1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/gro.h> 41 #include <net/ip.h> 42 #include <net/tcp.h> 43 #include <net/udp.h> 44 #include <net/checksum.h> 45 #include <net/ip6_checksum.h> 46 #include <net/udp_tunnel.h> 47 #include <linux/workqueue.h> 48 #include <linux/prefetch.h> 49 #include <linux/cache.h> 50 #include <linux/log2.h> 51 #include <linux/bitmap.h> 52 #include <linux/cpu_rmap.h> 53 #include <linux/cpumask.h> 54 #include <net/pkt_cls.h> 55 #include <net/page_pool/helpers.h> 56 #include <linux/align.h> 57 #include <net/netdev_queues.h> 58 59 #include "bnxt_hsi.h" 60 #include "bnxt.h" 61 #include "bnxt_hwrm.h" 62 #include "bnxt_ulp.h" 63 #include "bnxt_sriov.h" 64 #include "bnxt_ethtool.h" 65 #include "bnxt_dcb.h" 66 #include "bnxt_xdp.h" 67 #include "bnxt_ptp.h" 68 #include "bnxt_vfr.h" 69 #include "bnxt_tc.h" 70 #include "bnxt_devlink.h" 71 #include "bnxt_debugfs.h" 72 #include "bnxt_hwmon.h" 73 74 #define BNXT_TX_TIMEOUT (5 * HZ) 75 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \ 76 NETIF_MSG_TX_ERR) 77 78 MODULE_LICENSE("GPL"); 79 MODULE_DESCRIPTION("Broadcom BCM573xx network driver"); 80 81 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 82 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 83 #define BNXT_RX_COPY_THRESH 256 84 85 #define BNXT_TX_PUSH_THRESH 164 86 87 /* indexed by enum board_idx */ 88 static const struct { 89 char *name; 90 } board_info[] = { 91 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 92 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 93 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 94 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 95 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 96 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 97 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 98 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 99 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 100 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 101 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 102 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 103 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 104 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 105 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 106 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 107 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 108 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 109 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 110 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 111 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 112 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 113 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 114 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 115 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 116 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 117 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 118 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 119 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 120 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 121 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 122 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 123 [BCM57608] = { "Broadcom BCM57608 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 124 [BCM57604] = { "Broadcom BCM57604 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 125 [BCM57602] = { "Broadcom BCM57602 NetXtreme-E 10Gb/25Gb/50Gb/100Gb Ethernet" }, 126 [BCM57601] = { "Broadcom BCM57601 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 127 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 128 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 129 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 130 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 131 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 132 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 133 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 134 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 135 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 136 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 137 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 138 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 139 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 140 }; 141 142 static const struct pci_device_id bnxt_pci_tbl[] = { 143 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 144 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 145 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 146 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 147 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 148 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 149 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 150 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 151 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 152 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 153 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 154 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 155 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 156 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 157 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 158 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 159 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 160 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 161 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 162 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 163 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 164 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 165 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 166 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 167 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 168 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 169 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 170 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 171 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 172 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 173 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 174 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 175 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 176 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 177 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 178 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 179 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 180 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 181 { PCI_VDEVICE(BROADCOM, 0x1760), .driver_data = BCM57608 }, 182 { PCI_VDEVICE(BROADCOM, 0x1761), .driver_data = BCM57604 }, 183 { PCI_VDEVICE(BROADCOM, 0x1762), .driver_data = BCM57602 }, 184 { PCI_VDEVICE(BROADCOM, 0x1763), .driver_data = BCM57601 }, 185 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR }, 186 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 187 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR }, 188 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR }, 189 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 190 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR }, 191 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 192 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 193 #ifdef CONFIG_BNXT_SRIOV 194 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 195 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 196 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 197 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 198 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 199 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 200 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 201 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 202 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 203 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 204 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 205 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 206 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 207 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 208 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 209 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 210 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 211 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 212 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 213 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 214 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 215 #endif 216 { 0 } 217 }; 218 219 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 220 221 static const u16 bnxt_vf_req_snif[] = { 222 HWRM_FUNC_CFG, 223 HWRM_FUNC_VF_CFG, 224 HWRM_PORT_PHY_QCFG, 225 HWRM_CFA_L2_FILTER_ALLOC, 226 }; 227 228 static const u16 bnxt_async_events_arr[] = { 229 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 230 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 231 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 232 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 233 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 234 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 235 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 236 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 237 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 238 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 239 ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE, 240 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 241 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 242 ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP, 243 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT, 244 ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE, 245 }; 246 247 static struct workqueue_struct *bnxt_pf_wq; 248 249 #define BNXT_IPV6_MASK_ALL {{{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, \ 250 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }}} 251 #define BNXT_IPV6_MASK_NONE {{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }}} 252 253 const struct bnxt_flow_masks BNXT_FLOW_MASK_NONE = { 254 .ports = { 255 .src = 0, 256 .dst = 0, 257 }, 258 .addrs = { 259 .v6addrs = { 260 .src = BNXT_IPV6_MASK_NONE, 261 .dst = BNXT_IPV6_MASK_NONE, 262 }, 263 }, 264 }; 265 266 const struct bnxt_flow_masks BNXT_FLOW_IPV6_MASK_ALL = { 267 .ports = { 268 .src = cpu_to_be16(0xffff), 269 .dst = cpu_to_be16(0xffff), 270 }, 271 .addrs = { 272 .v6addrs = { 273 .src = BNXT_IPV6_MASK_ALL, 274 .dst = BNXT_IPV6_MASK_ALL, 275 }, 276 }, 277 }; 278 279 const struct bnxt_flow_masks BNXT_FLOW_IPV4_MASK_ALL = { 280 .ports = { 281 .src = cpu_to_be16(0xffff), 282 .dst = cpu_to_be16(0xffff), 283 }, 284 .addrs = { 285 .v4addrs = { 286 .src = cpu_to_be32(0xffffffff), 287 .dst = cpu_to_be32(0xffffffff), 288 }, 289 }, 290 }; 291 292 static bool bnxt_vf_pciid(enum board_idx idx) 293 { 294 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 295 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 296 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || 297 idx == NETXTREME_E_P5_VF_HV); 298 } 299 300 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 301 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 302 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) 303 304 #define BNXT_CP_DB_IRQ_DIS(db) \ 305 writel(DB_CP_IRQ_DIS_FLAGS, db) 306 307 #define BNXT_DB_CQ(db, idx) \ 308 writel(DB_CP_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 309 310 #define BNXT_DB_NQ_P5(db, idx) \ 311 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | DB_RING_IDX(db, idx),\ 312 (db)->doorbell) 313 314 #define BNXT_DB_NQ_P7(db, idx) \ 315 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_MASK | \ 316 DB_RING_IDX(db, idx), (db)->doorbell) 317 318 #define BNXT_DB_CQ_ARM(db, idx) \ 319 writel(DB_CP_REARM_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 320 321 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 322 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | \ 323 DB_RING_IDX(db, idx), (db)->doorbell) 324 325 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 326 { 327 if (bp->flags & BNXT_FLAG_CHIP_P7) 328 BNXT_DB_NQ_P7(db, idx); 329 else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 330 BNXT_DB_NQ_P5(db, idx); 331 else 332 BNXT_DB_CQ(db, idx); 333 } 334 335 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 336 { 337 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 338 BNXT_DB_NQ_ARM_P5(db, idx); 339 else 340 BNXT_DB_CQ_ARM(db, idx); 341 } 342 343 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 344 { 345 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 346 bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL | 347 DB_RING_IDX(db, idx), db->doorbell); 348 else 349 BNXT_DB_CQ(db, idx); 350 } 351 352 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 353 { 354 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 355 return; 356 357 if (BNXT_PF(bp)) 358 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 359 else 360 schedule_delayed_work(&bp->fw_reset_task, delay); 361 } 362 363 static void __bnxt_queue_sp_work(struct bnxt *bp) 364 { 365 if (BNXT_PF(bp)) 366 queue_work(bnxt_pf_wq, &bp->sp_task); 367 else 368 schedule_work(&bp->sp_task); 369 } 370 371 static void bnxt_queue_sp_work(struct bnxt *bp, unsigned int event) 372 { 373 set_bit(event, &bp->sp_event); 374 __bnxt_queue_sp_work(bp); 375 } 376 377 static void bnxt_sched_reset_rxr(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 378 { 379 if (!rxr->bnapi->in_reset) { 380 rxr->bnapi->in_reset = true; 381 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 382 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 383 else 384 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 385 __bnxt_queue_sp_work(bp); 386 } 387 rxr->rx_next_cons = 0xffff; 388 } 389 390 void bnxt_sched_reset_txr(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 391 u16 curr) 392 { 393 struct bnxt_napi *bnapi = txr->bnapi; 394 395 if (bnapi->tx_fault) 396 return; 397 398 netdev_err(bp->dev, "Invalid Tx completion (ring:%d tx_hw_cons:%u cons:%u prod:%u curr:%u)", 399 txr->txq_index, txr->tx_hw_cons, 400 txr->tx_cons, txr->tx_prod, curr); 401 WARN_ON_ONCE(1); 402 bnapi->tx_fault = 1; 403 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 404 } 405 406 const u16 bnxt_lhint_arr[] = { 407 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 408 TX_BD_FLAGS_LHINT_512_TO_1023, 409 TX_BD_FLAGS_LHINT_1024_TO_2047, 410 TX_BD_FLAGS_LHINT_1024_TO_2047, 411 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 412 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 413 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 414 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 415 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 416 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 417 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 418 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 419 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 420 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 421 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 422 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 423 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 424 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 425 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 426 }; 427 428 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 429 { 430 struct metadata_dst *md_dst = skb_metadata_dst(skb); 431 432 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 433 return 0; 434 435 return md_dst->u.port_info.port_id; 436 } 437 438 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 439 u16 prod) 440 { 441 /* Sync BD data before updating doorbell */ 442 wmb(); 443 bnxt_db_write(bp, &txr->tx_db, prod); 444 txr->kick_pending = 0; 445 } 446 447 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 448 { 449 struct bnxt *bp = netdev_priv(dev); 450 struct tx_bd *txbd, *txbd0; 451 struct tx_bd_ext *txbd1; 452 struct netdev_queue *txq; 453 int i; 454 dma_addr_t mapping; 455 unsigned int length, pad = 0; 456 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 457 u16 prod, last_frag; 458 struct pci_dev *pdev = bp->pdev; 459 struct bnxt_tx_ring_info *txr; 460 struct bnxt_sw_tx_bd *tx_buf; 461 __le32 lflags = 0; 462 463 i = skb_get_queue_mapping(skb); 464 if (unlikely(i >= bp->tx_nr_rings)) { 465 dev_kfree_skb_any(skb); 466 dev_core_stats_tx_dropped_inc(dev); 467 return NETDEV_TX_OK; 468 } 469 470 txq = netdev_get_tx_queue(dev, i); 471 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 472 prod = txr->tx_prod; 473 474 free_size = bnxt_tx_avail(bp, txr); 475 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 476 /* We must have raced with NAPI cleanup */ 477 if (net_ratelimit() && txr->kick_pending) 478 netif_warn(bp, tx_err, dev, 479 "bnxt: ring busy w/ flush pending!\n"); 480 if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 481 bp->tx_wake_thresh)) 482 return NETDEV_TX_BUSY; 483 } 484 485 if (unlikely(ipv6_hopopt_jumbo_remove(skb))) 486 goto tx_free; 487 488 length = skb->len; 489 len = skb_headlen(skb); 490 last_frag = skb_shinfo(skb)->nr_frags; 491 492 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 493 494 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 495 tx_buf->skb = skb; 496 tx_buf->nr_frags = last_frag; 497 498 vlan_tag_flags = 0; 499 cfa_action = bnxt_xmit_get_cfa_action(skb); 500 if (skb_vlan_tag_present(skb)) { 501 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 502 skb_vlan_tag_get(skb); 503 /* Currently supports 8021Q, 8021AD vlan offloads 504 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 505 */ 506 if (skb->vlan_proto == htons(ETH_P_8021Q)) 507 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 508 } 509 510 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 511 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 512 513 if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) && 514 atomic_dec_if_positive(&ptp->tx_avail) >= 0) { 515 if (!bnxt_ptp_parse(skb, &ptp->tx_seqid, 516 &ptp->tx_hdr_off)) { 517 if (vlan_tag_flags) 518 ptp->tx_hdr_off += VLAN_HLEN; 519 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 520 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 521 } else { 522 atomic_inc(&bp->ptp_cfg->tx_avail); 523 } 524 } 525 } 526 527 if (unlikely(skb->no_fcs)) 528 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 529 530 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && 531 !lflags) { 532 struct tx_push_buffer *tx_push_buf = txr->tx_push; 533 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 534 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 535 void __iomem *db = txr->tx_db.doorbell; 536 void *pdata = tx_push_buf->data; 537 u64 *end; 538 int j, push_len; 539 540 /* Set COAL_NOW to be ready quickly for the next push */ 541 tx_push->tx_bd_len_flags_type = 542 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 543 TX_BD_TYPE_LONG_TX_BD | 544 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 545 TX_BD_FLAGS_COAL_NOW | 546 TX_BD_FLAGS_PACKET_END | 547 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 548 549 if (skb->ip_summed == CHECKSUM_PARTIAL) 550 tx_push1->tx_bd_hsize_lflags = 551 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 552 else 553 tx_push1->tx_bd_hsize_lflags = 0; 554 555 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 556 tx_push1->tx_bd_cfa_action = 557 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 558 559 end = pdata + length; 560 end = PTR_ALIGN(end, 8) - 1; 561 *end = 0; 562 563 skb_copy_from_linear_data(skb, pdata, len); 564 pdata += len; 565 for (j = 0; j < last_frag; j++) { 566 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 567 void *fptr; 568 569 fptr = skb_frag_address_safe(frag); 570 if (!fptr) 571 goto normal_tx; 572 573 memcpy(pdata, fptr, skb_frag_size(frag)); 574 pdata += skb_frag_size(frag); 575 } 576 577 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 578 txbd->tx_bd_haddr = txr->data_mapping; 579 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2); 580 prod = NEXT_TX(prod); 581 tx_push->tx_bd_opaque = txbd->tx_bd_opaque; 582 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 583 memcpy(txbd, tx_push1, sizeof(*txbd)); 584 prod = NEXT_TX(prod); 585 tx_push->doorbell = 586 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | 587 DB_RING_IDX(&txr->tx_db, prod)); 588 WRITE_ONCE(txr->tx_prod, prod); 589 590 tx_buf->is_push = 1; 591 netdev_tx_sent_queue(txq, skb->len); 592 wmb(); /* Sync is_push and byte queue before pushing data */ 593 594 push_len = (length + sizeof(*tx_push) + 7) / 8; 595 if (push_len > 16) { 596 __iowrite64_copy(db, tx_push_buf, 16); 597 __iowrite32_copy(db + 4, tx_push_buf + 1, 598 (push_len - 16) << 1); 599 } else { 600 __iowrite64_copy(db, tx_push_buf, push_len); 601 } 602 603 goto tx_done; 604 } 605 606 normal_tx: 607 if (length < BNXT_MIN_PKT_SIZE) { 608 pad = BNXT_MIN_PKT_SIZE - length; 609 if (skb_pad(skb, pad)) 610 /* SKB already freed. */ 611 goto tx_kick_pending; 612 length = BNXT_MIN_PKT_SIZE; 613 } 614 615 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 616 617 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 618 goto tx_free; 619 620 dma_unmap_addr_set(tx_buf, mapping, mapping); 621 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 622 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 623 624 txbd->tx_bd_haddr = cpu_to_le64(mapping); 625 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2 + last_frag); 626 627 prod = NEXT_TX(prod); 628 txbd1 = (struct tx_bd_ext *) 629 &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 630 631 txbd1->tx_bd_hsize_lflags = lflags; 632 if (skb_is_gso(skb)) { 633 bool udp_gso = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4); 634 u32 hdr_len; 635 636 if (skb->encapsulation) { 637 if (udp_gso) 638 hdr_len = skb_inner_transport_offset(skb) + 639 sizeof(struct udphdr); 640 else 641 hdr_len = skb_inner_tcp_all_headers(skb); 642 } else if (udp_gso) { 643 hdr_len = skb_transport_offset(skb) + 644 sizeof(struct udphdr); 645 } else { 646 hdr_len = skb_tcp_all_headers(skb); 647 } 648 649 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 650 TX_BD_FLAGS_T_IPID | 651 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 652 length = skb_shinfo(skb)->gso_size; 653 txbd1->tx_bd_mss = cpu_to_le32(length); 654 length += hdr_len; 655 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 656 txbd1->tx_bd_hsize_lflags |= 657 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 658 txbd1->tx_bd_mss = 0; 659 } 660 661 length >>= 9; 662 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 663 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 664 skb->len); 665 i = 0; 666 goto tx_dma_error; 667 } 668 flags |= bnxt_lhint_arr[length]; 669 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 670 671 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 672 txbd1->tx_bd_cfa_action = 673 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 674 txbd0 = txbd; 675 for (i = 0; i < last_frag; i++) { 676 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 677 678 prod = NEXT_TX(prod); 679 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 680 681 len = skb_frag_size(frag); 682 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 683 DMA_TO_DEVICE); 684 685 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 686 goto tx_dma_error; 687 688 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 689 dma_unmap_addr_set(tx_buf, mapping, mapping); 690 691 txbd->tx_bd_haddr = cpu_to_le64(mapping); 692 693 flags = len << TX_BD_LEN_SHIFT; 694 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 695 } 696 697 flags &= ~TX_BD_LEN; 698 txbd->tx_bd_len_flags_type = 699 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 700 TX_BD_FLAGS_PACKET_END); 701 702 netdev_tx_sent_queue(txq, skb->len); 703 704 skb_tx_timestamp(skb); 705 706 prod = NEXT_TX(prod); 707 WRITE_ONCE(txr->tx_prod, prod); 708 709 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) { 710 bnxt_txr_db_kick(bp, txr, prod); 711 } else { 712 if (free_size >= bp->tx_wake_thresh) 713 txbd0->tx_bd_len_flags_type |= 714 cpu_to_le32(TX_BD_FLAGS_NO_CMPL); 715 txr->kick_pending = 1; 716 } 717 718 tx_done: 719 720 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 721 if (netdev_xmit_more() && !tx_buf->is_push) { 722 txbd0->tx_bd_len_flags_type &= 723 cpu_to_le32(~TX_BD_FLAGS_NO_CMPL); 724 bnxt_txr_db_kick(bp, txr, prod); 725 } 726 727 netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 728 bp->tx_wake_thresh); 729 } 730 return NETDEV_TX_OK; 731 732 tx_dma_error: 733 if (BNXT_TX_PTP_IS_SET(lflags)) 734 atomic_inc(&bp->ptp_cfg->tx_avail); 735 736 last_frag = i; 737 738 /* start back at beginning and unmap skb */ 739 prod = txr->tx_prod; 740 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 741 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 742 skb_headlen(skb), DMA_TO_DEVICE); 743 prod = NEXT_TX(prod); 744 745 /* unmap remaining mapped pages */ 746 for (i = 0; i < last_frag; i++) { 747 prod = NEXT_TX(prod); 748 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 749 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 750 skb_frag_size(&skb_shinfo(skb)->frags[i]), 751 DMA_TO_DEVICE); 752 } 753 754 tx_free: 755 dev_kfree_skb_any(skb); 756 tx_kick_pending: 757 if (txr->kick_pending) 758 bnxt_txr_db_kick(bp, txr, txr->tx_prod); 759 txr->tx_buf_ring[txr->tx_prod].skb = NULL; 760 dev_core_stats_tx_dropped_inc(dev); 761 return NETDEV_TX_OK; 762 } 763 764 static void __bnxt_tx_int(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 765 int budget) 766 { 767 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 768 struct pci_dev *pdev = bp->pdev; 769 u16 hw_cons = txr->tx_hw_cons; 770 unsigned int tx_bytes = 0; 771 u16 cons = txr->tx_cons; 772 int tx_pkts = 0; 773 774 while (RING_TX(bp, cons) != hw_cons) { 775 struct bnxt_sw_tx_bd *tx_buf; 776 struct sk_buff *skb; 777 int j, last; 778 779 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 780 cons = NEXT_TX(cons); 781 skb = tx_buf->skb; 782 tx_buf->skb = NULL; 783 784 if (unlikely(!skb)) { 785 bnxt_sched_reset_txr(bp, txr, cons); 786 return; 787 } 788 789 tx_pkts++; 790 tx_bytes += skb->len; 791 792 if (tx_buf->is_push) { 793 tx_buf->is_push = 0; 794 goto next_tx_int; 795 } 796 797 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 798 skb_headlen(skb), DMA_TO_DEVICE); 799 last = tx_buf->nr_frags; 800 801 for (j = 0; j < last; j++) { 802 cons = NEXT_TX(cons); 803 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 804 dma_unmap_page( 805 &pdev->dev, 806 dma_unmap_addr(tx_buf, mapping), 807 skb_frag_size(&skb_shinfo(skb)->frags[j]), 808 DMA_TO_DEVICE); 809 } 810 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 811 if (BNXT_CHIP_P5(bp)) { 812 /* PTP worker takes ownership of the skb */ 813 if (!bnxt_get_tx_ts_p5(bp, skb)) 814 skb = NULL; 815 else 816 atomic_inc(&bp->ptp_cfg->tx_avail); 817 } 818 } 819 820 next_tx_int: 821 cons = NEXT_TX(cons); 822 823 dev_consume_skb_any(skb); 824 } 825 826 WRITE_ONCE(txr->tx_cons, cons); 827 828 __netif_txq_completed_wake(txq, tx_pkts, tx_bytes, 829 bnxt_tx_avail(bp, txr), bp->tx_wake_thresh, 830 READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING); 831 } 832 833 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 834 { 835 struct bnxt_tx_ring_info *txr; 836 int i; 837 838 bnxt_for_each_napi_tx(i, bnapi, txr) { 839 if (txr->tx_hw_cons != RING_TX(bp, txr->tx_cons)) 840 __bnxt_tx_int(bp, txr, budget); 841 } 842 bnapi->events &= ~BNXT_TX_CMP_EVENT; 843 } 844 845 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 846 struct bnxt_rx_ring_info *rxr, 847 unsigned int *offset, 848 gfp_t gfp) 849 { 850 struct page *page; 851 852 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 853 page = page_pool_dev_alloc_frag(rxr->page_pool, offset, 854 BNXT_RX_PAGE_SIZE); 855 } else { 856 page = page_pool_dev_alloc_pages(rxr->page_pool); 857 *offset = 0; 858 } 859 if (!page) 860 return NULL; 861 862 *mapping = page_pool_get_dma_addr(page) + *offset; 863 return page; 864 } 865 866 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping, 867 gfp_t gfp) 868 { 869 u8 *data; 870 struct pci_dev *pdev = bp->pdev; 871 872 if (gfp == GFP_ATOMIC) 873 data = napi_alloc_frag(bp->rx_buf_size); 874 else 875 data = netdev_alloc_frag(bp->rx_buf_size); 876 if (!data) 877 return NULL; 878 879 *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset, 880 bp->rx_buf_use_size, bp->rx_dir, 881 DMA_ATTR_WEAK_ORDERING); 882 883 if (dma_mapping_error(&pdev->dev, *mapping)) { 884 skb_free_frag(data); 885 data = NULL; 886 } 887 return data; 888 } 889 890 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 891 u16 prod, gfp_t gfp) 892 { 893 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 894 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 895 dma_addr_t mapping; 896 897 if (BNXT_RX_PAGE_MODE(bp)) { 898 unsigned int offset; 899 struct page *page = 900 __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 901 902 if (!page) 903 return -ENOMEM; 904 905 mapping += bp->rx_dma_offset; 906 rx_buf->data = page; 907 rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset; 908 } else { 909 u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp); 910 911 if (!data) 912 return -ENOMEM; 913 914 rx_buf->data = data; 915 rx_buf->data_ptr = data + bp->rx_offset; 916 } 917 rx_buf->mapping = mapping; 918 919 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 920 return 0; 921 } 922 923 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 924 { 925 u16 prod = rxr->rx_prod; 926 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 927 struct bnxt *bp = rxr->bnapi->bp; 928 struct rx_bd *cons_bd, *prod_bd; 929 930 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 931 cons_rx_buf = &rxr->rx_buf_ring[cons]; 932 933 prod_rx_buf->data = data; 934 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 935 936 prod_rx_buf->mapping = cons_rx_buf->mapping; 937 938 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 939 cons_bd = &rxr->rx_desc_ring[RX_RING(bp, cons)][RX_IDX(cons)]; 940 941 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 942 } 943 944 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 945 { 946 u16 next, max = rxr->rx_agg_bmap_size; 947 948 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 949 if (next >= max) 950 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 951 return next; 952 } 953 954 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 955 struct bnxt_rx_ring_info *rxr, 956 u16 prod, gfp_t gfp) 957 { 958 struct rx_bd *rxbd = 959 &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 960 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 961 struct page *page; 962 dma_addr_t mapping; 963 u16 sw_prod = rxr->rx_sw_agg_prod; 964 unsigned int offset = 0; 965 966 page = __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 967 968 if (!page) 969 return -ENOMEM; 970 971 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 972 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 973 974 __set_bit(sw_prod, rxr->rx_agg_bmap); 975 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 976 rxr->rx_sw_agg_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 977 978 rx_agg_buf->page = page; 979 rx_agg_buf->offset = offset; 980 rx_agg_buf->mapping = mapping; 981 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 982 rxbd->rx_bd_opaque = sw_prod; 983 return 0; 984 } 985 986 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 987 struct bnxt_cp_ring_info *cpr, 988 u16 cp_cons, u16 curr) 989 { 990 struct rx_agg_cmp *agg; 991 992 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 993 agg = (struct rx_agg_cmp *) 994 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 995 return agg; 996 } 997 998 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 999 struct bnxt_rx_ring_info *rxr, 1000 u16 agg_id, u16 curr) 1001 { 1002 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 1003 1004 return &tpa_info->agg_arr[curr]; 1005 } 1006 1007 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 1008 u16 start, u32 agg_bufs, bool tpa) 1009 { 1010 struct bnxt_napi *bnapi = cpr->bnapi; 1011 struct bnxt *bp = bnapi->bp; 1012 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1013 u16 prod = rxr->rx_agg_prod; 1014 u16 sw_prod = rxr->rx_sw_agg_prod; 1015 bool p5_tpa = false; 1016 u32 i; 1017 1018 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1019 p5_tpa = true; 1020 1021 for (i = 0; i < agg_bufs; i++) { 1022 u16 cons; 1023 struct rx_agg_cmp *agg; 1024 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 1025 struct rx_bd *prod_bd; 1026 struct page *page; 1027 1028 if (p5_tpa) 1029 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 1030 else 1031 agg = bnxt_get_agg(bp, cpr, idx, start + i); 1032 cons = agg->rx_agg_cmp_opaque; 1033 __clear_bit(cons, rxr->rx_agg_bmap); 1034 1035 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 1036 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 1037 1038 __set_bit(sw_prod, rxr->rx_agg_bmap); 1039 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 1040 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1041 1042 /* It is possible for sw_prod to be equal to cons, so 1043 * set cons_rx_buf->page to NULL first. 1044 */ 1045 page = cons_rx_buf->page; 1046 cons_rx_buf->page = NULL; 1047 prod_rx_buf->page = page; 1048 prod_rx_buf->offset = cons_rx_buf->offset; 1049 1050 prod_rx_buf->mapping = cons_rx_buf->mapping; 1051 1052 prod_bd = &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 1053 1054 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 1055 prod_bd->rx_bd_opaque = sw_prod; 1056 1057 prod = NEXT_RX_AGG(prod); 1058 sw_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 1059 } 1060 rxr->rx_agg_prod = prod; 1061 rxr->rx_sw_agg_prod = sw_prod; 1062 } 1063 1064 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp, 1065 struct bnxt_rx_ring_info *rxr, 1066 u16 cons, void *data, u8 *data_ptr, 1067 dma_addr_t dma_addr, 1068 unsigned int offset_and_len) 1069 { 1070 unsigned int len = offset_and_len & 0xffff; 1071 struct page *page = data; 1072 u16 prod = rxr->rx_prod; 1073 struct sk_buff *skb; 1074 int err; 1075 1076 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1077 if (unlikely(err)) { 1078 bnxt_reuse_rx_data(rxr, cons, data); 1079 return NULL; 1080 } 1081 dma_addr -= bp->rx_dma_offset; 1082 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1083 bp->rx_dir); 1084 skb = napi_build_skb(data_ptr - bp->rx_offset, BNXT_RX_PAGE_SIZE); 1085 if (!skb) { 1086 page_pool_recycle_direct(rxr->page_pool, page); 1087 return NULL; 1088 } 1089 skb_mark_for_recycle(skb); 1090 skb_reserve(skb, bp->rx_offset); 1091 __skb_put(skb, len); 1092 1093 return skb; 1094 } 1095 1096 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 1097 struct bnxt_rx_ring_info *rxr, 1098 u16 cons, void *data, u8 *data_ptr, 1099 dma_addr_t dma_addr, 1100 unsigned int offset_and_len) 1101 { 1102 unsigned int payload = offset_and_len >> 16; 1103 unsigned int len = offset_and_len & 0xffff; 1104 skb_frag_t *frag; 1105 struct page *page = data; 1106 u16 prod = rxr->rx_prod; 1107 struct sk_buff *skb; 1108 int off, err; 1109 1110 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1111 if (unlikely(err)) { 1112 bnxt_reuse_rx_data(rxr, cons, data); 1113 return NULL; 1114 } 1115 dma_addr -= bp->rx_dma_offset; 1116 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1117 bp->rx_dir); 1118 1119 if (unlikely(!payload)) 1120 payload = eth_get_headlen(bp->dev, data_ptr, len); 1121 1122 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 1123 if (!skb) { 1124 page_pool_recycle_direct(rxr->page_pool, page); 1125 return NULL; 1126 } 1127 1128 skb_mark_for_recycle(skb); 1129 off = (void *)data_ptr - page_address(page); 1130 skb_add_rx_frag(skb, 0, page, off, len, BNXT_RX_PAGE_SIZE); 1131 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 1132 payload + NET_IP_ALIGN); 1133 1134 frag = &skb_shinfo(skb)->frags[0]; 1135 skb_frag_size_sub(frag, payload); 1136 skb_frag_off_add(frag, payload); 1137 skb->data_len -= payload; 1138 skb->tail += payload; 1139 1140 return skb; 1141 } 1142 1143 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 1144 struct bnxt_rx_ring_info *rxr, u16 cons, 1145 void *data, u8 *data_ptr, 1146 dma_addr_t dma_addr, 1147 unsigned int offset_and_len) 1148 { 1149 u16 prod = rxr->rx_prod; 1150 struct sk_buff *skb; 1151 int err; 1152 1153 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1154 if (unlikely(err)) { 1155 bnxt_reuse_rx_data(rxr, cons, data); 1156 return NULL; 1157 } 1158 1159 skb = napi_build_skb(data, bp->rx_buf_size); 1160 dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1161 bp->rx_dir, DMA_ATTR_WEAK_ORDERING); 1162 if (!skb) { 1163 skb_free_frag(data); 1164 return NULL; 1165 } 1166 1167 skb_reserve(skb, bp->rx_offset); 1168 skb_put(skb, offset_and_len & 0xffff); 1169 return skb; 1170 } 1171 1172 static u32 __bnxt_rx_agg_pages(struct bnxt *bp, 1173 struct bnxt_cp_ring_info *cpr, 1174 struct skb_shared_info *shinfo, 1175 u16 idx, u32 agg_bufs, bool tpa, 1176 struct xdp_buff *xdp) 1177 { 1178 struct bnxt_napi *bnapi = cpr->bnapi; 1179 struct pci_dev *pdev = bp->pdev; 1180 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1181 u16 prod = rxr->rx_agg_prod; 1182 u32 i, total_frag_len = 0; 1183 bool p5_tpa = false; 1184 1185 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1186 p5_tpa = true; 1187 1188 for (i = 0; i < agg_bufs; i++) { 1189 skb_frag_t *frag = &shinfo->frags[i]; 1190 u16 cons, frag_len; 1191 struct rx_agg_cmp *agg; 1192 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1193 struct page *page; 1194 dma_addr_t mapping; 1195 1196 if (p5_tpa) 1197 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1198 else 1199 agg = bnxt_get_agg(bp, cpr, idx, i); 1200 cons = agg->rx_agg_cmp_opaque; 1201 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1202 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1203 1204 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1205 skb_frag_fill_page_desc(frag, cons_rx_buf->page, 1206 cons_rx_buf->offset, frag_len); 1207 shinfo->nr_frags = i + 1; 1208 __clear_bit(cons, rxr->rx_agg_bmap); 1209 1210 /* It is possible for bnxt_alloc_rx_page() to allocate 1211 * a sw_prod index that equals the cons index, so we 1212 * need to clear the cons entry now. 1213 */ 1214 mapping = cons_rx_buf->mapping; 1215 page = cons_rx_buf->page; 1216 cons_rx_buf->page = NULL; 1217 1218 if (xdp && page_is_pfmemalloc(page)) 1219 xdp_buff_set_frag_pfmemalloc(xdp); 1220 1221 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 1222 --shinfo->nr_frags; 1223 cons_rx_buf->page = page; 1224 1225 /* Update prod since possibly some pages have been 1226 * allocated already. 1227 */ 1228 rxr->rx_agg_prod = prod; 1229 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1230 return 0; 1231 } 1232 1233 dma_sync_single_for_cpu(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, 1234 bp->rx_dir); 1235 1236 total_frag_len += frag_len; 1237 prod = NEXT_RX_AGG(prod); 1238 } 1239 rxr->rx_agg_prod = prod; 1240 return total_frag_len; 1241 } 1242 1243 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp, 1244 struct bnxt_cp_ring_info *cpr, 1245 struct sk_buff *skb, u16 idx, 1246 u32 agg_bufs, bool tpa) 1247 { 1248 struct skb_shared_info *shinfo = skb_shinfo(skb); 1249 u32 total_frag_len = 0; 1250 1251 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx, 1252 agg_bufs, tpa, NULL); 1253 if (!total_frag_len) { 1254 skb_mark_for_recycle(skb); 1255 dev_kfree_skb(skb); 1256 return NULL; 1257 } 1258 1259 skb->data_len += total_frag_len; 1260 skb->len += total_frag_len; 1261 skb->truesize += BNXT_RX_PAGE_SIZE * agg_bufs; 1262 return skb; 1263 } 1264 1265 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp, 1266 struct bnxt_cp_ring_info *cpr, 1267 struct xdp_buff *xdp, u16 idx, 1268 u32 agg_bufs, bool tpa) 1269 { 1270 struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp); 1271 u32 total_frag_len = 0; 1272 1273 if (!xdp_buff_has_frags(xdp)) 1274 shinfo->nr_frags = 0; 1275 1276 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, 1277 idx, agg_bufs, tpa, xdp); 1278 if (total_frag_len) { 1279 xdp_buff_set_frags_flag(xdp); 1280 shinfo->nr_frags = agg_bufs; 1281 shinfo->xdp_frags_size = total_frag_len; 1282 } 1283 return total_frag_len; 1284 } 1285 1286 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1287 u8 agg_bufs, u32 *raw_cons) 1288 { 1289 u16 last; 1290 struct rx_agg_cmp *agg; 1291 1292 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1293 last = RING_CMP(*raw_cons); 1294 agg = (struct rx_agg_cmp *) 1295 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1296 return RX_AGG_CMP_VALID(agg, *raw_cons); 1297 } 1298 1299 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1300 unsigned int len, 1301 dma_addr_t mapping) 1302 { 1303 struct bnxt *bp = bnapi->bp; 1304 struct pci_dev *pdev = bp->pdev; 1305 struct sk_buff *skb; 1306 1307 skb = napi_alloc_skb(&bnapi->napi, len); 1308 if (!skb) 1309 return NULL; 1310 1311 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh, 1312 bp->rx_dir); 1313 1314 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1315 len + NET_IP_ALIGN); 1316 1317 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh, 1318 bp->rx_dir); 1319 1320 skb_put(skb, len); 1321 return skb; 1322 } 1323 1324 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1325 u32 *raw_cons, void *cmp) 1326 { 1327 struct rx_cmp *rxcmp = cmp; 1328 u32 tmp_raw_cons = *raw_cons; 1329 u8 cmp_type, agg_bufs = 0; 1330 1331 cmp_type = RX_CMP_TYPE(rxcmp); 1332 1333 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1334 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1335 RX_CMP_AGG_BUFS) >> 1336 RX_CMP_AGG_BUFS_SHIFT; 1337 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1338 struct rx_tpa_end_cmp *tpa_end = cmp; 1339 1340 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1341 return 0; 1342 1343 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1344 } 1345 1346 if (agg_bufs) { 1347 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1348 return -EBUSY; 1349 } 1350 *raw_cons = tmp_raw_cons; 1351 return 0; 1352 } 1353 1354 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1355 { 1356 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1357 u16 idx = agg_id & MAX_TPA_P5_MASK; 1358 1359 if (test_bit(idx, map->agg_idx_bmap)) 1360 idx = find_first_zero_bit(map->agg_idx_bmap, 1361 BNXT_AGG_IDX_BMAP_SIZE); 1362 __set_bit(idx, map->agg_idx_bmap); 1363 map->agg_id_tbl[agg_id] = idx; 1364 return idx; 1365 } 1366 1367 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1368 { 1369 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1370 1371 __clear_bit(idx, map->agg_idx_bmap); 1372 } 1373 1374 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1375 { 1376 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1377 1378 return map->agg_id_tbl[agg_id]; 1379 } 1380 1381 static void bnxt_tpa_metadata(struct bnxt_tpa_info *tpa_info, 1382 struct rx_tpa_start_cmp *tpa_start, 1383 struct rx_tpa_start_cmp_ext *tpa_start1) 1384 { 1385 tpa_info->cfa_code_valid = 1; 1386 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1387 tpa_info->vlan_valid = 0; 1388 if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) { 1389 tpa_info->vlan_valid = 1; 1390 tpa_info->metadata = 1391 le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1392 } 1393 } 1394 1395 static void bnxt_tpa_metadata_v2(struct bnxt_tpa_info *tpa_info, 1396 struct rx_tpa_start_cmp *tpa_start, 1397 struct rx_tpa_start_cmp_ext *tpa_start1) 1398 { 1399 tpa_info->vlan_valid = 0; 1400 if (TPA_START_VLAN_VALID(tpa_start)) { 1401 u32 tpid_sel = TPA_START_VLAN_TPID_SEL(tpa_start); 1402 u32 vlan_proto = ETH_P_8021Q; 1403 1404 tpa_info->vlan_valid = 1; 1405 if (tpid_sel == RX_TPA_START_METADATA1_TPID_8021AD) 1406 vlan_proto = ETH_P_8021AD; 1407 tpa_info->metadata = vlan_proto << 16 | 1408 TPA_START_METADATA0_TCI(tpa_start1); 1409 } 1410 } 1411 1412 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1413 u8 cmp_type, struct rx_tpa_start_cmp *tpa_start, 1414 struct rx_tpa_start_cmp_ext *tpa_start1) 1415 { 1416 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1417 struct bnxt_tpa_info *tpa_info; 1418 u16 cons, prod, agg_id; 1419 struct rx_bd *prod_bd; 1420 dma_addr_t mapping; 1421 1422 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1423 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1424 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1425 } else { 1426 agg_id = TPA_START_AGG_ID(tpa_start); 1427 } 1428 cons = tpa_start->rx_tpa_start_cmp_opaque; 1429 prod = rxr->rx_prod; 1430 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1431 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 1432 tpa_info = &rxr->rx_tpa[agg_id]; 1433 1434 if (unlikely(cons != rxr->rx_next_cons || 1435 TPA_START_ERROR(tpa_start))) { 1436 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1437 cons, rxr->rx_next_cons, 1438 TPA_START_ERROR_CODE(tpa_start1)); 1439 bnxt_sched_reset_rxr(bp, rxr); 1440 return; 1441 } 1442 prod_rx_buf->data = tpa_info->data; 1443 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1444 1445 mapping = tpa_info->mapping; 1446 prod_rx_buf->mapping = mapping; 1447 1448 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 1449 1450 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1451 1452 tpa_info->data = cons_rx_buf->data; 1453 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1454 cons_rx_buf->data = NULL; 1455 tpa_info->mapping = cons_rx_buf->mapping; 1456 1457 tpa_info->len = 1458 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1459 RX_TPA_START_CMP_LEN_SHIFT; 1460 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1461 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1462 tpa_info->gso_type = SKB_GSO_TCPV4; 1463 if (TPA_START_IS_IPV6(tpa_start1)) 1464 tpa_info->gso_type = SKB_GSO_TCPV6; 1465 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1466 else if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP && 1467 TPA_START_HASH_TYPE(tpa_start) == 3) 1468 tpa_info->gso_type = SKB_GSO_TCPV6; 1469 tpa_info->rss_hash = 1470 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1471 } else { 1472 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1473 tpa_info->gso_type = 0; 1474 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1475 } 1476 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1477 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1478 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) 1479 bnxt_tpa_metadata(tpa_info, tpa_start, tpa_start1); 1480 else 1481 bnxt_tpa_metadata_v2(tpa_info, tpa_start, tpa_start1); 1482 tpa_info->agg_count = 0; 1483 1484 rxr->rx_prod = NEXT_RX(prod); 1485 cons = RING_RX(bp, NEXT_RX(cons)); 1486 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 1487 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1488 1489 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1490 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1491 cons_rx_buf->data = NULL; 1492 } 1493 1494 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1495 { 1496 if (agg_bufs) 1497 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1498 } 1499 1500 #ifdef CONFIG_INET 1501 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1502 { 1503 struct udphdr *uh = NULL; 1504 1505 if (ip_proto == htons(ETH_P_IP)) { 1506 struct iphdr *iph = (struct iphdr *)skb->data; 1507 1508 if (iph->protocol == IPPROTO_UDP) 1509 uh = (struct udphdr *)(iph + 1); 1510 } else { 1511 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1512 1513 if (iph->nexthdr == IPPROTO_UDP) 1514 uh = (struct udphdr *)(iph + 1); 1515 } 1516 if (uh) { 1517 if (uh->check) 1518 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1519 else 1520 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1521 } 1522 } 1523 #endif 1524 1525 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1526 int payload_off, int tcp_ts, 1527 struct sk_buff *skb) 1528 { 1529 #ifdef CONFIG_INET 1530 struct tcphdr *th; 1531 int len, nw_off; 1532 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1533 u32 hdr_info = tpa_info->hdr_info; 1534 bool loopback = false; 1535 1536 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1537 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1538 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1539 1540 /* If the packet is an internal loopback packet, the offsets will 1541 * have an extra 4 bytes. 1542 */ 1543 if (inner_mac_off == 4) { 1544 loopback = true; 1545 } else if (inner_mac_off > 4) { 1546 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1547 ETH_HLEN - 2)); 1548 1549 /* We only support inner iPv4/ipv6. If we don't see the 1550 * correct protocol ID, it must be a loopback packet where 1551 * the offsets are off by 4. 1552 */ 1553 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1554 loopback = true; 1555 } 1556 if (loopback) { 1557 /* internal loopback packet, subtract all offsets by 4 */ 1558 inner_ip_off -= 4; 1559 inner_mac_off -= 4; 1560 outer_ip_off -= 4; 1561 } 1562 1563 nw_off = inner_ip_off - ETH_HLEN; 1564 skb_set_network_header(skb, nw_off); 1565 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1566 struct ipv6hdr *iph = ipv6_hdr(skb); 1567 1568 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1569 len = skb->len - skb_transport_offset(skb); 1570 th = tcp_hdr(skb); 1571 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1572 } else { 1573 struct iphdr *iph = ip_hdr(skb); 1574 1575 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1576 len = skb->len - skb_transport_offset(skb); 1577 th = tcp_hdr(skb); 1578 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1579 } 1580 1581 if (inner_mac_off) { /* tunnel */ 1582 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1583 ETH_HLEN - 2)); 1584 1585 bnxt_gro_tunnel(skb, proto); 1586 } 1587 #endif 1588 return skb; 1589 } 1590 1591 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1592 int payload_off, int tcp_ts, 1593 struct sk_buff *skb) 1594 { 1595 #ifdef CONFIG_INET 1596 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1597 u32 hdr_info = tpa_info->hdr_info; 1598 int iphdr_len, nw_off; 1599 1600 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1601 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1602 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1603 1604 nw_off = inner_ip_off - ETH_HLEN; 1605 skb_set_network_header(skb, nw_off); 1606 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1607 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1608 skb_set_transport_header(skb, nw_off + iphdr_len); 1609 1610 if (inner_mac_off) { /* tunnel */ 1611 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1612 ETH_HLEN - 2)); 1613 1614 bnxt_gro_tunnel(skb, proto); 1615 } 1616 #endif 1617 return skb; 1618 } 1619 1620 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1621 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1622 1623 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1624 int payload_off, int tcp_ts, 1625 struct sk_buff *skb) 1626 { 1627 #ifdef CONFIG_INET 1628 struct tcphdr *th; 1629 int len, nw_off, tcp_opt_len = 0; 1630 1631 if (tcp_ts) 1632 tcp_opt_len = 12; 1633 1634 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1635 struct iphdr *iph; 1636 1637 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1638 ETH_HLEN; 1639 skb_set_network_header(skb, nw_off); 1640 iph = ip_hdr(skb); 1641 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1642 len = skb->len - skb_transport_offset(skb); 1643 th = tcp_hdr(skb); 1644 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1645 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1646 struct ipv6hdr *iph; 1647 1648 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1649 ETH_HLEN; 1650 skb_set_network_header(skb, nw_off); 1651 iph = ipv6_hdr(skb); 1652 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1653 len = skb->len - skb_transport_offset(skb); 1654 th = tcp_hdr(skb); 1655 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1656 } else { 1657 dev_kfree_skb_any(skb); 1658 return NULL; 1659 } 1660 1661 if (nw_off) /* tunnel */ 1662 bnxt_gro_tunnel(skb, skb->protocol); 1663 #endif 1664 return skb; 1665 } 1666 1667 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1668 struct bnxt_tpa_info *tpa_info, 1669 struct rx_tpa_end_cmp *tpa_end, 1670 struct rx_tpa_end_cmp_ext *tpa_end1, 1671 struct sk_buff *skb) 1672 { 1673 #ifdef CONFIG_INET 1674 int payload_off; 1675 u16 segs; 1676 1677 segs = TPA_END_TPA_SEGS(tpa_end); 1678 if (segs == 1) 1679 return skb; 1680 1681 NAPI_GRO_CB(skb)->count = segs; 1682 skb_shinfo(skb)->gso_size = 1683 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1684 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1685 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1686 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1687 else 1688 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1689 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1690 if (likely(skb)) 1691 tcp_gro_complete(skb); 1692 #endif 1693 return skb; 1694 } 1695 1696 /* Given the cfa_code of a received packet determine which 1697 * netdev (vf-rep or PF) the packet is destined to. 1698 */ 1699 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1700 { 1701 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1702 1703 /* if vf-rep dev is NULL, the must belongs to the PF */ 1704 return dev ? dev : bp->dev; 1705 } 1706 1707 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1708 struct bnxt_cp_ring_info *cpr, 1709 u32 *raw_cons, 1710 struct rx_tpa_end_cmp *tpa_end, 1711 struct rx_tpa_end_cmp_ext *tpa_end1, 1712 u8 *event) 1713 { 1714 struct bnxt_napi *bnapi = cpr->bnapi; 1715 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1716 struct net_device *dev = bp->dev; 1717 u8 *data_ptr, agg_bufs; 1718 unsigned int len; 1719 struct bnxt_tpa_info *tpa_info; 1720 dma_addr_t mapping; 1721 struct sk_buff *skb; 1722 u16 idx = 0, agg_id; 1723 void *data; 1724 bool gro; 1725 1726 if (unlikely(bnapi->in_reset)) { 1727 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1728 1729 if (rc < 0) 1730 return ERR_PTR(-EBUSY); 1731 return NULL; 1732 } 1733 1734 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1735 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1736 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1737 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1738 tpa_info = &rxr->rx_tpa[agg_id]; 1739 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1740 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1741 agg_bufs, tpa_info->agg_count); 1742 agg_bufs = tpa_info->agg_count; 1743 } 1744 tpa_info->agg_count = 0; 1745 *event |= BNXT_AGG_EVENT; 1746 bnxt_free_agg_idx(rxr, agg_id); 1747 idx = agg_id; 1748 gro = !!(bp->flags & BNXT_FLAG_GRO); 1749 } else { 1750 agg_id = TPA_END_AGG_ID(tpa_end); 1751 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1752 tpa_info = &rxr->rx_tpa[agg_id]; 1753 idx = RING_CMP(*raw_cons); 1754 if (agg_bufs) { 1755 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1756 return ERR_PTR(-EBUSY); 1757 1758 *event |= BNXT_AGG_EVENT; 1759 idx = NEXT_CMP(idx); 1760 } 1761 gro = !!TPA_END_GRO(tpa_end); 1762 } 1763 data = tpa_info->data; 1764 data_ptr = tpa_info->data_ptr; 1765 prefetch(data_ptr); 1766 len = tpa_info->len; 1767 mapping = tpa_info->mapping; 1768 1769 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1770 bnxt_abort_tpa(cpr, idx, agg_bufs); 1771 if (agg_bufs > MAX_SKB_FRAGS) 1772 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1773 agg_bufs, (int)MAX_SKB_FRAGS); 1774 return NULL; 1775 } 1776 1777 if (len <= bp->rx_copy_thresh) { 1778 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1779 if (!skb) { 1780 bnxt_abort_tpa(cpr, idx, agg_bufs); 1781 cpr->bnapi->cp_ring.sw_stats.rx.rx_oom_discards += 1; 1782 return NULL; 1783 } 1784 } else { 1785 u8 *new_data; 1786 dma_addr_t new_mapping; 1787 1788 new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC); 1789 if (!new_data) { 1790 bnxt_abort_tpa(cpr, idx, agg_bufs); 1791 cpr->bnapi->cp_ring.sw_stats.rx.rx_oom_discards += 1; 1792 return NULL; 1793 } 1794 1795 tpa_info->data = new_data; 1796 tpa_info->data_ptr = new_data + bp->rx_offset; 1797 tpa_info->mapping = new_mapping; 1798 1799 skb = napi_build_skb(data, bp->rx_buf_size); 1800 dma_unmap_single_attrs(&bp->pdev->dev, mapping, 1801 bp->rx_buf_use_size, bp->rx_dir, 1802 DMA_ATTR_WEAK_ORDERING); 1803 1804 if (!skb) { 1805 skb_free_frag(data); 1806 bnxt_abort_tpa(cpr, idx, agg_bufs); 1807 cpr->bnapi->cp_ring.sw_stats.rx.rx_oom_discards += 1; 1808 return NULL; 1809 } 1810 skb_reserve(skb, bp->rx_offset); 1811 skb_put(skb, len); 1812 } 1813 1814 if (agg_bufs) { 1815 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true); 1816 if (!skb) { 1817 /* Page reuse already handled by bnxt_rx_pages(). */ 1818 cpr->bnapi->cp_ring.sw_stats.rx.rx_oom_discards += 1; 1819 return NULL; 1820 } 1821 } 1822 1823 if (tpa_info->cfa_code_valid) 1824 dev = bnxt_get_pkt_dev(bp, tpa_info->cfa_code); 1825 skb->protocol = eth_type_trans(skb, dev); 1826 1827 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1828 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1829 1830 if (tpa_info->vlan_valid && 1831 (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1832 __be16 vlan_proto = htons(tpa_info->metadata >> 1833 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1834 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1835 1836 if (eth_type_vlan(vlan_proto)) { 1837 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1838 } else { 1839 dev_kfree_skb(skb); 1840 return NULL; 1841 } 1842 } 1843 1844 skb_checksum_none_assert(skb); 1845 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1846 skb->ip_summed = CHECKSUM_UNNECESSARY; 1847 skb->csum_level = 1848 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1849 } 1850 1851 if (gro) 1852 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1853 1854 return skb; 1855 } 1856 1857 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1858 struct rx_agg_cmp *rx_agg) 1859 { 1860 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1861 struct bnxt_tpa_info *tpa_info; 1862 1863 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1864 tpa_info = &rxr->rx_tpa[agg_id]; 1865 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1866 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1867 } 1868 1869 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1870 struct sk_buff *skb) 1871 { 1872 skb_mark_for_recycle(skb); 1873 1874 if (skb->dev != bp->dev) { 1875 /* this packet belongs to a vf-rep */ 1876 bnxt_vf_rep_rx(bp, skb); 1877 return; 1878 } 1879 skb_record_rx_queue(skb, bnapi->index); 1880 napi_gro_receive(&bnapi->napi, skb); 1881 } 1882 1883 static bool bnxt_rx_ts_valid(struct bnxt *bp, u32 flags, 1884 struct rx_cmp_ext *rxcmp1, u32 *cmpl_ts) 1885 { 1886 u32 ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); 1887 1888 if (BNXT_PTP_RX_TS_VALID(flags)) 1889 goto ts_valid; 1890 if (!bp->ptp_all_rx_tstamp || !ts || !BNXT_ALL_RX_TS_VALID(flags)) 1891 return false; 1892 1893 ts_valid: 1894 *cmpl_ts = ts; 1895 return true; 1896 } 1897 1898 static struct sk_buff *bnxt_rx_vlan(struct sk_buff *skb, u8 cmp_type, 1899 struct rx_cmp *rxcmp, 1900 struct rx_cmp_ext *rxcmp1) 1901 { 1902 __be16 vlan_proto; 1903 u16 vtag; 1904 1905 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1906 __le32 flags2 = rxcmp1->rx_cmp_flags2; 1907 u32 meta_data; 1908 1909 if (!(flags2 & cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN))) 1910 return skb; 1911 1912 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 1913 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1914 vlan_proto = htons(meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT); 1915 if (eth_type_vlan(vlan_proto)) 1916 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1917 else 1918 goto vlan_err; 1919 } else if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 1920 if (RX_CMP_VLAN_VALID(rxcmp)) { 1921 u32 tpid_sel = RX_CMP_VLAN_TPID_SEL(rxcmp); 1922 1923 if (tpid_sel == RX_CMP_METADATA1_TPID_8021Q) 1924 vlan_proto = htons(ETH_P_8021Q); 1925 else if (tpid_sel == RX_CMP_METADATA1_TPID_8021AD) 1926 vlan_proto = htons(ETH_P_8021AD); 1927 else 1928 goto vlan_err; 1929 vtag = RX_CMP_METADATA0_TCI(rxcmp1); 1930 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1931 } 1932 } 1933 return skb; 1934 vlan_err: 1935 dev_kfree_skb(skb); 1936 return NULL; 1937 } 1938 1939 static enum pkt_hash_types bnxt_rss_ext_op(struct bnxt *bp, 1940 struct rx_cmp *rxcmp) 1941 { 1942 u8 ext_op; 1943 1944 ext_op = RX_CMP_V3_HASH_TYPE(bp, rxcmp); 1945 switch (ext_op) { 1946 case EXT_OP_INNER_4: 1947 case EXT_OP_OUTER_4: 1948 case EXT_OP_INNFL_3: 1949 case EXT_OP_OUTFL_3: 1950 return PKT_HASH_TYPE_L4; 1951 default: 1952 return PKT_HASH_TYPE_L3; 1953 } 1954 } 1955 1956 /* returns the following: 1957 * 1 - 1 packet successfully received 1958 * 0 - successful TPA_START, packet not completed yet 1959 * -EBUSY - completion ring does not have all the agg buffers yet 1960 * -ENOMEM - packet aborted due to out of memory 1961 * -EIO - packet aborted due to hw error indicated in BD 1962 */ 1963 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1964 u32 *raw_cons, u8 *event) 1965 { 1966 struct bnxt_napi *bnapi = cpr->bnapi; 1967 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1968 struct net_device *dev = bp->dev; 1969 struct rx_cmp *rxcmp; 1970 struct rx_cmp_ext *rxcmp1; 1971 u32 tmp_raw_cons = *raw_cons; 1972 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 1973 struct bnxt_sw_rx_bd *rx_buf; 1974 unsigned int len; 1975 u8 *data_ptr, agg_bufs, cmp_type; 1976 bool xdp_active = false; 1977 dma_addr_t dma_addr; 1978 struct sk_buff *skb; 1979 struct xdp_buff xdp; 1980 u32 flags, misc; 1981 u32 cmpl_ts; 1982 void *data; 1983 int rc = 0; 1984 1985 rxcmp = (struct rx_cmp *) 1986 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1987 1988 cmp_type = RX_CMP_TYPE(rxcmp); 1989 1990 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 1991 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 1992 goto next_rx_no_prod_no_len; 1993 } 1994 1995 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1996 cp_cons = RING_CMP(tmp_raw_cons); 1997 rxcmp1 = (struct rx_cmp_ext *) 1998 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1999 2000 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2001 return -EBUSY; 2002 2003 /* The valid test of the entry must be done first before 2004 * reading any further. 2005 */ 2006 dma_rmb(); 2007 prod = rxr->rx_prod; 2008 2009 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP || 2010 cmp_type == CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 2011 bnxt_tpa_start(bp, rxr, cmp_type, 2012 (struct rx_tpa_start_cmp *)rxcmp, 2013 (struct rx_tpa_start_cmp_ext *)rxcmp1); 2014 2015 *event |= BNXT_RX_EVENT; 2016 goto next_rx_no_prod_no_len; 2017 2018 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2019 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 2020 (struct rx_tpa_end_cmp *)rxcmp, 2021 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 2022 2023 if (IS_ERR(skb)) 2024 return -EBUSY; 2025 2026 rc = -ENOMEM; 2027 if (likely(skb)) { 2028 bnxt_deliver_skb(bp, bnapi, skb); 2029 rc = 1; 2030 } 2031 *event |= BNXT_RX_EVENT; 2032 goto next_rx_no_prod_no_len; 2033 } 2034 2035 cons = rxcmp->rx_cmp_opaque; 2036 if (unlikely(cons != rxr->rx_next_cons)) { 2037 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 2038 2039 /* 0xffff is forced error, don't print it */ 2040 if (rxr->rx_next_cons != 0xffff) 2041 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 2042 cons, rxr->rx_next_cons); 2043 bnxt_sched_reset_rxr(bp, rxr); 2044 if (rc1) 2045 return rc1; 2046 goto next_rx_no_prod_no_len; 2047 } 2048 rx_buf = &rxr->rx_buf_ring[cons]; 2049 data = rx_buf->data; 2050 data_ptr = rx_buf->data_ptr; 2051 prefetch(data_ptr); 2052 2053 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 2054 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 2055 2056 if (agg_bufs) { 2057 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 2058 return -EBUSY; 2059 2060 cp_cons = NEXT_CMP(cp_cons); 2061 *event |= BNXT_AGG_EVENT; 2062 } 2063 *event |= BNXT_RX_EVENT; 2064 2065 rx_buf->data = NULL; 2066 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 2067 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 2068 2069 bnxt_reuse_rx_data(rxr, cons, data); 2070 if (agg_bufs) 2071 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 2072 false); 2073 2074 rc = -EIO; 2075 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 2076 bnapi->cp_ring.sw_stats.rx.rx_buf_errors++; 2077 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 2078 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 2079 netdev_warn_once(bp->dev, "RX buffer error %x\n", 2080 rx_err); 2081 bnxt_sched_reset_rxr(bp, rxr); 2082 } 2083 } 2084 goto next_rx_no_len; 2085 } 2086 2087 flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); 2088 len = flags >> RX_CMP_LEN_SHIFT; 2089 dma_addr = rx_buf->mapping; 2090 2091 if (bnxt_xdp_attached(bp, rxr)) { 2092 bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp); 2093 if (agg_bufs) { 2094 u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp, 2095 cp_cons, agg_bufs, 2096 false); 2097 if (!frag_len) 2098 goto oom_next_rx; 2099 } 2100 xdp_active = true; 2101 } 2102 2103 if (xdp_active) { 2104 if (bnxt_rx_xdp(bp, rxr, cons, xdp, data, &data_ptr, &len, event)) { 2105 rc = 1; 2106 goto next_rx; 2107 } 2108 } 2109 2110 if (len <= bp->rx_copy_thresh) { 2111 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 2112 bnxt_reuse_rx_data(rxr, cons, data); 2113 if (!skb) { 2114 if (agg_bufs) { 2115 if (!xdp_active) 2116 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 2117 agg_bufs, false); 2118 else 2119 bnxt_xdp_buff_frags_free(rxr, &xdp); 2120 } 2121 goto oom_next_rx; 2122 } 2123 } else { 2124 u32 payload; 2125 2126 if (rx_buf->data_ptr == data_ptr) 2127 payload = misc & RX_CMP_PAYLOAD_OFFSET; 2128 else 2129 payload = 0; 2130 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 2131 payload | len); 2132 if (!skb) 2133 goto oom_next_rx; 2134 } 2135 2136 if (agg_bufs) { 2137 if (!xdp_active) { 2138 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false); 2139 if (!skb) 2140 goto oom_next_rx; 2141 } else { 2142 skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1); 2143 if (!skb) { 2144 /* we should be able to free the old skb here */ 2145 bnxt_xdp_buff_frags_free(rxr, &xdp); 2146 goto oom_next_rx; 2147 } 2148 } 2149 } 2150 2151 if (RX_CMP_HASH_VALID(rxcmp)) { 2152 enum pkt_hash_types type; 2153 2154 if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2155 type = bnxt_rss_ext_op(bp, rxcmp); 2156 } else { 2157 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 2158 2159 /* RSS profiles 1 and 3 with extract code 0 for inner 2160 * 4-tuple 2161 */ 2162 if (hash_type != 1 && hash_type != 3) 2163 type = PKT_HASH_TYPE_L3; 2164 else 2165 type = PKT_HASH_TYPE_L4; 2166 } 2167 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 2168 } 2169 2170 if (cmp_type == CMP_TYPE_RX_L2_CMP) 2171 dev = bnxt_get_pkt_dev(bp, RX_CMP_CFA_CODE(rxcmp1)); 2172 skb->protocol = eth_type_trans(skb, dev); 2173 2174 if (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) { 2175 skb = bnxt_rx_vlan(skb, cmp_type, rxcmp, rxcmp1); 2176 if (!skb) 2177 goto next_rx; 2178 } 2179 2180 skb_checksum_none_assert(skb); 2181 if (RX_CMP_L4_CS_OK(rxcmp1)) { 2182 if (dev->features & NETIF_F_RXCSUM) { 2183 skb->ip_summed = CHECKSUM_UNNECESSARY; 2184 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 2185 } 2186 } else { 2187 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 2188 if (dev->features & NETIF_F_RXCSUM) 2189 bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++; 2190 } 2191 } 2192 2193 if (bnxt_rx_ts_valid(bp, flags, rxcmp1, &cmpl_ts)) { 2194 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 2195 u64 ns, ts; 2196 2197 if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { 2198 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2199 2200 spin_lock_bh(&ptp->ptp_lock); 2201 ns = timecounter_cyc2time(&ptp->tc, ts); 2202 spin_unlock_bh(&ptp->ptp_lock); 2203 memset(skb_hwtstamps(skb), 0, 2204 sizeof(*skb_hwtstamps(skb))); 2205 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 2206 } 2207 } 2208 } 2209 bnxt_deliver_skb(bp, bnapi, skb); 2210 rc = 1; 2211 2212 next_rx: 2213 cpr->rx_packets += 1; 2214 cpr->rx_bytes += len; 2215 2216 next_rx_no_len: 2217 rxr->rx_prod = NEXT_RX(prod); 2218 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 2219 2220 next_rx_no_prod_no_len: 2221 *raw_cons = tmp_raw_cons; 2222 2223 return rc; 2224 2225 oom_next_rx: 2226 cpr->bnapi->cp_ring.sw_stats.rx.rx_oom_discards += 1; 2227 rc = -ENOMEM; 2228 goto next_rx; 2229 } 2230 2231 /* In netpoll mode, if we are using a combined completion ring, we need to 2232 * discard the rx packets and recycle the buffers. 2233 */ 2234 static int bnxt_force_rx_discard(struct bnxt *bp, 2235 struct bnxt_cp_ring_info *cpr, 2236 u32 *raw_cons, u8 *event) 2237 { 2238 u32 tmp_raw_cons = *raw_cons; 2239 struct rx_cmp_ext *rxcmp1; 2240 struct rx_cmp *rxcmp; 2241 u16 cp_cons; 2242 u8 cmp_type; 2243 int rc; 2244 2245 cp_cons = RING_CMP(tmp_raw_cons); 2246 rxcmp = (struct rx_cmp *) 2247 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2248 2249 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2250 cp_cons = RING_CMP(tmp_raw_cons); 2251 rxcmp1 = (struct rx_cmp_ext *) 2252 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2253 2254 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2255 return -EBUSY; 2256 2257 /* The valid test of the entry must be done first before 2258 * reading any further. 2259 */ 2260 dma_rmb(); 2261 cmp_type = RX_CMP_TYPE(rxcmp); 2262 if (cmp_type == CMP_TYPE_RX_L2_CMP || 2263 cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2264 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2265 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2266 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2267 struct rx_tpa_end_cmp_ext *tpa_end1; 2268 2269 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 2270 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 2271 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 2272 } 2273 rc = bnxt_rx_pkt(bp, cpr, raw_cons, event); 2274 if (rc && rc != -EBUSY) 2275 cpr->bnapi->cp_ring.sw_stats.rx.rx_netpoll_discards += 1; 2276 return rc; 2277 } 2278 2279 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 2280 { 2281 struct bnxt_fw_health *fw_health = bp->fw_health; 2282 u32 reg = fw_health->regs[reg_idx]; 2283 u32 reg_type, reg_off, val = 0; 2284 2285 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 2286 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 2287 switch (reg_type) { 2288 case BNXT_FW_HEALTH_REG_TYPE_CFG: 2289 pci_read_config_dword(bp->pdev, reg_off, &val); 2290 break; 2291 case BNXT_FW_HEALTH_REG_TYPE_GRC: 2292 reg_off = fw_health->mapped_regs[reg_idx]; 2293 fallthrough; 2294 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 2295 val = readl(bp->bar0 + reg_off); 2296 break; 2297 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 2298 val = readl(bp->bar1 + reg_off); 2299 break; 2300 } 2301 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 2302 val &= fw_health->fw_reset_inprog_reg_mask; 2303 return val; 2304 } 2305 2306 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 2307 { 2308 int i; 2309 2310 for (i = 0; i < bp->rx_nr_rings; i++) { 2311 u16 grp_idx = bp->rx_ring[i].bnapi->index; 2312 struct bnxt_ring_grp_info *grp_info; 2313 2314 grp_info = &bp->grp_info[grp_idx]; 2315 if (grp_info->agg_fw_ring_id == ring_id) 2316 return grp_idx; 2317 } 2318 return INVALID_HW_RING_ID; 2319 } 2320 2321 static u16 bnxt_get_force_speed(struct bnxt_link_info *link_info) 2322 { 2323 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2324 2325 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 2326 return link_info->force_link_speed2; 2327 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4) 2328 return link_info->force_pam4_link_speed; 2329 return link_info->force_link_speed; 2330 } 2331 2332 static void bnxt_set_force_speed(struct bnxt_link_info *link_info) 2333 { 2334 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2335 2336 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2337 link_info->req_link_speed = link_info->force_link_speed2; 2338 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2339 switch (link_info->req_link_speed) { 2340 case BNXT_LINK_SPEED_50GB_PAM4: 2341 case BNXT_LINK_SPEED_100GB_PAM4: 2342 case BNXT_LINK_SPEED_200GB_PAM4: 2343 case BNXT_LINK_SPEED_400GB_PAM4: 2344 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2345 break; 2346 case BNXT_LINK_SPEED_100GB_PAM4_112: 2347 case BNXT_LINK_SPEED_200GB_PAM4_112: 2348 case BNXT_LINK_SPEED_400GB_PAM4_112: 2349 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4_112; 2350 break; 2351 default: 2352 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2353 } 2354 return; 2355 } 2356 link_info->req_link_speed = link_info->force_link_speed; 2357 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2358 if (link_info->force_pam4_link_speed) { 2359 link_info->req_link_speed = link_info->force_pam4_link_speed; 2360 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2361 } 2362 } 2363 2364 static void bnxt_set_auto_speed(struct bnxt_link_info *link_info) 2365 { 2366 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2367 2368 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2369 link_info->advertising = link_info->auto_link_speeds2; 2370 return; 2371 } 2372 link_info->advertising = link_info->auto_link_speeds; 2373 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 2374 } 2375 2376 static bool bnxt_force_speed_updated(struct bnxt_link_info *link_info) 2377 { 2378 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2379 2380 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2381 if (link_info->req_link_speed != link_info->force_link_speed2) 2382 return true; 2383 return false; 2384 } 2385 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 2386 link_info->req_link_speed != link_info->force_link_speed) 2387 return true; 2388 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 2389 link_info->req_link_speed != link_info->force_pam4_link_speed) 2390 return true; 2391 return false; 2392 } 2393 2394 static bool bnxt_auto_speed_updated(struct bnxt_link_info *link_info) 2395 { 2396 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2397 2398 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2399 if (link_info->advertising != link_info->auto_link_speeds2) 2400 return true; 2401 return false; 2402 } 2403 if (link_info->advertising != link_info->auto_link_speeds || 2404 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 2405 return true; 2406 return false; 2407 } 2408 2409 #define BNXT_EVENT_THERMAL_CURRENT_TEMP(data2) \ 2410 ((data2) & \ 2411 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_CURRENT_TEMP_MASK) 2412 2413 #define BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2) \ 2414 (((data2) & \ 2415 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_MASK) >>\ 2416 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_SFT) 2417 2418 #define EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1) \ 2419 ((data1) & \ 2420 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_MASK) 2421 2422 #define EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1) \ 2423 (((data1) & \ 2424 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR) ==\ 2425 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR_INCREASING) 2426 2427 /* Return true if the workqueue has to be scheduled */ 2428 static bool bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2) 2429 { 2430 u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1); 2431 2432 switch (err_type) { 2433 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL: 2434 netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n", 2435 BNXT_EVENT_INVALID_SIGNAL_DATA(data2)); 2436 break; 2437 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM: 2438 netdev_warn(bp->dev, "Pause Storm detected!\n"); 2439 break; 2440 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD: 2441 netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n"); 2442 break; 2443 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_THERMAL_THRESHOLD: { 2444 u32 type = EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1); 2445 char *threshold_type; 2446 bool notify = false; 2447 char *dir_str; 2448 2449 switch (type) { 2450 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_WARN: 2451 threshold_type = "warning"; 2452 break; 2453 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_CRITICAL: 2454 threshold_type = "critical"; 2455 break; 2456 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_FATAL: 2457 threshold_type = "fatal"; 2458 break; 2459 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_SHUTDOWN: 2460 threshold_type = "shutdown"; 2461 break; 2462 default: 2463 netdev_err(bp->dev, "Unknown Thermal threshold type event\n"); 2464 return false; 2465 } 2466 if (EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)) { 2467 dir_str = "above"; 2468 notify = true; 2469 } else { 2470 dir_str = "below"; 2471 } 2472 netdev_warn(bp->dev, "Chip temperature has gone %s the %s thermal threshold!\n", 2473 dir_str, threshold_type); 2474 netdev_warn(bp->dev, "Temperature (In Celsius), Current: %lu, threshold: %lu\n", 2475 BNXT_EVENT_THERMAL_CURRENT_TEMP(data2), 2476 BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2)); 2477 if (notify) { 2478 bp->thermal_threshold_type = type; 2479 set_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event); 2480 return true; 2481 } 2482 return false; 2483 } 2484 default: 2485 netdev_err(bp->dev, "FW reported unknown error type %u\n", 2486 err_type); 2487 break; 2488 } 2489 return false; 2490 } 2491 2492 #define BNXT_GET_EVENT_PORT(data) \ 2493 ((data) & \ 2494 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 2495 2496 #define BNXT_EVENT_RING_TYPE(data2) \ 2497 ((data2) & \ 2498 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 2499 2500 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 2501 (BNXT_EVENT_RING_TYPE(data2) == \ 2502 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 2503 2504 #define BNXT_EVENT_PHC_EVENT_TYPE(data1) \ 2505 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\ 2506 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT) 2507 2508 #define BNXT_EVENT_PHC_RTC_UPDATE(data1) \ 2509 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\ 2510 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT) 2511 2512 #define BNXT_PHC_BITS 48 2513 2514 static int bnxt_async_event_process(struct bnxt *bp, 2515 struct hwrm_async_event_cmpl *cmpl) 2516 { 2517 u16 event_id = le16_to_cpu(cmpl->event_id); 2518 u32 data1 = le32_to_cpu(cmpl->event_data1); 2519 u32 data2 = le32_to_cpu(cmpl->event_data2); 2520 2521 netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n", 2522 event_id, data1, data2); 2523 2524 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2525 switch (event_id) { 2526 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2527 struct bnxt_link_info *link_info = &bp->link_info; 2528 2529 if (BNXT_VF(bp)) 2530 goto async_event_process_exit; 2531 2532 /* print unsupported speed warning in forced speed mode only */ 2533 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2534 (data1 & 0x20000)) { 2535 u16 fw_speed = bnxt_get_force_speed(link_info); 2536 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2537 2538 if (speed != SPEED_UNKNOWN) 2539 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2540 speed); 2541 } 2542 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2543 } 2544 fallthrough; 2545 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2546 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2547 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2548 fallthrough; 2549 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2550 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2551 break; 2552 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2553 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2554 break; 2555 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2556 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2557 2558 if (BNXT_VF(bp)) 2559 break; 2560 2561 if (bp->pf.port_id != port_id) 2562 break; 2563 2564 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2565 break; 2566 } 2567 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2568 if (BNXT_PF(bp)) 2569 goto async_event_process_exit; 2570 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2571 break; 2572 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2573 char *type_str = "Solicited"; 2574 2575 if (!bp->fw_health) 2576 goto async_event_process_exit; 2577 2578 bp->fw_reset_timestamp = jiffies; 2579 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2580 if (!bp->fw_reset_min_dsecs) 2581 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2582 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2583 if (!bp->fw_reset_max_dsecs) 2584 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2585 if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) { 2586 set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state); 2587 } else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2588 type_str = "Fatal"; 2589 bp->fw_health->fatalities++; 2590 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2591 } else if (data2 && BNXT_FW_STATUS_HEALTHY != 2592 EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) { 2593 type_str = "Non-fatal"; 2594 bp->fw_health->survivals++; 2595 set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 2596 } 2597 netif_warn(bp, hw, bp->dev, 2598 "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2599 type_str, data1, data2, 2600 bp->fw_reset_min_dsecs * 100, 2601 bp->fw_reset_max_dsecs * 100); 2602 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2603 break; 2604 } 2605 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2606 struct bnxt_fw_health *fw_health = bp->fw_health; 2607 char *status_desc = "healthy"; 2608 u32 status; 2609 2610 if (!fw_health) 2611 goto async_event_process_exit; 2612 2613 if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) { 2614 fw_health->enabled = false; 2615 netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n"); 2616 break; 2617 } 2618 fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2619 fw_health->tmr_multiplier = 2620 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2621 bp->current_interval * 10); 2622 fw_health->tmr_counter = fw_health->tmr_multiplier; 2623 if (!fw_health->enabled) 2624 fw_health->last_fw_heartbeat = 2625 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2626 fw_health->last_fw_reset_cnt = 2627 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2628 status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 2629 if (status != BNXT_FW_STATUS_HEALTHY) 2630 status_desc = "unhealthy"; 2631 netif_info(bp, drv, bp->dev, 2632 "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n", 2633 fw_health->primary ? "primary" : "backup", status, 2634 status_desc, fw_health->last_fw_reset_cnt); 2635 if (!fw_health->enabled) { 2636 /* Make sure tmr_counter is set and visible to 2637 * bnxt_health_check() before setting enabled to true. 2638 */ 2639 smp_wmb(); 2640 fw_health->enabled = true; 2641 } 2642 goto async_event_process_exit; 2643 } 2644 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2645 netif_notice(bp, hw, bp->dev, 2646 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2647 data1, data2); 2648 goto async_event_process_exit; 2649 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2650 struct bnxt_rx_ring_info *rxr; 2651 u16 grp_idx; 2652 2653 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 2654 goto async_event_process_exit; 2655 2656 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2657 BNXT_EVENT_RING_TYPE(data2), data1); 2658 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2659 goto async_event_process_exit; 2660 2661 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2662 if (grp_idx == INVALID_HW_RING_ID) { 2663 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2664 data1); 2665 goto async_event_process_exit; 2666 } 2667 rxr = bp->bnapi[grp_idx]->rx_ring; 2668 bnxt_sched_reset_rxr(bp, rxr); 2669 goto async_event_process_exit; 2670 } 2671 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2672 struct bnxt_fw_health *fw_health = bp->fw_health; 2673 2674 netif_notice(bp, hw, bp->dev, 2675 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2676 data1, data2); 2677 if (fw_health) { 2678 fw_health->echo_req_data1 = data1; 2679 fw_health->echo_req_data2 = data2; 2680 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2681 break; 2682 } 2683 goto async_event_process_exit; 2684 } 2685 case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: { 2686 bnxt_ptp_pps_event(bp, data1, data2); 2687 goto async_event_process_exit; 2688 } 2689 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: { 2690 if (bnxt_event_error_report(bp, data1, data2)) 2691 break; 2692 goto async_event_process_exit; 2693 } 2694 case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: { 2695 switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) { 2696 case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE: 2697 if (BNXT_PTP_USE_RTC(bp)) { 2698 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2699 u64 ns; 2700 2701 if (!ptp) 2702 goto async_event_process_exit; 2703 2704 spin_lock_bh(&ptp->ptp_lock); 2705 bnxt_ptp_update_current_time(bp); 2706 ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) << 2707 BNXT_PHC_BITS) | ptp->current_time); 2708 bnxt_ptp_rtc_timecounter_init(ptp, ns); 2709 spin_unlock_bh(&ptp->ptp_lock); 2710 } 2711 break; 2712 } 2713 goto async_event_process_exit; 2714 } 2715 case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: { 2716 u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff; 2717 2718 hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED); 2719 goto async_event_process_exit; 2720 } 2721 default: 2722 goto async_event_process_exit; 2723 } 2724 __bnxt_queue_sp_work(bp); 2725 async_event_process_exit: 2726 return 0; 2727 } 2728 2729 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2730 { 2731 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2732 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2733 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2734 (struct hwrm_fwd_req_cmpl *)txcmp; 2735 2736 switch (cmpl_type) { 2737 case CMPL_BASE_TYPE_HWRM_DONE: 2738 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2739 hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE); 2740 break; 2741 2742 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2743 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2744 2745 if ((vf_id < bp->pf.first_vf_id) || 2746 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2747 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2748 vf_id); 2749 return -EINVAL; 2750 } 2751 2752 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2753 bnxt_queue_sp_work(bp, BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT); 2754 break; 2755 2756 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2757 bnxt_async_event_process(bp, 2758 (struct hwrm_async_event_cmpl *)txcmp); 2759 break; 2760 2761 default: 2762 break; 2763 } 2764 2765 return 0; 2766 } 2767 2768 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2769 { 2770 struct bnxt_napi *bnapi = dev_instance; 2771 struct bnxt *bp = bnapi->bp; 2772 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2773 u32 cons = RING_CMP(cpr->cp_raw_cons); 2774 2775 cpr->event_ctr++; 2776 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2777 napi_schedule(&bnapi->napi); 2778 return IRQ_HANDLED; 2779 } 2780 2781 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2782 { 2783 u32 raw_cons = cpr->cp_raw_cons; 2784 u16 cons = RING_CMP(raw_cons); 2785 struct tx_cmp *txcmp; 2786 2787 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2788 2789 return TX_CMP_VALID(txcmp, raw_cons); 2790 } 2791 2792 static irqreturn_t bnxt_inta(int irq, void *dev_instance) 2793 { 2794 struct bnxt_napi *bnapi = dev_instance; 2795 struct bnxt *bp = bnapi->bp; 2796 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2797 u32 cons = RING_CMP(cpr->cp_raw_cons); 2798 u32 int_status; 2799 2800 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2801 2802 if (!bnxt_has_work(bp, cpr)) { 2803 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); 2804 /* return if erroneous interrupt */ 2805 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) 2806 return IRQ_NONE; 2807 } 2808 2809 /* disable ring IRQ */ 2810 BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell); 2811 2812 /* Return here if interrupt is shared and is disabled. */ 2813 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 2814 return IRQ_HANDLED; 2815 2816 napi_schedule(&bnapi->napi); 2817 return IRQ_HANDLED; 2818 } 2819 2820 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2821 int budget) 2822 { 2823 struct bnxt_napi *bnapi = cpr->bnapi; 2824 u32 raw_cons = cpr->cp_raw_cons; 2825 u32 cons; 2826 int rx_pkts = 0; 2827 u8 event = 0; 2828 struct tx_cmp *txcmp; 2829 2830 cpr->has_more_work = 0; 2831 cpr->had_work_done = 1; 2832 while (1) { 2833 u8 cmp_type; 2834 int rc; 2835 2836 cons = RING_CMP(raw_cons); 2837 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2838 2839 if (!TX_CMP_VALID(txcmp, raw_cons)) 2840 break; 2841 2842 /* The valid test of the entry must be done first before 2843 * reading any further. 2844 */ 2845 dma_rmb(); 2846 cmp_type = TX_CMP_TYPE(txcmp); 2847 if (cmp_type == CMP_TYPE_TX_L2_CMP || 2848 cmp_type == CMP_TYPE_TX_L2_COAL_CMP) { 2849 u32 opaque = txcmp->tx_cmp_opaque; 2850 struct bnxt_tx_ring_info *txr; 2851 u16 tx_freed; 2852 2853 txr = bnapi->tx_ring[TX_OPAQUE_RING(opaque)]; 2854 event |= BNXT_TX_CMP_EVENT; 2855 if (cmp_type == CMP_TYPE_TX_L2_COAL_CMP) 2856 txr->tx_hw_cons = TX_CMP_SQ_CONS_IDX(txcmp); 2857 else 2858 txr->tx_hw_cons = TX_OPAQUE_PROD(bp, opaque); 2859 tx_freed = (txr->tx_hw_cons - txr->tx_cons) & 2860 bp->tx_ring_mask; 2861 /* return full budget so NAPI will complete. */ 2862 if (unlikely(tx_freed >= bp->tx_wake_thresh)) { 2863 rx_pkts = budget; 2864 raw_cons = NEXT_RAW_CMP(raw_cons); 2865 if (budget) 2866 cpr->has_more_work = 1; 2867 break; 2868 } 2869 } else if (cmp_type >= CMP_TYPE_RX_L2_CMP && 2870 cmp_type <= CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 2871 if (likely(budget)) 2872 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2873 else 2874 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 2875 &event); 2876 if (likely(rc >= 0)) 2877 rx_pkts += rc; 2878 /* Increment rx_pkts when rc is -ENOMEM to count towards 2879 * the NAPI budget. Otherwise, we may potentially loop 2880 * here forever if we consistently cannot allocate 2881 * buffers. 2882 */ 2883 else if (rc == -ENOMEM && budget) 2884 rx_pkts++; 2885 else if (rc == -EBUSY) /* partial completion */ 2886 break; 2887 } else if (unlikely(cmp_type == CMPL_BASE_TYPE_HWRM_DONE || 2888 cmp_type == CMPL_BASE_TYPE_HWRM_FWD_REQ || 2889 cmp_type == CMPL_BASE_TYPE_HWRM_ASYNC_EVENT)) { 2890 bnxt_hwrm_handler(bp, txcmp); 2891 } 2892 raw_cons = NEXT_RAW_CMP(raw_cons); 2893 2894 if (rx_pkts && rx_pkts == budget) { 2895 cpr->has_more_work = 1; 2896 break; 2897 } 2898 } 2899 2900 if (event & BNXT_REDIRECT_EVENT) 2901 xdp_do_flush(); 2902 2903 if (event & BNXT_TX_EVENT) { 2904 struct bnxt_tx_ring_info *txr = bnapi->tx_ring[0]; 2905 u16 prod = txr->tx_prod; 2906 2907 /* Sync BD data before updating doorbell */ 2908 wmb(); 2909 2910 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 2911 } 2912 2913 cpr->cp_raw_cons = raw_cons; 2914 bnapi->events |= event; 2915 return rx_pkts; 2916 } 2917 2918 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi, 2919 int budget) 2920 { 2921 if ((bnapi->events & BNXT_TX_CMP_EVENT) && !bnapi->tx_fault) 2922 bnapi->tx_int(bp, bnapi, budget); 2923 2924 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 2925 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2926 2927 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2928 } 2929 if (bnapi->events & BNXT_AGG_EVENT) { 2930 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2931 2932 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2933 } 2934 bnapi->events &= BNXT_TX_CMP_EVENT; 2935 } 2936 2937 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2938 int budget) 2939 { 2940 struct bnxt_napi *bnapi = cpr->bnapi; 2941 int rx_pkts; 2942 2943 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 2944 2945 /* ACK completion ring before freeing tx ring and producing new 2946 * buffers in rx/agg rings to prevent overflowing the completion 2947 * ring. 2948 */ 2949 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 2950 2951 __bnxt_poll_work_done(bp, bnapi, budget); 2952 return rx_pkts; 2953 } 2954 2955 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 2956 { 2957 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2958 struct bnxt *bp = bnapi->bp; 2959 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2960 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2961 struct tx_cmp *txcmp; 2962 struct rx_cmp_ext *rxcmp1; 2963 u32 cp_cons, tmp_raw_cons; 2964 u32 raw_cons = cpr->cp_raw_cons; 2965 bool flush_xdp = false; 2966 u32 rx_pkts = 0; 2967 u8 event = 0; 2968 2969 while (1) { 2970 int rc; 2971 2972 cp_cons = RING_CMP(raw_cons); 2973 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2974 2975 if (!TX_CMP_VALID(txcmp, raw_cons)) 2976 break; 2977 2978 /* The valid test of the entry must be done first before 2979 * reading any further. 2980 */ 2981 dma_rmb(); 2982 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2983 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 2984 cp_cons = RING_CMP(tmp_raw_cons); 2985 rxcmp1 = (struct rx_cmp_ext *) 2986 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2987 2988 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2989 break; 2990 2991 /* force an error to recycle the buffer */ 2992 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2993 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2994 2995 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2996 if (likely(rc == -EIO) && budget) 2997 rx_pkts++; 2998 else if (rc == -EBUSY) /* partial completion */ 2999 break; 3000 if (event & BNXT_REDIRECT_EVENT) 3001 flush_xdp = true; 3002 } else if (unlikely(TX_CMP_TYPE(txcmp) == 3003 CMPL_BASE_TYPE_HWRM_DONE)) { 3004 bnxt_hwrm_handler(bp, txcmp); 3005 } else { 3006 netdev_err(bp->dev, 3007 "Invalid completion received on special ring\n"); 3008 } 3009 raw_cons = NEXT_RAW_CMP(raw_cons); 3010 3011 if (rx_pkts == budget) 3012 break; 3013 } 3014 3015 cpr->cp_raw_cons = raw_cons; 3016 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 3017 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 3018 3019 if (event & BNXT_AGG_EVENT) 3020 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 3021 if (flush_xdp) 3022 xdp_do_flush(); 3023 3024 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 3025 napi_complete_done(napi, rx_pkts); 3026 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3027 } 3028 return rx_pkts; 3029 } 3030 3031 static int bnxt_poll(struct napi_struct *napi, int budget) 3032 { 3033 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3034 struct bnxt *bp = bnapi->bp; 3035 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3036 int work_done = 0; 3037 3038 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3039 napi_complete(napi); 3040 return 0; 3041 } 3042 while (1) { 3043 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 3044 3045 if (work_done >= budget) { 3046 if (!budget) 3047 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3048 break; 3049 } 3050 3051 if (!bnxt_has_work(bp, cpr)) { 3052 if (napi_complete_done(napi, work_done)) 3053 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3054 break; 3055 } 3056 } 3057 if (bp->flags & BNXT_FLAG_DIM) { 3058 struct dim_sample dim_sample = {}; 3059 3060 dim_update_sample(cpr->event_ctr, 3061 cpr->rx_packets, 3062 cpr->rx_bytes, 3063 &dim_sample); 3064 net_dim(&cpr->dim, dim_sample); 3065 } 3066 return work_done; 3067 } 3068 3069 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 3070 { 3071 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3072 int i, work_done = 0; 3073 3074 for (i = 0; i < cpr->cp_ring_count; i++) { 3075 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3076 3077 if (cpr2->had_nqe_notify) { 3078 work_done += __bnxt_poll_work(bp, cpr2, 3079 budget - work_done); 3080 cpr->has_more_work |= cpr2->has_more_work; 3081 } 3082 } 3083 return work_done; 3084 } 3085 3086 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 3087 u64 dbr_type, int budget) 3088 { 3089 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3090 int i; 3091 3092 for (i = 0; i < cpr->cp_ring_count; i++) { 3093 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3094 struct bnxt_db_info *db; 3095 3096 if (cpr2->had_work_done) { 3097 u32 tgl = 0; 3098 3099 if (dbr_type == DBR_TYPE_CQ_ARMALL) { 3100 cpr2->had_nqe_notify = 0; 3101 tgl = cpr2->toggle; 3102 } 3103 db = &cpr2->cp_db; 3104 bnxt_writeq(bp, 3105 db->db_key64 | dbr_type | DB_TOGGLE(tgl) | 3106 DB_RING_IDX(db, cpr2->cp_raw_cons), 3107 db->doorbell); 3108 cpr2->had_work_done = 0; 3109 } 3110 } 3111 __bnxt_poll_work_done(bp, bnapi, budget); 3112 } 3113 3114 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 3115 { 3116 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3117 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3118 struct bnxt_cp_ring_info *cpr_rx; 3119 u32 raw_cons = cpr->cp_raw_cons; 3120 struct bnxt *bp = bnapi->bp; 3121 struct nqe_cn *nqcmp; 3122 int work_done = 0; 3123 u32 cons; 3124 3125 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3126 napi_complete(napi); 3127 return 0; 3128 } 3129 if (cpr->has_more_work) { 3130 cpr->has_more_work = 0; 3131 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 3132 } 3133 while (1) { 3134 u16 type; 3135 3136 cons = RING_CMP(raw_cons); 3137 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 3138 3139 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 3140 if (cpr->has_more_work) 3141 break; 3142 3143 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL, 3144 budget); 3145 cpr->cp_raw_cons = raw_cons; 3146 if (napi_complete_done(napi, work_done)) 3147 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 3148 cpr->cp_raw_cons); 3149 goto poll_done; 3150 } 3151 3152 /* The valid test of the entry must be done first before 3153 * reading any further. 3154 */ 3155 dma_rmb(); 3156 3157 type = le16_to_cpu(nqcmp->type); 3158 if (NQE_CN_TYPE(type) == NQ_CN_TYPE_CQ_NOTIFICATION) { 3159 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 3160 u32 cq_type = BNXT_NQ_HDL_TYPE(idx); 3161 struct bnxt_cp_ring_info *cpr2; 3162 3163 /* No more budget for RX work */ 3164 if (budget && work_done >= budget && 3165 cq_type == BNXT_NQ_HDL_TYPE_RX) 3166 break; 3167 3168 idx = BNXT_NQ_HDL_IDX(idx); 3169 cpr2 = &cpr->cp_ring_arr[idx]; 3170 cpr2->had_nqe_notify = 1; 3171 cpr2->toggle = NQE_CN_TOGGLE(type); 3172 work_done += __bnxt_poll_work(bp, cpr2, 3173 budget - work_done); 3174 cpr->has_more_work |= cpr2->has_more_work; 3175 } else { 3176 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 3177 } 3178 raw_cons = NEXT_RAW_CMP(raw_cons); 3179 } 3180 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget); 3181 if (raw_cons != cpr->cp_raw_cons) { 3182 cpr->cp_raw_cons = raw_cons; 3183 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 3184 } 3185 poll_done: 3186 cpr_rx = &cpr->cp_ring_arr[0]; 3187 if (cpr_rx->cp_ring_type == BNXT_NQ_HDL_TYPE_RX && 3188 (bp->flags & BNXT_FLAG_DIM)) { 3189 struct dim_sample dim_sample = {}; 3190 3191 dim_update_sample(cpr->event_ctr, 3192 cpr_rx->rx_packets, 3193 cpr_rx->rx_bytes, 3194 &dim_sample); 3195 net_dim(&cpr->dim, dim_sample); 3196 } 3197 return work_done; 3198 } 3199 3200 static void bnxt_free_tx_skbs(struct bnxt *bp) 3201 { 3202 int i, max_idx; 3203 struct pci_dev *pdev = bp->pdev; 3204 3205 if (!bp->tx_ring) 3206 return; 3207 3208 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 3209 for (i = 0; i < bp->tx_nr_rings; i++) { 3210 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3211 int j; 3212 3213 if (!txr->tx_buf_ring) 3214 continue; 3215 3216 for (j = 0; j < max_idx;) { 3217 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 3218 struct sk_buff *skb; 3219 int k, last; 3220 3221 if (i < bp->tx_nr_rings_xdp && 3222 tx_buf->action == XDP_REDIRECT) { 3223 dma_unmap_single(&pdev->dev, 3224 dma_unmap_addr(tx_buf, mapping), 3225 dma_unmap_len(tx_buf, len), 3226 DMA_TO_DEVICE); 3227 xdp_return_frame(tx_buf->xdpf); 3228 tx_buf->action = 0; 3229 tx_buf->xdpf = NULL; 3230 j++; 3231 continue; 3232 } 3233 3234 skb = tx_buf->skb; 3235 if (!skb) { 3236 j++; 3237 continue; 3238 } 3239 3240 tx_buf->skb = NULL; 3241 3242 if (tx_buf->is_push) { 3243 dev_kfree_skb(skb); 3244 j += 2; 3245 continue; 3246 } 3247 3248 dma_unmap_single(&pdev->dev, 3249 dma_unmap_addr(tx_buf, mapping), 3250 skb_headlen(skb), 3251 DMA_TO_DEVICE); 3252 3253 last = tx_buf->nr_frags; 3254 j += 2; 3255 for (k = 0; k < last; k++, j++) { 3256 int ring_idx = j & bp->tx_ring_mask; 3257 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 3258 3259 tx_buf = &txr->tx_buf_ring[ring_idx]; 3260 dma_unmap_page( 3261 &pdev->dev, 3262 dma_unmap_addr(tx_buf, mapping), 3263 skb_frag_size(frag), DMA_TO_DEVICE); 3264 } 3265 dev_kfree_skb(skb); 3266 } 3267 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 3268 } 3269 } 3270 3271 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr) 3272 { 3273 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 3274 struct pci_dev *pdev = bp->pdev; 3275 struct bnxt_tpa_idx_map *map; 3276 int i, max_idx, max_agg_idx; 3277 3278 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 3279 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 3280 if (!rxr->rx_tpa) 3281 goto skip_rx_tpa_free; 3282 3283 for (i = 0; i < bp->max_tpa; i++) { 3284 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 3285 u8 *data = tpa_info->data; 3286 3287 if (!data) 3288 continue; 3289 3290 dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping, 3291 bp->rx_buf_use_size, bp->rx_dir, 3292 DMA_ATTR_WEAK_ORDERING); 3293 3294 tpa_info->data = NULL; 3295 3296 skb_free_frag(data); 3297 } 3298 3299 skip_rx_tpa_free: 3300 if (!rxr->rx_buf_ring) 3301 goto skip_rx_buf_free; 3302 3303 for (i = 0; i < max_idx; i++) { 3304 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 3305 dma_addr_t mapping = rx_buf->mapping; 3306 void *data = rx_buf->data; 3307 3308 if (!data) 3309 continue; 3310 3311 rx_buf->data = NULL; 3312 if (BNXT_RX_PAGE_MODE(bp)) { 3313 page_pool_recycle_direct(rxr->page_pool, data); 3314 } else { 3315 dma_unmap_single_attrs(&pdev->dev, mapping, 3316 bp->rx_buf_use_size, bp->rx_dir, 3317 DMA_ATTR_WEAK_ORDERING); 3318 skb_free_frag(data); 3319 } 3320 } 3321 3322 skip_rx_buf_free: 3323 if (!rxr->rx_agg_ring) 3324 goto skip_rx_agg_free; 3325 3326 for (i = 0; i < max_agg_idx; i++) { 3327 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 3328 struct page *page = rx_agg_buf->page; 3329 3330 if (!page) 3331 continue; 3332 3333 rx_agg_buf->page = NULL; 3334 __clear_bit(i, rxr->rx_agg_bmap); 3335 3336 page_pool_recycle_direct(rxr->page_pool, page); 3337 } 3338 3339 skip_rx_agg_free: 3340 map = rxr->rx_tpa_idx_map; 3341 if (map) 3342 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 3343 } 3344 3345 static void bnxt_free_rx_skbs(struct bnxt *bp) 3346 { 3347 int i; 3348 3349 if (!bp->rx_ring) 3350 return; 3351 3352 for (i = 0; i < bp->rx_nr_rings; i++) 3353 bnxt_free_one_rx_ring_skbs(bp, i); 3354 } 3355 3356 static void bnxt_free_skbs(struct bnxt *bp) 3357 { 3358 bnxt_free_tx_skbs(bp); 3359 bnxt_free_rx_skbs(bp); 3360 } 3361 3362 static void bnxt_init_ctx_mem(struct bnxt_ctx_mem_type *ctxm, void *p, int len) 3363 { 3364 u8 init_val = ctxm->init_value; 3365 u16 offset = ctxm->init_offset; 3366 u8 *p2 = p; 3367 int i; 3368 3369 if (!init_val) 3370 return; 3371 if (offset == BNXT_CTX_INIT_INVALID_OFFSET) { 3372 memset(p, init_val, len); 3373 return; 3374 } 3375 for (i = 0; i < len; i += ctxm->entry_size) 3376 *(p2 + i + offset) = init_val; 3377 } 3378 3379 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3380 { 3381 struct pci_dev *pdev = bp->pdev; 3382 int i; 3383 3384 if (!rmem->pg_arr) 3385 goto skip_pages; 3386 3387 for (i = 0; i < rmem->nr_pages; i++) { 3388 if (!rmem->pg_arr[i]) 3389 continue; 3390 3391 dma_free_coherent(&pdev->dev, rmem->page_size, 3392 rmem->pg_arr[i], rmem->dma_arr[i]); 3393 3394 rmem->pg_arr[i] = NULL; 3395 } 3396 skip_pages: 3397 if (rmem->pg_tbl) { 3398 size_t pg_tbl_size = rmem->nr_pages * 8; 3399 3400 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3401 pg_tbl_size = rmem->page_size; 3402 dma_free_coherent(&pdev->dev, pg_tbl_size, 3403 rmem->pg_tbl, rmem->pg_tbl_map); 3404 rmem->pg_tbl = NULL; 3405 } 3406 if (rmem->vmem_size && *rmem->vmem) { 3407 vfree(*rmem->vmem); 3408 *rmem->vmem = NULL; 3409 } 3410 } 3411 3412 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3413 { 3414 struct pci_dev *pdev = bp->pdev; 3415 u64 valid_bit = 0; 3416 int i; 3417 3418 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 3419 valid_bit = PTU_PTE_VALID; 3420 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 3421 size_t pg_tbl_size = rmem->nr_pages * 8; 3422 3423 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3424 pg_tbl_size = rmem->page_size; 3425 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 3426 &rmem->pg_tbl_map, 3427 GFP_KERNEL); 3428 if (!rmem->pg_tbl) 3429 return -ENOMEM; 3430 } 3431 3432 for (i = 0; i < rmem->nr_pages; i++) { 3433 u64 extra_bits = valid_bit; 3434 3435 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 3436 rmem->page_size, 3437 &rmem->dma_arr[i], 3438 GFP_KERNEL); 3439 if (!rmem->pg_arr[i]) 3440 return -ENOMEM; 3441 3442 if (rmem->ctx_mem) 3443 bnxt_init_ctx_mem(rmem->ctx_mem, rmem->pg_arr[i], 3444 rmem->page_size); 3445 if (rmem->nr_pages > 1 || rmem->depth > 0) { 3446 if (i == rmem->nr_pages - 2 && 3447 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3448 extra_bits |= PTU_PTE_NEXT_TO_LAST; 3449 else if (i == rmem->nr_pages - 1 && 3450 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3451 extra_bits |= PTU_PTE_LAST; 3452 rmem->pg_tbl[i] = 3453 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 3454 } 3455 } 3456 3457 if (rmem->vmem_size) { 3458 *rmem->vmem = vzalloc(rmem->vmem_size); 3459 if (!(*rmem->vmem)) 3460 return -ENOMEM; 3461 } 3462 return 0; 3463 } 3464 3465 static void bnxt_free_tpa_info(struct bnxt *bp) 3466 { 3467 int i, j; 3468 3469 for (i = 0; i < bp->rx_nr_rings; i++) { 3470 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3471 3472 kfree(rxr->rx_tpa_idx_map); 3473 rxr->rx_tpa_idx_map = NULL; 3474 if (rxr->rx_tpa) { 3475 for (j = 0; j < bp->max_tpa; j++) { 3476 kfree(rxr->rx_tpa[j].agg_arr); 3477 rxr->rx_tpa[j].agg_arr = NULL; 3478 } 3479 } 3480 kfree(rxr->rx_tpa); 3481 rxr->rx_tpa = NULL; 3482 } 3483 } 3484 3485 static int bnxt_alloc_tpa_info(struct bnxt *bp) 3486 { 3487 int i, j; 3488 3489 bp->max_tpa = MAX_TPA; 3490 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 3491 if (!bp->max_tpa_v2) 3492 return 0; 3493 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 3494 } 3495 3496 for (i = 0; i < bp->rx_nr_rings; i++) { 3497 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3498 struct rx_agg_cmp *agg; 3499 3500 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 3501 GFP_KERNEL); 3502 if (!rxr->rx_tpa) 3503 return -ENOMEM; 3504 3505 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 3506 continue; 3507 for (j = 0; j < bp->max_tpa; j++) { 3508 agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL); 3509 if (!agg) 3510 return -ENOMEM; 3511 rxr->rx_tpa[j].agg_arr = agg; 3512 } 3513 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 3514 GFP_KERNEL); 3515 if (!rxr->rx_tpa_idx_map) 3516 return -ENOMEM; 3517 } 3518 return 0; 3519 } 3520 3521 static void bnxt_free_rx_rings(struct bnxt *bp) 3522 { 3523 int i; 3524 3525 if (!bp->rx_ring) 3526 return; 3527 3528 bnxt_free_tpa_info(bp); 3529 for (i = 0; i < bp->rx_nr_rings; i++) { 3530 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3531 struct bnxt_ring_struct *ring; 3532 3533 if (rxr->xdp_prog) 3534 bpf_prog_put(rxr->xdp_prog); 3535 3536 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 3537 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3538 3539 page_pool_destroy(rxr->page_pool); 3540 rxr->page_pool = NULL; 3541 3542 kfree(rxr->rx_agg_bmap); 3543 rxr->rx_agg_bmap = NULL; 3544 3545 ring = &rxr->rx_ring_struct; 3546 bnxt_free_ring(bp, &ring->ring_mem); 3547 3548 ring = &rxr->rx_agg_ring_struct; 3549 bnxt_free_ring(bp, &ring->ring_mem); 3550 } 3551 } 3552 3553 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 3554 struct bnxt_rx_ring_info *rxr) 3555 { 3556 struct page_pool_params pp = { 0 }; 3557 3558 pp.pool_size = bp->rx_agg_ring_size; 3559 if (BNXT_RX_PAGE_MODE(bp)) 3560 pp.pool_size += bp->rx_ring_size; 3561 pp.nid = dev_to_node(&bp->pdev->dev); 3562 pp.napi = &rxr->bnapi->napi; 3563 pp.netdev = bp->dev; 3564 pp.dev = &bp->pdev->dev; 3565 pp.dma_dir = bp->rx_dir; 3566 pp.max_len = PAGE_SIZE; 3567 pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 3568 3569 rxr->page_pool = page_pool_create(&pp); 3570 if (IS_ERR(rxr->page_pool)) { 3571 int err = PTR_ERR(rxr->page_pool); 3572 3573 rxr->page_pool = NULL; 3574 return err; 3575 } 3576 return 0; 3577 } 3578 3579 static int bnxt_alloc_rx_rings(struct bnxt *bp) 3580 { 3581 int i, rc = 0, agg_rings = 0; 3582 3583 if (!bp->rx_ring) 3584 return -ENOMEM; 3585 3586 if (bp->flags & BNXT_FLAG_AGG_RINGS) 3587 agg_rings = 1; 3588 3589 for (i = 0; i < bp->rx_nr_rings; i++) { 3590 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3591 struct bnxt_ring_struct *ring; 3592 3593 ring = &rxr->rx_ring_struct; 3594 3595 rc = bnxt_alloc_rx_page_pool(bp, rxr); 3596 if (rc) 3597 return rc; 3598 3599 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 3600 if (rc < 0) 3601 return rc; 3602 3603 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 3604 MEM_TYPE_PAGE_POOL, 3605 rxr->page_pool); 3606 if (rc) { 3607 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3608 return rc; 3609 } 3610 3611 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3612 if (rc) 3613 return rc; 3614 3615 ring->grp_idx = i; 3616 if (agg_rings) { 3617 u16 mem_size; 3618 3619 ring = &rxr->rx_agg_ring_struct; 3620 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3621 if (rc) 3622 return rc; 3623 3624 ring->grp_idx = i; 3625 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 3626 mem_size = rxr->rx_agg_bmap_size / 8; 3627 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 3628 if (!rxr->rx_agg_bmap) 3629 return -ENOMEM; 3630 } 3631 } 3632 if (bp->flags & BNXT_FLAG_TPA) 3633 rc = bnxt_alloc_tpa_info(bp); 3634 return rc; 3635 } 3636 3637 static void bnxt_free_tx_rings(struct bnxt *bp) 3638 { 3639 int i; 3640 struct pci_dev *pdev = bp->pdev; 3641 3642 if (!bp->tx_ring) 3643 return; 3644 3645 for (i = 0; i < bp->tx_nr_rings; i++) { 3646 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3647 struct bnxt_ring_struct *ring; 3648 3649 if (txr->tx_push) { 3650 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3651 txr->tx_push, txr->tx_push_mapping); 3652 txr->tx_push = NULL; 3653 } 3654 3655 ring = &txr->tx_ring_struct; 3656 3657 bnxt_free_ring(bp, &ring->ring_mem); 3658 } 3659 } 3660 3661 #define BNXT_TC_TO_RING_BASE(bp, tc) \ 3662 ((tc) * (bp)->tx_nr_rings_per_tc) 3663 3664 #define BNXT_RING_TO_TC_OFF(bp, tx) \ 3665 ((tx) % (bp)->tx_nr_rings_per_tc) 3666 3667 #define BNXT_RING_TO_TC(bp, tx) \ 3668 ((tx) / (bp)->tx_nr_rings_per_tc) 3669 3670 static int bnxt_alloc_tx_rings(struct bnxt *bp) 3671 { 3672 int i, j, rc; 3673 struct pci_dev *pdev = bp->pdev; 3674 3675 bp->tx_push_size = 0; 3676 if (bp->tx_push_thresh) { 3677 int push_size; 3678 3679 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 3680 bp->tx_push_thresh); 3681 3682 if (push_size > 256) { 3683 push_size = 0; 3684 bp->tx_push_thresh = 0; 3685 } 3686 3687 bp->tx_push_size = push_size; 3688 } 3689 3690 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 3691 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3692 struct bnxt_ring_struct *ring; 3693 u8 qidx; 3694 3695 ring = &txr->tx_ring_struct; 3696 3697 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3698 if (rc) 3699 return rc; 3700 3701 ring->grp_idx = txr->bnapi->index; 3702 if (bp->tx_push_size) { 3703 dma_addr_t mapping; 3704 3705 /* One pre-allocated DMA buffer to backup 3706 * TX push operation 3707 */ 3708 txr->tx_push = dma_alloc_coherent(&pdev->dev, 3709 bp->tx_push_size, 3710 &txr->tx_push_mapping, 3711 GFP_KERNEL); 3712 3713 if (!txr->tx_push) 3714 return -ENOMEM; 3715 3716 mapping = txr->tx_push_mapping + 3717 sizeof(struct tx_push_bd); 3718 txr->data_mapping = cpu_to_le64(mapping); 3719 } 3720 qidx = bp->tc_to_qidx[j]; 3721 ring->queue_id = bp->q_info[qidx].queue_id; 3722 spin_lock_init(&txr->xdp_tx_lock); 3723 if (i < bp->tx_nr_rings_xdp) 3724 continue; 3725 if (BNXT_RING_TO_TC_OFF(bp, i) == (bp->tx_nr_rings_per_tc - 1)) 3726 j++; 3727 } 3728 return 0; 3729 } 3730 3731 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr) 3732 { 3733 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3734 3735 kfree(cpr->cp_desc_ring); 3736 cpr->cp_desc_ring = NULL; 3737 ring->ring_mem.pg_arr = NULL; 3738 kfree(cpr->cp_desc_mapping); 3739 cpr->cp_desc_mapping = NULL; 3740 ring->ring_mem.dma_arr = NULL; 3741 } 3742 3743 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n) 3744 { 3745 cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL); 3746 if (!cpr->cp_desc_ring) 3747 return -ENOMEM; 3748 cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping), 3749 GFP_KERNEL); 3750 if (!cpr->cp_desc_mapping) 3751 return -ENOMEM; 3752 return 0; 3753 } 3754 3755 static void bnxt_free_all_cp_arrays(struct bnxt *bp) 3756 { 3757 int i; 3758 3759 if (!bp->bnapi) 3760 return; 3761 for (i = 0; i < bp->cp_nr_rings; i++) { 3762 struct bnxt_napi *bnapi = bp->bnapi[i]; 3763 3764 if (!bnapi) 3765 continue; 3766 bnxt_free_cp_arrays(&bnapi->cp_ring); 3767 } 3768 } 3769 3770 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp) 3771 { 3772 int i, n = bp->cp_nr_pages; 3773 3774 for (i = 0; i < bp->cp_nr_rings; i++) { 3775 struct bnxt_napi *bnapi = bp->bnapi[i]; 3776 int rc; 3777 3778 if (!bnapi) 3779 continue; 3780 rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n); 3781 if (rc) 3782 return rc; 3783 } 3784 return 0; 3785 } 3786 3787 static void bnxt_free_cp_rings(struct bnxt *bp) 3788 { 3789 int i; 3790 3791 if (!bp->bnapi) 3792 return; 3793 3794 for (i = 0; i < bp->cp_nr_rings; i++) { 3795 struct bnxt_napi *bnapi = bp->bnapi[i]; 3796 struct bnxt_cp_ring_info *cpr; 3797 struct bnxt_ring_struct *ring; 3798 int j; 3799 3800 if (!bnapi) 3801 continue; 3802 3803 cpr = &bnapi->cp_ring; 3804 ring = &cpr->cp_ring_struct; 3805 3806 bnxt_free_ring(bp, &ring->ring_mem); 3807 3808 if (!cpr->cp_ring_arr) 3809 continue; 3810 3811 for (j = 0; j < cpr->cp_ring_count; j++) { 3812 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 3813 3814 ring = &cpr2->cp_ring_struct; 3815 bnxt_free_ring(bp, &ring->ring_mem); 3816 bnxt_free_cp_arrays(cpr2); 3817 } 3818 kfree(cpr->cp_ring_arr); 3819 cpr->cp_ring_arr = NULL; 3820 cpr->cp_ring_count = 0; 3821 } 3822 } 3823 3824 static int bnxt_alloc_cp_sub_ring(struct bnxt *bp, 3825 struct bnxt_cp_ring_info *cpr) 3826 { 3827 struct bnxt_ring_mem_info *rmem; 3828 struct bnxt_ring_struct *ring; 3829 int rc; 3830 3831 rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages); 3832 if (rc) { 3833 bnxt_free_cp_arrays(cpr); 3834 return -ENOMEM; 3835 } 3836 ring = &cpr->cp_ring_struct; 3837 rmem = &ring->ring_mem; 3838 rmem->nr_pages = bp->cp_nr_pages; 3839 rmem->page_size = HW_CMPD_RING_SIZE; 3840 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3841 rmem->dma_arr = cpr->cp_desc_mapping; 3842 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 3843 rc = bnxt_alloc_ring(bp, rmem); 3844 if (rc) { 3845 bnxt_free_ring(bp, rmem); 3846 bnxt_free_cp_arrays(cpr); 3847 } 3848 return rc; 3849 } 3850 3851 static int bnxt_alloc_cp_rings(struct bnxt *bp) 3852 { 3853 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 3854 int i, j, rc, ulp_base_vec, ulp_msix; 3855 int tcs = bp->num_tc; 3856 3857 if (!tcs) 3858 tcs = 1; 3859 ulp_msix = bnxt_get_ulp_msix_num(bp); 3860 ulp_base_vec = bnxt_get_ulp_msix_base(bp); 3861 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 3862 struct bnxt_napi *bnapi = bp->bnapi[i]; 3863 struct bnxt_cp_ring_info *cpr, *cpr2; 3864 struct bnxt_ring_struct *ring; 3865 int cp_count = 0, k; 3866 int rx = 0, tx = 0; 3867 3868 if (!bnapi) 3869 continue; 3870 3871 cpr = &bnapi->cp_ring; 3872 cpr->bnapi = bnapi; 3873 ring = &cpr->cp_ring_struct; 3874 3875 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3876 if (rc) 3877 return rc; 3878 3879 if (ulp_msix && i >= ulp_base_vec) 3880 ring->map_idx = i + ulp_msix; 3881 else 3882 ring->map_idx = i; 3883 3884 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 3885 continue; 3886 3887 if (i < bp->rx_nr_rings) { 3888 cp_count++; 3889 rx = 1; 3890 } 3891 if (i < bp->tx_nr_rings_xdp) { 3892 cp_count++; 3893 tx = 1; 3894 } else if ((sh && i < bp->tx_nr_rings) || 3895 (!sh && i >= bp->rx_nr_rings)) { 3896 cp_count += tcs; 3897 tx = 1; 3898 } 3899 3900 cpr->cp_ring_arr = kcalloc(cp_count, sizeof(*cpr), 3901 GFP_KERNEL); 3902 if (!cpr->cp_ring_arr) 3903 return -ENOMEM; 3904 cpr->cp_ring_count = cp_count; 3905 3906 for (k = 0; k < cp_count; k++) { 3907 cpr2 = &cpr->cp_ring_arr[k]; 3908 rc = bnxt_alloc_cp_sub_ring(bp, cpr2); 3909 if (rc) 3910 return rc; 3911 cpr2->bnapi = bnapi; 3912 cpr2->cp_idx = k; 3913 if (!k && rx) { 3914 bp->rx_ring[i].rx_cpr = cpr2; 3915 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_RX; 3916 } else { 3917 int n, tc = k - rx; 3918 3919 n = BNXT_TC_TO_RING_BASE(bp, tc) + j; 3920 bp->tx_ring[n].tx_cpr = cpr2; 3921 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_TX; 3922 } 3923 } 3924 if (tx) 3925 j++; 3926 } 3927 return 0; 3928 } 3929 3930 static void bnxt_init_ring_struct(struct bnxt *bp) 3931 { 3932 int i, j; 3933 3934 for (i = 0; i < bp->cp_nr_rings; i++) { 3935 struct bnxt_napi *bnapi = bp->bnapi[i]; 3936 struct bnxt_ring_mem_info *rmem; 3937 struct bnxt_cp_ring_info *cpr; 3938 struct bnxt_rx_ring_info *rxr; 3939 struct bnxt_tx_ring_info *txr; 3940 struct bnxt_ring_struct *ring; 3941 3942 if (!bnapi) 3943 continue; 3944 3945 cpr = &bnapi->cp_ring; 3946 ring = &cpr->cp_ring_struct; 3947 rmem = &ring->ring_mem; 3948 rmem->nr_pages = bp->cp_nr_pages; 3949 rmem->page_size = HW_CMPD_RING_SIZE; 3950 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3951 rmem->dma_arr = cpr->cp_desc_mapping; 3952 rmem->vmem_size = 0; 3953 3954 rxr = bnapi->rx_ring; 3955 if (!rxr) 3956 goto skip_rx; 3957 3958 ring = &rxr->rx_ring_struct; 3959 rmem = &ring->ring_mem; 3960 rmem->nr_pages = bp->rx_nr_pages; 3961 rmem->page_size = HW_RXBD_RING_SIZE; 3962 rmem->pg_arr = (void **)rxr->rx_desc_ring; 3963 rmem->dma_arr = rxr->rx_desc_mapping; 3964 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 3965 rmem->vmem = (void **)&rxr->rx_buf_ring; 3966 3967 ring = &rxr->rx_agg_ring_struct; 3968 rmem = &ring->ring_mem; 3969 rmem->nr_pages = bp->rx_agg_nr_pages; 3970 rmem->page_size = HW_RXBD_RING_SIZE; 3971 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 3972 rmem->dma_arr = rxr->rx_agg_desc_mapping; 3973 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 3974 rmem->vmem = (void **)&rxr->rx_agg_ring; 3975 3976 skip_rx: 3977 bnxt_for_each_napi_tx(j, bnapi, txr) { 3978 ring = &txr->tx_ring_struct; 3979 rmem = &ring->ring_mem; 3980 rmem->nr_pages = bp->tx_nr_pages; 3981 rmem->page_size = HW_TXBD_RING_SIZE; 3982 rmem->pg_arr = (void **)txr->tx_desc_ring; 3983 rmem->dma_arr = txr->tx_desc_mapping; 3984 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 3985 rmem->vmem = (void **)&txr->tx_buf_ring; 3986 } 3987 } 3988 } 3989 3990 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 3991 { 3992 int i; 3993 u32 prod; 3994 struct rx_bd **rx_buf_ring; 3995 3996 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 3997 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 3998 int j; 3999 struct rx_bd *rxbd; 4000 4001 rxbd = rx_buf_ring[i]; 4002 if (!rxbd) 4003 continue; 4004 4005 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 4006 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 4007 rxbd->rx_bd_opaque = prod; 4008 } 4009 } 4010 } 4011 4012 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 4013 { 4014 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 4015 struct net_device *dev = bp->dev; 4016 u32 prod; 4017 int i; 4018 4019 prod = rxr->rx_prod; 4020 for (i = 0; i < bp->rx_ring_size; i++) { 4021 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 4022 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n", 4023 ring_nr, i, bp->rx_ring_size); 4024 break; 4025 } 4026 prod = NEXT_RX(prod); 4027 } 4028 rxr->rx_prod = prod; 4029 4030 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 4031 return 0; 4032 4033 prod = rxr->rx_agg_prod; 4034 for (i = 0; i < bp->rx_agg_ring_size; i++) { 4035 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) { 4036 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n", 4037 ring_nr, i, bp->rx_ring_size); 4038 break; 4039 } 4040 prod = NEXT_RX_AGG(prod); 4041 } 4042 rxr->rx_agg_prod = prod; 4043 4044 if (rxr->rx_tpa) { 4045 dma_addr_t mapping; 4046 u8 *data; 4047 4048 for (i = 0; i < bp->max_tpa; i++) { 4049 data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL); 4050 if (!data) 4051 return -ENOMEM; 4052 4053 rxr->rx_tpa[i].data = data; 4054 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 4055 rxr->rx_tpa[i].mapping = mapping; 4056 } 4057 } 4058 return 0; 4059 } 4060 4061 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 4062 { 4063 struct bnxt_rx_ring_info *rxr; 4064 struct bnxt_ring_struct *ring; 4065 u32 type; 4066 4067 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 4068 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 4069 4070 if (NET_IP_ALIGN == 2) 4071 type |= RX_BD_FLAGS_SOP; 4072 4073 rxr = &bp->rx_ring[ring_nr]; 4074 ring = &rxr->rx_ring_struct; 4075 bnxt_init_rxbd_pages(ring, type); 4076 4077 netif_queue_set_napi(bp->dev, ring_nr, NETDEV_QUEUE_TYPE_RX, 4078 &rxr->bnapi->napi); 4079 4080 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 4081 bpf_prog_add(bp->xdp_prog, 1); 4082 rxr->xdp_prog = bp->xdp_prog; 4083 } 4084 ring->fw_ring_id = INVALID_HW_RING_ID; 4085 4086 ring = &rxr->rx_agg_ring_struct; 4087 ring->fw_ring_id = INVALID_HW_RING_ID; 4088 4089 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 4090 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 4091 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 4092 4093 bnxt_init_rxbd_pages(ring, type); 4094 } 4095 4096 return bnxt_alloc_one_rx_ring(bp, ring_nr); 4097 } 4098 4099 static void bnxt_init_cp_rings(struct bnxt *bp) 4100 { 4101 int i, j; 4102 4103 for (i = 0; i < bp->cp_nr_rings; i++) { 4104 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 4105 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4106 4107 ring->fw_ring_id = INVALID_HW_RING_ID; 4108 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4109 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4110 if (!cpr->cp_ring_arr) 4111 continue; 4112 for (j = 0; j < cpr->cp_ring_count; j++) { 4113 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 4114 4115 ring = &cpr2->cp_ring_struct; 4116 ring->fw_ring_id = INVALID_HW_RING_ID; 4117 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4118 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4119 } 4120 } 4121 } 4122 4123 static int bnxt_init_rx_rings(struct bnxt *bp) 4124 { 4125 int i, rc = 0; 4126 4127 if (BNXT_RX_PAGE_MODE(bp)) { 4128 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 4129 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 4130 } else { 4131 bp->rx_offset = BNXT_RX_OFFSET; 4132 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 4133 } 4134 4135 for (i = 0; i < bp->rx_nr_rings; i++) { 4136 rc = bnxt_init_one_rx_ring(bp, i); 4137 if (rc) 4138 break; 4139 } 4140 4141 return rc; 4142 } 4143 4144 static int bnxt_init_tx_rings(struct bnxt *bp) 4145 { 4146 u16 i; 4147 4148 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 4149 BNXT_MIN_TX_DESC_CNT); 4150 4151 for (i = 0; i < bp->tx_nr_rings; i++) { 4152 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4153 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 4154 4155 ring->fw_ring_id = INVALID_HW_RING_ID; 4156 4157 if (i >= bp->tx_nr_rings_xdp) 4158 netif_queue_set_napi(bp->dev, i - bp->tx_nr_rings_xdp, 4159 NETDEV_QUEUE_TYPE_TX, 4160 &txr->bnapi->napi); 4161 } 4162 4163 return 0; 4164 } 4165 4166 static void bnxt_free_ring_grps(struct bnxt *bp) 4167 { 4168 kfree(bp->grp_info); 4169 bp->grp_info = NULL; 4170 } 4171 4172 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 4173 { 4174 int i; 4175 4176 if (irq_re_init) { 4177 bp->grp_info = kcalloc(bp->cp_nr_rings, 4178 sizeof(struct bnxt_ring_grp_info), 4179 GFP_KERNEL); 4180 if (!bp->grp_info) 4181 return -ENOMEM; 4182 } 4183 for (i = 0; i < bp->cp_nr_rings; i++) { 4184 if (irq_re_init) 4185 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 4186 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 4187 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 4188 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 4189 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 4190 } 4191 return 0; 4192 } 4193 4194 static void bnxt_free_vnics(struct bnxt *bp) 4195 { 4196 kfree(bp->vnic_info); 4197 bp->vnic_info = NULL; 4198 bp->nr_vnics = 0; 4199 } 4200 4201 static int bnxt_alloc_vnics(struct bnxt *bp) 4202 { 4203 int num_vnics = 1; 4204 4205 #ifdef CONFIG_RFS_ACCEL 4206 if (bp->flags & BNXT_FLAG_RFS) { 4207 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 4208 num_vnics++; 4209 else if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4210 num_vnics += bp->rx_nr_rings; 4211 } 4212 #endif 4213 4214 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 4215 num_vnics++; 4216 4217 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 4218 GFP_KERNEL); 4219 if (!bp->vnic_info) 4220 return -ENOMEM; 4221 4222 bp->nr_vnics = num_vnics; 4223 return 0; 4224 } 4225 4226 static void bnxt_init_vnics(struct bnxt *bp) 4227 { 4228 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 4229 int i; 4230 4231 for (i = 0; i < bp->nr_vnics; i++) { 4232 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 4233 int j; 4234 4235 vnic->fw_vnic_id = INVALID_HW_RING_ID; 4236 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 4237 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 4238 4239 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 4240 4241 if (bp->vnic_info[i].rss_hash_key) { 4242 if (i == BNXT_VNIC_DEFAULT) { 4243 u8 *key = (void *)vnic->rss_hash_key; 4244 int k; 4245 4246 if (!bp->rss_hash_key_valid && 4247 !bp->rss_hash_key_updated) { 4248 get_random_bytes(bp->rss_hash_key, 4249 HW_HASH_KEY_SIZE); 4250 bp->rss_hash_key_updated = true; 4251 } 4252 4253 memcpy(vnic->rss_hash_key, bp->rss_hash_key, 4254 HW_HASH_KEY_SIZE); 4255 4256 if (!bp->rss_hash_key_updated) 4257 continue; 4258 4259 bp->rss_hash_key_updated = false; 4260 bp->rss_hash_key_valid = true; 4261 4262 bp->toeplitz_prefix = 0; 4263 for (k = 0; k < 8; k++) { 4264 bp->toeplitz_prefix <<= 8; 4265 bp->toeplitz_prefix |= key[k]; 4266 } 4267 } else { 4268 memcpy(vnic->rss_hash_key, vnic0->rss_hash_key, 4269 HW_HASH_KEY_SIZE); 4270 } 4271 } 4272 } 4273 } 4274 4275 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 4276 { 4277 int pages; 4278 4279 pages = ring_size / desc_per_pg; 4280 4281 if (!pages) 4282 return 1; 4283 4284 pages++; 4285 4286 while (pages & (pages - 1)) 4287 pages++; 4288 4289 return pages; 4290 } 4291 4292 void bnxt_set_tpa_flags(struct bnxt *bp) 4293 { 4294 bp->flags &= ~BNXT_FLAG_TPA; 4295 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 4296 return; 4297 if (bp->dev->features & NETIF_F_LRO) 4298 bp->flags |= BNXT_FLAG_LRO; 4299 else if (bp->dev->features & NETIF_F_GRO_HW) 4300 bp->flags |= BNXT_FLAG_GRO; 4301 } 4302 4303 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 4304 * be set on entry. 4305 */ 4306 void bnxt_set_ring_params(struct bnxt *bp) 4307 { 4308 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 4309 u32 agg_factor = 0, agg_ring_size = 0; 4310 4311 /* 8 for CRC and VLAN */ 4312 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 4313 4314 rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) + 4315 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4316 4317 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 4318 ring_size = bp->rx_ring_size; 4319 bp->rx_agg_ring_size = 0; 4320 bp->rx_agg_nr_pages = 0; 4321 4322 if (bp->flags & BNXT_FLAG_TPA) 4323 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 4324 4325 bp->flags &= ~BNXT_FLAG_JUMBO; 4326 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 4327 u32 jumbo_factor; 4328 4329 bp->flags |= BNXT_FLAG_JUMBO; 4330 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 4331 if (jumbo_factor > agg_factor) 4332 agg_factor = jumbo_factor; 4333 } 4334 if (agg_factor) { 4335 if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) { 4336 ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA; 4337 netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n", 4338 bp->rx_ring_size, ring_size); 4339 bp->rx_ring_size = ring_size; 4340 } 4341 agg_ring_size = ring_size * agg_factor; 4342 4343 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 4344 RX_DESC_CNT); 4345 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 4346 u32 tmp = agg_ring_size; 4347 4348 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 4349 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 4350 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 4351 tmp, agg_ring_size); 4352 } 4353 bp->rx_agg_ring_size = agg_ring_size; 4354 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 4355 4356 if (BNXT_RX_PAGE_MODE(bp)) { 4357 rx_space = PAGE_SIZE; 4358 rx_size = PAGE_SIZE - 4359 ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) - 4360 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4361 } else { 4362 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 4363 rx_space = rx_size + NET_SKB_PAD + 4364 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4365 } 4366 } 4367 4368 bp->rx_buf_use_size = rx_size; 4369 bp->rx_buf_size = rx_space; 4370 4371 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 4372 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 4373 4374 ring_size = bp->tx_ring_size; 4375 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 4376 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 4377 4378 max_rx_cmpl = bp->rx_ring_size; 4379 /* MAX TPA needs to be added because TPA_START completions are 4380 * immediately recycled, so the TPA completions are not bound by 4381 * the RX ring size. 4382 */ 4383 if (bp->flags & BNXT_FLAG_TPA) 4384 max_rx_cmpl += bp->max_tpa; 4385 /* RX and TPA completions are 32-byte, all others are 16-byte */ 4386 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 4387 bp->cp_ring_size = ring_size; 4388 4389 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 4390 if (bp->cp_nr_pages > MAX_CP_PAGES) { 4391 bp->cp_nr_pages = MAX_CP_PAGES; 4392 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 4393 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 4394 ring_size, bp->cp_ring_size); 4395 } 4396 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 4397 bp->cp_ring_mask = bp->cp_bit - 1; 4398 } 4399 4400 /* Changing allocation mode of RX rings. 4401 * TODO: Update when extending xdp_rxq_info to support allocation modes. 4402 */ 4403 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 4404 { 4405 struct net_device *dev = bp->dev; 4406 4407 if (page_mode) { 4408 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 4409 bp->flags |= BNXT_FLAG_RX_PAGE_MODE; 4410 4411 if (bp->xdp_prog->aux->xdp_has_frags) 4412 dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU); 4413 else 4414 dev->max_mtu = 4415 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 4416 if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) { 4417 bp->flags |= BNXT_FLAG_JUMBO; 4418 bp->rx_skb_func = bnxt_rx_multi_page_skb; 4419 } else { 4420 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 4421 bp->rx_skb_func = bnxt_rx_page_skb; 4422 } 4423 bp->rx_dir = DMA_BIDIRECTIONAL; 4424 /* Disable LRO or GRO_HW */ 4425 netdev_update_features(dev); 4426 } else { 4427 dev->max_mtu = bp->max_mtu; 4428 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 4429 bp->rx_dir = DMA_FROM_DEVICE; 4430 bp->rx_skb_func = bnxt_rx_skb; 4431 } 4432 return 0; 4433 } 4434 4435 static void bnxt_free_vnic_attributes(struct bnxt *bp) 4436 { 4437 int i; 4438 struct bnxt_vnic_info *vnic; 4439 struct pci_dev *pdev = bp->pdev; 4440 4441 if (!bp->vnic_info) 4442 return; 4443 4444 for (i = 0; i < bp->nr_vnics; i++) { 4445 vnic = &bp->vnic_info[i]; 4446 4447 kfree(vnic->fw_grp_ids); 4448 vnic->fw_grp_ids = NULL; 4449 4450 kfree(vnic->uc_list); 4451 vnic->uc_list = NULL; 4452 4453 if (vnic->mc_list) { 4454 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 4455 vnic->mc_list, vnic->mc_list_mapping); 4456 vnic->mc_list = NULL; 4457 } 4458 4459 if (vnic->rss_table) { 4460 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 4461 vnic->rss_table, 4462 vnic->rss_table_dma_addr); 4463 vnic->rss_table = NULL; 4464 } 4465 4466 vnic->rss_hash_key = NULL; 4467 vnic->flags = 0; 4468 } 4469 } 4470 4471 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 4472 { 4473 int i, rc = 0, size; 4474 struct bnxt_vnic_info *vnic; 4475 struct pci_dev *pdev = bp->pdev; 4476 int max_rings; 4477 4478 for (i = 0; i < bp->nr_vnics; i++) { 4479 vnic = &bp->vnic_info[i]; 4480 4481 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 4482 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 4483 4484 if (mem_size > 0) { 4485 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 4486 if (!vnic->uc_list) { 4487 rc = -ENOMEM; 4488 goto out; 4489 } 4490 } 4491 } 4492 4493 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 4494 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 4495 vnic->mc_list = 4496 dma_alloc_coherent(&pdev->dev, 4497 vnic->mc_list_size, 4498 &vnic->mc_list_mapping, 4499 GFP_KERNEL); 4500 if (!vnic->mc_list) { 4501 rc = -ENOMEM; 4502 goto out; 4503 } 4504 } 4505 4506 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4507 goto vnic_skip_grps; 4508 4509 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 4510 max_rings = bp->rx_nr_rings; 4511 else 4512 max_rings = 1; 4513 4514 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 4515 if (!vnic->fw_grp_ids) { 4516 rc = -ENOMEM; 4517 goto out; 4518 } 4519 vnic_skip_grps: 4520 if ((bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && 4521 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 4522 continue; 4523 4524 /* Allocate rss table and hash key */ 4525 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 4526 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4527 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 4528 4529 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 4530 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 4531 vnic->rss_table_size, 4532 &vnic->rss_table_dma_addr, 4533 GFP_KERNEL); 4534 if (!vnic->rss_table) { 4535 rc = -ENOMEM; 4536 goto out; 4537 } 4538 4539 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 4540 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 4541 } 4542 return 0; 4543 4544 out: 4545 return rc; 4546 } 4547 4548 static void bnxt_free_hwrm_resources(struct bnxt *bp) 4549 { 4550 struct bnxt_hwrm_wait_token *token; 4551 4552 dma_pool_destroy(bp->hwrm_dma_pool); 4553 bp->hwrm_dma_pool = NULL; 4554 4555 rcu_read_lock(); 4556 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) 4557 WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED); 4558 rcu_read_unlock(); 4559 } 4560 4561 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 4562 { 4563 bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev, 4564 BNXT_HWRM_DMA_SIZE, 4565 BNXT_HWRM_DMA_ALIGN, 0); 4566 if (!bp->hwrm_dma_pool) 4567 return -ENOMEM; 4568 4569 INIT_HLIST_HEAD(&bp->hwrm_pending_list); 4570 4571 return 0; 4572 } 4573 4574 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 4575 { 4576 kfree(stats->hw_masks); 4577 stats->hw_masks = NULL; 4578 kfree(stats->sw_stats); 4579 stats->sw_stats = NULL; 4580 if (stats->hw_stats) { 4581 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 4582 stats->hw_stats_map); 4583 stats->hw_stats = NULL; 4584 } 4585 } 4586 4587 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 4588 bool alloc_masks) 4589 { 4590 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 4591 &stats->hw_stats_map, GFP_KERNEL); 4592 if (!stats->hw_stats) 4593 return -ENOMEM; 4594 4595 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 4596 if (!stats->sw_stats) 4597 goto stats_mem_err; 4598 4599 if (alloc_masks) { 4600 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 4601 if (!stats->hw_masks) 4602 goto stats_mem_err; 4603 } 4604 return 0; 4605 4606 stats_mem_err: 4607 bnxt_free_stats_mem(bp, stats); 4608 return -ENOMEM; 4609 } 4610 4611 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 4612 { 4613 int i; 4614 4615 for (i = 0; i < count; i++) 4616 mask_arr[i] = mask; 4617 } 4618 4619 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 4620 { 4621 int i; 4622 4623 for (i = 0; i < count; i++) 4624 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 4625 } 4626 4627 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 4628 struct bnxt_stats_mem *stats) 4629 { 4630 struct hwrm_func_qstats_ext_output *resp; 4631 struct hwrm_func_qstats_ext_input *req; 4632 __le64 *hw_masks; 4633 int rc; 4634 4635 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 4636 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4637 return -EOPNOTSUPP; 4638 4639 rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT); 4640 if (rc) 4641 return rc; 4642 4643 req->fid = cpu_to_le16(0xffff); 4644 req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4645 4646 resp = hwrm_req_hold(bp, req); 4647 rc = hwrm_req_send(bp, req); 4648 if (!rc) { 4649 hw_masks = &resp->rx_ucast_pkts; 4650 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 4651 } 4652 hwrm_req_drop(bp, req); 4653 return rc; 4654 } 4655 4656 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 4657 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 4658 4659 static void bnxt_init_stats(struct bnxt *bp) 4660 { 4661 struct bnxt_napi *bnapi = bp->bnapi[0]; 4662 struct bnxt_cp_ring_info *cpr; 4663 struct bnxt_stats_mem *stats; 4664 __le64 *rx_stats, *tx_stats; 4665 int rc, rx_count, tx_count; 4666 u64 *rx_masks, *tx_masks; 4667 u64 mask; 4668 u8 flags; 4669 4670 cpr = &bnapi->cp_ring; 4671 stats = &cpr->stats; 4672 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 4673 if (rc) { 4674 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4675 mask = (1ULL << 48) - 1; 4676 else 4677 mask = -1ULL; 4678 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 4679 } 4680 if (bp->flags & BNXT_FLAG_PORT_STATS) { 4681 stats = &bp->port_stats; 4682 rx_stats = stats->hw_stats; 4683 rx_masks = stats->hw_masks; 4684 rx_count = sizeof(struct rx_port_stats) / 8; 4685 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4686 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4687 tx_count = sizeof(struct tx_port_stats) / 8; 4688 4689 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 4690 rc = bnxt_hwrm_port_qstats(bp, flags); 4691 if (rc) { 4692 mask = (1ULL << 40) - 1; 4693 4694 bnxt_fill_masks(rx_masks, mask, rx_count); 4695 bnxt_fill_masks(tx_masks, mask, tx_count); 4696 } else { 4697 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4698 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 4699 bnxt_hwrm_port_qstats(bp, 0); 4700 } 4701 } 4702 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 4703 stats = &bp->rx_port_stats_ext; 4704 rx_stats = stats->hw_stats; 4705 rx_masks = stats->hw_masks; 4706 rx_count = sizeof(struct rx_port_stats_ext) / 8; 4707 stats = &bp->tx_port_stats_ext; 4708 tx_stats = stats->hw_stats; 4709 tx_masks = stats->hw_masks; 4710 tx_count = sizeof(struct tx_port_stats_ext) / 8; 4711 4712 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4713 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 4714 if (rc) { 4715 mask = (1ULL << 40) - 1; 4716 4717 bnxt_fill_masks(rx_masks, mask, rx_count); 4718 if (tx_stats) 4719 bnxt_fill_masks(tx_masks, mask, tx_count); 4720 } else { 4721 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4722 if (tx_stats) 4723 bnxt_copy_hw_masks(tx_masks, tx_stats, 4724 tx_count); 4725 bnxt_hwrm_port_qstats_ext(bp, 0); 4726 } 4727 } 4728 } 4729 4730 static void bnxt_free_port_stats(struct bnxt *bp) 4731 { 4732 bp->flags &= ~BNXT_FLAG_PORT_STATS; 4733 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 4734 4735 bnxt_free_stats_mem(bp, &bp->port_stats); 4736 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 4737 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 4738 } 4739 4740 static void bnxt_free_ring_stats(struct bnxt *bp) 4741 { 4742 int i; 4743 4744 if (!bp->bnapi) 4745 return; 4746 4747 for (i = 0; i < bp->cp_nr_rings; i++) { 4748 struct bnxt_napi *bnapi = bp->bnapi[i]; 4749 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4750 4751 bnxt_free_stats_mem(bp, &cpr->stats); 4752 } 4753 } 4754 4755 static int bnxt_alloc_stats(struct bnxt *bp) 4756 { 4757 u32 size, i; 4758 int rc; 4759 4760 size = bp->hw_ring_stats_size; 4761 4762 for (i = 0; i < bp->cp_nr_rings; i++) { 4763 struct bnxt_napi *bnapi = bp->bnapi[i]; 4764 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4765 4766 cpr->stats.len = size; 4767 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 4768 if (rc) 4769 return rc; 4770 4771 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 4772 } 4773 4774 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 4775 return 0; 4776 4777 if (bp->port_stats.hw_stats) 4778 goto alloc_ext_stats; 4779 4780 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 4781 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 4782 if (rc) 4783 return rc; 4784 4785 bp->flags |= BNXT_FLAG_PORT_STATS; 4786 4787 alloc_ext_stats: 4788 /* Display extended statistics only if FW supports it */ 4789 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 4790 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 4791 return 0; 4792 4793 if (bp->rx_port_stats_ext.hw_stats) 4794 goto alloc_tx_ext_stats; 4795 4796 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 4797 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 4798 /* Extended stats are optional */ 4799 if (rc) 4800 return 0; 4801 4802 alloc_tx_ext_stats: 4803 if (bp->tx_port_stats_ext.hw_stats) 4804 return 0; 4805 4806 if (bp->hwrm_spec_code >= 0x10902 || 4807 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 4808 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 4809 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 4810 /* Extended stats are optional */ 4811 if (rc) 4812 return 0; 4813 } 4814 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 4815 return 0; 4816 } 4817 4818 static void bnxt_clear_ring_indices(struct bnxt *bp) 4819 { 4820 int i, j; 4821 4822 if (!bp->bnapi) 4823 return; 4824 4825 for (i = 0; i < bp->cp_nr_rings; i++) { 4826 struct bnxt_napi *bnapi = bp->bnapi[i]; 4827 struct bnxt_cp_ring_info *cpr; 4828 struct bnxt_rx_ring_info *rxr; 4829 struct bnxt_tx_ring_info *txr; 4830 4831 if (!bnapi) 4832 continue; 4833 4834 cpr = &bnapi->cp_ring; 4835 cpr->cp_raw_cons = 0; 4836 4837 bnxt_for_each_napi_tx(j, bnapi, txr) { 4838 txr->tx_prod = 0; 4839 txr->tx_cons = 0; 4840 txr->tx_hw_cons = 0; 4841 } 4842 4843 rxr = bnapi->rx_ring; 4844 if (rxr) { 4845 rxr->rx_prod = 0; 4846 rxr->rx_agg_prod = 0; 4847 rxr->rx_sw_agg_prod = 0; 4848 rxr->rx_next_cons = 0; 4849 } 4850 bnapi->events = 0; 4851 } 4852 } 4853 4854 void bnxt_insert_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 4855 { 4856 u8 type = fltr->type, flags = fltr->flags; 4857 4858 INIT_LIST_HEAD(&fltr->list); 4859 if ((type == BNXT_FLTR_TYPE_L2 && flags & BNXT_ACT_RING_DST) || 4860 (type == BNXT_FLTR_TYPE_NTUPLE && flags & BNXT_ACT_NO_AGING)) 4861 list_add_tail(&fltr->list, &bp->usr_fltr_list); 4862 } 4863 4864 void bnxt_del_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 4865 { 4866 if (!list_empty(&fltr->list)) 4867 list_del_init(&fltr->list); 4868 } 4869 4870 void bnxt_clear_usr_fltrs(struct bnxt *bp, bool all) 4871 { 4872 struct bnxt_filter_base *usr_fltr, *tmp; 4873 4874 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) { 4875 if (!all && usr_fltr->type == BNXT_FLTR_TYPE_L2) 4876 continue; 4877 bnxt_del_one_usr_fltr(bp, usr_fltr); 4878 } 4879 } 4880 4881 static void bnxt_del_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 4882 { 4883 hlist_del(&fltr->hash); 4884 bnxt_del_one_usr_fltr(bp, fltr); 4885 if (fltr->flags) { 4886 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 4887 bp->ntp_fltr_count--; 4888 } 4889 kfree(fltr); 4890 } 4891 4892 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool all) 4893 { 4894 int i; 4895 4896 /* Under rtnl_lock and all our NAPIs have been disabled. It's 4897 * safe to delete the hash table. 4898 */ 4899 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 4900 struct hlist_head *head; 4901 struct hlist_node *tmp; 4902 struct bnxt_ntuple_filter *fltr; 4903 4904 head = &bp->ntp_fltr_hash_tbl[i]; 4905 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 4906 bnxt_del_l2_filter(bp, fltr->l2_fltr); 4907 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 4908 !list_empty(&fltr->base.list))) 4909 continue; 4910 bnxt_del_fltr(bp, &fltr->base); 4911 } 4912 } 4913 if (!all) 4914 return; 4915 4916 bitmap_free(bp->ntp_fltr_bmap); 4917 bp->ntp_fltr_bmap = NULL; 4918 bp->ntp_fltr_count = 0; 4919 } 4920 4921 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 4922 { 4923 int i, rc = 0; 4924 4925 if (!(bp->flags & BNXT_FLAG_RFS) || bp->ntp_fltr_bmap) 4926 return 0; 4927 4928 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 4929 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 4930 4931 bp->ntp_fltr_count = 0; 4932 bp->ntp_fltr_bmap = bitmap_zalloc(bp->max_fltr, GFP_KERNEL); 4933 4934 if (!bp->ntp_fltr_bmap) 4935 rc = -ENOMEM; 4936 4937 return rc; 4938 } 4939 4940 static void bnxt_free_l2_filters(struct bnxt *bp, bool all) 4941 { 4942 int i; 4943 4944 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) { 4945 struct hlist_head *head; 4946 struct hlist_node *tmp; 4947 struct bnxt_l2_filter *fltr; 4948 4949 head = &bp->l2_fltr_hash_tbl[i]; 4950 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 4951 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 4952 !list_empty(&fltr->base.list))) 4953 continue; 4954 bnxt_del_fltr(bp, &fltr->base); 4955 } 4956 } 4957 } 4958 4959 static void bnxt_init_l2_fltr_tbl(struct bnxt *bp) 4960 { 4961 int i; 4962 4963 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) 4964 INIT_HLIST_HEAD(&bp->l2_fltr_hash_tbl[i]); 4965 get_random_bytes(&bp->hash_seed, sizeof(bp->hash_seed)); 4966 } 4967 4968 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 4969 { 4970 bnxt_free_vnic_attributes(bp); 4971 bnxt_free_tx_rings(bp); 4972 bnxt_free_rx_rings(bp); 4973 bnxt_free_cp_rings(bp); 4974 bnxt_free_all_cp_arrays(bp); 4975 bnxt_free_ntp_fltrs(bp, false); 4976 bnxt_free_l2_filters(bp, false); 4977 if (irq_re_init) { 4978 bnxt_free_ring_stats(bp); 4979 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 4980 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 4981 bnxt_free_port_stats(bp); 4982 bnxt_free_ring_grps(bp); 4983 bnxt_free_vnics(bp); 4984 kfree(bp->tx_ring_map); 4985 bp->tx_ring_map = NULL; 4986 kfree(bp->tx_ring); 4987 bp->tx_ring = NULL; 4988 kfree(bp->rx_ring); 4989 bp->rx_ring = NULL; 4990 kfree(bp->bnapi); 4991 bp->bnapi = NULL; 4992 } else { 4993 bnxt_clear_ring_indices(bp); 4994 } 4995 } 4996 4997 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 4998 { 4999 int i, j, rc, size, arr_size; 5000 void *bnapi; 5001 5002 if (irq_re_init) { 5003 /* Allocate bnapi mem pointer array and mem block for 5004 * all queues 5005 */ 5006 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 5007 bp->cp_nr_rings); 5008 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 5009 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 5010 if (!bnapi) 5011 return -ENOMEM; 5012 5013 bp->bnapi = bnapi; 5014 bnapi += arr_size; 5015 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 5016 bp->bnapi[i] = bnapi; 5017 bp->bnapi[i]->index = i; 5018 bp->bnapi[i]->bp = bp; 5019 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5020 struct bnxt_cp_ring_info *cpr = 5021 &bp->bnapi[i]->cp_ring; 5022 5023 cpr->cp_ring_struct.ring_mem.flags = 5024 BNXT_RMEM_RING_PTE_FLAG; 5025 } 5026 } 5027 5028 bp->rx_ring = kcalloc(bp->rx_nr_rings, 5029 sizeof(struct bnxt_rx_ring_info), 5030 GFP_KERNEL); 5031 if (!bp->rx_ring) 5032 return -ENOMEM; 5033 5034 for (i = 0; i < bp->rx_nr_rings; i++) { 5035 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5036 5037 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5038 rxr->rx_ring_struct.ring_mem.flags = 5039 BNXT_RMEM_RING_PTE_FLAG; 5040 rxr->rx_agg_ring_struct.ring_mem.flags = 5041 BNXT_RMEM_RING_PTE_FLAG; 5042 } else { 5043 rxr->rx_cpr = &bp->bnapi[i]->cp_ring; 5044 } 5045 rxr->bnapi = bp->bnapi[i]; 5046 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 5047 } 5048 5049 bp->tx_ring = kcalloc(bp->tx_nr_rings, 5050 sizeof(struct bnxt_tx_ring_info), 5051 GFP_KERNEL); 5052 if (!bp->tx_ring) 5053 return -ENOMEM; 5054 5055 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 5056 GFP_KERNEL); 5057 5058 if (!bp->tx_ring_map) 5059 return -ENOMEM; 5060 5061 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 5062 j = 0; 5063 else 5064 j = bp->rx_nr_rings; 5065 5066 for (i = 0; i < bp->tx_nr_rings; i++) { 5067 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5068 struct bnxt_napi *bnapi2; 5069 5070 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 5071 txr->tx_ring_struct.ring_mem.flags = 5072 BNXT_RMEM_RING_PTE_FLAG; 5073 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 5074 if (i >= bp->tx_nr_rings_xdp) { 5075 int k = j + BNXT_RING_TO_TC_OFF(bp, i); 5076 5077 bnapi2 = bp->bnapi[k]; 5078 txr->txq_index = i - bp->tx_nr_rings_xdp; 5079 txr->tx_napi_idx = 5080 BNXT_RING_TO_TC(bp, txr->txq_index); 5081 bnapi2->tx_ring[txr->tx_napi_idx] = txr; 5082 bnapi2->tx_int = bnxt_tx_int; 5083 } else { 5084 bnapi2 = bp->bnapi[j]; 5085 bnapi2->flags |= BNXT_NAPI_FLAG_XDP; 5086 bnapi2->tx_ring[0] = txr; 5087 bnapi2->tx_int = bnxt_tx_int_xdp; 5088 j++; 5089 } 5090 txr->bnapi = bnapi2; 5091 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 5092 txr->tx_cpr = &bnapi2->cp_ring; 5093 } 5094 5095 rc = bnxt_alloc_stats(bp); 5096 if (rc) 5097 goto alloc_mem_err; 5098 bnxt_init_stats(bp); 5099 5100 rc = bnxt_alloc_ntp_fltrs(bp); 5101 if (rc) 5102 goto alloc_mem_err; 5103 5104 rc = bnxt_alloc_vnics(bp); 5105 if (rc) 5106 goto alloc_mem_err; 5107 } 5108 5109 rc = bnxt_alloc_all_cp_arrays(bp); 5110 if (rc) 5111 goto alloc_mem_err; 5112 5113 bnxt_init_ring_struct(bp); 5114 5115 rc = bnxt_alloc_rx_rings(bp); 5116 if (rc) 5117 goto alloc_mem_err; 5118 5119 rc = bnxt_alloc_tx_rings(bp); 5120 if (rc) 5121 goto alloc_mem_err; 5122 5123 rc = bnxt_alloc_cp_rings(bp); 5124 if (rc) 5125 goto alloc_mem_err; 5126 5127 bp->vnic_info[BNXT_VNIC_DEFAULT].flags |= BNXT_VNIC_RSS_FLAG | 5128 BNXT_VNIC_MCAST_FLAG | 5129 BNXT_VNIC_UCAST_FLAG; 5130 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp) && (bp->flags & BNXT_FLAG_RFS)) 5131 bp->vnic_info[BNXT_VNIC_NTUPLE].flags |= 5132 BNXT_VNIC_RSS_FLAG | BNXT_VNIC_NTUPLE_FLAG; 5133 5134 rc = bnxt_alloc_vnic_attributes(bp); 5135 if (rc) 5136 goto alloc_mem_err; 5137 return 0; 5138 5139 alloc_mem_err: 5140 bnxt_free_mem(bp, true); 5141 return rc; 5142 } 5143 5144 static void bnxt_disable_int(struct bnxt *bp) 5145 { 5146 int i; 5147 5148 if (!bp->bnapi) 5149 return; 5150 5151 for (i = 0; i < bp->cp_nr_rings; i++) { 5152 struct bnxt_napi *bnapi = bp->bnapi[i]; 5153 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5154 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5155 5156 if (ring->fw_ring_id != INVALID_HW_RING_ID) 5157 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5158 } 5159 } 5160 5161 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 5162 { 5163 struct bnxt_napi *bnapi = bp->bnapi[n]; 5164 struct bnxt_cp_ring_info *cpr; 5165 5166 cpr = &bnapi->cp_ring; 5167 return cpr->cp_ring_struct.map_idx; 5168 } 5169 5170 static void bnxt_disable_int_sync(struct bnxt *bp) 5171 { 5172 int i; 5173 5174 if (!bp->irq_tbl) 5175 return; 5176 5177 atomic_inc(&bp->intr_sem); 5178 5179 bnxt_disable_int(bp); 5180 for (i = 0; i < bp->cp_nr_rings; i++) { 5181 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 5182 5183 synchronize_irq(bp->irq_tbl[map_idx].vector); 5184 } 5185 } 5186 5187 static void bnxt_enable_int(struct bnxt *bp) 5188 { 5189 int i; 5190 5191 atomic_set(&bp->intr_sem, 0); 5192 for (i = 0; i < bp->cp_nr_rings; i++) { 5193 struct bnxt_napi *bnapi = bp->bnapi[i]; 5194 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5195 5196 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 5197 } 5198 } 5199 5200 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 5201 bool async_only) 5202 { 5203 DECLARE_BITMAP(async_events_bmap, 256); 5204 u32 *events = (u32 *)async_events_bmap; 5205 struct hwrm_func_drv_rgtr_output *resp; 5206 struct hwrm_func_drv_rgtr_input *req; 5207 u32 flags; 5208 int rc, i; 5209 5210 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR); 5211 if (rc) 5212 return rc; 5213 5214 req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 5215 FUNC_DRV_RGTR_REQ_ENABLES_VER | 5216 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5217 5218 req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 5219 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 5220 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 5221 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 5222 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 5223 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 5224 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 5225 req->flags = cpu_to_le32(flags); 5226 req->ver_maj_8b = DRV_VER_MAJ; 5227 req->ver_min_8b = DRV_VER_MIN; 5228 req->ver_upd_8b = DRV_VER_UPD; 5229 req->ver_maj = cpu_to_le16(DRV_VER_MAJ); 5230 req->ver_min = cpu_to_le16(DRV_VER_MIN); 5231 req->ver_upd = cpu_to_le16(DRV_VER_UPD); 5232 5233 if (BNXT_PF(bp)) { 5234 u32 data[8]; 5235 int i; 5236 5237 memset(data, 0, sizeof(data)); 5238 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 5239 u16 cmd = bnxt_vf_req_snif[i]; 5240 unsigned int bit, idx; 5241 5242 idx = cmd / 32; 5243 bit = cmd % 32; 5244 data[idx] |= 1 << bit; 5245 } 5246 5247 for (i = 0; i < 8; i++) 5248 req->vf_req_fwd[i] = cpu_to_le32(data[i]); 5249 5250 req->enables |= 5251 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 5252 } 5253 5254 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 5255 req->flags |= cpu_to_le32( 5256 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 5257 5258 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 5259 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 5260 u16 event_id = bnxt_async_events_arr[i]; 5261 5262 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 5263 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 5264 continue; 5265 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE && 5266 !bp->ptp_cfg) 5267 continue; 5268 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 5269 } 5270 if (bmap && bmap_size) { 5271 for (i = 0; i < bmap_size; i++) { 5272 if (test_bit(i, bmap)) 5273 __set_bit(i, async_events_bmap); 5274 } 5275 } 5276 for (i = 0; i < 8; i++) 5277 req->async_event_fwd[i] |= cpu_to_le32(events[i]); 5278 5279 if (async_only) 5280 req->enables = 5281 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5282 5283 resp = hwrm_req_hold(bp, req); 5284 rc = hwrm_req_send(bp, req); 5285 if (!rc) { 5286 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 5287 if (resp->flags & 5288 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 5289 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 5290 } 5291 hwrm_req_drop(bp, req); 5292 return rc; 5293 } 5294 5295 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 5296 { 5297 struct hwrm_func_drv_unrgtr_input *req; 5298 int rc; 5299 5300 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 5301 return 0; 5302 5303 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR); 5304 if (rc) 5305 return rc; 5306 return hwrm_req_send(bp, req); 5307 } 5308 5309 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa); 5310 5311 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 5312 { 5313 struct hwrm_tunnel_dst_port_free_input *req; 5314 int rc; 5315 5316 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN && 5317 bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID) 5318 return 0; 5319 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE && 5320 bp->nge_fw_dst_port_id == INVALID_HW_RING_ID) 5321 return 0; 5322 5323 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE); 5324 if (rc) 5325 return rc; 5326 5327 req->tunnel_type = tunnel_type; 5328 5329 switch (tunnel_type) { 5330 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 5331 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 5332 bp->vxlan_port = 0; 5333 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 5334 break; 5335 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 5336 req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 5337 bp->nge_port = 0; 5338 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 5339 break; 5340 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE: 5341 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_gpe_fw_dst_port_id); 5342 bp->vxlan_gpe_port = 0; 5343 bp->vxlan_gpe_fw_dst_port_id = INVALID_HW_RING_ID; 5344 break; 5345 default: 5346 break; 5347 } 5348 5349 rc = hwrm_req_send(bp, req); 5350 if (rc) 5351 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 5352 rc); 5353 if (bp->flags & BNXT_FLAG_TPA) 5354 bnxt_set_tpa(bp, true); 5355 return rc; 5356 } 5357 5358 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 5359 u8 tunnel_type) 5360 { 5361 struct hwrm_tunnel_dst_port_alloc_output *resp; 5362 struct hwrm_tunnel_dst_port_alloc_input *req; 5363 int rc; 5364 5365 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC); 5366 if (rc) 5367 return rc; 5368 5369 req->tunnel_type = tunnel_type; 5370 req->tunnel_dst_port_val = port; 5371 5372 resp = hwrm_req_hold(bp, req); 5373 rc = hwrm_req_send(bp, req); 5374 if (rc) { 5375 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 5376 rc); 5377 goto err_out; 5378 } 5379 5380 switch (tunnel_type) { 5381 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 5382 bp->vxlan_port = port; 5383 bp->vxlan_fw_dst_port_id = 5384 le16_to_cpu(resp->tunnel_dst_port_id); 5385 break; 5386 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 5387 bp->nge_port = port; 5388 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 5389 break; 5390 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE: 5391 bp->vxlan_gpe_port = port; 5392 bp->vxlan_gpe_fw_dst_port_id = 5393 le16_to_cpu(resp->tunnel_dst_port_id); 5394 break; 5395 default: 5396 break; 5397 } 5398 if (bp->flags & BNXT_FLAG_TPA) 5399 bnxt_set_tpa(bp, true); 5400 5401 err_out: 5402 hwrm_req_drop(bp, req); 5403 return rc; 5404 } 5405 5406 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 5407 { 5408 struct hwrm_cfa_l2_set_rx_mask_input *req; 5409 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5410 int rc; 5411 5412 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK); 5413 if (rc) 5414 return rc; 5415 5416 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5417 if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) { 5418 req->num_mc_entries = cpu_to_le32(vnic->mc_list_count); 5419 req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 5420 } 5421 req->mask = cpu_to_le32(vnic->rx_mask); 5422 return hwrm_req_send_silent(bp, req); 5423 } 5424 5425 void bnxt_del_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5426 { 5427 if (!atomic_dec_and_test(&fltr->refcnt)) 5428 return; 5429 spin_lock_bh(&bp->ntp_fltr_lock); 5430 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 5431 spin_unlock_bh(&bp->ntp_fltr_lock); 5432 return; 5433 } 5434 hlist_del_rcu(&fltr->base.hash); 5435 bnxt_del_one_usr_fltr(bp, &fltr->base); 5436 if (fltr->base.flags) { 5437 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 5438 bp->ntp_fltr_count--; 5439 } 5440 spin_unlock_bh(&bp->ntp_fltr_lock); 5441 kfree_rcu(fltr, base.rcu); 5442 } 5443 5444 static struct bnxt_l2_filter *__bnxt_lookup_l2_filter(struct bnxt *bp, 5445 struct bnxt_l2_key *key, 5446 u32 idx) 5447 { 5448 struct hlist_head *head = &bp->l2_fltr_hash_tbl[idx]; 5449 struct bnxt_l2_filter *fltr; 5450 5451 hlist_for_each_entry_rcu(fltr, head, base.hash) { 5452 struct bnxt_l2_key *l2_key = &fltr->l2_key; 5453 5454 if (ether_addr_equal(l2_key->dst_mac_addr, key->dst_mac_addr) && 5455 l2_key->vlan == key->vlan) 5456 return fltr; 5457 } 5458 return NULL; 5459 } 5460 5461 static struct bnxt_l2_filter *bnxt_lookup_l2_filter(struct bnxt *bp, 5462 struct bnxt_l2_key *key, 5463 u32 idx) 5464 { 5465 struct bnxt_l2_filter *fltr = NULL; 5466 5467 rcu_read_lock(); 5468 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 5469 if (fltr) 5470 atomic_inc(&fltr->refcnt); 5471 rcu_read_unlock(); 5472 return fltr; 5473 } 5474 5475 #define BNXT_IPV4_4TUPLE(bp, fkeys) \ 5476 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5477 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4) || \ 5478 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5479 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4)) 5480 5481 #define BNXT_IPV6_4TUPLE(bp, fkeys) \ 5482 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5483 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6) || \ 5484 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5485 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6)) 5486 5487 static u32 bnxt_get_rss_flow_tuple_len(struct bnxt *bp, struct flow_keys *fkeys) 5488 { 5489 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 5490 if (BNXT_IPV4_4TUPLE(bp, fkeys)) 5491 return sizeof(fkeys->addrs.v4addrs) + 5492 sizeof(fkeys->ports); 5493 5494 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4) 5495 return sizeof(fkeys->addrs.v4addrs); 5496 } 5497 5498 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 5499 if (BNXT_IPV6_4TUPLE(bp, fkeys)) 5500 return sizeof(fkeys->addrs.v6addrs) + 5501 sizeof(fkeys->ports); 5502 5503 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6) 5504 return sizeof(fkeys->addrs.v6addrs); 5505 } 5506 5507 return 0; 5508 } 5509 5510 static u32 bnxt_toeplitz(struct bnxt *bp, struct flow_keys *fkeys, 5511 const unsigned char *key) 5512 { 5513 u64 prefix = bp->toeplitz_prefix, hash = 0; 5514 struct bnxt_ipv4_tuple tuple4; 5515 struct bnxt_ipv6_tuple tuple6; 5516 int i, j, len = 0; 5517 u8 *four_tuple; 5518 5519 len = bnxt_get_rss_flow_tuple_len(bp, fkeys); 5520 if (!len) 5521 return 0; 5522 5523 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 5524 tuple4.v4addrs = fkeys->addrs.v4addrs; 5525 tuple4.ports = fkeys->ports; 5526 four_tuple = (unsigned char *)&tuple4; 5527 } else { 5528 tuple6.v6addrs = fkeys->addrs.v6addrs; 5529 tuple6.ports = fkeys->ports; 5530 four_tuple = (unsigned char *)&tuple6; 5531 } 5532 5533 for (i = 0, j = 8; i < len; i++, j++) { 5534 u8 byte = four_tuple[i]; 5535 int bit; 5536 5537 for (bit = 0; bit < 8; bit++, prefix <<= 1, byte <<= 1) { 5538 if (byte & 0x80) 5539 hash ^= prefix; 5540 } 5541 prefix |= (j < HW_HASH_KEY_SIZE) ? key[j] : 0; 5542 } 5543 5544 /* The valid part of the hash is in the upper 32 bits. */ 5545 return (hash >> 32) & BNXT_NTP_FLTR_HASH_MASK; 5546 } 5547 5548 #ifdef CONFIG_RFS_ACCEL 5549 static struct bnxt_l2_filter * 5550 bnxt_lookup_l2_filter_from_key(struct bnxt *bp, struct bnxt_l2_key *key) 5551 { 5552 struct bnxt_l2_filter *fltr; 5553 u32 idx; 5554 5555 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5556 BNXT_L2_FLTR_HASH_MASK; 5557 fltr = bnxt_lookup_l2_filter(bp, key, idx); 5558 return fltr; 5559 } 5560 #endif 5561 5562 static int bnxt_init_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr, 5563 struct bnxt_l2_key *key, u32 idx) 5564 { 5565 struct hlist_head *head; 5566 5567 ether_addr_copy(fltr->l2_key.dst_mac_addr, key->dst_mac_addr); 5568 fltr->l2_key.vlan = key->vlan; 5569 fltr->base.type = BNXT_FLTR_TYPE_L2; 5570 if (fltr->base.flags) { 5571 int bit_id; 5572 5573 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 5574 bp->max_fltr, 0); 5575 if (bit_id < 0) 5576 return -ENOMEM; 5577 fltr->base.sw_id = (u16)bit_id; 5578 bp->ntp_fltr_count++; 5579 } 5580 head = &bp->l2_fltr_hash_tbl[idx]; 5581 hlist_add_head_rcu(&fltr->base.hash, head); 5582 bnxt_insert_usr_fltr(bp, &fltr->base); 5583 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 5584 atomic_set(&fltr->refcnt, 1); 5585 return 0; 5586 } 5587 5588 static struct bnxt_l2_filter *bnxt_alloc_l2_filter(struct bnxt *bp, 5589 struct bnxt_l2_key *key, 5590 gfp_t gfp) 5591 { 5592 struct bnxt_l2_filter *fltr; 5593 u32 idx; 5594 int rc; 5595 5596 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5597 BNXT_L2_FLTR_HASH_MASK; 5598 fltr = bnxt_lookup_l2_filter(bp, key, idx); 5599 if (fltr) 5600 return fltr; 5601 5602 fltr = kzalloc(sizeof(*fltr), gfp); 5603 if (!fltr) 5604 return ERR_PTR(-ENOMEM); 5605 spin_lock_bh(&bp->ntp_fltr_lock); 5606 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 5607 spin_unlock_bh(&bp->ntp_fltr_lock); 5608 if (rc) { 5609 bnxt_del_l2_filter(bp, fltr); 5610 fltr = ERR_PTR(rc); 5611 } 5612 return fltr; 5613 } 5614 5615 struct bnxt_l2_filter *bnxt_alloc_new_l2_filter(struct bnxt *bp, 5616 struct bnxt_l2_key *key, 5617 u16 flags) 5618 { 5619 struct bnxt_l2_filter *fltr; 5620 u32 idx; 5621 int rc; 5622 5623 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5624 BNXT_L2_FLTR_HASH_MASK; 5625 spin_lock_bh(&bp->ntp_fltr_lock); 5626 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 5627 if (fltr) { 5628 fltr = ERR_PTR(-EEXIST); 5629 goto l2_filter_exit; 5630 } 5631 fltr = kzalloc(sizeof(*fltr), GFP_ATOMIC); 5632 if (!fltr) { 5633 fltr = ERR_PTR(-ENOMEM); 5634 goto l2_filter_exit; 5635 } 5636 fltr->base.flags = flags; 5637 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 5638 if (rc) { 5639 spin_unlock_bh(&bp->ntp_fltr_lock); 5640 bnxt_del_l2_filter(bp, fltr); 5641 return ERR_PTR(rc); 5642 } 5643 5644 l2_filter_exit: 5645 spin_unlock_bh(&bp->ntp_fltr_lock); 5646 return fltr; 5647 } 5648 5649 static u16 bnxt_vf_target_id(struct bnxt_pf_info *pf, u16 vf_idx) 5650 { 5651 #ifdef CONFIG_BNXT_SRIOV 5652 struct bnxt_vf_info *vf = &pf->vf[vf_idx]; 5653 5654 return vf->fw_fid; 5655 #else 5656 return INVALID_HW_RING_ID; 5657 #endif 5658 } 5659 5660 int bnxt_hwrm_l2_filter_free(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5661 { 5662 struct hwrm_cfa_l2_filter_free_input *req; 5663 u16 target_id = 0xffff; 5664 int rc; 5665 5666 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 5667 struct bnxt_pf_info *pf = &bp->pf; 5668 5669 if (fltr->base.vf_idx >= pf->active_vfs) 5670 return -EINVAL; 5671 5672 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 5673 if (target_id == INVALID_HW_RING_ID) 5674 return -EINVAL; 5675 } 5676 5677 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 5678 if (rc) 5679 return rc; 5680 5681 req->target_id = cpu_to_le16(target_id); 5682 req->l2_filter_id = fltr->base.filter_id; 5683 return hwrm_req_send(bp, req); 5684 } 5685 5686 int bnxt_hwrm_l2_filter_alloc(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5687 { 5688 struct hwrm_cfa_l2_filter_alloc_output *resp; 5689 struct hwrm_cfa_l2_filter_alloc_input *req; 5690 u16 target_id = 0xffff; 5691 int rc; 5692 5693 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 5694 struct bnxt_pf_info *pf = &bp->pf; 5695 5696 if (fltr->base.vf_idx >= pf->active_vfs) 5697 return -EINVAL; 5698 5699 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 5700 } 5701 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC); 5702 if (rc) 5703 return rc; 5704 5705 req->target_id = cpu_to_le16(target_id); 5706 req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 5707 5708 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 5709 req->flags |= 5710 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 5711 req->dst_id = cpu_to_le16(fltr->base.fw_vnic_id); 5712 req->enables = 5713 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 5714 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 5715 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 5716 ether_addr_copy(req->l2_addr, fltr->l2_key.dst_mac_addr); 5717 eth_broadcast_addr(req->l2_addr_mask); 5718 5719 if (fltr->l2_key.vlan) { 5720 req->enables |= 5721 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN | 5722 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN_MASK | 5723 CFA_L2_FILTER_ALLOC_REQ_ENABLES_NUM_VLANS); 5724 req->num_vlans = 1; 5725 req->l2_ivlan = cpu_to_le16(fltr->l2_key.vlan); 5726 req->l2_ivlan_mask = cpu_to_le16(0xfff); 5727 } 5728 5729 resp = hwrm_req_hold(bp, req); 5730 rc = hwrm_req_send(bp, req); 5731 if (!rc) { 5732 fltr->base.filter_id = resp->l2_filter_id; 5733 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 5734 } 5735 hwrm_req_drop(bp, req); 5736 return rc; 5737 } 5738 5739 int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 5740 struct bnxt_ntuple_filter *fltr) 5741 { 5742 struct hwrm_cfa_ntuple_filter_free_input *req; 5743 int rc; 5744 5745 set_bit(BNXT_FLTR_FW_DELETED, &fltr->base.state); 5746 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE); 5747 if (rc) 5748 return rc; 5749 5750 req->ntuple_filter_id = fltr->base.filter_id; 5751 return hwrm_req_send(bp, req); 5752 } 5753 5754 #define BNXT_NTP_FLTR_FLAGS \ 5755 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 5756 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 5757 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 5758 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 5759 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 5760 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 5761 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 5762 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 5763 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 5764 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 5765 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 5766 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 5767 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 5768 5769 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 5770 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 5771 5772 void bnxt_fill_ipv6_mask(__be32 mask[4]) 5773 { 5774 int i; 5775 5776 for (i = 0; i < 4; i++) 5777 mask[i] = cpu_to_be32(~0); 5778 } 5779 5780 static void 5781 bnxt_cfg_rfs_ring_tbl_idx(struct bnxt *bp, 5782 struct hwrm_cfa_ntuple_filter_alloc_input *req, 5783 u16 rxq) 5784 { 5785 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 5786 struct bnxt_vnic_info *vnic; 5787 u32 enables; 5788 5789 vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE]; 5790 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 5791 enables = CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_RFS_RING_TBL_IDX; 5792 req->enables |= cpu_to_le32(enables); 5793 req->rfs_ring_tbl_idx = cpu_to_le16(rxq); 5794 } else { 5795 u32 flags; 5796 5797 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 5798 req->flags |= cpu_to_le32(flags); 5799 req->dst_id = cpu_to_le16(rxq); 5800 } 5801 } 5802 5803 int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 5804 struct bnxt_ntuple_filter *fltr) 5805 { 5806 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 5807 struct hwrm_cfa_ntuple_filter_alloc_input *req; 5808 struct bnxt_flow_masks *masks = &fltr->fmasks; 5809 struct flow_keys *keys = &fltr->fkeys; 5810 struct bnxt_l2_filter *l2_fltr; 5811 struct bnxt_vnic_info *vnic; 5812 int rc; 5813 5814 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC); 5815 if (rc) 5816 return rc; 5817 5818 l2_fltr = fltr->l2_fltr; 5819 req->l2_filter_id = l2_fltr->base.filter_id; 5820 5821 if (fltr->base.flags & BNXT_ACT_DROP) { 5822 req->flags = 5823 cpu_to_le32(CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DROP); 5824 } else if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 5825 bnxt_cfg_rfs_ring_tbl_idx(bp, req, fltr->base.rxq); 5826 } else { 5827 vnic = &bp->vnic_info[fltr->base.rxq + 1]; 5828 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 5829 } 5830 req->enables |= cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 5831 5832 req->ethertype = htons(ETH_P_IP); 5833 req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 5834 req->ip_protocol = keys->basic.ip_proto; 5835 5836 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 5837 req->ethertype = htons(ETH_P_IPV6); 5838 req->ip_addr_type = 5839 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 5840 *(struct in6_addr *)&req->src_ipaddr[0] = keys->addrs.v6addrs.src; 5841 *(struct in6_addr *)&req->src_ipaddr_mask[0] = masks->addrs.v6addrs.src; 5842 *(struct in6_addr *)&req->dst_ipaddr[0] = keys->addrs.v6addrs.dst; 5843 *(struct in6_addr *)&req->dst_ipaddr_mask[0] = masks->addrs.v6addrs.dst; 5844 } else { 5845 req->src_ipaddr[0] = keys->addrs.v4addrs.src; 5846 req->src_ipaddr_mask[0] = masks->addrs.v4addrs.src; 5847 req->dst_ipaddr[0] = keys->addrs.v4addrs.dst; 5848 req->dst_ipaddr_mask[0] = masks->addrs.v4addrs.dst; 5849 } 5850 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 5851 req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 5852 req->tunnel_type = 5853 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 5854 } 5855 5856 req->src_port = keys->ports.src; 5857 req->src_port_mask = masks->ports.src; 5858 req->dst_port = keys->ports.dst; 5859 req->dst_port_mask = masks->ports.dst; 5860 5861 resp = hwrm_req_hold(bp, req); 5862 rc = hwrm_req_send(bp, req); 5863 if (!rc) 5864 fltr->base.filter_id = resp->ntuple_filter_id; 5865 hwrm_req_drop(bp, req); 5866 return rc; 5867 } 5868 5869 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 5870 const u8 *mac_addr) 5871 { 5872 struct bnxt_l2_filter *fltr; 5873 struct bnxt_l2_key key; 5874 int rc; 5875 5876 ether_addr_copy(key.dst_mac_addr, mac_addr); 5877 key.vlan = 0; 5878 fltr = bnxt_alloc_l2_filter(bp, &key, GFP_KERNEL); 5879 if (IS_ERR(fltr)) 5880 return PTR_ERR(fltr); 5881 5882 fltr->base.fw_vnic_id = bp->vnic_info[vnic_id].fw_vnic_id; 5883 rc = bnxt_hwrm_l2_filter_alloc(bp, fltr); 5884 if (rc) 5885 bnxt_del_l2_filter(bp, fltr); 5886 else 5887 bp->vnic_info[vnic_id].l2_filters[idx] = fltr; 5888 return rc; 5889 } 5890 5891 static void bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 5892 { 5893 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 5894 5895 /* Any associated ntuple filters will also be cleared by firmware. */ 5896 for (i = 0; i < num_of_vnics; i++) { 5897 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 5898 5899 for (j = 0; j < vnic->uc_filter_count; j++) { 5900 struct bnxt_l2_filter *fltr = vnic->l2_filters[j]; 5901 5902 bnxt_hwrm_l2_filter_free(bp, fltr); 5903 bnxt_del_l2_filter(bp, fltr); 5904 } 5905 vnic->uc_filter_count = 0; 5906 } 5907 } 5908 5909 #define BNXT_DFLT_TUNL_TPA_BMAP \ 5910 (VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GRE | \ 5911 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV4 | \ 5912 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV6) 5913 5914 static void bnxt_hwrm_vnic_update_tunl_tpa(struct bnxt *bp, 5915 struct hwrm_vnic_tpa_cfg_input *req) 5916 { 5917 u32 tunl_tpa_bmap = BNXT_DFLT_TUNL_TPA_BMAP; 5918 5919 if (!(bp->fw_cap & BNXT_FW_CAP_VNIC_TUNNEL_TPA)) 5920 return; 5921 5922 if (bp->vxlan_port) 5923 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN; 5924 if (bp->vxlan_gpe_port) 5925 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN_GPE; 5926 if (bp->nge_port) 5927 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GENEVE; 5928 5929 req->enables |= cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_TNL_TPA_EN); 5930 req->tnl_tpa_en_bitmap = cpu_to_le32(tunl_tpa_bmap); 5931 } 5932 5933 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags) 5934 { 5935 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5936 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 5937 struct hwrm_vnic_tpa_cfg_input *req; 5938 int rc; 5939 5940 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 5941 return 0; 5942 5943 rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG); 5944 if (rc) 5945 return rc; 5946 5947 if (tpa_flags) { 5948 u16 mss = bp->dev->mtu - 40; 5949 u32 nsegs, n, segs = 0, flags; 5950 5951 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 5952 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 5953 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 5954 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 5955 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 5956 if (tpa_flags & BNXT_FLAG_GRO) 5957 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 5958 5959 req->flags = cpu_to_le32(flags); 5960 5961 req->enables = 5962 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 5963 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 5964 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 5965 5966 /* Number of segs are log2 units, and first packet is not 5967 * included as part of this units. 5968 */ 5969 if (mss <= BNXT_RX_PAGE_SIZE) { 5970 n = BNXT_RX_PAGE_SIZE / mss; 5971 nsegs = (MAX_SKB_FRAGS - 1) * n; 5972 } else { 5973 n = mss / BNXT_RX_PAGE_SIZE; 5974 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 5975 n++; 5976 nsegs = (MAX_SKB_FRAGS - n) / n; 5977 } 5978 5979 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5980 segs = MAX_TPA_SEGS_P5; 5981 max_aggs = bp->max_tpa; 5982 } else { 5983 segs = ilog2(nsegs); 5984 } 5985 req->max_agg_segs = cpu_to_le16(segs); 5986 req->max_aggs = cpu_to_le16(max_aggs); 5987 5988 req->min_agg_len = cpu_to_le32(512); 5989 bnxt_hwrm_vnic_update_tunl_tpa(bp, req); 5990 } 5991 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5992 5993 return hwrm_req_send(bp, req); 5994 } 5995 5996 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 5997 { 5998 struct bnxt_ring_grp_info *grp_info; 5999 6000 grp_info = &bp->grp_info[ring->grp_idx]; 6001 return grp_info->cp_fw_ring_id; 6002 } 6003 6004 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 6005 { 6006 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6007 return rxr->rx_cpr->cp_ring_struct.fw_ring_id; 6008 else 6009 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 6010 } 6011 6012 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 6013 { 6014 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6015 return txr->tx_cpr->cp_ring_struct.fw_ring_id; 6016 else 6017 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 6018 } 6019 6020 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp) 6021 { 6022 int entries; 6023 6024 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6025 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 6026 else 6027 entries = HW_HASH_INDEX_SIZE; 6028 6029 bp->rss_indir_tbl_entries = entries; 6030 bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), 6031 GFP_KERNEL); 6032 if (!bp->rss_indir_tbl) 6033 return -ENOMEM; 6034 return 0; 6035 } 6036 6037 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp) 6038 { 6039 u16 max_rings, max_entries, pad, i; 6040 6041 if (!bp->rx_nr_rings) 6042 return; 6043 6044 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6045 max_rings = bp->rx_nr_rings - 1; 6046 else 6047 max_rings = bp->rx_nr_rings; 6048 6049 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 6050 6051 for (i = 0; i < max_entries; i++) 6052 bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 6053 6054 pad = bp->rss_indir_tbl_entries - max_entries; 6055 if (pad) 6056 memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16)); 6057 } 6058 6059 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 6060 { 6061 u16 i, tbl_size, max_ring = 0; 6062 6063 if (!bp->rss_indir_tbl) 6064 return 0; 6065 6066 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6067 for (i = 0; i < tbl_size; i++) 6068 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 6069 return max_ring; 6070 } 6071 6072 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 6073 { 6074 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6075 if (!rx_rings) 6076 return 0; 6077 return bnxt_calc_nr_ring_pages(rx_rings - 1, 6078 BNXT_RSS_TABLE_ENTRIES_P5); 6079 } 6080 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6081 return 2; 6082 return 1; 6083 } 6084 6085 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6086 { 6087 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 6088 u16 i, j; 6089 6090 /* Fill the RSS indirection table with ring group ids */ 6091 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 6092 if (!no_rss) 6093 j = bp->rss_indir_tbl[i]; 6094 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 6095 } 6096 } 6097 6098 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 6099 struct bnxt_vnic_info *vnic) 6100 { 6101 __le16 *ring_tbl = vnic->rss_table; 6102 struct bnxt_rx_ring_info *rxr; 6103 u16 tbl_size, i; 6104 6105 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6106 6107 for (i = 0; i < tbl_size; i++) { 6108 u16 ring_id, j; 6109 6110 if (vnic->flags & BNXT_VNIC_NTUPLE_FLAG) 6111 j = ethtool_rxfh_indir_default(i, bp->rx_nr_rings); 6112 else 6113 j = bp->rss_indir_tbl[i]; 6114 rxr = &bp->rx_ring[j]; 6115 6116 ring_id = rxr->rx_ring_struct.fw_ring_id; 6117 *ring_tbl++ = cpu_to_le16(ring_id); 6118 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6119 *ring_tbl++ = cpu_to_le16(ring_id); 6120 } 6121 } 6122 6123 static void 6124 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req, 6125 struct bnxt_vnic_info *vnic) 6126 { 6127 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6128 bnxt_fill_hw_rss_tbl_p5(bp, vnic); 6129 if (bp->flags & BNXT_FLAG_CHIP_P7) 6130 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_IPSEC_HASH_TYPE_CFG_SUPPORT; 6131 } else { 6132 bnxt_fill_hw_rss_tbl(bp, vnic); 6133 } 6134 6135 if (bp->rss_hash_delta) { 6136 req->hash_type = cpu_to_le32(bp->rss_hash_delta); 6137 if (bp->rss_hash_cfg & bp->rss_hash_delta) 6138 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE; 6139 else 6140 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE; 6141 } else { 6142 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 6143 } 6144 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 6145 req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 6146 req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 6147 } 6148 6149 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss) 6150 { 6151 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 6152 struct hwrm_vnic_rss_cfg_input *req; 6153 int rc; 6154 6155 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) || 6156 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 6157 return 0; 6158 6159 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6160 if (rc) 6161 return rc; 6162 6163 if (set_rss) 6164 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6165 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6166 return hwrm_req_send(bp, req); 6167 } 6168 6169 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss) 6170 { 6171 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 6172 struct hwrm_vnic_rss_cfg_input *req; 6173 dma_addr_t ring_tbl_map; 6174 u32 i, nr_ctxs; 6175 int rc; 6176 6177 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6178 if (rc) 6179 return rc; 6180 6181 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6182 if (!set_rss) 6183 return hwrm_req_send(bp, req); 6184 6185 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6186 ring_tbl_map = vnic->rss_table_dma_addr; 6187 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 6188 6189 hwrm_req_hold(bp, req); 6190 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 6191 req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 6192 req->ring_table_pair_index = i; 6193 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 6194 rc = hwrm_req_send(bp, req); 6195 if (rc) 6196 goto exit; 6197 } 6198 6199 exit: 6200 hwrm_req_drop(bp, req); 6201 return rc; 6202 } 6203 6204 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp) 6205 { 6206 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6207 struct hwrm_vnic_rss_qcfg_output *resp; 6208 struct hwrm_vnic_rss_qcfg_input *req; 6209 6210 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG)) 6211 return; 6212 6213 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6214 /* all contexts configured to same hash_type, zero always exists */ 6215 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6216 resp = hwrm_req_hold(bp, req); 6217 if (!hwrm_req_send(bp, req)) { 6218 bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg; 6219 bp->rss_hash_delta = 0; 6220 } 6221 hwrm_req_drop(bp, req); 6222 } 6223 6224 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id) 6225 { 6226 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 6227 struct hwrm_vnic_plcmodes_cfg_input *req; 6228 int rc; 6229 6230 rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG); 6231 if (rc) 6232 return rc; 6233 6234 req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT); 6235 req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID); 6236 6237 if (BNXT_RX_PAGE_MODE(bp)) { 6238 req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size); 6239 } else { 6240 req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 6241 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 6242 req->enables |= 6243 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 6244 req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 6245 req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 6246 } 6247 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 6248 return hwrm_req_send(bp, req); 6249 } 6250 6251 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id, 6252 u16 ctx_idx) 6253 { 6254 struct hwrm_vnic_rss_cos_lb_ctx_free_input *req; 6255 6256 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE)) 6257 return; 6258 6259 req->rss_cos_lb_ctx_id = 6260 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]); 6261 6262 hwrm_req_send(bp, req); 6263 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 6264 } 6265 6266 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 6267 { 6268 int i, j; 6269 6270 for (i = 0; i < bp->nr_vnics; i++) { 6271 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 6272 6273 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 6274 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 6275 bnxt_hwrm_vnic_ctx_free_one(bp, i, j); 6276 } 6277 } 6278 bp->rsscos_nr_ctxs = 0; 6279 } 6280 6281 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx) 6282 { 6283 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp; 6284 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req; 6285 int rc; 6286 6287 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC); 6288 if (rc) 6289 return rc; 6290 6291 resp = hwrm_req_hold(bp, req); 6292 rc = hwrm_req_send(bp, req); 6293 if (!rc) 6294 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = 6295 le16_to_cpu(resp->rss_cos_lb_ctx_id); 6296 hwrm_req_drop(bp, req); 6297 6298 return rc; 6299 } 6300 6301 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 6302 { 6303 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 6304 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 6305 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 6306 } 6307 6308 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id) 6309 { 6310 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6311 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 6312 struct hwrm_vnic_cfg_input *req; 6313 unsigned int ring = 0, grp_idx; 6314 u16 def_vlan = 0; 6315 int rc; 6316 6317 rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG); 6318 if (rc) 6319 return rc; 6320 6321 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6322 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 6323 6324 req->default_rx_ring_id = 6325 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 6326 req->default_cmpl_ring_id = 6327 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 6328 req->enables = 6329 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 6330 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 6331 goto vnic_mru; 6332 } 6333 req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 6334 /* Only RSS support for now TBD: COS & LB */ 6335 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 6336 req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6337 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6338 VNIC_CFG_REQ_ENABLES_MRU); 6339 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 6340 req->rss_rule = cpu_to_le16(vnic0->fw_rss_cos_lb_ctx[0]); 6341 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6342 VNIC_CFG_REQ_ENABLES_MRU); 6343 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 6344 } else { 6345 req->rss_rule = cpu_to_le16(0xffff); 6346 } 6347 6348 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 6349 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 6350 req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 6351 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 6352 } else { 6353 req->cos_rule = cpu_to_le16(0xffff); 6354 } 6355 6356 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 6357 ring = 0; 6358 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 6359 ring = vnic_id - 1; 6360 else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 6361 ring = bp->rx_nr_rings - 1; 6362 6363 grp_idx = bp->rx_ring[ring].bnapi->index; 6364 req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 6365 req->lb_rule = cpu_to_le16(0xffff); 6366 vnic_mru: 6367 req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN); 6368 6369 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6370 #ifdef CONFIG_BNXT_SRIOV 6371 if (BNXT_VF(bp)) 6372 def_vlan = bp->vf.vlan; 6373 #endif 6374 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 6375 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 6376 if (!vnic_id && bnxt_ulp_registered(bp->edev)) 6377 req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 6378 6379 return hwrm_req_send(bp, req); 6380 } 6381 6382 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id) 6383 { 6384 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) { 6385 struct hwrm_vnic_free_input *req; 6386 6387 if (hwrm_req_init(bp, req, HWRM_VNIC_FREE)) 6388 return; 6389 6390 req->vnic_id = 6391 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id); 6392 6393 hwrm_req_send(bp, req); 6394 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID; 6395 } 6396 } 6397 6398 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 6399 { 6400 u16 i; 6401 6402 for (i = 0; i < bp->nr_vnics; i++) 6403 bnxt_hwrm_vnic_free_one(bp, i); 6404 } 6405 6406 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id, 6407 unsigned int start_rx_ring_idx, 6408 unsigned int nr_rings) 6409 { 6410 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 6411 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 6412 struct hwrm_vnic_alloc_output *resp; 6413 struct hwrm_vnic_alloc_input *req; 6414 int rc; 6415 6416 rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC); 6417 if (rc) 6418 return rc; 6419 6420 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6421 goto vnic_no_ring_grps; 6422 6423 /* map ring groups to this vnic */ 6424 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 6425 grp_idx = bp->rx_ring[i].bnapi->index; 6426 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 6427 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 6428 j, nr_rings); 6429 break; 6430 } 6431 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 6432 } 6433 6434 vnic_no_ring_grps: 6435 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 6436 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 6437 if (vnic_id == BNXT_VNIC_DEFAULT) 6438 req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 6439 6440 resp = hwrm_req_hold(bp, req); 6441 rc = hwrm_req_send(bp, req); 6442 if (!rc) 6443 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 6444 hwrm_req_drop(bp, req); 6445 return rc; 6446 } 6447 6448 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 6449 { 6450 struct hwrm_vnic_qcaps_output *resp; 6451 struct hwrm_vnic_qcaps_input *req; 6452 int rc; 6453 6454 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 6455 bp->flags &= ~BNXT_FLAG_ROCE_MIRROR_CAP; 6456 bp->rss_cap &= ~BNXT_RSS_CAP_NEW_RSS_CAP; 6457 if (bp->hwrm_spec_code < 0x10600) 6458 return 0; 6459 6460 rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS); 6461 if (rc) 6462 return rc; 6463 6464 resp = hwrm_req_hold(bp, req); 6465 rc = hwrm_req_send(bp, req); 6466 if (!rc) { 6467 u32 flags = le32_to_cpu(resp->flags); 6468 6469 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 6470 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 6471 bp->rss_cap |= BNXT_RSS_CAP_NEW_RSS_CAP; 6472 if (flags & 6473 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 6474 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 6475 6476 /* Older P5 fw before EXT_HW_STATS support did not set 6477 * VLAN_STRIP_CAP properly. 6478 */ 6479 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 6480 (BNXT_CHIP_P5(bp) && 6481 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 6482 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 6483 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP) 6484 bp->rss_cap |= BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA; 6485 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_PROF_TCAM_MODE_ENABLED) 6486 bp->rss_cap |= BNXT_RSS_CAP_RSS_TCAM; 6487 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 6488 if (bp->max_tpa_v2) { 6489 if (BNXT_CHIP_P5(bp)) 6490 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 6491 else 6492 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P7; 6493 } 6494 if (flags & VNIC_QCAPS_RESP_FLAGS_HW_TUNNEL_TPA_CAP) 6495 bp->fw_cap |= BNXT_FW_CAP_VNIC_TUNNEL_TPA; 6496 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV4_CAP) 6497 bp->rss_cap |= BNXT_RSS_CAP_AH_V4_RSS_CAP; 6498 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV6_CAP) 6499 bp->rss_cap |= BNXT_RSS_CAP_AH_V6_RSS_CAP; 6500 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV4_CAP) 6501 bp->rss_cap |= BNXT_RSS_CAP_ESP_V4_RSS_CAP; 6502 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV6_CAP) 6503 bp->rss_cap |= BNXT_RSS_CAP_ESP_V6_RSS_CAP; 6504 } 6505 hwrm_req_drop(bp, req); 6506 return rc; 6507 } 6508 6509 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 6510 { 6511 struct hwrm_ring_grp_alloc_output *resp; 6512 struct hwrm_ring_grp_alloc_input *req; 6513 int rc; 6514 u16 i; 6515 6516 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6517 return 0; 6518 6519 rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC); 6520 if (rc) 6521 return rc; 6522 6523 resp = hwrm_req_hold(bp, req); 6524 for (i = 0; i < bp->rx_nr_rings; i++) { 6525 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 6526 6527 req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 6528 req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 6529 req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 6530 req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 6531 6532 rc = hwrm_req_send(bp, req); 6533 6534 if (rc) 6535 break; 6536 6537 bp->grp_info[grp_idx].fw_grp_id = 6538 le32_to_cpu(resp->ring_group_id); 6539 } 6540 hwrm_req_drop(bp, req); 6541 return rc; 6542 } 6543 6544 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 6545 { 6546 struct hwrm_ring_grp_free_input *req; 6547 u16 i; 6548 6549 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 6550 return; 6551 6552 if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE)) 6553 return; 6554 6555 hwrm_req_hold(bp, req); 6556 for (i = 0; i < bp->cp_nr_rings; i++) { 6557 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 6558 continue; 6559 req->ring_group_id = 6560 cpu_to_le32(bp->grp_info[i].fw_grp_id); 6561 6562 hwrm_req_send(bp, req); 6563 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 6564 } 6565 hwrm_req_drop(bp, req); 6566 } 6567 6568 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 6569 struct bnxt_ring_struct *ring, 6570 u32 ring_type, u32 map_index) 6571 { 6572 struct hwrm_ring_alloc_output *resp; 6573 struct hwrm_ring_alloc_input *req; 6574 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 6575 struct bnxt_ring_grp_info *grp_info; 6576 int rc, err = 0; 6577 u16 ring_id; 6578 6579 rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC); 6580 if (rc) 6581 goto exit; 6582 6583 req->enables = 0; 6584 if (rmem->nr_pages > 1) { 6585 req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 6586 /* Page size is in log2 units */ 6587 req->page_size = BNXT_PAGE_SHIFT; 6588 req->page_tbl_depth = 1; 6589 } else { 6590 req->page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 6591 } 6592 req->fbo = 0; 6593 /* Association of ring index with doorbell index and MSIX number */ 6594 req->logical_id = cpu_to_le16(map_index); 6595 6596 switch (ring_type) { 6597 case HWRM_RING_ALLOC_TX: { 6598 struct bnxt_tx_ring_info *txr; 6599 6600 txr = container_of(ring, struct bnxt_tx_ring_info, 6601 tx_ring_struct); 6602 req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 6603 /* Association of transmit ring with completion ring */ 6604 grp_info = &bp->grp_info[ring->grp_idx]; 6605 req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 6606 req->length = cpu_to_le32(bp->tx_ring_mask + 1); 6607 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6608 req->queue_id = cpu_to_le16(ring->queue_id); 6609 if (bp->flags & BNXT_FLAG_TX_COAL_CMPL) 6610 req->cmpl_coal_cnt = 6611 RING_ALLOC_REQ_CMPL_COAL_CNT_COAL_64; 6612 break; 6613 } 6614 case HWRM_RING_ALLOC_RX: 6615 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 6616 req->length = cpu_to_le32(bp->rx_ring_mask + 1); 6617 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6618 u16 flags = 0; 6619 6620 /* Association of rx ring with stats context */ 6621 grp_info = &bp->grp_info[ring->grp_idx]; 6622 req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 6623 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6624 req->enables |= cpu_to_le32( 6625 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 6626 if (NET_IP_ALIGN == 2) 6627 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD; 6628 req->flags = cpu_to_le16(flags); 6629 } 6630 break; 6631 case HWRM_RING_ALLOC_AGG: 6632 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6633 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 6634 /* Association of agg ring with rx ring */ 6635 grp_info = &bp->grp_info[ring->grp_idx]; 6636 req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 6637 req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 6638 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6639 req->enables |= cpu_to_le32( 6640 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID | 6641 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 6642 } else { 6643 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 6644 } 6645 req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 6646 break; 6647 case HWRM_RING_ALLOC_CMPL: 6648 req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 6649 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 6650 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6651 /* Association of cp ring with nq */ 6652 grp_info = &bp->grp_info[map_index]; 6653 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 6654 req->cq_handle = cpu_to_le64(ring->handle); 6655 req->enables |= cpu_to_le32( 6656 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 6657 } else if (bp->flags & BNXT_FLAG_USING_MSIX) { 6658 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 6659 } 6660 break; 6661 case HWRM_RING_ALLOC_NQ: 6662 req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 6663 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 6664 if (bp->flags & BNXT_FLAG_USING_MSIX) 6665 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 6666 break; 6667 default: 6668 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 6669 ring_type); 6670 return -1; 6671 } 6672 6673 resp = hwrm_req_hold(bp, req); 6674 rc = hwrm_req_send(bp, req); 6675 err = le16_to_cpu(resp->error_code); 6676 ring_id = le16_to_cpu(resp->ring_id); 6677 hwrm_req_drop(bp, req); 6678 6679 exit: 6680 if (rc || err) { 6681 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 6682 ring_type, rc, err); 6683 return -EIO; 6684 } 6685 ring->fw_ring_id = ring_id; 6686 return rc; 6687 } 6688 6689 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 6690 { 6691 int rc; 6692 6693 if (BNXT_PF(bp)) { 6694 struct hwrm_func_cfg_input *req; 6695 6696 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 6697 if (rc) 6698 return rc; 6699 6700 req->fid = cpu_to_le16(0xffff); 6701 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 6702 req->async_event_cr = cpu_to_le16(idx); 6703 return hwrm_req_send(bp, req); 6704 } else { 6705 struct hwrm_func_vf_cfg_input *req; 6706 6707 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); 6708 if (rc) 6709 return rc; 6710 6711 req->enables = 6712 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 6713 req->async_event_cr = cpu_to_le16(idx); 6714 return hwrm_req_send(bp, req); 6715 } 6716 } 6717 6718 static void bnxt_set_db_mask(struct bnxt *bp, struct bnxt_db_info *db, 6719 u32 ring_type) 6720 { 6721 switch (ring_type) { 6722 case HWRM_RING_ALLOC_TX: 6723 db->db_ring_mask = bp->tx_ring_mask; 6724 break; 6725 case HWRM_RING_ALLOC_RX: 6726 db->db_ring_mask = bp->rx_ring_mask; 6727 break; 6728 case HWRM_RING_ALLOC_AGG: 6729 db->db_ring_mask = bp->rx_agg_ring_mask; 6730 break; 6731 case HWRM_RING_ALLOC_CMPL: 6732 case HWRM_RING_ALLOC_NQ: 6733 db->db_ring_mask = bp->cp_ring_mask; 6734 break; 6735 } 6736 if (bp->flags & BNXT_FLAG_CHIP_P7) { 6737 db->db_epoch_mask = db->db_ring_mask + 1; 6738 db->db_epoch_shift = DBR_EPOCH_SFT - ilog2(db->db_epoch_mask); 6739 } 6740 } 6741 6742 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 6743 u32 map_idx, u32 xid) 6744 { 6745 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6746 switch (ring_type) { 6747 case HWRM_RING_ALLOC_TX: 6748 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 6749 break; 6750 case HWRM_RING_ALLOC_RX: 6751 case HWRM_RING_ALLOC_AGG: 6752 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 6753 break; 6754 case HWRM_RING_ALLOC_CMPL: 6755 db->db_key64 = DBR_PATH_L2; 6756 break; 6757 case HWRM_RING_ALLOC_NQ: 6758 db->db_key64 = DBR_PATH_L2; 6759 break; 6760 } 6761 db->db_key64 |= (u64)xid << DBR_XID_SFT; 6762 6763 if (bp->flags & BNXT_FLAG_CHIP_P7) 6764 db->db_key64 |= DBR_VALID; 6765 6766 db->doorbell = bp->bar1 + bp->db_offset; 6767 } else { 6768 db->doorbell = bp->bar1 + map_idx * 0x80; 6769 switch (ring_type) { 6770 case HWRM_RING_ALLOC_TX: 6771 db->db_key32 = DB_KEY_TX; 6772 break; 6773 case HWRM_RING_ALLOC_RX: 6774 case HWRM_RING_ALLOC_AGG: 6775 db->db_key32 = DB_KEY_RX; 6776 break; 6777 case HWRM_RING_ALLOC_CMPL: 6778 db->db_key32 = DB_KEY_CP; 6779 break; 6780 } 6781 } 6782 bnxt_set_db_mask(bp, db, ring_type); 6783 } 6784 6785 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 6786 { 6787 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 6788 int i, rc = 0; 6789 u32 type; 6790 6791 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6792 type = HWRM_RING_ALLOC_NQ; 6793 else 6794 type = HWRM_RING_ALLOC_CMPL; 6795 for (i = 0; i < bp->cp_nr_rings; i++) { 6796 struct bnxt_napi *bnapi = bp->bnapi[i]; 6797 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6798 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 6799 u32 map_idx = ring->map_idx; 6800 unsigned int vector; 6801 6802 vector = bp->irq_tbl[map_idx].vector; 6803 disable_irq_nosync(vector); 6804 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 6805 if (rc) { 6806 enable_irq(vector); 6807 goto err_out; 6808 } 6809 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 6810 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 6811 enable_irq(vector); 6812 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 6813 6814 if (!i) { 6815 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 6816 if (rc) 6817 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 6818 } 6819 } 6820 6821 type = HWRM_RING_ALLOC_TX; 6822 for (i = 0; i < bp->tx_nr_rings; i++) { 6823 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 6824 struct bnxt_ring_struct *ring; 6825 u32 map_idx; 6826 6827 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6828 struct bnxt_cp_ring_info *cpr2 = txr->tx_cpr; 6829 struct bnxt_napi *bnapi = txr->bnapi; 6830 u32 type2 = HWRM_RING_ALLOC_CMPL; 6831 6832 ring = &cpr2->cp_ring_struct; 6833 ring->handle = BNXT_SET_NQ_HDL(cpr2); 6834 map_idx = bnapi->index; 6835 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 6836 if (rc) 6837 goto err_out; 6838 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 6839 ring->fw_ring_id); 6840 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 6841 } 6842 ring = &txr->tx_ring_struct; 6843 map_idx = i; 6844 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 6845 if (rc) 6846 goto err_out; 6847 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id); 6848 } 6849 6850 type = HWRM_RING_ALLOC_RX; 6851 for (i = 0; i < bp->rx_nr_rings; i++) { 6852 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6853 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 6854 struct bnxt_napi *bnapi = rxr->bnapi; 6855 u32 map_idx = bnapi->index; 6856 6857 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 6858 if (rc) 6859 goto err_out; 6860 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 6861 /* If we have agg rings, post agg buffers first. */ 6862 if (!agg_rings) 6863 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 6864 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 6865 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6866 struct bnxt_cp_ring_info *cpr2 = rxr->rx_cpr; 6867 u32 type2 = HWRM_RING_ALLOC_CMPL; 6868 6869 ring = &cpr2->cp_ring_struct; 6870 ring->handle = BNXT_SET_NQ_HDL(cpr2); 6871 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 6872 if (rc) 6873 goto err_out; 6874 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 6875 ring->fw_ring_id); 6876 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 6877 } 6878 } 6879 6880 if (agg_rings) { 6881 type = HWRM_RING_ALLOC_AGG; 6882 for (i = 0; i < bp->rx_nr_rings; i++) { 6883 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6884 struct bnxt_ring_struct *ring = 6885 &rxr->rx_agg_ring_struct; 6886 u32 grp_idx = ring->grp_idx; 6887 u32 map_idx = grp_idx + bp->rx_nr_rings; 6888 6889 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 6890 if (rc) 6891 goto err_out; 6892 6893 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 6894 ring->fw_ring_id); 6895 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 6896 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 6897 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 6898 } 6899 } 6900 err_out: 6901 return rc; 6902 } 6903 6904 static int hwrm_ring_free_send_msg(struct bnxt *bp, 6905 struct bnxt_ring_struct *ring, 6906 u32 ring_type, int cmpl_ring_id) 6907 { 6908 struct hwrm_ring_free_output *resp; 6909 struct hwrm_ring_free_input *req; 6910 u16 error_code = 0; 6911 int rc; 6912 6913 if (BNXT_NO_FW_ACCESS(bp)) 6914 return 0; 6915 6916 rc = hwrm_req_init(bp, req, HWRM_RING_FREE); 6917 if (rc) 6918 goto exit; 6919 6920 req->cmpl_ring = cpu_to_le16(cmpl_ring_id); 6921 req->ring_type = ring_type; 6922 req->ring_id = cpu_to_le16(ring->fw_ring_id); 6923 6924 resp = hwrm_req_hold(bp, req); 6925 rc = hwrm_req_send(bp, req); 6926 error_code = le16_to_cpu(resp->error_code); 6927 hwrm_req_drop(bp, req); 6928 exit: 6929 if (rc || error_code) { 6930 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 6931 ring_type, rc, error_code); 6932 return -EIO; 6933 } 6934 return 0; 6935 } 6936 6937 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 6938 { 6939 u32 type; 6940 int i; 6941 6942 if (!bp->bnapi) 6943 return; 6944 6945 for (i = 0; i < bp->tx_nr_rings; i++) { 6946 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 6947 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 6948 6949 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6950 u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr); 6951 6952 hwrm_ring_free_send_msg(bp, ring, 6953 RING_FREE_REQ_RING_TYPE_TX, 6954 close_path ? cmpl_ring_id : 6955 INVALID_HW_RING_ID); 6956 ring->fw_ring_id = INVALID_HW_RING_ID; 6957 } 6958 } 6959 6960 for (i = 0; i < bp->rx_nr_rings; i++) { 6961 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6962 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 6963 u32 grp_idx = rxr->bnapi->index; 6964 6965 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6966 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6967 6968 hwrm_ring_free_send_msg(bp, ring, 6969 RING_FREE_REQ_RING_TYPE_RX, 6970 close_path ? cmpl_ring_id : 6971 INVALID_HW_RING_ID); 6972 ring->fw_ring_id = INVALID_HW_RING_ID; 6973 bp->grp_info[grp_idx].rx_fw_ring_id = 6974 INVALID_HW_RING_ID; 6975 } 6976 } 6977 6978 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6979 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 6980 else 6981 type = RING_FREE_REQ_RING_TYPE_RX; 6982 for (i = 0; i < bp->rx_nr_rings; i++) { 6983 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6984 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 6985 u32 grp_idx = rxr->bnapi->index; 6986 6987 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6988 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6989 6990 hwrm_ring_free_send_msg(bp, ring, type, 6991 close_path ? cmpl_ring_id : 6992 INVALID_HW_RING_ID); 6993 ring->fw_ring_id = INVALID_HW_RING_ID; 6994 bp->grp_info[grp_idx].agg_fw_ring_id = 6995 INVALID_HW_RING_ID; 6996 } 6997 } 6998 6999 /* The completion rings are about to be freed. After that the 7000 * IRQ doorbell will not work anymore. So we need to disable 7001 * IRQ here. 7002 */ 7003 bnxt_disable_int_sync(bp); 7004 7005 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7006 type = RING_FREE_REQ_RING_TYPE_NQ; 7007 else 7008 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 7009 for (i = 0; i < bp->cp_nr_rings; i++) { 7010 struct bnxt_napi *bnapi = bp->bnapi[i]; 7011 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7012 struct bnxt_ring_struct *ring; 7013 int j; 7014 7015 for (j = 0; j < cpr->cp_ring_count && cpr->cp_ring_arr; j++) { 7016 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 7017 7018 ring = &cpr2->cp_ring_struct; 7019 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7020 continue; 7021 hwrm_ring_free_send_msg(bp, ring, 7022 RING_FREE_REQ_RING_TYPE_L2_CMPL, 7023 INVALID_HW_RING_ID); 7024 ring->fw_ring_id = INVALID_HW_RING_ID; 7025 } 7026 ring = &cpr->cp_ring_struct; 7027 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 7028 hwrm_ring_free_send_msg(bp, ring, type, 7029 INVALID_HW_RING_ID); 7030 ring->fw_ring_id = INVALID_HW_RING_ID; 7031 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 7032 } 7033 } 7034 } 7035 7036 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7037 bool shared); 7038 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7039 bool shared); 7040 7041 static int bnxt_hwrm_get_rings(struct bnxt *bp) 7042 { 7043 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7044 struct hwrm_func_qcfg_output *resp; 7045 struct hwrm_func_qcfg_input *req; 7046 int rc; 7047 7048 if (bp->hwrm_spec_code < 0x10601) 7049 return 0; 7050 7051 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7052 if (rc) 7053 return rc; 7054 7055 req->fid = cpu_to_le16(0xffff); 7056 resp = hwrm_req_hold(bp, req); 7057 rc = hwrm_req_send(bp, req); 7058 if (rc) { 7059 hwrm_req_drop(bp, req); 7060 return rc; 7061 } 7062 7063 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7064 if (BNXT_NEW_RM(bp)) { 7065 u16 cp, stats; 7066 7067 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 7068 hw_resc->resv_hw_ring_grps = 7069 le32_to_cpu(resp->alloc_hw_ring_grps); 7070 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 7071 hw_resc->resv_rsscos_ctxs = le16_to_cpu(resp->alloc_rsscos_ctx); 7072 cp = le16_to_cpu(resp->alloc_cmpl_rings); 7073 stats = le16_to_cpu(resp->alloc_stat_ctx); 7074 hw_resc->resv_irqs = cp; 7075 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7076 int rx = hw_resc->resv_rx_rings; 7077 int tx = hw_resc->resv_tx_rings; 7078 7079 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7080 rx >>= 1; 7081 if (cp < (rx + tx)) { 7082 rc = __bnxt_trim_rings(bp, &rx, &tx, cp, false); 7083 if (rc) 7084 goto get_rings_exit; 7085 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7086 rx <<= 1; 7087 hw_resc->resv_rx_rings = rx; 7088 hw_resc->resv_tx_rings = tx; 7089 } 7090 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 7091 hw_resc->resv_hw_ring_grps = rx; 7092 } 7093 hw_resc->resv_cp_rings = cp; 7094 hw_resc->resv_stat_ctxs = stats; 7095 } 7096 get_rings_exit: 7097 hwrm_req_drop(bp, req); 7098 return rc; 7099 } 7100 7101 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 7102 { 7103 struct hwrm_func_qcfg_output *resp; 7104 struct hwrm_func_qcfg_input *req; 7105 int rc; 7106 7107 if (bp->hwrm_spec_code < 0x10601) 7108 return 0; 7109 7110 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7111 if (rc) 7112 return rc; 7113 7114 req->fid = cpu_to_le16(fid); 7115 resp = hwrm_req_hold(bp, req); 7116 rc = hwrm_req_send(bp, req); 7117 if (!rc) 7118 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7119 7120 hwrm_req_drop(bp, req); 7121 return rc; 7122 } 7123 7124 static bool bnxt_rfs_supported(struct bnxt *bp); 7125 7126 static struct hwrm_func_cfg_input * 7127 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7128 { 7129 struct hwrm_func_cfg_input *req; 7130 u32 enables = 0; 7131 7132 if (bnxt_hwrm_func_cfg_short_req_init(bp, &req)) 7133 return NULL; 7134 7135 req->fid = cpu_to_le16(0xffff); 7136 enables |= hwr->tx ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7137 req->num_tx_rings = cpu_to_le16(hwr->tx); 7138 if (BNXT_NEW_RM(bp)) { 7139 enables |= hwr->rx ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 7140 enables |= hwr->stat ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7141 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7142 enables |= hwr->cp ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 7143 enables |= hwr->cp_p5 ? 7144 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7145 } else { 7146 enables |= hwr->cp ? 7147 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7148 enables |= hwr->grp ? 7149 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7150 } 7151 enables |= hwr->vnic ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 7152 enables |= hwr->rss_ctx ? FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 7153 0; 7154 req->num_rx_rings = cpu_to_le16(hwr->rx); 7155 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7156 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7157 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7158 req->num_msix = cpu_to_le16(hwr->cp); 7159 } else { 7160 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7161 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7162 } 7163 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7164 req->num_vnics = cpu_to_le16(hwr->vnic); 7165 } 7166 req->enables = cpu_to_le32(enables); 7167 return req; 7168 } 7169 7170 static struct hwrm_func_vf_cfg_input * 7171 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7172 { 7173 struct hwrm_func_vf_cfg_input *req; 7174 u32 enables = 0; 7175 7176 if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG)) 7177 return NULL; 7178 7179 enables |= hwr->tx ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7180 enables |= hwr->rx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 7181 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7182 enables |= hwr->stat ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7183 enables |= hwr->rss_ctx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7184 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7185 enables |= hwr->cp_p5 ? 7186 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7187 } else { 7188 enables |= hwr->cp ? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7189 enables |= hwr->grp ? 7190 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7191 } 7192 enables |= hwr->vnic ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 7193 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 7194 7195 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 7196 req->num_tx_rings = cpu_to_le16(hwr->tx); 7197 req->num_rx_rings = cpu_to_le16(hwr->rx); 7198 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7199 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7200 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7201 } else { 7202 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7203 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7204 } 7205 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7206 req->num_vnics = cpu_to_le16(hwr->vnic); 7207 7208 req->enables = cpu_to_le32(enables); 7209 return req; 7210 } 7211 7212 static int 7213 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7214 { 7215 struct hwrm_func_cfg_input *req; 7216 int rc; 7217 7218 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 7219 if (!req) 7220 return -ENOMEM; 7221 7222 if (!req->enables) { 7223 hwrm_req_drop(bp, req); 7224 return 0; 7225 } 7226 7227 rc = hwrm_req_send(bp, req); 7228 if (rc) 7229 return rc; 7230 7231 if (bp->hwrm_spec_code < 0x10601) 7232 bp->hw_resc.resv_tx_rings = hwr->tx; 7233 7234 return bnxt_hwrm_get_rings(bp); 7235 } 7236 7237 static int 7238 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7239 { 7240 struct hwrm_func_vf_cfg_input *req; 7241 int rc; 7242 7243 if (!BNXT_NEW_RM(bp)) { 7244 bp->hw_resc.resv_tx_rings = hwr->tx; 7245 return 0; 7246 } 7247 7248 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 7249 if (!req) 7250 return -ENOMEM; 7251 7252 rc = hwrm_req_send(bp, req); 7253 if (rc) 7254 return rc; 7255 7256 return bnxt_hwrm_get_rings(bp); 7257 } 7258 7259 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7260 { 7261 if (BNXT_PF(bp)) 7262 return bnxt_hwrm_reserve_pf_rings(bp, hwr); 7263 else 7264 return bnxt_hwrm_reserve_vf_rings(bp, hwr); 7265 } 7266 7267 int bnxt_nq_rings_in_use(struct bnxt *bp) 7268 { 7269 int cp = bp->cp_nr_rings; 7270 int ulp_msix, ulp_base; 7271 7272 ulp_msix = bnxt_get_ulp_msix_num(bp); 7273 if (ulp_msix) { 7274 ulp_base = bnxt_get_ulp_msix_base(bp); 7275 cp += ulp_msix; 7276 if ((ulp_base + ulp_msix) > cp) 7277 cp = ulp_base + ulp_msix; 7278 } 7279 return cp; 7280 } 7281 7282 static int bnxt_cp_rings_in_use(struct bnxt *bp) 7283 { 7284 int cp; 7285 7286 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7287 return bnxt_nq_rings_in_use(bp); 7288 7289 cp = bp->tx_nr_rings + bp->rx_nr_rings; 7290 return cp; 7291 } 7292 7293 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 7294 { 7295 int ulp_stat = bnxt_get_ulp_stat_ctxs(bp); 7296 int cp = bp->cp_nr_rings; 7297 7298 if (!ulp_stat) 7299 return cp; 7300 7301 if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp)) 7302 return bnxt_get_ulp_msix_base(bp) + ulp_stat; 7303 7304 return cp + ulp_stat; 7305 } 7306 7307 static int bnxt_get_total_rss_ctxs(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7308 { 7309 if (!hwr->grp) 7310 return 0; 7311 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7312 int rss_ctx = bnxt_get_nr_rss_ctxs(bp, hwr->grp); 7313 7314 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7315 rss_ctx *= hwr->vnic; 7316 return rss_ctx; 7317 } 7318 if (BNXT_VF(bp)) 7319 return BNXT_VF_MAX_RSS_CTX; 7320 if (!(bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && bnxt_rfs_supported(bp)) 7321 return hwr->grp + 1; 7322 return 1; 7323 } 7324 7325 /* Check if a default RSS map needs to be setup. This function is only 7326 * used on older firmware that does not require reserving RX rings. 7327 */ 7328 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 7329 { 7330 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7331 7332 /* The RSS map is valid for RX rings set to resv_rx_rings */ 7333 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 7334 hw_resc->resv_rx_rings = bp->rx_nr_rings; 7335 if (!netif_is_rxfh_configured(bp->dev)) 7336 bnxt_set_dflt_rss_indir_tbl(bp); 7337 } 7338 } 7339 7340 static int bnxt_get_total_vnics(struct bnxt *bp, int rx_rings) 7341 { 7342 if (bp->flags & BNXT_FLAG_RFS) { 7343 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7344 return 2; 7345 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7346 return rx_rings + 1; 7347 } 7348 return 1; 7349 } 7350 7351 static bool bnxt_need_reserve_rings(struct bnxt *bp) 7352 { 7353 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7354 int cp = bnxt_cp_rings_in_use(bp); 7355 int nq = bnxt_nq_rings_in_use(bp); 7356 int rx = bp->rx_nr_rings, stat; 7357 int vnic, grp = rx; 7358 7359 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 7360 bp->hwrm_spec_code >= 0x10601) 7361 return true; 7362 7363 /* Old firmware does not need RX ring reservations but we still 7364 * need to setup a default RSS map when needed. With new firmware 7365 * we go through RX ring reservations first and then set up the 7366 * RSS map for the successfully reserved RX rings when needed. 7367 */ 7368 if (!BNXT_NEW_RM(bp)) { 7369 bnxt_check_rss_tbl_no_rmgr(bp); 7370 return false; 7371 } 7372 7373 vnic = bnxt_get_total_vnics(bp, rx); 7374 7375 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7376 rx <<= 1; 7377 stat = bnxt_get_func_stat_ctxs(bp); 7378 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 7379 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 7380 (hw_resc->resv_hw_ring_grps != grp && 7381 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))) 7382 return true; 7383 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && BNXT_PF(bp) && 7384 hw_resc->resv_irqs != nq) 7385 return true; 7386 return false; 7387 } 7388 7389 static void bnxt_copy_reserved_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7390 { 7391 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7392 7393 hwr->tx = hw_resc->resv_tx_rings; 7394 if (BNXT_NEW_RM(bp)) { 7395 hwr->rx = hw_resc->resv_rx_rings; 7396 hwr->cp = hw_resc->resv_irqs; 7397 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7398 hwr->cp_p5 = hw_resc->resv_cp_rings; 7399 hwr->grp = hw_resc->resv_hw_ring_grps; 7400 hwr->vnic = hw_resc->resv_vnics; 7401 hwr->stat = hw_resc->resv_stat_ctxs; 7402 hwr->rss_ctx = hw_resc->resv_rsscos_ctxs; 7403 } 7404 } 7405 7406 static bool bnxt_rings_ok(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7407 { 7408 return hwr->tx && hwr->rx && hwr->cp && hwr->grp && hwr->vnic && 7409 hwr->stat && (hwr->cp_p5 || !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)); 7410 } 7411 7412 static int __bnxt_reserve_rings(struct bnxt *bp) 7413 { 7414 struct bnxt_hw_rings hwr = {0}; 7415 int rx_rings, rc; 7416 bool sh = false; 7417 int tx_cp; 7418 7419 if (!bnxt_need_reserve_rings(bp)) 7420 return 0; 7421 7422 hwr.cp = bnxt_nq_rings_in_use(bp); 7423 hwr.tx = bp->tx_nr_rings; 7424 hwr.rx = bp->rx_nr_rings; 7425 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 7426 sh = true; 7427 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7428 hwr.cp_p5 = hwr.rx + hwr.tx; 7429 7430 hwr.vnic = bnxt_get_total_vnics(bp, hwr.rx); 7431 7432 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7433 hwr.rx <<= 1; 7434 hwr.grp = bp->rx_nr_rings; 7435 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 7436 hwr.stat = bnxt_get_func_stat_ctxs(bp); 7437 7438 rc = bnxt_hwrm_reserve_rings(bp, &hwr); 7439 if (rc) 7440 return rc; 7441 7442 bnxt_copy_reserved_rings(bp, &hwr); 7443 7444 rx_rings = hwr.rx; 7445 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 7446 if (hwr.rx >= 2) { 7447 rx_rings = hwr.rx >> 1; 7448 } else { 7449 if (netif_running(bp->dev)) 7450 return -ENOMEM; 7451 7452 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 7453 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 7454 bp->dev->hw_features &= ~NETIF_F_LRO; 7455 bp->dev->features &= ~NETIF_F_LRO; 7456 bnxt_set_ring_params(bp); 7457 } 7458 } 7459 rx_rings = min_t(int, rx_rings, hwr.grp); 7460 hwr.cp = min_t(int, hwr.cp, bp->cp_nr_rings); 7461 if (hwr.stat > bnxt_get_ulp_stat_ctxs(bp)) 7462 hwr.stat -= bnxt_get_ulp_stat_ctxs(bp); 7463 hwr.cp = min_t(int, hwr.cp, hwr.stat); 7464 rc = bnxt_trim_rings(bp, &rx_rings, &hwr.tx, hwr.cp, sh); 7465 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7466 hwr.rx = rx_rings << 1; 7467 tx_cp = bnxt_num_tx_to_cp(bp, hwr.tx); 7468 hwr.cp = sh ? max_t(int, tx_cp, rx_rings) : tx_cp + rx_rings; 7469 bp->tx_nr_rings = hwr.tx; 7470 7471 /* If we cannot reserve all the RX rings, reset the RSS map only 7472 * if absolutely necessary 7473 */ 7474 if (rx_rings != bp->rx_nr_rings) { 7475 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 7476 rx_rings, bp->rx_nr_rings); 7477 if (netif_is_rxfh_configured(bp->dev) && 7478 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 7479 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 7480 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 7481 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 7482 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 7483 } 7484 } 7485 bp->rx_nr_rings = rx_rings; 7486 bp->cp_nr_rings = hwr.cp; 7487 7488 if (!bnxt_rings_ok(bp, &hwr)) 7489 return -ENOMEM; 7490 7491 if (!netif_is_rxfh_configured(bp->dev)) 7492 bnxt_set_dflt_rss_indir_tbl(bp); 7493 7494 return rc; 7495 } 7496 7497 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7498 { 7499 struct hwrm_func_vf_cfg_input *req; 7500 u32 flags; 7501 7502 if (!BNXT_NEW_RM(bp)) 7503 return 0; 7504 7505 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 7506 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 7507 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 7508 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 7509 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 7510 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 7511 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 7512 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7513 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 7514 7515 req->flags = cpu_to_le32(flags); 7516 return hwrm_req_send_silent(bp, req); 7517 } 7518 7519 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7520 { 7521 struct hwrm_func_cfg_input *req; 7522 u32 flags; 7523 7524 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 7525 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 7526 if (BNXT_NEW_RM(bp)) { 7527 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 7528 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 7529 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 7530 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 7531 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7532 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 7533 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 7534 else 7535 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 7536 } 7537 7538 req->flags = cpu_to_le32(flags); 7539 return hwrm_req_send_silent(bp, req); 7540 } 7541 7542 static int bnxt_hwrm_check_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7543 { 7544 if (bp->hwrm_spec_code < 0x10801) 7545 return 0; 7546 7547 if (BNXT_PF(bp)) 7548 return bnxt_hwrm_check_pf_rings(bp, hwr); 7549 7550 return bnxt_hwrm_check_vf_rings(bp, hwr); 7551 } 7552 7553 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 7554 { 7555 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7556 struct hwrm_ring_aggint_qcaps_output *resp; 7557 struct hwrm_ring_aggint_qcaps_input *req; 7558 int rc; 7559 7560 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 7561 coal_cap->num_cmpl_dma_aggr_max = 63; 7562 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 7563 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 7564 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 7565 coal_cap->int_lat_tmr_min_max = 65535; 7566 coal_cap->int_lat_tmr_max_max = 65535; 7567 coal_cap->num_cmpl_aggr_int_max = 65535; 7568 coal_cap->timer_units = 80; 7569 7570 if (bp->hwrm_spec_code < 0x10902) 7571 return; 7572 7573 if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS)) 7574 return; 7575 7576 resp = hwrm_req_hold(bp, req); 7577 rc = hwrm_req_send_silent(bp, req); 7578 if (!rc) { 7579 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 7580 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 7581 coal_cap->num_cmpl_dma_aggr_max = 7582 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 7583 coal_cap->num_cmpl_dma_aggr_during_int_max = 7584 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 7585 coal_cap->cmpl_aggr_dma_tmr_max = 7586 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 7587 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 7588 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 7589 coal_cap->int_lat_tmr_min_max = 7590 le16_to_cpu(resp->int_lat_tmr_min_max); 7591 coal_cap->int_lat_tmr_max_max = 7592 le16_to_cpu(resp->int_lat_tmr_max_max); 7593 coal_cap->num_cmpl_aggr_int_max = 7594 le16_to_cpu(resp->num_cmpl_aggr_int_max); 7595 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 7596 } 7597 hwrm_req_drop(bp, req); 7598 } 7599 7600 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 7601 { 7602 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7603 7604 return usec * 1000 / coal_cap->timer_units; 7605 } 7606 7607 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 7608 struct bnxt_coal *hw_coal, 7609 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 7610 { 7611 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7612 u16 val, tmr, max, flags = hw_coal->flags; 7613 u32 cmpl_params = coal_cap->cmpl_params; 7614 7615 max = hw_coal->bufs_per_record * 128; 7616 if (hw_coal->budget) 7617 max = hw_coal->bufs_per_record * hw_coal->budget; 7618 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 7619 7620 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 7621 req->num_cmpl_aggr_int = cpu_to_le16(val); 7622 7623 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 7624 req->num_cmpl_dma_aggr = cpu_to_le16(val); 7625 7626 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 7627 coal_cap->num_cmpl_dma_aggr_during_int_max); 7628 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 7629 7630 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 7631 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 7632 req->int_lat_tmr_max = cpu_to_le16(tmr); 7633 7634 /* min timer set to 1/2 of interrupt timer */ 7635 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 7636 val = tmr / 2; 7637 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 7638 req->int_lat_tmr_min = cpu_to_le16(val); 7639 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 7640 } 7641 7642 /* buf timer set to 1/4 of interrupt timer */ 7643 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 7644 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 7645 7646 if (cmpl_params & 7647 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 7648 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 7649 val = clamp_t(u16, tmr, 1, 7650 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 7651 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 7652 req->enables |= 7653 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 7654 } 7655 7656 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 7657 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 7658 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 7659 req->flags = cpu_to_le16(flags); 7660 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 7661 } 7662 7663 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 7664 struct bnxt_coal *hw_coal) 7665 { 7666 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req; 7667 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7668 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7669 u32 nq_params = coal_cap->nq_params; 7670 u16 tmr; 7671 int rc; 7672 7673 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 7674 return 0; 7675 7676 rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 7677 if (rc) 7678 return rc; 7679 7680 req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 7681 req->flags = 7682 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 7683 7684 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 7685 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 7686 req->int_lat_tmr_min = cpu_to_le16(tmr); 7687 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 7688 return hwrm_req_send(bp, req); 7689 } 7690 7691 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 7692 { 7693 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx; 7694 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7695 struct bnxt_coal coal; 7696 int rc; 7697 7698 /* Tick values in micro seconds. 7699 * 1 coal_buf x bufs_per_record = 1 completion record. 7700 */ 7701 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 7702 7703 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 7704 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 7705 7706 if (!bnapi->rx_ring) 7707 return -ENODEV; 7708 7709 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 7710 if (rc) 7711 return rc; 7712 7713 bnxt_hwrm_set_coal_params(bp, &coal, req_rx); 7714 7715 req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 7716 7717 return hwrm_req_send(bp, req_rx); 7718 } 7719 7720 static int 7721 bnxt_hwrm_set_rx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 7722 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 7723 { 7724 u16 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 7725 7726 req->ring_id = cpu_to_le16(ring_id); 7727 return hwrm_req_send(bp, req); 7728 } 7729 7730 static int 7731 bnxt_hwrm_set_tx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 7732 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 7733 { 7734 struct bnxt_tx_ring_info *txr; 7735 int i, rc; 7736 7737 bnxt_for_each_napi_tx(i, bnapi, txr) { 7738 u16 ring_id; 7739 7740 ring_id = bnxt_cp_ring_for_tx(bp, txr); 7741 req->ring_id = cpu_to_le16(ring_id); 7742 rc = hwrm_req_send(bp, req); 7743 if (rc) 7744 return rc; 7745 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7746 return 0; 7747 } 7748 return 0; 7749 } 7750 7751 int bnxt_hwrm_set_coal(struct bnxt *bp) 7752 { 7753 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx; 7754 int i, rc; 7755 7756 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 7757 if (rc) 7758 return rc; 7759 7760 rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 7761 if (rc) { 7762 hwrm_req_drop(bp, req_rx); 7763 return rc; 7764 } 7765 7766 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx); 7767 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx); 7768 7769 hwrm_req_hold(bp, req_rx); 7770 hwrm_req_hold(bp, req_tx); 7771 for (i = 0; i < bp->cp_nr_rings; i++) { 7772 struct bnxt_napi *bnapi = bp->bnapi[i]; 7773 struct bnxt_coal *hw_coal; 7774 7775 if (!bnapi->rx_ring) 7776 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 7777 else 7778 rc = bnxt_hwrm_set_rx_coal(bp, bnapi, req_rx); 7779 if (rc) 7780 break; 7781 7782 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7783 continue; 7784 7785 if (bnapi->rx_ring && bnapi->tx_ring[0]) { 7786 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 7787 if (rc) 7788 break; 7789 } 7790 if (bnapi->rx_ring) 7791 hw_coal = &bp->rx_coal; 7792 else 7793 hw_coal = &bp->tx_coal; 7794 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 7795 } 7796 hwrm_req_drop(bp, req_rx); 7797 hwrm_req_drop(bp, req_tx); 7798 return rc; 7799 } 7800 7801 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 7802 { 7803 struct hwrm_stat_ctx_clr_stats_input *req0 = NULL; 7804 struct hwrm_stat_ctx_free_input *req; 7805 int i; 7806 7807 if (!bp->bnapi) 7808 return; 7809 7810 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 7811 return; 7812 7813 if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE)) 7814 return; 7815 if (BNXT_FW_MAJ(bp) <= 20) { 7816 if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) { 7817 hwrm_req_drop(bp, req); 7818 return; 7819 } 7820 hwrm_req_hold(bp, req0); 7821 } 7822 hwrm_req_hold(bp, req); 7823 for (i = 0; i < bp->cp_nr_rings; i++) { 7824 struct bnxt_napi *bnapi = bp->bnapi[i]; 7825 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7826 7827 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 7828 req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 7829 if (req0) { 7830 req0->stat_ctx_id = req->stat_ctx_id; 7831 hwrm_req_send(bp, req0); 7832 } 7833 hwrm_req_send(bp, req); 7834 7835 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 7836 } 7837 } 7838 hwrm_req_drop(bp, req); 7839 if (req0) 7840 hwrm_req_drop(bp, req0); 7841 } 7842 7843 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 7844 { 7845 struct hwrm_stat_ctx_alloc_output *resp; 7846 struct hwrm_stat_ctx_alloc_input *req; 7847 int rc, i; 7848 7849 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 7850 return 0; 7851 7852 rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC); 7853 if (rc) 7854 return rc; 7855 7856 req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 7857 req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 7858 7859 resp = hwrm_req_hold(bp, req); 7860 for (i = 0; i < bp->cp_nr_rings; i++) { 7861 struct bnxt_napi *bnapi = bp->bnapi[i]; 7862 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7863 7864 req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 7865 7866 rc = hwrm_req_send(bp, req); 7867 if (rc) 7868 break; 7869 7870 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 7871 7872 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 7873 } 7874 hwrm_req_drop(bp, req); 7875 return rc; 7876 } 7877 7878 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 7879 { 7880 struct hwrm_func_qcfg_output *resp; 7881 struct hwrm_func_qcfg_input *req; 7882 u16 flags; 7883 int rc; 7884 7885 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7886 if (rc) 7887 return rc; 7888 7889 req->fid = cpu_to_le16(0xffff); 7890 resp = hwrm_req_hold(bp, req); 7891 rc = hwrm_req_send(bp, req); 7892 if (rc) 7893 goto func_qcfg_exit; 7894 7895 #ifdef CONFIG_BNXT_SRIOV 7896 if (BNXT_VF(bp)) { 7897 struct bnxt_vf_info *vf = &bp->vf; 7898 7899 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 7900 } else { 7901 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 7902 } 7903 #endif 7904 flags = le16_to_cpu(resp->flags); 7905 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 7906 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 7907 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 7908 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 7909 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 7910 } 7911 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 7912 bp->flags |= BNXT_FLAG_MULTI_HOST; 7913 7914 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 7915 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 7916 7917 switch (resp->port_partition_type) { 7918 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 7919 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 7920 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 7921 bp->port_partition_type = resp->port_partition_type; 7922 break; 7923 } 7924 if (bp->hwrm_spec_code < 0x10707 || 7925 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 7926 bp->br_mode = BRIDGE_MODE_VEB; 7927 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 7928 bp->br_mode = BRIDGE_MODE_VEPA; 7929 else 7930 bp->br_mode = BRIDGE_MODE_UNDEF; 7931 7932 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 7933 if (!bp->max_mtu) 7934 bp->max_mtu = BNXT_MAX_MTU; 7935 7936 if (bp->db_size) 7937 goto func_qcfg_exit; 7938 7939 bp->db_offset = le16_to_cpu(resp->legacy_l2_db_size_kb) * 1024; 7940 if (BNXT_CHIP_P5(bp)) { 7941 if (BNXT_PF(bp)) 7942 bp->db_offset = DB_PF_OFFSET_P5; 7943 else 7944 bp->db_offset = DB_VF_OFFSET_P5; 7945 } 7946 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 7947 1024); 7948 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 7949 bp->db_size <= bp->db_offset) 7950 bp->db_size = pci_resource_len(bp->pdev, 2); 7951 7952 func_qcfg_exit: 7953 hwrm_req_drop(bp, req); 7954 return rc; 7955 } 7956 7957 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_type *ctxm, 7958 u8 init_val, u8 init_offset, 7959 bool init_mask_set) 7960 { 7961 ctxm->init_value = init_val; 7962 ctxm->init_offset = BNXT_CTX_INIT_INVALID_OFFSET; 7963 if (init_mask_set) 7964 ctxm->init_offset = init_offset * 4; 7965 else 7966 ctxm->init_value = 0; 7967 } 7968 7969 static int bnxt_alloc_all_ctx_pg_info(struct bnxt *bp, int ctx_max) 7970 { 7971 struct bnxt_ctx_mem_info *ctx = bp->ctx; 7972 u16 type; 7973 7974 for (type = 0; type < ctx_max; type++) { 7975 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 7976 int n = 1; 7977 7978 if (!ctxm->max_entries) 7979 continue; 7980 7981 if (ctxm->instance_bmap) 7982 n = hweight32(ctxm->instance_bmap); 7983 ctxm->pg_info = kcalloc(n, sizeof(*ctxm->pg_info), GFP_KERNEL); 7984 if (!ctxm->pg_info) 7985 return -ENOMEM; 7986 } 7987 return 0; 7988 } 7989 7990 #define BNXT_CTX_INIT_VALID(flags) \ 7991 (!!((flags) & \ 7992 FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_ENABLE_CTX_KIND_INIT)) 7993 7994 static int bnxt_hwrm_func_backing_store_qcaps_v2(struct bnxt *bp) 7995 { 7996 struct hwrm_func_backing_store_qcaps_v2_output *resp; 7997 struct hwrm_func_backing_store_qcaps_v2_input *req; 7998 struct bnxt_ctx_mem_info *ctx; 7999 u16 type; 8000 int rc; 8001 8002 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS_V2); 8003 if (rc) 8004 return rc; 8005 8006 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8007 if (!ctx) 8008 return -ENOMEM; 8009 bp->ctx = ctx; 8010 8011 resp = hwrm_req_hold(bp, req); 8012 8013 for (type = 0; type < BNXT_CTX_V2_MAX; ) { 8014 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8015 u8 init_val, init_off, i; 8016 __le32 *p; 8017 u32 flags; 8018 8019 req->type = cpu_to_le16(type); 8020 rc = hwrm_req_send(bp, req); 8021 if (rc) 8022 goto ctx_done; 8023 flags = le32_to_cpu(resp->flags); 8024 type = le16_to_cpu(resp->next_valid_type); 8025 if (!(flags & FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_TYPE_VALID)) 8026 continue; 8027 8028 ctxm->type = le16_to_cpu(resp->type); 8029 ctxm->entry_size = le16_to_cpu(resp->entry_size); 8030 ctxm->flags = flags; 8031 ctxm->instance_bmap = le32_to_cpu(resp->instance_bit_map); 8032 ctxm->entry_multiple = resp->entry_multiple; 8033 ctxm->max_entries = le32_to_cpu(resp->max_num_entries); 8034 ctxm->min_entries = le32_to_cpu(resp->min_num_entries); 8035 init_val = resp->ctx_init_value; 8036 init_off = resp->ctx_init_offset; 8037 bnxt_init_ctx_initializer(ctxm, init_val, init_off, 8038 BNXT_CTX_INIT_VALID(flags)); 8039 ctxm->split_entry_cnt = min_t(u8, resp->subtype_valid_cnt, 8040 BNXT_MAX_SPLIT_ENTRY); 8041 for (i = 0, p = &resp->split_entry_0; i < ctxm->split_entry_cnt; 8042 i++, p++) 8043 ctxm->split[i] = le32_to_cpu(*p); 8044 } 8045 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_V2_MAX); 8046 8047 ctx_done: 8048 hwrm_req_drop(bp, req); 8049 return rc; 8050 } 8051 8052 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 8053 { 8054 struct hwrm_func_backing_store_qcaps_output *resp; 8055 struct hwrm_func_backing_store_qcaps_input *req; 8056 int rc; 8057 8058 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx) 8059 return 0; 8060 8061 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 8062 return bnxt_hwrm_func_backing_store_qcaps_v2(bp); 8063 8064 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS); 8065 if (rc) 8066 return rc; 8067 8068 resp = hwrm_req_hold(bp, req); 8069 rc = hwrm_req_send_silent(bp, req); 8070 if (!rc) { 8071 struct bnxt_ctx_mem_type *ctxm; 8072 struct bnxt_ctx_mem_info *ctx; 8073 u8 init_val, init_idx = 0; 8074 u16 init_mask; 8075 8076 ctx = bp->ctx; 8077 if (!ctx) { 8078 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8079 if (!ctx) { 8080 rc = -ENOMEM; 8081 goto ctx_err; 8082 } 8083 bp->ctx = ctx; 8084 } 8085 init_val = resp->ctx_kind_initializer; 8086 init_mask = le16_to_cpu(resp->ctx_init_mask); 8087 8088 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8089 ctxm->max_entries = le32_to_cpu(resp->qp_max_entries); 8090 ctxm->qp_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 8091 ctxm->qp_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 8092 ctxm->qp_fast_qpmd_entries = le16_to_cpu(resp->fast_qpmd_qp_num_entries); 8093 ctxm->entry_size = le16_to_cpu(resp->qp_entry_size); 8094 bnxt_init_ctx_initializer(ctxm, init_val, resp->qp_init_offset, 8095 (init_mask & (1 << init_idx++)) != 0); 8096 8097 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8098 ctxm->srq_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 8099 ctxm->max_entries = le32_to_cpu(resp->srq_max_entries); 8100 ctxm->entry_size = le16_to_cpu(resp->srq_entry_size); 8101 bnxt_init_ctx_initializer(ctxm, init_val, resp->srq_init_offset, 8102 (init_mask & (1 << init_idx++)) != 0); 8103 8104 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8105 ctxm->cq_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 8106 ctxm->max_entries = le32_to_cpu(resp->cq_max_entries); 8107 ctxm->entry_size = le16_to_cpu(resp->cq_entry_size); 8108 bnxt_init_ctx_initializer(ctxm, init_val, resp->cq_init_offset, 8109 (init_mask & (1 << init_idx++)) != 0); 8110 8111 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8112 ctxm->vnic_entries = le16_to_cpu(resp->vnic_max_vnic_entries); 8113 ctxm->max_entries = ctxm->vnic_entries + 8114 le16_to_cpu(resp->vnic_max_ring_table_entries); 8115 ctxm->entry_size = le16_to_cpu(resp->vnic_entry_size); 8116 bnxt_init_ctx_initializer(ctxm, init_val, 8117 resp->vnic_init_offset, 8118 (init_mask & (1 << init_idx++)) != 0); 8119 8120 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8121 ctxm->max_entries = le32_to_cpu(resp->stat_max_entries); 8122 ctxm->entry_size = le16_to_cpu(resp->stat_entry_size); 8123 bnxt_init_ctx_initializer(ctxm, init_val, 8124 resp->stat_init_offset, 8125 (init_mask & (1 << init_idx++)) != 0); 8126 8127 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8128 ctxm->entry_size = le16_to_cpu(resp->tqm_entry_size); 8129 ctxm->min_entries = le32_to_cpu(resp->tqm_min_entries_per_ring); 8130 ctxm->max_entries = le32_to_cpu(resp->tqm_max_entries_per_ring); 8131 ctxm->entry_multiple = resp->tqm_entries_multiple; 8132 if (!ctxm->entry_multiple) 8133 ctxm->entry_multiple = 1; 8134 8135 memcpy(&ctx->ctx_arr[BNXT_CTX_FTQM], ctxm, sizeof(*ctxm)); 8136 8137 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8138 ctxm->max_entries = le32_to_cpu(resp->mrav_max_entries); 8139 ctxm->entry_size = le16_to_cpu(resp->mrav_entry_size); 8140 ctxm->mrav_num_entries_units = 8141 le16_to_cpu(resp->mrav_num_entries_units); 8142 bnxt_init_ctx_initializer(ctxm, init_val, 8143 resp->mrav_init_offset, 8144 (init_mask & (1 << init_idx++)) != 0); 8145 8146 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8147 ctxm->entry_size = le16_to_cpu(resp->tim_entry_size); 8148 ctxm->max_entries = le32_to_cpu(resp->tim_max_entries); 8149 8150 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 8151 if (!ctx->tqm_fp_rings_count) 8152 ctx->tqm_fp_rings_count = bp->max_q; 8153 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 8154 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 8155 8156 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 8157 memcpy(ctxm, &ctx->ctx_arr[BNXT_CTX_STQM], sizeof(*ctxm)); 8158 ctxm->instance_bmap = (1 << ctx->tqm_fp_rings_count) - 1; 8159 8160 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_MAX); 8161 } else { 8162 rc = 0; 8163 } 8164 ctx_err: 8165 hwrm_req_drop(bp, req); 8166 return rc; 8167 } 8168 8169 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 8170 __le64 *pg_dir) 8171 { 8172 if (!rmem->nr_pages) 8173 return; 8174 8175 BNXT_SET_CTX_PAGE_ATTR(*pg_attr); 8176 if (rmem->depth >= 1) { 8177 if (rmem->depth == 2) 8178 *pg_attr |= 2; 8179 else 8180 *pg_attr |= 1; 8181 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 8182 } else { 8183 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 8184 } 8185 } 8186 8187 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 8188 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 8189 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 8190 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 8191 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 8192 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 8193 8194 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 8195 { 8196 struct hwrm_func_backing_store_cfg_input *req; 8197 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8198 struct bnxt_ctx_pg_info *ctx_pg; 8199 struct bnxt_ctx_mem_type *ctxm; 8200 void **__req = (void **)&req; 8201 u32 req_len = sizeof(*req); 8202 __le32 *num_entries; 8203 __le64 *pg_dir; 8204 u32 flags = 0; 8205 u8 *pg_attr; 8206 u32 ena; 8207 int rc; 8208 int i; 8209 8210 if (!ctx) 8211 return 0; 8212 8213 if (req_len > bp->hwrm_max_ext_req_len) 8214 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 8215 rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len); 8216 if (rc) 8217 return rc; 8218 8219 req->enables = cpu_to_le32(enables); 8220 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 8221 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8222 ctx_pg = ctxm->pg_info; 8223 req->qp_num_entries = cpu_to_le32(ctx_pg->entries); 8224 req->qp_num_qp1_entries = cpu_to_le16(ctxm->qp_qp1_entries); 8225 req->qp_num_l2_entries = cpu_to_le16(ctxm->qp_l2_entries); 8226 req->qp_entry_size = cpu_to_le16(ctxm->entry_size); 8227 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8228 &req->qpc_pg_size_qpc_lvl, 8229 &req->qpc_page_dir); 8230 8231 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD) 8232 req->qp_num_fast_qpmd_entries = cpu_to_le16(ctxm->qp_fast_qpmd_entries); 8233 } 8234 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 8235 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8236 ctx_pg = ctxm->pg_info; 8237 req->srq_num_entries = cpu_to_le32(ctx_pg->entries); 8238 req->srq_num_l2_entries = cpu_to_le16(ctxm->srq_l2_entries); 8239 req->srq_entry_size = cpu_to_le16(ctxm->entry_size); 8240 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8241 &req->srq_pg_size_srq_lvl, 8242 &req->srq_page_dir); 8243 } 8244 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 8245 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8246 ctx_pg = ctxm->pg_info; 8247 req->cq_num_entries = cpu_to_le32(ctx_pg->entries); 8248 req->cq_num_l2_entries = cpu_to_le16(ctxm->cq_l2_entries); 8249 req->cq_entry_size = cpu_to_le16(ctxm->entry_size); 8250 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8251 &req->cq_pg_size_cq_lvl, 8252 &req->cq_page_dir); 8253 } 8254 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 8255 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8256 ctx_pg = ctxm->pg_info; 8257 req->vnic_num_vnic_entries = cpu_to_le16(ctxm->vnic_entries); 8258 req->vnic_num_ring_table_entries = 8259 cpu_to_le16(ctxm->max_entries - ctxm->vnic_entries); 8260 req->vnic_entry_size = cpu_to_le16(ctxm->entry_size); 8261 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8262 &req->vnic_pg_size_vnic_lvl, 8263 &req->vnic_page_dir); 8264 } 8265 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 8266 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8267 ctx_pg = ctxm->pg_info; 8268 req->stat_num_entries = cpu_to_le32(ctxm->max_entries); 8269 req->stat_entry_size = cpu_to_le16(ctxm->entry_size); 8270 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8271 &req->stat_pg_size_stat_lvl, 8272 &req->stat_page_dir); 8273 } 8274 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 8275 u32 units; 8276 8277 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8278 ctx_pg = ctxm->pg_info; 8279 req->mrav_num_entries = cpu_to_le32(ctx_pg->entries); 8280 units = ctxm->mrav_num_entries_units; 8281 if (units) { 8282 u32 num_mr, num_ah = ctxm->mrav_av_entries; 8283 u32 entries; 8284 8285 num_mr = ctx_pg->entries - num_ah; 8286 entries = ((num_mr / units) << 16) | (num_ah / units); 8287 req->mrav_num_entries = cpu_to_le32(entries); 8288 flags |= FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 8289 } 8290 req->mrav_entry_size = cpu_to_le16(ctxm->entry_size); 8291 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8292 &req->mrav_pg_size_mrav_lvl, 8293 &req->mrav_page_dir); 8294 } 8295 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 8296 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8297 ctx_pg = ctxm->pg_info; 8298 req->tim_num_entries = cpu_to_le32(ctx_pg->entries); 8299 req->tim_entry_size = cpu_to_le16(ctxm->entry_size); 8300 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8301 &req->tim_pg_size_tim_lvl, 8302 &req->tim_page_dir); 8303 } 8304 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8305 for (i = 0, num_entries = &req->tqm_sp_num_entries, 8306 pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl, 8307 pg_dir = &req->tqm_sp_page_dir, 8308 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP, 8309 ctx_pg = ctxm->pg_info; 8310 i < BNXT_MAX_TQM_RINGS; 8311 ctx_pg = &ctx->ctx_arr[BNXT_CTX_FTQM].pg_info[i], 8312 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 8313 if (!(enables & ena)) 8314 continue; 8315 8316 req->tqm_entry_size = cpu_to_le16(ctxm->entry_size); 8317 *num_entries = cpu_to_le32(ctx_pg->entries); 8318 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 8319 } 8320 req->flags = cpu_to_le32(flags); 8321 return hwrm_req_send(bp, req); 8322 } 8323 8324 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 8325 struct bnxt_ctx_pg_info *ctx_pg) 8326 { 8327 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8328 8329 rmem->page_size = BNXT_PAGE_SIZE; 8330 rmem->pg_arr = ctx_pg->ctx_pg_arr; 8331 rmem->dma_arr = ctx_pg->ctx_dma_arr; 8332 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 8333 if (rmem->depth >= 1) 8334 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 8335 return bnxt_alloc_ring(bp, rmem); 8336 } 8337 8338 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 8339 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 8340 u8 depth, struct bnxt_ctx_mem_type *ctxm) 8341 { 8342 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8343 int rc; 8344 8345 if (!mem_size) 8346 return -EINVAL; 8347 8348 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 8349 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 8350 ctx_pg->nr_pages = 0; 8351 return -EINVAL; 8352 } 8353 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 8354 int nr_tbls, i; 8355 8356 rmem->depth = 2; 8357 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 8358 GFP_KERNEL); 8359 if (!ctx_pg->ctx_pg_tbl) 8360 return -ENOMEM; 8361 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 8362 rmem->nr_pages = nr_tbls; 8363 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 8364 if (rc) 8365 return rc; 8366 for (i = 0; i < nr_tbls; i++) { 8367 struct bnxt_ctx_pg_info *pg_tbl; 8368 8369 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 8370 if (!pg_tbl) 8371 return -ENOMEM; 8372 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 8373 rmem = &pg_tbl->ring_mem; 8374 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 8375 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 8376 rmem->depth = 1; 8377 rmem->nr_pages = MAX_CTX_PAGES; 8378 rmem->ctx_mem = ctxm; 8379 if (i == (nr_tbls - 1)) { 8380 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 8381 8382 if (rem) 8383 rmem->nr_pages = rem; 8384 } 8385 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 8386 if (rc) 8387 break; 8388 } 8389 } else { 8390 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 8391 if (rmem->nr_pages > 1 || depth) 8392 rmem->depth = 1; 8393 rmem->ctx_mem = ctxm; 8394 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 8395 } 8396 return rc; 8397 } 8398 8399 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 8400 struct bnxt_ctx_pg_info *ctx_pg) 8401 { 8402 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8403 8404 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 8405 ctx_pg->ctx_pg_tbl) { 8406 int i, nr_tbls = rmem->nr_pages; 8407 8408 for (i = 0; i < nr_tbls; i++) { 8409 struct bnxt_ctx_pg_info *pg_tbl; 8410 struct bnxt_ring_mem_info *rmem2; 8411 8412 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 8413 if (!pg_tbl) 8414 continue; 8415 rmem2 = &pg_tbl->ring_mem; 8416 bnxt_free_ring(bp, rmem2); 8417 ctx_pg->ctx_pg_arr[i] = NULL; 8418 kfree(pg_tbl); 8419 ctx_pg->ctx_pg_tbl[i] = NULL; 8420 } 8421 kfree(ctx_pg->ctx_pg_tbl); 8422 ctx_pg->ctx_pg_tbl = NULL; 8423 } 8424 bnxt_free_ring(bp, rmem); 8425 ctx_pg->nr_pages = 0; 8426 } 8427 8428 static int bnxt_setup_ctxm_pg_tbls(struct bnxt *bp, 8429 struct bnxt_ctx_mem_type *ctxm, u32 entries, 8430 u8 pg_lvl) 8431 { 8432 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 8433 int i, rc = 0, n = 1; 8434 u32 mem_size; 8435 8436 if (!ctxm->entry_size || !ctx_pg) 8437 return -EINVAL; 8438 if (ctxm->instance_bmap) 8439 n = hweight32(ctxm->instance_bmap); 8440 if (ctxm->entry_multiple) 8441 entries = roundup(entries, ctxm->entry_multiple); 8442 entries = clamp_t(u32, entries, ctxm->min_entries, ctxm->max_entries); 8443 mem_size = entries * ctxm->entry_size; 8444 for (i = 0; i < n && !rc; i++) { 8445 ctx_pg[i].entries = entries; 8446 rc = bnxt_alloc_ctx_pg_tbls(bp, &ctx_pg[i], mem_size, pg_lvl, 8447 ctxm->init_value ? ctxm : NULL); 8448 } 8449 return rc; 8450 } 8451 8452 static int bnxt_hwrm_func_backing_store_cfg_v2(struct bnxt *bp, 8453 struct bnxt_ctx_mem_type *ctxm, 8454 bool last) 8455 { 8456 struct hwrm_func_backing_store_cfg_v2_input *req; 8457 u32 instance_bmap = ctxm->instance_bmap; 8458 int i, j, rc = 0, n = 1; 8459 __le32 *p; 8460 8461 if (!(ctxm->flags & BNXT_CTX_MEM_TYPE_VALID) || !ctxm->pg_info) 8462 return 0; 8463 8464 if (instance_bmap) 8465 n = hweight32(ctxm->instance_bmap); 8466 else 8467 instance_bmap = 1; 8468 8469 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_CFG_V2); 8470 if (rc) 8471 return rc; 8472 hwrm_req_hold(bp, req); 8473 req->type = cpu_to_le16(ctxm->type); 8474 req->entry_size = cpu_to_le16(ctxm->entry_size); 8475 req->subtype_valid_cnt = ctxm->split_entry_cnt; 8476 for (i = 0, p = &req->split_entry_0; i < ctxm->split_entry_cnt; i++) 8477 p[i] = cpu_to_le32(ctxm->split[i]); 8478 for (i = 0, j = 0; j < n && !rc; i++) { 8479 struct bnxt_ctx_pg_info *ctx_pg; 8480 8481 if (!(instance_bmap & (1 << i))) 8482 continue; 8483 req->instance = cpu_to_le16(i); 8484 ctx_pg = &ctxm->pg_info[j++]; 8485 if (!ctx_pg->entries) 8486 continue; 8487 req->num_entries = cpu_to_le32(ctx_pg->entries); 8488 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8489 &req->page_size_pbl_level, 8490 &req->page_dir); 8491 if (last && j == n) 8492 req->flags = 8493 cpu_to_le32(FUNC_BACKING_STORE_CFG_V2_REQ_FLAGS_BS_CFG_ALL_DONE); 8494 rc = hwrm_req_send(bp, req); 8495 } 8496 hwrm_req_drop(bp, req); 8497 return rc; 8498 } 8499 8500 static int bnxt_backing_store_cfg_v2(struct bnxt *bp, u32 ena) 8501 { 8502 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8503 struct bnxt_ctx_mem_type *ctxm; 8504 u16 last_type; 8505 int rc = 0; 8506 u16 type; 8507 8508 if (!ena) 8509 return 0; 8510 else if (ena & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) 8511 last_type = BNXT_CTX_MAX - 1; 8512 else 8513 last_type = BNXT_CTX_L2_MAX - 1; 8514 ctx->ctx_arr[last_type].last = 1; 8515 8516 for (type = 0 ; type < BNXT_CTX_V2_MAX; type++) { 8517 ctxm = &ctx->ctx_arr[type]; 8518 8519 rc = bnxt_hwrm_func_backing_store_cfg_v2(bp, ctxm, ctxm->last); 8520 if (rc) 8521 return rc; 8522 } 8523 return 0; 8524 } 8525 8526 void bnxt_free_ctx_mem(struct bnxt *bp) 8527 { 8528 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8529 u16 type; 8530 8531 if (!ctx) 8532 return; 8533 8534 for (type = 0; type < BNXT_CTX_V2_MAX; type++) { 8535 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8536 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 8537 int i, n = 1; 8538 8539 if (!ctx_pg) 8540 continue; 8541 if (ctxm->instance_bmap) 8542 n = hweight32(ctxm->instance_bmap); 8543 for (i = 0; i < n; i++) 8544 bnxt_free_ctx_pg_tbls(bp, &ctx_pg[i]); 8545 8546 kfree(ctx_pg); 8547 ctxm->pg_info = NULL; 8548 } 8549 8550 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 8551 kfree(ctx); 8552 bp->ctx = NULL; 8553 } 8554 8555 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 8556 { 8557 struct bnxt_ctx_mem_type *ctxm; 8558 struct bnxt_ctx_mem_info *ctx; 8559 u32 l2_qps, qp1_qps, max_qps; 8560 u32 ena, entries_sp, entries; 8561 u32 srqs, max_srqs, min; 8562 u32 num_mr, num_ah; 8563 u32 extra_srqs = 0; 8564 u32 extra_qps = 0; 8565 u32 fast_qpmd_qps; 8566 u8 pg_lvl = 1; 8567 int i, rc; 8568 8569 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 8570 if (rc) { 8571 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 8572 rc); 8573 return rc; 8574 } 8575 ctx = bp->ctx; 8576 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 8577 return 0; 8578 8579 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8580 l2_qps = ctxm->qp_l2_entries; 8581 qp1_qps = ctxm->qp_qp1_entries; 8582 fast_qpmd_qps = ctxm->qp_fast_qpmd_entries; 8583 max_qps = ctxm->max_entries; 8584 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8585 srqs = ctxm->srq_l2_entries; 8586 max_srqs = ctxm->max_entries; 8587 ena = 0; 8588 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 8589 pg_lvl = 2; 8590 extra_qps = min_t(u32, 65536, max_qps - l2_qps - qp1_qps); 8591 /* allocate extra qps if fw supports RoCE fast qp destroy feature */ 8592 extra_qps += fast_qpmd_qps; 8593 extra_srqs = min_t(u32, 8192, max_srqs - srqs); 8594 if (fast_qpmd_qps) 8595 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD; 8596 } 8597 8598 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8599 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 8600 pg_lvl); 8601 if (rc) 8602 return rc; 8603 8604 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8605 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, srqs + extra_srqs, pg_lvl); 8606 if (rc) 8607 return rc; 8608 8609 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8610 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->cq_l2_entries + 8611 extra_qps * 2, pg_lvl); 8612 if (rc) 8613 return rc; 8614 8615 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8616 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 8617 if (rc) 8618 return rc; 8619 8620 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8621 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 8622 if (rc) 8623 return rc; 8624 8625 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 8626 goto skip_rdma; 8627 8628 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8629 /* 128K extra is needed to accommodate static AH context 8630 * allocation by f/w. 8631 */ 8632 num_mr = min_t(u32, ctxm->max_entries / 2, 1024 * 256); 8633 num_ah = min_t(u32, num_mr, 1024 * 128); 8634 ctxm->split_entry_cnt = BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1; 8635 if (!ctxm->mrav_av_entries || ctxm->mrav_av_entries > num_ah) 8636 ctxm->mrav_av_entries = num_ah; 8637 8638 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, num_mr + num_ah, 2); 8639 if (rc) 8640 return rc; 8641 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 8642 8643 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8644 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 1); 8645 if (rc) 8646 return rc; 8647 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 8648 8649 skip_rdma: 8650 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8651 min = ctxm->min_entries; 8652 entries_sp = ctx->ctx_arr[BNXT_CTX_VNIC].vnic_entries + l2_qps + 8653 2 * (extra_qps + qp1_qps) + min; 8654 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries_sp, 2); 8655 if (rc) 8656 return rc; 8657 8658 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 8659 entries = l2_qps + 2 * (extra_qps + qp1_qps); 8660 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries, 2); 8661 if (rc) 8662 return rc; 8663 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 8664 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 8665 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 8666 8667 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 8668 rc = bnxt_backing_store_cfg_v2(bp, ena); 8669 else 8670 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 8671 if (rc) { 8672 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 8673 rc); 8674 return rc; 8675 } 8676 ctx->flags |= BNXT_CTX_FLAG_INITED; 8677 return 0; 8678 } 8679 8680 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 8681 { 8682 struct hwrm_func_resource_qcaps_output *resp; 8683 struct hwrm_func_resource_qcaps_input *req; 8684 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 8685 int rc; 8686 8687 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS); 8688 if (rc) 8689 return rc; 8690 8691 req->fid = cpu_to_le16(0xffff); 8692 resp = hwrm_req_hold(bp, req); 8693 rc = hwrm_req_send_silent(bp, req); 8694 if (rc) 8695 goto hwrm_func_resc_qcaps_exit; 8696 8697 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 8698 if (!all) 8699 goto hwrm_func_resc_qcaps_exit; 8700 8701 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 8702 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 8703 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 8704 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 8705 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 8706 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 8707 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 8708 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 8709 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 8710 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 8711 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 8712 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 8713 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 8714 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 8715 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 8716 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 8717 8718 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 8719 u16 max_msix = le16_to_cpu(resp->max_msix); 8720 8721 hw_resc->max_nqs = max_msix; 8722 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 8723 } 8724 8725 if (BNXT_PF(bp)) { 8726 struct bnxt_pf_info *pf = &bp->pf; 8727 8728 pf->vf_resv_strategy = 8729 le16_to_cpu(resp->vf_reservation_strategy); 8730 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 8731 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 8732 } 8733 hwrm_func_resc_qcaps_exit: 8734 hwrm_req_drop(bp, req); 8735 return rc; 8736 } 8737 8738 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) 8739 { 8740 struct hwrm_port_mac_ptp_qcfg_output *resp; 8741 struct hwrm_port_mac_ptp_qcfg_input *req; 8742 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 8743 bool phc_cfg; 8744 u8 flags; 8745 int rc; 8746 8747 if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5(bp)) { 8748 rc = -ENODEV; 8749 goto no_ptp; 8750 } 8751 8752 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG); 8753 if (rc) 8754 goto no_ptp; 8755 8756 req->port_id = cpu_to_le16(bp->pf.port_id); 8757 resp = hwrm_req_hold(bp, req); 8758 rc = hwrm_req_send(bp, req); 8759 if (rc) 8760 goto exit; 8761 8762 flags = resp->flags; 8763 if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { 8764 rc = -ENODEV; 8765 goto exit; 8766 } 8767 if (!ptp) { 8768 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); 8769 if (!ptp) { 8770 rc = -ENOMEM; 8771 goto exit; 8772 } 8773 ptp->bp = bp; 8774 bp->ptp_cfg = ptp; 8775 } 8776 if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) { 8777 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); 8778 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); 8779 } else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 8780 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; 8781 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; 8782 } else { 8783 rc = -ENODEV; 8784 goto exit; 8785 } 8786 phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0; 8787 rc = bnxt_ptp_init(bp, phc_cfg); 8788 if (rc) 8789 netdev_warn(bp->dev, "PTP initialization failed.\n"); 8790 exit: 8791 hwrm_req_drop(bp, req); 8792 if (!rc) 8793 return 0; 8794 8795 no_ptp: 8796 bnxt_ptp_clear(bp); 8797 kfree(ptp); 8798 bp->ptp_cfg = NULL; 8799 return rc; 8800 } 8801 8802 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 8803 { 8804 struct hwrm_func_qcaps_output *resp; 8805 struct hwrm_func_qcaps_input *req; 8806 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 8807 u32 flags, flags_ext, flags_ext2; 8808 int rc; 8809 8810 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS); 8811 if (rc) 8812 return rc; 8813 8814 req->fid = cpu_to_le16(0xffff); 8815 resp = hwrm_req_hold(bp, req); 8816 rc = hwrm_req_send(bp, req); 8817 if (rc) 8818 goto hwrm_func_qcaps_exit; 8819 8820 flags = le32_to_cpu(resp->flags); 8821 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 8822 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 8823 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 8824 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 8825 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 8826 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 8827 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 8828 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 8829 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 8830 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 8831 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 8832 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 8833 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 8834 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 8835 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 8836 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 8837 if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED) 8838 bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS; 8839 8840 flags_ext = le32_to_cpu(resp->flags_ext); 8841 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 8842 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 8843 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED)) 8844 bp->fw_cap |= BNXT_FW_CAP_PTP_PPS; 8845 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED) 8846 bp->fw_cap |= BNXT_FW_CAP_PTP_RTC; 8847 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT)) 8848 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF; 8849 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED)) 8850 bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH; 8851 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_BS_V2_SUPPORTED) 8852 bp->fw_cap |= BNXT_FW_CAP_BACKING_STORE_V2; 8853 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_TX_COAL_CMPL_CAP) 8854 bp->flags |= BNXT_FLAG_TX_COAL_CMPL; 8855 8856 flags_ext2 = le32_to_cpu(resp->flags_ext2); 8857 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED) 8858 bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS; 8859 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_UDP_GSO_SUPPORTED) 8860 bp->flags |= BNXT_FLAG_UDP_GSO_CAP; 8861 8862 bp->tx_push_thresh = 0; 8863 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 8864 BNXT_FW_MAJ(bp) > 217) 8865 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 8866 8867 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 8868 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 8869 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 8870 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 8871 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 8872 if (!hw_resc->max_hw_ring_grps) 8873 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 8874 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 8875 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 8876 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 8877 8878 hw_resc->max_encap_records = le32_to_cpu(resp->max_encap_records); 8879 hw_resc->max_decap_records = le32_to_cpu(resp->max_decap_records); 8880 hw_resc->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 8881 hw_resc->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 8882 hw_resc->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 8883 hw_resc->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 8884 8885 if (BNXT_PF(bp)) { 8886 struct bnxt_pf_info *pf = &bp->pf; 8887 8888 pf->fw_fid = le16_to_cpu(resp->fid); 8889 pf->port_id = le16_to_cpu(resp->port_id); 8890 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 8891 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 8892 pf->max_vfs = le16_to_cpu(resp->max_vfs); 8893 bp->flags &= ~BNXT_FLAG_WOL_CAP; 8894 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 8895 bp->flags |= BNXT_FLAG_WOL_CAP; 8896 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { 8897 bp->fw_cap |= BNXT_FW_CAP_PTP; 8898 } else { 8899 bnxt_ptp_clear(bp); 8900 kfree(bp->ptp_cfg); 8901 bp->ptp_cfg = NULL; 8902 } 8903 } else { 8904 #ifdef CONFIG_BNXT_SRIOV 8905 struct bnxt_vf_info *vf = &bp->vf; 8906 8907 vf->fw_fid = le16_to_cpu(resp->fid); 8908 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 8909 #endif 8910 } 8911 8912 hwrm_func_qcaps_exit: 8913 hwrm_req_drop(bp, req); 8914 return rc; 8915 } 8916 8917 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp) 8918 { 8919 struct hwrm_dbg_qcaps_output *resp; 8920 struct hwrm_dbg_qcaps_input *req; 8921 int rc; 8922 8923 bp->fw_dbg_cap = 0; 8924 if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS)) 8925 return; 8926 8927 rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS); 8928 if (rc) 8929 return; 8930 8931 req->fid = cpu_to_le16(0xffff); 8932 resp = hwrm_req_hold(bp, req); 8933 rc = hwrm_req_send(bp, req); 8934 if (rc) 8935 goto hwrm_dbg_qcaps_exit; 8936 8937 bp->fw_dbg_cap = le32_to_cpu(resp->flags); 8938 8939 hwrm_dbg_qcaps_exit: 8940 hwrm_req_drop(bp, req); 8941 } 8942 8943 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 8944 8945 int bnxt_hwrm_func_qcaps(struct bnxt *bp) 8946 { 8947 int rc; 8948 8949 rc = __bnxt_hwrm_func_qcaps(bp); 8950 if (rc) 8951 return rc; 8952 8953 bnxt_hwrm_dbg_qcaps(bp); 8954 8955 rc = bnxt_hwrm_queue_qportcfg(bp); 8956 if (rc) { 8957 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 8958 return rc; 8959 } 8960 if (bp->hwrm_spec_code >= 0x10803) { 8961 rc = bnxt_alloc_ctx_mem(bp); 8962 if (rc) 8963 return rc; 8964 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 8965 if (!rc) 8966 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 8967 } 8968 return 0; 8969 } 8970 8971 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 8972 { 8973 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 8974 struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req; 8975 u32 flags; 8976 int rc; 8977 8978 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 8979 return 0; 8980 8981 rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS); 8982 if (rc) 8983 return rc; 8984 8985 resp = hwrm_req_hold(bp, req); 8986 rc = hwrm_req_send(bp, req); 8987 if (rc) 8988 goto hwrm_cfa_adv_qcaps_exit; 8989 8990 flags = le32_to_cpu(resp->flags); 8991 if (flags & 8992 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 8993 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 8994 8995 if (flags & 8996 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V3_SUPPORTED) 8997 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V3; 8998 8999 if (flags & 9000 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_NTUPLE_FLOW_RX_EXT_IP_PROTO_SUPPORTED) 9001 bp->fw_cap |= BNXT_FW_CAP_CFA_NTUPLE_RX_EXT_IP_PROTO; 9002 9003 hwrm_cfa_adv_qcaps_exit: 9004 hwrm_req_drop(bp, req); 9005 return rc; 9006 } 9007 9008 static int __bnxt_alloc_fw_health(struct bnxt *bp) 9009 { 9010 if (bp->fw_health) 9011 return 0; 9012 9013 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 9014 if (!bp->fw_health) 9015 return -ENOMEM; 9016 9017 mutex_init(&bp->fw_health->lock); 9018 return 0; 9019 } 9020 9021 static int bnxt_alloc_fw_health(struct bnxt *bp) 9022 { 9023 int rc; 9024 9025 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 9026 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 9027 return 0; 9028 9029 rc = __bnxt_alloc_fw_health(bp); 9030 if (rc) { 9031 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 9032 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 9033 return rc; 9034 } 9035 9036 return 0; 9037 } 9038 9039 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 9040 { 9041 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 9042 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 9043 BNXT_FW_HEALTH_WIN_MAP_OFF); 9044 } 9045 9046 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 9047 { 9048 struct bnxt_fw_health *fw_health = bp->fw_health; 9049 u32 reg_type; 9050 9051 if (!fw_health) 9052 return; 9053 9054 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 9055 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9056 fw_health->status_reliable = false; 9057 9058 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]); 9059 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9060 fw_health->resets_reliable = false; 9061 } 9062 9063 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 9064 { 9065 void __iomem *hs; 9066 u32 status_loc; 9067 u32 reg_type; 9068 u32 sig; 9069 9070 if (bp->fw_health) 9071 bp->fw_health->status_reliable = false; 9072 9073 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 9074 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 9075 9076 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 9077 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 9078 if (!bp->chip_num) { 9079 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 9080 bp->chip_num = readl(bp->bar0 + 9081 BNXT_FW_HEALTH_WIN_BASE + 9082 BNXT_GRC_REG_CHIP_NUM); 9083 } 9084 if (!BNXT_CHIP_P5_PLUS(bp)) 9085 return; 9086 9087 status_loc = BNXT_GRC_REG_STATUS_P5 | 9088 BNXT_FW_HEALTH_REG_TYPE_BAR0; 9089 } else { 9090 status_loc = readl(hs + offsetof(struct hcomm_status, 9091 fw_status_loc)); 9092 } 9093 9094 if (__bnxt_alloc_fw_health(bp)) { 9095 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 9096 return; 9097 } 9098 9099 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 9100 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 9101 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 9102 __bnxt_map_fw_health_reg(bp, status_loc); 9103 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 9104 BNXT_FW_HEALTH_WIN_OFF(status_loc); 9105 } 9106 9107 bp->fw_health->status_reliable = true; 9108 } 9109 9110 static int bnxt_map_fw_health_regs(struct bnxt *bp) 9111 { 9112 struct bnxt_fw_health *fw_health = bp->fw_health; 9113 u32 reg_base = 0xffffffff; 9114 int i; 9115 9116 bp->fw_health->status_reliable = false; 9117 bp->fw_health->resets_reliable = false; 9118 /* Only pre-map the monitoring GRC registers using window 3 */ 9119 for (i = 0; i < 4; i++) { 9120 u32 reg = fw_health->regs[i]; 9121 9122 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 9123 continue; 9124 if (reg_base == 0xffffffff) 9125 reg_base = reg & BNXT_GRC_BASE_MASK; 9126 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 9127 return -ERANGE; 9128 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 9129 } 9130 bp->fw_health->status_reliable = true; 9131 bp->fw_health->resets_reliable = true; 9132 if (reg_base == 0xffffffff) 9133 return 0; 9134 9135 __bnxt_map_fw_health_reg(bp, reg_base); 9136 return 0; 9137 } 9138 9139 static void bnxt_remap_fw_health_regs(struct bnxt *bp) 9140 { 9141 if (!bp->fw_health) 9142 return; 9143 9144 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) { 9145 bp->fw_health->status_reliable = true; 9146 bp->fw_health->resets_reliable = true; 9147 } else { 9148 bnxt_try_map_fw_health_reg(bp); 9149 } 9150 } 9151 9152 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 9153 { 9154 struct bnxt_fw_health *fw_health = bp->fw_health; 9155 struct hwrm_error_recovery_qcfg_output *resp; 9156 struct hwrm_error_recovery_qcfg_input *req; 9157 int rc, i; 9158 9159 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 9160 return 0; 9161 9162 rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG); 9163 if (rc) 9164 return rc; 9165 9166 resp = hwrm_req_hold(bp, req); 9167 rc = hwrm_req_send(bp, req); 9168 if (rc) 9169 goto err_recovery_out; 9170 fw_health->flags = le32_to_cpu(resp->flags); 9171 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 9172 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 9173 rc = -EINVAL; 9174 goto err_recovery_out; 9175 } 9176 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 9177 fw_health->master_func_wait_dsecs = 9178 le32_to_cpu(resp->master_func_wait_period); 9179 fw_health->normal_func_wait_dsecs = 9180 le32_to_cpu(resp->normal_func_wait_period); 9181 fw_health->post_reset_wait_dsecs = 9182 le32_to_cpu(resp->master_func_wait_period_after_reset); 9183 fw_health->post_reset_max_wait_dsecs = 9184 le32_to_cpu(resp->max_bailout_time_after_reset); 9185 fw_health->regs[BNXT_FW_HEALTH_REG] = 9186 le32_to_cpu(resp->fw_health_status_reg); 9187 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 9188 le32_to_cpu(resp->fw_heartbeat_reg); 9189 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 9190 le32_to_cpu(resp->fw_reset_cnt_reg); 9191 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 9192 le32_to_cpu(resp->reset_inprogress_reg); 9193 fw_health->fw_reset_inprog_reg_mask = 9194 le32_to_cpu(resp->reset_inprogress_reg_mask); 9195 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 9196 if (fw_health->fw_reset_seq_cnt >= 16) { 9197 rc = -EINVAL; 9198 goto err_recovery_out; 9199 } 9200 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 9201 fw_health->fw_reset_seq_regs[i] = 9202 le32_to_cpu(resp->reset_reg[i]); 9203 fw_health->fw_reset_seq_vals[i] = 9204 le32_to_cpu(resp->reset_reg_val[i]); 9205 fw_health->fw_reset_seq_delay_msec[i] = 9206 resp->delay_after_reset[i]; 9207 } 9208 err_recovery_out: 9209 hwrm_req_drop(bp, req); 9210 if (!rc) 9211 rc = bnxt_map_fw_health_regs(bp); 9212 if (rc) 9213 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 9214 return rc; 9215 } 9216 9217 static int bnxt_hwrm_func_reset(struct bnxt *bp) 9218 { 9219 struct hwrm_func_reset_input *req; 9220 int rc; 9221 9222 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET); 9223 if (rc) 9224 return rc; 9225 9226 req->enables = 0; 9227 hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT); 9228 return hwrm_req_send(bp, req); 9229 } 9230 9231 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 9232 { 9233 struct hwrm_nvm_get_dev_info_output nvm_info; 9234 9235 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 9236 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 9237 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 9238 nvm_info.nvm_cfg_ver_upd); 9239 } 9240 9241 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 9242 { 9243 struct hwrm_queue_qportcfg_output *resp; 9244 struct hwrm_queue_qportcfg_input *req; 9245 u8 i, j, *qptr; 9246 bool no_rdma; 9247 int rc = 0; 9248 9249 rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG); 9250 if (rc) 9251 return rc; 9252 9253 resp = hwrm_req_hold(bp, req); 9254 rc = hwrm_req_send(bp, req); 9255 if (rc) 9256 goto qportcfg_exit; 9257 9258 if (!resp->max_configurable_queues) { 9259 rc = -EINVAL; 9260 goto qportcfg_exit; 9261 } 9262 bp->max_tc = resp->max_configurable_queues; 9263 bp->max_lltc = resp->max_configurable_lossless_queues; 9264 if (bp->max_tc > BNXT_MAX_QUEUE) 9265 bp->max_tc = BNXT_MAX_QUEUE; 9266 9267 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 9268 qptr = &resp->queue_id0; 9269 for (i = 0, j = 0; i < bp->max_tc; i++) { 9270 bp->q_info[j].queue_id = *qptr; 9271 bp->q_ids[i] = *qptr++; 9272 bp->q_info[j].queue_profile = *qptr++; 9273 bp->tc_to_qidx[j] = j; 9274 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 9275 (no_rdma && BNXT_PF(bp))) 9276 j++; 9277 } 9278 bp->max_q = bp->max_tc; 9279 bp->max_tc = max_t(u8, j, 1); 9280 9281 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 9282 bp->max_tc = 1; 9283 9284 if (bp->max_lltc > bp->max_tc) 9285 bp->max_lltc = bp->max_tc; 9286 9287 qportcfg_exit: 9288 hwrm_req_drop(bp, req); 9289 return rc; 9290 } 9291 9292 static int bnxt_hwrm_poll(struct bnxt *bp) 9293 { 9294 struct hwrm_ver_get_input *req; 9295 int rc; 9296 9297 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 9298 if (rc) 9299 return rc; 9300 9301 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 9302 req->hwrm_intf_min = HWRM_VERSION_MINOR; 9303 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 9304 9305 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT); 9306 rc = hwrm_req_send(bp, req); 9307 return rc; 9308 } 9309 9310 static int bnxt_hwrm_ver_get(struct bnxt *bp) 9311 { 9312 struct hwrm_ver_get_output *resp; 9313 struct hwrm_ver_get_input *req; 9314 u16 fw_maj, fw_min, fw_bld, fw_rsv; 9315 u32 dev_caps_cfg, hwrm_ver; 9316 int rc, len; 9317 9318 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 9319 if (rc) 9320 return rc; 9321 9322 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 9323 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 9324 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 9325 req->hwrm_intf_min = HWRM_VERSION_MINOR; 9326 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 9327 9328 resp = hwrm_req_hold(bp, req); 9329 rc = hwrm_req_send(bp, req); 9330 if (rc) 9331 goto hwrm_ver_get_exit; 9332 9333 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 9334 9335 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 9336 resp->hwrm_intf_min_8b << 8 | 9337 resp->hwrm_intf_upd_8b; 9338 if (resp->hwrm_intf_maj_8b < 1) { 9339 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 9340 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 9341 resp->hwrm_intf_upd_8b); 9342 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 9343 } 9344 9345 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 9346 HWRM_VERSION_UPDATE; 9347 9348 if (bp->hwrm_spec_code > hwrm_ver) 9349 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 9350 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 9351 HWRM_VERSION_UPDATE); 9352 else 9353 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 9354 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 9355 resp->hwrm_intf_upd_8b); 9356 9357 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 9358 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 9359 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 9360 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 9361 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 9362 len = FW_VER_STR_LEN; 9363 } else { 9364 fw_maj = resp->hwrm_fw_maj_8b; 9365 fw_min = resp->hwrm_fw_min_8b; 9366 fw_bld = resp->hwrm_fw_bld_8b; 9367 fw_rsv = resp->hwrm_fw_rsvd_8b; 9368 len = BC_HWRM_STR_LEN; 9369 } 9370 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 9371 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 9372 fw_rsv); 9373 9374 if (strlen(resp->active_pkg_name)) { 9375 int fw_ver_len = strlen(bp->fw_ver_str); 9376 9377 snprintf(bp->fw_ver_str + fw_ver_len, 9378 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 9379 resp->active_pkg_name); 9380 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 9381 } 9382 9383 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 9384 if (!bp->hwrm_cmd_timeout) 9385 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 9386 bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000; 9387 if (!bp->hwrm_cmd_max_timeout) 9388 bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT; 9389 else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT) 9390 netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n", 9391 bp->hwrm_cmd_max_timeout / 1000); 9392 9393 if (resp->hwrm_intf_maj_8b >= 1) { 9394 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 9395 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 9396 } 9397 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 9398 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 9399 9400 bp->chip_num = le16_to_cpu(resp->chip_num); 9401 bp->chip_rev = resp->chip_rev; 9402 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 9403 !resp->chip_metal) 9404 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 9405 9406 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 9407 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 9408 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 9409 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 9410 9411 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 9412 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 9413 9414 if (dev_caps_cfg & 9415 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 9416 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 9417 9418 if (dev_caps_cfg & 9419 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 9420 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 9421 9422 if (dev_caps_cfg & 9423 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 9424 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 9425 9426 hwrm_ver_get_exit: 9427 hwrm_req_drop(bp, req); 9428 return rc; 9429 } 9430 9431 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 9432 { 9433 struct hwrm_fw_set_time_input *req; 9434 struct tm tm; 9435 time64_t now = ktime_get_real_seconds(); 9436 int rc; 9437 9438 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 9439 bp->hwrm_spec_code < 0x10400) 9440 return -EOPNOTSUPP; 9441 9442 time64_to_tm(now, 0, &tm); 9443 rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME); 9444 if (rc) 9445 return rc; 9446 9447 req->year = cpu_to_le16(1900 + tm.tm_year); 9448 req->month = 1 + tm.tm_mon; 9449 req->day = tm.tm_mday; 9450 req->hour = tm.tm_hour; 9451 req->minute = tm.tm_min; 9452 req->second = tm.tm_sec; 9453 return hwrm_req_send(bp, req); 9454 } 9455 9456 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 9457 { 9458 u64 sw_tmp; 9459 9460 hw &= mask; 9461 sw_tmp = (*sw & ~mask) | hw; 9462 if (hw < (*sw & mask)) 9463 sw_tmp += mask + 1; 9464 WRITE_ONCE(*sw, sw_tmp); 9465 } 9466 9467 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 9468 int count, bool ignore_zero) 9469 { 9470 int i; 9471 9472 for (i = 0; i < count; i++) { 9473 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 9474 9475 if (ignore_zero && !hw) 9476 continue; 9477 9478 if (masks[i] == -1ULL) 9479 sw_stats[i] = hw; 9480 else 9481 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 9482 } 9483 } 9484 9485 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 9486 { 9487 if (!stats->hw_stats) 9488 return; 9489 9490 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 9491 stats->hw_masks, stats->len / 8, false); 9492 } 9493 9494 static void bnxt_accumulate_all_stats(struct bnxt *bp) 9495 { 9496 struct bnxt_stats_mem *ring0_stats; 9497 bool ignore_zero = false; 9498 int i; 9499 9500 /* Chip bug. Counter intermittently becomes 0. */ 9501 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 9502 ignore_zero = true; 9503 9504 for (i = 0; i < bp->cp_nr_rings; i++) { 9505 struct bnxt_napi *bnapi = bp->bnapi[i]; 9506 struct bnxt_cp_ring_info *cpr; 9507 struct bnxt_stats_mem *stats; 9508 9509 cpr = &bnapi->cp_ring; 9510 stats = &cpr->stats; 9511 if (!i) 9512 ring0_stats = stats; 9513 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 9514 ring0_stats->hw_masks, 9515 ring0_stats->len / 8, ignore_zero); 9516 } 9517 if (bp->flags & BNXT_FLAG_PORT_STATS) { 9518 struct bnxt_stats_mem *stats = &bp->port_stats; 9519 __le64 *hw_stats = stats->hw_stats; 9520 u64 *sw_stats = stats->sw_stats; 9521 u64 *masks = stats->hw_masks; 9522 int cnt; 9523 9524 cnt = sizeof(struct rx_port_stats) / 8; 9525 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 9526 9527 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 9528 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 9529 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 9530 cnt = sizeof(struct tx_port_stats) / 8; 9531 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 9532 } 9533 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 9534 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 9535 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 9536 } 9537 } 9538 9539 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 9540 { 9541 struct hwrm_port_qstats_input *req; 9542 struct bnxt_pf_info *pf = &bp->pf; 9543 int rc; 9544 9545 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 9546 return 0; 9547 9548 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 9549 return -EOPNOTSUPP; 9550 9551 rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS); 9552 if (rc) 9553 return rc; 9554 9555 req->flags = flags; 9556 req->port_id = cpu_to_le16(pf->port_id); 9557 req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 9558 BNXT_TX_PORT_STATS_BYTE_OFFSET); 9559 req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 9560 return hwrm_req_send(bp, req); 9561 } 9562 9563 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 9564 { 9565 struct hwrm_queue_pri2cos_qcfg_output *resp_qc; 9566 struct hwrm_queue_pri2cos_qcfg_input *req_qc; 9567 struct hwrm_port_qstats_ext_output *resp_qs; 9568 struct hwrm_port_qstats_ext_input *req_qs; 9569 struct bnxt_pf_info *pf = &bp->pf; 9570 u32 tx_stat_size; 9571 int rc; 9572 9573 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 9574 return 0; 9575 9576 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 9577 return -EOPNOTSUPP; 9578 9579 rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT); 9580 if (rc) 9581 return rc; 9582 9583 req_qs->flags = flags; 9584 req_qs->port_id = cpu_to_le16(pf->port_id); 9585 req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 9586 req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 9587 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 9588 sizeof(struct tx_port_stats_ext) : 0; 9589 req_qs->tx_stat_size = cpu_to_le16(tx_stat_size); 9590 req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 9591 resp_qs = hwrm_req_hold(bp, req_qs); 9592 rc = hwrm_req_send(bp, req_qs); 9593 if (!rc) { 9594 bp->fw_rx_stats_ext_size = 9595 le16_to_cpu(resp_qs->rx_stat_size) / 8; 9596 if (BNXT_FW_MAJ(bp) < 220 && 9597 bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY) 9598 bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY; 9599 9600 bp->fw_tx_stats_ext_size = tx_stat_size ? 9601 le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0; 9602 } else { 9603 bp->fw_rx_stats_ext_size = 0; 9604 bp->fw_tx_stats_ext_size = 0; 9605 } 9606 hwrm_req_drop(bp, req_qs); 9607 9608 if (flags) 9609 return rc; 9610 9611 if (bp->fw_tx_stats_ext_size <= 9612 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 9613 bp->pri2cos_valid = 0; 9614 return rc; 9615 } 9616 9617 rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG); 9618 if (rc) 9619 return rc; 9620 9621 req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 9622 9623 resp_qc = hwrm_req_hold(bp, req_qc); 9624 rc = hwrm_req_send(bp, req_qc); 9625 if (!rc) { 9626 u8 *pri2cos; 9627 int i, j; 9628 9629 pri2cos = &resp_qc->pri0_cos_queue_id; 9630 for (i = 0; i < 8; i++) { 9631 u8 queue_id = pri2cos[i]; 9632 u8 queue_idx; 9633 9634 /* Per port queue IDs start from 0, 10, 20, etc */ 9635 queue_idx = queue_id % 10; 9636 if (queue_idx > BNXT_MAX_QUEUE) { 9637 bp->pri2cos_valid = false; 9638 hwrm_req_drop(bp, req_qc); 9639 return rc; 9640 } 9641 for (j = 0; j < bp->max_q; j++) { 9642 if (bp->q_ids[j] == queue_id) 9643 bp->pri2cos_idx[i] = queue_idx; 9644 } 9645 } 9646 bp->pri2cos_valid = true; 9647 } 9648 hwrm_req_drop(bp, req_qc); 9649 9650 return rc; 9651 } 9652 9653 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 9654 { 9655 bnxt_hwrm_tunnel_dst_port_free(bp, 9656 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 9657 bnxt_hwrm_tunnel_dst_port_free(bp, 9658 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 9659 } 9660 9661 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 9662 { 9663 int rc, i; 9664 u32 tpa_flags = 0; 9665 9666 if (set_tpa) 9667 tpa_flags = bp->flags & BNXT_FLAG_TPA; 9668 else if (BNXT_NO_FW_ACCESS(bp)) 9669 return 0; 9670 for (i = 0; i < bp->nr_vnics; i++) { 9671 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags); 9672 if (rc) { 9673 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 9674 i, rc); 9675 return rc; 9676 } 9677 } 9678 return 0; 9679 } 9680 9681 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 9682 { 9683 int i; 9684 9685 for (i = 0; i < bp->nr_vnics; i++) 9686 bnxt_hwrm_vnic_set_rss(bp, i, false); 9687 } 9688 9689 static void bnxt_clear_vnic(struct bnxt *bp) 9690 { 9691 if (!bp->vnic_info) 9692 return; 9693 9694 bnxt_hwrm_clear_vnic_filter(bp); 9695 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) { 9696 /* clear all RSS setting before free vnic ctx */ 9697 bnxt_hwrm_clear_vnic_rss(bp); 9698 bnxt_hwrm_vnic_ctx_free(bp); 9699 } 9700 /* before free the vnic, undo the vnic tpa settings */ 9701 if (bp->flags & BNXT_FLAG_TPA) 9702 bnxt_set_tpa(bp, false); 9703 bnxt_hwrm_vnic_free(bp); 9704 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 9705 bnxt_hwrm_vnic_ctx_free(bp); 9706 } 9707 9708 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 9709 bool irq_re_init) 9710 { 9711 bnxt_clear_vnic(bp); 9712 bnxt_hwrm_ring_free(bp, close_path); 9713 bnxt_hwrm_ring_grp_free(bp); 9714 if (irq_re_init) { 9715 bnxt_hwrm_stat_ctx_free(bp); 9716 bnxt_hwrm_free_tunnel_ports(bp); 9717 } 9718 } 9719 9720 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 9721 { 9722 struct hwrm_func_cfg_input *req; 9723 u8 evb_mode; 9724 int rc; 9725 9726 if (br_mode == BRIDGE_MODE_VEB) 9727 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 9728 else if (br_mode == BRIDGE_MODE_VEPA) 9729 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 9730 else 9731 return -EINVAL; 9732 9733 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 9734 if (rc) 9735 return rc; 9736 9737 req->fid = cpu_to_le16(0xffff); 9738 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 9739 req->evb_mode = evb_mode; 9740 return hwrm_req_send(bp, req); 9741 } 9742 9743 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 9744 { 9745 struct hwrm_func_cfg_input *req; 9746 int rc; 9747 9748 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 9749 return 0; 9750 9751 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 9752 if (rc) 9753 return rc; 9754 9755 req->fid = cpu_to_le16(0xffff); 9756 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 9757 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 9758 if (size == 128) 9759 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 9760 9761 return hwrm_req_send(bp, req); 9762 } 9763 9764 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 9765 { 9766 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 9767 int rc; 9768 9769 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 9770 goto skip_rss_ctx; 9771 9772 /* allocate context for vnic */ 9773 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0); 9774 if (rc) { 9775 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 9776 vnic_id, rc); 9777 goto vnic_setup_err; 9778 } 9779 bp->rsscos_nr_ctxs++; 9780 9781 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 9782 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1); 9783 if (rc) { 9784 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 9785 vnic_id, rc); 9786 goto vnic_setup_err; 9787 } 9788 bp->rsscos_nr_ctxs++; 9789 } 9790 9791 skip_rss_ctx: 9792 /* configure default vnic, ring grp */ 9793 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 9794 if (rc) { 9795 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 9796 vnic_id, rc); 9797 goto vnic_setup_err; 9798 } 9799 9800 /* Enable RSS hashing on vnic */ 9801 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true); 9802 if (rc) { 9803 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 9804 vnic_id, rc); 9805 goto vnic_setup_err; 9806 } 9807 9808 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 9809 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 9810 if (rc) { 9811 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 9812 vnic_id, rc); 9813 } 9814 } 9815 9816 vnic_setup_err: 9817 return rc; 9818 } 9819 9820 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id) 9821 { 9822 int rc, i, nr_ctxs; 9823 9824 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 9825 for (i = 0; i < nr_ctxs; i++) { 9826 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i); 9827 if (rc) { 9828 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 9829 vnic_id, i, rc); 9830 break; 9831 } 9832 bp->rsscos_nr_ctxs++; 9833 } 9834 if (i < nr_ctxs) 9835 return -ENOMEM; 9836 9837 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true); 9838 if (rc) { 9839 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 9840 vnic_id, rc); 9841 return rc; 9842 } 9843 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 9844 if (rc) { 9845 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 9846 vnic_id, rc); 9847 return rc; 9848 } 9849 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 9850 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 9851 if (rc) { 9852 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 9853 vnic_id, rc); 9854 } 9855 } 9856 return rc; 9857 } 9858 9859 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 9860 { 9861 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 9862 return __bnxt_setup_vnic_p5(bp, vnic_id); 9863 else 9864 return __bnxt_setup_vnic(bp, vnic_id); 9865 } 9866 9867 static int bnxt_alloc_and_setup_vnic(struct bnxt *bp, u16 vnic_id, 9868 u16 start_rx_ring_idx, int rx_rings) 9869 { 9870 int rc; 9871 9872 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, start_rx_ring_idx, rx_rings); 9873 if (rc) { 9874 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 9875 vnic_id, rc); 9876 return rc; 9877 } 9878 return bnxt_setup_vnic(bp, vnic_id); 9879 } 9880 9881 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 9882 { 9883 int i, rc = 0; 9884 9885 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 9886 return bnxt_alloc_and_setup_vnic(bp, BNXT_VNIC_NTUPLE, 0, 9887 bp->rx_nr_rings); 9888 9889 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 9890 return 0; 9891 9892 for (i = 0; i < bp->rx_nr_rings; i++) { 9893 struct bnxt_vnic_info *vnic; 9894 u16 vnic_id = i + 1; 9895 u16 ring_id = i; 9896 9897 if (vnic_id >= bp->nr_vnics) 9898 break; 9899 9900 vnic = &bp->vnic_info[vnic_id]; 9901 vnic->flags |= BNXT_VNIC_RFS_FLAG; 9902 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 9903 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 9904 if (bnxt_alloc_and_setup_vnic(bp, vnic_id, ring_id, 1)) 9905 break; 9906 } 9907 return rc; 9908 } 9909 9910 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 9911 static bool bnxt_promisc_ok(struct bnxt *bp) 9912 { 9913 #ifdef CONFIG_BNXT_SRIOV 9914 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 9915 return false; 9916 #endif 9917 return true; 9918 } 9919 9920 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 9921 { 9922 unsigned int rc = 0; 9923 9924 rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1); 9925 if (rc) { 9926 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 9927 rc); 9928 return rc; 9929 } 9930 9931 rc = bnxt_hwrm_vnic_cfg(bp, 1); 9932 if (rc) { 9933 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 9934 rc); 9935 return rc; 9936 } 9937 return rc; 9938 } 9939 9940 static int bnxt_cfg_rx_mode(struct bnxt *); 9941 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 9942 9943 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 9944 { 9945 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 9946 int rc = 0; 9947 unsigned int rx_nr_rings = bp->rx_nr_rings; 9948 9949 if (irq_re_init) { 9950 rc = bnxt_hwrm_stat_ctx_alloc(bp); 9951 if (rc) { 9952 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 9953 rc); 9954 goto err_out; 9955 } 9956 } 9957 9958 rc = bnxt_hwrm_ring_alloc(bp); 9959 if (rc) { 9960 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 9961 goto err_out; 9962 } 9963 9964 rc = bnxt_hwrm_ring_grp_alloc(bp); 9965 if (rc) { 9966 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 9967 goto err_out; 9968 } 9969 9970 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 9971 rx_nr_rings--; 9972 9973 /* default vnic 0 */ 9974 rc = bnxt_hwrm_vnic_alloc(bp, BNXT_VNIC_DEFAULT, 0, rx_nr_rings); 9975 if (rc) { 9976 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 9977 goto err_out; 9978 } 9979 9980 if (BNXT_VF(bp)) 9981 bnxt_hwrm_func_qcfg(bp); 9982 9983 rc = bnxt_setup_vnic(bp, BNXT_VNIC_DEFAULT); 9984 if (rc) 9985 goto err_out; 9986 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 9987 bnxt_hwrm_update_rss_hash_cfg(bp); 9988 9989 if (bp->flags & BNXT_FLAG_RFS) { 9990 rc = bnxt_alloc_rfs_vnics(bp); 9991 if (rc) 9992 goto err_out; 9993 } 9994 9995 if (bp->flags & BNXT_FLAG_TPA) { 9996 rc = bnxt_set_tpa(bp, true); 9997 if (rc) 9998 goto err_out; 9999 } 10000 10001 if (BNXT_VF(bp)) 10002 bnxt_update_vf_mac(bp); 10003 10004 /* Filter for default vnic 0 */ 10005 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 10006 if (rc) { 10007 if (BNXT_VF(bp) && rc == -ENODEV) 10008 netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n"); 10009 else 10010 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 10011 goto err_out; 10012 } 10013 vnic->uc_filter_count = 1; 10014 10015 vnic->rx_mask = 0; 10016 if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state)) 10017 goto skip_rx_mask; 10018 10019 if (bp->dev->flags & IFF_BROADCAST) 10020 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 10021 10022 if (bp->dev->flags & IFF_PROMISC) 10023 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10024 10025 if (bp->dev->flags & IFF_ALLMULTI) { 10026 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10027 vnic->mc_list_count = 0; 10028 } else if (bp->dev->flags & IFF_MULTICAST) { 10029 u32 mask = 0; 10030 10031 bnxt_mc_list_updated(bp, &mask); 10032 vnic->rx_mask |= mask; 10033 } 10034 10035 rc = bnxt_cfg_rx_mode(bp); 10036 if (rc) 10037 goto err_out; 10038 10039 skip_rx_mask: 10040 rc = bnxt_hwrm_set_coal(bp); 10041 if (rc) 10042 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 10043 rc); 10044 10045 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10046 rc = bnxt_setup_nitroa0_vnic(bp); 10047 if (rc) 10048 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 10049 rc); 10050 } 10051 10052 if (BNXT_VF(bp)) { 10053 bnxt_hwrm_func_qcfg(bp); 10054 netdev_update_features(bp->dev); 10055 } 10056 10057 return 0; 10058 10059 err_out: 10060 bnxt_hwrm_resource_free(bp, 0, true); 10061 10062 return rc; 10063 } 10064 10065 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 10066 { 10067 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 10068 return 0; 10069 } 10070 10071 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 10072 { 10073 bnxt_init_cp_rings(bp); 10074 bnxt_init_rx_rings(bp); 10075 bnxt_init_tx_rings(bp); 10076 bnxt_init_ring_grps(bp, irq_re_init); 10077 bnxt_init_vnics(bp); 10078 10079 return bnxt_init_chip(bp, irq_re_init); 10080 } 10081 10082 static int bnxt_set_real_num_queues(struct bnxt *bp) 10083 { 10084 int rc; 10085 struct net_device *dev = bp->dev; 10086 10087 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 10088 bp->tx_nr_rings_xdp); 10089 if (rc) 10090 return rc; 10091 10092 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 10093 if (rc) 10094 return rc; 10095 10096 #ifdef CONFIG_RFS_ACCEL 10097 if (bp->flags & BNXT_FLAG_RFS) 10098 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 10099 #endif 10100 10101 return rc; 10102 } 10103 10104 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 10105 bool shared) 10106 { 10107 int _rx = *rx, _tx = *tx; 10108 10109 if (shared) { 10110 *rx = min_t(int, _rx, max); 10111 *tx = min_t(int, _tx, max); 10112 } else { 10113 if (max < 2) 10114 return -ENOMEM; 10115 10116 while (_rx + _tx > max) { 10117 if (_rx > _tx && _rx > 1) 10118 _rx--; 10119 else if (_tx > 1) 10120 _tx--; 10121 } 10122 *rx = _rx; 10123 *tx = _tx; 10124 } 10125 return 0; 10126 } 10127 10128 static int __bnxt_num_tx_to_cp(struct bnxt *bp, int tx, int tx_sets, int tx_xdp) 10129 { 10130 return (tx - tx_xdp) / tx_sets + tx_xdp; 10131 } 10132 10133 int bnxt_num_tx_to_cp(struct bnxt *bp, int tx) 10134 { 10135 int tcs = bp->num_tc; 10136 10137 if (!tcs) 10138 tcs = 1; 10139 return __bnxt_num_tx_to_cp(bp, tx, tcs, bp->tx_nr_rings_xdp); 10140 } 10141 10142 static int bnxt_num_cp_to_tx(struct bnxt *bp, int tx_cp) 10143 { 10144 int tcs = bp->num_tc; 10145 10146 return (tx_cp - bp->tx_nr_rings_xdp) * tcs + 10147 bp->tx_nr_rings_xdp; 10148 } 10149 10150 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 10151 bool sh) 10152 { 10153 int tx_cp = bnxt_num_tx_to_cp(bp, *tx); 10154 10155 if (tx_cp != *tx) { 10156 int tx_saved = tx_cp, rc; 10157 10158 rc = __bnxt_trim_rings(bp, rx, &tx_cp, max, sh); 10159 if (rc) 10160 return rc; 10161 if (tx_cp != tx_saved) 10162 *tx = bnxt_num_cp_to_tx(bp, tx_cp); 10163 return 0; 10164 } 10165 return __bnxt_trim_rings(bp, rx, tx, max, sh); 10166 } 10167 10168 static void bnxt_setup_msix(struct bnxt *bp) 10169 { 10170 const int len = sizeof(bp->irq_tbl[0].name); 10171 struct net_device *dev = bp->dev; 10172 int tcs, i; 10173 10174 tcs = bp->num_tc; 10175 if (tcs) { 10176 int i, off, count; 10177 10178 for (i = 0; i < tcs; i++) { 10179 count = bp->tx_nr_rings_per_tc; 10180 off = BNXT_TC_TO_RING_BASE(bp, i); 10181 netdev_set_tc_queue(dev, i, count, off); 10182 } 10183 } 10184 10185 for (i = 0; i < bp->cp_nr_rings; i++) { 10186 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 10187 char *attr; 10188 10189 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 10190 attr = "TxRx"; 10191 else if (i < bp->rx_nr_rings) 10192 attr = "rx"; 10193 else 10194 attr = "tx"; 10195 10196 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 10197 attr, i); 10198 bp->irq_tbl[map_idx].handler = bnxt_msix; 10199 } 10200 } 10201 10202 static void bnxt_setup_inta(struct bnxt *bp) 10203 { 10204 const int len = sizeof(bp->irq_tbl[0].name); 10205 10206 if (bp->num_tc) { 10207 netdev_reset_tc(bp->dev); 10208 bp->num_tc = 0; 10209 } 10210 10211 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx", 10212 0); 10213 bp->irq_tbl[0].handler = bnxt_inta; 10214 } 10215 10216 static int bnxt_init_int_mode(struct bnxt *bp); 10217 10218 static int bnxt_setup_int_mode(struct bnxt *bp) 10219 { 10220 int rc; 10221 10222 if (!bp->irq_tbl) { 10223 rc = bnxt_init_int_mode(bp); 10224 if (rc || !bp->irq_tbl) 10225 return rc ?: -ENODEV; 10226 } 10227 10228 if (bp->flags & BNXT_FLAG_USING_MSIX) 10229 bnxt_setup_msix(bp); 10230 else 10231 bnxt_setup_inta(bp); 10232 10233 rc = bnxt_set_real_num_queues(bp); 10234 return rc; 10235 } 10236 10237 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 10238 { 10239 return bp->hw_resc.max_rsscos_ctxs; 10240 } 10241 10242 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 10243 { 10244 return bp->hw_resc.max_vnics; 10245 } 10246 10247 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 10248 { 10249 return bp->hw_resc.max_stat_ctxs; 10250 } 10251 10252 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 10253 { 10254 return bp->hw_resc.max_cp_rings; 10255 } 10256 10257 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 10258 { 10259 unsigned int cp = bp->hw_resc.max_cp_rings; 10260 10261 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 10262 cp -= bnxt_get_ulp_msix_num(bp); 10263 10264 return cp; 10265 } 10266 10267 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 10268 { 10269 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 10270 10271 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10272 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 10273 10274 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 10275 } 10276 10277 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 10278 { 10279 bp->hw_resc.max_irqs = max_irqs; 10280 } 10281 10282 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 10283 { 10284 unsigned int cp; 10285 10286 cp = bnxt_get_max_func_cp_rings_for_en(bp); 10287 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10288 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 10289 else 10290 return cp - bp->cp_nr_rings; 10291 } 10292 10293 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 10294 { 10295 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 10296 } 10297 10298 int bnxt_get_avail_msix(struct bnxt *bp, int num) 10299 { 10300 int max_cp = bnxt_get_max_func_cp_rings(bp); 10301 int max_irq = bnxt_get_max_func_irqs(bp); 10302 int total_req = bp->cp_nr_rings + num; 10303 int max_idx, avail_msix; 10304 10305 max_idx = bp->total_irqs; 10306 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 10307 max_idx = min_t(int, bp->total_irqs, max_cp); 10308 avail_msix = max_idx - bp->cp_nr_rings; 10309 if (!BNXT_NEW_RM(bp) || avail_msix >= num) 10310 return avail_msix; 10311 10312 if (max_irq < total_req) { 10313 num = max_irq - bp->cp_nr_rings; 10314 if (num <= 0) 10315 return 0; 10316 } 10317 return num; 10318 } 10319 10320 static int bnxt_get_num_msix(struct bnxt *bp) 10321 { 10322 if (!BNXT_NEW_RM(bp)) 10323 return bnxt_get_max_func_irqs(bp); 10324 10325 return bnxt_nq_rings_in_use(bp); 10326 } 10327 10328 static int bnxt_init_msix(struct bnxt *bp) 10329 { 10330 int i, total_vecs, max, rc = 0, min = 1, ulp_msix, tx_cp; 10331 struct msix_entry *msix_ent; 10332 10333 total_vecs = bnxt_get_num_msix(bp); 10334 max = bnxt_get_max_func_irqs(bp); 10335 if (total_vecs > max) 10336 total_vecs = max; 10337 10338 if (!total_vecs) 10339 return 0; 10340 10341 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); 10342 if (!msix_ent) 10343 return -ENOMEM; 10344 10345 for (i = 0; i < total_vecs; i++) { 10346 msix_ent[i].entry = i; 10347 msix_ent[i].vector = 0; 10348 } 10349 10350 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 10351 min = 2; 10352 10353 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs); 10354 ulp_msix = bnxt_get_ulp_msix_num(bp); 10355 if (total_vecs < 0 || total_vecs < ulp_msix) { 10356 rc = -ENODEV; 10357 goto msix_setup_exit; 10358 } 10359 10360 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); 10361 if (bp->irq_tbl) { 10362 for (i = 0; i < total_vecs; i++) 10363 bp->irq_tbl[i].vector = msix_ent[i].vector; 10364 10365 bp->total_irqs = total_vecs; 10366 /* Trim rings based upon num of vectors allocated */ 10367 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 10368 total_vecs - ulp_msix, min == 1); 10369 if (rc) 10370 goto msix_setup_exit; 10371 10372 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 10373 bp->cp_nr_rings = (min == 1) ? 10374 max_t(int, tx_cp, bp->rx_nr_rings) : 10375 tx_cp + bp->rx_nr_rings; 10376 10377 } else { 10378 rc = -ENOMEM; 10379 goto msix_setup_exit; 10380 } 10381 bp->flags |= BNXT_FLAG_USING_MSIX; 10382 kfree(msix_ent); 10383 return 0; 10384 10385 msix_setup_exit: 10386 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc); 10387 kfree(bp->irq_tbl); 10388 bp->irq_tbl = NULL; 10389 pci_disable_msix(bp->pdev); 10390 kfree(msix_ent); 10391 return rc; 10392 } 10393 10394 static int bnxt_init_inta(struct bnxt *bp) 10395 { 10396 bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL); 10397 if (!bp->irq_tbl) 10398 return -ENOMEM; 10399 10400 bp->total_irqs = 1; 10401 bp->rx_nr_rings = 1; 10402 bp->tx_nr_rings = 1; 10403 bp->cp_nr_rings = 1; 10404 bp->flags |= BNXT_FLAG_SHARED_RINGS; 10405 bp->irq_tbl[0].vector = bp->pdev->irq; 10406 return 0; 10407 } 10408 10409 static int bnxt_init_int_mode(struct bnxt *bp) 10410 { 10411 int rc = -ENODEV; 10412 10413 if (bp->flags & BNXT_FLAG_MSIX_CAP) 10414 rc = bnxt_init_msix(bp); 10415 10416 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) { 10417 /* fallback to INTA */ 10418 rc = bnxt_init_inta(bp); 10419 } 10420 return rc; 10421 } 10422 10423 static void bnxt_clear_int_mode(struct bnxt *bp) 10424 { 10425 if (bp->flags & BNXT_FLAG_USING_MSIX) 10426 pci_disable_msix(bp->pdev); 10427 10428 kfree(bp->irq_tbl); 10429 bp->irq_tbl = NULL; 10430 bp->flags &= ~BNXT_FLAG_USING_MSIX; 10431 } 10432 10433 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 10434 { 10435 bool irq_cleared = false; 10436 int tcs = bp->num_tc; 10437 int rc; 10438 10439 if (!bnxt_need_reserve_rings(bp)) 10440 return 0; 10441 10442 if (irq_re_init && BNXT_NEW_RM(bp) && 10443 bnxt_get_num_msix(bp) != bp->total_irqs) { 10444 bnxt_ulp_irq_stop(bp); 10445 bnxt_clear_int_mode(bp); 10446 irq_cleared = true; 10447 } 10448 rc = __bnxt_reserve_rings(bp); 10449 if (irq_cleared) { 10450 if (!rc) 10451 rc = bnxt_init_int_mode(bp); 10452 bnxt_ulp_irq_restart(bp, rc); 10453 } 10454 if (rc) { 10455 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 10456 return rc; 10457 } 10458 if (tcs && (bp->tx_nr_rings_per_tc * tcs != 10459 bp->tx_nr_rings - bp->tx_nr_rings_xdp)) { 10460 netdev_err(bp->dev, "tx ring reservation failure\n"); 10461 netdev_reset_tc(bp->dev); 10462 bp->num_tc = 0; 10463 if (bp->tx_nr_rings_xdp) 10464 bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp; 10465 else 10466 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 10467 return -ENOMEM; 10468 } 10469 return 0; 10470 } 10471 10472 static void bnxt_free_irq(struct bnxt *bp) 10473 { 10474 struct bnxt_irq *irq; 10475 int i; 10476 10477 #ifdef CONFIG_RFS_ACCEL 10478 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 10479 bp->dev->rx_cpu_rmap = NULL; 10480 #endif 10481 if (!bp->irq_tbl || !bp->bnapi) 10482 return; 10483 10484 for (i = 0; i < bp->cp_nr_rings; i++) { 10485 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 10486 10487 irq = &bp->irq_tbl[map_idx]; 10488 if (irq->requested) { 10489 if (irq->have_cpumask) { 10490 irq_set_affinity_hint(irq->vector, NULL); 10491 free_cpumask_var(irq->cpu_mask); 10492 irq->have_cpumask = 0; 10493 } 10494 free_irq(irq->vector, bp->bnapi[i]); 10495 } 10496 10497 irq->requested = 0; 10498 } 10499 } 10500 10501 static int bnxt_request_irq(struct bnxt *bp) 10502 { 10503 int i, j, rc = 0; 10504 unsigned long flags = 0; 10505 #ifdef CONFIG_RFS_ACCEL 10506 struct cpu_rmap *rmap; 10507 #endif 10508 10509 rc = bnxt_setup_int_mode(bp); 10510 if (rc) { 10511 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 10512 rc); 10513 return rc; 10514 } 10515 #ifdef CONFIG_RFS_ACCEL 10516 rmap = bp->dev->rx_cpu_rmap; 10517 #endif 10518 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) 10519 flags = IRQF_SHARED; 10520 10521 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 10522 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 10523 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 10524 10525 #ifdef CONFIG_RFS_ACCEL 10526 if (rmap && bp->bnapi[i]->rx_ring) { 10527 rc = irq_cpu_rmap_add(rmap, irq->vector); 10528 if (rc) 10529 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 10530 j); 10531 j++; 10532 } 10533 #endif 10534 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 10535 bp->bnapi[i]); 10536 if (rc) 10537 break; 10538 10539 netif_napi_set_irq(&bp->bnapi[i]->napi, irq->vector); 10540 irq->requested = 1; 10541 10542 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 10543 int numa_node = dev_to_node(&bp->pdev->dev); 10544 10545 irq->have_cpumask = 1; 10546 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 10547 irq->cpu_mask); 10548 rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask); 10549 if (rc) { 10550 netdev_warn(bp->dev, 10551 "Set affinity failed, IRQ = %d\n", 10552 irq->vector); 10553 break; 10554 } 10555 } 10556 } 10557 return rc; 10558 } 10559 10560 static void bnxt_del_napi(struct bnxt *bp) 10561 { 10562 int i; 10563 10564 if (!bp->bnapi) 10565 return; 10566 10567 for (i = 0; i < bp->rx_nr_rings; i++) 10568 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_RX, NULL); 10569 for (i = 0; i < bp->tx_nr_rings - bp->tx_nr_rings_xdp; i++) 10570 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_TX, NULL); 10571 10572 for (i = 0; i < bp->cp_nr_rings; i++) { 10573 struct bnxt_napi *bnapi = bp->bnapi[i]; 10574 10575 __netif_napi_del(&bnapi->napi); 10576 } 10577 /* We called __netif_napi_del(), we need 10578 * to respect an RCU grace period before freeing napi structures. 10579 */ 10580 synchronize_net(); 10581 } 10582 10583 static void bnxt_init_napi(struct bnxt *bp) 10584 { 10585 int i; 10586 unsigned int cp_nr_rings = bp->cp_nr_rings; 10587 struct bnxt_napi *bnapi; 10588 10589 if (bp->flags & BNXT_FLAG_USING_MSIX) { 10590 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 10591 10592 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10593 poll_fn = bnxt_poll_p5; 10594 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 10595 cp_nr_rings--; 10596 for (i = 0; i < cp_nr_rings; i++) { 10597 bnapi = bp->bnapi[i]; 10598 netif_napi_add(bp->dev, &bnapi->napi, poll_fn); 10599 } 10600 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10601 bnapi = bp->bnapi[cp_nr_rings]; 10602 netif_napi_add(bp->dev, &bnapi->napi, 10603 bnxt_poll_nitroa0); 10604 } 10605 } else { 10606 bnapi = bp->bnapi[0]; 10607 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll); 10608 } 10609 } 10610 10611 static void bnxt_disable_napi(struct bnxt *bp) 10612 { 10613 int i; 10614 10615 if (!bp->bnapi || 10616 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 10617 return; 10618 10619 for (i = 0; i < bp->cp_nr_rings; i++) { 10620 struct bnxt_napi *bnapi = bp->bnapi[i]; 10621 struct bnxt_cp_ring_info *cpr; 10622 10623 cpr = &bnapi->cp_ring; 10624 if (bnapi->tx_fault) 10625 cpr->sw_stats.tx.tx_resets++; 10626 if (bnapi->in_reset) 10627 cpr->sw_stats.rx.rx_resets++; 10628 napi_disable(&bnapi->napi); 10629 if (bnapi->rx_ring) 10630 cancel_work_sync(&cpr->dim.work); 10631 } 10632 } 10633 10634 static void bnxt_enable_napi(struct bnxt *bp) 10635 { 10636 int i; 10637 10638 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 10639 for (i = 0; i < bp->cp_nr_rings; i++) { 10640 struct bnxt_napi *bnapi = bp->bnapi[i]; 10641 struct bnxt_cp_ring_info *cpr; 10642 10643 bnapi->tx_fault = 0; 10644 10645 cpr = &bnapi->cp_ring; 10646 bnapi->in_reset = false; 10647 10648 if (bnapi->rx_ring) { 10649 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 10650 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 10651 } 10652 napi_enable(&bnapi->napi); 10653 } 10654 } 10655 10656 void bnxt_tx_disable(struct bnxt *bp) 10657 { 10658 int i; 10659 struct bnxt_tx_ring_info *txr; 10660 10661 if (bp->tx_ring) { 10662 for (i = 0; i < bp->tx_nr_rings; i++) { 10663 txr = &bp->tx_ring[i]; 10664 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 10665 } 10666 } 10667 /* Make sure napi polls see @dev_state change */ 10668 synchronize_net(); 10669 /* Drop carrier first to prevent TX timeout */ 10670 netif_carrier_off(bp->dev); 10671 /* Stop all TX queues */ 10672 netif_tx_disable(bp->dev); 10673 } 10674 10675 void bnxt_tx_enable(struct bnxt *bp) 10676 { 10677 int i; 10678 struct bnxt_tx_ring_info *txr; 10679 10680 for (i = 0; i < bp->tx_nr_rings; i++) { 10681 txr = &bp->tx_ring[i]; 10682 WRITE_ONCE(txr->dev_state, 0); 10683 } 10684 /* Make sure napi polls see @dev_state change */ 10685 synchronize_net(); 10686 netif_tx_wake_all_queues(bp->dev); 10687 if (BNXT_LINK_IS_UP(bp)) 10688 netif_carrier_on(bp->dev); 10689 } 10690 10691 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 10692 { 10693 u8 active_fec = link_info->active_fec_sig_mode & 10694 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 10695 10696 switch (active_fec) { 10697 default: 10698 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 10699 return "None"; 10700 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 10701 return "Clause 74 BaseR"; 10702 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 10703 return "Clause 91 RS(528,514)"; 10704 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 10705 return "Clause 91 RS544_1XN"; 10706 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 10707 return "Clause 91 RS(544,514)"; 10708 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 10709 return "Clause 91 RS272_1XN"; 10710 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 10711 return "Clause 91 RS(272,257)"; 10712 } 10713 } 10714 10715 void bnxt_report_link(struct bnxt *bp) 10716 { 10717 if (BNXT_LINK_IS_UP(bp)) { 10718 const char *signal = ""; 10719 const char *flow_ctrl; 10720 const char *duplex; 10721 u32 speed; 10722 u16 fec; 10723 10724 netif_carrier_on(bp->dev); 10725 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 10726 if (speed == SPEED_UNKNOWN) { 10727 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 10728 return; 10729 } 10730 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 10731 duplex = "full"; 10732 else 10733 duplex = "half"; 10734 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 10735 flow_ctrl = "ON - receive & transmit"; 10736 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 10737 flow_ctrl = "ON - transmit"; 10738 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 10739 flow_ctrl = "ON - receive"; 10740 else 10741 flow_ctrl = "none"; 10742 if (bp->link_info.phy_qcfg_resp.option_flags & 10743 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 10744 u8 sig_mode = bp->link_info.active_fec_sig_mode & 10745 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 10746 switch (sig_mode) { 10747 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 10748 signal = "(NRZ) "; 10749 break; 10750 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 10751 signal = "(PAM4 56Gbps) "; 10752 break; 10753 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4_112: 10754 signal = "(PAM4 112Gbps) "; 10755 break; 10756 default: 10757 break; 10758 } 10759 } 10760 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 10761 speed, signal, duplex, flow_ctrl); 10762 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 10763 netdev_info(bp->dev, "EEE is %s\n", 10764 bp->eee.eee_active ? "active" : 10765 "not active"); 10766 fec = bp->link_info.fec_cfg; 10767 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 10768 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 10769 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 10770 bnxt_report_fec(&bp->link_info)); 10771 } else { 10772 netif_carrier_off(bp->dev); 10773 netdev_err(bp->dev, "NIC Link is Down\n"); 10774 } 10775 } 10776 10777 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 10778 { 10779 if (!resp->supported_speeds_auto_mode && 10780 !resp->supported_speeds_force_mode && 10781 !resp->supported_pam4_speeds_auto_mode && 10782 !resp->supported_pam4_speeds_force_mode && 10783 !resp->supported_speeds2_auto_mode && 10784 !resp->supported_speeds2_force_mode) 10785 return true; 10786 return false; 10787 } 10788 10789 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 10790 { 10791 struct bnxt_link_info *link_info = &bp->link_info; 10792 struct hwrm_port_phy_qcaps_output *resp; 10793 struct hwrm_port_phy_qcaps_input *req; 10794 int rc = 0; 10795 10796 if (bp->hwrm_spec_code < 0x10201) 10797 return 0; 10798 10799 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS); 10800 if (rc) 10801 return rc; 10802 10803 resp = hwrm_req_hold(bp, req); 10804 rc = hwrm_req_send(bp, req); 10805 if (rc) 10806 goto hwrm_phy_qcaps_exit; 10807 10808 bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8); 10809 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 10810 struct ethtool_keee *eee = &bp->eee; 10811 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 10812 10813 _bnxt_fw_to_linkmode(eee->supported, fw_speeds); 10814 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 10815 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 10816 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 10817 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 10818 } 10819 10820 if (bp->hwrm_spec_code >= 0x10a01) { 10821 if (bnxt_phy_qcaps_no_speed(resp)) { 10822 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 10823 netdev_warn(bp->dev, "Ethernet link disabled\n"); 10824 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 10825 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 10826 netdev_info(bp->dev, "Ethernet link enabled\n"); 10827 /* Phy re-enabled, reprobe the speeds */ 10828 link_info->support_auto_speeds = 0; 10829 link_info->support_pam4_auto_speeds = 0; 10830 link_info->support_auto_speeds2 = 0; 10831 } 10832 } 10833 if (resp->supported_speeds_auto_mode) 10834 link_info->support_auto_speeds = 10835 le16_to_cpu(resp->supported_speeds_auto_mode); 10836 if (resp->supported_pam4_speeds_auto_mode) 10837 link_info->support_pam4_auto_speeds = 10838 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 10839 if (resp->supported_speeds2_auto_mode) 10840 link_info->support_auto_speeds2 = 10841 le16_to_cpu(resp->supported_speeds2_auto_mode); 10842 10843 bp->port_count = resp->port_cnt; 10844 10845 hwrm_phy_qcaps_exit: 10846 hwrm_req_drop(bp, req); 10847 return rc; 10848 } 10849 10850 static bool bnxt_support_dropped(u16 advertising, u16 supported) 10851 { 10852 u16 diff = advertising ^ supported; 10853 10854 return ((supported | diff) != supported); 10855 } 10856 10857 static bool bnxt_support_speed_dropped(struct bnxt_link_info *link_info) 10858 { 10859 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 10860 10861 /* Check if any advertised speeds are no longer supported. The caller 10862 * holds the link_lock mutex, so we can modify link_info settings. 10863 */ 10864 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 10865 if (bnxt_support_dropped(link_info->advertising, 10866 link_info->support_auto_speeds2)) { 10867 link_info->advertising = link_info->support_auto_speeds2; 10868 return true; 10869 } 10870 return false; 10871 } 10872 if (bnxt_support_dropped(link_info->advertising, 10873 link_info->support_auto_speeds)) { 10874 link_info->advertising = link_info->support_auto_speeds; 10875 return true; 10876 } 10877 if (bnxt_support_dropped(link_info->advertising_pam4, 10878 link_info->support_pam4_auto_speeds)) { 10879 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 10880 return true; 10881 } 10882 return false; 10883 } 10884 10885 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 10886 { 10887 struct bnxt_link_info *link_info = &bp->link_info; 10888 struct hwrm_port_phy_qcfg_output *resp; 10889 struct hwrm_port_phy_qcfg_input *req; 10890 u8 link_state = link_info->link_state; 10891 bool support_changed; 10892 int rc; 10893 10894 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG); 10895 if (rc) 10896 return rc; 10897 10898 resp = hwrm_req_hold(bp, req); 10899 rc = hwrm_req_send(bp, req); 10900 if (rc) { 10901 hwrm_req_drop(bp, req); 10902 if (BNXT_VF(bp) && rc == -ENODEV) { 10903 netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n"); 10904 rc = 0; 10905 } 10906 return rc; 10907 } 10908 10909 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 10910 link_info->phy_link_status = resp->link; 10911 link_info->duplex = resp->duplex_cfg; 10912 if (bp->hwrm_spec_code >= 0x10800) 10913 link_info->duplex = resp->duplex_state; 10914 link_info->pause = resp->pause; 10915 link_info->auto_mode = resp->auto_mode; 10916 link_info->auto_pause_setting = resp->auto_pause; 10917 link_info->lp_pause = resp->link_partner_adv_pause; 10918 link_info->force_pause_setting = resp->force_pause; 10919 link_info->duplex_setting = resp->duplex_cfg; 10920 if (link_info->phy_link_status == BNXT_LINK_LINK) { 10921 link_info->link_speed = le16_to_cpu(resp->link_speed); 10922 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 10923 link_info->active_lanes = resp->active_lanes; 10924 } else { 10925 link_info->link_speed = 0; 10926 link_info->active_lanes = 0; 10927 } 10928 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 10929 link_info->force_pam4_link_speed = 10930 le16_to_cpu(resp->force_pam4_link_speed); 10931 link_info->force_link_speed2 = le16_to_cpu(resp->force_link_speeds2); 10932 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 10933 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 10934 link_info->support_speeds2 = le16_to_cpu(resp->support_speeds2); 10935 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 10936 link_info->auto_pam4_link_speeds = 10937 le16_to_cpu(resp->auto_pam4_link_speed_mask); 10938 link_info->auto_link_speeds2 = le16_to_cpu(resp->auto_link_speeds2); 10939 link_info->lp_auto_link_speeds = 10940 le16_to_cpu(resp->link_partner_adv_speeds); 10941 link_info->lp_auto_pam4_link_speeds = 10942 resp->link_partner_pam4_adv_speeds; 10943 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 10944 link_info->phy_ver[0] = resp->phy_maj; 10945 link_info->phy_ver[1] = resp->phy_min; 10946 link_info->phy_ver[2] = resp->phy_bld; 10947 link_info->media_type = resp->media_type; 10948 link_info->phy_type = resp->phy_type; 10949 link_info->transceiver = resp->xcvr_pkg_type; 10950 link_info->phy_addr = resp->eee_config_phy_addr & 10951 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 10952 link_info->module_status = resp->module_status; 10953 10954 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 10955 struct ethtool_keee *eee = &bp->eee; 10956 u16 fw_speeds; 10957 10958 eee->eee_active = 0; 10959 if (resp->eee_config_phy_addr & 10960 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 10961 eee->eee_active = 1; 10962 fw_speeds = le16_to_cpu( 10963 resp->link_partner_adv_eee_link_speed_mask); 10964 _bnxt_fw_to_linkmode(eee->lp_advertised, fw_speeds); 10965 } 10966 10967 /* Pull initial EEE config */ 10968 if (!chng_link_state) { 10969 if (resp->eee_config_phy_addr & 10970 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 10971 eee->eee_enabled = 1; 10972 10973 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 10974 _bnxt_fw_to_linkmode(eee->advertised, fw_speeds); 10975 10976 if (resp->eee_config_phy_addr & 10977 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 10978 __le32 tmr; 10979 10980 eee->tx_lpi_enabled = 1; 10981 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 10982 eee->tx_lpi_timer = le32_to_cpu(tmr) & 10983 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 10984 } 10985 } 10986 } 10987 10988 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 10989 if (bp->hwrm_spec_code >= 0x10504) { 10990 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 10991 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 10992 } 10993 /* TODO: need to add more logic to report VF link */ 10994 if (chng_link_state) { 10995 if (link_info->phy_link_status == BNXT_LINK_LINK) 10996 link_info->link_state = BNXT_LINK_STATE_UP; 10997 else 10998 link_info->link_state = BNXT_LINK_STATE_DOWN; 10999 if (link_state != link_info->link_state) 11000 bnxt_report_link(bp); 11001 } else { 11002 /* always link down if not require to update link state */ 11003 link_info->link_state = BNXT_LINK_STATE_DOWN; 11004 } 11005 hwrm_req_drop(bp, req); 11006 11007 if (!BNXT_PHY_CFG_ABLE(bp)) 11008 return 0; 11009 11010 support_changed = bnxt_support_speed_dropped(link_info); 11011 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 11012 bnxt_hwrm_set_link_setting(bp, true, false); 11013 return 0; 11014 } 11015 11016 static void bnxt_get_port_module_status(struct bnxt *bp) 11017 { 11018 struct bnxt_link_info *link_info = &bp->link_info; 11019 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 11020 u8 module_status; 11021 11022 if (bnxt_update_link(bp, true)) 11023 return; 11024 11025 module_status = link_info->module_status; 11026 switch (module_status) { 11027 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 11028 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 11029 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 11030 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 11031 bp->pf.port_id); 11032 if (bp->hwrm_spec_code >= 0x10201) { 11033 netdev_warn(bp->dev, "Module part number %s\n", 11034 resp->phy_vendor_partnumber); 11035 } 11036 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 11037 netdev_warn(bp->dev, "TX is disabled\n"); 11038 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 11039 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 11040 } 11041 } 11042 11043 static void 11044 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 11045 { 11046 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 11047 if (bp->hwrm_spec_code >= 0x10201) 11048 req->auto_pause = 11049 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 11050 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 11051 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 11052 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 11053 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 11054 req->enables |= 11055 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 11056 } else { 11057 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 11058 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 11059 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 11060 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 11061 req->enables |= 11062 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 11063 if (bp->hwrm_spec_code >= 0x10201) { 11064 req->auto_pause = req->force_pause; 11065 req->enables |= cpu_to_le32( 11066 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 11067 } 11068 } 11069 } 11070 11071 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 11072 { 11073 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 11074 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 11075 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 11076 req->enables |= 11077 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEEDS2_MASK); 11078 req->auto_link_speeds2_mask = cpu_to_le16(bp->link_info.advertising); 11079 } else if (bp->link_info.advertising) { 11080 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 11081 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 11082 } 11083 if (bp->link_info.advertising_pam4) { 11084 req->enables |= 11085 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 11086 req->auto_link_pam4_speed_mask = 11087 cpu_to_le16(bp->link_info.advertising_pam4); 11088 } 11089 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 11090 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 11091 } else { 11092 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 11093 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 11094 req->force_link_speeds2 = cpu_to_le16(bp->link_info.req_link_speed); 11095 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_LINK_SPEEDS2); 11096 netif_info(bp, link, bp->dev, "Forcing FW speed2: %d\n", 11097 (u32)bp->link_info.req_link_speed); 11098 } else if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 11099 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 11100 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 11101 } else { 11102 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 11103 } 11104 } 11105 11106 /* tell chimp that the setting takes effect immediately */ 11107 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 11108 } 11109 11110 int bnxt_hwrm_set_pause(struct bnxt *bp) 11111 { 11112 struct hwrm_port_phy_cfg_input *req; 11113 int rc; 11114 11115 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 11116 if (rc) 11117 return rc; 11118 11119 bnxt_hwrm_set_pause_common(bp, req); 11120 11121 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 11122 bp->link_info.force_link_chng) 11123 bnxt_hwrm_set_link_common(bp, req); 11124 11125 rc = hwrm_req_send(bp, req); 11126 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 11127 /* since changing of pause setting doesn't trigger any link 11128 * change event, the driver needs to update the current pause 11129 * result upon successfully return of the phy_cfg command 11130 */ 11131 bp->link_info.pause = 11132 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 11133 bp->link_info.auto_pause_setting = 0; 11134 if (!bp->link_info.force_link_chng) 11135 bnxt_report_link(bp); 11136 } 11137 bp->link_info.force_link_chng = false; 11138 return rc; 11139 } 11140 11141 static void bnxt_hwrm_set_eee(struct bnxt *bp, 11142 struct hwrm_port_phy_cfg_input *req) 11143 { 11144 struct ethtool_keee *eee = &bp->eee; 11145 11146 if (eee->eee_enabled) { 11147 u16 eee_speeds; 11148 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 11149 11150 if (eee->tx_lpi_enabled) 11151 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 11152 else 11153 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 11154 11155 req->flags |= cpu_to_le32(flags); 11156 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 11157 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 11158 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 11159 } else { 11160 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 11161 } 11162 } 11163 11164 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 11165 { 11166 struct hwrm_port_phy_cfg_input *req; 11167 int rc; 11168 11169 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 11170 if (rc) 11171 return rc; 11172 11173 if (set_pause) 11174 bnxt_hwrm_set_pause_common(bp, req); 11175 11176 bnxt_hwrm_set_link_common(bp, req); 11177 11178 if (set_eee) 11179 bnxt_hwrm_set_eee(bp, req); 11180 return hwrm_req_send(bp, req); 11181 } 11182 11183 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 11184 { 11185 struct hwrm_port_phy_cfg_input *req; 11186 int rc; 11187 11188 if (!BNXT_SINGLE_PF(bp)) 11189 return 0; 11190 11191 if (pci_num_vf(bp->pdev) && 11192 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 11193 return 0; 11194 11195 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 11196 if (rc) 11197 return rc; 11198 11199 req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 11200 rc = hwrm_req_send(bp, req); 11201 if (!rc) { 11202 mutex_lock(&bp->link_lock); 11203 /* Device is not obliged link down in certain scenarios, even 11204 * when forced. Setting the state unknown is consistent with 11205 * driver startup and will force link state to be reported 11206 * during subsequent open based on PORT_PHY_QCFG. 11207 */ 11208 bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN; 11209 mutex_unlock(&bp->link_lock); 11210 } 11211 return rc; 11212 } 11213 11214 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 11215 { 11216 #ifdef CONFIG_TEE_BNXT_FW 11217 int rc = tee_bnxt_fw_load(); 11218 11219 if (rc) 11220 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 11221 11222 return rc; 11223 #else 11224 netdev_err(bp->dev, "OP-TEE not supported\n"); 11225 return -ENODEV; 11226 #endif 11227 } 11228 11229 static int bnxt_try_recover_fw(struct bnxt *bp) 11230 { 11231 if (bp->fw_health && bp->fw_health->status_reliable) { 11232 int retry = 0, rc; 11233 u32 sts; 11234 11235 do { 11236 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 11237 rc = bnxt_hwrm_poll(bp); 11238 if (!BNXT_FW_IS_BOOTING(sts) && 11239 !BNXT_FW_IS_RECOVERING(sts)) 11240 break; 11241 retry++; 11242 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 11243 11244 if (!BNXT_FW_IS_HEALTHY(sts)) { 11245 netdev_err(bp->dev, 11246 "Firmware not responding, status: 0x%x\n", 11247 sts); 11248 rc = -ENODEV; 11249 } 11250 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 11251 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 11252 return bnxt_fw_reset_via_optee(bp); 11253 } 11254 return rc; 11255 } 11256 11257 return -ENODEV; 11258 } 11259 11260 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset) 11261 { 11262 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 11263 11264 if (!BNXT_NEW_RM(bp)) 11265 return; /* no resource reservations required */ 11266 11267 hw_resc->resv_cp_rings = 0; 11268 hw_resc->resv_stat_ctxs = 0; 11269 hw_resc->resv_irqs = 0; 11270 hw_resc->resv_tx_rings = 0; 11271 hw_resc->resv_rx_rings = 0; 11272 hw_resc->resv_hw_ring_grps = 0; 11273 hw_resc->resv_vnics = 0; 11274 hw_resc->resv_rsscos_ctxs = 0; 11275 if (!fw_reset) { 11276 bp->tx_nr_rings = 0; 11277 bp->rx_nr_rings = 0; 11278 } 11279 } 11280 11281 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset) 11282 { 11283 int rc; 11284 11285 if (!BNXT_NEW_RM(bp)) 11286 return 0; /* no resource reservations required */ 11287 11288 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 11289 if (rc) 11290 netdev_err(bp->dev, "resc_qcaps failed\n"); 11291 11292 bnxt_clear_reservations(bp, fw_reset); 11293 11294 return rc; 11295 } 11296 11297 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 11298 { 11299 struct hwrm_func_drv_if_change_output *resp; 11300 struct hwrm_func_drv_if_change_input *req; 11301 bool fw_reset = !bp->irq_tbl; 11302 bool resc_reinit = false; 11303 int rc, retry = 0; 11304 u32 flags = 0; 11305 11306 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 11307 return 0; 11308 11309 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE); 11310 if (rc) 11311 return rc; 11312 11313 if (up) 11314 req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 11315 resp = hwrm_req_hold(bp, req); 11316 11317 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 11318 while (retry < BNXT_FW_IF_RETRY) { 11319 rc = hwrm_req_send(bp, req); 11320 if (rc != -EAGAIN) 11321 break; 11322 11323 msleep(50); 11324 retry++; 11325 } 11326 11327 if (rc == -EAGAIN) { 11328 hwrm_req_drop(bp, req); 11329 return rc; 11330 } else if (!rc) { 11331 flags = le32_to_cpu(resp->flags); 11332 } else if (up) { 11333 rc = bnxt_try_recover_fw(bp); 11334 fw_reset = true; 11335 } 11336 hwrm_req_drop(bp, req); 11337 if (rc) 11338 return rc; 11339 11340 if (!up) { 11341 bnxt_inv_fw_health_reg(bp); 11342 return 0; 11343 } 11344 11345 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 11346 resc_reinit = true; 11347 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE || 11348 test_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) 11349 fw_reset = true; 11350 else 11351 bnxt_remap_fw_health_regs(bp); 11352 11353 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 11354 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 11355 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 11356 return -ENODEV; 11357 } 11358 if (resc_reinit || fw_reset) { 11359 if (fw_reset) { 11360 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 11361 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11362 bnxt_ulp_stop(bp); 11363 bnxt_free_ctx_mem(bp); 11364 bnxt_dcb_free(bp); 11365 rc = bnxt_fw_init_one(bp); 11366 if (rc) { 11367 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 11368 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 11369 return rc; 11370 } 11371 bnxt_clear_int_mode(bp); 11372 rc = bnxt_init_int_mode(bp); 11373 if (rc) { 11374 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 11375 netdev_err(bp->dev, "init int mode failed\n"); 11376 return rc; 11377 } 11378 } 11379 rc = bnxt_cancel_reservations(bp, fw_reset); 11380 } 11381 return rc; 11382 } 11383 11384 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 11385 { 11386 struct hwrm_port_led_qcaps_output *resp; 11387 struct hwrm_port_led_qcaps_input *req; 11388 struct bnxt_pf_info *pf = &bp->pf; 11389 int rc; 11390 11391 bp->num_leds = 0; 11392 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 11393 return 0; 11394 11395 rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS); 11396 if (rc) 11397 return rc; 11398 11399 req->port_id = cpu_to_le16(pf->port_id); 11400 resp = hwrm_req_hold(bp, req); 11401 rc = hwrm_req_send(bp, req); 11402 if (rc) { 11403 hwrm_req_drop(bp, req); 11404 return rc; 11405 } 11406 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 11407 int i; 11408 11409 bp->num_leds = resp->num_leds; 11410 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 11411 bp->num_leds); 11412 for (i = 0; i < bp->num_leds; i++) { 11413 struct bnxt_led_info *led = &bp->leds[i]; 11414 __le16 caps = led->led_state_caps; 11415 11416 if (!led->led_group_id || 11417 !BNXT_LED_ALT_BLINK_CAP(caps)) { 11418 bp->num_leds = 0; 11419 break; 11420 } 11421 } 11422 } 11423 hwrm_req_drop(bp, req); 11424 return 0; 11425 } 11426 11427 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 11428 { 11429 struct hwrm_wol_filter_alloc_output *resp; 11430 struct hwrm_wol_filter_alloc_input *req; 11431 int rc; 11432 11433 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC); 11434 if (rc) 11435 return rc; 11436 11437 req->port_id = cpu_to_le16(bp->pf.port_id); 11438 req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 11439 req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 11440 memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN); 11441 11442 resp = hwrm_req_hold(bp, req); 11443 rc = hwrm_req_send(bp, req); 11444 if (!rc) 11445 bp->wol_filter_id = resp->wol_filter_id; 11446 hwrm_req_drop(bp, req); 11447 return rc; 11448 } 11449 11450 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 11451 { 11452 struct hwrm_wol_filter_free_input *req; 11453 int rc; 11454 11455 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE); 11456 if (rc) 11457 return rc; 11458 11459 req->port_id = cpu_to_le16(bp->pf.port_id); 11460 req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 11461 req->wol_filter_id = bp->wol_filter_id; 11462 11463 return hwrm_req_send(bp, req); 11464 } 11465 11466 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 11467 { 11468 struct hwrm_wol_filter_qcfg_output *resp; 11469 struct hwrm_wol_filter_qcfg_input *req; 11470 u16 next_handle = 0; 11471 int rc; 11472 11473 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG); 11474 if (rc) 11475 return rc; 11476 11477 req->port_id = cpu_to_le16(bp->pf.port_id); 11478 req->handle = cpu_to_le16(handle); 11479 resp = hwrm_req_hold(bp, req); 11480 rc = hwrm_req_send(bp, req); 11481 if (!rc) { 11482 next_handle = le16_to_cpu(resp->next_handle); 11483 if (next_handle != 0) { 11484 if (resp->wol_type == 11485 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 11486 bp->wol = 1; 11487 bp->wol_filter_id = resp->wol_filter_id; 11488 } 11489 } 11490 } 11491 hwrm_req_drop(bp, req); 11492 return next_handle; 11493 } 11494 11495 static void bnxt_get_wol_settings(struct bnxt *bp) 11496 { 11497 u16 handle = 0; 11498 11499 bp->wol = 0; 11500 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 11501 return; 11502 11503 do { 11504 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 11505 } while (handle && handle != 0xffff); 11506 } 11507 11508 static bool bnxt_eee_config_ok(struct bnxt *bp) 11509 { 11510 struct ethtool_keee *eee = &bp->eee; 11511 struct bnxt_link_info *link_info = &bp->link_info; 11512 11513 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 11514 return true; 11515 11516 if (eee->eee_enabled) { 11517 __ETHTOOL_DECLARE_LINK_MODE_MASK(advertising); 11518 __ETHTOOL_DECLARE_LINK_MODE_MASK(tmp); 11519 11520 _bnxt_fw_to_linkmode(advertising, link_info->advertising); 11521 11522 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 11523 eee->eee_enabled = 0; 11524 return false; 11525 } 11526 if (linkmode_andnot(tmp, eee->advertised, advertising)) { 11527 linkmode_and(eee->advertised, advertising, 11528 eee->supported); 11529 return false; 11530 } 11531 } 11532 return true; 11533 } 11534 11535 static int bnxt_update_phy_setting(struct bnxt *bp) 11536 { 11537 int rc; 11538 bool update_link = false; 11539 bool update_pause = false; 11540 bool update_eee = false; 11541 struct bnxt_link_info *link_info = &bp->link_info; 11542 11543 rc = bnxt_update_link(bp, true); 11544 if (rc) { 11545 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 11546 rc); 11547 return rc; 11548 } 11549 if (!BNXT_SINGLE_PF(bp)) 11550 return 0; 11551 11552 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 11553 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 11554 link_info->req_flow_ctrl) 11555 update_pause = true; 11556 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 11557 link_info->force_pause_setting != link_info->req_flow_ctrl) 11558 update_pause = true; 11559 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 11560 if (BNXT_AUTO_MODE(link_info->auto_mode)) 11561 update_link = true; 11562 if (bnxt_force_speed_updated(link_info)) 11563 update_link = true; 11564 if (link_info->req_duplex != link_info->duplex_setting) 11565 update_link = true; 11566 } else { 11567 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 11568 update_link = true; 11569 if (bnxt_auto_speed_updated(link_info)) 11570 update_link = true; 11571 } 11572 11573 /* The last close may have shutdown the link, so need to call 11574 * PHY_CFG to bring it back up. 11575 */ 11576 if (!BNXT_LINK_IS_UP(bp)) 11577 update_link = true; 11578 11579 if (!bnxt_eee_config_ok(bp)) 11580 update_eee = true; 11581 11582 if (update_link) 11583 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 11584 else if (update_pause) 11585 rc = bnxt_hwrm_set_pause(bp); 11586 if (rc) { 11587 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 11588 rc); 11589 return rc; 11590 } 11591 11592 return rc; 11593 } 11594 11595 /* Common routine to pre-map certain register block to different GRC window. 11596 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows 11597 * in PF and 3 windows in VF that can be customized to map in different 11598 * register blocks. 11599 */ 11600 static void bnxt_preset_reg_win(struct bnxt *bp) 11601 { 11602 if (BNXT_PF(bp)) { 11603 /* CAG registers map to GRC window #4 */ 11604 writel(BNXT_CAG_REG_BASE, 11605 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); 11606 } 11607 } 11608 11609 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 11610 11611 static int bnxt_reinit_after_abort(struct bnxt *bp) 11612 { 11613 int rc; 11614 11615 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11616 return -EBUSY; 11617 11618 if (bp->dev->reg_state == NETREG_UNREGISTERED) 11619 return -ENODEV; 11620 11621 rc = bnxt_fw_init_one(bp); 11622 if (!rc) { 11623 bnxt_clear_int_mode(bp); 11624 rc = bnxt_init_int_mode(bp); 11625 if (!rc) { 11626 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 11627 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 11628 } 11629 } 11630 return rc; 11631 } 11632 11633 static void bnxt_cfg_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 11634 { 11635 struct bnxt_ntuple_filter *ntp_fltr; 11636 struct bnxt_l2_filter *l2_fltr; 11637 11638 if (list_empty(&fltr->list)) 11639 return; 11640 11641 if (fltr->type == BNXT_FLTR_TYPE_NTUPLE) { 11642 ntp_fltr = container_of(fltr, struct bnxt_ntuple_filter, base); 11643 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 11644 atomic_inc(&l2_fltr->refcnt); 11645 ntp_fltr->l2_fltr = l2_fltr; 11646 if (bnxt_hwrm_cfa_ntuple_filter_alloc(bp, ntp_fltr)) { 11647 bnxt_del_ntp_filter(bp, ntp_fltr); 11648 netdev_err(bp->dev, "restoring previously configured ntuple filter id %d failed\n", 11649 fltr->sw_id); 11650 } 11651 } else if (fltr->type == BNXT_FLTR_TYPE_L2) { 11652 l2_fltr = container_of(fltr, struct bnxt_l2_filter, base); 11653 if (bnxt_hwrm_l2_filter_alloc(bp, l2_fltr)) { 11654 bnxt_del_l2_filter(bp, l2_fltr); 11655 netdev_err(bp->dev, "restoring previously configured l2 filter id %d failed\n", 11656 fltr->sw_id); 11657 } 11658 } 11659 } 11660 11661 static void bnxt_cfg_usr_fltrs(struct bnxt *bp) 11662 { 11663 struct bnxt_filter_base *usr_fltr, *tmp; 11664 11665 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) 11666 bnxt_cfg_one_usr_fltr(bp, usr_fltr); 11667 } 11668 11669 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 11670 { 11671 int rc = 0; 11672 11673 bnxt_preset_reg_win(bp); 11674 netif_carrier_off(bp->dev); 11675 if (irq_re_init) { 11676 /* Reserve rings now if none were reserved at driver probe. */ 11677 rc = bnxt_init_dflt_ring_mode(bp); 11678 if (rc) { 11679 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 11680 return rc; 11681 } 11682 } 11683 rc = bnxt_reserve_rings(bp, irq_re_init); 11684 if (rc) 11685 return rc; 11686 if ((bp->flags & BNXT_FLAG_RFS) && 11687 !(bp->flags & BNXT_FLAG_USING_MSIX)) { 11688 /* disable RFS if falling back to INTA */ 11689 bp->dev->hw_features &= ~NETIF_F_NTUPLE; 11690 bp->flags &= ~BNXT_FLAG_RFS; 11691 } 11692 11693 rc = bnxt_alloc_mem(bp, irq_re_init); 11694 if (rc) { 11695 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 11696 goto open_err_free_mem; 11697 } 11698 11699 if (irq_re_init) { 11700 bnxt_init_napi(bp); 11701 rc = bnxt_request_irq(bp); 11702 if (rc) { 11703 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 11704 goto open_err_irq; 11705 } 11706 } 11707 11708 rc = bnxt_init_nic(bp, irq_re_init); 11709 if (rc) { 11710 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 11711 goto open_err_irq; 11712 } 11713 11714 bnxt_enable_napi(bp); 11715 bnxt_debug_dev_init(bp); 11716 11717 if (link_re_init) { 11718 mutex_lock(&bp->link_lock); 11719 rc = bnxt_update_phy_setting(bp); 11720 mutex_unlock(&bp->link_lock); 11721 if (rc) { 11722 netdev_warn(bp->dev, "failed to update phy settings\n"); 11723 if (BNXT_SINGLE_PF(bp)) { 11724 bp->link_info.phy_retry = true; 11725 bp->link_info.phy_retry_expires = 11726 jiffies + 5 * HZ; 11727 } 11728 } 11729 } 11730 11731 if (irq_re_init) 11732 udp_tunnel_nic_reset_ntf(bp->dev); 11733 11734 if (bp->tx_nr_rings_xdp < num_possible_cpus()) { 11735 if (!static_key_enabled(&bnxt_xdp_locking_key)) 11736 static_branch_enable(&bnxt_xdp_locking_key); 11737 } else if (static_key_enabled(&bnxt_xdp_locking_key)) { 11738 static_branch_disable(&bnxt_xdp_locking_key); 11739 } 11740 set_bit(BNXT_STATE_OPEN, &bp->state); 11741 bnxt_enable_int(bp); 11742 /* Enable TX queues */ 11743 bnxt_tx_enable(bp); 11744 mod_timer(&bp->timer, jiffies + bp->current_interval); 11745 /* Poll link status and check for SFP+ module status */ 11746 mutex_lock(&bp->link_lock); 11747 bnxt_get_port_module_status(bp); 11748 mutex_unlock(&bp->link_lock); 11749 11750 /* VF-reps may need to be re-opened after the PF is re-opened */ 11751 if (BNXT_PF(bp)) 11752 bnxt_vf_reps_open(bp); 11753 if (bp->ptp_cfg) 11754 atomic_set(&bp->ptp_cfg->tx_avail, BNXT_MAX_TX_TS); 11755 bnxt_ptp_init_rtc(bp, true); 11756 bnxt_ptp_cfg_tstamp_filters(bp); 11757 bnxt_cfg_usr_fltrs(bp); 11758 return 0; 11759 11760 open_err_irq: 11761 bnxt_del_napi(bp); 11762 11763 open_err_free_mem: 11764 bnxt_free_skbs(bp); 11765 bnxt_free_irq(bp); 11766 bnxt_free_mem(bp, true); 11767 return rc; 11768 } 11769 11770 /* rtnl_lock held */ 11771 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 11772 { 11773 int rc = 0; 11774 11775 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 11776 rc = -EIO; 11777 if (!rc) 11778 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 11779 if (rc) { 11780 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 11781 dev_close(bp->dev); 11782 } 11783 return rc; 11784 } 11785 11786 /* rtnl_lock held, open the NIC half way by allocating all resources, but 11787 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline 11788 * self tests. 11789 */ 11790 int bnxt_half_open_nic(struct bnxt *bp) 11791 { 11792 int rc = 0; 11793 11794 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 11795 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); 11796 rc = -ENODEV; 11797 goto half_open_err; 11798 } 11799 11800 rc = bnxt_alloc_mem(bp, true); 11801 if (rc) { 11802 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 11803 goto half_open_err; 11804 } 11805 bnxt_init_napi(bp); 11806 set_bit(BNXT_STATE_HALF_OPEN, &bp->state); 11807 rc = bnxt_init_nic(bp, true); 11808 if (rc) { 11809 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 11810 bnxt_del_napi(bp); 11811 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 11812 goto half_open_err; 11813 } 11814 return 0; 11815 11816 half_open_err: 11817 bnxt_free_skbs(bp); 11818 bnxt_free_mem(bp, true); 11819 dev_close(bp->dev); 11820 return rc; 11821 } 11822 11823 /* rtnl_lock held, this call can only be made after a previous successful 11824 * call to bnxt_half_open_nic(). 11825 */ 11826 void bnxt_half_close_nic(struct bnxt *bp) 11827 { 11828 bnxt_hwrm_resource_free(bp, false, true); 11829 bnxt_del_napi(bp); 11830 bnxt_free_skbs(bp); 11831 bnxt_free_mem(bp, true); 11832 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 11833 } 11834 11835 void bnxt_reenable_sriov(struct bnxt *bp) 11836 { 11837 if (BNXT_PF(bp)) { 11838 struct bnxt_pf_info *pf = &bp->pf; 11839 int n = pf->active_vfs; 11840 11841 if (n) 11842 bnxt_cfg_hw_sriov(bp, &n, true); 11843 } 11844 } 11845 11846 static int bnxt_open(struct net_device *dev) 11847 { 11848 struct bnxt *bp = netdev_priv(dev); 11849 int rc; 11850 11851 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 11852 rc = bnxt_reinit_after_abort(bp); 11853 if (rc) { 11854 if (rc == -EBUSY) 11855 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 11856 else 11857 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 11858 return -ENODEV; 11859 } 11860 } 11861 11862 rc = bnxt_hwrm_if_change(bp, true); 11863 if (rc) 11864 return rc; 11865 11866 rc = __bnxt_open_nic(bp, true, true); 11867 if (rc) { 11868 bnxt_hwrm_if_change(bp, false); 11869 } else { 11870 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 11871 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 11872 bnxt_ulp_start(bp, 0); 11873 bnxt_reenable_sriov(bp); 11874 } 11875 } 11876 } 11877 11878 return rc; 11879 } 11880 11881 static bool bnxt_drv_busy(struct bnxt *bp) 11882 { 11883 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 11884 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 11885 } 11886 11887 static void bnxt_get_ring_stats(struct bnxt *bp, 11888 struct rtnl_link_stats64 *stats); 11889 11890 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 11891 bool link_re_init) 11892 { 11893 /* Close the VF-reps before closing PF */ 11894 if (BNXT_PF(bp)) 11895 bnxt_vf_reps_close(bp); 11896 11897 /* Change device state to avoid TX queue wake up's */ 11898 bnxt_tx_disable(bp); 11899 11900 clear_bit(BNXT_STATE_OPEN, &bp->state); 11901 smp_mb__after_atomic(); 11902 while (bnxt_drv_busy(bp)) 11903 msleep(20); 11904 11905 /* Flush rings and disable interrupts */ 11906 bnxt_shutdown_nic(bp, irq_re_init); 11907 11908 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 11909 11910 bnxt_debug_dev_exit(bp); 11911 bnxt_disable_napi(bp); 11912 del_timer_sync(&bp->timer); 11913 bnxt_free_skbs(bp); 11914 11915 /* Save ring stats before shutdown */ 11916 if (bp->bnapi && irq_re_init) { 11917 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 11918 bnxt_get_ring_err_stats(bp, &bp->ring_err_stats_prev); 11919 } 11920 if (irq_re_init) { 11921 bnxt_free_irq(bp); 11922 bnxt_del_napi(bp); 11923 } 11924 bnxt_free_mem(bp, irq_re_init); 11925 } 11926 11927 void bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 11928 { 11929 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 11930 /* If we get here, it means firmware reset is in progress 11931 * while we are trying to close. We can safely proceed with 11932 * the close because we are holding rtnl_lock(). Some firmware 11933 * messages may fail as we proceed to close. We set the 11934 * ABORT_ERR flag here so that the FW reset thread will later 11935 * abort when it gets the rtnl_lock() and sees the flag. 11936 */ 11937 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 11938 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 11939 } 11940 11941 #ifdef CONFIG_BNXT_SRIOV 11942 if (bp->sriov_cfg) { 11943 int rc; 11944 11945 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 11946 !bp->sriov_cfg, 11947 BNXT_SRIOV_CFG_WAIT_TMO); 11948 if (!rc) 11949 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete, proceeding to close!\n"); 11950 else if (rc < 0) 11951 netdev_warn(bp->dev, "SRIOV config operation interrupted, proceeding to close!\n"); 11952 } 11953 #endif 11954 __bnxt_close_nic(bp, irq_re_init, link_re_init); 11955 } 11956 11957 static int bnxt_close(struct net_device *dev) 11958 { 11959 struct bnxt *bp = netdev_priv(dev); 11960 11961 bnxt_close_nic(bp, true, true); 11962 bnxt_hwrm_shutdown_link(bp); 11963 bnxt_hwrm_if_change(bp, false); 11964 return 0; 11965 } 11966 11967 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 11968 u16 *val) 11969 { 11970 struct hwrm_port_phy_mdio_read_output *resp; 11971 struct hwrm_port_phy_mdio_read_input *req; 11972 int rc; 11973 11974 if (bp->hwrm_spec_code < 0x10a00) 11975 return -EOPNOTSUPP; 11976 11977 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ); 11978 if (rc) 11979 return rc; 11980 11981 req->port_id = cpu_to_le16(bp->pf.port_id); 11982 req->phy_addr = phy_addr; 11983 req->reg_addr = cpu_to_le16(reg & 0x1f); 11984 if (mdio_phy_id_is_c45(phy_addr)) { 11985 req->cl45_mdio = 1; 11986 req->phy_addr = mdio_phy_id_prtad(phy_addr); 11987 req->dev_addr = mdio_phy_id_devad(phy_addr); 11988 req->reg_addr = cpu_to_le16(reg); 11989 } 11990 11991 resp = hwrm_req_hold(bp, req); 11992 rc = hwrm_req_send(bp, req); 11993 if (!rc) 11994 *val = le16_to_cpu(resp->reg_data); 11995 hwrm_req_drop(bp, req); 11996 return rc; 11997 } 11998 11999 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 12000 u16 val) 12001 { 12002 struct hwrm_port_phy_mdio_write_input *req; 12003 int rc; 12004 12005 if (bp->hwrm_spec_code < 0x10a00) 12006 return -EOPNOTSUPP; 12007 12008 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE); 12009 if (rc) 12010 return rc; 12011 12012 req->port_id = cpu_to_le16(bp->pf.port_id); 12013 req->phy_addr = phy_addr; 12014 req->reg_addr = cpu_to_le16(reg & 0x1f); 12015 if (mdio_phy_id_is_c45(phy_addr)) { 12016 req->cl45_mdio = 1; 12017 req->phy_addr = mdio_phy_id_prtad(phy_addr); 12018 req->dev_addr = mdio_phy_id_devad(phy_addr); 12019 req->reg_addr = cpu_to_le16(reg); 12020 } 12021 req->reg_data = cpu_to_le16(val); 12022 12023 return hwrm_req_send(bp, req); 12024 } 12025 12026 /* rtnl_lock held */ 12027 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 12028 { 12029 struct mii_ioctl_data *mdio = if_mii(ifr); 12030 struct bnxt *bp = netdev_priv(dev); 12031 int rc; 12032 12033 switch (cmd) { 12034 case SIOCGMIIPHY: 12035 mdio->phy_id = bp->link_info.phy_addr; 12036 12037 fallthrough; 12038 case SIOCGMIIREG: { 12039 u16 mii_regval = 0; 12040 12041 if (!netif_running(dev)) 12042 return -EAGAIN; 12043 12044 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 12045 &mii_regval); 12046 mdio->val_out = mii_regval; 12047 return rc; 12048 } 12049 12050 case SIOCSMIIREG: 12051 if (!netif_running(dev)) 12052 return -EAGAIN; 12053 12054 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 12055 mdio->val_in); 12056 12057 case SIOCSHWTSTAMP: 12058 return bnxt_hwtstamp_set(dev, ifr); 12059 12060 case SIOCGHWTSTAMP: 12061 return bnxt_hwtstamp_get(dev, ifr); 12062 12063 default: 12064 /* do nothing */ 12065 break; 12066 } 12067 return -EOPNOTSUPP; 12068 } 12069 12070 static void bnxt_get_ring_stats(struct bnxt *bp, 12071 struct rtnl_link_stats64 *stats) 12072 { 12073 int i; 12074 12075 for (i = 0; i < bp->cp_nr_rings; i++) { 12076 struct bnxt_napi *bnapi = bp->bnapi[i]; 12077 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 12078 u64 *sw = cpr->stats.sw_stats; 12079 12080 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 12081 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 12082 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 12083 12084 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 12085 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 12086 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 12087 12088 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 12089 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 12090 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 12091 12092 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 12093 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 12094 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 12095 12096 stats->rx_missed_errors += 12097 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 12098 12099 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 12100 12101 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 12102 12103 stats->rx_dropped += 12104 cpr->sw_stats.rx.rx_netpoll_discards + 12105 cpr->sw_stats.rx.rx_oom_discards; 12106 } 12107 } 12108 12109 static void bnxt_add_prev_stats(struct bnxt *bp, 12110 struct rtnl_link_stats64 *stats) 12111 { 12112 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 12113 12114 stats->rx_packets += prev_stats->rx_packets; 12115 stats->tx_packets += prev_stats->tx_packets; 12116 stats->rx_bytes += prev_stats->rx_bytes; 12117 stats->tx_bytes += prev_stats->tx_bytes; 12118 stats->rx_missed_errors += prev_stats->rx_missed_errors; 12119 stats->multicast += prev_stats->multicast; 12120 stats->rx_dropped += prev_stats->rx_dropped; 12121 stats->tx_dropped += prev_stats->tx_dropped; 12122 } 12123 12124 static void 12125 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 12126 { 12127 struct bnxt *bp = netdev_priv(dev); 12128 12129 set_bit(BNXT_STATE_READ_STATS, &bp->state); 12130 /* Make sure bnxt_close_nic() sees that we are reading stats before 12131 * we check the BNXT_STATE_OPEN flag. 12132 */ 12133 smp_mb__after_atomic(); 12134 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 12135 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 12136 *stats = bp->net_stats_prev; 12137 return; 12138 } 12139 12140 bnxt_get_ring_stats(bp, stats); 12141 bnxt_add_prev_stats(bp, stats); 12142 12143 if (bp->flags & BNXT_FLAG_PORT_STATS) { 12144 u64 *rx = bp->port_stats.sw_stats; 12145 u64 *tx = bp->port_stats.sw_stats + 12146 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 12147 12148 stats->rx_crc_errors = 12149 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 12150 stats->rx_frame_errors = 12151 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 12152 stats->rx_length_errors = 12153 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 12154 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 12155 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 12156 stats->rx_errors = 12157 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 12158 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 12159 stats->collisions = 12160 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 12161 stats->tx_fifo_errors = 12162 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 12163 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 12164 } 12165 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 12166 } 12167 12168 static void bnxt_get_one_ring_err_stats(struct bnxt *bp, 12169 struct bnxt_total_ring_err_stats *stats, 12170 struct bnxt_cp_ring_info *cpr) 12171 { 12172 struct bnxt_sw_stats *sw_stats = &cpr->sw_stats; 12173 u64 *hw_stats = cpr->stats.sw_stats; 12174 12175 stats->rx_total_l4_csum_errors += sw_stats->rx.rx_l4_csum_errors; 12176 stats->rx_total_resets += sw_stats->rx.rx_resets; 12177 stats->rx_total_buf_errors += sw_stats->rx.rx_buf_errors; 12178 stats->rx_total_oom_discards += sw_stats->rx.rx_oom_discards; 12179 stats->rx_total_netpoll_discards += sw_stats->rx.rx_netpoll_discards; 12180 stats->rx_total_ring_discards += 12181 BNXT_GET_RING_STATS64(hw_stats, rx_discard_pkts); 12182 stats->tx_total_resets += sw_stats->tx.tx_resets; 12183 stats->tx_total_ring_discards += 12184 BNXT_GET_RING_STATS64(hw_stats, tx_discard_pkts); 12185 stats->total_missed_irqs += sw_stats->cmn.missed_irqs; 12186 } 12187 12188 void bnxt_get_ring_err_stats(struct bnxt *bp, 12189 struct bnxt_total_ring_err_stats *stats) 12190 { 12191 int i; 12192 12193 for (i = 0; i < bp->cp_nr_rings; i++) 12194 bnxt_get_one_ring_err_stats(bp, stats, &bp->bnapi[i]->cp_ring); 12195 } 12196 12197 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 12198 { 12199 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12200 struct net_device *dev = bp->dev; 12201 struct netdev_hw_addr *ha; 12202 u8 *haddr; 12203 int mc_count = 0; 12204 bool update = false; 12205 int off = 0; 12206 12207 netdev_for_each_mc_addr(ha, dev) { 12208 if (mc_count >= BNXT_MAX_MC_ADDRS) { 12209 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 12210 vnic->mc_list_count = 0; 12211 return false; 12212 } 12213 haddr = ha->addr; 12214 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 12215 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 12216 update = true; 12217 } 12218 off += ETH_ALEN; 12219 mc_count++; 12220 } 12221 if (mc_count) 12222 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 12223 12224 if (mc_count != vnic->mc_list_count) { 12225 vnic->mc_list_count = mc_count; 12226 update = true; 12227 } 12228 return update; 12229 } 12230 12231 static bool bnxt_uc_list_updated(struct bnxt *bp) 12232 { 12233 struct net_device *dev = bp->dev; 12234 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12235 struct netdev_hw_addr *ha; 12236 int off = 0; 12237 12238 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 12239 return true; 12240 12241 netdev_for_each_uc_addr(ha, dev) { 12242 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 12243 return true; 12244 12245 off += ETH_ALEN; 12246 } 12247 return false; 12248 } 12249 12250 static void bnxt_set_rx_mode(struct net_device *dev) 12251 { 12252 struct bnxt *bp = netdev_priv(dev); 12253 struct bnxt_vnic_info *vnic; 12254 bool mc_update = false; 12255 bool uc_update; 12256 u32 mask; 12257 12258 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 12259 return; 12260 12261 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12262 mask = vnic->rx_mask; 12263 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 12264 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 12265 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 12266 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 12267 12268 if (dev->flags & IFF_PROMISC) 12269 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 12270 12271 uc_update = bnxt_uc_list_updated(bp); 12272 12273 if (dev->flags & IFF_BROADCAST) 12274 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 12275 if (dev->flags & IFF_ALLMULTI) { 12276 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 12277 vnic->mc_list_count = 0; 12278 } else if (dev->flags & IFF_MULTICAST) { 12279 mc_update = bnxt_mc_list_updated(bp, &mask); 12280 } 12281 12282 if (mask != vnic->rx_mask || uc_update || mc_update) { 12283 vnic->rx_mask = mask; 12284 12285 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 12286 } 12287 } 12288 12289 static int bnxt_cfg_rx_mode(struct bnxt *bp) 12290 { 12291 struct net_device *dev = bp->dev; 12292 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12293 struct netdev_hw_addr *ha; 12294 int i, off = 0, rc; 12295 bool uc_update; 12296 12297 netif_addr_lock_bh(dev); 12298 uc_update = bnxt_uc_list_updated(bp); 12299 netif_addr_unlock_bh(dev); 12300 12301 if (!uc_update) 12302 goto skip_uc; 12303 12304 for (i = 1; i < vnic->uc_filter_count; i++) { 12305 struct bnxt_l2_filter *fltr = vnic->l2_filters[i]; 12306 12307 bnxt_hwrm_l2_filter_free(bp, fltr); 12308 bnxt_del_l2_filter(bp, fltr); 12309 } 12310 12311 vnic->uc_filter_count = 1; 12312 12313 netif_addr_lock_bh(dev); 12314 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 12315 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 12316 } else { 12317 netdev_for_each_uc_addr(ha, dev) { 12318 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 12319 off += ETH_ALEN; 12320 vnic->uc_filter_count++; 12321 } 12322 } 12323 netif_addr_unlock_bh(dev); 12324 12325 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 12326 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 12327 if (rc) { 12328 if (BNXT_VF(bp) && rc == -ENODEV) { 12329 if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 12330 netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n"); 12331 else 12332 netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n"); 12333 rc = 0; 12334 } else { 12335 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 12336 } 12337 vnic->uc_filter_count = i; 12338 return rc; 12339 } 12340 } 12341 if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 12342 netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n"); 12343 12344 skip_uc: 12345 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 12346 !bnxt_promisc_ok(bp)) 12347 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 12348 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 12349 if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) { 12350 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 12351 rc); 12352 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 12353 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 12354 vnic->mc_list_count = 0; 12355 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 12356 } 12357 if (rc) 12358 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 12359 rc); 12360 12361 return rc; 12362 } 12363 12364 static bool bnxt_can_reserve_rings(struct bnxt *bp) 12365 { 12366 #ifdef CONFIG_BNXT_SRIOV 12367 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 12368 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 12369 12370 /* No minimum rings were provisioned by the PF. Don't 12371 * reserve rings by default when device is down. 12372 */ 12373 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 12374 return true; 12375 12376 if (!netif_running(bp->dev)) 12377 return false; 12378 } 12379 #endif 12380 return true; 12381 } 12382 12383 /* If the chip and firmware supports RFS */ 12384 static bool bnxt_rfs_supported(struct bnxt *bp) 12385 { 12386 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 12387 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 12388 return true; 12389 return false; 12390 } 12391 /* 212 firmware is broken for aRFS */ 12392 if (BNXT_FW_MAJ(bp) == 212) 12393 return false; 12394 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 12395 return true; 12396 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 12397 return true; 12398 return false; 12399 } 12400 12401 /* If runtime conditions support RFS */ 12402 static bool bnxt_rfs_capable(struct bnxt *bp) 12403 { 12404 struct bnxt_hw_rings hwr = {0}; 12405 int max_vnics, max_rss_ctxs; 12406 12407 hwr.rss_ctx = 1; 12408 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 12409 /* 2 VNICS: default + Ntuple */ 12410 hwr.vnic = 2; 12411 hwr.rss_ctx = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) * 12412 hwr.vnic; 12413 goto check_reserve_vnic; 12414 } 12415 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 12416 return bnxt_rfs_supported(bp); 12417 if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings) 12418 return false; 12419 12420 hwr.vnic = 1 + bp->rx_nr_rings; 12421 check_reserve_vnic: 12422 max_vnics = bnxt_get_max_func_vnics(bp); 12423 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 12424 12425 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 12426 !(bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP)) 12427 hwr.rss_ctx = hwr.vnic; 12428 12429 if (hwr.vnic > max_vnics || hwr.rss_ctx > max_rss_ctxs) { 12430 if (bp->rx_nr_rings > 1) 12431 netdev_warn(bp->dev, 12432 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 12433 min(max_rss_ctxs - 1, max_vnics - 1)); 12434 return false; 12435 } 12436 12437 if (!BNXT_NEW_RM(bp)) 12438 return true; 12439 12440 if (hwr.vnic == bp->hw_resc.resv_vnics && 12441 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 12442 return true; 12443 12444 bnxt_hwrm_reserve_rings(bp, &hwr); 12445 if (hwr.vnic <= bp->hw_resc.resv_vnics && 12446 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 12447 return true; 12448 12449 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 12450 hwr.vnic = 1; 12451 hwr.rss_ctx = 0; 12452 bnxt_hwrm_reserve_rings(bp, &hwr); 12453 return false; 12454 } 12455 12456 static netdev_features_t bnxt_fix_features(struct net_device *dev, 12457 netdev_features_t features) 12458 { 12459 struct bnxt *bp = netdev_priv(dev); 12460 netdev_features_t vlan_features; 12461 12462 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp)) 12463 features &= ~NETIF_F_NTUPLE; 12464 12465 if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog) 12466 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12467 12468 if (!(features & NETIF_F_GRO)) 12469 features &= ~NETIF_F_GRO_HW; 12470 12471 if (features & NETIF_F_GRO_HW) 12472 features &= ~NETIF_F_LRO; 12473 12474 /* Both CTAG and STAG VLAN accelaration on the RX side have to be 12475 * turned on or off together. 12476 */ 12477 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 12478 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 12479 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 12480 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 12481 else if (vlan_features) 12482 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 12483 } 12484 #ifdef CONFIG_BNXT_SRIOV 12485 if (BNXT_VF(bp) && bp->vf.vlan) 12486 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 12487 #endif 12488 return features; 12489 } 12490 12491 static int bnxt_reinit_features(struct bnxt *bp, bool irq_re_init, 12492 bool link_re_init, u32 flags, bool update_tpa) 12493 { 12494 bnxt_close_nic(bp, irq_re_init, link_re_init); 12495 bp->flags = flags; 12496 if (update_tpa) 12497 bnxt_set_ring_params(bp); 12498 return bnxt_open_nic(bp, irq_re_init, link_re_init); 12499 } 12500 12501 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 12502 { 12503 bool update_tpa = false, update_ntuple = false; 12504 struct bnxt *bp = netdev_priv(dev); 12505 u32 flags = bp->flags; 12506 u32 changes; 12507 int rc = 0; 12508 bool re_init = false; 12509 12510 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 12511 if (features & NETIF_F_GRO_HW) 12512 flags |= BNXT_FLAG_GRO; 12513 else if (features & NETIF_F_LRO) 12514 flags |= BNXT_FLAG_LRO; 12515 12516 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 12517 flags &= ~BNXT_FLAG_TPA; 12518 12519 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 12520 flags |= BNXT_FLAG_STRIP_VLAN; 12521 12522 if (features & NETIF_F_NTUPLE) 12523 flags |= BNXT_FLAG_RFS; 12524 else 12525 bnxt_clear_usr_fltrs(bp, true); 12526 12527 changes = flags ^ bp->flags; 12528 if (changes & BNXT_FLAG_TPA) { 12529 update_tpa = true; 12530 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 12531 (flags & BNXT_FLAG_TPA) == 0 || 12532 (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 12533 re_init = true; 12534 } 12535 12536 if (changes & ~BNXT_FLAG_TPA) 12537 re_init = true; 12538 12539 if (changes & BNXT_FLAG_RFS) 12540 update_ntuple = true; 12541 12542 if (flags != bp->flags) { 12543 u32 old_flags = bp->flags; 12544 12545 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 12546 bp->flags = flags; 12547 if (update_tpa) 12548 bnxt_set_ring_params(bp); 12549 return rc; 12550 } 12551 12552 if (update_ntuple) 12553 return bnxt_reinit_features(bp, true, false, flags, update_tpa); 12554 12555 if (re_init) 12556 return bnxt_reinit_features(bp, false, false, flags, update_tpa); 12557 12558 if (update_tpa) { 12559 bp->flags = flags; 12560 rc = bnxt_set_tpa(bp, 12561 (flags & BNXT_FLAG_TPA) ? 12562 true : false); 12563 if (rc) 12564 bp->flags = old_flags; 12565 } 12566 } 12567 return rc; 12568 } 12569 12570 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, 12571 u8 **nextp) 12572 { 12573 struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); 12574 struct hop_jumbo_hdr *jhdr; 12575 int hdr_count = 0; 12576 u8 *nexthdr; 12577 int start; 12578 12579 /* Check that there are at most 2 IPv6 extension headers, no 12580 * fragment header, and each is <= 64 bytes. 12581 */ 12582 start = nw_off + sizeof(*ip6h); 12583 nexthdr = &ip6h->nexthdr; 12584 while (ipv6_ext_hdr(*nexthdr)) { 12585 struct ipv6_opt_hdr *hp; 12586 int hdrlen; 12587 12588 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || 12589 *nexthdr == NEXTHDR_FRAGMENT) 12590 return false; 12591 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, 12592 skb_headlen(skb), NULL); 12593 if (!hp) 12594 return false; 12595 if (*nexthdr == NEXTHDR_AUTH) 12596 hdrlen = ipv6_authlen(hp); 12597 else 12598 hdrlen = ipv6_optlen(hp); 12599 12600 if (hdrlen > 64) 12601 return false; 12602 12603 /* The ext header may be a hop-by-hop header inserted for 12604 * big TCP purposes. This will be removed before sending 12605 * from NIC, so do not count it. 12606 */ 12607 if (*nexthdr == NEXTHDR_HOP) { 12608 if (likely(skb->len <= GRO_LEGACY_MAX_SIZE)) 12609 goto increment_hdr; 12610 12611 jhdr = (struct hop_jumbo_hdr *)hp; 12612 if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 || 12613 jhdr->nexthdr != IPPROTO_TCP) 12614 goto increment_hdr; 12615 12616 goto next_hdr; 12617 } 12618 increment_hdr: 12619 hdr_count++; 12620 next_hdr: 12621 nexthdr = &hp->nexthdr; 12622 start += hdrlen; 12623 } 12624 if (nextp) { 12625 /* Caller will check inner protocol */ 12626 if (skb->encapsulation) { 12627 *nextp = nexthdr; 12628 return true; 12629 } 12630 *nextp = NULL; 12631 } 12632 /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ 12633 return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; 12634 } 12635 12636 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 12637 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) 12638 { 12639 struct udphdr *uh = udp_hdr(skb); 12640 __be16 udp_port = uh->dest; 12641 12642 if (udp_port != bp->vxlan_port && udp_port != bp->nge_port && 12643 udp_port != bp->vxlan_gpe_port) 12644 return false; 12645 if (skb->inner_protocol == htons(ETH_P_TEB)) { 12646 struct ethhdr *eh = inner_eth_hdr(skb); 12647 12648 switch (eh->h_proto) { 12649 case htons(ETH_P_IP): 12650 return true; 12651 case htons(ETH_P_IPV6): 12652 return bnxt_exthdr_check(bp, skb, 12653 skb_inner_network_offset(skb), 12654 NULL); 12655 } 12656 } else if (skb->inner_protocol == htons(ETH_P_IP)) { 12657 return true; 12658 } else if (skb->inner_protocol == htons(ETH_P_IPV6)) { 12659 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 12660 NULL); 12661 } 12662 return false; 12663 } 12664 12665 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) 12666 { 12667 switch (l4_proto) { 12668 case IPPROTO_UDP: 12669 return bnxt_udp_tunl_check(bp, skb); 12670 case IPPROTO_IPIP: 12671 return true; 12672 case IPPROTO_GRE: { 12673 switch (skb->inner_protocol) { 12674 default: 12675 return false; 12676 case htons(ETH_P_IP): 12677 return true; 12678 case htons(ETH_P_IPV6): 12679 fallthrough; 12680 } 12681 } 12682 case IPPROTO_IPV6: 12683 /* Check ext headers of inner ipv6 */ 12684 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 12685 NULL); 12686 } 12687 return false; 12688 } 12689 12690 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 12691 struct net_device *dev, 12692 netdev_features_t features) 12693 { 12694 struct bnxt *bp = netdev_priv(dev); 12695 u8 *l4_proto; 12696 12697 features = vlan_features_check(skb, features); 12698 switch (vlan_get_protocol(skb)) { 12699 case htons(ETH_P_IP): 12700 if (!skb->encapsulation) 12701 return features; 12702 l4_proto = &ip_hdr(skb)->protocol; 12703 if (bnxt_tunl_check(bp, skb, *l4_proto)) 12704 return features; 12705 break; 12706 case htons(ETH_P_IPV6): 12707 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), 12708 &l4_proto)) 12709 break; 12710 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) 12711 return features; 12712 break; 12713 } 12714 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 12715 } 12716 12717 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 12718 u32 *reg_buf) 12719 { 12720 struct hwrm_dbg_read_direct_output *resp; 12721 struct hwrm_dbg_read_direct_input *req; 12722 __le32 *dbg_reg_buf; 12723 dma_addr_t mapping; 12724 int rc, i; 12725 12726 rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT); 12727 if (rc) 12728 return rc; 12729 12730 dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4, 12731 &mapping); 12732 if (!dbg_reg_buf) { 12733 rc = -ENOMEM; 12734 goto dbg_rd_reg_exit; 12735 } 12736 12737 req->host_dest_addr = cpu_to_le64(mapping); 12738 12739 resp = hwrm_req_hold(bp, req); 12740 req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 12741 req->read_len32 = cpu_to_le32(num_words); 12742 12743 rc = hwrm_req_send(bp, req); 12744 if (rc || resp->error_code) { 12745 rc = -EIO; 12746 goto dbg_rd_reg_exit; 12747 } 12748 for (i = 0; i < num_words; i++) 12749 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 12750 12751 dbg_rd_reg_exit: 12752 hwrm_req_drop(bp, req); 12753 return rc; 12754 } 12755 12756 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 12757 u32 ring_id, u32 *prod, u32 *cons) 12758 { 12759 struct hwrm_dbg_ring_info_get_output *resp; 12760 struct hwrm_dbg_ring_info_get_input *req; 12761 int rc; 12762 12763 rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET); 12764 if (rc) 12765 return rc; 12766 12767 req->ring_type = ring_type; 12768 req->fw_ring_id = cpu_to_le32(ring_id); 12769 resp = hwrm_req_hold(bp, req); 12770 rc = hwrm_req_send(bp, req); 12771 if (!rc) { 12772 *prod = le32_to_cpu(resp->producer_index); 12773 *cons = le32_to_cpu(resp->consumer_index); 12774 } 12775 hwrm_req_drop(bp, req); 12776 return rc; 12777 } 12778 12779 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 12780 { 12781 struct bnxt_tx_ring_info *txr; 12782 int i = bnapi->index, j; 12783 12784 bnxt_for_each_napi_tx(j, bnapi, txr) 12785 netdev_info(bnapi->bp->dev, "[%d.%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 12786 i, j, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 12787 txr->tx_cons); 12788 } 12789 12790 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 12791 { 12792 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 12793 int i = bnapi->index; 12794 12795 if (!rxr) 12796 return; 12797 12798 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 12799 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 12800 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 12801 rxr->rx_sw_agg_prod); 12802 } 12803 12804 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 12805 { 12806 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 12807 int i = bnapi->index; 12808 12809 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 12810 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 12811 } 12812 12813 static void bnxt_dbg_dump_states(struct bnxt *bp) 12814 { 12815 int i; 12816 struct bnxt_napi *bnapi; 12817 12818 for (i = 0; i < bp->cp_nr_rings; i++) { 12819 bnapi = bp->bnapi[i]; 12820 if (netif_msg_drv(bp)) { 12821 bnxt_dump_tx_sw_state(bnapi); 12822 bnxt_dump_rx_sw_state(bnapi); 12823 bnxt_dump_cp_sw_state(bnapi); 12824 } 12825 } 12826 } 12827 12828 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 12829 { 12830 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 12831 struct hwrm_ring_reset_input *req; 12832 struct bnxt_napi *bnapi = rxr->bnapi; 12833 struct bnxt_cp_ring_info *cpr; 12834 u16 cp_ring_id; 12835 int rc; 12836 12837 rc = hwrm_req_init(bp, req, HWRM_RING_RESET); 12838 if (rc) 12839 return rc; 12840 12841 cpr = &bnapi->cp_ring; 12842 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 12843 req->cmpl_ring = cpu_to_le16(cp_ring_id); 12844 req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 12845 req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 12846 return hwrm_req_send_silent(bp, req); 12847 } 12848 12849 static void bnxt_reset_task(struct bnxt *bp, bool silent) 12850 { 12851 if (!silent) 12852 bnxt_dbg_dump_states(bp); 12853 if (netif_running(bp->dev)) { 12854 int rc; 12855 12856 if (silent) { 12857 bnxt_close_nic(bp, false, false); 12858 bnxt_open_nic(bp, false, false); 12859 } else { 12860 bnxt_ulp_stop(bp); 12861 bnxt_close_nic(bp, true, false); 12862 rc = bnxt_open_nic(bp, true, false); 12863 bnxt_ulp_start(bp, rc); 12864 } 12865 } 12866 } 12867 12868 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 12869 { 12870 struct bnxt *bp = netdev_priv(dev); 12871 12872 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 12873 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 12874 } 12875 12876 static void bnxt_fw_health_check(struct bnxt *bp) 12877 { 12878 struct bnxt_fw_health *fw_health = bp->fw_health; 12879 struct pci_dev *pdev = bp->pdev; 12880 u32 val; 12881 12882 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 12883 return; 12884 12885 /* Make sure it is enabled before checking the tmr_counter. */ 12886 smp_rmb(); 12887 if (fw_health->tmr_counter) { 12888 fw_health->tmr_counter--; 12889 return; 12890 } 12891 12892 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 12893 if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) { 12894 fw_health->arrests++; 12895 goto fw_reset; 12896 } 12897 12898 fw_health->last_fw_heartbeat = val; 12899 12900 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 12901 if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) { 12902 fw_health->discoveries++; 12903 goto fw_reset; 12904 } 12905 12906 fw_health->tmr_counter = fw_health->tmr_multiplier; 12907 return; 12908 12909 fw_reset: 12910 bnxt_queue_sp_work(bp, BNXT_FW_EXCEPTION_SP_EVENT); 12911 } 12912 12913 static void bnxt_timer(struct timer_list *t) 12914 { 12915 struct bnxt *bp = from_timer(bp, t, timer); 12916 struct net_device *dev = bp->dev; 12917 12918 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 12919 return; 12920 12921 if (atomic_read(&bp->intr_sem) != 0) 12922 goto bnxt_restart_timer; 12923 12924 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 12925 bnxt_fw_health_check(bp); 12926 12927 if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) 12928 bnxt_queue_sp_work(bp, BNXT_PERIODIC_STATS_SP_EVENT); 12929 12930 if (bnxt_tc_flower_enabled(bp)) 12931 bnxt_queue_sp_work(bp, BNXT_FLOW_STATS_SP_EVENT); 12932 12933 #ifdef CONFIG_RFS_ACCEL 12934 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) 12935 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 12936 #endif /*CONFIG_RFS_ACCEL*/ 12937 12938 if (bp->link_info.phy_retry) { 12939 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 12940 bp->link_info.phy_retry = false; 12941 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 12942 } else { 12943 bnxt_queue_sp_work(bp, BNXT_UPDATE_PHY_SP_EVENT); 12944 } 12945 } 12946 12947 if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 12948 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 12949 12950 if ((BNXT_CHIP_P5(bp)) && !bp->chip_rev && netif_carrier_ok(dev)) 12951 bnxt_queue_sp_work(bp, BNXT_RING_COAL_NOW_SP_EVENT); 12952 12953 bnxt_restart_timer: 12954 mod_timer(&bp->timer, jiffies + bp->current_interval); 12955 } 12956 12957 static void bnxt_rtnl_lock_sp(struct bnxt *bp) 12958 { 12959 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 12960 * set. If the device is being closed, bnxt_close() may be holding 12961 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we 12962 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). 12963 */ 12964 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 12965 rtnl_lock(); 12966 } 12967 12968 static void bnxt_rtnl_unlock_sp(struct bnxt *bp) 12969 { 12970 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 12971 rtnl_unlock(); 12972 } 12973 12974 /* Only called from bnxt_sp_task() */ 12975 static void bnxt_reset(struct bnxt *bp, bool silent) 12976 { 12977 bnxt_rtnl_lock_sp(bp); 12978 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 12979 bnxt_reset_task(bp, silent); 12980 bnxt_rtnl_unlock_sp(bp); 12981 } 12982 12983 /* Only called from bnxt_sp_task() */ 12984 static void bnxt_rx_ring_reset(struct bnxt *bp) 12985 { 12986 int i; 12987 12988 bnxt_rtnl_lock_sp(bp); 12989 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 12990 bnxt_rtnl_unlock_sp(bp); 12991 return; 12992 } 12993 /* Disable and flush TPA before resetting the RX ring */ 12994 if (bp->flags & BNXT_FLAG_TPA) 12995 bnxt_set_tpa(bp, false); 12996 for (i = 0; i < bp->rx_nr_rings; i++) { 12997 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 12998 struct bnxt_cp_ring_info *cpr; 12999 int rc; 13000 13001 if (!rxr->bnapi->in_reset) 13002 continue; 13003 13004 rc = bnxt_hwrm_rx_ring_reset(bp, i); 13005 if (rc) { 13006 if (rc == -EINVAL || rc == -EOPNOTSUPP) 13007 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 13008 else 13009 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 13010 rc); 13011 bnxt_reset_task(bp, true); 13012 break; 13013 } 13014 bnxt_free_one_rx_ring_skbs(bp, i); 13015 rxr->rx_prod = 0; 13016 rxr->rx_agg_prod = 0; 13017 rxr->rx_sw_agg_prod = 0; 13018 rxr->rx_next_cons = 0; 13019 rxr->bnapi->in_reset = false; 13020 bnxt_alloc_one_rx_ring(bp, i); 13021 cpr = &rxr->bnapi->cp_ring; 13022 cpr->sw_stats.rx.rx_resets++; 13023 if (bp->flags & BNXT_FLAG_AGG_RINGS) 13024 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 13025 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 13026 } 13027 if (bp->flags & BNXT_FLAG_TPA) 13028 bnxt_set_tpa(bp, true); 13029 bnxt_rtnl_unlock_sp(bp); 13030 } 13031 13032 static void bnxt_fw_fatal_close(struct bnxt *bp) 13033 { 13034 bnxt_tx_disable(bp); 13035 bnxt_disable_napi(bp); 13036 bnxt_disable_int_sync(bp); 13037 bnxt_free_irq(bp); 13038 bnxt_clear_int_mode(bp); 13039 pci_disable_device(bp->pdev); 13040 } 13041 13042 static void bnxt_fw_reset_close(struct bnxt *bp) 13043 { 13044 bnxt_ulp_stop(bp); 13045 /* When firmware is in fatal state, quiesce device and disable 13046 * bus master to prevent any potential bad DMAs before freeing 13047 * kernel memory. 13048 */ 13049 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 13050 u16 val = 0; 13051 13052 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 13053 if (val == 0xffff) 13054 bp->fw_reset_min_dsecs = 0; 13055 bnxt_fw_fatal_close(bp); 13056 } 13057 __bnxt_close_nic(bp, true, false); 13058 bnxt_vf_reps_free(bp); 13059 bnxt_clear_int_mode(bp); 13060 bnxt_hwrm_func_drv_unrgtr(bp); 13061 if (pci_is_enabled(bp->pdev)) 13062 pci_disable_device(bp->pdev); 13063 bnxt_free_ctx_mem(bp); 13064 } 13065 13066 static bool is_bnxt_fw_ok(struct bnxt *bp) 13067 { 13068 struct bnxt_fw_health *fw_health = bp->fw_health; 13069 bool no_heartbeat = false, has_reset = false; 13070 u32 val; 13071 13072 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 13073 if (val == fw_health->last_fw_heartbeat) 13074 no_heartbeat = true; 13075 13076 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 13077 if (val != fw_health->last_fw_reset_cnt) 13078 has_reset = true; 13079 13080 if (!no_heartbeat && has_reset) 13081 return true; 13082 13083 return false; 13084 } 13085 13086 /* rtnl_lock is acquired before calling this function */ 13087 static void bnxt_force_fw_reset(struct bnxt *bp) 13088 { 13089 struct bnxt_fw_health *fw_health = bp->fw_health; 13090 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 13091 u32 wait_dsecs; 13092 13093 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 13094 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 13095 return; 13096 13097 if (ptp) { 13098 spin_lock_bh(&ptp->ptp_lock); 13099 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13100 spin_unlock_bh(&ptp->ptp_lock); 13101 } else { 13102 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13103 } 13104 bnxt_fw_reset_close(bp); 13105 wait_dsecs = fw_health->master_func_wait_dsecs; 13106 if (fw_health->primary) { 13107 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 13108 wait_dsecs = 0; 13109 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 13110 } else { 13111 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 13112 wait_dsecs = fw_health->normal_func_wait_dsecs; 13113 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 13114 } 13115 13116 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 13117 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 13118 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 13119 } 13120 13121 void bnxt_fw_exception(struct bnxt *bp) 13122 { 13123 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 13124 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 13125 bnxt_rtnl_lock_sp(bp); 13126 bnxt_force_fw_reset(bp); 13127 bnxt_rtnl_unlock_sp(bp); 13128 } 13129 13130 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 13131 * < 0 on error. 13132 */ 13133 static int bnxt_get_registered_vfs(struct bnxt *bp) 13134 { 13135 #ifdef CONFIG_BNXT_SRIOV 13136 int rc; 13137 13138 if (!BNXT_PF(bp)) 13139 return 0; 13140 13141 rc = bnxt_hwrm_func_qcfg(bp); 13142 if (rc) { 13143 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 13144 return rc; 13145 } 13146 if (bp->pf.registered_vfs) 13147 return bp->pf.registered_vfs; 13148 if (bp->sriov_cfg) 13149 return 1; 13150 #endif 13151 return 0; 13152 } 13153 13154 void bnxt_fw_reset(struct bnxt *bp) 13155 { 13156 bnxt_rtnl_lock_sp(bp); 13157 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 13158 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 13159 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 13160 int n = 0, tmo; 13161 13162 if (ptp) { 13163 spin_lock_bh(&ptp->ptp_lock); 13164 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13165 spin_unlock_bh(&ptp->ptp_lock); 13166 } else { 13167 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13168 } 13169 if (bp->pf.active_vfs && 13170 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 13171 n = bnxt_get_registered_vfs(bp); 13172 if (n < 0) { 13173 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 13174 n); 13175 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13176 dev_close(bp->dev); 13177 goto fw_reset_exit; 13178 } else if (n > 0) { 13179 u16 vf_tmo_dsecs = n * 10; 13180 13181 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 13182 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 13183 bp->fw_reset_state = 13184 BNXT_FW_RESET_STATE_POLL_VF; 13185 bnxt_queue_fw_reset_work(bp, HZ / 10); 13186 goto fw_reset_exit; 13187 } 13188 bnxt_fw_reset_close(bp); 13189 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 13190 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 13191 tmo = HZ / 10; 13192 } else { 13193 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 13194 tmo = bp->fw_reset_min_dsecs * HZ / 10; 13195 } 13196 bnxt_queue_fw_reset_work(bp, tmo); 13197 } 13198 fw_reset_exit: 13199 bnxt_rtnl_unlock_sp(bp); 13200 } 13201 13202 static void bnxt_chk_missed_irq(struct bnxt *bp) 13203 { 13204 int i; 13205 13206 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 13207 return; 13208 13209 for (i = 0; i < bp->cp_nr_rings; i++) { 13210 struct bnxt_napi *bnapi = bp->bnapi[i]; 13211 struct bnxt_cp_ring_info *cpr; 13212 u32 fw_ring_id; 13213 int j; 13214 13215 if (!bnapi) 13216 continue; 13217 13218 cpr = &bnapi->cp_ring; 13219 for (j = 0; j < cpr->cp_ring_count; j++) { 13220 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 13221 u32 val[2]; 13222 13223 if (cpr2->has_more_work || !bnxt_has_work(bp, cpr2)) 13224 continue; 13225 13226 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 13227 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 13228 continue; 13229 } 13230 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 13231 bnxt_dbg_hwrm_ring_info_get(bp, 13232 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 13233 fw_ring_id, &val[0], &val[1]); 13234 cpr->sw_stats.cmn.missed_irqs++; 13235 } 13236 } 13237 } 13238 13239 static void bnxt_cfg_ntp_filters(struct bnxt *); 13240 13241 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 13242 { 13243 struct bnxt_link_info *link_info = &bp->link_info; 13244 13245 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 13246 link_info->autoneg = BNXT_AUTONEG_SPEED; 13247 if (bp->hwrm_spec_code >= 0x10201) { 13248 if (link_info->auto_pause_setting & 13249 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 13250 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 13251 } else { 13252 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 13253 } 13254 bnxt_set_auto_speed(link_info); 13255 } else { 13256 bnxt_set_force_speed(link_info); 13257 link_info->req_duplex = link_info->duplex_setting; 13258 } 13259 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 13260 link_info->req_flow_ctrl = 13261 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 13262 else 13263 link_info->req_flow_ctrl = link_info->force_pause_setting; 13264 } 13265 13266 static void bnxt_fw_echo_reply(struct bnxt *bp) 13267 { 13268 struct bnxt_fw_health *fw_health = bp->fw_health; 13269 struct hwrm_func_echo_response_input *req; 13270 int rc; 13271 13272 rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE); 13273 if (rc) 13274 return; 13275 req->event_data1 = cpu_to_le32(fw_health->echo_req_data1); 13276 req->event_data2 = cpu_to_le32(fw_health->echo_req_data2); 13277 hwrm_req_send(bp, req); 13278 } 13279 13280 static void bnxt_sp_task(struct work_struct *work) 13281 { 13282 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 13283 13284 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13285 smp_mb__after_atomic(); 13286 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13287 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13288 return; 13289 } 13290 13291 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 13292 bnxt_cfg_rx_mode(bp); 13293 13294 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 13295 bnxt_cfg_ntp_filters(bp); 13296 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 13297 bnxt_hwrm_exec_fwd_req(bp); 13298 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 13299 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 13300 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 13301 bnxt_hwrm_port_qstats(bp, 0); 13302 bnxt_hwrm_port_qstats_ext(bp, 0); 13303 bnxt_accumulate_all_stats(bp); 13304 } 13305 13306 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 13307 int rc; 13308 13309 mutex_lock(&bp->link_lock); 13310 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 13311 &bp->sp_event)) 13312 bnxt_hwrm_phy_qcaps(bp); 13313 13314 rc = bnxt_update_link(bp, true); 13315 if (rc) 13316 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 13317 rc); 13318 13319 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 13320 &bp->sp_event)) 13321 bnxt_init_ethtool_link_settings(bp); 13322 mutex_unlock(&bp->link_lock); 13323 } 13324 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 13325 int rc; 13326 13327 mutex_lock(&bp->link_lock); 13328 rc = bnxt_update_phy_setting(bp); 13329 mutex_unlock(&bp->link_lock); 13330 if (rc) { 13331 netdev_warn(bp->dev, "update phy settings retry failed\n"); 13332 } else { 13333 bp->link_info.phy_retry = false; 13334 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 13335 } 13336 } 13337 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 13338 mutex_lock(&bp->link_lock); 13339 bnxt_get_port_module_status(bp); 13340 mutex_unlock(&bp->link_lock); 13341 } 13342 13343 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 13344 bnxt_tc_flow_stats_work(bp); 13345 13346 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 13347 bnxt_chk_missed_irq(bp); 13348 13349 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 13350 bnxt_fw_echo_reply(bp); 13351 13352 if (test_and_clear_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event)) 13353 bnxt_hwmon_notify_event(bp); 13354 13355 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 13356 * must be the last functions to be called before exiting. 13357 */ 13358 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 13359 bnxt_reset(bp, false); 13360 13361 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 13362 bnxt_reset(bp, true); 13363 13364 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 13365 bnxt_rx_ring_reset(bp); 13366 13367 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) { 13368 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) || 13369 test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state)) 13370 bnxt_devlink_health_fw_report(bp); 13371 else 13372 bnxt_fw_reset(bp); 13373 } 13374 13375 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 13376 if (!is_bnxt_fw_ok(bp)) 13377 bnxt_devlink_health_fw_report(bp); 13378 } 13379 13380 smp_mb__before_atomic(); 13381 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13382 } 13383 13384 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 13385 int *max_cp); 13386 13387 /* Under rtnl_lock */ 13388 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 13389 int tx_xdp) 13390 { 13391 int max_rx, max_tx, max_cp, tx_sets = 1, tx_cp; 13392 struct bnxt_hw_rings hwr = {0}; 13393 int rx_rings = rx; 13394 13395 if (tcs) 13396 tx_sets = tcs; 13397 13398 _bnxt_get_max_rings(bp, &max_rx, &max_tx, &max_cp); 13399 13400 if (max_rx < rx_rings) 13401 return -ENOMEM; 13402 13403 if (bp->flags & BNXT_FLAG_AGG_RINGS) 13404 rx_rings <<= 1; 13405 13406 hwr.rx = rx_rings; 13407 hwr.tx = tx * tx_sets + tx_xdp; 13408 if (max_tx < hwr.tx) 13409 return -ENOMEM; 13410 13411 hwr.vnic = bnxt_get_total_vnics(bp, rx); 13412 13413 tx_cp = __bnxt_num_tx_to_cp(bp, hwr.tx, tx_sets, tx_xdp); 13414 hwr.cp = sh ? max_t(int, tx_cp, rx) : tx_cp + rx; 13415 if (max_cp < hwr.cp) 13416 return -ENOMEM; 13417 hwr.stat = hwr.cp; 13418 if (BNXT_NEW_RM(bp)) { 13419 hwr.cp += bnxt_get_ulp_msix_num(bp); 13420 hwr.stat += bnxt_get_ulp_stat_ctxs(bp); 13421 hwr.grp = rx; 13422 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 13423 } 13424 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 13425 hwr.cp_p5 = hwr.tx + rx; 13426 return bnxt_hwrm_check_rings(bp, &hwr); 13427 } 13428 13429 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 13430 { 13431 if (bp->bar2) { 13432 pci_iounmap(pdev, bp->bar2); 13433 bp->bar2 = NULL; 13434 } 13435 13436 if (bp->bar1) { 13437 pci_iounmap(pdev, bp->bar1); 13438 bp->bar1 = NULL; 13439 } 13440 13441 if (bp->bar0) { 13442 pci_iounmap(pdev, bp->bar0); 13443 bp->bar0 = NULL; 13444 } 13445 } 13446 13447 static void bnxt_cleanup_pci(struct bnxt *bp) 13448 { 13449 bnxt_unmap_bars(bp, bp->pdev); 13450 pci_release_regions(bp->pdev); 13451 if (pci_is_enabled(bp->pdev)) 13452 pci_disable_device(bp->pdev); 13453 } 13454 13455 static void bnxt_init_dflt_coal(struct bnxt *bp) 13456 { 13457 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 13458 struct bnxt_coal *coal; 13459 u16 flags = 0; 13460 13461 if (coal_cap->cmpl_params & 13462 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 13463 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 13464 13465 /* Tick values in micro seconds. 13466 * 1 coal_buf x bufs_per_record = 1 completion record. 13467 */ 13468 coal = &bp->rx_coal; 13469 coal->coal_ticks = 10; 13470 coal->coal_bufs = 30; 13471 coal->coal_ticks_irq = 1; 13472 coal->coal_bufs_irq = 2; 13473 coal->idle_thresh = 50; 13474 coal->bufs_per_record = 2; 13475 coal->budget = 64; /* NAPI budget */ 13476 coal->flags = flags; 13477 13478 coal = &bp->tx_coal; 13479 coal->coal_ticks = 28; 13480 coal->coal_bufs = 30; 13481 coal->coal_ticks_irq = 2; 13482 coal->coal_bufs_irq = 2; 13483 coal->bufs_per_record = 1; 13484 coal->flags = flags; 13485 13486 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 13487 } 13488 13489 /* FW that pre-reserves 1 VNIC per function */ 13490 static bool bnxt_fw_pre_resv_vnics(struct bnxt *bp) 13491 { 13492 u16 fw_maj = BNXT_FW_MAJ(bp), fw_bld = BNXT_FW_BLD(bp); 13493 13494 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 13495 (fw_maj > 218 || (fw_maj == 218 && fw_bld >= 18))) 13496 return true; 13497 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 13498 (fw_maj > 216 || (fw_maj == 216 && fw_bld >= 172))) 13499 return true; 13500 return false; 13501 } 13502 13503 static int bnxt_fw_init_one_p1(struct bnxt *bp) 13504 { 13505 int rc; 13506 13507 bp->fw_cap = 0; 13508 rc = bnxt_hwrm_ver_get(bp); 13509 /* FW may be unresponsive after FLR. FLR must complete within 100 msec 13510 * so wait before continuing with recovery. 13511 */ 13512 if (rc) 13513 msleep(100); 13514 bnxt_try_map_fw_health_reg(bp); 13515 if (rc) { 13516 rc = bnxt_try_recover_fw(bp); 13517 if (rc) 13518 return rc; 13519 rc = bnxt_hwrm_ver_get(bp); 13520 if (rc) 13521 return rc; 13522 } 13523 13524 bnxt_nvm_cfg_ver_get(bp); 13525 13526 rc = bnxt_hwrm_func_reset(bp); 13527 if (rc) 13528 return -ENODEV; 13529 13530 bnxt_hwrm_fw_set_time(bp); 13531 return 0; 13532 } 13533 13534 static int bnxt_fw_init_one_p2(struct bnxt *bp) 13535 { 13536 int rc; 13537 13538 /* Get the MAX capabilities for this function */ 13539 rc = bnxt_hwrm_func_qcaps(bp); 13540 if (rc) { 13541 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 13542 rc); 13543 return -ENODEV; 13544 } 13545 13546 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 13547 if (rc) 13548 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 13549 rc); 13550 13551 if (bnxt_alloc_fw_health(bp)) { 13552 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 13553 } else { 13554 rc = bnxt_hwrm_error_recovery_qcfg(bp); 13555 if (rc) 13556 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 13557 rc); 13558 } 13559 13560 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 13561 if (rc) 13562 return -ENODEV; 13563 13564 if (bnxt_fw_pre_resv_vnics(bp)) 13565 bp->fw_cap |= BNXT_FW_CAP_PRE_RESV_VNICS; 13566 13567 bnxt_hwrm_func_qcfg(bp); 13568 bnxt_hwrm_vnic_qcaps(bp); 13569 bnxt_hwrm_port_led_qcaps(bp); 13570 bnxt_ethtool_init(bp); 13571 if (bp->fw_cap & BNXT_FW_CAP_PTP) 13572 __bnxt_hwrm_ptp_qcfg(bp); 13573 bnxt_dcb_init(bp); 13574 bnxt_hwmon_init(bp); 13575 return 0; 13576 } 13577 13578 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 13579 { 13580 bp->rss_cap &= ~BNXT_RSS_CAP_UDP_RSS_CAP; 13581 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 13582 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 13583 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 13584 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 13585 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 13586 bp->rss_hash_delta = bp->rss_hash_cfg; 13587 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 13588 bp->rss_cap |= BNXT_RSS_CAP_UDP_RSS_CAP; 13589 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 13590 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 13591 } 13592 } 13593 13594 static void bnxt_set_dflt_rfs(struct bnxt *bp) 13595 { 13596 struct net_device *dev = bp->dev; 13597 13598 dev->hw_features &= ~NETIF_F_NTUPLE; 13599 dev->features &= ~NETIF_F_NTUPLE; 13600 bp->flags &= ~BNXT_FLAG_RFS; 13601 if (bnxt_rfs_supported(bp)) { 13602 dev->hw_features |= NETIF_F_NTUPLE; 13603 if (bnxt_rfs_capable(bp)) { 13604 bp->flags |= BNXT_FLAG_RFS; 13605 dev->features |= NETIF_F_NTUPLE; 13606 } 13607 } 13608 } 13609 13610 static void bnxt_fw_init_one_p3(struct bnxt *bp) 13611 { 13612 struct pci_dev *pdev = bp->pdev; 13613 13614 bnxt_set_dflt_rss_hash_type(bp); 13615 bnxt_set_dflt_rfs(bp); 13616 13617 bnxt_get_wol_settings(bp); 13618 if (bp->flags & BNXT_FLAG_WOL_CAP) 13619 device_set_wakeup_enable(&pdev->dev, bp->wol); 13620 else 13621 device_set_wakeup_capable(&pdev->dev, false); 13622 13623 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 13624 bnxt_hwrm_coal_params_qcaps(bp); 13625 } 13626 13627 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); 13628 13629 int bnxt_fw_init_one(struct bnxt *bp) 13630 { 13631 int rc; 13632 13633 rc = bnxt_fw_init_one_p1(bp); 13634 if (rc) { 13635 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 13636 return rc; 13637 } 13638 rc = bnxt_fw_init_one_p2(bp); 13639 if (rc) { 13640 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 13641 return rc; 13642 } 13643 rc = bnxt_probe_phy(bp, false); 13644 if (rc) 13645 return rc; 13646 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 13647 if (rc) 13648 return rc; 13649 13650 bnxt_fw_init_one_p3(bp); 13651 return 0; 13652 } 13653 13654 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 13655 { 13656 struct bnxt_fw_health *fw_health = bp->fw_health; 13657 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 13658 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 13659 u32 reg_type, reg_off, delay_msecs; 13660 13661 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 13662 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 13663 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 13664 switch (reg_type) { 13665 case BNXT_FW_HEALTH_REG_TYPE_CFG: 13666 pci_write_config_dword(bp->pdev, reg_off, val); 13667 break; 13668 case BNXT_FW_HEALTH_REG_TYPE_GRC: 13669 writel(reg_off & BNXT_GRC_BASE_MASK, 13670 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 13671 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 13672 fallthrough; 13673 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 13674 writel(val, bp->bar0 + reg_off); 13675 break; 13676 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 13677 writel(val, bp->bar1 + reg_off); 13678 break; 13679 } 13680 if (delay_msecs) { 13681 pci_read_config_dword(bp->pdev, 0, &val); 13682 msleep(delay_msecs); 13683 } 13684 } 13685 13686 bool bnxt_hwrm_reset_permitted(struct bnxt *bp) 13687 { 13688 struct hwrm_func_qcfg_output *resp; 13689 struct hwrm_func_qcfg_input *req; 13690 bool result = true; /* firmware will enforce if unknown */ 13691 13692 if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF) 13693 return result; 13694 13695 if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG)) 13696 return result; 13697 13698 req->fid = cpu_to_le16(0xffff); 13699 resp = hwrm_req_hold(bp, req); 13700 if (!hwrm_req_send(bp, req)) 13701 result = !!(le16_to_cpu(resp->flags) & 13702 FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED); 13703 hwrm_req_drop(bp, req); 13704 return result; 13705 } 13706 13707 static void bnxt_reset_all(struct bnxt *bp) 13708 { 13709 struct bnxt_fw_health *fw_health = bp->fw_health; 13710 int i, rc; 13711 13712 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 13713 bnxt_fw_reset_via_optee(bp); 13714 bp->fw_reset_timestamp = jiffies; 13715 return; 13716 } 13717 13718 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 13719 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 13720 bnxt_fw_reset_writel(bp, i); 13721 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 13722 struct hwrm_fw_reset_input *req; 13723 13724 rc = hwrm_req_init(bp, req, HWRM_FW_RESET); 13725 if (!rc) { 13726 req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG); 13727 req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 13728 req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 13729 req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 13730 rc = hwrm_req_send(bp, req); 13731 } 13732 if (rc != -ENODEV) 13733 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 13734 } 13735 bp->fw_reset_timestamp = jiffies; 13736 } 13737 13738 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 13739 { 13740 return time_after(jiffies, bp->fw_reset_timestamp + 13741 (bp->fw_reset_max_dsecs * HZ / 10)); 13742 } 13743 13744 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) 13745 { 13746 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13747 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) { 13748 bnxt_ulp_start(bp, rc); 13749 bnxt_dl_health_fw_status_update(bp, false); 13750 } 13751 bp->fw_reset_state = 0; 13752 dev_close(bp->dev); 13753 } 13754 13755 static void bnxt_fw_reset_task(struct work_struct *work) 13756 { 13757 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 13758 int rc = 0; 13759 13760 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 13761 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 13762 return; 13763 } 13764 13765 switch (bp->fw_reset_state) { 13766 case BNXT_FW_RESET_STATE_POLL_VF: { 13767 int n = bnxt_get_registered_vfs(bp); 13768 int tmo; 13769 13770 if (n < 0) { 13771 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 13772 n, jiffies_to_msecs(jiffies - 13773 bp->fw_reset_timestamp)); 13774 goto fw_reset_abort; 13775 } else if (n > 0) { 13776 if (bnxt_fw_reset_timeout(bp)) { 13777 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13778 bp->fw_reset_state = 0; 13779 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 13780 n); 13781 return; 13782 } 13783 bnxt_queue_fw_reset_work(bp, HZ / 10); 13784 return; 13785 } 13786 bp->fw_reset_timestamp = jiffies; 13787 rtnl_lock(); 13788 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 13789 bnxt_fw_reset_abort(bp, rc); 13790 rtnl_unlock(); 13791 return; 13792 } 13793 bnxt_fw_reset_close(bp); 13794 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 13795 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 13796 tmo = HZ / 10; 13797 } else { 13798 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 13799 tmo = bp->fw_reset_min_dsecs * HZ / 10; 13800 } 13801 rtnl_unlock(); 13802 bnxt_queue_fw_reset_work(bp, tmo); 13803 return; 13804 } 13805 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 13806 u32 val; 13807 13808 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 13809 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 13810 !bnxt_fw_reset_timeout(bp)) { 13811 bnxt_queue_fw_reset_work(bp, HZ / 5); 13812 return; 13813 } 13814 13815 if (!bp->fw_health->primary) { 13816 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 13817 13818 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 13819 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 13820 return; 13821 } 13822 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 13823 } 13824 fallthrough; 13825 case BNXT_FW_RESET_STATE_RESET_FW: 13826 bnxt_reset_all(bp); 13827 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 13828 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 13829 return; 13830 case BNXT_FW_RESET_STATE_ENABLE_DEV: 13831 bnxt_inv_fw_health_reg(bp); 13832 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 13833 !bp->fw_reset_min_dsecs) { 13834 u16 val; 13835 13836 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 13837 if (val == 0xffff) { 13838 if (bnxt_fw_reset_timeout(bp)) { 13839 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 13840 rc = -ETIMEDOUT; 13841 goto fw_reset_abort; 13842 } 13843 bnxt_queue_fw_reset_work(bp, HZ / 1000); 13844 return; 13845 } 13846 } 13847 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 13848 clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 13849 if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) && 13850 !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state)) 13851 bnxt_dl_remote_reload(bp); 13852 if (pci_enable_device(bp->pdev)) { 13853 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 13854 rc = -ENODEV; 13855 goto fw_reset_abort; 13856 } 13857 pci_set_master(bp->pdev); 13858 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 13859 fallthrough; 13860 case BNXT_FW_RESET_STATE_POLL_FW: 13861 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 13862 rc = bnxt_hwrm_poll(bp); 13863 if (rc) { 13864 if (bnxt_fw_reset_timeout(bp)) { 13865 netdev_err(bp->dev, "Firmware reset aborted\n"); 13866 goto fw_reset_abort_status; 13867 } 13868 bnxt_queue_fw_reset_work(bp, HZ / 5); 13869 return; 13870 } 13871 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 13872 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 13873 fallthrough; 13874 case BNXT_FW_RESET_STATE_OPENING: 13875 while (!rtnl_trylock()) { 13876 bnxt_queue_fw_reset_work(bp, HZ / 10); 13877 return; 13878 } 13879 rc = bnxt_open(bp->dev); 13880 if (rc) { 13881 netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); 13882 bnxt_fw_reset_abort(bp, rc); 13883 rtnl_unlock(); 13884 return; 13885 } 13886 13887 if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) && 13888 bp->fw_health->enabled) { 13889 bp->fw_health->last_fw_reset_cnt = 13890 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 13891 } 13892 bp->fw_reset_state = 0; 13893 /* Make sure fw_reset_state is 0 before clearing the flag */ 13894 smp_mb__before_atomic(); 13895 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13896 bnxt_ulp_start(bp, 0); 13897 bnxt_reenable_sriov(bp); 13898 bnxt_vf_reps_alloc(bp); 13899 bnxt_vf_reps_open(bp); 13900 bnxt_ptp_reapply_pps(bp); 13901 clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state); 13902 if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) { 13903 bnxt_dl_health_fw_recovery_done(bp); 13904 bnxt_dl_health_fw_status_update(bp, true); 13905 } 13906 rtnl_unlock(); 13907 break; 13908 } 13909 return; 13910 13911 fw_reset_abort_status: 13912 if (bp->fw_health->status_reliable || 13913 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 13914 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 13915 13916 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 13917 } 13918 fw_reset_abort: 13919 rtnl_lock(); 13920 bnxt_fw_reset_abort(bp, rc); 13921 rtnl_unlock(); 13922 } 13923 13924 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 13925 { 13926 int rc; 13927 struct bnxt *bp = netdev_priv(dev); 13928 13929 SET_NETDEV_DEV(dev, &pdev->dev); 13930 13931 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 13932 rc = pci_enable_device(pdev); 13933 if (rc) { 13934 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 13935 goto init_err; 13936 } 13937 13938 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 13939 dev_err(&pdev->dev, 13940 "Cannot find PCI device base address, aborting\n"); 13941 rc = -ENODEV; 13942 goto init_err_disable; 13943 } 13944 13945 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 13946 if (rc) { 13947 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 13948 goto init_err_disable; 13949 } 13950 13951 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 13952 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 13953 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 13954 rc = -EIO; 13955 goto init_err_release; 13956 } 13957 13958 pci_set_master(pdev); 13959 13960 bp->dev = dev; 13961 bp->pdev = pdev; 13962 13963 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 13964 * determines the BAR size. 13965 */ 13966 bp->bar0 = pci_ioremap_bar(pdev, 0); 13967 if (!bp->bar0) { 13968 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 13969 rc = -ENOMEM; 13970 goto init_err_release; 13971 } 13972 13973 bp->bar2 = pci_ioremap_bar(pdev, 4); 13974 if (!bp->bar2) { 13975 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 13976 rc = -ENOMEM; 13977 goto init_err_release; 13978 } 13979 13980 INIT_WORK(&bp->sp_task, bnxt_sp_task); 13981 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 13982 13983 spin_lock_init(&bp->ntp_fltr_lock); 13984 #if BITS_PER_LONG == 32 13985 spin_lock_init(&bp->db_lock); 13986 #endif 13987 13988 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 13989 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 13990 13991 timer_setup(&bp->timer, bnxt_timer, 0); 13992 bp->current_interval = BNXT_TIMER_INTERVAL; 13993 13994 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 13995 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 13996 13997 clear_bit(BNXT_STATE_OPEN, &bp->state); 13998 return 0; 13999 14000 init_err_release: 14001 bnxt_unmap_bars(bp, pdev); 14002 pci_release_regions(pdev); 14003 14004 init_err_disable: 14005 pci_disable_device(pdev); 14006 14007 init_err: 14008 return rc; 14009 } 14010 14011 /* rtnl_lock held */ 14012 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 14013 { 14014 struct sockaddr *addr = p; 14015 struct bnxt *bp = netdev_priv(dev); 14016 int rc = 0; 14017 14018 if (!is_valid_ether_addr(addr->sa_data)) 14019 return -EADDRNOTAVAIL; 14020 14021 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 14022 return 0; 14023 14024 rc = bnxt_approve_mac(bp, addr->sa_data, true); 14025 if (rc) 14026 return rc; 14027 14028 eth_hw_addr_set(dev, addr->sa_data); 14029 bnxt_clear_usr_fltrs(bp, true); 14030 if (netif_running(dev)) { 14031 bnxt_close_nic(bp, false, false); 14032 rc = bnxt_open_nic(bp, false, false); 14033 } 14034 14035 return rc; 14036 } 14037 14038 /* rtnl_lock held */ 14039 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 14040 { 14041 struct bnxt *bp = netdev_priv(dev); 14042 14043 if (netif_running(dev)) 14044 bnxt_close_nic(bp, true, false); 14045 14046 dev->mtu = new_mtu; 14047 bnxt_set_ring_params(bp); 14048 14049 if (netif_running(dev)) 14050 return bnxt_open_nic(bp, true, false); 14051 14052 return 0; 14053 } 14054 14055 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 14056 { 14057 struct bnxt *bp = netdev_priv(dev); 14058 bool sh = false; 14059 int rc, tx_cp; 14060 14061 if (tc > bp->max_tc) { 14062 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 14063 tc, bp->max_tc); 14064 return -EINVAL; 14065 } 14066 14067 if (bp->num_tc == tc) 14068 return 0; 14069 14070 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 14071 sh = true; 14072 14073 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 14074 sh, tc, bp->tx_nr_rings_xdp); 14075 if (rc) 14076 return rc; 14077 14078 /* Needs to close the device and do hw resource re-allocations */ 14079 if (netif_running(bp->dev)) 14080 bnxt_close_nic(bp, true, false); 14081 14082 if (tc) { 14083 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 14084 netdev_set_num_tc(dev, tc); 14085 bp->num_tc = tc; 14086 } else { 14087 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 14088 netdev_reset_tc(dev); 14089 bp->num_tc = 0; 14090 } 14091 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 14092 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 14093 bp->cp_nr_rings = sh ? max_t(int, tx_cp, bp->rx_nr_rings) : 14094 tx_cp + bp->rx_nr_rings; 14095 14096 if (netif_running(bp->dev)) 14097 return bnxt_open_nic(bp, true, false); 14098 14099 return 0; 14100 } 14101 14102 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 14103 void *cb_priv) 14104 { 14105 struct bnxt *bp = cb_priv; 14106 14107 if (!bnxt_tc_flower_enabled(bp) || 14108 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 14109 return -EOPNOTSUPP; 14110 14111 switch (type) { 14112 case TC_SETUP_CLSFLOWER: 14113 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 14114 default: 14115 return -EOPNOTSUPP; 14116 } 14117 } 14118 14119 LIST_HEAD(bnxt_block_cb_list); 14120 14121 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 14122 void *type_data) 14123 { 14124 struct bnxt *bp = netdev_priv(dev); 14125 14126 switch (type) { 14127 case TC_SETUP_BLOCK: 14128 return flow_block_cb_setup_simple(type_data, 14129 &bnxt_block_cb_list, 14130 bnxt_setup_tc_block_cb, 14131 bp, bp, true); 14132 case TC_SETUP_QDISC_MQPRIO: { 14133 struct tc_mqprio_qopt *mqprio = type_data; 14134 14135 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 14136 14137 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 14138 } 14139 default: 14140 return -EOPNOTSUPP; 14141 } 14142 } 14143 14144 u32 bnxt_get_ntp_filter_idx(struct bnxt *bp, struct flow_keys *fkeys, 14145 const struct sk_buff *skb) 14146 { 14147 struct bnxt_vnic_info *vnic; 14148 14149 if (skb) 14150 return skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 14151 14152 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 14153 return bnxt_toeplitz(bp, fkeys, (void *)vnic->rss_hash_key); 14154 } 14155 14156 int bnxt_insert_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr, 14157 u32 idx) 14158 { 14159 struct hlist_head *head; 14160 int bit_id; 14161 14162 spin_lock_bh(&bp->ntp_fltr_lock); 14163 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, bp->max_fltr, 0); 14164 if (bit_id < 0) { 14165 spin_unlock_bh(&bp->ntp_fltr_lock); 14166 return -ENOMEM; 14167 } 14168 14169 fltr->base.sw_id = (u16)bit_id; 14170 fltr->base.type = BNXT_FLTR_TYPE_NTUPLE; 14171 fltr->base.flags |= BNXT_ACT_RING_DST; 14172 head = &bp->ntp_fltr_hash_tbl[idx]; 14173 hlist_add_head_rcu(&fltr->base.hash, head); 14174 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 14175 bnxt_insert_usr_fltr(bp, &fltr->base); 14176 bp->ntp_fltr_count++; 14177 spin_unlock_bh(&bp->ntp_fltr_lock); 14178 return 0; 14179 } 14180 14181 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 14182 struct bnxt_ntuple_filter *f2) 14183 { 14184 struct bnxt_flow_masks *masks1 = &f1->fmasks; 14185 struct bnxt_flow_masks *masks2 = &f2->fmasks; 14186 struct flow_keys *keys1 = &f1->fkeys; 14187 struct flow_keys *keys2 = &f2->fkeys; 14188 14189 if (keys1->basic.n_proto != keys2->basic.n_proto || 14190 keys1->basic.ip_proto != keys2->basic.ip_proto) 14191 return false; 14192 14193 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 14194 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 14195 masks1->addrs.v4addrs.src != masks2->addrs.v4addrs.src || 14196 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst || 14197 masks1->addrs.v4addrs.dst != masks2->addrs.v4addrs.dst) 14198 return false; 14199 } else { 14200 if (!ipv6_addr_equal(&keys1->addrs.v6addrs.src, 14201 &keys2->addrs.v6addrs.src) || 14202 !ipv6_addr_equal(&masks1->addrs.v6addrs.src, 14203 &masks2->addrs.v6addrs.src) || 14204 !ipv6_addr_equal(&keys1->addrs.v6addrs.dst, 14205 &keys2->addrs.v6addrs.dst) || 14206 !ipv6_addr_equal(&masks1->addrs.v6addrs.dst, 14207 &masks2->addrs.v6addrs.dst)) 14208 return false; 14209 } 14210 14211 return keys1->ports.src == keys2->ports.src && 14212 masks1->ports.src == masks2->ports.src && 14213 keys1->ports.dst == keys2->ports.dst && 14214 masks1->ports.dst == masks2->ports.dst && 14215 keys1->control.flags == keys2->control.flags && 14216 f1->l2_fltr == f2->l2_fltr; 14217 } 14218 14219 struct bnxt_ntuple_filter * 14220 bnxt_lookup_ntp_filter_from_idx(struct bnxt *bp, 14221 struct bnxt_ntuple_filter *fltr, u32 idx) 14222 { 14223 struct bnxt_ntuple_filter *f; 14224 struct hlist_head *head; 14225 14226 head = &bp->ntp_fltr_hash_tbl[idx]; 14227 hlist_for_each_entry_rcu(f, head, base.hash) { 14228 if (bnxt_fltr_match(f, fltr)) 14229 return f; 14230 } 14231 return NULL; 14232 } 14233 14234 #ifdef CONFIG_RFS_ACCEL 14235 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 14236 u16 rxq_index, u32 flow_id) 14237 { 14238 struct bnxt *bp = netdev_priv(dev); 14239 struct bnxt_ntuple_filter *fltr, *new_fltr; 14240 struct flow_keys *fkeys; 14241 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 14242 struct bnxt_l2_filter *l2_fltr; 14243 int rc = 0, idx; 14244 u32 flags; 14245 14246 if (ether_addr_equal(dev->dev_addr, eth->h_dest)) { 14247 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 14248 atomic_inc(&l2_fltr->refcnt); 14249 } else { 14250 struct bnxt_l2_key key; 14251 14252 ether_addr_copy(key.dst_mac_addr, eth->h_dest); 14253 key.vlan = 0; 14254 l2_fltr = bnxt_lookup_l2_filter_from_key(bp, &key); 14255 if (!l2_fltr) 14256 return -EINVAL; 14257 if (l2_fltr->base.flags & BNXT_ACT_FUNC_DST) { 14258 bnxt_del_l2_filter(bp, l2_fltr); 14259 return -EINVAL; 14260 } 14261 } 14262 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 14263 if (!new_fltr) { 14264 bnxt_del_l2_filter(bp, l2_fltr); 14265 return -ENOMEM; 14266 } 14267 14268 fkeys = &new_fltr->fkeys; 14269 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 14270 rc = -EPROTONOSUPPORT; 14271 goto err_free; 14272 } 14273 14274 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 14275 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 14276 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 14277 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 14278 rc = -EPROTONOSUPPORT; 14279 goto err_free; 14280 } 14281 new_fltr->fmasks = BNXT_FLOW_IPV4_MASK_ALL; 14282 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 14283 if (bp->hwrm_spec_code < 0x10601) { 14284 rc = -EPROTONOSUPPORT; 14285 goto err_free; 14286 } 14287 new_fltr->fmasks = BNXT_FLOW_IPV6_MASK_ALL; 14288 } 14289 flags = fkeys->control.flags; 14290 if (((flags & FLOW_DIS_ENCAPSULATION) && 14291 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 14292 rc = -EPROTONOSUPPORT; 14293 goto err_free; 14294 } 14295 new_fltr->l2_fltr = l2_fltr; 14296 14297 idx = bnxt_get_ntp_filter_idx(bp, fkeys, skb); 14298 rcu_read_lock(); 14299 fltr = bnxt_lookup_ntp_filter_from_idx(bp, new_fltr, idx); 14300 if (fltr) { 14301 rc = fltr->base.sw_id; 14302 rcu_read_unlock(); 14303 goto err_free; 14304 } 14305 rcu_read_unlock(); 14306 14307 new_fltr->flow_id = flow_id; 14308 new_fltr->base.rxq = rxq_index; 14309 rc = bnxt_insert_ntp_filter(bp, new_fltr, idx); 14310 if (!rc) { 14311 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 14312 return new_fltr->base.sw_id; 14313 } 14314 14315 err_free: 14316 bnxt_del_l2_filter(bp, l2_fltr); 14317 kfree(new_fltr); 14318 return rc; 14319 } 14320 #endif 14321 14322 void bnxt_del_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr) 14323 { 14324 spin_lock_bh(&bp->ntp_fltr_lock); 14325 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 14326 spin_unlock_bh(&bp->ntp_fltr_lock); 14327 return; 14328 } 14329 hlist_del_rcu(&fltr->base.hash); 14330 bnxt_del_one_usr_fltr(bp, &fltr->base); 14331 bp->ntp_fltr_count--; 14332 spin_unlock_bh(&bp->ntp_fltr_lock); 14333 bnxt_del_l2_filter(bp, fltr->l2_fltr); 14334 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 14335 kfree_rcu(fltr, base.rcu); 14336 } 14337 14338 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 14339 { 14340 #ifdef CONFIG_RFS_ACCEL 14341 int i; 14342 14343 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 14344 struct hlist_head *head; 14345 struct hlist_node *tmp; 14346 struct bnxt_ntuple_filter *fltr; 14347 int rc; 14348 14349 head = &bp->ntp_fltr_hash_tbl[i]; 14350 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 14351 bool del = false; 14352 14353 if (test_bit(BNXT_FLTR_VALID, &fltr->base.state)) { 14354 if (fltr->base.flags & BNXT_ACT_NO_AGING) 14355 continue; 14356 if (rps_may_expire_flow(bp->dev, fltr->base.rxq, 14357 fltr->flow_id, 14358 fltr->base.sw_id)) { 14359 bnxt_hwrm_cfa_ntuple_filter_free(bp, 14360 fltr); 14361 del = true; 14362 } 14363 } else { 14364 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 14365 fltr); 14366 if (rc) 14367 del = true; 14368 else 14369 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 14370 } 14371 14372 if (del) 14373 bnxt_del_ntp_filter(bp, fltr); 14374 } 14375 } 14376 #endif 14377 } 14378 14379 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 14380 unsigned int entry, struct udp_tunnel_info *ti) 14381 { 14382 struct bnxt *bp = netdev_priv(netdev); 14383 unsigned int cmd; 14384 14385 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 14386 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN; 14387 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 14388 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE; 14389 else 14390 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE; 14391 14392 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd); 14393 } 14394 14395 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 14396 unsigned int entry, struct udp_tunnel_info *ti) 14397 { 14398 struct bnxt *bp = netdev_priv(netdev); 14399 unsigned int cmd; 14400 14401 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 14402 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 14403 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 14404 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 14405 else 14406 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE; 14407 14408 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 14409 } 14410 14411 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 14412 .set_port = bnxt_udp_tunnel_set_port, 14413 .unset_port = bnxt_udp_tunnel_unset_port, 14414 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 14415 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 14416 .tables = { 14417 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 14418 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 14419 }, 14420 }, bnxt_udp_tunnels_p7 = { 14421 .set_port = bnxt_udp_tunnel_set_port, 14422 .unset_port = bnxt_udp_tunnel_unset_port, 14423 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 14424 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 14425 .tables = { 14426 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 14427 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 14428 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN_GPE, }, 14429 }, 14430 }; 14431 14432 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 14433 struct net_device *dev, u32 filter_mask, 14434 int nlflags) 14435 { 14436 struct bnxt *bp = netdev_priv(dev); 14437 14438 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 14439 nlflags, filter_mask, NULL); 14440 } 14441 14442 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 14443 u16 flags, struct netlink_ext_ack *extack) 14444 { 14445 struct bnxt *bp = netdev_priv(dev); 14446 struct nlattr *attr, *br_spec; 14447 int rem, rc = 0; 14448 14449 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 14450 return -EOPNOTSUPP; 14451 14452 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 14453 if (!br_spec) 14454 return -EINVAL; 14455 14456 nla_for_each_nested(attr, br_spec, rem) { 14457 u16 mode; 14458 14459 if (nla_type(attr) != IFLA_BRIDGE_MODE) 14460 continue; 14461 14462 mode = nla_get_u16(attr); 14463 if (mode == bp->br_mode) 14464 break; 14465 14466 rc = bnxt_hwrm_set_br_mode(bp, mode); 14467 if (!rc) 14468 bp->br_mode = mode; 14469 break; 14470 } 14471 return rc; 14472 } 14473 14474 int bnxt_get_port_parent_id(struct net_device *dev, 14475 struct netdev_phys_item_id *ppid) 14476 { 14477 struct bnxt *bp = netdev_priv(dev); 14478 14479 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 14480 return -EOPNOTSUPP; 14481 14482 /* The PF and it's VF-reps only support the switchdev framework */ 14483 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 14484 return -EOPNOTSUPP; 14485 14486 ppid->id_len = sizeof(bp->dsn); 14487 memcpy(ppid->id, bp->dsn, ppid->id_len); 14488 14489 return 0; 14490 } 14491 14492 static const struct net_device_ops bnxt_netdev_ops = { 14493 .ndo_open = bnxt_open, 14494 .ndo_start_xmit = bnxt_start_xmit, 14495 .ndo_stop = bnxt_close, 14496 .ndo_get_stats64 = bnxt_get_stats64, 14497 .ndo_set_rx_mode = bnxt_set_rx_mode, 14498 .ndo_eth_ioctl = bnxt_ioctl, 14499 .ndo_validate_addr = eth_validate_addr, 14500 .ndo_set_mac_address = bnxt_change_mac_addr, 14501 .ndo_change_mtu = bnxt_change_mtu, 14502 .ndo_fix_features = bnxt_fix_features, 14503 .ndo_set_features = bnxt_set_features, 14504 .ndo_features_check = bnxt_features_check, 14505 .ndo_tx_timeout = bnxt_tx_timeout, 14506 #ifdef CONFIG_BNXT_SRIOV 14507 .ndo_get_vf_config = bnxt_get_vf_config, 14508 .ndo_set_vf_mac = bnxt_set_vf_mac, 14509 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 14510 .ndo_set_vf_rate = bnxt_set_vf_bw, 14511 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 14512 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 14513 .ndo_set_vf_trust = bnxt_set_vf_trust, 14514 #endif 14515 .ndo_setup_tc = bnxt_setup_tc, 14516 #ifdef CONFIG_RFS_ACCEL 14517 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 14518 #endif 14519 .ndo_bpf = bnxt_xdp, 14520 .ndo_xdp_xmit = bnxt_xdp_xmit, 14521 .ndo_bridge_getlink = bnxt_bridge_getlink, 14522 .ndo_bridge_setlink = bnxt_bridge_setlink, 14523 }; 14524 14525 static void bnxt_get_queue_stats_rx(struct net_device *dev, int i, 14526 struct netdev_queue_stats_rx *stats) 14527 { 14528 struct bnxt *bp = netdev_priv(dev); 14529 struct bnxt_cp_ring_info *cpr; 14530 u64 *sw; 14531 14532 cpr = &bp->bnapi[i]->cp_ring; 14533 sw = cpr->stats.sw_stats; 14534 14535 stats->packets = 0; 14536 stats->packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 14537 stats->packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 14538 stats->packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 14539 14540 stats->bytes = 0; 14541 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 14542 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 14543 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 14544 14545 stats->alloc_fail = cpr->sw_stats.rx.rx_oom_discards; 14546 } 14547 14548 static void bnxt_get_queue_stats_tx(struct net_device *dev, int i, 14549 struct netdev_queue_stats_tx *stats) 14550 { 14551 struct bnxt *bp = netdev_priv(dev); 14552 struct bnxt_napi *bnapi; 14553 u64 *sw; 14554 14555 bnapi = bp->tx_ring[bp->tx_ring_map[i]].bnapi; 14556 sw = bnapi->cp_ring.stats.sw_stats; 14557 14558 stats->packets = 0; 14559 stats->packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 14560 stats->packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 14561 stats->packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 14562 14563 stats->bytes = 0; 14564 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 14565 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 14566 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 14567 } 14568 14569 static void bnxt_get_base_stats(struct net_device *dev, 14570 struct netdev_queue_stats_rx *rx, 14571 struct netdev_queue_stats_tx *tx) 14572 { 14573 struct bnxt *bp = netdev_priv(dev); 14574 14575 rx->packets = bp->net_stats_prev.rx_packets; 14576 rx->bytes = bp->net_stats_prev.rx_bytes; 14577 rx->alloc_fail = bp->ring_err_stats_prev.rx_total_oom_discards; 14578 14579 tx->packets = bp->net_stats_prev.tx_packets; 14580 tx->bytes = bp->net_stats_prev.tx_bytes; 14581 } 14582 14583 static const struct netdev_stat_ops bnxt_stat_ops = { 14584 .get_queue_stats_rx = bnxt_get_queue_stats_rx, 14585 .get_queue_stats_tx = bnxt_get_queue_stats_tx, 14586 .get_base_stats = bnxt_get_base_stats, 14587 }; 14588 14589 static void bnxt_remove_one(struct pci_dev *pdev) 14590 { 14591 struct net_device *dev = pci_get_drvdata(pdev); 14592 struct bnxt *bp = netdev_priv(dev); 14593 14594 if (BNXT_PF(bp)) 14595 bnxt_sriov_disable(bp); 14596 14597 bnxt_rdma_aux_device_uninit(bp); 14598 14599 bnxt_ptp_clear(bp); 14600 unregister_netdev(dev); 14601 bnxt_free_l2_filters(bp, true); 14602 bnxt_free_ntp_fltrs(bp, true); 14603 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14604 /* Flush any pending tasks */ 14605 cancel_work_sync(&bp->sp_task); 14606 cancel_delayed_work_sync(&bp->fw_reset_task); 14607 bp->sp_event = 0; 14608 14609 bnxt_dl_fw_reporters_destroy(bp); 14610 bnxt_dl_unregister(bp); 14611 bnxt_shutdown_tc(bp); 14612 14613 bnxt_clear_int_mode(bp); 14614 bnxt_hwrm_func_drv_unrgtr(bp); 14615 bnxt_free_hwrm_resources(bp); 14616 bnxt_hwmon_uninit(bp); 14617 bnxt_ethtool_free(bp); 14618 bnxt_dcb_free(bp); 14619 kfree(bp->ptp_cfg); 14620 bp->ptp_cfg = NULL; 14621 kfree(bp->fw_health); 14622 bp->fw_health = NULL; 14623 bnxt_cleanup_pci(bp); 14624 bnxt_free_ctx_mem(bp); 14625 kfree(bp->rss_indir_tbl); 14626 bp->rss_indir_tbl = NULL; 14627 bnxt_free_port_stats(bp); 14628 free_netdev(dev); 14629 } 14630 14631 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 14632 { 14633 int rc = 0; 14634 struct bnxt_link_info *link_info = &bp->link_info; 14635 14636 bp->phy_flags = 0; 14637 rc = bnxt_hwrm_phy_qcaps(bp); 14638 if (rc) { 14639 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 14640 rc); 14641 return rc; 14642 } 14643 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 14644 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 14645 else 14646 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 14647 if (!fw_dflt) 14648 return 0; 14649 14650 mutex_lock(&bp->link_lock); 14651 rc = bnxt_update_link(bp, false); 14652 if (rc) { 14653 mutex_unlock(&bp->link_lock); 14654 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 14655 rc); 14656 return rc; 14657 } 14658 14659 /* Older firmware does not have supported_auto_speeds, so assume 14660 * that all supported speeds can be autonegotiated. 14661 */ 14662 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 14663 link_info->support_auto_speeds = link_info->support_speeds; 14664 14665 bnxt_init_ethtool_link_settings(bp); 14666 mutex_unlock(&bp->link_lock); 14667 return 0; 14668 } 14669 14670 static int bnxt_get_max_irq(struct pci_dev *pdev) 14671 { 14672 u16 ctrl; 14673 14674 if (!pdev->msix_cap) 14675 return 1; 14676 14677 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 14678 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 14679 } 14680 14681 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 14682 int *max_cp) 14683 { 14684 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 14685 int max_ring_grps = 0, max_irq; 14686 14687 *max_tx = hw_resc->max_tx_rings; 14688 *max_rx = hw_resc->max_rx_rings; 14689 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 14690 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 14691 bnxt_get_ulp_msix_num(bp), 14692 hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp)); 14693 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 14694 *max_cp = min_t(int, *max_cp, max_irq); 14695 max_ring_grps = hw_resc->max_hw_ring_grps; 14696 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 14697 *max_cp -= 1; 14698 *max_rx -= 2; 14699 } 14700 if (bp->flags & BNXT_FLAG_AGG_RINGS) 14701 *max_rx >>= 1; 14702 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 14703 int rc; 14704 14705 rc = __bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 14706 if (rc) { 14707 *max_rx = 0; 14708 *max_tx = 0; 14709 } 14710 /* On P5 chips, max_cp output param should be available NQs */ 14711 *max_cp = max_irq; 14712 } 14713 *max_rx = min_t(int, *max_rx, max_ring_grps); 14714 } 14715 14716 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 14717 { 14718 int rx, tx, cp; 14719 14720 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 14721 *max_rx = rx; 14722 *max_tx = tx; 14723 if (!rx || !tx || !cp) 14724 return -ENOMEM; 14725 14726 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 14727 } 14728 14729 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 14730 bool shared) 14731 { 14732 int rc; 14733 14734 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 14735 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 14736 /* Not enough rings, try disabling agg rings. */ 14737 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 14738 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 14739 if (rc) { 14740 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 14741 bp->flags |= BNXT_FLAG_AGG_RINGS; 14742 return rc; 14743 } 14744 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 14745 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 14746 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 14747 bnxt_set_ring_params(bp); 14748 } 14749 14750 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 14751 int max_cp, max_stat, max_irq; 14752 14753 /* Reserve minimum resources for RoCE */ 14754 max_cp = bnxt_get_max_func_cp_rings(bp); 14755 max_stat = bnxt_get_max_func_stat_ctxs(bp); 14756 max_irq = bnxt_get_max_func_irqs(bp); 14757 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 14758 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 14759 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 14760 return 0; 14761 14762 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 14763 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 14764 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 14765 max_cp = min_t(int, max_cp, max_irq); 14766 max_cp = min_t(int, max_cp, max_stat); 14767 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 14768 if (rc) 14769 rc = 0; 14770 } 14771 return rc; 14772 } 14773 14774 /* In initial default shared ring setting, each shared ring must have a 14775 * RX/TX ring pair. 14776 */ 14777 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 14778 { 14779 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 14780 bp->rx_nr_rings = bp->cp_nr_rings; 14781 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 14782 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 14783 } 14784 14785 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 14786 { 14787 int dflt_rings, max_rx_rings, max_tx_rings, rc; 14788 14789 if (!bnxt_can_reserve_rings(bp)) 14790 return 0; 14791 14792 if (sh) 14793 bp->flags |= BNXT_FLAG_SHARED_RINGS; 14794 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 14795 /* Reduce default rings on multi-port cards so that total default 14796 * rings do not exceed CPU count. 14797 */ 14798 if (bp->port_count > 1) { 14799 int max_rings = 14800 max_t(int, num_online_cpus() / bp->port_count, 1); 14801 14802 dflt_rings = min_t(int, dflt_rings, max_rings); 14803 } 14804 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 14805 if (rc) 14806 return rc; 14807 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 14808 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 14809 if (sh) 14810 bnxt_trim_dflt_sh_rings(bp); 14811 else 14812 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 14813 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 14814 14815 rc = __bnxt_reserve_rings(bp); 14816 if (rc && rc != -ENODEV) 14817 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 14818 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 14819 if (sh) 14820 bnxt_trim_dflt_sh_rings(bp); 14821 14822 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 14823 if (bnxt_need_reserve_rings(bp)) { 14824 rc = __bnxt_reserve_rings(bp); 14825 if (rc && rc != -ENODEV) 14826 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 14827 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 14828 } 14829 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 14830 bp->rx_nr_rings++; 14831 bp->cp_nr_rings++; 14832 } 14833 if (rc) { 14834 bp->tx_nr_rings = 0; 14835 bp->rx_nr_rings = 0; 14836 } 14837 return rc; 14838 } 14839 14840 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 14841 { 14842 int rc; 14843 14844 if (bp->tx_nr_rings) 14845 return 0; 14846 14847 bnxt_ulp_irq_stop(bp); 14848 bnxt_clear_int_mode(bp); 14849 rc = bnxt_set_dflt_rings(bp, true); 14850 if (rc) { 14851 if (BNXT_VF(bp) && rc == -ENODEV) 14852 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 14853 else 14854 netdev_err(bp->dev, "Not enough rings available.\n"); 14855 goto init_dflt_ring_err; 14856 } 14857 rc = bnxt_init_int_mode(bp); 14858 if (rc) 14859 goto init_dflt_ring_err; 14860 14861 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 14862 14863 bnxt_set_dflt_rfs(bp); 14864 14865 init_dflt_ring_err: 14866 bnxt_ulp_irq_restart(bp, rc); 14867 return rc; 14868 } 14869 14870 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 14871 { 14872 int rc; 14873 14874 ASSERT_RTNL(); 14875 bnxt_hwrm_func_qcaps(bp); 14876 14877 if (netif_running(bp->dev)) 14878 __bnxt_close_nic(bp, true, false); 14879 14880 bnxt_ulp_irq_stop(bp); 14881 bnxt_clear_int_mode(bp); 14882 rc = bnxt_init_int_mode(bp); 14883 bnxt_ulp_irq_restart(bp, rc); 14884 14885 if (netif_running(bp->dev)) { 14886 if (rc) 14887 dev_close(bp->dev); 14888 else 14889 rc = bnxt_open_nic(bp, true, false); 14890 } 14891 14892 return rc; 14893 } 14894 14895 static int bnxt_init_mac_addr(struct bnxt *bp) 14896 { 14897 int rc = 0; 14898 14899 if (BNXT_PF(bp)) { 14900 eth_hw_addr_set(bp->dev, bp->pf.mac_addr); 14901 } else { 14902 #ifdef CONFIG_BNXT_SRIOV 14903 struct bnxt_vf_info *vf = &bp->vf; 14904 bool strict_approval = true; 14905 14906 if (is_valid_ether_addr(vf->mac_addr)) { 14907 /* overwrite netdev dev_addr with admin VF MAC */ 14908 eth_hw_addr_set(bp->dev, vf->mac_addr); 14909 /* Older PF driver or firmware may not approve this 14910 * correctly. 14911 */ 14912 strict_approval = false; 14913 } else { 14914 eth_hw_addr_random(bp->dev); 14915 } 14916 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 14917 #endif 14918 } 14919 return rc; 14920 } 14921 14922 static void bnxt_vpd_read_info(struct bnxt *bp) 14923 { 14924 struct pci_dev *pdev = bp->pdev; 14925 unsigned int vpd_size, kw_len; 14926 int pos, size; 14927 u8 *vpd_data; 14928 14929 vpd_data = pci_vpd_alloc(pdev, &vpd_size); 14930 if (IS_ERR(vpd_data)) { 14931 pci_warn(pdev, "Unable to read VPD\n"); 14932 return; 14933 } 14934 14935 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 14936 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); 14937 if (pos < 0) 14938 goto read_sn; 14939 14940 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 14941 memcpy(bp->board_partno, &vpd_data[pos], size); 14942 14943 read_sn: 14944 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 14945 PCI_VPD_RO_KEYWORD_SERIALNO, 14946 &kw_len); 14947 if (pos < 0) 14948 goto exit; 14949 14950 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 14951 memcpy(bp->board_serialno, &vpd_data[pos], size); 14952 exit: 14953 kfree(vpd_data); 14954 } 14955 14956 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 14957 { 14958 struct pci_dev *pdev = bp->pdev; 14959 u64 qword; 14960 14961 qword = pci_get_dsn(pdev); 14962 if (!qword) { 14963 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 14964 return -EOPNOTSUPP; 14965 } 14966 14967 put_unaligned_le64(qword, dsn); 14968 14969 bp->flags |= BNXT_FLAG_DSN_VALID; 14970 return 0; 14971 } 14972 14973 static int bnxt_map_db_bar(struct bnxt *bp) 14974 { 14975 if (!bp->db_size) 14976 return -ENODEV; 14977 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 14978 if (!bp->bar1) 14979 return -ENOMEM; 14980 return 0; 14981 } 14982 14983 void bnxt_print_device_info(struct bnxt *bp) 14984 { 14985 netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n", 14986 board_info[bp->board_idx].name, 14987 (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr); 14988 14989 pcie_print_link_status(bp->pdev); 14990 } 14991 14992 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 14993 { 14994 struct bnxt_hw_resc *hw_resc; 14995 struct net_device *dev; 14996 struct bnxt *bp; 14997 int rc, max_irqs; 14998 14999 if (pci_is_bridge(pdev)) 15000 return -ENODEV; 15001 15002 /* Clear any pending DMA transactions from crash kernel 15003 * while loading driver in capture kernel. 15004 */ 15005 if (is_kdump_kernel()) { 15006 pci_clear_master(pdev); 15007 pcie_flr(pdev); 15008 } 15009 15010 max_irqs = bnxt_get_max_irq(pdev); 15011 dev = alloc_etherdev_mqs(sizeof(*bp), max_irqs * BNXT_MAX_QUEUE, 15012 max_irqs); 15013 if (!dev) 15014 return -ENOMEM; 15015 15016 bp = netdev_priv(dev); 15017 bp->board_idx = ent->driver_data; 15018 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 15019 bnxt_set_max_func_irqs(bp, max_irqs); 15020 15021 if (bnxt_vf_pciid(bp->board_idx)) 15022 bp->flags |= BNXT_FLAG_VF; 15023 15024 /* No devlink port registration in case of a VF */ 15025 if (BNXT_PF(bp)) 15026 SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port); 15027 15028 if (pdev->msix_cap) 15029 bp->flags |= BNXT_FLAG_MSIX_CAP; 15030 15031 rc = bnxt_init_board(pdev, dev); 15032 if (rc < 0) 15033 goto init_err_free; 15034 15035 dev->netdev_ops = &bnxt_netdev_ops; 15036 dev->stat_ops = &bnxt_stat_ops; 15037 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 15038 dev->ethtool_ops = &bnxt_ethtool_ops; 15039 pci_set_drvdata(pdev, dev); 15040 15041 rc = bnxt_alloc_hwrm_resources(bp); 15042 if (rc) 15043 goto init_err_pci_clean; 15044 15045 mutex_init(&bp->hwrm_cmd_lock); 15046 mutex_init(&bp->link_lock); 15047 15048 rc = bnxt_fw_init_one_p1(bp); 15049 if (rc) 15050 goto init_err_pci_clean; 15051 15052 if (BNXT_PF(bp)) 15053 bnxt_vpd_read_info(bp); 15054 15055 if (BNXT_CHIP_P5_PLUS(bp)) { 15056 bp->flags |= BNXT_FLAG_CHIP_P5_PLUS; 15057 if (BNXT_CHIP_P7(bp)) 15058 bp->flags |= BNXT_FLAG_CHIP_P7; 15059 } 15060 15061 rc = bnxt_alloc_rss_indir_tbl(bp); 15062 if (rc) 15063 goto init_err_pci_clean; 15064 15065 rc = bnxt_fw_init_one_p2(bp); 15066 if (rc) 15067 goto init_err_pci_clean; 15068 15069 rc = bnxt_map_db_bar(bp); 15070 if (rc) { 15071 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 15072 rc); 15073 goto init_err_pci_clean; 15074 } 15075 15076 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 15077 NETIF_F_TSO | NETIF_F_TSO6 | 15078 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 15079 NETIF_F_GSO_IPXIP4 | 15080 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 15081 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 15082 NETIF_F_RXCSUM | NETIF_F_GRO; 15083 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 15084 dev->hw_features |= NETIF_F_GSO_UDP_L4; 15085 15086 if (BNXT_SUPPORTS_TPA(bp)) 15087 dev->hw_features |= NETIF_F_LRO; 15088 15089 dev->hw_enc_features = 15090 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 15091 NETIF_F_TSO | NETIF_F_TSO6 | 15092 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 15093 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 15094 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 15095 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 15096 dev->hw_enc_features |= NETIF_F_GSO_UDP_L4; 15097 if (bp->flags & BNXT_FLAG_CHIP_P7) 15098 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels_p7; 15099 else 15100 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 15101 15102 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 15103 NETIF_F_GSO_GRE_CSUM; 15104 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 15105 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 15106 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 15107 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 15108 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 15109 if (BNXT_SUPPORTS_TPA(bp)) 15110 dev->hw_features |= NETIF_F_GRO_HW; 15111 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 15112 if (dev->features & NETIF_F_GRO_HW) 15113 dev->features &= ~NETIF_F_LRO; 15114 dev->priv_flags |= IFF_UNICAST_FLT; 15115 15116 netif_set_tso_max_size(dev, GSO_MAX_SIZE); 15117 15118 dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 15119 NETDEV_XDP_ACT_RX_SG; 15120 15121 #ifdef CONFIG_BNXT_SRIOV 15122 init_waitqueue_head(&bp->sriov_cfg_wait); 15123 #endif 15124 if (BNXT_SUPPORTS_TPA(bp)) { 15125 bp->gro_func = bnxt_gro_func_5730x; 15126 if (BNXT_CHIP_P4(bp)) 15127 bp->gro_func = bnxt_gro_func_5731x; 15128 else if (BNXT_CHIP_P5_PLUS(bp)) 15129 bp->gro_func = bnxt_gro_func_5750x; 15130 } 15131 if (!BNXT_CHIP_P4_PLUS(bp)) 15132 bp->flags |= BNXT_FLAG_DOUBLE_DB; 15133 15134 rc = bnxt_init_mac_addr(bp); 15135 if (rc) { 15136 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 15137 rc = -EADDRNOTAVAIL; 15138 goto init_err_pci_clean; 15139 } 15140 15141 if (BNXT_PF(bp)) { 15142 /* Read the adapter's DSN to use as the eswitch switch_id */ 15143 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 15144 } 15145 15146 /* MTU range: 60 - FW defined max */ 15147 dev->min_mtu = ETH_ZLEN; 15148 dev->max_mtu = bp->max_mtu; 15149 15150 rc = bnxt_probe_phy(bp, true); 15151 if (rc) 15152 goto init_err_pci_clean; 15153 15154 hw_resc = &bp->hw_resc; 15155 bp->max_fltr = hw_resc->max_rx_em_flows + hw_resc->max_rx_wm_flows + 15156 BNXT_L2_FLTR_MAX_FLTR; 15157 /* Older firmware may not report these filters properly */ 15158 if (bp->max_fltr < BNXT_MAX_FLTR) 15159 bp->max_fltr = BNXT_MAX_FLTR; 15160 bnxt_init_l2_fltr_tbl(bp); 15161 bnxt_set_rx_skb_mode(bp, false); 15162 bnxt_set_tpa_flags(bp); 15163 bnxt_set_ring_params(bp); 15164 rc = bnxt_set_dflt_rings(bp, true); 15165 if (rc) { 15166 if (BNXT_VF(bp) && rc == -ENODEV) { 15167 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 15168 } else { 15169 netdev_err(bp->dev, "Not enough rings available.\n"); 15170 rc = -ENOMEM; 15171 } 15172 goto init_err_pci_clean; 15173 } 15174 15175 bnxt_fw_init_one_p3(bp); 15176 15177 bnxt_init_dflt_coal(bp); 15178 15179 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 15180 bp->flags |= BNXT_FLAG_STRIP_VLAN; 15181 15182 rc = bnxt_init_int_mode(bp); 15183 if (rc) 15184 goto init_err_pci_clean; 15185 15186 /* No TC has been set yet and rings may have been trimmed due to 15187 * limited MSIX, so we re-initialize the TX rings per TC. 15188 */ 15189 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15190 15191 if (BNXT_PF(bp)) { 15192 if (!bnxt_pf_wq) { 15193 bnxt_pf_wq = 15194 create_singlethread_workqueue("bnxt_pf_wq"); 15195 if (!bnxt_pf_wq) { 15196 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 15197 rc = -ENOMEM; 15198 goto init_err_pci_clean; 15199 } 15200 } 15201 rc = bnxt_init_tc(bp); 15202 if (rc) 15203 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 15204 rc); 15205 } 15206 15207 bnxt_inv_fw_health_reg(bp); 15208 rc = bnxt_dl_register(bp); 15209 if (rc) 15210 goto init_err_dl; 15211 15212 INIT_LIST_HEAD(&bp->usr_fltr_list); 15213 15214 rc = register_netdev(dev); 15215 if (rc) 15216 goto init_err_cleanup; 15217 15218 bnxt_dl_fw_reporters_create(bp); 15219 15220 bnxt_rdma_aux_device_init(bp); 15221 15222 bnxt_print_device_info(bp); 15223 15224 pci_save_state(pdev); 15225 15226 return 0; 15227 init_err_cleanup: 15228 bnxt_dl_unregister(bp); 15229 init_err_dl: 15230 bnxt_shutdown_tc(bp); 15231 bnxt_clear_int_mode(bp); 15232 15233 init_err_pci_clean: 15234 bnxt_hwrm_func_drv_unrgtr(bp); 15235 bnxt_free_hwrm_resources(bp); 15236 bnxt_hwmon_uninit(bp); 15237 bnxt_ethtool_free(bp); 15238 bnxt_ptp_clear(bp); 15239 kfree(bp->ptp_cfg); 15240 bp->ptp_cfg = NULL; 15241 kfree(bp->fw_health); 15242 bp->fw_health = NULL; 15243 bnxt_cleanup_pci(bp); 15244 bnxt_free_ctx_mem(bp); 15245 kfree(bp->rss_indir_tbl); 15246 bp->rss_indir_tbl = NULL; 15247 15248 init_err_free: 15249 free_netdev(dev); 15250 return rc; 15251 } 15252 15253 static void bnxt_shutdown(struct pci_dev *pdev) 15254 { 15255 struct net_device *dev = pci_get_drvdata(pdev); 15256 struct bnxt *bp; 15257 15258 if (!dev) 15259 return; 15260 15261 rtnl_lock(); 15262 bp = netdev_priv(dev); 15263 if (!bp) 15264 goto shutdown_exit; 15265 15266 if (netif_running(dev)) 15267 dev_close(dev); 15268 15269 bnxt_clear_int_mode(bp); 15270 pci_disable_device(pdev); 15271 15272 if (system_state == SYSTEM_POWER_OFF) { 15273 pci_wake_from_d3(pdev, bp->wol); 15274 pci_set_power_state(pdev, PCI_D3hot); 15275 } 15276 15277 shutdown_exit: 15278 rtnl_unlock(); 15279 } 15280 15281 #ifdef CONFIG_PM_SLEEP 15282 static int bnxt_suspend(struct device *device) 15283 { 15284 struct net_device *dev = dev_get_drvdata(device); 15285 struct bnxt *bp = netdev_priv(dev); 15286 int rc = 0; 15287 15288 rtnl_lock(); 15289 bnxt_ulp_stop(bp); 15290 if (netif_running(dev)) { 15291 netif_device_detach(dev); 15292 rc = bnxt_close(dev); 15293 } 15294 bnxt_hwrm_func_drv_unrgtr(bp); 15295 pci_disable_device(bp->pdev); 15296 bnxt_free_ctx_mem(bp); 15297 rtnl_unlock(); 15298 return rc; 15299 } 15300 15301 static int bnxt_resume(struct device *device) 15302 { 15303 struct net_device *dev = dev_get_drvdata(device); 15304 struct bnxt *bp = netdev_priv(dev); 15305 int rc = 0; 15306 15307 rtnl_lock(); 15308 rc = pci_enable_device(bp->pdev); 15309 if (rc) { 15310 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 15311 rc); 15312 goto resume_exit; 15313 } 15314 pci_set_master(bp->pdev); 15315 if (bnxt_hwrm_ver_get(bp)) { 15316 rc = -ENODEV; 15317 goto resume_exit; 15318 } 15319 rc = bnxt_hwrm_func_reset(bp); 15320 if (rc) { 15321 rc = -EBUSY; 15322 goto resume_exit; 15323 } 15324 15325 rc = bnxt_hwrm_func_qcaps(bp); 15326 if (rc) 15327 goto resume_exit; 15328 15329 bnxt_clear_reservations(bp, true); 15330 15331 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 15332 rc = -ENODEV; 15333 goto resume_exit; 15334 } 15335 15336 bnxt_get_wol_settings(bp); 15337 if (netif_running(dev)) { 15338 rc = bnxt_open(dev); 15339 if (!rc) 15340 netif_device_attach(dev); 15341 } 15342 15343 resume_exit: 15344 bnxt_ulp_start(bp, rc); 15345 if (!rc) 15346 bnxt_reenable_sriov(bp); 15347 rtnl_unlock(); 15348 return rc; 15349 } 15350 15351 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 15352 #define BNXT_PM_OPS (&bnxt_pm_ops) 15353 15354 #else 15355 15356 #define BNXT_PM_OPS NULL 15357 15358 #endif /* CONFIG_PM_SLEEP */ 15359 15360 /** 15361 * bnxt_io_error_detected - called when PCI error is detected 15362 * @pdev: Pointer to PCI device 15363 * @state: The current pci connection state 15364 * 15365 * This function is called after a PCI bus error affecting 15366 * this device has been detected. 15367 */ 15368 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 15369 pci_channel_state_t state) 15370 { 15371 struct net_device *netdev = pci_get_drvdata(pdev); 15372 struct bnxt *bp = netdev_priv(netdev); 15373 bool abort = false; 15374 15375 netdev_info(netdev, "PCI I/O error detected\n"); 15376 15377 rtnl_lock(); 15378 netif_device_detach(netdev); 15379 15380 bnxt_ulp_stop(bp); 15381 15382 if (test_and_set_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 15383 netdev_err(bp->dev, "Firmware reset already in progress\n"); 15384 abort = true; 15385 } 15386 15387 if (abort || state == pci_channel_io_perm_failure) { 15388 rtnl_unlock(); 15389 return PCI_ERS_RESULT_DISCONNECT; 15390 } 15391 15392 /* Link is not reliable anymore if state is pci_channel_io_frozen 15393 * so we disable bus master to prevent any potential bad DMAs before 15394 * freeing kernel memory. 15395 */ 15396 if (state == pci_channel_io_frozen) { 15397 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 15398 bnxt_fw_fatal_close(bp); 15399 } 15400 15401 if (netif_running(netdev)) 15402 __bnxt_close_nic(bp, true, true); 15403 15404 if (pci_is_enabled(pdev)) 15405 pci_disable_device(pdev); 15406 bnxt_free_ctx_mem(bp); 15407 rtnl_unlock(); 15408 15409 /* Request a slot slot reset. */ 15410 return PCI_ERS_RESULT_NEED_RESET; 15411 } 15412 15413 /** 15414 * bnxt_io_slot_reset - called after the pci bus has been reset. 15415 * @pdev: Pointer to PCI device 15416 * 15417 * Restart the card from scratch, as if from a cold-boot. 15418 * At this point, the card has exprienced a hard reset, 15419 * followed by fixups by BIOS, and has its config space 15420 * set up identically to what it was at cold boot. 15421 */ 15422 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 15423 { 15424 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 15425 struct net_device *netdev = pci_get_drvdata(pdev); 15426 struct bnxt *bp = netdev_priv(netdev); 15427 int retry = 0; 15428 int err = 0; 15429 int off; 15430 15431 netdev_info(bp->dev, "PCI Slot Reset\n"); 15432 15433 rtnl_lock(); 15434 15435 if (pci_enable_device(pdev)) { 15436 dev_err(&pdev->dev, 15437 "Cannot re-enable PCI device after reset.\n"); 15438 } else { 15439 pci_set_master(pdev); 15440 /* Upon fatal error, our device internal logic that latches to 15441 * BAR value is getting reset and will restore only upon 15442 * rewritting the BARs. 15443 * 15444 * As pci_restore_state() does not re-write the BARs if the 15445 * value is same as saved value earlier, driver needs to 15446 * write the BARs to 0 to force restore, in case of fatal error. 15447 */ 15448 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 15449 &bp->state)) { 15450 for (off = PCI_BASE_ADDRESS_0; 15451 off <= PCI_BASE_ADDRESS_5; off += 4) 15452 pci_write_config_dword(bp->pdev, off, 0); 15453 } 15454 pci_restore_state(pdev); 15455 pci_save_state(pdev); 15456 15457 bnxt_inv_fw_health_reg(bp); 15458 bnxt_try_map_fw_health_reg(bp); 15459 15460 /* In some PCIe AER scenarios, firmware may take up to 15461 * 10 seconds to become ready in the worst case. 15462 */ 15463 do { 15464 err = bnxt_try_recover_fw(bp); 15465 if (!err) 15466 break; 15467 retry++; 15468 } while (retry < BNXT_FW_SLOT_RESET_RETRY); 15469 15470 if (err) { 15471 dev_err(&pdev->dev, "Firmware not ready\n"); 15472 goto reset_exit; 15473 } 15474 15475 err = bnxt_hwrm_func_reset(bp); 15476 if (!err) 15477 result = PCI_ERS_RESULT_RECOVERED; 15478 15479 bnxt_ulp_irq_stop(bp); 15480 bnxt_clear_int_mode(bp); 15481 err = bnxt_init_int_mode(bp); 15482 bnxt_ulp_irq_restart(bp, err); 15483 } 15484 15485 reset_exit: 15486 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 15487 bnxt_clear_reservations(bp, true); 15488 rtnl_unlock(); 15489 15490 return result; 15491 } 15492 15493 /** 15494 * bnxt_io_resume - called when traffic can start flowing again. 15495 * @pdev: Pointer to PCI device 15496 * 15497 * This callback is called when the error recovery driver tells 15498 * us that its OK to resume normal operation. 15499 */ 15500 static void bnxt_io_resume(struct pci_dev *pdev) 15501 { 15502 struct net_device *netdev = pci_get_drvdata(pdev); 15503 struct bnxt *bp = netdev_priv(netdev); 15504 int err; 15505 15506 netdev_info(bp->dev, "PCI Slot Resume\n"); 15507 rtnl_lock(); 15508 15509 err = bnxt_hwrm_func_qcaps(bp); 15510 if (!err && netif_running(netdev)) 15511 err = bnxt_open(netdev); 15512 15513 bnxt_ulp_start(bp, err); 15514 if (!err) { 15515 bnxt_reenable_sriov(bp); 15516 netif_device_attach(netdev); 15517 } 15518 15519 rtnl_unlock(); 15520 } 15521 15522 static const struct pci_error_handlers bnxt_err_handler = { 15523 .error_detected = bnxt_io_error_detected, 15524 .slot_reset = bnxt_io_slot_reset, 15525 .resume = bnxt_io_resume 15526 }; 15527 15528 static struct pci_driver bnxt_pci_driver = { 15529 .name = DRV_MODULE_NAME, 15530 .id_table = bnxt_pci_tbl, 15531 .probe = bnxt_init_one, 15532 .remove = bnxt_remove_one, 15533 .shutdown = bnxt_shutdown, 15534 .driver.pm = BNXT_PM_OPS, 15535 .err_handler = &bnxt_err_handler, 15536 #if defined(CONFIG_BNXT_SRIOV) 15537 .sriov_configure = bnxt_sriov_configure, 15538 #endif 15539 }; 15540 15541 static int __init bnxt_init(void) 15542 { 15543 int err; 15544 15545 bnxt_debug_init(); 15546 err = pci_register_driver(&bnxt_pci_driver); 15547 if (err) { 15548 bnxt_debug_exit(); 15549 return err; 15550 } 15551 15552 return 0; 15553 } 15554 15555 static void __exit bnxt_exit(void) 15556 { 15557 pci_unregister_driver(&bnxt_pci_driver); 15558 if (bnxt_pf_wq) 15559 destroy_workqueue(bnxt_pf_wq); 15560 bnxt_debug_exit(); 15561 } 15562 15563 module_init(bnxt_init); 15564 module_exit(bnxt_exit); 15565