1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/gro.h> 41 #include <net/ip.h> 42 #include <net/tcp.h> 43 #include <net/udp.h> 44 #include <net/checksum.h> 45 #include <net/ip6_checksum.h> 46 #include <net/udp_tunnel.h> 47 #include <linux/workqueue.h> 48 #include <linux/prefetch.h> 49 #include <linux/cache.h> 50 #include <linux/log2.h> 51 #include <linux/bitmap.h> 52 #include <linux/cpu_rmap.h> 53 #include <linux/cpumask.h> 54 #include <net/pkt_cls.h> 55 #include <net/page_pool/helpers.h> 56 #include <linux/align.h> 57 #include <net/netdev_queues.h> 58 59 #include "bnxt_hsi.h" 60 #include "bnxt.h" 61 #include "bnxt_hwrm.h" 62 #include "bnxt_ulp.h" 63 #include "bnxt_sriov.h" 64 #include "bnxt_ethtool.h" 65 #include "bnxt_dcb.h" 66 #include "bnxt_xdp.h" 67 #include "bnxt_ptp.h" 68 #include "bnxt_vfr.h" 69 #include "bnxt_tc.h" 70 #include "bnxt_devlink.h" 71 #include "bnxt_debugfs.h" 72 #include "bnxt_hwmon.h" 73 74 #define BNXT_TX_TIMEOUT (5 * HZ) 75 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \ 76 NETIF_MSG_TX_ERR) 77 78 MODULE_LICENSE("GPL"); 79 MODULE_DESCRIPTION("Broadcom NetXtreme network driver"); 80 81 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 82 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 83 #define BNXT_RX_COPY_THRESH 256 84 85 #define BNXT_TX_PUSH_THRESH 164 86 87 /* indexed by enum board_idx */ 88 static const struct { 89 char *name; 90 } board_info[] = { 91 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 92 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 93 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 94 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 95 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 96 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 97 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 98 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 99 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 100 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 101 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 102 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 103 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 104 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 105 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 106 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 107 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 108 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 109 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 110 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 111 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 112 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 113 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 114 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 115 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 116 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 117 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 118 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 119 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 120 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 121 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 122 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 123 [BCM57608] = { "Broadcom BCM57608 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 124 [BCM57604] = { "Broadcom BCM57604 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 125 [BCM57602] = { "Broadcom BCM57602 NetXtreme-E 10Gb/25Gb/50Gb/100Gb Ethernet" }, 126 [BCM57601] = { "Broadcom BCM57601 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 127 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 128 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 129 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 130 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 131 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 132 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 133 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 134 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 135 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 136 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 137 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 138 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 139 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 140 [NETXTREME_E_P7_VF] = { "Broadcom BCM5760X Virtual Function" }, 141 }; 142 143 static const struct pci_device_id bnxt_pci_tbl[] = { 144 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 145 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 146 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 147 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 148 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 149 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 150 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 151 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 152 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 153 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 154 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 155 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 156 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 157 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 158 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 159 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 160 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 161 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 162 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 163 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 164 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 165 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 166 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 167 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 168 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 169 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 170 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 171 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 172 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 173 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 174 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 175 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 176 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 177 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 178 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 179 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 180 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 181 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 182 { PCI_VDEVICE(BROADCOM, 0x1760), .driver_data = BCM57608 }, 183 { PCI_VDEVICE(BROADCOM, 0x1761), .driver_data = BCM57604 }, 184 { PCI_VDEVICE(BROADCOM, 0x1762), .driver_data = BCM57602 }, 185 { PCI_VDEVICE(BROADCOM, 0x1763), .driver_data = BCM57601 }, 186 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR }, 187 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 188 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR }, 189 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR }, 190 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 191 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR }, 192 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 193 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 194 #ifdef CONFIG_BNXT_SRIOV 195 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 196 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 197 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 198 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 199 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 200 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 201 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 202 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 203 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 204 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 205 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 206 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 207 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 208 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 209 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 210 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 211 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 212 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 213 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 214 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 215 { PCI_VDEVICE(BROADCOM, 0x1819), .driver_data = NETXTREME_E_P7_VF }, 216 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 217 #endif 218 { 0 } 219 }; 220 221 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 222 223 static const u16 bnxt_vf_req_snif[] = { 224 HWRM_FUNC_CFG, 225 HWRM_FUNC_VF_CFG, 226 HWRM_PORT_PHY_QCFG, 227 HWRM_CFA_L2_FILTER_ALLOC, 228 }; 229 230 static const u16 bnxt_async_events_arr[] = { 231 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 232 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 233 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 234 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 235 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 236 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 237 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 238 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 239 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 240 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 241 ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE, 242 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 243 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 244 ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP, 245 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT, 246 ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE, 247 }; 248 249 static struct workqueue_struct *bnxt_pf_wq; 250 251 #define BNXT_IPV6_MASK_ALL {{{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, \ 252 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }}} 253 #define BNXT_IPV6_MASK_NONE {{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }}} 254 255 const struct bnxt_flow_masks BNXT_FLOW_MASK_NONE = { 256 .ports = { 257 .src = 0, 258 .dst = 0, 259 }, 260 .addrs = { 261 .v6addrs = { 262 .src = BNXT_IPV6_MASK_NONE, 263 .dst = BNXT_IPV6_MASK_NONE, 264 }, 265 }, 266 }; 267 268 const struct bnxt_flow_masks BNXT_FLOW_IPV6_MASK_ALL = { 269 .ports = { 270 .src = cpu_to_be16(0xffff), 271 .dst = cpu_to_be16(0xffff), 272 }, 273 .addrs = { 274 .v6addrs = { 275 .src = BNXT_IPV6_MASK_ALL, 276 .dst = BNXT_IPV6_MASK_ALL, 277 }, 278 }, 279 }; 280 281 const struct bnxt_flow_masks BNXT_FLOW_IPV4_MASK_ALL = { 282 .ports = { 283 .src = cpu_to_be16(0xffff), 284 .dst = cpu_to_be16(0xffff), 285 }, 286 .addrs = { 287 .v4addrs = { 288 .src = cpu_to_be32(0xffffffff), 289 .dst = cpu_to_be32(0xffffffff), 290 }, 291 }, 292 }; 293 294 static bool bnxt_vf_pciid(enum board_idx idx) 295 { 296 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 297 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 298 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || 299 idx == NETXTREME_E_P5_VF_HV || idx == NETXTREME_E_P7_VF); 300 } 301 302 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 303 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 304 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) 305 306 #define BNXT_CP_DB_IRQ_DIS(db) \ 307 writel(DB_CP_IRQ_DIS_FLAGS, db) 308 309 #define BNXT_DB_CQ(db, idx) \ 310 writel(DB_CP_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 311 312 #define BNXT_DB_NQ_P5(db, idx) \ 313 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | DB_RING_IDX(db, idx),\ 314 (db)->doorbell) 315 316 #define BNXT_DB_NQ_P7(db, idx) \ 317 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_MASK | \ 318 DB_RING_IDX(db, idx), (db)->doorbell) 319 320 #define BNXT_DB_CQ_ARM(db, idx) \ 321 writel(DB_CP_REARM_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 322 323 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 324 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | \ 325 DB_RING_IDX(db, idx), (db)->doorbell) 326 327 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 328 { 329 if (bp->flags & BNXT_FLAG_CHIP_P7) 330 BNXT_DB_NQ_P7(db, idx); 331 else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 332 BNXT_DB_NQ_P5(db, idx); 333 else 334 BNXT_DB_CQ(db, idx); 335 } 336 337 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 338 { 339 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 340 BNXT_DB_NQ_ARM_P5(db, idx); 341 else 342 BNXT_DB_CQ_ARM(db, idx); 343 } 344 345 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 346 { 347 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 348 bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL | 349 DB_RING_IDX(db, idx), db->doorbell); 350 else 351 BNXT_DB_CQ(db, idx); 352 } 353 354 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 355 { 356 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 357 return; 358 359 if (BNXT_PF(bp)) 360 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 361 else 362 schedule_delayed_work(&bp->fw_reset_task, delay); 363 } 364 365 static void __bnxt_queue_sp_work(struct bnxt *bp) 366 { 367 if (BNXT_PF(bp)) 368 queue_work(bnxt_pf_wq, &bp->sp_task); 369 else 370 schedule_work(&bp->sp_task); 371 } 372 373 static void bnxt_queue_sp_work(struct bnxt *bp, unsigned int event) 374 { 375 set_bit(event, &bp->sp_event); 376 __bnxt_queue_sp_work(bp); 377 } 378 379 static void bnxt_sched_reset_rxr(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 380 { 381 if (!rxr->bnapi->in_reset) { 382 rxr->bnapi->in_reset = true; 383 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 384 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 385 else 386 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 387 __bnxt_queue_sp_work(bp); 388 } 389 rxr->rx_next_cons = 0xffff; 390 } 391 392 void bnxt_sched_reset_txr(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 393 u16 curr) 394 { 395 struct bnxt_napi *bnapi = txr->bnapi; 396 397 if (bnapi->tx_fault) 398 return; 399 400 netdev_err(bp->dev, "Invalid Tx completion (ring:%d tx_hw_cons:%u cons:%u prod:%u curr:%u)", 401 txr->txq_index, txr->tx_hw_cons, 402 txr->tx_cons, txr->tx_prod, curr); 403 WARN_ON_ONCE(1); 404 bnapi->tx_fault = 1; 405 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 406 } 407 408 const u16 bnxt_lhint_arr[] = { 409 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 410 TX_BD_FLAGS_LHINT_512_TO_1023, 411 TX_BD_FLAGS_LHINT_1024_TO_2047, 412 TX_BD_FLAGS_LHINT_1024_TO_2047, 413 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 414 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 415 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 416 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 417 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 418 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 419 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 420 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 421 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 422 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 423 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 424 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 425 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 426 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 427 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 428 }; 429 430 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 431 { 432 struct metadata_dst *md_dst = skb_metadata_dst(skb); 433 434 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 435 return 0; 436 437 return md_dst->u.port_info.port_id; 438 } 439 440 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 441 u16 prod) 442 { 443 /* Sync BD data before updating doorbell */ 444 wmb(); 445 bnxt_db_write(bp, &txr->tx_db, prod); 446 txr->kick_pending = 0; 447 } 448 449 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 450 { 451 struct bnxt *bp = netdev_priv(dev); 452 struct tx_bd *txbd, *txbd0; 453 struct tx_bd_ext *txbd1; 454 struct netdev_queue *txq; 455 int i; 456 dma_addr_t mapping; 457 unsigned int length, pad = 0; 458 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 459 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 460 struct pci_dev *pdev = bp->pdev; 461 u16 prod, last_frag, txts_prod; 462 struct bnxt_tx_ring_info *txr; 463 struct bnxt_sw_tx_bd *tx_buf; 464 __le32 lflags = 0; 465 466 i = skb_get_queue_mapping(skb); 467 if (unlikely(i >= bp->tx_nr_rings)) { 468 dev_kfree_skb_any(skb); 469 dev_core_stats_tx_dropped_inc(dev); 470 return NETDEV_TX_OK; 471 } 472 473 txq = netdev_get_tx_queue(dev, i); 474 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 475 prod = txr->tx_prod; 476 477 free_size = bnxt_tx_avail(bp, txr); 478 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 479 /* We must have raced with NAPI cleanup */ 480 if (net_ratelimit() && txr->kick_pending) 481 netif_warn(bp, tx_err, dev, 482 "bnxt: ring busy w/ flush pending!\n"); 483 if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 484 bp->tx_wake_thresh)) 485 return NETDEV_TX_BUSY; 486 } 487 488 if (unlikely(ipv6_hopopt_jumbo_remove(skb))) 489 goto tx_free; 490 491 length = skb->len; 492 len = skb_headlen(skb); 493 last_frag = skb_shinfo(skb)->nr_frags; 494 495 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 496 497 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 498 tx_buf->skb = skb; 499 tx_buf->nr_frags = last_frag; 500 501 vlan_tag_flags = 0; 502 cfa_action = bnxt_xmit_get_cfa_action(skb); 503 if (skb_vlan_tag_present(skb)) { 504 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 505 skb_vlan_tag_get(skb); 506 /* Currently supports 8021Q, 8021AD vlan offloads 507 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 508 */ 509 if (skb->vlan_proto == htons(ETH_P_8021Q)) 510 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 511 } 512 513 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && ptp && 514 ptp->tx_tstamp_en) { 515 if (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) { 516 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 517 tx_buf->is_ts_pkt = 1; 518 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 519 } else if (!skb_is_gso(skb)) { 520 u16 seq_id, hdr_off; 521 522 if (!bnxt_ptp_parse(skb, &seq_id, &hdr_off) && 523 !bnxt_ptp_get_txts_prod(ptp, &txts_prod)) { 524 if (vlan_tag_flags) 525 hdr_off += VLAN_HLEN; 526 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 527 tx_buf->is_ts_pkt = 1; 528 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 529 530 ptp->txts_req[txts_prod].tx_seqid = seq_id; 531 ptp->txts_req[txts_prod].tx_hdr_off = hdr_off; 532 tx_buf->txts_prod = txts_prod; 533 } 534 } 535 } 536 if (unlikely(skb->no_fcs)) 537 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 538 539 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && 540 !lflags) { 541 struct tx_push_buffer *tx_push_buf = txr->tx_push; 542 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 543 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 544 void __iomem *db = txr->tx_db.doorbell; 545 void *pdata = tx_push_buf->data; 546 u64 *end; 547 int j, push_len; 548 549 /* Set COAL_NOW to be ready quickly for the next push */ 550 tx_push->tx_bd_len_flags_type = 551 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 552 TX_BD_TYPE_LONG_TX_BD | 553 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 554 TX_BD_FLAGS_COAL_NOW | 555 TX_BD_FLAGS_PACKET_END | 556 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 557 558 if (skb->ip_summed == CHECKSUM_PARTIAL) 559 tx_push1->tx_bd_hsize_lflags = 560 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 561 else 562 tx_push1->tx_bd_hsize_lflags = 0; 563 564 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 565 tx_push1->tx_bd_cfa_action = 566 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 567 568 end = pdata + length; 569 end = PTR_ALIGN(end, 8) - 1; 570 *end = 0; 571 572 skb_copy_from_linear_data(skb, pdata, len); 573 pdata += len; 574 for (j = 0; j < last_frag; j++) { 575 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 576 void *fptr; 577 578 fptr = skb_frag_address_safe(frag); 579 if (!fptr) 580 goto normal_tx; 581 582 memcpy(pdata, fptr, skb_frag_size(frag)); 583 pdata += skb_frag_size(frag); 584 } 585 586 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 587 txbd->tx_bd_haddr = txr->data_mapping; 588 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2); 589 prod = NEXT_TX(prod); 590 tx_push->tx_bd_opaque = txbd->tx_bd_opaque; 591 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 592 memcpy(txbd, tx_push1, sizeof(*txbd)); 593 prod = NEXT_TX(prod); 594 tx_push->doorbell = 595 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | 596 DB_RING_IDX(&txr->tx_db, prod)); 597 WRITE_ONCE(txr->tx_prod, prod); 598 599 tx_buf->is_push = 1; 600 netdev_tx_sent_queue(txq, skb->len); 601 wmb(); /* Sync is_push and byte queue before pushing data */ 602 603 push_len = (length + sizeof(*tx_push) + 7) / 8; 604 if (push_len > 16) { 605 __iowrite64_copy(db, tx_push_buf, 16); 606 __iowrite32_copy(db + 4, tx_push_buf + 1, 607 (push_len - 16) << 1); 608 } else { 609 __iowrite64_copy(db, tx_push_buf, push_len); 610 } 611 612 goto tx_done; 613 } 614 615 normal_tx: 616 if (length < BNXT_MIN_PKT_SIZE) { 617 pad = BNXT_MIN_PKT_SIZE - length; 618 if (skb_pad(skb, pad)) 619 /* SKB already freed. */ 620 goto tx_kick_pending; 621 length = BNXT_MIN_PKT_SIZE; 622 } 623 624 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 625 626 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 627 goto tx_free; 628 629 dma_unmap_addr_set(tx_buf, mapping, mapping); 630 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 631 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 632 633 txbd->tx_bd_haddr = cpu_to_le64(mapping); 634 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2 + last_frag); 635 636 prod = NEXT_TX(prod); 637 txbd1 = (struct tx_bd_ext *) 638 &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 639 640 txbd1->tx_bd_hsize_lflags = lflags; 641 if (skb_is_gso(skb)) { 642 bool udp_gso = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4); 643 u32 hdr_len; 644 645 if (skb->encapsulation) { 646 if (udp_gso) 647 hdr_len = skb_inner_transport_offset(skb) + 648 sizeof(struct udphdr); 649 else 650 hdr_len = skb_inner_tcp_all_headers(skb); 651 } else if (udp_gso) { 652 hdr_len = skb_transport_offset(skb) + 653 sizeof(struct udphdr); 654 } else { 655 hdr_len = skb_tcp_all_headers(skb); 656 } 657 658 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 659 TX_BD_FLAGS_T_IPID | 660 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 661 length = skb_shinfo(skb)->gso_size; 662 txbd1->tx_bd_mss = cpu_to_le32(length); 663 length += hdr_len; 664 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 665 txbd1->tx_bd_hsize_lflags |= 666 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 667 txbd1->tx_bd_mss = 0; 668 } 669 670 length >>= 9; 671 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 672 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 673 skb->len); 674 i = 0; 675 goto tx_dma_error; 676 } 677 flags |= bnxt_lhint_arr[length]; 678 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 679 680 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 681 txbd1->tx_bd_cfa_action = 682 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 683 txbd0 = txbd; 684 for (i = 0; i < last_frag; i++) { 685 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 686 687 prod = NEXT_TX(prod); 688 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 689 690 len = skb_frag_size(frag); 691 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 692 DMA_TO_DEVICE); 693 694 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 695 goto tx_dma_error; 696 697 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 698 dma_unmap_addr_set(tx_buf, mapping, mapping); 699 700 txbd->tx_bd_haddr = cpu_to_le64(mapping); 701 702 flags = len << TX_BD_LEN_SHIFT; 703 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 704 } 705 706 flags &= ~TX_BD_LEN; 707 txbd->tx_bd_len_flags_type = 708 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 709 TX_BD_FLAGS_PACKET_END); 710 711 netdev_tx_sent_queue(txq, skb->len); 712 713 skb_tx_timestamp(skb); 714 715 prod = NEXT_TX(prod); 716 WRITE_ONCE(txr->tx_prod, prod); 717 718 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) { 719 bnxt_txr_db_kick(bp, txr, prod); 720 } else { 721 if (free_size >= bp->tx_wake_thresh) 722 txbd0->tx_bd_len_flags_type |= 723 cpu_to_le32(TX_BD_FLAGS_NO_CMPL); 724 txr->kick_pending = 1; 725 } 726 727 tx_done: 728 729 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 730 if (netdev_xmit_more() && !tx_buf->is_push) { 731 txbd0->tx_bd_len_flags_type &= 732 cpu_to_le32(~TX_BD_FLAGS_NO_CMPL); 733 bnxt_txr_db_kick(bp, txr, prod); 734 } 735 736 netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 737 bp->tx_wake_thresh); 738 } 739 return NETDEV_TX_OK; 740 741 tx_dma_error: 742 last_frag = i; 743 744 /* start back at beginning and unmap skb */ 745 prod = txr->tx_prod; 746 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 747 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 748 skb_headlen(skb), DMA_TO_DEVICE); 749 prod = NEXT_TX(prod); 750 751 /* unmap remaining mapped pages */ 752 for (i = 0; i < last_frag; i++) { 753 prod = NEXT_TX(prod); 754 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 755 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 756 skb_frag_size(&skb_shinfo(skb)->frags[i]), 757 DMA_TO_DEVICE); 758 } 759 760 tx_free: 761 dev_kfree_skb_any(skb); 762 tx_kick_pending: 763 if (BNXT_TX_PTP_IS_SET(lflags)) { 764 txr->tx_buf_ring[txr->tx_prod].is_ts_pkt = 0; 765 atomic64_inc(&bp->ptp_cfg->stats.ts_err); 766 if (!(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) 767 /* set SKB to err so PTP worker will clean up */ 768 ptp->txts_req[txts_prod].tx_skb = ERR_PTR(-EIO); 769 } 770 if (txr->kick_pending) 771 bnxt_txr_db_kick(bp, txr, txr->tx_prod); 772 txr->tx_buf_ring[txr->tx_prod].skb = NULL; 773 dev_core_stats_tx_dropped_inc(dev); 774 return NETDEV_TX_OK; 775 } 776 777 /* Returns true if some remaining TX packets not processed. */ 778 static bool __bnxt_tx_int(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 779 int budget) 780 { 781 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 782 struct pci_dev *pdev = bp->pdev; 783 u16 hw_cons = txr->tx_hw_cons; 784 unsigned int tx_bytes = 0; 785 u16 cons = txr->tx_cons; 786 int tx_pkts = 0; 787 bool rc = false; 788 789 while (RING_TX(bp, cons) != hw_cons) { 790 struct bnxt_sw_tx_bd *tx_buf; 791 struct sk_buff *skb; 792 bool is_ts_pkt; 793 int j, last; 794 795 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 796 skb = tx_buf->skb; 797 798 if (unlikely(!skb)) { 799 bnxt_sched_reset_txr(bp, txr, cons); 800 return rc; 801 } 802 803 is_ts_pkt = tx_buf->is_ts_pkt; 804 if (is_ts_pkt && (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) { 805 rc = true; 806 break; 807 } 808 809 cons = NEXT_TX(cons); 810 tx_pkts++; 811 tx_bytes += skb->len; 812 tx_buf->skb = NULL; 813 tx_buf->is_ts_pkt = 0; 814 815 if (tx_buf->is_push) { 816 tx_buf->is_push = 0; 817 goto next_tx_int; 818 } 819 820 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 821 skb_headlen(skb), DMA_TO_DEVICE); 822 last = tx_buf->nr_frags; 823 824 for (j = 0; j < last; j++) { 825 cons = NEXT_TX(cons); 826 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 827 dma_unmap_page( 828 &pdev->dev, 829 dma_unmap_addr(tx_buf, mapping), 830 skb_frag_size(&skb_shinfo(skb)->frags[j]), 831 DMA_TO_DEVICE); 832 } 833 if (unlikely(is_ts_pkt)) { 834 if (BNXT_CHIP_P5(bp)) { 835 /* PTP worker takes ownership of the skb */ 836 bnxt_get_tx_ts_p5(bp, skb, tx_buf->txts_prod); 837 skb = NULL; 838 } 839 } 840 841 next_tx_int: 842 cons = NEXT_TX(cons); 843 844 dev_consume_skb_any(skb); 845 } 846 847 WRITE_ONCE(txr->tx_cons, cons); 848 849 __netif_txq_completed_wake(txq, tx_pkts, tx_bytes, 850 bnxt_tx_avail(bp, txr), bp->tx_wake_thresh, 851 READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING); 852 853 return rc; 854 } 855 856 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 857 { 858 struct bnxt_tx_ring_info *txr; 859 bool more = false; 860 int i; 861 862 bnxt_for_each_napi_tx(i, bnapi, txr) { 863 if (txr->tx_hw_cons != RING_TX(bp, txr->tx_cons)) 864 more |= __bnxt_tx_int(bp, txr, budget); 865 } 866 if (!more) 867 bnapi->events &= ~BNXT_TX_CMP_EVENT; 868 } 869 870 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 871 struct bnxt_rx_ring_info *rxr, 872 unsigned int *offset, 873 gfp_t gfp) 874 { 875 struct page *page; 876 877 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 878 page = page_pool_dev_alloc_frag(rxr->page_pool, offset, 879 BNXT_RX_PAGE_SIZE); 880 } else { 881 page = page_pool_dev_alloc_pages(rxr->page_pool); 882 *offset = 0; 883 } 884 if (!page) 885 return NULL; 886 887 *mapping = page_pool_get_dma_addr(page) + *offset; 888 return page; 889 } 890 891 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping, 892 gfp_t gfp) 893 { 894 u8 *data; 895 struct pci_dev *pdev = bp->pdev; 896 897 if (gfp == GFP_ATOMIC) 898 data = napi_alloc_frag(bp->rx_buf_size); 899 else 900 data = netdev_alloc_frag(bp->rx_buf_size); 901 if (!data) 902 return NULL; 903 904 *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset, 905 bp->rx_buf_use_size, bp->rx_dir, 906 DMA_ATTR_WEAK_ORDERING); 907 908 if (dma_mapping_error(&pdev->dev, *mapping)) { 909 skb_free_frag(data); 910 data = NULL; 911 } 912 return data; 913 } 914 915 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 916 u16 prod, gfp_t gfp) 917 { 918 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 919 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 920 dma_addr_t mapping; 921 922 if (BNXT_RX_PAGE_MODE(bp)) { 923 unsigned int offset; 924 struct page *page = 925 __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 926 927 if (!page) 928 return -ENOMEM; 929 930 mapping += bp->rx_dma_offset; 931 rx_buf->data = page; 932 rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset; 933 } else { 934 u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp); 935 936 if (!data) 937 return -ENOMEM; 938 939 rx_buf->data = data; 940 rx_buf->data_ptr = data + bp->rx_offset; 941 } 942 rx_buf->mapping = mapping; 943 944 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 945 return 0; 946 } 947 948 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 949 { 950 u16 prod = rxr->rx_prod; 951 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 952 struct bnxt *bp = rxr->bnapi->bp; 953 struct rx_bd *cons_bd, *prod_bd; 954 955 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 956 cons_rx_buf = &rxr->rx_buf_ring[cons]; 957 958 prod_rx_buf->data = data; 959 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 960 961 prod_rx_buf->mapping = cons_rx_buf->mapping; 962 963 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 964 cons_bd = &rxr->rx_desc_ring[RX_RING(bp, cons)][RX_IDX(cons)]; 965 966 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 967 } 968 969 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 970 { 971 u16 next, max = rxr->rx_agg_bmap_size; 972 973 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 974 if (next >= max) 975 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 976 return next; 977 } 978 979 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 980 struct bnxt_rx_ring_info *rxr, 981 u16 prod, gfp_t gfp) 982 { 983 struct rx_bd *rxbd = 984 &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 985 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 986 struct page *page; 987 dma_addr_t mapping; 988 u16 sw_prod = rxr->rx_sw_agg_prod; 989 unsigned int offset = 0; 990 991 page = __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 992 993 if (!page) 994 return -ENOMEM; 995 996 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 997 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 998 999 __set_bit(sw_prod, rxr->rx_agg_bmap); 1000 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 1001 rxr->rx_sw_agg_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 1002 1003 rx_agg_buf->page = page; 1004 rx_agg_buf->offset = offset; 1005 rx_agg_buf->mapping = mapping; 1006 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 1007 rxbd->rx_bd_opaque = sw_prod; 1008 return 0; 1009 } 1010 1011 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 1012 struct bnxt_cp_ring_info *cpr, 1013 u16 cp_cons, u16 curr) 1014 { 1015 struct rx_agg_cmp *agg; 1016 1017 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 1018 agg = (struct rx_agg_cmp *) 1019 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1020 return agg; 1021 } 1022 1023 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 1024 struct bnxt_rx_ring_info *rxr, 1025 u16 agg_id, u16 curr) 1026 { 1027 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 1028 1029 return &tpa_info->agg_arr[curr]; 1030 } 1031 1032 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 1033 u16 start, u32 agg_bufs, bool tpa) 1034 { 1035 struct bnxt_napi *bnapi = cpr->bnapi; 1036 struct bnxt *bp = bnapi->bp; 1037 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1038 u16 prod = rxr->rx_agg_prod; 1039 u16 sw_prod = rxr->rx_sw_agg_prod; 1040 bool p5_tpa = false; 1041 u32 i; 1042 1043 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1044 p5_tpa = true; 1045 1046 for (i = 0; i < agg_bufs; i++) { 1047 u16 cons; 1048 struct rx_agg_cmp *agg; 1049 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 1050 struct rx_bd *prod_bd; 1051 struct page *page; 1052 1053 if (p5_tpa) 1054 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 1055 else 1056 agg = bnxt_get_agg(bp, cpr, idx, start + i); 1057 cons = agg->rx_agg_cmp_opaque; 1058 __clear_bit(cons, rxr->rx_agg_bmap); 1059 1060 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 1061 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 1062 1063 __set_bit(sw_prod, rxr->rx_agg_bmap); 1064 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 1065 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1066 1067 /* It is possible for sw_prod to be equal to cons, so 1068 * set cons_rx_buf->page to NULL first. 1069 */ 1070 page = cons_rx_buf->page; 1071 cons_rx_buf->page = NULL; 1072 prod_rx_buf->page = page; 1073 prod_rx_buf->offset = cons_rx_buf->offset; 1074 1075 prod_rx_buf->mapping = cons_rx_buf->mapping; 1076 1077 prod_bd = &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 1078 1079 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 1080 prod_bd->rx_bd_opaque = sw_prod; 1081 1082 prod = NEXT_RX_AGG(prod); 1083 sw_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 1084 } 1085 rxr->rx_agg_prod = prod; 1086 rxr->rx_sw_agg_prod = sw_prod; 1087 } 1088 1089 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp, 1090 struct bnxt_rx_ring_info *rxr, 1091 u16 cons, void *data, u8 *data_ptr, 1092 dma_addr_t dma_addr, 1093 unsigned int offset_and_len) 1094 { 1095 unsigned int len = offset_and_len & 0xffff; 1096 struct page *page = data; 1097 u16 prod = rxr->rx_prod; 1098 struct sk_buff *skb; 1099 int err; 1100 1101 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1102 if (unlikely(err)) { 1103 bnxt_reuse_rx_data(rxr, cons, data); 1104 return NULL; 1105 } 1106 dma_addr -= bp->rx_dma_offset; 1107 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1108 bp->rx_dir); 1109 skb = napi_build_skb(data_ptr - bp->rx_offset, BNXT_RX_PAGE_SIZE); 1110 if (!skb) { 1111 page_pool_recycle_direct(rxr->page_pool, page); 1112 return NULL; 1113 } 1114 skb_mark_for_recycle(skb); 1115 skb_reserve(skb, bp->rx_offset); 1116 __skb_put(skb, len); 1117 1118 return skb; 1119 } 1120 1121 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 1122 struct bnxt_rx_ring_info *rxr, 1123 u16 cons, void *data, u8 *data_ptr, 1124 dma_addr_t dma_addr, 1125 unsigned int offset_and_len) 1126 { 1127 unsigned int payload = offset_and_len >> 16; 1128 unsigned int len = offset_and_len & 0xffff; 1129 skb_frag_t *frag; 1130 struct page *page = data; 1131 u16 prod = rxr->rx_prod; 1132 struct sk_buff *skb; 1133 int off, err; 1134 1135 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1136 if (unlikely(err)) { 1137 bnxt_reuse_rx_data(rxr, cons, data); 1138 return NULL; 1139 } 1140 dma_addr -= bp->rx_dma_offset; 1141 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1142 bp->rx_dir); 1143 1144 if (unlikely(!payload)) 1145 payload = eth_get_headlen(bp->dev, data_ptr, len); 1146 1147 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 1148 if (!skb) { 1149 page_pool_recycle_direct(rxr->page_pool, page); 1150 return NULL; 1151 } 1152 1153 skb_mark_for_recycle(skb); 1154 off = (void *)data_ptr - page_address(page); 1155 skb_add_rx_frag(skb, 0, page, off, len, BNXT_RX_PAGE_SIZE); 1156 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 1157 payload + NET_IP_ALIGN); 1158 1159 frag = &skb_shinfo(skb)->frags[0]; 1160 skb_frag_size_sub(frag, payload); 1161 skb_frag_off_add(frag, payload); 1162 skb->data_len -= payload; 1163 skb->tail += payload; 1164 1165 return skb; 1166 } 1167 1168 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 1169 struct bnxt_rx_ring_info *rxr, u16 cons, 1170 void *data, u8 *data_ptr, 1171 dma_addr_t dma_addr, 1172 unsigned int offset_and_len) 1173 { 1174 u16 prod = rxr->rx_prod; 1175 struct sk_buff *skb; 1176 int err; 1177 1178 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1179 if (unlikely(err)) { 1180 bnxt_reuse_rx_data(rxr, cons, data); 1181 return NULL; 1182 } 1183 1184 skb = napi_build_skb(data, bp->rx_buf_size); 1185 dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1186 bp->rx_dir, DMA_ATTR_WEAK_ORDERING); 1187 if (!skb) { 1188 skb_free_frag(data); 1189 return NULL; 1190 } 1191 1192 skb_reserve(skb, bp->rx_offset); 1193 skb_put(skb, offset_and_len & 0xffff); 1194 return skb; 1195 } 1196 1197 static u32 __bnxt_rx_agg_pages(struct bnxt *bp, 1198 struct bnxt_cp_ring_info *cpr, 1199 struct skb_shared_info *shinfo, 1200 u16 idx, u32 agg_bufs, bool tpa, 1201 struct xdp_buff *xdp) 1202 { 1203 struct bnxt_napi *bnapi = cpr->bnapi; 1204 struct pci_dev *pdev = bp->pdev; 1205 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1206 u16 prod = rxr->rx_agg_prod; 1207 u32 i, total_frag_len = 0; 1208 bool p5_tpa = false; 1209 1210 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1211 p5_tpa = true; 1212 1213 for (i = 0; i < agg_bufs; i++) { 1214 skb_frag_t *frag = &shinfo->frags[i]; 1215 u16 cons, frag_len; 1216 struct rx_agg_cmp *agg; 1217 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1218 struct page *page; 1219 dma_addr_t mapping; 1220 1221 if (p5_tpa) 1222 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1223 else 1224 agg = bnxt_get_agg(bp, cpr, idx, i); 1225 cons = agg->rx_agg_cmp_opaque; 1226 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1227 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1228 1229 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1230 skb_frag_fill_page_desc(frag, cons_rx_buf->page, 1231 cons_rx_buf->offset, frag_len); 1232 shinfo->nr_frags = i + 1; 1233 __clear_bit(cons, rxr->rx_agg_bmap); 1234 1235 /* It is possible for bnxt_alloc_rx_page() to allocate 1236 * a sw_prod index that equals the cons index, so we 1237 * need to clear the cons entry now. 1238 */ 1239 mapping = cons_rx_buf->mapping; 1240 page = cons_rx_buf->page; 1241 cons_rx_buf->page = NULL; 1242 1243 if (xdp && page_is_pfmemalloc(page)) 1244 xdp_buff_set_frag_pfmemalloc(xdp); 1245 1246 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 1247 --shinfo->nr_frags; 1248 cons_rx_buf->page = page; 1249 1250 /* Update prod since possibly some pages have been 1251 * allocated already. 1252 */ 1253 rxr->rx_agg_prod = prod; 1254 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1255 return 0; 1256 } 1257 1258 dma_sync_single_for_cpu(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, 1259 bp->rx_dir); 1260 1261 total_frag_len += frag_len; 1262 prod = NEXT_RX_AGG(prod); 1263 } 1264 rxr->rx_agg_prod = prod; 1265 return total_frag_len; 1266 } 1267 1268 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp, 1269 struct bnxt_cp_ring_info *cpr, 1270 struct sk_buff *skb, u16 idx, 1271 u32 agg_bufs, bool tpa) 1272 { 1273 struct skb_shared_info *shinfo = skb_shinfo(skb); 1274 u32 total_frag_len = 0; 1275 1276 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx, 1277 agg_bufs, tpa, NULL); 1278 if (!total_frag_len) { 1279 skb_mark_for_recycle(skb); 1280 dev_kfree_skb(skb); 1281 return NULL; 1282 } 1283 1284 skb->data_len += total_frag_len; 1285 skb->len += total_frag_len; 1286 skb->truesize += BNXT_RX_PAGE_SIZE * agg_bufs; 1287 return skb; 1288 } 1289 1290 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp, 1291 struct bnxt_cp_ring_info *cpr, 1292 struct xdp_buff *xdp, u16 idx, 1293 u32 agg_bufs, bool tpa) 1294 { 1295 struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp); 1296 u32 total_frag_len = 0; 1297 1298 if (!xdp_buff_has_frags(xdp)) 1299 shinfo->nr_frags = 0; 1300 1301 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, 1302 idx, agg_bufs, tpa, xdp); 1303 if (total_frag_len) { 1304 xdp_buff_set_frags_flag(xdp); 1305 shinfo->nr_frags = agg_bufs; 1306 shinfo->xdp_frags_size = total_frag_len; 1307 } 1308 return total_frag_len; 1309 } 1310 1311 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1312 u8 agg_bufs, u32 *raw_cons) 1313 { 1314 u16 last; 1315 struct rx_agg_cmp *agg; 1316 1317 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1318 last = RING_CMP(*raw_cons); 1319 agg = (struct rx_agg_cmp *) 1320 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1321 return RX_AGG_CMP_VALID(agg, *raw_cons); 1322 } 1323 1324 static struct sk_buff *bnxt_copy_data(struct bnxt_napi *bnapi, u8 *data, 1325 unsigned int len, 1326 dma_addr_t mapping) 1327 { 1328 struct bnxt *bp = bnapi->bp; 1329 struct pci_dev *pdev = bp->pdev; 1330 struct sk_buff *skb; 1331 1332 skb = napi_alloc_skb(&bnapi->napi, len); 1333 if (!skb) 1334 return NULL; 1335 1336 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh, 1337 bp->rx_dir); 1338 1339 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1340 len + NET_IP_ALIGN); 1341 1342 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh, 1343 bp->rx_dir); 1344 1345 skb_put(skb, len); 1346 1347 return skb; 1348 } 1349 1350 static struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1351 unsigned int len, 1352 dma_addr_t mapping) 1353 { 1354 return bnxt_copy_data(bnapi, data, len, mapping); 1355 } 1356 1357 static struct sk_buff *bnxt_copy_xdp(struct bnxt_napi *bnapi, 1358 struct xdp_buff *xdp, 1359 unsigned int len, 1360 dma_addr_t mapping) 1361 { 1362 unsigned int metasize = 0; 1363 u8 *data = xdp->data; 1364 struct sk_buff *skb; 1365 1366 len = xdp->data_end - xdp->data_meta; 1367 metasize = xdp->data - xdp->data_meta; 1368 data = xdp->data_meta; 1369 1370 skb = bnxt_copy_data(bnapi, data, len, mapping); 1371 if (!skb) 1372 return skb; 1373 1374 if (metasize) { 1375 skb_metadata_set(skb, metasize); 1376 __skb_pull(skb, metasize); 1377 } 1378 1379 return skb; 1380 } 1381 1382 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1383 u32 *raw_cons, void *cmp) 1384 { 1385 struct rx_cmp *rxcmp = cmp; 1386 u32 tmp_raw_cons = *raw_cons; 1387 u8 cmp_type, agg_bufs = 0; 1388 1389 cmp_type = RX_CMP_TYPE(rxcmp); 1390 1391 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1392 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1393 RX_CMP_AGG_BUFS) >> 1394 RX_CMP_AGG_BUFS_SHIFT; 1395 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1396 struct rx_tpa_end_cmp *tpa_end = cmp; 1397 1398 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1399 return 0; 1400 1401 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1402 } 1403 1404 if (agg_bufs) { 1405 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1406 return -EBUSY; 1407 } 1408 *raw_cons = tmp_raw_cons; 1409 return 0; 1410 } 1411 1412 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1413 { 1414 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1415 u16 idx = agg_id & MAX_TPA_P5_MASK; 1416 1417 if (test_bit(idx, map->agg_idx_bmap)) 1418 idx = find_first_zero_bit(map->agg_idx_bmap, 1419 BNXT_AGG_IDX_BMAP_SIZE); 1420 __set_bit(idx, map->agg_idx_bmap); 1421 map->agg_id_tbl[agg_id] = idx; 1422 return idx; 1423 } 1424 1425 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1426 { 1427 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1428 1429 __clear_bit(idx, map->agg_idx_bmap); 1430 } 1431 1432 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1433 { 1434 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1435 1436 return map->agg_id_tbl[agg_id]; 1437 } 1438 1439 static void bnxt_tpa_metadata(struct bnxt_tpa_info *tpa_info, 1440 struct rx_tpa_start_cmp *tpa_start, 1441 struct rx_tpa_start_cmp_ext *tpa_start1) 1442 { 1443 tpa_info->cfa_code_valid = 1; 1444 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1445 tpa_info->vlan_valid = 0; 1446 if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) { 1447 tpa_info->vlan_valid = 1; 1448 tpa_info->metadata = 1449 le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1450 } 1451 } 1452 1453 static void bnxt_tpa_metadata_v2(struct bnxt_tpa_info *tpa_info, 1454 struct rx_tpa_start_cmp *tpa_start, 1455 struct rx_tpa_start_cmp_ext *tpa_start1) 1456 { 1457 tpa_info->vlan_valid = 0; 1458 if (TPA_START_VLAN_VALID(tpa_start)) { 1459 u32 tpid_sel = TPA_START_VLAN_TPID_SEL(tpa_start); 1460 u32 vlan_proto = ETH_P_8021Q; 1461 1462 tpa_info->vlan_valid = 1; 1463 if (tpid_sel == RX_TPA_START_METADATA1_TPID_8021AD) 1464 vlan_proto = ETH_P_8021AD; 1465 tpa_info->metadata = vlan_proto << 16 | 1466 TPA_START_METADATA0_TCI(tpa_start1); 1467 } 1468 } 1469 1470 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1471 u8 cmp_type, struct rx_tpa_start_cmp *tpa_start, 1472 struct rx_tpa_start_cmp_ext *tpa_start1) 1473 { 1474 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1475 struct bnxt_tpa_info *tpa_info; 1476 u16 cons, prod, agg_id; 1477 struct rx_bd *prod_bd; 1478 dma_addr_t mapping; 1479 1480 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1481 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1482 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1483 } else { 1484 agg_id = TPA_START_AGG_ID(tpa_start); 1485 } 1486 cons = tpa_start->rx_tpa_start_cmp_opaque; 1487 prod = rxr->rx_prod; 1488 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1489 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 1490 tpa_info = &rxr->rx_tpa[agg_id]; 1491 1492 if (unlikely(cons != rxr->rx_next_cons || 1493 TPA_START_ERROR(tpa_start))) { 1494 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1495 cons, rxr->rx_next_cons, 1496 TPA_START_ERROR_CODE(tpa_start1)); 1497 bnxt_sched_reset_rxr(bp, rxr); 1498 return; 1499 } 1500 prod_rx_buf->data = tpa_info->data; 1501 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1502 1503 mapping = tpa_info->mapping; 1504 prod_rx_buf->mapping = mapping; 1505 1506 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 1507 1508 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1509 1510 tpa_info->data = cons_rx_buf->data; 1511 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1512 cons_rx_buf->data = NULL; 1513 tpa_info->mapping = cons_rx_buf->mapping; 1514 1515 tpa_info->len = 1516 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1517 RX_TPA_START_CMP_LEN_SHIFT; 1518 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1519 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1520 tpa_info->gso_type = SKB_GSO_TCPV4; 1521 if (TPA_START_IS_IPV6(tpa_start1)) 1522 tpa_info->gso_type = SKB_GSO_TCPV6; 1523 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1524 else if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP && 1525 TPA_START_HASH_TYPE(tpa_start) == 3) 1526 tpa_info->gso_type = SKB_GSO_TCPV6; 1527 tpa_info->rss_hash = 1528 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1529 } else { 1530 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1531 tpa_info->gso_type = 0; 1532 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1533 } 1534 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1535 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1536 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) 1537 bnxt_tpa_metadata(tpa_info, tpa_start, tpa_start1); 1538 else 1539 bnxt_tpa_metadata_v2(tpa_info, tpa_start, tpa_start1); 1540 tpa_info->agg_count = 0; 1541 1542 rxr->rx_prod = NEXT_RX(prod); 1543 cons = RING_RX(bp, NEXT_RX(cons)); 1544 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 1545 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1546 1547 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1548 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1549 cons_rx_buf->data = NULL; 1550 } 1551 1552 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1553 { 1554 if (agg_bufs) 1555 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1556 } 1557 1558 #ifdef CONFIG_INET 1559 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1560 { 1561 struct udphdr *uh = NULL; 1562 1563 if (ip_proto == htons(ETH_P_IP)) { 1564 struct iphdr *iph = (struct iphdr *)skb->data; 1565 1566 if (iph->protocol == IPPROTO_UDP) 1567 uh = (struct udphdr *)(iph + 1); 1568 } else { 1569 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1570 1571 if (iph->nexthdr == IPPROTO_UDP) 1572 uh = (struct udphdr *)(iph + 1); 1573 } 1574 if (uh) { 1575 if (uh->check) 1576 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1577 else 1578 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1579 } 1580 } 1581 #endif 1582 1583 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1584 int payload_off, int tcp_ts, 1585 struct sk_buff *skb) 1586 { 1587 #ifdef CONFIG_INET 1588 struct tcphdr *th; 1589 int len, nw_off; 1590 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1591 u32 hdr_info = tpa_info->hdr_info; 1592 bool loopback = false; 1593 1594 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1595 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1596 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1597 1598 /* If the packet is an internal loopback packet, the offsets will 1599 * have an extra 4 bytes. 1600 */ 1601 if (inner_mac_off == 4) { 1602 loopback = true; 1603 } else if (inner_mac_off > 4) { 1604 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1605 ETH_HLEN - 2)); 1606 1607 /* We only support inner iPv4/ipv6. If we don't see the 1608 * correct protocol ID, it must be a loopback packet where 1609 * the offsets are off by 4. 1610 */ 1611 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1612 loopback = true; 1613 } 1614 if (loopback) { 1615 /* internal loopback packet, subtract all offsets by 4 */ 1616 inner_ip_off -= 4; 1617 inner_mac_off -= 4; 1618 outer_ip_off -= 4; 1619 } 1620 1621 nw_off = inner_ip_off - ETH_HLEN; 1622 skb_set_network_header(skb, nw_off); 1623 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1624 struct ipv6hdr *iph = ipv6_hdr(skb); 1625 1626 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1627 len = skb->len - skb_transport_offset(skb); 1628 th = tcp_hdr(skb); 1629 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1630 } else { 1631 struct iphdr *iph = ip_hdr(skb); 1632 1633 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1634 len = skb->len - skb_transport_offset(skb); 1635 th = tcp_hdr(skb); 1636 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1637 } 1638 1639 if (inner_mac_off) { /* tunnel */ 1640 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1641 ETH_HLEN - 2)); 1642 1643 bnxt_gro_tunnel(skb, proto); 1644 } 1645 #endif 1646 return skb; 1647 } 1648 1649 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1650 int payload_off, int tcp_ts, 1651 struct sk_buff *skb) 1652 { 1653 #ifdef CONFIG_INET 1654 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1655 u32 hdr_info = tpa_info->hdr_info; 1656 int iphdr_len, nw_off; 1657 1658 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1659 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1660 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1661 1662 nw_off = inner_ip_off - ETH_HLEN; 1663 skb_set_network_header(skb, nw_off); 1664 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1665 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1666 skb_set_transport_header(skb, nw_off + iphdr_len); 1667 1668 if (inner_mac_off) { /* tunnel */ 1669 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1670 ETH_HLEN - 2)); 1671 1672 bnxt_gro_tunnel(skb, proto); 1673 } 1674 #endif 1675 return skb; 1676 } 1677 1678 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1679 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1680 1681 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1682 int payload_off, int tcp_ts, 1683 struct sk_buff *skb) 1684 { 1685 #ifdef CONFIG_INET 1686 struct tcphdr *th; 1687 int len, nw_off, tcp_opt_len = 0; 1688 1689 if (tcp_ts) 1690 tcp_opt_len = 12; 1691 1692 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1693 struct iphdr *iph; 1694 1695 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1696 ETH_HLEN; 1697 skb_set_network_header(skb, nw_off); 1698 iph = ip_hdr(skb); 1699 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1700 len = skb->len - skb_transport_offset(skb); 1701 th = tcp_hdr(skb); 1702 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1703 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1704 struct ipv6hdr *iph; 1705 1706 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1707 ETH_HLEN; 1708 skb_set_network_header(skb, nw_off); 1709 iph = ipv6_hdr(skb); 1710 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1711 len = skb->len - skb_transport_offset(skb); 1712 th = tcp_hdr(skb); 1713 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1714 } else { 1715 dev_kfree_skb_any(skb); 1716 return NULL; 1717 } 1718 1719 if (nw_off) /* tunnel */ 1720 bnxt_gro_tunnel(skb, skb->protocol); 1721 #endif 1722 return skb; 1723 } 1724 1725 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1726 struct bnxt_tpa_info *tpa_info, 1727 struct rx_tpa_end_cmp *tpa_end, 1728 struct rx_tpa_end_cmp_ext *tpa_end1, 1729 struct sk_buff *skb) 1730 { 1731 #ifdef CONFIG_INET 1732 int payload_off; 1733 u16 segs; 1734 1735 segs = TPA_END_TPA_SEGS(tpa_end); 1736 if (segs == 1) 1737 return skb; 1738 1739 NAPI_GRO_CB(skb)->count = segs; 1740 skb_shinfo(skb)->gso_size = 1741 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1742 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1743 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1744 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1745 else 1746 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1747 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1748 if (likely(skb)) 1749 tcp_gro_complete(skb); 1750 #endif 1751 return skb; 1752 } 1753 1754 /* Given the cfa_code of a received packet determine which 1755 * netdev (vf-rep or PF) the packet is destined to. 1756 */ 1757 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1758 { 1759 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1760 1761 /* if vf-rep dev is NULL, the must belongs to the PF */ 1762 return dev ? dev : bp->dev; 1763 } 1764 1765 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1766 struct bnxt_cp_ring_info *cpr, 1767 u32 *raw_cons, 1768 struct rx_tpa_end_cmp *tpa_end, 1769 struct rx_tpa_end_cmp_ext *tpa_end1, 1770 u8 *event) 1771 { 1772 struct bnxt_napi *bnapi = cpr->bnapi; 1773 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1774 struct net_device *dev = bp->dev; 1775 u8 *data_ptr, agg_bufs; 1776 unsigned int len; 1777 struct bnxt_tpa_info *tpa_info; 1778 dma_addr_t mapping; 1779 struct sk_buff *skb; 1780 u16 idx = 0, agg_id; 1781 void *data; 1782 bool gro; 1783 1784 if (unlikely(bnapi->in_reset)) { 1785 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1786 1787 if (rc < 0) 1788 return ERR_PTR(-EBUSY); 1789 return NULL; 1790 } 1791 1792 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1793 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1794 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1795 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1796 tpa_info = &rxr->rx_tpa[agg_id]; 1797 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1798 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1799 agg_bufs, tpa_info->agg_count); 1800 agg_bufs = tpa_info->agg_count; 1801 } 1802 tpa_info->agg_count = 0; 1803 *event |= BNXT_AGG_EVENT; 1804 bnxt_free_agg_idx(rxr, agg_id); 1805 idx = agg_id; 1806 gro = !!(bp->flags & BNXT_FLAG_GRO); 1807 } else { 1808 agg_id = TPA_END_AGG_ID(tpa_end); 1809 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1810 tpa_info = &rxr->rx_tpa[agg_id]; 1811 idx = RING_CMP(*raw_cons); 1812 if (agg_bufs) { 1813 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1814 return ERR_PTR(-EBUSY); 1815 1816 *event |= BNXT_AGG_EVENT; 1817 idx = NEXT_CMP(idx); 1818 } 1819 gro = !!TPA_END_GRO(tpa_end); 1820 } 1821 data = tpa_info->data; 1822 data_ptr = tpa_info->data_ptr; 1823 prefetch(data_ptr); 1824 len = tpa_info->len; 1825 mapping = tpa_info->mapping; 1826 1827 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1828 bnxt_abort_tpa(cpr, idx, agg_bufs); 1829 if (agg_bufs > MAX_SKB_FRAGS) 1830 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1831 agg_bufs, (int)MAX_SKB_FRAGS); 1832 return NULL; 1833 } 1834 1835 if (len <= bp->rx_copy_thresh) { 1836 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1837 if (!skb) { 1838 bnxt_abort_tpa(cpr, idx, agg_bufs); 1839 cpr->sw_stats->rx.rx_oom_discards += 1; 1840 return NULL; 1841 } 1842 } else { 1843 u8 *new_data; 1844 dma_addr_t new_mapping; 1845 1846 new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC); 1847 if (!new_data) { 1848 bnxt_abort_tpa(cpr, idx, agg_bufs); 1849 cpr->sw_stats->rx.rx_oom_discards += 1; 1850 return NULL; 1851 } 1852 1853 tpa_info->data = new_data; 1854 tpa_info->data_ptr = new_data + bp->rx_offset; 1855 tpa_info->mapping = new_mapping; 1856 1857 skb = napi_build_skb(data, bp->rx_buf_size); 1858 dma_unmap_single_attrs(&bp->pdev->dev, mapping, 1859 bp->rx_buf_use_size, bp->rx_dir, 1860 DMA_ATTR_WEAK_ORDERING); 1861 1862 if (!skb) { 1863 skb_free_frag(data); 1864 bnxt_abort_tpa(cpr, idx, agg_bufs); 1865 cpr->sw_stats->rx.rx_oom_discards += 1; 1866 return NULL; 1867 } 1868 skb_reserve(skb, bp->rx_offset); 1869 skb_put(skb, len); 1870 } 1871 1872 if (agg_bufs) { 1873 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true); 1874 if (!skb) { 1875 /* Page reuse already handled by bnxt_rx_pages(). */ 1876 cpr->sw_stats->rx.rx_oom_discards += 1; 1877 return NULL; 1878 } 1879 } 1880 1881 if (tpa_info->cfa_code_valid) 1882 dev = bnxt_get_pkt_dev(bp, tpa_info->cfa_code); 1883 skb->protocol = eth_type_trans(skb, dev); 1884 1885 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1886 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1887 1888 if (tpa_info->vlan_valid && 1889 (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1890 __be16 vlan_proto = htons(tpa_info->metadata >> 1891 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1892 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1893 1894 if (eth_type_vlan(vlan_proto)) { 1895 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1896 } else { 1897 dev_kfree_skb(skb); 1898 return NULL; 1899 } 1900 } 1901 1902 skb_checksum_none_assert(skb); 1903 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1904 skb->ip_summed = CHECKSUM_UNNECESSARY; 1905 skb->csum_level = 1906 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1907 } 1908 1909 if (gro) 1910 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1911 1912 return skb; 1913 } 1914 1915 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1916 struct rx_agg_cmp *rx_agg) 1917 { 1918 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1919 struct bnxt_tpa_info *tpa_info; 1920 1921 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1922 tpa_info = &rxr->rx_tpa[agg_id]; 1923 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1924 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1925 } 1926 1927 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1928 struct sk_buff *skb) 1929 { 1930 skb_mark_for_recycle(skb); 1931 1932 if (skb->dev != bp->dev) { 1933 /* this packet belongs to a vf-rep */ 1934 bnxt_vf_rep_rx(bp, skb); 1935 return; 1936 } 1937 skb_record_rx_queue(skb, bnapi->index); 1938 napi_gro_receive(&bnapi->napi, skb); 1939 } 1940 1941 static bool bnxt_rx_ts_valid(struct bnxt *bp, u32 flags, 1942 struct rx_cmp_ext *rxcmp1, u32 *cmpl_ts) 1943 { 1944 u32 ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); 1945 1946 if (BNXT_PTP_RX_TS_VALID(flags)) 1947 goto ts_valid; 1948 if (!bp->ptp_all_rx_tstamp || !ts || !BNXT_ALL_RX_TS_VALID(flags)) 1949 return false; 1950 1951 ts_valid: 1952 *cmpl_ts = ts; 1953 return true; 1954 } 1955 1956 static struct sk_buff *bnxt_rx_vlan(struct sk_buff *skb, u8 cmp_type, 1957 struct rx_cmp *rxcmp, 1958 struct rx_cmp_ext *rxcmp1) 1959 { 1960 __be16 vlan_proto; 1961 u16 vtag; 1962 1963 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1964 __le32 flags2 = rxcmp1->rx_cmp_flags2; 1965 u32 meta_data; 1966 1967 if (!(flags2 & cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN))) 1968 return skb; 1969 1970 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 1971 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1972 vlan_proto = htons(meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT); 1973 if (eth_type_vlan(vlan_proto)) 1974 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1975 else 1976 goto vlan_err; 1977 } else if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 1978 if (RX_CMP_VLAN_VALID(rxcmp)) { 1979 u32 tpid_sel = RX_CMP_VLAN_TPID_SEL(rxcmp); 1980 1981 if (tpid_sel == RX_CMP_METADATA1_TPID_8021Q) 1982 vlan_proto = htons(ETH_P_8021Q); 1983 else if (tpid_sel == RX_CMP_METADATA1_TPID_8021AD) 1984 vlan_proto = htons(ETH_P_8021AD); 1985 else 1986 goto vlan_err; 1987 vtag = RX_CMP_METADATA0_TCI(rxcmp1); 1988 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1989 } 1990 } 1991 return skb; 1992 vlan_err: 1993 dev_kfree_skb(skb); 1994 return NULL; 1995 } 1996 1997 static enum pkt_hash_types bnxt_rss_ext_op(struct bnxt *bp, 1998 struct rx_cmp *rxcmp) 1999 { 2000 u8 ext_op; 2001 2002 ext_op = RX_CMP_V3_HASH_TYPE(bp, rxcmp); 2003 switch (ext_op) { 2004 case EXT_OP_INNER_4: 2005 case EXT_OP_OUTER_4: 2006 case EXT_OP_INNFL_3: 2007 case EXT_OP_OUTFL_3: 2008 return PKT_HASH_TYPE_L4; 2009 default: 2010 return PKT_HASH_TYPE_L3; 2011 } 2012 } 2013 2014 /* returns the following: 2015 * 1 - 1 packet successfully received 2016 * 0 - successful TPA_START, packet not completed yet 2017 * -EBUSY - completion ring does not have all the agg buffers yet 2018 * -ENOMEM - packet aborted due to out of memory 2019 * -EIO - packet aborted due to hw error indicated in BD 2020 */ 2021 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2022 u32 *raw_cons, u8 *event) 2023 { 2024 struct bnxt_napi *bnapi = cpr->bnapi; 2025 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2026 struct net_device *dev = bp->dev; 2027 struct rx_cmp *rxcmp; 2028 struct rx_cmp_ext *rxcmp1; 2029 u32 tmp_raw_cons = *raw_cons; 2030 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 2031 struct bnxt_sw_rx_bd *rx_buf; 2032 unsigned int len; 2033 u8 *data_ptr, agg_bufs, cmp_type; 2034 bool xdp_active = false; 2035 dma_addr_t dma_addr; 2036 struct sk_buff *skb; 2037 struct xdp_buff xdp; 2038 u32 flags, misc; 2039 u32 cmpl_ts; 2040 void *data; 2041 int rc = 0; 2042 2043 rxcmp = (struct rx_cmp *) 2044 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2045 2046 cmp_type = RX_CMP_TYPE(rxcmp); 2047 2048 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 2049 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 2050 goto next_rx_no_prod_no_len; 2051 } 2052 2053 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2054 cp_cons = RING_CMP(tmp_raw_cons); 2055 rxcmp1 = (struct rx_cmp_ext *) 2056 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2057 2058 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2059 return -EBUSY; 2060 2061 /* The valid test of the entry must be done first before 2062 * reading any further. 2063 */ 2064 dma_rmb(); 2065 prod = rxr->rx_prod; 2066 2067 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP || 2068 cmp_type == CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 2069 bnxt_tpa_start(bp, rxr, cmp_type, 2070 (struct rx_tpa_start_cmp *)rxcmp, 2071 (struct rx_tpa_start_cmp_ext *)rxcmp1); 2072 2073 *event |= BNXT_RX_EVENT; 2074 goto next_rx_no_prod_no_len; 2075 2076 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2077 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 2078 (struct rx_tpa_end_cmp *)rxcmp, 2079 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 2080 2081 if (IS_ERR(skb)) 2082 return -EBUSY; 2083 2084 rc = -ENOMEM; 2085 if (likely(skb)) { 2086 bnxt_deliver_skb(bp, bnapi, skb); 2087 rc = 1; 2088 } 2089 *event |= BNXT_RX_EVENT; 2090 goto next_rx_no_prod_no_len; 2091 } 2092 2093 cons = rxcmp->rx_cmp_opaque; 2094 if (unlikely(cons != rxr->rx_next_cons)) { 2095 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 2096 2097 /* 0xffff is forced error, don't print it */ 2098 if (rxr->rx_next_cons != 0xffff) 2099 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 2100 cons, rxr->rx_next_cons); 2101 bnxt_sched_reset_rxr(bp, rxr); 2102 if (rc1) 2103 return rc1; 2104 goto next_rx_no_prod_no_len; 2105 } 2106 rx_buf = &rxr->rx_buf_ring[cons]; 2107 data = rx_buf->data; 2108 data_ptr = rx_buf->data_ptr; 2109 prefetch(data_ptr); 2110 2111 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 2112 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 2113 2114 if (agg_bufs) { 2115 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 2116 return -EBUSY; 2117 2118 cp_cons = NEXT_CMP(cp_cons); 2119 *event |= BNXT_AGG_EVENT; 2120 } 2121 *event |= BNXT_RX_EVENT; 2122 2123 rx_buf->data = NULL; 2124 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 2125 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 2126 2127 bnxt_reuse_rx_data(rxr, cons, data); 2128 if (agg_bufs) 2129 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 2130 false); 2131 2132 rc = -EIO; 2133 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 2134 bnapi->cp_ring.sw_stats->rx.rx_buf_errors++; 2135 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 2136 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 2137 netdev_warn_once(bp->dev, "RX buffer error %x\n", 2138 rx_err); 2139 bnxt_sched_reset_rxr(bp, rxr); 2140 } 2141 } 2142 goto next_rx_no_len; 2143 } 2144 2145 flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); 2146 len = flags >> RX_CMP_LEN_SHIFT; 2147 dma_addr = rx_buf->mapping; 2148 2149 if (bnxt_xdp_attached(bp, rxr)) { 2150 bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp); 2151 if (agg_bufs) { 2152 u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp, 2153 cp_cons, agg_bufs, 2154 false); 2155 if (!frag_len) 2156 goto oom_next_rx; 2157 } 2158 xdp_active = true; 2159 } 2160 2161 if (xdp_active) { 2162 if (bnxt_rx_xdp(bp, rxr, cons, &xdp, data, &data_ptr, &len, event)) { 2163 rc = 1; 2164 goto next_rx; 2165 } 2166 } 2167 2168 if (len <= bp->rx_copy_thresh) { 2169 if (!xdp_active) 2170 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 2171 else 2172 skb = bnxt_copy_xdp(bnapi, &xdp, len, dma_addr); 2173 bnxt_reuse_rx_data(rxr, cons, data); 2174 if (!skb) { 2175 if (agg_bufs) { 2176 if (!xdp_active) 2177 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 2178 agg_bufs, false); 2179 else 2180 bnxt_xdp_buff_frags_free(rxr, &xdp); 2181 } 2182 goto oom_next_rx; 2183 } 2184 } else { 2185 u32 payload; 2186 2187 if (rx_buf->data_ptr == data_ptr) 2188 payload = misc & RX_CMP_PAYLOAD_OFFSET; 2189 else 2190 payload = 0; 2191 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 2192 payload | len); 2193 if (!skb) 2194 goto oom_next_rx; 2195 } 2196 2197 if (agg_bufs) { 2198 if (!xdp_active) { 2199 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false); 2200 if (!skb) 2201 goto oom_next_rx; 2202 } else { 2203 skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1); 2204 if (!skb) { 2205 /* we should be able to free the old skb here */ 2206 bnxt_xdp_buff_frags_free(rxr, &xdp); 2207 goto oom_next_rx; 2208 } 2209 } 2210 } 2211 2212 if (RX_CMP_HASH_VALID(rxcmp)) { 2213 enum pkt_hash_types type; 2214 2215 if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2216 type = bnxt_rss_ext_op(bp, rxcmp); 2217 } else { 2218 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 2219 2220 /* RSS profiles 1 and 3 with extract code 0 for inner 2221 * 4-tuple 2222 */ 2223 if (hash_type != 1 && hash_type != 3) 2224 type = PKT_HASH_TYPE_L3; 2225 else 2226 type = PKT_HASH_TYPE_L4; 2227 } 2228 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 2229 } 2230 2231 if (cmp_type == CMP_TYPE_RX_L2_CMP) 2232 dev = bnxt_get_pkt_dev(bp, RX_CMP_CFA_CODE(rxcmp1)); 2233 skb->protocol = eth_type_trans(skb, dev); 2234 2235 if (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) { 2236 skb = bnxt_rx_vlan(skb, cmp_type, rxcmp, rxcmp1); 2237 if (!skb) 2238 goto next_rx; 2239 } 2240 2241 skb_checksum_none_assert(skb); 2242 if (RX_CMP_L4_CS_OK(rxcmp1)) { 2243 if (dev->features & NETIF_F_RXCSUM) { 2244 skb->ip_summed = CHECKSUM_UNNECESSARY; 2245 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 2246 } 2247 } else { 2248 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 2249 if (dev->features & NETIF_F_RXCSUM) 2250 bnapi->cp_ring.sw_stats->rx.rx_l4_csum_errors++; 2251 } 2252 } 2253 2254 if (bnxt_rx_ts_valid(bp, flags, rxcmp1, &cmpl_ts)) { 2255 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 2256 u64 ns, ts; 2257 2258 if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { 2259 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2260 2261 spin_lock_bh(&ptp->ptp_lock); 2262 ns = timecounter_cyc2time(&ptp->tc, ts); 2263 spin_unlock_bh(&ptp->ptp_lock); 2264 memset(skb_hwtstamps(skb), 0, 2265 sizeof(*skb_hwtstamps(skb))); 2266 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 2267 } 2268 } 2269 } 2270 bnxt_deliver_skb(bp, bnapi, skb); 2271 rc = 1; 2272 2273 next_rx: 2274 cpr->rx_packets += 1; 2275 cpr->rx_bytes += len; 2276 2277 next_rx_no_len: 2278 rxr->rx_prod = NEXT_RX(prod); 2279 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 2280 2281 next_rx_no_prod_no_len: 2282 *raw_cons = tmp_raw_cons; 2283 2284 return rc; 2285 2286 oom_next_rx: 2287 cpr->sw_stats->rx.rx_oom_discards += 1; 2288 rc = -ENOMEM; 2289 goto next_rx; 2290 } 2291 2292 /* In netpoll mode, if we are using a combined completion ring, we need to 2293 * discard the rx packets and recycle the buffers. 2294 */ 2295 static int bnxt_force_rx_discard(struct bnxt *bp, 2296 struct bnxt_cp_ring_info *cpr, 2297 u32 *raw_cons, u8 *event) 2298 { 2299 u32 tmp_raw_cons = *raw_cons; 2300 struct rx_cmp_ext *rxcmp1; 2301 struct rx_cmp *rxcmp; 2302 u16 cp_cons; 2303 u8 cmp_type; 2304 int rc; 2305 2306 cp_cons = RING_CMP(tmp_raw_cons); 2307 rxcmp = (struct rx_cmp *) 2308 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2309 2310 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2311 cp_cons = RING_CMP(tmp_raw_cons); 2312 rxcmp1 = (struct rx_cmp_ext *) 2313 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2314 2315 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2316 return -EBUSY; 2317 2318 /* The valid test of the entry must be done first before 2319 * reading any further. 2320 */ 2321 dma_rmb(); 2322 cmp_type = RX_CMP_TYPE(rxcmp); 2323 if (cmp_type == CMP_TYPE_RX_L2_CMP || 2324 cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2325 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2326 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2327 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2328 struct rx_tpa_end_cmp_ext *tpa_end1; 2329 2330 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 2331 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 2332 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 2333 } 2334 rc = bnxt_rx_pkt(bp, cpr, raw_cons, event); 2335 if (rc && rc != -EBUSY) 2336 cpr->sw_stats->rx.rx_netpoll_discards += 1; 2337 return rc; 2338 } 2339 2340 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 2341 { 2342 struct bnxt_fw_health *fw_health = bp->fw_health; 2343 u32 reg = fw_health->regs[reg_idx]; 2344 u32 reg_type, reg_off, val = 0; 2345 2346 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 2347 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 2348 switch (reg_type) { 2349 case BNXT_FW_HEALTH_REG_TYPE_CFG: 2350 pci_read_config_dword(bp->pdev, reg_off, &val); 2351 break; 2352 case BNXT_FW_HEALTH_REG_TYPE_GRC: 2353 reg_off = fw_health->mapped_regs[reg_idx]; 2354 fallthrough; 2355 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 2356 val = readl(bp->bar0 + reg_off); 2357 break; 2358 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 2359 val = readl(bp->bar1 + reg_off); 2360 break; 2361 } 2362 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 2363 val &= fw_health->fw_reset_inprog_reg_mask; 2364 return val; 2365 } 2366 2367 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 2368 { 2369 int i; 2370 2371 for (i = 0; i < bp->rx_nr_rings; i++) { 2372 u16 grp_idx = bp->rx_ring[i].bnapi->index; 2373 struct bnxt_ring_grp_info *grp_info; 2374 2375 grp_info = &bp->grp_info[grp_idx]; 2376 if (grp_info->agg_fw_ring_id == ring_id) 2377 return grp_idx; 2378 } 2379 return INVALID_HW_RING_ID; 2380 } 2381 2382 static u16 bnxt_get_force_speed(struct bnxt_link_info *link_info) 2383 { 2384 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2385 2386 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 2387 return link_info->force_link_speed2; 2388 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4) 2389 return link_info->force_pam4_link_speed; 2390 return link_info->force_link_speed; 2391 } 2392 2393 static void bnxt_set_force_speed(struct bnxt_link_info *link_info) 2394 { 2395 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2396 2397 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2398 link_info->req_link_speed = link_info->force_link_speed2; 2399 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2400 switch (link_info->req_link_speed) { 2401 case BNXT_LINK_SPEED_50GB_PAM4: 2402 case BNXT_LINK_SPEED_100GB_PAM4: 2403 case BNXT_LINK_SPEED_200GB_PAM4: 2404 case BNXT_LINK_SPEED_400GB_PAM4: 2405 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2406 break; 2407 case BNXT_LINK_SPEED_100GB_PAM4_112: 2408 case BNXT_LINK_SPEED_200GB_PAM4_112: 2409 case BNXT_LINK_SPEED_400GB_PAM4_112: 2410 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4_112; 2411 break; 2412 default: 2413 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2414 } 2415 return; 2416 } 2417 link_info->req_link_speed = link_info->force_link_speed; 2418 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2419 if (link_info->force_pam4_link_speed) { 2420 link_info->req_link_speed = link_info->force_pam4_link_speed; 2421 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2422 } 2423 } 2424 2425 static void bnxt_set_auto_speed(struct bnxt_link_info *link_info) 2426 { 2427 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2428 2429 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2430 link_info->advertising = link_info->auto_link_speeds2; 2431 return; 2432 } 2433 link_info->advertising = link_info->auto_link_speeds; 2434 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 2435 } 2436 2437 static bool bnxt_force_speed_updated(struct bnxt_link_info *link_info) 2438 { 2439 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2440 2441 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2442 if (link_info->req_link_speed != link_info->force_link_speed2) 2443 return true; 2444 return false; 2445 } 2446 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 2447 link_info->req_link_speed != link_info->force_link_speed) 2448 return true; 2449 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 2450 link_info->req_link_speed != link_info->force_pam4_link_speed) 2451 return true; 2452 return false; 2453 } 2454 2455 static bool bnxt_auto_speed_updated(struct bnxt_link_info *link_info) 2456 { 2457 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2458 2459 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2460 if (link_info->advertising != link_info->auto_link_speeds2) 2461 return true; 2462 return false; 2463 } 2464 if (link_info->advertising != link_info->auto_link_speeds || 2465 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 2466 return true; 2467 return false; 2468 } 2469 2470 #define BNXT_EVENT_THERMAL_CURRENT_TEMP(data2) \ 2471 ((data2) & \ 2472 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_CURRENT_TEMP_MASK) 2473 2474 #define BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2) \ 2475 (((data2) & \ 2476 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_MASK) >>\ 2477 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_SFT) 2478 2479 #define EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1) \ 2480 ((data1) & \ 2481 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_MASK) 2482 2483 #define EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1) \ 2484 (((data1) & \ 2485 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR) ==\ 2486 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR_INCREASING) 2487 2488 /* Return true if the workqueue has to be scheduled */ 2489 static bool bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2) 2490 { 2491 u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1); 2492 2493 switch (err_type) { 2494 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL: 2495 netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n", 2496 BNXT_EVENT_INVALID_SIGNAL_DATA(data2)); 2497 break; 2498 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM: 2499 netdev_warn(bp->dev, "Pause Storm detected!\n"); 2500 break; 2501 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD: 2502 netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n"); 2503 break; 2504 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_THERMAL_THRESHOLD: { 2505 u32 type = EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1); 2506 char *threshold_type; 2507 bool notify = false; 2508 char *dir_str; 2509 2510 switch (type) { 2511 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_WARN: 2512 threshold_type = "warning"; 2513 break; 2514 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_CRITICAL: 2515 threshold_type = "critical"; 2516 break; 2517 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_FATAL: 2518 threshold_type = "fatal"; 2519 break; 2520 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_SHUTDOWN: 2521 threshold_type = "shutdown"; 2522 break; 2523 default: 2524 netdev_err(bp->dev, "Unknown Thermal threshold type event\n"); 2525 return false; 2526 } 2527 if (EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)) { 2528 dir_str = "above"; 2529 notify = true; 2530 } else { 2531 dir_str = "below"; 2532 } 2533 netdev_warn(bp->dev, "Chip temperature has gone %s the %s thermal threshold!\n", 2534 dir_str, threshold_type); 2535 netdev_warn(bp->dev, "Temperature (In Celsius), Current: %lu, threshold: %lu\n", 2536 BNXT_EVENT_THERMAL_CURRENT_TEMP(data2), 2537 BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2)); 2538 if (notify) { 2539 bp->thermal_threshold_type = type; 2540 set_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event); 2541 return true; 2542 } 2543 return false; 2544 } 2545 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DUAL_DATA_RATE_NOT_SUPPORTED: 2546 netdev_warn(bp->dev, "Speed change not supported with dual rate transceivers on this board\n"); 2547 break; 2548 default: 2549 netdev_err(bp->dev, "FW reported unknown error type %u\n", 2550 err_type); 2551 break; 2552 } 2553 return false; 2554 } 2555 2556 #define BNXT_GET_EVENT_PORT(data) \ 2557 ((data) & \ 2558 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 2559 2560 #define BNXT_EVENT_RING_TYPE(data2) \ 2561 ((data2) & \ 2562 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 2563 2564 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 2565 (BNXT_EVENT_RING_TYPE(data2) == \ 2566 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 2567 2568 #define BNXT_EVENT_PHC_EVENT_TYPE(data1) \ 2569 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\ 2570 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT) 2571 2572 #define BNXT_EVENT_PHC_RTC_UPDATE(data1) \ 2573 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\ 2574 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT) 2575 2576 #define BNXT_PHC_BITS 48 2577 2578 static int bnxt_async_event_process(struct bnxt *bp, 2579 struct hwrm_async_event_cmpl *cmpl) 2580 { 2581 u16 event_id = le16_to_cpu(cmpl->event_id); 2582 u32 data1 = le32_to_cpu(cmpl->event_data1); 2583 u32 data2 = le32_to_cpu(cmpl->event_data2); 2584 2585 netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n", 2586 event_id, data1, data2); 2587 2588 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2589 switch (event_id) { 2590 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2591 struct bnxt_link_info *link_info = &bp->link_info; 2592 2593 if (BNXT_VF(bp)) 2594 goto async_event_process_exit; 2595 2596 /* print unsupported speed warning in forced speed mode only */ 2597 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2598 (data1 & 0x20000)) { 2599 u16 fw_speed = bnxt_get_force_speed(link_info); 2600 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2601 2602 if (speed != SPEED_UNKNOWN) 2603 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2604 speed); 2605 } 2606 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2607 } 2608 fallthrough; 2609 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2610 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2611 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2612 fallthrough; 2613 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2614 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2615 break; 2616 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2617 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2618 break; 2619 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2620 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2621 2622 if (BNXT_VF(bp)) 2623 break; 2624 2625 if (bp->pf.port_id != port_id) 2626 break; 2627 2628 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2629 break; 2630 } 2631 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2632 if (BNXT_PF(bp)) 2633 goto async_event_process_exit; 2634 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2635 break; 2636 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2637 char *type_str = "Solicited"; 2638 2639 if (!bp->fw_health) 2640 goto async_event_process_exit; 2641 2642 bp->fw_reset_timestamp = jiffies; 2643 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2644 if (!bp->fw_reset_min_dsecs) 2645 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2646 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2647 if (!bp->fw_reset_max_dsecs) 2648 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2649 if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) { 2650 set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state); 2651 } else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2652 type_str = "Fatal"; 2653 bp->fw_health->fatalities++; 2654 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2655 } else if (data2 && BNXT_FW_STATUS_HEALTHY != 2656 EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) { 2657 type_str = "Non-fatal"; 2658 bp->fw_health->survivals++; 2659 set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 2660 } 2661 netif_warn(bp, hw, bp->dev, 2662 "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2663 type_str, data1, data2, 2664 bp->fw_reset_min_dsecs * 100, 2665 bp->fw_reset_max_dsecs * 100); 2666 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2667 break; 2668 } 2669 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2670 struct bnxt_fw_health *fw_health = bp->fw_health; 2671 char *status_desc = "healthy"; 2672 u32 status; 2673 2674 if (!fw_health) 2675 goto async_event_process_exit; 2676 2677 if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) { 2678 fw_health->enabled = false; 2679 netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n"); 2680 break; 2681 } 2682 fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2683 fw_health->tmr_multiplier = 2684 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2685 bp->current_interval * 10); 2686 fw_health->tmr_counter = fw_health->tmr_multiplier; 2687 if (!fw_health->enabled) 2688 fw_health->last_fw_heartbeat = 2689 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2690 fw_health->last_fw_reset_cnt = 2691 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2692 status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 2693 if (status != BNXT_FW_STATUS_HEALTHY) 2694 status_desc = "unhealthy"; 2695 netif_info(bp, drv, bp->dev, 2696 "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n", 2697 fw_health->primary ? "primary" : "backup", status, 2698 status_desc, fw_health->last_fw_reset_cnt); 2699 if (!fw_health->enabled) { 2700 /* Make sure tmr_counter is set and visible to 2701 * bnxt_health_check() before setting enabled to true. 2702 */ 2703 smp_wmb(); 2704 fw_health->enabled = true; 2705 } 2706 goto async_event_process_exit; 2707 } 2708 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2709 netif_notice(bp, hw, bp->dev, 2710 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2711 data1, data2); 2712 goto async_event_process_exit; 2713 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2714 struct bnxt_rx_ring_info *rxr; 2715 u16 grp_idx; 2716 2717 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 2718 goto async_event_process_exit; 2719 2720 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2721 BNXT_EVENT_RING_TYPE(data2), data1); 2722 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2723 goto async_event_process_exit; 2724 2725 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2726 if (grp_idx == INVALID_HW_RING_ID) { 2727 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2728 data1); 2729 goto async_event_process_exit; 2730 } 2731 rxr = bp->bnapi[grp_idx]->rx_ring; 2732 bnxt_sched_reset_rxr(bp, rxr); 2733 goto async_event_process_exit; 2734 } 2735 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2736 struct bnxt_fw_health *fw_health = bp->fw_health; 2737 2738 netif_notice(bp, hw, bp->dev, 2739 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2740 data1, data2); 2741 if (fw_health) { 2742 fw_health->echo_req_data1 = data1; 2743 fw_health->echo_req_data2 = data2; 2744 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2745 break; 2746 } 2747 goto async_event_process_exit; 2748 } 2749 case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: { 2750 bnxt_ptp_pps_event(bp, data1, data2); 2751 goto async_event_process_exit; 2752 } 2753 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: { 2754 if (bnxt_event_error_report(bp, data1, data2)) 2755 break; 2756 goto async_event_process_exit; 2757 } 2758 case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: { 2759 switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) { 2760 case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE: 2761 if (BNXT_PTP_USE_RTC(bp)) { 2762 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2763 u64 ns; 2764 2765 if (!ptp) 2766 goto async_event_process_exit; 2767 2768 spin_lock_bh(&ptp->ptp_lock); 2769 bnxt_ptp_update_current_time(bp); 2770 ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) << 2771 BNXT_PHC_BITS) | ptp->current_time); 2772 bnxt_ptp_rtc_timecounter_init(ptp, ns); 2773 spin_unlock_bh(&ptp->ptp_lock); 2774 } 2775 break; 2776 } 2777 goto async_event_process_exit; 2778 } 2779 case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: { 2780 u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff; 2781 2782 hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED); 2783 goto async_event_process_exit; 2784 } 2785 default: 2786 goto async_event_process_exit; 2787 } 2788 __bnxt_queue_sp_work(bp); 2789 async_event_process_exit: 2790 return 0; 2791 } 2792 2793 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2794 { 2795 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2796 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2797 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2798 (struct hwrm_fwd_req_cmpl *)txcmp; 2799 2800 switch (cmpl_type) { 2801 case CMPL_BASE_TYPE_HWRM_DONE: 2802 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2803 hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE); 2804 break; 2805 2806 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2807 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2808 2809 if ((vf_id < bp->pf.first_vf_id) || 2810 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2811 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2812 vf_id); 2813 return -EINVAL; 2814 } 2815 2816 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2817 bnxt_queue_sp_work(bp, BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT); 2818 break; 2819 2820 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2821 bnxt_async_event_process(bp, 2822 (struct hwrm_async_event_cmpl *)txcmp); 2823 break; 2824 2825 default: 2826 break; 2827 } 2828 2829 return 0; 2830 } 2831 2832 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2833 { 2834 struct bnxt_napi *bnapi = dev_instance; 2835 struct bnxt *bp = bnapi->bp; 2836 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2837 u32 cons = RING_CMP(cpr->cp_raw_cons); 2838 2839 cpr->event_ctr++; 2840 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2841 napi_schedule(&bnapi->napi); 2842 return IRQ_HANDLED; 2843 } 2844 2845 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2846 { 2847 u32 raw_cons = cpr->cp_raw_cons; 2848 u16 cons = RING_CMP(raw_cons); 2849 struct tx_cmp *txcmp; 2850 2851 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2852 2853 return TX_CMP_VALID(txcmp, raw_cons); 2854 } 2855 2856 static irqreturn_t bnxt_inta(int irq, void *dev_instance) 2857 { 2858 struct bnxt_napi *bnapi = dev_instance; 2859 struct bnxt *bp = bnapi->bp; 2860 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2861 u32 cons = RING_CMP(cpr->cp_raw_cons); 2862 u32 int_status; 2863 2864 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2865 2866 if (!bnxt_has_work(bp, cpr)) { 2867 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); 2868 /* return if erroneous interrupt */ 2869 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) 2870 return IRQ_NONE; 2871 } 2872 2873 /* disable ring IRQ */ 2874 BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell); 2875 2876 /* Return here if interrupt is shared and is disabled. */ 2877 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 2878 return IRQ_HANDLED; 2879 2880 napi_schedule(&bnapi->napi); 2881 return IRQ_HANDLED; 2882 } 2883 2884 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2885 int budget) 2886 { 2887 struct bnxt_napi *bnapi = cpr->bnapi; 2888 u32 raw_cons = cpr->cp_raw_cons; 2889 u32 cons; 2890 int rx_pkts = 0; 2891 u8 event = 0; 2892 struct tx_cmp *txcmp; 2893 2894 cpr->has_more_work = 0; 2895 cpr->had_work_done = 1; 2896 while (1) { 2897 u8 cmp_type; 2898 int rc; 2899 2900 cons = RING_CMP(raw_cons); 2901 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2902 2903 if (!TX_CMP_VALID(txcmp, raw_cons)) 2904 break; 2905 2906 /* The valid test of the entry must be done first before 2907 * reading any further. 2908 */ 2909 dma_rmb(); 2910 cmp_type = TX_CMP_TYPE(txcmp); 2911 if (cmp_type == CMP_TYPE_TX_L2_CMP || 2912 cmp_type == CMP_TYPE_TX_L2_COAL_CMP) { 2913 u32 opaque = txcmp->tx_cmp_opaque; 2914 struct bnxt_tx_ring_info *txr; 2915 u16 tx_freed; 2916 2917 txr = bnapi->tx_ring[TX_OPAQUE_RING(opaque)]; 2918 event |= BNXT_TX_CMP_EVENT; 2919 if (cmp_type == CMP_TYPE_TX_L2_COAL_CMP) 2920 txr->tx_hw_cons = TX_CMP_SQ_CONS_IDX(txcmp); 2921 else 2922 txr->tx_hw_cons = TX_OPAQUE_PROD(bp, opaque); 2923 tx_freed = (txr->tx_hw_cons - txr->tx_cons) & 2924 bp->tx_ring_mask; 2925 /* return full budget so NAPI will complete. */ 2926 if (unlikely(tx_freed >= bp->tx_wake_thresh)) { 2927 rx_pkts = budget; 2928 raw_cons = NEXT_RAW_CMP(raw_cons); 2929 if (budget) 2930 cpr->has_more_work = 1; 2931 break; 2932 } 2933 } else if (cmp_type == CMP_TYPE_TX_L2_PKT_TS_CMP) { 2934 bnxt_tx_ts_cmp(bp, bnapi, (struct tx_ts_cmp *)txcmp); 2935 } else if (cmp_type >= CMP_TYPE_RX_L2_CMP && 2936 cmp_type <= CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 2937 if (likely(budget)) 2938 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2939 else 2940 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 2941 &event); 2942 if (likely(rc >= 0)) 2943 rx_pkts += rc; 2944 /* Increment rx_pkts when rc is -ENOMEM to count towards 2945 * the NAPI budget. Otherwise, we may potentially loop 2946 * here forever if we consistently cannot allocate 2947 * buffers. 2948 */ 2949 else if (rc == -ENOMEM && budget) 2950 rx_pkts++; 2951 else if (rc == -EBUSY) /* partial completion */ 2952 break; 2953 } else if (unlikely(cmp_type == CMPL_BASE_TYPE_HWRM_DONE || 2954 cmp_type == CMPL_BASE_TYPE_HWRM_FWD_REQ || 2955 cmp_type == CMPL_BASE_TYPE_HWRM_ASYNC_EVENT)) { 2956 bnxt_hwrm_handler(bp, txcmp); 2957 } 2958 raw_cons = NEXT_RAW_CMP(raw_cons); 2959 2960 if (rx_pkts && rx_pkts == budget) { 2961 cpr->has_more_work = 1; 2962 break; 2963 } 2964 } 2965 2966 if (event & BNXT_REDIRECT_EVENT) { 2967 xdp_do_flush(); 2968 event &= ~BNXT_REDIRECT_EVENT; 2969 } 2970 2971 if (event & BNXT_TX_EVENT) { 2972 struct bnxt_tx_ring_info *txr = bnapi->tx_ring[0]; 2973 u16 prod = txr->tx_prod; 2974 2975 /* Sync BD data before updating doorbell */ 2976 wmb(); 2977 2978 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 2979 event &= ~BNXT_TX_EVENT; 2980 } 2981 2982 cpr->cp_raw_cons = raw_cons; 2983 bnapi->events |= event; 2984 return rx_pkts; 2985 } 2986 2987 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi, 2988 int budget) 2989 { 2990 if ((bnapi->events & BNXT_TX_CMP_EVENT) && !bnapi->tx_fault) 2991 bnapi->tx_int(bp, bnapi, budget); 2992 2993 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 2994 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2995 2996 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2997 bnapi->events &= ~BNXT_RX_EVENT; 2998 } 2999 if (bnapi->events & BNXT_AGG_EVENT) { 3000 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3001 3002 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 3003 bnapi->events &= ~BNXT_AGG_EVENT; 3004 } 3005 } 3006 3007 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 3008 int budget) 3009 { 3010 struct bnxt_napi *bnapi = cpr->bnapi; 3011 int rx_pkts; 3012 3013 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 3014 3015 /* ACK completion ring before freeing tx ring and producing new 3016 * buffers in rx/agg rings to prevent overflowing the completion 3017 * ring. 3018 */ 3019 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 3020 3021 __bnxt_poll_work_done(bp, bnapi, budget); 3022 return rx_pkts; 3023 } 3024 3025 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 3026 { 3027 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3028 struct bnxt *bp = bnapi->bp; 3029 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3030 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3031 struct tx_cmp *txcmp; 3032 struct rx_cmp_ext *rxcmp1; 3033 u32 cp_cons, tmp_raw_cons; 3034 u32 raw_cons = cpr->cp_raw_cons; 3035 bool flush_xdp = false; 3036 u32 rx_pkts = 0; 3037 u8 event = 0; 3038 3039 while (1) { 3040 int rc; 3041 3042 cp_cons = RING_CMP(raw_cons); 3043 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 3044 3045 if (!TX_CMP_VALID(txcmp, raw_cons)) 3046 break; 3047 3048 /* The valid test of the entry must be done first before 3049 * reading any further. 3050 */ 3051 dma_rmb(); 3052 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 3053 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 3054 cp_cons = RING_CMP(tmp_raw_cons); 3055 rxcmp1 = (struct rx_cmp_ext *) 3056 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 3057 3058 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 3059 break; 3060 3061 /* force an error to recycle the buffer */ 3062 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 3063 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 3064 3065 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 3066 if (likely(rc == -EIO) && budget) 3067 rx_pkts++; 3068 else if (rc == -EBUSY) /* partial completion */ 3069 break; 3070 if (event & BNXT_REDIRECT_EVENT) 3071 flush_xdp = true; 3072 } else if (unlikely(TX_CMP_TYPE(txcmp) == 3073 CMPL_BASE_TYPE_HWRM_DONE)) { 3074 bnxt_hwrm_handler(bp, txcmp); 3075 } else { 3076 netdev_err(bp->dev, 3077 "Invalid completion received on special ring\n"); 3078 } 3079 raw_cons = NEXT_RAW_CMP(raw_cons); 3080 3081 if (rx_pkts == budget) 3082 break; 3083 } 3084 3085 cpr->cp_raw_cons = raw_cons; 3086 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 3087 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 3088 3089 if (event & BNXT_AGG_EVENT) 3090 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 3091 if (flush_xdp) 3092 xdp_do_flush(); 3093 3094 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 3095 napi_complete_done(napi, rx_pkts); 3096 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3097 } 3098 return rx_pkts; 3099 } 3100 3101 static int bnxt_poll(struct napi_struct *napi, int budget) 3102 { 3103 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3104 struct bnxt *bp = bnapi->bp; 3105 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3106 int work_done = 0; 3107 3108 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3109 napi_complete(napi); 3110 return 0; 3111 } 3112 while (1) { 3113 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 3114 3115 if (work_done >= budget) { 3116 if (!budget) 3117 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3118 break; 3119 } 3120 3121 if (!bnxt_has_work(bp, cpr)) { 3122 if (napi_complete_done(napi, work_done)) 3123 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3124 break; 3125 } 3126 } 3127 if (bp->flags & BNXT_FLAG_DIM) { 3128 struct dim_sample dim_sample = {}; 3129 3130 dim_update_sample(cpr->event_ctr, 3131 cpr->rx_packets, 3132 cpr->rx_bytes, 3133 &dim_sample); 3134 net_dim(&cpr->dim, dim_sample); 3135 } 3136 return work_done; 3137 } 3138 3139 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 3140 { 3141 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3142 int i, work_done = 0; 3143 3144 for (i = 0; i < cpr->cp_ring_count; i++) { 3145 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3146 3147 if (cpr2->had_nqe_notify) { 3148 work_done += __bnxt_poll_work(bp, cpr2, 3149 budget - work_done); 3150 cpr->has_more_work |= cpr2->has_more_work; 3151 } 3152 } 3153 return work_done; 3154 } 3155 3156 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 3157 u64 dbr_type, int budget) 3158 { 3159 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3160 int i; 3161 3162 for (i = 0; i < cpr->cp_ring_count; i++) { 3163 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3164 struct bnxt_db_info *db; 3165 3166 if (cpr2->had_work_done) { 3167 u32 tgl = 0; 3168 3169 if (dbr_type == DBR_TYPE_CQ_ARMALL) { 3170 cpr2->had_nqe_notify = 0; 3171 tgl = cpr2->toggle; 3172 } 3173 db = &cpr2->cp_db; 3174 bnxt_writeq(bp, 3175 db->db_key64 | dbr_type | DB_TOGGLE(tgl) | 3176 DB_RING_IDX(db, cpr2->cp_raw_cons), 3177 db->doorbell); 3178 cpr2->had_work_done = 0; 3179 } 3180 } 3181 __bnxt_poll_work_done(bp, bnapi, budget); 3182 } 3183 3184 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 3185 { 3186 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3187 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3188 struct bnxt_cp_ring_info *cpr_rx; 3189 u32 raw_cons = cpr->cp_raw_cons; 3190 struct bnxt *bp = bnapi->bp; 3191 struct nqe_cn *nqcmp; 3192 int work_done = 0; 3193 u32 cons; 3194 3195 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3196 napi_complete(napi); 3197 return 0; 3198 } 3199 if (cpr->has_more_work) { 3200 cpr->has_more_work = 0; 3201 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 3202 } 3203 while (1) { 3204 u16 type; 3205 3206 cons = RING_CMP(raw_cons); 3207 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 3208 3209 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 3210 if (cpr->has_more_work) 3211 break; 3212 3213 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL, 3214 budget); 3215 cpr->cp_raw_cons = raw_cons; 3216 if (napi_complete_done(napi, work_done)) 3217 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 3218 cpr->cp_raw_cons); 3219 goto poll_done; 3220 } 3221 3222 /* The valid test of the entry must be done first before 3223 * reading any further. 3224 */ 3225 dma_rmb(); 3226 3227 type = le16_to_cpu(nqcmp->type); 3228 if (NQE_CN_TYPE(type) == NQ_CN_TYPE_CQ_NOTIFICATION) { 3229 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 3230 u32 cq_type = BNXT_NQ_HDL_TYPE(idx); 3231 struct bnxt_cp_ring_info *cpr2; 3232 3233 /* No more budget for RX work */ 3234 if (budget && work_done >= budget && 3235 cq_type == BNXT_NQ_HDL_TYPE_RX) 3236 break; 3237 3238 idx = BNXT_NQ_HDL_IDX(idx); 3239 cpr2 = &cpr->cp_ring_arr[idx]; 3240 cpr2->had_nqe_notify = 1; 3241 cpr2->toggle = NQE_CN_TOGGLE(type); 3242 work_done += __bnxt_poll_work(bp, cpr2, 3243 budget - work_done); 3244 cpr->has_more_work |= cpr2->has_more_work; 3245 } else { 3246 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 3247 } 3248 raw_cons = NEXT_RAW_CMP(raw_cons); 3249 } 3250 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget); 3251 if (raw_cons != cpr->cp_raw_cons) { 3252 cpr->cp_raw_cons = raw_cons; 3253 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 3254 } 3255 poll_done: 3256 cpr_rx = &cpr->cp_ring_arr[0]; 3257 if (cpr_rx->cp_ring_type == BNXT_NQ_HDL_TYPE_RX && 3258 (bp->flags & BNXT_FLAG_DIM)) { 3259 struct dim_sample dim_sample = {}; 3260 3261 dim_update_sample(cpr->event_ctr, 3262 cpr_rx->rx_packets, 3263 cpr_rx->rx_bytes, 3264 &dim_sample); 3265 net_dim(&cpr->dim, dim_sample); 3266 } 3267 return work_done; 3268 } 3269 3270 static void bnxt_free_tx_skbs(struct bnxt *bp) 3271 { 3272 int i, max_idx; 3273 struct pci_dev *pdev = bp->pdev; 3274 3275 if (!bp->tx_ring) 3276 return; 3277 3278 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 3279 for (i = 0; i < bp->tx_nr_rings; i++) { 3280 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3281 int j; 3282 3283 if (!txr->tx_buf_ring) 3284 continue; 3285 3286 for (j = 0; j < max_idx;) { 3287 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 3288 struct sk_buff *skb; 3289 int k, last; 3290 3291 if (i < bp->tx_nr_rings_xdp && 3292 tx_buf->action == XDP_REDIRECT) { 3293 dma_unmap_single(&pdev->dev, 3294 dma_unmap_addr(tx_buf, mapping), 3295 dma_unmap_len(tx_buf, len), 3296 DMA_TO_DEVICE); 3297 xdp_return_frame(tx_buf->xdpf); 3298 tx_buf->action = 0; 3299 tx_buf->xdpf = NULL; 3300 j++; 3301 continue; 3302 } 3303 3304 skb = tx_buf->skb; 3305 if (!skb) { 3306 j++; 3307 continue; 3308 } 3309 3310 tx_buf->skb = NULL; 3311 3312 if (tx_buf->is_push) { 3313 dev_kfree_skb(skb); 3314 j += 2; 3315 continue; 3316 } 3317 3318 dma_unmap_single(&pdev->dev, 3319 dma_unmap_addr(tx_buf, mapping), 3320 skb_headlen(skb), 3321 DMA_TO_DEVICE); 3322 3323 last = tx_buf->nr_frags; 3324 j += 2; 3325 for (k = 0; k < last; k++, j++) { 3326 int ring_idx = j & bp->tx_ring_mask; 3327 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 3328 3329 tx_buf = &txr->tx_buf_ring[ring_idx]; 3330 dma_unmap_page( 3331 &pdev->dev, 3332 dma_unmap_addr(tx_buf, mapping), 3333 skb_frag_size(frag), DMA_TO_DEVICE); 3334 } 3335 dev_kfree_skb(skb); 3336 } 3337 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 3338 } 3339 } 3340 3341 static void bnxt_free_one_rx_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3342 { 3343 struct pci_dev *pdev = bp->pdev; 3344 int i, max_idx; 3345 3346 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 3347 3348 for (i = 0; i < max_idx; i++) { 3349 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 3350 dma_addr_t mapping = rx_buf->mapping; 3351 void *data = rx_buf->data; 3352 3353 if (!data) 3354 continue; 3355 3356 rx_buf->data = NULL; 3357 if (BNXT_RX_PAGE_MODE(bp)) { 3358 page_pool_recycle_direct(rxr->page_pool, data); 3359 } else { 3360 dma_unmap_single_attrs(&pdev->dev, mapping, 3361 bp->rx_buf_use_size, bp->rx_dir, 3362 DMA_ATTR_WEAK_ORDERING); 3363 skb_free_frag(data); 3364 } 3365 } 3366 } 3367 3368 static void bnxt_free_one_rx_agg_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3369 { 3370 int i, max_idx; 3371 3372 max_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 3373 3374 for (i = 0; i < max_idx; i++) { 3375 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 3376 struct page *page = rx_agg_buf->page; 3377 3378 if (!page) 3379 continue; 3380 3381 rx_agg_buf->page = NULL; 3382 __clear_bit(i, rxr->rx_agg_bmap); 3383 3384 page_pool_recycle_direct(rxr->page_pool, page); 3385 } 3386 } 3387 3388 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr) 3389 { 3390 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 3391 struct pci_dev *pdev = bp->pdev; 3392 struct bnxt_tpa_idx_map *map; 3393 int i; 3394 3395 if (!rxr->rx_tpa) 3396 goto skip_rx_tpa_free; 3397 3398 for (i = 0; i < bp->max_tpa; i++) { 3399 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 3400 u8 *data = tpa_info->data; 3401 3402 if (!data) 3403 continue; 3404 3405 dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping, 3406 bp->rx_buf_use_size, bp->rx_dir, 3407 DMA_ATTR_WEAK_ORDERING); 3408 3409 tpa_info->data = NULL; 3410 3411 skb_free_frag(data); 3412 } 3413 3414 skip_rx_tpa_free: 3415 if (!rxr->rx_buf_ring) 3416 goto skip_rx_buf_free; 3417 3418 bnxt_free_one_rx_ring(bp, rxr); 3419 3420 skip_rx_buf_free: 3421 if (!rxr->rx_agg_ring) 3422 goto skip_rx_agg_free; 3423 3424 bnxt_free_one_rx_agg_ring(bp, rxr); 3425 3426 skip_rx_agg_free: 3427 map = rxr->rx_tpa_idx_map; 3428 if (map) 3429 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 3430 } 3431 3432 static void bnxt_free_rx_skbs(struct bnxt *bp) 3433 { 3434 int i; 3435 3436 if (!bp->rx_ring) 3437 return; 3438 3439 for (i = 0; i < bp->rx_nr_rings; i++) 3440 bnxt_free_one_rx_ring_skbs(bp, i); 3441 } 3442 3443 static void bnxt_free_skbs(struct bnxt *bp) 3444 { 3445 bnxt_free_tx_skbs(bp); 3446 bnxt_free_rx_skbs(bp); 3447 } 3448 3449 static void bnxt_init_ctx_mem(struct bnxt_ctx_mem_type *ctxm, void *p, int len) 3450 { 3451 u8 init_val = ctxm->init_value; 3452 u16 offset = ctxm->init_offset; 3453 u8 *p2 = p; 3454 int i; 3455 3456 if (!init_val) 3457 return; 3458 if (offset == BNXT_CTX_INIT_INVALID_OFFSET) { 3459 memset(p, init_val, len); 3460 return; 3461 } 3462 for (i = 0; i < len; i += ctxm->entry_size) 3463 *(p2 + i + offset) = init_val; 3464 } 3465 3466 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3467 { 3468 struct pci_dev *pdev = bp->pdev; 3469 int i; 3470 3471 if (!rmem->pg_arr) 3472 goto skip_pages; 3473 3474 for (i = 0; i < rmem->nr_pages; i++) { 3475 if (!rmem->pg_arr[i]) 3476 continue; 3477 3478 dma_free_coherent(&pdev->dev, rmem->page_size, 3479 rmem->pg_arr[i], rmem->dma_arr[i]); 3480 3481 rmem->pg_arr[i] = NULL; 3482 } 3483 skip_pages: 3484 if (rmem->pg_tbl) { 3485 size_t pg_tbl_size = rmem->nr_pages * 8; 3486 3487 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3488 pg_tbl_size = rmem->page_size; 3489 dma_free_coherent(&pdev->dev, pg_tbl_size, 3490 rmem->pg_tbl, rmem->pg_tbl_map); 3491 rmem->pg_tbl = NULL; 3492 } 3493 if (rmem->vmem_size && *rmem->vmem) { 3494 vfree(*rmem->vmem); 3495 *rmem->vmem = NULL; 3496 } 3497 } 3498 3499 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3500 { 3501 struct pci_dev *pdev = bp->pdev; 3502 u64 valid_bit = 0; 3503 int i; 3504 3505 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 3506 valid_bit = PTU_PTE_VALID; 3507 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 3508 size_t pg_tbl_size = rmem->nr_pages * 8; 3509 3510 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3511 pg_tbl_size = rmem->page_size; 3512 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 3513 &rmem->pg_tbl_map, 3514 GFP_KERNEL); 3515 if (!rmem->pg_tbl) 3516 return -ENOMEM; 3517 } 3518 3519 for (i = 0; i < rmem->nr_pages; i++) { 3520 u64 extra_bits = valid_bit; 3521 3522 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 3523 rmem->page_size, 3524 &rmem->dma_arr[i], 3525 GFP_KERNEL); 3526 if (!rmem->pg_arr[i]) 3527 return -ENOMEM; 3528 3529 if (rmem->ctx_mem) 3530 bnxt_init_ctx_mem(rmem->ctx_mem, rmem->pg_arr[i], 3531 rmem->page_size); 3532 if (rmem->nr_pages > 1 || rmem->depth > 0) { 3533 if (i == rmem->nr_pages - 2 && 3534 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3535 extra_bits |= PTU_PTE_NEXT_TO_LAST; 3536 else if (i == rmem->nr_pages - 1 && 3537 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3538 extra_bits |= PTU_PTE_LAST; 3539 rmem->pg_tbl[i] = 3540 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 3541 } 3542 } 3543 3544 if (rmem->vmem_size) { 3545 *rmem->vmem = vzalloc(rmem->vmem_size); 3546 if (!(*rmem->vmem)) 3547 return -ENOMEM; 3548 } 3549 return 0; 3550 } 3551 3552 static void bnxt_free_tpa_info(struct bnxt *bp) 3553 { 3554 int i, j; 3555 3556 for (i = 0; i < bp->rx_nr_rings; i++) { 3557 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3558 3559 kfree(rxr->rx_tpa_idx_map); 3560 rxr->rx_tpa_idx_map = NULL; 3561 if (rxr->rx_tpa) { 3562 for (j = 0; j < bp->max_tpa; j++) { 3563 kfree(rxr->rx_tpa[j].agg_arr); 3564 rxr->rx_tpa[j].agg_arr = NULL; 3565 } 3566 } 3567 kfree(rxr->rx_tpa); 3568 rxr->rx_tpa = NULL; 3569 } 3570 } 3571 3572 static int bnxt_alloc_tpa_info(struct bnxt *bp) 3573 { 3574 int i, j; 3575 3576 bp->max_tpa = MAX_TPA; 3577 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 3578 if (!bp->max_tpa_v2) 3579 return 0; 3580 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 3581 } 3582 3583 for (i = 0; i < bp->rx_nr_rings; i++) { 3584 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3585 struct rx_agg_cmp *agg; 3586 3587 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 3588 GFP_KERNEL); 3589 if (!rxr->rx_tpa) 3590 return -ENOMEM; 3591 3592 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 3593 continue; 3594 for (j = 0; j < bp->max_tpa; j++) { 3595 agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL); 3596 if (!agg) 3597 return -ENOMEM; 3598 rxr->rx_tpa[j].agg_arr = agg; 3599 } 3600 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 3601 GFP_KERNEL); 3602 if (!rxr->rx_tpa_idx_map) 3603 return -ENOMEM; 3604 } 3605 return 0; 3606 } 3607 3608 static void bnxt_free_rx_rings(struct bnxt *bp) 3609 { 3610 int i; 3611 3612 if (!bp->rx_ring) 3613 return; 3614 3615 bnxt_free_tpa_info(bp); 3616 for (i = 0; i < bp->rx_nr_rings; i++) { 3617 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3618 struct bnxt_ring_struct *ring; 3619 3620 if (rxr->xdp_prog) 3621 bpf_prog_put(rxr->xdp_prog); 3622 3623 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 3624 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3625 3626 page_pool_destroy(rxr->page_pool); 3627 rxr->page_pool = NULL; 3628 3629 kfree(rxr->rx_agg_bmap); 3630 rxr->rx_agg_bmap = NULL; 3631 3632 ring = &rxr->rx_ring_struct; 3633 bnxt_free_ring(bp, &ring->ring_mem); 3634 3635 ring = &rxr->rx_agg_ring_struct; 3636 bnxt_free_ring(bp, &ring->ring_mem); 3637 } 3638 } 3639 3640 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 3641 struct bnxt_rx_ring_info *rxr, 3642 int numa_node) 3643 { 3644 struct page_pool_params pp = { 0 }; 3645 3646 pp.pool_size = bp->rx_agg_ring_size; 3647 if (BNXT_RX_PAGE_MODE(bp)) 3648 pp.pool_size += bp->rx_ring_size; 3649 pp.nid = numa_node; 3650 pp.napi = &rxr->bnapi->napi; 3651 pp.netdev = bp->dev; 3652 pp.dev = &bp->pdev->dev; 3653 pp.dma_dir = bp->rx_dir; 3654 pp.max_len = PAGE_SIZE; 3655 pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 3656 3657 rxr->page_pool = page_pool_create(&pp); 3658 if (IS_ERR(rxr->page_pool)) { 3659 int err = PTR_ERR(rxr->page_pool); 3660 3661 rxr->page_pool = NULL; 3662 return err; 3663 } 3664 return 0; 3665 } 3666 3667 static int bnxt_alloc_rx_rings(struct bnxt *bp) 3668 { 3669 int numa_node = dev_to_node(&bp->pdev->dev); 3670 int i, rc = 0, agg_rings = 0, cpu; 3671 3672 if (!bp->rx_ring) 3673 return -ENOMEM; 3674 3675 if (bp->flags & BNXT_FLAG_AGG_RINGS) 3676 agg_rings = 1; 3677 3678 for (i = 0; i < bp->rx_nr_rings; i++) { 3679 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3680 struct bnxt_ring_struct *ring; 3681 int cpu_node; 3682 3683 ring = &rxr->rx_ring_struct; 3684 3685 cpu = cpumask_local_spread(i, numa_node); 3686 cpu_node = cpu_to_node(cpu); 3687 netdev_dbg(bp->dev, "Allocating page pool for rx_ring[%d] on numa_node: %d\n", 3688 i, cpu_node); 3689 rc = bnxt_alloc_rx_page_pool(bp, rxr, cpu_node); 3690 if (rc) 3691 return rc; 3692 3693 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 3694 if (rc < 0) 3695 return rc; 3696 3697 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 3698 MEM_TYPE_PAGE_POOL, 3699 rxr->page_pool); 3700 if (rc) { 3701 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3702 return rc; 3703 } 3704 3705 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3706 if (rc) 3707 return rc; 3708 3709 ring->grp_idx = i; 3710 if (agg_rings) { 3711 u16 mem_size; 3712 3713 ring = &rxr->rx_agg_ring_struct; 3714 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3715 if (rc) 3716 return rc; 3717 3718 ring->grp_idx = i; 3719 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 3720 mem_size = rxr->rx_agg_bmap_size / 8; 3721 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 3722 if (!rxr->rx_agg_bmap) 3723 return -ENOMEM; 3724 } 3725 } 3726 if (bp->flags & BNXT_FLAG_TPA) 3727 rc = bnxt_alloc_tpa_info(bp); 3728 return rc; 3729 } 3730 3731 static void bnxt_free_tx_rings(struct bnxt *bp) 3732 { 3733 int i; 3734 struct pci_dev *pdev = bp->pdev; 3735 3736 if (!bp->tx_ring) 3737 return; 3738 3739 for (i = 0; i < bp->tx_nr_rings; i++) { 3740 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3741 struct bnxt_ring_struct *ring; 3742 3743 if (txr->tx_push) { 3744 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3745 txr->tx_push, txr->tx_push_mapping); 3746 txr->tx_push = NULL; 3747 } 3748 3749 ring = &txr->tx_ring_struct; 3750 3751 bnxt_free_ring(bp, &ring->ring_mem); 3752 } 3753 } 3754 3755 #define BNXT_TC_TO_RING_BASE(bp, tc) \ 3756 ((tc) * (bp)->tx_nr_rings_per_tc) 3757 3758 #define BNXT_RING_TO_TC_OFF(bp, tx) \ 3759 ((tx) % (bp)->tx_nr_rings_per_tc) 3760 3761 #define BNXT_RING_TO_TC(bp, tx) \ 3762 ((tx) / (bp)->tx_nr_rings_per_tc) 3763 3764 static int bnxt_alloc_tx_rings(struct bnxt *bp) 3765 { 3766 int i, j, rc; 3767 struct pci_dev *pdev = bp->pdev; 3768 3769 bp->tx_push_size = 0; 3770 if (bp->tx_push_thresh) { 3771 int push_size; 3772 3773 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 3774 bp->tx_push_thresh); 3775 3776 if (push_size > 256) { 3777 push_size = 0; 3778 bp->tx_push_thresh = 0; 3779 } 3780 3781 bp->tx_push_size = push_size; 3782 } 3783 3784 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 3785 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3786 struct bnxt_ring_struct *ring; 3787 u8 qidx; 3788 3789 ring = &txr->tx_ring_struct; 3790 3791 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3792 if (rc) 3793 return rc; 3794 3795 ring->grp_idx = txr->bnapi->index; 3796 if (bp->tx_push_size) { 3797 dma_addr_t mapping; 3798 3799 /* One pre-allocated DMA buffer to backup 3800 * TX push operation 3801 */ 3802 txr->tx_push = dma_alloc_coherent(&pdev->dev, 3803 bp->tx_push_size, 3804 &txr->tx_push_mapping, 3805 GFP_KERNEL); 3806 3807 if (!txr->tx_push) 3808 return -ENOMEM; 3809 3810 mapping = txr->tx_push_mapping + 3811 sizeof(struct tx_push_bd); 3812 txr->data_mapping = cpu_to_le64(mapping); 3813 } 3814 qidx = bp->tc_to_qidx[j]; 3815 ring->queue_id = bp->q_info[qidx].queue_id; 3816 spin_lock_init(&txr->xdp_tx_lock); 3817 if (i < bp->tx_nr_rings_xdp) 3818 continue; 3819 if (BNXT_RING_TO_TC_OFF(bp, i) == (bp->tx_nr_rings_per_tc - 1)) 3820 j++; 3821 } 3822 return 0; 3823 } 3824 3825 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr) 3826 { 3827 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3828 3829 kfree(cpr->cp_desc_ring); 3830 cpr->cp_desc_ring = NULL; 3831 ring->ring_mem.pg_arr = NULL; 3832 kfree(cpr->cp_desc_mapping); 3833 cpr->cp_desc_mapping = NULL; 3834 ring->ring_mem.dma_arr = NULL; 3835 } 3836 3837 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n) 3838 { 3839 cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL); 3840 if (!cpr->cp_desc_ring) 3841 return -ENOMEM; 3842 cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping), 3843 GFP_KERNEL); 3844 if (!cpr->cp_desc_mapping) 3845 return -ENOMEM; 3846 return 0; 3847 } 3848 3849 static void bnxt_free_all_cp_arrays(struct bnxt *bp) 3850 { 3851 int i; 3852 3853 if (!bp->bnapi) 3854 return; 3855 for (i = 0; i < bp->cp_nr_rings; i++) { 3856 struct bnxt_napi *bnapi = bp->bnapi[i]; 3857 3858 if (!bnapi) 3859 continue; 3860 bnxt_free_cp_arrays(&bnapi->cp_ring); 3861 } 3862 } 3863 3864 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp) 3865 { 3866 int i, n = bp->cp_nr_pages; 3867 3868 for (i = 0; i < bp->cp_nr_rings; i++) { 3869 struct bnxt_napi *bnapi = bp->bnapi[i]; 3870 int rc; 3871 3872 if (!bnapi) 3873 continue; 3874 rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n); 3875 if (rc) 3876 return rc; 3877 } 3878 return 0; 3879 } 3880 3881 static void bnxt_free_cp_rings(struct bnxt *bp) 3882 { 3883 int i; 3884 3885 if (!bp->bnapi) 3886 return; 3887 3888 for (i = 0; i < bp->cp_nr_rings; i++) { 3889 struct bnxt_napi *bnapi = bp->bnapi[i]; 3890 struct bnxt_cp_ring_info *cpr; 3891 struct bnxt_ring_struct *ring; 3892 int j; 3893 3894 if (!bnapi) 3895 continue; 3896 3897 cpr = &bnapi->cp_ring; 3898 ring = &cpr->cp_ring_struct; 3899 3900 bnxt_free_ring(bp, &ring->ring_mem); 3901 3902 if (!cpr->cp_ring_arr) 3903 continue; 3904 3905 for (j = 0; j < cpr->cp_ring_count; j++) { 3906 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 3907 3908 ring = &cpr2->cp_ring_struct; 3909 bnxt_free_ring(bp, &ring->ring_mem); 3910 bnxt_free_cp_arrays(cpr2); 3911 } 3912 kfree(cpr->cp_ring_arr); 3913 cpr->cp_ring_arr = NULL; 3914 cpr->cp_ring_count = 0; 3915 } 3916 } 3917 3918 static int bnxt_alloc_cp_sub_ring(struct bnxt *bp, 3919 struct bnxt_cp_ring_info *cpr) 3920 { 3921 struct bnxt_ring_mem_info *rmem; 3922 struct bnxt_ring_struct *ring; 3923 int rc; 3924 3925 rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages); 3926 if (rc) { 3927 bnxt_free_cp_arrays(cpr); 3928 return -ENOMEM; 3929 } 3930 ring = &cpr->cp_ring_struct; 3931 rmem = &ring->ring_mem; 3932 rmem->nr_pages = bp->cp_nr_pages; 3933 rmem->page_size = HW_CMPD_RING_SIZE; 3934 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3935 rmem->dma_arr = cpr->cp_desc_mapping; 3936 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 3937 rc = bnxt_alloc_ring(bp, rmem); 3938 if (rc) { 3939 bnxt_free_ring(bp, rmem); 3940 bnxt_free_cp_arrays(cpr); 3941 } 3942 return rc; 3943 } 3944 3945 static int bnxt_alloc_cp_rings(struct bnxt *bp) 3946 { 3947 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 3948 int i, j, rc, ulp_msix; 3949 int tcs = bp->num_tc; 3950 3951 if (!tcs) 3952 tcs = 1; 3953 ulp_msix = bnxt_get_ulp_msix_num(bp); 3954 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 3955 struct bnxt_napi *bnapi = bp->bnapi[i]; 3956 struct bnxt_cp_ring_info *cpr, *cpr2; 3957 struct bnxt_ring_struct *ring; 3958 int cp_count = 0, k; 3959 int rx = 0, tx = 0; 3960 3961 if (!bnapi) 3962 continue; 3963 3964 cpr = &bnapi->cp_ring; 3965 cpr->bnapi = bnapi; 3966 ring = &cpr->cp_ring_struct; 3967 3968 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3969 if (rc) 3970 return rc; 3971 3972 ring->map_idx = ulp_msix + i; 3973 3974 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 3975 continue; 3976 3977 if (i < bp->rx_nr_rings) { 3978 cp_count++; 3979 rx = 1; 3980 } 3981 if (i < bp->tx_nr_rings_xdp) { 3982 cp_count++; 3983 tx = 1; 3984 } else if ((sh && i < bp->tx_nr_rings) || 3985 (!sh && i >= bp->rx_nr_rings)) { 3986 cp_count += tcs; 3987 tx = 1; 3988 } 3989 3990 cpr->cp_ring_arr = kcalloc(cp_count, sizeof(*cpr), 3991 GFP_KERNEL); 3992 if (!cpr->cp_ring_arr) 3993 return -ENOMEM; 3994 cpr->cp_ring_count = cp_count; 3995 3996 for (k = 0; k < cp_count; k++) { 3997 cpr2 = &cpr->cp_ring_arr[k]; 3998 rc = bnxt_alloc_cp_sub_ring(bp, cpr2); 3999 if (rc) 4000 return rc; 4001 cpr2->bnapi = bnapi; 4002 cpr2->sw_stats = cpr->sw_stats; 4003 cpr2->cp_idx = k; 4004 if (!k && rx) { 4005 bp->rx_ring[i].rx_cpr = cpr2; 4006 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_RX; 4007 } else { 4008 int n, tc = k - rx; 4009 4010 n = BNXT_TC_TO_RING_BASE(bp, tc) + j; 4011 bp->tx_ring[n].tx_cpr = cpr2; 4012 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_TX; 4013 } 4014 } 4015 if (tx) 4016 j++; 4017 } 4018 return 0; 4019 } 4020 4021 static void bnxt_init_rx_ring_struct(struct bnxt *bp, 4022 struct bnxt_rx_ring_info *rxr) 4023 { 4024 struct bnxt_ring_mem_info *rmem; 4025 struct bnxt_ring_struct *ring; 4026 4027 ring = &rxr->rx_ring_struct; 4028 rmem = &ring->ring_mem; 4029 rmem->nr_pages = bp->rx_nr_pages; 4030 rmem->page_size = HW_RXBD_RING_SIZE; 4031 rmem->pg_arr = (void **)rxr->rx_desc_ring; 4032 rmem->dma_arr = rxr->rx_desc_mapping; 4033 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 4034 rmem->vmem = (void **)&rxr->rx_buf_ring; 4035 4036 ring = &rxr->rx_agg_ring_struct; 4037 rmem = &ring->ring_mem; 4038 rmem->nr_pages = bp->rx_agg_nr_pages; 4039 rmem->page_size = HW_RXBD_RING_SIZE; 4040 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 4041 rmem->dma_arr = rxr->rx_agg_desc_mapping; 4042 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 4043 rmem->vmem = (void **)&rxr->rx_agg_ring; 4044 } 4045 4046 static void bnxt_reset_rx_ring_struct(struct bnxt *bp, 4047 struct bnxt_rx_ring_info *rxr) 4048 { 4049 struct bnxt_ring_mem_info *rmem; 4050 struct bnxt_ring_struct *ring; 4051 int i; 4052 4053 rxr->page_pool->p.napi = NULL; 4054 rxr->page_pool = NULL; 4055 memset(&rxr->xdp_rxq, 0, sizeof(struct xdp_rxq_info)); 4056 4057 ring = &rxr->rx_ring_struct; 4058 rmem = &ring->ring_mem; 4059 rmem->pg_tbl = NULL; 4060 rmem->pg_tbl_map = 0; 4061 for (i = 0; i < rmem->nr_pages; i++) { 4062 rmem->pg_arr[i] = NULL; 4063 rmem->dma_arr[i] = 0; 4064 } 4065 *rmem->vmem = NULL; 4066 4067 ring = &rxr->rx_agg_ring_struct; 4068 rmem = &ring->ring_mem; 4069 rmem->pg_tbl = NULL; 4070 rmem->pg_tbl_map = 0; 4071 for (i = 0; i < rmem->nr_pages; i++) { 4072 rmem->pg_arr[i] = NULL; 4073 rmem->dma_arr[i] = 0; 4074 } 4075 *rmem->vmem = NULL; 4076 } 4077 4078 static void bnxt_init_ring_struct(struct bnxt *bp) 4079 { 4080 int i, j; 4081 4082 for (i = 0; i < bp->cp_nr_rings; i++) { 4083 struct bnxt_napi *bnapi = bp->bnapi[i]; 4084 struct bnxt_ring_mem_info *rmem; 4085 struct bnxt_cp_ring_info *cpr; 4086 struct bnxt_rx_ring_info *rxr; 4087 struct bnxt_tx_ring_info *txr; 4088 struct bnxt_ring_struct *ring; 4089 4090 if (!bnapi) 4091 continue; 4092 4093 cpr = &bnapi->cp_ring; 4094 ring = &cpr->cp_ring_struct; 4095 rmem = &ring->ring_mem; 4096 rmem->nr_pages = bp->cp_nr_pages; 4097 rmem->page_size = HW_CMPD_RING_SIZE; 4098 rmem->pg_arr = (void **)cpr->cp_desc_ring; 4099 rmem->dma_arr = cpr->cp_desc_mapping; 4100 rmem->vmem_size = 0; 4101 4102 rxr = bnapi->rx_ring; 4103 if (!rxr) 4104 goto skip_rx; 4105 4106 ring = &rxr->rx_ring_struct; 4107 rmem = &ring->ring_mem; 4108 rmem->nr_pages = bp->rx_nr_pages; 4109 rmem->page_size = HW_RXBD_RING_SIZE; 4110 rmem->pg_arr = (void **)rxr->rx_desc_ring; 4111 rmem->dma_arr = rxr->rx_desc_mapping; 4112 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 4113 rmem->vmem = (void **)&rxr->rx_buf_ring; 4114 4115 ring = &rxr->rx_agg_ring_struct; 4116 rmem = &ring->ring_mem; 4117 rmem->nr_pages = bp->rx_agg_nr_pages; 4118 rmem->page_size = HW_RXBD_RING_SIZE; 4119 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 4120 rmem->dma_arr = rxr->rx_agg_desc_mapping; 4121 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 4122 rmem->vmem = (void **)&rxr->rx_agg_ring; 4123 4124 skip_rx: 4125 bnxt_for_each_napi_tx(j, bnapi, txr) { 4126 ring = &txr->tx_ring_struct; 4127 rmem = &ring->ring_mem; 4128 rmem->nr_pages = bp->tx_nr_pages; 4129 rmem->page_size = HW_TXBD_RING_SIZE; 4130 rmem->pg_arr = (void **)txr->tx_desc_ring; 4131 rmem->dma_arr = txr->tx_desc_mapping; 4132 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 4133 rmem->vmem = (void **)&txr->tx_buf_ring; 4134 } 4135 } 4136 } 4137 4138 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 4139 { 4140 int i; 4141 u32 prod; 4142 struct rx_bd **rx_buf_ring; 4143 4144 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 4145 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 4146 int j; 4147 struct rx_bd *rxbd; 4148 4149 rxbd = rx_buf_ring[i]; 4150 if (!rxbd) 4151 continue; 4152 4153 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 4154 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 4155 rxbd->rx_bd_opaque = prod; 4156 } 4157 } 4158 } 4159 4160 static void bnxt_alloc_one_rx_ring_skb(struct bnxt *bp, 4161 struct bnxt_rx_ring_info *rxr, 4162 int ring_nr) 4163 { 4164 u32 prod; 4165 int i; 4166 4167 prod = rxr->rx_prod; 4168 for (i = 0; i < bp->rx_ring_size; i++) { 4169 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 4170 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n", 4171 ring_nr, i, bp->rx_ring_size); 4172 break; 4173 } 4174 prod = NEXT_RX(prod); 4175 } 4176 rxr->rx_prod = prod; 4177 } 4178 4179 static void bnxt_alloc_one_rx_ring_page(struct bnxt *bp, 4180 struct bnxt_rx_ring_info *rxr, 4181 int ring_nr) 4182 { 4183 u32 prod; 4184 int i; 4185 4186 prod = rxr->rx_agg_prod; 4187 for (i = 0; i < bp->rx_agg_ring_size; i++) { 4188 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) { 4189 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d pages only\n", 4190 ring_nr, i, bp->rx_ring_size); 4191 break; 4192 } 4193 prod = NEXT_RX_AGG(prod); 4194 } 4195 rxr->rx_agg_prod = prod; 4196 } 4197 4198 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 4199 { 4200 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 4201 int i; 4202 4203 bnxt_alloc_one_rx_ring_skb(bp, rxr, ring_nr); 4204 4205 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 4206 return 0; 4207 4208 bnxt_alloc_one_rx_ring_page(bp, rxr, ring_nr); 4209 4210 if (rxr->rx_tpa) { 4211 dma_addr_t mapping; 4212 u8 *data; 4213 4214 for (i = 0; i < bp->max_tpa; i++) { 4215 data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL); 4216 if (!data) 4217 return -ENOMEM; 4218 4219 rxr->rx_tpa[i].data = data; 4220 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 4221 rxr->rx_tpa[i].mapping = mapping; 4222 } 4223 } 4224 return 0; 4225 } 4226 4227 static void bnxt_init_one_rx_ring_rxbd(struct bnxt *bp, 4228 struct bnxt_rx_ring_info *rxr) 4229 { 4230 struct bnxt_ring_struct *ring; 4231 u32 type; 4232 4233 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 4234 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 4235 4236 if (NET_IP_ALIGN == 2) 4237 type |= RX_BD_FLAGS_SOP; 4238 4239 ring = &rxr->rx_ring_struct; 4240 bnxt_init_rxbd_pages(ring, type); 4241 ring->fw_ring_id = INVALID_HW_RING_ID; 4242 } 4243 4244 static void bnxt_init_one_rx_agg_ring_rxbd(struct bnxt *bp, 4245 struct bnxt_rx_ring_info *rxr) 4246 { 4247 struct bnxt_ring_struct *ring; 4248 u32 type; 4249 4250 ring = &rxr->rx_agg_ring_struct; 4251 ring->fw_ring_id = INVALID_HW_RING_ID; 4252 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 4253 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 4254 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 4255 4256 bnxt_init_rxbd_pages(ring, type); 4257 } 4258 } 4259 4260 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 4261 { 4262 struct bnxt_rx_ring_info *rxr; 4263 4264 rxr = &bp->rx_ring[ring_nr]; 4265 bnxt_init_one_rx_ring_rxbd(bp, rxr); 4266 4267 netif_queue_set_napi(bp->dev, ring_nr, NETDEV_QUEUE_TYPE_RX, 4268 &rxr->bnapi->napi); 4269 4270 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 4271 bpf_prog_add(bp->xdp_prog, 1); 4272 rxr->xdp_prog = bp->xdp_prog; 4273 } 4274 4275 bnxt_init_one_rx_agg_ring_rxbd(bp, rxr); 4276 4277 return bnxt_alloc_one_rx_ring(bp, ring_nr); 4278 } 4279 4280 static void bnxt_init_cp_rings(struct bnxt *bp) 4281 { 4282 int i, j; 4283 4284 for (i = 0; i < bp->cp_nr_rings; i++) { 4285 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 4286 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4287 4288 ring->fw_ring_id = INVALID_HW_RING_ID; 4289 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4290 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4291 if (!cpr->cp_ring_arr) 4292 continue; 4293 for (j = 0; j < cpr->cp_ring_count; j++) { 4294 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 4295 4296 ring = &cpr2->cp_ring_struct; 4297 ring->fw_ring_id = INVALID_HW_RING_ID; 4298 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4299 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4300 } 4301 } 4302 } 4303 4304 static int bnxt_init_rx_rings(struct bnxt *bp) 4305 { 4306 int i, rc = 0; 4307 4308 if (BNXT_RX_PAGE_MODE(bp)) { 4309 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 4310 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 4311 } else { 4312 bp->rx_offset = BNXT_RX_OFFSET; 4313 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 4314 } 4315 4316 for (i = 0; i < bp->rx_nr_rings; i++) { 4317 rc = bnxt_init_one_rx_ring(bp, i); 4318 if (rc) 4319 break; 4320 } 4321 4322 return rc; 4323 } 4324 4325 static int bnxt_init_tx_rings(struct bnxt *bp) 4326 { 4327 u16 i; 4328 4329 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 4330 BNXT_MIN_TX_DESC_CNT); 4331 4332 for (i = 0; i < bp->tx_nr_rings; i++) { 4333 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4334 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 4335 4336 ring->fw_ring_id = INVALID_HW_RING_ID; 4337 4338 if (i >= bp->tx_nr_rings_xdp) 4339 netif_queue_set_napi(bp->dev, i - bp->tx_nr_rings_xdp, 4340 NETDEV_QUEUE_TYPE_TX, 4341 &txr->bnapi->napi); 4342 } 4343 4344 return 0; 4345 } 4346 4347 static void bnxt_free_ring_grps(struct bnxt *bp) 4348 { 4349 kfree(bp->grp_info); 4350 bp->grp_info = NULL; 4351 } 4352 4353 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 4354 { 4355 int i; 4356 4357 if (irq_re_init) { 4358 bp->grp_info = kcalloc(bp->cp_nr_rings, 4359 sizeof(struct bnxt_ring_grp_info), 4360 GFP_KERNEL); 4361 if (!bp->grp_info) 4362 return -ENOMEM; 4363 } 4364 for (i = 0; i < bp->cp_nr_rings; i++) { 4365 if (irq_re_init) 4366 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 4367 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 4368 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 4369 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 4370 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 4371 } 4372 return 0; 4373 } 4374 4375 static void bnxt_free_vnics(struct bnxt *bp) 4376 { 4377 kfree(bp->vnic_info); 4378 bp->vnic_info = NULL; 4379 bp->nr_vnics = 0; 4380 } 4381 4382 static int bnxt_alloc_vnics(struct bnxt *bp) 4383 { 4384 int num_vnics = 1; 4385 4386 #ifdef CONFIG_RFS_ACCEL 4387 if (bp->flags & BNXT_FLAG_RFS) { 4388 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 4389 num_vnics++; 4390 else if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4391 num_vnics += bp->rx_nr_rings; 4392 } 4393 #endif 4394 4395 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 4396 num_vnics++; 4397 4398 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 4399 GFP_KERNEL); 4400 if (!bp->vnic_info) 4401 return -ENOMEM; 4402 4403 bp->nr_vnics = num_vnics; 4404 return 0; 4405 } 4406 4407 static void bnxt_init_vnics(struct bnxt *bp) 4408 { 4409 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 4410 int i; 4411 4412 for (i = 0; i < bp->nr_vnics; i++) { 4413 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 4414 int j; 4415 4416 vnic->fw_vnic_id = INVALID_HW_RING_ID; 4417 vnic->vnic_id = i; 4418 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 4419 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 4420 4421 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 4422 4423 if (bp->vnic_info[i].rss_hash_key) { 4424 if (i == BNXT_VNIC_DEFAULT) { 4425 u8 *key = (void *)vnic->rss_hash_key; 4426 int k; 4427 4428 if (!bp->rss_hash_key_valid && 4429 !bp->rss_hash_key_updated) { 4430 get_random_bytes(bp->rss_hash_key, 4431 HW_HASH_KEY_SIZE); 4432 bp->rss_hash_key_updated = true; 4433 } 4434 4435 memcpy(vnic->rss_hash_key, bp->rss_hash_key, 4436 HW_HASH_KEY_SIZE); 4437 4438 if (!bp->rss_hash_key_updated) 4439 continue; 4440 4441 bp->rss_hash_key_updated = false; 4442 bp->rss_hash_key_valid = true; 4443 4444 bp->toeplitz_prefix = 0; 4445 for (k = 0; k < 8; k++) { 4446 bp->toeplitz_prefix <<= 8; 4447 bp->toeplitz_prefix |= key[k]; 4448 } 4449 } else { 4450 memcpy(vnic->rss_hash_key, vnic0->rss_hash_key, 4451 HW_HASH_KEY_SIZE); 4452 } 4453 } 4454 } 4455 } 4456 4457 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 4458 { 4459 int pages; 4460 4461 pages = ring_size / desc_per_pg; 4462 4463 if (!pages) 4464 return 1; 4465 4466 pages++; 4467 4468 while (pages & (pages - 1)) 4469 pages++; 4470 4471 return pages; 4472 } 4473 4474 void bnxt_set_tpa_flags(struct bnxt *bp) 4475 { 4476 bp->flags &= ~BNXT_FLAG_TPA; 4477 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 4478 return; 4479 if (bp->dev->features & NETIF_F_LRO) 4480 bp->flags |= BNXT_FLAG_LRO; 4481 else if (bp->dev->features & NETIF_F_GRO_HW) 4482 bp->flags |= BNXT_FLAG_GRO; 4483 } 4484 4485 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 4486 * be set on entry. 4487 */ 4488 void bnxt_set_ring_params(struct bnxt *bp) 4489 { 4490 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 4491 u32 agg_factor = 0, agg_ring_size = 0; 4492 4493 /* 8 for CRC and VLAN */ 4494 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 4495 4496 rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) + 4497 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4498 4499 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 4500 ring_size = bp->rx_ring_size; 4501 bp->rx_agg_ring_size = 0; 4502 bp->rx_agg_nr_pages = 0; 4503 4504 if (bp->flags & BNXT_FLAG_TPA) 4505 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 4506 4507 bp->flags &= ~BNXT_FLAG_JUMBO; 4508 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 4509 u32 jumbo_factor; 4510 4511 bp->flags |= BNXT_FLAG_JUMBO; 4512 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 4513 if (jumbo_factor > agg_factor) 4514 agg_factor = jumbo_factor; 4515 } 4516 if (agg_factor) { 4517 if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) { 4518 ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA; 4519 netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n", 4520 bp->rx_ring_size, ring_size); 4521 bp->rx_ring_size = ring_size; 4522 } 4523 agg_ring_size = ring_size * agg_factor; 4524 4525 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 4526 RX_DESC_CNT); 4527 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 4528 u32 tmp = agg_ring_size; 4529 4530 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 4531 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 4532 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 4533 tmp, agg_ring_size); 4534 } 4535 bp->rx_agg_ring_size = agg_ring_size; 4536 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 4537 4538 if (BNXT_RX_PAGE_MODE(bp)) { 4539 rx_space = PAGE_SIZE; 4540 rx_size = PAGE_SIZE - 4541 ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) - 4542 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4543 } else { 4544 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 4545 rx_space = rx_size + NET_SKB_PAD + 4546 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4547 } 4548 } 4549 4550 bp->rx_buf_use_size = rx_size; 4551 bp->rx_buf_size = rx_space; 4552 4553 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 4554 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 4555 4556 ring_size = bp->tx_ring_size; 4557 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 4558 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 4559 4560 max_rx_cmpl = bp->rx_ring_size; 4561 /* MAX TPA needs to be added because TPA_START completions are 4562 * immediately recycled, so the TPA completions are not bound by 4563 * the RX ring size. 4564 */ 4565 if (bp->flags & BNXT_FLAG_TPA) 4566 max_rx_cmpl += bp->max_tpa; 4567 /* RX and TPA completions are 32-byte, all others are 16-byte */ 4568 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 4569 bp->cp_ring_size = ring_size; 4570 4571 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 4572 if (bp->cp_nr_pages > MAX_CP_PAGES) { 4573 bp->cp_nr_pages = MAX_CP_PAGES; 4574 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 4575 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 4576 ring_size, bp->cp_ring_size); 4577 } 4578 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 4579 bp->cp_ring_mask = bp->cp_bit - 1; 4580 } 4581 4582 /* Changing allocation mode of RX rings. 4583 * TODO: Update when extending xdp_rxq_info to support allocation modes. 4584 */ 4585 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 4586 { 4587 struct net_device *dev = bp->dev; 4588 4589 if (page_mode) { 4590 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 4591 bp->flags |= BNXT_FLAG_RX_PAGE_MODE; 4592 4593 if (bp->xdp_prog->aux->xdp_has_frags) 4594 dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU); 4595 else 4596 dev->max_mtu = 4597 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 4598 if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) { 4599 bp->flags |= BNXT_FLAG_JUMBO; 4600 bp->rx_skb_func = bnxt_rx_multi_page_skb; 4601 } else { 4602 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 4603 bp->rx_skb_func = bnxt_rx_page_skb; 4604 } 4605 bp->rx_dir = DMA_BIDIRECTIONAL; 4606 /* Disable LRO or GRO_HW */ 4607 netdev_update_features(dev); 4608 } else { 4609 dev->max_mtu = bp->max_mtu; 4610 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 4611 bp->rx_dir = DMA_FROM_DEVICE; 4612 bp->rx_skb_func = bnxt_rx_skb; 4613 } 4614 return 0; 4615 } 4616 4617 static void bnxt_free_vnic_attributes(struct bnxt *bp) 4618 { 4619 int i; 4620 struct bnxt_vnic_info *vnic; 4621 struct pci_dev *pdev = bp->pdev; 4622 4623 if (!bp->vnic_info) 4624 return; 4625 4626 for (i = 0; i < bp->nr_vnics; i++) { 4627 vnic = &bp->vnic_info[i]; 4628 4629 kfree(vnic->fw_grp_ids); 4630 vnic->fw_grp_ids = NULL; 4631 4632 kfree(vnic->uc_list); 4633 vnic->uc_list = NULL; 4634 4635 if (vnic->mc_list) { 4636 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 4637 vnic->mc_list, vnic->mc_list_mapping); 4638 vnic->mc_list = NULL; 4639 } 4640 4641 if (vnic->rss_table) { 4642 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 4643 vnic->rss_table, 4644 vnic->rss_table_dma_addr); 4645 vnic->rss_table = NULL; 4646 } 4647 4648 vnic->rss_hash_key = NULL; 4649 vnic->flags = 0; 4650 } 4651 } 4652 4653 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 4654 { 4655 int i, rc = 0, size; 4656 struct bnxt_vnic_info *vnic; 4657 struct pci_dev *pdev = bp->pdev; 4658 int max_rings; 4659 4660 for (i = 0; i < bp->nr_vnics; i++) { 4661 vnic = &bp->vnic_info[i]; 4662 4663 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 4664 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 4665 4666 if (mem_size > 0) { 4667 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 4668 if (!vnic->uc_list) { 4669 rc = -ENOMEM; 4670 goto out; 4671 } 4672 } 4673 } 4674 4675 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 4676 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 4677 vnic->mc_list = 4678 dma_alloc_coherent(&pdev->dev, 4679 vnic->mc_list_size, 4680 &vnic->mc_list_mapping, 4681 GFP_KERNEL); 4682 if (!vnic->mc_list) { 4683 rc = -ENOMEM; 4684 goto out; 4685 } 4686 } 4687 4688 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4689 goto vnic_skip_grps; 4690 4691 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 4692 max_rings = bp->rx_nr_rings; 4693 else 4694 max_rings = 1; 4695 4696 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 4697 if (!vnic->fw_grp_ids) { 4698 rc = -ENOMEM; 4699 goto out; 4700 } 4701 vnic_skip_grps: 4702 if ((bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && 4703 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 4704 continue; 4705 4706 /* Allocate rss table and hash key */ 4707 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 4708 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4709 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 4710 4711 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 4712 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 4713 vnic->rss_table_size, 4714 &vnic->rss_table_dma_addr, 4715 GFP_KERNEL); 4716 if (!vnic->rss_table) { 4717 rc = -ENOMEM; 4718 goto out; 4719 } 4720 4721 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 4722 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 4723 } 4724 return 0; 4725 4726 out: 4727 return rc; 4728 } 4729 4730 static void bnxt_free_hwrm_resources(struct bnxt *bp) 4731 { 4732 struct bnxt_hwrm_wait_token *token; 4733 4734 dma_pool_destroy(bp->hwrm_dma_pool); 4735 bp->hwrm_dma_pool = NULL; 4736 4737 rcu_read_lock(); 4738 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) 4739 WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED); 4740 rcu_read_unlock(); 4741 } 4742 4743 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 4744 { 4745 bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev, 4746 BNXT_HWRM_DMA_SIZE, 4747 BNXT_HWRM_DMA_ALIGN, 0); 4748 if (!bp->hwrm_dma_pool) 4749 return -ENOMEM; 4750 4751 INIT_HLIST_HEAD(&bp->hwrm_pending_list); 4752 4753 return 0; 4754 } 4755 4756 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 4757 { 4758 kfree(stats->hw_masks); 4759 stats->hw_masks = NULL; 4760 kfree(stats->sw_stats); 4761 stats->sw_stats = NULL; 4762 if (stats->hw_stats) { 4763 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 4764 stats->hw_stats_map); 4765 stats->hw_stats = NULL; 4766 } 4767 } 4768 4769 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 4770 bool alloc_masks) 4771 { 4772 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 4773 &stats->hw_stats_map, GFP_KERNEL); 4774 if (!stats->hw_stats) 4775 return -ENOMEM; 4776 4777 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 4778 if (!stats->sw_stats) 4779 goto stats_mem_err; 4780 4781 if (alloc_masks) { 4782 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 4783 if (!stats->hw_masks) 4784 goto stats_mem_err; 4785 } 4786 return 0; 4787 4788 stats_mem_err: 4789 bnxt_free_stats_mem(bp, stats); 4790 return -ENOMEM; 4791 } 4792 4793 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 4794 { 4795 int i; 4796 4797 for (i = 0; i < count; i++) 4798 mask_arr[i] = mask; 4799 } 4800 4801 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 4802 { 4803 int i; 4804 4805 for (i = 0; i < count; i++) 4806 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 4807 } 4808 4809 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 4810 struct bnxt_stats_mem *stats) 4811 { 4812 struct hwrm_func_qstats_ext_output *resp; 4813 struct hwrm_func_qstats_ext_input *req; 4814 __le64 *hw_masks; 4815 int rc; 4816 4817 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 4818 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4819 return -EOPNOTSUPP; 4820 4821 rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT); 4822 if (rc) 4823 return rc; 4824 4825 req->fid = cpu_to_le16(0xffff); 4826 req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4827 4828 resp = hwrm_req_hold(bp, req); 4829 rc = hwrm_req_send(bp, req); 4830 if (!rc) { 4831 hw_masks = &resp->rx_ucast_pkts; 4832 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 4833 } 4834 hwrm_req_drop(bp, req); 4835 return rc; 4836 } 4837 4838 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 4839 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 4840 4841 static void bnxt_init_stats(struct bnxt *bp) 4842 { 4843 struct bnxt_napi *bnapi = bp->bnapi[0]; 4844 struct bnxt_cp_ring_info *cpr; 4845 struct bnxt_stats_mem *stats; 4846 __le64 *rx_stats, *tx_stats; 4847 int rc, rx_count, tx_count; 4848 u64 *rx_masks, *tx_masks; 4849 u64 mask; 4850 u8 flags; 4851 4852 cpr = &bnapi->cp_ring; 4853 stats = &cpr->stats; 4854 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 4855 if (rc) { 4856 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4857 mask = (1ULL << 48) - 1; 4858 else 4859 mask = -1ULL; 4860 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 4861 } 4862 if (bp->flags & BNXT_FLAG_PORT_STATS) { 4863 stats = &bp->port_stats; 4864 rx_stats = stats->hw_stats; 4865 rx_masks = stats->hw_masks; 4866 rx_count = sizeof(struct rx_port_stats) / 8; 4867 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4868 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4869 tx_count = sizeof(struct tx_port_stats) / 8; 4870 4871 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 4872 rc = bnxt_hwrm_port_qstats(bp, flags); 4873 if (rc) { 4874 mask = (1ULL << 40) - 1; 4875 4876 bnxt_fill_masks(rx_masks, mask, rx_count); 4877 bnxt_fill_masks(tx_masks, mask, tx_count); 4878 } else { 4879 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4880 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 4881 bnxt_hwrm_port_qstats(bp, 0); 4882 } 4883 } 4884 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 4885 stats = &bp->rx_port_stats_ext; 4886 rx_stats = stats->hw_stats; 4887 rx_masks = stats->hw_masks; 4888 rx_count = sizeof(struct rx_port_stats_ext) / 8; 4889 stats = &bp->tx_port_stats_ext; 4890 tx_stats = stats->hw_stats; 4891 tx_masks = stats->hw_masks; 4892 tx_count = sizeof(struct tx_port_stats_ext) / 8; 4893 4894 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4895 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 4896 if (rc) { 4897 mask = (1ULL << 40) - 1; 4898 4899 bnxt_fill_masks(rx_masks, mask, rx_count); 4900 if (tx_stats) 4901 bnxt_fill_masks(tx_masks, mask, tx_count); 4902 } else { 4903 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4904 if (tx_stats) 4905 bnxt_copy_hw_masks(tx_masks, tx_stats, 4906 tx_count); 4907 bnxt_hwrm_port_qstats_ext(bp, 0); 4908 } 4909 } 4910 } 4911 4912 static void bnxt_free_port_stats(struct bnxt *bp) 4913 { 4914 bp->flags &= ~BNXT_FLAG_PORT_STATS; 4915 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 4916 4917 bnxt_free_stats_mem(bp, &bp->port_stats); 4918 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 4919 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 4920 } 4921 4922 static void bnxt_free_ring_stats(struct bnxt *bp) 4923 { 4924 int i; 4925 4926 if (!bp->bnapi) 4927 return; 4928 4929 for (i = 0; i < bp->cp_nr_rings; i++) { 4930 struct bnxt_napi *bnapi = bp->bnapi[i]; 4931 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4932 4933 bnxt_free_stats_mem(bp, &cpr->stats); 4934 4935 kfree(cpr->sw_stats); 4936 cpr->sw_stats = NULL; 4937 } 4938 } 4939 4940 static int bnxt_alloc_stats(struct bnxt *bp) 4941 { 4942 u32 size, i; 4943 int rc; 4944 4945 size = bp->hw_ring_stats_size; 4946 4947 for (i = 0; i < bp->cp_nr_rings; i++) { 4948 struct bnxt_napi *bnapi = bp->bnapi[i]; 4949 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4950 4951 cpr->sw_stats = kzalloc(sizeof(*cpr->sw_stats), GFP_KERNEL); 4952 if (!cpr->sw_stats) 4953 return -ENOMEM; 4954 4955 cpr->stats.len = size; 4956 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 4957 if (rc) 4958 return rc; 4959 4960 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 4961 } 4962 4963 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 4964 return 0; 4965 4966 if (bp->port_stats.hw_stats) 4967 goto alloc_ext_stats; 4968 4969 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 4970 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 4971 if (rc) 4972 return rc; 4973 4974 bp->flags |= BNXT_FLAG_PORT_STATS; 4975 4976 alloc_ext_stats: 4977 /* Display extended statistics only if FW supports it */ 4978 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 4979 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 4980 return 0; 4981 4982 if (bp->rx_port_stats_ext.hw_stats) 4983 goto alloc_tx_ext_stats; 4984 4985 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 4986 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 4987 /* Extended stats are optional */ 4988 if (rc) 4989 return 0; 4990 4991 alloc_tx_ext_stats: 4992 if (bp->tx_port_stats_ext.hw_stats) 4993 return 0; 4994 4995 if (bp->hwrm_spec_code >= 0x10902 || 4996 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 4997 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 4998 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 4999 /* Extended stats are optional */ 5000 if (rc) 5001 return 0; 5002 } 5003 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 5004 return 0; 5005 } 5006 5007 static void bnxt_clear_ring_indices(struct bnxt *bp) 5008 { 5009 int i, j; 5010 5011 if (!bp->bnapi) 5012 return; 5013 5014 for (i = 0; i < bp->cp_nr_rings; i++) { 5015 struct bnxt_napi *bnapi = bp->bnapi[i]; 5016 struct bnxt_cp_ring_info *cpr; 5017 struct bnxt_rx_ring_info *rxr; 5018 struct bnxt_tx_ring_info *txr; 5019 5020 if (!bnapi) 5021 continue; 5022 5023 cpr = &bnapi->cp_ring; 5024 cpr->cp_raw_cons = 0; 5025 5026 bnxt_for_each_napi_tx(j, bnapi, txr) { 5027 txr->tx_prod = 0; 5028 txr->tx_cons = 0; 5029 txr->tx_hw_cons = 0; 5030 } 5031 5032 rxr = bnapi->rx_ring; 5033 if (rxr) { 5034 rxr->rx_prod = 0; 5035 rxr->rx_agg_prod = 0; 5036 rxr->rx_sw_agg_prod = 0; 5037 rxr->rx_next_cons = 0; 5038 } 5039 bnapi->events = 0; 5040 } 5041 } 5042 5043 void bnxt_insert_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5044 { 5045 u8 type = fltr->type, flags = fltr->flags; 5046 5047 INIT_LIST_HEAD(&fltr->list); 5048 if ((type == BNXT_FLTR_TYPE_L2 && flags & BNXT_ACT_RING_DST) || 5049 (type == BNXT_FLTR_TYPE_NTUPLE && flags & BNXT_ACT_NO_AGING)) 5050 list_add_tail(&fltr->list, &bp->usr_fltr_list); 5051 } 5052 5053 void bnxt_del_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5054 { 5055 if (!list_empty(&fltr->list)) 5056 list_del_init(&fltr->list); 5057 } 5058 5059 void bnxt_clear_usr_fltrs(struct bnxt *bp, bool all) 5060 { 5061 struct bnxt_filter_base *usr_fltr, *tmp; 5062 5063 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) { 5064 if (!all && usr_fltr->type == BNXT_FLTR_TYPE_L2) 5065 continue; 5066 bnxt_del_one_usr_fltr(bp, usr_fltr); 5067 } 5068 } 5069 5070 static void bnxt_del_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5071 { 5072 hlist_del(&fltr->hash); 5073 bnxt_del_one_usr_fltr(bp, fltr); 5074 if (fltr->flags) { 5075 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 5076 bp->ntp_fltr_count--; 5077 } 5078 kfree(fltr); 5079 } 5080 5081 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool all) 5082 { 5083 int i; 5084 5085 /* Under rtnl_lock and all our NAPIs have been disabled. It's 5086 * safe to delete the hash table. 5087 */ 5088 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 5089 struct hlist_head *head; 5090 struct hlist_node *tmp; 5091 struct bnxt_ntuple_filter *fltr; 5092 5093 head = &bp->ntp_fltr_hash_tbl[i]; 5094 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 5095 bnxt_del_l2_filter(bp, fltr->l2_fltr); 5096 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 5097 !list_empty(&fltr->base.list))) 5098 continue; 5099 bnxt_del_fltr(bp, &fltr->base); 5100 } 5101 } 5102 if (!all) 5103 return; 5104 5105 bitmap_free(bp->ntp_fltr_bmap); 5106 bp->ntp_fltr_bmap = NULL; 5107 bp->ntp_fltr_count = 0; 5108 } 5109 5110 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 5111 { 5112 int i, rc = 0; 5113 5114 if (!(bp->flags & BNXT_FLAG_RFS) || bp->ntp_fltr_bmap) 5115 return 0; 5116 5117 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 5118 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 5119 5120 bp->ntp_fltr_count = 0; 5121 bp->ntp_fltr_bmap = bitmap_zalloc(bp->max_fltr, GFP_KERNEL); 5122 5123 if (!bp->ntp_fltr_bmap) 5124 rc = -ENOMEM; 5125 5126 return rc; 5127 } 5128 5129 static void bnxt_free_l2_filters(struct bnxt *bp, bool all) 5130 { 5131 int i; 5132 5133 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) { 5134 struct hlist_head *head; 5135 struct hlist_node *tmp; 5136 struct bnxt_l2_filter *fltr; 5137 5138 head = &bp->l2_fltr_hash_tbl[i]; 5139 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 5140 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 5141 !list_empty(&fltr->base.list))) 5142 continue; 5143 bnxt_del_fltr(bp, &fltr->base); 5144 } 5145 } 5146 } 5147 5148 static void bnxt_init_l2_fltr_tbl(struct bnxt *bp) 5149 { 5150 int i; 5151 5152 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) 5153 INIT_HLIST_HEAD(&bp->l2_fltr_hash_tbl[i]); 5154 get_random_bytes(&bp->hash_seed, sizeof(bp->hash_seed)); 5155 } 5156 5157 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 5158 { 5159 bnxt_free_vnic_attributes(bp); 5160 bnxt_free_tx_rings(bp); 5161 bnxt_free_rx_rings(bp); 5162 bnxt_free_cp_rings(bp); 5163 bnxt_free_all_cp_arrays(bp); 5164 bnxt_free_ntp_fltrs(bp, false); 5165 bnxt_free_l2_filters(bp, false); 5166 if (irq_re_init) { 5167 bnxt_free_ring_stats(bp); 5168 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 5169 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 5170 bnxt_free_port_stats(bp); 5171 bnxt_free_ring_grps(bp); 5172 bnxt_free_vnics(bp); 5173 kfree(bp->tx_ring_map); 5174 bp->tx_ring_map = NULL; 5175 kfree(bp->tx_ring); 5176 bp->tx_ring = NULL; 5177 kfree(bp->rx_ring); 5178 bp->rx_ring = NULL; 5179 kfree(bp->bnapi); 5180 bp->bnapi = NULL; 5181 } else { 5182 bnxt_clear_ring_indices(bp); 5183 } 5184 } 5185 5186 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 5187 { 5188 int i, j, rc, size, arr_size; 5189 void *bnapi; 5190 5191 if (irq_re_init) { 5192 /* Allocate bnapi mem pointer array and mem block for 5193 * all queues 5194 */ 5195 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 5196 bp->cp_nr_rings); 5197 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 5198 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 5199 if (!bnapi) 5200 return -ENOMEM; 5201 5202 bp->bnapi = bnapi; 5203 bnapi += arr_size; 5204 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 5205 bp->bnapi[i] = bnapi; 5206 bp->bnapi[i]->index = i; 5207 bp->bnapi[i]->bp = bp; 5208 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5209 struct bnxt_cp_ring_info *cpr = 5210 &bp->bnapi[i]->cp_ring; 5211 5212 cpr->cp_ring_struct.ring_mem.flags = 5213 BNXT_RMEM_RING_PTE_FLAG; 5214 } 5215 } 5216 5217 bp->rx_ring = kcalloc(bp->rx_nr_rings, 5218 sizeof(struct bnxt_rx_ring_info), 5219 GFP_KERNEL); 5220 if (!bp->rx_ring) 5221 return -ENOMEM; 5222 5223 for (i = 0; i < bp->rx_nr_rings; i++) { 5224 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5225 5226 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5227 rxr->rx_ring_struct.ring_mem.flags = 5228 BNXT_RMEM_RING_PTE_FLAG; 5229 rxr->rx_agg_ring_struct.ring_mem.flags = 5230 BNXT_RMEM_RING_PTE_FLAG; 5231 } else { 5232 rxr->rx_cpr = &bp->bnapi[i]->cp_ring; 5233 } 5234 rxr->bnapi = bp->bnapi[i]; 5235 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 5236 } 5237 5238 bp->tx_ring = kcalloc(bp->tx_nr_rings, 5239 sizeof(struct bnxt_tx_ring_info), 5240 GFP_KERNEL); 5241 if (!bp->tx_ring) 5242 return -ENOMEM; 5243 5244 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 5245 GFP_KERNEL); 5246 5247 if (!bp->tx_ring_map) 5248 return -ENOMEM; 5249 5250 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 5251 j = 0; 5252 else 5253 j = bp->rx_nr_rings; 5254 5255 for (i = 0; i < bp->tx_nr_rings; i++) { 5256 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5257 struct bnxt_napi *bnapi2; 5258 5259 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 5260 txr->tx_ring_struct.ring_mem.flags = 5261 BNXT_RMEM_RING_PTE_FLAG; 5262 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 5263 if (i >= bp->tx_nr_rings_xdp) { 5264 int k = j + BNXT_RING_TO_TC_OFF(bp, i); 5265 5266 bnapi2 = bp->bnapi[k]; 5267 txr->txq_index = i - bp->tx_nr_rings_xdp; 5268 txr->tx_napi_idx = 5269 BNXT_RING_TO_TC(bp, txr->txq_index); 5270 bnapi2->tx_ring[txr->tx_napi_idx] = txr; 5271 bnapi2->tx_int = bnxt_tx_int; 5272 } else { 5273 bnapi2 = bp->bnapi[j]; 5274 bnapi2->flags |= BNXT_NAPI_FLAG_XDP; 5275 bnapi2->tx_ring[0] = txr; 5276 bnapi2->tx_int = bnxt_tx_int_xdp; 5277 j++; 5278 } 5279 txr->bnapi = bnapi2; 5280 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 5281 txr->tx_cpr = &bnapi2->cp_ring; 5282 } 5283 5284 rc = bnxt_alloc_stats(bp); 5285 if (rc) 5286 goto alloc_mem_err; 5287 bnxt_init_stats(bp); 5288 5289 rc = bnxt_alloc_ntp_fltrs(bp); 5290 if (rc) 5291 goto alloc_mem_err; 5292 5293 rc = bnxt_alloc_vnics(bp); 5294 if (rc) 5295 goto alloc_mem_err; 5296 } 5297 5298 rc = bnxt_alloc_all_cp_arrays(bp); 5299 if (rc) 5300 goto alloc_mem_err; 5301 5302 bnxt_init_ring_struct(bp); 5303 5304 rc = bnxt_alloc_rx_rings(bp); 5305 if (rc) 5306 goto alloc_mem_err; 5307 5308 rc = bnxt_alloc_tx_rings(bp); 5309 if (rc) 5310 goto alloc_mem_err; 5311 5312 rc = bnxt_alloc_cp_rings(bp); 5313 if (rc) 5314 goto alloc_mem_err; 5315 5316 bp->vnic_info[BNXT_VNIC_DEFAULT].flags |= BNXT_VNIC_RSS_FLAG | 5317 BNXT_VNIC_MCAST_FLAG | 5318 BNXT_VNIC_UCAST_FLAG; 5319 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp) && (bp->flags & BNXT_FLAG_RFS)) 5320 bp->vnic_info[BNXT_VNIC_NTUPLE].flags |= 5321 BNXT_VNIC_RSS_FLAG | BNXT_VNIC_NTUPLE_FLAG; 5322 5323 rc = bnxt_alloc_vnic_attributes(bp); 5324 if (rc) 5325 goto alloc_mem_err; 5326 return 0; 5327 5328 alloc_mem_err: 5329 bnxt_free_mem(bp, true); 5330 return rc; 5331 } 5332 5333 static void bnxt_disable_int(struct bnxt *bp) 5334 { 5335 int i; 5336 5337 if (!bp->bnapi) 5338 return; 5339 5340 for (i = 0; i < bp->cp_nr_rings; i++) { 5341 struct bnxt_napi *bnapi = bp->bnapi[i]; 5342 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5343 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5344 5345 if (ring->fw_ring_id != INVALID_HW_RING_ID) 5346 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5347 } 5348 } 5349 5350 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 5351 { 5352 struct bnxt_napi *bnapi = bp->bnapi[n]; 5353 struct bnxt_cp_ring_info *cpr; 5354 5355 cpr = &bnapi->cp_ring; 5356 return cpr->cp_ring_struct.map_idx; 5357 } 5358 5359 static void bnxt_disable_int_sync(struct bnxt *bp) 5360 { 5361 int i; 5362 5363 if (!bp->irq_tbl) 5364 return; 5365 5366 atomic_inc(&bp->intr_sem); 5367 5368 bnxt_disable_int(bp); 5369 for (i = 0; i < bp->cp_nr_rings; i++) { 5370 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 5371 5372 synchronize_irq(bp->irq_tbl[map_idx].vector); 5373 } 5374 } 5375 5376 static void bnxt_enable_int(struct bnxt *bp) 5377 { 5378 int i; 5379 5380 atomic_set(&bp->intr_sem, 0); 5381 for (i = 0; i < bp->cp_nr_rings; i++) { 5382 struct bnxt_napi *bnapi = bp->bnapi[i]; 5383 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5384 5385 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 5386 } 5387 } 5388 5389 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 5390 bool async_only) 5391 { 5392 DECLARE_BITMAP(async_events_bmap, 256); 5393 u32 *events = (u32 *)async_events_bmap; 5394 struct hwrm_func_drv_rgtr_output *resp; 5395 struct hwrm_func_drv_rgtr_input *req; 5396 u32 flags; 5397 int rc, i; 5398 5399 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR); 5400 if (rc) 5401 return rc; 5402 5403 req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 5404 FUNC_DRV_RGTR_REQ_ENABLES_VER | 5405 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5406 5407 req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 5408 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 5409 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 5410 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 5411 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 5412 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 5413 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 5414 req->flags = cpu_to_le32(flags); 5415 req->ver_maj_8b = DRV_VER_MAJ; 5416 req->ver_min_8b = DRV_VER_MIN; 5417 req->ver_upd_8b = DRV_VER_UPD; 5418 req->ver_maj = cpu_to_le16(DRV_VER_MAJ); 5419 req->ver_min = cpu_to_le16(DRV_VER_MIN); 5420 req->ver_upd = cpu_to_le16(DRV_VER_UPD); 5421 5422 if (BNXT_PF(bp)) { 5423 u32 data[8]; 5424 int i; 5425 5426 memset(data, 0, sizeof(data)); 5427 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 5428 u16 cmd = bnxt_vf_req_snif[i]; 5429 unsigned int bit, idx; 5430 5431 idx = cmd / 32; 5432 bit = cmd % 32; 5433 data[idx] |= 1 << bit; 5434 } 5435 5436 for (i = 0; i < 8; i++) 5437 req->vf_req_fwd[i] = cpu_to_le32(data[i]); 5438 5439 req->enables |= 5440 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 5441 } 5442 5443 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 5444 req->flags |= cpu_to_le32( 5445 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 5446 5447 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 5448 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 5449 u16 event_id = bnxt_async_events_arr[i]; 5450 5451 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 5452 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 5453 continue; 5454 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE && 5455 !bp->ptp_cfg) 5456 continue; 5457 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 5458 } 5459 if (bmap && bmap_size) { 5460 for (i = 0; i < bmap_size; i++) { 5461 if (test_bit(i, bmap)) 5462 __set_bit(i, async_events_bmap); 5463 } 5464 } 5465 for (i = 0; i < 8; i++) 5466 req->async_event_fwd[i] |= cpu_to_le32(events[i]); 5467 5468 if (async_only) 5469 req->enables = 5470 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5471 5472 resp = hwrm_req_hold(bp, req); 5473 rc = hwrm_req_send(bp, req); 5474 if (!rc) { 5475 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 5476 if (resp->flags & 5477 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 5478 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 5479 } 5480 hwrm_req_drop(bp, req); 5481 return rc; 5482 } 5483 5484 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 5485 { 5486 struct hwrm_func_drv_unrgtr_input *req; 5487 int rc; 5488 5489 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 5490 return 0; 5491 5492 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR); 5493 if (rc) 5494 return rc; 5495 return hwrm_req_send(bp, req); 5496 } 5497 5498 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa); 5499 5500 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 5501 { 5502 struct hwrm_tunnel_dst_port_free_input *req; 5503 int rc; 5504 5505 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN && 5506 bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID) 5507 return 0; 5508 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE && 5509 bp->nge_fw_dst_port_id == INVALID_HW_RING_ID) 5510 return 0; 5511 5512 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE); 5513 if (rc) 5514 return rc; 5515 5516 req->tunnel_type = tunnel_type; 5517 5518 switch (tunnel_type) { 5519 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 5520 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 5521 bp->vxlan_port = 0; 5522 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 5523 break; 5524 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 5525 req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 5526 bp->nge_port = 0; 5527 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 5528 break; 5529 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE: 5530 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_gpe_fw_dst_port_id); 5531 bp->vxlan_gpe_port = 0; 5532 bp->vxlan_gpe_fw_dst_port_id = INVALID_HW_RING_ID; 5533 break; 5534 default: 5535 break; 5536 } 5537 5538 rc = hwrm_req_send(bp, req); 5539 if (rc) 5540 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 5541 rc); 5542 if (bp->flags & BNXT_FLAG_TPA) 5543 bnxt_set_tpa(bp, true); 5544 return rc; 5545 } 5546 5547 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 5548 u8 tunnel_type) 5549 { 5550 struct hwrm_tunnel_dst_port_alloc_output *resp; 5551 struct hwrm_tunnel_dst_port_alloc_input *req; 5552 int rc; 5553 5554 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC); 5555 if (rc) 5556 return rc; 5557 5558 req->tunnel_type = tunnel_type; 5559 req->tunnel_dst_port_val = port; 5560 5561 resp = hwrm_req_hold(bp, req); 5562 rc = hwrm_req_send(bp, req); 5563 if (rc) { 5564 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 5565 rc); 5566 goto err_out; 5567 } 5568 5569 switch (tunnel_type) { 5570 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 5571 bp->vxlan_port = port; 5572 bp->vxlan_fw_dst_port_id = 5573 le16_to_cpu(resp->tunnel_dst_port_id); 5574 break; 5575 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 5576 bp->nge_port = port; 5577 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 5578 break; 5579 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE: 5580 bp->vxlan_gpe_port = port; 5581 bp->vxlan_gpe_fw_dst_port_id = 5582 le16_to_cpu(resp->tunnel_dst_port_id); 5583 break; 5584 default: 5585 break; 5586 } 5587 if (bp->flags & BNXT_FLAG_TPA) 5588 bnxt_set_tpa(bp, true); 5589 5590 err_out: 5591 hwrm_req_drop(bp, req); 5592 return rc; 5593 } 5594 5595 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 5596 { 5597 struct hwrm_cfa_l2_set_rx_mask_input *req; 5598 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5599 int rc; 5600 5601 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK); 5602 if (rc) 5603 return rc; 5604 5605 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5606 if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) { 5607 req->num_mc_entries = cpu_to_le32(vnic->mc_list_count); 5608 req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 5609 } 5610 req->mask = cpu_to_le32(vnic->rx_mask); 5611 return hwrm_req_send_silent(bp, req); 5612 } 5613 5614 void bnxt_del_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5615 { 5616 if (!atomic_dec_and_test(&fltr->refcnt)) 5617 return; 5618 spin_lock_bh(&bp->ntp_fltr_lock); 5619 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 5620 spin_unlock_bh(&bp->ntp_fltr_lock); 5621 return; 5622 } 5623 hlist_del_rcu(&fltr->base.hash); 5624 bnxt_del_one_usr_fltr(bp, &fltr->base); 5625 if (fltr->base.flags) { 5626 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 5627 bp->ntp_fltr_count--; 5628 } 5629 spin_unlock_bh(&bp->ntp_fltr_lock); 5630 kfree_rcu(fltr, base.rcu); 5631 } 5632 5633 static struct bnxt_l2_filter *__bnxt_lookup_l2_filter(struct bnxt *bp, 5634 struct bnxt_l2_key *key, 5635 u32 idx) 5636 { 5637 struct hlist_head *head = &bp->l2_fltr_hash_tbl[idx]; 5638 struct bnxt_l2_filter *fltr; 5639 5640 hlist_for_each_entry_rcu(fltr, head, base.hash) { 5641 struct bnxt_l2_key *l2_key = &fltr->l2_key; 5642 5643 if (ether_addr_equal(l2_key->dst_mac_addr, key->dst_mac_addr) && 5644 l2_key->vlan == key->vlan) 5645 return fltr; 5646 } 5647 return NULL; 5648 } 5649 5650 static struct bnxt_l2_filter *bnxt_lookup_l2_filter(struct bnxt *bp, 5651 struct bnxt_l2_key *key, 5652 u32 idx) 5653 { 5654 struct bnxt_l2_filter *fltr = NULL; 5655 5656 rcu_read_lock(); 5657 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 5658 if (fltr) 5659 atomic_inc(&fltr->refcnt); 5660 rcu_read_unlock(); 5661 return fltr; 5662 } 5663 5664 #define BNXT_IPV4_4TUPLE(bp, fkeys) \ 5665 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5666 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4) || \ 5667 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5668 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4)) 5669 5670 #define BNXT_IPV6_4TUPLE(bp, fkeys) \ 5671 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5672 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6) || \ 5673 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5674 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6)) 5675 5676 static u32 bnxt_get_rss_flow_tuple_len(struct bnxt *bp, struct flow_keys *fkeys) 5677 { 5678 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 5679 if (BNXT_IPV4_4TUPLE(bp, fkeys)) 5680 return sizeof(fkeys->addrs.v4addrs) + 5681 sizeof(fkeys->ports); 5682 5683 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4) 5684 return sizeof(fkeys->addrs.v4addrs); 5685 } 5686 5687 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 5688 if (BNXT_IPV6_4TUPLE(bp, fkeys)) 5689 return sizeof(fkeys->addrs.v6addrs) + 5690 sizeof(fkeys->ports); 5691 5692 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6) 5693 return sizeof(fkeys->addrs.v6addrs); 5694 } 5695 5696 return 0; 5697 } 5698 5699 static u32 bnxt_toeplitz(struct bnxt *bp, struct flow_keys *fkeys, 5700 const unsigned char *key) 5701 { 5702 u64 prefix = bp->toeplitz_prefix, hash = 0; 5703 struct bnxt_ipv4_tuple tuple4; 5704 struct bnxt_ipv6_tuple tuple6; 5705 int i, j, len = 0; 5706 u8 *four_tuple; 5707 5708 len = bnxt_get_rss_flow_tuple_len(bp, fkeys); 5709 if (!len) 5710 return 0; 5711 5712 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 5713 tuple4.v4addrs = fkeys->addrs.v4addrs; 5714 tuple4.ports = fkeys->ports; 5715 four_tuple = (unsigned char *)&tuple4; 5716 } else { 5717 tuple6.v6addrs = fkeys->addrs.v6addrs; 5718 tuple6.ports = fkeys->ports; 5719 four_tuple = (unsigned char *)&tuple6; 5720 } 5721 5722 for (i = 0, j = 8; i < len; i++, j++) { 5723 u8 byte = four_tuple[i]; 5724 int bit; 5725 5726 for (bit = 0; bit < 8; bit++, prefix <<= 1, byte <<= 1) { 5727 if (byte & 0x80) 5728 hash ^= prefix; 5729 } 5730 prefix |= (j < HW_HASH_KEY_SIZE) ? key[j] : 0; 5731 } 5732 5733 /* The valid part of the hash is in the upper 32 bits. */ 5734 return (hash >> 32) & BNXT_NTP_FLTR_HASH_MASK; 5735 } 5736 5737 #ifdef CONFIG_RFS_ACCEL 5738 static struct bnxt_l2_filter * 5739 bnxt_lookup_l2_filter_from_key(struct bnxt *bp, struct bnxt_l2_key *key) 5740 { 5741 struct bnxt_l2_filter *fltr; 5742 u32 idx; 5743 5744 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5745 BNXT_L2_FLTR_HASH_MASK; 5746 fltr = bnxt_lookup_l2_filter(bp, key, idx); 5747 return fltr; 5748 } 5749 #endif 5750 5751 static int bnxt_init_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr, 5752 struct bnxt_l2_key *key, u32 idx) 5753 { 5754 struct hlist_head *head; 5755 5756 ether_addr_copy(fltr->l2_key.dst_mac_addr, key->dst_mac_addr); 5757 fltr->l2_key.vlan = key->vlan; 5758 fltr->base.type = BNXT_FLTR_TYPE_L2; 5759 if (fltr->base.flags) { 5760 int bit_id; 5761 5762 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 5763 bp->max_fltr, 0); 5764 if (bit_id < 0) 5765 return -ENOMEM; 5766 fltr->base.sw_id = (u16)bit_id; 5767 bp->ntp_fltr_count++; 5768 } 5769 head = &bp->l2_fltr_hash_tbl[idx]; 5770 hlist_add_head_rcu(&fltr->base.hash, head); 5771 bnxt_insert_usr_fltr(bp, &fltr->base); 5772 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 5773 atomic_set(&fltr->refcnt, 1); 5774 return 0; 5775 } 5776 5777 static struct bnxt_l2_filter *bnxt_alloc_l2_filter(struct bnxt *bp, 5778 struct bnxt_l2_key *key, 5779 gfp_t gfp) 5780 { 5781 struct bnxt_l2_filter *fltr; 5782 u32 idx; 5783 int rc; 5784 5785 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5786 BNXT_L2_FLTR_HASH_MASK; 5787 fltr = bnxt_lookup_l2_filter(bp, key, idx); 5788 if (fltr) 5789 return fltr; 5790 5791 fltr = kzalloc(sizeof(*fltr), gfp); 5792 if (!fltr) 5793 return ERR_PTR(-ENOMEM); 5794 spin_lock_bh(&bp->ntp_fltr_lock); 5795 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 5796 spin_unlock_bh(&bp->ntp_fltr_lock); 5797 if (rc) { 5798 bnxt_del_l2_filter(bp, fltr); 5799 fltr = ERR_PTR(rc); 5800 } 5801 return fltr; 5802 } 5803 5804 struct bnxt_l2_filter *bnxt_alloc_new_l2_filter(struct bnxt *bp, 5805 struct bnxt_l2_key *key, 5806 u16 flags) 5807 { 5808 struct bnxt_l2_filter *fltr; 5809 u32 idx; 5810 int rc; 5811 5812 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5813 BNXT_L2_FLTR_HASH_MASK; 5814 spin_lock_bh(&bp->ntp_fltr_lock); 5815 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 5816 if (fltr) { 5817 fltr = ERR_PTR(-EEXIST); 5818 goto l2_filter_exit; 5819 } 5820 fltr = kzalloc(sizeof(*fltr), GFP_ATOMIC); 5821 if (!fltr) { 5822 fltr = ERR_PTR(-ENOMEM); 5823 goto l2_filter_exit; 5824 } 5825 fltr->base.flags = flags; 5826 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 5827 if (rc) { 5828 spin_unlock_bh(&bp->ntp_fltr_lock); 5829 bnxt_del_l2_filter(bp, fltr); 5830 return ERR_PTR(rc); 5831 } 5832 5833 l2_filter_exit: 5834 spin_unlock_bh(&bp->ntp_fltr_lock); 5835 return fltr; 5836 } 5837 5838 static u16 bnxt_vf_target_id(struct bnxt_pf_info *pf, u16 vf_idx) 5839 { 5840 #ifdef CONFIG_BNXT_SRIOV 5841 struct bnxt_vf_info *vf = &pf->vf[vf_idx]; 5842 5843 return vf->fw_fid; 5844 #else 5845 return INVALID_HW_RING_ID; 5846 #endif 5847 } 5848 5849 int bnxt_hwrm_l2_filter_free(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5850 { 5851 struct hwrm_cfa_l2_filter_free_input *req; 5852 u16 target_id = 0xffff; 5853 int rc; 5854 5855 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 5856 struct bnxt_pf_info *pf = &bp->pf; 5857 5858 if (fltr->base.vf_idx >= pf->active_vfs) 5859 return -EINVAL; 5860 5861 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 5862 if (target_id == INVALID_HW_RING_ID) 5863 return -EINVAL; 5864 } 5865 5866 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 5867 if (rc) 5868 return rc; 5869 5870 req->target_id = cpu_to_le16(target_id); 5871 req->l2_filter_id = fltr->base.filter_id; 5872 return hwrm_req_send(bp, req); 5873 } 5874 5875 int bnxt_hwrm_l2_filter_alloc(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5876 { 5877 struct hwrm_cfa_l2_filter_alloc_output *resp; 5878 struct hwrm_cfa_l2_filter_alloc_input *req; 5879 u16 target_id = 0xffff; 5880 int rc; 5881 5882 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 5883 struct bnxt_pf_info *pf = &bp->pf; 5884 5885 if (fltr->base.vf_idx >= pf->active_vfs) 5886 return -EINVAL; 5887 5888 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 5889 } 5890 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC); 5891 if (rc) 5892 return rc; 5893 5894 req->target_id = cpu_to_le16(target_id); 5895 req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 5896 5897 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 5898 req->flags |= 5899 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 5900 req->dst_id = cpu_to_le16(fltr->base.fw_vnic_id); 5901 req->enables = 5902 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 5903 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 5904 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 5905 ether_addr_copy(req->l2_addr, fltr->l2_key.dst_mac_addr); 5906 eth_broadcast_addr(req->l2_addr_mask); 5907 5908 if (fltr->l2_key.vlan) { 5909 req->enables |= 5910 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN | 5911 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN_MASK | 5912 CFA_L2_FILTER_ALLOC_REQ_ENABLES_NUM_VLANS); 5913 req->num_vlans = 1; 5914 req->l2_ivlan = cpu_to_le16(fltr->l2_key.vlan); 5915 req->l2_ivlan_mask = cpu_to_le16(0xfff); 5916 } 5917 5918 resp = hwrm_req_hold(bp, req); 5919 rc = hwrm_req_send(bp, req); 5920 if (!rc) { 5921 fltr->base.filter_id = resp->l2_filter_id; 5922 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 5923 } 5924 hwrm_req_drop(bp, req); 5925 return rc; 5926 } 5927 5928 int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 5929 struct bnxt_ntuple_filter *fltr) 5930 { 5931 struct hwrm_cfa_ntuple_filter_free_input *req; 5932 int rc; 5933 5934 set_bit(BNXT_FLTR_FW_DELETED, &fltr->base.state); 5935 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE); 5936 if (rc) 5937 return rc; 5938 5939 req->ntuple_filter_id = fltr->base.filter_id; 5940 return hwrm_req_send(bp, req); 5941 } 5942 5943 #define BNXT_NTP_FLTR_FLAGS \ 5944 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 5945 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 5946 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 5947 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 5948 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 5949 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 5950 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 5951 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 5952 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 5953 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 5954 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 5955 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 5956 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 5957 5958 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 5959 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 5960 5961 void bnxt_fill_ipv6_mask(__be32 mask[4]) 5962 { 5963 int i; 5964 5965 for (i = 0; i < 4; i++) 5966 mask[i] = cpu_to_be32(~0); 5967 } 5968 5969 static void 5970 bnxt_cfg_rfs_ring_tbl_idx(struct bnxt *bp, 5971 struct hwrm_cfa_ntuple_filter_alloc_input *req, 5972 struct bnxt_ntuple_filter *fltr) 5973 { 5974 u16 rxq = fltr->base.rxq; 5975 5976 if (fltr->base.flags & BNXT_ACT_RSS_CTX) { 5977 struct ethtool_rxfh_context *ctx; 5978 struct bnxt_rss_ctx *rss_ctx; 5979 struct bnxt_vnic_info *vnic; 5980 5981 ctx = xa_load(&bp->dev->ethtool->rss_ctx, 5982 fltr->base.fw_vnic_id); 5983 if (ctx) { 5984 rss_ctx = ethtool_rxfh_context_priv(ctx); 5985 vnic = &rss_ctx->vnic; 5986 5987 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 5988 } 5989 return; 5990 } 5991 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 5992 struct bnxt_vnic_info *vnic; 5993 u32 enables; 5994 5995 vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE]; 5996 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 5997 enables = CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_RFS_RING_TBL_IDX; 5998 req->enables |= cpu_to_le32(enables); 5999 req->rfs_ring_tbl_idx = cpu_to_le16(rxq); 6000 } else { 6001 u32 flags; 6002 6003 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 6004 req->flags |= cpu_to_le32(flags); 6005 req->dst_id = cpu_to_le16(rxq); 6006 } 6007 } 6008 6009 int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 6010 struct bnxt_ntuple_filter *fltr) 6011 { 6012 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 6013 struct hwrm_cfa_ntuple_filter_alloc_input *req; 6014 struct bnxt_flow_masks *masks = &fltr->fmasks; 6015 struct flow_keys *keys = &fltr->fkeys; 6016 struct bnxt_l2_filter *l2_fltr; 6017 struct bnxt_vnic_info *vnic; 6018 int rc; 6019 6020 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC); 6021 if (rc) 6022 return rc; 6023 6024 l2_fltr = fltr->l2_fltr; 6025 req->l2_filter_id = l2_fltr->base.filter_id; 6026 6027 if (fltr->base.flags & BNXT_ACT_DROP) { 6028 req->flags = 6029 cpu_to_le32(CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DROP); 6030 } else if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 6031 bnxt_cfg_rfs_ring_tbl_idx(bp, req, fltr); 6032 } else { 6033 vnic = &bp->vnic_info[fltr->base.rxq + 1]; 6034 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 6035 } 6036 req->enables |= cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 6037 6038 req->ethertype = htons(ETH_P_IP); 6039 req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 6040 req->ip_protocol = keys->basic.ip_proto; 6041 6042 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 6043 req->ethertype = htons(ETH_P_IPV6); 6044 req->ip_addr_type = 6045 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 6046 *(struct in6_addr *)&req->src_ipaddr[0] = keys->addrs.v6addrs.src; 6047 *(struct in6_addr *)&req->src_ipaddr_mask[0] = masks->addrs.v6addrs.src; 6048 *(struct in6_addr *)&req->dst_ipaddr[0] = keys->addrs.v6addrs.dst; 6049 *(struct in6_addr *)&req->dst_ipaddr_mask[0] = masks->addrs.v6addrs.dst; 6050 } else { 6051 req->src_ipaddr[0] = keys->addrs.v4addrs.src; 6052 req->src_ipaddr_mask[0] = masks->addrs.v4addrs.src; 6053 req->dst_ipaddr[0] = keys->addrs.v4addrs.dst; 6054 req->dst_ipaddr_mask[0] = masks->addrs.v4addrs.dst; 6055 } 6056 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 6057 req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 6058 req->tunnel_type = 6059 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 6060 } 6061 6062 req->src_port = keys->ports.src; 6063 req->src_port_mask = masks->ports.src; 6064 req->dst_port = keys->ports.dst; 6065 req->dst_port_mask = masks->ports.dst; 6066 6067 resp = hwrm_req_hold(bp, req); 6068 rc = hwrm_req_send(bp, req); 6069 if (!rc) 6070 fltr->base.filter_id = resp->ntuple_filter_id; 6071 hwrm_req_drop(bp, req); 6072 return rc; 6073 } 6074 6075 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 6076 const u8 *mac_addr) 6077 { 6078 struct bnxt_l2_filter *fltr; 6079 struct bnxt_l2_key key; 6080 int rc; 6081 6082 ether_addr_copy(key.dst_mac_addr, mac_addr); 6083 key.vlan = 0; 6084 fltr = bnxt_alloc_l2_filter(bp, &key, GFP_KERNEL); 6085 if (IS_ERR(fltr)) 6086 return PTR_ERR(fltr); 6087 6088 fltr->base.fw_vnic_id = bp->vnic_info[vnic_id].fw_vnic_id; 6089 rc = bnxt_hwrm_l2_filter_alloc(bp, fltr); 6090 if (rc) 6091 bnxt_del_l2_filter(bp, fltr); 6092 else 6093 bp->vnic_info[vnic_id].l2_filters[idx] = fltr; 6094 return rc; 6095 } 6096 6097 static void bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 6098 { 6099 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 6100 6101 /* Any associated ntuple filters will also be cleared by firmware. */ 6102 for (i = 0; i < num_of_vnics; i++) { 6103 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 6104 6105 for (j = 0; j < vnic->uc_filter_count; j++) { 6106 struct bnxt_l2_filter *fltr = vnic->l2_filters[j]; 6107 6108 bnxt_hwrm_l2_filter_free(bp, fltr); 6109 bnxt_del_l2_filter(bp, fltr); 6110 } 6111 vnic->uc_filter_count = 0; 6112 } 6113 } 6114 6115 #define BNXT_DFLT_TUNL_TPA_BMAP \ 6116 (VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GRE | \ 6117 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV4 | \ 6118 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV6) 6119 6120 static void bnxt_hwrm_vnic_update_tunl_tpa(struct bnxt *bp, 6121 struct hwrm_vnic_tpa_cfg_input *req) 6122 { 6123 u32 tunl_tpa_bmap = BNXT_DFLT_TUNL_TPA_BMAP; 6124 6125 if (!(bp->fw_cap & BNXT_FW_CAP_VNIC_TUNNEL_TPA)) 6126 return; 6127 6128 if (bp->vxlan_port) 6129 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN; 6130 if (bp->vxlan_gpe_port) 6131 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN_GPE; 6132 if (bp->nge_port) 6133 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GENEVE; 6134 6135 req->enables |= cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_TNL_TPA_EN); 6136 req->tnl_tpa_en_bitmap = cpu_to_le32(tunl_tpa_bmap); 6137 } 6138 6139 int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6140 u32 tpa_flags) 6141 { 6142 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 6143 struct hwrm_vnic_tpa_cfg_input *req; 6144 int rc; 6145 6146 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 6147 return 0; 6148 6149 rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG); 6150 if (rc) 6151 return rc; 6152 6153 if (tpa_flags) { 6154 u16 mss = bp->dev->mtu - 40; 6155 u32 nsegs, n, segs = 0, flags; 6156 6157 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 6158 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 6159 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 6160 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 6161 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 6162 if (tpa_flags & BNXT_FLAG_GRO) 6163 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 6164 6165 req->flags = cpu_to_le32(flags); 6166 6167 req->enables = 6168 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 6169 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 6170 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 6171 6172 /* Number of segs are log2 units, and first packet is not 6173 * included as part of this units. 6174 */ 6175 if (mss <= BNXT_RX_PAGE_SIZE) { 6176 n = BNXT_RX_PAGE_SIZE / mss; 6177 nsegs = (MAX_SKB_FRAGS - 1) * n; 6178 } else { 6179 n = mss / BNXT_RX_PAGE_SIZE; 6180 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 6181 n++; 6182 nsegs = (MAX_SKB_FRAGS - n) / n; 6183 } 6184 6185 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6186 segs = MAX_TPA_SEGS_P5; 6187 max_aggs = bp->max_tpa; 6188 } else { 6189 segs = ilog2(nsegs); 6190 } 6191 req->max_agg_segs = cpu_to_le16(segs); 6192 req->max_aggs = cpu_to_le16(max_aggs); 6193 6194 req->min_agg_len = cpu_to_le32(512); 6195 bnxt_hwrm_vnic_update_tunl_tpa(bp, req); 6196 } 6197 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6198 6199 return hwrm_req_send(bp, req); 6200 } 6201 6202 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 6203 { 6204 struct bnxt_ring_grp_info *grp_info; 6205 6206 grp_info = &bp->grp_info[ring->grp_idx]; 6207 return grp_info->cp_fw_ring_id; 6208 } 6209 6210 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 6211 { 6212 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6213 return rxr->rx_cpr->cp_ring_struct.fw_ring_id; 6214 else 6215 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 6216 } 6217 6218 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 6219 { 6220 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6221 return txr->tx_cpr->cp_ring_struct.fw_ring_id; 6222 else 6223 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 6224 } 6225 6226 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp) 6227 { 6228 int entries; 6229 6230 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6231 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 6232 else 6233 entries = HW_HASH_INDEX_SIZE; 6234 6235 bp->rss_indir_tbl_entries = entries; 6236 bp->rss_indir_tbl = 6237 kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), GFP_KERNEL); 6238 if (!bp->rss_indir_tbl) 6239 return -ENOMEM; 6240 6241 return 0; 6242 } 6243 6244 void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp, 6245 struct ethtool_rxfh_context *rss_ctx) 6246 { 6247 u16 max_rings, max_entries, pad, i; 6248 u32 *rss_indir_tbl; 6249 6250 if (!bp->rx_nr_rings) 6251 return; 6252 6253 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6254 max_rings = bp->rx_nr_rings - 1; 6255 else 6256 max_rings = bp->rx_nr_rings; 6257 6258 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 6259 if (rss_ctx) 6260 rss_indir_tbl = ethtool_rxfh_context_indir(rss_ctx); 6261 else 6262 rss_indir_tbl = &bp->rss_indir_tbl[0]; 6263 6264 for (i = 0; i < max_entries; i++) 6265 rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 6266 6267 pad = bp->rss_indir_tbl_entries - max_entries; 6268 if (pad) 6269 memset(&rss_indir_tbl[i], 0, pad * sizeof(*rss_indir_tbl)); 6270 } 6271 6272 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 6273 { 6274 u32 i, tbl_size, max_ring = 0; 6275 6276 if (!bp->rss_indir_tbl) 6277 return 0; 6278 6279 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6280 for (i = 0; i < tbl_size; i++) 6281 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 6282 return max_ring; 6283 } 6284 6285 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 6286 { 6287 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6288 if (!rx_rings) 6289 return 0; 6290 return bnxt_calc_nr_ring_pages(rx_rings - 1, 6291 BNXT_RSS_TABLE_ENTRIES_P5); 6292 } 6293 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6294 return 2; 6295 return 1; 6296 } 6297 6298 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6299 { 6300 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 6301 u16 i, j; 6302 6303 /* Fill the RSS indirection table with ring group ids */ 6304 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 6305 if (!no_rss) 6306 j = bp->rss_indir_tbl[i]; 6307 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 6308 } 6309 } 6310 6311 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 6312 struct bnxt_vnic_info *vnic) 6313 { 6314 __le16 *ring_tbl = vnic->rss_table; 6315 struct bnxt_rx_ring_info *rxr; 6316 u16 tbl_size, i; 6317 6318 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6319 6320 for (i = 0; i < tbl_size; i++) { 6321 u16 ring_id, j; 6322 6323 if (vnic->flags & BNXT_VNIC_NTUPLE_FLAG) 6324 j = ethtool_rxfh_indir_default(i, bp->rx_nr_rings); 6325 else if (vnic->flags & BNXT_VNIC_RSSCTX_FLAG) 6326 j = ethtool_rxfh_context_indir(vnic->rss_ctx)[i]; 6327 else 6328 j = bp->rss_indir_tbl[i]; 6329 rxr = &bp->rx_ring[j]; 6330 6331 ring_id = rxr->rx_ring_struct.fw_ring_id; 6332 *ring_tbl++ = cpu_to_le16(ring_id); 6333 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6334 *ring_tbl++ = cpu_to_le16(ring_id); 6335 } 6336 } 6337 6338 static void 6339 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req, 6340 struct bnxt_vnic_info *vnic) 6341 { 6342 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6343 bnxt_fill_hw_rss_tbl_p5(bp, vnic); 6344 if (bp->flags & BNXT_FLAG_CHIP_P7) 6345 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_IPSEC_HASH_TYPE_CFG_SUPPORT; 6346 } else { 6347 bnxt_fill_hw_rss_tbl(bp, vnic); 6348 } 6349 6350 if (bp->rss_hash_delta) { 6351 req->hash_type = cpu_to_le32(bp->rss_hash_delta); 6352 if (bp->rss_hash_cfg & bp->rss_hash_delta) 6353 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE; 6354 else 6355 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE; 6356 } else { 6357 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 6358 } 6359 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 6360 req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 6361 req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 6362 } 6363 6364 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6365 bool set_rss) 6366 { 6367 struct hwrm_vnic_rss_cfg_input *req; 6368 int rc; 6369 6370 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) || 6371 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 6372 return 0; 6373 6374 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6375 if (rc) 6376 return rc; 6377 6378 if (set_rss) 6379 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6380 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6381 return hwrm_req_send(bp, req); 6382 } 6383 6384 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, 6385 struct bnxt_vnic_info *vnic, bool set_rss) 6386 { 6387 struct hwrm_vnic_rss_cfg_input *req; 6388 dma_addr_t ring_tbl_map; 6389 u32 i, nr_ctxs; 6390 int rc; 6391 6392 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6393 if (rc) 6394 return rc; 6395 6396 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6397 if (!set_rss) 6398 return hwrm_req_send(bp, req); 6399 6400 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6401 ring_tbl_map = vnic->rss_table_dma_addr; 6402 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 6403 6404 hwrm_req_hold(bp, req); 6405 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 6406 req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 6407 req->ring_table_pair_index = i; 6408 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 6409 rc = hwrm_req_send(bp, req); 6410 if (rc) 6411 goto exit; 6412 } 6413 6414 exit: 6415 hwrm_req_drop(bp, req); 6416 return rc; 6417 } 6418 6419 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp) 6420 { 6421 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6422 struct hwrm_vnic_rss_qcfg_output *resp; 6423 struct hwrm_vnic_rss_qcfg_input *req; 6424 6425 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG)) 6426 return; 6427 6428 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6429 /* all contexts configured to same hash_type, zero always exists */ 6430 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6431 resp = hwrm_req_hold(bp, req); 6432 if (!hwrm_req_send(bp, req)) { 6433 bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg; 6434 bp->rss_hash_delta = 0; 6435 } 6436 hwrm_req_drop(bp, req); 6437 } 6438 6439 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6440 { 6441 struct hwrm_vnic_plcmodes_cfg_input *req; 6442 int rc; 6443 6444 rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG); 6445 if (rc) 6446 return rc; 6447 6448 req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT); 6449 req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID); 6450 6451 if (BNXT_RX_PAGE_MODE(bp)) { 6452 req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size); 6453 } else { 6454 req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 6455 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 6456 req->enables |= 6457 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 6458 req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 6459 req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 6460 } 6461 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 6462 return hwrm_req_send(bp, req); 6463 } 6464 6465 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, 6466 struct bnxt_vnic_info *vnic, 6467 u16 ctx_idx) 6468 { 6469 struct hwrm_vnic_rss_cos_lb_ctx_free_input *req; 6470 6471 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE)) 6472 return; 6473 6474 req->rss_cos_lb_ctx_id = 6475 cpu_to_le16(vnic->fw_rss_cos_lb_ctx[ctx_idx]); 6476 6477 hwrm_req_send(bp, req); 6478 vnic->fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 6479 } 6480 6481 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 6482 { 6483 int i, j; 6484 6485 for (i = 0; i < bp->nr_vnics; i++) { 6486 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 6487 6488 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 6489 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 6490 bnxt_hwrm_vnic_ctx_free_one(bp, vnic, j); 6491 } 6492 } 6493 bp->rsscos_nr_ctxs = 0; 6494 } 6495 6496 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, 6497 struct bnxt_vnic_info *vnic, u16 ctx_idx) 6498 { 6499 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp; 6500 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req; 6501 int rc; 6502 6503 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC); 6504 if (rc) 6505 return rc; 6506 6507 resp = hwrm_req_hold(bp, req); 6508 rc = hwrm_req_send(bp, req); 6509 if (!rc) 6510 vnic->fw_rss_cos_lb_ctx[ctx_idx] = 6511 le16_to_cpu(resp->rss_cos_lb_ctx_id); 6512 hwrm_req_drop(bp, req); 6513 6514 return rc; 6515 } 6516 6517 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 6518 { 6519 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 6520 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 6521 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 6522 } 6523 6524 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6525 { 6526 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6527 struct hwrm_vnic_cfg_input *req; 6528 unsigned int ring = 0, grp_idx; 6529 u16 def_vlan = 0; 6530 int rc; 6531 6532 rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG); 6533 if (rc) 6534 return rc; 6535 6536 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6537 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 6538 6539 req->default_rx_ring_id = 6540 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 6541 req->default_cmpl_ring_id = 6542 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 6543 req->enables = 6544 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 6545 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 6546 goto vnic_mru; 6547 } 6548 req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 6549 /* Only RSS support for now TBD: COS & LB */ 6550 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 6551 req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6552 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6553 VNIC_CFG_REQ_ENABLES_MRU); 6554 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 6555 req->rss_rule = cpu_to_le16(vnic0->fw_rss_cos_lb_ctx[0]); 6556 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6557 VNIC_CFG_REQ_ENABLES_MRU); 6558 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 6559 } else { 6560 req->rss_rule = cpu_to_le16(0xffff); 6561 } 6562 6563 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 6564 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 6565 req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 6566 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 6567 } else { 6568 req->cos_rule = cpu_to_le16(0xffff); 6569 } 6570 6571 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 6572 ring = 0; 6573 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 6574 ring = vnic->vnic_id - 1; 6575 else if ((vnic->vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 6576 ring = bp->rx_nr_rings - 1; 6577 6578 grp_idx = bp->rx_ring[ring].bnapi->index; 6579 req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 6580 req->lb_rule = cpu_to_le16(0xffff); 6581 vnic_mru: 6582 req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN); 6583 6584 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6585 #ifdef CONFIG_BNXT_SRIOV 6586 if (BNXT_VF(bp)) 6587 def_vlan = bp->vf.vlan; 6588 #endif 6589 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 6590 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 6591 if (vnic->vnic_id == BNXT_VNIC_DEFAULT && bnxt_ulp_registered(bp->edev)) 6592 req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 6593 6594 return hwrm_req_send(bp, req); 6595 } 6596 6597 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, 6598 struct bnxt_vnic_info *vnic) 6599 { 6600 if (vnic->fw_vnic_id != INVALID_HW_RING_ID) { 6601 struct hwrm_vnic_free_input *req; 6602 6603 if (hwrm_req_init(bp, req, HWRM_VNIC_FREE)) 6604 return; 6605 6606 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 6607 6608 hwrm_req_send(bp, req); 6609 vnic->fw_vnic_id = INVALID_HW_RING_ID; 6610 } 6611 } 6612 6613 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 6614 { 6615 u16 i; 6616 6617 for (i = 0; i < bp->nr_vnics; i++) 6618 bnxt_hwrm_vnic_free_one(bp, &bp->vnic_info[i]); 6619 } 6620 6621 int bnxt_hwrm_vnic_alloc(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6622 unsigned int start_rx_ring_idx, 6623 unsigned int nr_rings) 6624 { 6625 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 6626 struct hwrm_vnic_alloc_output *resp; 6627 struct hwrm_vnic_alloc_input *req; 6628 int rc; 6629 6630 rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC); 6631 if (rc) 6632 return rc; 6633 6634 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6635 goto vnic_no_ring_grps; 6636 6637 /* map ring groups to this vnic */ 6638 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 6639 grp_idx = bp->rx_ring[i].bnapi->index; 6640 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 6641 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 6642 j, nr_rings); 6643 break; 6644 } 6645 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 6646 } 6647 6648 vnic_no_ring_grps: 6649 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 6650 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 6651 if (vnic->vnic_id == BNXT_VNIC_DEFAULT) 6652 req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 6653 6654 resp = hwrm_req_hold(bp, req); 6655 rc = hwrm_req_send(bp, req); 6656 if (!rc) 6657 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 6658 hwrm_req_drop(bp, req); 6659 return rc; 6660 } 6661 6662 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 6663 { 6664 struct hwrm_vnic_qcaps_output *resp; 6665 struct hwrm_vnic_qcaps_input *req; 6666 int rc; 6667 6668 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 6669 bp->flags &= ~BNXT_FLAG_ROCE_MIRROR_CAP; 6670 bp->rss_cap &= ~BNXT_RSS_CAP_NEW_RSS_CAP; 6671 if (bp->hwrm_spec_code < 0x10600) 6672 return 0; 6673 6674 rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS); 6675 if (rc) 6676 return rc; 6677 6678 resp = hwrm_req_hold(bp, req); 6679 rc = hwrm_req_send(bp, req); 6680 if (!rc) { 6681 u32 flags = le32_to_cpu(resp->flags); 6682 6683 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 6684 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 6685 bp->rss_cap |= BNXT_RSS_CAP_NEW_RSS_CAP; 6686 if (flags & 6687 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 6688 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 6689 6690 /* Older P5 fw before EXT_HW_STATS support did not set 6691 * VLAN_STRIP_CAP properly. 6692 */ 6693 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 6694 (BNXT_CHIP_P5(bp) && 6695 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 6696 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 6697 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP) 6698 bp->rss_cap |= BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA; 6699 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_PROF_TCAM_MODE_ENABLED) 6700 bp->rss_cap |= BNXT_RSS_CAP_RSS_TCAM; 6701 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 6702 if (bp->max_tpa_v2) { 6703 if (BNXT_CHIP_P5(bp)) 6704 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 6705 else 6706 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P7; 6707 } 6708 if (flags & VNIC_QCAPS_RESP_FLAGS_HW_TUNNEL_TPA_CAP) 6709 bp->fw_cap |= BNXT_FW_CAP_VNIC_TUNNEL_TPA; 6710 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV4_CAP) 6711 bp->rss_cap |= BNXT_RSS_CAP_AH_V4_RSS_CAP; 6712 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV6_CAP) 6713 bp->rss_cap |= BNXT_RSS_CAP_AH_V6_RSS_CAP; 6714 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV4_CAP) 6715 bp->rss_cap |= BNXT_RSS_CAP_ESP_V4_RSS_CAP; 6716 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV6_CAP) 6717 bp->rss_cap |= BNXT_RSS_CAP_ESP_V6_RSS_CAP; 6718 } 6719 hwrm_req_drop(bp, req); 6720 return rc; 6721 } 6722 6723 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 6724 { 6725 struct hwrm_ring_grp_alloc_output *resp; 6726 struct hwrm_ring_grp_alloc_input *req; 6727 int rc; 6728 u16 i; 6729 6730 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6731 return 0; 6732 6733 rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC); 6734 if (rc) 6735 return rc; 6736 6737 resp = hwrm_req_hold(bp, req); 6738 for (i = 0; i < bp->rx_nr_rings; i++) { 6739 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 6740 6741 req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 6742 req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 6743 req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 6744 req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 6745 6746 rc = hwrm_req_send(bp, req); 6747 6748 if (rc) 6749 break; 6750 6751 bp->grp_info[grp_idx].fw_grp_id = 6752 le32_to_cpu(resp->ring_group_id); 6753 } 6754 hwrm_req_drop(bp, req); 6755 return rc; 6756 } 6757 6758 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 6759 { 6760 struct hwrm_ring_grp_free_input *req; 6761 u16 i; 6762 6763 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 6764 return; 6765 6766 if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE)) 6767 return; 6768 6769 hwrm_req_hold(bp, req); 6770 for (i = 0; i < bp->cp_nr_rings; i++) { 6771 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 6772 continue; 6773 req->ring_group_id = 6774 cpu_to_le32(bp->grp_info[i].fw_grp_id); 6775 6776 hwrm_req_send(bp, req); 6777 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 6778 } 6779 hwrm_req_drop(bp, req); 6780 } 6781 6782 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 6783 struct bnxt_ring_struct *ring, 6784 u32 ring_type, u32 map_index) 6785 { 6786 struct hwrm_ring_alloc_output *resp; 6787 struct hwrm_ring_alloc_input *req; 6788 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 6789 struct bnxt_ring_grp_info *grp_info; 6790 int rc, err = 0; 6791 u16 ring_id; 6792 6793 rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC); 6794 if (rc) 6795 goto exit; 6796 6797 req->enables = 0; 6798 if (rmem->nr_pages > 1) { 6799 req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 6800 /* Page size is in log2 units */ 6801 req->page_size = BNXT_PAGE_SHIFT; 6802 req->page_tbl_depth = 1; 6803 } else { 6804 req->page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 6805 } 6806 req->fbo = 0; 6807 /* Association of ring index with doorbell index and MSIX number */ 6808 req->logical_id = cpu_to_le16(map_index); 6809 6810 switch (ring_type) { 6811 case HWRM_RING_ALLOC_TX: { 6812 struct bnxt_tx_ring_info *txr; 6813 u16 flags = 0; 6814 6815 txr = container_of(ring, struct bnxt_tx_ring_info, 6816 tx_ring_struct); 6817 req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 6818 /* Association of transmit ring with completion ring */ 6819 grp_info = &bp->grp_info[ring->grp_idx]; 6820 req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 6821 req->length = cpu_to_le32(bp->tx_ring_mask + 1); 6822 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6823 req->queue_id = cpu_to_le16(ring->queue_id); 6824 if (bp->flags & BNXT_FLAG_TX_COAL_CMPL) 6825 req->cmpl_coal_cnt = 6826 RING_ALLOC_REQ_CMPL_COAL_CNT_COAL_64; 6827 if ((bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) && bp->ptp_cfg) 6828 flags |= RING_ALLOC_REQ_FLAGS_TX_PKT_TS_CMPL_ENABLE; 6829 req->flags = cpu_to_le16(flags); 6830 break; 6831 } 6832 case HWRM_RING_ALLOC_RX: 6833 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 6834 req->length = cpu_to_le32(bp->rx_ring_mask + 1); 6835 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6836 u16 flags = 0; 6837 6838 /* Association of rx ring with stats context */ 6839 grp_info = &bp->grp_info[ring->grp_idx]; 6840 req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 6841 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6842 req->enables |= cpu_to_le32( 6843 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 6844 if (NET_IP_ALIGN == 2) 6845 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD; 6846 req->flags = cpu_to_le16(flags); 6847 } 6848 break; 6849 case HWRM_RING_ALLOC_AGG: 6850 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6851 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 6852 /* Association of agg ring with rx ring */ 6853 grp_info = &bp->grp_info[ring->grp_idx]; 6854 req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 6855 req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 6856 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6857 req->enables |= cpu_to_le32( 6858 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID | 6859 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 6860 } else { 6861 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 6862 } 6863 req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 6864 break; 6865 case HWRM_RING_ALLOC_CMPL: 6866 req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 6867 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 6868 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6869 /* Association of cp ring with nq */ 6870 grp_info = &bp->grp_info[map_index]; 6871 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 6872 req->cq_handle = cpu_to_le64(ring->handle); 6873 req->enables |= cpu_to_le32( 6874 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 6875 } else if (bp->flags & BNXT_FLAG_USING_MSIX) { 6876 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 6877 } 6878 break; 6879 case HWRM_RING_ALLOC_NQ: 6880 req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 6881 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 6882 if (bp->flags & BNXT_FLAG_USING_MSIX) 6883 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 6884 break; 6885 default: 6886 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 6887 ring_type); 6888 return -1; 6889 } 6890 6891 resp = hwrm_req_hold(bp, req); 6892 rc = hwrm_req_send(bp, req); 6893 err = le16_to_cpu(resp->error_code); 6894 ring_id = le16_to_cpu(resp->ring_id); 6895 hwrm_req_drop(bp, req); 6896 6897 exit: 6898 if (rc || err) { 6899 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 6900 ring_type, rc, err); 6901 return -EIO; 6902 } 6903 ring->fw_ring_id = ring_id; 6904 return rc; 6905 } 6906 6907 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 6908 { 6909 int rc; 6910 6911 if (BNXT_PF(bp)) { 6912 struct hwrm_func_cfg_input *req; 6913 6914 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 6915 if (rc) 6916 return rc; 6917 6918 req->fid = cpu_to_le16(0xffff); 6919 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 6920 req->async_event_cr = cpu_to_le16(idx); 6921 return hwrm_req_send(bp, req); 6922 } else { 6923 struct hwrm_func_vf_cfg_input *req; 6924 6925 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); 6926 if (rc) 6927 return rc; 6928 6929 req->enables = 6930 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 6931 req->async_event_cr = cpu_to_le16(idx); 6932 return hwrm_req_send(bp, req); 6933 } 6934 } 6935 6936 static void bnxt_set_db_mask(struct bnxt *bp, struct bnxt_db_info *db, 6937 u32 ring_type) 6938 { 6939 switch (ring_type) { 6940 case HWRM_RING_ALLOC_TX: 6941 db->db_ring_mask = bp->tx_ring_mask; 6942 break; 6943 case HWRM_RING_ALLOC_RX: 6944 db->db_ring_mask = bp->rx_ring_mask; 6945 break; 6946 case HWRM_RING_ALLOC_AGG: 6947 db->db_ring_mask = bp->rx_agg_ring_mask; 6948 break; 6949 case HWRM_RING_ALLOC_CMPL: 6950 case HWRM_RING_ALLOC_NQ: 6951 db->db_ring_mask = bp->cp_ring_mask; 6952 break; 6953 } 6954 if (bp->flags & BNXT_FLAG_CHIP_P7) { 6955 db->db_epoch_mask = db->db_ring_mask + 1; 6956 db->db_epoch_shift = DBR_EPOCH_SFT - ilog2(db->db_epoch_mask); 6957 } 6958 } 6959 6960 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 6961 u32 map_idx, u32 xid) 6962 { 6963 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6964 switch (ring_type) { 6965 case HWRM_RING_ALLOC_TX: 6966 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 6967 break; 6968 case HWRM_RING_ALLOC_RX: 6969 case HWRM_RING_ALLOC_AGG: 6970 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 6971 break; 6972 case HWRM_RING_ALLOC_CMPL: 6973 db->db_key64 = DBR_PATH_L2; 6974 break; 6975 case HWRM_RING_ALLOC_NQ: 6976 db->db_key64 = DBR_PATH_L2; 6977 break; 6978 } 6979 db->db_key64 |= (u64)xid << DBR_XID_SFT; 6980 6981 if (bp->flags & BNXT_FLAG_CHIP_P7) 6982 db->db_key64 |= DBR_VALID; 6983 6984 db->doorbell = bp->bar1 + bp->db_offset; 6985 } else { 6986 db->doorbell = bp->bar1 + map_idx * 0x80; 6987 switch (ring_type) { 6988 case HWRM_RING_ALLOC_TX: 6989 db->db_key32 = DB_KEY_TX; 6990 break; 6991 case HWRM_RING_ALLOC_RX: 6992 case HWRM_RING_ALLOC_AGG: 6993 db->db_key32 = DB_KEY_RX; 6994 break; 6995 case HWRM_RING_ALLOC_CMPL: 6996 db->db_key32 = DB_KEY_CP; 6997 break; 6998 } 6999 } 7000 bnxt_set_db_mask(bp, db, ring_type); 7001 } 7002 7003 static int bnxt_hwrm_rx_ring_alloc(struct bnxt *bp, 7004 struct bnxt_rx_ring_info *rxr) 7005 { 7006 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 7007 struct bnxt_napi *bnapi = rxr->bnapi; 7008 u32 type = HWRM_RING_ALLOC_RX; 7009 u32 map_idx = bnapi->index; 7010 int rc; 7011 7012 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7013 if (rc) 7014 return rc; 7015 7016 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 7017 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 7018 7019 return 0; 7020 } 7021 7022 static int bnxt_hwrm_rx_agg_ring_alloc(struct bnxt *bp, 7023 struct bnxt_rx_ring_info *rxr) 7024 { 7025 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 7026 u32 type = HWRM_RING_ALLOC_AGG; 7027 u32 grp_idx = ring->grp_idx; 7028 u32 map_idx; 7029 int rc; 7030 7031 map_idx = grp_idx + bp->rx_nr_rings; 7032 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7033 if (rc) 7034 return rc; 7035 7036 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 7037 ring->fw_ring_id); 7038 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 7039 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 7040 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 7041 7042 return 0; 7043 } 7044 7045 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 7046 { 7047 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 7048 int i, rc = 0; 7049 u32 type; 7050 7051 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7052 type = HWRM_RING_ALLOC_NQ; 7053 else 7054 type = HWRM_RING_ALLOC_CMPL; 7055 for (i = 0; i < bp->cp_nr_rings; i++) { 7056 struct bnxt_napi *bnapi = bp->bnapi[i]; 7057 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7058 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 7059 u32 map_idx = ring->map_idx; 7060 unsigned int vector; 7061 7062 vector = bp->irq_tbl[map_idx].vector; 7063 disable_irq_nosync(vector); 7064 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7065 if (rc) { 7066 enable_irq(vector); 7067 goto err_out; 7068 } 7069 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 7070 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 7071 enable_irq(vector); 7072 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 7073 7074 if (!i) { 7075 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 7076 if (rc) 7077 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 7078 } 7079 } 7080 7081 type = HWRM_RING_ALLOC_TX; 7082 for (i = 0; i < bp->tx_nr_rings; i++) { 7083 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 7084 struct bnxt_ring_struct *ring; 7085 u32 map_idx; 7086 7087 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7088 struct bnxt_cp_ring_info *cpr2 = txr->tx_cpr; 7089 struct bnxt_napi *bnapi = txr->bnapi; 7090 u32 type2 = HWRM_RING_ALLOC_CMPL; 7091 7092 ring = &cpr2->cp_ring_struct; 7093 ring->handle = BNXT_SET_NQ_HDL(cpr2); 7094 map_idx = bnapi->index; 7095 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 7096 if (rc) 7097 goto err_out; 7098 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 7099 ring->fw_ring_id); 7100 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 7101 } 7102 ring = &txr->tx_ring_struct; 7103 map_idx = i; 7104 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7105 if (rc) 7106 goto err_out; 7107 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id); 7108 } 7109 7110 for (i = 0; i < bp->rx_nr_rings; i++) { 7111 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 7112 7113 rc = bnxt_hwrm_rx_ring_alloc(bp, rxr); 7114 if (rc) 7115 goto err_out; 7116 /* If we have agg rings, post agg buffers first. */ 7117 if (!agg_rings) 7118 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 7119 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7120 struct bnxt_cp_ring_info *cpr2 = rxr->rx_cpr; 7121 struct bnxt_napi *bnapi = rxr->bnapi; 7122 u32 type2 = HWRM_RING_ALLOC_CMPL; 7123 struct bnxt_ring_struct *ring; 7124 u32 map_idx = bnapi->index; 7125 7126 ring = &cpr2->cp_ring_struct; 7127 ring->handle = BNXT_SET_NQ_HDL(cpr2); 7128 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 7129 if (rc) 7130 goto err_out; 7131 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 7132 ring->fw_ring_id); 7133 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 7134 } 7135 } 7136 7137 if (agg_rings) { 7138 for (i = 0; i < bp->rx_nr_rings; i++) { 7139 rc = bnxt_hwrm_rx_agg_ring_alloc(bp, &bp->rx_ring[i]); 7140 if (rc) 7141 goto err_out; 7142 } 7143 } 7144 err_out: 7145 return rc; 7146 } 7147 7148 static int hwrm_ring_free_send_msg(struct bnxt *bp, 7149 struct bnxt_ring_struct *ring, 7150 u32 ring_type, int cmpl_ring_id) 7151 { 7152 struct hwrm_ring_free_output *resp; 7153 struct hwrm_ring_free_input *req; 7154 u16 error_code = 0; 7155 int rc; 7156 7157 if (BNXT_NO_FW_ACCESS(bp)) 7158 return 0; 7159 7160 rc = hwrm_req_init(bp, req, HWRM_RING_FREE); 7161 if (rc) 7162 goto exit; 7163 7164 req->cmpl_ring = cpu_to_le16(cmpl_ring_id); 7165 req->ring_type = ring_type; 7166 req->ring_id = cpu_to_le16(ring->fw_ring_id); 7167 7168 resp = hwrm_req_hold(bp, req); 7169 rc = hwrm_req_send(bp, req); 7170 error_code = le16_to_cpu(resp->error_code); 7171 hwrm_req_drop(bp, req); 7172 exit: 7173 if (rc || error_code) { 7174 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 7175 ring_type, rc, error_code); 7176 return -EIO; 7177 } 7178 return 0; 7179 } 7180 7181 static void bnxt_hwrm_rx_ring_free(struct bnxt *bp, 7182 struct bnxt_rx_ring_info *rxr, 7183 bool close_path) 7184 { 7185 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 7186 u32 grp_idx = rxr->bnapi->index; 7187 u32 cmpl_ring_id; 7188 7189 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7190 return; 7191 7192 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 7193 hwrm_ring_free_send_msg(bp, ring, 7194 RING_FREE_REQ_RING_TYPE_RX, 7195 close_path ? cmpl_ring_id : 7196 INVALID_HW_RING_ID); 7197 ring->fw_ring_id = INVALID_HW_RING_ID; 7198 bp->grp_info[grp_idx].rx_fw_ring_id = INVALID_HW_RING_ID; 7199 } 7200 7201 static void bnxt_hwrm_rx_agg_ring_free(struct bnxt *bp, 7202 struct bnxt_rx_ring_info *rxr, 7203 bool close_path) 7204 { 7205 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 7206 u32 grp_idx = rxr->bnapi->index; 7207 u32 type, cmpl_ring_id; 7208 7209 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7210 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 7211 else 7212 type = RING_FREE_REQ_RING_TYPE_RX; 7213 7214 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7215 return; 7216 7217 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 7218 hwrm_ring_free_send_msg(bp, ring, type, 7219 close_path ? cmpl_ring_id : 7220 INVALID_HW_RING_ID); 7221 ring->fw_ring_id = INVALID_HW_RING_ID; 7222 bp->grp_info[grp_idx].agg_fw_ring_id = INVALID_HW_RING_ID; 7223 } 7224 7225 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 7226 { 7227 u32 type; 7228 int i; 7229 7230 if (!bp->bnapi) 7231 return; 7232 7233 for (i = 0; i < bp->tx_nr_rings; i++) { 7234 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 7235 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 7236 7237 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 7238 u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr); 7239 7240 hwrm_ring_free_send_msg(bp, ring, 7241 RING_FREE_REQ_RING_TYPE_TX, 7242 close_path ? cmpl_ring_id : 7243 INVALID_HW_RING_ID); 7244 ring->fw_ring_id = INVALID_HW_RING_ID; 7245 } 7246 } 7247 7248 for (i = 0; i < bp->rx_nr_rings; i++) { 7249 bnxt_hwrm_rx_ring_free(bp, &bp->rx_ring[i], close_path); 7250 bnxt_hwrm_rx_agg_ring_free(bp, &bp->rx_ring[i], close_path); 7251 } 7252 7253 /* The completion rings are about to be freed. After that the 7254 * IRQ doorbell will not work anymore. So we need to disable 7255 * IRQ here. 7256 */ 7257 bnxt_disable_int_sync(bp); 7258 7259 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7260 type = RING_FREE_REQ_RING_TYPE_NQ; 7261 else 7262 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 7263 for (i = 0; i < bp->cp_nr_rings; i++) { 7264 struct bnxt_napi *bnapi = bp->bnapi[i]; 7265 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7266 struct bnxt_ring_struct *ring; 7267 int j; 7268 7269 for (j = 0; j < cpr->cp_ring_count && cpr->cp_ring_arr; j++) { 7270 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 7271 7272 ring = &cpr2->cp_ring_struct; 7273 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7274 continue; 7275 hwrm_ring_free_send_msg(bp, ring, 7276 RING_FREE_REQ_RING_TYPE_L2_CMPL, 7277 INVALID_HW_RING_ID); 7278 ring->fw_ring_id = INVALID_HW_RING_ID; 7279 } 7280 ring = &cpr->cp_ring_struct; 7281 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 7282 hwrm_ring_free_send_msg(bp, ring, type, 7283 INVALID_HW_RING_ID); 7284 ring->fw_ring_id = INVALID_HW_RING_ID; 7285 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 7286 } 7287 } 7288 } 7289 7290 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7291 bool shared); 7292 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7293 bool shared); 7294 7295 static int bnxt_hwrm_get_rings(struct bnxt *bp) 7296 { 7297 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7298 struct hwrm_func_qcfg_output *resp; 7299 struct hwrm_func_qcfg_input *req; 7300 int rc; 7301 7302 if (bp->hwrm_spec_code < 0x10601) 7303 return 0; 7304 7305 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7306 if (rc) 7307 return rc; 7308 7309 req->fid = cpu_to_le16(0xffff); 7310 resp = hwrm_req_hold(bp, req); 7311 rc = hwrm_req_send(bp, req); 7312 if (rc) { 7313 hwrm_req_drop(bp, req); 7314 return rc; 7315 } 7316 7317 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7318 if (BNXT_NEW_RM(bp)) { 7319 u16 cp, stats; 7320 7321 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 7322 hw_resc->resv_hw_ring_grps = 7323 le32_to_cpu(resp->alloc_hw_ring_grps); 7324 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 7325 hw_resc->resv_rsscos_ctxs = le16_to_cpu(resp->alloc_rsscos_ctx); 7326 cp = le16_to_cpu(resp->alloc_cmpl_rings); 7327 stats = le16_to_cpu(resp->alloc_stat_ctx); 7328 hw_resc->resv_irqs = cp; 7329 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7330 int rx = hw_resc->resv_rx_rings; 7331 int tx = hw_resc->resv_tx_rings; 7332 7333 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7334 rx >>= 1; 7335 if (cp < (rx + tx)) { 7336 rc = __bnxt_trim_rings(bp, &rx, &tx, cp, false); 7337 if (rc) 7338 goto get_rings_exit; 7339 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7340 rx <<= 1; 7341 hw_resc->resv_rx_rings = rx; 7342 hw_resc->resv_tx_rings = tx; 7343 } 7344 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 7345 hw_resc->resv_hw_ring_grps = rx; 7346 } 7347 hw_resc->resv_cp_rings = cp; 7348 hw_resc->resv_stat_ctxs = stats; 7349 } 7350 get_rings_exit: 7351 hwrm_req_drop(bp, req); 7352 return rc; 7353 } 7354 7355 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 7356 { 7357 struct hwrm_func_qcfg_output *resp; 7358 struct hwrm_func_qcfg_input *req; 7359 int rc; 7360 7361 if (bp->hwrm_spec_code < 0x10601) 7362 return 0; 7363 7364 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7365 if (rc) 7366 return rc; 7367 7368 req->fid = cpu_to_le16(fid); 7369 resp = hwrm_req_hold(bp, req); 7370 rc = hwrm_req_send(bp, req); 7371 if (!rc) 7372 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7373 7374 hwrm_req_drop(bp, req); 7375 return rc; 7376 } 7377 7378 static bool bnxt_rfs_supported(struct bnxt *bp); 7379 7380 static struct hwrm_func_cfg_input * 7381 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7382 { 7383 struct hwrm_func_cfg_input *req; 7384 u32 enables = 0; 7385 7386 if (bnxt_hwrm_func_cfg_short_req_init(bp, &req)) 7387 return NULL; 7388 7389 req->fid = cpu_to_le16(0xffff); 7390 enables |= hwr->tx ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7391 req->num_tx_rings = cpu_to_le16(hwr->tx); 7392 if (BNXT_NEW_RM(bp)) { 7393 enables |= hwr->rx ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 7394 enables |= hwr->stat ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7395 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7396 enables |= hwr->cp ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 7397 enables |= hwr->cp_p5 ? 7398 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7399 } else { 7400 enables |= hwr->cp ? 7401 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7402 enables |= hwr->grp ? 7403 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7404 } 7405 enables |= hwr->vnic ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 7406 enables |= hwr->rss_ctx ? FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 7407 0; 7408 req->num_rx_rings = cpu_to_le16(hwr->rx); 7409 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7410 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7411 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7412 req->num_msix = cpu_to_le16(hwr->cp); 7413 } else { 7414 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7415 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7416 } 7417 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7418 req->num_vnics = cpu_to_le16(hwr->vnic); 7419 } 7420 req->enables = cpu_to_le32(enables); 7421 return req; 7422 } 7423 7424 static struct hwrm_func_vf_cfg_input * 7425 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7426 { 7427 struct hwrm_func_vf_cfg_input *req; 7428 u32 enables = 0; 7429 7430 if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG)) 7431 return NULL; 7432 7433 enables |= hwr->tx ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7434 enables |= hwr->rx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 7435 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7436 enables |= hwr->stat ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7437 enables |= hwr->rss_ctx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7438 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7439 enables |= hwr->cp_p5 ? 7440 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7441 } else { 7442 enables |= hwr->cp ? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7443 enables |= hwr->grp ? 7444 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7445 } 7446 enables |= hwr->vnic ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 7447 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 7448 7449 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 7450 req->num_tx_rings = cpu_to_le16(hwr->tx); 7451 req->num_rx_rings = cpu_to_le16(hwr->rx); 7452 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7453 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7454 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7455 } else { 7456 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7457 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7458 } 7459 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7460 req->num_vnics = cpu_to_le16(hwr->vnic); 7461 7462 req->enables = cpu_to_le32(enables); 7463 return req; 7464 } 7465 7466 static int 7467 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7468 { 7469 struct hwrm_func_cfg_input *req; 7470 int rc; 7471 7472 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 7473 if (!req) 7474 return -ENOMEM; 7475 7476 if (!req->enables) { 7477 hwrm_req_drop(bp, req); 7478 return 0; 7479 } 7480 7481 rc = hwrm_req_send(bp, req); 7482 if (rc) 7483 return rc; 7484 7485 if (bp->hwrm_spec_code < 0x10601) 7486 bp->hw_resc.resv_tx_rings = hwr->tx; 7487 7488 return bnxt_hwrm_get_rings(bp); 7489 } 7490 7491 static int 7492 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7493 { 7494 struct hwrm_func_vf_cfg_input *req; 7495 int rc; 7496 7497 if (!BNXT_NEW_RM(bp)) { 7498 bp->hw_resc.resv_tx_rings = hwr->tx; 7499 return 0; 7500 } 7501 7502 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 7503 if (!req) 7504 return -ENOMEM; 7505 7506 rc = hwrm_req_send(bp, req); 7507 if (rc) 7508 return rc; 7509 7510 return bnxt_hwrm_get_rings(bp); 7511 } 7512 7513 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7514 { 7515 if (BNXT_PF(bp)) 7516 return bnxt_hwrm_reserve_pf_rings(bp, hwr); 7517 else 7518 return bnxt_hwrm_reserve_vf_rings(bp, hwr); 7519 } 7520 7521 int bnxt_nq_rings_in_use(struct bnxt *bp) 7522 { 7523 return bp->cp_nr_rings + bnxt_get_ulp_msix_num(bp); 7524 } 7525 7526 static int bnxt_cp_rings_in_use(struct bnxt *bp) 7527 { 7528 int cp; 7529 7530 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7531 return bnxt_nq_rings_in_use(bp); 7532 7533 cp = bp->tx_nr_rings + bp->rx_nr_rings; 7534 return cp; 7535 } 7536 7537 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 7538 { 7539 return bp->cp_nr_rings + bnxt_get_ulp_stat_ctxs(bp); 7540 } 7541 7542 static int bnxt_get_total_rss_ctxs(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7543 { 7544 if (!hwr->grp) 7545 return 0; 7546 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7547 int rss_ctx = bnxt_get_nr_rss_ctxs(bp, hwr->grp); 7548 7549 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7550 rss_ctx *= hwr->vnic; 7551 return rss_ctx; 7552 } 7553 if (BNXT_VF(bp)) 7554 return BNXT_VF_MAX_RSS_CTX; 7555 if (!(bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && bnxt_rfs_supported(bp)) 7556 return hwr->grp + 1; 7557 return 1; 7558 } 7559 7560 /* Check if a default RSS map needs to be setup. This function is only 7561 * used on older firmware that does not require reserving RX rings. 7562 */ 7563 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 7564 { 7565 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7566 7567 /* The RSS map is valid for RX rings set to resv_rx_rings */ 7568 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 7569 hw_resc->resv_rx_rings = bp->rx_nr_rings; 7570 if (!netif_is_rxfh_configured(bp->dev)) 7571 bnxt_set_dflt_rss_indir_tbl(bp, NULL); 7572 } 7573 } 7574 7575 static int bnxt_get_total_vnics(struct bnxt *bp, int rx_rings) 7576 { 7577 if (bp->flags & BNXT_FLAG_RFS) { 7578 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7579 return 2 + bp->num_rss_ctx; 7580 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7581 return rx_rings + 1; 7582 } 7583 return 1; 7584 } 7585 7586 static bool bnxt_need_reserve_rings(struct bnxt *bp) 7587 { 7588 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7589 int cp = bnxt_cp_rings_in_use(bp); 7590 int nq = bnxt_nq_rings_in_use(bp); 7591 int rx = bp->rx_nr_rings, stat; 7592 int vnic, grp = rx; 7593 7594 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 7595 bp->hwrm_spec_code >= 0x10601) 7596 return true; 7597 7598 /* Old firmware does not need RX ring reservations but we still 7599 * need to setup a default RSS map when needed. With new firmware 7600 * we go through RX ring reservations first and then set up the 7601 * RSS map for the successfully reserved RX rings when needed. 7602 */ 7603 if (!BNXT_NEW_RM(bp)) { 7604 bnxt_check_rss_tbl_no_rmgr(bp); 7605 return false; 7606 } 7607 7608 vnic = bnxt_get_total_vnics(bp, rx); 7609 7610 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7611 rx <<= 1; 7612 stat = bnxt_get_func_stat_ctxs(bp); 7613 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 7614 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 7615 (hw_resc->resv_hw_ring_grps != grp && 7616 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))) 7617 return true; 7618 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && BNXT_PF(bp) && 7619 hw_resc->resv_irqs != nq) 7620 return true; 7621 return false; 7622 } 7623 7624 static void bnxt_copy_reserved_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7625 { 7626 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7627 7628 hwr->tx = hw_resc->resv_tx_rings; 7629 if (BNXT_NEW_RM(bp)) { 7630 hwr->rx = hw_resc->resv_rx_rings; 7631 hwr->cp = hw_resc->resv_irqs; 7632 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7633 hwr->cp_p5 = hw_resc->resv_cp_rings; 7634 hwr->grp = hw_resc->resv_hw_ring_grps; 7635 hwr->vnic = hw_resc->resv_vnics; 7636 hwr->stat = hw_resc->resv_stat_ctxs; 7637 hwr->rss_ctx = hw_resc->resv_rsscos_ctxs; 7638 } 7639 } 7640 7641 static bool bnxt_rings_ok(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7642 { 7643 return hwr->tx && hwr->rx && hwr->cp && hwr->grp && hwr->vnic && 7644 hwr->stat && (hwr->cp_p5 || !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)); 7645 } 7646 7647 static int bnxt_get_avail_msix(struct bnxt *bp, int num); 7648 7649 static int __bnxt_reserve_rings(struct bnxt *bp) 7650 { 7651 struct bnxt_hw_rings hwr = {0}; 7652 int cp = bp->cp_nr_rings; 7653 int rx_rings, rc; 7654 int ulp_msix = 0; 7655 bool sh = false; 7656 int tx_cp; 7657 7658 if (!bnxt_need_reserve_rings(bp)) 7659 return 0; 7660 7661 if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) { 7662 ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want); 7663 if (!ulp_msix) 7664 bnxt_set_ulp_stat_ctxs(bp, 0); 7665 7666 if (ulp_msix > bp->ulp_num_msix_want) 7667 ulp_msix = bp->ulp_num_msix_want; 7668 hwr.cp = cp + ulp_msix; 7669 } else { 7670 hwr.cp = bnxt_nq_rings_in_use(bp); 7671 } 7672 7673 hwr.tx = bp->tx_nr_rings; 7674 hwr.rx = bp->rx_nr_rings; 7675 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 7676 sh = true; 7677 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7678 hwr.cp_p5 = hwr.rx + hwr.tx; 7679 7680 hwr.vnic = bnxt_get_total_vnics(bp, hwr.rx); 7681 7682 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7683 hwr.rx <<= 1; 7684 hwr.grp = bp->rx_nr_rings; 7685 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 7686 hwr.stat = bnxt_get_func_stat_ctxs(bp); 7687 7688 rc = bnxt_hwrm_reserve_rings(bp, &hwr); 7689 if (rc) 7690 return rc; 7691 7692 bnxt_copy_reserved_rings(bp, &hwr); 7693 7694 rx_rings = hwr.rx; 7695 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 7696 if (hwr.rx >= 2) { 7697 rx_rings = hwr.rx >> 1; 7698 } else { 7699 if (netif_running(bp->dev)) 7700 return -ENOMEM; 7701 7702 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 7703 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 7704 bp->dev->hw_features &= ~NETIF_F_LRO; 7705 bp->dev->features &= ~NETIF_F_LRO; 7706 bnxt_set_ring_params(bp); 7707 } 7708 } 7709 rx_rings = min_t(int, rx_rings, hwr.grp); 7710 hwr.cp = min_t(int, hwr.cp, bp->cp_nr_rings); 7711 if (hwr.stat > bnxt_get_ulp_stat_ctxs(bp)) 7712 hwr.stat -= bnxt_get_ulp_stat_ctxs(bp); 7713 hwr.cp = min_t(int, hwr.cp, hwr.stat); 7714 rc = bnxt_trim_rings(bp, &rx_rings, &hwr.tx, hwr.cp, sh); 7715 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7716 hwr.rx = rx_rings << 1; 7717 tx_cp = bnxt_num_tx_to_cp(bp, hwr.tx); 7718 hwr.cp = sh ? max_t(int, tx_cp, rx_rings) : tx_cp + rx_rings; 7719 bp->tx_nr_rings = hwr.tx; 7720 7721 /* If we cannot reserve all the RX rings, reset the RSS map only 7722 * if absolutely necessary 7723 */ 7724 if (rx_rings != bp->rx_nr_rings) { 7725 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 7726 rx_rings, bp->rx_nr_rings); 7727 if (netif_is_rxfh_configured(bp->dev) && 7728 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 7729 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 7730 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 7731 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 7732 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 7733 } 7734 } 7735 bp->rx_nr_rings = rx_rings; 7736 bp->cp_nr_rings = hwr.cp; 7737 7738 if (!bnxt_rings_ok(bp, &hwr)) 7739 return -ENOMEM; 7740 7741 if (!netif_is_rxfh_configured(bp->dev)) 7742 bnxt_set_dflt_rss_indir_tbl(bp, NULL); 7743 7744 if (!bnxt_ulp_registered(bp->edev) && BNXT_NEW_RM(bp)) { 7745 int resv_msix, resv_ctx, ulp_ctxs; 7746 struct bnxt_hw_resc *hw_resc; 7747 7748 hw_resc = &bp->hw_resc; 7749 resv_msix = hw_resc->resv_irqs - bp->cp_nr_rings; 7750 ulp_msix = min_t(int, resv_msix, ulp_msix); 7751 bnxt_set_ulp_msix_num(bp, ulp_msix); 7752 resv_ctx = hw_resc->resv_stat_ctxs - bp->cp_nr_rings; 7753 ulp_ctxs = min(resv_ctx, bnxt_get_ulp_stat_ctxs(bp)); 7754 bnxt_set_ulp_stat_ctxs(bp, ulp_ctxs); 7755 } 7756 7757 return rc; 7758 } 7759 7760 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7761 { 7762 struct hwrm_func_vf_cfg_input *req; 7763 u32 flags; 7764 7765 if (!BNXT_NEW_RM(bp)) 7766 return 0; 7767 7768 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 7769 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 7770 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 7771 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 7772 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 7773 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 7774 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 7775 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7776 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 7777 7778 req->flags = cpu_to_le32(flags); 7779 return hwrm_req_send_silent(bp, req); 7780 } 7781 7782 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7783 { 7784 struct hwrm_func_cfg_input *req; 7785 u32 flags; 7786 7787 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 7788 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 7789 if (BNXT_NEW_RM(bp)) { 7790 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 7791 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 7792 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 7793 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 7794 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7795 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 7796 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 7797 else 7798 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 7799 } 7800 7801 req->flags = cpu_to_le32(flags); 7802 return hwrm_req_send_silent(bp, req); 7803 } 7804 7805 static int bnxt_hwrm_check_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7806 { 7807 if (bp->hwrm_spec_code < 0x10801) 7808 return 0; 7809 7810 if (BNXT_PF(bp)) 7811 return bnxt_hwrm_check_pf_rings(bp, hwr); 7812 7813 return bnxt_hwrm_check_vf_rings(bp, hwr); 7814 } 7815 7816 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 7817 { 7818 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7819 struct hwrm_ring_aggint_qcaps_output *resp; 7820 struct hwrm_ring_aggint_qcaps_input *req; 7821 int rc; 7822 7823 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 7824 coal_cap->num_cmpl_dma_aggr_max = 63; 7825 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 7826 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 7827 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 7828 coal_cap->int_lat_tmr_min_max = 65535; 7829 coal_cap->int_lat_tmr_max_max = 65535; 7830 coal_cap->num_cmpl_aggr_int_max = 65535; 7831 coal_cap->timer_units = 80; 7832 7833 if (bp->hwrm_spec_code < 0x10902) 7834 return; 7835 7836 if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS)) 7837 return; 7838 7839 resp = hwrm_req_hold(bp, req); 7840 rc = hwrm_req_send_silent(bp, req); 7841 if (!rc) { 7842 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 7843 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 7844 coal_cap->num_cmpl_dma_aggr_max = 7845 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 7846 coal_cap->num_cmpl_dma_aggr_during_int_max = 7847 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 7848 coal_cap->cmpl_aggr_dma_tmr_max = 7849 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 7850 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 7851 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 7852 coal_cap->int_lat_tmr_min_max = 7853 le16_to_cpu(resp->int_lat_tmr_min_max); 7854 coal_cap->int_lat_tmr_max_max = 7855 le16_to_cpu(resp->int_lat_tmr_max_max); 7856 coal_cap->num_cmpl_aggr_int_max = 7857 le16_to_cpu(resp->num_cmpl_aggr_int_max); 7858 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 7859 } 7860 hwrm_req_drop(bp, req); 7861 } 7862 7863 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 7864 { 7865 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7866 7867 return usec * 1000 / coal_cap->timer_units; 7868 } 7869 7870 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 7871 struct bnxt_coal *hw_coal, 7872 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 7873 { 7874 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7875 u16 val, tmr, max, flags = hw_coal->flags; 7876 u32 cmpl_params = coal_cap->cmpl_params; 7877 7878 max = hw_coal->bufs_per_record * 128; 7879 if (hw_coal->budget) 7880 max = hw_coal->bufs_per_record * hw_coal->budget; 7881 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 7882 7883 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 7884 req->num_cmpl_aggr_int = cpu_to_le16(val); 7885 7886 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 7887 req->num_cmpl_dma_aggr = cpu_to_le16(val); 7888 7889 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 7890 coal_cap->num_cmpl_dma_aggr_during_int_max); 7891 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 7892 7893 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 7894 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 7895 req->int_lat_tmr_max = cpu_to_le16(tmr); 7896 7897 /* min timer set to 1/2 of interrupt timer */ 7898 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 7899 val = tmr / 2; 7900 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 7901 req->int_lat_tmr_min = cpu_to_le16(val); 7902 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 7903 } 7904 7905 /* buf timer set to 1/4 of interrupt timer */ 7906 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 7907 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 7908 7909 if (cmpl_params & 7910 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 7911 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 7912 val = clamp_t(u16, tmr, 1, 7913 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 7914 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 7915 req->enables |= 7916 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 7917 } 7918 7919 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 7920 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 7921 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 7922 req->flags = cpu_to_le16(flags); 7923 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 7924 } 7925 7926 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 7927 struct bnxt_coal *hw_coal) 7928 { 7929 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req; 7930 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7931 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7932 u32 nq_params = coal_cap->nq_params; 7933 u16 tmr; 7934 int rc; 7935 7936 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 7937 return 0; 7938 7939 rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 7940 if (rc) 7941 return rc; 7942 7943 req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 7944 req->flags = 7945 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 7946 7947 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 7948 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 7949 req->int_lat_tmr_min = cpu_to_le16(tmr); 7950 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 7951 return hwrm_req_send(bp, req); 7952 } 7953 7954 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 7955 { 7956 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx; 7957 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7958 struct bnxt_coal coal; 7959 int rc; 7960 7961 /* Tick values in micro seconds. 7962 * 1 coal_buf x bufs_per_record = 1 completion record. 7963 */ 7964 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 7965 7966 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 7967 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 7968 7969 if (!bnapi->rx_ring) 7970 return -ENODEV; 7971 7972 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 7973 if (rc) 7974 return rc; 7975 7976 bnxt_hwrm_set_coal_params(bp, &coal, req_rx); 7977 7978 req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 7979 7980 return hwrm_req_send(bp, req_rx); 7981 } 7982 7983 static int 7984 bnxt_hwrm_set_rx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 7985 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 7986 { 7987 u16 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 7988 7989 req->ring_id = cpu_to_le16(ring_id); 7990 return hwrm_req_send(bp, req); 7991 } 7992 7993 static int 7994 bnxt_hwrm_set_tx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 7995 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 7996 { 7997 struct bnxt_tx_ring_info *txr; 7998 int i, rc; 7999 8000 bnxt_for_each_napi_tx(i, bnapi, txr) { 8001 u16 ring_id; 8002 8003 ring_id = bnxt_cp_ring_for_tx(bp, txr); 8004 req->ring_id = cpu_to_le16(ring_id); 8005 rc = hwrm_req_send(bp, req); 8006 if (rc) 8007 return rc; 8008 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 8009 return 0; 8010 } 8011 return 0; 8012 } 8013 8014 int bnxt_hwrm_set_coal(struct bnxt *bp) 8015 { 8016 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx; 8017 int i, rc; 8018 8019 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8020 if (rc) 8021 return rc; 8022 8023 rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8024 if (rc) { 8025 hwrm_req_drop(bp, req_rx); 8026 return rc; 8027 } 8028 8029 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx); 8030 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx); 8031 8032 hwrm_req_hold(bp, req_rx); 8033 hwrm_req_hold(bp, req_tx); 8034 for (i = 0; i < bp->cp_nr_rings; i++) { 8035 struct bnxt_napi *bnapi = bp->bnapi[i]; 8036 struct bnxt_coal *hw_coal; 8037 8038 if (!bnapi->rx_ring) 8039 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 8040 else 8041 rc = bnxt_hwrm_set_rx_coal(bp, bnapi, req_rx); 8042 if (rc) 8043 break; 8044 8045 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 8046 continue; 8047 8048 if (bnapi->rx_ring && bnapi->tx_ring[0]) { 8049 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 8050 if (rc) 8051 break; 8052 } 8053 if (bnapi->rx_ring) 8054 hw_coal = &bp->rx_coal; 8055 else 8056 hw_coal = &bp->tx_coal; 8057 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 8058 } 8059 hwrm_req_drop(bp, req_rx); 8060 hwrm_req_drop(bp, req_tx); 8061 return rc; 8062 } 8063 8064 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 8065 { 8066 struct hwrm_stat_ctx_clr_stats_input *req0 = NULL; 8067 struct hwrm_stat_ctx_free_input *req; 8068 int i; 8069 8070 if (!bp->bnapi) 8071 return; 8072 8073 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8074 return; 8075 8076 if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE)) 8077 return; 8078 if (BNXT_FW_MAJ(bp) <= 20) { 8079 if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) { 8080 hwrm_req_drop(bp, req); 8081 return; 8082 } 8083 hwrm_req_hold(bp, req0); 8084 } 8085 hwrm_req_hold(bp, req); 8086 for (i = 0; i < bp->cp_nr_rings; i++) { 8087 struct bnxt_napi *bnapi = bp->bnapi[i]; 8088 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8089 8090 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 8091 req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 8092 if (req0) { 8093 req0->stat_ctx_id = req->stat_ctx_id; 8094 hwrm_req_send(bp, req0); 8095 } 8096 hwrm_req_send(bp, req); 8097 8098 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 8099 } 8100 } 8101 hwrm_req_drop(bp, req); 8102 if (req0) 8103 hwrm_req_drop(bp, req0); 8104 } 8105 8106 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 8107 { 8108 struct hwrm_stat_ctx_alloc_output *resp; 8109 struct hwrm_stat_ctx_alloc_input *req; 8110 int rc, i; 8111 8112 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8113 return 0; 8114 8115 rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC); 8116 if (rc) 8117 return rc; 8118 8119 req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 8120 req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 8121 8122 resp = hwrm_req_hold(bp, req); 8123 for (i = 0; i < bp->cp_nr_rings; i++) { 8124 struct bnxt_napi *bnapi = bp->bnapi[i]; 8125 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8126 8127 req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 8128 8129 rc = hwrm_req_send(bp, req); 8130 if (rc) 8131 break; 8132 8133 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 8134 8135 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 8136 } 8137 hwrm_req_drop(bp, req); 8138 return rc; 8139 } 8140 8141 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 8142 { 8143 struct hwrm_func_qcfg_output *resp; 8144 struct hwrm_func_qcfg_input *req; 8145 u16 flags; 8146 int rc; 8147 8148 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 8149 if (rc) 8150 return rc; 8151 8152 req->fid = cpu_to_le16(0xffff); 8153 resp = hwrm_req_hold(bp, req); 8154 rc = hwrm_req_send(bp, req); 8155 if (rc) 8156 goto func_qcfg_exit; 8157 8158 #ifdef CONFIG_BNXT_SRIOV 8159 if (BNXT_VF(bp)) { 8160 struct bnxt_vf_info *vf = &bp->vf; 8161 8162 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 8163 } else { 8164 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 8165 } 8166 #endif 8167 flags = le16_to_cpu(resp->flags); 8168 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 8169 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 8170 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 8171 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 8172 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 8173 } 8174 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 8175 bp->flags |= BNXT_FLAG_MULTI_HOST; 8176 8177 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 8178 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 8179 8180 switch (resp->port_partition_type) { 8181 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 8182 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 8183 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 8184 bp->port_partition_type = resp->port_partition_type; 8185 break; 8186 } 8187 if (bp->hwrm_spec_code < 0x10707 || 8188 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 8189 bp->br_mode = BRIDGE_MODE_VEB; 8190 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 8191 bp->br_mode = BRIDGE_MODE_VEPA; 8192 else 8193 bp->br_mode = BRIDGE_MODE_UNDEF; 8194 8195 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 8196 if (!bp->max_mtu) 8197 bp->max_mtu = BNXT_MAX_MTU; 8198 8199 if (bp->db_size) 8200 goto func_qcfg_exit; 8201 8202 bp->db_offset = le16_to_cpu(resp->legacy_l2_db_size_kb) * 1024; 8203 if (BNXT_CHIP_P5(bp)) { 8204 if (BNXT_PF(bp)) 8205 bp->db_offset = DB_PF_OFFSET_P5; 8206 else 8207 bp->db_offset = DB_VF_OFFSET_P5; 8208 } 8209 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 8210 1024); 8211 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 8212 bp->db_size <= bp->db_offset) 8213 bp->db_size = pci_resource_len(bp->pdev, 2); 8214 8215 func_qcfg_exit: 8216 hwrm_req_drop(bp, req); 8217 return rc; 8218 } 8219 8220 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_type *ctxm, 8221 u8 init_val, u8 init_offset, 8222 bool init_mask_set) 8223 { 8224 ctxm->init_value = init_val; 8225 ctxm->init_offset = BNXT_CTX_INIT_INVALID_OFFSET; 8226 if (init_mask_set) 8227 ctxm->init_offset = init_offset * 4; 8228 else 8229 ctxm->init_value = 0; 8230 } 8231 8232 static int bnxt_alloc_all_ctx_pg_info(struct bnxt *bp, int ctx_max) 8233 { 8234 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8235 u16 type; 8236 8237 for (type = 0; type < ctx_max; type++) { 8238 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8239 int n = 1; 8240 8241 if (!ctxm->max_entries) 8242 continue; 8243 8244 if (ctxm->instance_bmap) 8245 n = hweight32(ctxm->instance_bmap); 8246 ctxm->pg_info = kcalloc(n, sizeof(*ctxm->pg_info), GFP_KERNEL); 8247 if (!ctxm->pg_info) 8248 return -ENOMEM; 8249 } 8250 return 0; 8251 } 8252 8253 #define BNXT_CTX_INIT_VALID(flags) \ 8254 (!!((flags) & \ 8255 FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_ENABLE_CTX_KIND_INIT)) 8256 8257 static int bnxt_hwrm_func_backing_store_qcaps_v2(struct bnxt *bp) 8258 { 8259 struct hwrm_func_backing_store_qcaps_v2_output *resp; 8260 struct hwrm_func_backing_store_qcaps_v2_input *req; 8261 struct bnxt_ctx_mem_info *ctx; 8262 u16 type; 8263 int rc; 8264 8265 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS_V2); 8266 if (rc) 8267 return rc; 8268 8269 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8270 if (!ctx) 8271 return -ENOMEM; 8272 bp->ctx = ctx; 8273 8274 resp = hwrm_req_hold(bp, req); 8275 8276 for (type = 0; type < BNXT_CTX_V2_MAX; ) { 8277 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8278 u8 init_val, init_off, i; 8279 __le32 *p; 8280 u32 flags; 8281 8282 req->type = cpu_to_le16(type); 8283 rc = hwrm_req_send(bp, req); 8284 if (rc) 8285 goto ctx_done; 8286 flags = le32_to_cpu(resp->flags); 8287 type = le16_to_cpu(resp->next_valid_type); 8288 if (!(flags & FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_TYPE_VALID)) 8289 continue; 8290 8291 ctxm->type = le16_to_cpu(resp->type); 8292 ctxm->entry_size = le16_to_cpu(resp->entry_size); 8293 ctxm->flags = flags; 8294 ctxm->instance_bmap = le32_to_cpu(resp->instance_bit_map); 8295 ctxm->entry_multiple = resp->entry_multiple; 8296 ctxm->max_entries = le32_to_cpu(resp->max_num_entries); 8297 ctxm->min_entries = le32_to_cpu(resp->min_num_entries); 8298 init_val = resp->ctx_init_value; 8299 init_off = resp->ctx_init_offset; 8300 bnxt_init_ctx_initializer(ctxm, init_val, init_off, 8301 BNXT_CTX_INIT_VALID(flags)); 8302 ctxm->split_entry_cnt = min_t(u8, resp->subtype_valid_cnt, 8303 BNXT_MAX_SPLIT_ENTRY); 8304 for (i = 0, p = &resp->split_entry_0; i < ctxm->split_entry_cnt; 8305 i++, p++) 8306 ctxm->split[i] = le32_to_cpu(*p); 8307 } 8308 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_V2_MAX); 8309 8310 ctx_done: 8311 hwrm_req_drop(bp, req); 8312 return rc; 8313 } 8314 8315 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 8316 { 8317 struct hwrm_func_backing_store_qcaps_output *resp; 8318 struct hwrm_func_backing_store_qcaps_input *req; 8319 int rc; 8320 8321 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx) 8322 return 0; 8323 8324 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 8325 return bnxt_hwrm_func_backing_store_qcaps_v2(bp); 8326 8327 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS); 8328 if (rc) 8329 return rc; 8330 8331 resp = hwrm_req_hold(bp, req); 8332 rc = hwrm_req_send_silent(bp, req); 8333 if (!rc) { 8334 struct bnxt_ctx_mem_type *ctxm; 8335 struct bnxt_ctx_mem_info *ctx; 8336 u8 init_val, init_idx = 0; 8337 u16 init_mask; 8338 8339 ctx = bp->ctx; 8340 if (!ctx) { 8341 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8342 if (!ctx) { 8343 rc = -ENOMEM; 8344 goto ctx_err; 8345 } 8346 bp->ctx = ctx; 8347 } 8348 init_val = resp->ctx_kind_initializer; 8349 init_mask = le16_to_cpu(resp->ctx_init_mask); 8350 8351 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8352 ctxm->max_entries = le32_to_cpu(resp->qp_max_entries); 8353 ctxm->qp_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 8354 ctxm->qp_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 8355 ctxm->qp_fast_qpmd_entries = le16_to_cpu(resp->fast_qpmd_qp_num_entries); 8356 ctxm->entry_size = le16_to_cpu(resp->qp_entry_size); 8357 bnxt_init_ctx_initializer(ctxm, init_val, resp->qp_init_offset, 8358 (init_mask & (1 << init_idx++)) != 0); 8359 8360 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8361 ctxm->srq_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 8362 ctxm->max_entries = le32_to_cpu(resp->srq_max_entries); 8363 ctxm->entry_size = le16_to_cpu(resp->srq_entry_size); 8364 bnxt_init_ctx_initializer(ctxm, init_val, resp->srq_init_offset, 8365 (init_mask & (1 << init_idx++)) != 0); 8366 8367 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8368 ctxm->cq_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 8369 ctxm->max_entries = le32_to_cpu(resp->cq_max_entries); 8370 ctxm->entry_size = le16_to_cpu(resp->cq_entry_size); 8371 bnxt_init_ctx_initializer(ctxm, init_val, resp->cq_init_offset, 8372 (init_mask & (1 << init_idx++)) != 0); 8373 8374 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8375 ctxm->vnic_entries = le16_to_cpu(resp->vnic_max_vnic_entries); 8376 ctxm->max_entries = ctxm->vnic_entries + 8377 le16_to_cpu(resp->vnic_max_ring_table_entries); 8378 ctxm->entry_size = le16_to_cpu(resp->vnic_entry_size); 8379 bnxt_init_ctx_initializer(ctxm, init_val, 8380 resp->vnic_init_offset, 8381 (init_mask & (1 << init_idx++)) != 0); 8382 8383 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8384 ctxm->max_entries = le32_to_cpu(resp->stat_max_entries); 8385 ctxm->entry_size = le16_to_cpu(resp->stat_entry_size); 8386 bnxt_init_ctx_initializer(ctxm, init_val, 8387 resp->stat_init_offset, 8388 (init_mask & (1 << init_idx++)) != 0); 8389 8390 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8391 ctxm->entry_size = le16_to_cpu(resp->tqm_entry_size); 8392 ctxm->min_entries = le32_to_cpu(resp->tqm_min_entries_per_ring); 8393 ctxm->max_entries = le32_to_cpu(resp->tqm_max_entries_per_ring); 8394 ctxm->entry_multiple = resp->tqm_entries_multiple; 8395 if (!ctxm->entry_multiple) 8396 ctxm->entry_multiple = 1; 8397 8398 memcpy(&ctx->ctx_arr[BNXT_CTX_FTQM], ctxm, sizeof(*ctxm)); 8399 8400 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8401 ctxm->max_entries = le32_to_cpu(resp->mrav_max_entries); 8402 ctxm->entry_size = le16_to_cpu(resp->mrav_entry_size); 8403 ctxm->mrav_num_entries_units = 8404 le16_to_cpu(resp->mrav_num_entries_units); 8405 bnxt_init_ctx_initializer(ctxm, init_val, 8406 resp->mrav_init_offset, 8407 (init_mask & (1 << init_idx++)) != 0); 8408 8409 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8410 ctxm->entry_size = le16_to_cpu(resp->tim_entry_size); 8411 ctxm->max_entries = le32_to_cpu(resp->tim_max_entries); 8412 8413 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 8414 if (!ctx->tqm_fp_rings_count) 8415 ctx->tqm_fp_rings_count = bp->max_q; 8416 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 8417 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 8418 8419 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 8420 memcpy(ctxm, &ctx->ctx_arr[BNXT_CTX_STQM], sizeof(*ctxm)); 8421 ctxm->instance_bmap = (1 << ctx->tqm_fp_rings_count) - 1; 8422 8423 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_MAX); 8424 } else { 8425 rc = 0; 8426 } 8427 ctx_err: 8428 hwrm_req_drop(bp, req); 8429 return rc; 8430 } 8431 8432 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 8433 __le64 *pg_dir) 8434 { 8435 if (!rmem->nr_pages) 8436 return; 8437 8438 BNXT_SET_CTX_PAGE_ATTR(*pg_attr); 8439 if (rmem->depth >= 1) { 8440 if (rmem->depth == 2) 8441 *pg_attr |= 2; 8442 else 8443 *pg_attr |= 1; 8444 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 8445 } else { 8446 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 8447 } 8448 } 8449 8450 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 8451 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 8452 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 8453 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 8454 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 8455 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 8456 8457 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 8458 { 8459 struct hwrm_func_backing_store_cfg_input *req; 8460 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8461 struct bnxt_ctx_pg_info *ctx_pg; 8462 struct bnxt_ctx_mem_type *ctxm; 8463 void **__req = (void **)&req; 8464 u32 req_len = sizeof(*req); 8465 __le32 *num_entries; 8466 __le64 *pg_dir; 8467 u32 flags = 0; 8468 u8 *pg_attr; 8469 u32 ena; 8470 int rc; 8471 int i; 8472 8473 if (!ctx) 8474 return 0; 8475 8476 if (req_len > bp->hwrm_max_ext_req_len) 8477 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 8478 rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len); 8479 if (rc) 8480 return rc; 8481 8482 req->enables = cpu_to_le32(enables); 8483 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 8484 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8485 ctx_pg = ctxm->pg_info; 8486 req->qp_num_entries = cpu_to_le32(ctx_pg->entries); 8487 req->qp_num_qp1_entries = cpu_to_le16(ctxm->qp_qp1_entries); 8488 req->qp_num_l2_entries = cpu_to_le16(ctxm->qp_l2_entries); 8489 req->qp_entry_size = cpu_to_le16(ctxm->entry_size); 8490 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8491 &req->qpc_pg_size_qpc_lvl, 8492 &req->qpc_page_dir); 8493 8494 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD) 8495 req->qp_num_fast_qpmd_entries = cpu_to_le16(ctxm->qp_fast_qpmd_entries); 8496 } 8497 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 8498 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8499 ctx_pg = ctxm->pg_info; 8500 req->srq_num_entries = cpu_to_le32(ctx_pg->entries); 8501 req->srq_num_l2_entries = cpu_to_le16(ctxm->srq_l2_entries); 8502 req->srq_entry_size = cpu_to_le16(ctxm->entry_size); 8503 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8504 &req->srq_pg_size_srq_lvl, 8505 &req->srq_page_dir); 8506 } 8507 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 8508 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8509 ctx_pg = ctxm->pg_info; 8510 req->cq_num_entries = cpu_to_le32(ctx_pg->entries); 8511 req->cq_num_l2_entries = cpu_to_le16(ctxm->cq_l2_entries); 8512 req->cq_entry_size = cpu_to_le16(ctxm->entry_size); 8513 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8514 &req->cq_pg_size_cq_lvl, 8515 &req->cq_page_dir); 8516 } 8517 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 8518 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8519 ctx_pg = ctxm->pg_info; 8520 req->vnic_num_vnic_entries = cpu_to_le16(ctxm->vnic_entries); 8521 req->vnic_num_ring_table_entries = 8522 cpu_to_le16(ctxm->max_entries - ctxm->vnic_entries); 8523 req->vnic_entry_size = cpu_to_le16(ctxm->entry_size); 8524 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8525 &req->vnic_pg_size_vnic_lvl, 8526 &req->vnic_page_dir); 8527 } 8528 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 8529 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8530 ctx_pg = ctxm->pg_info; 8531 req->stat_num_entries = cpu_to_le32(ctxm->max_entries); 8532 req->stat_entry_size = cpu_to_le16(ctxm->entry_size); 8533 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8534 &req->stat_pg_size_stat_lvl, 8535 &req->stat_page_dir); 8536 } 8537 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 8538 u32 units; 8539 8540 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8541 ctx_pg = ctxm->pg_info; 8542 req->mrav_num_entries = cpu_to_le32(ctx_pg->entries); 8543 units = ctxm->mrav_num_entries_units; 8544 if (units) { 8545 u32 num_mr, num_ah = ctxm->mrav_av_entries; 8546 u32 entries; 8547 8548 num_mr = ctx_pg->entries - num_ah; 8549 entries = ((num_mr / units) << 16) | (num_ah / units); 8550 req->mrav_num_entries = cpu_to_le32(entries); 8551 flags |= FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 8552 } 8553 req->mrav_entry_size = cpu_to_le16(ctxm->entry_size); 8554 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8555 &req->mrav_pg_size_mrav_lvl, 8556 &req->mrav_page_dir); 8557 } 8558 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 8559 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8560 ctx_pg = ctxm->pg_info; 8561 req->tim_num_entries = cpu_to_le32(ctx_pg->entries); 8562 req->tim_entry_size = cpu_to_le16(ctxm->entry_size); 8563 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8564 &req->tim_pg_size_tim_lvl, 8565 &req->tim_page_dir); 8566 } 8567 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8568 for (i = 0, num_entries = &req->tqm_sp_num_entries, 8569 pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl, 8570 pg_dir = &req->tqm_sp_page_dir, 8571 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP, 8572 ctx_pg = ctxm->pg_info; 8573 i < BNXT_MAX_TQM_RINGS; 8574 ctx_pg = &ctx->ctx_arr[BNXT_CTX_FTQM].pg_info[i], 8575 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 8576 if (!(enables & ena)) 8577 continue; 8578 8579 req->tqm_entry_size = cpu_to_le16(ctxm->entry_size); 8580 *num_entries = cpu_to_le32(ctx_pg->entries); 8581 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 8582 } 8583 req->flags = cpu_to_le32(flags); 8584 return hwrm_req_send(bp, req); 8585 } 8586 8587 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 8588 struct bnxt_ctx_pg_info *ctx_pg) 8589 { 8590 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8591 8592 rmem->page_size = BNXT_PAGE_SIZE; 8593 rmem->pg_arr = ctx_pg->ctx_pg_arr; 8594 rmem->dma_arr = ctx_pg->ctx_dma_arr; 8595 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 8596 if (rmem->depth >= 1) 8597 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 8598 return bnxt_alloc_ring(bp, rmem); 8599 } 8600 8601 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 8602 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 8603 u8 depth, struct bnxt_ctx_mem_type *ctxm) 8604 { 8605 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8606 int rc; 8607 8608 if (!mem_size) 8609 return -EINVAL; 8610 8611 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 8612 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 8613 ctx_pg->nr_pages = 0; 8614 return -EINVAL; 8615 } 8616 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 8617 int nr_tbls, i; 8618 8619 rmem->depth = 2; 8620 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 8621 GFP_KERNEL); 8622 if (!ctx_pg->ctx_pg_tbl) 8623 return -ENOMEM; 8624 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 8625 rmem->nr_pages = nr_tbls; 8626 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 8627 if (rc) 8628 return rc; 8629 for (i = 0; i < nr_tbls; i++) { 8630 struct bnxt_ctx_pg_info *pg_tbl; 8631 8632 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 8633 if (!pg_tbl) 8634 return -ENOMEM; 8635 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 8636 rmem = &pg_tbl->ring_mem; 8637 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 8638 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 8639 rmem->depth = 1; 8640 rmem->nr_pages = MAX_CTX_PAGES; 8641 rmem->ctx_mem = ctxm; 8642 if (i == (nr_tbls - 1)) { 8643 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 8644 8645 if (rem) 8646 rmem->nr_pages = rem; 8647 } 8648 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 8649 if (rc) 8650 break; 8651 } 8652 } else { 8653 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 8654 if (rmem->nr_pages > 1 || depth) 8655 rmem->depth = 1; 8656 rmem->ctx_mem = ctxm; 8657 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 8658 } 8659 return rc; 8660 } 8661 8662 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 8663 struct bnxt_ctx_pg_info *ctx_pg) 8664 { 8665 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8666 8667 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 8668 ctx_pg->ctx_pg_tbl) { 8669 int i, nr_tbls = rmem->nr_pages; 8670 8671 for (i = 0; i < nr_tbls; i++) { 8672 struct bnxt_ctx_pg_info *pg_tbl; 8673 struct bnxt_ring_mem_info *rmem2; 8674 8675 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 8676 if (!pg_tbl) 8677 continue; 8678 rmem2 = &pg_tbl->ring_mem; 8679 bnxt_free_ring(bp, rmem2); 8680 ctx_pg->ctx_pg_arr[i] = NULL; 8681 kfree(pg_tbl); 8682 ctx_pg->ctx_pg_tbl[i] = NULL; 8683 } 8684 kfree(ctx_pg->ctx_pg_tbl); 8685 ctx_pg->ctx_pg_tbl = NULL; 8686 } 8687 bnxt_free_ring(bp, rmem); 8688 ctx_pg->nr_pages = 0; 8689 } 8690 8691 static int bnxt_setup_ctxm_pg_tbls(struct bnxt *bp, 8692 struct bnxt_ctx_mem_type *ctxm, u32 entries, 8693 u8 pg_lvl) 8694 { 8695 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 8696 int i, rc = 0, n = 1; 8697 u32 mem_size; 8698 8699 if (!ctxm->entry_size || !ctx_pg) 8700 return -EINVAL; 8701 if (ctxm->instance_bmap) 8702 n = hweight32(ctxm->instance_bmap); 8703 if (ctxm->entry_multiple) 8704 entries = roundup(entries, ctxm->entry_multiple); 8705 entries = clamp_t(u32, entries, ctxm->min_entries, ctxm->max_entries); 8706 mem_size = entries * ctxm->entry_size; 8707 for (i = 0; i < n && !rc; i++) { 8708 ctx_pg[i].entries = entries; 8709 rc = bnxt_alloc_ctx_pg_tbls(bp, &ctx_pg[i], mem_size, pg_lvl, 8710 ctxm->init_value ? ctxm : NULL); 8711 } 8712 return rc; 8713 } 8714 8715 static int bnxt_hwrm_func_backing_store_cfg_v2(struct bnxt *bp, 8716 struct bnxt_ctx_mem_type *ctxm, 8717 bool last) 8718 { 8719 struct hwrm_func_backing_store_cfg_v2_input *req; 8720 u32 instance_bmap = ctxm->instance_bmap; 8721 int i, j, rc = 0, n = 1; 8722 __le32 *p; 8723 8724 if (!(ctxm->flags & BNXT_CTX_MEM_TYPE_VALID) || !ctxm->pg_info) 8725 return 0; 8726 8727 if (instance_bmap) 8728 n = hweight32(ctxm->instance_bmap); 8729 else 8730 instance_bmap = 1; 8731 8732 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_CFG_V2); 8733 if (rc) 8734 return rc; 8735 hwrm_req_hold(bp, req); 8736 req->type = cpu_to_le16(ctxm->type); 8737 req->entry_size = cpu_to_le16(ctxm->entry_size); 8738 req->subtype_valid_cnt = ctxm->split_entry_cnt; 8739 for (i = 0, p = &req->split_entry_0; i < ctxm->split_entry_cnt; i++) 8740 p[i] = cpu_to_le32(ctxm->split[i]); 8741 for (i = 0, j = 0; j < n && !rc; i++) { 8742 struct bnxt_ctx_pg_info *ctx_pg; 8743 8744 if (!(instance_bmap & (1 << i))) 8745 continue; 8746 req->instance = cpu_to_le16(i); 8747 ctx_pg = &ctxm->pg_info[j++]; 8748 if (!ctx_pg->entries) 8749 continue; 8750 req->num_entries = cpu_to_le32(ctx_pg->entries); 8751 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8752 &req->page_size_pbl_level, 8753 &req->page_dir); 8754 if (last && j == n) 8755 req->flags = 8756 cpu_to_le32(FUNC_BACKING_STORE_CFG_V2_REQ_FLAGS_BS_CFG_ALL_DONE); 8757 rc = hwrm_req_send(bp, req); 8758 } 8759 hwrm_req_drop(bp, req); 8760 return rc; 8761 } 8762 8763 static int bnxt_backing_store_cfg_v2(struct bnxt *bp, u32 ena) 8764 { 8765 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8766 struct bnxt_ctx_mem_type *ctxm; 8767 u16 last_type; 8768 int rc = 0; 8769 u16 type; 8770 8771 if (!ena) 8772 return 0; 8773 else if (ena & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) 8774 last_type = BNXT_CTX_MAX - 1; 8775 else 8776 last_type = BNXT_CTX_L2_MAX - 1; 8777 ctx->ctx_arr[last_type].last = 1; 8778 8779 for (type = 0 ; type < BNXT_CTX_V2_MAX; type++) { 8780 ctxm = &ctx->ctx_arr[type]; 8781 8782 rc = bnxt_hwrm_func_backing_store_cfg_v2(bp, ctxm, ctxm->last); 8783 if (rc) 8784 return rc; 8785 } 8786 return 0; 8787 } 8788 8789 void bnxt_free_ctx_mem(struct bnxt *bp) 8790 { 8791 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8792 u16 type; 8793 8794 if (!ctx) 8795 return; 8796 8797 for (type = 0; type < BNXT_CTX_V2_MAX; type++) { 8798 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8799 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 8800 int i, n = 1; 8801 8802 if (!ctx_pg) 8803 continue; 8804 if (ctxm->instance_bmap) 8805 n = hweight32(ctxm->instance_bmap); 8806 for (i = 0; i < n; i++) 8807 bnxt_free_ctx_pg_tbls(bp, &ctx_pg[i]); 8808 8809 kfree(ctx_pg); 8810 ctxm->pg_info = NULL; 8811 } 8812 8813 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 8814 kfree(ctx); 8815 bp->ctx = NULL; 8816 } 8817 8818 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 8819 { 8820 struct bnxt_ctx_mem_type *ctxm; 8821 struct bnxt_ctx_mem_info *ctx; 8822 u32 l2_qps, qp1_qps, max_qps; 8823 u32 ena, entries_sp, entries; 8824 u32 srqs, max_srqs, min; 8825 u32 num_mr, num_ah; 8826 u32 extra_srqs = 0; 8827 u32 extra_qps = 0; 8828 u32 fast_qpmd_qps; 8829 u8 pg_lvl = 1; 8830 int i, rc; 8831 8832 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 8833 if (rc) { 8834 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 8835 rc); 8836 return rc; 8837 } 8838 ctx = bp->ctx; 8839 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 8840 return 0; 8841 8842 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8843 l2_qps = ctxm->qp_l2_entries; 8844 qp1_qps = ctxm->qp_qp1_entries; 8845 fast_qpmd_qps = ctxm->qp_fast_qpmd_entries; 8846 max_qps = ctxm->max_entries; 8847 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8848 srqs = ctxm->srq_l2_entries; 8849 max_srqs = ctxm->max_entries; 8850 ena = 0; 8851 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 8852 pg_lvl = 2; 8853 extra_qps = min_t(u32, 65536, max_qps - l2_qps - qp1_qps); 8854 /* allocate extra qps if fw supports RoCE fast qp destroy feature */ 8855 extra_qps += fast_qpmd_qps; 8856 extra_srqs = min_t(u32, 8192, max_srqs - srqs); 8857 if (fast_qpmd_qps) 8858 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD; 8859 } 8860 8861 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8862 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 8863 pg_lvl); 8864 if (rc) 8865 return rc; 8866 8867 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8868 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, srqs + extra_srqs, pg_lvl); 8869 if (rc) 8870 return rc; 8871 8872 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8873 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->cq_l2_entries + 8874 extra_qps * 2, pg_lvl); 8875 if (rc) 8876 return rc; 8877 8878 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8879 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 8880 if (rc) 8881 return rc; 8882 8883 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8884 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 8885 if (rc) 8886 return rc; 8887 8888 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 8889 goto skip_rdma; 8890 8891 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8892 /* 128K extra is needed to accommodate static AH context 8893 * allocation by f/w. 8894 */ 8895 num_mr = min_t(u32, ctxm->max_entries / 2, 1024 * 256); 8896 num_ah = min_t(u32, num_mr, 1024 * 128); 8897 ctxm->split_entry_cnt = BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1; 8898 if (!ctxm->mrav_av_entries || ctxm->mrav_av_entries > num_ah) 8899 ctxm->mrav_av_entries = num_ah; 8900 8901 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, num_mr + num_ah, 2); 8902 if (rc) 8903 return rc; 8904 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 8905 8906 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8907 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 1); 8908 if (rc) 8909 return rc; 8910 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 8911 8912 skip_rdma: 8913 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8914 min = ctxm->min_entries; 8915 entries_sp = ctx->ctx_arr[BNXT_CTX_VNIC].vnic_entries + l2_qps + 8916 2 * (extra_qps + qp1_qps) + min; 8917 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries_sp, 2); 8918 if (rc) 8919 return rc; 8920 8921 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 8922 entries = l2_qps + 2 * (extra_qps + qp1_qps); 8923 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries, 2); 8924 if (rc) 8925 return rc; 8926 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 8927 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 8928 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 8929 8930 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 8931 rc = bnxt_backing_store_cfg_v2(bp, ena); 8932 else 8933 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 8934 if (rc) { 8935 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 8936 rc); 8937 return rc; 8938 } 8939 ctx->flags |= BNXT_CTX_FLAG_INITED; 8940 return 0; 8941 } 8942 8943 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 8944 { 8945 struct hwrm_func_resource_qcaps_output *resp; 8946 struct hwrm_func_resource_qcaps_input *req; 8947 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 8948 int rc; 8949 8950 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS); 8951 if (rc) 8952 return rc; 8953 8954 req->fid = cpu_to_le16(0xffff); 8955 resp = hwrm_req_hold(bp, req); 8956 rc = hwrm_req_send_silent(bp, req); 8957 if (rc) 8958 goto hwrm_func_resc_qcaps_exit; 8959 8960 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 8961 if (!all) 8962 goto hwrm_func_resc_qcaps_exit; 8963 8964 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 8965 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 8966 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 8967 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 8968 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 8969 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 8970 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 8971 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 8972 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 8973 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 8974 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 8975 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 8976 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 8977 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 8978 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 8979 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 8980 8981 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 8982 u16 max_msix = le16_to_cpu(resp->max_msix); 8983 8984 hw_resc->max_nqs = max_msix; 8985 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 8986 } 8987 8988 if (BNXT_PF(bp)) { 8989 struct bnxt_pf_info *pf = &bp->pf; 8990 8991 pf->vf_resv_strategy = 8992 le16_to_cpu(resp->vf_reservation_strategy); 8993 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 8994 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 8995 } 8996 hwrm_func_resc_qcaps_exit: 8997 hwrm_req_drop(bp, req); 8998 return rc; 8999 } 9000 9001 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) 9002 { 9003 struct hwrm_port_mac_ptp_qcfg_output *resp; 9004 struct hwrm_port_mac_ptp_qcfg_input *req; 9005 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 9006 bool phc_cfg; 9007 u8 flags; 9008 int rc; 9009 9010 if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5_PLUS(bp)) { 9011 rc = -ENODEV; 9012 goto no_ptp; 9013 } 9014 9015 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG); 9016 if (rc) 9017 goto no_ptp; 9018 9019 req->port_id = cpu_to_le16(bp->pf.port_id); 9020 resp = hwrm_req_hold(bp, req); 9021 rc = hwrm_req_send(bp, req); 9022 if (rc) 9023 goto exit; 9024 9025 flags = resp->flags; 9026 if (BNXT_CHIP_P5_AND_MINUS(bp) && 9027 !(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { 9028 rc = -ENODEV; 9029 goto exit; 9030 } 9031 if (!ptp) { 9032 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); 9033 if (!ptp) { 9034 rc = -ENOMEM; 9035 goto exit; 9036 } 9037 ptp->bp = bp; 9038 bp->ptp_cfg = ptp; 9039 } 9040 9041 if (flags & 9042 (PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK | 9043 PORT_MAC_PTP_QCFG_RESP_FLAGS_64B_PHC_TIME)) { 9044 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); 9045 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); 9046 } else if (BNXT_CHIP_P5(bp)) { 9047 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; 9048 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; 9049 } else { 9050 rc = -ENODEV; 9051 goto exit; 9052 } 9053 phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0; 9054 rc = bnxt_ptp_init(bp, phc_cfg); 9055 if (rc) 9056 netdev_warn(bp->dev, "PTP initialization failed.\n"); 9057 exit: 9058 hwrm_req_drop(bp, req); 9059 if (!rc) 9060 return 0; 9061 9062 no_ptp: 9063 bnxt_ptp_clear(bp); 9064 kfree(ptp); 9065 bp->ptp_cfg = NULL; 9066 return rc; 9067 } 9068 9069 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 9070 { 9071 struct hwrm_func_qcaps_output *resp; 9072 struct hwrm_func_qcaps_input *req; 9073 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9074 u32 flags, flags_ext, flags_ext2; 9075 int rc; 9076 9077 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS); 9078 if (rc) 9079 return rc; 9080 9081 req->fid = cpu_to_le16(0xffff); 9082 resp = hwrm_req_hold(bp, req); 9083 rc = hwrm_req_send(bp, req); 9084 if (rc) 9085 goto hwrm_func_qcaps_exit; 9086 9087 flags = le32_to_cpu(resp->flags); 9088 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 9089 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 9090 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 9091 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 9092 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 9093 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 9094 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 9095 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 9096 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 9097 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 9098 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 9099 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 9100 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 9101 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 9102 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 9103 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 9104 if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED) 9105 bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS; 9106 9107 flags_ext = le32_to_cpu(resp->flags_ext); 9108 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 9109 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 9110 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED)) 9111 bp->fw_cap |= BNXT_FW_CAP_PTP_PPS; 9112 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED) 9113 bp->fw_cap |= BNXT_FW_CAP_PTP_RTC; 9114 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT)) 9115 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF; 9116 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED)) 9117 bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH; 9118 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_BS_V2_SUPPORTED) 9119 bp->fw_cap |= BNXT_FW_CAP_BACKING_STORE_V2; 9120 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_TX_COAL_CMPL_CAP) 9121 bp->flags |= BNXT_FLAG_TX_COAL_CMPL; 9122 9123 flags_ext2 = le32_to_cpu(resp->flags_ext2); 9124 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED) 9125 bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS; 9126 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_UDP_GSO_SUPPORTED) 9127 bp->flags |= BNXT_FLAG_UDP_GSO_CAP; 9128 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_TX_PKT_TS_CMPL_SUPPORTED) 9129 bp->fw_cap |= BNXT_FW_CAP_TX_TS_CMP; 9130 9131 bp->tx_push_thresh = 0; 9132 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 9133 BNXT_FW_MAJ(bp) > 217) 9134 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 9135 9136 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 9137 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 9138 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 9139 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 9140 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 9141 if (!hw_resc->max_hw_ring_grps) 9142 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 9143 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 9144 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 9145 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 9146 9147 hw_resc->max_encap_records = le32_to_cpu(resp->max_encap_records); 9148 hw_resc->max_decap_records = le32_to_cpu(resp->max_decap_records); 9149 hw_resc->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 9150 hw_resc->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 9151 hw_resc->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 9152 hw_resc->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 9153 9154 if (BNXT_PF(bp)) { 9155 struct bnxt_pf_info *pf = &bp->pf; 9156 9157 pf->fw_fid = le16_to_cpu(resp->fid); 9158 pf->port_id = le16_to_cpu(resp->port_id); 9159 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 9160 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 9161 pf->max_vfs = le16_to_cpu(resp->max_vfs); 9162 bp->flags &= ~BNXT_FLAG_WOL_CAP; 9163 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 9164 bp->flags |= BNXT_FLAG_WOL_CAP; 9165 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { 9166 bp->fw_cap |= BNXT_FW_CAP_PTP; 9167 } else { 9168 bnxt_ptp_clear(bp); 9169 kfree(bp->ptp_cfg); 9170 bp->ptp_cfg = NULL; 9171 } 9172 } else { 9173 #ifdef CONFIG_BNXT_SRIOV 9174 struct bnxt_vf_info *vf = &bp->vf; 9175 9176 vf->fw_fid = le16_to_cpu(resp->fid); 9177 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 9178 #endif 9179 } 9180 bp->tso_max_segs = le16_to_cpu(resp->max_tso_segs); 9181 9182 hwrm_func_qcaps_exit: 9183 hwrm_req_drop(bp, req); 9184 return rc; 9185 } 9186 9187 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp) 9188 { 9189 struct hwrm_dbg_qcaps_output *resp; 9190 struct hwrm_dbg_qcaps_input *req; 9191 int rc; 9192 9193 bp->fw_dbg_cap = 0; 9194 if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS)) 9195 return; 9196 9197 rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS); 9198 if (rc) 9199 return; 9200 9201 req->fid = cpu_to_le16(0xffff); 9202 resp = hwrm_req_hold(bp, req); 9203 rc = hwrm_req_send(bp, req); 9204 if (rc) 9205 goto hwrm_dbg_qcaps_exit; 9206 9207 bp->fw_dbg_cap = le32_to_cpu(resp->flags); 9208 9209 hwrm_dbg_qcaps_exit: 9210 hwrm_req_drop(bp, req); 9211 } 9212 9213 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 9214 9215 int bnxt_hwrm_func_qcaps(struct bnxt *bp) 9216 { 9217 int rc; 9218 9219 rc = __bnxt_hwrm_func_qcaps(bp); 9220 if (rc) 9221 return rc; 9222 9223 bnxt_hwrm_dbg_qcaps(bp); 9224 9225 rc = bnxt_hwrm_queue_qportcfg(bp); 9226 if (rc) { 9227 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 9228 return rc; 9229 } 9230 if (bp->hwrm_spec_code >= 0x10803) { 9231 rc = bnxt_alloc_ctx_mem(bp); 9232 if (rc) 9233 return rc; 9234 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 9235 if (!rc) 9236 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 9237 } 9238 return 0; 9239 } 9240 9241 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 9242 { 9243 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 9244 struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req; 9245 u32 flags; 9246 int rc; 9247 9248 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 9249 return 0; 9250 9251 rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS); 9252 if (rc) 9253 return rc; 9254 9255 resp = hwrm_req_hold(bp, req); 9256 rc = hwrm_req_send(bp, req); 9257 if (rc) 9258 goto hwrm_cfa_adv_qcaps_exit; 9259 9260 flags = le32_to_cpu(resp->flags); 9261 if (flags & 9262 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 9263 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 9264 9265 if (flags & 9266 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V3_SUPPORTED) 9267 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V3; 9268 9269 if (flags & 9270 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_NTUPLE_FLOW_RX_EXT_IP_PROTO_SUPPORTED) 9271 bp->fw_cap |= BNXT_FW_CAP_CFA_NTUPLE_RX_EXT_IP_PROTO; 9272 9273 hwrm_cfa_adv_qcaps_exit: 9274 hwrm_req_drop(bp, req); 9275 return rc; 9276 } 9277 9278 static int __bnxt_alloc_fw_health(struct bnxt *bp) 9279 { 9280 if (bp->fw_health) 9281 return 0; 9282 9283 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 9284 if (!bp->fw_health) 9285 return -ENOMEM; 9286 9287 mutex_init(&bp->fw_health->lock); 9288 return 0; 9289 } 9290 9291 static int bnxt_alloc_fw_health(struct bnxt *bp) 9292 { 9293 int rc; 9294 9295 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 9296 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 9297 return 0; 9298 9299 rc = __bnxt_alloc_fw_health(bp); 9300 if (rc) { 9301 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 9302 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 9303 return rc; 9304 } 9305 9306 return 0; 9307 } 9308 9309 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 9310 { 9311 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 9312 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 9313 BNXT_FW_HEALTH_WIN_MAP_OFF); 9314 } 9315 9316 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 9317 { 9318 struct bnxt_fw_health *fw_health = bp->fw_health; 9319 u32 reg_type; 9320 9321 if (!fw_health) 9322 return; 9323 9324 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 9325 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9326 fw_health->status_reliable = false; 9327 9328 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]); 9329 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9330 fw_health->resets_reliable = false; 9331 } 9332 9333 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 9334 { 9335 void __iomem *hs; 9336 u32 status_loc; 9337 u32 reg_type; 9338 u32 sig; 9339 9340 if (bp->fw_health) 9341 bp->fw_health->status_reliable = false; 9342 9343 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 9344 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 9345 9346 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 9347 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 9348 if (!bp->chip_num) { 9349 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 9350 bp->chip_num = readl(bp->bar0 + 9351 BNXT_FW_HEALTH_WIN_BASE + 9352 BNXT_GRC_REG_CHIP_NUM); 9353 } 9354 if (!BNXT_CHIP_P5_PLUS(bp)) 9355 return; 9356 9357 status_loc = BNXT_GRC_REG_STATUS_P5 | 9358 BNXT_FW_HEALTH_REG_TYPE_BAR0; 9359 } else { 9360 status_loc = readl(hs + offsetof(struct hcomm_status, 9361 fw_status_loc)); 9362 } 9363 9364 if (__bnxt_alloc_fw_health(bp)) { 9365 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 9366 return; 9367 } 9368 9369 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 9370 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 9371 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 9372 __bnxt_map_fw_health_reg(bp, status_loc); 9373 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 9374 BNXT_FW_HEALTH_WIN_OFF(status_loc); 9375 } 9376 9377 bp->fw_health->status_reliable = true; 9378 } 9379 9380 static int bnxt_map_fw_health_regs(struct bnxt *bp) 9381 { 9382 struct bnxt_fw_health *fw_health = bp->fw_health; 9383 u32 reg_base = 0xffffffff; 9384 int i; 9385 9386 bp->fw_health->status_reliable = false; 9387 bp->fw_health->resets_reliable = false; 9388 /* Only pre-map the monitoring GRC registers using window 3 */ 9389 for (i = 0; i < 4; i++) { 9390 u32 reg = fw_health->regs[i]; 9391 9392 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 9393 continue; 9394 if (reg_base == 0xffffffff) 9395 reg_base = reg & BNXT_GRC_BASE_MASK; 9396 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 9397 return -ERANGE; 9398 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 9399 } 9400 bp->fw_health->status_reliable = true; 9401 bp->fw_health->resets_reliable = true; 9402 if (reg_base == 0xffffffff) 9403 return 0; 9404 9405 __bnxt_map_fw_health_reg(bp, reg_base); 9406 return 0; 9407 } 9408 9409 static void bnxt_remap_fw_health_regs(struct bnxt *bp) 9410 { 9411 if (!bp->fw_health) 9412 return; 9413 9414 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) { 9415 bp->fw_health->status_reliable = true; 9416 bp->fw_health->resets_reliable = true; 9417 } else { 9418 bnxt_try_map_fw_health_reg(bp); 9419 } 9420 } 9421 9422 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 9423 { 9424 struct bnxt_fw_health *fw_health = bp->fw_health; 9425 struct hwrm_error_recovery_qcfg_output *resp; 9426 struct hwrm_error_recovery_qcfg_input *req; 9427 int rc, i; 9428 9429 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 9430 return 0; 9431 9432 rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG); 9433 if (rc) 9434 return rc; 9435 9436 resp = hwrm_req_hold(bp, req); 9437 rc = hwrm_req_send(bp, req); 9438 if (rc) 9439 goto err_recovery_out; 9440 fw_health->flags = le32_to_cpu(resp->flags); 9441 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 9442 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 9443 rc = -EINVAL; 9444 goto err_recovery_out; 9445 } 9446 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 9447 fw_health->master_func_wait_dsecs = 9448 le32_to_cpu(resp->master_func_wait_period); 9449 fw_health->normal_func_wait_dsecs = 9450 le32_to_cpu(resp->normal_func_wait_period); 9451 fw_health->post_reset_wait_dsecs = 9452 le32_to_cpu(resp->master_func_wait_period_after_reset); 9453 fw_health->post_reset_max_wait_dsecs = 9454 le32_to_cpu(resp->max_bailout_time_after_reset); 9455 fw_health->regs[BNXT_FW_HEALTH_REG] = 9456 le32_to_cpu(resp->fw_health_status_reg); 9457 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 9458 le32_to_cpu(resp->fw_heartbeat_reg); 9459 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 9460 le32_to_cpu(resp->fw_reset_cnt_reg); 9461 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 9462 le32_to_cpu(resp->reset_inprogress_reg); 9463 fw_health->fw_reset_inprog_reg_mask = 9464 le32_to_cpu(resp->reset_inprogress_reg_mask); 9465 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 9466 if (fw_health->fw_reset_seq_cnt >= 16) { 9467 rc = -EINVAL; 9468 goto err_recovery_out; 9469 } 9470 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 9471 fw_health->fw_reset_seq_regs[i] = 9472 le32_to_cpu(resp->reset_reg[i]); 9473 fw_health->fw_reset_seq_vals[i] = 9474 le32_to_cpu(resp->reset_reg_val[i]); 9475 fw_health->fw_reset_seq_delay_msec[i] = 9476 resp->delay_after_reset[i]; 9477 } 9478 err_recovery_out: 9479 hwrm_req_drop(bp, req); 9480 if (!rc) 9481 rc = bnxt_map_fw_health_regs(bp); 9482 if (rc) 9483 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 9484 return rc; 9485 } 9486 9487 static int bnxt_hwrm_func_reset(struct bnxt *bp) 9488 { 9489 struct hwrm_func_reset_input *req; 9490 int rc; 9491 9492 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET); 9493 if (rc) 9494 return rc; 9495 9496 req->enables = 0; 9497 hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT); 9498 return hwrm_req_send(bp, req); 9499 } 9500 9501 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 9502 { 9503 struct hwrm_nvm_get_dev_info_output nvm_info; 9504 9505 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 9506 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 9507 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 9508 nvm_info.nvm_cfg_ver_upd); 9509 } 9510 9511 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 9512 { 9513 struct hwrm_queue_qportcfg_output *resp; 9514 struct hwrm_queue_qportcfg_input *req; 9515 u8 i, j, *qptr; 9516 bool no_rdma; 9517 int rc = 0; 9518 9519 rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG); 9520 if (rc) 9521 return rc; 9522 9523 resp = hwrm_req_hold(bp, req); 9524 rc = hwrm_req_send(bp, req); 9525 if (rc) 9526 goto qportcfg_exit; 9527 9528 if (!resp->max_configurable_queues) { 9529 rc = -EINVAL; 9530 goto qportcfg_exit; 9531 } 9532 bp->max_tc = resp->max_configurable_queues; 9533 bp->max_lltc = resp->max_configurable_lossless_queues; 9534 if (bp->max_tc > BNXT_MAX_QUEUE) 9535 bp->max_tc = BNXT_MAX_QUEUE; 9536 9537 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 9538 qptr = &resp->queue_id0; 9539 for (i = 0, j = 0; i < bp->max_tc; i++) { 9540 bp->q_info[j].queue_id = *qptr; 9541 bp->q_ids[i] = *qptr++; 9542 bp->q_info[j].queue_profile = *qptr++; 9543 bp->tc_to_qidx[j] = j; 9544 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 9545 (no_rdma && BNXT_PF(bp))) 9546 j++; 9547 } 9548 bp->max_q = bp->max_tc; 9549 bp->max_tc = max_t(u8, j, 1); 9550 9551 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 9552 bp->max_tc = 1; 9553 9554 if (bp->max_lltc > bp->max_tc) 9555 bp->max_lltc = bp->max_tc; 9556 9557 qportcfg_exit: 9558 hwrm_req_drop(bp, req); 9559 return rc; 9560 } 9561 9562 static int bnxt_hwrm_poll(struct bnxt *bp) 9563 { 9564 struct hwrm_ver_get_input *req; 9565 int rc; 9566 9567 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 9568 if (rc) 9569 return rc; 9570 9571 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 9572 req->hwrm_intf_min = HWRM_VERSION_MINOR; 9573 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 9574 9575 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT); 9576 rc = hwrm_req_send(bp, req); 9577 return rc; 9578 } 9579 9580 static int bnxt_hwrm_ver_get(struct bnxt *bp) 9581 { 9582 struct hwrm_ver_get_output *resp; 9583 struct hwrm_ver_get_input *req; 9584 u16 fw_maj, fw_min, fw_bld, fw_rsv; 9585 u32 dev_caps_cfg, hwrm_ver; 9586 int rc, len; 9587 9588 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 9589 if (rc) 9590 return rc; 9591 9592 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 9593 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 9594 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 9595 req->hwrm_intf_min = HWRM_VERSION_MINOR; 9596 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 9597 9598 resp = hwrm_req_hold(bp, req); 9599 rc = hwrm_req_send(bp, req); 9600 if (rc) 9601 goto hwrm_ver_get_exit; 9602 9603 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 9604 9605 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 9606 resp->hwrm_intf_min_8b << 8 | 9607 resp->hwrm_intf_upd_8b; 9608 if (resp->hwrm_intf_maj_8b < 1) { 9609 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 9610 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 9611 resp->hwrm_intf_upd_8b); 9612 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 9613 } 9614 9615 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 9616 HWRM_VERSION_UPDATE; 9617 9618 if (bp->hwrm_spec_code > hwrm_ver) 9619 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 9620 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 9621 HWRM_VERSION_UPDATE); 9622 else 9623 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 9624 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 9625 resp->hwrm_intf_upd_8b); 9626 9627 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 9628 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 9629 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 9630 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 9631 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 9632 len = FW_VER_STR_LEN; 9633 } else { 9634 fw_maj = resp->hwrm_fw_maj_8b; 9635 fw_min = resp->hwrm_fw_min_8b; 9636 fw_bld = resp->hwrm_fw_bld_8b; 9637 fw_rsv = resp->hwrm_fw_rsvd_8b; 9638 len = BC_HWRM_STR_LEN; 9639 } 9640 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 9641 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 9642 fw_rsv); 9643 9644 if (strlen(resp->active_pkg_name)) { 9645 int fw_ver_len = strlen(bp->fw_ver_str); 9646 9647 snprintf(bp->fw_ver_str + fw_ver_len, 9648 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 9649 resp->active_pkg_name); 9650 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 9651 } 9652 9653 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 9654 if (!bp->hwrm_cmd_timeout) 9655 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 9656 bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000; 9657 if (!bp->hwrm_cmd_max_timeout) 9658 bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT; 9659 else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT) 9660 netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n", 9661 bp->hwrm_cmd_max_timeout / 1000); 9662 9663 if (resp->hwrm_intf_maj_8b >= 1) { 9664 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 9665 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 9666 } 9667 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 9668 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 9669 9670 bp->chip_num = le16_to_cpu(resp->chip_num); 9671 bp->chip_rev = resp->chip_rev; 9672 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 9673 !resp->chip_metal) 9674 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 9675 9676 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 9677 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 9678 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 9679 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 9680 9681 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 9682 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 9683 9684 if (dev_caps_cfg & 9685 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 9686 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 9687 9688 if (dev_caps_cfg & 9689 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 9690 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 9691 9692 if (dev_caps_cfg & 9693 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 9694 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 9695 9696 hwrm_ver_get_exit: 9697 hwrm_req_drop(bp, req); 9698 return rc; 9699 } 9700 9701 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 9702 { 9703 struct hwrm_fw_set_time_input *req; 9704 struct tm tm; 9705 time64_t now = ktime_get_real_seconds(); 9706 int rc; 9707 9708 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 9709 bp->hwrm_spec_code < 0x10400) 9710 return -EOPNOTSUPP; 9711 9712 time64_to_tm(now, 0, &tm); 9713 rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME); 9714 if (rc) 9715 return rc; 9716 9717 req->year = cpu_to_le16(1900 + tm.tm_year); 9718 req->month = 1 + tm.tm_mon; 9719 req->day = tm.tm_mday; 9720 req->hour = tm.tm_hour; 9721 req->minute = tm.tm_min; 9722 req->second = tm.tm_sec; 9723 return hwrm_req_send(bp, req); 9724 } 9725 9726 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 9727 { 9728 u64 sw_tmp; 9729 9730 hw &= mask; 9731 sw_tmp = (*sw & ~mask) | hw; 9732 if (hw < (*sw & mask)) 9733 sw_tmp += mask + 1; 9734 WRITE_ONCE(*sw, sw_tmp); 9735 } 9736 9737 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 9738 int count, bool ignore_zero) 9739 { 9740 int i; 9741 9742 for (i = 0; i < count; i++) { 9743 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 9744 9745 if (ignore_zero && !hw) 9746 continue; 9747 9748 if (masks[i] == -1ULL) 9749 sw_stats[i] = hw; 9750 else 9751 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 9752 } 9753 } 9754 9755 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 9756 { 9757 if (!stats->hw_stats) 9758 return; 9759 9760 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 9761 stats->hw_masks, stats->len / 8, false); 9762 } 9763 9764 static void bnxt_accumulate_all_stats(struct bnxt *bp) 9765 { 9766 struct bnxt_stats_mem *ring0_stats; 9767 bool ignore_zero = false; 9768 int i; 9769 9770 /* Chip bug. Counter intermittently becomes 0. */ 9771 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 9772 ignore_zero = true; 9773 9774 for (i = 0; i < bp->cp_nr_rings; i++) { 9775 struct bnxt_napi *bnapi = bp->bnapi[i]; 9776 struct bnxt_cp_ring_info *cpr; 9777 struct bnxt_stats_mem *stats; 9778 9779 cpr = &bnapi->cp_ring; 9780 stats = &cpr->stats; 9781 if (!i) 9782 ring0_stats = stats; 9783 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 9784 ring0_stats->hw_masks, 9785 ring0_stats->len / 8, ignore_zero); 9786 } 9787 if (bp->flags & BNXT_FLAG_PORT_STATS) { 9788 struct bnxt_stats_mem *stats = &bp->port_stats; 9789 __le64 *hw_stats = stats->hw_stats; 9790 u64 *sw_stats = stats->sw_stats; 9791 u64 *masks = stats->hw_masks; 9792 int cnt; 9793 9794 cnt = sizeof(struct rx_port_stats) / 8; 9795 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 9796 9797 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 9798 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 9799 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 9800 cnt = sizeof(struct tx_port_stats) / 8; 9801 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 9802 } 9803 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 9804 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 9805 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 9806 } 9807 } 9808 9809 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 9810 { 9811 struct hwrm_port_qstats_input *req; 9812 struct bnxt_pf_info *pf = &bp->pf; 9813 int rc; 9814 9815 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 9816 return 0; 9817 9818 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 9819 return -EOPNOTSUPP; 9820 9821 rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS); 9822 if (rc) 9823 return rc; 9824 9825 req->flags = flags; 9826 req->port_id = cpu_to_le16(pf->port_id); 9827 req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 9828 BNXT_TX_PORT_STATS_BYTE_OFFSET); 9829 req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 9830 return hwrm_req_send(bp, req); 9831 } 9832 9833 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 9834 { 9835 struct hwrm_queue_pri2cos_qcfg_output *resp_qc; 9836 struct hwrm_queue_pri2cos_qcfg_input *req_qc; 9837 struct hwrm_port_qstats_ext_output *resp_qs; 9838 struct hwrm_port_qstats_ext_input *req_qs; 9839 struct bnxt_pf_info *pf = &bp->pf; 9840 u32 tx_stat_size; 9841 int rc; 9842 9843 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 9844 return 0; 9845 9846 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 9847 return -EOPNOTSUPP; 9848 9849 rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT); 9850 if (rc) 9851 return rc; 9852 9853 req_qs->flags = flags; 9854 req_qs->port_id = cpu_to_le16(pf->port_id); 9855 req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 9856 req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 9857 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 9858 sizeof(struct tx_port_stats_ext) : 0; 9859 req_qs->tx_stat_size = cpu_to_le16(tx_stat_size); 9860 req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 9861 resp_qs = hwrm_req_hold(bp, req_qs); 9862 rc = hwrm_req_send(bp, req_qs); 9863 if (!rc) { 9864 bp->fw_rx_stats_ext_size = 9865 le16_to_cpu(resp_qs->rx_stat_size) / 8; 9866 if (BNXT_FW_MAJ(bp) < 220 && 9867 bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY) 9868 bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY; 9869 9870 bp->fw_tx_stats_ext_size = tx_stat_size ? 9871 le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0; 9872 } else { 9873 bp->fw_rx_stats_ext_size = 0; 9874 bp->fw_tx_stats_ext_size = 0; 9875 } 9876 hwrm_req_drop(bp, req_qs); 9877 9878 if (flags) 9879 return rc; 9880 9881 if (bp->fw_tx_stats_ext_size <= 9882 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 9883 bp->pri2cos_valid = 0; 9884 return rc; 9885 } 9886 9887 rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG); 9888 if (rc) 9889 return rc; 9890 9891 req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 9892 9893 resp_qc = hwrm_req_hold(bp, req_qc); 9894 rc = hwrm_req_send(bp, req_qc); 9895 if (!rc) { 9896 u8 *pri2cos; 9897 int i, j; 9898 9899 pri2cos = &resp_qc->pri0_cos_queue_id; 9900 for (i = 0; i < 8; i++) { 9901 u8 queue_id = pri2cos[i]; 9902 u8 queue_idx; 9903 9904 /* Per port queue IDs start from 0, 10, 20, etc */ 9905 queue_idx = queue_id % 10; 9906 if (queue_idx > BNXT_MAX_QUEUE) { 9907 bp->pri2cos_valid = false; 9908 hwrm_req_drop(bp, req_qc); 9909 return rc; 9910 } 9911 for (j = 0; j < bp->max_q; j++) { 9912 if (bp->q_ids[j] == queue_id) 9913 bp->pri2cos_idx[i] = queue_idx; 9914 } 9915 } 9916 bp->pri2cos_valid = true; 9917 } 9918 hwrm_req_drop(bp, req_qc); 9919 9920 return rc; 9921 } 9922 9923 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 9924 { 9925 bnxt_hwrm_tunnel_dst_port_free(bp, 9926 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 9927 bnxt_hwrm_tunnel_dst_port_free(bp, 9928 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 9929 } 9930 9931 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 9932 { 9933 int rc, i; 9934 u32 tpa_flags = 0; 9935 9936 if (set_tpa) 9937 tpa_flags = bp->flags & BNXT_FLAG_TPA; 9938 else if (BNXT_NO_FW_ACCESS(bp)) 9939 return 0; 9940 for (i = 0; i < bp->nr_vnics; i++) { 9941 rc = bnxt_hwrm_vnic_set_tpa(bp, &bp->vnic_info[i], tpa_flags); 9942 if (rc) { 9943 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 9944 i, rc); 9945 return rc; 9946 } 9947 } 9948 return 0; 9949 } 9950 9951 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 9952 { 9953 int i; 9954 9955 for (i = 0; i < bp->nr_vnics; i++) 9956 bnxt_hwrm_vnic_set_rss(bp, &bp->vnic_info[i], false); 9957 } 9958 9959 static void bnxt_clear_vnic(struct bnxt *bp) 9960 { 9961 if (!bp->vnic_info) 9962 return; 9963 9964 bnxt_hwrm_clear_vnic_filter(bp); 9965 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) { 9966 /* clear all RSS setting before free vnic ctx */ 9967 bnxt_hwrm_clear_vnic_rss(bp); 9968 bnxt_hwrm_vnic_ctx_free(bp); 9969 } 9970 /* before free the vnic, undo the vnic tpa settings */ 9971 if (bp->flags & BNXT_FLAG_TPA) 9972 bnxt_set_tpa(bp, false); 9973 bnxt_hwrm_vnic_free(bp); 9974 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 9975 bnxt_hwrm_vnic_ctx_free(bp); 9976 } 9977 9978 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 9979 bool irq_re_init) 9980 { 9981 bnxt_clear_vnic(bp); 9982 bnxt_hwrm_ring_free(bp, close_path); 9983 bnxt_hwrm_ring_grp_free(bp); 9984 if (irq_re_init) { 9985 bnxt_hwrm_stat_ctx_free(bp); 9986 bnxt_hwrm_free_tunnel_ports(bp); 9987 } 9988 } 9989 9990 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 9991 { 9992 struct hwrm_func_cfg_input *req; 9993 u8 evb_mode; 9994 int rc; 9995 9996 if (br_mode == BRIDGE_MODE_VEB) 9997 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 9998 else if (br_mode == BRIDGE_MODE_VEPA) 9999 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 10000 else 10001 return -EINVAL; 10002 10003 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 10004 if (rc) 10005 return rc; 10006 10007 req->fid = cpu_to_le16(0xffff); 10008 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 10009 req->evb_mode = evb_mode; 10010 return hwrm_req_send(bp, req); 10011 } 10012 10013 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 10014 { 10015 struct hwrm_func_cfg_input *req; 10016 int rc; 10017 10018 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 10019 return 0; 10020 10021 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 10022 if (rc) 10023 return rc; 10024 10025 req->fid = cpu_to_le16(0xffff); 10026 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 10027 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 10028 if (size == 128) 10029 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 10030 10031 return hwrm_req_send(bp, req); 10032 } 10033 10034 static int __bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10035 { 10036 int rc; 10037 10038 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 10039 goto skip_rss_ctx; 10040 10041 /* allocate context for vnic */ 10042 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 0); 10043 if (rc) { 10044 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 10045 vnic->vnic_id, rc); 10046 goto vnic_setup_err; 10047 } 10048 bp->rsscos_nr_ctxs++; 10049 10050 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10051 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 1); 10052 if (rc) { 10053 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 10054 vnic->vnic_id, rc); 10055 goto vnic_setup_err; 10056 } 10057 bp->rsscos_nr_ctxs++; 10058 } 10059 10060 skip_rss_ctx: 10061 /* configure default vnic, ring grp */ 10062 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10063 if (rc) { 10064 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 10065 vnic->vnic_id, rc); 10066 goto vnic_setup_err; 10067 } 10068 10069 /* Enable RSS hashing on vnic */ 10070 rc = bnxt_hwrm_vnic_set_rss(bp, vnic, true); 10071 if (rc) { 10072 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 10073 vnic->vnic_id, rc); 10074 goto vnic_setup_err; 10075 } 10076 10077 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 10078 rc = bnxt_hwrm_vnic_set_hds(bp, vnic); 10079 if (rc) { 10080 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 10081 vnic->vnic_id, rc); 10082 } 10083 } 10084 10085 vnic_setup_err: 10086 return rc; 10087 } 10088 10089 int bnxt_hwrm_vnic_rss_cfg_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10090 { 10091 int rc; 10092 10093 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic, true); 10094 if (rc) { 10095 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 10096 vnic->vnic_id, rc); 10097 return rc; 10098 } 10099 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10100 if (rc) 10101 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 10102 vnic->vnic_id, rc); 10103 return rc; 10104 } 10105 10106 int __bnxt_setup_vnic_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10107 { 10108 int rc, i, nr_ctxs; 10109 10110 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 10111 for (i = 0; i < nr_ctxs; i++) { 10112 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, i); 10113 if (rc) { 10114 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 10115 vnic->vnic_id, i, rc); 10116 break; 10117 } 10118 bp->rsscos_nr_ctxs++; 10119 } 10120 if (i < nr_ctxs) 10121 return -ENOMEM; 10122 10123 rc = bnxt_hwrm_vnic_rss_cfg_p5(bp, vnic); 10124 if (rc) 10125 return rc; 10126 10127 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 10128 rc = bnxt_hwrm_vnic_set_hds(bp, vnic); 10129 if (rc) { 10130 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 10131 vnic->vnic_id, rc); 10132 } 10133 } 10134 return rc; 10135 } 10136 10137 static int bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10138 { 10139 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10140 return __bnxt_setup_vnic_p5(bp, vnic); 10141 else 10142 return __bnxt_setup_vnic(bp, vnic); 10143 } 10144 10145 static int bnxt_alloc_and_setup_vnic(struct bnxt *bp, 10146 struct bnxt_vnic_info *vnic, 10147 u16 start_rx_ring_idx, int rx_rings) 10148 { 10149 int rc; 10150 10151 rc = bnxt_hwrm_vnic_alloc(bp, vnic, start_rx_ring_idx, rx_rings); 10152 if (rc) { 10153 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 10154 vnic->vnic_id, rc); 10155 return rc; 10156 } 10157 return bnxt_setup_vnic(bp, vnic); 10158 } 10159 10160 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 10161 { 10162 struct bnxt_vnic_info *vnic; 10163 int i, rc = 0; 10164 10165 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 10166 vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE]; 10167 return bnxt_alloc_and_setup_vnic(bp, vnic, 0, bp->rx_nr_rings); 10168 } 10169 10170 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10171 return 0; 10172 10173 for (i = 0; i < bp->rx_nr_rings; i++) { 10174 u16 vnic_id = i + 1; 10175 u16 ring_id = i; 10176 10177 if (vnic_id >= bp->nr_vnics) 10178 break; 10179 10180 vnic = &bp->vnic_info[vnic_id]; 10181 vnic->flags |= BNXT_VNIC_RFS_FLAG; 10182 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 10183 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 10184 if (bnxt_alloc_and_setup_vnic(bp, &bp->vnic_info[vnic_id], ring_id, 1)) 10185 break; 10186 } 10187 return rc; 10188 } 10189 10190 void bnxt_del_one_rss_ctx(struct bnxt *bp, struct bnxt_rss_ctx *rss_ctx, 10191 bool all) 10192 { 10193 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10194 struct bnxt_filter_base *usr_fltr, *tmp; 10195 struct bnxt_ntuple_filter *ntp_fltr; 10196 int i; 10197 10198 if (netif_running(bp->dev)) { 10199 bnxt_hwrm_vnic_free_one(bp, &rss_ctx->vnic); 10200 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) { 10201 if (vnic->fw_rss_cos_lb_ctx[i] != INVALID_HW_RING_ID) 10202 bnxt_hwrm_vnic_ctx_free_one(bp, vnic, i); 10203 } 10204 } 10205 if (!all) 10206 return; 10207 10208 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) { 10209 if ((usr_fltr->flags & BNXT_ACT_RSS_CTX) && 10210 usr_fltr->fw_vnic_id == rss_ctx->index) { 10211 ntp_fltr = container_of(usr_fltr, 10212 struct bnxt_ntuple_filter, 10213 base); 10214 bnxt_hwrm_cfa_ntuple_filter_free(bp, ntp_fltr); 10215 bnxt_del_ntp_filter(bp, ntp_fltr); 10216 bnxt_del_one_usr_fltr(bp, usr_fltr); 10217 } 10218 } 10219 10220 if (vnic->rss_table) 10221 dma_free_coherent(&bp->pdev->dev, vnic->rss_table_size, 10222 vnic->rss_table, 10223 vnic->rss_table_dma_addr); 10224 bp->num_rss_ctx--; 10225 } 10226 10227 static void bnxt_hwrm_realloc_rss_ctx_vnic(struct bnxt *bp) 10228 { 10229 bool set_tpa = !!(bp->flags & BNXT_FLAG_TPA); 10230 struct ethtool_rxfh_context *ctx; 10231 unsigned long context; 10232 10233 xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) { 10234 struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx); 10235 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10236 10237 if (bnxt_hwrm_vnic_alloc(bp, vnic, 0, bp->rx_nr_rings) || 10238 bnxt_hwrm_vnic_set_tpa(bp, vnic, set_tpa) || 10239 __bnxt_setup_vnic_p5(bp, vnic)) { 10240 netdev_err(bp->dev, "Failed to restore RSS ctx %d\n", 10241 rss_ctx->index); 10242 bnxt_del_one_rss_ctx(bp, rss_ctx, true); 10243 ethtool_rxfh_context_lost(bp->dev, rss_ctx->index); 10244 } 10245 } 10246 } 10247 10248 void bnxt_clear_rss_ctxs(struct bnxt *bp) 10249 { 10250 struct ethtool_rxfh_context *ctx; 10251 unsigned long context; 10252 10253 xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) { 10254 struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx); 10255 10256 bnxt_del_one_rss_ctx(bp, rss_ctx, false); 10257 } 10258 } 10259 10260 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 10261 static bool bnxt_promisc_ok(struct bnxt *bp) 10262 { 10263 #ifdef CONFIG_BNXT_SRIOV 10264 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 10265 return false; 10266 #endif 10267 return true; 10268 } 10269 10270 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 10271 { 10272 struct bnxt_vnic_info *vnic = &bp->vnic_info[1]; 10273 unsigned int rc = 0; 10274 10275 rc = bnxt_hwrm_vnic_alloc(bp, vnic, bp->rx_nr_rings - 1, 1); 10276 if (rc) { 10277 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 10278 rc); 10279 return rc; 10280 } 10281 10282 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10283 if (rc) { 10284 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 10285 rc); 10286 return rc; 10287 } 10288 return rc; 10289 } 10290 10291 static int bnxt_cfg_rx_mode(struct bnxt *); 10292 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 10293 10294 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 10295 { 10296 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 10297 int rc = 0; 10298 unsigned int rx_nr_rings = bp->rx_nr_rings; 10299 10300 if (irq_re_init) { 10301 rc = bnxt_hwrm_stat_ctx_alloc(bp); 10302 if (rc) { 10303 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 10304 rc); 10305 goto err_out; 10306 } 10307 } 10308 10309 rc = bnxt_hwrm_ring_alloc(bp); 10310 if (rc) { 10311 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 10312 goto err_out; 10313 } 10314 10315 rc = bnxt_hwrm_ring_grp_alloc(bp); 10316 if (rc) { 10317 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 10318 goto err_out; 10319 } 10320 10321 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 10322 rx_nr_rings--; 10323 10324 /* default vnic 0 */ 10325 rc = bnxt_hwrm_vnic_alloc(bp, vnic, 0, rx_nr_rings); 10326 if (rc) { 10327 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 10328 goto err_out; 10329 } 10330 10331 if (BNXT_VF(bp)) 10332 bnxt_hwrm_func_qcfg(bp); 10333 10334 rc = bnxt_setup_vnic(bp, vnic); 10335 if (rc) 10336 goto err_out; 10337 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 10338 bnxt_hwrm_update_rss_hash_cfg(bp); 10339 10340 if (bp->flags & BNXT_FLAG_RFS) { 10341 rc = bnxt_alloc_rfs_vnics(bp); 10342 if (rc) 10343 goto err_out; 10344 } 10345 10346 if (bp->flags & BNXT_FLAG_TPA) { 10347 rc = bnxt_set_tpa(bp, true); 10348 if (rc) 10349 goto err_out; 10350 } 10351 10352 if (BNXT_VF(bp)) 10353 bnxt_update_vf_mac(bp); 10354 10355 /* Filter for default vnic 0 */ 10356 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 10357 if (rc) { 10358 if (BNXT_VF(bp) && rc == -ENODEV) 10359 netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n"); 10360 else 10361 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 10362 goto err_out; 10363 } 10364 vnic->uc_filter_count = 1; 10365 10366 vnic->rx_mask = 0; 10367 if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state)) 10368 goto skip_rx_mask; 10369 10370 if (bp->dev->flags & IFF_BROADCAST) 10371 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 10372 10373 if (bp->dev->flags & IFF_PROMISC) 10374 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10375 10376 if (bp->dev->flags & IFF_ALLMULTI) { 10377 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10378 vnic->mc_list_count = 0; 10379 } else if (bp->dev->flags & IFF_MULTICAST) { 10380 u32 mask = 0; 10381 10382 bnxt_mc_list_updated(bp, &mask); 10383 vnic->rx_mask |= mask; 10384 } 10385 10386 rc = bnxt_cfg_rx_mode(bp); 10387 if (rc) 10388 goto err_out; 10389 10390 skip_rx_mask: 10391 rc = bnxt_hwrm_set_coal(bp); 10392 if (rc) 10393 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 10394 rc); 10395 10396 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10397 rc = bnxt_setup_nitroa0_vnic(bp); 10398 if (rc) 10399 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 10400 rc); 10401 } 10402 10403 if (BNXT_VF(bp)) { 10404 bnxt_hwrm_func_qcfg(bp); 10405 netdev_update_features(bp->dev); 10406 } 10407 10408 return 0; 10409 10410 err_out: 10411 bnxt_hwrm_resource_free(bp, 0, true); 10412 10413 return rc; 10414 } 10415 10416 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 10417 { 10418 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 10419 return 0; 10420 } 10421 10422 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 10423 { 10424 bnxt_init_cp_rings(bp); 10425 bnxt_init_rx_rings(bp); 10426 bnxt_init_tx_rings(bp); 10427 bnxt_init_ring_grps(bp, irq_re_init); 10428 bnxt_init_vnics(bp); 10429 10430 return bnxt_init_chip(bp, irq_re_init); 10431 } 10432 10433 static int bnxt_set_real_num_queues(struct bnxt *bp) 10434 { 10435 int rc; 10436 struct net_device *dev = bp->dev; 10437 10438 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 10439 bp->tx_nr_rings_xdp); 10440 if (rc) 10441 return rc; 10442 10443 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 10444 if (rc) 10445 return rc; 10446 10447 #ifdef CONFIG_RFS_ACCEL 10448 if (bp->flags & BNXT_FLAG_RFS) 10449 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 10450 #endif 10451 10452 return rc; 10453 } 10454 10455 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 10456 bool shared) 10457 { 10458 int _rx = *rx, _tx = *tx; 10459 10460 if (shared) { 10461 *rx = min_t(int, _rx, max); 10462 *tx = min_t(int, _tx, max); 10463 } else { 10464 if (max < 2) 10465 return -ENOMEM; 10466 10467 while (_rx + _tx > max) { 10468 if (_rx > _tx && _rx > 1) 10469 _rx--; 10470 else if (_tx > 1) 10471 _tx--; 10472 } 10473 *rx = _rx; 10474 *tx = _tx; 10475 } 10476 return 0; 10477 } 10478 10479 static int __bnxt_num_tx_to_cp(struct bnxt *bp, int tx, int tx_sets, int tx_xdp) 10480 { 10481 return (tx - tx_xdp) / tx_sets + tx_xdp; 10482 } 10483 10484 int bnxt_num_tx_to_cp(struct bnxt *bp, int tx) 10485 { 10486 int tcs = bp->num_tc; 10487 10488 if (!tcs) 10489 tcs = 1; 10490 return __bnxt_num_tx_to_cp(bp, tx, tcs, bp->tx_nr_rings_xdp); 10491 } 10492 10493 static int bnxt_num_cp_to_tx(struct bnxt *bp, int tx_cp) 10494 { 10495 int tcs = bp->num_tc; 10496 10497 return (tx_cp - bp->tx_nr_rings_xdp) * tcs + 10498 bp->tx_nr_rings_xdp; 10499 } 10500 10501 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 10502 bool sh) 10503 { 10504 int tx_cp = bnxt_num_tx_to_cp(bp, *tx); 10505 10506 if (tx_cp != *tx) { 10507 int tx_saved = tx_cp, rc; 10508 10509 rc = __bnxt_trim_rings(bp, rx, &tx_cp, max, sh); 10510 if (rc) 10511 return rc; 10512 if (tx_cp != tx_saved) 10513 *tx = bnxt_num_cp_to_tx(bp, tx_cp); 10514 return 0; 10515 } 10516 return __bnxt_trim_rings(bp, rx, tx, max, sh); 10517 } 10518 10519 static void bnxt_setup_msix(struct bnxt *bp) 10520 { 10521 const int len = sizeof(bp->irq_tbl[0].name); 10522 struct net_device *dev = bp->dev; 10523 int tcs, i; 10524 10525 tcs = bp->num_tc; 10526 if (tcs) { 10527 int i, off, count; 10528 10529 for (i = 0; i < tcs; i++) { 10530 count = bp->tx_nr_rings_per_tc; 10531 off = BNXT_TC_TO_RING_BASE(bp, i); 10532 netdev_set_tc_queue(dev, i, count, off); 10533 } 10534 } 10535 10536 for (i = 0; i < bp->cp_nr_rings; i++) { 10537 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 10538 char *attr; 10539 10540 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 10541 attr = "TxRx"; 10542 else if (i < bp->rx_nr_rings) 10543 attr = "rx"; 10544 else 10545 attr = "tx"; 10546 10547 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 10548 attr, i); 10549 bp->irq_tbl[map_idx].handler = bnxt_msix; 10550 } 10551 } 10552 10553 static void bnxt_setup_inta(struct bnxt *bp) 10554 { 10555 const int len = sizeof(bp->irq_tbl[0].name); 10556 10557 if (bp->num_tc) { 10558 netdev_reset_tc(bp->dev); 10559 bp->num_tc = 0; 10560 } 10561 10562 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx", 10563 0); 10564 bp->irq_tbl[0].handler = bnxt_inta; 10565 } 10566 10567 static int bnxt_init_int_mode(struct bnxt *bp); 10568 10569 static int bnxt_setup_int_mode(struct bnxt *bp) 10570 { 10571 int rc; 10572 10573 if (!bp->irq_tbl) { 10574 rc = bnxt_init_int_mode(bp); 10575 if (rc || !bp->irq_tbl) 10576 return rc ?: -ENODEV; 10577 } 10578 10579 if (bp->flags & BNXT_FLAG_USING_MSIX) 10580 bnxt_setup_msix(bp); 10581 else 10582 bnxt_setup_inta(bp); 10583 10584 rc = bnxt_set_real_num_queues(bp); 10585 return rc; 10586 } 10587 10588 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 10589 { 10590 return bp->hw_resc.max_rsscos_ctxs; 10591 } 10592 10593 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 10594 { 10595 return bp->hw_resc.max_vnics; 10596 } 10597 10598 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 10599 { 10600 return bp->hw_resc.max_stat_ctxs; 10601 } 10602 10603 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 10604 { 10605 return bp->hw_resc.max_cp_rings; 10606 } 10607 10608 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 10609 { 10610 unsigned int cp = bp->hw_resc.max_cp_rings; 10611 10612 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 10613 cp -= bnxt_get_ulp_msix_num(bp); 10614 10615 return cp; 10616 } 10617 10618 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 10619 { 10620 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 10621 10622 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10623 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 10624 10625 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 10626 } 10627 10628 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 10629 { 10630 bp->hw_resc.max_irqs = max_irqs; 10631 } 10632 10633 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 10634 { 10635 unsigned int cp; 10636 10637 cp = bnxt_get_max_func_cp_rings_for_en(bp); 10638 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10639 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 10640 else 10641 return cp - bp->cp_nr_rings; 10642 } 10643 10644 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 10645 { 10646 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 10647 } 10648 10649 static int bnxt_get_avail_msix(struct bnxt *bp, int num) 10650 { 10651 int max_irq = bnxt_get_max_func_irqs(bp); 10652 int total_req = bp->cp_nr_rings + num; 10653 10654 if (max_irq < total_req) { 10655 num = max_irq - bp->cp_nr_rings; 10656 if (num <= 0) 10657 return 0; 10658 } 10659 return num; 10660 } 10661 10662 static int bnxt_get_num_msix(struct bnxt *bp) 10663 { 10664 if (!BNXT_NEW_RM(bp)) 10665 return bnxt_get_max_func_irqs(bp); 10666 10667 return bnxt_nq_rings_in_use(bp); 10668 } 10669 10670 static int bnxt_init_msix(struct bnxt *bp) 10671 { 10672 int i, total_vecs, max, rc = 0, min = 1, ulp_msix, tx_cp; 10673 struct msix_entry *msix_ent; 10674 10675 total_vecs = bnxt_get_num_msix(bp); 10676 max = bnxt_get_max_func_irqs(bp); 10677 if (total_vecs > max) 10678 total_vecs = max; 10679 10680 if (!total_vecs) 10681 return 0; 10682 10683 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); 10684 if (!msix_ent) 10685 return -ENOMEM; 10686 10687 for (i = 0; i < total_vecs; i++) { 10688 msix_ent[i].entry = i; 10689 msix_ent[i].vector = 0; 10690 } 10691 10692 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 10693 min = 2; 10694 10695 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs); 10696 ulp_msix = bnxt_get_ulp_msix_num(bp); 10697 if (total_vecs < 0 || total_vecs < ulp_msix) { 10698 rc = -ENODEV; 10699 goto msix_setup_exit; 10700 } 10701 10702 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); 10703 if (bp->irq_tbl) { 10704 for (i = 0; i < total_vecs; i++) 10705 bp->irq_tbl[i].vector = msix_ent[i].vector; 10706 10707 bp->total_irqs = total_vecs; 10708 /* Trim rings based upon num of vectors allocated */ 10709 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 10710 total_vecs - ulp_msix, min == 1); 10711 if (rc) 10712 goto msix_setup_exit; 10713 10714 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 10715 bp->cp_nr_rings = (min == 1) ? 10716 max_t(int, tx_cp, bp->rx_nr_rings) : 10717 tx_cp + bp->rx_nr_rings; 10718 10719 } else { 10720 rc = -ENOMEM; 10721 goto msix_setup_exit; 10722 } 10723 bp->flags |= BNXT_FLAG_USING_MSIX; 10724 kfree(msix_ent); 10725 return 0; 10726 10727 msix_setup_exit: 10728 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc); 10729 kfree(bp->irq_tbl); 10730 bp->irq_tbl = NULL; 10731 pci_disable_msix(bp->pdev); 10732 kfree(msix_ent); 10733 return rc; 10734 } 10735 10736 static int bnxt_init_inta(struct bnxt *bp) 10737 { 10738 bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL); 10739 if (!bp->irq_tbl) 10740 return -ENOMEM; 10741 10742 bp->total_irqs = 1; 10743 bp->rx_nr_rings = 1; 10744 bp->tx_nr_rings = 1; 10745 bp->cp_nr_rings = 1; 10746 bp->flags |= BNXT_FLAG_SHARED_RINGS; 10747 bp->irq_tbl[0].vector = bp->pdev->irq; 10748 return 0; 10749 } 10750 10751 static int bnxt_init_int_mode(struct bnxt *bp) 10752 { 10753 int rc = -ENODEV; 10754 10755 if (bp->flags & BNXT_FLAG_MSIX_CAP) 10756 rc = bnxt_init_msix(bp); 10757 10758 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) { 10759 /* fallback to INTA */ 10760 rc = bnxt_init_inta(bp); 10761 } 10762 return rc; 10763 } 10764 10765 static void bnxt_clear_int_mode(struct bnxt *bp) 10766 { 10767 if (bp->flags & BNXT_FLAG_USING_MSIX) 10768 pci_disable_msix(bp->pdev); 10769 10770 kfree(bp->irq_tbl); 10771 bp->irq_tbl = NULL; 10772 bp->flags &= ~BNXT_FLAG_USING_MSIX; 10773 } 10774 10775 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 10776 { 10777 bool irq_cleared = false; 10778 int tcs = bp->num_tc; 10779 int irqs_required; 10780 int rc; 10781 10782 if (!bnxt_need_reserve_rings(bp)) 10783 return 0; 10784 10785 if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) { 10786 int ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want); 10787 10788 if (ulp_msix > bp->ulp_num_msix_want) 10789 ulp_msix = bp->ulp_num_msix_want; 10790 irqs_required = ulp_msix + bp->cp_nr_rings; 10791 } else { 10792 irqs_required = bnxt_get_num_msix(bp); 10793 } 10794 10795 if (irq_re_init && BNXT_NEW_RM(bp) && irqs_required != bp->total_irqs) { 10796 bnxt_ulp_irq_stop(bp); 10797 bnxt_clear_int_mode(bp); 10798 irq_cleared = true; 10799 } 10800 rc = __bnxt_reserve_rings(bp); 10801 if (irq_cleared) { 10802 if (!rc) 10803 rc = bnxt_init_int_mode(bp); 10804 bnxt_ulp_irq_restart(bp, rc); 10805 } 10806 if (rc) { 10807 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 10808 return rc; 10809 } 10810 if (tcs && (bp->tx_nr_rings_per_tc * tcs != 10811 bp->tx_nr_rings - bp->tx_nr_rings_xdp)) { 10812 netdev_err(bp->dev, "tx ring reservation failure\n"); 10813 netdev_reset_tc(bp->dev); 10814 bp->num_tc = 0; 10815 if (bp->tx_nr_rings_xdp) 10816 bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp; 10817 else 10818 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 10819 return -ENOMEM; 10820 } 10821 return 0; 10822 } 10823 10824 static void bnxt_free_irq(struct bnxt *bp) 10825 { 10826 struct bnxt_irq *irq; 10827 int i; 10828 10829 #ifdef CONFIG_RFS_ACCEL 10830 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 10831 bp->dev->rx_cpu_rmap = NULL; 10832 #endif 10833 if (!bp->irq_tbl || !bp->bnapi) 10834 return; 10835 10836 for (i = 0; i < bp->cp_nr_rings; i++) { 10837 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 10838 10839 irq = &bp->irq_tbl[map_idx]; 10840 if (irq->requested) { 10841 if (irq->have_cpumask) { 10842 irq_set_affinity_hint(irq->vector, NULL); 10843 free_cpumask_var(irq->cpu_mask); 10844 irq->have_cpumask = 0; 10845 } 10846 free_irq(irq->vector, bp->bnapi[i]); 10847 } 10848 10849 irq->requested = 0; 10850 } 10851 } 10852 10853 static int bnxt_request_irq(struct bnxt *bp) 10854 { 10855 int i, j, rc = 0; 10856 unsigned long flags = 0; 10857 #ifdef CONFIG_RFS_ACCEL 10858 struct cpu_rmap *rmap; 10859 #endif 10860 10861 rc = bnxt_setup_int_mode(bp); 10862 if (rc) { 10863 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 10864 rc); 10865 return rc; 10866 } 10867 #ifdef CONFIG_RFS_ACCEL 10868 rmap = bp->dev->rx_cpu_rmap; 10869 #endif 10870 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) 10871 flags = IRQF_SHARED; 10872 10873 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 10874 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 10875 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 10876 10877 #ifdef CONFIG_RFS_ACCEL 10878 if (rmap && bp->bnapi[i]->rx_ring) { 10879 rc = irq_cpu_rmap_add(rmap, irq->vector); 10880 if (rc) 10881 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 10882 j); 10883 j++; 10884 } 10885 #endif 10886 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 10887 bp->bnapi[i]); 10888 if (rc) 10889 break; 10890 10891 netif_napi_set_irq(&bp->bnapi[i]->napi, irq->vector); 10892 irq->requested = 1; 10893 10894 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 10895 int numa_node = dev_to_node(&bp->pdev->dev); 10896 10897 irq->have_cpumask = 1; 10898 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 10899 irq->cpu_mask); 10900 rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask); 10901 if (rc) { 10902 netdev_warn(bp->dev, 10903 "Set affinity failed, IRQ = %d\n", 10904 irq->vector); 10905 break; 10906 } 10907 } 10908 } 10909 return rc; 10910 } 10911 10912 static void bnxt_del_napi(struct bnxt *bp) 10913 { 10914 int i; 10915 10916 if (!bp->bnapi) 10917 return; 10918 10919 for (i = 0; i < bp->rx_nr_rings; i++) 10920 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_RX, NULL); 10921 for (i = 0; i < bp->tx_nr_rings - bp->tx_nr_rings_xdp; i++) 10922 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_TX, NULL); 10923 10924 for (i = 0; i < bp->cp_nr_rings; i++) { 10925 struct bnxt_napi *bnapi = bp->bnapi[i]; 10926 10927 __netif_napi_del(&bnapi->napi); 10928 } 10929 /* We called __netif_napi_del(), we need 10930 * to respect an RCU grace period before freeing napi structures. 10931 */ 10932 synchronize_net(); 10933 } 10934 10935 static void bnxt_init_napi(struct bnxt *bp) 10936 { 10937 int i; 10938 unsigned int cp_nr_rings = bp->cp_nr_rings; 10939 struct bnxt_napi *bnapi; 10940 10941 if (bp->flags & BNXT_FLAG_USING_MSIX) { 10942 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 10943 10944 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10945 poll_fn = bnxt_poll_p5; 10946 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 10947 cp_nr_rings--; 10948 for (i = 0; i < cp_nr_rings; i++) { 10949 bnapi = bp->bnapi[i]; 10950 netif_napi_add(bp->dev, &bnapi->napi, poll_fn); 10951 } 10952 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10953 bnapi = bp->bnapi[cp_nr_rings]; 10954 netif_napi_add(bp->dev, &bnapi->napi, 10955 bnxt_poll_nitroa0); 10956 } 10957 } else { 10958 bnapi = bp->bnapi[0]; 10959 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll); 10960 } 10961 } 10962 10963 static void bnxt_disable_napi(struct bnxt *bp) 10964 { 10965 int i; 10966 10967 if (!bp->bnapi || 10968 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 10969 return; 10970 10971 for (i = 0; i < bp->cp_nr_rings; i++) { 10972 struct bnxt_napi *bnapi = bp->bnapi[i]; 10973 struct bnxt_cp_ring_info *cpr; 10974 10975 cpr = &bnapi->cp_ring; 10976 if (bnapi->tx_fault) 10977 cpr->sw_stats->tx.tx_resets++; 10978 if (bnapi->in_reset) 10979 cpr->sw_stats->rx.rx_resets++; 10980 napi_disable(&bnapi->napi); 10981 if (bnapi->rx_ring) 10982 cancel_work_sync(&cpr->dim.work); 10983 } 10984 } 10985 10986 static void bnxt_enable_napi(struct bnxt *bp) 10987 { 10988 int i; 10989 10990 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 10991 for (i = 0; i < bp->cp_nr_rings; i++) { 10992 struct bnxt_napi *bnapi = bp->bnapi[i]; 10993 struct bnxt_cp_ring_info *cpr; 10994 10995 bnapi->tx_fault = 0; 10996 10997 cpr = &bnapi->cp_ring; 10998 bnapi->in_reset = false; 10999 11000 if (bnapi->rx_ring) { 11001 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 11002 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 11003 } 11004 napi_enable(&bnapi->napi); 11005 } 11006 } 11007 11008 void bnxt_tx_disable(struct bnxt *bp) 11009 { 11010 int i; 11011 struct bnxt_tx_ring_info *txr; 11012 11013 if (bp->tx_ring) { 11014 for (i = 0; i < bp->tx_nr_rings; i++) { 11015 txr = &bp->tx_ring[i]; 11016 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 11017 } 11018 } 11019 /* Make sure napi polls see @dev_state change */ 11020 synchronize_net(); 11021 /* Drop carrier first to prevent TX timeout */ 11022 netif_carrier_off(bp->dev); 11023 /* Stop all TX queues */ 11024 netif_tx_disable(bp->dev); 11025 } 11026 11027 void bnxt_tx_enable(struct bnxt *bp) 11028 { 11029 int i; 11030 struct bnxt_tx_ring_info *txr; 11031 11032 for (i = 0; i < bp->tx_nr_rings; i++) { 11033 txr = &bp->tx_ring[i]; 11034 WRITE_ONCE(txr->dev_state, 0); 11035 } 11036 /* Make sure napi polls see @dev_state change */ 11037 synchronize_net(); 11038 netif_tx_wake_all_queues(bp->dev); 11039 if (BNXT_LINK_IS_UP(bp)) 11040 netif_carrier_on(bp->dev); 11041 } 11042 11043 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 11044 { 11045 u8 active_fec = link_info->active_fec_sig_mode & 11046 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 11047 11048 switch (active_fec) { 11049 default: 11050 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 11051 return "None"; 11052 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 11053 return "Clause 74 BaseR"; 11054 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 11055 return "Clause 91 RS(528,514)"; 11056 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 11057 return "Clause 91 RS544_1XN"; 11058 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 11059 return "Clause 91 RS(544,514)"; 11060 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 11061 return "Clause 91 RS272_1XN"; 11062 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 11063 return "Clause 91 RS(272,257)"; 11064 } 11065 } 11066 11067 void bnxt_report_link(struct bnxt *bp) 11068 { 11069 if (BNXT_LINK_IS_UP(bp)) { 11070 const char *signal = ""; 11071 const char *flow_ctrl; 11072 const char *duplex; 11073 u32 speed; 11074 u16 fec; 11075 11076 netif_carrier_on(bp->dev); 11077 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 11078 if (speed == SPEED_UNKNOWN) { 11079 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 11080 return; 11081 } 11082 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 11083 duplex = "full"; 11084 else 11085 duplex = "half"; 11086 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 11087 flow_ctrl = "ON - receive & transmit"; 11088 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 11089 flow_ctrl = "ON - transmit"; 11090 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 11091 flow_ctrl = "ON - receive"; 11092 else 11093 flow_ctrl = "none"; 11094 if (bp->link_info.phy_qcfg_resp.option_flags & 11095 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 11096 u8 sig_mode = bp->link_info.active_fec_sig_mode & 11097 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 11098 switch (sig_mode) { 11099 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 11100 signal = "(NRZ) "; 11101 break; 11102 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 11103 signal = "(PAM4 56Gbps) "; 11104 break; 11105 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4_112: 11106 signal = "(PAM4 112Gbps) "; 11107 break; 11108 default: 11109 break; 11110 } 11111 } 11112 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 11113 speed, signal, duplex, flow_ctrl); 11114 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 11115 netdev_info(bp->dev, "EEE is %s\n", 11116 bp->eee.eee_active ? "active" : 11117 "not active"); 11118 fec = bp->link_info.fec_cfg; 11119 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 11120 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 11121 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 11122 bnxt_report_fec(&bp->link_info)); 11123 } else { 11124 netif_carrier_off(bp->dev); 11125 netdev_err(bp->dev, "NIC Link is Down\n"); 11126 } 11127 } 11128 11129 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 11130 { 11131 if (!resp->supported_speeds_auto_mode && 11132 !resp->supported_speeds_force_mode && 11133 !resp->supported_pam4_speeds_auto_mode && 11134 !resp->supported_pam4_speeds_force_mode && 11135 !resp->supported_speeds2_auto_mode && 11136 !resp->supported_speeds2_force_mode) 11137 return true; 11138 return false; 11139 } 11140 11141 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 11142 { 11143 struct bnxt_link_info *link_info = &bp->link_info; 11144 struct hwrm_port_phy_qcaps_output *resp; 11145 struct hwrm_port_phy_qcaps_input *req; 11146 int rc = 0; 11147 11148 if (bp->hwrm_spec_code < 0x10201) 11149 return 0; 11150 11151 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS); 11152 if (rc) 11153 return rc; 11154 11155 resp = hwrm_req_hold(bp, req); 11156 rc = hwrm_req_send(bp, req); 11157 if (rc) 11158 goto hwrm_phy_qcaps_exit; 11159 11160 bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8); 11161 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 11162 struct ethtool_keee *eee = &bp->eee; 11163 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 11164 11165 _bnxt_fw_to_linkmode(eee->supported, fw_speeds); 11166 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 11167 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 11168 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 11169 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 11170 } 11171 11172 if (bp->hwrm_spec_code >= 0x10a01) { 11173 if (bnxt_phy_qcaps_no_speed(resp)) { 11174 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 11175 netdev_warn(bp->dev, "Ethernet link disabled\n"); 11176 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 11177 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 11178 netdev_info(bp->dev, "Ethernet link enabled\n"); 11179 /* Phy re-enabled, reprobe the speeds */ 11180 link_info->support_auto_speeds = 0; 11181 link_info->support_pam4_auto_speeds = 0; 11182 link_info->support_auto_speeds2 = 0; 11183 } 11184 } 11185 if (resp->supported_speeds_auto_mode) 11186 link_info->support_auto_speeds = 11187 le16_to_cpu(resp->supported_speeds_auto_mode); 11188 if (resp->supported_pam4_speeds_auto_mode) 11189 link_info->support_pam4_auto_speeds = 11190 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 11191 if (resp->supported_speeds2_auto_mode) 11192 link_info->support_auto_speeds2 = 11193 le16_to_cpu(resp->supported_speeds2_auto_mode); 11194 11195 bp->port_count = resp->port_cnt; 11196 11197 hwrm_phy_qcaps_exit: 11198 hwrm_req_drop(bp, req); 11199 return rc; 11200 } 11201 11202 static bool bnxt_support_dropped(u16 advertising, u16 supported) 11203 { 11204 u16 diff = advertising ^ supported; 11205 11206 return ((supported | diff) != supported); 11207 } 11208 11209 static bool bnxt_support_speed_dropped(struct bnxt_link_info *link_info) 11210 { 11211 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 11212 11213 /* Check if any advertised speeds are no longer supported. The caller 11214 * holds the link_lock mutex, so we can modify link_info settings. 11215 */ 11216 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 11217 if (bnxt_support_dropped(link_info->advertising, 11218 link_info->support_auto_speeds2)) { 11219 link_info->advertising = link_info->support_auto_speeds2; 11220 return true; 11221 } 11222 return false; 11223 } 11224 if (bnxt_support_dropped(link_info->advertising, 11225 link_info->support_auto_speeds)) { 11226 link_info->advertising = link_info->support_auto_speeds; 11227 return true; 11228 } 11229 if (bnxt_support_dropped(link_info->advertising_pam4, 11230 link_info->support_pam4_auto_speeds)) { 11231 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 11232 return true; 11233 } 11234 return false; 11235 } 11236 11237 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 11238 { 11239 struct bnxt_link_info *link_info = &bp->link_info; 11240 struct hwrm_port_phy_qcfg_output *resp; 11241 struct hwrm_port_phy_qcfg_input *req; 11242 u8 link_state = link_info->link_state; 11243 bool support_changed; 11244 int rc; 11245 11246 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG); 11247 if (rc) 11248 return rc; 11249 11250 resp = hwrm_req_hold(bp, req); 11251 rc = hwrm_req_send(bp, req); 11252 if (rc) { 11253 hwrm_req_drop(bp, req); 11254 if (BNXT_VF(bp) && rc == -ENODEV) { 11255 netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n"); 11256 rc = 0; 11257 } 11258 return rc; 11259 } 11260 11261 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 11262 link_info->phy_link_status = resp->link; 11263 link_info->duplex = resp->duplex_cfg; 11264 if (bp->hwrm_spec_code >= 0x10800) 11265 link_info->duplex = resp->duplex_state; 11266 link_info->pause = resp->pause; 11267 link_info->auto_mode = resp->auto_mode; 11268 link_info->auto_pause_setting = resp->auto_pause; 11269 link_info->lp_pause = resp->link_partner_adv_pause; 11270 link_info->force_pause_setting = resp->force_pause; 11271 link_info->duplex_setting = resp->duplex_cfg; 11272 if (link_info->phy_link_status == BNXT_LINK_LINK) { 11273 link_info->link_speed = le16_to_cpu(resp->link_speed); 11274 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 11275 link_info->active_lanes = resp->active_lanes; 11276 } else { 11277 link_info->link_speed = 0; 11278 link_info->active_lanes = 0; 11279 } 11280 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 11281 link_info->force_pam4_link_speed = 11282 le16_to_cpu(resp->force_pam4_link_speed); 11283 link_info->force_link_speed2 = le16_to_cpu(resp->force_link_speeds2); 11284 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 11285 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 11286 link_info->support_speeds2 = le16_to_cpu(resp->support_speeds2); 11287 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 11288 link_info->auto_pam4_link_speeds = 11289 le16_to_cpu(resp->auto_pam4_link_speed_mask); 11290 link_info->auto_link_speeds2 = le16_to_cpu(resp->auto_link_speeds2); 11291 link_info->lp_auto_link_speeds = 11292 le16_to_cpu(resp->link_partner_adv_speeds); 11293 link_info->lp_auto_pam4_link_speeds = 11294 resp->link_partner_pam4_adv_speeds; 11295 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 11296 link_info->phy_ver[0] = resp->phy_maj; 11297 link_info->phy_ver[1] = resp->phy_min; 11298 link_info->phy_ver[2] = resp->phy_bld; 11299 link_info->media_type = resp->media_type; 11300 link_info->phy_type = resp->phy_type; 11301 link_info->transceiver = resp->xcvr_pkg_type; 11302 link_info->phy_addr = resp->eee_config_phy_addr & 11303 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 11304 link_info->module_status = resp->module_status; 11305 11306 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 11307 struct ethtool_keee *eee = &bp->eee; 11308 u16 fw_speeds; 11309 11310 eee->eee_active = 0; 11311 if (resp->eee_config_phy_addr & 11312 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 11313 eee->eee_active = 1; 11314 fw_speeds = le16_to_cpu( 11315 resp->link_partner_adv_eee_link_speed_mask); 11316 _bnxt_fw_to_linkmode(eee->lp_advertised, fw_speeds); 11317 } 11318 11319 /* Pull initial EEE config */ 11320 if (!chng_link_state) { 11321 if (resp->eee_config_phy_addr & 11322 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 11323 eee->eee_enabled = 1; 11324 11325 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 11326 _bnxt_fw_to_linkmode(eee->advertised, fw_speeds); 11327 11328 if (resp->eee_config_phy_addr & 11329 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 11330 __le32 tmr; 11331 11332 eee->tx_lpi_enabled = 1; 11333 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 11334 eee->tx_lpi_timer = le32_to_cpu(tmr) & 11335 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 11336 } 11337 } 11338 } 11339 11340 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 11341 if (bp->hwrm_spec_code >= 0x10504) { 11342 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 11343 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 11344 } 11345 /* TODO: need to add more logic to report VF link */ 11346 if (chng_link_state) { 11347 if (link_info->phy_link_status == BNXT_LINK_LINK) 11348 link_info->link_state = BNXT_LINK_STATE_UP; 11349 else 11350 link_info->link_state = BNXT_LINK_STATE_DOWN; 11351 if (link_state != link_info->link_state) 11352 bnxt_report_link(bp); 11353 } else { 11354 /* always link down if not require to update link state */ 11355 link_info->link_state = BNXT_LINK_STATE_DOWN; 11356 } 11357 hwrm_req_drop(bp, req); 11358 11359 if (!BNXT_PHY_CFG_ABLE(bp)) 11360 return 0; 11361 11362 support_changed = bnxt_support_speed_dropped(link_info); 11363 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 11364 bnxt_hwrm_set_link_setting(bp, true, false); 11365 return 0; 11366 } 11367 11368 static void bnxt_get_port_module_status(struct bnxt *bp) 11369 { 11370 struct bnxt_link_info *link_info = &bp->link_info; 11371 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 11372 u8 module_status; 11373 11374 if (bnxt_update_link(bp, true)) 11375 return; 11376 11377 module_status = link_info->module_status; 11378 switch (module_status) { 11379 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 11380 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 11381 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 11382 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 11383 bp->pf.port_id); 11384 if (bp->hwrm_spec_code >= 0x10201) { 11385 netdev_warn(bp->dev, "Module part number %s\n", 11386 resp->phy_vendor_partnumber); 11387 } 11388 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 11389 netdev_warn(bp->dev, "TX is disabled\n"); 11390 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 11391 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 11392 } 11393 } 11394 11395 static void 11396 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 11397 { 11398 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 11399 if (bp->hwrm_spec_code >= 0x10201) 11400 req->auto_pause = 11401 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 11402 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 11403 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 11404 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 11405 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 11406 req->enables |= 11407 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 11408 } else { 11409 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 11410 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 11411 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 11412 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 11413 req->enables |= 11414 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 11415 if (bp->hwrm_spec_code >= 0x10201) { 11416 req->auto_pause = req->force_pause; 11417 req->enables |= cpu_to_le32( 11418 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 11419 } 11420 } 11421 } 11422 11423 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 11424 { 11425 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 11426 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 11427 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 11428 req->enables |= 11429 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEEDS2_MASK); 11430 req->auto_link_speeds2_mask = cpu_to_le16(bp->link_info.advertising); 11431 } else if (bp->link_info.advertising) { 11432 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 11433 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 11434 } 11435 if (bp->link_info.advertising_pam4) { 11436 req->enables |= 11437 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 11438 req->auto_link_pam4_speed_mask = 11439 cpu_to_le16(bp->link_info.advertising_pam4); 11440 } 11441 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 11442 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 11443 } else { 11444 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 11445 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 11446 req->force_link_speeds2 = cpu_to_le16(bp->link_info.req_link_speed); 11447 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_LINK_SPEEDS2); 11448 netif_info(bp, link, bp->dev, "Forcing FW speed2: %d\n", 11449 (u32)bp->link_info.req_link_speed); 11450 } else if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 11451 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 11452 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 11453 } else { 11454 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 11455 } 11456 } 11457 11458 /* tell chimp that the setting takes effect immediately */ 11459 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 11460 } 11461 11462 int bnxt_hwrm_set_pause(struct bnxt *bp) 11463 { 11464 struct hwrm_port_phy_cfg_input *req; 11465 int rc; 11466 11467 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 11468 if (rc) 11469 return rc; 11470 11471 bnxt_hwrm_set_pause_common(bp, req); 11472 11473 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 11474 bp->link_info.force_link_chng) 11475 bnxt_hwrm_set_link_common(bp, req); 11476 11477 rc = hwrm_req_send(bp, req); 11478 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 11479 /* since changing of pause setting doesn't trigger any link 11480 * change event, the driver needs to update the current pause 11481 * result upon successfully return of the phy_cfg command 11482 */ 11483 bp->link_info.pause = 11484 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 11485 bp->link_info.auto_pause_setting = 0; 11486 if (!bp->link_info.force_link_chng) 11487 bnxt_report_link(bp); 11488 } 11489 bp->link_info.force_link_chng = false; 11490 return rc; 11491 } 11492 11493 static void bnxt_hwrm_set_eee(struct bnxt *bp, 11494 struct hwrm_port_phy_cfg_input *req) 11495 { 11496 struct ethtool_keee *eee = &bp->eee; 11497 11498 if (eee->eee_enabled) { 11499 u16 eee_speeds; 11500 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 11501 11502 if (eee->tx_lpi_enabled) 11503 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 11504 else 11505 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 11506 11507 req->flags |= cpu_to_le32(flags); 11508 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 11509 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 11510 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 11511 } else { 11512 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 11513 } 11514 } 11515 11516 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 11517 { 11518 struct hwrm_port_phy_cfg_input *req; 11519 int rc; 11520 11521 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 11522 if (rc) 11523 return rc; 11524 11525 if (set_pause) 11526 bnxt_hwrm_set_pause_common(bp, req); 11527 11528 bnxt_hwrm_set_link_common(bp, req); 11529 11530 if (set_eee) 11531 bnxt_hwrm_set_eee(bp, req); 11532 return hwrm_req_send(bp, req); 11533 } 11534 11535 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 11536 { 11537 struct hwrm_port_phy_cfg_input *req; 11538 int rc; 11539 11540 if (!BNXT_SINGLE_PF(bp)) 11541 return 0; 11542 11543 if (pci_num_vf(bp->pdev) && 11544 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 11545 return 0; 11546 11547 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 11548 if (rc) 11549 return rc; 11550 11551 req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 11552 rc = hwrm_req_send(bp, req); 11553 if (!rc) { 11554 mutex_lock(&bp->link_lock); 11555 /* Device is not obliged link down in certain scenarios, even 11556 * when forced. Setting the state unknown is consistent with 11557 * driver startup and will force link state to be reported 11558 * during subsequent open based on PORT_PHY_QCFG. 11559 */ 11560 bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN; 11561 mutex_unlock(&bp->link_lock); 11562 } 11563 return rc; 11564 } 11565 11566 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 11567 { 11568 #ifdef CONFIG_TEE_BNXT_FW 11569 int rc = tee_bnxt_fw_load(); 11570 11571 if (rc) 11572 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 11573 11574 return rc; 11575 #else 11576 netdev_err(bp->dev, "OP-TEE not supported\n"); 11577 return -ENODEV; 11578 #endif 11579 } 11580 11581 static int bnxt_try_recover_fw(struct bnxt *bp) 11582 { 11583 if (bp->fw_health && bp->fw_health->status_reliable) { 11584 int retry = 0, rc; 11585 u32 sts; 11586 11587 do { 11588 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 11589 rc = bnxt_hwrm_poll(bp); 11590 if (!BNXT_FW_IS_BOOTING(sts) && 11591 !BNXT_FW_IS_RECOVERING(sts)) 11592 break; 11593 retry++; 11594 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 11595 11596 if (!BNXT_FW_IS_HEALTHY(sts)) { 11597 netdev_err(bp->dev, 11598 "Firmware not responding, status: 0x%x\n", 11599 sts); 11600 rc = -ENODEV; 11601 } 11602 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 11603 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 11604 return bnxt_fw_reset_via_optee(bp); 11605 } 11606 return rc; 11607 } 11608 11609 return -ENODEV; 11610 } 11611 11612 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset) 11613 { 11614 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 11615 11616 if (!BNXT_NEW_RM(bp)) 11617 return; /* no resource reservations required */ 11618 11619 hw_resc->resv_cp_rings = 0; 11620 hw_resc->resv_stat_ctxs = 0; 11621 hw_resc->resv_irqs = 0; 11622 hw_resc->resv_tx_rings = 0; 11623 hw_resc->resv_rx_rings = 0; 11624 hw_resc->resv_hw_ring_grps = 0; 11625 hw_resc->resv_vnics = 0; 11626 hw_resc->resv_rsscos_ctxs = 0; 11627 if (!fw_reset) { 11628 bp->tx_nr_rings = 0; 11629 bp->rx_nr_rings = 0; 11630 } 11631 } 11632 11633 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset) 11634 { 11635 int rc; 11636 11637 if (!BNXT_NEW_RM(bp)) 11638 return 0; /* no resource reservations required */ 11639 11640 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 11641 if (rc) 11642 netdev_err(bp->dev, "resc_qcaps failed\n"); 11643 11644 bnxt_clear_reservations(bp, fw_reset); 11645 11646 return rc; 11647 } 11648 11649 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 11650 { 11651 struct hwrm_func_drv_if_change_output *resp; 11652 struct hwrm_func_drv_if_change_input *req; 11653 bool fw_reset = !bp->irq_tbl; 11654 bool resc_reinit = false; 11655 int rc, retry = 0; 11656 u32 flags = 0; 11657 11658 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 11659 return 0; 11660 11661 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE); 11662 if (rc) 11663 return rc; 11664 11665 if (up) 11666 req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 11667 resp = hwrm_req_hold(bp, req); 11668 11669 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 11670 while (retry < BNXT_FW_IF_RETRY) { 11671 rc = hwrm_req_send(bp, req); 11672 if (rc != -EAGAIN) 11673 break; 11674 11675 msleep(50); 11676 retry++; 11677 } 11678 11679 if (rc == -EAGAIN) { 11680 hwrm_req_drop(bp, req); 11681 return rc; 11682 } else if (!rc) { 11683 flags = le32_to_cpu(resp->flags); 11684 } else if (up) { 11685 rc = bnxt_try_recover_fw(bp); 11686 fw_reset = true; 11687 } 11688 hwrm_req_drop(bp, req); 11689 if (rc) 11690 return rc; 11691 11692 if (!up) { 11693 bnxt_inv_fw_health_reg(bp); 11694 return 0; 11695 } 11696 11697 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 11698 resc_reinit = true; 11699 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE || 11700 test_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) 11701 fw_reset = true; 11702 else 11703 bnxt_remap_fw_health_regs(bp); 11704 11705 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 11706 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 11707 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 11708 return -ENODEV; 11709 } 11710 if (resc_reinit || fw_reset) { 11711 if (fw_reset) { 11712 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 11713 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11714 bnxt_ulp_irq_stop(bp); 11715 bnxt_free_ctx_mem(bp); 11716 bnxt_dcb_free(bp); 11717 rc = bnxt_fw_init_one(bp); 11718 if (rc) { 11719 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 11720 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 11721 return rc; 11722 } 11723 bnxt_clear_int_mode(bp); 11724 rc = bnxt_init_int_mode(bp); 11725 if (rc) { 11726 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 11727 netdev_err(bp->dev, "init int mode failed\n"); 11728 return rc; 11729 } 11730 } 11731 rc = bnxt_cancel_reservations(bp, fw_reset); 11732 } 11733 return rc; 11734 } 11735 11736 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 11737 { 11738 struct hwrm_port_led_qcaps_output *resp; 11739 struct hwrm_port_led_qcaps_input *req; 11740 struct bnxt_pf_info *pf = &bp->pf; 11741 int rc; 11742 11743 bp->num_leds = 0; 11744 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 11745 return 0; 11746 11747 rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS); 11748 if (rc) 11749 return rc; 11750 11751 req->port_id = cpu_to_le16(pf->port_id); 11752 resp = hwrm_req_hold(bp, req); 11753 rc = hwrm_req_send(bp, req); 11754 if (rc) { 11755 hwrm_req_drop(bp, req); 11756 return rc; 11757 } 11758 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 11759 int i; 11760 11761 bp->num_leds = resp->num_leds; 11762 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 11763 bp->num_leds); 11764 for (i = 0; i < bp->num_leds; i++) { 11765 struct bnxt_led_info *led = &bp->leds[i]; 11766 __le16 caps = led->led_state_caps; 11767 11768 if (!led->led_group_id || 11769 !BNXT_LED_ALT_BLINK_CAP(caps)) { 11770 bp->num_leds = 0; 11771 break; 11772 } 11773 } 11774 } 11775 hwrm_req_drop(bp, req); 11776 return 0; 11777 } 11778 11779 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 11780 { 11781 struct hwrm_wol_filter_alloc_output *resp; 11782 struct hwrm_wol_filter_alloc_input *req; 11783 int rc; 11784 11785 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC); 11786 if (rc) 11787 return rc; 11788 11789 req->port_id = cpu_to_le16(bp->pf.port_id); 11790 req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 11791 req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 11792 memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN); 11793 11794 resp = hwrm_req_hold(bp, req); 11795 rc = hwrm_req_send(bp, req); 11796 if (!rc) 11797 bp->wol_filter_id = resp->wol_filter_id; 11798 hwrm_req_drop(bp, req); 11799 return rc; 11800 } 11801 11802 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 11803 { 11804 struct hwrm_wol_filter_free_input *req; 11805 int rc; 11806 11807 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE); 11808 if (rc) 11809 return rc; 11810 11811 req->port_id = cpu_to_le16(bp->pf.port_id); 11812 req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 11813 req->wol_filter_id = bp->wol_filter_id; 11814 11815 return hwrm_req_send(bp, req); 11816 } 11817 11818 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 11819 { 11820 struct hwrm_wol_filter_qcfg_output *resp; 11821 struct hwrm_wol_filter_qcfg_input *req; 11822 u16 next_handle = 0; 11823 int rc; 11824 11825 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG); 11826 if (rc) 11827 return rc; 11828 11829 req->port_id = cpu_to_le16(bp->pf.port_id); 11830 req->handle = cpu_to_le16(handle); 11831 resp = hwrm_req_hold(bp, req); 11832 rc = hwrm_req_send(bp, req); 11833 if (!rc) { 11834 next_handle = le16_to_cpu(resp->next_handle); 11835 if (next_handle != 0) { 11836 if (resp->wol_type == 11837 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 11838 bp->wol = 1; 11839 bp->wol_filter_id = resp->wol_filter_id; 11840 } 11841 } 11842 } 11843 hwrm_req_drop(bp, req); 11844 return next_handle; 11845 } 11846 11847 static void bnxt_get_wol_settings(struct bnxt *bp) 11848 { 11849 u16 handle = 0; 11850 11851 bp->wol = 0; 11852 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 11853 return; 11854 11855 do { 11856 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 11857 } while (handle && handle != 0xffff); 11858 } 11859 11860 static bool bnxt_eee_config_ok(struct bnxt *bp) 11861 { 11862 struct ethtool_keee *eee = &bp->eee; 11863 struct bnxt_link_info *link_info = &bp->link_info; 11864 11865 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 11866 return true; 11867 11868 if (eee->eee_enabled) { 11869 __ETHTOOL_DECLARE_LINK_MODE_MASK(advertising); 11870 __ETHTOOL_DECLARE_LINK_MODE_MASK(tmp); 11871 11872 _bnxt_fw_to_linkmode(advertising, link_info->advertising); 11873 11874 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 11875 eee->eee_enabled = 0; 11876 return false; 11877 } 11878 if (linkmode_andnot(tmp, eee->advertised, advertising)) { 11879 linkmode_and(eee->advertised, advertising, 11880 eee->supported); 11881 return false; 11882 } 11883 } 11884 return true; 11885 } 11886 11887 static int bnxt_update_phy_setting(struct bnxt *bp) 11888 { 11889 int rc; 11890 bool update_link = false; 11891 bool update_pause = false; 11892 bool update_eee = false; 11893 struct bnxt_link_info *link_info = &bp->link_info; 11894 11895 rc = bnxt_update_link(bp, true); 11896 if (rc) { 11897 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 11898 rc); 11899 return rc; 11900 } 11901 if (!BNXT_SINGLE_PF(bp)) 11902 return 0; 11903 11904 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 11905 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 11906 link_info->req_flow_ctrl) 11907 update_pause = true; 11908 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 11909 link_info->force_pause_setting != link_info->req_flow_ctrl) 11910 update_pause = true; 11911 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 11912 if (BNXT_AUTO_MODE(link_info->auto_mode)) 11913 update_link = true; 11914 if (bnxt_force_speed_updated(link_info)) 11915 update_link = true; 11916 if (link_info->req_duplex != link_info->duplex_setting) 11917 update_link = true; 11918 } else { 11919 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 11920 update_link = true; 11921 if (bnxt_auto_speed_updated(link_info)) 11922 update_link = true; 11923 } 11924 11925 /* The last close may have shutdown the link, so need to call 11926 * PHY_CFG to bring it back up. 11927 */ 11928 if (!BNXT_LINK_IS_UP(bp)) 11929 update_link = true; 11930 11931 if (!bnxt_eee_config_ok(bp)) 11932 update_eee = true; 11933 11934 if (update_link) 11935 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 11936 else if (update_pause) 11937 rc = bnxt_hwrm_set_pause(bp); 11938 if (rc) { 11939 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 11940 rc); 11941 return rc; 11942 } 11943 11944 return rc; 11945 } 11946 11947 /* Common routine to pre-map certain register block to different GRC window. 11948 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows 11949 * in PF and 3 windows in VF that can be customized to map in different 11950 * register blocks. 11951 */ 11952 static void bnxt_preset_reg_win(struct bnxt *bp) 11953 { 11954 if (BNXT_PF(bp)) { 11955 /* CAG registers map to GRC window #4 */ 11956 writel(BNXT_CAG_REG_BASE, 11957 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); 11958 } 11959 } 11960 11961 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 11962 11963 static int bnxt_reinit_after_abort(struct bnxt *bp) 11964 { 11965 int rc; 11966 11967 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11968 return -EBUSY; 11969 11970 if (bp->dev->reg_state == NETREG_UNREGISTERED) 11971 return -ENODEV; 11972 11973 rc = bnxt_fw_init_one(bp); 11974 if (!rc) { 11975 bnxt_clear_int_mode(bp); 11976 rc = bnxt_init_int_mode(bp); 11977 if (!rc) { 11978 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 11979 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 11980 } 11981 } 11982 return rc; 11983 } 11984 11985 static void bnxt_cfg_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 11986 { 11987 struct bnxt_ntuple_filter *ntp_fltr; 11988 struct bnxt_l2_filter *l2_fltr; 11989 11990 if (list_empty(&fltr->list)) 11991 return; 11992 11993 if (fltr->type == BNXT_FLTR_TYPE_NTUPLE) { 11994 ntp_fltr = container_of(fltr, struct bnxt_ntuple_filter, base); 11995 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 11996 atomic_inc(&l2_fltr->refcnt); 11997 ntp_fltr->l2_fltr = l2_fltr; 11998 if (bnxt_hwrm_cfa_ntuple_filter_alloc(bp, ntp_fltr)) { 11999 bnxt_del_ntp_filter(bp, ntp_fltr); 12000 netdev_err(bp->dev, "restoring previously configured ntuple filter id %d failed\n", 12001 fltr->sw_id); 12002 } 12003 } else if (fltr->type == BNXT_FLTR_TYPE_L2) { 12004 l2_fltr = container_of(fltr, struct bnxt_l2_filter, base); 12005 if (bnxt_hwrm_l2_filter_alloc(bp, l2_fltr)) { 12006 bnxt_del_l2_filter(bp, l2_fltr); 12007 netdev_err(bp->dev, "restoring previously configured l2 filter id %d failed\n", 12008 fltr->sw_id); 12009 } 12010 } 12011 } 12012 12013 static void bnxt_cfg_usr_fltrs(struct bnxt *bp) 12014 { 12015 struct bnxt_filter_base *usr_fltr, *tmp; 12016 12017 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) 12018 bnxt_cfg_one_usr_fltr(bp, usr_fltr); 12019 } 12020 12021 static int bnxt_set_xps_mapping(struct bnxt *bp) 12022 { 12023 int numa_node = dev_to_node(&bp->pdev->dev); 12024 unsigned int q_idx, map_idx, cpu, i; 12025 const struct cpumask *cpu_mask_ptr; 12026 int nr_cpus = num_online_cpus(); 12027 cpumask_t *q_map; 12028 int rc = 0; 12029 12030 q_map = kcalloc(bp->tx_nr_rings_per_tc, sizeof(*q_map), GFP_KERNEL); 12031 if (!q_map) 12032 return -ENOMEM; 12033 12034 /* Create CPU mask for all TX queues across MQPRIO traffic classes. 12035 * Each TC has the same number of TX queues. The nth TX queue for each 12036 * TC will have the same CPU mask. 12037 */ 12038 for (i = 0; i < nr_cpus; i++) { 12039 map_idx = i % bp->tx_nr_rings_per_tc; 12040 cpu = cpumask_local_spread(i, numa_node); 12041 cpu_mask_ptr = get_cpu_mask(cpu); 12042 cpumask_or(&q_map[map_idx], &q_map[map_idx], cpu_mask_ptr); 12043 } 12044 12045 /* Register CPU mask for each TX queue except the ones marked for XDP */ 12046 for (q_idx = 0; q_idx < bp->dev->real_num_tx_queues; q_idx++) { 12047 map_idx = q_idx % bp->tx_nr_rings_per_tc; 12048 rc = netif_set_xps_queue(bp->dev, &q_map[map_idx], q_idx); 12049 if (rc) { 12050 netdev_warn(bp->dev, "Error setting XPS for q:%d\n", 12051 q_idx); 12052 break; 12053 } 12054 } 12055 12056 kfree(q_map); 12057 12058 return rc; 12059 } 12060 12061 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12062 { 12063 int rc = 0; 12064 12065 bnxt_preset_reg_win(bp); 12066 netif_carrier_off(bp->dev); 12067 if (irq_re_init) { 12068 /* Reserve rings now if none were reserved at driver probe. */ 12069 rc = bnxt_init_dflt_ring_mode(bp); 12070 if (rc) { 12071 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 12072 return rc; 12073 } 12074 } 12075 rc = bnxt_reserve_rings(bp, irq_re_init); 12076 if (rc) 12077 return rc; 12078 if ((bp->flags & BNXT_FLAG_RFS) && 12079 !(bp->flags & BNXT_FLAG_USING_MSIX)) { 12080 /* disable RFS if falling back to INTA */ 12081 bp->dev->hw_features &= ~NETIF_F_NTUPLE; 12082 bp->flags &= ~BNXT_FLAG_RFS; 12083 } 12084 12085 rc = bnxt_alloc_mem(bp, irq_re_init); 12086 if (rc) { 12087 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 12088 goto open_err_free_mem; 12089 } 12090 12091 if (irq_re_init) { 12092 bnxt_init_napi(bp); 12093 rc = bnxt_request_irq(bp); 12094 if (rc) { 12095 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 12096 goto open_err_irq; 12097 } 12098 } 12099 12100 rc = bnxt_init_nic(bp, irq_re_init); 12101 if (rc) { 12102 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 12103 goto open_err_irq; 12104 } 12105 12106 bnxt_enable_napi(bp); 12107 bnxt_debug_dev_init(bp); 12108 12109 if (link_re_init) { 12110 mutex_lock(&bp->link_lock); 12111 rc = bnxt_update_phy_setting(bp); 12112 mutex_unlock(&bp->link_lock); 12113 if (rc) { 12114 netdev_warn(bp->dev, "failed to update phy settings\n"); 12115 if (BNXT_SINGLE_PF(bp)) { 12116 bp->link_info.phy_retry = true; 12117 bp->link_info.phy_retry_expires = 12118 jiffies + 5 * HZ; 12119 } 12120 } 12121 } 12122 12123 if (irq_re_init) { 12124 udp_tunnel_nic_reset_ntf(bp->dev); 12125 rc = bnxt_set_xps_mapping(bp); 12126 if (rc) 12127 netdev_warn(bp->dev, "failed to set xps mapping\n"); 12128 } 12129 12130 if (bp->tx_nr_rings_xdp < num_possible_cpus()) { 12131 if (!static_key_enabled(&bnxt_xdp_locking_key)) 12132 static_branch_enable(&bnxt_xdp_locking_key); 12133 } else if (static_key_enabled(&bnxt_xdp_locking_key)) { 12134 static_branch_disable(&bnxt_xdp_locking_key); 12135 } 12136 set_bit(BNXT_STATE_OPEN, &bp->state); 12137 bnxt_enable_int(bp); 12138 /* Enable TX queues */ 12139 bnxt_tx_enable(bp); 12140 mod_timer(&bp->timer, jiffies + bp->current_interval); 12141 /* Poll link status and check for SFP+ module status */ 12142 mutex_lock(&bp->link_lock); 12143 bnxt_get_port_module_status(bp); 12144 mutex_unlock(&bp->link_lock); 12145 12146 /* VF-reps may need to be re-opened after the PF is re-opened */ 12147 if (BNXT_PF(bp)) 12148 bnxt_vf_reps_open(bp); 12149 if (bp->ptp_cfg && !(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) 12150 WRITE_ONCE(bp->ptp_cfg->tx_avail, BNXT_MAX_TX_TS); 12151 bnxt_ptp_init_rtc(bp, true); 12152 bnxt_ptp_cfg_tstamp_filters(bp); 12153 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 12154 bnxt_hwrm_realloc_rss_ctx_vnic(bp); 12155 bnxt_cfg_usr_fltrs(bp); 12156 return 0; 12157 12158 open_err_irq: 12159 bnxt_del_napi(bp); 12160 12161 open_err_free_mem: 12162 bnxt_free_skbs(bp); 12163 bnxt_free_irq(bp); 12164 bnxt_free_mem(bp, true); 12165 return rc; 12166 } 12167 12168 /* rtnl_lock held */ 12169 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12170 { 12171 int rc = 0; 12172 12173 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 12174 rc = -EIO; 12175 if (!rc) 12176 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 12177 if (rc) { 12178 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 12179 dev_close(bp->dev); 12180 } 12181 return rc; 12182 } 12183 12184 /* rtnl_lock held, open the NIC half way by allocating all resources, but 12185 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline 12186 * self tests. 12187 */ 12188 int bnxt_half_open_nic(struct bnxt *bp) 12189 { 12190 int rc = 0; 12191 12192 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12193 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); 12194 rc = -ENODEV; 12195 goto half_open_err; 12196 } 12197 12198 rc = bnxt_alloc_mem(bp, true); 12199 if (rc) { 12200 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 12201 goto half_open_err; 12202 } 12203 bnxt_init_napi(bp); 12204 set_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12205 rc = bnxt_init_nic(bp, true); 12206 if (rc) { 12207 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12208 bnxt_del_napi(bp); 12209 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 12210 goto half_open_err; 12211 } 12212 return 0; 12213 12214 half_open_err: 12215 bnxt_free_skbs(bp); 12216 bnxt_free_mem(bp, true); 12217 dev_close(bp->dev); 12218 return rc; 12219 } 12220 12221 /* rtnl_lock held, this call can only be made after a previous successful 12222 * call to bnxt_half_open_nic(). 12223 */ 12224 void bnxt_half_close_nic(struct bnxt *bp) 12225 { 12226 bnxt_hwrm_resource_free(bp, false, true); 12227 bnxt_del_napi(bp); 12228 bnxt_free_skbs(bp); 12229 bnxt_free_mem(bp, true); 12230 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12231 } 12232 12233 void bnxt_reenable_sriov(struct bnxt *bp) 12234 { 12235 if (BNXT_PF(bp)) { 12236 struct bnxt_pf_info *pf = &bp->pf; 12237 int n = pf->active_vfs; 12238 12239 if (n) 12240 bnxt_cfg_hw_sriov(bp, &n, true); 12241 } 12242 } 12243 12244 static int bnxt_open(struct net_device *dev) 12245 { 12246 struct bnxt *bp = netdev_priv(dev); 12247 int rc; 12248 12249 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12250 rc = bnxt_reinit_after_abort(bp); 12251 if (rc) { 12252 if (rc == -EBUSY) 12253 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 12254 else 12255 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 12256 return -ENODEV; 12257 } 12258 } 12259 12260 rc = bnxt_hwrm_if_change(bp, true); 12261 if (rc) 12262 return rc; 12263 12264 rc = __bnxt_open_nic(bp, true, true); 12265 if (rc) { 12266 bnxt_hwrm_if_change(bp, false); 12267 } else { 12268 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 12269 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 12270 bnxt_queue_sp_work(bp, 12271 BNXT_RESTART_ULP_SP_EVENT); 12272 } 12273 } 12274 12275 return rc; 12276 } 12277 12278 static bool bnxt_drv_busy(struct bnxt *bp) 12279 { 12280 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 12281 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 12282 } 12283 12284 static void bnxt_get_ring_stats(struct bnxt *bp, 12285 struct rtnl_link_stats64 *stats); 12286 12287 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 12288 bool link_re_init) 12289 { 12290 /* Close the VF-reps before closing PF */ 12291 if (BNXT_PF(bp)) 12292 bnxt_vf_reps_close(bp); 12293 12294 /* Change device state to avoid TX queue wake up's */ 12295 bnxt_tx_disable(bp); 12296 12297 clear_bit(BNXT_STATE_OPEN, &bp->state); 12298 smp_mb__after_atomic(); 12299 while (bnxt_drv_busy(bp)) 12300 msleep(20); 12301 12302 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 12303 bnxt_clear_rss_ctxs(bp); 12304 /* Flush rings and disable interrupts */ 12305 bnxt_shutdown_nic(bp, irq_re_init); 12306 12307 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 12308 12309 bnxt_debug_dev_exit(bp); 12310 bnxt_disable_napi(bp); 12311 del_timer_sync(&bp->timer); 12312 bnxt_free_skbs(bp); 12313 12314 /* Save ring stats before shutdown */ 12315 if (bp->bnapi && irq_re_init) { 12316 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 12317 bnxt_get_ring_err_stats(bp, &bp->ring_err_stats_prev); 12318 } 12319 if (irq_re_init) { 12320 bnxt_free_irq(bp); 12321 bnxt_del_napi(bp); 12322 } 12323 bnxt_free_mem(bp, irq_re_init); 12324 } 12325 12326 void bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12327 { 12328 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 12329 /* If we get here, it means firmware reset is in progress 12330 * while we are trying to close. We can safely proceed with 12331 * the close because we are holding rtnl_lock(). Some firmware 12332 * messages may fail as we proceed to close. We set the 12333 * ABORT_ERR flag here so that the FW reset thread will later 12334 * abort when it gets the rtnl_lock() and sees the flag. 12335 */ 12336 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 12337 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12338 } 12339 12340 #ifdef CONFIG_BNXT_SRIOV 12341 if (bp->sriov_cfg) { 12342 int rc; 12343 12344 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 12345 !bp->sriov_cfg, 12346 BNXT_SRIOV_CFG_WAIT_TMO); 12347 if (!rc) 12348 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete, proceeding to close!\n"); 12349 else if (rc < 0) 12350 netdev_warn(bp->dev, "SRIOV config operation interrupted, proceeding to close!\n"); 12351 } 12352 #endif 12353 __bnxt_close_nic(bp, irq_re_init, link_re_init); 12354 } 12355 12356 static int bnxt_close(struct net_device *dev) 12357 { 12358 struct bnxt *bp = netdev_priv(dev); 12359 12360 bnxt_close_nic(bp, true, true); 12361 bnxt_hwrm_shutdown_link(bp); 12362 bnxt_hwrm_if_change(bp, false); 12363 return 0; 12364 } 12365 12366 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 12367 u16 *val) 12368 { 12369 struct hwrm_port_phy_mdio_read_output *resp; 12370 struct hwrm_port_phy_mdio_read_input *req; 12371 int rc; 12372 12373 if (bp->hwrm_spec_code < 0x10a00) 12374 return -EOPNOTSUPP; 12375 12376 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ); 12377 if (rc) 12378 return rc; 12379 12380 req->port_id = cpu_to_le16(bp->pf.port_id); 12381 req->phy_addr = phy_addr; 12382 req->reg_addr = cpu_to_le16(reg & 0x1f); 12383 if (mdio_phy_id_is_c45(phy_addr)) { 12384 req->cl45_mdio = 1; 12385 req->phy_addr = mdio_phy_id_prtad(phy_addr); 12386 req->dev_addr = mdio_phy_id_devad(phy_addr); 12387 req->reg_addr = cpu_to_le16(reg); 12388 } 12389 12390 resp = hwrm_req_hold(bp, req); 12391 rc = hwrm_req_send(bp, req); 12392 if (!rc) 12393 *val = le16_to_cpu(resp->reg_data); 12394 hwrm_req_drop(bp, req); 12395 return rc; 12396 } 12397 12398 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 12399 u16 val) 12400 { 12401 struct hwrm_port_phy_mdio_write_input *req; 12402 int rc; 12403 12404 if (bp->hwrm_spec_code < 0x10a00) 12405 return -EOPNOTSUPP; 12406 12407 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE); 12408 if (rc) 12409 return rc; 12410 12411 req->port_id = cpu_to_le16(bp->pf.port_id); 12412 req->phy_addr = phy_addr; 12413 req->reg_addr = cpu_to_le16(reg & 0x1f); 12414 if (mdio_phy_id_is_c45(phy_addr)) { 12415 req->cl45_mdio = 1; 12416 req->phy_addr = mdio_phy_id_prtad(phy_addr); 12417 req->dev_addr = mdio_phy_id_devad(phy_addr); 12418 req->reg_addr = cpu_to_le16(reg); 12419 } 12420 req->reg_data = cpu_to_le16(val); 12421 12422 return hwrm_req_send(bp, req); 12423 } 12424 12425 /* rtnl_lock held */ 12426 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 12427 { 12428 struct mii_ioctl_data *mdio = if_mii(ifr); 12429 struct bnxt *bp = netdev_priv(dev); 12430 int rc; 12431 12432 switch (cmd) { 12433 case SIOCGMIIPHY: 12434 mdio->phy_id = bp->link_info.phy_addr; 12435 12436 fallthrough; 12437 case SIOCGMIIREG: { 12438 u16 mii_regval = 0; 12439 12440 if (!netif_running(dev)) 12441 return -EAGAIN; 12442 12443 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 12444 &mii_regval); 12445 mdio->val_out = mii_regval; 12446 return rc; 12447 } 12448 12449 case SIOCSMIIREG: 12450 if (!netif_running(dev)) 12451 return -EAGAIN; 12452 12453 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 12454 mdio->val_in); 12455 12456 case SIOCSHWTSTAMP: 12457 return bnxt_hwtstamp_set(dev, ifr); 12458 12459 case SIOCGHWTSTAMP: 12460 return bnxt_hwtstamp_get(dev, ifr); 12461 12462 default: 12463 /* do nothing */ 12464 break; 12465 } 12466 return -EOPNOTSUPP; 12467 } 12468 12469 static void bnxt_get_ring_stats(struct bnxt *bp, 12470 struct rtnl_link_stats64 *stats) 12471 { 12472 int i; 12473 12474 for (i = 0; i < bp->cp_nr_rings; i++) { 12475 struct bnxt_napi *bnapi = bp->bnapi[i]; 12476 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 12477 u64 *sw = cpr->stats.sw_stats; 12478 12479 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 12480 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 12481 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 12482 12483 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 12484 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 12485 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 12486 12487 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 12488 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 12489 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 12490 12491 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 12492 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 12493 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 12494 12495 stats->rx_missed_errors += 12496 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 12497 12498 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 12499 12500 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 12501 12502 stats->rx_dropped += 12503 cpr->sw_stats->rx.rx_netpoll_discards + 12504 cpr->sw_stats->rx.rx_oom_discards; 12505 } 12506 } 12507 12508 static void bnxt_add_prev_stats(struct bnxt *bp, 12509 struct rtnl_link_stats64 *stats) 12510 { 12511 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 12512 12513 stats->rx_packets += prev_stats->rx_packets; 12514 stats->tx_packets += prev_stats->tx_packets; 12515 stats->rx_bytes += prev_stats->rx_bytes; 12516 stats->tx_bytes += prev_stats->tx_bytes; 12517 stats->rx_missed_errors += prev_stats->rx_missed_errors; 12518 stats->multicast += prev_stats->multicast; 12519 stats->rx_dropped += prev_stats->rx_dropped; 12520 stats->tx_dropped += prev_stats->tx_dropped; 12521 } 12522 12523 static void 12524 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 12525 { 12526 struct bnxt *bp = netdev_priv(dev); 12527 12528 set_bit(BNXT_STATE_READ_STATS, &bp->state); 12529 /* Make sure bnxt_close_nic() sees that we are reading stats before 12530 * we check the BNXT_STATE_OPEN flag. 12531 */ 12532 smp_mb__after_atomic(); 12533 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 12534 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 12535 *stats = bp->net_stats_prev; 12536 return; 12537 } 12538 12539 bnxt_get_ring_stats(bp, stats); 12540 bnxt_add_prev_stats(bp, stats); 12541 12542 if (bp->flags & BNXT_FLAG_PORT_STATS) { 12543 u64 *rx = bp->port_stats.sw_stats; 12544 u64 *tx = bp->port_stats.sw_stats + 12545 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 12546 12547 stats->rx_crc_errors = 12548 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 12549 stats->rx_frame_errors = 12550 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 12551 stats->rx_length_errors = 12552 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 12553 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 12554 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 12555 stats->rx_errors = 12556 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 12557 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 12558 stats->collisions = 12559 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 12560 stats->tx_fifo_errors = 12561 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 12562 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 12563 } 12564 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 12565 } 12566 12567 static void bnxt_get_one_ring_err_stats(struct bnxt *bp, 12568 struct bnxt_total_ring_err_stats *stats, 12569 struct bnxt_cp_ring_info *cpr) 12570 { 12571 struct bnxt_sw_stats *sw_stats = cpr->sw_stats; 12572 u64 *hw_stats = cpr->stats.sw_stats; 12573 12574 stats->rx_total_l4_csum_errors += sw_stats->rx.rx_l4_csum_errors; 12575 stats->rx_total_resets += sw_stats->rx.rx_resets; 12576 stats->rx_total_buf_errors += sw_stats->rx.rx_buf_errors; 12577 stats->rx_total_oom_discards += sw_stats->rx.rx_oom_discards; 12578 stats->rx_total_netpoll_discards += sw_stats->rx.rx_netpoll_discards; 12579 stats->rx_total_ring_discards += 12580 BNXT_GET_RING_STATS64(hw_stats, rx_discard_pkts); 12581 stats->tx_total_resets += sw_stats->tx.tx_resets; 12582 stats->tx_total_ring_discards += 12583 BNXT_GET_RING_STATS64(hw_stats, tx_discard_pkts); 12584 stats->total_missed_irqs += sw_stats->cmn.missed_irqs; 12585 } 12586 12587 void bnxt_get_ring_err_stats(struct bnxt *bp, 12588 struct bnxt_total_ring_err_stats *stats) 12589 { 12590 int i; 12591 12592 for (i = 0; i < bp->cp_nr_rings; i++) 12593 bnxt_get_one_ring_err_stats(bp, stats, &bp->bnapi[i]->cp_ring); 12594 } 12595 12596 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 12597 { 12598 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12599 struct net_device *dev = bp->dev; 12600 struct netdev_hw_addr *ha; 12601 u8 *haddr; 12602 int mc_count = 0; 12603 bool update = false; 12604 int off = 0; 12605 12606 netdev_for_each_mc_addr(ha, dev) { 12607 if (mc_count >= BNXT_MAX_MC_ADDRS) { 12608 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 12609 vnic->mc_list_count = 0; 12610 return false; 12611 } 12612 haddr = ha->addr; 12613 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 12614 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 12615 update = true; 12616 } 12617 off += ETH_ALEN; 12618 mc_count++; 12619 } 12620 if (mc_count) 12621 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 12622 12623 if (mc_count != vnic->mc_list_count) { 12624 vnic->mc_list_count = mc_count; 12625 update = true; 12626 } 12627 return update; 12628 } 12629 12630 static bool bnxt_uc_list_updated(struct bnxt *bp) 12631 { 12632 struct net_device *dev = bp->dev; 12633 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12634 struct netdev_hw_addr *ha; 12635 int off = 0; 12636 12637 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 12638 return true; 12639 12640 netdev_for_each_uc_addr(ha, dev) { 12641 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 12642 return true; 12643 12644 off += ETH_ALEN; 12645 } 12646 return false; 12647 } 12648 12649 static void bnxt_set_rx_mode(struct net_device *dev) 12650 { 12651 struct bnxt *bp = netdev_priv(dev); 12652 struct bnxt_vnic_info *vnic; 12653 bool mc_update = false; 12654 bool uc_update; 12655 u32 mask; 12656 12657 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 12658 return; 12659 12660 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12661 mask = vnic->rx_mask; 12662 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 12663 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 12664 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 12665 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 12666 12667 if (dev->flags & IFF_PROMISC) 12668 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 12669 12670 uc_update = bnxt_uc_list_updated(bp); 12671 12672 if (dev->flags & IFF_BROADCAST) 12673 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 12674 if (dev->flags & IFF_ALLMULTI) { 12675 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 12676 vnic->mc_list_count = 0; 12677 } else if (dev->flags & IFF_MULTICAST) { 12678 mc_update = bnxt_mc_list_updated(bp, &mask); 12679 } 12680 12681 if (mask != vnic->rx_mask || uc_update || mc_update) { 12682 vnic->rx_mask = mask; 12683 12684 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 12685 } 12686 } 12687 12688 static int bnxt_cfg_rx_mode(struct bnxt *bp) 12689 { 12690 struct net_device *dev = bp->dev; 12691 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12692 struct netdev_hw_addr *ha; 12693 int i, off = 0, rc; 12694 bool uc_update; 12695 12696 netif_addr_lock_bh(dev); 12697 uc_update = bnxt_uc_list_updated(bp); 12698 netif_addr_unlock_bh(dev); 12699 12700 if (!uc_update) 12701 goto skip_uc; 12702 12703 for (i = 1; i < vnic->uc_filter_count; i++) { 12704 struct bnxt_l2_filter *fltr = vnic->l2_filters[i]; 12705 12706 bnxt_hwrm_l2_filter_free(bp, fltr); 12707 bnxt_del_l2_filter(bp, fltr); 12708 } 12709 12710 vnic->uc_filter_count = 1; 12711 12712 netif_addr_lock_bh(dev); 12713 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 12714 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 12715 } else { 12716 netdev_for_each_uc_addr(ha, dev) { 12717 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 12718 off += ETH_ALEN; 12719 vnic->uc_filter_count++; 12720 } 12721 } 12722 netif_addr_unlock_bh(dev); 12723 12724 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 12725 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 12726 if (rc) { 12727 if (BNXT_VF(bp) && rc == -ENODEV) { 12728 if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 12729 netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n"); 12730 else 12731 netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n"); 12732 rc = 0; 12733 } else { 12734 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 12735 } 12736 vnic->uc_filter_count = i; 12737 return rc; 12738 } 12739 } 12740 if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 12741 netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n"); 12742 12743 skip_uc: 12744 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 12745 !bnxt_promisc_ok(bp)) 12746 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 12747 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 12748 if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) { 12749 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 12750 rc); 12751 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 12752 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 12753 vnic->mc_list_count = 0; 12754 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 12755 } 12756 if (rc) 12757 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 12758 rc); 12759 12760 return rc; 12761 } 12762 12763 static bool bnxt_can_reserve_rings(struct bnxt *bp) 12764 { 12765 #ifdef CONFIG_BNXT_SRIOV 12766 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 12767 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 12768 12769 /* No minimum rings were provisioned by the PF. Don't 12770 * reserve rings by default when device is down. 12771 */ 12772 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 12773 return true; 12774 12775 if (!netif_running(bp->dev)) 12776 return false; 12777 } 12778 #endif 12779 return true; 12780 } 12781 12782 /* If the chip and firmware supports RFS */ 12783 static bool bnxt_rfs_supported(struct bnxt *bp) 12784 { 12785 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 12786 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 12787 return true; 12788 return false; 12789 } 12790 /* 212 firmware is broken for aRFS */ 12791 if (BNXT_FW_MAJ(bp) == 212) 12792 return false; 12793 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 12794 return true; 12795 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 12796 return true; 12797 return false; 12798 } 12799 12800 /* If runtime conditions support RFS */ 12801 bool bnxt_rfs_capable(struct bnxt *bp, bool new_rss_ctx) 12802 { 12803 struct bnxt_hw_rings hwr = {0}; 12804 int max_vnics, max_rss_ctxs; 12805 12806 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 12807 !BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 12808 return bnxt_rfs_supported(bp); 12809 12810 if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings) 12811 return false; 12812 12813 hwr.grp = bp->rx_nr_rings; 12814 hwr.vnic = bnxt_get_total_vnics(bp, bp->rx_nr_rings); 12815 if (new_rss_ctx) 12816 hwr.vnic++; 12817 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 12818 max_vnics = bnxt_get_max_func_vnics(bp); 12819 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 12820 12821 if (hwr.vnic > max_vnics || hwr.rss_ctx > max_rss_ctxs) { 12822 if (bp->rx_nr_rings > 1) 12823 netdev_warn(bp->dev, 12824 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 12825 min(max_rss_ctxs - 1, max_vnics - 1)); 12826 return false; 12827 } 12828 12829 if (!BNXT_NEW_RM(bp)) 12830 return true; 12831 12832 /* Do not reduce VNIC and RSS ctx reservations. There is a FW 12833 * issue that will mess up the default VNIC if we reduce the 12834 * reservations. 12835 */ 12836 if (hwr.vnic <= bp->hw_resc.resv_vnics && 12837 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 12838 return true; 12839 12840 bnxt_hwrm_reserve_rings(bp, &hwr); 12841 if (hwr.vnic <= bp->hw_resc.resv_vnics && 12842 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 12843 return true; 12844 12845 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 12846 hwr.vnic = 1; 12847 hwr.rss_ctx = 0; 12848 bnxt_hwrm_reserve_rings(bp, &hwr); 12849 return false; 12850 } 12851 12852 static netdev_features_t bnxt_fix_features(struct net_device *dev, 12853 netdev_features_t features) 12854 { 12855 struct bnxt *bp = netdev_priv(dev); 12856 netdev_features_t vlan_features; 12857 12858 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp, false)) 12859 features &= ~NETIF_F_NTUPLE; 12860 12861 if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog) 12862 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12863 12864 if (!(features & NETIF_F_GRO)) 12865 features &= ~NETIF_F_GRO_HW; 12866 12867 if (features & NETIF_F_GRO_HW) 12868 features &= ~NETIF_F_LRO; 12869 12870 /* Both CTAG and STAG VLAN accelaration on the RX side have to be 12871 * turned on or off together. 12872 */ 12873 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 12874 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 12875 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 12876 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 12877 else if (vlan_features) 12878 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 12879 } 12880 #ifdef CONFIG_BNXT_SRIOV 12881 if (BNXT_VF(bp) && bp->vf.vlan) 12882 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 12883 #endif 12884 return features; 12885 } 12886 12887 static int bnxt_reinit_features(struct bnxt *bp, bool irq_re_init, 12888 bool link_re_init, u32 flags, bool update_tpa) 12889 { 12890 bnxt_close_nic(bp, irq_re_init, link_re_init); 12891 bp->flags = flags; 12892 if (update_tpa) 12893 bnxt_set_ring_params(bp); 12894 return bnxt_open_nic(bp, irq_re_init, link_re_init); 12895 } 12896 12897 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 12898 { 12899 bool update_tpa = false, update_ntuple = false; 12900 struct bnxt *bp = netdev_priv(dev); 12901 u32 flags = bp->flags; 12902 u32 changes; 12903 int rc = 0; 12904 bool re_init = false; 12905 12906 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 12907 if (features & NETIF_F_GRO_HW) 12908 flags |= BNXT_FLAG_GRO; 12909 else if (features & NETIF_F_LRO) 12910 flags |= BNXT_FLAG_LRO; 12911 12912 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 12913 flags &= ~BNXT_FLAG_TPA; 12914 12915 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 12916 flags |= BNXT_FLAG_STRIP_VLAN; 12917 12918 if (features & NETIF_F_NTUPLE) 12919 flags |= BNXT_FLAG_RFS; 12920 else 12921 bnxt_clear_usr_fltrs(bp, true); 12922 12923 changes = flags ^ bp->flags; 12924 if (changes & BNXT_FLAG_TPA) { 12925 update_tpa = true; 12926 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 12927 (flags & BNXT_FLAG_TPA) == 0 || 12928 (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 12929 re_init = true; 12930 } 12931 12932 if (changes & ~BNXT_FLAG_TPA) 12933 re_init = true; 12934 12935 if (changes & BNXT_FLAG_RFS) 12936 update_ntuple = true; 12937 12938 if (flags != bp->flags) { 12939 u32 old_flags = bp->flags; 12940 12941 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 12942 bp->flags = flags; 12943 if (update_tpa) 12944 bnxt_set_ring_params(bp); 12945 return rc; 12946 } 12947 12948 if (update_ntuple) 12949 return bnxt_reinit_features(bp, true, false, flags, update_tpa); 12950 12951 if (re_init) 12952 return bnxt_reinit_features(bp, false, false, flags, update_tpa); 12953 12954 if (update_tpa) { 12955 bp->flags = flags; 12956 rc = bnxt_set_tpa(bp, 12957 (flags & BNXT_FLAG_TPA) ? 12958 true : false); 12959 if (rc) 12960 bp->flags = old_flags; 12961 } 12962 } 12963 return rc; 12964 } 12965 12966 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, 12967 u8 **nextp) 12968 { 12969 struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); 12970 struct hop_jumbo_hdr *jhdr; 12971 int hdr_count = 0; 12972 u8 *nexthdr; 12973 int start; 12974 12975 /* Check that there are at most 2 IPv6 extension headers, no 12976 * fragment header, and each is <= 64 bytes. 12977 */ 12978 start = nw_off + sizeof(*ip6h); 12979 nexthdr = &ip6h->nexthdr; 12980 while (ipv6_ext_hdr(*nexthdr)) { 12981 struct ipv6_opt_hdr *hp; 12982 int hdrlen; 12983 12984 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || 12985 *nexthdr == NEXTHDR_FRAGMENT) 12986 return false; 12987 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, 12988 skb_headlen(skb), NULL); 12989 if (!hp) 12990 return false; 12991 if (*nexthdr == NEXTHDR_AUTH) 12992 hdrlen = ipv6_authlen(hp); 12993 else 12994 hdrlen = ipv6_optlen(hp); 12995 12996 if (hdrlen > 64) 12997 return false; 12998 12999 /* The ext header may be a hop-by-hop header inserted for 13000 * big TCP purposes. This will be removed before sending 13001 * from NIC, so do not count it. 13002 */ 13003 if (*nexthdr == NEXTHDR_HOP) { 13004 if (likely(skb->len <= GRO_LEGACY_MAX_SIZE)) 13005 goto increment_hdr; 13006 13007 jhdr = (struct hop_jumbo_hdr *)hp; 13008 if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 || 13009 jhdr->nexthdr != IPPROTO_TCP) 13010 goto increment_hdr; 13011 13012 goto next_hdr; 13013 } 13014 increment_hdr: 13015 hdr_count++; 13016 next_hdr: 13017 nexthdr = &hp->nexthdr; 13018 start += hdrlen; 13019 } 13020 if (nextp) { 13021 /* Caller will check inner protocol */ 13022 if (skb->encapsulation) { 13023 *nextp = nexthdr; 13024 return true; 13025 } 13026 *nextp = NULL; 13027 } 13028 /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ 13029 return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; 13030 } 13031 13032 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 13033 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) 13034 { 13035 struct udphdr *uh = udp_hdr(skb); 13036 __be16 udp_port = uh->dest; 13037 13038 if (udp_port != bp->vxlan_port && udp_port != bp->nge_port && 13039 udp_port != bp->vxlan_gpe_port) 13040 return false; 13041 if (skb->inner_protocol == htons(ETH_P_TEB)) { 13042 struct ethhdr *eh = inner_eth_hdr(skb); 13043 13044 switch (eh->h_proto) { 13045 case htons(ETH_P_IP): 13046 return true; 13047 case htons(ETH_P_IPV6): 13048 return bnxt_exthdr_check(bp, skb, 13049 skb_inner_network_offset(skb), 13050 NULL); 13051 } 13052 } else if (skb->inner_protocol == htons(ETH_P_IP)) { 13053 return true; 13054 } else if (skb->inner_protocol == htons(ETH_P_IPV6)) { 13055 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 13056 NULL); 13057 } 13058 return false; 13059 } 13060 13061 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) 13062 { 13063 switch (l4_proto) { 13064 case IPPROTO_UDP: 13065 return bnxt_udp_tunl_check(bp, skb); 13066 case IPPROTO_IPIP: 13067 return true; 13068 case IPPROTO_GRE: { 13069 switch (skb->inner_protocol) { 13070 default: 13071 return false; 13072 case htons(ETH_P_IP): 13073 return true; 13074 case htons(ETH_P_IPV6): 13075 fallthrough; 13076 } 13077 } 13078 case IPPROTO_IPV6: 13079 /* Check ext headers of inner ipv6 */ 13080 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 13081 NULL); 13082 } 13083 return false; 13084 } 13085 13086 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 13087 struct net_device *dev, 13088 netdev_features_t features) 13089 { 13090 struct bnxt *bp = netdev_priv(dev); 13091 u8 *l4_proto; 13092 13093 features = vlan_features_check(skb, features); 13094 switch (vlan_get_protocol(skb)) { 13095 case htons(ETH_P_IP): 13096 if (!skb->encapsulation) 13097 return features; 13098 l4_proto = &ip_hdr(skb)->protocol; 13099 if (bnxt_tunl_check(bp, skb, *l4_proto)) 13100 return features; 13101 break; 13102 case htons(ETH_P_IPV6): 13103 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), 13104 &l4_proto)) 13105 break; 13106 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) 13107 return features; 13108 break; 13109 } 13110 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 13111 } 13112 13113 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 13114 u32 *reg_buf) 13115 { 13116 struct hwrm_dbg_read_direct_output *resp; 13117 struct hwrm_dbg_read_direct_input *req; 13118 __le32 *dbg_reg_buf; 13119 dma_addr_t mapping; 13120 int rc, i; 13121 13122 rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT); 13123 if (rc) 13124 return rc; 13125 13126 dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4, 13127 &mapping); 13128 if (!dbg_reg_buf) { 13129 rc = -ENOMEM; 13130 goto dbg_rd_reg_exit; 13131 } 13132 13133 req->host_dest_addr = cpu_to_le64(mapping); 13134 13135 resp = hwrm_req_hold(bp, req); 13136 req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 13137 req->read_len32 = cpu_to_le32(num_words); 13138 13139 rc = hwrm_req_send(bp, req); 13140 if (rc || resp->error_code) { 13141 rc = -EIO; 13142 goto dbg_rd_reg_exit; 13143 } 13144 for (i = 0; i < num_words; i++) 13145 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 13146 13147 dbg_rd_reg_exit: 13148 hwrm_req_drop(bp, req); 13149 return rc; 13150 } 13151 13152 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 13153 u32 ring_id, u32 *prod, u32 *cons) 13154 { 13155 struct hwrm_dbg_ring_info_get_output *resp; 13156 struct hwrm_dbg_ring_info_get_input *req; 13157 int rc; 13158 13159 rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET); 13160 if (rc) 13161 return rc; 13162 13163 req->ring_type = ring_type; 13164 req->fw_ring_id = cpu_to_le32(ring_id); 13165 resp = hwrm_req_hold(bp, req); 13166 rc = hwrm_req_send(bp, req); 13167 if (!rc) { 13168 *prod = le32_to_cpu(resp->producer_index); 13169 *cons = le32_to_cpu(resp->consumer_index); 13170 } 13171 hwrm_req_drop(bp, req); 13172 return rc; 13173 } 13174 13175 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 13176 { 13177 struct bnxt_tx_ring_info *txr; 13178 int i = bnapi->index, j; 13179 13180 bnxt_for_each_napi_tx(j, bnapi, txr) 13181 netdev_info(bnapi->bp->dev, "[%d.%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 13182 i, j, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 13183 txr->tx_cons); 13184 } 13185 13186 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 13187 { 13188 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 13189 int i = bnapi->index; 13190 13191 if (!rxr) 13192 return; 13193 13194 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 13195 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 13196 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 13197 rxr->rx_sw_agg_prod); 13198 } 13199 13200 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 13201 { 13202 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 13203 int i = bnapi->index; 13204 13205 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 13206 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 13207 } 13208 13209 static void bnxt_dbg_dump_states(struct bnxt *bp) 13210 { 13211 int i; 13212 struct bnxt_napi *bnapi; 13213 13214 for (i = 0; i < bp->cp_nr_rings; i++) { 13215 bnapi = bp->bnapi[i]; 13216 if (netif_msg_drv(bp)) { 13217 bnxt_dump_tx_sw_state(bnapi); 13218 bnxt_dump_rx_sw_state(bnapi); 13219 bnxt_dump_cp_sw_state(bnapi); 13220 } 13221 } 13222 } 13223 13224 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 13225 { 13226 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 13227 struct hwrm_ring_reset_input *req; 13228 struct bnxt_napi *bnapi = rxr->bnapi; 13229 struct bnxt_cp_ring_info *cpr; 13230 u16 cp_ring_id; 13231 int rc; 13232 13233 rc = hwrm_req_init(bp, req, HWRM_RING_RESET); 13234 if (rc) 13235 return rc; 13236 13237 cpr = &bnapi->cp_ring; 13238 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 13239 req->cmpl_ring = cpu_to_le16(cp_ring_id); 13240 req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 13241 req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 13242 return hwrm_req_send_silent(bp, req); 13243 } 13244 13245 static void bnxt_reset_task(struct bnxt *bp, bool silent) 13246 { 13247 if (!silent) 13248 bnxt_dbg_dump_states(bp); 13249 if (netif_running(bp->dev)) { 13250 bnxt_close_nic(bp, !silent, false); 13251 bnxt_open_nic(bp, !silent, false); 13252 } 13253 } 13254 13255 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 13256 { 13257 struct bnxt *bp = netdev_priv(dev); 13258 13259 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 13260 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 13261 } 13262 13263 static void bnxt_fw_health_check(struct bnxt *bp) 13264 { 13265 struct bnxt_fw_health *fw_health = bp->fw_health; 13266 struct pci_dev *pdev = bp->pdev; 13267 u32 val; 13268 13269 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 13270 return; 13271 13272 /* Make sure it is enabled before checking the tmr_counter. */ 13273 smp_rmb(); 13274 if (fw_health->tmr_counter) { 13275 fw_health->tmr_counter--; 13276 return; 13277 } 13278 13279 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 13280 if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) { 13281 fw_health->arrests++; 13282 goto fw_reset; 13283 } 13284 13285 fw_health->last_fw_heartbeat = val; 13286 13287 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 13288 if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) { 13289 fw_health->discoveries++; 13290 goto fw_reset; 13291 } 13292 13293 fw_health->tmr_counter = fw_health->tmr_multiplier; 13294 return; 13295 13296 fw_reset: 13297 bnxt_queue_sp_work(bp, BNXT_FW_EXCEPTION_SP_EVENT); 13298 } 13299 13300 static void bnxt_timer(struct timer_list *t) 13301 { 13302 struct bnxt *bp = from_timer(bp, t, timer); 13303 struct net_device *dev = bp->dev; 13304 13305 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 13306 return; 13307 13308 if (atomic_read(&bp->intr_sem) != 0) 13309 goto bnxt_restart_timer; 13310 13311 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 13312 bnxt_fw_health_check(bp); 13313 13314 if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) 13315 bnxt_queue_sp_work(bp, BNXT_PERIODIC_STATS_SP_EVENT); 13316 13317 if (bnxt_tc_flower_enabled(bp)) 13318 bnxt_queue_sp_work(bp, BNXT_FLOW_STATS_SP_EVENT); 13319 13320 #ifdef CONFIG_RFS_ACCEL 13321 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) 13322 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 13323 #endif /*CONFIG_RFS_ACCEL*/ 13324 13325 if (bp->link_info.phy_retry) { 13326 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 13327 bp->link_info.phy_retry = false; 13328 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 13329 } else { 13330 bnxt_queue_sp_work(bp, BNXT_UPDATE_PHY_SP_EVENT); 13331 } 13332 } 13333 13334 if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 13335 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 13336 13337 if ((BNXT_CHIP_P5(bp)) && !bp->chip_rev && netif_carrier_ok(dev)) 13338 bnxt_queue_sp_work(bp, BNXT_RING_COAL_NOW_SP_EVENT); 13339 13340 bnxt_restart_timer: 13341 mod_timer(&bp->timer, jiffies + bp->current_interval); 13342 } 13343 13344 static void bnxt_rtnl_lock_sp(struct bnxt *bp) 13345 { 13346 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 13347 * set. If the device is being closed, bnxt_close() may be holding 13348 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we 13349 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). 13350 */ 13351 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13352 rtnl_lock(); 13353 } 13354 13355 static void bnxt_rtnl_unlock_sp(struct bnxt *bp) 13356 { 13357 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13358 rtnl_unlock(); 13359 } 13360 13361 /* Only called from bnxt_sp_task() */ 13362 static void bnxt_reset(struct bnxt *bp, bool silent) 13363 { 13364 bnxt_rtnl_lock_sp(bp); 13365 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 13366 bnxt_reset_task(bp, silent); 13367 bnxt_rtnl_unlock_sp(bp); 13368 } 13369 13370 /* Only called from bnxt_sp_task() */ 13371 static void bnxt_rx_ring_reset(struct bnxt *bp) 13372 { 13373 int i; 13374 13375 bnxt_rtnl_lock_sp(bp); 13376 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13377 bnxt_rtnl_unlock_sp(bp); 13378 return; 13379 } 13380 /* Disable and flush TPA before resetting the RX ring */ 13381 if (bp->flags & BNXT_FLAG_TPA) 13382 bnxt_set_tpa(bp, false); 13383 for (i = 0; i < bp->rx_nr_rings; i++) { 13384 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 13385 struct bnxt_cp_ring_info *cpr; 13386 int rc; 13387 13388 if (!rxr->bnapi->in_reset) 13389 continue; 13390 13391 rc = bnxt_hwrm_rx_ring_reset(bp, i); 13392 if (rc) { 13393 if (rc == -EINVAL || rc == -EOPNOTSUPP) 13394 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 13395 else 13396 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 13397 rc); 13398 bnxt_reset_task(bp, true); 13399 break; 13400 } 13401 bnxt_free_one_rx_ring_skbs(bp, i); 13402 rxr->rx_prod = 0; 13403 rxr->rx_agg_prod = 0; 13404 rxr->rx_sw_agg_prod = 0; 13405 rxr->rx_next_cons = 0; 13406 rxr->bnapi->in_reset = false; 13407 bnxt_alloc_one_rx_ring(bp, i); 13408 cpr = &rxr->bnapi->cp_ring; 13409 cpr->sw_stats->rx.rx_resets++; 13410 if (bp->flags & BNXT_FLAG_AGG_RINGS) 13411 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 13412 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 13413 } 13414 if (bp->flags & BNXT_FLAG_TPA) 13415 bnxt_set_tpa(bp, true); 13416 bnxt_rtnl_unlock_sp(bp); 13417 } 13418 13419 static void bnxt_fw_fatal_close(struct bnxt *bp) 13420 { 13421 bnxt_tx_disable(bp); 13422 bnxt_disable_napi(bp); 13423 bnxt_disable_int_sync(bp); 13424 bnxt_free_irq(bp); 13425 bnxt_clear_int_mode(bp); 13426 pci_disable_device(bp->pdev); 13427 } 13428 13429 static void bnxt_fw_reset_close(struct bnxt *bp) 13430 { 13431 /* When firmware is in fatal state, quiesce device and disable 13432 * bus master to prevent any potential bad DMAs before freeing 13433 * kernel memory. 13434 */ 13435 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 13436 u16 val = 0; 13437 13438 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 13439 if (val == 0xffff) 13440 bp->fw_reset_min_dsecs = 0; 13441 bnxt_fw_fatal_close(bp); 13442 } 13443 __bnxt_close_nic(bp, true, false); 13444 bnxt_vf_reps_free(bp); 13445 bnxt_clear_int_mode(bp); 13446 bnxt_hwrm_func_drv_unrgtr(bp); 13447 if (pci_is_enabled(bp->pdev)) 13448 pci_disable_device(bp->pdev); 13449 bnxt_free_ctx_mem(bp); 13450 } 13451 13452 static bool is_bnxt_fw_ok(struct bnxt *bp) 13453 { 13454 struct bnxt_fw_health *fw_health = bp->fw_health; 13455 bool no_heartbeat = false, has_reset = false; 13456 u32 val; 13457 13458 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 13459 if (val == fw_health->last_fw_heartbeat) 13460 no_heartbeat = true; 13461 13462 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 13463 if (val != fw_health->last_fw_reset_cnt) 13464 has_reset = true; 13465 13466 if (!no_heartbeat && has_reset) 13467 return true; 13468 13469 return false; 13470 } 13471 13472 /* rtnl_lock is acquired before calling this function */ 13473 static void bnxt_force_fw_reset(struct bnxt *bp) 13474 { 13475 struct bnxt_fw_health *fw_health = bp->fw_health; 13476 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 13477 u32 wait_dsecs; 13478 13479 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 13480 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 13481 return; 13482 13483 if (ptp) { 13484 spin_lock_bh(&ptp->ptp_lock); 13485 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13486 spin_unlock_bh(&ptp->ptp_lock); 13487 } else { 13488 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13489 } 13490 bnxt_fw_reset_close(bp); 13491 wait_dsecs = fw_health->master_func_wait_dsecs; 13492 if (fw_health->primary) { 13493 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 13494 wait_dsecs = 0; 13495 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 13496 } else { 13497 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 13498 wait_dsecs = fw_health->normal_func_wait_dsecs; 13499 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 13500 } 13501 13502 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 13503 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 13504 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 13505 } 13506 13507 void bnxt_fw_exception(struct bnxt *bp) 13508 { 13509 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 13510 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 13511 bnxt_ulp_stop(bp); 13512 bnxt_rtnl_lock_sp(bp); 13513 bnxt_force_fw_reset(bp); 13514 bnxt_rtnl_unlock_sp(bp); 13515 } 13516 13517 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 13518 * < 0 on error. 13519 */ 13520 static int bnxt_get_registered_vfs(struct bnxt *bp) 13521 { 13522 #ifdef CONFIG_BNXT_SRIOV 13523 int rc; 13524 13525 if (!BNXT_PF(bp)) 13526 return 0; 13527 13528 rc = bnxt_hwrm_func_qcfg(bp); 13529 if (rc) { 13530 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 13531 return rc; 13532 } 13533 if (bp->pf.registered_vfs) 13534 return bp->pf.registered_vfs; 13535 if (bp->sriov_cfg) 13536 return 1; 13537 #endif 13538 return 0; 13539 } 13540 13541 void bnxt_fw_reset(struct bnxt *bp) 13542 { 13543 bnxt_ulp_stop(bp); 13544 bnxt_rtnl_lock_sp(bp); 13545 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 13546 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 13547 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 13548 int n = 0, tmo; 13549 13550 if (ptp) { 13551 spin_lock_bh(&ptp->ptp_lock); 13552 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13553 spin_unlock_bh(&ptp->ptp_lock); 13554 } else { 13555 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13556 } 13557 if (bp->pf.active_vfs && 13558 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 13559 n = bnxt_get_registered_vfs(bp); 13560 if (n < 0) { 13561 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 13562 n); 13563 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13564 dev_close(bp->dev); 13565 goto fw_reset_exit; 13566 } else if (n > 0) { 13567 u16 vf_tmo_dsecs = n * 10; 13568 13569 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 13570 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 13571 bp->fw_reset_state = 13572 BNXT_FW_RESET_STATE_POLL_VF; 13573 bnxt_queue_fw_reset_work(bp, HZ / 10); 13574 goto fw_reset_exit; 13575 } 13576 bnxt_fw_reset_close(bp); 13577 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 13578 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 13579 tmo = HZ / 10; 13580 } else { 13581 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 13582 tmo = bp->fw_reset_min_dsecs * HZ / 10; 13583 } 13584 bnxt_queue_fw_reset_work(bp, tmo); 13585 } 13586 fw_reset_exit: 13587 bnxt_rtnl_unlock_sp(bp); 13588 } 13589 13590 static void bnxt_chk_missed_irq(struct bnxt *bp) 13591 { 13592 int i; 13593 13594 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 13595 return; 13596 13597 for (i = 0; i < bp->cp_nr_rings; i++) { 13598 struct bnxt_napi *bnapi = bp->bnapi[i]; 13599 struct bnxt_cp_ring_info *cpr; 13600 u32 fw_ring_id; 13601 int j; 13602 13603 if (!bnapi) 13604 continue; 13605 13606 cpr = &bnapi->cp_ring; 13607 for (j = 0; j < cpr->cp_ring_count; j++) { 13608 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 13609 u32 val[2]; 13610 13611 if (cpr2->has_more_work || !bnxt_has_work(bp, cpr2)) 13612 continue; 13613 13614 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 13615 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 13616 continue; 13617 } 13618 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 13619 bnxt_dbg_hwrm_ring_info_get(bp, 13620 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 13621 fw_ring_id, &val[0], &val[1]); 13622 cpr->sw_stats->cmn.missed_irqs++; 13623 } 13624 } 13625 } 13626 13627 static void bnxt_cfg_ntp_filters(struct bnxt *); 13628 13629 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 13630 { 13631 struct bnxt_link_info *link_info = &bp->link_info; 13632 13633 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 13634 link_info->autoneg = BNXT_AUTONEG_SPEED; 13635 if (bp->hwrm_spec_code >= 0x10201) { 13636 if (link_info->auto_pause_setting & 13637 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 13638 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 13639 } else { 13640 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 13641 } 13642 bnxt_set_auto_speed(link_info); 13643 } else { 13644 bnxt_set_force_speed(link_info); 13645 link_info->req_duplex = link_info->duplex_setting; 13646 } 13647 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 13648 link_info->req_flow_ctrl = 13649 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 13650 else 13651 link_info->req_flow_ctrl = link_info->force_pause_setting; 13652 } 13653 13654 static void bnxt_fw_echo_reply(struct bnxt *bp) 13655 { 13656 struct bnxt_fw_health *fw_health = bp->fw_health; 13657 struct hwrm_func_echo_response_input *req; 13658 int rc; 13659 13660 rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE); 13661 if (rc) 13662 return; 13663 req->event_data1 = cpu_to_le32(fw_health->echo_req_data1); 13664 req->event_data2 = cpu_to_le32(fw_health->echo_req_data2); 13665 hwrm_req_send(bp, req); 13666 } 13667 13668 static void bnxt_ulp_restart(struct bnxt *bp) 13669 { 13670 bnxt_ulp_stop(bp); 13671 bnxt_ulp_start(bp, 0); 13672 } 13673 13674 static void bnxt_sp_task(struct work_struct *work) 13675 { 13676 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 13677 13678 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13679 smp_mb__after_atomic(); 13680 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13681 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13682 return; 13683 } 13684 13685 if (test_and_clear_bit(BNXT_RESTART_ULP_SP_EVENT, &bp->sp_event)) { 13686 bnxt_ulp_restart(bp); 13687 bnxt_reenable_sriov(bp); 13688 } 13689 13690 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 13691 bnxt_cfg_rx_mode(bp); 13692 13693 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 13694 bnxt_cfg_ntp_filters(bp); 13695 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 13696 bnxt_hwrm_exec_fwd_req(bp); 13697 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 13698 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 13699 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 13700 bnxt_hwrm_port_qstats(bp, 0); 13701 bnxt_hwrm_port_qstats_ext(bp, 0); 13702 bnxt_accumulate_all_stats(bp); 13703 } 13704 13705 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 13706 int rc; 13707 13708 mutex_lock(&bp->link_lock); 13709 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 13710 &bp->sp_event)) 13711 bnxt_hwrm_phy_qcaps(bp); 13712 13713 rc = bnxt_update_link(bp, true); 13714 if (rc) 13715 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 13716 rc); 13717 13718 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 13719 &bp->sp_event)) 13720 bnxt_init_ethtool_link_settings(bp); 13721 mutex_unlock(&bp->link_lock); 13722 } 13723 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 13724 int rc; 13725 13726 mutex_lock(&bp->link_lock); 13727 rc = bnxt_update_phy_setting(bp); 13728 mutex_unlock(&bp->link_lock); 13729 if (rc) { 13730 netdev_warn(bp->dev, "update phy settings retry failed\n"); 13731 } else { 13732 bp->link_info.phy_retry = false; 13733 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 13734 } 13735 } 13736 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 13737 mutex_lock(&bp->link_lock); 13738 bnxt_get_port_module_status(bp); 13739 mutex_unlock(&bp->link_lock); 13740 } 13741 13742 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 13743 bnxt_tc_flow_stats_work(bp); 13744 13745 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 13746 bnxt_chk_missed_irq(bp); 13747 13748 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 13749 bnxt_fw_echo_reply(bp); 13750 13751 if (test_and_clear_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event)) 13752 bnxt_hwmon_notify_event(bp); 13753 13754 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 13755 * must be the last functions to be called before exiting. 13756 */ 13757 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 13758 bnxt_reset(bp, false); 13759 13760 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 13761 bnxt_reset(bp, true); 13762 13763 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 13764 bnxt_rx_ring_reset(bp); 13765 13766 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) { 13767 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) || 13768 test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state)) 13769 bnxt_devlink_health_fw_report(bp); 13770 else 13771 bnxt_fw_reset(bp); 13772 } 13773 13774 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 13775 if (!is_bnxt_fw_ok(bp)) 13776 bnxt_devlink_health_fw_report(bp); 13777 } 13778 13779 smp_mb__before_atomic(); 13780 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13781 } 13782 13783 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 13784 int *max_cp); 13785 13786 /* Under rtnl_lock */ 13787 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 13788 int tx_xdp) 13789 { 13790 int max_rx, max_tx, max_cp, tx_sets = 1, tx_cp; 13791 struct bnxt_hw_rings hwr = {0}; 13792 int rx_rings = rx; 13793 13794 if (tcs) 13795 tx_sets = tcs; 13796 13797 _bnxt_get_max_rings(bp, &max_rx, &max_tx, &max_cp); 13798 13799 if (max_rx < rx_rings) 13800 return -ENOMEM; 13801 13802 if (bp->flags & BNXT_FLAG_AGG_RINGS) 13803 rx_rings <<= 1; 13804 13805 hwr.rx = rx_rings; 13806 hwr.tx = tx * tx_sets + tx_xdp; 13807 if (max_tx < hwr.tx) 13808 return -ENOMEM; 13809 13810 hwr.vnic = bnxt_get_total_vnics(bp, rx); 13811 13812 tx_cp = __bnxt_num_tx_to_cp(bp, hwr.tx, tx_sets, tx_xdp); 13813 hwr.cp = sh ? max_t(int, tx_cp, rx) : tx_cp + rx; 13814 if (max_cp < hwr.cp) 13815 return -ENOMEM; 13816 hwr.stat = hwr.cp; 13817 if (BNXT_NEW_RM(bp)) { 13818 hwr.cp += bnxt_get_ulp_msix_num_in_use(bp); 13819 hwr.stat += bnxt_get_ulp_stat_ctxs_in_use(bp); 13820 hwr.grp = rx; 13821 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 13822 } 13823 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 13824 hwr.cp_p5 = hwr.tx + rx; 13825 return bnxt_hwrm_check_rings(bp, &hwr); 13826 } 13827 13828 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 13829 { 13830 if (bp->bar2) { 13831 pci_iounmap(pdev, bp->bar2); 13832 bp->bar2 = NULL; 13833 } 13834 13835 if (bp->bar1) { 13836 pci_iounmap(pdev, bp->bar1); 13837 bp->bar1 = NULL; 13838 } 13839 13840 if (bp->bar0) { 13841 pci_iounmap(pdev, bp->bar0); 13842 bp->bar0 = NULL; 13843 } 13844 } 13845 13846 static void bnxt_cleanup_pci(struct bnxt *bp) 13847 { 13848 bnxt_unmap_bars(bp, bp->pdev); 13849 pci_release_regions(bp->pdev); 13850 if (pci_is_enabled(bp->pdev)) 13851 pci_disable_device(bp->pdev); 13852 } 13853 13854 static void bnxt_init_dflt_coal(struct bnxt *bp) 13855 { 13856 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 13857 struct bnxt_coal *coal; 13858 u16 flags = 0; 13859 13860 if (coal_cap->cmpl_params & 13861 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 13862 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 13863 13864 /* Tick values in micro seconds. 13865 * 1 coal_buf x bufs_per_record = 1 completion record. 13866 */ 13867 coal = &bp->rx_coal; 13868 coal->coal_ticks = 10; 13869 coal->coal_bufs = 30; 13870 coal->coal_ticks_irq = 1; 13871 coal->coal_bufs_irq = 2; 13872 coal->idle_thresh = 50; 13873 coal->bufs_per_record = 2; 13874 coal->budget = 64; /* NAPI budget */ 13875 coal->flags = flags; 13876 13877 coal = &bp->tx_coal; 13878 coal->coal_ticks = 28; 13879 coal->coal_bufs = 30; 13880 coal->coal_ticks_irq = 2; 13881 coal->coal_bufs_irq = 2; 13882 coal->bufs_per_record = 1; 13883 coal->flags = flags; 13884 13885 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 13886 } 13887 13888 /* FW that pre-reserves 1 VNIC per function */ 13889 static bool bnxt_fw_pre_resv_vnics(struct bnxt *bp) 13890 { 13891 u16 fw_maj = BNXT_FW_MAJ(bp), fw_bld = BNXT_FW_BLD(bp); 13892 13893 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 13894 (fw_maj > 218 || (fw_maj == 218 && fw_bld >= 18))) 13895 return true; 13896 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 13897 (fw_maj > 216 || (fw_maj == 216 && fw_bld >= 172))) 13898 return true; 13899 return false; 13900 } 13901 13902 static int bnxt_fw_init_one_p1(struct bnxt *bp) 13903 { 13904 int rc; 13905 13906 bp->fw_cap = 0; 13907 rc = bnxt_hwrm_ver_get(bp); 13908 /* FW may be unresponsive after FLR. FLR must complete within 100 msec 13909 * so wait before continuing with recovery. 13910 */ 13911 if (rc) 13912 msleep(100); 13913 bnxt_try_map_fw_health_reg(bp); 13914 if (rc) { 13915 rc = bnxt_try_recover_fw(bp); 13916 if (rc) 13917 return rc; 13918 rc = bnxt_hwrm_ver_get(bp); 13919 if (rc) 13920 return rc; 13921 } 13922 13923 bnxt_nvm_cfg_ver_get(bp); 13924 13925 rc = bnxt_hwrm_func_reset(bp); 13926 if (rc) 13927 return -ENODEV; 13928 13929 bnxt_hwrm_fw_set_time(bp); 13930 return 0; 13931 } 13932 13933 static int bnxt_fw_init_one_p2(struct bnxt *bp) 13934 { 13935 int rc; 13936 13937 /* Get the MAX capabilities for this function */ 13938 rc = bnxt_hwrm_func_qcaps(bp); 13939 if (rc) { 13940 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 13941 rc); 13942 return -ENODEV; 13943 } 13944 13945 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 13946 if (rc) 13947 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 13948 rc); 13949 13950 if (bnxt_alloc_fw_health(bp)) { 13951 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 13952 } else { 13953 rc = bnxt_hwrm_error_recovery_qcfg(bp); 13954 if (rc) 13955 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 13956 rc); 13957 } 13958 13959 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 13960 if (rc) 13961 return -ENODEV; 13962 13963 if (bnxt_fw_pre_resv_vnics(bp)) 13964 bp->fw_cap |= BNXT_FW_CAP_PRE_RESV_VNICS; 13965 13966 bnxt_hwrm_func_qcfg(bp); 13967 bnxt_hwrm_vnic_qcaps(bp); 13968 bnxt_hwrm_port_led_qcaps(bp); 13969 bnxt_ethtool_init(bp); 13970 if (bp->fw_cap & BNXT_FW_CAP_PTP) 13971 __bnxt_hwrm_ptp_qcfg(bp); 13972 bnxt_dcb_init(bp); 13973 bnxt_hwmon_init(bp); 13974 return 0; 13975 } 13976 13977 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 13978 { 13979 bp->rss_cap &= ~BNXT_RSS_CAP_UDP_RSS_CAP; 13980 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 13981 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 13982 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 13983 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 13984 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 13985 bp->rss_hash_delta = bp->rss_hash_cfg; 13986 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 13987 bp->rss_cap |= BNXT_RSS_CAP_UDP_RSS_CAP; 13988 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 13989 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 13990 } 13991 } 13992 13993 static void bnxt_set_dflt_rfs(struct bnxt *bp) 13994 { 13995 struct net_device *dev = bp->dev; 13996 13997 dev->hw_features &= ~NETIF_F_NTUPLE; 13998 dev->features &= ~NETIF_F_NTUPLE; 13999 bp->flags &= ~BNXT_FLAG_RFS; 14000 if (bnxt_rfs_supported(bp)) { 14001 dev->hw_features |= NETIF_F_NTUPLE; 14002 if (bnxt_rfs_capable(bp, false)) { 14003 bp->flags |= BNXT_FLAG_RFS; 14004 dev->features |= NETIF_F_NTUPLE; 14005 } 14006 } 14007 } 14008 14009 static void bnxt_fw_init_one_p3(struct bnxt *bp) 14010 { 14011 struct pci_dev *pdev = bp->pdev; 14012 14013 bnxt_set_dflt_rss_hash_type(bp); 14014 bnxt_set_dflt_rfs(bp); 14015 14016 bnxt_get_wol_settings(bp); 14017 if (bp->flags & BNXT_FLAG_WOL_CAP) 14018 device_set_wakeup_enable(&pdev->dev, bp->wol); 14019 else 14020 device_set_wakeup_capable(&pdev->dev, false); 14021 14022 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 14023 bnxt_hwrm_coal_params_qcaps(bp); 14024 } 14025 14026 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); 14027 14028 int bnxt_fw_init_one(struct bnxt *bp) 14029 { 14030 int rc; 14031 14032 rc = bnxt_fw_init_one_p1(bp); 14033 if (rc) { 14034 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 14035 return rc; 14036 } 14037 rc = bnxt_fw_init_one_p2(bp); 14038 if (rc) { 14039 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 14040 return rc; 14041 } 14042 rc = bnxt_probe_phy(bp, false); 14043 if (rc) 14044 return rc; 14045 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 14046 if (rc) 14047 return rc; 14048 14049 bnxt_fw_init_one_p3(bp); 14050 return 0; 14051 } 14052 14053 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 14054 { 14055 struct bnxt_fw_health *fw_health = bp->fw_health; 14056 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 14057 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 14058 u32 reg_type, reg_off, delay_msecs; 14059 14060 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 14061 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 14062 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 14063 switch (reg_type) { 14064 case BNXT_FW_HEALTH_REG_TYPE_CFG: 14065 pci_write_config_dword(bp->pdev, reg_off, val); 14066 break; 14067 case BNXT_FW_HEALTH_REG_TYPE_GRC: 14068 writel(reg_off & BNXT_GRC_BASE_MASK, 14069 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 14070 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 14071 fallthrough; 14072 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 14073 writel(val, bp->bar0 + reg_off); 14074 break; 14075 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 14076 writel(val, bp->bar1 + reg_off); 14077 break; 14078 } 14079 if (delay_msecs) { 14080 pci_read_config_dword(bp->pdev, 0, &val); 14081 msleep(delay_msecs); 14082 } 14083 } 14084 14085 bool bnxt_hwrm_reset_permitted(struct bnxt *bp) 14086 { 14087 struct hwrm_func_qcfg_output *resp; 14088 struct hwrm_func_qcfg_input *req; 14089 bool result = true; /* firmware will enforce if unknown */ 14090 14091 if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF) 14092 return result; 14093 14094 if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG)) 14095 return result; 14096 14097 req->fid = cpu_to_le16(0xffff); 14098 resp = hwrm_req_hold(bp, req); 14099 if (!hwrm_req_send(bp, req)) 14100 result = !!(le16_to_cpu(resp->flags) & 14101 FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED); 14102 hwrm_req_drop(bp, req); 14103 return result; 14104 } 14105 14106 static void bnxt_reset_all(struct bnxt *bp) 14107 { 14108 struct bnxt_fw_health *fw_health = bp->fw_health; 14109 int i, rc; 14110 14111 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 14112 bnxt_fw_reset_via_optee(bp); 14113 bp->fw_reset_timestamp = jiffies; 14114 return; 14115 } 14116 14117 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 14118 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 14119 bnxt_fw_reset_writel(bp, i); 14120 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 14121 struct hwrm_fw_reset_input *req; 14122 14123 rc = hwrm_req_init(bp, req, HWRM_FW_RESET); 14124 if (!rc) { 14125 req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG); 14126 req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 14127 req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 14128 req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 14129 rc = hwrm_req_send(bp, req); 14130 } 14131 if (rc != -ENODEV) 14132 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 14133 } 14134 bp->fw_reset_timestamp = jiffies; 14135 } 14136 14137 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 14138 { 14139 return time_after(jiffies, bp->fw_reset_timestamp + 14140 (bp->fw_reset_max_dsecs * HZ / 10)); 14141 } 14142 14143 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) 14144 { 14145 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14146 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) 14147 bnxt_dl_health_fw_status_update(bp, false); 14148 bp->fw_reset_state = 0; 14149 dev_close(bp->dev); 14150 } 14151 14152 static void bnxt_fw_reset_task(struct work_struct *work) 14153 { 14154 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 14155 int rc = 0; 14156 14157 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 14158 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 14159 return; 14160 } 14161 14162 switch (bp->fw_reset_state) { 14163 case BNXT_FW_RESET_STATE_POLL_VF: { 14164 int n = bnxt_get_registered_vfs(bp); 14165 int tmo; 14166 14167 if (n < 0) { 14168 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 14169 n, jiffies_to_msecs(jiffies - 14170 bp->fw_reset_timestamp)); 14171 goto fw_reset_abort; 14172 } else if (n > 0) { 14173 if (bnxt_fw_reset_timeout(bp)) { 14174 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14175 bp->fw_reset_state = 0; 14176 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 14177 n); 14178 goto ulp_start; 14179 } 14180 bnxt_queue_fw_reset_work(bp, HZ / 10); 14181 return; 14182 } 14183 bp->fw_reset_timestamp = jiffies; 14184 rtnl_lock(); 14185 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 14186 bnxt_fw_reset_abort(bp, rc); 14187 rtnl_unlock(); 14188 goto ulp_start; 14189 } 14190 bnxt_fw_reset_close(bp); 14191 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 14192 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 14193 tmo = HZ / 10; 14194 } else { 14195 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14196 tmo = bp->fw_reset_min_dsecs * HZ / 10; 14197 } 14198 rtnl_unlock(); 14199 bnxt_queue_fw_reset_work(bp, tmo); 14200 return; 14201 } 14202 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 14203 u32 val; 14204 14205 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 14206 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 14207 !bnxt_fw_reset_timeout(bp)) { 14208 bnxt_queue_fw_reset_work(bp, HZ / 5); 14209 return; 14210 } 14211 14212 if (!bp->fw_health->primary) { 14213 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 14214 14215 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14216 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 14217 return; 14218 } 14219 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 14220 } 14221 fallthrough; 14222 case BNXT_FW_RESET_STATE_RESET_FW: 14223 bnxt_reset_all(bp); 14224 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14225 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 14226 return; 14227 case BNXT_FW_RESET_STATE_ENABLE_DEV: 14228 bnxt_inv_fw_health_reg(bp); 14229 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 14230 !bp->fw_reset_min_dsecs) { 14231 u16 val; 14232 14233 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 14234 if (val == 0xffff) { 14235 if (bnxt_fw_reset_timeout(bp)) { 14236 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 14237 rc = -ETIMEDOUT; 14238 goto fw_reset_abort; 14239 } 14240 bnxt_queue_fw_reset_work(bp, HZ / 1000); 14241 return; 14242 } 14243 } 14244 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 14245 clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 14246 if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) && 14247 !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state)) 14248 bnxt_dl_remote_reload(bp); 14249 if (pci_enable_device(bp->pdev)) { 14250 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 14251 rc = -ENODEV; 14252 goto fw_reset_abort; 14253 } 14254 pci_set_master(bp->pdev); 14255 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 14256 fallthrough; 14257 case BNXT_FW_RESET_STATE_POLL_FW: 14258 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 14259 rc = bnxt_hwrm_poll(bp); 14260 if (rc) { 14261 if (bnxt_fw_reset_timeout(bp)) { 14262 netdev_err(bp->dev, "Firmware reset aborted\n"); 14263 goto fw_reset_abort_status; 14264 } 14265 bnxt_queue_fw_reset_work(bp, HZ / 5); 14266 return; 14267 } 14268 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 14269 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 14270 fallthrough; 14271 case BNXT_FW_RESET_STATE_OPENING: 14272 while (!rtnl_trylock()) { 14273 bnxt_queue_fw_reset_work(bp, HZ / 10); 14274 return; 14275 } 14276 rc = bnxt_open(bp->dev); 14277 if (rc) { 14278 netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); 14279 bnxt_fw_reset_abort(bp, rc); 14280 rtnl_unlock(); 14281 goto ulp_start; 14282 } 14283 14284 if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) && 14285 bp->fw_health->enabled) { 14286 bp->fw_health->last_fw_reset_cnt = 14287 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 14288 } 14289 bp->fw_reset_state = 0; 14290 /* Make sure fw_reset_state is 0 before clearing the flag */ 14291 smp_mb__before_atomic(); 14292 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14293 bnxt_ptp_reapply_pps(bp); 14294 clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state); 14295 if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) { 14296 bnxt_dl_health_fw_recovery_done(bp); 14297 bnxt_dl_health_fw_status_update(bp, true); 14298 } 14299 rtnl_unlock(); 14300 bnxt_ulp_start(bp, 0); 14301 bnxt_reenable_sriov(bp); 14302 rtnl_lock(); 14303 bnxt_vf_reps_alloc(bp); 14304 bnxt_vf_reps_open(bp); 14305 rtnl_unlock(); 14306 break; 14307 } 14308 return; 14309 14310 fw_reset_abort_status: 14311 if (bp->fw_health->status_reliable || 14312 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 14313 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 14314 14315 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 14316 } 14317 fw_reset_abort: 14318 rtnl_lock(); 14319 bnxt_fw_reset_abort(bp, rc); 14320 rtnl_unlock(); 14321 ulp_start: 14322 bnxt_ulp_start(bp, rc); 14323 } 14324 14325 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 14326 { 14327 int rc; 14328 struct bnxt *bp = netdev_priv(dev); 14329 14330 SET_NETDEV_DEV(dev, &pdev->dev); 14331 14332 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 14333 rc = pci_enable_device(pdev); 14334 if (rc) { 14335 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 14336 goto init_err; 14337 } 14338 14339 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 14340 dev_err(&pdev->dev, 14341 "Cannot find PCI device base address, aborting\n"); 14342 rc = -ENODEV; 14343 goto init_err_disable; 14344 } 14345 14346 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 14347 if (rc) { 14348 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 14349 goto init_err_disable; 14350 } 14351 14352 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 14353 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 14354 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 14355 rc = -EIO; 14356 goto init_err_release; 14357 } 14358 14359 pci_set_master(pdev); 14360 14361 bp->dev = dev; 14362 bp->pdev = pdev; 14363 14364 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 14365 * determines the BAR size. 14366 */ 14367 bp->bar0 = pci_ioremap_bar(pdev, 0); 14368 if (!bp->bar0) { 14369 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 14370 rc = -ENOMEM; 14371 goto init_err_release; 14372 } 14373 14374 bp->bar2 = pci_ioremap_bar(pdev, 4); 14375 if (!bp->bar2) { 14376 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 14377 rc = -ENOMEM; 14378 goto init_err_release; 14379 } 14380 14381 INIT_WORK(&bp->sp_task, bnxt_sp_task); 14382 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 14383 14384 spin_lock_init(&bp->ntp_fltr_lock); 14385 #if BITS_PER_LONG == 32 14386 spin_lock_init(&bp->db_lock); 14387 #endif 14388 14389 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 14390 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 14391 14392 timer_setup(&bp->timer, bnxt_timer, 0); 14393 bp->current_interval = BNXT_TIMER_INTERVAL; 14394 14395 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 14396 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 14397 14398 clear_bit(BNXT_STATE_OPEN, &bp->state); 14399 return 0; 14400 14401 init_err_release: 14402 bnxt_unmap_bars(bp, pdev); 14403 pci_release_regions(pdev); 14404 14405 init_err_disable: 14406 pci_disable_device(pdev); 14407 14408 init_err: 14409 return rc; 14410 } 14411 14412 /* rtnl_lock held */ 14413 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 14414 { 14415 struct sockaddr *addr = p; 14416 struct bnxt *bp = netdev_priv(dev); 14417 int rc = 0; 14418 14419 if (!is_valid_ether_addr(addr->sa_data)) 14420 return -EADDRNOTAVAIL; 14421 14422 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 14423 return 0; 14424 14425 rc = bnxt_approve_mac(bp, addr->sa_data, true); 14426 if (rc) 14427 return rc; 14428 14429 eth_hw_addr_set(dev, addr->sa_data); 14430 bnxt_clear_usr_fltrs(bp, true); 14431 if (netif_running(dev)) { 14432 bnxt_close_nic(bp, false, false); 14433 rc = bnxt_open_nic(bp, false, false); 14434 } 14435 14436 return rc; 14437 } 14438 14439 /* rtnl_lock held */ 14440 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 14441 { 14442 struct bnxt *bp = netdev_priv(dev); 14443 14444 if (netif_running(dev)) 14445 bnxt_close_nic(bp, true, false); 14446 14447 WRITE_ONCE(dev->mtu, new_mtu); 14448 bnxt_set_ring_params(bp); 14449 14450 if (netif_running(dev)) 14451 return bnxt_open_nic(bp, true, false); 14452 14453 return 0; 14454 } 14455 14456 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 14457 { 14458 struct bnxt *bp = netdev_priv(dev); 14459 bool sh = false; 14460 int rc, tx_cp; 14461 14462 if (tc > bp->max_tc) { 14463 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 14464 tc, bp->max_tc); 14465 return -EINVAL; 14466 } 14467 14468 if (bp->num_tc == tc) 14469 return 0; 14470 14471 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 14472 sh = true; 14473 14474 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 14475 sh, tc, bp->tx_nr_rings_xdp); 14476 if (rc) 14477 return rc; 14478 14479 /* Needs to close the device and do hw resource re-allocations */ 14480 if (netif_running(bp->dev)) 14481 bnxt_close_nic(bp, true, false); 14482 14483 if (tc) { 14484 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 14485 netdev_set_num_tc(dev, tc); 14486 bp->num_tc = tc; 14487 } else { 14488 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 14489 netdev_reset_tc(dev); 14490 bp->num_tc = 0; 14491 } 14492 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 14493 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 14494 bp->cp_nr_rings = sh ? max_t(int, tx_cp, bp->rx_nr_rings) : 14495 tx_cp + bp->rx_nr_rings; 14496 14497 if (netif_running(bp->dev)) 14498 return bnxt_open_nic(bp, true, false); 14499 14500 return 0; 14501 } 14502 14503 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 14504 void *cb_priv) 14505 { 14506 struct bnxt *bp = cb_priv; 14507 14508 if (!bnxt_tc_flower_enabled(bp) || 14509 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 14510 return -EOPNOTSUPP; 14511 14512 switch (type) { 14513 case TC_SETUP_CLSFLOWER: 14514 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 14515 default: 14516 return -EOPNOTSUPP; 14517 } 14518 } 14519 14520 LIST_HEAD(bnxt_block_cb_list); 14521 14522 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 14523 void *type_data) 14524 { 14525 struct bnxt *bp = netdev_priv(dev); 14526 14527 switch (type) { 14528 case TC_SETUP_BLOCK: 14529 return flow_block_cb_setup_simple(type_data, 14530 &bnxt_block_cb_list, 14531 bnxt_setup_tc_block_cb, 14532 bp, bp, true); 14533 case TC_SETUP_QDISC_MQPRIO: { 14534 struct tc_mqprio_qopt *mqprio = type_data; 14535 14536 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 14537 14538 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 14539 } 14540 default: 14541 return -EOPNOTSUPP; 14542 } 14543 } 14544 14545 u32 bnxt_get_ntp_filter_idx(struct bnxt *bp, struct flow_keys *fkeys, 14546 const struct sk_buff *skb) 14547 { 14548 struct bnxt_vnic_info *vnic; 14549 14550 if (skb) 14551 return skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 14552 14553 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 14554 return bnxt_toeplitz(bp, fkeys, (void *)vnic->rss_hash_key); 14555 } 14556 14557 int bnxt_insert_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr, 14558 u32 idx) 14559 { 14560 struct hlist_head *head; 14561 int bit_id; 14562 14563 spin_lock_bh(&bp->ntp_fltr_lock); 14564 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, bp->max_fltr, 0); 14565 if (bit_id < 0) { 14566 spin_unlock_bh(&bp->ntp_fltr_lock); 14567 return -ENOMEM; 14568 } 14569 14570 fltr->base.sw_id = (u16)bit_id; 14571 fltr->base.type = BNXT_FLTR_TYPE_NTUPLE; 14572 fltr->base.flags |= BNXT_ACT_RING_DST; 14573 head = &bp->ntp_fltr_hash_tbl[idx]; 14574 hlist_add_head_rcu(&fltr->base.hash, head); 14575 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 14576 bnxt_insert_usr_fltr(bp, &fltr->base); 14577 bp->ntp_fltr_count++; 14578 spin_unlock_bh(&bp->ntp_fltr_lock); 14579 return 0; 14580 } 14581 14582 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 14583 struct bnxt_ntuple_filter *f2) 14584 { 14585 struct bnxt_flow_masks *masks1 = &f1->fmasks; 14586 struct bnxt_flow_masks *masks2 = &f2->fmasks; 14587 struct flow_keys *keys1 = &f1->fkeys; 14588 struct flow_keys *keys2 = &f2->fkeys; 14589 14590 if (keys1->basic.n_proto != keys2->basic.n_proto || 14591 keys1->basic.ip_proto != keys2->basic.ip_proto) 14592 return false; 14593 14594 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 14595 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 14596 masks1->addrs.v4addrs.src != masks2->addrs.v4addrs.src || 14597 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst || 14598 masks1->addrs.v4addrs.dst != masks2->addrs.v4addrs.dst) 14599 return false; 14600 } else { 14601 if (!ipv6_addr_equal(&keys1->addrs.v6addrs.src, 14602 &keys2->addrs.v6addrs.src) || 14603 !ipv6_addr_equal(&masks1->addrs.v6addrs.src, 14604 &masks2->addrs.v6addrs.src) || 14605 !ipv6_addr_equal(&keys1->addrs.v6addrs.dst, 14606 &keys2->addrs.v6addrs.dst) || 14607 !ipv6_addr_equal(&masks1->addrs.v6addrs.dst, 14608 &masks2->addrs.v6addrs.dst)) 14609 return false; 14610 } 14611 14612 return keys1->ports.src == keys2->ports.src && 14613 masks1->ports.src == masks2->ports.src && 14614 keys1->ports.dst == keys2->ports.dst && 14615 masks1->ports.dst == masks2->ports.dst && 14616 keys1->control.flags == keys2->control.flags && 14617 f1->l2_fltr == f2->l2_fltr; 14618 } 14619 14620 struct bnxt_ntuple_filter * 14621 bnxt_lookup_ntp_filter_from_idx(struct bnxt *bp, 14622 struct bnxt_ntuple_filter *fltr, u32 idx) 14623 { 14624 struct bnxt_ntuple_filter *f; 14625 struct hlist_head *head; 14626 14627 head = &bp->ntp_fltr_hash_tbl[idx]; 14628 hlist_for_each_entry_rcu(f, head, base.hash) { 14629 if (bnxt_fltr_match(f, fltr)) 14630 return f; 14631 } 14632 return NULL; 14633 } 14634 14635 #ifdef CONFIG_RFS_ACCEL 14636 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 14637 u16 rxq_index, u32 flow_id) 14638 { 14639 struct bnxt *bp = netdev_priv(dev); 14640 struct bnxt_ntuple_filter *fltr, *new_fltr; 14641 struct flow_keys *fkeys; 14642 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 14643 struct bnxt_l2_filter *l2_fltr; 14644 int rc = 0, idx; 14645 u32 flags; 14646 14647 if (ether_addr_equal(dev->dev_addr, eth->h_dest)) { 14648 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 14649 atomic_inc(&l2_fltr->refcnt); 14650 } else { 14651 struct bnxt_l2_key key; 14652 14653 ether_addr_copy(key.dst_mac_addr, eth->h_dest); 14654 key.vlan = 0; 14655 l2_fltr = bnxt_lookup_l2_filter_from_key(bp, &key); 14656 if (!l2_fltr) 14657 return -EINVAL; 14658 if (l2_fltr->base.flags & BNXT_ACT_FUNC_DST) { 14659 bnxt_del_l2_filter(bp, l2_fltr); 14660 return -EINVAL; 14661 } 14662 } 14663 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 14664 if (!new_fltr) { 14665 bnxt_del_l2_filter(bp, l2_fltr); 14666 return -ENOMEM; 14667 } 14668 14669 fkeys = &new_fltr->fkeys; 14670 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 14671 rc = -EPROTONOSUPPORT; 14672 goto err_free; 14673 } 14674 14675 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 14676 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 14677 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 14678 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 14679 rc = -EPROTONOSUPPORT; 14680 goto err_free; 14681 } 14682 new_fltr->fmasks = BNXT_FLOW_IPV4_MASK_ALL; 14683 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 14684 if (bp->hwrm_spec_code < 0x10601) { 14685 rc = -EPROTONOSUPPORT; 14686 goto err_free; 14687 } 14688 new_fltr->fmasks = BNXT_FLOW_IPV6_MASK_ALL; 14689 } 14690 flags = fkeys->control.flags; 14691 if (((flags & FLOW_DIS_ENCAPSULATION) && 14692 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 14693 rc = -EPROTONOSUPPORT; 14694 goto err_free; 14695 } 14696 new_fltr->l2_fltr = l2_fltr; 14697 14698 idx = bnxt_get_ntp_filter_idx(bp, fkeys, skb); 14699 rcu_read_lock(); 14700 fltr = bnxt_lookup_ntp_filter_from_idx(bp, new_fltr, idx); 14701 if (fltr) { 14702 rc = fltr->base.sw_id; 14703 rcu_read_unlock(); 14704 goto err_free; 14705 } 14706 rcu_read_unlock(); 14707 14708 new_fltr->flow_id = flow_id; 14709 new_fltr->base.rxq = rxq_index; 14710 rc = bnxt_insert_ntp_filter(bp, new_fltr, idx); 14711 if (!rc) { 14712 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 14713 return new_fltr->base.sw_id; 14714 } 14715 14716 err_free: 14717 bnxt_del_l2_filter(bp, l2_fltr); 14718 kfree(new_fltr); 14719 return rc; 14720 } 14721 #endif 14722 14723 void bnxt_del_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr) 14724 { 14725 spin_lock_bh(&bp->ntp_fltr_lock); 14726 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 14727 spin_unlock_bh(&bp->ntp_fltr_lock); 14728 return; 14729 } 14730 hlist_del_rcu(&fltr->base.hash); 14731 bnxt_del_one_usr_fltr(bp, &fltr->base); 14732 bp->ntp_fltr_count--; 14733 spin_unlock_bh(&bp->ntp_fltr_lock); 14734 bnxt_del_l2_filter(bp, fltr->l2_fltr); 14735 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 14736 kfree_rcu(fltr, base.rcu); 14737 } 14738 14739 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 14740 { 14741 #ifdef CONFIG_RFS_ACCEL 14742 int i; 14743 14744 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 14745 struct hlist_head *head; 14746 struct hlist_node *tmp; 14747 struct bnxt_ntuple_filter *fltr; 14748 int rc; 14749 14750 head = &bp->ntp_fltr_hash_tbl[i]; 14751 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 14752 bool del = false; 14753 14754 if (test_bit(BNXT_FLTR_VALID, &fltr->base.state)) { 14755 if (fltr->base.flags & BNXT_ACT_NO_AGING) 14756 continue; 14757 if (rps_may_expire_flow(bp->dev, fltr->base.rxq, 14758 fltr->flow_id, 14759 fltr->base.sw_id)) { 14760 bnxt_hwrm_cfa_ntuple_filter_free(bp, 14761 fltr); 14762 del = true; 14763 } 14764 } else { 14765 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 14766 fltr); 14767 if (rc) 14768 del = true; 14769 else 14770 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 14771 } 14772 14773 if (del) 14774 bnxt_del_ntp_filter(bp, fltr); 14775 } 14776 } 14777 #endif 14778 } 14779 14780 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 14781 unsigned int entry, struct udp_tunnel_info *ti) 14782 { 14783 struct bnxt *bp = netdev_priv(netdev); 14784 unsigned int cmd; 14785 14786 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 14787 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN; 14788 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 14789 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE; 14790 else 14791 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE; 14792 14793 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd); 14794 } 14795 14796 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 14797 unsigned int entry, struct udp_tunnel_info *ti) 14798 { 14799 struct bnxt *bp = netdev_priv(netdev); 14800 unsigned int cmd; 14801 14802 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 14803 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 14804 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 14805 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 14806 else 14807 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE; 14808 14809 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 14810 } 14811 14812 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 14813 .set_port = bnxt_udp_tunnel_set_port, 14814 .unset_port = bnxt_udp_tunnel_unset_port, 14815 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 14816 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 14817 .tables = { 14818 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 14819 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 14820 }, 14821 }, bnxt_udp_tunnels_p7 = { 14822 .set_port = bnxt_udp_tunnel_set_port, 14823 .unset_port = bnxt_udp_tunnel_unset_port, 14824 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 14825 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 14826 .tables = { 14827 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 14828 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 14829 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN_GPE, }, 14830 }, 14831 }; 14832 14833 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 14834 struct net_device *dev, u32 filter_mask, 14835 int nlflags) 14836 { 14837 struct bnxt *bp = netdev_priv(dev); 14838 14839 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 14840 nlflags, filter_mask, NULL); 14841 } 14842 14843 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 14844 u16 flags, struct netlink_ext_ack *extack) 14845 { 14846 struct bnxt *bp = netdev_priv(dev); 14847 struct nlattr *attr, *br_spec; 14848 int rem, rc = 0; 14849 14850 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 14851 return -EOPNOTSUPP; 14852 14853 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 14854 if (!br_spec) 14855 return -EINVAL; 14856 14857 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 14858 u16 mode; 14859 14860 mode = nla_get_u16(attr); 14861 if (mode == bp->br_mode) 14862 break; 14863 14864 rc = bnxt_hwrm_set_br_mode(bp, mode); 14865 if (!rc) 14866 bp->br_mode = mode; 14867 break; 14868 } 14869 return rc; 14870 } 14871 14872 int bnxt_get_port_parent_id(struct net_device *dev, 14873 struct netdev_phys_item_id *ppid) 14874 { 14875 struct bnxt *bp = netdev_priv(dev); 14876 14877 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 14878 return -EOPNOTSUPP; 14879 14880 /* The PF and it's VF-reps only support the switchdev framework */ 14881 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 14882 return -EOPNOTSUPP; 14883 14884 ppid->id_len = sizeof(bp->dsn); 14885 memcpy(ppid->id, bp->dsn, ppid->id_len); 14886 14887 return 0; 14888 } 14889 14890 static const struct net_device_ops bnxt_netdev_ops = { 14891 .ndo_open = bnxt_open, 14892 .ndo_start_xmit = bnxt_start_xmit, 14893 .ndo_stop = bnxt_close, 14894 .ndo_get_stats64 = bnxt_get_stats64, 14895 .ndo_set_rx_mode = bnxt_set_rx_mode, 14896 .ndo_eth_ioctl = bnxt_ioctl, 14897 .ndo_validate_addr = eth_validate_addr, 14898 .ndo_set_mac_address = bnxt_change_mac_addr, 14899 .ndo_change_mtu = bnxt_change_mtu, 14900 .ndo_fix_features = bnxt_fix_features, 14901 .ndo_set_features = bnxt_set_features, 14902 .ndo_features_check = bnxt_features_check, 14903 .ndo_tx_timeout = bnxt_tx_timeout, 14904 #ifdef CONFIG_BNXT_SRIOV 14905 .ndo_get_vf_config = bnxt_get_vf_config, 14906 .ndo_set_vf_mac = bnxt_set_vf_mac, 14907 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 14908 .ndo_set_vf_rate = bnxt_set_vf_bw, 14909 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 14910 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 14911 .ndo_set_vf_trust = bnxt_set_vf_trust, 14912 #endif 14913 .ndo_setup_tc = bnxt_setup_tc, 14914 #ifdef CONFIG_RFS_ACCEL 14915 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 14916 #endif 14917 .ndo_bpf = bnxt_xdp, 14918 .ndo_xdp_xmit = bnxt_xdp_xmit, 14919 .ndo_bridge_getlink = bnxt_bridge_getlink, 14920 .ndo_bridge_setlink = bnxt_bridge_setlink, 14921 }; 14922 14923 static void bnxt_get_queue_stats_rx(struct net_device *dev, int i, 14924 struct netdev_queue_stats_rx *stats) 14925 { 14926 struct bnxt *bp = netdev_priv(dev); 14927 struct bnxt_cp_ring_info *cpr; 14928 u64 *sw; 14929 14930 cpr = &bp->bnapi[i]->cp_ring; 14931 sw = cpr->stats.sw_stats; 14932 14933 stats->packets = 0; 14934 stats->packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 14935 stats->packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 14936 stats->packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 14937 14938 stats->bytes = 0; 14939 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 14940 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 14941 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 14942 14943 stats->alloc_fail = cpr->sw_stats->rx.rx_oom_discards; 14944 } 14945 14946 static void bnxt_get_queue_stats_tx(struct net_device *dev, int i, 14947 struct netdev_queue_stats_tx *stats) 14948 { 14949 struct bnxt *bp = netdev_priv(dev); 14950 struct bnxt_napi *bnapi; 14951 u64 *sw; 14952 14953 bnapi = bp->tx_ring[bp->tx_ring_map[i]].bnapi; 14954 sw = bnapi->cp_ring.stats.sw_stats; 14955 14956 stats->packets = 0; 14957 stats->packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 14958 stats->packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 14959 stats->packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 14960 14961 stats->bytes = 0; 14962 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 14963 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 14964 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 14965 } 14966 14967 static void bnxt_get_base_stats(struct net_device *dev, 14968 struct netdev_queue_stats_rx *rx, 14969 struct netdev_queue_stats_tx *tx) 14970 { 14971 struct bnxt *bp = netdev_priv(dev); 14972 14973 rx->packets = bp->net_stats_prev.rx_packets; 14974 rx->bytes = bp->net_stats_prev.rx_bytes; 14975 rx->alloc_fail = bp->ring_err_stats_prev.rx_total_oom_discards; 14976 14977 tx->packets = bp->net_stats_prev.tx_packets; 14978 tx->bytes = bp->net_stats_prev.tx_bytes; 14979 } 14980 14981 static const struct netdev_stat_ops bnxt_stat_ops = { 14982 .get_queue_stats_rx = bnxt_get_queue_stats_rx, 14983 .get_queue_stats_tx = bnxt_get_queue_stats_tx, 14984 .get_base_stats = bnxt_get_base_stats, 14985 }; 14986 14987 static int bnxt_alloc_rx_agg_bmap(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 14988 { 14989 u16 mem_size; 14990 14991 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 14992 mem_size = rxr->rx_agg_bmap_size / 8; 14993 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 14994 if (!rxr->rx_agg_bmap) 14995 return -ENOMEM; 14996 14997 return 0; 14998 } 14999 15000 static int bnxt_queue_mem_alloc(struct net_device *dev, void *qmem, int idx) 15001 { 15002 struct bnxt_rx_ring_info *rxr, *clone; 15003 struct bnxt *bp = netdev_priv(dev); 15004 struct bnxt_ring_struct *ring; 15005 int rc; 15006 15007 rxr = &bp->rx_ring[idx]; 15008 clone = qmem; 15009 memcpy(clone, rxr, sizeof(*rxr)); 15010 bnxt_init_rx_ring_struct(bp, clone); 15011 bnxt_reset_rx_ring_struct(bp, clone); 15012 15013 clone->rx_prod = 0; 15014 clone->rx_agg_prod = 0; 15015 clone->rx_sw_agg_prod = 0; 15016 clone->rx_next_cons = 0; 15017 15018 rc = bnxt_alloc_rx_page_pool(bp, clone, rxr->page_pool->p.nid); 15019 if (rc) 15020 return rc; 15021 15022 rc = xdp_rxq_info_reg(&clone->xdp_rxq, bp->dev, idx, 0); 15023 if (rc < 0) 15024 goto err_page_pool_destroy; 15025 15026 rc = xdp_rxq_info_reg_mem_model(&clone->xdp_rxq, 15027 MEM_TYPE_PAGE_POOL, 15028 clone->page_pool); 15029 if (rc) 15030 goto err_rxq_info_unreg; 15031 15032 ring = &clone->rx_ring_struct; 15033 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 15034 if (rc) 15035 goto err_free_rx_ring; 15036 15037 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 15038 ring = &clone->rx_agg_ring_struct; 15039 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 15040 if (rc) 15041 goto err_free_rx_agg_ring; 15042 15043 rc = bnxt_alloc_rx_agg_bmap(bp, clone); 15044 if (rc) 15045 goto err_free_rx_agg_ring; 15046 } 15047 15048 bnxt_init_one_rx_ring_rxbd(bp, clone); 15049 bnxt_init_one_rx_agg_ring_rxbd(bp, clone); 15050 15051 bnxt_alloc_one_rx_ring_skb(bp, clone, idx); 15052 if (bp->flags & BNXT_FLAG_AGG_RINGS) 15053 bnxt_alloc_one_rx_ring_page(bp, clone, idx); 15054 15055 return 0; 15056 15057 err_free_rx_agg_ring: 15058 bnxt_free_ring(bp, &clone->rx_agg_ring_struct.ring_mem); 15059 err_free_rx_ring: 15060 bnxt_free_ring(bp, &clone->rx_ring_struct.ring_mem); 15061 err_rxq_info_unreg: 15062 xdp_rxq_info_unreg(&clone->xdp_rxq); 15063 err_page_pool_destroy: 15064 clone->page_pool->p.napi = NULL; 15065 page_pool_destroy(clone->page_pool); 15066 clone->page_pool = NULL; 15067 return rc; 15068 } 15069 15070 static void bnxt_queue_mem_free(struct net_device *dev, void *qmem) 15071 { 15072 struct bnxt_rx_ring_info *rxr = qmem; 15073 struct bnxt *bp = netdev_priv(dev); 15074 struct bnxt_ring_struct *ring; 15075 15076 bnxt_free_one_rx_ring(bp, rxr); 15077 bnxt_free_one_rx_agg_ring(bp, rxr); 15078 15079 xdp_rxq_info_unreg(&rxr->xdp_rxq); 15080 15081 page_pool_destroy(rxr->page_pool); 15082 rxr->page_pool = NULL; 15083 15084 ring = &rxr->rx_ring_struct; 15085 bnxt_free_ring(bp, &ring->ring_mem); 15086 15087 ring = &rxr->rx_agg_ring_struct; 15088 bnxt_free_ring(bp, &ring->ring_mem); 15089 15090 kfree(rxr->rx_agg_bmap); 15091 rxr->rx_agg_bmap = NULL; 15092 } 15093 15094 static void bnxt_copy_rx_ring(struct bnxt *bp, 15095 struct bnxt_rx_ring_info *dst, 15096 struct bnxt_rx_ring_info *src) 15097 { 15098 struct bnxt_ring_mem_info *dst_rmem, *src_rmem; 15099 struct bnxt_ring_struct *dst_ring, *src_ring; 15100 int i; 15101 15102 dst_ring = &dst->rx_ring_struct; 15103 dst_rmem = &dst_ring->ring_mem; 15104 src_ring = &src->rx_ring_struct; 15105 src_rmem = &src_ring->ring_mem; 15106 15107 WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages); 15108 WARN_ON(dst_rmem->page_size != src_rmem->page_size); 15109 WARN_ON(dst_rmem->flags != src_rmem->flags); 15110 WARN_ON(dst_rmem->depth != src_rmem->depth); 15111 WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size); 15112 WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem); 15113 15114 dst_rmem->pg_tbl = src_rmem->pg_tbl; 15115 dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map; 15116 *dst_rmem->vmem = *src_rmem->vmem; 15117 for (i = 0; i < dst_rmem->nr_pages; i++) { 15118 dst_rmem->pg_arr[i] = src_rmem->pg_arr[i]; 15119 dst_rmem->dma_arr[i] = src_rmem->dma_arr[i]; 15120 } 15121 15122 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 15123 return; 15124 15125 dst_ring = &dst->rx_agg_ring_struct; 15126 dst_rmem = &dst_ring->ring_mem; 15127 src_ring = &src->rx_agg_ring_struct; 15128 src_rmem = &src_ring->ring_mem; 15129 15130 WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages); 15131 WARN_ON(dst_rmem->page_size != src_rmem->page_size); 15132 WARN_ON(dst_rmem->flags != src_rmem->flags); 15133 WARN_ON(dst_rmem->depth != src_rmem->depth); 15134 WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size); 15135 WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem); 15136 WARN_ON(dst->rx_agg_bmap_size != src->rx_agg_bmap_size); 15137 15138 dst_rmem->pg_tbl = src_rmem->pg_tbl; 15139 dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map; 15140 *dst_rmem->vmem = *src_rmem->vmem; 15141 for (i = 0; i < dst_rmem->nr_pages; i++) { 15142 dst_rmem->pg_arr[i] = src_rmem->pg_arr[i]; 15143 dst_rmem->dma_arr[i] = src_rmem->dma_arr[i]; 15144 } 15145 15146 dst->rx_agg_bmap = src->rx_agg_bmap; 15147 } 15148 15149 static int bnxt_queue_start(struct net_device *dev, void *qmem, int idx) 15150 { 15151 struct bnxt *bp = netdev_priv(dev); 15152 struct bnxt_rx_ring_info *rxr, *clone; 15153 struct bnxt_cp_ring_info *cpr; 15154 int rc; 15155 15156 rxr = &bp->rx_ring[idx]; 15157 clone = qmem; 15158 15159 rxr->rx_prod = clone->rx_prod; 15160 rxr->rx_agg_prod = clone->rx_agg_prod; 15161 rxr->rx_sw_agg_prod = clone->rx_sw_agg_prod; 15162 rxr->rx_next_cons = clone->rx_next_cons; 15163 rxr->page_pool = clone->page_pool; 15164 rxr->xdp_rxq = clone->xdp_rxq; 15165 15166 bnxt_copy_rx_ring(bp, rxr, clone); 15167 15168 rc = bnxt_hwrm_rx_ring_alloc(bp, rxr); 15169 if (rc) 15170 return rc; 15171 rc = bnxt_hwrm_rx_agg_ring_alloc(bp, rxr); 15172 if (rc) 15173 goto err_free_hwrm_rx_ring; 15174 15175 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 15176 if (bp->flags & BNXT_FLAG_AGG_RINGS) 15177 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 15178 15179 napi_enable(&rxr->bnapi->napi); 15180 15181 cpr = &rxr->bnapi->cp_ring; 15182 cpr->sw_stats->rx.rx_resets++; 15183 15184 return 0; 15185 15186 err_free_hwrm_rx_ring: 15187 bnxt_hwrm_rx_ring_free(bp, rxr, false); 15188 return rc; 15189 } 15190 15191 static int bnxt_queue_stop(struct net_device *dev, void *qmem, int idx) 15192 { 15193 struct bnxt *bp = netdev_priv(dev); 15194 struct bnxt_rx_ring_info *rxr; 15195 15196 rxr = &bp->rx_ring[idx]; 15197 napi_disable(&rxr->bnapi->napi); 15198 bnxt_hwrm_rx_ring_free(bp, rxr, false); 15199 bnxt_hwrm_rx_agg_ring_free(bp, rxr, false); 15200 rxr->rx_next_cons = 0; 15201 page_pool_disable_direct_recycling(rxr->page_pool); 15202 15203 memcpy(qmem, rxr, sizeof(*rxr)); 15204 bnxt_init_rx_ring_struct(bp, qmem); 15205 15206 return 0; 15207 } 15208 15209 static const struct netdev_queue_mgmt_ops bnxt_queue_mgmt_ops = { 15210 .ndo_queue_mem_size = sizeof(struct bnxt_rx_ring_info), 15211 .ndo_queue_mem_alloc = bnxt_queue_mem_alloc, 15212 .ndo_queue_mem_free = bnxt_queue_mem_free, 15213 .ndo_queue_start = bnxt_queue_start, 15214 .ndo_queue_stop = bnxt_queue_stop, 15215 }; 15216 15217 static void bnxt_remove_one(struct pci_dev *pdev) 15218 { 15219 struct net_device *dev = pci_get_drvdata(pdev); 15220 struct bnxt *bp = netdev_priv(dev); 15221 15222 if (BNXT_PF(bp)) 15223 bnxt_sriov_disable(bp); 15224 15225 bnxt_rdma_aux_device_del(bp); 15226 15227 bnxt_ptp_clear(bp); 15228 unregister_netdev(dev); 15229 15230 bnxt_rdma_aux_device_uninit(bp); 15231 15232 bnxt_free_l2_filters(bp, true); 15233 bnxt_free_ntp_fltrs(bp, true); 15234 WARN_ON(bp->num_rss_ctx); 15235 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 15236 /* Flush any pending tasks */ 15237 cancel_work_sync(&bp->sp_task); 15238 cancel_delayed_work_sync(&bp->fw_reset_task); 15239 bp->sp_event = 0; 15240 15241 bnxt_dl_fw_reporters_destroy(bp); 15242 bnxt_dl_unregister(bp); 15243 bnxt_shutdown_tc(bp); 15244 15245 bnxt_clear_int_mode(bp); 15246 bnxt_hwrm_func_drv_unrgtr(bp); 15247 bnxt_free_hwrm_resources(bp); 15248 bnxt_hwmon_uninit(bp); 15249 bnxt_ethtool_free(bp); 15250 bnxt_dcb_free(bp); 15251 kfree(bp->ptp_cfg); 15252 bp->ptp_cfg = NULL; 15253 kfree(bp->fw_health); 15254 bp->fw_health = NULL; 15255 bnxt_cleanup_pci(bp); 15256 bnxt_free_ctx_mem(bp); 15257 kfree(bp->rss_indir_tbl); 15258 bp->rss_indir_tbl = NULL; 15259 bnxt_free_port_stats(bp); 15260 free_netdev(dev); 15261 } 15262 15263 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 15264 { 15265 int rc = 0; 15266 struct bnxt_link_info *link_info = &bp->link_info; 15267 15268 bp->phy_flags = 0; 15269 rc = bnxt_hwrm_phy_qcaps(bp); 15270 if (rc) { 15271 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 15272 rc); 15273 return rc; 15274 } 15275 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 15276 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 15277 else 15278 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 15279 if (!fw_dflt) 15280 return 0; 15281 15282 mutex_lock(&bp->link_lock); 15283 rc = bnxt_update_link(bp, false); 15284 if (rc) { 15285 mutex_unlock(&bp->link_lock); 15286 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 15287 rc); 15288 return rc; 15289 } 15290 15291 /* Older firmware does not have supported_auto_speeds, so assume 15292 * that all supported speeds can be autonegotiated. 15293 */ 15294 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 15295 link_info->support_auto_speeds = link_info->support_speeds; 15296 15297 bnxt_init_ethtool_link_settings(bp); 15298 mutex_unlock(&bp->link_lock); 15299 return 0; 15300 } 15301 15302 static int bnxt_get_max_irq(struct pci_dev *pdev) 15303 { 15304 u16 ctrl; 15305 15306 if (!pdev->msix_cap) 15307 return 1; 15308 15309 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 15310 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 15311 } 15312 15313 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 15314 int *max_cp) 15315 { 15316 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 15317 int max_ring_grps = 0, max_irq; 15318 15319 *max_tx = hw_resc->max_tx_rings; 15320 *max_rx = hw_resc->max_rx_rings; 15321 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 15322 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 15323 bnxt_get_ulp_msix_num_in_use(bp), 15324 hw_resc->max_stat_ctxs - 15325 bnxt_get_ulp_stat_ctxs_in_use(bp)); 15326 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 15327 *max_cp = min_t(int, *max_cp, max_irq); 15328 max_ring_grps = hw_resc->max_hw_ring_grps; 15329 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 15330 *max_cp -= 1; 15331 *max_rx -= 2; 15332 } 15333 if (bp->flags & BNXT_FLAG_AGG_RINGS) 15334 *max_rx >>= 1; 15335 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 15336 int rc; 15337 15338 rc = __bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 15339 if (rc) { 15340 *max_rx = 0; 15341 *max_tx = 0; 15342 } 15343 /* On P5 chips, max_cp output param should be available NQs */ 15344 *max_cp = max_irq; 15345 } 15346 *max_rx = min_t(int, *max_rx, max_ring_grps); 15347 } 15348 15349 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 15350 { 15351 int rx, tx, cp; 15352 15353 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 15354 *max_rx = rx; 15355 *max_tx = tx; 15356 if (!rx || !tx || !cp) 15357 return -ENOMEM; 15358 15359 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 15360 } 15361 15362 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 15363 bool shared) 15364 { 15365 int rc; 15366 15367 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 15368 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 15369 /* Not enough rings, try disabling agg rings. */ 15370 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 15371 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 15372 if (rc) { 15373 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 15374 bp->flags |= BNXT_FLAG_AGG_RINGS; 15375 return rc; 15376 } 15377 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 15378 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 15379 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 15380 bnxt_set_ring_params(bp); 15381 } 15382 15383 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 15384 int max_cp, max_stat, max_irq; 15385 15386 /* Reserve minimum resources for RoCE */ 15387 max_cp = bnxt_get_max_func_cp_rings(bp); 15388 max_stat = bnxt_get_max_func_stat_ctxs(bp); 15389 max_irq = bnxt_get_max_func_irqs(bp); 15390 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 15391 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 15392 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 15393 return 0; 15394 15395 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 15396 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 15397 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 15398 max_cp = min_t(int, max_cp, max_irq); 15399 max_cp = min_t(int, max_cp, max_stat); 15400 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 15401 if (rc) 15402 rc = 0; 15403 } 15404 return rc; 15405 } 15406 15407 /* In initial default shared ring setting, each shared ring must have a 15408 * RX/TX ring pair. 15409 */ 15410 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 15411 { 15412 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 15413 bp->rx_nr_rings = bp->cp_nr_rings; 15414 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 15415 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 15416 } 15417 15418 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 15419 { 15420 int dflt_rings, max_rx_rings, max_tx_rings, rc; 15421 int avail_msix; 15422 15423 if (!bnxt_can_reserve_rings(bp)) 15424 return 0; 15425 15426 if (sh) 15427 bp->flags |= BNXT_FLAG_SHARED_RINGS; 15428 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 15429 /* Reduce default rings on multi-port cards so that total default 15430 * rings do not exceed CPU count. 15431 */ 15432 if (bp->port_count > 1) { 15433 int max_rings = 15434 max_t(int, num_online_cpus() / bp->port_count, 1); 15435 15436 dflt_rings = min_t(int, dflt_rings, max_rings); 15437 } 15438 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 15439 if (rc) 15440 return rc; 15441 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 15442 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 15443 if (sh) 15444 bnxt_trim_dflt_sh_rings(bp); 15445 else 15446 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 15447 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 15448 15449 avail_msix = bnxt_get_max_func_irqs(bp) - bp->cp_nr_rings; 15450 if (avail_msix >= BNXT_MIN_ROCE_CP_RINGS) { 15451 int ulp_num_msix = min(avail_msix, bp->ulp_num_msix_want); 15452 15453 bnxt_set_ulp_msix_num(bp, ulp_num_msix); 15454 bnxt_set_dflt_ulp_stat_ctxs(bp); 15455 } 15456 15457 rc = __bnxt_reserve_rings(bp); 15458 if (rc && rc != -ENODEV) 15459 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 15460 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15461 if (sh) 15462 bnxt_trim_dflt_sh_rings(bp); 15463 15464 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 15465 if (bnxt_need_reserve_rings(bp)) { 15466 rc = __bnxt_reserve_rings(bp); 15467 if (rc && rc != -ENODEV) 15468 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 15469 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15470 } 15471 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 15472 bp->rx_nr_rings++; 15473 bp->cp_nr_rings++; 15474 } 15475 if (rc) { 15476 bp->tx_nr_rings = 0; 15477 bp->rx_nr_rings = 0; 15478 } 15479 return rc; 15480 } 15481 15482 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 15483 { 15484 int rc; 15485 15486 if (bp->tx_nr_rings) 15487 return 0; 15488 15489 bnxt_ulp_irq_stop(bp); 15490 bnxt_clear_int_mode(bp); 15491 rc = bnxt_set_dflt_rings(bp, true); 15492 if (rc) { 15493 if (BNXT_VF(bp) && rc == -ENODEV) 15494 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 15495 else 15496 netdev_err(bp->dev, "Not enough rings available.\n"); 15497 goto init_dflt_ring_err; 15498 } 15499 rc = bnxt_init_int_mode(bp); 15500 if (rc) 15501 goto init_dflt_ring_err; 15502 15503 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15504 15505 bnxt_set_dflt_rfs(bp); 15506 15507 init_dflt_ring_err: 15508 bnxt_ulp_irq_restart(bp, rc); 15509 return rc; 15510 } 15511 15512 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 15513 { 15514 int rc; 15515 15516 ASSERT_RTNL(); 15517 bnxt_hwrm_func_qcaps(bp); 15518 15519 if (netif_running(bp->dev)) 15520 __bnxt_close_nic(bp, true, false); 15521 15522 bnxt_ulp_irq_stop(bp); 15523 bnxt_clear_int_mode(bp); 15524 rc = bnxt_init_int_mode(bp); 15525 bnxt_ulp_irq_restart(bp, rc); 15526 15527 if (netif_running(bp->dev)) { 15528 if (rc) 15529 dev_close(bp->dev); 15530 else 15531 rc = bnxt_open_nic(bp, true, false); 15532 } 15533 15534 return rc; 15535 } 15536 15537 static int bnxt_init_mac_addr(struct bnxt *bp) 15538 { 15539 int rc = 0; 15540 15541 if (BNXT_PF(bp)) { 15542 eth_hw_addr_set(bp->dev, bp->pf.mac_addr); 15543 } else { 15544 #ifdef CONFIG_BNXT_SRIOV 15545 struct bnxt_vf_info *vf = &bp->vf; 15546 bool strict_approval = true; 15547 15548 if (is_valid_ether_addr(vf->mac_addr)) { 15549 /* overwrite netdev dev_addr with admin VF MAC */ 15550 eth_hw_addr_set(bp->dev, vf->mac_addr); 15551 /* Older PF driver or firmware may not approve this 15552 * correctly. 15553 */ 15554 strict_approval = false; 15555 } else { 15556 eth_hw_addr_random(bp->dev); 15557 } 15558 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 15559 #endif 15560 } 15561 return rc; 15562 } 15563 15564 static void bnxt_vpd_read_info(struct bnxt *bp) 15565 { 15566 struct pci_dev *pdev = bp->pdev; 15567 unsigned int vpd_size, kw_len; 15568 int pos, size; 15569 u8 *vpd_data; 15570 15571 vpd_data = pci_vpd_alloc(pdev, &vpd_size); 15572 if (IS_ERR(vpd_data)) { 15573 pci_warn(pdev, "Unable to read VPD\n"); 15574 return; 15575 } 15576 15577 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 15578 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); 15579 if (pos < 0) 15580 goto read_sn; 15581 15582 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 15583 memcpy(bp->board_partno, &vpd_data[pos], size); 15584 15585 read_sn: 15586 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 15587 PCI_VPD_RO_KEYWORD_SERIALNO, 15588 &kw_len); 15589 if (pos < 0) 15590 goto exit; 15591 15592 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 15593 memcpy(bp->board_serialno, &vpd_data[pos], size); 15594 exit: 15595 kfree(vpd_data); 15596 } 15597 15598 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 15599 { 15600 struct pci_dev *pdev = bp->pdev; 15601 u64 qword; 15602 15603 qword = pci_get_dsn(pdev); 15604 if (!qword) { 15605 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 15606 return -EOPNOTSUPP; 15607 } 15608 15609 put_unaligned_le64(qword, dsn); 15610 15611 bp->flags |= BNXT_FLAG_DSN_VALID; 15612 return 0; 15613 } 15614 15615 static int bnxt_map_db_bar(struct bnxt *bp) 15616 { 15617 if (!bp->db_size) 15618 return -ENODEV; 15619 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 15620 if (!bp->bar1) 15621 return -ENOMEM; 15622 return 0; 15623 } 15624 15625 void bnxt_print_device_info(struct bnxt *bp) 15626 { 15627 netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n", 15628 board_info[bp->board_idx].name, 15629 (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr); 15630 15631 pcie_print_link_status(bp->pdev); 15632 } 15633 15634 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 15635 { 15636 struct bnxt_hw_resc *hw_resc; 15637 struct net_device *dev; 15638 struct bnxt *bp; 15639 int rc, max_irqs; 15640 15641 if (pci_is_bridge(pdev)) 15642 return -ENODEV; 15643 15644 /* Clear any pending DMA transactions from crash kernel 15645 * while loading driver in capture kernel. 15646 */ 15647 if (is_kdump_kernel()) { 15648 pci_clear_master(pdev); 15649 pcie_flr(pdev); 15650 } 15651 15652 max_irqs = bnxt_get_max_irq(pdev); 15653 dev = alloc_etherdev_mqs(sizeof(*bp), max_irqs * BNXT_MAX_QUEUE, 15654 max_irqs); 15655 if (!dev) 15656 return -ENOMEM; 15657 15658 bp = netdev_priv(dev); 15659 bp->board_idx = ent->driver_data; 15660 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 15661 bnxt_set_max_func_irqs(bp, max_irqs); 15662 15663 if (bnxt_vf_pciid(bp->board_idx)) 15664 bp->flags |= BNXT_FLAG_VF; 15665 15666 /* No devlink port registration in case of a VF */ 15667 if (BNXT_PF(bp)) 15668 SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port); 15669 15670 if (pdev->msix_cap) 15671 bp->flags |= BNXT_FLAG_MSIX_CAP; 15672 15673 rc = bnxt_init_board(pdev, dev); 15674 if (rc < 0) 15675 goto init_err_free; 15676 15677 dev->netdev_ops = &bnxt_netdev_ops; 15678 dev->stat_ops = &bnxt_stat_ops; 15679 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 15680 dev->ethtool_ops = &bnxt_ethtool_ops; 15681 dev->queue_mgmt_ops = &bnxt_queue_mgmt_ops; 15682 pci_set_drvdata(pdev, dev); 15683 15684 rc = bnxt_alloc_hwrm_resources(bp); 15685 if (rc) 15686 goto init_err_pci_clean; 15687 15688 mutex_init(&bp->hwrm_cmd_lock); 15689 mutex_init(&bp->link_lock); 15690 15691 rc = bnxt_fw_init_one_p1(bp); 15692 if (rc) 15693 goto init_err_pci_clean; 15694 15695 if (BNXT_PF(bp)) 15696 bnxt_vpd_read_info(bp); 15697 15698 if (BNXT_CHIP_P5_PLUS(bp)) { 15699 bp->flags |= BNXT_FLAG_CHIP_P5_PLUS; 15700 if (BNXT_CHIP_P7(bp)) 15701 bp->flags |= BNXT_FLAG_CHIP_P7; 15702 } 15703 15704 rc = bnxt_alloc_rss_indir_tbl(bp); 15705 if (rc) 15706 goto init_err_pci_clean; 15707 15708 rc = bnxt_fw_init_one_p2(bp); 15709 if (rc) 15710 goto init_err_pci_clean; 15711 15712 rc = bnxt_map_db_bar(bp); 15713 if (rc) { 15714 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 15715 rc); 15716 goto init_err_pci_clean; 15717 } 15718 15719 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 15720 NETIF_F_TSO | NETIF_F_TSO6 | 15721 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 15722 NETIF_F_GSO_IPXIP4 | 15723 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 15724 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 15725 NETIF_F_RXCSUM | NETIF_F_GRO; 15726 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 15727 dev->hw_features |= NETIF_F_GSO_UDP_L4; 15728 15729 if (BNXT_SUPPORTS_TPA(bp)) 15730 dev->hw_features |= NETIF_F_LRO; 15731 15732 dev->hw_enc_features = 15733 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 15734 NETIF_F_TSO | NETIF_F_TSO6 | 15735 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 15736 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 15737 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 15738 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 15739 dev->hw_enc_features |= NETIF_F_GSO_UDP_L4; 15740 if (bp->flags & BNXT_FLAG_CHIP_P7) 15741 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels_p7; 15742 else 15743 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 15744 15745 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 15746 NETIF_F_GSO_GRE_CSUM; 15747 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 15748 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 15749 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 15750 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 15751 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 15752 if (BNXT_SUPPORTS_TPA(bp)) 15753 dev->hw_features |= NETIF_F_GRO_HW; 15754 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 15755 if (dev->features & NETIF_F_GRO_HW) 15756 dev->features &= ~NETIF_F_LRO; 15757 dev->priv_flags |= IFF_UNICAST_FLT; 15758 15759 netif_set_tso_max_size(dev, GSO_MAX_SIZE); 15760 if (bp->tso_max_segs) 15761 netif_set_tso_max_segs(dev, bp->tso_max_segs); 15762 15763 dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 15764 NETDEV_XDP_ACT_RX_SG; 15765 15766 #ifdef CONFIG_BNXT_SRIOV 15767 init_waitqueue_head(&bp->sriov_cfg_wait); 15768 #endif 15769 if (BNXT_SUPPORTS_TPA(bp)) { 15770 bp->gro_func = bnxt_gro_func_5730x; 15771 if (BNXT_CHIP_P4(bp)) 15772 bp->gro_func = bnxt_gro_func_5731x; 15773 else if (BNXT_CHIP_P5_PLUS(bp)) 15774 bp->gro_func = bnxt_gro_func_5750x; 15775 } 15776 if (!BNXT_CHIP_P4_PLUS(bp)) 15777 bp->flags |= BNXT_FLAG_DOUBLE_DB; 15778 15779 rc = bnxt_init_mac_addr(bp); 15780 if (rc) { 15781 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 15782 rc = -EADDRNOTAVAIL; 15783 goto init_err_pci_clean; 15784 } 15785 15786 if (BNXT_PF(bp)) { 15787 /* Read the adapter's DSN to use as the eswitch switch_id */ 15788 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 15789 } 15790 15791 /* MTU range: 60 - FW defined max */ 15792 dev->min_mtu = ETH_ZLEN; 15793 dev->max_mtu = bp->max_mtu; 15794 15795 rc = bnxt_probe_phy(bp, true); 15796 if (rc) 15797 goto init_err_pci_clean; 15798 15799 hw_resc = &bp->hw_resc; 15800 bp->max_fltr = hw_resc->max_rx_em_flows + hw_resc->max_rx_wm_flows + 15801 BNXT_L2_FLTR_MAX_FLTR; 15802 /* Older firmware may not report these filters properly */ 15803 if (bp->max_fltr < BNXT_MAX_FLTR) 15804 bp->max_fltr = BNXT_MAX_FLTR; 15805 bnxt_init_l2_fltr_tbl(bp); 15806 bnxt_set_rx_skb_mode(bp, false); 15807 bnxt_set_tpa_flags(bp); 15808 bnxt_set_ring_params(bp); 15809 bnxt_rdma_aux_device_init(bp); 15810 rc = bnxt_set_dflt_rings(bp, true); 15811 if (rc) { 15812 if (BNXT_VF(bp) && rc == -ENODEV) { 15813 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 15814 } else { 15815 netdev_err(bp->dev, "Not enough rings available.\n"); 15816 rc = -ENOMEM; 15817 } 15818 goto init_err_pci_clean; 15819 } 15820 15821 bnxt_fw_init_one_p3(bp); 15822 15823 bnxt_init_dflt_coal(bp); 15824 15825 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 15826 bp->flags |= BNXT_FLAG_STRIP_VLAN; 15827 15828 rc = bnxt_init_int_mode(bp); 15829 if (rc) 15830 goto init_err_pci_clean; 15831 15832 /* No TC has been set yet and rings may have been trimmed due to 15833 * limited MSIX, so we re-initialize the TX rings per TC. 15834 */ 15835 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15836 15837 if (BNXT_PF(bp)) { 15838 if (!bnxt_pf_wq) { 15839 bnxt_pf_wq = 15840 create_singlethread_workqueue("bnxt_pf_wq"); 15841 if (!bnxt_pf_wq) { 15842 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 15843 rc = -ENOMEM; 15844 goto init_err_pci_clean; 15845 } 15846 } 15847 rc = bnxt_init_tc(bp); 15848 if (rc) 15849 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 15850 rc); 15851 } 15852 15853 bnxt_inv_fw_health_reg(bp); 15854 rc = bnxt_dl_register(bp); 15855 if (rc) 15856 goto init_err_dl; 15857 15858 INIT_LIST_HEAD(&bp->usr_fltr_list); 15859 15860 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 15861 bp->rss_cap |= BNXT_RSS_CAP_MULTI_RSS_CTX; 15862 15863 rc = register_netdev(dev); 15864 if (rc) 15865 goto init_err_cleanup; 15866 15867 bnxt_dl_fw_reporters_create(bp); 15868 15869 bnxt_rdma_aux_device_add(bp); 15870 15871 bnxt_print_device_info(bp); 15872 15873 pci_save_state(pdev); 15874 15875 return 0; 15876 init_err_cleanup: 15877 bnxt_rdma_aux_device_uninit(bp); 15878 bnxt_dl_unregister(bp); 15879 init_err_dl: 15880 bnxt_shutdown_tc(bp); 15881 bnxt_clear_int_mode(bp); 15882 15883 init_err_pci_clean: 15884 bnxt_hwrm_func_drv_unrgtr(bp); 15885 bnxt_free_hwrm_resources(bp); 15886 bnxt_hwmon_uninit(bp); 15887 bnxt_ethtool_free(bp); 15888 bnxt_ptp_clear(bp); 15889 kfree(bp->ptp_cfg); 15890 bp->ptp_cfg = NULL; 15891 kfree(bp->fw_health); 15892 bp->fw_health = NULL; 15893 bnxt_cleanup_pci(bp); 15894 bnxt_free_ctx_mem(bp); 15895 kfree(bp->rss_indir_tbl); 15896 bp->rss_indir_tbl = NULL; 15897 15898 init_err_free: 15899 free_netdev(dev); 15900 return rc; 15901 } 15902 15903 static void bnxt_shutdown(struct pci_dev *pdev) 15904 { 15905 struct net_device *dev = pci_get_drvdata(pdev); 15906 struct bnxt *bp; 15907 15908 if (!dev) 15909 return; 15910 15911 rtnl_lock(); 15912 bp = netdev_priv(dev); 15913 if (!bp) 15914 goto shutdown_exit; 15915 15916 if (netif_running(dev)) 15917 dev_close(dev); 15918 15919 bnxt_clear_int_mode(bp); 15920 pci_disable_device(pdev); 15921 15922 if (system_state == SYSTEM_POWER_OFF) { 15923 pci_wake_from_d3(pdev, bp->wol); 15924 pci_set_power_state(pdev, PCI_D3hot); 15925 } 15926 15927 shutdown_exit: 15928 rtnl_unlock(); 15929 } 15930 15931 #ifdef CONFIG_PM_SLEEP 15932 static int bnxt_suspend(struct device *device) 15933 { 15934 struct net_device *dev = dev_get_drvdata(device); 15935 struct bnxt *bp = netdev_priv(dev); 15936 int rc = 0; 15937 15938 bnxt_ulp_stop(bp); 15939 15940 rtnl_lock(); 15941 if (netif_running(dev)) { 15942 netif_device_detach(dev); 15943 rc = bnxt_close(dev); 15944 } 15945 bnxt_hwrm_func_drv_unrgtr(bp); 15946 pci_disable_device(bp->pdev); 15947 bnxt_free_ctx_mem(bp); 15948 rtnl_unlock(); 15949 return rc; 15950 } 15951 15952 static int bnxt_resume(struct device *device) 15953 { 15954 struct net_device *dev = dev_get_drvdata(device); 15955 struct bnxt *bp = netdev_priv(dev); 15956 int rc = 0; 15957 15958 rtnl_lock(); 15959 rc = pci_enable_device(bp->pdev); 15960 if (rc) { 15961 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 15962 rc); 15963 goto resume_exit; 15964 } 15965 pci_set_master(bp->pdev); 15966 if (bnxt_hwrm_ver_get(bp)) { 15967 rc = -ENODEV; 15968 goto resume_exit; 15969 } 15970 rc = bnxt_hwrm_func_reset(bp); 15971 if (rc) { 15972 rc = -EBUSY; 15973 goto resume_exit; 15974 } 15975 15976 rc = bnxt_hwrm_func_qcaps(bp); 15977 if (rc) 15978 goto resume_exit; 15979 15980 bnxt_clear_reservations(bp, true); 15981 15982 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 15983 rc = -ENODEV; 15984 goto resume_exit; 15985 } 15986 15987 bnxt_get_wol_settings(bp); 15988 if (netif_running(dev)) { 15989 rc = bnxt_open(dev); 15990 if (!rc) 15991 netif_device_attach(dev); 15992 } 15993 15994 resume_exit: 15995 rtnl_unlock(); 15996 bnxt_ulp_start(bp, rc); 15997 if (!rc) 15998 bnxt_reenable_sriov(bp); 15999 return rc; 16000 } 16001 16002 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 16003 #define BNXT_PM_OPS (&bnxt_pm_ops) 16004 16005 #else 16006 16007 #define BNXT_PM_OPS NULL 16008 16009 #endif /* CONFIG_PM_SLEEP */ 16010 16011 /** 16012 * bnxt_io_error_detected - called when PCI error is detected 16013 * @pdev: Pointer to PCI device 16014 * @state: The current pci connection state 16015 * 16016 * This function is called after a PCI bus error affecting 16017 * this device has been detected. 16018 */ 16019 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 16020 pci_channel_state_t state) 16021 { 16022 struct net_device *netdev = pci_get_drvdata(pdev); 16023 struct bnxt *bp = netdev_priv(netdev); 16024 bool abort = false; 16025 16026 netdev_info(netdev, "PCI I/O error detected\n"); 16027 16028 bnxt_ulp_stop(bp); 16029 16030 rtnl_lock(); 16031 netif_device_detach(netdev); 16032 16033 if (test_and_set_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 16034 netdev_err(bp->dev, "Firmware reset already in progress\n"); 16035 abort = true; 16036 } 16037 16038 if (abort || state == pci_channel_io_perm_failure) { 16039 rtnl_unlock(); 16040 return PCI_ERS_RESULT_DISCONNECT; 16041 } 16042 16043 /* Link is not reliable anymore if state is pci_channel_io_frozen 16044 * so we disable bus master to prevent any potential bad DMAs before 16045 * freeing kernel memory. 16046 */ 16047 if (state == pci_channel_io_frozen) { 16048 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 16049 bnxt_fw_fatal_close(bp); 16050 } 16051 16052 if (netif_running(netdev)) 16053 __bnxt_close_nic(bp, true, true); 16054 16055 if (pci_is_enabled(pdev)) 16056 pci_disable_device(pdev); 16057 bnxt_free_ctx_mem(bp); 16058 rtnl_unlock(); 16059 16060 /* Request a slot slot reset. */ 16061 return PCI_ERS_RESULT_NEED_RESET; 16062 } 16063 16064 /** 16065 * bnxt_io_slot_reset - called after the pci bus has been reset. 16066 * @pdev: Pointer to PCI device 16067 * 16068 * Restart the card from scratch, as if from a cold-boot. 16069 * At this point, the card has exprienced a hard reset, 16070 * followed by fixups by BIOS, and has its config space 16071 * set up identically to what it was at cold boot. 16072 */ 16073 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 16074 { 16075 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 16076 struct net_device *netdev = pci_get_drvdata(pdev); 16077 struct bnxt *bp = netdev_priv(netdev); 16078 int retry = 0; 16079 int err = 0; 16080 int off; 16081 16082 netdev_info(bp->dev, "PCI Slot Reset\n"); 16083 16084 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 16085 test_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state)) 16086 msleep(900); 16087 16088 rtnl_lock(); 16089 16090 if (pci_enable_device(pdev)) { 16091 dev_err(&pdev->dev, 16092 "Cannot re-enable PCI device after reset.\n"); 16093 } else { 16094 pci_set_master(pdev); 16095 /* Upon fatal error, our device internal logic that latches to 16096 * BAR value is getting reset and will restore only upon 16097 * rewritting the BARs. 16098 * 16099 * As pci_restore_state() does not re-write the BARs if the 16100 * value is same as saved value earlier, driver needs to 16101 * write the BARs to 0 to force restore, in case of fatal error. 16102 */ 16103 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 16104 &bp->state)) { 16105 for (off = PCI_BASE_ADDRESS_0; 16106 off <= PCI_BASE_ADDRESS_5; off += 4) 16107 pci_write_config_dword(bp->pdev, off, 0); 16108 } 16109 pci_restore_state(pdev); 16110 pci_save_state(pdev); 16111 16112 bnxt_inv_fw_health_reg(bp); 16113 bnxt_try_map_fw_health_reg(bp); 16114 16115 /* In some PCIe AER scenarios, firmware may take up to 16116 * 10 seconds to become ready in the worst case. 16117 */ 16118 do { 16119 err = bnxt_try_recover_fw(bp); 16120 if (!err) 16121 break; 16122 retry++; 16123 } while (retry < BNXT_FW_SLOT_RESET_RETRY); 16124 16125 if (err) { 16126 dev_err(&pdev->dev, "Firmware not ready\n"); 16127 goto reset_exit; 16128 } 16129 16130 err = bnxt_hwrm_func_reset(bp); 16131 if (!err) 16132 result = PCI_ERS_RESULT_RECOVERED; 16133 16134 bnxt_ulp_irq_stop(bp); 16135 bnxt_clear_int_mode(bp); 16136 err = bnxt_init_int_mode(bp); 16137 bnxt_ulp_irq_restart(bp, err); 16138 } 16139 16140 reset_exit: 16141 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 16142 bnxt_clear_reservations(bp, true); 16143 rtnl_unlock(); 16144 16145 return result; 16146 } 16147 16148 /** 16149 * bnxt_io_resume - called when traffic can start flowing again. 16150 * @pdev: Pointer to PCI device 16151 * 16152 * This callback is called when the error recovery driver tells 16153 * us that its OK to resume normal operation. 16154 */ 16155 static void bnxt_io_resume(struct pci_dev *pdev) 16156 { 16157 struct net_device *netdev = pci_get_drvdata(pdev); 16158 struct bnxt *bp = netdev_priv(netdev); 16159 int err; 16160 16161 netdev_info(bp->dev, "PCI Slot Resume\n"); 16162 rtnl_lock(); 16163 16164 err = bnxt_hwrm_func_qcaps(bp); 16165 if (!err && netif_running(netdev)) 16166 err = bnxt_open(netdev); 16167 16168 if (!err) 16169 netif_device_attach(netdev); 16170 16171 rtnl_unlock(); 16172 bnxt_ulp_start(bp, err); 16173 if (!err) 16174 bnxt_reenable_sriov(bp); 16175 } 16176 16177 static const struct pci_error_handlers bnxt_err_handler = { 16178 .error_detected = bnxt_io_error_detected, 16179 .slot_reset = bnxt_io_slot_reset, 16180 .resume = bnxt_io_resume 16181 }; 16182 16183 static struct pci_driver bnxt_pci_driver = { 16184 .name = DRV_MODULE_NAME, 16185 .id_table = bnxt_pci_tbl, 16186 .probe = bnxt_init_one, 16187 .remove = bnxt_remove_one, 16188 .shutdown = bnxt_shutdown, 16189 .driver.pm = BNXT_PM_OPS, 16190 .err_handler = &bnxt_err_handler, 16191 #if defined(CONFIG_BNXT_SRIOV) 16192 .sriov_configure = bnxt_sriov_configure, 16193 #endif 16194 }; 16195 16196 static int __init bnxt_init(void) 16197 { 16198 int err; 16199 16200 bnxt_debug_init(); 16201 err = pci_register_driver(&bnxt_pci_driver); 16202 if (err) { 16203 bnxt_debug_exit(); 16204 return err; 16205 } 16206 16207 return 0; 16208 } 16209 16210 static void __exit bnxt_exit(void) 16211 { 16212 pci_unregister_driver(&bnxt_pci_driver); 16213 if (bnxt_pf_wq) 16214 destroy_workqueue(bnxt_pf_wq); 16215 bnxt_debug_exit(); 16216 } 16217 16218 module_init(bnxt_init); 16219 module_exit(bnxt_exit); 16220