1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/gro.h> 41 #include <net/ip.h> 42 #include <net/tcp.h> 43 #include <net/udp.h> 44 #include <net/checksum.h> 45 #include <net/ip6_checksum.h> 46 #include <net/udp_tunnel.h> 47 #include <linux/workqueue.h> 48 #include <linux/prefetch.h> 49 #include <linux/cache.h> 50 #include <linux/log2.h> 51 #include <linux/bitmap.h> 52 #include <linux/cpu_rmap.h> 53 #include <linux/cpumask.h> 54 #include <net/pkt_cls.h> 55 #include <net/page_pool/helpers.h> 56 #include <linux/align.h> 57 #include <net/netdev_queues.h> 58 59 #include "bnxt_hsi.h" 60 #include "bnxt.h" 61 #include "bnxt_hwrm.h" 62 #include "bnxt_ulp.h" 63 #include "bnxt_sriov.h" 64 #include "bnxt_ethtool.h" 65 #include "bnxt_dcb.h" 66 #include "bnxt_xdp.h" 67 #include "bnxt_ptp.h" 68 #include "bnxt_vfr.h" 69 #include "bnxt_tc.h" 70 #include "bnxt_devlink.h" 71 #include "bnxt_debugfs.h" 72 #include "bnxt_hwmon.h" 73 74 #define BNXT_TX_TIMEOUT (5 * HZ) 75 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \ 76 NETIF_MSG_TX_ERR) 77 78 MODULE_LICENSE("GPL"); 79 MODULE_DESCRIPTION("Broadcom NetXtreme network driver"); 80 81 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 82 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 83 #define BNXT_RX_COPY_THRESH 256 84 85 #define BNXT_TX_PUSH_THRESH 164 86 87 /* indexed by enum board_idx */ 88 static const struct { 89 char *name; 90 } board_info[] = { 91 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 92 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 93 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 94 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 95 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 96 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 97 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 98 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 99 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 100 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 101 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 102 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 103 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 104 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 105 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 106 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 107 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 108 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 109 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 110 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 111 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 112 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 113 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 114 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 115 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 116 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 117 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 118 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 119 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 120 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 121 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 122 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 123 [BCM57608] = { "Broadcom BCM57608 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 124 [BCM57604] = { "Broadcom BCM57604 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 125 [BCM57602] = { "Broadcom BCM57602 NetXtreme-E 10Gb/25Gb/50Gb/100Gb Ethernet" }, 126 [BCM57601] = { "Broadcom BCM57601 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 127 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 128 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 129 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 130 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 131 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 132 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 133 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 134 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 135 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 136 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 137 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 138 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 139 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 140 [NETXTREME_E_P7_VF] = { "Broadcom BCM5760X Virtual Function" }, 141 }; 142 143 static const struct pci_device_id bnxt_pci_tbl[] = { 144 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 145 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 146 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 147 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 148 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 149 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 150 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 151 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 152 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 153 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 154 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 155 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 156 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 157 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 158 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 159 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 160 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 161 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 162 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 163 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 164 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 165 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 166 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 167 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 168 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 169 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 170 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 171 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 172 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 173 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 174 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 175 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 176 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 177 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 178 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 179 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 180 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 181 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 182 { PCI_VDEVICE(BROADCOM, 0x1760), .driver_data = BCM57608 }, 183 { PCI_VDEVICE(BROADCOM, 0x1761), .driver_data = BCM57604 }, 184 { PCI_VDEVICE(BROADCOM, 0x1762), .driver_data = BCM57602 }, 185 { PCI_VDEVICE(BROADCOM, 0x1763), .driver_data = BCM57601 }, 186 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR }, 187 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 188 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR }, 189 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR }, 190 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 191 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR }, 192 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 193 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 194 #ifdef CONFIG_BNXT_SRIOV 195 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 196 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 197 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 198 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 199 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 200 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 201 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 202 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 203 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 204 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 205 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 206 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 207 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 208 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 209 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 210 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 211 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 212 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 213 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 214 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 215 { PCI_VDEVICE(BROADCOM, 0x1819), .driver_data = NETXTREME_E_P7_VF }, 216 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 217 #endif 218 { 0 } 219 }; 220 221 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 222 223 static const u16 bnxt_vf_req_snif[] = { 224 HWRM_FUNC_CFG, 225 HWRM_FUNC_VF_CFG, 226 HWRM_PORT_PHY_QCFG, 227 HWRM_CFA_L2_FILTER_ALLOC, 228 }; 229 230 static const u16 bnxt_async_events_arr[] = { 231 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 232 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 233 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 234 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 235 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 236 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 237 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 238 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 239 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 240 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 241 ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE, 242 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 243 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 244 ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP, 245 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT, 246 ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE, 247 }; 248 249 static struct workqueue_struct *bnxt_pf_wq; 250 251 #define BNXT_IPV6_MASK_ALL {{{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, \ 252 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }}} 253 #define BNXT_IPV6_MASK_NONE {{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }}} 254 255 const struct bnxt_flow_masks BNXT_FLOW_MASK_NONE = { 256 .ports = { 257 .src = 0, 258 .dst = 0, 259 }, 260 .addrs = { 261 .v6addrs = { 262 .src = BNXT_IPV6_MASK_NONE, 263 .dst = BNXT_IPV6_MASK_NONE, 264 }, 265 }, 266 }; 267 268 const struct bnxt_flow_masks BNXT_FLOW_IPV6_MASK_ALL = { 269 .ports = { 270 .src = cpu_to_be16(0xffff), 271 .dst = cpu_to_be16(0xffff), 272 }, 273 .addrs = { 274 .v6addrs = { 275 .src = BNXT_IPV6_MASK_ALL, 276 .dst = BNXT_IPV6_MASK_ALL, 277 }, 278 }, 279 }; 280 281 const struct bnxt_flow_masks BNXT_FLOW_IPV4_MASK_ALL = { 282 .ports = { 283 .src = cpu_to_be16(0xffff), 284 .dst = cpu_to_be16(0xffff), 285 }, 286 .addrs = { 287 .v4addrs = { 288 .src = cpu_to_be32(0xffffffff), 289 .dst = cpu_to_be32(0xffffffff), 290 }, 291 }, 292 }; 293 294 static bool bnxt_vf_pciid(enum board_idx idx) 295 { 296 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 297 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 298 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || 299 idx == NETXTREME_E_P5_VF_HV || idx == NETXTREME_E_P7_VF); 300 } 301 302 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 303 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 304 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) 305 306 #define BNXT_CP_DB_IRQ_DIS(db) \ 307 writel(DB_CP_IRQ_DIS_FLAGS, db) 308 309 #define BNXT_DB_CQ(db, idx) \ 310 writel(DB_CP_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 311 312 #define BNXT_DB_NQ_P5(db, idx) \ 313 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | DB_RING_IDX(db, idx),\ 314 (db)->doorbell) 315 316 #define BNXT_DB_NQ_P7(db, idx) \ 317 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_MASK | \ 318 DB_RING_IDX(db, idx), (db)->doorbell) 319 320 #define BNXT_DB_CQ_ARM(db, idx) \ 321 writel(DB_CP_REARM_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 322 323 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 324 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | \ 325 DB_RING_IDX(db, idx), (db)->doorbell) 326 327 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 328 { 329 if (bp->flags & BNXT_FLAG_CHIP_P7) 330 BNXT_DB_NQ_P7(db, idx); 331 else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 332 BNXT_DB_NQ_P5(db, idx); 333 else 334 BNXT_DB_CQ(db, idx); 335 } 336 337 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 338 { 339 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 340 BNXT_DB_NQ_ARM_P5(db, idx); 341 else 342 BNXT_DB_CQ_ARM(db, idx); 343 } 344 345 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 346 { 347 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 348 bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL | 349 DB_RING_IDX(db, idx), db->doorbell); 350 else 351 BNXT_DB_CQ(db, idx); 352 } 353 354 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 355 { 356 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 357 return; 358 359 if (BNXT_PF(bp)) 360 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 361 else 362 schedule_delayed_work(&bp->fw_reset_task, delay); 363 } 364 365 static void __bnxt_queue_sp_work(struct bnxt *bp) 366 { 367 if (BNXT_PF(bp)) 368 queue_work(bnxt_pf_wq, &bp->sp_task); 369 else 370 schedule_work(&bp->sp_task); 371 } 372 373 static void bnxt_queue_sp_work(struct bnxt *bp, unsigned int event) 374 { 375 set_bit(event, &bp->sp_event); 376 __bnxt_queue_sp_work(bp); 377 } 378 379 static void bnxt_sched_reset_rxr(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 380 { 381 if (!rxr->bnapi->in_reset) { 382 rxr->bnapi->in_reset = true; 383 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 384 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 385 else 386 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 387 __bnxt_queue_sp_work(bp); 388 } 389 rxr->rx_next_cons = 0xffff; 390 } 391 392 void bnxt_sched_reset_txr(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 393 u16 curr) 394 { 395 struct bnxt_napi *bnapi = txr->bnapi; 396 397 if (bnapi->tx_fault) 398 return; 399 400 netdev_err(bp->dev, "Invalid Tx completion (ring:%d tx_hw_cons:%u cons:%u prod:%u curr:%u)", 401 txr->txq_index, txr->tx_hw_cons, 402 txr->tx_cons, txr->tx_prod, curr); 403 WARN_ON_ONCE(1); 404 bnapi->tx_fault = 1; 405 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 406 } 407 408 const u16 bnxt_lhint_arr[] = { 409 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 410 TX_BD_FLAGS_LHINT_512_TO_1023, 411 TX_BD_FLAGS_LHINT_1024_TO_2047, 412 TX_BD_FLAGS_LHINT_1024_TO_2047, 413 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 414 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 415 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 416 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 417 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 418 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 419 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 420 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 421 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 422 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 423 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 424 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 425 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 426 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 427 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 428 }; 429 430 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 431 { 432 struct metadata_dst *md_dst = skb_metadata_dst(skb); 433 434 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 435 return 0; 436 437 return md_dst->u.port_info.port_id; 438 } 439 440 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 441 u16 prod) 442 { 443 /* Sync BD data before updating doorbell */ 444 wmb(); 445 bnxt_db_write(bp, &txr->tx_db, prod); 446 txr->kick_pending = 0; 447 } 448 449 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 450 { 451 struct bnxt *bp = netdev_priv(dev); 452 struct tx_bd *txbd, *txbd0; 453 struct tx_bd_ext *txbd1; 454 struct netdev_queue *txq; 455 int i; 456 dma_addr_t mapping; 457 unsigned int length, pad = 0; 458 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 459 u16 prod, last_frag; 460 struct pci_dev *pdev = bp->pdev; 461 struct bnxt_tx_ring_info *txr; 462 struct bnxt_sw_tx_bd *tx_buf; 463 __le32 lflags = 0; 464 465 i = skb_get_queue_mapping(skb); 466 if (unlikely(i >= bp->tx_nr_rings)) { 467 dev_kfree_skb_any(skb); 468 dev_core_stats_tx_dropped_inc(dev); 469 return NETDEV_TX_OK; 470 } 471 472 txq = netdev_get_tx_queue(dev, i); 473 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 474 prod = txr->tx_prod; 475 476 free_size = bnxt_tx_avail(bp, txr); 477 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 478 /* We must have raced with NAPI cleanup */ 479 if (net_ratelimit() && txr->kick_pending) 480 netif_warn(bp, tx_err, dev, 481 "bnxt: ring busy w/ flush pending!\n"); 482 if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 483 bp->tx_wake_thresh)) 484 return NETDEV_TX_BUSY; 485 } 486 487 if (unlikely(ipv6_hopopt_jumbo_remove(skb))) 488 goto tx_free; 489 490 length = skb->len; 491 len = skb_headlen(skb); 492 last_frag = skb_shinfo(skb)->nr_frags; 493 494 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 495 496 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 497 tx_buf->skb = skb; 498 tx_buf->nr_frags = last_frag; 499 500 vlan_tag_flags = 0; 501 cfa_action = bnxt_xmit_get_cfa_action(skb); 502 if (skb_vlan_tag_present(skb)) { 503 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 504 skb_vlan_tag_get(skb); 505 /* Currently supports 8021Q, 8021AD vlan offloads 506 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 507 */ 508 if (skb->vlan_proto == htons(ETH_P_8021Q)) 509 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 510 } 511 512 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 513 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 514 515 if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb)) { 516 if (atomic_dec_if_positive(&ptp->tx_avail) < 0) { 517 atomic64_inc(&ptp->stats.ts_err); 518 goto tx_no_ts; 519 } 520 if (!bnxt_ptp_parse(skb, &ptp->tx_seqid, 521 &ptp->tx_hdr_off)) { 522 if (vlan_tag_flags) 523 ptp->tx_hdr_off += VLAN_HLEN; 524 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 525 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 526 } else { 527 atomic_inc(&bp->ptp_cfg->tx_avail); 528 } 529 } 530 } 531 532 tx_no_ts: 533 if (unlikely(skb->no_fcs)) 534 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 535 536 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && 537 !lflags) { 538 struct tx_push_buffer *tx_push_buf = txr->tx_push; 539 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 540 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 541 void __iomem *db = txr->tx_db.doorbell; 542 void *pdata = tx_push_buf->data; 543 u64 *end; 544 int j, push_len; 545 546 /* Set COAL_NOW to be ready quickly for the next push */ 547 tx_push->tx_bd_len_flags_type = 548 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 549 TX_BD_TYPE_LONG_TX_BD | 550 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 551 TX_BD_FLAGS_COAL_NOW | 552 TX_BD_FLAGS_PACKET_END | 553 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 554 555 if (skb->ip_summed == CHECKSUM_PARTIAL) 556 tx_push1->tx_bd_hsize_lflags = 557 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 558 else 559 tx_push1->tx_bd_hsize_lflags = 0; 560 561 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 562 tx_push1->tx_bd_cfa_action = 563 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 564 565 end = pdata + length; 566 end = PTR_ALIGN(end, 8) - 1; 567 *end = 0; 568 569 skb_copy_from_linear_data(skb, pdata, len); 570 pdata += len; 571 for (j = 0; j < last_frag; j++) { 572 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 573 void *fptr; 574 575 fptr = skb_frag_address_safe(frag); 576 if (!fptr) 577 goto normal_tx; 578 579 memcpy(pdata, fptr, skb_frag_size(frag)); 580 pdata += skb_frag_size(frag); 581 } 582 583 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 584 txbd->tx_bd_haddr = txr->data_mapping; 585 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2); 586 prod = NEXT_TX(prod); 587 tx_push->tx_bd_opaque = txbd->tx_bd_opaque; 588 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 589 memcpy(txbd, tx_push1, sizeof(*txbd)); 590 prod = NEXT_TX(prod); 591 tx_push->doorbell = 592 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | 593 DB_RING_IDX(&txr->tx_db, prod)); 594 WRITE_ONCE(txr->tx_prod, prod); 595 596 tx_buf->is_push = 1; 597 netdev_tx_sent_queue(txq, skb->len); 598 wmb(); /* Sync is_push and byte queue before pushing data */ 599 600 push_len = (length + sizeof(*tx_push) + 7) / 8; 601 if (push_len > 16) { 602 __iowrite64_copy(db, tx_push_buf, 16); 603 __iowrite32_copy(db + 4, tx_push_buf + 1, 604 (push_len - 16) << 1); 605 } else { 606 __iowrite64_copy(db, tx_push_buf, push_len); 607 } 608 609 goto tx_done; 610 } 611 612 normal_tx: 613 if (length < BNXT_MIN_PKT_SIZE) { 614 pad = BNXT_MIN_PKT_SIZE - length; 615 if (skb_pad(skb, pad)) 616 /* SKB already freed. */ 617 goto tx_kick_pending; 618 length = BNXT_MIN_PKT_SIZE; 619 } 620 621 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 622 623 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 624 goto tx_free; 625 626 dma_unmap_addr_set(tx_buf, mapping, mapping); 627 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 628 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 629 630 txbd->tx_bd_haddr = cpu_to_le64(mapping); 631 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2 + last_frag); 632 633 prod = NEXT_TX(prod); 634 txbd1 = (struct tx_bd_ext *) 635 &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 636 637 txbd1->tx_bd_hsize_lflags = lflags; 638 if (skb_is_gso(skb)) { 639 bool udp_gso = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4); 640 u32 hdr_len; 641 642 if (skb->encapsulation) { 643 if (udp_gso) 644 hdr_len = skb_inner_transport_offset(skb) + 645 sizeof(struct udphdr); 646 else 647 hdr_len = skb_inner_tcp_all_headers(skb); 648 } else if (udp_gso) { 649 hdr_len = skb_transport_offset(skb) + 650 sizeof(struct udphdr); 651 } else { 652 hdr_len = skb_tcp_all_headers(skb); 653 } 654 655 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 656 TX_BD_FLAGS_T_IPID | 657 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 658 length = skb_shinfo(skb)->gso_size; 659 txbd1->tx_bd_mss = cpu_to_le32(length); 660 length += hdr_len; 661 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 662 txbd1->tx_bd_hsize_lflags |= 663 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 664 txbd1->tx_bd_mss = 0; 665 } 666 667 length >>= 9; 668 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 669 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 670 skb->len); 671 i = 0; 672 goto tx_dma_error; 673 } 674 flags |= bnxt_lhint_arr[length]; 675 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 676 677 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 678 txbd1->tx_bd_cfa_action = 679 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 680 txbd0 = txbd; 681 for (i = 0; i < last_frag; i++) { 682 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 683 684 prod = NEXT_TX(prod); 685 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 686 687 len = skb_frag_size(frag); 688 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 689 DMA_TO_DEVICE); 690 691 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 692 goto tx_dma_error; 693 694 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 695 dma_unmap_addr_set(tx_buf, mapping, mapping); 696 697 txbd->tx_bd_haddr = cpu_to_le64(mapping); 698 699 flags = len << TX_BD_LEN_SHIFT; 700 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 701 } 702 703 flags &= ~TX_BD_LEN; 704 txbd->tx_bd_len_flags_type = 705 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 706 TX_BD_FLAGS_PACKET_END); 707 708 netdev_tx_sent_queue(txq, skb->len); 709 710 skb_tx_timestamp(skb); 711 712 prod = NEXT_TX(prod); 713 WRITE_ONCE(txr->tx_prod, prod); 714 715 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) { 716 bnxt_txr_db_kick(bp, txr, prod); 717 } else { 718 if (free_size >= bp->tx_wake_thresh) 719 txbd0->tx_bd_len_flags_type |= 720 cpu_to_le32(TX_BD_FLAGS_NO_CMPL); 721 txr->kick_pending = 1; 722 } 723 724 tx_done: 725 726 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 727 if (netdev_xmit_more() && !tx_buf->is_push) { 728 txbd0->tx_bd_len_flags_type &= 729 cpu_to_le32(~TX_BD_FLAGS_NO_CMPL); 730 bnxt_txr_db_kick(bp, txr, prod); 731 } 732 733 netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 734 bp->tx_wake_thresh); 735 } 736 return NETDEV_TX_OK; 737 738 tx_dma_error: 739 last_frag = i; 740 741 /* start back at beginning and unmap skb */ 742 prod = txr->tx_prod; 743 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 744 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 745 skb_headlen(skb), DMA_TO_DEVICE); 746 prod = NEXT_TX(prod); 747 748 /* unmap remaining mapped pages */ 749 for (i = 0; i < last_frag; i++) { 750 prod = NEXT_TX(prod); 751 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 752 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 753 skb_frag_size(&skb_shinfo(skb)->frags[i]), 754 DMA_TO_DEVICE); 755 } 756 757 tx_free: 758 dev_kfree_skb_any(skb); 759 tx_kick_pending: 760 if (BNXT_TX_PTP_IS_SET(lflags)) { 761 atomic64_inc(&bp->ptp_cfg->stats.ts_err); 762 atomic_inc(&bp->ptp_cfg->tx_avail); 763 } 764 if (txr->kick_pending) 765 bnxt_txr_db_kick(bp, txr, txr->tx_prod); 766 txr->tx_buf_ring[txr->tx_prod].skb = NULL; 767 dev_core_stats_tx_dropped_inc(dev); 768 return NETDEV_TX_OK; 769 } 770 771 static void __bnxt_tx_int(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 772 int budget) 773 { 774 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 775 struct pci_dev *pdev = bp->pdev; 776 u16 hw_cons = txr->tx_hw_cons; 777 unsigned int tx_bytes = 0; 778 u16 cons = txr->tx_cons; 779 int tx_pkts = 0; 780 781 while (RING_TX(bp, cons) != hw_cons) { 782 struct bnxt_sw_tx_bd *tx_buf; 783 struct sk_buff *skb; 784 int j, last; 785 786 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 787 cons = NEXT_TX(cons); 788 skb = tx_buf->skb; 789 tx_buf->skb = NULL; 790 791 if (unlikely(!skb)) { 792 bnxt_sched_reset_txr(bp, txr, cons); 793 return; 794 } 795 796 tx_pkts++; 797 tx_bytes += skb->len; 798 799 if (tx_buf->is_push) { 800 tx_buf->is_push = 0; 801 goto next_tx_int; 802 } 803 804 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 805 skb_headlen(skb), DMA_TO_DEVICE); 806 last = tx_buf->nr_frags; 807 808 for (j = 0; j < last; j++) { 809 cons = NEXT_TX(cons); 810 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 811 dma_unmap_page( 812 &pdev->dev, 813 dma_unmap_addr(tx_buf, mapping), 814 skb_frag_size(&skb_shinfo(skb)->frags[j]), 815 DMA_TO_DEVICE); 816 } 817 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 818 if (BNXT_CHIP_P5(bp)) { 819 /* PTP worker takes ownership of the skb */ 820 if (!bnxt_get_tx_ts_p5(bp, skb)) { 821 skb = NULL; 822 } else { 823 atomic64_inc(&bp->ptp_cfg->stats.ts_err); 824 atomic_inc(&bp->ptp_cfg->tx_avail); 825 } 826 } 827 } 828 829 next_tx_int: 830 cons = NEXT_TX(cons); 831 832 dev_consume_skb_any(skb); 833 } 834 835 WRITE_ONCE(txr->tx_cons, cons); 836 837 __netif_txq_completed_wake(txq, tx_pkts, tx_bytes, 838 bnxt_tx_avail(bp, txr), bp->tx_wake_thresh, 839 READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING); 840 } 841 842 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 843 { 844 struct bnxt_tx_ring_info *txr; 845 int i; 846 847 bnxt_for_each_napi_tx(i, bnapi, txr) { 848 if (txr->tx_hw_cons != RING_TX(bp, txr->tx_cons)) 849 __bnxt_tx_int(bp, txr, budget); 850 } 851 bnapi->events &= ~BNXT_TX_CMP_EVENT; 852 } 853 854 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 855 struct bnxt_rx_ring_info *rxr, 856 unsigned int *offset, 857 gfp_t gfp) 858 { 859 struct page *page; 860 861 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 862 page = page_pool_dev_alloc_frag(rxr->page_pool, offset, 863 BNXT_RX_PAGE_SIZE); 864 } else { 865 page = page_pool_dev_alloc_pages(rxr->page_pool); 866 *offset = 0; 867 } 868 if (!page) 869 return NULL; 870 871 *mapping = page_pool_get_dma_addr(page) + *offset; 872 return page; 873 } 874 875 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping, 876 gfp_t gfp) 877 { 878 u8 *data; 879 struct pci_dev *pdev = bp->pdev; 880 881 if (gfp == GFP_ATOMIC) 882 data = napi_alloc_frag(bp->rx_buf_size); 883 else 884 data = netdev_alloc_frag(bp->rx_buf_size); 885 if (!data) 886 return NULL; 887 888 *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset, 889 bp->rx_buf_use_size, bp->rx_dir, 890 DMA_ATTR_WEAK_ORDERING); 891 892 if (dma_mapping_error(&pdev->dev, *mapping)) { 893 skb_free_frag(data); 894 data = NULL; 895 } 896 return data; 897 } 898 899 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 900 u16 prod, gfp_t gfp) 901 { 902 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 903 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 904 dma_addr_t mapping; 905 906 if (BNXT_RX_PAGE_MODE(bp)) { 907 unsigned int offset; 908 struct page *page = 909 __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 910 911 if (!page) 912 return -ENOMEM; 913 914 mapping += bp->rx_dma_offset; 915 rx_buf->data = page; 916 rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset; 917 } else { 918 u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp); 919 920 if (!data) 921 return -ENOMEM; 922 923 rx_buf->data = data; 924 rx_buf->data_ptr = data + bp->rx_offset; 925 } 926 rx_buf->mapping = mapping; 927 928 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 929 return 0; 930 } 931 932 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 933 { 934 u16 prod = rxr->rx_prod; 935 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 936 struct bnxt *bp = rxr->bnapi->bp; 937 struct rx_bd *cons_bd, *prod_bd; 938 939 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 940 cons_rx_buf = &rxr->rx_buf_ring[cons]; 941 942 prod_rx_buf->data = data; 943 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 944 945 prod_rx_buf->mapping = cons_rx_buf->mapping; 946 947 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 948 cons_bd = &rxr->rx_desc_ring[RX_RING(bp, cons)][RX_IDX(cons)]; 949 950 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 951 } 952 953 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 954 { 955 u16 next, max = rxr->rx_agg_bmap_size; 956 957 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 958 if (next >= max) 959 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 960 return next; 961 } 962 963 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 964 struct bnxt_rx_ring_info *rxr, 965 u16 prod, gfp_t gfp) 966 { 967 struct rx_bd *rxbd = 968 &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 969 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 970 struct page *page; 971 dma_addr_t mapping; 972 u16 sw_prod = rxr->rx_sw_agg_prod; 973 unsigned int offset = 0; 974 975 page = __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 976 977 if (!page) 978 return -ENOMEM; 979 980 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 981 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 982 983 __set_bit(sw_prod, rxr->rx_agg_bmap); 984 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 985 rxr->rx_sw_agg_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 986 987 rx_agg_buf->page = page; 988 rx_agg_buf->offset = offset; 989 rx_agg_buf->mapping = mapping; 990 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 991 rxbd->rx_bd_opaque = sw_prod; 992 return 0; 993 } 994 995 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 996 struct bnxt_cp_ring_info *cpr, 997 u16 cp_cons, u16 curr) 998 { 999 struct rx_agg_cmp *agg; 1000 1001 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 1002 agg = (struct rx_agg_cmp *) 1003 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1004 return agg; 1005 } 1006 1007 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 1008 struct bnxt_rx_ring_info *rxr, 1009 u16 agg_id, u16 curr) 1010 { 1011 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 1012 1013 return &tpa_info->agg_arr[curr]; 1014 } 1015 1016 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 1017 u16 start, u32 agg_bufs, bool tpa) 1018 { 1019 struct bnxt_napi *bnapi = cpr->bnapi; 1020 struct bnxt *bp = bnapi->bp; 1021 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1022 u16 prod = rxr->rx_agg_prod; 1023 u16 sw_prod = rxr->rx_sw_agg_prod; 1024 bool p5_tpa = false; 1025 u32 i; 1026 1027 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1028 p5_tpa = true; 1029 1030 for (i = 0; i < agg_bufs; i++) { 1031 u16 cons; 1032 struct rx_agg_cmp *agg; 1033 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 1034 struct rx_bd *prod_bd; 1035 struct page *page; 1036 1037 if (p5_tpa) 1038 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 1039 else 1040 agg = bnxt_get_agg(bp, cpr, idx, start + i); 1041 cons = agg->rx_agg_cmp_opaque; 1042 __clear_bit(cons, rxr->rx_agg_bmap); 1043 1044 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 1045 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 1046 1047 __set_bit(sw_prod, rxr->rx_agg_bmap); 1048 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 1049 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1050 1051 /* It is possible for sw_prod to be equal to cons, so 1052 * set cons_rx_buf->page to NULL first. 1053 */ 1054 page = cons_rx_buf->page; 1055 cons_rx_buf->page = NULL; 1056 prod_rx_buf->page = page; 1057 prod_rx_buf->offset = cons_rx_buf->offset; 1058 1059 prod_rx_buf->mapping = cons_rx_buf->mapping; 1060 1061 prod_bd = &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 1062 1063 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 1064 prod_bd->rx_bd_opaque = sw_prod; 1065 1066 prod = NEXT_RX_AGG(prod); 1067 sw_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 1068 } 1069 rxr->rx_agg_prod = prod; 1070 rxr->rx_sw_agg_prod = sw_prod; 1071 } 1072 1073 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp, 1074 struct bnxt_rx_ring_info *rxr, 1075 u16 cons, void *data, u8 *data_ptr, 1076 dma_addr_t dma_addr, 1077 unsigned int offset_and_len) 1078 { 1079 unsigned int len = offset_and_len & 0xffff; 1080 struct page *page = data; 1081 u16 prod = rxr->rx_prod; 1082 struct sk_buff *skb; 1083 int err; 1084 1085 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1086 if (unlikely(err)) { 1087 bnxt_reuse_rx_data(rxr, cons, data); 1088 return NULL; 1089 } 1090 dma_addr -= bp->rx_dma_offset; 1091 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1092 bp->rx_dir); 1093 skb = napi_build_skb(data_ptr - bp->rx_offset, BNXT_RX_PAGE_SIZE); 1094 if (!skb) { 1095 page_pool_recycle_direct(rxr->page_pool, page); 1096 return NULL; 1097 } 1098 skb_mark_for_recycle(skb); 1099 skb_reserve(skb, bp->rx_offset); 1100 __skb_put(skb, len); 1101 1102 return skb; 1103 } 1104 1105 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 1106 struct bnxt_rx_ring_info *rxr, 1107 u16 cons, void *data, u8 *data_ptr, 1108 dma_addr_t dma_addr, 1109 unsigned int offset_and_len) 1110 { 1111 unsigned int payload = offset_and_len >> 16; 1112 unsigned int len = offset_and_len & 0xffff; 1113 skb_frag_t *frag; 1114 struct page *page = data; 1115 u16 prod = rxr->rx_prod; 1116 struct sk_buff *skb; 1117 int off, err; 1118 1119 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1120 if (unlikely(err)) { 1121 bnxt_reuse_rx_data(rxr, cons, data); 1122 return NULL; 1123 } 1124 dma_addr -= bp->rx_dma_offset; 1125 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1126 bp->rx_dir); 1127 1128 if (unlikely(!payload)) 1129 payload = eth_get_headlen(bp->dev, data_ptr, len); 1130 1131 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 1132 if (!skb) { 1133 page_pool_recycle_direct(rxr->page_pool, page); 1134 return NULL; 1135 } 1136 1137 skb_mark_for_recycle(skb); 1138 off = (void *)data_ptr - page_address(page); 1139 skb_add_rx_frag(skb, 0, page, off, len, BNXT_RX_PAGE_SIZE); 1140 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 1141 payload + NET_IP_ALIGN); 1142 1143 frag = &skb_shinfo(skb)->frags[0]; 1144 skb_frag_size_sub(frag, payload); 1145 skb_frag_off_add(frag, payload); 1146 skb->data_len -= payload; 1147 skb->tail += payload; 1148 1149 return skb; 1150 } 1151 1152 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 1153 struct bnxt_rx_ring_info *rxr, u16 cons, 1154 void *data, u8 *data_ptr, 1155 dma_addr_t dma_addr, 1156 unsigned int offset_and_len) 1157 { 1158 u16 prod = rxr->rx_prod; 1159 struct sk_buff *skb; 1160 int err; 1161 1162 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1163 if (unlikely(err)) { 1164 bnxt_reuse_rx_data(rxr, cons, data); 1165 return NULL; 1166 } 1167 1168 skb = napi_build_skb(data, bp->rx_buf_size); 1169 dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1170 bp->rx_dir, DMA_ATTR_WEAK_ORDERING); 1171 if (!skb) { 1172 skb_free_frag(data); 1173 return NULL; 1174 } 1175 1176 skb_reserve(skb, bp->rx_offset); 1177 skb_put(skb, offset_and_len & 0xffff); 1178 return skb; 1179 } 1180 1181 static u32 __bnxt_rx_agg_pages(struct bnxt *bp, 1182 struct bnxt_cp_ring_info *cpr, 1183 struct skb_shared_info *shinfo, 1184 u16 idx, u32 agg_bufs, bool tpa, 1185 struct xdp_buff *xdp) 1186 { 1187 struct bnxt_napi *bnapi = cpr->bnapi; 1188 struct pci_dev *pdev = bp->pdev; 1189 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1190 u16 prod = rxr->rx_agg_prod; 1191 u32 i, total_frag_len = 0; 1192 bool p5_tpa = false; 1193 1194 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1195 p5_tpa = true; 1196 1197 for (i = 0; i < agg_bufs; i++) { 1198 skb_frag_t *frag = &shinfo->frags[i]; 1199 u16 cons, frag_len; 1200 struct rx_agg_cmp *agg; 1201 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1202 struct page *page; 1203 dma_addr_t mapping; 1204 1205 if (p5_tpa) 1206 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1207 else 1208 agg = bnxt_get_agg(bp, cpr, idx, i); 1209 cons = agg->rx_agg_cmp_opaque; 1210 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1211 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1212 1213 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1214 skb_frag_fill_page_desc(frag, cons_rx_buf->page, 1215 cons_rx_buf->offset, frag_len); 1216 shinfo->nr_frags = i + 1; 1217 __clear_bit(cons, rxr->rx_agg_bmap); 1218 1219 /* It is possible for bnxt_alloc_rx_page() to allocate 1220 * a sw_prod index that equals the cons index, so we 1221 * need to clear the cons entry now. 1222 */ 1223 mapping = cons_rx_buf->mapping; 1224 page = cons_rx_buf->page; 1225 cons_rx_buf->page = NULL; 1226 1227 if (xdp && page_is_pfmemalloc(page)) 1228 xdp_buff_set_frag_pfmemalloc(xdp); 1229 1230 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 1231 --shinfo->nr_frags; 1232 cons_rx_buf->page = page; 1233 1234 /* Update prod since possibly some pages have been 1235 * allocated already. 1236 */ 1237 rxr->rx_agg_prod = prod; 1238 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1239 return 0; 1240 } 1241 1242 dma_sync_single_for_cpu(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, 1243 bp->rx_dir); 1244 1245 total_frag_len += frag_len; 1246 prod = NEXT_RX_AGG(prod); 1247 } 1248 rxr->rx_agg_prod = prod; 1249 return total_frag_len; 1250 } 1251 1252 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp, 1253 struct bnxt_cp_ring_info *cpr, 1254 struct sk_buff *skb, u16 idx, 1255 u32 agg_bufs, bool tpa) 1256 { 1257 struct skb_shared_info *shinfo = skb_shinfo(skb); 1258 u32 total_frag_len = 0; 1259 1260 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx, 1261 agg_bufs, tpa, NULL); 1262 if (!total_frag_len) { 1263 skb_mark_for_recycle(skb); 1264 dev_kfree_skb(skb); 1265 return NULL; 1266 } 1267 1268 skb->data_len += total_frag_len; 1269 skb->len += total_frag_len; 1270 skb->truesize += BNXT_RX_PAGE_SIZE * agg_bufs; 1271 return skb; 1272 } 1273 1274 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp, 1275 struct bnxt_cp_ring_info *cpr, 1276 struct xdp_buff *xdp, u16 idx, 1277 u32 agg_bufs, bool tpa) 1278 { 1279 struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp); 1280 u32 total_frag_len = 0; 1281 1282 if (!xdp_buff_has_frags(xdp)) 1283 shinfo->nr_frags = 0; 1284 1285 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, 1286 idx, agg_bufs, tpa, xdp); 1287 if (total_frag_len) { 1288 xdp_buff_set_frags_flag(xdp); 1289 shinfo->nr_frags = agg_bufs; 1290 shinfo->xdp_frags_size = total_frag_len; 1291 } 1292 return total_frag_len; 1293 } 1294 1295 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1296 u8 agg_bufs, u32 *raw_cons) 1297 { 1298 u16 last; 1299 struct rx_agg_cmp *agg; 1300 1301 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1302 last = RING_CMP(*raw_cons); 1303 agg = (struct rx_agg_cmp *) 1304 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1305 return RX_AGG_CMP_VALID(agg, *raw_cons); 1306 } 1307 1308 static struct sk_buff *bnxt_copy_data(struct bnxt_napi *bnapi, u8 *data, 1309 unsigned int len, 1310 dma_addr_t mapping) 1311 { 1312 struct bnxt *bp = bnapi->bp; 1313 struct pci_dev *pdev = bp->pdev; 1314 struct sk_buff *skb; 1315 1316 skb = napi_alloc_skb(&bnapi->napi, len); 1317 if (!skb) 1318 return NULL; 1319 1320 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh, 1321 bp->rx_dir); 1322 1323 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1324 len + NET_IP_ALIGN); 1325 1326 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh, 1327 bp->rx_dir); 1328 1329 skb_put(skb, len); 1330 1331 return skb; 1332 } 1333 1334 static struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1335 unsigned int len, 1336 dma_addr_t mapping) 1337 { 1338 return bnxt_copy_data(bnapi, data, len, mapping); 1339 } 1340 1341 static struct sk_buff *bnxt_copy_xdp(struct bnxt_napi *bnapi, 1342 struct xdp_buff *xdp, 1343 unsigned int len, 1344 dma_addr_t mapping) 1345 { 1346 unsigned int metasize = 0; 1347 u8 *data = xdp->data; 1348 struct sk_buff *skb; 1349 1350 len = xdp->data_end - xdp->data_meta; 1351 metasize = xdp->data - xdp->data_meta; 1352 data = xdp->data_meta; 1353 1354 skb = bnxt_copy_data(bnapi, data, len, mapping); 1355 if (!skb) 1356 return skb; 1357 1358 if (metasize) { 1359 skb_metadata_set(skb, metasize); 1360 __skb_pull(skb, metasize); 1361 } 1362 1363 return skb; 1364 } 1365 1366 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1367 u32 *raw_cons, void *cmp) 1368 { 1369 struct rx_cmp *rxcmp = cmp; 1370 u32 tmp_raw_cons = *raw_cons; 1371 u8 cmp_type, agg_bufs = 0; 1372 1373 cmp_type = RX_CMP_TYPE(rxcmp); 1374 1375 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1376 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1377 RX_CMP_AGG_BUFS) >> 1378 RX_CMP_AGG_BUFS_SHIFT; 1379 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1380 struct rx_tpa_end_cmp *tpa_end = cmp; 1381 1382 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1383 return 0; 1384 1385 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1386 } 1387 1388 if (agg_bufs) { 1389 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1390 return -EBUSY; 1391 } 1392 *raw_cons = tmp_raw_cons; 1393 return 0; 1394 } 1395 1396 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1397 { 1398 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1399 u16 idx = agg_id & MAX_TPA_P5_MASK; 1400 1401 if (test_bit(idx, map->agg_idx_bmap)) 1402 idx = find_first_zero_bit(map->agg_idx_bmap, 1403 BNXT_AGG_IDX_BMAP_SIZE); 1404 __set_bit(idx, map->agg_idx_bmap); 1405 map->agg_id_tbl[agg_id] = idx; 1406 return idx; 1407 } 1408 1409 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1410 { 1411 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1412 1413 __clear_bit(idx, map->agg_idx_bmap); 1414 } 1415 1416 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1417 { 1418 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1419 1420 return map->agg_id_tbl[agg_id]; 1421 } 1422 1423 static void bnxt_tpa_metadata(struct bnxt_tpa_info *tpa_info, 1424 struct rx_tpa_start_cmp *tpa_start, 1425 struct rx_tpa_start_cmp_ext *tpa_start1) 1426 { 1427 tpa_info->cfa_code_valid = 1; 1428 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1429 tpa_info->vlan_valid = 0; 1430 if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) { 1431 tpa_info->vlan_valid = 1; 1432 tpa_info->metadata = 1433 le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1434 } 1435 } 1436 1437 static void bnxt_tpa_metadata_v2(struct bnxt_tpa_info *tpa_info, 1438 struct rx_tpa_start_cmp *tpa_start, 1439 struct rx_tpa_start_cmp_ext *tpa_start1) 1440 { 1441 tpa_info->vlan_valid = 0; 1442 if (TPA_START_VLAN_VALID(tpa_start)) { 1443 u32 tpid_sel = TPA_START_VLAN_TPID_SEL(tpa_start); 1444 u32 vlan_proto = ETH_P_8021Q; 1445 1446 tpa_info->vlan_valid = 1; 1447 if (tpid_sel == RX_TPA_START_METADATA1_TPID_8021AD) 1448 vlan_proto = ETH_P_8021AD; 1449 tpa_info->metadata = vlan_proto << 16 | 1450 TPA_START_METADATA0_TCI(tpa_start1); 1451 } 1452 } 1453 1454 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1455 u8 cmp_type, struct rx_tpa_start_cmp *tpa_start, 1456 struct rx_tpa_start_cmp_ext *tpa_start1) 1457 { 1458 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1459 struct bnxt_tpa_info *tpa_info; 1460 u16 cons, prod, agg_id; 1461 struct rx_bd *prod_bd; 1462 dma_addr_t mapping; 1463 1464 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1465 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1466 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1467 } else { 1468 agg_id = TPA_START_AGG_ID(tpa_start); 1469 } 1470 cons = tpa_start->rx_tpa_start_cmp_opaque; 1471 prod = rxr->rx_prod; 1472 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1473 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 1474 tpa_info = &rxr->rx_tpa[agg_id]; 1475 1476 if (unlikely(cons != rxr->rx_next_cons || 1477 TPA_START_ERROR(tpa_start))) { 1478 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1479 cons, rxr->rx_next_cons, 1480 TPA_START_ERROR_CODE(tpa_start1)); 1481 bnxt_sched_reset_rxr(bp, rxr); 1482 return; 1483 } 1484 prod_rx_buf->data = tpa_info->data; 1485 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1486 1487 mapping = tpa_info->mapping; 1488 prod_rx_buf->mapping = mapping; 1489 1490 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 1491 1492 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1493 1494 tpa_info->data = cons_rx_buf->data; 1495 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1496 cons_rx_buf->data = NULL; 1497 tpa_info->mapping = cons_rx_buf->mapping; 1498 1499 tpa_info->len = 1500 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1501 RX_TPA_START_CMP_LEN_SHIFT; 1502 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1503 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1504 tpa_info->gso_type = SKB_GSO_TCPV4; 1505 if (TPA_START_IS_IPV6(tpa_start1)) 1506 tpa_info->gso_type = SKB_GSO_TCPV6; 1507 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1508 else if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP && 1509 TPA_START_HASH_TYPE(tpa_start) == 3) 1510 tpa_info->gso_type = SKB_GSO_TCPV6; 1511 tpa_info->rss_hash = 1512 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1513 } else { 1514 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1515 tpa_info->gso_type = 0; 1516 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1517 } 1518 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1519 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1520 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) 1521 bnxt_tpa_metadata(tpa_info, tpa_start, tpa_start1); 1522 else 1523 bnxt_tpa_metadata_v2(tpa_info, tpa_start, tpa_start1); 1524 tpa_info->agg_count = 0; 1525 1526 rxr->rx_prod = NEXT_RX(prod); 1527 cons = RING_RX(bp, NEXT_RX(cons)); 1528 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 1529 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1530 1531 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1532 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1533 cons_rx_buf->data = NULL; 1534 } 1535 1536 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1537 { 1538 if (agg_bufs) 1539 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1540 } 1541 1542 #ifdef CONFIG_INET 1543 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1544 { 1545 struct udphdr *uh = NULL; 1546 1547 if (ip_proto == htons(ETH_P_IP)) { 1548 struct iphdr *iph = (struct iphdr *)skb->data; 1549 1550 if (iph->protocol == IPPROTO_UDP) 1551 uh = (struct udphdr *)(iph + 1); 1552 } else { 1553 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1554 1555 if (iph->nexthdr == IPPROTO_UDP) 1556 uh = (struct udphdr *)(iph + 1); 1557 } 1558 if (uh) { 1559 if (uh->check) 1560 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1561 else 1562 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1563 } 1564 } 1565 #endif 1566 1567 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1568 int payload_off, int tcp_ts, 1569 struct sk_buff *skb) 1570 { 1571 #ifdef CONFIG_INET 1572 struct tcphdr *th; 1573 int len, nw_off; 1574 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1575 u32 hdr_info = tpa_info->hdr_info; 1576 bool loopback = false; 1577 1578 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1579 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1580 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1581 1582 /* If the packet is an internal loopback packet, the offsets will 1583 * have an extra 4 bytes. 1584 */ 1585 if (inner_mac_off == 4) { 1586 loopback = true; 1587 } else if (inner_mac_off > 4) { 1588 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1589 ETH_HLEN - 2)); 1590 1591 /* We only support inner iPv4/ipv6. If we don't see the 1592 * correct protocol ID, it must be a loopback packet where 1593 * the offsets are off by 4. 1594 */ 1595 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1596 loopback = true; 1597 } 1598 if (loopback) { 1599 /* internal loopback packet, subtract all offsets by 4 */ 1600 inner_ip_off -= 4; 1601 inner_mac_off -= 4; 1602 outer_ip_off -= 4; 1603 } 1604 1605 nw_off = inner_ip_off - ETH_HLEN; 1606 skb_set_network_header(skb, nw_off); 1607 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1608 struct ipv6hdr *iph = ipv6_hdr(skb); 1609 1610 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1611 len = skb->len - skb_transport_offset(skb); 1612 th = tcp_hdr(skb); 1613 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1614 } else { 1615 struct iphdr *iph = ip_hdr(skb); 1616 1617 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1618 len = skb->len - skb_transport_offset(skb); 1619 th = tcp_hdr(skb); 1620 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1621 } 1622 1623 if (inner_mac_off) { /* tunnel */ 1624 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1625 ETH_HLEN - 2)); 1626 1627 bnxt_gro_tunnel(skb, proto); 1628 } 1629 #endif 1630 return skb; 1631 } 1632 1633 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1634 int payload_off, int tcp_ts, 1635 struct sk_buff *skb) 1636 { 1637 #ifdef CONFIG_INET 1638 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1639 u32 hdr_info = tpa_info->hdr_info; 1640 int iphdr_len, nw_off; 1641 1642 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1643 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1644 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1645 1646 nw_off = inner_ip_off - ETH_HLEN; 1647 skb_set_network_header(skb, nw_off); 1648 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1649 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1650 skb_set_transport_header(skb, nw_off + iphdr_len); 1651 1652 if (inner_mac_off) { /* tunnel */ 1653 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1654 ETH_HLEN - 2)); 1655 1656 bnxt_gro_tunnel(skb, proto); 1657 } 1658 #endif 1659 return skb; 1660 } 1661 1662 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1663 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1664 1665 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1666 int payload_off, int tcp_ts, 1667 struct sk_buff *skb) 1668 { 1669 #ifdef CONFIG_INET 1670 struct tcphdr *th; 1671 int len, nw_off, tcp_opt_len = 0; 1672 1673 if (tcp_ts) 1674 tcp_opt_len = 12; 1675 1676 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1677 struct iphdr *iph; 1678 1679 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1680 ETH_HLEN; 1681 skb_set_network_header(skb, nw_off); 1682 iph = ip_hdr(skb); 1683 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1684 len = skb->len - skb_transport_offset(skb); 1685 th = tcp_hdr(skb); 1686 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1687 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1688 struct ipv6hdr *iph; 1689 1690 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1691 ETH_HLEN; 1692 skb_set_network_header(skb, nw_off); 1693 iph = ipv6_hdr(skb); 1694 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1695 len = skb->len - skb_transport_offset(skb); 1696 th = tcp_hdr(skb); 1697 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1698 } else { 1699 dev_kfree_skb_any(skb); 1700 return NULL; 1701 } 1702 1703 if (nw_off) /* tunnel */ 1704 bnxt_gro_tunnel(skb, skb->protocol); 1705 #endif 1706 return skb; 1707 } 1708 1709 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1710 struct bnxt_tpa_info *tpa_info, 1711 struct rx_tpa_end_cmp *tpa_end, 1712 struct rx_tpa_end_cmp_ext *tpa_end1, 1713 struct sk_buff *skb) 1714 { 1715 #ifdef CONFIG_INET 1716 int payload_off; 1717 u16 segs; 1718 1719 segs = TPA_END_TPA_SEGS(tpa_end); 1720 if (segs == 1) 1721 return skb; 1722 1723 NAPI_GRO_CB(skb)->count = segs; 1724 skb_shinfo(skb)->gso_size = 1725 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1726 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1727 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1728 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1729 else 1730 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1731 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1732 if (likely(skb)) 1733 tcp_gro_complete(skb); 1734 #endif 1735 return skb; 1736 } 1737 1738 /* Given the cfa_code of a received packet determine which 1739 * netdev (vf-rep or PF) the packet is destined to. 1740 */ 1741 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1742 { 1743 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1744 1745 /* if vf-rep dev is NULL, the must belongs to the PF */ 1746 return dev ? dev : bp->dev; 1747 } 1748 1749 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1750 struct bnxt_cp_ring_info *cpr, 1751 u32 *raw_cons, 1752 struct rx_tpa_end_cmp *tpa_end, 1753 struct rx_tpa_end_cmp_ext *tpa_end1, 1754 u8 *event) 1755 { 1756 struct bnxt_napi *bnapi = cpr->bnapi; 1757 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1758 struct net_device *dev = bp->dev; 1759 u8 *data_ptr, agg_bufs; 1760 unsigned int len; 1761 struct bnxt_tpa_info *tpa_info; 1762 dma_addr_t mapping; 1763 struct sk_buff *skb; 1764 u16 idx = 0, agg_id; 1765 void *data; 1766 bool gro; 1767 1768 if (unlikely(bnapi->in_reset)) { 1769 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1770 1771 if (rc < 0) 1772 return ERR_PTR(-EBUSY); 1773 return NULL; 1774 } 1775 1776 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1777 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1778 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1779 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1780 tpa_info = &rxr->rx_tpa[agg_id]; 1781 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1782 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1783 agg_bufs, tpa_info->agg_count); 1784 agg_bufs = tpa_info->agg_count; 1785 } 1786 tpa_info->agg_count = 0; 1787 *event |= BNXT_AGG_EVENT; 1788 bnxt_free_agg_idx(rxr, agg_id); 1789 idx = agg_id; 1790 gro = !!(bp->flags & BNXT_FLAG_GRO); 1791 } else { 1792 agg_id = TPA_END_AGG_ID(tpa_end); 1793 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1794 tpa_info = &rxr->rx_tpa[agg_id]; 1795 idx = RING_CMP(*raw_cons); 1796 if (agg_bufs) { 1797 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1798 return ERR_PTR(-EBUSY); 1799 1800 *event |= BNXT_AGG_EVENT; 1801 idx = NEXT_CMP(idx); 1802 } 1803 gro = !!TPA_END_GRO(tpa_end); 1804 } 1805 data = tpa_info->data; 1806 data_ptr = tpa_info->data_ptr; 1807 prefetch(data_ptr); 1808 len = tpa_info->len; 1809 mapping = tpa_info->mapping; 1810 1811 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1812 bnxt_abort_tpa(cpr, idx, agg_bufs); 1813 if (agg_bufs > MAX_SKB_FRAGS) 1814 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1815 agg_bufs, (int)MAX_SKB_FRAGS); 1816 return NULL; 1817 } 1818 1819 if (len <= bp->rx_copy_thresh) { 1820 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1821 if (!skb) { 1822 bnxt_abort_tpa(cpr, idx, agg_bufs); 1823 cpr->sw_stats->rx.rx_oom_discards += 1; 1824 return NULL; 1825 } 1826 } else { 1827 u8 *new_data; 1828 dma_addr_t new_mapping; 1829 1830 new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC); 1831 if (!new_data) { 1832 bnxt_abort_tpa(cpr, idx, agg_bufs); 1833 cpr->sw_stats->rx.rx_oom_discards += 1; 1834 return NULL; 1835 } 1836 1837 tpa_info->data = new_data; 1838 tpa_info->data_ptr = new_data + bp->rx_offset; 1839 tpa_info->mapping = new_mapping; 1840 1841 skb = napi_build_skb(data, bp->rx_buf_size); 1842 dma_unmap_single_attrs(&bp->pdev->dev, mapping, 1843 bp->rx_buf_use_size, bp->rx_dir, 1844 DMA_ATTR_WEAK_ORDERING); 1845 1846 if (!skb) { 1847 skb_free_frag(data); 1848 bnxt_abort_tpa(cpr, idx, agg_bufs); 1849 cpr->sw_stats->rx.rx_oom_discards += 1; 1850 return NULL; 1851 } 1852 skb_reserve(skb, bp->rx_offset); 1853 skb_put(skb, len); 1854 } 1855 1856 if (agg_bufs) { 1857 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true); 1858 if (!skb) { 1859 /* Page reuse already handled by bnxt_rx_pages(). */ 1860 cpr->sw_stats->rx.rx_oom_discards += 1; 1861 return NULL; 1862 } 1863 } 1864 1865 if (tpa_info->cfa_code_valid) 1866 dev = bnxt_get_pkt_dev(bp, tpa_info->cfa_code); 1867 skb->protocol = eth_type_trans(skb, dev); 1868 1869 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1870 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1871 1872 if (tpa_info->vlan_valid && 1873 (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1874 __be16 vlan_proto = htons(tpa_info->metadata >> 1875 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1876 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1877 1878 if (eth_type_vlan(vlan_proto)) { 1879 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1880 } else { 1881 dev_kfree_skb(skb); 1882 return NULL; 1883 } 1884 } 1885 1886 skb_checksum_none_assert(skb); 1887 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1888 skb->ip_summed = CHECKSUM_UNNECESSARY; 1889 skb->csum_level = 1890 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1891 } 1892 1893 if (gro) 1894 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1895 1896 return skb; 1897 } 1898 1899 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1900 struct rx_agg_cmp *rx_agg) 1901 { 1902 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1903 struct bnxt_tpa_info *tpa_info; 1904 1905 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1906 tpa_info = &rxr->rx_tpa[agg_id]; 1907 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1908 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1909 } 1910 1911 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1912 struct sk_buff *skb) 1913 { 1914 skb_mark_for_recycle(skb); 1915 1916 if (skb->dev != bp->dev) { 1917 /* this packet belongs to a vf-rep */ 1918 bnxt_vf_rep_rx(bp, skb); 1919 return; 1920 } 1921 skb_record_rx_queue(skb, bnapi->index); 1922 napi_gro_receive(&bnapi->napi, skb); 1923 } 1924 1925 static bool bnxt_rx_ts_valid(struct bnxt *bp, u32 flags, 1926 struct rx_cmp_ext *rxcmp1, u32 *cmpl_ts) 1927 { 1928 u32 ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); 1929 1930 if (BNXT_PTP_RX_TS_VALID(flags)) 1931 goto ts_valid; 1932 if (!bp->ptp_all_rx_tstamp || !ts || !BNXT_ALL_RX_TS_VALID(flags)) 1933 return false; 1934 1935 ts_valid: 1936 *cmpl_ts = ts; 1937 return true; 1938 } 1939 1940 static struct sk_buff *bnxt_rx_vlan(struct sk_buff *skb, u8 cmp_type, 1941 struct rx_cmp *rxcmp, 1942 struct rx_cmp_ext *rxcmp1) 1943 { 1944 __be16 vlan_proto; 1945 u16 vtag; 1946 1947 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1948 __le32 flags2 = rxcmp1->rx_cmp_flags2; 1949 u32 meta_data; 1950 1951 if (!(flags2 & cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN))) 1952 return skb; 1953 1954 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 1955 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1956 vlan_proto = htons(meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT); 1957 if (eth_type_vlan(vlan_proto)) 1958 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1959 else 1960 goto vlan_err; 1961 } else if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 1962 if (RX_CMP_VLAN_VALID(rxcmp)) { 1963 u32 tpid_sel = RX_CMP_VLAN_TPID_SEL(rxcmp); 1964 1965 if (tpid_sel == RX_CMP_METADATA1_TPID_8021Q) 1966 vlan_proto = htons(ETH_P_8021Q); 1967 else if (tpid_sel == RX_CMP_METADATA1_TPID_8021AD) 1968 vlan_proto = htons(ETH_P_8021AD); 1969 else 1970 goto vlan_err; 1971 vtag = RX_CMP_METADATA0_TCI(rxcmp1); 1972 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1973 } 1974 } 1975 return skb; 1976 vlan_err: 1977 dev_kfree_skb(skb); 1978 return NULL; 1979 } 1980 1981 static enum pkt_hash_types bnxt_rss_ext_op(struct bnxt *bp, 1982 struct rx_cmp *rxcmp) 1983 { 1984 u8 ext_op; 1985 1986 ext_op = RX_CMP_V3_HASH_TYPE(bp, rxcmp); 1987 switch (ext_op) { 1988 case EXT_OP_INNER_4: 1989 case EXT_OP_OUTER_4: 1990 case EXT_OP_INNFL_3: 1991 case EXT_OP_OUTFL_3: 1992 return PKT_HASH_TYPE_L4; 1993 default: 1994 return PKT_HASH_TYPE_L3; 1995 } 1996 } 1997 1998 /* returns the following: 1999 * 1 - 1 packet successfully received 2000 * 0 - successful TPA_START, packet not completed yet 2001 * -EBUSY - completion ring does not have all the agg buffers yet 2002 * -ENOMEM - packet aborted due to out of memory 2003 * -EIO - packet aborted due to hw error indicated in BD 2004 */ 2005 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2006 u32 *raw_cons, u8 *event) 2007 { 2008 struct bnxt_napi *bnapi = cpr->bnapi; 2009 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2010 struct net_device *dev = bp->dev; 2011 struct rx_cmp *rxcmp; 2012 struct rx_cmp_ext *rxcmp1; 2013 u32 tmp_raw_cons = *raw_cons; 2014 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 2015 struct bnxt_sw_rx_bd *rx_buf; 2016 unsigned int len; 2017 u8 *data_ptr, agg_bufs, cmp_type; 2018 bool xdp_active = false; 2019 dma_addr_t dma_addr; 2020 struct sk_buff *skb; 2021 struct xdp_buff xdp; 2022 u32 flags, misc; 2023 u32 cmpl_ts; 2024 void *data; 2025 int rc = 0; 2026 2027 rxcmp = (struct rx_cmp *) 2028 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2029 2030 cmp_type = RX_CMP_TYPE(rxcmp); 2031 2032 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 2033 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 2034 goto next_rx_no_prod_no_len; 2035 } 2036 2037 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2038 cp_cons = RING_CMP(tmp_raw_cons); 2039 rxcmp1 = (struct rx_cmp_ext *) 2040 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2041 2042 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2043 return -EBUSY; 2044 2045 /* The valid test of the entry must be done first before 2046 * reading any further. 2047 */ 2048 dma_rmb(); 2049 prod = rxr->rx_prod; 2050 2051 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP || 2052 cmp_type == CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 2053 bnxt_tpa_start(bp, rxr, cmp_type, 2054 (struct rx_tpa_start_cmp *)rxcmp, 2055 (struct rx_tpa_start_cmp_ext *)rxcmp1); 2056 2057 *event |= BNXT_RX_EVENT; 2058 goto next_rx_no_prod_no_len; 2059 2060 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2061 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 2062 (struct rx_tpa_end_cmp *)rxcmp, 2063 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 2064 2065 if (IS_ERR(skb)) 2066 return -EBUSY; 2067 2068 rc = -ENOMEM; 2069 if (likely(skb)) { 2070 bnxt_deliver_skb(bp, bnapi, skb); 2071 rc = 1; 2072 } 2073 *event |= BNXT_RX_EVENT; 2074 goto next_rx_no_prod_no_len; 2075 } 2076 2077 cons = rxcmp->rx_cmp_opaque; 2078 if (unlikely(cons != rxr->rx_next_cons)) { 2079 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 2080 2081 /* 0xffff is forced error, don't print it */ 2082 if (rxr->rx_next_cons != 0xffff) 2083 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 2084 cons, rxr->rx_next_cons); 2085 bnxt_sched_reset_rxr(bp, rxr); 2086 if (rc1) 2087 return rc1; 2088 goto next_rx_no_prod_no_len; 2089 } 2090 rx_buf = &rxr->rx_buf_ring[cons]; 2091 data = rx_buf->data; 2092 data_ptr = rx_buf->data_ptr; 2093 prefetch(data_ptr); 2094 2095 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 2096 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 2097 2098 if (agg_bufs) { 2099 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 2100 return -EBUSY; 2101 2102 cp_cons = NEXT_CMP(cp_cons); 2103 *event |= BNXT_AGG_EVENT; 2104 } 2105 *event |= BNXT_RX_EVENT; 2106 2107 rx_buf->data = NULL; 2108 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 2109 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 2110 2111 bnxt_reuse_rx_data(rxr, cons, data); 2112 if (agg_bufs) 2113 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 2114 false); 2115 2116 rc = -EIO; 2117 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 2118 bnapi->cp_ring.sw_stats->rx.rx_buf_errors++; 2119 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 2120 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 2121 netdev_warn_once(bp->dev, "RX buffer error %x\n", 2122 rx_err); 2123 bnxt_sched_reset_rxr(bp, rxr); 2124 } 2125 } 2126 goto next_rx_no_len; 2127 } 2128 2129 flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); 2130 len = flags >> RX_CMP_LEN_SHIFT; 2131 dma_addr = rx_buf->mapping; 2132 2133 if (bnxt_xdp_attached(bp, rxr)) { 2134 bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp); 2135 if (agg_bufs) { 2136 u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp, 2137 cp_cons, agg_bufs, 2138 false); 2139 if (!frag_len) 2140 goto oom_next_rx; 2141 } 2142 xdp_active = true; 2143 } 2144 2145 if (xdp_active) { 2146 if (bnxt_rx_xdp(bp, rxr, cons, &xdp, data, &data_ptr, &len, event)) { 2147 rc = 1; 2148 goto next_rx; 2149 } 2150 } 2151 2152 if (len <= bp->rx_copy_thresh) { 2153 if (!xdp_active) 2154 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 2155 else 2156 skb = bnxt_copy_xdp(bnapi, &xdp, len, dma_addr); 2157 bnxt_reuse_rx_data(rxr, cons, data); 2158 if (!skb) { 2159 if (agg_bufs) { 2160 if (!xdp_active) 2161 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 2162 agg_bufs, false); 2163 else 2164 bnxt_xdp_buff_frags_free(rxr, &xdp); 2165 } 2166 goto oom_next_rx; 2167 } 2168 } else { 2169 u32 payload; 2170 2171 if (rx_buf->data_ptr == data_ptr) 2172 payload = misc & RX_CMP_PAYLOAD_OFFSET; 2173 else 2174 payload = 0; 2175 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 2176 payload | len); 2177 if (!skb) 2178 goto oom_next_rx; 2179 } 2180 2181 if (agg_bufs) { 2182 if (!xdp_active) { 2183 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false); 2184 if (!skb) 2185 goto oom_next_rx; 2186 } else { 2187 skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1); 2188 if (!skb) { 2189 /* we should be able to free the old skb here */ 2190 bnxt_xdp_buff_frags_free(rxr, &xdp); 2191 goto oom_next_rx; 2192 } 2193 } 2194 } 2195 2196 if (RX_CMP_HASH_VALID(rxcmp)) { 2197 enum pkt_hash_types type; 2198 2199 if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2200 type = bnxt_rss_ext_op(bp, rxcmp); 2201 } else { 2202 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 2203 2204 /* RSS profiles 1 and 3 with extract code 0 for inner 2205 * 4-tuple 2206 */ 2207 if (hash_type != 1 && hash_type != 3) 2208 type = PKT_HASH_TYPE_L3; 2209 else 2210 type = PKT_HASH_TYPE_L4; 2211 } 2212 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 2213 } 2214 2215 if (cmp_type == CMP_TYPE_RX_L2_CMP) 2216 dev = bnxt_get_pkt_dev(bp, RX_CMP_CFA_CODE(rxcmp1)); 2217 skb->protocol = eth_type_trans(skb, dev); 2218 2219 if (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) { 2220 skb = bnxt_rx_vlan(skb, cmp_type, rxcmp, rxcmp1); 2221 if (!skb) 2222 goto next_rx; 2223 } 2224 2225 skb_checksum_none_assert(skb); 2226 if (RX_CMP_L4_CS_OK(rxcmp1)) { 2227 if (dev->features & NETIF_F_RXCSUM) { 2228 skb->ip_summed = CHECKSUM_UNNECESSARY; 2229 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 2230 } 2231 } else { 2232 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 2233 if (dev->features & NETIF_F_RXCSUM) 2234 bnapi->cp_ring.sw_stats->rx.rx_l4_csum_errors++; 2235 } 2236 } 2237 2238 if (bnxt_rx_ts_valid(bp, flags, rxcmp1, &cmpl_ts)) { 2239 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 2240 u64 ns, ts; 2241 2242 if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { 2243 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2244 2245 spin_lock_bh(&ptp->ptp_lock); 2246 ns = timecounter_cyc2time(&ptp->tc, ts); 2247 spin_unlock_bh(&ptp->ptp_lock); 2248 memset(skb_hwtstamps(skb), 0, 2249 sizeof(*skb_hwtstamps(skb))); 2250 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 2251 } 2252 } 2253 } 2254 bnxt_deliver_skb(bp, bnapi, skb); 2255 rc = 1; 2256 2257 next_rx: 2258 cpr->rx_packets += 1; 2259 cpr->rx_bytes += len; 2260 2261 next_rx_no_len: 2262 rxr->rx_prod = NEXT_RX(prod); 2263 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 2264 2265 next_rx_no_prod_no_len: 2266 *raw_cons = tmp_raw_cons; 2267 2268 return rc; 2269 2270 oom_next_rx: 2271 cpr->sw_stats->rx.rx_oom_discards += 1; 2272 rc = -ENOMEM; 2273 goto next_rx; 2274 } 2275 2276 /* In netpoll mode, if we are using a combined completion ring, we need to 2277 * discard the rx packets and recycle the buffers. 2278 */ 2279 static int bnxt_force_rx_discard(struct bnxt *bp, 2280 struct bnxt_cp_ring_info *cpr, 2281 u32 *raw_cons, u8 *event) 2282 { 2283 u32 tmp_raw_cons = *raw_cons; 2284 struct rx_cmp_ext *rxcmp1; 2285 struct rx_cmp *rxcmp; 2286 u16 cp_cons; 2287 u8 cmp_type; 2288 int rc; 2289 2290 cp_cons = RING_CMP(tmp_raw_cons); 2291 rxcmp = (struct rx_cmp *) 2292 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2293 2294 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2295 cp_cons = RING_CMP(tmp_raw_cons); 2296 rxcmp1 = (struct rx_cmp_ext *) 2297 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2298 2299 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2300 return -EBUSY; 2301 2302 /* The valid test of the entry must be done first before 2303 * reading any further. 2304 */ 2305 dma_rmb(); 2306 cmp_type = RX_CMP_TYPE(rxcmp); 2307 if (cmp_type == CMP_TYPE_RX_L2_CMP || 2308 cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2309 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2310 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2311 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2312 struct rx_tpa_end_cmp_ext *tpa_end1; 2313 2314 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 2315 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 2316 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 2317 } 2318 rc = bnxt_rx_pkt(bp, cpr, raw_cons, event); 2319 if (rc && rc != -EBUSY) 2320 cpr->sw_stats->rx.rx_netpoll_discards += 1; 2321 return rc; 2322 } 2323 2324 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 2325 { 2326 struct bnxt_fw_health *fw_health = bp->fw_health; 2327 u32 reg = fw_health->regs[reg_idx]; 2328 u32 reg_type, reg_off, val = 0; 2329 2330 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 2331 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 2332 switch (reg_type) { 2333 case BNXT_FW_HEALTH_REG_TYPE_CFG: 2334 pci_read_config_dword(bp->pdev, reg_off, &val); 2335 break; 2336 case BNXT_FW_HEALTH_REG_TYPE_GRC: 2337 reg_off = fw_health->mapped_regs[reg_idx]; 2338 fallthrough; 2339 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 2340 val = readl(bp->bar0 + reg_off); 2341 break; 2342 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 2343 val = readl(bp->bar1 + reg_off); 2344 break; 2345 } 2346 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 2347 val &= fw_health->fw_reset_inprog_reg_mask; 2348 return val; 2349 } 2350 2351 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 2352 { 2353 int i; 2354 2355 for (i = 0; i < bp->rx_nr_rings; i++) { 2356 u16 grp_idx = bp->rx_ring[i].bnapi->index; 2357 struct bnxt_ring_grp_info *grp_info; 2358 2359 grp_info = &bp->grp_info[grp_idx]; 2360 if (grp_info->agg_fw_ring_id == ring_id) 2361 return grp_idx; 2362 } 2363 return INVALID_HW_RING_ID; 2364 } 2365 2366 static u16 bnxt_get_force_speed(struct bnxt_link_info *link_info) 2367 { 2368 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2369 2370 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 2371 return link_info->force_link_speed2; 2372 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4) 2373 return link_info->force_pam4_link_speed; 2374 return link_info->force_link_speed; 2375 } 2376 2377 static void bnxt_set_force_speed(struct bnxt_link_info *link_info) 2378 { 2379 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2380 2381 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2382 link_info->req_link_speed = link_info->force_link_speed2; 2383 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2384 switch (link_info->req_link_speed) { 2385 case BNXT_LINK_SPEED_50GB_PAM4: 2386 case BNXT_LINK_SPEED_100GB_PAM4: 2387 case BNXT_LINK_SPEED_200GB_PAM4: 2388 case BNXT_LINK_SPEED_400GB_PAM4: 2389 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2390 break; 2391 case BNXT_LINK_SPEED_100GB_PAM4_112: 2392 case BNXT_LINK_SPEED_200GB_PAM4_112: 2393 case BNXT_LINK_SPEED_400GB_PAM4_112: 2394 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4_112; 2395 break; 2396 default: 2397 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2398 } 2399 return; 2400 } 2401 link_info->req_link_speed = link_info->force_link_speed; 2402 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2403 if (link_info->force_pam4_link_speed) { 2404 link_info->req_link_speed = link_info->force_pam4_link_speed; 2405 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2406 } 2407 } 2408 2409 static void bnxt_set_auto_speed(struct bnxt_link_info *link_info) 2410 { 2411 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2412 2413 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2414 link_info->advertising = link_info->auto_link_speeds2; 2415 return; 2416 } 2417 link_info->advertising = link_info->auto_link_speeds; 2418 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 2419 } 2420 2421 static bool bnxt_force_speed_updated(struct bnxt_link_info *link_info) 2422 { 2423 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2424 2425 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2426 if (link_info->req_link_speed != link_info->force_link_speed2) 2427 return true; 2428 return false; 2429 } 2430 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 2431 link_info->req_link_speed != link_info->force_link_speed) 2432 return true; 2433 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 2434 link_info->req_link_speed != link_info->force_pam4_link_speed) 2435 return true; 2436 return false; 2437 } 2438 2439 static bool bnxt_auto_speed_updated(struct bnxt_link_info *link_info) 2440 { 2441 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2442 2443 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2444 if (link_info->advertising != link_info->auto_link_speeds2) 2445 return true; 2446 return false; 2447 } 2448 if (link_info->advertising != link_info->auto_link_speeds || 2449 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 2450 return true; 2451 return false; 2452 } 2453 2454 #define BNXT_EVENT_THERMAL_CURRENT_TEMP(data2) \ 2455 ((data2) & \ 2456 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_CURRENT_TEMP_MASK) 2457 2458 #define BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2) \ 2459 (((data2) & \ 2460 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_MASK) >>\ 2461 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_SFT) 2462 2463 #define EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1) \ 2464 ((data1) & \ 2465 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_MASK) 2466 2467 #define EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1) \ 2468 (((data1) & \ 2469 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR) ==\ 2470 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR_INCREASING) 2471 2472 /* Return true if the workqueue has to be scheduled */ 2473 static bool bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2) 2474 { 2475 u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1); 2476 2477 switch (err_type) { 2478 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL: 2479 netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n", 2480 BNXT_EVENT_INVALID_SIGNAL_DATA(data2)); 2481 break; 2482 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM: 2483 netdev_warn(bp->dev, "Pause Storm detected!\n"); 2484 break; 2485 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD: 2486 netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n"); 2487 break; 2488 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_THERMAL_THRESHOLD: { 2489 u32 type = EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1); 2490 char *threshold_type; 2491 bool notify = false; 2492 char *dir_str; 2493 2494 switch (type) { 2495 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_WARN: 2496 threshold_type = "warning"; 2497 break; 2498 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_CRITICAL: 2499 threshold_type = "critical"; 2500 break; 2501 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_FATAL: 2502 threshold_type = "fatal"; 2503 break; 2504 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_SHUTDOWN: 2505 threshold_type = "shutdown"; 2506 break; 2507 default: 2508 netdev_err(bp->dev, "Unknown Thermal threshold type event\n"); 2509 return false; 2510 } 2511 if (EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)) { 2512 dir_str = "above"; 2513 notify = true; 2514 } else { 2515 dir_str = "below"; 2516 } 2517 netdev_warn(bp->dev, "Chip temperature has gone %s the %s thermal threshold!\n", 2518 dir_str, threshold_type); 2519 netdev_warn(bp->dev, "Temperature (In Celsius), Current: %lu, threshold: %lu\n", 2520 BNXT_EVENT_THERMAL_CURRENT_TEMP(data2), 2521 BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2)); 2522 if (notify) { 2523 bp->thermal_threshold_type = type; 2524 set_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event); 2525 return true; 2526 } 2527 return false; 2528 } 2529 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DUAL_DATA_RATE_NOT_SUPPORTED: 2530 netdev_warn(bp->dev, "Speed change not supported with dual rate transceivers on this board\n"); 2531 break; 2532 default: 2533 netdev_err(bp->dev, "FW reported unknown error type %u\n", 2534 err_type); 2535 break; 2536 } 2537 return false; 2538 } 2539 2540 #define BNXT_GET_EVENT_PORT(data) \ 2541 ((data) & \ 2542 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 2543 2544 #define BNXT_EVENT_RING_TYPE(data2) \ 2545 ((data2) & \ 2546 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 2547 2548 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 2549 (BNXT_EVENT_RING_TYPE(data2) == \ 2550 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 2551 2552 #define BNXT_EVENT_PHC_EVENT_TYPE(data1) \ 2553 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\ 2554 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT) 2555 2556 #define BNXT_EVENT_PHC_RTC_UPDATE(data1) \ 2557 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\ 2558 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT) 2559 2560 #define BNXT_PHC_BITS 48 2561 2562 static int bnxt_async_event_process(struct bnxt *bp, 2563 struct hwrm_async_event_cmpl *cmpl) 2564 { 2565 u16 event_id = le16_to_cpu(cmpl->event_id); 2566 u32 data1 = le32_to_cpu(cmpl->event_data1); 2567 u32 data2 = le32_to_cpu(cmpl->event_data2); 2568 2569 netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n", 2570 event_id, data1, data2); 2571 2572 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2573 switch (event_id) { 2574 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2575 struct bnxt_link_info *link_info = &bp->link_info; 2576 2577 if (BNXT_VF(bp)) 2578 goto async_event_process_exit; 2579 2580 /* print unsupported speed warning in forced speed mode only */ 2581 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2582 (data1 & 0x20000)) { 2583 u16 fw_speed = bnxt_get_force_speed(link_info); 2584 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2585 2586 if (speed != SPEED_UNKNOWN) 2587 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2588 speed); 2589 } 2590 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2591 } 2592 fallthrough; 2593 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2594 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2595 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2596 fallthrough; 2597 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2598 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2599 break; 2600 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2601 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2602 break; 2603 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2604 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2605 2606 if (BNXT_VF(bp)) 2607 break; 2608 2609 if (bp->pf.port_id != port_id) 2610 break; 2611 2612 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2613 break; 2614 } 2615 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2616 if (BNXT_PF(bp)) 2617 goto async_event_process_exit; 2618 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2619 break; 2620 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2621 char *type_str = "Solicited"; 2622 2623 if (!bp->fw_health) 2624 goto async_event_process_exit; 2625 2626 bp->fw_reset_timestamp = jiffies; 2627 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2628 if (!bp->fw_reset_min_dsecs) 2629 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2630 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2631 if (!bp->fw_reset_max_dsecs) 2632 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2633 if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) { 2634 set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state); 2635 } else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2636 type_str = "Fatal"; 2637 bp->fw_health->fatalities++; 2638 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2639 } else if (data2 && BNXT_FW_STATUS_HEALTHY != 2640 EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) { 2641 type_str = "Non-fatal"; 2642 bp->fw_health->survivals++; 2643 set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 2644 } 2645 netif_warn(bp, hw, bp->dev, 2646 "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2647 type_str, data1, data2, 2648 bp->fw_reset_min_dsecs * 100, 2649 bp->fw_reset_max_dsecs * 100); 2650 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2651 break; 2652 } 2653 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2654 struct bnxt_fw_health *fw_health = bp->fw_health; 2655 char *status_desc = "healthy"; 2656 u32 status; 2657 2658 if (!fw_health) 2659 goto async_event_process_exit; 2660 2661 if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) { 2662 fw_health->enabled = false; 2663 netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n"); 2664 break; 2665 } 2666 fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2667 fw_health->tmr_multiplier = 2668 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2669 bp->current_interval * 10); 2670 fw_health->tmr_counter = fw_health->tmr_multiplier; 2671 if (!fw_health->enabled) 2672 fw_health->last_fw_heartbeat = 2673 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2674 fw_health->last_fw_reset_cnt = 2675 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2676 status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 2677 if (status != BNXT_FW_STATUS_HEALTHY) 2678 status_desc = "unhealthy"; 2679 netif_info(bp, drv, bp->dev, 2680 "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n", 2681 fw_health->primary ? "primary" : "backup", status, 2682 status_desc, fw_health->last_fw_reset_cnt); 2683 if (!fw_health->enabled) { 2684 /* Make sure tmr_counter is set and visible to 2685 * bnxt_health_check() before setting enabled to true. 2686 */ 2687 smp_wmb(); 2688 fw_health->enabled = true; 2689 } 2690 goto async_event_process_exit; 2691 } 2692 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2693 netif_notice(bp, hw, bp->dev, 2694 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2695 data1, data2); 2696 goto async_event_process_exit; 2697 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2698 struct bnxt_rx_ring_info *rxr; 2699 u16 grp_idx; 2700 2701 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 2702 goto async_event_process_exit; 2703 2704 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2705 BNXT_EVENT_RING_TYPE(data2), data1); 2706 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2707 goto async_event_process_exit; 2708 2709 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2710 if (grp_idx == INVALID_HW_RING_ID) { 2711 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2712 data1); 2713 goto async_event_process_exit; 2714 } 2715 rxr = bp->bnapi[grp_idx]->rx_ring; 2716 bnxt_sched_reset_rxr(bp, rxr); 2717 goto async_event_process_exit; 2718 } 2719 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2720 struct bnxt_fw_health *fw_health = bp->fw_health; 2721 2722 netif_notice(bp, hw, bp->dev, 2723 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2724 data1, data2); 2725 if (fw_health) { 2726 fw_health->echo_req_data1 = data1; 2727 fw_health->echo_req_data2 = data2; 2728 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2729 break; 2730 } 2731 goto async_event_process_exit; 2732 } 2733 case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: { 2734 bnxt_ptp_pps_event(bp, data1, data2); 2735 goto async_event_process_exit; 2736 } 2737 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: { 2738 if (bnxt_event_error_report(bp, data1, data2)) 2739 break; 2740 goto async_event_process_exit; 2741 } 2742 case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: { 2743 switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) { 2744 case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE: 2745 if (BNXT_PTP_USE_RTC(bp)) { 2746 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2747 u64 ns; 2748 2749 if (!ptp) 2750 goto async_event_process_exit; 2751 2752 spin_lock_bh(&ptp->ptp_lock); 2753 bnxt_ptp_update_current_time(bp); 2754 ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) << 2755 BNXT_PHC_BITS) | ptp->current_time); 2756 bnxt_ptp_rtc_timecounter_init(ptp, ns); 2757 spin_unlock_bh(&ptp->ptp_lock); 2758 } 2759 break; 2760 } 2761 goto async_event_process_exit; 2762 } 2763 case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: { 2764 u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff; 2765 2766 hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED); 2767 goto async_event_process_exit; 2768 } 2769 default: 2770 goto async_event_process_exit; 2771 } 2772 __bnxt_queue_sp_work(bp); 2773 async_event_process_exit: 2774 return 0; 2775 } 2776 2777 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2778 { 2779 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2780 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2781 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2782 (struct hwrm_fwd_req_cmpl *)txcmp; 2783 2784 switch (cmpl_type) { 2785 case CMPL_BASE_TYPE_HWRM_DONE: 2786 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2787 hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE); 2788 break; 2789 2790 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2791 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2792 2793 if ((vf_id < bp->pf.first_vf_id) || 2794 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2795 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2796 vf_id); 2797 return -EINVAL; 2798 } 2799 2800 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2801 bnxt_queue_sp_work(bp, BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT); 2802 break; 2803 2804 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2805 bnxt_async_event_process(bp, 2806 (struct hwrm_async_event_cmpl *)txcmp); 2807 break; 2808 2809 default: 2810 break; 2811 } 2812 2813 return 0; 2814 } 2815 2816 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2817 { 2818 struct bnxt_napi *bnapi = dev_instance; 2819 struct bnxt *bp = bnapi->bp; 2820 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2821 u32 cons = RING_CMP(cpr->cp_raw_cons); 2822 2823 cpr->event_ctr++; 2824 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2825 napi_schedule(&bnapi->napi); 2826 return IRQ_HANDLED; 2827 } 2828 2829 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2830 { 2831 u32 raw_cons = cpr->cp_raw_cons; 2832 u16 cons = RING_CMP(raw_cons); 2833 struct tx_cmp *txcmp; 2834 2835 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2836 2837 return TX_CMP_VALID(txcmp, raw_cons); 2838 } 2839 2840 static irqreturn_t bnxt_inta(int irq, void *dev_instance) 2841 { 2842 struct bnxt_napi *bnapi = dev_instance; 2843 struct bnxt *bp = bnapi->bp; 2844 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2845 u32 cons = RING_CMP(cpr->cp_raw_cons); 2846 u32 int_status; 2847 2848 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2849 2850 if (!bnxt_has_work(bp, cpr)) { 2851 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); 2852 /* return if erroneous interrupt */ 2853 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) 2854 return IRQ_NONE; 2855 } 2856 2857 /* disable ring IRQ */ 2858 BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell); 2859 2860 /* Return here if interrupt is shared and is disabled. */ 2861 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 2862 return IRQ_HANDLED; 2863 2864 napi_schedule(&bnapi->napi); 2865 return IRQ_HANDLED; 2866 } 2867 2868 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2869 int budget) 2870 { 2871 struct bnxt_napi *bnapi = cpr->bnapi; 2872 u32 raw_cons = cpr->cp_raw_cons; 2873 u32 cons; 2874 int rx_pkts = 0; 2875 u8 event = 0; 2876 struct tx_cmp *txcmp; 2877 2878 cpr->has_more_work = 0; 2879 cpr->had_work_done = 1; 2880 while (1) { 2881 u8 cmp_type; 2882 int rc; 2883 2884 cons = RING_CMP(raw_cons); 2885 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2886 2887 if (!TX_CMP_VALID(txcmp, raw_cons)) 2888 break; 2889 2890 /* The valid test of the entry must be done first before 2891 * reading any further. 2892 */ 2893 dma_rmb(); 2894 cmp_type = TX_CMP_TYPE(txcmp); 2895 if (cmp_type == CMP_TYPE_TX_L2_CMP || 2896 cmp_type == CMP_TYPE_TX_L2_COAL_CMP) { 2897 u32 opaque = txcmp->tx_cmp_opaque; 2898 struct bnxt_tx_ring_info *txr; 2899 u16 tx_freed; 2900 2901 txr = bnapi->tx_ring[TX_OPAQUE_RING(opaque)]; 2902 event |= BNXT_TX_CMP_EVENT; 2903 if (cmp_type == CMP_TYPE_TX_L2_COAL_CMP) 2904 txr->tx_hw_cons = TX_CMP_SQ_CONS_IDX(txcmp); 2905 else 2906 txr->tx_hw_cons = TX_OPAQUE_PROD(bp, opaque); 2907 tx_freed = (txr->tx_hw_cons - txr->tx_cons) & 2908 bp->tx_ring_mask; 2909 /* return full budget so NAPI will complete. */ 2910 if (unlikely(tx_freed >= bp->tx_wake_thresh)) { 2911 rx_pkts = budget; 2912 raw_cons = NEXT_RAW_CMP(raw_cons); 2913 if (budget) 2914 cpr->has_more_work = 1; 2915 break; 2916 } 2917 } else if (cmp_type >= CMP_TYPE_RX_L2_CMP && 2918 cmp_type <= CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 2919 if (likely(budget)) 2920 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2921 else 2922 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 2923 &event); 2924 if (likely(rc >= 0)) 2925 rx_pkts += rc; 2926 /* Increment rx_pkts when rc is -ENOMEM to count towards 2927 * the NAPI budget. Otherwise, we may potentially loop 2928 * here forever if we consistently cannot allocate 2929 * buffers. 2930 */ 2931 else if (rc == -ENOMEM && budget) 2932 rx_pkts++; 2933 else if (rc == -EBUSY) /* partial completion */ 2934 break; 2935 } else if (unlikely(cmp_type == CMPL_BASE_TYPE_HWRM_DONE || 2936 cmp_type == CMPL_BASE_TYPE_HWRM_FWD_REQ || 2937 cmp_type == CMPL_BASE_TYPE_HWRM_ASYNC_EVENT)) { 2938 bnxt_hwrm_handler(bp, txcmp); 2939 } 2940 raw_cons = NEXT_RAW_CMP(raw_cons); 2941 2942 if (rx_pkts && rx_pkts == budget) { 2943 cpr->has_more_work = 1; 2944 break; 2945 } 2946 } 2947 2948 if (event & BNXT_REDIRECT_EVENT) 2949 xdp_do_flush(); 2950 2951 if (event & BNXT_TX_EVENT) { 2952 struct bnxt_tx_ring_info *txr = bnapi->tx_ring[0]; 2953 u16 prod = txr->tx_prod; 2954 2955 /* Sync BD data before updating doorbell */ 2956 wmb(); 2957 2958 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 2959 } 2960 2961 cpr->cp_raw_cons = raw_cons; 2962 bnapi->events |= event; 2963 return rx_pkts; 2964 } 2965 2966 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi, 2967 int budget) 2968 { 2969 if ((bnapi->events & BNXT_TX_CMP_EVENT) && !bnapi->tx_fault) 2970 bnapi->tx_int(bp, bnapi, budget); 2971 2972 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 2973 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2974 2975 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2976 } 2977 if (bnapi->events & BNXT_AGG_EVENT) { 2978 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2979 2980 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2981 } 2982 bnapi->events &= BNXT_TX_CMP_EVENT; 2983 } 2984 2985 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2986 int budget) 2987 { 2988 struct bnxt_napi *bnapi = cpr->bnapi; 2989 int rx_pkts; 2990 2991 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 2992 2993 /* ACK completion ring before freeing tx ring and producing new 2994 * buffers in rx/agg rings to prevent overflowing the completion 2995 * ring. 2996 */ 2997 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 2998 2999 __bnxt_poll_work_done(bp, bnapi, budget); 3000 return rx_pkts; 3001 } 3002 3003 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 3004 { 3005 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3006 struct bnxt *bp = bnapi->bp; 3007 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3008 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3009 struct tx_cmp *txcmp; 3010 struct rx_cmp_ext *rxcmp1; 3011 u32 cp_cons, tmp_raw_cons; 3012 u32 raw_cons = cpr->cp_raw_cons; 3013 bool flush_xdp = false; 3014 u32 rx_pkts = 0; 3015 u8 event = 0; 3016 3017 while (1) { 3018 int rc; 3019 3020 cp_cons = RING_CMP(raw_cons); 3021 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 3022 3023 if (!TX_CMP_VALID(txcmp, raw_cons)) 3024 break; 3025 3026 /* The valid test of the entry must be done first before 3027 * reading any further. 3028 */ 3029 dma_rmb(); 3030 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 3031 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 3032 cp_cons = RING_CMP(tmp_raw_cons); 3033 rxcmp1 = (struct rx_cmp_ext *) 3034 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 3035 3036 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 3037 break; 3038 3039 /* force an error to recycle the buffer */ 3040 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 3041 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 3042 3043 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 3044 if (likely(rc == -EIO) && budget) 3045 rx_pkts++; 3046 else if (rc == -EBUSY) /* partial completion */ 3047 break; 3048 if (event & BNXT_REDIRECT_EVENT) 3049 flush_xdp = true; 3050 } else if (unlikely(TX_CMP_TYPE(txcmp) == 3051 CMPL_BASE_TYPE_HWRM_DONE)) { 3052 bnxt_hwrm_handler(bp, txcmp); 3053 } else { 3054 netdev_err(bp->dev, 3055 "Invalid completion received on special ring\n"); 3056 } 3057 raw_cons = NEXT_RAW_CMP(raw_cons); 3058 3059 if (rx_pkts == budget) 3060 break; 3061 } 3062 3063 cpr->cp_raw_cons = raw_cons; 3064 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 3065 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 3066 3067 if (event & BNXT_AGG_EVENT) 3068 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 3069 if (flush_xdp) 3070 xdp_do_flush(); 3071 3072 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 3073 napi_complete_done(napi, rx_pkts); 3074 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3075 } 3076 return rx_pkts; 3077 } 3078 3079 static int bnxt_poll(struct napi_struct *napi, int budget) 3080 { 3081 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3082 struct bnxt *bp = bnapi->bp; 3083 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3084 int work_done = 0; 3085 3086 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3087 napi_complete(napi); 3088 return 0; 3089 } 3090 while (1) { 3091 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 3092 3093 if (work_done >= budget) { 3094 if (!budget) 3095 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3096 break; 3097 } 3098 3099 if (!bnxt_has_work(bp, cpr)) { 3100 if (napi_complete_done(napi, work_done)) 3101 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3102 break; 3103 } 3104 } 3105 if (bp->flags & BNXT_FLAG_DIM) { 3106 struct dim_sample dim_sample = {}; 3107 3108 dim_update_sample(cpr->event_ctr, 3109 cpr->rx_packets, 3110 cpr->rx_bytes, 3111 &dim_sample); 3112 net_dim(&cpr->dim, dim_sample); 3113 } 3114 return work_done; 3115 } 3116 3117 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 3118 { 3119 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3120 int i, work_done = 0; 3121 3122 for (i = 0; i < cpr->cp_ring_count; i++) { 3123 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3124 3125 if (cpr2->had_nqe_notify) { 3126 work_done += __bnxt_poll_work(bp, cpr2, 3127 budget - work_done); 3128 cpr->has_more_work |= cpr2->has_more_work; 3129 } 3130 } 3131 return work_done; 3132 } 3133 3134 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 3135 u64 dbr_type, int budget) 3136 { 3137 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3138 int i; 3139 3140 for (i = 0; i < cpr->cp_ring_count; i++) { 3141 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3142 struct bnxt_db_info *db; 3143 3144 if (cpr2->had_work_done) { 3145 u32 tgl = 0; 3146 3147 if (dbr_type == DBR_TYPE_CQ_ARMALL) { 3148 cpr2->had_nqe_notify = 0; 3149 tgl = cpr2->toggle; 3150 } 3151 db = &cpr2->cp_db; 3152 bnxt_writeq(bp, 3153 db->db_key64 | dbr_type | DB_TOGGLE(tgl) | 3154 DB_RING_IDX(db, cpr2->cp_raw_cons), 3155 db->doorbell); 3156 cpr2->had_work_done = 0; 3157 } 3158 } 3159 __bnxt_poll_work_done(bp, bnapi, budget); 3160 } 3161 3162 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 3163 { 3164 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3165 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3166 struct bnxt_cp_ring_info *cpr_rx; 3167 u32 raw_cons = cpr->cp_raw_cons; 3168 struct bnxt *bp = bnapi->bp; 3169 struct nqe_cn *nqcmp; 3170 int work_done = 0; 3171 u32 cons; 3172 3173 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3174 napi_complete(napi); 3175 return 0; 3176 } 3177 if (cpr->has_more_work) { 3178 cpr->has_more_work = 0; 3179 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 3180 } 3181 while (1) { 3182 u16 type; 3183 3184 cons = RING_CMP(raw_cons); 3185 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 3186 3187 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 3188 if (cpr->has_more_work) 3189 break; 3190 3191 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL, 3192 budget); 3193 cpr->cp_raw_cons = raw_cons; 3194 if (napi_complete_done(napi, work_done)) 3195 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 3196 cpr->cp_raw_cons); 3197 goto poll_done; 3198 } 3199 3200 /* The valid test of the entry must be done first before 3201 * reading any further. 3202 */ 3203 dma_rmb(); 3204 3205 type = le16_to_cpu(nqcmp->type); 3206 if (NQE_CN_TYPE(type) == NQ_CN_TYPE_CQ_NOTIFICATION) { 3207 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 3208 u32 cq_type = BNXT_NQ_HDL_TYPE(idx); 3209 struct bnxt_cp_ring_info *cpr2; 3210 3211 /* No more budget for RX work */ 3212 if (budget && work_done >= budget && 3213 cq_type == BNXT_NQ_HDL_TYPE_RX) 3214 break; 3215 3216 idx = BNXT_NQ_HDL_IDX(idx); 3217 cpr2 = &cpr->cp_ring_arr[idx]; 3218 cpr2->had_nqe_notify = 1; 3219 cpr2->toggle = NQE_CN_TOGGLE(type); 3220 work_done += __bnxt_poll_work(bp, cpr2, 3221 budget - work_done); 3222 cpr->has_more_work |= cpr2->has_more_work; 3223 } else { 3224 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 3225 } 3226 raw_cons = NEXT_RAW_CMP(raw_cons); 3227 } 3228 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget); 3229 if (raw_cons != cpr->cp_raw_cons) { 3230 cpr->cp_raw_cons = raw_cons; 3231 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 3232 } 3233 poll_done: 3234 cpr_rx = &cpr->cp_ring_arr[0]; 3235 if (cpr_rx->cp_ring_type == BNXT_NQ_HDL_TYPE_RX && 3236 (bp->flags & BNXT_FLAG_DIM)) { 3237 struct dim_sample dim_sample = {}; 3238 3239 dim_update_sample(cpr->event_ctr, 3240 cpr_rx->rx_packets, 3241 cpr_rx->rx_bytes, 3242 &dim_sample); 3243 net_dim(&cpr->dim, dim_sample); 3244 } 3245 return work_done; 3246 } 3247 3248 static void bnxt_free_tx_skbs(struct bnxt *bp) 3249 { 3250 int i, max_idx; 3251 struct pci_dev *pdev = bp->pdev; 3252 3253 if (!bp->tx_ring) 3254 return; 3255 3256 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 3257 for (i = 0; i < bp->tx_nr_rings; i++) { 3258 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3259 int j; 3260 3261 if (!txr->tx_buf_ring) 3262 continue; 3263 3264 for (j = 0; j < max_idx;) { 3265 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 3266 struct sk_buff *skb; 3267 int k, last; 3268 3269 if (i < bp->tx_nr_rings_xdp && 3270 tx_buf->action == XDP_REDIRECT) { 3271 dma_unmap_single(&pdev->dev, 3272 dma_unmap_addr(tx_buf, mapping), 3273 dma_unmap_len(tx_buf, len), 3274 DMA_TO_DEVICE); 3275 xdp_return_frame(tx_buf->xdpf); 3276 tx_buf->action = 0; 3277 tx_buf->xdpf = NULL; 3278 j++; 3279 continue; 3280 } 3281 3282 skb = tx_buf->skb; 3283 if (!skb) { 3284 j++; 3285 continue; 3286 } 3287 3288 tx_buf->skb = NULL; 3289 3290 if (tx_buf->is_push) { 3291 dev_kfree_skb(skb); 3292 j += 2; 3293 continue; 3294 } 3295 3296 dma_unmap_single(&pdev->dev, 3297 dma_unmap_addr(tx_buf, mapping), 3298 skb_headlen(skb), 3299 DMA_TO_DEVICE); 3300 3301 last = tx_buf->nr_frags; 3302 j += 2; 3303 for (k = 0; k < last; k++, j++) { 3304 int ring_idx = j & bp->tx_ring_mask; 3305 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 3306 3307 tx_buf = &txr->tx_buf_ring[ring_idx]; 3308 dma_unmap_page( 3309 &pdev->dev, 3310 dma_unmap_addr(tx_buf, mapping), 3311 skb_frag_size(frag), DMA_TO_DEVICE); 3312 } 3313 dev_kfree_skb(skb); 3314 } 3315 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 3316 } 3317 } 3318 3319 static void bnxt_free_one_rx_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3320 { 3321 struct pci_dev *pdev = bp->pdev; 3322 int i, max_idx; 3323 3324 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 3325 3326 for (i = 0; i < max_idx; i++) { 3327 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 3328 dma_addr_t mapping = rx_buf->mapping; 3329 void *data = rx_buf->data; 3330 3331 if (!data) 3332 continue; 3333 3334 rx_buf->data = NULL; 3335 if (BNXT_RX_PAGE_MODE(bp)) { 3336 page_pool_recycle_direct(rxr->page_pool, data); 3337 } else { 3338 dma_unmap_single_attrs(&pdev->dev, mapping, 3339 bp->rx_buf_use_size, bp->rx_dir, 3340 DMA_ATTR_WEAK_ORDERING); 3341 skb_free_frag(data); 3342 } 3343 } 3344 } 3345 3346 static void bnxt_free_one_rx_agg_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3347 { 3348 int i, max_idx; 3349 3350 max_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 3351 3352 for (i = 0; i < max_idx; i++) { 3353 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 3354 struct page *page = rx_agg_buf->page; 3355 3356 if (!page) 3357 continue; 3358 3359 rx_agg_buf->page = NULL; 3360 __clear_bit(i, rxr->rx_agg_bmap); 3361 3362 page_pool_recycle_direct(rxr->page_pool, page); 3363 } 3364 } 3365 3366 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr) 3367 { 3368 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 3369 struct pci_dev *pdev = bp->pdev; 3370 struct bnxt_tpa_idx_map *map; 3371 int i; 3372 3373 if (!rxr->rx_tpa) 3374 goto skip_rx_tpa_free; 3375 3376 for (i = 0; i < bp->max_tpa; i++) { 3377 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 3378 u8 *data = tpa_info->data; 3379 3380 if (!data) 3381 continue; 3382 3383 dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping, 3384 bp->rx_buf_use_size, bp->rx_dir, 3385 DMA_ATTR_WEAK_ORDERING); 3386 3387 tpa_info->data = NULL; 3388 3389 skb_free_frag(data); 3390 } 3391 3392 skip_rx_tpa_free: 3393 if (!rxr->rx_buf_ring) 3394 goto skip_rx_buf_free; 3395 3396 bnxt_free_one_rx_ring(bp, rxr); 3397 3398 skip_rx_buf_free: 3399 if (!rxr->rx_agg_ring) 3400 goto skip_rx_agg_free; 3401 3402 bnxt_free_one_rx_agg_ring(bp, rxr); 3403 3404 skip_rx_agg_free: 3405 map = rxr->rx_tpa_idx_map; 3406 if (map) 3407 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 3408 } 3409 3410 static void bnxt_free_rx_skbs(struct bnxt *bp) 3411 { 3412 int i; 3413 3414 if (!bp->rx_ring) 3415 return; 3416 3417 for (i = 0; i < bp->rx_nr_rings; i++) 3418 bnxt_free_one_rx_ring_skbs(bp, i); 3419 } 3420 3421 static void bnxt_free_skbs(struct bnxt *bp) 3422 { 3423 bnxt_free_tx_skbs(bp); 3424 bnxt_free_rx_skbs(bp); 3425 } 3426 3427 static void bnxt_init_ctx_mem(struct bnxt_ctx_mem_type *ctxm, void *p, int len) 3428 { 3429 u8 init_val = ctxm->init_value; 3430 u16 offset = ctxm->init_offset; 3431 u8 *p2 = p; 3432 int i; 3433 3434 if (!init_val) 3435 return; 3436 if (offset == BNXT_CTX_INIT_INVALID_OFFSET) { 3437 memset(p, init_val, len); 3438 return; 3439 } 3440 for (i = 0; i < len; i += ctxm->entry_size) 3441 *(p2 + i + offset) = init_val; 3442 } 3443 3444 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3445 { 3446 struct pci_dev *pdev = bp->pdev; 3447 int i; 3448 3449 if (!rmem->pg_arr) 3450 goto skip_pages; 3451 3452 for (i = 0; i < rmem->nr_pages; i++) { 3453 if (!rmem->pg_arr[i]) 3454 continue; 3455 3456 dma_free_coherent(&pdev->dev, rmem->page_size, 3457 rmem->pg_arr[i], rmem->dma_arr[i]); 3458 3459 rmem->pg_arr[i] = NULL; 3460 } 3461 skip_pages: 3462 if (rmem->pg_tbl) { 3463 size_t pg_tbl_size = rmem->nr_pages * 8; 3464 3465 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3466 pg_tbl_size = rmem->page_size; 3467 dma_free_coherent(&pdev->dev, pg_tbl_size, 3468 rmem->pg_tbl, rmem->pg_tbl_map); 3469 rmem->pg_tbl = NULL; 3470 } 3471 if (rmem->vmem_size && *rmem->vmem) { 3472 vfree(*rmem->vmem); 3473 *rmem->vmem = NULL; 3474 } 3475 } 3476 3477 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3478 { 3479 struct pci_dev *pdev = bp->pdev; 3480 u64 valid_bit = 0; 3481 int i; 3482 3483 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 3484 valid_bit = PTU_PTE_VALID; 3485 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 3486 size_t pg_tbl_size = rmem->nr_pages * 8; 3487 3488 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3489 pg_tbl_size = rmem->page_size; 3490 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 3491 &rmem->pg_tbl_map, 3492 GFP_KERNEL); 3493 if (!rmem->pg_tbl) 3494 return -ENOMEM; 3495 } 3496 3497 for (i = 0; i < rmem->nr_pages; i++) { 3498 u64 extra_bits = valid_bit; 3499 3500 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 3501 rmem->page_size, 3502 &rmem->dma_arr[i], 3503 GFP_KERNEL); 3504 if (!rmem->pg_arr[i]) 3505 return -ENOMEM; 3506 3507 if (rmem->ctx_mem) 3508 bnxt_init_ctx_mem(rmem->ctx_mem, rmem->pg_arr[i], 3509 rmem->page_size); 3510 if (rmem->nr_pages > 1 || rmem->depth > 0) { 3511 if (i == rmem->nr_pages - 2 && 3512 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3513 extra_bits |= PTU_PTE_NEXT_TO_LAST; 3514 else if (i == rmem->nr_pages - 1 && 3515 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3516 extra_bits |= PTU_PTE_LAST; 3517 rmem->pg_tbl[i] = 3518 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 3519 } 3520 } 3521 3522 if (rmem->vmem_size) { 3523 *rmem->vmem = vzalloc(rmem->vmem_size); 3524 if (!(*rmem->vmem)) 3525 return -ENOMEM; 3526 } 3527 return 0; 3528 } 3529 3530 static void bnxt_free_tpa_info(struct bnxt *bp) 3531 { 3532 int i, j; 3533 3534 for (i = 0; i < bp->rx_nr_rings; i++) { 3535 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3536 3537 kfree(rxr->rx_tpa_idx_map); 3538 rxr->rx_tpa_idx_map = NULL; 3539 if (rxr->rx_tpa) { 3540 for (j = 0; j < bp->max_tpa; j++) { 3541 kfree(rxr->rx_tpa[j].agg_arr); 3542 rxr->rx_tpa[j].agg_arr = NULL; 3543 } 3544 } 3545 kfree(rxr->rx_tpa); 3546 rxr->rx_tpa = NULL; 3547 } 3548 } 3549 3550 static int bnxt_alloc_tpa_info(struct bnxt *bp) 3551 { 3552 int i, j; 3553 3554 bp->max_tpa = MAX_TPA; 3555 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 3556 if (!bp->max_tpa_v2) 3557 return 0; 3558 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 3559 } 3560 3561 for (i = 0; i < bp->rx_nr_rings; i++) { 3562 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3563 struct rx_agg_cmp *agg; 3564 3565 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 3566 GFP_KERNEL); 3567 if (!rxr->rx_tpa) 3568 return -ENOMEM; 3569 3570 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 3571 continue; 3572 for (j = 0; j < bp->max_tpa; j++) { 3573 agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL); 3574 if (!agg) 3575 return -ENOMEM; 3576 rxr->rx_tpa[j].agg_arr = agg; 3577 } 3578 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 3579 GFP_KERNEL); 3580 if (!rxr->rx_tpa_idx_map) 3581 return -ENOMEM; 3582 } 3583 return 0; 3584 } 3585 3586 static void bnxt_free_rx_rings(struct bnxt *bp) 3587 { 3588 int i; 3589 3590 if (!bp->rx_ring) 3591 return; 3592 3593 bnxt_free_tpa_info(bp); 3594 for (i = 0; i < bp->rx_nr_rings; i++) { 3595 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3596 struct bnxt_ring_struct *ring; 3597 3598 if (rxr->xdp_prog) 3599 bpf_prog_put(rxr->xdp_prog); 3600 3601 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 3602 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3603 3604 page_pool_destroy(rxr->page_pool); 3605 rxr->page_pool = NULL; 3606 3607 kfree(rxr->rx_agg_bmap); 3608 rxr->rx_agg_bmap = NULL; 3609 3610 ring = &rxr->rx_ring_struct; 3611 bnxt_free_ring(bp, &ring->ring_mem); 3612 3613 ring = &rxr->rx_agg_ring_struct; 3614 bnxt_free_ring(bp, &ring->ring_mem); 3615 } 3616 } 3617 3618 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 3619 struct bnxt_rx_ring_info *rxr, 3620 int numa_node) 3621 { 3622 struct page_pool_params pp = { 0 }; 3623 3624 pp.pool_size = bp->rx_agg_ring_size; 3625 if (BNXT_RX_PAGE_MODE(bp)) 3626 pp.pool_size += bp->rx_ring_size; 3627 pp.nid = numa_node; 3628 pp.napi = &rxr->bnapi->napi; 3629 pp.netdev = bp->dev; 3630 pp.dev = &bp->pdev->dev; 3631 pp.dma_dir = bp->rx_dir; 3632 pp.max_len = PAGE_SIZE; 3633 pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 3634 3635 rxr->page_pool = page_pool_create(&pp); 3636 if (IS_ERR(rxr->page_pool)) { 3637 int err = PTR_ERR(rxr->page_pool); 3638 3639 rxr->page_pool = NULL; 3640 return err; 3641 } 3642 return 0; 3643 } 3644 3645 static int bnxt_alloc_rx_rings(struct bnxt *bp) 3646 { 3647 int numa_node = dev_to_node(&bp->pdev->dev); 3648 int i, rc = 0, agg_rings = 0, cpu; 3649 3650 if (!bp->rx_ring) 3651 return -ENOMEM; 3652 3653 if (bp->flags & BNXT_FLAG_AGG_RINGS) 3654 agg_rings = 1; 3655 3656 for (i = 0; i < bp->rx_nr_rings; i++) { 3657 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3658 struct bnxt_ring_struct *ring; 3659 int cpu_node; 3660 3661 ring = &rxr->rx_ring_struct; 3662 3663 cpu = cpumask_local_spread(i, numa_node); 3664 cpu_node = cpu_to_node(cpu); 3665 netdev_dbg(bp->dev, "Allocating page pool for rx_ring[%d] on numa_node: %d\n", 3666 i, cpu_node); 3667 rc = bnxt_alloc_rx_page_pool(bp, rxr, cpu_node); 3668 if (rc) 3669 return rc; 3670 3671 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 3672 if (rc < 0) 3673 return rc; 3674 3675 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 3676 MEM_TYPE_PAGE_POOL, 3677 rxr->page_pool); 3678 if (rc) { 3679 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3680 return rc; 3681 } 3682 3683 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3684 if (rc) 3685 return rc; 3686 3687 ring->grp_idx = i; 3688 if (agg_rings) { 3689 u16 mem_size; 3690 3691 ring = &rxr->rx_agg_ring_struct; 3692 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3693 if (rc) 3694 return rc; 3695 3696 ring->grp_idx = i; 3697 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 3698 mem_size = rxr->rx_agg_bmap_size / 8; 3699 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 3700 if (!rxr->rx_agg_bmap) 3701 return -ENOMEM; 3702 } 3703 } 3704 if (bp->flags & BNXT_FLAG_TPA) 3705 rc = bnxt_alloc_tpa_info(bp); 3706 return rc; 3707 } 3708 3709 static void bnxt_free_tx_rings(struct bnxt *bp) 3710 { 3711 int i; 3712 struct pci_dev *pdev = bp->pdev; 3713 3714 if (!bp->tx_ring) 3715 return; 3716 3717 for (i = 0; i < bp->tx_nr_rings; i++) { 3718 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3719 struct bnxt_ring_struct *ring; 3720 3721 if (txr->tx_push) { 3722 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3723 txr->tx_push, txr->tx_push_mapping); 3724 txr->tx_push = NULL; 3725 } 3726 3727 ring = &txr->tx_ring_struct; 3728 3729 bnxt_free_ring(bp, &ring->ring_mem); 3730 } 3731 } 3732 3733 #define BNXT_TC_TO_RING_BASE(bp, tc) \ 3734 ((tc) * (bp)->tx_nr_rings_per_tc) 3735 3736 #define BNXT_RING_TO_TC_OFF(bp, tx) \ 3737 ((tx) % (bp)->tx_nr_rings_per_tc) 3738 3739 #define BNXT_RING_TO_TC(bp, tx) \ 3740 ((tx) / (bp)->tx_nr_rings_per_tc) 3741 3742 static int bnxt_alloc_tx_rings(struct bnxt *bp) 3743 { 3744 int i, j, rc; 3745 struct pci_dev *pdev = bp->pdev; 3746 3747 bp->tx_push_size = 0; 3748 if (bp->tx_push_thresh) { 3749 int push_size; 3750 3751 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 3752 bp->tx_push_thresh); 3753 3754 if (push_size > 256) { 3755 push_size = 0; 3756 bp->tx_push_thresh = 0; 3757 } 3758 3759 bp->tx_push_size = push_size; 3760 } 3761 3762 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 3763 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3764 struct bnxt_ring_struct *ring; 3765 u8 qidx; 3766 3767 ring = &txr->tx_ring_struct; 3768 3769 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3770 if (rc) 3771 return rc; 3772 3773 ring->grp_idx = txr->bnapi->index; 3774 if (bp->tx_push_size) { 3775 dma_addr_t mapping; 3776 3777 /* One pre-allocated DMA buffer to backup 3778 * TX push operation 3779 */ 3780 txr->tx_push = dma_alloc_coherent(&pdev->dev, 3781 bp->tx_push_size, 3782 &txr->tx_push_mapping, 3783 GFP_KERNEL); 3784 3785 if (!txr->tx_push) 3786 return -ENOMEM; 3787 3788 mapping = txr->tx_push_mapping + 3789 sizeof(struct tx_push_bd); 3790 txr->data_mapping = cpu_to_le64(mapping); 3791 } 3792 qidx = bp->tc_to_qidx[j]; 3793 ring->queue_id = bp->q_info[qidx].queue_id; 3794 spin_lock_init(&txr->xdp_tx_lock); 3795 if (i < bp->tx_nr_rings_xdp) 3796 continue; 3797 if (BNXT_RING_TO_TC_OFF(bp, i) == (bp->tx_nr_rings_per_tc - 1)) 3798 j++; 3799 } 3800 return 0; 3801 } 3802 3803 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr) 3804 { 3805 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3806 3807 kfree(cpr->cp_desc_ring); 3808 cpr->cp_desc_ring = NULL; 3809 ring->ring_mem.pg_arr = NULL; 3810 kfree(cpr->cp_desc_mapping); 3811 cpr->cp_desc_mapping = NULL; 3812 ring->ring_mem.dma_arr = NULL; 3813 } 3814 3815 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n) 3816 { 3817 cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL); 3818 if (!cpr->cp_desc_ring) 3819 return -ENOMEM; 3820 cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping), 3821 GFP_KERNEL); 3822 if (!cpr->cp_desc_mapping) 3823 return -ENOMEM; 3824 return 0; 3825 } 3826 3827 static void bnxt_free_all_cp_arrays(struct bnxt *bp) 3828 { 3829 int i; 3830 3831 if (!bp->bnapi) 3832 return; 3833 for (i = 0; i < bp->cp_nr_rings; i++) { 3834 struct bnxt_napi *bnapi = bp->bnapi[i]; 3835 3836 if (!bnapi) 3837 continue; 3838 bnxt_free_cp_arrays(&bnapi->cp_ring); 3839 } 3840 } 3841 3842 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp) 3843 { 3844 int i, n = bp->cp_nr_pages; 3845 3846 for (i = 0; i < bp->cp_nr_rings; i++) { 3847 struct bnxt_napi *bnapi = bp->bnapi[i]; 3848 int rc; 3849 3850 if (!bnapi) 3851 continue; 3852 rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n); 3853 if (rc) 3854 return rc; 3855 } 3856 return 0; 3857 } 3858 3859 static void bnxt_free_cp_rings(struct bnxt *bp) 3860 { 3861 int i; 3862 3863 if (!bp->bnapi) 3864 return; 3865 3866 for (i = 0; i < bp->cp_nr_rings; i++) { 3867 struct bnxt_napi *bnapi = bp->bnapi[i]; 3868 struct bnxt_cp_ring_info *cpr; 3869 struct bnxt_ring_struct *ring; 3870 int j; 3871 3872 if (!bnapi) 3873 continue; 3874 3875 cpr = &bnapi->cp_ring; 3876 ring = &cpr->cp_ring_struct; 3877 3878 bnxt_free_ring(bp, &ring->ring_mem); 3879 3880 if (!cpr->cp_ring_arr) 3881 continue; 3882 3883 for (j = 0; j < cpr->cp_ring_count; j++) { 3884 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 3885 3886 ring = &cpr2->cp_ring_struct; 3887 bnxt_free_ring(bp, &ring->ring_mem); 3888 bnxt_free_cp_arrays(cpr2); 3889 } 3890 kfree(cpr->cp_ring_arr); 3891 cpr->cp_ring_arr = NULL; 3892 cpr->cp_ring_count = 0; 3893 } 3894 } 3895 3896 static int bnxt_alloc_cp_sub_ring(struct bnxt *bp, 3897 struct bnxt_cp_ring_info *cpr) 3898 { 3899 struct bnxt_ring_mem_info *rmem; 3900 struct bnxt_ring_struct *ring; 3901 int rc; 3902 3903 rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages); 3904 if (rc) { 3905 bnxt_free_cp_arrays(cpr); 3906 return -ENOMEM; 3907 } 3908 ring = &cpr->cp_ring_struct; 3909 rmem = &ring->ring_mem; 3910 rmem->nr_pages = bp->cp_nr_pages; 3911 rmem->page_size = HW_CMPD_RING_SIZE; 3912 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3913 rmem->dma_arr = cpr->cp_desc_mapping; 3914 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 3915 rc = bnxt_alloc_ring(bp, rmem); 3916 if (rc) { 3917 bnxt_free_ring(bp, rmem); 3918 bnxt_free_cp_arrays(cpr); 3919 } 3920 return rc; 3921 } 3922 3923 static int bnxt_alloc_cp_rings(struct bnxt *bp) 3924 { 3925 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 3926 int i, j, rc, ulp_msix; 3927 int tcs = bp->num_tc; 3928 3929 if (!tcs) 3930 tcs = 1; 3931 ulp_msix = bnxt_get_ulp_msix_num(bp); 3932 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 3933 struct bnxt_napi *bnapi = bp->bnapi[i]; 3934 struct bnxt_cp_ring_info *cpr, *cpr2; 3935 struct bnxt_ring_struct *ring; 3936 int cp_count = 0, k; 3937 int rx = 0, tx = 0; 3938 3939 if (!bnapi) 3940 continue; 3941 3942 cpr = &bnapi->cp_ring; 3943 cpr->bnapi = bnapi; 3944 ring = &cpr->cp_ring_struct; 3945 3946 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3947 if (rc) 3948 return rc; 3949 3950 ring->map_idx = ulp_msix + i; 3951 3952 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 3953 continue; 3954 3955 if (i < bp->rx_nr_rings) { 3956 cp_count++; 3957 rx = 1; 3958 } 3959 if (i < bp->tx_nr_rings_xdp) { 3960 cp_count++; 3961 tx = 1; 3962 } else if ((sh && i < bp->tx_nr_rings) || 3963 (!sh && i >= bp->rx_nr_rings)) { 3964 cp_count += tcs; 3965 tx = 1; 3966 } 3967 3968 cpr->cp_ring_arr = kcalloc(cp_count, sizeof(*cpr), 3969 GFP_KERNEL); 3970 if (!cpr->cp_ring_arr) 3971 return -ENOMEM; 3972 cpr->cp_ring_count = cp_count; 3973 3974 for (k = 0; k < cp_count; k++) { 3975 cpr2 = &cpr->cp_ring_arr[k]; 3976 rc = bnxt_alloc_cp_sub_ring(bp, cpr2); 3977 if (rc) 3978 return rc; 3979 cpr2->bnapi = bnapi; 3980 cpr2->sw_stats = cpr->sw_stats; 3981 cpr2->cp_idx = k; 3982 if (!k && rx) { 3983 bp->rx_ring[i].rx_cpr = cpr2; 3984 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_RX; 3985 } else { 3986 int n, tc = k - rx; 3987 3988 n = BNXT_TC_TO_RING_BASE(bp, tc) + j; 3989 bp->tx_ring[n].tx_cpr = cpr2; 3990 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_TX; 3991 } 3992 } 3993 if (tx) 3994 j++; 3995 } 3996 return 0; 3997 } 3998 3999 static void bnxt_init_rx_ring_struct(struct bnxt *bp, 4000 struct bnxt_rx_ring_info *rxr) 4001 { 4002 struct bnxt_ring_mem_info *rmem; 4003 struct bnxt_ring_struct *ring; 4004 4005 ring = &rxr->rx_ring_struct; 4006 rmem = &ring->ring_mem; 4007 rmem->nr_pages = bp->rx_nr_pages; 4008 rmem->page_size = HW_RXBD_RING_SIZE; 4009 rmem->pg_arr = (void **)rxr->rx_desc_ring; 4010 rmem->dma_arr = rxr->rx_desc_mapping; 4011 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 4012 rmem->vmem = (void **)&rxr->rx_buf_ring; 4013 4014 ring = &rxr->rx_agg_ring_struct; 4015 rmem = &ring->ring_mem; 4016 rmem->nr_pages = bp->rx_agg_nr_pages; 4017 rmem->page_size = HW_RXBD_RING_SIZE; 4018 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 4019 rmem->dma_arr = rxr->rx_agg_desc_mapping; 4020 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 4021 rmem->vmem = (void **)&rxr->rx_agg_ring; 4022 } 4023 4024 static void bnxt_reset_rx_ring_struct(struct bnxt *bp, 4025 struct bnxt_rx_ring_info *rxr) 4026 { 4027 struct bnxt_ring_mem_info *rmem; 4028 struct bnxt_ring_struct *ring; 4029 int i; 4030 4031 rxr->page_pool->p.napi = NULL; 4032 rxr->page_pool = NULL; 4033 4034 ring = &rxr->rx_ring_struct; 4035 rmem = &ring->ring_mem; 4036 rmem->pg_tbl = NULL; 4037 rmem->pg_tbl_map = 0; 4038 for (i = 0; i < rmem->nr_pages; i++) { 4039 rmem->pg_arr[i] = NULL; 4040 rmem->dma_arr[i] = 0; 4041 } 4042 *rmem->vmem = NULL; 4043 4044 ring = &rxr->rx_agg_ring_struct; 4045 rmem = &ring->ring_mem; 4046 rmem->pg_tbl = NULL; 4047 rmem->pg_tbl_map = 0; 4048 for (i = 0; i < rmem->nr_pages; i++) { 4049 rmem->pg_arr[i] = NULL; 4050 rmem->dma_arr[i] = 0; 4051 } 4052 *rmem->vmem = NULL; 4053 } 4054 4055 static void bnxt_init_ring_struct(struct bnxt *bp) 4056 { 4057 int i, j; 4058 4059 for (i = 0; i < bp->cp_nr_rings; i++) { 4060 struct bnxt_napi *bnapi = bp->bnapi[i]; 4061 struct bnxt_ring_mem_info *rmem; 4062 struct bnxt_cp_ring_info *cpr; 4063 struct bnxt_rx_ring_info *rxr; 4064 struct bnxt_tx_ring_info *txr; 4065 struct bnxt_ring_struct *ring; 4066 4067 if (!bnapi) 4068 continue; 4069 4070 cpr = &bnapi->cp_ring; 4071 ring = &cpr->cp_ring_struct; 4072 rmem = &ring->ring_mem; 4073 rmem->nr_pages = bp->cp_nr_pages; 4074 rmem->page_size = HW_CMPD_RING_SIZE; 4075 rmem->pg_arr = (void **)cpr->cp_desc_ring; 4076 rmem->dma_arr = cpr->cp_desc_mapping; 4077 rmem->vmem_size = 0; 4078 4079 rxr = bnapi->rx_ring; 4080 if (!rxr) 4081 goto skip_rx; 4082 4083 ring = &rxr->rx_ring_struct; 4084 rmem = &ring->ring_mem; 4085 rmem->nr_pages = bp->rx_nr_pages; 4086 rmem->page_size = HW_RXBD_RING_SIZE; 4087 rmem->pg_arr = (void **)rxr->rx_desc_ring; 4088 rmem->dma_arr = rxr->rx_desc_mapping; 4089 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 4090 rmem->vmem = (void **)&rxr->rx_buf_ring; 4091 4092 ring = &rxr->rx_agg_ring_struct; 4093 rmem = &ring->ring_mem; 4094 rmem->nr_pages = bp->rx_agg_nr_pages; 4095 rmem->page_size = HW_RXBD_RING_SIZE; 4096 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 4097 rmem->dma_arr = rxr->rx_agg_desc_mapping; 4098 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 4099 rmem->vmem = (void **)&rxr->rx_agg_ring; 4100 4101 skip_rx: 4102 bnxt_for_each_napi_tx(j, bnapi, txr) { 4103 ring = &txr->tx_ring_struct; 4104 rmem = &ring->ring_mem; 4105 rmem->nr_pages = bp->tx_nr_pages; 4106 rmem->page_size = HW_TXBD_RING_SIZE; 4107 rmem->pg_arr = (void **)txr->tx_desc_ring; 4108 rmem->dma_arr = txr->tx_desc_mapping; 4109 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 4110 rmem->vmem = (void **)&txr->tx_buf_ring; 4111 } 4112 } 4113 } 4114 4115 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 4116 { 4117 int i; 4118 u32 prod; 4119 struct rx_bd **rx_buf_ring; 4120 4121 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 4122 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 4123 int j; 4124 struct rx_bd *rxbd; 4125 4126 rxbd = rx_buf_ring[i]; 4127 if (!rxbd) 4128 continue; 4129 4130 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 4131 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 4132 rxbd->rx_bd_opaque = prod; 4133 } 4134 } 4135 } 4136 4137 static void bnxt_alloc_one_rx_ring_skb(struct bnxt *bp, 4138 struct bnxt_rx_ring_info *rxr, 4139 int ring_nr) 4140 { 4141 u32 prod; 4142 int i; 4143 4144 prod = rxr->rx_prod; 4145 for (i = 0; i < bp->rx_ring_size; i++) { 4146 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 4147 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n", 4148 ring_nr, i, bp->rx_ring_size); 4149 break; 4150 } 4151 prod = NEXT_RX(prod); 4152 } 4153 rxr->rx_prod = prod; 4154 } 4155 4156 static void bnxt_alloc_one_rx_ring_page(struct bnxt *bp, 4157 struct bnxt_rx_ring_info *rxr, 4158 int ring_nr) 4159 { 4160 u32 prod; 4161 int i; 4162 4163 prod = rxr->rx_agg_prod; 4164 for (i = 0; i < bp->rx_agg_ring_size; i++) { 4165 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) { 4166 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d pages only\n", 4167 ring_nr, i, bp->rx_ring_size); 4168 break; 4169 } 4170 prod = NEXT_RX_AGG(prod); 4171 } 4172 rxr->rx_agg_prod = prod; 4173 } 4174 4175 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 4176 { 4177 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 4178 int i; 4179 4180 bnxt_alloc_one_rx_ring_skb(bp, rxr, ring_nr); 4181 4182 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 4183 return 0; 4184 4185 bnxt_alloc_one_rx_ring_page(bp, rxr, ring_nr); 4186 4187 if (rxr->rx_tpa) { 4188 dma_addr_t mapping; 4189 u8 *data; 4190 4191 for (i = 0; i < bp->max_tpa; i++) { 4192 data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL); 4193 if (!data) 4194 return -ENOMEM; 4195 4196 rxr->rx_tpa[i].data = data; 4197 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 4198 rxr->rx_tpa[i].mapping = mapping; 4199 } 4200 } 4201 return 0; 4202 } 4203 4204 static void bnxt_init_one_rx_ring_rxbd(struct bnxt *bp, 4205 struct bnxt_rx_ring_info *rxr) 4206 { 4207 struct bnxt_ring_struct *ring; 4208 u32 type; 4209 4210 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 4211 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 4212 4213 if (NET_IP_ALIGN == 2) 4214 type |= RX_BD_FLAGS_SOP; 4215 4216 ring = &rxr->rx_ring_struct; 4217 bnxt_init_rxbd_pages(ring, type); 4218 ring->fw_ring_id = INVALID_HW_RING_ID; 4219 } 4220 4221 static void bnxt_init_one_rx_agg_ring_rxbd(struct bnxt *bp, 4222 struct bnxt_rx_ring_info *rxr) 4223 { 4224 struct bnxt_ring_struct *ring; 4225 u32 type; 4226 4227 ring = &rxr->rx_agg_ring_struct; 4228 ring->fw_ring_id = INVALID_HW_RING_ID; 4229 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 4230 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 4231 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 4232 4233 bnxt_init_rxbd_pages(ring, type); 4234 } 4235 } 4236 4237 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 4238 { 4239 struct bnxt_rx_ring_info *rxr; 4240 4241 rxr = &bp->rx_ring[ring_nr]; 4242 bnxt_init_one_rx_ring_rxbd(bp, rxr); 4243 4244 netif_queue_set_napi(bp->dev, ring_nr, NETDEV_QUEUE_TYPE_RX, 4245 &rxr->bnapi->napi); 4246 4247 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 4248 bpf_prog_add(bp->xdp_prog, 1); 4249 rxr->xdp_prog = bp->xdp_prog; 4250 } 4251 4252 bnxt_init_one_rx_agg_ring_rxbd(bp, rxr); 4253 4254 return bnxt_alloc_one_rx_ring(bp, ring_nr); 4255 } 4256 4257 static void bnxt_init_cp_rings(struct bnxt *bp) 4258 { 4259 int i, j; 4260 4261 for (i = 0; i < bp->cp_nr_rings; i++) { 4262 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 4263 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4264 4265 ring->fw_ring_id = INVALID_HW_RING_ID; 4266 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4267 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4268 if (!cpr->cp_ring_arr) 4269 continue; 4270 for (j = 0; j < cpr->cp_ring_count; j++) { 4271 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 4272 4273 ring = &cpr2->cp_ring_struct; 4274 ring->fw_ring_id = INVALID_HW_RING_ID; 4275 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4276 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4277 } 4278 } 4279 } 4280 4281 static int bnxt_init_rx_rings(struct bnxt *bp) 4282 { 4283 int i, rc = 0; 4284 4285 if (BNXT_RX_PAGE_MODE(bp)) { 4286 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 4287 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 4288 } else { 4289 bp->rx_offset = BNXT_RX_OFFSET; 4290 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 4291 } 4292 4293 for (i = 0; i < bp->rx_nr_rings; i++) { 4294 rc = bnxt_init_one_rx_ring(bp, i); 4295 if (rc) 4296 break; 4297 } 4298 4299 return rc; 4300 } 4301 4302 static int bnxt_init_tx_rings(struct bnxt *bp) 4303 { 4304 u16 i; 4305 4306 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 4307 BNXT_MIN_TX_DESC_CNT); 4308 4309 for (i = 0; i < bp->tx_nr_rings; i++) { 4310 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4311 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 4312 4313 ring->fw_ring_id = INVALID_HW_RING_ID; 4314 4315 if (i >= bp->tx_nr_rings_xdp) 4316 netif_queue_set_napi(bp->dev, i - bp->tx_nr_rings_xdp, 4317 NETDEV_QUEUE_TYPE_TX, 4318 &txr->bnapi->napi); 4319 } 4320 4321 return 0; 4322 } 4323 4324 static void bnxt_free_ring_grps(struct bnxt *bp) 4325 { 4326 kfree(bp->grp_info); 4327 bp->grp_info = NULL; 4328 } 4329 4330 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 4331 { 4332 int i; 4333 4334 if (irq_re_init) { 4335 bp->grp_info = kcalloc(bp->cp_nr_rings, 4336 sizeof(struct bnxt_ring_grp_info), 4337 GFP_KERNEL); 4338 if (!bp->grp_info) 4339 return -ENOMEM; 4340 } 4341 for (i = 0; i < bp->cp_nr_rings; i++) { 4342 if (irq_re_init) 4343 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 4344 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 4345 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 4346 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 4347 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 4348 } 4349 return 0; 4350 } 4351 4352 static void bnxt_free_vnics(struct bnxt *bp) 4353 { 4354 kfree(bp->vnic_info); 4355 bp->vnic_info = NULL; 4356 bp->nr_vnics = 0; 4357 } 4358 4359 static int bnxt_alloc_vnics(struct bnxt *bp) 4360 { 4361 int num_vnics = 1; 4362 4363 #ifdef CONFIG_RFS_ACCEL 4364 if (bp->flags & BNXT_FLAG_RFS) { 4365 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 4366 num_vnics++; 4367 else if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4368 num_vnics += bp->rx_nr_rings; 4369 } 4370 #endif 4371 4372 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 4373 num_vnics++; 4374 4375 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 4376 GFP_KERNEL); 4377 if (!bp->vnic_info) 4378 return -ENOMEM; 4379 4380 bp->nr_vnics = num_vnics; 4381 return 0; 4382 } 4383 4384 static void bnxt_init_vnics(struct bnxt *bp) 4385 { 4386 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 4387 int i; 4388 4389 for (i = 0; i < bp->nr_vnics; i++) { 4390 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 4391 int j; 4392 4393 vnic->fw_vnic_id = INVALID_HW_RING_ID; 4394 vnic->vnic_id = i; 4395 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 4396 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 4397 4398 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 4399 4400 if (bp->vnic_info[i].rss_hash_key) { 4401 if (i == BNXT_VNIC_DEFAULT) { 4402 u8 *key = (void *)vnic->rss_hash_key; 4403 int k; 4404 4405 if (!bp->rss_hash_key_valid && 4406 !bp->rss_hash_key_updated) { 4407 get_random_bytes(bp->rss_hash_key, 4408 HW_HASH_KEY_SIZE); 4409 bp->rss_hash_key_updated = true; 4410 } 4411 4412 memcpy(vnic->rss_hash_key, bp->rss_hash_key, 4413 HW_HASH_KEY_SIZE); 4414 4415 if (!bp->rss_hash_key_updated) 4416 continue; 4417 4418 bp->rss_hash_key_updated = false; 4419 bp->rss_hash_key_valid = true; 4420 4421 bp->toeplitz_prefix = 0; 4422 for (k = 0; k < 8; k++) { 4423 bp->toeplitz_prefix <<= 8; 4424 bp->toeplitz_prefix |= key[k]; 4425 } 4426 } else { 4427 memcpy(vnic->rss_hash_key, vnic0->rss_hash_key, 4428 HW_HASH_KEY_SIZE); 4429 } 4430 } 4431 } 4432 } 4433 4434 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 4435 { 4436 int pages; 4437 4438 pages = ring_size / desc_per_pg; 4439 4440 if (!pages) 4441 return 1; 4442 4443 pages++; 4444 4445 while (pages & (pages - 1)) 4446 pages++; 4447 4448 return pages; 4449 } 4450 4451 void bnxt_set_tpa_flags(struct bnxt *bp) 4452 { 4453 bp->flags &= ~BNXT_FLAG_TPA; 4454 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 4455 return; 4456 if (bp->dev->features & NETIF_F_LRO) 4457 bp->flags |= BNXT_FLAG_LRO; 4458 else if (bp->dev->features & NETIF_F_GRO_HW) 4459 bp->flags |= BNXT_FLAG_GRO; 4460 } 4461 4462 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 4463 * be set on entry. 4464 */ 4465 void bnxt_set_ring_params(struct bnxt *bp) 4466 { 4467 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 4468 u32 agg_factor = 0, agg_ring_size = 0; 4469 4470 /* 8 for CRC and VLAN */ 4471 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 4472 4473 rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) + 4474 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4475 4476 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 4477 ring_size = bp->rx_ring_size; 4478 bp->rx_agg_ring_size = 0; 4479 bp->rx_agg_nr_pages = 0; 4480 4481 if (bp->flags & BNXT_FLAG_TPA) 4482 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 4483 4484 bp->flags &= ~BNXT_FLAG_JUMBO; 4485 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 4486 u32 jumbo_factor; 4487 4488 bp->flags |= BNXT_FLAG_JUMBO; 4489 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 4490 if (jumbo_factor > agg_factor) 4491 agg_factor = jumbo_factor; 4492 } 4493 if (agg_factor) { 4494 if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) { 4495 ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA; 4496 netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n", 4497 bp->rx_ring_size, ring_size); 4498 bp->rx_ring_size = ring_size; 4499 } 4500 agg_ring_size = ring_size * agg_factor; 4501 4502 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 4503 RX_DESC_CNT); 4504 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 4505 u32 tmp = agg_ring_size; 4506 4507 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 4508 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 4509 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 4510 tmp, agg_ring_size); 4511 } 4512 bp->rx_agg_ring_size = agg_ring_size; 4513 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 4514 4515 if (BNXT_RX_PAGE_MODE(bp)) { 4516 rx_space = PAGE_SIZE; 4517 rx_size = PAGE_SIZE - 4518 ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) - 4519 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4520 } else { 4521 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 4522 rx_space = rx_size + NET_SKB_PAD + 4523 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4524 } 4525 } 4526 4527 bp->rx_buf_use_size = rx_size; 4528 bp->rx_buf_size = rx_space; 4529 4530 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 4531 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 4532 4533 ring_size = bp->tx_ring_size; 4534 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 4535 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 4536 4537 max_rx_cmpl = bp->rx_ring_size; 4538 /* MAX TPA needs to be added because TPA_START completions are 4539 * immediately recycled, so the TPA completions are not bound by 4540 * the RX ring size. 4541 */ 4542 if (bp->flags & BNXT_FLAG_TPA) 4543 max_rx_cmpl += bp->max_tpa; 4544 /* RX and TPA completions are 32-byte, all others are 16-byte */ 4545 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 4546 bp->cp_ring_size = ring_size; 4547 4548 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 4549 if (bp->cp_nr_pages > MAX_CP_PAGES) { 4550 bp->cp_nr_pages = MAX_CP_PAGES; 4551 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 4552 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 4553 ring_size, bp->cp_ring_size); 4554 } 4555 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 4556 bp->cp_ring_mask = bp->cp_bit - 1; 4557 } 4558 4559 /* Changing allocation mode of RX rings. 4560 * TODO: Update when extending xdp_rxq_info to support allocation modes. 4561 */ 4562 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 4563 { 4564 struct net_device *dev = bp->dev; 4565 4566 if (page_mode) { 4567 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 4568 bp->flags |= BNXT_FLAG_RX_PAGE_MODE; 4569 4570 if (bp->xdp_prog->aux->xdp_has_frags) 4571 dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU); 4572 else 4573 dev->max_mtu = 4574 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 4575 if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) { 4576 bp->flags |= BNXT_FLAG_JUMBO; 4577 bp->rx_skb_func = bnxt_rx_multi_page_skb; 4578 } else { 4579 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 4580 bp->rx_skb_func = bnxt_rx_page_skb; 4581 } 4582 bp->rx_dir = DMA_BIDIRECTIONAL; 4583 /* Disable LRO or GRO_HW */ 4584 netdev_update_features(dev); 4585 } else { 4586 dev->max_mtu = bp->max_mtu; 4587 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 4588 bp->rx_dir = DMA_FROM_DEVICE; 4589 bp->rx_skb_func = bnxt_rx_skb; 4590 } 4591 return 0; 4592 } 4593 4594 static void bnxt_free_vnic_attributes(struct bnxt *bp) 4595 { 4596 int i; 4597 struct bnxt_vnic_info *vnic; 4598 struct pci_dev *pdev = bp->pdev; 4599 4600 if (!bp->vnic_info) 4601 return; 4602 4603 for (i = 0; i < bp->nr_vnics; i++) { 4604 vnic = &bp->vnic_info[i]; 4605 4606 kfree(vnic->fw_grp_ids); 4607 vnic->fw_grp_ids = NULL; 4608 4609 kfree(vnic->uc_list); 4610 vnic->uc_list = NULL; 4611 4612 if (vnic->mc_list) { 4613 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 4614 vnic->mc_list, vnic->mc_list_mapping); 4615 vnic->mc_list = NULL; 4616 } 4617 4618 if (vnic->rss_table) { 4619 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 4620 vnic->rss_table, 4621 vnic->rss_table_dma_addr); 4622 vnic->rss_table = NULL; 4623 } 4624 4625 vnic->rss_hash_key = NULL; 4626 vnic->flags = 0; 4627 } 4628 } 4629 4630 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 4631 { 4632 int i, rc = 0, size; 4633 struct bnxt_vnic_info *vnic; 4634 struct pci_dev *pdev = bp->pdev; 4635 int max_rings; 4636 4637 for (i = 0; i < bp->nr_vnics; i++) { 4638 vnic = &bp->vnic_info[i]; 4639 4640 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 4641 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 4642 4643 if (mem_size > 0) { 4644 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 4645 if (!vnic->uc_list) { 4646 rc = -ENOMEM; 4647 goto out; 4648 } 4649 } 4650 } 4651 4652 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 4653 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 4654 vnic->mc_list = 4655 dma_alloc_coherent(&pdev->dev, 4656 vnic->mc_list_size, 4657 &vnic->mc_list_mapping, 4658 GFP_KERNEL); 4659 if (!vnic->mc_list) { 4660 rc = -ENOMEM; 4661 goto out; 4662 } 4663 } 4664 4665 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4666 goto vnic_skip_grps; 4667 4668 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 4669 max_rings = bp->rx_nr_rings; 4670 else 4671 max_rings = 1; 4672 4673 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 4674 if (!vnic->fw_grp_ids) { 4675 rc = -ENOMEM; 4676 goto out; 4677 } 4678 vnic_skip_grps: 4679 if ((bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && 4680 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 4681 continue; 4682 4683 /* Allocate rss table and hash key */ 4684 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 4685 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4686 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 4687 4688 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 4689 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 4690 vnic->rss_table_size, 4691 &vnic->rss_table_dma_addr, 4692 GFP_KERNEL); 4693 if (!vnic->rss_table) { 4694 rc = -ENOMEM; 4695 goto out; 4696 } 4697 4698 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 4699 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 4700 } 4701 return 0; 4702 4703 out: 4704 return rc; 4705 } 4706 4707 static void bnxt_free_hwrm_resources(struct bnxt *bp) 4708 { 4709 struct bnxt_hwrm_wait_token *token; 4710 4711 dma_pool_destroy(bp->hwrm_dma_pool); 4712 bp->hwrm_dma_pool = NULL; 4713 4714 rcu_read_lock(); 4715 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) 4716 WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED); 4717 rcu_read_unlock(); 4718 } 4719 4720 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 4721 { 4722 bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev, 4723 BNXT_HWRM_DMA_SIZE, 4724 BNXT_HWRM_DMA_ALIGN, 0); 4725 if (!bp->hwrm_dma_pool) 4726 return -ENOMEM; 4727 4728 INIT_HLIST_HEAD(&bp->hwrm_pending_list); 4729 4730 return 0; 4731 } 4732 4733 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 4734 { 4735 kfree(stats->hw_masks); 4736 stats->hw_masks = NULL; 4737 kfree(stats->sw_stats); 4738 stats->sw_stats = NULL; 4739 if (stats->hw_stats) { 4740 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 4741 stats->hw_stats_map); 4742 stats->hw_stats = NULL; 4743 } 4744 } 4745 4746 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 4747 bool alloc_masks) 4748 { 4749 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 4750 &stats->hw_stats_map, GFP_KERNEL); 4751 if (!stats->hw_stats) 4752 return -ENOMEM; 4753 4754 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 4755 if (!stats->sw_stats) 4756 goto stats_mem_err; 4757 4758 if (alloc_masks) { 4759 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 4760 if (!stats->hw_masks) 4761 goto stats_mem_err; 4762 } 4763 return 0; 4764 4765 stats_mem_err: 4766 bnxt_free_stats_mem(bp, stats); 4767 return -ENOMEM; 4768 } 4769 4770 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 4771 { 4772 int i; 4773 4774 for (i = 0; i < count; i++) 4775 mask_arr[i] = mask; 4776 } 4777 4778 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 4779 { 4780 int i; 4781 4782 for (i = 0; i < count; i++) 4783 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 4784 } 4785 4786 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 4787 struct bnxt_stats_mem *stats) 4788 { 4789 struct hwrm_func_qstats_ext_output *resp; 4790 struct hwrm_func_qstats_ext_input *req; 4791 __le64 *hw_masks; 4792 int rc; 4793 4794 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 4795 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4796 return -EOPNOTSUPP; 4797 4798 rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT); 4799 if (rc) 4800 return rc; 4801 4802 req->fid = cpu_to_le16(0xffff); 4803 req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4804 4805 resp = hwrm_req_hold(bp, req); 4806 rc = hwrm_req_send(bp, req); 4807 if (!rc) { 4808 hw_masks = &resp->rx_ucast_pkts; 4809 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 4810 } 4811 hwrm_req_drop(bp, req); 4812 return rc; 4813 } 4814 4815 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 4816 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 4817 4818 static void bnxt_init_stats(struct bnxt *bp) 4819 { 4820 struct bnxt_napi *bnapi = bp->bnapi[0]; 4821 struct bnxt_cp_ring_info *cpr; 4822 struct bnxt_stats_mem *stats; 4823 __le64 *rx_stats, *tx_stats; 4824 int rc, rx_count, tx_count; 4825 u64 *rx_masks, *tx_masks; 4826 u64 mask; 4827 u8 flags; 4828 4829 cpr = &bnapi->cp_ring; 4830 stats = &cpr->stats; 4831 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 4832 if (rc) { 4833 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4834 mask = (1ULL << 48) - 1; 4835 else 4836 mask = -1ULL; 4837 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 4838 } 4839 if (bp->flags & BNXT_FLAG_PORT_STATS) { 4840 stats = &bp->port_stats; 4841 rx_stats = stats->hw_stats; 4842 rx_masks = stats->hw_masks; 4843 rx_count = sizeof(struct rx_port_stats) / 8; 4844 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4845 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4846 tx_count = sizeof(struct tx_port_stats) / 8; 4847 4848 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 4849 rc = bnxt_hwrm_port_qstats(bp, flags); 4850 if (rc) { 4851 mask = (1ULL << 40) - 1; 4852 4853 bnxt_fill_masks(rx_masks, mask, rx_count); 4854 bnxt_fill_masks(tx_masks, mask, tx_count); 4855 } else { 4856 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4857 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 4858 bnxt_hwrm_port_qstats(bp, 0); 4859 } 4860 } 4861 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 4862 stats = &bp->rx_port_stats_ext; 4863 rx_stats = stats->hw_stats; 4864 rx_masks = stats->hw_masks; 4865 rx_count = sizeof(struct rx_port_stats_ext) / 8; 4866 stats = &bp->tx_port_stats_ext; 4867 tx_stats = stats->hw_stats; 4868 tx_masks = stats->hw_masks; 4869 tx_count = sizeof(struct tx_port_stats_ext) / 8; 4870 4871 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4872 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 4873 if (rc) { 4874 mask = (1ULL << 40) - 1; 4875 4876 bnxt_fill_masks(rx_masks, mask, rx_count); 4877 if (tx_stats) 4878 bnxt_fill_masks(tx_masks, mask, tx_count); 4879 } else { 4880 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4881 if (tx_stats) 4882 bnxt_copy_hw_masks(tx_masks, tx_stats, 4883 tx_count); 4884 bnxt_hwrm_port_qstats_ext(bp, 0); 4885 } 4886 } 4887 } 4888 4889 static void bnxt_free_port_stats(struct bnxt *bp) 4890 { 4891 bp->flags &= ~BNXT_FLAG_PORT_STATS; 4892 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 4893 4894 bnxt_free_stats_mem(bp, &bp->port_stats); 4895 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 4896 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 4897 } 4898 4899 static void bnxt_free_ring_stats(struct bnxt *bp) 4900 { 4901 int i; 4902 4903 if (!bp->bnapi) 4904 return; 4905 4906 for (i = 0; i < bp->cp_nr_rings; i++) { 4907 struct bnxt_napi *bnapi = bp->bnapi[i]; 4908 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4909 4910 bnxt_free_stats_mem(bp, &cpr->stats); 4911 4912 kfree(cpr->sw_stats); 4913 cpr->sw_stats = NULL; 4914 } 4915 } 4916 4917 static int bnxt_alloc_stats(struct bnxt *bp) 4918 { 4919 u32 size, i; 4920 int rc; 4921 4922 size = bp->hw_ring_stats_size; 4923 4924 for (i = 0; i < bp->cp_nr_rings; i++) { 4925 struct bnxt_napi *bnapi = bp->bnapi[i]; 4926 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4927 4928 cpr->sw_stats = kzalloc(sizeof(*cpr->sw_stats), GFP_KERNEL); 4929 if (!cpr->sw_stats) 4930 return -ENOMEM; 4931 4932 cpr->stats.len = size; 4933 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 4934 if (rc) 4935 return rc; 4936 4937 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 4938 } 4939 4940 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 4941 return 0; 4942 4943 if (bp->port_stats.hw_stats) 4944 goto alloc_ext_stats; 4945 4946 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 4947 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 4948 if (rc) 4949 return rc; 4950 4951 bp->flags |= BNXT_FLAG_PORT_STATS; 4952 4953 alloc_ext_stats: 4954 /* Display extended statistics only if FW supports it */ 4955 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 4956 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 4957 return 0; 4958 4959 if (bp->rx_port_stats_ext.hw_stats) 4960 goto alloc_tx_ext_stats; 4961 4962 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 4963 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 4964 /* Extended stats are optional */ 4965 if (rc) 4966 return 0; 4967 4968 alloc_tx_ext_stats: 4969 if (bp->tx_port_stats_ext.hw_stats) 4970 return 0; 4971 4972 if (bp->hwrm_spec_code >= 0x10902 || 4973 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 4974 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 4975 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 4976 /* Extended stats are optional */ 4977 if (rc) 4978 return 0; 4979 } 4980 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 4981 return 0; 4982 } 4983 4984 static void bnxt_clear_ring_indices(struct bnxt *bp) 4985 { 4986 int i, j; 4987 4988 if (!bp->bnapi) 4989 return; 4990 4991 for (i = 0; i < bp->cp_nr_rings; i++) { 4992 struct bnxt_napi *bnapi = bp->bnapi[i]; 4993 struct bnxt_cp_ring_info *cpr; 4994 struct bnxt_rx_ring_info *rxr; 4995 struct bnxt_tx_ring_info *txr; 4996 4997 if (!bnapi) 4998 continue; 4999 5000 cpr = &bnapi->cp_ring; 5001 cpr->cp_raw_cons = 0; 5002 5003 bnxt_for_each_napi_tx(j, bnapi, txr) { 5004 txr->tx_prod = 0; 5005 txr->tx_cons = 0; 5006 txr->tx_hw_cons = 0; 5007 } 5008 5009 rxr = bnapi->rx_ring; 5010 if (rxr) { 5011 rxr->rx_prod = 0; 5012 rxr->rx_agg_prod = 0; 5013 rxr->rx_sw_agg_prod = 0; 5014 rxr->rx_next_cons = 0; 5015 } 5016 bnapi->events = 0; 5017 } 5018 } 5019 5020 void bnxt_insert_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5021 { 5022 u8 type = fltr->type, flags = fltr->flags; 5023 5024 INIT_LIST_HEAD(&fltr->list); 5025 if ((type == BNXT_FLTR_TYPE_L2 && flags & BNXT_ACT_RING_DST) || 5026 (type == BNXT_FLTR_TYPE_NTUPLE && flags & BNXT_ACT_NO_AGING)) 5027 list_add_tail(&fltr->list, &bp->usr_fltr_list); 5028 } 5029 5030 void bnxt_del_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5031 { 5032 if (!list_empty(&fltr->list)) 5033 list_del_init(&fltr->list); 5034 } 5035 5036 void bnxt_clear_usr_fltrs(struct bnxt *bp, bool all) 5037 { 5038 struct bnxt_filter_base *usr_fltr, *tmp; 5039 5040 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) { 5041 if (!all && usr_fltr->type == BNXT_FLTR_TYPE_L2) 5042 continue; 5043 bnxt_del_one_usr_fltr(bp, usr_fltr); 5044 } 5045 } 5046 5047 static void bnxt_del_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5048 { 5049 hlist_del(&fltr->hash); 5050 bnxt_del_one_usr_fltr(bp, fltr); 5051 if (fltr->flags) { 5052 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 5053 bp->ntp_fltr_count--; 5054 } 5055 kfree(fltr); 5056 } 5057 5058 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool all) 5059 { 5060 int i; 5061 5062 /* Under rtnl_lock and all our NAPIs have been disabled. It's 5063 * safe to delete the hash table. 5064 */ 5065 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 5066 struct hlist_head *head; 5067 struct hlist_node *tmp; 5068 struct bnxt_ntuple_filter *fltr; 5069 5070 head = &bp->ntp_fltr_hash_tbl[i]; 5071 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 5072 bnxt_del_l2_filter(bp, fltr->l2_fltr); 5073 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 5074 !list_empty(&fltr->base.list))) 5075 continue; 5076 bnxt_del_fltr(bp, &fltr->base); 5077 } 5078 } 5079 if (!all) 5080 return; 5081 5082 bitmap_free(bp->ntp_fltr_bmap); 5083 bp->ntp_fltr_bmap = NULL; 5084 bp->ntp_fltr_count = 0; 5085 } 5086 5087 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 5088 { 5089 int i, rc = 0; 5090 5091 if (!(bp->flags & BNXT_FLAG_RFS) || bp->ntp_fltr_bmap) 5092 return 0; 5093 5094 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 5095 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 5096 5097 bp->ntp_fltr_count = 0; 5098 bp->ntp_fltr_bmap = bitmap_zalloc(bp->max_fltr, GFP_KERNEL); 5099 5100 if (!bp->ntp_fltr_bmap) 5101 rc = -ENOMEM; 5102 5103 return rc; 5104 } 5105 5106 static void bnxt_free_l2_filters(struct bnxt *bp, bool all) 5107 { 5108 int i; 5109 5110 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) { 5111 struct hlist_head *head; 5112 struct hlist_node *tmp; 5113 struct bnxt_l2_filter *fltr; 5114 5115 head = &bp->l2_fltr_hash_tbl[i]; 5116 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 5117 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 5118 !list_empty(&fltr->base.list))) 5119 continue; 5120 bnxt_del_fltr(bp, &fltr->base); 5121 } 5122 } 5123 } 5124 5125 static void bnxt_init_l2_fltr_tbl(struct bnxt *bp) 5126 { 5127 int i; 5128 5129 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) 5130 INIT_HLIST_HEAD(&bp->l2_fltr_hash_tbl[i]); 5131 get_random_bytes(&bp->hash_seed, sizeof(bp->hash_seed)); 5132 } 5133 5134 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 5135 { 5136 bnxt_free_vnic_attributes(bp); 5137 bnxt_free_tx_rings(bp); 5138 bnxt_free_rx_rings(bp); 5139 bnxt_free_cp_rings(bp); 5140 bnxt_free_all_cp_arrays(bp); 5141 bnxt_free_ntp_fltrs(bp, false); 5142 bnxt_free_l2_filters(bp, false); 5143 if (irq_re_init) { 5144 bnxt_free_ring_stats(bp); 5145 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 5146 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 5147 bnxt_free_port_stats(bp); 5148 bnxt_free_ring_grps(bp); 5149 bnxt_free_vnics(bp); 5150 kfree(bp->tx_ring_map); 5151 bp->tx_ring_map = NULL; 5152 kfree(bp->tx_ring); 5153 bp->tx_ring = NULL; 5154 kfree(bp->rx_ring); 5155 bp->rx_ring = NULL; 5156 kfree(bp->bnapi); 5157 bp->bnapi = NULL; 5158 } else { 5159 bnxt_clear_ring_indices(bp); 5160 } 5161 } 5162 5163 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 5164 { 5165 int i, j, rc, size, arr_size; 5166 void *bnapi; 5167 5168 if (irq_re_init) { 5169 /* Allocate bnapi mem pointer array and mem block for 5170 * all queues 5171 */ 5172 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 5173 bp->cp_nr_rings); 5174 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 5175 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 5176 if (!bnapi) 5177 return -ENOMEM; 5178 5179 bp->bnapi = bnapi; 5180 bnapi += arr_size; 5181 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 5182 bp->bnapi[i] = bnapi; 5183 bp->bnapi[i]->index = i; 5184 bp->bnapi[i]->bp = bp; 5185 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5186 struct bnxt_cp_ring_info *cpr = 5187 &bp->bnapi[i]->cp_ring; 5188 5189 cpr->cp_ring_struct.ring_mem.flags = 5190 BNXT_RMEM_RING_PTE_FLAG; 5191 } 5192 } 5193 5194 bp->rx_ring = kcalloc(bp->rx_nr_rings, 5195 sizeof(struct bnxt_rx_ring_info), 5196 GFP_KERNEL); 5197 if (!bp->rx_ring) 5198 return -ENOMEM; 5199 5200 for (i = 0; i < bp->rx_nr_rings; i++) { 5201 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5202 5203 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5204 rxr->rx_ring_struct.ring_mem.flags = 5205 BNXT_RMEM_RING_PTE_FLAG; 5206 rxr->rx_agg_ring_struct.ring_mem.flags = 5207 BNXT_RMEM_RING_PTE_FLAG; 5208 } else { 5209 rxr->rx_cpr = &bp->bnapi[i]->cp_ring; 5210 } 5211 rxr->bnapi = bp->bnapi[i]; 5212 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 5213 } 5214 5215 bp->tx_ring = kcalloc(bp->tx_nr_rings, 5216 sizeof(struct bnxt_tx_ring_info), 5217 GFP_KERNEL); 5218 if (!bp->tx_ring) 5219 return -ENOMEM; 5220 5221 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 5222 GFP_KERNEL); 5223 5224 if (!bp->tx_ring_map) 5225 return -ENOMEM; 5226 5227 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 5228 j = 0; 5229 else 5230 j = bp->rx_nr_rings; 5231 5232 for (i = 0; i < bp->tx_nr_rings; i++) { 5233 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5234 struct bnxt_napi *bnapi2; 5235 5236 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 5237 txr->tx_ring_struct.ring_mem.flags = 5238 BNXT_RMEM_RING_PTE_FLAG; 5239 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 5240 if (i >= bp->tx_nr_rings_xdp) { 5241 int k = j + BNXT_RING_TO_TC_OFF(bp, i); 5242 5243 bnapi2 = bp->bnapi[k]; 5244 txr->txq_index = i - bp->tx_nr_rings_xdp; 5245 txr->tx_napi_idx = 5246 BNXT_RING_TO_TC(bp, txr->txq_index); 5247 bnapi2->tx_ring[txr->tx_napi_idx] = txr; 5248 bnapi2->tx_int = bnxt_tx_int; 5249 } else { 5250 bnapi2 = bp->bnapi[j]; 5251 bnapi2->flags |= BNXT_NAPI_FLAG_XDP; 5252 bnapi2->tx_ring[0] = txr; 5253 bnapi2->tx_int = bnxt_tx_int_xdp; 5254 j++; 5255 } 5256 txr->bnapi = bnapi2; 5257 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 5258 txr->tx_cpr = &bnapi2->cp_ring; 5259 } 5260 5261 rc = bnxt_alloc_stats(bp); 5262 if (rc) 5263 goto alloc_mem_err; 5264 bnxt_init_stats(bp); 5265 5266 rc = bnxt_alloc_ntp_fltrs(bp); 5267 if (rc) 5268 goto alloc_mem_err; 5269 5270 rc = bnxt_alloc_vnics(bp); 5271 if (rc) 5272 goto alloc_mem_err; 5273 } 5274 5275 rc = bnxt_alloc_all_cp_arrays(bp); 5276 if (rc) 5277 goto alloc_mem_err; 5278 5279 bnxt_init_ring_struct(bp); 5280 5281 rc = bnxt_alloc_rx_rings(bp); 5282 if (rc) 5283 goto alloc_mem_err; 5284 5285 rc = bnxt_alloc_tx_rings(bp); 5286 if (rc) 5287 goto alloc_mem_err; 5288 5289 rc = bnxt_alloc_cp_rings(bp); 5290 if (rc) 5291 goto alloc_mem_err; 5292 5293 bp->vnic_info[BNXT_VNIC_DEFAULT].flags |= BNXT_VNIC_RSS_FLAG | 5294 BNXT_VNIC_MCAST_FLAG | 5295 BNXT_VNIC_UCAST_FLAG; 5296 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp) && (bp->flags & BNXT_FLAG_RFS)) 5297 bp->vnic_info[BNXT_VNIC_NTUPLE].flags |= 5298 BNXT_VNIC_RSS_FLAG | BNXT_VNIC_NTUPLE_FLAG; 5299 5300 rc = bnxt_alloc_vnic_attributes(bp); 5301 if (rc) 5302 goto alloc_mem_err; 5303 return 0; 5304 5305 alloc_mem_err: 5306 bnxt_free_mem(bp, true); 5307 return rc; 5308 } 5309 5310 static void bnxt_disable_int(struct bnxt *bp) 5311 { 5312 int i; 5313 5314 if (!bp->bnapi) 5315 return; 5316 5317 for (i = 0; i < bp->cp_nr_rings; i++) { 5318 struct bnxt_napi *bnapi = bp->bnapi[i]; 5319 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5320 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5321 5322 if (ring->fw_ring_id != INVALID_HW_RING_ID) 5323 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5324 } 5325 } 5326 5327 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 5328 { 5329 struct bnxt_napi *bnapi = bp->bnapi[n]; 5330 struct bnxt_cp_ring_info *cpr; 5331 5332 cpr = &bnapi->cp_ring; 5333 return cpr->cp_ring_struct.map_idx; 5334 } 5335 5336 static void bnxt_disable_int_sync(struct bnxt *bp) 5337 { 5338 int i; 5339 5340 if (!bp->irq_tbl) 5341 return; 5342 5343 atomic_inc(&bp->intr_sem); 5344 5345 bnxt_disable_int(bp); 5346 for (i = 0; i < bp->cp_nr_rings; i++) { 5347 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 5348 5349 synchronize_irq(bp->irq_tbl[map_idx].vector); 5350 } 5351 } 5352 5353 static void bnxt_enable_int(struct bnxt *bp) 5354 { 5355 int i; 5356 5357 atomic_set(&bp->intr_sem, 0); 5358 for (i = 0; i < bp->cp_nr_rings; i++) { 5359 struct bnxt_napi *bnapi = bp->bnapi[i]; 5360 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5361 5362 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 5363 } 5364 } 5365 5366 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 5367 bool async_only) 5368 { 5369 DECLARE_BITMAP(async_events_bmap, 256); 5370 u32 *events = (u32 *)async_events_bmap; 5371 struct hwrm_func_drv_rgtr_output *resp; 5372 struct hwrm_func_drv_rgtr_input *req; 5373 u32 flags; 5374 int rc, i; 5375 5376 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR); 5377 if (rc) 5378 return rc; 5379 5380 req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 5381 FUNC_DRV_RGTR_REQ_ENABLES_VER | 5382 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5383 5384 req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 5385 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 5386 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 5387 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 5388 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 5389 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 5390 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 5391 req->flags = cpu_to_le32(flags); 5392 req->ver_maj_8b = DRV_VER_MAJ; 5393 req->ver_min_8b = DRV_VER_MIN; 5394 req->ver_upd_8b = DRV_VER_UPD; 5395 req->ver_maj = cpu_to_le16(DRV_VER_MAJ); 5396 req->ver_min = cpu_to_le16(DRV_VER_MIN); 5397 req->ver_upd = cpu_to_le16(DRV_VER_UPD); 5398 5399 if (BNXT_PF(bp)) { 5400 u32 data[8]; 5401 int i; 5402 5403 memset(data, 0, sizeof(data)); 5404 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 5405 u16 cmd = bnxt_vf_req_snif[i]; 5406 unsigned int bit, idx; 5407 5408 idx = cmd / 32; 5409 bit = cmd % 32; 5410 data[idx] |= 1 << bit; 5411 } 5412 5413 for (i = 0; i < 8; i++) 5414 req->vf_req_fwd[i] = cpu_to_le32(data[i]); 5415 5416 req->enables |= 5417 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 5418 } 5419 5420 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 5421 req->flags |= cpu_to_le32( 5422 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 5423 5424 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 5425 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 5426 u16 event_id = bnxt_async_events_arr[i]; 5427 5428 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 5429 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 5430 continue; 5431 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE && 5432 !bp->ptp_cfg) 5433 continue; 5434 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 5435 } 5436 if (bmap && bmap_size) { 5437 for (i = 0; i < bmap_size; i++) { 5438 if (test_bit(i, bmap)) 5439 __set_bit(i, async_events_bmap); 5440 } 5441 } 5442 for (i = 0; i < 8; i++) 5443 req->async_event_fwd[i] |= cpu_to_le32(events[i]); 5444 5445 if (async_only) 5446 req->enables = 5447 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5448 5449 resp = hwrm_req_hold(bp, req); 5450 rc = hwrm_req_send(bp, req); 5451 if (!rc) { 5452 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 5453 if (resp->flags & 5454 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 5455 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 5456 } 5457 hwrm_req_drop(bp, req); 5458 return rc; 5459 } 5460 5461 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 5462 { 5463 struct hwrm_func_drv_unrgtr_input *req; 5464 int rc; 5465 5466 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 5467 return 0; 5468 5469 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR); 5470 if (rc) 5471 return rc; 5472 return hwrm_req_send(bp, req); 5473 } 5474 5475 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa); 5476 5477 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 5478 { 5479 struct hwrm_tunnel_dst_port_free_input *req; 5480 int rc; 5481 5482 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN && 5483 bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID) 5484 return 0; 5485 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE && 5486 bp->nge_fw_dst_port_id == INVALID_HW_RING_ID) 5487 return 0; 5488 5489 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE); 5490 if (rc) 5491 return rc; 5492 5493 req->tunnel_type = tunnel_type; 5494 5495 switch (tunnel_type) { 5496 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 5497 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 5498 bp->vxlan_port = 0; 5499 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 5500 break; 5501 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 5502 req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 5503 bp->nge_port = 0; 5504 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 5505 break; 5506 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE: 5507 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_gpe_fw_dst_port_id); 5508 bp->vxlan_gpe_port = 0; 5509 bp->vxlan_gpe_fw_dst_port_id = INVALID_HW_RING_ID; 5510 break; 5511 default: 5512 break; 5513 } 5514 5515 rc = hwrm_req_send(bp, req); 5516 if (rc) 5517 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 5518 rc); 5519 if (bp->flags & BNXT_FLAG_TPA) 5520 bnxt_set_tpa(bp, true); 5521 return rc; 5522 } 5523 5524 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 5525 u8 tunnel_type) 5526 { 5527 struct hwrm_tunnel_dst_port_alloc_output *resp; 5528 struct hwrm_tunnel_dst_port_alloc_input *req; 5529 int rc; 5530 5531 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC); 5532 if (rc) 5533 return rc; 5534 5535 req->tunnel_type = tunnel_type; 5536 req->tunnel_dst_port_val = port; 5537 5538 resp = hwrm_req_hold(bp, req); 5539 rc = hwrm_req_send(bp, req); 5540 if (rc) { 5541 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 5542 rc); 5543 goto err_out; 5544 } 5545 5546 switch (tunnel_type) { 5547 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 5548 bp->vxlan_port = port; 5549 bp->vxlan_fw_dst_port_id = 5550 le16_to_cpu(resp->tunnel_dst_port_id); 5551 break; 5552 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 5553 bp->nge_port = port; 5554 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 5555 break; 5556 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE: 5557 bp->vxlan_gpe_port = port; 5558 bp->vxlan_gpe_fw_dst_port_id = 5559 le16_to_cpu(resp->tunnel_dst_port_id); 5560 break; 5561 default: 5562 break; 5563 } 5564 if (bp->flags & BNXT_FLAG_TPA) 5565 bnxt_set_tpa(bp, true); 5566 5567 err_out: 5568 hwrm_req_drop(bp, req); 5569 return rc; 5570 } 5571 5572 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 5573 { 5574 struct hwrm_cfa_l2_set_rx_mask_input *req; 5575 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5576 int rc; 5577 5578 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK); 5579 if (rc) 5580 return rc; 5581 5582 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5583 if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) { 5584 req->num_mc_entries = cpu_to_le32(vnic->mc_list_count); 5585 req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 5586 } 5587 req->mask = cpu_to_le32(vnic->rx_mask); 5588 return hwrm_req_send_silent(bp, req); 5589 } 5590 5591 void bnxt_del_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5592 { 5593 if (!atomic_dec_and_test(&fltr->refcnt)) 5594 return; 5595 spin_lock_bh(&bp->ntp_fltr_lock); 5596 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 5597 spin_unlock_bh(&bp->ntp_fltr_lock); 5598 return; 5599 } 5600 hlist_del_rcu(&fltr->base.hash); 5601 bnxt_del_one_usr_fltr(bp, &fltr->base); 5602 if (fltr->base.flags) { 5603 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 5604 bp->ntp_fltr_count--; 5605 } 5606 spin_unlock_bh(&bp->ntp_fltr_lock); 5607 kfree_rcu(fltr, base.rcu); 5608 } 5609 5610 static struct bnxt_l2_filter *__bnxt_lookup_l2_filter(struct bnxt *bp, 5611 struct bnxt_l2_key *key, 5612 u32 idx) 5613 { 5614 struct hlist_head *head = &bp->l2_fltr_hash_tbl[idx]; 5615 struct bnxt_l2_filter *fltr; 5616 5617 hlist_for_each_entry_rcu(fltr, head, base.hash) { 5618 struct bnxt_l2_key *l2_key = &fltr->l2_key; 5619 5620 if (ether_addr_equal(l2_key->dst_mac_addr, key->dst_mac_addr) && 5621 l2_key->vlan == key->vlan) 5622 return fltr; 5623 } 5624 return NULL; 5625 } 5626 5627 static struct bnxt_l2_filter *bnxt_lookup_l2_filter(struct bnxt *bp, 5628 struct bnxt_l2_key *key, 5629 u32 idx) 5630 { 5631 struct bnxt_l2_filter *fltr = NULL; 5632 5633 rcu_read_lock(); 5634 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 5635 if (fltr) 5636 atomic_inc(&fltr->refcnt); 5637 rcu_read_unlock(); 5638 return fltr; 5639 } 5640 5641 #define BNXT_IPV4_4TUPLE(bp, fkeys) \ 5642 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5643 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4) || \ 5644 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5645 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4)) 5646 5647 #define BNXT_IPV6_4TUPLE(bp, fkeys) \ 5648 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5649 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6) || \ 5650 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5651 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6)) 5652 5653 static u32 bnxt_get_rss_flow_tuple_len(struct bnxt *bp, struct flow_keys *fkeys) 5654 { 5655 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 5656 if (BNXT_IPV4_4TUPLE(bp, fkeys)) 5657 return sizeof(fkeys->addrs.v4addrs) + 5658 sizeof(fkeys->ports); 5659 5660 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4) 5661 return sizeof(fkeys->addrs.v4addrs); 5662 } 5663 5664 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 5665 if (BNXT_IPV6_4TUPLE(bp, fkeys)) 5666 return sizeof(fkeys->addrs.v6addrs) + 5667 sizeof(fkeys->ports); 5668 5669 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6) 5670 return sizeof(fkeys->addrs.v6addrs); 5671 } 5672 5673 return 0; 5674 } 5675 5676 static u32 bnxt_toeplitz(struct bnxt *bp, struct flow_keys *fkeys, 5677 const unsigned char *key) 5678 { 5679 u64 prefix = bp->toeplitz_prefix, hash = 0; 5680 struct bnxt_ipv4_tuple tuple4; 5681 struct bnxt_ipv6_tuple tuple6; 5682 int i, j, len = 0; 5683 u8 *four_tuple; 5684 5685 len = bnxt_get_rss_flow_tuple_len(bp, fkeys); 5686 if (!len) 5687 return 0; 5688 5689 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 5690 tuple4.v4addrs = fkeys->addrs.v4addrs; 5691 tuple4.ports = fkeys->ports; 5692 four_tuple = (unsigned char *)&tuple4; 5693 } else { 5694 tuple6.v6addrs = fkeys->addrs.v6addrs; 5695 tuple6.ports = fkeys->ports; 5696 four_tuple = (unsigned char *)&tuple6; 5697 } 5698 5699 for (i = 0, j = 8; i < len; i++, j++) { 5700 u8 byte = four_tuple[i]; 5701 int bit; 5702 5703 for (bit = 0; bit < 8; bit++, prefix <<= 1, byte <<= 1) { 5704 if (byte & 0x80) 5705 hash ^= prefix; 5706 } 5707 prefix |= (j < HW_HASH_KEY_SIZE) ? key[j] : 0; 5708 } 5709 5710 /* The valid part of the hash is in the upper 32 bits. */ 5711 return (hash >> 32) & BNXT_NTP_FLTR_HASH_MASK; 5712 } 5713 5714 #ifdef CONFIG_RFS_ACCEL 5715 static struct bnxt_l2_filter * 5716 bnxt_lookup_l2_filter_from_key(struct bnxt *bp, struct bnxt_l2_key *key) 5717 { 5718 struct bnxt_l2_filter *fltr; 5719 u32 idx; 5720 5721 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5722 BNXT_L2_FLTR_HASH_MASK; 5723 fltr = bnxt_lookup_l2_filter(bp, key, idx); 5724 return fltr; 5725 } 5726 #endif 5727 5728 static int bnxt_init_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr, 5729 struct bnxt_l2_key *key, u32 idx) 5730 { 5731 struct hlist_head *head; 5732 5733 ether_addr_copy(fltr->l2_key.dst_mac_addr, key->dst_mac_addr); 5734 fltr->l2_key.vlan = key->vlan; 5735 fltr->base.type = BNXT_FLTR_TYPE_L2; 5736 if (fltr->base.flags) { 5737 int bit_id; 5738 5739 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 5740 bp->max_fltr, 0); 5741 if (bit_id < 0) 5742 return -ENOMEM; 5743 fltr->base.sw_id = (u16)bit_id; 5744 bp->ntp_fltr_count++; 5745 } 5746 head = &bp->l2_fltr_hash_tbl[idx]; 5747 hlist_add_head_rcu(&fltr->base.hash, head); 5748 bnxt_insert_usr_fltr(bp, &fltr->base); 5749 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 5750 atomic_set(&fltr->refcnt, 1); 5751 return 0; 5752 } 5753 5754 static struct bnxt_l2_filter *bnxt_alloc_l2_filter(struct bnxt *bp, 5755 struct bnxt_l2_key *key, 5756 gfp_t gfp) 5757 { 5758 struct bnxt_l2_filter *fltr; 5759 u32 idx; 5760 int rc; 5761 5762 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5763 BNXT_L2_FLTR_HASH_MASK; 5764 fltr = bnxt_lookup_l2_filter(bp, key, idx); 5765 if (fltr) 5766 return fltr; 5767 5768 fltr = kzalloc(sizeof(*fltr), gfp); 5769 if (!fltr) 5770 return ERR_PTR(-ENOMEM); 5771 spin_lock_bh(&bp->ntp_fltr_lock); 5772 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 5773 spin_unlock_bh(&bp->ntp_fltr_lock); 5774 if (rc) { 5775 bnxt_del_l2_filter(bp, fltr); 5776 fltr = ERR_PTR(rc); 5777 } 5778 return fltr; 5779 } 5780 5781 struct bnxt_l2_filter *bnxt_alloc_new_l2_filter(struct bnxt *bp, 5782 struct bnxt_l2_key *key, 5783 u16 flags) 5784 { 5785 struct bnxt_l2_filter *fltr; 5786 u32 idx; 5787 int rc; 5788 5789 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5790 BNXT_L2_FLTR_HASH_MASK; 5791 spin_lock_bh(&bp->ntp_fltr_lock); 5792 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 5793 if (fltr) { 5794 fltr = ERR_PTR(-EEXIST); 5795 goto l2_filter_exit; 5796 } 5797 fltr = kzalloc(sizeof(*fltr), GFP_ATOMIC); 5798 if (!fltr) { 5799 fltr = ERR_PTR(-ENOMEM); 5800 goto l2_filter_exit; 5801 } 5802 fltr->base.flags = flags; 5803 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 5804 if (rc) { 5805 spin_unlock_bh(&bp->ntp_fltr_lock); 5806 bnxt_del_l2_filter(bp, fltr); 5807 return ERR_PTR(rc); 5808 } 5809 5810 l2_filter_exit: 5811 spin_unlock_bh(&bp->ntp_fltr_lock); 5812 return fltr; 5813 } 5814 5815 static u16 bnxt_vf_target_id(struct bnxt_pf_info *pf, u16 vf_idx) 5816 { 5817 #ifdef CONFIG_BNXT_SRIOV 5818 struct bnxt_vf_info *vf = &pf->vf[vf_idx]; 5819 5820 return vf->fw_fid; 5821 #else 5822 return INVALID_HW_RING_ID; 5823 #endif 5824 } 5825 5826 int bnxt_hwrm_l2_filter_free(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5827 { 5828 struct hwrm_cfa_l2_filter_free_input *req; 5829 u16 target_id = 0xffff; 5830 int rc; 5831 5832 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 5833 struct bnxt_pf_info *pf = &bp->pf; 5834 5835 if (fltr->base.vf_idx >= pf->active_vfs) 5836 return -EINVAL; 5837 5838 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 5839 if (target_id == INVALID_HW_RING_ID) 5840 return -EINVAL; 5841 } 5842 5843 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 5844 if (rc) 5845 return rc; 5846 5847 req->target_id = cpu_to_le16(target_id); 5848 req->l2_filter_id = fltr->base.filter_id; 5849 return hwrm_req_send(bp, req); 5850 } 5851 5852 int bnxt_hwrm_l2_filter_alloc(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5853 { 5854 struct hwrm_cfa_l2_filter_alloc_output *resp; 5855 struct hwrm_cfa_l2_filter_alloc_input *req; 5856 u16 target_id = 0xffff; 5857 int rc; 5858 5859 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 5860 struct bnxt_pf_info *pf = &bp->pf; 5861 5862 if (fltr->base.vf_idx >= pf->active_vfs) 5863 return -EINVAL; 5864 5865 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 5866 } 5867 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC); 5868 if (rc) 5869 return rc; 5870 5871 req->target_id = cpu_to_le16(target_id); 5872 req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 5873 5874 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 5875 req->flags |= 5876 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 5877 req->dst_id = cpu_to_le16(fltr->base.fw_vnic_id); 5878 req->enables = 5879 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 5880 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 5881 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 5882 ether_addr_copy(req->l2_addr, fltr->l2_key.dst_mac_addr); 5883 eth_broadcast_addr(req->l2_addr_mask); 5884 5885 if (fltr->l2_key.vlan) { 5886 req->enables |= 5887 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN | 5888 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN_MASK | 5889 CFA_L2_FILTER_ALLOC_REQ_ENABLES_NUM_VLANS); 5890 req->num_vlans = 1; 5891 req->l2_ivlan = cpu_to_le16(fltr->l2_key.vlan); 5892 req->l2_ivlan_mask = cpu_to_le16(0xfff); 5893 } 5894 5895 resp = hwrm_req_hold(bp, req); 5896 rc = hwrm_req_send(bp, req); 5897 if (!rc) { 5898 fltr->base.filter_id = resp->l2_filter_id; 5899 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 5900 } 5901 hwrm_req_drop(bp, req); 5902 return rc; 5903 } 5904 5905 int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 5906 struct bnxt_ntuple_filter *fltr) 5907 { 5908 struct hwrm_cfa_ntuple_filter_free_input *req; 5909 int rc; 5910 5911 set_bit(BNXT_FLTR_FW_DELETED, &fltr->base.state); 5912 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE); 5913 if (rc) 5914 return rc; 5915 5916 req->ntuple_filter_id = fltr->base.filter_id; 5917 return hwrm_req_send(bp, req); 5918 } 5919 5920 #define BNXT_NTP_FLTR_FLAGS \ 5921 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 5922 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 5923 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 5924 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 5925 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 5926 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 5927 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 5928 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 5929 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 5930 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 5931 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 5932 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 5933 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 5934 5935 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 5936 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 5937 5938 void bnxt_fill_ipv6_mask(__be32 mask[4]) 5939 { 5940 int i; 5941 5942 for (i = 0; i < 4; i++) 5943 mask[i] = cpu_to_be32(~0); 5944 } 5945 5946 static void 5947 bnxt_cfg_rfs_ring_tbl_idx(struct bnxt *bp, 5948 struct hwrm_cfa_ntuple_filter_alloc_input *req, 5949 struct bnxt_ntuple_filter *fltr) 5950 { 5951 struct bnxt_rss_ctx *rss_ctx, *tmp; 5952 u16 rxq = fltr->base.rxq; 5953 5954 if (fltr->base.flags & BNXT_ACT_RSS_CTX) { 5955 list_for_each_entry_safe(rss_ctx, tmp, &bp->rss_ctx_list, list) { 5956 if (rss_ctx->index == fltr->base.fw_vnic_id) { 5957 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 5958 5959 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 5960 break; 5961 } 5962 } 5963 return; 5964 } 5965 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 5966 struct bnxt_vnic_info *vnic; 5967 u32 enables; 5968 5969 vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE]; 5970 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 5971 enables = CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_RFS_RING_TBL_IDX; 5972 req->enables |= cpu_to_le32(enables); 5973 req->rfs_ring_tbl_idx = cpu_to_le16(rxq); 5974 } else { 5975 u32 flags; 5976 5977 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 5978 req->flags |= cpu_to_le32(flags); 5979 req->dst_id = cpu_to_le16(rxq); 5980 } 5981 } 5982 5983 int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 5984 struct bnxt_ntuple_filter *fltr) 5985 { 5986 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 5987 struct hwrm_cfa_ntuple_filter_alloc_input *req; 5988 struct bnxt_flow_masks *masks = &fltr->fmasks; 5989 struct flow_keys *keys = &fltr->fkeys; 5990 struct bnxt_l2_filter *l2_fltr; 5991 struct bnxt_vnic_info *vnic; 5992 int rc; 5993 5994 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC); 5995 if (rc) 5996 return rc; 5997 5998 l2_fltr = fltr->l2_fltr; 5999 req->l2_filter_id = l2_fltr->base.filter_id; 6000 6001 if (fltr->base.flags & BNXT_ACT_DROP) { 6002 req->flags = 6003 cpu_to_le32(CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DROP); 6004 } else if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 6005 bnxt_cfg_rfs_ring_tbl_idx(bp, req, fltr); 6006 } else { 6007 vnic = &bp->vnic_info[fltr->base.rxq + 1]; 6008 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 6009 } 6010 req->enables |= cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 6011 6012 req->ethertype = htons(ETH_P_IP); 6013 req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 6014 req->ip_protocol = keys->basic.ip_proto; 6015 6016 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 6017 req->ethertype = htons(ETH_P_IPV6); 6018 req->ip_addr_type = 6019 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 6020 *(struct in6_addr *)&req->src_ipaddr[0] = keys->addrs.v6addrs.src; 6021 *(struct in6_addr *)&req->src_ipaddr_mask[0] = masks->addrs.v6addrs.src; 6022 *(struct in6_addr *)&req->dst_ipaddr[0] = keys->addrs.v6addrs.dst; 6023 *(struct in6_addr *)&req->dst_ipaddr_mask[0] = masks->addrs.v6addrs.dst; 6024 } else { 6025 req->src_ipaddr[0] = keys->addrs.v4addrs.src; 6026 req->src_ipaddr_mask[0] = masks->addrs.v4addrs.src; 6027 req->dst_ipaddr[0] = keys->addrs.v4addrs.dst; 6028 req->dst_ipaddr_mask[0] = masks->addrs.v4addrs.dst; 6029 } 6030 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 6031 req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 6032 req->tunnel_type = 6033 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 6034 } 6035 6036 req->src_port = keys->ports.src; 6037 req->src_port_mask = masks->ports.src; 6038 req->dst_port = keys->ports.dst; 6039 req->dst_port_mask = masks->ports.dst; 6040 6041 resp = hwrm_req_hold(bp, req); 6042 rc = hwrm_req_send(bp, req); 6043 if (!rc) 6044 fltr->base.filter_id = resp->ntuple_filter_id; 6045 hwrm_req_drop(bp, req); 6046 return rc; 6047 } 6048 6049 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 6050 const u8 *mac_addr) 6051 { 6052 struct bnxt_l2_filter *fltr; 6053 struct bnxt_l2_key key; 6054 int rc; 6055 6056 ether_addr_copy(key.dst_mac_addr, mac_addr); 6057 key.vlan = 0; 6058 fltr = bnxt_alloc_l2_filter(bp, &key, GFP_KERNEL); 6059 if (IS_ERR(fltr)) 6060 return PTR_ERR(fltr); 6061 6062 fltr->base.fw_vnic_id = bp->vnic_info[vnic_id].fw_vnic_id; 6063 rc = bnxt_hwrm_l2_filter_alloc(bp, fltr); 6064 if (rc) 6065 bnxt_del_l2_filter(bp, fltr); 6066 else 6067 bp->vnic_info[vnic_id].l2_filters[idx] = fltr; 6068 return rc; 6069 } 6070 6071 static void bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 6072 { 6073 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 6074 6075 /* Any associated ntuple filters will also be cleared by firmware. */ 6076 for (i = 0; i < num_of_vnics; i++) { 6077 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 6078 6079 for (j = 0; j < vnic->uc_filter_count; j++) { 6080 struct bnxt_l2_filter *fltr = vnic->l2_filters[j]; 6081 6082 bnxt_hwrm_l2_filter_free(bp, fltr); 6083 bnxt_del_l2_filter(bp, fltr); 6084 } 6085 vnic->uc_filter_count = 0; 6086 } 6087 } 6088 6089 #define BNXT_DFLT_TUNL_TPA_BMAP \ 6090 (VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GRE | \ 6091 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV4 | \ 6092 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV6) 6093 6094 static void bnxt_hwrm_vnic_update_tunl_tpa(struct bnxt *bp, 6095 struct hwrm_vnic_tpa_cfg_input *req) 6096 { 6097 u32 tunl_tpa_bmap = BNXT_DFLT_TUNL_TPA_BMAP; 6098 6099 if (!(bp->fw_cap & BNXT_FW_CAP_VNIC_TUNNEL_TPA)) 6100 return; 6101 6102 if (bp->vxlan_port) 6103 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN; 6104 if (bp->vxlan_gpe_port) 6105 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN_GPE; 6106 if (bp->nge_port) 6107 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GENEVE; 6108 6109 req->enables |= cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_TNL_TPA_EN); 6110 req->tnl_tpa_en_bitmap = cpu_to_le32(tunl_tpa_bmap); 6111 } 6112 6113 int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6114 u32 tpa_flags) 6115 { 6116 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 6117 struct hwrm_vnic_tpa_cfg_input *req; 6118 int rc; 6119 6120 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 6121 return 0; 6122 6123 rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG); 6124 if (rc) 6125 return rc; 6126 6127 if (tpa_flags) { 6128 u16 mss = bp->dev->mtu - 40; 6129 u32 nsegs, n, segs = 0, flags; 6130 6131 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 6132 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 6133 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 6134 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 6135 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 6136 if (tpa_flags & BNXT_FLAG_GRO) 6137 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 6138 6139 req->flags = cpu_to_le32(flags); 6140 6141 req->enables = 6142 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 6143 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 6144 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 6145 6146 /* Number of segs are log2 units, and first packet is not 6147 * included as part of this units. 6148 */ 6149 if (mss <= BNXT_RX_PAGE_SIZE) { 6150 n = BNXT_RX_PAGE_SIZE / mss; 6151 nsegs = (MAX_SKB_FRAGS - 1) * n; 6152 } else { 6153 n = mss / BNXT_RX_PAGE_SIZE; 6154 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 6155 n++; 6156 nsegs = (MAX_SKB_FRAGS - n) / n; 6157 } 6158 6159 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6160 segs = MAX_TPA_SEGS_P5; 6161 max_aggs = bp->max_tpa; 6162 } else { 6163 segs = ilog2(nsegs); 6164 } 6165 req->max_agg_segs = cpu_to_le16(segs); 6166 req->max_aggs = cpu_to_le16(max_aggs); 6167 6168 req->min_agg_len = cpu_to_le32(512); 6169 bnxt_hwrm_vnic_update_tunl_tpa(bp, req); 6170 } 6171 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6172 6173 return hwrm_req_send(bp, req); 6174 } 6175 6176 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 6177 { 6178 struct bnxt_ring_grp_info *grp_info; 6179 6180 grp_info = &bp->grp_info[ring->grp_idx]; 6181 return grp_info->cp_fw_ring_id; 6182 } 6183 6184 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 6185 { 6186 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6187 return rxr->rx_cpr->cp_ring_struct.fw_ring_id; 6188 else 6189 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 6190 } 6191 6192 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 6193 { 6194 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6195 return txr->tx_cpr->cp_ring_struct.fw_ring_id; 6196 else 6197 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 6198 } 6199 6200 int bnxt_alloc_rss_indir_tbl(struct bnxt *bp, struct bnxt_rss_ctx *rss_ctx) 6201 { 6202 int entries; 6203 u16 *tbl; 6204 6205 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6206 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 6207 else 6208 entries = HW_HASH_INDEX_SIZE; 6209 6210 bp->rss_indir_tbl_entries = entries; 6211 tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), GFP_KERNEL); 6212 if (!tbl) 6213 return -ENOMEM; 6214 6215 if (rss_ctx) 6216 rss_ctx->rss_indir_tbl = tbl; 6217 else 6218 bp->rss_indir_tbl = tbl; 6219 6220 return 0; 6221 } 6222 6223 void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp, struct bnxt_rss_ctx *rss_ctx) 6224 { 6225 u16 max_rings, max_entries, pad, i; 6226 u16 *rss_indir_tbl; 6227 6228 if (!bp->rx_nr_rings) 6229 return; 6230 6231 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6232 max_rings = bp->rx_nr_rings - 1; 6233 else 6234 max_rings = bp->rx_nr_rings; 6235 6236 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 6237 if (rss_ctx) 6238 rss_indir_tbl = &rss_ctx->rss_indir_tbl[0]; 6239 else 6240 rss_indir_tbl = &bp->rss_indir_tbl[0]; 6241 6242 for (i = 0; i < max_entries; i++) 6243 rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 6244 6245 pad = bp->rss_indir_tbl_entries - max_entries; 6246 if (pad) 6247 memset(&rss_indir_tbl[i], 0, pad * sizeof(u16)); 6248 } 6249 6250 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 6251 { 6252 u16 i, tbl_size, max_ring = 0; 6253 6254 if (!bp->rss_indir_tbl) 6255 return 0; 6256 6257 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6258 for (i = 0; i < tbl_size; i++) 6259 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 6260 return max_ring; 6261 } 6262 6263 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 6264 { 6265 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6266 if (!rx_rings) 6267 return 0; 6268 return bnxt_calc_nr_ring_pages(rx_rings - 1, 6269 BNXT_RSS_TABLE_ENTRIES_P5); 6270 } 6271 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6272 return 2; 6273 return 1; 6274 } 6275 6276 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6277 { 6278 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 6279 u16 i, j; 6280 6281 /* Fill the RSS indirection table with ring group ids */ 6282 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 6283 if (!no_rss) 6284 j = bp->rss_indir_tbl[i]; 6285 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 6286 } 6287 } 6288 6289 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 6290 struct bnxt_vnic_info *vnic) 6291 { 6292 __le16 *ring_tbl = vnic->rss_table; 6293 struct bnxt_rx_ring_info *rxr; 6294 u16 tbl_size, i; 6295 6296 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6297 6298 for (i = 0; i < tbl_size; i++) { 6299 u16 ring_id, j; 6300 6301 if (vnic->flags & BNXT_VNIC_NTUPLE_FLAG) 6302 j = ethtool_rxfh_indir_default(i, bp->rx_nr_rings); 6303 else if (vnic->flags & BNXT_VNIC_RSSCTX_FLAG) 6304 j = vnic->rss_ctx->rss_indir_tbl[i]; 6305 else 6306 j = bp->rss_indir_tbl[i]; 6307 rxr = &bp->rx_ring[j]; 6308 6309 ring_id = rxr->rx_ring_struct.fw_ring_id; 6310 *ring_tbl++ = cpu_to_le16(ring_id); 6311 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6312 *ring_tbl++ = cpu_to_le16(ring_id); 6313 } 6314 } 6315 6316 static void 6317 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req, 6318 struct bnxt_vnic_info *vnic) 6319 { 6320 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6321 bnxt_fill_hw_rss_tbl_p5(bp, vnic); 6322 if (bp->flags & BNXT_FLAG_CHIP_P7) 6323 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_IPSEC_HASH_TYPE_CFG_SUPPORT; 6324 } else { 6325 bnxt_fill_hw_rss_tbl(bp, vnic); 6326 } 6327 6328 if (bp->rss_hash_delta) { 6329 req->hash_type = cpu_to_le32(bp->rss_hash_delta); 6330 if (bp->rss_hash_cfg & bp->rss_hash_delta) 6331 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE; 6332 else 6333 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE; 6334 } else { 6335 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 6336 } 6337 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 6338 req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 6339 req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 6340 } 6341 6342 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6343 bool set_rss) 6344 { 6345 struct hwrm_vnic_rss_cfg_input *req; 6346 int rc; 6347 6348 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) || 6349 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 6350 return 0; 6351 6352 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6353 if (rc) 6354 return rc; 6355 6356 if (set_rss) 6357 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6358 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6359 return hwrm_req_send(bp, req); 6360 } 6361 6362 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, 6363 struct bnxt_vnic_info *vnic, bool set_rss) 6364 { 6365 struct hwrm_vnic_rss_cfg_input *req; 6366 dma_addr_t ring_tbl_map; 6367 u32 i, nr_ctxs; 6368 int rc; 6369 6370 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6371 if (rc) 6372 return rc; 6373 6374 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6375 if (!set_rss) 6376 return hwrm_req_send(bp, req); 6377 6378 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6379 ring_tbl_map = vnic->rss_table_dma_addr; 6380 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 6381 6382 hwrm_req_hold(bp, req); 6383 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 6384 req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 6385 req->ring_table_pair_index = i; 6386 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 6387 rc = hwrm_req_send(bp, req); 6388 if (rc) 6389 goto exit; 6390 } 6391 6392 exit: 6393 hwrm_req_drop(bp, req); 6394 return rc; 6395 } 6396 6397 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp) 6398 { 6399 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6400 struct hwrm_vnic_rss_qcfg_output *resp; 6401 struct hwrm_vnic_rss_qcfg_input *req; 6402 6403 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG)) 6404 return; 6405 6406 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6407 /* all contexts configured to same hash_type, zero always exists */ 6408 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6409 resp = hwrm_req_hold(bp, req); 6410 if (!hwrm_req_send(bp, req)) { 6411 bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg; 6412 bp->rss_hash_delta = 0; 6413 } 6414 hwrm_req_drop(bp, req); 6415 } 6416 6417 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6418 { 6419 struct hwrm_vnic_plcmodes_cfg_input *req; 6420 int rc; 6421 6422 rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG); 6423 if (rc) 6424 return rc; 6425 6426 req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT); 6427 req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID); 6428 6429 if (BNXT_RX_PAGE_MODE(bp)) { 6430 req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size); 6431 } else { 6432 req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 6433 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 6434 req->enables |= 6435 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 6436 req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 6437 req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 6438 } 6439 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 6440 return hwrm_req_send(bp, req); 6441 } 6442 6443 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, 6444 struct bnxt_vnic_info *vnic, 6445 u16 ctx_idx) 6446 { 6447 struct hwrm_vnic_rss_cos_lb_ctx_free_input *req; 6448 6449 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE)) 6450 return; 6451 6452 req->rss_cos_lb_ctx_id = 6453 cpu_to_le16(vnic->fw_rss_cos_lb_ctx[ctx_idx]); 6454 6455 hwrm_req_send(bp, req); 6456 vnic->fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 6457 } 6458 6459 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 6460 { 6461 int i, j; 6462 6463 for (i = 0; i < bp->nr_vnics; i++) { 6464 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 6465 6466 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 6467 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 6468 bnxt_hwrm_vnic_ctx_free_one(bp, vnic, j); 6469 } 6470 } 6471 bp->rsscos_nr_ctxs = 0; 6472 } 6473 6474 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, 6475 struct bnxt_vnic_info *vnic, u16 ctx_idx) 6476 { 6477 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp; 6478 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req; 6479 int rc; 6480 6481 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC); 6482 if (rc) 6483 return rc; 6484 6485 resp = hwrm_req_hold(bp, req); 6486 rc = hwrm_req_send(bp, req); 6487 if (!rc) 6488 vnic->fw_rss_cos_lb_ctx[ctx_idx] = 6489 le16_to_cpu(resp->rss_cos_lb_ctx_id); 6490 hwrm_req_drop(bp, req); 6491 6492 return rc; 6493 } 6494 6495 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 6496 { 6497 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 6498 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 6499 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 6500 } 6501 6502 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6503 { 6504 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6505 struct hwrm_vnic_cfg_input *req; 6506 unsigned int ring = 0, grp_idx; 6507 u16 def_vlan = 0; 6508 int rc; 6509 6510 rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG); 6511 if (rc) 6512 return rc; 6513 6514 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6515 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 6516 6517 req->default_rx_ring_id = 6518 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 6519 req->default_cmpl_ring_id = 6520 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 6521 req->enables = 6522 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 6523 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 6524 goto vnic_mru; 6525 } 6526 req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 6527 /* Only RSS support for now TBD: COS & LB */ 6528 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 6529 req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6530 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6531 VNIC_CFG_REQ_ENABLES_MRU); 6532 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 6533 req->rss_rule = cpu_to_le16(vnic0->fw_rss_cos_lb_ctx[0]); 6534 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6535 VNIC_CFG_REQ_ENABLES_MRU); 6536 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 6537 } else { 6538 req->rss_rule = cpu_to_le16(0xffff); 6539 } 6540 6541 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 6542 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 6543 req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 6544 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 6545 } else { 6546 req->cos_rule = cpu_to_le16(0xffff); 6547 } 6548 6549 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 6550 ring = 0; 6551 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 6552 ring = vnic->vnic_id - 1; 6553 else if ((vnic->vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 6554 ring = bp->rx_nr_rings - 1; 6555 6556 grp_idx = bp->rx_ring[ring].bnapi->index; 6557 req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 6558 req->lb_rule = cpu_to_le16(0xffff); 6559 vnic_mru: 6560 req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN); 6561 6562 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6563 #ifdef CONFIG_BNXT_SRIOV 6564 if (BNXT_VF(bp)) 6565 def_vlan = bp->vf.vlan; 6566 #endif 6567 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 6568 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 6569 if (vnic->vnic_id == BNXT_VNIC_DEFAULT && bnxt_ulp_registered(bp->edev)) 6570 req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 6571 6572 return hwrm_req_send(bp, req); 6573 } 6574 6575 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, 6576 struct bnxt_vnic_info *vnic) 6577 { 6578 if (vnic->fw_vnic_id != INVALID_HW_RING_ID) { 6579 struct hwrm_vnic_free_input *req; 6580 6581 if (hwrm_req_init(bp, req, HWRM_VNIC_FREE)) 6582 return; 6583 6584 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 6585 6586 hwrm_req_send(bp, req); 6587 vnic->fw_vnic_id = INVALID_HW_RING_ID; 6588 } 6589 } 6590 6591 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 6592 { 6593 u16 i; 6594 6595 for (i = 0; i < bp->nr_vnics; i++) 6596 bnxt_hwrm_vnic_free_one(bp, &bp->vnic_info[i]); 6597 } 6598 6599 int bnxt_hwrm_vnic_alloc(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6600 unsigned int start_rx_ring_idx, 6601 unsigned int nr_rings) 6602 { 6603 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 6604 struct hwrm_vnic_alloc_output *resp; 6605 struct hwrm_vnic_alloc_input *req; 6606 int rc; 6607 6608 rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC); 6609 if (rc) 6610 return rc; 6611 6612 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6613 goto vnic_no_ring_grps; 6614 6615 /* map ring groups to this vnic */ 6616 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 6617 grp_idx = bp->rx_ring[i].bnapi->index; 6618 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 6619 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 6620 j, nr_rings); 6621 break; 6622 } 6623 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 6624 } 6625 6626 vnic_no_ring_grps: 6627 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 6628 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 6629 if (vnic->vnic_id == BNXT_VNIC_DEFAULT) 6630 req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 6631 6632 resp = hwrm_req_hold(bp, req); 6633 rc = hwrm_req_send(bp, req); 6634 if (!rc) 6635 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 6636 hwrm_req_drop(bp, req); 6637 return rc; 6638 } 6639 6640 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 6641 { 6642 struct hwrm_vnic_qcaps_output *resp; 6643 struct hwrm_vnic_qcaps_input *req; 6644 int rc; 6645 6646 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 6647 bp->flags &= ~BNXT_FLAG_ROCE_MIRROR_CAP; 6648 bp->rss_cap &= ~BNXT_RSS_CAP_NEW_RSS_CAP; 6649 if (bp->hwrm_spec_code < 0x10600) 6650 return 0; 6651 6652 rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS); 6653 if (rc) 6654 return rc; 6655 6656 resp = hwrm_req_hold(bp, req); 6657 rc = hwrm_req_send(bp, req); 6658 if (!rc) { 6659 u32 flags = le32_to_cpu(resp->flags); 6660 6661 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 6662 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 6663 bp->rss_cap |= BNXT_RSS_CAP_NEW_RSS_CAP; 6664 if (flags & 6665 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 6666 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 6667 6668 /* Older P5 fw before EXT_HW_STATS support did not set 6669 * VLAN_STRIP_CAP properly. 6670 */ 6671 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 6672 (BNXT_CHIP_P5(bp) && 6673 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 6674 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 6675 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP) 6676 bp->rss_cap |= BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA; 6677 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_PROF_TCAM_MODE_ENABLED) 6678 bp->rss_cap |= BNXT_RSS_CAP_RSS_TCAM; 6679 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 6680 if (bp->max_tpa_v2) { 6681 if (BNXT_CHIP_P5(bp)) 6682 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 6683 else 6684 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P7; 6685 } 6686 if (flags & VNIC_QCAPS_RESP_FLAGS_HW_TUNNEL_TPA_CAP) 6687 bp->fw_cap |= BNXT_FW_CAP_VNIC_TUNNEL_TPA; 6688 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV4_CAP) 6689 bp->rss_cap |= BNXT_RSS_CAP_AH_V4_RSS_CAP; 6690 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV6_CAP) 6691 bp->rss_cap |= BNXT_RSS_CAP_AH_V6_RSS_CAP; 6692 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV4_CAP) 6693 bp->rss_cap |= BNXT_RSS_CAP_ESP_V4_RSS_CAP; 6694 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV6_CAP) 6695 bp->rss_cap |= BNXT_RSS_CAP_ESP_V6_RSS_CAP; 6696 } 6697 hwrm_req_drop(bp, req); 6698 return rc; 6699 } 6700 6701 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 6702 { 6703 struct hwrm_ring_grp_alloc_output *resp; 6704 struct hwrm_ring_grp_alloc_input *req; 6705 int rc; 6706 u16 i; 6707 6708 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6709 return 0; 6710 6711 rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC); 6712 if (rc) 6713 return rc; 6714 6715 resp = hwrm_req_hold(bp, req); 6716 for (i = 0; i < bp->rx_nr_rings; i++) { 6717 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 6718 6719 req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 6720 req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 6721 req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 6722 req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 6723 6724 rc = hwrm_req_send(bp, req); 6725 6726 if (rc) 6727 break; 6728 6729 bp->grp_info[grp_idx].fw_grp_id = 6730 le32_to_cpu(resp->ring_group_id); 6731 } 6732 hwrm_req_drop(bp, req); 6733 return rc; 6734 } 6735 6736 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 6737 { 6738 struct hwrm_ring_grp_free_input *req; 6739 u16 i; 6740 6741 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 6742 return; 6743 6744 if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE)) 6745 return; 6746 6747 hwrm_req_hold(bp, req); 6748 for (i = 0; i < bp->cp_nr_rings; i++) { 6749 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 6750 continue; 6751 req->ring_group_id = 6752 cpu_to_le32(bp->grp_info[i].fw_grp_id); 6753 6754 hwrm_req_send(bp, req); 6755 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 6756 } 6757 hwrm_req_drop(bp, req); 6758 } 6759 6760 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 6761 struct bnxt_ring_struct *ring, 6762 u32 ring_type, u32 map_index) 6763 { 6764 struct hwrm_ring_alloc_output *resp; 6765 struct hwrm_ring_alloc_input *req; 6766 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 6767 struct bnxt_ring_grp_info *grp_info; 6768 int rc, err = 0; 6769 u16 ring_id; 6770 6771 rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC); 6772 if (rc) 6773 goto exit; 6774 6775 req->enables = 0; 6776 if (rmem->nr_pages > 1) { 6777 req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 6778 /* Page size is in log2 units */ 6779 req->page_size = BNXT_PAGE_SHIFT; 6780 req->page_tbl_depth = 1; 6781 } else { 6782 req->page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 6783 } 6784 req->fbo = 0; 6785 /* Association of ring index with doorbell index and MSIX number */ 6786 req->logical_id = cpu_to_le16(map_index); 6787 6788 switch (ring_type) { 6789 case HWRM_RING_ALLOC_TX: { 6790 struct bnxt_tx_ring_info *txr; 6791 6792 txr = container_of(ring, struct bnxt_tx_ring_info, 6793 tx_ring_struct); 6794 req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 6795 /* Association of transmit ring with completion ring */ 6796 grp_info = &bp->grp_info[ring->grp_idx]; 6797 req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 6798 req->length = cpu_to_le32(bp->tx_ring_mask + 1); 6799 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6800 req->queue_id = cpu_to_le16(ring->queue_id); 6801 if (bp->flags & BNXT_FLAG_TX_COAL_CMPL) 6802 req->cmpl_coal_cnt = 6803 RING_ALLOC_REQ_CMPL_COAL_CNT_COAL_64; 6804 break; 6805 } 6806 case HWRM_RING_ALLOC_RX: 6807 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 6808 req->length = cpu_to_le32(bp->rx_ring_mask + 1); 6809 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6810 u16 flags = 0; 6811 6812 /* Association of rx ring with stats context */ 6813 grp_info = &bp->grp_info[ring->grp_idx]; 6814 req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 6815 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6816 req->enables |= cpu_to_le32( 6817 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 6818 if (NET_IP_ALIGN == 2) 6819 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD; 6820 req->flags = cpu_to_le16(flags); 6821 } 6822 break; 6823 case HWRM_RING_ALLOC_AGG: 6824 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6825 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 6826 /* Association of agg ring with rx ring */ 6827 grp_info = &bp->grp_info[ring->grp_idx]; 6828 req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 6829 req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 6830 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6831 req->enables |= cpu_to_le32( 6832 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID | 6833 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 6834 } else { 6835 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 6836 } 6837 req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 6838 break; 6839 case HWRM_RING_ALLOC_CMPL: 6840 req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 6841 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 6842 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6843 /* Association of cp ring with nq */ 6844 grp_info = &bp->grp_info[map_index]; 6845 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 6846 req->cq_handle = cpu_to_le64(ring->handle); 6847 req->enables |= cpu_to_le32( 6848 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 6849 } else if (bp->flags & BNXT_FLAG_USING_MSIX) { 6850 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 6851 } 6852 break; 6853 case HWRM_RING_ALLOC_NQ: 6854 req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 6855 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 6856 if (bp->flags & BNXT_FLAG_USING_MSIX) 6857 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 6858 break; 6859 default: 6860 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 6861 ring_type); 6862 return -1; 6863 } 6864 6865 resp = hwrm_req_hold(bp, req); 6866 rc = hwrm_req_send(bp, req); 6867 err = le16_to_cpu(resp->error_code); 6868 ring_id = le16_to_cpu(resp->ring_id); 6869 hwrm_req_drop(bp, req); 6870 6871 exit: 6872 if (rc || err) { 6873 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 6874 ring_type, rc, err); 6875 return -EIO; 6876 } 6877 ring->fw_ring_id = ring_id; 6878 return rc; 6879 } 6880 6881 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 6882 { 6883 int rc; 6884 6885 if (BNXT_PF(bp)) { 6886 struct hwrm_func_cfg_input *req; 6887 6888 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 6889 if (rc) 6890 return rc; 6891 6892 req->fid = cpu_to_le16(0xffff); 6893 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 6894 req->async_event_cr = cpu_to_le16(idx); 6895 return hwrm_req_send(bp, req); 6896 } else { 6897 struct hwrm_func_vf_cfg_input *req; 6898 6899 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); 6900 if (rc) 6901 return rc; 6902 6903 req->enables = 6904 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 6905 req->async_event_cr = cpu_to_le16(idx); 6906 return hwrm_req_send(bp, req); 6907 } 6908 } 6909 6910 static void bnxt_set_db_mask(struct bnxt *bp, struct bnxt_db_info *db, 6911 u32 ring_type) 6912 { 6913 switch (ring_type) { 6914 case HWRM_RING_ALLOC_TX: 6915 db->db_ring_mask = bp->tx_ring_mask; 6916 break; 6917 case HWRM_RING_ALLOC_RX: 6918 db->db_ring_mask = bp->rx_ring_mask; 6919 break; 6920 case HWRM_RING_ALLOC_AGG: 6921 db->db_ring_mask = bp->rx_agg_ring_mask; 6922 break; 6923 case HWRM_RING_ALLOC_CMPL: 6924 case HWRM_RING_ALLOC_NQ: 6925 db->db_ring_mask = bp->cp_ring_mask; 6926 break; 6927 } 6928 if (bp->flags & BNXT_FLAG_CHIP_P7) { 6929 db->db_epoch_mask = db->db_ring_mask + 1; 6930 db->db_epoch_shift = DBR_EPOCH_SFT - ilog2(db->db_epoch_mask); 6931 } 6932 } 6933 6934 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 6935 u32 map_idx, u32 xid) 6936 { 6937 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6938 switch (ring_type) { 6939 case HWRM_RING_ALLOC_TX: 6940 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 6941 break; 6942 case HWRM_RING_ALLOC_RX: 6943 case HWRM_RING_ALLOC_AGG: 6944 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 6945 break; 6946 case HWRM_RING_ALLOC_CMPL: 6947 db->db_key64 = DBR_PATH_L2; 6948 break; 6949 case HWRM_RING_ALLOC_NQ: 6950 db->db_key64 = DBR_PATH_L2; 6951 break; 6952 } 6953 db->db_key64 |= (u64)xid << DBR_XID_SFT; 6954 6955 if (bp->flags & BNXT_FLAG_CHIP_P7) 6956 db->db_key64 |= DBR_VALID; 6957 6958 db->doorbell = bp->bar1 + bp->db_offset; 6959 } else { 6960 db->doorbell = bp->bar1 + map_idx * 0x80; 6961 switch (ring_type) { 6962 case HWRM_RING_ALLOC_TX: 6963 db->db_key32 = DB_KEY_TX; 6964 break; 6965 case HWRM_RING_ALLOC_RX: 6966 case HWRM_RING_ALLOC_AGG: 6967 db->db_key32 = DB_KEY_RX; 6968 break; 6969 case HWRM_RING_ALLOC_CMPL: 6970 db->db_key32 = DB_KEY_CP; 6971 break; 6972 } 6973 } 6974 bnxt_set_db_mask(bp, db, ring_type); 6975 } 6976 6977 static int bnxt_hwrm_rx_ring_alloc(struct bnxt *bp, 6978 struct bnxt_rx_ring_info *rxr) 6979 { 6980 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 6981 struct bnxt_napi *bnapi = rxr->bnapi; 6982 u32 type = HWRM_RING_ALLOC_RX; 6983 u32 map_idx = bnapi->index; 6984 int rc; 6985 6986 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 6987 if (rc) 6988 return rc; 6989 6990 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 6991 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 6992 6993 return 0; 6994 } 6995 6996 static int bnxt_hwrm_rx_agg_ring_alloc(struct bnxt *bp, 6997 struct bnxt_rx_ring_info *rxr) 6998 { 6999 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 7000 u32 type = HWRM_RING_ALLOC_AGG; 7001 u32 grp_idx = ring->grp_idx; 7002 u32 map_idx; 7003 int rc; 7004 7005 map_idx = grp_idx + bp->rx_nr_rings; 7006 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7007 if (rc) 7008 return rc; 7009 7010 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 7011 ring->fw_ring_id); 7012 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 7013 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 7014 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 7015 7016 return 0; 7017 } 7018 7019 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 7020 { 7021 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 7022 int i, rc = 0; 7023 u32 type; 7024 7025 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7026 type = HWRM_RING_ALLOC_NQ; 7027 else 7028 type = HWRM_RING_ALLOC_CMPL; 7029 for (i = 0; i < bp->cp_nr_rings; i++) { 7030 struct bnxt_napi *bnapi = bp->bnapi[i]; 7031 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7032 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 7033 u32 map_idx = ring->map_idx; 7034 unsigned int vector; 7035 7036 vector = bp->irq_tbl[map_idx].vector; 7037 disable_irq_nosync(vector); 7038 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7039 if (rc) { 7040 enable_irq(vector); 7041 goto err_out; 7042 } 7043 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 7044 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 7045 enable_irq(vector); 7046 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 7047 7048 if (!i) { 7049 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 7050 if (rc) 7051 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 7052 } 7053 } 7054 7055 type = HWRM_RING_ALLOC_TX; 7056 for (i = 0; i < bp->tx_nr_rings; i++) { 7057 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 7058 struct bnxt_ring_struct *ring; 7059 u32 map_idx; 7060 7061 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7062 struct bnxt_cp_ring_info *cpr2 = txr->tx_cpr; 7063 struct bnxt_napi *bnapi = txr->bnapi; 7064 u32 type2 = HWRM_RING_ALLOC_CMPL; 7065 7066 ring = &cpr2->cp_ring_struct; 7067 ring->handle = BNXT_SET_NQ_HDL(cpr2); 7068 map_idx = bnapi->index; 7069 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 7070 if (rc) 7071 goto err_out; 7072 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 7073 ring->fw_ring_id); 7074 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 7075 } 7076 ring = &txr->tx_ring_struct; 7077 map_idx = i; 7078 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7079 if (rc) 7080 goto err_out; 7081 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id); 7082 } 7083 7084 for (i = 0; i < bp->rx_nr_rings; i++) { 7085 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 7086 7087 rc = bnxt_hwrm_rx_ring_alloc(bp, rxr); 7088 if (rc) 7089 goto err_out; 7090 /* If we have agg rings, post agg buffers first. */ 7091 if (!agg_rings) 7092 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 7093 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7094 struct bnxt_cp_ring_info *cpr2 = rxr->rx_cpr; 7095 struct bnxt_napi *bnapi = rxr->bnapi; 7096 u32 type2 = HWRM_RING_ALLOC_CMPL; 7097 struct bnxt_ring_struct *ring; 7098 u32 map_idx = bnapi->index; 7099 7100 ring = &cpr2->cp_ring_struct; 7101 ring->handle = BNXT_SET_NQ_HDL(cpr2); 7102 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 7103 if (rc) 7104 goto err_out; 7105 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 7106 ring->fw_ring_id); 7107 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 7108 } 7109 } 7110 7111 if (agg_rings) { 7112 for (i = 0; i < bp->rx_nr_rings; i++) { 7113 rc = bnxt_hwrm_rx_agg_ring_alloc(bp, &bp->rx_ring[i]); 7114 if (rc) 7115 goto err_out; 7116 } 7117 } 7118 err_out: 7119 return rc; 7120 } 7121 7122 static int hwrm_ring_free_send_msg(struct bnxt *bp, 7123 struct bnxt_ring_struct *ring, 7124 u32 ring_type, int cmpl_ring_id) 7125 { 7126 struct hwrm_ring_free_output *resp; 7127 struct hwrm_ring_free_input *req; 7128 u16 error_code = 0; 7129 int rc; 7130 7131 if (BNXT_NO_FW_ACCESS(bp)) 7132 return 0; 7133 7134 rc = hwrm_req_init(bp, req, HWRM_RING_FREE); 7135 if (rc) 7136 goto exit; 7137 7138 req->cmpl_ring = cpu_to_le16(cmpl_ring_id); 7139 req->ring_type = ring_type; 7140 req->ring_id = cpu_to_le16(ring->fw_ring_id); 7141 7142 resp = hwrm_req_hold(bp, req); 7143 rc = hwrm_req_send(bp, req); 7144 error_code = le16_to_cpu(resp->error_code); 7145 hwrm_req_drop(bp, req); 7146 exit: 7147 if (rc || error_code) { 7148 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 7149 ring_type, rc, error_code); 7150 return -EIO; 7151 } 7152 return 0; 7153 } 7154 7155 static void bnxt_hwrm_rx_ring_free(struct bnxt *bp, 7156 struct bnxt_rx_ring_info *rxr, 7157 bool close_path) 7158 { 7159 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 7160 u32 grp_idx = rxr->bnapi->index; 7161 u32 cmpl_ring_id; 7162 7163 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7164 return; 7165 7166 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 7167 hwrm_ring_free_send_msg(bp, ring, 7168 RING_FREE_REQ_RING_TYPE_RX, 7169 close_path ? cmpl_ring_id : 7170 INVALID_HW_RING_ID); 7171 ring->fw_ring_id = INVALID_HW_RING_ID; 7172 bp->grp_info[grp_idx].rx_fw_ring_id = INVALID_HW_RING_ID; 7173 } 7174 7175 static void bnxt_hwrm_rx_agg_ring_free(struct bnxt *bp, 7176 struct bnxt_rx_ring_info *rxr, 7177 bool close_path) 7178 { 7179 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 7180 u32 grp_idx = rxr->bnapi->index; 7181 u32 type, cmpl_ring_id; 7182 7183 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7184 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 7185 else 7186 type = RING_FREE_REQ_RING_TYPE_RX; 7187 7188 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7189 return; 7190 7191 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 7192 hwrm_ring_free_send_msg(bp, ring, type, 7193 close_path ? cmpl_ring_id : 7194 INVALID_HW_RING_ID); 7195 ring->fw_ring_id = INVALID_HW_RING_ID; 7196 bp->grp_info[grp_idx].agg_fw_ring_id = INVALID_HW_RING_ID; 7197 } 7198 7199 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 7200 { 7201 u32 type; 7202 int i; 7203 7204 if (!bp->bnapi) 7205 return; 7206 7207 for (i = 0; i < bp->tx_nr_rings; i++) { 7208 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 7209 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 7210 7211 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 7212 u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr); 7213 7214 hwrm_ring_free_send_msg(bp, ring, 7215 RING_FREE_REQ_RING_TYPE_TX, 7216 close_path ? cmpl_ring_id : 7217 INVALID_HW_RING_ID); 7218 ring->fw_ring_id = INVALID_HW_RING_ID; 7219 } 7220 } 7221 7222 for (i = 0; i < bp->rx_nr_rings; i++) { 7223 bnxt_hwrm_rx_ring_free(bp, &bp->rx_ring[i], close_path); 7224 bnxt_hwrm_rx_agg_ring_free(bp, &bp->rx_ring[i], close_path); 7225 } 7226 7227 /* The completion rings are about to be freed. After that the 7228 * IRQ doorbell will not work anymore. So we need to disable 7229 * IRQ here. 7230 */ 7231 bnxt_disable_int_sync(bp); 7232 7233 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7234 type = RING_FREE_REQ_RING_TYPE_NQ; 7235 else 7236 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 7237 for (i = 0; i < bp->cp_nr_rings; i++) { 7238 struct bnxt_napi *bnapi = bp->bnapi[i]; 7239 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7240 struct bnxt_ring_struct *ring; 7241 int j; 7242 7243 for (j = 0; j < cpr->cp_ring_count && cpr->cp_ring_arr; j++) { 7244 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 7245 7246 ring = &cpr2->cp_ring_struct; 7247 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7248 continue; 7249 hwrm_ring_free_send_msg(bp, ring, 7250 RING_FREE_REQ_RING_TYPE_L2_CMPL, 7251 INVALID_HW_RING_ID); 7252 ring->fw_ring_id = INVALID_HW_RING_ID; 7253 } 7254 ring = &cpr->cp_ring_struct; 7255 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 7256 hwrm_ring_free_send_msg(bp, ring, type, 7257 INVALID_HW_RING_ID); 7258 ring->fw_ring_id = INVALID_HW_RING_ID; 7259 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 7260 } 7261 } 7262 } 7263 7264 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7265 bool shared); 7266 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7267 bool shared); 7268 7269 static int bnxt_hwrm_get_rings(struct bnxt *bp) 7270 { 7271 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7272 struct hwrm_func_qcfg_output *resp; 7273 struct hwrm_func_qcfg_input *req; 7274 int rc; 7275 7276 if (bp->hwrm_spec_code < 0x10601) 7277 return 0; 7278 7279 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7280 if (rc) 7281 return rc; 7282 7283 req->fid = cpu_to_le16(0xffff); 7284 resp = hwrm_req_hold(bp, req); 7285 rc = hwrm_req_send(bp, req); 7286 if (rc) { 7287 hwrm_req_drop(bp, req); 7288 return rc; 7289 } 7290 7291 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7292 if (BNXT_NEW_RM(bp)) { 7293 u16 cp, stats; 7294 7295 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 7296 hw_resc->resv_hw_ring_grps = 7297 le32_to_cpu(resp->alloc_hw_ring_grps); 7298 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 7299 hw_resc->resv_rsscos_ctxs = le16_to_cpu(resp->alloc_rsscos_ctx); 7300 cp = le16_to_cpu(resp->alloc_cmpl_rings); 7301 stats = le16_to_cpu(resp->alloc_stat_ctx); 7302 hw_resc->resv_irqs = cp; 7303 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7304 int rx = hw_resc->resv_rx_rings; 7305 int tx = hw_resc->resv_tx_rings; 7306 7307 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7308 rx >>= 1; 7309 if (cp < (rx + tx)) { 7310 rc = __bnxt_trim_rings(bp, &rx, &tx, cp, false); 7311 if (rc) 7312 goto get_rings_exit; 7313 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7314 rx <<= 1; 7315 hw_resc->resv_rx_rings = rx; 7316 hw_resc->resv_tx_rings = tx; 7317 } 7318 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 7319 hw_resc->resv_hw_ring_grps = rx; 7320 } 7321 hw_resc->resv_cp_rings = cp; 7322 hw_resc->resv_stat_ctxs = stats; 7323 } 7324 get_rings_exit: 7325 hwrm_req_drop(bp, req); 7326 return rc; 7327 } 7328 7329 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 7330 { 7331 struct hwrm_func_qcfg_output *resp; 7332 struct hwrm_func_qcfg_input *req; 7333 int rc; 7334 7335 if (bp->hwrm_spec_code < 0x10601) 7336 return 0; 7337 7338 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7339 if (rc) 7340 return rc; 7341 7342 req->fid = cpu_to_le16(fid); 7343 resp = hwrm_req_hold(bp, req); 7344 rc = hwrm_req_send(bp, req); 7345 if (!rc) 7346 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7347 7348 hwrm_req_drop(bp, req); 7349 return rc; 7350 } 7351 7352 static bool bnxt_rfs_supported(struct bnxt *bp); 7353 7354 static struct hwrm_func_cfg_input * 7355 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7356 { 7357 struct hwrm_func_cfg_input *req; 7358 u32 enables = 0; 7359 7360 if (bnxt_hwrm_func_cfg_short_req_init(bp, &req)) 7361 return NULL; 7362 7363 req->fid = cpu_to_le16(0xffff); 7364 enables |= hwr->tx ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7365 req->num_tx_rings = cpu_to_le16(hwr->tx); 7366 if (BNXT_NEW_RM(bp)) { 7367 enables |= hwr->rx ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 7368 enables |= hwr->stat ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7369 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7370 enables |= hwr->cp ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 7371 enables |= hwr->cp_p5 ? 7372 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7373 } else { 7374 enables |= hwr->cp ? 7375 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7376 enables |= hwr->grp ? 7377 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7378 } 7379 enables |= hwr->vnic ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 7380 enables |= hwr->rss_ctx ? FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 7381 0; 7382 req->num_rx_rings = cpu_to_le16(hwr->rx); 7383 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7384 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7385 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7386 req->num_msix = cpu_to_le16(hwr->cp); 7387 } else { 7388 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7389 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7390 } 7391 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7392 req->num_vnics = cpu_to_le16(hwr->vnic); 7393 } 7394 req->enables = cpu_to_le32(enables); 7395 return req; 7396 } 7397 7398 static struct hwrm_func_vf_cfg_input * 7399 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7400 { 7401 struct hwrm_func_vf_cfg_input *req; 7402 u32 enables = 0; 7403 7404 if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG)) 7405 return NULL; 7406 7407 enables |= hwr->tx ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7408 enables |= hwr->rx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 7409 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7410 enables |= hwr->stat ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7411 enables |= hwr->rss_ctx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7412 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7413 enables |= hwr->cp_p5 ? 7414 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7415 } else { 7416 enables |= hwr->cp ? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7417 enables |= hwr->grp ? 7418 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7419 } 7420 enables |= hwr->vnic ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 7421 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 7422 7423 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 7424 req->num_tx_rings = cpu_to_le16(hwr->tx); 7425 req->num_rx_rings = cpu_to_le16(hwr->rx); 7426 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7427 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7428 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7429 } else { 7430 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7431 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7432 } 7433 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7434 req->num_vnics = cpu_to_le16(hwr->vnic); 7435 7436 req->enables = cpu_to_le32(enables); 7437 return req; 7438 } 7439 7440 static int 7441 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7442 { 7443 struct hwrm_func_cfg_input *req; 7444 int rc; 7445 7446 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 7447 if (!req) 7448 return -ENOMEM; 7449 7450 if (!req->enables) { 7451 hwrm_req_drop(bp, req); 7452 return 0; 7453 } 7454 7455 rc = hwrm_req_send(bp, req); 7456 if (rc) 7457 return rc; 7458 7459 if (bp->hwrm_spec_code < 0x10601) 7460 bp->hw_resc.resv_tx_rings = hwr->tx; 7461 7462 return bnxt_hwrm_get_rings(bp); 7463 } 7464 7465 static int 7466 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7467 { 7468 struct hwrm_func_vf_cfg_input *req; 7469 int rc; 7470 7471 if (!BNXT_NEW_RM(bp)) { 7472 bp->hw_resc.resv_tx_rings = hwr->tx; 7473 return 0; 7474 } 7475 7476 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 7477 if (!req) 7478 return -ENOMEM; 7479 7480 rc = hwrm_req_send(bp, req); 7481 if (rc) 7482 return rc; 7483 7484 return bnxt_hwrm_get_rings(bp); 7485 } 7486 7487 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7488 { 7489 if (BNXT_PF(bp)) 7490 return bnxt_hwrm_reserve_pf_rings(bp, hwr); 7491 else 7492 return bnxt_hwrm_reserve_vf_rings(bp, hwr); 7493 } 7494 7495 int bnxt_nq_rings_in_use(struct bnxt *bp) 7496 { 7497 return bp->cp_nr_rings + bnxt_get_ulp_msix_num(bp); 7498 } 7499 7500 static int bnxt_cp_rings_in_use(struct bnxt *bp) 7501 { 7502 int cp; 7503 7504 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7505 return bnxt_nq_rings_in_use(bp); 7506 7507 cp = bp->tx_nr_rings + bp->rx_nr_rings; 7508 return cp; 7509 } 7510 7511 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 7512 { 7513 return bp->cp_nr_rings + bnxt_get_ulp_stat_ctxs(bp); 7514 } 7515 7516 static int bnxt_get_total_rss_ctxs(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7517 { 7518 if (!hwr->grp) 7519 return 0; 7520 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7521 int rss_ctx = bnxt_get_nr_rss_ctxs(bp, hwr->grp); 7522 7523 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7524 rss_ctx *= hwr->vnic; 7525 return rss_ctx; 7526 } 7527 if (BNXT_VF(bp)) 7528 return BNXT_VF_MAX_RSS_CTX; 7529 if (!(bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && bnxt_rfs_supported(bp)) 7530 return hwr->grp + 1; 7531 return 1; 7532 } 7533 7534 /* Check if a default RSS map needs to be setup. This function is only 7535 * used on older firmware that does not require reserving RX rings. 7536 */ 7537 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 7538 { 7539 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7540 7541 /* The RSS map is valid for RX rings set to resv_rx_rings */ 7542 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 7543 hw_resc->resv_rx_rings = bp->rx_nr_rings; 7544 if (!netif_is_rxfh_configured(bp->dev)) 7545 bnxt_set_dflt_rss_indir_tbl(bp, NULL); 7546 } 7547 } 7548 7549 static int bnxt_get_total_vnics(struct bnxt *bp, int rx_rings) 7550 { 7551 if (bp->flags & BNXT_FLAG_RFS) { 7552 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7553 return 2 + bp->num_rss_ctx; 7554 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7555 return rx_rings + 1; 7556 } 7557 return 1; 7558 } 7559 7560 static bool bnxt_need_reserve_rings(struct bnxt *bp) 7561 { 7562 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7563 int cp = bnxt_cp_rings_in_use(bp); 7564 int nq = bnxt_nq_rings_in_use(bp); 7565 int rx = bp->rx_nr_rings, stat; 7566 int vnic, grp = rx; 7567 7568 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 7569 bp->hwrm_spec_code >= 0x10601) 7570 return true; 7571 7572 /* Old firmware does not need RX ring reservations but we still 7573 * need to setup a default RSS map when needed. With new firmware 7574 * we go through RX ring reservations first and then set up the 7575 * RSS map for the successfully reserved RX rings when needed. 7576 */ 7577 if (!BNXT_NEW_RM(bp)) { 7578 bnxt_check_rss_tbl_no_rmgr(bp); 7579 return false; 7580 } 7581 7582 vnic = bnxt_get_total_vnics(bp, rx); 7583 7584 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7585 rx <<= 1; 7586 stat = bnxt_get_func_stat_ctxs(bp); 7587 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 7588 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 7589 (hw_resc->resv_hw_ring_grps != grp && 7590 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))) 7591 return true; 7592 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && BNXT_PF(bp) && 7593 hw_resc->resv_irqs != nq) 7594 return true; 7595 return false; 7596 } 7597 7598 static void bnxt_copy_reserved_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7599 { 7600 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7601 7602 hwr->tx = hw_resc->resv_tx_rings; 7603 if (BNXT_NEW_RM(bp)) { 7604 hwr->rx = hw_resc->resv_rx_rings; 7605 hwr->cp = hw_resc->resv_irqs; 7606 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7607 hwr->cp_p5 = hw_resc->resv_cp_rings; 7608 hwr->grp = hw_resc->resv_hw_ring_grps; 7609 hwr->vnic = hw_resc->resv_vnics; 7610 hwr->stat = hw_resc->resv_stat_ctxs; 7611 hwr->rss_ctx = hw_resc->resv_rsscos_ctxs; 7612 } 7613 } 7614 7615 static bool bnxt_rings_ok(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7616 { 7617 return hwr->tx && hwr->rx && hwr->cp && hwr->grp && hwr->vnic && 7618 hwr->stat && (hwr->cp_p5 || !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)); 7619 } 7620 7621 static int bnxt_get_avail_msix(struct bnxt *bp, int num); 7622 7623 static int __bnxt_reserve_rings(struct bnxt *bp) 7624 { 7625 struct bnxt_hw_rings hwr = {0}; 7626 int cp = bp->cp_nr_rings; 7627 int rx_rings, rc; 7628 int ulp_msix = 0; 7629 bool sh = false; 7630 int tx_cp; 7631 7632 if (!bnxt_need_reserve_rings(bp)) 7633 return 0; 7634 7635 if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) { 7636 ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want); 7637 if (!ulp_msix) 7638 bnxt_set_ulp_stat_ctxs(bp, 0); 7639 7640 if (ulp_msix > bp->ulp_num_msix_want) 7641 ulp_msix = bp->ulp_num_msix_want; 7642 hwr.cp = cp + ulp_msix; 7643 } else { 7644 hwr.cp = bnxt_nq_rings_in_use(bp); 7645 } 7646 7647 hwr.tx = bp->tx_nr_rings; 7648 hwr.rx = bp->rx_nr_rings; 7649 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 7650 sh = true; 7651 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7652 hwr.cp_p5 = hwr.rx + hwr.tx; 7653 7654 hwr.vnic = bnxt_get_total_vnics(bp, hwr.rx); 7655 7656 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7657 hwr.rx <<= 1; 7658 hwr.grp = bp->rx_nr_rings; 7659 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 7660 hwr.stat = bnxt_get_func_stat_ctxs(bp); 7661 7662 rc = bnxt_hwrm_reserve_rings(bp, &hwr); 7663 if (rc) 7664 return rc; 7665 7666 bnxt_copy_reserved_rings(bp, &hwr); 7667 7668 rx_rings = hwr.rx; 7669 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 7670 if (hwr.rx >= 2) { 7671 rx_rings = hwr.rx >> 1; 7672 } else { 7673 if (netif_running(bp->dev)) 7674 return -ENOMEM; 7675 7676 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 7677 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 7678 bp->dev->hw_features &= ~NETIF_F_LRO; 7679 bp->dev->features &= ~NETIF_F_LRO; 7680 bnxt_set_ring_params(bp); 7681 } 7682 } 7683 rx_rings = min_t(int, rx_rings, hwr.grp); 7684 hwr.cp = min_t(int, hwr.cp, bp->cp_nr_rings); 7685 if (hwr.stat > bnxt_get_ulp_stat_ctxs(bp)) 7686 hwr.stat -= bnxt_get_ulp_stat_ctxs(bp); 7687 hwr.cp = min_t(int, hwr.cp, hwr.stat); 7688 rc = bnxt_trim_rings(bp, &rx_rings, &hwr.tx, hwr.cp, sh); 7689 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7690 hwr.rx = rx_rings << 1; 7691 tx_cp = bnxt_num_tx_to_cp(bp, hwr.tx); 7692 hwr.cp = sh ? max_t(int, tx_cp, rx_rings) : tx_cp + rx_rings; 7693 bp->tx_nr_rings = hwr.tx; 7694 7695 /* If we cannot reserve all the RX rings, reset the RSS map only 7696 * if absolutely necessary 7697 */ 7698 if (rx_rings != bp->rx_nr_rings) { 7699 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 7700 rx_rings, bp->rx_nr_rings); 7701 if (netif_is_rxfh_configured(bp->dev) && 7702 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 7703 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 7704 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 7705 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 7706 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 7707 } 7708 } 7709 bp->rx_nr_rings = rx_rings; 7710 bp->cp_nr_rings = hwr.cp; 7711 7712 if (!bnxt_rings_ok(bp, &hwr)) 7713 return -ENOMEM; 7714 7715 if (!netif_is_rxfh_configured(bp->dev)) 7716 bnxt_set_dflt_rss_indir_tbl(bp, NULL); 7717 7718 if (!bnxt_ulp_registered(bp->edev) && BNXT_NEW_RM(bp)) { 7719 int resv_msix, resv_ctx, ulp_ctxs; 7720 struct bnxt_hw_resc *hw_resc; 7721 7722 hw_resc = &bp->hw_resc; 7723 resv_msix = hw_resc->resv_irqs - bp->cp_nr_rings; 7724 ulp_msix = min_t(int, resv_msix, ulp_msix); 7725 bnxt_set_ulp_msix_num(bp, ulp_msix); 7726 resv_ctx = hw_resc->resv_stat_ctxs - bp->cp_nr_rings; 7727 ulp_ctxs = min(resv_ctx, bnxt_get_ulp_stat_ctxs(bp)); 7728 bnxt_set_ulp_stat_ctxs(bp, ulp_ctxs); 7729 } 7730 7731 return rc; 7732 } 7733 7734 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7735 { 7736 struct hwrm_func_vf_cfg_input *req; 7737 u32 flags; 7738 7739 if (!BNXT_NEW_RM(bp)) 7740 return 0; 7741 7742 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 7743 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 7744 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 7745 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 7746 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 7747 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 7748 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 7749 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7750 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 7751 7752 req->flags = cpu_to_le32(flags); 7753 return hwrm_req_send_silent(bp, req); 7754 } 7755 7756 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7757 { 7758 struct hwrm_func_cfg_input *req; 7759 u32 flags; 7760 7761 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 7762 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 7763 if (BNXT_NEW_RM(bp)) { 7764 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 7765 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 7766 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 7767 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 7768 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7769 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 7770 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 7771 else 7772 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 7773 } 7774 7775 req->flags = cpu_to_le32(flags); 7776 return hwrm_req_send_silent(bp, req); 7777 } 7778 7779 static int bnxt_hwrm_check_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7780 { 7781 if (bp->hwrm_spec_code < 0x10801) 7782 return 0; 7783 7784 if (BNXT_PF(bp)) 7785 return bnxt_hwrm_check_pf_rings(bp, hwr); 7786 7787 return bnxt_hwrm_check_vf_rings(bp, hwr); 7788 } 7789 7790 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 7791 { 7792 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7793 struct hwrm_ring_aggint_qcaps_output *resp; 7794 struct hwrm_ring_aggint_qcaps_input *req; 7795 int rc; 7796 7797 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 7798 coal_cap->num_cmpl_dma_aggr_max = 63; 7799 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 7800 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 7801 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 7802 coal_cap->int_lat_tmr_min_max = 65535; 7803 coal_cap->int_lat_tmr_max_max = 65535; 7804 coal_cap->num_cmpl_aggr_int_max = 65535; 7805 coal_cap->timer_units = 80; 7806 7807 if (bp->hwrm_spec_code < 0x10902) 7808 return; 7809 7810 if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS)) 7811 return; 7812 7813 resp = hwrm_req_hold(bp, req); 7814 rc = hwrm_req_send_silent(bp, req); 7815 if (!rc) { 7816 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 7817 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 7818 coal_cap->num_cmpl_dma_aggr_max = 7819 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 7820 coal_cap->num_cmpl_dma_aggr_during_int_max = 7821 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 7822 coal_cap->cmpl_aggr_dma_tmr_max = 7823 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 7824 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 7825 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 7826 coal_cap->int_lat_tmr_min_max = 7827 le16_to_cpu(resp->int_lat_tmr_min_max); 7828 coal_cap->int_lat_tmr_max_max = 7829 le16_to_cpu(resp->int_lat_tmr_max_max); 7830 coal_cap->num_cmpl_aggr_int_max = 7831 le16_to_cpu(resp->num_cmpl_aggr_int_max); 7832 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 7833 } 7834 hwrm_req_drop(bp, req); 7835 } 7836 7837 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 7838 { 7839 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7840 7841 return usec * 1000 / coal_cap->timer_units; 7842 } 7843 7844 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 7845 struct bnxt_coal *hw_coal, 7846 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 7847 { 7848 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7849 u16 val, tmr, max, flags = hw_coal->flags; 7850 u32 cmpl_params = coal_cap->cmpl_params; 7851 7852 max = hw_coal->bufs_per_record * 128; 7853 if (hw_coal->budget) 7854 max = hw_coal->bufs_per_record * hw_coal->budget; 7855 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 7856 7857 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 7858 req->num_cmpl_aggr_int = cpu_to_le16(val); 7859 7860 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 7861 req->num_cmpl_dma_aggr = cpu_to_le16(val); 7862 7863 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 7864 coal_cap->num_cmpl_dma_aggr_during_int_max); 7865 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 7866 7867 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 7868 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 7869 req->int_lat_tmr_max = cpu_to_le16(tmr); 7870 7871 /* min timer set to 1/2 of interrupt timer */ 7872 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 7873 val = tmr / 2; 7874 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 7875 req->int_lat_tmr_min = cpu_to_le16(val); 7876 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 7877 } 7878 7879 /* buf timer set to 1/4 of interrupt timer */ 7880 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 7881 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 7882 7883 if (cmpl_params & 7884 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 7885 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 7886 val = clamp_t(u16, tmr, 1, 7887 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 7888 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 7889 req->enables |= 7890 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 7891 } 7892 7893 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 7894 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 7895 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 7896 req->flags = cpu_to_le16(flags); 7897 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 7898 } 7899 7900 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 7901 struct bnxt_coal *hw_coal) 7902 { 7903 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req; 7904 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7905 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7906 u32 nq_params = coal_cap->nq_params; 7907 u16 tmr; 7908 int rc; 7909 7910 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 7911 return 0; 7912 7913 rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 7914 if (rc) 7915 return rc; 7916 7917 req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 7918 req->flags = 7919 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 7920 7921 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 7922 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 7923 req->int_lat_tmr_min = cpu_to_le16(tmr); 7924 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 7925 return hwrm_req_send(bp, req); 7926 } 7927 7928 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 7929 { 7930 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx; 7931 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7932 struct bnxt_coal coal; 7933 int rc; 7934 7935 /* Tick values in micro seconds. 7936 * 1 coal_buf x bufs_per_record = 1 completion record. 7937 */ 7938 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 7939 7940 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 7941 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 7942 7943 if (!bnapi->rx_ring) 7944 return -ENODEV; 7945 7946 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 7947 if (rc) 7948 return rc; 7949 7950 bnxt_hwrm_set_coal_params(bp, &coal, req_rx); 7951 7952 req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 7953 7954 return hwrm_req_send(bp, req_rx); 7955 } 7956 7957 static int 7958 bnxt_hwrm_set_rx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 7959 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 7960 { 7961 u16 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 7962 7963 req->ring_id = cpu_to_le16(ring_id); 7964 return hwrm_req_send(bp, req); 7965 } 7966 7967 static int 7968 bnxt_hwrm_set_tx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 7969 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 7970 { 7971 struct bnxt_tx_ring_info *txr; 7972 int i, rc; 7973 7974 bnxt_for_each_napi_tx(i, bnapi, txr) { 7975 u16 ring_id; 7976 7977 ring_id = bnxt_cp_ring_for_tx(bp, txr); 7978 req->ring_id = cpu_to_le16(ring_id); 7979 rc = hwrm_req_send(bp, req); 7980 if (rc) 7981 return rc; 7982 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7983 return 0; 7984 } 7985 return 0; 7986 } 7987 7988 int bnxt_hwrm_set_coal(struct bnxt *bp) 7989 { 7990 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx; 7991 int i, rc; 7992 7993 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 7994 if (rc) 7995 return rc; 7996 7997 rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 7998 if (rc) { 7999 hwrm_req_drop(bp, req_rx); 8000 return rc; 8001 } 8002 8003 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx); 8004 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx); 8005 8006 hwrm_req_hold(bp, req_rx); 8007 hwrm_req_hold(bp, req_tx); 8008 for (i = 0; i < bp->cp_nr_rings; i++) { 8009 struct bnxt_napi *bnapi = bp->bnapi[i]; 8010 struct bnxt_coal *hw_coal; 8011 8012 if (!bnapi->rx_ring) 8013 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 8014 else 8015 rc = bnxt_hwrm_set_rx_coal(bp, bnapi, req_rx); 8016 if (rc) 8017 break; 8018 8019 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 8020 continue; 8021 8022 if (bnapi->rx_ring && bnapi->tx_ring[0]) { 8023 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 8024 if (rc) 8025 break; 8026 } 8027 if (bnapi->rx_ring) 8028 hw_coal = &bp->rx_coal; 8029 else 8030 hw_coal = &bp->tx_coal; 8031 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 8032 } 8033 hwrm_req_drop(bp, req_rx); 8034 hwrm_req_drop(bp, req_tx); 8035 return rc; 8036 } 8037 8038 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 8039 { 8040 struct hwrm_stat_ctx_clr_stats_input *req0 = NULL; 8041 struct hwrm_stat_ctx_free_input *req; 8042 int i; 8043 8044 if (!bp->bnapi) 8045 return; 8046 8047 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8048 return; 8049 8050 if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE)) 8051 return; 8052 if (BNXT_FW_MAJ(bp) <= 20) { 8053 if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) { 8054 hwrm_req_drop(bp, req); 8055 return; 8056 } 8057 hwrm_req_hold(bp, req0); 8058 } 8059 hwrm_req_hold(bp, req); 8060 for (i = 0; i < bp->cp_nr_rings; i++) { 8061 struct bnxt_napi *bnapi = bp->bnapi[i]; 8062 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8063 8064 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 8065 req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 8066 if (req0) { 8067 req0->stat_ctx_id = req->stat_ctx_id; 8068 hwrm_req_send(bp, req0); 8069 } 8070 hwrm_req_send(bp, req); 8071 8072 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 8073 } 8074 } 8075 hwrm_req_drop(bp, req); 8076 if (req0) 8077 hwrm_req_drop(bp, req0); 8078 } 8079 8080 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 8081 { 8082 struct hwrm_stat_ctx_alloc_output *resp; 8083 struct hwrm_stat_ctx_alloc_input *req; 8084 int rc, i; 8085 8086 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8087 return 0; 8088 8089 rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC); 8090 if (rc) 8091 return rc; 8092 8093 req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 8094 req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 8095 8096 resp = hwrm_req_hold(bp, req); 8097 for (i = 0; i < bp->cp_nr_rings; i++) { 8098 struct bnxt_napi *bnapi = bp->bnapi[i]; 8099 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8100 8101 req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 8102 8103 rc = hwrm_req_send(bp, req); 8104 if (rc) 8105 break; 8106 8107 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 8108 8109 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 8110 } 8111 hwrm_req_drop(bp, req); 8112 return rc; 8113 } 8114 8115 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 8116 { 8117 struct hwrm_func_qcfg_output *resp; 8118 struct hwrm_func_qcfg_input *req; 8119 u16 flags; 8120 int rc; 8121 8122 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 8123 if (rc) 8124 return rc; 8125 8126 req->fid = cpu_to_le16(0xffff); 8127 resp = hwrm_req_hold(bp, req); 8128 rc = hwrm_req_send(bp, req); 8129 if (rc) 8130 goto func_qcfg_exit; 8131 8132 #ifdef CONFIG_BNXT_SRIOV 8133 if (BNXT_VF(bp)) { 8134 struct bnxt_vf_info *vf = &bp->vf; 8135 8136 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 8137 } else { 8138 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 8139 } 8140 #endif 8141 flags = le16_to_cpu(resp->flags); 8142 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 8143 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 8144 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 8145 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 8146 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 8147 } 8148 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 8149 bp->flags |= BNXT_FLAG_MULTI_HOST; 8150 8151 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 8152 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 8153 8154 switch (resp->port_partition_type) { 8155 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 8156 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 8157 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 8158 bp->port_partition_type = resp->port_partition_type; 8159 break; 8160 } 8161 if (bp->hwrm_spec_code < 0x10707 || 8162 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 8163 bp->br_mode = BRIDGE_MODE_VEB; 8164 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 8165 bp->br_mode = BRIDGE_MODE_VEPA; 8166 else 8167 bp->br_mode = BRIDGE_MODE_UNDEF; 8168 8169 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 8170 if (!bp->max_mtu) 8171 bp->max_mtu = BNXT_MAX_MTU; 8172 8173 if (bp->db_size) 8174 goto func_qcfg_exit; 8175 8176 bp->db_offset = le16_to_cpu(resp->legacy_l2_db_size_kb) * 1024; 8177 if (BNXT_CHIP_P5(bp)) { 8178 if (BNXT_PF(bp)) 8179 bp->db_offset = DB_PF_OFFSET_P5; 8180 else 8181 bp->db_offset = DB_VF_OFFSET_P5; 8182 } 8183 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 8184 1024); 8185 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 8186 bp->db_size <= bp->db_offset) 8187 bp->db_size = pci_resource_len(bp->pdev, 2); 8188 8189 func_qcfg_exit: 8190 hwrm_req_drop(bp, req); 8191 return rc; 8192 } 8193 8194 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_type *ctxm, 8195 u8 init_val, u8 init_offset, 8196 bool init_mask_set) 8197 { 8198 ctxm->init_value = init_val; 8199 ctxm->init_offset = BNXT_CTX_INIT_INVALID_OFFSET; 8200 if (init_mask_set) 8201 ctxm->init_offset = init_offset * 4; 8202 else 8203 ctxm->init_value = 0; 8204 } 8205 8206 static int bnxt_alloc_all_ctx_pg_info(struct bnxt *bp, int ctx_max) 8207 { 8208 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8209 u16 type; 8210 8211 for (type = 0; type < ctx_max; type++) { 8212 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8213 int n = 1; 8214 8215 if (!ctxm->max_entries) 8216 continue; 8217 8218 if (ctxm->instance_bmap) 8219 n = hweight32(ctxm->instance_bmap); 8220 ctxm->pg_info = kcalloc(n, sizeof(*ctxm->pg_info), GFP_KERNEL); 8221 if (!ctxm->pg_info) 8222 return -ENOMEM; 8223 } 8224 return 0; 8225 } 8226 8227 #define BNXT_CTX_INIT_VALID(flags) \ 8228 (!!((flags) & \ 8229 FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_ENABLE_CTX_KIND_INIT)) 8230 8231 static int bnxt_hwrm_func_backing_store_qcaps_v2(struct bnxt *bp) 8232 { 8233 struct hwrm_func_backing_store_qcaps_v2_output *resp; 8234 struct hwrm_func_backing_store_qcaps_v2_input *req; 8235 struct bnxt_ctx_mem_info *ctx; 8236 u16 type; 8237 int rc; 8238 8239 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS_V2); 8240 if (rc) 8241 return rc; 8242 8243 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8244 if (!ctx) 8245 return -ENOMEM; 8246 bp->ctx = ctx; 8247 8248 resp = hwrm_req_hold(bp, req); 8249 8250 for (type = 0; type < BNXT_CTX_V2_MAX; ) { 8251 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8252 u8 init_val, init_off, i; 8253 __le32 *p; 8254 u32 flags; 8255 8256 req->type = cpu_to_le16(type); 8257 rc = hwrm_req_send(bp, req); 8258 if (rc) 8259 goto ctx_done; 8260 flags = le32_to_cpu(resp->flags); 8261 type = le16_to_cpu(resp->next_valid_type); 8262 if (!(flags & FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_TYPE_VALID)) 8263 continue; 8264 8265 ctxm->type = le16_to_cpu(resp->type); 8266 ctxm->entry_size = le16_to_cpu(resp->entry_size); 8267 ctxm->flags = flags; 8268 ctxm->instance_bmap = le32_to_cpu(resp->instance_bit_map); 8269 ctxm->entry_multiple = resp->entry_multiple; 8270 ctxm->max_entries = le32_to_cpu(resp->max_num_entries); 8271 ctxm->min_entries = le32_to_cpu(resp->min_num_entries); 8272 init_val = resp->ctx_init_value; 8273 init_off = resp->ctx_init_offset; 8274 bnxt_init_ctx_initializer(ctxm, init_val, init_off, 8275 BNXT_CTX_INIT_VALID(flags)); 8276 ctxm->split_entry_cnt = min_t(u8, resp->subtype_valid_cnt, 8277 BNXT_MAX_SPLIT_ENTRY); 8278 for (i = 0, p = &resp->split_entry_0; i < ctxm->split_entry_cnt; 8279 i++, p++) 8280 ctxm->split[i] = le32_to_cpu(*p); 8281 } 8282 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_V2_MAX); 8283 8284 ctx_done: 8285 hwrm_req_drop(bp, req); 8286 return rc; 8287 } 8288 8289 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 8290 { 8291 struct hwrm_func_backing_store_qcaps_output *resp; 8292 struct hwrm_func_backing_store_qcaps_input *req; 8293 int rc; 8294 8295 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx) 8296 return 0; 8297 8298 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 8299 return bnxt_hwrm_func_backing_store_qcaps_v2(bp); 8300 8301 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS); 8302 if (rc) 8303 return rc; 8304 8305 resp = hwrm_req_hold(bp, req); 8306 rc = hwrm_req_send_silent(bp, req); 8307 if (!rc) { 8308 struct bnxt_ctx_mem_type *ctxm; 8309 struct bnxt_ctx_mem_info *ctx; 8310 u8 init_val, init_idx = 0; 8311 u16 init_mask; 8312 8313 ctx = bp->ctx; 8314 if (!ctx) { 8315 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8316 if (!ctx) { 8317 rc = -ENOMEM; 8318 goto ctx_err; 8319 } 8320 bp->ctx = ctx; 8321 } 8322 init_val = resp->ctx_kind_initializer; 8323 init_mask = le16_to_cpu(resp->ctx_init_mask); 8324 8325 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8326 ctxm->max_entries = le32_to_cpu(resp->qp_max_entries); 8327 ctxm->qp_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 8328 ctxm->qp_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 8329 ctxm->qp_fast_qpmd_entries = le16_to_cpu(resp->fast_qpmd_qp_num_entries); 8330 ctxm->entry_size = le16_to_cpu(resp->qp_entry_size); 8331 bnxt_init_ctx_initializer(ctxm, init_val, resp->qp_init_offset, 8332 (init_mask & (1 << init_idx++)) != 0); 8333 8334 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8335 ctxm->srq_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 8336 ctxm->max_entries = le32_to_cpu(resp->srq_max_entries); 8337 ctxm->entry_size = le16_to_cpu(resp->srq_entry_size); 8338 bnxt_init_ctx_initializer(ctxm, init_val, resp->srq_init_offset, 8339 (init_mask & (1 << init_idx++)) != 0); 8340 8341 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8342 ctxm->cq_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 8343 ctxm->max_entries = le32_to_cpu(resp->cq_max_entries); 8344 ctxm->entry_size = le16_to_cpu(resp->cq_entry_size); 8345 bnxt_init_ctx_initializer(ctxm, init_val, resp->cq_init_offset, 8346 (init_mask & (1 << init_idx++)) != 0); 8347 8348 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8349 ctxm->vnic_entries = le16_to_cpu(resp->vnic_max_vnic_entries); 8350 ctxm->max_entries = ctxm->vnic_entries + 8351 le16_to_cpu(resp->vnic_max_ring_table_entries); 8352 ctxm->entry_size = le16_to_cpu(resp->vnic_entry_size); 8353 bnxt_init_ctx_initializer(ctxm, init_val, 8354 resp->vnic_init_offset, 8355 (init_mask & (1 << init_idx++)) != 0); 8356 8357 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8358 ctxm->max_entries = le32_to_cpu(resp->stat_max_entries); 8359 ctxm->entry_size = le16_to_cpu(resp->stat_entry_size); 8360 bnxt_init_ctx_initializer(ctxm, init_val, 8361 resp->stat_init_offset, 8362 (init_mask & (1 << init_idx++)) != 0); 8363 8364 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8365 ctxm->entry_size = le16_to_cpu(resp->tqm_entry_size); 8366 ctxm->min_entries = le32_to_cpu(resp->tqm_min_entries_per_ring); 8367 ctxm->max_entries = le32_to_cpu(resp->tqm_max_entries_per_ring); 8368 ctxm->entry_multiple = resp->tqm_entries_multiple; 8369 if (!ctxm->entry_multiple) 8370 ctxm->entry_multiple = 1; 8371 8372 memcpy(&ctx->ctx_arr[BNXT_CTX_FTQM], ctxm, sizeof(*ctxm)); 8373 8374 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8375 ctxm->max_entries = le32_to_cpu(resp->mrav_max_entries); 8376 ctxm->entry_size = le16_to_cpu(resp->mrav_entry_size); 8377 ctxm->mrav_num_entries_units = 8378 le16_to_cpu(resp->mrav_num_entries_units); 8379 bnxt_init_ctx_initializer(ctxm, init_val, 8380 resp->mrav_init_offset, 8381 (init_mask & (1 << init_idx++)) != 0); 8382 8383 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8384 ctxm->entry_size = le16_to_cpu(resp->tim_entry_size); 8385 ctxm->max_entries = le32_to_cpu(resp->tim_max_entries); 8386 8387 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 8388 if (!ctx->tqm_fp_rings_count) 8389 ctx->tqm_fp_rings_count = bp->max_q; 8390 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 8391 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 8392 8393 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 8394 memcpy(ctxm, &ctx->ctx_arr[BNXT_CTX_STQM], sizeof(*ctxm)); 8395 ctxm->instance_bmap = (1 << ctx->tqm_fp_rings_count) - 1; 8396 8397 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_MAX); 8398 } else { 8399 rc = 0; 8400 } 8401 ctx_err: 8402 hwrm_req_drop(bp, req); 8403 return rc; 8404 } 8405 8406 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 8407 __le64 *pg_dir) 8408 { 8409 if (!rmem->nr_pages) 8410 return; 8411 8412 BNXT_SET_CTX_PAGE_ATTR(*pg_attr); 8413 if (rmem->depth >= 1) { 8414 if (rmem->depth == 2) 8415 *pg_attr |= 2; 8416 else 8417 *pg_attr |= 1; 8418 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 8419 } else { 8420 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 8421 } 8422 } 8423 8424 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 8425 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 8426 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 8427 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 8428 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 8429 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 8430 8431 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 8432 { 8433 struct hwrm_func_backing_store_cfg_input *req; 8434 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8435 struct bnxt_ctx_pg_info *ctx_pg; 8436 struct bnxt_ctx_mem_type *ctxm; 8437 void **__req = (void **)&req; 8438 u32 req_len = sizeof(*req); 8439 __le32 *num_entries; 8440 __le64 *pg_dir; 8441 u32 flags = 0; 8442 u8 *pg_attr; 8443 u32 ena; 8444 int rc; 8445 int i; 8446 8447 if (!ctx) 8448 return 0; 8449 8450 if (req_len > bp->hwrm_max_ext_req_len) 8451 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 8452 rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len); 8453 if (rc) 8454 return rc; 8455 8456 req->enables = cpu_to_le32(enables); 8457 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 8458 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8459 ctx_pg = ctxm->pg_info; 8460 req->qp_num_entries = cpu_to_le32(ctx_pg->entries); 8461 req->qp_num_qp1_entries = cpu_to_le16(ctxm->qp_qp1_entries); 8462 req->qp_num_l2_entries = cpu_to_le16(ctxm->qp_l2_entries); 8463 req->qp_entry_size = cpu_to_le16(ctxm->entry_size); 8464 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8465 &req->qpc_pg_size_qpc_lvl, 8466 &req->qpc_page_dir); 8467 8468 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD) 8469 req->qp_num_fast_qpmd_entries = cpu_to_le16(ctxm->qp_fast_qpmd_entries); 8470 } 8471 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 8472 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8473 ctx_pg = ctxm->pg_info; 8474 req->srq_num_entries = cpu_to_le32(ctx_pg->entries); 8475 req->srq_num_l2_entries = cpu_to_le16(ctxm->srq_l2_entries); 8476 req->srq_entry_size = cpu_to_le16(ctxm->entry_size); 8477 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8478 &req->srq_pg_size_srq_lvl, 8479 &req->srq_page_dir); 8480 } 8481 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 8482 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8483 ctx_pg = ctxm->pg_info; 8484 req->cq_num_entries = cpu_to_le32(ctx_pg->entries); 8485 req->cq_num_l2_entries = cpu_to_le16(ctxm->cq_l2_entries); 8486 req->cq_entry_size = cpu_to_le16(ctxm->entry_size); 8487 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8488 &req->cq_pg_size_cq_lvl, 8489 &req->cq_page_dir); 8490 } 8491 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 8492 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8493 ctx_pg = ctxm->pg_info; 8494 req->vnic_num_vnic_entries = cpu_to_le16(ctxm->vnic_entries); 8495 req->vnic_num_ring_table_entries = 8496 cpu_to_le16(ctxm->max_entries - ctxm->vnic_entries); 8497 req->vnic_entry_size = cpu_to_le16(ctxm->entry_size); 8498 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8499 &req->vnic_pg_size_vnic_lvl, 8500 &req->vnic_page_dir); 8501 } 8502 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 8503 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8504 ctx_pg = ctxm->pg_info; 8505 req->stat_num_entries = cpu_to_le32(ctxm->max_entries); 8506 req->stat_entry_size = cpu_to_le16(ctxm->entry_size); 8507 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8508 &req->stat_pg_size_stat_lvl, 8509 &req->stat_page_dir); 8510 } 8511 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 8512 u32 units; 8513 8514 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8515 ctx_pg = ctxm->pg_info; 8516 req->mrav_num_entries = cpu_to_le32(ctx_pg->entries); 8517 units = ctxm->mrav_num_entries_units; 8518 if (units) { 8519 u32 num_mr, num_ah = ctxm->mrav_av_entries; 8520 u32 entries; 8521 8522 num_mr = ctx_pg->entries - num_ah; 8523 entries = ((num_mr / units) << 16) | (num_ah / units); 8524 req->mrav_num_entries = cpu_to_le32(entries); 8525 flags |= FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 8526 } 8527 req->mrav_entry_size = cpu_to_le16(ctxm->entry_size); 8528 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8529 &req->mrav_pg_size_mrav_lvl, 8530 &req->mrav_page_dir); 8531 } 8532 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 8533 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8534 ctx_pg = ctxm->pg_info; 8535 req->tim_num_entries = cpu_to_le32(ctx_pg->entries); 8536 req->tim_entry_size = cpu_to_le16(ctxm->entry_size); 8537 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8538 &req->tim_pg_size_tim_lvl, 8539 &req->tim_page_dir); 8540 } 8541 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8542 for (i = 0, num_entries = &req->tqm_sp_num_entries, 8543 pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl, 8544 pg_dir = &req->tqm_sp_page_dir, 8545 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP, 8546 ctx_pg = ctxm->pg_info; 8547 i < BNXT_MAX_TQM_RINGS; 8548 ctx_pg = &ctx->ctx_arr[BNXT_CTX_FTQM].pg_info[i], 8549 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 8550 if (!(enables & ena)) 8551 continue; 8552 8553 req->tqm_entry_size = cpu_to_le16(ctxm->entry_size); 8554 *num_entries = cpu_to_le32(ctx_pg->entries); 8555 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 8556 } 8557 req->flags = cpu_to_le32(flags); 8558 return hwrm_req_send(bp, req); 8559 } 8560 8561 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 8562 struct bnxt_ctx_pg_info *ctx_pg) 8563 { 8564 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8565 8566 rmem->page_size = BNXT_PAGE_SIZE; 8567 rmem->pg_arr = ctx_pg->ctx_pg_arr; 8568 rmem->dma_arr = ctx_pg->ctx_dma_arr; 8569 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 8570 if (rmem->depth >= 1) 8571 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 8572 return bnxt_alloc_ring(bp, rmem); 8573 } 8574 8575 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 8576 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 8577 u8 depth, struct bnxt_ctx_mem_type *ctxm) 8578 { 8579 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8580 int rc; 8581 8582 if (!mem_size) 8583 return -EINVAL; 8584 8585 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 8586 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 8587 ctx_pg->nr_pages = 0; 8588 return -EINVAL; 8589 } 8590 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 8591 int nr_tbls, i; 8592 8593 rmem->depth = 2; 8594 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 8595 GFP_KERNEL); 8596 if (!ctx_pg->ctx_pg_tbl) 8597 return -ENOMEM; 8598 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 8599 rmem->nr_pages = nr_tbls; 8600 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 8601 if (rc) 8602 return rc; 8603 for (i = 0; i < nr_tbls; i++) { 8604 struct bnxt_ctx_pg_info *pg_tbl; 8605 8606 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 8607 if (!pg_tbl) 8608 return -ENOMEM; 8609 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 8610 rmem = &pg_tbl->ring_mem; 8611 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 8612 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 8613 rmem->depth = 1; 8614 rmem->nr_pages = MAX_CTX_PAGES; 8615 rmem->ctx_mem = ctxm; 8616 if (i == (nr_tbls - 1)) { 8617 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 8618 8619 if (rem) 8620 rmem->nr_pages = rem; 8621 } 8622 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 8623 if (rc) 8624 break; 8625 } 8626 } else { 8627 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 8628 if (rmem->nr_pages > 1 || depth) 8629 rmem->depth = 1; 8630 rmem->ctx_mem = ctxm; 8631 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 8632 } 8633 return rc; 8634 } 8635 8636 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 8637 struct bnxt_ctx_pg_info *ctx_pg) 8638 { 8639 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8640 8641 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 8642 ctx_pg->ctx_pg_tbl) { 8643 int i, nr_tbls = rmem->nr_pages; 8644 8645 for (i = 0; i < nr_tbls; i++) { 8646 struct bnxt_ctx_pg_info *pg_tbl; 8647 struct bnxt_ring_mem_info *rmem2; 8648 8649 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 8650 if (!pg_tbl) 8651 continue; 8652 rmem2 = &pg_tbl->ring_mem; 8653 bnxt_free_ring(bp, rmem2); 8654 ctx_pg->ctx_pg_arr[i] = NULL; 8655 kfree(pg_tbl); 8656 ctx_pg->ctx_pg_tbl[i] = NULL; 8657 } 8658 kfree(ctx_pg->ctx_pg_tbl); 8659 ctx_pg->ctx_pg_tbl = NULL; 8660 } 8661 bnxt_free_ring(bp, rmem); 8662 ctx_pg->nr_pages = 0; 8663 } 8664 8665 static int bnxt_setup_ctxm_pg_tbls(struct bnxt *bp, 8666 struct bnxt_ctx_mem_type *ctxm, u32 entries, 8667 u8 pg_lvl) 8668 { 8669 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 8670 int i, rc = 0, n = 1; 8671 u32 mem_size; 8672 8673 if (!ctxm->entry_size || !ctx_pg) 8674 return -EINVAL; 8675 if (ctxm->instance_bmap) 8676 n = hweight32(ctxm->instance_bmap); 8677 if (ctxm->entry_multiple) 8678 entries = roundup(entries, ctxm->entry_multiple); 8679 entries = clamp_t(u32, entries, ctxm->min_entries, ctxm->max_entries); 8680 mem_size = entries * ctxm->entry_size; 8681 for (i = 0; i < n && !rc; i++) { 8682 ctx_pg[i].entries = entries; 8683 rc = bnxt_alloc_ctx_pg_tbls(bp, &ctx_pg[i], mem_size, pg_lvl, 8684 ctxm->init_value ? ctxm : NULL); 8685 } 8686 return rc; 8687 } 8688 8689 static int bnxt_hwrm_func_backing_store_cfg_v2(struct bnxt *bp, 8690 struct bnxt_ctx_mem_type *ctxm, 8691 bool last) 8692 { 8693 struct hwrm_func_backing_store_cfg_v2_input *req; 8694 u32 instance_bmap = ctxm->instance_bmap; 8695 int i, j, rc = 0, n = 1; 8696 __le32 *p; 8697 8698 if (!(ctxm->flags & BNXT_CTX_MEM_TYPE_VALID) || !ctxm->pg_info) 8699 return 0; 8700 8701 if (instance_bmap) 8702 n = hweight32(ctxm->instance_bmap); 8703 else 8704 instance_bmap = 1; 8705 8706 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_CFG_V2); 8707 if (rc) 8708 return rc; 8709 hwrm_req_hold(bp, req); 8710 req->type = cpu_to_le16(ctxm->type); 8711 req->entry_size = cpu_to_le16(ctxm->entry_size); 8712 req->subtype_valid_cnt = ctxm->split_entry_cnt; 8713 for (i = 0, p = &req->split_entry_0; i < ctxm->split_entry_cnt; i++) 8714 p[i] = cpu_to_le32(ctxm->split[i]); 8715 for (i = 0, j = 0; j < n && !rc; i++) { 8716 struct bnxt_ctx_pg_info *ctx_pg; 8717 8718 if (!(instance_bmap & (1 << i))) 8719 continue; 8720 req->instance = cpu_to_le16(i); 8721 ctx_pg = &ctxm->pg_info[j++]; 8722 if (!ctx_pg->entries) 8723 continue; 8724 req->num_entries = cpu_to_le32(ctx_pg->entries); 8725 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8726 &req->page_size_pbl_level, 8727 &req->page_dir); 8728 if (last && j == n) 8729 req->flags = 8730 cpu_to_le32(FUNC_BACKING_STORE_CFG_V2_REQ_FLAGS_BS_CFG_ALL_DONE); 8731 rc = hwrm_req_send(bp, req); 8732 } 8733 hwrm_req_drop(bp, req); 8734 return rc; 8735 } 8736 8737 static int bnxt_backing_store_cfg_v2(struct bnxt *bp, u32 ena) 8738 { 8739 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8740 struct bnxt_ctx_mem_type *ctxm; 8741 u16 last_type; 8742 int rc = 0; 8743 u16 type; 8744 8745 if (!ena) 8746 return 0; 8747 else if (ena & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) 8748 last_type = BNXT_CTX_MAX - 1; 8749 else 8750 last_type = BNXT_CTX_L2_MAX - 1; 8751 ctx->ctx_arr[last_type].last = 1; 8752 8753 for (type = 0 ; type < BNXT_CTX_V2_MAX; type++) { 8754 ctxm = &ctx->ctx_arr[type]; 8755 8756 rc = bnxt_hwrm_func_backing_store_cfg_v2(bp, ctxm, ctxm->last); 8757 if (rc) 8758 return rc; 8759 } 8760 return 0; 8761 } 8762 8763 void bnxt_free_ctx_mem(struct bnxt *bp) 8764 { 8765 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8766 u16 type; 8767 8768 if (!ctx) 8769 return; 8770 8771 for (type = 0; type < BNXT_CTX_V2_MAX; type++) { 8772 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8773 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 8774 int i, n = 1; 8775 8776 if (!ctx_pg) 8777 continue; 8778 if (ctxm->instance_bmap) 8779 n = hweight32(ctxm->instance_bmap); 8780 for (i = 0; i < n; i++) 8781 bnxt_free_ctx_pg_tbls(bp, &ctx_pg[i]); 8782 8783 kfree(ctx_pg); 8784 ctxm->pg_info = NULL; 8785 } 8786 8787 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 8788 kfree(ctx); 8789 bp->ctx = NULL; 8790 } 8791 8792 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 8793 { 8794 struct bnxt_ctx_mem_type *ctxm; 8795 struct bnxt_ctx_mem_info *ctx; 8796 u32 l2_qps, qp1_qps, max_qps; 8797 u32 ena, entries_sp, entries; 8798 u32 srqs, max_srqs, min; 8799 u32 num_mr, num_ah; 8800 u32 extra_srqs = 0; 8801 u32 extra_qps = 0; 8802 u32 fast_qpmd_qps; 8803 u8 pg_lvl = 1; 8804 int i, rc; 8805 8806 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 8807 if (rc) { 8808 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 8809 rc); 8810 return rc; 8811 } 8812 ctx = bp->ctx; 8813 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 8814 return 0; 8815 8816 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8817 l2_qps = ctxm->qp_l2_entries; 8818 qp1_qps = ctxm->qp_qp1_entries; 8819 fast_qpmd_qps = ctxm->qp_fast_qpmd_entries; 8820 max_qps = ctxm->max_entries; 8821 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8822 srqs = ctxm->srq_l2_entries; 8823 max_srqs = ctxm->max_entries; 8824 ena = 0; 8825 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 8826 pg_lvl = 2; 8827 extra_qps = min_t(u32, 65536, max_qps - l2_qps - qp1_qps); 8828 /* allocate extra qps if fw supports RoCE fast qp destroy feature */ 8829 extra_qps += fast_qpmd_qps; 8830 extra_srqs = min_t(u32, 8192, max_srqs - srqs); 8831 if (fast_qpmd_qps) 8832 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD; 8833 } 8834 8835 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8836 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 8837 pg_lvl); 8838 if (rc) 8839 return rc; 8840 8841 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8842 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, srqs + extra_srqs, pg_lvl); 8843 if (rc) 8844 return rc; 8845 8846 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8847 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->cq_l2_entries + 8848 extra_qps * 2, pg_lvl); 8849 if (rc) 8850 return rc; 8851 8852 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8853 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 8854 if (rc) 8855 return rc; 8856 8857 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8858 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 8859 if (rc) 8860 return rc; 8861 8862 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 8863 goto skip_rdma; 8864 8865 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8866 /* 128K extra is needed to accommodate static AH context 8867 * allocation by f/w. 8868 */ 8869 num_mr = min_t(u32, ctxm->max_entries / 2, 1024 * 256); 8870 num_ah = min_t(u32, num_mr, 1024 * 128); 8871 ctxm->split_entry_cnt = BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1; 8872 if (!ctxm->mrav_av_entries || ctxm->mrav_av_entries > num_ah) 8873 ctxm->mrav_av_entries = num_ah; 8874 8875 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, num_mr + num_ah, 2); 8876 if (rc) 8877 return rc; 8878 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 8879 8880 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8881 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 1); 8882 if (rc) 8883 return rc; 8884 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 8885 8886 skip_rdma: 8887 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8888 min = ctxm->min_entries; 8889 entries_sp = ctx->ctx_arr[BNXT_CTX_VNIC].vnic_entries + l2_qps + 8890 2 * (extra_qps + qp1_qps) + min; 8891 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries_sp, 2); 8892 if (rc) 8893 return rc; 8894 8895 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 8896 entries = l2_qps + 2 * (extra_qps + qp1_qps); 8897 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries, 2); 8898 if (rc) 8899 return rc; 8900 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 8901 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 8902 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 8903 8904 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 8905 rc = bnxt_backing_store_cfg_v2(bp, ena); 8906 else 8907 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 8908 if (rc) { 8909 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 8910 rc); 8911 return rc; 8912 } 8913 ctx->flags |= BNXT_CTX_FLAG_INITED; 8914 return 0; 8915 } 8916 8917 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 8918 { 8919 struct hwrm_func_resource_qcaps_output *resp; 8920 struct hwrm_func_resource_qcaps_input *req; 8921 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 8922 int rc; 8923 8924 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS); 8925 if (rc) 8926 return rc; 8927 8928 req->fid = cpu_to_le16(0xffff); 8929 resp = hwrm_req_hold(bp, req); 8930 rc = hwrm_req_send_silent(bp, req); 8931 if (rc) 8932 goto hwrm_func_resc_qcaps_exit; 8933 8934 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 8935 if (!all) 8936 goto hwrm_func_resc_qcaps_exit; 8937 8938 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 8939 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 8940 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 8941 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 8942 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 8943 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 8944 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 8945 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 8946 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 8947 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 8948 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 8949 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 8950 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 8951 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 8952 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 8953 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 8954 8955 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 8956 u16 max_msix = le16_to_cpu(resp->max_msix); 8957 8958 hw_resc->max_nqs = max_msix; 8959 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 8960 } 8961 8962 if (BNXT_PF(bp)) { 8963 struct bnxt_pf_info *pf = &bp->pf; 8964 8965 pf->vf_resv_strategy = 8966 le16_to_cpu(resp->vf_reservation_strategy); 8967 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 8968 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 8969 } 8970 hwrm_func_resc_qcaps_exit: 8971 hwrm_req_drop(bp, req); 8972 return rc; 8973 } 8974 8975 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) 8976 { 8977 struct hwrm_port_mac_ptp_qcfg_output *resp; 8978 struct hwrm_port_mac_ptp_qcfg_input *req; 8979 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 8980 bool phc_cfg; 8981 u8 flags; 8982 int rc; 8983 8984 if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5(bp)) { 8985 rc = -ENODEV; 8986 goto no_ptp; 8987 } 8988 8989 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG); 8990 if (rc) 8991 goto no_ptp; 8992 8993 req->port_id = cpu_to_le16(bp->pf.port_id); 8994 resp = hwrm_req_hold(bp, req); 8995 rc = hwrm_req_send(bp, req); 8996 if (rc) 8997 goto exit; 8998 8999 flags = resp->flags; 9000 if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { 9001 rc = -ENODEV; 9002 goto exit; 9003 } 9004 if (!ptp) { 9005 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); 9006 if (!ptp) { 9007 rc = -ENOMEM; 9008 goto exit; 9009 } 9010 ptp->bp = bp; 9011 bp->ptp_cfg = ptp; 9012 } 9013 if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) { 9014 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); 9015 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); 9016 } else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 9017 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; 9018 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; 9019 } else { 9020 rc = -ENODEV; 9021 goto exit; 9022 } 9023 phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0; 9024 rc = bnxt_ptp_init(bp, phc_cfg); 9025 if (rc) 9026 netdev_warn(bp->dev, "PTP initialization failed.\n"); 9027 exit: 9028 hwrm_req_drop(bp, req); 9029 if (!rc) 9030 return 0; 9031 9032 no_ptp: 9033 bnxt_ptp_clear(bp); 9034 kfree(ptp); 9035 bp->ptp_cfg = NULL; 9036 return rc; 9037 } 9038 9039 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 9040 { 9041 struct hwrm_func_qcaps_output *resp; 9042 struct hwrm_func_qcaps_input *req; 9043 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9044 u32 flags, flags_ext, flags_ext2; 9045 int rc; 9046 9047 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS); 9048 if (rc) 9049 return rc; 9050 9051 req->fid = cpu_to_le16(0xffff); 9052 resp = hwrm_req_hold(bp, req); 9053 rc = hwrm_req_send(bp, req); 9054 if (rc) 9055 goto hwrm_func_qcaps_exit; 9056 9057 flags = le32_to_cpu(resp->flags); 9058 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 9059 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 9060 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 9061 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 9062 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 9063 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 9064 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 9065 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 9066 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 9067 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 9068 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 9069 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 9070 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 9071 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 9072 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 9073 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 9074 if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED) 9075 bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS; 9076 9077 flags_ext = le32_to_cpu(resp->flags_ext); 9078 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 9079 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 9080 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED)) 9081 bp->fw_cap |= BNXT_FW_CAP_PTP_PPS; 9082 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED) 9083 bp->fw_cap |= BNXT_FW_CAP_PTP_RTC; 9084 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT)) 9085 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF; 9086 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED)) 9087 bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH; 9088 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_BS_V2_SUPPORTED) 9089 bp->fw_cap |= BNXT_FW_CAP_BACKING_STORE_V2; 9090 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_TX_COAL_CMPL_CAP) 9091 bp->flags |= BNXT_FLAG_TX_COAL_CMPL; 9092 9093 flags_ext2 = le32_to_cpu(resp->flags_ext2); 9094 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED) 9095 bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS; 9096 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_UDP_GSO_SUPPORTED) 9097 bp->flags |= BNXT_FLAG_UDP_GSO_CAP; 9098 9099 bp->tx_push_thresh = 0; 9100 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 9101 BNXT_FW_MAJ(bp) > 217) 9102 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 9103 9104 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 9105 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 9106 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 9107 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 9108 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 9109 if (!hw_resc->max_hw_ring_grps) 9110 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 9111 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 9112 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 9113 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 9114 9115 hw_resc->max_encap_records = le32_to_cpu(resp->max_encap_records); 9116 hw_resc->max_decap_records = le32_to_cpu(resp->max_decap_records); 9117 hw_resc->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 9118 hw_resc->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 9119 hw_resc->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 9120 hw_resc->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 9121 9122 if (BNXT_PF(bp)) { 9123 struct bnxt_pf_info *pf = &bp->pf; 9124 9125 pf->fw_fid = le16_to_cpu(resp->fid); 9126 pf->port_id = le16_to_cpu(resp->port_id); 9127 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 9128 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 9129 pf->max_vfs = le16_to_cpu(resp->max_vfs); 9130 bp->flags &= ~BNXT_FLAG_WOL_CAP; 9131 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 9132 bp->flags |= BNXT_FLAG_WOL_CAP; 9133 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { 9134 bp->fw_cap |= BNXT_FW_CAP_PTP; 9135 } else { 9136 bnxt_ptp_clear(bp); 9137 kfree(bp->ptp_cfg); 9138 bp->ptp_cfg = NULL; 9139 } 9140 } else { 9141 #ifdef CONFIG_BNXT_SRIOV 9142 struct bnxt_vf_info *vf = &bp->vf; 9143 9144 vf->fw_fid = le16_to_cpu(resp->fid); 9145 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 9146 #endif 9147 } 9148 bp->tso_max_segs = le16_to_cpu(resp->max_tso_segs); 9149 9150 hwrm_func_qcaps_exit: 9151 hwrm_req_drop(bp, req); 9152 return rc; 9153 } 9154 9155 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp) 9156 { 9157 struct hwrm_dbg_qcaps_output *resp; 9158 struct hwrm_dbg_qcaps_input *req; 9159 int rc; 9160 9161 bp->fw_dbg_cap = 0; 9162 if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS)) 9163 return; 9164 9165 rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS); 9166 if (rc) 9167 return; 9168 9169 req->fid = cpu_to_le16(0xffff); 9170 resp = hwrm_req_hold(bp, req); 9171 rc = hwrm_req_send(bp, req); 9172 if (rc) 9173 goto hwrm_dbg_qcaps_exit; 9174 9175 bp->fw_dbg_cap = le32_to_cpu(resp->flags); 9176 9177 hwrm_dbg_qcaps_exit: 9178 hwrm_req_drop(bp, req); 9179 } 9180 9181 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 9182 9183 int bnxt_hwrm_func_qcaps(struct bnxt *bp) 9184 { 9185 int rc; 9186 9187 rc = __bnxt_hwrm_func_qcaps(bp); 9188 if (rc) 9189 return rc; 9190 9191 bnxt_hwrm_dbg_qcaps(bp); 9192 9193 rc = bnxt_hwrm_queue_qportcfg(bp); 9194 if (rc) { 9195 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 9196 return rc; 9197 } 9198 if (bp->hwrm_spec_code >= 0x10803) { 9199 rc = bnxt_alloc_ctx_mem(bp); 9200 if (rc) 9201 return rc; 9202 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 9203 if (!rc) 9204 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 9205 } 9206 return 0; 9207 } 9208 9209 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 9210 { 9211 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 9212 struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req; 9213 u32 flags; 9214 int rc; 9215 9216 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 9217 return 0; 9218 9219 rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS); 9220 if (rc) 9221 return rc; 9222 9223 resp = hwrm_req_hold(bp, req); 9224 rc = hwrm_req_send(bp, req); 9225 if (rc) 9226 goto hwrm_cfa_adv_qcaps_exit; 9227 9228 flags = le32_to_cpu(resp->flags); 9229 if (flags & 9230 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 9231 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 9232 9233 if (flags & 9234 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V3_SUPPORTED) 9235 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V3; 9236 9237 if (flags & 9238 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_NTUPLE_FLOW_RX_EXT_IP_PROTO_SUPPORTED) 9239 bp->fw_cap |= BNXT_FW_CAP_CFA_NTUPLE_RX_EXT_IP_PROTO; 9240 9241 hwrm_cfa_adv_qcaps_exit: 9242 hwrm_req_drop(bp, req); 9243 return rc; 9244 } 9245 9246 static int __bnxt_alloc_fw_health(struct bnxt *bp) 9247 { 9248 if (bp->fw_health) 9249 return 0; 9250 9251 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 9252 if (!bp->fw_health) 9253 return -ENOMEM; 9254 9255 mutex_init(&bp->fw_health->lock); 9256 return 0; 9257 } 9258 9259 static int bnxt_alloc_fw_health(struct bnxt *bp) 9260 { 9261 int rc; 9262 9263 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 9264 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 9265 return 0; 9266 9267 rc = __bnxt_alloc_fw_health(bp); 9268 if (rc) { 9269 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 9270 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 9271 return rc; 9272 } 9273 9274 return 0; 9275 } 9276 9277 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 9278 { 9279 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 9280 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 9281 BNXT_FW_HEALTH_WIN_MAP_OFF); 9282 } 9283 9284 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 9285 { 9286 struct bnxt_fw_health *fw_health = bp->fw_health; 9287 u32 reg_type; 9288 9289 if (!fw_health) 9290 return; 9291 9292 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 9293 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9294 fw_health->status_reliable = false; 9295 9296 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]); 9297 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9298 fw_health->resets_reliable = false; 9299 } 9300 9301 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 9302 { 9303 void __iomem *hs; 9304 u32 status_loc; 9305 u32 reg_type; 9306 u32 sig; 9307 9308 if (bp->fw_health) 9309 bp->fw_health->status_reliable = false; 9310 9311 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 9312 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 9313 9314 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 9315 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 9316 if (!bp->chip_num) { 9317 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 9318 bp->chip_num = readl(bp->bar0 + 9319 BNXT_FW_HEALTH_WIN_BASE + 9320 BNXT_GRC_REG_CHIP_NUM); 9321 } 9322 if (!BNXT_CHIP_P5_PLUS(bp)) 9323 return; 9324 9325 status_loc = BNXT_GRC_REG_STATUS_P5 | 9326 BNXT_FW_HEALTH_REG_TYPE_BAR0; 9327 } else { 9328 status_loc = readl(hs + offsetof(struct hcomm_status, 9329 fw_status_loc)); 9330 } 9331 9332 if (__bnxt_alloc_fw_health(bp)) { 9333 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 9334 return; 9335 } 9336 9337 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 9338 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 9339 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 9340 __bnxt_map_fw_health_reg(bp, status_loc); 9341 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 9342 BNXT_FW_HEALTH_WIN_OFF(status_loc); 9343 } 9344 9345 bp->fw_health->status_reliable = true; 9346 } 9347 9348 static int bnxt_map_fw_health_regs(struct bnxt *bp) 9349 { 9350 struct bnxt_fw_health *fw_health = bp->fw_health; 9351 u32 reg_base = 0xffffffff; 9352 int i; 9353 9354 bp->fw_health->status_reliable = false; 9355 bp->fw_health->resets_reliable = false; 9356 /* Only pre-map the monitoring GRC registers using window 3 */ 9357 for (i = 0; i < 4; i++) { 9358 u32 reg = fw_health->regs[i]; 9359 9360 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 9361 continue; 9362 if (reg_base == 0xffffffff) 9363 reg_base = reg & BNXT_GRC_BASE_MASK; 9364 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 9365 return -ERANGE; 9366 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 9367 } 9368 bp->fw_health->status_reliable = true; 9369 bp->fw_health->resets_reliable = true; 9370 if (reg_base == 0xffffffff) 9371 return 0; 9372 9373 __bnxt_map_fw_health_reg(bp, reg_base); 9374 return 0; 9375 } 9376 9377 static void bnxt_remap_fw_health_regs(struct bnxt *bp) 9378 { 9379 if (!bp->fw_health) 9380 return; 9381 9382 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) { 9383 bp->fw_health->status_reliable = true; 9384 bp->fw_health->resets_reliable = true; 9385 } else { 9386 bnxt_try_map_fw_health_reg(bp); 9387 } 9388 } 9389 9390 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 9391 { 9392 struct bnxt_fw_health *fw_health = bp->fw_health; 9393 struct hwrm_error_recovery_qcfg_output *resp; 9394 struct hwrm_error_recovery_qcfg_input *req; 9395 int rc, i; 9396 9397 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 9398 return 0; 9399 9400 rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG); 9401 if (rc) 9402 return rc; 9403 9404 resp = hwrm_req_hold(bp, req); 9405 rc = hwrm_req_send(bp, req); 9406 if (rc) 9407 goto err_recovery_out; 9408 fw_health->flags = le32_to_cpu(resp->flags); 9409 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 9410 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 9411 rc = -EINVAL; 9412 goto err_recovery_out; 9413 } 9414 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 9415 fw_health->master_func_wait_dsecs = 9416 le32_to_cpu(resp->master_func_wait_period); 9417 fw_health->normal_func_wait_dsecs = 9418 le32_to_cpu(resp->normal_func_wait_period); 9419 fw_health->post_reset_wait_dsecs = 9420 le32_to_cpu(resp->master_func_wait_period_after_reset); 9421 fw_health->post_reset_max_wait_dsecs = 9422 le32_to_cpu(resp->max_bailout_time_after_reset); 9423 fw_health->regs[BNXT_FW_HEALTH_REG] = 9424 le32_to_cpu(resp->fw_health_status_reg); 9425 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 9426 le32_to_cpu(resp->fw_heartbeat_reg); 9427 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 9428 le32_to_cpu(resp->fw_reset_cnt_reg); 9429 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 9430 le32_to_cpu(resp->reset_inprogress_reg); 9431 fw_health->fw_reset_inprog_reg_mask = 9432 le32_to_cpu(resp->reset_inprogress_reg_mask); 9433 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 9434 if (fw_health->fw_reset_seq_cnt >= 16) { 9435 rc = -EINVAL; 9436 goto err_recovery_out; 9437 } 9438 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 9439 fw_health->fw_reset_seq_regs[i] = 9440 le32_to_cpu(resp->reset_reg[i]); 9441 fw_health->fw_reset_seq_vals[i] = 9442 le32_to_cpu(resp->reset_reg_val[i]); 9443 fw_health->fw_reset_seq_delay_msec[i] = 9444 resp->delay_after_reset[i]; 9445 } 9446 err_recovery_out: 9447 hwrm_req_drop(bp, req); 9448 if (!rc) 9449 rc = bnxt_map_fw_health_regs(bp); 9450 if (rc) 9451 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 9452 return rc; 9453 } 9454 9455 static int bnxt_hwrm_func_reset(struct bnxt *bp) 9456 { 9457 struct hwrm_func_reset_input *req; 9458 int rc; 9459 9460 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET); 9461 if (rc) 9462 return rc; 9463 9464 req->enables = 0; 9465 hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT); 9466 return hwrm_req_send(bp, req); 9467 } 9468 9469 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 9470 { 9471 struct hwrm_nvm_get_dev_info_output nvm_info; 9472 9473 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 9474 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 9475 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 9476 nvm_info.nvm_cfg_ver_upd); 9477 } 9478 9479 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 9480 { 9481 struct hwrm_queue_qportcfg_output *resp; 9482 struct hwrm_queue_qportcfg_input *req; 9483 u8 i, j, *qptr; 9484 bool no_rdma; 9485 int rc = 0; 9486 9487 rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG); 9488 if (rc) 9489 return rc; 9490 9491 resp = hwrm_req_hold(bp, req); 9492 rc = hwrm_req_send(bp, req); 9493 if (rc) 9494 goto qportcfg_exit; 9495 9496 if (!resp->max_configurable_queues) { 9497 rc = -EINVAL; 9498 goto qportcfg_exit; 9499 } 9500 bp->max_tc = resp->max_configurable_queues; 9501 bp->max_lltc = resp->max_configurable_lossless_queues; 9502 if (bp->max_tc > BNXT_MAX_QUEUE) 9503 bp->max_tc = BNXT_MAX_QUEUE; 9504 9505 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 9506 qptr = &resp->queue_id0; 9507 for (i = 0, j = 0; i < bp->max_tc; i++) { 9508 bp->q_info[j].queue_id = *qptr; 9509 bp->q_ids[i] = *qptr++; 9510 bp->q_info[j].queue_profile = *qptr++; 9511 bp->tc_to_qidx[j] = j; 9512 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 9513 (no_rdma && BNXT_PF(bp))) 9514 j++; 9515 } 9516 bp->max_q = bp->max_tc; 9517 bp->max_tc = max_t(u8, j, 1); 9518 9519 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 9520 bp->max_tc = 1; 9521 9522 if (bp->max_lltc > bp->max_tc) 9523 bp->max_lltc = bp->max_tc; 9524 9525 qportcfg_exit: 9526 hwrm_req_drop(bp, req); 9527 return rc; 9528 } 9529 9530 static int bnxt_hwrm_poll(struct bnxt *bp) 9531 { 9532 struct hwrm_ver_get_input *req; 9533 int rc; 9534 9535 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 9536 if (rc) 9537 return rc; 9538 9539 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 9540 req->hwrm_intf_min = HWRM_VERSION_MINOR; 9541 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 9542 9543 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT); 9544 rc = hwrm_req_send(bp, req); 9545 return rc; 9546 } 9547 9548 static int bnxt_hwrm_ver_get(struct bnxt *bp) 9549 { 9550 struct hwrm_ver_get_output *resp; 9551 struct hwrm_ver_get_input *req; 9552 u16 fw_maj, fw_min, fw_bld, fw_rsv; 9553 u32 dev_caps_cfg, hwrm_ver; 9554 int rc, len; 9555 9556 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 9557 if (rc) 9558 return rc; 9559 9560 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 9561 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 9562 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 9563 req->hwrm_intf_min = HWRM_VERSION_MINOR; 9564 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 9565 9566 resp = hwrm_req_hold(bp, req); 9567 rc = hwrm_req_send(bp, req); 9568 if (rc) 9569 goto hwrm_ver_get_exit; 9570 9571 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 9572 9573 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 9574 resp->hwrm_intf_min_8b << 8 | 9575 resp->hwrm_intf_upd_8b; 9576 if (resp->hwrm_intf_maj_8b < 1) { 9577 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 9578 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 9579 resp->hwrm_intf_upd_8b); 9580 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 9581 } 9582 9583 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 9584 HWRM_VERSION_UPDATE; 9585 9586 if (bp->hwrm_spec_code > hwrm_ver) 9587 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 9588 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 9589 HWRM_VERSION_UPDATE); 9590 else 9591 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 9592 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 9593 resp->hwrm_intf_upd_8b); 9594 9595 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 9596 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 9597 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 9598 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 9599 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 9600 len = FW_VER_STR_LEN; 9601 } else { 9602 fw_maj = resp->hwrm_fw_maj_8b; 9603 fw_min = resp->hwrm_fw_min_8b; 9604 fw_bld = resp->hwrm_fw_bld_8b; 9605 fw_rsv = resp->hwrm_fw_rsvd_8b; 9606 len = BC_HWRM_STR_LEN; 9607 } 9608 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 9609 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 9610 fw_rsv); 9611 9612 if (strlen(resp->active_pkg_name)) { 9613 int fw_ver_len = strlen(bp->fw_ver_str); 9614 9615 snprintf(bp->fw_ver_str + fw_ver_len, 9616 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 9617 resp->active_pkg_name); 9618 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 9619 } 9620 9621 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 9622 if (!bp->hwrm_cmd_timeout) 9623 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 9624 bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000; 9625 if (!bp->hwrm_cmd_max_timeout) 9626 bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT; 9627 else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT) 9628 netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n", 9629 bp->hwrm_cmd_max_timeout / 1000); 9630 9631 if (resp->hwrm_intf_maj_8b >= 1) { 9632 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 9633 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 9634 } 9635 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 9636 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 9637 9638 bp->chip_num = le16_to_cpu(resp->chip_num); 9639 bp->chip_rev = resp->chip_rev; 9640 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 9641 !resp->chip_metal) 9642 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 9643 9644 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 9645 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 9646 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 9647 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 9648 9649 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 9650 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 9651 9652 if (dev_caps_cfg & 9653 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 9654 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 9655 9656 if (dev_caps_cfg & 9657 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 9658 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 9659 9660 if (dev_caps_cfg & 9661 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 9662 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 9663 9664 hwrm_ver_get_exit: 9665 hwrm_req_drop(bp, req); 9666 return rc; 9667 } 9668 9669 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 9670 { 9671 struct hwrm_fw_set_time_input *req; 9672 struct tm tm; 9673 time64_t now = ktime_get_real_seconds(); 9674 int rc; 9675 9676 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 9677 bp->hwrm_spec_code < 0x10400) 9678 return -EOPNOTSUPP; 9679 9680 time64_to_tm(now, 0, &tm); 9681 rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME); 9682 if (rc) 9683 return rc; 9684 9685 req->year = cpu_to_le16(1900 + tm.tm_year); 9686 req->month = 1 + tm.tm_mon; 9687 req->day = tm.tm_mday; 9688 req->hour = tm.tm_hour; 9689 req->minute = tm.tm_min; 9690 req->second = tm.tm_sec; 9691 return hwrm_req_send(bp, req); 9692 } 9693 9694 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 9695 { 9696 u64 sw_tmp; 9697 9698 hw &= mask; 9699 sw_tmp = (*sw & ~mask) | hw; 9700 if (hw < (*sw & mask)) 9701 sw_tmp += mask + 1; 9702 WRITE_ONCE(*sw, sw_tmp); 9703 } 9704 9705 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 9706 int count, bool ignore_zero) 9707 { 9708 int i; 9709 9710 for (i = 0; i < count; i++) { 9711 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 9712 9713 if (ignore_zero && !hw) 9714 continue; 9715 9716 if (masks[i] == -1ULL) 9717 sw_stats[i] = hw; 9718 else 9719 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 9720 } 9721 } 9722 9723 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 9724 { 9725 if (!stats->hw_stats) 9726 return; 9727 9728 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 9729 stats->hw_masks, stats->len / 8, false); 9730 } 9731 9732 static void bnxt_accumulate_all_stats(struct bnxt *bp) 9733 { 9734 struct bnxt_stats_mem *ring0_stats; 9735 bool ignore_zero = false; 9736 int i; 9737 9738 /* Chip bug. Counter intermittently becomes 0. */ 9739 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 9740 ignore_zero = true; 9741 9742 for (i = 0; i < bp->cp_nr_rings; i++) { 9743 struct bnxt_napi *bnapi = bp->bnapi[i]; 9744 struct bnxt_cp_ring_info *cpr; 9745 struct bnxt_stats_mem *stats; 9746 9747 cpr = &bnapi->cp_ring; 9748 stats = &cpr->stats; 9749 if (!i) 9750 ring0_stats = stats; 9751 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 9752 ring0_stats->hw_masks, 9753 ring0_stats->len / 8, ignore_zero); 9754 } 9755 if (bp->flags & BNXT_FLAG_PORT_STATS) { 9756 struct bnxt_stats_mem *stats = &bp->port_stats; 9757 __le64 *hw_stats = stats->hw_stats; 9758 u64 *sw_stats = stats->sw_stats; 9759 u64 *masks = stats->hw_masks; 9760 int cnt; 9761 9762 cnt = sizeof(struct rx_port_stats) / 8; 9763 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 9764 9765 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 9766 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 9767 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 9768 cnt = sizeof(struct tx_port_stats) / 8; 9769 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 9770 } 9771 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 9772 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 9773 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 9774 } 9775 } 9776 9777 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 9778 { 9779 struct hwrm_port_qstats_input *req; 9780 struct bnxt_pf_info *pf = &bp->pf; 9781 int rc; 9782 9783 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 9784 return 0; 9785 9786 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 9787 return -EOPNOTSUPP; 9788 9789 rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS); 9790 if (rc) 9791 return rc; 9792 9793 req->flags = flags; 9794 req->port_id = cpu_to_le16(pf->port_id); 9795 req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 9796 BNXT_TX_PORT_STATS_BYTE_OFFSET); 9797 req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 9798 return hwrm_req_send(bp, req); 9799 } 9800 9801 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 9802 { 9803 struct hwrm_queue_pri2cos_qcfg_output *resp_qc; 9804 struct hwrm_queue_pri2cos_qcfg_input *req_qc; 9805 struct hwrm_port_qstats_ext_output *resp_qs; 9806 struct hwrm_port_qstats_ext_input *req_qs; 9807 struct bnxt_pf_info *pf = &bp->pf; 9808 u32 tx_stat_size; 9809 int rc; 9810 9811 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 9812 return 0; 9813 9814 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 9815 return -EOPNOTSUPP; 9816 9817 rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT); 9818 if (rc) 9819 return rc; 9820 9821 req_qs->flags = flags; 9822 req_qs->port_id = cpu_to_le16(pf->port_id); 9823 req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 9824 req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 9825 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 9826 sizeof(struct tx_port_stats_ext) : 0; 9827 req_qs->tx_stat_size = cpu_to_le16(tx_stat_size); 9828 req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 9829 resp_qs = hwrm_req_hold(bp, req_qs); 9830 rc = hwrm_req_send(bp, req_qs); 9831 if (!rc) { 9832 bp->fw_rx_stats_ext_size = 9833 le16_to_cpu(resp_qs->rx_stat_size) / 8; 9834 if (BNXT_FW_MAJ(bp) < 220 && 9835 bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY) 9836 bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY; 9837 9838 bp->fw_tx_stats_ext_size = tx_stat_size ? 9839 le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0; 9840 } else { 9841 bp->fw_rx_stats_ext_size = 0; 9842 bp->fw_tx_stats_ext_size = 0; 9843 } 9844 hwrm_req_drop(bp, req_qs); 9845 9846 if (flags) 9847 return rc; 9848 9849 if (bp->fw_tx_stats_ext_size <= 9850 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 9851 bp->pri2cos_valid = 0; 9852 return rc; 9853 } 9854 9855 rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG); 9856 if (rc) 9857 return rc; 9858 9859 req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 9860 9861 resp_qc = hwrm_req_hold(bp, req_qc); 9862 rc = hwrm_req_send(bp, req_qc); 9863 if (!rc) { 9864 u8 *pri2cos; 9865 int i, j; 9866 9867 pri2cos = &resp_qc->pri0_cos_queue_id; 9868 for (i = 0; i < 8; i++) { 9869 u8 queue_id = pri2cos[i]; 9870 u8 queue_idx; 9871 9872 /* Per port queue IDs start from 0, 10, 20, etc */ 9873 queue_idx = queue_id % 10; 9874 if (queue_idx > BNXT_MAX_QUEUE) { 9875 bp->pri2cos_valid = false; 9876 hwrm_req_drop(bp, req_qc); 9877 return rc; 9878 } 9879 for (j = 0; j < bp->max_q; j++) { 9880 if (bp->q_ids[j] == queue_id) 9881 bp->pri2cos_idx[i] = queue_idx; 9882 } 9883 } 9884 bp->pri2cos_valid = true; 9885 } 9886 hwrm_req_drop(bp, req_qc); 9887 9888 return rc; 9889 } 9890 9891 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 9892 { 9893 bnxt_hwrm_tunnel_dst_port_free(bp, 9894 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 9895 bnxt_hwrm_tunnel_dst_port_free(bp, 9896 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 9897 } 9898 9899 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 9900 { 9901 int rc, i; 9902 u32 tpa_flags = 0; 9903 9904 if (set_tpa) 9905 tpa_flags = bp->flags & BNXT_FLAG_TPA; 9906 else if (BNXT_NO_FW_ACCESS(bp)) 9907 return 0; 9908 for (i = 0; i < bp->nr_vnics; i++) { 9909 rc = bnxt_hwrm_vnic_set_tpa(bp, &bp->vnic_info[i], tpa_flags); 9910 if (rc) { 9911 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 9912 i, rc); 9913 return rc; 9914 } 9915 } 9916 return 0; 9917 } 9918 9919 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 9920 { 9921 int i; 9922 9923 for (i = 0; i < bp->nr_vnics; i++) 9924 bnxt_hwrm_vnic_set_rss(bp, &bp->vnic_info[i], false); 9925 } 9926 9927 static void bnxt_clear_vnic(struct bnxt *bp) 9928 { 9929 if (!bp->vnic_info) 9930 return; 9931 9932 bnxt_hwrm_clear_vnic_filter(bp); 9933 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) { 9934 /* clear all RSS setting before free vnic ctx */ 9935 bnxt_hwrm_clear_vnic_rss(bp); 9936 bnxt_hwrm_vnic_ctx_free(bp); 9937 } 9938 /* before free the vnic, undo the vnic tpa settings */ 9939 if (bp->flags & BNXT_FLAG_TPA) 9940 bnxt_set_tpa(bp, false); 9941 bnxt_hwrm_vnic_free(bp); 9942 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 9943 bnxt_hwrm_vnic_ctx_free(bp); 9944 } 9945 9946 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 9947 bool irq_re_init) 9948 { 9949 bnxt_clear_vnic(bp); 9950 bnxt_hwrm_ring_free(bp, close_path); 9951 bnxt_hwrm_ring_grp_free(bp); 9952 if (irq_re_init) { 9953 bnxt_hwrm_stat_ctx_free(bp); 9954 bnxt_hwrm_free_tunnel_ports(bp); 9955 } 9956 } 9957 9958 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 9959 { 9960 struct hwrm_func_cfg_input *req; 9961 u8 evb_mode; 9962 int rc; 9963 9964 if (br_mode == BRIDGE_MODE_VEB) 9965 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 9966 else if (br_mode == BRIDGE_MODE_VEPA) 9967 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 9968 else 9969 return -EINVAL; 9970 9971 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 9972 if (rc) 9973 return rc; 9974 9975 req->fid = cpu_to_le16(0xffff); 9976 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 9977 req->evb_mode = evb_mode; 9978 return hwrm_req_send(bp, req); 9979 } 9980 9981 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 9982 { 9983 struct hwrm_func_cfg_input *req; 9984 int rc; 9985 9986 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 9987 return 0; 9988 9989 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 9990 if (rc) 9991 return rc; 9992 9993 req->fid = cpu_to_le16(0xffff); 9994 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 9995 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 9996 if (size == 128) 9997 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 9998 9999 return hwrm_req_send(bp, req); 10000 } 10001 10002 static int __bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10003 { 10004 int rc; 10005 10006 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 10007 goto skip_rss_ctx; 10008 10009 /* allocate context for vnic */ 10010 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 0); 10011 if (rc) { 10012 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 10013 vnic->vnic_id, rc); 10014 goto vnic_setup_err; 10015 } 10016 bp->rsscos_nr_ctxs++; 10017 10018 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10019 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 1); 10020 if (rc) { 10021 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 10022 vnic->vnic_id, rc); 10023 goto vnic_setup_err; 10024 } 10025 bp->rsscos_nr_ctxs++; 10026 } 10027 10028 skip_rss_ctx: 10029 /* configure default vnic, ring grp */ 10030 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10031 if (rc) { 10032 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 10033 vnic->vnic_id, rc); 10034 goto vnic_setup_err; 10035 } 10036 10037 /* Enable RSS hashing on vnic */ 10038 rc = bnxt_hwrm_vnic_set_rss(bp, vnic, true); 10039 if (rc) { 10040 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 10041 vnic->vnic_id, rc); 10042 goto vnic_setup_err; 10043 } 10044 10045 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 10046 rc = bnxt_hwrm_vnic_set_hds(bp, vnic); 10047 if (rc) { 10048 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 10049 vnic->vnic_id, rc); 10050 } 10051 } 10052 10053 vnic_setup_err: 10054 return rc; 10055 } 10056 10057 int bnxt_hwrm_vnic_rss_cfg_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10058 { 10059 int rc; 10060 10061 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic, true); 10062 if (rc) { 10063 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 10064 vnic->vnic_id, rc); 10065 return rc; 10066 } 10067 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10068 if (rc) 10069 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 10070 vnic->vnic_id, rc); 10071 return rc; 10072 } 10073 10074 int __bnxt_setup_vnic_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10075 { 10076 int rc, i, nr_ctxs; 10077 10078 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 10079 for (i = 0; i < nr_ctxs; i++) { 10080 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, i); 10081 if (rc) { 10082 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 10083 vnic->vnic_id, i, rc); 10084 break; 10085 } 10086 bp->rsscos_nr_ctxs++; 10087 } 10088 if (i < nr_ctxs) 10089 return -ENOMEM; 10090 10091 rc = bnxt_hwrm_vnic_rss_cfg_p5(bp, vnic); 10092 if (rc) 10093 return rc; 10094 10095 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 10096 rc = bnxt_hwrm_vnic_set_hds(bp, vnic); 10097 if (rc) { 10098 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 10099 vnic->vnic_id, rc); 10100 } 10101 } 10102 return rc; 10103 } 10104 10105 static int bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10106 { 10107 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10108 return __bnxt_setup_vnic_p5(bp, vnic); 10109 else 10110 return __bnxt_setup_vnic(bp, vnic); 10111 } 10112 10113 static int bnxt_alloc_and_setup_vnic(struct bnxt *bp, 10114 struct bnxt_vnic_info *vnic, 10115 u16 start_rx_ring_idx, int rx_rings) 10116 { 10117 int rc; 10118 10119 rc = bnxt_hwrm_vnic_alloc(bp, vnic, start_rx_ring_idx, rx_rings); 10120 if (rc) { 10121 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 10122 vnic->vnic_id, rc); 10123 return rc; 10124 } 10125 return bnxt_setup_vnic(bp, vnic); 10126 } 10127 10128 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 10129 { 10130 struct bnxt_vnic_info *vnic; 10131 int i, rc = 0; 10132 10133 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 10134 vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE]; 10135 return bnxt_alloc_and_setup_vnic(bp, vnic, 0, bp->rx_nr_rings); 10136 } 10137 10138 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10139 return 0; 10140 10141 for (i = 0; i < bp->rx_nr_rings; i++) { 10142 u16 vnic_id = i + 1; 10143 u16 ring_id = i; 10144 10145 if (vnic_id >= bp->nr_vnics) 10146 break; 10147 10148 vnic = &bp->vnic_info[vnic_id]; 10149 vnic->flags |= BNXT_VNIC_RFS_FLAG; 10150 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 10151 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 10152 if (bnxt_alloc_and_setup_vnic(bp, &bp->vnic_info[vnic_id], ring_id, 1)) 10153 break; 10154 } 10155 return rc; 10156 } 10157 10158 void bnxt_del_one_rss_ctx(struct bnxt *bp, struct bnxt_rss_ctx *rss_ctx, 10159 bool all) 10160 { 10161 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10162 struct bnxt_filter_base *usr_fltr, *tmp; 10163 struct bnxt_ntuple_filter *ntp_fltr; 10164 int i; 10165 10166 bnxt_hwrm_vnic_free_one(bp, &rss_ctx->vnic); 10167 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) { 10168 if (vnic->fw_rss_cos_lb_ctx[i] != INVALID_HW_RING_ID) 10169 bnxt_hwrm_vnic_ctx_free_one(bp, vnic, i); 10170 } 10171 if (!all) 10172 return; 10173 10174 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) { 10175 if ((usr_fltr->flags & BNXT_ACT_RSS_CTX) && 10176 usr_fltr->fw_vnic_id == rss_ctx->index) { 10177 ntp_fltr = container_of(usr_fltr, 10178 struct bnxt_ntuple_filter, 10179 base); 10180 bnxt_hwrm_cfa_ntuple_filter_free(bp, ntp_fltr); 10181 bnxt_del_ntp_filter(bp, ntp_fltr); 10182 bnxt_del_one_usr_fltr(bp, usr_fltr); 10183 } 10184 } 10185 10186 if (vnic->rss_table) 10187 dma_free_coherent(&bp->pdev->dev, vnic->rss_table_size, 10188 vnic->rss_table, 10189 vnic->rss_table_dma_addr); 10190 kfree(rss_ctx->rss_indir_tbl); 10191 list_del(&rss_ctx->list); 10192 bp->num_rss_ctx--; 10193 clear_bit(rss_ctx->index, bp->rss_ctx_bmap); 10194 kfree(rss_ctx); 10195 } 10196 10197 static void bnxt_hwrm_realloc_rss_ctx_vnic(struct bnxt *bp) 10198 { 10199 bool set_tpa = !!(bp->flags & BNXT_FLAG_TPA); 10200 struct bnxt_rss_ctx *rss_ctx, *tmp; 10201 10202 list_for_each_entry_safe(rss_ctx, tmp, &bp->rss_ctx_list, list) { 10203 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10204 10205 if (bnxt_hwrm_vnic_alloc(bp, vnic, 0, bp->rx_nr_rings) || 10206 bnxt_hwrm_vnic_set_tpa(bp, vnic, set_tpa) || 10207 __bnxt_setup_vnic_p5(bp, vnic)) { 10208 netdev_err(bp->dev, "Failed to restore RSS ctx %d\n", 10209 rss_ctx->index); 10210 bnxt_del_one_rss_ctx(bp, rss_ctx, true); 10211 } 10212 } 10213 } 10214 10215 struct bnxt_rss_ctx *bnxt_alloc_rss_ctx(struct bnxt *bp) 10216 { 10217 struct bnxt_rss_ctx *rss_ctx = NULL; 10218 10219 rss_ctx = kzalloc(sizeof(*rss_ctx), GFP_KERNEL); 10220 if (rss_ctx) { 10221 rss_ctx->vnic.rss_ctx = rss_ctx; 10222 list_add_tail(&rss_ctx->list, &bp->rss_ctx_list); 10223 bp->num_rss_ctx++; 10224 } 10225 return rss_ctx; 10226 } 10227 10228 void bnxt_clear_rss_ctxs(struct bnxt *bp, bool all) 10229 { 10230 struct bnxt_rss_ctx *rss_ctx, *tmp; 10231 10232 list_for_each_entry_safe(rss_ctx, tmp, &bp->rss_ctx_list, list) 10233 bnxt_del_one_rss_ctx(bp, rss_ctx, all); 10234 10235 if (all) 10236 bitmap_free(bp->rss_ctx_bmap); 10237 } 10238 10239 static void bnxt_init_multi_rss_ctx(struct bnxt *bp) 10240 { 10241 bp->rss_ctx_bmap = bitmap_zalloc(BNXT_RSS_CTX_BMAP_LEN, GFP_KERNEL); 10242 if (bp->rss_ctx_bmap) { 10243 /* burn index 0 since we cannot have context 0 */ 10244 __set_bit(0, bp->rss_ctx_bmap); 10245 INIT_LIST_HEAD(&bp->rss_ctx_list); 10246 bp->rss_cap |= BNXT_RSS_CAP_MULTI_RSS_CTX; 10247 } 10248 } 10249 10250 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 10251 static bool bnxt_promisc_ok(struct bnxt *bp) 10252 { 10253 #ifdef CONFIG_BNXT_SRIOV 10254 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 10255 return false; 10256 #endif 10257 return true; 10258 } 10259 10260 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 10261 { 10262 struct bnxt_vnic_info *vnic = &bp->vnic_info[1]; 10263 unsigned int rc = 0; 10264 10265 rc = bnxt_hwrm_vnic_alloc(bp, vnic, bp->rx_nr_rings - 1, 1); 10266 if (rc) { 10267 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 10268 rc); 10269 return rc; 10270 } 10271 10272 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10273 if (rc) { 10274 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 10275 rc); 10276 return rc; 10277 } 10278 return rc; 10279 } 10280 10281 static int bnxt_cfg_rx_mode(struct bnxt *); 10282 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 10283 10284 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 10285 { 10286 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 10287 int rc = 0; 10288 unsigned int rx_nr_rings = bp->rx_nr_rings; 10289 10290 if (irq_re_init) { 10291 rc = bnxt_hwrm_stat_ctx_alloc(bp); 10292 if (rc) { 10293 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 10294 rc); 10295 goto err_out; 10296 } 10297 } 10298 10299 rc = bnxt_hwrm_ring_alloc(bp); 10300 if (rc) { 10301 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 10302 goto err_out; 10303 } 10304 10305 rc = bnxt_hwrm_ring_grp_alloc(bp); 10306 if (rc) { 10307 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 10308 goto err_out; 10309 } 10310 10311 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 10312 rx_nr_rings--; 10313 10314 /* default vnic 0 */ 10315 rc = bnxt_hwrm_vnic_alloc(bp, vnic, 0, rx_nr_rings); 10316 if (rc) { 10317 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 10318 goto err_out; 10319 } 10320 10321 if (BNXT_VF(bp)) 10322 bnxt_hwrm_func_qcfg(bp); 10323 10324 rc = bnxt_setup_vnic(bp, vnic); 10325 if (rc) 10326 goto err_out; 10327 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 10328 bnxt_hwrm_update_rss_hash_cfg(bp); 10329 10330 if (bp->flags & BNXT_FLAG_RFS) { 10331 rc = bnxt_alloc_rfs_vnics(bp); 10332 if (rc) 10333 goto err_out; 10334 } 10335 10336 if (bp->flags & BNXT_FLAG_TPA) { 10337 rc = bnxt_set_tpa(bp, true); 10338 if (rc) 10339 goto err_out; 10340 } 10341 10342 if (BNXT_VF(bp)) 10343 bnxt_update_vf_mac(bp); 10344 10345 /* Filter for default vnic 0 */ 10346 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 10347 if (rc) { 10348 if (BNXT_VF(bp) && rc == -ENODEV) 10349 netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n"); 10350 else 10351 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 10352 goto err_out; 10353 } 10354 vnic->uc_filter_count = 1; 10355 10356 vnic->rx_mask = 0; 10357 if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state)) 10358 goto skip_rx_mask; 10359 10360 if (bp->dev->flags & IFF_BROADCAST) 10361 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 10362 10363 if (bp->dev->flags & IFF_PROMISC) 10364 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10365 10366 if (bp->dev->flags & IFF_ALLMULTI) { 10367 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10368 vnic->mc_list_count = 0; 10369 } else if (bp->dev->flags & IFF_MULTICAST) { 10370 u32 mask = 0; 10371 10372 bnxt_mc_list_updated(bp, &mask); 10373 vnic->rx_mask |= mask; 10374 } 10375 10376 rc = bnxt_cfg_rx_mode(bp); 10377 if (rc) 10378 goto err_out; 10379 10380 skip_rx_mask: 10381 rc = bnxt_hwrm_set_coal(bp); 10382 if (rc) 10383 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 10384 rc); 10385 10386 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10387 rc = bnxt_setup_nitroa0_vnic(bp); 10388 if (rc) 10389 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 10390 rc); 10391 } 10392 10393 if (BNXT_VF(bp)) { 10394 bnxt_hwrm_func_qcfg(bp); 10395 netdev_update_features(bp->dev); 10396 } 10397 10398 return 0; 10399 10400 err_out: 10401 bnxt_hwrm_resource_free(bp, 0, true); 10402 10403 return rc; 10404 } 10405 10406 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 10407 { 10408 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 10409 return 0; 10410 } 10411 10412 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 10413 { 10414 bnxt_init_cp_rings(bp); 10415 bnxt_init_rx_rings(bp); 10416 bnxt_init_tx_rings(bp); 10417 bnxt_init_ring_grps(bp, irq_re_init); 10418 bnxt_init_vnics(bp); 10419 10420 return bnxt_init_chip(bp, irq_re_init); 10421 } 10422 10423 static int bnxt_set_real_num_queues(struct bnxt *bp) 10424 { 10425 int rc; 10426 struct net_device *dev = bp->dev; 10427 10428 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 10429 bp->tx_nr_rings_xdp); 10430 if (rc) 10431 return rc; 10432 10433 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 10434 if (rc) 10435 return rc; 10436 10437 #ifdef CONFIG_RFS_ACCEL 10438 if (bp->flags & BNXT_FLAG_RFS) 10439 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 10440 #endif 10441 10442 return rc; 10443 } 10444 10445 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 10446 bool shared) 10447 { 10448 int _rx = *rx, _tx = *tx; 10449 10450 if (shared) { 10451 *rx = min_t(int, _rx, max); 10452 *tx = min_t(int, _tx, max); 10453 } else { 10454 if (max < 2) 10455 return -ENOMEM; 10456 10457 while (_rx + _tx > max) { 10458 if (_rx > _tx && _rx > 1) 10459 _rx--; 10460 else if (_tx > 1) 10461 _tx--; 10462 } 10463 *rx = _rx; 10464 *tx = _tx; 10465 } 10466 return 0; 10467 } 10468 10469 static int __bnxt_num_tx_to_cp(struct bnxt *bp, int tx, int tx_sets, int tx_xdp) 10470 { 10471 return (tx - tx_xdp) / tx_sets + tx_xdp; 10472 } 10473 10474 int bnxt_num_tx_to_cp(struct bnxt *bp, int tx) 10475 { 10476 int tcs = bp->num_tc; 10477 10478 if (!tcs) 10479 tcs = 1; 10480 return __bnxt_num_tx_to_cp(bp, tx, tcs, bp->tx_nr_rings_xdp); 10481 } 10482 10483 static int bnxt_num_cp_to_tx(struct bnxt *bp, int tx_cp) 10484 { 10485 int tcs = bp->num_tc; 10486 10487 return (tx_cp - bp->tx_nr_rings_xdp) * tcs + 10488 bp->tx_nr_rings_xdp; 10489 } 10490 10491 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 10492 bool sh) 10493 { 10494 int tx_cp = bnxt_num_tx_to_cp(bp, *tx); 10495 10496 if (tx_cp != *tx) { 10497 int tx_saved = tx_cp, rc; 10498 10499 rc = __bnxt_trim_rings(bp, rx, &tx_cp, max, sh); 10500 if (rc) 10501 return rc; 10502 if (tx_cp != tx_saved) 10503 *tx = bnxt_num_cp_to_tx(bp, tx_cp); 10504 return 0; 10505 } 10506 return __bnxt_trim_rings(bp, rx, tx, max, sh); 10507 } 10508 10509 static void bnxt_setup_msix(struct bnxt *bp) 10510 { 10511 const int len = sizeof(bp->irq_tbl[0].name); 10512 struct net_device *dev = bp->dev; 10513 int tcs, i; 10514 10515 tcs = bp->num_tc; 10516 if (tcs) { 10517 int i, off, count; 10518 10519 for (i = 0; i < tcs; i++) { 10520 count = bp->tx_nr_rings_per_tc; 10521 off = BNXT_TC_TO_RING_BASE(bp, i); 10522 netdev_set_tc_queue(dev, i, count, off); 10523 } 10524 } 10525 10526 for (i = 0; i < bp->cp_nr_rings; i++) { 10527 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 10528 char *attr; 10529 10530 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 10531 attr = "TxRx"; 10532 else if (i < bp->rx_nr_rings) 10533 attr = "rx"; 10534 else 10535 attr = "tx"; 10536 10537 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 10538 attr, i); 10539 bp->irq_tbl[map_idx].handler = bnxt_msix; 10540 } 10541 } 10542 10543 static void bnxt_setup_inta(struct bnxt *bp) 10544 { 10545 const int len = sizeof(bp->irq_tbl[0].name); 10546 10547 if (bp->num_tc) { 10548 netdev_reset_tc(bp->dev); 10549 bp->num_tc = 0; 10550 } 10551 10552 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx", 10553 0); 10554 bp->irq_tbl[0].handler = bnxt_inta; 10555 } 10556 10557 static int bnxt_init_int_mode(struct bnxt *bp); 10558 10559 static int bnxt_setup_int_mode(struct bnxt *bp) 10560 { 10561 int rc; 10562 10563 if (!bp->irq_tbl) { 10564 rc = bnxt_init_int_mode(bp); 10565 if (rc || !bp->irq_tbl) 10566 return rc ?: -ENODEV; 10567 } 10568 10569 if (bp->flags & BNXT_FLAG_USING_MSIX) 10570 bnxt_setup_msix(bp); 10571 else 10572 bnxt_setup_inta(bp); 10573 10574 rc = bnxt_set_real_num_queues(bp); 10575 return rc; 10576 } 10577 10578 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 10579 { 10580 return bp->hw_resc.max_rsscos_ctxs; 10581 } 10582 10583 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 10584 { 10585 return bp->hw_resc.max_vnics; 10586 } 10587 10588 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 10589 { 10590 return bp->hw_resc.max_stat_ctxs; 10591 } 10592 10593 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 10594 { 10595 return bp->hw_resc.max_cp_rings; 10596 } 10597 10598 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 10599 { 10600 unsigned int cp = bp->hw_resc.max_cp_rings; 10601 10602 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 10603 cp -= bnxt_get_ulp_msix_num(bp); 10604 10605 return cp; 10606 } 10607 10608 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 10609 { 10610 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 10611 10612 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10613 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 10614 10615 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 10616 } 10617 10618 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 10619 { 10620 bp->hw_resc.max_irqs = max_irqs; 10621 } 10622 10623 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 10624 { 10625 unsigned int cp; 10626 10627 cp = bnxt_get_max_func_cp_rings_for_en(bp); 10628 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10629 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 10630 else 10631 return cp - bp->cp_nr_rings; 10632 } 10633 10634 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 10635 { 10636 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 10637 } 10638 10639 static int bnxt_get_avail_msix(struct bnxt *bp, int num) 10640 { 10641 int max_irq = bnxt_get_max_func_irqs(bp); 10642 int total_req = bp->cp_nr_rings + num; 10643 10644 if (max_irq < total_req) { 10645 num = max_irq - bp->cp_nr_rings; 10646 if (num <= 0) 10647 return 0; 10648 } 10649 return num; 10650 } 10651 10652 static int bnxt_get_num_msix(struct bnxt *bp) 10653 { 10654 if (!BNXT_NEW_RM(bp)) 10655 return bnxt_get_max_func_irqs(bp); 10656 10657 return bnxt_nq_rings_in_use(bp); 10658 } 10659 10660 static int bnxt_init_msix(struct bnxt *bp) 10661 { 10662 int i, total_vecs, max, rc = 0, min = 1, ulp_msix, tx_cp; 10663 struct msix_entry *msix_ent; 10664 10665 total_vecs = bnxt_get_num_msix(bp); 10666 max = bnxt_get_max_func_irqs(bp); 10667 if (total_vecs > max) 10668 total_vecs = max; 10669 10670 if (!total_vecs) 10671 return 0; 10672 10673 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); 10674 if (!msix_ent) 10675 return -ENOMEM; 10676 10677 for (i = 0; i < total_vecs; i++) { 10678 msix_ent[i].entry = i; 10679 msix_ent[i].vector = 0; 10680 } 10681 10682 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 10683 min = 2; 10684 10685 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs); 10686 ulp_msix = bnxt_get_ulp_msix_num(bp); 10687 if (total_vecs < 0 || total_vecs < ulp_msix) { 10688 rc = -ENODEV; 10689 goto msix_setup_exit; 10690 } 10691 10692 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); 10693 if (bp->irq_tbl) { 10694 for (i = 0; i < total_vecs; i++) 10695 bp->irq_tbl[i].vector = msix_ent[i].vector; 10696 10697 bp->total_irqs = total_vecs; 10698 /* Trim rings based upon num of vectors allocated */ 10699 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 10700 total_vecs - ulp_msix, min == 1); 10701 if (rc) 10702 goto msix_setup_exit; 10703 10704 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 10705 bp->cp_nr_rings = (min == 1) ? 10706 max_t(int, tx_cp, bp->rx_nr_rings) : 10707 tx_cp + bp->rx_nr_rings; 10708 10709 } else { 10710 rc = -ENOMEM; 10711 goto msix_setup_exit; 10712 } 10713 bp->flags |= BNXT_FLAG_USING_MSIX; 10714 kfree(msix_ent); 10715 return 0; 10716 10717 msix_setup_exit: 10718 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc); 10719 kfree(bp->irq_tbl); 10720 bp->irq_tbl = NULL; 10721 pci_disable_msix(bp->pdev); 10722 kfree(msix_ent); 10723 return rc; 10724 } 10725 10726 static int bnxt_init_inta(struct bnxt *bp) 10727 { 10728 bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL); 10729 if (!bp->irq_tbl) 10730 return -ENOMEM; 10731 10732 bp->total_irqs = 1; 10733 bp->rx_nr_rings = 1; 10734 bp->tx_nr_rings = 1; 10735 bp->cp_nr_rings = 1; 10736 bp->flags |= BNXT_FLAG_SHARED_RINGS; 10737 bp->irq_tbl[0].vector = bp->pdev->irq; 10738 return 0; 10739 } 10740 10741 static int bnxt_init_int_mode(struct bnxt *bp) 10742 { 10743 int rc = -ENODEV; 10744 10745 if (bp->flags & BNXT_FLAG_MSIX_CAP) 10746 rc = bnxt_init_msix(bp); 10747 10748 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) { 10749 /* fallback to INTA */ 10750 rc = bnxt_init_inta(bp); 10751 } 10752 return rc; 10753 } 10754 10755 static void bnxt_clear_int_mode(struct bnxt *bp) 10756 { 10757 if (bp->flags & BNXT_FLAG_USING_MSIX) 10758 pci_disable_msix(bp->pdev); 10759 10760 kfree(bp->irq_tbl); 10761 bp->irq_tbl = NULL; 10762 bp->flags &= ~BNXT_FLAG_USING_MSIX; 10763 } 10764 10765 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 10766 { 10767 bool irq_cleared = false; 10768 int tcs = bp->num_tc; 10769 int irqs_required; 10770 int rc; 10771 10772 if (!bnxt_need_reserve_rings(bp)) 10773 return 0; 10774 10775 if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) { 10776 int ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want); 10777 10778 if (ulp_msix > bp->ulp_num_msix_want) 10779 ulp_msix = bp->ulp_num_msix_want; 10780 irqs_required = ulp_msix + bp->cp_nr_rings; 10781 } else { 10782 irqs_required = bnxt_get_num_msix(bp); 10783 } 10784 10785 if (irq_re_init && BNXT_NEW_RM(bp) && irqs_required != bp->total_irqs) { 10786 bnxt_ulp_irq_stop(bp); 10787 bnxt_clear_int_mode(bp); 10788 irq_cleared = true; 10789 } 10790 rc = __bnxt_reserve_rings(bp); 10791 if (irq_cleared) { 10792 if (!rc) 10793 rc = bnxt_init_int_mode(bp); 10794 bnxt_ulp_irq_restart(bp, rc); 10795 } 10796 if (rc) { 10797 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 10798 return rc; 10799 } 10800 if (tcs && (bp->tx_nr_rings_per_tc * tcs != 10801 bp->tx_nr_rings - bp->tx_nr_rings_xdp)) { 10802 netdev_err(bp->dev, "tx ring reservation failure\n"); 10803 netdev_reset_tc(bp->dev); 10804 bp->num_tc = 0; 10805 if (bp->tx_nr_rings_xdp) 10806 bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp; 10807 else 10808 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 10809 return -ENOMEM; 10810 } 10811 return 0; 10812 } 10813 10814 static void bnxt_free_irq(struct bnxt *bp) 10815 { 10816 struct bnxt_irq *irq; 10817 int i; 10818 10819 #ifdef CONFIG_RFS_ACCEL 10820 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 10821 bp->dev->rx_cpu_rmap = NULL; 10822 #endif 10823 if (!bp->irq_tbl || !bp->bnapi) 10824 return; 10825 10826 for (i = 0; i < bp->cp_nr_rings; i++) { 10827 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 10828 10829 irq = &bp->irq_tbl[map_idx]; 10830 if (irq->requested) { 10831 if (irq->have_cpumask) { 10832 irq_set_affinity_hint(irq->vector, NULL); 10833 free_cpumask_var(irq->cpu_mask); 10834 irq->have_cpumask = 0; 10835 } 10836 free_irq(irq->vector, bp->bnapi[i]); 10837 } 10838 10839 irq->requested = 0; 10840 } 10841 } 10842 10843 static int bnxt_request_irq(struct bnxt *bp) 10844 { 10845 int i, j, rc = 0; 10846 unsigned long flags = 0; 10847 #ifdef CONFIG_RFS_ACCEL 10848 struct cpu_rmap *rmap; 10849 #endif 10850 10851 rc = bnxt_setup_int_mode(bp); 10852 if (rc) { 10853 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 10854 rc); 10855 return rc; 10856 } 10857 #ifdef CONFIG_RFS_ACCEL 10858 rmap = bp->dev->rx_cpu_rmap; 10859 #endif 10860 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) 10861 flags = IRQF_SHARED; 10862 10863 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 10864 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 10865 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 10866 10867 #ifdef CONFIG_RFS_ACCEL 10868 if (rmap && bp->bnapi[i]->rx_ring) { 10869 rc = irq_cpu_rmap_add(rmap, irq->vector); 10870 if (rc) 10871 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 10872 j); 10873 j++; 10874 } 10875 #endif 10876 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 10877 bp->bnapi[i]); 10878 if (rc) 10879 break; 10880 10881 netif_napi_set_irq(&bp->bnapi[i]->napi, irq->vector); 10882 irq->requested = 1; 10883 10884 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 10885 int numa_node = dev_to_node(&bp->pdev->dev); 10886 10887 irq->have_cpumask = 1; 10888 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 10889 irq->cpu_mask); 10890 rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask); 10891 if (rc) { 10892 netdev_warn(bp->dev, 10893 "Set affinity failed, IRQ = %d\n", 10894 irq->vector); 10895 break; 10896 } 10897 } 10898 } 10899 return rc; 10900 } 10901 10902 static void bnxt_del_napi(struct bnxt *bp) 10903 { 10904 int i; 10905 10906 if (!bp->bnapi) 10907 return; 10908 10909 for (i = 0; i < bp->rx_nr_rings; i++) 10910 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_RX, NULL); 10911 for (i = 0; i < bp->tx_nr_rings - bp->tx_nr_rings_xdp; i++) 10912 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_TX, NULL); 10913 10914 for (i = 0; i < bp->cp_nr_rings; i++) { 10915 struct bnxt_napi *bnapi = bp->bnapi[i]; 10916 10917 __netif_napi_del(&bnapi->napi); 10918 } 10919 /* We called __netif_napi_del(), we need 10920 * to respect an RCU grace period before freeing napi structures. 10921 */ 10922 synchronize_net(); 10923 } 10924 10925 static void bnxt_init_napi(struct bnxt *bp) 10926 { 10927 int i; 10928 unsigned int cp_nr_rings = bp->cp_nr_rings; 10929 struct bnxt_napi *bnapi; 10930 10931 if (bp->flags & BNXT_FLAG_USING_MSIX) { 10932 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 10933 10934 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10935 poll_fn = bnxt_poll_p5; 10936 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 10937 cp_nr_rings--; 10938 for (i = 0; i < cp_nr_rings; i++) { 10939 bnapi = bp->bnapi[i]; 10940 netif_napi_add(bp->dev, &bnapi->napi, poll_fn); 10941 } 10942 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10943 bnapi = bp->bnapi[cp_nr_rings]; 10944 netif_napi_add(bp->dev, &bnapi->napi, 10945 bnxt_poll_nitroa0); 10946 } 10947 } else { 10948 bnapi = bp->bnapi[0]; 10949 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll); 10950 } 10951 } 10952 10953 static void bnxt_disable_napi(struct bnxt *bp) 10954 { 10955 int i; 10956 10957 if (!bp->bnapi || 10958 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 10959 return; 10960 10961 for (i = 0; i < bp->cp_nr_rings; i++) { 10962 struct bnxt_napi *bnapi = bp->bnapi[i]; 10963 struct bnxt_cp_ring_info *cpr; 10964 10965 cpr = &bnapi->cp_ring; 10966 if (bnapi->tx_fault) 10967 cpr->sw_stats->tx.tx_resets++; 10968 if (bnapi->in_reset) 10969 cpr->sw_stats->rx.rx_resets++; 10970 napi_disable(&bnapi->napi); 10971 if (bnapi->rx_ring) 10972 cancel_work_sync(&cpr->dim.work); 10973 } 10974 } 10975 10976 static void bnxt_enable_napi(struct bnxt *bp) 10977 { 10978 int i; 10979 10980 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 10981 for (i = 0; i < bp->cp_nr_rings; i++) { 10982 struct bnxt_napi *bnapi = bp->bnapi[i]; 10983 struct bnxt_cp_ring_info *cpr; 10984 10985 bnapi->tx_fault = 0; 10986 10987 cpr = &bnapi->cp_ring; 10988 bnapi->in_reset = false; 10989 10990 if (bnapi->rx_ring) { 10991 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 10992 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 10993 } 10994 napi_enable(&bnapi->napi); 10995 } 10996 } 10997 10998 void bnxt_tx_disable(struct bnxt *bp) 10999 { 11000 int i; 11001 struct bnxt_tx_ring_info *txr; 11002 11003 if (bp->tx_ring) { 11004 for (i = 0; i < bp->tx_nr_rings; i++) { 11005 txr = &bp->tx_ring[i]; 11006 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 11007 } 11008 } 11009 /* Make sure napi polls see @dev_state change */ 11010 synchronize_net(); 11011 /* Drop carrier first to prevent TX timeout */ 11012 netif_carrier_off(bp->dev); 11013 /* Stop all TX queues */ 11014 netif_tx_disable(bp->dev); 11015 } 11016 11017 void bnxt_tx_enable(struct bnxt *bp) 11018 { 11019 int i; 11020 struct bnxt_tx_ring_info *txr; 11021 11022 for (i = 0; i < bp->tx_nr_rings; i++) { 11023 txr = &bp->tx_ring[i]; 11024 WRITE_ONCE(txr->dev_state, 0); 11025 } 11026 /* Make sure napi polls see @dev_state change */ 11027 synchronize_net(); 11028 netif_tx_wake_all_queues(bp->dev); 11029 if (BNXT_LINK_IS_UP(bp)) 11030 netif_carrier_on(bp->dev); 11031 } 11032 11033 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 11034 { 11035 u8 active_fec = link_info->active_fec_sig_mode & 11036 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 11037 11038 switch (active_fec) { 11039 default: 11040 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 11041 return "None"; 11042 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 11043 return "Clause 74 BaseR"; 11044 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 11045 return "Clause 91 RS(528,514)"; 11046 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 11047 return "Clause 91 RS544_1XN"; 11048 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 11049 return "Clause 91 RS(544,514)"; 11050 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 11051 return "Clause 91 RS272_1XN"; 11052 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 11053 return "Clause 91 RS(272,257)"; 11054 } 11055 } 11056 11057 void bnxt_report_link(struct bnxt *bp) 11058 { 11059 if (BNXT_LINK_IS_UP(bp)) { 11060 const char *signal = ""; 11061 const char *flow_ctrl; 11062 const char *duplex; 11063 u32 speed; 11064 u16 fec; 11065 11066 netif_carrier_on(bp->dev); 11067 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 11068 if (speed == SPEED_UNKNOWN) { 11069 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 11070 return; 11071 } 11072 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 11073 duplex = "full"; 11074 else 11075 duplex = "half"; 11076 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 11077 flow_ctrl = "ON - receive & transmit"; 11078 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 11079 flow_ctrl = "ON - transmit"; 11080 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 11081 flow_ctrl = "ON - receive"; 11082 else 11083 flow_ctrl = "none"; 11084 if (bp->link_info.phy_qcfg_resp.option_flags & 11085 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 11086 u8 sig_mode = bp->link_info.active_fec_sig_mode & 11087 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 11088 switch (sig_mode) { 11089 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 11090 signal = "(NRZ) "; 11091 break; 11092 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 11093 signal = "(PAM4 56Gbps) "; 11094 break; 11095 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4_112: 11096 signal = "(PAM4 112Gbps) "; 11097 break; 11098 default: 11099 break; 11100 } 11101 } 11102 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 11103 speed, signal, duplex, flow_ctrl); 11104 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 11105 netdev_info(bp->dev, "EEE is %s\n", 11106 bp->eee.eee_active ? "active" : 11107 "not active"); 11108 fec = bp->link_info.fec_cfg; 11109 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 11110 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 11111 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 11112 bnxt_report_fec(&bp->link_info)); 11113 } else { 11114 netif_carrier_off(bp->dev); 11115 netdev_err(bp->dev, "NIC Link is Down\n"); 11116 } 11117 } 11118 11119 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 11120 { 11121 if (!resp->supported_speeds_auto_mode && 11122 !resp->supported_speeds_force_mode && 11123 !resp->supported_pam4_speeds_auto_mode && 11124 !resp->supported_pam4_speeds_force_mode && 11125 !resp->supported_speeds2_auto_mode && 11126 !resp->supported_speeds2_force_mode) 11127 return true; 11128 return false; 11129 } 11130 11131 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 11132 { 11133 struct bnxt_link_info *link_info = &bp->link_info; 11134 struct hwrm_port_phy_qcaps_output *resp; 11135 struct hwrm_port_phy_qcaps_input *req; 11136 int rc = 0; 11137 11138 if (bp->hwrm_spec_code < 0x10201) 11139 return 0; 11140 11141 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS); 11142 if (rc) 11143 return rc; 11144 11145 resp = hwrm_req_hold(bp, req); 11146 rc = hwrm_req_send(bp, req); 11147 if (rc) 11148 goto hwrm_phy_qcaps_exit; 11149 11150 bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8); 11151 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 11152 struct ethtool_keee *eee = &bp->eee; 11153 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 11154 11155 _bnxt_fw_to_linkmode(eee->supported, fw_speeds); 11156 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 11157 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 11158 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 11159 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 11160 } 11161 11162 if (bp->hwrm_spec_code >= 0x10a01) { 11163 if (bnxt_phy_qcaps_no_speed(resp)) { 11164 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 11165 netdev_warn(bp->dev, "Ethernet link disabled\n"); 11166 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 11167 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 11168 netdev_info(bp->dev, "Ethernet link enabled\n"); 11169 /* Phy re-enabled, reprobe the speeds */ 11170 link_info->support_auto_speeds = 0; 11171 link_info->support_pam4_auto_speeds = 0; 11172 link_info->support_auto_speeds2 = 0; 11173 } 11174 } 11175 if (resp->supported_speeds_auto_mode) 11176 link_info->support_auto_speeds = 11177 le16_to_cpu(resp->supported_speeds_auto_mode); 11178 if (resp->supported_pam4_speeds_auto_mode) 11179 link_info->support_pam4_auto_speeds = 11180 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 11181 if (resp->supported_speeds2_auto_mode) 11182 link_info->support_auto_speeds2 = 11183 le16_to_cpu(resp->supported_speeds2_auto_mode); 11184 11185 bp->port_count = resp->port_cnt; 11186 11187 hwrm_phy_qcaps_exit: 11188 hwrm_req_drop(bp, req); 11189 return rc; 11190 } 11191 11192 static bool bnxt_support_dropped(u16 advertising, u16 supported) 11193 { 11194 u16 diff = advertising ^ supported; 11195 11196 return ((supported | diff) != supported); 11197 } 11198 11199 static bool bnxt_support_speed_dropped(struct bnxt_link_info *link_info) 11200 { 11201 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 11202 11203 /* Check if any advertised speeds are no longer supported. The caller 11204 * holds the link_lock mutex, so we can modify link_info settings. 11205 */ 11206 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 11207 if (bnxt_support_dropped(link_info->advertising, 11208 link_info->support_auto_speeds2)) { 11209 link_info->advertising = link_info->support_auto_speeds2; 11210 return true; 11211 } 11212 return false; 11213 } 11214 if (bnxt_support_dropped(link_info->advertising, 11215 link_info->support_auto_speeds)) { 11216 link_info->advertising = link_info->support_auto_speeds; 11217 return true; 11218 } 11219 if (bnxt_support_dropped(link_info->advertising_pam4, 11220 link_info->support_pam4_auto_speeds)) { 11221 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 11222 return true; 11223 } 11224 return false; 11225 } 11226 11227 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 11228 { 11229 struct bnxt_link_info *link_info = &bp->link_info; 11230 struct hwrm_port_phy_qcfg_output *resp; 11231 struct hwrm_port_phy_qcfg_input *req; 11232 u8 link_state = link_info->link_state; 11233 bool support_changed; 11234 int rc; 11235 11236 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG); 11237 if (rc) 11238 return rc; 11239 11240 resp = hwrm_req_hold(bp, req); 11241 rc = hwrm_req_send(bp, req); 11242 if (rc) { 11243 hwrm_req_drop(bp, req); 11244 if (BNXT_VF(bp) && rc == -ENODEV) { 11245 netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n"); 11246 rc = 0; 11247 } 11248 return rc; 11249 } 11250 11251 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 11252 link_info->phy_link_status = resp->link; 11253 link_info->duplex = resp->duplex_cfg; 11254 if (bp->hwrm_spec_code >= 0x10800) 11255 link_info->duplex = resp->duplex_state; 11256 link_info->pause = resp->pause; 11257 link_info->auto_mode = resp->auto_mode; 11258 link_info->auto_pause_setting = resp->auto_pause; 11259 link_info->lp_pause = resp->link_partner_adv_pause; 11260 link_info->force_pause_setting = resp->force_pause; 11261 link_info->duplex_setting = resp->duplex_cfg; 11262 if (link_info->phy_link_status == BNXT_LINK_LINK) { 11263 link_info->link_speed = le16_to_cpu(resp->link_speed); 11264 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 11265 link_info->active_lanes = resp->active_lanes; 11266 } else { 11267 link_info->link_speed = 0; 11268 link_info->active_lanes = 0; 11269 } 11270 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 11271 link_info->force_pam4_link_speed = 11272 le16_to_cpu(resp->force_pam4_link_speed); 11273 link_info->force_link_speed2 = le16_to_cpu(resp->force_link_speeds2); 11274 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 11275 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 11276 link_info->support_speeds2 = le16_to_cpu(resp->support_speeds2); 11277 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 11278 link_info->auto_pam4_link_speeds = 11279 le16_to_cpu(resp->auto_pam4_link_speed_mask); 11280 link_info->auto_link_speeds2 = le16_to_cpu(resp->auto_link_speeds2); 11281 link_info->lp_auto_link_speeds = 11282 le16_to_cpu(resp->link_partner_adv_speeds); 11283 link_info->lp_auto_pam4_link_speeds = 11284 resp->link_partner_pam4_adv_speeds; 11285 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 11286 link_info->phy_ver[0] = resp->phy_maj; 11287 link_info->phy_ver[1] = resp->phy_min; 11288 link_info->phy_ver[2] = resp->phy_bld; 11289 link_info->media_type = resp->media_type; 11290 link_info->phy_type = resp->phy_type; 11291 link_info->transceiver = resp->xcvr_pkg_type; 11292 link_info->phy_addr = resp->eee_config_phy_addr & 11293 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 11294 link_info->module_status = resp->module_status; 11295 11296 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 11297 struct ethtool_keee *eee = &bp->eee; 11298 u16 fw_speeds; 11299 11300 eee->eee_active = 0; 11301 if (resp->eee_config_phy_addr & 11302 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 11303 eee->eee_active = 1; 11304 fw_speeds = le16_to_cpu( 11305 resp->link_partner_adv_eee_link_speed_mask); 11306 _bnxt_fw_to_linkmode(eee->lp_advertised, fw_speeds); 11307 } 11308 11309 /* Pull initial EEE config */ 11310 if (!chng_link_state) { 11311 if (resp->eee_config_phy_addr & 11312 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 11313 eee->eee_enabled = 1; 11314 11315 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 11316 _bnxt_fw_to_linkmode(eee->advertised, fw_speeds); 11317 11318 if (resp->eee_config_phy_addr & 11319 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 11320 __le32 tmr; 11321 11322 eee->tx_lpi_enabled = 1; 11323 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 11324 eee->tx_lpi_timer = le32_to_cpu(tmr) & 11325 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 11326 } 11327 } 11328 } 11329 11330 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 11331 if (bp->hwrm_spec_code >= 0x10504) { 11332 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 11333 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 11334 } 11335 /* TODO: need to add more logic to report VF link */ 11336 if (chng_link_state) { 11337 if (link_info->phy_link_status == BNXT_LINK_LINK) 11338 link_info->link_state = BNXT_LINK_STATE_UP; 11339 else 11340 link_info->link_state = BNXT_LINK_STATE_DOWN; 11341 if (link_state != link_info->link_state) 11342 bnxt_report_link(bp); 11343 } else { 11344 /* always link down if not require to update link state */ 11345 link_info->link_state = BNXT_LINK_STATE_DOWN; 11346 } 11347 hwrm_req_drop(bp, req); 11348 11349 if (!BNXT_PHY_CFG_ABLE(bp)) 11350 return 0; 11351 11352 support_changed = bnxt_support_speed_dropped(link_info); 11353 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 11354 bnxt_hwrm_set_link_setting(bp, true, false); 11355 return 0; 11356 } 11357 11358 static void bnxt_get_port_module_status(struct bnxt *bp) 11359 { 11360 struct bnxt_link_info *link_info = &bp->link_info; 11361 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 11362 u8 module_status; 11363 11364 if (bnxt_update_link(bp, true)) 11365 return; 11366 11367 module_status = link_info->module_status; 11368 switch (module_status) { 11369 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 11370 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 11371 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 11372 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 11373 bp->pf.port_id); 11374 if (bp->hwrm_spec_code >= 0x10201) { 11375 netdev_warn(bp->dev, "Module part number %s\n", 11376 resp->phy_vendor_partnumber); 11377 } 11378 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 11379 netdev_warn(bp->dev, "TX is disabled\n"); 11380 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 11381 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 11382 } 11383 } 11384 11385 static void 11386 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 11387 { 11388 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 11389 if (bp->hwrm_spec_code >= 0x10201) 11390 req->auto_pause = 11391 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 11392 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 11393 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 11394 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 11395 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 11396 req->enables |= 11397 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 11398 } else { 11399 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 11400 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 11401 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 11402 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 11403 req->enables |= 11404 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 11405 if (bp->hwrm_spec_code >= 0x10201) { 11406 req->auto_pause = req->force_pause; 11407 req->enables |= cpu_to_le32( 11408 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 11409 } 11410 } 11411 } 11412 11413 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 11414 { 11415 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 11416 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 11417 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 11418 req->enables |= 11419 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEEDS2_MASK); 11420 req->auto_link_speeds2_mask = cpu_to_le16(bp->link_info.advertising); 11421 } else if (bp->link_info.advertising) { 11422 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 11423 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 11424 } 11425 if (bp->link_info.advertising_pam4) { 11426 req->enables |= 11427 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 11428 req->auto_link_pam4_speed_mask = 11429 cpu_to_le16(bp->link_info.advertising_pam4); 11430 } 11431 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 11432 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 11433 } else { 11434 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 11435 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 11436 req->force_link_speeds2 = cpu_to_le16(bp->link_info.req_link_speed); 11437 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_LINK_SPEEDS2); 11438 netif_info(bp, link, bp->dev, "Forcing FW speed2: %d\n", 11439 (u32)bp->link_info.req_link_speed); 11440 } else if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 11441 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 11442 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 11443 } else { 11444 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 11445 } 11446 } 11447 11448 /* tell chimp that the setting takes effect immediately */ 11449 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 11450 } 11451 11452 int bnxt_hwrm_set_pause(struct bnxt *bp) 11453 { 11454 struct hwrm_port_phy_cfg_input *req; 11455 int rc; 11456 11457 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 11458 if (rc) 11459 return rc; 11460 11461 bnxt_hwrm_set_pause_common(bp, req); 11462 11463 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 11464 bp->link_info.force_link_chng) 11465 bnxt_hwrm_set_link_common(bp, req); 11466 11467 rc = hwrm_req_send(bp, req); 11468 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 11469 /* since changing of pause setting doesn't trigger any link 11470 * change event, the driver needs to update the current pause 11471 * result upon successfully return of the phy_cfg command 11472 */ 11473 bp->link_info.pause = 11474 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 11475 bp->link_info.auto_pause_setting = 0; 11476 if (!bp->link_info.force_link_chng) 11477 bnxt_report_link(bp); 11478 } 11479 bp->link_info.force_link_chng = false; 11480 return rc; 11481 } 11482 11483 static void bnxt_hwrm_set_eee(struct bnxt *bp, 11484 struct hwrm_port_phy_cfg_input *req) 11485 { 11486 struct ethtool_keee *eee = &bp->eee; 11487 11488 if (eee->eee_enabled) { 11489 u16 eee_speeds; 11490 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 11491 11492 if (eee->tx_lpi_enabled) 11493 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 11494 else 11495 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 11496 11497 req->flags |= cpu_to_le32(flags); 11498 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 11499 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 11500 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 11501 } else { 11502 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 11503 } 11504 } 11505 11506 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 11507 { 11508 struct hwrm_port_phy_cfg_input *req; 11509 int rc; 11510 11511 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 11512 if (rc) 11513 return rc; 11514 11515 if (set_pause) 11516 bnxt_hwrm_set_pause_common(bp, req); 11517 11518 bnxt_hwrm_set_link_common(bp, req); 11519 11520 if (set_eee) 11521 bnxt_hwrm_set_eee(bp, req); 11522 return hwrm_req_send(bp, req); 11523 } 11524 11525 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 11526 { 11527 struct hwrm_port_phy_cfg_input *req; 11528 int rc; 11529 11530 if (!BNXT_SINGLE_PF(bp)) 11531 return 0; 11532 11533 if (pci_num_vf(bp->pdev) && 11534 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 11535 return 0; 11536 11537 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 11538 if (rc) 11539 return rc; 11540 11541 req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 11542 rc = hwrm_req_send(bp, req); 11543 if (!rc) { 11544 mutex_lock(&bp->link_lock); 11545 /* Device is not obliged link down in certain scenarios, even 11546 * when forced. Setting the state unknown is consistent with 11547 * driver startup and will force link state to be reported 11548 * during subsequent open based on PORT_PHY_QCFG. 11549 */ 11550 bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN; 11551 mutex_unlock(&bp->link_lock); 11552 } 11553 return rc; 11554 } 11555 11556 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 11557 { 11558 #ifdef CONFIG_TEE_BNXT_FW 11559 int rc = tee_bnxt_fw_load(); 11560 11561 if (rc) 11562 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 11563 11564 return rc; 11565 #else 11566 netdev_err(bp->dev, "OP-TEE not supported\n"); 11567 return -ENODEV; 11568 #endif 11569 } 11570 11571 static int bnxt_try_recover_fw(struct bnxt *bp) 11572 { 11573 if (bp->fw_health && bp->fw_health->status_reliable) { 11574 int retry = 0, rc; 11575 u32 sts; 11576 11577 do { 11578 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 11579 rc = bnxt_hwrm_poll(bp); 11580 if (!BNXT_FW_IS_BOOTING(sts) && 11581 !BNXT_FW_IS_RECOVERING(sts)) 11582 break; 11583 retry++; 11584 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 11585 11586 if (!BNXT_FW_IS_HEALTHY(sts)) { 11587 netdev_err(bp->dev, 11588 "Firmware not responding, status: 0x%x\n", 11589 sts); 11590 rc = -ENODEV; 11591 } 11592 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 11593 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 11594 return bnxt_fw_reset_via_optee(bp); 11595 } 11596 return rc; 11597 } 11598 11599 return -ENODEV; 11600 } 11601 11602 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset) 11603 { 11604 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 11605 11606 if (!BNXT_NEW_RM(bp)) 11607 return; /* no resource reservations required */ 11608 11609 hw_resc->resv_cp_rings = 0; 11610 hw_resc->resv_stat_ctxs = 0; 11611 hw_resc->resv_irqs = 0; 11612 hw_resc->resv_tx_rings = 0; 11613 hw_resc->resv_rx_rings = 0; 11614 hw_resc->resv_hw_ring_grps = 0; 11615 hw_resc->resv_vnics = 0; 11616 hw_resc->resv_rsscos_ctxs = 0; 11617 if (!fw_reset) { 11618 bp->tx_nr_rings = 0; 11619 bp->rx_nr_rings = 0; 11620 } 11621 } 11622 11623 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset) 11624 { 11625 int rc; 11626 11627 if (!BNXT_NEW_RM(bp)) 11628 return 0; /* no resource reservations required */ 11629 11630 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 11631 if (rc) 11632 netdev_err(bp->dev, "resc_qcaps failed\n"); 11633 11634 bnxt_clear_reservations(bp, fw_reset); 11635 11636 return rc; 11637 } 11638 11639 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 11640 { 11641 struct hwrm_func_drv_if_change_output *resp; 11642 struct hwrm_func_drv_if_change_input *req; 11643 bool fw_reset = !bp->irq_tbl; 11644 bool resc_reinit = false; 11645 int rc, retry = 0; 11646 u32 flags = 0; 11647 11648 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 11649 return 0; 11650 11651 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE); 11652 if (rc) 11653 return rc; 11654 11655 if (up) 11656 req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 11657 resp = hwrm_req_hold(bp, req); 11658 11659 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 11660 while (retry < BNXT_FW_IF_RETRY) { 11661 rc = hwrm_req_send(bp, req); 11662 if (rc != -EAGAIN) 11663 break; 11664 11665 msleep(50); 11666 retry++; 11667 } 11668 11669 if (rc == -EAGAIN) { 11670 hwrm_req_drop(bp, req); 11671 return rc; 11672 } else if (!rc) { 11673 flags = le32_to_cpu(resp->flags); 11674 } else if (up) { 11675 rc = bnxt_try_recover_fw(bp); 11676 fw_reset = true; 11677 } 11678 hwrm_req_drop(bp, req); 11679 if (rc) 11680 return rc; 11681 11682 if (!up) { 11683 bnxt_inv_fw_health_reg(bp); 11684 return 0; 11685 } 11686 11687 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 11688 resc_reinit = true; 11689 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE || 11690 test_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) 11691 fw_reset = true; 11692 else 11693 bnxt_remap_fw_health_regs(bp); 11694 11695 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 11696 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 11697 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 11698 return -ENODEV; 11699 } 11700 if (resc_reinit || fw_reset) { 11701 if (fw_reset) { 11702 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 11703 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11704 bnxt_ulp_irq_stop(bp); 11705 bnxt_free_ctx_mem(bp); 11706 bnxt_dcb_free(bp); 11707 rc = bnxt_fw_init_one(bp); 11708 if (rc) { 11709 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 11710 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 11711 return rc; 11712 } 11713 bnxt_clear_int_mode(bp); 11714 rc = bnxt_init_int_mode(bp); 11715 if (rc) { 11716 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 11717 netdev_err(bp->dev, "init int mode failed\n"); 11718 return rc; 11719 } 11720 } 11721 rc = bnxt_cancel_reservations(bp, fw_reset); 11722 } 11723 return rc; 11724 } 11725 11726 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 11727 { 11728 struct hwrm_port_led_qcaps_output *resp; 11729 struct hwrm_port_led_qcaps_input *req; 11730 struct bnxt_pf_info *pf = &bp->pf; 11731 int rc; 11732 11733 bp->num_leds = 0; 11734 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 11735 return 0; 11736 11737 rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS); 11738 if (rc) 11739 return rc; 11740 11741 req->port_id = cpu_to_le16(pf->port_id); 11742 resp = hwrm_req_hold(bp, req); 11743 rc = hwrm_req_send(bp, req); 11744 if (rc) { 11745 hwrm_req_drop(bp, req); 11746 return rc; 11747 } 11748 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 11749 int i; 11750 11751 bp->num_leds = resp->num_leds; 11752 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 11753 bp->num_leds); 11754 for (i = 0; i < bp->num_leds; i++) { 11755 struct bnxt_led_info *led = &bp->leds[i]; 11756 __le16 caps = led->led_state_caps; 11757 11758 if (!led->led_group_id || 11759 !BNXT_LED_ALT_BLINK_CAP(caps)) { 11760 bp->num_leds = 0; 11761 break; 11762 } 11763 } 11764 } 11765 hwrm_req_drop(bp, req); 11766 return 0; 11767 } 11768 11769 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 11770 { 11771 struct hwrm_wol_filter_alloc_output *resp; 11772 struct hwrm_wol_filter_alloc_input *req; 11773 int rc; 11774 11775 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC); 11776 if (rc) 11777 return rc; 11778 11779 req->port_id = cpu_to_le16(bp->pf.port_id); 11780 req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 11781 req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 11782 memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN); 11783 11784 resp = hwrm_req_hold(bp, req); 11785 rc = hwrm_req_send(bp, req); 11786 if (!rc) 11787 bp->wol_filter_id = resp->wol_filter_id; 11788 hwrm_req_drop(bp, req); 11789 return rc; 11790 } 11791 11792 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 11793 { 11794 struct hwrm_wol_filter_free_input *req; 11795 int rc; 11796 11797 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE); 11798 if (rc) 11799 return rc; 11800 11801 req->port_id = cpu_to_le16(bp->pf.port_id); 11802 req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 11803 req->wol_filter_id = bp->wol_filter_id; 11804 11805 return hwrm_req_send(bp, req); 11806 } 11807 11808 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 11809 { 11810 struct hwrm_wol_filter_qcfg_output *resp; 11811 struct hwrm_wol_filter_qcfg_input *req; 11812 u16 next_handle = 0; 11813 int rc; 11814 11815 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG); 11816 if (rc) 11817 return rc; 11818 11819 req->port_id = cpu_to_le16(bp->pf.port_id); 11820 req->handle = cpu_to_le16(handle); 11821 resp = hwrm_req_hold(bp, req); 11822 rc = hwrm_req_send(bp, req); 11823 if (!rc) { 11824 next_handle = le16_to_cpu(resp->next_handle); 11825 if (next_handle != 0) { 11826 if (resp->wol_type == 11827 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 11828 bp->wol = 1; 11829 bp->wol_filter_id = resp->wol_filter_id; 11830 } 11831 } 11832 } 11833 hwrm_req_drop(bp, req); 11834 return next_handle; 11835 } 11836 11837 static void bnxt_get_wol_settings(struct bnxt *bp) 11838 { 11839 u16 handle = 0; 11840 11841 bp->wol = 0; 11842 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 11843 return; 11844 11845 do { 11846 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 11847 } while (handle && handle != 0xffff); 11848 } 11849 11850 static bool bnxt_eee_config_ok(struct bnxt *bp) 11851 { 11852 struct ethtool_keee *eee = &bp->eee; 11853 struct bnxt_link_info *link_info = &bp->link_info; 11854 11855 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 11856 return true; 11857 11858 if (eee->eee_enabled) { 11859 __ETHTOOL_DECLARE_LINK_MODE_MASK(advertising); 11860 __ETHTOOL_DECLARE_LINK_MODE_MASK(tmp); 11861 11862 _bnxt_fw_to_linkmode(advertising, link_info->advertising); 11863 11864 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 11865 eee->eee_enabled = 0; 11866 return false; 11867 } 11868 if (linkmode_andnot(tmp, eee->advertised, advertising)) { 11869 linkmode_and(eee->advertised, advertising, 11870 eee->supported); 11871 return false; 11872 } 11873 } 11874 return true; 11875 } 11876 11877 static int bnxt_update_phy_setting(struct bnxt *bp) 11878 { 11879 int rc; 11880 bool update_link = false; 11881 bool update_pause = false; 11882 bool update_eee = false; 11883 struct bnxt_link_info *link_info = &bp->link_info; 11884 11885 rc = bnxt_update_link(bp, true); 11886 if (rc) { 11887 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 11888 rc); 11889 return rc; 11890 } 11891 if (!BNXT_SINGLE_PF(bp)) 11892 return 0; 11893 11894 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 11895 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 11896 link_info->req_flow_ctrl) 11897 update_pause = true; 11898 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 11899 link_info->force_pause_setting != link_info->req_flow_ctrl) 11900 update_pause = true; 11901 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 11902 if (BNXT_AUTO_MODE(link_info->auto_mode)) 11903 update_link = true; 11904 if (bnxt_force_speed_updated(link_info)) 11905 update_link = true; 11906 if (link_info->req_duplex != link_info->duplex_setting) 11907 update_link = true; 11908 } else { 11909 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 11910 update_link = true; 11911 if (bnxt_auto_speed_updated(link_info)) 11912 update_link = true; 11913 } 11914 11915 /* The last close may have shutdown the link, so need to call 11916 * PHY_CFG to bring it back up. 11917 */ 11918 if (!BNXT_LINK_IS_UP(bp)) 11919 update_link = true; 11920 11921 if (!bnxt_eee_config_ok(bp)) 11922 update_eee = true; 11923 11924 if (update_link) 11925 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 11926 else if (update_pause) 11927 rc = bnxt_hwrm_set_pause(bp); 11928 if (rc) { 11929 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 11930 rc); 11931 return rc; 11932 } 11933 11934 return rc; 11935 } 11936 11937 /* Common routine to pre-map certain register block to different GRC window. 11938 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows 11939 * in PF and 3 windows in VF that can be customized to map in different 11940 * register blocks. 11941 */ 11942 static void bnxt_preset_reg_win(struct bnxt *bp) 11943 { 11944 if (BNXT_PF(bp)) { 11945 /* CAG registers map to GRC window #4 */ 11946 writel(BNXT_CAG_REG_BASE, 11947 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); 11948 } 11949 } 11950 11951 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 11952 11953 static int bnxt_reinit_after_abort(struct bnxt *bp) 11954 { 11955 int rc; 11956 11957 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11958 return -EBUSY; 11959 11960 if (bp->dev->reg_state == NETREG_UNREGISTERED) 11961 return -ENODEV; 11962 11963 rc = bnxt_fw_init_one(bp); 11964 if (!rc) { 11965 bnxt_clear_int_mode(bp); 11966 rc = bnxt_init_int_mode(bp); 11967 if (!rc) { 11968 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 11969 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 11970 } 11971 } 11972 return rc; 11973 } 11974 11975 static void bnxt_cfg_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 11976 { 11977 struct bnxt_ntuple_filter *ntp_fltr; 11978 struct bnxt_l2_filter *l2_fltr; 11979 11980 if (list_empty(&fltr->list)) 11981 return; 11982 11983 if (fltr->type == BNXT_FLTR_TYPE_NTUPLE) { 11984 ntp_fltr = container_of(fltr, struct bnxt_ntuple_filter, base); 11985 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 11986 atomic_inc(&l2_fltr->refcnt); 11987 ntp_fltr->l2_fltr = l2_fltr; 11988 if (bnxt_hwrm_cfa_ntuple_filter_alloc(bp, ntp_fltr)) { 11989 bnxt_del_ntp_filter(bp, ntp_fltr); 11990 netdev_err(bp->dev, "restoring previously configured ntuple filter id %d failed\n", 11991 fltr->sw_id); 11992 } 11993 } else if (fltr->type == BNXT_FLTR_TYPE_L2) { 11994 l2_fltr = container_of(fltr, struct bnxt_l2_filter, base); 11995 if (bnxt_hwrm_l2_filter_alloc(bp, l2_fltr)) { 11996 bnxt_del_l2_filter(bp, l2_fltr); 11997 netdev_err(bp->dev, "restoring previously configured l2 filter id %d failed\n", 11998 fltr->sw_id); 11999 } 12000 } 12001 } 12002 12003 static void bnxt_cfg_usr_fltrs(struct bnxt *bp) 12004 { 12005 struct bnxt_filter_base *usr_fltr, *tmp; 12006 12007 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) 12008 bnxt_cfg_one_usr_fltr(bp, usr_fltr); 12009 } 12010 12011 static int bnxt_set_xps_mapping(struct bnxt *bp) 12012 { 12013 int numa_node = dev_to_node(&bp->pdev->dev); 12014 unsigned int q_idx, map_idx, cpu, i; 12015 const struct cpumask *cpu_mask_ptr; 12016 int nr_cpus = num_online_cpus(); 12017 cpumask_t *q_map; 12018 int rc = 0; 12019 12020 q_map = kcalloc(bp->tx_nr_rings_per_tc, sizeof(*q_map), GFP_KERNEL); 12021 if (!q_map) 12022 return -ENOMEM; 12023 12024 /* Create CPU mask for all TX queues across MQPRIO traffic classes. 12025 * Each TC has the same number of TX queues. The nth TX queue for each 12026 * TC will have the same CPU mask. 12027 */ 12028 for (i = 0; i < nr_cpus; i++) { 12029 map_idx = i % bp->tx_nr_rings_per_tc; 12030 cpu = cpumask_local_spread(i, numa_node); 12031 cpu_mask_ptr = get_cpu_mask(cpu); 12032 cpumask_or(&q_map[map_idx], &q_map[map_idx], cpu_mask_ptr); 12033 } 12034 12035 /* Register CPU mask for each TX queue except the ones marked for XDP */ 12036 for (q_idx = 0; q_idx < bp->dev->real_num_tx_queues; q_idx++) { 12037 map_idx = q_idx % bp->tx_nr_rings_per_tc; 12038 rc = netif_set_xps_queue(bp->dev, &q_map[map_idx], q_idx); 12039 if (rc) { 12040 netdev_warn(bp->dev, "Error setting XPS for q:%d\n", 12041 q_idx); 12042 break; 12043 } 12044 } 12045 12046 kfree(q_map); 12047 12048 return rc; 12049 } 12050 12051 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12052 { 12053 int rc = 0; 12054 12055 bnxt_preset_reg_win(bp); 12056 netif_carrier_off(bp->dev); 12057 if (irq_re_init) { 12058 /* Reserve rings now if none were reserved at driver probe. */ 12059 rc = bnxt_init_dflt_ring_mode(bp); 12060 if (rc) { 12061 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 12062 return rc; 12063 } 12064 } 12065 rc = bnxt_reserve_rings(bp, irq_re_init); 12066 if (rc) 12067 return rc; 12068 if ((bp->flags & BNXT_FLAG_RFS) && 12069 !(bp->flags & BNXT_FLAG_USING_MSIX)) { 12070 /* disable RFS if falling back to INTA */ 12071 bp->dev->hw_features &= ~NETIF_F_NTUPLE; 12072 bp->flags &= ~BNXT_FLAG_RFS; 12073 } 12074 12075 rc = bnxt_alloc_mem(bp, irq_re_init); 12076 if (rc) { 12077 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 12078 goto open_err_free_mem; 12079 } 12080 12081 if (irq_re_init) { 12082 bnxt_init_napi(bp); 12083 rc = bnxt_request_irq(bp); 12084 if (rc) { 12085 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 12086 goto open_err_irq; 12087 } 12088 } 12089 12090 rc = bnxt_init_nic(bp, irq_re_init); 12091 if (rc) { 12092 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 12093 goto open_err_irq; 12094 } 12095 12096 bnxt_enable_napi(bp); 12097 bnxt_debug_dev_init(bp); 12098 12099 if (link_re_init) { 12100 mutex_lock(&bp->link_lock); 12101 rc = bnxt_update_phy_setting(bp); 12102 mutex_unlock(&bp->link_lock); 12103 if (rc) { 12104 netdev_warn(bp->dev, "failed to update phy settings\n"); 12105 if (BNXT_SINGLE_PF(bp)) { 12106 bp->link_info.phy_retry = true; 12107 bp->link_info.phy_retry_expires = 12108 jiffies + 5 * HZ; 12109 } 12110 } 12111 } 12112 12113 if (irq_re_init) { 12114 udp_tunnel_nic_reset_ntf(bp->dev); 12115 rc = bnxt_set_xps_mapping(bp); 12116 if (rc) 12117 netdev_warn(bp->dev, "failed to set xps mapping\n"); 12118 } 12119 12120 if (bp->tx_nr_rings_xdp < num_possible_cpus()) { 12121 if (!static_key_enabled(&bnxt_xdp_locking_key)) 12122 static_branch_enable(&bnxt_xdp_locking_key); 12123 } else if (static_key_enabled(&bnxt_xdp_locking_key)) { 12124 static_branch_disable(&bnxt_xdp_locking_key); 12125 } 12126 set_bit(BNXT_STATE_OPEN, &bp->state); 12127 bnxt_enable_int(bp); 12128 /* Enable TX queues */ 12129 bnxt_tx_enable(bp); 12130 mod_timer(&bp->timer, jiffies + bp->current_interval); 12131 /* Poll link status and check for SFP+ module status */ 12132 mutex_lock(&bp->link_lock); 12133 bnxt_get_port_module_status(bp); 12134 mutex_unlock(&bp->link_lock); 12135 12136 /* VF-reps may need to be re-opened after the PF is re-opened */ 12137 if (BNXT_PF(bp)) 12138 bnxt_vf_reps_open(bp); 12139 if (bp->ptp_cfg) 12140 atomic_set(&bp->ptp_cfg->tx_avail, BNXT_MAX_TX_TS); 12141 bnxt_ptp_init_rtc(bp, true); 12142 bnxt_ptp_cfg_tstamp_filters(bp); 12143 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 12144 bnxt_hwrm_realloc_rss_ctx_vnic(bp); 12145 bnxt_cfg_usr_fltrs(bp); 12146 return 0; 12147 12148 open_err_irq: 12149 bnxt_del_napi(bp); 12150 12151 open_err_free_mem: 12152 bnxt_free_skbs(bp); 12153 bnxt_free_irq(bp); 12154 bnxt_free_mem(bp, true); 12155 return rc; 12156 } 12157 12158 /* rtnl_lock held */ 12159 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12160 { 12161 int rc = 0; 12162 12163 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 12164 rc = -EIO; 12165 if (!rc) 12166 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 12167 if (rc) { 12168 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 12169 dev_close(bp->dev); 12170 } 12171 return rc; 12172 } 12173 12174 /* rtnl_lock held, open the NIC half way by allocating all resources, but 12175 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline 12176 * self tests. 12177 */ 12178 int bnxt_half_open_nic(struct bnxt *bp) 12179 { 12180 int rc = 0; 12181 12182 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12183 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); 12184 rc = -ENODEV; 12185 goto half_open_err; 12186 } 12187 12188 rc = bnxt_alloc_mem(bp, true); 12189 if (rc) { 12190 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 12191 goto half_open_err; 12192 } 12193 bnxt_init_napi(bp); 12194 set_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12195 rc = bnxt_init_nic(bp, true); 12196 if (rc) { 12197 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12198 bnxt_del_napi(bp); 12199 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 12200 goto half_open_err; 12201 } 12202 return 0; 12203 12204 half_open_err: 12205 bnxt_free_skbs(bp); 12206 bnxt_free_mem(bp, true); 12207 dev_close(bp->dev); 12208 return rc; 12209 } 12210 12211 /* rtnl_lock held, this call can only be made after a previous successful 12212 * call to bnxt_half_open_nic(). 12213 */ 12214 void bnxt_half_close_nic(struct bnxt *bp) 12215 { 12216 bnxt_hwrm_resource_free(bp, false, true); 12217 bnxt_del_napi(bp); 12218 bnxt_free_skbs(bp); 12219 bnxt_free_mem(bp, true); 12220 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12221 } 12222 12223 void bnxt_reenable_sriov(struct bnxt *bp) 12224 { 12225 if (BNXT_PF(bp)) { 12226 struct bnxt_pf_info *pf = &bp->pf; 12227 int n = pf->active_vfs; 12228 12229 if (n) 12230 bnxt_cfg_hw_sriov(bp, &n, true); 12231 } 12232 } 12233 12234 static int bnxt_open(struct net_device *dev) 12235 { 12236 struct bnxt *bp = netdev_priv(dev); 12237 int rc; 12238 12239 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12240 rc = bnxt_reinit_after_abort(bp); 12241 if (rc) { 12242 if (rc == -EBUSY) 12243 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 12244 else 12245 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 12246 return -ENODEV; 12247 } 12248 } 12249 12250 rc = bnxt_hwrm_if_change(bp, true); 12251 if (rc) 12252 return rc; 12253 12254 rc = __bnxt_open_nic(bp, true, true); 12255 if (rc) { 12256 bnxt_hwrm_if_change(bp, false); 12257 } else { 12258 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 12259 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 12260 bnxt_queue_sp_work(bp, 12261 BNXT_RESTART_ULP_SP_EVENT); 12262 } 12263 } 12264 12265 return rc; 12266 } 12267 12268 static bool bnxt_drv_busy(struct bnxt *bp) 12269 { 12270 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 12271 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 12272 } 12273 12274 static void bnxt_get_ring_stats(struct bnxt *bp, 12275 struct rtnl_link_stats64 *stats); 12276 12277 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 12278 bool link_re_init) 12279 { 12280 /* Close the VF-reps before closing PF */ 12281 if (BNXT_PF(bp)) 12282 bnxt_vf_reps_close(bp); 12283 12284 /* Change device state to avoid TX queue wake up's */ 12285 bnxt_tx_disable(bp); 12286 12287 clear_bit(BNXT_STATE_OPEN, &bp->state); 12288 smp_mb__after_atomic(); 12289 while (bnxt_drv_busy(bp)) 12290 msleep(20); 12291 12292 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 12293 bnxt_clear_rss_ctxs(bp, false); 12294 /* Flush rings and disable interrupts */ 12295 bnxt_shutdown_nic(bp, irq_re_init); 12296 12297 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 12298 12299 bnxt_debug_dev_exit(bp); 12300 bnxt_disable_napi(bp); 12301 del_timer_sync(&bp->timer); 12302 bnxt_free_skbs(bp); 12303 12304 /* Save ring stats before shutdown */ 12305 if (bp->bnapi && irq_re_init) { 12306 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 12307 bnxt_get_ring_err_stats(bp, &bp->ring_err_stats_prev); 12308 } 12309 if (irq_re_init) { 12310 bnxt_free_irq(bp); 12311 bnxt_del_napi(bp); 12312 } 12313 bnxt_free_mem(bp, irq_re_init); 12314 } 12315 12316 void bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12317 { 12318 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 12319 /* If we get here, it means firmware reset is in progress 12320 * while we are trying to close. We can safely proceed with 12321 * the close because we are holding rtnl_lock(). Some firmware 12322 * messages may fail as we proceed to close. We set the 12323 * ABORT_ERR flag here so that the FW reset thread will later 12324 * abort when it gets the rtnl_lock() and sees the flag. 12325 */ 12326 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 12327 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12328 } 12329 12330 #ifdef CONFIG_BNXT_SRIOV 12331 if (bp->sriov_cfg) { 12332 int rc; 12333 12334 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 12335 !bp->sriov_cfg, 12336 BNXT_SRIOV_CFG_WAIT_TMO); 12337 if (!rc) 12338 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete, proceeding to close!\n"); 12339 else if (rc < 0) 12340 netdev_warn(bp->dev, "SRIOV config operation interrupted, proceeding to close!\n"); 12341 } 12342 #endif 12343 __bnxt_close_nic(bp, irq_re_init, link_re_init); 12344 } 12345 12346 static int bnxt_close(struct net_device *dev) 12347 { 12348 struct bnxt *bp = netdev_priv(dev); 12349 12350 bnxt_close_nic(bp, true, true); 12351 bnxt_hwrm_shutdown_link(bp); 12352 bnxt_hwrm_if_change(bp, false); 12353 return 0; 12354 } 12355 12356 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 12357 u16 *val) 12358 { 12359 struct hwrm_port_phy_mdio_read_output *resp; 12360 struct hwrm_port_phy_mdio_read_input *req; 12361 int rc; 12362 12363 if (bp->hwrm_spec_code < 0x10a00) 12364 return -EOPNOTSUPP; 12365 12366 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ); 12367 if (rc) 12368 return rc; 12369 12370 req->port_id = cpu_to_le16(bp->pf.port_id); 12371 req->phy_addr = phy_addr; 12372 req->reg_addr = cpu_to_le16(reg & 0x1f); 12373 if (mdio_phy_id_is_c45(phy_addr)) { 12374 req->cl45_mdio = 1; 12375 req->phy_addr = mdio_phy_id_prtad(phy_addr); 12376 req->dev_addr = mdio_phy_id_devad(phy_addr); 12377 req->reg_addr = cpu_to_le16(reg); 12378 } 12379 12380 resp = hwrm_req_hold(bp, req); 12381 rc = hwrm_req_send(bp, req); 12382 if (!rc) 12383 *val = le16_to_cpu(resp->reg_data); 12384 hwrm_req_drop(bp, req); 12385 return rc; 12386 } 12387 12388 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 12389 u16 val) 12390 { 12391 struct hwrm_port_phy_mdio_write_input *req; 12392 int rc; 12393 12394 if (bp->hwrm_spec_code < 0x10a00) 12395 return -EOPNOTSUPP; 12396 12397 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE); 12398 if (rc) 12399 return rc; 12400 12401 req->port_id = cpu_to_le16(bp->pf.port_id); 12402 req->phy_addr = phy_addr; 12403 req->reg_addr = cpu_to_le16(reg & 0x1f); 12404 if (mdio_phy_id_is_c45(phy_addr)) { 12405 req->cl45_mdio = 1; 12406 req->phy_addr = mdio_phy_id_prtad(phy_addr); 12407 req->dev_addr = mdio_phy_id_devad(phy_addr); 12408 req->reg_addr = cpu_to_le16(reg); 12409 } 12410 req->reg_data = cpu_to_le16(val); 12411 12412 return hwrm_req_send(bp, req); 12413 } 12414 12415 /* rtnl_lock held */ 12416 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 12417 { 12418 struct mii_ioctl_data *mdio = if_mii(ifr); 12419 struct bnxt *bp = netdev_priv(dev); 12420 int rc; 12421 12422 switch (cmd) { 12423 case SIOCGMIIPHY: 12424 mdio->phy_id = bp->link_info.phy_addr; 12425 12426 fallthrough; 12427 case SIOCGMIIREG: { 12428 u16 mii_regval = 0; 12429 12430 if (!netif_running(dev)) 12431 return -EAGAIN; 12432 12433 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 12434 &mii_regval); 12435 mdio->val_out = mii_regval; 12436 return rc; 12437 } 12438 12439 case SIOCSMIIREG: 12440 if (!netif_running(dev)) 12441 return -EAGAIN; 12442 12443 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 12444 mdio->val_in); 12445 12446 case SIOCSHWTSTAMP: 12447 return bnxt_hwtstamp_set(dev, ifr); 12448 12449 case SIOCGHWTSTAMP: 12450 return bnxt_hwtstamp_get(dev, ifr); 12451 12452 default: 12453 /* do nothing */ 12454 break; 12455 } 12456 return -EOPNOTSUPP; 12457 } 12458 12459 static void bnxt_get_ring_stats(struct bnxt *bp, 12460 struct rtnl_link_stats64 *stats) 12461 { 12462 int i; 12463 12464 for (i = 0; i < bp->cp_nr_rings; i++) { 12465 struct bnxt_napi *bnapi = bp->bnapi[i]; 12466 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 12467 u64 *sw = cpr->stats.sw_stats; 12468 12469 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 12470 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 12471 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 12472 12473 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 12474 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 12475 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 12476 12477 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 12478 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 12479 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 12480 12481 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 12482 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 12483 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 12484 12485 stats->rx_missed_errors += 12486 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 12487 12488 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 12489 12490 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 12491 12492 stats->rx_dropped += 12493 cpr->sw_stats->rx.rx_netpoll_discards + 12494 cpr->sw_stats->rx.rx_oom_discards; 12495 } 12496 } 12497 12498 static void bnxt_add_prev_stats(struct bnxt *bp, 12499 struct rtnl_link_stats64 *stats) 12500 { 12501 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 12502 12503 stats->rx_packets += prev_stats->rx_packets; 12504 stats->tx_packets += prev_stats->tx_packets; 12505 stats->rx_bytes += prev_stats->rx_bytes; 12506 stats->tx_bytes += prev_stats->tx_bytes; 12507 stats->rx_missed_errors += prev_stats->rx_missed_errors; 12508 stats->multicast += prev_stats->multicast; 12509 stats->rx_dropped += prev_stats->rx_dropped; 12510 stats->tx_dropped += prev_stats->tx_dropped; 12511 } 12512 12513 static void 12514 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 12515 { 12516 struct bnxt *bp = netdev_priv(dev); 12517 12518 set_bit(BNXT_STATE_READ_STATS, &bp->state); 12519 /* Make sure bnxt_close_nic() sees that we are reading stats before 12520 * we check the BNXT_STATE_OPEN flag. 12521 */ 12522 smp_mb__after_atomic(); 12523 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 12524 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 12525 *stats = bp->net_stats_prev; 12526 return; 12527 } 12528 12529 bnxt_get_ring_stats(bp, stats); 12530 bnxt_add_prev_stats(bp, stats); 12531 12532 if (bp->flags & BNXT_FLAG_PORT_STATS) { 12533 u64 *rx = bp->port_stats.sw_stats; 12534 u64 *tx = bp->port_stats.sw_stats + 12535 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 12536 12537 stats->rx_crc_errors = 12538 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 12539 stats->rx_frame_errors = 12540 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 12541 stats->rx_length_errors = 12542 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 12543 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 12544 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 12545 stats->rx_errors = 12546 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 12547 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 12548 stats->collisions = 12549 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 12550 stats->tx_fifo_errors = 12551 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 12552 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 12553 } 12554 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 12555 } 12556 12557 static void bnxt_get_one_ring_err_stats(struct bnxt *bp, 12558 struct bnxt_total_ring_err_stats *stats, 12559 struct bnxt_cp_ring_info *cpr) 12560 { 12561 struct bnxt_sw_stats *sw_stats = cpr->sw_stats; 12562 u64 *hw_stats = cpr->stats.sw_stats; 12563 12564 stats->rx_total_l4_csum_errors += sw_stats->rx.rx_l4_csum_errors; 12565 stats->rx_total_resets += sw_stats->rx.rx_resets; 12566 stats->rx_total_buf_errors += sw_stats->rx.rx_buf_errors; 12567 stats->rx_total_oom_discards += sw_stats->rx.rx_oom_discards; 12568 stats->rx_total_netpoll_discards += sw_stats->rx.rx_netpoll_discards; 12569 stats->rx_total_ring_discards += 12570 BNXT_GET_RING_STATS64(hw_stats, rx_discard_pkts); 12571 stats->tx_total_resets += sw_stats->tx.tx_resets; 12572 stats->tx_total_ring_discards += 12573 BNXT_GET_RING_STATS64(hw_stats, tx_discard_pkts); 12574 stats->total_missed_irqs += sw_stats->cmn.missed_irqs; 12575 } 12576 12577 void bnxt_get_ring_err_stats(struct bnxt *bp, 12578 struct bnxt_total_ring_err_stats *stats) 12579 { 12580 int i; 12581 12582 for (i = 0; i < bp->cp_nr_rings; i++) 12583 bnxt_get_one_ring_err_stats(bp, stats, &bp->bnapi[i]->cp_ring); 12584 } 12585 12586 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 12587 { 12588 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12589 struct net_device *dev = bp->dev; 12590 struct netdev_hw_addr *ha; 12591 u8 *haddr; 12592 int mc_count = 0; 12593 bool update = false; 12594 int off = 0; 12595 12596 netdev_for_each_mc_addr(ha, dev) { 12597 if (mc_count >= BNXT_MAX_MC_ADDRS) { 12598 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 12599 vnic->mc_list_count = 0; 12600 return false; 12601 } 12602 haddr = ha->addr; 12603 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 12604 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 12605 update = true; 12606 } 12607 off += ETH_ALEN; 12608 mc_count++; 12609 } 12610 if (mc_count) 12611 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 12612 12613 if (mc_count != vnic->mc_list_count) { 12614 vnic->mc_list_count = mc_count; 12615 update = true; 12616 } 12617 return update; 12618 } 12619 12620 static bool bnxt_uc_list_updated(struct bnxt *bp) 12621 { 12622 struct net_device *dev = bp->dev; 12623 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12624 struct netdev_hw_addr *ha; 12625 int off = 0; 12626 12627 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 12628 return true; 12629 12630 netdev_for_each_uc_addr(ha, dev) { 12631 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 12632 return true; 12633 12634 off += ETH_ALEN; 12635 } 12636 return false; 12637 } 12638 12639 static void bnxt_set_rx_mode(struct net_device *dev) 12640 { 12641 struct bnxt *bp = netdev_priv(dev); 12642 struct bnxt_vnic_info *vnic; 12643 bool mc_update = false; 12644 bool uc_update; 12645 u32 mask; 12646 12647 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 12648 return; 12649 12650 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12651 mask = vnic->rx_mask; 12652 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 12653 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 12654 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 12655 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 12656 12657 if (dev->flags & IFF_PROMISC) 12658 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 12659 12660 uc_update = bnxt_uc_list_updated(bp); 12661 12662 if (dev->flags & IFF_BROADCAST) 12663 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 12664 if (dev->flags & IFF_ALLMULTI) { 12665 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 12666 vnic->mc_list_count = 0; 12667 } else if (dev->flags & IFF_MULTICAST) { 12668 mc_update = bnxt_mc_list_updated(bp, &mask); 12669 } 12670 12671 if (mask != vnic->rx_mask || uc_update || mc_update) { 12672 vnic->rx_mask = mask; 12673 12674 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 12675 } 12676 } 12677 12678 static int bnxt_cfg_rx_mode(struct bnxt *bp) 12679 { 12680 struct net_device *dev = bp->dev; 12681 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12682 struct netdev_hw_addr *ha; 12683 int i, off = 0, rc; 12684 bool uc_update; 12685 12686 netif_addr_lock_bh(dev); 12687 uc_update = bnxt_uc_list_updated(bp); 12688 netif_addr_unlock_bh(dev); 12689 12690 if (!uc_update) 12691 goto skip_uc; 12692 12693 for (i = 1; i < vnic->uc_filter_count; i++) { 12694 struct bnxt_l2_filter *fltr = vnic->l2_filters[i]; 12695 12696 bnxt_hwrm_l2_filter_free(bp, fltr); 12697 bnxt_del_l2_filter(bp, fltr); 12698 } 12699 12700 vnic->uc_filter_count = 1; 12701 12702 netif_addr_lock_bh(dev); 12703 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 12704 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 12705 } else { 12706 netdev_for_each_uc_addr(ha, dev) { 12707 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 12708 off += ETH_ALEN; 12709 vnic->uc_filter_count++; 12710 } 12711 } 12712 netif_addr_unlock_bh(dev); 12713 12714 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 12715 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 12716 if (rc) { 12717 if (BNXT_VF(bp) && rc == -ENODEV) { 12718 if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 12719 netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n"); 12720 else 12721 netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n"); 12722 rc = 0; 12723 } else { 12724 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 12725 } 12726 vnic->uc_filter_count = i; 12727 return rc; 12728 } 12729 } 12730 if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 12731 netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n"); 12732 12733 skip_uc: 12734 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 12735 !bnxt_promisc_ok(bp)) 12736 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 12737 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 12738 if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) { 12739 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 12740 rc); 12741 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 12742 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 12743 vnic->mc_list_count = 0; 12744 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 12745 } 12746 if (rc) 12747 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 12748 rc); 12749 12750 return rc; 12751 } 12752 12753 static bool bnxt_can_reserve_rings(struct bnxt *bp) 12754 { 12755 #ifdef CONFIG_BNXT_SRIOV 12756 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 12757 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 12758 12759 /* No minimum rings were provisioned by the PF. Don't 12760 * reserve rings by default when device is down. 12761 */ 12762 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 12763 return true; 12764 12765 if (!netif_running(bp->dev)) 12766 return false; 12767 } 12768 #endif 12769 return true; 12770 } 12771 12772 /* If the chip and firmware supports RFS */ 12773 static bool bnxt_rfs_supported(struct bnxt *bp) 12774 { 12775 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 12776 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 12777 return true; 12778 return false; 12779 } 12780 /* 212 firmware is broken for aRFS */ 12781 if (BNXT_FW_MAJ(bp) == 212) 12782 return false; 12783 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 12784 return true; 12785 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 12786 return true; 12787 return false; 12788 } 12789 12790 /* If runtime conditions support RFS */ 12791 bool bnxt_rfs_capable(struct bnxt *bp, bool new_rss_ctx) 12792 { 12793 struct bnxt_hw_rings hwr = {0}; 12794 int max_vnics, max_rss_ctxs; 12795 12796 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 12797 !BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 12798 return bnxt_rfs_supported(bp); 12799 12800 if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings) 12801 return false; 12802 12803 hwr.grp = bp->rx_nr_rings; 12804 hwr.vnic = bnxt_get_total_vnics(bp, bp->rx_nr_rings); 12805 if (new_rss_ctx) 12806 hwr.vnic++; 12807 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 12808 max_vnics = bnxt_get_max_func_vnics(bp); 12809 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 12810 12811 if (hwr.vnic > max_vnics || hwr.rss_ctx > max_rss_ctxs) { 12812 if (bp->rx_nr_rings > 1) 12813 netdev_warn(bp->dev, 12814 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 12815 min(max_rss_ctxs - 1, max_vnics - 1)); 12816 return false; 12817 } 12818 12819 if (!BNXT_NEW_RM(bp)) 12820 return true; 12821 12822 if (hwr.vnic == bp->hw_resc.resv_vnics && 12823 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 12824 return true; 12825 12826 bnxt_hwrm_reserve_rings(bp, &hwr); 12827 if (hwr.vnic <= bp->hw_resc.resv_vnics && 12828 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 12829 return true; 12830 12831 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 12832 hwr.vnic = 1; 12833 hwr.rss_ctx = 0; 12834 bnxt_hwrm_reserve_rings(bp, &hwr); 12835 return false; 12836 } 12837 12838 static netdev_features_t bnxt_fix_features(struct net_device *dev, 12839 netdev_features_t features) 12840 { 12841 struct bnxt *bp = netdev_priv(dev); 12842 netdev_features_t vlan_features; 12843 12844 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp, false)) 12845 features &= ~NETIF_F_NTUPLE; 12846 12847 if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog) 12848 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12849 12850 if (!(features & NETIF_F_GRO)) 12851 features &= ~NETIF_F_GRO_HW; 12852 12853 if (features & NETIF_F_GRO_HW) 12854 features &= ~NETIF_F_LRO; 12855 12856 /* Both CTAG and STAG VLAN accelaration on the RX side have to be 12857 * turned on or off together. 12858 */ 12859 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 12860 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 12861 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 12862 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 12863 else if (vlan_features) 12864 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 12865 } 12866 #ifdef CONFIG_BNXT_SRIOV 12867 if (BNXT_VF(bp) && bp->vf.vlan) 12868 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 12869 #endif 12870 return features; 12871 } 12872 12873 static int bnxt_reinit_features(struct bnxt *bp, bool irq_re_init, 12874 bool link_re_init, u32 flags, bool update_tpa) 12875 { 12876 bnxt_close_nic(bp, irq_re_init, link_re_init); 12877 bp->flags = flags; 12878 if (update_tpa) 12879 bnxt_set_ring_params(bp); 12880 return bnxt_open_nic(bp, irq_re_init, link_re_init); 12881 } 12882 12883 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 12884 { 12885 bool update_tpa = false, update_ntuple = false; 12886 struct bnxt *bp = netdev_priv(dev); 12887 u32 flags = bp->flags; 12888 u32 changes; 12889 int rc = 0; 12890 bool re_init = false; 12891 12892 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 12893 if (features & NETIF_F_GRO_HW) 12894 flags |= BNXT_FLAG_GRO; 12895 else if (features & NETIF_F_LRO) 12896 flags |= BNXT_FLAG_LRO; 12897 12898 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 12899 flags &= ~BNXT_FLAG_TPA; 12900 12901 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 12902 flags |= BNXT_FLAG_STRIP_VLAN; 12903 12904 if (features & NETIF_F_NTUPLE) 12905 flags |= BNXT_FLAG_RFS; 12906 else 12907 bnxt_clear_usr_fltrs(bp, true); 12908 12909 changes = flags ^ bp->flags; 12910 if (changes & BNXT_FLAG_TPA) { 12911 update_tpa = true; 12912 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 12913 (flags & BNXT_FLAG_TPA) == 0 || 12914 (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 12915 re_init = true; 12916 } 12917 12918 if (changes & ~BNXT_FLAG_TPA) 12919 re_init = true; 12920 12921 if (changes & BNXT_FLAG_RFS) 12922 update_ntuple = true; 12923 12924 if (flags != bp->flags) { 12925 u32 old_flags = bp->flags; 12926 12927 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 12928 bp->flags = flags; 12929 if (update_tpa) 12930 bnxt_set_ring_params(bp); 12931 return rc; 12932 } 12933 12934 if (update_ntuple) 12935 return bnxt_reinit_features(bp, true, false, flags, update_tpa); 12936 12937 if (re_init) 12938 return bnxt_reinit_features(bp, false, false, flags, update_tpa); 12939 12940 if (update_tpa) { 12941 bp->flags = flags; 12942 rc = bnxt_set_tpa(bp, 12943 (flags & BNXT_FLAG_TPA) ? 12944 true : false); 12945 if (rc) 12946 bp->flags = old_flags; 12947 } 12948 } 12949 return rc; 12950 } 12951 12952 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, 12953 u8 **nextp) 12954 { 12955 struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); 12956 struct hop_jumbo_hdr *jhdr; 12957 int hdr_count = 0; 12958 u8 *nexthdr; 12959 int start; 12960 12961 /* Check that there are at most 2 IPv6 extension headers, no 12962 * fragment header, and each is <= 64 bytes. 12963 */ 12964 start = nw_off + sizeof(*ip6h); 12965 nexthdr = &ip6h->nexthdr; 12966 while (ipv6_ext_hdr(*nexthdr)) { 12967 struct ipv6_opt_hdr *hp; 12968 int hdrlen; 12969 12970 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || 12971 *nexthdr == NEXTHDR_FRAGMENT) 12972 return false; 12973 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, 12974 skb_headlen(skb), NULL); 12975 if (!hp) 12976 return false; 12977 if (*nexthdr == NEXTHDR_AUTH) 12978 hdrlen = ipv6_authlen(hp); 12979 else 12980 hdrlen = ipv6_optlen(hp); 12981 12982 if (hdrlen > 64) 12983 return false; 12984 12985 /* The ext header may be a hop-by-hop header inserted for 12986 * big TCP purposes. This will be removed before sending 12987 * from NIC, so do not count it. 12988 */ 12989 if (*nexthdr == NEXTHDR_HOP) { 12990 if (likely(skb->len <= GRO_LEGACY_MAX_SIZE)) 12991 goto increment_hdr; 12992 12993 jhdr = (struct hop_jumbo_hdr *)hp; 12994 if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 || 12995 jhdr->nexthdr != IPPROTO_TCP) 12996 goto increment_hdr; 12997 12998 goto next_hdr; 12999 } 13000 increment_hdr: 13001 hdr_count++; 13002 next_hdr: 13003 nexthdr = &hp->nexthdr; 13004 start += hdrlen; 13005 } 13006 if (nextp) { 13007 /* Caller will check inner protocol */ 13008 if (skb->encapsulation) { 13009 *nextp = nexthdr; 13010 return true; 13011 } 13012 *nextp = NULL; 13013 } 13014 /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ 13015 return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; 13016 } 13017 13018 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 13019 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) 13020 { 13021 struct udphdr *uh = udp_hdr(skb); 13022 __be16 udp_port = uh->dest; 13023 13024 if (udp_port != bp->vxlan_port && udp_port != bp->nge_port && 13025 udp_port != bp->vxlan_gpe_port) 13026 return false; 13027 if (skb->inner_protocol == htons(ETH_P_TEB)) { 13028 struct ethhdr *eh = inner_eth_hdr(skb); 13029 13030 switch (eh->h_proto) { 13031 case htons(ETH_P_IP): 13032 return true; 13033 case htons(ETH_P_IPV6): 13034 return bnxt_exthdr_check(bp, skb, 13035 skb_inner_network_offset(skb), 13036 NULL); 13037 } 13038 } else if (skb->inner_protocol == htons(ETH_P_IP)) { 13039 return true; 13040 } else if (skb->inner_protocol == htons(ETH_P_IPV6)) { 13041 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 13042 NULL); 13043 } 13044 return false; 13045 } 13046 13047 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) 13048 { 13049 switch (l4_proto) { 13050 case IPPROTO_UDP: 13051 return bnxt_udp_tunl_check(bp, skb); 13052 case IPPROTO_IPIP: 13053 return true; 13054 case IPPROTO_GRE: { 13055 switch (skb->inner_protocol) { 13056 default: 13057 return false; 13058 case htons(ETH_P_IP): 13059 return true; 13060 case htons(ETH_P_IPV6): 13061 fallthrough; 13062 } 13063 } 13064 case IPPROTO_IPV6: 13065 /* Check ext headers of inner ipv6 */ 13066 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 13067 NULL); 13068 } 13069 return false; 13070 } 13071 13072 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 13073 struct net_device *dev, 13074 netdev_features_t features) 13075 { 13076 struct bnxt *bp = netdev_priv(dev); 13077 u8 *l4_proto; 13078 13079 features = vlan_features_check(skb, features); 13080 switch (vlan_get_protocol(skb)) { 13081 case htons(ETH_P_IP): 13082 if (!skb->encapsulation) 13083 return features; 13084 l4_proto = &ip_hdr(skb)->protocol; 13085 if (bnxt_tunl_check(bp, skb, *l4_proto)) 13086 return features; 13087 break; 13088 case htons(ETH_P_IPV6): 13089 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), 13090 &l4_proto)) 13091 break; 13092 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) 13093 return features; 13094 break; 13095 } 13096 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 13097 } 13098 13099 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 13100 u32 *reg_buf) 13101 { 13102 struct hwrm_dbg_read_direct_output *resp; 13103 struct hwrm_dbg_read_direct_input *req; 13104 __le32 *dbg_reg_buf; 13105 dma_addr_t mapping; 13106 int rc, i; 13107 13108 rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT); 13109 if (rc) 13110 return rc; 13111 13112 dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4, 13113 &mapping); 13114 if (!dbg_reg_buf) { 13115 rc = -ENOMEM; 13116 goto dbg_rd_reg_exit; 13117 } 13118 13119 req->host_dest_addr = cpu_to_le64(mapping); 13120 13121 resp = hwrm_req_hold(bp, req); 13122 req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 13123 req->read_len32 = cpu_to_le32(num_words); 13124 13125 rc = hwrm_req_send(bp, req); 13126 if (rc || resp->error_code) { 13127 rc = -EIO; 13128 goto dbg_rd_reg_exit; 13129 } 13130 for (i = 0; i < num_words; i++) 13131 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 13132 13133 dbg_rd_reg_exit: 13134 hwrm_req_drop(bp, req); 13135 return rc; 13136 } 13137 13138 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 13139 u32 ring_id, u32 *prod, u32 *cons) 13140 { 13141 struct hwrm_dbg_ring_info_get_output *resp; 13142 struct hwrm_dbg_ring_info_get_input *req; 13143 int rc; 13144 13145 rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET); 13146 if (rc) 13147 return rc; 13148 13149 req->ring_type = ring_type; 13150 req->fw_ring_id = cpu_to_le32(ring_id); 13151 resp = hwrm_req_hold(bp, req); 13152 rc = hwrm_req_send(bp, req); 13153 if (!rc) { 13154 *prod = le32_to_cpu(resp->producer_index); 13155 *cons = le32_to_cpu(resp->consumer_index); 13156 } 13157 hwrm_req_drop(bp, req); 13158 return rc; 13159 } 13160 13161 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 13162 { 13163 struct bnxt_tx_ring_info *txr; 13164 int i = bnapi->index, j; 13165 13166 bnxt_for_each_napi_tx(j, bnapi, txr) 13167 netdev_info(bnapi->bp->dev, "[%d.%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 13168 i, j, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 13169 txr->tx_cons); 13170 } 13171 13172 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 13173 { 13174 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 13175 int i = bnapi->index; 13176 13177 if (!rxr) 13178 return; 13179 13180 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 13181 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 13182 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 13183 rxr->rx_sw_agg_prod); 13184 } 13185 13186 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 13187 { 13188 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 13189 int i = bnapi->index; 13190 13191 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 13192 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 13193 } 13194 13195 static void bnxt_dbg_dump_states(struct bnxt *bp) 13196 { 13197 int i; 13198 struct bnxt_napi *bnapi; 13199 13200 for (i = 0; i < bp->cp_nr_rings; i++) { 13201 bnapi = bp->bnapi[i]; 13202 if (netif_msg_drv(bp)) { 13203 bnxt_dump_tx_sw_state(bnapi); 13204 bnxt_dump_rx_sw_state(bnapi); 13205 bnxt_dump_cp_sw_state(bnapi); 13206 } 13207 } 13208 } 13209 13210 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 13211 { 13212 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 13213 struct hwrm_ring_reset_input *req; 13214 struct bnxt_napi *bnapi = rxr->bnapi; 13215 struct bnxt_cp_ring_info *cpr; 13216 u16 cp_ring_id; 13217 int rc; 13218 13219 rc = hwrm_req_init(bp, req, HWRM_RING_RESET); 13220 if (rc) 13221 return rc; 13222 13223 cpr = &bnapi->cp_ring; 13224 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 13225 req->cmpl_ring = cpu_to_le16(cp_ring_id); 13226 req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 13227 req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 13228 return hwrm_req_send_silent(bp, req); 13229 } 13230 13231 static void bnxt_reset_task(struct bnxt *bp, bool silent) 13232 { 13233 if (!silent) 13234 bnxt_dbg_dump_states(bp); 13235 if (netif_running(bp->dev)) { 13236 bnxt_close_nic(bp, !silent, false); 13237 bnxt_open_nic(bp, !silent, false); 13238 } 13239 } 13240 13241 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 13242 { 13243 struct bnxt *bp = netdev_priv(dev); 13244 13245 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 13246 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 13247 } 13248 13249 static void bnxt_fw_health_check(struct bnxt *bp) 13250 { 13251 struct bnxt_fw_health *fw_health = bp->fw_health; 13252 struct pci_dev *pdev = bp->pdev; 13253 u32 val; 13254 13255 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 13256 return; 13257 13258 /* Make sure it is enabled before checking the tmr_counter. */ 13259 smp_rmb(); 13260 if (fw_health->tmr_counter) { 13261 fw_health->tmr_counter--; 13262 return; 13263 } 13264 13265 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 13266 if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) { 13267 fw_health->arrests++; 13268 goto fw_reset; 13269 } 13270 13271 fw_health->last_fw_heartbeat = val; 13272 13273 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 13274 if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) { 13275 fw_health->discoveries++; 13276 goto fw_reset; 13277 } 13278 13279 fw_health->tmr_counter = fw_health->tmr_multiplier; 13280 return; 13281 13282 fw_reset: 13283 bnxt_queue_sp_work(bp, BNXT_FW_EXCEPTION_SP_EVENT); 13284 } 13285 13286 static void bnxt_timer(struct timer_list *t) 13287 { 13288 struct bnxt *bp = from_timer(bp, t, timer); 13289 struct net_device *dev = bp->dev; 13290 13291 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 13292 return; 13293 13294 if (atomic_read(&bp->intr_sem) != 0) 13295 goto bnxt_restart_timer; 13296 13297 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 13298 bnxt_fw_health_check(bp); 13299 13300 if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) 13301 bnxt_queue_sp_work(bp, BNXT_PERIODIC_STATS_SP_EVENT); 13302 13303 if (bnxt_tc_flower_enabled(bp)) 13304 bnxt_queue_sp_work(bp, BNXT_FLOW_STATS_SP_EVENT); 13305 13306 #ifdef CONFIG_RFS_ACCEL 13307 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) 13308 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 13309 #endif /*CONFIG_RFS_ACCEL*/ 13310 13311 if (bp->link_info.phy_retry) { 13312 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 13313 bp->link_info.phy_retry = false; 13314 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 13315 } else { 13316 bnxt_queue_sp_work(bp, BNXT_UPDATE_PHY_SP_EVENT); 13317 } 13318 } 13319 13320 if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 13321 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 13322 13323 if ((BNXT_CHIP_P5(bp)) && !bp->chip_rev && netif_carrier_ok(dev)) 13324 bnxt_queue_sp_work(bp, BNXT_RING_COAL_NOW_SP_EVENT); 13325 13326 bnxt_restart_timer: 13327 mod_timer(&bp->timer, jiffies + bp->current_interval); 13328 } 13329 13330 static void bnxt_rtnl_lock_sp(struct bnxt *bp) 13331 { 13332 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 13333 * set. If the device is being closed, bnxt_close() may be holding 13334 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we 13335 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). 13336 */ 13337 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13338 rtnl_lock(); 13339 } 13340 13341 static void bnxt_rtnl_unlock_sp(struct bnxt *bp) 13342 { 13343 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13344 rtnl_unlock(); 13345 } 13346 13347 /* Only called from bnxt_sp_task() */ 13348 static void bnxt_reset(struct bnxt *bp, bool silent) 13349 { 13350 bnxt_rtnl_lock_sp(bp); 13351 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 13352 bnxt_reset_task(bp, silent); 13353 bnxt_rtnl_unlock_sp(bp); 13354 } 13355 13356 /* Only called from bnxt_sp_task() */ 13357 static void bnxt_rx_ring_reset(struct bnxt *bp) 13358 { 13359 int i; 13360 13361 bnxt_rtnl_lock_sp(bp); 13362 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13363 bnxt_rtnl_unlock_sp(bp); 13364 return; 13365 } 13366 /* Disable and flush TPA before resetting the RX ring */ 13367 if (bp->flags & BNXT_FLAG_TPA) 13368 bnxt_set_tpa(bp, false); 13369 for (i = 0; i < bp->rx_nr_rings; i++) { 13370 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 13371 struct bnxt_cp_ring_info *cpr; 13372 int rc; 13373 13374 if (!rxr->bnapi->in_reset) 13375 continue; 13376 13377 rc = bnxt_hwrm_rx_ring_reset(bp, i); 13378 if (rc) { 13379 if (rc == -EINVAL || rc == -EOPNOTSUPP) 13380 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 13381 else 13382 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 13383 rc); 13384 bnxt_reset_task(bp, true); 13385 break; 13386 } 13387 bnxt_free_one_rx_ring_skbs(bp, i); 13388 rxr->rx_prod = 0; 13389 rxr->rx_agg_prod = 0; 13390 rxr->rx_sw_agg_prod = 0; 13391 rxr->rx_next_cons = 0; 13392 rxr->bnapi->in_reset = false; 13393 bnxt_alloc_one_rx_ring(bp, i); 13394 cpr = &rxr->bnapi->cp_ring; 13395 cpr->sw_stats->rx.rx_resets++; 13396 if (bp->flags & BNXT_FLAG_AGG_RINGS) 13397 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 13398 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 13399 } 13400 if (bp->flags & BNXT_FLAG_TPA) 13401 bnxt_set_tpa(bp, true); 13402 bnxt_rtnl_unlock_sp(bp); 13403 } 13404 13405 static void bnxt_fw_fatal_close(struct bnxt *bp) 13406 { 13407 bnxt_tx_disable(bp); 13408 bnxt_disable_napi(bp); 13409 bnxt_disable_int_sync(bp); 13410 bnxt_free_irq(bp); 13411 bnxt_clear_int_mode(bp); 13412 pci_disable_device(bp->pdev); 13413 } 13414 13415 static void bnxt_fw_reset_close(struct bnxt *bp) 13416 { 13417 /* When firmware is in fatal state, quiesce device and disable 13418 * bus master to prevent any potential bad DMAs before freeing 13419 * kernel memory. 13420 */ 13421 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 13422 u16 val = 0; 13423 13424 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 13425 if (val == 0xffff) 13426 bp->fw_reset_min_dsecs = 0; 13427 bnxt_fw_fatal_close(bp); 13428 } 13429 __bnxt_close_nic(bp, true, false); 13430 bnxt_vf_reps_free(bp); 13431 bnxt_clear_int_mode(bp); 13432 bnxt_hwrm_func_drv_unrgtr(bp); 13433 if (pci_is_enabled(bp->pdev)) 13434 pci_disable_device(bp->pdev); 13435 bnxt_free_ctx_mem(bp); 13436 } 13437 13438 static bool is_bnxt_fw_ok(struct bnxt *bp) 13439 { 13440 struct bnxt_fw_health *fw_health = bp->fw_health; 13441 bool no_heartbeat = false, has_reset = false; 13442 u32 val; 13443 13444 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 13445 if (val == fw_health->last_fw_heartbeat) 13446 no_heartbeat = true; 13447 13448 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 13449 if (val != fw_health->last_fw_reset_cnt) 13450 has_reset = true; 13451 13452 if (!no_heartbeat && has_reset) 13453 return true; 13454 13455 return false; 13456 } 13457 13458 /* rtnl_lock is acquired before calling this function */ 13459 static void bnxt_force_fw_reset(struct bnxt *bp) 13460 { 13461 struct bnxt_fw_health *fw_health = bp->fw_health; 13462 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 13463 u32 wait_dsecs; 13464 13465 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 13466 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 13467 return; 13468 13469 if (ptp) { 13470 spin_lock_bh(&ptp->ptp_lock); 13471 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13472 spin_unlock_bh(&ptp->ptp_lock); 13473 } else { 13474 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13475 } 13476 bnxt_fw_reset_close(bp); 13477 wait_dsecs = fw_health->master_func_wait_dsecs; 13478 if (fw_health->primary) { 13479 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 13480 wait_dsecs = 0; 13481 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 13482 } else { 13483 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 13484 wait_dsecs = fw_health->normal_func_wait_dsecs; 13485 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 13486 } 13487 13488 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 13489 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 13490 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 13491 } 13492 13493 void bnxt_fw_exception(struct bnxt *bp) 13494 { 13495 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 13496 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 13497 bnxt_ulp_stop(bp); 13498 bnxt_rtnl_lock_sp(bp); 13499 bnxt_force_fw_reset(bp); 13500 bnxt_rtnl_unlock_sp(bp); 13501 } 13502 13503 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 13504 * < 0 on error. 13505 */ 13506 static int bnxt_get_registered_vfs(struct bnxt *bp) 13507 { 13508 #ifdef CONFIG_BNXT_SRIOV 13509 int rc; 13510 13511 if (!BNXT_PF(bp)) 13512 return 0; 13513 13514 rc = bnxt_hwrm_func_qcfg(bp); 13515 if (rc) { 13516 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 13517 return rc; 13518 } 13519 if (bp->pf.registered_vfs) 13520 return bp->pf.registered_vfs; 13521 if (bp->sriov_cfg) 13522 return 1; 13523 #endif 13524 return 0; 13525 } 13526 13527 void bnxt_fw_reset(struct bnxt *bp) 13528 { 13529 bnxt_ulp_stop(bp); 13530 bnxt_rtnl_lock_sp(bp); 13531 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 13532 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 13533 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 13534 int n = 0, tmo; 13535 13536 if (ptp) { 13537 spin_lock_bh(&ptp->ptp_lock); 13538 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13539 spin_unlock_bh(&ptp->ptp_lock); 13540 } else { 13541 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13542 } 13543 if (bp->pf.active_vfs && 13544 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 13545 n = bnxt_get_registered_vfs(bp); 13546 if (n < 0) { 13547 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 13548 n); 13549 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13550 dev_close(bp->dev); 13551 goto fw_reset_exit; 13552 } else if (n > 0) { 13553 u16 vf_tmo_dsecs = n * 10; 13554 13555 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 13556 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 13557 bp->fw_reset_state = 13558 BNXT_FW_RESET_STATE_POLL_VF; 13559 bnxt_queue_fw_reset_work(bp, HZ / 10); 13560 goto fw_reset_exit; 13561 } 13562 bnxt_fw_reset_close(bp); 13563 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 13564 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 13565 tmo = HZ / 10; 13566 } else { 13567 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 13568 tmo = bp->fw_reset_min_dsecs * HZ / 10; 13569 } 13570 bnxt_queue_fw_reset_work(bp, tmo); 13571 } 13572 fw_reset_exit: 13573 bnxt_rtnl_unlock_sp(bp); 13574 } 13575 13576 static void bnxt_chk_missed_irq(struct bnxt *bp) 13577 { 13578 int i; 13579 13580 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 13581 return; 13582 13583 for (i = 0; i < bp->cp_nr_rings; i++) { 13584 struct bnxt_napi *bnapi = bp->bnapi[i]; 13585 struct bnxt_cp_ring_info *cpr; 13586 u32 fw_ring_id; 13587 int j; 13588 13589 if (!bnapi) 13590 continue; 13591 13592 cpr = &bnapi->cp_ring; 13593 for (j = 0; j < cpr->cp_ring_count; j++) { 13594 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 13595 u32 val[2]; 13596 13597 if (cpr2->has_more_work || !bnxt_has_work(bp, cpr2)) 13598 continue; 13599 13600 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 13601 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 13602 continue; 13603 } 13604 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 13605 bnxt_dbg_hwrm_ring_info_get(bp, 13606 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 13607 fw_ring_id, &val[0], &val[1]); 13608 cpr->sw_stats->cmn.missed_irqs++; 13609 } 13610 } 13611 } 13612 13613 static void bnxt_cfg_ntp_filters(struct bnxt *); 13614 13615 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 13616 { 13617 struct bnxt_link_info *link_info = &bp->link_info; 13618 13619 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 13620 link_info->autoneg = BNXT_AUTONEG_SPEED; 13621 if (bp->hwrm_spec_code >= 0x10201) { 13622 if (link_info->auto_pause_setting & 13623 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 13624 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 13625 } else { 13626 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 13627 } 13628 bnxt_set_auto_speed(link_info); 13629 } else { 13630 bnxt_set_force_speed(link_info); 13631 link_info->req_duplex = link_info->duplex_setting; 13632 } 13633 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 13634 link_info->req_flow_ctrl = 13635 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 13636 else 13637 link_info->req_flow_ctrl = link_info->force_pause_setting; 13638 } 13639 13640 static void bnxt_fw_echo_reply(struct bnxt *bp) 13641 { 13642 struct bnxt_fw_health *fw_health = bp->fw_health; 13643 struct hwrm_func_echo_response_input *req; 13644 int rc; 13645 13646 rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE); 13647 if (rc) 13648 return; 13649 req->event_data1 = cpu_to_le32(fw_health->echo_req_data1); 13650 req->event_data2 = cpu_to_le32(fw_health->echo_req_data2); 13651 hwrm_req_send(bp, req); 13652 } 13653 13654 static void bnxt_ulp_restart(struct bnxt *bp) 13655 { 13656 bnxt_ulp_stop(bp); 13657 bnxt_ulp_start(bp, 0); 13658 } 13659 13660 static void bnxt_sp_task(struct work_struct *work) 13661 { 13662 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 13663 13664 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13665 smp_mb__after_atomic(); 13666 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13667 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13668 return; 13669 } 13670 13671 if (test_and_clear_bit(BNXT_RESTART_ULP_SP_EVENT, &bp->sp_event)) { 13672 bnxt_ulp_restart(bp); 13673 bnxt_reenable_sriov(bp); 13674 } 13675 13676 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 13677 bnxt_cfg_rx_mode(bp); 13678 13679 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 13680 bnxt_cfg_ntp_filters(bp); 13681 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 13682 bnxt_hwrm_exec_fwd_req(bp); 13683 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 13684 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 13685 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 13686 bnxt_hwrm_port_qstats(bp, 0); 13687 bnxt_hwrm_port_qstats_ext(bp, 0); 13688 bnxt_accumulate_all_stats(bp); 13689 } 13690 13691 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 13692 int rc; 13693 13694 mutex_lock(&bp->link_lock); 13695 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 13696 &bp->sp_event)) 13697 bnxt_hwrm_phy_qcaps(bp); 13698 13699 rc = bnxt_update_link(bp, true); 13700 if (rc) 13701 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 13702 rc); 13703 13704 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 13705 &bp->sp_event)) 13706 bnxt_init_ethtool_link_settings(bp); 13707 mutex_unlock(&bp->link_lock); 13708 } 13709 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 13710 int rc; 13711 13712 mutex_lock(&bp->link_lock); 13713 rc = bnxt_update_phy_setting(bp); 13714 mutex_unlock(&bp->link_lock); 13715 if (rc) { 13716 netdev_warn(bp->dev, "update phy settings retry failed\n"); 13717 } else { 13718 bp->link_info.phy_retry = false; 13719 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 13720 } 13721 } 13722 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 13723 mutex_lock(&bp->link_lock); 13724 bnxt_get_port_module_status(bp); 13725 mutex_unlock(&bp->link_lock); 13726 } 13727 13728 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 13729 bnxt_tc_flow_stats_work(bp); 13730 13731 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 13732 bnxt_chk_missed_irq(bp); 13733 13734 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 13735 bnxt_fw_echo_reply(bp); 13736 13737 if (test_and_clear_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event)) 13738 bnxt_hwmon_notify_event(bp); 13739 13740 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 13741 * must be the last functions to be called before exiting. 13742 */ 13743 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 13744 bnxt_reset(bp, false); 13745 13746 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 13747 bnxt_reset(bp, true); 13748 13749 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 13750 bnxt_rx_ring_reset(bp); 13751 13752 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) { 13753 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) || 13754 test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state)) 13755 bnxt_devlink_health_fw_report(bp); 13756 else 13757 bnxt_fw_reset(bp); 13758 } 13759 13760 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 13761 if (!is_bnxt_fw_ok(bp)) 13762 bnxt_devlink_health_fw_report(bp); 13763 } 13764 13765 smp_mb__before_atomic(); 13766 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13767 } 13768 13769 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 13770 int *max_cp); 13771 13772 /* Under rtnl_lock */ 13773 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 13774 int tx_xdp) 13775 { 13776 int max_rx, max_tx, max_cp, tx_sets = 1, tx_cp; 13777 struct bnxt_hw_rings hwr = {0}; 13778 int rx_rings = rx; 13779 13780 if (tcs) 13781 tx_sets = tcs; 13782 13783 _bnxt_get_max_rings(bp, &max_rx, &max_tx, &max_cp); 13784 13785 if (max_rx < rx_rings) 13786 return -ENOMEM; 13787 13788 if (bp->flags & BNXT_FLAG_AGG_RINGS) 13789 rx_rings <<= 1; 13790 13791 hwr.rx = rx_rings; 13792 hwr.tx = tx * tx_sets + tx_xdp; 13793 if (max_tx < hwr.tx) 13794 return -ENOMEM; 13795 13796 hwr.vnic = bnxt_get_total_vnics(bp, rx); 13797 13798 tx_cp = __bnxt_num_tx_to_cp(bp, hwr.tx, tx_sets, tx_xdp); 13799 hwr.cp = sh ? max_t(int, tx_cp, rx) : tx_cp + rx; 13800 if (max_cp < hwr.cp) 13801 return -ENOMEM; 13802 hwr.stat = hwr.cp; 13803 if (BNXT_NEW_RM(bp)) { 13804 hwr.cp += bnxt_get_ulp_msix_num_in_use(bp); 13805 hwr.stat += bnxt_get_ulp_stat_ctxs_in_use(bp); 13806 hwr.grp = rx; 13807 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 13808 } 13809 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 13810 hwr.cp_p5 = hwr.tx + rx; 13811 return bnxt_hwrm_check_rings(bp, &hwr); 13812 } 13813 13814 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 13815 { 13816 if (bp->bar2) { 13817 pci_iounmap(pdev, bp->bar2); 13818 bp->bar2 = NULL; 13819 } 13820 13821 if (bp->bar1) { 13822 pci_iounmap(pdev, bp->bar1); 13823 bp->bar1 = NULL; 13824 } 13825 13826 if (bp->bar0) { 13827 pci_iounmap(pdev, bp->bar0); 13828 bp->bar0 = NULL; 13829 } 13830 } 13831 13832 static void bnxt_cleanup_pci(struct bnxt *bp) 13833 { 13834 bnxt_unmap_bars(bp, bp->pdev); 13835 pci_release_regions(bp->pdev); 13836 if (pci_is_enabled(bp->pdev)) 13837 pci_disable_device(bp->pdev); 13838 } 13839 13840 static void bnxt_init_dflt_coal(struct bnxt *bp) 13841 { 13842 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 13843 struct bnxt_coal *coal; 13844 u16 flags = 0; 13845 13846 if (coal_cap->cmpl_params & 13847 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 13848 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 13849 13850 /* Tick values in micro seconds. 13851 * 1 coal_buf x bufs_per_record = 1 completion record. 13852 */ 13853 coal = &bp->rx_coal; 13854 coal->coal_ticks = 10; 13855 coal->coal_bufs = 30; 13856 coal->coal_ticks_irq = 1; 13857 coal->coal_bufs_irq = 2; 13858 coal->idle_thresh = 50; 13859 coal->bufs_per_record = 2; 13860 coal->budget = 64; /* NAPI budget */ 13861 coal->flags = flags; 13862 13863 coal = &bp->tx_coal; 13864 coal->coal_ticks = 28; 13865 coal->coal_bufs = 30; 13866 coal->coal_ticks_irq = 2; 13867 coal->coal_bufs_irq = 2; 13868 coal->bufs_per_record = 1; 13869 coal->flags = flags; 13870 13871 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 13872 } 13873 13874 /* FW that pre-reserves 1 VNIC per function */ 13875 static bool bnxt_fw_pre_resv_vnics(struct bnxt *bp) 13876 { 13877 u16 fw_maj = BNXT_FW_MAJ(bp), fw_bld = BNXT_FW_BLD(bp); 13878 13879 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 13880 (fw_maj > 218 || (fw_maj == 218 && fw_bld >= 18))) 13881 return true; 13882 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 13883 (fw_maj > 216 || (fw_maj == 216 && fw_bld >= 172))) 13884 return true; 13885 return false; 13886 } 13887 13888 static int bnxt_fw_init_one_p1(struct bnxt *bp) 13889 { 13890 int rc; 13891 13892 bp->fw_cap = 0; 13893 rc = bnxt_hwrm_ver_get(bp); 13894 /* FW may be unresponsive after FLR. FLR must complete within 100 msec 13895 * so wait before continuing with recovery. 13896 */ 13897 if (rc) 13898 msleep(100); 13899 bnxt_try_map_fw_health_reg(bp); 13900 if (rc) { 13901 rc = bnxt_try_recover_fw(bp); 13902 if (rc) 13903 return rc; 13904 rc = bnxt_hwrm_ver_get(bp); 13905 if (rc) 13906 return rc; 13907 } 13908 13909 bnxt_nvm_cfg_ver_get(bp); 13910 13911 rc = bnxt_hwrm_func_reset(bp); 13912 if (rc) 13913 return -ENODEV; 13914 13915 bnxt_hwrm_fw_set_time(bp); 13916 return 0; 13917 } 13918 13919 static int bnxt_fw_init_one_p2(struct bnxt *bp) 13920 { 13921 int rc; 13922 13923 /* Get the MAX capabilities for this function */ 13924 rc = bnxt_hwrm_func_qcaps(bp); 13925 if (rc) { 13926 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 13927 rc); 13928 return -ENODEV; 13929 } 13930 13931 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 13932 if (rc) 13933 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 13934 rc); 13935 13936 if (bnxt_alloc_fw_health(bp)) { 13937 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 13938 } else { 13939 rc = bnxt_hwrm_error_recovery_qcfg(bp); 13940 if (rc) 13941 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 13942 rc); 13943 } 13944 13945 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 13946 if (rc) 13947 return -ENODEV; 13948 13949 if (bnxt_fw_pre_resv_vnics(bp)) 13950 bp->fw_cap |= BNXT_FW_CAP_PRE_RESV_VNICS; 13951 13952 bnxt_hwrm_func_qcfg(bp); 13953 bnxt_hwrm_vnic_qcaps(bp); 13954 bnxt_hwrm_port_led_qcaps(bp); 13955 bnxt_ethtool_init(bp); 13956 if (bp->fw_cap & BNXT_FW_CAP_PTP) 13957 __bnxt_hwrm_ptp_qcfg(bp); 13958 bnxt_dcb_init(bp); 13959 bnxt_hwmon_init(bp); 13960 return 0; 13961 } 13962 13963 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 13964 { 13965 bp->rss_cap &= ~BNXT_RSS_CAP_UDP_RSS_CAP; 13966 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 13967 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 13968 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 13969 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 13970 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 13971 bp->rss_hash_delta = bp->rss_hash_cfg; 13972 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 13973 bp->rss_cap |= BNXT_RSS_CAP_UDP_RSS_CAP; 13974 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 13975 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 13976 } 13977 } 13978 13979 static void bnxt_set_dflt_rfs(struct bnxt *bp) 13980 { 13981 struct net_device *dev = bp->dev; 13982 13983 dev->hw_features &= ~NETIF_F_NTUPLE; 13984 dev->features &= ~NETIF_F_NTUPLE; 13985 bp->flags &= ~BNXT_FLAG_RFS; 13986 if (bnxt_rfs_supported(bp)) { 13987 dev->hw_features |= NETIF_F_NTUPLE; 13988 if (bnxt_rfs_capable(bp, false)) { 13989 bp->flags |= BNXT_FLAG_RFS; 13990 dev->features |= NETIF_F_NTUPLE; 13991 } 13992 } 13993 } 13994 13995 static void bnxt_fw_init_one_p3(struct bnxt *bp) 13996 { 13997 struct pci_dev *pdev = bp->pdev; 13998 13999 bnxt_set_dflt_rss_hash_type(bp); 14000 bnxt_set_dflt_rfs(bp); 14001 14002 bnxt_get_wol_settings(bp); 14003 if (bp->flags & BNXT_FLAG_WOL_CAP) 14004 device_set_wakeup_enable(&pdev->dev, bp->wol); 14005 else 14006 device_set_wakeup_capable(&pdev->dev, false); 14007 14008 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 14009 bnxt_hwrm_coal_params_qcaps(bp); 14010 } 14011 14012 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); 14013 14014 int bnxt_fw_init_one(struct bnxt *bp) 14015 { 14016 int rc; 14017 14018 rc = bnxt_fw_init_one_p1(bp); 14019 if (rc) { 14020 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 14021 return rc; 14022 } 14023 rc = bnxt_fw_init_one_p2(bp); 14024 if (rc) { 14025 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 14026 return rc; 14027 } 14028 rc = bnxt_probe_phy(bp, false); 14029 if (rc) 14030 return rc; 14031 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 14032 if (rc) 14033 return rc; 14034 14035 bnxt_fw_init_one_p3(bp); 14036 return 0; 14037 } 14038 14039 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 14040 { 14041 struct bnxt_fw_health *fw_health = bp->fw_health; 14042 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 14043 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 14044 u32 reg_type, reg_off, delay_msecs; 14045 14046 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 14047 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 14048 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 14049 switch (reg_type) { 14050 case BNXT_FW_HEALTH_REG_TYPE_CFG: 14051 pci_write_config_dword(bp->pdev, reg_off, val); 14052 break; 14053 case BNXT_FW_HEALTH_REG_TYPE_GRC: 14054 writel(reg_off & BNXT_GRC_BASE_MASK, 14055 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 14056 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 14057 fallthrough; 14058 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 14059 writel(val, bp->bar0 + reg_off); 14060 break; 14061 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 14062 writel(val, bp->bar1 + reg_off); 14063 break; 14064 } 14065 if (delay_msecs) { 14066 pci_read_config_dword(bp->pdev, 0, &val); 14067 msleep(delay_msecs); 14068 } 14069 } 14070 14071 bool bnxt_hwrm_reset_permitted(struct bnxt *bp) 14072 { 14073 struct hwrm_func_qcfg_output *resp; 14074 struct hwrm_func_qcfg_input *req; 14075 bool result = true; /* firmware will enforce if unknown */ 14076 14077 if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF) 14078 return result; 14079 14080 if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG)) 14081 return result; 14082 14083 req->fid = cpu_to_le16(0xffff); 14084 resp = hwrm_req_hold(bp, req); 14085 if (!hwrm_req_send(bp, req)) 14086 result = !!(le16_to_cpu(resp->flags) & 14087 FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED); 14088 hwrm_req_drop(bp, req); 14089 return result; 14090 } 14091 14092 static void bnxt_reset_all(struct bnxt *bp) 14093 { 14094 struct bnxt_fw_health *fw_health = bp->fw_health; 14095 int i, rc; 14096 14097 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 14098 bnxt_fw_reset_via_optee(bp); 14099 bp->fw_reset_timestamp = jiffies; 14100 return; 14101 } 14102 14103 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 14104 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 14105 bnxt_fw_reset_writel(bp, i); 14106 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 14107 struct hwrm_fw_reset_input *req; 14108 14109 rc = hwrm_req_init(bp, req, HWRM_FW_RESET); 14110 if (!rc) { 14111 req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG); 14112 req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 14113 req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 14114 req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 14115 rc = hwrm_req_send(bp, req); 14116 } 14117 if (rc != -ENODEV) 14118 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 14119 } 14120 bp->fw_reset_timestamp = jiffies; 14121 } 14122 14123 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 14124 { 14125 return time_after(jiffies, bp->fw_reset_timestamp + 14126 (bp->fw_reset_max_dsecs * HZ / 10)); 14127 } 14128 14129 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) 14130 { 14131 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14132 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) 14133 bnxt_dl_health_fw_status_update(bp, false); 14134 bp->fw_reset_state = 0; 14135 dev_close(bp->dev); 14136 } 14137 14138 static void bnxt_fw_reset_task(struct work_struct *work) 14139 { 14140 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 14141 int rc = 0; 14142 14143 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 14144 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 14145 return; 14146 } 14147 14148 switch (bp->fw_reset_state) { 14149 case BNXT_FW_RESET_STATE_POLL_VF: { 14150 int n = bnxt_get_registered_vfs(bp); 14151 int tmo; 14152 14153 if (n < 0) { 14154 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 14155 n, jiffies_to_msecs(jiffies - 14156 bp->fw_reset_timestamp)); 14157 goto fw_reset_abort; 14158 } else if (n > 0) { 14159 if (bnxt_fw_reset_timeout(bp)) { 14160 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14161 bp->fw_reset_state = 0; 14162 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 14163 n); 14164 goto ulp_start; 14165 } 14166 bnxt_queue_fw_reset_work(bp, HZ / 10); 14167 return; 14168 } 14169 bp->fw_reset_timestamp = jiffies; 14170 rtnl_lock(); 14171 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 14172 bnxt_fw_reset_abort(bp, rc); 14173 rtnl_unlock(); 14174 goto ulp_start; 14175 } 14176 bnxt_fw_reset_close(bp); 14177 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 14178 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 14179 tmo = HZ / 10; 14180 } else { 14181 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14182 tmo = bp->fw_reset_min_dsecs * HZ / 10; 14183 } 14184 rtnl_unlock(); 14185 bnxt_queue_fw_reset_work(bp, tmo); 14186 return; 14187 } 14188 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 14189 u32 val; 14190 14191 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 14192 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 14193 !bnxt_fw_reset_timeout(bp)) { 14194 bnxt_queue_fw_reset_work(bp, HZ / 5); 14195 return; 14196 } 14197 14198 if (!bp->fw_health->primary) { 14199 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 14200 14201 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14202 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 14203 return; 14204 } 14205 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 14206 } 14207 fallthrough; 14208 case BNXT_FW_RESET_STATE_RESET_FW: 14209 bnxt_reset_all(bp); 14210 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14211 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 14212 return; 14213 case BNXT_FW_RESET_STATE_ENABLE_DEV: 14214 bnxt_inv_fw_health_reg(bp); 14215 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 14216 !bp->fw_reset_min_dsecs) { 14217 u16 val; 14218 14219 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 14220 if (val == 0xffff) { 14221 if (bnxt_fw_reset_timeout(bp)) { 14222 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 14223 rc = -ETIMEDOUT; 14224 goto fw_reset_abort; 14225 } 14226 bnxt_queue_fw_reset_work(bp, HZ / 1000); 14227 return; 14228 } 14229 } 14230 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 14231 clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 14232 if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) && 14233 !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state)) 14234 bnxt_dl_remote_reload(bp); 14235 if (pci_enable_device(bp->pdev)) { 14236 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 14237 rc = -ENODEV; 14238 goto fw_reset_abort; 14239 } 14240 pci_set_master(bp->pdev); 14241 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 14242 fallthrough; 14243 case BNXT_FW_RESET_STATE_POLL_FW: 14244 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 14245 rc = bnxt_hwrm_poll(bp); 14246 if (rc) { 14247 if (bnxt_fw_reset_timeout(bp)) { 14248 netdev_err(bp->dev, "Firmware reset aborted\n"); 14249 goto fw_reset_abort_status; 14250 } 14251 bnxt_queue_fw_reset_work(bp, HZ / 5); 14252 return; 14253 } 14254 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 14255 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 14256 fallthrough; 14257 case BNXT_FW_RESET_STATE_OPENING: 14258 while (!rtnl_trylock()) { 14259 bnxt_queue_fw_reset_work(bp, HZ / 10); 14260 return; 14261 } 14262 rc = bnxt_open(bp->dev); 14263 if (rc) { 14264 netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); 14265 bnxt_fw_reset_abort(bp, rc); 14266 rtnl_unlock(); 14267 goto ulp_start; 14268 } 14269 14270 if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) && 14271 bp->fw_health->enabled) { 14272 bp->fw_health->last_fw_reset_cnt = 14273 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 14274 } 14275 bp->fw_reset_state = 0; 14276 /* Make sure fw_reset_state is 0 before clearing the flag */ 14277 smp_mb__before_atomic(); 14278 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14279 bnxt_ptp_reapply_pps(bp); 14280 clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state); 14281 if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) { 14282 bnxt_dl_health_fw_recovery_done(bp); 14283 bnxt_dl_health_fw_status_update(bp, true); 14284 } 14285 rtnl_unlock(); 14286 bnxt_ulp_start(bp, 0); 14287 bnxt_reenable_sriov(bp); 14288 rtnl_lock(); 14289 bnxt_vf_reps_alloc(bp); 14290 bnxt_vf_reps_open(bp); 14291 rtnl_unlock(); 14292 break; 14293 } 14294 return; 14295 14296 fw_reset_abort_status: 14297 if (bp->fw_health->status_reliable || 14298 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 14299 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 14300 14301 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 14302 } 14303 fw_reset_abort: 14304 rtnl_lock(); 14305 bnxt_fw_reset_abort(bp, rc); 14306 rtnl_unlock(); 14307 ulp_start: 14308 bnxt_ulp_start(bp, rc); 14309 } 14310 14311 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 14312 { 14313 int rc; 14314 struct bnxt *bp = netdev_priv(dev); 14315 14316 SET_NETDEV_DEV(dev, &pdev->dev); 14317 14318 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 14319 rc = pci_enable_device(pdev); 14320 if (rc) { 14321 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 14322 goto init_err; 14323 } 14324 14325 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 14326 dev_err(&pdev->dev, 14327 "Cannot find PCI device base address, aborting\n"); 14328 rc = -ENODEV; 14329 goto init_err_disable; 14330 } 14331 14332 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 14333 if (rc) { 14334 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 14335 goto init_err_disable; 14336 } 14337 14338 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 14339 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 14340 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 14341 rc = -EIO; 14342 goto init_err_release; 14343 } 14344 14345 pci_set_master(pdev); 14346 14347 bp->dev = dev; 14348 bp->pdev = pdev; 14349 14350 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 14351 * determines the BAR size. 14352 */ 14353 bp->bar0 = pci_ioremap_bar(pdev, 0); 14354 if (!bp->bar0) { 14355 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 14356 rc = -ENOMEM; 14357 goto init_err_release; 14358 } 14359 14360 bp->bar2 = pci_ioremap_bar(pdev, 4); 14361 if (!bp->bar2) { 14362 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 14363 rc = -ENOMEM; 14364 goto init_err_release; 14365 } 14366 14367 INIT_WORK(&bp->sp_task, bnxt_sp_task); 14368 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 14369 14370 spin_lock_init(&bp->ntp_fltr_lock); 14371 #if BITS_PER_LONG == 32 14372 spin_lock_init(&bp->db_lock); 14373 #endif 14374 14375 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 14376 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 14377 14378 timer_setup(&bp->timer, bnxt_timer, 0); 14379 bp->current_interval = BNXT_TIMER_INTERVAL; 14380 14381 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 14382 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 14383 14384 clear_bit(BNXT_STATE_OPEN, &bp->state); 14385 return 0; 14386 14387 init_err_release: 14388 bnxt_unmap_bars(bp, pdev); 14389 pci_release_regions(pdev); 14390 14391 init_err_disable: 14392 pci_disable_device(pdev); 14393 14394 init_err: 14395 return rc; 14396 } 14397 14398 /* rtnl_lock held */ 14399 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 14400 { 14401 struct sockaddr *addr = p; 14402 struct bnxt *bp = netdev_priv(dev); 14403 int rc = 0; 14404 14405 if (!is_valid_ether_addr(addr->sa_data)) 14406 return -EADDRNOTAVAIL; 14407 14408 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 14409 return 0; 14410 14411 rc = bnxt_approve_mac(bp, addr->sa_data, true); 14412 if (rc) 14413 return rc; 14414 14415 eth_hw_addr_set(dev, addr->sa_data); 14416 bnxt_clear_usr_fltrs(bp, true); 14417 if (netif_running(dev)) { 14418 bnxt_close_nic(bp, false, false); 14419 rc = bnxt_open_nic(bp, false, false); 14420 } 14421 14422 return rc; 14423 } 14424 14425 /* rtnl_lock held */ 14426 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 14427 { 14428 struct bnxt *bp = netdev_priv(dev); 14429 14430 if (netif_running(dev)) 14431 bnxt_close_nic(bp, true, false); 14432 14433 WRITE_ONCE(dev->mtu, new_mtu); 14434 bnxt_set_ring_params(bp); 14435 14436 if (netif_running(dev)) 14437 return bnxt_open_nic(bp, true, false); 14438 14439 return 0; 14440 } 14441 14442 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 14443 { 14444 struct bnxt *bp = netdev_priv(dev); 14445 bool sh = false; 14446 int rc, tx_cp; 14447 14448 if (tc > bp->max_tc) { 14449 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 14450 tc, bp->max_tc); 14451 return -EINVAL; 14452 } 14453 14454 if (bp->num_tc == tc) 14455 return 0; 14456 14457 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 14458 sh = true; 14459 14460 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 14461 sh, tc, bp->tx_nr_rings_xdp); 14462 if (rc) 14463 return rc; 14464 14465 /* Needs to close the device and do hw resource re-allocations */ 14466 if (netif_running(bp->dev)) 14467 bnxt_close_nic(bp, true, false); 14468 14469 if (tc) { 14470 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 14471 netdev_set_num_tc(dev, tc); 14472 bp->num_tc = tc; 14473 } else { 14474 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 14475 netdev_reset_tc(dev); 14476 bp->num_tc = 0; 14477 } 14478 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 14479 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 14480 bp->cp_nr_rings = sh ? max_t(int, tx_cp, bp->rx_nr_rings) : 14481 tx_cp + bp->rx_nr_rings; 14482 14483 if (netif_running(bp->dev)) 14484 return bnxt_open_nic(bp, true, false); 14485 14486 return 0; 14487 } 14488 14489 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 14490 void *cb_priv) 14491 { 14492 struct bnxt *bp = cb_priv; 14493 14494 if (!bnxt_tc_flower_enabled(bp) || 14495 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 14496 return -EOPNOTSUPP; 14497 14498 switch (type) { 14499 case TC_SETUP_CLSFLOWER: 14500 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 14501 default: 14502 return -EOPNOTSUPP; 14503 } 14504 } 14505 14506 LIST_HEAD(bnxt_block_cb_list); 14507 14508 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 14509 void *type_data) 14510 { 14511 struct bnxt *bp = netdev_priv(dev); 14512 14513 switch (type) { 14514 case TC_SETUP_BLOCK: 14515 return flow_block_cb_setup_simple(type_data, 14516 &bnxt_block_cb_list, 14517 bnxt_setup_tc_block_cb, 14518 bp, bp, true); 14519 case TC_SETUP_QDISC_MQPRIO: { 14520 struct tc_mqprio_qopt *mqprio = type_data; 14521 14522 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 14523 14524 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 14525 } 14526 default: 14527 return -EOPNOTSUPP; 14528 } 14529 } 14530 14531 u32 bnxt_get_ntp_filter_idx(struct bnxt *bp, struct flow_keys *fkeys, 14532 const struct sk_buff *skb) 14533 { 14534 struct bnxt_vnic_info *vnic; 14535 14536 if (skb) 14537 return skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 14538 14539 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 14540 return bnxt_toeplitz(bp, fkeys, (void *)vnic->rss_hash_key); 14541 } 14542 14543 int bnxt_insert_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr, 14544 u32 idx) 14545 { 14546 struct hlist_head *head; 14547 int bit_id; 14548 14549 spin_lock_bh(&bp->ntp_fltr_lock); 14550 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, bp->max_fltr, 0); 14551 if (bit_id < 0) { 14552 spin_unlock_bh(&bp->ntp_fltr_lock); 14553 return -ENOMEM; 14554 } 14555 14556 fltr->base.sw_id = (u16)bit_id; 14557 fltr->base.type = BNXT_FLTR_TYPE_NTUPLE; 14558 fltr->base.flags |= BNXT_ACT_RING_DST; 14559 head = &bp->ntp_fltr_hash_tbl[idx]; 14560 hlist_add_head_rcu(&fltr->base.hash, head); 14561 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 14562 bnxt_insert_usr_fltr(bp, &fltr->base); 14563 bp->ntp_fltr_count++; 14564 spin_unlock_bh(&bp->ntp_fltr_lock); 14565 return 0; 14566 } 14567 14568 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 14569 struct bnxt_ntuple_filter *f2) 14570 { 14571 struct bnxt_flow_masks *masks1 = &f1->fmasks; 14572 struct bnxt_flow_masks *masks2 = &f2->fmasks; 14573 struct flow_keys *keys1 = &f1->fkeys; 14574 struct flow_keys *keys2 = &f2->fkeys; 14575 14576 if (keys1->basic.n_proto != keys2->basic.n_proto || 14577 keys1->basic.ip_proto != keys2->basic.ip_proto) 14578 return false; 14579 14580 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 14581 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 14582 masks1->addrs.v4addrs.src != masks2->addrs.v4addrs.src || 14583 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst || 14584 masks1->addrs.v4addrs.dst != masks2->addrs.v4addrs.dst) 14585 return false; 14586 } else { 14587 if (!ipv6_addr_equal(&keys1->addrs.v6addrs.src, 14588 &keys2->addrs.v6addrs.src) || 14589 !ipv6_addr_equal(&masks1->addrs.v6addrs.src, 14590 &masks2->addrs.v6addrs.src) || 14591 !ipv6_addr_equal(&keys1->addrs.v6addrs.dst, 14592 &keys2->addrs.v6addrs.dst) || 14593 !ipv6_addr_equal(&masks1->addrs.v6addrs.dst, 14594 &masks2->addrs.v6addrs.dst)) 14595 return false; 14596 } 14597 14598 return keys1->ports.src == keys2->ports.src && 14599 masks1->ports.src == masks2->ports.src && 14600 keys1->ports.dst == keys2->ports.dst && 14601 masks1->ports.dst == masks2->ports.dst && 14602 keys1->control.flags == keys2->control.flags && 14603 f1->l2_fltr == f2->l2_fltr; 14604 } 14605 14606 struct bnxt_ntuple_filter * 14607 bnxt_lookup_ntp_filter_from_idx(struct bnxt *bp, 14608 struct bnxt_ntuple_filter *fltr, u32 idx) 14609 { 14610 struct bnxt_ntuple_filter *f; 14611 struct hlist_head *head; 14612 14613 head = &bp->ntp_fltr_hash_tbl[idx]; 14614 hlist_for_each_entry_rcu(f, head, base.hash) { 14615 if (bnxt_fltr_match(f, fltr)) 14616 return f; 14617 } 14618 return NULL; 14619 } 14620 14621 #ifdef CONFIG_RFS_ACCEL 14622 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 14623 u16 rxq_index, u32 flow_id) 14624 { 14625 struct bnxt *bp = netdev_priv(dev); 14626 struct bnxt_ntuple_filter *fltr, *new_fltr; 14627 struct flow_keys *fkeys; 14628 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 14629 struct bnxt_l2_filter *l2_fltr; 14630 int rc = 0, idx; 14631 u32 flags; 14632 14633 if (ether_addr_equal(dev->dev_addr, eth->h_dest)) { 14634 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 14635 atomic_inc(&l2_fltr->refcnt); 14636 } else { 14637 struct bnxt_l2_key key; 14638 14639 ether_addr_copy(key.dst_mac_addr, eth->h_dest); 14640 key.vlan = 0; 14641 l2_fltr = bnxt_lookup_l2_filter_from_key(bp, &key); 14642 if (!l2_fltr) 14643 return -EINVAL; 14644 if (l2_fltr->base.flags & BNXT_ACT_FUNC_DST) { 14645 bnxt_del_l2_filter(bp, l2_fltr); 14646 return -EINVAL; 14647 } 14648 } 14649 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 14650 if (!new_fltr) { 14651 bnxt_del_l2_filter(bp, l2_fltr); 14652 return -ENOMEM; 14653 } 14654 14655 fkeys = &new_fltr->fkeys; 14656 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 14657 rc = -EPROTONOSUPPORT; 14658 goto err_free; 14659 } 14660 14661 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 14662 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 14663 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 14664 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 14665 rc = -EPROTONOSUPPORT; 14666 goto err_free; 14667 } 14668 new_fltr->fmasks = BNXT_FLOW_IPV4_MASK_ALL; 14669 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 14670 if (bp->hwrm_spec_code < 0x10601) { 14671 rc = -EPROTONOSUPPORT; 14672 goto err_free; 14673 } 14674 new_fltr->fmasks = BNXT_FLOW_IPV6_MASK_ALL; 14675 } 14676 flags = fkeys->control.flags; 14677 if (((flags & FLOW_DIS_ENCAPSULATION) && 14678 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 14679 rc = -EPROTONOSUPPORT; 14680 goto err_free; 14681 } 14682 new_fltr->l2_fltr = l2_fltr; 14683 14684 idx = bnxt_get_ntp_filter_idx(bp, fkeys, skb); 14685 rcu_read_lock(); 14686 fltr = bnxt_lookup_ntp_filter_from_idx(bp, new_fltr, idx); 14687 if (fltr) { 14688 rc = fltr->base.sw_id; 14689 rcu_read_unlock(); 14690 goto err_free; 14691 } 14692 rcu_read_unlock(); 14693 14694 new_fltr->flow_id = flow_id; 14695 new_fltr->base.rxq = rxq_index; 14696 rc = bnxt_insert_ntp_filter(bp, new_fltr, idx); 14697 if (!rc) { 14698 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 14699 return new_fltr->base.sw_id; 14700 } 14701 14702 err_free: 14703 bnxt_del_l2_filter(bp, l2_fltr); 14704 kfree(new_fltr); 14705 return rc; 14706 } 14707 #endif 14708 14709 void bnxt_del_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr) 14710 { 14711 spin_lock_bh(&bp->ntp_fltr_lock); 14712 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 14713 spin_unlock_bh(&bp->ntp_fltr_lock); 14714 return; 14715 } 14716 hlist_del_rcu(&fltr->base.hash); 14717 bnxt_del_one_usr_fltr(bp, &fltr->base); 14718 bp->ntp_fltr_count--; 14719 spin_unlock_bh(&bp->ntp_fltr_lock); 14720 bnxt_del_l2_filter(bp, fltr->l2_fltr); 14721 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 14722 kfree_rcu(fltr, base.rcu); 14723 } 14724 14725 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 14726 { 14727 #ifdef CONFIG_RFS_ACCEL 14728 int i; 14729 14730 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 14731 struct hlist_head *head; 14732 struct hlist_node *tmp; 14733 struct bnxt_ntuple_filter *fltr; 14734 int rc; 14735 14736 head = &bp->ntp_fltr_hash_tbl[i]; 14737 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 14738 bool del = false; 14739 14740 if (test_bit(BNXT_FLTR_VALID, &fltr->base.state)) { 14741 if (fltr->base.flags & BNXT_ACT_NO_AGING) 14742 continue; 14743 if (rps_may_expire_flow(bp->dev, fltr->base.rxq, 14744 fltr->flow_id, 14745 fltr->base.sw_id)) { 14746 bnxt_hwrm_cfa_ntuple_filter_free(bp, 14747 fltr); 14748 del = true; 14749 } 14750 } else { 14751 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 14752 fltr); 14753 if (rc) 14754 del = true; 14755 else 14756 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 14757 } 14758 14759 if (del) 14760 bnxt_del_ntp_filter(bp, fltr); 14761 } 14762 } 14763 #endif 14764 } 14765 14766 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 14767 unsigned int entry, struct udp_tunnel_info *ti) 14768 { 14769 struct bnxt *bp = netdev_priv(netdev); 14770 unsigned int cmd; 14771 14772 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 14773 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN; 14774 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 14775 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE; 14776 else 14777 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE; 14778 14779 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd); 14780 } 14781 14782 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 14783 unsigned int entry, struct udp_tunnel_info *ti) 14784 { 14785 struct bnxt *bp = netdev_priv(netdev); 14786 unsigned int cmd; 14787 14788 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 14789 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 14790 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 14791 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 14792 else 14793 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE; 14794 14795 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 14796 } 14797 14798 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 14799 .set_port = bnxt_udp_tunnel_set_port, 14800 .unset_port = bnxt_udp_tunnel_unset_port, 14801 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 14802 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 14803 .tables = { 14804 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 14805 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 14806 }, 14807 }, bnxt_udp_tunnels_p7 = { 14808 .set_port = bnxt_udp_tunnel_set_port, 14809 .unset_port = bnxt_udp_tunnel_unset_port, 14810 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 14811 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 14812 .tables = { 14813 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 14814 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 14815 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN_GPE, }, 14816 }, 14817 }; 14818 14819 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 14820 struct net_device *dev, u32 filter_mask, 14821 int nlflags) 14822 { 14823 struct bnxt *bp = netdev_priv(dev); 14824 14825 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 14826 nlflags, filter_mask, NULL); 14827 } 14828 14829 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 14830 u16 flags, struct netlink_ext_ack *extack) 14831 { 14832 struct bnxt *bp = netdev_priv(dev); 14833 struct nlattr *attr, *br_spec; 14834 int rem, rc = 0; 14835 14836 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 14837 return -EOPNOTSUPP; 14838 14839 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 14840 if (!br_spec) 14841 return -EINVAL; 14842 14843 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 14844 u16 mode; 14845 14846 mode = nla_get_u16(attr); 14847 if (mode == bp->br_mode) 14848 break; 14849 14850 rc = bnxt_hwrm_set_br_mode(bp, mode); 14851 if (!rc) 14852 bp->br_mode = mode; 14853 break; 14854 } 14855 return rc; 14856 } 14857 14858 int bnxt_get_port_parent_id(struct net_device *dev, 14859 struct netdev_phys_item_id *ppid) 14860 { 14861 struct bnxt *bp = netdev_priv(dev); 14862 14863 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 14864 return -EOPNOTSUPP; 14865 14866 /* The PF and it's VF-reps only support the switchdev framework */ 14867 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 14868 return -EOPNOTSUPP; 14869 14870 ppid->id_len = sizeof(bp->dsn); 14871 memcpy(ppid->id, bp->dsn, ppid->id_len); 14872 14873 return 0; 14874 } 14875 14876 static const struct net_device_ops bnxt_netdev_ops = { 14877 .ndo_open = bnxt_open, 14878 .ndo_start_xmit = bnxt_start_xmit, 14879 .ndo_stop = bnxt_close, 14880 .ndo_get_stats64 = bnxt_get_stats64, 14881 .ndo_set_rx_mode = bnxt_set_rx_mode, 14882 .ndo_eth_ioctl = bnxt_ioctl, 14883 .ndo_validate_addr = eth_validate_addr, 14884 .ndo_set_mac_address = bnxt_change_mac_addr, 14885 .ndo_change_mtu = bnxt_change_mtu, 14886 .ndo_fix_features = bnxt_fix_features, 14887 .ndo_set_features = bnxt_set_features, 14888 .ndo_features_check = bnxt_features_check, 14889 .ndo_tx_timeout = bnxt_tx_timeout, 14890 #ifdef CONFIG_BNXT_SRIOV 14891 .ndo_get_vf_config = bnxt_get_vf_config, 14892 .ndo_set_vf_mac = bnxt_set_vf_mac, 14893 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 14894 .ndo_set_vf_rate = bnxt_set_vf_bw, 14895 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 14896 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 14897 .ndo_set_vf_trust = bnxt_set_vf_trust, 14898 #endif 14899 .ndo_setup_tc = bnxt_setup_tc, 14900 #ifdef CONFIG_RFS_ACCEL 14901 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 14902 #endif 14903 .ndo_bpf = bnxt_xdp, 14904 .ndo_xdp_xmit = bnxt_xdp_xmit, 14905 .ndo_bridge_getlink = bnxt_bridge_getlink, 14906 .ndo_bridge_setlink = bnxt_bridge_setlink, 14907 }; 14908 14909 static void bnxt_get_queue_stats_rx(struct net_device *dev, int i, 14910 struct netdev_queue_stats_rx *stats) 14911 { 14912 struct bnxt *bp = netdev_priv(dev); 14913 struct bnxt_cp_ring_info *cpr; 14914 u64 *sw; 14915 14916 cpr = &bp->bnapi[i]->cp_ring; 14917 sw = cpr->stats.sw_stats; 14918 14919 stats->packets = 0; 14920 stats->packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 14921 stats->packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 14922 stats->packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 14923 14924 stats->bytes = 0; 14925 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 14926 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 14927 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 14928 14929 stats->alloc_fail = cpr->sw_stats->rx.rx_oom_discards; 14930 } 14931 14932 static void bnxt_get_queue_stats_tx(struct net_device *dev, int i, 14933 struct netdev_queue_stats_tx *stats) 14934 { 14935 struct bnxt *bp = netdev_priv(dev); 14936 struct bnxt_napi *bnapi; 14937 u64 *sw; 14938 14939 bnapi = bp->tx_ring[bp->tx_ring_map[i]].bnapi; 14940 sw = bnapi->cp_ring.stats.sw_stats; 14941 14942 stats->packets = 0; 14943 stats->packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 14944 stats->packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 14945 stats->packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 14946 14947 stats->bytes = 0; 14948 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 14949 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 14950 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 14951 } 14952 14953 static void bnxt_get_base_stats(struct net_device *dev, 14954 struct netdev_queue_stats_rx *rx, 14955 struct netdev_queue_stats_tx *tx) 14956 { 14957 struct bnxt *bp = netdev_priv(dev); 14958 14959 rx->packets = bp->net_stats_prev.rx_packets; 14960 rx->bytes = bp->net_stats_prev.rx_bytes; 14961 rx->alloc_fail = bp->ring_err_stats_prev.rx_total_oom_discards; 14962 14963 tx->packets = bp->net_stats_prev.tx_packets; 14964 tx->bytes = bp->net_stats_prev.tx_bytes; 14965 } 14966 14967 static const struct netdev_stat_ops bnxt_stat_ops = { 14968 .get_queue_stats_rx = bnxt_get_queue_stats_rx, 14969 .get_queue_stats_tx = bnxt_get_queue_stats_tx, 14970 .get_base_stats = bnxt_get_base_stats, 14971 }; 14972 14973 static int bnxt_alloc_rx_agg_bmap(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 14974 { 14975 u16 mem_size; 14976 14977 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 14978 mem_size = rxr->rx_agg_bmap_size / 8; 14979 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 14980 if (!rxr->rx_agg_bmap) 14981 return -ENOMEM; 14982 14983 return 0; 14984 } 14985 14986 static int bnxt_queue_mem_alloc(struct net_device *dev, void *qmem, int idx) 14987 { 14988 struct bnxt_rx_ring_info *rxr, *clone; 14989 struct bnxt *bp = netdev_priv(dev); 14990 struct bnxt_ring_struct *ring; 14991 int rc; 14992 14993 rxr = &bp->rx_ring[idx]; 14994 clone = qmem; 14995 memcpy(clone, rxr, sizeof(*rxr)); 14996 bnxt_init_rx_ring_struct(bp, clone); 14997 bnxt_reset_rx_ring_struct(bp, clone); 14998 14999 clone->rx_prod = 0; 15000 clone->rx_agg_prod = 0; 15001 clone->rx_sw_agg_prod = 0; 15002 clone->rx_next_cons = 0; 15003 15004 rc = bnxt_alloc_rx_page_pool(bp, clone, rxr->page_pool->p.nid); 15005 if (rc) 15006 return rc; 15007 15008 ring = &clone->rx_ring_struct; 15009 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 15010 if (rc) 15011 goto err_free_rx_ring; 15012 15013 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 15014 ring = &clone->rx_agg_ring_struct; 15015 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 15016 if (rc) 15017 goto err_free_rx_agg_ring; 15018 15019 rc = bnxt_alloc_rx_agg_bmap(bp, clone); 15020 if (rc) 15021 goto err_free_rx_agg_ring; 15022 } 15023 15024 bnxt_init_one_rx_ring_rxbd(bp, clone); 15025 bnxt_init_one_rx_agg_ring_rxbd(bp, clone); 15026 15027 bnxt_alloc_one_rx_ring_skb(bp, clone, idx); 15028 if (bp->flags & BNXT_FLAG_AGG_RINGS) 15029 bnxt_alloc_one_rx_ring_page(bp, clone, idx); 15030 15031 return 0; 15032 15033 err_free_rx_agg_ring: 15034 bnxt_free_ring(bp, &clone->rx_agg_ring_struct.ring_mem); 15035 err_free_rx_ring: 15036 bnxt_free_ring(bp, &clone->rx_ring_struct.ring_mem); 15037 clone->page_pool->p.napi = NULL; 15038 page_pool_destroy(clone->page_pool); 15039 clone->page_pool = NULL; 15040 return rc; 15041 } 15042 15043 static void bnxt_queue_mem_free(struct net_device *dev, void *qmem) 15044 { 15045 struct bnxt_rx_ring_info *rxr = qmem; 15046 struct bnxt *bp = netdev_priv(dev); 15047 struct bnxt_ring_struct *ring; 15048 15049 bnxt_free_one_rx_ring(bp, rxr); 15050 bnxt_free_one_rx_agg_ring(bp, rxr); 15051 15052 /* At this point, this NAPI instance has another page pool associated 15053 * with it. Disconnect here before freeing the old page pool to avoid 15054 * warnings. 15055 */ 15056 rxr->page_pool->p.napi = NULL; 15057 page_pool_destroy(rxr->page_pool); 15058 rxr->page_pool = NULL; 15059 15060 ring = &rxr->rx_ring_struct; 15061 bnxt_free_ring(bp, &ring->ring_mem); 15062 15063 ring = &rxr->rx_agg_ring_struct; 15064 bnxt_free_ring(bp, &ring->ring_mem); 15065 15066 kfree(rxr->rx_agg_bmap); 15067 rxr->rx_agg_bmap = NULL; 15068 } 15069 15070 static void bnxt_copy_rx_ring(struct bnxt *bp, 15071 struct bnxt_rx_ring_info *dst, 15072 struct bnxt_rx_ring_info *src) 15073 { 15074 struct bnxt_ring_mem_info *dst_rmem, *src_rmem; 15075 struct bnxt_ring_struct *dst_ring, *src_ring; 15076 int i; 15077 15078 dst_ring = &dst->rx_ring_struct; 15079 dst_rmem = &dst_ring->ring_mem; 15080 src_ring = &src->rx_ring_struct; 15081 src_rmem = &src_ring->ring_mem; 15082 15083 WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages); 15084 WARN_ON(dst_rmem->page_size != src_rmem->page_size); 15085 WARN_ON(dst_rmem->flags != src_rmem->flags); 15086 WARN_ON(dst_rmem->depth != src_rmem->depth); 15087 WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size); 15088 WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem); 15089 15090 dst_rmem->pg_tbl = src_rmem->pg_tbl; 15091 dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map; 15092 *dst_rmem->vmem = *src_rmem->vmem; 15093 for (i = 0; i < dst_rmem->nr_pages; i++) { 15094 dst_rmem->pg_arr[i] = src_rmem->pg_arr[i]; 15095 dst_rmem->dma_arr[i] = src_rmem->dma_arr[i]; 15096 } 15097 15098 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 15099 return; 15100 15101 dst_ring = &dst->rx_agg_ring_struct; 15102 dst_rmem = &dst_ring->ring_mem; 15103 src_ring = &src->rx_agg_ring_struct; 15104 src_rmem = &src_ring->ring_mem; 15105 15106 WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages); 15107 WARN_ON(dst_rmem->page_size != src_rmem->page_size); 15108 WARN_ON(dst_rmem->flags != src_rmem->flags); 15109 WARN_ON(dst_rmem->depth != src_rmem->depth); 15110 WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size); 15111 WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem); 15112 WARN_ON(dst->rx_agg_bmap_size != src->rx_agg_bmap_size); 15113 15114 dst_rmem->pg_tbl = src_rmem->pg_tbl; 15115 dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map; 15116 *dst_rmem->vmem = *src_rmem->vmem; 15117 for (i = 0; i < dst_rmem->nr_pages; i++) { 15118 dst_rmem->pg_arr[i] = src_rmem->pg_arr[i]; 15119 dst_rmem->dma_arr[i] = src_rmem->dma_arr[i]; 15120 } 15121 15122 dst->rx_agg_bmap = src->rx_agg_bmap; 15123 } 15124 15125 static int bnxt_queue_start(struct net_device *dev, void *qmem, int idx) 15126 { 15127 struct bnxt *bp = netdev_priv(dev); 15128 struct bnxt_rx_ring_info *rxr, *clone; 15129 struct bnxt_cp_ring_info *cpr; 15130 int rc; 15131 15132 rxr = &bp->rx_ring[idx]; 15133 clone = qmem; 15134 15135 rxr->rx_prod = clone->rx_prod; 15136 rxr->rx_agg_prod = clone->rx_agg_prod; 15137 rxr->rx_sw_agg_prod = clone->rx_sw_agg_prod; 15138 rxr->rx_next_cons = clone->rx_next_cons; 15139 rxr->page_pool = clone->page_pool; 15140 15141 bnxt_copy_rx_ring(bp, rxr, clone); 15142 15143 rc = bnxt_hwrm_rx_ring_alloc(bp, rxr); 15144 if (rc) 15145 return rc; 15146 rc = bnxt_hwrm_rx_agg_ring_alloc(bp, rxr); 15147 if (rc) 15148 goto err_free_hwrm_rx_ring; 15149 15150 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 15151 if (bp->flags & BNXT_FLAG_AGG_RINGS) 15152 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 15153 15154 napi_enable(&rxr->bnapi->napi); 15155 15156 cpr = &rxr->bnapi->cp_ring; 15157 cpr->sw_stats->rx.rx_resets++; 15158 15159 return 0; 15160 15161 err_free_hwrm_rx_ring: 15162 bnxt_hwrm_rx_ring_free(bp, rxr, false); 15163 return rc; 15164 } 15165 15166 static int bnxt_queue_stop(struct net_device *dev, void *qmem, int idx) 15167 { 15168 struct bnxt *bp = netdev_priv(dev); 15169 struct bnxt_rx_ring_info *rxr; 15170 15171 rxr = &bp->rx_ring[idx]; 15172 napi_disable(&rxr->bnapi->napi); 15173 bnxt_hwrm_rx_ring_free(bp, rxr, false); 15174 bnxt_hwrm_rx_agg_ring_free(bp, rxr, false); 15175 rxr->rx_next_cons = 0; 15176 15177 memcpy(qmem, rxr, sizeof(*rxr)); 15178 bnxt_init_rx_ring_struct(bp, qmem); 15179 15180 return 0; 15181 } 15182 15183 static const struct netdev_queue_mgmt_ops bnxt_queue_mgmt_ops = { 15184 .ndo_queue_mem_size = sizeof(struct bnxt_rx_ring_info), 15185 .ndo_queue_mem_alloc = bnxt_queue_mem_alloc, 15186 .ndo_queue_mem_free = bnxt_queue_mem_free, 15187 .ndo_queue_start = bnxt_queue_start, 15188 .ndo_queue_stop = bnxt_queue_stop, 15189 }; 15190 15191 static void bnxt_remove_one(struct pci_dev *pdev) 15192 { 15193 struct net_device *dev = pci_get_drvdata(pdev); 15194 struct bnxt *bp = netdev_priv(dev); 15195 15196 if (BNXT_PF(bp)) 15197 bnxt_sriov_disable(bp); 15198 15199 bnxt_rdma_aux_device_del(bp); 15200 15201 bnxt_ptp_clear(bp); 15202 unregister_netdev(dev); 15203 15204 bnxt_rdma_aux_device_uninit(bp); 15205 15206 bnxt_free_l2_filters(bp, true); 15207 bnxt_free_ntp_fltrs(bp, true); 15208 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 15209 bnxt_clear_rss_ctxs(bp, true); 15210 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 15211 /* Flush any pending tasks */ 15212 cancel_work_sync(&bp->sp_task); 15213 cancel_delayed_work_sync(&bp->fw_reset_task); 15214 bp->sp_event = 0; 15215 15216 bnxt_dl_fw_reporters_destroy(bp); 15217 bnxt_dl_unregister(bp); 15218 bnxt_shutdown_tc(bp); 15219 15220 bnxt_clear_int_mode(bp); 15221 bnxt_hwrm_func_drv_unrgtr(bp); 15222 bnxt_free_hwrm_resources(bp); 15223 bnxt_hwmon_uninit(bp); 15224 bnxt_ethtool_free(bp); 15225 bnxt_dcb_free(bp); 15226 kfree(bp->ptp_cfg); 15227 bp->ptp_cfg = NULL; 15228 kfree(bp->fw_health); 15229 bp->fw_health = NULL; 15230 bnxt_cleanup_pci(bp); 15231 bnxt_free_ctx_mem(bp); 15232 kfree(bp->rss_indir_tbl); 15233 bp->rss_indir_tbl = NULL; 15234 bnxt_free_port_stats(bp); 15235 free_netdev(dev); 15236 } 15237 15238 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 15239 { 15240 int rc = 0; 15241 struct bnxt_link_info *link_info = &bp->link_info; 15242 15243 bp->phy_flags = 0; 15244 rc = bnxt_hwrm_phy_qcaps(bp); 15245 if (rc) { 15246 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 15247 rc); 15248 return rc; 15249 } 15250 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 15251 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 15252 else 15253 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 15254 if (!fw_dflt) 15255 return 0; 15256 15257 mutex_lock(&bp->link_lock); 15258 rc = bnxt_update_link(bp, false); 15259 if (rc) { 15260 mutex_unlock(&bp->link_lock); 15261 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 15262 rc); 15263 return rc; 15264 } 15265 15266 /* Older firmware does not have supported_auto_speeds, so assume 15267 * that all supported speeds can be autonegotiated. 15268 */ 15269 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 15270 link_info->support_auto_speeds = link_info->support_speeds; 15271 15272 bnxt_init_ethtool_link_settings(bp); 15273 mutex_unlock(&bp->link_lock); 15274 return 0; 15275 } 15276 15277 static int bnxt_get_max_irq(struct pci_dev *pdev) 15278 { 15279 u16 ctrl; 15280 15281 if (!pdev->msix_cap) 15282 return 1; 15283 15284 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 15285 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 15286 } 15287 15288 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 15289 int *max_cp) 15290 { 15291 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 15292 int max_ring_grps = 0, max_irq; 15293 15294 *max_tx = hw_resc->max_tx_rings; 15295 *max_rx = hw_resc->max_rx_rings; 15296 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 15297 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 15298 bnxt_get_ulp_msix_num_in_use(bp), 15299 hw_resc->max_stat_ctxs - 15300 bnxt_get_ulp_stat_ctxs_in_use(bp)); 15301 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 15302 *max_cp = min_t(int, *max_cp, max_irq); 15303 max_ring_grps = hw_resc->max_hw_ring_grps; 15304 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 15305 *max_cp -= 1; 15306 *max_rx -= 2; 15307 } 15308 if (bp->flags & BNXT_FLAG_AGG_RINGS) 15309 *max_rx >>= 1; 15310 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 15311 int rc; 15312 15313 rc = __bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 15314 if (rc) { 15315 *max_rx = 0; 15316 *max_tx = 0; 15317 } 15318 /* On P5 chips, max_cp output param should be available NQs */ 15319 *max_cp = max_irq; 15320 } 15321 *max_rx = min_t(int, *max_rx, max_ring_grps); 15322 } 15323 15324 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 15325 { 15326 int rx, tx, cp; 15327 15328 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 15329 *max_rx = rx; 15330 *max_tx = tx; 15331 if (!rx || !tx || !cp) 15332 return -ENOMEM; 15333 15334 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 15335 } 15336 15337 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 15338 bool shared) 15339 { 15340 int rc; 15341 15342 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 15343 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 15344 /* Not enough rings, try disabling agg rings. */ 15345 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 15346 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 15347 if (rc) { 15348 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 15349 bp->flags |= BNXT_FLAG_AGG_RINGS; 15350 return rc; 15351 } 15352 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 15353 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 15354 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 15355 bnxt_set_ring_params(bp); 15356 } 15357 15358 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 15359 int max_cp, max_stat, max_irq; 15360 15361 /* Reserve minimum resources for RoCE */ 15362 max_cp = bnxt_get_max_func_cp_rings(bp); 15363 max_stat = bnxt_get_max_func_stat_ctxs(bp); 15364 max_irq = bnxt_get_max_func_irqs(bp); 15365 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 15366 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 15367 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 15368 return 0; 15369 15370 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 15371 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 15372 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 15373 max_cp = min_t(int, max_cp, max_irq); 15374 max_cp = min_t(int, max_cp, max_stat); 15375 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 15376 if (rc) 15377 rc = 0; 15378 } 15379 return rc; 15380 } 15381 15382 /* In initial default shared ring setting, each shared ring must have a 15383 * RX/TX ring pair. 15384 */ 15385 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 15386 { 15387 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 15388 bp->rx_nr_rings = bp->cp_nr_rings; 15389 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 15390 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 15391 } 15392 15393 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 15394 { 15395 int dflt_rings, max_rx_rings, max_tx_rings, rc; 15396 int avail_msix; 15397 15398 if (!bnxt_can_reserve_rings(bp)) 15399 return 0; 15400 15401 if (sh) 15402 bp->flags |= BNXT_FLAG_SHARED_RINGS; 15403 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 15404 /* Reduce default rings on multi-port cards so that total default 15405 * rings do not exceed CPU count. 15406 */ 15407 if (bp->port_count > 1) { 15408 int max_rings = 15409 max_t(int, num_online_cpus() / bp->port_count, 1); 15410 15411 dflt_rings = min_t(int, dflt_rings, max_rings); 15412 } 15413 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 15414 if (rc) 15415 return rc; 15416 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 15417 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 15418 if (sh) 15419 bnxt_trim_dflt_sh_rings(bp); 15420 else 15421 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 15422 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 15423 15424 avail_msix = bnxt_get_max_func_irqs(bp) - bp->cp_nr_rings; 15425 if (avail_msix >= BNXT_MIN_ROCE_CP_RINGS) { 15426 int ulp_num_msix = min(avail_msix, bp->ulp_num_msix_want); 15427 15428 bnxt_set_ulp_msix_num(bp, ulp_num_msix); 15429 bnxt_set_dflt_ulp_stat_ctxs(bp); 15430 } 15431 15432 rc = __bnxt_reserve_rings(bp); 15433 if (rc && rc != -ENODEV) 15434 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 15435 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15436 if (sh) 15437 bnxt_trim_dflt_sh_rings(bp); 15438 15439 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 15440 if (bnxt_need_reserve_rings(bp)) { 15441 rc = __bnxt_reserve_rings(bp); 15442 if (rc && rc != -ENODEV) 15443 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 15444 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15445 } 15446 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 15447 bp->rx_nr_rings++; 15448 bp->cp_nr_rings++; 15449 } 15450 if (rc) { 15451 bp->tx_nr_rings = 0; 15452 bp->rx_nr_rings = 0; 15453 } 15454 return rc; 15455 } 15456 15457 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 15458 { 15459 int rc; 15460 15461 if (bp->tx_nr_rings) 15462 return 0; 15463 15464 bnxt_ulp_irq_stop(bp); 15465 bnxt_clear_int_mode(bp); 15466 rc = bnxt_set_dflt_rings(bp, true); 15467 if (rc) { 15468 if (BNXT_VF(bp) && rc == -ENODEV) 15469 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 15470 else 15471 netdev_err(bp->dev, "Not enough rings available.\n"); 15472 goto init_dflt_ring_err; 15473 } 15474 rc = bnxt_init_int_mode(bp); 15475 if (rc) 15476 goto init_dflt_ring_err; 15477 15478 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15479 15480 bnxt_set_dflt_rfs(bp); 15481 15482 init_dflt_ring_err: 15483 bnxt_ulp_irq_restart(bp, rc); 15484 return rc; 15485 } 15486 15487 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 15488 { 15489 int rc; 15490 15491 ASSERT_RTNL(); 15492 bnxt_hwrm_func_qcaps(bp); 15493 15494 if (netif_running(bp->dev)) 15495 __bnxt_close_nic(bp, true, false); 15496 15497 bnxt_ulp_irq_stop(bp); 15498 bnxt_clear_int_mode(bp); 15499 rc = bnxt_init_int_mode(bp); 15500 bnxt_ulp_irq_restart(bp, rc); 15501 15502 if (netif_running(bp->dev)) { 15503 if (rc) 15504 dev_close(bp->dev); 15505 else 15506 rc = bnxt_open_nic(bp, true, false); 15507 } 15508 15509 return rc; 15510 } 15511 15512 static int bnxt_init_mac_addr(struct bnxt *bp) 15513 { 15514 int rc = 0; 15515 15516 if (BNXT_PF(bp)) { 15517 eth_hw_addr_set(bp->dev, bp->pf.mac_addr); 15518 } else { 15519 #ifdef CONFIG_BNXT_SRIOV 15520 struct bnxt_vf_info *vf = &bp->vf; 15521 bool strict_approval = true; 15522 15523 if (is_valid_ether_addr(vf->mac_addr)) { 15524 /* overwrite netdev dev_addr with admin VF MAC */ 15525 eth_hw_addr_set(bp->dev, vf->mac_addr); 15526 /* Older PF driver or firmware may not approve this 15527 * correctly. 15528 */ 15529 strict_approval = false; 15530 } else { 15531 eth_hw_addr_random(bp->dev); 15532 } 15533 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 15534 #endif 15535 } 15536 return rc; 15537 } 15538 15539 static void bnxt_vpd_read_info(struct bnxt *bp) 15540 { 15541 struct pci_dev *pdev = bp->pdev; 15542 unsigned int vpd_size, kw_len; 15543 int pos, size; 15544 u8 *vpd_data; 15545 15546 vpd_data = pci_vpd_alloc(pdev, &vpd_size); 15547 if (IS_ERR(vpd_data)) { 15548 pci_warn(pdev, "Unable to read VPD\n"); 15549 return; 15550 } 15551 15552 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 15553 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); 15554 if (pos < 0) 15555 goto read_sn; 15556 15557 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 15558 memcpy(bp->board_partno, &vpd_data[pos], size); 15559 15560 read_sn: 15561 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 15562 PCI_VPD_RO_KEYWORD_SERIALNO, 15563 &kw_len); 15564 if (pos < 0) 15565 goto exit; 15566 15567 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 15568 memcpy(bp->board_serialno, &vpd_data[pos], size); 15569 exit: 15570 kfree(vpd_data); 15571 } 15572 15573 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 15574 { 15575 struct pci_dev *pdev = bp->pdev; 15576 u64 qword; 15577 15578 qword = pci_get_dsn(pdev); 15579 if (!qword) { 15580 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 15581 return -EOPNOTSUPP; 15582 } 15583 15584 put_unaligned_le64(qword, dsn); 15585 15586 bp->flags |= BNXT_FLAG_DSN_VALID; 15587 return 0; 15588 } 15589 15590 static int bnxt_map_db_bar(struct bnxt *bp) 15591 { 15592 if (!bp->db_size) 15593 return -ENODEV; 15594 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 15595 if (!bp->bar1) 15596 return -ENOMEM; 15597 return 0; 15598 } 15599 15600 void bnxt_print_device_info(struct bnxt *bp) 15601 { 15602 netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n", 15603 board_info[bp->board_idx].name, 15604 (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr); 15605 15606 pcie_print_link_status(bp->pdev); 15607 } 15608 15609 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 15610 { 15611 struct bnxt_hw_resc *hw_resc; 15612 struct net_device *dev; 15613 struct bnxt *bp; 15614 int rc, max_irqs; 15615 15616 if (pci_is_bridge(pdev)) 15617 return -ENODEV; 15618 15619 /* Clear any pending DMA transactions from crash kernel 15620 * while loading driver in capture kernel. 15621 */ 15622 if (is_kdump_kernel()) { 15623 pci_clear_master(pdev); 15624 pcie_flr(pdev); 15625 } 15626 15627 max_irqs = bnxt_get_max_irq(pdev); 15628 dev = alloc_etherdev_mqs(sizeof(*bp), max_irqs * BNXT_MAX_QUEUE, 15629 max_irqs); 15630 if (!dev) 15631 return -ENOMEM; 15632 15633 bp = netdev_priv(dev); 15634 bp->board_idx = ent->driver_data; 15635 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 15636 bnxt_set_max_func_irqs(bp, max_irqs); 15637 15638 if (bnxt_vf_pciid(bp->board_idx)) 15639 bp->flags |= BNXT_FLAG_VF; 15640 15641 /* No devlink port registration in case of a VF */ 15642 if (BNXT_PF(bp)) 15643 SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port); 15644 15645 if (pdev->msix_cap) 15646 bp->flags |= BNXT_FLAG_MSIX_CAP; 15647 15648 rc = bnxt_init_board(pdev, dev); 15649 if (rc < 0) 15650 goto init_err_free; 15651 15652 dev->netdev_ops = &bnxt_netdev_ops; 15653 dev->stat_ops = &bnxt_stat_ops; 15654 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 15655 dev->ethtool_ops = &bnxt_ethtool_ops; 15656 dev->queue_mgmt_ops = &bnxt_queue_mgmt_ops; 15657 pci_set_drvdata(pdev, dev); 15658 15659 rc = bnxt_alloc_hwrm_resources(bp); 15660 if (rc) 15661 goto init_err_pci_clean; 15662 15663 mutex_init(&bp->hwrm_cmd_lock); 15664 mutex_init(&bp->link_lock); 15665 15666 rc = bnxt_fw_init_one_p1(bp); 15667 if (rc) 15668 goto init_err_pci_clean; 15669 15670 if (BNXT_PF(bp)) 15671 bnxt_vpd_read_info(bp); 15672 15673 if (BNXT_CHIP_P5_PLUS(bp)) { 15674 bp->flags |= BNXT_FLAG_CHIP_P5_PLUS; 15675 if (BNXT_CHIP_P7(bp)) 15676 bp->flags |= BNXT_FLAG_CHIP_P7; 15677 } 15678 15679 rc = bnxt_alloc_rss_indir_tbl(bp, NULL); 15680 if (rc) 15681 goto init_err_pci_clean; 15682 15683 rc = bnxt_fw_init_one_p2(bp); 15684 if (rc) 15685 goto init_err_pci_clean; 15686 15687 rc = bnxt_map_db_bar(bp); 15688 if (rc) { 15689 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 15690 rc); 15691 goto init_err_pci_clean; 15692 } 15693 15694 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 15695 NETIF_F_TSO | NETIF_F_TSO6 | 15696 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 15697 NETIF_F_GSO_IPXIP4 | 15698 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 15699 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 15700 NETIF_F_RXCSUM | NETIF_F_GRO; 15701 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 15702 dev->hw_features |= NETIF_F_GSO_UDP_L4; 15703 15704 if (BNXT_SUPPORTS_TPA(bp)) 15705 dev->hw_features |= NETIF_F_LRO; 15706 15707 dev->hw_enc_features = 15708 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 15709 NETIF_F_TSO | NETIF_F_TSO6 | 15710 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 15711 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 15712 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 15713 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 15714 dev->hw_enc_features |= NETIF_F_GSO_UDP_L4; 15715 if (bp->flags & BNXT_FLAG_CHIP_P7) 15716 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels_p7; 15717 else 15718 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 15719 15720 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 15721 NETIF_F_GSO_GRE_CSUM; 15722 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 15723 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 15724 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 15725 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 15726 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 15727 if (BNXT_SUPPORTS_TPA(bp)) 15728 dev->hw_features |= NETIF_F_GRO_HW; 15729 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 15730 if (dev->features & NETIF_F_GRO_HW) 15731 dev->features &= ~NETIF_F_LRO; 15732 dev->priv_flags |= IFF_UNICAST_FLT; 15733 15734 netif_set_tso_max_size(dev, GSO_MAX_SIZE); 15735 if (bp->tso_max_segs) 15736 netif_set_tso_max_segs(dev, bp->tso_max_segs); 15737 15738 dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 15739 NETDEV_XDP_ACT_RX_SG; 15740 15741 #ifdef CONFIG_BNXT_SRIOV 15742 init_waitqueue_head(&bp->sriov_cfg_wait); 15743 #endif 15744 if (BNXT_SUPPORTS_TPA(bp)) { 15745 bp->gro_func = bnxt_gro_func_5730x; 15746 if (BNXT_CHIP_P4(bp)) 15747 bp->gro_func = bnxt_gro_func_5731x; 15748 else if (BNXT_CHIP_P5_PLUS(bp)) 15749 bp->gro_func = bnxt_gro_func_5750x; 15750 } 15751 if (!BNXT_CHIP_P4_PLUS(bp)) 15752 bp->flags |= BNXT_FLAG_DOUBLE_DB; 15753 15754 rc = bnxt_init_mac_addr(bp); 15755 if (rc) { 15756 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 15757 rc = -EADDRNOTAVAIL; 15758 goto init_err_pci_clean; 15759 } 15760 15761 if (BNXT_PF(bp)) { 15762 /* Read the adapter's DSN to use as the eswitch switch_id */ 15763 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 15764 } 15765 15766 /* MTU range: 60 - FW defined max */ 15767 dev->min_mtu = ETH_ZLEN; 15768 dev->max_mtu = bp->max_mtu; 15769 15770 rc = bnxt_probe_phy(bp, true); 15771 if (rc) 15772 goto init_err_pci_clean; 15773 15774 hw_resc = &bp->hw_resc; 15775 bp->max_fltr = hw_resc->max_rx_em_flows + hw_resc->max_rx_wm_flows + 15776 BNXT_L2_FLTR_MAX_FLTR; 15777 /* Older firmware may not report these filters properly */ 15778 if (bp->max_fltr < BNXT_MAX_FLTR) 15779 bp->max_fltr = BNXT_MAX_FLTR; 15780 bnxt_init_l2_fltr_tbl(bp); 15781 bnxt_set_rx_skb_mode(bp, false); 15782 bnxt_set_tpa_flags(bp); 15783 bnxt_set_ring_params(bp); 15784 bnxt_rdma_aux_device_init(bp); 15785 rc = bnxt_set_dflt_rings(bp, true); 15786 if (rc) { 15787 if (BNXT_VF(bp) && rc == -ENODEV) { 15788 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 15789 } else { 15790 netdev_err(bp->dev, "Not enough rings available.\n"); 15791 rc = -ENOMEM; 15792 } 15793 goto init_err_pci_clean; 15794 } 15795 15796 bnxt_fw_init_one_p3(bp); 15797 15798 bnxt_init_dflt_coal(bp); 15799 15800 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 15801 bp->flags |= BNXT_FLAG_STRIP_VLAN; 15802 15803 rc = bnxt_init_int_mode(bp); 15804 if (rc) 15805 goto init_err_pci_clean; 15806 15807 /* No TC has been set yet and rings may have been trimmed due to 15808 * limited MSIX, so we re-initialize the TX rings per TC. 15809 */ 15810 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15811 15812 if (BNXT_PF(bp)) { 15813 if (!bnxt_pf_wq) { 15814 bnxt_pf_wq = 15815 create_singlethread_workqueue("bnxt_pf_wq"); 15816 if (!bnxt_pf_wq) { 15817 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 15818 rc = -ENOMEM; 15819 goto init_err_pci_clean; 15820 } 15821 } 15822 rc = bnxt_init_tc(bp); 15823 if (rc) 15824 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 15825 rc); 15826 } 15827 15828 bnxt_inv_fw_health_reg(bp); 15829 rc = bnxt_dl_register(bp); 15830 if (rc) 15831 goto init_err_dl; 15832 15833 INIT_LIST_HEAD(&bp->usr_fltr_list); 15834 15835 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 15836 bnxt_init_multi_rss_ctx(bp); 15837 15838 15839 rc = register_netdev(dev); 15840 if (rc) 15841 goto init_err_cleanup; 15842 15843 bnxt_dl_fw_reporters_create(bp); 15844 15845 bnxt_rdma_aux_device_add(bp); 15846 15847 bnxt_print_device_info(bp); 15848 15849 pci_save_state(pdev); 15850 15851 return 0; 15852 init_err_cleanup: 15853 bnxt_rdma_aux_device_uninit(bp); 15854 bnxt_dl_unregister(bp); 15855 init_err_dl: 15856 bnxt_shutdown_tc(bp); 15857 bnxt_clear_int_mode(bp); 15858 15859 init_err_pci_clean: 15860 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 15861 bnxt_clear_rss_ctxs(bp, true); 15862 bnxt_hwrm_func_drv_unrgtr(bp); 15863 bnxt_free_hwrm_resources(bp); 15864 bnxt_hwmon_uninit(bp); 15865 bnxt_ethtool_free(bp); 15866 bnxt_ptp_clear(bp); 15867 kfree(bp->ptp_cfg); 15868 bp->ptp_cfg = NULL; 15869 kfree(bp->fw_health); 15870 bp->fw_health = NULL; 15871 bnxt_cleanup_pci(bp); 15872 bnxt_free_ctx_mem(bp); 15873 kfree(bp->rss_indir_tbl); 15874 bp->rss_indir_tbl = NULL; 15875 15876 init_err_free: 15877 free_netdev(dev); 15878 return rc; 15879 } 15880 15881 static void bnxt_shutdown(struct pci_dev *pdev) 15882 { 15883 struct net_device *dev = pci_get_drvdata(pdev); 15884 struct bnxt *bp; 15885 15886 if (!dev) 15887 return; 15888 15889 rtnl_lock(); 15890 bp = netdev_priv(dev); 15891 if (!bp) 15892 goto shutdown_exit; 15893 15894 if (netif_running(dev)) 15895 dev_close(dev); 15896 15897 bnxt_clear_int_mode(bp); 15898 pci_disable_device(pdev); 15899 15900 if (system_state == SYSTEM_POWER_OFF) { 15901 pci_wake_from_d3(pdev, bp->wol); 15902 pci_set_power_state(pdev, PCI_D3hot); 15903 } 15904 15905 shutdown_exit: 15906 rtnl_unlock(); 15907 } 15908 15909 #ifdef CONFIG_PM_SLEEP 15910 static int bnxt_suspend(struct device *device) 15911 { 15912 struct net_device *dev = dev_get_drvdata(device); 15913 struct bnxt *bp = netdev_priv(dev); 15914 int rc = 0; 15915 15916 bnxt_ulp_stop(bp); 15917 15918 rtnl_lock(); 15919 if (netif_running(dev)) { 15920 netif_device_detach(dev); 15921 rc = bnxt_close(dev); 15922 } 15923 bnxt_hwrm_func_drv_unrgtr(bp); 15924 pci_disable_device(bp->pdev); 15925 bnxt_free_ctx_mem(bp); 15926 rtnl_unlock(); 15927 return rc; 15928 } 15929 15930 static int bnxt_resume(struct device *device) 15931 { 15932 struct net_device *dev = dev_get_drvdata(device); 15933 struct bnxt *bp = netdev_priv(dev); 15934 int rc = 0; 15935 15936 rtnl_lock(); 15937 rc = pci_enable_device(bp->pdev); 15938 if (rc) { 15939 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 15940 rc); 15941 goto resume_exit; 15942 } 15943 pci_set_master(bp->pdev); 15944 if (bnxt_hwrm_ver_get(bp)) { 15945 rc = -ENODEV; 15946 goto resume_exit; 15947 } 15948 rc = bnxt_hwrm_func_reset(bp); 15949 if (rc) { 15950 rc = -EBUSY; 15951 goto resume_exit; 15952 } 15953 15954 rc = bnxt_hwrm_func_qcaps(bp); 15955 if (rc) 15956 goto resume_exit; 15957 15958 bnxt_clear_reservations(bp, true); 15959 15960 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 15961 rc = -ENODEV; 15962 goto resume_exit; 15963 } 15964 15965 bnxt_get_wol_settings(bp); 15966 if (netif_running(dev)) { 15967 rc = bnxt_open(dev); 15968 if (!rc) 15969 netif_device_attach(dev); 15970 } 15971 15972 resume_exit: 15973 rtnl_unlock(); 15974 bnxt_ulp_start(bp, rc); 15975 if (!rc) 15976 bnxt_reenable_sriov(bp); 15977 return rc; 15978 } 15979 15980 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 15981 #define BNXT_PM_OPS (&bnxt_pm_ops) 15982 15983 #else 15984 15985 #define BNXT_PM_OPS NULL 15986 15987 #endif /* CONFIG_PM_SLEEP */ 15988 15989 /** 15990 * bnxt_io_error_detected - called when PCI error is detected 15991 * @pdev: Pointer to PCI device 15992 * @state: The current pci connection state 15993 * 15994 * This function is called after a PCI bus error affecting 15995 * this device has been detected. 15996 */ 15997 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 15998 pci_channel_state_t state) 15999 { 16000 struct net_device *netdev = pci_get_drvdata(pdev); 16001 struct bnxt *bp = netdev_priv(netdev); 16002 bool abort = false; 16003 16004 netdev_info(netdev, "PCI I/O error detected\n"); 16005 16006 bnxt_ulp_stop(bp); 16007 16008 rtnl_lock(); 16009 netif_device_detach(netdev); 16010 16011 if (test_and_set_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 16012 netdev_err(bp->dev, "Firmware reset already in progress\n"); 16013 abort = true; 16014 } 16015 16016 if (abort || state == pci_channel_io_perm_failure) { 16017 rtnl_unlock(); 16018 return PCI_ERS_RESULT_DISCONNECT; 16019 } 16020 16021 /* Link is not reliable anymore if state is pci_channel_io_frozen 16022 * so we disable bus master to prevent any potential bad DMAs before 16023 * freeing kernel memory. 16024 */ 16025 if (state == pci_channel_io_frozen) { 16026 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 16027 bnxt_fw_fatal_close(bp); 16028 } 16029 16030 if (netif_running(netdev)) 16031 __bnxt_close_nic(bp, true, true); 16032 16033 if (pci_is_enabled(pdev)) 16034 pci_disable_device(pdev); 16035 bnxt_free_ctx_mem(bp); 16036 rtnl_unlock(); 16037 16038 /* Request a slot slot reset. */ 16039 return PCI_ERS_RESULT_NEED_RESET; 16040 } 16041 16042 /** 16043 * bnxt_io_slot_reset - called after the pci bus has been reset. 16044 * @pdev: Pointer to PCI device 16045 * 16046 * Restart the card from scratch, as if from a cold-boot. 16047 * At this point, the card has exprienced a hard reset, 16048 * followed by fixups by BIOS, and has its config space 16049 * set up identically to what it was at cold boot. 16050 */ 16051 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 16052 { 16053 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 16054 struct net_device *netdev = pci_get_drvdata(pdev); 16055 struct bnxt *bp = netdev_priv(netdev); 16056 int retry = 0; 16057 int err = 0; 16058 int off; 16059 16060 netdev_info(bp->dev, "PCI Slot Reset\n"); 16061 16062 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 16063 test_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state)) 16064 msleep(900); 16065 16066 rtnl_lock(); 16067 16068 if (pci_enable_device(pdev)) { 16069 dev_err(&pdev->dev, 16070 "Cannot re-enable PCI device after reset.\n"); 16071 } else { 16072 pci_set_master(pdev); 16073 /* Upon fatal error, our device internal logic that latches to 16074 * BAR value is getting reset and will restore only upon 16075 * rewritting the BARs. 16076 * 16077 * As pci_restore_state() does not re-write the BARs if the 16078 * value is same as saved value earlier, driver needs to 16079 * write the BARs to 0 to force restore, in case of fatal error. 16080 */ 16081 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 16082 &bp->state)) { 16083 for (off = PCI_BASE_ADDRESS_0; 16084 off <= PCI_BASE_ADDRESS_5; off += 4) 16085 pci_write_config_dword(bp->pdev, off, 0); 16086 } 16087 pci_restore_state(pdev); 16088 pci_save_state(pdev); 16089 16090 bnxt_inv_fw_health_reg(bp); 16091 bnxt_try_map_fw_health_reg(bp); 16092 16093 /* In some PCIe AER scenarios, firmware may take up to 16094 * 10 seconds to become ready in the worst case. 16095 */ 16096 do { 16097 err = bnxt_try_recover_fw(bp); 16098 if (!err) 16099 break; 16100 retry++; 16101 } while (retry < BNXT_FW_SLOT_RESET_RETRY); 16102 16103 if (err) { 16104 dev_err(&pdev->dev, "Firmware not ready\n"); 16105 goto reset_exit; 16106 } 16107 16108 err = bnxt_hwrm_func_reset(bp); 16109 if (!err) 16110 result = PCI_ERS_RESULT_RECOVERED; 16111 16112 bnxt_ulp_irq_stop(bp); 16113 bnxt_clear_int_mode(bp); 16114 err = bnxt_init_int_mode(bp); 16115 bnxt_ulp_irq_restart(bp, err); 16116 } 16117 16118 reset_exit: 16119 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 16120 bnxt_clear_reservations(bp, true); 16121 rtnl_unlock(); 16122 16123 return result; 16124 } 16125 16126 /** 16127 * bnxt_io_resume - called when traffic can start flowing again. 16128 * @pdev: Pointer to PCI device 16129 * 16130 * This callback is called when the error recovery driver tells 16131 * us that its OK to resume normal operation. 16132 */ 16133 static void bnxt_io_resume(struct pci_dev *pdev) 16134 { 16135 struct net_device *netdev = pci_get_drvdata(pdev); 16136 struct bnxt *bp = netdev_priv(netdev); 16137 int err; 16138 16139 netdev_info(bp->dev, "PCI Slot Resume\n"); 16140 rtnl_lock(); 16141 16142 err = bnxt_hwrm_func_qcaps(bp); 16143 if (!err && netif_running(netdev)) 16144 err = bnxt_open(netdev); 16145 16146 if (!err) 16147 netif_device_attach(netdev); 16148 16149 rtnl_unlock(); 16150 bnxt_ulp_start(bp, err); 16151 if (!err) 16152 bnxt_reenable_sriov(bp); 16153 } 16154 16155 static const struct pci_error_handlers bnxt_err_handler = { 16156 .error_detected = bnxt_io_error_detected, 16157 .slot_reset = bnxt_io_slot_reset, 16158 .resume = bnxt_io_resume 16159 }; 16160 16161 static struct pci_driver bnxt_pci_driver = { 16162 .name = DRV_MODULE_NAME, 16163 .id_table = bnxt_pci_tbl, 16164 .probe = bnxt_init_one, 16165 .remove = bnxt_remove_one, 16166 .shutdown = bnxt_shutdown, 16167 .driver.pm = BNXT_PM_OPS, 16168 .err_handler = &bnxt_err_handler, 16169 #if defined(CONFIG_BNXT_SRIOV) 16170 .sriov_configure = bnxt_sriov_configure, 16171 #endif 16172 }; 16173 16174 static int __init bnxt_init(void) 16175 { 16176 int err; 16177 16178 bnxt_debug_init(); 16179 err = pci_register_driver(&bnxt_pci_driver); 16180 if (err) { 16181 bnxt_debug_exit(); 16182 return err; 16183 } 16184 16185 return 0; 16186 } 16187 16188 static void __exit bnxt_exit(void) 16189 { 16190 pci_unregister_driver(&bnxt_pci_driver); 16191 if (bnxt_pf_wq) 16192 destroy_workqueue(bnxt_pf_wq); 16193 bnxt_debug_exit(); 16194 } 16195 16196 module_init(bnxt_init); 16197 module_exit(bnxt_exit); 16198