_nic(struct bnxt *bp) 10316 { 10317 int rc = 0; 10318 10319 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 10320 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); 10321 rc = -ENODEV; 10322 goto half_open_err; 10323 } 10324 10325 rc = bnxt_alloc_mem(bp, false); 10326 if (rc) { 10327 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 10328 goto half_open_err; 10329 } 10330 rc = bnxt_init_nic(bp, false); 10331 if (rc) { 10332 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 10333 goto half_open_err; 10334 } 10335 return 0; 10336 10337 half_open_err: 10338 bnxt_free_skbs(bp); 10339 bnxt_free_mem(bp, false); 10340 dev_close(bp->dev); 10341 return rc; 10342 } 10343 10344 /* rtnl_lock held, this call can only be made after a previous successful 10345 * call to bnxt_half_open_nic(). 10346 */ 10347 void bnxt_half_close_nic(struct bnxt *bp) 10348 { 10349 bnxt_hwrm_resource_free(bp, false, false); 10350 bnxt_free_skbs(bp); 10351 bnxt_free_mem(bp, false); 10352 } 10353 10354 static void bnxt_reenable_sriov(struct bnxt *bp) 10355 { 10356 if (BNXT_PF(bp)) { 10357 struct bnxt_pf_info *pf = &bp->pf; 10358 int n = pf->active_vfs; 10359 10360 if (n) 10361 bnxt_cfg_hw_sriov(bp, &n, true); 10362 } 10363 } 10364 10365 static int bnxt_open(struct net_device *dev) 10366 { 10367 struct bnxt *bp = netdev_priv(dev); 10368 int rc; 10369 10370 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 10371 rc = bnxt_reinit_after_abort(bp); 10372 if (rc) { 10373 if (rc == -EBUSY) 10374 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 10375 else 10376 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 10377 return -ENODEV; 10378 } 10379 } 10380 10381 rc = bnxt_hwrm_if_change(bp, true); 10382 if (rc) 10383 return rc; 10384 10385 rc = __bnxt_open_nic(bp, true, true); 10386 if (rc) { 10387 bnxt_hwrm_if_change(bp, false); 10388 } else { 10389 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 10390 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10391 bnxt_ulp_start(bp, 0); 10392 bnxt_reenable_sriov(bp); 10393 } 10394 } 10395 bnxt_hwmon_open(bp); 10396 } 10397 10398 return rc; 10399 } 10400 10401 static bool bnxt_drv_busy(struct bnxt *bp) 10402 { 10403 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 10404 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 10405 } 10406 10407 static void bnxt_get_ring_stats(struct bnxt *bp, 10408 struct rtnl_link_stats64 *stats); 10409 10410 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 10411 bool link_re_init) 10412 { 10413 /* Close the VF-reps before closing PF */ 10414 if (BNXT_PF(bp)) 10415 bnxt_vf_reps_close(bp); 10416 10417 /* Change device state to avoid TX queue wake up's */ 10418 bnxt_tx_disable(bp); 10419 10420 clear_bit(BNXT_STATE_OPEN, &bp->state); 10421 smp_mb__after_atomic(); 10422 while (bnxt_drv_busy(bp)) 10423 msleep(20); 10424 10425 /* Flush rings and and disable interrupts */ 10426 bnxt_shutdown_nic(bp, irq_re_init); 10427 10428 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 10429 10430 bnxt_debug_dev_exit(bp); 10431 bnxt_disable_napi(bp); 10432 del_timer_sync(&bp->timer); 10433 bnxt_free_skbs(bp); 10434 10435 /* Save ring stats before shutdown */ 10436 if (bp->bnapi && irq_re_init) 10437 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 10438 if (irq_re_init) { 10439 bnxt_free_irq(bp); 10440 bnxt_del_napi(bp); 10441 } 10442 bnxt_free_mem(bp, irq_re_init); 10443 } 10444 10445 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10446 { 10447 int rc = 0; 10448 10449 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10450 /* If we get here, it means firmware reset is in progress 10451 * while we are trying to close. We can safely proceed with 10452 * the close because we are holding rtnl_lock(). Some firmware 10453 * messages may fail as we proceed to close. We set the 10454 * ABORT_ERR flag here so that the FW reset thread will later 10455 * abort when it gets the rtnl_lock() and sees the flag. 10456 */ 10457 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 10458 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10459 } 10460 10461 #ifdef CONFIG_BNXT_SRIOV 10462 if (bp->sriov_cfg) { 10463 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 10464 !bp->sriov_cfg, 10465 BNXT_SRIOV_CFG_WAIT_TMO); 10466 if (rc) 10467 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n"); 10468 } 10469 #endif 10470 __bnxt_close_nic(bp, irq_re_init, link_re_init); 10471 return rc; 10472 } 10473 10474 static int bnxt_close(struct net_device *dev) 10475 { 10476 struct bnxt *bp = netdev_priv(dev); 10477 10478 bnxt_hwmon_close(bp); 10479 bnxt_close_nic(bp, true, true); 10480 bnxt_hwrm_shutdown_link(bp); 10481 bnxt_hwrm_if_change(bp, false); 10482 return 0; 10483 } 10484 10485 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 10486 u16 *val) 10487 { 10488 struct hwrm_port_phy_mdio_read_output *resp = bp->hwrm_cmd_resp_addr; 10489 struct hwrm_port_phy_mdio_read_input req = {0}; 10490 int rc; 10491 10492 if (bp->hwrm_spec_code < 0x10a00) 10493 return -EOPNOTSUPP; 10494 10495 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_READ, -1, -1); 10496 req.port_id = cpu_to_le16(bp->pf.port_id); 10497 req.phy_addr = phy_addr; 10498 req.reg_addr = cpu_to_le16(reg & 0x1f); 10499 if (mdio_phy_id_is_c45(phy_addr)) { 10500 req.cl45_mdio = 1; 10501 req.phy_addr = mdio_phy_id_prtad(phy_addr); 10502 req.dev_addr = mdio_phy_id_devad(phy_addr); 10503 req.reg_addr = cpu_to_le16(reg); 10504 } 10505 10506 mutex_lock(&bp->hwrm_cmd_lock); 10507 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 10508 if (!rc) 10509 *val = le16_to_cpu(resp->reg_data); 10510 mutex_unlock(&bp->hwrm_cmd_lock); 10511 return rc; 10512 } 10513 10514 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 10515 u16 val) 10516 { 10517 struct hwrm_port_phy_mdio_write_input req = {0}; 10518 10519 if (bp->hwrm_spec_code < 0x10a00) 10520 return -EOPNOTSUPP; 10521 10522 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_WRITE, -1, -1); 10523 req.port_id = cpu_to_le16(bp->pf.port_id); 10524 req.phy_addr = phy_addr; 10525 req.reg_addr = cpu_to_le16(reg & 0x1f); 10526 if (mdio_phy_id_is_c45(phy_addr)) { 10527 req.cl45_mdio = 1; 10528 req.phy_addr = mdio_phy_id_prtad(phy_addr); 10529 req.dev_addr = mdio_phy_id_devad(phy_addr); 10530 req.reg_addr = cpu_to_le16(reg); 10531 } 10532 req.reg_data = cpu_to_le16(val); 10533 10534 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 10535 } 10536 10537 /* rtnl_lock held */ 10538 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 10539 { 10540 struct mii_ioctl_data *mdio = if_mii(ifr); 10541 struct bnxt *bp = netdev_priv(dev); 10542 int rc; 10543 10544 switch (cmd) { 10545 case SIOCGMIIPHY: 10546 mdio->phy_id = bp->link_info.phy_addr; 10547 10548 fallthrough; 10549 case SIOCGMIIREG: { 10550 u16 mii_regval = 0; 10551 10552 if (!netif_running(dev)) 10553 return -EAGAIN; 10554 10555 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 10556 &mii_regval); 10557 mdio->val_out = mii_regval; 10558 return rc; 10559 } 10560 10561 case SIOCSMIIREG: 10562 if (!netif_running(dev)) 10563 return -EAGAIN; 10564 10565 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 10566 mdio->val_in); 10567 10568 case SIOCSHWTSTAMP: 10569 return bnxt_hwtstamp_set(dev, ifr); 10570 10571 case SIOCGHWTSTAMP: 10572 return bnxt_hwtstamp_get(dev, ifr); 10573 10574 default: 10575 /* do nothing */ 10576 break; 10577 } 10578 return -EOPNOTSUPP; 10579 } 10580 10581 static void bnxt_get_ring_stats(struct bnxt *bp, 10582 struct rtnl_link_stats64 *stats) 10583 { 10584 int i; 10585 10586 for (i = 0; i < bp->cp_nr_rings; i++) { 10587 struct bnxt_napi *bnapi = bp->bnapi[i]; 10588 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 10589 u64 *sw = cpr->stats.sw_stats; 10590 10591 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 10592 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10593 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 10594 10595 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 10596 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 10597 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 10598 10599 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 10600 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 10601 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 10602 10603 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 10604 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 10605 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 10606 10607 stats->rx_missed_errors += 10608 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 10609 10610 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10611 10612 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 10613 } 10614 } 10615 10616 static void bnxt_add_prev_stats(struct bnxt *bp, 10617 struct rtnl_link_stats64 *stats) 10618 { 10619 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 10620 10621 stats->rx_packets += prev_stats->rx_packets; 10622 stats->tx_packets += prev_stats->tx_packets; 10623 stats->rx_bytes += prev_stats->rx_bytes; 10624 stats->tx_bytes += prev_stats->tx_bytes; 10625 stats->rx_missed_errors += prev_stats->rx_missed_errors; 10626 stats->multicast += prev_stats->multicast; 10627 stats->tx_dropped += prev_stats->tx_dropped; 10628 } 10629 10630 static void 10631 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 10632 { 10633 struct bnxt *bp = netdev_priv(dev); 10634 10635 set_bit(BNXT_STATE_READ_STATS, &bp->state); 10636 /* Make sure bnxt_close_nic() sees that we are reading stats before 10637 * we check the BNXT_STATE_OPEN flag. 10638 */ 10639 smp_mb__after_atomic(); 10640 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 10641 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10642 *stats = bp->net_stats_prev; 10643 return; 10644 } 10645 10646 bnxt_get_ring_stats(bp, stats); 10647 bnxt_add_prev_stats(bp, stats); 10648 10649 if (bp->flags & BNXT_FLAG_PORT_STATS) { 10650 u64 *rx = bp->port_stats.sw_stats; 10651 u64 *tx = bp->port_stats.sw_stats + 10652 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10653 10654 stats->rx_crc_errors = 10655 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 10656 stats->rx_frame_errors = 10657 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 10658 stats->rx_length_errors = 10659 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 10660 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 10661 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 10662 stats->rx_errors = 10663 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 10664 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 10665 stats->collisions = 10666 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 10667 stats->tx_fifo_errors = 10668 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 10669 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 10670 } 10671 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10672 } 10673 10674 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 10675 { 10676 struct net_device *dev = bp->dev; 10677 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10678 struct netdev_hw_addr *ha; 10679 u8 *haddr; 10680 int mc_count = 0; 10681 bool update = false; 10682 int off = 0; 10683 10684 netdev_for_each_mc_addr(ha, dev) { 10685 if (mc_count >= BNXT_MAX_MC_ADDRS) { 10686 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10687 vnic->mc_list_count = 0; 10688 return false; 10689 } 10690 haddr = ha->addr; 10691 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 10692 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 10693 update = true; 10694 } 10695 off += ETH_ALEN; 10696 mc_count++; 10697 } 10698 if (mc_count) 10699 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 10700 10701 if (mc_count != vnic->mc_list_count) { 10702 vnic->mc_list_count = mc_count; 10703 update = true; 10704 } 10705 return update; 10706 } 10707 10708 static bool bnxt_uc_list_updated(struct bnxt *bp) 10709 { 10710 struct net_device *dev = bp->dev; 10711 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10712 struct netdev_hw_addr *ha; 10713 int off = 0; 10714 10715 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 10716 return true; 10717 10718 netdev_for_each_uc_addr(ha, dev) { 10719 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 10720 return true; 10721 10722 off += ETH_ALEN; 10723 } 10724 return false; 10725 } 10726 10727 static void bnxt_set_rx_mode(struct net_device *dev) 10728 { 10729 struct bnxt *bp = netdev_priv(dev); 10730 struct bnxt_vnic_info *vnic; 10731 bool mc_update = false; 10732 bool uc_update; 10733 u32 mask; 10734 10735 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 10736 return; 10737 10738 vnic = &bp->vnic_info[0]; 10739 mask = vnic->rx_mask; 10740 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 10741 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 10742 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 10743 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 10744 10745 if (dev->flags & IFF_PROMISC) 10746 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10747 10748 uc_update = bnxt_uc_list_updated(bp); 10749 10750 if (dev->flags & IFF_BROADCAST) 10751 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 10752 if (dev->flags & IFF_ALLMULTI) { 10753 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10754 vnic->mc_list_count = 0; 10755 } else { 10756 mc_update = bnxt_mc_list_updated(bp, &mask); 10757 } 10758 10759 if (mask != vnic->rx_mask || uc_update || mc_update) { 10760 vnic->rx_mask = mask; 10761 10762 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event); 10763 bnxt_queue_sp_work(bp); 10764 } 10765 } 10766 10767 static int bnxt_cfg_rx_mode(struct bnxt *bp) 10768 { 10769 struct net_device *dev = bp->dev; 10770 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10771 struct netdev_hw_addr *ha; 10772 int i, off = 0, rc; 10773 bool uc_update; 10774 10775 netif_addr_lock_bh(dev); 10776 uc_update = bnxt_uc_list_updated(bp); 10777 netif_addr_unlock_bh(dev); 10778 10779 if (!uc_update) 10780 goto skip_uc; 10781 10782 mutex_lock(&bp->hwrm_cmd_lock); 10783 for (i = 1; i < vnic->uc_filter_count; i++) { 10784 struct hwrm_cfa_l2_filter_free_input req = {0}; 10785 10786 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1, 10787 -1); 10788 10789 req.l2_filter_id = vnic->fw_l2_filter_id[i]; 10790 10791 rc = _hwrm_send_message(bp, &req, sizeof(req), 10792 HWRM_CMD_TIMEOUT); 10793 } 10794 mutex_unlock(&bp->hwrm_cmd_lock); 10795 10796 vnic->uc_filter_count = 1; 10797 10798 netif_addr_lock_bh(dev); 10799 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 10800 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10801 } else { 10802 netdev_for_each_uc_addr(ha, dev) { 10803 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 10804 off += ETH_ALEN; 10805 vnic->uc_filter_count++; 10806 } 10807 } 10808 netif_addr_unlock_bh(dev); 10809 10810 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 10811 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 10812 if (rc) { 10813 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", 10814 rc); 10815 vnic->uc_filter_count = i; 10816 return rc; 10817 } 10818 } 10819 10820 skip_uc: 10821 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 10822 !bnxt_promisc_ok(bp)) 10823 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10824 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 10825 if (rc && vnic->mc_list_count) { 10826 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 10827 rc); 10828 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10829 vnic->mc_list_count = 0; 10830 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 10831 } 10832 if (rc) 10833 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 10834 rc); 10835 10836 return rc; 10837 } 10838 10839 static bool bnxt_can_reserve_rings(struct bnxt *bp) 10840 { 10841 #ifdef CONFIG_BNXT_SRIOV 10842 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 10843 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 10844 10845 /* No minimum rings were provisioned by the PF. Don't 10846 * reserve rings by default when device is down. 10847 */ 10848 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 10849 return true; 10850 10851 if (!netif_running(bp->dev)) 10852 return false; 10853 } 10854 #endif 10855 return true; 10856 } 10857 10858 /* If the chip and firmware supports RFS */ 10859 static bool bnxt_rfs_supported(struct bnxt *bp) 10860 { 10861 if (bp->flags & BNXT_FLAG_CHIP_P5) { 10862 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 10863 return true; 10864 return false; 10865 } 10866 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 10867 return true; 10868 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 10869 return true; 10870 return false; 10871 } 10872 10873 /* If runtime conditions support RFS */ 10874 static bool bnxt_rfs_capable(struct bnxt *bp) 10875 { 10876 #ifdef CONFIG_RFS_ACCEL 10877 int vnics, max_vnics, max_rss_ctxs; 10878 10879 if (bp->flags & BNXT_FLAG_CHIP_P5) 10880 return bnxt_rfs_supported(bp); 10881 if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp)) 10882 return false; 10883 10884 vnics = 1 + bp->rx_nr_rings; 10885 max_vnics = bnxt_get_max_func_vnics(bp); 10886 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 10887 10888 /* RSS contexts not a limiting factor */ 10889 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 10890 max_rss_ctxs = max_vnics; 10891 if (vnics > max_vnics || vnics > max_rss_ctxs) { 10892 if (bp->rx_nr_rings > 1) 10893 netdev_warn(bp->dev, 10894 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 10895 min(max_rss_ctxs - 1, max_vnics - 1)); 10896 return false; 10897 } 10898 10899 if (!BNXT_NEW_RM(bp)) 10900 return true; 10901 10902 if (vnics == bp->hw_resc.resv_vnics) 10903 return true; 10904 10905 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics); 10906 if (vnics <= bp->hw_resc.resv_vnics) 10907 return true; 10908 10909 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 10910 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1); 10911 return false; 10912 #else 10913 return false; 10914 #endif 10915 } 10916 10917 static netdev_features_t bnxt_fix_features(struct net_device *dev, 10918 netdev_features_t features) 10919 { 10920 struct bnxt *bp = netdev_priv(dev); 10921 netdev_features_t vlan_features; 10922 10923 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp)) 10924 features &= ~NETIF_F_NTUPLE; 10925 10926 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 10927 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 10928 10929 if (!(features & NETIF_F_GRO)) 10930 features &= ~NETIF_F_GRO_HW; 10931 10932 if (features & NETIF_F_GRO_HW) 10933 features &= ~NETIF_F_LRO; 10934 10935 /* Both CTAG and STAG VLAN accelaration on the RX side have to be 10936 * turned on or off together. 10937 */ 10938 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 10939 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 10940 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 10941 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 10942 else if (vlan_features) 10943 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 10944 } 10945 #ifdef CONFIG_BNXT_SRIOV 10946 if (BNXT_VF(bp) && bp->vf.vlan) 10947 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 10948 #endif 10949 return features; 10950 } 10951 10952 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 10953 { 10954 struct bnxt *bp = netdev_priv(dev); 10955 u32 flags = bp->flags; 10956 u32 changes; 10957 int rc = 0; 10958 bool re_init = false; 10959 bool update_tpa = false; 10960 10961 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 10962 if (features & NETIF_F_GRO_HW) 10963 flags |= BNXT_FLAG_GRO; 10964 else if (features & NETIF_F_LRO) 10965 flags |= BNXT_FLAG_LRO; 10966 10967 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 10968 flags &= ~BNXT_FLAG_TPA; 10969 10970 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 10971 flags |= BNXT_FLAG_STRIP_VLAN; 10972 10973 if (features & NETIF_F_NTUPLE) 10974 flags |= BNXT_FLAG_RFS; 10975 10976 changes = flags ^ bp->flags; 10977 if (changes & BNXT_FLAG_TPA) { 10978 update_tpa = true; 10979 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 10980 (flags & BNXT_FLAG_TPA) == 0 || 10981 (bp->flags & BNXT_FLAG_CHIP_P5)) 10982 re_init = true; 10983 } 10984 10985 if (changes & ~BNXT_FLAG_TPA) 10986 re_init = true; 10987 10988 if (flags != bp->flags) { 10989 u32 old_flags = bp->flags; 10990 10991 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 10992 bp->flags = flags; 10993 if (update_tpa) 10994 bnxt_set_ring_params(bp); 10995 return rc; 10996 } 10997 10998 if (re_init) { 10999 bnxt_close_nic(bp, false, false); 11000 bp->flags = flags; 11001 if (update_tpa) 11002 bnxt_set_ring_params(bp); 11003 11004 return bnxt_open_nic(bp, false, false); 11005 } 11006 if (update_tpa) { 11007 bp->flags = flags; 11008 rc = bnxt_set_tpa(bp, 11009 (flags & BNXT_FLAG_TPA) ? 11010 true : false); 11011 if (rc) 11012 bp->flags = old_flags; 11013 } 11014 } 11015 return rc; 11016 } 11017 11018 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, 11019 u8 **nextp) 11020 { 11021 struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); 11022 int hdr_count = 0; 11023 u8 *nexthdr; 11024 int start; 11025 11026 /* Check that there are at most 2 IPv6 extension headers, no 11027 * fragment header, and each is <= 64 bytes. 11028 */ 11029 start = nw_off + sizeof(*ip6h); 11030 nexthdr = &ip6h->nexthdr; 11031 while (ipv6_ext_hdr(*nexthdr)) { 11032 struct ipv6_opt_hdr *hp; 11033 int hdrlen; 11034 11035 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || 11036 *nexthdr == NEXTHDR_FRAGMENT) 11037 return false; 11038 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, 11039 skb_headlen(skb), NULL); 11040 if (!hp) 11041 return false; 11042 if (*nexthdr == NEXTHDR_AUTH) 11043 hdrlen = ipv6_authlen(hp); 11044 else 11045 hdrlen = ipv6_optlen(hp); 11046 11047 if (hdrlen > 64) 11048 return false; 11049 nexthdr = &hp->nexthdr; 11050 start += hdrlen; 11051 hdr_count++; 11052 } 11053 if (nextp) { 11054 /* Caller will check inner protocol */ 11055 if (skb->encapsulation) { 11056 *nextp = nexthdr; 11057 return true; 11058 } 11059 *nextp = NULL; 11060 } 11061 /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ 11062 return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; 11063 } 11064 11065 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 11066 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) 11067 { 11068 struct udphdr *uh = udp_hdr(skb); 11069 __be16 udp_port = uh->dest; 11070 11071 if (udp_port != bp->vxlan_port && udp_port != bp->nge_port) 11072 return false; 11073 if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) { 11074 struct ethhdr *eh = inner_eth_hdr(skb); 11075 11076 switch (eh->h_proto) { 11077 case htons(ETH_P_IP): 11078 return true; 11079 case htons(ETH_P_IPV6): 11080 return bnxt_exthdr_check(bp, skb, 11081 skb_inner_network_offset(skb), 11082 NULL); 11083 } 11084 } 11085 return false; 11086 } 11087 11088 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) 11089 { 11090 switch (l4_proto) { 11091 case IPPROTO_UDP: 11092 return bnxt_udp_tunl_check(bp, skb); 11093 case IPPROTO_IPIP: 11094 return true; 11095 case IPPROTO_GRE: { 11096 switch (skb->inner_protocol) { 11097 default: 11098 return false; 11099 case htons(ETH_P_IP): 11100 return true; 11101 case htons(ETH_P_IPV6): 11102 fallthrough; 11103 } 11104 } 11105 case IPPROTO_IPV6: 11106 /* Check ext headers of inner ipv6 */ 11107 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 11108 NULL); 11109 } 11110 return false; 11111 } 11112 11113 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 11114 struct net_device *dev, 11115 netdev_features_t features) 11116 { 11117 struct bnxt *bp = netdev_priv(dev); 11118 u8 *l4_proto; 11119 11120 features = vlan_features_check(skb, features); 11121 switch (vlan_get_protocol(skb)) { 11122 case htons(ETH_P_IP): 11123 if (!skb->encapsulation) 11124 return features; 11125 l4_proto = &ip_hdr(skb)->protocol; 11126 if (bnxt_tunl_check(bp, skb, *l4_proto)) 11127 return features; 11128 break; 11129 case htons(ETH_P_IPV6): 11130 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), 11131 &l4_proto)) 11132 break; 11133 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) 11134 return features; 11135 break; 11136 } 11137 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 11138 } 11139 11140 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 11141 u32 *reg_buf) 11142 { 11143 struct hwrm_dbg_read_direct_output *resp = bp->hwrm_cmd_resp_addr; 11144 struct hwrm_dbg_read_direct_input req = {0}; 11145 __le32 *dbg_reg_buf; 11146 dma_addr_t mapping; 11147 int rc, i; 11148 11149 dbg_reg_buf = dma_alloc_coherent(&bp->pdev->dev, num_words * 4, 11150 &mapping, GFP_KERNEL); 11151 if (!dbg_reg_buf) 11152 return -ENOMEM; 11153 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_READ_DIRECT, -1, -1); 11154 req.host_dest_addr = cpu_to_le64(mapping); 11155 req.read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 11156 req.read_len32 = cpu_to_le32(num_words); 11157 mutex_lock(&bp->hwrm_cmd_lock); 11158 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 11159 if (rc || resp->error_code) { 11160 rc = -EIO; 11161 goto dbg_rd_reg_exit; 11162 } 11163 for (i = 0; i < num_words; i++) 11164 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 11165 11166 dbg_rd_reg_exit: 11167 mutex_unlock(&bp->hwrm_cmd_lock); 11168 dma_free_coherent(&bp->pdev->dev, num_words * 4, dbg_reg_buf, mapping); 11169 return rc; 11170 } 11171 11172 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 11173 u32 ring_id, u32 *prod, u32 *cons) 11174 { 11175 struct hwrm_dbg_ring_info_get_output *resp = bp->hwrm_cmd_resp_addr; 11176 struct hwrm_dbg_ring_info_get_input req = {0}; 11177 int rc; 11178 11179 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_RING_INFO_GET, -1, -1); 11180 req.ring_type = ring_type; 11181 req.fw_ring_id = cpu_to_le32(ring_id); 11182 mutex_lock(&bp->hwrm_cmd_lock); 11183 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 11184 if (!rc) { 11185 *prod = le32_to_cpu(resp->producer_index); 11186 *cons = le32_to_cpu(resp->consumer_index); 11187 } 11188 mutex_unlock(&bp->hwrm_cmd_lock); 11189 return rc; 11190 } 11191 11192 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 11193 { 11194 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 11195 int i = bnapi->index; 11196 11197 if (!txr) 11198 return; 11199 11200 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 11201 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 11202 txr->tx_cons); 11203 } 11204 11205 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 11206 { 11207 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 11208 int i = bnapi->index; 11209 11210 if (!rxr) 11211 return; 11212 11213 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 11214 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 11215 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 11216 rxr->rx_sw_agg_prod); 11217 } 11218 11219 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 11220 { 11221 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 11222 int i = bnapi->index; 11223 11224 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 11225 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 11226 } 11227 11228 static void bnxt_dbg_dump_states(struct bnxt *bp) 11229 { 11230 int i; 11231 struct bnxt_napi *bnapi; 11232 11233 for (i = 0; i < bp->cp_nr_rings; i++) { 11234 bnapi = bp->bnapi[i]; 11235 if (netif_msg_drv(bp)) { 11236 bnxt_dump_tx_sw_state(bnapi); 11237 bnxt_dump_rx_sw_state(bnapi); 11238 bnxt_dump_cp_sw_state(bnapi); 11239 } 11240 } 11241 } 11242 11243 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 11244 { 11245 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 11246 struct hwrm_ring_reset_input req = {0}; 11247 struct bnxt_napi *bnapi = rxr->bnapi; 11248 struct bnxt_cp_ring_info *cpr; 11249 u16 cp_ring_id; 11250 11251 cpr = &bnapi->cp_ring; 11252 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 11253 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_RESET, cp_ring_id, -1); 11254 req.ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 11255 req.ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 11256 return hwrm_send_message_silent(bp, &req, sizeof(req), 11257 HWRM_CMD_TIMEOUT); 11258 } 11259 11260 static void bnxt_reset_task(struct bnxt *bp, bool silent) 11261 { 11262 if (!silent) 11263 bnxt_dbg_dump_states(bp); 11264 if (netif_running(bp->dev)) { 11265 int rc; 11266 11267 if (silent) { 11268 bnxt_close_nic(bp, false, false); 11269 bnxt_open_nic(bp, false, false); 11270 } else { 11271 bnxt_ulp_stop(bp); 11272 bnxt_close_nic(bp, true, false); 11273 rc = bnxt_open_nic(bp, true, false); 11274 bnxt_ulp_start(bp, rc); 11275 } 11276 } 11277 } 11278 11279 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 11280 { 11281 struct bnxt *bp = netdev_priv(dev); 11282 11283 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 11284 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 11285 bnxt_queue_sp_work(bp); 11286 } 11287 11288 static void bnxt_fw_health_check(struct bnxt *bp) 11289 { 11290 struct bnxt_fw_health *fw_health = bp->fw_health; 11291 u32 val; 11292 11293 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11294 return; 11295 11296 if (fw_health->tmr_counter) { 11297 fw_health->tmr_counter--; 11298 return; 11299 } 11300 11301 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 11302 if (val == fw_health->last_fw_heartbeat) 11303 goto fw_reset; 11304 11305 fw_health->last_fw_heartbeat = val; 11306 11307 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 11308 if (val != fw_health->last_fw_reset_cnt) 11309 goto fw_reset; 11310 11311 fw_health->tmr_counter = fw_health->tmr_multiplier; 11312 return; 11313 11314 fw_reset: 11315 set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event); 11316 bnxt_queue_sp_work(bp); 11317 } 11318 11319 static void bnxt_timer(struct timer_list *t) 11320 { 11321 struct bnxt *bp = from_timer(bp, t, timer); 11322 struct net_device *dev = bp->dev; 11323 11324 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 11325 return; 11326 11327 if (atomic_read(&bp->intr_sem) != 0) 11328 goto bnxt_restart_timer; 11329 11330 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 11331 bnxt_fw_health_check(bp); 11332 11333 if (bp->link_info.link_up && bp->stats_coal_ticks) { 11334 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event); 11335 bnxt_queue_sp_work(bp); 11336 } 11337 11338 if (bnxt_tc_flower_enabled(bp)) { 11339 set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event); 11340 bnxt_queue_sp_work(bp); 11341 } 11342 11343 #ifdef CONFIG_RFS_ACCEL 11344 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) { 11345 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 11346 bnxt_queue_sp_work(bp); 11347 } 11348 #endif /*CONFIG_RFS_ACCEL*/ 11349 11350 if (bp->link_info.phy_retry) { 11351 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 11352 bp->link_info.phy_retry = false; 11353 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 11354 } else { 11355 set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event); 11356 bnxt_queue_sp_work(bp); 11357 } 11358 } 11359 11360 if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev && 11361 netif_carrier_ok(dev)) { 11362 set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event); 11363 bnxt_queue_sp_work(bp); 11364 } 11365 bnxt_restart_timer: 11366 mod_timer(&bp->timer, jiffies + bp->current_interval); 11367 } 11368 11369 static void bnxt_rtnl_lock_sp(struct bnxt *bp) 11370 { 11371 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 11372 * set. If the device is being closed, bnxt_close() may be holding 11373 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we 11374 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). 11375 */ 11376 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11377 rtnl_lock(); 11378 } 11379 11380 static void bnxt_rtnl_unlock_sp(struct bnxt *bp) 11381 { 11382 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11383 rtnl_unlock(); 11384 } 11385 11386 /* Only called from bnxt_sp_task() */ 11387 static void bnxt_reset(struct bnxt *bp, bool silent) 11388 { 11389 bnxt_rtnl_lock_sp(bp); 11390 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 11391 bnxt_reset_task(bp, silent); 11392 bnxt_rtnl_unlock_sp(bp); 11393 } 11394 11395 /* Only called from bnxt_sp_task() */ 11396 static void bnxt_rx_ring_reset(struct bnxt *bp) 11397 { 11398 int i; 11399 11400 bnxt_rtnl_lock_sp(bp); 11401 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11402 bnxt_rtnl_unlock_sp(bp); 11403 return; 11404 } 11405 /* Disable and flush TPA before resetting the RX ring */ 11406 if (bp->flags & BNXT_FLAG_TPA) 11407 bnxt_set_tpa(bp, false); 11408 for (i = 0; i < bp->rx_nr_rings; i++) { 11409 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 11410 struct bnxt_cp_ring_info *cpr; 11411 int rc; 11412 11413 if (!rxr->bnapi->in_reset) 11414 continue; 11415 11416 rc = bnxt_hwrm_rx_ring_reset(bp, i); 11417 if (rc) { 11418 if (rc == -EINVAL || rc == -EOPNOTSUPP) 11419 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 11420 else 11421 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 11422 rc); 11423 bnxt_reset_task(bp, true); 11424 break; 11425 } 11426 bnxt_free_one_rx_ring_skbs(bp, i); 11427 rxr->rx_prod = 0; 11428 rxr->rx_agg_prod = 0; 11429 rxr->rx_sw_agg_prod = 0; 11430 rxr->rx_next_cons = 0; 11431 rxr->bnapi->in_reset = false; 11432 bnxt_alloc_one_rx_ring(bp, i); 11433 cpr = &rxr->bnapi->cp_ring; 11434 cpr->sw_stats.rx.rx_resets++; 11435 if (bp->flags & BNXT_FLAG_AGG_RINGS) 11436 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 11437 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 11438 } 11439 if (bp->flags & BNXT_FLAG_TPA) 11440 bnxt_set_tpa(bp, true); 11441 bnxt_rtnl_unlock_sp(bp); 11442 } 11443 11444 static void bnxt_fw_reset_close(struct bnxt *bp) 11445 { 11446 bnxt_ulp_stop(bp); 11447 /* When firmware is in fatal state, quiesce device and disable 11448 * bus master to prevent any potential bad DMAs before freeing 11449 * kernel memory. 11450 */ 11451 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 11452 u16 val = 0; 11453 11454 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 11455 if (val == 0xffff) 11456 bp->fw_reset_min_dsecs = 0; 11457 bnxt_tx_disable(bp); 11458 bnxt_disable_napi(bp); 11459 bnxt_disable_int_sync(bp); 11460 bnxt_free_irq(bp); 11461 bnxt_clear_int_mode(bp); 11462 pci_disable_device(bp->pdev); 11463 } 11464 __bnxt_close_nic(bp, true, false); 11465 bnxt_vf_reps_free(bp); 11466 bnxt_clear_int_mode(bp); 11467 bnxt_hwrm_func_drv_unrgtr(bp); 11468 if (pci_is_enabled(bp->pdev)) 11469 pci_disable_device(bp->pdev); 11470 bnxt_free_ctx_mem(bp); 11471 kfree(bp->ctx); 11472 bp->ctx = NULL; 11473 } 11474 11475 static bool is_bnxt_fw_ok(struct bnxt *bp) 11476 { 11477 struct bnxt_fw_health *fw_health = bp->fw_health; 11478 bool no_heartbeat = false, has_reset = false; 11479 u32 val; 11480 11481 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 11482 if (val == fw_health->last_fw_heartbeat) 11483 no_heartbeat = true; 11484 11485 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 11486 if (val != fw_health->last_fw_reset_cnt) 11487 has_reset = true; 11488 11489 if (!no_heartbeat && has_reset) 11490 return true; 11491 11492 return false; 11493 } 11494 11495 /* rtnl_lock is acquired before calling this function */ 11496 static void bnxt_force_fw_reset(struct bnxt *bp) 11497 { 11498 struct bnxt_fw_health *fw_health = bp->fw_health; 11499 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 11500 u32 wait_dsecs; 11501 11502 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 11503 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11504 return; 11505 11506 if (ptp) { 11507 spin_lock_bh(&ptp->ptp_lock); 11508 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11509 spin_unlock_bh(&ptp->ptp_lock); 11510 } else { 11511 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11512 } 11513 bnxt_fw_reset_close(bp); 11514 wait_dsecs = fw_health->master_func_wait_dsecs; 11515 if (fw_health->master) { 11516 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 11517 wait_dsecs = 0; 11518 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 11519 } else { 11520 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 11521 wait_dsecs = fw_health->normal_func_wait_dsecs; 11522 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11523 } 11524 11525 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 11526 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 11527 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 11528 } 11529 11530 void bnxt_fw_exception(struct bnxt *bp) 11531 { 11532 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 11533 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 11534 bnxt_rtnl_lock_sp(bp); 11535 bnxt_force_fw_reset(bp); 11536 bnxt_rtnl_unlock_sp(bp); 11537 } 11538 11539 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 11540 * < 0 on error. 11541 */ 11542 static int bnxt_get_registered_vfs(struct bnxt *bp) 11543 { 11544 #ifdef CONFIG_BNXT_SRIOV 11545 int rc; 11546 11547 if (!BNXT_PF(bp)) 11548 return 0; 11549 11550 rc = bnxt_hwrm_func_qcfg(bp); 11551 if (rc) { 11552 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 11553 return rc; 11554 } 11555 if (bp->pf.registered_vfs) 11556 return bp->pf.registered_vfs; 11557 if (bp->sriov_cfg) 11558 return 1; 11559 #endif 11560 return 0; 11561 } 11562 11563 void bnxt_fw_reset(struct bnxt *bp) 11564 { 11565 bnxt_rtnl_lock_sp(bp); 11566 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 11567 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 11568 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 11569 int n = 0, tmo; 11570 11571 if (ptp) { 11572 spin_lock_bh(&ptp->ptp_lock); 11573 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11574 spin_unlock_bh(&ptp->ptp_lock); 11575 } else { 11576 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11577 } 11578 if (bp->pf.active_vfs && 11579 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 11580 n = bnxt_get_registered_vfs(bp); 11581 if (n < 0) { 11582 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 11583 n); 11584 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11585 dev_close(bp->dev); 11586 goto fw_reset_exit; 11587 } else if (n > 0) { 11588 u16 vf_tmo_dsecs = n * 10; 11589 11590 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 11591 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 11592 bp->fw_reset_state = 11593 BNXT_FW_RESET_STATE_POLL_VF; 11594 bnxt_queue_fw_reset_work(bp, HZ / 10); 11595 goto fw_reset_exit; 11596 } 11597 bnxt_fw_reset_close(bp); 11598 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 11599 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 11600 tmo = HZ / 10; 11601 } else { 11602 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11603 tmo = bp->fw_reset_min_dsecs * HZ / 10; 11604 } 11605 bnxt_queue_fw_reset_work(bp, tmo); 11606 } 11607 fw_reset_exit: 11608 bnxt_rtnl_unlock_sp(bp); 11609 } 11610 11611 static void bnxt_chk_missed_irq(struct bnxt *bp) 11612 { 11613 int i; 11614 11615 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 11616 return; 11617 11618 for (i = 0; i < bp->cp_nr_rings; i++) { 11619 struct bnxt_napi *bnapi = bp->bnapi[i]; 11620 struct bnxt_cp_ring_info *cpr; 11621 u32 fw_ring_id; 11622 int j; 11623 11624 if (!bnapi) 11625 continue; 11626 11627 cpr = &bnapi->cp_ring; 11628 for (j = 0; j < 2; j++) { 11629 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 11630 u32 val[2]; 11631 11632 if (!cpr2 || cpr2->has_more_work || 11633 !bnxt_has_work(bp, cpr2)) 11634 continue; 11635 11636 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 11637 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 11638 continue; 11639 } 11640 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 11641 bnxt_dbg_hwrm_ring_info_get(bp, 11642 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 11643 fw_ring_id, &val[0], &val[1]); 11644 cpr->sw_stats.cmn.missed_irqs++; 11645 } 11646 } 11647 } 11648 11649 static void bnxt_cfg_ntp_filters(struct bnxt *); 11650 11651 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 11652 { 11653 struct bnxt_link_info *link_info = &bp->link_info; 11654 11655 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 11656 link_info->autoneg = BNXT_AUTONEG_SPEED; 11657 if (bp->hwrm_spec_code >= 0x10201) { 11658 if (link_info->auto_pause_setting & 11659 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 11660 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 11661 } else { 11662 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 11663 } 11664 link_info->advertising = link_info->auto_link_speeds; 11665 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 11666 } else { 11667 link_info->req_link_speed = link_info->force_link_speed; 11668 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 11669 if (link_info->force_pam4_link_speed) { 11670 link_info->req_link_speed = 11671 link_info->force_pam4_link_speed; 11672 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 11673 } 11674 link_info->req_duplex = link_info->duplex_setting; 11675 } 11676 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 11677 link_info->req_flow_ctrl = 11678 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 11679 else 11680 link_info->req_flow_ctrl = link_info->force_pause_setting; 11681 } 11682 11683 static void bnxt_fw_echo_reply(struct bnxt *bp) 11684 { 11685 struct bnxt_fw_health *fw_health = bp->fw_health; 11686 struct hwrm_func_echo_response_input req = {0}; 11687 11688 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_ECHO_RESPONSE, -1, -1); 11689 req.event_data1 = cpu_to_le32(fw_health->echo_req_data1); 11690 req.event_data2 = cpu_to_le32(fw_health->echo_req_data2); 11691 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 11692 } 11693 11694 static void bnxt_sp_task(struct work_struct *work) 11695 { 11696 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 11697 11698 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11699 smp_mb__after_atomic(); 11700 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11701 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11702 return; 11703 } 11704 11705 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 11706 bnxt_cfg_rx_mode(bp); 11707 11708 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 11709 bnxt_cfg_ntp_filters(bp); 11710 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 11711 bnxt_hwrm_exec_fwd_req(bp); 11712 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 11713 bnxt_hwrm_port_qstats(bp, 0); 11714 bnxt_hwrm_port_qstats_ext(bp, 0); 11715 bnxt_accumulate_all_stats(bp); 11716 } 11717 11718 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 11719 int rc; 11720 11721 mutex_lock(&bp->link_lock); 11722 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 11723 &bp->sp_event)) 11724 bnxt_hwrm_phy_qcaps(bp); 11725 11726 rc = bnxt_update_link(bp, true); 11727 if (rc) 11728 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 11729 rc); 11730 11731 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 11732 &bp->sp_event)) 11733 bnxt_init_ethtool_link_settings(bp); 11734 mutex_unlock(&bp->link_lock); 11735 } 11736 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 11737 int rc; 11738 11739 mutex_lock(&bp->link_lock); 11740 rc = bnxt_update_phy_setting(bp); 11741 mutex_unlock(&bp->link_lock); 11742 if (rc) { 11743 netdev_warn(bp->dev, "update phy settings retry failed\n"); 11744 } else { 11745 bp->link_info.phy_retry = false; 11746 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 11747 } 11748 } 11749 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 11750 mutex_lock(&bp->link_lock); 11751 bnxt_get_port_module_status(bp); 11752 mutex_unlock(&bp->link_lock); 11753 } 11754 11755 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 11756 bnxt_tc_flow_stats_work(bp); 11757 11758 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 11759 bnxt_chk_missed_irq(bp); 11760 11761 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 11762 bnxt_fw_echo_reply(bp); 11763 11764 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 11765 * must be the last functions to be called before exiting. 11766 */ 11767 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 11768 bnxt_reset(bp, false); 11769 11770 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 11771 bnxt_reset(bp, true); 11772 11773 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 11774 bnxt_rx_ring_reset(bp); 11775 11776 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) 11777 bnxt_devlink_health_report(bp, BNXT_FW_RESET_NOTIFY_SP_EVENT); 11778 11779 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 11780 if (!is_bnxt_fw_ok(bp)) 11781 bnxt_devlink_health_report(bp, 11782 BNXT_FW_EXCEPTION_SP_EVENT); 11783 } 11784 11785 smp_mb__before_atomic(); 11786 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11787 } 11788 11789 /* Under rtnl_lock */ 11790 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 11791 int tx_xdp) 11792 { 11793 int max_rx, max_tx, tx_sets = 1; 11794 int tx_rings_needed, stats; 11795 int rx_rings = rx; 11796 int cp, vnics, rc; 11797 11798 if (tcs) 11799 tx_sets = tcs; 11800 11801 rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh); 11802 if (rc) 11803 return rc; 11804 11805 if (max_rx < rx) 11806 return -ENOMEM; 11807 11808 tx_rings_needed = tx * tx_sets + tx_xdp; 11809 if (max_tx < tx_rings_needed) 11810 return -ENOMEM; 11811 11812 vnics = 1; 11813 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 11814 vnics += rx_rings; 11815 11816 if (bp->flags & BNXT_FLAG_AGG_RINGS) 11817 rx_rings <<= 1; 11818 cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx; 11819 stats = cp; 11820 if (BNXT_NEW_RM(bp)) { 11821 cp += bnxt_get_ulp_msix_num(bp); 11822 stats += bnxt_get_ulp_stat_ctxs(bp); 11823 } 11824 return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp, 11825 stats, vnics); 11826 } 11827 11828 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 11829 { 11830 if (bp->bar2) { 11831 pci_iounmap(pdev, bp->bar2); 11832 bp->bar2 = NULL; 11833 } 11834 11835 if (bp->bar1) { 11836 pci_iounmap(pdev, bp->bar1); 11837 bp->bar1 = NULL; 11838 } 11839 11840 if (bp->bar0) { 11841 pci_iounmap(pdev, bp->bar0); 11842 bp->bar0 = NULL; 11843 } 11844 } 11845 11846 static void bnxt_cleanup_pci(struct bnxt *bp) 11847 { 11848 bnxt_unmap_bars(bp, bp->pdev); 11849 pci_release_regions(bp->pdev); 11850 if (pci_is_enabled(bp->pdev)) 11851 pci_disable_device(bp->pdev); 11852 } 11853 11854 static void bnxt_init_dflt_coal(struct bnxt *bp) 11855 { 11856 struct bnxt_coal *coal; 11857 11858 /* Tick values in micro seconds. 11859 * 1 coal_buf x bufs_per_record = 1 completion record. 11860 */ 11861 coal = &bp->rx_coal; 11862 coal->coal_ticks = 10; 11863 coal->coal_bufs = 30; 11864 coal->coal_ticks_irq = 1; 11865 coal->coal_bufs_irq = 2; 11866 coal->idle_thresh = 50; 11867 coal->bufs_per_record = 2; 11868 coal->budget = 64; /* NAPI budget */ 11869 11870 coal = &bp->tx_coal; 11871 coal->coal_ticks = 28; 11872 coal->coal_bufs = 30; 11873 coal->coal_ticks_irq = 2; 11874 coal->coal_bufs_irq = 2; 11875 coal->bufs_per_record = 1; 11876 11877 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 11878 } 11879 11880 static int bnxt_fw_init_one_p1(struct bnxt *bp) 11881 { 11882 int rc; 11883 11884 bp->fw_cap = 0; 11885 rc = bnxt_hwrm_ver_get(bp); 11886 bnxt_try_map_fw_health_reg(bp); 11887 if (rc) { 11888 rc = bnxt_try_recover_fw(bp); 11889 if (rc) 11890 return rc; 11891 rc = bnxt_hwrm_ver_get(bp); 11892 if (rc) 11893 return rc; 11894 } 11895 11896 if (bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL) { 11897 rc = bnxt_alloc_kong_hwrm_resources(bp); 11898 if (rc) 11899 bp->fw_cap &= ~BNXT_FW_CAP_KONG_MB_CHNL; 11900 } 11901 11902 if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) || 11903 bp->hwrm_max_ext_req_len > BNXT_HWRM_MAX_REQ_LEN) { 11904 rc = bnxt_alloc_hwrm_short_cmd_req(bp); 11905 if (rc) 11906 return rc; 11907 } 11908 bnxt_nvm_cfg_ver_get(bp); 11909 11910 rc = bnxt_hwrm_func_reset(bp); 11911 if (rc) 11912 return -ENODEV; 11913 11914 bnxt_hwrm_fw_set_time(bp); 11915 return 0; 11916 } 11917 11918 static int bnxt_fw_init_one_p2(struct bnxt *bp) 11919 { 11920 int rc; 11921 11922 /* Get the MAX capabilities for this function */ 11923 rc = bnxt_hwrm_func_qcaps(bp); 11924 if (rc) { 11925 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 11926 rc); 11927 return -ENODEV; 11928 } 11929 11930 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 11931 if (rc) 11932 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 11933 rc); 11934 11935 if (bnxt_alloc_fw_health(bp)) { 11936 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 11937 } else { 11938 rc = bnxt_hwrm_error_recovery_qcfg(bp); 11939 if (rc) 11940 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 11941 rc); 11942 } 11943 11944 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 11945 if (rc) 11946 return -ENODEV; 11947 11948 bnxt_hwrm_func_qcfg(bp); 11949 bnxt_hwrm_vnic_qcaps(bp); 11950 bnxt_hwrm_port_led_qcaps(bp); 11951 bnxt_ethtool_init(bp); 11952 bnxt_dcb_init(bp); 11953 return 0; 11954 } 11955 11956 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 11957 { 11958 bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP; 11959 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 11960 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 11961 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 11962 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 11963 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 11964 bp->flags |= BNXT_FLAG_UDP_RSS_CAP; 11965 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 11966 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 11967 } 11968 } 11969 11970 static void bnxt_set_dflt_rfs(struct bnxt *bp) 11971 { 11972 struct net_device *dev = bp->dev; 11973 11974 dev->hw_features &= ~NETIF_F_NTUPLE; 11975 dev->features &= ~NETIF_F_NTUPLE; 11976 bp->flags &= ~BNXT_FLAG_RFS; 11977 if (bnxt_rfs_supported(bp)) { 11978 dev->hw_features |= NETIF_F_NTUPLE; 11979 if (bnxt_rfs_capable(bp)) { 11980 bp->flags |= BNXT_FLAG_RFS; 11981 dev->features |= NETIF_F_NTUPLE; 11982 } 11983 } 11984 } 11985 11986 static void bnxt_fw_init_one_p3(struct bnxt *bp) 11987 { 11988 struct pci_dev *pdev = bp->pdev; 11989 11990 bnxt_set_dflt_rss_hash_type(bp); 11991 bnxt_set_dflt_rfs(bp); 11992 11993 bnxt_get_wol_settings(bp); 11994 if (bp->flags & BNXT_FLAG_WOL_CAP) 11995 device_set_wakeup_enable(&pdev->dev, bp->wol); 11996 else 11997 device_set_wakeup_capable(&pdev->dev, false); 11998 11999 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 12000 bnxt_hwrm_coal_params_qcaps(bp); 12001 } 12002 12003 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); 12004 12005 static int bnxt_fw_init_one(struct bnxt *bp) 12006 { 12007 int rc; 12008 12009 rc = bnxt_fw_init_one_p1(bp); 12010 if (rc) { 12011 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 12012 return rc; 12013 } 12014 rc = bnxt_fw_init_one_p2(bp); 12015 if (rc) { 12016 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 12017 return rc; 12018 } 12019 rc = bnxt_probe_phy(bp, false); 12020 if (rc) 12021 return rc; 12022 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 12023 if (rc) 12024 return rc; 12025 12026 /* In case fw capabilities have changed, destroy the unneeded 12027 * reporters and create newly capable ones. 12028 */ 12029 bnxt_dl_fw_reporters_destroy(bp, false); 12030 bnxt_dl_fw_reporters_create(bp); 12031 bnxt_fw_init_one_p3(bp); 12032 return 0; 12033 } 12034 12035 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 12036 { 12037 struct bnxt_fw_health *fw_health = bp->fw_health; 12038 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 12039 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 12040 u32 reg_type, reg_off, delay_msecs; 12041 12042 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 12043 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 12044 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 12045 switch (reg_type) { 12046 case BNXT_FW_HEALTH_REG_TYPE_CFG: 12047 pci_write_config_dword(bp->pdev, reg_off, val); 12048 break; 12049 case BNXT_FW_HEALTH_REG_TYPE_GRC: 12050 writel(reg_off & BNXT_GRC_BASE_MASK, 12051 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 12052 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 12053 fallthrough; 12054 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 12055 writel(val, bp->bar0 + reg_off); 12056 break; 12057 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 12058 writel(val, bp->bar1 + reg_off); 12059 break; 12060 } 12061 if (delay_msecs) { 12062 pci_read_config_dword(bp->pdev, 0, &val); 12063 msleep(delay_msecs); 12064 } 12065 } 12066 12067 static void bnxt_reset_all(struct bnxt *bp) 12068 { 12069 struct bnxt_fw_health *fw_health = bp->fw_health; 12070 int i, rc; 12071 12072 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 12073 bnxt_fw_reset_via_optee(bp); 12074 bp->fw_reset_timestamp = jiffies; 12075 return; 12076 } 12077 12078 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 12079 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 12080 bnxt_fw_reset_writel(bp, i); 12081 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 12082 struct hwrm_fw_reset_input req = {0}; 12083 12084 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_RESET, -1, -1); 12085 req.resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr); 12086 req.embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 12087 req.selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 12088 req.flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 12089 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 12090 if (rc != -ENODEV) 12091 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 12092 } 12093 bp->fw_reset_timestamp = jiffies; 12094 } 12095 12096 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 12097 { 12098 return time_after(jiffies, bp->fw_reset_timestamp + 12099 (bp->fw_reset_max_dsecs * HZ / 10)); 12100 } 12101 12102 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) 12103 { 12104 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12105 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) { 12106 bnxt_ulp_start(bp, rc); 12107 bnxt_dl_health_status_update(bp, false); 12108 } 12109 bp->fw_reset_state = 0; 12110 dev_close(bp->dev); 12111 } 12112 12113 static void bnxt_fw_reset_task(struct work_struct *work) 12114 { 12115 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 12116 int rc = 0; 12117 12118 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 12119 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 12120 return; 12121 } 12122 12123 switch (bp->fw_reset_state) { 12124 case BNXT_FW_RESET_STATE_POLL_VF: { 12125 int n = bnxt_get_registered_vfs(bp); 12126 int tmo; 12127 12128 if (n < 0) { 12129 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 12130 n, jiffies_to_msecs(jiffies - 12131 bp->fw_reset_timestamp)); 12132 goto fw_reset_abort; 12133 } else if (n > 0) { 12134 if (bnxt_fw_reset_timeout(bp)) { 12135 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12136 bp->fw_reset_state = 0; 12137 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 12138 n); 12139 return; 12140 } 12141 bnxt_queue_fw_reset_work(bp, HZ / 10); 12142 return; 12143 } 12144 bp->fw_reset_timestamp = jiffies; 12145 rtnl_lock(); 12146 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12147 bnxt_fw_reset_abort(bp, rc); 12148 rtnl_unlock(); 12149 return; 12150 } 12151 bnxt_fw_reset_close(bp); 12152 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 12153 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 12154 tmo = HZ / 10; 12155 } else { 12156 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12157 tmo = bp->fw_reset_min_dsecs * HZ / 10; 12158 } 12159 rtnl_unlock(); 12160 bnxt_queue_fw_reset_work(bp, tmo); 12161 return; 12162 } 12163 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 12164 u32 val; 12165 12166 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12167 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 12168 !bnxt_fw_reset_timeout(bp)) { 12169 bnxt_queue_fw_reset_work(bp, HZ / 5); 12170 return; 12171 } 12172 12173 if (!bp->fw_health->master) { 12174 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 12175 12176 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12177 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 12178 return; 12179 } 12180 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 12181 } 12182 fallthrough; 12183 case BNXT_FW_RESET_STATE_RESET_FW: 12184 bnxt_reset_all(bp); 12185 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12186 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 12187 return; 12188 case BNXT_FW_RESET_STATE_ENABLE_DEV: 12189 bnxt_inv_fw_health_reg(bp); 12190 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 12191 !bp->fw_reset_min_dsecs) { 12192 u16 val; 12193 12194 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 12195 if (val == 0xffff) { 12196 if (bnxt_fw_reset_timeout(bp)) { 12197 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 12198 rc = -ETIMEDOUT; 12199 goto fw_reset_abort; 12200 } 12201 bnxt_queue_fw_reset_work(bp, HZ / 1000); 12202 return; 12203 } 12204 } 12205 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 12206 if (pci_enable_device(bp->pdev)) { 12207 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 12208 rc = -ENODEV; 12209 goto fw_reset_abort; 12210 } 12211 pci_set_master(bp->pdev); 12212 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 12213 fallthrough; 12214 case BNXT_FW_RESET_STATE_POLL_FW: 12215 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 12216 rc = __bnxt_hwrm_ver_get(bp, true); 12217 if (rc) { 12218 if (bnxt_fw_reset_timeout(bp)) { 12219 netdev_err(bp->dev, "Firmware reset aborted\n"); 12220 goto fw_reset_abort_status; 12221 } 12222 bnxt_queue_fw_reset_work(bp, HZ / 5); 12223 return; 12224 } 12225 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 12226 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 12227 fallthrough; 12228 case BNXT_FW_RESET_STATE_OPENING: 12229 while (!rtnl_trylock()) { 12230 bnxt_queue_fw_reset_work(bp, HZ / 10); 12231 return; 12232 } 12233 rc = bnxt_open(bp->dev); 12234 if (rc) { 12235 netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); 12236 bnxt_fw_reset_abort(bp, rc); 12237 rtnl_unlock(); 12238 return; 12239 } 12240 12241 bp->fw_reset_state = 0; 12242 /* Make sure fw_reset_state is 0 before clearing the flag */ 12243 smp_mb__before_atomic(); 12244 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12245 bnxt_ulp_start(bp, 0); 12246 bnxt_reenable_sriov(bp); 12247 bnxt_vf_reps_alloc(bp); 12248 bnxt_vf_reps_open(bp); 12249 bnxt_ptp_reapply_pps(bp); 12250 bnxt_dl_health_recovery_done(bp); 12251 bnxt_dl_health_status_update(bp, true); 12252 rtnl_unlock(); 12253 break; 12254 } 12255 return; 12256 12257 fw_reset_abort_status: 12258 if (bp->fw_health->status_reliable || 12259 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 12260 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12261 12262 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 12263 } 12264 fw_reset_abort: 12265 rtnl_lock(); 12266 bnxt_fw_reset_abort(bp, rc); 12267 rtnl_unlock(); 12268 } 12269 12270 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 12271 { 12272 int rc; 12273 struct bnxt *bp = netdev_priv(dev); 12274 12275 SET_NETDEV_DEV(dev, &pdev->dev); 12276 12277 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 12278 rc = pci_enable_device(pdev); 12279 if (rc) { 12280 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 12281 goto init_err; 12282 } 12283 12284 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 12285 dev_err(&pdev->dev, 12286 "Cannot find PCI device base address, aborting\n"); 12287 rc = -ENODEV; 12288 goto init_err_disable; 12289 } 12290 12291 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 12292 if (rc) { 12293 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 12294 goto init_err_disable; 12295 } 12296 12297 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 12298 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 12299 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 12300 rc = -EIO; 12301 goto init_err_release; 12302 } 12303 12304 pci_set_master(pdev); 12305 12306 bp->dev = dev; 12307 bp->pdev = pdev; 12308 12309 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 12310 * determines the BAR size. 12311 */ 12312 bp->bar0 = pci_ioremap_bar(pdev, 0); 12313 if (!bp->bar0) { 12314 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 12315 rc = -ENOMEM; 12316 goto init_err_release; 12317 } 12318 12319 bp->bar2 = pci_ioremap_bar(pdev, 4); 12320 if (!bp->bar2) { 12321 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 12322 rc = -ENOMEM; 12323 goto init_err_release; 12324 } 12325 12326 pci_enable_pcie_error_reporting(pdev); 12327 12328 INIT_WORK(&bp->sp_task, bnxt_sp_task); 12329 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 12330 12331 spin_lock_init(&bp->ntp_fltr_lock); 12332 #if BITS_PER_LONG == 32 12333 spin_lock_init(&bp->db_lock); 12334 #endif 12335 12336 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 12337 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 12338 12339 bnxt_init_dflt_coal(bp); 12340 12341 timer_setup(&bp->timer, bnxt_timer, 0); 12342 bp->current_interval = BNXT_TIMER_INTERVAL; 12343 12344 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 12345 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 12346 12347 clear_bit(BNXT_STATE_OPEN, &bp->state); 12348 return 0; 12349 12350 init_err_release: 12351 bnxt_unmap_bars(bp, pdev); 12352 pci_release_regions(pdev); 12353 12354 init_err_disable: 12355 pci_disable_device(pdev); 12356 12357 init_err: 12358 return rc; 12359 } 12360 12361 /* rtnl_lock held */ 12362 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 12363 { 12364 struct sockaddr *addr = p; 12365 struct bnxt *bp = netdev_priv(dev); 12366 int rc = 0; 12367 12368 if (!is_valid_ether_addr(addr->sa_data)) 12369 return -EADDRNOTAVAIL; 12370 12371 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 12372 return 0; 12373 12374 rc = bnxt_approve_mac(bp, addr->sa_data, true); 12375 if (rc) 12376 return rc; 12377 12378 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 12379 if (netif_running(dev)) { 12380 bnxt_close_nic(bp, false, false); 12381 rc = bnxt_open_nic(bp, false, false); 12382 } 12383 12384 return rc; 12385 } 12386 12387 /* rtnl_lock held */ 12388 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 12389 { 12390 struct bnxt *bp = netdev_priv(dev); 12391 12392 if (netif_running(dev)) 12393 bnxt_close_nic(bp, true, false); 12394 12395 dev->mtu = new_mtu; 12396 bnxt_set_ring_params(bp); 12397 12398 if (netif_running(dev)) 12399 return bnxt_open_nic(bp, true, false); 12400 12401 return 0; 12402 } 12403 12404 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 12405 { 12406 struct bnxt *bp = netdev_priv(dev); 12407 bool sh = false; 12408 int rc; 12409 12410 if (tc > bp->max_tc) { 12411 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 12412 tc, bp->max_tc); 12413 return -EINVAL; 12414 } 12415 12416 if (netdev_get_num_tc(dev) == tc) 12417 return 0; 12418 12419 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 12420 sh = true; 12421 12422 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 12423 sh, tc, bp->tx_nr_rings_xdp); 12424 if (rc) 12425 return rc; 12426 12427 /* Needs to close the device and do hw resource re-allocations */ 12428 if (netif_running(bp->dev)) 12429 bnxt_close_nic(bp, true, false); 12430 12431 if (tc) { 12432 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 12433 netdev_set_num_tc(dev, tc); 12434 } else { 12435 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 12436 netdev_reset_tc(dev); 12437 } 12438 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 12439 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 12440 bp->tx_nr_rings + bp->rx_nr_rings; 12441 12442 if (netif_running(bp->dev)) 12443 return bnxt_open_nic(bp, true, false); 12444 12445 return 0; 12446 } 12447 12448 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 12449 void *cb_priv) 12450 { 12451 struct bnxt *bp = cb_priv; 12452 12453 if (!bnxt_tc_flower_enabled(bp) || 12454 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 12455 return -EOPNOTSUPP; 12456 12457 switch (type) { 12458 case TC_SETUP_CLSFLOWER: 12459 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 12460 default: 12461 return -EOPNOTSUPP; 12462 } 12463 } 12464 12465 LIST_HEAD(bnxt_block_cb_list); 12466 12467 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 12468 void *type_data) 12469 { 12470 struct bnxt *bp = netdev_priv(dev); 12471 12472 switch (type) { 12473 case TC_SETUP_BLOCK: 12474 return flow_block_cb_setup_simple(type_data, 12475 &bnxt_block_cb_list, 12476 bnxt_setup_tc_block_cb, 12477 bp, bp, true); 12478 case TC_SETUP_QDISC_MQPRIO: { 12479 struct tc_mqprio_qopt *mqprio = type_data; 12480 12481 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 12482 12483 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 12484 } 12485 default: 12486 return -EOPNOTSUPP; 12487 } 12488 } 12489 12490 #ifdef CONFIG_RFS_ACCEL 12491 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 12492 struct bnxt_ntuple_filter *f2) 12493 { 12494 struct flow_keys *keys1 = &f1->fkeys; 12495 struct flow_keys *keys2 = &f2->fkeys; 12496 12497 if (keys1->basic.n_proto != keys2->basic.n_proto || 12498 keys1->basic.ip_proto != keys2->basic.ip_proto) 12499 return false; 12500 12501 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 12502 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 12503 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst) 12504 return false; 12505 } else { 12506 if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src, 12507 sizeof(keys1->addrs.v6addrs.src)) || 12508 memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst, 12509 sizeof(keys1->addrs.v6addrs.dst))) 12510 return false; 12511 } 12512 12513 if (keys1->ports.ports == keys2->ports.ports && 12514 keys1->control.flags == keys2->control.flags && 12515 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) && 12516 ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr)) 12517 return true; 12518 12519 return false; 12520 } 12521 12522 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 12523 u16 rxq_index, u32 flow_id) 12524 { 12525 struct bnxt *bp = netdev_priv(dev); 12526 struct bnxt_ntuple_filter *fltr, *new_fltr; 12527 struct flow_keys *fkeys; 12528 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 12529 int rc = 0, idx, bit_id, l2_idx = 0; 12530 struct hlist_head *head; 12531 u32 flags; 12532 12533 if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) { 12534 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 12535 int off = 0, j; 12536 12537 netif_addr_lock_bh(dev); 12538 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) { 12539 if (ether_addr_equal(eth->h_dest, 12540 vnic->uc_list + off)) { 12541 l2_idx = j + 1; 12542 break; 12543 } 12544 } 12545 netif_addr_unlock_bh(dev); 12546 if (!l2_idx) 12547 return -EINVAL; 12548 } 12549 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 12550 if (!new_fltr) 12551 return -ENOMEM; 12552 12553 fkeys = &new_fltr->fkeys; 12554 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 12555 rc = -EPROTONOSUPPORT; 12556 goto err_free; 12557 } 12558 12559 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 12560 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 12561 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 12562 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 12563 rc = -EPROTONOSUPPORT; 12564 goto err_free; 12565 } 12566 if (fkeys->basic.n_proto == htons(ETH_P_IPV6) && 12567 bp->hwrm_spec_code < 0x10601) { 12568 rc = -EPROTONOSUPPORT; 12569 goto err_free; 12570 } 12571 flags = fkeys->control.flags; 12572 if (((flags & FLOW_DIS_ENCAPSULATION) && 12573 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 12574 rc = -EPROTONOSUPPORT; 12575 goto err_free; 12576 } 12577 12578 memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN); 12579 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN); 12580 12581 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 12582 head = &bp->ntp_fltr_hash_tbl[idx]; 12583 rcu_read_lock(); 12584 hlist_for_each_entry_rcu(fltr, head, hash) { 12585 if (bnxt_fltr_match(fltr, new_fltr)) { 12586 rcu_read_unlock(); 12587 rc = 0; 12588 goto err_free; 12589 } 12590 } 12591 rcu_read_unlock(); 12592 12593 spin_lock_bh(&bp->ntp_fltr_lock); 12594 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 12595 BNXT_NTP_FLTR_MAX_FLTR, 0); 12596 if (bit_id < 0) { 12597 spin_unlock_bh(&bp->ntp_fltr_lock); 12598 rc = -ENOMEM; 12599 goto err_free; 12600 } 12601 12602 new_fltr->sw_id = (u16)bit_id; 12603 new_fltr->flow_id = flow_id; 12604 new_fltr->l2_fltr_idx = l2_idx; 12605 new_fltr->rxq = rxq_index; 12606 hlist_add_head_rcu(&new_fltr->hash, head); 12607 bp->ntp_fltr_count++; 12608 spin_unlock_bh(&bp->ntp_fltr_lock); 12609 12610 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 12611 bnxt_queue_sp_work(bp); 12612 12613 return new_fltr->sw_id; 12614 12615 err_free: 12616 kfree(new_fltr); 12617 return rc; 12618 } 12619 12620 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 12621 { 12622 int i; 12623 12624 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 12625 struct hlist_head *head; 12626 struct hlist_node *tmp; 12627 struct bnxt_ntuple_filter *fltr; 12628 int rc; 12629 12630 head = &bp->ntp_fltr_hash_tbl[i]; 12631 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 12632 bool del = false; 12633 12634 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) { 12635 if (rps_may_expire_flow(bp->dev, fltr->rxq, 12636 fltr->flow_id, 12637 fltr->sw_id)) { 12638 bnxt_hwrm_cfa_ntuple_filter_free(bp, 12639 fltr); 12640 del = true; 12641 } 12642 } else { 12643 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 12644 fltr); 12645 if (rc) 12646 del = true; 12647 else 12648 set_bit(BNXT_FLTR_VALID, &fltr->state); 12649 } 12650 12651 if (del) { 12652 spin_lock_bh(&bp->ntp_fltr_lock); 12653 hlist_del_rcu(&fltr->hash); 12654 bp->ntp_fltr_count--; 12655 spin_unlock_bh(&bp->ntp_fltr_lock); 12656 synchronize_rcu(); 12657 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 12658 kfree(fltr); 12659 } 12660 } 12661 } 12662 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 12663 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 12664 } 12665 12666 #else 12667 12668 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 12669 { 12670 } 12671 12672 #endif /* CONFIG_RFS_ACCEL */ 12673 12674 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table) 12675 { 12676 struct bnxt *bp = netdev_priv(netdev); 12677 struct udp_tunnel_info ti; 12678 unsigned int cmd; 12679 12680 udp_tunnel_nic_get_port(netdev, table, 0, &ti); 12681 if (ti.type == UDP_TUNNEL_TYPE_VXLAN) { 12682 bp->vxlan_port = ti.port; 12683 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 12684 } else { 12685 bp->nge_port = ti.port; 12686 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 12687 } 12688 12689 if (ti.port) 12690 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd); 12691 12692 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 12693 } 12694 12695 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 12696 .sync_table = bnxt_udp_tunnel_sync, 12697 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 12698 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 12699 .tables = { 12700 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 12701 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 12702 }, 12703 }; 12704 12705 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 12706 struct net_device *dev, u32 filter_mask, 12707 int nlflags) 12708 { 12709 struct bnxt *bp = netdev_priv(dev); 12710 12711 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 12712 nlflags, filter_mask, NULL); 12713 } 12714 12715 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 12716 u16 flags, struct netlink_ext_ack *extack) 12717 { 12718 struct bnxt *bp = netdev_priv(dev); 12719 struct nlattr *attr, *br_spec; 12720 int rem, rc = 0; 12721 12722 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 12723 return -EOPNOTSUPP; 12724 12725 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 12726 if (!br_spec) 12727 return -EINVAL; 12728 12729 nla_for_each_nested(attr, br_spec, rem) { 12730 u16 mode; 12731 12732 if (nla_type(attr) != IFLA_BRIDGE_MODE) 12733 continue; 12734 12735 if (nla_len(attr) < sizeof(mode)) 12736 return -EINVAL; 12737 12738 mode = nla_get_u16(attr); 12739 if (mode == bp->br_mode) 12740 break; 12741 12742 rc = bnxt_hwrm_set_br_mode(bp, mode); 12743 if (!rc) 12744 bp->br_mode = mode; 12745 break; 12746 } 12747 return rc; 12748 } 12749 12750 int bnxt_get_port_parent_id(struct net_device *dev, 12751 struct netdev_phys_item_id *ppid) 12752 { 12753 struct bnxt *bp = netdev_priv(dev); 12754 12755 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 12756 return -EOPNOTSUPP; 12757 12758 /* The PF and it's VF-reps only support the switchdev framework */ 12759 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 12760 return -EOPNOTSUPP; 12761 12762 ppid->id_len = sizeof(bp->dsn); 12763 memcpy(ppid->id, bp->dsn, ppid->id_len); 12764 12765 return 0; 12766 } 12767 12768 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev) 12769 { 12770 struct bnxt *bp = netdev_priv(dev); 12771 12772 return &bp->dl_port; 12773 } 12774 12775 static const struct net_device_ops bnxt_netdev_ops = { 12776 .ndo_open = bnxt_open, 12777 .ndo_start_xmit = bnxt_start_xmit, 12778 .ndo_stop = bnxt_close, 12779 .ndo_get_stats64 = bnxt_get_stats64, 12780 .ndo_set_rx_mode = bnxt_set_rx_mode, 12781 .ndo_eth_ioctl = bnxt_ioctl, 12782 .ndo_validate_addr = eth_validate_addr, 12783 .ndo_set_mac_address = bnxt_change_mac_addr, 12784 .ndo_change_mtu = bnxt_change_mtu, 12785 .ndo_fix_features = bnxt_fix_features, 12786 .ndo_set_features = bnxt_set_features, 12787 .ndo_features_check = bnxt_features_check, 12788 .ndo_tx_timeout = bnxt_tx_timeout, 12789 #ifdef CONFIG_BNXT_SRIOV 12790 .ndo_get_vf_config = bnxt_get_vf_config, 12791 .ndo_set_vf_mac = bnxt_set_vf_mac, 12792 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 12793 .ndo_set_vf_rate = bnxt_set_vf_bw, 12794 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 12795 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 12796 .ndo_set_vf_trust = bnxt_set_vf_trust, 12797 #endif 12798 .ndo_setup_tc = bnxt_setup_tc, 12799 #ifdef CONFIG_RFS_ACCEL 12800 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 12801 #endif 12802 .ndo_bpf = bnxt_xdp, 12803 .ndo_xdp_xmit = bnxt_xdp_xmit, 12804 .ndo_bridge_getlink = bnxt_bridge_getlink, 12805 .ndo_bridge_setlink = bnxt_bridge_setlink, 12806 .ndo_get_devlink_port = bnxt_get_devlink_port, 12807 }; 12808 12809 static void bnxt_remove_one(struct pci_dev *pdev) 12810 { 12811 struct net_device *dev = pci_get_drvdata(pdev); 12812 struct bnxt *bp = netdev_priv(dev); 12813 12814 if (BNXT_PF(bp)) 12815 bnxt_sriov_disable(bp); 12816 12817 if (BNXT_PF(bp)) 12818 devlink_port_type_clear(&bp->dl_port); 12819 12820 bnxt_ptp_clear(bp); 12821 pci_disable_pcie_error_reporting(pdev); 12822 unregister_netdev(dev); 12823 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12824 /* Flush any pending tasks */ 12825 cancel_work_sync(&bp->sp_task); 12826 cancel_delayed_work_sync(&bp->fw_reset_task); 12827 bp->sp_event = 0; 12828 12829 bnxt_dl_fw_reporters_destroy(bp, true); 12830 bnxt_dl_unregister(bp); 12831 bnxt_shutdown_tc(bp); 12832 12833 bnxt_clear_int_mode(bp); 12834 bnxt_hwrm_func_drv_unrgtr(bp); 12835 bnxt_free_hwrm_resources(bp); 12836 bnxt_free_hwrm_short_cmd_req(bp); 12837 bnxt_ethtool_free(bp); 12838 bnxt_dcb_free(bp); 12839 kfree(bp->edev); 12840 bp->edev = NULL; 12841 kfree(bp->ptp_cfg); 12842 bp->ptp_cfg = NULL; 12843 kfree(bp->fw_health); 12844 bp->fw_health = NULL; 12845 bnxt_cleanup_pci(bp); 12846 bnxt_free_ctx_mem(bp); 12847 kfree(bp->ctx); 12848 bp->ctx = NULL; 12849 kfree(bp->rss_indir_tbl); 12850 bp->rss_indir_tbl = NULL; 12851 bnxt_free_port_stats(bp); 12852 free_netdev(dev); 12853 } 12854 12855 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 12856 { 12857 int rc = 0; 12858 struct bnxt_link_info *link_info = &bp->link_info; 12859 12860 bp->phy_flags = 0; 12861 rc = bnxt_hwrm_phy_qcaps(bp); 12862 if (rc) { 12863 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 12864 rc); 12865 return rc; 12866 } 12867 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 12868 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 12869 else 12870 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 12871 if (!fw_dflt) 12872 return 0; 12873 12874 rc = bnxt_update_link(bp, false); 12875 if (rc) { 12876 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 12877 rc); 12878 return rc; 12879 } 12880 12881 /* Older firmware does not have supported_auto_speeds, so assume 12882 * that all supported speeds can be autonegotiated. 12883 */ 12884 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 12885 link_info->support_auto_speeds = link_info->support_speeds; 12886 12887 bnxt_init_ethtool_link_settings(bp); 12888 return 0; 12889 } 12890 12891 static int bnxt_get_max_irq(struct pci_dev *pdev) 12892 { 12893 u16 ctrl; 12894 12895 if (!pdev->msix_cap) 12896 return 1; 12897 12898 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 12899 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 12900 } 12901 12902 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 12903 int *max_cp) 12904 { 12905 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 12906 int max_ring_grps = 0, max_irq; 12907 12908 *max_tx = hw_resc->max_tx_rings; 12909 *max_rx = hw_resc->max_rx_rings; 12910 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 12911 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 12912 bnxt_get_ulp_msix_num(bp), 12913 hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp)); 12914 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 12915 *max_cp = min_t(int, *max_cp, max_irq); 12916 max_ring_grps = hw_resc->max_hw_ring_grps; 12917 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 12918 *max_cp -= 1; 12919 *max_rx -= 2; 12920 } 12921 if (bp->flags & BNXT_FLAG_AGG_RINGS) 12922 *max_rx >>= 1; 12923 if (bp->flags & BNXT_FLAG_CHIP_P5) { 12924 bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 12925 /* On P5 chips, max_cp output param should be available NQs */ 12926 *max_cp = max_irq; 12927 } 12928 *max_rx = min_t(int, *max_rx, max_ring_grps); 12929 } 12930 12931 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 12932 { 12933 int rx, tx, cp; 12934 12935 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 12936 *max_rx = rx; 12937 *max_tx = tx; 12938 if (!rx || !tx || !cp) 12939 return -ENOMEM; 12940 12941 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 12942 } 12943 12944 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 12945 bool shared) 12946 { 12947 int rc; 12948 12949 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 12950 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 12951 /* Not enough rings, try disabling agg rings. */ 12952 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 12953 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 12954 if (rc) { 12955 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 12956 bp->flags |= BNXT_FLAG_AGG_RINGS; 12957 return rc; 12958 } 12959 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 12960 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12961 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12962 bnxt_set_ring_params(bp); 12963 } 12964 12965 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 12966 int max_cp, max_stat, max_irq; 12967 12968 /* Reserve minimum resources for RoCE */ 12969 max_cp = bnxt_get_max_func_cp_rings(bp); 12970 max_stat = bnxt_get_max_func_stat_ctxs(bp); 12971 max_irq = bnxt_get_max_func_irqs(bp); 12972 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 12973 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 12974 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 12975 return 0; 12976 12977 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 12978 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 12979 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 12980 max_cp = min_t(int, max_cp, max_irq); 12981 max_cp = min_t(int, max_cp, max_stat); 12982 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 12983 if (rc) 12984 rc = 0; 12985 } 12986 return rc; 12987 } 12988 12989 /* In initial default shared ring setting, each shared ring must have a 12990 * RX/TX ring pair. 12991 */ 12992 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 12993 { 12994 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 12995 bp->rx_nr_rings = bp->cp_nr_rings; 12996 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 12997 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 12998 } 12999 13000 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 13001 { 13002 int dflt_rings, max_rx_rings, max_tx_rings, rc; 13003 13004 if (!bnxt_can_reserve_rings(bp)) 13005 return 0; 13006 13007 if (sh) 13008 bp->flags |= BNXT_FLAG_SHARED_RINGS; 13009 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 13010 /* Reduce default rings on multi-port cards so that total default 13011 * rings do not exceed CPU count. 13012 */ 13013 if (bp->port_count > 1) { 13014 int max_rings = 13015 max_t(int, num_online_cpus() / bp->port_count, 1); 13016 13017 dflt_rings = min_t(int, dflt_rings, max_rings); 13018 } 13019 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 13020 if (rc) 13021 return rc; 13022 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 13023 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 13024 if (sh) 13025 bnxt_trim_dflt_sh_rings(bp); 13026 else 13027 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 13028 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 13029 13030 rc = __bnxt_reserve_rings(bp); 13031 if (rc) 13032 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 13033 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13034 if (sh) 13035 bnxt_trim_dflt_sh_rings(bp); 13036 13037 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 13038 if (bnxt_need_reserve_rings(bp)) { 13039 rc = __bnxt_reserve_rings(bp); 13040 if (rc) 13041 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 13042 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13043 } 13044 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 13045 bp->rx_nr_rings++; 13046 bp->cp_nr_rings++; 13047 } 13048 if (rc) { 13049 bp->tx_nr_rings = 0; 13050 bp->rx_nr_rings = 0; 13051 } 13052 return rc; 13053 } 13054 13055 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 13056 { 13057 int rc; 13058 13059 if (bp->tx_nr_rings) 13060 return 0; 13061 13062 bnxt_ulp_irq_stop(bp); 13063 bnxt_clear_int_mode(bp); 13064 rc = bnxt_set_dflt_rings(bp, true); 13065 if (rc) { 13066 netdev_err(bp->dev, "Not enough rings available.\n"); 13067 goto init_dflt_ring_err; 13068 } 13069 rc = bnxt_init_int_mode(bp); 13070 if (rc) 13071 goto init_dflt_ring_err; 13072 13073 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13074 if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) { 13075 bp->flags |= BNXT_FLAG_RFS; 13076 bp->dev->features |= NETIF_F_NTUPLE; 13077 } 13078 init_dflt_ring_err: 13079 bnxt_ulp_irq_restart(bp, rc); 13080 return rc; 13081 } 13082 13083 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 13084 { 13085 int rc; 13086 13087 ASSERT_RTNL(); 13088 bnxt_hwrm_func_qcaps(bp); 13089 13090 if (netif_running(bp->dev)) 13091 __bnxt_close_nic(bp, true, false); 13092 13093 bnxt_ulp_irq_stop(bp); 13094 bnxt_clear_int_mode(bp); 13095 rc = bnxt_init_int_mode(bp); 13096 bnxt_ulp_irq_restart(bp, rc); 13097 13098 if (netif_running(bp->dev)) { 13099 if (rc) 13100 dev_close(bp->dev); 13101 else 13102 rc = bnxt_open_nic(bp, true, false); 13103 } 13104 13105 return rc; 13106 } 13107 13108 static int bnxt_init_mac_addr(struct bnxt *bp) 13109 { 13110 int rc = 0; 13111 13112 if (BNXT_PF(bp)) { 13113 memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN); 13114 } else { 13115 #ifdef CONFIG_BNXT_SRIOV 13116 struct bnxt_vf_info *vf = &bp->vf; 13117 bool strict_approval = true; 13118 13119 if (is_valid_ether_addr(vf->mac_addr)) { 13120 /* overwrite netdev dev_addr with admin VF MAC */ 13121 memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN); 13122 /* Older PF driver or firmware may not approve this 13123 * correctly. 13124 */ 13125 strict_approval = false; 13126 } else { 13127 eth_hw_addr_random(bp->dev); 13128 } 13129 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 13130 #endif 13131 } 13132 return rc; 13133 } 13134 13135 #define BNXT_VPD_LEN 512 13136 static void bnxt_vpd_read_info(struct bnxt *bp) 13137 { 13138 struct pci_dev *pdev = bp->pdev; 13139 int i, len, pos, ro_size, size; 13140 ssize_t vpd_size; 13141 u8 *vpd_data; 13142 13143 vpd_data = kmalloc(BNXT_VPD_LEN, GFP_KERNEL); 13144 if (!vpd_data) 13145 return; 13146 13147 vpd_size = pci_read_vpd(pdev, 0, BNXT_VPD_LEN, vpd_data); 13148 if (vpd_size <= 0) { 13149 netdev_err(bp->dev, "Unable to read VPD\n"); 13150 goto exit; 13151 } 13152 13153 i = pci_vpd_find_tag(vpd_data, vpd_size, PCI_VPD_LRDT_RO_DATA); 13154 if (i < 0) { 13155 netdev_err(bp->dev, "VPD READ-Only not found\n"); 13156 goto exit; 13157 } 13158 13159 ro_size = pci_vpd_lrdt_size(&vpd_data[i]); 13160 i += PCI_VPD_LRDT_TAG_SIZE; 13161 if (i + ro_size > vpd_size) 13162 goto exit; 13163 13164 pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size, 13165 PCI_VPD_RO_KEYWORD_PARTNO); 13166 if (pos < 0) 13167 goto read_sn; 13168 13169 len = pci_vpd_info_field_size(&vpd_data[pos]); 13170 pos += PCI_VPD_INFO_FLD_HDR_SIZE; 13171 if (len + pos > vpd_size) 13172 goto read_sn; 13173 13174 size = min(len, BNXT_VPD_FLD_LEN - 1); 13175 memcpy(bp->board_partno, &vpd_data[pos], size); 13176 13177 read_sn: 13178 pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size, 13179 PCI_VPD_RO_KEYWORD_SERIALNO); 13180 if (pos < 0) 13181 goto exit; 13182 13183 len = pci_vpd_info_field_size(&vpd_data[pos]); 13184 pos += PCI_VPD_INFO_FLD_HDR_SIZE; 13185 if (len + pos > vpd_size) 13186 goto exit; 13187 13188 size = min(len, BNXT_VPD_FLD_LEN - 1); 13189 memcpy(bp->board_serialno, &vpd_data[pos], size); 13190 exit: 13191 kfree(vpd_data); 13192 } 13193 13194 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 13195 { 13196 struct pci_dev *pdev = bp->pdev; 13197 u64 qword; 13198 13199 qword = pci_get_dsn(pdev); 13200 if (!qword) { 13201 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 13202 return -EOPNOTSUPP; 13203 } 13204 13205 put_unaligned_le64(qword, dsn); 13206 13207 bp->flags |= BNXT_FLAG_DSN_VALID; 13208 return 0; 13209 } 13210 13211 static int bnxt_map_db_bar(struct bnxt *bp) 13212 { 13213 if (!bp->db_size) 13214 return -ENODEV; 13215 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 13216 if (!bp->bar1) 13217 return -ENOMEM; 13218 return 0; 13219 } 13220 13221 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 13222 { 13223 struct net_device *dev; 13224 struct bnxt *bp; 13225 int rc, max_irqs; 13226 13227 if (pci_is_bridge(pdev)) 13228 return -ENODEV; 13229 13230 /* Clear any pending DMA transactions from crash kernel 13231 * while loading driver in capture kernel. 13232 */ 13233 if (is_kdump_kernel()) { 13234 pci_clear_master(pdev); 13235 pcie_flr(pdev); 13236 } 13237 13238 max_irqs = bnxt_get_max_irq(pdev); 13239 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs); 13240 if (!dev) 13241 return -ENOMEM; 13242 13243 bp = netdev_priv(dev); 13244 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 13245 bnxt_set_max_func_irqs(bp, max_irqs); 13246 13247 if (bnxt_vf_pciid(ent->driver_data)) 13248 bp->flags |= BNXT_FLAG_VF; 13249 13250 if (pdev->msix_cap) 13251 bp->flags |= BNXT_FLAG_MSIX_CAP; 13252 13253 rc = bnxt_init_board(pdev, dev); 13254 if (rc < 0) 13255 goto init_err_free; 13256 13257 dev->netdev_ops = &bnxt_netdev_ops; 13258 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 13259 dev->ethtool_ops = &bnxt_ethtool_ops; 13260 pci_set_drvdata(pdev, dev); 13261 13262 rc = bnxt_alloc_hwrm_resources(bp); 13263 if (rc) 13264 goto init_err_pci_clean; 13265 13266 mutex_init(&bp->hwrm_cmd_lock); 13267 mutex_init(&bp->link_lock); 13268 13269 rc = bnxt_fw_init_one_p1(bp); 13270 if (rc) 13271 goto init_err_pci_clean; 13272 13273 if (BNXT_PF(bp)) 13274 bnxt_vpd_read_info(bp); 13275 13276 if (BNXT_CHIP_P5(bp)) { 13277 bp->flags |= BNXT_FLAG_CHIP_P5; 13278 if (BNXT_CHIP_SR2(bp)) 13279 bp->flags |= BNXT_FLAG_CHIP_SR2; 13280 } 13281 13282 rc = bnxt_alloc_rss_indir_tbl(bp); 13283 if (rc) 13284 goto init_err_pci_clean; 13285 13286 rc = bnxt_fw_init_one_p2(bp); 13287 if (rc) 13288 goto init_err_pci_clean; 13289 13290 rc = bnxt_map_db_bar(bp); 13291 if (rc) { 13292 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 13293 rc); 13294 goto init_err_pci_clean; 13295 } 13296 13297 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13298 NETIF_F_TSO | NETIF_F_TSO6 | 13299 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 13300 NETIF_F_GSO_IPXIP4 | 13301 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 13302 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 13303 NETIF_F_RXCSUM | NETIF_F_GRO; 13304 13305 if (BNXT_SUPPORTS_TPA(bp)) 13306 dev->hw_features |= NETIF_F_LRO; 13307 13308 dev->hw_enc_features = 13309 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13310 NETIF_F_TSO | NETIF_F_TSO6 | 13311 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 13312 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 13313 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 13314 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 13315 13316 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 13317 NETIF_F_GSO_GRE_CSUM; 13318 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 13319 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 13320 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 13321 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 13322 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 13323 if (BNXT_SUPPORTS_TPA(bp)) 13324 dev->hw_features |= NETIF_F_GRO_HW; 13325 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 13326 if (dev->features & NETIF_F_GRO_HW) 13327 dev->features &= ~NETIF_F_LRO; 13328 dev->priv_flags |= IFF_UNICAST_FLT; 13329 13330 #ifdef CONFIG_BNXT_SRIOV 13331 init_waitqueue_head(&bp->sriov_cfg_wait); 13332 mutex_init(&bp->sriov_lock); 13333 #endif 13334 if (BNXT_SUPPORTS_TPA(bp)) { 13335 bp->gro_func = bnxt_gro_func_5730x; 13336 if (BNXT_CHIP_P4(bp)) 13337 bp->gro_func = bnxt_gro_func_5731x; 13338 else if (BNXT_CHIP_P5(bp)) 13339 bp->gro_func = bnxt_gro_func_5750x; 13340 } 13341 if (!BNXT_CHIP_P4_PLUS(bp)) 13342 bp->flags |= BNXT_FLAG_DOUBLE_DB; 13343 13344 rc = bnxt_init_mac_addr(bp); 13345 if (rc) { 13346 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 13347 rc = -EADDRNOTAVAIL; 13348 goto init_err_pci_clean; 13349 } 13350 13351 if (BNXT_PF(bp)) { 13352 /* Read the adapter's DSN to use as the eswitch switch_id */ 13353 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 13354 } 13355 13356 /* MTU range: 60 - FW defined max */ 13357 dev->min_mtu = ETH_ZLEN; 13358 dev->max_mtu = bp->max_mtu; 13359 13360 rc = bnxt_probe_phy(bp, true); 13361 if (rc) 13362 goto init_err_pci_clean; 13363 13364 bnxt_set_rx_skb_mode(bp, false); 13365 bnxt_set_tpa_flags(bp); 13366 bnxt_set_ring_params(bp); 13367 rc = bnxt_set_dflt_rings(bp, true); 13368 if (rc) { 13369 netdev_err(bp->dev, "Not enough rings available.\n"); 13370 rc = -ENOMEM; 13371 goto init_err_pci_clean; 13372 } 13373 13374 bnxt_fw_init_one_p3(bp); 13375 13376 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13377 bp->flags |= BNXT_FLAG_STRIP_VLAN; 13378 13379 rc = bnxt_init_int_mode(bp); 13380 if (rc) 13381 goto init_err_pci_clean; 13382 13383 /* No TC has been set yet and rings may have been trimmed due to 13384 * limited MSIX, so we re-initialize the TX rings per TC. 13385 */ 13386 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13387 13388 if (BNXT_PF(bp)) { 13389 if (!bnxt_pf_wq) { 13390 bnxt_pf_wq = 13391 create_singlethread_workqueue("bnxt_pf_wq"); 13392 if (!bnxt_pf_wq) { 13393 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 13394 rc = -ENOMEM; 13395 goto init_err_pci_clean; 13396 } 13397 } 13398 rc = bnxt_init_tc(bp); 13399 if (rc) 13400 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 13401 rc); 13402 } 13403 13404 bnxt_inv_fw_health_reg(bp); 13405 bnxt_dl_register(bp); 13406 13407 rc = register_netdev(dev); 13408 if (rc) 13409 goto init_err_cleanup; 13410 13411 if (BNXT_PF(bp)) 13412 devlink_port_type_eth_set(&bp->dl_port, bp->dev); 13413 bnxt_dl_fw_reporters_create(bp); 13414 13415 netdev_info(dev, "%s found at mem %lx, node addr %pM\n", 13416 board_info[ent->driver_data].name, 13417 (long)pci_resource_start(pdev, 0), dev->dev_addr); 13418 pcie_print_link_status(pdev); 13419 13420 pci_save_state(pdev); 13421 return 0; 13422 13423 init_err_cleanup: 13424 bnxt_dl_unregister(bp); 13425 bnxt_shutdown_tc(bp); 13426 bnxt_clear_int_mode(bp); 13427 13428 init_err_pci_clean: 13429 bnxt_hwrm_func_drv_unrgtr(bp); 13430 bnxt_free_hwrm_short_cmd_req(bp); 13431 bnxt_free_hwrm_resources(bp); 13432 bnxt_ethtool_free(bp); 13433 bnxt_ptp_clear(bp); 13434 kfree(bp->ptp_cfg); 13435 bp->ptp_cfg = NULL; 13436 kfree(bp->fw_health); 13437 bp->fw_health = NULL; 13438 bnxt_cleanup_pci(bp); 13439 bnxt_free_ctx_mem(bp); 13440 kfree(bp->ctx); 13441 bp->ctx = NULL; 13442 kfree(bp->rss_indir_tbl); 13443 bp->rss_indir_tbl = NULL; 13444 13445 init_err_free: 13446 free_netdev(dev); 13447 return rc; 13448 } 13449 13450 static void bnxt_shutdown(struct pci_dev *pdev) 13451 { 13452 struct net_device *dev = pci_get_drvdata(pdev); 13453 struct bnxt *bp; 13454 13455 if (!dev) 13456 return; 13457 13458 rtnl_lock(); 13459 bp = netdev_priv(dev); 13460 if (!bp) 13461 goto shutdown_exit; 13462 13463 if (netif_running(dev)) 13464 dev_close(dev); 13465 13466 bnxt_ulp_shutdown(bp); 13467 bnxt_clear_int_mode(bp); 13468 pci_disable_device(pdev); 13469 13470 if (system_state == SYSTEM_POWER_OFF) { 13471 pci_wake_from_d3(pdev, bp->wol); 13472 pci_set_power_state(pdev, PCI_D3hot); 13473 } 13474 13475 shutdown_exit: 13476 rtnl_unlock(); 13477 } 13478 13479 #ifdef CONFIG_PM_SLEEP 13480 static int bnxt_suspend(struct device *device) 13481 { 13482 struct net_device *dev = dev_get_drvdata(device); 13483 struct bnxt *bp = netdev_priv(dev); 13484 int rc = 0; 13485 13486 rtnl_lock(); 13487 bnxt_ulp_stop(bp); 13488 if (netif_running(dev)) { 13489 netif_device_detach(dev); 13490 rc = bnxt_close(dev); 13491 } 13492 bnxt_hwrm_func_drv_unrgtr(bp); 13493 pci_disable_device(bp->pdev); 13494 bnxt_free_ctx_mem(bp); 13495 kfree(bp->ctx); 13496 bp->ctx = NULL; 13497 rtnl_unlock(); 13498 return rc; 13499 } 13500 13501 static int bnxt_resume(struct device *device) 13502 { 13503 struct net_device *dev = dev_get_drvdata(device); 13504 struct bnxt *bp = netdev_priv(dev); 13505 int rc = 0; 13506 13507 rtnl_lock(); 13508 rc = pci_enable_device(bp->pdev); 13509 if (rc) { 13510 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 13511 rc); 13512 goto resume_exit; 13513 } 13514 pci_set_master(bp->pdev); 13515 if (bnxt_hwrm_ver_get(bp)) { 13516 rc = -ENODEV; 13517 goto resume_exit; 13518 } 13519 rc = bnxt_hwrm_func_reset(bp); 13520 if (rc) { 13521 rc = -EBUSY; 13522 goto resume_exit; 13523 } 13524 13525 rc = bnxt_hwrm_func_qcaps(bp); 13526 if (rc) 13527 goto resume_exit; 13528 13529 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 13530 rc = -ENODEV; 13531 goto resume_exit; 13532 } 13533 13534 bnxt_get_wol_settings(bp); 13535 if (netif_running(dev)) { 13536 rc = bnxt_open(dev); 13537 if (!rc) 13538 netif_device_attach(dev); 13539 } 13540 13541 resume_exit: 13542 bnxt_ulp_start(bp, rc); 13543 if (!rc) 13544 bnxt_reenable_sriov(bp); 13545 rtnl_unlock(); 13546 return rc; 13547 } 13548 13549 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 13550 #define BNXT_PM_OPS (&bnxt_pm_ops) 13551 13552 #else 13553 13554 #define BNXT_PM_OPS NULL 13555 13556 #endif /* CONFIG_PM_SLEEP */ 13557 13558 /** 13559 * bnxt_io_error_detected - called when PCI error is detected 13560 * @pdev: Pointer to PCI device 13561 * @state: The current pci connection state 13562 * 13563 * This function is called after a PCI bus error affecting 13564 * this device has been detected. 13565 */ 13566 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 13567 pci_channel_state_t state) 13568 { 13569 struct net_device *netdev = pci_get_drvdata(pdev); 13570 struct bnxt *bp = netdev_priv(netdev); 13571 13572 netdev_info(netdev, "PCI I/O error detected\n"); 13573 13574 rtnl_lock(); 13575 netif_device_detach(netdev); 13576 13577 bnxt_ulp_stop(bp); 13578 13579 if (state == pci_channel_io_perm_failure) { 13580 rtnl_unlock(); 13581 return PCI_ERS_RESULT_DISCONNECT; 13582 } 13583 13584 if (state == pci_channel_io_frozen) 13585 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 13586 13587 if (netif_running(netdev)) 13588 bnxt_close(netdev); 13589 13590 if (pci_is_enabled(pdev)) 13591 pci_disable_device(pdev); 13592 bnxt_free_ctx_mem(bp); 13593 kfree(bp->ctx); 13594 bp->ctx = NULL; 13595 rtnl_unlock(); 13596 13597 /* Request a slot slot reset. */ 13598 return PCI_ERS_RESULT_NEED_RESET; 13599 } 13600 13601 /** 13602 * bnxt_io_slot_reset - called after the pci bus has been reset. 13603 * @pdev: Pointer to PCI device 13604 * 13605 * Restart the card from scratch, as if from a cold-boot. 13606 * At this point, the card has exprienced a hard reset, 13607 * followed by fixups by BIOS, and has its config space 13608 * set up identically to what it was at cold boot. 13609 */ 13610 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 13611 { 13612 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 13613 struct net_device *netdev = pci_get_drvdata(pdev); 13614 struct bnxt *bp = netdev_priv(netdev); 13615 int err = 0, off; 13616 13617 netdev_info(bp->dev, "PCI Slot Reset\n"); 13618 13619 rtnl_lock(); 13620 13621 if (pci_enable_device(pdev)) { 13622 dev_err(&pdev->dev, 13623 "Cannot re-enable PCI device after reset.\n"); 13624 } else { 13625 pci_set_master(pdev); 13626 /* Upon fatal error, our device internal logic that latches to 13627 * BAR value is getting reset and will restore only upon 13628 * rewritting the BARs. 13629 * 13630 * As pci_restore_state() does not re-write the BARs if the 13631 * value is same as saved value earlier, driver needs to 13632 * write the BARs to 0 to force restore, in case of fatal error. 13633 */ 13634 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 13635 &bp->state)) { 13636 for (off = PCI_BASE_ADDRESS_0; 13637 off <= PCI_BASE_ADDRESS_5; off += 4) 13638 pci_write_config_dword(bp->pdev, off, 0); 13639 } 13640 pci_restore_state(pdev); 13641 pci_save_state(pdev); 13642 13643 err = bnxt_hwrm_func_reset(bp); 13644 if (!err) 13645 result = PCI_ERS_RESULT_RECOVERED; 13646 } 13647 13648 rtnl_unlock(); 13649 13650 return result; 13651 } 13652 13653 /** 13654 * bnxt_io_resume - called when traffic can start flowing again. 13655 * @pdev: Pointer to PCI device 13656 * 13657 * This callback is called when the error recovery driver tells 13658 * us that its OK to resume normal operation. 13659 */ 13660 static void bnxt_io_resume(struct pci_dev *pdev) 13661 { 13662 struct net_device *netdev = pci_get_drvdata(pdev); 13663 struct bnxt *bp = netdev_priv(netdev); 13664 int err; 13665 13666 netdev_info(bp->dev, "PCI Slot Resume\n"); 13667 rtnl_lock(); 13668 13669 err = bnxt_hwrm_func_qcaps(bp); 13670 if (!err && netif_running(netdev)) 13671 err = bnxt_open(netdev); 13672 13673 bnxt_ulp_start(bp, err); 13674 if (!err) { 13675 bnxt_reenable_sriov(bp); 13676 netif_device_attach(netdev); 13677 } 13678 13679 rtnl_unlock(); 13680 } 13681 13682 static const struct pci_error_handlers bnxt_err_handler = { 13683 .error_detected = bnxt_io_error_detected, 13684 .slot_reset = bnxt_io_slot_reset, 13685 .resume = bnxt_io_resume 13686 }; 13687 13688 static struct pci_driver bnxt_pci_driver = { 13689 .name = DRV_MODULE_NAME, 13690 .id_table = bnxt_pci_tbl, 13691 .probe = bnxt_init_one, 13692 .remove = bnxt_remove_one, 13693 .shutdown = bnxt_shutdown, 13694 .driver.pm = BNXT_PM_OPS, 13695 .err_handler = &bnxt_err_handler, 13696 #if defined(CONFIG_BNXT_SRIOV) 13697 .sriov_configure = bnxt_sriov_configure, 13698 #endif 13699 }; 13700 13701 static int __init bnxt_init(void) 13702 { 13703 bnxt_debug_init(); 13704 return pci_register_driver(&bnxt_pci_driver); 13705 } 13706 13707 static void __exit bnxt_exit(void) 13708 { 13709 pci_unregister_driver(&bnxt_pci_driver); 13710 if (bnxt_pf_wq) 13711 destroy_workqueue(bnxt_pf_wq); 13712 bnxt_debug_exit(); 13713 } 13714 13715 module_init(bnxt_init); 13716 module_exit(bnxt_exit); 13717