xref: /linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision 995231c820e3bd3633cb38bf4ea6f2541e1da331)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2017 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/if.h>
35 #include <linux/if_vlan.h>
36 #include <linux/if_bridge.h>
37 #include <linux/rtc.h>
38 #include <linux/bpf.h>
39 #include <net/ip.h>
40 #include <net/tcp.h>
41 #include <net/udp.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <net/udp_tunnel.h>
45 #include <linux/workqueue.h>
46 #include <linux/prefetch.h>
47 #include <linux/cache.h>
48 #include <linux/log2.h>
49 #include <linux/aer.h>
50 #include <linux/bitmap.h>
51 #include <linux/cpu_rmap.h>
52 #include <linux/cpumask.h>
53 #include <net/pkt_cls.h>
54 
55 #include "bnxt_hsi.h"
56 #include "bnxt.h"
57 #include "bnxt_ulp.h"
58 #include "bnxt_sriov.h"
59 #include "bnxt_ethtool.h"
60 #include "bnxt_dcb.h"
61 #include "bnxt_xdp.h"
62 #include "bnxt_vfr.h"
63 #include "bnxt_tc.h"
64 #include "bnxt_devlink.h"
65 
66 #define BNXT_TX_TIMEOUT		(5 * HZ)
67 
68 static const char version[] =
69 	"Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
70 
71 MODULE_LICENSE("GPL");
72 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
73 MODULE_VERSION(DRV_MODULE_VERSION);
74 
75 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
76 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
77 #define BNXT_RX_COPY_THRESH 256
78 
79 #define BNXT_TX_PUSH_THRESH 164
80 
81 enum board_idx {
82 	BCM57301,
83 	BCM57302,
84 	BCM57304,
85 	BCM57417_NPAR,
86 	BCM58700,
87 	BCM57311,
88 	BCM57312,
89 	BCM57402,
90 	BCM57404,
91 	BCM57406,
92 	BCM57402_NPAR,
93 	BCM57407,
94 	BCM57412,
95 	BCM57414,
96 	BCM57416,
97 	BCM57417,
98 	BCM57412_NPAR,
99 	BCM57314,
100 	BCM57417_SFP,
101 	BCM57416_SFP,
102 	BCM57404_NPAR,
103 	BCM57406_NPAR,
104 	BCM57407_SFP,
105 	BCM57407_NPAR,
106 	BCM57414_NPAR,
107 	BCM57416_NPAR,
108 	BCM57452,
109 	BCM57454,
110 	BCM58802,
111 	BCM58804,
112 	BCM58808,
113 	NETXTREME_E_VF,
114 	NETXTREME_C_VF,
115 	NETXTREME_S_VF,
116 };
117 
118 /* indexed by enum above */
119 static const struct {
120 	char *name;
121 } board_info[] = {
122 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
123 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
124 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
125 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
126 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
127 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
128 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
129 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
130 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
131 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
132 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
133 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
134 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
135 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
136 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
137 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
138 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
139 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
140 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
141 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
142 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
143 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
144 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
145 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
146 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
147 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
148 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
149 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
150 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
151 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
152 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
153 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
154 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
155 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
156 };
157 
158 static const struct pci_device_id bnxt_pci_tbl[] = {
159 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
160 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
161 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
162 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
163 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
164 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
165 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
166 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
167 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
168 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
169 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
170 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
171 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
172 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
173 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
174 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
175 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
176 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
177 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
178 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
179 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
180 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
181 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
182 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
183 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
184 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
185 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
186 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
187 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
188 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
189 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
190 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
191 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
192 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
193 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
194 #ifdef CONFIG_BNXT_SRIOV
195 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
196 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
197 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
198 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
199 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
200 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
201 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
202 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
203 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
204 #endif
205 	{ 0 }
206 };
207 
208 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
209 
210 static const u16 bnxt_vf_req_snif[] = {
211 	HWRM_FUNC_CFG,
212 	HWRM_PORT_PHY_QCFG,
213 	HWRM_CFA_L2_FILTER_ALLOC,
214 };
215 
216 static const u16 bnxt_async_events_arr[] = {
217 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
218 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
219 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
220 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
221 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
222 };
223 
224 static struct workqueue_struct *bnxt_pf_wq;
225 
226 static bool bnxt_vf_pciid(enum board_idx idx)
227 {
228 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
229 		idx == NETXTREME_S_VF);
230 }
231 
232 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
233 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
234 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
235 
236 #define BNXT_CP_DB_REARM(db, raw_cons)					\
237 		writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
238 
239 #define BNXT_CP_DB(db, raw_cons)					\
240 		writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
241 
242 #define BNXT_CP_DB_IRQ_DIS(db)						\
243 		writel(DB_CP_IRQ_DIS_FLAGS, db)
244 
245 const u16 bnxt_lhint_arr[] = {
246 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
247 	TX_BD_FLAGS_LHINT_512_TO_1023,
248 	TX_BD_FLAGS_LHINT_1024_TO_2047,
249 	TX_BD_FLAGS_LHINT_1024_TO_2047,
250 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
251 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
252 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
253 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
254 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
255 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
256 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
257 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
258 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
259 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
260 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
261 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
262 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
263 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
264 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
265 };
266 
267 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
268 {
269 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
270 
271 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
272 		return 0;
273 
274 	return md_dst->u.port_info.port_id;
275 }
276 
277 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
278 {
279 	struct bnxt *bp = netdev_priv(dev);
280 	struct tx_bd *txbd;
281 	struct tx_bd_ext *txbd1;
282 	struct netdev_queue *txq;
283 	int i;
284 	dma_addr_t mapping;
285 	unsigned int length, pad = 0;
286 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
287 	u16 prod, last_frag;
288 	struct pci_dev *pdev = bp->pdev;
289 	struct bnxt_tx_ring_info *txr;
290 	struct bnxt_sw_tx_bd *tx_buf;
291 
292 	i = skb_get_queue_mapping(skb);
293 	if (unlikely(i >= bp->tx_nr_rings)) {
294 		dev_kfree_skb_any(skb);
295 		return NETDEV_TX_OK;
296 	}
297 
298 	txq = netdev_get_tx_queue(dev, i);
299 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
300 	prod = txr->tx_prod;
301 
302 	free_size = bnxt_tx_avail(bp, txr);
303 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
304 		netif_tx_stop_queue(txq);
305 		return NETDEV_TX_BUSY;
306 	}
307 
308 	length = skb->len;
309 	len = skb_headlen(skb);
310 	last_frag = skb_shinfo(skb)->nr_frags;
311 
312 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
313 
314 	txbd->tx_bd_opaque = prod;
315 
316 	tx_buf = &txr->tx_buf_ring[prod];
317 	tx_buf->skb = skb;
318 	tx_buf->nr_frags = last_frag;
319 
320 	vlan_tag_flags = 0;
321 	cfa_action = bnxt_xmit_get_cfa_action(skb);
322 	if (skb_vlan_tag_present(skb)) {
323 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
324 				 skb_vlan_tag_get(skb);
325 		/* Currently supports 8021Q, 8021AD vlan offloads
326 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
327 		 */
328 		if (skb->vlan_proto == htons(ETH_P_8021Q))
329 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
330 	}
331 
332 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
333 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
334 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
335 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
336 		void *pdata = tx_push_buf->data;
337 		u64 *end;
338 		int j, push_len;
339 
340 		/* Set COAL_NOW to be ready quickly for the next push */
341 		tx_push->tx_bd_len_flags_type =
342 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
343 					TX_BD_TYPE_LONG_TX_BD |
344 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
345 					TX_BD_FLAGS_COAL_NOW |
346 					TX_BD_FLAGS_PACKET_END |
347 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
348 
349 		if (skb->ip_summed == CHECKSUM_PARTIAL)
350 			tx_push1->tx_bd_hsize_lflags =
351 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
352 		else
353 			tx_push1->tx_bd_hsize_lflags = 0;
354 
355 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
356 		tx_push1->tx_bd_cfa_action =
357 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
358 
359 		end = pdata + length;
360 		end = PTR_ALIGN(end, 8) - 1;
361 		*end = 0;
362 
363 		skb_copy_from_linear_data(skb, pdata, len);
364 		pdata += len;
365 		for (j = 0; j < last_frag; j++) {
366 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
367 			void *fptr;
368 
369 			fptr = skb_frag_address_safe(frag);
370 			if (!fptr)
371 				goto normal_tx;
372 
373 			memcpy(pdata, fptr, skb_frag_size(frag));
374 			pdata += skb_frag_size(frag);
375 		}
376 
377 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
378 		txbd->tx_bd_haddr = txr->data_mapping;
379 		prod = NEXT_TX(prod);
380 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
381 		memcpy(txbd, tx_push1, sizeof(*txbd));
382 		prod = NEXT_TX(prod);
383 		tx_push->doorbell =
384 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
385 		txr->tx_prod = prod;
386 
387 		tx_buf->is_push = 1;
388 		netdev_tx_sent_queue(txq, skb->len);
389 		wmb();	/* Sync is_push and byte queue before pushing data */
390 
391 		push_len = (length + sizeof(*tx_push) + 7) / 8;
392 		if (push_len > 16) {
393 			__iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
394 			__iowrite32_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
395 					 (push_len - 16) << 1);
396 		} else {
397 			__iowrite64_copy(txr->tx_doorbell, tx_push_buf,
398 					 push_len);
399 		}
400 
401 		goto tx_done;
402 	}
403 
404 normal_tx:
405 	if (length < BNXT_MIN_PKT_SIZE) {
406 		pad = BNXT_MIN_PKT_SIZE - length;
407 		if (skb_pad(skb, pad)) {
408 			/* SKB already freed. */
409 			tx_buf->skb = NULL;
410 			return NETDEV_TX_OK;
411 		}
412 		length = BNXT_MIN_PKT_SIZE;
413 	}
414 
415 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
416 
417 	if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
418 		dev_kfree_skb_any(skb);
419 		tx_buf->skb = NULL;
420 		return NETDEV_TX_OK;
421 	}
422 
423 	dma_unmap_addr_set(tx_buf, mapping, mapping);
424 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
425 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
426 
427 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
428 
429 	prod = NEXT_TX(prod);
430 	txbd1 = (struct tx_bd_ext *)
431 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
432 
433 	txbd1->tx_bd_hsize_lflags = 0;
434 	if (skb_is_gso(skb)) {
435 		u32 hdr_len;
436 
437 		if (skb->encapsulation)
438 			hdr_len = skb_inner_network_offset(skb) +
439 				skb_inner_network_header_len(skb) +
440 				inner_tcp_hdrlen(skb);
441 		else
442 			hdr_len = skb_transport_offset(skb) +
443 				tcp_hdrlen(skb);
444 
445 		txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
446 					TX_BD_FLAGS_T_IPID |
447 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
448 		length = skb_shinfo(skb)->gso_size;
449 		txbd1->tx_bd_mss = cpu_to_le32(length);
450 		length += hdr_len;
451 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
452 		txbd1->tx_bd_hsize_lflags =
453 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
454 		txbd1->tx_bd_mss = 0;
455 	}
456 
457 	length >>= 9;
458 	flags |= bnxt_lhint_arr[length];
459 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
460 
461 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
462 	txbd1->tx_bd_cfa_action =
463 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
464 	for (i = 0; i < last_frag; i++) {
465 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
466 
467 		prod = NEXT_TX(prod);
468 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
469 
470 		len = skb_frag_size(frag);
471 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
472 					   DMA_TO_DEVICE);
473 
474 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
475 			goto tx_dma_error;
476 
477 		tx_buf = &txr->tx_buf_ring[prod];
478 		dma_unmap_addr_set(tx_buf, mapping, mapping);
479 
480 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
481 
482 		flags = len << TX_BD_LEN_SHIFT;
483 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
484 	}
485 
486 	flags &= ~TX_BD_LEN;
487 	txbd->tx_bd_len_flags_type =
488 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
489 			    TX_BD_FLAGS_PACKET_END);
490 
491 	netdev_tx_sent_queue(txq, skb->len);
492 
493 	/* Sync BD data before updating doorbell */
494 	wmb();
495 
496 	prod = NEXT_TX(prod);
497 	txr->tx_prod = prod;
498 
499 	if (!skb->xmit_more || netif_xmit_stopped(txq))
500 		bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
501 
502 tx_done:
503 
504 	mmiowb();
505 
506 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
507 		if (skb->xmit_more && !tx_buf->is_push)
508 			bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
509 
510 		netif_tx_stop_queue(txq);
511 
512 		/* netif_tx_stop_queue() must be done before checking
513 		 * tx index in bnxt_tx_avail() below, because in
514 		 * bnxt_tx_int(), we update tx index before checking for
515 		 * netif_tx_queue_stopped().
516 		 */
517 		smp_mb();
518 		if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
519 			netif_tx_wake_queue(txq);
520 	}
521 	return NETDEV_TX_OK;
522 
523 tx_dma_error:
524 	last_frag = i;
525 
526 	/* start back at beginning and unmap skb */
527 	prod = txr->tx_prod;
528 	tx_buf = &txr->tx_buf_ring[prod];
529 	tx_buf->skb = NULL;
530 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
531 			 skb_headlen(skb), PCI_DMA_TODEVICE);
532 	prod = NEXT_TX(prod);
533 
534 	/* unmap remaining mapped pages */
535 	for (i = 0; i < last_frag; i++) {
536 		prod = NEXT_TX(prod);
537 		tx_buf = &txr->tx_buf_ring[prod];
538 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
539 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
540 			       PCI_DMA_TODEVICE);
541 	}
542 
543 	dev_kfree_skb_any(skb);
544 	return NETDEV_TX_OK;
545 }
546 
547 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
548 {
549 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
550 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
551 	u16 cons = txr->tx_cons;
552 	struct pci_dev *pdev = bp->pdev;
553 	int i;
554 	unsigned int tx_bytes = 0;
555 
556 	for (i = 0; i < nr_pkts; i++) {
557 		struct bnxt_sw_tx_bd *tx_buf;
558 		struct sk_buff *skb;
559 		int j, last;
560 
561 		tx_buf = &txr->tx_buf_ring[cons];
562 		cons = NEXT_TX(cons);
563 		skb = tx_buf->skb;
564 		tx_buf->skb = NULL;
565 
566 		if (tx_buf->is_push) {
567 			tx_buf->is_push = 0;
568 			goto next_tx_int;
569 		}
570 
571 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
572 				 skb_headlen(skb), PCI_DMA_TODEVICE);
573 		last = tx_buf->nr_frags;
574 
575 		for (j = 0; j < last; j++) {
576 			cons = NEXT_TX(cons);
577 			tx_buf = &txr->tx_buf_ring[cons];
578 			dma_unmap_page(
579 				&pdev->dev,
580 				dma_unmap_addr(tx_buf, mapping),
581 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
582 				PCI_DMA_TODEVICE);
583 		}
584 
585 next_tx_int:
586 		cons = NEXT_TX(cons);
587 
588 		tx_bytes += skb->len;
589 		dev_kfree_skb_any(skb);
590 	}
591 
592 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
593 	txr->tx_cons = cons;
594 
595 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
596 	 * before checking for netif_tx_queue_stopped().  Without the
597 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
598 	 * will miss it and cause the queue to be stopped forever.
599 	 */
600 	smp_mb();
601 
602 	if (unlikely(netif_tx_queue_stopped(txq)) &&
603 	    (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
604 		__netif_tx_lock(txq, smp_processor_id());
605 		if (netif_tx_queue_stopped(txq) &&
606 		    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
607 		    txr->dev_state != BNXT_DEV_STATE_CLOSING)
608 			netif_tx_wake_queue(txq);
609 		__netif_tx_unlock(txq);
610 	}
611 }
612 
613 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
614 					 gfp_t gfp)
615 {
616 	struct device *dev = &bp->pdev->dev;
617 	struct page *page;
618 
619 	page = alloc_page(gfp);
620 	if (!page)
621 		return NULL;
622 
623 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
624 				      DMA_ATTR_WEAK_ORDERING);
625 	if (dma_mapping_error(dev, *mapping)) {
626 		__free_page(page);
627 		return NULL;
628 	}
629 	*mapping += bp->rx_dma_offset;
630 	return page;
631 }
632 
633 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
634 				       gfp_t gfp)
635 {
636 	u8 *data;
637 	struct pci_dev *pdev = bp->pdev;
638 
639 	data = kmalloc(bp->rx_buf_size, gfp);
640 	if (!data)
641 		return NULL;
642 
643 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
644 					bp->rx_buf_use_size, bp->rx_dir,
645 					DMA_ATTR_WEAK_ORDERING);
646 
647 	if (dma_mapping_error(&pdev->dev, *mapping)) {
648 		kfree(data);
649 		data = NULL;
650 	}
651 	return data;
652 }
653 
654 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
655 		       u16 prod, gfp_t gfp)
656 {
657 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
658 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
659 	dma_addr_t mapping;
660 
661 	if (BNXT_RX_PAGE_MODE(bp)) {
662 		struct page *page = __bnxt_alloc_rx_page(bp, &mapping, gfp);
663 
664 		if (!page)
665 			return -ENOMEM;
666 
667 		rx_buf->data = page;
668 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
669 	} else {
670 		u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
671 
672 		if (!data)
673 			return -ENOMEM;
674 
675 		rx_buf->data = data;
676 		rx_buf->data_ptr = data + bp->rx_offset;
677 	}
678 	rx_buf->mapping = mapping;
679 
680 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
681 	return 0;
682 }
683 
684 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
685 {
686 	u16 prod = rxr->rx_prod;
687 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
688 	struct rx_bd *cons_bd, *prod_bd;
689 
690 	prod_rx_buf = &rxr->rx_buf_ring[prod];
691 	cons_rx_buf = &rxr->rx_buf_ring[cons];
692 
693 	prod_rx_buf->data = data;
694 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
695 
696 	prod_rx_buf->mapping = cons_rx_buf->mapping;
697 
698 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
699 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
700 
701 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
702 }
703 
704 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
705 {
706 	u16 next, max = rxr->rx_agg_bmap_size;
707 
708 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
709 	if (next >= max)
710 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
711 	return next;
712 }
713 
714 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
715 				     struct bnxt_rx_ring_info *rxr,
716 				     u16 prod, gfp_t gfp)
717 {
718 	struct rx_bd *rxbd =
719 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
720 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
721 	struct pci_dev *pdev = bp->pdev;
722 	struct page *page;
723 	dma_addr_t mapping;
724 	u16 sw_prod = rxr->rx_sw_agg_prod;
725 	unsigned int offset = 0;
726 
727 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
728 		page = rxr->rx_page;
729 		if (!page) {
730 			page = alloc_page(gfp);
731 			if (!page)
732 				return -ENOMEM;
733 			rxr->rx_page = page;
734 			rxr->rx_page_offset = 0;
735 		}
736 		offset = rxr->rx_page_offset;
737 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
738 		if (rxr->rx_page_offset == PAGE_SIZE)
739 			rxr->rx_page = NULL;
740 		else
741 			get_page(page);
742 	} else {
743 		page = alloc_page(gfp);
744 		if (!page)
745 			return -ENOMEM;
746 	}
747 
748 	mapping = dma_map_page_attrs(&pdev->dev, page, offset,
749 				     BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
750 				     DMA_ATTR_WEAK_ORDERING);
751 	if (dma_mapping_error(&pdev->dev, mapping)) {
752 		__free_page(page);
753 		return -EIO;
754 	}
755 
756 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
757 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
758 
759 	__set_bit(sw_prod, rxr->rx_agg_bmap);
760 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
761 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
762 
763 	rx_agg_buf->page = page;
764 	rx_agg_buf->offset = offset;
765 	rx_agg_buf->mapping = mapping;
766 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
767 	rxbd->rx_bd_opaque = sw_prod;
768 	return 0;
769 }
770 
771 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
772 				   u32 agg_bufs)
773 {
774 	struct bnxt *bp = bnapi->bp;
775 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
776 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
777 	u16 prod = rxr->rx_agg_prod;
778 	u16 sw_prod = rxr->rx_sw_agg_prod;
779 	u32 i;
780 
781 	for (i = 0; i < agg_bufs; i++) {
782 		u16 cons;
783 		struct rx_agg_cmp *agg;
784 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
785 		struct rx_bd *prod_bd;
786 		struct page *page;
787 
788 		agg = (struct rx_agg_cmp *)
789 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
790 		cons = agg->rx_agg_cmp_opaque;
791 		__clear_bit(cons, rxr->rx_agg_bmap);
792 
793 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
794 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
795 
796 		__set_bit(sw_prod, rxr->rx_agg_bmap);
797 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
798 		cons_rx_buf = &rxr->rx_agg_ring[cons];
799 
800 		/* It is possible for sw_prod to be equal to cons, so
801 		 * set cons_rx_buf->page to NULL first.
802 		 */
803 		page = cons_rx_buf->page;
804 		cons_rx_buf->page = NULL;
805 		prod_rx_buf->page = page;
806 		prod_rx_buf->offset = cons_rx_buf->offset;
807 
808 		prod_rx_buf->mapping = cons_rx_buf->mapping;
809 
810 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
811 
812 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
813 		prod_bd->rx_bd_opaque = sw_prod;
814 
815 		prod = NEXT_RX_AGG(prod);
816 		sw_prod = NEXT_RX_AGG(sw_prod);
817 		cp_cons = NEXT_CMP(cp_cons);
818 	}
819 	rxr->rx_agg_prod = prod;
820 	rxr->rx_sw_agg_prod = sw_prod;
821 }
822 
823 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
824 					struct bnxt_rx_ring_info *rxr,
825 					u16 cons, void *data, u8 *data_ptr,
826 					dma_addr_t dma_addr,
827 					unsigned int offset_and_len)
828 {
829 	unsigned int payload = offset_and_len >> 16;
830 	unsigned int len = offset_and_len & 0xffff;
831 	struct skb_frag_struct *frag;
832 	struct page *page = data;
833 	u16 prod = rxr->rx_prod;
834 	struct sk_buff *skb;
835 	int off, err;
836 
837 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
838 	if (unlikely(err)) {
839 		bnxt_reuse_rx_data(rxr, cons, data);
840 		return NULL;
841 	}
842 	dma_addr -= bp->rx_dma_offset;
843 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
844 			     DMA_ATTR_WEAK_ORDERING);
845 
846 	if (unlikely(!payload))
847 		payload = eth_get_headlen(data_ptr, len);
848 
849 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
850 	if (!skb) {
851 		__free_page(page);
852 		return NULL;
853 	}
854 
855 	off = (void *)data_ptr - page_address(page);
856 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
857 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
858 	       payload + NET_IP_ALIGN);
859 
860 	frag = &skb_shinfo(skb)->frags[0];
861 	skb_frag_size_sub(frag, payload);
862 	frag->page_offset += payload;
863 	skb->data_len -= payload;
864 	skb->tail += payload;
865 
866 	return skb;
867 }
868 
869 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
870 				   struct bnxt_rx_ring_info *rxr, u16 cons,
871 				   void *data, u8 *data_ptr,
872 				   dma_addr_t dma_addr,
873 				   unsigned int offset_and_len)
874 {
875 	u16 prod = rxr->rx_prod;
876 	struct sk_buff *skb;
877 	int err;
878 
879 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
880 	if (unlikely(err)) {
881 		bnxt_reuse_rx_data(rxr, cons, data);
882 		return NULL;
883 	}
884 
885 	skb = build_skb(data, 0);
886 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
887 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
888 	if (!skb) {
889 		kfree(data);
890 		return NULL;
891 	}
892 
893 	skb_reserve(skb, bp->rx_offset);
894 	skb_put(skb, offset_and_len & 0xffff);
895 	return skb;
896 }
897 
898 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
899 				     struct sk_buff *skb, u16 cp_cons,
900 				     u32 agg_bufs)
901 {
902 	struct pci_dev *pdev = bp->pdev;
903 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
904 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
905 	u16 prod = rxr->rx_agg_prod;
906 	u32 i;
907 
908 	for (i = 0; i < agg_bufs; i++) {
909 		u16 cons, frag_len;
910 		struct rx_agg_cmp *agg;
911 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
912 		struct page *page;
913 		dma_addr_t mapping;
914 
915 		agg = (struct rx_agg_cmp *)
916 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
917 		cons = agg->rx_agg_cmp_opaque;
918 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
919 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
920 
921 		cons_rx_buf = &rxr->rx_agg_ring[cons];
922 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
923 				   cons_rx_buf->offset, frag_len);
924 		__clear_bit(cons, rxr->rx_agg_bmap);
925 
926 		/* It is possible for bnxt_alloc_rx_page() to allocate
927 		 * a sw_prod index that equals the cons index, so we
928 		 * need to clear the cons entry now.
929 		 */
930 		mapping = cons_rx_buf->mapping;
931 		page = cons_rx_buf->page;
932 		cons_rx_buf->page = NULL;
933 
934 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
935 			struct skb_shared_info *shinfo;
936 			unsigned int nr_frags;
937 
938 			shinfo = skb_shinfo(skb);
939 			nr_frags = --shinfo->nr_frags;
940 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
941 
942 			dev_kfree_skb(skb);
943 
944 			cons_rx_buf->page = page;
945 
946 			/* Update prod since possibly some pages have been
947 			 * allocated already.
948 			 */
949 			rxr->rx_agg_prod = prod;
950 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
951 			return NULL;
952 		}
953 
954 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
955 				     PCI_DMA_FROMDEVICE,
956 				     DMA_ATTR_WEAK_ORDERING);
957 
958 		skb->data_len += frag_len;
959 		skb->len += frag_len;
960 		skb->truesize += PAGE_SIZE;
961 
962 		prod = NEXT_RX_AGG(prod);
963 		cp_cons = NEXT_CMP(cp_cons);
964 	}
965 	rxr->rx_agg_prod = prod;
966 	return skb;
967 }
968 
969 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
970 			       u8 agg_bufs, u32 *raw_cons)
971 {
972 	u16 last;
973 	struct rx_agg_cmp *agg;
974 
975 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
976 	last = RING_CMP(*raw_cons);
977 	agg = (struct rx_agg_cmp *)
978 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
979 	return RX_AGG_CMP_VALID(agg, *raw_cons);
980 }
981 
982 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
983 					    unsigned int len,
984 					    dma_addr_t mapping)
985 {
986 	struct bnxt *bp = bnapi->bp;
987 	struct pci_dev *pdev = bp->pdev;
988 	struct sk_buff *skb;
989 
990 	skb = napi_alloc_skb(&bnapi->napi, len);
991 	if (!skb)
992 		return NULL;
993 
994 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
995 				bp->rx_dir);
996 
997 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
998 	       len + NET_IP_ALIGN);
999 
1000 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1001 				   bp->rx_dir);
1002 
1003 	skb_put(skb, len);
1004 	return skb;
1005 }
1006 
1007 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
1008 			   u32 *raw_cons, void *cmp)
1009 {
1010 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1011 	struct rx_cmp *rxcmp = cmp;
1012 	u32 tmp_raw_cons = *raw_cons;
1013 	u8 cmp_type, agg_bufs = 0;
1014 
1015 	cmp_type = RX_CMP_TYPE(rxcmp);
1016 
1017 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1018 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1019 			    RX_CMP_AGG_BUFS) >>
1020 			   RX_CMP_AGG_BUFS_SHIFT;
1021 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1022 		struct rx_tpa_end_cmp *tpa_end = cmp;
1023 
1024 		agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1025 			    RX_TPA_END_CMP_AGG_BUFS) >>
1026 			   RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1027 	}
1028 
1029 	if (agg_bufs) {
1030 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1031 			return -EBUSY;
1032 	}
1033 	*raw_cons = tmp_raw_cons;
1034 	return 0;
1035 }
1036 
1037 static void bnxt_queue_sp_work(struct bnxt *bp)
1038 {
1039 	if (BNXT_PF(bp))
1040 		queue_work(bnxt_pf_wq, &bp->sp_task);
1041 	else
1042 		schedule_work(&bp->sp_task);
1043 }
1044 
1045 static void bnxt_cancel_sp_work(struct bnxt *bp)
1046 {
1047 	if (BNXT_PF(bp))
1048 		flush_workqueue(bnxt_pf_wq);
1049 	else
1050 		cancel_work_sync(&bp->sp_task);
1051 }
1052 
1053 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1054 {
1055 	if (!rxr->bnapi->in_reset) {
1056 		rxr->bnapi->in_reset = true;
1057 		set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1058 		bnxt_queue_sp_work(bp);
1059 	}
1060 	rxr->rx_next_cons = 0xffff;
1061 }
1062 
1063 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1064 			   struct rx_tpa_start_cmp *tpa_start,
1065 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1066 {
1067 	u8 agg_id = TPA_START_AGG_ID(tpa_start);
1068 	u16 cons, prod;
1069 	struct bnxt_tpa_info *tpa_info;
1070 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1071 	struct rx_bd *prod_bd;
1072 	dma_addr_t mapping;
1073 
1074 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1075 	prod = rxr->rx_prod;
1076 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1077 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1078 	tpa_info = &rxr->rx_tpa[agg_id];
1079 
1080 	if (unlikely(cons != rxr->rx_next_cons)) {
1081 		bnxt_sched_reset(bp, rxr);
1082 		return;
1083 	}
1084 	/* Store cfa_code in tpa_info to use in tpa_end
1085 	 * completion processing.
1086 	 */
1087 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1088 	prod_rx_buf->data = tpa_info->data;
1089 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1090 
1091 	mapping = tpa_info->mapping;
1092 	prod_rx_buf->mapping = mapping;
1093 
1094 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1095 
1096 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1097 
1098 	tpa_info->data = cons_rx_buf->data;
1099 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1100 	cons_rx_buf->data = NULL;
1101 	tpa_info->mapping = cons_rx_buf->mapping;
1102 
1103 	tpa_info->len =
1104 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1105 				RX_TPA_START_CMP_LEN_SHIFT;
1106 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1107 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1108 
1109 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1110 		tpa_info->gso_type = SKB_GSO_TCPV4;
1111 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1112 		if (hash_type == 3)
1113 			tpa_info->gso_type = SKB_GSO_TCPV6;
1114 		tpa_info->rss_hash =
1115 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1116 	} else {
1117 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1118 		tpa_info->gso_type = 0;
1119 		if (netif_msg_rx_err(bp))
1120 			netdev_warn(bp->dev, "TPA packet without valid hash\n");
1121 	}
1122 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1123 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1124 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1125 
1126 	rxr->rx_prod = NEXT_RX(prod);
1127 	cons = NEXT_RX(cons);
1128 	rxr->rx_next_cons = NEXT_RX(cons);
1129 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1130 
1131 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1132 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1133 	cons_rx_buf->data = NULL;
1134 }
1135 
1136 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
1137 			   u16 cp_cons, u32 agg_bufs)
1138 {
1139 	if (agg_bufs)
1140 		bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1141 }
1142 
1143 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1144 					   int payload_off, int tcp_ts,
1145 					   struct sk_buff *skb)
1146 {
1147 #ifdef CONFIG_INET
1148 	struct tcphdr *th;
1149 	int len, nw_off;
1150 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1151 	u32 hdr_info = tpa_info->hdr_info;
1152 	bool loopback = false;
1153 
1154 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1155 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1156 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1157 
1158 	/* If the packet is an internal loopback packet, the offsets will
1159 	 * have an extra 4 bytes.
1160 	 */
1161 	if (inner_mac_off == 4) {
1162 		loopback = true;
1163 	} else if (inner_mac_off > 4) {
1164 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1165 					    ETH_HLEN - 2));
1166 
1167 		/* We only support inner iPv4/ipv6.  If we don't see the
1168 		 * correct protocol ID, it must be a loopback packet where
1169 		 * the offsets are off by 4.
1170 		 */
1171 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1172 			loopback = true;
1173 	}
1174 	if (loopback) {
1175 		/* internal loopback packet, subtract all offsets by 4 */
1176 		inner_ip_off -= 4;
1177 		inner_mac_off -= 4;
1178 		outer_ip_off -= 4;
1179 	}
1180 
1181 	nw_off = inner_ip_off - ETH_HLEN;
1182 	skb_set_network_header(skb, nw_off);
1183 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1184 		struct ipv6hdr *iph = ipv6_hdr(skb);
1185 
1186 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1187 		len = skb->len - skb_transport_offset(skb);
1188 		th = tcp_hdr(skb);
1189 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1190 	} else {
1191 		struct iphdr *iph = ip_hdr(skb);
1192 
1193 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1194 		len = skb->len - skb_transport_offset(skb);
1195 		th = tcp_hdr(skb);
1196 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1197 	}
1198 
1199 	if (inner_mac_off) { /* tunnel */
1200 		struct udphdr *uh = NULL;
1201 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1202 					    ETH_HLEN - 2));
1203 
1204 		if (proto == htons(ETH_P_IP)) {
1205 			struct iphdr *iph = (struct iphdr *)skb->data;
1206 
1207 			if (iph->protocol == IPPROTO_UDP)
1208 				uh = (struct udphdr *)(iph + 1);
1209 		} else {
1210 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1211 
1212 			if (iph->nexthdr == IPPROTO_UDP)
1213 				uh = (struct udphdr *)(iph + 1);
1214 		}
1215 		if (uh) {
1216 			if (uh->check)
1217 				skb_shinfo(skb)->gso_type |=
1218 					SKB_GSO_UDP_TUNNEL_CSUM;
1219 			else
1220 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1221 		}
1222 	}
1223 #endif
1224 	return skb;
1225 }
1226 
1227 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1228 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1229 
1230 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1231 					   int payload_off, int tcp_ts,
1232 					   struct sk_buff *skb)
1233 {
1234 #ifdef CONFIG_INET
1235 	struct tcphdr *th;
1236 	int len, nw_off, tcp_opt_len = 0;
1237 
1238 	if (tcp_ts)
1239 		tcp_opt_len = 12;
1240 
1241 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1242 		struct iphdr *iph;
1243 
1244 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1245 			 ETH_HLEN;
1246 		skb_set_network_header(skb, nw_off);
1247 		iph = ip_hdr(skb);
1248 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1249 		len = skb->len - skb_transport_offset(skb);
1250 		th = tcp_hdr(skb);
1251 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1252 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1253 		struct ipv6hdr *iph;
1254 
1255 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1256 			 ETH_HLEN;
1257 		skb_set_network_header(skb, nw_off);
1258 		iph = ipv6_hdr(skb);
1259 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1260 		len = skb->len - skb_transport_offset(skb);
1261 		th = tcp_hdr(skb);
1262 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1263 	} else {
1264 		dev_kfree_skb_any(skb);
1265 		return NULL;
1266 	}
1267 
1268 	if (nw_off) { /* tunnel */
1269 		struct udphdr *uh = NULL;
1270 
1271 		if (skb->protocol == htons(ETH_P_IP)) {
1272 			struct iphdr *iph = (struct iphdr *)skb->data;
1273 
1274 			if (iph->protocol == IPPROTO_UDP)
1275 				uh = (struct udphdr *)(iph + 1);
1276 		} else {
1277 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1278 
1279 			if (iph->nexthdr == IPPROTO_UDP)
1280 				uh = (struct udphdr *)(iph + 1);
1281 		}
1282 		if (uh) {
1283 			if (uh->check)
1284 				skb_shinfo(skb)->gso_type |=
1285 					SKB_GSO_UDP_TUNNEL_CSUM;
1286 			else
1287 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1288 		}
1289 	}
1290 #endif
1291 	return skb;
1292 }
1293 
1294 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1295 					   struct bnxt_tpa_info *tpa_info,
1296 					   struct rx_tpa_end_cmp *tpa_end,
1297 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1298 					   struct sk_buff *skb)
1299 {
1300 #ifdef CONFIG_INET
1301 	int payload_off;
1302 	u16 segs;
1303 
1304 	segs = TPA_END_TPA_SEGS(tpa_end);
1305 	if (segs == 1)
1306 		return skb;
1307 
1308 	NAPI_GRO_CB(skb)->count = segs;
1309 	skb_shinfo(skb)->gso_size =
1310 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1311 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1312 	payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1313 		       RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
1314 		      RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
1315 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1316 	if (likely(skb))
1317 		tcp_gro_complete(skb);
1318 #endif
1319 	return skb;
1320 }
1321 
1322 /* Given the cfa_code of a received packet determine which
1323  * netdev (vf-rep or PF) the packet is destined to.
1324  */
1325 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1326 {
1327 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1328 
1329 	/* if vf-rep dev is NULL, the must belongs to the PF */
1330 	return dev ? dev : bp->dev;
1331 }
1332 
1333 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1334 					   struct bnxt_napi *bnapi,
1335 					   u32 *raw_cons,
1336 					   struct rx_tpa_end_cmp *tpa_end,
1337 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1338 					   u8 *event)
1339 {
1340 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1341 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1342 	u8 agg_id = TPA_END_AGG_ID(tpa_end);
1343 	u8 *data_ptr, agg_bufs;
1344 	u16 cp_cons = RING_CMP(*raw_cons);
1345 	unsigned int len;
1346 	struct bnxt_tpa_info *tpa_info;
1347 	dma_addr_t mapping;
1348 	struct sk_buff *skb;
1349 	void *data;
1350 
1351 	if (unlikely(bnapi->in_reset)) {
1352 		int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
1353 
1354 		if (rc < 0)
1355 			return ERR_PTR(-EBUSY);
1356 		return NULL;
1357 	}
1358 
1359 	tpa_info = &rxr->rx_tpa[agg_id];
1360 	data = tpa_info->data;
1361 	data_ptr = tpa_info->data_ptr;
1362 	prefetch(data_ptr);
1363 	len = tpa_info->len;
1364 	mapping = tpa_info->mapping;
1365 
1366 	agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1367 		    RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1368 
1369 	if (agg_bufs) {
1370 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1371 			return ERR_PTR(-EBUSY);
1372 
1373 		*event |= BNXT_AGG_EVENT;
1374 		cp_cons = NEXT_CMP(cp_cons);
1375 	}
1376 
1377 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1378 		bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1379 		if (agg_bufs > MAX_SKB_FRAGS)
1380 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1381 				    agg_bufs, (int)MAX_SKB_FRAGS);
1382 		return NULL;
1383 	}
1384 
1385 	if (len <= bp->rx_copy_thresh) {
1386 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1387 		if (!skb) {
1388 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1389 			return NULL;
1390 		}
1391 	} else {
1392 		u8 *new_data;
1393 		dma_addr_t new_mapping;
1394 
1395 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1396 		if (!new_data) {
1397 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1398 			return NULL;
1399 		}
1400 
1401 		tpa_info->data = new_data;
1402 		tpa_info->data_ptr = new_data + bp->rx_offset;
1403 		tpa_info->mapping = new_mapping;
1404 
1405 		skb = build_skb(data, 0);
1406 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1407 				       bp->rx_buf_use_size, bp->rx_dir,
1408 				       DMA_ATTR_WEAK_ORDERING);
1409 
1410 		if (!skb) {
1411 			kfree(data);
1412 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1413 			return NULL;
1414 		}
1415 		skb_reserve(skb, bp->rx_offset);
1416 		skb_put(skb, len);
1417 	}
1418 
1419 	if (agg_bufs) {
1420 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1421 		if (!skb) {
1422 			/* Page reuse already handled by bnxt_rx_pages(). */
1423 			return NULL;
1424 		}
1425 	}
1426 
1427 	skb->protocol =
1428 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1429 
1430 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1431 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1432 
1433 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1434 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1435 		u16 vlan_proto = tpa_info->metadata >>
1436 			RX_CMP_FLAGS2_METADATA_TPID_SFT;
1437 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_VID_MASK;
1438 
1439 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1440 	}
1441 
1442 	skb_checksum_none_assert(skb);
1443 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1444 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1445 		skb->csum_level =
1446 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1447 	}
1448 
1449 	if (TPA_END_GRO(tpa_end))
1450 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1451 
1452 	return skb;
1453 }
1454 
1455 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1456 			     struct sk_buff *skb)
1457 {
1458 	if (skb->dev != bp->dev) {
1459 		/* this packet belongs to a vf-rep */
1460 		bnxt_vf_rep_rx(bp, skb);
1461 		return;
1462 	}
1463 	skb_record_rx_queue(skb, bnapi->index);
1464 	napi_gro_receive(&bnapi->napi, skb);
1465 }
1466 
1467 /* returns the following:
1468  * 1       - 1 packet successfully received
1469  * 0       - successful TPA_START, packet not completed yet
1470  * -EBUSY  - completion ring does not have all the agg buffers yet
1471  * -ENOMEM - packet aborted due to out of memory
1472  * -EIO    - packet aborted due to hw error indicated in BD
1473  */
1474 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1475 		       u8 *event)
1476 {
1477 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1478 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1479 	struct net_device *dev = bp->dev;
1480 	struct rx_cmp *rxcmp;
1481 	struct rx_cmp_ext *rxcmp1;
1482 	u32 tmp_raw_cons = *raw_cons;
1483 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1484 	struct bnxt_sw_rx_bd *rx_buf;
1485 	unsigned int len;
1486 	u8 *data_ptr, agg_bufs, cmp_type;
1487 	dma_addr_t dma_addr;
1488 	struct sk_buff *skb;
1489 	void *data;
1490 	int rc = 0;
1491 	u32 misc;
1492 
1493 	rxcmp = (struct rx_cmp *)
1494 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1495 
1496 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1497 	cp_cons = RING_CMP(tmp_raw_cons);
1498 	rxcmp1 = (struct rx_cmp_ext *)
1499 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1500 
1501 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1502 		return -EBUSY;
1503 
1504 	cmp_type = RX_CMP_TYPE(rxcmp);
1505 
1506 	prod = rxr->rx_prod;
1507 
1508 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1509 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1510 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1511 
1512 		*event |= BNXT_RX_EVENT;
1513 		goto next_rx_no_prod;
1514 
1515 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1516 		skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1517 				   (struct rx_tpa_end_cmp *)rxcmp,
1518 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1519 
1520 		if (IS_ERR(skb))
1521 			return -EBUSY;
1522 
1523 		rc = -ENOMEM;
1524 		if (likely(skb)) {
1525 			bnxt_deliver_skb(bp, bnapi, skb);
1526 			rc = 1;
1527 		}
1528 		*event |= BNXT_RX_EVENT;
1529 		goto next_rx_no_prod;
1530 	}
1531 
1532 	cons = rxcmp->rx_cmp_opaque;
1533 	rx_buf = &rxr->rx_buf_ring[cons];
1534 	data = rx_buf->data;
1535 	data_ptr = rx_buf->data_ptr;
1536 	if (unlikely(cons != rxr->rx_next_cons)) {
1537 		int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
1538 
1539 		bnxt_sched_reset(bp, rxr);
1540 		return rc1;
1541 	}
1542 	prefetch(data_ptr);
1543 
1544 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1545 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1546 
1547 	if (agg_bufs) {
1548 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1549 			return -EBUSY;
1550 
1551 		cp_cons = NEXT_CMP(cp_cons);
1552 		*event |= BNXT_AGG_EVENT;
1553 	}
1554 	*event |= BNXT_RX_EVENT;
1555 
1556 	rx_buf->data = NULL;
1557 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1558 		bnxt_reuse_rx_data(rxr, cons, data);
1559 		if (agg_bufs)
1560 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1561 
1562 		rc = -EIO;
1563 		goto next_rx;
1564 	}
1565 
1566 	len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1567 	dma_addr = rx_buf->mapping;
1568 
1569 	if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1570 		rc = 1;
1571 		goto next_rx;
1572 	}
1573 
1574 	if (len <= bp->rx_copy_thresh) {
1575 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1576 		bnxt_reuse_rx_data(rxr, cons, data);
1577 		if (!skb) {
1578 			rc = -ENOMEM;
1579 			goto next_rx;
1580 		}
1581 	} else {
1582 		u32 payload;
1583 
1584 		if (rx_buf->data_ptr == data_ptr)
1585 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1586 		else
1587 			payload = 0;
1588 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1589 				      payload | len);
1590 		if (!skb) {
1591 			rc = -ENOMEM;
1592 			goto next_rx;
1593 		}
1594 	}
1595 
1596 	if (agg_bufs) {
1597 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1598 		if (!skb) {
1599 			rc = -ENOMEM;
1600 			goto next_rx;
1601 		}
1602 	}
1603 
1604 	if (RX_CMP_HASH_VALID(rxcmp)) {
1605 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1606 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1607 
1608 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1609 		if (hash_type != 1 && hash_type != 3)
1610 			type = PKT_HASH_TYPE_L3;
1611 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1612 	}
1613 
1614 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1615 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1616 
1617 	if ((rxcmp1->rx_cmp_flags2 &
1618 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1619 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1620 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1621 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_VID_MASK;
1622 		u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1623 
1624 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1625 	}
1626 
1627 	skb_checksum_none_assert(skb);
1628 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1629 		if (dev->features & NETIF_F_RXCSUM) {
1630 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1631 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1632 		}
1633 	} else {
1634 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1635 			if (dev->features & NETIF_F_RXCSUM)
1636 				cpr->rx_l4_csum_errors++;
1637 		}
1638 	}
1639 
1640 	bnxt_deliver_skb(bp, bnapi, skb);
1641 	rc = 1;
1642 
1643 next_rx:
1644 	rxr->rx_prod = NEXT_RX(prod);
1645 	rxr->rx_next_cons = NEXT_RX(cons);
1646 
1647 next_rx_no_prod:
1648 	*raw_cons = tmp_raw_cons;
1649 
1650 	return rc;
1651 }
1652 
1653 /* In netpoll mode, if we are using a combined completion ring, we need to
1654  * discard the rx packets and recycle the buffers.
1655  */
1656 static int bnxt_force_rx_discard(struct bnxt *bp, struct bnxt_napi *bnapi,
1657 				 u32 *raw_cons, u8 *event)
1658 {
1659 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1660 	u32 tmp_raw_cons = *raw_cons;
1661 	struct rx_cmp_ext *rxcmp1;
1662 	struct rx_cmp *rxcmp;
1663 	u16 cp_cons;
1664 	u8 cmp_type;
1665 
1666 	cp_cons = RING_CMP(tmp_raw_cons);
1667 	rxcmp = (struct rx_cmp *)
1668 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1669 
1670 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1671 	cp_cons = RING_CMP(tmp_raw_cons);
1672 	rxcmp1 = (struct rx_cmp_ext *)
1673 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1674 
1675 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1676 		return -EBUSY;
1677 
1678 	cmp_type = RX_CMP_TYPE(rxcmp);
1679 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1680 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1681 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1682 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1683 		struct rx_tpa_end_cmp_ext *tpa_end1;
1684 
1685 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1686 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1687 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1688 	}
1689 	return bnxt_rx_pkt(bp, bnapi, raw_cons, event);
1690 }
1691 
1692 #define BNXT_GET_EVENT_PORT(data)	\
1693 	((data) &			\
1694 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1695 
1696 static int bnxt_async_event_process(struct bnxt *bp,
1697 				    struct hwrm_async_event_cmpl *cmpl)
1698 {
1699 	u16 event_id = le16_to_cpu(cmpl->event_id);
1700 
1701 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
1702 	switch (event_id) {
1703 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1704 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1705 		struct bnxt_link_info *link_info = &bp->link_info;
1706 
1707 		if (BNXT_VF(bp))
1708 			goto async_event_process_exit;
1709 		if (data1 & 0x20000) {
1710 			u16 fw_speed = link_info->force_link_speed;
1711 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1712 
1713 			netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1714 				    speed);
1715 		}
1716 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1717 		/* fall thru */
1718 	}
1719 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1720 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1721 		break;
1722 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1723 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1724 		break;
1725 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1726 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1727 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
1728 
1729 		if (BNXT_VF(bp))
1730 			break;
1731 
1732 		if (bp->pf.port_id != port_id)
1733 			break;
1734 
1735 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1736 		break;
1737 	}
1738 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1739 		if (BNXT_PF(bp))
1740 			goto async_event_process_exit;
1741 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1742 		break;
1743 	default:
1744 		goto async_event_process_exit;
1745 	}
1746 	bnxt_queue_sp_work(bp);
1747 async_event_process_exit:
1748 	bnxt_ulp_async_events(bp, cmpl);
1749 	return 0;
1750 }
1751 
1752 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1753 {
1754 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1755 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1756 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1757 				(struct hwrm_fwd_req_cmpl *)txcmp;
1758 
1759 	switch (cmpl_type) {
1760 	case CMPL_BASE_TYPE_HWRM_DONE:
1761 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
1762 		if (seq_id == bp->hwrm_intr_seq_id)
1763 			bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1764 		else
1765 			netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1766 		break;
1767 
1768 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1769 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1770 
1771 		if ((vf_id < bp->pf.first_vf_id) ||
1772 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1773 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1774 				   vf_id);
1775 			return -EINVAL;
1776 		}
1777 
1778 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1779 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1780 		bnxt_queue_sp_work(bp);
1781 		break;
1782 
1783 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1784 		bnxt_async_event_process(bp,
1785 					 (struct hwrm_async_event_cmpl *)txcmp);
1786 
1787 	default:
1788 		break;
1789 	}
1790 
1791 	return 0;
1792 }
1793 
1794 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1795 {
1796 	struct bnxt_napi *bnapi = dev_instance;
1797 	struct bnxt *bp = bnapi->bp;
1798 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1799 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1800 
1801 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1802 	napi_schedule(&bnapi->napi);
1803 	return IRQ_HANDLED;
1804 }
1805 
1806 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1807 {
1808 	u32 raw_cons = cpr->cp_raw_cons;
1809 	u16 cons = RING_CMP(raw_cons);
1810 	struct tx_cmp *txcmp;
1811 
1812 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1813 
1814 	return TX_CMP_VALID(txcmp, raw_cons);
1815 }
1816 
1817 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1818 {
1819 	struct bnxt_napi *bnapi = dev_instance;
1820 	struct bnxt *bp = bnapi->bp;
1821 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1822 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1823 	u32 int_status;
1824 
1825 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1826 
1827 	if (!bnxt_has_work(bp, cpr)) {
1828 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1829 		/* return if erroneous interrupt */
1830 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1831 			return IRQ_NONE;
1832 	}
1833 
1834 	/* disable ring IRQ */
1835 	BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1836 
1837 	/* Return here if interrupt is shared and is disabled. */
1838 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
1839 		return IRQ_HANDLED;
1840 
1841 	napi_schedule(&bnapi->napi);
1842 	return IRQ_HANDLED;
1843 }
1844 
1845 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1846 {
1847 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1848 	u32 raw_cons = cpr->cp_raw_cons;
1849 	u32 cons;
1850 	int tx_pkts = 0;
1851 	int rx_pkts = 0;
1852 	u8 event = 0;
1853 	struct tx_cmp *txcmp;
1854 
1855 	while (1) {
1856 		int rc;
1857 
1858 		cons = RING_CMP(raw_cons);
1859 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1860 
1861 		if (!TX_CMP_VALID(txcmp, raw_cons))
1862 			break;
1863 
1864 		/* The valid test of the entry must be done first before
1865 		 * reading any further.
1866 		 */
1867 		dma_rmb();
1868 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1869 			tx_pkts++;
1870 			/* return full budget so NAPI will complete. */
1871 			if (unlikely(tx_pkts > bp->tx_wake_thresh))
1872 				rx_pkts = budget;
1873 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1874 			if (likely(budget))
1875 				rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1876 			else
1877 				rc = bnxt_force_rx_discard(bp, bnapi, &raw_cons,
1878 							   &event);
1879 			if (likely(rc >= 0))
1880 				rx_pkts += rc;
1881 			/* Increment rx_pkts when rc is -ENOMEM to count towards
1882 			 * the NAPI budget.  Otherwise, we may potentially loop
1883 			 * here forever if we consistently cannot allocate
1884 			 * buffers.
1885 			 */
1886 			else if (rc == -ENOMEM)
1887 				rx_pkts++;
1888 			else if (rc == -EBUSY)	/* partial completion */
1889 				break;
1890 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
1891 				     CMPL_BASE_TYPE_HWRM_DONE) ||
1892 				    (TX_CMP_TYPE(txcmp) ==
1893 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1894 				    (TX_CMP_TYPE(txcmp) ==
1895 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1896 			bnxt_hwrm_handler(bp, txcmp);
1897 		}
1898 		raw_cons = NEXT_RAW_CMP(raw_cons);
1899 
1900 		if (rx_pkts == budget)
1901 			break;
1902 	}
1903 
1904 	if (event & BNXT_TX_EVENT) {
1905 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
1906 		void __iomem *db = txr->tx_doorbell;
1907 		u16 prod = txr->tx_prod;
1908 
1909 		/* Sync BD data before updating doorbell */
1910 		wmb();
1911 
1912 		bnxt_db_write(bp, db, DB_KEY_TX | prod);
1913 	}
1914 
1915 	cpr->cp_raw_cons = raw_cons;
1916 	/* ACK completion ring before freeing tx ring and producing new
1917 	 * buffers in rx/agg rings to prevent overflowing the completion
1918 	 * ring.
1919 	 */
1920 	BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1921 
1922 	if (tx_pkts)
1923 		bnapi->tx_int(bp, bnapi, tx_pkts);
1924 
1925 	if (event & BNXT_RX_EVENT) {
1926 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1927 
1928 		bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
1929 		if (event & BNXT_AGG_EVENT)
1930 			bnxt_db_write(bp, rxr->rx_agg_doorbell,
1931 				      DB_KEY_RX | rxr->rx_agg_prod);
1932 	}
1933 	return rx_pkts;
1934 }
1935 
1936 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
1937 {
1938 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1939 	struct bnxt *bp = bnapi->bp;
1940 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1941 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1942 	struct tx_cmp *txcmp;
1943 	struct rx_cmp_ext *rxcmp1;
1944 	u32 cp_cons, tmp_raw_cons;
1945 	u32 raw_cons = cpr->cp_raw_cons;
1946 	u32 rx_pkts = 0;
1947 	u8 event = 0;
1948 
1949 	while (1) {
1950 		int rc;
1951 
1952 		cp_cons = RING_CMP(raw_cons);
1953 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1954 
1955 		if (!TX_CMP_VALID(txcmp, raw_cons))
1956 			break;
1957 
1958 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1959 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
1960 			cp_cons = RING_CMP(tmp_raw_cons);
1961 			rxcmp1 = (struct rx_cmp_ext *)
1962 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1963 
1964 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1965 				break;
1966 
1967 			/* force an error to recycle the buffer */
1968 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1969 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1970 
1971 			rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1972 			if (likely(rc == -EIO))
1973 				rx_pkts++;
1974 			else if (rc == -EBUSY)	/* partial completion */
1975 				break;
1976 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
1977 				    CMPL_BASE_TYPE_HWRM_DONE)) {
1978 			bnxt_hwrm_handler(bp, txcmp);
1979 		} else {
1980 			netdev_err(bp->dev,
1981 				   "Invalid completion received on special ring\n");
1982 		}
1983 		raw_cons = NEXT_RAW_CMP(raw_cons);
1984 
1985 		if (rx_pkts == budget)
1986 			break;
1987 	}
1988 
1989 	cpr->cp_raw_cons = raw_cons;
1990 	BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1991 	bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
1992 
1993 	if (event & BNXT_AGG_EVENT)
1994 		bnxt_db_write(bp, rxr->rx_agg_doorbell,
1995 			      DB_KEY_RX | rxr->rx_agg_prod);
1996 
1997 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
1998 		napi_complete_done(napi, rx_pkts);
1999 		BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
2000 	}
2001 	return rx_pkts;
2002 }
2003 
2004 static int bnxt_poll(struct napi_struct *napi, int budget)
2005 {
2006 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2007 	struct bnxt *bp = bnapi->bp;
2008 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2009 	int work_done = 0;
2010 
2011 	while (1) {
2012 		work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
2013 
2014 		if (work_done >= budget)
2015 			break;
2016 
2017 		if (!bnxt_has_work(bp, cpr)) {
2018 			if (napi_complete_done(napi, work_done))
2019 				BNXT_CP_DB_REARM(cpr->cp_doorbell,
2020 						 cpr->cp_raw_cons);
2021 			break;
2022 		}
2023 	}
2024 	mmiowb();
2025 	return work_done;
2026 }
2027 
2028 static void bnxt_free_tx_skbs(struct bnxt *bp)
2029 {
2030 	int i, max_idx;
2031 	struct pci_dev *pdev = bp->pdev;
2032 
2033 	if (!bp->tx_ring)
2034 		return;
2035 
2036 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2037 	for (i = 0; i < bp->tx_nr_rings; i++) {
2038 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2039 		int j;
2040 
2041 		for (j = 0; j < max_idx;) {
2042 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2043 			struct sk_buff *skb = tx_buf->skb;
2044 			int k, last;
2045 
2046 			if (!skb) {
2047 				j++;
2048 				continue;
2049 			}
2050 
2051 			tx_buf->skb = NULL;
2052 
2053 			if (tx_buf->is_push) {
2054 				dev_kfree_skb(skb);
2055 				j += 2;
2056 				continue;
2057 			}
2058 
2059 			dma_unmap_single(&pdev->dev,
2060 					 dma_unmap_addr(tx_buf, mapping),
2061 					 skb_headlen(skb),
2062 					 PCI_DMA_TODEVICE);
2063 
2064 			last = tx_buf->nr_frags;
2065 			j += 2;
2066 			for (k = 0; k < last; k++, j++) {
2067 				int ring_idx = j & bp->tx_ring_mask;
2068 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2069 
2070 				tx_buf = &txr->tx_buf_ring[ring_idx];
2071 				dma_unmap_page(
2072 					&pdev->dev,
2073 					dma_unmap_addr(tx_buf, mapping),
2074 					skb_frag_size(frag), PCI_DMA_TODEVICE);
2075 			}
2076 			dev_kfree_skb(skb);
2077 		}
2078 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2079 	}
2080 }
2081 
2082 static void bnxt_free_rx_skbs(struct bnxt *bp)
2083 {
2084 	int i, max_idx, max_agg_idx;
2085 	struct pci_dev *pdev = bp->pdev;
2086 
2087 	if (!bp->rx_ring)
2088 		return;
2089 
2090 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2091 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2092 	for (i = 0; i < bp->rx_nr_rings; i++) {
2093 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2094 		int j;
2095 
2096 		if (rxr->rx_tpa) {
2097 			for (j = 0; j < MAX_TPA; j++) {
2098 				struct bnxt_tpa_info *tpa_info =
2099 							&rxr->rx_tpa[j];
2100 				u8 *data = tpa_info->data;
2101 
2102 				if (!data)
2103 					continue;
2104 
2105 				dma_unmap_single_attrs(&pdev->dev,
2106 						       tpa_info->mapping,
2107 						       bp->rx_buf_use_size,
2108 						       bp->rx_dir,
2109 						       DMA_ATTR_WEAK_ORDERING);
2110 
2111 				tpa_info->data = NULL;
2112 
2113 				kfree(data);
2114 			}
2115 		}
2116 
2117 		for (j = 0; j < max_idx; j++) {
2118 			struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
2119 			dma_addr_t mapping = rx_buf->mapping;
2120 			void *data = rx_buf->data;
2121 
2122 			if (!data)
2123 				continue;
2124 
2125 			rx_buf->data = NULL;
2126 
2127 			if (BNXT_RX_PAGE_MODE(bp)) {
2128 				mapping -= bp->rx_dma_offset;
2129 				dma_unmap_page_attrs(&pdev->dev, mapping,
2130 						     PAGE_SIZE, bp->rx_dir,
2131 						     DMA_ATTR_WEAK_ORDERING);
2132 				__free_page(data);
2133 			} else {
2134 				dma_unmap_single_attrs(&pdev->dev, mapping,
2135 						       bp->rx_buf_use_size,
2136 						       bp->rx_dir,
2137 						       DMA_ATTR_WEAK_ORDERING);
2138 				kfree(data);
2139 			}
2140 		}
2141 
2142 		for (j = 0; j < max_agg_idx; j++) {
2143 			struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2144 				&rxr->rx_agg_ring[j];
2145 			struct page *page = rx_agg_buf->page;
2146 
2147 			if (!page)
2148 				continue;
2149 
2150 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2151 					     BNXT_RX_PAGE_SIZE,
2152 					     PCI_DMA_FROMDEVICE,
2153 					     DMA_ATTR_WEAK_ORDERING);
2154 
2155 			rx_agg_buf->page = NULL;
2156 			__clear_bit(j, rxr->rx_agg_bmap);
2157 
2158 			__free_page(page);
2159 		}
2160 		if (rxr->rx_page) {
2161 			__free_page(rxr->rx_page);
2162 			rxr->rx_page = NULL;
2163 		}
2164 	}
2165 }
2166 
2167 static void bnxt_free_skbs(struct bnxt *bp)
2168 {
2169 	bnxt_free_tx_skbs(bp);
2170 	bnxt_free_rx_skbs(bp);
2171 }
2172 
2173 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2174 {
2175 	struct pci_dev *pdev = bp->pdev;
2176 	int i;
2177 
2178 	for (i = 0; i < ring->nr_pages; i++) {
2179 		if (!ring->pg_arr[i])
2180 			continue;
2181 
2182 		dma_free_coherent(&pdev->dev, ring->page_size,
2183 				  ring->pg_arr[i], ring->dma_arr[i]);
2184 
2185 		ring->pg_arr[i] = NULL;
2186 	}
2187 	if (ring->pg_tbl) {
2188 		dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
2189 				  ring->pg_tbl, ring->pg_tbl_map);
2190 		ring->pg_tbl = NULL;
2191 	}
2192 	if (ring->vmem_size && *ring->vmem) {
2193 		vfree(*ring->vmem);
2194 		*ring->vmem = NULL;
2195 	}
2196 }
2197 
2198 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2199 {
2200 	int i;
2201 	struct pci_dev *pdev = bp->pdev;
2202 
2203 	if (ring->nr_pages > 1) {
2204 		ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
2205 						  ring->nr_pages * 8,
2206 						  &ring->pg_tbl_map,
2207 						  GFP_KERNEL);
2208 		if (!ring->pg_tbl)
2209 			return -ENOMEM;
2210 	}
2211 
2212 	for (i = 0; i < ring->nr_pages; i++) {
2213 		ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2214 						     ring->page_size,
2215 						     &ring->dma_arr[i],
2216 						     GFP_KERNEL);
2217 		if (!ring->pg_arr[i])
2218 			return -ENOMEM;
2219 
2220 		if (ring->nr_pages > 1)
2221 			ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
2222 	}
2223 
2224 	if (ring->vmem_size) {
2225 		*ring->vmem = vzalloc(ring->vmem_size);
2226 		if (!(*ring->vmem))
2227 			return -ENOMEM;
2228 	}
2229 	return 0;
2230 }
2231 
2232 static void bnxt_free_rx_rings(struct bnxt *bp)
2233 {
2234 	int i;
2235 
2236 	if (!bp->rx_ring)
2237 		return;
2238 
2239 	for (i = 0; i < bp->rx_nr_rings; i++) {
2240 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2241 		struct bnxt_ring_struct *ring;
2242 
2243 		if (rxr->xdp_prog)
2244 			bpf_prog_put(rxr->xdp_prog);
2245 
2246 		kfree(rxr->rx_tpa);
2247 		rxr->rx_tpa = NULL;
2248 
2249 		kfree(rxr->rx_agg_bmap);
2250 		rxr->rx_agg_bmap = NULL;
2251 
2252 		ring = &rxr->rx_ring_struct;
2253 		bnxt_free_ring(bp, ring);
2254 
2255 		ring = &rxr->rx_agg_ring_struct;
2256 		bnxt_free_ring(bp, ring);
2257 	}
2258 }
2259 
2260 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2261 {
2262 	int i, rc, agg_rings = 0, tpa_rings = 0;
2263 
2264 	if (!bp->rx_ring)
2265 		return -ENOMEM;
2266 
2267 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
2268 		agg_rings = 1;
2269 
2270 	if (bp->flags & BNXT_FLAG_TPA)
2271 		tpa_rings = 1;
2272 
2273 	for (i = 0; i < bp->rx_nr_rings; i++) {
2274 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2275 		struct bnxt_ring_struct *ring;
2276 
2277 		ring = &rxr->rx_ring_struct;
2278 
2279 		rc = bnxt_alloc_ring(bp, ring);
2280 		if (rc)
2281 			return rc;
2282 
2283 		if (agg_rings) {
2284 			u16 mem_size;
2285 
2286 			ring = &rxr->rx_agg_ring_struct;
2287 			rc = bnxt_alloc_ring(bp, ring);
2288 			if (rc)
2289 				return rc;
2290 
2291 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2292 			mem_size = rxr->rx_agg_bmap_size / 8;
2293 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2294 			if (!rxr->rx_agg_bmap)
2295 				return -ENOMEM;
2296 
2297 			if (tpa_rings) {
2298 				rxr->rx_tpa = kcalloc(MAX_TPA,
2299 						sizeof(struct bnxt_tpa_info),
2300 						GFP_KERNEL);
2301 				if (!rxr->rx_tpa)
2302 					return -ENOMEM;
2303 			}
2304 		}
2305 	}
2306 	return 0;
2307 }
2308 
2309 static void bnxt_free_tx_rings(struct bnxt *bp)
2310 {
2311 	int i;
2312 	struct pci_dev *pdev = bp->pdev;
2313 
2314 	if (!bp->tx_ring)
2315 		return;
2316 
2317 	for (i = 0; i < bp->tx_nr_rings; i++) {
2318 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2319 		struct bnxt_ring_struct *ring;
2320 
2321 		if (txr->tx_push) {
2322 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
2323 					  txr->tx_push, txr->tx_push_mapping);
2324 			txr->tx_push = NULL;
2325 		}
2326 
2327 		ring = &txr->tx_ring_struct;
2328 
2329 		bnxt_free_ring(bp, ring);
2330 	}
2331 }
2332 
2333 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2334 {
2335 	int i, j, rc;
2336 	struct pci_dev *pdev = bp->pdev;
2337 
2338 	bp->tx_push_size = 0;
2339 	if (bp->tx_push_thresh) {
2340 		int push_size;
2341 
2342 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2343 					bp->tx_push_thresh);
2344 
2345 		if (push_size > 256) {
2346 			push_size = 0;
2347 			bp->tx_push_thresh = 0;
2348 		}
2349 
2350 		bp->tx_push_size = push_size;
2351 	}
2352 
2353 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2354 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2355 		struct bnxt_ring_struct *ring;
2356 
2357 		ring = &txr->tx_ring_struct;
2358 
2359 		rc = bnxt_alloc_ring(bp, ring);
2360 		if (rc)
2361 			return rc;
2362 
2363 		if (bp->tx_push_size) {
2364 			dma_addr_t mapping;
2365 
2366 			/* One pre-allocated DMA buffer to backup
2367 			 * TX push operation
2368 			 */
2369 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
2370 						bp->tx_push_size,
2371 						&txr->tx_push_mapping,
2372 						GFP_KERNEL);
2373 
2374 			if (!txr->tx_push)
2375 				return -ENOMEM;
2376 
2377 			mapping = txr->tx_push_mapping +
2378 				sizeof(struct tx_push_bd);
2379 			txr->data_mapping = cpu_to_le64(mapping);
2380 
2381 			memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
2382 		}
2383 		ring->queue_id = bp->q_info[j].queue_id;
2384 		if (i < bp->tx_nr_rings_xdp)
2385 			continue;
2386 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2387 			j++;
2388 	}
2389 	return 0;
2390 }
2391 
2392 static void bnxt_free_cp_rings(struct bnxt *bp)
2393 {
2394 	int i;
2395 
2396 	if (!bp->bnapi)
2397 		return;
2398 
2399 	for (i = 0; i < bp->cp_nr_rings; i++) {
2400 		struct bnxt_napi *bnapi = bp->bnapi[i];
2401 		struct bnxt_cp_ring_info *cpr;
2402 		struct bnxt_ring_struct *ring;
2403 
2404 		if (!bnapi)
2405 			continue;
2406 
2407 		cpr = &bnapi->cp_ring;
2408 		ring = &cpr->cp_ring_struct;
2409 
2410 		bnxt_free_ring(bp, ring);
2411 	}
2412 }
2413 
2414 static int bnxt_alloc_cp_rings(struct bnxt *bp)
2415 {
2416 	int i, rc;
2417 
2418 	for (i = 0; i < bp->cp_nr_rings; i++) {
2419 		struct bnxt_napi *bnapi = bp->bnapi[i];
2420 		struct bnxt_cp_ring_info *cpr;
2421 		struct bnxt_ring_struct *ring;
2422 
2423 		if (!bnapi)
2424 			continue;
2425 
2426 		cpr = &bnapi->cp_ring;
2427 		ring = &cpr->cp_ring_struct;
2428 
2429 		rc = bnxt_alloc_ring(bp, ring);
2430 		if (rc)
2431 			return rc;
2432 	}
2433 	return 0;
2434 }
2435 
2436 static void bnxt_init_ring_struct(struct bnxt *bp)
2437 {
2438 	int i;
2439 
2440 	for (i = 0; i < bp->cp_nr_rings; i++) {
2441 		struct bnxt_napi *bnapi = bp->bnapi[i];
2442 		struct bnxt_cp_ring_info *cpr;
2443 		struct bnxt_rx_ring_info *rxr;
2444 		struct bnxt_tx_ring_info *txr;
2445 		struct bnxt_ring_struct *ring;
2446 
2447 		if (!bnapi)
2448 			continue;
2449 
2450 		cpr = &bnapi->cp_ring;
2451 		ring = &cpr->cp_ring_struct;
2452 		ring->nr_pages = bp->cp_nr_pages;
2453 		ring->page_size = HW_CMPD_RING_SIZE;
2454 		ring->pg_arr = (void **)cpr->cp_desc_ring;
2455 		ring->dma_arr = cpr->cp_desc_mapping;
2456 		ring->vmem_size = 0;
2457 
2458 		rxr = bnapi->rx_ring;
2459 		if (!rxr)
2460 			goto skip_rx;
2461 
2462 		ring = &rxr->rx_ring_struct;
2463 		ring->nr_pages = bp->rx_nr_pages;
2464 		ring->page_size = HW_RXBD_RING_SIZE;
2465 		ring->pg_arr = (void **)rxr->rx_desc_ring;
2466 		ring->dma_arr = rxr->rx_desc_mapping;
2467 		ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2468 		ring->vmem = (void **)&rxr->rx_buf_ring;
2469 
2470 		ring = &rxr->rx_agg_ring_struct;
2471 		ring->nr_pages = bp->rx_agg_nr_pages;
2472 		ring->page_size = HW_RXBD_RING_SIZE;
2473 		ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
2474 		ring->dma_arr = rxr->rx_agg_desc_mapping;
2475 		ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2476 		ring->vmem = (void **)&rxr->rx_agg_ring;
2477 
2478 skip_rx:
2479 		txr = bnapi->tx_ring;
2480 		if (!txr)
2481 			continue;
2482 
2483 		ring = &txr->tx_ring_struct;
2484 		ring->nr_pages = bp->tx_nr_pages;
2485 		ring->page_size = HW_RXBD_RING_SIZE;
2486 		ring->pg_arr = (void **)txr->tx_desc_ring;
2487 		ring->dma_arr = txr->tx_desc_mapping;
2488 		ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2489 		ring->vmem = (void **)&txr->tx_buf_ring;
2490 	}
2491 }
2492 
2493 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2494 {
2495 	int i;
2496 	u32 prod;
2497 	struct rx_bd **rx_buf_ring;
2498 
2499 	rx_buf_ring = (struct rx_bd **)ring->pg_arr;
2500 	for (i = 0, prod = 0; i < ring->nr_pages; i++) {
2501 		int j;
2502 		struct rx_bd *rxbd;
2503 
2504 		rxbd = rx_buf_ring[i];
2505 		if (!rxbd)
2506 			continue;
2507 
2508 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2509 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2510 			rxbd->rx_bd_opaque = prod;
2511 		}
2512 	}
2513 }
2514 
2515 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2516 {
2517 	struct net_device *dev = bp->dev;
2518 	struct bnxt_rx_ring_info *rxr;
2519 	struct bnxt_ring_struct *ring;
2520 	u32 prod, type;
2521 	int i;
2522 
2523 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2524 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2525 
2526 	if (NET_IP_ALIGN == 2)
2527 		type |= RX_BD_FLAGS_SOP;
2528 
2529 	rxr = &bp->rx_ring[ring_nr];
2530 	ring = &rxr->rx_ring_struct;
2531 	bnxt_init_rxbd_pages(ring, type);
2532 
2533 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
2534 		rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
2535 		if (IS_ERR(rxr->xdp_prog)) {
2536 			int rc = PTR_ERR(rxr->xdp_prog);
2537 
2538 			rxr->xdp_prog = NULL;
2539 			return rc;
2540 		}
2541 	}
2542 	prod = rxr->rx_prod;
2543 	for (i = 0; i < bp->rx_ring_size; i++) {
2544 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2545 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2546 				    ring_nr, i, bp->rx_ring_size);
2547 			break;
2548 		}
2549 		prod = NEXT_RX(prod);
2550 	}
2551 	rxr->rx_prod = prod;
2552 	ring->fw_ring_id = INVALID_HW_RING_ID;
2553 
2554 	ring = &rxr->rx_agg_ring_struct;
2555 	ring->fw_ring_id = INVALID_HW_RING_ID;
2556 
2557 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2558 		return 0;
2559 
2560 	type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2561 		RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2562 
2563 	bnxt_init_rxbd_pages(ring, type);
2564 
2565 	prod = rxr->rx_agg_prod;
2566 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
2567 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2568 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2569 				    ring_nr, i, bp->rx_ring_size);
2570 			break;
2571 		}
2572 		prod = NEXT_RX_AGG(prod);
2573 	}
2574 	rxr->rx_agg_prod = prod;
2575 
2576 	if (bp->flags & BNXT_FLAG_TPA) {
2577 		if (rxr->rx_tpa) {
2578 			u8 *data;
2579 			dma_addr_t mapping;
2580 
2581 			for (i = 0; i < MAX_TPA; i++) {
2582 				data = __bnxt_alloc_rx_data(bp, &mapping,
2583 							    GFP_KERNEL);
2584 				if (!data)
2585 					return -ENOMEM;
2586 
2587 				rxr->rx_tpa[i].data = data;
2588 				rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
2589 				rxr->rx_tpa[i].mapping = mapping;
2590 			}
2591 		} else {
2592 			netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2593 			return -ENOMEM;
2594 		}
2595 	}
2596 
2597 	return 0;
2598 }
2599 
2600 static void bnxt_init_cp_rings(struct bnxt *bp)
2601 {
2602 	int i;
2603 
2604 	for (i = 0; i < bp->cp_nr_rings; i++) {
2605 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
2606 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
2607 
2608 		ring->fw_ring_id = INVALID_HW_RING_ID;
2609 	}
2610 }
2611 
2612 static int bnxt_init_rx_rings(struct bnxt *bp)
2613 {
2614 	int i, rc = 0;
2615 
2616 	if (BNXT_RX_PAGE_MODE(bp)) {
2617 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
2618 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
2619 	} else {
2620 		bp->rx_offset = BNXT_RX_OFFSET;
2621 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
2622 	}
2623 
2624 	for (i = 0; i < bp->rx_nr_rings; i++) {
2625 		rc = bnxt_init_one_rx_ring(bp, i);
2626 		if (rc)
2627 			break;
2628 	}
2629 
2630 	return rc;
2631 }
2632 
2633 static int bnxt_init_tx_rings(struct bnxt *bp)
2634 {
2635 	u16 i;
2636 
2637 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2638 				   MAX_SKB_FRAGS + 1);
2639 
2640 	for (i = 0; i < bp->tx_nr_rings; i++) {
2641 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2642 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2643 
2644 		ring->fw_ring_id = INVALID_HW_RING_ID;
2645 	}
2646 
2647 	return 0;
2648 }
2649 
2650 static void bnxt_free_ring_grps(struct bnxt *bp)
2651 {
2652 	kfree(bp->grp_info);
2653 	bp->grp_info = NULL;
2654 }
2655 
2656 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2657 {
2658 	int i;
2659 
2660 	if (irq_re_init) {
2661 		bp->grp_info = kcalloc(bp->cp_nr_rings,
2662 				       sizeof(struct bnxt_ring_grp_info),
2663 				       GFP_KERNEL);
2664 		if (!bp->grp_info)
2665 			return -ENOMEM;
2666 	}
2667 	for (i = 0; i < bp->cp_nr_rings; i++) {
2668 		if (irq_re_init)
2669 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2670 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2671 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2672 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2673 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2674 	}
2675 	return 0;
2676 }
2677 
2678 static void bnxt_free_vnics(struct bnxt *bp)
2679 {
2680 	kfree(bp->vnic_info);
2681 	bp->vnic_info = NULL;
2682 	bp->nr_vnics = 0;
2683 }
2684 
2685 static int bnxt_alloc_vnics(struct bnxt *bp)
2686 {
2687 	int num_vnics = 1;
2688 
2689 #ifdef CONFIG_RFS_ACCEL
2690 	if (bp->flags & BNXT_FLAG_RFS)
2691 		num_vnics += bp->rx_nr_rings;
2692 #endif
2693 
2694 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
2695 		num_vnics++;
2696 
2697 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2698 				GFP_KERNEL);
2699 	if (!bp->vnic_info)
2700 		return -ENOMEM;
2701 
2702 	bp->nr_vnics = num_vnics;
2703 	return 0;
2704 }
2705 
2706 static void bnxt_init_vnics(struct bnxt *bp)
2707 {
2708 	int i;
2709 
2710 	for (i = 0; i < bp->nr_vnics; i++) {
2711 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2712 
2713 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
2714 		vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
2715 		vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
2716 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2717 
2718 		if (bp->vnic_info[i].rss_hash_key) {
2719 			if (i == 0)
2720 				prandom_bytes(vnic->rss_hash_key,
2721 					      HW_HASH_KEY_SIZE);
2722 			else
2723 				memcpy(vnic->rss_hash_key,
2724 				       bp->vnic_info[0].rss_hash_key,
2725 				       HW_HASH_KEY_SIZE);
2726 		}
2727 	}
2728 }
2729 
2730 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2731 {
2732 	int pages;
2733 
2734 	pages = ring_size / desc_per_pg;
2735 
2736 	if (!pages)
2737 		return 1;
2738 
2739 	pages++;
2740 
2741 	while (pages & (pages - 1))
2742 		pages++;
2743 
2744 	return pages;
2745 }
2746 
2747 void bnxt_set_tpa_flags(struct bnxt *bp)
2748 {
2749 	bp->flags &= ~BNXT_FLAG_TPA;
2750 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
2751 		return;
2752 	if (bp->dev->features & NETIF_F_LRO)
2753 		bp->flags |= BNXT_FLAG_LRO;
2754 	if (bp->dev->features & NETIF_F_GRO)
2755 		bp->flags |= BNXT_FLAG_GRO;
2756 }
2757 
2758 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2759  * be set on entry.
2760  */
2761 void bnxt_set_ring_params(struct bnxt *bp)
2762 {
2763 	u32 ring_size, rx_size, rx_space;
2764 	u32 agg_factor = 0, agg_ring_size = 0;
2765 
2766 	/* 8 for CRC and VLAN */
2767 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2768 
2769 	rx_space = rx_size + NET_SKB_PAD +
2770 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2771 
2772 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2773 	ring_size = bp->rx_ring_size;
2774 	bp->rx_agg_ring_size = 0;
2775 	bp->rx_agg_nr_pages = 0;
2776 
2777 	if (bp->flags & BNXT_FLAG_TPA)
2778 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
2779 
2780 	bp->flags &= ~BNXT_FLAG_JUMBO;
2781 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
2782 		u32 jumbo_factor;
2783 
2784 		bp->flags |= BNXT_FLAG_JUMBO;
2785 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2786 		if (jumbo_factor > agg_factor)
2787 			agg_factor = jumbo_factor;
2788 	}
2789 	agg_ring_size = ring_size * agg_factor;
2790 
2791 	if (agg_ring_size) {
2792 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2793 							RX_DESC_CNT);
2794 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2795 			u32 tmp = agg_ring_size;
2796 
2797 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2798 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2799 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2800 				    tmp, agg_ring_size);
2801 		}
2802 		bp->rx_agg_ring_size = agg_ring_size;
2803 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2804 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2805 		rx_space = rx_size + NET_SKB_PAD +
2806 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2807 	}
2808 
2809 	bp->rx_buf_use_size = rx_size;
2810 	bp->rx_buf_size = rx_space;
2811 
2812 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2813 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2814 
2815 	ring_size = bp->tx_ring_size;
2816 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2817 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2818 
2819 	ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2820 	bp->cp_ring_size = ring_size;
2821 
2822 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2823 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
2824 		bp->cp_nr_pages = MAX_CP_PAGES;
2825 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2826 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2827 			    ring_size, bp->cp_ring_size);
2828 	}
2829 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2830 	bp->cp_ring_mask = bp->cp_bit - 1;
2831 }
2832 
2833 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
2834 {
2835 	if (page_mode) {
2836 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
2837 			return -EOPNOTSUPP;
2838 		bp->dev->max_mtu =
2839 			min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
2840 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
2841 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
2842 		bp->dev->hw_features &= ~NETIF_F_LRO;
2843 		bp->dev->features &= ~NETIF_F_LRO;
2844 		bp->rx_dir = DMA_BIDIRECTIONAL;
2845 		bp->rx_skb_func = bnxt_rx_page_skb;
2846 	} else {
2847 		bp->dev->max_mtu = bp->max_mtu;
2848 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
2849 		bp->rx_dir = DMA_FROM_DEVICE;
2850 		bp->rx_skb_func = bnxt_rx_skb;
2851 	}
2852 	return 0;
2853 }
2854 
2855 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2856 {
2857 	int i;
2858 	struct bnxt_vnic_info *vnic;
2859 	struct pci_dev *pdev = bp->pdev;
2860 
2861 	if (!bp->vnic_info)
2862 		return;
2863 
2864 	for (i = 0; i < bp->nr_vnics; i++) {
2865 		vnic = &bp->vnic_info[i];
2866 
2867 		kfree(vnic->fw_grp_ids);
2868 		vnic->fw_grp_ids = NULL;
2869 
2870 		kfree(vnic->uc_list);
2871 		vnic->uc_list = NULL;
2872 
2873 		if (vnic->mc_list) {
2874 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2875 					  vnic->mc_list, vnic->mc_list_mapping);
2876 			vnic->mc_list = NULL;
2877 		}
2878 
2879 		if (vnic->rss_table) {
2880 			dma_free_coherent(&pdev->dev, PAGE_SIZE,
2881 					  vnic->rss_table,
2882 					  vnic->rss_table_dma_addr);
2883 			vnic->rss_table = NULL;
2884 		}
2885 
2886 		vnic->rss_hash_key = NULL;
2887 		vnic->flags = 0;
2888 	}
2889 }
2890 
2891 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2892 {
2893 	int i, rc = 0, size;
2894 	struct bnxt_vnic_info *vnic;
2895 	struct pci_dev *pdev = bp->pdev;
2896 	int max_rings;
2897 
2898 	for (i = 0; i < bp->nr_vnics; i++) {
2899 		vnic = &bp->vnic_info[i];
2900 
2901 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2902 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2903 
2904 			if (mem_size > 0) {
2905 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2906 				if (!vnic->uc_list) {
2907 					rc = -ENOMEM;
2908 					goto out;
2909 				}
2910 			}
2911 		}
2912 
2913 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2914 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2915 			vnic->mc_list =
2916 				dma_alloc_coherent(&pdev->dev,
2917 						   vnic->mc_list_size,
2918 						   &vnic->mc_list_mapping,
2919 						   GFP_KERNEL);
2920 			if (!vnic->mc_list) {
2921 				rc = -ENOMEM;
2922 				goto out;
2923 			}
2924 		}
2925 
2926 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2927 			max_rings = bp->rx_nr_rings;
2928 		else
2929 			max_rings = 1;
2930 
2931 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2932 		if (!vnic->fw_grp_ids) {
2933 			rc = -ENOMEM;
2934 			goto out;
2935 		}
2936 
2937 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
2938 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
2939 			continue;
2940 
2941 		/* Allocate rss table and hash key */
2942 		vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2943 						     &vnic->rss_table_dma_addr,
2944 						     GFP_KERNEL);
2945 		if (!vnic->rss_table) {
2946 			rc = -ENOMEM;
2947 			goto out;
2948 		}
2949 
2950 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2951 
2952 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2953 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2954 	}
2955 	return 0;
2956 
2957 out:
2958 	return rc;
2959 }
2960 
2961 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2962 {
2963 	struct pci_dev *pdev = bp->pdev;
2964 
2965 	dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2966 			  bp->hwrm_cmd_resp_dma_addr);
2967 
2968 	bp->hwrm_cmd_resp_addr = NULL;
2969 	if (bp->hwrm_dbg_resp_addr) {
2970 		dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2971 				  bp->hwrm_dbg_resp_addr,
2972 				  bp->hwrm_dbg_resp_dma_addr);
2973 
2974 		bp->hwrm_dbg_resp_addr = NULL;
2975 	}
2976 }
2977 
2978 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2979 {
2980 	struct pci_dev *pdev = bp->pdev;
2981 
2982 	bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2983 						   &bp->hwrm_cmd_resp_dma_addr,
2984 						   GFP_KERNEL);
2985 	if (!bp->hwrm_cmd_resp_addr)
2986 		return -ENOMEM;
2987 	bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2988 						    HWRM_DBG_REG_BUF_SIZE,
2989 						    &bp->hwrm_dbg_resp_dma_addr,
2990 						    GFP_KERNEL);
2991 	if (!bp->hwrm_dbg_resp_addr)
2992 		netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2993 
2994 	return 0;
2995 }
2996 
2997 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
2998 {
2999 	if (bp->hwrm_short_cmd_req_addr) {
3000 		struct pci_dev *pdev = bp->pdev;
3001 
3002 		dma_free_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
3003 				  bp->hwrm_short_cmd_req_addr,
3004 				  bp->hwrm_short_cmd_req_dma_addr);
3005 		bp->hwrm_short_cmd_req_addr = NULL;
3006 	}
3007 }
3008 
3009 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
3010 {
3011 	struct pci_dev *pdev = bp->pdev;
3012 
3013 	bp->hwrm_short_cmd_req_addr =
3014 		dma_alloc_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
3015 				   &bp->hwrm_short_cmd_req_dma_addr,
3016 				   GFP_KERNEL);
3017 	if (!bp->hwrm_short_cmd_req_addr)
3018 		return -ENOMEM;
3019 
3020 	return 0;
3021 }
3022 
3023 static void bnxt_free_stats(struct bnxt *bp)
3024 {
3025 	u32 size, i;
3026 	struct pci_dev *pdev = bp->pdev;
3027 
3028 	if (bp->hw_rx_port_stats) {
3029 		dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
3030 				  bp->hw_rx_port_stats,
3031 				  bp->hw_rx_port_stats_map);
3032 		bp->hw_rx_port_stats = NULL;
3033 		bp->flags &= ~BNXT_FLAG_PORT_STATS;
3034 	}
3035 
3036 	if (!bp->bnapi)
3037 		return;
3038 
3039 	size = sizeof(struct ctx_hw_stats);
3040 
3041 	for (i = 0; i < bp->cp_nr_rings; i++) {
3042 		struct bnxt_napi *bnapi = bp->bnapi[i];
3043 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3044 
3045 		if (cpr->hw_stats) {
3046 			dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
3047 					  cpr->hw_stats_map);
3048 			cpr->hw_stats = NULL;
3049 		}
3050 	}
3051 }
3052 
3053 static int bnxt_alloc_stats(struct bnxt *bp)
3054 {
3055 	u32 size, i;
3056 	struct pci_dev *pdev = bp->pdev;
3057 
3058 	size = sizeof(struct ctx_hw_stats);
3059 
3060 	for (i = 0; i < bp->cp_nr_rings; i++) {
3061 		struct bnxt_napi *bnapi = bp->bnapi[i];
3062 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3063 
3064 		cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
3065 						   &cpr->hw_stats_map,
3066 						   GFP_KERNEL);
3067 		if (!cpr->hw_stats)
3068 			return -ENOMEM;
3069 
3070 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3071 	}
3072 
3073 	if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) {
3074 		bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
3075 					 sizeof(struct tx_port_stats) + 1024;
3076 
3077 		bp->hw_rx_port_stats =
3078 			dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
3079 					   &bp->hw_rx_port_stats_map,
3080 					   GFP_KERNEL);
3081 		if (!bp->hw_rx_port_stats)
3082 			return -ENOMEM;
3083 
3084 		bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
3085 				       512;
3086 		bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
3087 					   sizeof(struct rx_port_stats) + 512;
3088 		bp->flags |= BNXT_FLAG_PORT_STATS;
3089 	}
3090 	return 0;
3091 }
3092 
3093 static void bnxt_clear_ring_indices(struct bnxt *bp)
3094 {
3095 	int i;
3096 
3097 	if (!bp->bnapi)
3098 		return;
3099 
3100 	for (i = 0; i < bp->cp_nr_rings; i++) {
3101 		struct bnxt_napi *bnapi = bp->bnapi[i];
3102 		struct bnxt_cp_ring_info *cpr;
3103 		struct bnxt_rx_ring_info *rxr;
3104 		struct bnxt_tx_ring_info *txr;
3105 
3106 		if (!bnapi)
3107 			continue;
3108 
3109 		cpr = &bnapi->cp_ring;
3110 		cpr->cp_raw_cons = 0;
3111 
3112 		txr = bnapi->tx_ring;
3113 		if (txr) {
3114 			txr->tx_prod = 0;
3115 			txr->tx_cons = 0;
3116 		}
3117 
3118 		rxr = bnapi->rx_ring;
3119 		if (rxr) {
3120 			rxr->rx_prod = 0;
3121 			rxr->rx_agg_prod = 0;
3122 			rxr->rx_sw_agg_prod = 0;
3123 			rxr->rx_next_cons = 0;
3124 		}
3125 	}
3126 }
3127 
3128 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
3129 {
3130 #ifdef CONFIG_RFS_ACCEL
3131 	int i;
3132 
3133 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
3134 	 * safe to delete the hash table.
3135 	 */
3136 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
3137 		struct hlist_head *head;
3138 		struct hlist_node *tmp;
3139 		struct bnxt_ntuple_filter *fltr;
3140 
3141 		head = &bp->ntp_fltr_hash_tbl[i];
3142 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
3143 			hlist_del(&fltr->hash);
3144 			kfree(fltr);
3145 		}
3146 	}
3147 	if (irq_reinit) {
3148 		kfree(bp->ntp_fltr_bmap);
3149 		bp->ntp_fltr_bmap = NULL;
3150 	}
3151 	bp->ntp_fltr_count = 0;
3152 #endif
3153 }
3154 
3155 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
3156 {
3157 #ifdef CONFIG_RFS_ACCEL
3158 	int i, rc = 0;
3159 
3160 	if (!(bp->flags & BNXT_FLAG_RFS))
3161 		return 0;
3162 
3163 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
3164 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
3165 
3166 	bp->ntp_fltr_count = 0;
3167 	bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
3168 				    sizeof(long),
3169 				    GFP_KERNEL);
3170 
3171 	if (!bp->ntp_fltr_bmap)
3172 		rc = -ENOMEM;
3173 
3174 	return rc;
3175 #else
3176 	return 0;
3177 #endif
3178 }
3179 
3180 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
3181 {
3182 	bnxt_free_vnic_attributes(bp);
3183 	bnxt_free_tx_rings(bp);
3184 	bnxt_free_rx_rings(bp);
3185 	bnxt_free_cp_rings(bp);
3186 	bnxt_free_ntp_fltrs(bp, irq_re_init);
3187 	if (irq_re_init) {
3188 		bnxt_free_stats(bp);
3189 		bnxt_free_ring_grps(bp);
3190 		bnxt_free_vnics(bp);
3191 		kfree(bp->tx_ring_map);
3192 		bp->tx_ring_map = NULL;
3193 		kfree(bp->tx_ring);
3194 		bp->tx_ring = NULL;
3195 		kfree(bp->rx_ring);
3196 		bp->rx_ring = NULL;
3197 		kfree(bp->bnapi);
3198 		bp->bnapi = NULL;
3199 	} else {
3200 		bnxt_clear_ring_indices(bp);
3201 	}
3202 }
3203 
3204 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
3205 {
3206 	int i, j, rc, size, arr_size;
3207 	void *bnapi;
3208 
3209 	if (irq_re_init) {
3210 		/* Allocate bnapi mem pointer array and mem block for
3211 		 * all queues
3212 		 */
3213 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
3214 				bp->cp_nr_rings);
3215 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
3216 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
3217 		if (!bnapi)
3218 			return -ENOMEM;
3219 
3220 		bp->bnapi = bnapi;
3221 		bnapi += arr_size;
3222 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
3223 			bp->bnapi[i] = bnapi;
3224 			bp->bnapi[i]->index = i;
3225 			bp->bnapi[i]->bp = bp;
3226 		}
3227 
3228 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
3229 				      sizeof(struct bnxt_rx_ring_info),
3230 				      GFP_KERNEL);
3231 		if (!bp->rx_ring)
3232 			return -ENOMEM;
3233 
3234 		for (i = 0; i < bp->rx_nr_rings; i++) {
3235 			bp->rx_ring[i].bnapi = bp->bnapi[i];
3236 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
3237 		}
3238 
3239 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
3240 				      sizeof(struct bnxt_tx_ring_info),
3241 				      GFP_KERNEL);
3242 		if (!bp->tx_ring)
3243 			return -ENOMEM;
3244 
3245 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
3246 					  GFP_KERNEL);
3247 
3248 		if (!bp->tx_ring_map)
3249 			return -ENOMEM;
3250 
3251 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
3252 			j = 0;
3253 		else
3254 			j = bp->rx_nr_rings;
3255 
3256 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
3257 			bp->tx_ring[i].bnapi = bp->bnapi[j];
3258 			bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
3259 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
3260 			if (i >= bp->tx_nr_rings_xdp) {
3261 				bp->tx_ring[i].txq_index = i -
3262 					bp->tx_nr_rings_xdp;
3263 				bp->bnapi[j]->tx_int = bnxt_tx_int;
3264 			} else {
3265 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
3266 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
3267 			}
3268 		}
3269 
3270 		rc = bnxt_alloc_stats(bp);
3271 		if (rc)
3272 			goto alloc_mem_err;
3273 
3274 		rc = bnxt_alloc_ntp_fltrs(bp);
3275 		if (rc)
3276 			goto alloc_mem_err;
3277 
3278 		rc = bnxt_alloc_vnics(bp);
3279 		if (rc)
3280 			goto alloc_mem_err;
3281 	}
3282 
3283 	bnxt_init_ring_struct(bp);
3284 
3285 	rc = bnxt_alloc_rx_rings(bp);
3286 	if (rc)
3287 		goto alloc_mem_err;
3288 
3289 	rc = bnxt_alloc_tx_rings(bp);
3290 	if (rc)
3291 		goto alloc_mem_err;
3292 
3293 	rc = bnxt_alloc_cp_rings(bp);
3294 	if (rc)
3295 		goto alloc_mem_err;
3296 
3297 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
3298 				  BNXT_VNIC_UCAST_FLAG;
3299 	rc = bnxt_alloc_vnic_attributes(bp);
3300 	if (rc)
3301 		goto alloc_mem_err;
3302 	return 0;
3303 
3304 alloc_mem_err:
3305 	bnxt_free_mem(bp, true);
3306 	return rc;
3307 }
3308 
3309 static void bnxt_disable_int(struct bnxt *bp)
3310 {
3311 	int i;
3312 
3313 	if (!bp->bnapi)
3314 		return;
3315 
3316 	for (i = 0; i < bp->cp_nr_rings; i++) {
3317 		struct bnxt_napi *bnapi = bp->bnapi[i];
3318 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3319 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3320 
3321 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
3322 			BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3323 	}
3324 }
3325 
3326 static void bnxt_disable_int_sync(struct bnxt *bp)
3327 {
3328 	int i;
3329 
3330 	atomic_inc(&bp->intr_sem);
3331 
3332 	bnxt_disable_int(bp);
3333 	for (i = 0; i < bp->cp_nr_rings; i++)
3334 		synchronize_irq(bp->irq_tbl[i].vector);
3335 }
3336 
3337 static void bnxt_enable_int(struct bnxt *bp)
3338 {
3339 	int i;
3340 
3341 	atomic_set(&bp->intr_sem, 0);
3342 	for (i = 0; i < bp->cp_nr_rings; i++) {
3343 		struct bnxt_napi *bnapi = bp->bnapi[i];
3344 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3345 
3346 		BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
3347 	}
3348 }
3349 
3350 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
3351 			    u16 cmpl_ring, u16 target_id)
3352 {
3353 	struct input *req = request;
3354 
3355 	req->req_type = cpu_to_le16(req_type);
3356 	req->cmpl_ring = cpu_to_le16(cmpl_ring);
3357 	req->target_id = cpu_to_le16(target_id);
3358 	req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
3359 }
3360 
3361 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
3362 				 int timeout, bool silent)
3363 {
3364 	int i, intr_process, rc, tmo_count;
3365 	struct input *req = msg;
3366 	u32 *data = msg;
3367 	__le32 *resp_len, *valid;
3368 	u16 cp_ring_id, len = 0;
3369 	struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
3370 	u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
3371 
3372 	req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
3373 	memset(resp, 0, PAGE_SIZE);
3374 	cp_ring_id = le16_to_cpu(req->cmpl_ring);
3375 	intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
3376 
3377 	if (bp->flags & BNXT_FLAG_SHORT_CMD) {
3378 		void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
3379 		struct hwrm_short_input short_input = {0};
3380 
3381 		memcpy(short_cmd_req, req, msg_len);
3382 		memset(short_cmd_req + msg_len, 0, BNXT_HWRM_MAX_REQ_LEN -
3383 						   msg_len);
3384 
3385 		short_input.req_type = req->req_type;
3386 		short_input.signature =
3387 				cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
3388 		short_input.size = cpu_to_le16(msg_len);
3389 		short_input.req_addr =
3390 			cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
3391 
3392 		data = (u32 *)&short_input;
3393 		msg_len = sizeof(short_input);
3394 
3395 		/* Sync memory write before updating doorbell */
3396 		wmb();
3397 
3398 		max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
3399 	}
3400 
3401 	/* Write request msg to hwrm channel */
3402 	__iowrite32_copy(bp->bar0, data, msg_len / 4);
3403 
3404 	for (i = msg_len; i < max_req_len; i += 4)
3405 		writel(0, bp->bar0 + i);
3406 
3407 	/* currently supports only one outstanding message */
3408 	if (intr_process)
3409 		bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
3410 
3411 	/* Ring channel doorbell */
3412 	writel(1, bp->bar0 + 0x100);
3413 
3414 	if (!timeout)
3415 		timeout = DFLT_HWRM_CMD_TIMEOUT;
3416 
3417 	i = 0;
3418 	tmo_count = timeout * 40;
3419 	if (intr_process) {
3420 		/* Wait until hwrm response cmpl interrupt is processed */
3421 		while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
3422 		       i++ < tmo_count) {
3423 			usleep_range(25, 40);
3424 		}
3425 
3426 		if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
3427 			netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
3428 				   le16_to_cpu(req->req_type));
3429 			return -1;
3430 		}
3431 	} else {
3432 		/* Check if response len is updated */
3433 		resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
3434 		for (i = 0; i < tmo_count; i++) {
3435 			len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3436 			      HWRM_RESP_LEN_SFT;
3437 			if (len)
3438 				break;
3439 			usleep_range(25, 40);
3440 		}
3441 
3442 		if (i >= tmo_count) {
3443 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
3444 				   timeout, le16_to_cpu(req->req_type),
3445 				   le16_to_cpu(req->seq_id), len);
3446 			return -1;
3447 		}
3448 
3449 		/* Last word of resp contains valid bit */
3450 		valid = bp->hwrm_cmd_resp_addr + len - 4;
3451 		for (i = 0; i < 5; i++) {
3452 			if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
3453 				break;
3454 			udelay(1);
3455 		}
3456 
3457 		if (i >= 5) {
3458 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
3459 				   timeout, le16_to_cpu(req->req_type),
3460 				   le16_to_cpu(req->seq_id), len, *valid);
3461 			return -1;
3462 		}
3463 	}
3464 
3465 	rc = le16_to_cpu(resp->error_code);
3466 	if (rc && !silent)
3467 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
3468 			   le16_to_cpu(resp->req_type),
3469 			   le16_to_cpu(resp->seq_id), rc);
3470 	return rc;
3471 }
3472 
3473 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3474 {
3475 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
3476 }
3477 
3478 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3479 			      int timeout)
3480 {
3481 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3482 }
3483 
3484 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3485 {
3486 	int rc;
3487 
3488 	mutex_lock(&bp->hwrm_cmd_lock);
3489 	rc = _hwrm_send_message(bp, msg, msg_len, timeout);
3490 	mutex_unlock(&bp->hwrm_cmd_lock);
3491 	return rc;
3492 }
3493 
3494 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3495 			     int timeout)
3496 {
3497 	int rc;
3498 
3499 	mutex_lock(&bp->hwrm_cmd_lock);
3500 	rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3501 	mutex_unlock(&bp->hwrm_cmd_lock);
3502 	return rc;
3503 }
3504 
3505 int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
3506 				     int bmap_size)
3507 {
3508 	struct hwrm_func_drv_rgtr_input req = {0};
3509 	DECLARE_BITMAP(async_events_bmap, 256);
3510 	u32 *events = (u32 *)async_events_bmap;
3511 	int i;
3512 
3513 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3514 
3515 	req.enables =
3516 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
3517 
3518 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
3519 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
3520 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
3521 
3522 	if (bmap && bmap_size) {
3523 		for (i = 0; i < bmap_size; i++) {
3524 			if (test_bit(i, bmap))
3525 				__set_bit(i, async_events_bmap);
3526 		}
3527 	}
3528 
3529 	for (i = 0; i < 8; i++)
3530 		req.async_event_fwd[i] |= cpu_to_le32(events[i]);
3531 
3532 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3533 }
3534 
3535 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
3536 {
3537 	struct hwrm_func_drv_rgtr_input req = {0};
3538 
3539 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3540 
3541 	req.enables =
3542 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
3543 			    FUNC_DRV_RGTR_REQ_ENABLES_VER);
3544 
3545 	req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
3546 	req.ver_maj = DRV_VER_MAJ;
3547 	req.ver_min = DRV_VER_MIN;
3548 	req.ver_upd = DRV_VER_UPD;
3549 
3550 	if (BNXT_PF(bp)) {
3551 		u32 data[8];
3552 		int i;
3553 
3554 		memset(data, 0, sizeof(data));
3555 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
3556 			u16 cmd = bnxt_vf_req_snif[i];
3557 			unsigned int bit, idx;
3558 
3559 			idx = cmd / 32;
3560 			bit = cmd % 32;
3561 			data[idx] |= 1 << bit;
3562 		}
3563 
3564 		for (i = 0; i < 8; i++)
3565 			req.vf_req_fwd[i] = cpu_to_le32(data[i]);
3566 
3567 		req.enables |=
3568 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
3569 	}
3570 
3571 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3572 }
3573 
3574 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
3575 {
3576 	struct hwrm_func_drv_unrgtr_input req = {0};
3577 
3578 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
3579 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3580 }
3581 
3582 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
3583 {
3584 	u32 rc = 0;
3585 	struct hwrm_tunnel_dst_port_free_input req = {0};
3586 
3587 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
3588 	req.tunnel_type = tunnel_type;
3589 
3590 	switch (tunnel_type) {
3591 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
3592 		req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
3593 		break;
3594 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
3595 		req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
3596 		break;
3597 	default:
3598 		break;
3599 	}
3600 
3601 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3602 	if (rc)
3603 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
3604 			   rc);
3605 	return rc;
3606 }
3607 
3608 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
3609 					   u8 tunnel_type)
3610 {
3611 	u32 rc = 0;
3612 	struct hwrm_tunnel_dst_port_alloc_input req = {0};
3613 	struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3614 
3615 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
3616 
3617 	req.tunnel_type = tunnel_type;
3618 	req.tunnel_dst_port_val = port;
3619 
3620 	mutex_lock(&bp->hwrm_cmd_lock);
3621 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3622 	if (rc) {
3623 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
3624 			   rc);
3625 		goto err_out;
3626 	}
3627 
3628 	switch (tunnel_type) {
3629 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
3630 		bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
3631 		break;
3632 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
3633 		bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
3634 		break;
3635 	default:
3636 		break;
3637 	}
3638 
3639 err_out:
3640 	mutex_unlock(&bp->hwrm_cmd_lock);
3641 	return rc;
3642 }
3643 
3644 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
3645 {
3646 	struct hwrm_cfa_l2_set_rx_mask_input req = {0};
3647 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3648 
3649 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
3650 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3651 
3652 	req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
3653 	req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
3654 	req.mask = cpu_to_le32(vnic->rx_mask);
3655 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3656 }
3657 
3658 #ifdef CONFIG_RFS_ACCEL
3659 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
3660 					    struct bnxt_ntuple_filter *fltr)
3661 {
3662 	struct hwrm_cfa_ntuple_filter_free_input req = {0};
3663 
3664 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
3665 	req.ntuple_filter_id = fltr->filter_id;
3666 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3667 }
3668 
3669 #define BNXT_NTP_FLTR_FLAGS					\
3670 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
3671 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
3672 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
3673 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
3674 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
3675 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
3676 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
3677 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
3678 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
3679 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
3680 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
3681 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
3682 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
3683 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
3684 
3685 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
3686 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
3687 
3688 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
3689 					     struct bnxt_ntuple_filter *fltr)
3690 {
3691 	int rc = 0;
3692 	struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
3693 	struct hwrm_cfa_ntuple_filter_alloc_output *resp =
3694 		bp->hwrm_cmd_resp_addr;
3695 	struct flow_keys *keys = &fltr->fkeys;
3696 	struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
3697 
3698 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
3699 	req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
3700 
3701 	req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
3702 
3703 	req.ethertype = htons(ETH_P_IP);
3704 	memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
3705 	req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
3706 	req.ip_protocol = keys->basic.ip_proto;
3707 
3708 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
3709 		int i;
3710 
3711 		req.ethertype = htons(ETH_P_IPV6);
3712 		req.ip_addr_type =
3713 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
3714 		*(struct in6_addr *)&req.src_ipaddr[0] =
3715 			keys->addrs.v6addrs.src;
3716 		*(struct in6_addr *)&req.dst_ipaddr[0] =
3717 			keys->addrs.v6addrs.dst;
3718 		for (i = 0; i < 4; i++) {
3719 			req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3720 			req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3721 		}
3722 	} else {
3723 		req.src_ipaddr[0] = keys->addrs.v4addrs.src;
3724 		req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3725 		req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
3726 		req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3727 	}
3728 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
3729 		req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
3730 		req.tunnel_type =
3731 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
3732 	}
3733 
3734 	req.src_port = keys->ports.src;
3735 	req.src_port_mask = cpu_to_be16(0xffff);
3736 	req.dst_port = keys->ports.dst;
3737 	req.dst_port_mask = cpu_to_be16(0xffff);
3738 
3739 	req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
3740 	mutex_lock(&bp->hwrm_cmd_lock);
3741 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3742 	if (!rc)
3743 		fltr->filter_id = resp->ntuple_filter_id;
3744 	mutex_unlock(&bp->hwrm_cmd_lock);
3745 	return rc;
3746 }
3747 #endif
3748 
3749 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
3750 				     u8 *mac_addr)
3751 {
3752 	u32 rc = 0;
3753 	struct hwrm_cfa_l2_filter_alloc_input req = {0};
3754 	struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3755 
3756 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
3757 	req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
3758 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
3759 		req.flags |=
3760 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
3761 	req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
3762 	req.enables =
3763 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
3764 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
3765 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
3766 	memcpy(req.l2_addr, mac_addr, ETH_ALEN);
3767 	req.l2_addr_mask[0] = 0xff;
3768 	req.l2_addr_mask[1] = 0xff;
3769 	req.l2_addr_mask[2] = 0xff;
3770 	req.l2_addr_mask[3] = 0xff;
3771 	req.l2_addr_mask[4] = 0xff;
3772 	req.l2_addr_mask[5] = 0xff;
3773 
3774 	mutex_lock(&bp->hwrm_cmd_lock);
3775 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3776 	if (!rc)
3777 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
3778 							resp->l2_filter_id;
3779 	mutex_unlock(&bp->hwrm_cmd_lock);
3780 	return rc;
3781 }
3782 
3783 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
3784 {
3785 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
3786 	int rc = 0;
3787 
3788 	/* Any associated ntuple filters will also be cleared by firmware. */
3789 	mutex_lock(&bp->hwrm_cmd_lock);
3790 	for (i = 0; i < num_of_vnics; i++) {
3791 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3792 
3793 		for (j = 0; j < vnic->uc_filter_count; j++) {
3794 			struct hwrm_cfa_l2_filter_free_input req = {0};
3795 
3796 			bnxt_hwrm_cmd_hdr_init(bp, &req,
3797 					       HWRM_CFA_L2_FILTER_FREE, -1, -1);
3798 
3799 			req.l2_filter_id = vnic->fw_l2_filter_id[j];
3800 
3801 			rc = _hwrm_send_message(bp, &req, sizeof(req),
3802 						HWRM_CMD_TIMEOUT);
3803 		}
3804 		vnic->uc_filter_count = 0;
3805 	}
3806 	mutex_unlock(&bp->hwrm_cmd_lock);
3807 
3808 	return rc;
3809 }
3810 
3811 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
3812 {
3813 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3814 	struct hwrm_vnic_tpa_cfg_input req = {0};
3815 
3816 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3817 
3818 	if (tpa_flags) {
3819 		u16 mss = bp->dev->mtu - 40;
3820 		u32 nsegs, n, segs = 0, flags;
3821 
3822 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3823 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3824 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3825 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3826 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3827 		if (tpa_flags & BNXT_FLAG_GRO)
3828 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3829 
3830 		req.flags = cpu_to_le32(flags);
3831 
3832 		req.enables =
3833 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3834 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3835 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3836 
3837 		/* Number of segs are log2 units, and first packet is not
3838 		 * included as part of this units.
3839 		 */
3840 		if (mss <= BNXT_RX_PAGE_SIZE) {
3841 			n = BNXT_RX_PAGE_SIZE / mss;
3842 			nsegs = (MAX_SKB_FRAGS - 1) * n;
3843 		} else {
3844 			n = mss / BNXT_RX_PAGE_SIZE;
3845 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
3846 				n++;
3847 			nsegs = (MAX_SKB_FRAGS - n) / n;
3848 		}
3849 
3850 		segs = ilog2(nsegs);
3851 		req.max_agg_segs = cpu_to_le16(segs);
3852 		req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3853 
3854 		req.min_agg_len = cpu_to_le32(512);
3855 	}
3856 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3857 
3858 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3859 }
3860 
3861 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3862 {
3863 	u32 i, j, max_rings;
3864 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3865 	struct hwrm_vnic_rss_cfg_input req = {0};
3866 
3867 	if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
3868 		return 0;
3869 
3870 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3871 	if (set_rss) {
3872 		req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
3873 		if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
3874 			if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3875 				max_rings = bp->rx_nr_rings - 1;
3876 			else
3877 				max_rings = bp->rx_nr_rings;
3878 		} else {
3879 			max_rings = 1;
3880 		}
3881 
3882 		/* Fill the RSS indirection table with ring group ids */
3883 		for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3884 			if (j == max_rings)
3885 				j = 0;
3886 			vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3887 		}
3888 
3889 		req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3890 		req.hash_key_tbl_addr =
3891 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
3892 	}
3893 	req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3894 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3895 }
3896 
3897 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3898 {
3899 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3900 	struct hwrm_vnic_plcmodes_cfg_input req = {0};
3901 
3902 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3903 	req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3904 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3905 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3906 	req.enables =
3907 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3908 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3909 	/* thresholds not implemented in firmware yet */
3910 	req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3911 	req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3912 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3913 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3914 }
3915 
3916 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
3917 					u16 ctx_idx)
3918 {
3919 	struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3920 
3921 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3922 	req.rss_cos_lb_ctx_id =
3923 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
3924 
3925 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3926 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
3927 }
3928 
3929 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3930 {
3931 	int i, j;
3932 
3933 	for (i = 0; i < bp->nr_vnics; i++) {
3934 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3935 
3936 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
3937 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
3938 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
3939 		}
3940 	}
3941 	bp->rsscos_nr_ctxs = 0;
3942 }
3943 
3944 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
3945 {
3946 	int rc;
3947 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3948 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3949 						bp->hwrm_cmd_resp_addr;
3950 
3951 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3952 			       -1);
3953 
3954 	mutex_lock(&bp->hwrm_cmd_lock);
3955 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3956 	if (!rc)
3957 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
3958 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
3959 	mutex_unlock(&bp->hwrm_cmd_lock);
3960 
3961 	return rc;
3962 }
3963 
3964 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3965 {
3966 	unsigned int ring = 0, grp_idx;
3967 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3968 	struct hwrm_vnic_cfg_input req = {0};
3969 	u16 def_vlan = 0;
3970 
3971 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3972 
3973 	req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
3974 	/* Only RSS support for now TBD: COS & LB */
3975 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
3976 		req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3977 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
3978 					   VNIC_CFG_REQ_ENABLES_MRU);
3979 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
3980 		req.rss_rule =
3981 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
3982 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
3983 					   VNIC_CFG_REQ_ENABLES_MRU);
3984 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
3985 	} else {
3986 		req.rss_rule = cpu_to_le16(0xffff);
3987 	}
3988 
3989 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
3990 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
3991 		req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
3992 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
3993 	} else {
3994 		req.cos_rule = cpu_to_le16(0xffff);
3995 	}
3996 
3997 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3998 		ring = 0;
3999 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
4000 		ring = vnic_id - 1;
4001 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
4002 		ring = bp->rx_nr_rings - 1;
4003 
4004 	grp_idx = bp->rx_ring[ring].bnapi->index;
4005 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4006 	req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
4007 
4008 	req.lb_rule = cpu_to_le16(0xffff);
4009 	req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
4010 			      VLAN_HLEN);
4011 
4012 #ifdef CONFIG_BNXT_SRIOV
4013 	if (BNXT_VF(bp))
4014 		def_vlan = bp->vf.vlan;
4015 #endif
4016 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
4017 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
4018 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
4019 		req.flags |=
4020 			cpu_to_le32(VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE);
4021 
4022 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4023 }
4024 
4025 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
4026 {
4027 	u32 rc = 0;
4028 
4029 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
4030 		struct hwrm_vnic_free_input req = {0};
4031 
4032 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
4033 		req.vnic_id =
4034 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
4035 
4036 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4037 		if (rc)
4038 			return rc;
4039 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
4040 	}
4041 	return rc;
4042 }
4043 
4044 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
4045 {
4046 	u16 i;
4047 
4048 	for (i = 0; i < bp->nr_vnics; i++)
4049 		bnxt_hwrm_vnic_free_one(bp, i);
4050 }
4051 
4052 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
4053 				unsigned int start_rx_ring_idx,
4054 				unsigned int nr_rings)
4055 {
4056 	int rc = 0;
4057 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
4058 	struct hwrm_vnic_alloc_input req = {0};
4059 	struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4060 
4061 	/* map ring groups to this vnic */
4062 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
4063 		grp_idx = bp->rx_ring[i].bnapi->index;
4064 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
4065 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
4066 				   j, nr_rings);
4067 			break;
4068 		}
4069 		bp->vnic_info[vnic_id].fw_grp_ids[j] =
4070 					bp->grp_info[grp_idx].fw_grp_id;
4071 	}
4072 
4073 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
4074 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
4075 	if (vnic_id == 0)
4076 		req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
4077 
4078 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
4079 
4080 	mutex_lock(&bp->hwrm_cmd_lock);
4081 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4082 	if (!rc)
4083 		bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
4084 	mutex_unlock(&bp->hwrm_cmd_lock);
4085 	return rc;
4086 }
4087 
4088 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
4089 {
4090 	struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4091 	struct hwrm_vnic_qcaps_input req = {0};
4092 	int rc;
4093 
4094 	if (bp->hwrm_spec_code < 0x10600)
4095 		return 0;
4096 
4097 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
4098 	mutex_lock(&bp->hwrm_cmd_lock);
4099 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4100 	if (!rc) {
4101 		if (resp->flags &
4102 		    cpu_to_le32(VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
4103 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
4104 	}
4105 	mutex_unlock(&bp->hwrm_cmd_lock);
4106 	return rc;
4107 }
4108 
4109 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
4110 {
4111 	u16 i;
4112 	u32 rc = 0;
4113 
4114 	mutex_lock(&bp->hwrm_cmd_lock);
4115 	for (i = 0; i < bp->rx_nr_rings; i++) {
4116 		struct hwrm_ring_grp_alloc_input req = {0};
4117 		struct hwrm_ring_grp_alloc_output *resp =
4118 					bp->hwrm_cmd_resp_addr;
4119 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
4120 
4121 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
4122 
4123 		req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
4124 		req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
4125 		req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
4126 		req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
4127 
4128 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4129 					HWRM_CMD_TIMEOUT);
4130 		if (rc)
4131 			break;
4132 
4133 		bp->grp_info[grp_idx].fw_grp_id =
4134 			le32_to_cpu(resp->ring_group_id);
4135 	}
4136 	mutex_unlock(&bp->hwrm_cmd_lock);
4137 	return rc;
4138 }
4139 
4140 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
4141 {
4142 	u16 i;
4143 	u32 rc = 0;
4144 	struct hwrm_ring_grp_free_input req = {0};
4145 
4146 	if (!bp->grp_info)
4147 		return 0;
4148 
4149 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
4150 
4151 	mutex_lock(&bp->hwrm_cmd_lock);
4152 	for (i = 0; i < bp->cp_nr_rings; i++) {
4153 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
4154 			continue;
4155 		req.ring_group_id =
4156 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
4157 
4158 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4159 					HWRM_CMD_TIMEOUT);
4160 		if (rc)
4161 			break;
4162 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
4163 	}
4164 	mutex_unlock(&bp->hwrm_cmd_lock);
4165 	return rc;
4166 }
4167 
4168 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
4169 				    struct bnxt_ring_struct *ring,
4170 				    u32 ring_type, u32 map_index,
4171 				    u32 stats_ctx_id)
4172 {
4173 	int rc = 0, err = 0;
4174 	struct hwrm_ring_alloc_input req = {0};
4175 	struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4176 	u16 ring_id;
4177 
4178 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
4179 
4180 	req.enables = 0;
4181 	if (ring->nr_pages > 1) {
4182 		req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
4183 		/* Page size is in log2 units */
4184 		req.page_size = BNXT_PAGE_SHIFT;
4185 		req.page_tbl_depth = 1;
4186 	} else {
4187 		req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
4188 	}
4189 	req.fbo = 0;
4190 	/* Association of ring index with doorbell index and MSIX number */
4191 	req.logical_id = cpu_to_le16(map_index);
4192 
4193 	switch (ring_type) {
4194 	case HWRM_RING_ALLOC_TX:
4195 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
4196 		/* Association of transmit ring with completion ring */
4197 		req.cmpl_ring_id =
4198 			cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
4199 		req.length = cpu_to_le32(bp->tx_ring_mask + 1);
4200 		req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
4201 		req.queue_id = cpu_to_le16(ring->queue_id);
4202 		break;
4203 	case HWRM_RING_ALLOC_RX:
4204 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4205 		req.length = cpu_to_le32(bp->rx_ring_mask + 1);
4206 		break;
4207 	case HWRM_RING_ALLOC_AGG:
4208 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4209 		req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
4210 		break;
4211 	case HWRM_RING_ALLOC_CMPL:
4212 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
4213 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
4214 		if (bp->flags & BNXT_FLAG_USING_MSIX)
4215 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
4216 		break;
4217 	default:
4218 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
4219 			   ring_type);
4220 		return -1;
4221 	}
4222 
4223 	mutex_lock(&bp->hwrm_cmd_lock);
4224 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4225 	err = le16_to_cpu(resp->error_code);
4226 	ring_id = le16_to_cpu(resp->ring_id);
4227 	mutex_unlock(&bp->hwrm_cmd_lock);
4228 
4229 	if (rc || err) {
4230 		switch (ring_type) {
4231 		case RING_FREE_REQ_RING_TYPE_L2_CMPL:
4232 			netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
4233 				   rc, err);
4234 			return -1;
4235 
4236 		case RING_FREE_REQ_RING_TYPE_RX:
4237 			netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
4238 				   rc, err);
4239 			return -1;
4240 
4241 		case RING_FREE_REQ_RING_TYPE_TX:
4242 			netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
4243 				   rc, err);
4244 			return -1;
4245 
4246 		default:
4247 			netdev_err(bp->dev, "Invalid ring\n");
4248 			return -1;
4249 		}
4250 	}
4251 	ring->fw_ring_id = ring_id;
4252 	return rc;
4253 }
4254 
4255 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
4256 {
4257 	int rc;
4258 
4259 	if (BNXT_PF(bp)) {
4260 		struct hwrm_func_cfg_input req = {0};
4261 
4262 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4263 		req.fid = cpu_to_le16(0xffff);
4264 		req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4265 		req.async_event_cr = cpu_to_le16(idx);
4266 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4267 	} else {
4268 		struct hwrm_func_vf_cfg_input req = {0};
4269 
4270 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
4271 		req.enables =
4272 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4273 		req.async_event_cr = cpu_to_le16(idx);
4274 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4275 	}
4276 	return rc;
4277 }
4278 
4279 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
4280 {
4281 	int i, rc = 0;
4282 
4283 	for (i = 0; i < bp->cp_nr_rings; i++) {
4284 		struct bnxt_napi *bnapi = bp->bnapi[i];
4285 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4286 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4287 
4288 		cpr->cp_doorbell = bp->bar1 + i * 0x80;
4289 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
4290 					      INVALID_STATS_CTX_ID);
4291 		if (rc)
4292 			goto err_out;
4293 		BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4294 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
4295 
4296 		if (!i) {
4297 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
4298 			if (rc)
4299 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
4300 		}
4301 	}
4302 
4303 	for (i = 0; i < bp->tx_nr_rings; i++) {
4304 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4305 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4306 		u32 map_idx = txr->bnapi->index;
4307 		u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
4308 
4309 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
4310 					      map_idx, fw_stats_ctx);
4311 		if (rc)
4312 			goto err_out;
4313 		txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
4314 	}
4315 
4316 	for (i = 0; i < bp->rx_nr_rings; i++) {
4317 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4318 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4319 		u32 map_idx = rxr->bnapi->index;
4320 
4321 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
4322 					      map_idx, INVALID_STATS_CTX_ID);
4323 		if (rc)
4324 			goto err_out;
4325 		rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
4326 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
4327 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
4328 	}
4329 
4330 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4331 		for (i = 0; i < bp->rx_nr_rings; i++) {
4332 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4333 			struct bnxt_ring_struct *ring =
4334 						&rxr->rx_agg_ring_struct;
4335 			u32 grp_idx = rxr->bnapi->index;
4336 			u32 map_idx = grp_idx + bp->rx_nr_rings;
4337 
4338 			rc = hwrm_ring_alloc_send_msg(bp, ring,
4339 						      HWRM_RING_ALLOC_AGG,
4340 						      map_idx,
4341 						      INVALID_STATS_CTX_ID);
4342 			if (rc)
4343 				goto err_out;
4344 
4345 			rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
4346 			writel(DB_KEY_RX | rxr->rx_agg_prod,
4347 			       rxr->rx_agg_doorbell);
4348 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
4349 		}
4350 	}
4351 err_out:
4352 	return rc;
4353 }
4354 
4355 static int hwrm_ring_free_send_msg(struct bnxt *bp,
4356 				   struct bnxt_ring_struct *ring,
4357 				   u32 ring_type, int cmpl_ring_id)
4358 {
4359 	int rc;
4360 	struct hwrm_ring_free_input req = {0};
4361 	struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
4362 	u16 error_code;
4363 
4364 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
4365 	req.ring_type = ring_type;
4366 	req.ring_id = cpu_to_le16(ring->fw_ring_id);
4367 
4368 	mutex_lock(&bp->hwrm_cmd_lock);
4369 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4370 	error_code = le16_to_cpu(resp->error_code);
4371 	mutex_unlock(&bp->hwrm_cmd_lock);
4372 
4373 	if (rc || error_code) {
4374 		switch (ring_type) {
4375 		case RING_FREE_REQ_RING_TYPE_L2_CMPL:
4376 			netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
4377 				   rc);
4378 			return rc;
4379 		case RING_FREE_REQ_RING_TYPE_RX:
4380 			netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
4381 				   rc);
4382 			return rc;
4383 		case RING_FREE_REQ_RING_TYPE_TX:
4384 			netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
4385 				   rc);
4386 			return rc;
4387 		default:
4388 			netdev_err(bp->dev, "Invalid ring\n");
4389 			return -1;
4390 		}
4391 	}
4392 	return 0;
4393 }
4394 
4395 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
4396 {
4397 	int i;
4398 
4399 	if (!bp->bnapi)
4400 		return;
4401 
4402 	for (i = 0; i < bp->tx_nr_rings; i++) {
4403 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4404 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4405 		u32 grp_idx = txr->bnapi->index;
4406 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4407 
4408 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4409 			hwrm_ring_free_send_msg(bp, ring,
4410 						RING_FREE_REQ_RING_TYPE_TX,
4411 						close_path ? cmpl_ring_id :
4412 						INVALID_HW_RING_ID);
4413 			ring->fw_ring_id = INVALID_HW_RING_ID;
4414 		}
4415 	}
4416 
4417 	for (i = 0; i < bp->rx_nr_rings; i++) {
4418 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4419 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4420 		u32 grp_idx = rxr->bnapi->index;
4421 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4422 
4423 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4424 			hwrm_ring_free_send_msg(bp, ring,
4425 						RING_FREE_REQ_RING_TYPE_RX,
4426 						close_path ? cmpl_ring_id :
4427 						INVALID_HW_RING_ID);
4428 			ring->fw_ring_id = INVALID_HW_RING_ID;
4429 			bp->grp_info[grp_idx].rx_fw_ring_id =
4430 				INVALID_HW_RING_ID;
4431 		}
4432 	}
4433 
4434 	for (i = 0; i < bp->rx_nr_rings; i++) {
4435 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4436 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
4437 		u32 grp_idx = rxr->bnapi->index;
4438 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4439 
4440 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4441 			hwrm_ring_free_send_msg(bp, ring,
4442 						RING_FREE_REQ_RING_TYPE_RX,
4443 						close_path ? cmpl_ring_id :
4444 						INVALID_HW_RING_ID);
4445 			ring->fw_ring_id = INVALID_HW_RING_ID;
4446 			bp->grp_info[grp_idx].agg_fw_ring_id =
4447 				INVALID_HW_RING_ID;
4448 		}
4449 	}
4450 
4451 	/* The completion rings are about to be freed.  After that the
4452 	 * IRQ doorbell will not work anymore.  So we need to disable
4453 	 * IRQ here.
4454 	 */
4455 	bnxt_disable_int_sync(bp);
4456 
4457 	for (i = 0; i < bp->cp_nr_rings; i++) {
4458 		struct bnxt_napi *bnapi = bp->bnapi[i];
4459 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4460 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4461 
4462 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4463 			hwrm_ring_free_send_msg(bp, ring,
4464 						RING_FREE_REQ_RING_TYPE_L2_CMPL,
4465 						INVALID_HW_RING_ID);
4466 			ring->fw_ring_id = INVALID_HW_RING_ID;
4467 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
4468 		}
4469 	}
4470 }
4471 
4472 /* Caller must hold bp->hwrm_cmd_lock */
4473 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
4474 {
4475 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4476 	struct hwrm_func_qcfg_input req = {0};
4477 	int rc;
4478 
4479 	if (bp->hwrm_spec_code < 0x10601)
4480 		return 0;
4481 
4482 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4483 	req.fid = cpu_to_le16(fid);
4484 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4485 	if (!rc)
4486 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
4487 
4488 	return rc;
4489 }
4490 
4491 static int bnxt_hwrm_reserve_tx_rings(struct bnxt *bp, int *tx_rings)
4492 {
4493 	struct hwrm_func_cfg_input req = {0};
4494 	int rc;
4495 
4496 	if (bp->hwrm_spec_code < 0x10601)
4497 		return 0;
4498 
4499 	if (BNXT_VF(bp))
4500 		return 0;
4501 
4502 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4503 	req.fid = cpu_to_le16(0xffff);
4504 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS);
4505 	req.num_tx_rings = cpu_to_le16(*tx_rings);
4506 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4507 	if (rc)
4508 		return rc;
4509 
4510 	mutex_lock(&bp->hwrm_cmd_lock);
4511 	rc = __bnxt_hwrm_get_tx_rings(bp, 0xffff, tx_rings);
4512 	mutex_unlock(&bp->hwrm_cmd_lock);
4513 	if (!rc)
4514 		bp->tx_reserved_rings = *tx_rings;
4515 	return rc;
4516 }
4517 
4518 static int bnxt_hwrm_check_tx_rings(struct bnxt *bp, int tx_rings)
4519 {
4520 	struct hwrm_func_cfg_input req = {0};
4521 	int rc;
4522 
4523 	if (bp->hwrm_spec_code < 0x10801)
4524 		return 0;
4525 
4526 	if (BNXT_VF(bp))
4527 		return 0;
4528 
4529 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4530 	req.fid = cpu_to_le16(0xffff);
4531 	req.flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST);
4532 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS);
4533 	req.num_tx_rings = cpu_to_le16(tx_rings);
4534 	rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4535 	if (rc)
4536 		return -ENOMEM;
4537 	return 0;
4538 }
4539 
4540 static void bnxt_hwrm_set_coal_params(struct bnxt_coal *hw_coal,
4541 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
4542 {
4543 	u16 val, tmr, max, flags;
4544 
4545 	max = hw_coal->bufs_per_record * 128;
4546 	if (hw_coal->budget)
4547 		max = hw_coal->bufs_per_record * hw_coal->budget;
4548 
4549 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
4550 	req->num_cmpl_aggr_int = cpu_to_le16(val);
4551 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
4552 
4553 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, max);
4554 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
4555 
4556 	tmr = BNXT_USEC_TO_COAL_TIMER(hw_coal->coal_ticks);
4557 	tmr = max_t(u16, tmr, 1);
4558 	req->int_lat_tmr_max = cpu_to_le16(tmr);
4559 
4560 	/* min timer set to 1/2 of interrupt timer */
4561 	val = tmr / 2;
4562 	req->int_lat_tmr_min = cpu_to_le16(val);
4563 
4564 	/* buf timer set to 1/4 of interrupt timer */
4565 	val = max_t(u16, tmr / 4, 1);
4566 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
4567 
4568 	tmr = BNXT_USEC_TO_COAL_TIMER(hw_coal->coal_ticks_irq);
4569 	tmr = max_t(u16, tmr, 1);
4570 	req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(tmr);
4571 
4572 	flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4573 	if (hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
4574 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
4575 	req->flags = cpu_to_le16(flags);
4576 }
4577 
4578 int bnxt_hwrm_set_coal(struct bnxt *bp)
4579 {
4580 	int i, rc = 0;
4581 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
4582 							   req_tx = {0}, *req;
4583 
4584 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
4585 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4586 	bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
4587 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4588 
4589 	bnxt_hwrm_set_coal_params(&bp->rx_coal, &req_rx);
4590 	bnxt_hwrm_set_coal_params(&bp->tx_coal, &req_tx);
4591 
4592 	mutex_lock(&bp->hwrm_cmd_lock);
4593 	for (i = 0; i < bp->cp_nr_rings; i++) {
4594 		struct bnxt_napi *bnapi = bp->bnapi[i];
4595 
4596 		req = &req_rx;
4597 		if (!bnapi->rx_ring)
4598 			req = &req_tx;
4599 		req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
4600 
4601 		rc = _hwrm_send_message(bp, req, sizeof(*req),
4602 					HWRM_CMD_TIMEOUT);
4603 		if (rc)
4604 			break;
4605 	}
4606 	mutex_unlock(&bp->hwrm_cmd_lock);
4607 	return rc;
4608 }
4609 
4610 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
4611 {
4612 	int rc = 0, i;
4613 	struct hwrm_stat_ctx_free_input req = {0};
4614 
4615 	if (!bp->bnapi)
4616 		return 0;
4617 
4618 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4619 		return 0;
4620 
4621 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
4622 
4623 	mutex_lock(&bp->hwrm_cmd_lock);
4624 	for (i = 0; i < bp->cp_nr_rings; i++) {
4625 		struct bnxt_napi *bnapi = bp->bnapi[i];
4626 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4627 
4628 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
4629 			req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
4630 
4631 			rc = _hwrm_send_message(bp, &req, sizeof(req),
4632 						HWRM_CMD_TIMEOUT);
4633 			if (rc)
4634 				break;
4635 
4636 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4637 		}
4638 	}
4639 	mutex_unlock(&bp->hwrm_cmd_lock);
4640 	return rc;
4641 }
4642 
4643 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
4644 {
4645 	int rc = 0, i;
4646 	struct hwrm_stat_ctx_alloc_input req = {0};
4647 	struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4648 
4649 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4650 		return 0;
4651 
4652 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
4653 
4654 	req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
4655 
4656 	mutex_lock(&bp->hwrm_cmd_lock);
4657 	for (i = 0; i < bp->cp_nr_rings; i++) {
4658 		struct bnxt_napi *bnapi = bp->bnapi[i];
4659 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4660 
4661 		req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
4662 
4663 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4664 					HWRM_CMD_TIMEOUT);
4665 		if (rc)
4666 			break;
4667 
4668 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
4669 
4670 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
4671 	}
4672 	mutex_unlock(&bp->hwrm_cmd_lock);
4673 	return rc;
4674 }
4675 
4676 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
4677 {
4678 	struct hwrm_func_qcfg_input req = {0};
4679 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4680 	u16 flags;
4681 	int rc;
4682 
4683 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4684 	req.fid = cpu_to_le16(0xffff);
4685 	mutex_lock(&bp->hwrm_cmd_lock);
4686 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4687 	if (rc)
4688 		goto func_qcfg_exit;
4689 
4690 #ifdef CONFIG_BNXT_SRIOV
4691 	if (BNXT_VF(bp)) {
4692 		struct bnxt_vf_info *vf = &bp->vf;
4693 
4694 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
4695 	}
4696 #endif
4697 	flags = le16_to_cpu(resp->flags);
4698 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
4699 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
4700 		bp->flags |= BNXT_FLAG_FW_LLDP_AGENT;
4701 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
4702 			bp->flags |= BNXT_FLAG_FW_DCBX_AGENT;
4703 	}
4704 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
4705 		bp->flags |= BNXT_FLAG_MULTI_HOST;
4706 
4707 	switch (resp->port_partition_type) {
4708 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
4709 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
4710 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
4711 		bp->port_partition_type = resp->port_partition_type;
4712 		break;
4713 	}
4714 	if (bp->hwrm_spec_code < 0x10707 ||
4715 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
4716 		bp->br_mode = BRIDGE_MODE_VEB;
4717 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
4718 		bp->br_mode = BRIDGE_MODE_VEPA;
4719 	else
4720 		bp->br_mode = BRIDGE_MODE_UNDEF;
4721 
4722 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
4723 	if (!bp->max_mtu)
4724 		bp->max_mtu = BNXT_MAX_MTU;
4725 
4726 func_qcfg_exit:
4727 	mutex_unlock(&bp->hwrm_cmd_lock);
4728 	return rc;
4729 }
4730 
4731 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
4732 {
4733 	int rc = 0;
4734 	struct hwrm_func_qcaps_input req = {0};
4735 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4736 
4737 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
4738 	req.fid = cpu_to_le16(0xffff);
4739 
4740 	mutex_lock(&bp->hwrm_cmd_lock);
4741 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4742 	if (rc)
4743 		goto hwrm_func_qcaps_exit;
4744 
4745 	if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED))
4746 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
4747 	if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED))
4748 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
4749 
4750 	bp->tx_push_thresh = 0;
4751 	if (resp->flags &
4752 	    cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
4753 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
4754 
4755 	if (BNXT_PF(bp)) {
4756 		struct bnxt_pf_info *pf = &bp->pf;
4757 
4758 		pf->fw_fid = le16_to_cpu(resp->fid);
4759 		pf->port_id = le16_to_cpu(resp->port_id);
4760 		bp->dev->dev_port = pf->port_id;
4761 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
4762 		pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4763 		pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4764 		pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4765 		pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4766 		pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4767 		if (!pf->max_hw_ring_grps)
4768 			pf->max_hw_ring_grps = pf->max_tx_rings;
4769 		pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4770 		pf->max_vnics = le16_to_cpu(resp->max_vnics);
4771 		pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4772 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
4773 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
4774 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
4775 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
4776 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
4777 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
4778 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
4779 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
4780 		if (resp->flags &
4781 		    cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED))
4782 			bp->flags |= BNXT_FLAG_WOL_CAP;
4783 	} else {
4784 #ifdef CONFIG_BNXT_SRIOV
4785 		struct bnxt_vf_info *vf = &bp->vf;
4786 
4787 		vf->fw_fid = le16_to_cpu(resp->fid);
4788 
4789 		vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4790 		vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4791 		vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4792 		vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4793 		vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4794 		if (!vf->max_hw_ring_grps)
4795 			vf->max_hw_ring_grps = vf->max_tx_rings;
4796 		vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4797 		vf->max_vnics = le16_to_cpu(resp->max_vnics);
4798 		vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4799 
4800 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
4801 #endif
4802 	}
4803 
4804 hwrm_func_qcaps_exit:
4805 	mutex_unlock(&bp->hwrm_cmd_lock);
4806 	return rc;
4807 }
4808 
4809 static int bnxt_hwrm_func_reset(struct bnxt *bp)
4810 {
4811 	struct hwrm_func_reset_input req = {0};
4812 
4813 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
4814 	req.enables = 0;
4815 
4816 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
4817 }
4818 
4819 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
4820 {
4821 	int rc = 0;
4822 	struct hwrm_queue_qportcfg_input req = {0};
4823 	struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
4824 	u8 i, *qptr;
4825 
4826 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
4827 
4828 	mutex_lock(&bp->hwrm_cmd_lock);
4829 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4830 	if (rc)
4831 		goto qportcfg_exit;
4832 
4833 	if (!resp->max_configurable_queues) {
4834 		rc = -EINVAL;
4835 		goto qportcfg_exit;
4836 	}
4837 	bp->max_tc = resp->max_configurable_queues;
4838 	bp->max_lltc = resp->max_configurable_lossless_queues;
4839 	if (bp->max_tc > BNXT_MAX_QUEUE)
4840 		bp->max_tc = BNXT_MAX_QUEUE;
4841 
4842 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
4843 		bp->max_tc = 1;
4844 
4845 	if (bp->max_lltc > bp->max_tc)
4846 		bp->max_lltc = bp->max_tc;
4847 
4848 	qptr = &resp->queue_id0;
4849 	for (i = 0; i < bp->max_tc; i++) {
4850 		bp->q_info[i].queue_id = *qptr++;
4851 		bp->q_info[i].queue_profile = *qptr++;
4852 	}
4853 
4854 qportcfg_exit:
4855 	mutex_unlock(&bp->hwrm_cmd_lock);
4856 	return rc;
4857 }
4858 
4859 static int bnxt_hwrm_ver_get(struct bnxt *bp)
4860 {
4861 	int rc;
4862 	struct hwrm_ver_get_input req = {0};
4863 	struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
4864 	u32 dev_caps_cfg;
4865 
4866 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
4867 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
4868 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
4869 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
4870 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
4871 	mutex_lock(&bp->hwrm_cmd_lock);
4872 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4873 	if (rc)
4874 		goto hwrm_ver_get_exit;
4875 
4876 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
4877 
4878 	bp->hwrm_spec_code = resp->hwrm_intf_maj << 16 |
4879 			     resp->hwrm_intf_min << 8 | resp->hwrm_intf_upd;
4880 	if (resp->hwrm_intf_maj < 1) {
4881 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
4882 			    resp->hwrm_intf_maj, resp->hwrm_intf_min,
4883 			    resp->hwrm_intf_upd);
4884 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
4885 	}
4886 	snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d.%d",
4887 		 resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
4888 		 resp->hwrm_fw_rsvd);
4889 
4890 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
4891 	if (!bp->hwrm_cmd_timeout)
4892 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
4893 
4894 	if (resp->hwrm_intf_maj >= 1)
4895 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
4896 
4897 	bp->chip_num = le16_to_cpu(resp->chip_num);
4898 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
4899 	    !resp->chip_metal)
4900 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
4901 
4902 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
4903 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
4904 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
4905 		bp->flags |= BNXT_FLAG_SHORT_CMD;
4906 
4907 hwrm_ver_get_exit:
4908 	mutex_unlock(&bp->hwrm_cmd_lock);
4909 	return rc;
4910 }
4911 
4912 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
4913 {
4914 #if IS_ENABLED(CONFIG_RTC_LIB)
4915 	struct hwrm_fw_set_time_input req = {0};
4916 	struct rtc_time tm;
4917 	struct timeval tv;
4918 
4919 	if (bp->hwrm_spec_code < 0x10400)
4920 		return -EOPNOTSUPP;
4921 
4922 	do_gettimeofday(&tv);
4923 	rtc_time_to_tm(tv.tv_sec, &tm);
4924 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
4925 	req.year = cpu_to_le16(1900 + tm.tm_year);
4926 	req.month = 1 + tm.tm_mon;
4927 	req.day = tm.tm_mday;
4928 	req.hour = tm.tm_hour;
4929 	req.minute = tm.tm_min;
4930 	req.second = tm.tm_sec;
4931 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4932 #else
4933 	return -EOPNOTSUPP;
4934 #endif
4935 }
4936 
4937 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
4938 {
4939 	int rc;
4940 	struct bnxt_pf_info *pf = &bp->pf;
4941 	struct hwrm_port_qstats_input req = {0};
4942 
4943 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
4944 		return 0;
4945 
4946 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
4947 	req.port_id = cpu_to_le16(pf->port_id);
4948 	req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
4949 	req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
4950 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4951 	return rc;
4952 }
4953 
4954 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
4955 {
4956 	if (bp->vxlan_port_cnt) {
4957 		bnxt_hwrm_tunnel_dst_port_free(
4958 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
4959 	}
4960 	bp->vxlan_port_cnt = 0;
4961 	if (bp->nge_port_cnt) {
4962 		bnxt_hwrm_tunnel_dst_port_free(
4963 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
4964 	}
4965 	bp->nge_port_cnt = 0;
4966 }
4967 
4968 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
4969 {
4970 	int rc, i;
4971 	u32 tpa_flags = 0;
4972 
4973 	if (set_tpa)
4974 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
4975 	for (i = 0; i < bp->nr_vnics; i++) {
4976 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
4977 		if (rc) {
4978 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
4979 				   i, rc);
4980 			return rc;
4981 		}
4982 	}
4983 	return 0;
4984 }
4985 
4986 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
4987 {
4988 	int i;
4989 
4990 	for (i = 0; i < bp->nr_vnics; i++)
4991 		bnxt_hwrm_vnic_set_rss(bp, i, false);
4992 }
4993 
4994 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
4995 				    bool irq_re_init)
4996 {
4997 	if (bp->vnic_info) {
4998 		bnxt_hwrm_clear_vnic_filter(bp);
4999 		/* clear all RSS setting before free vnic ctx */
5000 		bnxt_hwrm_clear_vnic_rss(bp);
5001 		bnxt_hwrm_vnic_ctx_free(bp);
5002 		/* before free the vnic, undo the vnic tpa settings */
5003 		if (bp->flags & BNXT_FLAG_TPA)
5004 			bnxt_set_tpa(bp, false);
5005 		bnxt_hwrm_vnic_free(bp);
5006 	}
5007 	bnxt_hwrm_ring_free(bp, close_path);
5008 	bnxt_hwrm_ring_grp_free(bp);
5009 	if (irq_re_init) {
5010 		bnxt_hwrm_stat_ctx_free(bp);
5011 		bnxt_hwrm_free_tunnel_ports(bp);
5012 	}
5013 }
5014 
5015 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
5016 {
5017 	struct hwrm_func_cfg_input req = {0};
5018 	int rc;
5019 
5020 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5021 	req.fid = cpu_to_le16(0xffff);
5022 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
5023 	if (br_mode == BRIDGE_MODE_VEB)
5024 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
5025 	else if (br_mode == BRIDGE_MODE_VEPA)
5026 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
5027 	else
5028 		return -EINVAL;
5029 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5030 	if (rc)
5031 		rc = -EIO;
5032 	return rc;
5033 }
5034 
5035 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
5036 {
5037 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5038 	int rc;
5039 
5040 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
5041 		goto skip_rss_ctx;
5042 
5043 	/* allocate context for vnic */
5044 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
5045 	if (rc) {
5046 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
5047 			   vnic_id, rc);
5048 		goto vnic_setup_err;
5049 	}
5050 	bp->rsscos_nr_ctxs++;
5051 
5052 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5053 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
5054 		if (rc) {
5055 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
5056 				   vnic_id, rc);
5057 			goto vnic_setup_err;
5058 		}
5059 		bp->rsscos_nr_ctxs++;
5060 	}
5061 
5062 skip_rss_ctx:
5063 	/* configure default vnic, ring grp */
5064 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
5065 	if (rc) {
5066 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
5067 			   vnic_id, rc);
5068 		goto vnic_setup_err;
5069 	}
5070 
5071 	/* Enable RSS hashing on vnic */
5072 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
5073 	if (rc) {
5074 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
5075 			   vnic_id, rc);
5076 		goto vnic_setup_err;
5077 	}
5078 
5079 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
5080 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
5081 		if (rc) {
5082 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
5083 				   vnic_id, rc);
5084 		}
5085 	}
5086 
5087 vnic_setup_err:
5088 	return rc;
5089 }
5090 
5091 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
5092 {
5093 #ifdef CONFIG_RFS_ACCEL
5094 	int i, rc = 0;
5095 
5096 	for (i = 0; i < bp->rx_nr_rings; i++) {
5097 		struct bnxt_vnic_info *vnic;
5098 		u16 vnic_id = i + 1;
5099 		u16 ring_id = i;
5100 
5101 		if (vnic_id >= bp->nr_vnics)
5102 			break;
5103 
5104 		vnic = &bp->vnic_info[vnic_id];
5105 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
5106 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
5107 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
5108 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
5109 		if (rc) {
5110 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
5111 				   vnic_id, rc);
5112 			break;
5113 		}
5114 		rc = bnxt_setup_vnic(bp, vnic_id);
5115 		if (rc)
5116 			break;
5117 	}
5118 	return rc;
5119 #else
5120 	return 0;
5121 #endif
5122 }
5123 
5124 /* Allow PF and VF with default VLAN to be in promiscuous mode */
5125 static bool bnxt_promisc_ok(struct bnxt *bp)
5126 {
5127 #ifdef CONFIG_BNXT_SRIOV
5128 	if (BNXT_VF(bp) && !bp->vf.vlan)
5129 		return false;
5130 #endif
5131 	return true;
5132 }
5133 
5134 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
5135 {
5136 	unsigned int rc = 0;
5137 
5138 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
5139 	if (rc) {
5140 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
5141 			   rc);
5142 		return rc;
5143 	}
5144 
5145 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
5146 	if (rc) {
5147 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
5148 			   rc);
5149 		return rc;
5150 	}
5151 	return rc;
5152 }
5153 
5154 static int bnxt_cfg_rx_mode(struct bnxt *);
5155 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
5156 
5157 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
5158 {
5159 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5160 	int rc = 0;
5161 	unsigned int rx_nr_rings = bp->rx_nr_rings;
5162 
5163 	if (irq_re_init) {
5164 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
5165 		if (rc) {
5166 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
5167 				   rc);
5168 			goto err_out;
5169 		}
5170 		if (bp->tx_reserved_rings != bp->tx_nr_rings) {
5171 			int tx = bp->tx_nr_rings;
5172 
5173 			if (bnxt_hwrm_reserve_tx_rings(bp, &tx) ||
5174 			    tx < bp->tx_nr_rings) {
5175 				rc = -ENOMEM;
5176 				goto err_out;
5177 			}
5178 		}
5179 	}
5180 
5181 	rc = bnxt_hwrm_ring_alloc(bp);
5182 	if (rc) {
5183 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
5184 		goto err_out;
5185 	}
5186 
5187 	rc = bnxt_hwrm_ring_grp_alloc(bp);
5188 	if (rc) {
5189 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
5190 		goto err_out;
5191 	}
5192 
5193 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5194 		rx_nr_rings--;
5195 
5196 	/* default vnic 0 */
5197 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
5198 	if (rc) {
5199 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
5200 		goto err_out;
5201 	}
5202 
5203 	rc = bnxt_setup_vnic(bp, 0);
5204 	if (rc)
5205 		goto err_out;
5206 
5207 	if (bp->flags & BNXT_FLAG_RFS) {
5208 		rc = bnxt_alloc_rfs_vnics(bp);
5209 		if (rc)
5210 			goto err_out;
5211 	}
5212 
5213 	if (bp->flags & BNXT_FLAG_TPA) {
5214 		rc = bnxt_set_tpa(bp, true);
5215 		if (rc)
5216 			goto err_out;
5217 	}
5218 
5219 	if (BNXT_VF(bp))
5220 		bnxt_update_vf_mac(bp);
5221 
5222 	/* Filter for default vnic 0 */
5223 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
5224 	if (rc) {
5225 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
5226 		goto err_out;
5227 	}
5228 	vnic->uc_filter_count = 1;
5229 
5230 	vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
5231 
5232 	if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
5233 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5234 
5235 	if (bp->dev->flags & IFF_ALLMULTI) {
5236 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5237 		vnic->mc_list_count = 0;
5238 	} else {
5239 		u32 mask = 0;
5240 
5241 		bnxt_mc_list_updated(bp, &mask);
5242 		vnic->rx_mask |= mask;
5243 	}
5244 
5245 	rc = bnxt_cfg_rx_mode(bp);
5246 	if (rc)
5247 		goto err_out;
5248 
5249 	rc = bnxt_hwrm_set_coal(bp);
5250 	if (rc)
5251 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
5252 				rc);
5253 
5254 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5255 		rc = bnxt_setup_nitroa0_vnic(bp);
5256 		if (rc)
5257 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
5258 				   rc);
5259 	}
5260 
5261 	if (BNXT_VF(bp)) {
5262 		bnxt_hwrm_func_qcfg(bp);
5263 		netdev_update_features(bp->dev);
5264 	}
5265 
5266 	return 0;
5267 
5268 err_out:
5269 	bnxt_hwrm_resource_free(bp, 0, true);
5270 
5271 	return rc;
5272 }
5273 
5274 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
5275 {
5276 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
5277 	return 0;
5278 }
5279 
5280 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
5281 {
5282 	bnxt_init_cp_rings(bp);
5283 	bnxt_init_rx_rings(bp);
5284 	bnxt_init_tx_rings(bp);
5285 	bnxt_init_ring_grps(bp, irq_re_init);
5286 	bnxt_init_vnics(bp);
5287 
5288 	return bnxt_init_chip(bp, irq_re_init);
5289 }
5290 
5291 static int bnxt_set_real_num_queues(struct bnxt *bp)
5292 {
5293 	int rc;
5294 	struct net_device *dev = bp->dev;
5295 
5296 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
5297 					  bp->tx_nr_rings_xdp);
5298 	if (rc)
5299 		return rc;
5300 
5301 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
5302 	if (rc)
5303 		return rc;
5304 
5305 #ifdef CONFIG_RFS_ACCEL
5306 	if (bp->flags & BNXT_FLAG_RFS)
5307 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
5308 #endif
5309 
5310 	return rc;
5311 }
5312 
5313 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5314 			   bool shared)
5315 {
5316 	int _rx = *rx, _tx = *tx;
5317 
5318 	if (shared) {
5319 		*rx = min_t(int, _rx, max);
5320 		*tx = min_t(int, _tx, max);
5321 	} else {
5322 		if (max < 2)
5323 			return -ENOMEM;
5324 
5325 		while (_rx + _tx > max) {
5326 			if (_rx > _tx && _rx > 1)
5327 				_rx--;
5328 			else if (_tx > 1)
5329 				_tx--;
5330 		}
5331 		*rx = _rx;
5332 		*tx = _tx;
5333 	}
5334 	return 0;
5335 }
5336 
5337 static void bnxt_setup_msix(struct bnxt *bp)
5338 {
5339 	const int len = sizeof(bp->irq_tbl[0].name);
5340 	struct net_device *dev = bp->dev;
5341 	int tcs, i;
5342 
5343 	tcs = netdev_get_num_tc(dev);
5344 	if (tcs > 1) {
5345 		int i, off, count;
5346 
5347 		for (i = 0; i < tcs; i++) {
5348 			count = bp->tx_nr_rings_per_tc;
5349 			off = i * count;
5350 			netdev_set_tc_queue(dev, i, count, off);
5351 		}
5352 	}
5353 
5354 	for (i = 0; i < bp->cp_nr_rings; i++) {
5355 		char *attr;
5356 
5357 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5358 			attr = "TxRx";
5359 		else if (i < bp->rx_nr_rings)
5360 			attr = "rx";
5361 		else
5362 			attr = "tx";
5363 
5364 		snprintf(bp->irq_tbl[i].name, len, "%s-%s-%d", dev->name, attr,
5365 			 i);
5366 		bp->irq_tbl[i].handler = bnxt_msix;
5367 	}
5368 }
5369 
5370 static void bnxt_setup_inta(struct bnxt *bp)
5371 {
5372 	const int len = sizeof(bp->irq_tbl[0].name);
5373 
5374 	if (netdev_get_num_tc(bp->dev))
5375 		netdev_reset_tc(bp->dev);
5376 
5377 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
5378 		 0);
5379 	bp->irq_tbl[0].handler = bnxt_inta;
5380 }
5381 
5382 static int bnxt_setup_int_mode(struct bnxt *bp)
5383 {
5384 	int rc;
5385 
5386 	if (bp->flags & BNXT_FLAG_USING_MSIX)
5387 		bnxt_setup_msix(bp);
5388 	else
5389 		bnxt_setup_inta(bp);
5390 
5391 	rc = bnxt_set_real_num_queues(bp);
5392 	return rc;
5393 }
5394 
5395 #ifdef CONFIG_RFS_ACCEL
5396 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
5397 {
5398 #if defined(CONFIG_BNXT_SRIOV)
5399 	if (BNXT_VF(bp))
5400 		return bp->vf.max_rsscos_ctxs;
5401 #endif
5402 	return bp->pf.max_rsscos_ctxs;
5403 }
5404 
5405 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
5406 {
5407 #if defined(CONFIG_BNXT_SRIOV)
5408 	if (BNXT_VF(bp))
5409 		return bp->vf.max_vnics;
5410 #endif
5411 	return bp->pf.max_vnics;
5412 }
5413 #endif
5414 
5415 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
5416 {
5417 #if defined(CONFIG_BNXT_SRIOV)
5418 	if (BNXT_VF(bp))
5419 		return bp->vf.max_stat_ctxs;
5420 #endif
5421 	return bp->pf.max_stat_ctxs;
5422 }
5423 
5424 void bnxt_set_max_func_stat_ctxs(struct bnxt *bp, unsigned int max)
5425 {
5426 #if defined(CONFIG_BNXT_SRIOV)
5427 	if (BNXT_VF(bp))
5428 		bp->vf.max_stat_ctxs = max;
5429 	else
5430 #endif
5431 		bp->pf.max_stat_ctxs = max;
5432 }
5433 
5434 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
5435 {
5436 #if defined(CONFIG_BNXT_SRIOV)
5437 	if (BNXT_VF(bp))
5438 		return bp->vf.max_cp_rings;
5439 #endif
5440 	return bp->pf.max_cp_rings;
5441 }
5442 
5443 void bnxt_set_max_func_cp_rings(struct bnxt *bp, unsigned int max)
5444 {
5445 #if defined(CONFIG_BNXT_SRIOV)
5446 	if (BNXT_VF(bp))
5447 		bp->vf.max_cp_rings = max;
5448 	else
5449 #endif
5450 		bp->pf.max_cp_rings = max;
5451 }
5452 
5453 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
5454 {
5455 #if defined(CONFIG_BNXT_SRIOV)
5456 	if (BNXT_VF(bp))
5457 		return min_t(unsigned int, bp->vf.max_irqs,
5458 			     bp->vf.max_cp_rings);
5459 #endif
5460 	return min_t(unsigned int, bp->pf.max_irqs, bp->pf.max_cp_rings);
5461 }
5462 
5463 void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
5464 {
5465 #if defined(CONFIG_BNXT_SRIOV)
5466 	if (BNXT_VF(bp))
5467 		bp->vf.max_irqs = max_irqs;
5468 	else
5469 #endif
5470 		bp->pf.max_irqs = max_irqs;
5471 }
5472 
5473 static int bnxt_init_msix(struct bnxt *bp)
5474 {
5475 	int i, total_vecs, rc = 0, min = 1;
5476 	struct msix_entry *msix_ent;
5477 
5478 	total_vecs = bnxt_get_max_func_irqs(bp);
5479 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
5480 	if (!msix_ent)
5481 		return -ENOMEM;
5482 
5483 	for (i = 0; i < total_vecs; i++) {
5484 		msix_ent[i].entry = i;
5485 		msix_ent[i].vector = 0;
5486 	}
5487 
5488 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
5489 		min = 2;
5490 
5491 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
5492 	if (total_vecs < 0) {
5493 		rc = -ENODEV;
5494 		goto msix_setup_exit;
5495 	}
5496 
5497 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
5498 	if (bp->irq_tbl) {
5499 		for (i = 0; i < total_vecs; i++)
5500 			bp->irq_tbl[i].vector = msix_ent[i].vector;
5501 
5502 		bp->total_irqs = total_vecs;
5503 		/* Trim rings based upon num of vectors allocated */
5504 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
5505 				     total_vecs, min == 1);
5506 		if (rc)
5507 			goto msix_setup_exit;
5508 
5509 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
5510 		bp->cp_nr_rings = (min == 1) ?
5511 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
5512 				  bp->tx_nr_rings + bp->rx_nr_rings;
5513 
5514 	} else {
5515 		rc = -ENOMEM;
5516 		goto msix_setup_exit;
5517 	}
5518 	bp->flags |= BNXT_FLAG_USING_MSIX;
5519 	kfree(msix_ent);
5520 	return 0;
5521 
5522 msix_setup_exit:
5523 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
5524 	kfree(bp->irq_tbl);
5525 	bp->irq_tbl = NULL;
5526 	pci_disable_msix(bp->pdev);
5527 	kfree(msix_ent);
5528 	return rc;
5529 }
5530 
5531 static int bnxt_init_inta(struct bnxt *bp)
5532 {
5533 	bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
5534 	if (!bp->irq_tbl)
5535 		return -ENOMEM;
5536 
5537 	bp->total_irqs = 1;
5538 	bp->rx_nr_rings = 1;
5539 	bp->tx_nr_rings = 1;
5540 	bp->cp_nr_rings = 1;
5541 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
5542 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
5543 	bp->irq_tbl[0].vector = bp->pdev->irq;
5544 	return 0;
5545 }
5546 
5547 static int bnxt_init_int_mode(struct bnxt *bp)
5548 {
5549 	int rc = 0;
5550 
5551 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
5552 		rc = bnxt_init_msix(bp);
5553 
5554 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
5555 		/* fallback to INTA */
5556 		rc = bnxt_init_inta(bp);
5557 	}
5558 	return rc;
5559 }
5560 
5561 static void bnxt_clear_int_mode(struct bnxt *bp)
5562 {
5563 	if (bp->flags & BNXT_FLAG_USING_MSIX)
5564 		pci_disable_msix(bp->pdev);
5565 
5566 	kfree(bp->irq_tbl);
5567 	bp->irq_tbl = NULL;
5568 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
5569 }
5570 
5571 static void bnxt_free_irq(struct bnxt *bp)
5572 {
5573 	struct bnxt_irq *irq;
5574 	int i;
5575 
5576 #ifdef CONFIG_RFS_ACCEL
5577 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
5578 	bp->dev->rx_cpu_rmap = NULL;
5579 #endif
5580 	if (!bp->irq_tbl)
5581 		return;
5582 
5583 	for (i = 0; i < bp->cp_nr_rings; i++) {
5584 		irq = &bp->irq_tbl[i];
5585 		if (irq->requested) {
5586 			if (irq->have_cpumask) {
5587 				irq_set_affinity_hint(irq->vector, NULL);
5588 				free_cpumask_var(irq->cpu_mask);
5589 				irq->have_cpumask = 0;
5590 			}
5591 			free_irq(irq->vector, bp->bnapi[i]);
5592 		}
5593 
5594 		irq->requested = 0;
5595 	}
5596 }
5597 
5598 static int bnxt_request_irq(struct bnxt *bp)
5599 {
5600 	int i, j, rc = 0;
5601 	unsigned long flags = 0;
5602 #ifdef CONFIG_RFS_ACCEL
5603 	struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
5604 #endif
5605 
5606 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
5607 		flags = IRQF_SHARED;
5608 
5609 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
5610 		struct bnxt_irq *irq = &bp->irq_tbl[i];
5611 #ifdef CONFIG_RFS_ACCEL
5612 		if (rmap && bp->bnapi[i]->rx_ring) {
5613 			rc = irq_cpu_rmap_add(rmap, irq->vector);
5614 			if (rc)
5615 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
5616 					    j);
5617 			j++;
5618 		}
5619 #endif
5620 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
5621 				 bp->bnapi[i]);
5622 		if (rc)
5623 			break;
5624 
5625 		irq->requested = 1;
5626 
5627 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
5628 			int numa_node = dev_to_node(&bp->pdev->dev);
5629 
5630 			irq->have_cpumask = 1;
5631 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
5632 					irq->cpu_mask);
5633 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
5634 			if (rc) {
5635 				netdev_warn(bp->dev,
5636 					    "Set affinity failed, IRQ = %d\n",
5637 					    irq->vector);
5638 				break;
5639 			}
5640 		}
5641 	}
5642 	return rc;
5643 }
5644 
5645 static void bnxt_del_napi(struct bnxt *bp)
5646 {
5647 	int i;
5648 
5649 	if (!bp->bnapi)
5650 		return;
5651 
5652 	for (i = 0; i < bp->cp_nr_rings; i++) {
5653 		struct bnxt_napi *bnapi = bp->bnapi[i];
5654 
5655 		napi_hash_del(&bnapi->napi);
5656 		netif_napi_del(&bnapi->napi);
5657 	}
5658 	/* We called napi_hash_del() before netif_napi_del(), we need
5659 	 * to respect an RCU grace period before freeing napi structures.
5660 	 */
5661 	synchronize_net();
5662 }
5663 
5664 static void bnxt_init_napi(struct bnxt *bp)
5665 {
5666 	int i;
5667 	unsigned int cp_nr_rings = bp->cp_nr_rings;
5668 	struct bnxt_napi *bnapi;
5669 
5670 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
5671 		if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5672 			cp_nr_rings--;
5673 		for (i = 0; i < cp_nr_rings; i++) {
5674 			bnapi = bp->bnapi[i];
5675 			netif_napi_add(bp->dev, &bnapi->napi,
5676 				       bnxt_poll, 64);
5677 		}
5678 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5679 			bnapi = bp->bnapi[cp_nr_rings];
5680 			netif_napi_add(bp->dev, &bnapi->napi,
5681 				       bnxt_poll_nitroa0, 64);
5682 		}
5683 	} else {
5684 		bnapi = bp->bnapi[0];
5685 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
5686 	}
5687 }
5688 
5689 static void bnxt_disable_napi(struct bnxt *bp)
5690 {
5691 	int i;
5692 
5693 	if (!bp->bnapi)
5694 		return;
5695 
5696 	for (i = 0; i < bp->cp_nr_rings; i++)
5697 		napi_disable(&bp->bnapi[i]->napi);
5698 }
5699 
5700 static void bnxt_enable_napi(struct bnxt *bp)
5701 {
5702 	int i;
5703 
5704 	for (i = 0; i < bp->cp_nr_rings; i++) {
5705 		bp->bnapi[i]->in_reset = false;
5706 		napi_enable(&bp->bnapi[i]->napi);
5707 	}
5708 }
5709 
5710 void bnxt_tx_disable(struct bnxt *bp)
5711 {
5712 	int i;
5713 	struct bnxt_tx_ring_info *txr;
5714 
5715 	if (bp->tx_ring) {
5716 		for (i = 0; i < bp->tx_nr_rings; i++) {
5717 			txr = &bp->tx_ring[i];
5718 			txr->dev_state = BNXT_DEV_STATE_CLOSING;
5719 		}
5720 	}
5721 	/* Stop all TX queues */
5722 	netif_tx_disable(bp->dev);
5723 	netif_carrier_off(bp->dev);
5724 }
5725 
5726 void bnxt_tx_enable(struct bnxt *bp)
5727 {
5728 	int i;
5729 	struct bnxt_tx_ring_info *txr;
5730 
5731 	for (i = 0; i < bp->tx_nr_rings; i++) {
5732 		txr = &bp->tx_ring[i];
5733 		txr->dev_state = 0;
5734 	}
5735 	netif_tx_wake_all_queues(bp->dev);
5736 	if (bp->link_info.link_up)
5737 		netif_carrier_on(bp->dev);
5738 }
5739 
5740 static void bnxt_report_link(struct bnxt *bp)
5741 {
5742 	if (bp->link_info.link_up) {
5743 		const char *duplex;
5744 		const char *flow_ctrl;
5745 		u32 speed;
5746 		u16 fec;
5747 
5748 		netif_carrier_on(bp->dev);
5749 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
5750 			duplex = "full";
5751 		else
5752 			duplex = "half";
5753 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
5754 			flow_ctrl = "ON - receive & transmit";
5755 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
5756 			flow_ctrl = "ON - transmit";
5757 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
5758 			flow_ctrl = "ON - receive";
5759 		else
5760 			flow_ctrl = "none";
5761 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
5762 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
5763 			    speed, duplex, flow_ctrl);
5764 		if (bp->flags & BNXT_FLAG_EEE_CAP)
5765 			netdev_info(bp->dev, "EEE is %s\n",
5766 				    bp->eee.eee_active ? "active" :
5767 							 "not active");
5768 		fec = bp->link_info.fec_cfg;
5769 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
5770 			netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
5771 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
5772 				    (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
5773 				     (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
5774 	} else {
5775 		netif_carrier_off(bp->dev);
5776 		netdev_err(bp->dev, "NIC Link is Down\n");
5777 	}
5778 }
5779 
5780 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
5781 {
5782 	int rc = 0;
5783 	struct hwrm_port_phy_qcaps_input req = {0};
5784 	struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5785 	struct bnxt_link_info *link_info = &bp->link_info;
5786 
5787 	if (bp->hwrm_spec_code < 0x10201)
5788 		return 0;
5789 
5790 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
5791 
5792 	mutex_lock(&bp->hwrm_cmd_lock);
5793 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5794 	if (rc)
5795 		goto hwrm_phy_qcaps_exit;
5796 
5797 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
5798 		struct ethtool_eee *eee = &bp->eee;
5799 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
5800 
5801 		bp->flags |= BNXT_FLAG_EEE_CAP;
5802 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5803 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
5804 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
5805 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
5806 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
5807 	}
5808 	if (resp->supported_speeds_auto_mode)
5809 		link_info->support_auto_speeds =
5810 			le16_to_cpu(resp->supported_speeds_auto_mode);
5811 
5812 	bp->port_count = resp->port_cnt;
5813 
5814 hwrm_phy_qcaps_exit:
5815 	mutex_unlock(&bp->hwrm_cmd_lock);
5816 	return rc;
5817 }
5818 
5819 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
5820 {
5821 	int rc = 0;
5822 	struct bnxt_link_info *link_info = &bp->link_info;
5823 	struct hwrm_port_phy_qcfg_input req = {0};
5824 	struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5825 	u8 link_up = link_info->link_up;
5826 	u16 diff;
5827 
5828 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
5829 
5830 	mutex_lock(&bp->hwrm_cmd_lock);
5831 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5832 	if (rc) {
5833 		mutex_unlock(&bp->hwrm_cmd_lock);
5834 		return rc;
5835 	}
5836 
5837 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
5838 	link_info->phy_link_status = resp->link;
5839 	link_info->duplex = resp->duplex_cfg;
5840 	if (bp->hwrm_spec_code >= 0x10800)
5841 		link_info->duplex = resp->duplex_state;
5842 	link_info->pause = resp->pause;
5843 	link_info->auto_mode = resp->auto_mode;
5844 	link_info->auto_pause_setting = resp->auto_pause;
5845 	link_info->lp_pause = resp->link_partner_adv_pause;
5846 	link_info->force_pause_setting = resp->force_pause;
5847 	link_info->duplex_setting = resp->duplex_cfg;
5848 	if (link_info->phy_link_status == BNXT_LINK_LINK)
5849 		link_info->link_speed = le16_to_cpu(resp->link_speed);
5850 	else
5851 		link_info->link_speed = 0;
5852 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
5853 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
5854 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
5855 	link_info->lp_auto_link_speeds =
5856 		le16_to_cpu(resp->link_partner_adv_speeds);
5857 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
5858 	link_info->phy_ver[0] = resp->phy_maj;
5859 	link_info->phy_ver[1] = resp->phy_min;
5860 	link_info->phy_ver[2] = resp->phy_bld;
5861 	link_info->media_type = resp->media_type;
5862 	link_info->phy_type = resp->phy_type;
5863 	link_info->transceiver = resp->xcvr_pkg_type;
5864 	link_info->phy_addr = resp->eee_config_phy_addr &
5865 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
5866 	link_info->module_status = resp->module_status;
5867 
5868 	if (bp->flags & BNXT_FLAG_EEE_CAP) {
5869 		struct ethtool_eee *eee = &bp->eee;
5870 		u16 fw_speeds;
5871 
5872 		eee->eee_active = 0;
5873 		if (resp->eee_config_phy_addr &
5874 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
5875 			eee->eee_active = 1;
5876 			fw_speeds = le16_to_cpu(
5877 				resp->link_partner_adv_eee_link_speed_mask);
5878 			eee->lp_advertised =
5879 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5880 		}
5881 
5882 		/* Pull initial EEE config */
5883 		if (!chng_link_state) {
5884 			if (resp->eee_config_phy_addr &
5885 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
5886 				eee->eee_enabled = 1;
5887 
5888 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
5889 			eee->advertised =
5890 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5891 
5892 			if (resp->eee_config_phy_addr &
5893 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
5894 				__le32 tmr;
5895 
5896 				eee->tx_lpi_enabled = 1;
5897 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
5898 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
5899 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
5900 			}
5901 		}
5902 	}
5903 
5904 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
5905 	if (bp->hwrm_spec_code >= 0x10504)
5906 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
5907 
5908 	/* TODO: need to add more logic to report VF link */
5909 	if (chng_link_state) {
5910 		if (link_info->phy_link_status == BNXT_LINK_LINK)
5911 			link_info->link_up = 1;
5912 		else
5913 			link_info->link_up = 0;
5914 		if (link_up != link_info->link_up)
5915 			bnxt_report_link(bp);
5916 	} else {
5917 		/* alwasy link down if not require to update link state */
5918 		link_info->link_up = 0;
5919 	}
5920 	mutex_unlock(&bp->hwrm_cmd_lock);
5921 
5922 	diff = link_info->support_auto_speeds ^ link_info->advertising;
5923 	if ((link_info->support_auto_speeds | diff) !=
5924 	    link_info->support_auto_speeds) {
5925 		/* An advertised speed is no longer supported, so we need to
5926 		 * update the advertisement settings.  Caller holds RTNL
5927 		 * so we can modify link settings.
5928 		 */
5929 		link_info->advertising = link_info->support_auto_speeds;
5930 		if (link_info->autoneg & BNXT_AUTONEG_SPEED)
5931 			bnxt_hwrm_set_link_setting(bp, true, false);
5932 	}
5933 	return 0;
5934 }
5935 
5936 static void bnxt_get_port_module_status(struct bnxt *bp)
5937 {
5938 	struct bnxt_link_info *link_info = &bp->link_info;
5939 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
5940 	u8 module_status;
5941 
5942 	if (bnxt_update_link(bp, true))
5943 		return;
5944 
5945 	module_status = link_info->module_status;
5946 	switch (module_status) {
5947 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
5948 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
5949 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
5950 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
5951 			    bp->pf.port_id);
5952 		if (bp->hwrm_spec_code >= 0x10201) {
5953 			netdev_warn(bp->dev, "Module part number %s\n",
5954 				    resp->phy_vendor_partnumber);
5955 		}
5956 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
5957 			netdev_warn(bp->dev, "TX is disabled\n");
5958 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
5959 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
5960 	}
5961 }
5962 
5963 static void
5964 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
5965 {
5966 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
5967 		if (bp->hwrm_spec_code >= 0x10201)
5968 			req->auto_pause =
5969 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
5970 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5971 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
5972 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5973 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
5974 		req->enables |=
5975 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5976 	} else {
5977 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5978 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
5979 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5980 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
5981 		req->enables |=
5982 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
5983 		if (bp->hwrm_spec_code >= 0x10201) {
5984 			req->auto_pause = req->force_pause;
5985 			req->enables |= cpu_to_le32(
5986 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5987 		}
5988 	}
5989 }
5990 
5991 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
5992 				      struct hwrm_port_phy_cfg_input *req)
5993 {
5994 	u8 autoneg = bp->link_info.autoneg;
5995 	u16 fw_link_speed = bp->link_info.req_link_speed;
5996 	u16 advertising = bp->link_info.advertising;
5997 
5998 	if (autoneg & BNXT_AUTONEG_SPEED) {
5999 		req->auto_mode |=
6000 			PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
6001 
6002 		req->enables |= cpu_to_le32(
6003 			PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
6004 		req->auto_link_speed_mask = cpu_to_le16(advertising);
6005 
6006 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
6007 		req->flags |=
6008 			cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
6009 	} else {
6010 		req->force_link_speed = cpu_to_le16(fw_link_speed);
6011 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
6012 	}
6013 
6014 	/* tell chimp that the setting takes effect immediately */
6015 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
6016 }
6017 
6018 int bnxt_hwrm_set_pause(struct bnxt *bp)
6019 {
6020 	struct hwrm_port_phy_cfg_input req = {0};
6021 	int rc;
6022 
6023 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6024 	bnxt_hwrm_set_pause_common(bp, &req);
6025 
6026 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
6027 	    bp->link_info.force_link_chng)
6028 		bnxt_hwrm_set_link_common(bp, &req);
6029 
6030 	mutex_lock(&bp->hwrm_cmd_lock);
6031 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6032 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
6033 		/* since changing of pause setting doesn't trigger any link
6034 		 * change event, the driver needs to update the current pause
6035 		 * result upon successfully return of the phy_cfg command
6036 		 */
6037 		bp->link_info.pause =
6038 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
6039 		bp->link_info.auto_pause_setting = 0;
6040 		if (!bp->link_info.force_link_chng)
6041 			bnxt_report_link(bp);
6042 	}
6043 	bp->link_info.force_link_chng = false;
6044 	mutex_unlock(&bp->hwrm_cmd_lock);
6045 	return rc;
6046 }
6047 
6048 static void bnxt_hwrm_set_eee(struct bnxt *bp,
6049 			      struct hwrm_port_phy_cfg_input *req)
6050 {
6051 	struct ethtool_eee *eee = &bp->eee;
6052 
6053 	if (eee->eee_enabled) {
6054 		u16 eee_speeds;
6055 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
6056 
6057 		if (eee->tx_lpi_enabled)
6058 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
6059 		else
6060 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
6061 
6062 		req->flags |= cpu_to_le32(flags);
6063 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
6064 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
6065 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
6066 	} else {
6067 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
6068 	}
6069 }
6070 
6071 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
6072 {
6073 	struct hwrm_port_phy_cfg_input req = {0};
6074 
6075 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6076 	if (set_pause)
6077 		bnxt_hwrm_set_pause_common(bp, &req);
6078 
6079 	bnxt_hwrm_set_link_common(bp, &req);
6080 
6081 	if (set_eee)
6082 		bnxt_hwrm_set_eee(bp, &req);
6083 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6084 }
6085 
6086 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
6087 {
6088 	struct hwrm_port_phy_cfg_input req = {0};
6089 
6090 	if (!BNXT_SINGLE_PF(bp))
6091 		return 0;
6092 
6093 	if (pci_num_vf(bp->pdev))
6094 		return 0;
6095 
6096 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6097 	req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
6098 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6099 }
6100 
6101 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
6102 {
6103 	struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6104 	struct hwrm_port_led_qcaps_input req = {0};
6105 	struct bnxt_pf_info *pf = &bp->pf;
6106 	int rc;
6107 
6108 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
6109 		return 0;
6110 
6111 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
6112 	req.port_id = cpu_to_le16(pf->port_id);
6113 	mutex_lock(&bp->hwrm_cmd_lock);
6114 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6115 	if (rc) {
6116 		mutex_unlock(&bp->hwrm_cmd_lock);
6117 		return rc;
6118 	}
6119 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
6120 		int i;
6121 
6122 		bp->num_leds = resp->num_leds;
6123 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
6124 						 bp->num_leds);
6125 		for (i = 0; i < bp->num_leds; i++) {
6126 			struct bnxt_led_info *led = &bp->leds[i];
6127 			__le16 caps = led->led_state_caps;
6128 
6129 			if (!led->led_group_id ||
6130 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
6131 				bp->num_leds = 0;
6132 				break;
6133 			}
6134 		}
6135 	}
6136 	mutex_unlock(&bp->hwrm_cmd_lock);
6137 	return 0;
6138 }
6139 
6140 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
6141 {
6142 	struct hwrm_wol_filter_alloc_input req = {0};
6143 	struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
6144 	int rc;
6145 
6146 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
6147 	req.port_id = cpu_to_le16(bp->pf.port_id);
6148 	req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
6149 	req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
6150 	memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
6151 	mutex_lock(&bp->hwrm_cmd_lock);
6152 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6153 	if (!rc)
6154 		bp->wol_filter_id = resp->wol_filter_id;
6155 	mutex_unlock(&bp->hwrm_cmd_lock);
6156 	return rc;
6157 }
6158 
6159 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
6160 {
6161 	struct hwrm_wol_filter_free_input req = {0};
6162 	int rc;
6163 
6164 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
6165 	req.port_id = cpu_to_le16(bp->pf.port_id);
6166 	req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
6167 	req.wol_filter_id = bp->wol_filter_id;
6168 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6169 	return rc;
6170 }
6171 
6172 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
6173 {
6174 	struct hwrm_wol_filter_qcfg_input req = {0};
6175 	struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6176 	u16 next_handle = 0;
6177 	int rc;
6178 
6179 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
6180 	req.port_id = cpu_to_le16(bp->pf.port_id);
6181 	req.handle = cpu_to_le16(handle);
6182 	mutex_lock(&bp->hwrm_cmd_lock);
6183 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6184 	if (!rc) {
6185 		next_handle = le16_to_cpu(resp->next_handle);
6186 		if (next_handle != 0) {
6187 			if (resp->wol_type ==
6188 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
6189 				bp->wol = 1;
6190 				bp->wol_filter_id = resp->wol_filter_id;
6191 			}
6192 		}
6193 	}
6194 	mutex_unlock(&bp->hwrm_cmd_lock);
6195 	return next_handle;
6196 }
6197 
6198 static void bnxt_get_wol_settings(struct bnxt *bp)
6199 {
6200 	u16 handle = 0;
6201 
6202 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
6203 		return;
6204 
6205 	do {
6206 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
6207 	} while (handle && handle != 0xffff);
6208 }
6209 
6210 static bool bnxt_eee_config_ok(struct bnxt *bp)
6211 {
6212 	struct ethtool_eee *eee = &bp->eee;
6213 	struct bnxt_link_info *link_info = &bp->link_info;
6214 
6215 	if (!(bp->flags & BNXT_FLAG_EEE_CAP))
6216 		return true;
6217 
6218 	if (eee->eee_enabled) {
6219 		u32 advertising =
6220 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
6221 
6222 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
6223 			eee->eee_enabled = 0;
6224 			return false;
6225 		}
6226 		if (eee->advertised & ~advertising) {
6227 			eee->advertised = advertising & eee->supported;
6228 			return false;
6229 		}
6230 	}
6231 	return true;
6232 }
6233 
6234 static int bnxt_update_phy_setting(struct bnxt *bp)
6235 {
6236 	int rc;
6237 	bool update_link = false;
6238 	bool update_pause = false;
6239 	bool update_eee = false;
6240 	struct bnxt_link_info *link_info = &bp->link_info;
6241 
6242 	rc = bnxt_update_link(bp, true);
6243 	if (rc) {
6244 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
6245 			   rc);
6246 		return rc;
6247 	}
6248 	if (!BNXT_SINGLE_PF(bp))
6249 		return 0;
6250 
6251 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
6252 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
6253 	    link_info->req_flow_ctrl)
6254 		update_pause = true;
6255 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
6256 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
6257 		update_pause = true;
6258 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
6259 		if (BNXT_AUTO_MODE(link_info->auto_mode))
6260 			update_link = true;
6261 		if (link_info->req_link_speed != link_info->force_link_speed)
6262 			update_link = true;
6263 		if (link_info->req_duplex != link_info->duplex_setting)
6264 			update_link = true;
6265 	} else {
6266 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
6267 			update_link = true;
6268 		if (link_info->advertising != link_info->auto_link_speeds)
6269 			update_link = true;
6270 	}
6271 
6272 	/* The last close may have shutdown the link, so need to call
6273 	 * PHY_CFG to bring it back up.
6274 	 */
6275 	if (!netif_carrier_ok(bp->dev))
6276 		update_link = true;
6277 
6278 	if (!bnxt_eee_config_ok(bp))
6279 		update_eee = true;
6280 
6281 	if (update_link)
6282 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
6283 	else if (update_pause)
6284 		rc = bnxt_hwrm_set_pause(bp);
6285 	if (rc) {
6286 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
6287 			   rc);
6288 		return rc;
6289 	}
6290 
6291 	return rc;
6292 }
6293 
6294 /* Common routine to pre-map certain register block to different GRC window.
6295  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
6296  * in PF and 3 windows in VF that can be customized to map in different
6297  * register blocks.
6298  */
6299 static void bnxt_preset_reg_win(struct bnxt *bp)
6300 {
6301 	if (BNXT_PF(bp)) {
6302 		/* CAG registers map to GRC window #4 */
6303 		writel(BNXT_CAG_REG_BASE,
6304 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
6305 	}
6306 }
6307 
6308 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6309 {
6310 	int rc = 0;
6311 
6312 	bnxt_preset_reg_win(bp);
6313 	netif_carrier_off(bp->dev);
6314 	if (irq_re_init) {
6315 		rc = bnxt_setup_int_mode(bp);
6316 		if (rc) {
6317 			netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
6318 				   rc);
6319 			return rc;
6320 		}
6321 	}
6322 	if ((bp->flags & BNXT_FLAG_RFS) &&
6323 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
6324 		/* disable RFS if falling back to INTA */
6325 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
6326 		bp->flags &= ~BNXT_FLAG_RFS;
6327 	}
6328 
6329 	rc = bnxt_alloc_mem(bp, irq_re_init);
6330 	if (rc) {
6331 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
6332 		goto open_err_free_mem;
6333 	}
6334 
6335 	if (irq_re_init) {
6336 		bnxt_init_napi(bp);
6337 		rc = bnxt_request_irq(bp);
6338 		if (rc) {
6339 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
6340 			goto open_err;
6341 		}
6342 	}
6343 
6344 	bnxt_enable_napi(bp);
6345 
6346 	rc = bnxt_init_nic(bp, irq_re_init);
6347 	if (rc) {
6348 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
6349 		goto open_err;
6350 	}
6351 
6352 	if (link_re_init) {
6353 		mutex_lock(&bp->link_lock);
6354 		rc = bnxt_update_phy_setting(bp);
6355 		mutex_unlock(&bp->link_lock);
6356 		if (rc)
6357 			netdev_warn(bp->dev, "failed to update phy settings\n");
6358 	}
6359 
6360 	if (irq_re_init)
6361 		udp_tunnel_get_rx_info(bp->dev);
6362 
6363 	set_bit(BNXT_STATE_OPEN, &bp->state);
6364 	bnxt_enable_int(bp);
6365 	/* Enable TX queues */
6366 	bnxt_tx_enable(bp);
6367 	mod_timer(&bp->timer, jiffies + bp->current_interval);
6368 	/* Poll link status and check for SFP+ module status */
6369 	bnxt_get_port_module_status(bp);
6370 
6371 	/* VF-reps may need to be re-opened after the PF is re-opened */
6372 	if (BNXT_PF(bp))
6373 		bnxt_vf_reps_open(bp);
6374 	return 0;
6375 
6376 open_err:
6377 	bnxt_disable_napi(bp);
6378 	bnxt_del_napi(bp);
6379 
6380 open_err_free_mem:
6381 	bnxt_free_skbs(bp);
6382 	bnxt_free_irq(bp);
6383 	bnxt_free_mem(bp, true);
6384 	return rc;
6385 }
6386 
6387 /* rtnl_lock held */
6388 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6389 {
6390 	int rc = 0;
6391 
6392 	rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
6393 	if (rc) {
6394 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
6395 		dev_close(bp->dev);
6396 	}
6397 	return rc;
6398 }
6399 
6400 /* rtnl_lock held, open the NIC half way by allocating all resources, but
6401  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
6402  * self tests.
6403  */
6404 int bnxt_half_open_nic(struct bnxt *bp)
6405 {
6406 	int rc = 0;
6407 
6408 	rc = bnxt_alloc_mem(bp, false);
6409 	if (rc) {
6410 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
6411 		goto half_open_err;
6412 	}
6413 	rc = bnxt_init_nic(bp, false);
6414 	if (rc) {
6415 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
6416 		goto half_open_err;
6417 	}
6418 	return 0;
6419 
6420 half_open_err:
6421 	bnxt_free_skbs(bp);
6422 	bnxt_free_mem(bp, false);
6423 	dev_close(bp->dev);
6424 	return rc;
6425 }
6426 
6427 /* rtnl_lock held, this call can only be made after a previous successful
6428  * call to bnxt_half_open_nic().
6429  */
6430 void bnxt_half_close_nic(struct bnxt *bp)
6431 {
6432 	bnxt_hwrm_resource_free(bp, false, false);
6433 	bnxt_free_skbs(bp);
6434 	bnxt_free_mem(bp, false);
6435 }
6436 
6437 static int bnxt_open(struct net_device *dev)
6438 {
6439 	struct bnxt *bp = netdev_priv(dev);
6440 
6441 	return __bnxt_open_nic(bp, true, true);
6442 }
6443 
6444 static bool bnxt_drv_busy(struct bnxt *bp)
6445 {
6446 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
6447 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
6448 }
6449 
6450 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6451 {
6452 	int rc = 0;
6453 
6454 #ifdef CONFIG_BNXT_SRIOV
6455 	if (bp->sriov_cfg) {
6456 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
6457 						      !bp->sriov_cfg,
6458 						      BNXT_SRIOV_CFG_WAIT_TMO);
6459 		if (rc)
6460 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
6461 	}
6462 
6463 	/* Close the VF-reps before closing PF */
6464 	if (BNXT_PF(bp))
6465 		bnxt_vf_reps_close(bp);
6466 #endif
6467 	/* Change device state to avoid TX queue wake up's */
6468 	bnxt_tx_disable(bp);
6469 
6470 	clear_bit(BNXT_STATE_OPEN, &bp->state);
6471 	smp_mb__after_atomic();
6472 	while (bnxt_drv_busy(bp))
6473 		msleep(20);
6474 
6475 	/* Flush rings and and disable interrupts */
6476 	bnxt_shutdown_nic(bp, irq_re_init);
6477 
6478 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
6479 
6480 	bnxt_disable_napi(bp);
6481 	del_timer_sync(&bp->timer);
6482 	bnxt_free_skbs(bp);
6483 
6484 	if (irq_re_init) {
6485 		bnxt_free_irq(bp);
6486 		bnxt_del_napi(bp);
6487 	}
6488 	bnxt_free_mem(bp, irq_re_init);
6489 	return rc;
6490 }
6491 
6492 static int bnxt_close(struct net_device *dev)
6493 {
6494 	struct bnxt *bp = netdev_priv(dev);
6495 
6496 	bnxt_close_nic(bp, true, true);
6497 	bnxt_hwrm_shutdown_link(bp);
6498 	return 0;
6499 }
6500 
6501 /* rtnl_lock held */
6502 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
6503 {
6504 	switch (cmd) {
6505 	case SIOCGMIIPHY:
6506 		/* fallthru */
6507 	case SIOCGMIIREG: {
6508 		if (!netif_running(dev))
6509 			return -EAGAIN;
6510 
6511 		return 0;
6512 	}
6513 
6514 	case SIOCSMIIREG:
6515 		if (!netif_running(dev))
6516 			return -EAGAIN;
6517 
6518 		return 0;
6519 
6520 	default:
6521 		/* do nothing */
6522 		break;
6523 	}
6524 	return -EOPNOTSUPP;
6525 }
6526 
6527 static void
6528 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
6529 {
6530 	u32 i;
6531 	struct bnxt *bp = netdev_priv(dev);
6532 
6533 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
6534 	/* Make sure bnxt_close_nic() sees that we are reading stats before
6535 	 * we check the BNXT_STATE_OPEN flag.
6536 	 */
6537 	smp_mb__after_atomic();
6538 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6539 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
6540 		return;
6541 	}
6542 
6543 	/* TODO check if we need to synchronize with bnxt_close path */
6544 	for (i = 0; i < bp->cp_nr_rings; i++) {
6545 		struct bnxt_napi *bnapi = bp->bnapi[i];
6546 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6547 		struct ctx_hw_stats *hw_stats = cpr->hw_stats;
6548 
6549 		stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
6550 		stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
6551 		stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
6552 
6553 		stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
6554 		stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
6555 		stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
6556 
6557 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
6558 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
6559 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
6560 
6561 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
6562 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
6563 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
6564 
6565 		stats->rx_missed_errors +=
6566 			le64_to_cpu(hw_stats->rx_discard_pkts);
6567 
6568 		stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
6569 
6570 		stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
6571 	}
6572 
6573 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
6574 		struct rx_port_stats *rx = bp->hw_rx_port_stats;
6575 		struct tx_port_stats *tx = bp->hw_tx_port_stats;
6576 
6577 		stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
6578 		stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
6579 		stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
6580 					  le64_to_cpu(rx->rx_ovrsz_frames) +
6581 					  le64_to_cpu(rx->rx_runt_frames);
6582 		stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
6583 				   le64_to_cpu(rx->rx_jbr_frames);
6584 		stats->collisions = le64_to_cpu(tx->tx_total_collisions);
6585 		stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
6586 		stats->tx_errors = le64_to_cpu(tx->tx_err);
6587 	}
6588 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
6589 }
6590 
6591 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
6592 {
6593 	struct net_device *dev = bp->dev;
6594 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6595 	struct netdev_hw_addr *ha;
6596 	u8 *haddr;
6597 	int mc_count = 0;
6598 	bool update = false;
6599 	int off = 0;
6600 
6601 	netdev_for_each_mc_addr(ha, dev) {
6602 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
6603 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
6604 			vnic->mc_list_count = 0;
6605 			return false;
6606 		}
6607 		haddr = ha->addr;
6608 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
6609 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
6610 			update = true;
6611 		}
6612 		off += ETH_ALEN;
6613 		mc_count++;
6614 	}
6615 	if (mc_count)
6616 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
6617 
6618 	if (mc_count != vnic->mc_list_count) {
6619 		vnic->mc_list_count = mc_count;
6620 		update = true;
6621 	}
6622 	return update;
6623 }
6624 
6625 static bool bnxt_uc_list_updated(struct bnxt *bp)
6626 {
6627 	struct net_device *dev = bp->dev;
6628 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6629 	struct netdev_hw_addr *ha;
6630 	int off = 0;
6631 
6632 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
6633 		return true;
6634 
6635 	netdev_for_each_uc_addr(ha, dev) {
6636 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
6637 			return true;
6638 
6639 		off += ETH_ALEN;
6640 	}
6641 	return false;
6642 }
6643 
6644 static void bnxt_set_rx_mode(struct net_device *dev)
6645 {
6646 	struct bnxt *bp = netdev_priv(dev);
6647 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6648 	u32 mask = vnic->rx_mask;
6649 	bool mc_update = false;
6650 	bool uc_update;
6651 
6652 	if (!netif_running(dev))
6653 		return;
6654 
6655 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
6656 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
6657 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
6658 
6659 	if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
6660 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
6661 
6662 	uc_update = bnxt_uc_list_updated(bp);
6663 
6664 	if (dev->flags & IFF_ALLMULTI) {
6665 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
6666 		vnic->mc_list_count = 0;
6667 	} else {
6668 		mc_update = bnxt_mc_list_updated(bp, &mask);
6669 	}
6670 
6671 	if (mask != vnic->rx_mask || uc_update || mc_update) {
6672 		vnic->rx_mask = mask;
6673 
6674 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
6675 		bnxt_queue_sp_work(bp);
6676 	}
6677 }
6678 
6679 static int bnxt_cfg_rx_mode(struct bnxt *bp)
6680 {
6681 	struct net_device *dev = bp->dev;
6682 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6683 	struct netdev_hw_addr *ha;
6684 	int i, off = 0, rc;
6685 	bool uc_update;
6686 
6687 	netif_addr_lock_bh(dev);
6688 	uc_update = bnxt_uc_list_updated(bp);
6689 	netif_addr_unlock_bh(dev);
6690 
6691 	if (!uc_update)
6692 		goto skip_uc;
6693 
6694 	mutex_lock(&bp->hwrm_cmd_lock);
6695 	for (i = 1; i < vnic->uc_filter_count; i++) {
6696 		struct hwrm_cfa_l2_filter_free_input req = {0};
6697 
6698 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
6699 				       -1);
6700 
6701 		req.l2_filter_id = vnic->fw_l2_filter_id[i];
6702 
6703 		rc = _hwrm_send_message(bp, &req, sizeof(req),
6704 					HWRM_CMD_TIMEOUT);
6705 	}
6706 	mutex_unlock(&bp->hwrm_cmd_lock);
6707 
6708 	vnic->uc_filter_count = 1;
6709 
6710 	netif_addr_lock_bh(dev);
6711 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
6712 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
6713 	} else {
6714 		netdev_for_each_uc_addr(ha, dev) {
6715 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
6716 			off += ETH_ALEN;
6717 			vnic->uc_filter_count++;
6718 		}
6719 	}
6720 	netif_addr_unlock_bh(dev);
6721 
6722 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
6723 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
6724 		if (rc) {
6725 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
6726 				   rc);
6727 			vnic->uc_filter_count = i;
6728 			return rc;
6729 		}
6730 	}
6731 
6732 skip_uc:
6733 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
6734 	if (rc)
6735 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
6736 			   rc);
6737 
6738 	return rc;
6739 }
6740 
6741 /* If the chip and firmware supports RFS */
6742 static bool bnxt_rfs_supported(struct bnxt *bp)
6743 {
6744 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
6745 		return true;
6746 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
6747 		return true;
6748 	return false;
6749 }
6750 
6751 /* If runtime conditions support RFS */
6752 static bool bnxt_rfs_capable(struct bnxt *bp)
6753 {
6754 #ifdef CONFIG_RFS_ACCEL
6755 	int vnics, max_vnics, max_rss_ctxs;
6756 
6757 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP))
6758 		return false;
6759 
6760 	vnics = 1 + bp->rx_nr_rings;
6761 	max_vnics = bnxt_get_max_func_vnics(bp);
6762 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
6763 
6764 	/* RSS contexts not a limiting factor */
6765 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
6766 		max_rss_ctxs = max_vnics;
6767 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
6768 		netdev_warn(bp->dev,
6769 			    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
6770 			    min(max_rss_ctxs - 1, max_vnics - 1));
6771 		return false;
6772 	}
6773 
6774 	return true;
6775 #else
6776 	return false;
6777 #endif
6778 }
6779 
6780 static netdev_features_t bnxt_fix_features(struct net_device *dev,
6781 					   netdev_features_t features)
6782 {
6783 	struct bnxt *bp = netdev_priv(dev);
6784 
6785 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
6786 		features &= ~NETIF_F_NTUPLE;
6787 
6788 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
6789 	 * turned on or off together.
6790 	 */
6791 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
6792 	    (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
6793 		if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
6794 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
6795 				      NETIF_F_HW_VLAN_STAG_RX);
6796 		else
6797 			features |= NETIF_F_HW_VLAN_CTAG_RX |
6798 				    NETIF_F_HW_VLAN_STAG_RX;
6799 	}
6800 #ifdef CONFIG_BNXT_SRIOV
6801 	if (BNXT_VF(bp)) {
6802 		if (bp->vf.vlan) {
6803 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
6804 				      NETIF_F_HW_VLAN_STAG_RX);
6805 		}
6806 	}
6807 #endif
6808 	return features;
6809 }
6810 
6811 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
6812 {
6813 	struct bnxt *bp = netdev_priv(dev);
6814 	u32 flags = bp->flags;
6815 	u32 changes;
6816 	int rc = 0;
6817 	bool re_init = false;
6818 	bool update_tpa = false;
6819 
6820 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
6821 	if ((features & NETIF_F_GRO) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
6822 		flags |= BNXT_FLAG_GRO;
6823 	if (features & NETIF_F_LRO)
6824 		flags |= BNXT_FLAG_LRO;
6825 
6826 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
6827 		flags &= ~BNXT_FLAG_TPA;
6828 
6829 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
6830 		flags |= BNXT_FLAG_STRIP_VLAN;
6831 
6832 	if (features & NETIF_F_NTUPLE)
6833 		flags |= BNXT_FLAG_RFS;
6834 
6835 	changes = flags ^ bp->flags;
6836 	if (changes & BNXT_FLAG_TPA) {
6837 		update_tpa = true;
6838 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
6839 		    (flags & BNXT_FLAG_TPA) == 0)
6840 			re_init = true;
6841 	}
6842 
6843 	if (changes & ~BNXT_FLAG_TPA)
6844 		re_init = true;
6845 
6846 	if (flags != bp->flags) {
6847 		u32 old_flags = bp->flags;
6848 
6849 		bp->flags = flags;
6850 
6851 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6852 			if (update_tpa)
6853 				bnxt_set_ring_params(bp);
6854 			return rc;
6855 		}
6856 
6857 		if (re_init) {
6858 			bnxt_close_nic(bp, false, false);
6859 			if (update_tpa)
6860 				bnxt_set_ring_params(bp);
6861 
6862 			return bnxt_open_nic(bp, false, false);
6863 		}
6864 		if (update_tpa) {
6865 			rc = bnxt_set_tpa(bp,
6866 					  (flags & BNXT_FLAG_TPA) ?
6867 					  true : false);
6868 			if (rc)
6869 				bp->flags = old_flags;
6870 		}
6871 	}
6872 	return rc;
6873 }
6874 
6875 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
6876 {
6877 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
6878 	int i = bnapi->index;
6879 
6880 	if (!txr)
6881 		return;
6882 
6883 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
6884 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
6885 		    txr->tx_cons);
6886 }
6887 
6888 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
6889 {
6890 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
6891 	int i = bnapi->index;
6892 
6893 	if (!rxr)
6894 		return;
6895 
6896 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
6897 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
6898 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
6899 		    rxr->rx_sw_agg_prod);
6900 }
6901 
6902 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
6903 {
6904 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6905 	int i = bnapi->index;
6906 
6907 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
6908 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
6909 }
6910 
6911 static void bnxt_dbg_dump_states(struct bnxt *bp)
6912 {
6913 	int i;
6914 	struct bnxt_napi *bnapi;
6915 
6916 	for (i = 0; i < bp->cp_nr_rings; i++) {
6917 		bnapi = bp->bnapi[i];
6918 		if (netif_msg_drv(bp)) {
6919 			bnxt_dump_tx_sw_state(bnapi);
6920 			bnxt_dump_rx_sw_state(bnapi);
6921 			bnxt_dump_cp_sw_state(bnapi);
6922 		}
6923 	}
6924 }
6925 
6926 static void bnxt_reset_task(struct bnxt *bp, bool silent)
6927 {
6928 	if (!silent)
6929 		bnxt_dbg_dump_states(bp);
6930 	if (netif_running(bp->dev)) {
6931 		int rc;
6932 
6933 		if (!silent)
6934 			bnxt_ulp_stop(bp);
6935 		bnxt_close_nic(bp, false, false);
6936 		rc = bnxt_open_nic(bp, false, false);
6937 		if (!silent && !rc)
6938 			bnxt_ulp_start(bp);
6939 	}
6940 }
6941 
6942 static void bnxt_tx_timeout(struct net_device *dev)
6943 {
6944 	struct bnxt *bp = netdev_priv(dev);
6945 
6946 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
6947 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
6948 	bnxt_queue_sp_work(bp);
6949 }
6950 
6951 #ifdef CONFIG_NET_POLL_CONTROLLER
6952 static void bnxt_poll_controller(struct net_device *dev)
6953 {
6954 	struct bnxt *bp = netdev_priv(dev);
6955 	int i;
6956 
6957 	/* Only process tx rings/combined rings in netpoll mode. */
6958 	for (i = 0; i < bp->tx_nr_rings; i++) {
6959 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
6960 
6961 		napi_schedule(&txr->bnapi->napi);
6962 	}
6963 }
6964 #endif
6965 
6966 static void bnxt_timer(unsigned long data)
6967 {
6968 	struct bnxt *bp = (struct bnxt *)data;
6969 	struct net_device *dev = bp->dev;
6970 
6971 	if (!netif_running(dev))
6972 		return;
6973 
6974 	if (atomic_read(&bp->intr_sem) != 0)
6975 		goto bnxt_restart_timer;
6976 
6977 	if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS) &&
6978 	    bp->stats_coal_ticks) {
6979 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
6980 		bnxt_queue_sp_work(bp);
6981 	}
6982 
6983 	if (bnxt_tc_flower_enabled(bp)) {
6984 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
6985 		bnxt_queue_sp_work(bp);
6986 	}
6987 bnxt_restart_timer:
6988 	mod_timer(&bp->timer, jiffies + bp->current_interval);
6989 }
6990 
6991 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
6992 {
6993 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
6994 	 * set.  If the device is being closed, bnxt_close() may be holding
6995 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
6996 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
6997 	 */
6998 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6999 	rtnl_lock();
7000 }
7001 
7002 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
7003 {
7004 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7005 	rtnl_unlock();
7006 }
7007 
7008 /* Only called from bnxt_sp_task() */
7009 static void bnxt_reset(struct bnxt *bp, bool silent)
7010 {
7011 	bnxt_rtnl_lock_sp(bp);
7012 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
7013 		bnxt_reset_task(bp, silent);
7014 	bnxt_rtnl_unlock_sp(bp);
7015 }
7016 
7017 static void bnxt_cfg_ntp_filters(struct bnxt *);
7018 
7019 static void bnxt_sp_task(struct work_struct *work)
7020 {
7021 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
7022 
7023 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7024 	smp_mb__after_atomic();
7025 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
7026 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7027 		return;
7028 	}
7029 
7030 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
7031 		bnxt_cfg_rx_mode(bp);
7032 
7033 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
7034 		bnxt_cfg_ntp_filters(bp);
7035 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
7036 		bnxt_hwrm_exec_fwd_req(bp);
7037 	if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
7038 		bnxt_hwrm_tunnel_dst_port_alloc(
7039 			bp, bp->vxlan_port,
7040 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7041 	}
7042 	if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
7043 		bnxt_hwrm_tunnel_dst_port_free(
7044 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7045 	}
7046 	if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
7047 		bnxt_hwrm_tunnel_dst_port_alloc(
7048 			bp, bp->nge_port,
7049 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7050 	}
7051 	if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
7052 		bnxt_hwrm_tunnel_dst_port_free(
7053 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7054 	}
7055 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event))
7056 		bnxt_hwrm_port_qstats(bp);
7057 
7058 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
7059 		int rc;
7060 
7061 		mutex_lock(&bp->link_lock);
7062 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
7063 				       &bp->sp_event))
7064 			bnxt_hwrm_phy_qcaps(bp);
7065 
7066 		rc = bnxt_update_link(bp, true);
7067 		mutex_unlock(&bp->link_lock);
7068 		if (rc)
7069 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
7070 				   rc);
7071 	}
7072 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
7073 		mutex_lock(&bp->link_lock);
7074 		bnxt_get_port_module_status(bp);
7075 		mutex_unlock(&bp->link_lock);
7076 	}
7077 
7078 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
7079 		bnxt_tc_flow_stats_work(bp);
7080 
7081 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
7082 	 * must be the last functions to be called before exiting.
7083 	 */
7084 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
7085 		bnxt_reset(bp, false);
7086 
7087 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
7088 		bnxt_reset(bp, true);
7089 
7090 	smp_mb__before_atomic();
7091 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7092 }
7093 
7094 /* Under rtnl_lock */
7095 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
7096 		     int tx_xdp)
7097 {
7098 	int max_rx, max_tx, tx_sets = 1;
7099 	int tx_rings_needed;
7100 	int rc;
7101 
7102 	if (tcs)
7103 		tx_sets = tcs;
7104 
7105 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
7106 	if (rc)
7107 		return rc;
7108 
7109 	if (max_rx < rx)
7110 		return -ENOMEM;
7111 
7112 	tx_rings_needed = tx * tx_sets + tx_xdp;
7113 	if (max_tx < tx_rings_needed)
7114 		return -ENOMEM;
7115 
7116 	return bnxt_hwrm_check_tx_rings(bp, tx_rings_needed);
7117 }
7118 
7119 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
7120 {
7121 	if (bp->bar2) {
7122 		pci_iounmap(pdev, bp->bar2);
7123 		bp->bar2 = NULL;
7124 	}
7125 
7126 	if (bp->bar1) {
7127 		pci_iounmap(pdev, bp->bar1);
7128 		bp->bar1 = NULL;
7129 	}
7130 
7131 	if (bp->bar0) {
7132 		pci_iounmap(pdev, bp->bar0);
7133 		bp->bar0 = NULL;
7134 	}
7135 }
7136 
7137 static void bnxt_cleanup_pci(struct bnxt *bp)
7138 {
7139 	bnxt_unmap_bars(bp, bp->pdev);
7140 	pci_release_regions(bp->pdev);
7141 	pci_disable_device(bp->pdev);
7142 }
7143 
7144 static void bnxt_init_dflt_coal(struct bnxt *bp)
7145 {
7146 	struct bnxt_coal *coal;
7147 
7148 	/* Tick values in micro seconds.
7149 	 * 1 coal_buf x bufs_per_record = 1 completion record.
7150 	 */
7151 	coal = &bp->rx_coal;
7152 	coal->coal_ticks = 14;
7153 	coal->coal_bufs = 30;
7154 	coal->coal_ticks_irq = 1;
7155 	coal->coal_bufs_irq = 2;
7156 	coal->idle_thresh = 25;
7157 	coal->bufs_per_record = 2;
7158 	coal->budget = 64;		/* NAPI budget */
7159 
7160 	coal = &bp->tx_coal;
7161 	coal->coal_ticks = 28;
7162 	coal->coal_bufs = 30;
7163 	coal->coal_ticks_irq = 2;
7164 	coal->coal_bufs_irq = 2;
7165 	coal->bufs_per_record = 1;
7166 
7167 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
7168 }
7169 
7170 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
7171 {
7172 	int rc;
7173 	struct bnxt *bp = netdev_priv(dev);
7174 
7175 	SET_NETDEV_DEV(dev, &pdev->dev);
7176 
7177 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
7178 	rc = pci_enable_device(pdev);
7179 	if (rc) {
7180 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
7181 		goto init_err;
7182 	}
7183 
7184 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7185 		dev_err(&pdev->dev,
7186 			"Cannot find PCI device base address, aborting\n");
7187 		rc = -ENODEV;
7188 		goto init_err_disable;
7189 	}
7190 
7191 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7192 	if (rc) {
7193 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
7194 		goto init_err_disable;
7195 	}
7196 
7197 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
7198 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
7199 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
7200 		goto init_err_disable;
7201 	}
7202 
7203 	pci_set_master(pdev);
7204 
7205 	bp->dev = dev;
7206 	bp->pdev = pdev;
7207 
7208 	bp->bar0 = pci_ioremap_bar(pdev, 0);
7209 	if (!bp->bar0) {
7210 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
7211 		rc = -ENOMEM;
7212 		goto init_err_release;
7213 	}
7214 
7215 	bp->bar1 = pci_ioremap_bar(pdev, 2);
7216 	if (!bp->bar1) {
7217 		dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
7218 		rc = -ENOMEM;
7219 		goto init_err_release;
7220 	}
7221 
7222 	bp->bar2 = pci_ioremap_bar(pdev, 4);
7223 	if (!bp->bar2) {
7224 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
7225 		rc = -ENOMEM;
7226 		goto init_err_release;
7227 	}
7228 
7229 	pci_enable_pcie_error_reporting(pdev);
7230 
7231 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
7232 
7233 	spin_lock_init(&bp->ntp_fltr_lock);
7234 
7235 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
7236 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
7237 
7238 	bnxt_init_dflt_coal(bp);
7239 
7240 	setup_timer(&bp->timer, bnxt_timer, (unsigned long)bp);
7241 	bp->current_interval = BNXT_TIMER_INTERVAL;
7242 
7243 	clear_bit(BNXT_STATE_OPEN, &bp->state);
7244 	return 0;
7245 
7246 init_err_release:
7247 	bnxt_unmap_bars(bp, pdev);
7248 	pci_release_regions(pdev);
7249 
7250 init_err_disable:
7251 	pci_disable_device(pdev);
7252 
7253 init_err:
7254 	return rc;
7255 }
7256 
7257 /* rtnl_lock held */
7258 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
7259 {
7260 	struct sockaddr *addr = p;
7261 	struct bnxt *bp = netdev_priv(dev);
7262 	int rc = 0;
7263 
7264 	if (!is_valid_ether_addr(addr->sa_data))
7265 		return -EADDRNOTAVAIL;
7266 
7267 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
7268 		return 0;
7269 
7270 	rc = bnxt_approve_mac(bp, addr->sa_data);
7271 	if (rc)
7272 		return rc;
7273 
7274 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7275 	if (netif_running(dev)) {
7276 		bnxt_close_nic(bp, false, false);
7277 		rc = bnxt_open_nic(bp, false, false);
7278 	}
7279 
7280 	return rc;
7281 }
7282 
7283 /* rtnl_lock held */
7284 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
7285 {
7286 	struct bnxt *bp = netdev_priv(dev);
7287 
7288 	if (netif_running(dev))
7289 		bnxt_close_nic(bp, false, false);
7290 
7291 	dev->mtu = new_mtu;
7292 	bnxt_set_ring_params(bp);
7293 
7294 	if (netif_running(dev))
7295 		return bnxt_open_nic(bp, false, false);
7296 
7297 	return 0;
7298 }
7299 
7300 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
7301 {
7302 	struct bnxt *bp = netdev_priv(dev);
7303 	bool sh = false;
7304 	int rc;
7305 
7306 	if (tc > bp->max_tc) {
7307 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
7308 			   tc, bp->max_tc);
7309 		return -EINVAL;
7310 	}
7311 
7312 	if (netdev_get_num_tc(dev) == tc)
7313 		return 0;
7314 
7315 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7316 		sh = true;
7317 
7318 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
7319 			      sh, tc, bp->tx_nr_rings_xdp);
7320 	if (rc)
7321 		return rc;
7322 
7323 	/* Needs to close the device and do hw resource re-allocations */
7324 	if (netif_running(bp->dev))
7325 		bnxt_close_nic(bp, true, false);
7326 
7327 	if (tc) {
7328 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
7329 		netdev_set_num_tc(dev, tc);
7330 	} else {
7331 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
7332 		netdev_reset_tc(dev);
7333 	}
7334 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
7335 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7336 			       bp->tx_nr_rings + bp->rx_nr_rings;
7337 	bp->num_stat_ctxs = bp->cp_nr_rings;
7338 
7339 	if (netif_running(bp->dev))
7340 		return bnxt_open_nic(bp, true, false);
7341 
7342 	return 0;
7343 }
7344 
7345 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
7346 				  void *cb_priv)
7347 {
7348 	struct bnxt *bp = cb_priv;
7349 
7350 	if (!bnxt_tc_flower_enabled(bp))
7351 		return -EOPNOTSUPP;
7352 
7353 	switch (type) {
7354 	case TC_SETUP_CLSFLOWER:
7355 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
7356 	default:
7357 		return -EOPNOTSUPP;
7358 	}
7359 }
7360 
7361 static int bnxt_setup_tc_block(struct net_device *dev,
7362 			       struct tc_block_offload *f)
7363 {
7364 	struct bnxt *bp = netdev_priv(dev);
7365 
7366 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
7367 		return -EOPNOTSUPP;
7368 
7369 	switch (f->command) {
7370 	case TC_BLOCK_BIND:
7371 		return tcf_block_cb_register(f->block, bnxt_setup_tc_block_cb,
7372 					     bp, bp);
7373 	case TC_BLOCK_UNBIND:
7374 		tcf_block_cb_unregister(f->block, bnxt_setup_tc_block_cb, bp);
7375 		return 0;
7376 	default:
7377 		return -EOPNOTSUPP;
7378 	}
7379 }
7380 
7381 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
7382 			 void *type_data)
7383 {
7384 	switch (type) {
7385 	case TC_SETUP_BLOCK:
7386 		return bnxt_setup_tc_block(dev, type_data);
7387 	case TC_SETUP_MQPRIO: {
7388 		struct tc_mqprio_qopt *mqprio = type_data;
7389 
7390 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
7391 
7392 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
7393 	}
7394 	default:
7395 		return -EOPNOTSUPP;
7396 	}
7397 }
7398 
7399 #ifdef CONFIG_RFS_ACCEL
7400 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
7401 			    struct bnxt_ntuple_filter *f2)
7402 {
7403 	struct flow_keys *keys1 = &f1->fkeys;
7404 	struct flow_keys *keys2 = &f2->fkeys;
7405 
7406 	if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
7407 	    keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
7408 	    keys1->ports.ports == keys2->ports.ports &&
7409 	    keys1->basic.ip_proto == keys2->basic.ip_proto &&
7410 	    keys1->basic.n_proto == keys2->basic.n_proto &&
7411 	    keys1->control.flags == keys2->control.flags &&
7412 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
7413 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
7414 		return true;
7415 
7416 	return false;
7417 }
7418 
7419 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
7420 			      u16 rxq_index, u32 flow_id)
7421 {
7422 	struct bnxt *bp = netdev_priv(dev);
7423 	struct bnxt_ntuple_filter *fltr, *new_fltr;
7424 	struct flow_keys *fkeys;
7425 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
7426 	int rc = 0, idx, bit_id, l2_idx = 0;
7427 	struct hlist_head *head;
7428 
7429 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
7430 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7431 		int off = 0, j;
7432 
7433 		netif_addr_lock_bh(dev);
7434 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
7435 			if (ether_addr_equal(eth->h_dest,
7436 					     vnic->uc_list + off)) {
7437 				l2_idx = j + 1;
7438 				break;
7439 			}
7440 		}
7441 		netif_addr_unlock_bh(dev);
7442 		if (!l2_idx)
7443 			return -EINVAL;
7444 	}
7445 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
7446 	if (!new_fltr)
7447 		return -ENOMEM;
7448 
7449 	fkeys = &new_fltr->fkeys;
7450 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
7451 		rc = -EPROTONOSUPPORT;
7452 		goto err_free;
7453 	}
7454 
7455 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
7456 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
7457 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
7458 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
7459 		rc = -EPROTONOSUPPORT;
7460 		goto err_free;
7461 	}
7462 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
7463 	    bp->hwrm_spec_code < 0x10601) {
7464 		rc = -EPROTONOSUPPORT;
7465 		goto err_free;
7466 	}
7467 	if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
7468 	    bp->hwrm_spec_code < 0x10601) {
7469 		rc = -EPROTONOSUPPORT;
7470 		goto err_free;
7471 	}
7472 
7473 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
7474 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
7475 
7476 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
7477 	head = &bp->ntp_fltr_hash_tbl[idx];
7478 	rcu_read_lock();
7479 	hlist_for_each_entry_rcu(fltr, head, hash) {
7480 		if (bnxt_fltr_match(fltr, new_fltr)) {
7481 			rcu_read_unlock();
7482 			rc = 0;
7483 			goto err_free;
7484 		}
7485 	}
7486 	rcu_read_unlock();
7487 
7488 	spin_lock_bh(&bp->ntp_fltr_lock);
7489 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
7490 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
7491 	if (bit_id < 0) {
7492 		spin_unlock_bh(&bp->ntp_fltr_lock);
7493 		rc = -ENOMEM;
7494 		goto err_free;
7495 	}
7496 
7497 	new_fltr->sw_id = (u16)bit_id;
7498 	new_fltr->flow_id = flow_id;
7499 	new_fltr->l2_fltr_idx = l2_idx;
7500 	new_fltr->rxq = rxq_index;
7501 	hlist_add_head_rcu(&new_fltr->hash, head);
7502 	bp->ntp_fltr_count++;
7503 	spin_unlock_bh(&bp->ntp_fltr_lock);
7504 
7505 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
7506 	bnxt_queue_sp_work(bp);
7507 
7508 	return new_fltr->sw_id;
7509 
7510 err_free:
7511 	kfree(new_fltr);
7512 	return rc;
7513 }
7514 
7515 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
7516 {
7517 	int i;
7518 
7519 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
7520 		struct hlist_head *head;
7521 		struct hlist_node *tmp;
7522 		struct bnxt_ntuple_filter *fltr;
7523 		int rc;
7524 
7525 		head = &bp->ntp_fltr_hash_tbl[i];
7526 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
7527 			bool del = false;
7528 
7529 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
7530 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
7531 							fltr->flow_id,
7532 							fltr->sw_id)) {
7533 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
7534 									 fltr);
7535 					del = true;
7536 				}
7537 			} else {
7538 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
7539 								       fltr);
7540 				if (rc)
7541 					del = true;
7542 				else
7543 					set_bit(BNXT_FLTR_VALID, &fltr->state);
7544 			}
7545 
7546 			if (del) {
7547 				spin_lock_bh(&bp->ntp_fltr_lock);
7548 				hlist_del_rcu(&fltr->hash);
7549 				bp->ntp_fltr_count--;
7550 				spin_unlock_bh(&bp->ntp_fltr_lock);
7551 				synchronize_rcu();
7552 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
7553 				kfree(fltr);
7554 			}
7555 		}
7556 	}
7557 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
7558 		netdev_info(bp->dev, "Receive PF driver unload event!");
7559 }
7560 
7561 #else
7562 
7563 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
7564 {
7565 }
7566 
7567 #endif /* CONFIG_RFS_ACCEL */
7568 
7569 static void bnxt_udp_tunnel_add(struct net_device *dev,
7570 				struct udp_tunnel_info *ti)
7571 {
7572 	struct bnxt *bp = netdev_priv(dev);
7573 
7574 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
7575 		return;
7576 
7577 	if (!netif_running(dev))
7578 		return;
7579 
7580 	switch (ti->type) {
7581 	case UDP_TUNNEL_TYPE_VXLAN:
7582 		if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
7583 			return;
7584 
7585 		bp->vxlan_port_cnt++;
7586 		if (bp->vxlan_port_cnt == 1) {
7587 			bp->vxlan_port = ti->port;
7588 			set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
7589 			bnxt_queue_sp_work(bp);
7590 		}
7591 		break;
7592 	case UDP_TUNNEL_TYPE_GENEVE:
7593 		if (bp->nge_port_cnt && bp->nge_port != ti->port)
7594 			return;
7595 
7596 		bp->nge_port_cnt++;
7597 		if (bp->nge_port_cnt == 1) {
7598 			bp->nge_port = ti->port;
7599 			set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
7600 		}
7601 		break;
7602 	default:
7603 		return;
7604 	}
7605 
7606 	bnxt_queue_sp_work(bp);
7607 }
7608 
7609 static void bnxt_udp_tunnel_del(struct net_device *dev,
7610 				struct udp_tunnel_info *ti)
7611 {
7612 	struct bnxt *bp = netdev_priv(dev);
7613 
7614 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
7615 		return;
7616 
7617 	if (!netif_running(dev))
7618 		return;
7619 
7620 	switch (ti->type) {
7621 	case UDP_TUNNEL_TYPE_VXLAN:
7622 		if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
7623 			return;
7624 		bp->vxlan_port_cnt--;
7625 
7626 		if (bp->vxlan_port_cnt != 0)
7627 			return;
7628 
7629 		set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
7630 		break;
7631 	case UDP_TUNNEL_TYPE_GENEVE:
7632 		if (!bp->nge_port_cnt || bp->nge_port != ti->port)
7633 			return;
7634 		bp->nge_port_cnt--;
7635 
7636 		if (bp->nge_port_cnt != 0)
7637 			return;
7638 
7639 		set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
7640 		break;
7641 	default:
7642 		return;
7643 	}
7644 
7645 	bnxt_queue_sp_work(bp);
7646 }
7647 
7648 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7649 			       struct net_device *dev, u32 filter_mask,
7650 			       int nlflags)
7651 {
7652 	struct bnxt *bp = netdev_priv(dev);
7653 
7654 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
7655 				       nlflags, filter_mask, NULL);
7656 }
7657 
7658 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7659 			       u16 flags)
7660 {
7661 	struct bnxt *bp = netdev_priv(dev);
7662 	struct nlattr *attr, *br_spec;
7663 	int rem, rc = 0;
7664 
7665 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
7666 		return -EOPNOTSUPP;
7667 
7668 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7669 	if (!br_spec)
7670 		return -EINVAL;
7671 
7672 	nla_for_each_nested(attr, br_spec, rem) {
7673 		u16 mode;
7674 
7675 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
7676 			continue;
7677 
7678 		if (nla_len(attr) < sizeof(mode))
7679 			return -EINVAL;
7680 
7681 		mode = nla_get_u16(attr);
7682 		if (mode == bp->br_mode)
7683 			break;
7684 
7685 		rc = bnxt_hwrm_set_br_mode(bp, mode);
7686 		if (!rc)
7687 			bp->br_mode = mode;
7688 		break;
7689 	}
7690 	return rc;
7691 }
7692 
7693 static int bnxt_get_phys_port_name(struct net_device *dev, char *buf,
7694 				   size_t len)
7695 {
7696 	struct bnxt *bp = netdev_priv(dev);
7697 	int rc;
7698 
7699 	/* The PF and it's VF-reps only support the switchdev framework */
7700 	if (!BNXT_PF(bp))
7701 		return -EOPNOTSUPP;
7702 
7703 	rc = snprintf(buf, len, "p%d", bp->pf.port_id);
7704 
7705 	if (rc >= len)
7706 		return -EOPNOTSUPP;
7707 	return 0;
7708 }
7709 
7710 int bnxt_port_attr_get(struct bnxt *bp, struct switchdev_attr *attr)
7711 {
7712 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
7713 		return -EOPNOTSUPP;
7714 
7715 	/* The PF and it's VF-reps only support the switchdev framework */
7716 	if (!BNXT_PF(bp))
7717 		return -EOPNOTSUPP;
7718 
7719 	switch (attr->id) {
7720 	case SWITCHDEV_ATTR_ID_PORT_PARENT_ID:
7721 		/* In SRIOV each PF-pool (PF + child VFs) serves as a
7722 		 * switching domain, the PF's perm mac-addr can be used
7723 		 * as the unique parent-id
7724 		 */
7725 		attr->u.ppid.id_len = ETH_ALEN;
7726 		ether_addr_copy(attr->u.ppid.id, bp->pf.mac_addr);
7727 		break;
7728 	default:
7729 		return -EOPNOTSUPP;
7730 	}
7731 	return 0;
7732 }
7733 
7734 static int bnxt_swdev_port_attr_get(struct net_device *dev,
7735 				    struct switchdev_attr *attr)
7736 {
7737 	return bnxt_port_attr_get(netdev_priv(dev), attr);
7738 }
7739 
7740 static const struct switchdev_ops bnxt_switchdev_ops = {
7741 	.switchdev_port_attr_get	= bnxt_swdev_port_attr_get
7742 };
7743 
7744 static const struct net_device_ops bnxt_netdev_ops = {
7745 	.ndo_open		= bnxt_open,
7746 	.ndo_start_xmit		= bnxt_start_xmit,
7747 	.ndo_stop		= bnxt_close,
7748 	.ndo_get_stats64	= bnxt_get_stats64,
7749 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
7750 	.ndo_do_ioctl		= bnxt_ioctl,
7751 	.ndo_validate_addr	= eth_validate_addr,
7752 	.ndo_set_mac_address	= bnxt_change_mac_addr,
7753 	.ndo_change_mtu		= bnxt_change_mtu,
7754 	.ndo_fix_features	= bnxt_fix_features,
7755 	.ndo_set_features	= bnxt_set_features,
7756 	.ndo_tx_timeout		= bnxt_tx_timeout,
7757 #ifdef CONFIG_BNXT_SRIOV
7758 	.ndo_get_vf_config	= bnxt_get_vf_config,
7759 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
7760 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
7761 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
7762 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
7763 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
7764 #endif
7765 #ifdef CONFIG_NET_POLL_CONTROLLER
7766 	.ndo_poll_controller	= bnxt_poll_controller,
7767 #endif
7768 	.ndo_setup_tc           = bnxt_setup_tc,
7769 #ifdef CONFIG_RFS_ACCEL
7770 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
7771 #endif
7772 	.ndo_udp_tunnel_add	= bnxt_udp_tunnel_add,
7773 	.ndo_udp_tunnel_del	= bnxt_udp_tunnel_del,
7774 	.ndo_xdp		= bnxt_xdp,
7775 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
7776 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
7777 	.ndo_get_phys_port_name = bnxt_get_phys_port_name
7778 };
7779 
7780 static void bnxt_remove_one(struct pci_dev *pdev)
7781 {
7782 	struct net_device *dev = pci_get_drvdata(pdev);
7783 	struct bnxt *bp = netdev_priv(dev);
7784 
7785 	if (BNXT_PF(bp)) {
7786 		bnxt_sriov_disable(bp);
7787 		bnxt_dl_unregister(bp);
7788 	}
7789 
7790 	pci_disable_pcie_error_reporting(pdev);
7791 	unregister_netdev(dev);
7792 	bnxt_shutdown_tc(bp);
7793 	bnxt_cancel_sp_work(bp);
7794 	bp->sp_event = 0;
7795 
7796 	bnxt_clear_int_mode(bp);
7797 	bnxt_hwrm_func_drv_unrgtr(bp);
7798 	bnxt_free_hwrm_resources(bp);
7799 	bnxt_free_hwrm_short_cmd_req(bp);
7800 	bnxt_ethtool_free(bp);
7801 	bnxt_dcb_free(bp);
7802 	kfree(bp->edev);
7803 	bp->edev = NULL;
7804 	if (bp->xdp_prog)
7805 		bpf_prog_put(bp->xdp_prog);
7806 	bnxt_cleanup_pci(bp);
7807 	free_netdev(dev);
7808 }
7809 
7810 static int bnxt_probe_phy(struct bnxt *bp)
7811 {
7812 	int rc = 0;
7813 	struct bnxt_link_info *link_info = &bp->link_info;
7814 
7815 	rc = bnxt_hwrm_phy_qcaps(bp);
7816 	if (rc) {
7817 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
7818 			   rc);
7819 		return rc;
7820 	}
7821 	mutex_init(&bp->link_lock);
7822 
7823 	rc = bnxt_update_link(bp, false);
7824 	if (rc) {
7825 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
7826 			   rc);
7827 		return rc;
7828 	}
7829 
7830 	/* Older firmware does not have supported_auto_speeds, so assume
7831 	 * that all supported speeds can be autonegotiated.
7832 	 */
7833 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
7834 		link_info->support_auto_speeds = link_info->support_speeds;
7835 
7836 	/*initialize the ethool setting copy with NVM settings */
7837 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
7838 		link_info->autoneg = BNXT_AUTONEG_SPEED;
7839 		if (bp->hwrm_spec_code >= 0x10201) {
7840 			if (link_info->auto_pause_setting &
7841 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
7842 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
7843 		} else {
7844 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
7845 		}
7846 		link_info->advertising = link_info->auto_link_speeds;
7847 	} else {
7848 		link_info->req_link_speed = link_info->force_link_speed;
7849 		link_info->req_duplex = link_info->duplex_setting;
7850 	}
7851 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
7852 		link_info->req_flow_ctrl =
7853 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
7854 	else
7855 		link_info->req_flow_ctrl = link_info->force_pause_setting;
7856 	return rc;
7857 }
7858 
7859 static int bnxt_get_max_irq(struct pci_dev *pdev)
7860 {
7861 	u16 ctrl;
7862 
7863 	if (!pdev->msix_cap)
7864 		return 1;
7865 
7866 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
7867 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
7868 }
7869 
7870 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
7871 				int *max_cp)
7872 {
7873 	int max_ring_grps = 0;
7874 
7875 #ifdef CONFIG_BNXT_SRIOV
7876 	if (!BNXT_PF(bp)) {
7877 		*max_tx = bp->vf.max_tx_rings;
7878 		*max_rx = bp->vf.max_rx_rings;
7879 		*max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
7880 		*max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
7881 		max_ring_grps = bp->vf.max_hw_ring_grps;
7882 	} else
7883 #endif
7884 	{
7885 		*max_tx = bp->pf.max_tx_rings;
7886 		*max_rx = bp->pf.max_rx_rings;
7887 		*max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
7888 		*max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
7889 		max_ring_grps = bp->pf.max_hw_ring_grps;
7890 	}
7891 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
7892 		*max_cp -= 1;
7893 		*max_rx -= 2;
7894 	}
7895 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7896 		*max_rx >>= 1;
7897 	*max_rx = min_t(int, *max_rx, max_ring_grps);
7898 }
7899 
7900 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
7901 {
7902 	int rx, tx, cp;
7903 
7904 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
7905 	if (!rx || !tx || !cp)
7906 		return -ENOMEM;
7907 
7908 	*max_rx = rx;
7909 	*max_tx = tx;
7910 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
7911 }
7912 
7913 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
7914 			       bool shared)
7915 {
7916 	int rc;
7917 
7918 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
7919 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
7920 		/* Not enough rings, try disabling agg rings. */
7921 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
7922 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
7923 		if (rc)
7924 			return rc;
7925 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
7926 		bp->dev->hw_features &= ~NETIF_F_LRO;
7927 		bp->dev->features &= ~NETIF_F_LRO;
7928 		bnxt_set_ring_params(bp);
7929 	}
7930 
7931 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
7932 		int max_cp, max_stat, max_irq;
7933 
7934 		/* Reserve minimum resources for RoCE */
7935 		max_cp = bnxt_get_max_func_cp_rings(bp);
7936 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
7937 		max_irq = bnxt_get_max_func_irqs(bp);
7938 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
7939 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
7940 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
7941 			return 0;
7942 
7943 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
7944 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
7945 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
7946 		max_cp = min_t(int, max_cp, max_irq);
7947 		max_cp = min_t(int, max_cp, max_stat);
7948 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
7949 		if (rc)
7950 			rc = 0;
7951 	}
7952 	return rc;
7953 }
7954 
7955 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
7956 {
7957 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
7958 
7959 	if (sh)
7960 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
7961 	dflt_rings = netif_get_num_default_rss_queues();
7962 	/* Reduce default rings to reduce memory usage on multi-port cards */
7963 	if (bp->port_count > 1)
7964 		dflt_rings = min_t(int, dflt_rings, 4);
7965 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
7966 	if (rc)
7967 		return rc;
7968 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
7969 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
7970 
7971 	rc = bnxt_hwrm_reserve_tx_rings(bp, &bp->tx_nr_rings_per_tc);
7972 	if (rc)
7973 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
7974 
7975 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
7976 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7977 			       bp->tx_nr_rings + bp->rx_nr_rings;
7978 	bp->num_stat_ctxs = bp->cp_nr_rings;
7979 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7980 		bp->rx_nr_rings++;
7981 		bp->cp_nr_rings++;
7982 	}
7983 	return rc;
7984 }
7985 
7986 void bnxt_restore_pf_fw_resources(struct bnxt *bp)
7987 {
7988 	ASSERT_RTNL();
7989 	bnxt_hwrm_func_qcaps(bp);
7990 	bnxt_subtract_ulp_resources(bp, BNXT_ROCE_ULP);
7991 }
7992 
7993 static int bnxt_init_mac_addr(struct bnxt *bp)
7994 {
7995 	int rc = 0;
7996 
7997 	if (BNXT_PF(bp)) {
7998 		memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
7999 	} else {
8000 #ifdef CONFIG_BNXT_SRIOV
8001 		struct bnxt_vf_info *vf = &bp->vf;
8002 
8003 		if (is_valid_ether_addr(vf->mac_addr)) {
8004 			/* overwrite netdev dev_adr with admin VF MAC */
8005 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
8006 		} else {
8007 			eth_hw_addr_random(bp->dev);
8008 			rc = bnxt_approve_mac(bp, bp->dev->dev_addr);
8009 		}
8010 #endif
8011 	}
8012 	return rc;
8013 }
8014 
8015 static void bnxt_parse_log_pcie_link(struct bnxt *bp)
8016 {
8017 	enum pcie_link_width width = PCIE_LNK_WIDTH_UNKNOWN;
8018 	enum pci_bus_speed speed = PCI_SPEED_UNKNOWN;
8019 
8020 	if (pcie_get_minimum_link(pci_physfn(bp->pdev), &speed, &width) ||
8021 	    speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN)
8022 		netdev_info(bp->dev, "Failed to determine PCIe Link Info\n");
8023 	else
8024 		netdev_info(bp->dev, "PCIe: Speed %s Width x%d\n",
8025 			    speed == PCIE_SPEED_2_5GT ? "2.5GT/s" :
8026 			    speed == PCIE_SPEED_5_0GT ? "5.0GT/s" :
8027 			    speed == PCIE_SPEED_8_0GT ? "8.0GT/s" :
8028 			    "Unknown", width);
8029 }
8030 
8031 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8032 {
8033 	static int version_printed;
8034 	struct net_device *dev;
8035 	struct bnxt *bp;
8036 	int rc, max_irqs;
8037 
8038 	if (pci_is_bridge(pdev))
8039 		return -ENODEV;
8040 
8041 	if (version_printed++ == 0)
8042 		pr_info("%s", version);
8043 
8044 	max_irqs = bnxt_get_max_irq(pdev);
8045 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
8046 	if (!dev)
8047 		return -ENOMEM;
8048 
8049 	bp = netdev_priv(dev);
8050 
8051 	if (bnxt_vf_pciid(ent->driver_data))
8052 		bp->flags |= BNXT_FLAG_VF;
8053 
8054 	if (pdev->msix_cap)
8055 		bp->flags |= BNXT_FLAG_MSIX_CAP;
8056 
8057 	rc = bnxt_init_board(pdev, dev);
8058 	if (rc < 0)
8059 		goto init_err_free;
8060 
8061 	dev->netdev_ops = &bnxt_netdev_ops;
8062 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
8063 	dev->ethtool_ops = &bnxt_ethtool_ops;
8064 	SWITCHDEV_SET_OPS(dev, &bnxt_switchdev_ops);
8065 	pci_set_drvdata(pdev, dev);
8066 
8067 	rc = bnxt_alloc_hwrm_resources(bp);
8068 	if (rc)
8069 		goto init_err_pci_clean;
8070 
8071 	mutex_init(&bp->hwrm_cmd_lock);
8072 	rc = bnxt_hwrm_ver_get(bp);
8073 	if (rc)
8074 		goto init_err_pci_clean;
8075 
8076 	if (bp->flags & BNXT_FLAG_SHORT_CMD) {
8077 		rc = bnxt_alloc_hwrm_short_cmd_req(bp);
8078 		if (rc)
8079 			goto init_err_pci_clean;
8080 	}
8081 
8082 	rc = bnxt_hwrm_func_reset(bp);
8083 	if (rc)
8084 		goto init_err_pci_clean;
8085 
8086 	bnxt_hwrm_fw_set_time(bp);
8087 
8088 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
8089 			   NETIF_F_TSO | NETIF_F_TSO6 |
8090 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
8091 			   NETIF_F_GSO_IPXIP4 |
8092 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
8093 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
8094 			   NETIF_F_RXCSUM | NETIF_F_GRO;
8095 
8096 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
8097 		dev->hw_features |= NETIF_F_LRO;
8098 
8099 	dev->hw_enc_features =
8100 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
8101 			NETIF_F_TSO | NETIF_F_TSO6 |
8102 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
8103 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
8104 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
8105 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
8106 				    NETIF_F_GSO_GRE_CSUM;
8107 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
8108 	dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
8109 			    NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
8110 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
8111 	dev->priv_flags |= IFF_UNICAST_FLT;
8112 
8113 #ifdef CONFIG_BNXT_SRIOV
8114 	init_waitqueue_head(&bp->sriov_cfg_wait);
8115 	mutex_init(&bp->sriov_lock);
8116 #endif
8117 	bp->gro_func = bnxt_gro_func_5730x;
8118 	if (BNXT_CHIP_P4_PLUS(bp))
8119 		bp->gro_func = bnxt_gro_func_5731x;
8120 	else
8121 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
8122 
8123 	rc = bnxt_hwrm_func_drv_rgtr(bp);
8124 	if (rc)
8125 		goto init_err_pci_clean;
8126 
8127 	rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
8128 	if (rc)
8129 		goto init_err_pci_clean;
8130 
8131 	bp->ulp_probe = bnxt_ulp_probe;
8132 
8133 	/* Get the MAX capabilities for this function */
8134 	rc = bnxt_hwrm_func_qcaps(bp);
8135 	if (rc) {
8136 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
8137 			   rc);
8138 		rc = -1;
8139 		goto init_err_pci_clean;
8140 	}
8141 	rc = bnxt_init_mac_addr(bp);
8142 	if (rc) {
8143 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
8144 		rc = -EADDRNOTAVAIL;
8145 		goto init_err_pci_clean;
8146 	}
8147 	rc = bnxt_hwrm_queue_qportcfg(bp);
8148 	if (rc) {
8149 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
8150 			   rc);
8151 		rc = -1;
8152 		goto init_err_pci_clean;
8153 	}
8154 
8155 	bnxt_hwrm_func_qcfg(bp);
8156 	bnxt_hwrm_port_led_qcaps(bp);
8157 	bnxt_ethtool_init(bp);
8158 	bnxt_dcb_init(bp);
8159 
8160 	/* MTU range: 60 - FW defined max */
8161 	dev->min_mtu = ETH_ZLEN;
8162 	dev->max_mtu = bp->max_mtu;
8163 
8164 	rc = bnxt_probe_phy(bp);
8165 	if (rc)
8166 		goto init_err_pci_clean;
8167 
8168 	bnxt_set_rx_skb_mode(bp, false);
8169 	bnxt_set_tpa_flags(bp);
8170 	bnxt_set_ring_params(bp);
8171 	bnxt_set_max_func_irqs(bp, max_irqs);
8172 	rc = bnxt_set_dflt_rings(bp, true);
8173 	if (rc) {
8174 		netdev_err(bp->dev, "Not enough rings available.\n");
8175 		rc = -ENOMEM;
8176 		goto init_err_pci_clean;
8177 	}
8178 
8179 	/* Default RSS hash cfg. */
8180 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
8181 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
8182 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
8183 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
8184 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
8185 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
8186 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
8187 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
8188 	}
8189 
8190 	bnxt_hwrm_vnic_qcaps(bp);
8191 	if (bnxt_rfs_supported(bp)) {
8192 		dev->hw_features |= NETIF_F_NTUPLE;
8193 		if (bnxt_rfs_capable(bp)) {
8194 			bp->flags |= BNXT_FLAG_RFS;
8195 			dev->features |= NETIF_F_NTUPLE;
8196 		}
8197 	}
8198 
8199 	if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
8200 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
8201 
8202 	rc = bnxt_init_int_mode(bp);
8203 	if (rc)
8204 		goto init_err_pci_clean;
8205 
8206 	bnxt_get_wol_settings(bp);
8207 	if (bp->flags & BNXT_FLAG_WOL_CAP)
8208 		device_set_wakeup_enable(&pdev->dev, bp->wol);
8209 	else
8210 		device_set_wakeup_capable(&pdev->dev, false);
8211 
8212 	if (BNXT_PF(bp)) {
8213 		if (!bnxt_pf_wq) {
8214 			bnxt_pf_wq =
8215 				create_singlethread_workqueue("bnxt_pf_wq");
8216 			if (!bnxt_pf_wq) {
8217 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
8218 				goto init_err_pci_clean;
8219 			}
8220 		}
8221 		bnxt_init_tc(bp);
8222 	}
8223 
8224 	rc = register_netdev(dev);
8225 	if (rc)
8226 		goto init_err_cleanup_tc;
8227 
8228 	if (BNXT_PF(bp))
8229 		bnxt_dl_register(bp);
8230 
8231 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
8232 		    board_info[ent->driver_data].name,
8233 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
8234 
8235 	bnxt_parse_log_pcie_link(bp);
8236 
8237 	return 0;
8238 
8239 init_err_cleanup_tc:
8240 	bnxt_shutdown_tc(bp);
8241 	bnxt_clear_int_mode(bp);
8242 
8243 init_err_pci_clean:
8244 	bnxt_cleanup_pci(bp);
8245 
8246 init_err_free:
8247 	free_netdev(dev);
8248 	return rc;
8249 }
8250 
8251 static void bnxt_shutdown(struct pci_dev *pdev)
8252 {
8253 	struct net_device *dev = pci_get_drvdata(pdev);
8254 	struct bnxt *bp;
8255 
8256 	if (!dev)
8257 		return;
8258 
8259 	rtnl_lock();
8260 	bp = netdev_priv(dev);
8261 	if (!bp)
8262 		goto shutdown_exit;
8263 
8264 	if (netif_running(dev))
8265 		dev_close(dev);
8266 
8267 	if (system_state == SYSTEM_POWER_OFF) {
8268 		bnxt_ulp_shutdown(bp);
8269 		bnxt_clear_int_mode(bp);
8270 		pci_wake_from_d3(pdev, bp->wol);
8271 		pci_set_power_state(pdev, PCI_D3hot);
8272 	}
8273 
8274 shutdown_exit:
8275 	rtnl_unlock();
8276 }
8277 
8278 #ifdef CONFIG_PM_SLEEP
8279 static int bnxt_suspend(struct device *device)
8280 {
8281 	struct pci_dev *pdev = to_pci_dev(device);
8282 	struct net_device *dev = pci_get_drvdata(pdev);
8283 	struct bnxt *bp = netdev_priv(dev);
8284 	int rc = 0;
8285 
8286 	rtnl_lock();
8287 	if (netif_running(dev)) {
8288 		netif_device_detach(dev);
8289 		rc = bnxt_close(dev);
8290 	}
8291 	bnxt_hwrm_func_drv_unrgtr(bp);
8292 	rtnl_unlock();
8293 	return rc;
8294 }
8295 
8296 static int bnxt_resume(struct device *device)
8297 {
8298 	struct pci_dev *pdev = to_pci_dev(device);
8299 	struct net_device *dev = pci_get_drvdata(pdev);
8300 	struct bnxt *bp = netdev_priv(dev);
8301 	int rc = 0;
8302 
8303 	rtnl_lock();
8304 	if (bnxt_hwrm_ver_get(bp) || bnxt_hwrm_func_drv_rgtr(bp)) {
8305 		rc = -ENODEV;
8306 		goto resume_exit;
8307 	}
8308 	rc = bnxt_hwrm_func_reset(bp);
8309 	if (rc) {
8310 		rc = -EBUSY;
8311 		goto resume_exit;
8312 	}
8313 	bnxt_get_wol_settings(bp);
8314 	if (netif_running(dev)) {
8315 		rc = bnxt_open(dev);
8316 		if (!rc)
8317 			netif_device_attach(dev);
8318 	}
8319 
8320 resume_exit:
8321 	rtnl_unlock();
8322 	return rc;
8323 }
8324 
8325 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
8326 #define BNXT_PM_OPS (&bnxt_pm_ops)
8327 
8328 #else
8329 
8330 #define BNXT_PM_OPS NULL
8331 
8332 #endif /* CONFIG_PM_SLEEP */
8333 
8334 /**
8335  * bnxt_io_error_detected - called when PCI error is detected
8336  * @pdev: Pointer to PCI device
8337  * @state: The current pci connection state
8338  *
8339  * This function is called after a PCI bus error affecting
8340  * this device has been detected.
8341  */
8342 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
8343 					       pci_channel_state_t state)
8344 {
8345 	struct net_device *netdev = pci_get_drvdata(pdev);
8346 	struct bnxt *bp = netdev_priv(netdev);
8347 
8348 	netdev_info(netdev, "PCI I/O error detected\n");
8349 
8350 	rtnl_lock();
8351 	netif_device_detach(netdev);
8352 
8353 	bnxt_ulp_stop(bp);
8354 
8355 	if (state == pci_channel_io_perm_failure) {
8356 		rtnl_unlock();
8357 		return PCI_ERS_RESULT_DISCONNECT;
8358 	}
8359 
8360 	if (netif_running(netdev))
8361 		bnxt_close(netdev);
8362 
8363 	pci_disable_device(pdev);
8364 	rtnl_unlock();
8365 
8366 	/* Request a slot slot reset. */
8367 	return PCI_ERS_RESULT_NEED_RESET;
8368 }
8369 
8370 /**
8371  * bnxt_io_slot_reset - called after the pci bus has been reset.
8372  * @pdev: Pointer to PCI device
8373  *
8374  * Restart the card from scratch, as if from a cold-boot.
8375  * At this point, the card has exprienced a hard reset,
8376  * followed by fixups by BIOS, and has its config space
8377  * set up identically to what it was at cold boot.
8378  */
8379 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
8380 {
8381 	struct net_device *netdev = pci_get_drvdata(pdev);
8382 	struct bnxt *bp = netdev_priv(netdev);
8383 	int err = 0;
8384 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
8385 
8386 	netdev_info(bp->dev, "PCI Slot Reset\n");
8387 
8388 	rtnl_lock();
8389 
8390 	if (pci_enable_device(pdev)) {
8391 		dev_err(&pdev->dev,
8392 			"Cannot re-enable PCI device after reset.\n");
8393 	} else {
8394 		pci_set_master(pdev);
8395 
8396 		err = bnxt_hwrm_func_reset(bp);
8397 		if (!err && netif_running(netdev))
8398 			err = bnxt_open(netdev);
8399 
8400 		if (!err) {
8401 			result = PCI_ERS_RESULT_RECOVERED;
8402 			bnxt_ulp_start(bp);
8403 		}
8404 	}
8405 
8406 	if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
8407 		dev_close(netdev);
8408 
8409 	rtnl_unlock();
8410 
8411 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
8412 	if (err) {
8413 		dev_err(&pdev->dev,
8414 			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8415 			 err); /* non-fatal, continue */
8416 	}
8417 
8418 	return PCI_ERS_RESULT_RECOVERED;
8419 }
8420 
8421 /**
8422  * bnxt_io_resume - called when traffic can start flowing again.
8423  * @pdev: Pointer to PCI device
8424  *
8425  * This callback is called when the error recovery driver tells
8426  * us that its OK to resume normal operation.
8427  */
8428 static void bnxt_io_resume(struct pci_dev *pdev)
8429 {
8430 	struct net_device *netdev = pci_get_drvdata(pdev);
8431 
8432 	rtnl_lock();
8433 
8434 	netif_device_attach(netdev);
8435 
8436 	rtnl_unlock();
8437 }
8438 
8439 static const struct pci_error_handlers bnxt_err_handler = {
8440 	.error_detected	= bnxt_io_error_detected,
8441 	.slot_reset	= bnxt_io_slot_reset,
8442 	.resume		= bnxt_io_resume
8443 };
8444 
8445 static struct pci_driver bnxt_pci_driver = {
8446 	.name		= DRV_MODULE_NAME,
8447 	.id_table	= bnxt_pci_tbl,
8448 	.probe		= bnxt_init_one,
8449 	.remove		= bnxt_remove_one,
8450 	.shutdown	= bnxt_shutdown,
8451 	.driver.pm	= BNXT_PM_OPS,
8452 	.err_handler	= &bnxt_err_handler,
8453 #if defined(CONFIG_BNXT_SRIOV)
8454 	.sriov_configure = bnxt_sriov_configure,
8455 #endif
8456 };
8457 
8458 static int __init bnxt_init(void)
8459 {
8460 	return pci_register_driver(&bnxt_pci_driver);
8461 }
8462 
8463 static void __exit bnxt_exit(void)
8464 {
8465 	pci_unregister_driver(&bnxt_pci_driver);
8466 	if (bnxt_pf_wq)
8467 		destroy_workqueue(bnxt_pf_wq);
8468 }
8469 
8470 module_init(bnxt_init);
8471 module_exit(bnxt_exit);
8472