xref: /linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision c33a605dd6f36618f9f658e71c09fcdcb44fc500)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  */
9 
10 #include <linux/module.h>
11 
12 #include <linux/stringify.h>
13 #include <linux/kernel.h>
14 #include <linux/timer.h>
15 #include <linux/errno.h>
16 #include <linux/ioport.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 #include <linux/interrupt.h>
20 #include <linux/pci.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/delay.h>
29 #include <asm/byteorder.h>
30 #include <asm/page.h>
31 #include <linux/time.h>
32 #include <linux/mii.h>
33 #include <linux/if.h>
34 #include <linux/if_vlan.h>
35 #include <linux/rtc.h>
36 #include <net/ip.h>
37 #include <net/tcp.h>
38 #include <net/udp.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <net/udp_tunnel.h>
42 #ifdef CONFIG_NET_RX_BUSY_POLL
43 #include <net/busy_poll.h>
44 #endif
45 #include <linux/workqueue.h>
46 #include <linux/prefetch.h>
47 #include <linux/cache.h>
48 #include <linux/log2.h>
49 #include <linux/aer.h>
50 #include <linux/bitmap.h>
51 #include <linux/cpu_rmap.h>
52 
53 #include "bnxt_hsi.h"
54 #include "bnxt.h"
55 #include "bnxt_sriov.h"
56 #include "bnxt_ethtool.h"
57 
58 #define BNXT_TX_TIMEOUT		(5 * HZ)
59 
60 static const char version[] =
61 	"Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
62 
63 MODULE_LICENSE("GPL");
64 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
65 MODULE_VERSION(DRV_MODULE_VERSION);
66 
67 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
68 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
69 #define BNXT_RX_COPY_THRESH 256
70 
71 #define BNXT_TX_PUSH_THRESH 164
72 
73 enum board_idx {
74 	BCM57301,
75 	BCM57302,
76 	BCM57304,
77 	BCM57417_NPAR,
78 	BCM58700,
79 	BCM57311,
80 	BCM57312,
81 	BCM57402,
82 	BCM57404,
83 	BCM57406,
84 	BCM57402_NPAR,
85 	BCM57407,
86 	BCM57412,
87 	BCM57414,
88 	BCM57416,
89 	BCM57417,
90 	BCM57412_NPAR,
91 	BCM57314,
92 	BCM57417_SFP,
93 	BCM57416_SFP,
94 	BCM57404_NPAR,
95 	BCM57406_NPAR,
96 	BCM57407_SFP,
97 	BCM57407_NPAR,
98 	BCM57414_NPAR,
99 	BCM57416_NPAR,
100 	NETXTREME_E_VF,
101 	NETXTREME_C_VF,
102 };
103 
104 /* indexed by enum above */
105 static const struct {
106 	char *name;
107 } board_info[] = {
108 	{ "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
109 	{ "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
110 	{ "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
111 	{ "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
112 	{ "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
113 	{ "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
114 	{ "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
115 	{ "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
116 	{ "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
117 	{ "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
118 	{ "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
119 	{ "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
120 	{ "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
121 	{ "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
122 	{ "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
123 	{ "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
124 	{ "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
125 	{ "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
126 	{ "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
127 	{ "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
128 	{ "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
129 	{ "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
130 	{ "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
131 	{ "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
132 	{ "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
133 	{ "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
134 	{ "Broadcom NetXtreme-E Ethernet Virtual Function" },
135 	{ "Broadcom NetXtreme-C Ethernet Virtual Function" },
136 };
137 
138 static const struct pci_device_id bnxt_pci_tbl[] = {
139 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
140 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
141 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
142 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
143 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
144 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
145 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
146 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
147 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
148 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
149 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
150 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
151 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
152 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
153 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
154 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
155 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
157 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
158 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
159 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
160 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
161 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
162 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
163 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
164 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
165 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
166 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
167 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
168 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
169 #ifdef CONFIG_BNXT_SRIOV
170 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
171 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
172 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
173 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
174 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
175 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
176 #endif
177 	{ 0 }
178 };
179 
180 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
181 
182 static const u16 bnxt_vf_req_snif[] = {
183 	HWRM_FUNC_CFG,
184 	HWRM_PORT_PHY_QCFG,
185 	HWRM_CFA_L2_FILTER_ALLOC,
186 };
187 
188 static const u16 bnxt_async_events_arr[] = {
189 	HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
190 	HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
191 	HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
192 	HWRM_ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
193 	HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
194 };
195 
196 static bool bnxt_vf_pciid(enum board_idx idx)
197 {
198 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF);
199 }
200 
201 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
202 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
203 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
204 
205 #define BNXT_CP_DB_REARM(db, raw_cons)					\
206 		writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
207 
208 #define BNXT_CP_DB(db, raw_cons)					\
209 		writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
210 
211 #define BNXT_CP_DB_IRQ_DIS(db)						\
212 		writel(DB_CP_IRQ_DIS_FLAGS, db)
213 
214 static inline u32 bnxt_tx_avail(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
215 {
216 	/* Tell compiler to fetch tx indices from memory. */
217 	barrier();
218 
219 	return bp->tx_ring_size -
220 		((txr->tx_prod - txr->tx_cons) & bp->tx_ring_mask);
221 }
222 
223 static const u16 bnxt_lhint_arr[] = {
224 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
225 	TX_BD_FLAGS_LHINT_512_TO_1023,
226 	TX_BD_FLAGS_LHINT_1024_TO_2047,
227 	TX_BD_FLAGS_LHINT_1024_TO_2047,
228 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
229 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
230 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
231 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
232 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
233 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
234 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
235 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
236 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
237 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
238 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
239 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
240 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
241 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
242 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
243 };
244 
245 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
246 {
247 	struct bnxt *bp = netdev_priv(dev);
248 	struct tx_bd *txbd;
249 	struct tx_bd_ext *txbd1;
250 	struct netdev_queue *txq;
251 	int i;
252 	dma_addr_t mapping;
253 	unsigned int length, pad = 0;
254 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
255 	u16 prod, last_frag;
256 	struct pci_dev *pdev = bp->pdev;
257 	struct bnxt_tx_ring_info *txr;
258 	struct bnxt_sw_tx_bd *tx_buf;
259 
260 	i = skb_get_queue_mapping(skb);
261 	if (unlikely(i >= bp->tx_nr_rings)) {
262 		dev_kfree_skb_any(skb);
263 		return NETDEV_TX_OK;
264 	}
265 
266 	txr = &bp->tx_ring[i];
267 	txq = netdev_get_tx_queue(dev, i);
268 	prod = txr->tx_prod;
269 
270 	free_size = bnxt_tx_avail(bp, txr);
271 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
272 		netif_tx_stop_queue(txq);
273 		return NETDEV_TX_BUSY;
274 	}
275 
276 	length = skb->len;
277 	len = skb_headlen(skb);
278 	last_frag = skb_shinfo(skb)->nr_frags;
279 
280 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
281 
282 	txbd->tx_bd_opaque = prod;
283 
284 	tx_buf = &txr->tx_buf_ring[prod];
285 	tx_buf->skb = skb;
286 	tx_buf->nr_frags = last_frag;
287 
288 	vlan_tag_flags = 0;
289 	cfa_action = 0;
290 	if (skb_vlan_tag_present(skb)) {
291 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
292 				 skb_vlan_tag_get(skb);
293 		/* Currently supports 8021Q, 8021AD vlan offloads
294 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
295 		 */
296 		if (skb->vlan_proto == htons(ETH_P_8021Q))
297 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
298 	}
299 
300 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
301 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
302 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
303 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
304 		void *pdata = tx_push_buf->data;
305 		u64 *end;
306 		int j, push_len;
307 
308 		/* Set COAL_NOW to be ready quickly for the next push */
309 		tx_push->tx_bd_len_flags_type =
310 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
311 					TX_BD_TYPE_LONG_TX_BD |
312 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
313 					TX_BD_FLAGS_COAL_NOW |
314 					TX_BD_FLAGS_PACKET_END |
315 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
316 
317 		if (skb->ip_summed == CHECKSUM_PARTIAL)
318 			tx_push1->tx_bd_hsize_lflags =
319 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
320 		else
321 			tx_push1->tx_bd_hsize_lflags = 0;
322 
323 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
324 		tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
325 
326 		end = pdata + length;
327 		end = PTR_ALIGN(end, 8) - 1;
328 		*end = 0;
329 
330 		skb_copy_from_linear_data(skb, pdata, len);
331 		pdata += len;
332 		for (j = 0; j < last_frag; j++) {
333 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
334 			void *fptr;
335 
336 			fptr = skb_frag_address_safe(frag);
337 			if (!fptr)
338 				goto normal_tx;
339 
340 			memcpy(pdata, fptr, skb_frag_size(frag));
341 			pdata += skb_frag_size(frag);
342 		}
343 
344 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
345 		txbd->tx_bd_haddr = txr->data_mapping;
346 		prod = NEXT_TX(prod);
347 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
348 		memcpy(txbd, tx_push1, sizeof(*txbd));
349 		prod = NEXT_TX(prod);
350 		tx_push->doorbell =
351 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
352 		txr->tx_prod = prod;
353 
354 		tx_buf->is_push = 1;
355 		netdev_tx_sent_queue(txq, skb->len);
356 		wmb();	/* Sync is_push and byte queue before pushing data */
357 
358 		push_len = (length + sizeof(*tx_push) + 7) / 8;
359 		if (push_len > 16) {
360 			__iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
361 			__iowrite32_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
362 					 (push_len - 16) << 1);
363 		} else {
364 			__iowrite64_copy(txr->tx_doorbell, tx_push_buf,
365 					 push_len);
366 		}
367 
368 		goto tx_done;
369 	}
370 
371 normal_tx:
372 	if (length < BNXT_MIN_PKT_SIZE) {
373 		pad = BNXT_MIN_PKT_SIZE - length;
374 		if (skb_pad(skb, pad)) {
375 			/* SKB already freed. */
376 			tx_buf->skb = NULL;
377 			return NETDEV_TX_OK;
378 		}
379 		length = BNXT_MIN_PKT_SIZE;
380 	}
381 
382 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
383 
384 	if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
385 		dev_kfree_skb_any(skb);
386 		tx_buf->skb = NULL;
387 		return NETDEV_TX_OK;
388 	}
389 
390 	dma_unmap_addr_set(tx_buf, mapping, mapping);
391 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
392 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
393 
394 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
395 
396 	prod = NEXT_TX(prod);
397 	txbd1 = (struct tx_bd_ext *)
398 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
399 
400 	txbd1->tx_bd_hsize_lflags = 0;
401 	if (skb_is_gso(skb)) {
402 		u32 hdr_len;
403 
404 		if (skb->encapsulation)
405 			hdr_len = skb_inner_network_offset(skb) +
406 				skb_inner_network_header_len(skb) +
407 				inner_tcp_hdrlen(skb);
408 		else
409 			hdr_len = skb_transport_offset(skb) +
410 				tcp_hdrlen(skb);
411 
412 		txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
413 					TX_BD_FLAGS_T_IPID |
414 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
415 		length = skb_shinfo(skb)->gso_size;
416 		txbd1->tx_bd_mss = cpu_to_le32(length);
417 		length += hdr_len;
418 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
419 		txbd1->tx_bd_hsize_lflags =
420 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
421 		txbd1->tx_bd_mss = 0;
422 	}
423 
424 	length >>= 9;
425 	flags |= bnxt_lhint_arr[length];
426 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
427 
428 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
429 	txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
430 	for (i = 0; i < last_frag; i++) {
431 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
432 
433 		prod = NEXT_TX(prod);
434 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
435 
436 		len = skb_frag_size(frag);
437 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
438 					   DMA_TO_DEVICE);
439 
440 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
441 			goto tx_dma_error;
442 
443 		tx_buf = &txr->tx_buf_ring[prod];
444 		dma_unmap_addr_set(tx_buf, mapping, mapping);
445 
446 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
447 
448 		flags = len << TX_BD_LEN_SHIFT;
449 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
450 	}
451 
452 	flags &= ~TX_BD_LEN;
453 	txbd->tx_bd_len_flags_type =
454 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
455 			    TX_BD_FLAGS_PACKET_END);
456 
457 	netdev_tx_sent_queue(txq, skb->len);
458 
459 	/* Sync BD data before updating doorbell */
460 	wmb();
461 
462 	prod = NEXT_TX(prod);
463 	txr->tx_prod = prod;
464 
465 	writel(DB_KEY_TX | prod, txr->tx_doorbell);
466 	writel(DB_KEY_TX | prod, txr->tx_doorbell);
467 
468 tx_done:
469 
470 	mmiowb();
471 
472 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
473 		netif_tx_stop_queue(txq);
474 
475 		/* netif_tx_stop_queue() must be done before checking
476 		 * tx index in bnxt_tx_avail() below, because in
477 		 * bnxt_tx_int(), we update tx index before checking for
478 		 * netif_tx_queue_stopped().
479 		 */
480 		smp_mb();
481 		if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
482 			netif_tx_wake_queue(txq);
483 	}
484 	return NETDEV_TX_OK;
485 
486 tx_dma_error:
487 	last_frag = i;
488 
489 	/* start back at beginning and unmap skb */
490 	prod = txr->tx_prod;
491 	tx_buf = &txr->tx_buf_ring[prod];
492 	tx_buf->skb = NULL;
493 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
494 			 skb_headlen(skb), PCI_DMA_TODEVICE);
495 	prod = NEXT_TX(prod);
496 
497 	/* unmap remaining mapped pages */
498 	for (i = 0; i < last_frag; i++) {
499 		prod = NEXT_TX(prod);
500 		tx_buf = &txr->tx_buf_ring[prod];
501 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
502 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
503 			       PCI_DMA_TODEVICE);
504 	}
505 
506 	dev_kfree_skb_any(skb);
507 	return NETDEV_TX_OK;
508 }
509 
510 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
511 {
512 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
513 	int index = txr - &bp->tx_ring[0];
514 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, index);
515 	u16 cons = txr->tx_cons;
516 	struct pci_dev *pdev = bp->pdev;
517 	int i;
518 	unsigned int tx_bytes = 0;
519 
520 	for (i = 0; i < nr_pkts; i++) {
521 		struct bnxt_sw_tx_bd *tx_buf;
522 		struct sk_buff *skb;
523 		int j, last;
524 
525 		tx_buf = &txr->tx_buf_ring[cons];
526 		cons = NEXT_TX(cons);
527 		skb = tx_buf->skb;
528 		tx_buf->skb = NULL;
529 
530 		if (tx_buf->is_push) {
531 			tx_buf->is_push = 0;
532 			goto next_tx_int;
533 		}
534 
535 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
536 				 skb_headlen(skb), PCI_DMA_TODEVICE);
537 		last = tx_buf->nr_frags;
538 
539 		for (j = 0; j < last; j++) {
540 			cons = NEXT_TX(cons);
541 			tx_buf = &txr->tx_buf_ring[cons];
542 			dma_unmap_page(
543 				&pdev->dev,
544 				dma_unmap_addr(tx_buf, mapping),
545 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
546 				PCI_DMA_TODEVICE);
547 		}
548 
549 next_tx_int:
550 		cons = NEXT_TX(cons);
551 
552 		tx_bytes += skb->len;
553 		dev_kfree_skb_any(skb);
554 	}
555 
556 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
557 	txr->tx_cons = cons;
558 
559 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
560 	 * before checking for netif_tx_queue_stopped().  Without the
561 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
562 	 * will miss it and cause the queue to be stopped forever.
563 	 */
564 	smp_mb();
565 
566 	if (unlikely(netif_tx_queue_stopped(txq)) &&
567 	    (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
568 		__netif_tx_lock(txq, smp_processor_id());
569 		if (netif_tx_queue_stopped(txq) &&
570 		    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
571 		    txr->dev_state != BNXT_DEV_STATE_CLOSING)
572 			netif_tx_wake_queue(txq);
573 		__netif_tx_unlock(txq);
574 	}
575 }
576 
577 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
578 				       gfp_t gfp)
579 {
580 	u8 *data;
581 	struct pci_dev *pdev = bp->pdev;
582 
583 	data = kmalloc(bp->rx_buf_size, gfp);
584 	if (!data)
585 		return NULL;
586 
587 	*mapping = dma_map_single(&pdev->dev, data + BNXT_RX_DMA_OFFSET,
588 				  bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
589 
590 	if (dma_mapping_error(&pdev->dev, *mapping)) {
591 		kfree(data);
592 		data = NULL;
593 	}
594 	return data;
595 }
596 
597 static inline int bnxt_alloc_rx_data(struct bnxt *bp,
598 				     struct bnxt_rx_ring_info *rxr,
599 				     u16 prod, gfp_t gfp)
600 {
601 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
602 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
603 	u8 *data;
604 	dma_addr_t mapping;
605 
606 	data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
607 	if (!data)
608 		return -ENOMEM;
609 
610 	rx_buf->data = data;
611 	dma_unmap_addr_set(rx_buf, mapping, mapping);
612 
613 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
614 
615 	return 0;
616 }
617 
618 static void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons,
619 			       u8 *data)
620 {
621 	u16 prod = rxr->rx_prod;
622 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
623 	struct rx_bd *cons_bd, *prod_bd;
624 
625 	prod_rx_buf = &rxr->rx_buf_ring[prod];
626 	cons_rx_buf = &rxr->rx_buf_ring[cons];
627 
628 	prod_rx_buf->data = data;
629 
630 	dma_unmap_addr_set(prod_rx_buf, mapping,
631 			   dma_unmap_addr(cons_rx_buf, mapping));
632 
633 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
634 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
635 
636 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
637 }
638 
639 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
640 {
641 	u16 next, max = rxr->rx_agg_bmap_size;
642 
643 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
644 	if (next >= max)
645 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
646 	return next;
647 }
648 
649 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
650 				     struct bnxt_rx_ring_info *rxr,
651 				     u16 prod, gfp_t gfp)
652 {
653 	struct rx_bd *rxbd =
654 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
655 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
656 	struct pci_dev *pdev = bp->pdev;
657 	struct page *page;
658 	dma_addr_t mapping;
659 	u16 sw_prod = rxr->rx_sw_agg_prod;
660 	unsigned int offset = 0;
661 
662 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
663 		page = rxr->rx_page;
664 		if (!page) {
665 			page = alloc_page(gfp);
666 			if (!page)
667 				return -ENOMEM;
668 			rxr->rx_page = page;
669 			rxr->rx_page_offset = 0;
670 		}
671 		offset = rxr->rx_page_offset;
672 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
673 		if (rxr->rx_page_offset == PAGE_SIZE)
674 			rxr->rx_page = NULL;
675 		else
676 			get_page(page);
677 	} else {
678 		page = alloc_page(gfp);
679 		if (!page)
680 			return -ENOMEM;
681 	}
682 
683 	mapping = dma_map_page(&pdev->dev, page, offset, BNXT_RX_PAGE_SIZE,
684 			       PCI_DMA_FROMDEVICE);
685 	if (dma_mapping_error(&pdev->dev, mapping)) {
686 		__free_page(page);
687 		return -EIO;
688 	}
689 
690 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
691 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
692 
693 	__set_bit(sw_prod, rxr->rx_agg_bmap);
694 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
695 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
696 
697 	rx_agg_buf->page = page;
698 	rx_agg_buf->offset = offset;
699 	rx_agg_buf->mapping = mapping;
700 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
701 	rxbd->rx_bd_opaque = sw_prod;
702 	return 0;
703 }
704 
705 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
706 				   u32 agg_bufs)
707 {
708 	struct bnxt *bp = bnapi->bp;
709 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
710 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
711 	u16 prod = rxr->rx_agg_prod;
712 	u16 sw_prod = rxr->rx_sw_agg_prod;
713 	u32 i;
714 
715 	for (i = 0; i < agg_bufs; i++) {
716 		u16 cons;
717 		struct rx_agg_cmp *agg;
718 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
719 		struct rx_bd *prod_bd;
720 		struct page *page;
721 
722 		agg = (struct rx_agg_cmp *)
723 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
724 		cons = agg->rx_agg_cmp_opaque;
725 		__clear_bit(cons, rxr->rx_agg_bmap);
726 
727 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
728 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
729 
730 		__set_bit(sw_prod, rxr->rx_agg_bmap);
731 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
732 		cons_rx_buf = &rxr->rx_agg_ring[cons];
733 
734 		/* It is possible for sw_prod to be equal to cons, so
735 		 * set cons_rx_buf->page to NULL first.
736 		 */
737 		page = cons_rx_buf->page;
738 		cons_rx_buf->page = NULL;
739 		prod_rx_buf->page = page;
740 		prod_rx_buf->offset = cons_rx_buf->offset;
741 
742 		prod_rx_buf->mapping = cons_rx_buf->mapping;
743 
744 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
745 
746 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
747 		prod_bd->rx_bd_opaque = sw_prod;
748 
749 		prod = NEXT_RX_AGG(prod);
750 		sw_prod = NEXT_RX_AGG(sw_prod);
751 		cp_cons = NEXT_CMP(cp_cons);
752 	}
753 	rxr->rx_agg_prod = prod;
754 	rxr->rx_sw_agg_prod = sw_prod;
755 }
756 
757 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
758 				   struct bnxt_rx_ring_info *rxr, u16 cons,
759 				   u16 prod, u8 *data, dma_addr_t dma_addr,
760 				   unsigned int len)
761 {
762 	int err;
763 	struct sk_buff *skb;
764 
765 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
766 	if (unlikely(err)) {
767 		bnxt_reuse_rx_data(rxr, cons, data);
768 		return NULL;
769 	}
770 
771 	skb = build_skb(data, 0);
772 	dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
773 			 PCI_DMA_FROMDEVICE);
774 	if (!skb) {
775 		kfree(data);
776 		return NULL;
777 	}
778 
779 	skb_reserve(skb, BNXT_RX_OFFSET);
780 	skb_put(skb, len);
781 	return skb;
782 }
783 
784 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
785 				     struct sk_buff *skb, u16 cp_cons,
786 				     u32 agg_bufs)
787 {
788 	struct pci_dev *pdev = bp->pdev;
789 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
790 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
791 	u16 prod = rxr->rx_agg_prod;
792 	u32 i;
793 
794 	for (i = 0; i < agg_bufs; i++) {
795 		u16 cons, frag_len;
796 		struct rx_agg_cmp *agg;
797 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
798 		struct page *page;
799 		dma_addr_t mapping;
800 
801 		agg = (struct rx_agg_cmp *)
802 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
803 		cons = agg->rx_agg_cmp_opaque;
804 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
805 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
806 
807 		cons_rx_buf = &rxr->rx_agg_ring[cons];
808 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
809 				   cons_rx_buf->offset, frag_len);
810 		__clear_bit(cons, rxr->rx_agg_bmap);
811 
812 		/* It is possible for bnxt_alloc_rx_page() to allocate
813 		 * a sw_prod index that equals the cons index, so we
814 		 * need to clear the cons entry now.
815 		 */
816 		mapping = dma_unmap_addr(cons_rx_buf, mapping);
817 		page = cons_rx_buf->page;
818 		cons_rx_buf->page = NULL;
819 
820 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
821 			struct skb_shared_info *shinfo;
822 			unsigned int nr_frags;
823 
824 			shinfo = skb_shinfo(skb);
825 			nr_frags = --shinfo->nr_frags;
826 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
827 
828 			dev_kfree_skb(skb);
829 
830 			cons_rx_buf->page = page;
831 
832 			/* Update prod since possibly some pages have been
833 			 * allocated already.
834 			 */
835 			rxr->rx_agg_prod = prod;
836 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
837 			return NULL;
838 		}
839 
840 		dma_unmap_page(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
841 			       PCI_DMA_FROMDEVICE);
842 
843 		skb->data_len += frag_len;
844 		skb->len += frag_len;
845 		skb->truesize += PAGE_SIZE;
846 
847 		prod = NEXT_RX_AGG(prod);
848 		cp_cons = NEXT_CMP(cp_cons);
849 	}
850 	rxr->rx_agg_prod = prod;
851 	return skb;
852 }
853 
854 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
855 			       u8 agg_bufs, u32 *raw_cons)
856 {
857 	u16 last;
858 	struct rx_agg_cmp *agg;
859 
860 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
861 	last = RING_CMP(*raw_cons);
862 	agg = (struct rx_agg_cmp *)
863 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
864 	return RX_AGG_CMP_VALID(agg, *raw_cons);
865 }
866 
867 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
868 					    unsigned int len,
869 					    dma_addr_t mapping)
870 {
871 	struct bnxt *bp = bnapi->bp;
872 	struct pci_dev *pdev = bp->pdev;
873 	struct sk_buff *skb;
874 
875 	skb = napi_alloc_skb(&bnapi->napi, len);
876 	if (!skb)
877 		return NULL;
878 
879 	dma_sync_single_for_cpu(&pdev->dev, mapping,
880 				bp->rx_copy_thresh, PCI_DMA_FROMDEVICE);
881 
882 	memcpy(skb->data - BNXT_RX_OFFSET, data, len + BNXT_RX_OFFSET);
883 
884 	dma_sync_single_for_device(&pdev->dev, mapping,
885 				   bp->rx_copy_thresh,
886 				   PCI_DMA_FROMDEVICE);
887 
888 	skb_put(skb, len);
889 	return skb;
890 }
891 
892 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
893 			   u32 *raw_cons, void *cmp)
894 {
895 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
896 	struct rx_cmp *rxcmp = cmp;
897 	u32 tmp_raw_cons = *raw_cons;
898 	u8 cmp_type, agg_bufs = 0;
899 
900 	cmp_type = RX_CMP_TYPE(rxcmp);
901 
902 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
903 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
904 			    RX_CMP_AGG_BUFS) >>
905 			   RX_CMP_AGG_BUFS_SHIFT;
906 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
907 		struct rx_tpa_end_cmp *tpa_end = cmp;
908 
909 		agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
910 			    RX_TPA_END_CMP_AGG_BUFS) >>
911 			   RX_TPA_END_CMP_AGG_BUFS_SHIFT;
912 	}
913 
914 	if (agg_bufs) {
915 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
916 			return -EBUSY;
917 	}
918 	*raw_cons = tmp_raw_cons;
919 	return 0;
920 }
921 
922 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
923 {
924 	if (!rxr->bnapi->in_reset) {
925 		rxr->bnapi->in_reset = true;
926 		set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
927 		schedule_work(&bp->sp_task);
928 	}
929 	rxr->rx_next_cons = 0xffff;
930 }
931 
932 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
933 			   struct rx_tpa_start_cmp *tpa_start,
934 			   struct rx_tpa_start_cmp_ext *tpa_start1)
935 {
936 	u8 agg_id = TPA_START_AGG_ID(tpa_start);
937 	u16 cons, prod;
938 	struct bnxt_tpa_info *tpa_info;
939 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
940 	struct rx_bd *prod_bd;
941 	dma_addr_t mapping;
942 
943 	cons = tpa_start->rx_tpa_start_cmp_opaque;
944 	prod = rxr->rx_prod;
945 	cons_rx_buf = &rxr->rx_buf_ring[cons];
946 	prod_rx_buf = &rxr->rx_buf_ring[prod];
947 	tpa_info = &rxr->rx_tpa[agg_id];
948 
949 	if (unlikely(cons != rxr->rx_next_cons)) {
950 		bnxt_sched_reset(bp, rxr);
951 		return;
952 	}
953 
954 	prod_rx_buf->data = tpa_info->data;
955 
956 	mapping = tpa_info->mapping;
957 	dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
958 
959 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
960 
961 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
962 
963 	tpa_info->data = cons_rx_buf->data;
964 	cons_rx_buf->data = NULL;
965 	tpa_info->mapping = dma_unmap_addr(cons_rx_buf, mapping);
966 
967 	tpa_info->len =
968 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
969 				RX_TPA_START_CMP_LEN_SHIFT;
970 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
971 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
972 
973 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
974 		tpa_info->gso_type = SKB_GSO_TCPV4;
975 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
976 		if (hash_type == 3)
977 			tpa_info->gso_type = SKB_GSO_TCPV6;
978 		tpa_info->rss_hash =
979 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
980 	} else {
981 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
982 		tpa_info->gso_type = 0;
983 		if (netif_msg_rx_err(bp))
984 			netdev_warn(bp->dev, "TPA packet without valid hash\n");
985 	}
986 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
987 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
988 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
989 
990 	rxr->rx_prod = NEXT_RX(prod);
991 	cons = NEXT_RX(cons);
992 	rxr->rx_next_cons = NEXT_RX(cons);
993 	cons_rx_buf = &rxr->rx_buf_ring[cons];
994 
995 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
996 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
997 	cons_rx_buf->data = NULL;
998 }
999 
1000 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
1001 			   u16 cp_cons, u32 agg_bufs)
1002 {
1003 	if (agg_bufs)
1004 		bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1005 }
1006 
1007 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1008 					   int payload_off, int tcp_ts,
1009 					   struct sk_buff *skb)
1010 {
1011 #ifdef CONFIG_INET
1012 	struct tcphdr *th;
1013 	int len, nw_off;
1014 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1015 	u32 hdr_info = tpa_info->hdr_info;
1016 	bool loopback = false;
1017 
1018 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1019 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1020 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1021 
1022 	/* If the packet is an internal loopback packet, the offsets will
1023 	 * have an extra 4 bytes.
1024 	 */
1025 	if (inner_mac_off == 4) {
1026 		loopback = true;
1027 	} else if (inner_mac_off > 4) {
1028 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1029 					    ETH_HLEN - 2));
1030 
1031 		/* We only support inner iPv4/ipv6.  If we don't see the
1032 		 * correct protocol ID, it must be a loopback packet where
1033 		 * the offsets are off by 4.
1034 		 */
1035 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1036 			loopback = true;
1037 	}
1038 	if (loopback) {
1039 		/* internal loopback packet, subtract all offsets by 4 */
1040 		inner_ip_off -= 4;
1041 		inner_mac_off -= 4;
1042 		outer_ip_off -= 4;
1043 	}
1044 
1045 	nw_off = inner_ip_off - ETH_HLEN;
1046 	skb_set_network_header(skb, nw_off);
1047 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1048 		struct ipv6hdr *iph = ipv6_hdr(skb);
1049 
1050 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1051 		len = skb->len - skb_transport_offset(skb);
1052 		th = tcp_hdr(skb);
1053 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1054 	} else {
1055 		struct iphdr *iph = ip_hdr(skb);
1056 
1057 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1058 		len = skb->len - skb_transport_offset(skb);
1059 		th = tcp_hdr(skb);
1060 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1061 	}
1062 
1063 	if (inner_mac_off) { /* tunnel */
1064 		struct udphdr *uh = NULL;
1065 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1066 					    ETH_HLEN - 2));
1067 
1068 		if (proto == htons(ETH_P_IP)) {
1069 			struct iphdr *iph = (struct iphdr *)skb->data;
1070 
1071 			if (iph->protocol == IPPROTO_UDP)
1072 				uh = (struct udphdr *)(iph + 1);
1073 		} else {
1074 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1075 
1076 			if (iph->nexthdr == IPPROTO_UDP)
1077 				uh = (struct udphdr *)(iph + 1);
1078 		}
1079 		if (uh) {
1080 			if (uh->check)
1081 				skb_shinfo(skb)->gso_type |=
1082 					SKB_GSO_UDP_TUNNEL_CSUM;
1083 			else
1084 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1085 		}
1086 	}
1087 #endif
1088 	return skb;
1089 }
1090 
1091 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1092 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1093 
1094 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1095 					   int payload_off, int tcp_ts,
1096 					   struct sk_buff *skb)
1097 {
1098 #ifdef CONFIG_INET
1099 	struct tcphdr *th;
1100 	int len, nw_off, tcp_opt_len;
1101 
1102 	if (tcp_ts)
1103 		tcp_opt_len = 12;
1104 
1105 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1106 		struct iphdr *iph;
1107 
1108 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1109 			 ETH_HLEN;
1110 		skb_set_network_header(skb, nw_off);
1111 		iph = ip_hdr(skb);
1112 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1113 		len = skb->len - skb_transport_offset(skb);
1114 		th = tcp_hdr(skb);
1115 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1116 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1117 		struct ipv6hdr *iph;
1118 
1119 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1120 			 ETH_HLEN;
1121 		skb_set_network_header(skb, nw_off);
1122 		iph = ipv6_hdr(skb);
1123 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1124 		len = skb->len - skb_transport_offset(skb);
1125 		th = tcp_hdr(skb);
1126 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1127 	} else {
1128 		dev_kfree_skb_any(skb);
1129 		return NULL;
1130 	}
1131 	tcp_gro_complete(skb);
1132 
1133 	if (nw_off) { /* tunnel */
1134 		struct udphdr *uh = NULL;
1135 
1136 		if (skb->protocol == htons(ETH_P_IP)) {
1137 			struct iphdr *iph = (struct iphdr *)skb->data;
1138 
1139 			if (iph->protocol == IPPROTO_UDP)
1140 				uh = (struct udphdr *)(iph + 1);
1141 		} else {
1142 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1143 
1144 			if (iph->nexthdr == IPPROTO_UDP)
1145 				uh = (struct udphdr *)(iph + 1);
1146 		}
1147 		if (uh) {
1148 			if (uh->check)
1149 				skb_shinfo(skb)->gso_type |=
1150 					SKB_GSO_UDP_TUNNEL_CSUM;
1151 			else
1152 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1153 		}
1154 	}
1155 #endif
1156 	return skb;
1157 }
1158 
1159 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1160 					   struct bnxt_tpa_info *tpa_info,
1161 					   struct rx_tpa_end_cmp *tpa_end,
1162 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1163 					   struct sk_buff *skb)
1164 {
1165 #ifdef CONFIG_INET
1166 	int payload_off;
1167 	u16 segs;
1168 
1169 	segs = TPA_END_TPA_SEGS(tpa_end);
1170 	if (segs == 1)
1171 		return skb;
1172 
1173 	NAPI_GRO_CB(skb)->count = segs;
1174 	skb_shinfo(skb)->gso_size =
1175 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1176 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1177 	payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1178 		       RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
1179 		      RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
1180 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1181 #endif
1182 	return skb;
1183 }
1184 
1185 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1186 					   struct bnxt_napi *bnapi,
1187 					   u32 *raw_cons,
1188 					   struct rx_tpa_end_cmp *tpa_end,
1189 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1190 					   bool *agg_event)
1191 {
1192 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1193 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1194 	u8 agg_id = TPA_END_AGG_ID(tpa_end);
1195 	u8 *data, agg_bufs;
1196 	u16 cp_cons = RING_CMP(*raw_cons);
1197 	unsigned int len;
1198 	struct bnxt_tpa_info *tpa_info;
1199 	dma_addr_t mapping;
1200 	struct sk_buff *skb;
1201 
1202 	if (unlikely(bnapi->in_reset)) {
1203 		int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
1204 
1205 		if (rc < 0)
1206 			return ERR_PTR(-EBUSY);
1207 		return NULL;
1208 	}
1209 
1210 	tpa_info = &rxr->rx_tpa[agg_id];
1211 	data = tpa_info->data;
1212 	prefetch(data);
1213 	len = tpa_info->len;
1214 	mapping = tpa_info->mapping;
1215 
1216 	agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1217 		    RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1218 
1219 	if (agg_bufs) {
1220 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1221 			return ERR_PTR(-EBUSY);
1222 
1223 		*agg_event = true;
1224 		cp_cons = NEXT_CMP(cp_cons);
1225 	}
1226 
1227 	if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
1228 		bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1229 		netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1230 			    agg_bufs, (int)MAX_SKB_FRAGS);
1231 		return NULL;
1232 	}
1233 
1234 	if (len <= bp->rx_copy_thresh) {
1235 		skb = bnxt_copy_skb(bnapi, data, len, mapping);
1236 		if (!skb) {
1237 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1238 			return NULL;
1239 		}
1240 	} else {
1241 		u8 *new_data;
1242 		dma_addr_t new_mapping;
1243 
1244 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1245 		if (!new_data) {
1246 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1247 			return NULL;
1248 		}
1249 
1250 		tpa_info->data = new_data;
1251 		tpa_info->mapping = new_mapping;
1252 
1253 		skb = build_skb(data, 0);
1254 		dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
1255 				 PCI_DMA_FROMDEVICE);
1256 
1257 		if (!skb) {
1258 			kfree(data);
1259 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1260 			return NULL;
1261 		}
1262 		skb_reserve(skb, BNXT_RX_OFFSET);
1263 		skb_put(skb, len);
1264 	}
1265 
1266 	if (agg_bufs) {
1267 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1268 		if (!skb) {
1269 			/* Page reuse already handled by bnxt_rx_pages(). */
1270 			return NULL;
1271 		}
1272 	}
1273 	skb->protocol = eth_type_trans(skb, bp->dev);
1274 
1275 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1276 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1277 
1278 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1279 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1280 		u16 vlan_proto = tpa_info->metadata >>
1281 			RX_CMP_FLAGS2_METADATA_TPID_SFT;
1282 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_VID_MASK;
1283 
1284 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1285 	}
1286 
1287 	skb_checksum_none_assert(skb);
1288 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1289 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1290 		skb->csum_level =
1291 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1292 	}
1293 
1294 	if (TPA_END_GRO(tpa_end))
1295 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1296 
1297 	return skb;
1298 }
1299 
1300 /* returns the following:
1301  * 1       - 1 packet successfully received
1302  * 0       - successful TPA_START, packet not completed yet
1303  * -EBUSY  - completion ring does not have all the agg buffers yet
1304  * -ENOMEM - packet aborted due to out of memory
1305  * -EIO    - packet aborted due to hw error indicated in BD
1306  */
1307 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1308 		       bool *agg_event)
1309 {
1310 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1311 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1312 	struct net_device *dev = bp->dev;
1313 	struct rx_cmp *rxcmp;
1314 	struct rx_cmp_ext *rxcmp1;
1315 	u32 tmp_raw_cons = *raw_cons;
1316 	u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1317 	struct bnxt_sw_rx_bd *rx_buf;
1318 	unsigned int len;
1319 	u8 *data, agg_bufs, cmp_type;
1320 	dma_addr_t dma_addr;
1321 	struct sk_buff *skb;
1322 	int rc = 0;
1323 
1324 	rxcmp = (struct rx_cmp *)
1325 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1326 
1327 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1328 	cp_cons = RING_CMP(tmp_raw_cons);
1329 	rxcmp1 = (struct rx_cmp_ext *)
1330 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1331 
1332 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1333 		return -EBUSY;
1334 
1335 	cmp_type = RX_CMP_TYPE(rxcmp);
1336 
1337 	prod = rxr->rx_prod;
1338 
1339 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1340 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1341 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1342 
1343 		goto next_rx_no_prod;
1344 
1345 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1346 		skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1347 				   (struct rx_tpa_end_cmp *)rxcmp,
1348 				   (struct rx_tpa_end_cmp_ext *)rxcmp1,
1349 				   agg_event);
1350 
1351 		if (unlikely(IS_ERR(skb)))
1352 			return -EBUSY;
1353 
1354 		rc = -ENOMEM;
1355 		if (likely(skb)) {
1356 			skb_record_rx_queue(skb, bnapi->index);
1357 			skb_mark_napi_id(skb, &bnapi->napi);
1358 			if (bnxt_busy_polling(bnapi))
1359 				netif_receive_skb(skb);
1360 			else
1361 				napi_gro_receive(&bnapi->napi, skb);
1362 			rc = 1;
1363 		}
1364 		goto next_rx_no_prod;
1365 	}
1366 
1367 	cons = rxcmp->rx_cmp_opaque;
1368 	rx_buf = &rxr->rx_buf_ring[cons];
1369 	data = rx_buf->data;
1370 	if (unlikely(cons != rxr->rx_next_cons)) {
1371 		int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
1372 
1373 		bnxt_sched_reset(bp, rxr);
1374 		return rc1;
1375 	}
1376 	prefetch(data);
1377 
1378 	agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & RX_CMP_AGG_BUFS) >>
1379 				RX_CMP_AGG_BUFS_SHIFT;
1380 
1381 	if (agg_bufs) {
1382 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1383 			return -EBUSY;
1384 
1385 		cp_cons = NEXT_CMP(cp_cons);
1386 		*agg_event = true;
1387 	}
1388 
1389 	rx_buf->data = NULL;
1390 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1391 		bnxt_reuse_rx_data(rxr, cons, data);
1392 		if (agg_bufs)
1393 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1394 
1395 		rc = -EIO;
1396 		goto next_rx;
1397 	}
1398 
1399 	len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1400 	dma_addr = dma_unmap_addr(rx_buf, mapping);
1401 
1402 	if (len <= bp->rx_copy_thresh) {
1403 		skb = bnxt_copy_skb(bnapi, data, len, dma_addr);
1404 		bnxt_reuse_rx_data(rxr, cons, data);
1405 		if (!skb) {
1406 			rc = -ENOMEM;
1407 			goto next_rx;
1408 		}
1409 	} else {
1410 		skb = bnxt_rx_skb(bp, rxr, cons, prod, data, dma_addr, len);
1411 		if (!skb) {
1412 			rc = -ENOMEM;
1413 			goto next_rx;
1414 		}
1415 	}
1416 
1417 	if (agg_bufs) {
1418 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1419 		if (!skb) {
1420 			rc = -ENOMEM;
1421 			goto next_rx;
1422 		}
1423 	}
1424 
1425 	if (RX_CMP_HASH_VALID(rxcmp)) {
1426 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1427 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1428 
1429 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1430 		if (hash_type != 1 && hash_type != 3)
1431 			type = PKT_HASH_TYPE_L3;
1432 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1433 	}
1434 
1435 	skb->protocol = eth_type_trans(skb, dev);
1436 
1437 	if ((rxcmp1->rx_cmp_flags2 &
1438 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1439 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1440 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1441 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_VID_MASK;
1442 		u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1443 
1444 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1445 	}
1446 
1447 	skb_checksum_none_assert(skb);
1448 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1449 		if (dev->features & NETIF_F_RXCSUM) {
1450 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1451 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1452 		}
1453 	} else {
1454 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1455 			if (dev->features & NETIF_F_RXCSUM)
1456 				cpr->rx_l4_csum_errors++;
1457 		}
1458 	}
1459 
1460 	skb_record_rx_queue(skb, bnapi->index);
1461 	skb_mark_napi_id(skb, &bnapi->napi);
1462 	if (bnxt_busy_polling(bnapi))
1463 		netif_receive_skb(skb);
1464 	else
1465 		napi_gro_receive(&bnapi->napi, skb);
1466 	rc = 1;
1467 
1468 next_rx:
1469 	rxr->rx_prod = NEXT_RX(prod);
1470 	rxr->rx_next_cons = NEXT_RX(cons);
1471 
1472 next_rx_no_prod:
1473 	*raw_cons = tmp_raw_cons;
1474 
1475 	return rc;
1476 }
1477 
1478 #define BNXT_GET_EVENT_PORT(data)	\
1479 	((data) &				\
1480 	 HWRM_ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1481 
1482 static int bnxt_async_event_process(struct bnxt *bp,
1483 				    struct hwrm_async_event_cmpl *cmpl)
1484 {
1485 	u16 event_id = le16_to_cpu(cmpl->event_id);
1486 
1487 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
1488 	switch (event_id) {
1489 	case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1490 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1491 		struct bnxt_link_info *link_info = &bp->link_info;
1492 
1493 		if (BNXT_VF(bp))
1494 			goto async_event_process_exit;
1495 		if (data1 & 0x20000) {
1496 			u16 fw_speed = link_info->force_link_speed;
1497 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1498 
1499 			netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1500 				    speed);
1501 		}
1502 		/* fall thru */
1503 	}
1504 	case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1505 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1506 		break;
1507 	case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1508 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1509 		break;
1510 	case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1511 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1512 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
1513 
1514 		if (BNXT_VF(bp))
1515 			break;
1516 
1517 		if (bp->pf.port_id != port_id)
1518 			break;
1519 
1520 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1521 		break;
1522 	}
1523 	case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1524 		if (BNXT_PF(bp))
1525 			goto async_event_process_exit;
1526 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1527 		break;
1528 	default:
1529 		netdev_err(bp->dev, "unhandled ASYNC event (id 0x%x)\n",
1530 			   event_id);
1531 		goto async_event_process_exit;
1532 	}
1533 	schedule_work(&bp->sp_task);
1534 async_event_process_exit:
1535 	return 0;
1536 }
1537 
1538 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1539 {
1540 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1541 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1542 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1543 				(struct hwrm_fwd_req_cmpl *)txcmp;
1544 
1545 	switch (cmpl_type) {
1546 	case CMPL_BASE_TYPE_HWRM_DONE:
1547 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
1548 		if (seq_id == bp->hwrm_intr_seq_id)
1549 			bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1550 		else
1551 			netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1552 		break;
1553 
1554 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1555 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1556 
1557 		if ((vf_id < bp->pf.first_vf_id) ||
1558 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1559 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1560 				   vf_id);
1561 			return -EINVAL;
1562 		}
1563 
1564 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1565 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1566 		schedule_work(&bp->sp_task);
1567 		break;
1568 
1569 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1570 		bnxt_async_event_process(bp,
1571 					 (struct hwrm_async_event_cmpl *)txcmp);
1572 
1573 	default:
1574 		break;
1575 	}
1576 
1577 	return 0;
1578 }
1579 
1580 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1581 {
1582 	struct bnxt_napi *bnapi = dev_instance;
1583 	struct bnxt *bp = bnapi->bp;
1584 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1585 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1586 
1587 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1588 	napi_schedule(&bnapi->napi);
1589 	return IRQ_HANDLED;
1590 }
1591 
1592 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1593 {
1594 	u32 raw_cons = cpr->cp_raw_cons;
1595 	u16 cons = RING_CMP(raw_cons);
1596 	struct tx_cmp *txcmp;
1597 
1598 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1599 
1600 	return TX_CMP_VALID(txcmp, raw_cons);
1601 }
1602 
1603 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1604 {
1605 	struct bnxt_napi *bnapi = dev_instance;
1606 	struct bnxt *bp = bnapi->bp;
1607 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1608 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1609 	u32 int_status;
1610 
1611 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1612 
1613 	if (!bnxt_has_work(bp, cpr)) {
1614 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1615 		/* return if erroneous interrupt */
1616 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1617 			return IRQ_NONE;
1618 	}
1619 
1620 	/* disable ring IRQ */
1621 	BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1622 
1623 	/* Return here if interrupt is shared and is disabled. */
1624 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
1625 		return IRQ_HANDLED;
1626 
1627 	napi_schedule(&bnapi->napi);
1628 	return IRQ_HANDLED;
1629 }
1630 
1631 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1632 {
1633 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1634 	u32 raw_cons = cpr->cp_raw_cons;
1635 	u32 cons;
1636 	int tx_pkts = 0;
1637 	int rx_pkts = 0;
1638 	bool rx_event = false;
1639 	bool agg_event = false;
1640 	struct tx_cmp *txcmp;
1641 
1642 	while (1) {
1643 		int rc;
1644 
1645 		cons = RING_CMP(raw_cons);
1646 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1647 
1648 		if (!TX_CMP_VALID(txcmp, raw_cons))
1649 			break;
1650 
1651 		/* The valid test of the entry must be done first before
1652 		 * reading any further.
1653 		 */
1654 		dma_rmb();
1655 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1656 			tx_pkts++;
1657 			/* return full budget so NAPI will complete. */
1658 			if (unlikely(tx_pkts > bp->tx_wake_thresh))
1659 				rx_pkts = budget;
1660 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1661 			rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event);
1662 			if (likely(rc >= 0))
1663 				rx_pkts += rc;
1664 			else if (rc == -EBUSY)	/* partial completion */
1665 				break;
1666 			rx_event = true;
1667 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
1668 				     CMPL_BASE_TYPE_HWRM_DONE) ||
1669 				    (TX_CMP_TYPE(txcmp) ==
1670 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1671 				    (TX_CMP_TYPE(txcmp) ==
1672 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1673 			bnxt_hwrm_handler(bp, txcmp);
1674 		}
1675 		raw_cons = NEXT_RAW_CMP(raw_cons);
1676 
1677 		if (rx_pkts == budget)
1678 			break;
1679 	}
1680 
1681 	cpr->cp_raw_cons = raw_cons;
1682 	/* ACK completion ring before freeing tx ring and producing new
1683 	 * buffers in rx/agg rings to prevent overflowing the completion
1684 	 * ring.
1685 	 */
1686 	BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1687 
1688 	if (tx_pkts)
1689 		bnxt_tx_int(bp, bnapi, tx_pkts);
1690 
1691 	if (rx_event) {
1692 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1693 
1694 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1695 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1696 		if (agg_event) {
1697 			writel(DB_KEY_RX | rxr->rx_agg_prod,
1698 			       rxr->rx_agg_doorbell);
1699 			writel(DB_KEY_RX | rxr->rx_agg_prod,
1700 			       rxr->rx_agg_doorbell);
1701 		}
1702 	}
1703 	return rx_pkts;
1704 }
1705 
1706 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
1707 {
1708 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1709 	struct bnxt *bp = bnapi->bp;
1710 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1711 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1712 	struct tx_cmp *txcmp;
1713 	struct rx_cmp_ext *rxcmp1;
1714 	u32 cp_cons, tmp_raw_cons;
1715 	u32 raw_cons = cpr->cp_raw_cons;
1716 	u32 rx_pkts = 0;
1717 	bool agg_event = false;
1718 
1719 	while (1) {
1720 		int rc;
1721 
1722 		cp_cons = RING_CMP(raw_cons);
1723 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1724 
1725 		if (!TX_CMP_VALID(txcmp, raw_cons))
1726 			break;
1727 
1728 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1729 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
1730 			cp_cons = RING_CMP(tmp_raw_cons);
1731 			rxcmp1 = (struct rx_cmp_ext *)
1732 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1733 
1734 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1735 				break;
1736 
1737 			/* force an error to recycle the buffer */
1738 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1739 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1740 
1741 			rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event);
1742 			if (likely(rc == -EIO))
1743 				rx_pkts++;
1744 			else if (rc == -EBUSY)	/* partial completion */
1745 				break;
1746 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
1747 				    CMPL_BASE_TYPE_HWRM_DONE)) {
1748 			bnxt_hwrm_handler(bp, txcmp);
1749 		} else {
1750 			netdev_err(bp->dev,
1751 				   "Invalid completion received on special ring\n");
1752 		}
1753 		raw_cons = NEXT_RAW_CMP(raw_cons);
1754 
1755 		if (rx_pkts == budget)
1756 			break;
1757 	}
1758 
1759 	cpr->cp_raw_cons = raw_cons;
1760 	BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1761 	writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1762 	writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1763 
1764 	if (agg_event) {
1765 		writel(DB_KEY_RX | rxr->rx_agg_prod, rxr->rx_agg_doorbell);
1766 		writel(DB_KEY_RX | rxr->rx_agg_prod, rxr->rx_agg_doorbell);
1767 	}
1768 
1769 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
1770 		napi_complete(napi);
1771 		BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1772 	}
1773 	return rx_pkts;
1774 }
1775 
1776 static int bnxt_poll(struct napi_struct *napi, int budget)
1777 {
1778 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1779 	struct bnxt *bp = bnapi->bp;
1780 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1781 	int work_done = 0;
1782 
1783 	if (!bnxt_lock_napi(bnapi))
1784 		return budget;
1785 
1786 	while (1) {
1787 		work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1788 
1789 		if (work_done >= budget)
1790 			break;
1791 
1792 		if (!bnxt_has_work(bp, cpr)) {
1793 			napi_complete(napi);
1794 			BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1795 			break;
1796 		}
1797 	}
1798 	mmiowb();
1799 	bnxt_unlock_napi(bnapi);
1800 	return work_done;
1801 }
1802 
1803 #ifdef CONFIG_NET_RX_BUSY_POLL
1804 static int bnxt_busy_poll(struct napi_struct *napi)
1805 {
1806 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1807 	struct bnxt *bp = bnapi->bp;
1808 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1809 	int rx_work, budget = 4;
1810 
1811 	if (atomic_read(&bp->intr_sem) != 0)
1812 		return LL_FLUSH_FAILED;
1813 
1814 	if (!bp->link_info.link_up)
1815 		return LL_FLUSH_FAILED;
1816 
1817 	if (!bnxt_lock_poll(bnapi))
1818 		return LL_FLUSH_BUSY;
1819 
1820 	rx_work = bnxt_poll_work(bp, bnapi, budget);
1821 
1822 	BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1823 
1824 	bnxt_unlock_poll(bnapi);
1825 	return rx_work;
1826 }
1827 #endif
1828 
1829 static void bnxt_free_tx_skbs(struct bnxt *bp)
1830 {
1831 	int i, max_idx;
1832 	struct pci_dev *pdev = bp->pdev;
1833 
1834 	if (!bp->tx_ring)
1835 		return;
1836 
1837 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1838 	for (i = 0; i < bp->tx_nr_rings; i++) {
1839 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1840 		int j;
1841 
1842 		for (j = 0; j < max_idx;) {
1843 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1844 			struct sk_buff *skb = tx_buf->skb;
1845 			int k, last;
1846 
1847 			if (!skb) {
1848 				j++;
1849 				continue;
1850 			}
1851 
1852 			tx_buf->skb = NULL;
1853 
1854 			if (tx_buf->is_push) {
1855 				dev_kfree_skb(skb);
1856 				j += 2;
1857 				continue;
1858 			}
1859 
1860 			dma_unmap_single(&pdev->dev,
1861 					 dma_unmap_addr(tx_buf, mapping),
1862 					 skb_headlen(skb),
1863 					 PCI_DMA_TODEVICE);
1864 
1865 			last = tx_buf->nr_frags;
1866 			j += 2;
1867 			for (k = 0; k < last; k++, j++) {
1868 				int ring_idx = j & bp->tx_ring_mask;
1869 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1870 
1871 				tx_buf = &txr->tx_buf_ring[ring_idx];
1872 				dma_unmap_page(
1873 					&pdev->dev,
1874 					dma_unmap_addr(tx_buf, mapping),
1875 					skb_frag_size(frag), PCI_DMA_TODEVICE);
1876 			}
1877 			dev_kfree_skb(skb);
1878 		}
1879 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1880 	}
1881 }
1882 
1883 static void bnxt_free_rx_skbs(struct bnxt *bp)
1884 {
1885 	int i, max_idx, max_agg_idx;
1886 	struct pci_dev *pdev = bp->pdev;
1887 
1888 	if (!bp->rx_ring)
1889 		return;
1890 
1891 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
1892 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
1893 	for (i = 0; i < bp->rx_nr_rings; i++) {
1894 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1895 		int j;
1896 
1897 		if (rxr->rx_tpa) {
1898 			for (j = 0; j < MAX_TPA; j++) {
1899 				struct bnxt_tpa_info *tpa_info =
1900 							&rxr->rx_tpa[j];
1901 				u8 *data = tpa_info->data;
1902 
1903 				if (!data)
1904 					continue;
1905 
1906 				dma_unmap_single(
1907 					&pdev->dev,
1908 					dma_unmap_addr(tpa_info, mapping),
1909 					bp->rx_buf_use_size,
1910 					PCI_DMA_FROMDEVICE);
1911 
1912 				tpa_info->data = NULL;
1913 
1914 				kfree(data);
1915 			}
1916 		}
1917 
1918 		for (j = 0; j < max_idx; j++) {
1919 			struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
1920 			u8 *data = rx_buf->data;
1921 
1922 			if (!data)
1923 				continue;
1924 
1925 			dma_unmap_single(&pdev->dev,
1926 					 dma_unmap_addr(rx_buf, mapping),
1927 					 bp->rx_buf_use_size,
1928 					 PCI_DMA_FROMDEVICE);
1929 
1930 			rx_buf->data = NULL;
1931 
1932 			kfree(data);
1933 		}
1934 
1935 		for (j = 0; j < max_agg_idx; j++) {
1936 			struct bnxt_sw_rx_agg_bd *rx_agg_buf =
1937 				&rxr->rx_agg_ring[j];
1938 			struct page *page = rx_agg_buf->page;
1939 
1940 			if (!page)
1941 				continue;
1942 
1943 			dma_unmap_page(&pdev->dev,
1944 				       dma_unmap_addr(rx_agg_buf, mapping),
1945 				       BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE);
1946 
1947 			rx_agg_buf->page = NULL;
1948 			__clear_bit(j, rxr->rx_agg_bmap);
1949 
1950 			__free_page(page);
1951 		}
1952 		if (rxr->rx_page) {
1953 			__free_page(rxr->rx_page);
1954 			rxr->rx_page = NULL;
1955 		}
1956 	}
1957 }
1958 
1959 static void bnxt_free_skbs(struct bnxt *bp)
1960 {
1961 	bnxt_free_tx_skbs(bp);
1962 	bnxt_free_rx_skbs(bp);
1963 }
1964 
1965 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1966 {
1967 	struct pci_dev *pdev = bp->pdev;
1968 	int i;
1969 
1970 	for (i = 0; i < ring->nr_pages; i++) {
1971 		if (!ring->pg_arr[i])
1972 			continue;
1973 
1974 		dma_free_coherent(&pdev->dev, ring->page_size,
1975 				  ring->pg_arr[i], ring->dma_arr[i]);
1976 
1977 		ring->pg_arr[i] = NULL;
1978 	}
1979 	if (ring->pg_tbl) {
1980 		dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
1981 				  ring->pg_tbl, ring->pg_tbl_map);
1982 		ring->pg_tbl = NULL;
1983 	}
1984 	if (ring->vmem_size && *ring->vmem) {
1985 		vfree(*ring->vmem);
1986 		*ring->vmem = NULL;
1987 	}
1988 }
1989 
1990 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1991 {
1992 	int i;
1993 	struct pci_dev *pdev = bp->pdev;
1994 
1995 	if (ring->nr_pages > 1) {
1996 		ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
1997 						  ring->nr_pages * 8,
1998 						  &ring->pg_tbl_map,
1999 						  GFP_KERNEL);
2000 		if (!ring->pg_tbl)
2001 			return -ENOMEM;
2002 	}
2003 
2004 	for (i = 0; i < ring->nr_pages; i++) {
2005 		ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2006 						     ring->page_size,
2007 						     &ring->dma_arr[i],
2008 						     GFP_KERNEL);
2009 		if (!ring->pg_arr[i])
2010 			return -ENOMEM;
2011 
2012 		if (ring->nr_pages > 1)
2013 			ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
2014 	}
2015 
2016 	if (ring->vmem_size) {
2017 		*ring->vmem = vzalloc(ring->vmem_size);
2018 		if (!(*ring->vmem))
2019 			return -ENOMEM;
2020 	}
2021 	return 0;
2022 }
2023 
2024 static void bnxt_free_rx_rings(struct bnxt *bp)
2025 {
2026 	int i;
2027 
2028 	if (!bp->rx_ring)
2029 		return;
2030 
2031 	for (i = 0; i < bp->rx_nr_rings; i++) {
2032 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2033 		struct bnxt_ring_struct *ring;
2034 
2035 		kfree(rxr->rx_tpa);
2036 		rxr->rx_tpa = NULL;
2037 
2038 		kfree(rxr->rx_agg_bmap);
2039 		rxr->rx_agg_bmap = NULL;
2040 
2041 		ring = &rxr->rx_ring_struct;
2042 		bnxt_free_ring(bp, ring);
2043 
2044 		ring = &rxr->rx_agg_ring_struct;
2045 		bnxt_free_ring(bp, ring);
2046 	}
2047 }
2048 
2049 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2050 {
2051 	int i, rc, agg_rings = 0, tpa_rings = 0;
2052 
2053 	if (!bp->rx_ring)
2054 		return -ENOMEM;
2055 
2056 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
2057 		agg_rings = 1;
2058 
2059 	if (bp->flags & BNXT_FLAG_TPA)
2060 		tpa_rings = 1;
2061 
2062 	for (i = 0; i < bp->rx_nr_rings; i++) {
2063 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2064 		struct bnxt_ring_struct *ring;
2065 
2066 		ring = &rxr->rx_ring_struct;
2067 
2068 		rc = bnxt_alloc_ring(bp, ring);
2069 		if (rc)
2070 			return rc;
2071 
2072 		if (agg_rings) {
2073 			u16 mem_size;
2074 
2075 			ring = &rxr->rx_agg_ring_struct;
2076 			rc = bnxt_alloc_ring(bp, ring);
2077 			if (rc)
2078 				return rc;
2079 
2080 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2081 			mem_size = rxr->rx_agg_bmap_size / 8;
2082 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2083 			if (!rxr->rx_agg_bmap)
2084 				return -ENOMEM;
2085 
2086 			if (tpa_rings) {
2087 				rxr->rx_tpa = kcalloc(MAX_TPA,
2088 						sizeof(struct bnxt_tpa_info),
2089 						GFP_KERNEL);
2090 				if (!rxr->rx_tpa)
2091 					return -ENOMEM;
2092 			}
2093 		}
2094 	}
2095 	return 0;
2096 }
2097 
2098 static void bnxt_free_tx_rings(struct bnxt *bp)
2099 {
2100 	int i;
2101 	struct pci_dev *pdev = bp->pdev;
2102 
2103 	if (!bp->tx_ring)
2104 		return;
2105 
2106 	for (i = 0; i < bp->tx_nr_rings; i++) {
2107 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2108 		struct bnxt_ring_struct *ring;
2109 
2110 		if (txr->tx_push) {
2111 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
2112 					  txr->tx_push, txr->tx_push_mapping);
2113 			txr->tx_push = NULL;
2114 		}
2115 
2116 		ring = &txr->tx_ring_struct;
2117 
2118 		bnxt_free_ring(bp, ring);
2119 	}
2120 }
2121 
2122 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2123 {
2124 	int i, j, rc;
2125 	struct pci_dev *pdev = bp->pdev;
2126 
2127 	bp->tx_push_size = 0;
2128 	if (bp->tx_push_thresh) {
2129 		int push_size;
2130 
2131 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2132 					bp->tx_push_thresh);
2133 
2134 		if (push_size > 256) {
2135 			push_size = 0;
2136 			bp->tx_push_thresh = 0;
2137 		}
2138 
2139 		bp->tx_push_size = push_size;
2140 	}
2141 
2142 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2143 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2144 		struct bnxt_ring_struct *ring;
2145 
2146 		ring = &txr->tx_ring_struct;
2147 
2148 		rc = bnxt_alloc_ring(bp, ring);
2149 		if (rc)
2150 			return rc;
2151 
2152 		if (bp->tx_push_size) {
2153 			dma_addr_t mapping;
2154 
2155 			/* One pre-allocated DMA buffer to backup
2156 			 * TX push operation
2157 			 */
2158 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
2159 						bp->tx_push_size,
2160 						&txr->tx_push_mapping,
2161 						GFP_KERNEL);
2162 
2163 			if (!txr->tx_push)
2164 				return -ENOMEM;
2165 
2166 			mapping = txr->tx_push_mapping +
2167 				sizeof(struct tx_push_bd);
2168 			txr->data_mapping = cpu_to_le64(mapping);
2169 
2170 			memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
2171 		}
2172 		ring->queue_id = bp->q_info[j].queue_id;
2173 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2174 			j++;
2175 	}
2176 	return 0;
2177 }
2178 
2179 static void bnxt_free_cp_rings(struct bnxt *bp)
2180 {
2181 	int i;
2182 
2183 	if (!bp->bnapi)
2184 		return;
2185 
2186 	for (i = 0; i < bp->cp_nr_rings; i++) {
2187 		struct bnxt_napi *bnapi = bp->bnapi[i];
2188 		struct bnxt_cp_ring_info *cpr;
2189 		struct bnxt_ring_struct *ring;
2190 
2191 		if (!bnapi)
2192 			continue;
2193 
2194 		cpr = &bnapi->cp_ring;
2195 		ring = &cpr->cp_ring_struct;
2196 
2197 		bnxt_free_ring(bp, ring);
2198 	}
2199 }
2200 
2201 static int bnxt_alloc_cp_rings(struct bnxt *bp)
2202 {
2203 	int i, rc;
2204 
2205 	for (i = 0; i < bp->cp_nr_rings; i++) {
2206 		struct bnxt_napi *bnapi = bp->bnapi[i];
2207 		struct bnxt_cp_ring_info *cpr;
2208 		struct bnxt_ring_struct *ring;
2209 
2210 		if (!bnapi)
2211 			continue;
2212 
2213 		cpr = &bnapi->cp_ring;
2214 		ring = &cpr->cp_ring_struct;
2215 
2216 		rc = bnxt_alloc_ring(bp, ring);
2217 		if (rc)
2218 			return rc;
2219 	}
2220 	return 0;
2221 }
2222 
2223 static void bnxt_init_ring_struct(struct bnxt *bp)
2224 {
2225 	int i;
2226 
2227 	for (i = 0; i < bp->cp_nr_rings; i++) {
2228 		struct bnxt_napi *bnapi = bp->bnapi[i];
2229 		struct bnxt_cp_ring_info *cpr;
2230 		struct bnxt_rx_ring_info *rxr;
2231 		struct bnxt_tx_ring_info *txr;
2232 		struct bnxt_ring_struct *ring;
2233 
2234 		if (!bnapi)
2235 			continue;
2236 
2237 		cpr = &bnapi->cp_ring;
2238 		ring = &cpr->cp_ring_struct;
2239 		ring->nr_pages = bp->cp_nr_pages;
2240 		ring->page_size = HW_CMPD_RING_SIZE;
2241 		ring->pg_arr = (void **)cpr->cp_desc_ring;
2242 		ring->dma_arr = cpr->cp_desc_mapping;
2243 		ring->vmem_size = 0;
2244 
2245 		rxr = bnapi->rx_ring;
2246 		if (!rxr)
2247 			goto skip_rx;
2248 
2249 		ring = &rxr->rx_ring_struct;
2250 		ring->nr_pages = bp->rx_nr_pages;
2251 		ring->page_size = HW_RXBD_RING_SIZE;
2252 		ring->pg_arr = (void **)rxr->rx_desc_ring;
2253 		ring->dma_arr = rxr->rx_desc_mapping;
2254 		ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2255 		ring->vmem = (void **)&rxr->rx_buf_ring;
2256 
2257 		ring = &rxr->rx_agg_ring_struct;
2258 		ring->nr_pages = bp->rx_agg_nr_pages;
2259 		ring->page_size = HW_RXBD_RING_SIZE;
2260 		ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
2261 		ring->dma_arr = rxr->rx_agg_desc_mapping;
2262 		ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2263 		ring->vmem = (void **)&rxr->rx_agg_ring;
2264 
2265 skip_rx:
2266 		txr = bnapi->tx_ring;
2267 		if (!txr)
2268 			continue;
2269 
2270 		ring = &txr->tx_ring_struct;
2271 		ring->nr_pages = bp->tx_nr_pages;
2272 		ring->page_size = HW_RXBD_RING_SIZE;
2273 		ring->pg_arr = (void **)txr->tx_desc_ring;
2274 		ring->dma_arr = txr->tx_desc_mapping;
2275 		ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2276 		ring->vmem = (void **)&txr->tx_buf_ring;
2277 	}
2278 }
2279 
2280 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2281 {
2282 	int i;
2283 	u32 prod;
2284 	struct rx_bd **rx_buf_ring;
2285 
2286 	rx_buf_ring = (struct rx_bd **)ring->pg_arr;
2287 	for (i = 0, prod = 0; i < ring->nr_pages; i++) {
2288 		int j;
2289 		struct rx_bd *rxbd;
2290 
2291 		rxbd = rx_buf_ring[i];
2292 		if (!rxbd)
2293 			continue;
2294 
2295 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2296 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2297 			rxbd->rx_bd_opaque = prod;
2298 		}
2299 	}
2300 }
2301 
2302 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2303 {
2304 	struct net_device *dev = bp->dev;
2305 	struct bnxt_rx_ring_info *rxr;
2306 	struct bnxt_ring_struct *ring;
2307 	u32 prod, type;
2308 	int i;
2309 
2310 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2311 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2312 
2313 	if (NET_IP_ALIGN == 2)
2314 		type |= RX_BD_FLAGS_SOP;
2315 
2316 	rxr = &bp->rx_ring[ring_nr];
2317 	ring = &rxr->rx_ring_struct;
2318 	bnxt_init_rxbd_pages(ring, type);
2319 
2320 	prod = rxr->rx_prod;
2321 	for (i = 0; i < bp->rx_ring_size; i++) {
2322 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2323 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2324 				    ring_nr, i, bp->rx_ring_size);
2325 			break;
2326 		}
2327 		prod = NEXT_RX(prod);
2328 	}
2329 	rxr->rx_prod = prod;
2330 	ring->fw_ring_id = INVALID_HW_RING_ID;
2331 
2332 	ring = &rxr->rx_agg_ring_struct;
2333 	ring->fw_ring_id = INVALID_HW_RING_ID;
2334 
2335 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2336 		return 0;
2337 
2338 	type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2339 		RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2340 
2341 	bnxt_init_rxbd_pages(ring, type);
2342 
2343 	prod = rxr->rx_agg_prod;
2344 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
2345 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2346 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2347 				    ring_nr, i, bp->rx_ring_size);
2348 			break;
2349 		}
2350 		prod = NEXT_RX_AGG(prod);
2351 	}
2352 	rxr->rx_agg_prod = prod;
2353 
2354 	if (bp->flags & BNXT_FLAG_TPA) {
2355 		if (rxr->rx_tpa) {
2356 			u8 *data;
2357 			dma_addr_t mapping;
2358 
2359 			for (i = 0; i < MAX_TPA; i++) {
2360 				data = __bnxt_alloc_rx_data(bp, &mapping,
2361 							    GFP_KERNEL);
2362 				if (!data)
2363 					return -ENOMEM;
2364 
2365 				rxr->rx_tpa[i].data = data;
2366 				rxr->rx_tpa[i].mapping = mapping;
2367 			}
2368 		} else {
2369 			netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2370 			return -ENOMEM;
2371 		}
2372 	}
2373 
2374 	return 0;
2375 }
2376 
2377 static int bnxt_init_rx_rings(struct bnxt *bp)
2378 {
2379 	int i, rc = 0;
2380 
2381 	for (i = 0; i < bp->rx_nr_rings; i++) {
2382 		rc = bnxt_init_one_rx_ring(bp, i);
2383 		if (rc)
2384 			break;
2385 	}
2386 
2387 	return rc;
2388 }
2389 
2390 static int bnxt_init_tx_rings(struct bnxt *bp)
2391 {
2392 	u16 i;
2393 
2394 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2395 				   MAX_SKB_FRAGS + 1);
2396 
2397 	for (i = 0; i < bp->tx_nr_rings; i++) {
2398 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2399 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2400 
2401 		ring->fw_ring_id = INVALID_HW_RING_ID;
2402 	}
2403 
2404 	return 0;
2405 }
2406 
2407 static void bnxt_free_ring_grps(struct bnxt *bp)
2408 {
2409 	kfree(bp->grp_info);
2410 	bp->grp_info = NULL;
2411 }
2412 
2413 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2414 {
2415 	int i;
2416 
2417 	if (irq_re_init) {
2418 		bp->grp_info = kcalloc(bp->cp_nr_rings,
2419 				       sizeof(struct bnxt_ring_grp_info),
2420 				       GFP_KERNEL);
2421 		if (!bp->grp_info)
2422 			return -ENOMEM;
2423 	}
2424 	for (i = 0; i < bp->cp_nr_rings; i++) {
2425 		if (irq_re_init)
2426 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2427 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2428 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2429 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2430 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2431 	}
2432 	return 0;
2433 }
2434 
2435 static void bnxt_free_vnics(struct bnxt *bp)
2436 {
2437 	kfree(bp->vnic_info);
2438 	bp->vnic_info = NULL;
2439 	bp->nr_vnics = 0;
2440 }
2441 
2442 static int bnxt_alloc_vnics(struct bnxt *bp)
2443 {
2444 	int num_vnics = 1;
2445 
2446 #ifdef CONFIG_RFS_ACCEL
2447 	if (bp->flags & BNXT_FLAG_RFS)
2448 		num_vnics += bp->rx_nr_rings;
2449 #endif
2450 
2451 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
2452 		num_vnics++;
2453 
2454 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2455 				GFP_KERNEL);
2456 	if (!bp->vnic_info)
2457 		return -ENOMEM;
2458 
2459 	bp->nr_vnics = num_vnics;
2460 	return 0;
2461 }
2462 
2463 static void bnxt_init_vnics(struct bnxt *bp)
2464 {
2465 	int i;
2466 
2467 	for (i = 0; i < bp->nr_vnics; i++) {
2468 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2469 
2470 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
2471 		vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
2472 		vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
2473 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2474 
2475 		if (bp->vnic_info[i].rss_hash_key) {
2476 			if (i == 0)
2477 				prandom_bytes(vnic->rss_hash_key,
2478 					      HW_HASH_KEY_SIZE);
2479 			else
2480 				memcpy(vnic->rss_hash_key,
2481 				       bp->vnic_info[0].rss_hash_key,
2482 				       HW_HASH_KEY_SIZE);
2483 		}
2484 	}
2485 }
2486 
2487 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2488 {
2489 	int pages;
2490 
2491 	pages = ring_size / desc_per_pg;
2492 
2493 	if (!pages)
2494 		return 1;
2495 
2496 	pages++;
2497 
2498 	while (pages & (pages - 1))
2499 		pages++;
2500 
2501 	return pages;
2502 }
2503 
2504 static void bnxt_set_tpa_flags(struct bnxt *bp)
2505 {
2506 	bp->flags &= ~BNXT_FLAG_TPA;
2507 	if (bp->dev->features & NETIF_F_LRO)
2508 		bp->flags |= BNXT_FLAG_LRO;
2509 	if (bp->dev->features & NETIF_F_GRO)
2510 		bp->flags |= BNXT_FLAG_GRO;
2511 }
2512 
2513 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2514  * be set on entry.
2515  */
2516 void bnxt_set_ring_params(struct bnxt *bp)
2517 {
2518 	u32 ring_size, rx_size, rx_space;
2519 	u32 agg_factor = 0, agg_ring_size = 0;
2520 
2521 	/* 8 for CRC and VLAN */
2522 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2523 
2524 	rx_space = rx_size + NET_SKB_PAD +
2525 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2526 
2527 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2528 	ring_size = bp->rx_ring_size;
2529 	bp->rx_agg_ring_size = 0;
2530 	bp->rx_agg_nr_pages = 0;
2531 
2532 	if (bp->flags & BNXT_FLAG_TPA)
2533 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
2534 
2535 	bp->flags &= ~BNXT_FLAG_JUMBO;
2536 	if (rx_space > PAGE_SIZE) {
2537 		u32 jumbo_factor;
2538 
2539 		bp->flags |= BNXT_FLAG_JUMBO;
2540 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2541 		if (jumbo_factor > agg_factor)
2542 			agg_factor = jumbo_factor;
2543 	}
2544 	agg_ring_size = ring_size * agg_factor;
2545 
2546 	if (agg_ring_size) {
2547 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2548 							RX_DESC_CNT);
2549 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2550 			u32 tmp = agg_ring_size;
2551 
2552 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2553 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2554 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2555 				    tmp, agg_ring_size);
2556 		}
2557 		bp->rx_agg_ring_size = agg_ring_size;
2558 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2559 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2560 		rx_space = rx_size + NET_SKB_PAD +
2561 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2562 	}
2563 
2564 	bp->rx_buf_use_size = rx_size;
2565 	bp->rx_buf_size = rx_space;
2566 
2567 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2568 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2569 
2570 	ring_size = bp->tx_ring_size;
2571 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2572 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2573 
2574 	ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2575 	bp->cp_ring_size = ring_size;
2576 
2577 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2578 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
2579 		bp->cp_nr_pages = MAX_CP_PAGES;
2580 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2581 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2582 			    ring_size, bp->cp_ring_size);
2583 	}
2584 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2585 	bp->cp_ring_mask = bp->cp_bit - 1;
2586 }
2587 
2588 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2589 {
2590 	int i;
2591 	struct bnxt_vnic_info *vnic;
2592 	struct pci_dev *pdev = bp->pdev;
2593 
2594 	if (!bp->vnic_info)
2595 		return;
2596 
2597 	for (i = 0; i < bp->nr_vnics; i++) {
2598 		vnic = &bp->vnic_info[i];
2599 
2600 		kfree(vnic->fw_grp_ids);
2601 		vnic->fw_grp_ids = NULL;
2602 
2603 		kfree(vnic->uc_list);
2604 		vnic->uc_list = NULL;
2605 
2606 		if (vnic->mc_list) {
2607 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2608 					  vnic->mc_list, vnic->mc_list_mapping);
2609 			vnic->mc_list = NULL;
2610 		}
2611 
2612 		if (vnic->rss_table) {
2613 			dma_free_coherent(&pdev->dev, PAGE_SIZE,
2614 					  vnic->rss_table,
2615 					  vnic->rss_table_dma_addr);
2616 			vnic->rss_table = NULL;
2617 		}
2618 
2619 		vnic->rss_hash_key = NULL;
2620 		vnic->flags = 0;
2621 	}
2622 }
2623 
2624 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2625 {
2626 	int i, rc = 0, size;
2627 	struct bnxt_vnic_info *vnic;
2628 	struct pci_dev *pdev = bp->pdev;
2629 	int max_rings;
2630 
2631 	for (i = 0; i < bp->nr_vnics; i++) {
2632 		vnic = &bp->vnic_info[i];
2633 
2634 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2635 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2636 
2637 			if (mem_size > 0) {
2638 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2639 				if (!vnic->uc_list) {
2640 					rc = -ENOMEM;
2641 					goto out;
2642 				}
2643 			}
2644 		}
2645 
2646 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2647 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2648 			vnic->mc_list =
2649 				dma_alloc_coherent(&pdev->dev,
2650 						   vnic->mc_list_size,
2651 						   &vnic->mc_list_mapping,
2652 						   GFP_KERNEL);
2653 			if (!vnic->mc_list) {
2654 				rc = -ENOMEM;
2655 				goto out;
2656 			}
2657 		}
2658 
2659 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2660 			max_rings = bp->rx_nr_rings;
2661 		else
2662 			max_rings = 1;
2663 
2664 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2665 		if (!vnic->fw_grp_ids) {
2666 			rc = -ENOMEM;
2667 			goto out;
2668 		}
2669 
2670 		/* Allocate rss table and hash key */
2671 		vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2672 						     &vnic->rss_table_dma_addr,
2673 						     GFP_KERNEL);
2674 		if (!vnic->rss_table) {
2675 			rc = -ENOMEM;
2676 			goto out;
2677 		}
2678 
2679 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2680 
2681 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2682 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2683 	}
2684 	return 0;
2685 
2686 out:
2687 	return rc;
2688 }
2689 
2690 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2691 {
2692 	struct pci_dev *pdev = bp->pdev;
2693 
2694 	dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2695 			  bp->hwrm_cmd_resp_dma_addr);
2696 
2697 	bp->hwrm_cmd_resp_addr = NULL;
2698 	if (bp->hwrm_dbg_resp_addr) {
2699 		dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2700 				  bp->hwrm_dbg_resp_addr,
2701 				  bp->hwrm_dbg_resp_dma_addr);
2702 
2703 		bp->hwrm_dbg_resp_addr = NULL;
2704 	}
2705 }
2706 
2707 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2708 {
2709 	struct pci_dev *pdev = bp->pdev;
2710 
2711 	bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2712 						   &bp->hwrm_cmd_resp_dma_addr,
2713 						   GFP_KERNEL);
2714 	if (!bp->hwrm_cmd_resp_addr)
2715 		return -ENOMEM;
2716 	bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2717 						    HWRM_DBG_REG_BUF_SIZE,
2718 						    &bp->hwrm_dbg_resp_dma_addr,
2719 						    GFP_KERNEL);
2720 	if (!bp->hwrm_dbg_resp_addr)
2721 		netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2722 
2723 	return 0;
2724 }
2725 
2726 static void bnxt_free_stats(struct bnxt *bp)
2727 {
2728 	u32 size, i;
2729 	struct pci_dev *pdev = bp->pdev;
2730 
2731 	if (bp->hw_rx_port_stats) {
2732 		dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
2733 				  bp->hw_rx_port_stats,
2734 				  bp->hw_rx_port_stats_map);
2735 		bp->hw_rx_port_stats = NULL;
2736 		bp->flags &= ~BNXT_FLAG_PORT_STATS;
2737 	}
2738 
2739 	if (!bp->bnapi)
2740 		return;
2741 
2742 	size = sizeof(struct ctx_hw_stats);
2743 
2744 	for (i = 0; i < bp->cp_nr_rings; i++) {
2745 		struct bnxt_napi *bnapi = bp->bnapi[i];
2746 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2747 
2748 		if (cpr->hw_stats) {
2749 			dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2750 					  cpr->hw_stats_map);
2751 			cpr->hw_stats = NULL;
2752 		}
2753 	}
2754 }
2755 
2756 static int bnxt_alloc_stats(struct bnxt *bp)
2757 {
2758 	u32 size, i;
2759 	struct pci_dev *pdev = bp->pdev;
2760 
2761 	size = sizeof(struct ctx_hw_stats);
2762 
2763 	for (i = 0; i < bp->cp_nr_rings; i++) {
2764 		struct bnxt_napi *bnapi = bp->bnapi[i];
2765 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2766 
2767 		cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2768 						   &cpr->hw_stats_map,
2769 						   GFP_KERNEL);
2770 		if (!cpr->hw_stats)
2771 			return -ENOMEM;
2772 
2773 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2774 	}
2775 
2776 	if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) {
2777 		bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
2778 					 sizeof(struct tx_port_stats) + 1024;
2779 
2780 		bp->hw_rx_port_stats =
2781 			dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
2782 					   &bp->hw_rx_port_stats_map,
2783 					   GFP_KERNEL);
2784 		if (!bp->hw_rx_port_stats)
2785 			return -ENOMEM;
2786 
2787 		bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
2788 				       512;
2789 		bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
2790 					   sizeof(struct rx_port_stats) + 512;
2791 		bp->flags |= BNXT_FLAG_PORT_STATS;
2792 	}
2793 	return 0;
2794 }
2795 
2796 static void bnxt_clear_ring_indices(struct bnxt *bp)
2797 {
2798 	int i;
2799 
2800 	if (!bp->bnapi)
2801 		return;
2802 
2803 	for (i = 0; i < bp->cp_nr_rings; i++) {
2804 		struct bnxt_napi *bnapi = bp->bnapi[i];
2805 		struct bnxt_cp_ring_info *cpr;
2806 		struct bnxt_rx_ring_info *rxr;
2807 		struct bnxt_tx_ring_info *txr;
2808 
2809 		if (!bnapi)
2810 			continue;
2811 
2812 		cpr = &bnapi->cp_ring;
2813 		cpr->cp_raw_cons = 0;
2814 
2815 		txr = bnapi->tx_ring;
2816 		if (txr) {
2817 			txr->tx_prod = 0;
2818 			txr->tx_cons = 0;
2819 		}
2820 
2821 		rxr = bnapi->rx_ring;
2822 		if (rxr) {
2823 			rxr->rx_prod = 0;
2824 			rxr->rx_agg_prod = 0;
2825 			rxr->rx_sw_agg_prod = 0;
2826 			rxr->rx_next_cons = 0;
2827 		}
2828 	}
2829 }
2830 
2831 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
2832 {
2833 #ifdef CONFIG_RFS_ACCEL
2834 	int i;
2835 
2836 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
2837 	 * safe to delete the hash table.
2838 	 */
2839 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
2840 		struct hlist_head *head;
2841 		struct hlist_node *tmp;
2842 		struct bnxt_ntuple_filter *fltr;
2843 
2844 		head = &bp->ntp_fltr_hash_tbl[i];
2845 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
2846 			hlist_del(&fltr->hash);
2847 			kfree(fltr);
2848 		}
2849 	}
2850 	if (irq_reinit) {
2851 		kfree(bp->ntp_fltr_bmap);
2852 		bp->ntp_fltr_bmap = NULL;
2853 	}
2854 	bp->ntp_fltr_count = 0;
2855 #endif
2856 }
2857 
2858 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
2859 {
2860 #ifdef CONFIG_RFS_ACCEL
2861 	int i, rc = 0;
2862 
2863 	if (!(bp->flags & BNXT_FLAG_RFS))
2864 		return 0;
2865 
2866 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
2867 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
2868 
2869 	bp->ntp_fltr_count = 0;
2870 	bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
2871 				    GFP_KERNEL);
2872 
2873 	if (!bp->ntp_fltr_bmap)
2874 		rc = -ENOMEM;
2875 
2876 	return rc;
2877 #else
2878 	return 0;
2879 #endif
2880 }
2881 
2882 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
2883 {
2884 	bnxt_free_vnic_attributes(bp);
2885 	bnxt_free_tx_rings(bp);
2886 	bnxt_free_rx_rings(bp);
2887 	bnxt_free_cp_rings(bp);
2888 	bnxt_free_ntp_fltrs(bp, irq_re_init);
2889 	if (irq_re_init) {
2890 		bnxt_free_stats(bp);
2891 		bnxt_free_ring_grps(bp);
2892 		bnxt_free_vnics(bp);
2893 		kfree(bp->tx_ring);
2894 		bp->tx_ring = NULL;
2895 		kfree(bp->rx_ring);
2896 		bp->rx_ring = NULL;
2897 		kfree(bp->bnapi);
2898 		bp->bnapi = NULL;
2899 	} else {
2900 		bnxt_clear_ring_indices(bp);
2901 	}
2902 }
2903 
2904 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
2905 {
2906 	int i, j, rc, size, arr_size;
2907 	void *bnapi;
2908 
2909 	if (irq_re_init) {
2910 		/* Allocate bnapi mem pointer array and mem block for
2911 		 * all queues
2912 		 */
2913 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
2914 				bp->cp_nr_rings);
2915 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
2916 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
2917 		if (!bnapi)
2918 			return -ENOMEM;
2919 
2920 		bp->bnapi = bnapi;
2921 		bnapi += arr_size;
2922 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
2923 			bp->bnapi[i] = bnapi;
2924 			bp->bnapi[i]->index = i;
2925 			bp->bnapi[i]->bp = bp;
2926 		}
2927 
2928 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
2929 				      sizeof(struct bnxt_rx_ring_info),
2930 				      GFP_KERNEL);
2931 		if (!bp->rx_ring)
2932 			return -ENOMEM;
2933 
2934 		for (i = 0; i < bp->rx_nr_rings; i++) {
2935 			bp->rx_ring[i].bnapi = bp->bnapi[i];
2936 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
2937 		}
2938 
2939 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
2940 				      sizeof(struct bnxt_tx_ring_info),
2941 				      GFP_KERNEL);
2942 		if (!bp->tx_ring)
2943 			return -ENOMEM;
2944 
2945 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
2946 			j = 0;
2947 		else
2948 			j = bp->rx_nr_rings;
2949 
2950 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
2951 			bp->tx_ring[i].bnapi = bp->bnapi[j];
2952 			bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
2953 		}
2954 
2955 		rc = bnxt_alloc_stats(bp);
2956 		if (rc)
2957 			goto alloc_mem_err;
2958 
2959 		rc = bnxt_alloc_ntp_fltrs(bp);
2960 		if (rc)
2961 			goto alloc_mem_err;
2962 
2963 		rc = bnxt_alloc_vnics(bp);
2964 		if (rc)
2965 			goto alloc_mem_err;
2966 	}
2967 
2968 	bnxt_init_ring_struct(bp);
2969 
2970 	rc = bnxt_alloc_rx_rings(bp);
2971 	if (rc)
2972 		goto alloc_mem_err;
2973 
2974 	rc = bnxt_alloc_tx_rings(bp);
2975 	if (rc)
2976 		goto alloc_mem_err;
2977 
2978 	rc = bnxt_alloc_cp_rings(bp);
2979 	if (rc)
2980 		goto alloc_mem_err;
2981 
2982 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
2983 				  BNXT_VNIC_UCAST_FLAG;
2984 	rc = bnxt_alloc_vnic_attributes(bp);
2985 	if (rc)
2986 		goto alloc_mem_err;
2987 	return 0;
2988 
2989 alloc_mem_err:
2990 	bnxt_free_mem(bp, true);
2991 	return rc;
2992 }
2993 
2994 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
2995 			    u16 cmpl_ring, u16 target_id)
2996 {
2997 	struct input *req = request;
2998 
2999 	req->req_type = cpu_to_le16(req_type);
3000 	req->cmpl_ring = cpu_to_le16(cmpl_ring);
3001 	req->target_id = cpu_to_le16(target_id);
3002 	req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
3003 }
3004 
3005 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
3006 				 int timeout, bool silent)
3007 {
3008 	int i, intr_process, rc, tmo_count;
3009 	struct input *req = msg;
3010 	u32 *data = msg;
3011 	__le32 *resp_len, *valid;
3012 	u16 cp_ring_id, len = 0;
3013 	struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
3014 
3015 	req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
3016 	memset(resp, 0, PAGE_SIZE);
3017 	cp_ring_id = le16_to_cpu(req->cmpl_ring);
3018 	intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
3019 
3020 	/* Write request msg to hwrm channel */
3021 	__iowrite32_copy(bp->bar0, data, msg_len / 4);
3022 
3023 	for (i = msg_len; i < BNXT_HWRM_MAX_REQ_LEN; i += 4)
3024 		writel(0, bp->bar0 + i);
3025 
3026 	/* currently supports only one outstanding message */
3027 	if (intr_process)
3028 		bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
3029 
3030 	/* Ring channel doorbell */
3031 	writel(1, bp->bar0 + 0x100);
3032 
3033 	if (!timeout)
3034 		timeout = DFLT_HWRM_CMD_TIMEOUT;
3035 
3036 	i = 0;
3037 	tmo_count = timeout * 40;
3038 	if (intr_process) {
3039 		/* Wait until hwrm response cmpl interrupt is processed */
3040 		while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
3041 		       i++ < tmo_count) {
3042 			usleep_range(25, 40);
3043 		}
3044 
3045 		if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
3046 			netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
3047 				   le16_to_cpu(req->req_type));
3048 			return -1;
3049 		}
3050 	} else {
3051 		/* Check if response len is updated */
3052 		resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
3053 		for (i = 0; i < tmo_count; i++) {
3054 			len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3055 			      HWRM_RESP_LEN_SFT;
3056 			if (len)
3057 				break;
3058 			usleep_range(25, 40);
3059 		}
3060 
3061 		if (i >= tmo_count) {
3062 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
3063 				   timeout, le16_to_cpu(req->req_type),
3064 				   le16_to_cpu(req->seq_id), len);
3065 			return -1;
3066 		}
3067 
3068 		/* Last word of resp contains valid bit */
3069 		valid = bp->hwrm_cmd_resp_addr + len - 4;
3070 		for (i = 0; i < 5; i++) {
3071 			if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
3072 				break;
3073 			udelay(1);
3074 		}
3075 
3076 		if (i >= 5) {
3077 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
3078 				   timeout, le16_to_cpu(req->req_type),
3079 				   le16_to_cpu(req->seq_id), len, *valid);
3080 			return -1;
3081 		}
3082 	}
3083 
3084 	rc = le16_to_cpu(resp->error_code);
3085 	if (rc && !silent)
3086 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
3087 			   le16_to_cpu(resp->req_type),
3088 			   le16_to_cpu(resp->seq_id), rc);
3089 	return rc;
3090 }
3091 
3092 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3093 {
3094 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
3095 }
3096 
3097 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3098 {
3099 	int rc;
3100 
3101 	mutex_lock(&bp->hwrm_cmd_lock);
3102 	rc = _hwrm_send_message(bp, msg, msg_len, timeout);
3103 	mutex_unlock(&bp->hwrm_cmd_lock);
3104 	return rc;
3105 }
3106 
3107 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3108 			     int timeout)
3109 {
3110 	int rc;
3111 
3112 	mutex_lock(&bp->hwrm_cmd_lock);
3113 	rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3114 	mutex_unlock(&bp->hwrm_cmd_lock);
3115 	return rc;
3116 }
3117 
3118 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
3119 {
3120 	struct hwrm_func_drv_rgtr_input req = {0};
3121 	int i;
3122 	DECLARE_BITMAP(async_events_bmap, 256);
3123 	u32 *events = (u32 *)async_events_bmap;
3124 
3125 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3126 
3127 	req.enables =
3128 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
3129 			    FUNC_DRV_RGTR_REQ_ENABLES_VER |
3130 			    FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
3131 
3132 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
3133 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
3134 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
3135 
3136 	for (i = 0; i < 8; i++)
3137 		req.async_event_fwd[i] |= cpu_to_le32(events[i]);
3138 
3139 	req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
3140 	req.ver_maj = DRV_VER_MAJ;
3141 	req.ver_min = DRV_VER_MIN;
3142 	req.ver_upd = DRV_VER_UPD;
3143 
3144 	if (BNXT_PF(bp)) {
3145 		DECLARE_BITMAP(vf_req_snif_bmap, 256);
3146 		u32 *data = (u32 *)vf_req_snif_bmap;
3147 
3148 		memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
3149 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
3150 			__set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
3151 
3152 		for (i = 0; i < 8; i++)
3153 			req.vf_req_fwd[i] = cpu_to_le32(data[i]);
3154 
3155 		req.enables |=
3156 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
3157 	}
3158 
3159 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3160 }
3161 
3162 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
3163 {
3164 	struct hwrm_func_drv_unrgtr_input req = {0};
3165 
3166 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
3167 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3168 }
3169 
3170 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
3171 {
3172 	u32 rc = 0;
3173 	struct hwrm_tunnel_dst_port_free_input req = {0};
3174 
3175 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
3176 	req.tunnel_type = tunnel_type;
3177 
3178 	switch (tunnel_type) {
3179 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
3180 		req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
3181 		break;
3182 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
3183 		req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
3184 		break;
3185 	default:
3186 		break;
3187 	}
3188 
3189 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3190 	if (rc)
3191 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
3192 			   rc);
3193 	return rc;
3194 }
3195 
3196 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
3197 					   u8 tunnel_type)
3198 {
3199 	u32 rc = 0;
3200 	struct hwrm_tunnel_dst_port_alloc_input req = {0};
3201 	struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3202 
3203 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
3204 
3205 	req.tunnel_type = tunnel_type;
3206 	req.tunnel_dst_port_val = port;
3207 
3208 	mutex_lock(&bp->hwrm_cmd_lock);
3209 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3210 	if (rc) {
3211 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
3212 			   rc);
3213 		goto err_out;
3214 	}
3215 
3216 	switch (tunnel_type) {
3217 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
3218 		bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
3219 		break;
3220 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
3221 		bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
3222 		break;
3223 	default:
3224 		break;
3225 	}
3226 
3227 err_out:
3228 	mutex_unlock(&bp->hwrm_cmd_lock);
3229 	return rc;
3230 }
3231 
3232 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
3233 {
3234 	struct hwrm_cfa_l2_set_rx_mask_input req = {0};
3235 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3236 
3237 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
3238 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3239 
3240 	req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
3241 	req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
3242 	req.mask = cpu_to_le32(vnic->rx_mask);
3243 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3244 }
3245 
3246 #ifdef CONFIG_RFS_ACCEL
3247 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
3248 					    struct bnxt_ntuple_filter *fltr)
3249 {
3250 	struct hwrm_cfa_ntuple_filter_free_input req = {0};
3251 
3252 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
3253 	req.ntuple_filter_id = fltr->filter_id;
3254 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3255 }
3256 
3257 #define BNXT_NTP_FLTR_FLAGS					\
3258 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
3259 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
3260 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
3261 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
3262 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
3263 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
3264 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
3265 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
3266 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
3267 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
3268 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
3269 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
3270 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
3271 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
3272 
3273 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
3274 					     struct bnxt_ntuple_filter *fltr)
3275 {
3276 	int rc = 0;
3277 	struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
3278 	struct hwrm_cfa_ntuple_filter_alloc_output *resp =
3279 		bp->hwrm_cmd_resp_addr;
3280 	struct flow_keys *keys = &fltr->fkeys;
3281 	struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
3282 
3283 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
3284 	req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
3285 
3286 	req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
3287 
3288 	req.ethertype = htons(ETH_P_IP);
3289 	memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
3290 	req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
3291 	req.ip_protocol = keys->basic.ip_proto;
3292 
3293 	req.src_ipaddr[0] = keys->addrs.v4addrs.src;
3294 	req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3295 	req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
3296 	req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3297 
3298 	req.src_port = keys->ports.src;
3299 	req.src_port_mask = cpu_to_be16(0xffff);
3300 	req.dst_port = keys->ports.dst;
3301 	req.dst_port_mask = cpu_to_be16(0xffff);
3302 
3303 	req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
3304 	mutex_lock(&bp->hwrm_cmd_lock);
3305 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3306 	if (!rc)
3307 		fltr->filter_id = resp->ntuple_filter_id;
3308 	mutex_unlock(&bp->hwrm_cmd_lock);
3309 	return rc;
3310 }
3311 #endif
3312 
3313 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
3314 				     u8 *mac_addr)
3315 {
3316 	u32 rc = 0;
3317 	struct hwrm_cfa_l2_filter_alloc_input req = {0};
3318 	struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3319 
3320 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
3321 	req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
3322 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
3323 		req.flags |=
3324 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
3325 	req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
3326 	req.enables =
3327 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
3328 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
3329 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
3330 	memcpy(req.l2_addr, mac_addr, ETH_ALEN);
3331 	req.l2_addr_mask[0] = 0xff;
3332 	req.l2_addr_mask[1] = 0xff;
3333 	req.l2_addr_mask[2] = 0xff;
3334 	req.l2_addr_mask[3] = 0xff;
3335 	req.l2_addr_mask[4] = 0xff;
3336 	req.l2_addr_mask[5] = 0xff;
3337 
3338 	mutex_lock(&bp->hwrm_cmd_lock);
3339 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3340 	if (!rc)
3341 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
3342 							resp->l2_filter_id;
3343 	mutex_unlock(&bp->hwrm_cmd_lock);
3344 	return rc;
3345 }
3346 
3347 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
3348 {
3349 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
3350 	int rc = 0;
3351 
3352 	/* Any associated ntuple filters will also be cleared by firmware. */
3353 	mutex_lock(&bp->hwrm_cmd_lock);
3354 	for (i = 0; i < num_of_vnics; i++) {
3355 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3356 
3357 		for (j = 0; j < vnic->uc_filter_count; j++) {
3358 			struct hwrm_cfa_l2_filter_free_input req = {0};
3359 
3360 			bnxt_hwrm_cmd_hdr_init(bp, &req,
3361 					       HWRM_CFA_L2_FILTER_FREE, -1, -1);
3362 
3363 			req.l2_filter_id = vnic->fw_l2_filter_id[j];
3364 
3365 			rc = _hwrm_send_message(bp, &req, sizeof(req),
3366 						HWRM_CMD_TIMEOUT);
3367 		}
3368 		vnic->uc_filter_count = 0;
3369 	}
3370 	mutex_unlock(&bp->hwrm_cmd_lock);
3371 
3372 	return rc;
3373 }
3374 
3375 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
3376 {
3377 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3378 	struct hwrm_vnic_tpa_cfg_input req = {0};
3379 
3380 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3381 
3382 	if (tpa_flags) {
3383 		u16 mss = bp->dev->mtu - 40;
3384 		u32 nsegs, n, segs = 0, flags;
3385 
3386 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3387 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3388 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3389 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3390 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3391 		if (tpa_flags & BNXT_FLAG_GRO)
3392 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3393 
3394 		req.flags = cpu_to_le32(flags);
3395 
3396 		req.enables =
3397 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3398 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3399 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3400 
3401 		/* Number of segs are log2 units, and first packet is not
3402 		 * included as part of this units.
3403 		 */
3404 		if (mss <= BNXT_RX_PAGE_SIZE) {
3405 			n = BNXT_RX_PAGE_SIZE / mss;
3406 			nsegs = (MAX_SKB_FRAGS - 1) * n;
3407 		} else {
3408 			n = mss / BNXT_RX_PAGE_SIZE;
3409 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
3410 				n++;
3411 			nsegs = (MAX_SKB_FRAGS - n) / n;
3412 		}
3413 
3414 		segs = ilog2(nsegs);
3415 		req.max_agg_segs = cpu_to_le16(segs);
3416 		req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3417 
3418 		req.min_agg_len = cpu_to_le32(512);
3419 	}
3420 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3421 
3422 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3423 }
3424 
3425 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3426 {
3427 	u32 i, j, max_rings;
3428 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3429 	struct hwrm_vnic_rss_cfg_input req = {0};
3430 
3431 	if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
3432 		return 0;
3433 
3434 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3435 	if (set_rss) {
3436 		vnic->hash_type = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
3437 				  VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
3438 				  VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
3439 				  VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
3440 
3441 		req.hash_type = cpu_to_le32(vnic->hash_type);
3442 
3443 		if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
3444 			if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3445 				max_rings = bp->rx_nr_rings - 1;
3446 			else
3447 				max_rings = bp->rx_nr_rings;
3448 		} else {
3449 			max_rings = 1;
3450 		}
3451 
3452 		/* Fill the RSS indirection table with ring group ids */
3453 		for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3454 			if (j == max_rings)
3455 				j = 0;
3456 			vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3457 		}
3458 
3459 		req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3460 		req.hash_key_tbl_addr =
3461 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
3462 	}
3463 	req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3464 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3465 }
3466 
3467 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3468 {
3469 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3470 	struct hwrm_vnic_plcmodes_cfg_input req = {0};
3471 
3472 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3473 	req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3474 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3475 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3476 	req.enables =
3477 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3478 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3479 	/* thresholds not implemented in firmware yet */
3480 	req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3481 	req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3482 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3483 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3484 }
3485 
3486 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
3487 					u16 ctx_idx)
3488 {
3489 	struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3490 
3491 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3492 	req.rss_cos_lb_ctx_id =
3493 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
3494 
3495 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3496 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
3497 }
3498 
3499 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3500 {
3501 	int i, j;
3502 
3503 	for (i = 0; i < bp->nr_vnics; i++) {
3504 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3505 
3506 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
3507 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
3508 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
3509 		}
3510 	}
3511 	bp->rsscos_nr_ctxs = 0;
3512 }
3513 
3514 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
3515 {
3516 	int rc;
3517 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3518 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3519 						bp->hwrm_cmd_resp_addr;
3520 
3521 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3522 			       -1);
3523 
3524 	mutex_lock(&bp->hwrm_cmd_lock);
3525 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3526 	if (!rc)
3527 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
3528 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
3529 	mutex_unlock(&bp->hwrm_cmd_lock);
3530 
3531 	return rc;
3532 }
3533 
3534 static int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3535 {
3536 	unsigned int ring = 0, grp_idx;
3537 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3538 	struct hwrm_vnic_cfg_input req = {0};
3539 	u16 def_vlan = 0;
3540 
3541 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3542 
3543 	req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
3544 	/* Only RSS support for now TBD: COS & LB */
3545 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
3546 		req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3547 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
3548 					   VNIC_CFG_REQ_ENABLES_MRU);
3549 	} else {
3550 		req.rss_rule = cpu_to_le16(0xffff);
3551 	}
3552 
3553 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
3554 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
3555 		req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
3556 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
3557 	} else {
3558 		req.cos_rule = cpu_to_le16(0xffff);
3559 	}
3560 
3561 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3562 		ring = 0;
3563 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3564 		ring = vnic_id - 1;
3565 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
3566 		ring = bp->rx_nr_rings - 1;
3567 
3568 	grp_idx = bp->rx_ring[ring].bnapi->index;
3569 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3570 	req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3571 
3572 	req.lb_rule = cpu_to_le16(0xffff);
3573 	req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3574 			      VLAN_HLEN);
3575 
3576 #ifdef CONFIG_BNXT_SRIOV
3577 	if (BNXT_VF(bp))
3578 		def_vlan = bp->vf.vlan;
3579 #endif
3580 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
3581 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3582 
3583 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3584 }
3585 
3586 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3587 {
3588 	u32 rc = 0;
3589 
3590 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3591 		struct hwrm_vnic_free_input req = {0};
3592 
3593 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3594 		req.vnic_id =
3595 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3596 
3597 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3598 		if (rc)
3599 			return rc;
3600 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3601 	}
3602 	return rc;
3603 }
3604 
3605 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3606 {
3607 	u16 i;
3608 
3609 	for (i = 0; i < bp->nr_vnics; i++)
3610 		bnxt_hwrm_vnic_free_one(bp, i);
3611 }
3612 
3613 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
3614 				unsigned int start_rx_ring_idx,
3615 				unsigned int nr_rings)
3616 {
3617 	int rc = 0;
3618 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
3619 	struct hwrm_vnic_alloc_input req = {0};
3620 	struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3621 
3622 	/* map ring groups to this vnic */
3623 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
3624 		grp_idx = bp->rx_ring[i].bnapi->index;
3625 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
3626 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3627 				   j, nr_rings);
3628 			break;
3629 		}
3630 		bp->vnic_info[vnic_id].fw_grp_ids[j] =
3631 					bp->grp_info[grp_idx].fw_grp_id;
3632 	}
3633 
3634 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
3635 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
3636 	if (vnic_id == 0)
3637 		req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3638 
3639 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3640 
3641 	mutex_lock(&bp->hwrm_cmd_lock);
3642 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3643 	if (!rc)
3644 		bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3645 	mutex_unlock(&bp->hwrm_cmd_lock);
3646 	return rc;
3647 }
3648 
3649 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3650 {
3651 	u16 i;
3652 	u32 rc = 0;
3653 
3654 	mutex_lock(&bp->hwrm_cmd_lock);
3655 	for (i = 0; i < bp->rx_nr_rings; i++) {
3656 		struct hwrm_ring_grp_alloc_input req = {0};
3657 		struct hwrm_ring_grp_alloc_output *resp =
3658 					bp->hwrm_cmd_resp_addr;
3659 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
3660 
3661 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3662 
3663 		req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
3664 		req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
3665 		req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
3666 		req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
3667 
3668 		rc = _hwrm_send_message(bp, &req, sizeof(req),
3669 					HWRM_CMD_TIMEOUT);
3670 		if (rc)
3671 			break;
3672 
3673 		bp->grp_info[grp_idx].fw_grp_id =
3674 			le32_to_cpu(resp->ring_group_id);
3675 	}
3676 	mutex_unlock(&bp->hwrm_cmd_lock);
3677 	return rc;
3678 }
3679 
3680 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3681 {
3682 	u16 i;
3683 	u32 rc = 0;
3684 	struct hwrm_ring_grp_free_input req = {0};
3685 
3686 	if (!bp->grp_info)
3687 		return 0;
3688 
3689 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3690 
3691 	mutex_lock(&bp->hwrm_cmd_lock);
3692 	for (i = 0; i < bp->cp_nr_rings; i++) {
3693 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3694 			continue;
3695 		req.ring_group_id =
3696 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
3697 
3698 		rc = _hwrm_send_message(bp, &req, sizeof(req),
3699 					HWRM_CMD_TIMEOUT);
3700 		if (rc)
3701 			break;
3702 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3703 	}
3704 	mutex_unlock(&bp->hwrm_cmd_lock);
3705 	return rc;
3706 }
3707 
3708 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
3709 				    struct bnxt_ring_struct *ring,
3710 				    u32 ring_type, u32 map_index,
3711 				    u32 stats_ctx_id)
3712 {
3713 	int rc = 0, err = 0;
3714 	struct hwrm_ring_alloc_input req = {0};
3715 	struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3716 	u16 ring_id;
3717 
3718 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
3719 
3720 	req.enables = 0;
3721 	if (ring->nr_pages > 1) {
3722 		req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
3723 		/* Page size is in log2 units */
3724 		req.page_size = BNXT_PAGE_SHIFT;
3725 		req.page_tbl_depth = 1;
3726 	} else {
3727 		req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
3728 	}
3729 	req.fbo = 0;
3730 	/* Association of ring index with doorbell index and MSIX number */
3731 	req.logical_id = cpu_to_le16(map_index);
3732 
3733 	switch (ring_type) {
3734 	case HWRM_RING_ALLOC_TX:
3735 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
3736 		/* Association of transmit ring with completion ring */
3737 		req.cmpl_ring_id =
3738 			cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
3739 		req.length = cpu_to_le32(bp->tx_ring_mask + 1);
3740 		req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
3741 		req.queue_id = cpu_to_le16(ring->queue_id);
3742 		break;
3743 	case HWRM_RING_ALLOC_RX:
3744 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3745 		req.length = cpu_to_le32(bp->rx_ring_mask + 1);
3746 		break;
3747 	case HWRM_RING_ALLOC_AGG:
3748 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3749 		req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
3750 		break;
3751 	case HWRM_RING_ALLOC_CMPL:
3752 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_CMPL;
3753 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
3754 		if (bp->flags & BNXT_FLAG_USING_MSIX)
3755 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
3756 		break;
3757 	default:
3758 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
3759 			   ring_type);
3760 		return -1;
3761 	}
3762 
3763 	mutex_lock(&bp->hwrm_cmd_lock);
3764 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3765 	err = le16_to_cpu(resp->error_code);
3766 	ring_id = le16_to_cpu(resp->ring_id);
3767 	mutex_unlock(&bp->hwrm_cmd_lock);
3768 
3769 	if (rc || err) {
3770 		switch (ring_type) {
3771 		case RING_FREE_REQ_RING_TYPE_CMPL:
3772 			netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
3773 				   rc, err);
3774 			return -1;
3775 
3776 		case RING_FREE_REQ_RING_TYPE_RX:
3777 			netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
3778 				   rc, err);
3779 			return -1;
3780 
3781 		case RING_FREE_REQ_RING_TYPE_TX:
3782 			netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
3783 				   rc, err);
3784 			return -1;
3785 
3786 		default:
3787 			netdev_err(bp->dev, "Invalid ring\n");
3788 			return -1;
3789 		}
3790 	}
3791 	ring->fw_ring_id = ring_id;
3792 	return rc;
3793 }
3794 
3795 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
3796 {
3797 	int i, rc = 0;
3798 
3799 	for (i = 0; i < bp->cp_nr_rings; i++) {
3800 		struct bnxt_napi *bnapi = bp->bnapi[i];
3801 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3802 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3803 
3804 		cpr->cp_doorbell = bp->bar1 + i * 0x80;
3805 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
3806 					      INVALID_STATS_CTX_ID);
3807 		if (rc)
3808 			goto err_out;
3809 		BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3810 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
3811 	}
3812 
3813 	for (i = 0; i < bp->tx_nr_rings; i++) {
3814 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3815 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3816 		u32 map_idx = txr->bnapi->index;
3817 		u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
3818 
3819 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
3820 					      map_idx, fw_stats_ctx);
3821 		if (rc)
3822 			goto err_out;
3823 		txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
3824 	}
3825 
3826 	for (i = 0; i < bp->rx_nr_rings; i++) {
3827 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3828 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3829 		u32 map_idx = rxr->bnapi->index;
3830 
3831 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
3832 					      map_idx, INVALID_STATS_CTX_ID);
3833 		if (rc)
3834 			goto err_out;
3835 		rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
3836 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
3837 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
3838 	}
3839 
3840 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3841 		for (i = 0; i < bp->rx_nr_rings; i++) {
3842 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3843 			struct bnxt_ring_struct *ring =
3844 						&rxr->rx_agg_ring_struct;
3845 			u32 grp_idx = rxr->bnapi->index;
3846 			u32 map_idx = grp_idx + bp->rx_nr_rings;
3847 
3848 			rc = hwrm_ring_alloc_send_msg(bp, ring,
3849 						      HWRM_RING_ALLOC_AGG,
3850 						      map_idx,
3851 						      INVALID_STATS_CTX_ID);
3852 			if (rc)
3853 				goto err_out;
3854 
3855 			rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
3856 			writel(DB_KEY_RX | rxr->rx_agg_prod,
3857 			       rxr->rx_agg_doorbell);
3858 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
3859 		}
3860 	}
3861 err_out:
3862 	return rc;
3863 }
3864 
3865 static int hwrm_ring_free_send_msg(struct bnxt *bp,
3866 				   struct bnxt_ring_struct *ring,
3867 				   u32 ring_type, int cmpl_ring_id)
3868 {
3869 	int rc;
3870 	struct hwrm_ring_free_input req = {0};
3871 	struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
3872 	u16 error_code;
3873 
3874 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
3875 	req.ring_type = ring_type;
3876 	req.ring_id = cpu_to_le16(ring->fw_ring_id);
3877 
3878 	mutex_lock(&bp->hwrm_cmd_lock);
3879 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3880 	error_code = le16_to_cpu(resp->error_code);
3881 	mutex_unlock(&bp->hwrm_cmd_lock);
3882 
3883 	if (rc || error_code) {
3884 		switch (ring_type) {
3885 		case RING_FREE_REQ_RING_TYPE_CMPL:
3886 			netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
3887 				   rc);
3888 			return rc;
3889 		case RING_FREE_REQ_RING_TYPE_RX:
3890 			netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
3891 				   rc);
3892 			return rc;
3893 		case RING_FREE_REQ_RING_TYPE_TX:
3894 			netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
3895 				   rc);
3896 			return rc;
3897 		default:
3898 			netdev_err(bp->dev, "Invalid ring\n");
3899 			return -1;
3900 		}
3901 	}
3902 	return 0;
3903 }
3904 
3905 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
3906 {
3907 	int i;
3908 
3909 	if (!bp->bnapi)
3910 		return;
3911 
3912 	for (i = 0; i < bp->tx_nr_rings; i++) {
3913 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3914 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3915 		u32 grp_idx = txr->bnapi->index;
3916 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3917 
3918 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3919 			hwrm_ring_free_send_msg(bp, ring,
3920 						RING_FREE_REQ_RING_TYPE_TX,
3921 						close_path ? cmpl_ring_id :
3922 						INVALID_HW_RING_ID);
3923 			ring->fw_ring_id = INVALID_HW_RING_ID;
3924 		}
3925 	}
3926 
3927 	for (i = 0; i < bp->rx_nr_rings; i++) {
3928 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3929 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3930 		u32 grp_idx = rxr->bnapi->index;
3931 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3932 
3933 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3934 			hwrm_ring_free_send_msg(bp, ring,
3935 						RING_FREE_REQ_RING_TYPE_RX,
3936 						close_path ? cmpl_ring_id :
3937 						INVALID_HW_RING_ID);
3938 			ring->fw_ring_id = INVALID_HW_RING_ID;
3939 			bp->grp_info[grp_idx].rx_fw_ring_id =
3940 				INVALID_HW_RING_ID;
3941 		}
3942 	}
3943 
3944 	for (i = 0; i < bp->rx_nr_rings; i++) {
3945 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3946 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
3947 		u32 grp_idx = rxr->bnapi->index;
3948 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3949 
3950 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3951 			hwrm_ring_free_send_msg(bp, ring,
3952 						RING_FREE_REQ_RING_TYPE_RX,
3953 						close_path ? cmpl_ring_id :
3954 						INVALID_HW_RING_ID);
3955 			ring->fw_ring_id = INVALID_HW_RING_ID;
3956 			bp->grp_info[grp_idx].agg_fw_ring_id =
3957 				INVALID_HW_RING_ID;
3958 		}
3959 	}
3960 
3961 	for (i = 0; i < bp->cp_nr_rings; i++) {
3962 		struct bnxt_napi *bnapi = bp->bnapi[i];
3963 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3964 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3965 
3966 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3967 			hwrm_ring_free_send_msg(bp, ring,
3968 						RING_FREE_REQ_RING_TYPE_CMPL,
3969 						INVALID_HW_RING_ID);
3970 			ring->fw_ring_id = INVALID_HW_RING_ID;
3971 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3972 		}
3973 	}
3974 }
3975 
3976 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, u32 max_bufs,
3977 	u32 buf_tmrs, u16 flags,
3978 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
3979 {
3980 	req->flags = cpu_to_le16(flags);
3981 	req->num_cmpl_dma_aggr = cpu_to_le16((u16)max_bufs);
3982 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(max_bufs >> 16);
3983 	req->cmpl_aggr_dma_tmr = cpu_to_le16((u16)buf_tmrs);
3984 	req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmrs >> 16);
3985 	/* Minimum time between 2 interrupts set to buf_tmr x 2 */
3986 	req->int_lat_tmr_min = cpu_to_le16((u16)buf_tmrs * 2);
3987 	req->int_lat_tmr_max = cpu_to_le16((u16)buf_tmrs * 4);
3988 	req->num_cmpl_aggr_int = cpu_to_le16((u16)max_bufs * 4);
3989 }
3990 
3991 int bnxt_hwrm_set_coal(struct bnxt *bp)
3992 {
3993 	int i, rc = 0;
3994 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
3995 							   req_tx = {0}, *req;
3996 	u16 max_buf, max_buf_irq;
3997 	u16 buf_tmr, buf_tmr_irq;
3998 	u32 flags;
3999 
4000 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
4001 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4002 	bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
4003 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4004 
4005 	/* Each rx completion (2 records) should be DMAed immediately.
4006 	 * DMA 1/4 of the completion buffers at a time.
4007 	 */
4008 	max_buf = min_t(u16, bp->rx_coal_bufs / 4, 2);
4009 	/* max_buf must not be zero */
4010 	max_buf = clamp_t(u16, max_buf, 1, 63);
4011 	max_buf_irq = clamp_t(u16, bp->rx_coal_bufs_irq, 1, 63);
4012 	buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks);
4013 	/* buf timer set to 1/4 of interrupt timer */
4014 	buf_tmr = max_t(u16, buf_tmr / 4, 1);
4015 	buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks_irq);
4016 	buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
4017 
4018 	flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4019 
4020 	/* RING_IDLE generates more IRQs for lower latency.  Enable it only
4021 	 * if coal_ticks is less than 25 us.
4022 	 */
4023 	if (bp->rx_coal_ticks < 25)
4024 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
4025 
4026 	bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
4027 				  buf_tmr_irq << 16 | buf_tmr, flags, &req_rx);
4028 
4029 	/* max_buf must not be zero */
4030 	max_buf = clamp_t(u16, bp->tx_coal_bufs, 1, 63);
4031 	max_buf_irq = clamp_t(u16, bp->tx_coal_bufs_irq, 1, 63);
4032 	buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks);
4033 	/* buf timer set to 1/4 of interrupt timer */
4034 	buf_tmr = max_t(u16, buf_tmr / 4, 1);
4035 	buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks_irq);
4036 	buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
4037 
4038 	flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4039 	bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
4040 				  buf_tmr_irq << 16 | buf_tmr, flags, &req_tx);
4041 
4042 	mutex_lock(&bp->hwrm_cmd_lock);
4043 	for (i = 0; i < bp->cp_nr_rings; i++) {
4044 		struct bnxt_napi *bnapi = bp->bnapi[i];
4045 
4046 		req = &req_rx;
4047 		if (!bnapi->rx_ring)
4048 			req = &req_tx;
4049 		req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
4050 
4051 		rc = _hwrm_send_message(bp, req, sizeof(*req),
4052 					HWRM_CMD_TIMEOUT);
4053 		if (rc)
4054 			break;
4055 	}
4056 	mutex_unlock(&bp->hwrm_cmd_lock);
4057 	return rc;
4058 }
4059 
4060 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
4061 {
4062 	int rc = 0, i;
4063 	struct hwrm_stat_ctx_free_input req = {0};
4064 
4065 	if (!bp->bnapi)
4066 		return 0;
4067 
4068 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4069 		return 0;
4070 
4071 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
4072 
4073 	mutex_lock(&bp->hwrm_cmd_lock);
4074 	for (i = 0; i < bp->cp_nr_rings; i++) {
4075 		struct bnxt_napi *bnapi = bp->bnapi[i];
4076 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4077 
4078 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
4079 			req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
4080 
4081 			rc = _hwrm_send_message(bp, &req, sizeof(req),
4082 						HWRM_CMD_TIMEOUT);
4083 			if (rc)
4084 				break;
4085 
4086 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4087 		}
4088 	}
4089 	mutex_unlock(&bp->hwrm_cmd_lock);
4090 	return rc;
4091 }
4092 
4093 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
4094 {
4095 	int rc = 0, i;
4096 	struct hwrm_stat_ctx_alloc_input req = {0};
4097 	struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4098 
4099 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4100 		return 0;
4101 
4102 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
4103 
4104 	req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
4105 
4106 	mutex_lock(&bp->hwrm_cmd_lock);
4107 	for (i = 0; i < bp->cp_nr_rings; i++) {
4108 		struct bnxt_napi *bnapi = bp->bnapi[i];
4109 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4110 
4111 		req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
4112 
4113 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4114 					HWRM_CMD_TIMEOUT);
4115 		if (rc)
4116 			break;
4117 
4118 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
4119 
4120 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
4121 	}
4122 	mutex_unlock(&bp->hwrm_cmd_lock);
4123 	return 0;
4124 }
4125 
4126 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
4127 {
4128 	struct hwrm_func_qcfg_input req = {0};
4129 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4130 	int rc;
4131 
4132 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4133 	req.fid = cpu_to_le16(0xffff);
4134 	mutex_lock(&bp->hwrm_cmd_lock);
4135 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4136 	if (rc)
4137 		goto func_qcfg_exit;
4138 
4139 #ifdef CONFIG_BNXT_SRIOV
4140 	if (BNXT_VF(bp)) {
4141 		struct bnxt_vf_info *vf = &bp->vf;
4142 
4143 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
4144 	}
4145 #endif
4146 	switch (resp->port_partition_type) {
4147 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
4148 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
4149 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
4150 		bp->port_partition_type = resp->port_partition_type;
4151 		break;
4152 	}
4153 
4154 func_qcfg_exit:
4155 	mutex_unlock(&bp->hwrm_cmd_lock);
4156 	return rc;
4157 }
4158 
4159 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
4160 {
4161 	int rc = 0;
4162 	struct hwrm_func_qcaps_input req = {0};
4163 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4164 
4165 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
4166 	req.fid = cpu_to_le16(0xffff);
4167 
4168 	mutex_lock(&bp->hwrm_cmd_lock);
4169 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4170 	if (rc)
4171 		goto hwrm_func_qcaps_exit;
4172 
4173 	bp->tx_push_thresh = 0;
4174 	if (resp->flags &
4175 	    cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
4176 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
4177 
4178 	if (BNXT_PF(bp)) {
4179 		struct bnxt_pf_info *pf = &bp->pf;
4180 
4181 		pf->fw_fid = le16_to_cpu(resp->fid);
4182 		pf->port_id = le16_to_cpu(resp->port_id);
4183 		bp->dev->dev_port = pf->port_id;
4184 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
4185 		memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
4186 		pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4187 		pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4188 		pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4189 		pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4190 		pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4191 		if (!pf->max_hw_ring_grps)
4192 			pf->max_hw_ring_grps = pf->max_tx_rings;
4193 		pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4194 		pf->max_vnics = le16_to_cpu(resp->max_vnics);
4195 		pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4196 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
4197 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
4198 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
4199 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
4200 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
4201 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
4202 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
4203 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
4204 	} else {
4205 #ifdef CONFIG_BNXT_SRIOV
4206 		struct bnxt_vf_info *vf = &bp->vf;
4207 
4208 		vf->fw_fid = le16_to_cpu(resp->fid);
4209 
4210 		vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4211 		vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4212 		vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4213 		vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4214 		vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4215 		if (!vf->max_hw_ring_grps)
4216 			vf->max_hw_ring_grps = vf->max_tx_rings;
4217 		vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4218 		vf->max_vnics = le16_to_cpu(resp->max_vnics);
4219 		vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4220 
4221 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
4222 		mutex_unlock(&bp->hwrm_cmd_lock);
4223 
4224 		if (is_valid_ether_addr(vf->mac_addr)) {
4225 			/* overwrite netdev dev_adr with admin VF MAC */
4226 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
4227 		} else {
4228 			random_ether_addr(bp->dev->dev_addr);
4229 			rc = bnxt_approve_mac(bp, bp->dev->dev_addr);
4230 		}
4231 		return rc;
4232 #endif
4233 	}
4234 
4235 hwrm_func_qcaps_exit:
4236 	mutex_unlock(&bp->hwrm_cmd_lock);
4237 	return rc;
4238 }
4239 
4240 static int bnxt_hwrm_func_reset(struct bnxt *bp)
4241 {
4242 	struct hwrm_func_reset_input req = {0};
4243 
4244 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
4245 	req.enables = 0;
4246 
4247 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
4248 }
4249 
4250 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
4251 {
4252 	int rc = 0;
4253 	struct hwrm_queue_qportcfg_input req = {0};
4254 	struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
4255 	u8 i, *qptr;
4256 
4257 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
4258 
4259 	mutex_lock(&bp->hwrm_cmd_lock);
4260 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4261 	if (rc)
4262 		goto qportcfg_exit;
4263 
4264 	if (!resp->max_configurable_queues) {
4265 		rc = -EINVAL;
4266 		goto qportcfg_exit;
4267 	}
4268 	bp->max_tc = resp->max_configurable_queues;
4269 	if (bp->max_tc > BNXT_MAX_QUEUE)
4270 		bp->max_tc = BNXT_MAX_QUEUE;
4271 
4272 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
4273 		bp->max_tc = 1;
4274 
4275 	qptr = &resp->queue_id0;
4276 	for (i = 0; i < bp->max_tc; i++) {
4277 		bp->q_info[i].queue_id = *qptr++;
4278 		bp->q_info[i].queue_profile = *qptr++;
4279 	}
4280 
4281 qportcfg_exit:
4282 	mutex_unlock(&bp->hwrm_cmd_lock);
4283 	return rc;
4284 }
4285 
4286 static int bnxt_hwrm_ver_get(struct bnxt *bp)
4287 {
4288 	int rc;
4289 	struct hwrm_ver_get_input req = {0};
4290 	struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
4291 
4292 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
4293 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
4294 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
4295 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
4296 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
4297 	mutex_lock(&bp->hwrm_cmd_lock);
4298 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4299 	if (rc)
4300 		goto hwrm_ver_get_exit;
4301 
4302 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
4303 
4304 	bp->hwrm_spec_code = resp->hwrm_intf_maj << 16 |
4305 			     resp->hwrm_intf_min << 8 | resp->hwrm_intf_upd;
4306 	if (resp->hwrm_intf_maj < 1) {
4307 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
4308 			    resp->hwrm_intf_maj, resp->hwrm_intf_min,
4309 			    resp->hwrm_intf_upd);
4310 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
4311 	}
4312 	snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d/%d.%d.%d",
4313 		 resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
4314 		 resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
4315 
4316 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
4317 	if (!bp->hwrm_cmd_timeout)
4318 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
4319 
4320 	if (resp->hwrm_intf_maj >= 1)
4321 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
4322 
4323 	bp->chip_num = le16_to_cpu(resp->chip_num);
4324 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
4325 	    !resp->chip_metal)
4326 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
4327 
4328 hwrm_ver_get_exit:
4329 	mutex_unlock(&bp->hwrm_cmd_lock);
4330 	return rc;
4331 }
4332 
4333 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
4334 {
4335 #if IS_ENABLED(CONFIG_RTC_LIB)
4336 	struct hwrm_fw_set_time_input req = {0};
4337 	struct rtc_time tm;
4338 	struct timeval tv;
4339 
4340 	if (bp->hwrm_spec_code < 0x10400)
4341 		return -EOPNOTSUPP;
4342 
4343 	do_gettimeofday(&tv);
4344 	rtc_time_to_tm(tv.tv_sec, &tm);
4345 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
4346 	req.year = cpu_to_le16(1900 + tm.tm_year);
4347 	req.month = 1 + tm.tm_mon;
4348 	req.day = tm.tm_mday;
4349 	req.hour = tm.tm_hour;
4350 	req.minute = tm.tm_min;
4351 	req.second = tm.tm_sec;
4352 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4353 #else
4354 	return -EOPNOTSUPP;
4355 #endif
4356 }
4357 
4358 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
4359 {
4360 	int rc;
4361 	struct bnxt_pf_info *pf = &bp->pf;
4362 	struct hwrm_port_qstats_input req = {0};
4363 
4364 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
4365 		return 0;
4366 
4367 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
4368 	req.port_id = cpu_to_le16(pf->port_id);
4369 	req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
4370 	req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
4371 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4372 	return rc;
4373 }
4374 
4375 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
4376 {
4377 	if (bp->vxlan_port_cnt) {
4378 		bnxt_hwrm_tunnel_dst_port_free(
4379 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
4380 	}
4381 	bp->vxlan_port_cnt = 0;
4382 	if (bp->nge_port_cnt) {
4383 		bnxt_hwrm_tunnel_dst_port_free(
4384 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
4385 	}
4386 	bp->nge_port_cnt = 0;
4387 }
4388 
4389 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
4390 {
4391 	int rc, i;
4392 	u32 tpa_flags = 0;
4393 
4394 	if (set_tpa)
4395 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
4396 	for (i = 0; i < bp->nr_vnics; i++) {
4397 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
4398 		if (rc) {
4399 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
4400 				   rc, i);
4401 			return rc;
4402 		}
4403 	}
4404 	return 0;
4405 }
4406 
4407 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
4408 {
4409 	int i;
4410 
4411 	for (i = 0; i < bp->nr_vnics; i++)
4412 		bnxt_hwrm_vnic_set_rss(bp, i, false);
4413 }
4414 
4415 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
4416 				    bool irq_re_init)
4417 {
4418 	if (bp->vnic_info) {
4419 		bnxt_hwrm_clear_vnic_filter(bp);
4420 		/* clear all RSS setting before free vnic ctx */
4421 		bnxt_hwrm_clear_vnic_rss(bp);
4422 		bnxt_hwrm_vnic_ctx_free(bp);
4423 		/* before free the vnic, undo the vnic tpa settings */
4424 		if (bp->flags & BNXT_FLAG_TPA)
4425 			bnxt_set_tpa(bp, false);
4426 		bnxt_hwrm_vnic_free(bp);
4427 	}
4428 	bnxt_hwrm_ring_free(bp, close_path);
4429 	bnxt_hwrm_ring_grp_free(bp);
4430 	if (irq_re_init) {
4431 		bnxt_hwrm_stat_ctx_free(bp);
4432 		bnxt_hwrm_free_tunnel_ports(bp);
4433 	}
4434 }
4435 
4436 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
4437 {
4438 	int rc;
4439 
4440 	/* allocate context for vnic */
4441 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
4442 	if (rc) {
4443 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4444 			   vnic_id, rc);
4445 		goto vnic_setup_err;
4446 	}
4447 	bp->rsscos_nr_ctxs++;
4448 
4449 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
4450 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
4451 		if (rc) {
4452 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
4453 				   vnic_id, rc);
4454 			goto vnic_setup_err;
4455 		}
4456 		bp->rsscos_nr_ctxs++;
4457 	}
4458 
4459 	/* configure default vnic, ring grp */
4460 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
4461 	if (rc) {
4462 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
4463 			   vnic_id, rc);
4464 		goto vnic_setup_err;
4465 	}
4466 
4467 	/* Enable RSS hashing on vnic */
4468 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
4469 	if (rc) {
4470 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
4471 			   vnic_id, rc);
4472 		goto vnic_setup_err;
4473 	}
4474 
4475 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4476 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
4477 		if (rc) {
4478 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
4479 				   vnic_id, rc);
4480 		}
4481 	}
4482 
4483 vnic_setup_err:
4484 	return rc;
4485 }
4486 
4487 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
4488 {
4489 #ifdef CONFIG_RFS_ACCEL
4490 	int i, rc = 0;
4491 
4492 	for (i = 0; i < bp->rx_nr_rings; i++) {
4493 		u16 vnic_id = i + 1;
4494 		u16 ring_id = i;
4495 
4496 		if (vnic_id >= bp->nr_vnics)
4497 			break;
4498 
4499 		bp->vnic_info[vnic_id].flags |= BNXT_VNIC_RFS_FLAG;
4500 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
4501 		if (rc) {
4502 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4503 				   vnic_id, rc);
4504 			break;
4505 		}
4506 		rc = bnxt_setup_vnic(bp, vnic_id);
4507 		if (rc)
4508 			break;
4509 	}
4510 	return rc;
4511 #else
4512 	return 0;
4513 #endif
4514 }
4515 
4516 /* Allow PF and VF with default VLAN to be in promiscuous mode */
4517 static bool bnxt_promisc_ok(struct bnxt *bp)
4518 {
4519 #ifdef CONFIG_BNXT_SRIOV
4520 	if (BNXT_VF(bp) && !bp->vf.vlan)
4521 		return false;
4522 #endif
4523 	return true;
4524 }
4525 
4526 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
4527 {
4528 	unsigned int rc = 0;
4529 
4530 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
4531 	if (rc) {
4532 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
4533 			   rc);
4534 		return rc;
4535 	}
4536 
4537 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
4538 	if (rc) {
4539 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
4540 			   rc);
4541 		return rc;
4542 	}
4543 	return rc;
4544 }
4545 
4546 static int bnxt_cfg_rx_mode(struct bnxt *);
4547 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
4548 
4549 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
4550 {
4551 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4552 	int rc = 0;
4553 	unsigned int rx_nr_rings = bp->rx_nr_rings;
4554 
4555 	if (irq_re_init) {
4556 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
4557 		if (rc) {
4558 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
4559 				   rc);
4560 			goto err_out;
4561 		}
4562 	}
4563 
4564 	rc = bnxt_hwrm_ring_alloc(bp);
4565 	if (rc) {
4566 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
4567 		goto err_out;
4568 	}
4569 
4570 	rc = bnxt_hwrm_ring_grp_alloc(bp);
4571 	if (rc) {
4572 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
4573 		goto err_out;
4574 	}
4575 
4576 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4577 		rx_nr_rings--;
4578 
4579 	/* default vnic 0 */
4580 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
4581 	if (rc) {
4582 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
4583 		goto err_out;
4584 	}
4585 
4586 	rc = bnxt_setup_vnic(bp, 0);
4587 	if (rc)
4588 		goto err_out;
4589 
4590 	if (bp->flags & BNXT_FLAG_RFS) {
4591 		rc = bnxt_alloc_rfs_vnics(bp);
4592 		if (rc)
4593 			goto err_out;
4594 	}
4595 
4596 	if (bp->flags & BNXT_FLAG_TPA) {
4597 		rc = bnxt_set_tpa(bp, true);
4598 		if (rc)
4599 			goto err_out;
4600 	}
4601 
4602 	if (BNXT_VF(bp))
4603 		bnxt_update_vf_mac(bp);
4604 
4605 	/* Filter for default vnic 0 */
4606 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
4607 	if (rc) {
4608 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
4609 		goto err_out;
4610 	}
4611 	vnic->uc_filter_count = 1;
4612 
4613 	vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
4614 
4615 	if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
4616 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4617 
4618 	if (bp->dev->flags & IFF_ALLMULTI) {
4619 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4620 		vnic->mc_list_count = 0;
4621 	} else {
4622 		u32 mask = 0;
4623 
4624 		bnxt_mc_list_updated(bp, &mask);
4625 		vnic->rx_mask |= mask;
4626 	}
4627 
4628 	rc = bnxt_cfg_rx_mode(bp);
4629 	if (rc)
4630 		goto err_out;
4631 
4632 	rc = bnxt_hwrm_set_coal(bp);
4633 	if (rc)
4634 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
4635 				rc);
4636 
4637 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
4638 		rc = bnxt_setup_nitroa0_vnic(bp);
4639 		if (rc)
4640 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
4641 				   rc);
4642 	}
4643 
4644 	if (BNXT_VF(bp)) {
4645 		bnxt_hwrm_func_qcfg(bp);
4646 		netdev_update_features(bp->dev);
4647 	}
4648 
4649 	return 0;
4650 
4651 err_out:
4652 	bnxt_hwrm_resource_free(bp, 0, true);
4653 
4654 	return rc;
4655 }
4656 
4657 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
4658 {
4659 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
4660 	return 0;
4661 }
4662 
4663 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
4664 {
4665 	bnxt_init_rx_rings(bp);
4666 	bnxt_init_tx_rings(bp);
4667 	bnxt_init_ring_grps(bp, irq_re_init);
4668 	bnxt_init_vnics(bp);
4669 
4670 	return bnxt_init_chip(bp, irq_re_init);
4671 }
4672 
4673 static void bnxt_disable_int(struct bnxt *bp)
4674 {
4675 	int i;
4676 
4677 	if (!bp->bnapi)
4678 		return;
4679 
4680 	for (i = 0; i < bp->cp_nr_rings; i++) {
4681 		struct bnxt_napi *bnapi = bp->bnapi[i];
4682 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4683 
4684 		BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4685 	}
4686 }
4687 
4688 static void bnxt_enable_int(struct bnxt *bp)
4689 {
4690 	int i;
4691 
4692 	atomic_set(&bp->intr_sem, 0);
4693 	for (i = 0; i < bp->cp_nr_rings; i++) {
4694 		struct bnxt_napi *bnapi = bp->bnapi[i];
4695 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4696 
4697 		BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
4698 	}
4699 }
4700 
4701 static int bnxt_set_real_num_queues(struct bnxt *bp)
4702 {
4703 	int rc;
4704 	struct net_device *dev = bp->dev;
4705 
4706 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings);
4707 	if (rc)
4708 		return rc;
4709 
4710 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
4711 	if (rc)
4712 		return rc;
4713 
4714 #ifdef CONFIG_RFS_ACCEL
4715 	if (bp->flags & BNXT_FLAG_RFS)
4716 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
4717 #endif
4718 
4719 	return rc;
4720 }
4721 
4722 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
4723 			   bool shared)
4724 {
4725 	int _rx = *rx, _tx = *tx;
4726 
4727 	if (shared) {
4728 		*rx = min_t(int, _rx, max);
4729 		*tx = min_t(int, _tx, max);
4730 	} else {
4731 		if (max < 2)
4732 			return -ENOMEM;
4733 
4734 		while (_rx + _tx > max) {
4735 			if (_rx > _tx && _rx > 1)
4736 				_rx--;
4737 			else if (_tx > 1)
4738 				_tx--;
4739 		}
4740 		*rx = _rx;
4741 		*tx = _tx;
4742 	}
4743 	return 0;
4744 }
4745 
4746 static int bnxt_setup_msix(struct bnxt *bp)
4747 {
4748 	struct msix_entry *msix_ent;
4749 	struct net_device *dev = bp->dev;
4750 	int i, total_vecs, rc = 0, min = 1;
4751 	const int len = sizeof(bp->irq_tbl[0].name);
4752 
4753 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
4754 	total_vecs = bp->cp_nr_rings;
4755 
4756 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
4757 	if (!msix_ent)
4758 		return -ENOMEM;
4759 
4760 	for (i = 0; i < total_vecs; i++) {
4761 		msix_ent[i].entry = i;
4762 		msix_ent[i].vector = 0;
4763 	}
4764 
4765 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
4766 		min = 2;
4767 
4768 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
4769 	if (total_vecs < 0) {
4770 		rc = -ENODEV;
4771 		goto msix_setup_exit;
4772 	}
4773 
4774 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
4775 	if (bp->irq_tbl) {
4776 		int tcs;
4777 
4778 		/* Trim rings based upon num of vectors allocated */
4779 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
4780 				     total_vecs, min == 1);
4781 		if (rc)
4782 			goto msix_setup_exit;
4783 
4784 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4785 		tcs = netdev_get_num_tc(dev);
4786 		if (tcs > 1) {
4787 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings / tcs;
4788 			if (bp->tx_nr_rings_per_tc == 0) {
4789 				netdev_reset_tc(dev);
4790 				bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4791 			} else {
4792 				int i, off, count;
4793 
4794 				bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tcs;
4795 				for (i = 0; i < tcs; i++) {
4796 					count = bp->tx_nr_rings_per_tc;
4797 					off = i * count;
4798 					netdev_set_tc_queue(dev, i, count, off);
4799 				}
4800 			}
4801 		}
4802 		bp->cp_nr_rings = total_vecs;
4803 
4804 		for (i = 0; i < bp->cp_nr_rings; i++) {
4805 			char *attr;
4806 
4807 			bp->irq_tbl[i].vector = msix_ent[i].vector;
4808 			if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4809 				attr = "TxRx";
4810 			else if (i < bp->rx_nr_rings)
4811 				attr = "rx";
4812 			else
4813 				attr = "tx";
4814 
4815 			snprintf(bp->irq_tbl[i].name, len,
4816 				 "%s-%s-%d", dev->name, attr, i);
4817 			bp->irq_tbl[i].handler = bnxt_msix;
4818 		}
4819 		rc = bnxt_set_real_num_queues(bp);
4820 		if (rc)
4821 			goto msix_setup_exit;
4822 	} else {
4823 		rc = -ENOMEM;
4824 		goto msix_setup_exit;
4825 	}
4826 	bp->flags |= BNXT_FLAG_USING_MSIX;
4827 	kfree(msix_ent);
4828 	return 0;
4829 
4830 msix_setup_exit:
4831 	netdev_err(bp->dev, "bnxt_setup_msix err: %x\n", rc);
4832 	pci_disable_msix(bp->pdev);
4833 	kfree(msix_ent);
4834 	return rc;
4835 }
4836 
4837 static int bnxt_setup_inta(struct bnxt *bp)
4838 {
4839 	int rc;
4840 	const int len = sizeof(bp->irq_tbl[0].name);
4841 
4842 	if (netdev_get_num_tc(bp->dev))
4843 		netdev_reset_tc(bp->dev);
4844 
4845 	bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
4846 	if (!bp->irq_tbl) {
4847 		rc = -ENOMEM;
4848 		return rc;
4849 	}
4850 	bp->rx_nr_rings = 1;
4851 	bp->tx_nr_rings = 1;
4852 	bp->cp_nr_rings = 1;
4853 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4854 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
4855 	bp->irq_tbl[0].vector = bp->pdev->irq;
4856 	snprintf(bp->irq_tbl[0].name, len,
4857 		 "%s-%s-%d", bp->dev->name, "TxRx", 0);
4858 	bp->irq_tbl[0].handler = bnxt_inta;
4859 	rc = bnxt_set_real_num_queues(bp);
4860 	return rc;
4861 }
4862 
4863 static int bnxt_setup_int_mode(struct bnxt *bp)
4864 {
4865 	int rc = 0;
4866 
4867 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
4868 		rc = bnxt_setup_msix(bp);
4869 
4870 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
4871 		/* fallback to INTA */
4872 		rc = bnxt_setup_inta(bp);
4873 	}
4874 	return rc;
4875 }
4876 
4877 static void bnxt_free_irq(struct bnxt *bp)
4878 {
4879 	struct bnxt_irq *irq;
4880 	int i;
4881 
4882 #ifdef CONFIG_RFS_ACCEL
4883 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
4884 	bp->dev->rx_cpu_rmap = NULL;
4885 #endif
4886 	if (!bp->irq_tbl)
4887 		return;
4888 
4889 	for (i = 0; i < bp->cp_nr_rings; i++) {
4890 		irq = &bp->irq_tbl[i];
4891 		if (irq->requested)
4892 			free_irq(irq->vector, bp->bnapi[i]);
4893 		irq->requested = 0;
4894 	}
4895 	if (bp->flags & BNXT_FLAG_USING_MSIX)
4896 		pci_disable_msix(bp->pdev);
4897 	kfree(bp->irq_tbl);
4898 	bp->irq_tbl = NULL;
4899 }
4900 
4901 static int bnxt_request_irq(struct bnxt *bp)
4902 {
4903 	int i, j, rc = 0;
4904 	unsigned long flags = 0;
4905 #ifdef CONFIG_RFS_ACCEL
4906 	struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
4907 #endif
4908 
4909 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
4910 		flags = IRQF_SHARED;
4911 
4912 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
4913 		struct bnxt_irq *irq = &bp->irq_tbl[i];
4914 #ifdef CONFIG_RFS_ACCEL
4915 		if (rmap && bp->bnapi[i]->rx_ring) {
4916 			rc = irq_cpu_rmap_add(rmap, irq->vector);
4917 			if (rc)
4918 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
4919 					    j);
4920 			j++;
4921 		}
4922 #endif
4923 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
4924 				 bp->bnapi[i]);
4925 		if (rc)
4926 			break;
4927 
4928 		irq->requested = 1;
4929 	}
4930 	return rc;
4931 }
4932 
4933 static void bnxt_del_napi(struct bnxt *bp)
4934 {
4935 	int i;
4936 
4937 	if (!bp->bnapi)
4938 		return;
4939 
4940 	for (i = 0; i < bp->cp_nr_rings; i++) {
4941 		struct bnxt_napi *bnapi = bp->bnapi[i];
4942 
4943 		napi_hash_del(&bnapi->napi);
4944 		netif_napi_del(&bnapi->napi);
4945 	}
4946 	/* We called napi_hash_del() before netif_napi_del(), we need
4947 	 * to respect an RCU grace period before freeing napi structures.
4948 	 */
4949 	synchronize_net();
4950 }
4951 
4952 static void bnxt_init_napi(struct bnxt *bp)
4953 {
4954 	int i;
4955 	unsigned int cp_nr_rings = bp->cp_nr_rings;
4956 	struct bnxt_napi *bnapi;
4957 
4958 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
4959 		if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4960 			cp_nr_rings--;
4961 		for (i = 0; i < cp_nr_rings; i++) {
4962 			bnapi = bp->bnapi[i];
4963 			netif_napi_add(bp->dev, &bnapi->napi,
4964 				       bnxt_poll, 64);
4965 		}
4966 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
4967 			bnapi = bp->bnapi[cp_nr_rings];
4968 			netif_napi_add(bp->dev, &bnapi->napi,
4969 				       bnxt_poll_nitroa0, 64);
4970 			napi_hash_add(&bnapi->napi);
4971 		}
4972 	} else {
4973 		bnapi = bp->bnapi[0];
4974 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
4975 	}
4976 }
4977 
4978 static void bnxt_disable_napi(struct bnxt *bp)
4979 {
4980 	int i;
4981 
4982 	if (!bp->bnapi)
4983 		return;
4984 
4985 	for (i = 0; i < bp->cp_nr_rings; i++) {
4986 		napi_disable(&bp->bnapi[i]->napi);
4987 		bnxt_disable_poll(bp->bnapi[i]);
4988 	}
4989 }
4990 
4991 static void bnxt_enable_napi(struct bnxt *bp)
4992 {
4993 	int i;
4994 
4995 	for (i = 0; i < bp->cp_nr_rings; i++) {
4996 		bp->bnapi[i]->in_reset = false;
4997 		bnxt_enable_poll(bp->bnapi[i]);
4998 		napi_enable(&bp->bnapi[i]->napi);
4999 	}
5000 }
5001 
5002 static void bnxt_tx_disable(struct bnxt *bp)
5003 {
5004 	int i;
5005 	struct bnxt_tx_ring_info *txr;
5006 	struct netdev_queue *txq;
5007 
5008 	if (bp->tx_ring) {
5009 		for (i = 0; i < bp->tx_nr_rings; i++) {
5010 			txr = &bp->tx_ring[i];
5011 			txq = netdev_get_tx_queue(bp->dev, i);
5012 			txr->dev_state = BNXT_DEV_STATE_CLOSING;
5013 		}
5014 	}
5015 	/* Stop all TX queues */
5016 	netif_tx_disable(bp->dev);
5017 	netif_carrier_off(bp->dev);
5018 }
5019 
5020 static void bnxt_tx_enable(struct bnxt *bp)
5021 {
5022 	int i;
5023 	struct bnxt_tx_ring_info *txr;
5024 	struct netdev_queue *txq;
5025 
5026 	for (i = 0; i < bp->tx_nr_rings; i++) {
5027 		txr = &bp->tx_ring[i];
5028 		txq = netdev_get_tx_queue(bp->dev, i);
5029 		txr->dev_state = 0;
5030 	}
5031 	netif_tx_wake_all_queues(bp->dev);
5032 	if (bp->link_info.link_up)
5033 		netif_carrier_on(bp->dev);
5034 }
5035 
5036 static void bnxt_report_link(struct bnxt *bp)
5037 {
5038 	if (bp->link_info.link_up) {
5039 		const char *duplex;
5040 		const char *flow_ctrl;
5041 		u16 speed;
5042 
5043 		netif_carrier_on(bp->dev);
5044 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
5045 			duplex = "full";
5046 		else
5047 			duplex = "half";
5048 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
5049 			flow_ctrl = "ON - receive & transmit";
5050 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
5051 			flow_ctrl = "ON - transmit";
5052 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
5053 			flow_ctrl = "ON - receive";
5054 		else
5055 			flow_ctrl = "none";
5056 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
5057 		netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
5058 			    speed, duplex, flow_ctrl);
5059 		if (bp->flags & BNXT_FLAG_EEE_CAP)
5060 			netdev_info(bp->dev, "EEE is %s\n",
5061 				    bp->eee.eee_active ? "active" :
5062 							 "not active");
5063 	} else {
5064 		netif_carrier_off(bp->dev);
5065 		netdev_err(bp->dev, "NIC Link is Down\n");
5066 	}
5067 }
5068 
5069 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
5070 {
5071 	int rc = 0;
5072 	struct hwrm_port_phy_qcaps_input req = {0};
5073 	struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5074 	struct bnxt_link_info *link_info = &bp->link_info;
5075 
5076 	if (bp->hwrm_spec_code < 0x10201)
5077 		return 0;
5078 
5079 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
5080 
5081 	mutex_lock(&bp->hwrm_cmd_lock);
5082 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5083 	if (rc)
5084 		goto hwrm_phy_qcaps_exit;
5085 
5086 	if (resp->eee_supported & PORT_PHY_QCAPS_RESP_EEE_SUPPORTED) {
5087 		struct ethtool_eee *eee = &bp->eee;
5088 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
5089 
5090 		bp->flags |= BNXT_FLAG_EEE_CAP;
5091 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5092 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
5093 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
5094 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
5095 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
5096 	}
5097 	link_info->support_auto_speeds =
5098 		le16_to_cpu(resp->supported_speeds_auto_mode);
5099 
5100 hwrm_phy_qcaps_exit:
5101 	mutex_unlock(&bp->hwrm_cmd_lock);
5102 	return rc;
5103 }
5104 
5105 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
5106 {
5107 	int rc = 0;
5108 	struct bnxt_link_info *link_info = &bp->link_info;
5109 	struct hwrm_port_phy_qcfg_input req = {0};
5110 	struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5111 	u8 link_up = link_info->link_up;
5112 
5113 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
5114 
5115 	mutex_lock(&bp->hwrm_cmd_lock);
5116 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5117 	if (rc) {
5118 		mutex_unlock(&bp->hwrm_cmd_lock);
5119 		return rc;
5120 	}
5121 
5122 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
5123 	link_info->phy_link_status = resp->link;
5124 	link_info->duplex =  resp->duplex;
5125 	link_info->pause = resp->pause;
5126 	link_info->auto_mode = resp->auto_mode;
5127 	link_info->auto_pause_setting = resp->auto_pause;
5128 	link_info->lp_pause = resp->link_partner_adv_pause;
5129 	link_info->force_pause_setting = resp->force_pause;
5130 	link_info->duplex_setting = resp->duplex;
5131 	if (link_info->phy_link_status == BNXT_LINK_LINK)
5132 		link_info->link_speed = le16_to_cpu(resp->link_speed);
5133 	else
5134 		link_info->link_speed = 0;
5135 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
5136 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
5137 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
5138 	link_info->lp_auto_link_speeds =
5139 		le16_to_cpu(resp->link_partner_adv_speeds);
5140 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
5141 	link_info->phy_ver[0] = resp->phy_maj;
5142 	link_info->phy_ver[1] = resp->phy_min;
5143 	link_info->phy_ver[2] = resp->phy_bld;
5144 	link_info->media_type = resp->media_type;
5145 	link_info->phy_type = resp->phy_type;
5146 	link_info->transceiver = resp->xcvr_pkg_type;
5147 	link_info->phy_addr = resp->eee_config_phy_addr &
5148 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
5149 	link_info->module_status = resp->module_status;
5150 
5151 	if (bp->flags & BNXT_FLAG_EEE_CAP) {
5152 		struct ethtool_eee *eee = &bp->eee;
5153 		u16 fw_speeds;
5154 
5155 		eee->eee_active = 0;
5156 		if (resp->eee_config_phy_addr &
5157 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
5158 			eee->eee_active = 1;
5159 			fw_speeds = le16_to_cpu(
5160 				resp->link_partner_adv_eee_link_speed_mask);
5161 			eee->lp_advertised =
5162 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5163 		}
5164 
5165 		/* Pull initial EEE config */
5166 		if (!chng_link_state) {
5167 			if (resp->eee_config_phy_addr &
5168 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
5169 				eee->eee_enabled = 1;
5170 
5171 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
5172 			eee->advertised =
5173 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5174 
5175 			if (resp->eee_config_phy_addr &
5176 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
5177 				__le32 tmr;
5178 
5179 				eee->tx_lpi_enabled = 1;
5180 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
5181 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
5182 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
5183 			}
5184 		}
5185 	}
5186 	/* TODO: need to add more logic to report VF link */
5187 	if (chng_link_state) {
5188 		if (link_info->phy_link_status == BNXT_LINK_LINK)
5189 			link_info->link_up = 1;
5190 		else
5191 			link_info->link_up = 0;
5192 		if (link_up != link_info->link_up)
5193 			bnxt_report_link(bp);
5194 	} else {
5195 		/* alwasy link down if not require to update link state */
5196 		link_info->link_up = 0;
5197 	}
5198 	mutex_unlock(&bp->hwrm_cmd_lock);
5199 	return 0;
5200 }
5201 
5202 static void bnxt_get_port_module_status(struct bnxt *bp)
5203 {
5204 	struct bnxt_link_info *link_info = &bp->link_info;
5205 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
5206 	u8 module_status;
5207 
5208 	if (bnxt_update_link(bp, true))
5209 		return;
5210 
5211 	module_status = link_info->module_status;
5212 	switch (module_status) {
5213 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
5214 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
5215 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
5216 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
5217 			    bp->pf.port_id);
5218 		if (bp->hwrm_spec_code >= 0x10201) {
5219 			netdev_warn(bp->dev, "Module part number %s\n",
5220 				    resp->phy_vendor_partnumber);
5221 		}
5222 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
5223 			netdev_warn(bp->dev, "TX is disabled\n");
5224 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
5225 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
5226 	}
5227 }
5228 
5229 static void
5230 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
5231 {
5232 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
5233 		if (bp->hwrm_spec_code >= 0x10201)
5234 			req->auto_pause =
5235 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
5236 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5237 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
5238 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5239 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
5240 		req->enables |=
5241 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5242 	} else {
5243 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5244 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
5245 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5246 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
5247 		req->enables |=
5248 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
5249 		if (bp->hwrm_spec_code >= 0x10201) {
5250 			req->auto_pause = req->force_pause;
5251 			req->enables |= cpu_to_le32(
5252 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5253 		}
5254 	}
5255 }
5256 
5257 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
5258 				      struct hwrm_port_phy_cfg_input *req)
5259 {
5260 	u8 autoneg = bp->link_info.autoneg;
5261 	u16 fw_link_speed = bp->link_info.req_link_speed;
5262 	u32 advertising = bp->link_info.advertising;
5263 
5264 	if (autoneg & BNXT_AUTONEG_SPEED) {
5265 		req->auto_mode |=
5266 			PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
5267 
5268 		req->enables |= cpu_to_le32(
5269 			PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
5270 		req->auto_link_speed_mask = cpu_to_le16(advertising);
5271 
5272 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
5273 		req->flags |=
5274 			cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
5275 	} else {
5276 		req->force_link_speed = cpu_to_le16(fw_link_speed);
5277 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
5278 	}
5279 
5280 	/* tell chimp that the setting takes effect immediately */
5281 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
5282 }
5283 
5284 int bnxt_hwrm_set_pause(struct bnxt *bp)
5285 {
5286 	struct hwrm_port_phy_cfg_input req = {0};
5287 	int rc;
5288 
5289 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5290 	bnxt_hwrm_set_pause_common(bp, &req);
5291 
5292 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
5293 	    bp->link_info.force_link_chng)
5294 		bnxt_hwrm_set_link_common(bp, &req);
5295 
5296 	mutex_lock(&bp->hwrm_cmd_lock);
5297 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5298 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
5299 		/* since changing of pause setting doesn't trigger any link
5300 		 * change event, the driver needs to update the current pause
5301 		 * result upon successfully return of the phy_cfg command
5302 		 */
5303 		bp->link_info.pause =
5304 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
5305 		bp->link_info.auto_pause_setting = 0;
5306 		if (!bp->link_info.force_link_chng)
5307 			bnxt_report_link(bp);
5308 	}
5309 	bp->link_info.force_link_chng = false;
5310 	mutex_unlock(&bp->hwrm_cmd_lock);
5311 	return rc;
5312 }
5313 
5314 static void bnxt_hwrm_set_eee(struct bnxt *bp,
5315 			      struct hwrm_port_phy_cfg_input *req)
5316 {
5317 	struct ethtool_eee *eee = &bp->eee;
5318 
5319 	if (eee->eee_enabled) {
5320 		u16 eee_speeds;
5321 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
5322 
5323 		if (eee->tx_lpi_enabled)
5324 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
5325 		else
5326 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
5327 
5328 		req->flags |= cpu_to_le32(flags);
5329 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
5330 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
5331 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
5332 	} else {
5333 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
5334 	}
5335 }
5336 
5337 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
5338 {
5339 	struct hwrm_port_phy_cfg_input req = {0};
5340 
5341 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5342 	if (set_pause)
5343 		bnxt_hwrm_set_pause_common(bp, &req);
5344 
5345 	bnxt_hwrm_set_link_common(bp, &req);
5346 
5347 	if (set_eee)
5348 		bnxt_hwrm_set_eee(bp, &req);
5349 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5350 }
5351 
5352 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
5353 {
5354 	struct hwrm_port_phy_cfg_input req = {0};
5355 
5356 	if (!BNXT_SINGLE_PF(bp))
5357 		return 0;
5358 
5359 	if (pci_num_vf(bp->pdev))
5360 		return 0;
5361 
5362 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5363 	req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DOWN);
5364 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5365 }
5366 
5367 static bool bnxt_eee_config_ok(struct bnxt *bp)
5368 {
5369 	struct ethtool_eee *eee = &bp->eee;
5370 	struct bnxt_link_info *link_info = &bp->link_info;
5371 
5372 	if (!(bp->flags & BNXT_FLAG_EEE_CAP))
5373 		return true;
5374 
5375 	if (eee->eee_enabled) {
5376 		u32 advertising =
5377 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
5378 
5379 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
5380 			eee->eee_enabled = 0;
5381 			return false;
5382 		}
5383 		if (eee->advertised & ~advertising) {
5384 			eee->advertised = advertising & eee->supported;
5385 			return false;
5386 		}
5387 	}
5388 	return true;
5389 }
5390 
5391 static int bnxt_update_phy_setting(struct bnxt *bp)
5392 {
5393 	int rc;
5394 	bool update_link = false;
5395 	bool update_pause = false;
5396 	bool update_eee = false;
5397 	struct bnxt_link_info *link_info = &bp->link_info;
5398 
5399 	rc = bnxt_update_link(bp, true);
5400 	if (rc) {
5401 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
5402 			   rc);
5403 		return rc;
5404 	}
5405 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
5406 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
5407 	    link_info->req_flow_ctrl)
5408 		update_pause = true;
5409 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
5410 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
5411 		update_pause = true;
5412 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
5413 		if (BNXT_AUTO_MODE(link_info->auto_mode))
5414 			update_link = true;
5415 		if (link_info->req_link_speed != link_info->force_link_speed)
5416 			update_link = true;
5417 		if (link_info->req_duplex != link_info->duplex_setting)
5418 			update_link = true;
5419 	} else {
5420 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
5421 			update_link = true;
5422 		if (link_info->advertising != link_info->auto_link_speeds)
5423 			update_link = true;
5424 	}
5425 
5426 	if (!bnxt_eee_config_ok(bp))
5427 		update_eee = true;
5428 
5429 	if (update_link)
5430 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
5431 	else if (update_pause)
5432 		rc = bnxt_hwrm_set_pause(bp);
5433 	if (rc) {
5434 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
5435 			   rc);
5436 		return rc;
5437 	}
5438 
5439 	return rc;
5440 }
5441 
5442 /* Common routine to pre-map certain register block to different GRC window.
5443  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
5444  * in PF and 3 windows in VF that can be customized to map in different
5445  * register blocks.
5446  */
5447 static void bnxt_preset_reg_win(struct bnxt *bp)
5448 {
5449 	if (BNXT_PF(bp)) {
5450 		/* CAG registers map to GRC window #4 */
5451 		writel(BNXT_CAG_REG_BASE,
5452 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
5453 	}
5454 }
5455 
5456 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
5457 {
5458 	int rc = 0;
5459 
5460 	bnxt_preset_reg_win(bp);
5461 	netif_carrier_off(bp->dev);
5462 	if (irq_re_init) {
5463 		rc = bnxt_setup_int_mode(bp);
5464 		if (rc) {
5465 			netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
5466 				   rc);
5467 			return rc;
5468 		}
5469 	}
5470 	if ((bp->flags & BNXT_FLAG_RFS) &&
5471 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
5472 		/* disable RFS if falling back to INTA */
5473 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
5474 		bp->flags &= ~BNXT_FLAG_RFS;
5475 	}
5476 
5477 	rc = bnxt_alloc_mem(bp, irq_re_init);
5478 	if (rc) {
5479 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
5480 		goto open_err_free_mem;
5481 	}
5482 
5483 	if (irq_re_init) {
5484 		bnxt_init_napi(bp);
5485 		rc = bnxt_request_irq(bp);
5486 		if (rc) {
5487 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
5488 			goto open_err;
5489 		}
5490 	}
5491 
5492 	bnxt_enable_napi(bp);
5493 
5494 	rc = bnxt_init_nic(bp, irq_re_init);
5495 	if (rc) {
5496 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
5497 		goto open_err;
5498 	}
5499 
5500 	if (link_re_init) {
5501 		rc = bnxt_update_phy_setting(bp);
5502 		if (rc)
5503 			netdev_warn(bp->dev, "failed to update phy settings\n");
5504 	}
5505 
5506 	if (irq_re_init)
5507 		udp_tunnel_get_rx_info(bp->dev);
5508 
5509 	set_bit(BNXT_STATE_OPEN, &bp->state);
5510 	bnxt_enable_int(bp);
5511 	/* Enable TX queues */
5512 	bnxt_tx_enable(bp);
5513 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5514 	/* Poll link status and check for SFP+ module status */
5515 	bnxt_get_port_module_status(bp);
5516 
5517 	return 0;
5518 
5519 open_err:
5520 	bnxt_disable_napi(bp);
5521 	bnxt_del_napi(bp);
5522 
5523 open_err_free_mem:
5524 	bnxt_free_skbs(bp);
5525 	bnxt_free_irq(bp);
5526 	bnxt_free_mem(bp, true);
5527 	return rc;
5528 }
5529 
5530 /* rtnl_lock held */
5531 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
5532 {
5533 	int rc = 0;
5534 
5535 	rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
5536 	if (rc) {
5537 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
5538 		dev_close(bp->dev);
5539 	}
5540 	return rc;
5541 }
5542 
5543 static int bnxt_open(struct net_device *dev)
5544 {
5545 	struct bnxt *bp = netdev_priv(dev);
5546 	int rc = 0;
5547 
5548 	if (!test_bit(BNXT_STATE_FN_RST_DONE, &bp->state)) {
5549 		rc = bnxt_hwrm_func_reset(bp);
5550 		if (rc) {
5551 			netdev_err(bp->dev, "hwrm chip reset failure rc: %x\n",
5552 				   rc);
5553 			rc = -EBUSY;
5554 			return rc;
5555 		}
5556 		/* Do func_reset during the 1st PF open only to prevent killing
5557 		 * the VFs when the PF is brought down and up.
5558 		 */
5559 		if (BNXT_PF(bp))
5560 			set_bit(BNXT_STATE_FN_RST_DONE, &bp->state);
5561 	}
5562 	return __bnxt_open_nic(bp, true, true);
5563 }
5564 
5565 static void bnxt_disable_int_sync(struct bnxt *bp)
5566 {
5567 	int i;
5568 
5569 	atomic_inc(&bp->intr_sem);
5570 	if (!netif_running(bp->dev))
5571 		return;
5572 
5573 	bnxt_disable_int(bp);
5574 	for (i = 0; i < bp->cp_nr_rings; i++)
5575 		synchronize_irq(bp->irq_tbl[i].vector);
5576 }
5577 
5578 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
5579 {
5580 	int rc = 0;
5581 
5582 #ifdef CONFIG_BNXT_SRIOV
5583 	if (bp->sriov_cfg) {
5584 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
5585 						      !bp->sriov_cfg,
5586 						      BNXT_SRIOV_CFG_WAIT_TMO);
5587 		if (rc)
5588 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
5589 	}
5590 #endif
5591 	/* Change device state to avoid TX queue wake up's */
5592 	bnxt_tx_disable(bp);
5593 
5594 	clear_bit(BNXT_STATE_OPEN, &bp->state);
5595 	smp_mb__after_atomic();
5596 	while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
5597 		msleep(20);
5598 
5599 	/* Flush rings before disabling interrupts */
5600 	bnxt_shutdown_nic(bp, irq_re_init);
5601 
5602 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
5603 
5604 	bnxt_disable_napi(bp);
5605 	bnxt_disable_int_sync(bp);
5606 	del_timer_sync(&bp->timer);
5607 	bnxt_free_skbs(bp);
5608 
5609 	if (irq_re_init) {
5610 		bnxt_free_irq(bp);
5611 		bnxt_del_napi(bp);
5612 	}
5613 	bnxt_free_mem(bp, irq_re_init);
5614 	return rc;
5615 }
5616 
5617 static int bnxt_close(struct net_device *dev)
5618 {
5619 	struct bnxt *bp = netdev_priv(dev);
5620 
5621 	bnxt_close_nic(bp, true, true);
5622 	bnxt_hwrm_shutdown_link(bp);
5623 	return 0;
5624 }
5625 
5626 /* rtnl_lock held */
5627 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5628 {
5629 	switch (cmd) {
5630 	case SIOCGMIIPHY:
5631 		/* fallthru */
5632 	case SIOCGMIIREG: {
5633 		if (!netif_running(dev))
5634 			return -EAGAIN;
5635 
5636 		return 0;
5637 	}
5638 
5639 	case SIOCSMIIREG:
5640 		if (!netif_running(dev))
5641 			return -EAGAIN;
5642 
5643 		return 0;
5644 
5645 	default:
5646 		/* do nothing */
5647 		break;
5648 	}
5649 	return -EOPNOTSUPP;
5650 }
5651 
5652 static struct rtnl_link_stats64 *
5653 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
5654 {
5655 	u32 i;
5656 	struct bnxt *bp = netdev_priv(dev);
5657 
5658 	memset(stats, 0, sizeof(struct rtnl_link_stats64));
5659 
5660 	if (!bp->bnapi)
5661 		return stats;
5662 
5663 	/* TODO check if we need to synchronize with bnxt_close path */
5664 	for (i = 0; i < bp->cp_nr_rings; i++) {
5665 		struct bnxt_napi *bnapi = bp->bnapi[i];
5666 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5667 		struct ctx_hw_stats *hw_stats = cpr->hw_stats;
5668 
5669 		stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
5670 		stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
5671 		stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
5672 
5673 		stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
5674 		stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
5675 		stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
5676 
5677 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
5678 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
5679 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
5680 
5681 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
5682 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
5683 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
5684 
5685 		stats->rx_missed_errors +=
5686 			le64_to_cpu(hw_stats->rx_discard_pkts);
5687 
5688 		stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
5689 
5690 		stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
5691 	}
5692 
5693 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
5694 		struct rx_port_stats *rx = bp->hw_rx_port_stats;
5695 		struct tx_port_stats *tx = bp->hw_tx_port_stats;
5696 
5697 		stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
5698 		stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
5699 		stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
5700 					  le64_to_cpu(rx->rx_ovrsz_frames) +
5701 					  le64_to_cpu(rx->rx_runt_frames);
5702 		stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
5703 				   le64_to_cpu(rx->rx_jbr_frames);
5704 		stats->collisions = le64_to_cpu(tx->tx_total_collisions);
5705 		stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
5706 		stats->tx_errors = le64_to_cpu(tx->tx_err);
5707 	}
5708 
5709 	return stats;
5710 }
5711 
5712 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
5713 {
5714 	struct net_device *dev = bp->dev;
5715 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5716 	struct netdev_hw_addr *ha;
5717 	u8 *haddr;
5718 	int mc_count = 0;
5719 	bool update = false;
5720 	int off = 0;
5721 
5722 	netdev_for_each_mc_addr(ha, dev) {
5723 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
5724 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5725 			vnic->mc_list_count = 0;
5726 			return false;
5727 		}
5728 		haddr = ha->addr;
5729 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
5730 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
5731 			update = true;
5732 		}
5733 		off += ETH_ALEN;
5734 		mc_count++;
5735 	}
5736 	if (mc_count)
5737 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
5738 
5739 	if (mc_count != vnic->mc_list_count) {
5740 		vnic->mc_list_count = mc_count;
5741 		update = true;
5742 	}
5743 	return update;
5744 }
5745 
5746 static bool bnxt_uc_list_updated(struct bnxt *bp)
5747 {
5748 	struct net_device *dev = bp->dev;
5749 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5750 	struct netdev_hw_addr *ha;
5751 	int off = 0;
5752 
5753 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
5754 		return true;
5755 
5756 	netdev_for_each_uc_addr(ha, dev) {
5757 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
5758 			return true;
5759 
5760 		off += ETH_ALEN;
5761 	}
5762 	return false;
5763 }
5764 
5765 static void bnxt_set_rx_mode(struct net_device *dev)
5766 {
5767 	struct bnxt *bp = netdev_priv(dev);
5768 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5769 	u32 mask = vnic->rx_mask;
5770 	bool mc_update = false;
5771 	bool uc_update;
5772 
5773 	if (!netif_running(dev))
5774 		return;
5775 
5776 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
5777 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
5778 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
5779 
5780 	if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
5781 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5782 
5783 	uc_update = bnxt_uc_list_updated(bp);
5784 
5785 	if (dev->flags & IFF_ALLMULTI) {
5786 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5787 		vnic->mc_list_count = 0;
5788 	} else {
5789 		mc_update = bnxt_mc_list_updated(bp, &mask);
5790 	}
5791 
5792 	if (mask != vnic->rx_mask || uc_update || mc_update) {
5793 		vnic->rx_mask = mask;
5794 
5795 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
5796 		schedule_work(&bp->sp_task);
5797 	}
5798 }
5799 
5800 static int bnxt_cfg_rx_mode(struct bnxt *bp)
5801 {
5802 	struct net_device *dev = bp->dev;
5803 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5804 	struct netdev_hw_addr *ha;
5805 	int i, off = 0, rc;
5806 	bool uc_update;
5807 
5808 	netif_addr_lock_bh(dev);
5809 	uc_update = bnxt_uc_list_updated(bp);
5810 	netif_addr_unlock_bh(dev);
5811 
5812 	if (!uc_update)
5813 		goto skip_uc;
5814 
5815 	mutex_lock(&bp->hwrm_cmd_lock);
5816 	for (i = 1; i < vnic->uc_filter_count; i++) {
5817 		struct hwrm_cfa_l2_filter_free_input req = {0};
5818 
5819 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
5820 				       -1);
5821 
5822 		req.l2_filter_id = vnic->fw_l2_filter_id[i];
5823 
5824 		rc = _hwrm_send_message(bp, &req, sizeof(req),
5825 					HWRM_CMD_TIMEOUT);
5826 	}
5827 	mutex_unlock(&bp->hwrm_cmd_lock);
5828 
5829 	vnic->uc_filter_count = 1;
5830 
5831 	netif_addr_lock_bh(dev);
5832 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
5833 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5834 	} else {
5835 		netdev_for_each_uc_addr(ha, dev) {
5836 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
5837 			off += ETH_ALEN;
5838 			vnic->uc_filter_count++;
5839 		}
5840 	}
5841 	netif_addr_unlock_bh(dev);
5842 
5843 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
5844 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
5845 		if (rc) {
5846 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
5847 				   rc);
5848 			vnic->uc_filter_count = i;
5849 			return rc;
5850 		}
5851 	}
5852 
5853 skip_uc:
5854 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
5855 	if (rc)
5856 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
5857 			   rc);
5858 
5859 	return rc;
5860 }
5861 
5862 static bool bnxt_rfs_capable(struct bnxt *bp)
5863 {
5864 #ifdef CONFIG_RFS_ACCEL
5865 	struct bnxt_pf_info *pf = &bp->pf;
5866 	int vnics;
5867 
5868 	if (BNXT_VF(bp) || !(bp->flags & BNXT_FLAG_MSIX_CAP))
5869 		return false;
5870 
5871 	vnics = 1 + bp->rx_nr_rings;
5872 	if (vnics > pf->max_rsscos_ctxs || vnics > pf->max_vnics) {
5873 		netdev_warn(bp->dev,
5874 			    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
5875 			    min(pf->max_rsscos_ctxs - 1, pf->max_vnics - 1));
5876 		return false;
5877 	}
5878 
5879 	return true;
5880 #else
5881 	return false;
5882 #endif
5883 }
5884 
5885 static netdev_features_t bnxt_fix_features(struct net_device *dev,
5886 					   netdev_features_t features)
5887 {
5888 	struct bnxt *bp = netdev_priv(dev);
5889 
5890 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
5891 		features &= ~NETIF_F_NTUPLE;
5892 
5893 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
5894 	 * turned on or off together.
5895 	 */
5896 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
5897 	    (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
5898 		if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
5899 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
5900 				      NETIF_F_HW_VLAN_STAG_RX);
5901 		else
5902 			features |= NETIF_F_HW_VLAN_CTAG_RX |
5903 				    NETIF_F_HW_VLAN_STAG_RX;
5904 	}
5905 #ifdef CONFIG_BNXT_SRIOV
5906 	if (BNXT_VF(bp)) {
5907 		if (bp->vf.vlan) {
5908 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
5909 				      NETIF_F_HW_VLAN_STAG_RX);
5910 		}
5911 	}
5912 #endif
5913 	return features;
5914 }
5915 
5916 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
5917 {
5918 	struct bnxt *bp = netdev_priv(dev);
5919 	u32 flags = bp->flags;
5920 	u32 changes;
5921 	int rc = 0;
5922 	bool re_init = false;
5923 	bool update_tpa = false;
5924 
5925 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
5926 	if ((features & NETIF_F_GRO) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
5927 		flags |= BNXT_FLAG_GRO;
5928 	if (features & NETIF_F_LRO)
5929 		flags |= BNXT_FLAG_LRO;
5930 
5931 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
5932 		flags |= BNXT_FLAG_STRIP_VLAN;
5933 
5934 	if (features & NETIF_F_NTUPLE)
5935 		flags |= BNXT_FLAG_RFS;
5936 
5937 	changes = flags ^ bp->flags;
5938 	if (changes & BNXT_FLAG_TPA) {
5939 		update_tpa = true;
5940 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
5941 		    (flags & BNXT_FLAG_TPA) == 0)
5942 			re_init = true;
5943 	}
5944 
5945 	if (changes & ~BNXT_FLAG_TPA)
5946 		re_init = true;
5947 
5948 	if (flags != bp->flags) {
5949 		u32 old_flags = bp->flags;
5950 
5951 		bp->flags = flags;
5952 
5953 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5954 			if (update_tpa)
5955 				bnxt_set_ring_params(bp);
5956 			return rc;
5957 		}
5958 
5959 		if (re_init) {
5960 			bnxt_close_nic(bp, false, false);
5961 			if (update_tpa)
5962 				bnxt_set_ring_params(bp);
5963 
5964 			return bnxt_open_nic(bp, false, false);
5965 		}
5966 		if (update_tpa) {
5967 			rc = bnxt_set_tpa(bp,
5968 					  (flags & BNXT_FLAG_TPA) ?
5969 					  true : false);
5970 			if (rc)
5971 				bp->flags = old_flags;
5972 		}
5973 	}
5974 	return rc;
5975 }
5976 
5977 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
5978 {
5979 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
5980 	int i = bnapi->index;
5981 
5982 	if (!txr)
5983 		return;
5984 
5985 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
5986 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
5987 		    txr->tx_cons);
5988 }
5989 
5990 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
5991 {
5992 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
5993 	int i = bnapi->index;
5994 
5995 	if (!rxr)
5996 		return;
5997 
5998 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
5999 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
6000 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
6001 		    rxr->rx_sw_agg_prod);
6002 }
6003 
6004 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
6005 {
6006 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6007 	int i = bnapi->index;
6008 
6009 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
6010 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
6011 }
6012 
6013 static void bnxt_dbg_dump_states(struct bnxt *bp)
6014 {
6015 	int i;
6016 	struct bnxt_napi *bnapi;
6017 
6018 	for (i = 0; i < bp->cp_nr_rings; i++) {
6019 		bnapi = bp->bnapi[i];
6020 		if (netif_msg_drv(bp)) {
6021 			bnxt_dump_tx_sw_state(bnapi);
6022 			bnxt_dump_rx_sw_state(bnapi);
6023 			bnxt_dump_cp_sw_state(bnapi);
6024 		}
6025 	}
6026 }
6027 
6028 static void bnxt_reset_task(struct bnxt *bp, bool silent)
6029 {
6030 	if (!silent)
6031 		bnxt_dbg_dump_states(bp);
6032 	if (netif_running(bp->dev)) {
6033 		bnxt_close_nic(bp, false, false);
6034 		bnxt_open_nic(bp, false, false);
6035 	}
6036 }
6037 
6038 static void bnxt_tx_timeout(struct net_device *dev)
6039 {
6040 	struct bnxt *bp = netdev_priv(dev);
6041 
6042 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
6043 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
6044 	schedule_work(&bp->sp_task);
6045 }
6046 
6047 #ifdef CONFIG_NET_POLL_CONTROLLER
6048 static void bnxt_poll_controller(struct net_device *dev)
6049 {
6050 	struct bnxt *bp = netdev_priv(dev);
6051 	int i;
6052 
6053 	for (i = 0; i < bp->cp_nr_rings; i++) {
6054 		struct bnxt_irq *irq = &bp->irq_tbl[i];
6055 
6056 		disable_irq(irq->vector);
6057 		irq->handler(irq->vector, bp->bnapi[i]);
6058 		enable_irq(irq->vector);
6059 	}
6060 }
6061 #endif
6062 
6063 static void bnxt_timer(unsigned long data)
6064 {
6065 	struct bnxt *bp = (struct bnxt *)data;
6066 	struct net_device *dev = bp->dev;
6067 
6068 	if (!netif_running(dev))
6069 		return;
6070 
6071 	if (atomic_read(&bp->intr_sem) != 0)
6072 		goto bnxt_restart_timer;
6073 
6074 	if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS)) {
6075 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
6076 		schedule_work(&bp->sp_task);
6077 	}
6078 bnxt_restart_timer:
6079 	mod_timer(&bp->timer, jiffies + bp->current_interval);
6080 }
6081 
6082 /* Only called from bnxt_sp_task() */
6083 static void bnxt_reset(struct bnxt *bp, bool silent)
6084 {
6085 	/* bnxt_reset_task() calls bnxt_close_nic() which waits
6086 	 * for BNXT_STATE_IN_SP_TASK to clear.
6087 	 * If there is a parallel dev_close(), bnxt_close() may be holding
6088 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
6089 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
6090 	 */
6091 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6092 	rtnl_lock();
6093 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
6094 		bnxt_reset_task(bp, silent);
6095 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6096 	rtnl_unlock();
6097 }
6098 
6099 static void bnxt_cfg_ntp_filters(struct bnxt *);
6100 
6101 static void bnxt_sp_task(struct work_struct *work)
6102 {
6103 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
6104 	int rc;
6105 
6106 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6107 	smp_mb__after_atomic();
6108 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6109 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6110 		return;
6111 	}
6112 
6113 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
6114 		bnxt_cfg_rx_mode(bp);
6115 
6116 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
6117 		bnxt_cfg_ntp_filters(bp);
6118 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
6119 		rc = bnxt_update_link(bp, true);
6120 		if (rc)
6121 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
6122 				   rc);
6123 	}
6124 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
6125 		bnxt_hwrm_exec_fwd_req(bp);
6126 	if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
6127 		bnxt_hwrm_tunnel_dst_port_alloc(
6128 			bp, bp->vxlan_port,
6129 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
6130 	}
6131 	if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
6132 		bnxt_hwrm_tunnel_dst_port_free(
6133 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
6134 	}
6135 	if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
6136 		bnxt_hwrm_tunnel_dst_port_alloc(
6137 			bp, bp->nge_port,
6138 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
6139 	}
6140 	if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
6141 		bnxt_hwrm_tunnel_dst_port_free(
6142 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
6143 	}
6144 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
6145 		bnxt_reset(bp, false);
6146 
6147 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
6148 		bnxt_reset(bp, true);
6149 
6150 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event))
6151 		bnxt_get_port_module_status(bp);
6152 
6153 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event))
6154 		bnxt_hwrm_port_qstats(bp);
6155 
6156 	smp_mb__before_atomic();
6157 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6158 }
6159 
6160 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
6161 {
6162 	int rc;
6163 	struct bnxt *bp = netdev_priv(dev);
6164 
6165 	SET_NETDEV_DEV(dev, &pdev->dev);
6166 
6167 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
6168 	rc = pci_enable_device(pdev);
6169 	if (rc) {
6170 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
6171 		goto init_err;
6172 	}
6173 
6174 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
6175 		dev_err(&pdev->dev,
6176 			"Cannot find PCI device base address, aborting\n");
6177 		rc = -ENODEV;
6178 		goto init_err_disable;
6179 	}
6180 
6181 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
6182 	if (rc) {
6183 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
6184 		goto init_err_disable;
6185 	}
6186 
6187 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
6188 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
6189 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
6190 		goto init_err_disable;
6191 	}
6192 
6193 	pci_set_master(pdev);
6194 
6195 	bp->dev = dev;
6196 	bp->pdev = pdev;
6197 
6198 	bp->bar0 = pci_ioremap_bar(pdev, 0);
6199 	if (!bp->bar0) {
6200 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
6201 		rc = -ENOMEM;
6202 		goto init_err_release;
6203 	}
6204 
6205 	bp->bar1 = pci_ioremap_bar(pdev, 2);
6206 	if (!bp->bar1) {
6207 		dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
6208 		rc = -ENOMEM;
6209 		goto init_err_release;
6210 	}
6211 
6212 	bp->bar2 = pci_ioremap_bar(pdev, 4);
6213 	if (!bp->bar2) {
6214 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
6215 		rc = -ENOMEM;
6216 		goto init_err_release;
6217 	}
6218 
6219 	pci_enable_pcie_error_reporting(pdev);
6220 
6221 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
6222 
6223 	spin_lock_init(&bp->ntp_fltr_lock);
6224 
6225 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
6226 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
6227 
6228 	/* tick values in micro seconds */
6229 	bp->rx_coal_ticks = 12;
6230 	bp->rx_coal_bufs = 30;
6231 	bp->rx_coal_ticks_irq = 1;
6232 	bp->rx_coal_bufs_irq = 2;
6233 
6234 	bp->tx_coal_ticks = 25;
6235 	bp->tx_coal_bufs = 30;
6236 	bp->tx_coal_ticks_irq = 2;
6237 	bp->tx_coal_bufs_irq = 2;
6238 
6239 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
6240 
6241 	init_timer(&bp->timer);
6242 	bp->timer.data = (unsigned long)bp;
6243 	bp->timer.function = bnxt_timer;
6244 	bp->current_interval = BNXT_TIMER_INTERVAL;
6245 
6246 	clear_bit(BNXT_STATE_OPEN, &bp->state);
6247 
6248 	return 0;
6249 
6250 init_err_release:
6251 	if (bp->bar2) {
6252 		pci_iounmap(pdev, bp->bar2);
6253 		bp->bar2 = NULL;
6254 	}
6255 
6256 	if (bp->bar1) {
6257 		pci_iounmap(pdev, bp->bar1);
6258 		bp->bar1 = NULL;
6259 	}
6260 
6261 	if (bp->bar0) {
6262 		pci_iounmap(pdev, bp->bar0);
6263 		bp->bar0 = NULL;
6264 	}
6265 
6266 	pci_release_regions(pdev);
6267 
6268 init_err_disable:
6269 	pci_disable_device(pdev);
6270 
6271 init_err:
6272 	return rc;
6273 }
6274 
6275 /* rtnl_lock held */
6276 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
6277 {
6278 	struct sockaddr *addr = p;
6279 	struct bnxt *bp = netdev_priv(dev);
6280 	int rc = 0;
6281 
6282 	if (!is_valid_ether_addr(addr->sa_data))
6283 		return -EADDRNOTAVAIL;
6284 
6285 	rc = bnxt_approve_mac(bp, addr->sa_data);
6286 	if (rc)
6287 		return rc;
6288 
6289 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
6290 		return 0;
6291 
6292 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
6293 	if (netif_running(dev)) {
6294 		bnxt_close_nic(bp, false, false);
6295 		rc = bnxt_open_nic(bp, false, false);
6296 	}
6297 
6298 	return rc;
6299 }
6300 
6301 /* rtnl_lock held */
6302 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
6303 {
6304 	struct bnxt *bp = netdev_priv(dev);
6305 
6306 	if (new_mtu < 60 || new_mtu > 9500)
6307 		return -EINVAL;
6308 
6309 	if (netif_running(dev))
6310 		bnxt_close_nic(bp, false, false);
6311 
6312 	dev->mtu = new_mtu;
6313 	bnxt_set_ring_params(bp);
6314 
6315 	if (netif_running(dev))
6316 		return bnxt_open_nic(bp, false, false);
6317 
6318 	return 0;
6319 }
6320 
6321 static int bnxt_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
6322 			 struct tc_to_netdev *ntc)
6323 {
6324 	struct bnxt *bp = netdev_priv(dev);
6325 	bool sh = false;
6326 	u8 tc;
6327 
6328 	if (ntc->type != TC_SETUP_MQPRIO)
6329 		return -EINVAL;
6330 
6331 	tc = ntc->tc;
6332 
6333 	if (tc > bp->max_tc) {
6334 		netdev_err(dev, "too many traffic classes requested: %d Max supported is %d\n",
6335 			   tc, bp->max_tc);
6336 		return -EINVAL;
6337 	}
6338 
6339 	if (netdev_get_num_tc(dev) == tc)
6340 		return 0;
6341 
6342 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6343 		sh = true;
6344 
6345 	if (tc) {
6346 		int max_rx_rings, max_tx_rings, rc;
6347 
6348 		rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
6349 		if (rc || bp->tx_nr_rings_per_tc * tc > max_tx_rings)
6350 			return -ENOMEM;
6351 	}
6352 
6353 	/* Needs to close the device and do hw resource re-allocations */
6354 	if (netif_running(bp->dev))
6355 		bnxt_close_nic(bp, true, false);
6356 
6357 	if (tc) {
6358 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
6359 		netdev_set_num_tc(dev, tc);
6360 	} else {
6361 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
6362 		netdev_reset_tc(dev);
6363 	}
6364 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
6365 			       bp->tx_nr_rings + bp->rx_nr_rings;
6366 	bp->num_stat_ctxs = bp->cp_nr_rings;
6367 
6368 	if (netif_running(bp->dev))
6369 		return bnxt_open_nic(bp, true, false);
6370 
6371 	return 0;
6372 }
6373 
6374 #ifdef CONFIG_RFS_ACCEL
6375 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
6376 			    struct bnxt_ntuple_filter *f2)
6377 {
6378 	struct flow_keys *keys1 = &f1->fkeys;
6379 	struct flow_keys *keys2 = &f2->fkeys;
6380 
6381 	if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
6382 	    keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
6383 	    keys1->ports.ports == keys2->ports.ports &&
6384 	    keys1->basic.ip_proto == keys2->basic.ip_proto &&
6385 	    keys1->basic.n_proto == keys2->basic.n_proto &&
6386 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
6387 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
6388 		return true;
6389 
6390 	return false;
6391 }
6392 
6393 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
6394 			      u16 rxq_index, u32 flow_id)
6395 {
6396 	struct bnxt *bp = netdev_priv(dev);
6397 	struct bnxt_ntuple_filter *fltr, *new_fltr;
6398 	struct flow_keys *fkeys;
6399 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
6400 	int rc = 0, idx, bit_id, l2_idx = 0;
6401 	struct hlist_head *head;
6402 
6403 	if (skb->encapsulation)
6404 		return -EPROTONOSUPPORT;
6405 
6406 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
6407 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6408 		int off = 0, j;
6409 
6410 		netif_addr_lock_bh(dev);
6411 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
6412 			if (ether_addr_equal(eth->h_dest,
6413 					     vnic->uc_list + off)) {
6414 				l2_idx = j + 1;
6415 				break;
6416 			}
6417 		}
6418 		netif_addr_unlock_bh(dev);
6419 		if (!l2_idx)
6420 			return -EINVAL;
6421 	}
6422 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
6423 	if (!new_fltr)
6424 		return -ENOMEM;
6425 
6426 	fkeys = &new_fltr->fkeys;
6427 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
6428 		rc = -EPROTONOSUPPORT;
6429 		goto err_free;
6430 	}
6431 
6432 	if ((fkeys->basic.n_proto != htons(ETH_P_IP)) ||
6433 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
6434 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
6435 		rc = -EPROTONOSUPPORT;
6436 		goto err_free;
6437 	}
6438 
6439 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
6440 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
6441 
6442 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
6443 	head = &bp->ntp_fltr_hash_tbl[idx];
6444 	rcu_read_lock();
6445 	hlist_for_each_entry_rcu(fltr, head, hash) {
6446 		if (bnxt_fltr_match(fltr, new_fltr)) {
6447 			rcu_read_unlock();
6448 			rc = 0;
6449 			goto err_free;
6450 		}
6451 	}
6452 	rcu_read_unlock();
6453 
6454 	spin_lock_bh(&bp->ntp_fltr_lock);
6455 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
6456 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
6457 	if (bit_id < 0) {
6458 		spin_unlock_bh(&bp->ntp_fltr_lock);
6459 		rc = -ENOMEM;
6460 		goto err_free;
6461 	}
6462 
6463 	new_fltr->sw_id = (u16)bit_id;
6464 	new_fltr->flow_id = flow_id;
6465 	new_fltr->l2_fltr_idx = l2_idx;
6466 	new_fltr->rxq = rxq_index;
6467 	hlist_add_head_rcu(&new_fltr->hash, head);
6468 	bp->ntp_fltr_count++;
6469 	spin_unlock_bh(&bp->ntp_fltr_lock);
6470 
6471 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
6472 	schedule_work(&bp->sp_task);
6473 
6474 	return new_fltr->sw_id;
6475 
6476 err_free:
6477 	kfree(new_fltr);
6478 	return rc;
6479 }
6480 
6481 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
6482 {
6483 	int i;
6484 
6485 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
6486 		struct hlist_head *head;
6487 		struct hlist_node *tmp;
6488 		struct bnxt_ntuple_filter *fltr;
6489 		int rc;
6490 
6491 		head = &bp->ntp_fltr_hash_tbl[i];
6492 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
6493 			bool del = false;
6494 
6495 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
6496 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
6497 							fltr->flow_id,
6498 							fltr->sw_id)) {
6499 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
6500 									 fltr);
6501 					del = true;
6502 				}
6503 			} else {
6504 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
6505 								       fltr);
6506 				if (rc)
6507 					del = true;
6508 				else
6509 					set_bit(BNXT_FLTR_VALID, &fltr->state);
6510 			}
6511 
6512 			if (del) {
6513 				spin_lock_bh(&bp->ntp_fltr_lock);
6514 				hlist_del_rcu(&fltr->hash);
6515 				bp->ntp_fltr_count--;
6516 				spin_unlock_bh(&bp->ntp_fltr_lock);
6517 				synchronize_rcu();
6518 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
6519 				kfree(fltr);
6520 			}
6521 		}
6522 	}
6523 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
6524 		netdev_info(bp->dev, "Receive PF driver unload event!");
6525 }
6526 
6527 #else
6528 
6529 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
6530 {
6531 }
6532 
6533 #endif /* CONFIG_RFS_ACCEL */
6534 
6535 static void bnxt_udp_tunnel_add(struct net_device *dev,
6536 				struct udp_tunnel_info *ti)
6537 {
6538 	struct bnxt *bp = netdev_priv(dev);
6539 
6540 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
6541 		return;
6542 
6543 	if (!netif_running(dev))
6544 		return;
6545 
6546 	switch (ti->type) {
6547 	case UDP_TUNNEL_TYPE_VXLAN:
6548 		if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
6549 			return;
6550 
6551 		bp->vxlan_port_cnt++;
6552 		if (bp->vxlan_port_cnt == 1) {
6553 			bp->vxlan_port = ti->port;
6554 			set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
6555 			schedule_work(&bp->sp_task);
6556 		}
6557 		break;
6558 	case UDP_TUNNEL_TYPE_GENEVE:
6559 		if (bp->nge_port_cnt && bp->nge_port != ti->port)
6560 			return;
6561 
6562 		bp->nge_port_cnt++;
6563 		if (bp->nge_port_cnt == 1) {
6564 			bp->nge_port = ti->port;
6565 			set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
6566 		}
6567 		break;
6568 	default:
6569 		return;
6570 	}
6571 
6572 	schedule_work(&bp->sp_task);
6573 }
6574 
6575 static void bnxt_udp_tunnel_del(struct net_device *dev,
6576 				struct udp_tunnel_info *ti)
6577 {
6578 	struct bnxt *bp = netdev_priv(dev);
6579 
6580 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
6581 		return;
6582 
6583 	if (!netif_running(dev))
6584 		return;
6585 
6586 	switch (ti->type) {
6587 	case UDP_TUNNEL_TYPE_VXLAN:
6588 		if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
6589 			return;
6590 		bp->vxlan_port_cnt--;
6591 
6592 		if (bp->vxlan_port_cnt != 0)
6593 			return;
6594 
6595 		set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
6596 		break;
6597 	case UDP_TUNNEL_TYPE_GENEVE:
6598 		if (!bp->nge_port_cnt || bp->nge_port != ti->port)
6599 			return;
6600 		bp->nge_port_cnt--;
6601 
6602 		if (bp->nge_port_cnt != 0)
6603 			return;
6604 
6605 		set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
6606 		break;
6607 	default:
6608 		return;
6609 	}
6610 
6611 	schedule_work(&bp->sp_task);
6612 }
6613 
6614 static const struct net_device_ops bnxt_netdev_ops = {
6615 	.ndo_open		= bnxt_open,
6616 	.ndo_start_xmit		= bnxt_start_xmit,
6617 	.ndo_stop		= bnxt_close,
6618 	.ndo_get_stats64	= bnxt_get_stats64,
6619 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
6620 	.ndo_do_ioctl		= bnxt_ioctl,
6621 	.ndo_validate_addr	= eth_validate_addr,
6622 	.ndo_set_mac_address	= bnxt_change_mac_addr,
6623 	.ndo_change_mtu		= bnxt_change_mtu,
6624 	.ndo_fix_features	= bnxt_fix_features,
6625 	.ndo_set_features	= bnxt_set_features,
6626 	.ndo_tx_timeout		= bnxt_tx_timeout,
6627 #ifdef CONFIG_BNXT_SRIOV
6628 	.ndo_get_vf_config	= bnxt_get_vf_config,
6629 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
6630 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
6631 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
6632 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
6633 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
6634 #endif
6635 #ifdef CONFIG_NET_POLL_CONTROLLER
6636 	.ndo_poll_controller	= bnxt_poll_controller,
6637 #endif
6638 	.ndo_setup_tc           = bnxt_setup_tc,
6639 #ifdef CONFIG_RFS_ACCEL
6640 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
6641 #endif
6642 	.ndo_udp_tunnel_add	= bnxt_udp_tunnel_add,
6643 	.ndo_udp_tunnel_del	= bnxt_udp_tunnel_del,
6644 #ifdef CONFIG_NET_RX_BUSY_POLL
6645 	.ndo_busy_poll		= bnxt_busy_poll,
6646 #endif
6647 };
6648 
6649 static void bnxt_remove_one(struct pci_dev *pdev)
6650 {
6651 	struct net_device *dev = pci_get_drvdata(pdev);
6652 	struct bnxt *bp = netdev_priv(dev);
6653 
6654 	if (BNXT_PF(bp))
6655 		bnxt_sriov_disable(bp);
6656 
6657 	pci_disable_pcie_error_reporting(pdev);
6658 	unregister_netdev(dev);
6659 	cancel_work_sync(&bp->sp_task);
6660 	bp->sp_event = 0;
6661 
6662 	bnxt_hwrm_func_drv_unrgtr(bp);
6663 	bnxt_free_hwrm_resources(bp);
6664 	pci_iounmap(pdev, bp->bar2);
6665 	pci_iounmap(pdev, bp->bar1);
6666 	pci_iounmap(pdev, bp->bar0);
6667 	free_netdev(dev);
6668 
6669 	pci_release_regions(pdev);
6670 	pci_disable_device(pdev);
6671 }
6672 
6673 static int bnxt_probe_phy(struct bnxt *bp)
6674 {
6675 	int rc = 0;
6676 	struct bnxt_link_info *link_info = &bp->link_info;
6677 
6678 	rc = bnxt_hwrm_phy_qcaps(bp);
6679 	if (rc) {
6680 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
6681 			   rc);
6682 		return rc;
6683 	}
6684 
6685 	rc = bnxt_update_link(bp, false);
6686 	if (rc) {
6687 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
6688 			   rc);
6689 		return rc;
6690 	}
6691 
6692 	/* Older firmware does not have supported_auto_speeds, so assume
6693 	 * that all supported speeds can be autonegotiated.
6694 	 */
6695 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
6696 		link_info->support_auto_speeds = link_info->support_speeds;
6697 
6698 	/*initialize the ethool setting copy with NVM settings */
6699 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
6700 		link_info->autoneg = BNXT_AUTONEG_SPEED;
6701 		if (bp->hwrm_spec_code >= 0x10201) {
6702 			if (link_info->auto_pause_setting &
6703 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
6704 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
6705 		} else {
6706 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
6707 		}
6708 		link_info->advertising = link_info->auto_link_speeds;
6709 	} else {
6710 		link_info->req_link_speed = link_info->force_link_speed;
6711 		link_info->req_duplex = link_info->duplex_setting;
6712 	}
6713 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
6714 		link_info->req_flow_ctrl =
6715 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
6716 	else
6717 		link_info->req_flow_ctrl = link_info->force_pause_setting;
6718 	return rc;
6719 }
6720 
6721 static int bnxt_get_max_irq(struct pci_dev *pdev)
6722 {
6723 	u16 ctrl;
6724 
6725 	if (!pdev->msix_cap)
6726 		return 1;
6727 
6728 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
6729 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
6730 }
6731 
6732 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
6733 				int *max_cp)
6734 {
6735 	int max_ring_grps = 0;
6736 
6737 #ifdef CONFIG_BNXT_SRIOV
6738 	if (!BNXT_PF(bp)) {
6739 		*max_tx = bp->vf.max_tx_rings;
6740 		*max_rx = bp->vf.max_rx_rings;
6741 		*max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
6742 		*max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
6743 		max_ring_grps = bp->vf.max_hw_ring_grps;
6744 	} else
6745 #endif
6746 	{
6747 		*max_tx = bp->pf.max_tx_rings;
6748 		*max_rx = bp->pf.max_rx_rings;
6749 		*max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
6750 		*max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
6751 		max_ring_grps = bp->pf.max_hw_ring_grps;
6752 	}
6753 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
6754 		*max_cp -= 1;
6755 		*max_rx -= 2;
6756 	}
6757 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6758 		*max_rx >>= 1;
6759 	*max_rx = min_t(int, *max_rx, max_ring_grps);
6760 }
6761 
6762 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
6763 {
6764 	int rx, tx, cp;
6765 
6766 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
6767 	if (!rx || !tx || !cp)
6768 		return -ENOMEM;
6769 
6770 	*max_rx = rx;
6771 	*max_tx = tx;
6772 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
6773 }
6774 
6775 static int bnxt_set_dflt_rings(struct bnxt *bp)
6776 {
6777 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
6778 	bool sh = true;
6779 
6780 	if (sh)
6781 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
6782 	dflt_rings = netif_get_num_default_rss_queues();
6783 	rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
6784 	if (rc)
6785 		return rc;
6786 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
6787 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
6788 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
6789 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
6790 			       bp->tx_nr_rings + bp->rx_nr_rings;
6791 	bp->num_stat_ctxs = bp->cp_nr_rings;
6792 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
6793 		bp->rx_nr_rings++;
6794 		bp->cp_nr_rings++;
6795 	}
6796 	return rc;
6797 }
6798 
6799 static void bnxt_parse_log_pcie_link(struct bnxt *bp)
6800 {
6801 	enum pcie_link_width width = PCIE_LNK_WIDTH_UNKNOWN;
6802 	enum pci_bus_speed speed = PCI_SPEED_UNKNOWN;
6803 
6804 	if (pcie_get_minimum_link(bp->pdev, &speed, &width) ||
6805 	    speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN)
6806 		netdev_info(bp->dev, "Failed to determine PCIe Link Info\n");
6807 	else
6808 		netdev_info(bp->dev, "PCIe: Speed %s Width x%d\n",
6809 			    speed == PCIE_SPEED_2_5GT ? "2.5GT/s" :
6810 			    speed == PCIE_SPEED_5_0GT ? "5.0GT/s" :
6811 			    speed == PCIE_SPEED_8_0GT ? "8.0GT/s" :
6812 			    "Unknown", width);
6813 }
6814 
6815 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6816 {
6817 	static int version_printed;
6818 	struct net_device *dev;
6819 	struct bnxt *bp;
6820 	int rc, max_irqs;
6821 
6822 	if (pdev->device == 0x16cd && pci_is_bridge(pdev))
6823 		return -ENODEV;
6824 
6825 	if (version_printed++ == 0)
6826 		pr_info("%s", version);
6827 
6828 	max_irqs = bnxt_get_max_irq(pdev);
6829 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
6830 	if (!dev)
6831 		return -ENOMEM;
6832 
6833 	bp = netdev_priv(dev);
6834 
6835 	if (bnxt_vf_pciid(ent->driver_data))
6836 		bp->flags |= BNXT_FLAG_VF;
6837 
6838 	if (pdev->msix_cap)
6839 		bp->flags |= BNXT_FLAG_MSIX_CAP;
6840 
6841 	rc = bnxt_init_board(pdev, dev);
6842 	if (rc < 0)
6843 		goto init_err_free;
6844 
6845 	dev->netdev_ops = &bnxt_netdev_ops;
6846 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
6847 	dev->ethtool_ops = &bnxt_ethtool_ops;
6848 
6849 	pci_set_drvdata(pdev, dev);
6850 
6851 	rc = bnxt_alloc_hwrm_resources(bp);
6852 	if (rc)
6853 		goto init_err;
6854 
6855 	mutex_init(&bp->hwrm_cmd_lock);
6856 	rc = bnxt_hwrm_ver_get(bp);
6857 	if (rc)
6858 		goto init_err;
6859 
6860 	bnxt_hwrm_fw_set_time(bp);
6861 
6862 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
6863 			   NETIF_F_TSO | NETIF_F_TSO6 |
6864 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
6865 			   NETIF_F_GSO_IPXIP4 |
6866 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
6867 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
6868 			   NETIF_F_RXCSUM | NETIF_F_GRO;
6869 
6870 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
6871 		dev->hw_features |= NETIF_F_LRO;
6872 
6873 	dev->hw_enc_features =
6874 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
6875 			NETIF_F_TSO | NETIF_F_TSO6 |
6876 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
6877 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
6878 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
6879 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
6880 				    NETIF_F_GSO_GRE_CSUM;
6881 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
6882 	dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6883 			    NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
6884 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
6885 	dev->priv_flags |= IFF_UNICAST_FLT;
6886 
6887 #ifdef CONFIG_BNXT_SRIOV
6888 	init_waitqueue_head(&bp->sriov_cfg_wait);
6889 #endif
6890 	bp->gro_func = bnxt_gro_func_5730x;
6891 	if (BNXT_CHIP_NUM_57X1X(bp->chip_num))
6892 		bp->gro_func = bnxt_gro_func_5731x;
6893 
6894 	rc = bnxt_hwrm_func_drv_rgtr(bp);
6895 	if (rc)
6896 		goto init_err;
6897 
6898 	/* Get the MAX capabilities for this function */
6899 	rc = bnxt_hwrm_func_qcaps(bp);
6900 	if (rc) {
6901 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
6902 			   rc);
6903 		rc = -1;
6904 		goto init_err;
6905 	}
6906 
6907 	rc = bnxt_hwrm_queue_qportcfg(bp);
6908 	if (rc) {
6909 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
6910 			   rc);
6911 		rc = -1;
6912 		goto init_err;
6913 	}
6914 
6915 	bnxt_hwrm_func_qcfg(bp);
6916 
6917 	bnxt_set_tpa_flags(bp);
6918 	bnxt_set_ring_params(bp);
6919 	if (BNXT_PF(bp))
6920 		bp->pf.max_irqs = max_irqs;
6921 #if defined(CONFIG_BNXT_SRIOV)
6922 	else
6923 		bp->vf.max_irqs = max_irqs;
6924 #endif
6925 	bnxt_set_dflt_rings(bp);
6926 
6927 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) {
6928 		dev->hw_features |= NETIF_F_NTUPLE;
6929 		if (bnxt_rfs_capable(bp)) {
6930 			bp->flags |= BNXT_FLAG_RFS;
6931 			dev->features |= NETIF_F_NTUPLE;
6932 		}
6933 	}
6934 
6935 	if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
6936 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
6937 
6938 	rc = bnxt_probe_phy(bp);
6939 	if (rc)
6940 		goto init_err;
6941 
6942 	rc = register_netdev(dev);
6943 	if (rc)
6944 		goto init_err;
6945 
6946 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
6947 		    board_info[ent->driver_data].name,
6948 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
6949 
6950 	bnxt_parse_log_pcie_link(bp);
6951 
6952 	return 0;
6953 
6954 init_err:
6955 	pci_iounmap(pdev, bp->bar0);
6956 	pci_release_regions(pdev);
6957 	pci_disable_device(pdev);
6958 
6959 init_err_free:
6960 	free_netdev(dev);
6961 	return rc;
6962 }
6963 
6964 /**
6965  * bnxt_io_error_detected - called when PCI error is detected
6966  * @pdev: Pointer to PCI device
6967  * @state: The current pci connection state
6968  *
6969  * This function is called after a PCI bus error affecting
6970  * this device has been detected.
6971  */
6972 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
6973 					       pci_channel_state_t state)
6974 {
6975 	struct net_device *netdev = pci_get_drvdata(pdev);
6976 	struct bnxt *bp = netdev_priv(netdev);
6977 
6978 	netdev_info(netdev, "PCI I/O error detected\n");
6979 
6980 	rtnl_lock();
6981 	netif_device_detach(netdev);
6982 
6983 	if (state == pci_channel_io_perm_failure) {
6984 		rtnl_unlock();
6985 		return PCI_ERS_RESULT_DISCONNECT;
6986 	}
6987 
6988 	if (netif_running(netdev))
6989 		bnxt_close(netdev);
6990 
6991 	/* So that func_reset will be done during slot_reset */
6992 	clear_bit(BNXT_STATE_FN_RST_DONE, &bp->state);
6993 	pci_disable_device(pdev);
6994 	rtnl_unlock();
6995 
6996 	/* Request a slot slot reset. */
6997 	return PCI_ERS_RESULT_NEED_RESET;
6998 }
6999 
7000 /**
7001  * bnxt_io_slot_reset - called after the pci bus has been reset.
7002  * @pdev: Pointer to PCI device
7003  *
7004  * Restart the card from scratch, as if from a cold-boot.
7005  * At this point, the card has exprienced a hard reset,
7006  * followed by fixups by BIOS, and has its config space
7007  * set up identically to what it was at cold boot.
7008  */
7009 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
7010 {
7011 	struct net_device *netdev = pci_get_drvdata(pdev);
7012 	struct bnxt *bp = netdev_priv(netdev);
7013 	int err = 0;
7014 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
7015 
7016 	netdev_info(bp->dev, "PCI Slot Reset\n");
7017 
7018 	rtnl_lock();
7019 
7020 	if (pci_enable_device(pdev)) {
7021 		dev_err(&pdev->dev,
7022 			"Cannot re-enable PCI device after reset.\n");
7023 	} else {
7024 		pci_set_master(pdev);
7025 
7026 		if (netif_running(netdev))
7027 			err = bnxt_open(netdev);
7028 
7029 		if (!err)
7030 			result = PCI_ERS_RESULT_RECOVERED;
7031 	}
7032 
7033 	if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
7034 		dev_close(netdev);
7035 
7036 	rtnl_unlock();
7037 
7038 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7039 	if (err) {
7040 		dev_err(&pdev->dev,
7041 			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7042 			 err); /* non-fatal, continue */
7043 	}
7044 
7045 	return PCI_ERS_RESULT_RECOVERED;
7046 }
7047 
7048 /**
7049  * bnxt_io_resume - called when traffic can start flowing again.
7050  * @pdev: Pointer to PCI device
7051  *
7052  * This callback is called when the error recovery driver tells
7053  * us that its OK to resume normal operation.
7054  */
7055 static void bnxt_io_resume(struct pci_dev *pdev)
7056 {
7057 	struct net_device *netdev = pci_get_drvdata(pdev);
7058 
7059 	rtnl_lock();
7060 
7061 	netif_device_attach(netdev);
7062 
7063 	rtnl_unlock();
7064 }
7065 
7066 static const struct pci_error_handlers bnxt_err_handler = {
7067 	.error_detected	= bnxt_io_error_detected,
7068 	.slot_reset	= bnxt_io_slot_reset,
7069 	.resume		= bnxt_io_resume
7070 };
7071 
7072 static struct pci_driver bnxt_pci_driver = {
7073 	.name		= DRV_MODULE_NAME,
7074 	.id_table	= bnxt_pci_tbl,
7075 	.probe		= bnxt_init_one,
7076 	.remove		= bnxt_remove_one,
7077 	.err_handler	= &bnxt_err_handler,
7078 #if defined(CONFIG_BNXT_SRIOV)
7079 	.sriov_configure = bnxt_sriov_configure,
7080 #endif
7081 };
7082 
7083 module_pci_driver(bnxt_pci_driver);
7084