1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/gro.h> 41 #include <net/ip.h> 42 #include <net/tcp.h> 43 #include <net/udp.h> 44 #include <net/checksum.h> 45 #include <net/ip6_checksum.h> 46 #include <net/udp_tunnel.h> 47 #include <linux/workqueue.h> 48 #include <linux/prefetch.h> 49 #include <linux/cache.h> 50 #include <linux/log2.h> 51 #include <linux/bitmap.h> 52 #include <linux/cpu_rmap.h> 53 #include <linux/cpumask.h> 54 #include <net/pkt_cls.h> 55 #include <net/page_pool/helpers.h> 56 #include <linux/align.h> 57 #include <net/netdev_queues.h> 58 59 #include "bnxt_hsi.h" 60 #include "bnxt.h" 61 #include "bnxt_hwrm.h" 62 #include "bnxt_ulp.h" 63 #include "bnxt_sriov.h" 64 #include "bnxt_ethtool.h" 65 #include "bnxt_dcb.h" 66 #include "bnxt_xdp.h" 67 #include "bnxt_ptp.h" 68 #include "bnxt_vfr.h" 69 #include "bnxt_tc.h" 70 #include "bnxt_devlink.h" 71 #include "bnxt_debugfs.h" 72 #include "bnxt_hwmon.h" 73 74 #define BNXT_TX_TIMEOUT (5 * HZ) 75 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \ 76 NETIF_MSG_TX_ERR) 77 78 MODULE_LICENSE("GPL"); 79 MODULE_DESCRIPTION("Broadcom BCM573xx network driver"); 80 81 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 82 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 83 #define BNXT_RX_COPY_THRESH 256 84 85 #define BNXT_TX_PUSH_THRESH 164 86 87 /* indexed by enum board_idx */ 88 static const struct { 89 char *name; 90 } board_info[] = { 91 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 92 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 93 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 94 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 95 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 96 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 97 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 98 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 99 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 100 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 101 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 102 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 103 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 104 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 105 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 106 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 107 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 108 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 109 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 110 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 111 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 112 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 113 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 114 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 115 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 116 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 117 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 118 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 119 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 120 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 121 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 122 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 123 [BCM57608] = { "Broadcom BCM57608 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 124 [BCM57604] = { "Broadcom BCM57604 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 125 [BCM57602] = { "Broadcom BCM57602 NetXtreme-E 10Gb/25Gb/50Gb/100Gb Ethernet" }, 126 [BCM57601] = { "Broadcom BCM57601 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 127 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 128 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 129 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 130 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 131 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 132 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 133 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 134 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 135 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 136 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 137 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 138 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 139 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 140 }; 141 142 static const struct pci_device_id bnxt_pci_tbl[] = { 143 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 144 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 145 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 146 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 147 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 148 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 149 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 150 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 151 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 152 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 153 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 154 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 155 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 156 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 157 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 158 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 159 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 160 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 161 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 162 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 163 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 164 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 165 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 166 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 167 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 168 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 169 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 170 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 171 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 172 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 173 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 174 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 175 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 176 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 177 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 178 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 179 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 180 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 181 { PCI_VDEVICE(BROADCOM, 0x1760), .driver_data = BCM57608 }, 182 { PCI_VDEVICE(BROADCOM, 0x1761), .driver_data = BCM57604 }, 183 { PCI_VDEVICE(BROADCOM, 0x1762), .driver_data = BCM57602 }, 184 { PCI_VDEVICE(BROADCOM, 0x1763), .driver_data = BCM57601 }, 185 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR }, 186 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 187 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR }, 188 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR }, 189 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 190 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR }, 191 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 192 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 193 #ifdef CONFIG_BNXT_SRIOV 194 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 195 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 196 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 197 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 198 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 199 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 200 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 201 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 202 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 203 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 204 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 205 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 206 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 207 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 208 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 209 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 210 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 211 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 212 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 213 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 214 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 215 #endif 216 { 0 } 217 }; 218 219 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 220 221 static const u16 bnxt_vf_req_snif[] = { 222 HWRM_FUNC_CFG, 223 HWRM_FUNC_VF_CFG, 224 HWRM_PORT_PHY_QCFG, 225 HWRM_CFA_L2_FILTER_ALLOC, 226 }; 227 228 static const u16 bnxt_async_events_arr[] = { 229 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 230 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 231 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 232 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 233 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 234 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 235 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 236 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 237 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 238 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 239 ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE, 240 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 241 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 242 ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP, 243 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT, 244 ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE, 245 }; 246 247 static struct workqueue_struct *bnxt_pf_wq; 248 249 #define BNXT_IPV6_MASK_ALL {{{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, \ 250 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }}} 251 #define BNXT_IPV6_MASK_NONE {{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }}} 252 253 const struct bnxt_flow_masks BNXT_FLOW_MASK_NONE = { 254 .ports = { 255 .src = 0, 256 .dst = 0, 257 }, 258 .addrs = { 259 .v6addrs = { 260 .src = BNXT_IPV6_MASK_NONE, 261 .dst = BNXT_IPV6_MASK_NONE, 262 }, 263 }, 264 }; 265 266 const struct bnxt_flow_masks BNXT_FLOW_IPV6_MASK_ALL = { 267 .ports = { 268 .src = cpu_to_be16(0xffff), 269 .dst = cpu_to_be16(0xffff), 270 }, 271 .addrs = { 272 .v6addrs = { 273 .src = BNXT_IPV6_MASK_ALL, 274 .dst = BNXT_IPV6_MASK_ALL, 275 }, 276 }, 277 }; 278 279 const struct bnxt_flow_masks BNXT_FLOW_IPV4_MASK_ALL = { 280 .ports = { 281 .src = cpu_to_be16(0xffff), 282 .dst = cpu_to_be16(0xffff), 283 }, 284 .addrs = { 285 .v4addrs = { 286 .src = cpu_to_be32(0xffffffff), 287 .dst = cpu_to_be32(0xffffffff), 288 }, 289 }, 290 }; 291 292 static bool bnxt_vf_pciid(enum board_idx idx) 293 { 294 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 295 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 296 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || 297 idx == NETXTREME_E_P5_VF_HV); 298 } 299 300 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 301 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 302 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) 303 304 #define BNXT_CP_DB_IRQ_DIS(db) \ 305 writel(DB_CP_IRQ_DIS_FLAGS, db) 306 307 #define BNXT_DB_CQ(db, idx) \ 308 writel(DB_CP_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 309 310 #define BNXT_DB_NQ_P5(db, idx) \ 311 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | DB_RING_IDX(db, idx),\ 312 (db)->doorbell) 313 314 #define BNXT_DB_NQ_P7(db, idx) \ 315 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_MASK | \ 316 DB_RING_IDX(db, idx), (db)->doorbell) 317 318 #define BNXT_DB_CQ_ARM(db, idx) \ 319 writel(DB_CP_REARM_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 320 321 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 322 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | \ 323 DB_RING_IDX(db, idx), (db)->doorbell) 324 325 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 326 { 327 if (bp->flags & BNXT_FLAG_CHIP_P7) 328 BNXT_DB_NQ_P7(db, idx); 329 else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 330 BNXT_DB_NQ_P5(db, idx); 331 else 332 BNXT_DB_CQ(db, idx); 333 } 334 335 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 336 { 337 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 338 BNXT_DB_NQ_ARM_P5(db, idx); 339 else 340 BNXT_DB_CQ_ARM(db, idx); 341 } 342 343 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 344 { 345 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 346 bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL | 347 DB_RING_IDX(db, idx), db->doorbell); 348 else 349 BNXT_DB_CQ(db, idx); 350 } 351 352 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 353 { 354 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 355 return; 356 357 if (BNXT_PF(bp)) 358 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 359 else 360 schedule_delayed_work(&bp->fw_reset_task, delay); 361 } 362 363 static void __bnxt_queue_sp_work(struct bnxt *bp) 364 { 365 if (BNXT_PF(bp)) 366 queue_work(bnxt_pf_wq, &bp->sp_task); 367 else 368 schedule_work(&bp->sp_task); 369 } 370 371 static void bnxt_queue_sp_work(struct bnxt *bp, unsigned int event) 372 { 373 set_bit(event, &bp->sp_event); 374 __bnxt_queue_sp_work(bp); 375 } 376 377 static void bnxt_sched_reset_rxr(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 378 { 379 if (!rxr->bnapi->in_reset) { 380 rxr->bnapi->in_reset = true; 381 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 382 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 383 else 384 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 385 __bnxt_queue_sp_work(bp); 386 } 387 rxr->rx_next_cons = 0xffff; 388 } 389 390 void bnxt_sched_reset_txr(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 391 u16 curr) 392 { 393 struct bnxt_napi *bnapi = txr->bnapi; 394 395 if (bnapi->tx_fault) 396 return; 397 398 netdev_err(bp->dev, "Invalid Tx completion (ring:%d tx_hw_cons:%u cons:%u prod:%u curr:%u)", 399 txr->txq_index, txr->tx_hw_cons, 400 txr->tx_cons, txr->tx_prod, curr); 401 WARN_ON_ONCE(1); 402 bnapi->tx_fault = 1; 403 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 404 } 405 406 const u16 bnxt_lhint_arr[] = { 407 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 408 TX_BD_FLAGS_LHINT_512_TO_1023, 409 TX_BD_FLAGS_LHINT_1024_TO_2047, 410 TX_BD_FLAGS_LHINT_1024_TO_2047, 411 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 412 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 413 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 414 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 415 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 416 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 417 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 418 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 419 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 420 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 421 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 422 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 423 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 424 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 425 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 426 }; 427 428 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 429 { 430 struct metadata_dst *md_dst = skb_metadata_dst(skb); 431 432 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 433 return 0; 434 435 return md_dst->u.port_info.port_id; 436 } 437 438 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 439 u16 prod) 440 { 441 /* Sync BD data before updating doorbell */ 442 wmb(); 443 bnxt_db_write(bp, &txr->tx_db, prod); 444 txr->kick_pending = 0; 445 } 446 447 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 448 { 449 struct bnxt *bp = netdev_priv(dev); 450 struct tx_bd *txbd, *txbd0; 451 struct tx_bd_ext *txbd1; 452 struct netdev_queue *txq; 453 int i; 454 dma_addr_t mapping; 455 unsigned int length, pad = 0; 456 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 457 u16 prod, last_frag; 458 struct pci_dev *pdev = bp->pdev; 459 struct bnxt_tx_ring_info *txr; 460 struct bnxt_sw_tx_bd *tx_buf; 461 __le32 lflags = 0; 462 463 i = skb_get_queue_mapping(skb); 464 if (unlikely(i >= bp->tx_nr_rings)) { 465 dev_kfree_skb_any(skb); 466 dev_core_stats_tx_dropped_inc(dev); 467 return NETDEV_TX_OK; 468 } 469 470 txq = netdev_get_tx_queue(dev, i); 471 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 472 prod = txr->tx_prod; 473 474 free_size = bnxt_tx_avail(bp, txr); 475 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 476 /* We must have raced with NAPI cleanup */ 477 if (net_ratelimit() && txr->kick_pending) 478 netif_warn(bp, tx_err, dev, 479 "bnxt: ring busy w/ flush pending!\n"); 480 if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 481 bp->tx_wake_thresh)) 482 return NETDEV_TX_BUSY; 483 } 484 485 if (unlikely(ipv6_hopopt_jumbo_remove(skb))) 486 goto tx_free; 487 488 length = skb->len; 489 len = skb_headlen(skb); 490 last_frag = skb_shinfo(skb)->nr_frags; 491 492 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 493 494 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 495 tx_buf->skb = skb; 496 tx_buf->nr_frags = last_frag; 497 498 vlan_tag_flags = 0; 499 cfa_action = bnxt_xmit_get_cfa_action(skb); 500 if (skb_vlan_tag_present(skb)) { 501 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 502 skb_vlan_tag_get(skb); 503 /* Currently supports 8021Q, 8021AD vlan offloads 504 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 505 */ 506 if (skb->vlan_proto == htons(ETH_P_8021Q)) 507 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 508 } 509 510 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 511 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 512 513 if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) && 514 atomic_dec_if_positive(&ptp->tx_avail) >= 0) { 515 if (!bnxt_ptp_parse(skb, &ptp->tx_seqid, 516 &ptp->tx_hdr_off)) { 517 if (vlan_tag_flags) 518 ptp->tx_hdr_off += VLAN_HLEN; 519 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 520 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 521 } else { 522 atomic_inc(&bp->ptp_cfg->tx_avail); 523 } 524 } 525 } 526 527 if (unlikely(skb->no_fcs)) 528 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 529 530 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && 531 !lflags) { 532 struct tx_push_buffer *tx_push_buf = txr->tx_push; 533 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 534 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 535 void __iomem *db = txr->tx_db.doorbell; 536 void *pdata = tx_push_buf->data; 537 u64 *end; 538 int j, push_len; 539 540 /* Set COAL_NOW to be ready quickly for the next push */ 541 tx_push->tx_bd_len_flags_type = 542 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 543 TX_BD_TYPE_LONG_TX_BD | 544 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 545 TX_BD_FLAGS_COAL_NOW | 546 TX_BD_FLAGS_PACKET_END | 547 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 548 549 if (skb->ip_summed == CHECKSUM_PARTIAL) 550 tx_push1->tx_bd_hsize_lflags = 551 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 552 else 553 tx_push1->tx_bd_hsize_lflags = 0; 554 555 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 556 tx_push1->tx_bd_cfa_action = 557 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 558 559 end = pdata + length; 560 end = PTR_ALIGN(end, 8) - 1; 561 *end = 0; 562 563 skb_copy_from_linear_data(skb, pdata, len); 564 pdata += len; 565 for (j = 0; j < last_frag; j++) { 566 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 567 void *fptr; 568 569 fptr = skb_frag_address_safe(frag); 570 if (!fptr) 571 goto normal_tx; 572 573 memcpy(pdata, fptr, skb_frag_size(frag)); 574 pdata += skb_frag_size(frag); 575 } 576 577 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 578 txbd->tx_bd_haddr = txr->data_mapping; 579 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2); 580 prod = NEXT_TX(prod); 581 tx_push->tx_bd_opaque = txbd->tx_bd_opaque; 582 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 583 memcpy(txbd, tx_push1, sizeof(*txbd)); 584 prod = NEXT_TX(prod); 585 tx_push->doorbell = 586 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | 587 DB_RING_IDX(&txr->tx_db, prod)); 588 WRITE_ONCE(txr->tx_prod, prod); 589 590 tx_buf->is_push = 1; 591 netdev_tx_sent_queue(txq, skb->len); 592 wmb(); /* Sync is_push and byte queue before pushing data */ 593 594 push_len = (length + sizeof(*tx_push) + 7) / 8; 595 if (push_len > 16) { 596 __iowrite64_copy(db, tx_push_buf, 16); 597 __iowrite32_copy(db + 4, tx_push_buf + 1, 598 (push_len - 16) << 1); 599 } else { 600 __iowrite64_copy(db, tx_push_buf, push_len); 601 } 602 603 goto tx_done; 604 } 605 606 normal_tx: 607 if (length < BNXT_MIN_PKT_SIZE) { 608 pad = BNXT_MIN_PKT_SIZE - length; 609 if (skb_pad(skb, pad)) 610 /* SKB already freed. */ 611 goto tx_kick_pending; 612 length = BNXT_MIN_PKT_SIZE; 613 } 614 615 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 616 617 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 618 goto tx_free; 619 620 dma_unmap_addr_set(tx_buf, mapping, mapping); 621 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 622 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 623 624 txbd->tx_bd_haddr = cpu_to_le64(mapping); 625 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2 + last_frag); 626 627 prod = NEXT_TX(prod); 628 txbd1 = (struct tx_bd_ext *) 629 &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 630 631 txbd1->tx_bd_hsize_lflags = lflags; 632 if (skb_is_gso(skb)) { 633 bool udp_gso = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4); 634 u32 hdr_len; 635 636 if (skb->encapsulation) { 637 if (udp_gso) 638 hdr_len = skb_inner_transport_offset(skb) + 639 sizeof(struct udphdr); 640 else 641 hdr_len = skb_inner_tcp_all_headers(skb); 642 } else if (udp_gso) { 643 hdr_len = skb_transport_offset(skb) + 644 sizeof(struct udphdr); 645 } else { 646 hdr_len = skb_tcp_all_headers(skb); 647 } 648 649 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 650 TX_BD_FLAGS_T_IPID | 651 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 652 length = skb_shinfo(skb)->gso_size; 653 txbd1->tx_bd_mss = cpu_to_le32(length); 654 length += hdr_len; 655 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 656 txbd1->tx_bd_hsize_lflags |= 657 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 658 txbd1->tx_bd_mss = 0; 659 } 660 661 length >>= 9; 662 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 663 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 664 skb->len); 665 i = 0; 666 goto tx_dma_error; 667 } 668 flags |= bnxt_lhint_arr[length]; 669 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 670 671 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 672 txbd1->tx_bd_cfa_action = 673 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 674 txbd0 = txbd; 675 for (i = 0; i < last_frag; i++) { 676 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 677 678 prod = NEXT_TX(prod); 679 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 680 681 len = skb_frag_size(frag); 682 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 683 DMA_TO_DEVICE); 684 685 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 686 goto tx_dma_error; 687 688 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 689 dma_unmap_addr_set(tx_buf, mapping, mapping); 690 691 txbd->tx_bd_haddr = cpu_to_le64(mapping); 692 693 flags = len << TX_BD_LEN_SHIFT; 694 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 695 } 696 697 flags &= ~TX_BD_LEN; 698 txbd->tx_bd_len_flags_type = 699 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 700 TX_BD_FLAGS_PACKET_END); 701 702 netdev_tx_sent_queue(txq, skb->len); 703 704 skb_tx_timestamp(skb); 705 706 prod = NEXT_TX(prod); 707 WRITE_ONCE(txr->tx_prod, prod); 708 709 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) { 710 bnxt_txr_db_kick(bp, txr, prod); 711 } else { 712 if (free_size >= bp->tx_wake_thresh) 713 txbd0->tx_bd_len_flags_type |= 714 cpu_to_le32(TX_BD_FLAGS_NO_CMPL); 715 txr->kick_pending = 1; 716 } 717 718 tx_done: 719 720 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 721 if (netdev_xmit_more() && !tx_buf->is_push) { 722 txbd0->tx_bd_len_flags_type &= 723 cpu_to_le32(~TX_BD_FLAGS_NO_CMPL); 724 bnxt_txr_db_kick(bp, txr, prod); 725 } 726 727 netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 728 bp->tx_wake_thresh); 729 } 730 return NETDEV_TX_OK; 731 732 tx_dma_error: 733 if (BNXT_TX_PTP_IS_SET(lflags)) 734 atomic_inc(&bp->ptp_cfg->tx_avail); 735 736 last_frag = i; 737 738 /* start back at beginning and unmap skb */ 739 prod = txr->tx_prod; 740 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 741 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 742 skb_headlen(skb), DMA_TO_DEVICE); 743 prod = NEXT_TX(prod); 744 745 /* unmap remaining mapped pages */ 746 for (i = 0; i < last_frag; i++) { 747 prod = NEXT_TX(prod); 748 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 749 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 750 skb_frag_size(&skb_shinfo(skb)->frags[i]), 751 DMA_TO_DEVICE); 752 } 753 754 tx_free: 755 dev_kfree_skb_any(skb); 756 tx_kick_pending: 757 if (txr->kick_pending) 758 bnxt_txr_db_kick(bp, txr, txr->tx_prod); 759 txr->tx_buf_ring[txr->tx_prod].skb = NULL; 760 dev_core_stats_tx_dropped_inc(dev); 761 return NETDEV_TX_OK; 762 } 763 764 static void __bnxt_tx_int(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 765 int budget) 766 { 767 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 768 struct pci_dev *pdev = bp->pdev; 769 u16 hw_cons = txr->tx_hw_cons; 770 unsigned int tx_bytes = 0; 771 u16 cons = txr->tx_cons; 772 int tx_pkts = 0; 773 774 while (RING_TX(bp, cons) != hw_cons) { 775 struct bnxt_sw_tx_bd *tx_buf; 776 struct sk_buff *skb; 777 int j, last; 778 779 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 780 cons = NEXT_TX(cons); 781 skb = tx_buf->skb; 782 tx_buf->skb = NULL; 783 784 if (unlikely(!skb)) { 785 bnxt_sched_reset_txr(bp, txr, cons); 786 return; 787 } 788 789 tx_pkts++; 790 tx_bytes += skb->len; 791 792 if (tx_buf->is_push) { 793 tx_buf->is_push = 0; 794 goto next_tx_int; 795 } 796 797 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 798 skb_headlen(skb), DMA_TO_DEVICE); 799 last = tx_buf->nr_frags; 800 801 for (j = 0; j < last; j++) { 802 cons = NEXT_TX(cons); 803 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 804 dma_unmap_page( 805 &pdev->dev, 806 dma_unmap_addr(tx_buf, mapping), 807 skb_frag_size(&skb_shinfo(skb)->frags[j]), 808 DMA_TO_DEVICE); 809 } 810 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 811 if (BNXT_CHIP_P5(bp)) { 812 /* PTP worker takes ownership of the skb */ 813 if (!bnxt_get_tx_ts_p5(bp, skb)) 814 skb = NULL; 815 else 816 atomic_inc(&bp->ptp_cfg->tx_avail); 817 } 818 } 819 820 next_tx_int: 821 cons = NEXT_TX(cons); 822 823 dev_consume_skb_any(skb); 824 } 825 826 WRITE_ONCE(txr->tx_cons, cons); 827 828 __netif_txq_completed_wake(txq, tx_pkts, tx_bytes, 829 bnxt_tx_avail(bp, txr), bp->tx_wake_thresh, 830 READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING); 831 } 832 833 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 834 { 835 struct bnxt_tx_ring_info *txr; 836 int i; 837 838 bnxt_for_each_napi_tx(i, bnapi, txr) { 839 if (txr->tx_hw_cons != RING_TX(bp, txr->tx_cons)) 840 __bnxt_tx_int(bp, txr, budget); 841 } 842 bnapi->events &= ~BNXT_TX_CMP_EVENT; 843 } 844 845 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 846 struct bnxt_rx_ring_info *rxr, 847 unsigned int *offset, 848 gfp_t gfp) 849 { 850 struct page *page; 851 852 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 853 page = page_pool_dev_alloc_frag(rxr->page_pool, offset, 854 BNXT_RX_PAGE_SIZE); 855 } else { 856 page = page_pool_dev_alloc_pages(rxr->page_pool); 857 *offset = 0; 858 } 859 if (!page) 860 return NULL; 861 862 *mapping = page_pool_get_dma_addr(page) + *offset; 863 return page; 864 } 865 866 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping, 867 gfp_t gfp) 868 { 869 u8 *data; 870 struct pci_dev *pdev = bp->pdev; 871 872 if (gfp == GFP_ATOMIC) 873 data = napi_alloc_frag(bp->rx_buf_size); 874 else 875 data = netdev_alloc_frag(bp->rx_buf_size); 876 if (!data) 877 return NULL; 878 879 *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset, 880 bp->rx_buf_use_size, bp->rx_dir, 881 DMA_ATTR_WEAK_ORDERING); 882 883 if (dma_mapping_error(&pdev->dev, *mapping)) { 884 skb_free_frag(data); 885 data = NULL; 886 } 887 return data; 888 } 889 890 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 891 u16 prod, gfp_t gfp) 892 { 893 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 894 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 895 dma_addr_t mapping; 896 897 if (BNXT_RX_PAGE_MODE(bp)) { 898 unsigned int offset; 899 struct page *page = 900 __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 901 902 if (!page) 903 return -ENOMEM; 904 905 mapping += bp->rx_dma_offset; 906 rx_buf->data = page; 907 rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset; 908 } else { 909 u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp); 910 911 if (!data) 912 return -ENOMEM; 913 914 rx_buf->data = data; 915 rx_buf->data_ptr = data + bp->rx_offset; 916 } 917 rx_buf->mapping = mapping; 918 919 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 920 return 0; 921 } 922 923 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 924 { 925 u16 prod = rxr->rx_prod; 926 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 927 struct bnxt *bp = rxr->bnapi->bp; 928 struct rx_bd *cons_bd, *prod_bd; 929 930 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 931 cons_rx_buf = &rxr->rx_buf_ring[cons]; 932 933 prod_rx_buf->data = data; 934 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 935 936 prod_rx_buf->mapping = cons_rx_buf->mapping; 937 938 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 939 cons_bd = &rxr->rx_desc_ring[RX_RING(bp, cons)][RX_IDX(cons)]; 940 941 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 942 } 943 944 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 945 { 946 u16 next, max = rxr->rx_agg_bmap_size; 947 948 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 949 if (next >= max) 950 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 951 return next; 952 } 953 954 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 955 struct bnxt_rx_ring_info *rxr, 956 u16 prod, gfp_t gfp) 957 { 958 struct rx_bd *rxbd = 959 &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 960 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 961 struct page *page; 962 dma_addr_t mapping; 963 u16 sw_prod = rxr->rx_sw_agg_prod; 964 unsigned int offset = 0; 965 966 page = __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 967 968 if (!page) 969 return -ENOMEM; 970 971 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 972 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 973 974 __set_bit(sw_prod, rxr->rx_agg_bmap); 975 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 976 rxr->rx_sw_agg_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 977 978 rx_agg_buf->page = page; 979 rx_agg_buf->offset = offset; 980 rx_agg_buf->mapping = mapping; 981 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 982 rxbd->rx_bd_opaque = sw_prod; 983 return 0; 984 } 985 986 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 987 struct bnxt_cp_ring_info *cpr, 988 u16 cp_cons, u16 curr) 989 { 990 struct rx_agg_cmp *agg; 991 992 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 993 agg = (struct rx_agg_cmp *) 994 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 995 return agg; 996 } 997 998 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 999 struct bnxt_rx_ring_info *rxr, 1000 u16 agg_id, u16 curr) 1001 { 1002 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 1003 1004 return &tpa_info->agg_arr[curr]; 1005 } 1006 1007 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 1008 u16 start, u32 agg_bufs, bool tpa) 1009 { 1010 struct bnxt_napi *bnapi = cpr->bnapi; 1011 struct bnxt *bp = bnapi->bp; 1012 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1013 u16 prod = rxr->rx_agg_prod; 1014 u16 sw_prod = rxr->rx_sw_agg_prod; 1015 bool p5_tpa = false; 1016 u32 i; 1017 1018 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1019 p5_tpa = true; 1020 1021 for (i = 0; i < agg_bufs; i++) { 1022 u16 cons; 1023 struct rx_agg_cmp *agg; 1024 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 1025 struct rx_bd *prod_bd; 1026 struct page *page; 1027 1028 if (p5_tpa) 1029 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 1030 else 1031 agg = bnxt_get_agg(bp, cpr, idx, start + i); 1032 cons = agg->rx_agg_cmp_opaque; 1033 __clear_bit(cons, rxr->rx_agg_bmap); 1034 1035 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 1036 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 1037 1038 __set_bit(sw_prod, rxr->rx_agg_bmap); 1039 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 1040 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1041 1042 /* It is possible for sw_prod to be equal to cons, so 1043 * set cons_rx_buf->page to NULL first. 1044 */ 1045 page = cons_rx_buf->page; 1046 cons_rx_buf->page = NULL; 1047 prod_rx_buf->page = page; 1048 prod_rx_buf->offset = cons_rx_buf->offset; 1049 1050 prod_rx_buf->mapping = cons_rx_buf->mapping; 1051 1052 prod_bd = &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 1053 1054 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 1055 prod_bd->rx_bd_opaque = sw_prod; 1056 1057 prod = NEXT_RX_AGG(prod); 1058 sw_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 1059 } 1060 rxr->rx_agg_prod = prod; 1061 rxr->rx_sw_agg_prod = sw_prod; 1062 } 1063 1064 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp, 1065 struct bnxt_rx_ring_info *rxr, 1066 u16 cons, void *data, u8 *data_ptr, 1067 dma_addr_t dma_addr, 1068 unsigned int offset_and_len) 1069 { 1070 unsigned int len = offset_and_len & 0xffff; 1071 struct page *page = data; 1072 u16 prod = rxr->rx_prod; 1073 struct sk_buff *skb; 1074 int err; 1075 1076 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1077 if (unlikely(err)) { 1078 bnxt_reuse_rx_data(rxr, cons, data); 1079 return NULL; 1080 } 1081 dma_addr -= bp->rx_dma_offset; 1082 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1083 bp->rx_dir); 1084 skb = napi_build_skb(data_ptr - bp->rx_offset, BNXT_RX_PAGE_SIZE); 1085 if (!skb) { 1086 page_pool_recycle_direct(rxr->page_pool, page); 1087 return NULL; 1088 } 1089 skb_mark_for_recycle(skb); 1090 skb_reserve(skb, bp->rx_offset); 1091 __skb_put(skb, len); 1092 1093 return skb; 1094 } 1095 1096 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 1097 struct bnxt_rx_ring_info *rxr, 1098 u16 cons, void *data, u8 *data_ptr, 1099 dma_addr_t dma_addr, 1100 unsigned int offset_and_len) 1101 { 1102 unsigned int payload = offset_and_len >> 16; 1103 unsigned int len = offset_and_len & 0xffff; 1104 skb_frag_t *frag; 1105 struct page *page = data; 1106 u16 prod = rxr->rx_prod; 1107 struct sk_buff *skb; 1108 int off, err; 1109 1110 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1111 if (unlikely(err)) { 1112 bnxt_reuse_rx_data(rxr, cons, data); 1113 return NULL; 1114 } 1115 dma_addr -= bp->rx_dma_offset; 1116 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1117 bp->rx_dir); 1118 1119 if (unlikely(!payload)) 1120 payload = eth_get_headlen(bp->dev, data_ptr, len); 1121 1122 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 1123 if (!skb) { 1124 page_pool_recycle_direct(rxr->page_pool, page); 1125 return NULL; 1126 } 1127 1128 skb_mark_for_recycle(skb); 1129 off = (void *)data_ptr - page_address(page); 1130 skb_add_rx_frag(skb, 0, page, off, len, BNXT_RX_PAGE_SIZE); 1131 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 1132 payload + NET_IP_ALIGN); 1133 1134 frag = &skb_shinfo(skb)->frags[0]; 1135 skb_frag_size_sub(frag, payload); 1136 skb_frag_off_add(frag, payload); 1137 skb->data_len -= payload; 1138 skb->tail += payload; 1139 1140 return skb; 1141 } 1142 1143 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 1144 struct bnxt_rx_ring_info *rxr, u16 cons, 1145 void *data, u8 *data_ptr, 1146 dma_addr_t dma_addr, 1147 unsigned int offset_and_len) 1148 { 1149 u16 prod = rxr->rx_prod; 1150 struct sk_buff *skb; 1151 int err; 1152 1153 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1154 if (unlikely(err)) { 1155 bnxt_reuse_rx_data(rxr, cons, data); 1156 return NULL; 1157 } 1158 1159 skb = napi_build_skb(data, bp->rx_buf_size); 1160 dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1161 bp->rx_dir, DMA_ATTR_WEAK_ORDERING); 1162 if (!skb) { 1163 skb_free_frag(data); 1164 return NULL; 1165 } 1166 1167 skb_reserve(skb, bp->rx_offset); 1168 skb_put(skb, offset_and_len & 0xffff); 1169 return skb; 1170 } 1171 1172 static u32 __bnxt_rx_agg_pages(struct bnxt *bp, 1173 struct bnxt_cp_ring_info *cpr, 1174 struct skb_shared_info *shinfo, 1175 u16 idx, u32 agg_bufs, bool tpa, 1176 struct xdp_buff *xdp) 1177 { 1178 struct bnxt_napi *bnapi = cpr->bnapi; 1179 struct pci_dev *pdev = bp->pdev; 1180 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1181 u16 prod = rxr->rx_agg_prod; 1182 u32 i, total_frag_len = 0; 1183 bool p5_tpa = false; 1184 1185 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1186 p5_tpa = true; 1187 1188 for (i = 0; i < agg_bufs; i++) { 1189 skb_frag_t *frag = &shinfo->frags[i]; 1190 u16 cons, frag_len; 1191 struct rx_agg_cmp *agg; 1192 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1193 struct page *page; 1194 dma_addr_t mapping; 1195 1196 if (p5_tpa) 1197 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1198 else 1199 agg = bnxt_get_agg(bp, cpr, idx, i); 1200 cons = agg->rx_agg_cmp_opaque; 1201 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1202 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1203 1204 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1205 skb_frag_fill_page_desc(frag, cons_rx_buf->page, 1206 cons_rx_buf->offset, frag_len); 1207 shinfo->nr_frags = i + 1; 1208 __clear_bit(cons, rxr->rx_agg_bmap); 1209 1210 /* It is possible for bnxt_alloc_rx_page() to allocate 1211 * a sw_prod index that equals the cons index, so we 1212 * need to clear the cons entry now. 1213 */ 1214 mapping = cons_rx_buf->mapping; 1215 page = cons_rx_buf->page; 1216 cons_rx_buf->page = NULL; 1217 1218 if (xdp && page_is_pfmemalloc(page)) 1219 xdp_buff_set_frag_pfmemalloc(xdp); 1220 1221 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 1222 --shinfo->nr_frags; 1223 cons_rx_buf->page = page; 1224 1225 /* Update prod since possibly some pages have been 1226 * allocated already. 1227 */ 1228 rxr->rx_agg_prod = prod; 1229 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1230 return 0; 1231 } 1232 1233 dma_sync_single_for_cpu(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, 1234 bp->rx_dir); 1235 1236 total_frag_len += frag_len; 1237 prod = NEXT_RX_AGG(prod); 1238 } 1239 rxr->rx_agg_prod = prod; 1240 return total_frag_len; 1241 } 1242 1243 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp, 1244 struct bnxt_cp_ring_info *cpr, 1245 struct sk_buff *skb, u16 idx, 1246 u32 agg_bufs, bool tpa) 1247 { 1248 struct skb_shared_info *shinfo = skb_shinfo(skb); 1249 u32 total_frag_len = 0; 1250 1251 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx, 1252 agg_bufs, tpa, NULL); 1253 if (!total_frag_len) { 1254 skb_mark_for_recycle(skb); 1255 dev_kfree_skb(skb); 1256 return NULL; 1257 } 1258 1259 skb->data_len += total_frag_len; 1260 skb->len += total_frag_len; 1261 skb->truesize += BNXT_RX_PAGE_SIZE * agg_bufs; 1262 return skb; 1263 } 1264 1265 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp, 1266 struct bnxt_cp_ring_info *cpr, 1267 struct xdp_buff *xdp, u16 idx, 1268 u32 agg_bufs, bool tpa) 1269 { 1270 struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp); 1271 u32 total_frag_len = 0; 1272 1273 if (!xdp_buff_has_frags(xdp)) 1274 shinfo->nr_frags = 0; 1275 1276 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, 1277 idx, agg_bufs, tpa, xdp); 1278 if (total_frag_len) { 1279 xdp_buff_set_frags_flag(xdp); 1280 shinfo->nr_frags = agg_bufs; 1281 shinfo->xdp_frags_size = total_frag_len; 1282 } 1283 return total_frag_len; 1284 } 1285 1286 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1287 u8 agg_bufs, u32 *raw_cons) 1288 { 1289 u16 last; 1290 struct rx_agg_cmp *agg; 1291 1292 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1293 last = RING_CMP(*raw_cons); 1294 agg = (struct rx_agg_cmp *) 1295 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1296 return RX_AGG_CMP_VALID(agg, *raw_cons); 1297 } 1298 1299 static struct sk_buff *bnxt_copy_data(struct bnxt_napi *bnapi, u8 *data, 1300 unsigned int len, 1301 dma_addr_t mapping) 1302 { 1303 struct bnxt *bp = bnapi->bp; 1304 struct pci_dev *pdev = bp->pdev; 1305 struct sk_buff *skb; 1306 1307 skb = napi_alloc_skb(&bnapi->napi, len); 1308 if (!skb) 1309 return NULL; 1310 1311 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh, 1312 bp->rx_dir); 1313 1314 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1315 len + NET_IP_ALIGN); 1316 1317 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh, 1318 bp->rx_dir); 1319 1320 skb_put(skb, len); 1321 1322 return skb; 1323 } 1324 1325 static struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1326 unsigned int len, 1327 dma_addr_t mapping) 1328 { 1329 return bnxt_copy_data(bnapi, data, len, mapping); 1330 } 1331 1332 static struct sk_buff *bnxt_copy_xdp(struct bnxt_napi *bnapi, 1333 struct xdp_buff *xdp, 1334 unsigned int len, 1335 dma_addr_t mapping) 1336 { 1337 unsigned int metasize = 0; 1338 u8 *data = xdp->data; 1339 struct sk_buff *skb; 1340 1341 len = xdp->data_end - xdp->data_meta; 1342 metasize = xdp->data - xdp->data_meta; 1343 data = xdp->data_meta; 1344 1345 skb = bnxt_copy_data(bnapi, data, len, mapping); 1346 if (!skb) 1347 return skb; 1348 1349 if (metasize) { 1350 skb_metadata_set(skb, metasize); 1351 __skb_pull(skb, metasize); 1352 } 1353 1354 return skb; 1355 } 1356 1357 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1358 u32 *raw_cons, void *cmp) 1359 { 1360 struct rx_cmp *rxcmp = cmp; 1361 u32 tmp_raw_cons = *raw_cons; 1362 u8 cmp_type, agg_bufs = 0; 1363 1364 cmp_type = RX_CMP_TYPE(rxcmp); 1365 1366 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1367 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1368 RX_CMP_AGG_BUFS) >> 1369 RX_CMP_AGG_BUFS_SHIFT; 1370 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1371 struct rx_tpa_end_cmp *tpa_end = cmp; 1372 1373 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1374 return 0; 1375 1376 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1377 } 1378 1379 if (agg_bufs) { 1380 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1381 return -EBUSY; 1382 } 1383 *raw_cons = tmp_raw_cons; 1384 return 0; 1385 } 1386 1387 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1388 { 1389 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1390 u16 idx = agg_id & MAX_TPA_P5_MASK; 1391 1392 if (test_bit(idx, map->agg_idx_bmap)) 1393 idx = find_first_zero_bit(map->agg_idx_bmap, 1394 BNXT_AGG_IDX_BMAP_SIZE); 1395 __set_bit(idx, map->agg_idx_bmap); 1396 map->agg_id_tbl[agg_id] = idx; 1397 return idx; 1398 } 1399 1400 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1401 { 1402 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1403 1404 __clear_bit(idx, map->agg_idx_bmap); 1405 } 1406 1407 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1408 { 1409 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1410 1411 return map->agg_id_tbl[agg_id]; 1412 } 1413 1414 static void bnxt_tpa_metadata(struct bnxt_tpa_info *tpa_info, 1415 struct rx_tpa_start_cmp *tpa_start, 1416 struct rx_tpa_start_cmp_ext *tpa_start1) 1417 { 1418 tpa_info->cfa_code_valid = 1; 1419 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1420 tpa_info->vlan_valid = 0; 1421 if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) { 1422 tpa_info->vlan_valid = 1; 1423 tpa_info->metadata = 1424 le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1425 } 1426 } 1427 1428 static void bnxt_tpa_metadata_v2(struct bnxt_tpa_info *tpa_info, 1429 struct rx_tpa_start_cmp *tpa_start, 1430 struct rx_tpa_start_cmp_ext *tpa_start1) 1431 { 1432 tpa_info->vlan_valid = 0; 1433 if (TPA_START_VLAN_VALID(tpa_start)) { 1434 u32 tpid_sel = TPA_START_VLAN_TPID_SEL(tpa_start); 1435 u32 vlan_proto = ETH_P_8021Q; 1436 1437 tpa_info->vlan_valid = 1; 1438 if (tpid_sel == RX_TPA_START_METADATA1_TPID_8021AD) 1439 vlan_proto = ETH_P_8021AD; 1440 tpa_info->metadata = vlan_proto << 16 | 1441 TPA_START_METADATA0_TCI(tpa_start1); 1442 } 1443 } 1444 1445 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1446 u8 cmp_type, struct rx_tpa_start_cmp *tpa_start, 1447 struct rx_tpa_start_cmp_ext *tpa_start1) 1448 { 1449 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1450 struct bnxt_tpa_info *tpa_info; 1451 u16 cons, prod, agg_id; 1452 struct rx_bd *prod_bd; 1453 dma_addr_t mapping; 1454 1455 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1456 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1457 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1458 } else { 1459 agg_id = TPA_START_AGG_ID(tpa_start); 1460 } 1461 cons = tpa_start->rx_tpa_start_cmp_opaque; 1462 prod = rxr->rx_prod; 1463 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1464 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 1465 tpa_info = &rxr->rx_tpa[agg_id]; 1466 1467 if (unlikely(cons != rxr->rx_next_cons || 1468 TPA_START_ERROR(tpa_start))) { 1469 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1470 cons, rxr->rx_next_cons, 1471 TPA_START_ERROR_CODE(tpa_start1)); 1472 bnxt_sched_reset_rxr(bp, rxr); 1473 return; 1474 } 1475 prod_rx_buf->data = tpa_info->data; 1476 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1477 1478 mapping = tpa_info->mapping; 1479 prod_rx_buf->mapping = mapping; 1480 1481 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 1482 1483 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1484 1485 tpa_info->data = cons_rx_buf->data; 1486 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1487 cons_rx_buf->data = NULL; 1488 tpa_info->mapping = cons_rx_buf->mapping; 1489 1490 tpa_info->len = 1491 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1492 RX_TPA_START_CMP_LEN_SHIFT; 1493 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1494 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1495 tpa_info->gso_type = SKB_GSO_TCPV4; 1496 if (TPA_START_IS_IPV6(tpa_start1)) 1497 tpa_info->gso_type = SKB_GSO_TCPV6; 1498 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1499 else if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP && 1500 TPA_START_HASH_TYPE(tpa_start) == 3) 1501 tpa_info->gso_type = SKB_GSO_TCPV6; 1502 tpa_info->rss_hash = 1503 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1504 } else { 1505 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1506 tpa_info->gso_type = 0; 1507 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1508 } 1509 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1510 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1511 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) 1512 bnxt_tpa_metadata(tpa_info, tpa_start, tpa_start1); 1513 else 1514 bnxt_tpa_metadata_v2(tpa_info, tpa_start, tpa_start1); 1515 tpa_info->agg_count = 0; 1516 1517 rxr->rx_prod = NEXT_RX(prod); 1518 cons = RING_RX(bp, NEXT_RX(cons)); 1519 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 1520 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1521 1522 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1523 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1524 cons_rx_buf->data = NULL; 1525 } 1526 1527 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1528 { 1529 if (agg_bufs) 1530 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1531 } 1532 1533 #ifdef CONFIG_INET 1534 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1535 { 1536 struct udphdr *uh = NULL; 1537 1538 if (ip_proto == htons(ETH_P_IP)) { 1539 struct iphdr *iph = (struct iphdr *)skb->data; 1540 1541 if (iph->protocol == IPPROTO_UDP) 1542 uh = (struct udphdr *)(iph + 1); 1543 } else { 1544 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1545 1546 if (iph->nexthdr == IPPROTO_UDP) 1547 uh = (struct udphdr *)(iph + 1); 1548 } 1549 if (uh) { 1550 if (uh->check) 1551 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1552 else 1553 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1554 } 1555 } 1556 #endif 1557 1558 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1559 int payload_off, int tcp_ts, 1560 struct sk_buff *skb) 1561 { 1562 #ifdef CONFIG_INET 1563 struct tcphdr *th; 1564 int len, nw_off; 1565 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1566 u32 hdr_info = tpa_info->hdr_info; 1567 bool loopback = false; 1568 1569 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1570 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1571 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1572 1573 /* If the packet is an internal loopback packet, the offsets will 1574 * have an extra 4 bytes. 1575 */ 1576 if (inner_mac_off == 4) { 1577 loopback = true; 1578 } else if (inner_mac_off > 4) { 1579 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1580 ETH_HLEN - 2)); 1581 1582 /* We only support inner iPv4/ipv6. If we don't see the 1583 * correct protocol ID, it must be a loopback packet where 1584 * the offsets are off by 4. 1585 */ 1586 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1587 loopback = true; 1588 } 1589 if (loopback) { 1590 /* internal loopback packet, subtract all offsets by 4 */ 1591 inner_ip_off -= 4; 1592 inner_mac_off -= 4; 1593 outer_ip_off -= 4; 1594 } 1595 1596 nw_off = inner_ip_off - ETH_HLEN; 1597 skb_set_network_header(skb, nw_off); 1598 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1599 struct ipv6hdr *iph = ipv6_hdr(skb); 1600 1601 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1602 len = skb->len - skb_transport_offset(skb); 1603 th = tcp_hdr(skb); 1604 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1605 } else { 1606 struct iphdr *iph = ip_hdr(skb); 1607 1608 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1609 len = skb->len - skb_transport_offset(skb); 1610 th = tcp_hdr(skb); 1611 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1612 } 1613 1614 if (inner_mac_off) { /* tunnel */ 1615 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1616 ETH_HLEN - 2)); 1617 1618 bnxt_gro_tunnel(skb, proto); 1619 } 1620 #endif 1621 return skb; 1622 } 1623 1624 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1625 int payload_off, int tcp_ts, 1626 struct sk_buff *skb) 1627 { 1628 #ifdef CONFIG_INET 1629 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1630 u32 hdr_info = tpa_info->hdr_info; 1631 int iphdr_len, nw_off; 1632 1633 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1634 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1635 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1636 1637 nw_off = inner_ip_off - ETH_HLEN; 1638 skb_set_network_header(skb, nw_off); 1639 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1640 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1641 skb_set_transport_header(skb, nw_off + iphdr_len); 1642 1643 if (inner_mac_off) { /* tunnel */ 1644 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1645 ETH_HLEN - 2)); 1646 1647 bnxt_gro_tunnel(skb, proto); 1648 } 1649 #endif 1650 return skb; 1651 } 1652 1653 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1654 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1655 1656 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1657 int payload_off, int tcp_ts, 1658 struct sk_buff *skb) 1659 { 1660 #ifdef CONFIG_INET 1661 struct tcphdr *th; 1662 int len, nw_off, tcp_opt_len = 0; 1663 1664 if (tcp_ts) 1665 tcp_opt_len = 12; 1666 1667 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1668 struct iphdr *iph; 1669 1670 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1671 ETH_HLEN; 1672 skb_set_network_header(skb, nw_off); 1673 iph = ip_hdr(skb); 1674 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1675 len = skb->len - skb_transport_offset(skb); 1676 th = tcp_hdr(skb); 1677 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1678 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1679 struct ipv6hdr *iph; 1680 1681 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1682 ETH_HLEN; 1683 skb_set_network_header(skb, nw_off); 1684 iph = ipv6_hdr(skb); 1685 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1686 len = skb->len - skb_transport_offset(skb); 1687 th = tcp_hdr(skb); 1688 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1689 } else { 1690 dev_kfree_skb_any(skb); 1691 return NULL; 1692 } 1693 1694 if (nw_off) /* tunnel */ 1695 bnxt_gro_tunnel(skb, skb->protocol); 1696 #endif 1697 return skb; 1698 } 1699 1700 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1701 struct bnxt_tpa_info *tpa_info, 1702 struct rx_tpa_end_cmp *tpa_end, 1703 struct rx_tpa_end_cmp_ext *tpa_end1, 1704 struct sk_buff *skb) 1705 { 1706 #ifdef CONFIG_INET 1707 int payload_off; 1708 u16 segs; 1709 1710 segs = TPA_END_TPA_SEGS(tpa_end); 1711 if (segs == 1) 1712 return skb; 1713 1714 NAPI_GRO_CB(skb)->count = segs; 1715 skb_shinfo(skb)->gso_size = 1716 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1717 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1718 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1719 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1720 else 1721 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1722 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1723 if (likely(skb)) 1724 tcp_gro_complete(skb); 1725 #endif 1726 return skb; 1727 } 1728 1729 /* Given the cfa_code of a received packet determine which 1730 * netdev (vf-rep or PF) the packet is destined to. 1731 */ 1732 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1733 { 1734 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1735 1736 /* if vf-rep dev is NULL, the must belongs to the PF */ 1737 return dev ? dev : bp->dev; 1738 } 1739 1740 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1741 struct bnxt_cp_ring_info *cpr, 1742 u32 *raw_cons, 1743 struct rx_tpa_end_cmp *tpa_end, 1744 struct rx_tpa_end_cmp_ext *tpa_end1, 1745 u8 *event) 1746 { 1747 struct bnxt_napi *bnapi = cpr->bnapi; 1748 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1749 struct net_device *dev = bp->dev; 1750 u8 *data_ptr, agg_bufs; 1751 unsigned int len; 1752 struct bnxt_tpa_info *tpa_info; 1753 dma_addr_t mapping; 1754 struct sk_buff *skb; 1755 u16 idx = 0, agg_id; 1756 void *data; 1757 bool gro; 1758 1759 if (unlikely(bnapi->in_reset)) { 1760 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1761 1762 if (rc < 0) 1763 return ERR_PTR(-EBUSY); 1764 return NULL; 1765 } 1766 1767 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1768 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1769 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1770 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1771 tpa_info = &rxr->rx_tpa[agg_id]; 1772 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1773 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1774 agg_bufs, tpa_info->agg_count); 1775 agg_bufs = tpa_info->agg_count; 1776 } 1777 tpa_info->agg_count = 0; 1778 *event |= BNXT_AGG_EVENT; 1779 bnxt_free_agg_idx(rxr, agg_id); 1780 idx = agg_id; 1781 gro = !!(bp->flags & BNXT_FLAG_GRO); 1782 } else { 1783 agg_id = TPA_END_AGG_ID(tpa_end); 1784 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1785 tpa_info = &rxr->rx_tpa[agg_id]; 1786 idx = RING_CMP(*raw_cons); 1787 if (agg_bufs) { 1788 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1789 return ERR_PTR(-EBUSY); 1790 1791 *event |= BNXT_AGG_EVENT; 1792 idx = NEXT_CMP(idx); 1793 } 1794 gro = !!TPA_END_GRO(tpa_end); 1795 } 1796 data = tpa_info->data; 1797 data_ptr = tpa_info->data_ptr; 1798 prefetch(data_ptr); 1799 len = tpa_info->len; 1800 mapping = tpa_info->mapping; 1801 1802 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1803 bnxt_abort_tpa(cpr, idx, agg_bufs); 1804 if (agg_bufs > MAX_SKB_FRAGS) 1805 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1806 agg_bufs, (int)MAX_SKB_FRAGS); 1807 return NULL; 1808 } 1809 1810 if (len <= bp->rx_copy_thresh) { 1811 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1812 if (!skb) { 1813 bnxt_abort_tpa(cpr, idx, agg_bufs); 1814 cpr->sw_stats.rx.rx_oom_discards += 1; 1815 return NULL; 1816 } 1817 } else { 1818 u8 *new_data; 1819 dma_addr_t new_mapping; 1820 1821 new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC); 1822 if (!new_data) { 1823 bnxt_abort_tpa(cpr, idx, agg_bufs); 1824 cpr->sw_stats.rx.rx_oom_discards += 1; 1825 return NULL; 1826 } 1827 1828 tpa_info->data = new_data; 1829 tpa_info->data_ptr = new_data + bp->rx_offset; 1830 tpa_info->mapping = new_mapping; 1831 1832 skb = napi_build_skb(data, bp->rx_buf_size); 1833 dma_unmap_single_attrs(&bp->pdev->dev, mapping, 1834 bp->rx_buf_use_size, bp->rx_dir, 1835 DMA_ATTR_WEAK_ORDERING); 1836 1837 if (!skb) { 1838 skb_free_frag(data); 1839 bnxt_abort_tpa(cpr, idx, agg_bufs); 1840 cpr->sw_stats.rx.rx_oom_discards += 1; 1841 return NULL; 1842 } 1843 skb_reserve(skb, bp->rx_offset); 1844 skb_put(skb, len); 1845 } 1846 1847 if (agg_bufs) { 1848 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true); 1849 if (!skb) { 1850 /* Page reuse already handled by bnxt_rx_pages(). */ 1851 cpr->sw_stats.rx.rx_oom_discards += 1; 1852 return NULL; 1853 } 1854 } 1855 1856 if (tpa_info->cfa_code_valid) 1857 dev = bnxt_get_pkt_dev(bp, tpa_info->cfa_code); 1858 skb->protocol = eth_type_trans(skb, dev); 1859 1860 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1861 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1862 1863 if (tpa_info->vlan_valid && 1864 (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1865 __be16 vlan_proto = htons(tpa_info->metadata >> 1866 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1867 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1868 1869 if (eth_type_vlan(vlan_proto)) { 1870 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1871 } else { 1872 dev_kfree_skb(skb); 1873 return NULL; 1874 } 1875 } 1876 1877 skb_checksum_none_assert(skb); 1878 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1879 skb->ip_summed = CHECKSUM_UNNECESSARY; 1880 skb->csum_level = 1881 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1882 } 1883 1884 if (gro) 1885 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1886 1887 return skb; 1888 } 1889 1890 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1891 struct rx_agg_cmp *rx_agg) 1892 { 1893 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1894 struct bnxt_tpa_info *tpa_info; 1895 1896 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1897 tpa_info = &rxr->rx_tpa[agg_id]; 1898 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1899 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1900 } 1901 1902 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1903 struct sk_buff *skb) 1904 { 1905 skb_mark_for_recycle(skb); 1906 1907 if (skb->dev != bp->dev) { 1908 /* this packet belongs to a vf-rep */ 1909 bnxt_vf_rep_rx(bp, skb); 1910 return; 1911 } 1912 skb_record_rx_queue(skb, bnapi->index); 1913 napi_gro_receive(&bnapi->napi, skb); 1914 } 1915 1916 static bool bnxt_rx_ts_valid(struct bnxt *bp, u32 flags, 1917 struct rx_cmp_ext *rxcmp1, u32 *cmpl_ts) 1918 { 1919 u32 ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); 1920 1921 if (BNXT_PTP_RX_TS_VALID(flags)) 1922 goto ts_valid; 1923 if (!bp->ptp_all_rx_tstamp || !ts || !BNXT_ALL_RX_TS_VALID(flags)) 1924 return false; 1925 1926 ts_valid: 1927 *cmpl_ts = ts; 1928 return true; 1929 } 1930 1931 static struct sk_buff *bnxt_rx_vlan(struct sk_buff *skb, u8 cmp_type, 1932 struct rx_cmp *rxcmp, 1933 struct rx_cmp_ext *rxcmp1) 1934 { 1935 __be16 vlan_proto; 1936 u16 vtag; 1937 1938 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1939 __le32 flags2 = rxcmp1->rx_cmp_flags2; 1940 u32 meta_data; 1941 1942 if (!(flags2 & cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN))) 1943 return skb; 1944 1945 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 1946 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1947 vlan_proto = htons(meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT); 1948 if (eth_type_vlan(vlan_proto)) 1949 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1950 else 1951 goto vlan_err; 1952 } else if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 1953 if (RX_CMP_VLAN_VALID(rxcmp)) { 1954 u32 tpid_sel = RX_CMP_VLAN_TPID_SEL(rxcmp); 1955 1956 if (tpid_sel == RX_CMP_METADATA1_TPID_8021Q) 1957 vlan_proto = htons(ETH_P_8021Q); 1958 else if (tpid_sel == RX_CMP_METADATA1_TPID_8021AD) 1959 vlan_proto = htons(ETH_P_8021AD); 1960 else 1961 goto vlan_err; 1962 vtag = RX_CMP_METADATA0_TCI(rxcmp1); 1963 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1964 } 1965 } 1966 return skb; 1967 vlan_err: 1968 dev_kfree_skb(skb); 1969 return NULL; 1970 } 1971 1972 static enum pkt_hash_types bnxt_rss_ext_op(struct bnxt *bp, 1973 struct rx_cmp *rxcmp) 1974 { 1975 u8 ext_op; 1976 1977 ext_op = RX_CMP_V3_HASH_TYPE(bp, rxcmp); 1978 switch (ext_op) { 1979 case EXT_OP_INNER_4: 1980 case EXT_OP_OUTER_4: 1981 case EXT_OP_INNFL_3: 1982 case EXT_OP_OUTFL_3: 1983 return PKT_HASH_TYPE_L4; 1984 default: 1985 return PKT_HASH_TYPE_L3; 1986 } 1987 } 1988 1989 /* returns the following: 1990 * 1 - 1 packet successfully received 1991 * 0 - successful TPA_START, packet not completed yet 1992 * -EBUSY - completion ring does not have all the agg buffers yet 1993 * -ENOMEM - packet aborted due to out of memory 1994 * -EIO - packet aborted due to hw error indicated in BD 1995 */ 1996 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1997 u32 *raw_cons, u8 *event) 1998 { 1999 struct bnxt_napi *bnapi = cpr->bnapi; 2000 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2001 struct net_device *dev = bp->dev; 2002 struct rx_cmp *rxcmp; 2003 struct rx_cmp_ext *rxcmp1; 2004 u32 tmp_raw_cons = *raw_cons; 2005 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 2006 struct bnxt_sw_rx_bd *rx_buf; 2007 unsigned int len; 2008 u8 *data_ptr, agg_bufs, cmp_type; 2009 bool xdp_active = false; 2010 dma_addr_t dma_addr; 2011 struct sk_buff *skb; 2012 struct xdp_buff xdp; 2013 u32 flags, misc; 2014 u32 cmpl_ts; 2015 void *data; 2016 int rc = 0; 2017 2018 rxcmp = (struct rx_cmp *) 2019 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2020 2021 cmp_type = RX_CMP_TYPE(rxcmp); 2022 2023 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 2024 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 2025 goto next_rx_no_prod_no_len; 2026 } 2027 2028 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2029 cp_cons = RING_CMP(tmp_raw_cons); 2030 rxcmp1 = (struct rx_cmp_ext *) 2031 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2032 2033 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2034 return -EBUSY; 2035 2036 /* The valid test of the entry must be done first before 2037 * reading any further. 2038 */ 2039 dma_rmb(); 2040 prod = rxr->rx_prod; 2041 2042 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP || 2043 cmp_type == CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 2044 bnxt_tpa_start(bp, rxr, cmp_type, 2045 (struct rx_tpa_start_cmp *)rxcmp, 2046 (struct rx_tpa_start_cmp_ext *)rxcmp1); 2047 2048 *event |= BNXT_RX_EVENT; 2049 goto next_rx_no_prod_no_len; 2050 2051 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2052 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 2053 (struct rx_tpa_end_cmp *)rxcmp, 2054 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 2055 2056 if (IS_ERR(skb)) 2057 return -EBUSY; 2058 2059 rc = -ENOMEM; 2060 if (likely(skb)) { 2061 bnxt_deliver_skb(bp, bnapi, skb); 2062 rc = 1; 2063 } 2064 *event |= BNXT_RX_EVENT; 2065 goto next_rx_no_prod_no_len; 2066 } 2067 2068 cons = rxcmp->rx_cmp_opaque; 2069 if (unlikely(cons != rxr->rx_next_cons)) { 2070 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 2071 2072 /* 0xffff is forced error, don't print it */ 2073 if (rxr->rx_next_cons != 0xffff) 2074 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 2075 cons, rxr->rx_next_cons); 2076 bnxt_sched_reset_rxr(bp, rxr); 2077 if (rc1) 2078 return rc1; 2079 goto next_rx_no_prod_no_len; 2080 } 2081 rx_buf = &rxr->rx_buf_ring[cons]; 2082 data = rx_buf->data; 2083 data_ptr = rx_buf->data_ptr; 2084 prefetch(data_ptr); 2085 2086 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 2087 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 2088 2089 if (agg_bufs) { 2090 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 2091 return -EBUSY; 2092 2093 cp_cons = NEXT_CMP(cp_cons); 2094 *event |= BNXT_AGG_EVENT; 2095 } 2096 *event |= BNXT_RX_EVENT; 2097 2098 rx_buf->data = NULL; 2099 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 2100 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 2101 2102 bnxt_reuse_rx_data(rxr, cons, data); 2103 if (agg_bufs) 2104 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 2105 false); 2106 2107 rc = -EIO; 2108 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 2109 bnapi->cp_ring.sw_stats.rx.rx_buf_errors++; 2110 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 2111 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 2112 netdev_warn_once(bp->dev, "RX buffer error %x\n", 2113 rx_err); 2114 bnxt_sched_reset_rxr(bp, rxr); 2115 } 2116 } 2117 goto next_rx_no_len; 2118 } 2119 2120 flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); 2121 len = flags >> RX_CMP_LEN_SHIFT; 2122 dma_addr = rx_buf->mapping; 2123 2124 if (bnxt_xdp_attached(bp, rxr)) { 2125 bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp); 2126 if (agg_bufs) { 2127 u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp, 2128 cp_cons, agg_bufs, 2129 false); 2130 if (!frag_len) { 2131 cpr->sw_stats.rx.rx_oom_discards += 1; 2132 rc = -ENOMEM; 2133 goto next_rx; 2134 } 2135 } 2136 xdp_active = true; 2137 } 2138 2139 if (xdp_active) { 2140 if (bnxt_rx_xdp(bp, rxr, cons, &xdp, data, &data_ptr, &len, event)) { 2141 rc = 1; 2142 goto next_rx; 2143 } 2144 } 2145 2146 if (len <= bp->rx_copy_thresh) { 2147 if (!xdp_active) 2148 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 2149 else 2150 skb = bnxt_copy_xdp(bnapi, &xdp, len, dma_addr); 2151 bnxt_reuse_rx_data(rxr, cons, data); 2152 if (!skb) { 2153 if (agg_bufs) { 2154 if (!xdp_active) 2155 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 2156 agg_bufs, false); 2157 else 2158 bnxt_xdp_buff_frags_free(rxr, &xdp); 2159 } 2160 cpr->sw_stats.rx.rx_oom_discards += 1; 2161 rc = -ENOMEM; 2162 goto next_rx; 2163 } 2164 } else { 2165 u32 payload; 2166 2167 if (rx_buf->data_ptr == data_ptr) 2168 payload = misc & RX_CMP_PAYLOAD_OFFSET; 2169 else 2170 payload = 0; 2171 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 2172 payload | len); 2173 if (!skb) { 2174 cpr->sw_stats.rx.rx_oom_discards += 1; 2175 rc = -ENOMEM; 2176 goto next_rx; 2177 } 2178 } 2179 2180 if (agg_bufs) { 2181 if (!xdp_active) { 2182 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false); 2183 if (!skb) { 2184 cpr->sw_stats.rx.rx_oom_discards += 1; 2185 rc = -ENOMEM; 2186 goto next_rx; 2187 } 2188 } else { 2189 skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1); 2190 if (!skb) { 2191 /* we should be able to free the old skb here */ 2192 bnxt_xdp_buff_frags_free(rxr, &xdp); 2193 cpr->sw_stats.rx.rx_oom_discards += 1; 2194 rc = -ENOMEM; 2195 goto next_rx; 2196 } 2197 } 2198 } 2199 2200 if (RX_CMP_HASH_VALID(rxcmp)) { 2201 enum pkt_hash_types type; 2202 2203 if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2204 type = bnxt_rss_ext_op(bp, rxcmp); 2205 } else { 2206 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 2207 2208 /* RSS profiles 1 and 3 with extract code 0 for inner 2209 * 4-tuple 2210 */ 2211 if (hash_type != 1 && hash_type != 3) 2212 type = PKT_HASH_TYPE_L3; 2213 else 2214 type = PKT_HASH_TYPE_L4; 2215 } 2216 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 2217 } 2218 2219 if (cmp_type == CMP_TYPE_RX_L2_CMP) 2220 dev = bnxt_get_pkt_dev(bp, RX_CMP_CFA_CODE(rxcmp1)); 2221 skb->protocol = eth_type_trans(skb, dev); 2222 2223 if (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) { 2224 skb = bnxt_rx_vlan(skb, cmp_type, rxcmp, rxcmp1); 2225 if (!skb) 2226 goto next_rx; 2227 } 2228 2229 skb_checksum_none_assert(skb); 2230 if (RX_CMP_L4_CS_OK(rxcmp1)) { 2231 if (dev->features & NETIF_F_RXCSUM) { 2232 skb->ip_summed = CHECKSUM_UNNECESSARY; 2233 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 2234 } 2235 } else { 2236 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 2237 if (dev->features & NETIF_F_RXCSUM) 2238 bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++; 2239 } 2240 } 2241 2242 if (bnxt_rx_ts_valid(bp, flags, rxcmp1, &cmpl_ts)) { 2243 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 2244 u64 ns, ts; 2245 2246 if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { 2247 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2248 2249 spin_lock_bh(&ptp->ptp_lock); 2250 ns = timecounter_cyc2time(&ptp->tc, ts); 2251 spin_unlock_bh(&ptp->ptp_lock); 2252 memset(skb_hwtstamps(skb), 0, 2253 sizeof(*skb_hwtstamps(skb))); 2254 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 2255 } 2256 } 2257 } 2258 bnxt_deliver_skb(bp, bnapi, skb); 2259 rc = 1; 2260 2261 next_rx: 2262 cpr->rx_packets += 1; 2263 cpr->rx_bytes += len; 2264 2265 next_rx_no_len: 2266 rxr->rx_prod = NEXT_RX(prod); 2267 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 2268 2269 next_rx_no_prod_no_len: 2270 *raw_cons = tmp_raw_cons; 2271 2272 return rc; 2273 } 2274 2275 /* In netpoll mode, if we are using a combined completion ring, we need to 2276 * discard the rx packets and recycle the buffers. 2277 */ 2278 static int bnxt_force_rx_discard(struct bnxt *bp, 2279 struct bnxt_cp_ring_info *cpr, 2280 u32 *raw_cons, u8 *event) 2281 { 2282 u32 tmp_raw_cons = *raw_cons; 2283 struct rx_cmp_ext *rxcmp1; 2284 struct rx_cmp *rxcmp; 2285 u16 cp_cons; 2286 u8 cmp_type; 2287 int rc; 2288 2289 cp_cons = RING_CMP(tmp_raw_cons); 2290 rxcmp = (struct rx_cmp *) 2291 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2292 2293 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2294 cp_cons = RING_CMP(tmp_raw_cons); 2295 rxcmp1 = (struct rx_cmp_ext *) 2296 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2297 2298 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2299 return -EBUSY; 2300 2301 /* The valid test of the entry must be done first before 2302 * reading any further. 2303 */ 2304 dma_rmb(); 2305 cmp_type = RX_CMP_TYPE(rxcmp); 2306 if (cmp_type == CMP_TYPE_RX_L2_CMP || 2307 cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2308 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2309 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2310 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2311 struct rx_tpa_end_cmp_ext *tpa_end1; 2312 2313 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 2314 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 2315 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 2316 } 2317 rc = bnxt_rx_pkt(bp, cpr, raw_cons, event); 2318 if (rc && rc != -EBUSY) 2319 cpr->sw_stats.rx.rx_netpoll_discards += 1; 2320 return rc; 2321 } 2322 2323 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 2324 { 2325 struct bnxt_fw_health *fw_health = bp->fw_health; 2326 u32 reg = fw_health->regs[reg_idx]; 2327 u32 reg_type, reg_off, val = 0; 2328 2329 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 2330 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 2331 switch (reg_type) { 2332 case BNXT_FW_HEALTH_REG_TYPE_CFG: 2333 pci_read_config_dword(bp->pdev, reg_off, &val); 2334 break; 2335 case BNXT_FW_HEALTH_REG_TYPE_GRC: 2336 reg_off = fw_health->mapped_regs[reg_idx]; 2337 fallthrough; 2338 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 2339 val = readl(bp->bar0 + reg_off); 2340 break; 2341 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 2342 val = readl(bp->bar1 + reg_off); 2343 break; 2344 } 2345 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 2346 val &= fw_health->fw_reset_inprog_reg_mask; 2347 return val; 2348 } 2349 2350 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 2351 { 2352 int i; 2353 2354 for (i = 0; i < bp->rx_nr_rings; i++) { 2355 u16 grp_idx = bp->rx_ring[i].bnapi->index; 2356 struct bnxt_ring_grp_info *grp_info; 2357 2358 grp_info = &bp->grp_info[grp_idx]; 2359 if (grp_info->agg_fw_ring_id == ring_id) 2360 return grp_idx; 2361 } 2362 return INVALID_HW_RING_ID; 2363 } 2364 2365 static u16 bnxt_get_force_speed(struct bnxt_link_info *link_info) 2366 { 2367 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2368 2369 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 2370 return link_info->force_link_speed2; 2371 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4) 2372 return link_info->force_pam4_link_speed; 2373 return link_info->force_link_speed; 2374 } 2375 2376 static void bnxt_set_force_speed(struct bnxt_link_info *link_info) 2377 { 2378 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2379 2380 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2381 link_info->req_link_speed = link_info->force_link_speed2; 2382 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2383 switch (link_info->req_link_speed) { 2384 case BNXT_LINK_SPEED_50GB_PAM4: 2385 case BNXT_LINK_SPEED_100GB_PAM4: 2386 case BNXT_LINK_SPEED_200GB_PAM4: 2387 case BNXT_LINK_SPEED_400GB_PAM4: 2388 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2389 break; 2390 case BNXT_LINK_SPEED_100GB_PAM4_112: 2391 case BNXT_LINK_SPEED_200GB_PAM4_112: 2392 case BNXT_LINK_SPEED_400GB_PAM4_112: 2393 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4_112; 2394 break; 2395 default: 2396 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2397 } 2398 return; 2399 } 2400 link_info->req_link_speed = link_info->force_link_speed; 2401 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2402 if (link_info->force_pam4_link_speed) { 2403 link_info->req_link_speed = link_info->force_pam4_link_speed; 2404 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2405 } 2406 } 2407 2408 static void bnxt_set_auto_speed(struct bnxt_link_info *link_info) 2409 { 2410 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2411 2412 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2413 link_info->advertising = link_info->auto_link_speeds2; 2414 return; 2415 } 2416 link_info->advertising = link_info->auto_link_speeds; 2417 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 2418 } 2419 2420 static bool bnxt_force_speed_updated(struct bnxt_link_info *link_info) 2421 { 2422 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2423 2424 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2425 if (link_info->req_link_speed != link_info->force_link_speed2) 2426 return true; 2427 return false; 2428 } 2429 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 2430 link_info->req_link_speed != link_info->force_link_speed) 2431 return true; 2432 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 2433 link_info->req_link_speed != link_info->force_pam4_link_speed) 2434 return true; 2435 return false; 2436 } 2437 2438 static bool bnxt_auto_speed_updated(struct bnxt_link_info *link_info) 2439 { 2440 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2441 2442 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2443 if (link_info->advertising != link_info->auto_link_speeds2) 2444 return true; 2445 return false; 2446 } 2447 if (link_info->advertising != link_info->auto_link_speeds || 2448 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 2449 return true; 2450 return false; 2451 } 2452 2453 #define BNXT_EVENT_THERMAL_CURRENT_TEMP(data2) \ 2454 ((data2) & \ 2455 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_CURRENT_TEMP_MASK) 2456 2457 #define BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2) \ 2458 (((data2) & \ 2459 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_MASK) >>\ 2460 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_SFT) 2461 2462 #define EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1) \ 2463 ((data1) & \ 2464 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_MASK) 2465 2466 #define EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1) \ 2467 (((data1) & \ 2468 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR) ==\ 2469 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR_INCREASING) 2470 2471 /* Return true if the workqueue has to be scheduled */ 2472 static bool bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2) 2473 { 2474 u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1); 2475 2476 switch (err_type) { 2477 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL: 2478 netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n", 2479 BNXT_EVENT_INVALID_SIGNAL_DATA(data2)); 2480 break; 2481 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM: 2482 netdev_warn(bp->dev, "Pause Storm detected!\n"); 2483 break; 2484 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD: 2485 netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n"); 2486 break; 2487 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_THERMAL_THRESHOLD: { 2488 u32 type = EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1); 2489 char *threshold_type; 2490 bool notify = false; 2491 char *dir_str; 2492 2493 switch (type) { 2494 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_WARN: 2495 threshold_type = "warning"; 2496 break; 2497 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_CRITICAL: 2498 threshold_type = "critical"; 2499 break; 2500 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_FATAL: 2501 threshold_type = "fatal"; 2502 break; 2503 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_SHUTDOWN: 2504 threshold_type = "shutdown"; 2505 break; 2506 default: 2507 netdev_err(bp->dev, "Unknown Thermal threshold type event\n"); 2508 return false; 2509 } 2510 if (EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)) { 2511 dir_str = "above"; 2512 notify = true; 2513 } else { 2514 dir_str = "below"; 2515 } 2516 netdev_warn(bp->dev, "Chip temperature has gone %s the %s thermal threshold!\n", 2517 dir_str, threshold_type); 2518 netdev_warn(bp->dev, "Temperature (In Celsius), Current: %lu, threshold: %lu\n", 2519 BNXT_EVENT_THERMAL_CURRENT_TEMP(data2), 2520 BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2)); 2521 if (notify) { 2522 bp->thermal_threshold_type = type; 2523 set_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event); 2524 return true; 2525 } 2526 return false; 2527 } 2528 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DUAL_DATA_RATE_NOT_SUPPORTED: 2529 netdev_warn(bp->dev, "Speed change not supported with dual rate transceivers on this board\n"); 2530 break; 2531 default: 2532 netdev_err(bp->dev, "FW reported unknown error type %u\n", 2533 err_type); 2534 break; 2535 } 2536 return false; 2537 } 2538 2539 #define BNXT_GET_EVENT_PORT(data) \ 2540 ((data) & \ 2541 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 2542 2543 #define BNXT_EVENT_RING_TYPE(data2) \ 2544 ((data2) & \ 2545 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 2546 2547 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 2548 (BNXT_EVENT_RING_TYPE(data2) == \ 2549 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 2550 2551 #define BNXT_EVENT_PHC_EVENT_TYPE(data1) \ 2552 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\ 2553 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT) 2554 2555 #define BNXT_EVENT_PHC_RTC_UPDATE(data1) \ 2556 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\ 2557 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT) 2558 2559 #define BNXT_PHC_BITS 48 2560 2561 static int bnxt_async_event_process(struct bnxt *bp, 2562 struct hwrm_async_event_cmpl *cmpl) 2563 { 2564 u16 event_id = le16_to_cpu(cmpl->event_id); 2565 u32 data1 = le32_to_cpu(cmpl->event_data1); 2566 u32 data2 = le32_to_cpu(cmpl->event_data2); 2567 2568 netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n", 2569 event_id, data1, data2); 2570 2571 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2572 switch (event_id) { 2573 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2574 struct bnxt_link_info *link_info = &bp->link_info; 2575 2576 if (BNXT_VF(bp)) 2577 goto async_event_process_exit; 2578 2579 /* print unsupported speed warning in forced speed mode only */ 2580 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2581 (data1 & 0x20000)) { 2582 u16 fw_speed = bnxt_get_force_speed(link_info); 2583 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2584 2585 if (speed != SPEED_UNKNOWN) 2586 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2587 speed); 2588 } 2589 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2590 } 2591 fallthrough; 2592 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2593 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2594 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2595 fallthrough; 2596 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2597 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2598 break; 2599 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2600 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2601 break; 2602 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2603 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2604 2605 if (BNXT_VF(bp)) 2606 break; 2607 2608 if (bp->pf.port_id != port_id) 2609 break; 2610 2611 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2612 break; 2613 } 2614 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2615 if (BNXT_PF(bp)) 2616 goto async_event_process_exit; 2617 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2618 break; 2619 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2620 char *type_str = "Solicited"; 2621 2622 if (!bp->fw_health) 2623 goto async_event_process_exit; 2624 2625 bp->fw_reset_timestamp = jiffies; 2626 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2627 if (!bp->fw_reset_min_dsecs) 2628 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2629 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2630 if (!bp->fw_reset_max_dsecs) 2631 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2632 if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) { 2633 set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state); 2634 } else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2635 type_str = "Fatal"; 2636 bp->fw_health->fatalities++; 2637 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2638 } else if (data2 && BNXT_FW_STATUS_HEALTHY != 2639 EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) { 2640 type_str = "Non-fatal"; 2641 bp->fw_health->survivals++; 2642 set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 2643 } 2644 netif_warn(bp, hw, bp->dev, 2645 "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2646 type_str, data1, data2, 2647 bp->fw_reset_min_dsecs * 100, 2648 bp->fw_reset_max_dsecs * 100); 2649 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2650 break; 2651 } 2652 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2653 struct bnxt_fw_health *fw_health = bp->fw_health; 2654 char *status_desc = "healthy"; 2655 u32 status; 2656 2657 if (!fw_health) 2658 goto async_event_process_exit; 2659 2660 if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) { 2661 fw_health->enabled = false; 2662 netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n"); 2663 break; 2664 } 2665 fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2666 fw_health->tmr_multiplier = 2667 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2668 bp->current_interval * 10); 2669 fw_health->tmr_counter = fw_health->tmr_multiplier; 2670 if (!fw_health->enabled) 2671 fw_health->last_fw_heartbeat = 2672 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2673 fw_health->last_fw_reset_cnt = 2674 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2675 status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 2676 if (status != BNXT_FW_STATUS_HEALTHY) 2677 status_desc = "unhealthy"; 2678 netif_info(bp, drv, bp->dev, 2679 "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n", 2680 fw_health->primary ? "primary" : "backup", status, 2681 status_desc, fw_health->last_fw_reset_cnt); 2682 if (!fw_health->enabled) { 2683 /* Make sure tmr_counter is set and visible to 2684 * bnxt_health_check() before setting enabled to true. 2685 */ 2686 smp_wmb(); 2687 fw_health->enabled = true; 2688 } 2689 goto async_event_process_exit; 2690 } 2691 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2692 netif_notice(bp, hw, bp->dev, 2693 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2694 data1, data2); 2695 goto async_event_process_exit; 2696 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2697 struct bnxt_rx_ring_info *rxr; 2698 u16 grp_idx; 2699 2700 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 2701 goto async_event_process_exit; 2702 2703 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2704 BNXT_EVENT_RING_TYPE(data2), data1); 2705 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2706 goto async_event_process_exit; 2707 2708 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2709 if (grp_idx == INVALID_HW_RING_ID) { 2710 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2711 data1); 2712 goto async_event_process_exit; 2713 } 2714 rxr = bp->bnapi[grp_idx]->rx_ring; 2715 bnxt_sched_reset_rxr(bp, rxr); 2716 goto async_event_process_exit; 2717 } 2718 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2719 struct bnxt_fw_health *fw_health = bp->fw_health; 2720 2721 netif_notice(bp, hw, bp->dev, 2722 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2723 data1, data2); 2724 if (fw_health) { 2725 fw_health->echo_req_data1 = data1; 2726 fw_health->echo_req_data2 = data2; 2727 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2728 break; 2729 } 2730 goto async_event_process_exit; 2731 } 2732 case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: { 2733 bnxt_ptp_pps_event(bp, data1, data2); 2734 goto async_event_process_exit; 2735 } 2736 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: { 2737 if (bnxt_event_error_report(bp, data1, data2)) 2738 break; 2739 goto async_event_process_exit; 2740 } 2741 case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: { 2742 switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) { 2743 case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE: 2744 if (BNXT_PTP_USE_RTC(bp)) { 2745 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2746 u64 ns; 2747 2748 if (!ptp) 2749 goto async_event_process_exit; 2750 2751 spin_lock_bh(&ptp->ptp_lock); 2752 bnxt_ptp_update_current_time(bp); 2753 ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) << 2754 BNXT_PHC_BITS) | ptp->current_time); 2755 bnxt_ptp_rtc_timecounter_init(ptp, ns); 2756 spin_unlock_bh(&ptp->ptp_lock); 2757 } 2758 break; 2759 } 2760 goto async_event_process_exit; 2761 } 2762 case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: { 2763 u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff; 2764 2765 hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED); 2766 goto async_event_process_exit; 2767 } 2768 default: 2769 goto async_event_process_exit; 2770 } 2771 __bnxt_queue_sp_work(bp); 2772 async_event_process_exit: 2773 return 0; 2774 } 2775 2776 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2777 { 2778 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2779 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2780 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2781 (struct hwrm_fwd_req_cmpl *)txcmp; 2782 2783 switch (cmpl_type) { 2784 case CMPL_BASE_TYPE_HWRM_DONE: 2785 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2786 hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE); 2787 break; 2788 2789 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2790 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2791 2792 if ((vf_id < bp->pf.first_vf_id) || 2793 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2794 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2795 vf_id); 2796 return -EINVAL; 2797 } 2798 2799 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2800 bnxt_queue_sp_work(bp, BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT); 2801 break; 2802 2803 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2804 bnxt_async_event_process(bp, 2805 (struct hwrm_async_event_cmpl *)txcmp); 2806 break; 2807 2808 default: 2809 break; 2810 } 2811 2812 return 0; 2813 } 2814 2815 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2816 { 2817 struct bnxt_napi *bnapi = dev_instance; 2818 struct bnxt *bp = bnapi->bp; 2819 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2820 u32 cons = RING_CMP(cpr->cp_raw_cons); 2821 2822 cpr->event_ctr++; 2823 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2824 napi_schedule(&bnapi->napi); 2825 return IRQ_HANDLED; 2826 } 2827 2828 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2829 { 2830 u32 raw_cons = cpr->cp_raw_cons; 2831 u16 cons = RING_CMP(raw_cons); 2832 struct tx_cmp *txcmp; 2833 2834 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2835 2836 return TX_CMP_VALID(txcmp, raw_cons); 2837 } 2838 2839 static irqreturn_t bnxt_inta(int irq, void *dev_instance) 2840 { 2841 struct bnxt_napi *bnapi = dev_instance; 2842 struct bnxt *bp = bnapi->bp; 2843 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2844 u32 cons = RING_CMP(cpr->cp_raw_cons); 2845 u32 int_status; 2846 2847 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2848 2849 if (!bnxt_has_work(bp, cpr)) { 2850 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); 2851 /* return if erroneous interrupt */ 2852 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) 2853 return IRQ_NONE; 2854 } 2855 2856 /* disable ring IRQ */ 2857 BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell); 2858 2859 /* Return here if interrupt is shared and is disabled. */ 2860 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 2861 return IRQ_HANDLED; 2862 2863 napi_schedule(&bnapi->napi); 2864 return IRQ_HANDLED; 2865 } 2866 2867 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2868 int budget) 2869 { 2870 struct bnxt_napi *bnapi = cpr->bnapi; 2871 u32 raw_cons = cpr->cp_raw_cons; 2872 u32 cons; 2873 int rx_pkts = 0; 2874 u8 event = 0; 2875 struct tx_cmp *txcmp; 2876 2877 cpr->has_more_work = 0; 2878 cpr->had_work_done = 1; 2879 while (1) { 2880 u8 cmp_type; 2881 int rc; 2882 2883 cons = RING_CMP(raw_cons); 2884 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2885 2886 if (!TX_CMP_VALID(txcmp, raw_cons)) 2887 break; 2888 2889 /* The valid test of the entry must be done first before 2890 * reading any further. 2891 */ 2892 dma_rmb(); 2893 cmp_type = TX_CMP_TYPE(txcmp); 2894 if (cmp_type == CMP_TYPE_TX_L2_CMP || 2895 cmp_type == CMP_TYPE_TX_L2_COAL_CMP) { 2896 u32 opaque = txcmp->tx_cmp_opaque; 2897 struct bnxt_tx_ring_info *txr; 2898 u16 tx_freed; 2899 2900 txr = bnapi->tx_ring[TX_OPAQUE_RING(opaque)]; 2901 event |= BNXT_TX_CMP_EVENT; 2902 if (cmp_type == CMP_TYPE_TX_L2_COAL_CMP) 2903 txr->tx_hw_cons = TX_CMP_SQ_CONS_IDX(txcmp); 2904 else 2905 txr->tx_hw_cons = TX_OPAQUE_PROD(bp, opaque); 2906 tx_freed = (txr->tx_hw_cons - txr->tx_cons) & 2907 bp->tx_ring_mask; 2908 /* return full budget so NAPI will complete. */ 2909 if (unlikely(tx_freed >= bp->tx_wake_thresh)) { 2910 rx_pkts = budget; 2911 raw_cons = NEXT_RAW_CMP(raw_cons); 2912 if (budget) 2913 cpr->has_more_work = 1; 2914 break; 2915 } 2916 } else if (cmp_type >= CMP_TYPE_RX_L2_CMP && 2917 cmp_type <= CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 2918 if (likely(budget)) 2919 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2920 else 2921 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 2922 &event); 2923 if (likely(rc >= 0)) 2924 rx_pkts += rc; 2925 /* Increment rx_pkts when rc is -ENOMEM to count towards 2926 * the NAPI budget. Otherwise, we may potentially loop 2927 * here forever if we consistently cannot allocate 2928 * buffers. 2929 */ 2930 else if (rc == -ENOMEM && budget) 2931 rx_pkts++; 2932 else if (rc == -EBUSY) /* partial completion */ 2933 break; 2934 } else if (unlikely(cmp_type == CMPL_BASE_TYPE_HWRM_DONE || 2935 cmp_type == CMPL_BASE_TYPE_HWRM_FWD_REQ || 2936 cmp_type == CMPL_BASE_TYPE_HWRM_ASYNC_EVENT)) { 2937 bnxt_hwrm_handler(bp, txcmp); 2938 } 2939 raw_cons = NEXT_RAW_CMP(raw_cons); 2940 2941 if (rx_pkts && rx_pkts == budget) { 2942 cpr->has_more_work = 1; 2943 break; 2944 } 2945 } 2946 2947 if (event & BNXT_REDIRECT_EVENT) 2948 xdp_do_flush(); 2949 2950 if (event & BNXT_TX_EVENT) { 2951 struct bnxt_tx_ring_info *txr = bnapi->tx_ring[0]; 2952 u16 prod = txr->tx_prod; 2953 2954 /* Sync BD data before updating doorbell */ 2955 wmb(); 2956 2957 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 2958 } 2959 2960 cpr->cp_raw_cons = raw_cons; 2961 bnapi->events |= event; 2962 return rx_pkts; 2963 } 2964 2965 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi, 2966 int budget) 2967 { 2968 if ((bnapi->events & BNXT_TX_CMP_EVENT) && !bnapi->tx_fault) 2969 bnapi->tx_int(bp, bnapi, budget); 2970 2971 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 2972 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2973 2974 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2975 } 2976 if (bnapi->events & BNXT_AGG_EVENT) { 2977 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2978 2979 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2980 } 2981 bnapi->events &= BNXT_TX_CMP_EVENT; 2982 } 2983 2984 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2985 int budget) 2986 { 2987 struct bnxt_napi *bnapi = cpr->bnapi; 2988 int rx_pkts; 2989 2990 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 2991 2992 /* ACK completion ring before freeing tx ring and producing new 2993 * buffers in rx/agg rings to prevent overflowing the completion 2994 * ring. 2995 */ 2996 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 2997 2998 __bnxt_poll_work_done(bp, bnapi, budget); 2999 return rx_pkts; 3000 } 3001 3002 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 3003 { 3004 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3005 struct bnxt *bp = bnapi->bp; 3006 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3007 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3008 struct tx_cmp *txcmp; 3009 struct rx_cmp_ext *rxcmp1; 3010 u32 cp_cons, tmp_raw_cons; 3011 u32 raw_cons = cpr->cp_raw_cons; 3012 bool flush_xdp = false; 3013 u32 rx_pkts = 0; 3014 u8 event = 0; 3015 3016 while (1) { 3017 int rc; 3018 3019 cp_cons = RING_CMP(raw_cons); 3020 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 3021 3022 if (!TX_CMP_VALID(txcmp, raw_cons)) 3023 break; 3024 3025 /* The valid test of the entry must be done first before 3026 * reading any further. 3027 */ 3028 dma_rmb(); 3029 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 3030 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 3031 cp_cons = RING_CMP(tmp_raw_cons); 3032 rxcmp1 = (struct rx_cmp_ext *) 3033 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 3034 3035 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 3036 break; 3037 3038 /* force an error to recycle the buffer */ 3039 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 3040 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 3041 3042 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 3043 if (likely(rc == -EIO) && budget) 3044 rx_pkts++; 3045 else if (rc == -EBUSY) /* partial completion */ 3046 break; 3047 if (event & BNXT_REDIRECT_EVENT) 3048 flush_xdp = true; 3049 } else if (unlikely(TX_CMP_TYPE(txcmp) == 3050 CMPL_BASE_TYPE_HWRM_DONE)) { 3051 bnxt_hwrm_handler(bp, txcmp); 3052 } else { 3053 netdev_err(bp->dev, 3054 "Invalid completion received on special ring\n"); 3055 } 3056 raw_cons = NEXT_RAW_CMP(raw_cons); 3057 3058 if (rx_pkts == budget) 3059 break; 3060 } 3061 3062 cpr->cp_raw_cons = raw_cons; 3063 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 3064 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 3065 3066 if (event & BNXT_AGG_EVENT) 3067 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 3068 if (flush_xdp) 3069 xdp_do_flush(); 3070 3071 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 3072 napi_complete_done(napi, rx_pkts); 3073 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3074 } 3075 return rx_pkts; 3076 } 3077 3078 static int bnxt_poll(struct napi_struct *napi, int budget) 3079 { 3080 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3081 struct bnxt *bp = bnapi->bp; 3082 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3083 int work_done = 0; 3084 3085 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3086 napi_complete(napi); 3087 return 0; 3088 } 3089 while (1) { 3090 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 3091 3092 if (work_done >= budget) { 3093 if (!budget) 3094 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3095 break; 3096 } 3097 3098 if (!bnxt_has_work(bp, cpr)) { 3099 if (napi_complete_done(napi, work_done)) 3100 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3101 break; 3102 } 3103 } 3104 if (bp->flags & BNXT_FLAG_DIM) { 3105 struct dim_sample dim_sample = {}; 3106 3107 dim_update_sample(cpr->event_ctr, 3108 cpr->rx_packets, 3109 cpr->rx_bytes, 3110 &dim_sample); 3111 net_dim(&cpr->dim, dim_sample); 3112 } 3113 return work_done; 3114 } 3115 3116 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 3117 { 3118 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3119 int i, work_done = 0; 3120 3121 for (i = 0; i < cpr->cp_ring_count; i++) { 3122 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3123 3124 if (cpr2->had_nqe_notify) { 3125 work_done += __bnxt_poll_work(bp, cpr2, 3126 budget - work_done); 3127 cpr->has_more_work |= cpr2->has_more_work; 3128 } 3129 } 3130 return work_done; 3131 } 3132 3133 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 3134 u64 dbr_type, int budget) 3135 { 3136 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3137 int i; 3138 3139 for (i = 0; i < cpr->cp_ring_count; i++) { 3140 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3141 struct bnxt_db_info *db; 3142 3143 if (cpr2->had_work_done) { 3144 u32 tgl = 0; 3145 3146 if (dbr_type == DBR_TYPE_CQ_ARMALL) { 3147 cpr2->had_nqe_notify = 0; 3148 tgl = cpr2->toggle; 3149 } 3150 db = &cpr2->cp_db; 3151 bnxt_writeq(bp, 3152 db->db_key64 | dbr_type | DB_TOGGLE(tgl) | 3153 DB_RING_IDX(db, cpr2->cp_raw_cons), 3154 db->doorbell); 3155 cpr2->had_work_done = 0; 3156 } 3157 } 3158 __bnxt_poll_work_done(bp, bnapi, budget); 3159 } 3160 3161 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 3162 { 3163 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3164 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3165 struct bnxt_cp_ring_info *cpr_rx; 3166 u32 raw_cons = cpr->cp_raw_cons; 3167 struct bnxt *bp = bnapi->bp; 3168 struct nqe_cn *nqcmp; 3169 int work_done = 0; 3170 u32 cons; 3171 3172 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3173 napi_complete(napi); 3174 return 0; 3175 } 3176 if (cpr->has_more_work) { 3177 cpr->has_more_work = 0; 3178 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 3179 } 3180 while (1) { 3181 u16 type; 3182 3183 cons = RING_CMP(raw_cons); 3184 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 3185 3186 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 3187 if (cpr->has_more_work) 3188 break; 3189 3190 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL, 3191 budget); 3192 cpr->cp_raw_cons = raw_cons; 3193 if (napi_complete_done(napi, work_done)) 3194 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 3195 cpr->cp_raw_cons); 3196 goto poll_done; 3197 } 3198 3199 /* The valid test of the entry must be done first before 3200 * reading any further. 3201 */ 3202 dma_rmb(); 3203 3204 type = le16_to_cpu(nqcmp->type); 3205 if (NQE_CN_TYPE(type) == NQ_CN_TYPE_CQ_NOTIFICATION) { 3206 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 3207 u32 cq_type = BNXT_NQ_HDL_TYPE(idx); 3208 struct bnxt_cp_ring_info *cpr2; 3209 3210 /* No more budget for RX work */ 3211 if (budget && work_done >= budget && 3212 cq_type == BNXT_NQ_HDL_TYPE_RX) 3213 break; 3214 3215 idx = BNXT_NQ_HDL_IDX(idx); 3216 cpr2 = &cpr->cp_ring_arr[idx]; 3217 cpr2->had_nqe_notify = 1; 3218 cpr2->toggle = NQE_CN_TOGGLE(type); 3219 work_done += __bnxt_poll_work(bp, cpr2, 3220 budget - work_done); 3221 cpr->has_more_work |= cpr2->has_more_work; 3222 } else { 3223 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 3224 } 3225 raw_cons = NEXT_RAW_CMP(raw_cons); 3226 } 3227 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget); 3228 if (raw_cons != cpr->cp_raw_cons) { 3229 cpr->cp_raw_cons = raw_cons; 3230 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 3231 } 3232 poll_done: 3233 cpr_rx = &cpr->cp_ring_arr[0]; 3234 if (cpr_rx->cp_ring_type == BNXT_NQ_HDL_TYPE_RX && 3235 (bp->flags & BNXT_FLAG_DIM)) { 3236 struct dim_sample dim_sample = {}; 3237 3238 dim_update_sample(cpr->event_ctr, 3239 cpr_rx->rx_packets, 3240 cpr_rx->rx_bytes, 3241 &dim_sample); 3242 net_dim(&cpr->dim, dim_sample); 3243 } 3244 return work_done; 3245 } 3246 3247 static void bnxt_free_tx_skbs(struct bnxt *bp) 3248 { 3249 int i, max_idx; 3250 struct pci_dev *pdev = bp->pdev; 3251 3252 if (!bp->tx_ring) 3253 return; 3254 3255 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 3256 for (i = 0; i < bp->tx_nr_rings; i++) { 3257 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3258 int j; 3259 3260 if (!txr->tx_buf_ring) 3261 continue; 3262 3263 for (j = 0; j < max_idx;) { 3264 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 3265 struct sk_buff *skb; 3266 int k, last; 3267 3268 if (i < bp->tx_nr_rings_xdp && 3269 tx_buf->action == XDP_REDIRECT) { 3270 dma_unmap_single(&pdev->dev, 3271 dma_unmap_addr(tx_buf, mapping), 3272 dma_unmap_len(tx_buf, len), 3273 DMA_TO_DEVICE); 3274 xdp_return_frame(tx_buf->xdpf); 3275 tx_buf->action = 0; 3276 tx_buf->xdpf = NULL; 3277 j++; 3278 continue; 3279 } 3280 3281 skb = tx_buf->skb; 3282 if (!skb) { 3283 j++; 3284 continue; 3285 } 3286 3287 tx_buf->skb = NULL; 3288 3289 if (tx_buf->is_push) { 3290 dev_kfree_skb(skb); 3291 j += 2; 3292 continue; 3293 } 3294 3295 dma_unmap_single(&pdev->dev, 3296 dma_unmap_addr(tx_buf, mapping), 3297 skb_headlen(skb), 3298 DMA_TO_DEVICE); 3299 3300 last = tx_buf->nr_frags; 3301 j += 2; 3302 for (k = 0; k < last; k++, j++) { 3303 int ring_idx = j & bp->tx_ring_mask; 3304 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 3305 3306 tx_buf = &txr->tx_buf_ring[ring_idx]; 3307 dma_unmap_page( 3308 &pdev->dev, 3309 dma_unmap_addr(tx_buf, mapping), 3310 skb_frag_size(frag), DMA_TO_DEVICE); 3311 } 3312 dev_kfree_skb(skb); 3313 } 3314 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 3315 } 3316 } 3317 3318 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr) 3319 { 3320 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 3321 struct pci_dev *pdev = bp->pdev; 3322 struct bnxt_tpa_idx_map *map; 3323 int i, max_idx, max_agg_idx; 3324 3325 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 3326 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 3327 if (!rxr->rx_tpa) 3328 goto skip_rx_tpa_free; 3329 3330 for (i = 0; i < bp->max_tpa; i++) { 3331 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 3332 u8 *data = tpa_info->data; 3333 3334 if (!data) 3335 continue; 3336 3337 dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping, 3338 bp->rx_buf_use_size, bp->rx_dir, 3339 DMA_ATTR_WEAK_ORDERING); 3340 3341 tpa_info->data = NULL; 3342 3343 skb_free_frag(data); 3344 } 3345 3346 skip_rx_tpa_free: 3347 if (!rxr->rx_buf_ring) 3348 goto skip_rx_buf_free; 3349 3350 for (i = 0; i < max_idx; i++) { 3351 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 3352 dma_addr_t mapping = rx_buf->mapping; 3353 void *data = rx_buf->data; 3354 3355 if (!data) 3356 continue; 3357 3358 rx_buf->data = NULL; 3359 if (BNXT_RX_PAGE_MODE(bp)) { 3360 page_pool_recycle_direct(rxr->page_pool, data); 3361 } else { 3362 dma_unmap_single_attrs(&pdev->dev, mapping, 3363 bp->rx_buf_use_size, bp->rx_dir, 3364 DMA_ATTR_WEAK_ORDERING); 3365 skb_free_frag(data); 3366 } 3367 } 3368 3369 skip_rx_buf_free: 3370 if (!rxr->rx_agg_ring) 3371 goto skip_rx_agg_free; 3372 3373 for (i = 0; i < max_agg_idx; i++) { 3374 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 3375 struct page *page = rx_agg_buf->page; 3376 3377 if (!page) 3378 continue; 3379 3380 rx_agg_buf->page = NULL; 3381 __clear_bit(i, rxr->rx_agg_bmap); 3382 3383 page_pool_recycle_direct(rxr->page_pool, page); 3384 } 3385 3386 skip_rx_agg_free: 3387 map = rxr->rx_tpa_idx_map; 3388 if (map) 3389 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 3390 } 3391 3392 static void bnxt_free_rx_skbs(struct bnxt *bp) 3393 { 3394 int i; 3395 3396 if (!bp->rx_ring) 3397 return; 3398 3399 for (i = 0; i < bp->rx_nr_rings; i++) 3400 bnxt_free_one_rx_ring_skbs(bp, i); 3401 } 3402 3403 static void bnxt_free_skbs(struct bnxt *bp) 3404 { 3405 bnxt_free_tx_skbs(bp); 3406 bnxt_free_rx_skbs(bp); 3407 } 3408 3409 static void bnxt_init_ctx_mem(struct bnxt_ctx_mem_type *ctxm, void *p, int len) 3410 { 3411 u8 init_val = ctxm->init_value; 3412 u16 offset = ctxm->init_offset; 3413 u8 *p2 = p; 3414 int i; 3415 3416 if (!init_val) 3417 return; 3418 if (offset == BNXT_CTX_INIT_INVALID_OFFSET) { 3419 memset(p, init_val, len); 3420 return; 3421 } 3422 for (i = 0; i < len; i += ctxm->entry_size) 3423 *(p2 + i + offset) = init_val; 3424 } 3425 3426 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3427 { 3428 struct pci_dev *pdev = bp->pdev; 3429 int i; 3430 3431 if (!rmem->pg_arr) 3432 goto skip_pages; 3433 3434 for (i = 0; i < rmem->nr_pages; i++) { 3435 if (!rmem->pg_arr[i]) 3436 continue; 3437 3438 dma_free_coherent(&pdev->dev, rmem->page_size, 3439 rmem->pg_arr[i], rmem->dma_arr[i]); 3440 3441 rmem->pg_arr[i] = NULL; 3442 } 3443 skip_pages: 3444 if (rmem->pg_tbl) { 3445 size_t pg_tbl_size = rmem->nr_pages * 8; 3446 3447 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3448 pg_tbl_size = rmem->page_size; 3449 dma_free_coherent(&pdev->dev, pg_tbl_size, 3450 rmem->pg_tbl, rmem->pg_tbl_map); 3451 rmem->pg_tbl = NULL; 3452 } 3453 if (rmem->vmem_size && *rmem->vmem) { 3454 vfree(*rmem->vmem); 3455 *rmem->vmem = NULL; 3456 } 3457 } 3458 3459 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3460 { 3461 struct pci_dev *pdev = bp->pdev; 3462 u64 valid_bit = 0; 3463 int i; 3464 3465 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 3466 valid_bit = PTU_PTE_VALID; 3467 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 3468 size_t pg_tbl_size = rmem->nr_pages * 8; 3469 3470 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3471 pg_tbl_size = rmem->page_size; 3472 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 3473 &rmem->pg_tbl_map, 3474 GFP_KERNEL); 3475 if (!rmem->pg_tbl) 3476 return -ENOMEM; 3477 } 3478 3479 for (i = 0; i < rmem->nr_pages; i++) { 3480 u64 extra_bits = valid_bit; 3481 3482 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 3483 rmem->page_size, 3484 &rmem->dma_arr[i], 3485 GFP_KERNEL); 3486 if (!rmem->pg_arr[i]) 3487 return -ENOMEM; 3488 3489 if (rmem->ctx_mem) 3490 bnxt_init_ctx_mem(rmem->ctx_mem, rmem->pg_arr[i], 3491 rmem->page_size); 3492 if (rmem->nr_pages > 1 || rmem->depth > 0) { 3493 if (i == rmem->nr_pages - 2 && 3494 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3495 extra_bits |= PTU_PTE_NEXT_TO_LAST; 3496 else if (i == rmem->nr_pages - 1 && 3497 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3498 extra_bits |= PTU_PTE_LAST; 3499 rmem->pg_tbl[i] = 3500 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 3501 } 3502 } 3503 3504 if (rmem->vmem_size) { 3505 *rmem->vmem = vzalloc(rmem->vmem_size); 3506 if (!(*rmem->vmem)) 3507 return -ENOMEM; 3508 } 3509 return 0; 3510 } 3511 3512 static void bnxt_free_tpa_info(struct bnxt *bp) 3513 { 3514 int i, j; 3515 3516 for (i = 0; i < bp->rx_nr_rings; i++) { 3517 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3518 3519 kfree(rxr->rx_tpa_idx_map); 3520 rxr->rx_tpa_idx_map = NULL; 3521 if (rxr->rx_tpa) { 3522 for (j = 0; j < bp->max_tpa; j++) { 3523 kfree(rxr->rx_tpa[j].agg_arr); 3524 rxr->rx_tpa[j].agg_arr = NULL; 3525 } 3526 } 3527 kfree(rxr->rx_tpa); 3528 rxr->rx_tpa = NULL; 3529 } 3530 } 3531 3532 static int bnxt_alloc_tpa_info(struct bnxt *bp) 3533 { 3534 int i, j; 3535 3536 bp->max_tpa = MAX_TPA; 3537 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 3538 if (!bp->max_tpa_v2) 3539 return 0; 3540 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 3541 } 3542 3543 for (i = 0; i < bp->rx_nr_rings; i++) { 3544 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3545 struct rx_agg_cmp *agg; 3546 3547 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 3548 GFP_KERNEL); 3549 if (!rxr->rx_tpa) 3550 return -ENOMEM; 3551 3552 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 3553 continue; 3554 for (j = 0; j < bp->max_tpa; j++) { 3555 agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL); 3556 if (!agg) 3557 return -ENOMEM; 3558 rxr->rx_tpa[j].agg_arr = agg; 3559 } 3560 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 3561 GFP_KERNEL); 3562 if (!rxr->rx_tpa_idx_map) 3563 return -ENOMEM; 3564 } 3565 return 0; 3566 } 3567 3568 static void bnxt_free_rx_rings(struct bnxt *bp) 3569 { 3570 int i; 3571 3572 if (!bp->rx_ring) 3573 return; 3574 3575 bnxt_free_tpa_info(bp); 3576 for (i = 0; i < bp->rx_nr_rings; i++) { 3577 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3578 struct bnxt_ring_struct *ring; 3579 3580 if (rxr->xdp_prog) 3581 bpf_prog_put(rxr->xdp_prog); 3582 3583 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 3584 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3585 3586 page_pool_destroy(rxr->page_pool); 3587 rxr->page_pool = NULL; 3588 3589 kfree(rxr->rx_agg_bmap); 3590 rxr->rx_agg_bmap = NULL; 3591 3592 ring = &rxr->rx_ring_struct; 3593 bnxt_free_ring(bp, &ring->ring_mem); 3594 3595 ring = &rxr->rx_agg_ring_struct; 3596 bnxt_free_ring(bp, &ring->ring_mem); 3597 } 3598 } 3599 3600 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 3601 struct bnxt_rx_ring_info *rxr, 3602 int numa_node) 3603 { 3604 struct page_pool_params pp = { 0 }; 3605 3606 pp.pool_size = bp->rx_agg_ring_size; 3607 if (BNXT_RX_PAGE_MODE(bp)) 3608 pp.pool_size += bp->rx_ring_size; 3609 pp.nid = numa_node; 3610 pp.napi = &rxr->bnapi->napi; 3611 pp.netdev = bp->dev; 3612 pp.dev = &bp->pdev->dev; 3613 pp.dma_dir = bp->rx_dir; 3614 pp.max_len = PAGE_SIZE; 3615 pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 3616 3617 rxr->page_pool = page_pool_create(&pp); 3618 if (IS_ERR(rxr->page_pool)) { 3619 int err = PTR_ERR(rxr->page_pool); 3620 3621 rxr->page_pool = NULL; 3622 return err; 3623 } 3624 return 0; 3625 } 3626 3627 static int bnxt_alloc_rx_rings(struct bnxt *bp) 3628 { 3629 int numa_node = dev_to_node(&bp->pdev->dev); 3630 int i, rc = 0, agg_rings = 0, cpu; 3631 3632 if (!bp->rx_ring) 3633 return -ENOMEM; 3634 3635 if (bp->flags & BNXT_FLAG_AGG_RINGS) 3636 agg_rings = 1; 3637 3638 for (i = 0; i < bp->rx_nr_rings; i++) { 3639 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3640 struct bnxt_ring_struct *ring; 3641 int cpu_node; 3642 3643 ring = &rxr->rx_ring_struct; 3644 3645 cpu = cpumask_local_spread(i, numa_node); 3646 cpu_node = cpu_to_node(cpu); 3647 netdev_dbg(bp->dev, "Allocating page pool for rx_ring[%d] on numa_node: %d\n", 3648 i, cpu_node); 3649 rc = bnxt_alloc_rx_page_pool(bp, rxr, cpu_node); 3650 if (rc) 3651 return rc; 3652 3653 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 3654 if (rc < 0) 3655 return rc; 3656 3657 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 3658 MEM_TYPE_PAGE_POOL, 3659 rxr->page_pool); 3660 if (rc) { 3661 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3662 return rc; 3663 } 3664 3665 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3666 if (rc) 3667 return rc; 3668 3669 ring->grp_idx = i; 3670 if (agg_rings) { 3671 u16 mem_size; 3672 3673 ring = &rxr->rx_agg_ring_struct; 3674 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3675 if (rc) 3676 return rc; 3677 3678 ring->grp_idx = i; 3679 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 3680 mem_size = rxr->rx_agg_bmap_size / 8; 3681 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 3682 if (!rxr->rx_agg_bmap) 3683 return -ENOMEM; 3684 } 3685 } 3686 if (bp->flags & BNXT_FLAG_TPA) 3687 rc = bnxt_alloc_tpa_info(bp); 3688 return rc; 3689 } 3690 3691 static void bnxt_free_tx_rings(struct bnxt *bp) 3692 { 3693 int i; 3694 struct pci_dev *pdev = bp->pdev; 3695 3696 if (!bp->tx_ring) 3697 return; 3698 3699 for (i = 0; i < bp->tx_nr_rings; i++) { 3700 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3701 struct bnxt_ring_struct *ring; 3702 3703 if (txr->tx_push) { 3704 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3705 txr->tx_push, txr->tx_push_mapping); 3706 txr->tx_push = NULL; 3707 } 3708 3709 ring = &txr->tx_ring_struct; 3710 3711 bnxt_free_ring(bp, &ring->ring_mem); 3712 } 3713 } 3714 3715 #define BNXT_TC_TO_RING_BASE(bp, tc) \ 3716 ((tc) * (bp)->tx_nr_rings_per_tc) 3717 3718 #define BNXT_RING_TO_TC_OFF(bp, tx) \ 3719 ((tx) % (bp)->tx_nr_rings_per_tc) 3720 3721 #define BNXT_RING_TO_TC(bp, tx) \ 3722 ((tx) / (bp)->tx_nr_rings_per_tc) 3723 3724 static int bnxt_alloc_tx_rings(struct bnxt *bp) 3725 { 3726 int i, j, rc; 3727 struct pci_dev *pdev = bp->pdev; 3728 3729 bp->tx_push_size = 0; 3730 if (bp->tx_push_thresh) { 3731 int push_size; 3732 3733 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 3734 bp->tx_push_thresh); 3735 3736 if (push_size > 256) { 3737 push_size = 0; 3738 bp->tx_push_thresh = 0; 3739 } 3740 3741 bp->tx_push_size = push_size; 3742 } 3743 3744 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 3745 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3746 struct bnxt_ring_struct *ring; 3747 u8 qidx; 3748 3749 ring = &txr->tx_ring_struct; 3750 3751 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3752 if (rc) 3753 return rc; 3754 3755 ring->grp_idx = txr->bnapi->index; 3756 if (bp->tx_push_size) { 3757 dma_addr_t mapping; 3758 3759 /* One pre-allocated DMA buffer to backup 3760 * TX push operation 3761 */ 3762 txr->tx_push = dma_alloc_coherent(&pdev->dev, 3763 bp->tx_push_size, 3764 &txr->tx_push_mapping, 3765 GFP_KERNEL); 3766 3767 if (!txr->tx_push) 3768 return -ENOMEM; 3769 3770 mapping = txr->tx_push_mapping + 3771 sizeof(struct tx_push_bd); 3772 txr->data_mapping = cpu_to_le64(mapping); 3773 } 3774 qidx = bp->tc_to_qidx[j]; 3775 ring->queue_id = bp->q_info[qidx].queue_id; 3776 spin_lock_init(&txr->xdp_tx_lock); 3777 if (i < bp->tx_nr_rings_xdp) 3778 continue; 3779 if (BNXT_RING_TO_TC_OFF(bp, i) == (bp->tx_nr_rings_per_tc - 1)) 3780 j++; 3781 } 3782 return 0; 3783 } 3784 3785 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr) 3786 { 3787 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3788 3789 kfree(cpr->cp_desc_ring); 3790 cpr->cp_desc_ring = NULL; 3791 ring->ring_mem.pg_arr = NULL; 3792 kfree(cpr->cp_desc_mapping); 3793 cpr->cp_desc_mapping = NULL; 3794 ring->ring_mem.dma_arr = NULL; 3795 } 3796 3797 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n) 3798 { 3799 cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL); 3800 if (!cpr->cp_desc_ring) 3801 return -ENOMEM; 3802 cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping), 3803 GFP_KERNEL); 3804 if (!cpr->cp_desc_mapping) 3805 return -ENOMEM; 3806 return 0; 3807 } 3808 3809 static void bnxt_free_all_cp_arrays(struct bnxt *bp) 3810 { 3811 int i; 3812 3813 if (!bp->bnapi) 3814 return; 3815 for (i = 0; i < bp->cp_nr_rings; i++) { 3816 struct bnxt_napi *bnapi = bp->bnapi[i]; 3817 3818 if (!bnapi) 3819 continue; 3820 bnxt_free_cp_arrays(&bnapi->cp_ring); 3821 } 3822 } 3823 3824 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp) 3825 { 3826 int i, n = bp->cp_nr_pages; 3827 3828 for (i = 0; i < bp->cp_nr_rings; i++) { 3829 struct bnxt_napi *bnapi = bp->bnapi[i]; 3830 int rc; 3831 3832 if (!bnapi) 3833 continue; 3834 rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n); 3835 if (rc) 3836 return rc; 3837 } 3838 return 0; 3839 } 3840 3841 static void bnxt_free_cp_rings(struct bnxt *bp) 3842 { 3843 int i; 3844 3845 if (!bp->bnapi) 3846 return; 3847 3848 for (i = 0; i < bp->cp_nr_rings; i++) { 3849 struct bnxt_napi *bnapi = bp->bnapi[i]; 3850 struct bnxt_cp_ring_info *cpr; 3851 struct bnxt_ring_struct *ring; 3852 int j; 3853 3854 if (!bnapi) 3855 continue; 3856 3857 cpr = &bnapi->cp_ring; 3858 ring = &cpr->cp_ring_struct; 3859 3860 bnxt_free_ring(bp, &ring->ring_mem); 3861 3862 if (!cpr->cp_ring_arr) 3863 continue; 3864 3865 for (j = 0; j < cpr->cp_ring_count; j++) { 3866 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 3867 3868 ring = &cpr2->cp_ring_struct; 3869 bnxt_free_ring(bp, &ring->ring_mem); 3870 bnxt_free_cp_arrays(cpr2); 3871 } 3872 kfree(cpr->cp_ring_arr); 3873 cpr->cp_ring_arr = NULL; 3874 cpr->cp_ring_count = 0; 3875 } 3876 } 3877 3878 static int bnxt_alloc_cp_sub_ring(struct bnxt *bp, 3879 struct bnxt_cp_ring_info *cpr) 3880 { 3881 struct bnxt_ring_mem_info *rmem; 3882 struct bnxt_ring_struct *ring; 3883 int rc; 3884 3885 rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages); 3886 if (rc) { 3887 bnxt_free_cp_arrays(cpr); 3888 return -ENOMEM; 3889 } 3890 ring = &cpr->cp_ring_struct; 3891 rmem = &ring->ring_mem; 3892 rmem->nr_pages = bp->cp_nr_pages; 3893 rmem->page_size = HW_CMPD_RING_SIZE; 3894 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3895 rmem->dma_arr = cpr->cp_desc_mapping; 3896 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 3897 rc = bnxt_alloc_ring(bp, rmem); 3898 if (rc) { 3899 bnxt_free_ring(bp, rmem); 3900 bnxt_free_cp_arrays(cpr); 3901 } 3902 return rc; 3903 } 3904 3905 static int bnxt_alloc_cp_rings(struct bnxt *bp) 3906 { 3907 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 3908 int i, j, rc, ulp_base_vec, ulp_msix; 3909 int tcs = bp->num_tc; 3910 3911 if (!tcs) 3912 tcs = 1; 3913 ulp_msix = bnxt_get_ulp_msix_num(bp); 3914 ulp_base_vec = bnxt_get_ulp_msix_base(bp); 3915 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 3916 struct bnxt_napi *bnapi = bp->bnapi[i]; 3917 struct bnxt_cp_ring_info *cpr, *cpr2; 3918 struct bnxt_ring_struct *ring; 3919 int cp_count = 0, k; 3920 int rx = 0, tx = 0; 3921 3922 if (!bnapi) 3923 continue; 3924 3925 cpr = &bnapi->cp_ring; 3926 cpr->bnapi = bnapi; 3927 ring = &cpr->cp_ring_struct; 3928 3929 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3930 if (rc) 3931 return rc; 3932 3933 if (ulp_msix && i >= ulp_base_vec) 3934 ring->map_idx = i + ulp_msix; 3935 else 3936 ring->map_idx = i; 3937 3938 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 3939 continue; 3940 3941 if (i < bp->rx_nr_rings) { 3942 cp_count++; 3943 rx = 1; 3944 } 3945 if (i < bp->tx_nr_rings_xdp) { 3946 cp_count++; 3947 tx = 1; 3948 } else if ((sh && i < bp->tx_nr_rings) || 3949 (!sh && i >= bp->rx_nr_rings)) { 3950 cp_count += tcs; 3951 tx = 1; 3952 } 3953 3954 cpr->cp_ring_arr = kcalloc(cp_count, sizeof(*cpr), 3955 GFP_KERNEL); 3956 if (!cpr->cp_ring_arr) 3957 return -ENOMEM; 3958 cpr->cp_ring_count = cp_count; 3959 3960 for (k = 0; k < cp_count; k++) { 3961 cpr2 = &cpr->cp_ring_arr[k]; 3962 rc = bnxt_alloc_cp_sub_ring(bp, cpr2); 3963 if (rc) 3964 return rc; 3965 cpr2->bnapi = bnapi; 3966 cpr2->cp_idx = k; 3967 if (!k && rx) { 3968 bp->rx_ring[i].rx_cpr = cpr2; 3969 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_RX; 3970 } else { 3971 int n, tc = k - rx; 3972 3973 n = BNXT_TC_TO_RING_BASE(bp, tc) + j; 3974 bp->tx_ring[n].tx_cpr = cpr2; 3975 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_TX; 3976 } 3977 } 3978 if (tx) 3979 j++; 3980 } 3981 return 0; 3982 } 3983 3984 static void bnxt_init_ring_struct(struct bnxt *bp) 3985 { 3986 int i, j; 3987 3988 for (i = 0; i < bp->cp_nr_rings; i++) { 3989 struct bnxt_napi *bnapi = bp->bnapi[i]; 3990 struct bnxt_ring_mem_info *rmem; 3991 struct bnxt_cp_ring_info *cpr; 3992 struct bnxt_rx_ring_info *rxr; 3993 struct bnxt_tx_ring_info *txr; 3994 struct bnxt_ring_struct *ring; 3995 3996 if (!bnapi) 3997 continue; 3998 3999 cpr = &bnapi->cp_ring; 4000 ring = &cpr->cp_ring_struct; 4001 rmem = &ring->ring_mem; 4002 rmem->nr_pages = bp->cp_nr_pages; 4003 rmem->page_size = HW_CMPD_RING_SIZE; 4004 rmem->pg_arr = (void **)cpr->cp_desc_ring; 4005 rmem->dma_arr = cpr->cp_desc_mapping; 4006 rmem->vmem_size = 0; 4007 4008 rxr = bnapi->rx_ring; 4009 if (!rxr) 4010 goto skip_rx; 4011 4012 ring = &rxr->rx_ring_struct; 4013 rmem = &ring->ring_mem; 4014 rmem->nr_pages = bp->rx_nr_pages; 4015 rmem->page_size = HW_RXBD_RING_SIZE; 4016 rmem->pg_arr = (void **)rxr->rx_desc_ring; 4017 rmem->dma_arr = rxr->rx_desc_mapping; 4018 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 4019 rmem->vmem = (void **)&rxr->rx_buf_ring; 4020 4021 ring = &rxr->rx_agg_ring_struct; 4022 rmem = &ring->ring_mem; 4023 rmem->nr_pages = bp->rx_agg_nr_pages; 4024 rmem->page_size = HW_RXBD_RING_SIZE; 4025 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 4026 rmem->dma_arr = rxr->rx_agg_desc_mapping; 4027 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 4028 rmem->vmem = (void **)&rxr->rx_agg_ring; 4029 4030 skip_rx: 4031 bnxt_for_each_napi_tx(j, bnapi, txr) { 4032 ring = &txr->tx_ring_struct; 4033 rmem = &ring->ring_mem; 4034 rmem->nr_pages = bp->tx_nr_pages; 4035 rmem->page_size = HW_TXBD_RING_SIZE; 4036 rmem->pg_arr = (void **)txr->tx_desc_ring; 4037 rmem->dma_arr = txr->tx_desc_mapping; 4038 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 4039 rmem->vmem = (void **)&txr->tx_buf_ring; 4040 } 4041 } 4042 } 4043 4044 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 4045 { 4046 int i; 4047 u32 prod; 4048 struct rx_bd **rx_buf_ring; 4049 4050 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 4051 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 4052 int j; 4053 struct rx_bd *rxbd; 4054 4055 rxbd = rx_buf_ring[i]; 4056 if (!rxbd) 4057 continue; 4058 4059 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 4060 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 4061 rxbd->rx_bd_opaque = prod; 4062 } 4063 } 4064 } 4065 4066 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 4067 { 4068 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 4069 struct net_device *dev = bp->dev; 4070 u32 prod; 4071 int i; 4072 4073 prod = rxr->rx_prod; 4074 for (i = 0; i < bp->rx_ring_size; i++) { 4075 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 4076 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n", 4077 ring_nr, i, bp->rx_ring_size); 4078 break; 4079 } 4080 prod = NEXT_RX(prod); 4081 } 4082 rxr->rx_prod = prod; 4083 4084 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 4085 return 0; 4086 4087 prod = rxr->rx_agg_prod; 4088 for (i = 0; i < bp->rx_agg_ring_size; i++) { 4089 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) { 4090 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n", 4091 ring_nr, i, bp->rx_ring_size); 4092 break; 4093 } 4094 prod = NEXT_RX_AGG(prod); 4095 } 4096 rxr->rx_agg_prod = prod; 4097 4098 if (rxr->rx_tpa) { 4099 dma_addr_t mapping; 4100 u8 *data; 4101 4102 for (i = 0; i < bp->max_tpa; i++) { 4103 data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL); 4104 if (!data) 4105 return -ENOMEM; 4106 4107 rxr->rx_tpa[i].data = data; 4108 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 4109 rxr->rx_tpa[i].mapping = mapping; 4110 } 4111 } 4112 return 0; 4113 } 4114 4115 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 4116 { 4117 struct bnxt_rx_ring_info *rxr; 4118 struct bnxt_ring_struct *ring; 4119 u32 type; 4120 4121 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 4122 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 4123 4124 if (NET_IP_ALIGN == 2) 4125 type |= RX_BD_FLAGS_SOP; 4126 4127 rxr = &bp->rx_ring[ring_nr]; 4128 ring = &rxr->rx_ring_struct; 4129 bnxt_init_rxbd_pages(ring, type); 4130 4131 netif_queue_set_napi(bp->dev, ring_nr, NETDEV_QUEUE_TYPE_RX, 4132 &rxr->bnapi->napi); 4133 4134 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 4135 bpf_prog_add(bp->xdp_prog, 1); 4136 rxr->xdp_prog = bp->xdp_prog; 4137 } 4138 ring->fw_ring_id = INVALID_HW_RING_ID; 4139 4140 ring = &rxr->rx_agg_ring_struct; 4141 ring->fw_ring_id = INVALID_HW_RING_ID; 4142 4143 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 4144 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 4145 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 4146 4147 bnxt_init_rxbd_pages(ring, type); 4148 } 4149 4150 return bnxt_alloc_one_rx_ring(bp, ring_nr); 4151 } 4152 4153 static void bnxt_init_cp_rings(struct bnxt *bp) 4154 { 4155 int i, j; 4156 4157 for (i = 0; i < bp->cp_nr_rings; i++) { 4158 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 4159 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4160 4161 ring->fw_ring_id = INVALID_HW_RING_ID; 4162 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4163 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4164 if (!cpr->cp_ring_arr) 4165 continue; 4166 for (j = 0; j < cpr->cp_ring_count; j++) { 4167 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 4168 4169 ring = &cpr2->cp_ring_struct; 4170 ring->fw_ring_id = INVALID_HW_RING_ID; 4171 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4172 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4173 } 4174 } 4175 } 4176 4177 static int bnxt_init_rx_rings(struct bnxt *bp) 4178 { 4179 int i, rc = 0; 4180 4181 if (BNXT_RX_PAGE_MODE(bp)) { 4182 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 4183 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 4184 } else { 4185 bp->rx_offset = BNXT_RX_OFFSET; 4186 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 4187 } 4188 4189 for (i = 0; i < bp->rx_nr_rings; i++) { 4190 rc = bnxt_init_one_rx_ring(bp, i); 4191 if (rc) 4192 break; 4193 } 4194 4195 return rc; 4196 } 4197 4198 static int bnxt_init_tx_rings(struct bnxt *bp) 4199 { 4200 u16 i; 4201 4202 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 4203 BNXT_MIN_TX_DESC_CNT); 4204 4205 for (i = 0; i < bp->tx_nr_rings; i++) { 4206 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4207 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 4208 4209 ring->fw_ring_id = INVALID_HW_RING_ID; 4210 4211 if (i >= bp->tx_nr_rings_xdp) 4212 netif_queue_set_napi(bp->dev, i - bp->tx_nr_rings_xdp, 4213 NETDEV_QUEUE_TYPE_TX, 4214 &txr->bnapi->napi); 4215 } 4216 4217 return 0; 4218 } 4219 4220 static void bnxt_free_ring_grps(struct bnxt *bp) 4221 { 4222 kfree(bp->grp_info); 4223 bp->grp_info = NULL; 4224 } 4225 4226 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 4227 { 4228 int i; 4229 4230 if (irq_re_init) { 4231 bp->grp_info = kcalloc(bp->cp_nr_rings, 4232 sizeof(struct bnxt_ring_grp_info), 4233 GFP_KERNEL); 4234 if (!bp->grp_info) 4235 return -ENOMEM; 4236 } 4237 for (i = 0; i < bp->cp_nr_rings; i++) { 4238 if (irq_re_init) 4239 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 4240 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 4241 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 4242 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 4243 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 4244 } 4245 return 0; 4246 } 4247 4248 static void bnxt_free_vnics(struct bnxt *bp) 4249 { 4250 kfree(bp->vnic_info); 4251 bp->vnic_info = NULL; 4252 bp->nr_vnics = 0; 4253 } 4254 4255 static int bnxt_alloc_vnics(struct bnxt *bp) 4256 { 4257 int num_vnics = 1; 4258 4259 #ifdef CONFIG_RFS_ACCEL 4260 if (bp->flags & BNXT_FLAG_RFS) { 4261 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 4262 num_vnics++; 4263 else if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4264 num_vnics += bp->rx_nr_rings; 4265 } 4266 #endif 4267 4268 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 4269 num_vnics++; 4270 4271 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 4272 GFP_KERNEL); 4273 if (!bp->vnic_info) 4274 return -ENOMEM; 4275 4276 bp->nr_vnics = num_vnics; 4277 return 0; 4278 } 4279 4280 static void bnxt_init_vnics(struct bnxt *bp) 4281 { 4282 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 4283 int i; 4284 4285 for (i = 0; i < bp->nr_vnics; i++) { 4286 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 4287 int j; 4288 4289 vnic->fw_vnic_id = INVALID_HW_RING_ID; 4290 vnic->vnic_id = i; 4291 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 4292 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 4293 4294 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 4295 4296 if (bp->vnic_info[i].rss_hash_key) { 4297 if (i == BNXT_VNIC_DEFAULT) { 4298 u8 *key = (void *)vnic->rss_hash_key; 4299 int k; 4300 4301 if (!bp->rss_hash_key_valid && 4302 !bp->rss_hash_key_updated) { 4303 get_random_bytes(bp->rss_hash_key, 4304 HW_HASH_KEY_SIZE); 4305 bp->rss_hash_key_updated = true; 4306 } 4307 4308 memcpy(vnic->rss_hash_key, bp->rss_hash_key, 4309 HW_HASH_KEY_SIZE); 4310 4311 if (!bp->rss_hash_key_updated) 4312 continue; 4313 4314 bp->rss_hash_key_updated = false; 4315 bp->rss_hash_key_valid = true; 4316 4317 bp->toeplitz_prefix = 0; 4318 for (k = 0; k < 8; k++) { 4319 bp->toeplitz_prefix <<= 8; 4320 bp->toeplitz_prefix |= key[k]; 4321 } 4322 } else { 4323 memcpy(vnic->rss_hash_key, vnic0->rss_hash_key, 4324 HW_HASH_KEY_SIZE); 4325 } 4326 } 4327 } 4328 } 4329 4330 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 4331 { 4332 int pages; 4333 4334 pages = ring_size / desc_per_pg; 4335 4336 if (!pages) 4337 return 1; 4338 4339 pages++; 4340 4341 while (pages & (pages - 1)) 4342 pages++; 4343 4344 return pages; 4345 } 4346 4347 void bnxt_set_tpa_flags(struct bnxt *bp) 4348 { 4349 bp->flags &= ~BNXT_FLAG_TPA; 4350 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 4351 return; 4352 if (bp->dev->features & NETIF_F_LRO) 4353 bp->flags |= BNXT_FLAG_LRO; 4354 else if (bp->dev->features & NETIF_F_GRO_HW) 4355 bp->flags |= BNXT_FLAG_GRO; 4356 } 4357 4358 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 4359 * be set on entry. 4360 */ 4361 void bnxt_set_ring_params(struct bnxt *bp) 4362 { 4363 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 4364 u32 agg_factor = 0, agg_ring_size = 0; 4365 4366 /* 8 for CRC and VLAN */ 4367 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 4368 4369 rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) + 4370 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4371 4372 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 4373 ring_size = bp->rx_ring_size; 4374 bp->rx_agg_ring_size = 0; 4375 bp->rx_agg_nr_pages = 0; 4376 4377 if (bp->flags & BNXT_FLAG_TPA) 4378 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 4379 4380 bp->flags &= ~BNXT_FLAG_JUMBO; 4381 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 4382 u32 jumbo_factor; 4383 4384 bp->flags |= BNXT_FLAG_JUMBO; 4385 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 4386 if (jumbo_factor > agg_factor) 4387 agg_factor = jumbo_factor; 4388 } 4389 if (agg_factor) { 4390 if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) { 4391 ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA; 4392 netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n", 4393 bp->rx_ring_size, ring_size); 4394 bp->rx_ring_size = ring_size; 4395 } 4396 agg_ring_size = ring_size * agg_factor; 4397 4398 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 4399 RX_DESC_CNT); 4400 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 4401 u32 tmp = agg_ring_size; 4402 4403 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 4404 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 4405 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 4406 tmp, agg_ring_size); 4407 } 4408 bp->rx_agg_ring_size = agg_ring_size; 4409 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 4410 4411 if (BNXT_RX_PAGE_MODE(bp)) { 4412 rx_space = PAGE_SIZE; 4413 rx_size = PAGE_SIZE - 4414 ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) - 4415 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4416 } else { 4417 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 4418 rx_space = rx_size + NET_SKB_PAD + 4419 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4420 } 4421 } 4422 4423 bp->rx_buf_use_size = rx_size; 4424 bp->rx_buf_size = rx_space; 4425 4426 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 4427 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 4428 4429 ring_size = bp->tx_ring_size; 4430 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 4431 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 4432 4433 max_rx_cmpl = bp->rx_ring_size; 4434 /* MAX TPA needs to be added because TPA_START completions are 4435 * immediately recycled, so the TPA completions are not bound by 4436 * the RX ring size. 4437 */ 4438 if (bp->flags & BNXT_FLAG_TPA) 4439 max_rx_cmpl += bp->max_tpa; 4440 /* RX and TPA completions are 32-byte, all others are 16-byte */ 4441 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 4442 bp->cp_ring_size = ring_size; 4443 4444 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 4445 if (bp->cp_nr_pages > MAX_CP_PAGES) { 4446 bp->cp_nr_pages = MAX_CP_PAGES; 4447 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 4448 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 4449 ring_size, bp->cp_ring_size); 4450 } 4451 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 4452 bp->cp_ring_mask = bp->cp_bit - 1; 4453 } 4454 4455 /* Changing allocation mode of RX rings. 4456 * TODO: Update when extending xdp_rxq_info to support allocation modes. 4457 */ 4458 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 4459 { 4460 struct net_device *dev = bp->dev; 4461 4462 if (page_mode) { 4463 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 4464 bp->flags |= BNXT_FLAG_RX_PAGE_MODE; 4465 4466 if (bp->xdp_prog->aux->xdp_has_frags) 4467 dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU); 4468 else 4469 dev->max_mtu = 4470 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 4471 if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) { 4472 bp->flags |= BNXT_FLAG_JUMBO; 4473 bp->rx_skb_func = bnxt_rx_multi_page_skb; 4474 } else { 4475 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 4476 bp->rx_skb_func = bnxt_rx_page_skb; 4477 } 4478 bp->rx_dir = DMA_BIDIRECTIONAL; 4479 /* Disable LRO or GRO_HW */ 4480 netdev_update_features(dev); 4481 } else { 4482 dev->max_mtu = bp->max_mtu; 4483 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 4484 bp->rx_dir = DMA_FROM_DEVICE; 4485 bp->rx_skb_func = bnxt_rx_skb; 4486 } 4487 return 0; 4488 } 4489 4490 static void bnxt_free_vnic_attributes(struct bnxt *bp) 4491 { 4492 int i; 4493 struct bnxt_vnic_info *vnic; 4494 struct pci_dev *pdev = bp->pdev; 4495 4496 if (!bp->vnic_info) 4497 return; 4498 4499 for (i = 0; i < bp->nr_vnics; i++) { 4500 vnic = &bp->vnic_info[i]; 4501 4502 kfree(vnic->fw_grp_ids); 4503 vnic->fw_grp_ids = NULL; 4504 4505 kfree(vnic->uc_list); 4506 vnic->uc_list = NULL; 4507 4508 if (vnic->mc_list) { 4509 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 4510 vnic->mc_list, vnic->mc_list_mapping); 4511 vnic->mc_list = NULL; 4512 } 4513 4514 if (vnic->rss_table) { 4515 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 4516 vnic->rss_table, 4517 vnic->rss_table_dma_addr); 4518 vnic->rss_table = NULL; 4519 } 4520 4521 vnic->rss_hash_key = NULL; 4522 vnic->flags = 0; 4523 } 4524 } 4525 4526 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 4527 { 4528 int i, rc = 0, size; 4529 struct bnxt_vnic_info *vnic; 4530 struct pci_dev *pdev = bp->pdev; 4531 int max_rings; 4532 4533 for (i = 0; i < bp->nr_vnics; i++) { 4534 vnic = &bp->vnic_info[i]; 4535 4536 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 4537 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 4538 4539 if (mem_size > 0) { 4540 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 4541 if (!vnic->uc_list) { 4542 rc = -ENOMEM; 4543 goto out; 4544 } 4545 } 4546 } 4547 4548 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 4549 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 4550 vnic->mc_list = 4551 dma_alloc_coherent(&pdev->dev, 4552 vnic->mc_list_size, 4553 &vnic->mc_list_mapping, 4554 GFP_KERNEL); 4555 if (!vnic->mc_list) { 4556 rc = -ENOMEM; 4557 goto out; 4558 } 4559 } 4560 4561 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4562 goto vnic_skip_grps; 4563 4564 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 4565 max_rings = bp->rx_nr_rings; 4566 else 4567 max_rings = 1; 4568 4569 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 4570 if (!vnic->fw_grp_ids) { 4571 rc = -ENOMEM; 4572 goto out; 4573 } 4574 vnic_skip_grps: 4575 if ((bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && 4576 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 4577 continue; 4578 4579 /* Allocate rss table and hash key */ 4580 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 4581 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4582 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 4583 4584 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 4585 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 4586 vnic->rss_table_size, 4587 &vnic->rss_table_dma_addr, 4588 GFP_KERNEL); 4589 if (!vnic->rss_table) { 4590 rc = -ENOMEM; 4591 goto out; 4592 } 4593 4594 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 4595 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 4596 } 4597 return 0; 4598 4599 out: 4600 return rc; 4601 } 4602 4603 static void bnxt_free_hwrm_resources(struct bnxt *bp) 4604 { 4605 struct bnxt_hwrm_wait_token *token; 4606 4607 dma_pool_destroy(bp->hwrm_dma_pool); 4608 bp->hwrm_dma_pool = NULL; 4609 4610 rcu_read_lock(); 4611 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) 4612 WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED); 4613 rcu_read_unlock(); 4614 } 4615 4616 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 4617 { 4618 bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev, 4619 BNXT_HWRM_DMA_SIZE, 4620 BNXT_HWRM_DMA_ALIGN, 0); 4621 if (!bp->hwrm_dma_pool) 4622 return -ENOMEM; 4623 4624 INIT_HLIST_HEAD(&bp->hwrm_pending_list); 4625 4626 return 0; 4627 } 4628 4629 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 4630 { 4631 kfree(stats->hw_masks); 4632 stats->hw_masks = NULL; 4633 kfree(stats->sw_stats); 4634 stats->sw_stats = NULL; 4635 if (stats->hw_stats) { 4636 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 4637 stats->hw_stats_map); 4638 stats->hw_stats = NULL; 4639 } 4640 } 4641 4642 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 4643 bool alloc_masks) 4644 { 4645 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 4646 &stats->hw_stats_map, GFP_KERNEL); 4647 if (!stats->hw_stats) 4648 return -ENOMEM; 4649 4650 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 4651 if (!stats->sw_stats) 4652 goto stats_mem_err; 4653 4654 if (alloc_masks) { 4655 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 4656 if (!stats->hw_masks) 4657 goto stats_mem_err; 4658 } 4659 return 0; 4660 4661 stats_mem_err: 4662 bnxt_free_stats_mem(bp, stats); 4663 return -ENOMEM; 4664 } 4665 4666 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 4667 { 4668 int i; 4669 4670 for (i = 0; i < count; i++) 4671 mask_arr[i] = mask; 4672 } 4673 4674 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 4675 { 4676 int i; 4677 4678 for (i = 0; i < count; i++) 4679 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 4680 } 4681 4682 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 4683 struct bnxt_stats_mem *stats) 4684 { 4685 struct hwrm_func_qstats_ext_output *resp; 4686 struct hwrm_func_qstats_ext_input *req; 4687 __le64 *hw_masks; 4688 int rc; 4689 4690 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 4691 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4692 return -EOPNOTSUPP; 4693 4694 rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT); 4695 if (rc) 4696 return rc; 4697 4698 req->fid = cpu_to_le16(0xffff); 4699 req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4700 4701 resp = hwrm_req_hold(bp, req); 4702 rc = hwrm_req_send(bp, req); 4703 if (!rc) { 4704 hw_masks = &resp->rx_ucast_pkts; 4705 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 4706 } 4707 hwrm_req_drop(bp, req); 4708 return rc; 4709 } 4710 4711 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 4712 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 4713 4714 static void bnxt_init_stats(struct bnxt *bp) 4715 { 4716 struct bnxt_napi *bnapi = bp->bnapi[0]; 4717 struct bnxt_cp_ring_info *cpr; 4718 struct bnxt_stats_mem *stats; 4719 __le64 *rx_stats, *tx_stats; 4720 int rc, rx_count, tx_count; 4721 u64 *rx_masks, *tx_masks; 4722 u64 mask; 4723 u8 flags; 4724 4725 cpr = &bnapi->cp_ring; 4726 stats = &cpr->stats; 4727 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 4728 if (rc) { 4729 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4730 mask = (1ULL << 48) - 1; 4731 else 4732 mask = -1ULL; 4733 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 4734 } 4735 if (bp->flags & BNXT_FLAG_PORT_STATS) { 4736 stats = &bp->port_stats; 4737 rx_stats = stats->hw_stats; 4738 rx_masks = stats->hw_masks; 4739 rx_count = sizeof(struct rx_port_stats) / 8; 4740 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4741 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4742 tx_count = sizeof(struct tx_port_stats) / 8; 4743 4744 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 4745 rc = bnxt_hwrm_port_qstats(bp, flags); 4746 if (rc) { 4747 mask = (1ULL << 40) - 1; 4748 4749 bnxt_fill_masks(rx_masks, mask, rx_count); 4750 bnxt_fill_masks(tx_masks, mask, tx_count); 4751 } else { 4752 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4753 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 4754 bnxt_hwrm_port_qstats(bp, 0); 4755 } 4756 } 4757 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 4758 stats = &bp->rx_port_stats_ext; 4759 rx_stats = stats->hw_stats; 4760 rx_masks = stats->hw_masks; 4761 rx_count = sizeof(struct rx_port_stats_ext) / 8; 4762 stats = &bp->tx_port_stats_ext; 4763 tx_stats = stats->hw_stats; 4764 tx_masks = stats->hw_masks; 4765 tx_count = sizeof(struct tx_port_stats_ext) / 8; 4766 4767 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4768 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 4769 if (rc) { 4770 mask = (1ULL << 40) - 1; 4771 4772 bnxt_fill_masks(rx_masks, mask, rx_count); 4773 if (tx_stats) 4774 bnxt_fill_masks(tx_masks, mask, tx_count); 4775 } else { 4776 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4777 if (tx_stats) 4778 bnxt_copy_hw_masks(tx_masks, tx_stats, 4779 tx_count); 4780 bnxt_hwrm_port_qstats_ext(bp, 0); 4781 } 4782 } 4783 } 4784 4785 static void bnxt_free_port_stats(struct bnxt *bp) 4786 { 4787 bp->flags &= ~BNXT_FLAG_PORT_STATS; 4788 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 4789 4790 bnxt_free_stats_mem(bp, &bp->port_stats); 4791 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 4792 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 4793 } 4794 4795 static void bnxt_free_ring_stats(struct bnxt *bp) 4796 { 4797 int i; 4798 4799 if (!bp->bnapi) 4800 return; 4801 4802 for (i = 0; i < bp->cp_nr_rings; i++) { 4803 struct bnxt_napi *bnapi = bp->bnapi[i]; 4804 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4805 4806 bnxt_free_stats_mem(bp, &cpr->stats); 4807 } 4808 } 4809 4810 static int bnxt_alloc_stats(struct bnxt *bp) 4811 { 4812 u32 size, i; 4813 int rc; 4814 4815 size = bp->hw_ring_stats_size; 4816 4817 for (i = 0; i < bp->cp_nr_rings; i++) { 4818 struct bnxt_napi *bnapi = bp->bnapi[i]; 4819 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4820 4821 cpr->stats.len = size; 4822 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 4823 if (rc) 4824 return rc; 4825 4826 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 4827 } 4828 4829 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 4830 return 0; 4831 4832 if (bp->port_stats.hw_stats) 4833 goto alloc_ext_stats; 4834 4835 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 4836 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 4837 if (rc) 4838 return rc; 4839 4840 bp->flags |= BNXT_FLAG_PORT_STATS; 4841 4842 alloc_ext_stats: 4843 /* Display extended statistics only if FW supports it */ 4844 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 4845 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 4846 return 0; 4847 4848 if (bp->rx_port_stats_ext.hw_stats) 4849 goto alloc_tx_ext_stats; 4850 4851 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 4852 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 4853 /* Extended stats are optional */ 4854 if (rc) 4855 return 0; 4856 4857 alloc_tx_ext_stats: 4858 if (bp->tx_port_stats_ext.hw_stats) 4859 return 0; 4860 4861 if (bp->hwrm_spec_code >= 0x10902 || 4862 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 4863 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 4864 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 4865 /* Extended stats are optional */ 4866 if (rc) 4867 return 0; 4868 } 4869 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 4870 return 0; 4871 } 4872 4873 static void bnxt_clear_ring_indices(struct bnxt *bp) 4874 { 4875 int i, j; 4876 4877 if (!bp->bnapi) 4878 return; 4879 4880 for (i = 0; i < bp->cp_nr_rings; i++) { 4881 struct bnxt_napi *bnapi = bp->bnapi[i]; 4882 struct bnxt_cp_ring_info *cpr; 4883 struct bnxt_rx_ring_info *rxr; 4884 struct bnxt_tx_ring_info *txr; 4885 4886 if (!bnapi) 4887 continue; 4888 4889 cpr = &bnapi->cp_ring; 4890 cpr->cp_raw_cons = 0; 4891 4892 bnxt_for_each_napi_tx(j, bnapi, txr) { 4893 txr->tx_prod = 0; 4894 txr->tx_cons = 0; 4895 txr->tx_hw_cons = 0; 4896 } 4897 4898 rxr = bnapi->rx_ring; 4899 if (rxr) { 4900 rxr->rx_prod = 0; 4901 rxr->rx_agg_prod = 0; 4902 rxr->rx_sw_agg_prod = 0; 4903 rxr->rx_next_cons = 0; 4904 } 4905 bnapi->events = 0; 4906 } 4907 } 4908 4909 void bnxt_insert_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 4910 { 4911 u8 type = fltr->type, flags = fltr->flags; 4912 4913 INIT_LIST_HEAD(&fltr->list); 4914 if ((type == BNXT_FLTR_TYPE_L2 && flags & BNXT_ACT_RING_DST) || 4915 (type == BNXT_FLTR_TYPE_NTUPLE && flags & BNXT_ACT_NO_AGING)) 4916 list_add_tail(&fltr->list, &bp->usr_fltr_list); 4917 } 4918 4919 void bnxt_del_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 4920 { 4921 if (!list_empty(&fltr->list)) 4922 list_del_init(&fltr->list); 4923 } 4924 4925 void bnxt_clear_usr_fltrs(struct bnxt *bp, bool all) 4926 { 4927 struct bnxt_filter_base *usr_fltr, *tmp; 4928 4929 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) { 4930 if (!all && usr_fltr->type == BNXT_FLTR_TYPE_L2) 4931 continue; 4932 bnxt_del_one_usr_fltr(bp, usr_fltr); 4933 } 4934 } 4935 4936 static void bnxt_del_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 4937 { 4938 hlist_del(&fltr->hash); 4939 bnxt_del_one_usr_fltr(bp, fltr); 4940 if (fltr->flags) { 4941 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 4942 bp->ntp_fltr_count--; 4943 } 4944 kfree(fltr); 4945 } 4946 4947 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool all) 4948 { 4949 int i; 4950 4951 /* Under rtnl_lock and all our NAPIs have been disabled. It's 4952 * safe to delete the hash table. 4953 */ 4954 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 4955 struct hlist_head *head; 4956 struct hlist_node *tmp; 4957 struct bnxt_ntuple_filter *fltr; 4958 4959 head = &bp->ntp_fltr_hash_tbl[i]; 4960 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 4961 bnxt_del_l2_filter(bp, fltr->l2_fltr); 4962 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 4963 !list_empty(&fltr->base.list))) 4964 continue; 4965 bnxt_del_fltr(bp, &fltr->base); 4966 } 4967 } 4968 if (!all) 4969 return; 4970 4971 bitmap_free(bp->ntp_fltr_bmap); 4972 bp->ntp_fltr_bmap = NULL; 4973 bp->ntp_fltr_count = 0; 4974 } 4975 4976 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 4977 { 4978 int i, rc = 0; 4979 4980 if (!(bp->flags & BNXT_FLAG_RFS) || bp->ntp_fltr_bmap) 4981 return 0; 4982 4983 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 4984 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 4985 4986 bp->ntp_fltr_count = 0; 4987 bp->ntp_fltr_bmap = bitmap_zalloc(bp->max_fltr, GFP_KERNEL); 4988 4989 if (!bp->ntp_fltr_bmap) 4990 rc = -ENOMEM; 4991 4992 return rc; 4993 } 4994 4995 static void bnxt_free_l2_filters(struct bnxt *bp, bool all) 4996 { 4997 int i; 4998 4999 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) { 5000 struct hlist_head *head; 5001 struct hlist_node *tmp; 5002 struct bnxt_l2_filter *fltr; 5003 5004 head = &bp->l2_fltr_hash_tbl[i]; 5005 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 5006 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 5007 !list_empty(&fltr->base.list))) 5008 continue; 5009 bnxt_del_fltr(bp, &fltr->base); 5010 } 5011 } 5012 } 5013 5014 static void bnxt_init_l2_fltr_tbl(struct bnxt *bp) 5015 { 5016 int i; 5017 5018 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) 5019 INIT_HLIST_HEAD(&bp->l2_fltr_hash_tbl[i]); 5020 get_random_bytes(&bp->hash_seed, sizeof(bp->hash_seed)); 5021 } 5022 5023 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 5024 { 5025 bnxt_free_vnic_attributes(bp); 5026 bnxt_free_tx_rings(bp); 5027 bnxt_free_rx_rings(bp); 5028 bnxt_free_cp_rings(bp); 5029 bnxt_free_all_cp_arrays(bp); 5030 bnxt_free_ntp_fltrs(bp, false); 5031 bnxt_free_l2_filters(bp, false); 5032 if (irq_re_init) { 5033 bnxt_free_ring_stats(bp); 5034 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 5035 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 5036 bnxt_free_port_stats(bp); 5037 bnxt_free_ring_grps(bp); 5038 bnxt_free_vnics(bp); 5039 kfree(bp->tx_ring_map); 5040 bp->tx_ring_map = NULL; 5041 kfree(bp->tx_ring); 5042 bp->tx_ring = NULL; 5043 kfree(bp->rx_ring); 5044 bp->rx_ring = NULL; 5045 kfree(bp->bnapi); 5046 bp->bnapi = NULL; 5047 } else { 5048 bnxt_clear_ring_indices(bp); 5049 } 5050 } 5051 5052 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 5053 { 5054 int i, j, rc, size, arr_size; 5055 void *bnapi; 5056 5057 if (irq_re_init) { 5058 /* Allocate bnapi mem pointer array and mem block for 5059 * all queues 5060 */ 5061 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 5062 bp->cp_nr_rings); 5063 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 5064 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 5065 if (!bnapi) 5066 return -ENOMEM; 5067 5068 bp->bnapi = bnapi; 5069 bnapi += arr_size; 5070 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 5071 bp->bnapi[i] = bnapi; 5072 bp->bnapi[i]->index = i; 5073 bp->bnapi[i]->bp = bp; 5074 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5075 struct bnxt_cp_ring_info *cpr = 5076 &bp->bnapi[i]->cp_ring; 5077 5078 cpr->cp_ring_struct.ring_mem.flags = 5079 BNXT_RMEM_RING_PTE_FLAG; 5080 } 5081 } 5082 5083 bp->rx_ring = kcalloc(bp->rx_nr_rings, 5084 sizeof(struct bnxt_rx_ring_info), 5085 GFP_KERNEL); 5086 if (!bp->rx_ring) 5087 return -ENOMEM; 5088 5089 for (i = 0; i < bp->rx_nr_rings; i++) { 5090 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5091 5092 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5093 rxr->rx_ring_struct.ring_mem.flags = 5094 BNXT_RMEM_RING_PTE_FLAG; 5095 rxr->rx_agg_ring_struct.ring_mem.flags = 5096 BNXT_RMEM_RING_PTE_FLAG; 5097 } else { 5098 rxr->rx_cpr = &bp->bnapi[i]->cp_ring; 5099 } 5100 rxr->bnapi = bp->bnapi[i]; 5101 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 5102 } 5103 5104 bp->tx_ring = kcalloc(bp->tx_nr_rings, 5105 sizeof(struct bnxt_tx_ring_info), 5106 GFP_KERNEL); 5107 if (!bp->tx_ring) 5108 return -ENOMEM; 5109 5110 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 5111 GFP_KERNEL); 5112 5113 if (!bp->tx_ring_map) 5114 return -ENOMEM; 5115 5116 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 5117 j = 0; 5118 else 5119 j = bp->rx_nr_rings; 5120 5121 for (i = 0; i < bp->tx_nr_rings; i++) { 5122 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5123 struct bnxt_napi *bnapi2; 5124 5125 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 5126 txr->tx_ring_struct.ring_mem.flags = 5127 BNXT_RMEM_RING_PTE_FLAG; 5128 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 5129 if (i >= bp->tx_nr_rings_xdp) { 5130 int k = j + BNXT_RING_TO_TC_OFF(bp, i); 5131 5132 bnapi2 = bp->bnapi[k]; 5133 txr->txq_index = i - bp->tx_nr_rings_xdp; 5134 txr->tx_napi_idx = 5135 BNXT_RING_TO_TC(bp, txr->txq_index); 5136 bnapi2->tx_ring[txr->tx_napi_idx] = txr; 5137 bnapi2->tx_int = bnxt_tx_int; 5138 } else { 5139 bnapi2 = bp->bnapi[j]; 5140 bnapi2->flags |= BNXT_NAPI_FLAG_XDP; 5141 bnapi2->tx_ring[0] = txr; 5142 bnapi2->tx_int = bnxt_tx_int_xdp; 5143 j++; 5144 } 5145 txr->bnapi = bnapi2; 5146 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 5147 txr->tx_cpr = &bnapi2->cp_ring; 5148 } 5149 5150 rc = bnxt_alloc_stats(bp); 5151 if (rc) 5152 goto alloc_mem_err; 5153 bnxt_init_stats(bp); 5154 5155 rc = bnxt_alloc_ntp_fltrs(bp); 5156 if (rc) 5157 goto alloc_mem_err; 5158 5159 rc = bnxt_alloc_vnics(bp); 5160 if (rc) 5161 goto alloc_mem_err; 5162 } 5163 5164 rc = bnxt_alloc_all_cp_arrays(bp); 5165 if (rc) 5166 goto alloc_mem_err; 5167 5168 bnxt_init_ring_struct(bp); 5169 5170 rc = bnxt_alloc_rx_rings(bp); 5171 if (rc) 5172 goto alloc_mem_err; 5173 5174 rc = bnxt_alloc_tx_rings(bp); 5175 if (rc) 5176 goto alloc_mem_err; 5177 5178 rc = bnxt_alloc_cp_rings(bp); 5179 if (rc) 5180 goto alloc_mem_err; 5181 5182 bp->vnic_info[BNXT_VNIC_DEFAULT].flags |= BNXT_VNIC_RSS_FLAG | 5183 BNXT_VNIC_MCAST_FLAG | 5184 BNXT_VNIC_UCAST_FLAG; 5185 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp) && (bp->flags & BNXT_FLAG_RFS)) 5186 bp->vnic_info[BNXT_VNIC_NTUPLE].flags |= 5187 BNXT_VNIC_RSS_FLAG | BNXT_VNIC_NTUPLE_FLAG; 5188 5189 rc = bnxt_alloc_vnic_attributes(bp); 5190 if (rc) 5191 goto alloc_mem_err; 5192 return 0; 5193 5194 alloc_mem_err: 5195 bnxt_free_mem(bp, true); 5196 return rc; 5197 } 5198 5199 static void bnxt_disable_int(struct bnxt *bp) 5200 { 5201 int i; 5202 5203 if (!bp->bnapi) 5204 return; 5205 5206 for (i = 0; i < bp->cp_nr_rings; i++) { 5207 struct bnxt_napi *bnapi = bp->bnapi[i]; 5208 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5209 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5210 5211 if (ring->fw_ring_id != INVALID_HW_RING_ID) 5212 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5213 } 5214 } 5215 5216 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 5217 { 5218 struct bnxt_napi *bnapi = bp->bnapi[n]; 5219 struct bnxt_cp_ring_info *cpr; 5220 5221 cpr = &bnapi->cp_ring; 5222 return cpr->cp_ring_struct.map_idx; 5223 } 5224 5225 static void bnxt_disable_int_sync(struct bnxt *bp) 5226 { 5227 int i; 5228 5229 if (!bp->irq_tbl) 5230 return; 5231 5232 atomic_inc(&bp->intr_sem); 5233 5234 bnxt_disable_int(bp); 5235 for (i = 0; i < bp->cp_nr_rings; i++) { 5236 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 5237 5238 synchronize_irq(bp->irq_tbl[map_idx].vector); 5239 } 5240 } 5241 5242 static void bnxt_enable_int(struct bnxt *bp) 5243 { 5244 int i; 5245 5246 atomic_set(&bp->intr_sem, 0); 5247 for (i = 0; i < bp->cp_nr_rings; i++) { 5248 struct bnxt_napi *bnapi = bp->bnapi[i]; 5249 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5250 5251 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 5252 } 5253 } 5254 5255 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 5256 bool async_only) 5257 { 5258 DECLARE_BITMAP(async_events_bmap, 256); 5259 u32 *events = (u32 *)async_events_bmap; 5260 struct hwrm_func_drv_rgtr_output *resp; 5261 struct hwrm_func_drv_rgtr_input *req; 5262 u32 flags; 5263 int rc, i; 5264 5265 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR); 5266 if (rc) 5267 return rc; 5268 5269 req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 5270 FUNC_DRV_RGTR_REQ_ENABLES_VER | 5271 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5272 5273 req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 5274 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 5275 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 5276 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 5277 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 5278 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 5279 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 5280 req->flags = cpu_to_le32(flags); 5281 req->ver_maj_8b = DRV_VER_MAJ; 5282 req->ver_min_8b = DRV_VER_MIN; 5283 req->ver_upd_8b = DRV_VER_UPD; 5284 req->ver_maj = cpu_to_le16(DRV_VER_MAJ); 5285 req->ver_min = cpu_to_le16(DRV_VER_MIN); 5286 req->ver_upd = cpu_to_le16(DRV_VER_UPD); 5287 5288 if (BNXT_PF(bp)) { 5289 u32 data[8]; 5290 int i; 5291 5292 memset(data, 0, sizeof(data)); 5293 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 5294 u16 cmd = bnxt_vf_req_snif[i]; 5295 unsigned int bit, idx; 5296 5297 idx = cmd / 32; 5298 bit = cmd % 32; 5299 data[idx] |= 1 << bit; 5300 } 5301 5302 for (i = 0; i < 8; i++) 5303 req->vf_req_fwd[i] = cpu_to_le32(data[i]); 5304 5305 req->enables |= 5306 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 5307 } 5308 5309 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 5310 req->flags |= cpu_to_le32( 5311 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 5312 5313 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 5314 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 5315 u16 event_id = bnxt_async_events_arr[i]; 5316 5317 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 5318 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 5319 continue; 5320 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE && 5321 !bp->ptp_cfg) 5322 continue; 5323 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 5324 } 5325 if (bmap && bmap_size) { 5326 for (i = 0; i < bmap_size; i++) { 5327 if (test_bit(i, bmap)) 5328 __set_bit(i, async_events_bmap); 5329 } 5330 } 5331 for (i = 0; i < 8; i++) 5332 req->async_event_fwd[i] |= cpu_to_le32(events[i]); 5333 5334 if (async_only) 5335 req->enables = 5336 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5337 5338 resp = hwrm_req_hold(bp, req); 5339 rc = hwrm_req_send(bp, req); 5340 if (!rc) { 5341 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 5342 if (resp->flags & 5343 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 5344 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 5345 } 5346 hwrm_req_drop(bp, req); 5347 return rc; 5348 } 5349 5350 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 5351 { 5352 struct hwrm_func_drv_unrgtr_input *req; 5353 int rc; 5354 5355 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 5356 return 0; 5357 5358 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR); 5359 if (rc) 5360 return rc; 5361 return hwrm_req_send(bp, req); 5362 } 5363 5364 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa); 5365 5366 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 5367 { 5368 struct hwrm_tunnel_dst_port_free_input *req; 5369 int rc; 5370 5371 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN && 5372 bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID) 5373 return 0; 5374 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE && 5375 bp->nge_fw_dst_port_id == INVALID_HW_RING_ID) 5376 return 0; 5377 5378 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE); 5379 if (rc) 5380 return rc; 5381 5382 req->tunnel_type = tunnel_type; 5383 5384 switch (tunnel_type) { 5385 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 5386 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 5387 bp->vxlan_port = 0; 5388 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 5389 break; 5390 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 5391 req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 5392 bp->nge_port = 0; 5393 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 5394 break; 5395 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE: 5396 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_gpe_fw_dst_port_id); 5397 bp->vxlan_gpe_port = 0; 5398 bp->vxlan_gpe_fw_dst_port_id = INVALID_HW_RING_ID; 5399 break; 5400 default: 5401 break; 5402 } 5403 5404 rc = hwrm_req_send(bp, req); 5405 if (rc) 5406 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 5407 rc); 5408 if (bp->flags & BNXT_FLAG_TPA) 5409 bnxt_set_tpa(bp, true); 5410 return rc; 5411 } 5412 5413 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 5414 u8 tunnel_type) 5415 { 5416 struct hwrm_tunnel_dst_port_alloc_output *resp; 5417 struct hwrm_tunnel_dst_port_alloc_input *req; 5418 int rc; 5419 5420 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC); 5421 if (rc) 5422 return rc; 5423 5424 req->tunnel_type = tunnel_type; 5425 req->tunnel_dst_port_val = port; 5426 5427 resp = hwrm_req_hold(bp, req); 5428 rc = hwrm_req_send(bp, req); 5429 if (rc) { 5430 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 5431 rc); 5432 goto err_out; 5433 } 5434 5435 switch (tunnel_type) { 5436 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 5437 bp->vxlan_port = port; 5438 bp->vxlan_fw_dst_port_id = 5439 le16_to_cpu(resp->tunnel_dst_port_id); 5440 break; 5441 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 5442 bp->nge_port = port; 5443 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 5444 break; 5445 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE: 5446 bp->vxlan_gpe_port = port; 5447 bp->vxlan_gpe_fw_dst_port_id = 5448 le16_to_cpu(resp->tunnel_dst_port_id); 5449 break; 5450 default: 5451 break; 5452 } 5453 if (bp->flags & BNXT_FLAG_TPA) 5454 bnxt_set_tpa(bp, true); 5455 5456 err_out: 5457 hwrm_req_drop(bp, req); 5458 return rc; 5459 } 5460 5461 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 5462 { 5463 struct hwrm_cfa_l2_set_rx_mask_input *req; 5464 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5465 int rc; 5466 5467 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK); 5468 if (rc) 5469 return rc; 5470 5471 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5472 if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) { 5473 req->num_mc_entries = cpu_to_le32(vnic->mc_list_count); 5474 req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 5475 } 5476 req->mask = cpu_to_le32(vnic->rx_mask); 5477 return hwrm_req_send_silent(bp, req); 5478 } 5479 5480 void bnxt_del_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5481 { 5482 if (!atomic_dec_and_test(&fltr->refcnt)) 5483 return; 5484 spin_lock_bh(&bp->ntp_fltr_lock); 5485 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 5486 spin_unlock_bh(&bp->ntp_fltr_lock); 5487 return; 5488 } 5489 hlist_del_rcu(&fltr->base.hash); 5490 bnxt_del_one_usr_fltr(bp, &fltr->base); 5491 if (fltr->base.flags) { 5492 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 5493 bp->ntp_fltr_count--; 5494 } 5495 spin_unlock_bh(&bp->ntp_fltr_lock); 5496 kfree_rcu(fltr, base.rcu); 5497 } 5498 5499 static struct bnxt_l2_filter *__bnxt_lookup_l2_filter(struct bnxt *bp, 5500 struct bnxt_l2_key *key, 5501 u32 idx) 5502 { 5503 struct hlist_head *head = &bp->l2_fltr_hash_tbl[idx]; 5504 struct bnxt_l2_filter *fltr; 5505 5506 hlist_for_each_entry_rcu(fltr, head, base.hash) { 5507 struct bnxt_l2_key *l2_key = &fltr->l2_key; 5508 5509 if (ether_addr_equal(l2_key->dst_mac_addr, key->dst_mac_addr) && 5510 l2_key->vlan == key->vlan) 5511 return fltr; 5512 } 5513 return NULL; 5514 } 5515 5516 static struct bnxt_l2_filter *bnxt_lookup_l2_filter(struct bnxt *bp, 5517 struct bnxt_l2_key *key, 5518 u32 idx) 5519 { 5520 struct bnxt_l2_filter *fltr = NULL; 5521 5522 rcu_read_lock(); 5523 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 5524 if (fltr) 5525 atomic_inc(&fltr->refcnt); 5526 rcu_read_unlock(); 5527 return fltr; 5528 } 5529 5530 #define BNXT_IPV4_4TUPLE(bp, fkeys) \ 5531 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5532 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4) || \ 5533 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5534 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4)) 5535 5536 #define BNXT_IPV6_4TUPLE(bp, fkeys) \ 5537 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5538 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6) || \ 5539 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5540 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6)) 5541 5542 static u32 bnxt_get_rss_flow_tuple_len(struct bnxt *bp, struct flow_keys *fkeys) 5543 { 5544 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 5545 if (BNXT_IPV4_4TUPLE(bp, fkeys)) 5546 return sizeof(fkeys->addrs.v4addrs) + 5547 sizeof(fkeys->ports); 5548 5549 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4) 5550 return sizeof(fkeys->addrs.v4addrs); 5551 } 5552 5553 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 5554 if (BNXT_IPV6_4TUPLE(bp, fkeys)) 5555 return sizeof(fkeys->addrs.v6addrs) + 5556 sizeof(fkeys->ports); 5557 5558 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6) 5559 return sizeof(fkeys->addrs.v6addrs); 5560 } 5561 5562 return 0; 5563 } 5564 5565 static u32 bnxt_toeplitz(struct bnxt *bp, struct flow_keys *fkeys, 5566 const unsigned char *key) 5567 { 5568 u64 prefix = bp->toeplitz_prefix, hash = 0; 5569 struct bnxt_ipv4_tuple tuple4; 5570 struct bnxt_ipv6_tuple tuple6; 5571 int i, j, len = 0; 5572 u8 *four_tuple; 5573 5574 len = bnxt_get_rss_flow_tuple_len(bp, fkeys); 5575 if (!len) 5576 return 0; 5577 5578 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 5579 tuple4.v4addrs = fkeys->addrs.v4addrs; 5580 tuple4.ports = fkeys->ports; 5581 four_tuple = (unsigned char *)&tuple4; 5582 } else { 5583 tuple6.v6addrs = fkeys->addrs.v6addrs; 5584 tuple6.ports = fkeys->ports; 5585 four_tuple = (unsigned char *)&tuple6; 5586 } 5587 5588 for (i = 0, j = 8; i < len; i++, j++) { 5589 u8 byte = four_tuple[i]; 5590 int bit; 5591 5592 for (bit = 0; bit < 8; bit++, prefix <<= 1, byte <<= 1) { 5593 if (byte & 0x80) 5594 hash ^= prefix; 5595 } 5596 prefix |= (j < HW_HASH_KEY_SIZE) ? key[j] : 0; 5597 } 5598 5599 /* The valid part of the hash is in the upper 32 bits. */ 5600 return (hash >> 32) & BNXT_NTP_FLTR_HASH_MASK; 5601 } 5602 5603 #ifdef CONFIG_RFS_ACCEL 5604 static struct bnxt_l2_filter * 5605 bnxt_lookup_l2_filter_from_key(struct bnxt *bp, struct bnxt_l2_key *key) 5606 { 5607 struct bnxt_l2_filter *fltr; 5608 u32 idx; 5609 5610 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5611 BNXT_L2_FLTR_HASH_MASK; 5612 fltr = bnxt_lookup_l2_filter(bp, key, idx); 5613 return fltr; 5614 } 5615 #endif 5616 5617 static int bnxt_init_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr, 5618 struct bnxt_l2_key *key, u32 idx) 5619 { 5620 struct hlist_head *head; 5621 5622 ether_addr_copy(fltr->l2_key.dst_mac_addr, key->dst_mac_addr); 5623 fltr->l2_key.vlan = key->vlan; 5624 fltr->base.type = BNXT_FLTR_TYPE_L2; 5625 if (fltr->base.flags) { 5626 int bit_id; 5627 5628 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 5629 bp->max_fltr, 0); 5630 if (bit_id < 0) 5631 return -ENOMEM; 5632 fltr->base.sw_id = (u16)bit_id; 5633 bp->ntp_fltr_count++; 5634 } 5635 head = &bp->l2_fltr_hash_tbl[idx]; 5636 hlist_add_head_rcu(&fltr->base.hash, head); 5637 bnxt_insert_usr_fltr(bp, &fltr->base); 5638 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 5639 atomic_set(&fltr->refcnt, 1); 5640 return 0; 5641 } 5642 5643 static struct bnxt_l2_filter *bnxt_alloc_l2_filter(struct bnxt *bp, 5644 struct bnxt_l2_key *key, 5645 gfp_t gfp) 5646 { 5647 struct bnxt_l2_filter *fltr; 5648 u32 idx; 5649 int rc; 5650 5651 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5652 BNXT_L2_FLTR_HASH_MASK; 5653 fltr = bnxt_lookup_l2_filter(bp, key, idx); 5654 if (fltr) 5655 return fltr; 5656 5657 fltr = kzalloc(sizeof(*fltr), gfp); 5658 if (!fltr) 5659 return ERR_PTR(-ENOMEM); 5660 spin_lock_bh(&bp->ntp_fltr_lock); 5661 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 5662 spin_unlock_bh(&bp->ntp_fltr_lock); 5663 if (rc) { 5664 bnxt_del_l2_filter(bp, fltr); 5665 fltr = ERR_PTR(rc); 5666 } 5667 return fltr; 5668 } 5669 5670 struct bnxt_l2_filter *bnxt_alloc_new_l2_filter(struct bnxt *bp, 5671 struct bnxt_l2_key *key, 5672 u16 flags) 5673 { 5674 struct bnxt_l2_filter *fltr; 5675 u32 idx; 5676 int rc; 5677 5678 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5679 BNXT_L2_FLTR_HASH_MASK; 5680 spin_lock_bh(&bp->ntp_fltr_lock); 5681 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 5682 if (fltr) { 5683 fltr = ERR_PTR(-EEXIST); 5684 goto l2_filter_exit; 5685 } 5686 fltr = kzalloc(sizeof(*fltr), GFP_ATOMIC); 5687 if (!fltr) { 5688 fltr = ERR_PTR(-ENOMEM); 5689 goto l2_filter_exit; 5690 } 5691 fltr->base.flags = flags; 5692 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 5693 if (rc) { 5694 spin_unlock_bh(&bp->ntp_fltr_lock); 5695 bnxt_del_l2_filter(bp, fltr); 5696 return ERR_PTR(rc); 5697 } 5698 5699 l2_filter_exit: 5700 spin_unlock_bh(&bp->ntp_fltr_lock); 5701 return fltr; 5702 } 5703 5704 static u16 bnxt_vf_target_id(struct bnxt_pf_info *pf, u16 vf_idx) 5705 { 5706 #ifdef CONFIG_BNXT_SRIOV 5707 struct bnxt_vf_info *vf = &pf->vf[vf_idx]; 5708 5709 return vf->fw_fid; 5710 #else 5711 return INVALID_HW_RING_ID; 5712 #endif 5713 } 5714 5715 int bnxt_hwrm_l2_filter_free(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5716 { 5717 struct hwrm_cfa_l2_filter_free_input *req; 5718 u16 target_id = 0xffff; 5719 int rc; 5720 5721 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 5722 struct bnxt_pf_info *pf = &bp->pf; 5723 5724 if (fltr->base.vf_idx >= pf->active_vfs) 5725 return -EINVAL; 5726 5727 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 5728 if (target_id == INVALID_HW_RING_ID) 5729 return -EINVAL; 5730 } 5731 5732 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 5733 if (rc) 5734 return rc; 5735 5736 req->target_id = cpu_to_le16(target_id); 5737 req->l2_filter_id = fltr->base.filter_id; 5738 return hwrm_req_send(bp, req); 5739 } 5740 5741 int bnxt_hwrm_l2_filter_alloc(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5742 { 5743 struct hwrm_cfa_l2_filter_alloc_output *resp; 5744 struct hwrm_cfa_l2_filter_alloc_input *req; 5745 u16 target_id = 0xffff; 5746 int rc; 5747 5748 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 5749 struct bnxt_pf_info *pf = &bp->pf; 5750 5751 if (fltr->base.vf_idx >= pf->active_vfs) 5752 return -EINVAL; 5753 5754 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 5755 } 5756 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC); 5757 if (rc) 5758 return rc; 5759 5760 req->target_id = cpu_to_le16(target_id); 5761 req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 5762 5763 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 5764 req->flags |= 5765 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 5766 req->dst_id = cpu_to_le16(fltr->base.fw_vnic_id); 5767 req->enables = 5768 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 5769 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 5770 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 5771 ether_addr_copy(req->l2_addr, fltr->l2_key.dst_mac_addr); 5772 eth_broadcast_addr(req->l2_addr_mask); 5773 5774 if (fltr->l2_key.vlan) { 5775 req->enables |= 5776 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN | 5777 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN_MASK | 5778 CFA_L2_FILTER_ALLOC_REQ_ENABLES_NUM_VLANS); 5779 req->num_vlans = 1; 5780 req->l2_ivlan = cpu_to_le16(fltr->l2_key.vlan); 5781 req->l2_ivlan_mask = cpu_to_le16(0xfff); 5782 } 5783 5784 resp = hwrm_req_hold(bp, req); 5785 rc = hwrm_req_send(bp, req); 5786 if (!rc) { 5787 fltr->base.filter_id = resp->l2_filter_id; 5788 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 5789 } 5790 hwrm_req_drop(bp, req); 5791 return rc; 5792 } 5793 5794 int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 5795 struct bnxt_ntuple_filter *fltr) 5796 { 5797 struct hwrm_cfa_ntuple_filter_free_input *req; 5798 int rc; 5799 5800 set_bit(BNXT_FLTR_FW_DELETED, &fltr->base.state); 5801 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE); 5802 if (rc) 5803 return rc; 5804 5805 req->ntuple_filter_id = fltr->base.filter_id; 5806 return hwrm_req_send(bp, req); 5807 } 5808 5809 #define BNXT_NTP_FLTR_FLAGS \ 5810 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 5811 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 5812 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 5813 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 5814 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 5815 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 5816 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 5817 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 5818 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 5819 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 5820 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 5821 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 5822 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 5823 5824 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 5825 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 5826 5827 void bnxt_fill_ipv6_mask(__be32 mask[4]) 5828 { 5829 int i; 5830 5831 for (i = 0; i < 4; i++) 5832 mask[i] = cpu_to_be32(~0); 5833 } 5834 5835 static void 5836 bnxt_cfg_rfs_ring_tbl_idx(struct bnxt *bp, 5837 struct hwrm_cfa_ntuple_filter_alloc_input *req, 5838 struct bnxt_ntuple_filter *fltr) 5839 { 5840 struct bnxt_rss_ctx *rss_ctx, *tmp; 5841 u16 rxq = fltr->base.rxq; 5842 5843 if (fltr->base.flags & BNXT_ACT_RSS_CTX) { 5844 list_for_each_entry_safe(rss_ctx, tmp, &bp->rss_ctx_list, list) { 5845 if (rss_ctx->index == fltr->base.fw_vnic_id) { 5846 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 5847 5848 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 5849 break; 5850 } 5851 } 5852 return; 5853 } 5854 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 5855 struct bnxt_vnic_info *vnic; 5856 u32 enables; 5857 5858 vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE]; 5859 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 5860 enables = CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_RFS_RING_TBL_IDX; 5861 req->enables |= cpu_to_le32(enables); 5862 req->rfs_ring_tbl_idx = cpu_to_le16(rxq); 5863 } else { 5864 u32 flags; 5865 5866 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 5867 req->flags |= cpu_to_le32(flags); 5868 req->dst_id = cpu_to_le16(rxq); 5869 } 5870 } 5871 5872 int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 5873 struct bnxt_ntuple_filter *fltr) 5874 { 5875 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 5876 struct hwrm_cfa_ntuple_filter_alloc_input *req; 5877 struct bnxt_flow_masks *masks = &fltr->fmasks; 5878 struct flow_keys *keys = &fltr->fkeys; 5879 struct bnxt_l2_filter *l2_fltr; 5880 struct bnxt_vnic_info *vnic; 5881 int rc; 5882 5883 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC); 5884 if (rc) 5885 return rc; 5886 5887 l2_fltr = fltr->l2_fltr; 5888 req->l2_filter_id = l2_fltr->base.filter_id; 5889 5890 if (fltr->base.flags & BNXT_ACT_DROP) { 5891 req->flags = 5892 cpu_to_le32(CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DROP); 5893 } else if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 5894 bnxt_cfg_rfs_ring_tbl_idx(bp, req, fltr); 5895 } else { 5896 vnic = &bp->vnic_info[fltr->base.rxq + 1]; 5897 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 5898 } 5899 req->enables |= cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 5900 5901 req->ethertype = htons(ETH_P_IP); 5902 req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 5903 req->ip_protocol = keys->basic.ip_proto; 5904 5905 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 5906 req->ethertype = htons(ETH_P_IPV6); 5907 req->ip_addr_type = 5908 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 5909 *(struct in6_addr *)&req->src_ipaddr[0] = keys->addrs.v6addrs.src; 5910 *(struct in6_addr *)&req->src_ipaddr_mask[0] = masks->addrs.v6addrs.src; 5911 *(struct in6_addr *)&req->dst_ipaddr[0] = keys->addrs.v6addrs.dst; 5912 *(struct in6_addr *)&req->dst_ipaddr_mask[0] = masks->addrs.v6addrs.dst; 5913 } else { 5914 req->src_ipaddr[0] = keys->addrs.v4addrs.src; 5915 req->src_ipaddr_mask[0] = masks->addrs.v4addrs.src; 5916 req->dst_ipaddr[0] = keys->addrs.v4addrs.dst; 5917 req->dst_ipaddr_mask[0] = masks->addrs.v4addrs.dst; 5918 } 5919 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 5920 req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 5921 req->tunnel_type = 5922 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 5923 } 5924 5925 req->src_port = keys->ports.src; 5926 req->src_port_mask = masks->ports.src; 5927 req->dst_port = keys->ports.dst; 5928 req->dst_port_mask = masks->ports.dst; 5929 5930 resp = hwrm_req_hold(bp, req); 5931 rc = hwrm_req_send(bp, req); 5932 if (!rc) 5933 fltr->base.filter_id = resp->ntuple_filter_id; 5934 hwrm_req_drop(bp, req); 5935 return rc; 5936 } 5937 5938 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 5939 const u8 *mac_addr) 5940 { 5941 struct bnxt_l2_filter *fltr; 5942 struct bnxt_l2_key key; 5943 int rc; 5944 5945 ether_addr_copy(key.dst_mac_addr, mac_addr); 5946 key.vlan = 0; 5947 fltr = bnxt_alloc_l2_filter(bp, &key, GFP_KERNEL); 5948 if (IS_ERR(fltr)) 5949 return PTR_ERR(fltr); 5950 5951 fltr->base.fw_vnic_id = bp->vnic_info[vnic_id].fw_vnic_id; 5952 rc = bnxt_hwrm_l2_filter_alloc(bp, fltr); 5953 if (rc) 5954 bnxt_del_l2_filter(bp, fltr); 5955 else 5956 bp->vnic_info[vnic_id].l2_filters[idx] = fltr; 5957 return rc; 5958 } 5959 5960 static void bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 5961 { 5962 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 5963 5964 /* Any associated ntuple filters will also be cleared by firmware. */ 5965 for (i = 0; i < num_of_vnics; i++) { 5966 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 5967 5968 for (j = 0; j < vnic->uc_filter_count; j++) { 5969 struct bnxt_l2_filter *fltr = vnic->l2_filters[j]; 5970 5971 bnxt_hwrm_l2_filter_free(bp, fltr); 5972 bnxt_del_l2_filter(bp, fltr); 5973 } 5974 vnic->uc_filter_count = 0; 5975 } 5976 } 5977 5978 #define BNXT_DFLT_TUNL_TPA_BMAP \ 5979 (VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GRE | \ 5980 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV4 | \ 5981 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV6) 5982 5983 static void bnxt_hwrm_vnic_update_tunl_tpa(struct bnxt *bp, 5984 struct hwrm_vnic_tpa_cfg_input *req) 5985 { 5986 u32 tunl_tpa_bmap = BNXT_DFLT_TUNL_TPA_BMAP; 5987 5988 if (!(bp->fw_cap & BNXT_FW_CAP_VNIC_TUNNEL_TPA)) 5989 return; 5990 5991 if (bp->vxlan_port) 5992 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN; 5993 if (bp->vxlan_gpe_port) 5994 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN_GPE; 5995 if (bp->nge_port) 5996 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GENEVE; 5997 5998 req->enables |= cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_TNL_TPA_EN); 5999 req->tnl_tpa_en_bitmap = cpu_to_le32(tunl_tpa_bmap); 6000 } 6001 6002 int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6003 u32 tpa_flags) 6004 { 6005 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 6006 struct hwrm_vnic_tpa_cfg_input *req; 6007 int rc; 6008 6009 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 6010 return 0; 6011 6012 rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG); 6013 if (rc) 6014 return rc; 6015 6016 if (tpa_flags) { 6017 u16 mss = bp->dev->mtu - 40; 6018 u32 nsegs, n, segs = 0, flags; 6019 6020 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 6021 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 6022 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 6023 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 6024 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 6025 if (tpa_flags & BNXT_FLAG_GRO) 6026 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 6027 6028 req->flags = cpu_to_le32(flags); 6029 6030 req->enables = 6031 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 6032 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 6033 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 6034 6035 /* Number of segs are log2 units, and first packet is not 6036 * included as part of this units. 6037 */ 6038 if (mss <= BNXT_RX_PAGE_SIZE) { 6039 n = BNXT_RX_PAGE_SIZE / mss; 6040 nsegs = (MAX_SKB_FRAGS - 1) * n; 6041 } else { 6042 n = mss / BNXT_RX_PAGE_SIZE; 6043 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 6044 n++; 6045 nsegs = (MAX_SKB_FRAGS - n) / n; 6046 } 6047 6048 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6049 segs = MAX_TPA_SEGS_P5; 6050 max_aggs = bp->max_tpa; 6051 } else { 6052 segs = ilog2(nsegs); 6053 } 6054 req->max_agg_segs = cpu_to_le16(segs); 6055 req->max_aggs = cpu_to_le16(max_aggs); 6056 6057 req->min_agg_len = cpu_to_le32(512); 6058 bnxt_hwrm_vnic_update_tunl_tpa(bp, req); 6059 } 6060 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6061 6062 return hwrm_req_send(bp, req); 6063 } 6064 6065 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 6066 { 6067 struct bnxt_ring_grp_info *grp_info; 6068 6069 grp_info = &bp->grp_info[ring->grp_idx]; 6070 return grp_info->cp_fw_ring_id; 6071 } 6072 6073 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 6074 { 6075 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6076 return rxr->rx_cpr->cp_ring_struct.fw_ring_id; 6077 else 6078 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 6079 } 6080 6081 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 6082 { 6083 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6084 return txr->tx_cpr->cp_ring_struct.fw_ring_id; 6085 else 6086 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 6087 } 6088 6089 int bnxt_alloc_rss_indir_tbl(struct bnxt *bp, struct bnxt_rss_ctx *rss_ctx) 6090 { 6091 int entries; 6092 u16 *tbl; 6093 6094 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6095 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 6096 else 6097 entries = HW_HASH_INDEX_SIZE; 6098 6099 bp->rss_indir_tbl_entries = entries; 6100 tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), GFP_KERNEL); 6101 if (!tbl) 6102 return -ENOMEM; 6103 6104 if (rss_ctx) 6105 rss_ctx->rss_indir_tbl = tbl; 6106 else 6107 bp->rss_indir_tbl = tbl; 6108 6109 return 0; 6110 } 6111 6112 void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp, struct bnxt_rss_ctx *rss_ctx) 6113 { 6114 u16 max_rings, max_entries, pad, i; 6115 u16 *rss_indir_tbl; 6116 6117 if (!bp->rx_nr_rings) 6118 return; 6119 6120 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6121 max_rings = bp->rx_nr_rings - 1; 6122 else 6123 max_rings = bp->rx_nr_rings; 6124 6125 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 6126 if (rss_ctx) 6127 rss_indir_tbl = &rss_ctx->rss_indir_tbl[0]; 6128 else 6129 rss_indir_tbl = &bp->rss_indir_tbl[0]; 6130 6131 for (i = 0; i < max_entries; i++) 6132 rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 6133 6134 pad = bp->rss_indir_tbl_entries - max_entries; 6135 if (pad) 6136 memset(&rss_indir_tbl[i], 0, pad * sizeof(u16)); 6137 } 6138 6139 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 6140 { 6141 u16 i, tbl_size, max_ring = 0; 6142 6143 if (!bp->rss_indir_tbl) 6144 return 0; 6145 6146 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6147 for (i = 0; i < tbl_size; i++) 6148 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 6149 return max_ring; 6150 } 6151 6152 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 6153 { 6154 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6155 if (!rx_rings) 6156 return 0; 6157 return bnxt_calc_nr_ring_pages(rx_rings - 1, 6158 BNXT_RSS_TABLE_ENTRIES_P5); 6159 } 6160 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6161 return 2; 6162 return 1; 6163 } 6164 6165 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6166 { 6167 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 6168 u16 i, j; 6169 6170 /* Fill the RSS indirection table with ring group ids */ 6171 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 6172 if (!no_rss) 6173 j = bp->rss_indir_tbl[i]; 6174 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 6175 } 6176 } 6177 6178 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 6179 struct bnxt_vnic_info *vnic) 6180 { 6181 __le16 *ring_tbl = vnic->rss_table; 6182 struct bnxt_rx_ring_info *rxr; 6183 u16 tbl_size, i; 6184 6185 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6186 6187 for (i = 0; i < tbl_size; i++) { 6188 u16 ring_id, j; 6189 6190 if (vnic->flags & BNXT_VNIC_NTUPLE_FLAG) 6191 j = ethtool_rxfh_indir_default(i, bp->rx_nr_rings); 6192 else if (vnic->flags & BNXT_VNIC_RSSCTX_FLAG) 6193 j = vnic->rss_ctx->rss_indir_tbl[i]; 6194 else 6195 j = bp->rss_indir_tbl[i]; 6196 rxr = &bp->rx_ring[j]; 6197 6198 ring_id = rxr->rx_ring_struct.fw_ring_id; 6199 *ring_tbl++ = cpu_to_le16(ring_id); 6200 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6201 *ring_tbl++ = cpu_to_le16(ring_id); 6202 } 6203 } 6204 6205 static void 6206 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req, 6207 struct bnxt_vnic_info *vnic) 6208 { 6209 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6210 bnxt_fill_hw_rss_tbl_p5(bp, vnic); 6211 if (bp->flags & BNXT_FLAG_CHIP_P7) 6212 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_IPSEC_HASH_TYPE_CFG_SUPPORT; 6213 } else { 6214 bnxt_fill_hw_rss_tbl(bp, vnic); 6215 } 6216 6217 if (bp->rss_hash_delta) { 6218 req->hash_type = cpu_to_le32(bp->rss_hash_delta); 6219 if (bp->rss_hash_cfg & bp->rss_hash_delta) 6220 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE; 6221 else 6222 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE; 6223 } else { 6224 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 6225 } 6226 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 6227 req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 6228 req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 6229 } 6230 6231 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6232 bool set_rss) 6233 { 6234 struct hwrm_vnic_rss_cfg_input *req; 6235 int rc; 6236 6237 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) || 6238 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 6239 return 0; 6240 6241 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6242 if (rc) 6243 return rc; 6244 6245 if (set_rss) 6246 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6247 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6248 return hwrm_req_send(bp, req); 6249 } 6250 6251 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, 6252 struct bnxt_vnic_info *vnic, bool set_rss) 6253 { 6254 struct hwrm_vnic_rss_cfg_input *req; 6255 dma_addr_t ring_tbl_map; 6256 u32 i, nr_ctxs; 6257 int rc; 6258 6259 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6260 if (rc) 6261 return rc; 6262 6263 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6264 if (!set_rss) 6265 return hwrm_req_send(bp, req); 6266 6267 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6268 ring_tbl_map = vnic->rss_table_dma_addr; 6269 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 6270 6271 hwrm_req_hold(bp, req); 6272 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 6273 req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 6274 req->ring_table_pair_index = i; 6275 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 6276 rc = hwrm_req_send(bp, req); 6277 if (rc) 6278 goto exit; 6279 } 6280 6281 exit: 6282 hwrm_req_drop(bp, req); 6283 return rc; 6284 } 6285 6286 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp) 6287 { 6288 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6289 struct hwrm_vnic_rss_qcfg_output *resp; 6290 struct hwrm_vnic_rss_qcfg_input *req; 6291 6292 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG)) 6293 return; 6294 6295 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6296 /* all contexts configured to same hash_type, zero always exists */ 6297 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6298 resp = hwrm_req_hold(bp, req); 6299 if (!hwrm_req_send(bp, req)) { 6300 bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg; 6301 bp->rss_hash_delta = 0; 6302 } 6303 hwrm_req_drop(bp, req); 6304 } 6305 6306 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6307 { 6308 struct hwrm_vnic_plcmodes_cfg_input *req; 6309 int rc; 6310 6311 rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG); 6312 if (rc) 6313 return rc; 6314 6315 req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT); 6316 req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID); 6317 6318 if (BNXT_RX_PAGE_MODE(bp)) { 6319 req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size); 6320 } else { 6321 req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 6322 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 6323 req->enables |= 6324 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 6325 req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 6326 req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 6327 } 6328 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 6329 return hwrm_req_send(bp, req); 6330 } 6331 6332 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, 6333 struct bnxt_vnic_info *vnic, 6334 u16 ctx_idx) 6335 { 6336 struct hwrm_vnic_rss_cos_lb_ctx_free_input *req; 6337 6338 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE)) 6339 return; 6340 6341 req->rss_cos_lb_ctx_id = 6342 cpu_to_le16(vnic->fw_rss_cos_lb_ctx[ctx_idx]); 6343 6344 hwrm_req_send(bp, req); 6345 vnic->fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 6346 } 6347 6348 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 6349 { 6350 int i, j; 6351 6352 for (i = 0; i < bp->nr_vnics; i++) { 6353 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 6354 6355 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 6356 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 6357 bnxt_hwrm_vnic_ctx_free_one(bp, vnic, j); 6358 } 6359 } 6360 bp->rsscos_nr_ctxs = 0; 6361 } 6362 6363 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, 6364 struct bnxt_vnic_info *vnic, u16 ctx_idx) 6365 { 6366 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp; 6367 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req; 6368 int rc; 6369 6370 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC); 6371 if (rc) 6372 return rc; 6373 6374 resp = hwrm_req_hold(bp, req); 6375 rc = hwrm_req_send(bp, req); 6376 if (!rc) 6377 vnic->fw_rss_cos_lb_ctx[ctx_idx] = 6378 le16_to_cpu(resp->rss_cos_lb_ctx_id); 6379 hwrm_req_drop(bp, req); 6380 6381 return rc; 6382 } 6383 6384 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 6385 { 6386 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 6387 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 6388 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 6389 } 6390 6391 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6392 { 6393 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6394 struct hwrm_vnic_cfg_input *req; 6395 unsigned int ring = 0, grp_idx; 6396 u16 def_vlan = 0; 6397 int rc; 6398 6399 rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG); 6400 if (rc) 6401 return rc; 6402 6403 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6404 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 6405 6406 req->default_rx_ring_id = 6407 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 6408 req->default_cmpl_ring_id = 6409 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 6410 req->enables = 6411 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 6412 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 6413 goto vnic_mru; 6414 } 6415 req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 6416 /* Only RSS support for now TBD: COS & LB */ 6417 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 6418 req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6419 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6420 VNIC_CFG_REQ_ENABLES_MRU); 6421 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 6422 req->rss_rule = cpu_to_le16(vnic0->fw_rss_cos_lb_ctx[0]); 6423 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6424 VNIC_CFG_REQ_ENABLES_MRU); 6425 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 6426 } else { 6427 req->rss_rule = cpu_to_le16(0xffff); 6428 } 6429 6430 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 6431 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 6432 req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 6433 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 6434 } else { 6435 req->cos_rule = cpu_to_le16(0xffff); 6436 } 6437 6438 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 6439 ring = 0; 6440 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 6441 ring = vnic->vnic_id - 1; 6442 else if ((vnic->vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 6443 ring = bp->rx_nr_rings - 1; 6444 6445 grp_idx = bp->rx_ring[ring].bnapi->index; 6446 req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 6447 req->lb_rule = cpu_to_le16(0xffff); 6448 vnic_mru: 6449 req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN); 6450 6451 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6452 #ifdef CONFIG_BNXT_SRIOV 6453 if (BNXT_VF(bp)) 6454 def_vlan = bp->vf.vlan; 6455 #endif 6456 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 6457 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 6458 if (vnic->vnic_id == BNXT_VNIC_DEFAULT && bnxt_ulp_registered(bp->edev)) 6459 req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 6460 6461 return hwrm_req_send(bp, req); 6462 } 6463 6464 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, 6465 struct bnxt_vnic_info *vnic) 6466 { 6467 if (vnic->fw_vnic_id != INVALID_HW_RING_ID) { 6468 struct hwrm_vnic_free_input *req; 6469 6470 if (hwrm_req_init(bp, req, HWRM_VNIC_FREE)) 6471 return; 6472 6473 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 6474 6475 hwrm_req_send(bp, req); 6476 vnic->fw_vnic_id = INVALID_HW_RING_ID; 6477 } 6478 } 6479 6480 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 6481 { 6482 u16 i; 6483 6484 for (i = 0; i < bp->nr_vnics; i++) 6485 bnxt_hwrm_vnic_free_one(bp, &bp->vnic_info[i]); 6486 } 6487 6488 int bnxt_hwrm_vnic_alloc(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6489 unsigned int start_rx_ring_idx, 6490 unsigned int nr_rings) 6491 { 6492 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 6493 struct hwrm_vnic_alloc_output *resp; 6494 struct hwrm_vnic_alloc_input *req; 6495 int rc; 6496 6497 rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC); 6498 if (rc) 6499 return rc; 6500 6501 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6502 goto vnic_no_ring_grps; 6503 6504 /* map ring groups to this vnic */ 6505 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 6506 grp_idx = bp->rx_ring[i].bnapi->index; 6507 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 6508 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 6509 j, nr_rings); 6510 break; 6511 } 6512 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 6513 } 6514 6515 vnic_no_ring_grps: 6516 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 6517 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 6518 if (vnic->vnic_id == BNXT_VNIC_DEFAULT) 6519 req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 6520 6521 resp = hwrm_req_hold(bp, req); 6522 rc = hwrm_req_send(bp, req); 6523 if (!rc) 6524 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 6525 hwrm_req_drop(bp, req); 6526 return rc; 6527 } 6528 6529 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 6530 { 6531 struct hwrm_vnic_qcaps_output *resp; 6532 struct hwrm_vnic_qcaps_input *req; 6533 int rc; 6534 6535 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 6536 bp->flags &= ~BNXT_FLAG_ROCE_MIRROR_CAP; 6537 bp->rss_cap &= ~BNXT_RSS_CAP_NEW_RSS_CAP; 6538 if (bp->hwrm_spec_code < 0x10600) 6539 return 0; 6540 6541 rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS); 6542 if (rc) 6543 return rc; 6544 6545 resp = hwrm_req_hold(bp, req); 6546 rc = hwrm_req_send(bp, req); 6547 if (!rc) { 6548 u32 flags = le32_to_cpu(resp->flags); 6549 6550 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 6551 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 6552 bp->rss_cap |= BNXT_RSS_CAP_NEW_RSS_CAP; 6553 if (flags & 6554 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 6555 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 6556 6557 /* Older P5 fw before EXT_HW_STATS support did not set 6558 * VLAN_STRIP_CAP properly. 6559 */ 6560 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 6561 (BNXT_CHIP_P5(bp) && 6562 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 6563 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 6564 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP) 6565 bp->rss_cap |= BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA; 6566 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_PROF_TCAM_MODE_ENABLED) 6567 bp->rss_cap |= BNXT_RSS_CAP_RSS_TCAM; 6568 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 6569 if (bp->max_tpa_v2) { 6570 if (BNXT_CHIP_P5(bp)) 6571 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 6572 else 6573 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P7; 6574 } 6575 if (flags & VNIC_QCAPS_RESP_FLAGS_HW_TUNNEL_TPA_CAP) 6576 bp->fw_cap |= BNXT_FW_CAP_VNIC_TUNNEL_TPA; 6577 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV4_CAP) 6578 bp->rss_cap |= BNXT_RSS_CAP_AH_V4_RSS_CAP; 6579 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV6_CAP) 6580 bp->rss_cap |= BNXT_RSS_CAP_AH_V6_RSS_CAP; 6581 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV4_CAP) 6582 bp->rss_cap |= BNXT_RSS_CAP_ESP_V4_RSS_CAP; 6583 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV6_CAP) 6584 bp->rss_cap |= BNXT_RSS_CAP_ESP_V6_RSS_CAP; 6585 } 6586 hwrm_req_drop(bp, req); 6587 return rc; 6588 } 6589 6590 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 6591 { 6592 struct hwrm_ring_grp_alloc_output *resp; 6593 struct hwrm_ring_grp_alloc_input *req; 6594 int rc; 6595 u16 i; 6596 6597 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6598 return 0; 6599 6600 rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC); 6601 if (rc) 6602 return rc; 6603 6604 resp = hwrm_req_hold(bp, req); 6605 for (i = 0; i < bp->rx_nr_rings; i++) { 6606 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 6607 6608 req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 6609 req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 6610 req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 6611 req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 6612 6613 rc = hwrm_req_send(bp, req); 6614 6615 if (rc) 6616 break; 6617 6618 bp->grp_info[grp_idx].fw_grp_id = 6619 le32_to_cpu(resp->ring_group_id); 6620 } 6621 hwrm_req_drop(bp, req); 6622 return rc; 6623 } 6624 6625 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 6626 { 6627 struct hwrm_ring_grp_free_input *req; 6628 u16 i; 6629 6630 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 6631 return; 6632 6633 if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE)) 6634 return; 6635 6636 hwrm_req_hold(bp, req); 6637 for (i = 0; i < bp->cp_nr_rings; i++) { 6638 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 6639 continue; 6640 req->ring_group_id = 6641 cpu_to_le32(bp->grp_info[i].fw_grp_id); 6642 6643 hwrm_req_send(bp, req); 6644 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 6645 } 6646 hwrm_req_drop(bp, req); 6647 } 6648 6649 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 6650 struct bnxt_ring_struct *ring, 6651 u32 ring_type, u32 map_index) 6652 { 6653 struct hwrm_ring_alloc_output *resp; 6654 struct hwrm_ring_alloc_input *req; 6655 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 6656 struct bnxt_ring_grp_info *grp_info; 6657 int rc, err = 0; 6658 u16 ring_id; 6659 6660 rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC); 6661 if (rc) 6662 goto exit; 6663 6664 req->enables = 0; 6665 if (rmem->nr_pages > 1) { 6666 req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 6667 /* Page size is in log2 units */ 6668 req->page_size = BNXT_PAGE_SHIFT; 6669 req->page_tbl_depth = 1; 6670 } else { 6671 req->page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 6672 } 6673 req->fbo = 0; 6674 /* Association of ring index with doorbell index and MSIX number */ 6675 req->logical_id = cpu_to_le16(map_index); 6676 6677 switch (ring_type) { 6678 case HWRM_RING_ALLOC_TX: { 6679 struct bnxt_tx_ring_info *txr; 6680 6681 txr = container_of(ring, struct bnxt_tx_ring_info, 6682 tx_ring_struct); 6683 req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 6684 /* Association of transmit ring with completion ring */ 6685 grp_info = &bp->grp_info[ring->grp_idx]; 6686 req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 6687 req->length = cpu_to_le32(bp->tx_ring_mask + 1); 6688 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6689 req->queue_id = cpu_to_le16(ring->queue_id); 6690 if (bp->flags & BNXT_FLAG_TX_COAL_CMPL) 6691 req->cmpl_coal_cnt = 6692 RING_ALLOC_REQ_CMPL_COAL_CNT_COAL_64; 6693 break; 6694 } 6695 case HWRM_RING_ALLOC_RX: 6696 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 6697 req->length = cpu_to_le32(bp->rx_ring_mask + 1); 6698 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6699 u16 flags = 0; 6700 6701 /* Association of rx ring with stats context */ 6702 grp_info = &bp->grp_info[ring->grp_idx]; 6703 req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 6704 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6705 req->enables |= cpu_to_le32( 6706 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 6707 if (NET_IP_ALIGN == 2) 6708 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD; 6709 req->flags = cpu_to_le16(flags); 6710 } 6711 break; 6712 case HWRM_RING_ALLOC_AGG: 6713 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6714 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 6715 /* Association of agg ring with rx ring */ 6716 grp_info = &bp->grp_info[ring->grp_idx]; 6717 req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 6718 req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 6719 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6720 req->enables |= cpu_to_le32( 6721 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID | 6722 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 6723 } else { 6724 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 6725 } 6726 req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 6727 break; 6728 case HWRM_RING_ALLOC_CMPL: 6729 req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 6730 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 6731 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6732 /* Association of cp ring with nq */ 6733 grp_info = &bp->grp_info[map_index]; 6734 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 6735 req->cq_handle = cpu_to_le64(ring->handle); 6736 req->enables |= cpu_to_le32( 6737 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 6738 } else if (bp->flags & BNXT_FLAG_USING_MSIX) { 6739 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 6740 } 6741 break; 6742 case HWRM_RING_ALLOC_NQ: 6743 req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 6744 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 6745 if (bp->flags & BNXT_FLAG_USING_MSIX) 6746 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 6747 break; 6748 default: 6749 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 6750 ring_type); 6751 return -1; 6752 } 6753 6754 resp = hwrm_req_hold(bp, req); 6755 rc = hwrm_req_send(bp, req); 6756 err = le16_to_cpu(resp->error_code); 6757 ring_id = le16_to_cpu(resp->ring_id); 6758 hwrm_req_drop(bp, req); 6759 6760 exit: 6761 if (rc || err) { 6762 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 6763 ring_type, rc, err); 6764 return -EIO; 6765 } 6766 ring->fw_ring_id = ring_id; 6767 return rc; 6768 } 6769 6770 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 6771 { 6772 int rc; 6773 6774 if (BNXT_PF(bp)) { 6775 struct hwrm_func_cfg_input *req; 6776 6777 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 6778 if (rc) 6779 return rc; 6780 6781 req->fid = cpu_to_le16(0xffff); 6782 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 6783 req->async_event_cr = cpu_to_le16(idx); 6784 return hwrm_req_send(bp, req); 6785 } else { 6786 struct hwrm_func_vf_cfg_input *req; 6787 6788 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); 6789 if (rc) 6790 return rc; 6791 6792 req->enables = 6793 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 6794 req->async_event_cr = cpu_to_le16(idx); 6795 return hwrm_req_send(bp, req); 6796 } 6797 } 6798 6799 static void bnxt_set_db_mask(struct bnxt *bp, struct bnxt_db_info *db, 6800 u32 ring_type) 6801 { 6802 switch (ring_type) { 6803 case HWRM_RING_ALLOC_TX: 6804 db->db_ring_mask = bp->tx_ring_mask; 6805 break; 6806 case HWRM_RING_ALLOC_RX: 6807 db->db_ring_mask = bp->rx_ring_mask; 6808 break; 6809 case HWRM_RING_ALLOC_AGG: 6810 db->db_ring_mask = bp->rx_agg_ring_mask; 6811 break; 6812 case HWRM_RING_ALLOC_CMPL: 6813 case HWRM_RING_ALLOC_NQ: 6814 db->db_ring_mask = bp->cp_ring_mask; 6815 break; 6816 } 6817 if (bp->flags & BNXT_FLAG_CHIP_P7) { 6818 db->db_epoch_mask = db->db_ring_mask + 1; 6819 db->db_epoch_shift = DBR_EPOCH_SFT - ilog2(db->db_epoch_mask); 6820 } 6821 } 6822 6823 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 6824 u32 map_idx, u32 xid) 6825 { 6826 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6827 switch (ring_type) { 6828 case HWRM_RING_ALLOC_TX: 6829 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 6830 break; 6831 case HWRM_RING_ALLOC_RX: 6832 case HWRM_RING_ALLOC_AGG: 6833 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 6834 break; 6835 case HWRM_RING_ALLOC_CMPL: 6836 db->db_key64 = DBR_PATH_L2; 6837 break; 6838 case HWRM_RING_ALLOC_NQ: 6839 db->db_key64 = DBR_PATH_L2; 6840 break; 6841 } 6842 db->db_key64 |= (u64)xid << DBR_XID_SFT; 6843 6844 if (bp->flags & BNXT_FLAG_CHIP_P7) 6845 db->db_key64 |= DBR_VALID; 6846 6847 db->doorbell = bp->bar1 + bp->db_offset; 6848 } else { 6849 db->doorbell = bp->bar1 + map_idx * 0x80; 6850 switch (ring_type) { 6851 case HWRM_RING_ALLOC_TX: 6852 db->db_key32 = DB_KEY_TX; 6853 break; 6854 case HWRM_RING_ALLOC_RX: 6855 case HWRM_RING_ALLOC_AGG: 6856 db->db_key32 = DB_KEY_RX; 6857 break; 6858 case HWRM_RING_ALLOC_CMPL: 6859 db->db_key32 = DB_KEY_CP; 6860 break; 6861 } 6862 } 6863 bnxt_set_db_mask(bp, db, ring_type); 6864 } 6865 6866 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 6867 { 6868 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 6869 int i, rc = 0; 6870 u32 type; 6871 6872 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6873 type = HWRM_RING_ALLOC_NQ; 6874 else 6875 type = HWRM_RING_ALLOC_CMPL; 6876 for (i = 0; i < bp->cp_nr_rings; i++) { 6877 struct bnxt_napi *bnapi = bp->bnapi[i]; 6878 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6879 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 6880 u32 map_idx = ring->map_idx; 6881 unsigned int vector; 6882 6883 vector = bp->irq_tbl[map_idx].vector; 6884 disable_irq_nosync(vector); 6885 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 6886 if (rc) { 6887 enable_irq(vector); 6888 goto err_out; 6889 } 6890 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 6891 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 6892 enable_irq(vector); 6893 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 6894 6895 if (!i) { 6896 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 6897 if (rc) 6898 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 6899 } 6900 } 6901 6902 type = HWRM_RING_ALLOC_TX; 6903 for (i = 0; i < bp->tx_nr_rings; i++) { 6904 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 6905 struct bnxt_ring_struct *ring; 6906 u32 map_idx; 6907 6908 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6909 struct bnxt_cp_ring_info *cpr2 = txr->tx_cpr; 6910 struct bnxt_napi *bnapi = txr->bnapi; 6911 u32 type2 = HWRM_RING_ALLOC_CMPL; 6912 6913 ring = &cpr2->cp_ring_struct; 6914 ring->handle = BNXT_SET_NQ_HDL(cpr2); 6915 map_idx = bnapi->index; 6916 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 6917 if (rc) 6918 goto err_out; 6919 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 6920 ring->fw_ring_id); 6921 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 6922 } 6923 ring = &txr->tx_ring_struct; 6924 map_idx = i; 6925 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 6926 if (rc) 6927 goto err_out; 6928 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id); 6929 } 6930 6931 type = HWRM_RING_ALLOC_RX; 6932 for (i = 0; i < bp->rx_nr_rings; i++) { 6933 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6934 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 6935 struct bnxt_napi *bnapi = rxr->bnapi; 6936 u32 map_idx = bnapi->index; 6937 6938 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 6939 if (rc) 6940 goto err_out; 6941 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 6942 /* If we have agg rings, post agg buffers first. */ 6943 if (!agg_rings) 6944 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 6945 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 6946 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6947 struct bnxt_cp_ring_info *cpr2 = rxr->rx_cpr; 6948 u32 type2 = HWRM_RING_ALLOC_CMPL; 6949 6950 ring = &cpr2->cp_ring_struct; 6951 ring->handle = BNXT_SET_NQ_HDL(cpr2); 6952 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 6953 if (rc) 6954 goto err_out; 6955 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 6956 ring->fw_ring_id); 6957 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 6958 } 6959 } 6960 6961 if (agg_rings) { 6962 type = HWRM_RING_ALLOC_AGG; 6963 for (i = 0; i < bp->rx_nr_rings; i++) { 6964 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6965 struct bnxt_ring_struct *ring = 6966 &rxr->rx_agg_ring_struct; 6967 u32 grp_idx = ring->grp_idx; 6968 u32 map_idx = grp_idx + bp->rx_nr_rings; 6969 6970 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 6971 if (rc) 6972 goto err_out; 6973 6974 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 6975 ring->fw_ring_id); 6976 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 6977 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 6978 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 6979 } 6980 } 6981 err_out: 6982 return rc; 6983 } 6984 6985 static int hwrm_ring_free_send_msg(struct bnxt *bp, 6986 struct bnxt_ring_struct *ring, 6987 u32 ring_type, int cmpl_ring_id) 6988 { 6989 struct hwrm_ring_free_output *resp; 6990 struct hwrm_ring_free_input *req; 6991 u16 error_code = 0; 6992 int rc; 6993 6994 if (BNXT_NO_FW_ACCESS(bp)) 6995 return 0; 6996 6997 rc = hwrm_req_init(bp, req, HWRM_RING_FREE); 6998 if (rc) 6999 goto exit; 7000 7001 req->cmpl_ring = cpu_to_le16(cmpl_ring_id); 7002 req->ring_type = ring_type; 7003 req->ring_id = cpu_to_le16(ring->fw_ring_id); 7004 7005 resp = hwrm_req_hold(bp, req); 7006 rc = hwrm_req_send(bp, req); 7007 error_code = le16_to_cpu(resp->error_code); 7008 hwrm_req_drop(bp, req); 7009 exit: 7010 if (rc || error_code) { 7011 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 7012 ring_type, rc, error_code); 7013 return -EIO; 7014 } 7015 return 0; 7016 } 7017 7018 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 7019 { 7020 u32 type; 7021 int i; 7022 7023 if (!bp->bnapi) 7024 return; 7025 7026 for (i = 0; i < bp->tx_nr_rings; i++) { 7027 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 7028 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 7029 7030 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 7031 u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr); 7032 7033 hwrm_ring_free_send_msg(bp, ring, 7034 RING_FREE_REQ_RING_TYPE_TX, 7035 close_path ? cmpl_ring_id : 7036 INVALID_HW_RING_ID); 7037 ring->fw_ring_id = INVALID_HW_RING_ID; 7038 } 7039 } 7040 7041 for (i = 0; i < bp->rx_nr_rings; i++) { 7042 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 7043 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 7044 u32 grp_idx = rxr->bnapi->index; 7045 7046 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 7047 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 7048 7049 hwrm_ring_free_send_msg(bp, ring, 7050 RING_FREE_REQ_RING_TYPE_RX, 7051 close_path ? cmpl_ring_id : 7052 INVALID_HW_RING_ID); 7053 ring->fw_ring_id = INVALID_HW_RING_ID; 7054 bp->grp_info[grp_idx].rx_fw_ring_id = 7055 INVALID_HW_RING_ID; 7056 } 7057 } 7058 7059 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7060 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 7061 else 7062 type = RING_FREE_REQ_RING_TYPE_RX; 7063 for (i = 0; i < bp->rx_nr_rings; i++) { 7064 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 7065 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 7066 u32 grp_idx = rxr->bnapi->index; 7067 7068 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 7069 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 7070 7071 hwrm_ring_free_send_msg(bp, ring, type, 7072 close_path ? cmpl_ring_id : 7073 INVALID_HW_RING_ID); 7074 ring->fw_ring_id = INVALID_HW_RING_ID; 7075 bp->grp_info[grp_idx].agg_fw_ring_id = 7076 INVALID_HW_RING_ID; 7077 } 7078 } 7079 7080 /* The completion rings are about to be freed. After that the 7081 * IRQ doorbell will not work anymore. So we need to disable 7082 * IRQ here. 7083 */ 7084 bnxt_disable_int_sync(bp); 7085 7086 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7087 type = RING_FREE_REQ_RING_TYPE_NQ; 7088 else 7089 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 7090 for (i = 0; i < bp->cp_nr_rings; i++) { 7091 struct bnxt_napi *bnapi = bp->bnapi[i]; 7092 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7093 struct bnxt_ring_struct *ring; 7094 int j; 7095 7096 for (j = 0; j < cpr->cp_ring_count && cpr->cp_ring_arr; j++) { 7097 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 7098 7099 ring = &cpr2->cp_ring_struct; 7100 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7101 continue; 7102 hwrm_ring_free_send_msg(bp, ring, 7103 RING_FREE_REQ_RING_TYPE_L2_CMPL, 7104 INVALID_HW_RING_ID); 7105 ring->fw_ring_id = INVALID_HW_RING_ID; 7106 } 7107 ring = &cpr->cp_ring_struct; 7108 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 7109 hwrm_ring_free_send_msg(bp, ring, type, 7110 INVALID_HW_RING_ID); 7111 ring->fw_ring_id = INVALID_HW_RING_ID; 7112 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 7113 } 7114 } 7115 } 7116 7117 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7118 bool shared); 7119 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7120 bool shared); 7121 7122 static int bnxt_hwrm_get_rings(struct bnxt *bp) 7123 { 7124 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7125 struct hwrm_func_qcfg_output *resp; 7126 struct hwrm_func_qcfg_input *req; 7127 int rc; 7128 7129 if (bp->hwrm_spec_code < 0x10601) 7130 return 0; 7131 7132 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7133 if (rc) 7134 return rc; 7135 7136 req->fid = cpu_to_le16(0xffff); 7137 resp = hwrm_req_hold(bp, req); 7138 rc = hwrm_req_send(bp, req); 7139 if (rc) { 7140 hwrm_req_drop(bp, req); 7141 return rc; 7142 } 7143 7144 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7145 if (BNXT_NEW_RM(bp)) { 7146 u16 cp, stats; 7147 7148 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 7149 hw_resc->resv_hw_ring_grps = 7150 le32_to_cpu(resp->alloc_hw_ring_grps); 7151 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 7152 hw_resc->resv_rsscos_ctxs = le16_to_cpu(resp->alloc_rsscos_ctx); 7153 cp = le16_to_cpu(resp->alloc_cmpl_rings); 7154 stats = le16_to_cpu(resp->alloc_stat_ctx); 7155 hw_resc->resv_irqs = cp; 7156 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7157 int rx = hw_resc->resv_rx_rings; 7158 int tx = hw_resc->resv_tx_rings; 7159 7160 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7161 rx >>= 1; 7162 if (cp < (rx + tx)) { 7163 rc = __bnxt_trim_rings(bp, &rx, &tx, cp, false); 7164 if (rc) 7165 goto get_rings_exit; 7166 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7167 rx <<= 1; 7168 hw_resc->resv_rx_rings = rx; 7169 hw_resc->resv_tx_rings = tx; 7170 } 7171 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 7172 hw_resc->resv_hw_ring_grps = rx; 7173 } 7174 hw_resc->resv_cp_rings = cp; 7175 hw_resc->resv_stat_ctxs = stats; 7176 } 7177 get_rings_exit: 7178 hwrm_req_drop(bp, req); 7179 return rc; 7180 } 7181 7182 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 7183 { 7184 struct hwrm_func_qcfg_output *resp; 7185 struct hwrm_func_qcfg_input *req; 7186 int rc; 7187 7188 if (bp->hwrm_spec_code < 0x10601) 7189 return 0; 7190 7191 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7192 if (rc) 7193 return rc; 7194 7195 req->fid = cpu_to_le16(fid); 7196 resp = hwrm_req_hold(bp, req); 7197 rc = hwrm_req_send(bp, req); 7198 if (!rc) 7199 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7200 7201 hwrm_req_drop(bp, req); 7202 return rc; 7203 } 7204 7205 static bool bnxt_rfs_supported(struct bnxt *bp); 7206 7207 static struct hwrm_func_cfg_input * 7208 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7209 { 7210 struct hwrm_func_cfg_input *req; 7211 u32 enables = 0; 7212 7213 if (bnxt_hwrm_func_cfg_short_req_init(bp, &req)) 7214 return NULL; 7215 7216 req->fid = cpu_to_le16(0xffff); 7217 enables |= hwr->tx ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7218 req->num_tx_rings = cpu_to_le16(hwr->tx); 7219 if (BNXT_NEW_RM(bp)) { 7220 enables |= hwr->rx ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 7221 enables |= hwr->stat ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7222 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7223 enables |= hwr->cp ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 7224 enables |= hwr->cp_p5 ? 7225 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7226 } else { 7227 enables |= hwr->cp ? 7228 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7229 enables |= hwr->grp ? 7230 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7231 } 7232 enables |= hwr->vnic ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 7233 enables |= hwr->rss_ctx ? FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 7234 0; 7235 req->num_rx_rings = cpu_to_le16(hwr->rx); 7236 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7237 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7238 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7239 req->num_msix = cpu_to_le16(hwr->cp); 7240 } else { 7241 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7242 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7243 } 7244 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7245 req->num_vnics = cpu_to_le16(hwr->vnic); 7246 } 7247 req->enables = cpu_to_le32(enables); 7248 return req; 7249 } 7250 7251 static struct hwrm_func_vf_cfg_input * 7252 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7253 { 7254 struct hwrm_func_vf_cfg_input *req; 7255 u32 enables = 0; 7256 7257 if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG)) 7258 return NULL; 7259 7260 enables |= hwr->tx ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7261 enables |= hwr->rx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 7262 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7263 enables |= hwr->stat ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7264 enables |= hwr->rss_ctx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7265 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7266 enables |= hwr->cp_p5 ? 7267 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7268 } else { 7269 enables |= hwr->cp ? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7270 enables |= hwr->grp ? 7271 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7272 } 7273 enables |= hwr->vnic ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 7274 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 7275 7276 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 7277 req->num_tx_rings = cpu_to_le16(hwr->tx); 7278 req->num_rx_rings = cpu_to_le16(hwr->rx); 7279 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7280 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7281 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7282 } else { 7283 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7284 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7285 } 7286 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7287 req->num_vnics = cpu_to_le16(hwr->vnic); 7288 7289 req->enables = cpu_to_le32(enables); 7290 return req; 7291 } 7292 7293 static int 7294 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7295 { 7296 struct hwrm_func_cfg_input *req; 7297 int rc; 7298 7299 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 7300 if (!req) 7301 return -ENOMEM; 7302 7303 if (!req->enables) { 7304 hwrm_req_drop(bp, req); 7305 return 0; 7306 } 7307 7308 rc = hwrm_req_send(bp, req); 7309 if (rc) 7310 return rc; 7311 7312 if (bp->hwrm_spec_code < 0x10601) 7313 bp->hw_resc.resv_tx_rings = hwr->tx; 7314 7315 return bnxt_hwrm_get_rings(bp); 7316 } 7317 7318 static int 7319 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7320 { 7321 struct hwrm_func_vf_cfg_input *req; 7322 int rc; 7323 7324 if (!BNXT_NEW_RM(bp)) { 7325 bp->hw_resc.resv_tx_rings = hwr->tx; 7326 return 0; 7327 } 7328 7329 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 7330 if (!req) 7331 return -ENOMEM; 7332 7333 rc = hwrm_req_send(bp, req); 7334 if (rc) 7335 return rc; 7336 7337 return bnxt_hwrm_get_rings(bp); 7338 } 7339 7340 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7341 { 7342 if (BNXT_PF(bp)) 7343 return bnxt_hwrm_reserve_pf_rings(bp, hwr); 7344 else 7345 return bnxt_hwrm_reserve_vf_rings(bp, hwr); 7346 } 7347 7348 int bnxt_nq_rings_in_use(struct bnxt *bp) 7349 { 7350 int cp = bp->cp_nr_rings; 7351 int ulp_msix, ulp_base; 7352 7353 ulp_msix = bnxt_get_ulp_msix_num(bp); 7354 if (ulp_msix) { 7355 ulp_base = bnxt_get_ulp_msix_base(bp); 7356 cp += ulp_msix; 7357 if ((ulp_base + ulp_msix) > cp) 7358 cp = ulp_base + ulp_msix; 7359 } 7360 return cp; 7361 } 7362 7363 static int bnxt_cp_rings_in_use(struct bnxt *bp) 7364 { 7365 int cp; 7366 7367 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7368 return bnxt_nq_rings_in_use(bp); 7369 7370 cp = bp->tx_nr_rings + bp->rx_nr_rings; 7371 return cp; 7372 } 7373 7374 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 7375 { 7376 int ulp_stat = bnxt_get_ulp_stat_ctxs(bp); 7377 int cp = bp->cp_nr_rings; 7378 7379 if (!ulp_stat) 7380 return cp; 7381 7382 if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp)) 7383 return bnxt_get_ulp_msix_base(bp) + ulp_stat; 7384 7385 return cp + ulp_stat; 7386 } 7387 7388 static int bnxt_get_total_rss_ctxs(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7389 { 7390 if (!hwr->grp) 7391 return 0; 7392 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7393 int rss_ctx = bnxt_get_nr_rss_ctxs(bp, hwr->grp); 7394 7395 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7396 rss_ctx *= hwr->vnic; 7397 return rss_ctx; 7398 } 7399 if (BNXT_VF(bp)) 7400 return BNXT_VF_MAX_RSS_CTX; 7401 if (!(bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && bnxt_rfs_supported(bp)) 7402 return hwr->grp + 1; 7403 return 1; 7404 } 7405 7406 /* Check if a default RSS map needs to be setup. This function is only 7407 * used on older firmware that does not require reserving RX rings. 7408 */ 7409 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 7410 { 7411 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7412 7413 /* The RSS map is valid for RX rings set to resv_rx_rings */ 7414 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 7415 hw_resc->resv_rx_rings = bp->rx_nr_rings; 7416 if (!netif_is_rxfh_configured(bp->dev)) 7417 bnxt_set_dflt_rss_indir_tbl(bp, NULL); 7418 } 7419 } 7420 7421 static int bnxt_get_total_vnics(struct bnxt *bp, int rx_rings) 7422 { 7423 if (bp->flags & BNXT_FLAG_RFS) { 7424 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7425 return 2 + bp->num_rss_ctx; 7426 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7427 return rx_rings + 1; 7428 } 7429 return 1; 7430 } 7431 7432 static bool bnxt_need_reserve_rings(struct bnxt *bp) 7433 { 7434 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7435 int cp = bnxt_cp_rings_in_use(bp); 7436 int nq = bnxt_nq_rings_in_use(bp); 7437 int rx = bp->rx_nr_rings, stat; 7438 int vnic, grp = rx; 7439 7440 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 7441 bp->hwrm_spec_code >= 0x10601) 7442 return true; 7443 7444 /* Old firmware does not need RX ring reservations but we still 7445 * need to setup a default RSS map when needed. With new firmware 7446 * we go through RX ring reservations first and then set up the 7447 * RSS map for the successfully reserved RX rings when needed. 7448 */ 7449 if (!BNXT_NEW_RM(bp)) { 7450 bnxt_check_rss_tbl_no_rmgr(bp); 7451 return false; 7452 } 7453 7454 vnic = bnxt_get_total_vnics(bp, rx); 7455 7456 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7457 rx <<= 1; 7458 stat = bnxt_get_func_stat_ctxs(bp); 7459 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 7460 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 7461 (hw_resc->resv_hw_ring_grps != grp && 7462 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))) 7463 return true; 7464 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && BNXT_PF(bp) && 7465 hw_resc->resv_irqs != nq) 7466 return true; 7467 return false; 7468 } 7469 7470 static void bnxt_copy_reserved_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7471 { 7472 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7473 7474 hwr->tx = hw_resc->resv_tx_rings; 7475 if (BNXT_NEW_RM(bp)) { 7476 hwr->rx = hw_resc->resv_rx_rings; 7477 hwr->cp = hw_resc->resv_irqs; 7478 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7479 hwr->cp_p5 = hw_resc->resv_cp_rings; 7480 hwr->grp = hw_resc->resv_hw_ring_grps; 7481 hwr->vnic = hw_resc->resv_vnics; 7482 hwr->stat = hw_resc->resv_stat_ctxs; 7483 hwr->rss_ctx = hw_resc->resv_rsscos_ctxs; 7484 } 7485 } 7486 7487 static bool bnxt_rings_ok(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7488 { 7489 return hwr->tx && hwr->rx && hwr->cp && hwr->grp && hwr->vnic && 7490 hwr->stat && (hwr->cp_p5 || !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)); 7491 } 7492 7493 static int __bnxt_reserve_rings(struct bnxt *bp) 7494 { 7495 struct bnxt_hw_rings hwr = {0}; 7496 int rx_rings, rc; 7497 bool sh = false; 7498 int tx_cp; 7499 7500 if (!bnxt_need_reserve_rings(bp)) 7501 return 0; 7502 7503 hwr.cp = bnxt_nq_rings_in_use(bp); 7504 hwr.tx = bp->tx_nr_rings; 7505 hwr.rx = bp->rx_nr_rings; 7506 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 7507 sh = true; 7508 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7509 hwr.cp_p5 = hwr.rx + hwr.tx; 7510 7511 hwr.vnic = bnxt_get_total_vnics(bp, hwr.rx); 7512 7513 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7514 hwr.rx <<= 1; 7515 hwr.grp = bp->rx_nr_rings; 7516 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 7517 hwr.stat = bnxt_get_func_stat_ctxs(bp); 7518 7519 rc = bnxt_hwrm_reserve_rings(bp, &hwr); 7520 if (rc) 7521 return rc; 7522 7523 bnxt_copy_reserved_rings(bp, &hwr); 7524 7525 rx_rings = hwr.rx; 7526 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 7527 if (hwr.rx >= 2) { 7528 rx_rings = hwr.rx >> 1; 7529 } else { 7530 if (netif_running(bp->dev)) 7531 return -ENOMEM; 7532 7533 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 7534 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 7535 bp->dev->hw_features &= ~NETIF_F_LRO; 7536 bp->dev->features &= ~NETIF_F_LRO; 7537 bnxt_set_ring_params(bp); 7538 } 7539 } 7540 rx_rings = min_t(int, rx_rings, hwr.grp); 7541 hwr.cp = min_t(int, hwr.cp, bp->cp_nr_rings); 7542 if (hwr.stat > bnxt_get_ulp_stat_ctxs(bp)) 7543 hwr.stat -= bnxt_get_ulp_stat_ctxs(bp); 7544 hwr.cp = min_t(int, hwr.cp, hwr.stat); 7545 rc = bnxt_trim_rings(bp, &rx_rings, &hwr.tx, hwr.cp, sh); 7546 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7547 hwr.rx = rx_rings << 1; 7548 tx_cp = bnxt_num_tx_to_cp(bp, hwr.tx); 7549 hwr.cp = sh ? max_t(int, tx_cp, rx_rings) : tx_cp + rx_rings; 7550 bp->tx_nr_rings = hwr.tx; 7551 7552 /* If we cannot reserve all the RX rings, reset the RSS map only 7553 * if absolutely necessary 7554 */ 7555 if (rx_rings != bp->rx_nr_rings) { 7556 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 7557 rx_rings, bp->rx_nr_rings); 7558 if (netif_is_rxfh_configured(bp->dev) && 7559 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 7560 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 7561 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 7562 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 7563 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 7564 } 7565 } 7566 bp->rx_nr_rings = rx_rings; 7567 bp->cp_nr_rings = hwr.cp; 7568 7569 if (!bnxt_rings_ok(bp, &hwr)) 7570 return -ENOMEM; 7571 7572 if (!netif_is_rxfh_configured(bp->dev)) 7573 bnxt_set_dflt_rss_indir_tbl(bp, NULL); 7574 7575 return rc; 7576 } 7577 7578 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7579 { 7580 struct hwrm_func_vf_cfg_input *req; 7581 u32 flags; 7582 7583 if (!BNXT_NEW_RM(bp)) 7584 return 0; 7585 7586 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 7587 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 7588 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 7589 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 7590 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 7591 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 7592 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 7593 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7594 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 7595 7596 req->flags = cpu_to_le32(flags); 7597 return hwrm_req_send_silent(bp, req); 7598 } 7599 7600 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7601 { 7602 struct hwrm_func_cfg_input *req; 7603 u32 flags; 7604 7605 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 7606 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 7607 if (BNXT_NEW_RM(bp)) { 7608 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 7609 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 7610 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 7611 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 7612 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7613 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 7614 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 7615 else 7616 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 7617 } 7618 7619 req->flags = cpu_to_le32(flags); 7620 return hwrm_req_send_silent(bp, req); 7621 } 7622 7623 static int bnxt_hwrm_check_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7624 { 7625 if (bp->hwrm_spec_code < 0x10801) 7626 return 0; 7627 7628 if (BNXT_PF(bp)) 7629 return bnxt_hwrm_check_pf_rings(bp, hwr); 7630 7631 return bnxt_hwrm_check_vf_rings(bp, hwr); 7632 } 7633 7634 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 7635 { 7636 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7637 struct hwrm_ring_aggint_qcaps_output *resp; 7638 struct hwrm_ring_aggint_qcaps_input *req; 7639 int rc; 7640 7641 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 7642 coal_cap->num_cmpl_dma_aggr_max = 63; 7643 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 7644 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 7645 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 7646 coal_cap->int_lat_tmr_min_max = 65535; 7647 coal_cap->int_lat_tmr_max_max = 65535; 7648 coal_cap->num_cmpl_aggr_int_max = 65535; 7649 coal_cap->timer_units = 80; 7650 7651 if (bp->hwrm_spec_code < 0x10902) 7652 return; 7653 7654 if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS)) 7655 return; 7656 7657 resp = hwrm_req_hold(bp, req); 7658 rc = hwrm_req_send_silent(bp, req); 7659 if (!rc) { 7660 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 7661 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 7662 coal_cap->num_cmpl_dma_aggr_max = 7663 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 7664 coal_cap->num_cmpl_dma_aggr_during_int_max = 7665 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 7666 coal_cap->cmpl_aggr_dma_tmr_max = 7667 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 7668 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 7669 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 7670 coal_cap->int_lat_tmr_min_max = 7671 le16_to_cpu(resp->int_lat_tmr_min_max); 7672 coal_cap->int_lat_tmr_max_max = 7673 le16_to_cpu(resp->int_lat_tmr_max_max); 7674 coal_cap->num_cmpl_aggr_int_max = 7675 le16_to_cpu(resp->num_cmpl_aggr_int_max); 7676 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 7677 } 7678 hwrm_req_drop(bp, req); 7679 } 7680 7681 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 7682 { 7683 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7684 7685 return usec * 1000 / coal_cap->timer_units; 7686 } 7687 7688 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 7689 struct bnxt_coal *hw_coal, 7690 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 7691 { 7692 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7693 u16 val, tmr, max, flags = hw_coal->flags; 7694 u32 cmpl_params = coal_cap->cmpl_params; 7695 7696 max = hw_coal->bufs_per_record * 128; 7697 if (hw_coal->budget) 7698 max = hw_coal->bufs_per_record * hw_coal->budget; 7699 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 7700 7701 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 7702 req->num_cmpl_aggr_int = cpu_to_le16(val); 7703 7704 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 7705 req->num_cmpl_dma_aggr = cpu_to_le16(val); 7706 7707 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 7708 coal_cap->num_cmpl_dma_aggr_during_int_max); 7709 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 7710 7711 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 7712 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 7713 req->int_lat_tmr_max = cpu_to_le16(tmr); 7714 7715 /* min timer set to 1/2 of interrupt timer */ 7716 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 7717 val = tmr / 2; 7718 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 7719 req->int_lat_tmr_min = cpu_to_le16(val); 7720 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 7721 } 7722 7723 /* buf timer set to 1/4 of interrupt timer */ 7724 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 7725 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 7726 7727 if (cmpl_params & 7728 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 7729 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 7730 val = clamp_t(u16, tmr, 1, 7731 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 7732 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 7733 req->enables |= 7734 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 7735 } 7736 7737 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 7738 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 7739 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 7740 req->flags = cpu_to_le16(flags); 7741 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 7742 } 7743 7744 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 7745 struct bnxt_coal *hw_coal) 7746 { 7747 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req; 7748 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7749 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7750 u32 nq_params = coal_cap->nq_params; 7751 u16 tmr; 7752 int rc; 7753 7754 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 7755 return 0; 7756 7757 rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 7758 if (rc) 7759 return rc; 7760 7761 req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 7762 req->flags = 7763 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 7764 7765 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 7766 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 7767 req->int_lat_tmr_min = cpu_to_le16(tmr); 7768 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 7769 return hwrm_req_send(bp, req); 7770 } 7771 7772 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 7773 { 7774 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx; 7775 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7776 struct bnxt_coal coal; 7777 int rc; 7778 7779 /* Tick values in micro seconds. 7780 * 1 coal_buf x bufs_per_record = 1 completion record. 7781 */ 7782 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 7783 7784 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 7785 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 7786 7787 if (!bnapi->rx_ring) 7788 return -ENODEV; 7789 7790 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 7791 if (rc) 7792 return rc; 7793 7794 bnxt_hwrm_set_coal_params(bp, &coal, req_rx); 7795 7796 req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 7797 7798 return hwrm_req_send(bp, req_rx); 7799 } 7800 7801 static int 7802 bnxt_hwrm_set_rx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 7803 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 7804 { 7805 u16 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 7806 7807 req->ring_id = cpu_to_le16(ring_id); 7808 return hwrm_req_send(bp, req); 7809 } 7810 7811 static int 7812 bnxt_hwrm_set_tx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 7813 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 7814 { 7815 struct bnxt_tx_ring_info *txr; 7816 int i, rc; 7817 7818 bnxt_for_each_napi_tx(i, bnapi, txr) { 7819 u16 ring_id; 7820 7821 ring_id = bnxt_cp_ring_for_tx(bp, txr); 7822 req->ring_id = cpu_to_le16(ring_id); 7823 rc = hwrm_req_send(bp, req); 7824 if (rc) 7825 return rc; 7826 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7827 return 0; 7828 } 7829 return 0; 7830 } 7831 7832 int bnxt_hwrm_set_coal(struct bnxt *bp) 7833 { 7834 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx; 7835 int i, rc; 7836 7837 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 7838 if (rc) 7839 return rc; 7840 7841 rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 7842 if (rc) { 7843 hwrm_req_drop(bp, req_rx); 7844 return rc; 7845 } 7846 7847 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx); 7848 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx); 7849 7850 hwrm_req_hold(bp, req_rx); 7851 hwrm_req_hold(bp, req_tx); 7852 for (i = 0; i < bp->cp_nr_rings; i++) { 7853 struct bnxt_napi *bnapi = bp->bnapi[i]; 7854 struct bnxt_coal *hw_coal; 7855 7856 if (!bnapi->rx_ring) 7857 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 7858 else 7859 rc = bnxt_hwrm_set_rx_coal(bp, bnapi, req_rx); 7860 if (rc) 7861 break; 7862 7863 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7864 continue; 7865 7866 if (bnapi->rx_ring && bnapi->tx_ring[0]) { 7867 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 7868 if (rc) 7869 break; 7870 } 7871 if (bnapi->rx_ring) 7872 hw_coal = &bp->rx_coal; 7873 else 7874 hw_coal = &bp->tx_coal; 7875 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 7876 } 7877 hwrm_req_drop(bp, req_rx); 7878 hwrm_req_drop(bp, req_tx); 7879 return rc; 7880 } 7881 7882 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 7883 { 7884 struct hwrm_stat_ctx_clr_stats_input *req0 = NULL; 7885 struct hwrm_stat_ctx_free_input *req; 7886 int i; 7887 7888 if (!bp->bnapi) 7889 return; 7890 7891 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 7892 return; 7893 7894 if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE)) 7895 return; 7896 if (BNXT_FW_MAJ(bp) <= 20) { 7897 if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) { 7898 hwrm_req_drop(bp, req); 7899 return; 7900 } 7901 hwrm_req_hold(bp, req0); 7902 } 7903 hwrm_req_hold(bp, req); 7904 for (i = 0; i < bp->cp_nr_rings; i++) { 7905 struct bnxt_napi *bnapi = bp->bnapi[i]; 7906 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7907 7908 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 7909 req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 7910 if (req0) { 7911 req0->stat_ctx_id = req->stat_ctx_id; 7912 hwrm_req_send(bp, req0); 7913 } 7914 hwrm_req_send(bp, req); 7915 7916 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 7917 } 7918 } 7919 hwrm_req_drop(bp, req); 7920 if (req0) 7921 hwrm_req_drop(bp, req0); 7922 } 7923 7924 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 7925 { 7926 struct hwrm_stat_ctx_alloc_output *resp; 7927 struct hwrm_stat_ctx_alloc_input *req; 7928 int rc, i; 7929 7930 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 7931 return 0; 7932 7933 rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC); 7934 if (rc) 7935 return rc; 7936 7937 req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 7938 req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 7939 7940 resp = hwrm_req_hold(bp, req); 7941 for (i = 0; i < bp->cp_nr_rings; i++) { 7942 struct bnxt_napi *bnapi = bp->bnapi[i]; 7943 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7944 7945 req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 7946 7947 rc = hwrm_req_send(bp, req); 7948 if (rc) 7949 break; 7950 7951 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 7952 7953 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 7954 } 7955 hwrm_req_drop(bp, req); 7956 return rc; 7957 } 7958 7959 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 7960 { 7961 struct hwrm_func_qcfg_output *resp; 7962 struct hwrm_func_qcfg_input *req; 7963 u16 flags; 7964 int rc; 7965 7966 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7967 if (rc) 7968 return rc; 7969 7970 req->fid = cpu_to_le16(0xffff); 7971 resp = hwrm_req_hold(bp, req); 7972 rc = hwrm_req_send(bp, req); 7973 if (rc) 7974 goto func_qcfg_exit; 7975 7976 #ifdef CONFIG_BNXT_SRIOV 7977 if (BNXT_VF(bp)) { 7978 struct bnxt_vf_info *vf = &bp->vf; 7979 7980 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 7981 } else { 7982 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 7983 } 7984 #endif 7985 flags = le16_to_cpu(resp->flags); 7986 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 7987 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 7988 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 7989 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 7990 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 7991 } 7992 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 7993 bp->flags |= BNXT_FLAG_MULTI_HOST; 7994 7995 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 7996 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 7997 7998 switch (resp->port_partition_type) { 7999 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 8000 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 8001 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 8002 bp->port_partition_type = resp->port_partition_type; 8003 break; 8004 } 8005 if (bp->hwrm_spec_code < 0x10707 || 8006 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 8007 bp->br_mode = BRIDGE_MODE_VEB; 8008 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 8009 bp->br_mode = BRIDGE_MODE_VEPA; 8010 else 8011 bp->br_mode = BRIDGE_MODE_UNDEF; 8012 8013 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 8014 if (!bp->max_mtu) 8015 bp->max_mtu = BNXT_MAX_MTU; 8016 8017 if (bp->db_size) 8018 goto func_qcfg_exit; 8019 8020 bp->db_offset = le16_to_cpu(resp->legacy_l2_db_size_kb) * 1024; 8021 if (BNXT_CHIP_P5(bp)) { 8022 if (BNXT_PF(bp)) 8023 bp->db_offset = DB_PF_OFFSET_P5; 8024 else 8025 bp->db_offset = DB_VF_OFFSET_P5; 8026 } 8027 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 8028 1024); 8029 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 8030 bp->db_size <= bp->db_offset) 8031 bp->db_size = pci_resource_len(bp->pdev, 2); 8032 8033 func_qcfg_exit: 8034 hwrm_req_drop(bp, req); 8035 return rc; 8036 } 8037 8038 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_type *ctxm, 8039 u8 init_val, u8 init_offset, 8040 bool init_mask_set) 8041 { 8042 ctxm->init_value = init_val; 8043 ctxm->init_offset = BNXT_CTX_INIT_INVALID_OFFSET; 8044 if (init_mask_set) 8045 ctxm->init_offset = init_offset * 4; 8046 else 8047 ctxm->init_value = 0; 8048 } 8049 8050 static int bnxt_alloc_all_ctx_pg_info(struct bnxt *bp, int ctx_max) 8051 { 8052 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8053 u16 type; 8054 8055 for (type = 0; type < ctx_max; type++) { 8056 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8057 int n = 1; 8058 8059 if (!ctxm->max_entries) 8060 continue; 8061 8062 if (ctxm->instance_bmap) 8063 n = hweight32(ctxm->instance_bmap); 8064 ctxm->pg_info = kcalloc(n, sizeof(*ctxm->pg_info), GFP_KERNEL); 8065 if (!ctxm->pg_info) 8066 return -ENOMEM; 8067 } 8068 return 0; 8069 } 8070 8071 #define BNXT_CTX_INIT_VALID(flags) \ 8072 (!!((flags) & \ 8073 FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_ENABLE_CTX_KIND_INIT)) 8074 8075 static int bnxt_hwrm_func_backing_store_qcaps_v2(struct bnxt *bp) 8076 { 8077 struct hwrm_func_backing_store_qcaps_v2_output *resp; 8078 struct hwrm_func_backing_store_qcaps_v2_input *req; 8079 struct bnxt_ctx_mem_info *ctx; 8080 u16 type; 8081 int rc; 8082 8083 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS_V2); 8084 if (rc) 8085 return rc; 8086 8087 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8088 if (!ctx) 8089 return -ENOMEM; 8090 bp->ctx = ctx; 8091 8092 resp = hwrm_req_hold(bp, req); 8093 8094 for (type = 0; type < BNXT_CTX_V2_MAX; ) { 8095 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8096 u8 init_val, init_off, i; 8097 __le32 *p; 8098 u32 flags; 8099 8100 req->type = cpu_to_le16(type); 8101 rc = hwrm_req_send(bp, req); 8102 if (rc) 8103 goto ctx_done; 8104 flags = le32_to_cpu(resp->flags); 8105 type = le16_to_cpu(resp->next_valid_type); 8106 if (!(flags & FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_TYPE_VALID)) 8107 continue; 8108 8109 ctxm->type = le16_to_cpu(resp->type); 8110 ctxm->entry_size = le16_to_cpu(resp->entry_size); 8111 ctxm->flags = flags; 8112 ctxm->instance_bmap = le32_to_cpu(resp->instance_bit_map); 8113 ctxm->entry_multiple = resp->entry_multiple; 8114 ctxm->max_entries = le32_to_cpu(resp->max_num_entries); 8115 ctxm->min_entries = le32_to_cpu(resp->min_num_entries); 8116 init_val = resp->ctx_init_value; 8117 init_off = resp->ctx_init_offset; 8118 bnxt_init_ctx_initializer(ctxm, init_val, init_off, 8119 BNXT_CTX_INIT_VALID(flags)); 8120 ctxm->split_entry_cnt = min_t(u8, resp->subtype_valid_cnt, 8121 BNXT_MAX_SPLIT_ENTRY); 8122 for (i = 0, p = &resp->split_entry_0; i < ctxm->split_entry_cnt; 8123 i++, p++) 8124 ctxm->split[i] = le32_to_cpu(*p); 8125 } 8126 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_V2_MAX); 8127 8128 ctx_done: 8129 hwrm_req_drop(bp, req); 8130 return rc; 8131 } 8132 8133 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 8134 { 8135 struct hwrm_func_backing_store_qcaps_output *resp; 8136 struct hwrm_func_backing_store_qcaps_input *req; 8137 int rc; 8138 8139 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx) 8140 return 0; 8141 8142 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 8143 return bnxt_hwrm_func_backing_store_qcaps_v2(bp); 8144 8145 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS); 8146 if (rc) 8147 return rc; 8148 8149 resp = hwrm_req_hold(bp, req); 8150 rc = hwrm_req_send_silent(bp, req); 8151 if (!rc) { 8152 struct bnxt_ctx_mem_type *ctxm; 8153 struct bnxt_ctx_mem_info *ctx; 8154 u8 init_val, init_idx = 0; 8155 u16 init_mask; 8156 8157 ctx = bp->ctx; 8158 if (!ctx) { 8159 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8160 if (!ctx) { 8161 rc = -ENOMEM; 8162 goto ctx_err; 8163 } 8164 bp->ctx = ctx; 8165 } 8166 init_val = resp->ctx_kind_initializer; 8167 init_mask = le16_to_cpu(resp->ctx_init_mask); 8168 8169 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8170 ctxm->max_entries = le32_to_cpu(resp->qp_max_entries); 8171 ctxm->qp_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 8172 ctxm->qp_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 8173 ctxm->qp_fast_qpmd_entries = le16_to_cpu(resp->fast_qpmd_qp_num_entries); 8174 ctxm->entry_size = le16_to_cpu(resp->qp_entry_size); 8175 bnxt_init_ctx_initializer(ctxm, init_val, resp->qp_init_offset, 8176 (init_mask & (1 << init_idx++)) != 0); 8177 8178 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8179 ctxm->srq_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 8180 ctxm->max_entries = le32_to_cpu(resp->srq_max_entries); 8181 ctxm->entry_size = le16_to_cpu(resp->srq_entry_size); 8182 bnxt_init_ctx_initializer(ctxm, init_val, resp->srq_init_offset, 8183 (init_mask & (1 << init_idx++)) != 0); 8184 8185 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8186 ctxm->cq_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 8187 ctxm->max_entries = le32_to_cpu(resp->cq_max_entries); 8188 ctxm->entry_size = le16_to_cpu(resp->cq_entry_size); 8189 bnxt_init_ctx_initializer(ctxm, init_val, resp->cq_init_offset, 8190 (init_mask & (1 << init_idx++)) != 0); 8191 8192 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8193 ctxm->vnic_entries = le16_to_cpu(resp->vnic_max_vnic_entries); 8194 ctxm->max_entries = ctxm->vnic_entries + 8195 le16_to_cpu(resp->vnic_max_ring_table_entries); 8196 ctxm->entry_size = le16_to_cpu(resp->vnic_entry_size); 8197 bnxt_init_ctx_initializer(ctxm, init_val, 8198 resp->vnic_init_offset, 8199 (init_mask & (1 << init_idx++)) != 0); 8200 8201 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8202 ctxm->max_entries = le32_to_cpu(resp->stat_max_entries); 8203 ctxm->entry_size = le16_to_cpu(resp->stat_entry_size); 8204 bnxt_init_ctx_initializer(ctxm, init_val, 8205 resp->stat_init_offset, 8206 (init_mask & (1 << init_idx++)) != 0); 8207 8208 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8209 ctxm->entry_size = le16_to_cpu(resp->tqm_entry_size); 8210 ctxm->min_entries = le32_to_cpu(resp->tqm_min_entries_per_ring); 8211 ctxm->max_entries = le32_to_cpu(resp->tqm_max_entries_per_ring); 8212 ctxm->entry_multiple = resp->tqm_entries_multiple; 8213 if (!ctxm->entry_multiple) 8214 ctxm->entry_multiple = 1; 8215 8216 memcpy(&ctx->ctx_arr[BNXT_CTX_FTQM], ctxm, sizeof(*ctxm)); 8217 8218 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8219 ctxm->max_entries = le32_to_cpu(resp->mrav_max_entries); 8220 ctxm->entry_size = le16_to_cpu(resp->mrav_entry_size); 8221 ctxm->mrav_num_entries_units = 8222 le16_to_cpu(resp->mrav_num_entries_units); 8223 bnxt_init_ctx_initializer(ctxm, init_val, 8224 resp->mrav_init_offset, 8225 (init_mask & (1 << init_idx++)) != 0); 8226 8227 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8228 ctxm->entry_size = le16_to_cpu(resp->tim_entry_size); 8229 ctxm->max_entries = le32_to_cpu(resp->tim_max_entries); 8230 8231 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 8232 if (!ctx->tqm_fp_rings_count) 8233 ctx->tqm_fp_rings_count = bp->max_q; 8234 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 8235 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 8236 8237 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 8238 memcpy(ctxm, &ctx->ctx_arr[BNXT_CTX_STQM], sizeof(*ctxm)); 8239 ctxm->instance_bmap = (1 << ctx->tqm_fp_rings_count) - 1; 8240 8241 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_MAX); 8242 } else { 8243 rc = 0; 8244 } 8245 ctx_err: 8246 hwrm_req_drop(bp, req); 8247 return rc; 8248 } 8249 8250 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 8251 __le64 *pg_dir) 8252 { 8253 if (!rmem->nr_pages) 8254 return; 8255 8256 BNXT_SET_CTX_PAGE_ATTR(*pg_attr); 8257 if (rmem->depth >= 1) { 8258 if (rmem->depth == 2) 8259 *pg_attr |= 2; 8260 else 8261 *pg_attr |= 1; 8262 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 8263 } else { 8264 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 8265 } 8266 } 8267 8268 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 8269 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 8270 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 8271 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 8272 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 8273 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 8274 8275 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 8276 { 8277 struct hwrm_func_backing_store_cfg_input *req; 8278 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8279 struct bnxt_ctx_pg_info *ctx_pg; 8280 struct bnxt_ctx_mem_type *ctxm; 8281 void **__req = (void **)&req; 8282 u32 req_len = sizeof(*req); 8283 __le32 *num_entries; 8284 __le64 *pg_dir; 8285 u32 flags = 0; 8286 u8 *pg_attr; 8287 u32 ena; 8288 int rc; 8289 int i; 8290 8291 if (!ctx) 8292 return 0; 8293 8294 if (req_len > bp->hwrm_max_ext_req_len) 8295 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 8296 rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len); 8297 if (rc) 8298 return rc; 8299 8300 req->enables = cpu_to_le32(enables); 8301 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 8302 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8303 ctx_pg = ctxm->pg_info; 8304 req->qp_num_entries = cpu_to_le32(ctx_pg->entries); 8305 req->qp_num_qp1_entries = cpu_to_le16(ctxm->qp_qp1_entries); 8306 req->qp_num_l2_entries = cpu_to_le16(ctxm->qp_l2_entries); 8307 req->qp_entry_size = cpu_to_le16(ctxm->entry_size); 8308 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8309 &req->qpc_pg_size_qpc_lvl, 8310 &req->qpc_page_dir); 8311 8312 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD) 8313 req->qp_num_fast_qpmd_entries = cpu_to_le16(ctxm->qp_fast_qpmd_entries); 8314 } 8315 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 8316 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8317 ctx_pg = ctxm->pg_info; 8318 req->srq_num_entries = cpu_to_le32(ctx_pg->entries); 8319 req->srq_num_l2_entries = cpu_to_le16(ctxm->srq_l2_entries); 8320 req->srq_entry_size = cpu_to_le16(ctxm->entry_size); 8321 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8322 &req->srq_pg_size_srq_lvl, 8323 &req->srq_page_dir); 8324 } 8325 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 8326 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8327 ctx_pg = ctxm->pg_info; 8328 req->cq_num_entries = cpu_to_le32(ctx_pg->entries); 8329 req->cq_num_l2_entries = cpu_to_le16(ctxm->cq_l2_entries); 8330 req->cq_entry_size = cpu_to_le16(ctxm->entry_size); 8331 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8332 &req->cq_pg_size_cq_lvl, 8333 &req->cq_page_dir); 8334 } 8335 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 8336 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8337 ctx_pg = ctxm->pg_info; 8338 req->vnic_num_vnic_entries = cpu_to_le16(ctxm->vnic_entries); 8339 req->vnic_num_ring_table_entries = 8340 cpu_to_le16(ctxm->max_entries - ctxm->vnic_entries); 8341 req->vnic_entry_size = cpu_to_le16(ctxm->entry_size); 8342 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8343 &req->vnic_pg_size_vnic_lvl, 8344 &req->vnic_page_dir); 8345 } 8346 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 8347 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8348 ctx_pg = ctxm->pg_info; 8349 req->stat_num_entries = cpu_to_le32(ctxm->max_entries); 8350 req->stat_entry_size = cpu_to_le16(ctxm->entry_size); 8351 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8352 &req->stat_pg_size_stat_lvl, 8353 &req->stat_page_dir); 8354 } 8355 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 8356 u32 units; 8357 8358 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8359 ctx_pg = ctxm->pg_info; 8360 req->mrav_num_entries = cpu_to_le32(ctx_pg->entries); 8361 units = ctxm->mrav_num_entries_units; 8362 if (units) { 8363 u32 num_mr, num_ah = ctxm->mrav_av_entries; 8364 u32 entries; 8365 8366 num_mr = ctx_pg->entries - num_ah; 8367 entries = ((num_mr / units) << 16) | (num_ah / units); 8368 req->mrav_num_entries = cpu_to_le32(entries); 8369 flags |= FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 8370 } 8371 req->mrav_entry_size = cpu_to_le16(ctxm->entry_size); 8372 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8373 &req->mrav_pg_size_mrav_lvl, 8374 &req->mrav_page_dir); 8375 } 8376 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 8377 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8378 ctx_pg = ctxm->pg_info; 8379 req->tim_num_entries = cpu_to_le32(ctx_pg->entries); 8380 req->tim_entry_size = cpu_to_le16(ctxm->entry_size); 8381 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8382 &req->tim_pg_size_tim_lvl, 8383 &req->tim_page_dir); 8384 } 8385 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8386 for (i = 0, num_entries = &req->tqm_sp_num_entries, 8387 pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl, 8388 pg_dir = &req->tqm_sp_page_dir, 8389 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP, 8390 ctx_pg = ctxm->pg_info; 8391 i < BNXT_MAX_TQM_RINGS; 8392 ctx_pg = &ctx->ctx_arr[BNXT_CTX_FTQM].pg_info[i], 8393 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 8394 if (!(enables & ena)) 8395 continue; 8396 8397 req->tqm_entry_size = cpu_to_le16(ctxm->entry_size); 8398 *num_entries = cpu_to_le32(ctx_pg->entries); 8399 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 8400 } 8401 req->flags = cpu_to_le32(flags); 8402 return hwrm_req_send(bp, req); 8403 } 8404 8405 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 8406 struct bnxt_ctx_pg_info *ctx_pg) 8407 { 8408 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8409 8410 rmem->page_size = BNXT_PAGE_SIZE; 8411 rmem->pg_arr = ctx_pg->ctx_pg_arr; 8412 rmem->dma_arr = ctx_pg->ctx_dma_arr; 8413 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 8414 if (rmem->depth >= 1) 8415 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 8416 return bnxt_alloc_ring(bp, rmem); 8417 } 8418 8419 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 8420 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 8421 u8 depth, struct bnxt_ctx_mem_type *ctxm) 8422 { 8423 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8424 int rc; 8425 8426 if (!mem_size) 8427 return -EINVAL; 8428 8429 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 8430 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 8431 ctx_pg->nr_pages = 0; 8432 return -EINVAL; 8433 } 8434 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 8435 int nr_tbls, i; 8436 8437 rmem->depth = 2; 8438 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 8439 GFP_KERNEL); 8440 if (!ctx_pg->ctx_pg_tbl) 8441 return -ENOMEM; 8442 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 8443 rmem->nr_pages = nr_tbls; 8444 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 8445 if (rc) 8446 return rc; 8447 for (i = 0; i < nr_tbls; i++) { 8448 struct bnxt_ctx_pg_info *pg_tbl; 8449 8450 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 8451 if (!pg_tbl) 8452 return -ENOMEM; 8453 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 8454 rmem = &pg_tbl->ring_mem; 8455 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 8456 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 8457 rmem->depth = 1; 8458 rmem->nr_pages = MAX_CTX_PAGES; 8459 rmem->ctx_mem = ctxm; 8460 if (i == (nr_tbls - 1)) { 8461 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 8462 8463 if (rem) 8464 rmem->nr_pages = rem; 8465 } 8466 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 8467 if (rc) 8468 break; 8469 } 8470 } else { 8471 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 8472 if (rmem->nr_pages > 1 || depth) 8473 rmem->depth = 1; 8474 rmem->ctx_mem = ctxm; 8475 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 8476 } 8477 return rc; 8478 } 8479 8480 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 8481 struct bnxt_ctx_pg_info *ctx_pg) 8482 { 8483 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8484 8485 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 8486 ctx_pg->ctx_pg_tbl) { 8487 int i, nr_tbls = rmem->nr_pages; 8488 8489 for (i = 0; i < nr_tbls; i++) { 8490 struct bnxt_ctx_pg_info *pg_tbl; 8491 struct bnxt_ring_mem_info *rmem2; 8492 8493 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 8494 if (!pg_tbl) 8495 continue; 8496 rmem2 = &pg_tbl->ring_mem; 8497 bnxt_free_ring(bp, rmem2); 8498 ctx_pg->ctx_pg_arr[i] = NULL; 8499 kfree(pg_tbl); 8500 ctx_pg->ctx_pg_tbl[i] = NULL; 8501 } 8502 kfree(ctx_pg->ctx_pg_tbl); 8503 ctx_pg->ctx_pg_tbl = NULL; 8504 } 8505 bnxt_free_ring(bp, rmem); 8506 ctx_pg->nr_pages = 0; 8507 } 8508 8509 static int bnxt_setup_ctxm_pg_tbls(struct bnxt *bp, 8510 struct bnxt_ctx_mem_type *ctxm, u32 entries, 8511 u8 pg_lvl) 8512 { 8513 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 8514 int i, rc = 0, n = 1; 8515 u32 mem_size; 8516 8517 if (!ctxm->entry_size || !ctx_pg) 8518 return -EINVAL; 8519 if (ctxm->instance_bmap) 8520 n = hweight32(ctxm->instance_bmap); 8521 if (ctxm->entry_multiple) 8522 entries = roundup(entries, ctxm->entry_multiple); 8523 entries = clamp_t(u32, entries, ctxm->min_entries, ctxm->max_entries); 8524 mem_size = entries * ctxm->entry_size; 8525 for (i = 0; i < n && !rc; i++) { 8526 ctx_pg[i].entries = entries; 8527 rc = bnxt_alloc_ctx_pg_tbls(bp, &ctx_pg[i], mem_size, pg_lvl, 8528 ctxm->init_value ? ctxm : NULL); 8529 } 8530 return rc; 8531 } 8532 8533 static int bnxt_hwrm_func_backing_store_cfg_v2(struct bnxt *bp, 8534 struct bnxt_ctx_mem_type *ctxm, 8535 bool last) 8536 { 8537 struct hwrm_func_backing_store_cfg_v2_input *req; 8538 u32 instance_bmap = ctxm->instance_bmap; 8539 int i, j, rc = 0, n = 1; 8540 __le32 *p; 8541 8542 if (!(ctxm->flags & BNXT_CTX_MEM_TYPE_VALID) || !ctxm->pg_info) 8543 return 0; 8544 8545 if (instance_bmap) 8546 n = hweight32(ctxm->instance_bmap); 8547 else 8548 instance_bmap = 1; 8549 8550 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_CFG_V2); 8551 if (rc) 8552 return rc; 8553 hwrm_req_hold(bp, req); 8554 req->type = cpu_to_le16(ctxm->type); 8555 req->entry_size = cpu_to_le16(ctxm->entry_size); 8556 req->subtype_valid_cnt = ctxm->split_entry_cnt; 8557 for (i = 0, p = &req->split_entry_0; i < ctxm->split_entry_cnt; i++) 8558 p[i] = cpu_to_le32(ctxm->split[i]); 8559 for (i = 0, j = 0; j < n && !rc; i++) { 8560 struct bnxt_ctx_pg_info *ctx_pg; 8561 8562 if (!(instance_bmap & (1 << i))) 8563 continue; 8564 req->instance = cpu_to_le16(i); 8565 ctx_pg = &ctxm->pg_info[j++]; 8566 if (!ctx_pg->entries) 8567 continue; 8568 req->num_entries = cpu_to_le32(ctx_pg->entries); 8569 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8570 &req->page_size_pbl_level, 8571 &req->page_dir); 8572 if (last && j == n) 8573 req->flags = 8574 cpu_to_le32(FUNC_BACKING_STORE_CFG_V2_REQ_FLAGS_BS_CFG_ALL_DONE); 8575 rc = hwrm_req_send(bp, req); 8576 } 8577 hwrm_req_drop(bp, req); 8578 return rc; 8579 } 8580 8581 static int bnxt_backing_store_cfg_v2(struct bnxt *bp, u32 ena) 8582 { 8583 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8584 struct bnxt_ctx_mem_type *ctxm; 8585 u16 last_type; 8586 int rc = 0; 8587 u16 type; 8588 8589 if (!ena) 8590 return 0; 8591 else if (ena & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) 8592 last_type = BNXT_CTX_MAX - 1; 8593 else 8594 last_type = BNXT_CTX_L2_MAX - 1; 8595 ctx->ctx_arr[last_type].last = 1; 8596 8597 for (type = 0 ; type < BNXT_CTX_V2_MAX; type++) { 8598 ctxm = &ctx->ctx_arr[type]; 8599 8600 rc = bnxt_hwrm_func_backing_store_cfg_v2(bp, ctxm, ctxm->last); 8601 if (rc) 8602 return rc; 8603 } 8604 return 0; 8605 } 8606 8607 void bnxt_free_ctx_mem(struct bnxt *bp) 8608 { 8609 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8610 u16 type; 8611 8612 if (!ctx) 8613 return; 8614 8615 for (type = 0; type < BNXT_CTX_V2_MAX; type++) { 8616 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8617 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 8618 int i, n = 1; 8619 8620 if (!ctx_pg) 8621 continue; 8622 if (ctxm->instance_bmap) 8623 n = hweight32(ctxm->instance_bmap); 8624 for (i = 0; i < n; i++) 8625 bnxt_free_ctx_pg_tbls(bp, &ctx_pg[i]); 8626 8627 kfree(ctx_pg); 8628 ctxm->pg_info = NULL; 8629 } 8630 8631 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 8632 kfree(ctx); 8633 bp->ctx = NULL; 8634 } 8635 8636 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 8637 { 8638 struct bnxt_ctx_mem_type *ctxm; 8639 struct bnxt_ctx_mem_info *ctx; 8640 u32 l2_qps, qp1_qps, max_qps; 8641 u32 ena, entries_sp, entries; 8642 u32 srqs, max_srqs, min; 8643 u32 num_mr, num_ah; 8644 u32 extra_srqs = 0; 8645 u32 extra_qps = 0; 8646 u32 fast_qpmd_qps; 8647 u8 pg_lvl = 1; 8648 int i, rc; 8649 8650 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 8651 if (rc) { 8652 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 8653 rc); 8654 return rc; 8655 } 8656 ctx = bp->ctx; 8657 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 8658 return 0; 8659 8660 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8661 l2_qps = ctxm->qp_l2_entries; 8662 qp1_qps = ctxm->qp_qp1_entries; 8663 fast_qpmd_qps = ctxm->qp_fast_qpmd_entries; 8664 max_qps = ctxm->max_entries; 8665 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8666 srqs = ctxm->srq_l2_entries; 8667 max_srqs = ctxm->max_entries; 8668 ena = 0; 8669 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 8670 pg_lvl = 2; 8671 extra_qps = min_t(u32, 65536, max_qps - l2_qps - qp1_qps); 8672 /* allocate extra qps if fw supports RoCE fast qp destroy feature */ 8673 extra_qps += fast_qpmd_qps; 8674 extra_srqs = min_t(u32, 8192, max_srqs - srqs); 8675 if (fast_qpmd_qps) 8676 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD; 8677 } 8678 8679 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8680 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 8681 pg_lvl); 8682 if (rc) 8683 return rc; 8684 8685 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8686 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, srqs + extra_srqs, pg_lvl); 8687 if (rc) 8688 return rc; 8689 8690 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8691 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->cq_l2_entries + 8692 extra_qps * 2, pg_lvl); 8693 if (rc) 8694 return rc; 8695 8696 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8697 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 8698 if (rc) 8699 return rc; 8700 8701 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8702 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 8703 if (rc) 8704 return rc; 8705 8706 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 8707 goto skip_rdma; 8708 8709 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8710 /* 128K extra is needed to accommodate static AH context 8711 * allocation by f/w. 8712 */ 8713 num_mr = min_t(u32, ctxm->max_entries / 2, 1024 * 256); 8714 num_ah = min_t(u32, num_mr, 1024 * 128); 8715 ctxm->split_entry_cnt = BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1; 8716 if (!ctxm->mrav_av_entries || ctxm->mrav_av_entries > num_ah) 8717 ctxm->mrav_av_entries = num_ah; 8718 8719 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, num_mr + num_ah, 2); 8720 if (rc) 8721 return rc; 8722 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 8723 8724 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8725 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 1); 8726 if (rc) 8727 return rc; 8728 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 8729 8730 skip_rdma: 8731 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8732 min = ctxm->min_entries; 8733 entries_sp = ctx->ctx_arr[BNXT_CTX_VNIC].vnic_entries + l2_qps + 8734 2 * (extra_qps + qp1_qps) + min; 8735 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries_sp, 2); 8736 if (rc) 8737 return rc; 8738 8739 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 8740 entries = l2_qps + 2 * (extra_qps + qp1_qps); 8741 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries, 2); 8742 if (rc) 8743 return rc; 8744 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 8745 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 8746 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 8747 8748 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 8749 rc = bnxt_backing_store_cfg_v2(bp, ena); 8750 else 8751 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 8752 if (rc) { 8753 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 8754 rc); 8755 return rc; 8756 } 8757 ctx->flags |= BNXT_CTX_FLAG_INITED; 8758 return 0; 8759 } 8760 8761 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 8762 { 8763 struct hwrm_func_resource_qcaps_output *resp; 8764 struct hwrm_func_resource_qcaps_input *req; 8765 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 8766 int rc; 8767 8768 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS); 8769 if (rc) 8770 return rc; 8771 8772 req->fid = cpu_to_le16(0xffff); 8773 resp = hwrm_req_hold(bp, req); 8774 rc = hwrm_req_send_silent(bp, req); 8775 if (rc) 8776 goto hwrm_func_resc_qcaps_exit; 8777 8778 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 8779 if (!all) 8780 goto hwrm_func_resc_qcaps_exit; 8781 8782 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 8783 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 8784 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 8785 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 8786 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 8787 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 8788 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 8789 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 8790 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 8791 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 8792 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 8793 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 8794 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 8795 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 8796 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 8797 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 8798 8799 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 8800 u16 max_msix = le16_to_cpu(resp->max_msix); 8801 8802 hw_resc->max_nqs = max_msix; 8803 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 8804 } 8805 8806 if (BNXT_PF(bp)) { 8807 struct bnxt_pf_info *pf = &bp->pf; 8808 8809 pf->vf_resv_strategy = 8810 le16_to_cpu(resp->vf_reservation_strategy); 8811 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 8812 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 8813 } 8814 hwrm_func_resc_qcaps_exit: 8815 hwrm_req_drop(bp, req); 8816 return rc; 8817 } 8818 8819 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) 8820 { 8821 struct hwrm_port_mac_ptp_qcfg_output *resp; 8822 struct hwrm_port_mac_ptp_qcfg_input *req; 8823 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 8824 bool phc_cfg; 8825 u8 flags; 8826 int rc; 8827 8828 if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5(bp)) { 8829 rc = -ENODEV; 8830 goto no_ptp; 8831 } 8832 8833 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG); 8834 if (rc) 8835 goto no_ptp; 8836 8837 req->port_id = cpu_to_le16(bp->pf.port_id); 8838 resp = hwrm_req_hold(bp, req); 8839 rc = hwrm_req_send(bp, req); 8840 if (rc) 8841 goto exit; 8842 8843 flags = resp->flags; 8844 if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { 8845 rc = -ENODEV; 8846 goto exit; 8847 } 8848 if (!ptp) { 8849 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); 8850 if (!ptp) { 8851 rc = -ENOMEM; 8852 goto exit; 8853 } 8854 ptp->bp = bp; 8855 bp->ptp_cfg = ptp; 8856 } 8857 if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) { 8858 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); 8859 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); 8860 } else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 8861 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; 8862 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; 8863 } else { 8864 rc = -ENODEV; 8865 goto exit; 8866 } 8867 phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0; 8868 rc = bnxt_ptp_init(bp, phc_cfg); 8869 if (rc) 8870 netdev_warn(bp->dev, "PTP initialization failed.\n"); 8871 exit: 8872 hwrm_req_drop(bp, req); 8873 if (!rc) 8874 return 0; 8875 8876 no_ptp: 8877 bnxt_ptp_clear(bp); 8878 kfree(ptp); 8879 bp->ptp_cfg = NULL; 8880 return rc; 8881 } 8882 8883 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 8884 { 8885 struct hwrm_func_qcaps_output *resp; 8886 struct hwrm_func_qcaps_input *req; 8887 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 8888 u32 flags, flags_ext, flags_ext2; 8889 int rc; 8890 8891 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS); 8892 if (rc) 8893 return rc; 8894 8895 req->fid = cpu_to_le16(0xffff); 8896 resp = hwrm_req_hold(bp, req); 8897 rc = hwrm_req_send(bp, req); 8898 if (rc) 8899 goto hwrm_func_qcaps_exit; 8900 8901 flags = le32_to_cpu(resp->flags); 8902 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 8903 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 8904 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 8905 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 8906 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 8907 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 8908 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 8909 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 8910 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 8911 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 8912 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 8913 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 8914 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 8915 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 8916 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 8917 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 8918 if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED) 8919 bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS; 8920 8921 flags_ext = le32_to_cpu(resp->flags_ext); 8922 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 8923 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 8924 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED)) 8925 bp->fw_cap |= BNXT_FW_CAP_PTP_PPS; 8926 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED) 8927 bp->fw_cap |= BNXT_FW_CAP_PTP_RTC; 8928 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT)) 8929 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF; 8930 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED)) 8931 bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH; 8932 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_BS_V2_SUPPORTED) 8933 bp->fw_cap |= BNXT_FW_CAP_BACKING_STORE_V2; 8934 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_TX_COAL_CMPL_CAP) 8935 bp->flags |= BNXT_FLAG_TX_COAL_CMPL; 8936 8937 flags_ext2 = le32_to_cpu(resp->flags_ext2); 8938 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED) 8939 bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS; 8940 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_UDP_GSO_SUPPORTED) 8941 bp->flags |= BNXT_FLAG_UDP_GSO_CAP; 8942 8943 bp->tx_push_thresh = 0; 8944 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 8945 BNXT_FW_MAJ(bp) > 217) 8946 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 8947 8948 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 8949 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 8950 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 8951 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 8952 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 8953 if (!hw_resc->max_hw_ring_grps) 8954 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 8955 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 8956 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 8957 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 8958 8959 hw_resc->max_encap_records = le32_to_cpu(resp->max_encap_records); 8960 hw_resc->max_decap_records = le32_to_cpu(resp->max_decap_records); 8961 hw_resc->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 8962 hw_resc->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 8963 hw_resc->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 8964 hw_resc->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 8965 8966 if (BNXT_PF(bp)) { 8967 struct bnxt_pf_info *pf = &bp->pf; 8968 8969 pf->fw_fid = le16_to_cpu(resp->fid); 8970 pf->port_id = le16_to_cpu(resp->port_id); 8971 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 8972 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 8973 pf->max_vfs = le16_to_cpu(resp->max_vfs); 8974 bp->flags &= ~BNXT_FLAG_WOL_CAP; 8975 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 8976 bp->flags |= BNXT_FLAG_WOL_CAP; 8977 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { 8978 bp->fw_cap |= BNXT_FW_CAP_PTP; 8979 } else { 8980 bnxt_ptp_clear(bp); 8981 kfree(bp->ptp_cfg); 8982 bp->ptp_cfg = NULL; 8983 } 8984 } else { 8985 #ifdef CONFIG_BNXT_SRIOV 8986 struct bnxt_vf_info *vf = &bp->vf; 8987 8988 vf->fw_fid = le16_to_cpu(resp->fid); 8989 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 8990 #endif 8991 } 8992 8993 hwrm_func_qcaps_exit: 8994 hwrm_req_drop(bp, req); 8995 return rc; 8996 } 8997 8998 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp) 8999 { 9000 struct hwrm_dbg_qcaps_output *resp; 9001 struct hwrm_dbg_qcaps_input *req; 9002 int rc; 9003 9004 bp->fw_dbg_cap = 0; 9005 if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS)) 9006 return; 9007 9008 rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS); 9009 if (rc) 9010 return; 9011 9012 req->fid = cpu_to_le16(0xffff); 9013 resp = hwrm_req_hold(bp, req); 9014 rc = hwrm_req_send(bp, req); 9015 if (rc) 9016 goto hwrm_dbg_qcaps_exit; 9017 9018 bp->fw_dbg_cap = le32_to_cpu(resp->flags); 9019 9020 hwrm_dbg_qcaps_exit: 9021 hwrm_req_drop(bp, req); 9022 } 9023 9024 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 9025 9026 int bnxt_hwrm_func_qcaps(struct bnxt *bp) 9027 { 9028 int rc; 9029 9030 rc = __bnxt_hwrm_func_qcaps(bp); 9031 if (rc) 9032 return rc; 9033 9034 bnxt_hwrm_dbg_qcaps(bp); 9035 9036 rc = bnxt_hwrm_queue_qportcfg(bp); 9037 if (rc) { 9038 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 9039 return rc; 9040 } 9041 if (bp->hwrm_spec_code >= 0x10803) { 9042 rc = bnxt_alloc_ctx_mem(bp); 9043 if (rc) 9044 return rc; 9045 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 9046 if (!rc) 9047 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 9048 } 9049 return 0; 9050 } 9051 9052 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 9053 { 9054 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 9055 struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req; 9056 u32 flags; 9057 int rc; 9058 9059 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 9060 return 0; 9061 9062 rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS); 9063 if (rc) 9064 return rc; 9065 9066 resp = hwrm_req_hold(bp, req); 9067 rc = hwrm_req_send(bp, req); 9068 if (rc) 9069 goto hwrm_cfa_adv_qcaps_exit; 9070 9071 flags = le32_to_cpu(resp->flags); 9072 if (flags & 9073 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 9074 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 9075 9076 if (flags & 9077 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V3_SUPPORTED) 9078 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V3; 9079 9080 if (flags & 9081 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_NTUPLE_FLOW_RX_EXT_IP_PROTO_SUPPORTED) 9082 bp->fw_cap |= BNXT_FW_CAP_CFA_NTUPLE_RX_EXT_IP_PROTO; 9083 9084 hwrm_cfa_adv_qcaps_exit: 9085 hwrm_req_drop(bp, req); 9086 return rc; 9087 } 9088 9089 static int __bnxt_alloc_fw_health(struct bnxt *bp) 9090 { 9091 if (bp->fw_health) 9092 return 0; 9093 9094 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 9095 if (!bp->fw_health) 9096 return -ENOMEM; 9097 9098 mutex_init(&bp->fw_health->lock); 9099 return 0; 9100 } 9101 9102 static int bnxt_alloc_fw_health(struct bnxt *bp) 9103 { 9104 int rc; 9105 9106 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 9107 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 9108 return 0; 9109 9110 rc = __bnxt_alloc_fw_health(bp); 9111 if (rc) { 9112 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 9113 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 9114 return rc; 9115 } 9116 9117 return 0; 9118 } 9119 9120 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 9121 { 9122 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 9123 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 9124 BNXT_FW_HEALTH_WIN_MAP_OFF); 9125 } 9126 9127 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 9128 { 9129 struct bnxt_fw_health *fw_health = bp->fw_health; 9130 u32 reg_type; 9131 9132 if (!fw_health) 9133 return; 9134 9135 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 9136 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9137 fw_health->status_reliable = false; 9138 9139 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]); 9140 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9141 fw_health->resets_reliable = false; 9142 } 9143 9144 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 9145 { 9146 void __iomem *hs; 9147 u32 status_loc; 9148 u32 reg_type; 9149 u32 sig; 9150 9151 if (bp->fw_health) 9152 bp->fw_health->status_reliable = false; 9153 9154 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 9155 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 9156 9157 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 9158 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 9159 if (!bp->chip_num) { 9160 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 9161 bp->chip_num = readl(bp->bar0 + 9162 BNXT_FW_HEALTH_WIN_BASE + 9163 BNXT_GRC_REG_CHIP_NUM); 9164 } 9165 if (!BNXT_CHIP_P5(bp)) 9166 return; 9167 9168 status_loc = BNXT_GRC_REG_STATUS_P5 | 9169 BNXT_FW_HEALTH_REG_TYPE_BAR0; 9170 } else { 9171 status_loc = readl(hs + offsetof(struct hcomm_status, 9172 fw_status_loc)); 9173 } 9174 9175 if (__bnxt_alloc_fw_health(bp)) { 9176 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 9177 return; 9178 } 9179 9180 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 9181 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 9182 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 9183 __bnxt_map_fw_health_reg(bp, status_loc); 9184 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 9185 BNXT_FW_HEALTH_WIN_OFF(status_loc); 9186 } 9187 9188 bp->fw_health->status_reliable = true; 9189 } 9190 9191 static int bnxt_map_fw_health_regs(struct bnxt *bp) 9192 { 9193 struct bnxt_fw_health *fw_health = bp->fw_health; 9194 u32 reg_base = 0xffffffff; 9195 int i; 9196 9197 bp->fw_health->status_reliable = false; 9198 bp->fw_health->resets_reliable = false; 9199 /* Only pre-map the monitoring GRC registers using window 3 */ 9200 for (i = 0; i < 4; i++) { 9201 u32 reg = fw_health->regs[i]; 9202 9203 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 9204 continue; 9205 if (reg_base == 0xffffffff) 9206 reg_base = reg & BNXT_GRC_BASE_MASK; 9207 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 9208 return -ERANGE; 9209 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 9210 } 9211 bp->fw_health->status_reliable = true; 9212 bp->fw_health->resets_reliable = true; 9213 if (reg_base == 0xffffffff) 9214 return 0; 9215 9216 __bnxt_map_fw_health_reg(bp, reg_base); 9217 return 0; 9218 } 9219 9220 static void bnxt_remap_fw_health_regs(struct bnxt *bp) 9221 { 9222 if (!bp->fw_health) 9223 return; 9224 9225 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) { 9226 bp->fw_health->status_reliable = true; 9227 bp->fw_health->resets_reliable = true; 9228 } else { 9229 bnxt_try_map_fw_health_reg(bp); 9230 } 9231 } 9232 9233 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 9234 { 9235 struct bnxt_fw_health *fw_health = bp->fw_health; 9236 struct hwrm_error_recovery_qcfg_output *resp; 9237 struct hwrm_error_recovery_qcfg_input *req; 9238 int rc, i; 9239 9240 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 9241 return 0; 9242 9243 rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG); 9244 if (rc) 9245 return rc; 9246 9247 resp = hwrm_req_hold(bp, req); 9248 rc = hwrm_req_send(bp, req); 9249 if (rc) 9250 goto err_recovery_out; 9251 fw_health->flags = le32_to_cpu(resp->flags); 9252 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 9253 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 9254 rc = -EINVAL; 9255 goto err_recovery_out; 9256 } 9257 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 9258 fw_health->master_func_wait_dsecs = 9259 le32_to_cpu(resp->master_func_wait_period); 9260 fw_health->normal_func_wait_dsecs = 9261 le32_to_cpu(resp->normal_func_wait_period); 9262 fw_health->post_reset_wait_dsecs = 9263 le32_to_cpu(resp->master_func_wait_period_after_reset); 9264 fw_health->post_reset_max_wait_dsecs = 9265 le32_to_cpu(resp->max_bailout_time_after_reset); 9266 fw_health->regs[BNXT_FW_HEALTH_REG] = 9267 le32_to_cpu(resp->fw_health_status_reg); 9268 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 9269 le32_to_cpu(resp->fw_heartbeat_reg); 9270 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 9271 le32_to_cpu(resp->fw_reset_cnt_reg); 9272 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 9273 le32_to_cpu(resp->reset_inprogress_reg); 9274 fw_health->fw_reset_inprog_reg_mask = 9275 le32_to_cpu(resp->reset_inprogress_reg_mask); 9276 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 9277 if (fw_health->fw_reset_seq_cnt >= 16) { 9278 rc = -EINVAL; 9279 goto err_recovery_out; 9280 } 9281 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 9282 fw_health->fw_reset_seq_regs[i] = 9283 le32_to_cpu(resp->reset_reg[i]); 9284 fw_health->fw_reset_seq_vals[i] = 9285 le32_to_cpu(resp->reset_reg_val[i]); 9286 fw_health->fw_reset_seq_delay_msec[i] = 9287 resp->delay_after_reset[i]; 9288 } 9289 err_recovery_out: 9290 hwrm_req_drop(bp, req); 9291 if (!rc) 9292 rc = bnxt_map_fw_health_regs(bp); 9293 if (rc) 9294 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 9295 return rc; 9296 } 9297 9298 static int bnxt_hwrm_func_reset(struct bnxt *bp) 9299 { 9300 struct hwrm_func_reset_input *req; 9301 int rc; 9302 9303 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET); 9304 if (rc) 9305 return rc; 9306 9307 req->enables = 0; 9308 hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT); 9309 return hwrm_req_send(bp, req); 9310 } 9311 9312 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 9313 { 9314 struct hwrm_nvm_get_dev_info_output nvm_info; 9315 9316 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 9317 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 9318 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 9319 nvm_info.nvm_cfg_ver_upd); 9320 } 9321 9322 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 9323 { 9324 struct hwrm_queue_qportcfg_output *resp; 9325 struct hwrm_queue_qportcfg_input *req; 9326 u8 i, j, *qptr; 9327 bool no_rdma; 9328 int rc = 0; 9329 9330 rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG); 9331 if (rc) 9332 return rc; 9333 9334 resp = hwrm_req_hold(bp, req); 9335 rc = hwrm_req_send(bp, req); 9336 if (rc) 9337 goto qportcfg_exit; 9338 9339 if (!resp->max_configurable_queues) { 9340 rc = -EINVAL; 9341 goto qportcfg_exit; 9342 } 9343 bp->max_tc = resp->max_configurable_queues; 9344 bp->max_lltc = resp->max_configurable_lossless_queues; 9345 if (bp->max_tc > BNXT_MAX_QUEUE) 9346 bp->max_tc = BNXT_MAX_QUEUE; 9347 9348 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 9349 qptr = &resp->queue_id0; 9350 for (i = 0, j = 0; i < bp->max_tc; i++) { 9351 bp->q_info[j].queue_id = *qptr; 9352 bp->q_ids[i] = *qptr++; 9353 bp->q_info[j].queue_profile = *qptr++; 9354 bp->tc_to_qidx[j] = j; 9355 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 9356 (no_rdma && BNXT_PF(bp))) 9357 j++; 9358 } 9359 bp->max_q = bp->max_tc; 9360 bp->max_tc = max_t(u8, j, 1); 9361 9362 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 9363 bp->max_tc = 1; 9364 9365 if (bp->max_lltc > bp->max_tc) 9366 bp->max_lltc = bp->max_tc; 9367 9368 qportcfg_exit: 9369 hwrm_req_drop(bp, req); 9370 return rc; 9371 } 9372 9373 static int bnxt_hwrm_poll(struct bnxt *bp) 9374 { 9375 struct hwrm_ver_get_input *req; 9376 int rc; 9377 9378 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 9379 if (rc) 9380 return rc; 9381 9382 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 9383 req->hwrm_intf_min = HWRM_VERSION_MINOR; 9384 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 9385 9386 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT); 9387 rc = hwrm_req_send(bp, req); 9388 return rc; 9389 } 9390 9391 static int bnxt_hwrm_ver_get(struct bnxt *bp) 9392 { 9393 struct hwrm_ver_get_output *resp; 9394 struct hwrm_ver_get_input *req; 9395 u16 fw_maj, fw_min, fw_bld, fw_rsv; 9396 u32 dev_caps_cfg, hwrm_ver; 9397 int rc, len; 9398 9399 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 9400 if (rc) 9401 return rc; 9402 9403 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 9404 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 9405 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 9406 req->hwrm_intf_min = HWRM_VERSION_MINOR; 9407 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 9408 9409 resp = hwrm_req_hold(bp, req); 9410 rc = hwrm_req_send(bp, req); 9411 if (rc) 9412 goto hwrm_ver_get_exit; 9413 9414 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 9415 9416 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 9417 resp->hwrm_intf_min_8b << 8 | 9418 resp->hwrm_intf_upd_8b; 9419 if (resp->hwrm_intf_maj_8b < 1) { 9420 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 9421 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 9422 resp->hwrm_intf_upd_8b); 9423 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 9424 } 9425 9426 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 9427 HWRM_VERSION_UPDATE; 9428 9429 if (bp->hwrm_spec_code > hwrm_ver) 9430 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 9431 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 9432 HWRM_VERSION_UPDATE); 9433 else 9434 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 9435 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 9436 resp->hwrm_intf_upd_8b); 9437 9438 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 9439 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 9440 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 9441 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 9442 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 9443 len = FW_VER_STR_LEN; 9444 } else { 9445 fw_maj = resp->hwrm_fw_maj_8b; 9446 fw_min = resp->hwrm_fw_min_8b; 9447 fw_bld = resp->hwrm_fw_bld_8b; 9448 fw_rsv = resp->hwrm_fw_rsvd_8b; 9449 len = BC_HWRM_STR_LEN; 9450 } 9451 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 9452 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 9453 fw_rsv); 9454 9455 if (strlen(resp->active_pkg_name)) { 9456 int fw_ver_len = strlen(bp->fw_ver_str); 9457 9458 snprintf(bp->fw_ver_str + fw_ver_len, 9459 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 9460 resp->active_pkg_name); 9461 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 9462 } 9463 9464 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 9465 if (!bp->hwrm_cmd_timeout) 9466 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 9467 bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000; 9468 if (!bp->hwrm_cmd_max_timeout) 9469 bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT; 9470 else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT) 9471 netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n", 9472 bp->hwrm_cmd_max_timeout / 1000); 9473 9474 if (resp->hwrm_intf_maj_8b >= 1) { 9475 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 9476 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 9477 } 9478 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 9479 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 9480 9481 bp->chip_num = le16_to_cpu(resp->chip_num); 9482 bp->chip_rev = resp->chip_rev; 9483 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 9484 !resp->chip_metal) 9485 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 9486 9487 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 9488 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 9489 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 9490 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 9491 9492 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 9493 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 9494 9495 if (dev_caps_cfg & 9496 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 9497 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 9498 9499 if (dev_caps_cfg & 9500 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 9501 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 9502 9503 if (dev_caps_cfg & 9504 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 9505 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 9506 9507 hwrm_ver_get_exit: 9508 hwrm_req_drop(bp, req); 9509 return rc; 9510 } 9511 9512 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 9513 { 9514 struct hwrm_fw_set_time_input *req; 9515 struct tm tm; 9516 time64_t now = ktime_get_real_seconds(); 9517 int rc; 9518 9519 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 9520 bp->hwrm_spec_code < 0x10400) 9521 return -EOPNOTSUPP; 9522 9523 time64_to_tm(now, 0, &tm); 9524 rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME); 9525 if (rc) 9526 return rc; 9527 9528 req->year = cpu_to_le16(1900 + tm.tm_year); 9529 req->month = 1 + tm.tm_mon; 9530 req->day = tm.tm_mday; 9531 req->hour = tm.tm_hour; 9532 req->minute = tm.tm_min; 9533 req->second = tm.tm_sec; 9534 return hwrm_req_send(bp, req); 9535 } 9536 9537 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 9538 { 9539 u64 sw_tmp; 9540 9541 hw &= mask; 9542 sw_tmp = (*sw & ~mask) | hw; 9543 if (hw < (*sw & mask)) 9544 sw_tmp += mask + 1; 9545 WRITE_ONCE(*sw, sw_tmp); 9546 } 9547 9548 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 9549 int count, bool ignore_zero) 9550 { 9551 int i; 9552 9553 for (i = 0; i < count; i++) { 9554 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 9555 9556 if (ignore_zero && !hw) 9557 continue; 9558 9559 if (masks[i] == -1ULL) 9560 sw_stats[i] = hw; 9561 else 9562 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 9563 } 9564 } 9565 9566 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 9567 { 9568 if (!stats->hw_stats) 9569 return; 9570 9571 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 9572 stats->hw_masks, stats->len / 8, false); 9573 } 9574 9575 static void bnxt_accumulate_all_stats(struct bnxt *bp) 9576 { 9577 struct bnxt_stats_mem *ring0_stats; 9578 bool ignore_zero = false; 9579 int i; 9580 9581 /* Chip bug. Counter intermittently becomes 0. */ 9582 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 9583 ignore_zero = true; 9584 9585 for (i = 0; i < bp->cp_nr_rings; i++) { 9586 struct bnxt_napi *bnapi = bp->bnapi[i]; 9587 struct bnxt_cp_ring_info *cpr; 9588 struct bnxt_stats_mem *stats; 9589 9590 cpr = &bnapi->cp_ring; 9591 stats = &cpr->stats; 9592 if (!i) 9593 ring0_stats = stats; 9594 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 9595 ring0_stats->hw_masks, 9596 ring0_stats->len / 8, ignore_zero); 9597 } 9598 if (bp->flags & BNXT_FLAG_PORT_STATS) { 9599 struct bnxt_stats_mem *stats = &bp->port_stats; 9600 __le64 *hw_stats = stats->hw_stats; 9601 u64 *sw_stats = stats->sw_stats; 9602 u64 *masks = stats->hw_masks; 9603 int cnt; 9604 9605 cnt = sizeof(struct rx_port_stats) / 8; 9606 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 9607 9608 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 9609 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 9610 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 9611 cnt = sizeof(struct tx_port_stats) / 8; 9612 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 9613 } 9614 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 9615 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 9616 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 9617 } 9618 } 9619 9620 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 9621 { 9622 struct hwrm_port_qstats_input *req; 9623 struct bnxt_pf_info *pf = &bp->pf; 9624 int rc; 9625 9626 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 9627 return 0; 9628 9629 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 9630 return -EOPNOTSUPP; 9631 9632 rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS); 9633 if (rc) 9634 return rc; 9635 9636 req->flags = flags; 9637 req->port_id = cpu_to_le16(pf->port_id); 9638 req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 9639 BNXT_TX_PORT_STATS_BYTE_OFFSET); 9640 req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 9641 return hwrm_req_send(bp, req); 9642 } 9643 9644 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 9645 { 9646 struct hwrm_queue_pri2cos_qcfg_output *resp_qc; 9647 struct hwrm_queue_pri2cos_qcfg_input *req_qc; 9648 struct hwrm_port_qstats_ext_output *resp_qs; 9649 struct hwrm_port_qstats_ext_input *req_qs; 9650 struct bnxt_pf_info *pf = &bp->pf; 9651 u32 tx_stat_size; 9652 int rc; 9653 9654 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 9655 return 0; 9656 9657 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 9658 return -EOPNOTSUPP; 9659 9660 rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT); 9661 if (rc) 9662 return rc; 9663 9664 req_qs->flags = flags; 9665 req_qs->port_id = cpu_to_le16(pf->port_id); 9666 req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 9667 req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 9668 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 9669 sizeof(struct tx_port_stats_ext) : 0; 9670 req_qs->tx_stat_size = cpu_to_le16(tx_stat_size); 9671 req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 9672 resp_qs = hwrm_req_hold(bp, req_qs); 9673 rc = hwrm_req_send(bp, req_qs); 9674 if (!rc) { 9675 bp->fw_rx_stats_ext_size = 9676 le16_to_cpu(resp_qs->rx_stat_size) / 8; 9677 if (BNXT_FW_MAJ(bp) < 220 && 9678 bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY) 9679 bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY; 9680 9681 bp->fw_tx_stats_ext_size = tx_stat_size ? 9682 le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0; 9683 } else { 9684 bp->fw_rx_stats_ext_size = 0; 9685 bp->fw_tx_stats_ext_size = 0; 9686 } 9687 hwrm_req_drop(bp, req_qs); 9688 9689 if (flags) 9690 return rc; 9691 9692 if (bp->fw_tx_stats_ext_size <= 9693 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 9694 bp->pri2cos_valid = 0; 9695 return rc; 9696 } 9697 9698 rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG); 9699 if (rc) 9700 return rc; 9701 9702 req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 9703 9704 resp_qc = hwrm_req_hold(bp, req_qc); 9705 rc = hwrm_req_send(bp, req_qc); 9706 if (!rc) { 9707 u8 *pri2cos; 9708 int i, j; 9709 9710 pri2cos = &resp_qc->pri0_cos_queue_id; 9711 for (i = 0; i < 8; i++) { 9712 u8 queue_id = pri2cos[i]; 9713 u8 queue_idx; 9714 9715 /* Per port queue IDs start from 0, 10, 20, etc */ 9716 queue_idx = queue_id % 10; 9717 if (queue_idx > BNXT_MAX_QUEUE) { 9718 bp->pri2cos_valid = false; 9719 hwrm_req_drop(bp, req_qc); 9720 return rc; 9721 } 9722 for (j = 0; j < bp->max_q; j++) { 9723 if (bp->q_ids[j] == queue_id) 9724 bp->pri2cos_idx[i] = queue_idx; 9725 } 9726 } 9727 bp->pri2cos_valid = true; 9728 } 9729 hwrm_req_drop(bp, req_qc); 9730 9731 return rc; 9732 } 9733 9734 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 9735 { 9736 bnxt_hwrm_tunnel_dst_port_free(bp, 9737 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 9738 bnxt_hwrm_tunnel_dst_port_free(bp, 9739 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 9740 } 9741 9742 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 9743 { 9744 int rc, i; 9745 u32 tpa_flags = 0; 9746 9747 if (set_tpa) 9748 tpa_flags = bp->flags & BNXT_FLAG_TPA; 9749 else if (BNXT_NO_FW_ACCESS(bp)) 9750 return 0; 9751 for (i = 0; i < bp->nr_vnics; i++) { 9752 rc = bnxt_hwrm_vnic_set_tpa(bp, &bp->vnic_info[i], tpa_flags); 9753 if (rc) { 9754 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 9755 i, rc); 9756 return rc; 9757 } 9758 } 9759 return 0; 9760 } 9761 9762 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 9763 { 9764 int i; 9765 9766 for (i = 0; i < bp->nr_vnics; i++) 9767 bnxt_hwrm_vnic_set_rss(bp, &bp->vnic_info[i], false); 9768 } 9769 9770 static void bnxt_clear_vnic(struct bnxt *bp) 9771 { 9772 if (!bp->vnic_info) 9773 return; 9774 9775 bnxt_hwrm_clear_vnic_filter(bp); 9776 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) { 9777 /* clear all RSS setting before free vnic ctx */ 9778 bnxt_hwrm_clear_vnic_rss(bp); 9779 bnxt_hwrm_vnic_ctx_free(bp); 9780 } 9781 /* before free the vnic, undo the vnic tpa settings */ 9782 if (bp->flags & BNXT_FLAG_TPA) 9783 bnxt_set_tpa(bp, false); 9784 bnxt_hwrm_vnic_free(bp); 9785 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 9786 bnxt_hwrm_vnic_ctx_free(bp); 9787 } 9788 9789 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 9790 bool irq_re_init) 9791 { 9792 bnxt_clear_vnic(bp); 9793 bnxt_hwrm_ring_free(bp, close_path); 9794 bnxt_hwrm_ring_grp_free(bp); 9795 if (irq_re_init) { 9796 bnxt_hwrm_stat_ctx_free(bp); 9797 bnxt_hwrm_free_tunnel_ports(bp); 9798 } 9799 } 9800 9801 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 9802 { 9803 struct hwrm_func_cfg_input *req; 9804 u8 evb_mode; 9805 int rc; 9806 9807 if (br_mode == BRIDGE_MODE_VEB) 9808 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 9809 else if (br_mode == BRIDGE_MODE_VEPA) 9810 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 9811 else 9812 return -EINVAL; 9813 9814 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 9815 if (rc) 9816 return rc; 9817 9818 req->fid = cpu_to_le16(0xffff); 9819 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 9820 req->evb_mode = evb_mode; 9821 return hwrm_req_send(bp, req); 9822 } 9823 9824 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 9825 { 9826 struct hwrm_func_cfg_input *req; 9827 int rc; 9828 9829 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 9830 return 0; 9831 9832 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 9833 if (rc) 9834 return rc; 9835 9836 req->fid = cpu_to_le16(0xffff); 9837 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 9838 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 9839 if (size == 128) 9840 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 9841 9842 return hwrm_req_send(bp, req); 9843 } 9844 9845 static int __bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic) 9846 { 9847 int rc; 9848 9849 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 9850 goto skip_rss_ctx; 9851 9852 /* allocate context for vnic */ 9853 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 0); 9854 if (rc) { 9855 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 9856 vnic->vnic_id, rc); 9857 goto vnic_setup_err; 9858 } 9859 bp->rsscos_nr_ctxs++; 9860 9861 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 9862 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 1); 9863 if (rc) { 9864 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 9865 vnic->vnic_id, rc); 9866 goto vnic_setup_err; 9867 } 9868 bp->rsscos_nr_ctxs++; 9869 } 9870 9871 skip_rss_ctx: 9872 /* configure default vnic, ring grp */ 9873 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 9874 if (rc) { 9875 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 9876 vnic->vnic_id, rc); 9877 goto vnic_setup_err; 9878 } 9879 9880 /* Enable RSS hashing on vnic */ 9881 rc = bnxt_hwrm_vnic_set_rss(bp, vnic, true); 9882 if (rc) { 9883 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 9884 vnic->vnic_id, rc); 9885 goto vnic_setup_err; 9886 } 9887 9888 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 9889 rc = bnxt_hwrm_vnic_set_hds(bp, vnic); 9890 if (rc) { 9891 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 9892 vnic->vnic_id, rc); 9893 } 9894 } 9895 9896 vnic_setup_err: 9897 return rc; 9898 } 9899 9900 int bnxt_hwrm_vnic_rss_cfg_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic) 9901 { 9902 int rc; 9903 9904 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic, true); 9905 if (rc) { 9906 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 9907 vnic->vnic_id, rc); 9908 return rc; 9909 } 9910 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 9911 if (rc) 9912 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 9913 vnic->vnic_id, rc); 9914 return rc; 9915 } 9916 9917 int __bnxt_setup_vnic_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic) 9918 { 9919 int rc, i, nr_ctxs; 9920 9921 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 9922 for (i = 0; i < nr_ctxs; i++) { 9923 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, i); 9924 if (rc) { 9925 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 9926 vnic->vnic_id, i, rc); 9927 break; 9928 } 9929 bp->rsscos_nr_ctxs++; 9930 } 9931 if (i < nr_ctxs) 9932 return -ENOMEM; 9933 9934 rc = bnxt_hwrm_vnic_rss_cfg_p5(bp, vnic); 9935 if (rc) 9936 return rc; 9937 9938 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 9939 rc = bnxt_hwrm_vnic_set_hds(bp, vnic); 9940 if (rc) { 9941 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 9942 vnic->vnic_id, rc); 9943 } 9944 } 9945 return rc; 9946 } 9947 9948 static int bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic) 9949 { 9950 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 9951 return __bnxt_setup_vnic_p5(bp, vnic); 9952 else 9953 return __bnxt_setup_vnic(bp, vnic); 9954 } 9955 9956 static int bnxt_alloc_and_setup_vnic(struct bnxt *bp, 9957 struct bnxt_vnic_info *vnic, 9958 u16 start_rx_ring_idx, int rx_rings) 9959 { 9960 int rc; 9961 9962 rc = bnxt_hwrm_vnic_alloc(bp, vnic, start_rx_ring_idx, rx_rings); 9963 if (rc) { 9964 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 9965 vnic->vnic_id, rc); 9966 return rc; 9967 } 9968 return bnxt_setup_vnic(bp, vnic); 9969 } 9970 9971 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 9972 { 9973 struct bnxt_vnic_info *vnic; 9974 int i, rc = 0; 9975 9976 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 9977 vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE]; 9978 return bnxt_alloc_and_setup_vnic(bp, vnic, 0, bp->rx_nr_rings); 9979 } 9980 9981 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 9982 return 0; 9983 9984 for (i = 0; i < bp->rx_nr_rings; i++) { 9985 u16 vnic_id = i + 1; 9986 u16 ring_id = i; 9987 9988 if (vnic_id >= bp->nr_vnics) 9989 break; 9990 9991 vnic = &bp->vnic_info[vnic_id]; 9992 vnic->flags |= BNXT_VNIC_RFS_FLAG; 9993 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 9994 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 9995 if (bnxt_alloc_and_setup_vnic(bp, &bp->vnic_info[vnic_id], ring_id, 1)) 9996 break; 9997 } 9998 return rc; 9999 } 10000 10001 void bnxt_del_one_rss_ctx(struct bnxt *bp, struct bnxt_rss_ctx *rss_ctx, 10002 bool all) 10003 { 10004 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10005 struct bnxt_filter_base *usr_fltr, *tmp; 10006 struct bnxt_ntuple_filter *ntp_fltr; 10007 int i; 10008 10009 bnxt_hwrm_vnic_free_one(bp, &rss_ctx->vnic); 10010 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) { 10011 if (vnic->fw_rss_cos_lb_ctx[i] != INVALID_HW_RING_ID) 10012 bnxt_hwrm_vnic_ctx_free_one(bp, vnic, i); 10013 } 10014 if (!all) 10015 return; 10016 10017 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) { 10018 if ((usr_fltr->flags & BNXT_ACT_RSS_CTX) && 10019 usr_fltr->fw_vnic_id == rss_ctx->index) { 10020 ntp_fltr = container_of(usr_fltr, 10021 struct bnxt_ntuple_filter, 10022 base); 10023 bnxt_hwrm_cfa_ntuple_filter_free(bp, ntp_fltr); 10024 bnxt_del_ntp_filter(bp, ntp_fltr); 10025 bnxt_del_one_usr_fltr(bp, usr_fltr); 10026 } 10027 } 10028 10029 if (vnic->rss_table) 10030 dma_free_coherent(&bp->pdev->dev, vnic->rss_table_size, 10031 vnic->rss_table, 10032 vnic->rss_table_dma_addr); 10033 kfree(rss_ctx->rss_indir_tbl); 10034 list_del(&rss_ctx->list); 10035 bp->num_rss_ctx--; 10036 clear_bit(rss_ctx->index, bp->rss_ctx_bmap); 10037 kfree(rss_ctx); 10038 } 10039 10040 static void bnxt_hwrm_realloc_rss_ctx_vnic(struct bnxt *bp) 10041 { 10042 bool set_tpa = !!(bp->flags & BNXT_FLAG_TPA); 10043 struct bnxt_rss_ctx *rss_ctx, *tmp; 10044 10045 list_for_each_entry_safe(rss_ctx, tmp, &bp->rss_ctx_list, list) { 10046 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10047 10048 if (bnxt_hwrm_vnic_alloc(bp, vnic, 0, bp->rx_nr_rings) || 10049 bnxt_hwrm_vnic_set_tpa(bp, vnic, set_tpa) || 10050 __bnxt_setup_vnic_p5(bp, vnic)) { 10051 netdev_err(bp->dev, "Failed to restore RSS ctx %d\n", 10052 rss_ctx->index); 10053 bnxt_del_one_rss_ctx(bp, rss_ctx, true); 10054 } 10055 } 10056 } 10057 10058 struct bnxt_rss_ctx *bnxt_alloc_rss_ctx(struct bnxt *bp) 10059 { 10060 struct bnxt_rss_ctx *rss_ctx = NULL; 10061 10062 rss_ctx = kzalloc(sizeof(*rss_ctx), GFP_KERNEL); 10063 if (rss_ctx) { 10064 rss_ctx->vnic.rss_ctx = rss_ctx; 10065 list_add_tail(&rss_ctx->list, &bp->rss_ctx_list); 10066 bp->num_rss_ctx++; 10067 } 10068 return rss_ctx; 10069 } 10070 10071 void bnxt_clear_rss_ctxs(struct bnxt *bp, bool all) 10072 { 10073 struct bnxt_rss_ctx *rss_ctx, *tmp; 10074 10075 list_for_each_entry_safe(rss_ctx, tmp, &bp->rss_ctx_list, list) 10076 bnxt_del_one_rss_ctx(bp, rss_ctx, all); 10077 10078 if (all) 10079 bitmap_free(bp->rss_ctx_bmap); 10080 } 10081 10082 static void bnxt_init_multi_rss_ctx(struct bnxt *bp) 10083 { 10084 bp->rss_ctx_bmap = bitmap_zalloc(BNXT_RSS_CTX_BMAP_LEN, GFP_KERNEL); 10085 if (bp->rss_ctx_bmap) { 10086 /* burn index 0 since we cannot have context 0 */ 10087 __set_bit(0, bp->rss_ctx_bmap); 10088 INIT_LIST_HEAD(&bp->rss_ctx_list); 10089 bp->rss_cap |= BNXT_RSS_CAP_MULTI_RSS_CTX; 10090 } 10091 } 10092 10093 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 10094 static bool bnxt_promisc_ok(struct bnxt *bp) 10095 { 10096 #ifdef CONFIG_BNXT_SRIOV 10097 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 10098 return false; 10099 #endif 10100 return true; 10101 } 10102 10103 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 10104 { 10105 struct bnxt_vnic_info *vnic = &bp->vnic_info[1]; 10106 unsigned int rc = 0; 10107 10108 rc = bnxt_hwrm_vnic_alloc(bp, vnic, bp->rx_nr_rings - 1, 1); 10109 if (rc) { 10110 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 10111 rc); 10112 return rc; 10113 } 10114 10115 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10116 if (rc) { 10117 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 10118 rc); 10119 return rc; 10120 } 10121 return rc; 10122 } 10123 10124 static int bnxt_cfg_rx_mode(struct bnxt *); 10125 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 10126 10127 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 10128 { 10129 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 10130 int rc = 0; 10131 unsigned int rx_nr_rings = bp->rx_nr_rings; 10132 10133 if (irq_re_init) { 10134 rc = bnxt_hwrm_stat_ctx_alloc(bp); 10135 if (rc) { 10136 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 10137 rc); 10138 goto err_out; 10139 } 10140 } 10141 10142 rc = bnxt_hwrm_ring_alloc(bp); 10143 if (rc) { 10144 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 10145 goto err_out; 10146 } 10147 10148 rc = bnxt_hwrm_ring_grp_alloc(bp); 10149 if (rc) { 10150 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 10151 goto err_out; 10152 } 10153 10154 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 10155 rx_nr_rings--; 10156 10157 /* default vnic 0 */ 10158 rc = bnxt_hwrm_vnic_alloc(bp, vnic, 0, rx_nr_rings); 10159 if (rc) { 10160 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 10161 goto err_out; 10162 } 10163 10164 if (BNXT_VF(bp)) 10165 bnxt_hwrm_func_qcfg(bp); 10166 10167 rc = bnxt_setup_vnic(bp, vnic); 10168 if (rc) 10169 goto err_out; 10170 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 10171 bnxt_hwrm_update_rss_hash_cfg(bp); 10172 10173 if (bp->flags & BNXT_FLAG_RFS) { 10174 rc = bnxt_alloc_rfs_vnics(bp); 10175 if (rc) 10176 goto err_out; 10177 } 10178 10179 if (bp->flags & BNXT_FLAG_TPA) { 10180 rc = bnxt_set_tpa(bp, true); 10181 if (rc) 10182 goto err_out; 10183 } 10184 10185 if (BNXT_VF(bp)) 10186 bnxt_update_vf_mac(bp); 10187 10188 /* Filter for default vnic 0 */ 10189 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 10190 if (rc) { 10191 if (BNXT_VF(bp) && rc == -ENODEV) 10192 netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n"); 10193 else 10194 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 10195 goto err_out; 10196 } 10197 vnic->uc_filter_count = 1; 10198 10199 vnic->rx_mask = 0; 10200 if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state)) 10201 goto skip_rx_mask; 10202 10203 if (bp->dev->flags & IFF_BROADCAST) 10204 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 10205 10206 if (bp->dev->flags & IFF_PROMISC) 10207 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10208 10209 if (bp->dev->flags & IFF_ALLMULTI) { 10210 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10211 vnic->mc_list_count = 0; 10212 } else if (bp->dev->flags & IFF_MULTICAST) { 10213 u32 mask = 0; 10214 10215 bnxt_mc_list_updated(bp, &mask); 10216 vnic->rx_mask |= mask; 10217 } 10218 10219 rc = bnxt_cfg_rx_mode(bp); 10220 if (rc) 10221 goto err_out; 10222 10223 skip_rx_mask: 10224 rc = bnxt_hwrm_set_coal(bp); 10225 if (rc) 10226 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 10227 rc); 10228 10229 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10230 rc = bnxt_setup_nitroa0_vnic(bp); 10231 if (rc) 10232 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 10233 rc); 10234 } 10235 10236 if (BNXT_VF(bp)) { 10237 bnxt_hwrm_func_qcfg(bp); 10238 netdev_update_features(bp->dev); 10239 } 10240 10241 return 0; 10242 10243 err_out: 10244 bnxt_hwrm_resource_free(bp, 0, true); 10245 10246 return rc; 10247 } 10248 10249 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 10250 { 10251 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 10252 return 0; 10253 } 10254 10255 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 10256 { 10257 bnxt_init_cp_rings(bp); 10258 bnxt_init_rx_rings(bp); 10259 bnxt_init_tx_rings(bp); 10260 bnxt_init_ring_grps(bp, irq_re_init); 10261 bnxt_init_vnics(bp); 10262 10263 return bnxt_init_chip(bp, irq_re_init); 10264 } 10265 10266 static int bnxt_set_real_num_queues(struct bnxt *bp) 10267 { 10268 int rc; 10269 struct net_device *dev = bp->dev; 10270 10271 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 10272 bp->tx_nr_rings_xdp); 10273 if (rc) 10274 return rc; 10275 10276 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 10277 if (rc) 10278 return rc; 10279 10280 #ifdef CONFIG_RFS_ACCEL 10281 if (bp->flags & BNXT_FLAG_RFS) 10282 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 10283 #endif 10284 10285 return rc; 10286 } 10287 10288 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 10289 bool shared) 10290 { 10291 int _rx = *rx, _tx = *tx; 10292 10293 if (shared) { 10294 *rx = min_t(int, _rx, max); 10295 *tx = min_t(int, _tx, max); 10296 } else { 10297 if (max < 2) 10298 return -ENOMEM; 10299 10300 while (_rx + _tx > max) { 10301 if (_rx > _tx && _rx > 1) 10302 _rx--; 10303 else if (_tx > 1) 10304 _tx--; 10305 } 10306 *rx = _rx; 10307 *tx = _tx; 10308 } 10309 return 0; 10310 } 10311 10312 static int __bnxt_num_tx_to_cp(struct bnxt *bp, int tx, int tx_sets, int tx_xdp) 10313 { 10314 return (tx - tx_xdp) / tx_sets + tx_xdp; 10315 } 10316 10317 int bnxt_num_tx_to_cp(struct bnxt *bp, int tx) 10318 { 10319 int tcs = bp->num_tc; 10320 10321 if (!tcs) 10322 tcs = 1; 10323 return __bnxt_num_tx_to_cp(bp, tx, tcs, bp->tx_nr_rings_xdp); 10324 } 10325 10326 static int bnxt_num_cp_to_tx(struct bnxt *bp, int tx_cp) 10327 { 10328 int tcs = bp->num_tc; 10329 10330 return (tx_cp - bp->tx_nr_rings_xdp) * tcs + 10331 bp->tx_nr_rings_xdp; 10332 } 10333 10334 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 10335 bool sh) 10336 { 10337 int tx_cp = bnxt_num_tx_to_cp(bp, *tx); 10338 10339 if (tx_cp != *tx) { 10340 int tx_saved = tx_cp, rc; 10341 10342 rc = __bnxt_trim_rings(bp, rx, &tx_cp, max, sh); 10343 if (rc) 10344 return rc; 10345 if (tx_cp != tx_saved) 10346 *tx = bnxt_num_cp_to_tx(bp, tx_cp); 10347 return 0; 10348 } 10349 return __bnxt_trim_rings(bp, rx, tx, max, sh); 10350 } 10351 10352 static void bnxt_setup_msix(struct bnxt *bp) 10353 { 10354 const int len = sizeof(bp->irq_tbl[0].name); 10355 struct net_device *dev = bp->dev; 10356 int tcs, i; 10357 10358 tcs = bp->num_tc; 10359 if (tcs) { 10360 int i, off, count; 10361 10362 for (i = 0; i < tcs; i++) { 10363 count = bp->tx_nr_rings_per_tc; 10364 off = BNXT_TC_TO_RING_BASE(bp, i); 10365 netdev_set_tc_queue(dev, i, count, off); 10366 } 10367 } 10368 10369 for (i = 0; i < bp->cp_nr_rings; i++) { 10370 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 10371 char *attr; 10372 10373 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 10374 attr = "TxRx"; 10375 else if (i < bp->rx_nr_rings) 10376 attr = "rx"; 10377 else 10378 attr = "tx"; 10379 10380 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 10381 attr, i); 10382 bp->irq_tbl[map_idx].handler = bnxt_msix; 10383 } 10384 } 10385 10386 static void bnxt_setup_inta(struct bnxt *bp) 10387 { 10388 const int len = sizeof(bp->irq_tbl[0].name); 10389 10390 if (bp->num_tc) { 10391 netdev_reset_tc(bp->dev); 10392 bp->num_tc = 0; 10393 } 10394 10395 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx", 10396 0); 10397 bp->irq_tbl[0].handler = bnxt_inta; 10398 } 10399 10400 static int bnxt_init_int_mode(struct bnxt *bp); 10401 10402 static int bnxt_setup_int_mode(struct bnxt *bp) 10403 { 10404 int rc; 10405 10406 if (!bp->irq_tbl) { 10407 rc = bnxt_init_int_mode(bp); 10408 if (rc || !bp->irq_tbl) 10409 return rc ?: -ENODEV; 10410 } 10411 10412 if (bp->flags & BNXT_FLAG_USING_MSIX) 10413 bnxt_setup_msix(bp); 10414 else 10415 bnxt_setup_inta(bp); 10416 10417 rc = bnxt_set_real_num_queues(bp); 10418 return rc; 10419 } 10420 10421 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 10422 { 10423 return bp->hw_resc.max_rsscos_ctxs; 10424 } 10425 10426 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 10427 { 10428 return bp->hw_resc.max_vnics; 10429 } 10430 10431 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 10432 { 10433 return bp->hw_resc.max_stat_ctxs; 10434 } 10435 10436 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 10437 { 10438 return bp->hw_resc.max_cp_rings; 10439 } 10440 10441 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 10442 { 10443 unsigned int cp = bp->hw_resc.max_cp_rings; 10444 10445 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 10446 cp -= bnxt_get_ulp_msix_num(bp); 10447 10448 return cp; 10449 } 10450 10451 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 10452 { 10453 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 10454 10455 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10456 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 10457 10458 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 10459 } 10460 10461 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 10462 { 10463 bp->hw_resc.max_irqs = max_irqs; 10464 } 10465 10466 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 10467 { 10468 unsigned int cp; 10469 10470 cp = bnxt_get_max_func_cp_rings_for_en(bp); 10471 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10472 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 10473 else 10474 return cp - bp->cp_nr_rings; 10475 } 10476 10477 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 10478 { 10479 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 10480 } 10481 10482 int bnxt_get_avail_msix(struct bnxt *bp, int num) 10483 { 10484 int max_cp = bnxt_get_max_func_cp_rings(bp); 10485 int max_irq = bnxt_get_max_func_irqs(bp); 10486 int total_req = bp->cp_nr_rings + num; 10487 int max_idx, avail_msix; 10488 10489 max_idx = bp->total_irqs; 10490 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 10491 max_idx = min_t(int, bp->total_irqs, max_cp); 10492 avail_msix = max_idx - bp->cp_nr_rings; 10493 if (!BNXT_NEW_RM(bp) || avail_msix >= num) 10494 return avail_msix; 10495 10496 if (max_irq < total_req) { 10497 num = max_irq - bp->cp_nr_rings; 10498 if (num <= 0) 10499 return 0; 10500 } 10501 return num; 10502 } 10503 10504 static int bnxt_get_num_msix(struct bnxt *bp) 10505 { 10506 if (!BNXT_NEW_RM(bp)) 10507 return bnxt_get_max_func_irqs(bp); 10508 10509 return bnxt_nq_rings_in_use(bp); 10510 } 10511 10512 static int bnxt_init_msix(struct bnxt *bp) 10513 { 10514 int i, total_vecs, max, rc = 0, min = 1, ulp_msix, tx_cp; 10515 struct msix_entry *msix_ent; 10516 10517 total_vecs = bnxt_get_num_msix(bp); 10518 max = bnxt_get_max_func_irqs(bp); 10519 if (total_vecs > max) 10520 total_vecs = max; 10521 10522 if (!total_vecs) 10523 return 0; 10524 10525 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); 10526 if (!msix_ent) 10527 return -ENOMEM; 10528 10529 for (i = 0; i < total_vecs; i++) { 10530 msix_ent[i].entry = i; 10531 msix_ent[i].vector = 0; 10532 } 10533 10534 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 10535 min = 2; 10536 10537 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs); 10538 ulp_msix = bnxt_get_ulp_msix_num(bp); 10539 if (total_vecs < 0 || total_vecs < ulp_msix) { 10540 rc = -ENODEV; 10541 goto msix_setup_exit; 10542 } 10543 10544 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); 10545 if (bp->irq_tbl) { 10546 for (i = 0; i < total_vecs; i++) 10547 bp->irq_tbl[i].vector = msix_ent[i].vector; 10548 10549 bp->total_irqs = total_vecs; 10550 /* Trim rings based upon num of vectors allocated */ 10551 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 10552 total_vecs - ulp_msix, min == 1); 10553 if (rc) 10554 goto msix_setup_exit; 10555 10556 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 10557 bp->cp_nr_rings = (min == 1) ? 10558 max_t(int, tx_cp, bp->rx_nr_rings) : 10559 tx_cp + bp->rx_nr_rings; 10560 10561 } else { 10562 rc = -ENOMEM; 10563 goto msix_setup_exit; 10564 } 10565 bp->flags |= BNXT_FLAG_USING_MSIX; 10566 kfree(msix_ent); 10567 return 0; 10568 10569 msix_setup_exit: 10570 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc); 10571 kfree(bp->irq_tbl); 10572 bp->irq_tbl = NULL; 10573 pci_disable_msix(bp->pdev); 10574 kfree(msix_ent); 10575 return rc; 10576 } 10577 10578 static int bnxt_init_inta(struct bnxt *bp) 10579 { 10580 bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL); 10581 if (!bp->irq_tbl) 10582 return -ENOMEM; 10583 10584 bp->total_irqs = 1; 10585 bp->rx_nr_rings = 1; 10586 bp->tx_nr_rings = 1; 10587 bp->cp_nr_rings = 1; 10588 bp->flags |= BNXT_FLAG_SHARED_RINGS; 10589 bp->irq_tbl[0].vector = bp->pdev->irq; 10590 return 0; 10591 } 10592 10593 static int bnxt_init_int_mode(struct bnxt *bp) 10594 { 10595 int rc = -ENODEV; 10596 10597 if (bp->flags & BNXT_FLAG_MSIX_CAP) 10598 rc = bnxt_init_msix(bp); 10599 10600 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) { 10601 /* fallback to INTA */ 10602 rc = bnxt_init_inta(bp); 10603 } 10604 return rc; 10605 } 10606 10607 static void bnxt_clear_int_mode(struct bnxt *bp) 10608 { 10609 if (bp->flags & BNXT_FLAG_USING_MSIX) 10610 pci_disable_msix(bp->pdev); 10611 10612 kfree(bp->irq_tbl); 10613 bp->irq_tbl = NULL; 10614 bp->flags &= ~BNXT_FLAG_USING_MSIX; 10615 } 10616 10617 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 10618 { 10619 bool irq_cleared = false; 10620 int tcs = bp->num_tc; 10621 int rc; 10622 10623 if (!bnxt_need_reserve_rings(bp)) 10624 return 0; 10625 10626 if (irq_re_init && BNXT_NEW_RM(bp) && 10627 bnxt_get_num_msix(bp) != bp->total_irqs) { 10628 bnxt_ulp_irq_stop(bp); 10629 bnxt_clear_int_mode(bp); 10630 irq_cleared = true; 10631 } 10632 rc = __bnxt_reserve_rings(bp); 10633 if (irq_cleared) { 10634 if (!rc) 10635 rc = bnxt_init_int_mode(bp); 10636 bnxt_ulp_irq_restart(bp, rc); 10637 } 10638 if (rc) { 10639 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 10640 return rc; 10641 } 10642 if (tcs && (bp->tx_nr_rings_per_tc * tcs != 10643 bp->tx_nr_rings - bp->tx_nr_rings_xdp)) { 10644 netdev_err(bp->dev, "tx ring reservation failure\n"); 10645 netdev_reset_tc(bp->dev); 10646 bp->num_tc = 0; 10647 if (bp->tx_nr_rings_xdp) 10648 bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp; 10649 else 10650 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 10651 return -ENOMEM; 10652 } 10653 return 0; 10654 } 10655 10656 static void bnxt_free_irq(struct bnxt *bp) 10657 { 10658 struct bnxt_irq *irq; 10659 int i; 10660 10661 #ifdef CONFIG_RFS_ACCEL 10662 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 10663 bp->dev->rx_cpu_rmap = NULL; 10664 #endif 10665 if (!bp->irq_tbl || !bp->bnapi) 10666 return; 10667 10668 for (i = 0; i < bp->cp_nr_rings; i++) { 10669 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 10670 10671 irq = &bp->irq_tbl[map_idx]; 10672 if (irq->requested) { 10673 if (irq->have_cpumask) { 10674 irq_set_affinity_hint(irq->vector, NULL); 10675 free_cpumask_var(irq->cpu_mask); 10676 irq->have_cpumask = 0; 10677 } 10678 free_irq(irq->vector, bp->bnapi[i]); 10679 } 10680 10681 irq->requested = 0; 10682 } 10683 } 10684 10685 static int bnxt_request_irq(struct bnxt *bp) 10686 { 10687 int i, j, rc = 0; 10688 unsigned long flags = 0; 10689 #ifdef CONFIG_RFS_ACCEL 10690 struct cpu_rmap *rmap; 10691 #endif 10692 10693 rc = bnxt_setup_int_mode(bp); 10694 if (rc) { 10695 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 10696 rc); 10697 return rc; 10698 } 10699 #ifdef CONFIG_RFS_ACCEL 10700 rmap = bp->dev->rx_cpu_rmap; 10701 #endif 10702 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) 10703 flags = IRQF_SHARED; 10704 10705 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 10706 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 10707 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 10708 10709 #ifdef CONFIG_RFS_ACCEL 10710 if (rmap && bp->bnapi[i]->rx_ring) { 10711 rc = irq_cpu_rmap_add(rmap, irq->vector); 10712 if (rc) 10713 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 10714 j); 10715 j++; 10716 } 10717 #endif 10718 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 10719 bp->bnapi[i]); 10720 if (rc) 10721 break; 10722 10723 netif_napi_set_irq(&bp->bnapi[i]->napi, irq->vector); 10724 irq->requested = 1; 10725 10726 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 10727 int numa_node = dev_to_node(&bp->pdev->dev); 10728 10729 irq->have_cpumask = 1; 10730 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 10731 irq->cpu_mask); 10732 rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask); 10733 if (rc) { 10734 netdev_warn(bp->dev, 10735 "Set affinity failed, IRQ = %d\n", 10736 irq->vector); 10737 break; 10738 } 10739 } 10740 } 10741 return rc; 10742 } 10743 10744 static void bnxt_del_napi(struct bnxt *bp) 10745 { 10746 int i; 10747 10748 if (!bp->bnapi) 10749 return; 10750 10751 for (i = 0; i < bp->rx_nr_rings; i++) 10752 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_RX, NULL); 10753 for (i = 0; i < bp->tx_nr_rings - bp->tx_nr_rings_xdp; i++) 10754 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_TX, NULL); 10755 10756 for (i = 0; i < bp->cp_nr_rings; i++) { 10757 struct bnxt_napi *bnapi = bp->bnapi[i]; 10758 10759 __netif_napi_del(&bnapi->napi); 10760 } 10761 /* We called __netif_napi_del(), we need 10762 * to respect an RCU grace period before freeing napi structures. 10763 */ 10764 synchronize_net(); 10765 } 10766 10767 static void bnxt_init_napi(struct bnxt *bp) 10768 { 10769 int i; 10770 unsigned int cp_nr_rings = bp->cp_nr_rings; 10771 struct bnxt_napi *bnapi; 10772 10773 if (bp->flags & BNXT_FLAG_USING_MSIX) { 10774 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 10775 10776 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10777 poll_fn = bnxt_poll_p5; 10778 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 10779 cp_nr_rings--; 10780 for (i = 0; i < cp_nr_rings; i++) { 10781 bnapi = bp->bnapi[i]; 10782 netif_napi_add(bp->dev, &bnapi->napi, poll_fn); 10783 } 10784 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10785 bnapi = bp->bnapi[cp_nr_rings]; 10786 netif_napi_add(bp->dev, &bnapi->napi, 10787 bnxt_poll_nitroa0); 10788 } 10789 } else { 10790 bnapi = bp->bnapi[0]; 10791 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll); 10792 } 10793 } 10794 10795 static void bnxt_disable_napi(struct bnxt *bp) 10796 { 10797 int i; 10798 10799 if (!bp->bnapi || 10800 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 10801 return; 10802 10803 for (i = 0; i < bp->cp_nr_rings; i++) { 10804 struct bnxt_napi *bnapi = bp->bnapi[i]; 10805 struct bnxt_cp_ring_info *cpr; 10806 10807 cpr = &bnapi->cp_ring; 10808 if (bnapi->tx_fault) 10809 cpr->sw_stats.tx.tx_resets++; 10810 if (bnapi->in_reset) 10811 cpr->sw_stats.rx.rx_resets++; 10812 napi_disable(&bnapi->napi); 10813 if (bnapi->rx_ring) 10814 cancel_work_sync(&cpr->dim.work); 10815 } 10816 } 10817 10818 static void bnxt_enable_napi(struct bnxt *bp) 10819 { 10820 int i; 10821 10822 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 10823 for (i = 0; i < bp->cp_nr_rings; i++) { 10824 struct bnxt_napi *bnapi = bp->bnapi[i]; 10825 struct bnxt_cp_ring_info *cpr; 10826 10827 bnapi->tx_fault = 0; 10828 10829 cpr = &bnapi->cp_ring; 10830 bnapi->in_reset = false; 10831 10832 if (bnapi->rx_ring) { 10833 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 10834 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 10835 } 10836 napi_enable(&bnapi->napi); 10837 } 10838 } 10839 10840 void bnxt_tx_disable(struct bnxt *bp) 10841 { 10842 int i; 10843 struct bnxt_tx_ring_info *txr; 10844 10845 if (bp->tx_ring) { 10846 for (i = 0; i < bp->tx_nr_rings; i++) { 10847 txr = &bp->tx_ring[i]; 10848 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 10849 } 10850 } 10851 /* Make sure napi polls see @dev_state change */ 10852 synchronize_net(); 10853 /* Drop carrier first to prevent TX timeout */ 10854 netif_carrier_off(bp->dev); 10855 /* Stop all TX queues */ 10856 netif_tx_disable(bp->dev); 10857 } 10858 10859 void bnxt_tx_enable(struct bnxt *bp) 10860 { 10861 int i; 10862 struct bnxt_tx_ring_info *txr; 10863 10864 for (i = 0; i < bp->tx_nr_rings; i++) { 10865 txr = &bp->tx_ring[i]; 10866 WRITE_ONCE(txr->dev_state, 0); 10867 } 10868 /* Make sure napi polls see @dev_state change */ 10869 synchronize_net(); 10870 netif_tx_wake_all_queues(bp->dev); 10871 if (BNXT_LINK_IS_UP(bp)) 10872 netif_carrier_on(bp->dev); 10873 } 10874 10875 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 10876 { 10877 u8 active_fec = link_info->active_fec_sig_mode & 10878 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 10879 10880 switch (active_fec) { 10881 default: 10882 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 10883 return "None"; 10884 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 10885 return "Clause 74 BaseR"; 10886 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 10887 return "Clause 91 RS(528,514)"; 10888 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 10889 return "Clause 91 RS544_1XN"; 10890 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 10891 return "Clause 91 RS(544,514)"; 10892 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 10893 return "Clause 91 RS272_1XN"; 10894 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 10895 return "Clause 91 RS(272,257)"; 10896 } 10897 } 10898 10899 void bnxt_report_link(struct bnxt *bp) 10900 { 10901 if (BNXT_LINK_IS_UP(bp)) { 10902 const char *signal = ""; 10903 const char *flow_ctrl; 10904 const char *duplex; 10905 u32 speed; 10906 u16 fec; 10907 10908 netif_carrier_on(bp->dev); 10909 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 10910 if (speed == SPEED_UNKNOWN) { 10911 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 10912 return; 10913 } 10914 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 10915 duplex = "full"; 10916 else 10917 duplex = "half"; 10918 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 10919 flow_ctrl = "ON - receive & transmit"; 10920 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 10921 flow_ctrl = "ON - transmit"; 10922 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 10923 flow_ctrl = "ON - receive"; 10924 else 10925 flow_ctrl = "none"; 10926 if (bp->link_info.phy_qcfg_resp.option_flags & 10927 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 10928 u8 sig_mode = bp->link_info.active_fec_sig_mode & 10929 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 10930 switch (sig_mode) { 10931 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 10932 signal = "(NRZ) "; 10933 break; 10934 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 10935 signal = "(PAM4 56Gbps) "; 10936 break; 10937 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4_112: 10938 signal = "(PAM4 112Gbps) "; 10939 break; 10940 default: 10941 break; 10942 } 10943 } 10944 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 10945 speed, signal, duplex, flow_ctrl); 10946 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 10947 netdev_info(bp->dev, "EEE is %s\n", 10948 bp->eee.eee_active ? "active" : 10949 "not active"); 10950 fec = bp->link_info.fec_cfg; 10951 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 10952 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 10953 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 10954 bnxt_report_fec(&bp->link_info)); 10955 } else { 10956 netif_carrier_off(bp->dev); 10957 netdev_err(bp->dev, "NIC Link is Down\n"); 10958 } 10959 } 10960 10961 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 10962 { 10963 if (!resp->supported_speeds_auto_mode && 10964 !resp->supported_speeds_force_mode && 10965 !resp->supported_pam4_speeds_auto_mode && 10966 !resp->supported_pam4_speeds_force_mode && 10967 !resp->supported_speeds2_auto_mode && 10968 !resp->supported_speeds2_force_mode) 10969 return true; 10970 return false; 10971 } 10972 10973 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 10974 { 10975 struct bnxt_link_info *link_info = &bp->link_info; 10976 struct hwrm_port_phy_qcaps_output *resp; 10977 struct hwrm_port_phy_qcaps_input *req; 10978 int rc = 0; 10979 10980 if (bp->hwrm_spec_code < 0x10201) 10981 return 0; 10982 10983 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS); 10984 if (rc) 10985 return rc; 10986 10987 resp = hwrm_req_hold(bp, req); 10988 rc = hwrm_req_send(bp, req); 10989 if (rc) 10990 goto hwrm_phy_qcaps_exit; 10991 10992 bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8); 10993 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 10994 struct ethtool_keee *eee = &bp->eee; 10995 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 10996 10997 _bnxt_fw_to_linkmode(eee->supported, fw_speeds); 10998 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 10999 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 11000 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 11001 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 11002 } 11003 11004 if (bp->hwrm_spec_code >= 0x10a01) { 11005 if (bnxt_phy_qcaps_no_speed(resp)) { 11006 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 11007 netdev_warn(bp->dev, "Ethernet link disabled\n"); 11008 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 11009 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 11010 netdev_info(bp->dev, "Ethernet link enabled\n"); 11011 /* Phy re-enabled, reprobe the speeds */ 11012 link_info->support_auto_speeds = 0; 11013 link_info->support_pam4_auto_speeds = 0; 11014 link_info->support_auto_speeds2 = 0; 11015 } 11016 } 11017 if (resp->supported_speeds_auto_mode) 11018 link_info->support_auto_speeds = 11019 le16_to_cpu(resp->supported_speeds_auto_mode); 11020 if (resp->supported_pam4_speeds_auto_mode) 11021 link_info->support_pam4_auto_speeds = 11022 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 11023 if (resp->supported_speeds2_auto_mode) 11024 link_info->support_auto_speeds2 = 11025 le16_to_cpu(resp->supported_speeds2_auto_mode); 11026 11027 bp->port_count = resp->port_cnt; 11028 11029 hwrm_phy_qcaps_exit: 11030 hwrm_req_drop(bp, req); 11031 return rc; 11032 } 11033 11034 static bool bnxt_support_dropped(u16 advertising, u16 supported) 11035 { 11036 u16 diff = advertising ^ supported; 11037 11038 return ((supported | diff) != supported); 11039 } 11040 11041 static bool bnxt_support_speed_dropped(struct bnxt_link_info *link_info) 11042 { 11043 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 11044 11045 /* Check if any advertised speeds are no longer supported. The caller 11046 * holds the link_lock mutex, so we can modify link_info settings. 11047 */ 11048 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 11049 if (bnxt_support_dropped(link_info->advertising, 11050 link_info->support_auto_speeds2)) { 11051 link_info->advertising = link_info->support_auto_speeds2; 11052 return true; 11053 } 11054 return false; 11055 } 11056 if (bnxt_support_dropped(link_info->advertising, 11057 link_info->support_auto_speeds)) { 11058 link_info->advertising = link_info->support_auto_speeds; 11059 return true; 11060 } 11061 if (bnxt_support_dropped(link_info->advertising_pam4, 11062 link_info->support_pam4_auto_speeds)) { 11063 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 11064 return true; 11065 } 11066 return false; 11067 } 11068 11069 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 11070 { 11071 struct bnxt_link_info *link_info = &bp->link_info; 11072 struct hwrm_port_phy_qcfg_output *resp; 11073 struct hwrm_port_phy_qcfg_input *req; 11074 u8 link_state = link_info->link_state; 11075 bool support_changed; 11076 int rc; 11077 11078 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG); 11079 if (rc) 11080 return rc; 11081 11082 resp = hwrm_req_hold(bp, req); 11083 rc = hwrm_req_send(bp, req); 11084 if (rc) { 11085 hwrm_req_drop(bp, req); 11086 if (BNXT_VF(bp) && rc == -ENODEV) { 11087 netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n"); 11088 rc = 0; 11089 } 11090 return rc; 11091 } 11092 11093 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 11094 link_info->phy_link_status = resp->link; 11095 link_info->duplex = resp->duplex_cfg; 11096 if (bp->hwrm_spec_code >= 0x10800) 11097 link_info->duplex = resp->duplex_state; 11098 link_info->pause = resp->pause; 11099 link_info->auto_mode = resp->auto_mode; 11100 link_info->auto_pause_setting = resp->auto_pause; 11101 link_info->lp_pause = resp->link_partner_adv_pause; 11102 link_info->force_pause_setting = resp->force_pause; 11103 link_info->duplex_setting = resp->duplex_cfg; 11104 if (link_info->phy_link_status == BNXT_LINK_LINK) { 11105 link_info->link_speed = le16_to_cpu(resp->link_speed); 11106 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 11107 link_info->active_lanes = resp->active_lanes; 11108 } else { 11109 link_info->link_speed = 0; 11110 link_info->active_lanes = 0; 11111 } 11112 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 11113 link_info->force_pam4_link_speed = 11114 le16_to_cpu(resp->force_pam4_link_speed); 11115 link_info->force_link_speed2 = le16_to_cpu(resp->force_link_speeds2); 11116 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 11117 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 11118 link_info->support_speeds2 = le16_to_cpu(resp->support_speeds2); 11119 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 11120 link_info->auto_pam4_link_speeds = 11121 le16_to_cpu(resp->auto_pam4_link_speed_mask); 11122 link_info->auto_link_speeds2 = le16_to_cpu(resp->auto_link_speeds2); 11123 link_info->lp_auto_link_speeds = 11124 le16_to_cpu(resp->link_partner_adv_speeds); 11125 link_info->lp_auto_pam4_link_speeds = 11126 resp->link_partner_pam4_adv_speeds; 11127 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 11128 link_info->phy_ver[0] = resp->phy_maj; 11129 link_info->phy_ver[1] = resp->phy_min; 11130 link_info->phy_ver[2] = resp->phy_bld; 11131 link_info->media_type = resp->media_type; 11132 link_info->phy_type = resp->phy_type; 11133 link_info->transceiver = resp->xcvr_pkg_type; 11134 link_info->phy_addr = resp->eee_config_phy_addr & 11135 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 11136 link_info->module_status = resp->module_status; 11137 11138 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 11139 struct ethtool_keee *eee = &bp->eee; 11140 u16 fw_speeds; 11141 11142 eee->eee_active = 0; 11143 if (resp->eee_config_phy_addr & 11144 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 11145 eee->eee_active = 1; 11146 fw_speeds = le16_to_cpu( 11147 resp->link_partner_adv_eee_link_speed_mask); 11148 _bnxt_fw_to_linkmode(eee->lp_advertised, fw_speeds); 11149 } 11150 11151 /* Pull initial EEE config */ 11152 if (!chng_link_state) { 11153 if (resp->eee_config_phy_addr & 11154 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 11155 eee->eee_enabled = 1; 11156 11157 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 11158 _bnxt_fw_to_linkmode(eee->advertised, fw_speeds); 11159 11160 if (resp->eee_config_phy_addr & 11161 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 11162 __le32 tmr; 11163 11164 eee->tx_lpi_enabled = 1; 11165 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 11166 eee->tx_lpi_timer = le32_to_cpu(tmr) & 11167 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 11168 } 11169 } 11170 } 11171 11172 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 11173 if (bp->hwrm_spec_code >= 0x10504) { 11174 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 11175 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 11176 } 11177 /* TODO: need to add more logic to report VF link */ 11178 if (chng_link_state) { 11179 if (link_info->phy_link_status == BNXT_LINK_LINK) 11180 link_info->link_state = BNXT_LINK_STATE_UP; 11181 else 11182 link_info->link_state = BNXT_LINK_STATE_DOWN; 11183 if (link_state != link_info->link_state) 11184 bnxt_report_link(bp); 11185 } else { 11186 /* always link down if not require to update link state */ 11187 link_info->link_state = BNXT_LINK_STATE_DOWN; 11188 } 11189 hwrm_req_drop(bp, req); 11190 11191 if (!BNXT_PHY_CFG_ABLE(bp)) 11192 return 0; 11193 11194 support_changed = bnxt_support_speed_dropped(link_info); 11195 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 11196 bnxt_hwrm_set_link_setting(bp, true, false); 11197 return 0; 11198 } 11199 11200 static void bnxt_get_port_module_status(struct bnxt *bp) 11201 { 11202 struct bnxt_link_info *link_info = &bp->link_info; 11203 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 11204 u8 module_status; 11205 11206 if (bnxt_update_link(bp, true)) 11207 return; 11208 11209 module_status = link_info->module_status; 11210 switch (module_status) { 11211 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 11212 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 11213 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 11214 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 11215 bp->pf.port_id); 11216 if (bp->hwrm_spec_code >= 0x10201) { 11217 netdev_warn(bp->dev, "Module part number %s\n", 11218 resp->phy_vendor_partnumber); 11219 } 11220 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 11221 netdev_warn(bp->dev, "TX is disabled\n"); 11222 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 11223 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 11224 } 11225 } 11226 11227 static void 11228 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 11229 { 11230 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 11231 if (bp->hwrm_spec_code >= 0x10201) 11232 req->auto_pause = 11233 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 11234 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 11235 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 11236 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 11237 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 11238 req->enables |= 11239 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 11240 } else { 11241 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 11242 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 11243 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 11244 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 11245 req->enables |= 11246 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 11247 if (bp->hwrm_spec_code >= 0x10201) { 11248 req->auto_pause = req->force_pause; 11249 req->enables |= cpu_to_le32( 11250 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 11251 } 11252 } 11253 } 11254 11255 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 11256 { 11257 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 11258 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 11259 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 11260 req->enables |= 11261 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEEDS2_MASK); 11262 req->auto_link_speeds2_mask = cpu_to_le16(bp->link_info.advertising); 11263 } else if (bp->link_info.advertising) { 11264 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 11265 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 11266 } 11267 if (bp->link_info.advertising_pam4) { 11268 req->enables |= 11269 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 11270 req->auto_link_pam4_speed_mask = 11271 cpu_to_le16(bp->link_info.advertising_pam4); 11272 } 11273 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 11274 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 11275 } else { 11276 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 11277 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 11278 req->force_link_speeds2 = cpu_to_le16(bp->link_info.req_link_speed); 11279 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_LINK_SPEEDS2); 11280 netif_info(bp, link, bp->dev, "Forcing FW speed2: %d\n", 11281 (u32)bp->link_info.req_link_speed); 11282 } else if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 11283 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 11284 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 11285 } else { 11286 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 11287 } 11288 } 11289 11290 /* tell chimp that the setting takes effect immediately */ 11291 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 11292 } 11293 11294 int bnxt_hwrm_set_pause(struct bnxt *bp) 11295 { 11296 struct hwrm_port_phy_cfg_input *req; 11297 int rc; 11298 11299 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 11300 if (rc) 11301 return rc; 11302 11303 bnxt_hwrm_set_pause_common(bp, req); 11304 11305 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 11306 bp->link_info.force_link_chng) 11307 bnxt_hwrm_set_link_common(bp, req); 11308 11309 rc = hwrm_req_send(bp, req); 11310 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 11311 /* since changing of pause setting doesn't trigger any link 11312 * change event, the driver needs to update the current pause 11313 * result upon successfully return of the phy_cfg command 11314 */ 11315 bp->link_info.pause = 11316 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 11317 bp->link_info.auto_pause_setting = 0; 11318 if (!bp->link_info.force_link_chng) 11319 bnxt_report_link(bp); 11320 } 11321 bp->link_info.force_link_chng = false; 11322 return rc; 11323 } 11324 11325 static void bnxt_hwrm_set_eee(struct bnxt *bp, 11326 struct hwrm_port_phy_cfg_input *req) 11327 { 11328 struct ethtool_keee *eee = &bp->eee; 11329 11330 if (eee->eee_enabled) { 11331 u16 eee_speeds; 11332 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 11333 11334 if (eee->tx_lpi_enabled) 11335 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 11336 else 11337 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 11338 11339 req->flags |= cpu_to_le32(flags); 11340 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 11341 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 11342 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 11343 } else { 11344 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 11345 } 11346 } 11347 11348 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 11349 { 11350 struct hwrm_port_phy_cfg_input *req; 11351 int rc; 11352 11353 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 11354 if (rc) 11355 return rc; 11356 11357 if (set_pause) 11358 bnxt_hwrm_set_pause_common(bp, req); 11359 11360 bnxt_hwrm_set_link_common(bp, req); 11361 11362 if (set_eee) 11363 bnxt_hwrm_set_eee(bp, req); 11364 return hwrm_req_send(bp, req); 11365 } 11366 11367 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 11368 { 11369 struct hwrm_port_phy_cfg_input *req; 11370 int rc; 11371 11372 if (!BNXT_SINGLE_PF(bp)) 11373 return 0; 11374 11375 if (pci_num_vf(bp->pdev) && 11376 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 11377 return 0; 11378 11379 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 11380 if (rc) 11381 return rc; 11382 11383 req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 11384 rc = hwrm_req_send(bp, req); 11385 if (!rc) { 11386 mutex_lock(&bp->link_lock); 11387 /* Device is not obliged link down in certain scenarios, even 11388 * when forced. Setting the state unknown is consistent with 11389 * driver startup and will force link state to be reported 11390 * during subsequent open based on PORT_PHY_QCFG. 11391 */ 11392 bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN; 11393 mutex_unlock(&bp->link_lock); 11394 } 11395 return rc; 11396 } 11397 11398 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 11399 { 11400 #ifdef CONFIG_TEE_BNXT_FW 11401 int rc = tee_bnxt_fw_load(); 11402 11403 if (rc) 11404 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 11405 11406 return rc; 11407 #else 11408 netdev_err(bp->dev, "OP-TEE not supported\n"); 11409 return -ENODEV; 11410 #endif 11411 } 11412 11413 static int bnxt_try_recover_fw(struct bnxt *bp) 11414 { 11415 if (bp->fw_health && bp->fw_health->status_reliable) { 11416 int retry = 0, rc; 11417 u32 sts; 11418 11419 do { 11420 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 11421 rc = bnxt_hwrm_poll(bp); 11422 if (!BNXT_FW_IS_BOOTING(sts) && 11423 !BNXT_FW_IS_RECOVERING(sts)) 11424 break; 11425 retry++; 11426 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 11427 11428 if (!BNXT_FW_IS_HEALTHY(sts)) { 11429 netdev_err(bp->dev, 11430 "Firmware not responding, status: 0x%x\n", 11431 sts); 11432 rc = -ENODEV; 11433 } 11434 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 11435 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 11436 return bnxt_fw_reset_via_optee(bp); 11437 } 11438 return rc; 11439 } 11440 11441 return -ENODEV; 11442 } 11443 11444 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset) 11445 { 11446 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 11447 11448 if (!BNXT_NEW_RM(bp)) 11449 return; /* no resource reservations required */ 11450 11451 hw_resc->resv_cp_rings = 0; 11452 hw_resc->resv_stat_ctxs = 0; 11453 hw_resc->resv_irqs = 0; 11454 hw_resc->resv_tx_rings = 0; 11455 hw_resc->resv_rx_rings = 0; 11456 hw_resc->resv_hw_ring_grps = 0; 11457 hw_resc->resv_vnics = 0; 11458 hw_resc->resv_rsscos_ctxs = 0; 11459 if (!fw_reset) { 11460 bp->tx_nr_rings = 0; 11461 bp->rx_nr_rings = 0; 11462 } 11463 } 11464 11465 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset) 11466 { 11467 int rc; 11468 11469 if (!BNXT_NEW_RM(bp)) 11470 return 0; /* no resource reservations required */ 11471 11472 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 11473 if (rc) 11474 netdev_err(bp->dev, "resc_qcaps failed\n"); 11475 11476 bnxt_clear_reservations(bp, fw_reset); 11477 11478 return rc; 11479 } 11480 11481 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 11482 { 11483 struct hwrm_func_drv_if_change_output *resp; 11484 struct hwrm_func_drv_if_change_input *req; 11485 bool fw_reset = !bp->irq_tbl; 11486 bool resc_reinit = false; 11487 int rc, retry = 0; 11488 u32 flags = 0; 11489 11490 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 11491 return 0; 11492 11493 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE); 11494 if (rc) 11495 return rc; 11496 11497 if (up) 11498 req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 11499 resp = hwrm_req_hold(bp, req); 11500 11501 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 11502 while (retry < BNXT_FW_IF_RETRY) { 11503 rc = hwrm_req_send(bp, req); 11504 if (rc != -EAGAIN) 11505 break; 11506 11507 msleep(50); 11508 retry++; 11509 } 11510 11511 if (rc == -EAGAIN) { 11512 hwrm_req_drop(bp, req); 11513 return rc; 11514 } else if (!rc) { 11515 flags = le32_to_cpu(resp->flags); 11516 } else if (up) { 11517 rc = bnxt_try_recover_fw(bp); 11518 fw_reset = true; 11519 } 11520 hwrm_req_drop(bp, req); 11521 if (rc) 11522 return rc; 11523 11524 if (!up) { 11525 bnxt_inv_fw_health_reg(bp); 11526 return 0; 11527 } 11528 11529 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 11530 resc_reinit = true; 11531 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE || 11532 test_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) 11533 fw_reset = true; 11534 else 11535 bnxt_remap_fw_health_regs(bp); 11536 11537 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 11538 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 11539 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 11540 return -ENODEV; 11541 } 11542 if (resc_reinit || fw_reset) { 11543 if (fw_reset) { 11544 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 11545 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11546 bnxt_ulp_stop(bp); 11547 bnxt_free_ctx_mem(bp); 11548 bnxt_dcb_free(bp); 11549 rc = bnxt_fw_init_one(bp); 11550 if (rc) { 11551 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 11552 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 11553 return rc; 11554 } 11555 bnxt_clear_int_mode(bp); 11556 rc = bnxt_init_int_mode(bp); 11557 if (rc) { 11558 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 11559 netdev_err(bp->dev, "init int mode failed\n"); 11560 return rc; 11561 } 11562 } 11563 rc = bnxt_cancel_reservations(bp, fw_reset); 11564 } 11565 return rc; 11566 } 11567 11568 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 11569 { 11570 struct hwrm_port_led_qcaps_output *resp; 11571 struct hwrm_port_led_qcaps_input *req; 11572 struct bnxt_pf_info *pf = &bp->pf; 11573 int rc; 11574 11575 bp->num_leds = 0; 11576 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 11577 return 0; 11578 11579 rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS); 11580 if (rc) 11581 return rc; 11582 11583 req->port_id = cpu_to_le16(pf->port_id); 11584 resp = hwrm_req_hold(bp, req); 11585 rc = hwrm_req_send(bp, req); 11586 if (rc) { 11587 hwrm_req_drop(bp, req); 11588 return rc; 11589 } 11590 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 11591 int i; 11592 11593 bp->num_leds = resp->num_leds; 11594 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 11595 bp->num_leds); 11596 for (i = 0; i < bp->num_leds; i++) { 11597 struct bnxt_led_info *led = &bp->leds[i]; 11598 __le16 caps = led->led_state_caps; 11599 11600 if (!led->led_group_id || 11601 !BNXT_LED_ALT_BLINK_CAP(caps)) { 11602 bp->num_leds = 0; 11603 break; 11604 } 11605 } 11606 } 11607 hwrm_req_drop(bp, req); 11608 return 0; 11609 } 11610 11611 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 11612 { 11613 struct hwrm_wol_filter_alloc_output *resp; 11614 struct hwrm_wol_filter_alloc_input *req; 11615 int rc; 11616 11617 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC); 11618 if (rc) 11619 return rc; 11620 11621 req->port_id = cpu_to_le16(bp->pf.port_id); 11622 req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 11623 req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 11624 memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN); 11625 11626 resp = hwrm_req_hold(bp, req); 11627 rc = hwrm_req_send(bp, req); 11628 if (!rc) 11629 bp->wol_filter_id = resp->wol_filter_id; 11630 hwrm_req_drop(bp, req); 11631 return rc; 11632 } 11633 11634 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 11635 { 11636 struct hwrm_wol_filter_free_input *req; 11637 int rc; 11638 11639 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE); 11640 if (rc) 11641 return rc; 11642 11643 req->port_id = cpu_to_le16(bp->pf.port_id); 11644 req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 11645 req->wol_filter_id = bp->wol_filter_id; 11646 11647 return hwrm_req_send(bp, req); 11648 } 11649 11650 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 11651 { 11652 struct hwrm_wol_filter_qcfg_output *resp; 11653 struct hwrm_wol_filter_qcfg_input *req; 11654 u16 next_handle = 0; 11655 int rc; 11656 11657 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG); 11658 if (rc) 11659 return rc; 11660 11661 req->port_id = cpu_to_le16(bp->pf.port_id); 11662 req->handle = cpu_to_le16(handle); 11663 resp = hwrm_req_hold(bp, req); 11664 rc = hwrm_req_send(bp, req); 11665 if (!rc) { 11666 next_handle = le16_to_cpu(resp->next_handle); 11667 if (next_handle != 0) { 11668 if (resp->wol_type == 11669 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 11670 bp->wol = 1; 11671 bp->wol_filter_id = resp->wol_filter_id; 11672 } 11673 } 11674 } 11675 hwrm_req_drop(bp, req); 11676 return next_handle; 11677 } 11678 11679 static void bnxt_get_wol_settings(struct bnxt *bp) 11680 { 11681 u16 handle = 0; 11682 11683 bp->wol = 0; 11684 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 11685 return; 11686 11687 do { 11688 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 11689 } while (handle && handle != 0xffff); 11690 } 11691 11692 static bool bnxt_eee_config_ok(struct bnxt *bp) 11693 { 11694 struct ethtool_keee *eee = &bp->eee; 11695 struct bnxt_link_info *link_info = &bp->link_info; 11696 11697 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 11698 return true; 11699 11700 if (eee->eee_enabled) { 11701 __ETHTOOL_DECLARE_LINK_MODE_MASK(advertising); 11702 __ETHTOOL_DECLARE_LINK_MODE_MASK(tmp); 11703 11704 _bnxt_fw_to_linkmode(advertising, link_info->advertising); 11705 11706 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 11707 eee->eee_enabled = 0; 11708 return false; 11709 } 11710 if (linkmode_andnot(tmp, eee->advertised, advertising)) { 11711 linkmode_and(eee->advertised, advertising, 11712 eee->supported); 11713 return false; 11714 } 11715 } 11716 return true; 11717 } 11718 11719 static int bnxt_update_phy_setting(struct bnxt *bp) 11720 { 11721 int rc; 11722 bool update_link = false; 11723 bool update_pause = false; 11724 bool update_eee = false; 11725 struct bnxt_link_info *link_info = &bp->link_info; 11726 11727 rc = bnxt_update_link(bp, true); 11728 if (rc) { 11729 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 11730 rc); 11731 return rc; 11732 } 11733 if (!BNXT_SINGLE_PF(bp)) 11734 return 0; 11735 11736 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 11737 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 11738 link_info->req_flow_ctrl) 11739 update_pause = true; 11740 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 11741 link_info->force_pause_setting != link_info->req_flow_ctrl) 11742 update_pause = true; 11743 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 11744 if (BNXT_AUTO_MODE(link_info->auto_mode)) 11745 update_link = true; 11746 if (bnxt_force_speed_updated(link_info)) 11747 update_link = true; 11748 if (link_info->req_duplex != link_info->duplex_setting) 11749 update_link = true; 11750 } else { 11751 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 11752 update_link = true; 11753 if (bnxt_auto_speed_updated(link_info)) 11754 update_link = true; 11755 } 11756 11757 /* The last close may have shutdown the link, so need to call 11758 * PHY_CFG to bring it back up. 11759 */ 11760 if (!BNXT_LINK_IS_UP(bp)) 11761 update_link = true; 11762 11763 if (!bnxt_eee_config_ok(bp)) 11764 update_eee = true; 11765 11766 if (update_link) 11767 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 11768 else if (update_pause) 11769 rc = bnxt_hwrm_set_pause(bp); 11770 if (rc) { 11771 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 11772 rc); 11773 return rc; 11774 } 11775 11776 return rc; 11777 } 11778 11779 /* Common routine to pre-map certain register block to different GRC window. 11780 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows 11781 * in PF and 3 windows in VF that can be customized to map in different 11782 * register blocks. 11783 */ 11784 static void bnxt_preset_reg_win(struct bnxt *bp) 11785 { 11786 if (BNXT_PF(bp)) { 11787 /* CAG registers map to GRC window #4 */ 11788 writel(BNXT_CAG_REG_BASE, 11789 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); 11790 } 11791 } 11792 11793 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 11794 11795 static int bnxt_reinit_after_abort(struct bnxt *bp) 11796 { 11797 int rc; 11798 11799 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11800 return -EBUSY; 11801 11802 if (bp->dev->reg_state == NETREG_UNREGISTERED) 11803 return -ENODEV; 11804 11805 rc = bnxt_fw_init_one(bp); 11806 if (!rc) { 11807 bnxt_clear_int_mode(bp); 11808 rc = bnxt_init_int_mode(bp); 11809 if (!rc) { 11810 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 11811 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 11812 } 11813 } 11814 return rc; 11815 } 11816 11817 static void bnxt_cfg_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 11818 { 11819 struct bnxt_ntuple_filter *ntp_fltr; 11820 struct bnxt_l2_filter *l2_fltr; 11821 11822 if (list_empty(&fltr->list)) 11823 return; 11824 11825 if (fltr->type == BNXT_FLTR_TYPE_NTUPLE) { 11826 ntp_fltr = container_of(fltr, struct bnxt_ntuple_filter, base); 11827 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 11828 atomic_inc(&l2_fltr->refcnt); 11829 ntp_fltr->l2_fltr = l2_fltr; 11830 if (bnxt_hwrm_cfa_ntuple_filter_alloc(bp, ntp_fltr)) { 11831 bnxt_del_ntp_filter(bp, ntp_fltr); 11832 netdev_err(bp->dev, "restoring previously configured ntuple filter id %d failed\n", 11833 fltr->sw_id); 11834 } 11835 } else if (fltr->type == BNXT_FLTR_TYPE_L2) { 11836 l2_fltr = container_of(fltr, struct bnxt_l2_filter, base); 11837 if (bnxt_hwrm_l2_filter_alloc(bp, l2_fltr)) { 11838 bnxt_del_l2_filter(bp, l2_fltr); 11839 netdev_err(bp->dev, "restoring previously configured l2 filter id %d failed\n", 11840 fltr->sw_id); 11841 } 11842 } 11843 } 11844 11845 static void bnxt_cfg_usr_fltrs(struct bnxt *bp) 11846 { 11847 struct bnxt_filter_base *usr_fltr, *tmp; 11848 11849 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) 11850 bnxt_cfg_one_usr_fltr(bp, usr_fltr); 11851 } 11852 11853 static int bnxt_set_xps_mapping(struct bnxt *bp) 11854 { 11855 int numa_node = dev_to_node(&bp->pdev->dev); 11856 unsigned int q_idx, map_idx, cpu, i; 11857 const struct cpumask *cpu_mask_ptr; 11858 int nr_cpus = num_online_cpus(); 11859 cpumask_t *q_map; 11860 int rc = 0; 11861 11862 q_map = kcalloc(bp->tx_nr_rings_per_tc, sizeof(*q_map), GFP_KERNEL); 11863 if (!q_map) 11864 return -ENOMEM; 11865 11866 /* Create CPU mask for all TX queues across MQPRIO traffic classes. 11867 * Each TC has the same number of TX queues. The nth TX queue for each 11868 * TC will have the same CPU mask. 11869 */ 11870 for (i = 0; i < nr_cpus; i++) { 11871 map_idx = i % bp->tx_nr_rings_per_tc; 11872 cpu = cpumask_local_spread(i, numa_node); 11873 cpu_mask_ptr = get_cpu_mask(cpu); 11874 cpumask_or(&q_map[map_idx], &q_map[map_idx], cpu_mask_ptr); 11875 } 11876 11877 /* Register CPU mask for each TX queue except the ones marked for XDP */ 11878 for (q_idx = 0; q_idx < bp->dev->real_num_tx_queues; q_idx++) { 11879 map_idx = q_idx % bp->tx_nr_rings_per_tc; 11880 rc = netif_set_xps_queue(bp->dev, &q_map[map_idx], q_idx); 11881 if (rc) { 11882 netdev_warn(bp->dev, "Error setting XPS for q:%d\n", 11883 q_idx); 11884 break; 11885 } 11886 } 11887 11888 kfree(q_map); 11889 11890 return rc; 11891 } 11892 11893 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 11894 { 11895 int rc = 0; 11896 11897 bnxt_preset_reg_win(bp); 11898 netif_carrier_off(bp->dev); 11899 if (irq_re_init) { 11900 /* Reserve rings now if none were reserved at driver probe. */ 11901 rc = bnxt_init_dflt_ring_mode(bp); 11902 if (rc) { 11903 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 11904 return rc; 11905 } 11906 } 11907 rc = bnxt_reserve_rings(bp, irq_re_init); 11908 if (rc) 11909 return rc; 11910 if ((bp->flags & BNXT_FLAG_RFS) && 11911 !(bp->flags & BNXT_FLAG_USING_MSIX)) { 11912 /* disable RFS if falling back to INTA */ 11913 bp->dev->hw_features &= ~NETIF_F_NTUPLE; 11914 bp->flags &= ~BNXT_FLAG_RFS; 11915 } 11916 11917 rc = bnxt_alloc_mem(bp, irq_re_init); 11918 if (rc) { 11919 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 11920 goto open_err_free_mem; 11921 } 11922 11923 if (irq_re_init) { 11924 bnxt_init_napi(bp); 11925 rc = bnxt_request_irq(bp); 11926 if (rc) { 11927 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 11928 goto open_err_irq; 11929 } 11930 } 11931 11932 rc = bnxt_init_nic(bp, irq_re_init); 11933 if (rc) { 11934 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 11935 goto open_err_irq; 11936 } 11937 11938 bnxt_enable_napi(bp); 11939 bnxt_debug_dev_init(bp); 11940 11941 if (link_re_init) { 11942 mutex_lock(&bp->link_lock); 11943 rc = bnxt_update_phy_setting(bp); 11944 mutex_unlock(&bp->link_lock); 11945 if (rc) { 11946 netdev_warn(bp->dev, "failed to update phy settings\n"); 11947 if (BNXT_SINGLE_PF(bp)) { 11948 bp->link_info.phy_retry = true; 11949 bp->link_info.phy_retry_expires = 11950 jiffies + 5 * HZ; 11951 } 11952 } 11953 } 11954 11955 if (irq_re_init) { 11956 udp_tunnel_nic_reset_ntf(bp->dev); 11957 rc = bnxt_set_xps_mapping(bp); 11958 if (rc) 11959 netdev_warn(bp->dev, "failed to set xps mapping\n"); 11960 } 11961 11962 if (bp->tx_nr_rings_xdp < num_possible_cpus()) { 11963 if (!static_key_enabled(&bnxt_xdp_locking_key)) 11964 static_branch_enable(&bnxt_xdp_locking_key); 11965 } else if (static_key_enabled(&bnxt_xdp_locking_key)) { 11966 static_branch_disable(&bnxt_xdp_locking_key); 11967 } 11968 set_bit(BNXT_STATE_OPEN, &bp->state); 11969 bnxt_enable_int(bp); 11970 /* Enable TX queues */ 11971 bnxt_tx_enable(bp); 11972 mod_timer(&bp->timer, jiffies + bp->current_interval); 11973 /* Poll link status and check for SFP+ module status */ 11974 mutex_lock(&bp->link_lock); 11975 bnxt_get_port_module_status(bp); 11976 mutex_unlock(&bp->link_lock); 11977 11978 /* VF-reps may need to be re-opened after the PF is re-opened */ 11979 if (BNXT_PF(bp)) 11980 bnxt_vf_reps_open(bp); 11981 bnxt_ptp_init_rtc(bp, true); 11982 bnxt_ptp_cfg_tstamp_filters(bp); 11983 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 11984 bnxt_hwrm_realloc_rss_ctx_vnic(bp); 11985 bnxt_cfg_usr_fltrs(bp); 11986 return 0; 11987 11988 open_err_irq: 11989 bnxt_del_napi(bp); 11990 11991 open_err_free_mem: 11992 bnxt_free_skbs(bp); 11993 bnxt_free_irq(bp); 11994 bnxt_free_mem(bp, true); 11995 return rc; 11996 } 11997 11998 /* rtnl_lock held */ 11999 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12000 { 12001 int rc = 0; 12002 12003 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 12004 rc = -EIO; 12005 if (!rc) 12006 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 12007 if (rc) { 12008 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 12009 dev_close(bp->dev); 12010 } 12011 return rc; 12012 } 12013 12014 /* rtnl_lock held, open the NIC half way by allocating all resources, but 12015 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline 12016 * self tests. 12017 */ 12018 int bnxt_half_open_nic(struct bnxt *bp) 12019 { 12020 int rc = 0; 12021 12022 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12023 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); 12024 rc = -ENODEV; 12025 goto half_open_err; 12026 } 12027 12028 rc = bnxt_alloc_mem(bp, true); 12029 if (rc) { 12030 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 12031 goto half_open_err; 12032 } 12033 bnxt_init_napi(bp); 12034 set_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12035 rc = bnxt_init_nic(bp, true); 12036 if (rc) { 12037 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12038 bnxt_del_napi(bp); 12039 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 12040 goto half_open_err; 12041 } 12042 return 0; 12043 12044 half_open_err: 12045 bnxt_free_skbs(bp); 12046 bnxt_free_mem(bp, true); 12047 dev_close(bp->dev); 12048 return rc; 12049 } 12050 12051 /* rtnl_lock held, this call can only be made after a previous successful 12052 * call to bnxt_half_open_nic(). 12053 */ 12054 void bnxt_half_close_nic(struct bnxt *bp) 12055 { 12056 bnxt_hwrm_resource_free(bp, false, true); 12057 bnxt_del_napi(bp); 12058 bnxt_free_skbs(bp); 12059 bnxt_free_mem(bp, true); 12060 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12061 } 12062 12063 void bnxt_reenable_sriov(struct bnxt *bp) 12064 { 12065 if (BNXT_PF(bp)) { 12066 struct bnxt_pf_info *pf = &bp->pf; 12067 int n = pf->active_vfs; 12068 12069 if (n) 12070 bnxt_cfg_hw_sriov(bp, &n, true); 12071 } 12072 } 12073 12074 static int bnxt_open(struct net_device *dev) 12075 { 12076 struct bnxt *bp = netdev_priv(dev); 12077 int rc; 12078 12079 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12080 rc = bnxt_reinit_after_abort(bp); 12081 if (rc) { 12082 if (rc == -EBUSY) 12083 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 12084 else 12085 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 12086 return -ENODEV; 12087 } 12088 } 12089 12090 rc = bnxt_hwrm_if_change(bp, true); 12091 if (rc) 12092 return rc; 12093 12094 rc = __bnxt_open_nic(bp, true, true); 12095 if (rc) { 12096 bnxt_hwrm_if_change(bp, false); 12097 } else { 12098 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 12099 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 12100 bnxt_ulp_start(bp, 0); 12101 bnxt_reenable_sriov(bp); 12102 } 12103 } 12104 } 12105 12106 return rc; 12107 } 12108 12109 static bool bnxt_drv_busy(struct bnxt *bp) 12110 { 12111 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 12112 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 12113 } 12114 12115 static void bnxt_get_ring_stats(struct bnxt *bp, 12116 struct rtnl_link_stats64 *stats); 12117 12118 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 12119 bool link_re_init) 12120 { 12121 /* Close the VF-reps before closing PF */ 12122 if (BNXT_PF(bp)) 12123 bnxt_vf_reps_close(bp); 12124 12125 /* Change device state to avoid TX queue wake up's */ 12126 bnxt_tx_disable(bp); 12127 12128 clear_bit(BNXT_STATE_OPEN, &bp->state); 12129 smp_mb__after_atomic(); 12130 while (bnxt_drv_busy(bp)) 12131 msleep(20); 12132 12133 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 12134 bnxt_clear_rss_ctxs(bp, false); 12135 /* Flush rings and disable interrupts */ 12136 bnxt_shutdown_nic(bp, irq_re_init); 12137 12138 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 12139 12140 bnxt_debug_dev_exit(bp); 12141 bnxt_disable_napi(bp); 12142 del_timer_sync(&bp->timer); 12143 bnxt_free_skbs(bp); 12144 12145 /* Save ring stats before shutdown */ 12146 if (bp->bnapi && irq_re_init) { 12147 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 12148 bnxt_get_ring_err_stats(bp, &bp->ring_err_stats_prev); 12149 } 12150 if (irq_re_init) { 12151 bnxt_free_irq(bp); 12152 bnxt_del_napi(bp); 12153 } 12154 bnxt_free_mem(bp, irq_re_init); 12155 } 12156 12157 void bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12158 { 12159 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 12160 /* If we get here, it means firmware reset is in progress 12161 * while we are trying to close. We can safely proceed with 12162 * the close because we are holding rtnl_lock(). Some firmware 12163 * messages may fail as we proceed to close. We set the 12164 * ABORT_ERR flag here so that the FW reset thread will later 12165 * abort when it gets the rtnl_lock() and sees the flag. 12166 */ 12167 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 12168 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12169 } 12170 12171 #ifdef CONFIG_BNXT_SRIOV 12172 if (bp->sriov_cfg) { 12173 int rc; 12174 12175 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 12176 !bp->sriov_cfg, 12177 BNXT_SRIOV_CFG_WAIT_TMO); 12178 if (!rc) 12179 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete, proceeding to close!\n"); 12180 else if (rc < 0) 12181 netdev_warn(bp->dev, "SRIOV config operation interrupted, proceeding to close!\n"); 12182 } 12183 #endif 12184 __bnxt_close_nic(bp, irq_re_init, link_re_init); 12185 } 12186 12187 static int bnxt_close(struct net_device *dev) 12188 { 12189 struct bnxt *bp = netdev_priv(dev); 12190 12191 bnxt_close_nic(bp, true, true); 12192 bnxt_hwrm_shutdown_link(bp); 12193 bnxt_hwrm_if_change(bp, false); 12194 return 0; 12195 } 12196 12197 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 12198 u16 *val) 12199 { 12200 struct hwrm_port_phy_mdio_read_output *resp; 12201 struct hwrm_port_phy_mdio_read_input *req; 12202 int rc; 12203 12204 if (bp->hwrm_spec_code < 0x10a00) 12205 return -EOPNOTSUPP; 12206 12207 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ); 12208 if (rc) 12209 return rc; 12210 12211 req->port_id = cpu_to_le16(bp->pf.port_id); 12212 req->phy_addr = phy_addr; 12213 req->reg_addr = cpu_to_le16(reg & 0x1f); 12214 if (mdio_phy_id_is_c45(phy_addr)) { 12215 req->cl45_mdio = 1; 12216 req->phy_addr = mdio_phy_id_prtad(phy_addr); 12217 req->dev_addr = mdio_phy_id_devad(phy_addr); 12218 req->reg_addr = cpu_to_le16(reg); 12219 } 12220 12221 resp = hwrm_req_hold(bp, req); 12222 rc = hwrm_req_send(bp, req); 12223 if (!rc) 12224 *val = le16_to_cpu(resp->reg_data); 12225 hwrm_req_drop(bp, req); 12226 return rc; 12227 } 12228 12229 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 12230 u16 val) 12231 { 12232 struct hwrm_port_phy_mdio_write_input *req; 12233 int rc; 12234 12235 if (bp->hwrm_spec_code < 0x10a00) 12236 return -EOPNOTSUPP; 12237 12238 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE); 12239 if (rc) 12240 return rc; 12241 12242 req->port_id = cpu_to_le16(bp->pf.port_id); 12243 req->phy_addr = phy_addr; 12244 req->reg_addr = cpu_to_le16(reg & 0x1f); 12245 if (mdio_phy_id_is_c45(phy_addr)) { 12246 req->cl45_mdio = 1; 12247 req->phy_addr = mdio_phy_id_prtad(phy_addr); 12248 req->dev_addr = mdio_phy_id_devad(phy_addr); 12249 req->reg_addr = cpu_to_le16(reg); 12250 } 12251 req->reg_data = cpu_to_le16(val); 12252 12253 return hwrm_req_send(bp, req); 12254 } 12255 12256 /* rtnl_lock held */ 12257 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 12258 { 12259 struct mii_ioctl_data *mdio = if_mii(ifr); 12260 struct bnxt *bp = netdev_priv(dev); 12261 int rc; 12262 12263 switch (cmd) { 12264 case SIOCGMIIPHY: 12265 mdio->phy_id = bp->link_info.phy_addr; 12266 12267 fallthrough; 12268 case SIOCGMIIREG: { 12269 u16 mii_regval = 0; 12270 12271 if (!netif_running(dev)) 12272 return -EAGAIN; 12273 12274 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 12275 &mii_regval); 12276 mdio->val_out = mii_regval; 12277 return rc; 12278 } 12279 12280 case SIOCSMIIREG: 12281 if (!netif_running(dev)) 12282 return -EAGAIN; 12283 12284 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 12285 mdio->val_in); 12286 12287 case SIOCSHWTSTAMP: 12288 return bnxt_hwtstamp_set(dev, ifr); 12289 12290 case SIOCGHWTSTAMP: 12291 return bnxt_hwtstamp_get(dev, ifr); 12292 12293 default: 12294 /* do nothing */ 12295 break; 12296 } 12297 return -EOPNOTSUPP; 12298 } 12299 12300 static void bnxt_get_ring_stats(struct bnxt *bp, 12301 struct rtnl_link_stats64 *stats) 12302 { 12303 int i; 12304 12305 for (i = 0; i < bp->cp_nr_rings; i++) { 12306 struct bnxt_napi *bnapi = bp->bnapi[i]; 12307 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 12308 u64 *sw = cpr->stats.sw_stats; 12309 12310 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 12311 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 12312 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 12313 12314 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 12315 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 12316 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 12317 12318 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 12319 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 12320 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 12321 12322 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 12323 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 12324 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 12325 12326 stats->rx_missed_errors += 12327 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 12328 12329 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 12330 12331 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 12332 12333 stats->rx_dropped += 12334 cpr->sw_stats.rx.rx_netpoll_discards + 12335 cpr->sw_stats.rx.rx_oom_discards; 12336 } 12337 } 12338 12339 static void bnxt_add_prev_stats(struct bnxt *bp, 12340 struct rtnl_link_stats64 *stats) 12341 { 12342 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 12343 12344 stats->rx_packets += prev_stats->rx_packets; 12345 stats->tx_packets += prev_stats->tx_packets; 12346 stats->rx_bytes += prev_stats->rx_bytes; 12347 stats->tx_bytes += prev_stats->tx_bytes; 12348 stats->rx_missed_errors += prev_stats->rx_missed_errors; 12349 stats->multicast += prev_stats->multicast; 12350 stats->rx_dropped += prev_stats->rx_dropped; 12351 stats->tx_dropped += prev_stats->tx_dropped; 12352 } 12353 12354 static void 12355 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 12356 { 12357 struct bnxt *bp = netdev_priv(dev); 12358 12359 set_bit(BNXT_STATE_READ_STATS, &bp->state); 12360 /* Make sure bnxt_close_nic() sees that we are reading stats before 12361 * we check the BNXT_STATE_OPEN flag. 12362 */ 12363 smp_mb__after_atomic(); 12364 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 12365 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 12366 *stats = bp->net_stats_prev; 12367 return; 12368 } 12369 12370 bnxt_get_ring_stats(bp, stats); 12371 bnxt_add_prev_stats(bp, stats); 12372 12373 if (bp->flags & BNXT_FLAG_PORT_STATS) { 12374 u64 *rx = bp->port_stats.sw_stats; 12375 u64 *tx = bp->port_stats.sw_stats + 12376 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 12377 12378 stats->rx_crc_errors = 12379 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 12380 stats->rx_frame_errors = 12381 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 12382 stats->rx_length_errors = 12383 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 12384 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 12385 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 12386 stats->rx_errors = 12387 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 12388 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 12389 stats->collisions = 12390 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 12391 stats->tx_fifo_errors = 12392 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 12393 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 12394 } 12395 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 12396 } 12397 12398 static void bnxt_get_one_ring_err_stats(struct bnxt *bp, 12399 struct bnxt_total_ring_err_stats *stats, 12400 struct bnxt_cp_ring_info *cpr) 12401 { 12402 struct bnxt_sw_stats *sw_stats = &cpr->sw_stats; 12403 u64 *hw_stats = cpr->stats.sw_stats; 12404 12405 stats->rx_total_l4_csum_errors += sw_stats->rx.rx_l4_csum_errors; 12406 stats->rx_total_resets += sw_stats->rx.rx_resets; 12407 stats->rx_total_buf_errors += sw_stats->rx.rx_buf_errors; 12408 stats->rx_total_oom_discards += sw_stats->rx.rx_oom_discards; 12409 stats->rx_total_netpoll_discards += sw_stats->rx.rx_netpoll_discards; 12410 stats->rx_total_ring_discards += 12411 BNXT_GET_RING_STATS64(hw_stats, rx_discard_pkts); 12412 stats->tx_total_resets += sw_stats->tx.tx_resets; 12413 stats->tx_total_ring_discards += 12414 BNXT_GET_RING_STATS64(hw_stats, tx_discard_pkts); 12415 stats->total_missed_irqs += sw_stats->cmn.missed_irqs; 12416 } 12417 12418 void bnxt_get_ring_err_stats(struct bnxt *bp, 12419 struct bnxt_total_ring_err_stats *stats) 12420 { 12421 int i; 12422 12423 for (i = 0; i < bp->cp_nr_rings; i++) 12424 bnxt_get_one_ring_err_stats(bp, stats, &bp->bnapi[i]->cp_ring); 12425 } 12426 12427 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 12428 { 12429 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12430 struct net_device *dev = bp->dev; 12431 struct netdev_hw_addr *ha; 12432 u8 *haddr; 12433 int mc_count = 0; 12434 bool update = false; 12435 int off = 0; 12436 12437 netdev_for_each_mc_addr(ha, dev) { 12438 if (mc_count >= BNXT_MAX_MC_ADDRS) { 12439 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 12440 vnic->mc_list_count = 0; 12441 return false; 12442 } 12443 haddr = ha->addr; 12444 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 12445 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 12446 update = true; 12447 } 12448 off += ETH_ALEN; 12449 mc_count++; 12450 } 12451 if (mc_count) 12452 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 12453 12454 if (mc_count != vnic->mc_list_count) { 12455 vnic->mc_list_count = mc_count; 12456 update = true; 12457 } 12458 return update; 12459 } 12460 12461 static bool bnxt_uc_list_updated(struct bnxt *bp) 12462 { 12463 struct net_device *dev = bp->dev; 12464 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12465 struct netdev_hw_addr *ha; 12466 int off = 0; 12467 12468 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 12469 return true; 12470 12471 netdev_for_each_uc_addr(ha, dev) { 12472 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 12473 return true; 12474 12475 off += ETH_ALEN; 12476 } 12477 return false; 12478 } 12479 12480 static void bnxt_set_rx_mode(struct net_device *dev) 12481 { 12482 struct bnxt *bp = netdev_priv(dev); 12483 struct bnxt_vnic_info *vnic; 12484 bool mc_update = false; 12485 bool uc_update; 12486 u32 mask; 12487 12488 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 12489 return; 12490 12491 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12492 mask = vnic->rx_mask; 12493 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 12494 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 12495 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 12496 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 12497 12498 if (dev->flags & IFF_PROMISC) 12499 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 12500 12501 uc_update = bnxt_uc_list_updated(bp); 12502 12503 if (dev->flags & IFF_BROADCAST) 12504 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 12505 if (dev->flags & IFF_ALLMULTI) { 12506 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 12507 vnic->mc_list_count = 0; 12508 } else if (dev->flags & IFF_MULTICAST) { 12509 mc_update = bnxt_mc_list_updated(bp, &mask); 12510 } 12511 12512 if (mask != vnic->rx_mask || uc_update || mc_update) { 12513 vnic->rx_mask = mask; 12514 12515 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 12516 } 12517 } 12518 12519 static int bnxt_cfg_rx_mode(struct bnxt *bp) 12520 { 12521 struct net_device *dev = bp->dev; 12522 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12523 struct netdev_hw_addr *ha; 12524 int i, off = 0, rc; 12525 bool uc_update; 12526 12527 netif_addr_lock_bh(dev); 12528 uc_update = bnxt_uc_list_updated(bp); 12529 netif_addr_unlock_bh(dev); 12530 12531 if (!uc_update) 12532 goto skip_uc; 12533 12534 for (i = 1; i < vnic->uc_filter_count; i++) { 12535 struct bnxt_l2_filter *fltr = vnic->l2_filters[i]; 12536 12537 bnxt_hwrm_l2_filter_free(bp, fltr); 12538 bnxt_del_l2_filter(bp, fltr); 12539 } 12540 12541 vnic->uc_filter_count = 1; 12542 12543 netif_addr_lock_bh(dev); 12544 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 12545 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 12546 } else { 12547 netdev_for_each_uc_addr(ha, dev) { 12548 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 12549 off += ETH_ALEN; 12550 vnic->uc_filter_count++; 12551 } 12552 } 12553 netif_addr_unlock_bh(dev); 12554 12555 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 12556 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 12557 if (rc) { 12558 if (BNXT_VF(bp) && rc == -ENODEV) { 12559 if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 12560 netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n"); 12561 else 12562 netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n"); 12563 rc = 0; 12564 } else { 12565 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 12566 } 12567 vnic->uc_filter_count = i; 12568 return rc; 12569 } 12570 } 12571 if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 12572 netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n"); 12573 12574 skip_uc: 12575 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 12576 !bnxt_promisc_ok(bp)) 12577 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 12578 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 12579 if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) { 12580 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 12581 rc); 12582 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 12583 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 12584 vnic->mc_list_count = 0; 12585 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 12586 } 12587 if (rc) 12588 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 12589 rc); 12590 12591 return rc; 12592 } 12593 12594 static bool bnxt_can_reserve_rings(struct bnxt *bp) 12595 { 12596 #ifdef CONFIG_BNXT_SRIOV 12597 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 12598 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 12599 12600 /* No minimum rings were provisioned by the PF. Don't 12601 * reserve rings by default when device is down. 12602 */ 12603 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 12604 return true; 12605 12606 if (!netif_running(bp->dev)) 12607 return false; 12608 } 12609 #endif 12610 return true; 12611 } 12612 12613 /* If the chip and firmware supports RFS */ 12614 static bool bnxt_rfs_supported(struct bnxt *bp) 12615 { 12616 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 12617 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 12618 return true; 12619 return false; 12620 } 12621 /* 212 firmware is broken for aRFS */ 12622 if (BNXT_FW_MAJ(bp) == 212) 12623 return false; 12624 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 12625 return true; 12626 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 12627 return true; 12628 return false; 12629 } 12630 12631 /* If runtime conditions support RFS */ 12632 bool bnxt_rfs_capable(struct bnxt *bp, bool new_rss_ctx) 12633 { 12634 struct bnxt_hw_rings hwr = {0}; 12635 int max_vnics, max_rss_ctxs; 12636 12637 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 12638 !BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 12639 return bnxt_rfs_supported(bp); 12640 12641 if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings) 12642 return false; 12643 12644 hwr.grp = bp->rx_nr_rings; 12645 hwr.vnic = bnxt_get_total_vnics(bp, bp->rx_nr_rings); 12646 if (new_rss_ctx) 12647 hwr.vnic++; 12648 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 12649 max_vnics = bnxt_get_max_func_vnics(bp); 12650 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 12651 12652 if (hwr.vnic > max_vnics || hwr.rss_ctx > max_rss_ctxs) { 12653 if (bp->rx_nr_rings > 1) 12654 netdev_warn(bp->dev, 12655 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 12656 min(max_rss_ctxs - 1, max_vnics - 1)); 12657 return false; 12658 } 12659 12660 if (!BNXT_NEW_RM(bp)) 12661 return true; 12662 12663 if (hwr.vnic == bp->hw_resc.resv_vnics && 12664 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 12665 return true; 12666 12667 bnxt_hwrm_reserve_rings(bp, &hwr); 12668 if (hwr.vnic <= bp->hw_resc.resv_vnics && 12669 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 12670 return true; 12671 12672 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 12673 hwr.vnic = 1; 12674 hwr.rss_ctx = 0; 12675 bnxt_hwrm_reserve_rings(bp, &hwr); 12676 return false; 12677 } 12678 12679 static netdev_features_t bnxt_fix_features(struct net_device *dev, 12680 netdev_features_t features) 12681 { 12682 struct bnxt *bp = netdev_priv(dev); 12683 netdev_features_t vlan_features; 12684 12685 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp, false)) 12686 features &= ~NETIF_F_NTUPLE; 12687 12688 if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog) 12689 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12690 12691 if (!(features & NETIF_F_GRO)) 12692 features &= ~NETIF_F_GRO_HW; 12693 12694 if (features & NETIF_F_GRO_HW) 12695 features &= ~NETIF_F_LRO; 12696 12697 /* Both CTAG and STAG VLAN accelaration on the RX side have to be 12698 * turned on or off together. 12699 */ 12700 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 12701 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 12702 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 12703 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 12704 else if (vlan_features) 12705 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 12706 } 12707 #ifdef CONFIG_BNXT_SRIOV 12708 if (BNXT_VF(bp) && bp->vf.vlan) 12709 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 12710 #endif 12711 return features; 12712 } 12713 12714 static int bnxt_reinit_features(struct bnxt *bp, bool irq_re_init, 12715 bool link_re_init, u32 flags, bool update_tpa) 12716 { 12717 bnxt_close_nic(bp, irq_re_init, link_re_init); 12718 bp->flags = flags; 12719 if (update_tpa) 12720 bnxt_set_ring_params(bp); 12721 return bnxt_open_nic(bp, irq_re_init, link_re_init); 12722 } 12723 12724 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 12725 { 12726 bool update_tpa = false, update_ntuple = false; 12727 struct bnxt *bp = netdev_priv(dev); 12728 u32 flags = bp->flags; 12729 u32 changes; 12730 int rc = 0; 12731 bool re_init = false; 12732 12733 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 12734 if (features & NETIF_F_GRO_HW) 12735 flags |= BNXT_FLAG_GRO; 12736 else if (features & NETIF_F_LRO) 12737 flags |= BNXT_FLAG_LRO; 12738 12739 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 12740 flags &= ~BNXT_FLAG_TPA; 12741 12742 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 12743 flags |= BNXT_FLAG_STRIP_VLAN; 12744 12745 if (features & NETIF_F_NTUPLE) 12746 flags |= BNXT_FLAG_RFS; 12747 else 12748 bnxt_clear_usr_fltrs(bp, true); 12749 12750 changes = flags ^ bp->flags; 12751 if (changes & BNXT_FLAG_TPA) { 12752 update_tpa = true; 12753 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 12754 (flags & BNXT_FLAG_TPA) == 0 || 12755 (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 12756 re_init = true; 12757 } 12758 12759 if (changes & ~BNXT_FLAG_TPA) 12760 re_init = true; 12761 12762 if (changes & BNXT_FLAG_RFS) 12763 update_ntuple = true; 12764 12765 if (flags != bp->flags) { 12766 u32 old_flags = bp->flags; 12767 12768 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 12769 bp->flags = flags; 12770 if (update_tpa) 12771 bnxt_set_ring_params(bp); 12772 return rc; 12773 } 12774 12775 if (update_ntuple) 12776 return bnxt_reinit_features(bp, true, false, flags, update_tpa); 12777 12778 if (re_init) 12779 return bnxt_reinit_features(bp, false, false, flags, update_tpa); 12780 12781 if (update_tpa) { 12782 bp->flags = flags; 12783 rc = bnxt_set_tpa(bp, 12784 (flags & BNXT_FLAG_TPA) ? 12785 true : false); 12786 if (rc) 12787 bp->flags = old_flags; 12788 } 12789 } 12790 return rc; 12791 } 12792 12793 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, 12794 u8 **nextp) 12795 { 12796 struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); 12797 struct hop_jumbo_hdr *jhdr; 12798 int hdr_count = 0; 12799 u8 *nexthdr; 12800 int start; 12801 12802 /* Check that there are at most 2 IPv6 extension headers, no 12803 * fragment header, and each is <= 64 bytes. 12804 */ 12805 start = nw_off + sizeof(*ip6h); 12806 nexthdr = &ip6h->nexthdr; 12807 while (ipv6_ext_hdr(*nexthdr)) { 12808 struct ipv6_opt_hdr *hp; 12809 int hdrlen; 12810 12811 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || 12812 *nexthdr == NEXTHDR_FRAGMENT) 12813 return false; 12814 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, 12815 skb_headlen(skb), NULL); 12816 if (!hp) 12817 return false; 12818 if (*nexthdr == NEXTHDR_AUTH) 12819 hdrlen = ipv6_authlen(hp); 12820 else 12821 hdrlen = ipv6_optlen(hp); 12822 12823 if (hdrlen > 64) 12824 return false; 12825 12826 /* The ext header may be a hop-by-hop header inserted for 12827 * big TCP purposes. This will be removed before sending 12828 * from NIC, so do not count it. 12829 */ 12830 if (*nexthdr == NEXTHDR_HOP) { 12831 if (likely(skb->len <= GRO_LEGACY_MAX_SIZE)) 12832 goto increment_hdr; 12833 12834 jhdr = (struct hop_jumbo_hdr *)hp; 12835 if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 || 12836 jhdr->nexthdr != IPPROTO_TCP) 12837 goto increment_hdr; 12838 12839 goto next_hdr; 12840 } 12841 increment_hdr: 12842 hdr_count++; 12843 next_hdr: 12844 nexthdr = &hp->nexthdr; 12845 start += hdrlen; 12846 } 12847 if (nextp) { 12848 /* Caller will check inner protocol */ 12849 if (skb->encapsulation) { 12850 *nextp = nexthdr; 12851 return true; 12852 } 12853 *nextp = NULL; 12854 } 12855 /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ 12856 return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; 12857 } 12858 12859 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 12860 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) 12861 { 12862 struct udphdr *uh = udp_hdr(skb); 12863 __be16 udp_port = uh->dest; 12864 12865 if (udp_port != bp->vxlan_port && udp_port != bp->nge_port && 12866 udp_port != bp->vxlan_gpe_port) 12867 return false; 12868 if (skb->inner_protocol == htons(ETH_P_TEB)) { 12869 struct ethhdr *eh = inner_eth_hdr(skb); 12870 12871 switch (eh->h_proto) { 12872 case htons(ETH_P_IP): 12873 return true; 12874 case htons(ETH_P_IPV6): 12875 return bnxt_exthdr_check(bp, skb, 12876 skb_inner_network_offset(skb), 12877 NULL); 12878 } 12879 } else if (skb->inner_protocol == htons(ETH_P_IP)) { 12880 return true; 12881 } else if (skb->inner_protocol == htons(ETH_P_IPV6)) { 12882 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 12883 NULL); 12884 } 12885 return false; 12886 } 12887 12888 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) 12889 { 12890 switch (l4_proto) { 12891 case IPPROTO_UDP: 12892 return bnxt_udp_tunl_check(bp, skb); 12893 case IPPROTO_IPIP: 12894 return true; 12895 case IPPROTO_GRE: { 12896 switch (skb->inner_protocol) { 12897 default: 12898 return false; 12899 case htons(ETH_P_IP): 12900 return true; 12901 case htons(ETH_P_IPV6): 12902 fallthrough; 12903 } 12904 } 12905 case IPPROTO_IPV6: 12906 /* Check ext headers of inner ipv6 */ 12907 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 12908 NULL); 12909 } 12910 return false; 12911 } 12912 12913 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 12914 struct net_device *dev, 12915 netdev_features_t features) 12916 { 12917 struct bnxt *bp = netdev_priv(dev); 12918 u8 *l4_proto; 12919 12920 features = vlan_features_check(skb, features); 12921 switch (vlan_get_protocol(skb)) { 12922 case htons(ETH_P_IP): 12923 if (!skb->encapsulation) 12924 return features; 12925 l4_proto = &ip_hdr(skb)->protocol; 12926 if (bnxt_tunl_check(bp, skb, *l4_proto)) 12927 return features; 12928 break; 12929 case htons(ETH_P_IPV6): 12930 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), 12931 &l4_proto)) 12932 break; 12933 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) 12934 return features; 12935 break; 12936 } 12937 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 12938 } 12939 12940 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 12941 u32 *reg_buf) 12942 { 12943 struct hwrm_dbg_read_direct_output *resp; 12944 struct hwrm_dbg_read_direct_input *req; 12945 __le32 *dbg_reg_buf; 12946 dma_addr_t mapping; 12947 int rc, i; 12948 12949 rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT); 12950 if (rc) 12951 return rc; 12952 12953 dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4, 12954 &mapping); 12955 if (!dbg_reg_buf) { 12956 rc = -ENOMEM; 12957 goto dbg_rd_reg_exit; 12958 } 12959 12960 req->host_dest_addr = cpu_to_le64(mapping); 12961 12962 resp = hwrm_req_hold(bp, req); 12963 req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 12964 req->read_len32 = cpu_to_le32(num_words); 12965 12966 rc = hwrm_req_send(bp, req); 12967 if (rc || resp->error_code) { 12968 rc = -EIO; 12969 goto dbg_rd_reg_exit; 12970 } 12971 for (i = 0; i < num_words; i++) 12972 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 12973 12974 dbg_rd_reg_exit: 12975 hwrm_req_drop(bp, req); 12976 return rc; 12977 } 12978 12979 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 12980 u32 ring_id, u32 *prod, u32 *cons) 12981 { 12982 struct hwrm_dbg_ring_info_get_output *resp; 12983 struct hwrm_dbg_ring_info_get_input *req; 12984 int rc; 12985 12986 rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET); 12987 if (rc) 12988 return rc; 12989 12990 req->ring_type = ring_type; 12991 req->fw_ring_id = cpu_to_le32(ring_id); 12992 resp = hwrm_req_hold(bp, req); 12993 rc = hwrm_req_send(bp, req); 12994 if (!rc) { 12995 *prod = le32_to_cpu(resp->producer_index); 12996 *cons = le32_to_cpu(resp->consumer_index); 12997 } 12998 hwrm_req_drop(bp, req); 12999 return rc; 13000 } 13001 13002 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 13003 { 13004 struct bnxt_tx_ring_info *txr; 13005 int i = bnapi->index, j; 13006 13007 bnxt_for_each_napi_tx(j, bnapi, txr) 13008 netdev_info(bnapi->bp->dev, "[%d.%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 13009 i, j, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 13010 txr->tx_cons); 13011 } 13012 13013 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 13014 { 13015 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 13016 int i = bnapi->index; 13017 13018 if (!rxr) 13019 return; 13020 13021 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 13022 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 13023 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 13024 rxr->rx_sw_agg_prod); 13025 } 13026 13027 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 13028 { 13029 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 13030 int i = bnapi->index; 13031 13032 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 13033 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 13034 } 13035 13036 static void bnxt_dbg_dump_states(struct bnxt *bp) 13037 { 13038 int i; 13039 struct bnxt_napi *bnapi; 13040 13041 for (i = 0; i < bp->cp_nr_rings; i++) { 13042 bnapi = bp->bnapi[i]; 13043 if (netif_msg_drv(bp)) { 13044 bnxt_dump_tx_sw_state(bnapi); 13045 bnxt_dump_rx_sw_state(bnapi); 13046 bnxt_dump_cp_sw_state(bnapi); 13047 } 13048 } 13049 } 13050 13051 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 13052 { 13053 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 13054 struct hwrm_ring_reset_input *req; 13055 struct bnxt_napi *bnapi = rxr->bnapi; 13056 struct bnxt_cp_ring_info *cpr; 13057 u16 cp_ring_id; 13058 int rc; 13059 13060 rc = hwrm_req_init(bp, req, HWRM_RING_RESET); 13061 if (rc) 13062 return rc; 13063 13064 cpr = &bnapi->cp_ring; 13065 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 13066 req->cmpl_ring = cpu_to_le16(cp_ring_id); 13067 req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 13068 req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 13069 return hwrm_req_send_silent(bp, req); 13070 } 13071 13072 static void bnxt_reset_task(struct bnxt *bp, bool silent) 13073 { 13074 if (!silent) 13075 bnxt_dbg_dump_states(bp); 13076 if (netif_running(bp->dev)) { 13077 int rc; 13078 13079 if (silent) { 13080 bnxt_close_nic(bp, false, false); 13081 bnxt_open_nic(bp, false, false); 13082 } else { 13083 bnxt_ulp_stop(bp); 13084 bnxt_close_nic(bp, true, false); 13085 rc = bnxt_open_nic(bp, true, false); 13086 bnxt_ulp_start(bp, rc); 13087 } 13088 } 13089 } 13090 13091 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 13092 { 13093 struct bnxt *bp = netdev_priv(dev); 13094 13095 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 13096 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 13097 } 13098 13099 static void bnxt_fw_health_check(struct bnxt *bp) 13100 { 13101 struct bnxt_fw_health *fw_health = bp->fw_health; 13102 struct pci_dev *pdev = bp->pdev; 13103 u32 val; 13104 13105 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 13106 return; 13107 13108 /* Make sure it is enabled before checking the tmr_counter. */ 13109 smp_rmb(); 13110 if (fw_health->tmr_counter) { 13111 fw_health->tmr_counter--; 13112 return; 13113 } 13114 13115 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 13116 if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) { 13117 fw_health->arrests++; 13118 goto fw_reset; 13119 } 13120 13121 fw_health->last_fw_heartbeat = val; 13122 13123 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 13124 if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) { 13125 fw_health->discoveries++; 13126 goto fw_reset; 13127 } 13128 13129 fw_health->tmr_counter = fw_health->tmr_multiplier; 13130 return; 13131 13132 fw_reset: 13133 bnxt_queue_sp_work(bp, BNXT_FW_EXCEPTION_SP_EVENT); 13134 } 13135 13136 static void bnxt_timer(struct timer_list *t) 13137 { 13138 struct bnxt *bp = from_timer(bp, t, timer); 13139 struct net_device *dev = bp->dev; 13140 13141 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 13142 return; 13143 13144 if (atomic_read(&bp->intr_sem) != 0) 13145 goto bnxt_restart_timer; 13146 13147 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 13148 bnxt_fw_health_check(bp); 13149 13150 if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) 13151 bnxt_queue_sp_work(bp, BNXT_PERIODIC_STATS_SP_EVENT); 13152 13153 if (bnxt_tc_flower_enabled(bp)) 13154 bnxt_queue_sp_work(bp, BNXT_FLOW_STATS_SP_EVENT); 13155 13156 #ifdef CONFIG_RFS_ACCEL 13157 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) 13158 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 13159 #endif /*CONFIG_RFS_ACCEL*/ 13160 13161 if (bp->link_info.phy_retry) { 13162 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 13163 bp->link_info.phy_retry = false; 13164 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 13165 } else { 13166 bnxt_queue_sp_work(bp, BNXT_UPDATE_PHY_SP_EVENT); 13167 } 13168 } 13169 13170 if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 13171 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 13172 13173 if ((BNXT_CHIP_P5(bp)) && !bp->chip_rev && netif_carrier_ok(dev)) 13174 bnxt_queue_sp_work(bp, BNXT_RING_COAL_NOW_SP_EVENT); 13175 13176 bnxt_restart_timer: 13177 mod_timer(&bp->timer, jiffies + bp->current_interval); 13178 } 13179 13180 static void bnxt_rtnl_lock_sp(struct bnxt *bp) 13181 { 13182 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 13183 * set. If the device is being closed, bnxt_close() may be holding 13184 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we 13185 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). 13186 */ 13187 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13188 rtnl_lock(); 13189 } 13190 13191 static void bnxt_rtnl_unlock_sp(struct bnxt *bp) 13192 { 13193 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13194 rtnl_unlock(); 13195 } 13196 13197 /* Only called from bnxt_sp_task() */ 13198 static void bnxt_reset(struct bnxt *bp, bool silent) 13199 { 13200 bnxt_rtnl_lock_sp(bp); 13201 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 13202 bnxt_reset_task(bp, silent); 13203 bnxt_rtnl_unlock_sp(bp); 13204 } 13205 13206 /* Only called from bnxt_sp_task() */ 13207 static void bnxt_rx_ring_reset(struct bnxt *bp) 13208 { 13209 int i; 13210 13211 bnxt_rtnl_lock_sp(bp); 13212 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13213 bnxt_rtnl_unlock_sp(bp); 13214 return; 13215 } 13216 /* Disable and flush TPA before resetting the RX ring */ 13217 if (bp->flags & BNXT_FLAG_TPA) 13218 bnxt_set_tpa(bp, false); 13219 for (i = 0; i < bp->rx_nr_rings; i++) { 13220 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 13221 struct bnxt_cp_ring_info *cpr; 13222 int rc; 13223 13224 if (!rxr->bnapi->in_reset) 13225 continue; 13226 13227 rc = bnxt_hwrm_rx_ring_reset(bp, i); 13228 if (rc) { 13229 if (rc == -EINVAL || rc == -EOPNOTSUPP) 13230 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 13231 else 13232 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 13233 rc); 13234 bnxt_reset_task(bp, true); 13235 break; 13236 } 13237 bnxt_free_one_rx_ring_skbs(bp, i); 13238 rxr->rx_prod = 0; 13239 rxr->rx_agg_prod = 0; 13240 rxr->rx_sw_agg_prod = 0; 13241 rxr->rx_next_cons = 0; 13242 rxr->bnapi->in_reset = false; 13243 bnxt_alloc_one_rx_ring(bp, i); 13244 cpr = &rxr->bnapi->cp_ring; 13245 cpr->sw_stats.rx.rx_resets++; 13246 if (bp->flags & BNXT_FLAG_AGG_RINGS) 13247 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 13248 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 13249 } 13250 if (bp->flags & BNXT_FLAG_TPA) 13251 bnxt_set_tpa(bp, true); 13252 bnxt_rtnl_unlock_sp(bp); 13253 } 13254 13255 static void bnxt_fw_reset_close(struct bnxt *bp) 13256 { 13257 bnxt_ulp_stop(bp); 13258 /* When firmware is in fatal state, quiesce device and disable 13259 * bus master to prevent any potential bad DMAs before freeing 13260 * kernel memory. 13261 */ 13262 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 13263 u16 val = 0; 13264 13265 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 13266 if (val == 0xffff) 13267 bp->fw_reset_min_dsecs = 0; 13268 bnxt_tx_disable(bp); 13269 bnxt_disable_napi(bp); 13270 bnxt_disable_int_sync(bp); 13271 bnxt_free_irq(bp); 13272 bnxt_clear_int_mode(bp); 13273 pci_disable_device(bp->pdev); 13274 } 13275 __bnxt_close_nic(bp, true, false); 13276 bnxt_vf_reps_free(bp); 13277 bnxt_clear_int_mode(bp); 13278 bnxt_hwrm_func_drv_unrgtr(bp); 13279 if (pci_is_enabled(bp->pdev)) 13280 pci_disable_device(bp->pdev); 13281 bnxt_free_ctx_mem(bp); 13282 } 13283 13284 static bool is_bnxt_fw_ok(struct bnxt *bp) 13285 { 13286 struct bnxt_fw_health *fw_health = bp->fw_health; 13287 bool no_heartbeat = false, has_reset = false; 13288 u32 val; 13289 13290 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 13291 if (val == fw_health->last_fw_heartbeat) 13292 no_heartbeat = true; 13293 13294 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 13295 if (val != fw_health->last_fw_reset_cnt) 13296 has_reset = true; 13297 13298 if (!no_heartbeat && has_reset) 13299 return true; 13300 13301 return false; 13302 } 13303 13304 /* rtnl_lock is acquired before calling this function */ 13305 static void bnxt_force_fw_reset(struct bnxt *bp) 13306 { 13307 struct bnxt_fw_health *fw_health = bp->fw_health; 13308 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 13309 u32 wait_dsecs; 13310 13311 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 13312 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 13313 return; 13314 13315 if (ptp) { 13316 spin_lock_bh(&ptp->ptp_lock); 13317 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13318 spin_unlock_bh(&ptp->ptp_lock); 13319 } else { 13320 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13321 } 13322 bnxt_fw_reset_close(bp); 13323 wait_dsecs = fw_health->master_func_wait_dsecs; 13324 if (fw_health->primary) { 13325 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 13326 wait_dsecs = 0; 13327 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 13328 } else { 13329 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 13330 wait_dsecs = fw_health->normal_func_wait_dsecs; 13331 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 13332 } 13333 13334 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 13335 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 13336 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 13337 } 13338 13339 void bnxt_fw_exception(struct bnxt *bp) 13340 { 13341 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 13342 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 13343 bnxt_rtnl_lock_sp(bp); 13344 bnxt_force_fw_reset(bp); 13345 bnxt_rtnl_unlock_sp(bp); 13346 } 13347 13348 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 13349 * < 0 on error. 13350 */ 13351 static int bnxt_get_registered_vfs(struct bnxt *bp) 13352 { 13353 #ifdef CONFIG_BNXT_SRIOV 13354 int rc; 13355 13356 if (!BNXT_PF(bp)) 13357 return 0; 13358 13359 rc = bnxt_hwrm_func_qcfg(bp); 13360 if (rc) { 13361 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 13362 return rc; 13363 } 13364 if (bp->pf.registered_vfs) 13365 return bp->pf.registered_vfs; 13366 if (bp->sriov_cfg) 13367 return 1; 13368 #endif 13369 return 0; 13370 } 13371 13372 void bnxt_fw_reset(struct bnxt *bp) 13373 { 13374 bnxt_rtnl_lock_sp(bp); 13375 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 13376 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 13377 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 13378 int n = 0, tmo; 13379 13380 if (ptp) { 13381 spin_lock_bh(&ptp->ptp_lock); 13382 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13383 spin_unlock_bh(&ptp->ptp_lock); 13384 } else { 13385 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13386 } 13387 if (bp->pf.active_vfs && 13388 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 13389 n = bnxt_get_registered_vfs(bp); 13390 if (n < 0) { 13391 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 13392 n); 13393 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13394 dev_close(bp->dev); 13395 goto fw_reset_exit; 13396 } else if (n > 0) { 13397 u16 vf_tmo_dsecs = n * 10; 13398 13399 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 13400 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 13401 bp->fw_reset_state = 13402 BNXT_FW_RESET_STATE_POLL_VF; 13403 bnxt_queue_fw_reset_work(bp, HZ / 10); 13404 goto fw_reset_exit; 13405 } 13406 bnxt_fw_reset_close(bp); 13407 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 13408 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 13409 tmo = HZ / 10; 13410 } else { 13411 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 13412 tmo = bp->fw_reset_min_dsecs * HZ / 10; 13413 } 13414 bnxt_queue_fw_reset_work(bp, tmo); 13415 } 13416 fw_reset_exit: 13417 bnxt_rtnl_unlock_sp(bp); 13418 } 13419 13420 static void bnxt_chk_missed_irq(struct bnxt *bp) 13421 { 13422 int i; 13423 13424 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 13425 return; 13426 13427 for (i = 0; i < bp->cp_nr_rings; i++) { 13428 struct bnxt_napi *bnapi = bp->bnapi[i]; 13429 struct bnxt_cp_ring_info *cpr; 13430 u32 fw_ring_id; 13431 int j; 13432 13433 if (!bnapi) 13434 continue; 13435 13436 cpr = &bnapi->cp_ring; 13437 for (j = 0; j < cpr->cp_ring_count; j++) { 13438 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 13439 u32 val[2]; 13440 13441 if (cpr2->has_more_work || !bnxt_has_work(bp, cpr2)) 13442 continue; 13443 13444 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 13445 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 13446 continue; 13447 } 13448 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 13449 bnxt_dbg_hwrm_ring_info_get(bp, 13450 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 13451 fw_ring_id, &val[0], &val[1]); 13452 cpr->sw_stats.cmn.missed_irqs++; 13453 } 13454 } 13455 } 13456 13457 static void bnxt_cfg_ntp_filters(struct bnxt *); 13458 13459 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 13460 { 13461 struct bnxt_link_info *link_info = &bp->link_info; 13462 13463 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 13464 link_info->autoneg = BNXT_AUTONEG_SPEED; 13465 if (bp->hwrm_spec_code >= 0x10201) { 13466 if (link_info->auto_pause_setting & 13467 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 13468 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 13469 } else { 13470 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 13471 } 13472 bnxt_set_auto_speed(link_info); 13473 } else { 13474 bnxt_set_force_speed(link_info); 13475 link_info->req_duplex = link_info->duplex_setting; 13476 } 13477 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 13478 link_info->req_flow_ctrl = 13479 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 13480 else 13481 link_info->req_flow_ctrl = link_info->force_pause_setting; 13482 } 13483 13484 static void bnxt_fw_echo_reply(struct bnxt *bp) 13485 { 13486 struct bnxt_fw_health *fw_health = bp->fw_health; 13487 struct hwrm_func_echo_response_input *req; 13488 int rc; 13489 13490 rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE); 13491 if (rc) 13492 return; 13493 req->event_data1 = cpu_to_le32(fw_health->echo_req_data1); 13494 req->event_data2 = cpu_to_le32(fw_health->echo_req_data2); 13495 hwrm_req_send(bp, req); 13496 } 13497 13498 static void bnxt_sp_task(struct work_struct *work) 13499 { 13500 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 13501 13502 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13503 smp_mb__after_atomic(); 13504 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13505 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13506 return; 13507 } 13508 13509 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 13510 bnxt_cfg_rx_mode(bp); 13511 13512 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 13513 bnxt_cfg_ntp_filters(bp); 13514 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 13515 bnxt_hwrm_exec_fwd_req(bp); 13516 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 13517 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 13518 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 13519 bnxt_hwrm_port_qstats(bp, 0); 13520 bnxt_hwrm_port_qstats_ext(bp, 0); 13521 bnxt_accumulate_all_stats(bp); 13522 } 13523 13524 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 13525 int rc; 13526 13527 mutex_lock(&bp->link_lock); 13528 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 13529 &bp->sp_event)) 13530 bnxt_hwrm_phy_qcaps(bp); 13531 13532 rc = bnxt_update_link(bp, true); 13533 if (rc) 13534 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 13535 rc); 13536 13537 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 13538 &bp->sp_event)) 13539 bnxt_init_ethtool_link_settings(bp); 13540 mutex_unlock(&bp->link_lock); 13541 } 13542 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 13543 int rc; 13544 13545 mutex_lock(&bp->link_lock); 13546 rc = bnxt_update_phy_setting(bp); 13547 mutex_unlock(&bp->link_lock); 13548 if (rc) { 13549 netdev_warn(bp->dev, "update phy settings retry failed\n"); 13550 } else { 13551 bp->link_info.phy_retry = false; 13552 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 13553 } 13554 } 13555 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 13556 mutex_lock(&bp->link_lock); 13557 bnxt_get_port_module_status(bp); 13558 mutex_unlock(&bp->link_lock); 13559 } 13560 13561 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 13562 bnxt_tc_flow_stats_work(bp); 13563 13564 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 13565 bnxt_chk_missed_irq(bp); 13566 13567 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 13568 bnxt_fw_echo_reply(bp); 13569 13570 if (test_and_clear_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event)) 13571 bnxt_hwmon_notify_event(bp); 13572 13573 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 13574 * must be the last functions to be called before exiting. 13575 */ 13576 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 13577 bnxt_reset(bp, false); 13578 13579 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 13580 bnxt_reset(bp, true); 13581 13582 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 13583 bnxt_rx_ring_reset(bp); 13584 13585 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) { 13586 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) || 13587 test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state)) 13588 bnxt_devlink_health_fw_report(bp); 13589 else 13590 bnxt_fw_reset(bp); 13591 } 13592 13593 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 13594 if (!is_bnxt_fw_ok(bp)) 13595 bnxt_devlink_health_fw_report(bp); 13596 } 13597 13598 smp_mb__before_atomic(); 13599 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13600 } 13601 13602 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 13603 int *max_cp); 13604 13605 /* Under rtnl_lock */ 13606 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 13607 int tx_xdp) 13608 { 13609 int max_rx, max_tx, max_cp, tx_sets = 1, tx_cp; 13610 struct bnxt_hw_rings hwr = {0}; 13611 int rx_rings = rx; 13612 13613 if (tcs) 13614 tx_sets = tcs; 13615 13616 _bnxt_get_max_rings(bp, &max_rx, &max_tx, &max_cp); 13617 13618 if (max_rx < rx_rings) 13619 return -ENOMEM; 13620 13621 if (bp->flags & BNXT_FLAG_AGG_RINGS) 13622 rx_rings <<= 1; 13623 13624 hwr.rx = rx_rings; 13625 hwr.tx = tx * tx_sets + tx_xdp; 13626 if (max_tx < hwr.tx) 13627 return -ENOMEM; 13628 13629 hwr.vnic = bnxt_get_total_vnics(bp, rx); 13630 13631 tx_cp = __bnxt_num_tx_to_cp(bp, hwr.tx, tx_sets, tx_xdp); 13632 hwr.cp = sh ? max_t(int, tx_cp, rx) : tx_cp + rx; 13633 if (max_cp < hwr.cp) 13634 return -ENOMEM; 13635 hwr.stat = hwr.cp; 13636 if (BNXT_NEW_RM(bp)) { 13637 hwr.cp += bnxt_get_ulp_msix_num(bp); 13638 hwr.stat += bnxt_get_ulp_stat_ctxs(bp); 13639 hwr.grp = rx; 13640 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 13641 } 13642 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 13643 hwr.cp_p5 = hwr.tx + rx; 13644 return bnxt_hwrm_check_rings(bp, &hwr); 13645 } 13646 13647 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 13648 { 13649 if (bp->bar2) { 13650 pci_iounmap(pdev, bp->bar2); 13651 bp->bar2 = NULL; 13652 } 13653 13654 if (bp->bar1) { 13655 pci_iounmap(pdev, bp->bar1); 13656 bp->bar1 = NULL; 13657 } 13658 13659 if (bp->bar0) { 13660 pci_iounmap(pdev, bp->bar0); 13661 bp->bar0 = NULL; 13662 } 13663 } 13664 13665 static void bnxt_cleanup_pci(struct bnxt *bp) 13666 { 13667 bnxt_unmap_bars(bp, bp->pdev); 13668 pci_release_regions(bp->pdev); 13669 if (pci_is_enabled(bp->pdev)) 13670 pci_disable_device(bp->pdev); 13671 } 13672 13673 static void bnxt_init_dflt_coal(struct bnxt *bp) 13674 { 13675 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 13676 struct bnxt_coal *coal; 13677 u16 flags = 0; 13678 13679 if (coal_cap->cmpl_params & 13680 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 13681 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 13682 13683 /* Tick values in micro seconds. 13684 * 1 coal_buf x bufs_per_record = 1 completion record. 13685 */ 13686 coal = &bp->rx_coal; 13687 coal->coal_ticks = 10; 13688 coal->coal_bufs = 30; 13689 coal->coal_ticks_irq = 1; 13690 coal->coal_bufs_irq = 2; 13691 coal->idle_thresh = 50; 13692 coal->bufs_per_record = 2; 13693 coal->budget = 64; /* NAPI budget */ 13694 coal->flags = flags; 13695 13696 coal = &bp->tx_coal; 13697 coal->coal_ticks = 28; 13698 coal->coal_bufs = 30; 13699 coal->coal_ticks_irq = 2; 13700 coal->coal_bufs_irq = 2; 13701 coal->bufs_per_record = 1; 13702 coal->flags = flags; 13703 13704 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 13705 } 13706 13707 /* FW that pre-reserves 1 VNIC per function */ 13708 static bool bnxt_fw_pre_resv_vnics(struct bnxt *bp) 13709 { 13710 u16 fw_maj = BNXT_FW_MAJ(bp), fw_bld = BNXT_FW_BLD(bp); 13711 13712 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 13713 (fw_maj > 218 || (fw_maj == 218 && fw_bld >= 18))) 13714 return true; 13715 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 13716 (fw_maj > 216 || (fw_maj == 216 && fw_bld >= 172))) 13717 return true; 13718 return false; 13719 } 13720 13721 static int bnxt_fw_init_one_p1(struct bnxt *bp) 13722 { 13723 int rc; 13724 13725 bp->fw_cap = 0; 13726 rc = bnxt_hwrm_ver_get(bp); 13727 /* FW may be unresponsive after FLR. FLR must complete within 100 msec 13728 * so wait before continuing with recovery. 13729 */ 13730 if (rc) 13731 msleep(100); 13732 bnxt_try_map_fw_health_reg(bp); 13733 if (rc) { 13734 rc = bnxt_try_recover_fw(bp); 13735 if (rc) 13736 return rc; 13737 rc = bnxt_hwrm_ver_get(bp); 13738 if (rc) 13739 return rc; 13740 } 13741 13742 bnxt_nvm_cfg_ver_get(bp); 13743 13744 rc = bnxt_hwrm_func_reset(bp); 13745 if (rc) 13746 return -ENODEV; 13747 13748 bnxt_hwrm_fw_set_time(bp); 13749 return 0; 13750 } 13751 13752 static int bnxt_fw_init_one_p2(struct bnxt *bp) 13753 { 13754 int rc; 13755 13756 /* Get the MAX capabilities for this function */ 13757 rc = bnxt_hwrm_func_qcaps(bp); 13758 if (rc) { 13759 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 13760 rc); 13761 return -ENODEV; 13762 } 13763 13764 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 13765 if (rc) 13766 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 13767 rc); 13768 13769 if (bnxt_alloc_fw_health(bp)) { 13770 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 13771 } else { 13772 rc = bnxt_hwrm_error_recovery_qcfg(bp); 13773 if (rc) 13774 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 13775 rc); 13776 } 13777 13778 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 13779 if (rc) 13780 return -ENODEV; 13781 13782 if (bnxt_fw_pre_resv_vnics(bp)) 13783 bp->fw_cap |= BNXT_FW_CAP_PRE_RESV_VNICS; 13784 13785 bnxt_hwrm_func_qcfg(bp); 13786 bnxt_hwrm_vnic_qcaps(bp); 13787 bnxt_hwrm_port_led_qcaps(bp); 13788 bnxt_ethtool_init(bp); 13789 if (bp->fw_cap & BNXT_FW_CAP_PTP) 13790 __bnxt_hwrm_ptp_qcfg(bp); 13791 bnxt_dcb_init(bp); 13792 bnxt_hwmon_init(bp); 13793 return 0; 13794 } 13795 13796 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 13797 { 13798 bp->rss_cap &= ~BNXT_RSS_CAP_UDP_RSS_CAP; 13799 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 13800 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 13801 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 13802 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 13803 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 13804 bp->rss_hash_delta = bp->rss_hash_cfg; 13805 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 13806 bp->rss_cap |= BNXT_RSS_CAP_UDP_RSS_CAP; 13807 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 13808 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 13809 } 13810 } 13811 13812 static void bnxt_set_dflt_rfs(struct bnxt *bp) 13813 { 13814 struct net_device *dev = bp->dev; 13815 13816 dev->hw_features &= ~NETIF_F_NTUPLE; 13817 dev->features &= ~NETIF_F_NTUPLE; 13818 bp->flags &= ~BNXT_FLAG_RFS; 13819 if (bnxt_rfs_supported(bp)) { 13820 dev->hw_features |= NETIF_F_NTUPLE; 13821 if (bnxt_rfs_capable(bp, false)) { 13822 bp->flags |= BNXT_FLAG_RFS; 13823 dev->features |= NETIF_F_NTUPLE; 13824 } 13825 } 13826 } 13827 13828 static void bnxt_fw_init_one_p3(struct bnxt *bp) 13829 { 13830 struct pci_dev *pdev = bp->pdev; 13831 13832 bnxt_set_dflt_rss_hash_type(bp); 13833 bnxt_set_dflt_rfs(bp); 13834 13835 bnxt_get_wol_settings(bp); 13836 if (bp->flags & BNXT_FLAG_WOL_CAP) 13837 device_set_wakeup_enable(&pdev->dev, bp->wol); 13838 else 13839 device_set_wakeup_capable(&pdev->dev, false); 13840 13841 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 13842 bnxt_hwrm_coal_params_qcaps(bp); 13843 } 13844 13845 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); 13846 13847 int bnxt_fw_init_one(struct bnxt *bp) 13848 { 13849 int rc; 13850 13851 rc = bnxt_fw_init_one_p1(bp); 13852 if (rc) { 13853 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 13854 return rc; 13855 } 13856 rc = bnxt_fw_init_one_p2(bp); 13857 if (rc) { 13858 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 13859 return rc; 13860 } 13861 rc = bnxt_probe_phy(bp, false); 13862 if (rc) 13863 return rc; 13864 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 13865 if (rc) 13866 return rc; 13867 13868 bnxt_fw_init_one_p3(bp); 13869 return 0; 13870 } 13871 13872 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 13873 { 13874 struct bnxt_fw_health *fw_health = bp->fw_health; 13875 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 13876 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 13877 u32 reg_type, reg_off, delay_msecs; 13878 13879 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 13880 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 13881 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 13882 switch (reg_type) { 13883 case BNXT_FW_HEALTH_REG_TYPE_CFG: 13884 pci_write_config_dword(bp->pdev, reg_off, val); 13885 break; 13886 case BNXT_FW_HEALTH_REG_TYPE_GRC: 13887 writel(reg_off & BNXT_GRC_BASE_MASK, 13888 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 13889 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 13890 fallthrough; 13891 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 13892 writel(val, bp->bar0 + reg_off); 13893 break; 13894 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 13895 writel(val, bp->bar1 + reg_off); 13896 break; 13897 } 13898 if (delay_msecs) { 13899 pci_read_config_dword(bp->pdev, 0, &val); 13900 msleep(delay_msecs); 13901 } 13902 } 13903 13904 bool bnxt_hwrm_reset_permitted(struct bnxt *bp) 13905 { 13906 struct hwrm_func_qcfg_output *resp; 13907 struct hwrm_func_qcfg_input *req; 13908 bool result = true; /* firmware will enforce if unknown */ 13909 13910 if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF) 13911 return result; 13912 13913 if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG)) 13914 return result; 13915 13916 req->fid = cpu_to_le16(0xffff); 13917 resp = hwrm_req_hold(bp, req); 13918 if (!hwrm_req_send(bp, req)) 13919 result = !!(le16_to_cpu(resp->flags) & 13920 FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED); 13921 hwrm_req_drop(bp, req); 13922 return result; 13923 } 13924 13925 static void bnxt_reset_all(struct bnxt *bp) 13926 { 13927 struct bnxt_fw_health *fw_health = bp->fw_health; 13928 int i, rc; 13929 13930 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 13931 bnxt_fw_reset_via_optee(bp); 13932 bp->fw_reset_timestamp = jiffies; 13933 return; 13934 } 13935 13936 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 13937 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 13938 bnxt_fw_reset_writel(bp, i); 13939 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 13940 struct hwrm_fw_reset_input *req; 13941 13942 rc = hwrm_req_init(bp, req, HWRM_FW_RESET); 13943 if (!rc) { 13944 req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG); 13945 req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 13946 req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 13947 req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 13948 rc = hwrm_req_send(bp, req); 13949 } 13950 if (rc != -ENODEV) 13951 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 13952 } 13953 bp->fw_reset_timestamp = jiffies; 13954 } 13955 13956 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 13957 { 13958 return time_after(jiffies, bp->fw_reset_timestamp + 13959 (bp->fw_reset_max_dsecs * HZ / 10)); 13960 } 13961 13962 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) 13963 { 13964 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13965 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) { 13966 bnxt_ulp_start(bp, rc); 13967 bnxt_dl_health_fw_status_update(bp, false); 13968 } 13969 bp->fw_reset_state = 0; 13970 dev_close(bp->dev); 13971 } 13972 13973 static void bnxt_fw_reset_task(struct work_struct *work) 13974 { 13975 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 13976 int rc = 0; 13977 13978 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 13979 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 13980 return; 13981 } 13982 13983 switch (bp->fw_reset_state) { 13984 case BNXT_FW_RESET_STATE_POLL_VF: { 13985 int n = bnxt_get_registered_vfs(bp); 13986 int tmo; 13987 13988 if (n < 0) { 13989 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 13990 n, jiffies_to_msecs(jiffies - 13991 bp->fw_reset_timestamp)); 13992 goto fw_reset_abort; 13993 } else if (n > 0) { 13994 if (bnxt_fw_reset_timeout(bp)) { 13995 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13996 bp->fw_reset_state = 0; 13997 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 13998 n); 13999 return; 14000 } 14001 bnxt_queue_fw_reset_work(bp, HZ / 10); 14002 return; 14003 } 14004 bp->fw_reset_timestamp = jiffies; 14005 rtnl_lock(); 14006 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 14007 bnxt_fw_reset_abort(bp, rc); 14008 rtnl_unlock(); 14009 return; 14010 } 14011 bnxt_fw_reset_close(bp); 14012 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 14013 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 14014 tmo = HZ / 10; 14015 } else { 14016 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14017 tmo = bp->fw_reset_min_dsecs * HZ / 10; 14018 } 14019 rtnl_unlock(); 14020 bnxt_queue_fw_reset_work(bp, tmo); 14021 return; 14022 } 14023 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 14024 u32 val; 14025 14026 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 14027 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 14028 !bnxt_fw_reset_timeout(bp)) { 14029 bnxt_queue_fw_reset_work(bp, HZ / 5); 14030 return; 14031 } 14032 14033 if (!bp->fw_health->primary) { 14034 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 14035 14036 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14037 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 14038 return; 14039 } 14040 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 14041 } 14042 fallthrough; 14043 case BNXT_FW_RESET_STATE_RESET_FW: 14044 bnxt_reset_all(bp); 14045 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14046 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 14047 return; 14048 case BNXT_FW_RESET_STATE_ENABLE_DEV: 14049 bnxt_inv_fw_health_reg(bp); 14050 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 14051 !bp->fw_reset_min_dsecs) { 14052 u16 val; 14053 14054 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 14055 if (val == 0xffff) { 14056 if (bnxt_fw_reset_timeout(bp)) { 14057 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 14058 rc = -ETIMEDOUT; 14059 goto fw_reset_abort; 14060 } 14061 bnxt_queue_fw_reset_work(bp, HZ / 1000); 14062 return; 14063 } 14064 } 14065 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 14066 clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 14067 if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) && 14068 !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state)) 14069 bnxt_dl_remote_reload(bp); 14070 if (pci_enable_device(bp->pdev)) { 14071 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 14072 rc = -ENODEV; 14073 goto fw_reset_abort; 14074 } 14075 pci_set_master(bp->pdev); 14076 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 14077 fallthrough; 14078 case BNXT_FW_RESET_STATE_POLL_FW: 14079 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 14080 rc = bnxt_hwrm_poll(bp); 14081 if (rc) { 14082 if (bnxt_fw_reset_timeout(bp)) { 14083 netdev_err(bp->dev, "Firmware reset aborted\n"); 14084 goto fw_reset_abort_status; 14085 } 14086 bnxt_queue_fw_reset_work(bp, HZ / 5); 14087 return; 14088 } 14089 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 14090 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 14091 fallthrough; 14092 case BNXT_FW_RESET_STATE_OPENING: 14093 while (!rtnl_trylock()) { 14094 bnxt_queue_fw_reset_work(bp, HZ / 10); 14095 return; 14096 } 14097 rc = bnxt_open(bp->dev); 14098 if (rc) { 14099 netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); 14100 bnxt_fw_reset_abort(bp, rc); 14101 rtnl_unlock(); 14102 return; 14103 } 14104 14105 if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) && 14106 bp->fw_health->enabled) { 14107 bp->fw_health->last_fw_reset_cnt = 14108 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 14109 } 14110 bp->fw_reset_state = 0; 14111 /* Make sure fw_reset_state is 0 before clearing the flag */ 14112 smp_mb__before_atomic(); 14113 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14114 bnxt_ulp_start(bp, 0); 14115 bnxt_reenable_sriov(bp); 14116 bnxt_vf_reps_alloc(bp); 14117 bnxt_vf_reps_open(bp); 14118 bnxt_ptp_reapply_pps(bp); 14119 clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state); 14120 if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) { 14121 bnxt_dl_health_fw_recovery_done(bp); 14122 bnxt_dl_health_fw_status_update(bp, true); 14123 } 14124 rtnl_unlock(); 14125 break; 14126 } 14127 return; 14128 14129 fw_reset_abort_status: 14130 if (bp->fw_health->status_reliable || 14131 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 14132 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 14133 14134 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 14135 } 14136 fw_reset_abort: 14137 rtnl_lock(); 14138 bnxt_fw_reset_abort(bp, rc); 14139 rtnl_unlock(); 14140 } 14141 14142 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 14143 { 14144 int rc; 14145 struct bnxt *bp = netdev_priv(dev); 14146 14147 SET_NETDEV_DEV(dev, &pdev->dev); 14148 14149 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 14150 rc = pci_enable_device(pdev); 14151 if (rc) { 14152 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 14153 goto init_err; 14154 } 14155 14156 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 14157 dev_err(&pdev->dev, 14158 "Cannot find PCI device base address, aborting\n"); 14159 rc = -ENODEV; 14160 goto init_err_disable; 14161 } 14162 14163 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 14164 if (rc) { 14165 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 14166 goto init_err_disable; 14167 } 14168 14169 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 14170 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 14171 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 14172 rc = -EIO; 14173 goto init_err_release; 14174 } 14175 14176 pci_set_master(pdev); 14177 14178 bp->dev = dev; 14179 bp->pdev = pdev; 14180 14181 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 14182 * determines the BAR size. 14183 */ 14184 bp->bar0 = pci_ioremap_bar(pdev, 0); 14185 if (!bp->bar0) { 14186 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 14187 rc = -ENOMEM; 14188 goto init_err_release; 14189 } 14190 14191 bp->bar2 = pci_ioremap_bar(pdev, 4); 14192 if (!bp->bar2) { 14193 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 14194 rc = -ENOMEM; 14195 goto init_err_release; 14196 } 14197 14198 INIT_WORK(&bp->sp_task, bnxt_sp_task); 14199 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 14200 14201 spin_lock_init(&bp->ntp_fltr_lock); 14202 #if BITS_PER_LONG == 32 14203 spin_lock_init(&bp->db_lock); 14204 #endif 14205 14206 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 14207 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 14208 14209 timer_setup(&bp->timer, bnxt_timer, 0); 14210 bp->current_interval = BNXT_TIMER_INTERVAL; 14211 14212 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 14213 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 14214 14215 clear_bit(BNXT_STATE_OPEN, &bp->state); 14216 return 0; 14217 14218 init_err_release: 14219 bnxt_unmap_bars(bp, pdev); 14220 pci_release_regions(pdev); 14221 14222 init_err_disable: 14223 pci_disable_device(pdev); 14224 14225 init_err: 14226 return rc; 14227 } 14228 14229 /* rtnl_lock held */ 14230 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 14231 { 14232 struct sockaddr *addr = p; 14233 struct bnxt *bp = netdev_priv(dev); 14234 int rc = 0; 14235 14236 if (!is_valid_ether_addr(addr->sa_data)) 14237 return -EADDRNOTAVAIL; 14238 14239 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 14240 return 0; 14241 14242 rc = bnxt_approve_mac(bp, addr->sa_data, true); 14243 if (rc) 14244 return rc; 14245 14246 eth_hw_addr_set(dev, addr->sa_data); 14247 bnxt_clear_usr_fltrs(bp, true); 14248 if (netif_running(dev)) { 14249 bnxt_close_nic(bp, false, false); 14250 rc = bnxt_open_nic(bp, false, false); 14251 } 14252 14253 return rc; 14254 } 14255 14256 /* rtnl_lock held */ 14257 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 14258 { 14259 struct bnxt *bp = netdev_priv(dev); 14260 14261 if (netif_running(dev)) 14262 bnxt_close_nic(bp, true, false); 14263 14264 dev->mtu = new_mtu; 14265 bnxt_set_ring_params(bp); 14266 14267 if (netif_running(dev)) 14268 return bnxt_open_nic(bp, true, false); 14269 14270 return 0; 14271 } 14272 14273 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 14274 { 14275 struct bnxt *bp = netdev_priv(dev); 14276 bool sh = false; 14277 int rc, tx_cp; 14278 14279 if (tc > bp->max_tc) { 14280 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 14281 tc, bp->max_tc); 14282 return -EINVAL; 14283 } 14284 14285 if (bp->num_tc == tc) 14286 return 0; 14287 14288 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 14289 sh = true; 14290 14291 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 14292 sh, tc, bp->tx_nr_rings_xdp); 14293 if (rc) 14294 return rc; 14295 14296 /* Needs to close the device and do hw resource re-allocations */ 14297 if (netif_running(bp->dev)) 14298 bnxt_close_nic(bp, true, false); 14299 14300 if (tc) { 14301 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 14302 netdev_set_num_tc(dev, tc); 14303 bp->num_tc = tc; 14304 } else { 14305 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 14306 netdev_reset_tc(dev); 14307 bp->num_tc = 0; 14308 } 14309 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 14310 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 14311 bp->cp_nr_rings = sh ? max_t(int, tx_cp, bp->rx_nr_rings) : 14312 tx_cp + bp->rx_nr_rings; 14313 14314 if (netif_running(bp->dev)) 14315 return bnxt_open_nic(bp, true, false); 14316 14317 return 0; 14318 } 14319 14320 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 14321 void *cb_priv) 14322 { 14323 struct bnxt *bp = cb_priv; 14324 14325 if (!bnxt_tc_flower_enabled(bp) || 14326 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 14327 return -EOPNOTSUPP; 14328 14329 switch (type) { 14330 case TC_SETUP_CLSFLOWER: 14331 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 14332 default: 14333 return -EOPNOTSUPP; 14334 } 14335 } 14336 14337 LIST_HEAD(bnxt_block_cb_list); 14338 14339 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 14340 void *type_data) 14341 { 14342 struct bnxt *bp = netdev_priv(dev); 14343 14344 switch (type) { 14345 case TC_SETUP_BLOCK: 14346 return flow_block_cb_setup_simple(type_data, 14347 &bnxt_block_cb_list, 14348 bnxt_setup_tc_block_cb, 14349 bp, bp, true); 14350 case TC_SETUP_QDISC_MQPRIO: { 14351 struct tc_mqprio_qopt *mqprio = type_data; 14352 14353 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 14354 14355 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 14356 } 14357 default: 14358 return -EOPNOTSUPP; 14359 } 14360 } 14361 14362 u32 bnxt_get_ntp_filter_idx(struct bnxt *bp, struct flow_keys *fkeys, 14363 const struct sk_buff *skb) 14364 { 14365 struct bnxt_vnic_info *vnic; 14366 14367 if (skb) 14368 return skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 14369 14370 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 14371 return bnxt_toeplitz(bp, fkeys, (void *)vnic->rss_hash_key); 14372 } 14373 14374 int bnxt_insert_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr, 14375 u32 idx) 14376 { 14377 struct hlist_head *head; 14378 int bit_id; 14379 14380 spin_lock_bh(&bp->ntp_fltr_lock); 14381 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, bp->max_fltr, 0); 14382 if (bit_id < 0) { 14383 spin_unlock_bh(&bp->ntp_fltr_lock); 14384 return -ENOMEM; 14385 } 14386 14387 fltr->base.sw_id = (u16)bit_id; 14388 fltr->base.type = BNXT_FLTR_TYPE_NTUPLE; 14389 fltr->base.flags |= BNXT_ACT_RING_DST; 14390 head = &bp->ntp_fltr_hash_tbl[idx]; 14391 hlist_add_head_rcu(&fltr->base.hash, head); 14392 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 14393 bnxt_insert_usr_fltr(bp, &fltr->base); 14394 bp->ntp_fltr_count++; 14395 spin_unlock_bh(&bp->ntp_fltr_lock); 14396 return 0; 14397 } 14398 14399 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 14400 struct bnxt_ntuple_filter *f2) 14401 { 14402 struct bnxt_flow_masks *masks1 = &f1->fmasks; 14403 struct bnxt_flow_masks *masks2 = &f2->fmasks; 14404 struct flow_keys *keys1 = &f1->fkeys; 14405 struct flow_keys *keys2 = &f2->fkeys; 14406 14407 if (keys1->basic.n_proto != keys2->basic.n_proto || 14408 keys1->basic.ip_proto != keys2->basic.ip_proto) 14409 return false; 14410 14411 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 14412 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 14413 masks1->addrs.v4addrs.src != masks2->addrs.v4addrs.src || 14414 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst || 14415 masks1->addrs.v4addrs.dst != masks2->addrs.v4addrs.dst) 14416 return false; 14417 } else { 14418 if (!ipv6_addr_equal(&keys1->addrs.v6addrs.src, 14419 &keys2->addrs.v6addrs.src) || 14420 !ipv6_addr_equal(&masks1->addrs.v6addrs.src, 14421 &masks2->addrs.v6addrs.src) || 14422 !ipv6_addr_equal(&keys1->addrs.v6addrs.dst, 14423 &keys2->addrs.v6addrs.dst) || 14424 !ipv6_addr_equal(&masks1->addrs.v6addrs.dst, 14425 &masks2->addrs.v6addrs.dst)) 14426 return false; 14427 } 14428 14429 return keys1->ports.src == keys2->ports.src && 14430 masks1->ports.src == masks2->ports.src && 14431 keys1->ports.dst == keys2->ports.dst && 14432 masks1->ports.dst == masks2->ports.dst && 14433 keys1->control.flags == keys2->control.flags && 14434 f1->l2_fltr == f2->l2_fltr; 14435 } 14436 14437 struct bnxt_ntuple_filter * 14438 bnxt_lookup_ntp_filter_from_idx(struct bnxt *bp, 14439 struct bnxt_ntuple_filter *fltr, u32 idx) 14440 { 14441 struct bnxt_ntuple_filter *f; 14442 struct hlist_head *head; 14443 14444 head = &bp->ntp_fltr_hash_tbl[idx]; 14445 hlist_for_each_entry_rcu(f, head, base.hash) { 14446 if (bnxt_fltr_match(f, fltr)) 14447 return f; 14448 } 14449 return NULL; 14450 } 14451 14452 #ifdef CONFIG_RFS_ACCEL 14453 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 14454 u16 rxq_index, u32 flow_id) 14455 { 14456 struct bnxt *bp = netdev_priv(dev); 14457 struct bnxt_ntuple_filter *fltr, *new_fltr; 14458 struct flow_keys *fkeys; 14459 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 14460 struct bnxt_l2_filter *l2_fltr; 14461 int rc = 0, idx; 14462 u32 flags; 14463 14464 if (ether_addr_equal(dev->dev_addr, eth->h_dest)) { 14465 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 14466 atomic_inc(&l2_fltr->refcnt); 14467 } else { 14468 struct bnxt_l2_key key; 14469 14470 ether_addr_copy(key.dst_mac_addr, eth->h_dest); 14471 key.vlan = 0; 14472 l2_fltr = bnxt_lookup_l2_filter_from_key(bp, &key); 14473 if (!l2_fltr) 14474 return -EINVAL; 14475 if (l2_fltr->base.flags & BNXT_ACT_FUNC_DST) { 14476 bnxt_del_l2_filter(bp, l2_fltr); 14477 return -EINVAL; 14478 } 14479 } 14480 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 14481 if (!new_fltr) { 14482 bnxt_del_l2_filter(bp, l2_fltr); 14483 return -ENOMEM; 14484 } 14485 14486 fkeys = &new_fltr->fkeys; 14487 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 14488 rc = -EPROTONOSUPPORT; 14489 goto err_free; 14490 } 14491 14492 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 14493 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 14494 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 14495 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 14496 rc = -EPROTONOSUPPORT; 14497 goto err_free; 14498 } 14499 new_fltr->fmasks = BNXT_FLOW_IPV4_MASK_ALL; 14500 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 14501 if (bp->hwrm_spec_code < 0x10601) { 14502 rc = -EPROTONOSUPPORT; 14503 goto err_free; 14504 } 14505 new_fltr->fmasks = BNXT_FLOW_IPV6_MASK_ALL; 14506 } 14507 flags = fkeys->control.flags; 14508 if (((flags & FLOW_DIS_ENCAPSULATION) && 14509 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 14510 rc = -EPROTONOSUPPORT; 14511 goto err_free; 14512 } 14513 new_fltr->l2_fltr = l2_fltr; 14514 14515 idx = bnxt_get_ntp_filter_idx(bp, fkeys, skb); 14516 rcu_read_lock(); 14517 fltr = bnxt_lookup_ntp_filter_from_idx(bp, new_fltr, idx); 14518 if (fltr) { 14519 rc = fltr->base.sw_id; 14520 rcu_read_unlock(); 14521 goto err_free; 14522 } 14523 rcu_read_unlock(); 14524 14525 new_fltr->flow_id = flow_id; 14526 new_fltr->base.rxq = rxq_index; 14527 rc = bnxt_insert_ntp_filter(bp, new_fltr, idx); 14528 if (!rc) { 14529 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 14530 return new_fltr->base.sw_id; 14531 } 14532 14533 err_free: 14534 bnxt_del_l2_filter(bp, l2_fltr); 14535 kfree(new_fltr); 14536 return rc; 14537 } 14538 #endif 14539 14540 void bnxt_del_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr) 14541 { 14542 spin_lock_bh(&bp->ntp_fltr_lock); 14543 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 14544 spin_unlock_bh(&bp->ntp_fltr_lock); 14545 return; 14546 } 14547 hlist_del_rcu(&fltr->base.hash); 14548 bnxt_del_one_usr_fltr(bp, &fltr->base); 14549 bp->ntp_fltr_count--; 14550 spin_unlock_bh(&bp->ntp_fltr_lock); 14551 bnxt_del_l2_filter(bp, fltr->l2_fltr); 14552 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 14553 kfree_rcu(fltr, base.rcu); 14554 } 14555 14556 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 14557 { 14558 #ifdef CONFIG_RFS_ACCEL 14559 int i; 14560 14561 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 14562 struct hlist_head *head; 14563 struct hlist_node *tmp; 14564 struct bnxt_ntuple_filter *fltr; 14565 int rc; 14566 14567 head = &bp->ntp_fltr_hash_tbl[i]; 14568 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 14569 bool del = false; 14570 14571 if (test_bit(BNXT_FLTR_VALID, &fltr->base.state)) { 14572 if (fltr->base.flags & BNXT_ACT_NO_AGING) 14573 continue; 14574 if (rps_may_expire_flow(bp->dev, fltr->base.rxq, 14575 fltr->flow_id, 14576 fltr->base.sw_id)) { 14577 bnxt_hwrm_cfa_ntuple_filter_free(bp, 14578 fltr); 14579 del = true; 14580 } 14581 } else { 14582 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 14583 fltr); 14584 if (rc) 14585 del = true; 14586 else 14587 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 14588 } 14589 14590 if (del) 14591 bnxt_del_ntp_filter(bp, fltr); 14592 } 14593 } 14594 #endif 14595 } 14596 14597 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 14598 unsigned int entry, struct udp_tunnel_info *ti) 14599 { 14600 struct bnxt *bp = netdev_priv(netdev); 14601 unsigned int cmd; 14602 14603 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 14604 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN; 14605 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 14606 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE; 14607 else 14608 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE; 14609 14610 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd); 14611 } 14612 14613 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 14614 unsigned int entry, struct udp_tunnel_info *ti) 14615 { 14616 struct bnxt *bp = netdev_priv(netdev); 14617 unsigned int cmd; 14618 14619 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 14620 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 14621 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 14622 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 14623 else 14624 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE; 14625 14626 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 14627 } 14628 14629 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 14630 .set_port = bnxt_udp_tunnel_set_port, 14631 .unset_port = bnxt_udp_tunnel_unset_port, 14632 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 14633 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 14634 .tables = { 14635 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 14636 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 14637 }, 14638 }, bnxt_udp_tunnels_p7 = { 14639 .set_port = bnxt_udp_tunnel_set_port, 14640 .unset_port = bnxt_udp_tunnel_unset_port, 14641 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 14642 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 14643 .tables = { 14644 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 14645 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 14646 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN_GPE, }, 14647 }, 14648 }; 14649 14650 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 14651 struct net_device *dev, u32 filter_mask, 14652 int nlflags) 14653 { 14654 struct bnxt *bp = netdev_priv(dev); 14655 14656 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 14657 nlflags, filter_mask, NULL); 14658 } 14659 14660 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 14661 u16 flags, struct netlink_ext_ack *extack) 14662 { 14663 struct bnxt *bp = netdev_priv(dev); 14664 struct nlattr *attr, *br_spec; 14665 int rem, rc = 0; 14666 14667 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 14668 return -EOPNOTSUPP; 14669 14670 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 14671 if (!br_spec) 14672 return -EINVAL; 14673 14674 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 14675 u16 mode; 14676 14677 mode = nla_get_u16(attr); 14678 if (mode == bp->br_mode) 14679 break; 14680 14681 rc = bnxt_hwrm_set_br_mode(bp, mode); 14682 if (!rc) 14683 bp->br_mode = mode; 14684 break; 14685 } 14686 return rc; 14687 } 14688 14689 int bnxt_get_port_parent_id(struct net_device *dev, 14690 struct netdev_phys_item_id *ppid) 14691 { 14692 struct bnxt *bp = netdev_priv(dev); 14693 14694 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 14695 return -EOPNOTSUPP; 14696 14697 /* The PF and it's VF-reps only support the switchdev framework */ 14698 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 14699 return -EOPNOTSUPP; 14700 14701 ppid->id_len = sizeof(bp->dsn); 14702 memcpy(ppid->id, bp->dsn, ppid->id_len); 14703 14704 return 0; 14705 } 14706 14707 static const struct net_device_ops bnxt_netdev_ops = { 14708 .ndo_open = bnxt_open, 14709 .ndo_start_xmit = bnxt_start_xmit, 14710 .ndo_stop = bnxt_close, 14711 .ndo_get_stats64 = bnxt_get_stats64, 14712 .ndo_set_rx_mode = bnxt_set_rx_mode, 14713 .ndo_eth_ioctl = bnxt_ioctl, 14714 .ndo_validate_addr = eth_validate_addr, 14715 .ndo_set_mac_address = bnxt_change_mac_addr, 14716 .ndo_change_mtu = bnxt_change_mtu, 14717 .ndo_fix_features = bnxt_fix_features, 14718 .ndo_set_features = bnxt_set_features, 14719 .ndo_features_check = bnxt_features_check, 14720 .ndo_tx_timeout = bnxt_tx_timeout, 14721 #ifdef CONFIG_BNXT_SRIOV 14722 .ndo_get_vf_config = bnxt_get_vf_config, 14723 .ndo_set_vf_mac = bnxt_set_vf_mac, 14724 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 14725 .ndo_set_vf_rate = bnxt_set_vf_bw, 14726 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 14727 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 14728 .ndo_set_vf_trust = bnxt_set_vf_trust, 14729 #endif 14730 .ndo_setup_tc = bnxt_setup_tc, 14731 #ifdef CONFIG_RFS_ACCEL 14732 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 14733 #endif 14734 .ndo_bpf = bnxt_xdp, 14735 .ndo_xdp_xmit = bnxt_xdp_xmit, 14736 .ndo_bridge_getlink = bnxt_bridge_getlink, 14737 .ndo_bridge_setlink = bnxt_bridge_setlink, 14738 }; 14739 14740 static void bnxt_get_queue_stats_rx(struct net_device *dev, int i, 14741 struct netdev_queue_stats_rx *stats) 14742 { 14743 struct bnxt *bp = netdev_priv(dev); 14744 struct bnxt_cp_ring_info *cpr; 14745 u64 *sw; 14746 14747 cpr = &bp->bnapi[i]->cp_ring; 14748 sw = cpr->stats.sw_stats; 14749 14750 stats->packets = 0; 14751 stats->packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 14752 stats->packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 14753 stats->packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 14754 14755 stats->bytes = 0; 14756 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 14757 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 14758 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 14759 14760 stats->alloc_fail = cpr->sw_stats.rx.rx_oom_discards; 14761 } 14762 14763 static void bnxt_get_queue_stats_tx(struct net_device *dev, int i, 14764 struct netdev_queue_stats_tx *stats) 14765 { 14766 struct bnxt *bp = netdev_priv(dev); 14767 struct bnxt_napi *bnapi; 14768 u64 *sw; 14769 14770 bnapi = bp->tx_ring[bp->tx_ring_map[i]].bnapi; 14771 sw = bnapi->cp_ring.stats.sw_stats; 14772 14773 stats->packets = 0; 14774 stats->packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 14775 stats->packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 14776 stats->packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 14777 14778 stats->bytes = 0; 14779 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 14780 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 14781 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 14782 } 14783 14784 static void bnxt_get_base_stats(struct net_device *dev, 14785 struct netdev_queue_stats_rx *rx, 14786 struct netdev_queue_stats_tx *tx) 14787 { 14788 struct bnxt *bp = netdev_priv(dev); 14789 14790 rx->packets = bp->net_stats_prev.rx_packets; 14791 rx->bytes = bp->net_stats_prev.rx_bytes; 14792 rx->alloc_fail = bp->ring_err_stats_prev.rx_total_oom_discards; 14793 14794 tx->packets = bp->net_stats_prev.tx_packets; 14795 tx->bytes = bp->net_stats_prev.tx_bytes; 14796 } 14797 14798 static const struct netdev_stat_ops bnxt_stat_ops = { 14799 .get_queue_stats_rx = bnxt_get_queue_stats_rx, 14800 .get_queue_stats_tx = bnxt_get_queue_stats_tx, 14801 .get_base_stats = bnxt_get_base_stats, 14802 }; 14803 14804 static void bnxt_remove_one(struct pci_dev *pdev) 14805 { 14806 struct net_device *dev = pci_get_drvdata(pdev); 14807 struct bnxt *bp = netdev_priv(dev); 14808 14809 if (BNXT_PF(bp)) 14810 bnxt_sriov_disable(bp); 14811 14812 bnxt_rdma_aux_device_uninit(bp); 14813 14814 bnxt_ptp_clear(bp); 14815 unregister_netdev(dev); 14816 bnxt_free_l2_filters(bp, true); 14817 bnxt_free_ntp_fltrs(bp, true); 14818 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 14819 bnxt_clear_rss_ctxs(bp, true); 14820 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14821 /* Flush any pending tasks */ 14822 cancel_work_sync(&bp->sp_task); 14823 cancel_delayed_work_sync(&bp->fw_reset_task); 14824 bp->sp_event = 0; 14825 14826 bnxt_dl_fw_reporters_destroy(bp); 14827 bnxt_dl_unregister(bp); 14828 bnxt_shutdown_tc(bp); 14829 14830 bnxt_clear_int_mode(bp); 14831 bnxt_hwrm_func_drv_unrgtr(bp); 14832 bnxt_free_hwrm_resources(bp); 14833 bnxt_hwmon_uninit(bp); 14834 bnxt_ethtool_free(bp); 14835 bnxt_dcb_free(bp); 14836 kfree(bp->ptp_cfg); 14837 bp->ptp_cfg = NULL; 14838 kfree(bp->fw_health); 14839 bp->fw_health = NULL; 14840 bnxt_cleanup_pci(bp); 14841 bnxt_free_ctx_mem(bp); 14842 kfree(bp->rss_indir_tbl); 14843 bp->rss_indir_tbl = NULL; 14844 bnxt_free_port_stats(bp); 14845 free_netdev(dev); 14846 } 14847 14848 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 14849 { 14850 int rc = 0; 14851 struct bnxt_link_info *link_info = &bp->link_info; 14852 14853 bp->phy_flags = 0; 14854 rc = bnxt_hwrm_phy_qcaps(bp); 14855 if (rc) { 14856 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 14857 rc); 14858 return rc; 14859 } 14860 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 14861 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 14862 else 14863 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 14864 if (!fw_dflt) 14865 return 0; 14866 14867 mutex_lock(&bp->link_lock); 14868 rc = bnxt_update_link(bp, false); 14869 if (rc) { 14870 mutex_unlock(&bp->link_lock); 14871 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 14872 rc); 14873 return rc; 14874 } 14875 14876 /* Older firmware does not have supported_auto_speeds, so assume 14877 * that all supported speeds can be autonegotiated. 14878 */ 14879 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 14880 link_info->support_auto_speeds = link_info->support_speeds; 14881 14882 bnxt_init_ethtool_link_settings(bp); 14883 mutex_unlock(&bp->link_lock); 14884 return 0; 14885 } 14886 14887 static int bnxt_get_max_irq(struct pci_dev *pdev) 14888 { 14889 u16 ctrl; 14890 14891 if (!pdev->msix_cap) 14892 return 1; 14893 14894 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 14895 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 14896 } 14897 14898 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 14899 int *max_cp) 14900 { 14901 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 14902 int max_ring_grps = 0, max_irq; 14903 14904 *max_tx = hw_resc->max_tx_rings; 14905 *max_rx = hw_resc->max_rx_rings; 14906 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 14907 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 14908 bnxt_get_ulp_msix_num(bp), 14909 hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp)); 14910 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 14911 *max_cp = min_t(int, *max_cp, max_irq); 14912 max_ring_grps = hw_resc->max_hw_ring_grps; 14913 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 14914 *max_cp -= 1; 14915 *max_rx -= 2; 14916 } 14917 if (bp->flags & BNXT_FLAG_AGG_RINGS) 14918 *max_rx >>= 1; 14919 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 14920 int rc; 14921 14922 rc = __bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 14923 if (rc) { 14924 *max_rx = 0; 14925 *max_tx = 0; 14926 } 14927 /* On P5 chips, max_cp output param should be available NQs */ 14928 *max_cp = max_irq; 14929 } 14930 *max_rx = min_t(int, *max_rx, max_ring_grps); 14931 } 14932 14933 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 14934 { 14935 int rx, tx, cp; 14936 14937 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 14938 *max_rx = rx; 14939 *max_tx = tx; 14940 if (!rx || !tx || !cp) 14941 return -ENOMEM; 14942 14943 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 14944 } 14945 14946 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 14947 bool shared) 14948 { 14949 int rc; 14950 14951 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 14952 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 14953 /* Not enough rings, try disabling agg rings. */ 14954 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 14955 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 14956 if (rc) { 14957 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 14958 bp->flags |= BNXT_FLAG_AGG_RINGS; 14959 return rc; 14960 } 14961 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 14962 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 14963 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 14964 bnxt_set_ring_params(bp); 14965 } 14966 14967 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 14968 int max_cp, max_stat, max_irq; 14969 14970 /* Reserve minimum resources for RoCE */ 14971 max_cp = bnxt_get_max_func_cp_rings(bp); 14972 max_stat = bnxt_get_max_func_stat_ctxs(bp); 14973 max_irq = bnxt_get_max_func_irqs(bp); 14974 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 14975 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 14976 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 14977 return 0; 14978 14979 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 14980 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 14981 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 14982 max_cp = min_t(int, max_cp, max_irq); 14983 max_cp = min_t(int, max_cp, max_stat); 14984 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 14985 if (rc) 14986 rc = 0; 14987 } 14988 return rc; 14989 } 14990 14991 /* In initial default shared ring setting, each shared ring must have a 14992 * RX/TX ring pair. 14993 */ 14994 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 14995 { 14996 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 14997 bp->rx_nr_rings = bp->cp_nr_rings; 14998 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 14999 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 15000 } 15001 15002 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 15003 { 15004 int dflt_rings, max_rx_rings, max_tx_rings, rc; 15005 15006 if (!bnxt_can_reserve_rings(bp)) 15007 return 0; 15008 15009 if (sh) 15010 bp->flags |= BNXT_FLAG_SHARED_RINGS; 15011 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 15012 /* Reduce default rings on multi-port cards so that total default 15013 * rings do not exceed CPU count. 15014 */ 15015 if (bp->port_count > 1) { 15016 int max_rings = 15017 max_t(int, num_online_cpus() / bp->port_count, 1); 15018 15019 dflt_rings = min_t(int, dflt_rings, max_rings); 15020 } 15021 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 15022 if (rc) 15023 return rc; 15024 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 15025 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 15026 if (sh) 15027 bnxt_trim_dflt_sh_rings(bp); 15028 else 15029 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 15030 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 15031 15032 rc = __bnxt_reserve_rings(bp); 15033 if (rc && rc != -ENODEV) 15034 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 15035 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15036 if (sh) 15037 bnxt_trim_dflt_sh_rings(bp); 15038 15039 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 15040 if (bnxt_need_reserve_rings(bp)) { 15041 rc = __bnxt_reserve_rings(bp); 15042 if (rc && rc != -ENODEV) 15043 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 15044 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15045 } 15046 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 15047 bp->rx_nr_rings++; 15048 bp->cp_nr_rings++; 15049 } 15050 if (rc) { 15051 bp->tx_nr_rings = 0; 15052 bp->rx_nr_rings = 0; 15053 } 15054 return rc; 15055 } 15056 15057 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 15058 { 15059 int rc; 15060 15061 if (bp->tx_nr_rings) 15062 return 0; 15063 15064 bnxt_ulp_irq_stop(bp); 15065 bnxt_clear_int_mode(bp); 15066 rc = bnxt_set_dflt_rings(bp, true); 15067 if (rc) { 15068 if (BNXT_VF(bp) && rc == -ENODEV) 15069 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 15070 else 15071 netdev_err(bp->dev, "Not enough rings available.\n"); 15072 goto init_dflt_ring_err; 15073 } 15074 rc = bnxt_init_int_mode(bp); 15075 if (rc) 15076 goto init_dflt_ring_err; 15077 15078 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15079 15080 bnxt_set_dflt_rfs(bp); 15081 15082 init_dflt_ring_err: 15083 bnxt_ulp_irq_restart(bp, rc); 15084 return rc; 15085 } 15086 15087 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 15088 { 15089 int rc; 15090 15091 ASSERT_RTNL(); 15092 bnxt_hwrm_func_qcaps(bp); 15093 15094 if (netif_running(bp->dev)) 15095 __bnxt_close_nic(bp, true, false); 15096 15097 bnxt_ulp_irq_stop(bp); 15098 bnxt_clear_int_mode(bp); 15099 rc = bnxt_init_int_mode(bp); 15100 bnxt_ulp_irq_restart(bp, rc); 15101 15102 if (netif_running(bp->dev)) { 15103 if (rc) 15104 dev_close(bp->dev); 15105 else 15106 rc = bnxt_open_nic(bp, true, false); 15107 } 15108 15109 return rc; 15110 } 15111 15112 static int bnxt_init_mac_addr(struct bnxt *bp) 15113 { 15114 int rc = 0; 15115 15116 if (BNXT_PF(bp)) { 15117 eth_hw_addr_set(bp->dev, bp->pf.mac_addr); 15118 } else { 15119 #ifdef CONFIG_BNXT_SRIOV 15120 struct bnxt_vf_info *vf = &bp->vf; 15121 bool strict_approval = true; 15122 15123 if (is_valid_ether_addr(vf->mac_addr)) { 15124 /* overwrite netdev dev_addr with admin VF MAC */ 15125 eth_hw_addr_set(bp->dev, vf->mac_addr); 15126 /* Older PF driver or firmware may not approve this 15127 * correctly. 15128 */ 15129 strict_approval = false; 15130 } else { 15131 eth_hw_addr_random(bp->dev); 15132 } 15133 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 15134 #endif 15135 } 15136 return rc; 15137 } 15138 15139 static void bnxt_vpd_read_info(struct bnxt *bp) 15140 { 15141 struct pci_dev *pdev = bp->pdev; 15142 unsigned int vpd_size, kw_len; 15143 int pos, size; 15144 u8 *vpd_data; 15145 15146 vpd_data = pci_vpd_alloc(pdev, &vpd_size); 15147 if (IS_ERR(vpd_data)) { 15148 pci_warn(pdev, "Unable to read VPD\n"); 15149 return; 15150 } 15151 15152 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 15153 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); 15154 if (pos < 0) 15155 goto read_sn; 15156 15157 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 15158 memcpy(bp->board_partno, &vpd_data[pos], size); 15159 15160 read_sn: 15161 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 15162 PCI_VPD_RO_KEYWORD_SERIALNO, 15163 &kw_len); 15164 if (pos < 0) 15165 goto exit; 15166 15167 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 15168 memcpy(bp->board_serialno, &vpd_data[pos], size); 15169 exit: 15170 kfree(vpd_data); 15171 } 15172 15173 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 15174 { 15175 struct pci_dev *pdev = bp->pdev; 15176 u64 qword; 15177 15178 qword = pci_get_dsn(pdev); 15179 if (!qword) { 15180 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 15181 return -EOPNOTSUPP; 15182 } 15183 15184 put_unaligned_le64(qword, dsn); 15185 15186 bp->flags |= BNXT_FLAG_DSN_VALID; 15187 return 0; 15188 } 15189 15190 static int bnxt_map_db_bar(struct bnxt *bp) 15191 { 15192 if (!bp->db_size) 15193 return -ENODEV; 15194 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 15195 if (!bp->bar1) 15196 return -ENOMEM; 15197 return 0; 15198 } 15199 15200 void bnxt_print_device_info(struct bnxt *bp) 15201 { 15202 netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n", 15203 board_info[bp->board_idx].name, 15204 (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr); 15205 15206 pcie_print_link_status(bp->pdev); 15207 } 15208 15209 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 15210 { 15211 struct bnxt_hw_resc *hw_resc; 15212 struct net_device *dev; 15213 struct bnxt *bp; 15214 int rc, max_irqs; 15215 15216 if (pci_is_bridge(pdev)) 15217 return -ENODEV; 15218 15219 /* Clear any pending DMA transactions from crash kernel 15220 * while loading driver in capture kernel. 15221 */ 15222 if (is_kdump_kernel()) { 15223 pci_clear_master(pdev); 15224 pcie_flr(pdev); 15225 } 15226 15227 max_irqs = bnxt_get_max_irq(pdev); 15228 dev = alloc_etherdev_mqs(sizeof(*bp), max_irqs * BNXT_MAX_QUEUE, 15229 max_irqs); 15230 if (!dev) 15231 return -ENOMEM; 15232 15233 bp = netdev_priv(dev); 15234 bp->board_idx = ent->driver_data; 15235 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 15236 bnxt_set_max_func_irqs(bp, max_irqs); 15237 15238 if (bnxt_vf_pciid(bp->board_idx)) 15239 bp->flags |= BNXT_FLAG_VF; 15240 15241 /* No devlink port registration in case of a VF */ 15242 if (BNXT_PF(bp)) 15243 SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port); 15244 15245 if (pdev->msix_cap) 15246 bp->flags |= BNXT_FLAG_MSIX_CAP; 15247 15248 rc = bnxt_init_board(pdev, dev); 15249 if (rc < 0) 15250 goto init_err_free; 15251 15252 dev->netdev_ops = &bnxt_netdev_ops; 15253 dev->stat_ops = &bnxt_stat_ops; 15254 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 15255 dev->ethtool_ops = &bnxt_ethtool_ops; 15256 pci_set_drvdata(pdev, dev); 15257 15258 rc = bnxt_alloc_hwrm_resources(bp); 15259 if (rc) 15260 goto init_err_pci_clean; 15261 15262 mutex_init(&bp->hwrm_cmd_lock); 15263 mutex_init(&bp->link_lock); 15264 15265 rc = bnxt_fw_init_one_p1(bp); 15266 if (rc) 15267 goto init_err_pci_clean; 15268 15269 if (BNXT_PF(bp)) 15270 bnxt_vpd_read_info(bp); 15271 15272 if (BNXT_CHIP_P5_PLUS(bp)) { 15273 bp->flags |= BNXT_FLAG_CHIP_P5_PLUS; 15274 if (BNXT_CHIP_P7(bp)) 15275 bp->flags |= BNXT_FLAG_CHIP_P7; 15276 } 15277 15278 rc = bnxt_alloc_rss_indir_tbl(bp, NULL); 15279 if (rc) 15280 goto init_err_pci_clean; 15281 15282 rc = bnxt_fw_init_one_p2(bp); 15283 if (rc) 15284 goto init_err_pci_clean; 15285 15286 rc = bnxt_map_db_bar(bp); 15287 if (rc) { 15288 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 15289 rc); 15290 goto init_err_pci_clean; 15291 } 15292 15293 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 15294 NETIF_F_TSO | NETIF_F_TSO6 | 15295 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 15296 NETIF_F_GSO_IPXIP4 | 15297 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 15298 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 15299 NETIF_F_RXCSUM | NETIF_F_GRO; 15300 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 15301 dev->hw_features |= NETIF_F_GSO_UDP_L4; 15302 15303 if (BNXT_SUPPORTS_TPA(bp)) 15304 dev->hw_features |= NETIF_F_LRO; 15305 15306 dev->hw_enc_features = 15307 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 15308 NETIF_F_TSO | NETIF_F_TSO6 | 15309 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 15310 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 15311 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 15312 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 15313 dev->hw_enc_features |= NETIF_F_GSO_UDP_L4; 15314 if (bp->flags & BNXT_FLAG_CHIP_P7) 15315 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels_p7; 15316 else 15317 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 15318 15319 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 15320 NETIF_F_GSO_GRE_CSUM; 15321 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 15322 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 15323 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 15324 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 15325 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 15326 if (BNXT_SUPPORTS_TPA(bp)) 15327 dev->hw_features |= NETIF_F_GRO_HW; 15328 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 15329 if (dev->features & NETIF_F_GRO_HW) 15330 dev->features &= ~NETIF_F_LRO; 15331 dev->priv_flags |= IFF_UNICAST_FLT; 15332 15333 netif_set_tso_max_size(dev, GSO_MAX_SIZE); 15334 15335 dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 15336 NETDEV_XDP_ACT_RX_SG; 15337 15338 #ifdef CONFIG_BNXT_SRIOV 15339 init_waitqueue_head(&bp->sriov_cfg_wait); 15340 #endif 15341 if (BNXT_SUPPORTS_TPA(bp)) { 15342 bp->gro_func = bnxt_gro_func_5730x; 15343 if (BNXT_CHIP_P4(bp)) 15344 bp->gro_func = bnxt_gro_func_5731x; 15345 else if (BNXT_CHIP_P5_PLUS(bp)) 15346 bp->gro_func = bnxt_gro_func_5750x; 15347 } 15348 if (!BNXT_CHIP_P4_PLUS(bp)) 15349 bp->flags |= BNXT_FLAG_DOUBLE_DB; 15350 15351 rc = bnxt_init_mac_addr(bp); 15352 if (rc) { 15353 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 15354 rc = -EADDRNOTAVAIL; 15355 goto init_err_pci_clean; 15356 } 15357 15358 if (BNXT_PF(bp)) { 15359 /* Read the adapter's DSN to use as the eswitch switch_id */ 15360 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 15361 } 15362 15363 /* MTU range: 60 - FW defined max */ 15364 dev->min_mtu = ETH_ZLEN; 15365 dev->max_mtu = bp->max_mtu; 15366 15367 rc = bnxt_probe_phy(bp, true); 15368 if (rc) 15369 goto init_err_pci_clean; 15370 15371 hw_resc = &bp->hw_resc; 15372 bp->max_fltr = hw_resc->max_rx_em_flows + hw_resc->max_rx_wm_flows + 15373 BNXT_L2_FLTR_MAX_FLTR; 15374 /* Older firmware may not report these filters properly */ 15375 if (bp->max_fltr < BNXT_MAX_FLTR) 15376 bp->max_fltr = BNXT_MAX_FLTR; 15377 bnxt_init_l2_fltr_tbl(bp); 15378 bnxt_set_rx_skb_mode(bp, false); 15379 bnxt_set_tpa_flags(bp); 15380 bnxt_set_ring_params(bp); 15381 rc = bnxt_set_dflt_rings(bp, true); 15382 if (rc) { 15383 if (BNXT_VF(bp) && rc == -ENODEV) { 15384 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 15385 } else { 15386 netdev_err(bp->dev, "Not enough rings available.\n"); 15387 rc = -ENOMEM; 15388 } 15389 goto init_err_pci_clean; 15390 } 15391 15392 bnxt_fw_init_one_p3(bp); 15393 15394 bnxt_init_dflt_coal(bp); 15395 15396 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 15397 bp->flags |= BNXT_FLAG_STRIP_VLAN; 15398 15399 rc = bnxt_init_int_mode(bp); 15400 if (rc) 15401 goto init_err_pci_clean; 15402 15403 /* No TC has been set yet and rings may have been trimmed due to 15404 * limited MSIX, so we re-initialize the TX rings per TC. 15405 */ 15406 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15407 15408 if (BNXT_PF(bp)) { 15409 if (!bnxt_pf_wq) { 15410 bnxt_pf_wq = 15411 create_singlethread_workqueue("bnxt_pf_wq"); 15412 if (!bnxt_pf_wq) { 15413 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 15414 rc = -ENOMEM; 15415 goto init_err_pci_clean; 15416 } 15417 } 15418 rc = bnxt_init_tc(bp); 15419 if (rc) 15420 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 15421 rc); 15422 } 15423 15424 bnxt_inv_fw_health_reg(bp); 15425 rc = bnxt_dl_register(bp); 15426 if (rc) 15427 goto init_err_dl; 15428 15429 INIT_LIST_HEAD(&bp->usr_fltr_list); 15430 15431 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 15432 bnxt_init_multi_rss_ctx(bp); 15433 15434 rc = register_netdev(dev); 15435 if (rc) 15436 goto init_err_cleanup; 15437 15438 bnxt_dl_fw_reporters_create(bp); 15439 15440 bnxt_rdma_aux_device_init(bp); 15441 15442 bnxt_print_device_info(bp); 15443 15444 pci_save_state(pdev); 15445 15446 return 0; 15447 init_err_cleanup: 15448 bnxt_dl_unregister(bp); 15449 init_err_dl: 15450 bnxt_shutdown_tc(bp); 15451 bnxt_clear_int_mode(bp); 15452 15453 init_err_pci_clean: 15454 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 15455 bnxt_clear_rss_ctxs(bp, true); 15456 bnxt_hwrm_func_drv_unrgtr(bp); 15457 bnxt_free_hwrm_resources(bp); 15458 bnxt_hwmon_uninit(bp); 15459 bnxt_ethtool_free(bp); 15460 bnxt_ptp_clear(bp); 15461 kfree(bp->ptp_cfg); 15462 bp->ptp_cfg = NULL; 15463 kfree(bp->fw_health); 15464 bp->fw_health = NULL; 15465 bnxt_cleanup_pci(bp); 15466 bnxt_free_ctx_mem(bp); 15467 kfree(bp->rss_indir_tbl); 15468 bp->rss_indir_tbl = NULL; 15469 15470 init_err_free: 15471 free_netdev(dev); 15472 return rc; 15473 } 15474 15475 static void bnxt_shutdown(struct pci_dev *pdev) 15476 { 15477 struct net_device *dev = pci_get_drvdata(pdev); 15478 struct bnxt *bp; 15479 15480 if (!dev) 15481 return; 15482 15483 rtnl_lock(); 15484 bp = netdev_priv(dev); 15485 if (!bp) 15486 goto shutdown_exit; 15487 15488 if (netif_running(dev)) 15489 dev_close(dev); 15490 15491 bnxt_clear_int_mode(bp); 15492 pci_disable_device(pdev); 15493 15494 if (system_state == SYSTEM_POWER_OFF) { 15495 pci_wake_from_d3(pdev, bp->wol); 15496 pci_set_power_state(pdev, PCI_D3hot); 15497 } 15498 15499 shutdown_exit: 15500 rtnl_unlock(); 15501 } 15502 15503 #ifdef CONFIG_PM_SLEEP 15504 static int bnxt_suspend(struct device *device) 15505 { 15506 struct net_device *dev = dev_get_drvdata(device); 15507 struct bnxt *bp = netdev_priv(dev); 15508 int rc = 0; 15509 15510 rtnl_lock(); 15511 bnxt_ulp_stop(bp); 15512 if (netif_running(dev)) { 15513 netif_device_detach(dev); 15514 rc = bnxt_close(dev); 15515 } 15516 bnxt_hwrm_func_drv_unrgtr(bp); 15517 pci_disable_device(bp->pdev); 15518 bnxt_free_ctx_mem(bp); 15519 rtnl_unlock(); 15520 return rc; 15521 } 15522 15523 static int bnxt_resume(struct device *device) 15524 { 15525 struct net_device *dev = dev_get_drvdata(device); 15526 struct bnxt *bp = netdev_priv(dev); 15527 int rc = 0; 15528 15529 rtnl_lock(); 15530 rc = pci_enable_device(bp->pdev); 15531 if (rc) { 15532 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 15533 rc); 15534 goto resume_exit; 15535 } 15536 pci_set_master(bp->pdev); 15537 if (bnxt_hwrm_ver_get(bp)) { 15538 rc = -ENODEV; 15539 goto resume_exit; 15540 } 15541 rc = bnxt_hwrm_func_reset(bp); 15542 if (rc) { 15543 rc = -EBUSY; 15544 goto resume_exit; 15545 } 15546 15547 rc = bnxt_hwrm_func_qcaps(bp); 15548 if (rc) 15549 goto resume_exit; 15550 15551 bnxt_clear_reservations(bp, true); 15552 15553 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 15554 rc = -ENODEV; 15555 goto resume_exit; 15556 } 15557 15558 bnxt_get_wol_settings(bp); 15559 if (netif_running(dev)) { 15560 rc = bnxt_open(dev); 15561 if (!rc) 15562 netif_device_attach(dev); 15563 } 15564 15565 resume_exit: 15566 bnxt_ulp_start(bp, rc); 15567 if (!rc) 15568 bnxt_reenable_sriov(bp); 15569 rtnl_unlock(); 15570 return rc; 15571 } 15572 15573 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 15574 #define BNXT_PM_OPS (&bnxt_pm_ops) 15575 15576 #else 15577 15578 #define BNXT_PM_OPS NULL 15579 15580 #endif /* CONFIG_PM_SLEEP */ 15581 15582 /** 15583 * bnxt_io_error_detected - called when PCI error is detected 15584 * @pdev: Pointer to PCI device 15585 * @state: The current pci connection state 15586 * 15587 * This function is called after a PCI bus error affecting 15588 * this device has been detected. 15589 */ 15590 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 15591 pci_channel_state_t state) 15592 { 15593 struct net_device *netdev = pci_get_drvdata(pdev); 15594 struct bnxt *bp = netdev_priv(netdev); 15595 15596 netdev_info(netdev, "PCI I/O error detected\n"); 15597 15598 rtnl_lock(); 15599 netif_device_detach(netdev); 15600 15601 bnxt_ulp_stop(bp); 15602 15603 if (state == pci_channel_io_perm_failure) { 15604 rtnl_unlock(); 15605 return PCI_ERS_RESULT_DISCONNECT; 15606 } 15607 15608 if (state == pci_channel_io_frozen) 15609 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 15610 15611 if (netif_running(netdev)) 15612 bnxt_close(netdev); 15613 15614 if (pci_is_enabled(pdev)) 15615 pci_disable_device(pdev); 15616 bnxt_free_ctx_mem(bp); 15617 rtnl_unlock(); 15618 15619 /* Request a slot slot reset. */ 15620 return PCI_ERS_RESULT_NEED_RESET; 15621 } 15622 15623 /** 15624 * bnxt_io_slot_reset - called after the pci bus has been reset. 15625 * @pdev: Pointer to PCI device 15626 * 15627 * Restart the card from scratch, as if from a cold-boot. 15628 * At this point, the card has exprienced a hard reset, 15629 * followed by fixups by BIOS, and has its config space 15630 * set up identically to what it was at cold boot. 15631 */ 15632 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 15633 { 15634 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 15635 struct net_device *netdev = pci_get_drvdata(pdev); 15636 struct bnxt *bp = netdev_priv(netdev); 15637 int retry = 0; 15638 int err = 0; 15639 int off; 15640 15641 netdev_info(bp->dev, "PCI Slot Reset\n"); 15642 15643 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 15644 test_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state)) 15645 msleep(900); 15646 15647 rtnl_lock(); 15648 15649 if (pci_enable_device(pdev)) { 15650 dev_err(&pdev->dev, 15651 "Cannot re-enable PCI device after reset.\n"); 15652 } else { 15653 pci_set_master(pdev); 15654 /* Upon fatal error, our device internal logic that latches to 15655 * BAR value is getting reset and will restore only upon 15656 * rewritting the BARs. 15657 * 15658 * As pci_restore_state() does not re-write the BARs if the 15659 * value is same as saved value earlier, driver needs to 15660 * write the BARs to 0 to force restore, in case of fatal error. 15661 */ 15662 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 15663 &bp->state)) { 15664 for (off = PCI_BASE_ADDRESS_0; 15665 off <= PCI_BASE_ADDRESS_5; off += 4) 15666 pci_write_config_dword(bp->pdev, off, 0); 15667 } 15668 pci_restore_state(pdev); 15669 pci_save_state(pdev); 15670 15671 bnxt_inv_fw_health_reg(bp); 15672 bnxt_try_map_fw_health_reg(bp); 15673 15674 /* In some PCIe AER scenarios, firmware may take up to 15675 * 10 seconds to become ready in the worst case. 15676 */ 15677 do { 15678 err = bnxt_try_recover_fw(bp); 15679 if (!err) 15680 break; 15681 retry++; 15682 } while (retry < BNXT_FW_SLOT_RESET_RETRY); 15683 15684 if (err) { 15685 dev_err(&pdev->dev, "Firmware not ready\n"); 15686 goto reset_exit; 15687 } 15688 15689 err = bnxt_hwrm_func_reset(bp); 15690 if (!err) 15691 result = PCI_ERS_RESULT_RECOVERED; 15692 15693 bnxt_ulp_irq_stop(bp); 15694 bnxt_clear_int_mode(bp); 15695 err = bnxt_init_int_mode(bp); 15696 bnxt_ulp_irq_restart(bp, err); 15697 } 15698 15699 reset_exit: 15700 bnxt_clear_reservations(bp, true); 15701 rtnl_unlock(); 15702 15703 return result; 15704 } 15705 15706 /** 15707 * bnxt_io_resume - called when traffic can start flowing again. 15708 * @pdev: Pointer to PCI device 15709 * 15710 * This callback is called when the error recovery driver tells 15711 * us that its OK to resume normal operation. 15712 */ 15713 static void bnxt_io_resume(struct pci_dev *pdev) 15714 { 15715 struct net_device *netdev = pci_get_drvdata(pdev); 15716 struct bnxt *bp = netdev_priv(netdev); 15717 int err; 15718 15719 netdev_info(bp->dev, "PCI Slot Resume\n"); 15720 rtnl_lock(); 15721 15722 err = bnxt_hwrm_func_qcaps(bp); 15723 if (!err && netif_running(netdev)) 15724 err = bnxt_open(netdev); 15725 15726 bnxt_ulp_start(bp, err); 15727 if (!err) { 15728 bnxt_reenable_sriov(bp); 15729 netif_device_attach(netdev); 15730 } 15731 15732 rtnl_unlock(); 15733 } 15734 15735 static const struct pci_error_handlers bnxt_err_handler = { 15736 .error_detected = bnxt_io_error_detected, 15737 .slot_reset = bnxt_io_slot_reset, 15738 .resume = bnxt_io_resume 15739 }; 15740 15741 static struct pci_driver bnxt_pci_driver = { 15742 .name = DRV_MODULE_NAME, 15743 .id_table = bnxt_pci_tbl, 15744 .probe = bnxt_init_one, 15745 .remove = bnxt_remove_one, 15746 .shutdown = bnxt_shutdown, 15747 .driver.pm = BNXT_PM_OPS, 15748 .err_handler = &bnxt_err_handler, 15749 #if defined(CONFIG_BNXT_SRIOV) 15750 .sriov_configure = bnxt_sriov_configure, 15751 #endif 15752 }; 15753 15754 static int __init bnxt_init(void) 15755 { 15756 int err; 15757 15758 bnxt_debug_init(); 15759 err = pci_register_driver(&bnxt_pci_driver); 15760 if (err) { 15761 bnxt_debug_exit(); 15762 return err; 15763 } 15764 15765 return 0; 15766 } 15767 15768 static void __exit bnxt_exit(void) 15769 { 15770 pci_unregister_driver(&bnxt_pci_driver); 15771 if (bnxt_pf_wq) 15772 destroy_workqueue(bnxt_pf_wq); 15773 bnxt_debug_exit(); 15774 } 15775 15776 module_init(bnxt_init); 15777 module_exit(bnxt_exit); 15778