1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2015 Broadcom Corporation 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation. 8 */ 9 10 #include <linux/module.h> 11 12 #include <linux/stringify.h> 13 #include <linux/kernel.h> 14 #include <linux/timer.h> 15 #include <linux/errno.h> 16 #include <linux/ioport.h> 17 #include <linux/slab.h> 18 #include <linux/vmalloc.h> 19 #include <linux/interrupt.h> 20 #include <linux/pci.h> 21 #include <linux/netdevice.h> 22 #include <linux/etherdevice.h> 23 #include <linux/skbuff.h> 24 #include <linux/dma-mapping.h> 25 #include <linux/bitops.h> 26 #include <linux/io.h> 27 #include <linux/irq.h> 28 #include <linux/delay.h> 29 #include <asm/byteorder.h> 30 #include <asm/page.h> 31 #include <linux/time.h> 32 #include <linux/mii.h> 33 #include <linux/if.h> 34 #include <linux/if_vlan.h> 35 #include <net/ip.h> 36 #include <net/tcp.h> 37 #include <net/udp.h> 38 #include <net/checksum.h> 39 #include <net/ip6_checksum.h> 40 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE) 41 #include <net/vxlan.h> 42 #endif 43 #ifdef CONFIG_NET_RX_BUSY_POLL 44 #include <net/busy_poll.h> 45 #endif 46 #include <linux/workqueue.h> 47 #include <linux/prefetch.h> 48 #include <linux/cache.h> 49 #include <linux/log2.h> 50 #include <linux/aer.h> 51 #include <linux/bitmap.h> 52 #include <linux/cpu_rmap.h> 53 54 #include "bnxt_hsi.h" 55 #include "bnxt.h" 56 #include "bnxt_sriov.h" 57 #include "bnxt_ethtool.h" 58 59 #define BNXT_TX_TIMEOUT (5 * HZ) 60 61 static const char version[] = 62 "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n"; 63 64 MODULE_LICENSE("GPL"); 65 MODULE_DESCRIPTION("Broadcom BCM573xx network driver"); 66 MODULE_VERSION(DRV_MODULE_VERSION); 67 68 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 69 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 70 #define BNXT_RX_COPY_THRESH 256 71 72 #define BNXT_TX_PUSH_THRESH 92 73 74 enum board_idx { 75 BCM57302, 76 BCM57304, 77 BCM57404, 78 BCM57406, 79 BCM57304_VF, 80 BCM57404_VF, 81 }; 82 83 /* indexed by enum above */ 84 static const struct { 85 char *name; 86 } board_info[] = { 87 { "Broadcom BCM57302 NetXtreme-C Single-port 10Gb/25Gb/40Gb/50Gb Ethernet" }, 88 { "Broadcom BCM57304 NetXtreme-C Dual-port 10Gb/25Gb/40Gb/50Gb Ethernet" }, 89 { "Broadcom BCM57404 NetXtreme-E Dual-port 10Gb/25Gb Ethernet" }, 90 { "Broadcom BCM57406 NetXtreme-E Dual-port 10Gb Ethernet" }, 91 { "Broadcom BCM57304 NetXtreme-C Ethernet Virtual Function" }, 92 { "Broadcom BCM57404 NetXtreme-E Ethernet Virtual Function" }, 93 }; 94 95 static const struct pci_device_id bnxt_pci_tbl[] = { 96 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 97 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 98 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 99 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 100 #ifdef CONFIG_BNXT_SRIOV 101 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = BCM57304_VF }, 102 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = BCM57404_VF }, 103 #endif 104 { 0 } 105 }; 106 107 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 108 109 static const u16 bnxt_vf_req_snif[] = { 110 HWRM_FUNC_CFG, 111 HWRM_PORT_PHY_QCFG, 112 HWRM_CFA_L2_FILTER_ALLOC, 113 }; 114 115 static bool bnxt_vf_pciid(enum board_idx idx) 116 { 117 return (idx == BCM57304_VF || idx == BCM57404_VF); 118 } 119 120 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 121 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 122 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) 123 124 #define BNXT_CP_DB_REARM(db, raw_cons) \ 125 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db) 126 127 #define BNXT_CP_DB(db, raw_cons) \ 128 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db) 129 130 #define BNXT_CP_DB_IRQ_DIS(db) \ 131 writel(DB_CP_IRQ_DIS_FLAGS, db) 132 133 static inline u32 bnxt_tx_avail(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 134 { 135 /* Tell compiler to fetch tx indices from memory. */ 136 barrier(); 137 138 return bp->tx_ring_size - 139 ((txr->tx_prod - txr->tx_cons) & bp->tx_ring_mask); 140 } 141 142 static const u16 bnxt_lhint_arr[] = { 143 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 144 TX_BD_FLAGS_LHINT_512_TO_1023, 145 TX_BD_FLAGS_LHINT_1024_TO_2047, 146 TX_BD_FLAGS_LHINT_1024_TO_2047, 147 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 148 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 149 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 150 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 151 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 152 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 153 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 154 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 155 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 156 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 157 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 158 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 159 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 160 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 161 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 162 }; 163 164 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 165 { 166 struct bnxt *bp = netdev_priv(dev); 167 struct tx_bd *txbd; 168 struct tx_bd_ext *txbd1; 169 struct netdev_queue *txq; 170 int i; 171 dma_addr_t mapping; 172 unsigned int length, pad = 0; 173 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 174 u16 prod, last_frag; 175 struct pci_dev *pdev = bp->pdev; 176 struct bnxt_napi *bnapi; 177 struct bnxt_tx_ring_info *txr; 178 struct bnxt_sw_tx_bd *tx_buf; 179 180 i = skb_get_queue_mapping(skb); 181 if (unlikely(i >= bp->tx_nr_rings)) { 182 dev_kfree_skb_any(skb); 183 return NETDEV_TX_OK; 184 } 185 186 bnapi = bp->bnapi[i]; 187 txr = &bnapi->tx_ring; 188 txq = netdev_get_tx_queue(dev, i); 189 prod = txr->tx_prod; 190 191 free_size = bnxt_tx_avail(bp, txr); 192 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 193 netif_tx_stop_queue(txq); 194 return NETDEV_TX_BUSY; 195 } 196 197 length = skb->len; 198 len = skb_headlen(skb); 199 last_frag = skb_shinfo(skb)->nr_frags; 200 201 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 202 203 txbd->tx_bd_opaque = prod; 204 205 tx_buf = &txr->tx_buf_ring[prod]; 206 tx_buf->skb = skb; 207 tx_buf->nr_frags = last_frag; 208 209 vlan_tag_flags = 0; 210 cfa_action = 0; 211 if (skb_vlan_tag_present(skb)) { 212 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 213 skb_vlan_tag_get(skb); 214 /* Currently supports 8021Q, 8021AD vlan offloads 215 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 216 */ 217 if (skb->vlan_proto == htons(ETH_P_8021Q)) 218 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 219 } 220 221 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) { 222 struct tx_push_bd *push = txr->tx_push; 223 struct tx_bd *tx_push = &push->txbd1; 224 struct tx_bd_ext *tx_push1 = &push->txbd2; 225 void *pdata = tx_push1 + 1; 226 int j; 227 228 /* Set COAL_NOW to be ready quickly for the next push */ 229 tx_push->tx_bd_len_flags_type = 230 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 231 TX_BD_TYPE_LONG_TX_BD | 232 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 233 TX_BD_FLAGS_COAL_NOW | 234 TX_BD_FLAGS_PACKET_END | 235 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 236 237 if (skb->ip_summed == CHECKSUM_PARTIAL) 238 tx_push1->tx_bd_hsize_lflags = 239 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 240 else 241 tx_push1->tx_bd_hsize_lflags = 0; 242 243 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 244 tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action); 245 246 skb_copy_from_linear_data(skb, pdata, len); 247 pdata += len; 248 for (j = 0; j < last_frag; j++) { 249 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 250 void *fptr; 251 252 fptr = skb_frag_address_safe(frag); 253 if (!fptr) 254 goto normal_tx; 255 256 memcpy(pdata, fptr, skb_frag_size(frag)); 257 pdata += skb_frag_size(frag); 258 } 259 260 memcpy(txbd, tx_push, sizeof(*txbd)); 261 prod = NEXT_TX(prod); 262 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 263 memcpy(txbd, tx_push1, sizeof(*txbd)); 264 prod = NEXT_TX(prod); 265 push->doorbell = 266 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod); 267 txr->tx_prod = prod; 268 269 netdev_tx_sent_queue(txq, skb->len); 270 271 __iowrite64_copy(txr->tx_doorbell, push, 272 (length + sizeof(*push) + 8) / 8); 273 274 tx_buf->is_push = 1; 275 276 goto tx_done; 277 } 278 279 normal_tx: 280 if (length < BNXT_MIN_PKT_SIZE) { 281 pad = BNXT_MIN_PKT_SIZE - length; 282 if (skb_pad(skb, pad)) { 283 /* SKB already freed. */ 284 tx_buf->skb = NULL; 285 return NETDEV_TX_OK; 286 } 287 length = BNXT_MIN_PKT_SIZE; 288 } 289 290 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 291 292 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) { 293 dev_kfree_skb_any(skb); 294 tx_buf->skb = NULL; 295 return NETDEV_TX_OK; 296 } 297 298 dma_unmap_addr_set(tx_buf, mapping, mapping); 299 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 300 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 301 302 txbd->tx_bd_haddr = cpu_to_le64(mapping); 303 304 prod = NEXT_TX(prod); 305 txbd1 = (struct tx_bd_ext *) 306 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 307 308 txbd1->tx_bd_hsize_lflags = 0; 309 if (skb_is_gso(skb)) { 310 u32 hdr_len; 311 312 if (skb->encapsulation) 313 hdr_len = skb_inner_network_offset(skb) + 314 skb_inner_network_header_len(skb) + 315 inner_tcp_hdrlen(skb); 316 else 317 hdr_len = skb_transport_offset(skb) + 318 tcp_hdrlen(skb); 319 320 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO | 321 TX_BD_FLAGS_T_IPID | 322 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 323 length = skb_shinfo(skb)->gso_size; 324 txbd1->tx_bd_mss = cpu_to_le32(length); 325 length += hdr_len; 326 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 327 txbd1->tx_bd_hsize_lflags = 328 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 329 txbd1->tx_bd_mss = 0; 330 } 331 332 length >>= 9; 333 flags |= bnxt_lhint_arr[length]; 334 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 335 336 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 337 txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action); 338 for (i = 0; i < last_frag; i++) { 339 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 340 341 prod = NEXT_TX(prod); 342 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 343 344 len = skb_frag_size(frag); 345 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 346 DMA_TO_DEVICE); 347 348 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 349 goto tx_dma_error; 350 351 tx_buf = &txr->tx_buf_ring[prod]; 352 dma_unmap_addr_set(tx_buf, mapping, mapping); 353 354 txbd->tx_bd_haddr = cpu_to_le64(mapping); 355 356 flags = len << TX_BD_LEN_SHIFT; 357 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 358 } 359 360 flags &= ~TX_BD_LEN; 361 txbd->tx_bd_len_flags_type = 362 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 363 TX_BD_FLAGS_PACKET_END); 364 365 netdev_tx_sent_queue(txq, skb->len); 366 367 /* Sync BD data before updating doorbell */ 368 wmb(); 369 370 prod = NEXT_TX(prod); 371 txr->tx_prod = prod; 372 373 writel(DB_KEY_TX | prod, txr->tx_doorbell); 374 writel(DB_KEY_TX | prod, txr->tx_doorbell); 375 376 tx_done: 377 378 mmiowb(); 379 380 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 381 netif_tx_stop_queue(txq); 382 383 /* netif_tx_stop_queue() must be done before checking 384 * tx index in bnxt_tx_avail() below, because in 385 * bnxt_tx_int(), we update tx index before checking for 386 * netif_tx_queue_stopped(). 387 */ 388 smp_mb(); 389 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh) 390 netif_tx_wake_queue(txq); 391 } 392 return NETDEV_TX_OK; 393 394 tx_dma_error: 395 last_frag = i; 396 397 /* start back at beginning and unmap skb */ 398 prod = txr->tx_prod; 399 tx_buf = &txr->tx_buf_ring[prod]; 400 tx_buf->skb = NULL; 401 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 402 skb_headlen(skb), PCI_DMA_TODEVICE); 403 prod = NEXT_TX(prod); 404 405 /* unmap remaining mapped pages */ 406 for (i = 0; i < last_frag; i++) { 407 prod = NEXT_TX(prod); 408 tx_buf = &txr->tx_buf_ring[prod]; 409 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 410 skb_frag_size(&skb_shinfo(skb)->frags[i]), 411 PCI_DMA_TODEVICE); 412 } 413 414 dev_kfree_skb_any(skb); 415 return NETDEV_TX_OK; 416 } 417 418 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts) 419 { 420 struct bnxt_tx_ring_info *txr = &bnapi->tx_ring; 421 int index = bnapi->index; 422 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, index); 423 u16 cons = txr->tx_cons; 424 struct pci_dev *pdev = bp->pdev; 425 int i; 426 unsigned int tx_bytes = 0; 427 428 for (i = 0; i < nr_pkts; i++) { 429 struct bnxt_sw_tx_bd *tx_buf; 430 struct sk_buff *skb; 431 int j, last; 432 433 tx_buf = &txr->tx_buf_ring[cons]; 434 cons = NEXT_TX(cons); 435 skb = tx_buf->skb; 436 tx_buf->skb = NULL; 437 438 if (tx_buf->is_push) { 439 tx_buf->is_push = 0; 440 goto next_tx_int; 441 } 442 443 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 444 skb_headlen(skb), PCI_DMA_TODEVICE); 445 last = tx_buf->nr_frags; 446 447 for (j = 0; j < last; j++) { 448 cons = NEXT_TX(cons); 449 tx_buf = &txr->tx_buf_ring[cons]; 450 dma_unmap_page( 451 &pdev->dev, 452 dma_unmap_addr(tx_buf, mapping), 453 skb_frag_size(&skb_shinfo(skb)->frags[j]), 454 PCI_DMA_TODEVICE); 455 } 456 457 next_tx_int: 458 cons = NEXT_TX(cons); 459 460 tx_bytes += skb->len; 461 dev_kfree_skb_any(skb); 462 } 463 464 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes); 465 txr->tx_cons = cons; 466 467 /* Need to make the tx_cons update visible to bnxt_start_xmit() 468 * before checking for netif_tx_queue_stopped(). Without the 469 * memory barrier, there is a small possibility that bnxt_start_xmit() 470 * will miss it and cause the queue to be stopped forever. 471 */ 472 smp_mb(); 473 474 if (unlikely(netif_tx_queue_stopped(txq)) && 475 (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) { 476 __netif_tx_lock(txq, smp_processor_id()); 477 if (netif_tx_queue_stopped(txq) && 478 bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh && 479 txr->dev_state != BNXT_DEV_STATE_CLOSING) 480 netif_tx_wake_queue(txq); 481 __netif_tx_unlock(txq); 482 } 483 } 484 485 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping, 486 gfp_t gfp) 487 { 488 u8 *data; 489 struct pci_dev *pdev = bp->pdev; 490 491 data = kmalloc(bp->rx_buf_size, gfp); 492 if (!data) 493 return NULL; 494 495 *mapping = dma_map_single(&pdev->dev, data + BNXT_RX_DMA_OFFSET, 496 bp->rx_buf_use_size, PCI_DMA_FROMDEVICE); 497 498 if (dma_mapping_error(&pdev->dev, *mapping)) { 499 kfree(data); 500 data = NULL; 501 } 502 return data; 503 } 504 505 static inline int bnxt_alloc_rx_data(struct bnxt *bp, 506 struct bnxt_rx_ring_info *rxr, 507 u16 prod, gfp_t gfp) 508 { 509 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 510 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod]; 511 u8 *data; 512 dma_addr_t mapping; 513 514 data = __bnxt_alloc_rx_data(bp, &mapping, gfp); 515 if (!data) 516 return -ENOMEM; 517 518 rx_buf->data = data; 519 dma_unmap_addr_set(rx_buf, mapping, mapping); 520 521 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 522 523 return 0; 524 } 525 526 static void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, 527 u8 *data) 528 { 529 u16 prod = rxr->rx_prod; 530 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 531 struct rx_bd *cons_bd, *prod_bd; 532 533 prod_rx_buf = &rxr->rx_buf_ring[prod]; 534 cons_rx_buf = &rxr->rx_buf_ring[cons]; 535 536 prod_rx_buf->data = data; 537 538 dma_unmap_addr_set(prod_rx_buf, mapping, 539 dma_unmap_addr(cons_rx_buf, mapping)); 540 541 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 542 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)]; 543 544 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 545 } 546 547 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 548 { 549 u16 next, max = rxr->rx_agg_bmap_size; 550 551 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 552 if (next >= max) 553 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 554 return next; 555 } 556 557 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 558 struct bnxt_rx_ring_info *rxr, 559 u16 prod, gfp_t gfp) 560 { 561 struct rx_bd *rxbd = 562 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 563 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 564 struct pci_dev *pdev = bp->pdev; 565 struct page *page; 566 dma_addr_t mapping; 567 u16 sw_prod = rxr->rx_sw_agg_prod; 568 569 page = alloc_page(gfp); 570 if (!page) 571 return -ENOMEM; 572 573 mapping = dma_map_page(&pdev->dev, page, 0, PAGE_SIZE, 574 PCI_DMA_FROMDEVICE); 575 if (dma_mapping_error(&pdev->dev, mapping)) { 576 __free_page(page); 577 return -EIO; 578 } 579 580 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 581 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 582 583 __set_bit(sw_prod, rxr->rx_agg_bmap); 584 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 585 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod); 586 587 rx_agg_buf->page = page; 588 rx_agg_buf->mapping = mapping; 589 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 590 rxbd->rx_bd_opaque = sw_prod; 591 return 0; 592 } 593 594 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons, 595 u32 agg_bufs) 596 { 597 struct bnxt *bp = bnapi->bp; 598 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 599 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring; 600 u16 prod = rxr->rx_agg_prod; 601 u16 sw_prod = rxr->rx_sw_agg_prod; 602 u32 i; 603 604 for (i = 0; i < agg_bufs; i++) { 605 u16 cons; 606 struct rx_agg_cmp *agg; 607 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 608 struct rx_bd *prod_bd; 609 struct page *page; 610 611 agg = (struct rx_agg_cmp *) 612 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 613 cons = agg->rx_agg_cmp_opaque; 614 __clear_bit(cons, rxr->rx_agg_bmap); 615 616 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 617 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 618 619 __set_bit(sw_prod, rxr->rx_agg_bmap); 620 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 621 cons_rx_buf = &rxr->rx_agg_ring[cons]; 622 623 /* It is possible for sw_prod to be equal to cons, so 624 * set cons_rx_buf->page to NULL first. 625 */ 626 page = cons_rx_buf->page; 627 cons_rx_buf->page = NULL; 628 prod_rx_buf->page = page; 629 630 prod_rx_buf->mapping = cons_rx_buf->mapping; 631 632 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 633 634 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 635 prod_bd->rx_bd_opaque = sw_prod; 636 637 prod = NEXT_RX_AGG(prod); 638 sw_prod = NEXT_RX_AGG(sw_prod); 639 cp_cons = NEXT_CMP(cp_cons); 640 } 641 rxr->rx_agg_prod = prod; 642 rxr->rx_sw_agg_prod = sw_prod; 643 } 644 645 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 646 struct bnxt_rx_ring_info *rxr, u16 cons, 647 u16 prod, u8 *data, dma_addr_t dma_addr, 648 unsigned int len) 649 { 650 int err; 651 struct sk_buff *skb; 652 653 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 654 if (unlikely(err)) { 655 bnxt_reuse_rx_data(rxr, cons, data); 656 return NULL; 657 } 658 659 skb = build_skb(data, 0); 660 dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 661 PCI_DMA_FROMDEVICE); 662 if (!skb) { 663 kfree(data); 664 return NULL; 665 } 666 667 skb_reserve(skb, BNXT_RX_OFFSET); 668 skb_put(skb, len); 669 return skb; 670 } 671 672 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi, 673 struct sk_buff *skb, u16 cp_cons, 674 u32 agg_bufs) 675 { 676 struct pci_dev *pdev = bp->pdev; 677 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 678 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring; 679 u16 prod = rxr->rx_agg_prod; 680 u32 i; 681 682 for (i = 0; i < agg_bufs; i++) { 683 u16 cons, frag_len; 684 struct rx_agg_cmp *agg; 685 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 686 struct page *page; 687 dma_addr_t mapping; 688 689 agg = (struct rx_agg_cmp *) 690 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 691 cons = agg->rx_agg_cmp_opaque; 692 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 693 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 694 695 cons_rx_buf = &rxr->rx_agg_ring[cons]; 696 skb_fill_page_desc(skb, i, cons_rx_buf->page, 0, frag_len); 697 __clear_bit(cons, rxr->rx_agg_bmap); 698 699 /* It is possible for bnxt_alloc_rx_page() to allocate 700 * a sw_prod index that equals the cons index, so we 701 * need to clear the cons entry now. 702 */ 703 mapping = dma_unmap_addr(cons_rx_buf, mapping); 704 page = cons_rx_buf->page; 705 cons_rx_buf->page = NULL; 706 707 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 708 struct skb_shared_info *shinfo; 709 unsigned int nr_frags; 710 711 shinfo = skb_shinfo(skb); 712 nr_frags = --shinfo->nr_frags; 713 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL); 714 715 dev_kfree_skb(skb); 716 717 cons_rx_buf->page = page; 718 719 /* Update prod since possibly some pages have been 720 * allocated already. 721 */ 722 rxr->rx_agg_prod = prod; 723 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i); 724 return NULL; 725 } 726 727 dma_unmap_page(&pdev->dev, mapping, PAGE_SIZE, 728 PCI_DMA_FROMDEVICE); 729 730 skb->data_len += frag_len; 731 skb->len += frag_len; 732 skb->truesize += PAGE_SIZE; 733 734 prod = NEXT_RX_AGG(prod); 735 cp_cons = NEXT_CMP(cp_cons); 736 } 737 rxr->rx_agg_prod = prod; 738 return skb; 739 } 740 741 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 742 u8 agg_bufs, u32 *raw_cons) 743 { 744 u16 last; 745 struct rx_agg_cmp *agg; 746 747 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 748 last = RING_CMP(*raw_cons); 749 agg = (struct rx_agg_cmp *) 750 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 751 return RX_AGG_CMP_VALID(agg, *raw_cons); 752 } 753 754 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 755 unsigned int len, 756 dma_addr_t mapping) 757 { 758 struct bnxt *bp = bnapi->bp; 759 struct pci_dev *pdev = bp->pdev; 760 struct sk_buff *skb; 761 762 skb = napi_alloc_skb(&bnapi->napi, len); 763 if (!skb) 764 return NULL; 765 766 dma_sync_single_for_cpu(&pdev->dev, mapping, 767 bp->rx_copy_thresh, PCI_DMA_FROMDEVICE); 768 769 memcpy(skb->data - BNXT_RX_OFFSET, data, len + BNXT_RX_OFFSET); 770 771 dma_sync_single_for_device(&pdev->dev, mapping, 772 bp->rx_copy_thresh, 773 PCI_DMA_FROMDEVICE); 774 775 skb_put(skb, len); 776 return skb; 777 } 778 779 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 780 struct rx_tpa_start_cmp *tpa_start, 781 struct rx_tpa_start_cmp_ext *tpa_start1) 782 { 783 u8 agg_id = TPA_START_AGG_ID(tpa_start); 784 u16 cons, prod; 785 struct bnxt_tpa_info *tpa_info; 786 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 787 struct rx_bd *prod_bd; 788 dma_addr_t mapping; 789 790 cons = tpa_start->rx_tpa_start_cmp_opaque; 791 prod = rxr->rx_prod; 792 cons_rx_buf = &rxr->rx_buf_ring[cons]; 793 prod_rx_buf = &rxr->rx_buf_ring[prod]; 794 tpa_info = &rxr->rx_tpa[agg_id]; 795 796 prod_rx_buf->data = tpa_info->data; 797 798 mapping = tpa_info->mapping; 799 dma_unmap_addr_set(prod_rx_buf, mapping, mapping); 800 801 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 802 803 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 804 805 tpa_info->data = cons_rx_buf->data; 806 cons_rx_buf->data = NULL; 807 tpa_info->mapping = dma_unmap_addr(cons_rx_buf, mapping); 808 809 tpa_info->len = 810 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 811 RX_TPA_START_CMP_LEN_SHIFT; 812 if (likely(TPA_START_HASH_VALID(tpa_start))) { 813 u32 hash_type = TPA_START_HASH_TYPE(tpa_start); 814 815 tpa_info->hash_type = PKT_HASH_TYPE_L4; 816 tpa_info->gso_type = SKB_GSO_TCPV4; 817 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 818 if (hash_type == 3) 819 tpa_info->gso_type = SKB_GSO_TCPV6; 820 tpa_info->rss_hash = 821 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 822 } else { 823 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 824 tpa_info->gso_type = 0; 825 if (netif_msg_rx_err(bp)) 826 netdev_warn(bp->dev, "TPA packet without valid hash\n"); 827 } 828 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 829 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 830 831 rxr->rx_prod = NEXT_RX(prod); 832 cons = NEXT_RX(cons); 833 cons_rx_buf = &rxr->rx_buf_ring[cons]; 834 835 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 836 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 837 cons_rx_buf->data = NULL; 838 } 839 840 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi, 841 u16 cp_cons, u32 agg_bufs) 842 { 843 if (agg_bufs) 844 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs); 845 } 846 847 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 848 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 849 850 static inline struct sk_buff *bnxt_gro_skb(struct bnxt_tpa_info *tpa_info, 851 struct rx_tpa_end_cmp *tpa_end, 852 struct rx_tpa_end_cmp_ext *tpa_end1, 853 struct sk_buff *skb) 854 { 855 #ifdef CONFIG_INET 856 struct tcphdr *th; 857 int payload_off, tcp_opt_len = 0; 858 int len, nw_off; 859 860 NAPI_GRO_CB(skb)->count = TPA_END_TPA_SEGS(tpa_end); 861 skb_shinfo(skb)->gso_size = 862 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 863 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 864 payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) & 865 RX_TPA_END_CMP_PAYLOAD_OFFSET) >> 866 RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT; 867 if (TPA_END_GRO_TS(tpa_end)) 868 tcp_opt_len = 12; 869 870 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 871 struct iphdr *iph; 872 873 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 874 ETH_HLEN; 875 skb_set_network_header(skb, nw_off); 876 iph = ip_hdr(skb); 877 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 878 len = skb->len - skb_transport_offset(skb); 879 th = tcp_hdr(skb); 880 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 881 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 882 struct ipv6hdr *iph; 883 884 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 885 ETH_HLEN; 886 skb_set_network_header(skb, nw_off); 887 iph = ipv6_hdr(skb); 888 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 889 len = skb->len - skb_transport_offset(skb); 890 th = tcp_hdr(skb); 891 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 892 } else { 893 dev_kfree_skb_any(skb); 894 return NULL; 895 } 896 tcp_gro_complete(skb); 897 898 if (nw_off) { /* tunnel */ 899 struct udphdr *uh = NULL; 900 901 if (skb->protocol == htons(ETH_P_IP)) { 902 struct iphdr *iph = (struct iphdr *)skb->data; 903 904 if (iph->protocol == IPPROTO_UDP) 905 uh = (struct udphdr *)(iph + 1); 906 } else { 907 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 908 909 if (iph->nexthdr == IPPROTO_UDP) 910 uh = (struct udphdr *)(iph + 1); 911 } 912 if (uh) { 913 if (uh->check) 914 skb_shinfo(skb)->gso_type |= 915 SKB_GSO_UDP_TUNNEL_CSUM; 916 else 917 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 918 } 919 } 920 #endif 921 return skb; 922 } 923 924 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 925 struct bnxt_napi *bnapi, 926 u32 *raw_cons, 927 struct rx_tpa_end_cmp *tpa_end, 928 struct rx_tpa_end_cmp_ext *tpa_end1, 929 bool *agg_event) 930 { 931 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 932 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring; 933 u8 agg_id = TPA_END_AGG_ID(tpa_end); 934 u8 *data, agg_bufs; 935 u16 cp_cons = RING_CMP(*raw_cons); 936 unsigned int len; 937 struct bnxt_tpa_info *tpa_info; 938 dma_addr_t mapping; 939 struct sk_buff *skb; 940 941 tpa_info = &rxr->rx_tpa[agg_id]; 942 data = tpa_info->data; 943 prefetch(data); 944 len = tpa_info->len; 945 mapping = tpa_info->mapping; 946 947 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) & 948 RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT; 949 950 if (agg_bufs) { 951 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 952 return ERR_PTR(-EBUSY); 953 954 *agg_event = true; 955 cp_cons = NEXT_CMP(cp_cons); 956 } 957 958 if (unlikely(agg_bufs > MAX_SKB_FRAGS)) { 959 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs); 960 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 961 agg_bufs, (int)MAX_SKB_FRAGS); 962 return NULL; 963 } 964 965 if (len <= bp->rx_copy_thresh) { 966 skb = bnxt_copy_skb(bnapi, data, len, mapping); 967 if (!skb) { 968 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs); 969 return NULL; 970 } 971 } else { 972 u8 *new_data; 973 dma_addr_t new_mapping; 974 975 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC); 976 if (!new_data) { 977 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs); 978 return NULL; 979 } 980 981 tpa_info->data = new_data; 982 tpa_info->mapping = new_mapping; 983 984 skb = build_skb(data, 0); 985 dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size, 986 PCI_DMA_FROMDEVICE); 987 988 if (!skb) { 989 kfree(data); 990 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs); 991 return NULL; 992 } 993 skb_reserve(skb, BNXT_RX_OFFSET); 994 skb_put(skb, len); 995 } 996 997 if (agg_bufs) { 998 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs); 999 if (!skb) { 1000 /* Page reuse already handled by bnxt_rx_pages(). */ 1001 return NULL; 1002 } 1003 } 1004 skb->protocol = eth_type_trans(skb, bp->dev); 1005 1006 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1007 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1008 1009 if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) { 1010 netdev_features_t features = skb->dev->features; 1011 u16 vlan_proto = tpa_info->metadata >> 1012 RX_CMP_FLAGS2_METADATA_TPID_SFT; 1013 1014 if (((features & NETIF_F_HW_VLAN_CTAG_RX) && 1015 vlan_proto == ETH_P_8021Q) || 1016 ((features & NETIF_F_HW_VLAN_STAG_RX) && 1017 vlan_proto == ETH_P_8021AD)) { 1018 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), 1019 tpa_info->metadata & 1020 RX_CMP_FLAGS2_METADATA_VID_MASK); 1021 } 1022 } 1023 1024 skb_checksum_none_assert(skb); 1025 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1026 skb->ip_summed = CHECKSUM_UNNECESSARY; 1027 skb->csum_level = 1028 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1029 } 1030 1031 if (TPA_END_GRO(tpa_end)) 1032 skb = bnxt_gro_skb(tpa_info, tpa_end, tpa_end1, skb); 1033 1034 return skb; 1035 } 1036 1037 /* returns the following: 1038 * 1 - 1 packet successfully received 1039 * 0 - successful TPA_START, packet not completed yet 1040 * -EBUSY - completion ring does not have all the agg buffers yet 1041 * -ENOMEM - packet aborted due to out of memory 1042 * -EIO - packet aborted due to hw error indicated in BD 1043 */ 1044 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons, 1045 bool *agg_event) 1046 { 1047 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 1048 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring; 1049 struct net_device *dev = bp->dev; 1050 struct rx_cmp *rxcmp; 1051 struct rx_cmp_ext *rxcmp1; 1052 u32 tmp_raw_cons = *raw_cons; 1053 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 1054 struct bnxt_sw_rx_bd *rx_buf; 1055 unsigned int len; 1056 u8 *data, agg_bufs, cmp_type; 1057 dma_addr_t dma_addr; 1058 struct sk_buff *skb; 1059 int rc = 0; 1060 1061 rxcmp = (struct rx_cmp *) 1062 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1063 1064 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1065 cp_cons = RING_CMP(tmp_raw_cons); 1066 rxcmp1 = (struct rx_cmp_ext *) 1067 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1068 1069 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1070 return -EBUSY; 1071 1072 cmp_type = RX_CMP_TYPE(rxcmp); 1073 1074 prod = rxr->rx_prod; 1075 1076 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) { 1077 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp, 1078 (struct rx_tpa_start_cmp_ext *)rxcmp1); 1079 1080 goto next_rx_no_prod; 1081 1082 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1083 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons, 1084 (struct rx_tpa_end_cmp *)rxcmp, 1085 (struct rx_tpa_end_cmp_ext *)rxcmp1, 1086 agg_event); 1087 1088 if (unlikely(IS_ERR(skb))) 1089 return -EBUSY; 1090 1091 rc = -ENOMEM; 1092 if (likely(skb)) { 1093 skb_record_rx_queue(skb, bnapi->index); 1094 skb_mark_napi_id(skb, &bnapi->napi); 1095 if (bnxt_busy_polling(bnapi)) 1096 netif_receive_skb(skb); 1097 else 1098 napi_gro_receive(&bnapi->napi, skb); 1099 rc = 1; 1100 } 1101 goto next_rx_no_prod; 1102 } 1103 1104 cons = rxcmp->rx_cmp_opaque; 1105 rx_buf = &rxr->rx_buf_ring[cons]; 1106 data = rx_buf->data; 1107 prefetch(data); 1108 1109 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & RX_CMP_AGG_BUFS) >> 1110 RX_CMP_AGG_BUFS_SHIFT; 1111 1112 if (agg_bufs) { 1113 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1114 return -EBUSY; 1115 1116 cp_cons = NEXT_CMP(cp_cons); 1117 *agg_event = true; 1118 } 1119 1120 rx_buf->data = NULL; 1121 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 1122 bnxt_reuse_rx_data(rxr, cons, data); 1123 if (agg_bufs) 1124 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs); 1125 1126 rc = -EIO; 1127 goto next_rx; 1128 } 1129 1130 len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT; 1131 dma_addr = dma_unmap_addr(rx_buf, mapping); 1132 1133 if (len <= bp->rx_copy_thresh) { 1134 skb = bnxt_copy_skb(bnapi, data, len, dma_addr); 1135 bnxt_reuse_rx_data(rxr, cons, data); 1136 if (!skb) { 1137 rc = -ENOMEM; 1138 goto next_rx; 1139 } 1140 } else { 1141 skb = bnxt_rx_skb(bp, rxr, cons, prod, data, dma_addr, len); 1142 if (!skb) { 1143 rc = -ENOMEM; 1144 goto next_rx; 1145 } 1146 } 1147 1148 if (agg_bufs) { 1149 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs); 1150 if (!skb) { 1151 rc = -ENOMEM; 1152 goto next_rx; 1153 } 1154 } 1155 1156 if (RX_CMP_HASH_VALID(rxcmp)) { 1157 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 1158 enum pkt_hash_types type = PKT_HASH_TYPE_L4; 1159 1160 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1161 if (hash_type != 1 && hash_type != 3) 1162 type = PKT_HASH_TYPE_L3; 1163 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 1164 } 1165 1166 skb->protocol = eth_type_trans(skb, dev); 1167 1168 if (rxcmp1->rx_cmp_flags2 & 1169 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) { 1170 netdev_features_t features = skb->dev->features; 1171 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 1172 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT; 1173 1174 if (((features & NETIF_F_HW_VLAN_CTAG_RX) && 1175 vlan_proto == ETH_P_8021Q) || 1176 ((features & NETIF_F_HW_VLAN_STAG_RX) && 1177 vlan_proto == ETH_P_8021AD)) 1178 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), 1179 meta_data & 1180 RX_CMP_FLAGS2_METADATA_VID_MASK); 1181 } 1182 1183 skb_checksum_none_assert(skb); 1184 if (RX_CMP_L4_CS_OK(rxcmp1)) { 1185 if (dev->features & NETIF_F_RXCSUM) { 1186 skb->ip_summed = CHECKSUM_UNNECESSARY; 1187 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 1188 } 1189 } else { 1190 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) 1191 cpr->rx_l4_csum_errors++; 1192 } 1193 1194 skb_record_rx_queue(skb, bnapi->index); 1195 skb_mark_napi_id(skb, &bnapi->napi); 1196 if (bnxt_busy_polling(bnapi)) 1197 netif_receive_skb(skb); 1198 else 1199 napi_gro_receive(&bnapi->napi, skb); 1200 rc = 1; 1201 1202 next_rx: 1203 rxr->rx_prod = NEXT_RX(prod); 1204 1205 next_rx_no_prod: 1206 *raw_cons = tmp_raw_cons; 1207 1208 return rc; 1209 } 1210 1211 static int bnxt_async_event_process(struct bnxt *bp, 1212 struct hwrm_async_event_cmpl *cmpl) 1213 { 1214 u16 event_id = le16_to_cpu(cmpl->event_id); 1215 1216 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 1217 switch (event_id) { 1218 case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 1219 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 1220 schedule_work(&bp->sp_task); 1221 break; 1222 default: 1223 netdev_err(bp->dev, "unhandled ASYNC event (id 0x%x)\n", 1224 event_id); 1225 break; 1226 } 1227 return 0; 1228 } 1229 1230 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 1231 { 1232 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 1233 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 1234 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 1235 (struct hwrm_fwd_req_cmpl *)txcmp; 1236 1237 switch (cmpl_type) { 1238 case CMPL_BASE_TYPE_HWRM_DONE: 1239 seq_id = le16_to_cpu(h_cmpl->sequence_id); 1240 if (seq_id == bp->hwrm_intr_seq_id) 1241 bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID; 1242 else 1243 netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id); 1244 break; 1245 1246 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 1247 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 1248 1249 if ((vf_id < bp->pf.first_vf_id) || 1250 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 1251 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 1252 vf_id); 1253 return -EINVAL; 1254 } 1255 1256 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 1257 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event); 1258 schedule_work(&bp->sp_task); 1259 break; 1260 1261 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 1262 bnxt_async_event_process(bp, 1263 (struct hwrm_async_event_cmpl *)txcmp); 1264 1265 default: 1266 break; 1267 } 1268 1269 return 0; 1270 } 1271 1272 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 1273 { 1274 struct bnxt_napi *bnapi = dev_instance; 1275 struct bnxt *bp = bnapi->bp; 1276 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 1277 u32 cons = RING_CMP(cpr->cp_raw_cons); 1278 1279 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 1280 napi_schedule(&bnapi->napi); 1281 return IRQ_HANDLED; 1282 } 1283 1284 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 1285 { 1286 u32 raw_cons = cpr->cp_raw_cons; 1287 u16 cons = RING_CMP(raw_cons); 1288 struct tx_cmp *txcmp; 1289 1290 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 1291 1292 return TX_CMP_VALID(txcmp, raw_cons); 1293 } 1294 1295 static irqreturn_t bnxt_inta(int irq, void *dev_instance) 1296 { 1297 struct bnxt_napi *bnapi = dev_instance; 1298 struct bnxt *bp = bnapi->bp; 1299 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 1300 u32 cons = RING_CMP(cpr->cp_raw_cons); 1301 u32 int_status; 1302 1303 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 1304 1305 if (!bnxt_has_work(bp, cpr)) { 1306 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); 1307 /* return if erroneous interrupt */ 1308 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) 1309 return IRQ_NONE; 1310 } 1311 1312 /* disable ring IRQ */ 1313 BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell); 1314 1315 /* Return here if interrupt is shared and is disabled. */ 1316 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 1317 return IRQ_HANDLED; 1318 1319 napi_schedule(&bnapi->napi); 1320 return IRQ_HANDLED; 1321 } 1322 1323 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 1324 { 1325 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 1326 u32 raw_cons = cpr->cp_raw_cons; 1327 u32 cons; 1328 int tx_pkts = 0; 1329 int rx_pkts = 0; 1330 bool rx_event = false; 1331 bool agg_event = false; 1332 struct tx_cmp *txcmp; 1333 1334 while (1) { 1335 int rc; 1336 1337 cons = RING_CMP(raw_cons); 1338 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 1339 1340 if (!TX_CMP_VALID(txcmp, raw_cons)) 1341 break; 1342 1343 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) { 1344 tx_pkts++; 1345 /* return full budget so NAPI will complete. */ 1346 if (unlikely(tx_pkts > bp->tx_wake_thresh)) 1347 rx_pkts = budget; 1348 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 1349 rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event); 1350 if (likely(rc >= 0)) 1351 rx_pkts += rc; 1352 else if (rc == -EBUSY) /* partial completion */ 1353 break; 1354 rx_event = true; 1355 } else if (unlikely((TX_CMP_TYPE(txcmp) == 1356 CMPL_BASE_TYPE_HWRM_DONE) || 1357 (TX_CMP_TYPE(txcmp) == 1358 CMPL_BASE_TYPE_HWRM_FWD_REQ) || 1359 (TX_CMP_TYPE(txcmp) == 1360 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) { 1361 bnxt_hwrm_handler(bp, txcmp); 1362 } 1363 raw_cons = NEXT_RAW_CMP(raw_cons); 1364 1365 if (rx_pkts == budget) 1366 break; 1367 } 1368 1369 cpr->cp_raw_cons = raw_cons; 1370 /* ACK completion ring before freeing tx ring and producing new 1371 * buffers in rx/agg rings to prevent overflowing the completion 1372 * ring. 1373 */ 1374 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons); 1375 1376 if (tx_pkts) 1377 bnxt_tx_int(bp, bnapi, tx_pkts); 1378 1379 if (rx_event) { 1380 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring; 1381 1382 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell); 1383 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell); 1384 if (agg_event) { 1385 writel(DB_KEY_RX | rxr->rx_agg_prod, 1386 rxr->rx_agg_doorbell); 1387 writel(DB_KEY_RX | rxr->rx_agg_prod, 1388 rxr->rx_agg_doorbell); 1389 } 1390 } 1391 return rx_pkts; 1392 } 1393 1394 static int bnxt_poll(struct napi_struct *napi, int budget) 1395 { 1396 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 1397 struct bnxt *bp = bnapi->bp; 1398 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 1399 int work_done = 0; 1400 1401 if (!bnxt_lock_napi(bnapi)) 1402 return budget; 1403 1404 while (1) { 1405 work_done += bnxt_poll_work(bp, bnapi, budget - work_done); 1406 1407 if (work_done >= budget) 1408 break; 1409 1410 if (!bnxt_has_work(bp, cpr)) { 1411 napi_complete(napi); 1412 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons); 1413 break; 1414 } 1415 } 1416 mmiowb(); 1417 bnxt_unlock_napi(bnapi); 1418 return work_done; 1419 } 1420 1421 #ifdef CONFIG_NET_RX_BUSY_POLL 1422 static int bnxt_busy_poll(struct napi_struct *napi) 1423 { 1424 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 1425 struct bnxt *bp = bnapi->bp; 1426 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 1427 int rx_work, budget = 4; 1428 1429 if (atomic_read(&bp->intr_sem) != 0) 1430 return LL_FLUSH_FAILED; 1431 1432 if (!bnxt_lock_poll(bnapi)) 1433 return LL_FLUSH_BUSY; 1434 1435 rx_work = bnxt_poll_work(bp, bnapi, budget); 1436 1437 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons); 1438 1439 bnxt_unlock_poll(bnapi); 1440 return rx_work; 1441 } 1442 #endif 1443 1444 static void bnxt_free_tx_skbs(struct bnxt *bp) 1445 { 1446 int i, max_idx; 1447 struct pci_dev *pdev = bp->pdev; 1448 1449 if (!bp->bnapi) 1450 return; 1451 1452 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 1453 for (i = 0; i < bp->tx_nr_rings; i++) { 1454 struct bnxt_napi *bnapi = bp->bnapi[i]; 1455 struct bnxt_tx_ring_info *txr; 1456 int j; 1457 1458 if (!bnapi) 1459 continue; 1460 1461 txr = &bnapi->tx_ring; 1462 for (j = 0; j < max_idx;) { 1463 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 1464 struct sk_buff *skb = tx_buf->skb; 1465 int k, last; 1466 1467 if (!skb) { 1468 j++; 1469 continue; 1470 } 1471 1472 tx_buf->skb = NULL; 1473 1474 if (tx_buf->is_push) { 1475 dev_kfree_skb(skb); 1476 j += 2; 1477 continue; 1478 } 1479 1480 dma_unmap_single(&pdev->dev, 1481 dma_unmap_addr(tx_buf, mapping), 1482 skb_headlen(skb), 1483 PCI_DMA_TODEVICE); 1484 1485 last = tx_buf->nr_frags; 1486 j += 2; 1487 for (k = 0; k < last; k++, j = NEXT_TX(j)) { 1488 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 1489 1490 tx_buf = &txr->tx_buf_ring[j]; 1491 dma_unmap_page( 1492 &pdev->dev, 1493 dma_unmap_addr(tx_buf, mapping), 1494 skb_frag_size(frag), PCI_DMA_TODEVICE); 1495 } 1496 dev_kfree_skb(skb); 1497 } 1498 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 1499 } 1500 } 1501 1502 static void bnxt_free_rx_skbs(struct bnxt *bp) 1503 { 1504 int i, max_idx, max_agg_idx; 1505 struct pci_dev *pdev = bp->pdev; 1506 1507 if (!bp->bnapi) 1508 return; 1509 1510 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 1511 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 1512 for (i = 0; i < bp->rx_nr_rings; i++) { 1513 struct bnxt_napi *bnapi = bp->bnapi[i]; 1514 struct bnxt_rx_ring_info *rxr; 1515 int j; 1516 1517 if (!bnapi) 1518 continue; 1519 1520 rxr = &bnapi->rx_ring; 1521 1522 if (rxr->rx_tpa) { 1523 for (j = 0; j < MAX_TPA; j++) { 1524 struct bnxt_tpa_info *tpa_info = 1525 &rxr->rx_tpa[j]; 1526 u8 *data = tpa_info->data; 1527 1528 if (!data) 1529 continue; 1530 1531 dma_unmap_single( 1532 &pdev->dev, 1533 dma_unmap_addr(tpa_info, mapping), 1534 bp->rx_buf_use_size, 1535 PCI_DMA_FROMDEVICE); 1536 1537 tpa_info->data = NULL; 1538 1539 kfree(data); 1540 } 1541 } 1542 1543 for (j = 0; j < max_idx; j++) { 1544 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j]; 1545 u8 *data = rx_buf->data; 1546 1547 if (!data) 1548 continue; 1549 1550 dma_unmap_single(&pdev->dev, 1551 dma_unmap_addr(rx_buf, mapping), 1552 bp->rx_buf_use_size, 1553 PCI_DMA_FROMDEVICE); 1554 1555 rx_buf->data = NULL; 1556 1557 kfree(data); 1558 } 1559 1560 for (j = 0; j < max_agg_idx; j++) { 1561 struct bnxt_sw_rx_agg_bd *rx_agg_buf = 1562 &rxr->rx_agg_ring[j]; 1563 struct page *page = rx_agg_buf->page; 1564 1565 if (!page) 1566 continue; 1567 1568 dma_unmap_page(&pdev->dev, 1569 dma_unmap_addr(rx_agg_buf, mapping), 1570 PAGE_SIZE, PCI_DMA_FROMDEVICE); 1571 1572 rx_agg_buf->page = NULL; 1573 __clear_bit(j, rxr->rx_agg_bmap); 1574 1575 __free_page(page); 1576 } 1577 } 1578 } 1579 1580 static void bnxt_free_skbs(struct bnxt *bp) 1581 { 1582 bnxt_free_tx_skbs(bp); 1583 bnxt_free_rx_skbs(bp); 1584 } 1585 1586 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring) 1587 { 1588 struct pci_dev *pdev = bp->pdev; 1589 int i; 1590 1591 for (i = 0; i < ring->nr_pages; i++) { 1592 if (!ring->pg_arr[i]) 1593 continue; 1594 1595 dma_free_coherent(&pdev->dev, ring->page_size, 1596 ring->pg_arr[i], ring->dma_arr[i]); 1597 1598 ring->pg_arr[i] = NULL; 1599 } 1600 if (ring->pg_tbl) { 1601 dma_free_coherent(&pdev->dev, ring->nr_pages * 8, 1602 ring->pg_tbl, ring->pg_tbl_map); 1603 ring->pg_tbl = NULL; 1604 } 1605 if (ring->vmem_size && *ring->vmem) { 1606 vfree(*ring->vmem); 1607 *ring->vmem = NULL; 1608 } 1609 } 1610 1611 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring) 1612 { 1613 int i; 1614 struct pci_dev *pdev = bp->pdev; 1615 1616 if (ring->nr_pages > 1) { 1617 ring->pg_tbl = dma_alloc_coherent(&pdev->dev, 1618 ring->nr_pages * 8, 1619 &ring->pg_tbl_map, 1620 GFP_KERNEL); 1621 if (!ring->pg_tbl) 1622 return -ENOMEM; 1623 } 1624 1625 for (i = 0; i < ring->nr_pages; i++) { 1626 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 1627 ring->page_size, 1628 &ring->dma_arr[i], 1629 GFP_KERNEL); 1630 if (!ring->pg_arr[i]) 1631 return -ENOMEM; 1632 1633 if (ring->nr_pages > 1) 1634 ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]); 1635 } 1636 1637 if (ring->vmem_size) { 1638 *ring->vmem = vzalloc(ring->vmem_size); 1639 if (!(*ring->vmem)) 1640 return -ENOMEM; 1641 } 1642 return 0; 1643 } 1644 1645 static void bnxt_free_rx_rings(struct bnxt *bp) 1646 { 1647 int i; 1648 1649 if (!bp->bnapi) 1650 return; 1651 1652 for (i = 0; i < bp->rx_nr_rings; i++) { 1653 struct bnxt_napi *bnapi = bp->bnapi[i]; 1654 struct bnxt_rx_ring_info *rxr; 1655 struct bnxt_ring_struct *ring; 1656 1657 if (!bnapi) 1658 continue; 1659 1660 rxr = &bnapi->rx_ring; 1661 1662 kfree(rxr->rx_tpa); 1663 rxr->rx_tpa = NULL; 1664 1665 kfree(rxr->rx_agg_bmap); 1666 rxr->rx_agg_bmap = NULL; 1667 1668 ring = &rxr->rx_ring_struct; 1669 bnxt_free_ring(bp, ring); 1670 1671 ring = &rxr->rx_agg_ring_struct; 1672 bnxt_free_ring(bp, ring); 1673 } 1674 } 1675 1676 static int bnxt_alloc_rx_rings(struct bnxt *bp) 1677 { 1678 int i, rc, agg_rings = 0, tpa_rings = 0; 1679 1680 if (bp->flags & BNXT_FLAG_AGG_RINGS) 1681 agg_rings = 1; 1682 1683 if (bp->flags & BNXT_FLAG_TPA) 1684 tpa_rings = 1; 1685 1686 for (i = 0; i < bp->rx_nr_rings; i++) { 1687 struct bnxt_napi *bnapi = bp->bnapi[i]; 1688 struct bnxt_rx_ring_info *rxr; 1689 struct bnxt_ring_struct *ring; 1690 1691 if (!bnapi) 1692 continue; 1693 1694 rxr = &bnapi->rx_ring; 1695 ring = &rxr->rx_ring_struct; 1696 1697 rc = bnxt_alloc_ring(bp, ring); 1698 if (rc) 1699 return rc; 1700 1701 if (agg_rings) { 1702 u16 mem_size; 1703 1704 ring = &rxr->rx_agg_ring_struct; 1705 rc = bnxt_alloc_ring(bp, ring); 1706 if (rc) 1707 return rc; 1708 1709 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 1710 mem_size = rxr->rx_agg_bmap_size / 8; 1711 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 1712 if (!rxr->rx_agg_bmap) 1713 return -ENOMEM; 1714 1715 if (tpa_rings) { 1716 rxr->rx_tpa = kcalloc(MAX_TPA, 1717 sizeof(struct bnxt_tpa_info), 1718 GFP_KERNEL); 1719 if (!rxr->rx_tpa) 1720 return -ENOMEM; 1721 } 1722 } 1723 } 1724 return 0; 1725 } 1726 1727 static void bnxt_free_tx_rings(struct bnxt *bp) 1728 { 1729 int i; 1730 struct pci_dev *pdev = bp->pdev; 1731 1732 if (!bp->bnapi) 1733 return; 1734 1735 for (i = 0; i < bp->tx_nr_rings; i++) { 1736 struct bnxt_napi *bnapi = bp->bnapi[i]; 1737 struct bnxt_tx_ring_info *txr; 1738 struct bnxt_ring_struct *ring; 1739 1740 if (!bnapi) 1741 continue; 1742 1743 txr = &bnapi->tx_ring; 1744 1745 if (txr->tx_push) { 1746 dma_free_coherent(&pdev->dev, bp->tx_push_size, 1747 txr->tx_push, txr->tx_push_mapping); 1748 txr->tx_push = NULL; 1749 } 1750 1751 ring = &txr->tx_ring_struct; 1752 1753 bnxt_free_ring(bp, ring); 1754 } 1755 } 1756 1757 static int bnxt_alloc_tx_rings(struct bnxt *bp) 1758 { 1759 int i, j, rc; 1760 struct pci_dev *pdev = bp->pdev; 1761 1762 bp->tx_push_size = 0; 1763 if (bp->tx_push_thresh) { 1764 int push_size; 1765 1766 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 1767 bp->tx_push_thresh); 1768 1769 if (push_size > 128) { 1770 push_size = 0; 1771 bp->tx_push_thresh = 0; 1772 } 1773 1774 bp->tx_push_size = push_size; 1775 } 1776 1777 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 1778 struct bnxt_napi *bnapi = bp->bnapi[i]; 1779 struct bnxt_tx_ring_info *txr; 1780 struct bnxt_ring_struct *ring; 1781 1782 if (!bnapi) 1783 continue; 1784 1785 txr = &bnapi->tx_ring; 1786 ring = &txr->tx_ring_struct; 1787 1788 rc = bnxt_alloc_ring(bp, ring); 1789 if (rc) 1790 return rc; 1791 1792 if (bp->tx_push_size) { 1793 struct tx_bd *txbd; 1794 dma_addr_t mapping; 1795 1796 /* One pre-allocated DMA buffer to backup 1797 * TX push operation 1798 */ 1799 txr->tx_push = dma_alloc_coherent(&pdev->dev, 1800 bp->tx_push_size, 1801 &txr->tx_push_mapping, 1802 GFP_KERNEL); 1803 1804 if (!txr->tx_push) 1805 return -ENOMEM; 1806 1807 txbd = &txr->tx_push->txbd1; 1808 1809 mapping = txr->tx_push_mapping + 1810 sizeof(struct tx_push_bd); 1811 txbd->tx_bd_haddr = cpu_to_le64(mapping); 1812 1813 memset(txbd + 1, 0, sizeof(struct tx_bd_ext)); 1814 } 1815 ring->queue_id = bp->q_info[j].queue_id; 1816 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1)) 1817 j++; 1818 } 1819 return 0; 1820 } 1821 1822 static void bnxt_free_cp_rings(struct bnxt *bp) 1823 { 1824 int i; 1825 1826 if (!bp->bnapi) 1827 return; 1828 1829 for (i = 0; i < bp->cp_nr_rings; i++) { 1830 struct bnxt_napi *bnapi = bp->bnapi[i]; 1831 struct bnxt_cp_ring_info *cpr; 1832 struct bnxt_ring_struct *ring; 1833 1834 if (!bnapi) 1835 continue; 1836 1837 cpr = &bnapi->cp_ring; 1838 ring = &cpr->cp_ring_struct; 1839 1840 bnxt_free_ring(bp, ring); 1841 } 1842 } 1843 1844 static int bnxt_alloc_cp_rings(struct bnxt *bp) 1845 { 1846 int i, rc; 1847 1848 for (i = 0; i < bp->cp_nr_rings; i++) { 1849 struct bnxt_napi *bnapi = bp->bnapi[i]; 1850 struct bnxt_cp_ring_info *cpr; 1851 struct bnxt_ring_struct *ring; 1852 1853 if (!bnapi) 1854 continue; 1855 1856 cpr = &bnapi->cp_ring; 1857 ring = &cpr->cp_ring_struct; 1858 1859 rc = bnxt_alloc_ring(bp, ring); 1860 if (rc) 1861 return rc; 1862 } 1863 return 0; 1864 } 1865 1866 static void bnxt_init_ring_struct(struct bnxt *bp) 1867 { 1868 int i; 1869 1870 for (i = 0; i < bp->cp_nr_rings; i++) { 1871 struct bnxt_napi *bnapi = bp->bnapi[i]; 1872 struct bnxt_cp_ring_info *cpr; 1873 struct bnxt_rx_ring_info *rxr; 1874 struct bnxt_tx_ring_info *txr; 1875 struct bnxt_ring_struct *ring; 1876 1877 if (!bnapi) 1878 continue; 1879 1880 cpr = &bnapi->cp_ring; 1881 ring = &cpr->cp_ring_struct; 1882 ring->nr_pages = bp->cp_nr_pages; 1883 ring->page_size = HW_CMPD_RING_SIZE; 1884 ring->pg_arr = (void **)cpr->cp_desc_ring; 1885 ring->dma_arr = cpr->cp_desc_mapping; 1886 ring->vmem_size = 0; 1887 1888 rxr = &bnapi->rx_ring; 1889 ring = &rxr->rx_ring_struct; 1890 ring->nr_pages = bp->rx_nr_pages; 1891 ring->page_size = HW_RXBD_RING_SIZE; 1892 ring->pg_arr = (void **)rxr->rx_desc_ring; 1893 ring->dma_arr = rxr->rx_desc_mapping; 1894 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 1895 ring->vmem = (void **)&rxr->rx_buf_ring; 1896 1897 ring = &rxr->rx_agg_ring_struct; 1898 ring->nr_pages = bp->rx_agg_nr_pages; 1899 ring->page_size = HW_RXBD_RING_SIZE; 1900 ring->pg_arr = (void **)rxr->rx_agg_desc_ring; 1901 ring->dma_arr = rxr->rx_agg_desc_mapping; 1902 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 1903 ring->vmem = (void **)&rxr->rx_agg_ring; 1904 1905 txr = &bnapi->tx_ring; 1906 ring = &txr->tx_ring_struct; 1907 ring->nr_pages = bp->tx_nr_pages; 1908 ring->page_size = HW_RXBD_RING_SIZE; 1909 ring->pg_arr = (void **)txr->tx_desc_ring; 1910 ring->dma_arr = txr->tx_desc_mapping; 1911 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 1912 ring->vmem = (void **)&txr->tx_buf_ring; 1913 } 1914 } 1915 1916 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 1917 { 1918 int i; 1919 u32 prod; 1920 struct rx_bd **rx_buf_ring; 1921 1922 rx_buf_ring = (struct rx_bd **)ring->pg_arr; 1923 for (i = 0, prod = 0; i < ring->nr_pages; i++) { 1924 int j; 1925 struct rx_bd *rxbd; 1926 1927 rxbd = rx_buf_ring[i]; 1928 if (!rxbd) 1929 continue; 1930 1931 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 1932 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 1933 rxbd->rx_bd_opaque = prod; 1934 } 1935 } 1936 } 1937 1938 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 1939 { 1940 struct net_device *dev = bp->dev; 1941 struct bnxt_napi *bnapi = bp->bnapi[ring_nr]; 1942 struct bnxt_rx_ring_info *rxr; 1943 struct bnxt_ring_struct *ring; 1944 u32 prod, type; 1945 int i; 1946 1947 if (!bnapi) 1948 return -EINVAL; 1949 1950 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 1951 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 1952 1953 if (NET_IP_ALIGN == 2) 1954 type |= RX_BD_FLAGS_SOP; 1955 1956 rxr = &bnapi->rx_ring; 1957 ring = &rxr->rx_ring_struct; 1958 bnxt_init_rxbd_pages(ring, type); 1959 1960 prod = rxr->rx_prod; 1961 for (i = 0; i < bp->rx_ring_size; i++) { 1962 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) { 1963 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n", 1964 ring_nr, i, bp->rx_ring_size); 1965 break; 1966 } 1967 prod = NEXT_RX(prod); 1968 } 1969 rxr->rx_prod = prod; 1970 ring->fw_ring_id = INVALID_HW_RING_ID; 1971 1972 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 1973 return 0; 1974 1975 ring = &rxr->rx_agg_ring_struct; 1976 1977 type = ((u32)PAGE_SIZE << RX_BD_LEN_SHIFT) | 1978 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 1979 1980 bnxt_init_rxbd_pages(ring, type); 1981 1982 prod = rxr->rx_agg_prod; 1983 for (i = 0; i < bp->rx_agg_ring_size; i++) { 1984 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) { 1985 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n", 1986 ring_nr, i, bp->rx_ring_size); 1987 break; 1988 } 1989 prod = NEXT_RX_AGG(prod); 1990 } 1991 rxr->rx_agg_prod = prod; 1992 ring->fw_ring_id = INVALID_HW_RING_ID; 1993 1994 if (bp->flags & BNXT_FLAG_TPA) { 1995 if (rxr->rx_tpa) { 1996 u8 *data; 1997 dma_addr_t mapping; 1998 1999 for (i = 0; i < MAX_TPA; i++) { 2000 data = __bnxt_alloc_rx_data(bp, &mapping, 2001 GFP_KERNEL); 2002 if (!data) 2003 return -ENOMEM; 2004 2005 rxr->rx_tpa[i].data = data; 2006 rxr->rx_tpa[i].mapping = mapping; 2007 } 2008 } else { 2009 netdev_err(bp->dev, "No resource allocated for LRO/GRO\n"); 2010 return -ENOMEM; 2011 } 2012 } 2013 2014 return 0; 2015 } 2016 2017 static int bnxt_init_rx_rings(struct bnxt *bp) 2018 { 2019 int i, rc = 0; 2020 2021 for (i = 0; i < bp->rx_nr_rings; i++) { 2022 rc = bnxt_init_one_rx_ring(bp, i); 2023 if (rc) 2024 break; 2025 } 2026 2027 return rc; 2028 } 2029 2030 static int bnxt_init_tx_rings(struct bnxt *bp) 2031 { 2032 u16 i; 2033 2034 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 2035 MAX_SKB_FRAGS + 1); 2036 2037 for (i = 0; i < bp->tx_nr_rings; i++) { 2038 struct bnxt_napi *bnapi = bp->bnapi[i]; 2039 struct bnxt_tx_ring_info *txr = &bnapi->tx_ring; 2040 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 2041 2042 ring->fw_ring_id = INVALID_HW_RING_ID; 2043 } 2044 2045 return 0; 2046 } 2047 2048 static void bnxt_free_ring_grps(struct bnxt *bp) 2049 { 2050 kfree(bp->grp_info); 2051 bp->grp_info = NULL; 2052 } 2053 2054 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 2055 { 2056 int i; 2057 2058 if (irq_re_init) { 2059 bp->grp_info = kcalloc(bp->cp_nr_rings, 2060 sizeof(struct bnxt_ring_grp_info), 2061 GFP_KERNEL); 2062 if (!bp->grp_info) 2063 return -ENOMEM; 2064 } 2065 for (i = 0; i < bp->cp_nr_rings; i++) { 2066 if (irq_re_init) 2067 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 2068 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 2069 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 2070 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 2071 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 2072 } 2073 return 0; 2074 } 2075 2076 static void bnxt_free_vnics(struct bnxt *bp) 2077 { 2078 kfree(bp->vnic_info); 2079 bp->vnic_info = NULL; 2080 bp->nr_vnics = 0; 2081 } 2082 2083 static int bnxt_alloc_vnics(struct bnxt *bp) 2084 { 2085 int num_vnics = 1; 2086 2087 #ifdef CONFIG_RFS_ACCEL 2088 if (bp->flags & BNXT_FLAG_RFS) 2089 num_vnics += bp->rx_nr_rings; 2090 #endif 2091 2092 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 2093 GFP_KERNEL); 2094 if (!bp->vnic_info) 2095 return -ENOMEM; 2096 2097 bp->nr_vnics = num_vnics; 2098 return 0; 2099 } 2100 2101 static void bnxt_init_vnics(struct bnxt *bp) 2102 { 2103 int i; 2104 2105 for (i = 0; i < bp->nr_vnics; i++) { 2106 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 2107 2108 vnic->fw_vnic_id = INVALID_HW_RING_ID; 2109 vnic->fw_rss_cos_lb_ctx = INVALID_HW_RING_ID; 2110 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 2111 2112 if (bp->vnic_info[i].rss_hash_key) { 2113 if (i == 0) 2114 prandom_bytes(vnic->rss_hash_key, 2115 HW_HASH_KEY_SIZE); 2116 else 2117 memcpy(vnic->rss_hash_key, 2118 bp->vnic_info[0].rss_hash_key, 2119 HW_HASH_KEY_SIZE); 2120 } 2121 } 2122 } 2123 2124 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 2125 { 2126 int pages; 2127 2128 pages = ring_size / desc_per_pg; 2129 2130 if (!pages) 2131 return 1; 2132 2133 pages++; 2134 2135 while (pages & (pages - 1)) 2136 pages++; 2137 2138 return pages; 2139 } 2140 2141 static void bnxt_set_tpa_flags(struct bnxt *bp) 2142 { 2143 bp->flags &= ~BNXT_FLAG_TPA; 2144 if (bp->dev->features & NETIF_F_LRO) 2145 bp->flags |= BNXT_FLAG_LRO; 2146 if ((bp->dev->features & NETIF_F_GRO) && (bp->pdev->revision > 0)) 2147 bp->flags |= BNXT_FLAG_GRO; 2148 } 2149 2150 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 2151 * be set on entry. 2152 */ 2153 void bnxt_set_ring_params(struct bnxt *bp) 2154 { 2155 u32 ring_size, rx_size, rx_space; 2156 u32 agg_factor = 0, agg_ring_size = 0; 2157 2158 /* 8 for CRC and VLAN */ 2159 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 2160 2161 rx_space = rx_size + NET_SKB_PAD + 2162 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2163 2164 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 2165 ring_size = bp->rx_ring_size; 2166 bp->rx_agg_ring_size = 0; 2167 bp->rx_agg_nr_pages = 0; 2168 2169 if (bp->flags & BNXT_FLAG_TPA) 2170 agg_factor = 4; 2171 2172 bp->flags &= ~BNXT_FLAG_JUMBO; 2173 if (rx_space > PAGE_SIZE) { 2174 u32 jumbo_factor; 2175 2176 bp->flags |= BNXT_FLAG_JUMBO; 2177 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 2178 if (jumbo_factor > agg_factor) 2179 agg_factor = jumbo_factor; 2180 } 2181 agg_ring_size = ring_size * agg_factor; 2182 2183 if (agg_ring_size) { 2184 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 2185 RX_DESC_CNT); 2186 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 2187 u32 tmp = agg_ring_size; 2188 2189 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 2190 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 2191 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 2192 tmp, agg_ring_size); 2193 } 2194 bp->rx_agg_ring_size = agg_ring_size; 2195 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 2196 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 2197 rx_space = rx_size + NET_SKB_PAD + 2198 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2199 } 2200 2201 bp->rx_buf_use_size = rx_size; 2202 bp->rx_buf_size = rx_space; 2203 2204 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 2205 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 2206 2207 ring_size = bp->tx_ring_size; 2208 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 2209 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 2210 2211 ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size; 2212 bp->cp_ring_size = ring_size; 2213 2214 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 2215 if (bp->cp_nr_pages > MAX_CP_PAGES) { 2216 bp->cp_nr_pages = MAX_CP_PAGES; 2217 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 2218 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 2219 ring_size, bp->cp_ring_size); 2220 } 2221 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 2222 bp->cp_ring_mask = bp->cp_bit - 1; 2223 } 2224 2225 static void bnxt_free_vnic_attributes(struct bnxt *bp) 2226 { 2227 int i; 2228 struct bnxt_vnic_info *vnic; 2229 struct pci_dev *pdev = bp->pdev; 2230 2231 if (!bp->vnic_info) 2232 return; 2233 2234 for (i = 0; i < bp->nr_vnics; i++) { 2235 vnic = &bp->vnic_info[i]; 2236 2237 kfree(vnic->fw_grp_ids); 2238 vnic->fw_grp_ids = NULL; 2239 2240 kfree(vnic->uc_list); 2241 vnic->uc_list = NULL; 2242 2243 if (vnic->mc_list) { 2244 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 2245 vnic->mc_list, vnic->mc_list_mapping); 2246 vnic->mc_list = NULL; 2247 } 2248 2249 if (vnic->rss_table) { 2250 dma_free_coherent(&pdev->dev, PAGE_SIZE, 2251 vnic->rss_table, 2252 vnic->rss_table_dma_addr); 2253 vnic->rss_table = NULL; 2254 } 2255 2256 vnic->rss_hash_key = NULL; 2257 vnic->flags = 0; 2258 } 2259 } 2260 2261 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 2262 { 2263 int i, rc = 0, size; 2264 struct bnxt_vnic_info *vnic; 2265 struct pci_dev *pdev = bp->pdev; 2266 int max_rings; 2267 2268 for (i = 0; i < bp->nr_vnics; i++) { 2269 vnic = &bp->vnic_info[i]; 2270 2271 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 2272 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 2273 2274 if (mem_size > 0) { 2275 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 2276 if (!vnic->uc_list) { 2277 rc = -ENOMEM; 2278 goto out; 2279 } 2280 } 2281 } 2282 2283 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 2284 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 2285 vnic->mc_list = 2286 dma_alloc_coherent(&pdev->dev, 2287 vnic->mc_list_size, 2288 &vnic->mc_list_mapping, 2289 GFP_KERNEL); 2290 if (!vnic->mc_list) { 2291 rc = -ENOMEM; 2292 goto out; 2293 } 2294 } 2295 2296 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 2297 max_rings = bp->rx_nr_rings; 2298 else 2299 max_rings = 1; 2300 2301 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 2302 if (!vnic->fw_grp_ids) { 2303 rc = -ENOMEM; 2304 goto out; 2305 } 2306 2307 /* Allocate rss table and hash key */ 2308 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE, 2309 &vnic->rss_table_dma_addr, 2310 GFP_KERNEL); 2311 if (!vnic->rss_table) { 2312 rc = -ENOMEM; 2313 goto out; 2314 } 2315 2316 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 2317 2318 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 2319 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 2320 } 2321 return 0; 2322 2323 out: 2324 return rc; 2325 } 2326 2327 static void bnxt_free_hwrm_resources(struct bnxt *bp) 2328 { 2329 struct pci_dev *pdev = bp->pdev; 2330 2331 dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr, 2332 bp->hwrm_cmd_resp_dma_addr); 2333 2334 bp->hwrm_cmd_resp_addr = NULL; 2335 if (bp->hwrm_dbg_resp_addr) { 2336 dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE, 2337 bp->hwrm_dbg_resp_addr, 2338 bp->hwrm_dbg_resp_dma_addr); 2339 2340 bp->hwrm_dbg_resp_addr = NULL; 2341 } 2342 } 2343 2344 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 2345 { 2346 struct pci_dev *pdev = bp->pdev; 2347 2348 bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE, 2349 &bp->hwrm_cmd_resp_dma_addr, 2350 GFP_KERNEL); 2351 if (!bp->hwrm_cmd_resp_addr) 2352 return -ENOMEM; 2353 bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev, 2354 HWRM_DBG_REG_BUF_SIZE, 2355 &bp->hwrm_dbg_resp_dma_addr, 2356 GFP_KERNEL); 2357 if (!bp->hwrm_dbg_resp_addr) 2358 netdev_warn(bp->dev, "fail to alloc debug register dma mem\n"); 2359 2360 return 0; 2361 } 2362 2363 static void bnxt_free_stats(struct bnxt *bp) 2364 { 2365 u32 size, i; 2366 struct pci_dev *pdev = bp->pdev; 2367 2368 if (!bp->bnapi) 2369 return; 2370 2371 size = sizeof(struct ctx_hw_stats); 2372 2373 for (i = 0; i < bp->cp_nr_rings; i++) { 2374 struct bnxt_napi *bnapi = bp->bnapi[i]; 2375 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2376 2377 if (cpr->hw_stats) { 2378 dma_free_coherent(&pdev->dev, size, cpr->hw_stats, 2379 cpr->hw_stats_map); 2380 cpr->hw_stats = NULL; 2381 } 2382 } 2383 } 2384 2385 static int bnxt_alloc_stats(struct bnxt *bp) 2386 { 2387 u32 size, i; 2388 struct pci_dev *pdev = bp->pdev; 2389 2390 size = sizeof(struct ctx_hw_stats); 2391 2392 for (i = 0; i < bp->cp_nr_rings; i++) { 2393 struct bnxt_napi *bnapi = bp->bnapi[i]; 2394 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2395 2396 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size, 2397 &cpr->hw_stats_map, 2398 GFP_KERNEL); 2399 if (!cpr->hw_stats) 2400 return -ENOMEM; 2401 2402 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 2403 } 2404 return 0; 2405 } 2406 2407 static void bnxt_clear_ring_indices(struct bnxt *bp) 2408 { 2409 int i; 2410 2411 if (!bp->bnapi) 2412 return; 2413 2414 for (i = 0; i < bp->cp_nr_rings; i++) { 2415 struct bnxt_napi *bnapi = bp->bnapi[i]; 2416 struct bnxt_cp_ring_info *cpr; 2417 struct bnxt_rx_ring_info *rxr; 2418 struct bnxt_tx_ring_info *txr; 2419 2420 if (!bnapi) 2421 continue; 2422 2423 cpr = &bnapi->cp_ring; 2424 cpr->cp_raw_cons = 0; 2425 2426 txr = &bnapi->tx_ring; 2427 txr->tx_prod = 0; 2428 txr->tx_cons = 0; 2429 2430 rxr = &bnapi->rx_ring; 2431 rxr->rx_prod = 0; 2432 rxr->rx_agg_prod = 0; 2433 rxr->rx_sw_agg_prod = 0; 2434 } 2435 } 2436 2437 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit) 2438 { 2439 #ifdef CONFIG_RFS_ACCEL 2440 int i; 2441 2442 /* Under rtnl_lock and all our NAPIs have been disabled. It's 2443 * safe to delete the hash table. 2444 */ 2445 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 2446 struct hlist_head *head; 2447 struct hlist_node *tmp; 2448 struct bnxt_ntuple_filter *fltr; 2449 2450 head = &bp->ntp_fltr_hash_tbl[i]; 2451 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 2452 hlist_del(&fltr->hash); 2453 kfree(fltr); 2454 } 2455 } 2456 if (irq_reinit) { 2457 kfree(bp->ntp_fltr_bmap); 2458 bp->ntp_fltr_bmap = NULL; 2459 } 2460 bp->ntp_fltr_count = 0; 2461 #endif 2462 } 2463 2464 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 2465 { 2466 #ifdef CONFIG_RFS_ACCEL 2467 int i, rc = 0; 2468 2469 if (!(bp->flags & BNXT_FLAG_RFS)) 2470 return 0; 2471 2472 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 2473 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 2474 2475 bp->ntp_fltr_count = 0; 2476 bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR), 2477 GFP_KERNEL); 2478 2479 if (!bp->ntp_fltr_bmap) 2480 rc = -ENOMEM; 2481 2482 return rc; 2483 #else 2484 return 0; 2485 #endif 2486 } 2487 2488 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 2489 { 2490 bnxt_free_vnic_attributes(bp); 2491 bnxt_free_tx_rings(bp); 2492 bnxt_free_rx_rings(bp); 2493 bnxt_free_cp_rings(bp); 2494 bnxt_free_ntp_fltrs(bp, irq_re_init); 2495 if (irq_re_init) { 2496 bnxt_free_stats(bp); 2497 bnxt_free_ring_grps(bp); 2498 bnxt_free_vnics(bp); 2499 kfree(bp->bnapi); 2500 bp->bnapi = NULL; 2501 } else { 2502 bnxt_clear_ring_indices(bp); 2503 } 2504 } 2505 2506 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 2507 { 2508 int i, rc, size, arr_size; 2509 void *bnapi; 2510 2511 if (irq_re_init) { 2512 /* Allocate bnapi mem pointer array and mem block for 2513 * all queues 2514 */ 2515 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 2516 bp->cp_nr_rings); 2517 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 2518 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 2519 if (!bnapi) 2520 return -ENOMEM; 2521 2522 bp->bnapi = bnapi; 2523 bnapi += arr_size; 2524 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 2525 bp->bnapi[i] = bnapi; 2526 bp->bnapi[i]->index = i; 2527 bp->bnapi[i]->bp = bp; 2528 } 2529 2530 rc = bnxt_alloc_stats(bp); 2531 if (rc) 2532 goto alloc_mem_err; 2533 2534 rc = bnxt_alloc_ntp_fltrs(bp); 2535 if (rc) 2536 goto alloc_mem_err; 2537 2538 rc = bnxt_alloc_vnics(bp); 2539 if (rc) 2540 goto alloc_mem_err; 2541 } 2542 2543 bnxt_init_ring_struct(bp); 2544 2545 rc = bnxt_alloc_rx_rings(bp); 2546 if (rc) 2547 goto alloc_mem_err; 2548 2549 rc = bnxt_alloc_tx_rings(bp); 2550 if (rc) 2551 goto alloc_mem_err; 2552 2553 rc = bnxt_alloc_cp_rings(bp); 2554 if (rc) 2555 goto alloc_mem_err; 2556 2557 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG | 2558 BNXT_VNIC_UCAST_FLAG; 2559 rc = bnxt_alloc_vnic_attributes(bp); 2560 if (rc) 2561 goto alloc_mem_err; 2562 return 0; 2563 2564 alloc_mem_err: 2565 bnxt_free_mem(bp, true); 2566 return rc; 2567 } 2568 2569 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type, 2570 u16 cmpl_ring, u16 target_id) 2571 { 2572 struct hwrm_cmd_req_hdr *req = request; 2573 2574 req->cmpl_ring_req_type = 2575 cpu_to_le32(req_type | (cmpl_ring << HWRM_CMPL_RING_SFT)); 2576 req->target_id_seq_id = cpu_to_le32(target_id << HWRM_TARGET_FID_SFT); 2577 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr); 2578 } 2579 2580 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout) 2581 { 2582 int i, intr_process, rc; 2583 struct hwrm_cmd_req_hdr *req = msg; 2584 u32 *data = msg; 2585 __le32 *resp_len, *valid; 2586 u16 cp_ring_id, len = 0; 2587 struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr; 2588 2589 req->target_id_seq_id |= cpu_to_le32(bp->hwrm_cmd_seq++); 2590 memset(resp, 0, PAGE_SIZE); 2591 cp_ring_id = (le32_to_cpu(req->cmpl_ring_req_type) & 2592 HWRM_CMPL_RING_MASK) >> 2593 HWRM_CMPL_RING_SFT; 2594 intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1; 2595 2596 /* Write request msg to hwrm channel */ 2597 __iowrite32_copy(bp->bar0, data, msg_len / 4); 2598 2599 /* currently supports only one outstanding message */ 2600 if (intr_process) 2601 bp->hwrm_intr_seq_id = le32_to_cpu(req->target_id_seq_id) & 2602 HWRM_SEQ_ID_MASK; 2603 2604 /* Ring channel doorbell */ 2605 writel(1, bp->bar0 + 0x100); 2606 2607 i = 0; 2608 if (intr_process) { 2609 /* Wait until hwrm response cmpl interrupt is processed */ 2610 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID && 2611 i++ < timeout) { 2612 usleep_range(600, 800); 2613 } 2614 2615 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) { 2616 netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n", 2617 req->cmpl_ring_req_type); 2618 return -1; 2619 } 2620 } else { 2621 /* Check if response len is updated */ 2622 resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET; 2623 for (i = 0; i < timeout; i++) { 2624 len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >> 2625 HWRM_RESP_LEN_SFT; 2626 if (len) 2627 break; 2628 usleep_range(600, 800); 2629 } 2630 2631 if (i >= timeout) { 2632 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n", 2633 timeout, req->cmpl_ring_req_type, 2634 req->target_id_seq_id, *resp_len); 2635 return -1; 2636 } 2637 2638 /* Last word of resp contains valid bit */ 2639 valid = bp->hwrm_cmd_resp_addr + len - 4; 2640 for (i = 0; i < timeout; i++) { 2641 if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK) 2642 break; 2643 usleep_range(600, 800); 2644 } 2645 2646 if (i >= timeout) { 2647 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n", 2648 timeout, req->cmpl_ring_req_type, 2649 req->target_id_seq_id, len, *valid); 2650 return -1; 2651 } 2652 } 2653 2654 rc = le16_to_cpu(resp->error_code); 2655 if (rc) { 2656 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n", 2657 le16_to_cpu(resp->req_type), 2658 le16_to_cpu(resp->seq_id), rc); 2659 return rc; 2660 } 2661 return 0; 2662 } 2663 2664 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout) 2665 { 2666 int rc; 2667 2668 mutex_lock(&bp->hwrm_cmd_lock); 2669 rc = _hwrm_send_message(bp, msg, msg_len, timeout); 2670 mutex_unlock(&bp->hwrm_cmd_lock); 2671 return rc; 2672 } 2673 2674 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp) 2675 { 2676 struct hwrm_func_drv_rgtr_input req = {0}; 2677 int i; 2678 2679 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1); 2680 2681 req.enables = 2682 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 2683 FUNC_DRV_RGTR_REQ_ENABLES_VER | 2684 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 2685 2686 /* TODO: current async event fwd bits are not defined and the firmware 2687 * only checks if it is non-zero to enable async event forwarding 2688 */ 2689 req.async_event_fwd[0] |= cpu_to_le32(1); 2690 req.os_type = cpu_to_le16(1); 2691 req.ver_maj = DRV_VER_MAJ; 2692 req.ver_min = DRV_VER_MIN; 2693 req.ver_upd = DRV_VER_UPD; 2694 2695 if (BNXT_PF(bp)) { 2696 unsigned long vf_req_snif_bmap[4]; 2697 u32 *data = (u32 *)vf_req_snif_bmap; 2698 2699 memset(vf_req_snif_bmap, 0, 32); 2700 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) 2701 __set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap); 2702 2703 for (i = 0; i < 8; i++) { 2704 req.vf_req_fwd[i] = cpu_to_le32(*data); 2705 data++; 2706 } 2707 req.enables |= 2708 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 2709 } 2710 2711 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 2712 } 2713 2714 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 2715 { 2716 u32 rc = 0; 2717 struct hwrm_tunnel_dst_port_free_input req = {0}; 2718 2719 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1); 2720 req.tunnel_type = tunnel_type; 2721 2722 switch (tunnel_type) { 2723 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 2724 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id; 2725 break; 2726 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 2727 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id; 2728 break; 2729 default: 2730 break; 2731 } 2732 2733 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 2734 if (rc) 2735 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 2736 rc); 2737 return rc; 2738 } 2739 2740 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 2741 u8 tunnel_type) 2742 { 2743 u32 rc = 0; 2744 struct hwrm_tunnel_dst_port_alloc_input req = {0}; 2745 struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr; 2746 2747 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1); 2748 2749 req.tunnel_type = tunnel_type; 2750 req.tunnel_dst_port_val = port; 2751 2752 mutex_lock(&bp->hwrm_cmd_lock); 2753 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 2754 if (rc) { 2755 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 2756 rc); 2757 goto err_out; 2758 } 2759 2760 if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN) 2761 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id; 2762 2763 else if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE) 2764 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id; 2765 err_out: 2766 mutex_unlock(&bp->hwrm_cmd_lock); 2767 return rc; 2768 } 2769 2770 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 2771 { 2772 struct hwrm_cfa_l2_set_rx_mask_input req = {0}; 2773 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 2774 2775 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1); 2776 req.dflt_vnic_id = cpu_to_le32(vnic->fw_vnic_id); 2777 2778 req.num_mc_entries = cpu_to_le32(vnic->mc_list_count); 2779 req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 2780 req.mask = cpu_to_le32(vnic->rx_mask); 2781 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 2782 } 2783 2784 #ifdef CONFIG_RFS_ACCEL 2785 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 2786 struct bnxt_ntuple_filter *fltr) 2787 { 2788 struct hwrm_cfa_ntuple_filter_free_input req = {0}; 2789 2790 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1); 2791 req.ntuple_filter_id = fltr->filter_id; 2792 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 2793 } 2794 2795 #define BNXT_NTP_FLTR_FLAGS \ 2796 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 2797 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 2798 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \ 2799 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 2800 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 2801 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 2802 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 2803 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 2804 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 2805 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 2806 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 2807 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 2808 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 2809 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_VNIC_ID) 2810 2811 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 2812 struct bnxt_ntuple_filter *fltr) 2813 { 2814 int rc = 0; 2815 struct hwrm_cfa_ntuple_filter_alloc_input req = {0}; 2816 struct hwrm_cfa_ntuple_filter_alloc_output *resp = 2817 bp->hwrm_cmd_resp_addr; 2818 struct flow_keys *keys = &fltr->fkeys; 2819 struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1]; 2820 2821 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1); 2822 req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[0]; 2823 2824 req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 2825 2826 req.ethertype = htons(ETH_P_IP); 2827 memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN); 2828 req.ipaddr_type = 4; 2829 req.ip_protocol = keys->basic.ip_proto; 2830 2831 req.src_ipaddr[0] = keys->addrs.v4addrs.src; 2832 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 2833 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst; 2834 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 2835 2836 req.src_port = keys->ports.src; 2837 req.src_port_mask = cpu_to_be16(0xffff); 2838 req.dst_port = keys->ports.dst; 2839 req.dst_port_mask = cpu_to_be16(0xffff); 2840 2841 req.dst_vnic_id = cpu_to_le16(vnic->fw_vnic_id); 2842 mutex_lock(&bp->hwrm_cmd_lock); 2843 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 2844 if (!rc) 2845 fltr->filter_id = resp->ntuple_filter_id; 2846 mutex_unlock(&bp->hwrm_cmd_lock); 2847 return rc; 2848 } 2849 #endif 2850 2851 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 2852 u8 *mac_addr) 2853 { 2854 u32 rc = 0; 2855 struct hwrm_cfa_l2_filter_alloc_input req = {0}; 2856 struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr; 2857 2858 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1); 2859 req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX | 2860 CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 2861 req.dst_vnic_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id); 2862 req.enables = 2863 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 2864 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_VNIC_ID | 2865 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 2866 memcpy(req.l2_addr, mac_addr, ETH_ALEN); 2867 req.l2_addr_mask[0] = 0xff; 2868 req.l2_addr_mask[1] = 0xff; 2869 req.l2_addr_mask[2] = 0xff; 2870 req.l2_addr_mask[3] = 0xff; 2871 req.l2_addr_mask[4] = 0xff; 2872 req.l2_addr_mask[5] = 0xff; 2873 2874 mutex_lock(&bp->hwrm_cmd_lock); 2875 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 2876 if (!rc) 2877 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] = 2878 resp->l2_filter_id; 2879 mutex_unlock(&bp->hwrm_cmd_lock); 2880 return rc; 2881 } 2882 2883 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 2884 { 2885 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 2886 int rc = 0; 2887 2888 /* Any associated ntuple filters will also be cleared by firmware. */ 2889 mutex_lock(&bp->hwrm_cmd_lock); 2890 for (i = 0; i < num_of_vnics; i++) { 2891 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 2892 2893 for (j = 0; j < vnic->uc_filter_count; j++) { 2894 struct hwrm_cfa_l2_filter_free_input req = {0}; 2895 2896 bnxt_hwrm_cmd_hdr_init(bp, &req, 2897 HWRM_CFA_L2_FILTER_FREE, -1, -1); 2898 2899 req.l2_filter_id = vnic->fw_l2_filter_id[j]; 2900 2901 rc = _hwrm_send_message(bp, &req, sizeof(req), 2902 HWRM_CMD_TIMEOUT); 2903 } 2904 vnic->uc_filter_count = 0; 2905 } 2906 mutex_unlock(&bp->hwrm_cmd_lock); 2907 2908 return rc; 2909 } 2910 2911 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags) 2912 { 2913 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 2914 struct hwrm_vnic_tpa_cfg_input req = {0}; 2915 2916 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1); 2917 2918 if (tpa_flags) { 2919 u16 mss = bp->dev->mtu - 40; 2920 u32 nsegs, n, segs = 0, flags; 2921 2922 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 2923 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 2924 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 2925 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 2926 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 2927 if (tpa_flags & BNXT_FLAG_GRO) 2928 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 2929 2930 req.flags = cpu_to_le32(flags); 2931 2932 req.enables = 2933 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 2934 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS); 2935 2936 /* Number of segs are log2 units, and first packet is not 2937 * included as part of this units. 2938 */ 2939 if (mss <= PAGE_SIZE) { 2940 n = PAGE_SIZE / mss; 2941 nsegs = (MAX_SKB_FRAGS - 1) * n; 2942 } else { 2943 n = mss / PAGE_SIZE; 2944 if (mss & (PAGE_SIZE - 1)) 2945 n++; 2946 nsegs = (MAX_SKB_FRAGS - n) / n; 2947 } 2948 2949 segs = ilog2(nsegs); 2950 req.max_agg_segs = cpu_to_le16(segs); 2951 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX); 2952 } 2953 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); 2954 2955 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 2956 } 2957 2958 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss) 2959 { 2960 u32 i, j, max_rings; 2961 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 2962 struct hwrm_vnic_rss_cfg_input req = {0}; 2963 2964 if (vnic->fw_rss_cos_lb_ctx == INVALID_HW_RING_ID) 2965 return 0; 2966 2967 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1); 2968 if (set_rss) { 2969 vnic->hash_type = BNXT_RSS_HASH_TYPE_FLAG_IPV4 | 2970 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV4 | 2971 BNXT_RSS_HASH_TYPE_FLAG_IPV6 | 2972 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV6; 2973 2974 req.hash_type = cpu_to_le32(vnic->hash_type); 2975 2976 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 2977 max_rings = bp->rx_nr_rings; 2978 else 2979 max_rings = 1; 2980 2981 /* Fill the RSS indirection table with ring group ids */ 2982 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) { 2983 if (j == max_rings) 2984 j = 0; 2985 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 2986 } 2987 2988 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 2989 req.hash_key_tbl_addr = 2990 cpu_to_le64(vnic->rss_hash_key_dma_addr); 2991 } 2992 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx); 2993 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 2994 } 2995 2996 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id) 2997 { 2998 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 2999 struct hwrm_vnic_plcmodes_cfg_input req = {0}; 3000 3001 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1); 3002 req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT | 3003 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 3004 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 3005 req.enables = 3006 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID | 3007 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 3008 /* thresholds not implemented in firmware yet */ 3009 req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 3010 req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 3011 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id); 3012 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3013 } 3014 3015 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id) 3016 { 3017 struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0}; 3018 3019 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1); 3020 req.rss_cos_lb_ctx_id = 3021 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx); 3022 3023 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3024 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID; 3025 } 3026 3027 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 3028 { 3029 int i; 3030 3031 for (i = 0; i < bp->nr_vnics; i++) { 3032 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 3033 3034 if (vnic->fw_rss_cos_lb_ctx != INVALID_HW_RING_ID) 3035 bnxt_hwrm_vnic_ctx_free_one(bp, i); 3036 } 3037 bp->rsscos_nr_ctxs = 0; 3038 } 3039 3040 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id) 3041 { 3042 int rc; 3043 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0}; 3044 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp = 3045 bp->hwrm_cmd_resp_addr; 3046 3047 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1, 3048 -1); 3049 3050 mutex_lock(&bp->hwrm_cmd_lock); 3051 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3052 if (!rc) 3053 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = 3054 le16_to_cpu(resp->rss_cos_lb_ctx_id); 3055 mutex_unlock(&bp->hwrm_cmd_lock); 3056 3057 return rc; 3058 } 3059 3060 static int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id) 3061 { 3062 int grp_idx = 0; 3063 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 3064 struct hwrm_vnic_cfg_input req = {0}; 3065 3066 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1); 3067 /* Only RSS support for now TBD: COS & LB */ 3068 req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP | 3069 VNIC_CFG_REQ_ENABLES_RSS_RULE); 3070 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx); 3071 req.cos_rule = cpu_to_le16(0xffff); 3072 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 3073 grp_idx = 0; 3074 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 3075 grp_idx = vnic_id - 1; 3076 3077 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); 3078 req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 3079 3080 req.lb_rule = cpu_to_le16(0xffff); 3081 req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN + 3082 VLAN_HLEN); 3083 3084 if (bp->flags & BNXT_FLAG_STRIP_VLAN) 3085 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 3086 3087 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3088 } 3089 3090 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id) 3091 { 3092 u32 rc = 0; 3093 3094 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) { 3095 struct hwrm_vnic_free_input req = {0}; 3096 3097 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1); 3098 req.vnic_id = 3099 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id); 3100 3101 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3102 if (rc) 3103 return rc; 3104 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID; 3105 } 3106 return rc; 3107 } 3108 3109 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 3110 { 3111 u16 i; 3112 3113 for (i = 0; i < bp->nr_vnics; i++) 3114 bnxt_hwrm_vnic_free_one(bp, i); 3115 } 3116 3117 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id, u16 start_grp_id, 3118 u16 end_grp_id) 3119 { 3120 u32 rc = 0, i, j; 3121 struct hwrm_vnic_alloc_input req = {0}; 3122 struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr; 3123 3124 /* map ring groups to this vnic */ 3125 for (i = start_grp_id, j = 0; i < end_grp_id; i++, j++) { 3126 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) { 3127 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 3128 j, (end_grp_id - start_grp_id)); 3129 break; 3130 } 3131 bp->vnic_info[vnic_id].fw_grp_ids[j] = 3132 bp->grp_info[i].fw_grp_id; 3133 } 3134 3135 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID; 3136 if (vnic_id == 0) 3137 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 3138 3139 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1); 3140 3141 mutex_lock(&bp->hwrm_cmd_lock); 3142 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3143 if (!rc) 3144 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id); 3145 mutex_unlock(&bp->hwrm_cmd_lock); 3146 return rc; 3147 } 3148 3149 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 3150 { 3151 u16 i; 3152 u32 rc = 0; 3153 3154 mutex_lock(&bp->hwrm_cmd_lock); 3155 for (i = 0; i < bp->rx_nr_rings; i++) { 3156 struct hwrm_ring_grp_alloc_input req = {0}; 3157 struct hwrm_ring_grp_alloc_output *resp = 3158 bp->hwrm_cmd_resp_addr; 3159 3160 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1); 3161 3162 req.cr = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id); 3163 req.rr = cpu_to_le16(bp->grp_info[i].rx_fw_ring_id); 3164 req.ar = cpu_to_le16(bp->grp_info[i].agg_fw_ring_id); 3165 req.sc = cpu_to_le16(bp->grp_info[i].fw_stats_ctx); 3166 3167 rc = _hwrm_send_message(bp, &req, sizeof(req), 3168 HWRM_CMD_TIMEOUT); 3169 if (rc) 3170 break; 3171 3172 bp->grp_info[i].fw_grp_id = le32_to_cpu(resp->ring_group_id); 3173 } 3174 mutex_unlock(&bp->hwrm_cmd_lock); 3175 return rc; 3176 } 3177 3178 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp) 3179 { 3180 u16 i; 3181 u32 rc = 0; 3182 struct hwrm_ring_grp_free_input req = {0}; 3183 3184 if (!bp->grp_info) 3185 return 0; 3186 3187 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1); 3188 3189 mutex_lock(&bp->hwrm_cmd_lock); 3190 for (i = 0; i < bp->cp_nr_rings; i++) { 3191 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 3192 continue; 3193 req.ring_group_id = 3194 cpu_to_le32(bp->grp_info[i].fw_grp_id); 3195 3196 rc = _hwrm_send_message(bp, &req, sizeof(req), 3197 HWRM_CMD_TIMEOUT); 3198 if (rc) 3199 break; 3200 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 3201 } 3202 mutex_unlock(&bp->hwrm_cmd_lock); 3203 return rc; 3204 } 3205 3206 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 3207 struct bnxt_ring_struct *ring, 3208 u32 ring_type, u32 map_index, 3209 u32 stats_ctx_id) 3210 { 3211 int rc = 0, err = 0; 3212 struct hwrm_ring_alloc_input req = {0}; 3213 struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr; 3214 u16 ring_id; 3215 3216 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1); 3217 3218 req.enables = 0; 3219 if (ring->nr_pages > 1) { 3220 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map); 3221 /* Page size is in log2 units */ 3222 req.page_size = BNXT_PAGE_SHIFT; 3223 req.page_tbl_depth = 1; 3224 } else { 3225 req.page_tbl_addr = cpu_to_le64(ring->dma_arr[0]); 3226 } 3227 req.fbo = 0; 3228 /* Association of ring index with doorbell index and MSIX number */ 3229 req.logical_id = cpu_to_le16(map_index); 3230 3231 switch (ring_type) { 3232 case HWRM_RING_ALLOC_TX: 3233 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 3234 /* Association of transmit ring with completion ring */ 3235 req.cmpl_ring_id = 3236 cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id); 3237 req.length = cpu_to_le32(bp->tx_ring_mask + 1); 3238 req.stat_ctx_id = cpu_to_le32(stats_ctx_id); 3239 req.queue_id = cpu_to_le16(ring->queue_id); 3240 break; 3241 case HWRM_RING_ALLOC_RX: 3242 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 3243 req.length = cpu_to_le32(bp->rx_ring_mask + 1); 3244 break; 3245 case HWRM_RING_ALLOC_AGG: 3246 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 3247 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 3248 break; 3249 case HWRM_RING_ALLOC_CMPL: 3250 req.ring_type = RING_ALLOC_REQ_RING_TYPE_CMPL; 3251 req.length = cpu_to_le32(bp->cp_ring_mask + 1); 3252 if (bp->flags & BNXT_FLAG_USING_MSIX) 3253 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 3254 break; 3255 default: 3256 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 3257 ring_type); 3258 return -1; 3259 } 3260 3261 mutex_lock(&bp->hwrm_cmd_lock); 3262 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3263 err = le16_to_cpu(resp->error_code); 3264 ring_id = le16_to_cpu(resp->ring_id); 3265 mutex_unlock(&bp->hwrm_cmd_lock); 3266 3267 if (rc || err) { 3268 switch (ring_type) { 3269 case RING_FREE_REQ_RING_TYPE_CMPL: 3270 netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n", 3271 rc, err); 3272 return -1; 3273 3274 case RING_FREE_REQ_RING_TYPE_RX: 3275 netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n", 3276 rc, err); 3277 return -1; 3278 3279 case RING_FREE_REQ_RING_TYPE_TX: 3280 netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n", 3281 rc, err); 3282 return -1; 3283 3284 default: 3285 netdev_err(bp->dev, "Invalid ring\n"); 3286 return -1; 3287 } 3288 } 3289 ring->fw_ring_id = ring_id; 3290 return rc; 3291 } 3292 3293 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 3294 { 3295 int i, rc = 0; 3296 3297 if (bp->cp_nr_rings) { 3298 for (i = 0; i < bp->cp_nr_rings; i++) { 3299 struct bnxt_napi *bnapi = bp->bnapi[i]; 3300 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3301 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3302 3303 rc = hwrm_ring_alloc_send_msg(bp, ring, 3304 HWRM_RING_ALLOC_CMPL, i, 3305 INVALID_STATS_CTX_ID); 3306 if (rc) 3307 goto err_out; 3308 cpr->cp_doorbell = bp->bar1 + i * 0x80; 3309 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons); 3310 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 3311 } 3312 } 3313 3314 if (bp->tx_nr_rings) { 3315 for (i = 0; i < bp->tx_nr_rings; i++) { 3316 struct bnxt_napi *bnapi = bp->bnapi[i]; 3317 struct bnxt_tx_ring_info *txr = &bnapi->tx_ring; 3318 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 3319 u16 fw_stats_ctx = bp->grp_info[i].fw_stats_ctx; 3320 3321 rc = hwrm_ring_alloc_send_msg(bp, ring, 3322 HWRM_RING_ALLOC_TX, i, 3323 fw_stats_ctx); 3324 if (rc) 3325 goto err_out; 3326 txr->tx_doorbell = bp->bar1 + i * 0x80; 3327 } 3328 } 3329 3330 if (bp->rx_nr_rings) { 3331 for (i = 0; i < bp->rx_nr_rings; i++) { 3332 struct bnxt_napi *bnapi = bp->bnapi[i]; 3333 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring; 3334 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 3335 3336 rc = hwrm_ring_alloc_send_msg(bp, ring, 3337 HWRM_RING_ALLOC_RX, i, 3338 INVALID_STATS_CTX_ID); 3339 if (rc) 3340 goto err_out; 3341 rxr->rx_doorbell = bp->bar1 + i * 0x80; 3342 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell); 3343 bp->grp_info[i].rx_fw_ring_id = ring->fw_ring_id; 3344 } 3345 } 3346 3347 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 3348 for (i = 0; i < bp->rx_nr_rings; i++) { 3349 struct bnxt_napi *bnapi = bp->bnapi[i]; 3350 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring; 3351 struct bnxt_ring_struct *ring = 3352 &rxr->rx_agg_ring_struct; 3353 3354 rc = hwrm_ring_alloc_send_msg(bp, ring, 3355 HWRM_RING_ALLOC_AGG, 3356 bp->rx_nr_rings + i, 3357 INVALID_STATS_CTX_ID); 3358 if (rc) 3359 goto err_out; 3360 3361 rxr->rx_agg_doorbell = 3362 bp->bar1 + (bp->rx_nr_rings + i) * 0x80; 3363 writel(DB_KEY_RX | rxr->rx_agg_prod, 3364 rxr->rx_agg_doorbell); 3365 bp->grp_info[i].agg_fw_ring_id = ring->fw_ring_id; 3366 } 3367 } 3368 err_out: 3369 return rc; 3370 } 3371 3372 static int hwrm_ring_free_send_msg(struct bnxt *bp, 3373 struct bnxt_ring_struct *ring, 3374 u32 ring_type, int cmpl_ring_id) 3375 { 3376 int rc; 3377 struct hwrm_ring_free_input req = {0}; 3378 struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr; 3379 u16 error_code; 3380 3381 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, -1, -1); 3382 req.ring_type = ring_type; 3383 req.ring_id = cpu_to_le16(ring->fw_ring_id); 3384 3385 mutex_lock(&bp->hwrm_cmd_lock); 3386 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3387 error_code = le16_to_cpu(resp->error_code); 3388 mutex_unlock(&bp->hwrm_cmd_lock); 3389 3390 if (rc || error_code) { 3391 switch (ring_type) { 3392 case RING_FREE_REQ_RING_TYPE_CMPL: 3393 netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n", 3394 rc); 3395 return rc; 3396 case RING_FREE_REQ_RING_TYPE_RX: 3397 netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n", 3398 rc); 3399 return rc; 3400 case RING_FREE_REQ_RING_TYPE_TX: 3401 netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n", 3402 rc); 3403 return rc; 3404 default: 3405 netdev_err(bp->dev, "Invalid ring\n"); 3406 return -1; 3407 } 3408 } 3409 return 0; 3410 } 3411 3412 static int bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 3413 { 3414 int i, rc = 0; 3415 3416 if (!bp->bnapi) 3417 return 0; 3418 3419 if (bp->tx_nr_rings) { 3420 for (i = 0; i < bp->tx_nr_rings; i++) { 3421 struct bnxt_napi *bnapi = bp->bnapi[i]; 3422 struct bnxt_tx_ring_info *txr = &bnapi->tx_ring; 3423 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 3424 u32 cmpl_ring_id = bp->grp_info[i].cp_fw_ring_id; 3425 3426 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 3427 hwrm_ring_free_send_msg( 3428 bp, ring, 3429 RING_FREE_REQ_RING_TYPE_TX, 3430 close_path ? cmpl_ring_id : 3431 INVALID_HW_RING_ID); 3432 ring->fw_ring_id = INVALID_HW_RING_ID; 3433 } 3434 } 3435 } 3436 3437 if (bp->rx_nr_rings) { 3438 for (i = 0; i < bp->rx_nr_rings; i++) { 3439 struct bnxt_napi *bnapi = bp->bnapi[i]; 3440 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring; 3441 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 3442 u32 cmpl_ring_id = bp->grp_info[i].cp_fw_ring_id; 3443 3444 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 3445 hwrm_ring_free_send_msg( 3446 bp, ring, 3447 RING_FREE_REQ_RING_TYPE_RX, 3448 close_path ? cmpl_ring_id : 3449 INVALID_HW_RING_ID); 3450 ring->fw_ring_id = INVALID_HW_RING_ID; 3451 bp->grp_info[i].rx_fw_ring_id = 3452 INVALID_HW_RING_ID; 3453 } 3454 } 3455 } 3456 3457 if (bp->rx_agg_nr_pages) { 3458 for (i = 0; i < bp->rx_nr_rings; i++) { 3459 struct bnxt_napi *bnapi = bp->bnapi[i]; 3460 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring; 3461 struct bnxt_ring_struct *ring = 3462 &rxr->rx_agg_ring_struct; 3463 u32 cmpl_ring_id = bp->grp_info[i].cp_fw_ring_id; 3464 3465 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 3466 hwrm_ring_free_send_msg( 3467 bp, ring, 3468 RING_FREE_REQ_RING_TYPE_RX, 3469 close_path ? cmpl_ring_id : 3470 INVALID_HW_RING_ID); 3471 ring->fw_ring_id = INVALID_HW_RING_ID; 3472 bp->grp_info[i].agg_fw_ring_id = 3473 INVALID_HW_RING_ID; 3474 } 3475 } 3476 } 3477 3478 if (bp->cp_nr_rings) { 3479 for (i = 0; i < bp->cp_nr_rings; i++) { 3480 struct bnxt_napi *bnapi = bp->bnapi[i]; 3481 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3482 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3483 3484 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 3485 hwrm_ring_free_send_msg( 3486 bp, ring, 3487 RING_FREE_REQ_RING_TYPE_CMPL, 3488 INVALID_HW_RING_ID); 3489 ring->fw_ring_id = INVALID_HW_RING_ID; 3490 bp->grp_info[i].cp_fw_ring_id = 3491 INVALID_HW_RING_ID; 3492 } 3493 } 3494 } 3495 3496 return rc; 3497 } 3498 3499 int bnxt_hwrm_set_coal(struct bnxt *bp) 3500 { 3501 int i, rc = 0; 3502 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0}; 3503 u16 max_buf, max_buf_irq; 3504 u16 buf_tmr, buf_tmr_irq; 3505 u32 flags; 3506 3507 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, 3508 -1, -1); 3509 3510 /* Each rx completion (2 records) should be DMAed immediately */ 3511 max_buf = min_t(u16, bp->coal_bufs / 4, 2); 3512 /* max_buf must not be zero */ 3513 max_buf = clamp_t(u16, max_buf, 1, 63); 3514 max_buf_irq = clamp_t(u16, bp->coal_bufs_irq, 1, 63); 3515 buf_tmr = max_t(u16, bp->coal_ticks / 4, 1); 3516 buf_tmr_irq = max_t(u16, bp->coal_ticks_irq, 1); 3517 3518 flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 3519 3520 /* RING_IDLE generates more IRQs for lower latency. Enable it only 3521 * if coal_ticks is less than 25 us. 3522 */ 3523 if (BNXT_COAL_TIMER_TO_USEC(bp->coal_ticks) < 25) 3524 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 3525 3526 req.flags = cpu_to_le16(flags); 3527 req.num_cmpl_dma_aggr = cpu_to_le16(max_buf); 3528 req.num_cmpl_dma_aggr_during_int = cpu_to_le16(max_buf_irq); 3529 req.cmpl_aggr_dma_tmr = cpu_to_le16(buf_tmr); 3530 req.cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmr_irq); 3531 req.int_lat_tmr_min = cpu_to_le16(buf_tmr); 3532 req.int_lat_tmr_max = cpu_to_le16(bp->coal_ticks); 3533 req.num_cmpl_aggr_int = cpu_to_le16(bp->coal_bufs); 3534 3535 mutex_lock(&bp->hwrm_cmd_lock); 3536 for (i = 0; i < bp->cp_nr_rings; i++) { 3537 req.ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id); 3538 3539 rc = _hwrm_send_message(bp, &req, sizeof(req), 3540 HWRM_CMD_TIMEOUT); 3541 if (rc) 3542 break; 3543 } 3544 mutex_unlock(&bp->hwrm_cmd_lock); 3545 return rc; 3546 } 3547 3548 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 3549 { 3550 int rc = 0, i; 3551 struct hwrm_stat_ctx_free_input req = {0}; 3552 3553 if (!bp->bnapi) 3554 return 0; 3555 3556 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1); 3557 3558 mutex_lock(&bp->hwrm_cmd_lock); 3559 for (i = 0; i < bp->cp_nr_rings; i++) { 3560 struct bnxt_napi *bnapi = bp->bnapi[i]; 3561 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3562 3563 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 3564 req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 3565 3566 rc = _hwrm_send_message(bp, &req, sizeof(req), 3567 HWRM_CMD_TIMEOUT); 3568 if (rc) 3569 break; 3570 3571 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 3572 } 3573 } 3574 mutex_unlock(&bp->hwrm_cmd_lock); 3575 return rc; 3576 } 3577 3578 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 3579 { 3580 int rc = 0, i; 3581 struct hwrm_stat_ctx_alloc_input req = {0}; 3582 struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr; 3583 3584 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1); 3585 3586 req.update_period_ms = cpu_to_le32(1000); 3587 3588 mutex_lock(&bp->hwrm_cmd_lock); 3589 for (i = 0; i < bp->cp_nr_rings; i++) { 3590 struct bnxt_napi *bnapi = bp->bnapi[i]; 3591 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3592 3593 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map); 3594 3595 rc = _hwrm_send_message(bp, &req, sizeof(req), 3596 HWRM_CMD_TIMEOUT); 3597 if (rc) 3598 break; 3599 3600 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 3601 3602 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 3603 } 3604 mutex_unlock(&bp->hwrm_cmd_lock); 3605 return 0; 3606 } 3607 3608 static int bnxt_hwrm_func_qcaps(struct bnxt *bp) 3609 { 3610 int rc = 0; 3611 struct hwrm_func_qcaps_input req = {0}; 3612 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 3613 3614 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1); 3615 req.fid = cpu_to_le16(0xffff); 3616 3617 mutex_lock(&bp->hwrm_cmd_lock); 3618 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3619 if (rc) 3620 goto hwrm_func_qcaps_exit; 3621 3622 if (BNXT_PF(bp)) { 3623 struct bnxt_pf_info *pf = &bp->pf; 3624 3625 pf->fw_fid = le16_to_cpu(resp->fid); 3626 pf->port_id = le16_to_cpu(resp->port_id); 3627 memcpy(pf->mac_addr, resp->perm_mac_address, ETH_ALEN); 3628 pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 3629 pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 3630 pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 3631 pf->max_pf_tx_rings = pf->max_tx_rings; 3632 pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 3633 pf->max_pf_rx_rings = pf->max_rx_rings; 3634 pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 3635 pf->max_vnics = le16_to_cpu(resp->max_vnics); 3636 pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 3637 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 3638 pf->max_vfs = le16_to_cpu(resp->max_vfs); 3639 pf->max_encap_records = le32_to_cpu(resp->max_encap_records); 3640 pf->max_decap_records = le32_to_cpu(resp->max_decap_records); 3641 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 3642 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 3643 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 3644 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 3645 } else { 3646 #ifdef CONFIG_BNXT_SRIOV 3647 struct bnxt_vf_info *vf = &bp->vf; 3648 3649 vf->fw_fid = le16_to_cpu(resp->fid); 3650 memcpy(vf->mac_addr, resp->perm_mac_address, ETH_ALEN); 3651 if (!is_valid_ether_addr(vf->mac_addr)) 3652 random_ether_addr(vf->mac_addr); 3653 3654 vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 3655 vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 3656 vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 3657 vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 3658 vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 3659 vf->max_vnics = le16_to_cpu(resp->max_vnics); 3660 vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 3661 #endif 3662 } 3663 3664 bp->tx_push_thresh = 0; 3665 if (resp->flags & 3666 cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED)) 3667 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 3668 3669 hwrm_func_qcaps_exit: 3670 mutex_unlock(&bp->hwrm_cmd_lock); 3671 return rc; 3672 } 3673 3674 static int bnxt_hwrm_func_reset(struct bnxt *bp) 3675 { 3676 struct hwrm_func_reset_input req = {0}; 3677 3678 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1); 3679 req.enables = 0; 3680 3681 return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT); 3682 } 3683 3684 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 3685 { 3686 int rc = 0; 3687 struct hwrm_queue_qportcfg_input req = {0}; 3688 struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr; 3689 u8 i, *qptr; 3690 3691 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1); 3692 3693 mutex_lock(&bp->hwrm_cmd_lock); 3694 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3695 if (rc) 3696 goto qportcfg_exit; 3697 3698 if (!resp->max_configurable_queues) { 3699 rc = -EINVAL; 3700 goto qportcfg_exit; 3701 } 3702 bp->max_tc = resp->max_configurable_queues; 3703 if (bp->max_tc > BNXT_MAX_QUEUE) 3704 bp->max_tc = BNXT_MAX_QUEUE; 3705 3706 qptr = &resp->queue_id0; 3707 for (i = 0; i < bp->max_tc; i++) { 3708 bp->q_info[i].queue_id = *qptr++; 3709 bp->q_info[i].queue_profile = *qptr++; 3710 } 3711 3712 qportcfg_exit: 3713 mutex_unlock(&bp->hwrm_cmd_lock); 3714 return rc; 3715 } 3716 3717 static int bnxt_hwrm_ver_get(struct bnxt *bp) 3718 { 3719 int rc; 3720 struct hwrm_ver_get_input req = {0}; 3721 struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr; 3722 3723 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1); 3724 req.hwrm_intf_maj = HWRM_VERSION_MAJOR; 3725 req.hwrm_intf_min = HWRM_VERSION_MINOR; 3726 req.hwrm_intf_upd = HWRM_VERSION_UPDATE; 3727 mutex_lock(&bp->hwrm_cmd_lock); 3728 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3729 if (rc) 3730 goto hwrm_ver_get_exit; 3731 3732 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 3733 3734 if (req.hwrm_intf_maj != resp->hwrm_intf_maj || 3735 req.hwrm_intf_min != resp->hwrm_intf_min || 3736 req.hwrm_intf_upd != resp->hwrm_intf_upd) { 3737 netdev_warn(bp->dev, "HWRM interface %d.%d.%d does not match driver interface %d.%d.%d.\n", 3738 resp->hwrm_intf_maj, resp->hwrm_intf_min, 3739 resp->hwrm_intf_upd, req.hwrm_intf_maj, 3740 req.hwrm_intf_min, req.hwrm_intf_upd); 3741 netdev_warn(bp->dev, "Please update driver or firmware with matching interface versions.\n"); 3742 } 3743 snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "bc %d.%d.%d rm %d.%d.%d", 3744 resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld, 3745 resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd); 3746 3747 hwrm_ver_get_exit: 3748 mutex_unlock(&bp->hwrm_cmd_lock); 3749 return rc; 3750 } 3751 3752 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 3753 { 3754 if (bp->vxlan_port_cnt) { 3755 bnxt_hwrm_tunnel_dst_port_free( 3756 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 3757 } 3758 bp->vxlan_port_cnt = 0; 3759 if (bp->nge_port_cnt) { 3760 bnxt_hwrm_tunnel_dst_port_free( 3761 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 3762 } 3763 bp->nge_port_cnt = 0; 3764 } 3765 3766 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 3767 { 3768 int rc, i; 3769 u32 tpa_flags = 0; 3770 3771 if (set_tpa) 3772 tpa_flags = bp->flags & BNXT_FLAG_TPA; 3773 for (i = 0; i < bp->nr_vnics; i++) { 3774 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags); 3775 if (rc) { 3776 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 3777 rc, i); 3778 return rc; 3779 } 3780 } 3781 return 0; 3782 } 3783 3784 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 3785 { 3786 int i; 3787 3788 for (i = 0; i < bp->nr_vnics; i++) 3789 bnxt_hwrm_vnic_set_rss(bp, i, false); 3790 } 3791 3792 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 3793 bool irq_re_init) 3794 { 3795 if (bp->vnic_info) { 3796 bnxt_hwrm_clear_vnic_filter(bp); 3797 /* clear all RSS setting before free vnic ctx */ 3798 bnxt_hwrm_clear_vnic_rss(bp); 3799 bnxt_hwrm_vnic_ctx_free(bp); 3800 /* before free the vnic, undo the vnic tpa settings */ 3801 if (bp->flags & BNXT_FLAG_TPA) 3802 bnxt_set_tpa(bp, false); 3803 bnxt_hwrm_vnic_free(bp); 3804 } 3805 bnxt_hwrm_ring_free(bp, close_path); 3806 bnxt_hwrm_ring_grp_free(bp); 3807 if (irq_re_init) { 3808 bnxt_hwrm_stat_ctx_free(bp); 3809 bnxt_hwrm_free_tunnel_ports(bp); 3810 } 3811 } 3812 3813 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 3814 { 3815 int rc; 3816 3817 /* allocate context for vnic */ 3818 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id); 3819 if (rc) { 3820 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 3821 vnic_id, rc); 3822 goto vnic_setup_err; 3823 } 3824 bp->rsscos_nr_ctxs++; 3825 3826 /* configure default vnic, ring grp */ 3827 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 3828 if (rc) { 3829 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 3830 vnic_id, rc); 3831 goto vnic_setup_err; 3832 } 3833 3834 /* Enable RSS hashing on vnic */ 3835 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true); 3836 if (rc) { 3837 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 3838 vnic_id, rc); 3839 goto vnic_setup_err; 3840 } 3841 3842 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 3843 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 3844 if (rc) { 3845 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 3846 vnic_id, rc); 3847 } 3848 } 3849 3850 vnic_setup_err: 3851 return rc; 3852 } 3853 3854 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 3855 { 3856 #ifdef CONFIG_RFS_ACCEL 3857 int i, rc = 0; 3858 3859 for (i = 0; i < bp->rx_nr_rings; i++) { 3860 u16 vnic_id = i + 1; 3861 u16 ring_id = i; 3862 3863 if (vnic_id >= bp->nr_vnics) 3864 break; 3865 3866 bp->vnic_info[vnic_id].flags |= BNXT_VNIC_RFS_FLAG; 3867 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, ring_id + 1); 3868 if (rc) { 3869 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 3870 vnic_id, rc); 3871 break; 3872 } 3873 rc = bnxt_setup_vnic(bp, vnic_id); 3874 if (rc) 3875 break; 3876 } 3877 return rc; 3878 #else 3879 return 0; 3880 #endif 3881 } 3882 3883 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 3884 { 3885 int rc = 0; 3886 3887 if (irq_re_init) { 3888 rc = bnxt_hwrm_stat_ctx_alloc(bp); 3889 if (rc) { 3890 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 3891 rc); 3892 goto err_out; 3893 } 3894 } 3895 3896 rc = bnxt_hwrm_ring_alloc(bp); 3897 if (rc) { 3898 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 3899 goto err_out; 3900 } 3901 3902 rc = bnxt_hwrm_ring_grp_alloc(bp); 3903 if (rc) { 3904 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 3905 goto err_out; 3906 } 3907 3908 /* default vnic 0 */ 3909 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, bp->rx_nr_rings); 3910 if (rc) { 3911 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 3912 goto err_out; 3913 } 3914 3915 rc = bnxt_setup_vnic(bp, 0); 3916 if (rc) 3917 goto err_out; 3918 3919 if (bp->flags & BNXT_FLAG_RFS) { 3920 rc = bnxt_alloc_rfs_vnics(bp); 3921 if (rc) 3922 goto err_out; 3923 } 3924 3925 if (bp->flags & BNXT_FLAG_TPA) { 3926 rc = bnxt_set_tpa(bp, true); 3927 if (rc) 3928 goto err_out; 3929 } 3930 3931 if (BNXT_VF(bp)) 3932 bnxt_update_vf_mac(bp); 3933 3934 /* Filter for default vnic 0 */ 3935 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 3936 if (rc) { 3937 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 3938 goto err_out; 3939 } 3940 bp->vnic_info[0].uc_filter_count = 1; 3941 3942 bp->vnic_info[0].rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_UNICAST | 3943 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 3944 3945 if ((bp->dev->flags & IFF_PROMISC) && BNXT_PF(bp)) 3946 bp->vnic_info[0].rx_mask |= 3947 CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 3948 3949 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 3950 if (rc) { 3951 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n", rc); 3952 goto err_out; 3953 } 3954 3955 rc = bnxt_hwrm_set_coal(bp); 3956 if (rc) 3957 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 3958 rc); 3959 3960 return 0; 3961 3962 err_out: 3963 bnxt_hwrm_resource_free(bp, 0, true); 3964 3965 return rc; 3966 } 3967 3968 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 3969 { 3970 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 3971 return 0; 3972 } 3973 3974 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 3975 { 3976 bnxt_init_rx_rings(bp); 3977 bnxt_init_tx_rings(bp); 3978 bnxt_init_ring_grps(bp, irq_re_init); 3979 bnxt_init_vnics(bp); 3980 3981 return bnxt_init_chip(bp, irq_re_init); 3982 } 3983 3984 static void bnxt_disable_int(struct bnxt *bp) 3985 { 3986 int i; 3987 3988 if (!bp->bnapi) 3989 return; 3990 3991 for (i = 0; i < bp->cp_nr_rings; i++) { 3992 struct bnxt_napi *bnapi = bp->bnapi[i]; 3993 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3994 3995 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons); 3996 } 3997 } 3998 3999 static void bnxt_enable_int(struct bnxt *bp) 4000 { 4001 int i; 4002 4003 atomic_set(&bp->intr_sem, 0); 4004 for (i = 0; i < bp->cp_nr_rings; i++) { 4005 struct bnxt_napi *bnapi = bp->bnapi[i]; 4006 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4007 4008 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons); 4009 } 4010 } 4011 4012 static int bnxt_set_real_num_queues(struct bnxt *bp) 4013 { 4014 int rc; 4015 struct net_device *dev = bp->dev; 4016 4017 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings); 4018 if (rc) 4019 return rc; 4020 4021 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 4022 if (rc) 4023 return rc; 4024 4025 #ifdef CONFIG_RFS_ACCEL 4026 if (bp->rx_nr_rings) 4027 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 4028 if (!dev->rx_cpu_rmap) 4029 rc = -ENOMEM; 4030 #endif 4031 4032 return rc; 4033 } 4034 4035 static int bnxt_setup_msix(struct bnxt *bp) 4036 { 4037 struct msix_entry *msix_ent; 4038 struct net_device *dev = bp->dev; 4039 int i, total_vecs, rc = 0; 4040 const int len = sizeof(bp->irq_tbl[0].name); 4041 4042 bp->flags &= ~BNXT_FLAG_USING_MSIX; 4043 total_vecs = bp->cp_nr_rings; 4044 4045 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); 4046 if (!msix_ent) 4047 return -ENOMEM; 4048 4049 for (i = 0; i < total_vecs; i++) { 4050 msix_ent[i].entry = i; 4051 msix_ent[i].vector = 0; 4052 } 4053 4054 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, 1, total_vecs); 4055 if (total_vecs < 0) { 4056 rc = -ENODEV; 4057 goto msix_setup_exit; 4058 } 4059 4060 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); 4061 if (bp->irq_tbl) { 4062 int tcs; 4063 4064 /* Trim rings based upon num of vectors allocated */ 4065 bp->rx_nr_rings = min_t(int, total_vecs, bp->rx_nr_rings); 4066 bp->tx_nr_rings = min_t(int, total_vecs, bp->tx_nr_rings); 4067 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 4068 tcs = netdev_get_num_tc(dev); 4069 if (tcs > 1) { 4070 bp->tx_nr_rings_per_tc = bp->tx_nr_rings / tcs; 4071 if (bp->tx_nr_rings_per_tc == 0) { 4072 netdev_reset_tc(dev); 4073 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 4074 } else { 4075 int i, off, count; 4076 4077 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tcs; 4078 for (i = 0; i < tcs; i++) { 4079 count = bp->tx_nr_rings_per_tc; 4080 off = i * count; 4081 netdev_set_tc_queue(dev, i, count, off); 4082 } 4083 } 4084 } 4085 bp->cp_nr_rings = max_t(int, bp->rx_nr_rings, bp->tx_nr_rings); 4086 4087 for (i = 0; i < bp->cp_nr_rings; i++) { 4088 bp->irq_tbl[i].vector = msix_ent[i].vector; 4089 snprintf(bp->irq_tbl[i].name, len, 4090 "%s-%s-%d", dev->name, "TxRx", i); 4091 bp->irq_tbl[i].handler = bnxt_msix; 4092 } 4093 rc = bnxt_set_real_num_queues(bp); 4094 if (rc) 4095 goto msix_setup_exit; 4096 } else { 4097 rc = -ENOMEM; 4098 goto msix_setup_exit; 4099 } 4100 bp->flags |= BNXT_FLAG_USING_MSIX; 4101 kfree(msix_ent); 4102 return 0; 4103 4104 msix_setup_exit: 4105 netdev_err(bp->dev, "bnxt_setup_msix err: %x\n", rc); 4106 pci_disable_msix(bp->pdev); 4107 kfree(msix_ent); 4108 return rc; 4109 } 4110 4111 static int bnxt_setup_inta(struct bnxt *bp) 4112 { 4113 int rc; 4114 const int len = sizeof(bp->irq_tbl[0].name); 4115 4116 if (netdev_get_num_tc(bp->dev)) 4117 netdev_reset_tc(bp->dev); 4118 4119 bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL); 4120 if (!bp->irq_tbl) { 4121 rc = -ENOMEM; 4122 return rc; 4123 } 4124 bp->rx_nr_rings = 1; 4125 bp->tx_nr_rings = 1; 4126 bp->cp_nr_rings = 1; 4127 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 4128 bp->irq_tbl[0].vector = bp->pdev->irq; 4129 snprintf(bp->irq_tbl[0].name, len, 4130 "%s-%s-%d", bp->dev->name, "TxRx", 0); 4131 bp->irq_tbl[0].handler = bnxt_inta; 4132 rc = bnxt_set_real_num_queues(bp); 4133 return rc; 4134 } 4135 4136 static int bnxt_setup_int_mode(struct bnxt *bp) 4137 { 4138 int rc = 0; 4139 4140 if (bp->flags & BNXT_FLAG_MSIX_CAP) 4141 rc = bnxt_setup_msix(bp); 4142 4143 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) { 4144 /* fallback to INTA */ 4145 rc = bnxt_setup_inta(bp); 4146 } 4147 return rc; 4148 } 4149 4150 static void bnxt_free_irq(struct bnxt *bp) 4151 { 4152 struct bnxt_irq *irq; 4153 int i; 4154 4155 #ifdef CONFIG_RFS_ACCEL 4156 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 4157 bp->dev->rx_cpu_rmap = NULL; 4158 #endif 4159 if (!bp->irq_tbl) 4160 return; 4161 4162 for (i = 0; i < bp->cp_nr_rings; i++) { 4163 irq = &bp->irq_tbl[i]; 4164 if (irq->requested) 4165 free_irq(irq->vector, bp->bnapi[i]); 4166 irq->requested = 0; 4167 } 4168 if (bp->flags & BNXT_FLAG_USING_MSIX) 4169 pci_disable_msix(bp->pdev); 4170 kfree(bp->irq_tbl); 4171 bp->irq_tbl = NULL; 4172 } 4173 4174 static int bnxt_request_irq(struct bnxt *bp) 4175 { 4176 int i, rc = 0; 4177 unsigned long flags = 0; 4178 #ifdef CONFIG_RFS_ACCEL 4179 struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap; 4180 #endif 4181 4182 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) 4183 flags = IRQF_SHARED; 4184 4185 for (i = 0; i < bp->cp_nr_rings; i++) { 4186 struct bnxt_irq *irq = &bp->irq_tbl[i]; 4187 #ifdef CONFIG_RFS_ACCEL 4188 if (rmap && (i < bp->rx_nr_rings)) { 4189 rc = irq_cpu_rmap_add(rmap, irq->vector); 4190 if (rc) 4191 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 4192 i); 4193 } 4194 #endif 4195 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 4196 bp->bnapi[i]); 4197 if (rc) 4198 break; 4199 4200 irq->requested = 1; 4201 } 4202 return rc; 4203 } 4204 4205 static void bnxt_del_napi(struct bnxt *bp) 4206 { 4207 int i; 4208 4209 if (!bp->bnapi) 4210 return; 4211 4212 for (i = 0; i < bp->cp_nr_rings; i++) { 4213 struct bnxt_napi *bnapi = bp->bnapi[i]; 4214 4215 napi_hash_del(&bnapi->napi); 4216 netif_napi_del(&bnapi->napi); 4217 } 4218 } 4219 4220 static void bnxt_init_napi(struct bnxt *bp) 4221 { 4222 int i; 4223 struct bnxt_napi *bnapi; 4224 4225 if (bp->flags & BNXT_FLAG_USING_MSIX) { 4226 for (i = 0; i < bp->cp_nr_rings; i++) { 4227 bnapi = bp->bnapi[i]; 4228 netif_napi_add(bp->dev, &bnapi->napi, 4229 bnxt_poll, 64); 4230 napi_hash_add(&bnapi->napi); 4231 } 4232 } else { 4233 bnapi = bp->bnapi[0]; 4234 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64); 4235 napi_hash_add(&bnapi->napi); 4236 } 4237 } 4238 4239 static void bnxt_disable_napi(struct bnxt *bp) 4240 { 4241 int i; 4242 4243 if (!bp->bnapi) 4244 return; 4245 4246 for (i = 0; i < bp->cp_nr_rings; i++) { 4247 napi_disable(&bp->bnapi[i]->napi); 4248 bnxt_disable_poll(bp->bnapi[i]); 4249 } 4250 } 4251 4252 static void bnxt_enable_napi(struct bnxt *bp) 4253 { 4254 int i; 4255 4256 for (i = 0; i < bp->cp_nr_rings; i++) { 4257 bnxt_enable_poll(bp->bnapi[i]); 4258 napi_enable(&bp->bnapi[i]->napi); 4259 } 4260 } 4261 4262 static void bnxt_tx_disable(struct bnxt *bp) 4263 { 4264 int i; 4265 struct bnxt_napi *bnapi; 4266 struct bnxt_tx_ring_info *txr; 4267 struct netdev_queue *txq; 4268 4269 if (bp->bnapi) { 4270 for (i = 0; i < bp->tx_nr_rings; i++) { 4271 bnapi = bp->bnapi[i]; 4272 txr = &bnapi->tx_ring; 4273 txq = netdev_get_tx_queue(bp->dev, i); 4274 __netif_tx_lock(txq, smp_processor_id()); 4275 txr->dev_state = BNXT_DEV_STATE_CLOSING; 4276 __netif_tx_unlock(txq); 4277 } 4278 } 4279 /* Stop all TX queues */ 4280 netif_tx_disable(bp->dev); 4281 netif_carrier_off(bp->dev); 4282 } 4283 4284 static void bnxt_tx_enable(struct bnxt *bp) 4285 { 4286 int i; 4287 struct bnxt_napi *bnapi; 4288 struct bnxt_tx_ring_info *txr; 4289 struct netdev_queue *txq; 4290 4291 for (i = 0; i < bp->tx_nr_rings; i++) { 4292 bnapi = bp->bnapi[i]; 4293 txr = &bnapi->tx_ring; 4294 txq = netdev_get_tx_queue(bp->dev, i); 4295 txr->dev_state = 0; 4296 } 4297 netif_tx_wake_all_queues(bp->dev); 4298 if (bp->link_info.link_up) 4299 netif_carrier_on(bp->dev); 4300 } 4301 4302 static void bnxt_report_link(struct bnxt *bp) 4303 { 4304 if (bp->link_info.link_up) { 4305 const char *duplex; 4306 const char *flow_ctrl; 4307 u16 speed; 4308 4309 netif_carrier_on(bp->dev); 4310 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 4311 duplex = "full"; 4312 else 4313 duplex = "half"; 4314 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 4315 flow_ctrl = "ON - receive & transmit"; 4316 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 4317 flow_ctrl = "ON - transmit"; 4318 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 4319 flow_ctrl = "ON - receive"; 4320 else 4321 flow_ctrl = "none"; 4322 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 4323 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 4324 speed, duplex, flow_ctrl); 4325 } else { 4326 netif_carrier_off(bp->dev); 4327 netdev_err(bp->dev, "NIC Link is Down\n"); 4328 } 4329 } 4330 4331 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 4332 { 4333 int rc = 0; 4334 struct bnxt_link_info *link_info = &bp->link_info; 4335 struct hwrm_port_phy_qcfg_input req = {0}; 4336 struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 4337 u8 link_up = link_info->link_up; 4338 4339 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1); 4340 4341 mutex_lock(&bp->hwrm_cmd_lock); 4342 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4343 if (rc) { 4344 mutex_unlock(&bp->hwrm_cmd_lock); 4345 return rc; 4346 } 4347 4348 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 4349 link_info->phy_link_status = resp->link; 4350 link_info->duplex = resp->duplex; 4351 link_info->pause = resp->pause; 4352 link_info->auto_mode = resp->auto_mode; 4353 link_info->auto_pause_setting = resp->auto_pause; 4354 link_info->force_pause_setting = resp->force_pause; 4355 link_info->duplex_setting = resp->duplex_setting; 4356 if (link_info->phy_link_status == BNXT_LINK_LINK) 4357 link_info->link_speed = le16_to_cpu(resp->link_speed); 4358 else 4359 link_info->link_speed = 0; 4360 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 4361 link_info->auto_link_speed = le16_to_cpu(resp->auto_link_speed); 4362 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 4363 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 4364 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 4365 link_info->phy_ver[0] = resp->phy_maj; 4366 link_info->phy_ver[1] = resp->phy_min; 4367 link_info->phy_ver[2] = resp->phy_bld; 4368 link_info->media_type = resp->media_type; 4369 link_info->transceiver = resp->transceiver_type; 4370 link_info->phy_addr = resp->phy_addr; 4371 4372 /* TODO: need to add more logic to report VF link */ 4373 if (chng_link_state) { 4374 if (link_info->phy_link_status == BNXT_LINK_LINK) 4375 link_info->link_up = 1; 4376 else 4377 link_info->link_up = 0; 4378 if (link_up != link_info->link_up) 4379 bnxt_report_link(bp); 4380 } else { 4381 /* alwasy link down if not require to update link state */ 4382 link_info->link_up = 0; 4383 } 4384 mutex_unlock(&bp->hwrm_cmd_lock); 4385 return 0; 4386 } 4387 4388 static void 4389 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 4390 { 4391 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 4392 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 4393 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 4394 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 4395 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 4396 req->enables |= 4397 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 4398 } else { 4399 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 4400 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 4401 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 4402 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 4403 req->enables |= 4404 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 4405 } 4406 } 4407 4408 static void bnxt_hwrm_set_link_common(struct bnxt *bp, 4409 struct hwrm_port_phy_cfg_input *req) 4410 { 4411 u8 autoneg = bp->link_info.autoneg; 4412 u16 fw_link_speed = bp->link_info.req_link_speed; 4413 u32 advertising = bp->link_info.advertising; 4414 4415 if (autoneg & BNXT_AUTONEG_SPEED) { 4416 req->auto_mode |= 4417 PORT_PHY_CFG_REQ_AUTO_MODE_MASK; 4418 4419 req->enables |= cpu_to_le32( 4420 PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 4421 req->auto_link_speed_mask = cpu_to_le16(advertising); 4422 4423 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 4424 req->flags |= 4425 cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 4426 } else { 4427 req->force_link_speed = cpu_to_le16(fw_link_speed); 4428 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 4429 } 4430 4431 /* currently don't support half duplex */ 4432 req->auto_duplex = PORT_PHY_CFG_REQ_AUTO_DUPLEX_FULL; 4433 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_DUPLEX); 4434 /* tell chimp that the setting takes effect immediately */ 4435 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 4436 } 4437 4438 int bnxt_hwrm_set_pause(struct bnxt *bp) 4439 { 4440 struct hwrm_port_phy_cfg_input req = {0}; 4441 int rc; 4442 4443 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); 4444 bnxt_hwrm_set_pause_common(bp, &req); 4445 4446 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 4447 bp->link_info.force_link_chng) 4448 bnxt_hwrm_set_link_common(bp, &req); 4449 4450 mutex_lock(&bp->hwrm_cmd_lock); 4451 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4452 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 4453 /* since changing of pause setting doesn't trigger any link 4454 * change event, the driver needs to update the current pause 4455 * result upon successfully return of the phy_cfg command 4456 */ 4457 bp->link_info.pause = 4458 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 4459 bp->link_info.auto_pause_setting = 0; 4460 if (!bp->link_info.force_link_chng) 4461 bnxt_report_link(bp); 4462 } 4463 bp->link_info.force_link_chng = false; 4464 mutex_unlock(&bp->hwrm_cmd_lock); 4465 return rc; 4466 } 4467 4468 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause) 4469 { 4470 struct hwrm_port_phy_cfg_input req = {0}; 4471 4472 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); 4473 if (set_pause) 4474 bnxt_hwrm_set_pause_common(bp, &req); 4475 4476 bnxt_hwrm_set_link_common(bp, &req); 4477 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4478 } 4479 4480 static int bnxt_update_phy_setting(struct bnxt *bp) 4481 { 4482 int rc; 4483 bool update_link = false; 4484 bool update_pause = false; 4485 struct bnxt_link_info *link_info = &bp->link_info; 4486 4487 rc = bnxt_update_link(bp, true); 4488 if (rc) { 4489 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 4490 rc); 4491 return rc; 4492 } 4493 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 4494 link_info->auto_pause_setting != link_info->req_flow_ctrl) 4495 update_pause = true; 4496 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 4497 link_info->force_pause_setting != link_info->req_flow_ctrl) 4498 update_pause = true; 4499 if (link_info->req_duplex != link_info->duplex_setting) 4500 update_link = true; 4501 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 4502 if (BNXT_AUTO_MODE(link_info->auto_mode)) 4503 update_link = true; 4504 if (link_info->req_link_speed != link_info->force_link_speed) 4505 update_link = true; 4506 } else { 4507 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 4508 update_link = true; 4509 if (link_info->advertising != link_info->auto_link_speeds) 4510 update_link = true; 4511 if (link_info->req_link_speed != link_info->auto_link_speed) 4512 update_link = true; 4513 } 4514 4515 if (update_link) 4516 rc = bnxt_hwrm_set_link_setting(bp, update_pause); 4517 else if (update_pause) 4518 rc = bnxt_hwrm_set_pause(bp); 4519 if (rc) { 4520 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 4521 rc); 4522 return rc; 4523 } 4524 4525 return rc; 4526 } 4527 4528 /* Common routine to pre-map certain register block to different GRC window. 4529 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows 4530 * in PF and 3 windows in VF that can be customized to map in different 4531 * register blocks. 4532 */ 4533 static void bnxt_preset_reg_win(struct bnxt *bp) 4534 { 4535 if (BNXT_PF(bp)) { 4536 /* CAG registers map to GRC window #4 */ 4537 writel(BNXT_CAG_REG_BASE, 4538 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); 4539 } 4540 } 4541 4542 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 4543 { 4544 int rc = 0; 4545 4546 bnxt_preset_reg_win(bp); 4547 netif_carrier_off(bp->dev); 4548 if (irq_re_init) { 4549 rc = bnxt_setup_int_mode(bp); 4550 if (rc) { 4551 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 4552 rc); 4553 return rc; 4554 } 4555 } 4556 if ((bp->flags & BNXT_FLAG_RFS) && 4557 !(bp->flags & BNXT_FLAG_USING_MSIX)) { 4558 /* disable RFS if falling back to INTA */ 4559 bp->dev->hw_features &= ~NETIF_F_NTUPLE; 4560 bp->flags &= ~BNXT_FLAG_RFS; 4561 } 4562 4563 rc = bnxt_alloc_mem(bp, irq_re_init); 4564 if (rc) { 4565 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 4566 goto open_err_free_mem; 4567 } 4568 4569 if (irq_re_init) { 4570 bnxt_init_napi(bp); 4571 rc = bnxt_request_irq(bp); 4572 if (rc) { 4573 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 4574 goto open_err; 4575 } 4576 } 4577 4578 bnxt_enable_napi(bp); 4579 4580 rc = bnxt_init_nic(bp, irq_re_init); 4581 if (rc) { 4582 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 4583 goto open_err; 4584 } 4585 4586 if (link_re_init) { 4587 rc = bnxt_update_phy_setting(bp); 4588 if (rc) 4589 goto open_err; 4590 } 4591 4592 if (irq_re_init) { 4593 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE) 4594 vxlan_get_rx_port(bp->dev); 4595 #endif 4596 if (!bnxt_hwrm_tunnel_dst_port_alloc( 4597 bp, htons(0x17c1), 4598 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE)) 4599 bp->nge_port_cnt = 1; 4600 } 4601 4602 bp->state = BNXT_STATE_OPEN; 4603 bnxt_enable_int(bp); 4604 /* Enable TX queues */ 4605 bnxt_tx_enable(bp); 4606 mod_timer(&bp->timer, jiffies + bp->current_interval); 4607 4608 return 0; 4609 4610 open_err: 4611 bnxt_disable_napi(bp); 4612 bnxt_del_napi(bp); 4613 4614 open_err_free_mem: 4615 bnxt_free_skbs(bp); 4616 bnxt_free_irq(bp); 4617 bnxt_free_mem(bp, true); 4618 return rc; 4619 } 4620 4621 /* rtnl_lock held */ 4622 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 4623 { 4624 int rc = 0; 4625 4626 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 4627 if (rc) { 4628 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 4629 dev_close(bp->dev); 4630 } 4631 return rc; 4632 } 4633 4634 static int bnxt_open(struct net_device *dev) 4635 { 4636 struct bnxt *bp = netdev_priv(dev); 4637 int rc = 0; 4638 4639 rc = bnxt_hwrm_func_reset(bp); 4640 if (rc) { 4641 netdev_err(bp->dev, "hwrm chip reset failure rc: %x\n", 4642 rc); 4643 rc = -1; 4644 return rc; 4645 } 4646 return __bnxt_open_nic(bp, true, true); 4647 } 4648 4649 static void bnxt_disable_int_sync(struct bnxt *bp) 4650 { 4651 int i; 4652 4653 atomic_inc(&bp->intr_sem); 4654 if (!netif_running(bp->dev)) 4655 return; 4656 4657 bnxt_disable_int(bp); 4658 for (i = 0; i < bp->cp_nr_rings; i++) 4659 synchronize_irq(bp->irq_tbl[i].vector); 4660 } 4661 4662 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 4663 { 4664 int rc = 0; 4665 4666 #ifdef CONFIG_BNXT_SRIOV 4667 if (bp->sriov_cfg) { 4668 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 4669 !bp->sriov_cfg, 4670 BNXT_SRIOV_CFG_WAIT_TMO); 4671 if (rc) 4672 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n"); 4673 } 4674 #endif 4675 /* Change device state to avoid TX queue wake up's */ 4676 bnxt_tx_disable(bp); 4677 4678 bp->state = BNXT_STATE_CLOSED; 4679 cancel_work_sync(&bp->sp_task); 4680 4681 /* Flush rings before disabling interrupts */ 4682 bnxt_shutdown_nic(bp, irq_re_init); 4683 4684 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 4685 4686 bnxt_disable_napi(bp); 4687 bnxt_disable_int_sync(bp); 4688 del_timer_sync(&bp->timer); 4689 bnxt_free_skbs(bp); 4690 4691 if (irq_re_init) { 4692 bnxt_free_irq(bp); 4693 bnxt_del_napi(bp); 4694 } 4695 bnxt_free_mem(bp, irq_re_init); 4696 return rc; 4697 } 4698 4699 static int bnxt_close(struct net_device *dev) 4700 { 4701 struct bnxt *bp = netdev_priv(dev); 4702 4703 bnxt_close_nic(bp, true, true); 4704 return 0; 4705 } 4706 4707 /* rtnl_lock held */ 4708 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 4709 { 4710 switch (cmd) { 4711 case SIOCGMIIPHY: 4712 /* fallthru */ 4713 case SIOCGMIIREG: { 4714 if (!netif_running(dev)) 4715 return -EAGAIN; 4716 4717 return 0; 4718 } 4719 4720 case SIOCSMIIREG: 4721 if (!netif_running(dev)) 4722 return -EAGAIN; 4723 4724 return 0; 4725 4726 default: 4727 /* do nothing */ 4728 break; 4729 } 4730 return -EOPNOTSUPP; 4731 } 4732 4733 static struct rtnl_link_stats64 * 4734 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 4735 { 4736 u32 i; 4737 struct bnxt *bp = netdev_priv(dev); 4738 4739 memset(stats, 0, sizeof(struct rtnl_link_stats64)); 4740 4741 if (!bp->bnapi) 4742 return stats; 4743 4744 /* TODO check if we need to synchronize with bnxt_close path */ 4745 for (i = 0; i < bp->cp_nr_rings; i++) { 4746 struct bnxt_napi *bnapi = bp->bnapi[i]; 4747 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4748 struct ctx_hw_stats *hw_stats = cpr->hw_stats; 4749 4750 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts); 4751 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts); 4752 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts); 4753 4754 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts); 4755 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts); 4756 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts); 4757 4758 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes); 4759 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes); 4760 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes); 4761 4762 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes); 4763 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes); 4764 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes); 4765 4766 stats->rx_missed_errors += 4767 le64_to_cpu(hw_stats->rx_discard_pkts); 4768 4769 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts); 4770 4771 stats->rx_dropped += le64_to_cpu(hw_stats->rx_drop_pkts); 4772 4773 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts); 4774 } 4775 4776 return stats; 4777 } 4778 4779 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 4780 { 4781 struct net_device *dev = bp->dev; 4782 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 4783 struct netdev_hw_addr *ha; 4784 u8 *haddr; 4785 int mc_count = 0; 4786 bool update = false; 4787 int off = 0; 4788 4789 netdev_for_each_mc_addr(ha, dev) { 4790 if (mc_count >= BNXT_MAX_MC_ADDRS) { 4791 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 4792 vnic->mc_list_count = 0; 4793 return false; 4794 } 4795 haddr = ha->addr; 4796 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 4797 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 4798 update = true; 4799 } 4800 off += ETH_ALEN; 4801 mc_count++; 4802 } 4803 if (mc_count) 4804 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 4805 4806 if (mc_count != vnic->mc_list_count) { 4807 vnic->mc_list_count = mc_count; 4808 update = true; 4809 } 4810 return update; 4811 } 4812 4813 static bool bnxt_uc_list_updated(struct bnxt *bp) 4814 { 4815 struct net_device *dev = bp->dev; 4816 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 4817 struct netdev_hw_addr *ha; 4818 int off = 0; 4819 4820 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 4821 return true; 4822 4823 netdev_for_each_uc_addr(ha, dev) { 4824 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 4825 return true; 4826 4827 off += ETH_ALEN; 4828 } 4829 return false; 4830 } 4831 4832 static void bnxt_set_rx_mode(struct net_device *dev) 4833 { 4834 struct bnxt *bp = netdev_priv(dev); 4835 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 4836 u32 mask = vnic->rx_mask; 4837 bool mc_update = false; 4838 bool uc_update; 4839 4840 if (!netif_running(dev)) 4841 return; 4842 4843 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 4844 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 4845 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST); 4846 4847 /* Only allow PF to be in promiscuous mode */ 4848 if ((dev->flags & IFF_PROMISC) && BNXT_PF(bp)) 4849 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 4850 4851 uc_update = bnxt_uc_list_updated(bp); 4852 4853 if (dev->flags & IFF_ALLMULTI) { 4854 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 4855 vnic->mc_list_count = 0; 4856 } else { 4857 mc_update = bnxt_mc_list_updated(bp, &mask); 4858 } 4859 4860 if (mask != vnic->rx_mask || uc_update || mc_update) { 4861 vnic->rx_mask = mask; 4862 4863 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event); 4864 schedule_work(&bp->sp_task); 4865 } 4866 } 4867 4868 static void bnxt_cfg_rx_mode(struct bnxt *bp) 4869 { 4870 struct net_device *dev = bp->dev; 4871 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 4872 struct netdev_hw_addr *ha; 4873 int i, off = 0, rc; 4874 bool uc_update; 4875 4876 netif_addr_lock_bh(dev); 4877 uc_update = bnxt_uc_list_updated(bp); 4878 netif_addr_unlock_bh(dev); 4879 4880 if (!uc_update) 4881 goto skip_uc; 4882 4883 mutex_lock(&bp->hwrm_cmd_lock); 4884 for (i = 1; i < vnic->uc_filter_count; i++) { 4885 struct hwrm_cfa_l2_filter_free_input req = {0}; 4886 4887 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1, 4888 -1); 4889 4890 req.l2_filter_id = vnic->fw_l2_filter_id[i]; 4891 4892 rc = _hwrm_send_message(bp, &req, sizeof(req), 4893 HWRM_CMD_TIMEOUT); 4894 } 4895 mutex_unlock(&bp->hwrm_cmd_lock); 4896 4897 vnic->uc_filter_count = 1; 4898 4899 netif_addr_lock_bh(dev); 4900 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 4901 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 4902 } else { 4903 netdev_for_each_uc_addr(ha, dev) { 4904 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 4905 off += ETH_ALEN; 4906 vnic->uc_filter_count++; 4907 } 4908 } 4909 netif_addr_unlock_bh(dev); 4910 4911 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 4912 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 4913 if (rc) { 4914 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", 4915 rc); 4916 vnic->uc_filter_count = i; 4917 } 4918 } 4919 4920 skip_uc: 4921 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 4922 if (rc) 4923 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n", 4924 rc); 4925 } 4926 4927 static netdev_features_t bnxt_fix_features(struct net_device *dev, 4928 netdev_features_t features) 4929 { 4930 return features; 4931 } 4932 4933 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 4934 { 4935 struct bnxt *bp = netdev_priv(dev); 4936 u32 flags = bp->flags; 4937 u32 changes; 4938 int rc = 0; 4939 bool re_init = false; 4940 bool update_tpa = false; 4941 4942 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 4943 if ((features & NETIF_F_GRO) && (bp->pdev->revision > 0)) 4944 flags |= BNXT_FLAG_GRO; 4945 if (features & NETIF_F_LRO) 4946 flags |= BNXT_FLAG_LRO; 4947 4948 if (features & NETIF_F_HW_VLAN_CTAG_RX) 4949 flags |= BNXT_FLAG_STRIP_VLAN; 4950 4951 if (features & NETIF_F_NTUPLE) 4952 flags |= BNXT_FLAG_RFS; 4953 4954 changes = flags ^ bp->flags; 4955 if (changes & BNXT_FLAG_TPA) { 4956 update_tpa = true; 4957 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 4958 (flags & BNXT_FLAG_TPA) == 0) 4959 re_init = true; 4960 } 4961 4962 if (changes & ~BNXT_FLAG_TPA) 4963 re_init = true; 4964 4965 if (flags != bp->flags) { 4966 u32 old_flags = bp->flags; 4967 4968 bp->flags = flags; 4969 4970 if (!netif_running(dev)) { 4971 if (update_tpa) 4972 bnxt_set_ring_params(bp); 4973 return rc; 4974 } 4975 4976 if (re_init) { 4977 bnxt_close_nic(bp, false, false); 4978 if (update_tpa) 4979 bnxt_set_ring_params(bp); 4980 4981 return bnxt_open_nic(bp, false, false); 4982 } 4983 if (update_tpa) { 4984 rc = bnxt_set_tpa(bp, 4985 (flags & BNXT_FLAG_TPA) ? 4986 true : false); 4987 if (rc) 4988 bp->flags = old_flags; 4989 } 4990 } 4991 return rc; 4992 } 4993 4994 static void bnxt_dbg_dump_states(struct bnxt *bp) 4995 { 4996 int i; 4997 struct bnxt_napi *bnapi; 4998 struct bnxt_tx_ring_info *txr; 4999 struct bnxt_rx_ring_info *rxr; 5000 struct bnxt_cp_ring_info *cpr; 5001 5002 for (i = 0; i < bp->cp_nr_rings; i++) { 5003 bnapi = bp->bnapi[i]; 5004 txr = &bnapi->tx_ring; 5005 rxr = &bnapi->rx_ring; 5006 cpr = &bnapi->cp_ring; 5007 if (netif_msg_drv(bp)) { 5008 netdev_info(bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 5009 i, txr->tx_ring_struct.fw_ring_id, 5010 txr->tx_prod, txr->tx_cons); 5011 netdev_info(bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 5012 i, rxr->rx_ring_struct.fw_ring_id, 5013 rxr->rx_prod, 5014 rxr->rx_agg_ring_struct.fw_ring_id, 5015 rxr->rx_agg_prod, rxr->rx_sw_agg_prod); 5016 netdev_info(bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 5017 i, cpr->cp_ring_struct.fw_ring_id, 5018 cpr->cp_raw_cons); 5019 } 5020 } 5021 } 5022 5023 static void bnxt_reset_task(struct bnxt *bp) 5024 { 5025 bnxt_dbg_dump_states(bp); 5026 if (netif_running(bp->dev)) 5027 bnxt_tx_disable(bp); /* prevent tx timout again */ 5028 } 5029 5030 static void bnxt_tx_timeout(struct net_device *dev) 5031 { 5032 struct bnxt *bp = netdev_priv(dev); 5033 5034 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 5035 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 5036 schedule_work(&bp->sp_task); 5037 } 5038 5039 #ifdef CONFIG_NET_POLL_CONTROLLER 5040 static void bnxt_poll_controller(struct net_device *dev) 5041 { 5042 struct bnxt *bp = netdev_priv(dev); 5043 int i; 5044 5045 for (i = 0; i < bp->cp_nr_rings; i++) { 5046 struct bnxt_irq *irq = &bp->irq_tbl[i]; 5047 5048 disable_irq(irq->vector); 5049 irq->handler(irq->vector, bp->bnapi[i]); 5050 enable_irq(irq->vector); 5051 } 5052 } 5053 #endif 5054 5055 static void bnxt_timer(unsigned long data) 5056 { 5057 struct bnxt *bp = (struct bnxt *)data; 5058 struct net_device *dev = bp->dev; 5059 5060 if (!netif_running(dev)) 5061 return; 5062 5063 if (atomic_read(&bp->intr_sem) != 0) 5064 goto bnxt_restart_timer; 5065 5066 bnxt_restart_timer: 5067 mod_timer(&bp->timer, jiffies + bp->current_interval); 5068 } 5069 5070 static void bnxt_cfg_ntp_filters(struct bnxt *); 5071 5072 static void bnxt_sp_task(struct work_struct *work) 5073 { 5074 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 5075 int rc; 5076 5077 if (bp->state != BNXT_STATE_OPEN) 5078 return; 5079 5080 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 5081 bnxt_cfg_rx_mode(bp); 5082 5083 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 5084 bnxt_cfg_ntp_filters(bp); 5085 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 5086 rc = bnxt_update_link(bp, true); 5087 if (rc) 5088 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 5089 rc); 5090 } 5091 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 5092 bnxt_hwrm_exec_fwd_req(bp); 5093 if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) { 5094 bnxt_hwrm_tunnel_dst_port_alloc( 5095 bp, bp->vxlan_port, 5096 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 5097 } 5098 if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) { 5099 bnxt_hwrm_tunnel_dst_port_free( 5100 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 5101 } 5102 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 5103 bnxt_reset_task(bp); 5104 } 5105 5106 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 5107 { 5108 int rc; 5109 struct bnxt *bp = netdev_priv(dev); 5110 5111 SET_NETDEV_DEV(dev, &pdev->dev); 5112 5113 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 5114 rc = pci_enable_device(pdev); 5115 if (rc) { 5116 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 5117 goto init_err; 5118 } 5119 5120 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 5121 dev_err(&pdev->dev, 5122 "Cannot find PCI device base address, aborting\n"); 5123 rc = -ENODEV; 5124 goto init_err_disable; 5125 } 5126 5127 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 5128 if (rc) { 5129 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 5130 goto init_err_disable; 5131 } 5132 5133 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 5134 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 5135 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 5136 goto init_err_disable; 5137 } 5138 5139 pci_set_master(pdev); 5140 5141 bp->dev = dev; 5142 bp->pdev = pdev; 5143 5144 bp->bar0 = pci_ioremap_bar(pdev, 0); 5145 if (!bp->bar0) { 5146 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 5147 rc = -ENOMEM; 5148 goto init_err_release; 5149 } 5150 5151 bp->bar1 = pci_ioremap_bar(pdev, 2); 5152 if (!bp->bar1) { 5153 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n"); 5154 rc = -ENOMEM; 5155 goto init_err_release; 5156 } 5157 5158 bp->bar2 = pci_ioremap_bar(pdev, 4); 5159 if (!bp->bar2) { 5160 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 5161 rc = -ENOMEM; 5162 goto init_err_release; 5163 } 5164 5165 INIT_WORK(&bp->sp_task, bnxt_sp_task); 5166 5167 spin_lock_init(&bp->ntp_fltr_lock); 5168 5169 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 5170 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 5171 5172 bp->coal_ticks = BNXT_USEC_TO_COAL_TIMER(4); 5173 bp->coal_bufs = 20; 5174 bp->coal_ticks_irq = BNXT_USEC_TO_COAL_TIMER(1); 5175 bp->coal_bufs_irq = 2; 5176 5177 init_timer(&bp->timer); 5178 bp->timer.data = (unsigned long)bp; 5179 bp->timer.function = bnxt_timer; 5180 bp->current_interval = BNXT_TIMER_INTERVAL; 5181 5182 bp->state = BNXT_STATE_CLOSED; 5183 5184 return 0; 5185 5186 init_err_release: 5187 if (bp->bar2) { 5188 pci_iounmap(pdev, bp->bar2); 5189 bp->bar2 = NULL; 5190 } 5191 5192 if (bp->bar1) { 5193 pci_iounmap(pdev, bp->bar1); 5194 bp->bar1 = NULL; 5195 } 5196 5197 if (bp->bar0) { 5198 pci_iounmap(pdev, bp->bar0); 5199 bp->bar0 = NULL; 5200 } 5201 5202 pci_release_regions(pdev); 5203 5204 init_err_disable: 5205 pci_disable_device(pdev); 5206 5207 init_err: 5208 return rc; 5209 } 5210 5211 /* rtnl_lock held */ 5212 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 5213 { 5214 struct sockaddr *addr = p; 5215 5216 if (!is_valid_ether_addr(addr->sa_data)) 5217 return -EADDRNOTAVAIL; 5218 5219 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 5220 5221 return 0; 5222 } 5223 5224 /* rtnl_lock held */ 5225 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 5226 { 5227 struct bnxt *bp = netdev_priv(dev); 5228 5229 if (new_mtu < 60 || new_mtu > 9000) 5230 return -EINVAL; 5231 5232 if (netif_running(dev)) 5233 bnxt_close_nic(bp, false, false); 5234 5235 dev->mtu = new_mtu; 5236 bnxt_set_ring_params(bp); 5237 5238 if (netif_running(dev)) 5239 return bnxt_open_nic(bp, false, false); 5240 5241 return 0; 5242 } 5243 5244 static int bnxt_setup_tc(struct net_device *dev, u8 tc) 5245 { 5246 struct bnxt *bp = netdev_priv(dev); 5247 5248 if (tc > bp->max_tc) { 5249 netdev_err(dev, "too many traffic classes requested: %d Max supported is %d\n", 5250 tc, bp->max_tc); 5251 return -EINVAL; 5252 } 5253 5254 if (netdev_get_num_tc(dev) == tc) 5255 return 0; 5256 5257 if (tc) { 5258 int max_rx_rings, max_tx_rings; 5259 5260 bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings); 5261 if (bp->tx_nr_rings_per_tc * tc > max_tx_rings) 5262 return -ENOMEM; 5263 } 5264 5265 /* Needs to close the device and do hw resource re-allocations */ 5266 if (netif_running(bp->dev)) 5267 bnxt_close_nic(bp, true, false); 5268 5269 if (tc) { 5270 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 5271 netdev_set_num_tc(dev, tc); 5272 } else { 5273 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 5274 netdev_reset_tc(dev); 5275 } 5276 bp->cp_nr_rings = max_t(int, bp->tx_nr_rings, bp->rx_nr_rings); 5277 bp->num_stat_ctxs = bp->cp_nr_rings; 5278 5279 if (netif_running(bp->dev)) 5280 return bnxt_open_nic(bp, true, false); 5281 5282 return 0; 5283 } 5284 5285 #ifdef CONFIG_RFS_ACCEL 5286 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 5287 struct bnxt_ntuple_filter *f2) 5288 { 5289 struct flow_keys *keys1 = &f1->fkeys; 5290 struct flow_keys *keys2 = &f2->fkeys; 5291 5292 if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src && 5293 keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst && 5294 keys1->ports.ports == keys2->ports.ports && 5295 keys1->basic.ip_proto == keys2->basic.ip_proto && 5296 keys1->basic.n_proto == keys2->basic.n_proto && 5297 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr)) 5298 return true; 5299 5300 return false; 5301 } 5302 5303 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 5304 u16 rxq_index, u32 flow_id) 5305 { 5306 struct bnxt *bp = netdev_priv(dev); 5307 struct bnxt_ntuple_filter *fltr, *new_fltr; 5308 struct flow_keys *fkeys; 5309 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 5310 int rc = 0, idx, bit_id; 5311 struct hlist_head *head; 5312 5313 if (skb->encapsulation) 5314 return -EPROTONOSUPPORT; 5315 5316 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 5317 if (!new_fltr) 5318 return -ENOMEM; 5319 5320 fkeys = &new_fltr->fkeys; 5321 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 5322 rc = -EPROTONOSUPPORT; 5323 goto err_free; 5324 } 5325 5326 if ((fkeys->basic.n_proto != htons(ETH_P_IP)) || 5327 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 5328 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 5329 rc = -EPROTONOSUPPORT; 5330 goto err_free; 5331 } 5332 5333 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN); 5334 5335 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 5336 head = &bp->ntp_fltr_hash_tbl[idx]; 5337 rcu_read_lock(); 5338 hlist_for_each_entry_rcu(fltr, head, hash) { 5339 if (bnxt_fltr_match(fltr, new_fltr)) { 5340 rcu_read_unlock(); 5341 rc = 0; 5342 goto err_free; 5343 } 5344 } 5345 rcu_read_unlock(); 5346 5347 spin_lock_bh(&bp->ntp_fltr_lock); 5348 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 5349 BNXT_NTP_FLTR_MAX_FLTR, 0); 5350 if (bit_id < 0) { 5351 spin_unlock_bh(&bp->ntp_fltr_lock); 5352 rc = -ENOMEM; 5353 goto err_free; 5354 } 5355 5356 new_fltr->sw_id = (u16)bit_id; 5357 new_fltr->flow_id = flow_id; 5358 new_fltr->rxq = rxq_index; 5359 hlist_add_head_rcu(&new_fltr->hash, head); 5360 bp->ntp_fltr_count++; 5361 spin_unlock_bh(&bp->ntp_fltr_lock); 5362 5363 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 5364 schedule_work(&bp->sp_task); 5365 5366 return new_fltr->sw_id; 5367 5368 err_free: 5369 kfree(new_fltr); 5370 return rc; 5371 } 5372 5373 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 5374 { 5375 int i; 5376 5377 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 5378 struct hlist_head *head; 5379 struct hlist_node *tmp; 5380 struct bnxt_ntuple_filter *fltr; 5381 int rc; 5382 5383 head = &bp->ntp_fltr_hash_tbl[i]; 5384 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 5385 bool del = false; 5386 5387 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) { 5388 if (rps_may_expire_flow(bp->dev, fltr->rxq, 5389 fltr->flow_id, 5390 fltr->sw_id)) { 5391 bnxt_hwrm_cfa_ntuple_filter_free(bp, 5392 fltr); 5393 del = true; 5394 } 5395 } else { 5396 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 5397 fltr); 5398 if (rc) 5399 del = true; 5400 else 5401 set_bit(BNXT_FLTR_VALID, &fltr->state); 5402 } 5403 5404 if (del) { 5405 spin_lock_bh(&bp->ntp_fltr_lock); 5406 hlist_del_rcu(&fltr->hash); 5407 bp->ntp_fltr_count--; 5408 spin_unlock_bh(&bp->ntp_fltr_lock); 5409 synchronize_rcu(); 5410 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 5411 kfree(fltr); 5412 } 5413 } 5414 } 5415 } 5416 5417 #else 5418 5419 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 5420 { 5421 } 5422 5423 #endif /* CONFIG_RFS_ACCEL */ 5424 5425 static void bnxt_add_vxlan_port(struct net_device *dev, sa_family_t sa_family, 5426 __be16 port) 5427 { 5428 struct bnxt *bp = netdev_priv(dev); 5429 5430 if (!netif_running(dev)) 5431 return; 5432 5433 if (sa_family != AF_INET6 && sa_family != AF_INET) 5434 return; 5435 5436 if (bp->vxlan_port_cnt && bp->vxlan_port != port) 5437 return; 5438 5439 bp->vxlan_port_cnt++; 5440 if (bp->vxlan_port_cnt == 1) { 5441 bp->vxlan_port = port; 5442 set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event); 5443 schedule_work(&bp->sp_task); 5444 } 5445 } 5446 5447 static void bnxt_del_vxlan_port(struct net_device *dev, sa_family_t sa_family, 5448 __be16 port) 5449 { 5450 struct bnxt *bp = netdev_priv(dev); 5451 5452 if (!netif_running(dev)) 5453 return; 5454 5455 if (sa_family != AF_INET6 && sa_family != AF_INET) 5456 return; 5457 5458 if (bp->vxlan_port_cnt && bp->vxlan_port == port) { 5459 bp->vxlan_port_cnt--; 5460 5461 if (bp->vxlan_port_cnt == 0) { 5462 set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event); 5463 schedule_work(&bp->sp_task); 5464 } 5465 } 5466 } 5467 5468 static const struct net_device_ops bnxt_netdev_ops = { 5469 .ndo_open = bnxt_open, 5470 .ndo_start_xmit = bnxt_start_xmit, 5471 .ndo_stop = bnxt_close, 5472 .ndo_get_stats64 = bnxt_get_stats64, 5473 .ndo_set_rx_mode = bnxt_set_rx_mode, 5474 .ndo_do_ioctl = bnxt_ioctl, 5475 .ndo_validate_addr = eth_validate_addr, 5476 .ndo_set_mac_address = bnxt_change_mac_addr, 5477 .ndo_change_mtu = bnxt_change_mtu, 5478 .ndo_fix_features = bnxt_fix_features, 5479 .ndo_set_features = bnxt_set_features, 5480 .ndo_tx_timeout = bnxt_tx_timeout, 5481 #ifdef CONFIG_BNXT_SRIOV 5482 .ndo_get_vf_config = bnxt_get_vf_config, 5483 .ndo_set_vf_mac = bnxt_set_vf_mac, 5484 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 5485 .ndo_set_vf_rate = bnxt_set_vf_bw, 5486 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 5487 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 5488 #endif 5489 #ifdef CONFIG_NET_POLL_CONTROLLER 5490 .ndo_poll_controller = bnxt_poll_controller, 5491 #endif 5492 .ndo_setup_tc = bnxt_setup_tc, 5493 #ifdef CONFIG_RFS_ACCEL 5494 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 5495 #endif 5496 .ndo_add_vxlan_port = bnxt_add_vxlan_port, 5497 .ndo_del_vxlan_port = bnxt_del_vxlan_port, 5498 #ifdef CONFIG_NET_RX_BUSY_POLL 5499 .ndo_busy_poll = bnxt_busy_poll, 5500 #endif 5501 }; 5502 5503 static void bnxt_remove_one(struct pci_dev *pdev) 5504 { 5505 struct net_device *dev = pci_get_drvdata(pdev); 5506 struct bnxt *bp = netdev_priv(dev); 5507 5508 if (BNXT_PF(bp)) 5509 bnxt_sriov_disable(bp); 5510 5511 unregister_netdev(dev); 5512 cancel_work_sync(&bp->sp_task); 5513 bp->sp_event = 0; 5514 5515 bnxt_free_hwrm_resources(bp); 5516 pci_iounmap(pdev, bp->bar2); 5517 pci_iounmap(pdev, bp->bar1); 5518 pci_iounmap(pdev, bp->bar0); 5519 free_netdev(dev); 5520 5521 pci_release_regions(pdev); 5522 pci_disable_device(pdev); 5523 } 5524 5525 static int bnxt_probe_phy(struct bnxt *bp) 5526 { 5527 int rc = 0; 5528 struct bnxt_link_info *link_info = &bp->link_info; 5529 char phy_ver[PHY_VER_STR_LEN]; 5530 5531 rc = bnxt_update_link(bp, false); 5532 if (rc) { 5533 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 5534 rc); 5535 return rc; 5536 } 5537 5538 /*initialize the ethool setting copy with NVM settings */ 5539 if (BNXT_AUTO_MODE(link_info->auto_mode)) 5540 link_info->autoneg |= BNXT_AUTONEG_SPEED; 5541 5542 if (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) { 5543 if (link_info->auto_pause_setting == BNXT_LINK_PAUSE_BOTH) 5544 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 5545 link_info->req_flow_ctrl = link_info->auto_pause_setting; 5546 } else if (link_info->force_pause_setting & BNXT_LINK_PAUSE_BOTH) { 5547 link_info->req_flow_ctrl = link_info->force_pause_setting; 5548 } 5549 link_info->req_duplex = link_info->duplex_setting; 5550 if (link_info->autoneg & BNXT_AUTONEG_SPEED) 5551 link_info->req_link_speed = link_info->auto_link_speed; 5552 else 5553 link_info->req_link_speed = link_info->force_link_speed; 5554 link_info->advertising = link_info->auto_link_speeds; 5555 snprintf(phy_ver, PHY_VER_STR_LEN, " ph %d.%d.%d", 5556 link_info->phy_ver[0], 5557 link_info->phy_ver[1], 5558 link_info->phy_ver[2]); 5559 strcat(bp->fw_ver_str, phy_ver); 5560 return rc; 5561 } 5562 5563 static int bnxt_get_max_irq(struct pci_dev *pdev) 5564 { 5565 u16 ctrl; 5566 5567 if (!pdev->msix_cap) 5568 return 1; 5569 5570 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 5571 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 5572 } 5573 5574 void bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx) 5575 { 5576 int max_rings = 0; 5577 5578 if (BNXT_PF(bp)) { 5579 *max_tx = bp->pf.max_pf_tx_rings; 5580 *max_rx = bp->pf.max_pf_rx_rings; 5581 max_rings = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings); 5582 max_rings = min_t(int, max_rings, bp->pf.max_stat_ctxs); 5583 } else { 5584 #ifdef CONFIG_BNXT_SRIOV 5585 *max_tx = bp->vf.max_tx_rings; 5586 *max_rx = bp->vf.max_rx_rings; 5587 max_rings = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings); 5588 max_rings = min_t(int, max_rings, bp->vf.max_stat_ctxs); 5589 #endif 5590 } 5591 if (bp->flags & BNXT_FLAG_AGG_RINGS) 5592 *max_rx >>= 1; 5593 5594 *max_rx = min_t(int, *max_rx, max_rings); 5595 *max_tx = min_t(int, *max_tx, max_rings); 5596 } 5597 5598 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 5599 { 5600 static int version_printed; 5601 struct net_device *dev; 5602 struct bnxt *bp; 5603 int rc, max_rx_rings, max_tx_rings, max_irqs, dflt_rings; 5604 5605 if (version_printed++ == 0) 5606 pr_info("%s", version); 5607 5608 max_irqs = bnxt_get_max_irq(pdev); 5609 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs); 5610 if (!dev) 5611 return -ENOMEM; 5612 5613 bp = netdev_priv(dev); 5614 5615 if (bnxt_vf_pciid(ent->driver_data)) 5616 bp->flags |= BNXT_FLAG_VF; 5617 5618 if (pdev->msix_cap) { 5619 bp->flags |= BNXT_FLAG_MSIX_CAP; 5620 if (BNXT_PF(bp)) 5621 bp->flags |= BNXT_FLAG_RFS; 5622 } 5623 5624 rc = bnxt_init_board(pdev, dev); 5625 if (rc < 0) 5626 goto init_err_free; 5627 5628 dev->netdev_ops = &bnxt_netdev_ops; 5629 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 5630 dev->ethtool_ops = &bnxt_ethtool_ops; 5631 5632 pci_set_drvdata(pdev, dev); 5633 5634 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 5635 NETIF_F_TSO | NETIF_F_TSO6 | 5636 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 5637 NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT | 5638 NETIF_F_RXHASH | 5639 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO; 5640 5641 if (bp->flags & BNXT_FLAG_RFS) 5642 dev->hw_features |= NETIF_F_NTUPLE; 5643 5644 dev->hw_enc_features = 5645 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 5646 NETIF_F_TSO | NETIF_F_TSO6 | 5647 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 5648 NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT; 5649 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 5650 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX | 5651 NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX; 5652 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 5653 dev->priv_flags |= IFF_UNICAST_FLT; 5654 5655 #ifdef CONFIG_BNXT_SRIOV 5656 init_waitqueue_head(&bp->sriov_cfg_wait); 5657 #endif 5658 rc = bnxt_alloc_hwrm_resources(bp); 5659 if (rc) 5660 goto init_err; 5661 5662 mutex_init(&bp->hwrm_cmd_lock); 5663 bnxt_hwrm_ver_get(bp); 5664 5665 rc = bnxt_hwrm_func_drv_rgtr(bp); 5666 if (rc) 5667 goto init_err; 5668 5669 /* Get the MAX capabilities for this function */ 5670 rc = bnxt_hwrm_func_qcaps(bp); 5671 if (rc) { 5672 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 5673 rc); 5674 rc = -1; 5675 goto init_err; 5676 } 5677 5678 rc = bnxt_hwrm_queue_qportcfg(bp); 5679 if (rc) { 5680 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n", 5681 rc); 5682 rc = -1; 5683 goto init_err; 5684 } 5685 5686 bnxt_set_tpa_flags(bp); 5687 bnxt_set_ring_params(bp); 5688 dflt_rings = netif_get_num_default_rss_queues(); 5689 if (BNXT_PF(bp)) { 5690 memcpy(dev->dev_addr, bp->pf.mac_addr, ETH_ALEN); 5691 bp->pf.max_irqs = max_irqs; 5692 } else { 5693 #if defined(CONFIG_BNXT_SRIOV) 5694 memcpy(dev->dev_addr, bp->vf.mac_addr, ETH_ALEN); 5695 bp->vf.max_irqs = max_irqs; 5696 #endif 5697 } 5698 bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings); 5699 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 5700 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 5701 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 5702 bp->cp_nr_rings = max_t(int, bp->rx_nr_rings, bp->tx_nr_rings); 5703 bp->num_stat_ctxs = bp->cp_nr_rings; 5704 5705 if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX) 5706 bp->flags |= BNXT_FLAG_STRIP_VLAN; 5707 5708 rc = bnxt_probe_phy(bp); 5709 if (rc) 5710 goto init_err; 5711 5712 rc = register_netdev(dev); 5713 if (rc) 5714 goto init_err; 5715 5716 netdev_info(dev, "%s found at mem %lx, node addr %pM\n", 5717 board_info[ent->driver_data].name, 5718 (long)pci_resource_start(pdev, 0), dev->dev_addr); 5719 5720 return 0; 5721 5722 init_err: 5723 pci_iounmap(pdev, bp->bar0); 5724 pci_release_regions(pdev); 5725 pci_disable_device(pdev); 5726 5727 init_err_free: 5728 free_netdev(dev); 5729 return rc; 5730 } 5731 5732 static struct pci_driver bnxt_pci_driver = { 5733 .name = DRV_MODULE_NAME, 5734 .id_table = bnxt_pci_tbl, 5735 .probe = bnxt_init_one, 5736 .remove = bnxt_remove_one, 5737 #if defined(CONFIG_BNXT_SRIOV) 5738 .sriov_configure = bnxt_sriov_configure, 5739 #endif 5740 }; 5741 5742 module_pci_driver(bnxt_pci_driver); 5743