xref: /linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision cad151904379b302a62e8967b7db6ba2e883a212)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/gro.h>
41 #include <net/ip.h>
42 #include <net/tcp.h>
43 #include <net/udp.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 #include <net/udp_tunnel.h>
47 #include <linux/workqueue.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/log2.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <net/page_pool/helpers.h>
56 #include <linux/align.h>
57 #include <net/netdev_queues.h>
58 
59 #include "bnxt_hsi.h"
60 #include "bnxt.h"
61 #include "bnxt_hwrm.h"
62 #include "bnxt_ulp.h"
63 #include "bnxt_sriov.h"
64 #include "bnxt_ethtool.h"
65 #include "bnxt_dcb.h"
66 #include "bnxt_xdp.h"
67 #include "bnxt_ptp.h"
68 #include "bnxt_vfr.h"
69 #include "bnxt_tc.h"
70 #include "bnxt_devlink.h"
71 #include "bnxt_debugfs.h"
72 #include "bnxt_hwmon.h"
73 
74 #define BNXT_TX_TIMEOUT		(5 * HZ)
75 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW | \
76 				 NETIF_MSG_TX_ERR)
77 
78 MODULE_LICENSE("GPL");
79 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
80 
81 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
82 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
83 #define BNXT_RX_COPY_THRESH 256
84 
85 #define BNXT_TX_PUSH_THRESH 164
86 
87 /* indexed by enum board_idx */
88 static const struct {
89 	char *name;
90 } board_info[] = {
91 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
92 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
93 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
94 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
95 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
96 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
97 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
98 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
99 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
100 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
101 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
102 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
103 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
104 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
105 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
106 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
107 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
108 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
109 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
110 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
111 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
112 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
113 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
114 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
115 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
116 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
117 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
118 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
119 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
120 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
121 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
122 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
123 	[BCM57608] = { "Broadcom BCM57608 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" },
124 	[BCM57604] = { "Broadcom BCM57604 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
125 	[BCM57602] = { "Broadcom BCM57602 NetXtreme-E 10Gb/25Gb/50Gb/100Gb Ethernet" },
126 	[BCM57601] = { "Broadcom BCM57601 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" },
127 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
128 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
129 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
130 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
131 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
132 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
133 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
134 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
135 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
136 	[NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
137 	[NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
138 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
139 	[NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
140 };
141 
142 static const struct pci_device_id bnxt_pci_tbl[] = {
143 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
144 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
145 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
146 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
147 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
148 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
149 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
150 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
151 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
152 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
153 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
154 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
155 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
157 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
158 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
159 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
160 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
161 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
162 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
163 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
164 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
165 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
166 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
167 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
168 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
169 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
170 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
171 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
172 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
173 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
174 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
175 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
176 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
177 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
178 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
179 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
180 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
181 	{ PCI_VDEVICE(BROADCOM, 0x1760), .driver_data = BCM57608 },
182 	{ PCI_VDEVICE(BROADCOM, 0x1761), .driver_data = BCM57604 },
183 	{ PCI_VDEVICE(BROADCOM, 0x1762), .driver_data = BCM57602 },
184 	{ PCI_VDEVICE(BROADCOM, 0x1763), .driver_data = BCM57601 },
185 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR },
186 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
187 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR },
188 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR },
189 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
190 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR },
191 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
192 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
193 #ifdef CONFIG_BNXT_SRIOV
194 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
195 	{ PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
196 	{ PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
197 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
198 	{ PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
199 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
200 	{ PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
201 	{ PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
202 	{ PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
203 	{ PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
204 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
205 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
206 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
207 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
208 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
209 	{ PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
210 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
211 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
212 	{ PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
213 	{ PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
214 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
215 #endif
216 	{ 0 }
217 };
218 
219 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
220 
221 static const u16 bnxt_vf_req_snif[] = {
222 	HWRM_FUNC_CFG,
223 	HWRM_FUNC_VF_CFG,
224 	HWRM_PORT_PHY_QCFG,
225 	HWRM_CFA_L2_FILTER_ALLOC,
226 };
227 
228 static const u16 bnxt_async_events_arr[] = {
229 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
230 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
231 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
232 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
233 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
234 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
235 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
236 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
237 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
238 	ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
239 	ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE,
240 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
241 	ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
242 	ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP,
243 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT,
244 	ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE,
245 };
246 
247 static struct workqueue_struct *bnxt_pf_wq;
248 
249 static bool bnxt_vf_pciid(enum board_idx idx)
250 {
251 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
252 		idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
253 		idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
254 		idx == NETXTREME_E_P5_VF_HV);
255 }
256 
257 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
258 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
259 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
260 
261 #define BNXT_CP_DB_IRQ_DIS(db)						\
262 		writel(DB_CP_IRQ_DIS_FLAGS, db)
263 
264 #define BNXT_DB_CQ(db, idx)						\
265 	writel(DB_CP_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell)
266 
267 #define BNXT_DB_NQ_P5(db, idx)						\
268 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | DB_RING_IDX(db, idx),\
269 		    (db)->doorbell)
270 
271 #define BNXT_DB_NQ_P7(db, idx)						\
272 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_MASK |		\
273 		    DB_RING_IDX(db, idx), (db)->doorbell)
274 
275 #define BNXT_DB_CQ_ARM(db, idx)						\
276 	writel(DB_CP_REARM_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell)
277 
278 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
279 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM |		\
280 		    DB_RING_IDX(db, idx), (db)->doorbell)
281 
282 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
283 {
284 	if (bp->flags & BNXT_FLAG_CHIP_P7)
285 		BNXT_DB_NQ_P7(db, idx);
286 	else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
287 		BNXT_DB_NQ_P5(db, idx);
288 	else
289 		BNXT_DB_CQ(db, idx);
290 }
291 
292 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
293 {
294 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
295 		BNXT_DB_NQ_ARM_P5(db, idx);
296 	else
297 		BNXT_DB_CQ_ARM(db, idx);
298 }
299 
300 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
301 {
302 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
303 		bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL |
304 			    DB_RING_IDX(db, idx), db->doorbell);
305 	else
306 		BNXT_DB_CQ(db, idx);
307 }
308 
309 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
310 {
311 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
312 		return;
313 
314 	if (BNXT_PF(bp))
315 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
316 	else
317 		schedule_delayed_work(&bp->fw_reset_task, delay);
318 }
319 
320 static void __bnxt_queue_sp_work(struct bnxt *bp)
321 {
322 	if (BNXT_PF(bp))
323 		queue_work(bnxt_pf_wq, &bp->sp_task);
324 	else
325 		schedule_work(&bp->sp_task);
326 }
327 
328 static void bnxt_queue_sp_work(struct bnxt *bp, unsigned int event)
329 {
330 	set_bit(event, &bp->sp_event);
331 	__bnxt_queue_sp_work(bp);
332 }
333 
334 static void bnxt_sched_reset_rxr(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
335 {
336 	if (!rxr->bnapi->in_reset) {
337 		rxr->bnapi->in_reset = true;
338 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
339 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
340 		else
341 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
342 		__bnxt_queue_sp_work(bp);
343 	}
344 	rxr->rx_next_cons = 0xffff;
345 }
346 
347 void bnxt_sched_reset_txr(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
348 			  u16 curr)
349 {
350 	struct bnxt_napi *bnapi = txr->bnapi;
351 
352 	if (bnapi->tx_fault)
353 		return;
354 
355 	netdev_err(bp->dev, "Invalid Tx completion (ring:%d tx_hw_cons:%u cons:%u prod:%u curr:%u)",
356 		   txr->txq_index, txr->tx_hw_cons,
357 		   txr->tx_cons, txr->tx_prod, curr);
358 	WARN_ON_ONCE(1);
359 	bnapi->tx_fault = 1;
360 	bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT);
361 }
362 
363 const u16 bnxt_lhint_arr[] = {
364 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
365 	TX_BD_FLAGS_LHINT_512_TO_1023,
366 	TX_BD_FLAGS_LHINT_1024_TO_2047,
367 	TX_BD_FLAGS_LHINT_1024_TO_2047,
368 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
369 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
370 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
371 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
372 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
373 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
374 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
375 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
376 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
377 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
378 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
379 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
380 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
381 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
382 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
383 };
384 
385 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
386 {
387 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
388 
389 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
390 		return 0;
391 
392 	return md_dst->u.port_info.port_id;
393 }
394 
395 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
396 			     u16 prod)
397 {
398 	/* Sync BD data before updating doorbell */
399 	wmb();
400 	bnxt_db_write(bp, &txr->tx_db, prod);
401 	txr->kick_pending = 0;
402 }
403 
404 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
405 {
406 	struct bnxt *bp = netdev_priv(dev);
407 	struct tx_bd *txbd, *txbd0;
408 	struct tx_bd_ext *txbd1;
409 	struct netdev_queue *txq;
410 	int i;
411 	dma_addr_t mapping;
412 	unsigned int length, pad = 0;
413 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
414 	u16 prod, last_frag;
415 	struct pci_dev *pdev = bp->pdev;
416 	struct bnxt_tx_ring_info *txr;
417 	struct bnxt_sw_tx_bd *tx_buf;
418 	__le32 lflags = 0;
419 
420 	i = skb_get_queue_mapping(skb);
421 	if (unlikely(i >= bp->tx_nr_rings)) {
422 		dev_kfree_skb_any(skb);
423 		dev_core_stats_tx_dropped_inc(dev);
424 		return NETDEV_TX_OK;
425 	}
426 
427 	txq = netdev_get_tx_queue(dev, i);
428 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
429 	prod = txr->tx_prod;
430 
431 	free_size = bnxt_tx_avail(bp, txr);
432 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
433 		/* We must have raced with NAPI cleanup */
434 		if (net_ratelimit() && txr->kick_pending)
435 			netif_warn(bp, tx_err, dev,
436 				   "bnxt: ring busy w/ flush pending!\n");
437 		if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr),
438 					bp->tx_wake_thresh))
439 			return NETDEV_TX_BUSY;
440 	}
441 
442 	if (unlikely(ipv6_hopopt_jumbo_remove(skb)))
443 		goto tx_free;
444 
445 	length = skb->len;
446 	len = skb_headlen(skb);
447 	last_frag = skb_shinfo(skb)->nr_frags;
448 
449 	txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
450 
451 	tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
452 	tx_buf->skb = skb;
453 	tx_buf->nr_frags = last_frag;
454 
455 	vlan_tag_flags = 0;
456 	cfa_action = bnxt_xmit_get_cfa_action(skb);
457 	if (skb_vlan_tag_present(skb)) {
458 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
459 				 skb_vlan_tag_get(skb);
460 		/* Currently supports 8021Q, 8021AD vlan offloads
461 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
462 		 */
463 		if (skb->vlan_proto == htons(ETH_P_8021Q))
464 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
465 	}
466 
467 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
468 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
469 
470 		if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) &&
471 		    atomic_dec_if_positive(&ptp->tx_avail) >= 0) {
472 			if (!bnxt_ptp_parse(skb, &ptp->tx_seqid,
473 					    &ptp->tx_hdr_off)) {
474 				if (vlan_tag_flags)
475 					ptp->tx_hdr_off += VLAN_HLEN;
476 				lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
477 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
478 			} else {
479 				atomic_inc(&bp->ptp_cfg->tx_avail);
480 			}
481 		}
482 	}
483 
484 	if (unlikely(skb->no_fcs))
485 		lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
486 
487 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh &&
488 	    !lflags) {
489 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
490 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
491 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
492 		void __iomem *db = txr->tx_db.doorbell;
493 		void *pdata = tx_push_buf->data;
494 		u64 *end;
495 		int j, push_len;
496 
497 		/* Set COAL_NOW to be ready quickly for the next push */
498 		tx_push->tx_bd_len_flags_type =
499 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
500 					TX_BD_TYPE_LONG_TX_BD |
501 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
502 					TX_BD_FLAGS_COAL_NOW |
503 					TX_BD_FLAGS_PACKET_END |
504 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
505 
506 		if (skb->ip_summed == CHECKSUM_PARTIAL)
507 			tx_push1->tx_bd_hsize_lflags =
508 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
509 		else
510 			tx_push1->tx_bd_hsize_lflags = 0;
511 
512 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
513 		tx_push1->tx_bd_cfa_action =
514 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
515 
516 		end = pdata + length;
517 		end = PTR_ALIGN(end, 8) - 1;
518 		*end = 0;
519 
520 		skb_copy_from_linear_data(skb, pdata, len);
521 		pdata += len;
522 		for (j = 0; j < last_frag; j++) {
523 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
524 			void *fptr;
525 
526 			fptr = skb_frag_address_safe(frag);
527 			if (!fptr)
528 				goto normal_tx;
529 
530 			memcpy(pdata, fptr, skb_frag_size(frag));
531 			pdata += skb_frag_size(frag);
532 		}
533 
534 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
535 		txbd->tx_bd_haddr = txr->data_mapping;
536 		txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2);
537 		prod = NEXT_TX(prod);
538 		tx_push->tx_bd_opaque = txbd->tx_bd_opaque;
539 		txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
540 		memcpy(txbd, tx_push1, sizeof(*txbd));
541 		prod = NEXT_TX(prod);
542 		tx_push->doorbell =
543 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH |
544 				    DB_RING_IDX(&txr->tx_db, prod));
545 		WRITE_ONCE(txr->tx_prod, prod);
546 
547 		tx_buf->is_push = 1;
548 		netdev_tx_sent_queue(txq, skb->len);
549 		wmb();	/* Sync is_push and byte queue before pushing data */
550 
551 		push_len = (length + sizeof(*tx_push) + 7) / 8;
552 		if (push_len > 16) {
553 			__iowrite64_copy(db, tx_push_buf, 16);
554 			__iowrite32_copy(db + 4, tx_push_buf + 1,
555 					 (push_len - 16) << 1);
556 		} else {
557 			__iowrite64_copy(db, tx_push_buf, push_len);
558 		}
559 
560 		goto tx_done;
561 	}
562 
563 normal_tx:
564 	if (length < BNXT_MIN_PKT_SIZE) {
565 		pad = BNXT_MIN_PKT_SIZE - length;
566 		if (skb_pad(skb, pad))
567 			/* SKB already freed. */
568 			goto tx_kick_pending;
569 		length = BNXT_MIN_PKT_SIZE;
570 	}
571 
572 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
573 
574 	if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
575 		goto tx_free;
576 
577 	dma_unmap_addr_set(tx_buf, mapping, mapping);
578 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
579 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
580 
581 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
582 	txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2 + last_frag);
583 
584 	prod = NEXT_TX(prod);
585 	txbd1 = (struct tx_bd_ext *)
586 		&txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
587 
588 	txbd1->tx_bd_hsize_lflags = lflags;
589 	if (skb_is_gso(skb)) {
590 		bool udp_gso = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4);
591 		u32 hdr_len;
592 
593 		if (skb->encapsulation) {
594 			if (udp_gso)
595 				hdr_len = skb_inner_transport_offset(skb) +
596 					  sizeof(struct udphdr);
597 			else
598 				hdr_len = skb_inner_tcp_all_headers(skb);
599 		} else if (udp_gso) {
600 			hdr_len = skb_transport_offset(skb) +
601 				  sizeof(struct udphdr);
602 		} else {
603 			hdr_len = skb_tcp_all_headers(skb);
604 		}
605 
606 		txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
607 					TX_BD_FLAGS_T_IPID |
608 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
609 		length = skb_shinfo(skb)->gso_size;
610 		txbd1->tx_bd_mss = cpu_to_le32(length);
611 		length += hdr_len;
612 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
613 		txbd1->tx_bd_hsize_lflags |=
614 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
615 		txbd1->tx_bd_mss = 0;
616 	}
617 
618 	length >>= 9;
619 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
620 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
621 				     skb->len);
622 		i = 0;
623 		goto tx_dma_error;
624 	}
625 	flags |= bnxt_lhint_arr[length];
626 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
627 
628 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
629 	txbd1->tx_bd_cfa_action =
630 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
631 	txbd0 = txbd;
632 	for (i = 0; i < last_frag; i++) {
633 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
634 
635 		prod = NEXT_TX(prod);
636 		txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
637 
638 		len = skb_frag_size(frag);
639 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
640 					   DMA_TO_DEVICE);
641 
642 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
643 			goto tx_dma_error;
644 
645 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
646 		dma_unmap_addr_set(tx_buf, mapping, mapping);
647 
648 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
649 
650 		flags = len << TX_BD_LEN_SHIFT;
651 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
652 	}
653 
654 	flags &= ~TX_BD_LEN;
655 	txbd->tx_bd_len_flags_type =
656 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
657 			    TX_BD_FLAGS_PACKET_END);
658 
659 	netdev_tx_sent_queue(txq, skb->len);
660 
661 	skb_tx_timestamp(skb);
662 
663 	prod = NEXT_TX(prod);
664 	WRITE_ONCE(txr->tx_prod, prod);
665 
666 	if (!netdev_xmit_more() || netif_xmit_stopped(txq)) {
667 		bnxt_txr_db_kick(bp, txr, prod);
668 	} else {
669 		if (free_size >= bp->tx_wake_thresh)
670 			txbd0->tx_bd_len_flags_type |=
671 				cpu_to_le32(TX_BD_FLAGS_NO_CMPL);
672 		txr->kick_pending = 1;
673 	}
674 
675 tx_done:
676 
677 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
678 		if (netdev_xmit_more() && !tx_buf->is_push) {
679 			txbd0->tx_bd_len_flags_type &=
680 				cpu_to_le32(~TX_BD_FLAGS_NO_CMPL);
681 			bnxt_txr_db_kick(bp, txr, prod);
682 		}
683 
684 		netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr),
685 				   bp->tx_wake_thresh);
686 	}
687 	return NETDEV_TX_OK;
688 
689 tx_dma_error:
690 	if (BNXT_TX_PTP_IS_SET(lflags))
691 		atomic_inc(&bp->ptp_cfg->tx_avail);
692 
693 	last_frag = i;
694 
695 	/* start back at beginning and unmap skb */
696 	prod = txr->tx_prod;
697 	tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
698 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
699 			 skb_headlen(skb), DMA_TO_DEVICE);
700 	prod = NEXT_TX(prod);
701 
702 	/* unmap remaining mapped pages */
703 	for (i = 0; i < last_frag; i++) {
704 		prod = NEXT_TX(prod);
705 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
706 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
707 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
708 			       DMA_TO_DEVICE);
709 	}
710 
711 tx_free:
712 	dev_kfree_skb_any(skb);
713 tx_kick_pending:
714 	if (txr->kick_pending)
715 		bnxt_txr_db_kick(bp, txr, txr->tx_prod);
716 	txr->tx_buf_ring[txr->tx_prod].skb = NULL;
717 	dev_core_stats_tx_dropped_inc(dev);
718 	return NETDEV_TX_OK;
719 }
720 
721 static void __bnxt_tx_int(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
722 			  int budget)
723 {
724 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
725 	struct pci_dev *pdev = bp->pdev;
726 	u16 hw_cons = txr->tx_hw_cons;
727 	unsigned int tx_bytes = 0;
728 	u16 cons = txr->tx_cons;
729 	int tx_pkts = 0;
730 
731 	while (RING_TX(bp, cons) != hw_cons) {
732 		struct bnxt_sw_tx_bd *tx_buf;
733 		struct sk_buff *skb;
734 		int j, last;
735 
736 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)];
737 		cons = NEXT_TX(cons);
738 		skb = tx_buf->skb;
739 		tx_buf->skb = NULL;
740 
741 		if (unlikely(!skb)) {
742 			bnxt_sched_reset_txr(bp, txr, cons);
743 			return;
744 		}
745 
746 		tx_pkts++;
747 		tx_bytes += skb->len;
748 
749 		if (tx_buf->is_push) {
750 			tx_buf->is_push = 0;
751 			goto next_tx_int;
752 		}
753 
754 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
755 				 skb_headlen(skb), DMA_TO_DEVICE);
756 		last = tx_buf->nr_frags;
757 
758 		for (j = 0; j < last; j++) {
759 			cons = NEXT_TX(cons);
760 			tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)];
761 			dma_unmap_page(
762 				&pdev->dev,
763 				dma_unmap_addr(tx_buf, mapping),
764 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
765 				DMA_TO_DEVICE);
766 		}
767 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
768 			if (BNXT_CHIP_P5(bp)) {
769 				/* PTP worker takes ownership of the skb */
770 				if (!bnxt_get_tx_ts_p5(bp, skb))
771 					skb = NULL;
772 				else
773 					atomic_inc(&bp->ptp_cfg->tx_avail);
774 			}
775 		}
776 
777 next_tx_int:
778 		cons = NEXT_TX(cons);
779 
780 		dev_consume_skb_any(skb);
781 	}
782 
783 	WRITE_ONCE(txr->tx_cons, cons);
784 
785 	__netif_txq_completed_wake(txq, tx_pkts, tx_bytes,
786 				   bnxt_tx_avail(bp, txr), bp->tx_wake_thresh,
787 				   READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING);
788 }
789 
790 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
791 {
792 	struct bnxt_tx_ring_info *txr;
793 	int i;
794 
795 	bnxt_for_each_napi_tx(i, bnapi, txr) {
796 		if (txr->tx_hw_cons != RING_TX(bp, txr->tx_cons))
797 			__bnxt_tx_int(bp, txr, budget);
798 	}
799 	bnapi->events &= ~BNXT_TX_CMP_EVENT;
800 }
801 
802 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
803 					 struct bnxt_rx_ring_info *rxr,
804 					 unsigned int *offset,
805 					 gfp_t gfp)
806 {
807 	struct page *page;
808 
809 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
810 		page = page_pool_dev_alloc_frag(rxr->page_pool, offset,
811 						BNXT_RX_PAGE_SIZE);
812 	} else {
813 		page = page_pool_dev_alloc_pages(rxr->page_pool);
814 		*offset = 0;
815 	}
816 	if (!page)
817 		return NULL;
818 
819 	*mapping = page_pool_get_dma_addr(page) + *offset;
820 	return page;
821 }
822 
823 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping,
824 				       gfp_t gfp)
825 {
826 	u8 *data;
827 	struct pci_dev *pdev = bp->pdev;
828 
829 	if (gfp == GFP_ATOMIC)
830 		data = napi_alloc_frag(bp->rx_buf_size);
831 	else
832 		data = netdev_alloc_frag(bp->rx_buf_size);
833 	if (!data)
834 		return NULL;
835 
836 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
837 					bp->rx_buf_use_size, bp->rx_dir,
838 					DMA_ATTR_WEAK_ORDERING);
839 
840 	if (dma_mapping_error(&pdev->dev, *mapping)) {
841 		skb_free_frag(data);
842 		data = NULL;
843 	}
844 	return data;
845 }
846 
847 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
848 		       u16 prod, gfp_t gfp)
849 {
850 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
851 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
852 	dma_addr_t mapping;
853 
854 	if (BNXT_RX_PAGE_MODE(bp)) {
855 		unsigned int offset;
856 		struct page *page =
857 			__bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp);
858 
859 		if (!page)
860 			return -ENOMEM;
861 
862 		mapping += bp->rx_dma_offset;
863 		rx_buf->data = page;
864 		rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset;
865 	} else {
866 		u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp);
867 
868 		if (!data)
869 			return -ENOMEM;
870 
871 		rx_buf->data = data;
872 		rx_buf->data_ptr = data + bp->rx_offset;
873 	}
874 	rx_buf->mapping = mapping;
875 
876 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
877 	return 0;
878 }
879 
880 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
881 {
882 	u16 prod = rxr->rx_prod;
883 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
884 	struct bnxt *bp = rxr->bnapi->bp;
885 	struct rx_bd *cons_bd, *prod_bd;
886 
887 	prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
888 	cons_rx_buf = &rxr->rx_buf_ring[cons];
889 
890 	prod_rx_buf->data = data;
891 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
892 
893 	prod_rx_buf->mapping = cons_rx_buf->mapping;
894 
895 	prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
896 	cons_bd = &rxr->rx_desc_ring[RX_RING(bp, cons)][RX_IDX(cons)];
897 
898 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
899 }
900 
901 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
902 {
903 	u16 next, max = rxr->rx_agg_bmap_size;
904 
905 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
906 	if (next >= max)
907 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
908 	return next;
909 }
910 
911 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
912 				     struct bnxt_rx_ring_info *rxr,
913 				     u16 prod, gfp_t gfp)
914 {
915 	struct rx_bd *rxbd =
916 		&rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)];
917 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
918 	struct page *page;
919 	dma_addr_t mapping;
920 	u16 sw_prod = rxr->rx_sw_agg_prod;
921 	unsigned int offset = 0;
922 
923 	page = __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp);
924 
925 	if (!page)
926 		return -ENOMEM;
927 
928 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
929 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
930 
931 	__set_bit(sw_prod, rxr->rx_agg_bmap);
932 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
933 	rxr->rx_sw_agg_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod));
934 
935 	rx_agg_buf->page = page;
936 	rx_agg_buf->offset = offset;
937 	rx_agg_buf->mapping = mapping;
938 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
939 	rxbd->rx_bd_opaque = sw_prod;
940 	return 0;
941 }
942 
943 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
944 				       struct bnxt_cp_ring_info *cpr,
945 				       u16 cp_cons, u16 curr)
946 {
947 	struct rx_agg_cmp *agg;
948 
949 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
950 	agg = (struct rx_agg_cmp *)
951 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
952 	return agg;
953 }
954 
955 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
956 					      struct bnxt_rx_ring_info *rxr,
957 					      u16 agg_id, u16 curr)
958 {
959 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
960 
961 	return &tpa_info->agg_arr[curr];
962 }
963 
964 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
965 				   u16 start, u32 agg_bufs, bool tpa)
966 {
967 	struct bnxt_napi *bnapi = cpr->bnapi;
968 	struct bnxt *bp = bnapi->bp;
969 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
970 	u16 prod = rxr->rx_agg_prod;
971 	u16 sw_prod = rxr->rx_sw_agg_prod;
972 	bool p5_tpa = false;
973 	u32 i;
974 
975 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa)
976 		p5_tpa = true;
977 
978 	for (i = 0; i < agg_bufs; i++) {
979 		u16 cons;
980 		struct rx_agg_cmp *agg;
981 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
982 		struct rx_bd *prod_bd;
983 		struct page *page;
984 
985 		if (p5_tpa)
986 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
987 		else
988 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
989 		cons = agg->rx_agg_cmp_opaque;
990 		__clear_bit(cons, rxr->rx_agg_bmap);
991 
992 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
993 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
994 
995 		__set_bit(sw_prod, rxr->rx_agg_bmap);
996 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
997 		cons_rx_buf = &rxr->rx_agg_ring[cons];
998 
999 		/* It is possible for sw_prod to be equal to cons, so
1000 		 * set cons_rx_buf->page to NULL first.
1001 		 */
1002 		page = cons_rx_buf->page;
1003 		cons_rx_buf->page = NULL;
1004 		prod_rx_buf->page = page;
1005 		prod_rx_buf->offset = cons_rx_buf->offset;
1006 
1007 		prod_rx_buf->mapping = cons_rx_buf->mapping;
1008 
1009 		prod_bd = &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)];
1010 
1011 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
1012 		prod_bd->rx_bd_opaque = sw_prod;
1013 
1014 		prod = NEXT_RX_AGG(prod);
1015 		sw_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod));
1016 	}
1017 	rxr->rx_agg_prod = prod;
1018 	rxr->rx_sw_agg_prod = sw_prod;
1019 }
1020 
1021 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp,
1022 					      struct bnxt_rx_ring_info *rxr,
1023 					      u16 cons, void *data, u8 *data_ptr,
1024 					      dma_addr_t dma_addr,
1025 					      unsigned int offset_and_len)
1026 {
1027 	unsigned int len = offset_and_len & 0xffff;
1028 	struct page *page = data;
1029 	u16 prod = rxr->rx_prod;
1030 	struct sk_buff *skb;
1031 	int err;
1032 
1033 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1034 	if (unlikely(err)) {
1035 		bnxt_reuse_rx_data(rxr, cons, data);
1036 		return NULL;
1037 	}
1038 	dma_addr -= bp->rx_dma_offset;
1039 	dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE,
1040 				bp->rx_dir);
1041 	skb = napi_build_skb(data_ptr - bp->rx_offset, BNXT_RX_PAGE_SIZE);
1042 	if (!skb) {
1043 		page_pool_recycle_direct(rxr->page_pool, page);
1044 		return NULL;
1045 	}
1046 	skb_mark_for_recycle(skb);
1047 	skb_reserve(skb, bp->rx_offset);
1048 	__skb_put(skb, len);
1049 
1050 	return skb;
1051 }
1052 
1053 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
1054 					struct bnxt_rx_ring_info *rxr,
1055 					u16 cons, void *data, u8 *data_ptr,
1056 					dma_addr_t dma_addr,
1057 					unsigned int offset_and_len)
1058 {
1059 	unsigned int payload = offset_and_len >> 16;
1060 	unsigned int len = offset_and_len & 0xffff;
1061 	skb_frag_t *frag;
1062 	struct page *page = data;
1063 	u16 prod = rxr->rx_prod;
1064 	struct sk_buff *skb;
1065 	int off, err;
1066 
1067 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1068 	if (unlikely(err)) {
1069 		bnxt_reuse_rx_data(rxr, cons, data);
1070 		return NULL;
1071 	}
1072 	dma_addr -= bp->rx_dma_offset;
1073 	dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE,
1074 				bp->rx_dir);
1075 
1076 	if (unlikely(!payload))
1077 		payload = eth_get_headlen(bp->dev, data_ptr, len);
1078 
1079 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
1080 	if (!skb) {
1081 		page_pool_recycle_direct(rxr->page_pool, page);
1082 		return NULL;
1083 	}
1084 
1085 	skb_mark_for_recycle(skb);
1086 	off = (void *)data_ptr - page_address(page);
1087 	skb_add_rx_frag(skb, 0, page, off, len, BNXT_RX_PAGE_SIZE);
1088 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
1089 	       payload + NET_IP_ALIGN);
1090 
1091 	frag = &skb_shinfo(skb)->frags[0];
1092 	skb_frag_size_sub(frag, payload);
1093 	skb_frag_off_add(frag, payload);
1094 	skb->data_len -= payload;
1095 	skb->tail += payload;
1096 
1097 	return skb;
1098 }
1099 
1100 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
1101 				   struct bnxt_rx_ring_info *rxr, u16 cons,
1102 				   void *data, u8 *data_ptr,
1103 				   dma_addr_t dma_addr,
1104 				   unsigned int offset_and_len)
1105 {
1106 	u16 prod = rxr->rx_prod;
1107 	struct sk_buff *skb;
1108 	int err;
1109 
1110 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1111 	if (unlikely(err)) {
1112 		bnxt_reuse_rx_data(rxr, cons, data);
1113 		return NULL;
1114 	}
1115 
1116 	skb = napi_build_skb(data, bp->rx_buf_size);
1117 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1118 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1119 	if (!skb) {
1120 		skb_free_frag(data);
1121 		return NULL;
1122 	}
1123 
1124 	skb_reserve(skb, bp->rx_offset);
1125 	skb_put(skb, offset_and_len & 0xffff);
1126 	return skb;
1127 }
1128 
1129 static u32 __bnxt_rx_agg_pages(struct bnxt *bp,
1130 			       struct bnxt_cp_ring_info *cpr,
1131 			       struct skb_shared_info *shinfo,
1132 			       u16 idx, u32 agg_bufs, bool tpa,
1133 			       struct xdp_buff *xdp)
1134 {
1135 	struct bnxt_napi *bnapi = cpr->bnapi;
1136 	struct pci_dev *pdev = bp->pdev;
1137 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1138 	u16 prod = rxr->rx_agg_prod;
1139 	u32 i, total_frag_len = 0;
1140 	bool p5_tpa = false;
1141 
1142 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa)
1143 		p5_tpa = true;
1144 
1145 	for (i = 0; i < agg_bufs; i++) {
1146 		skb_frag_t *frag = &shinfo->frags[i];
1147 		u16 cons, frag_len;
1148 		struct rx_agg_cmp *agg;
1149 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1150 		struct page *page;
1151 		dma_addr_t mapping;
1152 
1153 		if (p5_tpa)
1154 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1155 		else
1156 			agg = bnxt_get_agg(bp, cpr, idx, i);
1157 		cons = agg->rx_agg_cmp_opaque;
1158 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1159 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1160 
1161 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1162 		skb_frag_fill_page_desc(frag, cons_rx_buf->page,
1163 					cons_rx_buf->offset, frag_len);
1164 		shinfo->nr_frags = i + 1;
1165 		__clear_bit(cons, rxr->rx_agg_bmap);
1166 
1167 		/* It is possible for bnxt_alloc_rx_page() to allocate
1168 		 * a sw_prod index that equals the cons index, so we
1169 		 * need to clear the cons entry now.
1170 		 */
1171 		mapping = cons_rx_buf->mapping;
1172 		page = cons_rx_buf->page;
1173 		cons_rx_buf->page = NULL;
1174 
1175 		if (xdp && page_is_pfmemalloc(page))
1176 			xdp_buff_set_frag_pfmemalloc(xdp);
1177 
1178 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1179 			--shinfo->nr_frags;
1180 			cons_rx_buf->page = page;
1181 
1182 			/* Update prod since possibly some pages have been
1183 			 * allocated already.
1184 			 */
1185 			rxr->rx_agg_prod = prod;
1186 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1187 			return 0;
1188 		}
1189 
1190 		dma_sync_single_for_cpu(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1191 					bp->rx_dir);
1192 
1193 		total_frag_len += frag_len;
1194 		prod = NEXT_RX_AGG(prod);
1195 	}
1196 	rxr->rx_agg_prod = prod;
1197 	return total_frag_len;
1198 }
1199 
1200 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp,
1201 					     struct bnxt_cp_ring_info *cpr,
1202 					     struct sk_buff *skb, u16 idx,
1203 					     u32 agg_bufs, bool tpa)
1204 {
1205 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1206 	u32 total_frag_len = 0;
1207 
1208 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx,
1209 					     agg_bufs, tpa, NULL);
1210 	if (!total_frag_len) {
1211 		skb_mark_for_recycle(skb);
1212 		dev_kfree_skb(skb);
1213 		return NULL;
1214 	}
1215 
1216 	skb->data_len += total_frag_len;
1217 	skb->len += total_frag_len;
1218 	skb->truesize += BNXT_RX_PAGE_SIZE * agg_bufs;
1219 	return skb;
1220 }
1221 
1222 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp,
1223 				 struct bnxt_cp_ring_info *cpr,
1224 				 struct xdp_buff *xdp, u16 idx,
1225 				 u32 agg_bufs, bool tpa)
1226 {
1227 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp);
1228 	u32 total_frag_len = 0;
1229 
1230 	if (!xdp_buff_has_frags(xdp))
1231 		shinfo->nr_frags = 0;
1232 
1233 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo,
1234 					     idx, agg_bufs, tpa, xdp);
1235 	if (total_frag_len) {
1236 		xdp_buff_set_frags_flag(xdp);
1237 		shinfo->nr_frags = agg_bufs;
1238 		shinfo->xdp_frags_size = total_frag_len;
1239 	}
1240 	return total_frag_len;
1241 }
1242 
1243 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1244 			       u8 agg_bufs, u32 *raw_cons)
1245 {
1246 	u16 last;
1247 	struct rx_agg_cmp *agg;
1248 
1249 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1250 	last = RING_CMP(*raw_cons);
1251 	agg = (struct rx_agg_cmp *)
1252 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1253 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1254 }
1255 
1256 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1257 					    unsigned int len,
1258 					    dma_addr_t mapping)
1259 {
1260 	struct bnxt *bp = bnapi->bp;
1261 	struct pci_dev *pdev = bp->pdev;
1262 	struct sk_buff *skb;
1263 
1264 	skb = napi_alloc_skb(&bnapi->napi, len);
1265 	if (!skb)
1266 		return NULL;
1267 
1268 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1269 				bp->rx_dir);
1270 
1271 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1272 	       len + NET_IP_ALIGN);
1273 
1274 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1275 				   bp->rx_dir);
1276 
1277 	skb_put(skb, len);
1278 	return skb;
1279 }
1280 
1281 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1282 			   u32 *raw_cons, void *cmp)
1283 {
1284 	struct rx_cmp *rxcmp = cmp;
1285 	u32 tmp_raw_cons = *raw_cons;
1286 	u8 cmp_type, agg_bufs = 0;
1287 
1288 	cmp_type = RX_CMP_TYPE(rxcmp);
1289 
1290 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1291 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1292 			    RX_CMP_AGG_BUFS) >>
1293 			   RX_CMP_AGG_BUFS_SHIFT;
1294 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1295 		struct rx_tpa_end_cmp *tpa_end = cmp;
1296 
1297 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
1298 			return 0;
1299 
1300 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1301 	}
1302 
1303 	if (agg_bufs) {
1304 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1305 			return -EBUSY;
1306 	}
1307 	*raw_cons = tmp_raw_cons;
1308 	return 0;
1309 }
1310 
1311 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1312 {
1313 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1314 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1315 
1316 	if (test_bit(idx, map->agg_idx_bmap))
1317 		idx = find_first_zero_bit(map->agg_idx_bmap,
1318 					  BNXT_AGG_IDX_BMAP_SIZE);
1319 	__set_bit(idx, map->agg_idx_bmap);
1320 	map->agg_id_tbl[agg_id] = idx;
1321 	return idx;
1322 }
1323 
1324 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1325 {
1326 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1327 
1328 	__clear_bit(idx, map->agg_idx_bmap);
1329 }
1330 
1331 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1332 {
1333 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1334 
1335 	return map->agg_id_tbl[agg_id];
1336 }
1337 
1338 static void bnxt_tpa_metadata(struct bnxt_tpa_info *tpa_info,
1339 			      struct rx_tpa_start_cmp *tpa_start,
1340 			      struct rx_tpa_start_cmp_ext *tpa_start1)
1341 {
1342 	tpa_info->cfa_code_valid = 1;
1343 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1344 	tpa_info->vlan_valid = 0;
1345 	if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) {
1346 		tpa_info->vlan_valid = 1;
1347 		tpa_info->metadata =
1348 			le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1349 	}
1350 }
1351 
1352 static void bnxt_tpa_metadata_v2(struct bnxt_tpa_info *tpa_info,
1353 				 struct rx_tpa_start_cmp *tpa_start,
1354 				 struct rx_tpa_start_cmp_ext *tpa_start1)
1355 {
1356 	tpa_info->vlan_valid = 0;
1357 	if (TPA_START_VLAN_VALID(tpa_start)) {
1358 		u32 tpid_sel = TPA_START_VLAN_TPID_SEL(tpa_start);
1359 		u32 vlan_proto = ETH_P_8021Q;
1360 
1361 		tpa_info->vlan_valid = 1;
1362 		if (tpid_sel == RX_TPA_START_METADATA1_TPID_8021AD)
1363 			vlan_proto = ETH_P_8021AD;
1364 		tpa_info->metadata = vlan_proto << 16 |
1365 				     TPA_START_METADATA0_TCI(tpa_start1);
1366 	}
1367 }
1368 
1369 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1370 			   u8 cmp_type, struct rx_tpa_start_cmp *tpa_start,
1371 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1372 {
1373 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1374 	struct bnxt_tpa_info *tpa_info;
1375 	u16 cons, prod, agg_id;
1376 	struct rx_bd *prod_bd;
1377 	dma_addr_t mapping;
1378 
1379 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
1380 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1381 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1382 	} else {
1383 		agg_id = TPA_START_AGG_ID(tpa_start);
1384 	}
1385 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1386 	prod = rxr->rx_prod;
1387 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1388 	prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
1389 	tpa_info = &rxr->rx_tpa[agg_id];
1390 
1391 	if (unlikely(cons != rxr->rx_next_cons ||
1392 		     TPA_START_ERROR(tpa_start))) {
1393 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1394 			    cons, rxr->rx_next_cons,
1395 			    TPA_START_ERROR_CODE(tpa_start1));
1396 		bnxt_sched_reset_rxr(bp, rxr);
1397 		return;
1398 	}
1399 	prod_rx_buf->data = tpa_info->data;
1400 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1401 
1402 	mapping = tpa_info->mapping;
1403 	prod_rx_buf->mapping = mapping;
1404 
1405 	prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
1406 
1407 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1408 
1409 	tpa_info->data = cons_rx_buf->data;
1410 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1411 	cons_rx_buf->data = NULL;
1412 	tpa_info->mapping = cons_rx_buf->mapping;
1413 
1414 	tpa_info->len =
1415 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1416 				RX_TPA_START_CMP_LEN_SHIFT;
1417 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1418 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1419 		tpa_info->gso_type = SKB_GSO_TCPV4;
1420 		if (TPA_START_IS_IPV6(tpa_start1))
1421 			tpa_info->gso_type = SKB_GSO_TCPV6;
1422 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1423 		else if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP &&
1424 			 TPA_START_HASH_TYPE(tpa_start) == 3)
1425 			tpa_info->gso_type = SKB_GSO_TCPV6;
1426 		tpa_info->rss_hash =
1427 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1428 	} else {
1429 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1430 		tpa_info->gso_type = 0;
1431 		netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1432 	}
1433 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1434 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1435 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP)
1436 		bnxt_tpa_metadata(tpa_info, tpa_start, tpa_start1);
1437 	else
1438 		bnxt_tpa_metadata_v2(tpa_info, tpa_start, tpa_start1);
1439 	tpa_info->agg_count = 0;
1440 
1441 	rxr->rx_prod = NEXT_RX(prod);
1442 	cons = RING_RX(bp, NEXT_RX(cons));
1443 	rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons));
1444 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1445 
1446 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1447 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1448 	cons_rx_buf->data = NULL;
1449 }
1450 
1451 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1452 {
1453 	if (agg_bufs)
1454 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1455 }
1456 
1457 #ifdef CONFIG_INET
1458 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1459 {
1460 	struct udphdr *uh = NULL;
1461 
1462 	if (ip_proto == htons(ETH_P_IP)) {
1463 		struct iphdr *iph = (struct iphdr *)skb->data;
1464 
1465 		if (iph->protocol == IPPROTO_UDP)
1466 			uh = (struct udphdr *)(iph + 1);
1467 	} else {
1468 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1469 
1470 		if (iph->nexthdr == IPPROTO_UDP)
1471 			uh = (struct udphdr *)(iph + 1);
1472 	}
1473 	if (uh) {
1474 		if (uh->check)
1475 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1476 		else
1477 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1478 	}
1479 }
1480 #endif
1481 
1482 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1483 					   int payload_off, int tcp_ts,
1484 					   struct sk_buff *skb)
1485 {
1486 #ifdef CONFIG_INET
1487 	struct tcphdr *th;
1488 	int len, nw_off;
1489 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1490 	u32 hdr_info = tpa_info->hdr_info;
1491 	bool loopback = false;
1492 
1493 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1494 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1495 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1496 
1497 	/* If the packet is an internal loopback packet, the offsets will
1498 	 * have an extra 4 bytes.
1499 	 */
1500 	if (inner_mac_off == 4) {
1501 		loopback = true;
1502 	} else if (inner_mac_off > 4) {
1503 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1504 					    ETH_HLEN - 2));
1505 
1506 		/* We only support inner iPv4/ipv6.  If we don't see the
1507 		 * correct protocol ID, it must be a loopback packet where
1508 		 * the offsets are off by 4.
1509 		 */
1510 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1511 			loopback = true;
1512 	}
1513 	if (loopback) {
1514 		/* internal loopback packet, subtract all offsets by 4 */
1515 		inner_ip_off -= 4;
1516 		inner_mac_off -= 4;
1517 		outer_ip_off -= 4;
1518 	}
1519 
1520 	nw_off = inner_ip_off - ETH_HLEN;
1521 	skb_set_network_header(skb, nw_off);
1522 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1523 		struct ipv6hdr *iph = ipv6_hdr(skb);
1524 
1525 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1526 		len = skb->len - skb_transport_offset(skb);
1527 		th = tcp_hdr(skb);
1528 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1529 	} else {
1530 		struct iphdr *iph = ip_hdr(skb);
1531 
1532 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1533 		len = skb->len - skb_transport_offset(skb);
1534 		th = tcp_hdr(skb);
1535 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1536 	}
1537 
1538 	if (inner_mac_off) { /* tunnel */
1539 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1540 					    ETH_HLEN - 2));
1541 
1542 		bnxt_gro_tunnel(skb, proto);
1543 	}
1544 #endif
1545 	return skb;
1546 }
1547 
1548 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1549 					   int payload_off, int tcp_ts,
1550 					   struct sk_buff *skb)
1551 {
1552 #ifdef CONFIG_INET
1553 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1554 	u32 hdr_info = tpa_info->hdr_info;
1555 	int iphdr_len, nw_off;
1556 
1557 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1558 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1559 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1560 
1561 	nw_off = inner_ip_off - ETH_HLEN;
1562 	skb_set_network_header(skb, nw_off);
1563 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1564 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1565 	skb_set_transport_header(skb, nw_off + iphdr_len);
1566 
1567 	if (inner_mac_off) { /* tunnel */
1568 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1569 					    ETH_HLEN - 2));
1570 
1571 		bnxt_gro_tunnel(skb, proto);
1572 	}
1573 #endif
1574 	return skb;
1575 }
1576 
1577 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1578 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1579 
1580 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1581 					   int payload_off, int tcp_ts,
1582 					   struct sk_buff *skb)
1583 {
1584 #ifdef CONFIG_INET
1585 	struct tcphdr *th;
1586 	int len, nw_off, tcp_opt_len = 0;
1587 
1588 	if (tcp_ts)
1589 		tcp_opt_len = 12;
1590 
1591 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1592 		struct iphdr *iph;
1593 
1594 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1595 			 ETH_HLEN;
1596 		skb_set_network_header(skb, nw_off);
1597 		iph = ip_hdr(skb);
1598 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1599 		len = skb->len - skb_transport_offset(skb);
1600 		th = tcp_hdr(skb);
1601 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1602 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1603 		struct ipv6hdr *iph;
1604 
1605 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1606 			 ETH_HLEN;
1607 		skb_set_network_header(skb, nw_off);
1608 		iph = ipv6_hdr(skb);
1609 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1610 		len = skb->len - skb_transport_offset(skb);
1611 		th = tcp_hdr(skb);
1612 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1613 	} else {
1614 		dev_kfree_skb_any(skb);
1615 		return NULL;
1616 	}
1617 
1618 	if (nw_off) /* tunnel */
1619 		bnxt_gro_tunnel(skb, skb->protocol);
1620 #endif
1621 	return skb;
1622 }
1623 
1624 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1625 					   struct bnxt_tpa_info *tpa_info,
1626 					   struct rx_tpa_end_cmp *tpa_end,
1627 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1628 					   struct sk_buff *skb)
1629 {
1630 #ifdef CONFIG_INET
1631 	int payload_off;
1632 	u16 segs;
1633 
1634 	segs = TPA_END_TPA_SEGS(tpa_end);
1635 	if (segs == 1)
1636 		return skb;
1637 
1638 	NAPI_GRO_CB(skb)->count = segs;
1639 	skb_shinfo(skb)->gso_size =
1640 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1641 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1642 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
1643 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1644 	else
1645 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1646 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1647 	if (likely(skb))
1648 		tcp_gro_complete(skb);
1649 #endif
1650 	return skb;
1651 }
1652 
1653 /* Given the cfa_code of a received packet determine which
1654  * netdev (vf-rep or PF) the packet is destined to.
1655  */
1656 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1657 {
1658 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1659 
1660 	/* if vf-rep dev is NULL, the must belongs to the PF */
1661 	return dev ? dev : bp->dev;
1662 }
1663 
1664 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1665 					   struct bnxt_cp_ring_info *cpr,
1666 					   u32 *raw_cons,
1667 					   struct rx_tpa_end_cmp *tpa_end,
1668 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1669 					   u8 *event)
1670 {
1671 	struct bnxt_napi *bnapi = cpr->bnapi;
1672 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1673 	struct net_device *dev = bp->dev;
1674 	u8 *data_ptr, agg_bufs;
1675 	unsigned int len;
1676 	struct bnxt_tpa_info *tpa_info;
1677 	dma_addr_t mapping;
1678 	struct sk_buff *skb;
1679 	u16 idx = 0, agg_id;
1680 	void *data;
1681 	bool gro;
1682 
1683 	if (unlikely(bnapi->in_reset)) {
1684 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1685 
1686 		if (rc < 0)
1687 			return ERR_PTR(-EBUSY);
1688 		return NULL;
1689 	}
1690 
1691 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
1692 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1693 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1694 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1695 		tpa_info = &rxr->rx_tpa[agg_id];
1696 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1697 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1698 				    agg_bufs, tpa_info->agg_count);
1699 			agg_bufs = tpa_info->agg_count;
1700 		}
1701 		tpa_info->agg_count = 0;
1702 		*event |= BNXT_AGG_EVENT;
1703 		bnxt_free_agg_idx(rxr, agg_id);
1704 		idx = agg_id;
1705 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1706 	} else {
1707 		agg_id = TPA_END_AGG_ID(tpa_end);
1708 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1709 		tpa_info = &rxr->rx_tpa[agg_id];
1710 		idx = RING_CMP(*raw_cons);
1711 		if (agg_bufs) {
1712 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1713 				return ERR_PTR(-EBUSY);
1714 
1715 			*event |= BNXT_AGG_EVENT;
1716 			idx = NEXT_CMP(idx);
1717 		}
1718 		gro = !!TPA_END_GRO(tpa_end);
1719 	}
1720 	data = tpa_info->data;
1721 	data_ptr = tpa_info->data_ptr;
1722 	prefetch(data_ptr);
1723 	len = tpa_info->len;
1724 	mapping = tpa_info->mapping;
1725 
1726 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1727 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1728 		if (agg_bufs > MAX_SKB_FRAGS)
1729 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1730 				    agg_bufs, (int)MAX_SKB_FRAGS);
1731 		return NULL;
1732 	}
1733 
1734 	if (len <= bp->rx_copy_thresh) {
1735 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1736 		if (!skb) {
1737 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1738 			cpr->sw_stats.rx.rx_oom_discards += 1;
1739 			return NULL;
1740 		}
1741 	} else {
1742 		u8 *new_data;
1743 		dma_addr_t new_mapping;
1744 
1745 		new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC);
1746 		if (!new_data) {
1747 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1748 			cpr->sw_stats.rx.rx_oom_discards += 1;
1749 			return NULL;
1750 		}
1751 
1752 		tpa_info->data = new_data;
1753 		tpa_info->data_ptr = new_data + bp->rx_offset;
1754 		tpa_info->mapping = new_mapping;
1755 
1756 		skb = napi_build_skb(data, bp->rx_buf_size);
1757 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1758 				       bp->rx_buf_use_size, bp->rx_dir,
1759 				       DMA_ATTR_WEAK_ORDERING);
1760 
1761 		if (!skb) {
1762 			skb_free_frag(data);
1763 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1764 			cpr->sw_stats.rx.rx_oom_discards += 1;
1765 			return NULL;
1766 		}
1767 		skb_reserve(skb, bp->rx_offset);
1768 		skb_put(skb, len);
1769 	}
1770 
1771 	if (agg_bufs) {
1772 		skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true);
1773 		if (!skb) {
1774 			/* Page reuse already handled by bnxt_rx_pages(). */
1775 			cpr->sw_stats.rx.rx_oom_discards += 1;
1776 			return NULL;
1777 		}
1778 	}
1779 
1780 	if (tpa_info->cfa_code_valid)
1781 		dev = bnxt_get_pkt_dev(bp, tpa_info->cfa_code);
1782 	skb->protocol = eth_type_trans(skb, dev);
1783 
1784 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1785 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1786 
1787 	if (tpa_info->vlan_valid &&
1788 	    (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1789 		__be16 vlan_proto = htons(tpa_info->metadata >>
1790 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1791 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1792 
1793 		if (eth_type_vlan(vlan_proto)) {
1794 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1795 		} else {
1796 			dev_kfree_skb(skb);
1797 			return NULL;
1798 		}
1799 	}
1800 
1801 	skb_checksum_none_assert(skb);
1802 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1803 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1804 		skb->csum_level =
1805 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1806 	}
1807 
1808 	if (gro)
1809 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1810 
1811 	return skb;
1812 }
1813 
1814 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1815 			 struct rx_agg_cmp *rx_agg)
1816 {
1817 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1818 	struct bnxt_tpa_info *tpa_info;
1819 
1820 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1821 	tpa_info = &rxr->rx_tpa[agg_id];
1822 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1823 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1824 }
1825 
1826 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1827 			     struct sk_buff *skb)
1828 {
1829 	skb_mark_for_recycle(skb);
1830 
1831 	if (skb->dev != bp->dev) {
1832 		/* this packet belongs to a vf-rep */
1833 		bnxt_vf_rep_rx(bp, skb);
1834 		return;
1835 	}
1836 	skb_record_rx_queue(skb, bnapi->index);
1837 	napi_gro_receive(&bnapi->napi, skb);
1838 }
1839 
1840 static bool bnxt_rx_ts_valid(struct bnxt *bp, u32 flags,
1841 			     struct rx_cmp_ext *rxcmp1, u32 *cmpl_ts)
1842 {
1843 	u32 ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp);
1844 
1845 	if (BNXT_PTP_RX_TS_VALID(flags))
1846 		goto ts_valid;
1847 	if (!bp->ptp_all_rx_tstamp || !ts || !BNXT_ALL_RX_TS_VALID(flags))
1848 		return false;
1849 
1850 ts_valid:
1851 	*cmpl_ts = ts;
1852 	return true;
1853 }
1854 
1855 static struct sk_buff *bnxt_rx_vlan(struct sk_buff *skb, u8 cmp_type,
1856 				    struct rx_cmp *rxcmp,
1857 				    struct rx_cmp_ext *rxcmp1)
1858 {
1859 	__be16 vlan_proto;
1860 	u16 vtag;
1861 
1862 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1863 		__le32 flags2 = rxcmp1->rx_cmp_flags2;
1864 		u32 meta_data;
1865 
1866 		if (!(flags2 & cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)))
1867 			return skb;
1868 
1869 		meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1870 		vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1871 		vlan_proto = htons(meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT);
1872 		if (eth_type_vlan(vlan_proto))
1873 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1874 		else
1875 			goto vlan_err;
1876 	} else if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
1877 		if (RX_CMP_VLAN_VALID(rxcmp)) {
1878 			u32 tpid_sel = RX_CMP_VLAN_TPID_SEL(rxcmp);
1879 
1880 			if (tpid_sel == RX_CMP_METADATA1_TPID_8021Q)
1881 				vlan_proto = htons(ETH_P_8021Q);
1882 			else if (tpid_sel == RX_CMP_METADATA1_TPID_8021AD)
1883 				vlan_proto = htons(ETH_P_8021AD);
1884 			else
1885 				goto vlan_err;
1886 			vtag = RX_CMP_METADATA0_TCI(rxcmp1);
1887 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1888 		}
1889 	}
1890 	return skb;
1891 vlan_err:
1892 	dev_kfree_skb(skb);
1893 	return NULL;
1894 }
1895 
1896 static enum pkt_hash_types bnxt_rss_ext_op(struct bnxt *bp,
1897 					   struct rx_cmp *rxcmp)
1898 {
1899 	u8 ext_op;
1900 
1901 	ext_op = RX_CMP_V3_HASH_TYPE(bp, rxcmp);
1902 	switch (ext_op) {
1903 	case EXT_OP_INNER_4:
1904 	case EXT_OP_OUTER_4:
1905 	case EXT_OP_INNFL_3:
1906 	case EXT_OP_OUTFL_3:
1907 		return PKT_HASH_TYPE_L4;
1908 	default:
1909 		return PKT_HASH_TYPE_L3;
1910 	}
1911 }
1912 
1913 /* returns the following:
1914  * 1       - 1 packet successfully received
1915  * 0       - successful TPA_START, packet not completed yet
1916  * -EBUSY  - completion ring does not have all the agg buffers yet
1917  * -ENOMEM - packet aborted due to out of memory
1918  * -EIO    - packet aborted due to hw error indicated in BD
1919  */
1920 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1921 		       u32 *raw_cons, u8 *event)
1922 {
1923 	struct bnxt_napi *bnapi = cpr->bnapi;
1924 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1925 	struct net_device *dev = bp->dev;
1926 	struct rx_cmp *rxcmp;
1927 	struct rx_cmp_ext *rxcmp1;
1928 	u32 tmp_raw_cons = *raw_cons;
1929 	u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1930 	struct bnxt_sw_rx_bd *rx_buf;
1931 	unsigned int len;
1932 	u8 *data_ptr, agg_bufs, cmp_type;
1933 	bool xdp_active = false;
1934 	dma_addr_t dma_addr;
1935 	struct sk_buff *skb;
1936 	struct xdp_buff xdp;
1937 	u32 flags, misc;
1938 	u32 cmpl_ts;
1939 	void *data;
1940 	int rc = 0;
1941 
1942 	rxcmp = (struct rx_cmp *)
1943 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1944 
1945 	cmp_type = RX_CMP_TYPE(rxcmp);
1946 
1947 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1948 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1949 		goto next_rx_no_prod_no_len;
1950 	}
1951 
1952 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1953 	cp_cons = RING_CMP(tmp_raw_cons);
1954 	rxcmp1 = (struct rx_cmp_ext *)
1955 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1956 
1957 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1958 		return -EBUSY;
1959 
1960 	/* The valid test of the entry must be done first before
1961 	 * reading any further.
1962 	 */
1963 	dma_rmb();
1964 	prod = rxr->rx_prod;
1965 
1966 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP ||
1967 	    cmp_type == CMP_TYPE_RX_L2_TPA_START_V3_CMP) {
1968 		bnxt_tpa_start(bp, rxr, cmp_type,
1969 			       (struct rx_tpa_start_cmp *)rxcmp,
1970 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1971 
1972 		*event |= BNXT_RX_EVENT;
1973 		goto next_rx_no_prod_no_len;
1974 
1975 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1976 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1977 				   (struct rx_tpa_end_cmp *)rxcmp,
1978 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1979 
1980 		if (IS_ERR(skb))
1981 			return -EBUSY;
1982 
1983 		rc = -ENOMEM;
1984 		if (likely(skb)) {
1985 			bnxt_deliver_skb(bp, bnapi, skb);
1986 			rc = 1;
1987 		}
1988 		*event |= BNXT_RX_EVENT;
1989 		goto next_rx_no_prod_no_len;
1990 	}
1991 
1992 	cons = rxcmp->rx_cmp_opaque;
1993 	if (unlikely(cons != rxr->rx_next_cons)) {
1994 		int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
1995 
1996 		/* 0xffff is forced error, don't print it */
1997 		if (rxr->rx_next_cons != 0xffff)
1998 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1999 				    cons, rxr->rx_next_cons);
2000 		bnxt_sched_reset_rxr(bp, rxr);
2001 		if (rc1)
2002 			return rc1;
2003 		goto next_rx_no_prod_no_len;
2004 	}
2005 	rx_buf = &rxr->rx_buf_ring[cons];
2006 	data = rx_buf->data;
2007 	data_ptr = rx_buf->data_ptr;
2008 	prefetch(data_ptr);
2009 
2010 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
2011 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
2012 
2013 	if (agg_bufs) {
2014 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
2015 			return -EBUSY;
2016 
2017 		cp_cons = NEXT_CMP(cp_cons);
2018 		*event |= BNXT_AGG_EVENT;
2019 	}
2020 	*event |= BNXT_RX_EVENT;
2021 
2022 	rx_buf->data = NULL;
2023 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
2024 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
2025 
2026 		bnxt_reuse_rx_data(rxr, cons, data);
2027 		if (agg_bufs)
2028 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
2029 					       false);
2030 
2031 		rc = -EIO;
2032 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
2033 			bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
2034 			if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
2035 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
2036 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
2037 						 rx_err);
2038 				bnxt_sched_reset_rxr(bp, rxr);
2039 			}
2040 		}
2041 		goto next_rx_no_len;
2042 	}
2043 
2044 	flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type);
2045 	len = flags >> RX_CMP_LEN_SHIFT;
2046 	dma_addr = rx_buf->mapping;
2047 
2048 	if (bnxt_xdp_attached(bp, rxr)) {
2049 		bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp);
2050 		if (agg_bufs) {
2051 			u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp,
2052 							     cp_cons, agg_bufs,
2053 							     false);
2054 			if (!frag_len) {
2055 				cpr->sw_stats.rx.rx_oom_discards += 1;
2056 				rc = -ENOMEM;
2057 				goto next_rx;
2058 			}
2059 		}
2060 		xdp_active = true;
2061 	}
2062 
2063 	if (xdp_active) {
2064 		if (bnxt_rx_xdp(bp, rxr, cons, xdp, data, &data_ptr, &len, event)) {
2065 			rc = 1;
2066 			goto next_rx;
2067 		}
2068 	}
2069 
2070 	if (len <= bp->rx_copy_thresh) {
2071 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
2072 		bnxt_reuse_rx_data(rxr, cons, data);
2073 		if (!skb) {
2074 			if (agg_bufs) {
2075 				if (!xdp_active)
2076 					bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
2077 							       agg_bufs, false);
2078 				else
2079 					bnxt_xdp_buff_frags_free(rxr, &xdp);
2080 			}
2081 			cpr->sw_stats.rx.rx_oom_discards += 1;
2082 			rc = -ENOMEM;
2083 			goto next_rx;
2084 		}
2085 	} else {
2086 		u32 payload;
2087 
2088 		if (rx_buf->data_ptr == data_ptr)
2089 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
2090 		else
2091 			payload = 0;
2092 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
2093 				      payload | len);
2094 		if (!skb) {
2095 			cpr->sw_stats.rx.rx_oom_discards += 1;
2096 			rc = -ENOMEM;
2097 			goto next_rx;
2098 		}
2099 	}
2100 
2101 	if (agg_bufs) {
2102 		if (!xdp_active) {
2103 			skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false);
2104 			if (!skb) {
2105 				cpr->sw_stats.rx.rx_oom_discards += 1;
2106 				rc = -ENOMEM;
2107 				goto next_rx;
2108 			}
2109 		} else {
2110 			skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1);
2111 			if (!skb) {
2112 				/* we should be able to free the old skb here */
2113 				bnxt_xdp_buff_frags_free(rxr, &xdp);
2114 				cpr->sw_stats.rx.rx_oom_discards += 1;
2115 				rc = -ENOMEM;
2116 				goto next_rx;
2117 			}
2118 		}
2119 	}
2120 
2121 	if (RX_CMP_HASH_VALID(rxcmp)) {
2122 		enum pkt_hash_types type;
2123 
2124 		if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
2125 			type = bnxt_rss_ext_op(bp, rxcmp);
2126 		} else {
2127 			u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
2128 
2129 			/* RSS profiles 1 and 3 with extract code 0 for inner
2130 			 * 4-tuple
2131 			 */
2132 			if (hash_type != 1 && hash_type != 3)
2133 				type = PKT_HASH_TYPE_L3;
2134 			else
2135 				type = PKT_HASH_TYPE_L4;
2136 		}
2137 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
2138 	}
2139 
2140 	if (cmp_type == CMP_TYPE_RX_L2_CMP)
2141 		dev = bnxt_get_pkt_dev(bp, RX_CMP_CFA_CODE(rxcmp1));
2142 	skb->protocol = eth_type_trans(skb, dev);
2143 
2144 	if (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) {
2145 		skb = bnxt_rx_vlan(skb, cmp_type, rxcmp, rxcmp1);
2146 		if (!skb)
2147 			goto next_rx;
2148 	}
2149 
2150 	skb_checksum_none_assert(skb);
2151 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
2152 		if (dev->features & NETIF_F_RXCSUM) {
2153 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2154 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
2155 		}
2156 	} else {
2157 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
2158 			if (dev->features & NETIF_F_RXCSUM)
2159 				bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
2160 		}
2161 	}
2162 
2163 	if (bnxt_rx_ts_valid(bp, flags, rxcmp1, &cmpl_ts)) {
2164 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
2165 			u64 ns, ts;
2166 
2167 			if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) {
2168 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2169 
2170 				spin_lock_bh(&ptp->ptp_lock);
2171 				ns = timecounter_cyc2time(&ptp->tc, ts);
2172 				spin_unlock_bh(&ptp->ptp_lock);
2173 				memset(skb_hwtstamps(skb), 0,
2174 				       sizeof(*skb_hwtstamps(skb)));
2175 				skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
2176 			}
2177 		}
2178 	}
2179 	bnxt_deliver_skb(bp, bnapi, skb);
2180 	rc = 1;
2181 
2182 next_rx:
2183 	cpr->rx_packets += 1;
2184 	cpr->rx_bytes += len;
2185 
2186 next_rx_no_len:
2187 	rxr->rx_prod = NEXT_RX(prod);
2188 	rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons));
2189 
2190 next_rx_no_prod_no_len:
2191 	*raw_cons = tmp_raw_cons;
2192 
2193 	return rc;
2194 }
2195 
2196 /* In netpoll mode, if we are using a combined completion ring, we need to
2197  * discard the rx packets and recycle the buffers.
2198  */
2199 static int bnxt_force_rx_discard(struct bnxt *bp,
2200 				 struct bnxt_cp_ring_info *cpr,
2201 				 u32 *raw_cons, u8 *event)
2202 {
2203 	u32 tmp_raw_cons = *raw_cons;
2204 	struct rx_cmp_ext *rxcmp1;
2205 	struct rx_cmp *rxcmp;
2206 	u16 cp_cons;
2207 	u8 cmp_type;
2208 	int rc;
2209 
2210 	cp_cons = RING_CMP(tmp_raw_cons);
2211 	rxcmp = (struct rx_cmp *)
2212 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2213 
2214 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2215 	cp_cons = RING_CMP(tmp_raw_cons);
2216 	rxcmp1 = (struct rx_cmp_ext *)
2217 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2218 
2219 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2220 		return -EBUSY;
2221 
2222 	/* The valid test of the entry must be done first before
2223 	 * reading any further.
2224 	 */
2225 	dma_rmb();
2226 	cmp_type = RX_CMP_TYPE(rxcmp);
2227 	if (cmp_type == CMP_TYPE_RX_L2_CMP ||
2228 	    cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
2229 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2230 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2231 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2232 		struct rx_tpa_end_cmp_ext *tpa_end1;
2233 
2234 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
2235 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
2236 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
2237 	}
2238 	rc = bnxt_rx_pkt(bp, cpr, raw_cons, event);
2239 	if (rc && rc != -EBUSY)
2240 		cpr->sw_stats.rx.rx_netpoll_discards += 1;
2241 	return rc;
2242 }
2243 
2244 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
2245 {
2246 	struct bnxt_fw_health *fw_health = bp->fw_health;
2247 	u32 reg = fw_health->regs[reg_idx];
2248 	u32 reg_type, reg_off, val = 0;
2249 
2250 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
2251 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
2252 	switch (reg_type) {
2253 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
2254 		pci_read_config_dword(bp->pdev, reg_off, &val);
2255 		break;
2256 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
2257 		reg_off = fw_health->mapped_regs[reg_idx];
2258 		fallthrough;
2259 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
2260 		val = readl(bp->bar0 + reg_off);
2261 		break;
2262 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
2263 		val = readl(bp->bar1 + reg_off);
2264 		break;
2265 	}
2266 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
2267 		val &= fw_health->fw_reset_inprog_reg_mask;
2268 	return val;
2269 }
2270 
2271 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
2272 {
2273 	int i;
2274 
2275 	for (i = 0; i < bp->rx_nr_rings; i++) {
2276 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
2277 		struct bnxt_ring_grp_info *grp_info;
2278 
2279 		grp_info = &bp->grp_info[grp_idx];
2280 		if (grp_info->agg_fw_ring_id == ring_id)
2281 			return grp_idx;
2282 	}
2283 	return INVALID_HW_RING_ID;
2284 }
2285 
2286 static u16 bnxt_get_force_speed(struct bnxt_link_info *link_info)
2287 {
2288 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2289 
2290 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2)
2291 		return link_info->force_link_speed2;
2292 	if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4)
2293 		return link_info->force_pam4_link_speed;
2294 	return link_info->force_link_speed;
2295 }
2296 
2297 static void bnxt_set_force_speed(struct bnxt_link_info *link_info)
2298 {
2299 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2300 
2301 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2302 		link_info->req_link_speed = link_info->force_link_speed2;
2303 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2304 		switch (link_info->req_link_speed) {
2305 		case BNXT_LINK_SPEED_50GB_PAM4:
2306 		case BNXT_LINK_SPEED_100GB_PAM4:
2307 		case BNXT_LINK_SPEED_200GB_PAM4:
2308 		case BNXT_LINK_SPEED_400GB_PAM4:
2309 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
2310 			break;
2311 		case BNXT_LINK_SPEED_100GB_PAM4_112:
2312 		case BNXT_LINK_SPEED_200GB_PAM4_112:
2313 		case BNXT_LINK_SPEED_400GB_PAM4_112:
2314 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4_112;
2315 			break;
2316 		default:
2317 			link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2318 		}
2319 		return;
2320 	}
2321 	link_info->req_link_speed = link_info->force_link_speed;
2322 	link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2323 	if (link_info->force_pam4_link_speed) {
2324 		link_info->req_link_speed = link_info->force_pam4_link_speed;
2325 		link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
2326 	}
2327 }
2328 
2329 static void bnxt_set_auto_speed(struct bnxt_link_info *link_info)
2330 {
2331 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2332 
2333 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2334 		link_info->advertising = link_info->auto_link_speeds2;
2335 		return;
2336 	}
2337 	link_info->advertising = link_info->auto_link_speeds;
2338 	link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
2339 }
2340 
2341 static bool bnxt_force_speed_updated(struct bnxt_link_info *link_info)
2342 {
2343 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2344 
2345 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2346 		if (link_info->req_link_speed != link_info->force_link_speed2)
2347 			return true;
2348 		return false;
2349 	}
2350 	if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
2351 	    link_info->req_link_speed != link_info->force_link_speed)
2352 		return true;
2353 	if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
2354 	    link_info->req_link_speed != link_info->force_pam4_link_speed)
2355 		return true;
2356 	return false;
2357 }
2358 
2359 static bool bnxt_auto_speed_updated(struct bnxt_link_info *link_info)
2360 {
2361 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2362 
2363 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2364 		if (link_info->advertising != link_info->auto_link_speeds2)
2365 			return true;
2366 		return false;
2367 	}
2368 	if (link_info->advertising != link_info->auto_link_speeds ||
2369 	    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
2370 		return true;
2371 	return false;
2372 }
2373 
2374 #define BNXT_EVENT_THERMAL_CURRENT_TEMP(data2)				\
2375 	((data2) &							\
2376 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_CURRENT_TEMP_MASK)
2377 
2378 #define BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2)			\
2379 	(((data2) &							\
2380 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_MASK) >>\
2381 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_SFT)
2382 
2383 #define EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1)			\
2384 	((data1) &							\
2385 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_MASK)
2386 
2387 #define EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)		\
2388 	(((data1) &							\
2389 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR) ==\
2390 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR_INCREASING)
2391 
2392 /* Return true if the workqueue has to be scheduled */
2393 static bool bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2)
2394 {
2395 	u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1);
2396 
2397 	switch (err_type) {
2398 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL:
2399 		netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n",
2400 			   BNXT_EVENT_INVALID_SIGNAL_DATA(data2));
2401 		break;
2402 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM:
2403 		netdev_warn(bp->dev, "Pause Storm detected!\n");
2404 		break;
2405 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD:
2406 		netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n");
2407 		break;
2408 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_THERMAL_THRESHOLD: {
2409 		u32 type = EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1);
2410 		char *threshold_type;
2411 		bool notify = false;
2412 		char *dir_str;
2413 
2414 		switch (type) {
2415 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_WARN:
2416 			threshold_type = "warning";
2417 			break;
2418 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_CRITICAL:
2419 			threshold_type = "critical";
2420 			break;
2421 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_FATAL:
2422 			threshold_type = "fatal";
2423 			break;
2424 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_SHUTDOWN:
2425 			threshold_type = "shutdown";
2426 			break;
2427 		default:
2428 			netdev_err(bp->dev, "Unknown Thermal threshold type event\n");
2429 			return false;
2430 		}
2431 		if (EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)) {
2432 			dir_str = "above";
2433 			notify = true;
2434 		} else {
2435 			dir_str = "below";
2436 		}
2437 		netdev_warn(bp->dev, "Chip temperature has gone %s the %s thermal threshold!\n",
2438 			    dir_str, threshold_type);
2439 		netdev_warn(bp->dev, "Temperature (In Celsius), Current: %lu, threshold: %lu\n",
2440 			    BNXT_EVENT_THERMAL_CURRENT_TEMP(data2),
2441 			    BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2));
2442 		if (notify) {
2443 			bp->thermal_threshold_type = type;
2444 			set_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event);
2445 			return true;
2446 		}
2447 		return false;
2448 	}
2449 	default:
2450 		netdev_err(bp->dev, "FW reported unknown error type %u\n",
2451 			   err_type);
2452 		break;
2453 	}
2454 	return false;
2455 }
2456 
2457 #define BNXT_GET_EVENT_PORT(data)	\
2458 	((data) &			\
2459 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
2460 
2461 #define BNXT_EVENT_RING_TYPE(data2)	\
2462 	((data2) &			\
2463 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
2464 
2465 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
2466 	(BNXT_EVENT_RING_TYPE(data2) ==	\
2467 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
2468 
2469 #define BNXT_EVENT_PHC_EVENT_TYPE(data1)	\
2470 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\
2471 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT)
2472 
2473 #define BNXT_EVENT_PHC_RTC_UPDATE(data1)	\
2474 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\
2475 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT)
2476 
2477 #define BNXT_PHC_BITS	48
2478 
2479 static int bnxt_async_event_process(struct bnxt *bp,
2480 				    struct hwrm_async_event_cmpl *cmpl)
2481 {
2482 	u16 event_id = le16_to_cpu(cmpl->event_id);
2483 	u32 data1 = le32_to_cpu(cmpl->event_data1);
2484 	u32 data2 = le32_to_cpu(cmpl->event_data2);
2485 
2486 	netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n",
2487 		   event_id, data1, data2);
2488 
2489 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
2490 	switch (event_id) {
2491 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2492 		struct bnxt_link_info *link_info = &bp->link_info;
2493 
2494 		if (BNXT_VF(bp))
2495 			goto async_event_process_exit;
2496 
2497 		/* print unsupported speed warning in forced speed mode only */
2498 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2499 		    (data1 & 0x20000)) {
2500 			u16 fw_speed = bnxt_get_force_speed(link_info);
2501 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2502 
2503 			if (speed != SPEED_UNKNOWN)
2504 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2505 					    speed);
2506 		}
2507 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2508 	}
2509 		fallthrough;
2510 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2511 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2512 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2513 		fallthrough;
2514 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2515 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2516 		break;
2517 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2518 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2519 		break;
2520 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2521 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2522 
2523 		if (BNXT_VF(bp))
2524 			break;
2525 
2526 		if (bp->pf.port_id != port_id)
2527 			break;
2528 
2529 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2530 		break;
2531 	}
2532 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2533 		if (BNXT_PF(bp))
2534 			goto async_event_process_exit;
2535 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2536 		break;
2537 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2538 		char *type_str = "Solicited";
2539 
2540 		if (!bp->fw_health)
2541 			goto async_event_process_exit;
2542 
2543 		bp->fw_reset_timestamp = jiffies;
2544 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2545 		if (!bp->fw_reset_min_dsecs)
2546 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2547 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2548 		if (!bp->fw_reset_max_dsecs)
2549 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2550 		if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) {
2551 			set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state);
2552 		} else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2553 			type_str = "Fatal";
2554 			bp->fw_health->fatalities++;
2555 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2556 		} else if (data2 && BNXT_FW_STATUS_HEALTHY !=
2557 			   EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) {
2558 			type_str = "Non-fatal";
2559 			bp->fw_health->survivals++;
2560 			set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
2561 		}
2562 		netif_warn(bp, hw, bp->dev,
2563 			   "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2564 			   type_str, data1, data2,
2565 			   bp->fw_reset_min_dsecs * 100,
2566 			   bp->fw_reset_max_dsecs * 100);
2567 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2568 		break;
2569 	}
2570 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2571 		struct bnxt_fw_health *fw_health = bp->fw_health;
2572 		char *status_desc = "healthy";
2573 		u32 status;
2574 
2575 		if (!fw_health)
2576 			goto async_event_process_exit;
2577 
2578 		if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) {
2579 			fw_health->enabled = false;
2580 			netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n");
2581 			break;
2582 		}
2583 		fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2584 		fw_health->tmr_multiplier =
2585 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2586 				     bp->current_interval * 10);
2587 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2588 		if (!fw_health->enabled)
2589 			fw_health->last_fw_heartbeat =
2590 				bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2591 		fw_health->last_fw_reset_cnt =
2592 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2593 		status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
2594 		if (status != BNXT_FW_STATUS_HEALTHY)
2595 			status_desc = "unhealthy";
2596 		netif_info(bp, drv, bp->dev,
2597 			   "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n",
2598 			   fw_health->primary ? "primary" : "backup", status,
2599 			   status_desc, fw_health->last_fw_reset_cnt);
2600 		if (!fw_health->enabled) {
2601 			/* Make sure tmr_counter is set and visible to
2602 			 * bnxt_health_check() before setting enabled to true.
2603 			 */
2604 			smp_wmb();
2605 			fw_health->enabled = true;
2606 		}
2607 		goto async_event_process_exit;
2608 	}
2609 	case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2610 		netif_notice(bp, hw, bp->dev,
2611 			     "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2612 			     data1, data2);
2613 		goto async_event_process_exit;
2614 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2615 		struct bnxt_rx_ring_info *rxr;
2616 		u16 grp_idx;
2617 
2618 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
2619 			goto async_event_process_exit;
2620 
2621 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2622 			    BNXT_EVENT_RING_TYPE(data2), data1);
2623 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2624 			goto async_event_process_exit;
2625 
2626 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2627 		if (grp_idx == INVALID_HW_RING_ID) {
2628 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2629 				    data1);
2630 			goto async_event_process_exit;
2631 		}
2632 		rxr = bp->bnapi[grp_idx]->rx_ring;
2633 		bnxt_sched_reset_rxr(bp, rxr);
2634 		goto async_event_process_exit;
2635 	}
2636 	case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2637 		struct bnxt_fw_health *fw_health = bp->fw_health;
2638 
2639 		netif_notice(bp, hw, bp->dev,
2640 			     "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2641 			     data1, data2);
2642 		if (fw_health) {
2643 			fw_health->echo_req_data1 = data1;
2644 			fw_health->echo_req_data2 = data2;
2645 			set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2646 			break;
2647 		}
2648 		goto async_event_process_exit;
2649 	}
2650 	case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: {
2651 		bnxt_ptp_pps_event(bp, data1, data2);
2652 		goto async_event_process_exit;
2653 	}
2654 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: {
2655 		if (bnxt_event_error_report(bp, data1, data2))
2656 			break;
2657 		goto async_event_process_exit;
2658 	}
2659 	case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: {
2660 		switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) {
2661 		case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE:
2662 			if (BNXT_PTP_USE_RTC(bp)) {
2663 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2664 				u64 ns;
2665 
2666 				if (!ptp)
2667 					goto async_event_process_exit;
2668 
2669 				spin_lock_bh(&ptp->ptp_lock);
2670 				bnxt_ptp_update_current_time(bp);
2671 				ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) <<
2672 				       BNXT_PHC_BITS) | ptp->current_time);
2673 				bnxt_ptp_rtc_timecounter_init(ptp, ns);
2674 				spin_unlock_bh(&ptp->ptp_lock);
2675 			}
2676 			break;
2677 		}
2678 		goto async_event_process_exit;
2679 	}
2680 	case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: {
2681 		u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff;
2682 
2683 		hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED);
2684 		goto async_event_process_exit;
2685 	}
2686 	default:
2687 		goto async_event_process_exit;
2688 	}
2689 	__bnxt_queue_sp_work(bp);
2690 async_event_process_exit:
2691 	return 0;
2692 }
2693 
2694 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2695 {
2696 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2697 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2698 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2699 				(struct hwrm_fwd_req_cmpl *)txcmp;
2700 
2701 	switch (cmpl_type) {
2702 	case CMPL_BASE_TYPE_HWRM_DONE:
2703 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2704 		hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE);
2705 		break;
2706 
2707 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2708 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2709 
2710 		if ((vf_id < bp->pf.first_vf_id) ||
2711 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2712 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2713 				   vf_id);
2714 			return -EINVAL;
2715 		}
2716 
2717 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2718 		bnxt_queue_sp_work(bp, BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT);
2719 		break;
2720 
2721 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2722 		bnxt_async_event_process(bp,
2723 					 (struct hwrm_async_event_cmpl *)txcmp);
2724 		break;
2725 
2726 	default:
2727 		break;
2728 	}
2729 
2730 	return 0;
2731 }
2732 
2733 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2734 {
2735 	struct bnxt_napi *bnapi = dev_instance;
2736 	struct bnxt *bp = bnapi->bp;
2737 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2738 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2739 
2740 	cpr->event_ctr++;
2741 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2742 	napi_schedule(&bnapi->napi);
2743 	return IRQ_HANDLED;
2744 }
2745 
2746 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2747 {
2748 	u32 raw_cons = cpr->cp_raw_cons;
2749 	u16 cons = RING_CMP(raw_cons);
2750 	struct tx_cmp *txcmp;
2751 
2752 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2753 
2754 	return TX_CMP_VALID(txcmp, raw_cons);
2755 }
2756 
2757 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2758 {
2759 	struct bnxt_napi *bnapi = dev_instance;
2760 	struct bnxt *bp = bnapi->bp;
2761 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2762 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2763 	u32 int_status;
2764 
2765 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2766 
2767 	if (!bnxt_has_work(bp, cpr)) {
2768 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2769 		/* return if erroneous interrupt */
2770 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2771 			return IRQ_NONE;
2772 	}
2773 
2774 	/* disable ring IRQ */
2775 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2776 
2777 	/* Return here if interrupt is shared and is disabled. */
2778 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2779 		return IRQ_HANDLED;
2780 
2781 	napi_schedule(&bnapi->napi);
2782 	return IRQ_HANDLED;
2783 }
2784 
2785 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2786 			    int budget)
2787 {
2788 	struct bnxt_napi *bnapi = cpr->bnapi;
2789 	u32 raw_cons = cpr->cp_raw_cons;
2790 	u32 cons;
2791 	int rx_pkts = 0;
2792 	u8 event = 0;
2793 	struct tx_cmp *txcmp;
2794 
2795 	cpr->has_more_work = 0;
2796 	cpr->had_work_done = 1;
2797 	while (1) {
2798 		u8 cmp_type;
2799 		int rc;
2800 
2801 		cons = RING_CMP(raw_cons);
2802 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2803 
2804 		if (!TX_CMP_VALID(txcmp, raw_cons))
2805 			break;
2806 
2807 		/* The valid test of the entry must be done first before
2808 		 * reading any further.
2809 		 */
2810 		dma_rmb();
2811 		cmp_type = TX_CMP_TYPE(txcmp);
2812 		if (cmp_type == CMP_TYPE_TX_L2_CMP ||
2813 		    cmp_type == CMP_TYPE_TX_L2_COAL_CMP) {
2814 			u32 opaque = txcmp->tx_cmp_opaque;
2815 			struct bnxt_tx_ring_info *txr;
2816 			u16 tx_freed;
2817 
2818 			txr = bnapi->tx_ring[TX_OPAQUE_RING(opaque)];
2819 			event |= BNXT_TX_CMP_EVENT;
2820 			if (cmp_type == CMP_TYPE_TX_L2_COAL_CMP)
2821 				txr->tx_hw_cons = TX_CMP_SQ_CONS_IDX(txcmp);
2822 			else
2823 				txr->tx_hw_cons = TX_OPAQUE_PROD(bp, opaque);
2824 			tx_freed = (txr->tx_hw_cons - txr->tx_cons) &
2825 				   bp->tx_ring_mask;
2826 			/* return full budget so NAPI will complete. */
2827 			if (unlikely(tx_freed >= bp->tx_wake_thresh)) {
2828 				rx_pkts = budget;
2829 				raw_cons = NEXT_RAW_CMP(raw_cons);
2830 				if (budget)
2831 					cpr->has_more_work = 1;
2832 				break;
2833 			}
2834 		} else if (cmp_type >= CMP_TYPE_RX_L2_CMP &&
2835 			   cmp_type <= CMP_TYPE_RX_L2_TPA_START_V3_CMP) {
2836 			if (likely(budget))
2837 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2838 			else
2839 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2840 							   &event);
2841 			if (likely(rc >= 0))
2842 				rx_pkts += rc;
2843 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2844 			 * the NAPI budget.  Otherwise, we may potentially loop
2845 			 * here forever if we consistently cannot allocate
2846 			 * buffers.
2847 			 */
2848 			else if (rc == -ENOMEM && budget)
2849 				rx_pkts++;
2850 			else if (rc == -EBUSY)	/* partial completion */
2851 				break;
2852 		} else if (unlikely(cmp_type == CMPL_BASE_TYPE_HWRM_DONE ||
2853 				    cmp_type == CMPL_BASE_TYPE_HWRM_FWD_REQ ||
2854 				    cmp_type == CMPL_BASE_TYPE_HWRM_ASYNC_EVENT)) {
2855 			bnxt_hwrm_handler(bp, txcmp);
2856 		}
2857 		raw_cons = NEXT_RAW_CMP(raw_cons);
2858 
2859 		if (rx_pkts && rx_pkts == budget) {
2860 			cpr->has_more_work = 1;
2861 			break;
2862 		}
2863 	}
2864 
2865 	if (event & BNXT_REDIRECT_EVENT)
2866 		xdp_do_flush();
2867 
2868 	if (event & BNXT_TX_EVENT) {
2869 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring[0];
2870 		u16 prod = txr->tx_prod;
2871 
2872 		/* Sync BD data before updating doorbell */
2873 		wmb();
2874 
2875 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2876 	}
2877 
2878 	cpr->cp_raw_cons = raw_cons;
2879 	bnapi->events |= event;
2880 	return rx_pkts;
2881 }
2882 
2883 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2884 				  int budget)
2885 {
2886 	if ((bnapi->events & BNXT_TX_CMP_EVENT) && !bnapi->tx_fault)
2887 		bnapi->tx_int(bp, bnapi, budget);
2888 
2889 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2890 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2891 
2892 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2893 	}
2894 	if (bnapi->events & BNXT_AGG_EVENT) {
2895 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2896 
2897 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2898 	}
2899 	bnapi->events &= BNXT_TX_CMP_EVENT;
2900 }
2901 
2902 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2903 			  int budget)
2904 {
2905 	struct bnxt_napi *bnapi = cpr->bnapi;
2906 	int rx_pkts;
2907 
2908 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2909 
2910 	/* ACK completion ring before freeing tx ring and producing new
2911 	 * buffers in rx/agg rings to prevent overflowing the completion
2912 	 * ring.
2913 	 */
2914 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2915 
2916 	__bnxt_poll_work_done(bp, bnapi, budget);
2917 	return rx_pkts;
2918 }
2919 
2920 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2921 {
2922 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2923 	struct bnxt *bp = bnapi->bp;
2924 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2925 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2926 	struct tx_cmp *txcmp;
2927 	struct rx_cmp_ext *rxcmp1;
2928 	u32 cp_cons, tmp_raw_cons;
2929 	u32 raw_cons = cpr->cp_raw_cons;
2930 	bool flush_xdp = false;
2931 	u32 rx_pkts = 0;
2932 	u8 event = 0;
2933 
2934 	while (1) {
2935 		int rc;
2936 
2937 		cp_cons = RING_CMP(raw_cons);
2938 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2939 
2940 		if (!TX_CMP_VALID(txcmp, raw_cons))
2941 			break;
2942 
2943 		/* The valid test of the entry must be done first before
2944 		 * reading any further.
2945 		 */
2946 		dma_rmb();
2947 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2948 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2949 			cp_cons = RING_CMP(tmp_raw_cons);
2950 			rxcmp1 = (struct rx_cmp_ext *)
2951 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2952 
2953 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2954 				break;
2955 
2956 			/* force an error to recycle the buffer */
2957 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2958 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2959 
2960 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2961 			if (likely(rc == -EIO) && budget)
2962 				rx_pkts++;
2963 			else if (rc == -EBUSY)	/* partial completion */
2964 				break;
2965 			if (event & BNXT_REDIRECT_EVENT)
2966 				flush_xdp = true;
2967 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2968 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2969 			bnxt_hwrm_handler(bp, txcmp);
2970 		} else {
2971 			netdev_err(bp->dev,
2972 				   "Invalid completion received on special ring\n");
2973 		}
2974 		raw_cons = NEXT_RAW_CMP(raw_cons);
2975 
2976 		if (rx_pkts == budget)
2977 			break;
2978 	}
2979 
2980 	cpr->cp_raw_cons = raw_cons;
2981 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2982 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2983 
2984 	if (event & BNXT_AGG_EVENT)
2985 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2986 	if (flush_xdp)
2987 		xdp_do_flush();
2988 
2989 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2990 		napi_complete_done(napi, rx_pkts);
2991 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2992 	}
2993 	return rx_pkts;
2994 }
2995 
2996 static int bnxt_poll(struct napi_struct *napi, int budget)
2997 {
2998 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2999 	struct bnxt *bp = bnapi->bp;
3000 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3001 	int work_done = 0;
3002 
3003 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
3004 		napi_complete(napi);
3005 		return 0;
3006 	}
3007 	while (1) {
3008 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
3009 
3010 		if (work_done >= budget) {
3011 			if (!budget)
3012 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
3013 			break;
3014 		}
3015 
3016 		if (!bnxt_has_work(bp, cpr)) {
3017 			if (napi_complete_done(napi, work_done))
3018 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
3019 			break;
3020 		}
3021 	}
3022 	if (bp->flags & BNXT_FLAG_DIM) {
3023 		struct dim_sample dim_sample = {};
3024 
3025 		dim_update_sample(cpr->event_ctr,
3026 				  cpr->rx_packets,
3027 				  cpr->rx_bytes,
3028 				  &dim_sample);
3029 		net_dim(&cpr->dim, dim_sample);
3030 	}
3031 	return work_done;
3032 }
3033 
3034 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
3035 {
3036 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3037 	int i, work_done = 0;
3038 
3039 	for (i = 0; i < cpr->cp_ring_count; i++) {
3040 		struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i];
3041 
3042 		if (cpr2->had_nqe_notify) {
3043 			work_done += __bnxt_poll_work(bp, cpr2,
3044 						      budget - work_done);
3045 			cpr->has_more_work |= cpr2->has_more_work;
3046 		}
3047 	}
3048 	return work_done;
3049 }
3050 
3051 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
3052 				 u64 dbr_type, int budget)
3053 {
3054 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3055 	int i;
3056 
3057 	for (i = 0; i < cpr->cp_ring_count; i++) {
3058 		struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i];
3059 		struct bnxt_db_info *db;
3060 
3061 		if (cpr2->had_work_done) {
3062 			u32 tgl = 0;
3063 
3064 			if (dbr_type == DBR_TYPE_CQ_ARMALL) {
3065 				cpr2->had_nqe_notify = 0;
3066 				tgl = cpr2->toggle;
3067 			}
3068 			db = &cpr2->cp_db;
3069 			bnxt_writeq(bp,
3070 				    db->db_key64 | dbr_type | DB_TOGGLE(tgl) |
3071 				    DB_RING_IDX(db, cpr2->cp_raw_cons),
3072 				    db->doorbell);
3073 			cpr2->had_work_done = 0;
3074 		}
3075 	}
3076 	__bnxt_poll_work_done(bp, bnapi, budget);
3077 }
3078 
3079 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
3080 {
3081 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
3082 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3083 	struct bnxt_cp_ring_info *cpr_rx;
3084 	u32 raw_cons = cpr->cp_raw_cons;
3085 	struct bnxt *bp = bnapi->bp;
3086 	struct nqe_cn *nqcmp;
3087 	int work_done = 0;
3088 	u32 cons;
3089 
3090 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
3091 		napi_complete(napi);
3092 		return 0;
3093 	}
3094 	if (cpr->has_more_work) {
3095 		cpr->has_more_work = 0;
3096 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
3097 	}
3098 	while (1) {
3099 		u16 type;
3100 
3101 		cons = RING_CMP(raw_cons);
3102 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
3103 
3104 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
3105 			if (cpr->has_more_work)
3106 				break;
3107 
3108 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL,
3109 					     budget);
3110 			cpr->cp_raw_cons = raw_cons;
3111 			if (napi_complete_done(napi, work_done))
3112 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
3113 						  cpr->cp_raw_cons);
3114 			goto poll_done;
3115 		}
3116 
3117 		/* The valid test of the entry must be done first before
3118 		 * reading any further.
3119 		 */
3120 		dma_rmb();
3121 
3122 		type = le16_to_cpu(nqcmp->type);
3123 		if (NQE_CN_TYPE(type) == NQ_CN_TYPE_CQ_NOTIFICATION) {
3124 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
3125 			u32 cq_type = BNXT_NQ_HDL_TYPE(idx);
3126 			struct bnxt_cp_ring_info *cpr2;
3127 
3128 			/* No more budget for RX work */
3129 			if (budget && work_done >= budget &&
3130 			    cq_type == BNXT_NQ_HDL_TYPE_RX)
3131 				break;
3132 
3133 			idx = BNXT_NQ_HDL_IDX(idx);
3134 			cpr2 = &cpr->cp_ring_arr[idx];
3135 			cpr2->had_nqe_notify = 1;
3136 			cpr2->toggle = NQE_CN_TOGGLE(type);
3137 			work_done += __bnxt_poll_work(bp, cpr2,
3138 						      budget - work_done);
3139 			cpr->has_more_work |= cpr2->has_more_work;
3140 		} else {
3141 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
3142 		}
3143 		raw_cons = NEXT_RAW_CMP(raw_cons);
3144 	}
3145 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget);
3146 	if (raw_cons != cpr->cp_raw_cons) {
3147 		cpr->cp_raw_cons = raw_cons;
3148 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
3149 	}
3150 poll_done:
3151 	cpr_rx = &cpr->cp_ring_arr[0];
3152 	if (cpr_rx->cp_ring_type == BNXT_NQ_HDL_TYPE_RX &&
3153 	    (bp->flags & BNXT_FLAG_DIM)) {
3154 		struct dim_sample dim_sample = {};
3155 
3156 		dim_update_sample(cpr->event_ctr,
3157 				  cpr_rx->rx_packets,
3158 				  cpr_rx->rx_bytes,
3159 				  &dim_sample);
3160 		net_dim(&cpr->dim, dim_sample);
3161 	}
3162 	return work_done;
3163 }
3164 
3165 static void bnxt_free_tx_skbs(struct bnxt *bp)
3166 {
3167 	int i, max_idx;
3168 	struct pci_dev *pdev = bp->pdev;
3169 
3170 	if (!bp->tx_ring)
3171 		return;
3172 
3173 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
3174 	for (i = 0; i < bp->tx_nr_rings; i++) {
3175 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3176 		int j;
3177 
3178 		if (!txr->tx_buf_ring)
3179 			continue;
3180 
3181 		for (j = 0; j < max_idx;) {
3182 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
3183 			struct sk_buff *skb;
3184 			int k, last;
3185 
3186 			if (i < bp->tx_nr_rings_xdp &&
3187 			    tx_buf->action == XDP_REDIRECT) {
3188 				dma_unmap_single(&pdev->dev,
3189 					dma_unmap_addr(tx_buf, mapping),
3190 					dma_unmap_len(tx_buf, len),
3191 					DMA_TO_DEVICE);
3192 				xdp_return_frame(tx_buf->xdpf);
3193 				tx_buf->action = 0;
3194 				tx_buf->xdpf = NULL;
3195 				j++;
3196 				continue;
3197 			}
3198 
3199 			skb = tx_buf->skb;
3200 			if (!skb) {
3201 				j++;
3202 				continue;
3203 			}
3204 
3205 			tx_buf->skb = NULL;
3206 
3207 			if (tx_buf->is_push) {
3208 				dev_kfree_skb(skb);
3209 				j += 2;
3210 				continue;
3211 			}
3212 
3213 			dma_unmap_single(&pdev->dev,
3214 					 dma_unmap_addr(tx_buf, mapping),
3215 					 skb_headlen(skb),
3216 					 DMA_TO_DEVICE);
3217 
3218 			last = tx_buf->nr_frags;
3219 			j += 2;
3220 			for (k = 0; k < last; k++, j++) {
3221 				int ring_idx = j & bp->tx_ring_mask;
3222 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
3223 
3224 				tx_buf = &txr->tx_buf_ring[ring_idx];
3225 				dma_unmap_page(
3226 					&pdev->dev,
3227 					dma_unmap_addr(tx_buf, mapping),
3228 					skb_frag_size(frag), DMA_TO_DEVICE);
3229 			}
3230 			dev_kfree_skb(skb);
3231 		}
3232 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
3233 	}
3234 }
3235 
3236 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
3237 {
3238 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3239 	struct pci_dev *pdev = bp->pdev;
3240 	struct bnxt_tpa_idx_map *map;
3241 	int i, max_idx, max_agg_idx;
3242 
3243 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
3244 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
3245 	if (!rxr->rx_tpa)
3246 		goto skip_rx_tpa_free;
3247 
3248 	for (i = 0; i < bp->max_tpa; i++) {
3249 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
3250 		u8 *data = tpa_info->data;
3251 
3252 		if (!data)
3253 			continue;
3254 
3255 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
3256 				       bp->rx_buf_use_size, bp->rx_dir,
3257 				       DMA_ATTR_WEAK_ORDERING);
3258 
3259 		tpa_info->data = NULL;
3260 
3261 		skb_free_frag(data);
3262 	}
3263 
3264 skip_rx_tpa_free:
3265 	if (!rxr->rx_buf_ring)
3266 		goto skip_rx_buf_free;
3267 
3268 	for (i = 0; i < max_idx; i++) {
3269 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
3270 		dma_addr_t mapping = rx_buf->mapping;
3271 		void *data = rx_buf->data;
3272 
3273 		if (!data)
3274 			continue;
3275 
3276 		rx_buf->data = NULL;
3277 		if (BNXT_RX_PAGE_MODE(bp)) {
3278 			page_pool_recycle_direct(rxr->page_pool, data);
3279 		} else {
3280 			dma_unmap_single_attrs(&pdev->dev, mapping,
3281 					       bp->rx_buf_use_size, bp->rx_dir,
3282 					       DMA_ATTR_WEAK_ORDERING);
3283 			skb_free_frag(data);
3284 		}
3285 	}
3286 
3287 skip_rx_buf_free:
3288 	if (!rxr->rx_agg_ring)
3289 		goto skip_rx_agg_free;
3290 
3291 	for (i = 0; i < max_agg_idx; i++) {
3292 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
3293 		struct page *page = rx_agg_buf->page;
3294 
3295 		if (!page)
3296 			continue;
3297 
3298 		rx_agg_buf->page = NULL;
3299 		__clear_bit(i, rxr->rx_agg_bmap);
3300 
3301 		page_pool_recycle_direct(rxr->page_pool, page);
3302 	}
3303 
3304 skip_rx_agg_free:
3305 	map = rxr->rx_tpa_idx_map;
3306 	if (map)
3307 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
3308 }
3309 
3310 static void bnxt_free_rx_skbs(struct bnxt *bp)
3311 {
3312 	int i;
3313 
3314 	if (!bp->rx_ring)
3315 		return;
3316 
3317 	for (i = 0; i < bp->rx_nr_rings; i++)
3318 		bnxt_free_one_rx_ring_skbs(bp, i);
3319 }
3320 
3321 static void bnxt_free_skbs(struct bnxt *bp)
3322 {
3323 	bnxt_free_tx_skbs(bp);
3324 	bnxt_free_rx_skbs(bp);
3325 }
3326 
3327 static void bnxt_init_ctx_mem(struct bnxt_ctx_mem_type *ctxm, void *p, int len)
3328 {
3329 	u8 init_val = ctxm->init_value;
3330 	u16 offset = ctxm->init_offset;
3331 	u8 *p2 = p;
3332 	int i;
3333 
3334 	if (!init_val)
3335 		return;
3336 	if (offset == BNXT_CTX_INIT_INVALID_OFFSET) {
3337 		memset(p, init_val, len);
3338 		return;
3339 	}
3340 	for (i = 0; i < len; i += ctxm->entry_size)
3341 		*(p2 + i + offset) = init_val;
3342 }
3343 
3344 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3345 {
3346 	struct pci_dev *pdev = bp->pdev;
3347 	int i;
3348 
3349 	if (!rmem->pg_arr)
3350 		goto skip_pages;
3351 
3352 	for (i = 0; i < rmem->nr_pages; i++) {
3353 		if (!rmem->pg_arr[i])
3354 			continue;
3355 
3356 		dma_free_coherent(&pdev->dev, rmem->page_size,
3357 				  rmem->pg_arr[i], rmem->dma_arr[i]);
3358 
3359 		rmem->pg_arr[i] = NULL;
3360 	}
3361 skip_pages:
3362 	if (rmem->pg_tbl) {
3363 		size_t pg_tbl_size = rmem->nr_pages * 8;
3364 
3365 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3366 			pg_tbl_size = rmem->page_size;
3367 		dma_free_coherent(&pdev->dev, pg_tbl_size,
3368 				  rmem->pg_tbl, rmem->pg_tbl_map);
3369 		rmem->pg_tbl = NULL;
3370 	}
3371 	if (rmem->vmem_size && *rmem->vmem) {
3372 		vfree(*rmem->vmem);
3373 		*rmem->vmem = NULL;
3374 	}
3375 }
3376 
3377 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3378 {
3379 	struct pci_dev *pdev = bp->pdev;
3380 	u64 valid_bit = 0;
3381 	int i;
3382 
3383 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
3384 		valid_bit = PTU_PTE_VALID;
3385 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
3386 		size_t pg_tbl_size = rmem->nr_pages * 8;
3387 
3388 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3389 			pg_tbl_size = rmem->page_size;
3390 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
3391 						  &rmem->pg_tbl_map,
3392 						  GFP_KERNEL);
3393 		if (!rmem->pg_tbl)
3394 			return -ENOMEM;
3395 	}
3396 
3397 	for (i = 0; i < rmem->nr_pages; i++) {
3398 		u64 extra_bits = valid_bit;
3399 
3400 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
3401 						     rmem->page_size,
3402 						     &rmem->dma_arr[i],
3403 						     GFP_KERNEL);
3404 		if (!rmem->pg_arr[i])
3405 			return -ENOMEM;
3406 
3407 		if (rmem->ctx_mem)
3408 			bnxt_init_ctx_mem(rmem->ctx_mem, rmem->pg_arr[i],
3409 					  rmem->page_size);
3410 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
3411 			if (i == rmem->nr_pages - 2 &&
3412 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3413 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
3414 			else if (i == rmem->nr_pages - 1 &&
3415 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3416 				extra_bits |= PTU_PTE_LAST;
3417 			rmem->pg_tbl[i] =
3418 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
3419 		}
3420 	}
3421 
3422 	if (rmem->vmem_size) {
3423 		*rmem->vmem = vzalloc(rmem->vmem_size);
3424 		if (!(*rmem->vmem))
3425 			return -ENOMEM;
3426 	}
3427 	return 0;
3428 }
3429 
3430 static void bnxt_free_tpa_info(struct bnxt *bp)
3431 {
3432 	int i, j;
3433 
3434 	for (i = 0; i < bp->rx_nr_rings; i++) {
3435 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3436 
3437 		kfree(rxr->rx_tpa_idx_map);
3438 		rxr->rx_tpa_idx_map = NULL;
3439 		if (rxr->rx_tpa) {
3440 			for (j = 0; j < bp->max_tpa; j++) {
3441 				kfree(rxr->rx_tpa[j].agg_arr);
3442 				rxr->rx_tpa[j].agg_arr = NULL;
3443 			}
3444 		}
3445 		kfree(rxr->rx_tpa);
3446 		rxr->rx_tpa = NULL;
3447 	}
3448 }
3449 
3450 static int bnxt_alloc_tpa_info(struct bnxt *bp)
3451 {
3452 	int i, j;
3453 
3454 	bp->max_tpa = MAX_TPA;
3455 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
3456 		if (!bp->max_tpa_v2)
3457 			return 0;
3458 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
3459 	}
3460 
3461 	for (i = 0; i < bp->rx_nr_rings; i++) {
3462 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3463 		struct rx_agg_cmp *agg;
3464 
3465 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
3466 				      GFP_KERNEL);
3467 		if (!rxr->rx_tpa)
3468 			return -ENOMEM;
3469 
3470 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
3471 			continue;
3472 		for (j = 0; j < bp->max_tpa; j++) {
3473 			agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL);
3474 			if (!agg)
3475 				return -ENOMEM;
3476 			rxr->rx_tpa[j].agg_arr = agg;
3477 		}
3478 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
3479 					      GFP_KERNEL);
3480 		if (!rxr->rx_tpa_idx_map)
3481 			return -ENOMEM;
3482 	}
3483 	return 0;
3484 }
3485 
3486 static void bnxt_free_rx_rings(struct bnxt *bp)
3487 {
3488 	int i;
3489 
3490 	if (!bp->rx_ring)
3491 		return;
3492 
3493 	bnxt_free_tpa_info(bp);
3494 	for (i = 0; i < bp->rx_nr_rings; i++) {
3495 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3496 		struct bnxt_ring_struct *ring;
3497 
3498 		if (rxr->xdp_prog)
3499 			bpf_prog_put(rxr->xdp_prog);
3500 
3501 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
3502 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3503 
3504 		page_pool_destroy(rxr->page_pool);
3505 		rxr->page_pool = NULL;
3506 
3507 		kfree(rxr->rx_agg_bmap);
3508 		rxr->rx_agg_bmap = NULL;
3509 
3510 		ring = &rxr->rx_ring_struct;
3511 		bnxt_free_ring(bp, &ring->ring_mem);
3512 
3513 		ring = &rxr->rx_agg_ring_struct;
3514 		bnxt_free_ring(bp, &ring->ring_mem);
3515 	}
3516 }
3517 
3518 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
3519 				   struct bnxt_rx_ring_info *rxr)
3520 {
3521 	struct page_pool_params pp = { 0 };
3522 
3523 	pp.pool_size = bp->rx_agg_ring_size;
3524 	if (BNXT_RX_PAGE_MODE(bp))
3525 		pp.pool_size += bp->rx_ring_size;
3526 	pp.nid = dev_to_node(&bp->pdev->dev);
3527 	pp.napi = &rxr->bnapi->napi;
3528 	pp.netdev = bp->dev;
3529 	pp.dev = &bp->pdev->dev;
3530 	pp.dma_dir = bp->rx_dir;
3531 	pp.max_len = PAGE_SIZE;
3532 	pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
3533 
3534 	rxr->page_pool = page_pool_create(&pp);
3535 	if (IS_ERR(rxr->page_pool)) {
3536 		int err = PTR_ERR(rxr->page_pool);
3537 
3538 		rxr->page_pool = NULL;
3539 		return err;
3540 	}
3541 	return 0;
3542 }
3543 
3544 static int bnxt_alloc_rx_rings(struct bnxt *bp)
3545 {
3546 	int i, rc = 0, agg_rings = 0;
3547 
3548 	if (!bp->rx_ring)
3549 		return -ENOMEM;
3550 
3551 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
3552 		agg_rings = 1;
3553 
3554 	for (i = 0; i < bp->rx_nr_rings; i++) {
3555 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3556 		struct bnxt_ring_struct *ring;
3557 
3558 		ring = &rxr->rx_ring_struct;
3559 
3560 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
3561 		if (rc)
3562 			return rc;
3563 
3564 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
3565 		if (rc < 0)
3566 			return rc;
3567 
3568 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
3569 						MEM_TYPE_PAGE_POOL,
3570 						rxr->page_pool);
3571 		if (rc) {
3572 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3573 			return rc;
3574 		}
3575 
3576 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3577 		if (rc)
3578 			return rc;
3579 
3580 		ring->grp_idx = i;
3581 		if (agg_rings) {
3582 			u16 mem_size;
3583 
3584 			ring = &rxr->rx_agg_ring_struct;
3585 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3586 			if (rc)
3587 				return rc;
3588 
3589 			ring->grp_idx = i;
3590 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
3591 			mem_size = rxr->rx_agg_bmap_size / 8;
3592 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
3593 			if (!rxr->rx_agg_bmap)
3594 				return -ENOMEM;
3595 		}
3596 	}
3597 	if (bp->flags & BNXT_FLAG_TPA)
3598 		rc = bnxt_alloc_tpa_info(bp);
3599 	return rc;
3600 }
3601 
3602 static void bnxt_free_tx_rings(struct bnxt *bp)
3603 {
3604 	int i;
3605 	struct pci_dev *pdev = bp->pdev;
3606 
3607 	if (!bp->tx_ring)
3608 		return;
3609 
3610 	for (i = 0; i < bp->tx_nr_rings; i++) {
3611 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3612 		struct bnxt_ring_struct *ring;
3613 
3614 		if (txr->tx_push) {
3615 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
3616 					  txr->tx_push, txr->tx_push_mapping);
3617 			txr->tx_push = NULL;
3618 		}
3619 
3620 		ring = &txr->tx_ring_struct;
3621 
3622 		bnxt_free_ring(bp, &ring->ring_mem);
3623 	}
3624 }
3625 
3626 #define BNXT_TC_TO_RING_BASE(bp, tc)	\
3627 	((tc) * (bp)->tx_nr_rings_per_tc)
3628 
3629 #define BNXT_RING_TO_TC_OFF(bp, tx)	\
3630 	((tx) % (bp)->tx_nr_rings_per_tc)
3631 
3632 #define BNXT_RING_TO_TC(bp, tx)		\
3633 	((tx) / (bp)->tx_nr_rings_per_tc)
3634 
3635 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3636 {
3637 	int i, j, rc;
3638 	struct pci_dev *pdev = bp->pdev;
3639 
3640 	bp->tx_push_size = 0;
3641 	if (bp->tx_push_thresh) {
3642 		int push_size;
3643 
3644 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3645 					bp->tx_push_thresh);
3646 
3647 		if (push_size > 256) {
3648 			push_size = 0;
3649 			bp->tx_push_thresh = 0;
3650 		}
3651 
3652 		bp->tx_push_size = push_size;
3653 	}
3654 
3655 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3656 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3657 		struct bnxt_ring_struct *ring;
3658 		u8 qidx;
3659 
3660 		ring = &txr->tx_ring_struct;
3661 
3662 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3663 		if (rc)
3664 			return rc;
3665 
3666 		ring->grp_idx = txr->bnapi->index;
3667 		if (bp->tx_push_size) {
3668 			dma_addr_t mapping;
3669 
3670 			/* One pre-allocated DMA buffer to backup
3671 			 * TX push operation
3672 			 */
3673 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
3674 						bp->tx_push_size,
3675 						&txr->tx_push_mapping,
3676 						GFP_KERNEL);
3677 
3678 			if (!txr->tx_push)
3679 				return -ENOMEM;
3680 
3681 			mapping = txr->tx_push_mapping +
3682 				sizeof(struct tx_push_bd);
3683 			txr->data_mapping = cpu_to_le64(mapping);
3684 		}
3685 		qidx = bp->tc_to_qidx[j];
3686 		ring->queue_id = bp->q_info[qidx].queue_id;
3687 		spin_lock_init(&txr->xdp_tx_lock);
3688 		if (i < bp->tx_nr_rings_xdp)
3689 			continue;
3690 		if (BNXT_RING_TO_TC_OFF(bp, i) == (bp->tx_nr_rings_per_tc - 1))
3691 			j++;
3692 	}
3693 	return 0;
3694 }
3695 
3696 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr)
3697 {
3698 	struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3699 
3700 	kfree(cpr->cp_desc_ring);
3701 	cpr->cp_desc_ring = NULL;
3702 	ring->ring_mem.pg_arr = NULL;
3703 	kfree(cpr->cp_desc_mapping);
3704 	cpr->cp_desc_mapping = NULL;
3705 	ring->ring_mem.dma_arr = NULL;
3706 }
3707 
3708 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n)
3709 {
3710 	cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL);
3711 	if (!cpr->cp_desc_ring)
3712 		return -ENOMEM;
3713 	cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping),
3714 				       GFP_KERNEL);
3715 	if (!cpr->cp_desc_mapping)
3716 		return -ENOMEM;
3717 	return 0;
3718 }
3719 
3720 static void bnxt_free_all_cp_arrays(struct bnxt *bp)
3721 {
3722 	int i;
3723 
3724 	if (!bp->bnapi)
3725 		return;
3726 	for (i = 0; i < bp->cp_nr_rings; i++) {
3727 		struct bnxt_napi *bnapi = bp->bnapi[i];
3728 
3729 		if (!bnapi)
3730 			continue;
3731 		bnxt_free_cp_arrays(&bnapi->cp_ring);
3732 	}
3733 }
3734 
3735 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp)
3736 {
3737 	int i, n = bp->cp_nr_pages;
3738 
3739 	for (i = 0; i < bp->cp_nr_rings; i++) {
3740 		struct bnxt_napi *bnapi = bp->bnapi[i];
3741 		int rc;
3742 
3743 		if (!bnapi)
3744 			continue;
3745 		rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n);
3746 		if (rc)
3747 			return rc;
3748 	}
3749 	return 0;
3750 }
3751 
3752 static void bnxt_free_cp_rings(struct bnxt *bp)
3753 {
3754 	int i;
3755 
3756 	if (!bp->bnapi)
3757 		return;
3758 
3759 	for (i = 0; i < bp->cp_nr_rings; i++) {
3760 		struct bnxt_napi *bnapi = bp->bnapi[i];
3761 		struct bnxt_cp_ring_info *cpr;
3762 		struct bnxt_ring_struct *ring;
3763 		int j;
3764 
3765 		if (!bnapi)
3766 			continue;
3767 
3768 		cpr = &bnapi->cp_ring;
3769 		ring = &cpr->cp_ring_struct;
3770 
3771 		bnxt_free_ring(bp, &ring->ring_mem);
3772 
3773 		if (!cpr->cp_ring_arr)
3774 			continue;
3775 
3776 		for (j = 0; j < cpr->cp_ring_count; j++) {
3777 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
3778 
3779 			ring = &cpr2->cp_ring_struct;
3780 			bnxt_free_ring(bp, &ring->ring_mem);
3781 			bnxt_free_cp_arrays(cpr2);
3782 		}
3783 		kfree(cpr->cp_ring_arr);
3784 		cpr->cp_ring_arr = NULL;
3785 		cpr->cp_ring_count = 0;
3786 	}
3787 }
3788 
3789 static int bnxt_alloc_cp_sub_ring(struct bnxt *bp,
3790 				  struct bnxt_cp_ring_info *cpr)
3791 {
3792 	struct bnxt_ring_mem_info *rmem;
3793 	struct bnxt_ring_struct *ring;
3794 	int rc;
3795 
3796 	rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages);
3797 	if (rc) {
3798 		bnxt_free_cp_arrays(cpr);
3799 		return -ENOMEM;
3800 	}
3801 	ring = &cpr->cp_ring_struct;
3802 	rmem = &ring->ring_mem;
3803 	rmem->nr_pages = bp->cp_nr_pages;
3804 	rmem->page_size = HW_CMPD_RING_SIZE;
3805 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3806 	rmem->dma_arr = cpr->cp_desc_mapping;
3807 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3808 	rc = bnxt_alloc_ring(bp, rmem);
3809 	if (rc) {
3810 		bnxt_free_ring(bp, rmem);
3811 		bnxt_free_cp_arrays(cpr);
3812 	}
3813 	return rc;
3814 }
3815 
3816 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3817 {
3818 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3819 	int i, j, rc, ulp_base_vec, ulp_msix;
3820 	int tcs = netdev_get_num_tc(bp->dev);
3821 
3822 	if (!tcs)
3823 		tcs = 1;
3824 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3825 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3826 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
3827 		struct bnxt_napi *bnapi = bp->bnapi[i];
3828 		struct bnxt_cp_ring_info *cpr, *cpr2;
3829 		struct bnxt_ring_struct *ring;
3830 		int cp_count = 0, k;
3831 		int rx = 0, tx = 0;
3832 
3833 		if (!bnapi)
3834 			continue;
3835 
3836 		cpr = &bnapi->cp_ring;
3837 		cpr->bnapi = bnapi;
3838 		ring = &cpr->cp_ring_struct;
3839 
3840 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3841 		if (rc)
3842 			return rc;
3843 
3844 		if (ulp_msix && i >= ulp_base_vec)
3845 			ring->map_idx = i + ulp_msix;
3846 		else
3847 			ring->map_idx = i;
3848 
3849 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
3850 			continue;
3851 
3852 		if (i < bp->rx_nr_rings) {
3853 			cp_count++;
3854 			rx = 1;
3855 		}
3856 		if (i < bp->tx_nr_rings_xdp) {
3857 			cp_count++;
3858 			tx = 1;
3859 		} else if ((sh && i < bp->tx_nr_rings) ||
3860 			 (!sh && i >= bp->rx_nr_rings)) {
3861 			cp_count += tcs;
3862 			tx = 1;
3863 		}
3864 
3865 		cpr->cp_ring_arr = kcalloc(cp_count, sizeof(*cpr),
3866 					   GFP_KERNEL);
3867 		if (!cpr->cp_ring_arr)
3868 			return -ENOMEM;
3869 		cpr->cp_ring_count = cp_count;
3870 
3871 		for (k = 0; k < cp_count; k++) {
3872 			cpr2 = &cpr->cp_ring_arr[k];
3873 			rc = bnxt_alloc_cp_sub_ring(bp, cpr2);
3874 			if (rc)
3875 				return rc;
3876 			cpr2->bnapi = bnapi;
3877 			cpr2->cp_idx = k;
3878 			if (!k && rx) {
3879 				bp->rx_ring[i].rx_cpr = cpr2;
3880 				cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_RX;
3881 			} else {
3882 				int n, tc = k - rx;
3883 
3884 				n = BNXT_TC_TO_RING_BASE(bp, tc) + j;
3885 				bp->tx_ring[n].tx_cpr = cpr2;
3886 				cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_TX;
3887 			}
3888 		}
3889 		if (tx)
3890 			j++;
3891 	}
3892 	return 0;
3893 }
3894 
3895 static void bnxt_init_ring_struct(struct bnxt *bp)
3896 {
3897 	int i, j;
3898 
3899 	for (i = 0; i < bp->cp_nr_rings; i++) {
3900 		struct bnxt_napi *bnapi = bp->bnapi[i];
3901 		struct bnxt_ring_mem_info *rmem;
3902 		struct bnxt_cp_ring_info *cpr;
3903 		struct bnxt_rx_ring_info *rxr;
3904 		struct bnxt_tx_ring_info *txr;
3905 		struct bnxt_ring_struct *ring;
3906 
3907 		if (!bnapi)
3908 			continue;
3909 
3910 		cpr = &bnapi->cp_ring;
3911 		ring = &cpr->cp_ring_struct;
3912 		rmem = &ring->ring_mem;
3913 		rmem->nr_pages = bp->cp_nr_pages;
3914 		rmem->page_size = HW_CMPD_RING_SIZE;
3915 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3916 		rmem->dma_arr = cpr->cp_desc_mapping;
3917 		rmem->vmem_size = 0;
3918 
3919 		rxr = bnapi->rx_ring;
3920 		if (!rxr)
3921 			goto skip_rx;
3922 
3923 		ring = &rxr->rx_ring_struct;
3924 		rmem = &ring->ring_mem;
3925 		rmem->nr_pages = bp->rx_nr_pages;
3926 		rmem->page_size = HW_RXBD_RING_SIZE;
3927 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3928 		rmem->dma_arr = rxr->rx_desc_mapping;
3929 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3930 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3931 
3932 		ring = &rxr->rx_agg_ring_struct;
3933 		rmem = &ring->ring_mem;
3934 		rmem->nr_pages = bp->rx_agg_nr_pages;
3935 		rmem->page_size = HW_RXBD_RING_SIZE;
3936 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3937 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3938 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3939 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3940 
3941 skip_rx:
3942 		bnxt_for_each_napi_tx(j, bnapi, txr) {
3943 			ring = &txr->tx_ring_struct;
3944 			rmem = &ring->ring_mem;
3945 			rmem->nr_pages = bp->tx_nr_pages;
3946 			rmem->page_size = HW_TXBD_RING_SIZE;
3947 			rmem->pg_arr = (void **)txr->tx_desc_ring;
3948 			rmem->dma_arr = txr->tx_desc_mapping;
3949 			rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3950 			rmem->vmem = (void **)&txr->tx_buf_ring;
3951 		}
3952 	}
3953 }
3954 
3955 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3956 {
3957 	int i;
3958 	u32 prod;
3959 	struct rx_bd **rx_buf_ring;
3960 
3961 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3962 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3963 		int j;
3964 		struct rx_bd *rxbd;
3965 
3966 		rxbd = rx_buf_ring[i];
3967 		if (!rxbd)
3968 			continue;
3969 
3970 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3971 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3972 			rxbd->rx_bd_opaque = prod;
3973 		}
3974 	}
3975 }
3976 
3977 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
3978 {
3979 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3980 	struct net_device *dev = bp->dev;
3981 	u32 prod;
3982 	int i;
3983 
3984 	prod = rxr->rx_prod;
3985 	for (i = 0; i < bp->rx_ring_size; i++) {
3986 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
3987 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3988 				    ring_nr, i, bp->rx_ring_size);
3989 			break;
3990 		}
3991 		prod = NEXT_RX(prod);
3992 	}
3993 	rxr->rx_prod = prod;
3994 
3995 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3996 		return 0;
3997 
3998 	prod = rxr->rx_agg_prod;
3999 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
4000 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
4001 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
4002 				    ring_nr, i, bp->rx_ring_size);
4003 			break;
4004 		}
4005 		prod = NEXT_RX_AGG(prod);
4006 	}
4007 	rxr->rx_agg_prod = prod;
4008 
4009 	if (rxr->rx_tpa) {
4010 		dma_addr_t mapping;
4011 		u8 *data;
4012 
4013 		for (i = 0; i < bp->max_tpa; i++) {
4014 			data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL);
4015 			if (!data)
4016 				return -ENOMEM;
4017 
4018 			rxr->rx_tpa[i].data = data;
4019 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
4020 			rxr->rx_tpa[i].mapping = mapping;
4021 		}
4022 	}
4023 	return 0;
4024 }
4025 
4026 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
4027 {
4028 	struct bnxt_rx_ring_info *rxr;
4029 	struct bnxt_ring_struct *ring;
4030 	u32 type;
4031 
4032 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
4033 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
4034 
4035 	if (NET_IP_ALIGN == 2)
4036 		type |= RX_BD_FLAGS_SOP;
4037 
4038 	rxr = &bp->rx_ring[ring_nr];
4039 	ring = &rxr->rx_ring_struct;
4040 	bnxt_init_rxbd_pages(ring, type);
4041 
4042 	netif_queue_set_napi(bp->dev, ring_nr, NETDEV_QUEUE_TYPE_RX,
4043 			     &rxr->bnapi->napi);
4044 
4045 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
4046 		bpf_prog_add(bp->xdp_prog, 1);
4047 		rxr->xdp_prog = bp->xdp_prog;
4048 	}
4049 	ring->fw_ring_id = INVALID_HW_RING_ID;
4050 
4051 	ring = &rxr->rx_agg_ring_struct;
4052 	ring->fw_ring_id = INVALID_HW_RING_ID;
4053 
4054 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
4055 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
4056 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
4057 
4058 		bnxt_init_rxbd_pages(ring, type);
4059 	}
4060 
4061 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
4062 }
4063 
4064 static void bnxt_init_cp_rings(struct bnxt *bp)
4065 {
4066 	int i, j;
4067 
4068 	for (i = 0; i < bp->cp_nr_rings; i++) {
4069 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
4070 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4071 
4072 		ring->fw_ring_id = INVALID_HW_RING_ID;
4073 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
4074 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
4075 		if (!cpr->cp_ring_arr)
4076 			continue;
4077 		for (j = 0; j < cpr->cp_ring_count; j++) {
4078 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
4079 
4080 			ring = &cpr2->cp_ring_struct;
4081 			ring->fw_ring_id = INVALID_HW_RING_ID;
4082 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
4083 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
4084 		}
4085 	}
4086 }
4087 
4088 static int bnxt_init_rx_rings(struct bnxt *bp)
4089 {
4090 	int i, rc = 0;
4091 
4092 	if (BNXT_RX_PAGE_MODE(bp)) {
4093 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
4094 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
4095 	} else {
4096 		bp->rx_offset = BNXT_RX_OFFSET;
4097 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
4098 	}
4099 
4100 	for (i = 0; i < bp->rx_nr_rings; i++) {
4101 		rc = bnxt_init_one_rx_ring(bp, i);
4102 		if (rc)
4103 			break;
4104 	}
4105 
4106 	return rc;
4107 }
4108 
4109 static int bnxt_init_tx_rings(struct bnxt *bp)
4110 {
4111 	u16 i;
4112 
4113 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
4114 				   BNXT_MIN_TX_DESC_CNT);
4115 
4116 	for (i = 0; i < bp->tx_nr_rings; i++) {
4117 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4118 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4119 
4120 		ring->fw_ring_id = INVALID_HW_RING_ID;
4121 
4122 		if (i >= bp->tx_nr_rings_xdp)
4123 			netif_queue_set_napi(bp->dev, i - bp->tx_nr_rings_xdp,
4124 					     NETDEV_QUEUE_TYPE_TX,
4125 					     &txr->bnapi->napi);
4126 	}
4127 
4128 	return 0;
4129 }
4130 
4131 static void bnxt_free_ring_grps(struct bnxt *bp)
4132 {
4133 	kfree(bp->grp_info);
4134 	bp->grp_info = NULL;
4135 }
4136 
4137 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
4138 {
4139 	int i;
4140 
4141 	if (irq_re_init) {
4142 		bp->grp_info = kcalloc(bp->cp_nr_rings,
4143 				       sizeof(struct bnxt_ring_grp_info),
4144 				       GFP_KERNEL);
4145 		if (!bp->grp_info)
4146 			return -ENOMEM;
4147 	}
4148 	for (i = 0; i < bp->cp_nr_rings; i++) {
4149 		if (irq_re_init)
4150 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
4151 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
4152 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
4153 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
4154 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
4155 	}
4156 	return 0;
4157 }
4158 
4159 static void bnxt_free_vnics(struct bnxt *bp)
4160 {
4161 	kfree(bp->vnic_info);
4162 	bp->vnic_info = NULL;
4163 	bp->nr_vnics = 0;
4164 }
4165 
4166 static int bnxt_alloc_vnics(struct bnxt *bp)
4167 {
4168 	int num_vnics = 1;
4169 
4170 #ifdef CONFIG_RFS_ACCEL
4171 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5_PLUS)) == BNXT_FLAG_RFS)
4172 		num_vnics += bp->rx_nr_rings;
4173 #endif
4174 
4175 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4176 		num_vnics++;
4177 
4178 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
4179 				GFP_KERNEL);
4180 	if (!bp->vnic_info)
4181 		return -ENOMEM;
4182 
4183 	bp->nr_vnics = num_vnics;
4184 	return 0;
4185 }
4186 
4187 static void bnxt_init_vnics(struct bnxt *bp)
4188 {
4189 	int i;
4190 
4191 	for (i = 0; i < bp->nr_vnics; i++) {
4192 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4193 		int j;
4194 
4195 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
4196 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
4197 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
4198 
4199 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
4200 
4201 		if (bp->vnic_info[i].rss_hash_key) {
4202 			if (!i) {
4203 				u8 *key = (void *)vnic->rss_hash_key;
4204 				int k;
4205 
4206 				bp->toeplitz_prefix = 0;
4207 				get_random_bytes(vnic->rss_hash_key,
4208 					      HW_HASH_KEY_SIZE);
4209 				for (k = 0; k < 8; k++) {
4210 					bp->toeplitz_prefix <<= 8;
4211 					bp->toeplitz_prefix |= key[k];
4212 				}
4213 			} else {
4214 				memcpy(vnic->rss_hash_key,
4215 				       bp->vnic_info[0].rss_hash_key,
4216 				       HW_HASH_KEY_SIZE);
4217 			}
4218 		}
4219 	}
4220 }
4221 
4222 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
4223 {
4224 	int pages;
4225 
4226 	pages = ring_size / desc_per_pg;
4227 
4228 	if (!pages)
4229 		return 1;
4230 
4231 	pages++;
4232 
4233 	while (pages & (pages - 1))
4234 		pages++;
4235 
4236 	return pages;
4237 }
4238 
4239 void bnxt_set_tpa_flags(struct bnxt *bp)
4240 {
4241 	bp->flags &= ~BNXT_FLAG_TPA;
4242 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
4243 		return;
4244 	if (bp->dev->features & NETIF_F_LRO)
4245 		bp->flags |= BNXT_FLAG_LRO;
4246 	else if (bp->dev->features & NETIF_F_GRO_HW)
4247 		bp->flags |= BNXT_FLAG_GRO;
4248 }
4249 
4250 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
4251  * be set on entry.
4252  */
4253 void bnxt_set_ring_params(struct bnxt *bp)
4254 {
4255 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
4256 	u32 agg_factor = 0, agg_ring_size = 0;
4257 
4258 	/* 8 for CRC and VLAN */
4259 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
4260 
4261 	rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) +
4262 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4263 
4264 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
4265 	ring_size = bp->rx_ring_size;
4266 	bp->rx_agg_ring_size = 0;
4267 	bp->rx_agg_nr_pages = 0;
4268 
4269 	if (bp->flags & BNXT_FLAG_TPA)
4270 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
4271 
4272 	bp->flags &= ~BNXT_FLAG_JUMBO;
4273 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
4274 		u32 jumbo_factor;
4275 
4276 		bp->flags |= BNXT_FLAG_JUMBO;
4277 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
4278 		if (jumbo_factor > agg_factor)
4279 			agg_factor = jumbo_factor;
4280 	}
4281 	if (agg_factor) {
4282 		if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) {
4283 			ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA;
4284 			netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n",
4285 				    bp->rx_ring_size, ring_size);
4286 			bp->rx_ring_size = ring_size;
4287 		}
4288 		agg_ring_size = ring_size * agg_factor;
4289 
4290 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
4291 							RX_DESC_CNT);
4292 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
4293 			u32 tmp = agg_ring_size;
4294 
4295 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
4296 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
4297 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
4298 				    tmp, agg_ring_size);
4299 		}
4300 		bp->rx_agg_ring_size = agg_ring_size;
4301 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
4302 
4303 		if (BNXT_RX_PAGE_MODE(bp)) {
4304 			rx_space = PAGE_SIZE;
4305 			rx_size = PAGE_SIZE -
4306 				  ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) -
4307 				  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4308 		} else {
4309 			rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
4310 			rx_space = rx_size + NET_SKB_PAD +
4311 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4312 		}
4313 	}
4314 
4315 	bp->rx_buf_use_size = rx_size;
4316 	bp->rx_buf_size = rx_space;
4317 
4318 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
4319 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
4320 
4321 	ring_size = bp->tx_ring_size;
4322 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
4323 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
4324 
4325 	max_rx_cmpl = bp->rx_ring_size;
4326 	/* MAX TPA needs to be added because TPA_START completions are
4327 	 * immediately recycled, so the TPA completions are not bound by
4328 	 * the RX ring size.
4329 	 */
4330 	if (bp->flags & BNXT_FLAG_TPA)
4331 		max_rx_cmpl += bp->max_tpa;
4332 	/* RX and TPA completions are 32-byte, all others are 16-byte */
4333 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
4334 	bp->cp_ring_size = ring_size;
4335 
4336 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
4337 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
4338 		bp->cp_nr_pages = MAX_CP_PAGES;
4339 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
4340 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
4341 			    ring_size, bp->cp_ring_size);
4342 	}
4343 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
4344 	bp->cp_ring_mask = bp->cp_bit - 1;
4345 }
4346 
4347 /* Changing allocation mode of RX rings.
4348  * TODO: Update when extending xdp_rxq_info to support allocation modes.
4349  */
4350 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
4351 {
4352 	struct net_device *dev = bp->dev;
4353 
4354 	if (page_mode) {
4355 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
4356 		bp->flags |= BNXT_FLAG_RX_PAGE_MODE;
4357 
4358 		if (bp->xdp_prog->aux->xdp_has_frags)
4359 			dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU);
4360 		else
4361 			dev->max_mtu =
4362 				min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
4363 		if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) {
4364 			bp->flags |= BNXT_FLAG_JUMBO;
4365 			bp->rx_skb_func = bnxt_rx_multi_page_skb;
4366 		} else {
4367 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
4368 			bp->rx_skb_func = bnxt_rx_page_skb;
4369 		}
4370 		bp->rx_dir = DMA_BIDIRECTIONAL;
4371 		/* Disable LRO or GRO_HW */
4372 		netdev_update_features(dev);
4373 	} else {
4374 		dev->max_mtu = bp->max_mtu;
4375 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
4376 		bp->rx_dir = DMA_FROM_DEVICE;
4377 		bp->rx_skb_func = bnxt_rx_skb;
4378 	}
4379 	return 0;
4380 }
4381 
4382 static void bnxt_free_vnic_attributes(struct bnxt *bp)
4383 {
4384 	int i;
4385 	struct bnxt_vnic_info *vnic;
4386 	struct pci_dev *pdev = bp->pdev;
4387 
4388 	if (!bp->vnic_info)
4389 		return;
4390 
4391 	for (i = 0; i < bp->nr_vnics; i++) {
4392 		vnic = &bp->vnic_info[i];
4393 
4394 		kfree(vnic->fw_grp_ids);
4395 		vnic->fw_grp_ids = NULL;
4396 
4397 		kfree(vnic->uc_list);
4398 		vnic->uc_list = NULL;
4399 
4400 		if (vnic->mc_list) {
4401 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
4402 					  vnic->mc_list, vnic->mc_list_mapping);
4403 			vnic->mc_list = NULL;
4404 		}
4405 
4406 		if (vnic->rss_table) {
4407 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
4408 					  vnic->rss_table,
4409 					  vnic->rss_table_dma_addr);
4410 			vnic->rss_table = NULL;
4411 		}
4412 
4413 		vnic->rss_hash_key = NULL;
4414 		vnic->flags = 0;
4415 	}
4416 }
4417 
4418 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
4419 {
4420 	int i, rc = 0, size;
4421 	struct bnxt_vnic_info *vnic;
4422 	struct pci_dev *pdev = bp->pdev;
4423 	int max_rings;
4424 
4425 	for (i = 0; i < bp->nr_vnics; i++) {
4426 		vnic = &bp->vnic_info[i];
4427 
4428 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
4429 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
4430 
4431 			if (mem_size > 0) {
4432 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
4433 				if (!vnic->uc_list) {
4434 					rc = -ENOMEM;
4435 					goto out;
4436 				}
4437 			}
4438 		}
4439 
4440 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
4441 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
4442 			vnic->mc_list =
4443 				dma_alloc_coherent(&pdev->dev,
4444 						   vnic->mc_list_size,
4445 						   &vnic->mc_list_mapping,
4446 						   GFP_KERNEL);
4447 			if (!vnic->mc_list) {
4448 				rc = -ENOMEM;
4449 				goto out;
4450 			}
4451 		}
4452 
4453 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4454 			goto vnic_skip_grps;
4455 
4456 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4457 			max_rings = bp->rx_nr_rings;
4458 		else
4459 			max_rings = 1;
4460 
4461 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
4462 		if (!vnic->fw_grp_ids) {
4463 			rc = -ENOMEM;
4464 			goto out;
4465 		}
4466 vnic_skip_grps:
4467 		if ((bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) &&
4468 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
4469 			continue;
4470 
4471 		/* Allocate rss table and hash key */
4472 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
4473 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4474 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
4475 
4476 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
4477 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
4478 						     vnic->rss_table_size,
4479 						     &vnic->rss_table_dma_addr,
4480 						     GFP_KERNEL);
4481 		if (!vnic->rss_table) {
4482 			rc = -ENOMEM;
4483 			goto out;
4484 		}
4485 
4486 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
4487 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
4488 	}
4489 	return 0;
4490 
4491 out:
4492 	return rc;
4493 }
4494 
4495 static void bnxt_free_hwrm_resources(struct bnxt *bp)
4496 {
4497 	struct bnxt_hwrm_wait_token *token;
4498 
4499 	dma_pool_destroy(bp->hwrm_dma_pool);
4500 	bp->hwrm_dma_pool = NULL;
4501 
4502 	rcu_read_lock();
4503 	hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node)
4504 		WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED);
4505 	rcu_read_unlock();
4506 }
4507 
4508 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
4509 {
4510 	bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev,
4511 					    BNXT_HWRM_DMA_SIZE,
4512 					    BNXT_HWRM_DMA_ALIGN, 0);
4513 	if (!bp->hwrm_dma_pool)
4514 		return -ENOMEM;
4515 
4516 	INIT_HLIST_HEAD(&bp->hwrm_pending_list);
4517 
4518 	return 0;
4519 }
4520 
4521 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
4522 {
4523 	kfree(stats->hw_masks);
4524 	stats->hw_masks = NULL;
4525 	kfree(stats->sw_stats);
4526 	stats->sw_stats = NULL;
4527 	if (stats->hw_stats) {
4528 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
4529 				  stats->hw_stats_map);
4530 		stats->hw_stats = NULL;
4531 	}
4532 }
4533 
4534 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
4535 				bool alloc_masks)
4536 {
4537 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
4538 					     &stats->hw_stats_map, GFP_KERNEL);
4539 	if (!stats->hw_stats)
4540 		return -ENOMEM;
4541 
4542 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
4543 	if (!stats->sw_stats)
4544 		goto stats_mem_err;
4545 
4546 	if (alloc_masks) {
4547 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
4548 		if (!stats->hw_masks)
4549 			goto stats_mem_err;
4550 	}
4551 	return 0;
4552 
4553 stats_mem_err:
4554 	bnxt_free_stats_mem(bp, stats);
4555 	return -ENOMEM;
4556 }
4557 
4558 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
4559 {
4560 	int i;
4561 
4562 	for (i = 0; i < count; i++)
4563 		mask_arr[i] = mask;
4564 }
4565 
4566 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
4567 {
4568 	int i;
4569 
4570 	for (i = 0; i < count; i++)
4571 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
4572 }
4573 
4574 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
4575 				    struct bnxt_stats_mem *stats)
4576 {
4577 	struct hwrm_func_qstats_ext_output *resp;
4578 	struct hwrm_func_qstats_ext_input *req;
4579 	__le64 *hw_masks;
4580 	int rc;
4581 
4582 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
4583 	    !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
4584 		return -EOPNOTSUPP;
4585 
4586 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT);
4587 	if (rc)
4588 		return rc;
4589 
4590 	req->fid = cpu_to_le16(0xffff);
4591 	req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4592 
4593 	resp = hwrm_req_hold(bp, req);
4594 	rc = hwrm_req_send(bp, req);
4595 	if (!rc) {
4596 		hw_masks = &resp->rx_ucast_pkts;
4597 		bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
4598 	}
4599 	hwrm_req_drop(bp, req);
4600 	return rc;
4601 }
4602 
4603 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
4604 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
4605 
4606 static void bnxt_init_stats(struct bnxt *bp)
4607 {
4608 	struct bnxt_napi *bnapi = bp->bnapi[0];
4609 	struct bnxt_cp_ring_info *cpr;
4610 	struct bnxt_stats_mem *stats;
4611 	__le64 *rx_stats, *tx_stats;
4612 	int rc, rx_count, tx_count;
4613 	u64 *rx_masks, *tx_masks;
4614 	u64 mask;
4615 	u8 flags;
4616 
4617 	cpr = &bnapi->cp_ring;
4618 	stats = &cpr->stats;
4619 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
4620 	if (rc) {
4621 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4622 			mask = (1ULL << 48) - 1;
4623 		else
4624 			mask = -1ULL;
4625 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
4626 	}
4627 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
4628 		stats = &bp->port_stats;
4629 		rx_stats = stats->hw_stats;
4630 		rx_masks = stats->hw_masks;
4631 		rx_count = sizeof(struct rx_port_stats) / 8;
4632 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4633 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4634 		tx_count = sizeof(struct tx_port_stats) / 8;
4635 
4636 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
4637 		rc = bnxt_hwrm_port_qstats(bp, flags);
4638 		if (rc) {
4639 			mask = (1ULL << 40) - 1;
4640 
4641 			bnxt_fill_masks(rx_masks, mask, rx_count);
4642 			bnxt_fill_masks(tx_masks, mask, tx_count);
4643 		} else {
4644 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4645 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
4646 			bnxt_hwrm_port_qstats(bp, 0);
4647 		}
4648 	}
4649 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
4650 		stats = &bp->rx_port_stats_ext;
4651 		rx_stats = stats->hw_stats;
4652 		rx_masks = stats->hw_masks;
4653 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
4654 		stats = &bp->tx_port_stats_ext;
4655 		tx_stats = stats->hw_stats;
4656 		tx_masks = stats->hw_masks;
4657 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
4658 
4659 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4660 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
4661 		if (rc) {
4662 			mask = (1ULL << 40) - 1;
4663 
4664 			bnxt_fill_masks(rx_masks, mask, rx_count);
4665 			if (tx_stats)
4666 				bnxt_fill_masks(tx_masks, mask, tx_count);
4667 		} else {
4668 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4669 			if (tx_stats)
4670 				bnxt_copy_hw_masks(tx_masks, tx_stats,
4671 						   tx_count);
4672 			bnxt_hwrm_port_qstats_ext(bp, 0);
4673 		}
4674 	}
4675 }
4676 
4677 static void bnxt_free_port_stats(struct bnxt *bp)
4678 {
4679 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
4680 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
4681 
4682 	bnxt_free_stats_mem(bp, &bp->port_stats);
4683 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
4684 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
4685 }
4686 
4687 static void bnxt_free_ring_stats(struct bnxt *bp)
4688 {
4689 	int i;
4690 
4691 	if (!bp->bnapi)
4692 		return;
4693 
4694 	for (i = 0; i < bp->cp_nr_rings; i++) {
4695 		struct bnxt_napi *bnapi = bp->bnapi[i];
4696 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4697 
4698 		bnxt_free_stats_mem(bp, &cpr->stats);
4699 	}
4700 }
4701 
4702 static int bnxt_alloc_stats(struct bnxt *bp)
4703 {
4704 	u32 size, i;
4705 	int rc;
4706 
4707 	size = bp->hw_ring_stats_size;
4708 
4709 	for (i = 0; i < bp->cp_nr_rings; i++) {
4710 		struct bnxt_napi *bnapi = bp->bnapi[i];
4711 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4712 
4713 		cpr->stats.len = size;
4714 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4715 		if (rc)
4716 			return rc;
4717 
4718 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4719 	}
4720 
4721 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4722 		return 0;
4723 
4724 	if (bp->port_stats.hw_stats)
4725 		goto alloc_ext_stats;
4726 
4727 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4728 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4729 	if (rc)
4730 		return rc;
4731 
4732 	bp->flags |= BNXT_FLAG_PORT_STATS;
4733 
4734 alloc_ext_stats:
4735 	/* Display extended statistics only if FW supports it */
4736 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4737 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4738 			return 0;
4739 
4740 	if (bp->rx_port_stats_ext.hw_stats)
4741 		goto alloc_tx_ext_stats;
4742 
4743 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4744 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4745 	/* Extended stats are optional */
4746 	if (rc)
4747 		return 0;
4748 
4749 alloc_tx_ext_stats:
4750 	if (bp->tx_port_stats_ext.hw_stats)
4751 		return 0;
4752 
4753 	if (bp->hwrm_spec_code >= 0x10902 ||
4754 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4755 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4756 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4757 		/* Extended stats are optional */
4758 		if (rc)
4759 			return 0;
4760 	}
4761 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4762 	return 0;
4763 }
4764 
4765 static void bnxt_clear_ring_indices(struct bnxt *bp)
4766 {
4767 	int i, j;
4768 
4769 	if (!bp->bnapi)
4770 		return;
4771 
4772 	for (i = 0; i < bp->cp_nr_rings; i++) {
4773 		struct bnxt_napi *bnapi = bp->bnapi[i];
4774 		struct bnxt_cp_ring_info *cpr;
4775 		struct bnxt_rx_ring_info *rxr;
4776 		struct bnxt_tx_ring_info *txr;
4777 
4778 		if (!bnapi)
4779 			continue;
4780 
4781 		cpr = &bnapi->cp_ring;
4782 		cpr->cp_raw_cons = 0;
4783 
4784 		bnxt_for_each_napi_tx(j, bnapi, txr) {
4785 			txr->tx_prod = 0;
4786 			txr->tx_cons = 0;
4787 			txr->tx_hw_cons = 0;
4788 		}
4789 
4790 		rxr = bnapi->rx_ring;
4791 		if (rxr) {
4792 			rxr->rx_prod = 0;
4793 			rxr->rx_agg_prod = 0;
4794 			rxr->rx_sw_agg_prod = 0;
4795 			rxr->rx_next_cons = 0;
4796 		}
4797 		bnapi->events = 0;
4798 	}
4799 }
4800 
4801 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool all)
4802 {
4803 	int i;
4804 
4805 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
4806 	 * safe to delete the hash table.
4807 	 */
4808 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4809 		struct hlist_head *head;
4810 		struct hlist_node *tmp;
4811 		struct bnxt_ntuple_filter *fltr;
4812 
4813 		head = &bp->ntp_fltr_hash_tbl[i];
4814 		hlist_for_each_entry_safe(fltr, tmp, head, base.hash) {
4815 			bnxt_del_l2_filter(bp, fltr->l2_fltr);
4816 			if (!all && (fltr->base.flags & BNXT_ACT_FUNC_DST))
4817 				continue;
4818 			hlist_del(&fltr->base.hash);
4819 			clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap);
4820 			bp->ntp_fltr_count--;
4821 			kfree(fltr);
4822 		}
4823 	}
4824 	if (!all)
4825 		return;
4826 
4827 	bitmap_free(bp->ntp_fltr_bmap);
4828 	bp->ntp_fltr_bmap = NULL;
4829 	bp->ntp_fltr_count = 0;
4830 }
4831 
4832 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4833 {
4834 	int i, rc = 0;
4835 
4836 	if (!(bp->flags & BNXT_FLAG_RFS) || bp->ntp_fltr_bmap)
4837 		return 0;
4838 
4839 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4840 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4841 
4842 	bp->ntp_fltr_count = 0;
4843 	bp->ntp_fltr_bmap = bitmap_zalloc(BNXT_MAX_FLTR, GFP_KERNEL);
4844 
4845 	if (!bp->ntp_fltr_bmap)
4846 		rc = -ENOMEM;
4847 
4848 	return rc;
4849 }
4850 
4851 static void bnxt_free_l2_filters(struct bnxt *bp, bool all)
4852 {
4853 	int i;
4854 
4855 	for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) {
4856 		struct hlist_head *head;
4857 		struct hlist_node *tmp;
4858 		struct bnxt_l2_filter *fltr;
4859 
4860 		head = &bp->l2_fltr_hash_tbl[i];
4861 		hlist_for_each_entry_safe(fltr, tmp, head, base.hash) {
4862 			if (!all && (fltr->base.flags & BNXT_ACT_FUNC_DST))
4863 				continue;
4864 			hlist_del(&fltr->base.hash);
4865 			if (fltr->base.flags) {
4866 				clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap);
4867 				bp->ntp_fltr_count--;
4868 			}
4869 			kfree(fltr);
4870 		}
4871 	}
4872 }
4873 
4874 static void bnxt_init_l2_fltr_tbl(struct bnxt *bp)
4875 {
4876 	int i;
4877 
4878 	for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++)
4879 		INIT_HLIST_HEAD(&bp->l2_fltr_hash_tbl[i]);
4880 	get_random_bytes(&bp->hash_seed, sizeof(bp->hash_seed));
4881 }
4882 
4883 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4884 {
4885 	bnxt_free_vnic_attributes(bp);
4886 	bnxt_free_tx_rings(bp);
4887 	bnxt_free_rx_rings(bp);
4888 	bnxt_free_cp_rings(bp);
4889 	bnxt_free_all_cp_arrays(bp);
4890 	bnxt_free_ntp_fltrs(bp, false);
4891 	bnxt_free_l2_filters(bp, false);
4892 	if (irq_re_init) {
4893 		bnxt_free_ring_stats(bp);
4894 		if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
4895 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
4896 			bnxt_free_port_stats(bp);
4897 		bnxt_free_ring_grps(bp);
4898 		bnxt_free_vnics(bp);
4899 		kfree(bp->tx_ring_map);
4900 		bp->tx_ring_map = NULL;
4901 		kfree(bp->tx_ring);
4902 		bp->tx_ring = NULL;
4903 		kfree(bp->rx_ring);
4904 		bp->rx_ring = NULL;
4905 		kfree(bp->bnapi);
4906 		bp->bnapi = NULL;
4907 	} else {
4908 		bnxt_clear_ring_indices(bp);
4909 	}
4910 }
4911 
4912 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
4913 {
4914 	int i, j, rc, size, arr_size;
4915 	void *bnapi;
4916 
4917 	if (irq_re_init) {
4918 		/* Allocate bnapi mem pointer array and mem block for
4919 		 * all queues
4920 		 */
4921 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
4922 				bp->cp_nr_rings);
4923 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
4924 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
4925 		if (!bnapi)
4926 			return -ENOMEM;
4927 
4928 		bp->bnapi = bnapi;
4929 		bnapi += arr_size;
4930 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
4931 			bp->bnapi[i] = bnapi;
4932 			bp->bnapi[i]->index = i;
4933 			bp->bnapi[i]->bp = bp;
4934 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
4935 				struct bnxt_cp_ring_info *cpr =
4936 					&bp->bnapi[i]->cp_ring;
4937 
4938 				cpr->cp_ring_struct.ring_mem.flags =
4939 					BNXT_RMEM_RING_PTE_FLAG;
4940 			}
4941 		}
4942 
4943 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
4944 				      sizeof(struct bnxt_rx_ring_info),
4945 				      GFP_KERNEL);
4946 		if (!bp->rx_ring)
4947 			return -ENOMEM;
4948 
4949 		for (i = 0; i < bp->rx_nr_rings; i++) {
4950 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4951 
4952 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
4953 				rxr->rx_ring_struct.ring_mem.flags =
4954 					BNXT_RMEM_RING_PTE_FLAG;
4955 				rxr->rx_agg_ring_struct.ring_mem.flags =
4956 					BNXT_RMEM_RING_PTE_FLAG;
4957 			} else {
4958 				rxr->rx_cpr =  &bp->bnapi[i]->cp_ring;
4959 			}
4960 			rxr->bnapi = bp->bnapi[i];
4961 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4962 		}
4963 
4964 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
4965 				      sizeof(struct bnxt_tx_ring_info),
4966 				      GFP_KERNEL);
4967 		if (!bp->tx_ring)
4968 			return -ENOMEM;
4969 
4970 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4971 					  GFP_KERNEL);
4972 
4973 		if (!bp->tx_ring_map)
4974 			return -ENOMEM;
4975 
4976 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4977 			j = 0;
4978 		else
4979 			j = bp->rx_nr_rings;
4980 
4981 		for (i = 0; i < bp->tx_nr_rings; i++) {
4982 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4983 			struct bnxt_napi *bnapi2;
4984 
4985 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4986 				txr->tx_ring_struct.ring_mem.flags =
4987 					BNXT_RMEM_RING_PTE_FLAG;
4988 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4989 			if (i >= bp->tx_nr_rings_xdp) {
4990 				int k = j + BNXT_RING_TO_TC_OFF(bp, i);
4991 
4992 				bnapi2 = bp->bnapi[k];
4993 				txr->txq_index = i - bp->tx_nr_rings_xdp;
4994 				txr->tx_napi_idx =
4995 					BNXT_RING_TO_TC(bp, txr->txq_index);
4996 				bnapi2->tx_ring[txr->tx_napi_idx] = txr;
4997 				bnapi2->tx_int = bnxt_tx_int;
4998 			} else {
4999 				bnapi2 = bp->bnapi[j];
5000 				bnapi2->flags |= BNXT_NAPI_FLAG_XDP;
5001 				bnapi2->tx_ring[0] = txr;
5002 				bnapi2->tx_int = bnxt_tx_int_xdp;
5003 				j++;
5004 			}
5005 			txr->bnapi = bnapi2;
5006 			if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
5007 				txr->tx_cpr = &bnapi2->cp_ring;
5008 		}
5009 
5010 		rc = bnxt_alloc_stats(bp);
5011 		if (rc)
5012 			goto alloc_mem_err;
5013 		bnxt_init_stats(bp);
5014 
5015 		rc = bnxt_alloc_ntp_fltrs(bp);
5016 		if (rc)
5017 			goto alloc_mem_err;
5018 
5019 		rc = bnxt_alloc_vnics(bp);
5020 		if (rc)
5021 			goto alloc_mem_err;
5022 	}
5023 
5024 	rc = bnxt_alloc_all_cp_arrays(bp);
5025 	if (rc)
5026 		goto alloc_mem_err;
5027 
5028 	bnxt_init_ring_struct(bp);
5029 
5030 	rc = bnxt_alloc_rx_rings(bp);
5031 	if (rc)
5032 		goto alloc_mem_err;
5033 
5034 	rc = bnxt_alloc_tx_rings(bp);
5035 	if (rc)
5036 		goto alloc_mem_err;
5037 
5038 	rc = bnxt_alloc_cp_rings(bp);
5039 	if (rc)
5040 		goto alloc_mem_err;
5041 
5042 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
5043 				  BNXT_VNIC_UCAST_FLAG;
5044 	rc = bnxt_alloc_vnic_attributes(bp);
5045 	if (rc)
5046 		goto alloc_mem_err;
5047 	return 0;
5048 
5049 alloc_mem_err:
5050 	bnxt_free_mem(bp, true);
5051 	return rc;
5052 }
5053 
5054 static void bnxt_disable_int(struct bnxt *bp)
5055 {
5056 	int i;
5057 
5058 	if (!bp->bnapi)
5059 		return;
5060 
5061 	for (i = 0; i < bp->cp_nr_rings; i++) {
5062 		struct bnxt_napi *bnapi = bp->bnapi[i];
5063 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5064 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5065 
5066 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
5067 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5068 	}
5069 }
5070 
5071 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
5072 {
5073 	struct bnxt_napi *bnapi = bp->bnapi[n];
5074 	struct bnxt_cp_ring_info *cpr;
5075 
5076 	cpr = &bnapi->cp_ring;
5077 	return cpr->cp_ring_struct.map_idx;
5078 }
5079 
5080 static void bnxt_disable_int_sync(struct bnxt *bp)
5081 {
5082 	int i;
5083 
5084 	if (!bp->irq_tbl)
5085 		return;
5086 
5087 	atomic_inc(&bp->intr_sem);
5088 
5089 	bnxt_disable_int(bp);
5090 	for (i = 0; i < bp->cp_nr_rings; i++) {
5091 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
5092 
5093 		synchronize_irq(bp->irq_tbl[map_idx].vector);
5094 	}
5095 }
5096 
5097 static void bnxt_enable_int(struct bnxt *bp)
5098 {
5099 	int i;
5100 
5101 	atomic_set(&bp->intr_sem, 0);
5102 	for (i = 0; i < bp->cp_nr_rings; i++) {
5103 		struct bnxt_napi *bnapi = bp->bnapi[i];
5104 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5105 
5106 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
5107 	}
5108 }
5109 
5110 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
5111 			    bool async_only)
5112 {
5113 	DECLARE_BITMAP(async_events_bmap, 256);
5114 	u32 *events = (u32 *)async_events_bmap;
5115 	struct hwrm_func_drv_rgtr_output *resp;
5116 	struct hwrm_func_drv_rgtr_input *req;
5117 	u32 flags;
5118 	int rc, i;
5119 
5120 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR);
5121 	if (rc)
5122 		return rc;
5123 
5124 	req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
5125 				   FUNC_DRV_RGTR_REQ_ENABLES_VER |
5126 				   FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
5127 
5128 	req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
5129 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
5130 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
5131 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
5132 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
5133 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
5134 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
5135 	req->flags = cpu_to_le32(flags);
5136 	req->ver_maj_8b = DRV_VER_MAJ;
5137 	req->ver_min_8b = DRV_VER_MIN;
5138 	req->ver_upd_8b = DRV_VER_UPD;
5139 	req->ver_maj = cpu_to_le16(DRV_VER_MAJ);
5140 	req->ver_min = cpu_to_le16(DRV_VER_MIN);
5141 	req->ver_upd = cpu_to_le16(DRV_VER_UPD);
5142 
5143 	if (BNXT_PF(bp)) {
5144 		u32 data[8];
5145 		int i;
5146 
5147 		memset(data, 0, sizeof(data));
5148 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
5149 			u16 cmd = bnxt_vf_req_snif[i];
5150 			unsigned int bit, idx;
5151 
5152 			idx = cmd / 32;
5153 			bit = cmd % 32;
5154 			data[idx] |= 1 << bit;
5155 		}
5156 
5157 		for (i = 0; i < 8; i++)
5158 			req->vf_req_fwd[i] = cpu_to_le32(data[i]);
5159 
5160 		req->enables |=
5161 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
5162 	}
5163 
5164 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
5165 		req->flags |= cpu_to_le32(
5166 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
5167 
5168 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
5169 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
5170 		u16 event_id = bnxt_async_events_arr[i];
5171 
5172 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
5173 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
5174 			continue;
5175 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE &&
5176 		    !bp->ptp_cfg)
5177 			continue;
5178 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
5179 	}
5180 	if (bmap && bmap_size) {
5181 		for (i = 0; i < bmap_size; i++) {
5182 			if (test_bit(i, bmap))
5183 				__set_bit(i, async_events_bmap);
5184 		}
5185 	}
5186 	for (i = 0; i < 8; i++)
5187 		req->async_event_fwd[i] |= cpu_to_le32(events[i]);
5188 
5189 	if (async_only)
5190 		req->enables =
5191 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
5192 
5193 	resp = hwrm_req_hold(bp, req);
5194 	rc = hwrm_req_send(bp, req);
5195 	if (!rc) {
5196 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
5197 		if (resp->flags &
5198 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
5199 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
5200 	}
5201 	hwrm_req_drop(bp, req);
5202 	return rc;
5203 }
5204 
5205 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
5206 {
5207 	struct hwrm_func_drv_unrgtr_input *req;
5208 	int rc;
5209 
5210 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
5211 		return 0;
5212 
5213 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR);
5214 	if (rc)
5215 		return rc;
5216 	return hwrm_req_send(bp, req);
5217 }
5218 
5219 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa);
5220 
5221 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
5222 {
5223 	struct hwrm_tunnel_dst_port_free_input *req;
5224 	int rc;
5225 
5226 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN &&
5227 	    bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID)
5228 		return 0;
5229 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE &&
5230 	    bp->nge_fw_dst_port_id == INVALID_HW_RING_ID)
5231 		return 0;
5232 
5233 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE);
5234 	if (rc)
5235 		return rc;
5236 
5237 	req->tunnel_type = tunnel_type;
5238 
5239 	switch (tunnel_type) {
5240 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
5241 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
5242 		bp->vxlan_port = 0;
5243 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
5244 		break;
5245 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
5246 		req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
5247 		bp->nge_port = 0;
5248 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
5249 		break;
5250 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE:
5251 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_gpe_fw_dst_port_id);
5252 		bp->vxlan_gpe_port = 0;
5253 		bp->vxlan_gpe_fw_dst_port_id = INVALID_HW_RING_ID;
5254 		break;
5255 	default:
5256 		break;
5257 	}
5258 
5259 	rc = hwrm_req_send(bp, req);
5260 	if (rc)
5261 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
5262 			   rc);
5263 	if (bp->flags & BNXT_FLAG_TPA)
5264 		bnxt_set_tpa(bp, true);
5265 	return rc;
5266 }
5267 
5268 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
5269 					   u8 tunnel_type)
5270 {
5271 	struct hwrm_tunnel_dst_port_alloc_output *resp;
5272 	struct hwrm_tunnel_dst_port_alloc_input *req;
5273 	int rc;
5274 
5275 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC);
5276 	if (rc)
5277 		return rc;
5278 
5279 	req->tunnel_type = tunnel_type;
5280 	req->tunnel_dst_port_val = port;
5281 
5282 	resp = hwrm_req_hold(bp, req);
5283 	rc = hwrm_req_send(bp, req);
5284 	if (rc) {
5285 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
5286 			   rc);
5287 		goto err_out;
5288 	}
5289 
5290 	switch (tunnel_type) {
5291 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
5292 		bp->vxlan_port = port;
5293 		bp->vxlan_fw_dst_port_id =
5294 			le16_to_cpu(resp->tunnel_dst_port_id);
5295 		break;
5296 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
5297 		bp->nge_port = port;
5298 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
5299 		break;
5300 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE:
5301 		bp->vxlan_gpe_port = port;
5302 		bp->vxlan_gpe_fw_dst_port_id =
5303 			le16_to_cpu(resp->tunnel_dst_port_id);
5304 		break;
5305 	default:
5306 		break;
5307 	}
5308 	if (bp->flags & BNXT_FLAG_TPA)
5309 		bnxt_set_tpa(bp, true);
5310 
5311 err_out:
5312 	hwrm_req_drop(bp, req);
5313 	return rc;
5314 }
5315 
5316 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
5317 {
5318 	struct hwrm_cfa_l2_set_rx_mask_input *req;
5319 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5320 	int rc;
5321 
5322 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK);
5323 	if (rc)
5324 		return rc;
5325 
5326 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5327 	if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) {
5328 		req->num_mc_entries = cpu_to_le32(vnic->mc_list_count);
5329 		req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
5330 	}
5331 	req->mask = cpu_to_le32(vnic->rx_mask);
5332 	return hwrm_req_send_silent(bp, req);
5333 }
5334 
5335 void bnxt_del_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr)
5336 {
5337 	if (!atomic_dec_and_test(&fltr->refcnt))
5338 		return;
5339 	spin_lock_bh(&bp->ntp_fltr_lock);
5340 	if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) {
5341 		spin_unlock_bh(&bp->ntp_fltr_lock);
5342 		return;
5343 	}
5344 	hlist_del_rcu(&fltr->base.hash);
5345 	if (fltr->base.flags) {
5346 		clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap);
5347 		bp->ntp_fltr_count--;
5348 	}
5349 	spin_unlock_bh(&bp->ntp_fltr_lock);
5350 	kfree_rcu(fltr, base.rcu);
5351 }
5352 
5353 static struct bnxt_l2_filter *__bnxt_lookup_l2_filter(struct bnxt *bp,
5354 						      struct bnxt_l2_key *key,
5355 						      u32 idx)
5356 {
5357 	struct hlist_head *head = &bp->l2_fltr_hash_tbl[idx];
5358 	struct bnxt_l2_filter *fltr;
5359 
5360 	hlist_for_each_entry_rcu(fltr, head, base.hash) {
5361 		struct bnxt_l2_key *l2_key = &fltr->l2_key;
5362 
5363 		if (ether_addr_equal(l2_key->dst_mac_addr, key->dst_mac_addr) &&
5364 		    l2_key->vlan == key->vlan)
5365 			return fltr;
5366 	}
5367 	return NULL;
5368 }
5369 
5370 static struct bnxt_l2_filter *bnxt_lookup_l2_filter(struct bnxt *bp,
5371 						    struct bnxt_l2_key *key,
5372 						    u32 idx)
5373 {
5374 	struct bnxt_l2_filter *fltr = NULL;
5375 
5376 	rcu_read_lock();
5377 	fltr = __bnxt_lookup_l2_filter(bp, key, idx);
5378 	if (fltr)
5379 		atomic_inc(&fltr->refcnt);
5380 	rcu_read_unlock();
5381 	return fltr;
5382 }
5383 
5384 #define BNXT_IPV4_4TUPLE(bp, fkeys)					\
5385 	(((fkeys)->basic.ip_proto == IPPROTO_TCP &&			\
5386 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4) ||	\
5387 	 ((fkeys)->basic.ip_proto == IPPROTO_UDP &&			\
5388 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4))
5389 
5390 #define BNXT_IPV6_4TUPLE(bp, fkeys)					\
5391 	(((fkeys)->basic.ip_proto == IPPROTO_TCP &&			\
5392 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6) ||	\
5393 	 ((fkeys)->basic.ip_proto == IPPROTO_UDP &&			\
5394 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6))
5395 
5396 static u32 bnxt_get_rss_flow_tuple_len(struct bnxt *bp, struct flow_keys *fkeys)
5397 {
5398 	if (fkeys->basic.n_proto == htons(ETH_P_IP)) {
5399 		if (BNXT_IPV4_4TUPLE(bp, fkeys))
5400 			return sizeof(fkeys->addrs.v4addrs) +
5401 			       sizeof(fkeys->ports);
5402 
5403 		if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4)
5404 			return sizeof(fkeys->addrs.v4addrs);
5405 	}
5406 
5407 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) {
5408 		if (BNXT_IPV6_4TUPLE(bp, fkeys))
5409 			return sizeof(fkeys->addrs.v6addrs) +
5410 			       sizeof(fkeys->ports);
5411 
5412 		if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6)
5413 			return sizeof(fkeys->addrs.v6addrs);
5414 	}
5415 
5416 	return 0;
5417 }
5418 
5419 static u32 bnxt_toeplitz(struct bnxt *bp, struct flow_keys *fkeys,
5420 			 const unsigned char *key)
5421 {
5422 	u64 prefix = bp->toeplitz_prefix, hash = 0;
5423 	struct bnxt_ipv4_tuple tuple4;
5424 	struct bnxt_ipv6_tuple tuple6;
5425 	int i, j, len = 0;
5426 	u8 *four_tuple;
5427 
5428 	len = bnxt_get_rss_flow_tuple_len(bp, fkeys);
5429 	if (!len)
5430 		return 0;
5431 
5432 	if (fkeys->basic.n_proto == htons(ETH_P_IP)) {
5433 		tuple4.v4addrs = fkeys->addrs.v4addrs;
5434 		tuple4.ports = fkeys->ports;
5435 		four_tuple = (unsigned char *)&tuple4;
5436 	} else {
5437 		tuple6.v6addrs = fkeys->addrs.v6addrs;
5438 		tuple6.ports = fkeys->ports;
5439 		four_tuple = (unsigned char *)&tuple6;
5440 	}
5441 
5442 	for (i = 0, j = 8; i < len; i++, j++) {
5443 		u8 byte = four_tuple[i];
5444 		int bit;
5445 
5446 		for (bit = 0; bit < 8; bit++, prefix <<= 1, byte <<= 1) {
5447 			if (byte & 0x80)
5448 				hash ^= prefix;
5449 		}
5450 		prefix |= (j < HW_HASH_KEY_SIZE) ? key[j] : 0;
5451 	}
5452 
5453 	/* The valid part of the hash is in the upper 32 bits. */
5454 	return (hash >> 32) & BNXT_NTP_FLTR_HASH_MASK;
5455 }
5456 
5457 #ifdef CONFIG_RFS_ACCEL
5458 static struct bnxt_l2_filter *
5459 bnxt_lookup_l2_filter_from_key(struct bnxt *bp, struct bnxt_l2_key *key)
5460 {
5461 	struct bnxt_l2_filter *fltr;
5462 	u32 idx;
5463 
5464 	idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) &
5465 	      BNXT_L2_FLTR_HASH_MASK;
5466 	fltr = bnxt_lookup_l2_filter(bp, key, idx);
5467 	return fltr;
5468 }
5469 #endif
5470 
5471 static int bnxt_init_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr,
5472 			       struct bnxt_l2_key *key, u32 idx)
5473 {
5474 	struct hlist_head *head;
5475 
5476 	ether_addr_copy(fltr->l2_key.dst_mac_addr, key->dst_mac_addr);
5477 	fltr->l2_key.vlan = key->vlan;
5478 	fltr->base.type = BNXT_FLTR_TYPE_L2;
5479 	if (fltr->base.flags) {
5480 		int bit_id;
5481 
5482 		bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
5483 						 BNXT_MAX_FLTR, 0);
5484 		if (bit_id < 0)
5485 			return -ENOMEM;
5486 		fltr->base.sw_id = (u16)bit_id;
5487 	}
5488 	head = &bp->l2_fltr_hash_tbl[idx];
5489 	hlist_add_head_rcu(&fltr->base.hash, head);
5490 	set_bit(BNXT_FLTR_INSERTED, &fltr->base.state);
5491 	atomic_set(&fltr->refcnt, 1);
5492 	return 0;
5493 }
5494 
5495 static struct bnxt_l2_filter *bnxt_alloc_l2_filter(struct bnxt *bp,
5496 						   struct bnxt_l2_key *key,
5497 						   gfp_t gfp)
5498 {
5499 	struct bnxt_l2_filter *fltr;
5500 	u32 idx;
5501 	int rc;
5502 
5503 	idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) &
5504 	      BNXT_L2_FLTR_HASH_MASK;
5505 	fltr = bnxt_lookup_l2_filter(bp, key, idx);
5506 	if (fltr)
5507 		return fltr;
5508 
5509 	fltr = kzalloc(sizeof(*fltr), gfp);
5510 	if (!fltr)
5511 		return ERR_PTR(-ENOMEM);
5512 	spin_lock_bh(&bp->ntp_fltr_lock);
5513 	rc = bnxt_init_l2_filter(bp, fltr, key, idx);
5514 	spin_unlock_bh(&bp->ntp_fltr_lock);
5515 	if (rc) {
5516 		bnxt_del_l2_filter(bp, fltr);
5517 		fltr = ERR_PTR(rc);
5518 	}
5519 	return fltr;
5520 }
5521 
5522 static u16 bnxt_vf_target_id(struct bnxt_pf_info *pf, u16 vf_idx)
5523 {
5524 #ifdef CONFIG_BNXT_SRIOV
5525 	struct bnxt_vf_info *vf = &pf->vf[vf_idx];
5526 
5527 	return vf->fw_fid;
5528 #else
5529 	return INVALID_HW_RING_ID;
5530 #endif
5531 }
5532 
5533 int bnxt_hwrm_l2_filter_free(struct bnxt *bp, struct bnxt_l2_filter *fltr)
5534 {
5535 	struct hwrm_cfa_l2_filter_free_input *req;
5536 	u16 target_id = 0xffff;
5537 	int rc;
5538 
5539 	if (fltr->base.flags & BNXT_ACT_FUNC_DST) {
5540 		struct bnxt_pf_info *pf = &bp->pf;
5541 
5542 		if (fltr->base.vf_idx >= pf->active_vfs)
5543 			return -EINVAL;
5544 
5545 		target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx);
5546 		if (target_id == INVALID_HW_RING_ID)
5547 			return -EINVAL;
5548 	}
5549 
5550 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
5551 	if (rc)
5552 		return rc;
5553 
5554 	req->target_id = cpu_to_le16(target_id);
5555 	req->l2_filter_id = fltr->base.filter_id;
5556 	return hwrm_req_send(bp, req);
5557 }
5558 
5559 int bnxt_hwrm_l2_filter_alloc(struct bnxt *bp, struct bnxt_l2_filter *fltr)
5560 {
5561 	struct hwrm_cfa_l2_filter_alloc_output *resp;
5562 	struct hwrm_cfa_l2_filter_alloc_input *req;
5563 	u16 target_id = 0xffff;
5564 	int rc;
5565 
5566 	if (fltr->base.flags & BNXT_ACT_FUNC_DST) {
5567 		struct bnxt_pf_info *pf = &bp->pf;
5568 
5569 		if (fltr->base.vf_idx >= pf->active_vfs)
5570 			return -EINVAL;
5571 
5572 		target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx);
5573 	}
5574 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC);
5575 	if (rc)
5576 		return rc;
5577 
5578 	req->target_id = cpu_to_le16(target_id);
5579 	req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
5580 
5581 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
5582 		req->flags |=
5583 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
5584 	req->dst_id = cpu_to_le16(fltr->base.fw_vnic_id);
5585 	req->enables =
5586 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
5587 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
5588 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
5589 	ether_addr_copy(req->l2_addr, fltr->l2_key.dst_mac_addr);
5590 	eth_broadcast_addr(req->l2_addr_mask);
5591 
5592 	if (fltr->l2_key.vlan) {
5593 		req->enables |=
5594 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN |
5595 				CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN_MASK |
5596 				CFA_L2_FILTER_ALLOC_REQ_ENABLES_NUM_VLANS);
5597 		req->num_vlans = 1;
5598 		req->l2_ivlan = cpu_to_le16(fltr->l2_key.vlan);
5599 		req->l2_ivlan_mask = cpu_to_le16(0xfff);
5600 	}
5601 
5602 	resp = hwrm_req_hold(bp, req);
5603 	rc = hwrm_req_send(bp, req);
5604 	if (!rc) {
5605 		fltr->base.filter_id = resp->l2_filter_id;
5606 		set_bit(BNXT_FLTR_VALID, &fltr->base.state);
5607 	}
5608 	hwrm_req_drop(bp, req);
5609 	return rc;
5610 }
5611 
5612 int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
5613 				     struct bnxt_ntuple_filter *fltr)
5614 {
5615 	struct hwrm_cfa_ntuple_filter_free_input *req;
5616 	int rc;
5617 
5618 	set_bit(BNXT_FLTR_FW_DELETED, &fltr->base.state);
5619 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE);
5620 	if (rc)
5621 		return rc;
5622 
5623 	req->ntuple_filter_id = fltr->base.filter_id;
5624 	return hwrm_req_send(bp, req);
5625 }
5626 
5627 #define BNXT_NTP_FLTR_FLAGS					\
5628 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
5629 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
5630 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
5631 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
5632 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
5633 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
5634 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
5635 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
5636 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
5637 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
5638 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
5639 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
5640 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
5641 
5642 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
5643 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
5644 
5645 void bnxt_fill_ipv6_mask(__be32 mask[4])
5646 {
5647 	int i;
5648 
5649 	for (i = 0; i < 4; i++)
5650 		mask[i] = cpu_to_be32(~0);
5651 }
5652 
5653 int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
5654 				      struct bnxt_ntuple_filter *fltr)
5655 {
5656 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
5657 	struct hwrm_cfa_ntuple_filter_alloc_input *req;
5658 	struct flow_keys *keys = &fltr->fkeys;
5659 	struct bnxt_l2_filter *l2_fltr;
5660 	struct bnxt_vnic_info *vnic;
5661 	u32 flags = 0;
5662 	int rc;
5663 
5664 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC);
5665 	if (rc)
5666 		return rc;
5667 
5668 	l2_fltr = fltr->l2_fltr;
5669 	req->l2_filter_id = l2_fltr->base.filter_id;
5670 
5671 
5672 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
5673 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
5674 		req->dst_id = cpu_to_le16(fltr->base.rxq);
5675 	} else {
5676 		vnic = &bp->vnic_info[fltr->base.rxq + 1];
5677 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
5678 	}
5679 	req->flags = cpu_to_le32(flags);
5680 	req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
5681 
5682 	req->ethertype = htons(ETH_P_IP);
5683 	req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
5684 	req->ip_protocol = keys->basic.ip_proto;
5685 
5686 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
5687 		req->ethertype = htons(ETH_P_IPV6);
5688 		req->ip_addr_type =
5689 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
5690 		if (fltr->ntuple_flags & BNXT_NTUPLE_MATCH_SRC_IP) {
5691 			*(struct in6_addr *)&req->src_ipaddr[0] =
5692 				keys->addrs.v6addrs.src;
5693 			bnxt_fill_ipv6_mask(req->src_ipaddr_mask);
5694 		}
5695 		if (fltr->ntuple_flags & BNXT_NTUPLE_MATCH_DST_IP) {
5696 			*(struct in6_addr *)&req->dst_ipaddr[0] =
5697 				keys->addrs.v6addrs.dst;
5698 			bnxt_fill_ipv6_mask(req->dst_ipaddr_mask);
5699 		}
5700 	} else {
5701 		if (fltr->ntuple_flags & BNXT_NTUPLE_MATCH_SRC_IP) {
5702 			req->src_ipaddr[0] = keys->addrs.v4addrs.src;
5703 			req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
5704 		}
5705 		if (fltr->ntuple_flags & BNXT_NTUPLE_MATCH_DST_IP) {
5706 			req->dst_ipaddr[0] = keys->addrs.v4addrs.dst;
5707 			req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
5708 		}
5709 	}
5710 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
5711 		req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
5712 		req->tunnel_type =
5713 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
5714 	}
5715 
5716 	if (fltr->ntuple_flags & BNXT_NTUPLE_MATCH_SRC_PORT) {
5717 		req->src_port = keys->ports.src;
5718 		req->src_port_mask = cpu_to_be16(0xffff);
5719 	}
5720 	if (fltr->ntuple_flags & BNXT_NTUPLE_MATCH_DST_PORT) {
5721 		req->dst_port = keys->ports.dst;
5722 		req->dst_port_mask = cpu_to_be16(0xffff);
5723 	}
5724 
5725 	resp = hwrm_req_hold(bp, req);
5726 	rc = hwrm_req_send(bp, req);
5727 	if (!rc)
5728 		fltr->base.filter_id = resp->ntuple_filter_id;
5729 	hwrm_req_drop(bp, req);
5730 	return rc;
5731 }
5732 
5733 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
5734 				     const u8 *mac_addr)
5735 {
5736 	struct bnxt_l2_filter *fltr;
5737 	struct bnxt_l2_key key;
5738 	int rc;
5739 
5740 	ether_addr_copy(key.dst_mac_addr, mac_addr);
5741 	key.vlan = 0;
5742 	fltr = bnxt_alloc_l2_filter(bp, &key, GFP_KERNEL);
5743 	if (IS_ERR(fltr))
5744 		return PTR_ERR(fltr);
5745 
5746 	fltr->base.fw_vnic_id = bp->vnic_info[vnic_id].fw_vnic_id;
5747 	rc = bnxt_hwrm_l2_filter_alloc(bp, fltr);
5748 	if (rc)
5749 		bnxt_del_l2_filter(bp, fltr);
5750 	else
5751 		bp->vnic_info[vnic_id].l2_filters[idx] = fltr;
5752 	return rc;
5753 }
5754 
5755 static void bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
5756 {
5757 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
5758 
5759 	/* Any associated ntuple filters will also be cleared by firmware. */
5760 	for (i = 0; i < num_of_vnics; i++) {
5761 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5762 
5763 		for (j = 0; j < vnic->uc_filter_count; j++) {
5764 			struct bnxt_l2_filter *fltr = vnic->l2_filters[j];
5765 
5766 			bnxt_hwrm_l2_filter_free(bp, fltr);
5767 			bnxt_del_l2_filter(bp, fltr);
5768 		}
5769 		vnic->uc_filter_count = 0;
5770 	}
5771 }
5772 
5773 #define BNXT_DFLT_TUNL_TPA_BMAP				\
5774 	(VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GRE |	\
5775 	 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV4 |	\
5776 	 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV6)
5777 
5778 static void bnxt_hwrm_vnic_update_tunl_tpa(struct bnxt *bp,
5779 					   struct hwrm_vnic_tpa_cfg_input *req)
5780 {
5781 	u32 tunl_tpa_bmap = BNXT_DFLT_TUNL_TPA_BMAP;
5782 
5783 	if (!(bp->fw_cap & BNXT_FW_CAP_VNIC_TUNNEL_TPA))
5784 		return;
5785 
5786 	if (bp->vxlan_port)
5787 		tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN;
5788 	if (bp->vxlan_gpe_port)
5789 		tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN_GPE;
5790 	if (bp->nge_port)
5791 		tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GENEVE;
5792 
5793 	req->enables |= cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_TNL_TPA_EN);
5794 	req->tnl_tpa_en_bitmap = cpu_to_le32(tunl_tpa_bmap);
5795 }
5796 
5797 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
5798 {
5799 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5800 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
5801 	struct hwrm_vnic_tpa_cfg_input *req;
5802 	int rc;
5803 
5804 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
5805 		return 0;
5806 
5807 	rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG);
5808 	if (rc)
5809 		return rc;
5810 
5811 	if (tpa_flags) {
5812 		u16 mss = bp->dev->mtu - 40;
5813 		u32 nsegs, n, segs = 0, flags;
5814 
5815 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
5816 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
5817 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
5818 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
5819 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
5820 		if (tpa_flags & BNXT_FLAG_GRO)
5821 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
5822 
5823 		req->flags = cpu_to_le32(flags);
5824 
5825 		req->enables =
5826 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
5827 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
5828 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
5829 
5830 		/* Number of segs are log2 units, and first packet is not
5831 		 * included as part of this units.
5832 		 */
5833 		if (mss <= BNXT_RX_PAGE_SIZE) {
5834 			n = BNXT_RX_PAGE_SIZE / mss;
5835 			nsegs = (MAX_SKB_FRAGS - 1) * n;
5836 		} else {
5837 			n = mss / BNXT_RX_PAGE_SIZE;
5838 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
5839 				n++;
5840 			nsegs = (MAX_SKB_FRAGS - n) / n;
5841 		}
5842 
5843 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
5844 			segs = MAX_TPA_SEGS_P5;
5845 			max_aggs = bp->max_tpa;
5846 		} else {
5847 			segs = ilog2(nsegs);
5848 		}
5849 		req->max_agg_segs = cpu_to_le16(segs);
5850 		req->max_aggs = cpu_to_le16(max_aggs);
5851 
5852 		req->min_agg_len = cpu_to_le32(512);
5853 		bnxt_hwrm_vnic_update_tunl_tpa(bp, req);
5854 	}
5855 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5856 
5857 	return hwrm_req_send(bp, req);
5858 }
5859 
5860 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
5861 {
5862 	struct bnxt_ring_grp_info *grp_info;
5863 
5864 	grp_info = &bp->grp_info[ring->grp_idx];
5865 	return grp_info->cp_fw_ring_id;
5866 }
5867 
5868 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
5869 {
5870 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
5871 		return rxr->rx_cpr->cp_ring_struct.fw_ring_id;
5872 	else
5873 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
5874 }
5875 
5876 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
5877 {
5878 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
5879 		return txr->tx_cpr->cp_ring_struct.fw_ring_id;
5880 	else
5881 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
5882 }
5883 
5884 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
5885 {
5886 	int entries;
5887 
5888 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
5889 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
5890 	else
5891 		entries = HW_HASH_INDEX_SIZE;
5892 
5893 	bp->rss_indir_tbl_entries = entries;
5894 	bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
5895 					  GFP_KERNEL);
5896 	if (!bp->rss_indir_tbl)
5897 		return -ENOMEM;
5898 	return 0;
5899 }
5900 
5901 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
5902 {
5903 	u16 max_rings, max_entries, pad, i;
5904 
5905 	if (!bp->rx_nr_rings)
5906 		return;
5907 
5908 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5909 		max_rings = bp->rx_nr_rings - 1;
5910 	else
5911 		max_rings = bp->rx_nr_rings;
5912 
5913 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
5914 
5915 	for (i = 0; i < max_entries; i++)
5916 		bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
5917 
5918 	pad = bp->rss_indir_tbl_entries - max_entries;
5919 	if (pad)
5920 		memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
5921 }
5922 
5923 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
5924 {
5925 	u16 i, tbl_size, max_ring = 0;
5926 
5927 	if (!bp->rss_indir_tbl)
5928 		return 0;
5929 
5930 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5931 	for (i = 0; i < tbl_size; i++)
5932 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
5933 	return max_ring;
5934 }
5935 
5936 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
5937 {
5938 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
5939 		return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
5940 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5941 		return 2;
5942 	return 1;
5943 }
5944 
5945 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5946 {
5947 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
5948 	u16 i, j;
5949 
5950 	/* Fill the RSS indirection table with ring group ids */
5951 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
5952 		if (!no_rss)
5953 			j = bp->rss_indir_tbl[i];
5954 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
5955 	}
5956 }
5957 
5958 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
5959 				    struct bnxt_vnic_info *vnic)
5960 {
5961 	__le16 *ring_tbl = vnic->rss_table;
5962 	struct bnxt_rx_ring_info *rxr;
5963 	u16 tbl_size, i;
5964 
5965 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5966 
5967 	for (i = 0; i < tbl_size; i++) {
5968 		u16 ring_id, j;
5969 
5970 		j = bp->rss_indir_tbl[i];
5971 		rxr = &bp->rx_ring[j];
5972 
5973 		ring_id = rxr->rx_ring_struct.fw_ring_id;
5974 		*ring_tbl++ = cpu_to_le16(ring_id);
5975 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5976 		*ring_tbl++ = cpu_to_le16(ring_id);
5977 	}
5978 }
5979 
5980 static void
5981 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req,
5982 			 struct bnxt_vnic_info *vnic)
5983 {
5984 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
5985 		bnxt_fill_hw_rss_tbl_p5(bp, vnic);
5986 	else
5987 		bnxt_fill_hw_rss_tbl(bp, vnic);
5988 
5989 	if (bp->rss_hash_delta) {
5990 		req->hash_type = cpu_to_le32(bp->rss_hash_delta);
5991 		if (bp->rss_hash_cfg & bp->rss_hash_delta)
5992 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE;
5993 		else
5994 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE;
5995 	} else {
5996 		req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5997 	}
5998 	req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5999 	req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
6000 	req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
6001 }
6002 
6003 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
6004 {
6005 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
6006 	struct hwrm_vnic_rss_cfg_input *req;
6007 	int rc;
6008 
6009 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) ||
6010 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
6011 		return 0;
6012 
6013 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
6014 	if (rc)
6015 		return rc;
6016 
6017 	if (set_rss)
6018 		__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
6019 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
6020 	return hwrm_req_send(bp, req);
6021 }
6022 
6023 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
6024 {
6025 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
6026 	struct hwrm_vnic_rss_cfg_input *req;
6027 	dma_addr_t ring_tbl_map;
6028 	u32 i, nr_ctxs;
6029 	int rc;
6030 
6031 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
6032 	if (rc)
6033 		return rc;
6034 
6035 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6036 	if (!set_rss)
6037 		return hwrm_req_send(bp, req);
6038 
6039 	__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
6040 	ring_tbl_map = vnic->rss_table_dma_addr;
6041 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
6042 
6043 	hwrm_req_hold(bp, req);
6044 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
6045 		req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
6046 		req->ring_table_pair_index = i;
6047 		req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
6048 		rc = hwrm_req_send(bp, req);
6049 		if (rc)
6050 			goto exit;
6051 	}
6052 
6053 exit:
6054 	hwrm_req_drop(bp, req);
6055 	return rc;
6056 }
6057 
6058 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp)
6059 {
6060 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6061 	struct hwrm_vnic_rss_qcfg_output *resp;
6062 	struct hwrm_vnic_rss_qcfg_input *req;
6063 
6064 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG))
6065 		return;
6066 
6067 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6068 	/* all contexts configured to same hash_type, zero always exists */
6069 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
6070 	resp = hwrm_req_hold(bp, req);
6071 	if (!hwrm_req_send(bp, req)) {
6072 		bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg;
6073 		bp->rss_hash_delta = 0;
6074 	}
6075 	hwrm_req_drop(bp, req);
6076 }
6077 
6078 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
6079 {
6080 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
6081 	struct hwrm_vnic_plcmodes_cfg_input *req;
6082 	int rc;
6083 
6084 	rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG);
6085 	if (rc)
6086 		return rc;
6087 
6088 	req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT);
6089 	req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID);
6090 
6091 	if (BNXT_RX_PAGE_MODE(bp)) {
6092 		req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size);
6093 	} else {
6094 		req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
6095 					  VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
6096 		req->enables |=
6097 			cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
6098 		req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
6099 		req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
6100 	}
6101 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
6102 	return hwrm_req_send(bp, req);
6103 }
6104 
6105 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
6106 					u16 ctx_idx)
6107 {
6108 	struct hwrm_vnic_rss_cos_lb_ctx_free_input *req;
6109 
6110 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE))
6111 		return;
6112 
6113 	req->rss_cos_lb_ctx_id =
6114 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
6115 
6116 	hwrm_req_send(bp, req);
6117 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
6118 }
6119 
6120 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
6121 {
6122 	int i, j;
6123 
6124 	for (i = 0; i < bp->nr_vnics; i++) {
6125 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
6126 
6127 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
6128 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
6129 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
6130 		}
6131 	}
6132 	bp->rsscos_nr_ctxs = 0;
6133 }
6134 
6135 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
6136 {
6137 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp;
6138 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req;
6139 	int rc;
6140 
6141 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC);
6142 	if (rc)
6143 		return rc;
6144 
6145 	resp = hwrm_req_hold(bp, req);
6146 	rc = hwrm_req_send(bp, req);
6147 	if (!rc)
6148 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
6149 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
6150 	hwrm_req_drop(bp, req);
6151 
6152 	return rc;
6153 }
6154 
6155 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
6156 {
6157 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
6158 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
6159 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
6160 }
6161 
6162 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
6163 {
6164 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
6165 	struct hwrm_vnic_cfg_input *req;
6166 	unsigned int ring = 0, grp_idx;
6167 	u16 def_vlan = 0;
6168 	int rc;
6169 
6170 	rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG);
6171 	if (rc)
6172 		return rc;
6173 
6174 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6175 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
6176 
6177 		req->default_rx_ring_id =
6178 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
6179 		req->default_cmpl_ring_id =
6180 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
6181 		req->enables =
6182 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
6183 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
6184 		goto vnic_mru;
6185 	}
6186 	req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
6187 	/* Only RSS support for now TBD: COS & LB */
6188 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
6189 		req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
6190 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
6191 					   VNIC_CFG_REQ_ENABLES_MRU);
6192 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
6193 		req->rss_rule =
6194 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
6195 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
6196 					   VNIC_CFG_REQ_ENABLES_MRU);
6197 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
6198 	} else {
6199 		req->rss_rule = cpu_to_le16(0xffff);
6200 	}
6201 
6202 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
6203 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
6204 		req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
6205 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
6206 	} else {
6207 		req->cos_rule = cpu_to_le16(0xffff);
6208 	}
6209 
6210 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
6211 		ring = 0;
6212 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
6213 		ring = vnic_id - 1;
6214 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
6215 		ring = bp->rx_nr_rings - 1;
6216 
6217 	grp_idx = bp->rx_ring[ring].bnapi->index;
6218 	req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
6219 	req->lb_rule = cpu_to_le16(0xffff);
6220 vnic_mru:
6221 	req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
6222 
6223 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6224 #ifdef CONFIG_BNXT_SRIOV
6225 	if (BNXT_VF(bp))
6226 		def_vlan = bp->vf.vlan;
6227 #endif
6228 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
6229 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
6230 	if (!vnic_id && bnxt_ulp_registered(bp->edev))
6231 		req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
6232 
6233 	return hwrm_req_send(bp, req);
6234 }
6235 
6236 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
6237 {
6238 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
6239 		struct hwrm_vnic_free_input *req;
6240 
6241 		if (hwrm_req_init(bp, req, HWRM_VNIC_FREE))
6242 			return;
6243 
6244 		req->vnic_id =
6245 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
6246 
6247 		hwrm_req_send(bp, req);
6248 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
6249 	}
6250 }
6251 
6252 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
6253 {
6254 	u16 i;
6255 
6256 	for (i = 0; i < bp->nr_vnics; i++)
6257 		bnxt_hwrm_vnic_free_one(bp, i);
6258 }
6259 
6260 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
6261 				unsigned int start_rx_ring_idx,
6262 				unsigned int nr_rings)
6263 {
6264 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
6265 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
6266 	struct hwrm_vnic_alloc_output *resp;
6267 	struct hwrm_vnic_alloc_input *req;
6268 	int rc;
6269 
6270 	rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC);
6271 	if (rc)
6272 		return rc;
6273 
6274 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6275 		goto vnic_no_ring_grps;
6276 
6277 	/* map ring groups to this vnic */
6278 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
6279 		grp_idx = bp->rx_ring[i].bnapi->index;
6280 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
6281 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
6282 				   j, nr_rings);
6283 			break;
6284 		}
6285 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
6286 	}
6287 
6288 vnic_no_ring_grps:
6289 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
6290 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
6291 	if (vnic_id == 0)
6292 		req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
6293 
6294 	resp = hwrm_req_hold(bp, req);
6295 	rc = hwrm_req_send(bp, req);
6296 	if (!rc)
6297 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
6298 	hwrm_req_drop(bp, req);
6299 	return rc;
6300 }
6301 
6302 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
6303 {
6304 	struct hwrm_vnic_qcaps_output *resp;
6305 	struct hwrm_vnic_qcaps_input *req;
6306 	int rc;
6307 
6308 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
6309 	bp->flags &= ~BNXT_FLAG_ROCE_MIRROR_CAP;
6310 	bp->rss_cap &= ~BNXT_RSS_CAP_NEW_RSS_CAP;
6311 	if (bp->hwrm_spec_code < 0x10600)
6312 		return 0;
6313 
6314 	rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS);
6315 	if (rc)
6316 		return rc;
6317 
6318 	resp = hwrm_req_hold(bp, req);
6319 	rc = hwrm_req_send(bp, req);
6320 	if (!rc) {
6321 		u32 flags = le32_to_cpu(resp->flags);
6322 
6323 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
6324 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
6325 			bp->rss_cap |= BNXT_RSS_CAP_NEW_RSS_CAP;
6326 		if (flags &
6327 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
6328 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
6329 
6330 		/* Older P5 fw before EXT_HW_STATS support did not set
6331 		 * VLAN_STRIP_CAP properly.
6332 		 */
6333 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
6334 		    (BNXT_CHIP_P5(bp) &&
6335 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
6336 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
6337 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP)
6338 			bp->rss_cap |= BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA;
6339 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_PROF_TCAM_MODE_ENABLED)
6340 			bp->rss_cap |= BNXT_RSS_CAP_RSS_TCAM;
6341 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
6342 		if (bp->max_tpa_v2) {
6343 			if (BNXT_CHIP_P5(bp))
6344 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
6345 			else
6346 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P7;
6347 		}
6348 		if (flags & VNIC_QCAPS_RESP_FLAGS_HW_TUNNEL_TPA_CAP)
6349 			bp->fw_cap |= BNXT_FW_CAP_VNIC_TUNNEL_TPA;
6350 	}
6351 	hwrm_req_drop(bp, req);
6352 	return rc;
6353 }
6354 
6355 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
6356 {
6357 	struct hwrm_ring_grp_alloc_output *resp;
6358 	struct hwrm_ring_grp_alloc_input *req;
6359 	int rc;
6360 	u16 i;
6361 
6362 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6363 		return 0;
6364 
6365 	rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC);
6366 	if (rc)
6367 		return rc;
6368 
6369 	resp = hwrm_req_hold(bp, req);
6370 	for (i = 0; i < bp->rx_nr_rings; i++) {
6371 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
6372 
6373 		req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
6374 		req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
6375 		req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
6376 		req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
6377 
6378 		rc = hwrm_req_send(bp, req);
6379 
6380 		if (rc)
6381 			break;
6382 
6383 		bp->grp_info[grp_idx].fw_grp_id =
6384 			le32_to_cpu(resp->ring_group_id);
6385 	}
6386 	hwrm_req_drop(bp, req);
6387 	return rc;
6388 }
6389 
6390 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
6391 {
6392 	struct hwrm_ring_grp_free_input *req;
6393 	u16 i;
6394 
6395 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
6396 		return;
6397 
6398 	if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE))
6399 		return;
6400 
6401 	hwrm_req_hold(bp, req);
6402 	for (i = 0; i < bp->cp_nr_rings; i++) {
6403 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
6404 			continue;
6405 		req->ring_group_id =
6406 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
6407 
6408 		hwrm_req_send(bp, req);
6409 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
6410 	}
6411 	hwrm_req_drop(bp, req);
6412 }
6413 
6414 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
6415 				    struct bnxt_ring_struct *ring,
6416 				    u32 ring_type, u32 map_index)
6417 {
6418 	struct hwrm_ring_alloc_output *resp;
6419 	struct hwrm_ring_alloc_input *req;
6420 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
6421 	struct bnxt_ring_grp_info *grp_info;
6422 	int rc, err = 0;
6423 	u16 ring_id;
6424 
6425 	rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC);
6426 	if (rc)
6427 		goto exit;
6428 
6429 	req->enables = 0;
6430 	if (rmem->nr_pages > 1) {
6431 		req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
6432 		/* Page size is in log2 units */
6433 		req->page_size = BNXT_PAGE_SHIFT;
6434 		req->page_tbl_depth = 1;
6435 	} else {
6436 		req->page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
6437 	}
6438 	req->fbo = 0;
6439 	/* Association of ring index with doorbell index and MSIX number */
6440 	req->logical_id = cpu_to_le16(map_index);
6441 
6442 	switch (ring_type) {
6443 	case HWRM_RING_ALLOC_TX: {
6444 		struct bnxt_tx_ring_info *txr;
6445 
6446 		txr = container_of(ring, struct bnxt_tx_ring_info,
6447 				   tx_ring_struct);
6448 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
6449 		/* Association of transmit ring with completion ring */
6450 		grp_info = &bp->grp_info[ring->grp_idx];
6451 		req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
6452 		req->length = cpu_to_le32(bp->tx_ring_mask + 1);
6453 		req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6454 		req->queue_id = cpu_to_le16(ring->queue_id);
6455 		if (bp->flags & BNXT_FLAG_TX_COAL_CMPL)
6456 			req->cmpl_coal_cnt =
6457 				RING_ALLOC_REQ_CMPL_COAL_CNT_COAL_64;
6458 		break;
6459 	}
6460 	case HWRM_RING_ALLOC_RX:
6461 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
6462 		req->length = cpu_to_le32(bp->rx_ring_mask + 1);
6463 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6464 			u16 flags = 0;
6465 
6466 			/* Association of rx ring with stats context */
6467 			grp_info = &bp->grp_info[ring->grp_idx];
6468 			req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
6469 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6470 			req->enables |= cpu_to_le32(
6471 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
6472 			if (NET_IP_ALIGN == 2)
6473 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
6474 			req->flags = cpu_to_le16(flags);
6475 		}
6476 		break;
6477 	case HWRM_RING_ALLOC_AGG:
6478 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6479 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
6480 			/* Association of agg ring with rx ring */
6481 			grp_info = &bp->grp_info[ring->grp_idx];
6482 			req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
6483 			req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
6484 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6485 			req->enables |= cpu_to_le32(
6486 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
6487 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
6488 		} else {
6489 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
6490 		}
6491 		req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
6492 		break;
6493 	case HWRM_RING_ALLOC_CMPL:
6494 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
6495 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
6496 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6497 			/* Association of cp ring with nq */
6498 			grp_info = &bp->grp_info[map_index];
6499 			req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
6500 			req->cq_handle = cpu_to_le64(ring->handle);
6501 			req->enables |= cpu_to_le32(
6502 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
6503 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
6504 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
6505 		}
6506 		break;
6507 	case HWRM_RING_ALLOC_NQ:
6508 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
6509 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
6510 		if (bp->flags & BNXT_FLAG_USING_MSIX)
6511 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
6512 		break;
6513 	default:
6514 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
6515 			   ring_type);
6516 		return -1;
6517 	}
6518 
6519 	resp = hwrm_req_hold(bp, req);
6520 	rc = hwrm_req_send(bp, req);
6521 	err = le16_to_cpu(resp->error_code);
6522 	ring_id = le16_to_cpu(resp->ring_id);
6523 	hwrm_req_drop(bp, req);
6524 
6525 exit:
6526 	if (rc || err) {
6527 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
6528 			   ring_type, rc, err);
6529 		return -EIO;
6530 	}
6531 	ring->fw_ring_id = ring_id;
6532 	return rc;
6533 }
6534 
6535 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
6536 {
6537 	int rc;
6538 
6539 	if (BNXT_PF(bp)) {
6540 		struct hwrm_func_cfg_input *req;
6541 
6542 		rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
6543 		if (rc)
6544 			return rc;
6545 
6546 		req->fid = cpu_to_le16(0xffff);
6547 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
6548 		req->async_event_cr = cpu_to_le16(idx);
6549 		return hwrm_req_send(bp, req);
6550 	} else {
6551 		struct hwrm_func_vf_cfg_input *req;
6552 
6553 		rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
6554 		if (rc)
6555 			return rc;
6556 
6557 		req->enables =
6558 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
6559 		req->async_event_cr = cpu_to_le16(idx);
6560 		return hwrm_req_send(bp, req);
6561 	}
6562 }
6563 
6564 static void bnxt_set_db_mask(struct bnxt *bp, struct bnxt_db_info *db,
6565 			     u32 ring_type)
6566 {
6567 	switch (ring_type) {
6568 	case HWRM_RING_ALLOC_TX:
6569 		db->db_ring_mask = bp->tx_ring_mask;
6570 		break;
6571 	case HWRM_RING_ALLOC_RX:
6572 		db->db_ring_mask = bp->rx_ring_mask;
6573 		break;
6574 	case HWRM_RING_ALLOC_AGG:
6575 		db->db_ring_mask = bp->rx_agg_ring_mask;
6576 		break;
6577 	case HWRM_RING_ALLOC_CMPL:
6578 	case HWRM_RING_ALLOC_NQ:
6579 		db->db_ring_mask = bp->cp_ring_mask;
6580 		break;
6581 	}
6582 	if (bp->flags & BNXT_FLAG_CHIP_P7) {
6583 		db->db_epoch_mask = db->db_ring_mask + 1;
6584 		db->db_epoch_shift = DBR_EPOCH_SFT - ilog2(db->db_epoch_mask);
6585 	}
6586 }
6587 
6588 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
6589 			u32 map_idx, u32 xid)
6590 {
6591 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6592 		switch (ring_type) {
6593 		case HWRM_RING_ALLOC_TX:
6594 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
6595 			break;
6596 		case HWRM_RING_ALLOC_RX:
6597 		case HWRM_RING_ALLOC_AGG:
6598 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
6599 			break;
6600 		case HWRM_RING_ALLOC_CMPL:
6601 			db->db_key64 = DBR_PATH_L2;
6602 			break;
6603 		case HWRM_RING_ALLOC_NQ:
6604 			db->db_key64 = DBR_PATH_L2;
6605 			break;
6606 		}
6607 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
6608 
6609 		if (bp->flags & BNXT_FLAG_CHIP_P7)
6610 			db->db_key64 |= DBR_VALID;
6611 
6612 		db->doorbell = bp->bar1 + bp->db_offset;
6613 	} else {
6614 		db->doorbell = bp->bar1 + map_idx * 0x80;
6615 		switch (ring_type) {
6616 		case HWRM_RING_ALLOC_TX:
6617 			db->db_key32 = DB_KEY_TX;
6618 			break;
6619 		case HWRM_RING_ALLOC_RX:
6620 		case HWRM_RING_ALLOC_AGG:
6621 			db->db_key32 = DB_KEY_RX;
6622 			break;
6623 		case HWRM_RING_ALLOC_CMPL:
6624 			db->db_key32 = DB_KEY_CP;
6625 			break;
6626 		}
6627 	}
6628 	bnxt_set_db_mask(bp, db, ring_type);
6629 }
6630 
6631 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
6632 {
6633 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
6634 	int i, rc = 0;
6635 	u32 type;
6636 
6637 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6638 		type = HWRM_RING_ALLOC_NQ;
6639 	else
6640 		type = HWRM_RING_ALLOC_CMPL;
6641 	for (i = 0; i < bp->cp_nr_rings; i++) {
6642 		struct bnxt_napi *bnapi = bp->bnapi[i];
6643 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6644 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
6645 		u32 map_idx = ring->map_idx;
6646 		unsigned int vector;
6647 
6648 		vector = bp->irq_tbl[map_idx].vector;
6649 		disable_irq_nosync(vector);
6650 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
6651 		if (rc) {
6652 			enable_irq(vector);
6653 			goto err_out;
6654 		}
6655 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
6656 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
6657 		enable_irq(vector);
6658 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
6659 
6660 		if (!i) {
6661 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
6662 			if (rc)
6663 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
6664 		}
6665 	}
6666 
6667 	type = HWRM_RING_ALLOC_TX;
6668 	for (i = 0; i < bp->tx_nr_rings; i++) {
6669 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
6670 		struct bnxt_ring_struct *ring;
6671 		u32 map_idx;
6672 
6673 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6674 			struct bnxt_cp_ring_info *cpr2 = txr->tx_cpr;
6675 			struct bnxt_napi *bnapi = txr->bnapi;
6676 			u32 type2 = HWRM_RING_ALLOC_CMPL;
6677 
6678 			ring = &cpr2->cp_ring_struct;
6679 			ring->handle = BNXT_SET_NQ_HDL(cpr2);
6680 			map_idx = bnapi->index;
6681 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
6682 			if (rc)
6683 				goto err_out;
6684 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
6685 				    ring->fw_ring_id);
6686 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
6687 		}
6688 		ring = &txr->tx_ring_struct;
6689 		map_idx = i;
6690 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
6691 		if (rc)
6692 			goto err_out;
6693 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
6694 	}
6695 
6696 	type = HWRM_RING_ALLOC_RX;
6697 	for (i = 0; i < bp->rx_nr_rings; i++) {
6698 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6699 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
6700 		struct bnxt_napi *bnapi = rxr->bnapi;
6701 		u32 map_idx = bnapi->index;
6702 
6703 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
6704 		if (rc)
6705 			goto err_out;
6706 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
6707 		/* If we have agg rings, post agg buffers first. */
6708 		if (!agg_rings)
6709 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
6710 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
6711 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6712 			struct bnxt_cp_ring_info *cpr2 = rxr->rx_cpr;
6713 			u32 type2 = HWRM_RING_ALLOC_CMPL;
6714 
6715 			ring = &cpr2->cp_ring_struct;
6716 			ring->handle = BNXT_SET_NQ_HDL(cpr2);
6717 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
6718 			if (rc)
6719 				goto err_out;
6720 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
6721 				    ring->fw_ring_id);
6722 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
6723 		}
6724 	}
6725 
6726 	if (agg_rings) {
6727 		type = HWRM_RING_ALLOC_AGG;
6728 		for (i = 0; i < bp->rx_nr_rings; i++) {
6729 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6730 			struct bnxt_ring_struct *ring =
6731 						&rxr->rx_agg_ring_struct;
6732 			u32 grp_idx = ring->grp_idx;
6733 			u32 map_idx = grp_idx + bp->rx_nr_rings;
6734 
6735 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
6736 			if (rc)
6737 				goto err_out;
6738 
6739 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
6740 				    ring->fw_ring_id);
6741 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
6742 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
6743 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
6744 		}
6745 	}
6746 err_out:
6747 	return rc;
6748 }
6749 
6750 static int hwrm_ring_free_send_msg(struct bnxt *bp,
6751 				   struct bnxt_ring_struct *ring,
6752 				   u32 ring_type, int cmpl_ring_id)
6753 {
6754 	struct hwrm_ring_free_output *resp;
6755 	struct hwrm_ring_free_input *req;
6756 	u16 error_code = 0;
6757 	int rc;
6758 
6759 	if (BNXT_NO_FW_ACCESS(bp))
6760 		return 0;
6761 
6762 	rc = hwrm_req_init(bp, req, HWRM_RING_FREE);
6763 	if (rc)
6764 		goto exit;
6765 
6766 	req->cmpl_ring = cpu_to_le16(cmpl_ring_id);
6767 	req->ring_type = ring_type;
6768 	req->ring_id = cpu_to_le16(ring->fw_ring_id);
6769 
6770 	resp = hwrm_req_hold(bp, req);
6771 	rc = hwrm_req_send(bp, req);
6772 	error_code = le16_to_cpu(resp->error_code);
6773 	hwrm_req_drop(bp, req);
6774 exit:
6775 	if (rc || error_code) {
6776 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
6777 			   ring_type, rc, error_code);
6778 		return -EIO;
6779 	}
6780 	return 0;
6781 }
6782 
6783 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
6784 {
6785 	u32 type;
6786 	int i;
6787 
6788 	if (!bp->bnapi)
6789 		return;
6790 
6791 	for (i = 0; i < bp->tx_nr_rings; i++) {
6792 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
6793 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
6794 
6795 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6796 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
6797 
6798 			hwrm_ring_free_send_msg(bp, ring,
6799 						RING_FREE_REQ_RING_TYPE_TX,
6800 						close_path ? cmpl_ring_id :
6801 						INVALID_HW_RING_ID);
6802 			ring->fw_ring_id = INVALID_HW_RING_ID;
6803 		}
6804 	}
6805 
6806 	for (i = 0; i < bp->rx_nr_rings; i++) {
6807 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6808 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
6809 		u32 grp_idx = rxr->bnapi->index;
6810 
6811 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6812 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6813 
6814 			hwrm_ring_free_send_msg(bp, ring,
6815 						RING_FREE_REQ_RING_TYPE_RX,
6816 						close_path ? cmpl_ring_id :
6817 						INVALID_HW_RING_ID);
6818 			ring->fw_ring_id = INVALID_HW_RING_ID;
6819 			bp->grp_info[grp_idx].rx_fw_ring_id =
6820 				INVALID_HW_RING_ID;
6821 		}
6822 	}
6823 
6824 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6825 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
6826 	else
6827 		type = RING_FREE_REQ_RING_TYPE_RX;
6828 	for (i = 0; i < bp->rx_nr_rings; i++) {
6829 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6830 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
6831 		u32 grp_idx = rxr->bnapi->index;
6832 
6833 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6834 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6835 
6836 			hwrm_ring_free_send_msg(bp, ring, type,
6837 						close_path ? cmpl_ring_id :
6838 						INVALID_HW_RING_ID);
6839 			ring->fw_ring_id = INVALID_HW_RING_ID;
6840 			bp->grp_info[grp_idx].agg_fw_ring_id =
6841 				INVALID_HW_RING_ID;
6842 		}
6843 	}
6844 
6845 	/* The completion rings are about to be freed.  After that the
6846 	 * IRQ doorbell will not work anymore.  So we need to disable
6847 	 * IRQ here.
6848 	 */
6849 	bnxt_disable_int_sync(bp);
6850 
6851 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6852 		type = RING_FREE_REQ_RING_TYPE_NQ;
6853 	else
6854 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
6855 	for (i = 0; i < bp->cp_nr_rings; i++) {
6856 		struct bnxt_napi *bnapi = bp->bnapi[i];
6857 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6858 		struct bnxt_ring_struct *ring;
6859 		int j;
6860 
6861 		for (j = 0; j < cpr->cp_ring_count && cpr->cp_ring_arr; j++) {
6862 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
6863 
6864 			ring = &cpr2->cp_ring_struct;
6865 			if (ring->fw_ring_id == INVALID_HW_RING_ID)
6866 				continue;
6867 			hwrm_ring_free_send_msg(bp, ring,
6868 						RING_FREE_REQ_RING_TYPE_L2_CMPL,
6869 						INVALID_HW_RING_ID);
6870 			ring->fw_ring_id = INVALID_HW_RING_ID;
6871 		}
6872 		ring = &cpr->cp_ring_struct;
6873 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6874 			hwrm_ring_free_send_msg(bp, ring, type,
6875 						INVALID_HW_RING_ID);
6876 			ring->fw_ring_id = INVALID_HW_RING_ID;
6877 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
6878 		}
6879 	}
6880 }
6881 
6882 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
6883 			     bool shared);
6884 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
6885 			   bool shared);
6886 
6887 static int bnxt_hwrm_get_rings(struct bnxt *bp)
6888 {
6889 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6890 	struct hwrm_func_qcfg_output *resp;
6891 	struct hwrm_func_qcfg_input *req;
6892 	int rc;
6893 
6894 	if (bp->hwrm_spec_code < 0x10601)
6895 		return 0;
6896 
6897 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6898 	if (rc)
6899 		return rc;
6900 
6901 	req->fid = cpu_to_le16(0xffff);
6902 	resp = hwrm_req_hold(bp, req);
6903 	rc = hwrm_req_send(bp, req);
6904 	if (rc) {
6905 		hwrm_req_drop(bp, req);
6906 		return rc;
6907 	}
6908 
6909 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6910 	if (BNXT_NEW_RM(bp)) {
6911 		u16 cp, stats;
6912 
6913 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
6914 		hw_resc->resv_hw_ring_grps =
6915 			le32_to_cpu(resp->alloc_hw_ring_grps);
6916 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
6917 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
6918 		stats = le16_to_cpu(resp->alloc_stat_ctx);
6919 		hw_resc->resv_irqs = cp;
6920 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6921 			int rx = hw_resc->resv_rx_rings;
6922 			int tx = hw_resc->resv_tx_rings;
6923 
6924 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
6925 				rx >>= 1;
6926 			if (cp < (rx + tx)) {
6927 				rc = __bnxt_trim_rings(bp, &rx, &tx, cp, false);
6928 				if (rc)
6929 					return rc;
6930 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
6931 					rx <<= 1;
6932 				hw_resc->resv_rx_rings = rx;
6933 				hw_resc->resv_tx_rings = tx;
6934 			}
6935 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
6936 			hw_resc->resv_hw_ring_grps = rx;
6937 		}
6938 		hw_resc->resv_cp_rings = cp;
6939 		hw_resc->resv_stat_ctxs = stats;
6940 	}
6941 	hwrm_req_drop(bp, req);
6942 	return 0;
6943 }
6944 
6945 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
6946 {
6947 	struct hwrm_func_qcfg_output *resp;
6948 	struct hwrm_func_qcfg_input *req;
6949 	int rc;
6950 
6951 	if (bp->hwrm_spec_code < 0x10601)
6952 		return 0;
6953 
6954 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6955 	if (rc)
6956 		return rc;
6957 
6958 	req->fid = cpu_to_le16(fid);
6959 	resp = hwrm_req_hold(bp, req);
6960 	rc = hwrm_req_send(bp, req);
6961 	if (!rc)
6962 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6963 
6964 	hwrm_req_drop(bp, req);
6965 	return rc;
6966 }
6967 
6968 static bool bnxt_rfs_supported(struct bnxt *bp);
6969 
6970 static struct hwrm_func_cfg_input *
6971 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6972 			     int ring_grps, int cp_rings, int stats, int vnics)
6973 {
6974 	struct hwrm_func_cfg_input *req;
6975 	u32 enables = 0;
6976 
6977 	if (bnxt_hwrm_func_cfg_short_req_init(bp, &req))
6978 		return NULL;
6979 
6980 	req->fid = cpu_to_le16(0xffff);
6981 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6982 	req->num_tx_rings = cpu_to_le16(tx_rings);
6983 	if (BNXT_NEW_RM(bp)) {
6984 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
6985 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6986 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6987 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
6988 			enables |= tx_rings + ring_grps ?
6989 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6990 			enables |= rx_rings ?
6991 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6992 		} else {
6993 			enables |= cp_rings ?
6994 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6995 			enables |= ring_grps ?
6996 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
6997 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6998 		}
6999 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
7000 
7001 		req->num_rx_rings = cpu_to_le16(rx_rings);
7002 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7003 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
7004 			req->num_msix = cpu_to_le16(cp_rings);
7005 			req->num_rsscos_ctxs =
7006 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
7007 		} else {
7008 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
7009 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
7010 			req->num_rsscos_ctxs = cpu_to_le16(1);
7011 			if (!(bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) &&
7012 			    bnxt_rfs_supported(bp))
7013 				req->num_rsscos_ctxs =
7014 					cpu_to_le16(ring_grps + 1);
7015 		}
7016 		req->num_stat_ctxs = cpu_to_le16(stats);
7017 		req->num_vnics = cpu_to_le16(vnics);
7018 	}
7019 	req->enables = cpu_to_le32(enables);
7020 	return req;
7021 }
7022 
7023 static struct hwrm_func_vf_cfg_input *
7024 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
7025 			     int ring_grps, int cp_rings, int stats, int vnics)
7026 {
7027 	struct hwrm_func_vf_cfg_input *req;
7028 	u32 enables = 0;
7029 
7030 	if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG))
7031 		return NULL;
7032 
7033 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
7034 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
7035 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
7036 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
7037 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7038 		enables |= tx_rings + ring_grps ?
7039 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
7040 	} else {
7041 		enables |= cp_rings ?
7042 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
7043 		enables |= ring_grps ?
7044 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
7045 	}
7046 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
7047 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
7048 
7049 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
7050 	req->num_tx_rings = cpu_to_le16(tx_rings);
7051 	req->num_rx_rings = cpu_to_le16(rx_rings);
7052 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7053 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
7054 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
7055 	} else {
7056 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
7057 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
7058 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
7059 	}
7060 	req->num_stat_ctxs = cpu_to_le16(stats);
7061 	req->num_vnics = cpu_to_le16(vnics);
7062 
7063 	req->enables = cpu_to_le32(enables);
7064 	return req;
7065 }
7066 
7067 static int
7068 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
7069 			   int ring_grps, int cp_rings, int stats, int vnics)
7070 {
7071 	struct hwrm_func_cfg_input *req;
7072 	int rc;
7073 
7074 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
7075 					   cp_rings, stats, vnics);
7076 	if (!req)
7077 		return -ENOMEM;
7078 
7079 	if (!req->enables) {
7080 		hwrm_req_drop(bp, req);
7081 		return 0;
7082 	}
7083 
7084 	rc = hwrm_req_send(bp, req);
7085 	if (rc)
7086 		return rc;
7087 
7088 	if (bp->hwrm_spec_code < 0x10601)
7089 		bp->hw_resc.resv_tx_rings = tx_rings;
7090 
7091 	return bnxt_hwrm_get_rings(bp);
7092 }
7093 
7094 static int
7095 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
7096 			   int ring_grps, int cp_rings, int stats, int vnics)
7097 {
7098 	struct hwrm_func_vf_cfg_input *req;
7099 	int rc;
7100 
7101 	if (!BNXT_NEW_RM(bp)) {
7102 		bp->hw_resc.resv_tx_rings = tx_rings;
7103 		return 0;
7104 	}
7105 
7106 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
7107 					   cp_rings, stats, vnics);
7108 	if (!req)
7109 		return -ENOMEM;
7110 
7111 	rc = hwrm_req_send(bp, req);
7112 	if (rc)
7113 		return rc;
7114 
7115 	return bnxt_hwrm_get_rings(bp);
7116 }
7117 
7118 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
7119 				   int cp, int stat, int vnic)
7120 {
7121 	if (BNXT_PF(bp))
7122 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
7123 						  vnic);
7124 	else
7125 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
7126 						  vnic);
7127 }
7128 
7129 int bnxt_nq_rings_in_use(struct bnxt *bp)
7130 {
7131 	int cp = bp->cp_nr_rings;
7132 	int ulp_msix, ulp_base;
7133 
7134 	ulp_msix = bnxt_get_ulp_msix_num(bp);
7135 	if (ulp_msix) {
7136 		ulp_base = bnxt_get_ulp_msix_base(bp);
7137 		cp += ulp_msix;
7138 		if ((ulp_base + ulp_msix) > cp)
7139 			cp = ulp_base + ulp_msix;
7140 	}
7141 	return cp;
7142 }
7143 
7144 static int bnxt_cp_rings_in_use(struct bnxt *bp)
7145 {
7146 	int cp;
7147 
7148 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7149 		return bnxt_nq_rings_in_use(bp);
7150 
7151 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
7152 	return cp;
7153 }
7154 
7155 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
7156 {
7157 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
7158 	int cp = bp->cp_nr_rings;
7159 
7160 	if (!ulp_stat)
7161 		return cp;
7162 
7163 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
7164 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
7165 
7166 	return cp + ulp_stat;
7167 }
7168 
7169 /* Check if a default RSS map needs to be setup.  This function is only
7170  * used on older firmware that does not require reserving RX rings.
7171  */
7172 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
7173 {
7174 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7175 
7176 	/* The RSS map is valid for RX rings set to resv_rx_rings */
7177 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
7178 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
7179 		if (!netif_is_rxfh_configured(bp->dev))
7180 			bnxt_set_dflt_rss_indir_tbl(bp);
7181 	}
7182 }
7183 
7184 static bool bnxt_need_reserve_rings(struct bnxt *bp)
7185 {
7186 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7187 	int cp = bnxt_cp_rings_in_use(bp);
7188 	int nq = bnxt_nq_rings_in_use(bp);
7189 	int rx = bp->rx_nr_rings, stat;
7190 	int vnic = 1, grp = rx;
7191 
7192 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
7193 	    bp->hwrm_spec_code >= 0x10601)
7194 		return true;
7195 
7196 	/* Old firmware does not need RX ring reservations but we still
7197 	 * need to setup a default RSS map when needed.  With new firmware
7198 	 * we go through RX ring reservations first and then set up the
7199 	 * RSS map for the successfully reserved RX rings when needed.
7200 	 */
7201 	if (!BNXT_NEW_RM(bp)) {
7202 		bnxt_check_rss_tbl_no_rmgr(bp);
7203 		return false;
7204 	}
7205 	if ((bp->flags & BNXT_FLAG_RFS) &&
7206 	    !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7207 		vnic = rx + 1;
7208 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7209 		rx <<= 1;
7210 	stat = bnxt_get_func_stat_ctxs(bp);
7211 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
7212 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
7213 	    (hw_resc->resv_hw_ring_grps != grp &&
7214 	     !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)))
7215 		return true;
7216 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && BNXT_PF(bp) &&
7217 	    hw_resc->resv_irqs != nq)
7218 		return true;
7219 	return false;
7220 }
7221 
7222 static int __bnxt_reserve_rings(struct bnxt *bp)
7223 {
7224 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7225 	int cp = bnxt_nq_rings_in_use(bp);
7226 	int tx = bp->tx_nr_rings;
7227 	int rx = bp->rx_nr_rings;
7228 	int grp, rx_rings, rc;
7229 	int vnic = 1, stat;
7230 	bool sh = false;
7231 	int tx_cp;
7232 
7233 	if (!bnxt_need_reserve_rings(bp))
7234 		return 0;
7235 
7236 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7237 		sh = true;
7238 	if ((bp->flags & BNXT_FLAG_RFS) &&
7239 	    !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7240 		vnic = rx + 1;
7241 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7242 		rx <<= 1;
7243 	grp = bp->rx_nr_rings;
7244 	stat = bnxt_get_func_stat_ctxs(bp);
7245 
7246 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
7247 	if (rc)
7248 		return rc;
7249 
7250 	tx = hw_resc->resv_tx_rings;
7251 	if (BNXT_NEW_RM(bp)) {
7252 		rx = hw_resc->resv_rx_rings;
7253 		cp = hw_resc->resv_irqs;
7254 		grp = hw_resc->resv_hw_ring_grps;
7255 		vnic = hw_resc->resv_vnics;
7256 		stat = hw_resc->resv_stat_ctxs;
7257 	}
7258 
7259 	rx_rings = rx;
7260 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
7261 		if (rx >= 2) {
7262 			rx_rings = rx >> 1;
7263 		} else {
7264 			if (netif_running(bp->dev))
7265 				return -ENOMEM;
7266 
7267 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
7268 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
7269 			bp->dev->hw_features &= ~NETIF_F_LRO;
7270 			bp->dev->features &= ~NETIF_F_LRO;
7271 			bnxt_set_ring_params(bp);
7272 		}
7273 	}
7274 	rx_rings = min_t(int, rx_rings, grp);
7275 	cp = min_t(int, cp, bp->cp_nr_rings);
7276 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
7277 		stat -= bnxt_get_ulp_stat_ctxs(bp);
7278 	cp = min_t(int, cp, stat);
7279 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
7280 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7281 		rx = rx_rings << 1;
7282 	tx_cp = bnxt_num_tx_to_cp(bp, tx);
7283 	cp = sh ? max_t(int, tx_cp, rx_rings) : tx_cp + rx_rings;
7284 	bp->tx_nr_rings = tx;
7285 
7286 	/* If we cannot reserve all the RX rings, reset the RSS map only
7287 	 * if absolutely necessary
7288 	 */
7289 	if (rx_rings != bp->rx_nr_rings) {
7290 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
7291 			    rx_rings, bp->rx_nr_rings);
7292 		if (netif_is_rxfh_configured(bp->dev) &&
7293 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
7294 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
7295 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
7296 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
7297 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
7298 		}
7299 	}
7300 	bp->rx_nr_rings = rx_rings;
7301 	bp->cp_nr_rings = cp;
7302 
7303 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
7304 		return -ENOMEM;
7305 
7306 	if (!netif_is_rxfh_configured(bp->dev))
7307 		bnxt_set_dflt_rss_indir_tbl(bp);
7308 
7309 	return rc;
7310 }
7311 
7312 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
7313 				    int ring_grps, int cp_rings, int stats,
7314 				    int vnics)
7315 {
7316 	struct hwrm_func_vf_cfg_input *req;
7317 	u32 flags;
7318 
7319 	if (!BNXT_NEW_RM(bp))
7320 		return 0;
7321 
7322 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
7323 					   cp_rings, stats, vnics);
7324 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
7325 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
7326 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
7327 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
7328 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
7329 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
7330 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7331 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
7332 
7333 	req->flags = cpu_to_le32(flags);
7334 	return hwrm_req_send_silent(bp, req);
7335 }
7336 
7337 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
7338 				    int ring_grps, int cp_rings, int stats,
7339 				    int vnics)
7340 {
7341 	struct hwrm_func_cfg_input *req;
7342 	u32 flags;
7343 
7344 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
7345 					   cp_rings, stats, vnics);
7346 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
7347 	if (BNXT_NEW_RM(bp)) {
7348 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
7349 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
7350 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
7351 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
7352 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7353 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
7354 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
7355 		else
7356 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
7357 	}
7358 
7359 	req->flags = cpu_to_le32(flags);
7360 	return hwrm_req_send_silent(bp, req);
7361 }
7362 
7363 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
7364 				 int ring_grps, int cp_rings, int stats,
7365 				 int vnics)
7366 {
7367 	if (bp->hwrm_spec_code < 0x10801)
7368 		return 0;
7369 
7370 	if (BNXT_PF(bp))
7371 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
7372 						ring_grps, cp_rings, stats,
7373 						vnics);
7374 
7375 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
7376 					cp_rings, stats, vnics);
7377 }
7378 
7379 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
7380 {
7381 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7382 	struct hwrm_ring_aggint_qcaps_output *resp;
7383 	struct hwrm_ring_aggint_qcaps_input *req;
7384 	int rc;
7385 
7386 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
7387 	coal_cap->num_cmpl_dma_aggr_max = 63;
7388 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
7389 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
7390 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
7391 	coal_cap->int_lat_tmr_min_max = 65535;
7392 	coal_cap->int_lat_tmr_max_max = 65535;
7393 	coal_cap->num_cmpl_aggr_int_max = 65535;
7394 	coal_cap->timer_units = 80;
7395 
7396 	if (bp->hwrm_spec_code < 0x10902)
7397 		return;
7398 
7399 	if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS))
7400 		return;
7401 
7402 	resp = hwrm_req_hold(bp, req);
7403 	rc = hwrm_req_send_silent(bp, req);
7404 	if (!rc) {
7405 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
7406 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
7407 		coal_cap->num_cmpl_dma_aggr_max =
7408 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
7409 		coal_cap->num_cmpl_dma_aggr_during_int_max =
7410 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
7411 		coal_cap->cmpl_aggr_dma_tmr_max =
7412 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
7413 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
7414 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
7415 		coal_cap->int_lat_tmr_min_max =
7416 			le16_to_cpu(resp->int_lat_tmr_min_max);
7417 		coal_cap->int_lat_tmr_max_max =
7418 			le16_to_cpu(resp->int_lat_tmr_max_max);
7419 		coal_cap->num_cmpl_aggr_int_max =
7420 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
7421 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
7422 	}
7423 	hwrm_req_drop(bp, req);
7424 }
7425 
7426 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
7427 {
7428 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7429 
7430 	return usec * 1000 / coal_cap->timer_units;
7431 }
7432 
7433 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
7434 	struct bnxt_coal *hw_coal,
7435 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
7436 {
7437 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7438 	u16 val, tmr, max, flags = hw_coal->flags;
7439 	u32 cmpl_params = coal_cap->cmpl_params;
7440 
7441 	max = hw_coal->bufs_per_record * 128;
7442 	if (hw_coal->budget)
7443 		max = hw_coal->bufs_per_record * hw_coal->budget;
7444 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
7445 
7446 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
7447 	req->num_cmpl_aggr_int = cpu_to_le16(val);
7448 
7449 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
7450 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
7451 
7452 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
7453 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
7454 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
7455 
7456 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
7457 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
7458 	req->int_lat_tmr_max = cpu_to_le16(tmr);
7459 
7460 	/* min timer set to 1/2 of interrupt timer */
7461 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
7462 		val = tmr / 2;
7463 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
7464 		req->int_lat_tmr_min = cpu_to_le16(val);
7465 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
7466 	}
7467 
7468 	/* buf timer set to 1/4 of interrupt timer */
7469 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
7470 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
7471 
7472 	if (cmpl_params &
7473 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
7474 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
7475 		val = clamp_t(u16, tmr, 1,
7476 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
7477 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
7478 		req->enables |=
7479 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
7480 	}
7481 
7482 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
7483 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
7484 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
7485 	req->flags = cpu_to_le16(flags);
7486 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
7487 }
7488 
7489 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
7490 				   struct bnxt_coal *hw_coal)
7491 {
7492 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req;
7493 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7494 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7495 	u32 nq_params = coal_cap->nq_params;
7496 	u16 tmr;
7497 	int rc;
7498 
7499 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
7500 		return 0;
7501 
7502 	rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7503 	if (rc)
7504 		return rc;
7505 
7506 	req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
7507 	req->flags =
7508 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
7509 
7510 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
7511 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
7512 	req->int_lat_tmr_min = cpu_to_le16(tmr);
7513 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
7514 	return hwrm_req_send(bp, req);
7515 }
7516 
7517 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
7518 {
7519 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx;
7520 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7521 	struct bnxt_coal coal;
7522 	int rc;
7523 
7524 	/* Tick values in micro seconds.
7525 	 * 1 coal_buf x bufs_per_record = 1 completion record.
7526 	 */
7527 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
7528 
7529 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
7530 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
7531 
7532 	if (!bnapi->rx_ring)
7533 		return -ENODEV;
7534 
7535 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7536 	if (rc)
7537 		return rc;
7538 
7539 	bnxt_hwrm_set_coal_params(bp, &coal, req_rx);
7540 
7541 	req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
7542 
7543 	return hwrm_req_send(bp, req_rx);
7544 }
7545 
7546 static int
7547 bnxt_hwrm_set_rx_coal(struct bnxt *bp, struct bnxt_napi *bnapi,
7548 		      struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
7549 {
7550 	u16 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
7551 
7552 	req->ring_id = cpu_to_le16(ring_id);
7553 	return hwrm_req_send(bp, req);
7554 }
7555 
7556 static int
7557 bnxt_hwrm_set_tx_coal(struct bnxt *bp, struct bnxt_napi *bnapi,
7558 		      struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
7559 {
7560 	struct bnxt_tx_ring_info *txr;
7561 	int i, rc;
7562 
7563 	bnxt_for_each_napi_tx(i, bnapi, txr) {
7564 		u16 ring_id;
7565 
7566 		ring_id = bnxt_cp_ring_for_tx(bp, txr);
7567 		req->ring_id = cpu_to_le16(ring_id);
7568 		rc = hwrm_req_send(bp, req);
7569 		if (rc)
7570 			return rc;
7571 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7572 			return 0;
7573 	}
7574 	return 0;
7575 }
7576 
7577 int bnxt_hwrm_set_coal(struct bnxt *bp)
7578 {
7579 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx;
7580 	int i, rc;
7581 
7582 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7583 	if (rc)
7584 		return rc;
7585 
7586 	rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7587 	if (rc) {
7588 		hwrm_req_drop(bp, req_rx);
7589 		return rc;
7590 	}
7591 
7592 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx);
7593 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx);
7594 
7595 	hwrm_req_hold(bp, req_rx);
7596 	hwrm_req_hold(bp, req_tx);
7597 	for (i = 0; i < bp->cp_nr_rings; i++) {
7598 		struct bnxt_napi *bnapi = bp->bnapi[i];
7599 		struct bnxt_coal *hw_coal;
7600 
7601 		if (!bnapi->rx_ring)
7602 			rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx);
7603 		else
7604 			rc = bnxt_hwrm_set_rx_coal(bp, bnapi, req_rx);
7605 		if (rc)
7606 			break;
7607 
7608 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7609 			continue;
7610 
7611 		if (bnapi->rx_ring && bnapi->tx_ring[0]) {
7612 			rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx);
7613 			if (rc)
7614 				break;
7615 		}
7616 		if (bnapi->rx_ring)
7617 			hw_coal = &bp->rx_coal;
7618 		else
7619 			hw_coal = &bp->tx_coal;
7620 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
7621 	}
7622 	hwrm_req_drop(bp, req_rx);
7623 	hwrm_req_drop(bp, req_tx);
7624 	return rc;
7625 }
7626 
7627 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
7628 {
7629 	struct hwrm_stat_ctx_clr_stats_input *req0 = NULL;
7630 	struct hwrm_stat_ctx_free_input *req;
7631 	int i;
7632 
7633 	if (!bp->bnapi)
7634 		return;
7635 
7636 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
7637 		return;
7638 
7639 	if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE))
7640 		return;
7641 	if (BNXT_FW_MAJ(bp) <= 20) {
7642 		if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) {
7643 			hwrm_req_drop(bp, req);
7644 			return;
7645 		}
7646 		hwrm_req_hold(bp, req0);
7647 	}
7648 	hwrm_req_hold(bp, req);
7649 	for (i = 0; i < bp->cp_nr_rings; i++) {
7650 		struct bnxt_napi *bnapi = bp->bnapi[i];
7651 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7652 
7653 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
7654 			req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
7655 			if (req0) {
7656 				req0->stat_ctx_id = req->stat_ctx_id;
7657 				hwrm_req_send(bp, req0);
7658 			}
7659 			hwrm_req_send(bp, req);
7660 
7661 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
7662 		}
7663 	}
7664 	hwrm_req_drop(bp, req);
7665 	if (req0)
7666 		hwrm_req_drop(bp, req0);
7667 }
7668 
7669 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
7670 {
7671 	struct hwrm_stat_ctx_alloc_output *resp;
7672 	struct hwrm_stat_ctx_alloc_input *req;
7673 	int rc, i;
7674 
7675 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
7676 		return 0;
7677 
7678 	rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC);
7679 	if (rc)
7680 		return rc;
7681 
7682 	req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
7683 	req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
7684 
7685 	resp = hwrm_req_hold(bp, req);
7686 	for (i = 0; i < bp->cp_nr_rings; i++) {
7687 		struct bnxt_napi *bnapi = bp->bnapi[i];
7688 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7689 
7690 		req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
7691 
7692 		rc = hwrm_req_send(bp, req);
7693 		if (rc)
7694 			break;
7695 
7696 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
7697 
7698 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
7699 	}
7700 	hwrm_req_drop(bp, req);
7701 	return rc;
7702 }
7703 
7704 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
7705 {
7706 	struct hwrm_func_qcfg_output *resp;
7707 	struct hwrm_func_qcfg_input *req;
7708 	u16 flags;
7709 	int rc;
7710 
7711 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
7712 	if (rc)
7713 		return rc;
7714 
7715 	req->fid = cpu_to_le16(0xffff);
7716 	resp = hwrm_req_hold(bp, req);
7717 	rc = hwrm_req_send(bp, req);
7718 	if (rc)
7719 		goto func_qcfg_exit;
7720 
7721 #ifdef CONFIG_BNXT_SRIOV
7722 	if (BNXT_VF(bp)) {
7723 		struct bnxt_vf_info *vf = &bp->vf;
7724 
7725 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
7726 	} else {
7727 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
7728 	}
7729 #endif
7730 	flags = le16_to_cpu(resp->flags);
7731 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
7732 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
7733 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
7734 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
7735 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
7736 	}
7737 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
7738 		bp->flags |= BNXT_FLAG_MULTI_HOST;
7739 
7740 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
7741 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
7742 
7743 	switch (resp->port_partition_type) {
7744 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
7745 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
7746 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
7747 		bp->port_partition_type = resp->port_partition_type;
7748 		break;
7749 	}
7750 	if (bp->hwrm_spec_code < 0x10707 ||
7751 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
7752 		bp->br_mode = BRIDGE_MODE_VEB;
7753 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
7754 		bp->br_mode = BRIDGE_MODE_VEPA;
7755 	else
7756 		bp->br_mode = BRIDGE_MODE_UNDEF;
7757 
7758 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
7759 	if (!bp->max_mtu)
7760 		bp->max_mtu = BNXT_MAX_MTU;
7761 
7762 	if (bp->db_size)
7763 		goto func_qcfg_exit;
7764 
7765 	bp->db_offset = le16_to_cpu(resp->legacy_l2_db_size_kb) * 1024;
7766 	if (BNXT_CHIP_P5(bp)) {
7767 		if (BNXT_PF(bp))
7768 			bp->db_offset = DB_PF_OFFSET_P5;
7769 		else
7770 			bp->db_offset = DB_VF_OFFSET_P5;
7771 	}
7772 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
7773 				 1024);
7774 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
7775 	    bp->db_size <= bp->db_offset)
7776 		bp->db_size = pci_resource_len(bp->pdev, 2);
7777 
7778 func_qcfg_exit:
7779 	hwrm_req_drop(bp, req);
7780 	return rc;
7781 }
7782 
7783 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_type *ctxm,
7784 				      u8 init_val, u8 init_offset,
7785 				      bool init_mask_set)
7786 {
7787 	ctxm->init_value = init_val;
7788 	ctxm->init_offset = BNXT_CTX_INIT_INVALID_OFFSET;
7789 	if (init_mask_set)
7790 		ctxm->init_offset = init_offset * 4;
7791 	else
7792 		ctxm->init_value = 0;
7793 }
7794 
7795 static int bnxt_alloc_all_ctx_pg_info(struct bnxt *bp, int ctx_max)
7796 {
7797 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7798 	u16 type;
7799 
7800 	for (type = 0; type < ctx_max; type++) {
7801 		struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type];
7802 		int n = 1;
7803 
7804 		if (!ctxm->max_entries)
7805 			continue;
7806 
7807 		if (ctxm->instance_bmap)
7808 			n = hweight32(ctxm->instance_bmap);
7809 		ctxm->pg_info = kcalloc(n, sizeof(*ctxm->pg_info), GFP_KERNEL);
7810 		if (!ctxm->pg_info)
7811 			return -ENOMEM;
7812 	}
7813 	return 0;
7814 }
7815 
7816 #define BNXT_CTX_INIT_VALID(flags)	\
7817 	(!!((flags) &			\
7818 	    FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_ENABLE_CTX_KIND_INIT))
7819 
7820 static int bnxt_hwrm_func_backing_store_qcaps_v2(struct bnxt *bp)
7821 {
7822 	struct hwrm_func_backing_store_qcaps_v2_output *resp;
7823 	struct hwrm_func_backing_store_qcaps_v2_input *req;
7824 	struct bnxt_ctx_mem_info *ctx;
7825 	u16 type;
7826 	int rc;
7827 
7828 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS_V2);
7829 	if (rc)
7830 		return rc;
7831 
7832 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
7833 	if (!ctx)
7834 		return -ENOMEM;
7835 	bp->ctx = ctx;
7836 
7837 	resp = hwrm_req_hold(bp, req);
7838 
7839 	for (type = 0; type < BNXT_CTX_V2_MAX; ) {
7840 		struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type];
7841 		u8 init_val, init_off, i;
7842 		__le32 *p;
7843 		u32 flags;
7844 
7845 		req->type = cpu_to_le16(type);
7846 		rc = hwrm_req_send(bp, req);
7847 		if (rc)
7848 			goto ctx_done;
7849 		flags = le32_to_cpu(resp->flags);
7850 		type = le16_to_cpu(resp->next_valid_type);
7851 		if (!(flags & FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_TYPE_VALID))
7852 			continue;
7853 
7854 		ctxm->type = le16_to_cpu(resp->type);
7855 		ctxm->entry_size = le16_to_cpu(resp->entry_size);
7856 		ctxm->flags = flags;
7857 		ctxm->instance_bmap = le32_to_cpu(resp->instance_bit_map);
7858 		ctxm->entry_multiple = resp->entry_multiple;
7859 		ctxm->max_entries = le32_to_cpu(resp->max_num_entries);
7860 		ctxm->min_entries = le32_to_cpu(resp->min_num_entries);
7861 		init_val = resp->ctx_init_value;
7862 		init_off = resp->ctx_init_offset;
7863 		bnxt_init_ctx_initializer(ctxm, init_val, init_off,
7864 					  BNXT_CTX_INIT_VALID(flags));
7865 		ctxm->split_entry_cnt = min_t(u8, resp->subtype_valid_cnt,
7866 					      BNXT_MAX_SPLIT_ENTRY);
7867 		for (i = 0, p = &resp->split_entry_0; i < ctxm->split_entry_cnt;
7868 		     i++, p++)
7869 			ctxm->split[i] = le32_to_cpu(*p);
7870 	}
7871 	rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_V2_MAX);
7872 
7873 ctx_done:
7874 	hwrm_req_drop(bp, req);
7875 	return rc;
7876 }
7877 
7878 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
7879 {
7880 	struct hwrm_func_backing_store_qcaps_output *resp;
7881 	struct hwrm_func_backing_store_qcaps_input *req;
7882 	int rc;
7883 
7884 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
7885 		return 0;
7886 
7887 	if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2)
7888 		return bnxt_hwrm_func_backing_store_qcaps_v2(bp);
7889 
7890 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS);
7891 	if (rc)
7892 		return rc;
7893 
7894 	resp = hwrm_req_hold(bp, req);
7895 	rc = hwrm_req_send_silent(bp, req);
7896 	if (!rc) {
7897 		struct bnxt_ctx_mem_type *ctxm;
7898 		struct bnxt_ctx_mem_info *ctx;
7899 		u8 init_val, init_idx = 0;
7900 		u16 init_mask;
7901 
7902 		ctx = bp->ctx;
7903 		if (!ctx) {
7904 			ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
7905 			if (!ctx) {
7906 				rc = -ENOMEM;
7907 				goto ctx_err;
7908 			}
7909 			bp->ctx = ctx;
7910 		}
7911 		init_val = resp->ctx_kind_initializer;
7912 		init_mask = le16_to_cpu(resp->ctx_init_mask);
7913 
7914 		ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
7915 		ctxm->max_entries = le32_to_cpu(resp->qp_max_entries);
7916 		ctxm->qp_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
7917 		ctxm->qp_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
7918 		ctxm->qp_fast_qpmd_entries = le16_to_cpu(resp->fast_qpmd_qp_num_entries);
7919 		ctxm->entry_size = le16_to_cpu(resp->qp_entry_size);
7920 		bnxt_init_ctx_initializer(ctxm, init_val, resp->qp_init_offset,
7921 					  (init_mask & (1 << init_idx++)) != 0);
7922 
7923 		ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
7924 		ctxm->srq_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
7925 		ctxm->max_entries = le32_to_cpu(resp->srq_max_entries);
7926 		ctxm->entry_size = le16_to_cpu(resp->srq_entry_size);
7927 		bnxt_init_ctx_initializer(ctxm, init_val, resp->srq_init_offset,
7928 					  (init_mask & (1 << init_idx++)) != 0);
7929 
7930 		ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
7931 		ctxm->cq_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
7932 		ctxm->max_entries = le32_to_cpu(resp->cq_max_entries);
7933 		ctxm->entry_size = le16_to_cpu(resp->cq_entry_size);
7934 		bnxt_init_ctx_initializer(ctxm, init_val, resp->cq_init_offset,
7935 					  (init_mask & (1 << init_idx++)) != 0);
7936 
7937 		ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
7938 		ctxm->vnic_entries = le16_to_cpu(resp->vnic_max_vnic_entries);
7939 		ctxm->max_entries = ctxm->vnic_entries +
7940 			le16_to_cpu(resp->vnic_max_ring_table_entries);
7941 		ctxm->entry_size = le16_to_cpu(resp->vnic_entry_size);
7942 		bnxt_init_ctx_initializer(ctxm, init_val,
7943 					  resp->vnic_init_offset,
7944 					  (init_mask & (1 << init_idx++)) != 0);
7945 
7946 		ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
7947 		ctxm->max_entries = le32_to_cpu(resp->stat_max_entries);
7948 		ctxm->entry_size = le16_to_cpu(resp->stat_entry_size);
7949 		bnxt_init_ctx_initializer(ctxm, init_val,
7950 					  resp->stat_init_offset,
7951 					  (init_mask & (1 << init_idx++)) != 0);
7952 
7953 		ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
7954 		ctxm->entry_size = le16_to_cpu(resp->tqm_entry_size);
7955 		ctxm->min_entries = le32_to_cpu(resp->tqm_min_entries_per_ring);
7956 		ctxm->max_entries = le32_to_cpu(resp->tqm_max_entries_per_ring);
7957 		ctxm->entry_multiple = resp->tqm_entries_multiple;
7958 		if (!ctxm->entry_multiple)
7959 			ctxm->entry_multiple = 1;
7960 
7961 		memcpy(&ctx->ctx_arr[BNXT_CTX_FTQM], ctxm, sizeof(*ctxm));
7962 
7963 		ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
7964 		ctxm->max_entries = le32_to_cpu(resp->mrav_max_entries);
7965 		ctxm->entry_size = le16_to_cpu(resp->mrav_entry_size);
7966 		ctxm->mrav_num_entries_units =
7967 			le16_to_cpu(resp->mrav_num_entries_units);
7968 		bnxt_init_ctx_initializer(ctxm, init_val,
7969 					  resp->mrav_init_offset,
7970 					  (init_mask & (1 << init_idx++)) != 0);
7971 
7972 		ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
7973 		ctxm->entry_size = le16_to_cpu(resp->tim_entry_size);
7974 		ctxm->max_entries = le32_to_cpu(resp->tim_max_entries);
7975 
7976 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
7977 		if (!ctx->tqm_fp_rings_count)
7978 			ctx->tqm_fp_rings_count = bp->max_q;
7979 		else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
7980 			ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
7981 
7982 		ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM];
7983 		memcpy(ctxm, &ctx->ctx_arr[BNXT_CTX_STQM], sizeof(*ctxm));
7984 		ctxm->instance_bmap = (1 << ctx->tqm_fp_rings_count) - 1;
7985 
7986 		rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_MAX);
7987 	} else {
7988 		rc = 0;
7989 	}
7990 ctx_err:
7991 	hwrm_req_drop(bp, req);
7992 	return rc;
7993 }
7994 
7995 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
7996 				  __le64 *pg_dir)
7997 {
7998 	if (!rmem->nr_pages)
7999 		return;
8000 
8001 	BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
8002 	if (rmem->depth >= 1) {
8003 		if (rmem->depth == 2)
8004 			*pg_attr |= 2;
8005 		else
8006 			*pg_attr |= 1;
8007 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
8008 	} else {
8009 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
8010 	}
8011 }
8012 
8013 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
8014 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
8015 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
8016 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
8017 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
8018 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
8019 
8020 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
8021 {
8022 	struct hwrm_func_backing_store_cfg_input *req;
8023 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8024 	struct bnxt_ctx_pg_info *ctx_pg;
8025 	struct bnxt_ctx_mem_type *ctxm;
8026 	void **__req = (void **)&req;
8027 	u32 req_len = sizeof(*req);
8028 	__le32 *num_entries;
8029 	__le64 *pg_dir;
8030 	u32 flags = 0;
8031 	u8 *pg_attr;
8032 	u32 ena;
8033 	int rc;
8034 	int i;
8035 
8036 	if (!ctx)
8037 		return 0;
8038 
8039 	if (req_len > bp->hwrm_max_ext_req_len)
8040 		req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
8041 	rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len);
8042 	if (rc)
8043 		return rc;
8044 
8045 	req->enables = cpu_to_le32(enables);
8046 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
8047 		ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8048 		ctx_pg = ctxm->pg_info;
8049 		req->qp_num_entries = cpu_to_le32(ctx_pg->entries);
8050 		req->qp_num_qp1_entries = cpu_to_le16(ctxm->qp_qp1_entries);
8051 		req->qp_num_l2_entries = cpu_to_le16(ctxm->qp_l2_entries);
8052 		req->qp_entry_size = cpu_to_le16(ctxm->entry_size);
8053 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8054 				      &req->qpc_pg_size_qpc_lvl,
8055 				      &req->qpc_page_dir);
8056 
8057 		if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD)
8058 			req->qp_num_fast_qpmd_entries = cpu_to_le16(ctxm->qp_fast_qpmd_entries);
8059 	}
8060 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
8061 		ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8062 		ctx_pg = ctxm->pg_info;
8063 		req->srq_num_entries = cpu_to_le32(ctx_pg->entries);
8064 		req->srq_num_l2_entries = cpu_to_le16(ctxm->srq_l2_entries);
8065 		req->srq_entry_size = cpu_to_le16(ctxm->entry_size);
8066 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8067 				      &req->srq_pg_size_srq_lvl,
8068 				      &req->srq_page_dir);
8069 	}
8070 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
8071 		ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
8072 		ctx_pg = ctxm->pg_info;
8073 		req->cq_num_entries = cpu_to_le32(ctx_pg->entries);
8074 		req->cq_num_l2_entries = cpu_to_le16(ctxm->cq_l2_entries);
8075 		req->cq_entry_size = cpu_to_le16(ctxm->entry_size);
8076 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8077 				      &req->cq_pg_size_cq_lvl,
8078 				      &req->cq_page_dir);
8079 	}
8080 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
8081 		ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
8082 		ctx_pg = ctxm->pg_info;
8083 		req->vnic_num_vnic_entries = cpu_to_le16(ctxm->vnic_entries);
8084 		req->vnic_num_ring_table_entries =
8085 			cpu_to_le16(ctxm->max_entries - ctxm->vnic_entries);
8086 		req->vnic_entry_size = cpu_to_le16(ctxm->entry_size);
8087 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8088 				      &req->vnic_pg_size_vnic_lvl,
8089 				      &req->vnic_page_dir);
8090 	}
8091 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
8092 		ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
8093 		ctx_pg = ctxm->pg_info;
8094 		req->stat_num_entries = cpu_to_le32(ctxm->max_entries);
8095 		req->stat_entry_size = cpu_to_le16(ctxm->entry_size);
8096 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8097 				      &req->stat_pg_size_stat_lvl,
8098 				      &req->stat_page_dir);
8099 	}
8100 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
8101 		u32 units;
8102 
8103 		ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
8104 		ctx_pg = ctxm->pg_info;
8105 		req->mrav_num_entries = cpu_to_le32(ctx_pg->entries);
8106 		units = ctxm->mrav_num_entries_units;
8107 		if (units) {
8108 			u32 num_mr, num_ah = ctxm->mrav_av_entries;
8109 			u32 entries;
8110 
8111 			num_mr = ctx_pg->entries - num_ah;
8112 			entries = ((num_mr / units) << 16) | (num_ah / units);
8113 			req->mrav_num_entries = cpu_to_le32(entries);
8114 			flags |= FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
8115 		}
8116 		req->mrav_entry_size = cpu_to_le16(ctxm->entry_size);
8117 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8118 				      &req->mrav_pg_size_mrav_lvl,
8119 				      &req->mrav_page_dir);
8120 	}
8121 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
8122 		ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
8123 		ctx_pg = ctxm->pg_info;
8124 		req->tim_num_entries = cpu_to_le32(ctx_pg->entries);
8125 		req->tim_entry_size = cpu_to_le16(ctxm->entry_size);
8126 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8127 				      &req->tim_pg_size_tim_lvl,
8128 				      &req->tim_page_dir);
8129 	}
8130 	ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
8131 	for (i = 0, num_entries = &req->tqm_sp_num_entries,
8132 	     pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl,
8133 	     pg_dir = &req->tqm_sp_page_dir,
8134 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP,
8135 	     ctx_pg = ctxm->pg_info;
8136 	     i < BNXT_MAX_TQM_RINGS;
8137 	     ctx_pg = &ctx->ctx_arr[BNXT_CTX_FTQM].pg_info[i],
8138 	     i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
8139 		if (!(enables & ena))
8140 			continue;
8141 
8142 		req->tqm_entry_size = cpu_to_le16(ctxm->entry_size);
8143 		*num_entries = cpu_to_le32(ctx_pg->entries);
8144 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
8145 	}
8146 	req->flags = cpu_to_le32(flags);
8147 	return hwrm_req_send(bp, req);
8148 }
8149 
8150 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
8151 				  struct bnxt_ctx_pg_info *ctx_pg)
8152 {
8153 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
8154 
8155 	rmem->page_size = BNXT_PAGE_SIZE;
8156 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
8157 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
8158 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
8159 	if (rmem->depth >= 1)
8160 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
8161 	return bnxt_alloc_ring(bp, rmem);
8162 }
8163 
8164 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
8165 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
8166 				  u8 depth, struct bnxt_ctx_mem_type *ctxm)
8167 {
8168 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
8169 	int rc;
8170 
8171 	if (!mem_size)
8172 		return -EINVAL;
8173 
8174 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
8175 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
8176 		ctx_pg->nr_pages = 0;
8177 		return -EINVAL;
8178 	}
8179 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
8180 		int nr_tbls, i;
8181 
8182 		rmem->depth = 2;
8183 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
8184 					     GFP_KERNEL);
8185 		if (!ctx_pg->ctx_pg_tbl)
8186 			return -ENOMEM;
8187 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
8188 		rmem->nr_pages = nr_tbls;
8189 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
8190 		if (rc)
8191 			return rc;
8192 		for (i = 0; i < nr_tbls; i++) {
8193 			struct bnxt_ctx_pg_info *pg_tbl;
8194 
8195 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
8196 			if (!pg_tbl)
8197 				return -ENOMEM;
8198 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
8199 			rmem = &pg_tbl->ring_mem;
8200 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
8201 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
8202 			rmem->depth = 1;
8203 			rmem->nr_pages = MAX_CTX_PAGES;
8204 			rmem->ctx_mem = ctxm;
8205 			if (i == (nr_tbls - 1)) {
8206 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
8207 
8208 				if (rem)
8209 					rmem->nr_pages = rem;
8210 			}
8211 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
8212 			if (rc)
8213 				break;
8214 		}
8215 	} else {
8216 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
8217 		if (rmem->nr_pages > 1 || depth)
8218 			rmem->depth = 1;
8219 		rmem->ctx_mem = ctxm;
8220 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
8221 	}
8222 	return rc;
8223 }
8224 
8225 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
8226 				  struct bnxt_ctx_pg_info *ctx_pg)
8227 {
8228 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
8229 
8230 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
8231 	    ctx_pg->ctx_pg_tbl) {
8232 		int i, nr_tbls = rmem->nr_pages;
8233 
8234 		for (i = 0; i < nr_tbls; i++) {
8235 			struct bnxt_ctx_pg_info *pg_tbl;
8236 			struct bnxt_ring_mem_info *rmem2;
8237 
8238 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
8239 			if (!pg_tbl)
8240 				continue;
8241 			rmem2 = &pg_tbl->ring_mem;
8242 			bnxt_free_ring(bp, rmem2);
8243 			ctx_pg->ctx_pg_arr[i] = NULL;
8244 			kfree(pg_tbl);
8245 			ctx_pg->ctx_pg_tbl[i] = NULL;
8246 		}
8247 		kfree(ctx_pg->ctx_pg_tbl);
8248 		ctx_pg->ctx_pg_tbl = NULL;
8249 	}
8250 	bnxt_free_ring(bp, rmem);
8251 	ctx_pg->nr_pages = 0;
8252 }
8253 
8254 static int bnxt_setup_ctxm_pg_tbls(struct bnxt *bp,
8255 				   struct bnxt_ctx_mem_type *ctxm, u32 entries,
8256 				   u8 pg_lvl)
8257 {
8258 	struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info;
8259 	int i, rc = 0, n = 1;
8260 	u32 mem_size;
8261 
8262 	if (!ctxm->entry_size || !ctx_pg)
8263 		return -EINVAL;
8264 	if (ctxm->instance_bmap)
8265 		n = hweight32(ctxm->instance_bmap);
8266 	if (ctxm->entry_multiple)
8267 		entries = roundup(entries, ctxm->entry_multiple);
8268 	entries = clamp_t(u32, entries, ctxm->min_entries, ctxm->max_entries);
8269 	mem_size = entries * ctxm->entry_size;
8270 	for (i = 0; i < n && !rc; i++) {
8271 		ctx_pg[i].entries = entries;
8272 		rc = bnxt_alloc_ctx_pg_tbls(bp, &ctx_pg[i], mem_size, pg_lvl,
8273 					    ctxm->init_value ? ctxm : NULL);
8274 	}
8275 	return rc;
8276 }
8277 
8278 static int bnxt_hwrm_func_backing_store_cfg_v2(struct bnxt *bp,
8279 					       struct bnxt_ctx_mem_type *ctxm,
8280 					       bool last)
8281 {
8282 	struct hwrm_func_backing_store_cfg_v2_input *req;
8283 	u32 instance_bmap = ctxm->instance_bmap;
8284 	int i, j, rc = 0, n = 1;
8285 	__le32 *p;
8286 
8287 	if (!(ctxm->flags & BNXT_CTX_MEM_TYPE_VALID) || !ctxm->pg_info)
8288 		return 0;
8289 
8290 	if (instance_bmap)
8291 		n = hweight32(ctxm->instance_bmap);
8292 	else
8293 		instance_bmap = 1;
8294 
8295 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_CFG_V2);
8296 	if (rc)
8297 		return rc;
8298 	hwrm_req_hold(bp, req);
8299 	req->type = cpu_to_le16(ctxm->type);
8300 	req->entry_size = cpu_to_le16(ctxm->entry_size);
8301 	req->subtype_valid_cnt = ctxm->split_entry_cnt;
8302 	for (i = 0, p = &req->split_entry_0; i < ctxm->split_entry_cnt; i++)
8303 		p[i] = cpu_to_le32(ctxm->split[i]);
8304 	for (i = 0, j = 0; j < n && !rc; i++) {
8305 		struct bnxt_ctx_pg_info *ctx_pg;
8306 
8307 		if (!(instance_bmap & (1 << i)))
8308 			continue;
8309 		req->instance = cpu_to_le16(i);
8310 		ctx_pg = &ctxm->pg_info[j++];
8311 		if (!ctx_pg->entries)
8312 			continue;
8313 		req->num_entries = cpu_to_le32(ctx_pg->entries);
8314 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8315 				      &req->page_size_pbl_level,
8316 				      &req->page_dir);
8317 		if (last && j == n)
8318 			req->flags =
8319 				cpu_to_le32(FUNC_BACKING_STORE_CFG_V2_REQ_FLAGS_BS_CFG_ALL_DONE);
8320 		rc = hwrm_req_send(bp, req);
8321 	}
8322 	hwrm_req_drop(bp, req);
8323 	return rc;
8324 }
8325 
8326 static int bnxt_backing_store_cfg_v2(struct bnxt *bp, u32 ena)
8327 {
8328 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8329 	struct bnxt_ctx_mem_type *ctxm;
8330 	u16 last_type;
8331 	int rc = 0;
8332 	u16 type;
8333 
8334 	if (!ena)
8335 		return 0;
8336 	else if (ena & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM)
8337 		last_type = BNXT_CTX_MAX - 1;
8338 	else
8339 		last_type = BNXT_CTX_L2_MAX - 1;
8340 	ctx->ctx_arr[last_type].last = 1;
8341 
8342 	for (type = 0 ; type < BNXT_CTX_V2_MAX; type++) {
8343 		ctxm = &ctx->ctx_arr[type];
8344 
8345 		rc = bnxt_hwrm_func_backing_store_cfg_v2(bp, ctxm, ctxm->last);
8346 		if (rc)
8347 			return rc;
8348 	}
8349 	return 0;
8350 }
8351 
8352 void bnxt_free_ctx_mem(struct bnxt *bp)
8353 {
8354 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8355 	u16 type;
8356 
8357 	if (!ctx)
8358 		return;
8359 
8360 	for (type = 0; type < BNXT_CTX_V2_MAX; type++) {
8361 		struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type];
8362 		struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info;
8363 		int i, n = 1;
8364 
8365 		if (!ctx_pg)
8366 			continue;
8367 		if (ctxm->instance_bmap)
8368 			n = hweight32(ctxm->instance_bmap);
8369 		for (i = 0; i < n; i++)
8370 			bnxt_free_ctx_pg_tbls(bp, &ctx_pg[i]);
8371 
8372 		kfree(ctx_pg);
8373 		ctxm->pg_info = NULL;
8374 	}
8375 
8376 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
8377 	kfree(ctx);
8378 	bp->ctx = NULL;
8379 }
8380 
8381 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
8382 {
8383 	struct bnxt_ctx_mem_type *ctxm;
8384 	struct bnxt_ctx_mem_info *ctx;
8385 	u32 l2_qps, qp1_qps, max_qps;
8386 	u32 ena, entries_sp, entries;
8387 	u32 srqs, max_srqs, min;
8388 	u32 num_mr, num_ah;
8389 	u32 extra_srqs = 0;
8390 	u32 extra_qps = 0;
8391 	u32 fast_qpmd_qps;
8392 	u8 pg_lvl = 1;
8393 	int i, rc;
8394 
8395 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
8396 	if (rc) {
8397 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
8398 			   rc);
8399 		return rc;
8400 	}
8401 	ctx = bp->ctx;
8402 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
8403 		return 0;
8404 
8405 	ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8406 	l2_qps = ctxm->qp_l2_entries;
8407 	qp1_qps = ctxm->qp_qp1_entries;
8408 	fast_qpmd_qps = ctxm->qp_fast_qpmd_entries;
8409 	max_qps = ctxm->max_entries;
8410 	ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8411 	srqs = ctxm->srq_l2_entries;
8412 	max_srqs = ctxm->max_entries;
8413 	ena = 0;
8414 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
8415 		pg_lvl = 2;
8416 		extra_qps = min_t(u32, 65536, max_qps - l2_qps - qp1_qps);
8417 		/* allocate extra qps if fw supports RoCE fast qp destroy feature */
8418 		extra_qps += fast_qpmd_qps;
8419 		extra_srqs = min_t(u32, 8192, max_srqs - srqs);
8420 		if (fast_qpmd_qps)
8421 			ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD;
8422 	}
8423 
8424 	ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8425 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps,
8426 				     pg_lvl);
8427 	if (rc)
8428 		return rc;
8429 
8430 	ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8431 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, srqs + extra_srqs, pg_lvl);
8432 	if (rc)
8433 		return rc;
8434 
8435 	ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
8436 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->cq_l2_entries +
8437 				     extra_qps * 2, pg_lvl);
8438 	if (rc)
8439 		return rc;
8440 
8441 	ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
8442 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1);
8443 	if (rc)
8444 		return rc;
8445 
8446 	ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
8447 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1);
8448 	if (rc)
8449 		return rc;
8450 
8451 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
8452 		goto skip_rdma;
8453 
8454 	ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
8455 	/* 128K extra is needed to accommodate static AH context
8456 	 * allocation by f/w.
8457 	 */
8458 	num_mr = min_t(u32, ctxm->max_entries / 2, 1024 * 256);
8459 	num_ah = min_t(u32, num_mr, 1024 * 128);
8460 	ctxm->split_entry_cnt = BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1;
8461 	if (!ctxm->mrav_av_entries || ctxm->mrav_av_entries > num_ah)
8462 		ctxm->mrav_av_entries = num_ah;
8463 
8464 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, num_mr + num_ah, 2);
8465 	if (rc)
8466 		return rc;
8467 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
8468 
8469 	ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
8470 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 1);
8471 	if (rc)
8472 		return rc;
8473 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
8474 
8475 skip_rdma:
8476 	ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
8477 	min = ctxm->min_entries;
8478 	entries_sp = ctx->ctx_arr[BNXT_CTX_VNIC].vnic_entries + l2_qps +
8479 		     2 * (extra_qps + qp1_qps) + min;
8480 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries_sp, 2);
8481 	if (rc)
8482 		return rc;
8483 
8484 	ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM];
8485 	entries = l2_qps + 2 * (extra_qps + qp1_qps);
8486 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries, 2);
8487 	if (rc)
8488 		return rc;
8489 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
8490 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
8491 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
8492 
8493 	if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2)
8494 		rc = bnxt_backing_store_cfg_v2(bp, ena);
8495 	else
8496 		rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
8497 	if (rc) {
8498 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
8499 			   rc);
8500 		return rc;
8501 	}
8502 	ctx->flags |= BNXT_CTX_FLAG_INITED;
8503 	return 0;
8504 }
8505 
8506 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
8507 {
8508 	struct hwrm_func_resource_qcaps_output *resp;
8509 	struct hwrm_func_resource_qcaps_input *req;
8510 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8511 	int rc;
8512 
8513 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS);
8514 	if (rc)
8515 		return rc;
8516 
8517 	req->fid = cpu_to_le16(0xffff);
8518 	resp = hwrm_req_hold(bp, req);
8519 	rc = hwrm_req_send_silent(bp, req);
8520 	if (rc)
8521 		goto hwrm_func_resc_qcaps_exit;
8522 
8523 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
8524 	if (!all)
8525 		goto hwrm_func_resc_qcaps_exit;
8526 
8527 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
8528 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
8529 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
8530 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
8531 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
8532 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
8533 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
8534 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
8535 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
8536 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
8537 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
8538 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
8539 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
8540 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
8541 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
8542 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
8543 
8544 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
8545 		u16 max_msix = le16_to_cpu(resp->max_msix);
8546 
8547 		hw_resc->max_nqs = max_msix;
8548 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
8549 	}
8550 
8551 	if (BNXT_PF(bp)) {
8552 		struct bnxt_pf_info *pf = &bp->pf;
8553 
8554 		pf->vf_resv_strategy =
8555 			le16_to_cpu(resp->vf_reservation_strategy);
8556 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
8557 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
8558 	}
8559 hwrm_func_resc_qcaps_exit:
8560 	hwrm_req_drop(bp, req);
8561 	return rc;
8562 }
8563 
8564 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
8565 {
8566 	struct hwrm_port_mac_ptp_qcfg_output *resp;
8567 	struct hwrm_port_mac_ptp_qcfg_input *req;
8568 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
8569 	bool phc_cfg;
8570 	u8 flags;
8571 	int rc;
8572 
8573 	if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5(bp)) {
8574 		rc = -ENODEV;
8575 		goto no_ptp;
8576 	}
8577 
8578 	rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG);
8579 	if (rc)
8580 		goto no_ptp;
8581 
8582 	req->port_id = cpu_to_le16(bp->pf.port_id);
8583 	resp = hwrm_req_hold(bp, req);
8584 	rc = hwrm_req_send(bp, req);
8585 	if (rc)
8586 		goto exit;
8587 
8588 	flags = resp->flags;
8589 	if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) {
8590 		rc = -ENODEV;
8591 		goto exit;
8592 	}
8593 	if (!ptp) {
8594 		ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
8595 		if (!ptp) {
8596 			rc = -ENOMEM;
8597 			goto exit;
8598 		}
8599 		ptp->bp = bp;
8600 		bp->ptp_cfg = ptp;
8601 	}
8602 	if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) {
8603 		ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower);
8604 		ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper);
8605 	} else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
8606 		ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER;
8607 		ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER;
8608 	} else {
8609 		rc = -ENODEV;
8610 		goto exit;
8611 	}
8612 	phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0;
8613 	rc = bnxt_ptp_init(bp, phc_cfg);
8614 	if (rc)
8615 		netdev_warn(bp->dev, "PTP initialization failed.\n");
8616 exit:
8617 	hwrm_req_drop(bp, req);
8618 	if (!rc)
8619 		return 0;
8620 
8621 no_ptp:
8622 	bnxt_ptp_clear(bp);
8623 	kfree(ptp);
8624 	bp->ptp_cfg = NULL;
8625 	return rc;
8626 }
8627 
8628 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
8629 {
8630 	struct hwrm_func_qcaps_output *resp;
8631 	struct hwrm_func_qcaps_input *req;
8632 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8633 	u32 flags, flags_ext, flags_ext2;
8634 	int rc;
8635 
8636 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS);
8637 	if (rc)
8638 		return rc;
8639 
8640 	req->fid = cpu_to_le16(0xffff);
8641 	resp = hwrm_req_hold(bp, req);
8642 	rc = hwrm_req_send(bp, req);
8643 	if (rc)
8644 		goto hwrm_func_qcaps_exit;
8645 
8646 	flags = le32_to_cpu(resp->flags);
8647 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
8648 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
8649 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
8650 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
8651 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
8652 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
8653 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
8654 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
8655 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
8656 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
8657 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
8658 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
8659 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
8660 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
8661 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
8662 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
8663 	if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED)
8664 		bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS;
8665 
8666 	flags_ext = le32_to_cpu(resp->flags_ext);
8667 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
8668 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
8669 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED))
8670 		bp->fw_cap |= BNXT_FW_CAP_PTP_PPS;
8671 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED)
8672 		bp->fw_cap |= BNXT_FW_CAP_PTP_RTC;
8673 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT))
8674 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF;
8675 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED))
8676 		bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH;
8677 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_BS_V2_SUPPORTED)
8678 		bp->fw_cap |= BNXT_FW_CAP_BACKING_STORE_V2;
8679 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_TX_COAL_CMPL_CAP)
8680 		bp->flags |= BNXT_FLAG_TX_COAL_CMPL;
8681 
8682 	flags_ext2 = le32_to_cpu(resp->flags_ext2);
8683 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED)
8684 		bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS;
8685 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_UDP_GSO_SUPPORTED)
8686 		bp->flags |= BNXT_FLAG_UDP_GSO_CAP;
8687 
8688 	bp->tx_push_thresh = 0;
8689 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
8690 	    BNXT_FW_MAJ(bp) > 217)
8691 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
8692 
8693 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
8694 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
8695 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
8696 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
8697 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
8698 	if (!hw_resc->max_hw_ring_grps)
8699 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
8700 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
8701 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
8702 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
8703 
8704 	if (BNXT_PF(bp)) {
8705 		struct bnxt_pf_info *pf = &bp->pf;
8706 
8707 		pf->fw_fid = le16_to_cpu(resp->fid);
8708 		pf->port_id = le16_to_cpu(resp->port_id);
8709 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
8710 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
8711 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
8712 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
8713 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
8714 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
8715 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
8716 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
8717 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
8718 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
8719 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
8720 			bp->flags |= BNXT_FLAG_WOL_CAP;
8721 		if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) {
8722 			bp->fw_cap |= BNXT_FW_CAP_PTP;
8723 		} else {
8724 			bnxt_ptp_clear(bp);
8725 			kfree(bp->ptp_cfg);
8726 			bp->ptp_cfg = NULL;
8727 		}
8728 	} else {
8729 #ifdef CONFIG_BNXT_SRIOV
8730 		struct bnxt_vf_info *vf = &bp->vf;
8731 
8732 		vf->fw_fid = le16_to_cpu(resp->fid);
8733 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
8734 #endif
8735 	}
8736 
8737 hwrm_func_qcaps_exit:
8738 	hwrm_req_drop(bp, req);
8739 	return rc;
8740 }
8741 
8742 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp)
8743 {
8744 	struct hwrm_dbg_qcaps_output *resp;
8745 	struct hwrm_dbg_qcaps_input *req;
8746 	int rc;
8747 
8748 	bp->fw_dbg_cap = 0;
8749 	if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS))
8750 		return;
8751 
8752 	rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS);
8753 	if (rc)
8754 		return;
8755 
8756 	req->fid = cpu_to_le16(0xffff);
8757 	resp = hwrm_req_hold(bp, req);
8758 	rc = hwrm_req_send(bp, req);
8759 	if (rc)
8760 		goto hwrm_dbg_qcaps_exit;
8761 
8762 	bp->fw_dbg_cap = le32_to_cpu(resp->flags);
8763 
8764 hwrm_dbg_qcaps_exit:
8765 	hwrm_req_drop(bp, req);
8766 }
8767 
8768 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
8769 
8770 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
8771 {
8772 	int rc;
8773 
8774 	rc = __bnxt_hwrm_func_qcaps(bp);
8775 	if (rc)
8776 		return rc;
8777 
8778 	bnxt_hwrm_dbg_qcaps(bp);
8779 
8780 	rc = bnxt_hwrm_queue_qportcfg(bp);
8781 	if (rc) {
8782 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
8783 		return rc;
8784 	}
8785 	if (bp->hwrm_spec_code >= 0x10803) {
8786 		rc = bnxt_alloc_ctx_mem(bp);
8787 		if (rc)
8788 			return rc;
8789 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
8790 		if (!rc)
8791 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
8792 	}
8793 	return 0;
8794 }
8795 
8796 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
8797 {
8798 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
8799 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req;
8800 	u32 flags;
8801 	int rc;
8802 
8803 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
8804 		return 0;
8805 
8806 	rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS);
8807 	if (rc)
8808 		return rc;
8809 
8810 	resp = hwrm_req_hold(bp, req);
8811 	rc = hwrm_req_send(bp, req);
8812 	if (rc)
8813 		goto hwrm_cfa_adv_qcaps_exit;
8814 
8815 	flags = le32_to_cpu(resp->flags);
8816 	if (flags &
8817 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
8818 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
8819 
8820 hwrm_cfa_adv_qcaps_exit:
8821 	hwrm_req_drop(bp, req);
8822 	return rc;
8823 }
8824 
8825 static int __bnxt_alloc_fw_health(struct bnxt *bp)
8826 {
8827 	if (bp->fw_health)
8828 		return 0;
8829 
8830 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
8831 	if (!bp->fw_health)
8832 		return -ENOMEM;
8833 
8834 	mutex_init(&bp->fw_health->lock);
8835 	return 0;
8836 }
8837 
8838 static int bnxt_alloc_fw_health(struct bnxt *bp)
8839 {
8840 	int rc;
8841 
8842 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
8843 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
8844 		return 0;
8845 
8846 	rc = __bnxt_alloc_fw_health(bp);
8847 	if (rc) {
8848 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
8849 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
8850 		return rc;
8851 	}
8852 
8853 	return 0;
8854 }
8855 
8856 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
8857 {
8858 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
8859 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
8860 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
8861 }
8862 
8863 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
8864 {
8865 	struct bnxt_fw_health *fw_health = bp->fw_health;
8866 	u32 reg_type;
8867 
8868 	if (!fw_health)
8869 		return;
8870 
8871 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
8872 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
8873 		fw_health->status_reliable = false;
8874 
8875 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]);
8876 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
8877 		fw_health->resets_reliable = false;
8878 }
8879 
8880 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
8881 {
8882 	void __iomem *hs;
8883 	u32 status_loc;
8884 	u32 reg_type;
8885 	u32 sig;
8886 
8887 	if (bp->fw_health)
8888 		bp->fw_health->status_reliable = false;
8889 
8890 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
8891 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
8892 
8893 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
8894 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
8895 		if (!bp->chip_num) {
8896 			__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
8897 			bp->chip_num = readl(bp->bar0 +
8898 					     BNXT_FW_HEALTH_WIN_BASE +
8899 					     BNXT_GRC_REG_CHIP_NUM);
8900 		}
8901 		if (!BNXT_CHIP_P5(bp))
8902 			return;
8903 
8904 		status_loc = BNXT_GRC_REG_STATUS_P5 |
8905 			     BNXT_FW_HEALTH_REG_TYPE_BAR0;
8906 	} else {
8907 		status_loc = readl(hs + offsetof(struct hcomm_status,
8908 						 fw_status_loc));
8909 	}
8910 
8911 	if (__bnxt_alloc_fw_health(bp)) {
8912 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
8913 		return;
8914 	}
8915 
8916 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
8917 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
8918 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
8919 		__bnxt_map_fw_health_reg(bp, status_loc);
8920 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
8921 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
8922 	}
8923 
8924 	bp->fw_health->status_reliable = true;
8925 }
8926 
8927 static int bnxt_map_fw_health_regs(struct bnxt *bp)
8928 {
8929 	struct bnxt_fw_health *fw_health = bp->fw_health;
8930 	u32 reg_base = 0xffffffff;
8931 	int i;
8932 
8933 	bp->fw_health->status_reliable = false;
8934 	bp->fw_health->resets_reliable = false;
8935 	/* Only pre-map the monitoring GRC registers using window 3 */
8936 	for (i = 0; i < 4; i++) {
8937 		u32 reg = fw_health->regs[i];
8938 
8939 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
8940 			continue;
8941 		if (reg_base == 0xffffffff)
8942 			reg_base = reg & BNXT_GRC_BASE_MASK;
8943 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
8944 			return -ERANGE;
8945 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
8946 	}
8947 	bp->fw_health->status_reliable = true;
8948 	bp->fw_health->resets_reliable = true;
8949 	if (reg_base == 0xffffffff)
8950 		return 0;
8951 
8952 	__bnxt_map_fw_health_reg(bp, reg_base);
8953 	return 0;
8954 }
8955 
8956 static void bnxt_remap_fw_health_regs(struct bnxt *bp)
8957 {
8958 	if (!bp->fw_health)
8959 		return;
8960 
8961 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) {
8962 		bp->fw_health->status_reliable = true;
8963 		bp->fw_health->resets_reliable = true;
8964 	} else {
8965 		bnxt_try_map_fw_health_reg(bp);
8966 	}
8967 }
8968 
8969 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
8970 {
8971 	struct bnxt_fw_health *fw_health = bp->fw_health;
8972 	struct hwrm_error_recovery_qcfg_output *resp;
8973 	struct hwrm_error_recovery_qcfg_input *req;
8974 	int rc, i;
8975 
8976 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
8977 		return 0;
8978 
8979 	rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG);
8980 	if (rc)
8981 		return rc;
8982 
8983 	resp = hwrm_req_hold(bp, req);
8984 	rc = hwrm_req_send(bp, req);
8985 	if (rc)
8986 		goto err_recovery_out;
8987 	fw_health->flags = le32_to_cpu(resp->flags);
8988 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
8989 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
8990 		rc = -EINVAL;
8991 		goto err_recovery_out;
8992 	}
8993 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
8994 	fw_health->master_func_wait_dsecs =
8995 		le32_to_cpu(resp->master_func_wait_period);
8996 	fw_health->normal_func_wait_dsecs =
8997 		le32_to_cpu(resp->normal_func_wait_period);
8998 	fw_health->post_reset_wait_dsecs =
8999 		le32_to_cpu(resp->master_func_wait_period_after_reset);
9000 	fw_health->post_reset_max_wait_dsecs =
9001 		le32_to_cpu(resp->max_bailout_time_after_reset);
9002 	fw_health->regs[BNXT_FW_HEALTH_REG] =
9003 		le32_to_cpu(resp->fw_health_status_reg);
9004 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
9005 		le32_to_cpu(resp->fw_heartbeat_reg);
9006 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
9007 		le32_to_cpu(resp->fw_reset_cnt_reg);
9008 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
9009 		le32_to_cpu(resp->reset_inprogress_reg);
9010 	fw_health->fw_reset_inprog_reg_mask =
9011 		le32_to_cpu(resp->reset_inprogress_reg_mask);
9012 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
9013 	if (fw_health->fw_reset_seq_cnt >= 16) {
9014 		rc = -EINVAL;
9015 		goto err_recovery_out;
9016 	}
9017 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
9018 		fw_health->fw_reset_seq_regs[i] =
9019 			le32_to_cpu(resp->reset_reg[i]);
9020 		fw_health->fw_reset_seq_vals[i] =
9021 			le32_to_cpu(resp->reset_reg_val[i]);
9022 		fw_health->fw_reset_seq_delay_msec[i] =
9023 			resp->delay_after_reset[i];
9024 	}
9025 err_recovery_out:
9026 	hwrm_req_drop(bp, req);
9027 	if (!rc)
9028 		rc = bnxt_map_fw_health_regs(bp);
9029 	if (rc)
9030 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
9031 	return rc;
9032 }
9033 
9034 static int bnxt_hwrm_func_reset(struct bnxt *bp)
9035 {
9036 	struct hwrm_func_reset_input *req;
9037 	int rc;
9038 
9039 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET);
9040 	if (rc)
9041 		return rc;
9042 
9043 	req->enables = 0;
9044 	hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT);
9045 	return hwrm_req_send(bp, req);
9046 }
9047 
9048 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
9049 {
9050 	struct hwrm_nvm_get_dev_info_output nvm_info;
9051 
9052 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
9053 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
9054 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
9055 			 nvm_info.nvm_cfg_ver_upd);
9056 }
9057 
9058 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
9059 {
9060 	struct hwrm_queue_qportcfg_output *resp;
9061 	struct hwrm_queue_qportcfg_input *req;
9062 	u8 i, j, *qptr;
9063 	bool no_rdma;
9064 	int rc = 0;
9065 
9066 	rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG);
9067 	if (rc)
9068 		return rc;
9069 
9070 	resp = hwrm_req_hold(bp, req);
9071 	rc = hwrm_req_send(bp, req);
9072 	if (rc)
9073 		goto qportcfg_exit;
9074 
9075 	if (!resp->max_configurable_queues) {
9076 		rc = -EINVAL;
9077 		goto qportcfg_exit;
9078 	}
9079 	bp->max_tc = resp->max_configurable_queues;
9080 	bp->max_lltc = resp->max_configurable_lossless_queues;
9081 	if (bp->max_tc > BNXT_MAX_QUEUE)
9082 		bp->max_tc = BNXT_MAX_QUEUE;
9083 
9084 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
9085 	qptr = &resp->queue_id0;
9086 	for (i = 0, j = 0; i < bp->max_tc; i++) {
9087 		bp->q_info[j].queue_id = *qptr;
9088 		bp->q_ids[i] = *qptr++;
9089 		bp->q_info[j].queue_profile = *qptr++;
9090 		bp->tc_to_qidx[j] = j;
9091 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
9092 		    (no_rdma && BNXT_PF(bp)))
9093 			j++;
9094 	}
9095 	bp->max_q = bp->max_tc;
9096 	bp->max_tc = max_t(u8, j, 1);
9097 
9098 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
9099 		bp->max_tc = 1;
9100 
9101 	if (bp->max_lltc > bp->max_tc)
9102 		bp->max_lltc = bp->max_tc;
9103 
9104 qportcfg_exit:
9105 	hwrm_req_drop(bp, req);
9106 	return rc;
9107 }
9108 
9109 static int bnxt_hwrm_poll(struct bnxt *bp)
9110 {
9111 	struct hwrm_ver_get_input *req;
9112 	int rc;
9113 
9114 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
9115 	if (rc)
9116 		return rc;
9117 
9118 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
9119 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
9120 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
9121 
9122 	hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT);
9123 	rc = hwrm_req_send(bp, req);
9124 	return rc;
9125 }
9126 
9127 static int bnxt_hwrm_ver_get(struct bnxt *bp)
9128 {
9129 	struct hwrm_ver_get_output *resp;
9130 	struct hwrm_ver_get_input *req;
9131 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
9132 	u32 dev_caps_cfg, hwrm_ver;
9133 	int rc, len;
9134 
9135 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
9136 	if (rc)
9137 		return rc;
9138 
9139 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
9140 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
9141 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
9142 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
9143 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
9144 
9145 	resp = hwrm_req_hold(bp, req);
9146 	rc = hwrm_req_send(bp, req);
9147 	if (rc)
9148 		goto hwrm_ver_get_exit;
9149 
9150 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
9151 
9152 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
9153 			     resp->hwrm_intf_min_8b << 8 |
9154 			     resp->hwrm_intf_upd_8b;
9155 	if (resp->hwrm_intf_maj_8b < 1) {
9156 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
9157 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
9158 			    resp->hwrm_intf_upd_8b);
9159 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
9160 	}
9161 
9162 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
9163 			HWRM_VERSION_UPDATE;
9164 
9165 	if (bp->hwrm_spec_code > hwrm_ver)
9166 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
9167 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
9168 			 HWRM_VERSION_UPDATE);
9169 	else
9170 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
9171 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
9172 			 resp->hwrm_intf_upd_8b);
9173 
9174 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
9175 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
9176 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
9177 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
9178 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
9179 		len = FW_VER_STR_LEN;
9180 	} else {
9181 		fw_maj = resp->hwrm_fw_maj_8b;
9182 		fw_min = resp->hwrm_fw_min_8b;
9183 		fw_bld = resp->hwrm_fw_bld_8b;
9184 		fw_rsv = resp->hwrm_fw_rsvd_8b;
9185 		len = BC_HWRM_STR_LEN;
9186 	}
9187 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
9188 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
9189 		 fw_rsv);
9190 
9191 	if (strlen(resp->active_pkg_name)) {
9192 		int fw_ver_len = strlen(bp->fw_ver_str);
9193 
9194 		snprintf(bp->fw_ver_str + fw_ver_len,
9195 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
9196 			 resp->active_pkg_name);
9197 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
9198 	}
9199 
9200 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
9201 	if (!bp->hwrm_cmd_timeout)
9202 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
9203 	bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000;
9204 	if (!bp->hwrm_cmd_max_timeout)
9205 		bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT;
9206 	else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT)
9207 		netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n",
9208 			    bp->hwrm_cmd_max_timeout / 1000);
9209 
9210 	if (resp->hwrm_intf_maj_8b >= 1) {
9211 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
9212 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
9213 	}
9214 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
9215 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
9216 
9217 	bp->chip_num = le16_to_cpu(resp->chip_num);
9218 	bp->chip_rev = resp->chip_rev;
9219 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
9220 	    !resp->chip_metal)
9221 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
9222 
9223 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
9224 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
9225 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
9226 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
9227 
9228 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
9229 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
9230 
9231 	if (dev_caps_cfg &
9232 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
9233 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
9234 
9235 	if (dev_caps_cfg &
9236 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
9237 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
9238 
9239 	if (dev_caps_cfg &
9240 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
9241 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
9242 
9243 hwrm_ver_get_exit:
9244 	hwrm_req_drop(bp, req);
9245 	return rc;
9246 }
9247 
9248 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
9249 {
9250 	struct hwrm_fw_set_time_input *req;
9251 	struct tm tm;
9252 	time64_t now = ktime_get_real_seconds();
9253 	int rc;
9254 
9255 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
9256 	    bp->hwrm_spec_code < 0x10400)
9257 		return -EOPNOTSUPP;
9258 
9259 	time64_to_tm(now, 0, &tm);
9260 	rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME);
9261 	if (rc)
9262 		return rc;
9263 
9264 	req->year = cpu_to_le16(1900 + tm.tm_year);
9265 	req->month = 1 + tm.tm_mon;
9266 	req->day = tm.tm_mday;
9267 	req->hour = tm.tm_hour;
9268 	req->minute = tm.tm_min;
9269 	req->second = tm.tm_sec;
9270 	return hwrm_req_send(bp, req);
9271 }
9272 
9273 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
9274 {
9275 	u64 sw_tmp;
9276 
9277 	hw &= mask;
9278 	sw_tmp = (*sw & ~mask) | hw;
9279 	if (hw < (*sw & mask))
9280 		sw_tmp += mask + 1;
9281 	WRITE_ONCE(*sw, sw_tmp);
9282 }
9283 
9284 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
9285 				    int count, bool ignore_zero)
9286 {
9287 	int i;
9288 
9289 	for (i = 0; i < count; i++) {
9290 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
9291 
9292 		if (ignore_zero && !hw)
9293 			continue;
9294 
9295 		if (masks[i] == -1ULL)
9296 			sw_stats[i] = hw;
9297 		else
9298 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
9299 	}
9300 }
9301 
9302 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
9303 {
9304 	if (!stats->hw_stats)
9305 		return;
9306 
9307 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
9308 				stats->hw_masks, stats->len / 8, false);
9309 }
9310 
9311 static void bnxt_accumulate_all_stats(struct bnxt *bp)
9312 {
9313 	struct bnxt_stats_mem *ring0_stats;
9314 	bool ignore_zero = false;
9315 	int i;
9316 
9317 	/* Chip bug.  Counter intermittently becomes 0. */
9318 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9319 		ignore_zero = true;
9320 
9321 	for (i = 0; i < bp->cp_nr_rings; i++) {
9322 		struct bnxt_napi *bnapi = bp->bnapi[i];
9323 		struct bnxt_cp_ring_info *cpr;
9324 		struct bnxt_stats_mem *stats;
9325 
9326 		cpr = &bnapi->cp_ring;
9327 		stats = &cpr->stats;
9328 		if (!i)
9329 			ring0_stats = stats;
9330 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
9331 					ring0_stats->hw_masks,
9332 					ring0_stats->len / 8, ignore_zero);
9333 	}
9334 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
9335 		struct bnxt_stats_mem *stats = &bp->port_stats;
9336 		__le64 *hw_stats = stats->hw_stats;
9337 		u64 *sw_stats = stats->sw_stats;
9338 		u64 *masks = stats->hw_masks;
9339 		int cnt;
9340 
9341 		cnt = sizeof(struct rx_port_stats) / 8;
9342 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
9343 
9344 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
9345 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
9346 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
9347 		cnt = sizeof(struct tx_port_stats) / 8;
9348 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
9349 	}
9350 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
9351 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
9352 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
9353 	}
9354 }
9355 
9356 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
9357 {
9358 	struct hwrm_port_qstats_input *req;
9359 	struct bnxt_pf_info *pf = &bp->pf;
9360 	int rc;
9361 
9362 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
9363 		return 0;
9364 
9365 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
9366 		return -EOPNOTSUPP;
9367 
9368 	rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS);
9369 	if (rc)
9370 		return rc;
9371 
9372 	req->flags = flags;
9373 	req->port_id = cpu_to_le16(pf->port_id);
9374 	req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
9375 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
9376 	req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
9377 	return hwrm_req_send(bp, req);
9378 }
9379 
9380 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
9381 {
9382 	struct hwrm_queue_pri2cos_qcfg_output *resp_qc;
9383 	struct hwrm_queue_pri2cos_qcfg_input *req_qc;
9384 	struct hwrm_port_qstats_ext_output *resp_qs;
9385 	struct hwrm_port_qstats_ext_input *req_qs;
9386 	struct bnxt_pf_info *pf = &bp->pf;
9387 	u32 tx_stat_size;
9388 	int rc;
9389 
9390 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
9391 		return 0;
9392 
9393 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
9394 		return -EOPNOTSUPP;
9395 
9396 	rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT);
9397 	if (rc)
9398 		return rc;
9399 
9400 	req_qs->flags = flags;
9401 	req_qs->port_id = cpu_to_le16(pf->port_id);
9402 	req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
9403 	req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
9404 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
9405 		       sizeof(struct tx_port_stats_ext) : 0;
9406 	req_qs->tx_stat_size = cpu_to_le16(tx_stat_size);
9407 	req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
9408 	resp_qs = hwrm_req_hold(bp, req_qs);
9409 	rc = hwrm_req_send(bp, req_qs);
9410 	if (!rc) {
9411 		bp->fw_rx_stats_ext_size =
9412 			le16_to_cpu(resp_qs->rx_stat_size) / 8;
9413 		if (BNXT_FW_MAJ(bp) < 220 &&
9414 		    bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY)
9415 			bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY;
9416 
9417 		bp->fw_tx_stats_ext_size = tx_stat_size ?
9418 			le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0;
9419 	} else {
9420 		bp->fw_rx_stats_ext_size = 0;
9421 		bp->fw_tx_stats_ext_size = 0;
9422 	}
9423 	hwrm_req_drop(bp, req_qs);
9424 
9425 	if (flags)
9426 		return rc;
9427 
9428 	if (bp->fw_tx_stats_ext_size <=
9429 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
9430 		bp->pri2cos_valid = 0;
9431 		return rc;
9432 	}
9433 
9434 	rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG);
9435 	if (rc)
9436 		return rc;
9437 
9438 	req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
9439 
9440 	resp_qc = hwrm_req_hold(bp, req_qc);
9441 	rc = hwrm_req_send(bp, req_qc);
9442 	if (!rc) {
9443 		u8 *pri2cos;
9444 		int i, j;
9445 
9446 		pri2cos = &resp_qc->pri0_cos_queue_id;
9447 		for (i = 0; i < 8; i++) {
9448 			u8 queue_id = pri2cos[i];
9449 			u8 queue_idx;
9450 
9451 			/* Per port queue IDs start from 0, 10, 20, etc */
9452 			queue_idx = queue_id % 10;
9453 			if (queue_idx > BNXT_MAX_QUEUE) {
9454 				bp->pri2cos_valid = false;
9455 				hwrm_req_drop(bp, req_qc);
9456 				return rc;
9457 			}
9458 			for (j = 0; j < bp->max_q; j++) {
9459 				if (bp->q_ids[j] == queue_id)
9460 					bp->pri2cos_idx[i] = queue_idx;
9461 			}
9462 		}
9463 		bp->pri2cos_valid = true;
9464 	}
9465 	hwrm_req_drop(bp, req_qc);
9466 
9467 	return rc;
9468 }
9469 
9470 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
9471 {
9472 	bnxt_hwrm_tunnel_dst_port_free(bp,
9473 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
9474 	bnxt_hwrm_tunnel_dst_port_free(bp,
9475 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
9476 }
9477 
9478 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
9479 {
9480 	int rc, i;
9481 	u32 tpa_flags = 0;
9482 
9483 	if (set_tpa)
9484 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
9485 	else if (BNXT_NO_FW_ACCESS(bp))
9486 		return 0;
9487 	for (i = 0; i < bp->nr_vnics; i++) {
9488 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
9489 		if (rc) {
9490 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
9491 				   i, rc);
9492 			return rc;
9493 		}
9494 	}
9495 	return 0;
9496 }
9497 
9498 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
9499 {
9500 	int i;
9501 
9502 	for (i = 0; i < bp->nr_vnics; i++)
9503 		bnxt_hwrm_vnic_set_rss(bp, i, false);
9504 }
9505 
9506 static void bnxt_clear_vnic(struct bnxt *bp)
9507 {
9508 	if (!bp->vnic_info)
9509 		return;
9510 
9511 	bnxt_hwrm_clear_vnic_filter(bp);
9512 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) {
9513 		/* clear all RSS setting before free vnic ctx */
9514 		bnxt_hwrm_clear_vnic_rss(bp);
9515 		bnxt_hwrm_vnic_ctx_free(bp);
9516 	}
9517 	/* before free the vnic, undo the vnic tpa settings */
9518 	if (bp->flags & BNXT_FLAG_TPA)
9519 		bnxt_set_tpa(bp, false);
9520 	bnxt_hwrm_vnic_free(bp);
9521 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9522 		bnxt_hwrm_vnic_ctx_free(bp);
9523 }
9524 
9525 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
9526 				    bool irq_re_init)
9527 {
9528 	bnxt_clear_vnic(bp);
9529 	bnxt_hwrm_ring_free(bp, close_path);
9530 	bnxt_hwrm_ring_grp_free(bp);
9531 	if (irq_re_init) {
9532 		bnxt_hwrm_stat_ctx_free(bp);
9533 		bnxt_hwrm_free_tunnel_ports(bp);
9534 	}
9535 }
9536 
9537 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
9538 {
9539 	struct hwrm_func_cfg_input *req;
9540 	u8 evb_mode;
9541 	int rc;
9542 
9543 	if (br_mode == BRIDGE_MODE_VEB)
9544 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
9545 	else if (br_mode == BRIDGE_MODE_VEPA)
9546 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
9547 	else
9548 		return -EINVAL;
9549 
9550 	rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
9551 	if (rc)
9552 		return rc;
9553 
9554 	req->fid = cpu_to_le16(0xffff);
9555 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
9556 	req->evb_mode = evb_mode;
9557 	return hwrm_req_send(bp, req);
9558 }
9559 
9560 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
9561 {
9562 	struct hwrm_func_cfg_input *req;
9563 	int rc;
9564 
9565 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
9566 		return 0;
9567 
9568 	rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
9569 	if (rc)
9570 		return rc;
9571 
9572 	req->fid = cpu_to_le16(0xffff);
9573 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
9574 	req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
9575 	if (size == 128)
9576 		req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
9577 
9578 	return hwrm_req_send(bp, req);
9579 }
9580 
9581 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
9582 {
9583 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
9584 	int rc;
9585 
9586 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
9587 		goto skip_rss_ctx;
9588 
9589 	/* allocate context for vnic */
9590 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
9591 	if (rc) {
9592 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
9593 			   vnic_id, rc);
9594 		goto vnic_setup_err;
9595 	}
9596 	bp->rsscos_nr_ctxs++;
9597 
9598 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
9599 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
9600 		if (rc) {
9601 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
9602 				   vnic_id, rc);
9603 			goto vnic_setup_err;
9604 		}
9605 		bp->rsscos_nr_ctxs++;
9606 	}
9607 
9608 skip_rss_ctx:
9609 	/* configure default vnic, ring grp */
9610 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
9611 	if (rc) {
9612 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
9613 			   vnic_id, rc);
9614 		goto vnic_setup_err;
9615 	}
9616 
9617 	/* Enable RSS hashing on vnic */
9618 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
9619 	if (rc) {
9620 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
9621 			   vnic_id, rc);
9622 		goto vnic_setup_err;
9623 	}
9624 
9625 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
9626 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
9627 		if (rc) {
9628 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
9629 				   vnic_id, rc);
9630 		}
9631 	}
9632 
9633 vnic_setup_err:
9634 	return rc;
9635 }
9636 
9637 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
9638 {
9639 	int rc, i, nr_ctxs;
9640 
9641 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
9642 	for (i = 0; i < nr_ctxs; i++) {
9643 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
9644 		if (rc) {
9645 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
9646 				   vnic_id, i, rc);
9647 			break;
9648 		}
9649 		bp->rsscos_nr_ctxs++;
9650 	}
9651 	if (i < nr_ctxs)
9652 		return -ENOMEM;
9653 
9654 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
9655 	if (rc) {
9656 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
9657 			   vnic_id, rc);
9658 		return rc;
9659 	}
9660 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
9661 	if (rc) {
9662 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
9663 			   vnic_id, rc);
9664 		return rc;
9665 	}
9666 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
9667 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
9668 		if (rc) {
9669 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
9670 				   vnic_id, rc);
9671 		}
9672 	}
9673 	return rc;
9674 }
9675 
9676 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
9677 {
9678 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9679 		return __bnxt_setup_vnic_p5(bp, vnic_id);
9680 	else
9681 		return __bnxt_setup_vnic(bp, vnic_id);
9682 }
9683 
9684 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
9685 {
9686 	int i, rc = 0;
9687 
9688 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9689 		return 0;
9690 
9691 	for (i = 0; i < bp->rx_nr_rings; i++) {
9692 		struct bnxt_vnic_info *vnic;
9693 		u16 vnic_id = i + 1;
9694 		u16 ring_id = i;
9695 
9696 		if (vnic_id >= bp->nr_vnics)
9697 			break;
9698 
9699 		vnic = &bp->vnic_info[vnic_id];
9700 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
9701 		if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP)
9702 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
9703 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
9704 		if (rc) {
9705 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
9706 				   vnic_id, rc);
9707 			break;
9708 		}
9709 		rc = bnxt_setup_vnic(bp, vnic_id);
9710 		if (rc)
9711 			break;
9712 	}
9713 	return rc;
9714 }
9715 
9716 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
9717 static bool bnxt_promisc_ok(struct bnxt *bp)
9718 {
9719 #ifdef CONFIG_BNXT_SRIOV
9720 	if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
9721 		return false;
9722 #endif
9723 	return true;
9724 }
9725 
9726 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
9727 {
9728 	unsigned int rc = 0;
9729 
9730 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
9731 	if (rc) {
9732 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
9733 			   rc);
9734 		return rc;
9735 	}
9736 
9737 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
9738 	if (rc) {
9739 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
9740 			   rc);
9741 		return rc;
9742 	}
9743 	return rc;
9744 }
9745 
9746 static int bnxt_cfg_rx_mode(struct bnxt *);
9747 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
9748 
9749 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
9750 {
9751 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9752 	int rc = 0;
9753 	unsigned int rx_nr_rings = bp->rx_nr_rings;
9754 
9755 	if (irq_re_init) {
9756 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
9757 		if (rc) {
9758 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
9759 				   rc);
9760 			goto err_out;
9761 		}
9762 	}
9763 
9764 	rc = bnxt_hwrm_ring_alloc(bp);
9765 	if (rc) {
9766 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
9767 		goto err_out;
9768 	}
9769 
9770 	rc = bnxt_hwrm_ring_grp_alloc(bp);
9771 	if (rc) {
9772 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
9773 		goto err_out;
9774 	}
9775 
9776 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
9777 		rx_nr_rings--;
9778 
9779 	/* default vnic 0 */
9780 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
9781 	if (rc) {
9782 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
9783 		goto err_out;
9784 	}
9785 
9786 	if (BNXT_VF(bp))
9787 		bnxt_hwrm_func_qcfg(bp);
9788 
9789 	rc = bnxt_setup_vnic(bp, 0);
9790 	if (rc)
9791 		goto err_out;
9792 	if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA)
9793 		bnxt_hwrm_update_rss_hash_cfg(bp);
9794 
9795 	if (bp->flags & BNXT_FLAG_RFS) {
9796 		rc = bnxt_alloc_rfs_vnics(bp);
9797 		if (rc)
9798 			goto err_out;
9799 	}
9800 
9801 	if (bp->flags & BNXT_FLAG_TPA) {
9802 		rc = bnxt_set_tpa(bp, true);
9803 		if (rc)
9804 			goto err_out;
9805 	}
9806 
9807 	if (BNXT_VF(bp))
9808 		bnxt_update_vf_mac(bp);
9809 
9810 	/* Filter for default vnic 0 */
9811 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
9812 	if (rc) {
9813 		if (BNXT_VF(bp) && rc == -ENODEV)
9814 			netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n");
9815 		else
9816 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
9817 		goto err_out;
9818 	}
9819 	vnic->uc_filter_count = 1;
9820 
9821 	vnic->rx_mask = 0;
9822 	if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state))
9823 		goto skip_rx_mask;
9824 
9825 	if (bp->dev->flags & IFF_BROADCAST)
9826 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
9827 
9828 	if (bp->dev->flags & IFF_PROMISC)
9829 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
9830 
9831 	if (bp->dev->flags & IFF_ALLMULTI) {
9832 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9833 		vnic->mc_list_count = 0;
9834 	} else if (bp->dev->flags & IFF_MULTICAST) {
9835 		u32 mask = 0;
9836 
9837 		bnxt_mc_list_updated(bp, &mask);
9838 		vnic->rx_mask |= mask;
9839 	}
9840 
9841 	rc = bnxt_cfg_rx_mode(bp);
9842 	if (rc)
9843 		goto err_out;
9844 
9845 skip_rx_mask:
9846 	rc = bnxt_hwrm_set_coal(bp);
9847 	if (rc)
9848 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
9849 				rc);
9850 
9851 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
9852 		rc = bnxt_setup_nitroa0_vnic(bp);
9853 		if (rc)
9854 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
9855 				   rc);
9856 	}
9857 
9858 	if (BNXT_VF(bp)) {
9859 		bnxt_hwrm_func_qcfg(bp);
9860 		netdev_update_features(bp->dev);
9861 	}
9862 
9863 	return 0;
9864 
9865 err_out:
9866 	bnxt_hwrm_resource_free(bp, 0, true);
9867 
9868 	return rc;
9869 }
9870 
9871 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
9872 {
9873 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
9874 	return 0;
9875 }
9876 
9877 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
9878 {
9879 	bnxt_init_cp_rings(bp);
9880 	bnxt_init_rx_rings(bp);
9881 	bnxt_init_tx_rings(bp);
9882 	bnxt_init_ring_grps(bp, irq_re_init);
9883 	bnxt_init_vnics(bp);
9884 
9885 	return bnxt_init_chip(bp, irq_re_init);
9886 }
9887 
9888 static int bnxt_set_real_num_queues(struct bnxt *bp)
9889 {
9890 	int rc;
9891 	struct net_device *dev = bp->dev;
9892 
9893 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
9894 					  bp->tx_nr_rings_xdp);
9895 	if (rc)
9896 		return rc;
9897 
9898 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
9899 	if (rc)
9900 		return rc;
9901 
9902 #ifdef CONFIG_RFS_ACCEL
9903 	if (bp->flags & BNXT_FLAG_RFS)
9904 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
9905 #endif
9906 
9907 	return rc;
9908 }
9909 
9910 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
9911 			     bool shared)
9912 {
9913 	int _rx = *rx, _tx = *tx;
9914 
9915 	if (shared) {
9916 		*rx = min_t(int, _rx, max);
9917 		*tx = min_t(int, _tx, max);
9918 	} else {
9919 		if (max < 2)
9920 			return -ENOMEM;
9921 
9922 		while (_rx + _tx > max) {
9923 			if (_rx > _tx && _rx > 1)
9924 				_rx--;
9925 			else if (_tx > 1)
9926 				_tx--;
9927 		}
9928 		*rx = _rx;
9929 		*tx = _tx;
9930 	}
9931 	return 0;
9932 }
9933 
9934 static int __bnxt_num_tx_to_cp(struct bnxt *bp, int tx, int tx_sets, int tx_xdp)
9935 {
9936 	return (tx - tx_xdp) / tx_sets + tx_xdp;
9937 }
9938 
9939 int bnxt_num_tx_to_cp(struct bnxt *bp, int tx)
9940 {
9941 	int tcs = netdev_get_num_tc(bp->dev);
9942 
9943 	if (!tcs)
9944 		tcs = 1;
9945 	return __bnxt_num_tx_to_cp(bp, tx, tcs, bp->tx_nr_rings_xdp);
9946 }
9947 
9948 static int bnxt_num_cp_to_tx(struct bnxt *bp, int tx_cp)
9949 {
9950 	int tcs = netdev_get_num_tc(bp->dev);
9951 
9952 	return (tx_cp - bp->tx_nr_rings_xdp) * tcs +
9953 	       bp->tx_nr_rings_xdp;
9954 }
9955 
9956 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
9957 			   bool sh)
9958 {
9959 	int tx_cp = bnxt_num_tx_to_cp(bp, *tx);
9960 
9961 	if (tx_cp != *tx) {
9962 		int tx_saved = tx_cp, rc;
9963 
9964 		rc = __bnxt_trim_rings(bp, rx, &tx_cp, max, sh);
9965 		if (rc)
9966 			return rc;
9967 		if (tx_cp != tx_saved)
9968 			*tx = bnxt_num_cp_to_tx(bp, tx_cp);
9969 		return 0;
9970 	}
9971 	return __bnxt_trim_rings(bp, rx, tx, max, sh);
9972 }
9973 
9974 static void bnxt_setup_msix(struct bnxt *bp)
9975 {
9976 	const int len = sizeof(bp->irq_tbl[0].name);
9977 	struct net_device *dev = bp->dev;
9978 	int tcs, i;
9979 
9980 	tcs = netdev_get_num_tc(dev);
9981 	if (tcs) {
9982 		int i, off, count;
9983 
9984 		for (i = 0; i < tcs; i++) {
9985 			count = bp->tx_nr_rings_per_tc;
9986 			off = BNXT_TC_TO_RING_BASE(bp, i);
9987 			netdev_set_tc_queue(dev, i, count, off);
9988 		}
9989 	}
9990 
9991 	for (i = 0; i < bp->cp_nr_rings; i++) {
9992 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9993 		char *attr;
9994 
9995 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
9996 			attr = "TxRx";
9997 		else if (i < bp->rx_nr_rings)
9998 			attr = "rx";
9999 		else
10000 			attr = "tx";
10001 
10002 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
10003 			 attr, i);
10004 		bp->irq_tbl[map_idx].handler = bnxt_msix;
10005 	}
10006 }
10007 
10008 static void bnxt_setup_inta(struct bnxt *bp)
10009 {
10010 	const int len = sizeof(bp->irq_tbl[0].name);
10011 
10012 	if (netdev_get_num_tc(bp->dev))
10013 		netdev_reset_tc(bp->dev);
10014 
10015 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
10016 		 0);
10017 	bp->irq_tbl[0].handler = bnxt_inta;
10018 }
10019 
10020 static int bnxt_init_int_mode(struct bnxt *bp);
10021 
10022 static int bnxt_setup_int_mode(struct bnxt *bp)
10023 {
10024 	int rc;
10025 
10026 	if (!bp->irq_tbl) {
10027 		rc = bnxt_init_int_mode(bp);
10028 		if (rc || !bp->irq_tbl)
10029 			return rc ?: -ENODEV;
10030 	}
10031 
10032 	if (bp->flags & BNXT_FLAG_USING_MSIX)
10033 		bnxt_setup_msix(bp);
10034 	else
10035 		bnxt_setup_inta(bp);
10036 
10037 	rc = bnxt_set_real_num_queues(bp);
10038 	return rc;
10039 }
10040 
10041 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
10042 {
10043 	return bp->hw_resc.max_rsscos_ctxs;
10044 }
10045 
10046 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
10047 {
10048 	return bp->hw_resc.max_vnics;
10049 }
10050 
10051 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
10052 {
10053 	return bp->hw_resc.max_stat_ctxs;
10054 }
10055 
10056 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
10057 {
10058 	return bp->hw_resc.max_cp_rings;
10059 }
10060 
10061 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
10062 {
10063 	unsigned int cp = bp->hw_resc.max_cp_rings;
10064 
10065 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
10066 		cp -= bnxt_get_ulp_msix_num(bp);
10067 
10068 	return cp;
10069 }
10070 
10071 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
10072 {
10073 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10074 
10075 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10076 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
10077 
10078 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
10079 }
10080 
10081 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
10082 {
10083 	bp->hw_resc.max_irqs = max_irqs;
10084 }
10085 
10086 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
10087 {
10088 	unsigned int cp;
10089 
10090 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
10091 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10092 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
10093 	else
10094 		return cp - bp->cp_nr_rings;
10095 }
10096 
10097 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
10098 {
10099 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
10100 }
10101 
10102 int bnxt_get_avail_msix(struct bnxt *bp, int num)
10103 {
10104 	int max_cp = bnxt_get_max_func_cp_rings(bp);
10105 	int max_irq = bnxt_get_max_func_irqs(bp);
10106 	int total_req = bp->cp_nr_rings + num;
10107 	int max_idx, avail_msix;
10108 
10109 	max_idx = bp->total_irqs;
10110 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
10111 		max_idx = min_t(int, bp->total_irqs, max_cp);
10112 	avail_msix = max_idx - bp->cp_nr_rings;
10113 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
10114 		return avail_msix;
10115 
10116 	if (max_irq < total_req) {
10117 		num = max_irq - bp->cp_nr_rings;
10118 		if (num <= 0)
10119 			return 0;
10120 	}
10121 	return num;
10122 }
10123 
10124 static int bnxt_get_num_msix(struct bnxt *bp)
10125 {
10126 	if (!BNXT_NEW_RM(bp))
10127 		return bnxt_get_max_func_irqs(bp);
10128 
10129 	return bnxt_nq_rings_in_use(bp);
10130 }
10131 
10132 static int bnxt_init_msix(struct bnxt *bp)
10133 {
10134 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix, tx_cp;
10135 	struct msix_entry *msix_ent;
10136 
10137 	total_vecs = bnxt_get_num_msix(bp);
10138 	max = bnxt_get_max_func_irqs(bp);
10139 	if (total_vecs > max)
10140 		total_vecs = max;
10141 
10142 	if (!total_vecs)
10143 		return 0;
10144 
10145 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
10146 	if (!msix_ent)
10147 		return -ENOMEM;
10148 
10149 	for (i = 0; i < total_vecs; i++) {
10150 		msix_ent[i].entry = i;
10151 		msix_ent[i].vector = 0;
10152 	}
10153 
10154 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
10155 		min = 2;
10156 
10157 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
10158 	ulp_msix = bnxt_get_ulp_msix_num(bp);
10159 	if (total_vecs < 0 || total_vecs < ulp_msix) {
10160 		rc = -ENODEV;
10161 		goto msix_setup_exit;
10162 	}
10163 
10164 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
10165 	if (bp->irq_tbl) {
10166 		for (i = 0; i < total_vecs; i++)
10167 			bp->irq_tbl[i].vector = msix_ent[i].vector;
10168 
10169 		bp->total_irqs = total_vecs;
10170 		/* Trim rings based upon num of vectors allocated */
10171 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
10172 				     total_vecs - ulp_msix, min == 1);
10173 		if (rc)
10174 			goto msix_setup_exit;
10175 
10176 		tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings);
10177 		bp->cp_nr_rings = (min == 1) ?
10178 				  max_t(int, tx_cp, bp->rx_nr_rings) :
10179 				  tx_cp + bp->rx_nr_rings;
10180 
10181 	} else {
10182 		rc = -ENOMEM;
10183 		goto msix_setup_exit;
10184 	}
10185 	bp->flags |= BNXT_FLAG_USING_MSIX;
10186 	kfree(msix_ent);
10187 	return 0;
10188 
10189 msix_setup_exit:
10190 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
10191 	kfree(bp->irq_tbl);
10192 	bp->irq_tbl = NULL;
10193 	pci_disable_msix(bp->pdev);
10194 	kfree(msix_ent);
10195 	return rc;
10196 }
10197 
10198 static int bnxt_init_inta(struct bnxt *bp)
10199 {
10200 	bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL);
10201 	if (!bp->irq_tbl)
10202 		return -ENOMEM;
10203 
10204 	bp->total_irqs = 1;
10205 	bp->rx_nr_rings = 1;
10206 	bp->tx_nr_rings = 1;
10207 	bp->cp_nr_rings = 1;
10208 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
10209 	bp->irq_tbl[0].vector = bp->pdev->irq;
10210 	return 0;
10211 }
10212 
10213 static int bnxt_init_int_mode(struct bnxt *bp)
10214 {
10215 	int rc = -ENODEV;
10216 
10217 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
10218 		rc = bnxt_init_msix(bp);
10219 
10220 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
10221 		/* fallback to INTA */
10222 		rc = bnxt_init_inta(bp);
10223 	}
10224 	return rc;
10225 }
10226 
10227 static void bnxt_clear_int_mode(struct bnxt *bp)
10228 {
10229 	if (bp->flags & BNXT_FLAG_USING_MSIX)
10230 		pci_disable_msix(bp->pdev);
10231 
10232 	kfree(bp->irq_tbl);
10233 	bp->irq_tbl = NULL;
10234 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
10235 }
10236 
10237 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
10238 {
10239 	int tcs = netdev_get_num_tc(bp->dev);
10240 	bool irq_cleared = false;
10241 	int rc;
10242 
10243 	if (!bnxt_need_reserve_rings(bp))
10244 		return 0;
10245 
10246 	if (irq_re_init && BNXT_NEW_RM(bp) &&
10247 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
10248 		bnxt_ulp_irq_stop(bp);
10249 		bnxt_clear_int_mode(bp);
10250 		irq_cleared = true;
10251 	}
10252 	rc = __bnxt_reserve_rings(bp);
10253 	if (irq_cleared) {
10254 		if (!rc)
10255 			rc = bnxt_init_int_mode(bp);
10256 		bnxt_ulp_irq_restart(bp, rc);
10257 	}
10258 	if (rc) {
10259 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
10260 		return rc;
10261 	}
10262 	if (tcs && (bp->tx_nr_rings_per_tc * tcs !=
10263 		    bp->tx_nr_rings - bp->tx_nr_rings_xdp)) {
10264 		netdev_err(bp->dev, "tx ring reservation failure\n");
10265 		netdev_reset_tc(bp->dev);
10266 		if (bp->tx_nr_rings_xdp)
10267 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp;
10268 		else
10269 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10270 		return -ENOMEM;
10271 	}
10272 	return 0;
10273 }
10274 
10275 static void bnxt_free_irq(struct bnxt *bp)
10276 {
10277 	struct bnxt_irq *irq;
10278 	int i;
10279 
10280 #ifdef CONFIG_RFS_ACCEL
10281 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
10282 	bp->dev->rx_cpu_rmap = NULL;
10283 #endif
10284 	if (!bp->irq_tbl || !bp->bnapi)
10285 		return;
10286 
10287 	for (i = 0; i < bp->cp_nr_rings; i++) {
10288 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
10289 
10290 		irq = &bp->irq_tbl[map_idx];
10291 		if (irq->requested) {
10292 			if (irq->have_cpumask) {
10293 				irq_set_affinity_hint(irq->vector, NULL);
10294 				free_cpumask_var(irq->cpu_mask);
10295 				irq->have_cpumask = 0;
10296 			}
10297 			free_irq(irq->vector, bp->bnapi[i]);
10298 		}
10299 
10300 		irq->requested = 0;
10301 	}
10302 }
10303 
10304 static int bnxt_request_irq(struct bnxt *bp)
10305 {
10306 	int i, j, rc = 0;
10307 	unsigned long flags = 0;
10308 #ifdef CONFIG_RFS_ACCEL
10309 	struct cpu_rmap *rmap;
10310 #endif
10311 
10312 	rc = bnxt_setup_int_mode(bp);
10313 	if (rc) {
10314 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
10315 			   rc);
10316 		return rc;
10317 	}
10318 #ifdef CONFIG_RFS_ACCEL
10319 	rmap = bp->dev->rx_cpu_rmap;
10320 #endif
10321 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
10322 		flags = IRQF_SHARED;
10323 
10324 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
10325 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
10326 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
10327 
10328 #ifdef CONFIG_RFS_ACCEL
10329 		if (rmap && bp->bnapi[i]->rx_ring) {
10330 			rc = irq_cpu_rmap_add(rmap, irq->vector);
10331 			if (rc)
10332 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
10333 					    j);
10334 			j++;
10335 		}
10336 #endif
10337 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
10338 				 bp->bnapi[i]);
10339 		if (rc)
10340 			break;
10341 
10342 		netif_napi_set_irq(&bp->bnapi[i]->napi, irq->vector);
10343 		irq->requested = 1;
10344 
10345 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
10346 			int numa_node = dev_to_node(&bp->pdev->dev);
10347 
10348 			irq->have_cpumask = 1;
10349 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
10350 					irq->cpu_mask);
10351 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
10352 			if (rc) {
10353 				netdev_warn(bp->dev,
10354 					    "Set affinity failed, IRQ = %d\n",
10355 					    irq->vector);
10356 				break;
10357 			}
10358 		}
10359 	}
10360 	return rc;
10361 }
10362 
10363 static void bnxt_del_napi(struct bnxt *bp)
10364 {
10365 	int i;
10366 
10367 	if (!bp->bnapi)
10368 		return;
10369 
10370 	for (i = 0; i < bp->rx_nr_rings; i++)
10371 		netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_RX, NULL);
10372 	for (i = 0; i < bp->tx_nr_rings - bp->tx_nr_rings_xdp; i++)
10373 		netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_TX, NULL);
10374 
10375 	for (i = 0; i < bp->cp_nr_rings; i++) {
10376 		struct bnxt_napi *bnapi = bp->bnapi[i];
10377 
10378 		__netif_napi_del(&bnapi->napi);
10379 	}
10380 	/* We called __netif_napi_del(), we need
10381 	 * to respect an RCU grace period before freeing napi structures.
10382 	 */
10383 	synchronize_net();
10384 }
10385 
10386 static void bnxt_init_napi(struct bnxt *bp)
10387 {
10388 	int i;
10389 	unsigned int cp_nr_rings = bp->cp_nr_rings;
10390 	struct bnxt_napi *bnapi;
10391 
10392 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
10393 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
10394 
10395 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10396 			poll_fn = bnxt_poll_p5;
10397 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
10398 			cp_nr_rings--;
10399 		for (i = 0; i < cp_nr_rings; i++) {
10400 			bnapi = bp->bnapi[i];
10401 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn);
10402 		}
10403 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
10404 			bnapi = bp->bnapi[cp_nr_rings];
10405 			netif_napi_add(bp->dev, &bnapi->napi,
10406 				       bnxt_poll_nitroa0);
10407 		}
10408 	} else {
10409 		bnapi = bp->bnapi[0];
10410 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll);
10411 	}
10412 }
10413 
10414 static void bnxt_disable_napi(struct bnxt *bp)
10415 {
10416 	int i;
10417 
10418 	if (!bp->bnapi ||
10419 	    test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
10420 		return;
10421 
10422 	for (i = 0; i < bp->cp_nr_rings; i++) {
10423 		struct bnxt_napi *bnapi = bp->bnapi[i];
10424 		struct bnxt_cp_ring_info *cpr;
10425 
10426 		cpr = &bnapi->cp_ring;
10427 		if (bnapi->tx_fault)
10428 			cpr->sw_stats.tx.tx_resets++;
10429 		if (bnapi->in_reset)
10430 			cpr->sw_stats.rx.rx_resets++;
10431 		napi_disable(&bnapi->napi);
10432 		if (bnapi->rx_ring)
10433 			cancel_work_sync(&cpr->dim.work);
10434 	}
10435 }
10436 
10437 static void bnxt_enable_napi(struct bnxt *bp)
10438 {
10439 	int i;
10440 
10441 	clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
10442 	for (i = 0; i < bp->cp_nr_rings; i++) {
10443 		struct bnxt_napi *bnapi = bp->bnapi[i];
10444 		struct bnxt_cp_ring_info *cpr;
10445 
10446 		bnapi->tx_fault = 0;
10447 
10448 		cpr = &bnapi->cp_ring;
10449 		bnapi->in_reset = false;
10450 
10451 		if (bnapi->rx_ring) {
10452 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
10453 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
10454 		}
10455 		napi_enable(&bnapi->napi);
10456 	}
10457 }
10458 
10459 void bnxt_tx_disable(struct bnxt *bp)
10460 {
10461 	int i;
10462 	struct bnxt_tx_ring_info *txr;
10463 
10464 	if (bp->tx_ring) {
10465 		for (i = 0; i < bp->tx_nr_rings; i++) {
10466 			txr = &bp->tx_ring[i];
10467 			WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
10468 		}
10469 	}
10470 	/* Make sure napi polls see @dev_state change */
10471 	synchronize_net();
10472 	/* Drop carrier first to prevent TX timeout */
10473 	netif_carrier_off(bp->dev);
10474 	/* Stop all TX queues */
10475 	netif_tx_disable(bp->dev);
10476 }
10477 
10478 void bnxt_tx_enable(struct bnxt *bp)
10479 {
10480 	int i;
10481 	struct bnxt_tx_ring_info *txr;
10482 
10483 	for (i = 0; i < bp->tx_nr_rings; i++) {
10484 		txr = &bp->tx_ring[i];
10485 		WRITE_ONCE(txr->dev_state, 0);
10486 	}
10487 	/* Make sure napi polls see @dev_state change */
10488 	synchronize_net();
10489 	netif_tx_wake_all_queues(bp->dev);
10490 	if (BNXT_LINK_IS_UP(bp))
10491 		netif_carrier_on(bp->dev);
10492 }
10493 
10494 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
10495 {
10496 	u8 active_fec = link_info->active_fec_sig_mode &
10497 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
10498 
10499 	switch (active_fec) {
10500 	default:
10501 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
10502 		return "None";
10503 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
10504 		return "Clause 74 BaseR";
10505 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
10506 		return "Clause 91 RS(528,514)";
10507 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
10508 		return "Clause 91 RS544_1XN";
10509 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
10510 		return "Clause 91 RS(544,514)";
10511 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
10512 		return "Clause 91 RS272_1XN";
10513 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
10514 		return "Clause 91 RS(272,257)";
10515 	}
10516 }
10517 
10518 void bnxt_report_link(struct bnxt *bp)
10519 {
10520 	if (BNXT_LINK_IS_UP(bp)) {
10521 		const char *signal = "";
10522 		const char *flow_ctrl;
10523 		const char *duplex;
10524 		u32 speed;
10525 		u16 fec;
10526 
10527 		netif_carrier_on(bp->dev);
10528 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
10529 		if (speed == SPEED_UNKNOWN) {
10530 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
10531 			return;
10532 		}
10533 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
10534 			duplex = "full";
10535 		else
10536 			duplex = "half";
10537 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
10538 			flow_ctrl = "ON - receive & transmit";
10539 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
10540 			flow_ctrl = "ON - transmit";
10541 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
10542 			flow_ctrl = "ON - receive";
10543 		else
10544 			flow_ctrl = "none";
10545 		if (bp->link_info.phy_qcfg_resp.option_flags &
10546 		    PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
10547 			u8 sig_mode = bp->link_info.active_fec_sig_mode &
10548 				      PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
10549 			switch (sig_mode) {
10550 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
10551 				signal = "(NRZ) ";
10552 				break;
10553 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
10554 				signal = "(PAM4 56Gbps) ";
10555 				break;
10556 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4_112:
10557 				signal = "(PAM4 112Gbps) ";
10558 				break;
10559 			default:
10560 				break;
10561 			}
10562 		}
10563 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
10564 			    speed, signal, duplex, flow_ctrl);
10565 		if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
10566 			netdev_info(bp->dev, "EEE is %s\n",
10567 				    bp->eee.eee_active ? "active" :
10568 							 "not active");
10569 		fec = bp->link_info.fec_cfg;
10570 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
10571 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
10572 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
10573 				    bnxt_report_fec(&bp->link_info));
10574 	} else {
10575 		netif_carrier_off(bp->dev);
10576 		netdev_err(bp->dev, "NIC Link is Down\n");
10577 	}
10578 }
10579 
10580 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
10581 {
10582 	if (!resp->supported_speeds_auto_mode &&
10583 	    !resp->supported_speeds_force_mode &&
10584 	    !resp->supported_pam4_speeds_auto_mode &&
10585 	    !resp->supported_pam4_speeds_force_mode &&
10586 	    !resp->supported_speeds2_auto_mode &&
10587 	    !resp->supported_speeds2_force_mode)
10588 		return true;
10589 	return false;
10590 }
10591 
10592 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
10593 {
10594 	struct bnxt_link_info *link_info = &bp->link_info;
10595 	struct hwrm_port_phy_qcaps_output *resp;
10596 	struct hwrm_port_phy_qcaps_input *req;
10597 	int rc = 0;
10598 
10599 	if (bp->hwrm_spec_code < 0x10201)
10600 		return 0;
10601 
10602 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS);
10603 	if (rc)
10604 		return rc;
10605 
10606 	resp = hwrm_req_hold(bp, req);
10607 	rc = hwrm_req_send(bp, req);
10608 	if (rc)
10609 		goto hwrm_phy_qcaps_exit;
10610 
10611 	bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8);
10612 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
10613 		struct ethtool_eee *eee = &bp->eee;
10614 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
10615 
10616 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
10617 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
10618 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
10619 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
10620 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
10621 	}
10622 
10623 	if (bp->hwrm_spec_code >= 0x10a01) {
10624 		if (bnxt_phy_qcaps_no_speed(resp)) {
10625 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
10626 			netdev_warn(bp->dev, "Ethernet link disabled\n");
10627 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
10628 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
10629 			netdev_info(bp->dev, "Ethernet link enabled\n");
10630 			/* Phy re-enabled, reprobe the speeds */
10631 			link_info->support_auto_speeds = 0;
10632 			link_info->support_pam4_auto_speeds = 0;
10633 			link_info->support_auto_speeds2 = 0;
10634 		}
10635 	}
10636 	if (resp->supported_speeds_auto_mode)
10637 		link_info->support_auto_speeds =
10638 			le16_to_cpu(resp->supported_speeds_auto_mode);
10639 	if (resp->supported_pam4_speeds_auto_mode)
10640 		link_info->support_pam4_auto_speeds =
10641 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
10642 	if (resp->supported_speeds2_auto_mode)
10643 		link_info->support_auto_speeds2 =
10644 			le16_to_cpu(resp->supported_speeds2_auto_mode);
10645 
10646 	bp->port_count = resp->port_cnt;
10647 
10648 hwrm_phy_qcaps_exit:
10649 	hwrm_req_drop(bp, req);
10650 	return rc;
10651 }
10652 
10653 static bool bnxt_support_dropped(u16 advertising, u16 supported)
10654 {
10655 	u16 diff = advertising ^ supported;
10656 
10657 	return ((supported | diff) != supported);
10658 }
10659 
10660 static bool bnxt_support_speed_dropped(struct bnxt_link_info *link_info)
10661 {
10662 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
10663 
10664 	/* Check if any advertised speeds are no longer supported. The caller
10665 	 * holds the link_lock mutex, so we can modify link_info settings.
10666 	 */
10667 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
10668 		if (bnxt_support_dropped(link_info->advertising,
10669 					 link_info->support_auto_speeds2)) {
10670 			link_info->advertising = link_info->support_auto_speeds2;
10671 			return true;
10672 		}
10673 		return false;
10674 	}
10675 	if (bnxt_support_dropped(link_info->advertising,
10676 				 link_info->support_auto_speeds)) {
10677 		link_info->advertising = link_info->support_auto_speeds;
10678 		return true;
10679 	}
10680 	if (bnxt_support_dropped(link_info->advertising_pam4,
10681 				 link_info->support_pam4_auto_speeds)) {
10682 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
10683 		return true;
10684 	}
10685 	return false;
10686 }
10687 
10688 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
10689 {
10690 	struct bnxt_link_info *link_info = &bp->link_info;
10691 	struct hwrm_port_phy_qcfg_output *resp;
10692 	struct hwrm_port_phy_qcfg_input *req;
10693 	u8 link_state = link_info->link_state;
10694 	bool support_changed;
10695 	int rc;
10696 
10697 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG);
10698 	if (rc)
10699 		return rc;
10700 
10701 	resp = hwrm_req_hold(bp, req);
10702 	rc = hwrm_req_send(bp, req);
10703 	if (rc) {
10704 		hwrm_req_drop(bp, req);
10705 		if (BNXT_VF(bp) && rc == -ENODEV) {
10706 			netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n");
10707 			rc = 0;
10708 		}
10709 		return rc;
10710 	}
10711 
10712 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
10713 	link_info->phy_link_status = resp->link;
10714 	link_info->duplex = resp->duplex_cfg;
10715 	if (bp->hwrm_spec_code >= 0x10800)
10716 		link_info->duplex = resp->duplex_state;
10717 	link_info->pause = resp->pause;
10718 	link_info->auto_mode = resp->auto_mode;
10719 	link_info->auto_pause_setting = resp->auto_pause;
10720 	link_info->lp_pause = resp->link_partner_adv_pause;
10721 	link_info->force_pause_setting = resp->force_pause;
10722 	link_info->duplex_setting = resp->duplex_cfg;
10723 	if (link_info->phy_link_status == BNXT_LINK_LINK) {
10724 		link_info->link_speed = le16_to_cpu(resp->link_speed);
10725 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2)
10726 			link_info->active_lanes = resp->active_lanes;
10727 	} else {
10728 		link_info->link_speed = 0;
10729 		link_info->active_lanes = 0;
10730 	}
10731 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
10732 	link_info->force_pam4_link_speed =
10733 		le16_to_cpu(resp->force_pam4_link_speed);
10734 	link_info->force_link_speed2 = le16_to_cpu(resp->force_link_speeds2);
10735 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
10736 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
10737 	link_info->support_speeds2 = le16_to_cpu(resp->support_speeds2);
10738 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
10739 	link_info->auto_pam4_link_speeds =
10740 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
10741 	link_info->auto_link_speeds2 = le16_to_cpu(resp->auto_link_speeds2);
10742 	link_info->lp_auto_link_speeds =
10743 		le16_to_cpu(resp->link_partner_adv_speeds);
10744 	link_info->lp_auto_pam4_link_speeds =
10745 		resp->link_partner_pam4_adv_speeds;
10746 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
10747 	link_info->phy_ver[0] = resp->phy_maj;
10748 	link_info->phy_ver[1] = resp->phy_min;
10749 	link_info->phy_ver[2] = resp->phy_bld;
10750 	link_info->media_type = resp->media_type;
10751 	link_info->phy_type = resp->phy_type;
10752 	link_info->transceiver = resp->xcvr_pkg_type;
10753 	link_info->phy_addr = resp->eee_config_phy_addr &
10754 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
10755 	link_info->module_status = resp->module_status;
10756 
10757 	if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
10758 		struct ethtool_eee *eee = &bp->eee;
10759 		u16 fw_speeds;
10760 
10761 		eee->eee_active = 0;
10762 		if (resp->eee_config_phy_addr &
10763 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
10764 			eee->eee_active = 1;
10765 			fw_speeds = le16_to_cpu(
10766 				resp->link_partner_adv_eee_link_speed_mask);
10767 			eee->lp_advertised =
10768 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
10769 		}
10770 
10771 		/* Pull initial EEE config */
10772 		if (!chng_link_state) {
10773 			if (resp->eee_config_phy_addr &
10774 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
10775 				eee->eee_enabled = 1;
10776 
10777 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
10778 			eee->advertised =
10779 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
10780 
10781 			if (resp->eee_config_phy_addr &
10782 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
10783 				__le32 tmr;
10784 
10785 				eee->tx_lpi_enabled = 1;
10786 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
10787 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
10788 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
10789 			}
10790 		}
10791 	}
10792 
10793 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
10794 	if (bp->hwrm_spec_code >= 0x10504) {
10795 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
10796 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
10797 	}
10798 	/* TODO: need to add more logic to report VF link */
10799 	if (chng_link_state) {
10800 		if (link_info->phy_link_status == BNXT_LINK_LINK)
10801 			link_info->link_state = BNXT_LINK_STATE_UP;
10802 		else
10803 			link_info->link_state = BNXT_LINK_STATE_DOWN;
10804 		if (link_state != link_info->link_state)
10805 			bnxt_report_link(bp);
10806 	} else {
10807 		/* always link down if not require to update link state */
10808 		link_info->link_state = BNXT_LINK_STATE_DOWN;
10809 	}
10810 	hwrm_req_drop(bp, req);
10811 
10812 	if (!BNXT_PHY_CFG_ABLE(bp))
10813 		return 0;
10814 
10815 	support_changed = bnxt_support_speed_dropped(link_info);
10816 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
10817 		bnxt_hwrm_set_link_setting(bp, true, false);
10818 	return 0;
10819 }
10820 
10821 static void bnxt_get_port_module_status(struct bnxt *bp)
10822 {
10823 	struct bnxt_link_info *link_info = &bp->link_info;
10824 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
10825 	u8 module_status;
10826 
10827 	if (bnxt_update_link(bp, true))
10828 		return;
10829 
10830 	module_status = link_info->module_status;
10831 	switch (module_status) {
10832 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
10833 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
10834 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
10835 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
10836 			    bp->pf.port_id);
10837 		if (bp->hwrm_spec_code >= 0x10201) {
10838 			netdev_warn(bp->dev, "Module part number %s\n",
10839 				    resp->phy_vendor_partnumber);
10840 		}
10841 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
10842 			netdev_warn(bp->dev, "TX is disabled\n");
10843 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
10844 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
10845 	}
10846 }
10847 
10848 static void
10849 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
10850 {
10851 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
10852 		if (bp->hwrm_spec_code >= 0x10201)
10853 			req->auto_pause =
10854 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
10855 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
10856 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
10857 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
10858 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
10859 		req->enables |=
10860 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
10861 	} else {
10862 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
10863 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
10864 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
10865 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
10866 		req->enables |=
10867 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
10868 		if (bp->hwrm_spec_code >= 0x10201) {
10869 			req->auto_pause = req->force_pause;
10870 			req->enables |= cpu_to_le32(
10871 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
10872 		}
10873 	}
10874 }
10875 
10876 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
10877 {
10878 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
10879 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
10880 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
10881 			req->enables |=
10882 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEEDS2_MASK);
10883 			req->auto_link_speeds2_mask = cpu_to_le16(bp->link_info.advertising);
10884 		} else if (bp->link_info.advertising) {
10885 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
10886 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
10887 		}
10888 		if (bp->link_info.advertising_pam4) {
10889 			req->enables |=
10890 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
10891 			req->auto_link_pam4_speed_mask =
10892 				cpu_to_le16(bp->link_info.advertising_pam4);
10893 		}
10894 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
10895 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
10896 	} else {
10897 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
10898 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
10899 			req->force_link_speeds2 = cpu_to_le16(bp->link_info.req_link_speed);
10900 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_LINK_SPEEDS2);
10901 			netif_info(bp, link, bp->dev, "Forcing FW speed2: %d\n",
10902 				   (u32)bp->link_info.req_link_speed);
10903 		} else if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
10904 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
10905 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
10906 		} else {
10907 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
10908 		}
10909 	}
10910 
10911 	/* tell chimp that the setting takes effect immediately */
10912 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
10913 }
10914 
10915 int bnxt_hwrm_set_pause(struct bnxt *bp)
10916 {
10917 	struct hwrm_port_phy_cfg_input *req;
10918 	int rc;
10919 
10920 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
10921 	if (rc)
10922 		return rc;
10923 
10924 	bnxt_hwrm_set_pause_common(bp, req);
10925 
10926 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
10927 	    bp->link_info.force_link_chng)
10928 		bnxt_hwrm_set_link_common(bp, req);
10929 
10930 	rc = hwrm_req_send(bp, req);
10931 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
10932 		/* since changing of pause setting doesn't trigger any link
10933 		 * change event, the driver needs to update the current pause
10934 		 * result upon successfully return of the phy_cfg command
10935 		 */
10936 		bp->link_info.pause =
10937 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
10938 		bp->link_info.auto_pause_setting = 0;
10939 		if (!bp->link_info.force_link_chng)
10940 			bnxt_report_link(bp);
10941 	}
10942 	bp->link_info.force_link_chng = false;
10943 	return rc;
10944 }
10945 
10946 static void bnxt_hwrm_set_eee(struct bnxt *bp,
10947 			      struct hwrm_port_phy_cfg_input *req)
10948 {
10949 	struct ethtool_eee *eee = &bp->eee;
10950 
10951 	if (eee->eee_enabled) {
10952 		u16 eee_speeds;
10953 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
10954 
10955 		if (eee->tx_lpi_enabled)
10956 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
10957 		else
10958 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
10959 
10960 		req->flags |= cpu_to_le32(flags);
10961 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
10962 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
10963 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
10964 	} else {
10965 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
10966 	}
10967 }
10968 
10969 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
10970 {
10971 	struct hwrm_port_phy_cfg_input *req;
10972 	int rc;
10973 
10974 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
10975 	if (rc)
10976 		return rc;
10977 
10978 	if (set_pause)
10979 		bnxt_hwrm_set_pause_common(bp, req);
10980 
10981 	bnxt_hwrm_set_link_common(bp, req);
10982 
10983 	if (set_eee)
10984 		bnxt_hwrm_set_eee(bp, req);
10985 	return hwrm_req_send(bp, req);
10986 }
10987 
10988 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
10989 {
10990 	struct hwrm_port_phy_cfg_input *req;
10991 	int rc;
10992 
10993 	if (!BNXT_SINGLE_PF(bp))
10994 		return 0;
10995 
10996 	if (pci_num_vf(bp->pdev) &&
10997 	    !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
10998 		return 0;
10999 
11000 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
11001 	if (rc)
11002 		return rc;
11003 
11004 	req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
11005 	rc = hwrm_req_send(bp, req);
11006 	if (!rc) {
11007 		mutex_lock(&bp->link_lock);
11008 		/* Device is not obliged link down in certain scenarios, even
11009 		 * when forced. Setting the state unknown is consistent with
11010 		 * driver startup and will force link state to be reported
11011 		 * during subsequent open based on PORT_PHY_QCFG.
11012 		 */
11013 		bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN;
11014 		mutex_unlock(&bp->link_lock);
11015 	}
11016 	return rc;
11017 }
11018 
11019 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
11020 {
11021 #ifdef CONFIG_TEE_BNXT_FW
11022 	int rc = tee_bnxt_fw_load();
11023 
11024 	if (rc)
11025 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
11026 
11027 	return rc;
11028 #else
11029 	netdev_err(bp->dev, "OP-TEE not supported\n");
11030 	return -ENODEV;
11031 #endif
11032 }
11033 
11034 static int bnxt_try_recover_fw(struct bnxt *bp)
11035 {
11036 	if (bp->fw_health && bp->fw_health->status_reliable) {
11037 		int retry = 0, rc;
11038 		u32 sts;
11039 
11040 		do {
11041 			sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
11042 			rc = bnxt_hwrm_poll(bp);
11043 			if (!BNXT_FW_IS_BOOTING(sts) &&
11044 			    !BNXT_FW_IS_RECOVERING(sts))
11045 				break;
11046 			retry++;
11047 		} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
11048 
11049 		if (!BNXT_FW_IS_HEALTHY(sts)) {
11050 			netdev_err(bp->dev,
11051 				   "Firmware not responding, status: 0x%x\n",
11052 				   sts);
11053 			rc = -ENODEV;
11054 		}
11055 		if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
11056 			netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
11057 			return bnxt_fw_reset_via_optee(bp);
11058 		}
11059 		return rc;
11060 	}
11061 
11062 	return -ENODEV;
11063 }
11064 
11065 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset)
11066 {
11067 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
11068 
11069 	if (!BNXT_NEW_RM(bp))
11070 		return; /* no resource reservations required */
11071 
11072 	hw_resc->resv_cp_rings = 0;
11073 	hw_resc->resv_stat_ctxs = 0;
11074 	hw_resc->resv_irqs = 0;
11075 	hw_resc->resv_tx_rings = 0;
11076 	hw_resc->resv_rx_rings = 0;
11077 	hw_resc->resv_hw_ring_grps = 0;
11078 	hw_resc->resv_vnics = 0;
11079 	if (!fw_reset) {
11080 		bp->tx_nr_rings = 0;
11081 		bp->rx_nr_rings = 0;
11082 	}
11083 }
11084 
11085 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset)
11086 {
11087 	int rc;
11088 
11089 	if (!BNXT_NEW_RM(bp))
11090 		return 0; /* no resource reservations required */
11091 
11092 	rc = bnxt_hwrm_func_resc_qcaps(bp, true);
11093 	if (rc)
11094 		netdev_err(bp->dev, "resc_qcaps failed\n");
11095 
11096 	bnxt_clear_reservations(bp, fw_reset);
11097 
11098 	return rc;
11099 }
11100 
11101 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
11102 {
11103 	struct hwrm_func_drv_if_change_output *resp;
11104 	struct hwrm_func_drv_if_change_input *req;
11105 	bool fw_reset = !bp->irq_tbl;
11106 	bool resc_reinit = false;
11107 	int rc, retry = 0;
11108 	u32 flags = 0;
11109 
11110 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
11111 		return 0;
11112 
11113 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE);
11114 	if (rc)
11115 		return rc;
11116 
11117 	if (up)
11118 		req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
11119 	resp = hwrm_req_hold(bp, req);
11120 
11121 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
11122 	while (retry < BNXT_FW_IF_RETRY) {
11123 		rc = hwrm_req_send(bp, req);
11124 		if (rc != -EAGAIN)
11125 			break;
11126 
11127 		msleep(50);
11128 		retry++;
11129 	}
11130 
11131 	if (rc == -EAGAIN) {
11132 		hwrm_req_drop(bp, req);
11133 		return rc;
11134 	} else if (!rc) {
11135 		flags = le32_to_cpu(resp->flags);
11136 	} else if (up) {
11137 		rc = bnxt_try_recover_fw(bp);
11138 		fw_reset = true;
11139 	}
11140 	hwrm_req_drop(bp, req);
11141 	if (rc)
11142 		return rc;
11143 
11144 	if (!up) {
11145 		bnxt_inv_fw_health_reg(bp);
11146 		return 0;
11147 	}
11148 
11149 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
11150 		resc_reinit = true;
11151 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE ||
11152 	    test_bit(BNXT_STATE_FW_RESET_DET, &bp->state))
11153 		fw_reset = true;
11154 	else
11155 		bnxt_remap_fw_health_regs(bp);
11156 
11157 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
11158 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
11159 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
11160 		return -ENODEV;
11161 	}
11162 	if (resc_reinit || fw_reset) {
11163 		if (fw_reset) {
11164 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
11165 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11166 				bnxt_ulp_stop(bp);
11167 			bnxt_free_ctx_mem(bp);
11168 			bnxt_dcb_free(bp);
11169 			rc = bnxt_fw_init_one(bp);
11170 			if (rc) {
11171 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
11172 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
11173 				return rc;
11174 			}
11175 			bnxt_clear_int_mode(bp);
11176 			rc = bnxt_init_int_mode(bp);
11177 			if (rc) {
11178 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
11179 				netdev_err(bp->dev, "init int mode failed\n");
11180 				return rc;
11181 			}
11182 		}
11183 		rc = bnxt_cancel_reservations(bp, fw_reset);
11184 	}
11185 	return rc;
11186 }
11187 
11188 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
11189 {
11190 	struct hwrm_port_led_qcaps_output *resp;
11191 	struct hwrm_port_led_qcaps_input *req;
11192 	struct bnxt_pf_info *pf = &bp->pf;
11193 	int rc;
11194 
11195 	bp->num_leds = 0;
11196 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
11197 		return 0;
11198 
11199 	rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS);
11200 	if (rc)
11201 		return rc;
11202 
11203 	req->port_id = cpu_to_le16(pf->port_id);
11204 	resp = hwrm_req_hold(bp, req);
11205 	rc = hwrm_req_send(bp, req);
11206 	if (rc) {
11207 		hwrm_req_drop(bp, req);
11208 		return rc;
11209 	}
11210 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
11211 		int i;
11212 
11213 		bp->num_leds = resp->num_leds;
11214 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
11215 						 bp->num_leds);
11216 		for (i = 0; i < bp->num_leds; i++) {
11217 			struct bnxt_led_info *led = &bp->leds[i];
11218 			__le16 caps = led->led_state_caps;
11219 
11220 			if (!led->led_group_id ||
11221 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
11222 				bp->num_leds = 0;
11223 				break;
11224 			}
11225 		}
11226 	}
11227 	hwrm_req_drop(bp, req);
11228 	return 0;
11229 }
11230 
11231 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
11232 {
11233 	struct hwrm_wol_filter_alloc_output *resp;
11234 	struct hwrm_wol_filter_alloc_input *req;
11235 	int rc;
11236 
11237 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC);
11238 	if (rc)
11239 		return rc;
11240 
11241 	req->port_id = cpu_to_le16(bp->pf.port_id);
11242 	req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
11243 	req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
11244 	memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN);
11245 
11246 	resp = hwrm_req_hold(bp, req);
11247 	rc = hwrm_req_send(bp, req);
11248 	if (!rc)
11249 		bp->wol_filter_id = resp->wol_filter_id;
11250 	hwrm_req_drop(bp, req);
11251 	return rc;
11252 }
11253 
11254 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
11255 {
11256 	struct hwrm_wol_filter_free_input *req;
11257 	int rc;
11258 
11259 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE);
11260 	if (rc)
11261 		return rc;
11262 
11263 	req->port_id = cpu_to_le16(bp->pf.port_id);
11264 	req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
11265 	req->wol_filter_id = bp->wol_filter_id;
11266 
11267 	return hwrm_req_send(bp, req);
11268 }
11269 
11270 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
11271 {
11272 	struct hwrm_wol_filter_qcfg_output *resp;
11273 	struct hwrm_wol_filter_qcfg_input *req;
11274 	u16 next_handle = 0;
11275 	int rc;
11276 
11277 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG);
11278 	if (rc)
11279 		return rc;
11280 
11281 	req->port_id = cpu_to_le16(bp->pf.port_id);
11282 	req->handle = cpu_to_le16(handle);
11283 	resp = hwrm_req_hold(bp, req);
11284 	rc = hwrm_req_send(bp, req);
11285 	if (!rc) {
11286 		next_handle = le16_to_cpu(resp->next_handle);
11287 		if (next_handle != 0) {
11288 			if (resp->wol_type ==
11289 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
11290 				bp->wol = 1;
11291 				bp->wol_filter_id = resp->wol_filter_id;
11292 			}
11293 		}
11294 	}
11295 	hwrm_req_drop(bp, req);
11296 	return next_handle;
11297 }
11298 
11299 static void bnxt_get_wol_settings(struct bnxt *bp)
11300 {
11301 	u16 handle = 0;
11302 
11303 	bp->wol = 0;
11304 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
11305 		return;
11306 
11307 	do {
11308 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
11309 	} while (handle && handle != 0xffff);
11310 }
11311 
11312 static bool bnxt_eee_config_ok(struct bnxt *bp)
11313 {
11314 	struct ethtool_eee *eee = &bp->eee;
11315 	struct bnxt_link_info *link_info = &bp->link_info;
11316 
11317 	if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
11318 		return true;
11319 
11320 	if (eee->eee_enabled) {
11321 		u32 advertising =
11322 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
11323 
11324 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
11325 			eee->eee_enabled = 0;
11326 			return false;
11327 		}
11328 		if (eee->advertised & ~advertising) {
11329 			eee->advertised = advertising & eee->supported;
11330 			return false;
11331 		}
11332 	}
11333 	return true;
11334 }
11335 
11336 static int bnxt_update_phy_setting(struct bnxt *bp)
11337 {
11338 	int rc;
11339 	bool update_link = false;
11340 	bool update_pause = false;
11341 	bool update_eee = false;
11342 	struct bnxt_link_info *link_info = &bp->link_info;
11343 
11344 	rc = bnxt_update_link(bp, true);
11345 	if (rc) {
11346 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
11347 			   rc);
11348 		return rc;
11349 	}
11350 	if (!BNXT_SINGLE_PF(bp))
11351 		return 0;
11352 
11353 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
11354 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
11355 	    link_info->req_flow_ctrl)
11356 		update_pause = true;
11357 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
11358 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
11359 		update_pause = true;
11360 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
11361 		if (BNXT_AUTO_MODE(link_info->auto_mode))
11362 			update_link = true;
11363 		if (bnxt_force_speed_updated(link_info))
11364 			update_link = true;
11365 		if (link_info->req_duplex != link_info->duplex_setting)
11366 			update_link = true;
11367 	} else {
11368 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
11369 			update_link = true;
11370 		if (bnxt_auto_speed_updated(link_info))
11371 			update_link = true;
11372 	}
11373 
11374 	/* The last close may have shutdown the link, so need to call
11375 	 * PHY_CFG to bring it back up.
11376 	 */
11377 	if (!BNXT_LINK_IS_UP(bp))
11378 		update_link = true;
11379 
11380 	if (!bnxt_eee_config_ok(bp))
11381 		update_eee = true;
11382 
11383 	if (update_link)
11384 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
11385 	else if (update_pause)
11386 		rc = bnxt_hwrm_set_pause(bp);
11387 	if (rc) {
11388 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
11389 			   rc);
11390 		return rc;
11391 	}
11392 
11393 	return rc;
11394 }
11395 
11396 /* Common routine to pre-map certain register block to different GRC window.
11397  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
11398  * in PF and 3 windows in VF that can be customized to map in different
11399  * register blocks.
11400  */
11401 static void bnxt_preset_reg_win(struct bnxt *bp)
11402 {
11403 	if (BNXT_PF(bp)) {
11404 		/* CAG registers map to GRC window #4 */
11405 		writel(BNXT_CAG_REG_BASE,
11406 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
11407 	}
11408 }
11409 
11410 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
11411 
11412 static int bnxt_reinit_after_abort(struct bnxt *bp)
11413 {
11414 	int rc;
11415 
11416 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11417 		return -EBUSY;
11418 
11419 	if (bp->dev->reg_state == NETREG_UNREGISTERED)
11420 		return -ENODEV;
11421 
11422 	rc = bnxt_fw_init_one(bp);
11423 	if (!rc) {
11424 		bnxt_clear_int_mode(bp);
11425 		rc = bnxt_init_int_mode(bp);
11426 		if (!rc) {
11427 			clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
11428 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
11429 		}
11430 	}
11431 	return rc;
11432 }
11433 
11434 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
11435 {
11436 	int rc = 0;
11437 
11438 	bnxt_preset_reg_win(bp);
11439 	netif_carrier_off(bp->dev);
11440 	if (irq_re_init) {
11441 		/* Reserve rings now if none were reserved at driver probe. */
11442 		rc = bnxt_init_dflt_ring_mode(bp);
11443 		if (rc) {
11444 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
11445 			return rc;
11446 		}
11447 	}
11448 	rc = bnxt_reserve_rings(bp, irq_re_init);
11449 	if (rc)
11450 		return rc;
11451 	if ((bp->flags & BNXT_FLAG_RFS) &&
11452 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
11453 		/* disable RFS if falling back to INTA */
11454 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
11455 		bp->flags &= ~BNXT_FLAG_RFS;
11456 	}
11457 
11458 	rc = bnxt_alloc_mem(bp, irq_re_init);
11459 	if (rc) {
11460 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
11461 		goto open_err_free_mem;
11462 	}
11463 
11464 	if (irq_re_init) {
11465 		bnxt_init_napi(bp);
11466 		rc = bnxt_request_irq(bp);
11467 		if (rc) {
11468 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
11469 			goto open_err_irq;
11470 		}
11471 	}
11472 
11473 	rc = bnxt_init_nic(bp, irq_re_init);
11474 	if (rc) {
11475 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
11476 		goto open_err_irq;
11477 	}
11478 
11479 	bnxt_enable_napi(bp);
11480 	bnxt_debug_dev_init(bp);
11481 
11482 	if (link_re_init) {
11483 		mutex_lock(&bp->link_lock);
11484 		rc = bnxt_update_phy_setting(bp);
11485 		mutex_unlock(&bp->link_lock);
11486 		if (rc) {
11487 			netdev_warn(bp->dev, "failed to update phy settings\n");
11488 			if (BNXT_SINGLE_PF(bp)) {
11489 				bp->link_info.phy_retry = true;
11490 				bp->link_info.phy_retry_expires =
11491 					jiffies + 5 * HZ;
11492 			}
11493 		}
11494 	}
11495 
11496 	if (irq_re_init)
11497 		udp_tunnel_nic_reset_ntf(bp->dev);
11498 
11499 	if (bp->tx_nr_rings_xdp < num_possible_cpus()) {
11500 		if (!static_key_enabled(&bnxt_xdp_locking_key))
11501 			static_branch_enable(&bnxt_xdp_locking_key);
11502 	} else if (static_key_enabled(&bnxt_xdp_locking_key)) {
11503 		static_branch_disable(&bnxt_xdp_locking_key);
11504 	}
11505 	set_bit(BNXT_STATE_OPEN, &bp->state);
11506 	bnxt_enable_int(bp);
11507 	/* Enable TX queues */
11508 	bnxt_tx_enable(bp);
11509 	mod_timer(&bp->timer, jiffies + bp->current_interval);
11510 	/* Poll link status and check for SFP+ module status */
11511 	mutex_lock(&bp->link_lock);
11512 	bnxt_get_port_module_status(bp);
11513 	mutex_unlock(&bp->link_lock);
11514 
11515 	/* VF-reps may need to be re-opened after the PF is re-opened */
11516 	if (BNXT_PF(bp))
11517 		bnxt_vf_reps_open(bp);
11518 	bnxt_ptp_init_rtc(bp, true);
11519 	bnxt_ptp_cfg_tstamp_filters(bp);
11520 	return 0;
11521 
11522 open_err_irq:
11523 	bnxt_del_napi(bp);
11524 
11525 open_err_free_mem:
11526 	bnxt_free_skbs(bp);
11527 	bnxt_free_irq(bp);
11528 	bnxt_free_mem(bp, true);
11529 	return rc;
11530 }
11531 
11532 /* rtnl_lock held */
11533 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
11534 {
11535 	int rc = 0;
11536 
11537 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
11538 		rc = -EIO;
11539 	if (!rc)
11540 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
11541 	if (rc) {
11542 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
11543 		dev_close(bp->dev);
11544 	}
11545 	return rc;
11546 }
11547 
11548 /* rtnl_lock held, open the NIC half way by allocating all resources, but
11549  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
11550  * self tests.
11551  */
11552 int bnxt_half_open_nic(struct bnxt *bp)
11553 {
11554 	int rc = 0;
11555 
11556 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
11557 		netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n");
11558 		rc = -ENODEV;
11559 		goto half_open_err;
11560 	}
11561 
11562 	rc = bnxt_alloc_mem(bp, true);
11563 	if (rc) {
11564 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
11565 		goto half_open_err;
11566 	}
11567 	set_bit(BNXT_STATE_HALF_OPEN, &bp->state);
11568 	rc = bnxt_init_nic(bp, true);
11569 	if (rc) {
11570 		clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
11571 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
11572 		goto half_open_err;
11573 	}
11574 	return 0;
11575 
11576 half_open_err:
11577 	bnxt_free_skbs(bp);
11578 	bnxt_free_mem(bp, true);
11579 	dev_close(bp->dev);
11580 	return rc;
11581 }
11582 
11583 /* rtnl_lock held, this call can only be made after a previous successful
11584  * call to bnxt_half_open_nic().
11585  */
11586 void bnxt_half_close_nic(struct bnxt *bp)
11587 {
11588 	bnxt_hwrm_resource_free(bp, false, true);
11589 	bnxt_free_skbs(bp);
11590 	bnxt_free_mem(bp, true);
11591 	clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
11592 }
11593 
11594 void bnxt_reenable_sriov(struct bnxt *bp)
11595 {
11596 	if (BNXT_PF(bp)) {
11597 		struct bnxt_pf_info *pf = &bp->pf;
11598 		int n = pf->active_vfs;
11599 
11600 		if (n)
11601 			bnxt_cfg_hw_sriov(bp, &n, true);
11602 	}
11603 }
11604 
11605 static int bnxt_open(struct net_device *dev)
11606 {
11607 	struct bnxt *bp = netdev_priv(dev);
11608 	int rc;
11609 
11610 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
11611 		rc = bnxt_reinit_after_abort(bp);
11612 		if (rc) {
11613 			if (rc == -EBUSY)
11614 				netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
11615 			else
11616 				netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
11617 			return -ENODEV;
11618 		}
11619 	}
11620 
11621 	rc = bnxt_hwrm_if_change(bp, true);
11622 	if (rc)
11623 		return rc;
11624 
11625 	rc = __bnxt_open_nic(bp, true, true);
11626 	if (rc) {
11627 		bnxt_hwrm_if_change(bp, false);
11628 	} else {
11629 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
11630 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11631 				bnxt_ulp_start(bp, 0);
11632 				bnxt_reenable_sriov(bp);
11633 			}
11634 		}
11635 	}
11636 
11637 	return rc;
11638 }
11639 
11640 static bool bnxt_drv_busy(struct bnxt *bp)
11641 {
11642 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
11643 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
11644 }
11645 
11646 static void bnxt_get_ring_stats(struct bnxt *bp,
11647 				struct rtnl_link_stats64 *stats);
11648 
11649 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
11650 			     bool link_re_init)
11651 {
11652 	/* Close the VF-reps before closing PF */
11653 	if (BNXT_PF(bp))
11654 		bnxt_vf_reps_close(bp);
11655 
11656 	/* Change device state to avoid TX queue wake up's */
11657 	bnxt_tx_disable(bp);
11658 
11659 	clear_bit(BNXT_STATE_OPEN, &bp->state);
11660 	smp_mb__after_atomic();
11661 	while (bnxt_drv_busy(bp))
11662 		msleep(20);
11663 
11664 	/* Flush rings and disable interrupts */
11665 	bnxt_shutdown_nic(bp, irq_re_init);
11666 
11667 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
11668 
11669 	bnxt_debug_dev_exit(bp);
11670 	bnxt_disable_napi(bp);
11671 	del_timer_sync(&bp->timer);
11672 	bnxt_free_skbs(bp);
11673 
11674 	/* Save ring stats before shutdown */
11675 	if (bp->bnapi && irq_re_init) {
11676 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
11677 		bnxt_get_ring_err_stats(bp, &bp->ring_err_stats_prev);
11678 	}
11679 	if (irq_re_init) {
11680 		bnxt_free_irq(bp);
11681 		bnxt_del_napi(bp);
11682 	}
11683 	bnxt_free_mem(bp, irq_re_init);
11684 }
11685 
11686 void bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
11687 {
11688 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11689 		/* If we get here, it means firmware reset is in progress
11690 		 * while we are trying to close.  We can safely proceed with
11691 		 * the close because we are holding rtnl_lock().  Some firmware
11692 		 * messages may fail as we proceed to close.  We set the
11693 		 * ABORT_ERR flag here so that the FW reset thread will later
11694 		 * abort when it gets the rtnl_lock() and sees the flag.
11695 		 */
11696 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
11697 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
11698 	}
11699 
11700 #ifdef CONFIG_BNXT_SRIOV
11701 	if (bp->sriov_cfg) {
11702 		int rc;
11703 
11704 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
11705 						      !bp->sriov_cfg,
11706 						      BNXT_SRIOV_CFG_WAIT_TMO);
11707 		if (!rc)
11708 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete, proceeding to close!\n");
11709 		else if (rc < 0)
11710 			netdev_warn(bp->dev, "SRIOV config operation interrupted, proceeding to close!\n");
11711 	}
11712 #endif
11713 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
11714 }
11715 
11716 static int bnxt_close(struct net_device *dev)
11717 {
11718 	struct bnxt *bp = netdev_priv(dev);
11719 
11720 	bnxt_close_nic(bp, true, true);
11721 	bnxt_hwrm_shutdown_link(bp);
11722 	bnxt_hwrm_if_change(bp, false);
11723 	return 0;
11724 }
11725 
11726 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
11727 				   u16 *val)
11728 {
11729 	struct hwrm_port_phy_mdio_read_output *resp;
11730 	struct hwrm_port_phy_mdio_read_input *req;
11731 	int rc;
11732 
11733 	if (bp->hwrm_spec_code < 0x10a00)
11734 		return -EOPNOTSUPP;
11735 
11736 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ);
11737 	if (rc)
11738 		return rc;
11739 
11740 	req->port_id = cpu_to_le16(bp->pf.port_id);
11741 	req->phy_addr = phy_addr;
11742 	req->reg_addr = cpu_to_le16(reg & 0x1f);
11743 	if (mdio_phy_id_is_c45(phy_addr)) {
11744 		req->cl45_mdio = 1;
11745 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
11746 		req->dev_addr = mdio_phy_id_devad(phy_addr);
11747 		req->reg_addr = cpu_to_le16(reg);
11748 	}
11749 
11750 	resp = hwrm_req_hold(bp, req);
11751 	rc = hwrm_req_send(bp, req);
11752 	if (!rc)
11753 		*val = le16_to_cpu(resp->reg_data);
11754 	hwrm_req_drop(bp, req);
11755 	return rc;
11756 }
11757 
11758 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
11759 				    u16 val)
11760 {
11761 	struct hwrm_port_phy_mdio_write_input *req;
11762 	int rc;
11763 
11764 	if (bp->hwrm_spec_code < 0x10a00)
11765 		return -EOPNOTSUPP;
11766 
11767 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE);
11768 	if (rc)
11769 		return rc;
11770 
11771 	req->port_id = cpu_to_le16(bp->pf.port_id);
11772 	req->phy_addr = phy_addr;
11773 	req->reg_addr = cpu_to_le16(reg & 0x1f);
11774 	if (mdio_phy_id_is_c45(phy_addr)) {
11775 		req->cl45_mdio = 1;
11776 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
11777 		req->dev_addr = mdio_phy_id_devad(phy_addr);
11778 		req->reg_addr = cpu_to_le16(reg);
11779 	}
11780 	req->reg_data = cpu_to_le16(val);
11781 
11782 	return hwrm_req_send(bp, req);
11783 }
11784 
11785 /* rtnl_lock held */
11786 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
11787 {
11788 	struct mii_ioctl_data *mdio = if_mii(ifr);
11789 	struct bnxt *bp = netdev_priv(dev);
11790 	int rc;
11791 
11792 	switch (cmd) {
11793 	case SIOCGMIIPHY:
11794 		mdio->phy_id = bp->link_info.phy_addr;
11795 
11796 		fallthrough;
11797 	case SIOCGMIIREG: {
11798 		u16 mii_regval = 0;
11799 
11800 		if (!netif_running(dev))
11801 			return -EAGAIN;
11802 
11803 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
11804 					     &mii_regval);
11805 		mdio->val_out = mii_regval;
11806 		return rc;
11807 	}
11808 
11809 	case SIOCSMIIREG:
11810 		if (!netif_running(dev))
11811 			return -EAGAIN;
11812 
11813 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
11814 						mdio->val_in);
11815 
11816 	case SIOCSHWTSTAMP:
11817 		return bnxt_hwtstamp_set(dev, ifr);
11818 
11819 	case SIOCGHWTSTAMP:
11820 		return bnxt_hwtstamp_get(dev, ifr);
11821 
11822 	default:
11823 		/* do nothing */
11824 		break;
11825 	}
11826 	return -EOPNOTSUPP;
11827 }
11828 
11829 static void bnxt_get_ring_stats(struct bnxt *bp,
11830 				struct rtnl_link_stats64 *stats)
11831 {
11832 	int i;
11833 
11834 	for (i = 0; i < bp->cp_nr_rings; i++) {
11835 		struct bnxt_napi *bnapi = bp->bnapi[i];
11836 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
11837 		u64 *sw = cpr->stats.sw_stats;
11838 
11839 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
11840 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
11841 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
11842 
11843 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
11844 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
11845 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
11846 
11847 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
11848 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
11849 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
11850 
11851 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
11852 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
11853 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
11854 
11855 		stats->rx_missed_errors +=
11856 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
11857 
11858 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
11859 
11860 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
11861 
11862 		stats->rx_dropped +=
11863 			cpr->sw_stats.rx.rx_netpoll_discards +
11864 			cpr->sw_stats.rx.rx_oom_discards;
11865 	}
11866 }
11867 
11868 static void bnxt_add_prev_stats(struct bnxt *bp,
11869 				struct rtnl_link_stats64 *stats)
11870 {
11871 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
11872 
11873 	stats->rx_packets += prev_stats->rx_packets;
11874 	stats->tx_packets += prev_stats->tx_packets;
11875 	stats->rx_bytes += prev_stats->rx_bytes;
11876 	stats->tx_bytes += prev_stats->tx_bytes;
11877 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
11878 	stats->multicast += prev_stats->multicast;
11879 	stats->rx_dropped += prev_stats->rx_dropped;
11880 	stats->tx_dropped += prev_stats->tx_dropped;
11881 }
11882 
11883 static void
11884 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
11885 {
11886 	struct bnxt *bp = netdev_priv(dev);
11887 
11888 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
11889 	/* Make sure bnxt_close_nic() sees that we are reading stats before
11890 	 * we check the BNXT_STATE_OPEN flag.
11891 	 */
11892 	smp_mb__after_atomic();
11893 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11894 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
11895 		*stats = bp->net_stats_prev;
11896 		return;
11897 	}
11898 
11899 	bnxt_get_ring_stats(bp, stats);
11900 	bnxt_add_prev_stats(bp, stats);
11901 
11902 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
11903 		u64 *rx = bp->port_stats.sw_stats;
11904 		u64 *tx = bp->port_stats.sw_stats +
11905 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
11906 
11907 		stats->rx_crc_errors =
11908 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
11909 		stats->rx_frame_errors =
11910 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
11911 		stats->rx_length_errors =
11912 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
11913 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
11914 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
11915 		stats->rx_errors =
11916 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
11917 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
11918 		stats->collisions =
11919 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
11920 		stats->tx_fifo_errors =
11921 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
11922 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
11923 	}
11924 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
11925 }
11926 
11927 static void bnxt_get_one_ring_err_stats(struct bnxt *bp,
11928 					struct bnxt_total_ring_err_stats *stats,
11929 					struct bnxt_cp_ring_info *cpr)
11930 {
11931 	struct bnxt_sw_stats *sw_stats = &cpr->sw_stats;
11932 	u64 *hw_stats = cpr->stats.sw_stats;
11933 
11934 	stats->rx_total_l4_csum_errors += sw_stats->rx.rx_l4_csum_errors;
11935 	stats->rx_total_resets += sw_stats->rx.rx_resets;
11936 	stats->rx_total_buf_errors += sw_stats->rx.rx_buf_errors;
11937 	stats->rx_total_oom_discards += sw_stats->rx.rx_oom_discards;
11938 	stats->rx_total_netpoll_discards += sw_stats->rx.rx_netpoll_discards;
11939 	stats->rx_total_ring_discards +=
11940 		BNXT_GET_RING_STATS64(hw_stats, rx_discard_pkts);
11941 	stats->tx_total_resets += sw_stats->tx.tx_resets;
11942 	stats->tx_total_ring_discards +=
11943 		BNXT_GET_RING_STATS64(hw_stats, tx_discard_pkts);
11944 	stats->total_missed_irqs += sw_stats->cmn.missed_irqs;
11945 }
11946 
11947 void bnxt_get_ring_err_stats(struct bnxt *bp,
11948 			     struct bnxt_total_ring_err_stats *stats)
11949 {
11950 	int i;
11951 
11952 	for (i = 0; i < bp->cp_nr_rings; i++)
11953 		bnxt_get_one_ring_err_stats(bp, stats, &bp->bnapi[i]->cp_ring);
11954 }
11955 
11956 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
11957 {
11958 	struct net_device *dev = bp->dev;
11959 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11960 	struct netdev_hw_addr *ha;
11961 	u8 *haddr;
11962 	int mc_count = 0;
11963 	bool update = false;
11964 	int off = 0;
11965 
11966 	netdev_for_each_mc_addr(ha, dev) {
11967 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
11968 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
11969 			vnic->mc_list_count = 0;
11970 			return false;
11971 		}
11972 		haddr = ha->addr;
11973 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
11974 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
11975 			update = true;
11976 		}
11977 		off += ETH_ALEN;
11978 		mc_count++;
11979 	}
11980 	if (mc_count)
11981 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
11982 
11983 	if (mc_count != vnic->mc_list_count) {
11984 		vnic->mc_list_count = mc_count;
11985 		update = true;
11986 	}
11987 	return update;
11988 }
11989 
11990 static bool bnxt_uc_list_updated(struct bnxt *bp)
11991 {
11992 	struct net_device *dev = bp->dev;
11993 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11994 	struct netdev_hw_addr *ha;
11995 	int off = 0;
11996 
11997 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
11998 		return true;
11999 
12000 	netdev_for_each_uc_addr(ha, dev) {
12001 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
12002 			return true;
12003 
12004 		off += ETH_ALEN;
12005 	}
12006 	return false;
12007 }
12008 
12009 static void bnxt_set_rx_mode(struct net_device *dev)
12010 {
12011 	struct bnxt *bp = netdev_priv(dev);
12012 	struct bnxt_vnic_info *vnic;
12013 	bool mc_update = false;
12014 	bool uc_update;
12015 	u32 mask;
12016 
12017 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
12018 		return;
12019 
12020 	vnic = &bp->vnic_info[0];
12021 	mask = vnic->rx_mask;
12022 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
12023 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
12024 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
12025 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
12026 
12027 	if (dev->flags & IFF_PROMISC)
12028 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
12029 
12030 	uc_update = bnxt_uc_list_updated(bp);
12031 
12032 	if (dev->flags & IFF_BROADCAST)
12033 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
12034 	if (dev->flags & IFF_ALLMULTI) {
12035 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
12036 		vnic->mc_list_count = 0;
12037 	} else if (dev->flags & IFF_MULTICAST) {
12038 		mc_update = bnxt_mc_list_updated(bp, &mask);
12039 	}
12040 
12041 	if (mask != vnic->rx_mask || uc_update || mc_update) {
12042 		vnic->rx_mask = mask;
12043 
12044 		bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT);
12045 	}
12046 }
12047 
12048 static int bnxt_cfg_rx_mode(struct bnxt *bp)
12049 {
12050 	struct net_device *dev = bp->dev;
12051 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
12052 	struct netdev_hw_addr *ha;
12053 	int i, off = 0, rc;
12054 	bool uc_update;
12055 
12056 	netif_addr_lock_bh(dev);
12057 	uc_update = bnxt_uc_list_updated(bp);
12058 	netif_addr_unlock_bh(dev);
12059 
12060 	if (!uc_update)
12061 		goto skip_uc;
12062 
12063 	for (i = 1; i < vnic->uc_filter_count; i++) {
12064 		struct bnxt_l2_filter *fltr = vnic->l2_filters[i];
12065 
12066 		bnxt_hwrm_l2_filter_free(bp, fltr);
12067 		bnxt_del_l2_filter(bp, fltr);
12068 	}
12069 
12070 	vnic->uc_filter_count = 1;
12071 
12072 	netif_addr_lock_bh(dev);
12073 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
12074 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
12075 	} else {
12076 		netdev_for_each_uc_addr(ha, dev) {
12077 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
12078 			off += ETH_ALEN;
12079 			vnic->uc_filter_count++;
12080 		}
12081 	}
12082 	netif_addr_unlock_bh(dev);
12083 
12084 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
12085 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
12086 		if (rc) {
12087 			if (BNXT_VF(bp) && rc == -ENODEV) {
12088 				if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
12089 					netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n");
12090 				else
12091 					netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n");
12092 				rc = 0;
12093 			} else {
12094 				netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
12095 			}
12096 			vnic->uc_filter_count = i;
12097 			return rc;
12098 		}
12099 	}
12100 	if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
12101 		netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n");
12102 
12103 skip_uc:
12104 	if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
12105 	    !bnxt_promisc_ok(bp))
12106 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
12107 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
12108 	if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) {
12109 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
12110 			    rc);
12111 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
12112 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
12113 		vnic->mc_list_count = 0;
12114 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
12115 	}
12116 	if (rc)
12117 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
12118 			   rc);
12119 
12120 	return rc;
12121 }
12122 
12123 static bool bnxt_can_reserve_rings(struct bnxt *bp)
12124 {
12125 #ifdef CONFIG_BNXT_SRIOV
12126 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
12127 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
12128 
12129 		/* No minimum rings were provisioned by the PF.  Don't
12130 		 * reserve rings by default when device is down.
12131 		 */
12132 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
12133 			return true;
12134 
12135 		if (!netif_running(bp->dev))
12136 			return false;
12137 	}
12138 #endif
12139 	return true;
12140 }
12141 
12142 /* If the chip and firmware supports RFS */
12143 static bool bnxt_rfs_supported(struct bnxt *bp)
12144 {
12145 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
12146 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
12147 			return true;
12148 		return false;
12149 	}
12150 	/* 212 firmware is broken for aRFS */
12151 	if (BNXT_FW_MAJ(bp) == 212)
12152 		return false;
12153 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
12154 		return true;
12155 	if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP)
12156 		return true;
12157 	return false;
12158 }
12159 
12160 /* If runtime conditions support RFS */
12161 static bool bnxt_rfs_capable(struct bnxt *bp)
12162 {
12163 	int vnics, max_vnics, max_rss_ctxs;
12164 
12165 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
12166 		return bnxt_rfs_supported(bp);
12167 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings)
12168 		return false;
12169 
12170 	vnics = 1 + bp->rx_nr_rings;
12171 	max_vnics = bnxt_get_max_func_vnics(bp);
12172 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
12173 
12174 	/* RSS contexts not a limiting factor */
12175 	if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP)
12176 		max_rss_ctxs = max_vnics;
12177 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
12178 		if (bp->rx_nr_rings > 1)
12179 			netdev_warn(bp->dev,
12180 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
12181 				    min(max_rss_ctxs - 1, max_vnics - 1));
12182 		return false;
12183 	}
12184 
12185 	if (!BNXT_NEW_RM(bp))
12186 		return true;
12187 
12188 	if (vnics == bp->hw_resc.resv_vnics)
12189 		return true;
12190 
12191 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
12192 	if (vnics <= bp->hw_resc.resv_vnics)
12193 		return true;
12194 
12195 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
12196 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
12197 	return false;
12198 }
12199 
12200 static netdev_features_t bnxt_fix_features(struct net_device *dev,
12201 					   netdev_features_t features)
12202 {
12203 	struct bnxt *bp = netdev_priv(dev);
12204 	netdev_features_t vlan_features;
12205 
12206 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
12207 		features &= ~NETIF_F_NTUPLE;
12208 
12209 	if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog)
12210 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12211 
12212 	if (!(features & NETIF_F_GRO))
12213 		features &= ~NETIF_F_GRO_HW;
12214 
12215 	if (features & NETIF_F_GRO_HW)
12216 		features &= ~NETIF_F_LRO;
12217 
12218 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
12219 	 * turned on or off together.
12220 	 */
12221 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
12222 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
12223 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
12224 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
12225 		else if (vlan_features)
12226 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
12227 	}
12228 #ifdef CONFIG_BNXT_SRIOV
12229 	if (BNXT_VF(bp) && bp->vf.vlan)
12230 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
12231 #endif
12232 	return features;
12233 }
12234 
12235 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
12236 {
12237 	struct bnxt *bp = netdev_priv(dev);
12238 	u32 flags = bp->flags;
12239 	u32 changes;
12240 	int rc = 0;
12241 	bool re_init = false;
12242 	bool update_tpa = false;
12243 
12244 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
12245 	if (features & NETIF_F_GRO_HW)
12246 		flags |= BNXT_FLAG_GRO;
12247 	else if (features & NETIF_F_LRO)
12248 		flags |= BNXT_FLAG_LRO;
12249 
12250 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
12251 		flags &= ~BNXT_FLAG_TPA;
12252 
12253 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
12254 		flags |= BNXT_FLAG_STRIP_VLAN;
12255 
12256 	if (features & NETIF_F_NTUPLE)
12257 		flags |= BNXT_FLAG_RFS;
12258 
12259 	changes = flags ^ bp->flags;
12260 	if (changes & BNXT_FLAG_TPA) {
12261 		update_tpa = true;
12262 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
12263 		    (flags & BNXT_FLAG_TPA) == 0 ||
12264 		    (bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
12265 			re_init = true;
12266 	}
12267 
12268 	if (changes & ~BNXT_FLAG_TPA)
12269 		re_init = true;
12270 
12271 	if (flags != bp->flags) {
12272 		u32 old_flags = bp->flags;
12273 
12274 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
12275 			bp->flags = flags;
12276 			if (update_tpa)
12277 				bnxt_set_ring_params(bp);
12278 			return rc;
12279 		}
12280 
12281 		if (re_init) {
12282 			bnxt_close_nic(bp, false, false);
12283 			bp->flags = flags;
12284 			if (update_tpa)
12285 				bnxt_set_ring_params(bp);
12286 
12287 			return bnxt_open_nic(bp, false, false);
12288 		}
12289 		if (update_tpa) {
12290 			bp->flags = flags;
12291 			rc = bnxt_set_tpa(bp,
12292 					  (flags & BNXT_FLAG_TPA) ?
12293 					  true : false);
12294 			if (rc)
12295 				bp->flags = old_flags;
12296 		}
12297 	}
12298 	return rc;
12299 }
12300 
12301 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
12302 			      u8 **nextp)
12303 {
12304 	struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
12305 	struct hop_jumbo_hdr *jhdr;
12306 	int hdr_count = 0;
12307 	u8 *nexthdr;
12308 	int start;
12309 
12310 	/* Check that there are at most 2 IPv6 extension headers, no
12311 	 * fragment header, and each is <= 64 bytes.
12312 	 */
12313 	start = nw_off + sizeof(*ip6h);
12314 	nexthdr = &ip6h->nexthdr;
12315 	while (ipv6_ext_hdr(*nexthdr)) {
12316 		struct ipv6_opt_hdr *hp;
12317 		int hdrlen;
12318 
12319 		if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
12320 		    *nexthdr == NEXTHDR_FRAGMENT)
12321 			return false;
12322 		hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
12323 					  skb_headlen(skb), NULL);
12324 		if (!hp)
12325 			return false;
12326 		if (*nexthdr == NEXTHDR_AUTH)
12327 			hdrlen = ipv6_authlen(hp);
12328 		else
12329 			hdrlen = ipv6_optlen(hp);
12330 
12331 		if (hdrlen > 64)
12332 			return false;
12333 
12334 		/* The ext header may be a hop-by-hop header inserted for
12335 		 * big TCP purposes. This will be removed before sending
12336 		 * from NIC, so do not count it.
12337 		 */
12338 		if (*nexthdr == NEXTHDR_HOP) {
12339 			if (likely(skb->len <= GRO_LEGACY_MAX_SIZE))
12340 				goto increment_hdr;
12341 
12342 			jhdr = (struct hop_jumbo_hdr *)hp;
12343 			if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 ||
12344 			    jhdr->nexthdr != IPPROTO_TCP)
12345 				goto increment_hdr;
12346 
12347 			goto next_hdr;
12348 		}
12349 increment_hdr:
12350 		hdr_count++;
12351 next_hdr:
12352 		nexthdr = &hp->nexthdr;
12353 		start += hdrlen;
12354 	}
12355 	if (nextp) {
12356 		/* Caller will check inner protocol */
12357 		if (skb->encapsulation) {
12358 			*nextp = nexthdr;
12359 			return true;
12360 		}
12361 		*nextp = NULL;
12362 	}
12363 	/* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
12364 	return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
12365 }
12366 
12367 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
12368 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
12369 {
12370 	struct udphdr *uh = udp_hdr(skb);
12371 	__be16 udp_port = uh->dest;
12372 
12373 	if (udp_port != bp->vxlan_port && udp_port != bp->nge_port &&
12374 	    udp_port != bp->vxlan_gpe_port)
12375 		return false;
12376 	if (skb->inner_protocol == htons(ETH_P_TEB)) {
12377 		struct ethhdr *eh = inner_eth_hdr(skb);
12378 
12379 		switch (eh->h_proto) {
12380 		case htons(ETH_P_IP):
12381 			return true;
12382 		case htons(ETH_P_IPV6):
12383 			return bnxt_exthdr_check(bp, skb,
12384 						 skb_inner_network_offset(skb),
12385 						 NULL);
12386 		}
12387 	} else if (skb->inner_protocol == htons(ETH_P_IP)) {
12388 		return true;
12389 	} else if (skb->inner_protocol == htons(ETH_P_IPV6)) {
12390 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
12391 					 NULL);
12392 	}
12393 	return false;
12394 }
12395 
12396 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
12397 {
12398 	switch (l4_proto) {
12399 	case IPPROTO_UDP:
12400 		return bnxt_udp_tunl_check(bp, skb);
12401 	case IPPROTO_IPIP:
12402 		return true;
12403 	case IPPROTO_GRE: {
12404 		switch (skb->inner_protocol) {
12405 		default:
12406 			return false;
12407 		case htons(ETH_P_IP):
12408 			return true;
12409 		case htons(ETH_P_IPV6):
12410 			fallthrough;
12411 		}
12412 	}
12413 	case IPPROTO_IPV6:
12414 		/* Check ext headers of inner ipv6 */
12415 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
12416 					 NULL);
12417 	}
12418 	return false;
12419 }
12420 
12421 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
12422 					     struct net_device *dev,
12423 					     netdev_features_t features)
12424 {
12425 	struct bnxt *bp = netdev_priv(dev);
12426 	u8 *l4_proto;
12427 
12428 	features = vlan_features_check(skb, features);
12429 	switch (vlan_get_protocol(skb)) {
12430 	case htons(ETH_P_IP):
12431 		if (!skb->encapsulation)
12432 			return features;
12433 		l4_proto = &ip_hdr(skb)->protocol;
12434 		if (bnxt_tunl_check(bp, skb, *l4_proto))
12435 			return features;
12436 		break;
12437 	case htons(ETH_P_IPV6):
12438 		if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
12439 				       &l4_proto))
12440 			break;
12441 		if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
12442 			return features;
12443 		break;
12444 	}
12445 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
12446 }
12447 
12448 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
12449 			 u32 *reg_buf)
12450 {
12451 	struct hwrm_dbg_read_direct_output *resp;
12452 	struct hwrm_dbg_read_direct_input *req;
12453 	__le32 *dbg_reg_buf;
12454 	dma_addr_t mapping;
12455 	int rc, i;
12456 
12457 	rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT);
12458 	if (rc)
12459 		return rc;
12460 
12461 	dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4,
12462 					 &mapping);
12463 	if (!dbg_reg_buf) {
12464 		rc = -ENOMEM;
12465 		goto dbg_rd_reg_exit;
12466 	}
12467 
12468 	req->host_dest_addr = cpu_to_le64(mapping);
12469 
12470 	resp = hwrm_req_hold(bp, req);
12471 	req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
12472 	req->read_len32 = cpu_to_le32(num_words);
12473 
12474 	rc = hwrm_req_send(bp, req);
12475 	if (rc || resp->error_code) {
12476 		rc = -EIO;
12477 		goto dbg_rd_reg_exit;
12478 	}
12479 	for (i = 0; i < num_words; i++)
12480 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
12481 
12482 dbg_rd_reg_exit:
12483 	hwrm_req_drop(bp, req);
12484 	return rc;
12485 }
12486 
12487 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
12488 				       u32 ring_id, u32 *prod, u32 *cons)
12489 {
12490 	struct hwrm_dbg_ring_info_get_output *resp;
12491 	struct hwrm_dbg_ring_info_get_input *req;
12492 	int rc;
12493 
12494 	rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET);
12495 	if (rc)
12496 		return rc;
12497 
12498 	req->ring_type = ring_type;
12499 	req->fw_ring_id = cpu_to_le32(ring_id);
12500 	resp = hwrm_req_hold(bp, req);
12501 	rc = hwrm_req_send(bp, req);
12502 	if (!rc) {
12503 		*prod = le32_to_cpu(resp->producer_index);
12504 		*cons = le32_to_cpu(resp->consumer_index);
12505 	}
12506 	hwrm_req_drop(bp, req);
12507 	return rc;
12508 }
12509 
12510 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
12511 {
12512 	struct bnxt_tx_ring_info *txr;
12513 	int i = bnapi->index, j;
12514 
12515 	bnxt_for_each_napi_tx(j, bnapi, txr)
12516 		netdev_info(bnapi->bp->dev, "[%d.%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
12517 			    i, j, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
12518 			    txr->tx_cons);
12519 }
12520 
12521 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
12522 {
12523 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
12524 	int i = bnapi->index;
12525 
12526 	if (!rxr)
12527 		return;
12528 
12529 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
12530 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
12531 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
12532 		    rxr->rx_sw_agg_prod);
12533 }
12534 
12535 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
12536 {
12537 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
12538 	int i = bnapi->index;
12539 
12540 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
12541 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
12542 }
12543 
12544 static void bnxt_dbg_dump_states(struct bnxt *bp)
12545 {
12546 	int i;
12547 	struct bnxt_napi *bnapi;
12548 
12549 	for (i = 0; i < bp->cp_nr_rings; i++) {
12550 		bnapi = bp->bnapi[i];
12551 		if (netif_msg_drv(bp)) {
12552 			bnxt_dump_tx_sw_state(bnapi);
12553 			bnxt_dump_rx_sw_state(bnapi);
12554 			bnxt_dump_cp_sw_state(bnapi);
12555 		}
12556 	}
12557 }
12558 
12559 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
12560 {
12561 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
12562 	struct hwrm_ring_reset_input *req;
12563 	struct bnxt_napi *bnapi = rxr->bnapi;
12564 	struct bnxt_cp_ring_info *cpr;
12565 	u16 cp_ring_id;
12566 	int rc;
12567 
12568 	rc = hwrm_req_init(bp, req, HWRM_RING_RESET);
12569 	if (rc)
12570 		return rc;
12571 
12572 	cpr = &bnapi->cp_ring;
12573 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
12574 	req->cmpl_ring = cpu_to_le16(cp_ring_id);
12575 	req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
12576 	req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
12577 	return hwrm_req_send_silent(bp, req);
12578 }
12579 
12580 static void bnxt_reset_task(struct bnxt *bp, bool silent)
12581 {
12582 	if (!silent)
12583 		bnxt_dbg_dump_states(bp);
12584 	if (netif_running(bp->dev)) {
12585 		int rc;
12586 
12587 		if (silent) {
12588 			bnxt_close_nic(bp, false, false);
12589 			bnxt_open_nic(bp, false, false);
12590 		} else {
12591 			bnxt_ulp_stop(bp);
12592 			bnxt_close_nic(bp, true, false);
12593 			rc = bnxt_open_nic(bp, true, false);
12594 			bnxt_ulp_start(bp, rc);
12595 		}
12596 	}
12597 }
12598 
12599 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
12600 {
12601 	struct bnxt *bp = netdev_priv(dev);
12602 
12603 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
12604 	bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT);
12605 }
12606 
12607 static void bnxt_fw_health_check(struct bnxt *bp)
12608 {
12609 	struct bnxt_fw_health *fw_health = bp->fw_health;
12610 	struct pci_dev *pdev = bp->pdev;
12611 	u32 val;
12612 
12613 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
12614 		return;
12615 
12616 	/* Make sure it is enabled before checking the tmr_counter. */
12617 	smp_rmb();
12618 	if (fw_health->tmr_counter) {
12619 		fw_health->tmr_counter--;
12620 		return;
12621 	}
12622 
12623 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
12624 	if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) {
12625 		fw_health->arrests++;
12626 		goto fw_reset;
12627 	}
12628 
12629 	fw_health->last_fw_heartbeat = val;
12630 
12631 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
12632 	if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) {
12633 		fw_health->discoveries++;
12634 		goto fw_reset;
12635 	}
12636 
12637 	fw_health->tmr_counter = fw_health->tmr_multiplier;
12638 	return;
12639 
12640 fw_reset:
12641 	bnxt_queue_sp_work(bp, BNXT_FW_EXCEPTION_SP_EVENT);
12642 }
12643 
12644 static void bnxt_timer(struct timer_list *t)
12645 {
12646 	struct bnxt *bp = from_timer(bp, t, timer);
12647 	struct net_device *dev = bp->dev;
12648 
12649 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
12650 		return;
12651 
12652 	if (atomic_read(&bp->intr_sem) != 0)
12653 		goto bnxt_restart_timer;
12654 
12655 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
12656 		bnxt_fw_health_check(bp);
12657 
12658 	if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks)
12659 		bnxt_queue_sp_work(bp, BNXT_PERIODIC_STATS_SP_EVENT);
12660 
12661 	if (bnxt_tc_flower_enabled(bp))
12662 		bnxt_queue_sp_work(bp, BNXT_FLOW_STATS_SP_EVENT);
12663 
12664 #ifdef CONFIG_RFS_ACCEL
12665 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count)
12666 		bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT);
12667 #endif /*CONFIG_RFS_ACCEL*/
12668 
12669 	if (bp->link_info.phy_retry) {
12670 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
12671 			bp->link_info.phy_retry = false;
12672 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
12673 		} else {
12674 			bnxt_queue_sp_work(bp, BNXT_UPDATE_PHY_SP_EVENT);
12675 		}
12676 	}
12677 
12678 	if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
12679 		bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT);
12680 
12681 	if ((BNXT_CHIP_P5(bp)) && !bp->chip_rev && netif_carrier_ok(dev))
12682 		bnxt_queue_sp_work(bp, BNXT_RING_COAL_NOW_SP_EVENT);
12683 
12684 bnxt_restart_timer:
12685 	mod_timer(&bp->timer, jiffies + bp->current_interval);
12686 }
12687 
12688 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
12689 {
12690 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
12691 	 * set.  If the device is being closed, bnxt_close() may be holding
12692 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
12693 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
12694 	 */
12695 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12696 	rtnl_lock();
12697 }
12698 
12699 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
12700 {
12701 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12702 	rtnl_unlock();
12703 }
12704 
12705 /* Only called from bnxt_sp_task() */
12706 static void bnxt_reset(struct bnxt *bp, bool silent)
12707 {
12708 	bnxt_rtnl_lock_sp(bp);
12709 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
12710 		bnxt_reset_task(bp, silent);
12711 	bnxt_rtnl_unlock_sp(bp);
12712 }
12713 
12714 /* Only called from bnxt_sp_task() */
12715 static void bnxt_rx_ring_reset(struct bnxt *bp)
12716 {
12717 	int i;
12718 
12719 	bnxt_rtnl_lock_sp(bp);
12720 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
12721 		bnxt_rtnl_unlock_sp(bp);
12722 		return;
12723 	}
12724 	/* Disable and flush TPA before resetting the RX ring */
12725 	if (bp->flags & BNXT_FLAG_TPA)
12726 		bnxt_set_tpa(bp, false);
12727 	for (i = 0; i < bp->rx_nr_rings; i++) {
12728 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
12729 		struct bnxt_cp_ring_info *cpr;
12730 		int rc;
12731 
12732 		if (!rxr->bnapi->in_reset)
12733 			continue;
12734 
12735 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
12736 		if (rc) {
12737 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
12738 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
12739 			else
12740 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
12741 					    rc);
12742 			bnxt_reset_task(bp, true);
12743 			break;
12744 		}
12745 		bnxt_free_one_rx_ring_skbs(bp, i);
12746 		rxr->rx_prod = 0;
12747 		rxr->rx_agg_prod = 0;
12748 		rxr->rx_sw_agg_prod = 0;
12749 		rxr->rx_next_cons = 0;
12750 		rxr->bnapi->in_reset = false;
12751 		bnxt_alloc_one_rx_ring(bp, i);
12752 		cpr = &rxr->bnapi->cp_ring;
12753 		cpr->sw_stats.rx.rx_resets++;
12754 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
12755 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
12756 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
12757 	}
12758 	if (bp->flags & BNXT_FLAG_TPA)
12759 		bnxt_set_tpa(bp, true);
12760 	bnxt_rtnl_unlock_sp(bp);
12761 }
12762 
12763 static void bnxt_fw_reset_close(struct bnxt *bp)
12764 {
12765 	bnxt_ulp_stop(bp);
12766 	/* When firmware is in fatal state, quiesce device and disable
12767 	 * bus master to prevent any potential bad DMAs before freeing
12768 	 * kernel memory.
12769 	 */
12770 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
12771 		u16 val = 0;
12772 
12773 		pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
12774 		if (val == 0xffff)
12775 			bp->fw_reset_min_dsecs = 0;
12776 		bnxt_tx_disable(bp);
12777 		bnxt_disable_napi(bp);
12778 		bnxt_disable_int_sync(bp);
12779 		bnxt_free_irq(bp);
12780 		bnxt_clear_int_mode(bp);
12781 		pci_disable_device(bp->pdev);
12782 	}
12783 	__bnxt_close_nic(bp, true, false);
12784 	bnxt_vf_reps_free(bp);
12785 	bnxt_clear_int_mode(bp);
12786 	bnxt_hwrm_func_drv_unrgtr(bp);
12787 	if (pci_is_enabled(bp->pdev))
12788 		pci_disable_device(bp->pdev);
12789 	bnxt_free_ctx_mem(bp);
12790 }
12791 
12792 static bool is_bnxt_fw_ok(struct bnxt *bp)
12793 {
12794 	struct bnxt_fw_health *fw_health = bp->fw_health;
12795 	bool no_heartbeat = false, has_reset = false;
12796 	u32 val;
12797 
12798 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
12799 	if (val == fw_health->last_fw_heartbeat)
12800 		no_heartbeat = true;
12801 
12802 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
12803 	if (val != fw_health->last_fw_reset_cnt)
12804 		has_reset = true;
12805 
12806 	if (!no_heartbeat && has_reset)
12807 		return true;
12808 
12809 	return false;
12810 }
12811 
12812 /* rtnl_lock is acquired before calling this function */
12813 static void bnxt_force_fw_reset(struct bnxt *bp)
12814 {
12815 	struct bnxt_fw_health *fw_health = bp->fw_health;
12816 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
12817 	u32 wait_dsecs;
12818 
12819 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
12820 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
12821 		return;
12822 
12823 	if (ptp) {
12824 		spin_lock_bh(&ptp->ptp_lock);
12825 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12826 		spin_unlock_bh(&ptp->ptp_lock);
12827 	} else {
12828 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12829 	}
12830 	bnxt_fw_reset_close(bp);
12831 	wait_dsecs = fw_health->master_func_wait_dsecs;
12832 	if (fw_health->primary) {
12833 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
12834 			wait_dsecs = 0;
12835 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
12836 	} else {
12837 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
12838 		wait_dsecs = fw_health->normal_func_wait_dsecs;
12839 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12840 	}
12841 
12842 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
12843 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
12844 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
12845 }
12846 
12847 void bnxt_fw_exception(struct bnxt *bp)
12848 {
12849 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
12850 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
12851 	bnxt_rtnl_lock_sp(bp);
12852 	bnxt_force_fw_reset(bp);
12853 	bnxt_rtnl_unlock_sp(bp);
12854 }
12855 
12856 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
12857  * < 0 on error.
12858  */
12859 static int bnxt_get_registered_vfs(struct bnxt *bp)
12860 {
12861 #ifdef CONFIG_BNXT_SRIOV
12862 	int rc;
12863 
12864 	if (!BNXT_PF(bp))
12865 		return 0;
12866 
12867 	rc = bnxt_hwrm_func_qcfg(bp);
12868 	if (rc) {
12869 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
12870 		return rc;
12871 	}
12872 	if (bp->pf.registered_vfs)
12873 		return bp->pf.registered_vfs;
12874 	if (bp->sriov_cfg)
12875 		return 1;
12876 #endif
12877 	return 0;
12878 }
12879 
12880 void bnxt_fw_reset(struct bnxt *bp)
12881 {
12882 	bnxt_rtnl_lock_sp(bp);
12883 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
12884 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
12885 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
12886 		int n = 0, tmo;
12887 
12888 		if (ptp) {
12889 			spin_lock_bh(&ptp->ptp_lock);
12890 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12891 			spin_unlock_bh(&ptp->ptp_lock);
12892 		} else {
12893 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12894 		}
12895 		if (bp->pf.active_vfs &&
12896 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
12897 			n = bnxt_get_registered_vfs(bp);
12898 		if (n < 0) {
12899 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
12900 				   n);
12901 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12902 			dev_close(bp->dev);
12903 			goto fw_reset_exit;
12904 		} else if (n > 0) {
12905 			u16 vf_tmo_dsecs = n * 10;
12906 
12907 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
12908 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
12909 			bp->fw_reset_state =
12910 				BNXT_FW_RESET_STATE_POLL_VF;
12911 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12912 			goto fw_reset_exit;
12913 		}
12914 		bnxt_fw_reset_close(bp);
12915 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12916 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
12917 			tmo = HZ / 10;
12918 		} else {
12919 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12920 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
12921 		}
12922 		bnxt_queue_fw_reset_work(bp, tmo);
12923 	}
12924 fw_reset_exit:
12925 	bnxt_rtnl_unlock_sp(bp);
12926 }
12927 
12928 static void bnxt_chk_missed_irq(struct bnxt *bp)
12929 {
12930 	int i;
12931 
12932 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
12933 		return;
12934 
12935 	for (i = 0; i < bp->cp_nr_rings; i++) {
12936 		struct bnxt_napi *bnapi = bp->bnapi[i];
12937 		struct bnxt_cp_ring_info *cpr;
12938 		u32 fw_ring_id;
12939 		int j;
12940 
12941 		if (!bnapi)
12942 			continue;
12943 
12944 		cpr = &bnapi->cp_ring;
12945 		for (j = 0; j < cpr->cp_ring_count; j++) {
12946 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
12947 			u32 val[2];
12948 
12949 			if (cpr2->has_more_work || !bnxt_has_work(bp, cpr2))
12950 				continue;
12951 
12952 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
12953 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
12954 				continue;
12955 			}
12956 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
12957 			bnxt_dbg_hwrm_ring_info_get(bp,
12958 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
12959 				fw_ring_id, &val[0], &val[1]);
12960 			cpr->sw_stats.cmn.missed_irqs++;
12961 		}
12962 	}
12963 }
12964 
12965 static void bnxt_cfg_ntp_filters(struct bnxt *);
12966 
12967 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
12968 {
12969 	struct bnxt_link_info *link_info = &bp->link_info;
12970 
12971 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
12972 		link_info->autoneg = BNXT_AUTONEG_SPEED;
12973 		if (bp->hwrm_spec_code >= 0x10201) {
12974 			if (link_info->auto_pause_setting &
12975 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
12976 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
12977 		} else {
12978 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
12979 		}
12980 		bnxt_set_auto_speed(link_info);
12981 	} else {
12982 		bnxt_set_force_speed(link_info);
12983 		link_info->req_duplex = link_info->duplex_setting;
12984 	}
12985 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
12986 		link_info->req_flow_ctrl =
12987 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
12988 	else
12989 		link_info->req_flow_ctrl = link_info->force_pause_setting;
12990 }
12991 
12992 static void bnxt_fw_echo_reply(struct bnxt *bp)
12993 {
12994 	struct bnxt_fw_health *fw_health = bp->fw_health;
12995 	struct hwrm_func_echo_response_input *req;
12996 	int rc;
12997 
12998 	rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE);
12999 	if (rc)
13000 		return;
13001 	req->event_data1 = cpu_to_le32(fw_health->echo_req_data1);
13002 	req->event_data2 = cpu_to_le32(fw_health->echo_req_data2);
13003 	hwrm_req_send(bp, req);
13004 }
13005 
13006 static void bnxt_sp_task(struct work_struct *work)
13007 {
13008 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
13009 
13010 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13011 	smp_mb__after_atomic();
13012 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
13013 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13014 		return;
13015 	}
13016 
13017 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
13018 		bnxt_cfg_rx_mode(bp);
13019 
13020 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
13021 		bnxt_cfg_ntp_filters(bp);
13022 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
13023 		bnxt_hwrm_exec_fwd_req(bp);
13024 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
13025 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
13026 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
13027 		bnxt_hwrm_port_qstats(bp, 0);
13028 		bnxt_hwrm_port_qstats_ext(bp, 0);
13029 		bnxt_accumulate_all_stats(bp);
13030 	}
13031 
13032 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
13033 		int rc;
13034 
13035 		mutex_lock(&bp->link_lock);
13036 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
13037 				       &bp->sp_event))
13038 			bnxt_hwrm_phy_qcaps(bp);
13039 
13040 		rc = bnxt_update_link(bp, true);
13041 		if (rc)
13042 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
13043 				   rc);
13044 
13045 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
13046 				       &bp->sp_event))
13047 			bnxt_init_ethtool_link_settings(bp);
13048 		mutex_unlock(&bp->link_lock);
13049 	}
13050 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
13051 		int rc;
13052 
13053 		mutex_lock(&bp->link_lock);
13054 		rc = bnxt_update_phy_setting(bp);
13055 		mutex_unlock(&bp->link_lock);
13056 		if (rc) {
13057 			netdev_warn(bp->dev, "update phy settings retry failed\n");
13058 		} else {
13059 			bp->link_info.phy_retry = false;
13060 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
13061 		}
13062 	}
13063 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
13064 		mutex_lock(&bp->link_lock);
13065 		bnxt_get_port_module_status(bp);
13066 		mutex_unlock(&bp->link_lock);
13067 	}
13068 
13069 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
13070 		bnxt_tc_flow_stats_work(bp);
13071 
13072 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
13073 		bnxt_chk_missed_irq(bp);
13074 
13075 	if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
13076 		bnxt_fw_echo_reply(bp);
13077 
13078 	if (test_and_clear_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event))
13079 		bnxt_hwmon_notify_event(bp);
13080 
13081 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
13082 	 * must be the last functions to be called before exiting.
13083 	 */
13084 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
13085 		bnxt_reset(bp, false);
13086 
13087 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
13088 		bnxt_reset(bp, true);
13089 
13090 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
13091 		bnxt_rx_ring_reset(bp);
13092 
13093 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) {
13094 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) ||
13095 		    test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state))
13096 			bnxt_devlink_health_fw_report(bp);
13097 		else
13098 			bnxt_fw_reset(bp);
13099 	}
13100 
13101 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
13102 		if (!is_bnxt_fw_ok(bp))
13103 			bnxt_devlink_health_fw_report(bp);
13104 	}
13105 
13106 	smp_mb__before_atomic();
13107 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13108 }
13109 
13110 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13111 				int *max_cp);
13112 
13113 /* Under rtnl_lock */
13114 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
13115 		     int tx_xdp)
13116 {
13117 	int max_rx, max_tx, max_cp, tx_sets = 1, tx_cp;
13118 	int tx_rings_needed, stats;
13119 	int rx_rings = rx;
13120 	int cp, vnics;
13121 
13122 	if (tcs)
13123 		tx_sets = tcs;
13124 
13125 	_bnxt_get_max_rings(bp, &max_rx, &max_tx, &max_cp);
13126 
13127 	if (max_rx < rx_rings)
13128 		return -ENOMEM;
13129 
13130 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
13131 		rx_rings <<= 1;
13132 
13133 	tx_rings_needed = tx * tx_sets + tx_xdp;
13134 	if (max_tx < tx_rings_needed)
13135 		return -ENOMEM;
13136 
13137 	vnics = 1;
13138 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5_PLUS)) ==
13139 	    BNXT_FLAG_RFS)
13140 		vnics += rx;
13141 
13142 	tx_cp = __bnxt_num_tx_to_cp(bp, tx_rings_needed, tx_sets, tx_xdp);
13143 	cp = sh ? max_t(int, tx_cp, rx) : tx_cp + rx;
13144 	if (max_cp < cp)
13145 		return -ENOMEM;
13146 	stats = cp;
13147 	if (BNXT_NEW_RM(bp)) {
13148 		cp += bnxt_get_ulp_msix_num(bp);
13149 		stats += bnxt_get_ulp_stat_ctxs(bp);
13150 	}
13151 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
13152 				     stats, vnics);
13153 }
13154 
13155 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
13156 {
13157 	if (bp->bar2) {
13158 		pci_iounmap(pdev, bp->bar2);
13159 		bp->bar2 = NULL;
13160 	}
13161 
13162 	if (bp->bar1) {
13163 		pci_iounmap(pdev, bp->bar1);
13164 		bp->bar1 = NULL;
13165 	}
13166 
13167 	if (bp->bar0) {
13168 		pci_iounmap(pdev, bp->bar0);
13169 		bp->bar0 = NULL;
13170 	}
13171 }
13172 
13173 static void bnxt_cleanup_pci(struct bnxt *bp)
13174 {
13175 	bnxt_unmap_bars(bp, bp->pdev);
13176 	pci_release_regions(bp->pdev);
13177 	if (pci_is_enabled(bp->pdev))
13178 		pci_disable_device(bp->pdev);
13179 }
13180 
13181 static void bnxt_init_dflt_coal(struct bnxt *bp)
13182 {
13183 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
13184 	struct bnxt_coal *coal;
13185 	u16 flags = 0;
13186 
13187 	if (coal_cap->cmpl_params &
13188 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
13189 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
13190 
13191 	/* Tick values in micro seconds.
13192 	 * 1 coal_buf x bufs_per_record = 1 completion record.
13193 	 */
13194 	coal = &bp->rx_coal;
13195 	coal->coal_ticks = 10;
13196 	coal->coal_bufs = 30;
13197 	coal->coal_ticks_irq = 1;
13198 	coal->coal_bufs_irq = 2;
13199 	coal->idle_thresh = 50;
13200 	coal->bufs_per_record = 2;
13201 	coal->budget = 64;		/* NAPI budget */
13202 	coal->flags = flags;
13203 
13204 	coal = &bp->tx_coal;
13205 	coal->coal_ticks = 28;
13206 	coal->coal_bufs = 30;
13207 	coal->coal_ticks_irq = 2;
13208 	coal->coal_bufs_irq = 2;
13209 	coal->bufs_per_record = 1;
13210 	coal->flags = flags;
13211 
13212 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
13213 }
13214 
13215 /* FW that pre-reserves 1 VNIC per function */
13216 static bool bnxt_fw_pre_resv_vnics(struct bnxt *bp)
13217 {
13218 	u16 fw_maj = BNXT_FW_MAJ(bp), fw_bld = BNXT_FW_BLD(bp);
13219 
13220 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
13221 	    (fw_maj > 218 || (fw_maj == 218 && fw_bld >= 18)))
13222 		return true;
13223 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
13224 	    (fw_maj > 216 || (fw_maj == 216 && fw_bld >= 172)))
13225 		return true;
13226 	return false;
13227 }
13228 
13229 static int bnxt_fw_init_one_p1(struct bnxt *bp)
13230 {
13231 	int rc;
13232 
13233 	bp->fw_cap = 0;
13234 	rc = bnxt_hwrm_ver_get(bp);
13235 	bnxt_try_map_fw_health_reg(bp);
13236 	if (rc) {
13237 		rc = bnxt_try_recover_fw(bp);
13238 		if (rc)
13239 			return rc;
13240 		rc = bnxt_hwrm_ver_get(bp);
13241 		if (rc)
13242 			return rc;
13243 	}
13244 
13245 	bnxt_nvm_cfg_ver_get(bp);
13246 
13247 	rc = bnxt_hwrm_func_reset(bp);
13248 	if (rc)
13249 		return -ENODEV;
13250 
13251 	bnxt_hwrm_fw_set_time(bp);
13252 	return 0;
13253 }
13254 
13255 static int bnxt_fw_init_one_p2(struct bnxt *bp)
13256 {
13257 	int rc;
13258 
13259 	/* Get the MAX capabilities for this function */
13260 	rc = bnxt_hwrm_func_qcaps(bp);
13261 	if (rc) {
13262 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
13263 			   rc);
13264 		return -ENODEV;
13265 	}
13266 
13267 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
13268 	if (rc)
13269 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
13270 			    rc);
13271 
13272 	if (bnxt_alloc_fw_health(bp)) {
13273 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
13274 	} else {
13275 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
13276 		if (rc)
13277 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
13278 				    rc);
13279 	}
13280 
13281 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
13282 	if (rc)
13283 		return -ENODEV;
13284 
13285 	if (bnxt_fw_pre_resv_vnics(bp))
13286 		bp->fw_cap |= BNXT_FW_CAP_PRE_RESV_VNICS;
13287 
13288 	bnxt_hwrm_func_qcfg(bp);
13289 	bnxt_hwrm_vnic_qcaps(bp);
13290 	bnxt_hwrm_port_led_qcaps(bp);
13291 	bnxt_ethtool_init(bp);
13292 	if (bp->fw_cap & BNXT_FW_CAP_PTP)
13293 		__bnxt_hwrm_ptp_qcfg(bp);
13294 	bnxt_dcb_init(bp);
13295 	bnxt_hwmon_init(bp);
13296 	return 0;
13297 }
13298 
13299 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
13300 {
13301 	bp->rss_cap &= ~BNXT_RSS_CAP_UDP_RSS_CAP;
13302 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
13303 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
13304 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
13305 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
13306 	if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA)
13307 		bp->rss_hash_delta = bp->rss_hash_cfg;
13308 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
13309 		bp->rss_cap |= BNXT_RSS_CAP_UDP_RSS_CAP;
13310 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
13311 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
13312 	}
13313 }
13314 
13315 static void bnxt_set_dflt_rfs(struct bnxt *bp)
13316 {
13317 	struct net_device *dev = bp->dev;
13318 
13319 	dev->hw_features &= ~NETIF_F_NTUPLE;
13320 	dev->features &= ~NETIF_F_NTUPLE;
13321 	bp->flags &= ~BNXT_FLAG_RFS;
13322 	if (bnxt_rfs_supported(bp)) {
13323 		dev->hw_features |= NETIF_F_NTUPLE;
13324 		if (bnxt_rfs_capable(bp)) {
13325 			bp->flags |= BNXT_FLAG_RFS;
13326 			dev->features |= NETIF_F_NTUPLE;
13327 		}
13328 	}
13329 }
13330 
13331 static void bnxt_fw_init_one_p3(struct bnxt *bp)
13332 {
13333 	struct pci_dev *pdev = bp->pdev;
13334 
13335 	bnxt_set_dflt_rss_hash_type(bp);
13336 	bnxt_set_dflt_rfs(bp);
13337 
13338 	bnxt_get_wol_settings(bp);
13339 	if (bp->flags & BNXT_FLAG_WOL_CAP)
13340 		device_set_wakeup_enable(&pdev->dev, bp->wol);
13341 	else
13342 		device_set_wakeup_capable(&pdev->dev, false);
13343 
13344 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
13345 	bnxt_hwrm_coal_params_qcaps(bp);
13346 }
13347 
13348 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt);
13349 
13350 int bnxt_fw_init_one(struct bnxt *bp)
13351 {
13352 	int rc;
13353 
13354 	rc = bnxt_fw_init_one_p1(bp);
13355 	if (rc) {
13356 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
13357 		return rc;
13358 	}
13359 	rc = bnxt_fw_init_one_p2(bp);
13360 	if (rc) {
13361 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
13362 		return rc;
13363 	}
13364 	rc = bnxt_probe_phy(bp, false);
13365 	if (rc)
13366 		return rc;
13367 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
13368 	if (rc)
13369 		return rc;
13370 
13371 	bnxt_fw_init_one_p3(bp);
13372 	return 0;
13373 }
13374 
13375 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
13376 {
13377 	struct bnxt_fw_health *fw_health = bp->fw_health;
13378 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
13379 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
13380 	u32 reg_type, reg_off, delay_msecs;
13381 
13382 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
13383 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
13384 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
13385 	switch (reg_type) {
13386 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
13387 		pci_write_config_dword(bp->pdev, reg_off, val);
13388 		break;
13389 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
13390 		writel(reg_off & BNXT_GRC_BASE_MASK,
13391 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
13392 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
13393 		fallthrough;
13394 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
13395 		writel(val, bp->bar0 + reg_off);
13396 		break;
13397 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
13398 		writel(val, bp->bar1 + reg_off);
13399 		break;
13400 	}
13401 	if (delay_msecs) {
13402 		pci_read_config_dword(bp->pdev, 0, &val);
13403 		msleep(delay_msecs);
13404 	}
13405 }
13406 
13407 bool bnxt_hwrm_reset_permitted(struct bnxt *bp)
13408 {
13409 	struct hwrm_func_qcfg_output *resp;
13410 	struct hwrm_func_qcfg_input *req;
13411 	bool result = true; /* firmware will enforce if unknown */
13412 
13413 	if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF)
13414 		return result;
13415 
13416 	if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG))
13417 		return result;
13418 
13419 	req->fid = cpu_to_le16(0xffff);
13420 	resp = hwrm_req_hold(bp, req);
13421 	if (!hwrm_req_send(bp, req))
13422 		result = !!(le16_to_cpu(resp->flags) &
13423 			    FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED);
13424 	hwrm_req_drop(bp, req);
13425 	return result;
13426 }
13427 
13428 static void bnxt_reset_all(struct bnxt *bp)
13429 {
13430 	struct bnxt_fw_health *fw_health = bp->fw_health;
13431 	int i, rc;
13432 
13433 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
13434 		bnxt_fw_reset_via_optee(bp);
13435 		bp->fw_reset_timestamp = jiffies;
13436 		return;
13437 	}
13438 
13439 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
13440 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
13441 			bnxt_fw_reset_writel(bp, i);
13442 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
13443 		struct hwrm_fw_reset_input *req;
13444 
13445 		rc = hwrm_req_init(bp, req, HWRM_FW_RESET);
13446 		if (!rc) {
13447 			req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG);
13448 			req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
13449 			req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
13450 			req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
13451 			rc = hwrm_req_send(bp, req);
13452 		}
13453 		if (rc != -ENODEV)
13454 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
13455 	}
13456 	bp->fw_reset_timestamp = jiffies;
13457 }
13458 
13459 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
13460 {
13461 	return time_after(jiffies, bp->fw_reset_timestamp +
13462 			  (bp->fw_reset_max_dsecs * HZ / 10));
13463 }
13464 
13465 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc)
13466 {
13467 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13468 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) {
13469 		bnxt_ulp_start(bp, rc);
13470 		bnxt_dl_health_fw_status_update(bp, false);
13471 	}
13472 	bp->fw_reset_state = 0;
13473 	dev_close(bp->dev);
13474 }
13475 
13476 static void bnxt_fw_reset_task(struct work_struct *work)
13477 {
13478 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
13479 	int rc = 0;
13480 
13481 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
13482 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
13483 		return;
13484 	}
13485 
13486 	switch (bp->fw_reset_state) {
13487 	case BNXT_FW_RESET_STATE_POLL_VF: {
13488 		int n = bnxt_get_registered_vfs(bp);
13489 		int tmo;
13490 
13491 		if (n < 0) {
13492 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
13493 				   n, jiffies_to_msecs(jiffies -
13494 				   bp->fw_reset_timestamp));
13495 			goto fw_reset_abort;
13496 		} else if (n > 0) {
13497 			if (bnxt_fw_reset_timeout(bp)) {
13498 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13499 				bp->fw_reset_state = 0;
13500 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
13501 					   n);
13502 				return;
13503 			}
13504 			bnxt_queue_fw_reset_work(bp, HZ / 10);
13505 			return;
13506 		}
13507 		bp->fw_reset_timestamp = jiffies;
13508 		rtnl_lock();
13509 		if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
13510 			bnxt_fw_reset_abort(bp, rc);
13511 			rtnl_unlock();
13512 			return;
13513 		}
13514 		bnxt_fw_reset_close(bp);
13515 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
13516 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
13517 			tmo = HZ / 10;
13518 		} else {
13519 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
13520 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
13521 		}
13522 		rtnl_unlock();
13523 		bnxt_queue_fw_reset_work(bp, tmo);
13524 		return;
13525 	}
13526 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
13527 		u32 val;
13528 
13529 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
13530 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
13531 		    !bnxt_fw_reset_timeout(bp)) {
13532 			bnxt_queue_fw_reset_work(bp, HZ / 5);
13533 			return;
13534 		}
13535 
13536 		if (!bp->fw_health->primary) {
13537 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
13538 
13539 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
13540 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
13541 			return;
13542 		}
13543 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
13544 	}
13545 		fallthrough;
13546 	case BNXT_FW_RESET_STATE_RESET_FW:
13547 		bnxt_reset_all(bp);
13548 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
13549 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
13550 		return;
13551 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
13552 		bnxt_inv_fw_health_reg(bp);
13553 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
13554 		    !bp->fw_reset_min_dsecs) {
13555 			u16 val;
13556 
13557 			pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
13558 			if (val == 0xffff) {
13559 				if (bnxt_fw_reset_timeout(bp)) {
13560 					netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
13561 					rc = -ETIMEDOUT;
13562 					goto fw_reset_abort;
13563 				}
13564 				bnxt_queue_fw_reset_work(bp, HZ / 1000);
13565 				return;
13566 			}
13567 		}
13568 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
13569 		clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
13570 		if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) &&
13571 		    !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state))
13572 			bnxt_dl_remote_reload(bp);
13573 		if (pci_enable_device(bp->pdev)) {
13574 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
13575 			rc = -ENODEV;
13576 			goto fw_reset_abort;
13577 		}
13578 		pci_set_master(bp->pdev);
13579 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
13580 		fallthrough;
13581 	case BNXT_FW_RESET_STATE_POLL_FW:
13582 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
13583 		rc = bnxt_hwrm_poll(bp);
13584 		if (rc) {
13585 			if (bnxt_fw_reset_timeout(bp)) {
13586 				netdev_err(bp->dev, "Firmware reset aborted\n");
13587 				goto fw_reset_abort_status;
13588 			}
13589 			bnxt_queue_fw_reset_work(bp, HZ / 5);
13590 			return;
13591 		}
13592 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
13593 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
13594 		fallthrough;
13595 	case BNXT_FW_RESET_STATE_OPENING:
13596 		while (!rtnl_trylock()) {
13597 			bnxt_queue_fw_reset_work(bp, HZ / 10);
13598 			return;
13599 		}
13600 		rc = bnxt_open(bp->dev);
13601 		if (rc) {
13602 			netdev_err(bp->dev, "bnxt_open() failed during FW reset\n");
13603 			bnxt_fw_reset_abort(bp, rc);
13604 			rtnl_unlock();
13605 			return;
13606 		}
13607 
13608 		if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) &&
13609 		    bp->fw_health->enabled) {
13610 			bp->fw_health->last_fw_reset_cnt =
13611 				bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
13612 		}
13613 		bp->fw_reset_state = 0;
13614 		/* Make sure fw_reset_state is 0 before clearing the flag */
13615 		smp_mb__before_atomic();
13616 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13617 		bnxt_ulp_start(bp, 0);
13618 		bnxt_reenable_sriov(bp);
13619 		bnxt_vf_reps_alloc(bp);
13620 		bnxt_vf_reps_open(bp);
13621 		bnxt_ptp_reapply_pps(bp);
13622 		clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state);
13623 		if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) {
13624 			bnxt_dl_health_fw_recovery_done(bp);
13625 			bnxt_dl_health_fw_status_update(bp, true);
13626 		}
13627 		rtnl_unlock();
13628 		break;
13629 	}
13630 	return;
13631 
13632 fw_reset_abort_status:
13633 	if (bp->fw_health->status_reliable ||
13634 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
13635 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
13636 
13637 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
13638 	}
13639 fw_reset_abort:
13640 	rtnl_lock();
13641 	bnxt_fw_reset_abort(bp, rc);
13642 	rtnl_unlock();
13643 }
13644 
13645 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
13646 {
13647 	int rc;
13648 	struct bnxt *bp = netdev_priv(dev);
13649 
13650 	SET_NETDEV_DEV(dev, &pdev->dev);
13651 
13652 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
13653 	rc = pci_enable_device(pdev);
13654 	if (rc) {
13655 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
13656 		goto init_err;
13657 	}
13658 
13659 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13660 		dev_err(&pdev->dev,
13661 			"Cannot find PCI device base address, aborting\n");
13662 		rc = -ENODEV;
13663 		goto init_err_disable;
13664 	}
13665 
13666 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13667 	if (rc) {
13668 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
13669 		goto init_err_disable;
13670 	}
13671 
13672 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
13673 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
13674 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
13675 		rc = -EIO;
13676 		goto init_err_release;
13677 	}
13678 
13679 	pci_set_master(pdev);
13680 
13681 	bp->dev = dev;
13682 	bp->pdev = pdev;
13683 
13684 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
13685 	 * determines the BAR size.
13686 	 */
13687 	bp->bar0 = pci_ioremap_bar(pdev, 0);
13688 	if (!bp->bar0) {
13689 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
13690 		rc = -ENOMEM;
13691 		goto init_err_release;
13692 	}
13693 
13694 	bp->bar2 = pci_ioremap_bar(pdev, 4);
13695 	if (!bp->bar2) {
13696 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
13697 		rc = -ENOMEM;
13698 		goto init_err_release;
13699 	}
13700 
13701 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
13702 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
13703 
13704 	spin_lock_init(&bp->ntp_fltr_lock);
13705 #if BITS_PER_LONG == 32
13706 	spin_lock_init(&bp->db_lock);
13707 #endif
13708 
13709 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
13710 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
13711 
13712 	timer_setup(&bp->timer, bnxt_timer, 0);
13713 	bp->current_interval = BNXT_TIMER_INTERVAL;
13714 
13715 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
13716 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
13717 
13718 	clear_bit(BNXT_STATE_OPEN, &bp->state);
13719 	return 0;
13720 
13721 init_err_release:
13722 	bnxt_unmap_bars(bp, pdev);
13723 	pci_release_regions(pdev);
13724 
13725 init_err_disable:
13726 	pci_disable_device(pdev);
13727 
13728 init_err:
13729 	return rc;
13730 }
13731 
13732 /* rtnl_lock held */
13733 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
13734 {
13735 	struct sockaddr *addr = p;
13736 	struct bnxt *bp = netdev_priv(dev);
13737 	int rc = 0;
13738 
13739 	if (!is_valid_ether_addr(addr->sa_data))
13740 		return -EADDRNOTAVAIL;
13741 
13742 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
13743 		return 0;
13744 
13745 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
13746 	if (rc)
13747 		return rc;
13748 
13749 	eth_hw_addr_set(dev, addr->sa_data);
13750 	if (netif_running(dev)) {
13751 		bnxt_close_nic(bp, false, false);
13752 		rc = bnxt_open_nic(bp, false, false);
13753 	}
13754 
13755 	return rc;
13756 }
13757 
13758 /* rtnl_lock held */
13759 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
13760 {
13761 	struct bnxt *bp = netdev_priv(dev);
13762 
13763 	if (netif_running(dev))
13764 		bnxt_close_nic(bp, true, false);
13765 
13766 	dev->mtu = new_mtu;
13767 	bnxt_set_ring_params(bp);
13768 
13769 	if (netif_running(dev))
13770 		return bnxt_open_nic(bp, true, false);
13771 
13772 	return 0;
13773 }
13774 
13775 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
13776 {
13777 	struct bnxt *bp = netdev_priv(dev);
13778 	bool sh = false;
13779 	int rc, tx_cp;
13780 
13781 	if (tc > bp->max_tc) {
13782 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
13783 			   tc, bp->max_tc);
13784 		return -EINVAL;
13785 	}
13786 
13787 	if (netdev_get_num_tc(dev) == tc)
13788 		return 0;
13789 
13790 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
13791 		sh = true;
13792 
13793 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
13794 			      sh, tc, bp->tx_nr_rings_xdp);
13795 	if (rc)
13796 		return rc;
13797 
13798 	/* Needs to close the device and do hw resource re-allocations */
13799 	if (netif_running(bp->dev))
13800 		bnxt_close_nic(bp, true, false);
13801 
13802 	if (tc) {
13803 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
13804 		netdev_set_num_tc(dev, tc);
13805 	} else {
13806 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13807 		netdev_reset_tc(dev);
13808 	}
13809 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
13810 	tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings);
13811 	bp->cp_nr_rings = sh ? max_t(int, tx_cp, bp->rx_nr_rings) :
13812 			       tx_cp + bp->rx_nr_rings;
13813 
13814 	if (netif_running(bp->dev))
13815 		return bnxt_open_nic(bp, true, false);
13816 
13817 	return 0;
13818 }
13819 
13820 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
13821 				  void *cb_priv)
13822 {
13823 	struct bnxt *bp = cb_priv;
13824 
13825 	if (!bnxt_tc_flower_enabled(bp) ||
13826 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
13827 		return -EOPNOTSUPP;
13828 
13829 	switch (type) {
13830 	case TC_SETUP_CLSFLOWER:
13831 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
13832 	default:
13833 		return -EOPNOTSUPP;
13834 	}
13835 }
13836 
13837 LIST_HEAD(bnxt_block_cb_list);
13838 
13839 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
13840 			 void *type_data)
13841 {
13842 	struct bnxt *bp = netdev_priv(dev);
13843 
13844 	switch (type) {
13845 	case TC_SETUP_BLOCK:
13846 		return flow_block_cb_setup_simple(type_data,
13847 						  &bnxt_block_cb_list,
13848 						  bnxt_setup_tc_block_cb,
13849 						  bp, bp, true);
13850 	case TC_SETUP_QDISC_MQPRIO: {
13851 		struct tc_mqprio_qopt *mqprio = type_data;
13852 
13853 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
13854 
13855 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
13856 	}
13857 	default:
13858 		return -EOPNOTSUPP;
13859 	}
13860 }
13861 
13862 u32 bnxt_get_ntp_filter_idx(struct bnxt *bp, struct flow_keys *fkeys,
13863 			    const struct sk_buff *skb)
13864 {
13865 	struct bnxt_vnic_info *vnic;
13866 
13867 	if (skb)
13868 		return skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
13869 
13870 	vnic = &bp->vnic_info[0];
13871 	return bnxt_toeplitz(bp, fkeys, (void *)vnic->rss_hash_key);
13872 }
13873 
13874 int bnxt_insert_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr,
13875 			   u32 idx)
13876 {
13877 	struct hlist_head *head;
13878 	int bit_id;
13879 
13880 	spin_lock_bh(&bp->ntp_fltr_lock);
13881 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, BNXT_MAX_FLTR, 0);
13882 	if (bit_id < 0) {
13883 		spin_unlock_bh(&bp->ntp_fltr_lock);
13884 		return -ENOMEM;
13885 	}
13886 
13887 	fltr->base.sw_id = (u16)bit_id;
13888 	fltr->base.type = BNXT_FLTR_TYPE_NTUPLE;
13889 	fltr->base.flags |= BNXT_ACT_RING_DST;
13890 	head = &bp->ntp_fltr_hash_tbl[idx];
13891 	hlist_add_head_rcu(&fltr->base.hash, head);
13892 	set_bit(BNXT_FLTR_INSERTED, &fltr->base.state);
13893 	bp->ntp_fltr_count++;
13894 	spin_unlock_bh(&bp->ntp_fltr_lock);
13895 	return 0;
13896 }
13897 
13898 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
13899 			    struct bnxt_ntuple_filter *f2)
13900 {
13901 	struct flow_keys *keys1 = &f1->fkeys;
13902 	struct flow_keys *keys2 = &f2->fkeys;
13903 
13904 	if (f1->ntuple_flags != f2->ntuple_flags)
13905 		return false;
13906 
13907 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
13908 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
13909 		return false;
13910 
13911 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
13912 		if (((f1->ntuple_flags & BNXT_NTUPLE_MATCH_SRC_IP) &&
13913 		     keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src) ||
13914 		    ((f1->ntuple_flags & BNXT_NTUPLE_MATCH_DST_IP) &&
13915 		     keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst))
13916 			return false;
13917 	} else {
13918 		if (((f1->ntuple_flags & BNXT_NTUPLE_MATCH_SRC_IP) &&
13919 		     memcmp(&keys1->addrs.v6addrs.src,
13920 			    &keys2->addrs.v6addrs.src,
13921 			    sizeof(keys1->addrs.v6addrs.src))) ||
13922 		    ((f1->ntuple_flags & BNXT_NTUPLE_MATCH_DST_IP) &&
13923 		     memcmp(&keys1->addrs.v6addrs.dst,
13924 			    &keys2->addrs.v6addrs.dst,
13925 			    sizeof(keys1->addrs.v6addrs.dst))))
13926 			return false;
13927 	}
13928 
13929 	if (((f1->ntuple_flags & BNXT_NTUPLE_MATCH_SRC_PORT) &&
13930 	     keys1->ports.src != keys2->ports.src) ||
13931 	    ((f1->ntuple_flags & BNXT_NTUPLE_MATCH_DST_PORT) &&
13932 	     keys1->ports.dst != keys2->ports.dst))
13933 		return false;
13934 
13935 	if (keys1->control.flags == keys2->control.flags &&
13936 	    f1->l2_fltr == f2->l2_fltr)
13937 		return true;
13938 
13939 	return false;
13940 }
13941 
13942 struct bnxt_ntuple_filter *
13943 bnxt_lookup_ntp_filter_from_idx(struct bnxt *bp,
13944 				struct bnxt_ntuple_filter *fltr, u32 idx)
13945 {
13946 	struct bnxt_ntuple_filter *f;
13947 	struct hlist_head *head;
13948 
13949 	head = &bp->ntp_fltr_hash_tbl[idx];
13950 	hlist_for_each_entry_rcu(f, head, base.hash) {
13951 		if (bnxt_fltr_match(f, fltr))
13952 			return f;
13953 	}
13954 	return NULL;
13955 }
13956 
13957 #ifdef CONFIG_RFS_ACCEL
13958 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
13959 			      u16 rxq_index, u32 flow_id)
13960 {
13961 	struct bnxt *bp = netdev_priv(dev);
13962 	struct bnxt_ntuple_filter *fltr, *new_fltr;
13963 	struct flow_keys *fkeys;
13964 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
13965 	struct bnxt_l2_filter *l2_fltr;
13966 	int rc = 0, idx;
13967 	u32 flags;
13968 
13969 	if (ether_addr_equal(dev->dev_addr, eth->h_dest)) {
13970 		l2_fltr = bp->vnic_info[0].l2_filters[0];
13971 		atomic_inc(&l2_fltr->refcnt);
13972 	} else {
13973 		struct bnxt_l2_key key;
13974 
13975 		ether_addr_copy(key.dst_mac_addr, eth->h_dest);
13976 		key.vlan = 0;
13977 		l2_fltr = bnxt_lookup_l2_filter_from_key(bp, &key);
13978 		if (!l2_fltr)
13979 			return -EINVAL;
13980 		if (l2_fltr->base.flags & BNXT_ACT_FUNC_DST) {
13981 			bnxt_del_l2_filter(bp, l2_fltr);
13982 			return -EINVAL;
13983 		}
13984 	}
13985 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
13986 	if (!new_fltr) {
13987 		bnxt_del_l2_filter(bp, l2_fltr);
13988 		return -ENOMEM;
13989 	}
13990 
13991 	fkeys = &new_fltr->fkeys;
13992 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
13993 		rc = -EPROTONOSUPPORT;
13994 		goto err_free;
13995 	}
13996 
13997 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
13998 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
13999 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
14000 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
14001 		rc = -EPROTONOSUPPORT;
14002 		goto err_free;
14003 	}
14004 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
14005 	    bp->hwrm_spec_code < 0x10601) {
14006 		rc = -EPROTONOSUPPORT;
14007 		goto err_free;
14008 	}
14009 	flags = fkeys->control.flags;
14010 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
14011 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
14012 		rc = -EPROTONOSUPPORT;
14013 		goto err_free;
14014 	}
14015 
14016 	new_fltr->l2_fltr = l2_fltr;
14017 	new_fltr->ntuple_flags = BNXT_NTUPLE_MATCH_ALL;
14018 
14019 	idx = bnxt_get_ntp_filter_idx(bp, fkeys, skb);
14020 	rcu_read_lock();
14021 	fltr = bnxt_lookup_ntp_filter_from_idx(bp, new_fltr, idx);
14022 	if (fltr) {
14023 		rc = fltr->base.sw_id;
14024 		rcu_read_unlock();
14025 		goto err_free;
14026 	}
14027 	rcu_read_unlock();
14028 
14029 	new_fltr->flow_id = flow_id;
14030 	new_fltr->base.rxq = rxq_index;
14031 	rc = bnxt_insert_ntp_filter(bp, new_fltr, idx);
14032 	if (!rc) {
14033 		bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT);
14034 		return new_fltr->base.sw_id;
14035 	}
14036 
14037 err_free:
14038 	bnxt_del_l2_filter(bp, l2_fltr);
14039 	kfree(new_fltr);
14040 	return rc;
14041 }
14042 #endif
14043 
14044 void bnxt_del_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr)
14045 {
14046 	spin_lock_bh(&bp->ntp_fltr_lock);
14047 	if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) {
14048 		spin_unlock_bh(&bp->ntp_fltr_lock);
14049 		return;
14050 	}
14051 	hlist_del_rcu(&fltr->base.hash);
14052 	bp->ntp_fltr_count--;
14053 	spin_unlock_bh(&bp->ntp_fltr_lock);
14054 	bnxt_del_l2_filter(bp, fltr->l2_fltr);
14055 	clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap);
14056 	kfree_rcu(fltr, base.rcu);
14057 }
14058 
14059 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
14060 {
14061 #ifdef CONFIG_RFS_ACCEL
14062 	int i;
14063 
14064 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
14065 		struct hlist_head *head;
14066 		struct hlist_node *tmp;
14067 		struct bnxt_ntuple_filter *fltr;
14068 		int rc;
14069 
14070 		head = &bp->ntp_fltr_hash_tbl[i];
14071 		hlist_for_each_entry_safe(fltr, tmp, head, base.hash) {
14072 			bool del = false;
14073 
14074 			if (test_bit(BNXT_FLTR_VALID, &fltr->base.state)) {
14075 				if (fltr->base.flags & BNXT_ACT_NO_AGING)
14076 					continue;
14077 				if (rps_may_expire_flow(bp->dev, fltr->base.rxq,
14078 							fltr->flow_id,
14079 							fltr->base.sw_id)) {
14080 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
14081 									 fltr);
14082 					del = true;
14083 				}
14084 			} else {
14085 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
14086 								       fltr);
14087 				if (rc)
14088 					del = true;
14089 				else
14090 					set_bit(BNXT_FLTR_VALID, &fltr->base.state);
14091 			}
14092 
14093 			if (del)
14094 				bnxt_del_ntp_filter(bp, fltr);
14095 		}
14096 	}
14097 #endif
14098 }
14099 
14100 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
14101 				    unsigned int entry, struct udp_tunnel_info *ti)
14102 {
14103 	struct bnxt *bp = netdev_priv(netdev);
14104 	unsigned int cmd;
14105 
14106 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
14107 		cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
14108 	else if (ti->type == UDP_TUNNEL_TYPE_GENEVE)
14109 		cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE;
14110 	else
14111 		cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE;
14112 
14113 	return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd);
14114 }
14115 
14116 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
14117 				      unsigned int entry, struct udp_tunnel_info *ti)
14118 {
14119 	struct bnxt *bp = netdev_priv(netdev);
14120 	unsigned int cmd;
14121 
14122 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
14123 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
14124 	else if (ti->type == UDP_TUNNEL_TYPE_GENEVE)
14125 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
14126 	else
14127 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE;
14128 
14129 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
14130 }
14131 
14132 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
14133 	.set_port	= bnxt_udp_tunnel_set_port,
14134 	.unset_port	= bnxt_udp_tunnel_unset_port,
14135 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
14136 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
14137 	.tables		= {
14138 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
14139 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
14140 	},
14141 }, bnxt_udp_tunnels_p7 = {
14142 	.set_port	= bnxt_udp_tunnel_set_port,
14143 	.unset_port	= bnxt_udp_tunnel_unset_port,
14144 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
14145 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
14146 	.tables		= {
14147 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
14148 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
14149 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN_GPE, },
14150 	},
14151 };
14152 
14153 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
14154 			       struct net_device *dev, u32 filter_mask,
14155 			       int nlflags)
14156 {
14157 	struct bnxt *bp = netdev_priv(dev);
14158 
14159 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
14160 				       nlflags, filter_mask, NULL);
14161 }
14162 
14163 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
14164 			       u16 flags, struct netlink_ext_ack *extack)
14165 {
14166 	struct bnxt *bp = netdev_priv(dev);
14167 	struct nlattr *attr, *br_spec;
14168 	int rem, rc = 0;
14169 
14170 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
14171 		return -EOPNOTSUPP;
14172 
14173 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
14174 	if (!br_spec)
14175 		return -EINVAL;
14176 
14177 	nla_for_each_nested(attr, br_spec, rem) {
14178 		u16 mode;
14179 
14180 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
14181 			continue;
14182 
14183 		mode = nla_get_u16(attr);
14184 		if (mode == bp->br_mode)
14185 			break;
14186 
14187 		rc = bnxt_hwrm_set_br_mode(bp, mode);
14188 		if (!rc)
14189 			bp->br_mode = mode;
14190 		break;
14191 	}
14192 	return rc;
14193 }
14194 
14195 int bnxt_get_port_parent_id(struct net_device *dev,
14196 			    struct netdev_phys_item_id *ppid)
14197 {
14198 	struct bnxt *bp = netdev_priv(dev);
14199 
14200 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
14201 		return -EOPNOTSUPP;
14202 
14203 	/* The PF and it's VF-reps only support the switchdev framework */
14204 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
14205 		return -EOPNOTSUPP;
14206 
14207 	ppid->id_len = sizeof(bp->dsn);
14208 	memcpy(ppid->id, bp->dsn, ppid->id_len);
14209 
14210 	return 0;
14211 }
14212 
14213 static const struct net_device_ops bnxt_netdev_ops = {
14214 	.ndo_open		= bnxt_open,
14215 	.ndo_start_xmit		= bnxt_start_xmit,
14216 	.ndo_stop		= bnxt_close,
14217 	.ndo_get_stats64	= bnxt_get_stats64,
14218 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
14219 	.ndo_eth_ioctl		= bnxt_ioctl,
14220 	.ndo_validate_addr	= eth_validate_addr,
14221 	.ndo_set_mac_address	= bnxt_change_mac_addr,
14222 	.ndo_change_mtu		= bnxt_change_mtu,
14223 	.ndo_fix_features	= bnxt_fix_features,
14224 	.ndo_set_features	= bnxt_set_features,
14225 	.ndo_features_check	= bnxt_features_check,
14226 	.ndo_tx_timeout		= bnxt_tx_timeout,
14227 #ifdef CONFIG_BNXT_SRIOV
14228 	.ndo_get_vf_config	= bnxt_get_vf_config,
14229 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
14230 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
14231 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
14232 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
14233 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
14234 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
14235 #endif
14236 	.ndo_setup_tc           = bnxt_setup_tc,
14237 #ifdef CONFIG_RFS_ACCEL
14238 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
14239 #endif
14240 	.ndo_bpf		= bnxt_xdp,
14241 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
14242 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
14243 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
14244 };
14245 
14246 static void bnxt_remove_one(struct pci_dev *pdev)
14247 {
14248 	struct net_device *dev = pci_get_drvdata(pdev);
14249 	struct bnxt *bp = netdev_priv(dev);
14250 
14251 	if (BNXT_PF(bp))
14252 		bnxt_sriov_disable(bp);
14253 
14254 	bnxt_rdma_aux_device_uninit(bp);
14255 
14256 	bnxt_ptp_clear(bp);
14257 	unregister_netdev(dev);
14258 	bnxt_free_l2_filters(bp, true);
14259 	bnxt_free_ntp_fltrs(bp, true);
14260 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
14261 	/* Flush any pending tasks */
14262 	cancel_work_sync(&bp->sp_task);
14263 	cancel_delayed_work_sync(&bp->fw_reset_task);
14264 	bp->sp_event = 0;
14265 
14266 	bnxt_dl_fw_reporters_destroy(bp);
14267 	bnxt_dl_unregister(bp);
14268 	bnxt_shutdown_tc(bp);
14269 
14270 	bnxt_clear_int_mode(bp);
14271 	bnxt_hwrm_func_drv_unrgtr(bp);
14272 	bnxt_free_hwrm_resources(bp);
14273 	bnxt_hwmon_uninit(bp);
14274 	bnxt_ethtool_free(bp);
14275 	bnxt_dcb_free(bp);
14276 	kfree(bp->ptp_cfg);
14277 	bp->ptp_cfg = NULL;
14278 	kfree(bp->fw_health);
14279 	bp->fw_health = NULL;
14280 	bnxt_cleanup_pci(bp);
14281 	bnxt_free_ctx_mem(bp);
14282 	kfree(bp->rss_indir_tbl);
14283 	bp->rss_indir_tbl = NULL;
14284 	bnxt_free_port_stats(bp);
14285 	free_netdev(dev);
14286 }
14287 
14288 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
14289 {
14290 	int rc = 0;
14291 	struct bnxt_link_info *link_info = &bp->link_info;
14292 
14293 	bp->phy_flags = 0;
14294 	rc = bnxt_hwrm_phy_qcaps(bp);
14295 	if (rc) {
14296 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
14297 			   rc);
14298 		return rc;
14299 	}
14300 	if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
14301 		bp->dev->priv_flags |= IFF_SUPP_NOFCS;
14302 	else
14303 		bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
14304 	if (!fw_dflt)
14305 		return 0;
14306 
14307 	mutex_lock(&bp->link_lock);
14308 	rc = bnxt_update_link(bp, false);
14309 	if (rc) {
14310 		mutex_unlock(&bp->link_lock);
14311 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
14312 			   rc);
14313 		return rc;
14314 	}
14315 
14316 	/* Older firmware does not have supported_auto_speeds, so assume
14317 	 * that all supported speeds can be autonegotiated.
14318 	 */
14319 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
14320 		link_info->support_auto_speeds = link_info->support_speeds;
14321 
14322 	bnxt_init_ethtool_link_settings(bp);
14323 	mutex_unlock(&bp->link_lock);
14324 	return 0;
14325 }
14326 
14327 static int bnxt_get_max_irq(struct pci_dev *pdev)
14328 {
14329 	u16 ctrl;
14330 
14331 	if (!pdev->msix_cap)
14332 		return 1;
14333 
14334 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
14335 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
14336 }
14337 
14338 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
14339 				int *max_cp)
14340 {
14341 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
14342 	int max_ring_grps = 0, max_irq;
14343 
14344 	*max_tx = hw_resc->max_tx_rings;
14345 	*max_rx = hw_resc->max_rx_rings;
14346 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
14347 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
14348 			bnxt_get_ulp_msix_num(bp),
14349 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
14350 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
14351 		*max_cp = min_t(int, *max_cp, max_irq);
14352 	max_ring_grps = hw_resc->max_hw_ring_grps;
14353 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
14354 		*max_cp -= 1;
14355 		*max_rx -= 2;
14356 	}
14357 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
14358 		*max_rx >>= 1;
14359 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
14360 		int rc;
14361 
14362 		rc = __bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
14363 		if (rc) {
14364 			*max_rx = 0;
14365 			*max_tx = 0;
14366 		}
14367 		/* On P5 chips, max_cp output param should be available NQs */
14368 		*max_cp = max_irq;
14369 	}
14370 	*max_rx = min_t(int, *max_rx, max_ring_grps);
14371 }
14372 
14373 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
14374 {
14375 	int rx, tx, cp;
14376 
14377 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
14378 	*max_rx = rx;
14379 	*max_tx = tx;
14380 	if (!rx || !tx || !cp)
14381 		return -ENOMEM;
14382 
14383 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
14384 }
14385 
14386 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
14387 			       bool shared)
14388 {
14389 	int rc;
14390 
14391 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
14392 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
14393 		/* Not enough rings, try disabling agg rings. */
14394 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
14395 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
14396 		if (rc) {
14397 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
14398 			bp->flags |= BNXT_FLAG_AGG_RINGS;
14399 			return rc;
14400 		}
14401 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
14402 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
14403 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
14404 		bnxt_set_ring_params(bp);
14405 	}
14406 
14407 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
14408 		int max_cp, max_stat, max_irq;
14409 
14410 		/* Reserve minimum resources for RoCE */
14411 		max_cp = bnxt_get_max_func_cp_rings(bp);
14412 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
14413 		max_irq = bnxt_get_max_func_irqs(bp);
14414 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
14415 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
14416 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
14417 			return 0;
14418 
14419 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
14420 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
14421 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
14422 		max_cp = min_t(int, max_cp, max_irq);
14423 		max_cp = min_t(int, max_cp, max_stat);
14424 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
14425 		if (rc)
14426 			rc = 0;
14427 	}
14428 	return rc;
14429 }
14430 
14431 /* In initial default shared ring setting, each shared ring must have a
14432  * RX/TX ring pair.
14433  */
14434 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
14435 {
14436 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
14437 	bp->rx_nr_rings = bp->cp_nr_rings;
14438 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
14439 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
14440 }
14441 
14442 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
14443 {
14444 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
14445 
14446 	if (!bnxt_can_reserve_rings(bp))
14447 		return 0;
14448 
14449 	if (sh)
14450 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
14451 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
14452 	/* Reduce default rings on multi-port cards so that total default
14453 	 * rings do not exceed CPU count.
14454 	 */
14455 	if (bp->port_count > 1) {
14456 		int max_rings =
14457 			max_t(int, num_online_cpus() / bp->port_count, 1);
14458 
14459 		dflt_rings = min_t(int, dflt_rings, max_rings);
14460 	}
14461 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
14462 	if (rc)
14463 		return rc;
14464 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
14465 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
14466 	if (sh)
14467 		bnxt_trim_dflt_sh_rings(bp);
14468 	else
14469 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
14470 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
14471 
14472 	rc = __bnxt_reserve_rings(bp);
14473 	if (rc && rc != -ENODEV)
14474 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
14475 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
14476 	if (sh)
14477 		bnxt_trim_dflt_sh_rings(bp);
14478 
14479 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
14480 	if (bnxt_need_reserve_rings(bp)) {
14481 		rc = __bnxt_reserve_rings(bp);
14482 		if (rc && rc != -ENODEV)
14483 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
14484 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
14485 	}
14486 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
14487 		bp->rx_nr_rings++;
14488 		bp->cp_nr_rings++;
14489 	}
14490 	if (rc) {
14491 		bp->tx_nr_rings = 0;
14492 		bp->rx_nr_rings = 0;
14493 	}
14494 	return rc;
14495 }
14496 
14497 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
14498 {
14499 	int rc;
14500 
14501 	if (bp->tx_nr_rings)
14502 		return 0;
14503 
14504 	bnxt_ulp_irq_stop(bp);
14505 	bnxt_clear_int_mode(bp);
14506 	rc = bnxt_set_dflt_rings(bp, true);
14507 	if (rc) {
14508 		if (BNXT_VF(bp) && rc == -ENODEV)
14509 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
14510 		else
14511 			netdev_err(bp->dev, "Not enough rings available.\n");
14512 		goto init_dflt_ring_err;
14513 	}
14514 	rc = bnxt_init_int_mode(bp);
14515 	if (rc)
14516 		goto init_dflt_ring_err;
14517 
14518 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
14519 
14520 	bnxt_set_dflt_rfs(bp);
14521 
14522 init_dflt_ring_err:
14523 	bnxt_ulp_irq_restart(bp, rc);
14524 	return rc;
14525 }
14526 
14527 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
14528 {
14529 	int rc;
14530 
14531 	ASSERT_RTNL();
14532 	bnxt_hwrm_func_qcaps(bp);
14533 
14534 	if (netif_running(bp->dev))
14535 		__bnxt_close_nic(bp, true, false);
14536 
14537 	bnxt_ulp_irq_stop(bp);
14538 	bnxt_clear_int_mode(bp);
14539 	rc = bnxt_init_int_mode(bp);
14540 	bnxt_ulp_irq_restart(bp, rc);
14541 
14542 	if (netif_running(bp->dev)) {
14543 		if (rc)
14544 			dev_close(bp->dev);
14545 		else
14546 			rc = bnxt_open_nic(bp, true, false);
14547 	}
14548 
14549 	return rc;
14550 }
14551 
14552 static int bnxt_init_mac_addr(struct bnxt *bp)
14553 {
14554 	int rc = 0;
14555 
14556 	if (BNXT_PF(bp)) {
14557 		eth_hw_addr_set(bp->dev, bp->pf.mac_addr);
14558 	} else {
14559 #ifdef CONFIG_BNXT_SRIOV
14560 		struct bnxt_vf_info *vf = &bp->vf;
14561 		bool strict_approval = true;
14562 
14563 		if (is_valid_ether_addr(vf->mac_addr)) {
14564 			/* overwrite netdev dev_addr with admin VF MAC */
14565 			eth_hw_addr_set(bp->dev, vf->mac_addr);
14566 			/* Older PF driver or firmware may not approve this
14567 			 * correctly.
14568 			 */
14569 			strict_approval = false;
14570 		} else {
14571 			eth_hw_addr_random(bp->dev);
14572 		}
14573 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
14574 #endif
14575 	}
14576 	return rc;
14577 }
14578 
14579 static void bnxt_vpd_read_info(struct bnxt *bp)
14580 {
14581 	struct pci_dev *pdev = bp->pdev;
14582 	unsigned int vpd_size, kw_len;
14583 	int pos, size;
14584 	u8 *vpd_data;
14585 
14586 	vpd_data = pci_vpd_alloc(pdev, &vpd_size);
14587 	if (IS_ERR(vpd_data)) {
14588 		pci_warn(pdev, "Unable to read VPD\n");
14589 		return;
14590 	}
14591 
14592 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
14593 					   PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
14594 	if (pos < 0)
14595 		goto read_sn;
14596 
14597 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
14598 	memcpy(bp->board_partno, &vpd_data[pos], size);
14599 
14600 read_sn:
14601 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
14602 					   PCI_VPD_RO_KEYWORD_SERIALNO,
14603 					   &kw_len);
14604 	if (pos < 0)
14605 		goto exit;
14606 
14607 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
14608 	memcpy(bp->board_serialno, &vpd_data[pos], size);
14609 exit:
14610 	kfree(vpd_data);
14611 }
14612 
14613 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
14614 {
14615 	struct pci_dev *pdev = bp->pdev;
14616 	u64 qword;
14617 
14618 	qword = pci_get_dsn(pdev);
14619 	if (!qword) {
14620 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
14621 		return -EOPNOTSUPP;
14622 	}
14623 
14624 	put_unaligned_le64(qword, dsn);
14625 
14626 	bp->flags |= BNXT_FLAG_DSN_VALID;
14627 	return 0;
14628 }
14629 
14630 static int bnxt_map_db_bar(struct bnxt *bp)
14631 {
14632 	if (!bp->db_size)
14633 		return -ENODEV;
14634 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
14635 	if (!bp->bar1)
14636 		return -ENOMEM;
14637 	return 0;
14638 }
14639 
14640 void bnxt_print_device_info(struct bnxt *bp)
14641 {
14642 	netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n",
14643 		    board_info[bp->board_idx].name,
14644 		    (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr);
14645 
14646 	pcie_print_link_status(bp->pdev);
14647 }
14648 
14649 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
14650 {
14651 	struct net_device *dev;
14652 	struct bnxt *bp;
14653 	int rc, max_irqs;
14654 
14655 	if (pci_is_bridge(pdev))
14656 		return -ENODEV;
14657 
14658 	/* Clear any pending DMA transactions from crash kernel
14659 	 * while loading driver in capture kernel.
14660 	 */
14661 	if (is_kdump_kernel()) {
14662 		pci_clear_master(pdev);
14663 		pcie_flr(pdev);
14664 	}
14665 
14666 	max_irqs = bnxt_get_max_irq(pdev);
14667 	dev = alloc_etherdev_mqs(sizeof(*bp), max_irqs * BNXT_MAX_QUEUE,
14668 				 max_irqs);
14669 	if (!dev)
14670 		return -ENOMEM;
14671 
14672 	bp = netdev_priv(dev);
14673 	bp->board_idx = ent->driver_data;
14674 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
14675 	bnxt_set_max_func_irqs(bp, max_irqs);
14676 
14677 	if (bnxt_vf_pciid(bp->board_idx))
14678 		bp->flags |= BNXT_FLAG_VF;
14679 
14680 	/* No devlink port registration in case of a VF */
14681 	if (BNXT_PF(bp))
14682 		SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port);
14683 
14684 	if (pdev->msix_cap)
14685 		bp->flags |= BNXT_FLAG_MSIX_CAP;
14686 
14687 	rc = bnxt_init_board(pdev, dev);
14688 	if (rc < 0)
14689 		goto init_err_free;
14690 
14691 	dev->netdev_ops = &bnxt_netdev_ops;
14692 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
14693 	dev->ethtool_ops = &bnxt_ethtool_ops;
14694 	pci_set_drvdata(pdev, dev);
14695 
14696 	rc = bnxt_alloc_hwrm_resources(bp);
14697 	if (rc)
14698 		goto init_err_pci_clean;
14699 
14700 	mutex_init(&bp->hwrm_cmd_lock);
14701 	mutex_init(&bp->link_lock);
14702 
14703 	rc = bnxt_fw_init_one_p1(bp);
14704 	if (rc)
14705 		goto init_err_pci_clean;
14706 
14707 	if (BNXT_PF(bp))
14708 		bnxt_vpd_read_info(bp);
14709 
14710 	if (BNXT_CHIP_P5_PLUS(bp)) {
14711 		bp->flags |= BNXT_FLAG_CHIP_P5_PLUS;
14712 		if (BNXT_CHIP_P7(bp))
14713 			bp->flags |= BNXT_FLAG_CHIP_P7;
14714 	}
14715 
14716 	rc = bnxt_alloc_rss_indir_tbl(bp);
14717 	if (rc)
14718 		goto init_err_pci_clean;
14719 
14720 	rc = bnxt_fw_init_one_p2(bp);
14721 	if (rc)
14722 		goto init_err_pci_clean;
14723 
14724 	rc = bnxt_map_db_bar(bp);
14725 	if (rc) {
14726 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
14727 			rc);
14728 		goto init_err_pci_clean;
14729 	}
14730 
14731 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
14732 			   NETIF_F_TSO | NETIF_F_TSO6 |
14733 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
14734 			   NETIF_F_GSO_IPXIP4 |
14735 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
14736 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
14737 			   NETIF_F_RXCSUM | NETIF_F_GRO;
14738 	if (bp->flags & BNXT_FLAG_UDP_GSO_CAP)
14739 		dev->hw_features |= NETIF_F_GSO_UDP_L4;
14740 
14741 	if (BNXT_SUPPORTS_TPA(bp))
14742 		dev->hw_features |= NETIF_F_LRO;
14743 
14744 	dev->hw_enc_features =
14745 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
14746 			NETIF_F_TSO | NETIF_F_TSO6 |
14747 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
14748 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
14749 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
14750 	if (bp->flags & BNXT_FLAG_UDP_GSO_CAP)
14751 		dev->hw_enc_features |= NETIF_F_GSO_UDP_L4;
14752 	if (bp->flags & BNXT_FLAG_CHIP_P7)
14753 		dev->udp_tunnel_nic_info = &bnxt_udp_tunnels_p7;
14754 	else
14755 		dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
14756 
14757 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
14758 				    NETIF_F_GSO_GRE_CSUM;
14759 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
14760 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
14761 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
14762 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
14763 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
14764 	if (BNXT_SUPPORTS_TPA(bp))
14765 		dev->hw_features |= NETIF_F_GRO_HW;
14766 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
14767 	if (dev->features & NETIF_F_GRO_HW)
14768 		dev->features &= ~NETIF_F_LRO;
14769 	dev->priv_flags |= IFF_UNICAST_FLT;
14770 
14771 	netif_set_tso_max_size(dev, GSO_MAX_SIZE);
14772 
14773 	dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
14774 			    NETDEV_XDP_ACT_RX_SG;
14775 
14776 #ifdef CONFIG_BNXT_SRIOV
14777 	init_waitqueue_head(&bp->sriov_cfg_wait);
14778 #endif
14779 	if (BNXT_SUPPORTS_TPA(bp)) {
14780 		bp->gro_func = bnxt_gro_func_5730x;
14781 		if (BNXT_CHIP_P4(bp))
14782 			bp->gro_func = bnxt_gro_func_5731x;
14783 		else if (BNXT_CHIP_P5_PLUS(bp))
14784 			bp->gro_func = bnxt_gro_func_5750x;
14785 	}
14786 	if (!BNXT_CHIP_P4_PLUS(bp))
14787 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
14788 
14789 	rc = bnxt_init_mac_addr(bp);
14790 	if (rc) {
14791 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
14792 		rc = -EADDRNOTAVAIL;
14793 		goto init_err_pci_clean;
14794 	}
14795 
14796 	if (BNXT_PF(bp)) {
14797 		/* Read the adapter's DSN to use as the eswitch switch_id */
14798 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
14799 	}
14800 
14801 	/* MTU range: 60 - FW defined max */
14802 	dev->min_mtu = ETH_ZLEN;
14803 	dev->max_mtu = bp->max_mtu;
14804 
14805 	rc = bnxt_probe_phy(bp, true);
14806 	if (rc)
14807 		goto init_err_pci_clean;
14808 
14809 	bnxt_init_l2_fltr_tbl(bp);
14810 	bnxt_set_rx_skb_mode(bp, false);
14811 	bnxt_set_tpa_flags(bp);
14812 	bnxt_set_ring_params(bp);
14813 	rc = bnxt_set_dflt_rings(bp, true);
14814 	if (rc) {
14815 		if (BNXT_VF(bp) && rc == -ENODEV) {
14816 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
14817 		} else {
14818 			netdev_err(bp->dev, "Not enough rings available.\n");
14819 			rc = -ENOMEM;
14820 		}
14821 		goto init_err_pci_clean;
14822 	}
14823 
14824 	bnxt_fw_init_one_p3(bp);
14825 
14826 	bnxt_init_dflt_coal(bp);
14827 
14828 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
14829 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
14830 
14831 	rc = bnxt_init_int_mode(bp);
14832 	if (rc)
14833 		goto init_err_pci_clean;
14834 
14835 	/* No TC has been set yet and rings may have been trimmed due to
14836 	 * limited MSIX, so we re-initialize the TX rings per TC.
14837 	 */
14838 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
14839 
14840 	if (BNXT_PF(bp)) {
14841 		if (!bnxt_pf_wq) {
14842 			bnxt_pf_wq =
14843 				create_singlethread_workqueue("bnxt_pf_wq");
14844 			if (!bnxt_pf_wq) {
14845 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
14846 				rc = -ENOMEM;
14847 				goto init_err_pci_clean;
14848 			}
14849 		}
14850 		rc = bnxt_init_tc(bp);
14851 		if (rc)
14852 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
14853 				   rc);
14854 	}
14855 
14856 	bnxt_inv_fw_health_reg(bp);
14857 	rc = bnxt_dl_register(bp);
14858 	if (rc)
14859 		goto init_err_dl;
14860 
14861 	rc = register_netdev(dev);
14862 	if (rc)
14863 		goto init_err_cleanup;
14864 
14865 	bnxt_dl_fw_reporters_create(bp);
14866 
14867 	bnxt_rdma_aux_device_init(bp);
14868 
14869 	bnxt_print_device_info(bp);
14870 
14871 	pci_save_state(pdev);
14872 
14873 	return 0;
14874 init_err_cleanup:
14875 	bnxt_dl_unregister(bp);
14876 init_err_dl:
14877 	bnxt_shutdown_tc(bp);
14878 	bnxt_clear_int_mode(bp);
14879 
14880 init_err_pci_clean:
14881 	bnxt_hwrm_func_drv_unrgtr(bp);
14882 	bnxt_free_hwrm_resources(bp);
14883 	bnxt_hwmon_uninit(bp);
14884 	bnxt_ethtool_free(bp);
14885 	bnxt_ptp_clear(bp);
14886 	kfree(bp->ptp_cfg);
14887 	bp->ptp_cfg = NULL;
14888 	kfree(bp->fw_health);
14889 	bp->fw_health = NULL;
14890 	bnxt_cleanup_pci(bp);
14891 	bnxt_free_ctx_mem(bp);
14892 	kfree(bp->rss_indir_tbl);
14893 	bp->rss_indir_tbl = NULL;
14894 
14895 init_err_free:
14896 	free_netdev(dev);
14897 	return rc;
14898 }
14899 
14900 static void bnxt_shutdown(struct pci_dev *pdev)
14901 {
14902 	struct net_device *dev = pci_get_drvdata(pdev);
14903 	struct bnxt *bp;
14904 
14905 	if (!dev)
14906 		return;
14907 
14908 	rtnl_lock();
14909 	bp = netdev_priv(dev);
14910 	if (!bp)
14911 		goto shutdown_exit;
14912 
14913 	if (netif_running(dev))
14914 		dev_close(dev);
14915 
14916 	bnxt_clear_int_mode(bp);
14917 	pci_disable_device(pdev);
14918 
14919 	if (system_state == SYSTEM_POWER_OFF) {
14920 		pci_wake_from_d3(pdev, bp->wol);
14921 		pci_set_power_state(pdev, PCI_D3hot);
14922 	}
14923 
14924 shutdown_exit:
14925 	rtnl_unlock();
14926 }
14927 
14928 #ifdef CONFIG_PM_SLEEP
14929 static int bnxt_suspend(struct device *device)
14930 {
14931 	struct net_device *dev = dev_get_drvdata(device);
14932 	struct bnxt *bp = netdev_priv(dev);
14933 	int rc = 0;
14934 
14935 	rtnl_lock();
14936 	bnxt_ulp_stop(bp);
14937 	if (netif_running(dev)) {
14938 		netif_device_detach(dev);
14939 		rc = bnxt_close(dev);
14940 	}
14941 	bnxt_hwrm_func_drv_unrgtr(bp);
14942 	pci_disable_device(bp->pdev);
14943 	bnxt_free_ctx_mem(bp);
14944 	rtnl_unlock();
14945 	return rc;
14946 }
14947 
14948 static int bnxt_resume(struct device *device)
14949 {
14950 	struct net_device *dev = dev_get_drvdata(device);
14951 	struct bnxt *bp = netdev_priv(dev);
14952 	int rc = 0;
14953 
14954 	rtnl_lock();
14955 	rc = pci_enable_device(bp->pdev);
14956 	if (rc) {
14957 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
14958 			   rc);
14959 		goto resume_exit;
14960 	}
14961 	pci_set_master(bp->pdev);
14962 	if (bnxt_hwrm_ver_get(bp)) {
14963 		rc = -ENODEV;
14964 		goto resume_exit;
14965 	}
14966 	rc = bnxt_hwrm_func_reset(bp);
14967 	if (rc) {
14968 		rc = -EBUSY;
14969 		goto resume_exit;
14970 	}
14971 
14972 	rc = bnxt_hwrm_func_qcaps(bp);
14973 	if (rc)
14974 		goto resume_exit;
14975 
14976 	bnxt_clear_reservations(bp, true);
14977 
14978 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
14979 		rc = -ENODEV;
14980 		goto resume_exit;
14981 	}
14982 
14983 	bnxt_get_wol_settings(bp);
14984 	if (netif_running(dev)) {
14985 		rc = bnxt_open(dev);
14986 		if (!rc)
14987 			netif_device_attach(dev);
14988 	}
14989 
14990 resume_exit:
14991 	bnxt_ulp_start(bp, rc);
14992 	if (!rc)
14993 		bnxt_reenable_sriov(bp);
14994 	rtnl_unlock();
14995 	return rc;
14996 }
14997 
14998 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
14999 #define BNXT_PM_OPS (&bnxt_pm_ops)
15000 
15001 #else
15002 
15003 #define BNXT_PM_OPS NULL
15004 
15005 #endif /* CONFIG_PM_SLEEP */
15006 
15007 /**
15008  * bnxt_io_error_detected - called when PCI error is detected
15009  * @pdev: Pointer to PCI device
15010  * @state: The current pci connection state
15011  *
15012  * This function is called after a PCI bus error affecting
15013  * this device has been detected.
15014  */
15015 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
15016 					       pci_channel_state_t state)
15017 {
15018 	struct net_device *netdev = pci_get_drvdata(pdev);
15019 	struct bnxt *bp = netdev_priv(netdev);
15020 
15021 	netdev_info(netdev, "PCI I/O error detected\n");
15022 
15023 	rtnl_lock();
15024 	netif_device_detach(netdev);
15025 
15026 	bnxt_ulp_stop(bp);
15027 
15028 	if (state == pci_channel_io_perm_failure) {
15029 		rtnl_unlock();
15030 		return PCI_ERS_RESULT_DISCONNECT;
15031 	}
15032 
15033 	if (state == pci_channel_io_frozen)
15034 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
15035 
15036 	if (netif_running(netdev))
15037 		bnxt_close(netdev);
15038 
15039 	if (pci_is_enabled(pdev))
15040 		pci_disable_device(pdev);
15041 	bnxt_free_ctx_mem(bp);
15042 	rtnl_unlock();
15043 
15044 	/* Request a slot slot reset. */
15045 	return PCI_ERS_RESULT_NEED_RESET;
15046 }
15047 
15048 /**
15049  * bnxt_io_slot_reset - called after the pci bus has been reset.
15050  * @pdev: Pointer to PCI device
15051  *
15052  * Restart the card from scratch, as if from a cold-boot.
15053  * At this point, the card has exprienced a hard reset,
15054  * followed by fixups by BIOS, and has its config space
15055  * set up identically to what it was at cold boot.
15056  */
15057 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
15058 {
15059 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
15060 	struct net_device *netdev = pci_get_drvdata(pdev);
15061 	struct bnxt *bp = netdev_priv(netdev);
15062 	int retry = 0;
15063 	int err = 0;
15064 	int off;
15065 
15066 	netdev_info(bp->dev, "PCI Slot Reset\n");
15067 
15068 	rtnl_lock();
15069 
15070 	if (pci_enable_device(pdev)) {
15071 		dev_err(&pdev->dev,
15072 			"Cannot re-enable PCI device after reset.\n");
15073 	} else {
15074 		pci_set_master(pdev);
15075 		/* Upon fatal error, our device internal logic that latches to
15076 		 * BAR value is getting reset and will restore only upon
15077 		 * rewritting the BARs.
15078 		 *
15079 		 * As pci_restore_state() does not re-write the BARs if the
15080 		 * value is same as saved value earlier, driver needs to
15081 		 * write the BARs to 0 to force restore, in case of fatal error.
15082 		 */
15083 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
15084 				       &bp->state)) {
15085 			for (off = PCI_BASE_ADDRESS_0;
15086 			     off <= PCI_BASE_ADDRESS_5; off += 4)
15087 				pci_write_config_dword(bp->pdev, off, 0);
15088 		}
15089 		pci_restore_state(pdev);
15090 		pci_save_state(pdev);
15091 
15092 		bnxt_inv_fw_health_reg(bp);
15093 		bnxt_try_map_fw_health_reg(bp);
15094 
15095 		/* In some PCIe AER scenarios, firmware may take up to
15096 		 * 10 seconds to become ready in the worst case.
15097 		 */
15098 		do {
15099 			err = bnxt_try_recover_fw(bp);
15100 			if (!err)
15101 				break;
15102 			retry++;
15103 		} while (retry < BNXT_FW_SLOT_RESET_RETRY);
15104 
15105 		if (err) {
15106 			dev_err(&pdev->dev, "Firmware not ready\n");
15107 			goto reset_exit;
15108 		}
15109 
15110 		err = bnxt_hwrm_func_reset(bp);
15111 		if (!err)
15112 			result = PCI_ERS_RESULT_RECOVERED;
15113 
15114 		bnxt_ulp_irq_stop(bp);
15115 		bnxt_clear_int_mode(bp);
15116 		err = bnxt_init_int_mode(bp);
15117 		bnxt_ulp_irq_restart(bp, err);
15118 	}
15119 
15120 reset_exit:
15121 	bnxt_clear_reservations(bp, true);
15122 	rtnl_unlock();
15123 
15124 	return result;
15125 }
15126 
15127 /**
15128  * bnxt_io_resume - called when traffic can start flowing again.
15129  * @pdev: Pointer to PCI device
15130  *
15131  * This callback is called when the error recovery driver tells
15132  * us that its OK to resume normal operation.
15133  */
15134 static void bnxt_io_resume(struct pci_dev *pdev)
15135 {
15136 	struct net_device *netdev = pci_get_drvdata(pdev);
15137 	struct bnxt *bp = netdev_priv(netdev);
15138 	int err;
15139 
15140 	netdev_info(bp->dev, "PCI Slot Resume\n");
15141 	rtnl_lock();
15142 
15143 	err = bnxt_hwrm_func_qcaps(bp);
15144 	if (!err && netif_running(netdev))
15145 		err = bnxt_open(netdev);
15146 
15147 	bnxt_ulp_start(bp, err);
15148 	if (!err) {
15149 		bnxt_reenable_sriov(bp);
15150 		netif_device_attach(netdev);
15151 	}
15152 
15153 	rtnl_unlock();
15154 }
15155 
15156 static const struct pci_error_handlers bnxt_err_handler = {
15157 	.error_detected	= bnxt_io_error_detected,
15158 	.slot_reset	= bnxt_io_slot_reset,
15159 	.resume		= bnxt_io_resume
15160 };
15161 
15162 static struct pci_driver bnxt_pci_driver = {
15163 	.name		= DRV_MODULE_NAME,
15164 	.id_table	= bnxt_pci_tbl,
15165 	.probe		= bnxt_init_one,
15166 	.remove		= bnxt_remove_one,
15167 	.shutdown	= bnxt_shutdown,
15168 	.driver.pm	= BNXT_PM_OPS,
15169 	.err_handler	= &bnxt_err_handler,
15170 #if defined(CONFIG_BNXT_SRIOV)
15171 	.sriov_configure = bnxt_sriov_configure,
15172 #endif
15173 };
15174 
15175 static int __init bnxt_init(void)
15176 {
15177 	int err;
15178 
15179 	bnxt_debug_init();
15180 	err = pci_register_driver(&bnxt_pci_driver);
15181 	if (err) {
15182 		bnxt_debug_exit();
15183 		return err;
15184 	}
15185 
15186 	return 0;
15187 }
15188 
15189 static void __exit bnxt_exit(void)
15190 {
15191 	pci_unregister_driver(&bnxt_pci_driver);
15192 	if (bnxt_pf_wq)
15193 		destroy_workqueue(bnxt_pf_wq);
15194 	bnxt_debug_exit();
15195 }
15196 
15197 module_init(bnxt_init);
15198 module_exit(bnxt_exit);
15199