xref: /linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision 81ee0eb6c0fe34490ed92667538197d9295e899e)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/gro.h>
41 #include <net/ip.h>
42 #include <net/tcp.h>
43 #include <net/udp.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 #include <net/udp_tunnel.h>
47 #include <linux/workqueue.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/log2.h>
51 #include <linux/aer.h>
52 #include <linux/bitmap.h>
53 #include <linux/cpu_rmap.h>
54 #include <linux/cpumask.h>
55 #include <net/pkt_cls.h>
56 #include <linux/hwmon.h>
57 #include <linux/hwmon-sysfs.h>
58 #include <net/page_pool.h>
59 #include <linux/align.h>
60 
61 #include "bnxt_hsi.h"
62 #include "bnxt.h"
63 #include "bnxt_hwrm.h"
64 #include "bnxt_ulp.h"
65 #include "bnxt_sriov.h"
66 #include "bnxt_ethtool.h"
67 #include "bnxt_dcb.h"
68 #include "bnxt_xdp.h"
69 #include "bnxt_ptp.h"
70 #include "bnxt_vfr.h"
71 #include "bnxt_tc.h"
72 #include "bnxt_devlink.h"
73 #include "bnxt_debugfs.h"
74 
75 #define BNXT_TX_TIMEOUT		(5 * HZ)
76 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW | \
77 				 NETIF_MSG_TX_ERR)
78 
79 MODULE_LICENSE("GPL");
80 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
81 
82 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
83 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
84 #define BNXT_RX_COPY_THRESH 256
85 
86 #define BNXT_TX_PUSH_THRESH 164
87 
88 /* indexed by enum board_idx */
89 static const struct {
90 	char *name;
91 } board_info[] = {
92 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
93 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
94 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
95 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
96 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
97 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
98 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
99 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
100 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
101 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
102 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
103 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
104 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
105 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
106 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
107 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
108 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
109 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
110 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
111 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
112 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
113 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
114 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
115 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
116 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
117 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
118 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
119 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
120 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
121 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
122 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
123 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
124 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
125 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
126 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
127 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
128 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
129 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
130 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
131 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
132 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
133 	[NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
134 	[NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
135 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
136 	[NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
137 };
138 
139 static const struct pci_device_id bnxt_pci_tbl[] = {
140 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
141 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
142 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
143 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
144 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
145 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
146 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
147 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
148 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
149 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
150 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
151 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
152 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
153 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
154 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
155 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
157 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
158 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
159 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
160 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
161 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
162 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
163 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
164 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
165 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
166 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
167 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
168 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
169 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
170 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
171 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
172 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
173 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
174 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
175 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
176 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
177 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
178 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR },
179 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
180 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR },
181 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR },
182 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
183 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR },
184 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
185 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
186 #ifdef CONFIG_BNXT_SRIOV
187 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
188 	{ PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
189 	{ PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
190 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
191 	{ PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
192 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
193 	{ PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
194 	{ PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
195 	{ PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
196 	{ PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
197 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
198 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
199 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
200 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
201 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
202 	{ PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
203 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
204 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
205 	{ PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
206 	{ PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
207 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
208 #endif
209 	{ 0 }
210 };
211 
212 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
213 
214 static const u16 bnxt_vf_req_snif[] = {
215 	HWRM_FUNC_CFG,
216 	HWRM_FUNC_VF_CFG,
217 	HWRM_PORT_PHY_QCFG,
218 	HWRM_CFA_L2_FILTER_ALLOC,
219 };
220 
221 static const u16 bnxt_async_events_arr[] = {
222 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
223 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
224 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
225 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
226 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
227 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
228 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
229 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
230 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
231 	ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
232 	ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE,
233 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
234 	ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
235 	ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP,
236 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT,
237 	ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE,
238 };
239 
240 static struct workqueue_struct *bnxt_pf_wq;
241 
242 static bool bnxt_vf_pciid(enum board_idx idx)
243 {
244 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
245 		idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
246 		idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
247 		idx == NETXTREME_E_P5_VF_HV);
248 }
249 
250 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
251 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
252 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
253 
254 #define BNXT_CP_DB_IRQ_DIS(db)						\
255 		writel(DB_CP_IRQ_DIS_FLAGS, db)
256 
257 #define BNXT_DB_CQ(db, idx)						\
258 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
259 
260 #define BNXT_DB_NQ_P5(db, idx)						\
261 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx),	\
262 		    (db)->doorbell)
263 
264 #define BNXT_DB_CQ_ARM(db, idx)						\
265 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
266 
267 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
268 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx),\
269 		    (db)->doorbell)
270 
271 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
272 {
273 	if (bp->flags & BNXT_FLAG_CHIP_P5)
274 		BNXT_DB_NQ_P5(db, idx);
275 	else
276 		BNXT_DB_CQ(db, idx);
277 }
278 
279 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
280 {
281 	if (bp->flags & BNXT_FLAG_CHIP_P5)
282 		BNXT_DB_NQ_ARM_P5(db, idx);
283 	else
284 		BNXT_DB_CQ_ARM(db, idx);
285 }
286 
287 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
288 {
289 	if (bp->flags & BNXT_FLAG_CHIP_P5)
290 		bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL |
291 			    RING_CMP(idx), db->doorbell);
292 	else
293 		BNXT_DB_CQ(db, idx);
294 }
295 
296 const u16 bnxt_lhint_arr[] = {
297 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
298 	TX_BD_FLAGS_LHINT_512_TO_1023,
299 	TX_BD_FLAGS_LHINT_1024_TO_2047,
300 	TX_BD_FLAGS_LHINT_1024_TO_2047,
301 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
302 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
303 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
304 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
305 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
306 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
307 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
308 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
309 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
310 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
311 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
312 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
313 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
314 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
315 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
316 };
317 
318 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
319 {
320 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
321 
322 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
323 		return 0;
324 
325 	return md_dst->u.port_info.port_id;
326 }
327 
328 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
329 			     u16 prod)
330 {
331 	bnxt_db_write(bp, &txr->tx_db, prod);
332 	txr->kick_pending = 0;
333 }
334 
335 static bool bnxt_txr_netif_try_stop_queue(struct bnxt *bp,
336 					  struct bnxt_tx_ring_info *txr,
337 					  struct netdev_queue *txq)
338 {
339 	netif_tx_stop_queue(txq);
340 
341 	/* netif_tx_stop_queue() must be done before checking
342 	 * tx index in bnxt_tx_avail() below, because in
343 	 * bnxt_tx_int(), we update tx index before checking for
344 	 * netif_tx_queue_stopped().
345 	 */
346 	smp_mb();
347 	if (bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh) {
348 		netif_tx_wake_queue(txq);
349 		return false;
350 	}
351 
352 	return true;
353 }
354 
355 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
356 {
357 	struct bnxt *bp = netdev_priv(dev);
358 	struct tx_bd *txbd;
359 	struct tx_bd_ext *txbd1;
360 	struct netdev_queue *txq;
361 	int i;
362 	dma_addr_t mapping;
363 	unsigned int length, pad = 0;
364 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
365 	u16 prod, last_frag;
366 	struct pci_dev *pdev = bp->pdev;
367 	struct bnxt_tx_ring_info *txr;
368 	struct bnxt_sw_tx_bd *tx_buf;
369 	__le32 lflags = 0;
370 
371 	i = skb_get_queue_mapping(skb);
372 	if (unlikely(i >= bp->tx_nr_rings)) {
373 		dev_kfree_skb_any(skb);
374 		dev_core_stats_tx_dropped_inc(dev);
375 		return NETDEV_TX_OK;
376 	}
377 
378 	txq = netdev_get_tx_queue(dev, i);
379 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
380 	prod = txr->tx_prod;
381 
382 	free_size = bnxt_tx_avail(bp, txr);
383 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
384 		/* We must have raced with NAPI cleanup */
385 		if (net_ratelimit() && txr->kick_pending)
386 			netif_warn(bp, tx_err, dev,
387 				   "bnxt: ring busy w/ flush pending!\n");
388 		if (bnxt_txr_netif_try_stop_queue(bp, txr, txq))
389 			return NETDEV_TX_BUSY;
390 	}
391 
392 	length = skb->len;
393 	len = skb_headlen(skb);
394 	last_frag = skb_shinfo(skb)->nr_frags;
395 
396 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
397 
398 	txbd->tx_bd_opaque = prod;
399 
400 	tx_buf = &txr->tx_buf_ring[prod];
401 	tx_buf->skb = skb;
402 	tx_buf->nr_frags = last_frag;
403 
404 	vlan_tag_flags = 0;
405 	cfa_action = bnxt_xmit_get_cfa_action(skb);
406 	if (skb_vlan_tag_present(skb)) {
407 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
408 				 skb_vlan_tag_get(skb);
409 		/* Currently supports 8021Q, 8021AD vlan offloads
410 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
411 		 */
412 		if (skb->vlan_proto == htons(ETH_P_8021Q))
413 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
414 	}
415 
416 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
417 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
418 
419 		if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) &&
420 		    atomic_dec_if_positive(&ptp->tx_avail) >= 0) {
421 			if (!bnxt_ptp_parse(skb, &ptp->tx_seqid,
422 					    &ptp->tx_hdr_off)) {
423 				if (vlan_tag_flags)
424 					ptp->tx_hdr_off += VLAN_HLEN;
425 				lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
426 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
427 			} else {
428 				atomic_inc(&bp->ptp_cfg->tx_avail);
429 			}
430 		}
431 	}
432 
433 	if (unlikely(skb->no_fcs))
434 		lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
435 
436 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh &&
437 	    !lflags) {
438 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
439 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
440 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
441 		void __iomem *db = txr->tx_db.doorbell;
442 		void *pdata = tx_push_buf->data;
443 		u64 *end;
444 		int j, push_len;
445 
446 		/* Set COAL_NOW to be ready quickly for the next push */
447 		tx_push->tx_bd_len_flags_type =
448 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
449 					TX_BD_TYPE_LONG_TX_BD |
450 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
451 					TX_BD_FLAGS_COAL_NOW |
452 					TX_BD_FLAGS_PACKET_END |
453 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
454 
455 		if (skb->ip_summed == CHECKSUM_PARTIAL)
456 			tx_push1->tx_bd_hsize_lflags =
457 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
458 		else
459 			tx_push1->tx_bd_hsize_lflags = 0;
460 
461 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
462 		tx_push1->tx_bd_cfa_action =
463 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
464 
465 		end = pdata + length;
466 		end = PTR_ALIGN(end, 8) - 1;
467 		*end = 0;
468 
469 		skb_copy_from_linear_data(skb, pdata, len);
470 		pdata += len;
471 		for (j = 0; j < last_frag; j++) {
472 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
473 			void *fptr;
474 
475 			fptr = skb_frag_address_safe(frag);
476 			if (!fptr)
477 				goto normal_tx;
478 
479 			memcpy(pdata, fptr, skb_frag_size(frag));
480 			pdata += skb_frag_size(frag);
481 		}
482 
483 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
484 		txbd->tx_bd_haddr = txr->data_mapping;
485 		prod = NEXT_TX(prod);
486 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
487 		memcpy(txbd, tx_push1, sizeof(*txbd));
488 		prod = NEXT_TX(prod);
489 		tx_push->doorbell =
490 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
491 		txr->tx_prod = prod;
492 
493 		tx_buf->is_push = 1;
494 		netdev_tx_sent_queue(txq, skb->len);
495 		wmb();	/* Sync is_push and byte queue before pushing data */
496 
497 		push_len = (length + sizeof(*tx_push) + 7) / 8;
498 		if (push_len > 16) {
499 			__iowrite64_copy(db, tx_push_buf, 16);
500 			__iowrite32_copy(db + 4, tx_push_buf + 1,
501 					 (push_len - 16) << 1);
502 		} else {
503 			__iowrite64_copy(db, tx_push_buf, push_len);
504 		}
505 
506 		goto tx_done;
507 	}
508 
509 normal_tx:
510 	if (length < BNXT_MIN_PKT_SIZE) {
511 		pad = BNXT_MIN_PKT_SIZE - length;
512 		if (skb_pad(skb, pad))
513 			/* SKB already freed. */
514 			goto tx_kick_pending;
515 		length = BNXT_MIN_PKT_SIZE;
516 	}
517 
518 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
519 
520 	if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
521 		goto tx_free;
522 
523 	dma_unmap_addr_set(tx_buf, mapping, mapping);
524 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
525 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
526 
527 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
528 
529 	prod = NEXT_TX(prod);
530 	txbd1 = (struct tx_bd_ext *)
531 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
532 
533 	txbd1->tx_bd_hsize_lflags = lflags;
534 	if (skb_is_gso(skb)) {
535 		u32 hdr_len;
536 
537 		if (skb->encapsulation)
538 			hdr_len = skb_inner_network_offset(skb) +
539 				skb_inner_network_header_len(skb) +
540 				inner_tcp_hdrlen(skb);
541 		else
542 			hdr_len = skb_transport_offset(skb) +
543 				tcp_hdrlen(skb);
544 
545 		txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
546 					TX_BD_FLAGS_T_IPID |
547 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
548 		length = skb_shinfo(skb)->gso_size;
549 		txbd1->tx_bd_mss = cpu_to_le32(length);
550 		length += hdr_len;
551 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
552 		txbd1->tx_bd_hsize_lflags |=
553 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
554 		txbd1->tx_bd_mss = 0;
555 	}
556 
557 	length >>= 9;
558 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
559 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
560 				     skb->len);
561 		i = 0;
562 		goto tx_dma_error;
563 	}
564 	flags |= bnxt_lhint_arr[length];
565 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
566 
567 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
568 	txbd1->tx_bd_cfa_action =
569 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
570 	for (i = 0; i < last_frag; i++) {
571 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
572 
573 		prod = NEXT_TX(prod);
574 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
575 
576 		len = skb_frag_size(frag);
577 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
578 					   DMA_TO_DEVICE);
579 
580 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
581 			goto tx_dma_error;
582 
583 		tx_buf = &txr->tx_buf_ring[prod];
584 		dma_unmap_addr_set(tx_buf, mapping, mapping);
585 
586 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
587 
588 		flags = len << TX_BD_LEN_SHIFT;
589 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
590 	}
591 
592 	flags &= ~TX_BD_LEN;
593 	txbd->tx_bd_len_flags_type =
594 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
595 			    TX_BD_FLAGS_PACKET_END);
596 
597 	netdev_tx_sent_queue(txq, skb->len);
598 
599 	skb_tx_timestamp(skb);
600 
601 	/* Sync BD data before updating doorbell */
602 	wmb();
603 
604 	prod = NEXT_TX(prod);
605 	txr->tx_prod = prod;
606 
607 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
608 		bnxt_txr_db_kick(bp, txr, prod);
609 	else
610 		txr->kick_pending = 1;
611 
612 tx_done:
613 
614 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
615 		if (netdev_xmit_more() && !tx_buf->is_push)
616 			bnxt_txr_db_kick(bp, txr, prod);
617 
618 		bnxt_txr_netif_try_stop_queue(bp, txr, txq);
619 	}
620 	return NETDEV_TX_OK;
621 
622 tx_dma_error:
623 	if (BNXT_TX_PTP_IS_SET(lflags))
624 		atomic_inc(&bp->ptp_cfg->tx_avail);
625 
626 	last_frag = i;
627 
628 	/* start back at beginning and unmap skb */
629 	prod = txr->tx_prod;
630 	tx_buf = &txr->tx_buf_ring[prod];
631 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
632 			 skb_headlen(skb), DMA_TO_DEVICE);
633 	prod = NEXT_TX(prod);
634 
635 	/* unmap remaining mapped pages */
636 	for (i = 0; i < last_frag; i++) {
637 		prod = NEXT_TX(prod);
638 		tx_buf = &txr->tx_buf_ring[prod];
639 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
640 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
641 			       DMA_TO_DEVICE);
642 	}
643 
644 tx_free:
645 	dev_kfree_skb_any(skb);
646 tx_kick_pending:
647 	if (txr->kick_pending)
648 		bnxt_txr_db_kick(bp, txr, txr->tx_prod);
649 	txr->tx_buf_ring[txr->tx_prod].skb = NULL;
650 	dev_core_stats_tx_dropped_inc(dev);
651 	return NETDEV_TX_OK;
652 }
653 
654 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
655 {
656 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
657 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
658 	u16 cons = txr->tx_cons;
659 	struct pci_dev *pdev = bp->pdev;
660 	int i;
661 	unsigned int tx_bytes = 0;
662 
663 	for (i = 0; i < nr_pkts; i++) {
664 		struct bnxt_sw_tx_bd *tx_buf;
665 		bool compl_deferred = false;
666 		struct sk_buff *skb;
667 		int j, last;
668 
669 		tx_buf = &txr->tx_buf_ring[cons];
670 		cons = NEXT_TX(cons);
671 		skb = tx_buf->skb;
672 		tx_buf->skb = NULL;
673 
674 		if (tx_buf->is_push) {
675 			tx_buf->is_push = 0;
676 			goto next_tx_int;
677 		}
678 
679 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
680 				 skb_headlen(skb), DMA_TO_DEVICE);
681 		last = tx_buf->nr_frags;
682 
683 		for (j = 0; j < last; j++) {
684 			cons = NEXT_TX(cons);
685 			tx_buf = &txr->tx_buf_ring[cons];
686 			dma_unmap_page(
687 				&pdev->dev,
688 				dma_unmap_addr(tx_buf, mapping),
689 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
690 				DMA_TO_DEVICE);
691 		}
692 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
693 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
694 				if (!bnxt_get_tx_ts_p5(bp, skb))
695 					compl_deferred = true;
696 				else
697 					atomic_inc(&bp->ptp_cfg->tx_avail);
698 			}
699 		}
700 
701 next_tx_int:
702 		cons = NEXT_TX(cons);
703 
704 		tx_bytes += skb->len;
705 		if (!compl_deferred)
706 			dev_kfree_skb_any(skb);
707 	}
708 
709 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
710 	txr->tx_cons = cons;
711 
712 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
713 	 * before checking for netif_tx_queue_stopped().  Without the
714 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
715 	 * will miss it and cause the queue to be stopped forever.
716 	 */
717 	smp_mb();
718 
719 	if (unlikely(netif_tx_queue_stopped(txq)) &&
720 	    bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh &&
721 	    READ_ONCE(txr->dev_state) != BNXT_DEV_STATE_CLOSING)
722 		netif_tx_wake_queue(txq);
723 }
724 
725 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
726 					 struct bnxt_rx_ring_info *rxr,
727 					 gfp_t gfp)
728 {
729 	struct device *dev = &bp->pdev->dev;
730 	struct page *page;
731 
732 	page = page_pool_dev_alloc_pages(rxr->page_pool);
733 	if (!page)
734 		return NULL;
735 
736 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
737 				      DMA_ATTR_WEAK_ORDERING);
738 	if (dma_mapping_error(dev, *mapping)) {
739 		page_pool_recycle_direct(rxr->page_pool, page);
740 		return NULL;
741 	}
742 	return page;
743 }
744 
745 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping,
746 				       gfp_t gfp)
747 {
748 	u8 *data;
749 	struct pci_dev *pdev = bp->pdev;
750 
751 	if (gfp == GFP_ATOMIC)
752 		data = napi_alloc_frag(bp->rx_buf_size);
753 	else
754 		data = netdev_alloc_frag(bp->rx_buf_size);
755 	if (!data)
756 		return NULL;
757 
758 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
759 					bp->rx_buf_use_size, bp->rx_dir,
760 					DMA_ATTR_WEAK_ORDERING);
761 
762 	if (dma_mapping_error(&pdev->dev, *mapping)) {
763 		skb_free_frag(data);
764 		data = NULL;
765 	}
766 	return data;
767 }
768 
769 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
770 		       u16 prod, gfp_t gfp)
771 {
772 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
773 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
774 	dma_addr_t mapping;
775 
776 	if (BNXT_RX_PAGE_MODE(bp)) {
777 		struct page *page =
778 			__bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
779 
780 		if (!page)
781 			return -ENOMEM;
782 
783 		mapping += bp->rx_dma_offset;
784 		rx_buf->data = page;
785 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
786 	} else {
787 		u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp);
788 
789 		if (!data)
790 			return -ENOMEM;
791 
792 		rx_buf->data = data;
793 		rx_buf->data_ptr = data + bp->rx_offset;
794 	}
795 	rx_buf->mapping = mapping;
796 
797 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
798 	return 0;
799 }
800 
801 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
802 {
803 	u16 prod = rxr->rx_prod;
804 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
805 	struct rx_bd *cons_bd, *prod_bd;
806 
807 	prod_rx_buf = &rxr->rx_buf_ring[prod];
808 	cons_rx_buf = &rxr->rx_buf_ring[cons];
809 
810 	prod_rx_buf->data = data;
811 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
812 
813 	prod_rx_buf->mapping = cons_rx_buf->mapping;
814 
815 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
816 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
817 
818 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
819 }
820 
821 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
822 {
823 	u16 next, max = rxr->rx_agg_bmap_size;
824 
825 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
826 	if (next >= max)
827 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
828 	return next;
829 }
830 
831 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
832 				     struct bnxt_rx_ring_info *rxr,
833 				     u16 prod, gfp_t gfp)
834 {
835 	struct rx_bd *rxbd =
836 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
837 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
838 	struct pci_dev *pdev = bp->pdev;
839 	struct page *page;
840 	dma_addr_t mapping;
841 	u16 sw_prod = rxr->rx_sw_agg_prod;
842 	unsigned int offset = 0;
843 
844 	if (BNXT_RX_PAGE_MODE(bp)) {
845 		page = __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
846 
847 		if (!page)
848 			return -ENOMEM;
849 
850 	} else {
851 		if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
852 			page = rxr->rx_page;
853 			if (!page) {
854 				page = alloc_page(gfp);
855 				if (!page)
856 					return -ENOMEM;
857 				rxr->rx_page = page;
858 				rxr->rx_page_offset = 0;
859 			}
860 			offset = rxr->rx_page_offset;
861 			rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
862 			if (rxr->rx_page_offset == PAGE_SIZE)
863 				rxr->rx_page = NULL;
864 			else
865 				get_page(page);
866 		} else {
867 			page = alloc_page(gfp);
868 			if (!page)
869 				return -ENOMEM;
870 		}
871 
872 		mapping = dma_map_page_attrs(&pdev->dev, page, offset,
873 					     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
874 					     DMA_ATTR_WEAK_ORDERING);
875 		if (dma_mapping_error(&pdev->dev, mapping)) {
876 			__free_page(page);
877 			return -EIO;
878 		}
879 	}
880 
881 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
882 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
883 
884 	__set_bit(sw_prod, rxr->rx_agg_bmap);
885 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
886 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
887 
888 	rx_agg_buf->page = page;
889 	rx_agg_buf->offset = offset;
890 	rx_agg_buf->mapping = mapping;
891 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
892 	rxbd->rx_bd_opaque = sw_prod;
893 	return 0;
894 }
895 
896 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
897 				       struct bnxt_cp_ring_info *cpr,
898 				       u16 cp_cons, u16 curr)
899 {
900 	struct rx_agg_cmp *agg;
901 
902 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
903 	agg = (struct rx_agg_cmp *)
904 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
905 	return agg;
906 }
907 
908 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
909 					      struct bnxt_rx_ring_info *rxr,
910 					      u16 agg_id, u16 curr)
911 {
912 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
913 
914 	return &tpa_info->agg_arr[curr];
915 }
916 
917 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
918 				   u16 start, u32 agg_bufs, bool tpa)
919 {
920 	struct bnxt_napi *bnapi = cpr->bnapi;
921 	struct bnxt *bp = bnapi->bp;
922 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
923 	u16 prod = rxr->rx_agg_prod;
924 	u16 sw_prod = rxr->rx_sw_agg_prod;
925 	bool p5_tpa = false;
926 	u32 i;
927 
928 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
929 		p5_tpa = true;
930 
931 	for (i = 0; i < agg_bufs; i++) {
932 		u16 cons;
933 		struct rx_agg_cmp *agg;
934 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
935 		struct rx_bd *prod_bd;
936 		struct page *page;
937 
938 		if (p5_tpa)
939 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
940 		else
941 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
942 		cons = agg->rx_agg_cmp_opaque;
943 		__clear_bit(cons, rxr->rx_agg_bmap);
944 
945 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
946 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
947 
948 		__set_bit(sw_prod, rxr->rx_agg_bmap);
949 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
950 		cons_rx_buf = &rxr->rx_agg_ring[cons];
951 
952 		/* It is possible for sw_prod to be equal to cons, so
953 		 * set cons_rx_buf->page to NULL first.
954 		 */
955 		page = cons_rx_buf->page;
956 		cons_rx_buf->page = NULL;
957 		prod_rx_buf->page = page;
958 		prod_rx_buf->offset = cons_rx_buf->offset;
959 
960 		prod_rx_buf->mapping = cons_rx_buf->mapping;
961 
962 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
963 
964 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
965 		prod_bd->rx_bd_opaque = sw_prod;
966 
967 		prod = NEXT_RX_AGG(prod);
968 		sw_prod = NEXT_RX_AGG(sw_prod);
969 	}
970 	rxr->rx_agg_prod = prod;
971 	rxr->rx_sw_agg_prod = sw_prod;
972 }
973 
974 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp,
975 					      struct bnxt_rx_ring_info *rxr,
976 					      u16 cons, void *data, u8 *data_ptr,
977 					      dma_addr_t dma_addr,
978 					      unsigned int offset_and_len)
979 {
980 	unsigned int len = offset_and_len & 0xffff;
981 	struct page *page = data;
982 	u16 prod = rxr->rx_prod;
983 	struct sk_buff *skb;
984 	int err;
985 
986 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
987 	if (unlikely(err)) {
988 		bnxt_reuse_rx_data(rxr, cons, data);
989 		return NULL;
990 	}
991 	dma_addr -= bp->rx_dma_offset;
992 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
993 			     DMA_ATTR_WEAK_ORDERING);
994 	skb = build_skb(page_address(page), BNXT_PAGE_MODE_BUF_SIZE +
995 					    bp->rx_dma_offset);
996 	if (!skb) {
997 		__free_page(page);
998 		return NULL;
999 	}
1000 	skb_mark_for_recycle(skb);
1001 	skb_reserve(skb, bp->rx_dma_offset);
1002 	__skb_put(skb, len);
1003 
1004 	return skb;
1005 }
1006 
1007 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
1008 					struct bnxt_rx_ring_info *rxr,
1009 					u16 cons, void *data, u8 *data_ptr,
1010 					dma_addr_t dma_addr,
1011 					unsigned int offset_and_len)
1012 {
1013 	unsigned int payload = offset_and_len >> 16;
1014 	unsigned int len = offset_and_len & 0xffff;
1015 	skb_frag_t *frag;
1016 	struct page *page = data;
1017 	u16 prod = rxr->rx_prod;
1018 	struct sk_buff *skb;
1019 	int off, err;
1020 
1021 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1022 	if (unlikely(err)) {
1023 		bnxt_reuse_rx_data(rxr, cons, data);
1024 		return NULL;
1025 	}
1026 	dma_addr -= bp->rx_dma_offset;
1027 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
1028 			     DMA_ATTR_WEAK_ORDERING);
1029 
1030 	if (unlikely(!payload))
1031 		payload = eth_get_headlen(bp->dev, data_ptr, len);
1032 
1033 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
1034 	if (!skb) {
1035 		__free_page(page);
1036 		return NULL;
1037 	}
1038 
1039 	skb_mark_for_recycle(skb);
1040 	off = (void *)data_ptr - page_address(page);
1041 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
1042 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
1043 	       payload + NET_IP_ALIGN);
1044 
1045 	frag = &skb_shinfo(skb)->frags[0];
1046 	skb_frag_size_sub(frag, payload);
1047 	skb_frag_off_add(frag, payload);
1048 	skb->data_len -= payload;
1049 	skb->tail += payload;
1050 
1051 	return skb;
1052 }
1053 
1054 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
1055 				   struct bnxt_rx_ring_info *rxr, u16 cons,
1056 				   void *data, u8 *data_ptr,
1057 				   dma_addr_t dma_addr,
1058 				   unsigned int offset_and_len)
1059 {
1060 	u16 prod = rxr->rx_prod;
1061 	struct sk_buff *skb;
1062 	int err;
1063 
1064 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1065 	if (unlikely(err)) {
1066 		bnxt_reuse_rx_data(rxr, cons, data);
1067 		return NULL;
1068 	}
1069 
1070 	skb = build_skb(data, bp->rx_buf_size);
1071 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1072 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1073 	if (!skb) {
1074 		skb_free_frag(data);
1075 		return NULL;
1076 	}
1077 
1078 	skb_reserve(skb, bp->rx_offset);
1079 	skb_put(skb, offset_and_len & 0xffff);
1080 	return skb;
1081 }
1082 
1083 static u32 __bnxt_rx_agg_pages(struct bnxt *bp,
1084 			       struct bnxt_cp_ring_info *cpr,
1085 			       struct skb_shared_info *shinfo,
1086 			       u16 idx, u32 agg_bufs, bool tpa,
1087 			       struct xdp_buff *xdp)
1088 {
1089 	struct bnxt_napi *bnapi = cpr->bnapi;
1090 	struct pci_dev *pdev = bp->pdev;
1091 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1092 	u16 prod = rxr->rx_agg_prod;
1093 	u32 i, total_frag_len = 0;
1094 	bool p5_tpa = false;
1095 
1096 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
1097 		p5_tpa = true;
1098 
1099 	for (i = 0; i < agg_bufs; i++) {
1100 		skb_frag_t *frag = &shinfo->frags[i];
1101 		u16 cons, frag_len;
1102 		struct rx_agg_cmp *agg;
1103 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1104 		struct page *page;
1105 		dma_addr_t mapping;
1106 
1107 		if (p5_tpa)
1108 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1109 		else
1110 			agg = bnxt_get_agg(bp, cpr, idx, i);
1111 		cons = agg->rx_agg_cmp_opaque;
1112 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1113 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1114 
1115 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1116 		skb_frag_off_set(frag, cons_rx_buf->offset);
1117 		skb_frag_size_set(frag, frag_len);
1118 		__skb_frag_set_page(frag, cons_rx_buf->page);
1119 		shinfo->nr_frags = i + 1;
1120 		__clear_bit(cons, rxr->rx_agg_bmap);
1121 
1122 		/* It is possible for bnxt_alloc_rx_page() to allocate
1123 		 * a sw_prod index that equals the cons index, so we
1124 		 * need to clear the cons entry now.
1125 		 */
1126 		mapping = cons_rx_buf->mapping;
1127 		page = cons_rx_buf->page;
1128 		cons_rx_buf->page = NULL;
1129 
1130 		if (xdp && page_is_pfmemalloc(page))
1131 			xdp_buff_set_frag_pfmemalloc(xdp);
1132 
1133 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1134 			unsigned int nr_frags;
1135 
1136 			nr_frags = --shinfo->nr_frags;
1137 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
1138 			cons_rx_buf->page = page;
1139 
1140 			/* Update prod since possibly some pages have been
1141 			 * allocated already.
1142 			 */
1143 			rxr->rx_agg_prod = prod;
1144 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1145 			return 0;
1146 		}
1147 
1148 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1149 				     bp->rx_dir,
1150 				     DMA_ATTR_WEAK_ORDERING);
1151 
1152 		total_frag_len += frag_len;
1153 		prod = NEXT_RX_AGG(prod);
1154 	}
1155 	rxr->rx_agg_prod = prod;
1156 	return total_frag_len;
1157 }
1158 
1159 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp,
1160 					     struct bnxt_cp_ring_info *cpr,
1161 					     struct sk_buff *skb, u16 idx,
1162 					     u32 agg_bufs, bool tpa)
1163 {
1164 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1165 	u32 total_frag_len = 0;
1166 
1167 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx,
1168 					     agg_bufs, tpa, NULL);
1169 	if (!total_frag_len) {
1170 		dev_kfree_skb(skb);
1171 		return NULL;
1172 	}
1173 
1174 	skb->data_len += total_frag_len;
1175 	skb->len += total_frag_len;
1176 	skb->truesize += PAGE_SIZE * agg_bufs;
1177 	return skb;
1178 }
1179 
1180 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp,
1181 				 struct bnxt_cp_ring_info *cpr,
1182 				 struct xdp_buff *xdp, u16 idx,
1183 				 u32 agg_bufs, bool tpa)
1184 {
1185 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp);
1186 	u32 total_frag_len = 0;
1187 
1188 	if (!xdp_buff_has_frags(xdp))
1189 		shinfo->nr_frags = 0;
1190 
1191 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo,
1192 					     idx, agg_bufs, tpa, xdp);
1193 	if (total_frag_len) {
1194 		xdp_buff_set_frags_flag(xdp);
1195 		shinfo->nr_frags = agg_bufs;
1196 		shinfo->xdp_frags_size = total_frag_len;
1197 	}
1198 	return total_frag_len;
1199 }
1200 
1201 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1202 			       u8 agg_bufs, u32 *raw_cons)
1203 {
1204 	u16 last;
1205 	struct rx_agg_cmp *agg;
1206 
1207 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1208 	last = RING_CMP(*raw_cons);
1209 	agg = (struct rx_agg_cmp *)
1210 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1211 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1212 }
1213 
1214 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1215 					    unsigned int len,
1216 					    dma_addr_t mapping)
1217 {
1218 	struct bnxt *bp = bnapi->bp;
1219 	struct pci_dev *pdev = bp->pdev;
1220 	struct sk_buff *skb;
1221 
1222 	skb = napi_alloc_skb(&bnapi->napi, len);
1223 	if (!skb)
1224 		return NULL;
1225 
1226 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1227 				bp->rx_dir);
1228 
1229 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1230 	       len + NET_IP_ALIGN);
1231 
1232 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1233 				   bp->rx_dir);
1234 
1235 	skb_put(skb, len);
1236 	return skb;
1237 }
1238 
1239 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1240 			   u32 *raw_cons, void *cmp)
1241 {
1242 	struct rx_cmp *rxcmp = cmp;
1243 	u32 tmp_raw_cons = *raw_cons;
1244 	u8 cmp_type, agg_bufs = 0;
1245 
1246 	cmp_type = RX_CMP_TYPE(rxcmp);
1247 
1248 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1249 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1250 			    RX_CMP_AGG_BUFS) >>
1251 			   RX_CMP_AGG_BUFS_SHIFT;
1252 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1253 		struct rx_tpa_end_cmp *tpa_end = cmp;
1254 
1255 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1256 			return 0;
1257 
1258 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1259 	}
1260 
1261 	if (agg_bufs) {
1262 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1263 			return -EBUSY;
1264 	}
1265 	*raw_cons = tmp_raw_cons;
1266 	return 0;
1267 }
1268 
1269 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
1270 {
1271 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
1272 		return;
1273 
1274 	if (BNXT_PF(bp))
1275 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
1276 	else
1277 		schedule_delayed_work(&bp->fw_reset_task, delay);
1278 }
1279 
1280 static void bnxt_queue_sp_work(struct bnxt *bp)
1281 {
1282 	if (BNXT_PF(bp))
1283 		queue_work(bnxt_pf_wq, &bp->sp_task);
1284 	else
1285 		schedule_work(&bp->sp_task);
1286 }
1287 
1288 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1289 {
1290 	if (!rxr->bnapi->in_reset) {
1291 		rxr->bnapi->in_reset = true;
1292 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1293 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1294 		else
1295 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
1296 		bnxt_queue_sp_work(bp);
1297 	}
1298 	rxr->rx_next_cons = 0xffff;
1299 }
1300 
1301 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1302 {
1303 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1304 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1305 
1306 	if (test_bit(idx, map->agg_idx_bmap))
1307 		idx = find_first_zero_bit(map->agg_idx_bmap,
1308 					  BNXT_AGG_IDX_BMAP_SIZE);
1309 	__set_bit(idx, map->agg_idx_bmap);
1310 	map->agg_id_tbl[agg_id] = idx;
1311 	return idx;
1312 }
1313 
1314 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1315 {
1316 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1317 
1318 	__clear_bit(idx, map->agg_idx_bmap);
1319 }
1320 
1321 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1322 {
1323 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1324 
1325 	return map->agg_id_tbl[agg_id];
1326 }
1327 
1328 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1329 			   struct rx_tpa_start_cmp *tpa_start,
1330 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1331 {
1332 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1333 	struct bnxt_tpa_info *tpa_info;
1334 	u16 cons, prod, agg_id;
1335 	struct rx_bd *prod_bd;
1336 	dma_addr_t mapping;
1337 
1338 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1339 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1340 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1341 	} else {
1342 		agg_id = TPA_START_AGG_ID(tpa_start);
1343 	}
1344 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1345 	prod = rxr->rx_prod;
1346 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1347 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1348 	tpa_info = &rxr->rx_tpa[agg_id];
1349 
1350 	if (unlikely(cons != rxr->rx_next_cons ||
1351 		     TPA_START_ERROR(tpa_start))) {
1352 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1353 			    cons, rxr->rx_next_cons,
1354 			    TPA_START_ERROR_CODE(tpa_start1));
1355 		bnxt_sched_reset(bp, rxr);
1356 		return;
1357 	}
1358 	/* Store cfa_code in tpa_info to use in tpa_end
1359 	 * completion processing.
1360 	 */
1361 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1362 	prod_rx_buf->data = tpa_info->data;
1363 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1364 
1365 	mapping = tpa_info->mapping;
1366 	prod_rx_buf->mapping = mapping;
1367 
1368 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1369 
1370 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1371 
1372 	tpa_info->data = cons_rx_buf->data;
1373 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1374 	cons_rx_buf->data = NULL;
1375 	tpa_info->mapping = cons_rx_buf->mapping;
1376 
1377 	tpa_info->len =
1378 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1379 				RX_TPA_START_CMP_LEN_SHIFT;
1380 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1381 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1382 
1383 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1384 		tpa_info->gso_type = SKB_GSO_TCPV4;
1385 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1386 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1387 			tpa_info->gso_type = SKB_GSO_TCPV6;
1388 		tpa_info->rss_hash =
1389 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1390 	} else {
1391 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1392 		tpa_info->gso_type = 0;
1393 		netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1394 	}
1395 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1396 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1397 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1398 	tpa_info->agg_count = 0;
1399 
1400 	rxr->rx_prod = NEXT_RX(prod);
1401 	cons = NEXT_RX(cons);
1402 	rxr->rx_next_cons = NEXT_RX(cons);
1403 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1404 
1405 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1406 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1407 	cons_rx_buf->data = NULL;
1408 }
1409 
1410 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1411 {
1412 	if (agg_bufs)
1413 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1414 }
1415 
1416 #ifdef CONFIG_INET
1417 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1418 {
1419 	struct udphdr *uh = NULL;
1420 
1421 	if (ip_proto == htons(ETH_P_IP)) {
1422 		struct iphdr *iph = (struct iphdr *)skb->data;
1423 
1424 		if (iph->protocol == IPPROTO_UDP)
1425 			uh = (struct udphdr *)(iph + 1);
1426 	} else {
1427 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1428 
1429 		if (iph->nexthdr == IPPROTO_UDP)
1430 			uh = (struct udphdr *)(iph + 1);
1431 	}
1432 	if (uh) {
1433 		if (uh->check)
1434 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1435 		else
1436 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1437 	}
1438 }
1439 #endif
1440 
1441 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1442 					   int payload_off, int tcp_ts,
1443 					   struct sk_buff *skb)
1444 {
1445 #ifdef CONFIG_INET
1446 	struct tcphdr *th;
1447 	int len, nw_off;
1448 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1449 	u32 hdr_info = tpa_info->hdr_info;
1450 	bool loopback = false;
1451 
1452 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1453 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1454 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1455 
1456 	/* If the packet is an internal loopback packet, the offsets will
1457 	 * have an extra 4 bytes.
1458 	 */
1459 	if (inner_mac_off == 4) {
1460 		loopback = true;
1461 	} else if (inner_mac_off > 4) {
1462 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1463 					    ETH_HLEN - 2));
1464 
1465 		/* We only support inner iPv4/ipv6.  If we don't see the
1466 		 * correct protocol ID, it must be a loopback packet where
1467 		 * the offsets are off by 4.
1468 		 */
1469 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1470 			loopback = true;
1471 	}
1472 	if (loopback) {
1473 		/* internal loopback packet, subtract all offsets by 4 */
1474 		inner_ip_off -= 4;
1475 		inner_mac_off -= 4;
1476 		outer_ip_off -= 4;
1477 	}
1478 
1479 	nw_off = inner_ip_off - ETH_HLEN;
1480 	skb_set_network_header(skb, nw_off);
1481 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1482 		struct ipv6hdr *iph = ipv6_hdr(skb);
1483 
1484 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1485 		len = skb->len - skb_transport_offset(skb);
1486 		th = tcp_hdr(skb);
1487 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1488 	} else {
1489 		struct iphdr *iph = ip_hdr(skb);
1490 
1491 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1492 		len = skb->len - skb_transport_offset(skb);
1493 		th = tcp_hdr(skb);
1494 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1495 	}
1496 
1497 	if (inner_mac_off) { /* tunnel */
1498 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1499 					    ETH_HLEN - 2));
1500 
1501 		bnxt_gro_tunnel(skb, proto);
1502 	}
1503 #endif
1504 	return skb;
1505 }
1506 
1507 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1508 					   int payload_off, int tcp_ts,
1509 					   struct sk_buff *skb)
1510 {
1511 #ifdef CONFIG_INET
1512 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1513 	u32 hdr_info = tpa_info->hdr_info;
1514 	int iphdr_len, nw_off;
1515 
1516 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1517 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1518 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1519 
1520 	nw_off = inner_ip_off - ETH_HLEN;
1521 	skb_set_network_header(skb, nw_off);
1522 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1523 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1524 	skb_set_transport_header(skb, nw_off + iphdr_len);
1525 
1526 	if (inner_mac_off) { /* tunnel */
1527 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1528 					    ETH_HLEN - 2));
1529 
1530 		bnxt_gro_tunnel(skb, proto);
1531 	}
1532 #endif
1533 	return skb;
1534 }
1535 
1536 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1537 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1538 
1539 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1540 					   int payload_off, int tcp_ts,
1541 					   struct sk_buff *skb)
1542 {
1543 #ifdef CONFIG_INET
1544 	struct tcphdr *th;
1545 	int len, nw_off, tcp_opt_len = 0;
1546 
1547 	if (tcp_ts)
1548 		tcp_opt_len = 12;
1549 
1550 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1551 		struct iphdr *iph;
1552 
1553 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1554 			 ETH_HLEN;
1555 		skb_set_network_header(skb, nw_off);
1556 		iph = ip_hdr(skb);
1557 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1558 		len = skb->len - skb_transport_offset(skb);
1559 		th = tcp_hdr(skb);
1560 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1561 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1562 		struct ipv6hdr *iph;
1563 
1564 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1565 			 ETH_HLEN;
1566 		skb_set_network_header(skb, nw_off);
1567 		iph = ipv6_hdr(skb);
1568 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1569 		len = skb->len - skb_transport_offset(skb);
1570 		th = tcp_hdr(skb);
1571 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1572 	} else {
1573 		dev_kfree_skb_any(skb);
1574 		return NULL;
1575 	}
1576 
1577 	if (nw_off) /* tunnel */
1578 		bnxt_gro_tunnel(skb, skb->protocol);
1579 #endif
1580 	return skb;
1581 }
1582 
1583 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1584 					   struct bnxt_tpa_info *tpa_info,
1585 					   struct rx_tpa_end_cmp *tpa_end,
1586 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1587 					   struct sk_buff *skb)
1588 {
1589 #ifdef CONFIG_INET
1590 	int payload_off;
1591 	u16 segs;
1592 
1593 	segs = TPA_END_TPA_SEGS(tpa_end);
1594 	if (segs == 1)
1595 		return skb;
1596 
1597 	NAPI_GRO_CB(skb)->count = segs;
1598 	skb_shinfo(skb)->gso_size =
1599 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1600 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1601 	if (bp->flags & BNXT_FLAG_CHIP_P5)
1602 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1603 	else
1604 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1605 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1606 	if (likely(skb))
1607 		tcp_gro_complete(skb);
1608 #endif
1609 	return skb;
1610 }
1611 
1612 /* Given the cfa_code of a received packet determine which
1613  * netdev (vf-rep or PF) the packet is destined to.
1614  */
1615 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1616 {
1617 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1618 
1619 	/* if vf-rep dev is NULL, the must belongs to the PF */
1620 	return dev ? dev : bp->dev;
1621 }
1622 
1623 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1624 					   struct bnxt_cp_ring_info *cpr,
1625 					   u32 *raw_cons,
1626 					   struct rx_tpa_end_cmp *tpa_end,
1627 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1628 					   u8 *event)
1629 {
1630 	struct bnxt_napi *bnapi = cpr->bnapi;
1631 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1632 	u8 *data_ptr, agg_bufs;
1633 	unsigned int len;
1634 	struct bnxt_tpa_info *tpa_info;
1635 	dma_addr_t mapping;
1636 	struct sk_buff *skb;
1637 	u16 idx = 0, agg_id;
1638 	void *data;
1639 	bool gro;
1640 
1641 	if (unlikely(bnapi->in_reset)) {
1642 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1643 
1644 		if (rc < 0)
1645 			return ERR_PTR(-EBUSY);
1646 		return NULL;
1647 	}
1648 
1649 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1650 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1651 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1652 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1653 		tpa_info = &rxr->rx_tpa[agg_id];
1654 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1655 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1656 				    agg_bufs, tpa_info->agg_count);
1657 			agg_bufs = tpa_info->agg_count;
1658 		}
1659 		tpa_info->agg_count = 0;
1660 		*event |= BNXT_AGG_EVENT;
1661 		bnxt_free_agg_idx(rxr, agg_id);
1662 		idx = agg_id;
1663 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1664 	} else {
1665 		agg_id = TPA_END_AGG_ID(tpa_end);
1666 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1667 		tpa_info = &rxr->rx_tpa[agg_id];
1668 		idx = RING_CMP(*raw_cons);
1669 		if (agg_bufs) {
1670 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1671 				return ERR_PTR(-EBUSY);
1672 
1673 			*event |= BNXT_AGG_EVENT;
1674 			idx = NEXT_CMP(idx);
1675 		}
1676 		gro = !!TPA_END_GRO(tpa_end);
1677 	}
1678 	data = tpa_info->data;
1679 	data_ptr = tpa_info->data_ptr;
1680 	prefetch(data_ptr);
1681 	len = tpa_info->len;
1682 	mapping = tpa_info->mapping;
1683 
1684 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1685 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1686 		if (agg_bufs > MAX_SKB_FRAGS)
1687 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1688 				    agg_bufs, (int)MAX_SKB_FRAGS);
1689 		return NULL;
1690 	}
1691 
1692 	if (len <= bp->rx_copy_thresh) {
1693 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1694 		if (!skb) {
1695 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1696 			cpr->sw_stats.rx.rx_oom_discards += 1;
1697 			return NULL;
1698 		}
1699 	} else {
1700 		u8 *new_data;
1701 		dma_addr_t new_mapping;
1702 
1703 		new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC);
1704 		if (!new_data) {
1705 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1706 			cpr->sw_stats.rx.rx_oom_discards += 1;
1707 			return NULL;
1708 		}
1709 
1710 		tpa_info->data = new_data;
1711 		tpa_info->data_ptr = new_data + bp->rx_offset;
1712 		tpa_info->mapping = new_mapping;
1713 
1714 		skb = build_skb(data, bp->rx_buf_size);
1715 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1716 				       bp->rx_buf_use_size, bp->rx_dir,
1717 				       DMA_ATTR_WEAK_ORDERING);
1718 
1719 		if (!skb) {
1720 			skb_free_frag(data);
1721 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1722 			cpr->sw_stats.rx.rx_oom_discards += 1;
1723 			return NULL;
1724 		}
1725 		skb_reserve(skb, bp->rx_offset);
1726 		skb_put(skb, len);
1727 	}
1728 
1729 	if (agg_bufs) {
1730 		skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true);
1731 		if (!skb) {
1732 			/* Page reuse already handled by bnxt_rx_pages(). */
1733 			cpr->sw_stats.rx.rx_oom_discards += 1;
1734 			return NULL;
1735 		}
1736 	}
1737 
1738 	skb->protocol =
1739 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1740 
1741 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1742 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1743 
1744 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1745 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1746 		__be16 vlan_proto = htons(tpa_info->metadata >>
1747 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1748 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1749 
1750 		if (eth_type_vlan(vlan_proto)) {
1751 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1752 		} else {
1753 			dev_kfree_skb(skb);
1754 			return NULL;
1755 		}
1756 	}
1757 
1758 	skb_checksum_none_assert(skb);
1759 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1760 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1761 		skb->csum_level =
1762 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1763 	}
1764 
1765 	if (gro)
1766 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1767 
1768 	return skb;
1769 }
1770 
1771 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1772 			 struct rx_agg_cmp *rx_agg)
1773 {
1774 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1775 	struct bnxt_tpa_info *tpa_info;
1776 
1777 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1778 	tpa_info = &rxr->rx_tpa[agg_id];
1779 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1780 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1781 }
1782 
1783 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1784 			     struct sk_buff *skb)
1785 {
1786 	if (skb->dev != bp->dev) {
1787 		/* this packet belongs to a vf-rep */
1788 		bnxt_vf_rep_rx(bp, skb);
1789 		return;
1790 	}
1791 	skb_record_rx_queue(skb, bnapi->index);
1792 	napi_gro_receive(&bnapi->napi, skb);
1793 }
1794 
1795 /* returns the following:
1796  * 1       - 1 packet successfully received
1797  * 0       - successful TPA_START, packet not completed yet
1798  * -EBUSY  - completion ring does not have all the agg buffers yet
1799  * -ENOMEM - packet aborted due to out of memory
1800  * -EIO    - packet aborted due to hw error indicated in BD
1801  */
1802 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1803 		       u32 *raw_cons, u8 *event)
1804 {
1805 	struct bnxt_napi *bnapi = cpr->bnapi;
1806 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1807 	struct net_device *dev = bp->dev;
1808 	struct rx_cmp *rxcmp;
1809 	struct rx_cmp_ext *rxcmp1;
1810 	u32 tmp_raw_cons = *raw_cons;
1811 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1812 	struct bnxt_sw_rx_bd *rx_buf;
1813 	unsigned int len;
1814 	u8 *data_ptr, agg_bufs, cmp_type;
1815 	bool xdp_active = false;
1816 	dma_addr_t dma_addr;
1817 	struct sk_buff *skb;
1818 	struct xdp_buff xdp;
1819 	u32 flags, misc;
1820 	void *data;
1821 	int rc = 0;
1822 
1823 	rxcmp = (struct rx_cmp *)
1824 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1825 
1826 	cmp_type = RX_CMP_TYPE(rxcmp);
1827 
1828 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1829 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1830 		goto next_rx_no_prod_no_len;
1831 	}
1832 
1833 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1834 	cp_cons = RING_CMP(tmp_raw_cons);
1835 	rxcmp1 = (struct rx_cmp_ext *)
1836 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1837 
1838 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1839 		return -EBUSY;
1840 
1841 	/* The valid test of the entry must be done first before
1842 	 * reading any further.
1843 	 */
1844 	dma_rmb();
1845 	prod = rxr->rx_prod;
1846 
1847 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1848 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1849 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1850 
1851 		*event |= BNXT_RX_EVENT;
1852 		goto next_rx_no_prod_no_len;
1853 
1854 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1855 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1856 				   (struct rx_tpa_end_cmp *)rxcmp,
1857 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1858 
1859 		if (IS_ERR(skb))
1860 			return -EBUSY;
1861 
1862 		rc = -ENOMEM;
1863 		if (likely(skb)) {
1864 			bnxt_deliver_skb(bp, bnapi, skb);
1865 			rc = 1;
1866 		}
1867 		*event |= BNXT_RX_EVENT;
1868 		goto next_rx_no_prod_no_len;
1869 	}
1870 
1871 	cons = rxcmp->rx_cmp_opaque;
1872 	if (unlikely(cons != rxr->rx_next_cons)) {
1873 		int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
1874 
1875 		/* 0xffff is forced error, don't print it */
1876 		if (rxr->rx_next_cons != 0xffff)
1877 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1878 				    cons, rxr->rx_next_cons);
1879 		bnxt_sched_reset(bp, rxr);
1880 		if (rc1)
1881 			return rc1;
1882 		goto next_rx_no_prod_no_len;
1883 	}
1884 	rx_buf = &rxr->rx_buf_ring[cons];
1885 	data = rx_buf->data;
1886 	data_ptr = rx_buf->data_ptr;
1887 	prefetch(data_ptr);
1888 
1889 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1890 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1891 
1892 	if (agg_bufs) {
1893 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1894 			return -EBUSY;
1895 
1896 		cp_cons = NEXT_CMP(cp_cons);
1897 		*event |= BNXT_AGG_EVENT;
1898 	}
1899 	*event |= BNXT_RX_EVENT;
1900 
1901 	rx_buf->data = NULL;
1902 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1903 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1904 
1905 		bnxt_reuse_rx_data(rxr, cons, data);
1906 		if (agg_bufs)
1907 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
1908 					       false);
1909 
1910 		rc = -EIO;
1911 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1912 			bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
1913 			if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
1914 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
1915 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
1916 						 rx_err);
1917 				bnxt_sched_reset(bp, rxr);
1918 			}
1919 		}
1920 		goto next_rx_no_len;
1921 	}
1922 
1923 	flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type);
1924 	len = flags >> RX_CMP_LEN_SHIFT;
1925 	dma_addr = rx_buf->mapping;
1926 
1927 	if (bnxt_xdp_attached(bp, rxr)) {
1928 		bnxt_xdp_buff_init(bp, rxr, cons, &data_ptr, &len, &xdp);
1929 		if (agg_bufs) {
1930 			u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp,
1931 							     cp_cons, agg_bufs,
1932 							     false);
1933 			if (!frag_len) {
1934 				cpr->sw_stats.rx.rx_oom_discards += 1;
1935 				rc = -ENOMEM;
1936 				goto next_rx;
1937 			}
1938 		}
1939 		xdp_active = true;
1940 	}
1941 
1942 	if (xdp_active) {
1943 		if (bnxt_rx_xdp(bp, rxr, cons, xdp, data, &len, event)) {
1944 			rc = 1;
1945 			goto next_rx;
1946 		}
1947 	}
1948 
1949 	if (len <= bp->rx_copy_thresh) {
1950 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1951 		bnxt_reuse_rx_data(rxr, cons, data);
1952 		if (!skb) {
1953 			if (agg_bufs) {
1954 				if (!xdp_active)
1955 					bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
1956 							       agg_bufs, false);
1957 				else
1958 					bnxt_xdp_buff_frags_free(rxr, &xdp);
1959 			}
1960 			cpr->sw_stats.rx.rx_oom_discards += 1;
1961 			rc = -ENOMEM;
1962 			goto next_rx;
1963 		}
1964 	} else {
1965 		u32 payload;
1966 
1967 		if (rx_buf->data_ptr == data_ptr)
1968 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1969 		else
1970 			payload = 0;
1971 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1972 				      payload | len);
1973 		if (!skb) {
1974 			cpr->sw_stats.rx.rx_oom_discards += 1;
1975 			rc = -ENOMEM;
1976 			goto next_rx;
1977 		}
1978 	}
1979 
1980 	if (agg_bufs) {
1981 		if (!xdp_active) {
1982 			skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false);
1983 			if (!skb) {
1984 				cpr->sw_stats.rx.rx_oom_discards += 1;
1985 				rc = -ENOMEM;
1986 				goto next_rx;
1987 			}
1988 		} else {
1989 			skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1);
1990 			if (!skb) {
1991 				/* we should be able to free the old skb here */
1992 				bnxt_xdp_buff_frags_free(rxr, &xdp);
1993 				cpr->sw_stats.rx.rx_oom_discards += 1;
1994 				rc = -ENOMEM;
1995 				goto next_rx;
1996 			}
1997 		}
1998 	}
1999 
2000 	if (RX_CMP_HASH_VALID(rxcmp)) {
2001 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
2002 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
2003 
2004 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
2005 		if (hash_type != 1 && hash_type != 3)
2006 			type = PKT_HASH_TYPE_L3;
2007 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
2008 	}
2009 
2010 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
2011 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
2012 
2013 	if ((rxcmp1->rx_cmp_flags2 &
2014 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
2015 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
2016 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
2017 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
2018 		__be16 vlan_proto = htons(meta_data >>
2019 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
2020 
2021 		if (eth_type_vlan(vlan_proto)) {
2022 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
2023 		} else {
2024 			dev_kfree_skb(skb);
2025 			goto next_rx;
2026 		}
2027 	}
2028 
2029 	skb_checksum_none_assert(skb);
2030 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
2031 		if (dev->features & NETIF_F_RXCSUM) {
2032 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2033 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
2034 		}
2035 	} else {
2036 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
2037 			if (dev->features & NETIF_F_RXCSUM)
2038 				bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
2039 		}
2040 	}
2041 
2042 	if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) ==
2043 		     RX_CMP_FLAGS_ITYPE_PTP_W_TS)) {
2044 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
2045 			u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp);
2046 			u64 ns, ts;
2047 
2048 			if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) {
2049 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2050 
2051 				spin_lock_bh(&ptp->ptp_lock);
2052 				ns = timecounter_cyc2time(&ptp->tc, ts);
2053 				spin_unlock_bh(&ptp->ptp_lock);
2054 				memset(skb_hwtstamps(skb), 0,
2055 				       sizeof(*skb_hwtstamps(skb)));
2056 				skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
2057 			}
2058 		}
2059 	}
2060 	bnxt_deliver_skb(bp, bnapi, skb);
2061 	rc = 1;
2062 
2063 next_rx:
2064 	cpr->rx_packets += 1;
2065 	cpr->rx_bytes += len;
2066 
2067 next_rx_no_len:
2068 	rxr->rx_prod = NEXT_RX(prod);
2069 	rxr->rx_next_cons = NEXT_RX(cons);
2070 
2071 next_rx_no_prod_no_len:
2072 	*raw_cons = tmp_raw_cons;
2073 
2074 	return rc;
2075 }
2076 
2077 /* In netpoll mode, if we are using a combined completion ring, we need to
2078  * discard the rx packets and recycle the buffers.
2079  */
2080 static int bnxt_force_rx_discard(struct bnxt *bp,
2081 				 struct bnxt_cp_ring_info *cpr,
2082 				 u32 *raw_cons, u8 *event)
2083 {
2084 	u32 tmp_raw_cons = *raw_cons;
2085 	struct rx_cmp_ext *rxcmp1;
2086 	struct rx_cmp *rxcmp;
2087 	u16 cp_cons;
2088 	u8 cmp_type;
2089 	int rc;
2090 
2091 	cp_cons = RING_CMP(tmp_raw_cons);
2092 	rxcmp = (struct rx_cmp *)
2093 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2094 
2095 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2096 	cp_cons = RING_CMP(tmp_raw_cons);
2097 	rxcmp1 = (struct rx_cmp_ext *)
2098 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2099 
2100 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2101 		return -EBUSY;
2102 
2103 	/* The valid test of the entry must be done first before
2104 	 * reading any further.
2105 	 */
2106 	dma_rmb();
2107 	cmp_type = RX_CMP_TYPE(rxcmp);
2108 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
2109 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2110 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2111 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2112 		struct rx_tpa_end_cmp_ext *tpa_end1;
2113 
2114 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
2115 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
2116 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
2117 	}
2118 	rc = bnxt_rx_pkt(bp, cpr, raw_cons, event);
2119 	if (rc && rc != -EBUSY)
2120 		cpr->sw_stats.rx.rx_netpoll_discards += 1;
2121 	return rc;
2122 }
2123 
2124 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
2125 {
2126 	struct bnxt_fw_health *fw_health = bp->fw_health;
2127 	u32 reg = fw_health->regs[reg_idx];
2128 	u32 reg_type, reg_off, val = 0;
2129 
2130 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
2131 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
2132 	switch (reg_type) {
2133 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
2134 		pci_read_config_dword(bp->pdev, reg_off, &val);
2135 		break;
2136 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
2137 		reg_off = fw_health->mapped_regs[reg_idx];
2138 		fallthrough;
2139 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
2140 		val = readl(bp->bar0 + reg_off);
2141 		break;
2142 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
2143 		val = readl(bp->bar1 + reg_off);
2144 		break;
2145 	}
2146 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
2147 		val &= fw_health->fw_reset_inprog_reg_mask;
2148 	return val;
2149 }
2150 
2151 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
2152 {
2153 	int i;
2154 
2155 	for (i = 0; i < bp->rx_nr_rings; i++) {
2156 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
2157 		struct bnxt_ring_grp_info *grp_info;
2158 
2159 		grp_info = &bp->grp_info[grp_idx];
2160 		if (grp_info->agg_fw_ring_id == ring_id)
2161 			return grp_idx;
2162 	}
2163 	return INVALID_HW_RING_ID;
2164 }
2165 
2166 static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2)
2167 {
2168 	u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1);
2169 
2170 	switch (err_type) {
2171 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL:
2172 		netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n",
2173 			   BNXT_EVENT_INVALID_SIGNAL_DATA(data2));
2174 		break;
2175 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM:
2176 		netdev_warn(bp->dev, "Pause Storm detected!\n");
2177 		break;
2178 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD:
2179 		netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n");
2180 		break;
2181 	default:
2182 		netdev_err(bp->dev, "FW reported unknown error type %u\n",
2183 			   err_type);
2184 		break;
2185 	}
2186 }
2187 
2188 #define BNXT_GET_EVENT_PORT(data)	\
2189 	((data) &			\
2190 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
2191 
2192 #define BNXT_EVENT_RING_TYPE(data2)	\
2193 	((data2) &			\
2194 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
2195 
2196 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
2197 	(BNXT_EVENT_RING_TYPE(data2) ==	\
2198 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
2199 
2200 #define BNXT_EVENT_PHC_EVENT_TYPE(data1)	\
2201 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\
2202 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT)
2203 
2204 #define BNXT_EVENT_PHC_RTC_UPDATE(data1)	\
2205 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\
2206 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT)
2207 
2208 #define BNXT_PHC_BITS	48
2209 
2210 static int bnxt_async_event_process(struct bnxt *bp,
2211 				    struct hwrm_async_event_cmpl *cmpl)
2212 {
2213 	u16 event_id = le16_to_cpu(cmpl->event_id);
2214 	u32 data1 = le32_to_cpu(cmpl->event_data1);
2215 	u32 data2 = le32_to_cpu(cmpl->event_data2);
2216 
2217 	netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n",
2218 		   event_id, data1, data2);
2219 
2220 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
2221 	switch (event_id) {
2222 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2223 		struct bnxt_link_info *link_info = &bp->link_info;
2224 
2225 		if (BNXT_VF(bp))
2226 			goto async_event_process_exit;
2227 
2228 		/* print unsupported speed warning in forced speed mode only */
2229 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2230 		    (data1 & 0x20000)) {
2231 			u16 fw_speed = link_info->force_link_speed;
2232 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2233 
2234 			if (speed != SPEED_UNKNOWN)
2235 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2236 					    speed);
2237 		}
2238 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2239 	}
2240 		fallthrough;
2241 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2242 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2243 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2244 		fallthrough;
2245 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2246 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2247 		break;
2248 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2249 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2250 		break;
2251 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2252 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2253 
2254 		if (BNXT_VF(bp))
2255 			break;
2256 
2257 		if (bp->pf.port_id != port_id)
2258 			break;
2259 
2260 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2261 		break;
2262 	}
2263 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2264 		if (BNXT_PF(bp))
2265 			goto async_event_process_exit;
2266 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2267 		break;
2268 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2269 		char *type_str = "Solicited";
2270 
2271 		if (!bp->fw_health)
2272 			goto async_event_process_exit;
2273 
2274 		bp->fw_reset_timestamp = jiffies;
2275 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2276 		if (!bp->fw_reset_min_dsecs)
2277 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2278 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2279 		if (!bp->fw_reset_max_dsecs)
2280 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2281 		if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) {
2282 			set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state);
2283 		} else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2284 			type_str = "Fatal";
2285 			bp->fw_health->fatalities++;
2286 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2287 		} else if (data2 && BNXT_FW_STATUS_HEALTHY !=
2288 			   EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) {
2289 			type_str = "Non-fatal";
2290 			bp->fw_health->survivals++;
2291 			set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
2292 		}
2293 		netif_warn(bp, hw, bp->dev,
2294 			   "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2295 			   type_str, data1, data2,
2296 			   bp->fw_reset_min_dsecs * 100,
2297 			   bp->fw_reset_max_dsecs * 100);
2298 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2299 		break;
2300 	}
2301 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2302 		struct bnxt_fw_health *fw_health = bp->fw_health;
2303 		char *status_desc = "healthy";
2304 		u32 status;
2305 
2306 		if (!fw_health)
2307 			goto async_event_process_exit;
2308 
2309 		if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) {
2310 			fw_health->enabled = false;
2311 			netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n");
2312 			break;
2313 		}
2314 		fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2315 		fw_health->tmr_multiplier =
2316 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2317 				     bp->current_interval * 10);
2318 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2319 		if (!fw_health->enabled)
2320 			fw_health->last_fw_heartbeat =
2321 				bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2322 		fw_health->last_fw_reset_cnt =
2323 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2324 		status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
2325 		if (status != BNXT_FW_STATUS_HEALTHY)
2326 			status_desc = "unhealthy";
2327 		netif_info(bp, drv, bp->dev,
2328 			   "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n",
2329 			   fw_health->primary ? "primary" : "backup", status,
2330 			   status_desc, fw_health->last_fw_reset_cnt);
2331 		if (!fw_health->enabled) {
2332 			/* Make sure tmr_counter is set and visible to
2333 			 * bnxt_health_check() before setting enabled to true.
2334 			 */
2335 			smp_wmb();
2336 			fw_health->enabled = true;
2337 		}
2338 		goto async_event_process_exit;
2339 	}
2340 	case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2341 		netif_notice(bp, hw, bp->dev,
2342 			     "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2343 			     data1, data2);
2344 		goto async_event_process_exit;
2345 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2346 		struct bnxt_rx_ring_info *rxr;
2347 		u16 grp_idx;
2348 
2349 		if (bp->flags & BNXT_FLAG_CHIP_P5)
2350 			goto async_event_process_exit;
2351 
2352 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2353 			    BNXT_EVENT_RING_TYPE(data2), data1);
2354 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2355 			goto async_event_process_exit;
2356 
2357 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2358 		if (grp_idx == INVALID_HW_RING_ID) {
2359 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2360 				    data1);
2361 			goto async_event_process_exit;
2362 		}
2363 		rxr = bp->bnapi[grp_idx]->rx_ring;
2364 		bnxt_sched_reset(bp, rxr);
2365 		goto async_event_process_exit;
2366 	}
2367 	case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2368 		struct bnxt_fw_health *fw_health = bp->fw_health;
2369 
2370 		netif_notice(bp, hw, bp->dev,
2371 			     "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2372 			     data1, data2);
2373 		if (fw_health) {
2374 			fw_health->echo_req_data1 = data1;
2375 			fw_health->echo_req_data2 = data2;
2376 			set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2377 			break;
2378 		}
2379 		goto async_event_process_exit;
2380 	}
2381 	case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: {
2382 		bnxt_ptp_pps_event(bp, data1, data2);
2383 		goto async_event_process_exit;
2384 	}
2385 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: {
2386 		bnxt_event_error_report(bp, data1, data2);
2387 		goto async_event_process_exit;
2388 	}
2389 	case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: {
2390 		switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) {
2391 		case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE:
2392 			if (bp->fw_cap & BNXT_FW_CAP_PTP_RTC) {
2393 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2394 				u64 ns;
2395 
2396 				spin_lock_bh(&ptp->ptp_lock);
2397 				bnxt_ptp_update_current_time(bp);
2398 				ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) <<
2399 				       BNXT_PHC_BITS) | ptp->current_time);
2400 				bnxt_ptp_rtc_timecounter_init(ptp, ns);
2401 				spin_unlock_bh(&ptp->ptp_lock);
2402 			}
2403 			break;
2404 		}
2405 		goto async_event_process_exit;
2406 	}
2407 	case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: {
2408 		u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff;
2409 
2410 		hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED);
2411 		goto async_event_process_exit;
2412 	}
2413 	default:
2414 		goto async_event_process_exit;
2415 	}
2416 	bnxt_queue_sp_work(bp);
2417 async_event_process_exit:
2418 	bnxt_ulp_async_events(bp, cmpl);
2419 	return 0;
2420 }
2421 
2422 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2423 {
2424 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2425 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2426 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2427 				(struct hwrm_fwd_req_cmpl *)txcmp;
2428 
2429 	switch (cmpl_type) {
2430 	case CMPL_BASE_TYPE_HWRM_DONE:
2431 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2432 		hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE);
2433 		break;
2434 
2435 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2436 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2437 
2438 		if ((vf_id < bp->pf.first_vf_id) ||
2439 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2440 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2441 				   vf_id);
2442 			return -EINVAL;
2443 		}
2444 
2445 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2446 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
2447 		bnxt_queue_sp_work(bp);
2448 		break;
2449 
2450 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2451 		bnxt_async_event_process(bp,
2452 					 (struct hwrm_async_event_cmpl *)txcmp);
2453 		break;
2454 
2455 	default:
2456 		break;
2457 	}
2458 
2459 	return 0;
2460 }
2461 
2462 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2463 {
2464 	struct bnxt_napi *bnapi = dev_instance;
2465 	struct bnxt *bp = bnapi->bp;
2466 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2467 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2468 
2469 	cpr->event_ctr++;
2470 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2471 	napi_schedule(&bnapi->napi);
2472 	return IRQ_HANDLED;
2473 }
2474 
2475 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2476 {
2477 	u32 raw_cons = cpr->cp_raw_cons;
2478 	u16 cons = RING_CMP(raw_cons);
2479 	struct tx_cmp *txcmp;
2480 
2481 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2482 
2483 	return TX_CMP_VALID(txcmp, raw_cons);
2484 }
2485 
2486 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2487 {
2488 	struct bnxt_napi *bnapi = dev_instance;
2489 	struct bnxt *bp = bnapi->bp;
2490 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2491 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2492 	u32 int_status;
2493 
2494 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2495 
2496 	if (!bnxt_has_work(bp, cpr)) {
2497 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2498 		/* return if erroneous interrupt */
2499 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2500 			return IRQ_NONE;
2501 	}
2502 
2503 	/* disable ring IRQ */
2504 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2505 
2506 	/* Return here if interrupt is shared and is disabled. */
2507 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2508 		return IRQ_HANDLED;
2509 
2510 	napi_schedule(&bnapi->napi);
2511 	return IRQ_HANDLED;
2512 }
2513 
2514 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2515 			    int budget)
2516 {
2517 	struct bnxt_napi *bnapi = cpr->bnapi;
2518 	u32 raw_cons = cpr->cp_raw_cons;
2519 	u32 cons;
2520 	int tx_pkts = 0;
2521 	int rx_pkts = 0;
2522 	u8 event = 0;
2523 	struct tx_cmp *txcmp;
2524 
2525 	cpr->has_more_work = 0;
2526 	cpr->had_work_done = 1;
2527 	while (1) {
2528 		int rc;
2529 
2530 		cons = RING_CMP(raw_cons);
2531 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2532 
2533 		if (!TX_CMP_VALID(txcmp, raw_cons))
2534 			break;
2535 
2536 		/* The valid test of the entry must be done first before
2537 		 * reading any further.
2538 		 */
2539 		dma_rmb();
2540 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
2541 			tx_pkts++;
2542 			/* return full budget so NAPI will complete. */
2543 			if (unlikely(tx_pkts >= bp->tx_wake_thresh)) {
2544 				rx_pkts = budget;
2545 				raw_cons = NEXT_RAW_CMP(raw_cons);
2546 				if (budget)
2547 					cpr->has_more_work = 1;
2548 				break;
2549 			}
2550 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2551 			if (likely(budget))
2552 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2553 			else
2554 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2555 							   &event);
2556 			if (likely(rc >= 0))
2557 				rx_pkts += rc;
2558 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2559 			 * the NAPI budget.  Otherwise, we may potentially loop
2560 			 * here forever if we consistently cannot allocate
2561 			 * buffers.
2562 			 */
2563 			else if (rc == -ENOMEM && budget)
2564 				rx_pkts++;
2565 			else if (rc == -EBUSY)	/* partial completion */
2566 				break;
2567 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
2568 				     CMPL_BASE_TYPE_HWRM_DONE) ||
2569 				    (TX_CMP_TYPE(txcmp) ==
2570 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
2571 				    (TX_CMP_TYPE(txcmp) ==
2572 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
2573 			bnxt_hwrm_handler(bp, txcmp);
2574 		}
2575 		raw_cons = NEXT_RAW_CMP(raw_cons);
2576 
2577 		if (rx_pkts && rx_pkts == budget) {
2578 			cpr->has_more_work = 1;
2579 			break;
2580 		}
2581 	}
2582 
2583 	if (event & BNXT_REDIRECT_EVENT)
2584 		xdp_do_flush();
2585 
2586 	if (event & BNXT_TX_EVENT) {
2587 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2588 		u16 prod = txr->tx_prod;
2589 
2590 		/* Sync BD data before updating doorbell */
2591 		wmb();
2592 
2593 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2594 	}
2595 
2596 	cpr->cp_raw_cons = raw_cons;
2597 	bnapi->tx_pkts += tx_pkts;
2598 	bnapi->events |= event;
2599 	return rx_pkts;
2600 }
2601 
2602 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2603 {
2604 	if (bnapi->tx_pkts) {
2605 		bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2606 		bnapi->tx_pkts = 0;
2607 	}
2608 
2609 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2610 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2611 
2612 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2613 	}
2614 	if (bnapi->events & BNXT_AGG_EVENT) {
2615 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2616 
2617 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2618 	}
2619 	bnapi->events = 0;
2620 }
2621 
2622 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2623 			  int budget)
2624 {
2625 	struct bnxt_napi *bnapi = cpr->bnapi;
2626 	int rx_pkts;
2627 
2628 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2629 
2630 	/* ACK completion ring before freeing tx ring and producing new
2631 	 * buffers in rx/agg rings to prevent overflowing the completion
2632 	 * ring.
2633 	 */
2634 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2635 
2636 	__bnxt_poll_work_done(bp, bnapi);
2637 	return rx_pkts;
2638 }
2639 
2640 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2641 {
2642 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2643 	struct bnxt *bp = bnapi->bp;
2644 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2645 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2646 	struct tx_cmp *txcmp;
2647 	struct rx_cmp_ext *rxcmp1;
2648 	u32 cp_cons, tmp_raw_cons;
2649 	u32 raw_cons = cpr->cp_raw_cons;
2650 	u32 rx_pkts = 0;
2651 	u8 event = 0;
2652 
2653 	while (1) {
2654 		int rc;
2655 
2656 		cp_cons = RING_CMP(raw_cons);
2657 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2658 
2659 		if (!TX_CMP_VALID(txcmp, raw_cons))
2660 			break;
2661 
2662 		/* The valid test of the entry must be done first before
2663 		 * reading any further.
2664 		 */
2665 		dma_rmb();
2666 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2667 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2668 			cp_cons = RING_CMP(tmp_raw_cons);
2669 			rxcmp1 = (struct rx_cmp_ext *)
2670 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2671 
2672 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2673 				break;
2674 
2675 			/* force an error to recycle the buffer */
2676 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2677 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2678 
2679 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2680 			if (likely(rc == -EIO) && budget)
2681 				rx_pkts++;
2682 			else if (rc == -EBUSY)	/* partial completion */
2683 				break;
2684 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2685 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2686 			bnxt_hwrm_handler(bp, txcmp);
2687 		} else {
2688 			netdev_err(bp->dev,
2689 				   "Invalid completion received on special ring\n");
2690 		}
2691 		raw_cons = NEXT_RAW_CMP(raw_cons);
2692 
2693 		if (rx_pkts == budget)
2694 			break;
2695 	}
2696 
2697 	cpr->cp_raw_cons = raw_cons;
2698 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2699 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2700 
2701 	if (event & BNXT_AGG_EVENT)
2702 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2703 
2704 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2705 		napi_complete_done(napi, rx_pkts);
2706 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2707 	}
2708 	return rx_pkts;
2709 }
2710 
2711 static int bnxt_poll(struct napi_struct *napi, int budget)
2712 {
2713 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2714 	struct bnxt *bp = bnapi->bp;
2715 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2716 	int work_done = 0;
2717 
2718 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2719 		napi_complete(napi);
2720 		return 0;
2721 	}
2722 	while (1) {
2723 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2724 
2725 		if (work_done >= budget) {
2726 			if (!budget)
2727 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2728 			break;
2729 		}
2730 
2731 		if (!bnxt_has_work(bp, cpr)) {
2732 			if (napi_complete_done(napi, work_done))
2733 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2734 			break;
2735 		}
2736 	}
2737 	if (bp->flags & BNXT_FLAG_DIM) {
2738 		struct dim_sample dim_sample = {};
2739 
2740 		dim_update_sample(cpr->event_ctr,
2741 				  cpr->rx_packets,
2742 				  cpr->rx_bytes,
2743 				  &dim_sample);
2744 		net_dim(&cpr->dim, dim_sample);
2745 	}
2746 	return work_done;
2747 }
2748 
2749 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2750 {
2751 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2752 	int i, work_done = 0;
2753 
2754 	for (i = 0; i < 2; i++) {
2755 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2756 
2757 		if (cpr2) {
2758 			work_done += __bnxt_poll_work(bp, cpr2,
2759 						      budget - work_done);
2760 			cpr->has_more_work |= cpr2->has_more_work;
2761 		}
2762 	}
2763 	return work_done;
2764 }
2765 
2766 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2767 				 u64 dbr_type)
2768 {
2769 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2770 	int i;
2771 
2772 	for (i = 0; i < 2; i++) {
2773 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2774 		struct bnxt_db_info *db;
2775 
2776 		if (cpr2 && cpr2->had_work_done) {
2777 			db = &cpr2->cp_db;
2778 			bnxt_writeq(bp, db->db_key64 | dbr_type |
2779 				    RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2780 			cpr2->had_work_done = 0;
2781 		}
2782 	}
2783 	__bnxt_poll_work_done(bp, bnapi);
2784 }
2785 
2786 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2787 {
2788 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2789 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2790 	struct bnxt_cp_ring_info *cpr_rx;
2791 	u32 raw_cons = cpr->cp_raw_cons;
2792 	struct bnxt *bp = bnapi->bp;
2793 	struct nqe_cn *nqcmp;
2794 	int work_done = 0;
2795 	u32 cons;
2796 
2797 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2798 		napi_complete(napi);
2799 		return 0;
2800 	}
2801 	if (cpr->has_more_work) {
2802 		cpr->has_more_work = 0;
2803 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2804 	}
2805 	while (1) {
2806 		cons = RING_CMP(raw_cons);
2807 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2808 
2809 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2810 			if (cpr->has_more_work)
2811 				break;
2812 
2813 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL);
2814 			cpr->cp_raw_cons = raw_cons;
2815 			if (napi_complete_done(napi, work_done))
2816 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2817 						  cpr->cp_raw_cons);
2818 			goto poll_done;
2819 		}
2820 
2821 		/* The valid test of the entry must be done first before
2822 		 * reading any further.
2823 		 */
2824 		dma_rmb();
2825 
2826 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2827 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2828 			struct bnxt_cp_ring_info *cpr2;
2829 
2830 			cpr2 = cpr->cp_ring_arr[idx];
2831 			work_done += __bnxt_poll_work(bp, cpr2,
2832 						      budget - work_done);
2833 			cpr->has_more_work |= cpr2->has_more_work;
2834 		} else {
2835 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2836 		}
2837 		raw_cons = NEXT_RAW_CMP(raw_cons);
2838 	}
2839 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ);
2840 	if (raw_cons != cpr->cp_raw_cons) {
2841 		cpr->cp_raw_cons = raw_cons;
2842 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
2843 	}
2844 poll_done:
2845 	cpr_rx = cpr->cp_ring_arr[BNXT_RX_HDL];
2846 	if (cpr_rx && (bp->flags & BNXT_FLAG_DIM)) {
2847 		struct dim_sample dim_sample = {};
2848 
2849 		dim_update_sample(cpr->event_ctr,
2850 				  cpr_rx->rx_packets,
2851 				  cpr_rx->rx_bytes,
2852 				  &dim_sample);
2853 		net_dim(&cpr->dim, dim_sample);
2854 	}
2855 	return work_done;
2856 }
2857 
2858 static void bnxt_free_tx_skbs(struct bnxt *bp)
2859 {
2860 	int i, max_idx;
2861 	struct pci_dev *pdev = bp->pdev;
2862 
2863 	if (!bp->tx_ring)
2864 		return;
2865 
2866 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2867 	for (i = 0; i < bp->tx_nr_rings; i++) {
2868 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2869 		int j;
2870 
2871 		if (!txr->tx_buf_ring)
2872 			continue;
2873 
2874 		for (j = 0; j < max_idx;) {
2875 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2876 			struct sk_buff *skb;
2877 			int k, last;
2878 
2879 			if (i < bp->tx_nr_rings_xdp &&
2880 			    tx_buf->action == XDP_REDIRECT) {
2881 				dma_unmap_single(&pdev->dev,
2882 					dma_unmap_addr(tx_buf, mapping),
2883 					dma_unmap_len(tx_buf, len),
2884 					DMA_TO_DEVICE);
2885 				xdp_return_frame(tx_buf->xdpf);
2886 				tx_buf->action = 0;
2887 				tx_buf->xdpf = NULL;
2888 				j++;
2889 				continue;
2890 			}
2891 
2892 			skb = tx_buf->skb;
2893 			if (!skb) {
2894 				j++;
2895 				continue;
2896 			}
2897 
2898 			tx_buf->skb = NULL;
2899 
2900 			if (tx_buf->is_push) {
2901 				dev_kfree_skb(skb);
2902 				j += 2;
2903 				continue;
2904 			}
2905 
2906 			dma_unmap_single(&pdev->dev,
2907 					 dma_unmap_addr(tx_buf, mapping),
2908 					 skb_headlen(skb),
2909 					 DMA_TO_DEVICE);
2910 
2911 			last = tx_buf->nr_frags;
2912 			j += 2;
2913 			for (k = 0; k < last; k++, j++) {
2914 				int ring_idx = j & bp->tx_ring_mask;
2915 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2916 
2917 				tx_buf = &txr->tx_buf_ring[ring_idx];
2918 				dma_unmap_page(
2919 					&pdev->dev,
2920 					dma_unmap_addr(tx_buf, mapping),
2921 					skb_frag_size(frag), DMA_TO_DEVICE);
2922 			}
2923 			dev_kfree_skb(skb);
2924 		}
2925 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2926 	}
2927 }
2928 
2929 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
2930 {
2931 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
2932 	struct pci_dev *pdev = bp->pdev;
2933 	struct bnxt_tpa_idx_map *map;
2934 	int i, max_idx, max_agg_idx;
2935 
2936 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2937 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2938 	if (!rxr->rx_tpa)
2939 		goto skip_rx_tpa_free;
2940 
2941 	for (i = 0; i < bp->max_tpa; i++) {
2942 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
2943 		u8 *data = tpa_info->data;
2944 
2945 		if (!data)
2946 			continue;
2947 
2948 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
2949 				       bp->rx_buf_use_size, bp->rx_dir,
2950 				       DMA_ATTR_WEAK_ORDERING);
2951 
2952 		tpa_info->data = NULL;
2953 
2954 		skb_free_frag(data);
2955 	}
2956 
2957 skip_rx_tpa_free:
2958 	if (!rxr->rx_buf_ring)
2959 		goto skip_rx_buf_free;
2960 
2961 	for (i = 0; i < max_idx; i++) {
2962 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
2963 		dma_addr_t mapping = rx_buf->mapping;
2964 		void *data = rx_buf->data;
2965 
2966 		if (!data)
2967 			continue;
2968 
2969 		rx_buf->data = NULL;
2970 		if (BNXT_RX_PAGE_MODE(bp)) {
2971 			mapping -= bp->rx_dma_offset;
2972 			dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE,
2973 					     bp->rx_dir,
2974 					     DMA_ATTR_WEAK_ORDERING);
2975 			page_pool_recycle_direct(rxr->page_pool, data);
2976 		} else {
2977 			dma_unmap_single_attrs(&pdev->dev, mapping,
2978 					       bp->rx_buf_use_size, bp->rx_dir,
2979 					       DMA_ATTR_WEAK_ORDERING);
2980 			skb_free_frag(data);
2981 		}
2982 	}
2983 
2984 skip_rx_buf_free:
2985 	if (!rxr->rx_agg_ring)
2986 		goto skip_rx_agg_free;
2987 
2988 	for (i = 0; i < max_agg_idx; i++) {
2989 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
2990 		struct page *page = rx_agg_buf->page;
2991 
2992 		if (!page)
2993 			continue;
2994 
2995 		if (BNXT_RX_PAGE_MODE(bp)) {
2996 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2997 					     BNXT_RX_PAGE_SIZE, bp->rx_dir,
2998 					     DMA_ATTR_WEAK_ORDERING);
2999 			rx_agg_buf->page = NULL;
3000 			__clear_bit(i, rxr->rx_agg_bmap);
3001 
3002 			page_pool_recycle_direct(rxr->page_pool, page);
3003 		} else {
3004 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
3005 					     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
3006 					     DMA_ATTR_WEAK_ORDERING);
3007 			rx_agg_buf->page = NULL;
3008 			__clear_bit(i, rxr->rx_agg_bmap);
3009 
3010 			__free_page(page);
3011 		}
3012 	}
3013 
3014 skip_rx_agg_free:
3015 	if (rxr->rx_page) {
3016 		__free_page(rxr->rx_page);
3017 		rxr->rx_page = NULL;
3018 	}
3019 	map = rxr->rx_tpa_idx_map;
3020 	if (map)
3021 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
3022 }
3023 
3024 static void bnxt_free_rx_skbs(struct bnxt *bp)
3025 {
3026 	int i;
3027 
3028 	if (!bp->rx_ring)
3029 		return;
3030 
3031 	for (i = 0; i < bp->rx_nr_rings; i++)
3032 		bnxt_free_one_rx_ring_skbs(bp, i);
3033 }
3034 
3035 static void bnxt_free_skbs(struct bnxt *bp)
3036 {
3037 	bnxt_free_tx_skbs(bp);
3038 	bnxt_free_rx_skbs(bp);
3039 }
3040 
3041 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len)
3042 {
3043 	u8 init_val = mem_init->init_val;
3044 	u16 offset = mem_init->offset;
3045 	u8 *p2 = p;
3046 	int i;
3047 
3048 	if (!init_val)
3049 		return;
3050 	if (offset == BNXT_MEM_INVALID_OFFSET) {
3051 		memset(p, init_val, len);
3052 		return;
3053 	}
3054 	for (i = 0; i < len; i += mem_init->size)
3055 		*(p2 + i + offset) = init_val;
3056 }
3057 
3058 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3059 {
3060 	struct pci_dev *pdev = bp->pdev;
3061 	int i;
3062 
3063 	if (!rmem->pg_arr)
3064 		goto skip_pages;
3065 
3066 	for (i = 0; i < rmem->nr_pages; i++) {
3067 		if (!rmem->pg_arr[i])
3068 			continue;
3069 
3070 		dma_free_coherent(&pdev->dev, rmem->page_size,
3071 				  rmem->pg_arr[i], rmem->dma_arr[i]);
3072 
3073 		rmem->pg_arr[i] = NULL;
3074 	}
3075 skip_pages:
3076 	if (rmem->pg_tbl) {
3077 		size_t pg_tbl_size = rmem->nr_pages * 8;
3078 
3079 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3080 			pg_tbl_size = rmem->page_size;
3081 		dma_free_coherent(&pdev->dev, pg_tbl_size,
3082 				  rmem->pg_tbl, rmem->pg_tbl_map);
3083 		rmem->pg_tbl = NULL;
3084 	}
3085 	if (rmem->vmem_size && *rmem->vmem) {
3086 		vfree(*rmem->vmem);
3087 		*rmem->vmem = NULL;
3088 	}
3089 }
3090 
3091 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3092 {
3093 	struct pci_dev *pdev = bp->pdev;
3094 	u64 valid_bit = 0;
3095 	int i;
3096 
3097 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
3098 		valid_bit = PTU_PTE_VALID;
3099 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
3100 		size_t pg_tbl_size = rmem->nr_pages * 8;
3101 
3102 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3103 			pg_tbl_size = rmem->page_size;
3104 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
3105 						  &rmem->pg_tbl_map,
3106 						  GFP_KERNEL);
3107 		if (!rmem->pg_tbl)
3108 			return -ENOMEM;
3109 	}
3110 
3111 	for (i = 0; i < rmem->nr_pages; i++) {
3112 		u64 extra_bits = valid_bit;
3113 
3114 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
3115 						     rmem->page_size,
3116 						     &rmem->dma_arr[i],
3117 						     GFP_KERNEL);
3118 		if (!rmem->pg_arr[i])
3119 			return -ENOMEM;
3120 
3121 		if (rmem->mem_init)
3122 			bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i],
3123 					  rmem->page_size);
3124 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
3125 			if (i == rmem->nr_pages - 2 &&
3126 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3127 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
3128 			else if (i == rmem->nr_pages - 1 &&
3129 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3130 				extra_bits |= PTU_PTE_LAST;
3131 			rmem->pg_tbl[i] =
3132 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
3133 		}
3134 	}
3135 
3136 	if (rmem->vmem_size) {
3137 		*rmem->vmem = vzalloc(rmem->vmem_size);
3138 		if (!(*rmem->vmem))
3139 			return -ENOMEM;
3140 	}
3141 	return 0;
3142 }
3143 
3144 static void bnxt_free_tpa_info(struct bnxt *bp)
3145 {
3146 	int i;
3147 
3148 	for (i = 0; i < bp->rx_nr_rings; i++) {
3149 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3150 
3151 		kfree(rxr->rx_tpa_idx_map);
3152 		rxr->rx_tpa_idx_map = NULL;
3153 		if (rxr->rx_tpa) {
3154 			kfree(rxr->rx_tpa[0].agg_arr);
3155 			rxr->rx_tpa[0].agg_arr = NULL;
3156 		}
3157 		kfree(rxr->rx_tpa);
3158 		rxr->rx_tpa = NULL;
3159 	}
3160 }
3161 
3162 static int bnxt_alloc_tpa_info(struct bnxt *bp)
3163 {
3164 	int i, j, total_aggs = 0;
3165 
3166 	bp->max_tpa = MAX_TPA;
3167 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
3168 		if (!bp->max_tpa_v2)
3169 			return 0;
3170 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
3171 		total_aggs = bp->max_tpa * MAX_SKB_FRAGS;
3172 	}
3173 
3174 	for (i = 0; i < bp->rx_nr_rings; i++) {
3175 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3176 		struct rx_agg_cmp *agg;
3177 
3178 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
3179 				      GFP_KERNEL);
3180 		if (!rxr->rx_tpa)
3181 			return -ENOMEM;
3182 
3183 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3184 			continue;
3185 		agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL);
3186 		rxr->rx_tpa[0].agg_arr = agg;
3187 		if (!agg)
3188 			return -ENOMEM;
3189 		for (j = 1; j < bp->max_tpa; j++)
3190 			rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS;
3191 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
3192 					      GFP_KERNEL);
3193 		if (!rxr->rx_tpa_idx_map)
3194 			return -ENOMEM;
3195 	}
3196 	return 0;
3197 }
3198 
3199 static void bnxt_free_rx_rings(struct bnxt *bp)
3200 {
3201 	int i;
3202 
3203 	if (!bp->rx_ring)
3204 		return;
3205 
3206 	bnxt_free_tpa_info(bp);
3207 	for (i = 0; i < bp->rx_nr_rings; i++) {
3208 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3209 		struct bnxt_ring_struct *ring;
3210 
3211 		if (rxr->xdp_prog)
3212 			bpf_prog_put(rxr->xdp_prog);
3213 
3214 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
3215 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3216 
3217 		page_pool_destroy(rxr->page_pool);
3218 		rxr->page_pool = NULL;
3219 
3220 		kfree(rxr->rx_agg_bmap);
3221 		rxr->rx_agg_bmap = NULL;
3222 
3223 		ring = &rxr->rx_ring_struct;
3224 		bnxt_free_ring(bp, &ring->ring_mem);
3225 
3226 		ring = &rxr->rx_agg_ring_struct;
3227 		bnxt_free_ring(bp, &ring->ring_mem);
3228 	}
3229 }
3230 
3231 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
3232 				   struct bnxt_rx_ring_info *rxr)
3233 {
3234 	struct page_pool_params pp = { 0 };
3235 
3236 	pp.pool_size = bp->rx_ring_size;
3237 	pp.nid = dev_to_node(&bp->pdev->dev);
3238 	pp.dev = &bp->pdev->dev;
3239 	pp.dma_dir = DMA_BIDIRECTIONAL;
3240 
3241 	rxr->page_pool = page_pool_create(&pp);
3242 	if (IS_ERR(rxr->page_pool)) {
3243 		int err = PTR_ERR(rxr->page_pool);
3244 
3245 		rxr->page_pool = NULL;
3246 		return err;
3247 	}
3248 	return 0;
3249 }
3250 
3251 static int bnxt_alloc_rx_rings(struct bnxt *bp)
3252 {
3253 	int i, rc = 0, agg_rings = 0;
3254 
3255 	if (!bp->rx_ring)
3256 		return -ENOMEM;
3257 
3258 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
3259 		agg_rings = 1;
3260 
3261 	for (i = 0; i < bp->rx_nr_rings; i++) {
3262 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3263 		struct bnxt_ring_struct *ring;
3264 
3265 		ring = &rxr->rx_ring_struct;
3266 
3267 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
3268 		if (rc)
3269 			return rc;
3270 
3271 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
3272 		if (rc < 0)
3273 			return rc;
3274 
3275 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
3276 						MEM_TYPE_PAGE_POOL,
3277 						rxr->page_pool);
3278 		if (rc) {
3279 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3280 			return rc;
3281 		}
3282 
3283 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3284 		if (rc)
3285 			return rc;
3286 
3287 		ring->grp_idx = i;
3288 		if (agg_rings) {
3289 			u16 mem_size;
3290 
3291 			ring = &rxr->rx_agg_ring_struct;
3292 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3293 			if (rc)
3294 				return rc;
3295 
3296 			ring->grp_idx = i;
3297 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
3298 			mem_size = rxr->rx_agg_bmap_size / 8;
3299 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
3300 			if (!rxr->rx_agg_bmap)
3301 				return -ENOMEM;
3302 		}
3303 	}
3304 	if (bp->flags & BNXT_FLAG_TPA)
3305 		rc = bnxt_alloc_tpa_info(bp);
3306 	return rc;
3307 }
3308 
3309 static void bnxt_free_tx_rings(struct bnxt *bp)
3310 {
3311 	int i;
3312 	struct pci_dev *pdev = bp->pdev;
3313 
3314 	if (!bp->tx_ring)
3315 		return;
3316 
3317 	for (i = 0; i < bp->tx_nr_rings; i++) {
3318 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3319 		struct bnxt_ring_struct *ring;
3320 
3321 		if (txr->tx_push) {
3322 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
3323 					  txr->tx_push, txr->tx_push_mapping);
3324 			txr->tx_push = NULL;
3325 		}
3326 
3327 		ring = &txr->tx_ring_struct;
3328 
3329 		bnxt_free_ring(bp, &ring->ring_mem);
3330 	}
3331 }
3332 
3333 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3334 {
3335 	int i, j, rc;
3336 	struct pci_dev *pdev = bp->pdev;
3337 
3338 	bp->tx_push_size = 0;
3339 	if (bp->tx_push_thresh) {
3340 		int push_size;
3341 
3342 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3343 					bp->tx_push_thresh);
3344 
3345 		if (push_size > 256) {
3346 			push_size = 0;
3347 			bp->tx_push_thresh = 0;
3348 		}
3349 
3350 		bp->tx_push_size = push_size;
3351 	}
3352 
3353 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3354 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3355 		struct bnxt_ring_struct *ring;
3356 		u8 qidx;
3357 
3358 		ring = &txr->tx_ring_struct;
3359 
3360 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3361 		if (rc)
3362 			return rc;
3363 
3364 		ring->grp_idx = txr->bnapi->index;
3365 		if (bp->tx_push_size) {
3366 			dma_addr_t mapping;
3367 
3368 			/* One pre-allocated DMA buffer to backup
3369 			 * TX push operation
3370 			 */
3371 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
3372 						bp->tx_push_size,
3373 						&txr->tx_push_mapping,
3374 						GFP_KERNEL);
3375 
3376 			if (!txr->tx_push)
3377 				return -ENOMEM;
3378 
3379 			mapping = txr->tx_push_mapping +
3380 				sizeof(struct tx_push_bd);
3381 			txr->data_mapping = cpu_to_le64(mapping);
3382 		}
3383 		qidx = bp->tc_to_qidx[j];
3384 		ring->queue_id = bp->q_info[qidx].queue_id;
3385 		spin_lock_init(&txr->xdp_tx_lock);
3386 		if (i < bp->tx_nr_rings_xdp)
3387 			continue;
3388 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
3389 			j++;
3390 	}
3391 	return 0;
3392 }
3393 
3394 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr)
3395 {
3396 	struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3397 
3398 	kfree(cpr->cp_desc_ring);
3399 	cpr->cp_desc_ring = NULL;
3400 	ring->ring_mem.pg_arr = NULL;
3401 	kfree(cpr->cp_desc_mapping);
3402 	cpr->cp_desc_mapping = NULL;
3403 	ring->ring_mem.dma_arr = NULL;
3404 }
3405 
3406 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n)
3407 {
3408 	cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL);
3409 	if (!cpr->cp_desc_ring)
3410 		return -ENOMEM;
3411 	cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping),
3412 				       GFP_KERNEL);
3413 	if (!cpr->cp_desc_mapping)
3414 		return -ENOMEM;
3415 	return 0;
3416 }
3417 
3418 static void bnxt_free_all_cp_arrays(struct bnxt *bp)
3419 {
3420 	int i;
3421 
3422 	if (!bp->bnapi)
3423 		return;
3424 	for (i = 0; i < bp->cp_nr_rings; i++) {
3425 		struct bnxt_napi *bnapi = bp->bnapi[i];
3426 
3427 		if (!bnapi)
3428 			continue;
3429 		bnxt_free_cp_arrays(&bnapi->cp_ring);
3430 	}
3431 }
3432 
3433 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp)
3434 {
3435 	int i, n = bp->cp_nr_pages;
3436 
3437 	for (i = 0; i < bp->cp_nr_rings; i++) {
3438 		struct bnxt_napi *bnapi = bp->bnapi[i];
3439 		int rc;
3440 
3441 		if (!bnapi)
3442 			continue;
3443 		rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n);
3444 		if (rc)
3445 			return rc;
3446 	}
3447 	return 0;
3448 }
3449 
3450 static void bnxt_free_cp_rings(struct bnxt *bp)
3451 {
3452 	int i;
3453 
3454 	if (!bp->bnapi)
3455 		return;
3456 
3457 	for (i = 0; i < bp->cp_nr_rings; i++) {
3458 		struct bnxt_napi *bnapi = bp->bnapi[i];
3459 		struct bnxt_cp_ring_info *cpr;
3460 		struct bnxt_ring_struct *ring;
3461 		int j;
3462 
3463 		if (!bnapi)
3464 			continue;
3465 
3466 		cpr = &bnapi->cp_ring;
3467 		ring = &cpr->cp_ring_struct;
3468 
3469 		bnxt_free_ring(bp, &ring->ring_mem);
3470 
3471 		for (j = 0; j < 2; j++) {
3472 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3473 
3474 			if (cpr2) {
3475 				ring = &cpr2->cp_ring_struct;
3476 				bnxt_free_ring(bp, &ring->ring_mem);
3477 				bnxt_free_cp_arrays(cpr2);
3478 				kfree(cpr2);
3479 				cpr->cp_ring_arr[j] = NULL;
3480 			}
3481 		}
3482 	}
3483 }
3484 
3485 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
3486 {
3487 	struct bnxt_ring_mem_info *rmem;
3488 	struct bnxt_ring_struct *ring;
3489 	struct bnxt_cp_ring_info *cpr;
3490 	int rc;
3491 
3492 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
3493 	if (!cpr)
3494 		return NULL;
3495 
3496 	rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages);
3497 	if (rc) {
3498 		bnxt_free_cp_arrays(cpr);
3499 		kfree(cpr);
3500 		return NULL;
3501 	}
3502 	ring = &cpr->cp_ring_struct;
3503 	rmem = &ring->ring_mem;
3504 	rmem->nr_pages = bp->cp_nr_pages;
3505 	rmem->page_size = HW_CMPD_RING_SIZE;
3506 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3507 	rmem->dma_arr = cpr->cp_desc_mapping;
3508 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3509 	rc = bnxt_alloc_ring(bp, rmem);
3510 	if (rc) {
3511 		bnxt_free_ring(bp, rmem);
3512 		bnxt_free_cp_arrays(cpr);
3513 		kfree(cpr);
3514 		cpr = NULL;
3515 	}
3516 	return cpr;
3517 }
3518 
3519 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3520 {
3521 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3522 	int i, rc, ulp_base_vec, ulp_msix;
3523 
3524 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3525 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3526 	for (i = 0; i < bp->cp_nr_rings; i++) {
3527 		struct bnxt_napi *bnapi = bp->bnapi[i];
3528 		struct bnxt_cp_ring_info *cpr;
3529 		struct bnxt_ring_struct *ring;
3530 
3531 		if (!bnapi)
3532 			continue;
3533 
3534 		cpr = &bnapi->cp_ring;
3535 		cpr->bnapi = bnapi;
3536 		ring = &cpr->cp_ring_struct;
3537 
3538 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3539 		if (rc)
3540 			return rc;
3541 
3542 		if (ulp_msix && i >= ulp_base_vec)
3543 			ring->map_idx = i + ulp_msix;
3544 		else
3545 			ring->map_idx = i;
3546 
3547 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3548 			continue;
3549 
3550 		if (i < bp->rx_nr_rings) {
3551 			struct bnxt_cp_ring_info *cpr2 =
3552 				bnxt_alloc_cp_sub_ring(bp);
3553 
3554 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
3555 			if (!cpr2)
3556 				return -ENOMEM;
3557 			cpr2->bnapi = bnapi;
3558 		}
3559 		if ((sh && i < bp->tx_nr_rings) ||
3560 		    (!sh && i >= bp->rx_nr_rings)) {
3561 			struct bnxt_cp_ring_info *cpr2 =
3562 				bnxt_alloc_cp_sub_ring(bp);
3563 
3564 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
3565 			if (!cpr2)
3566 				return -ENOMEM;
3567 			cpr2->bnapi = bnapi;
3568 		}
3569 	}
3570 	return 0;
3571 }
3572 
3573 static void bnxt_init_ring_struct(struct bnxt *bp)
3574 {
3575 	int i;
3576 
3577 	for (i = 0; i < bp->cp_nr_rings; i++) {
3578 		struct bnxt_napi *bnapi = bp->bnapi[i];
3579 		struct bnxt_ring_mem_info *rmem;
3580 		struct bnxt_cp_ring_info *cpr;
3581 		struct bnxt_rx_ring_info *rxr;
3582 		struct bnxt_tx_ring_info *txr;
3583 		struct bnxt_ring_struct *ring;
3584 
3585 		if (!bnapi)
3586 			continue;
3587 
3588 		cpr = &bnapi->cp_ring;
3589 		ring = &cpr->cp_ring_struct;
3590 		rmem = &ring->ring_mem;
3591 		rmem->nr_pages = bp->cp_nr_pages;
3592 		rmem->page_size = HW_CMPD_RING_SIZE;
3593 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3594 		rmem->dma_arr = cpr->cp_desc_mapping;
3595 		rmem->vmem_size = 0;
3596 
3597 		rxr = bnapi->rx_ring;
3598 		if (!rxr)
3599 			goto skip_rx;
3600 
3601 		ring = &rxr->rx_ring_struct;
3602 		rmem = &ring->ring_mem;
3603 		rmem->nr_pages = bp->rx_nr_pages;
3604 		rmem->page_size = HW_RXBD_RING_SIZE;
3605 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3606 		rmem->dma_arr = rxr->rx_desc_mapping;
3607 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3608 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3609 
3610 		ring = &rxr->rx_agg_ring_struct;
3611 		rmem = &ring->ring_mem;
3612 		rmem->nr_pages = bp->rx_agg_nr_pages;
3613 		rmem->page_size = HW_RXBD_RING_SIZE;
3614 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3615 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3616 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3617 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3618 
3619 skip_rx:
3620 		txr = bnapi->tx_ring;
3621 		if (!txr)
3622 			continue;
3623 
3624 		ring = &txr->tx_ring_struct;
3625 		rmem = &ring->ring_mem;
3626 		rmem->nr_pages = bp->tx_nr_pages;
3627 		rmem->page_size = HW_RXBD_RING_SIZE;
3628 		rmem->pg_arr = (void **)txr->tx_desc_ring;
3629 		rmem->dma_arr = txr->tx_desc_mapping;
3630 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3631 		rmem->vmem = (void **)&txr->tx_buf_ring;
3632 	}
3633 }
3634 
3635 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3636 {
3637 	int i;
3638 	u32 prod;
3639 	struct rx_bd **rx_buf_ring;
3640 
3641 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3642 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3643 		int j;
3644 		struct rx_bd *rxbd;
3645 
3646 		rxbd = rx_buf_ring[i];
3647 		if (!rxbd)
3648 			continue;
3649 
3650 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3651 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3652 			rxbd->rx_bd_opaque = prod;
3653 		}
3654 	}
3655 }
3656 
3657 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
3658 {
3659 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3660 	struct net_device *dev = bp->dev;
3661 	u32 prod;
3662 	int i;
3663 
3664 	prod = rxr->rx_prod;
3665 	for (i = 0; i < bp->rx_ring_size; i++) {
3666 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
3667 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3668 				    ring_nr, i, bp->rx_ring_size);
3669 			break;
3670 		}
3671 		prod = NEXT_RX(prod);
3672 	}
3673 	rxr->rx_prod = prod;
3674 
3675 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3676 		return 0;
3677 
3678 	prod = rxr->rx_agg_prod;
3679 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
3680 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
3681 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3682 				    ring_nr, i, bp->rx_ring_size);
3683 			break;
3684 		}
3685 		prod = NEXT_RX_AGG(prod);
3686 	}
3687 	rxr->rx_agg_prod = prod;
3688 
3689 	if (rxr->rx_tpa) {
3690 		dma_addr_t mapping;
3691 		u8 *data;
3692 
3693 		for (i = 0; i < bp->max_tpa; i++) {
3694 			data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL);
3695 			if (!data)
3696 				return -ENOMEM;
3697 
3698 			rxr->rx_tpa[i].data = data;
3699 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3700 			rxr->rx_tpa[i].mapping = mapping;
3701 		}
3702 	}
3703 	return 0;
3704 }
3705 
3706 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3707 {
3708 	struct bnxt_rx_ring_info *rxr;
3709 	struct bnxt_ring_struct *ring;
3710 	u32 type;
3711 
3712 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
3713 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
3714 
3715 	if (NET_IP_ALIGN == 2)
3716 		type |= RX_BD_FLAGS_SOP;
3717 
3718 	rxr = &bp->rx_ring[ring_nr];
3719 	ring = &rxr->rx_ring_struct;
3720 	bnxt_init_rxbd_pages(ring, type);
3721 
3722 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
3723 		bpf_prog_add(bp->xdp_prog, 1);
3724 		rxr->xdp_prog = bp->xdp_prog;
3725 	}
3726 	ring->fw_ring_id = INVALID_HW_RING_ID;
3727 
3728 	ring = &rxr->rx_agg_ring_struct;
3729 	ring->fw_ring_id = INVALID_HW_RING_ID;
3730 
3731 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
3732 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
3733 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
3734 
3735 		bnxt_init_rxbd_pages(ring, type);
3736 	}
3737 
3738 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
3739 }
3740 
3741 static void bnxt_init_cp_rings(struct bnxt *bp)
3742 {
3743 	int i, j;
3744 
3745 	for (i = 0; i < bp->cp_nr_rings; i++) {
3746 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
3747 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3748 
3749 		ring->fw_ring_id = INVALID_HW_RING_ID;
3750 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3751 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3752 		for (j = 0; j < 2; j++) {
3753 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3754 
3755 			if (!cpr2)
3756 				continue;
3757 
3758 			ring = &cpr2->cp_ring_struct;
3759 			ring->fw_ring_id = INVALID_HW_RING_ID;
3760 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3761 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3762 		}
3763 	}
3764 }
3765 
3766 static int bnxt_init_rx_rings(struct bnxt *bp)
3767 {
3768 	int i, rc = 0;
3769 
3770 	if (BNXT_RX_PAGE_MODE(bp)) {
3771 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3772 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3773 	} else {
3774 		bp->rx_offset = BNXT_RX_OFFSET;
3775 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3776 	}
3777 
3778 	for (i = 0; i < bp->rx_nr_rings; i++) {
3779 		rc = bnxt_init_one_rx_ring(bp, i);
3780 		if (rc)
3781 			break;
3782 	}
3783 
3784 	return rc;
3785 }
3786 
3787 static int bnxt_init_tx_rings(struct bnxt *bp)
3788 {
3789 	u16 i;
3790 
3791 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3792 				   BNXT_MIN_TX_DESC_CNT);
3793 
3794 	for (i = 0; i < bp->tx_nr_rings; i++) {
3795 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3796 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3797 
3798 		ring->fw_ring_id = INVALID_HW_RING_ID;
3799 	}
3800 
3801 	return 0;
3802 }
3803 
3804 static void bnxt_free_ring_grps(struct bnxt *bp)
3805 {
3806 	kfree(bp->grp_info);
3807 	bp->grp_info = NULL;
3808 }
3809 
3810 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3811 {
3812 	int i;
3813 
3814 	if (irq_re_init) {
3815 		bp->grp_info = kcalloc(bp->cp_nr_rings,
3816 				       sizeof(struct bnxt_ring_grp_info),
3817 				       GFP_KERNEL);
3818 		if (!bp->grp_info)
3819 			return -ENOMEM;
3820 	}
3821 	for (i = 0; i < bp->cp_nr_rings; i++) {
3822 		if (irq_re_init)
3823 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3824 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3825 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3826 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3827 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3828 	}
3829 	return 0;
3830 }
3831 
3832 static void bnxt_free_vnics(struct bnxt *bp)
3833 {
3834 	kfree(bp->vnic_info);
3835 	bp->vnic_info = NULL;
3836 	bp->nr_vnics = 0;
3837 }
3838 
3839 static int bnxt_alloc_vnics(struct bnxt *bp)
3840 {
3841 	int num_vnics = 1;
3842 
3843 #ifdef CONFIG_RFS_ACCEL
3844 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3845 		num_vnics += bp->rx_nr_rings;
3846 #endif
3847 
3848 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3849 		num_vnics++;
3850 
3851 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3852 				GFP_KERNEL);
3853 	if (!bp->vnic_info)
3854 		return -ENOMEM;
3855 
3856 	bp->nr_vnics = num_vnics;
3857 	return 0;
3858 }
3859 
3860 static void bnxt_init_vnics(struct bnxt *bp)
3861 {
3862 	int i;
3863 
3864 	for (i = 0; i < bp->nr_vnics; i++) {
3865 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3866 		int j;
3867 
3868 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3869 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3870 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3871 
3872 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3873 
3874 		if (bp->vnic_info[i].rss_hash_key) {
3875 			if (i == 0)
3876 				prandom_bytes(vnic->rss_hash_key,
3877 					      HW_HASH_KEY_SIZE);
3878 			else
3879 				memcpy(vnic->rss_hash_key,
3880 				       bp->vnic_info[0].rss_hash_key,
3881 				       HW_HASH_KEY_SIZE);
3882 		}
3883 	}
3884 }
3885 
3886 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3887 {
3888 	int pages;
3889 
3890 	pages = ring_size / desc_per_pg;
3891 
3892 	if (!pages)
3893 		return 1;
3894 
3895 	pages++;
3896 
3897 	while (pages & (pages - 1))
3898 		pages++;
3899 
3900 	return pages;
3901 }
3902 
3903 void bnxt_set_tpa_flags(struct bnxt *bp)
3904 {
3905 	bp->flags &= ~BNXT_FLAG_TPA;
3906 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3907 		return;
3908 	if (bp->dev->features & NETIF_F_LRO)
3909 		bp->flags |= BNXT_FLAG_LRO;
3910 	else if (bp->dev->features & NETIF_F_GRO_HW)
3911 		bp->flags |= BNXT_FLAG_GRO;
3912 }
3913 
3914 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3915  * be set on entry.
3916  */
3917 void bnxt_set_ring_params(struct bnxt *bp)
3918 {
3919 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
3920 	u32 agg_factor = 0, agg_ring_size = 0;
3921 
3922 	/* 8 for CRC and VLAN */
3923 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3924 
3925 	rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) +
3926 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3927 
3928 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3929 	ring_size = bp->rx_ring_size;
3930 	bp->rx_agg_ring_size = 0;
3931 	bp->rx_agg_nr_pages = 0;
3932 
3933 	if (bp->flags & BNXT_FLAG_TPA)
3934 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3935 
3936 	bp->flags &= ~BNXT_FLAG_JUMBO;
3937 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3938 		u32 jumbo_factor;
3939 
3940 		bp->flags |= BNXT_FLAG_JUMBO;
3941 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3942 		if (jumbo_factor > agg_factor)
3943 			agg_factor = jumbo_factor;
3944 	}
3945 	if (agg_factor) {
3946 		if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) {
3947 			ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA;
3948 			netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n",
3949 				    bp->rx_ring_size, ring_size);
3950 			bp->rx_ring_size = ring_size;
3951 		}
3952 		agg_ring_size = ring_size * agg_factor;
3953 
3954 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3955 							RX_DESC_CNT);
3956 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3957 			u32 tmp = agg_ring_size;
3958 
3959 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3960 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3961 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3962 				    tmp, agg_ring_size);
3963 		}
3964 		bp->rx_agg_ring_size = agg_ring_size;
3965 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3966 
3967 		if (BNXT_RX_PAGE_MODE(bp)) {
3968 			rx_space = BNXT_PAGE_MODE_BUF_SIZE;
3969 			rx_size = BNXT_MAX_PAGE_MODE_MTU;
3970 		} else {
3971 			rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3972 			rx_space = rx_size + NET_SKB_PAD +
3973 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3974 		}
3975 	}
3976 
3977 	bp->rx_buf_use_size = rx_size;
3978 	bp->rx_buf_size = rx_space;
3979 
3980 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3981 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3982 
3983 	ring_size = bp->tx_ring_size;
3984 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3985 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3986 
3987 	max_rx_cmpl = bp->rx_ring_size;
3988 	/* MAX TPA needs to be added because TPA_START completions are
3989 	 * immediately recycled, so the TPA completions are not bound by
3990 	 * the RX ring size.
3991 	 */
3992 	if (bp->flags & BNXT_FLAG_TPA)
3993 		max_rx_cmpl += bp->max_tpa;
3994 	/* RX and TPA completions are 32-byte, all others are 16-byte */
3995 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
3996 	bp->cp_ring_size = ring_size;
3997 
3998 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
3999 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
4000 		bp->cp_nr_pages = MAX_CP_PAGES;
4001 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
4002 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
4003 			    ring_size, bp->cp_ring_size);
4004 	}
4005 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
4006 	bp->cp_ring_mask = bp->cp_bit - 1;
4007 }
4008 
4009 /* Changing allocation mode of RX rings.
4010  * TODO: Update when extending xdp_rxq_info to support allocation modes.
4011  */
4012 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
4013 {
4014 	if (page_mode) {
4015 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
4016 		bp->flags |= BNXT_FLAG_RX_PAGE_MODE;
4017 
4018 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU) {
4019 			bp->flags |= BNXT_FLAG_JUMBO;
4020 			bp->rx_skb_func = bnxt_rx_multi_page_skb;
4021 			bp->dev->max_mtu =
4022 				min_t(u16, bp->max_mtu, BNXT_MAX_MTU);
4023 		} else {
4024 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
4025 			bp->rx_skb_func = bnxt_rx_page_skb;
4026 			bp->dev->max_mtu =
4027 				min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
4028 		}
4029 		bp->rx_dir = DMA_BIDIRECTIONAL;
4030 		/* Disable LRO or GRO_HW */
4031 		netdev_update_features(bp->dev);
4032 	} else {
4033 		bp->dev->max_mtu = bp->max_mtu;
4034 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
4035 		bp->rx_dir = DMA_FROM_DEVICE;
4036 		bp->rx_skb_func = bnxt_rx_skb;
4037 	}
4038 	return 0;
4039 }
4040 
4041 static void bnxt_free_vnic_attributes(struct bnxt *bp)
4042 {
4043 	int i;
4044 	struct bnxt_vnic_info *vnic;
4045 	struct pci_dev *pdev = bp->pdev;
4046 
4047 	if (!bp->vnic_info)
4048 		return;
4049 
4050 	for (i = 0; i < bp->nr_vnics; i++) {
4051 		vnic = &bp->vnic_info[i];
4052 
4053 		kfree(vnic->fw_grp_ids);
4054 		vnic->fw_grp_ids = NULL;
4055 
4056 		kfree(vnic->uc_list);
4057 		vnic->uc_list = NULL;
4058 
4059 		if (vnic->mc_list) {
4060 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
4061 					  vnic->mc_list, vnic->mc_list_mapping);
4062 			vnic->mc_list = NULL;
4063 		}
4064 
4065 		if (vnic->rss_table) {
4066 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
4067 					  vnic->rss_table,
4068 					  vnic->rss_table_dma_addr);
4069 			vnic->rss_table = NULL;
4070 		}
4071 
4072 		vnic->rss_hash_key = NULL;
4073 		vnic->flags = 0;
4074 	}
4075 }
4076 
4077 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
4078 {
4079 	int i, rc = 0, size;
4080 	struct bnxt_vnic_info *vnic;
4081 	struct pci_dev *pdev = bp->pdev;
4082 	int max_rings;
4083 
4084 	for (i = 0; i < bp->nr_vnics; i++) {
4085 		vnic = &bp->vnic_info[i];
4086 
4087 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
4088 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
4089 
4090 			if (mem_size > 0) {
4091 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
4092 				if (!vnic->uc_list) {
4093 					rc = -ENOMEM;
4094 					goto out;
4095 				}
4096 			}
4097 		}
4098 
4099 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
4100 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
4101 			vnic->mc_list =
4102 				dma_alloc_coherent(&pdev->dev,
4103 						   vnic->mc_list_size,
4104 						   &vnic->mc_list_mapping,
4105 						   GFP_KERNEL);
4106 			if (!vnic->mc_list) {
4107 				rc = -ENOMEM;
4108 				goto out;
4109 			}
4110 		}
4111 
4112 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4113 			goto vnic_skip_grps;
4114 
4115 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4116 			max_rings = bp->rx_nr_rings;
4117 		else
4118 			max_rings = 1;
4119 
4120 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
4121 		if (!vnic->fw_grp_ids) {
4122 			rc = -ENOMEM;
4123 			goto out;
4124 		}
4125 vnic_skip_grps:
4126 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
4127 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
4128 			continue;
4129 
4130 		/* Allocate rss table and hash key */
4131 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
4132 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4133 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
4134 
4135 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
4136 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
4137 						     vnic->rss_table_size,
4138 						     &vnic->rss_table_dma_addr,
4139 						     GFP_KERNEL);
4140 		if (!vnic->rss_table) {
4141 			rc = -ENOMEM;
4142 			goto out;
4143 		}
4144 
4145 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
4146 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
4147 	}
4148 	return 0;
4149 
4150 out:
4151 	return rc;
4152 }
4153 
4154 static void bnxt_free_hwrm_resources(struct bnxt *bp)
4155 {
4156 	struct bnxt_hwrm_wait_token *token;
4157 
4158 	dma_pool_destroy(bp->hwrm_dma_pool);
4159 	bp->hwrm_dma_pool = NULL;
4160 
4161 	rcu_read_lock();
4162 	hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node)
4163 		WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED);
4164 	rcu_read_unlock();
4165 }
4166 
4167 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
4168 {
4169 	bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev,
4170 					    BNXT_HWRM_DMA_SIZE,
4171 					    BNXT_HWRM_DMA_ALIGN, 0);
4172 	if (!bp->hwrm_dma_pool)
4173 		return -ENOMEM;
4174 
4175 	INIT_HLIST_HEAD(&bp->hwrm_pending_list);
4176 
4177 	return 0;
4178 }
4179 
4180 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
4181 {
4182 	kfree(stats->hw_masks);
4183 	stats->hw_masks = NULL;
4184 	kfree(stats->sw_stats);
4185 	stats->sw_stats = NULL;
4186 	if (stats->hw_stats) {
4187 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
4188 				  stats->hw_stats_map);
4189 		stats->hw_stats = NULL;
4190 	}
4191 }
4192 
4193 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
4194 				bool alloc_masks)
4195 {
4196 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
4197 					     &stats->hw_stats_map, GFP_KERNEL);
4198 	if (!stats->hw_stats)
4199 		return -ENOMEM;
4200 
4201 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
4202 	if (!stats->sw_stats)
4203 		goto stats_mem_err;
4204 
4205 	if (alloc_masks) {
4206 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
4207 		if (!stats->hw_masks)
4208 			goto stats_mem_err;
4209 	}
4210 	return 0;
4211 
4212 stats_mem_err:
4213 	bnxt_free_stats_mem(bp, stats);
4214 	return -ENOMEM;
4215 }
4216 
4217 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
4218 {
4219 	int i;
4220 
4221 	for (i = 0; i < count; i++)
4222 		mask_arr[i] = mask;
4223 }
4224 
4225 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
4226 {
4227 	int i;
4228 
4229 	for (i = 0; i < count; i++)
4230 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
4231 }
4232 
4233 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
4234 				    struct bnxt_stats_mem *stats)
4235 {
4236 	struct hwrm_func_qstats_ext_output *resp;
4237 	struct hwrm_func_qstats_ext_input *req;
4238 	__le64 *hw_masks;
4239 	int rc;
4240 
4241 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
4242 	    !(bp->flags & BNXT_FLAG_CHIP_P5))
4243 		return -EOPNOTSUPP;
4244 
4245 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT);
4246 	if (rc)
4247 		return rc;
4248 
4249 	req->fid = cpu_to_le16(0xffff);
4250 	req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4251 
4252 	resp = hwrm_req_hold(bp, req);
4253 	rc = hwrm_req_send(bp, req);
4254 	if (!rc) {
4255 		hw_masks = &resp->rx_ucast_pkts;
4256 		bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
4257 	}
4258 	hwrm_req_drop(bp, req);
4259 	return rc;
4260 }
4261 
4262 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
4263 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
4264 
4265 static void bnxt_init_stats(struct bnxt *bp)
4266 {
4267 	struct bnxt_napi *bnapi = bp->bnapi[0];
4268 	struct bnxt_cp_ring_info *cpr;
4269 	struct bnxt_stats_mem *stats;
4270 	__le64 *rx_stats, *tx_stats;
4271 	int rc, rx_count, tx_count;
4272 	u64 *rx_masks, *tx_masks;
4273 	u64 mask;
4274 	u8 flags;
4275 
4276 	cpr = &bnapi->cp_ring;
4277 	stats = &cpr->stats;
4278 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
4279 	if (rc) {
4280 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4281 			mask = (1ULL << 48) - 1;
4282 		else
4283 			mask = -1ULL;
4284 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
4285 	}
4286 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
4287 		stats = &bp->port_stats;
4288 		rx_stats = stats->hw_stats;
4289 		rx_masks = stats->hw_masks;
4290 		rx_count = sizeof(struct rx_port_stats) / 8;
4291 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4292 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4293 		tx_count = sizeof(struct tx_port_stats) / 8;
4294 
4295 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
4296 		rc = bnxt_hwrm_port_qstats(bp, flags);
4297 		if (rc) {
4298 			mask = (1ULL << 40) - 1;
4299 
4300 			bnxt_fill_masks(rx_masks, mask, rx_count);
4301 			bnxt_fill_masks(tx_masks, mask, tx_count);
4302 		} else {
4303 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4304 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
4305 			bnxt_hwrm_port_qstats(bp, 0);
4306 		}
4307 	}
4308 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
4309 		stats = &bp->rx_port_stats_ext;
4310 		rx_stats = stats->hw_stats;
4311 		rx_masks = stats->hw_masks;
4312 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
4313 		stats = &bp->tx_port_stats_ext;
4314 		tx_stats = stats->hw_stats;
4315 		tx_masks = stats->hw_masks;
4316 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
4317 
4318 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4319 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
4320 		if (rc) {
4321 			mask = (1ULL << 40) - 1;
4322 
4323 			bnxt_fill_masks(rx_masks, mask, rx_count);
4324 			if (tx_stats)
4325 				bnxt_fill_masks(tx_masks, mask, tx_count);
4326 		} else {
4327 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4328 			if (tx_stats)
4329 				bnxt_copy_hw_masks(tx_masks, tx_stats,
4330 						   tx_count);
4331 			bnxt_hwrm_port_qstats_ext(bp, 0);
4332 		}
4333 	}
4334 }
4335 
4336 static void bnxt_free_port_stats(struct bnxt *bp)
4337 {
4338 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
4339 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
4340 
4341 	bnxt_free_stats_mem(bp, &bp->port_stats);
4342 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
4343 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
4344 }
4345 
4346 static void bnxt_free_ring_stats(struct bnxt *bp)
4347 {
4348 	int i;
4349 
4350 	if (!bp->bnapi)
4351 		return;
4352 
4353 	for (i = 0; i < bp->cp_nr_rings; i++) {
4354 		struct bnxt_napi *bnapi = bp->bnapi[i];
4355 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4356 
4357 		bnxt_free_stats_mem(bp, &cpr->stats);
4358 	}
4359 }
4360 
4361 static int bnxt_alloc_stats(struct bnxt *bp)
4362 {
4363 	u32 size, i;
4364 	int rc;
4365 
4366 	size = bp->hw_ring_stats_size;
4367 
4368 	for (i = 0; i < bp->cp_nr_rings; i++) {
4369 		struct bnxt_napi *bnapi = bp->bnapi[i];
4370 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4371 
4372 		cpr->stats.len = size;
4373 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4374 		if (rc)
4375 			return rc;
4376 
4377 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4378 	}
4379 
4380 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4381 		return 0;
4382 
4383 	if (bp->port_stats.hw_stats)
4384 		goto alloc_ext_stats;
4385 
4386 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4387 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4388 	if (rc)
4389 		return rc;
4390 
4391 	bp->flags |= BNXT_FLAG_PORT_STATS;
4392 
4393 alloc_ext_stats:
4394 	/* Display extended statistics only if FW supports it */
4395 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4396 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4397 			return 0;
4398 
4399 	if (bp->rx_port_stats_ext.hw_stats)
4400 		goto alloc_tx_ext_stats;
4401 
4402 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4403 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4404 	/* Extended stats are optional */
4405 	if (rc)
4406 		return 0;
4407 
4408 alloc_tx_ext_stats:
4409 	if (bp->tx_port_stats_ext.hw_stats)
4410 		return 0;
4411 
4412 	if (bp->hwrm_spec_code >= 0x10902 ||
4413 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4414 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4415 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4416 		/* Extended stats are optional */
4417 		if (rc)
4418 			return 0;
4419 	}
4420 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4421 	return 0;
4422 }
4423 
4424 static void bnxt_clear_ring_indices(struct bnxt *bp)
4425 {
4426 	int i;
4427 
4428 	if (!bp->bnapi)
4429 		return;
4430 
4431 	for (i = 0; i < bp->cp_nr_rings; i++) {
4432 		struct bnxt_napi *bnapi = bp->bnapi[i];
4433 		struct bnxt_cp_ring_info *cpr;
4434 		struct bnxt_rx_ring_info *rxr;
4435 		struct bnxt_tx_ring_info *txr;
4436 
4437 		if (!bnapi)
4438 			continue;
4439 
4440 		cpr = &bnapi->cp_ring;
4441 		cpr->cp_raw_cons = 0;
4442 
4443 		txr = bnapi->tx_ring;
4444 		if (txr) {
4445 			txr->tx_prod = 0;
4446 			txr->tx_cons = 0;
4447 		}
4448 
4449 		rxr = bnapi->rx_ring;
4450 		if (rxr) {
4451 			rxr->rx_prod = 0;
4452 			rxr->rx_agg_prod = 0;
4453 			rxr->rx_sw_agg_prod = 0;
4454 			rxr->rx_next_cons = 0;
4455 		}
4456 	}
4457 }
4458 
4459 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
4460 {
4461 #ifdef CONFIG_RFS_ACCEL
4462 	int i;
4463 
4464 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
4465 	 * safe to delete the hash table.
4466 	 */
4467 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4468 		struct hlist_head *head;
4469 		struct hlist_node *tmp;
4470 		struct bnxt_ntuple_filter *fltr;
4471 
4472 		head = &bp->ntp_fltr_hash_tbl[i];
4473 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
4474 			hlist_del(&fltr->hash);
4475 			kfree(fltr);
4476 		}
4477 	}
4478 	if (irq_reinit) {
4479 		kfree(bp->ntp_fltr_bmap);
4480 		bp->ntp_fltr_bmap = NULL;
4481 	}
4482 	bp->ntp_fltr_count = 0;
4483 #endif
4484 }
4485 
4486 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4487 {
4488 #ifdef CONFIG_RFS_ACCEL
4489 	int i, rc = 0;
4490 
4491 	if (!(bp->flags & BNXT_FLAG_RFS))
4492 		return 0;
4493 
4494 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4495 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4496 
4497 	bp->ntp_fltr_count = 0;
4498 	bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
4499 				    sizeof(long),
4500 				    GFP_KERNEL);
4501 
4502 	if (!bp->ntp_fltr_bmap)
4503 		rc = -ENOMEM;
4504 
4505 	return rc;
4506 #else
4507 	return 0;
4508 #endif
4509 }
4510 
4511 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4512 {
4513 	bnxt_free_vnic_attributes(bp);
4514 	bnxt_free_tx_rings(bp);
4515 	bnxt_free_rx_rings(bp);
4516 	bnxt_free_cp_rings(bp);
4517 	bnxt_free_all_cp_arrays(bp);
4518 	bnxt_free_ntp_fltrs(bp, irq_re_init);
4519 	if (irq_re_init) {
4520 		bnxt_free_ring_stats(bp);
4521 		if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
4522 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
4523 			bnxt_free_port_stats(bp);
4524 		bnxt_free_ring_grps(bp);
4525 		bnxt_free_vnics(bp);
4526 		kfree(bp->tx_ring_map);
4527 		bp->tx_ring_map = NULL;
4528 		kfree(bp->tx_ring);
4529 		bp->tx_ring = NULL;
4530 		kfree(bp->rx_ring);
4531 		bp->rx_ring = NULL;
4532 		kfree(bp->bnapi);
4533 		bp->bnapi = NULL;
4534 	} else {
4535 		bnxt_clear_ring_indices(bp);
4536 	}
4537 }
4538 
4539 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
4540 {
4541 	int i, j, rc, size, arr_size;
4542 	void *bnapi;
4543 
4544 	if (irq_re_init) {
4545 		/* Allocate bnapi mem pointer array and mem block for
4546 		 * all queues
4547 		 */
4548 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
4549 				bp->cp_nr_rings);
4550 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
4551 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
4552 		if (!bnapi)
4553 			return -ENOMEM;
4554 
4555 		bp->bnapi = bnapi;
4556 		bnapi += arr_size;
4557 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
4558 			bp->bnapi[i] = bnapi;
4559 			bp->bnapi[i]->index = i;
4560 			bp->bnapi[i]->bp = bp;
4561 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4562 				struct bnxt_cp_ring_info *cpr =
4563 					&bp->bnapi[i]->cp_ring;
4564 
4565 				cpr->cp_ring_struct.ring_mem.flags =
4566 					BNXT_RMEM_RING_PTE_FLAG;
4567 			}
4568 		}
4569 
4570 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
4571 				      sizeof(struct bnxt_rx_ring_info),
4572 				      GFP_KERNEL);
4573 		if (!bp->rx_ring)
4574 			return -ENOMEM;
4575 
4576 		for (i = 0; i < bp->rx_nr_rings; i++) {
4577 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4578 
4579 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4580 				rxr->rx_ring_struct.ring_mem.flags =
4581 					BNXT_RMEM_RING_PTE_FLAG;
4582 				rxr->rx_agg_ring_struct.ring_mem.flags =
4583 					BNXT_RMEM_RING_PTE_FLAG;
4584 			}
4585 			rxr->bnapi = bp->bnapi[i];
4586 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4587 		}
4588 
4589 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
4590 				      sizeof(struct bnxt_tx_ring_info),
4591 				      GFP_KERNEL);
4592 		if (!bp->tx_ring)
4593 			return -ENOMEM;
4594 
4595 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4596 					  GFP_KERNEL);
4597 
4598 		if (!bp->tx_ring_map)
4599 			return -ENOMEM;
4600 
4601 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4602 			j = 0;
4603 		else
4604 			j = bp->rx_nr_rings;
4605 
4606 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
4607 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4608 
4609 			if (bp->flags & BNXT_FLAG_CHIP_P5)
4610 				txr->tx_ring_struct.ring_mem.flags =
4611 					BNXT_RMEM_RING_PTE_FLAG;
4612 			txr->bnapi = bp->bnapi[j];
4613 			bp->bnapi[j]->tx_ring = txr;
4614 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4615 			if (i >= bp->tx_nr_rings_xdp) {
4616 				txr->txq_index = i - bp->tx_nr_rings_xdp;
4617 				bp->bnapi[j]->tx_int = bnxt_tx_int;
4618 			} else {
4619 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
4620 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
4621 			}
4622 		}
4623 
4624 		rc = bnxt_alloc_stats(bp);
4625 		if (rc)
4626 			goto alloc_mem_err;
4627 		bnxt_init_stats(bp);
4628 
4629 		rc = bnxt_alloc_ntp_fltrs(bp);
4630 		if (rc)
4631 			goto alloc_mem_err;
4632 
4633 		rc = bnxt_alloc_vnics(bp);
4634 		if (rc)
4635 			goto alloc_mem_err;
4636 	}
4637 
4638 	rc = bnxt_alloc_all_cp_arrays(bp);
4639 	if (rc)
4640 		goto alloc_mem_err;
4641 
4642 	bnxt_init_ring_struct(bp);
4643 
4644 	rc = bnxt_alloc_rx_rings(bp);
4645 	if (rc)
4646 		goto alloc_mem_err;
4647 
4648 	rc = bnxt_alloc_tx_rings(bp);
4649 	if (rc)
4650 		goto alloc_mem_err;
4651 
4652 	rc = bnxt_alloc_cp_rings(bp);
4653 	if (rc)
4654 		goto alloc_mem_err;
4655 
4656 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4657 				  BNXT_VNIC_UCAST_FLAG;
4658 	rc = bnxt_alloc_vnic_attributes(bp);
4659 	if (rc)
4660 		goto alloc_mem_err;
4661 	return 0;
4662 
4663 alloc_mem_err:
4664 	bnxt_free_mem(bp, true);
4665 	return rc;
4666 }
4667 
4668 static void bnxt_disable_int(struct bnxt *bp)
4669 {
4670 	int i;
4671 
4672 	if (!bp->bnapi)
4673 		return;
4674 
4675 	for (i = 0; i < bp->cp_nr_rings; i++) {
4676 		struct bnxt_napi *bnapi = bp->bnapi[i];
4677 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4678 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4679 
4680 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
4681 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4682 	}
4683 }
4684 
4685 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4686 {
4687 	struct bnxt_napi *bnapi = bp->bnapi[n];
4688 	struct bnxt_cp_ring_info *cpr;
4689 
4690 	cpr = &bnapi->cp_ring;
4691 	return cpr->cp_ring_struct.map_idx;
4692 }
4693 
4694 static void bnxt_disable_int_sync(struct bnxt *bp)
4695 {
4696 	int i;
4697 
4698 	if (!bp->irq_tbl)
4699 		return;
4700 
4701 	atomic_inc(&bp->intr_sem);
4702 
4703 	bnxt_disable_int(bp);
4704 	for (i = 0; i < bp->cp_nr_rings; i++) {
4705 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
4706 
4707 		synchronize_irq(bp->irq_tbl[map_idx].vector);
4708 	}
4709 }
4710 
4711 static void bnxt_enable_int(struct bnxt *bp)
4712 {
4713 	int i;
4714 
4715 	atomic_set(&bp->intr_sem, 0);
4716 	for (i = 0; i < bp->cp_nr_rings; i++) {
4717 		struct bnxt_napi *bnapi = bp->bnapi[i];
4718 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4719 
4720 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
4721 	}
4722 }
4723 
4724 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
4725 			    bool async_only)
4726 {
4727 	DECLARE_BITMAP(async_events_bmap, 256);
4728 	u32 *events = (u32 *)async_events_bmap;
4729 	struct hwrm_func_drv_rgtr_output *resp;
4730 	struct hwrm_func_drv_rgtr_input *req;
4731 	u32 flags;
4732 	int rc, i;
4733 
4734 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR);
4735 	if (rc)
4736 		return rc;
4737 
4738 	req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4739 				   FUNC_DRV_RGTR_REQ_ENABLES_VER |
4740 				   FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4741 
4742 	req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4743 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
4744 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
4745 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
4746 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
4747 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
4748 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
4749 	req->flags = cpu_to_le32(flags);
4750 	req->ver_maj_8b = DRV_VER_MAJ;
4751 	req->ver_min_8b = DRV_VER_MIN;
4752 	req->ver_upd_8b = DRV_VER_UPD;
4753 	req->ver_maj = cpu_to_le16(DRV_VER_MAJ);
4754 	req->ver_min = cpu_to_le16(DRV_VER_MIN);
4755 	req->ver_upd = cpu_to_le16(DRV_VER_UPD);
4756 
4757 	if (BNXT_PF(bp)) {
4758 		u32 data[8];
4759 		int i;
4760 
4761 		memset(data, 0, sizeof(data));
4762 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4763 			u16 cmd = bnxt_vf_req_snif[i];
4764 			unsigned int bit, idx;
4765 
4766 			idx = cmd / 32;
4767 			bit = cmd % 32;
4768 			data[idx] |= 1 << bit;
4769 		}
4770 
4771 		for (i = 0; i < 8; i++)
4772 			req->vf_req_fwd[i] = cpu_to_le32(data[i]);
4773 
4774 		req->enables |=
4775 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4776 	}
4777 
4778 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4779 		req->flags |= cpu_to_le32(
4780 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4781 
4782 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4783 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
4784 		u16 event_id = bnxt_async_events_arr[i];
4785 
4786 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
4787 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4788 			continue;
4789 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4790 	}
4791 	if (bmap && bmap_size) {
4792 		for (i = 0; i < bmap_size; i++) {
4793 			if (test_bit(i, bmap))
4794 				__set_bit(i, async_events_bmap);
4795 		}
4796 	}
4797 	for (i = 0; i < 8; i++)
4798 		req->async_event_fwd[i] |= cpu_to_le32(events[i]);
4799 
4800 	if (async_only)
4801 		req->enables =
4802 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4803 
4804 	resp = hwrm_req_hold(bp, req);
4805 	rc = hwrm_req_send(bp, req);
4806 	if (!rc) {
4807 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
4808 		if (resp->flags &
4809 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4810 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4811 	}
4812 	hwrm_req_drop(bp, req);
4813 	return rc;
4814 }
4815 
4816 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4817 {
4818 	struct hwrm_func_drv_unrgtr_input *req;
4819 	int rc;
4820 
4821 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
4822 		return 0;
4823 
4824 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR);
4825 	if (rc)
4826 		return rc;
4827 	return hwrm_req_send(bp, req);
4828 }
4829 
4830 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4831 {
4832 	struct hwrm_tunnel_dst_port_free_input *req;
4833 	int rc;
4834 
4835 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN &&
4836 	    bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID)
4837 		return 0;
4838 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE &&
4839 	    bp->nge_fw_dst_port_id == INVALID_HW_RING_ID)
4840 		return 0;
4841 
4842 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE);
4843 	if (rc)
4844 		return rc;
4845 
4846 	req->tunnel_type = tunnel_type;
4847 
4848 	switch (tunnel_type) {
4849 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4850 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
4851 		bp->vxlan_port = 0;
4852 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
4853 		break;
4854 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4855 		req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
4856 		bp->nge_port = 0;
4857 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
4858 		break;
4859 	default:
4860 		break;
4861 	}
4862 
4863 	rc = hwrm_req_send(bp, req);
4864 	if (rc)
4865 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4866 			   rc);
4867 	return rc;
4868 }
4869 
4870 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4871 					   u8 tunnel_type)
4872 {
4873 	struct hwrm_tunnel_dst_port_alloc_output *resp;
4874 	struct hwrm_tunnel_dst_port_alloc_input *req;
4875 	int rc;
4876 
4877 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC);
4878 	if (rc)
4879 		return rc;
4880 
4881 	req->tunnel_type = tunnel_type;
4882 	req->tunnel_dst_port_val = port;
4883 
4884 	resp = hwrm_req_hold(bp, req);
4885 	rc = hwrm_req_send(bp, req);
4886 	if (rc) {
4887 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4888 			   rc);
4889 		goto err_out;
4890 	}
4891 
4892 	switch (tunnel_type) {
4893 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4894 		bp->vxlan_port = port;
4895 		bp->vxlan_fw_dst_port_id =
4896 			le16_to_cpu(resp->tunnel_dst_port_id);
4897 		break;
4898 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4899 		bp->nge_port = port;
4900 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
4901 		break;
4902 	default:
4903 		break;
4904 	}
4905 
4906 err_out:
4907 	hwrm_req_drop(bp, req);
4908 	return rc;
4909 }
4910 
4911 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4912 {
4913 	struct hwrm_cfa_l2_set_rx_mask_input *req;
4914 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4915 	int rc;
4916 
4917 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK);
4918 	if (rc)
4919 		return rc;
4920 
4921 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4922 	if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) {
4923 		req->num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4924 		req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4925 	}
4926 	req->mask = cpu_to_le32(vnic->rx_mask);
4927 	return hwrm_req_send_silent(bp, req);
4928 }
4929 
4930 #ifdef CONFIG_RFS_ACCEL
4931 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4932 					    struct bnxt_ntuple_filter *fltr)
4933 {
4934 	struct hwrm_cfa_ntuple_filter_free_input *req;
4935 	int rc;
4936 
4937 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE);
4938 	if (rc)
4939 		return rc;
4940 
4941 	req->ntuple_filter_id = fltr->filter_id;
4942 	return hwrm_req_send(bp, req);
4943 }
4944 
4945 #define BNXT_NTP_FLTR_FLAGS					\
4946 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4947 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4948 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4949 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4950 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4951 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4952 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4953 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4954 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4955 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4956 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4957 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4958 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4959 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4960 
4961 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4962 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4963 
4964 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4965 					     struct bnxt_ntuple_filter *fltr)
4966 {
4967 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4968 	struct hwrm_cfa_ntuple_filter_alloc_input *req;
4969 	struct flow_keys *keys = &fltr->fkeys;
4970 	struct bnxt_vnic_info *vnic;
4971 	u32 flags = 0;
4972 	int rc;
4973 
4974 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC);
4975 	if (rc)
4976 		return rc;
4977 
4978 	req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4979 
4980 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
4981 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
4982 		req->dst_id = cpu_to_le16(fltr->rxq);
4983 	} else {
4984 		vnic = &bp->vnic_info[fltr->rxq + 1];
4985 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
4986 	}
4987 	req->flags = cpu_to_le32(flags);
4988 	req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4989 
4990 	req->ethertype = htons(ETH_P_IP);
4991 	memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4992 	req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4993 	req->ip_protocol = keys->basic.ip_proto;
4994 
4995 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4996 		int i;
4997 
4998 		req->ethertype = htons(ETH_P_IPV6);
4999 		req->ip_addr_type =
5000 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
5001 		*(struct in6_addr *)&req->src_ipaddr[0] =
5002 			keys->addrs.v6addrs.src;
5003 		*(struct in6_addr *)&req->dst_ipaddr[0] =
5004 			keys->addrs.v6addrs.dst;
5005 		for (i = 0; i < 4; i++) {
5006 			req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
5007 			req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
5008 		}
5009 	} else {
5010 		req->src_ipaddr[0] = keys->addrs.v4addrs.src;
5011 		req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
5012 		req->dst_ipaddr[0] = keys->addrs.v4addrs.dst;
5013 		req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
5014 	}
5015 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
5016 		req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
5017 		req->tunnel_type =
5018 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
5019 	}
5020 
5021 	req->src_port = keys->ports.src;
5022 	req->src_port_mask = cpu_to_be16(0xffff);
5023 	req->dst_port = keys->ports.dst;
5024 	req->dst_port_mask = cpu_to_be16(0xffff);
5025 
5026 	resp = hwrm_req_hold(bp, req);
5027 	rc = hwrm_req_send(bp, req);
5028 	if (!rc)
5029 		fltr->filter_id = resp->ntuple_filter_id;
5030 	hwrm_req_drop(bp, req);
5031 	return rc;
5032 }
5033 #endif
5034 
5035 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
5036 				     const u8 *mac_addr)
5037 {
5038 	struct hwrm_cfa_l2_filter_alloc_output *resp;
5039 	struct hwrm_cfa_l2_filter_alloc_input *req;
5040 	int rc;
5041 
5042 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC);
5043 	if (rc)
5044 		return rc;
5045 
5046 	req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
5047 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
5048 		req->flags |=
5049 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
5050 	req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
5051 	req->enables =
5052 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
5053 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
5054 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
5055 	memcpy(req->l2_addr, mac_addr, ETH_ALEN);
5056 	req->l2_addr_mask[0] = 0xff;
5057 	req->l2_addr_mask[1] = 0xff;
5058 	req->l2_addr_mask[2] = 0xff;
5059 	req->l2_addr_mask[3] = 0xff;
5060 	req->l2_addr_mask[4] = 0xff;
5061 	req->l2_addr_mask[5] = 0xff;
5062 
5063 	resp = hwrm_req_hold(bp, req);
5064 	rc = hwrm_req_send(bp, req);
5065 	if (!rc)
5066 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
5067 							resp->l2_filter_id;
5068 	hwrm_req_drop(bp, req);
5069 	return rc;
5070 }
5071 
5072 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
5073 {
5074 	struct hwrm_cfa_l2_filter_free_input *req;
5075 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
5076 	int rc;
5077 
5078 	/* Any associated ntuple filters will also be cleared by firmware. */
5079 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
5080 	if (rc)
5081 		return rc;
5082 	hwrm_req_hold(bp, req);
5083 	for (i = 0; i < num_of_vnics; i++) {
5084 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5085 
5086 		for (j = 0; j < vnic->uc_filter_count; j++) {
5087 			req->l2_filter_id = vnic->fw_l2_filter_id[j];
5088 
5089 			rc = hwrm_req_send(bp, req);
5090 		}
5091 		vnic->uc_filter_count = 0;
5092 	}
5093 	hwrm_req_drop(bp, req);
5094 	return rc;
5095 }
5096 
5097 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
5098 {
5099 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5100 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
5101 	struct hwrm_vnic_tpa_cfg_input *req;
5102 	int rc;
5103 
5104 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
5105 		return 0;
5106 
5107 	rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG);
5108 	if (rc)
5109 		return rc;
5110 
5111 	if (tpa_flags) {
5112 		u16 mss = bp->dev->mtu - 40;
5113 		u32 nsegs, n, segs = 0, flags;
5114 
5115 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
5116 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
5117 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
5118 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
5119 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
5120 		if (tpa_flags & BNXT_FLAG_GRO)
5121 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
5122 
5123 		req->flags = cpu_to_le32(flags);
5124 
5125 		req->enables =
5126 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
5127 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
5128 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
5129 
5130 		/* Number of segs are log2 units, and first packet is not
5131 		 * included as part of this units.
5132 		 */
5133 		if (mss <= BNXT_RX_PAGE_SIZE) {
5134 			n = BNXT_RX_PAGE_SIZE / mss;
5135 			nsegs = (MAX_SKB_FRAGS - 1) * n;
5136 		} else {
5137 			n = mss / BNXT_RX_PAGE_SIZE;
5138 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
5139 				n++;
5140 			nsegs = (MAX_SKB_FRAGS - n) / n;
5141 		}
5142 
5143 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5144 			segs = MAX_TPA_SEGS_P5;
5145 			max_aggs = bp->max_tpa;
5146 		} else {
5147 			segs = ilog2(nsegs);
5148 		}
5149 		req->max_agg_segs = cpu_to_le16(segs);
5150 		req->max_aggs = cpu_to_le16(max_aggs);
5151 
5152 		req->min_agg_len = cpu_to_le32(512);
5153 	}
5154 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5155 
5156 	return hwrm_req_send(bp, req);
5157 }
5158 
5159 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
5160 {
5161 	struct bnxt_ring_grp_info *grp_info;
5162 
5163 	grp_info = &bp->grp_info[ring->grp_idx];
5164 	return grp_info->cp_fw_ring_id;
5165 }
5166 
5167 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
5168 {
5169 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5170 		struct bnxt_napi *bnapi = rxr->bnapi;
5171 		struct bnxt_cp_ring_info *cpr;
5172 
5173 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
5174 		return cpr->cp_ring_struct.fw_ring_id;
5175 	} else {
5176 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
5177 	}
5178 }
5179 
5180 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
5181 {
5182 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5183 		struct bnxt_napi *bnapi = txr->bnapi;
5184 		struct bnxt_cp_ring_info *cpr;
5185 
5186 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
5187 		return cpr->cp_ring_struct.fw_ring_id;
5188 	} else {
5189 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
5190 	}
5191 }
5192 
5193 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
5194 {
5195 	int entries;
5196 
5197 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5198 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
5199 	else
5200 		entries = HW_HASH_INDEX_SIZE;
5201 
5202 	bp->rss_indir_tbl_entries = entries;
5203 	bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
5204 					  GFP_KERNEL);
5205 	if (!bp->rss_indir_tbl)
5206 		return -ENOMEM;
5207 	return 0;
5208 }
5209 
5210 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
5211 {
5212 	u16 max_rings, max_entries, pad, i;
5213 
5214 	if (!bp->rx_nr_rings)
5215 		return;
5216 
5217 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5218 		max_rings = bp->rx_nr_rings - 1;
5219 	else
5220 		max_rings = bp->rx_nr_rings;
5221 
5222 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
5223 
5224 	for (i = 0; i < max_entries; i++)
5225 		bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
5226 
5227 	pad = bp->rss_indir_tbl_entries - max_entries;
5228 	if (pad)
5229 		memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
5230 }
5231 
5232 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
5233 {
5234 	u16 i, tbl_size, max_ring = 0;
5235 
5236 	if (!bp->rss_indir_tbl)
5237 		return 0;
5238 
5239 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5240 	for (i = 0; i < tbl_size; i++)
5241 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
5242 	return max_ring;
5243 }
5244 
5245 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
5246 {
5247 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5248 		return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
5249 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5250 		return 2;
5251 	return 1;
5252 }
5253 
5254 static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5255 {
5256 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
5257 	u16 i, j;
5258 
5259 	/* Fill the RSS indirection table with ring group ids */
5260 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
5261 		if (!no_rss)
5262 			j = bp->rss_indir_tbl[i];
5263 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
5264 	}
5265 }
5266 
5267 static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
5268 				      struct bnxt_vnic_info *vnic)
5269 {
5270 	__le16 *ring_tbl = vnic->rss_table;
5271 	struct bnxt_rx_ring_info *rxr;
5272 	u16 tbl_size, i;
5273 
5274 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5275 
5276 	for (i = 0; i < tbl_size; i++) {
5277 		u16 ring_id, j;
5278 
5279 		j = bp->rss_indir_tbl[i];
5280 		rxr = &bp->rx_ring[j];
5281 
5282 		ring_id = rxr->rx_ring_struct.fw_ring_id;
5283 		*ring_tbl++ = cpu_to_le16(ring_id);
5284 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5285 		*ring_tbl++ = cpu_to_le16(ring_id);
5286 	}
5287 }
5288 
5289 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5290 {
5291 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5292 		__bnxt_fill_hw_rss_tbl_p5(bp, vnic);
5293 	else
5294 		__bnxt_fill_hw_rss_tbl(bp, vnic);
5295 }
5296 
5297 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
5298 {
5299 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5300 	struct hwrm_vnic_rss_cfg_input *req;
5301 	int rc;
5302 
5303 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
5304 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
5305 		return 0;
5306 
5307 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5308 	if (rc)
5309 		return rc;
5310 
5311 	if (set_rss) {
5312 		bnxt_fill_hw_rss_tbl(bp, vnic);
5313 		req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5314 		req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5315 		req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
5316 		req->hash_key_tbl_addr =
5317 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
5318 	}
5319 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5320 	return hwrm_req_send(bp, req);
5321 }
5322 
5323 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
5324 {
5325 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5326 	struct hwrm_vnic_rss_cfg_input *req;
5327 	dma_addr_t ring_tbl_map;
5328 	u32 i, nr_ctxs;
5329 	int rc;
5330 
5331 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5332 	if (rc)
5333 		return rc;
5334 
5335 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5336 	if (!set_rss)
5337 		return hwrm_req_send(bp, req);
5338 
5339 	bnxt_fill_hw_rss_tbl(bp, vnic);
5340 	req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5341 	req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5342 	req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
5343 	ring_tbl_map = vnic->rss_table_dma_addr;
5344 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
5345 
5346 	hwrm_req_hold(bp, req);
5347 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
5348 		req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
5349 		req->ring_table_pair_index = i;
5350 		req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
5351 		rc = hwrm_req_send(bp, req);
5352 		if (rc)
5353 			goto exit;
5354 	}
5355 
5356 exit:
5357 	hwrm_req_drop(bp, req);
5358 	return rc;
5359 }
5360 
5361 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
5362 {
5363 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5364 	struct hwrm_vnic_plcmodes_cfg_input *req;
5365 	int rc;
5366 
5367 	rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG);
5368 	if (rc)
5369 		return rc;
5370 
5371 	req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT);
5372 	req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID);
5373 
5374 	if (BNXT_RX_PAGE_MODE(bp) && !BNXT_RX_JUMBO_MODE(bp)) {
5375 		req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
5376 					  VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
5377 		req->enables |=
5378 			cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
5379 	}
5380 	/* thresholds not implemented in firmware yet */
5381 	req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
5382 	req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
5383 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5384 	return hwrm_req_send(bp, req);
5385 }
5386 
5387 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
5388 					u16 ctx_idx)
5389 {
5390 	struct hwrm_vnic_rss_cos_lb_ctx_free_input *req;
5391 
5392 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE))
5393 		return;
5394 
5395 	req->rss_cos_lb_ctx_id =
5396 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
5397 
5398 	hwrm_req_send(bp, req);
5399 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
5400 }
5401 
5402 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
5403 {
5404 	int i, j;
5405 
5406 	for (i = 0; i < bp->nr_vnics; i++) {
5407 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5408 
5409 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
5410 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
5411 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
5412 		}
5413 	}
5414 	bp->rsscos_nr_ctxs = 0;
5415 }
5416 
5417 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
5418 {
5419 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp;
5420 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req;
5421 	int rc;
5422 
5423 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC);
5424 	if (rc)
5425 		return rc;
5426 
5427 	resp = hwrm_req_hold(bp, req);
5428 	rc = hwrm_req_send(bp, req);
5429 	if (!rc)
5430 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
5431 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
5432 	hwrm_req_drop(bp, req);
5433 
5434 	return rc;
5435 }
5436 
5437 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
5438 {
5439 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
5440 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
5441 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
5442 }
5443 
5444 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
5445 {
5446 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5447 	struct hwrm_vnic_cfg_input *req;
5448 	unsigned int ring = 0, grp_idx;
5449 	u16 def_vlan = 0;
5450 	int rc;
5451 
5452 	rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG);
5453 	if (rc)
5454 		return rc;
5455 
5456 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5457 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5458 
5459 		req->default_rx_ring_id =
5460 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5461 		req->default_cmpl_ring_id =
5462 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5463 		req->enables =
5464 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5465 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5466 		goto vnic_mru;
5467 	}
5468 	req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5469 	/* Only RSS support for now TBD: COS & LB */
5470 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5471 		req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5472 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5473 					   VNIC_CFG_REQ_ENABLES_MRU);
5474 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5475 		req->rss_rule =
5476 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5477 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5478 					   VNIC_CFG_REQ_ENABLES_MRU);
5479 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5480 	} else {
5481 		req->rss_rule = cpu_to_le16(0xffff);
5482 	}
5483 
5484 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5485 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5486 		req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5487 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5488 	} else {
5489 		req->cos_rule = cpu_to_le16(0xffff);
5490 	}
5491 
5492 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5493 		ring = 0;
5494 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5495 		ring = vnic_id - 1;
5496 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5497 		ring = bp->rx_nr_rings - 1;
5498 
5499 	grp_idx = bp->rx_ring[ring].bnapi->index;
5500 	req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5501 	req->lb_rule = cpu_to_le16(0xffff);
5502 vnic_mru:
5503 	req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
5504 
5505 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5506 #ifdef CONFIG_BNXT_SRIOV
5507 	if (BNXT_VF(bp))
5508 		def_vlan = bp->vf.vlan;
5509 #endif
5510 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5511 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5512 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
5513 		req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5514 
5515 	return hwrm_req_send(bp, req);
5516 }
5517 
5518 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5519 {
5520 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5521 		struct hwrm_vnic_free_input *req;
5522 
5523 		if (hwrm_req_init(bp, req, HWRM_VNIC_FREE))
5524 			return;
5525 
5526 		req->vnic_id =
5527 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5528 
5529 		hwrm_req_send(bp, req);
5530 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5531 	}
5532 }
5533 
5534 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5535 {
5536 	u16 i;
5537 
5538 	for (i = 0; i < bp->nr_vnics; i++)
5539 		bnxt_hwrm_vnic_free_one(bp, i);
5540 }
5541 
5542 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5543 				unsigned int start_rx_ring_idx,
5544 				unsigned int nr_rings)
5545 {
5546 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5547 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5548 	struct hwrm_vnic_alloc_output *resp;
5549 	struct hwrm_vnic_alloc_input *req;
5550 	int rc;
5551 
5552 	rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC);
5553 	if (rc)
5554 		return rc;
5555 
5556 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5557 		goto vnic_no_ring_grps;
5558 
5559 	/* map ring groups to this vnic */
5560 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5561 		grp_idx = bp->rx_ring[i].bnapi->index;
5562 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5563 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5564 				   j, nr_rings);
5565 			break;
5566 		}
5567 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5568 	}
5569 
5570 vnic_no_ring_grps:
5571 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5572 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5573 	if (vnic_id == 0)
5574 		req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5575 
5576 	resp = hwrm_req_hold(bp, req);
5577 	rc = hwrm_req_send(bp, req);
5578 	if (!rc)
5579 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5580 	hwrm_req_drop(bp, req);
5581 	return rc;
5582 }
5583 
5584 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5585 {
5586 	struct hwrm_vnic_qcaps_output *resp;
5587 	struct hwrm_vnic_qcaps_input *req;
5588 	int rc;
5589 
5590 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5591 	bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
5592 	if (bp->hwrm_spec_code < 0x10600)
5593 		return 0;
5594 
5595 	rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS);
5596 	if (rc)
5597 		return rc;
5598 
5599 	resp = hwrm_req_hold(bp, req);
5600 	rc = hwrm_req_send(bp, req);
5601 	if (!rc) {
5602 		u32 flags = le32_to_cpu(resp->flags);
5603 
5604 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
5605 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5606 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
5607 		if (flags &
5608 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5609 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5610 
5611 		/* Older P5 fw before EXT_HW_STATS support did not set
5612 		 * VLAN_STRIP_CAP properly.
5613 		 */
5614 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
5615 		    (BNXT_CHIP_P5_THOR(bp) &&
5616 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
5617 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
5618 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5619 		if (bp->max_tpa_v2) {
5620 			if (BNXT_CHIP_P5_THOR(bp))
5621 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
5622 			else
5623 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2;
5624 		}
5625 	}
5626 	hwrm_req_drop(bp, req);
5627 	return rc;
5628 }
5629 
5630 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5631 {
5632 	struct hwrm_ring_grp_alloc_output *resp;
5633 	struct hwrm_ring_grp_alloc_input *req;
5634 	int rc;
5635 	u16 i;
5636 
5637 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5638 		return 0;
5639 
5640 	rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC);
5641 	if (rc)
5642 		return rc;
5643 
5644 	resp = hwrm_req_hold(bp, req);
5645 	for (i = 0; i < bp->rx_nr_rings; i++) {
5646 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5647 
5648 		req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5649 		req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5650 		req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5651 		req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5652 
5653 		rc = hwrm_req_send(bp, req);
5654 
5655 		if (rc)
5656 			break;
5657 
5658 		bp->grp_info[grp_idx].fw_grp_id =
5659 			le32_to_cpu(resp->ring_group_id);
5660 	}
5661 	hwrm_req_drop(bp, req);
5662 	return rc;
5663 }
5664 
5665 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
5666 {
5667 	struct hwrm_ring_grp_free_input *req;
5668 	u16 i;
5669 
5670 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
5671 		return;
5672 
5673 	if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE))
5674 		return;
5675 
5676 	hwrm_req_hold(bp, req);
5677 	for (i = 0; i < bp->cp_nr_rings; i++) {
5678 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
5679 			continue;
5680 		req->ring_group_id =
5681 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
5682 
5683 		hwrm_req_send(bp, req);
5684 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
5685 	}
5686 	hwrm_req_drop(bp, req);
5687 }
5688 
5689 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
5690 				    struct bnxt_ring_struct *ring,
5691 				    u32 ring_type, u32 map_index)
5692 {
5693 	struct hwrm_ring_alloc_output *resp;
5694 	struct hwrm_ring_alloc_input *req;
5695 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
5696 	struct bnxt_ring_grp_info *grp_info;
5697 	int rc, err = 0;
5698 	u16 ring_id;
5699 
5700 	rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC);
5701 	if (rc)
5702 		goto exit;
5703 
5704 	req->enables = 0;
5705 	if (rmem->nr_pages > 1) {
5706 		req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
5707 		/* Page size is in log2 units */
5708 		req->page_size = BNXT_PAGE_SHIFT;
5709 		req->page_tbl_depth = 1;
5710 	} else {
5711 		req->page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
5712 	}
5713 	req->fbo = 0;
5714 	/* Association of ring index with doorbell index and MSIX number */
5715 	req->logical_id = cpu_to_le16(map_index);
5716 
5717 	switch (ring_type) {
5718 	case HWRM_RING_ALLOC_TX: {
5719 		struct bnxt_tx_ring_info *txr;
5720 
5721 		txr = container_of(ring, struct bnxt_tx_ring_info,
5722 				   tx_ring_struct);
5723 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
5724 		/* Association of transmit ring with completion ring */
5725 		grp_info = &bp->grp_info[ring->grp_idx];
5726 		req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
5727 		req->length = cpu_to_le32(bp->tx_ring_mask + 1);
5728 		req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5729 		req->queue_id = cpu_to_le16(ring->queue_id);
5730 		break;
5731 	}
5732 	case HWRM_RING_ALLOC_RX:
5733 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5734 		req->length = cpu_to_le32(bp->rx_ring_mask + 1);
5735 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5736 			u16 flags = 0;
5737 
5738 			/* Association of rx ring with stats context */
5739 			grp_info = &bp->grp_info[ring->grp_idx];
5740 			req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
5741 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5742 			req->enables |= cpu_to_le32(
5743 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5744 			if (NET_IP_ALIGN == 2)
5745 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
5746 			req->flags = cpu_to_le16(flags);
5747 		}
5748 		break;
5749 	case HWRM_RING_ALLOC_AGG:
5750 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5751 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
5752 			/* Association of agg ring with rx ring */
5753 			grp_info = &bp->grp_info[ring->grp_idx];
5754 			req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
5755 			req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
5756 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5757 			req->enables |= cpu_to_le32(
5758 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
5759 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5760 		} else {
5761 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5762 		}
5763 		req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
5764 		break;
5765 	case HWRM_RING_ALLOC_CMPL:
5766 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
5767 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5768 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5769 			/* Association of cp ring with nq */
5770 			grp_info = &bp->grp_info[map_index];
5771 			req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
5772 			req->cq_handle = cpu_to_le64(ring->handle);
5773 			req->enables |= cpu_to_le32(
5774 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
5775 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
5776 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5777 		}
5778 		break;
5779 	case HWRM_RING_ALLOC_NQ:
5780 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
5781 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5782 		if (bp->flags & BNXT_FLAG_USING_MSIX)
5783 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5784 		break;
5785 	default:
5786 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
5787 			   ring_type);
5788 		return -1;
5789 	}
5790 
5791 	resp = hwrm_req_hold(bp, req);
5792 	rc = hwrm_req_send(bp, req);
5793 	err = le16_to_cpu(resp->error_code);
5794 	ring_id = le16_to_cpu(resp->ring_id);
5795 	hwrm_req_drop(bp, req);
5796 
5797 exit:
5798 	if (rc || err) {
5799 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
5800 			   ring_type, rc, err);
5801 		return -EIO;
5802 	}
5803 	ring->fw_ring_id = ring_id;
5804 	return rc;
5805 }
5806 
5807 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5808 {
5809 	int rc;
5810 
5811 	if (BNXT_PF(bp)) {
5812 		struct hwrm_func_cfg_input *req;
5813 
5814 		rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
5815 		if (rc)
5816 			return rc;
5817 
5818 		req->fid = cpu_to_le16(0xffff);
5819 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5820 		req->async_event_cr = cpu_to_le16(idx);
5821 		return hwrm_req_send(bp, req);
5822 	} else {
5823 		struct hwrm_func_vf_cfg_input *req;
5824 
5825 		rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
5826 		if (rc)
5827 			return rc;
5828 
5829 		req->enables =
5830 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5831 		req->async_event_cr = cpu_to_le16(idx);
5832 		return hwrm_req_send(bp, req);
5833 	}
5834 }
5835 
5836 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5837 			u32 map_idx, u32 xid)
5838 {
5839 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5840 		if (BNXT_PF(bp))
5841 			db->doorbell = bp->bar1 + DB_PF_OFFSET_P5;
5842 		else
5843 			db->doorbell = bp->bar1 + DB_VF_OFFSET_P5;
5844 		switch (ring_type) {
5845 		case HWRM_RING_ALLOC_TX:
5846 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5847 			break;
5848 		case HWRM_RING_ALLOC_RX:
5849 		case HWRM_RING_ALLOC_AGG:
5850 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5851 			break;
5852 		case HWRM_RING_ALLOC_CMPL:
5853 			db->db_key64 = DBR_PATH_L2;
5854 			break;
5855 		case HWRM_RING_ALLOC_NQ:
5856 			db->db_key64 = DBR_PATH_L2;
5857 			break;
5858 		}
5859 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
5860 	} else {
5861 		db->doorbell = bp->bar1 + map_idx * 0x80;
5862 		switch (ring_type) {
5863 		case HWRM_RING_ALLOC_TX:
5864 			db->db_key32 = DB_KEY_TX;
5865 			break;
5866 		case HWRM_RING_ALLOC_RX:
5867 		case HWRM_RING_ALLOC_AGG:
5868 			db->db_key32 = DB_KEY_RX;
5869 			break;
5870 		case HWRM_RING_ALLOC_CMPL:
5871 			db->db_key32 = DB_KEY_CP;
5872 			break;
5873 		}
5874 	}
5875 }
5876 
5877 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5878 {
5879 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
5880 	int i, rc = 0;
5881 	u32 type;
5882 
5883 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5884 		type = HWRM_RING_ALLOC_NQ;
5885 	else
5886 		type = HWRM_RING_ALLOC_CMPL;
5887 	for (i = 0; i < bp->cp_nr_rings; i++) {
5888 		struct bnxt_napi *bnapi = bp->bnapi[i];
5889 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5890 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5891 		u32 map_idx = ring->map_idx;
5892 		unsigned int vector;
5893 
5894 		vector = bp->irq_tbl[map_idx].vector;
5895 		disable_irq_nosync(vector);
5896 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5897 		if (rc) {
5898 			enable_irq(vector);
5899 			goto err_out;
5900 		}
5901 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5902 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5903 		enable_irq(vector);
5904 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5905 
5906 		if (!i) {
5907 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5908 			if (rc)
5909 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5910 		}
5911 	}
5912 
5913 	type = HWRM_RING_ALLOC_TX;
5914 	for (i = 0; i < bp->tx_nr_rings; i++) {
5915 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5916 		struct bnxt_ring_struct *ring;
5917 		u32 map_idx;
5918 
5919 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5920 			struct bnxt_napi *bnapi = txr->bnapi;
5921 			struct bnxt_cp_ring_info *cpr, *cpr2;
5922 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5923 
5924 			cpr = &bnapi->cp_ring;
5925 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5926 			ring = &cpr2->cp_ring_struct;
5927 			ring->handle = BNXT_TX_HDL;
5928 			map_idx = bnapi->index;
5929 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5930 			if (rc)
5931 				goto err_out;
5932 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5933 				    ring->fw_ring_id);
5934 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5935 		}
5936 		ring = &txr->tx_ring_struct;
5937 		map_idx = i;
5938 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5939 		if (rc)
5940 			goto err_out;
5941 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5942 	}
5943 
5944 	type = HWRM_RING_ALLOC_RX;
5945 	for (i = 0; i < bp->rx_nr_rings; i++) {
5946 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5947 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5948 		struct bnxt_napi *bnapi = rxr->bnapi;
5949 		u32 map_idx = bnapi->index;
5950 
5951 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5952 		if (rc)
5953 			goto err_out;
5954 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5955 		/* If we have agg rings, post agg buffers first. */
5956 		if (!agg_rings)
5957 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5958 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5959 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5960 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5961 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5962 			struct bnxt_cp_ring_info *cpr2;
5963 
5964 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5965 			ring = &cpr2->cp_ring_struct;
5966 			ring->handle = BNXT_RX_HDL;
5967 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5968 			if (rc)
5969 				goto err_out;
5970 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5971 				    ring->fw_ring_id);
5972 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5973 		}
5974 	}
5975 
5976 	if (agg_rings) {
5977 		type = HWRM_RING_ALLOC_AGG;
5978 		for (i = 0; i < bp->rx_nr_rings; i++) {
5979 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5980 			struct bnxt_ring_struct *ring =
5981 						&rxr->rx_agg_ring_struct;
5982 			u32 grp_idx = ring->grp_idx;
5983 			u32 map_idx = grp_idx + bp->rx_nr_rings;
5984 
5985 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5986 			if (rc)
5987 				goto err_out;
5988 
5989 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
5990 				    ring->fw_ring_id);
5991 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
5992 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5993 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
5994 		}
5995 	}
5996 err_out:
5997 	return rc;
5998 }
5999 
6000 static int hwrm_ring_free_send_msg(struct bnxt *bp,
6001 				   struct bnxt_ring_struct *ring,
6002 				   u32 ring_type, int cmpl_ring_id)
6003 {
6004 	struct hwrm_ring_free_output *resp;
6005 	struct hwrm_ring_free_input *req;
6006 	u16 error_code = 0;
6007 	int rc;
6008 
6009 	if (BNXT_NO_FW_ACCESS(bp))
6010 		return 0;
6011 
6012 	rc = hwrm_req_init(bp, req, HWRM_RING_FREE);
6013 	if (rc)
6014 		goto exit;
6015 
6016 	req->cmpl_ring = cpu_to_le16(cmpl_ring_id);
6017 	req->ring_type = ring_type;
6018 	req->ring_id = cpu_to_le16(ring->fw_ring_id);
6019 
6020 	resp = hwrm_req_hold(bp, req);
6021 	rc = hwrm_req_send(bp, req);
6022 	error_code = le16_to_cpu(resp->error_code);
6023 	hwrm_req_drop(bp, req);
6024 exit:
6025 	if (rc || error_code) {
6026 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
6027 			   ring_type, rc, error_code);
6028 		return -EIO;
6029 	}
6030 	return 0;
6031 }
6032 
6033 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
6034 {
6035 	u32 type;
6036 	int i;
6037 
6038 	if (!bp->bnapi)
6039 		return;
6040 
6041 	for (i = 0; i < bp->tx_nr_rings; i++) {
6042 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
6043 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
6044 
6045 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6046 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
6047 
6048 			hwrm_ring_free_send_msg(bp, ring,
6049 						RING_FREE_REQ_RING_TYPE_TX,
6050 						close_path ? cmpl_ring_id :
6051 						INVALID_HW_RING_ID);
6052 			ring->fw_ring_id = INVALID_HW_RING_ID;
6053 		}
6054 	}
6055 
6056 	for (i = 0; i < bp->rx_nr_rings; i++) {
6057 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6058 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
6059 		u32 grp_idx = rxr->bnapi->index;
6060 
6061 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6062 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6063 
6064 			hwrm_ring_free_send_msg(bp, ring,
6065 						RING_FREE_REQ_RING_TYPE_RX,
6066 						close_path ? cmpl_ring_id :
6067 						INVALID_HW_RING_ID);
6068 			ring->fw_ring_id = INVALID_HW_RING_ID;
6069 			bp->grp_info[grp_idx].rx_fw_ring_id =
6070 				INVALID_HW_RING_ID;
6071 		}
6072 	}
6073 
6074 	if (bp->flags & BNXT_FLAG_CHIP_P5)
6075 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
6076 	else
6077 		type = RING_FREE_REQ_RING_TYPE_RX;
6078 	for (i = 0; i < bp->rx_nr_rings; i++) {
6079 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6080 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
6081 		u32 grp_idx = rxr->bnapi->index;
6082 
6083 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6084 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6085 
6086 			hwrm_ring_free_send_msg(bp, ring, type,
6087 						close_path ? cmpl_ring_id :
6088 						INVALID_HW_RING_ID);
6089 			ring->fw_ring_id = INVALID_HW_RING_ID;
6090 			bp->grp_info[grp_idx].agg_fw_ring_id =
6091 				INVALID_HW_RING_ID;
6092 		}
6093 	}
6094 
6095 	/* The completion rings are about to be freed.  After that the
6096 	 * IRQ doorbell will not work anymore.  So we need to disable
6097 	 * IRQ here.
6098 	 */
6099 	bnxt_disable_int_sync(bp);
6100 
6101 	if (bp->flags & BNXT_FLAG_CHIP_P5)
6102 		type = RING_FREE_REQ_RING_TYPE_NQ;
6103 	else
6104 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
6105 	for (i = 0; i < bp->cp_nr_rings; i++) {
6106 		struct bnxt_napi *bnapi = bp->bnapi[i];
6107 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6108 		struct bnxt_ring_struct *ring;
6109 		int j;
6110 
6111 		for (j = 0; j < 2; j++) {
6112 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
6113 
6114 			if (cpr2) {
6115 				ring = &cpr2->cp_ring_struct;
6116 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
6117 					continue;
6118 				hwrm_ring_free_send_msg(bp, ring,
6119 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
6120 					INVALID_HW_RING_ID);
6121 				ring->fw_ring_id = INVALID_HW_RING_ID;
6122 			}
6123 		}
6124 		ring = &cpr->cp_ring_struct;
6125 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6126 			hwrm_ring_free_send_msg(bp, ring, type,
6127 						INVALID_HW_RING_ID);
6128 			ring->fw_ring_id = INVALID_HW_RING_ID;
6129 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
6130 		}
6131 	}
6132 }
6133 
6134 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
6135 			   bool shared);
6136 
6137 static int bnxt_hwrm_get_rings(struct bnxt *bp)
6138 {
6139 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6140 	struct hwrm_func_qcfg_output *resp;
6141 	struct hwrm_func_qcfg_input *req;
6142 	int rc;
6143 
6144 	if (bp->hwrm_spec_code < 0x10601)
6145 		return 0;
6146 
6147 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6148 	if (rc)
6149 		return rc;
6150 
6151 	req->fid = cpu_to_le16(0xffff);
6152 	resp = hwrm_req_hold(bp, req);
6153 	rc = hwrm_req_send(bp, req);
6154 	if (rc) {
6155 		hwrm_req_drop(bp, req);
6156 		return rc;
6157 	}
6158 
6159 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6160 	if (BNXT_NEW_RM(bp)) {
6161 		u16 cp, stats;
6162 
6163 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
6164 		hw_resc->resv_hw_ring_grps =
6165 			le32_to_cpu(resp->alloc_hw_ring_grps);
6166 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
6167 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
6168 		stats = le16_to_cpu(resp->alloc_stat_ctx);
6169 		hw_resc->resv_irqs = cp;
6170 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6171 			int rx = hw_resc->resv_rx_rings;
6172 			int tx = hw_resc->resv_tx_rings;
6173 
6174 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
6175 				rx >>= 1;
6176 			if (cp < (rx + tx)) {
6177 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
6178 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
6179 					rx <<= 1;
6180 				hw_resc->resv_rx_rings = rx;
6181 				hw_resc->resv_tx_rings = tx;
6182 			}
6183 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
6184 			hw_resc->resv_hw_ring_grps = rx;
6185 		}
6186 		hw_resc->resv_cp_rings = cp;
6187 		hw_resc->resv_stat_ctxs = stats;
6188 	}
6189 	hwrm_req_drop(bp, req);
6190 	return 0;
6191 }
6192 
6193 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
6194 {
6195 	struct hwrm_func_qcfg_output *resp;
6196 	struct hwrm_func_qcfg_input *req;
6197 	int rc;
6198 
6199 	if (bp->hwrm_spec_code < 0x10601)
6200 		return 0;
6201 
6202 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6203 	if (rc)
6204 		return rc;
6205 
6206 	req->fid = cpu_to_le16(fid);
6207 	resp = hwrm_req_hold(bp, req);
6208 	rc = hwrm_req_send(bp, req);
6209 	if (!rc)
6210 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6211 
6212 	hwrm_req_drop(bp, req);
6213 	return rc;
6214 }
6215 
6216 static bool bnxt_rfs_supported(struct bnxt *bp);
6217 
6218 static struct hwrm_func_cfg_input *
6219 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6220 			     int ring_grps, int cp_rings, int stats, int vnics)
6221 {
6222 	struct hwrm_func_cfg_input *req;
6223 	u32 enables = 0;
6224 
6225 	if (hwrm_req_init(bp, req, HWRM_FUNC_CFG))
6226 		return NULL;
6227 
6228 	req->fid = cpu_to_le16(0xffff);
6229 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6230 	req->num_tx_rings = cpu_to_le16(tx_rings);
6231 	if (BNXT_NEW_RM(bp)) {
6232 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
6233 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6234 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6235 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
6236 			enables |= tx_rings + ring_grps ?
6237 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6238 			enables |= rx_rings ?
6239 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6240 		} else {
6241 			enables |= cp_rings ?
6242 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6243 			enables |= ring_grps ?
6244 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
6245 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6246 		}
6247 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
6248 
6249 		req->num_rx_rings = cpu_to_le16(rx_rings);
6250 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6251 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6252 			req->num_msix = cpu_to_le16(cp_rings);
6253 			req->num_rsscos_ctxs =
6254 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6255 		} else {
6256 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
6257 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6258 			req->num_rsscos_ctxs = cpu_to_le16(1);
6259 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
6260 			    bnxt_rfs_supported(bp))
6261 				req->num_rsscos_ctxs =
6262 					cpu_to_le16(ring_grps + 1);
6263 		}
6264 		req->num_stat_ctxs = cpu_to_le16(stats);
6265 		req->num_vnics = cpu_to_le16(vnics);
6266 	}
6267 	req->enables = cpu_to_le32(enables);
6268 	return req;
6269 }
6270 
6271 static struct hwrm_func_vf_cfg_input *
6272 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6273 			     int ring_grps, int cp_rings, int stats, int vnics)
6274 {
6275 	struct hwrm_func_vf_cfg_input *req;
6276 	u32 enables = 0;
6277 
6278 	if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG))
6279 		return NULL;
6280 
6281 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6282 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
6283 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6284 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6285 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6286 		enables |= tx_rings + ring_grps ?
6287 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6288 	} else {
6289 		enables |= cp_rings ?
6290 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6291 		enables |= ring_grps ?
6292 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
6293 	}
6294 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
6295 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
6296 
6297 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
6298 	req->num_tx_rings = cpu_to_le16(tx_rings);
6299 	req->num_rx_rings = cpu_to_le16(rx_rings);
6300 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6301 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6302 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6303 	} else {
6304 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
6305 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6306 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
6307 	}
6308 	req->num_stat_ctxs = cpu_to_le16(stats);
6309 	req->num_vnics = cpu_to_le16(vnics);
6310 
6311 	req->enables = cpu_to_le32(enables);
6312 	return req;
6313 }
6314 
6315 static int
6316 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6317 			   int ring_grps, int cp_rings, int stats, int vnics)
6318 {
6319 	struct hwrm_func_cfg_input *req;
6320 	int rc;
6321 
6322 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6323 					   cp_rings, stats, vnics);
6324 	if (!req)
6325 		return -ENOMEM;
6326 
6327 	if (!req->enables) {
6328 		hwrm_req_drop(bp, req);
6329 		return 0;
6330 	}
6331 
6332 	rc = hwrm_req_send(bp, req);
6333 	if (rc)
6334 		return rc;
6335 
6336 	if (bp->hwrm_spec_code < 0x10601)
6337 		bp->hw_resc.resv_tx_rings = tx_rings;
6338 
6339 	return bnxt_hwrm_get_rings(bp);
6340 }
6341 
6342 static int
6343 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6344 			   int ring_grps, int cp_rings, int stats, int vnics)
6345 {
6346 	struct hwrm_func_vf_cfg_input *req;
6347 	int rc;
6348 
6349 	if (!BNXT_NEW_RM(bp)) {
6350 		bp->hw_resc.resv_tx_rings = tx_rings;
6351 		return 0;
6352 	}
6353 
6354 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6355 					   cp_rings, stats, vnics);
6356 	if (!req)
6357 		return -ENOMEM;
6358 
6359 	rc = hwrm_req_send(bp, req);
6360 	if (rc)
6361 		return rc;
6362 
6363 	return bnxt_hwrm_get_rings(bp);
6364 }
6365 
6366 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
6367 				   int cp, int stat, int vnic)
6368 {
6369 	if (BNXT_PF(bp))
6370 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
6371 						  vnic);
6372 	else
6373 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
6374 						  vnic);
6375 }
6376 
6377 int bnxt_nq_rings_in_use(struct bnxt *bp)
6378 {
6379 	int cp = bp->cp_nr_rings;
6380 	int ulp_msix, ulp_base;
6381 
6382 	ulp_msix = bnxt_get_ulp_msix_num(bp);
6383 	if (ulp_msix) {
6384 		ulp_base = bnxt_get_ulp_msix_base(bp);
6385 		cp += ulp_msix;
6386 		if ((ulp_base + ulp_msix) > cp)
6387 			cp = ulp_base + ulp_msix;
6388 	}
6389 	return cp;
6390 }
6391 
6392 static int bnxt_cp_rings_in_use(struct bnxt *bp)
6393 {
6394 	int cp;
6395 
6396 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6397 		return bnxt_nq_rings_in_use(bp);
6398 
6399 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
6400 	return cp;
6401 }
6402 
6403 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
6404 {
6405 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
6406 	int cp = bp->cp_nr_rings;
6407 
6408 	if (!ulp_stat)
6409 		return cp;
6410 
6411 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
6412 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
6413 
6414 	return cp + ulp_stat;
6415 }
6416 
6417 /* Check if a default RSS map needs to be setup.  This function is only
6418  * used on older firmware that does not require reserving RX rings.
6419  */
6420 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
6421 {
6422 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6423 
6424 	/* The RSS map is valid for RX rings set to resv_rx_rings */
6425 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
6426 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
6427 		if (!netif_is_rxfh_configured(bp->dev))
6428 			bnxt_set_dflt_rss_indir_tbl(bp);
6429 	}
6430 }
6431 
6432 static bool bnxt_need_reserve_rings(struct bnxt *bp)
6433 {
6434 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6435 	int cp = bnxt_cp_rings_in_use(bp);
6436 	int nq = bnxt_nq_rings_in_use(bp);
6437 	int rx = bp->rx_nr_rings, stat;
6438 	int vnic = 1, grp = rx;
6439 
6440 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
6441 	    bp->hwrm_spec_code >= 0x10601)
6442 		return true;
6443 
6444 	/* Old firmware does not need RX ring reservations but we still
6445 	 * need to setup a default RSS map when needed.  With new firmware
6446 	 * we go through RX ring reservations first and then set up the
6447 	 * RSS map for the successfully reserved RX rings when needed.
6448 	 */
6449 	if (!BNXT_NEW_RM(bp)) {
6450 		bnxt_check_rss_tbl_no_rmgr(bp);
6451 		return false;
6452 	}
6453 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6454 		vnic = rx + 1;
6455 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6456 		rx <<= 1;
6457 	stat = bnxt_get_func_stat_ctxs(bp);
6458 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
6459 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
6460 	    (hw_resc->resv_hw_ring_grps != grp &&
6461 	     !(bp->flags & BNXT_FLAG_CHIP_P5)))
6462 		return true;
6463 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
6464 	    hw_resc->resv_irqs != nq)
6465 		return true;
6466 	return false;
6467 }
6468 
6469 static int __bnxt_reserve_rings(struct bnxt *bp)
6470 {
6471 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6472 	int cp = bnxt_nq_rings_in_use(bp);
6473 	int tx = bp->tx_nr_rings;
6474 	int rx = bp->rx_nr_rings;
6475 	int grp, rx_rings, rc;
6476 	int vnic = 1, stat;
6477 	bool sh = false;
6478 
6479 	if (!bnxt_need_reserve_rings(bp))
6480 		return 0;
6481 
6482 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6483 		sh = true;
6484 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6485 		vnic = rx + 1;
6486 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6487 		rx <<= 1;
6488 	grp = bp->rx_nr_rings;
6489 	stat = bnxt_get_func_stat_ctxs(bp);
6490 
6491 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
6492 	if (rc)
6493 		return rc;
6494 
6495 	tx = hw_resc->resv_tx_rings;
6496 	if (BNXT_NEW_RM(bp)) {
6497 		rx = hw_resc->resv_rx_rings;
6498 		cp = hw_resc->resv_irqs;
6499 		grp = hw_resc->resv_hw_ring_grps;
6500 		vnic = hw_resc->resv_vnics;
6501 		stat = hw_resc->resv_stat_ctxs;
6502 	}
6503 
6504 	rx_rings = rx;
6505 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6506 		if (rx >= 2) {
6507 			rx_rings = rx >> 1;
6508 		} else {
6509 			if (netif_running(bp->dev))
6510 				return -ENOMEM;
6511 
6512 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
6513 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
6514 			bp->dev->hw_features &= ~NETIF_F_LRO;
6515 			bp->dev->features &= ~NETIF_F_LRO;
6516 			bnxt_set_ring_params(bp);
6517 		}
6518 	}
6519 	rx_rings = min_t(int, rx_rings, grp);
6520 	cp = min_t(int, cp, bp->cp_nr_rings);
6521 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
6522 		stat -= bnxt_get_ulp_stat_ctxs(bp);
6523 	cp = min_t(int, cp, stat);
6524 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
6525 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6526 		rx = rx_rings << 1;
6527 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
6528 	bp->tx_nr_rings = tx;
6529 
6530 	/* If we cannot reserve all the RX rings, reset the RSS map only
6531 	 * if absolutely necessary
6532 	 */
6533 	if (rx_rings != bp->rx_nr_rings) {
6534 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
6535 			    rx_rings, bp->rx_nr_rings);
6536 		if (netif_is_rxfh_configured(bp->dev) &&
6537 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
6538 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
6539 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
6540 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
6541 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
6542 		}
6543 	}
6544 	bp->rx_nr_rings = rx_rings;
6545 	bp->cp_nr_rings = cp;
6546 
6547 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
6548 		return -ENOMEM;
6549 
6550 	if (!netif_is_rxfh_configured(bp->dev))
6551 		bnxt_set_dflt_rss_indir_tbl(bp);
6552 
6553 	return rc;
6554 }
6555 
6556 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6557 				    int ring_grps, int cp_rings, int stats,
6558 				    int vnics)
6559 {
6560 	struct hwrm_func_vf_cfg_input *req;
6561 	u32 flags;
6562 
6563 	if (!BNXT_NEW_RM(bp))
6564 		return 0;
6565 
6566 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6567 					   cp_rings, stats, vnics);
6568 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6569 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6570 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6571 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6572 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6573 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6574 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6575 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6576 
6577 	req->flags = cpu_to_le32(flags);
6578 	return hwrm_req_send_silent(bp, req);
6579 }
6580 
6581 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6582 				    int ring_grps, int cp_rings, int stats,
6583 				    int vnics)
6584 {
6585 	struct hwrm_func_cfg_input *req;
6586 	u32 flags;
6587 
6588 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6589 					   cp_rings, stats, vnics);
6590 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6591 	if (BNXT_NEW_RM(bp)) {
6592 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6593 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6594 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6595 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6596 		if (bp->flags & BNXT_FLAG_CHIP_P5)
6597 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6598 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6599 		else
6600 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6601 	}
6602 
6603 	req->flags = cpu_to_le32(flags);
6604 	return hwrm_req_send_silent(bp, req);
6605 }
6606 
6607 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6608 				 int ring_grps, int cp_rings, int stats,
6609 				 int vnics)
6610 {
6611 	if (bp->hwrm_spec_code < 0x10801)
6612 		return 0;
6613 
6614 	if (BNXT_PF(bp))
6615 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6616 						ring_grps, cp_rings, stats,
6617 						vnics);
6618 
6619 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6620 					cp_rings, stats, vnics);
6621 }
6622 
6623 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6624 {
6625 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6626 	struct hwrm_ring_aggint_qcaps_output *resp;
6627 	struct hwrm_ring_aggint_qcaps_input *req;
6628 	int rc;
6629 
6630 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6631 	coal_cap->num_cmpl_dma_aggr_max = 63;
6632 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6633 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6634 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6635 	coal_cap->int_lat_tmr_min_max = 65535;
6636 	coal_cap->int_lat_tmr_max_max = 65535;
6637 	coal_cap->num_cmpl_aggr_int_max = 65535;
6638 	coal_cap->timer_units = 80;
6639 
6640 	if (bp->hwrm_spec_code < 0x10902)
6641 		return;
6642 
6643 	if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS))
6644 		return;
6645 
6646 	resp = hwrm_req_hold(bp, req);
6647 	rc = hwrm_req_send_silent(bp, req);
6648 	if (!rc) {
6649 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
6650 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
6651 		coal_cap->num_cmpl_dma_aggr_max =
6652 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
6653 		coal_cap->num_cmpl_dma_aggr_during_int_max =
6654 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
6655 		coal_cap->cmpl_aggr_dma_tmr_max =
6656 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
6657 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
6658 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
6659 		coal_cap->int_lat_tmr_min_max =
6660 			le16_to_cpu(resp->int_lat_tmr_min_max);
6661 		coal_cap->int_lat_tmr_max_max =
6662 			le16_to_cpu(resp->int_lat_tmr_max_max);
6663 		coal_cap->num_cmpl_aggr_int_max =
6664 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
6665 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
6666 	}
6667 	hwrm_req_drop(bp, req);
6668 }
6669 
6670 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
6671 {
6672 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6673 
6674 	return usec * 1000 / coal_cap->timer_units;
6675 }
6676 
6677 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
6678 	struct bnxt_coal *hw_coal,
6679 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
6680 {
6681 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6682 	u16 val, tmr, max, flags = hw_coal->flags;
6683 	u32 cmpl_params = coal_cap->cmpl_params;
6684 
6685 	max = hw_coal->bufs_per_record * 128;
6686 	if (hw_coal->budget)
6687 		max = hw_coal->bufs_per_record * hw_coal->budget;
6688 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
6689 
6690 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
6691 	req->num_cmpl_aggr_int = cpu_to_le16(val);
6692 
6693 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
6694 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
6695 
6696 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
6697 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
6698 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
6699 
6700 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
6701 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
6702 	req->int_lat_tmr_max = cpu_to_le16(tmr);
6703 
6704 	/* min timer set to 1/2 of interrupt timer */
6705 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
6706 		val = tmr / 2;
6707 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
6708 		req->int_lat_tmr_min = cpu_to_le16(val);
6709 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6710 	}
6711 
6712 	/* buf timer set to 1/4 of interrupt timer */
6713 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
6714 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
6715 
6716 	if (cmpl_params &
6717 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
6718 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
6719 		val = clamp_t(u16, tmr, 1,
6720 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
6721 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
6722 		req->enables |=
6723 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
6724 	}
6725 
6726 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
6727 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
6728 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
6729 	req->flags = cpu_to_le16(flags);
6730 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
6731 }
6732 
6733 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
6734 				   struct bnxt_coal *hw_coal)
6735 {
6736 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req;
6737 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6738 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6739 	u32 nq_params = coal_cap->nq_params;
6740 	u16 tmr;
6741 	int rc;
6742 
6743 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
6744 		return 0;
6745 
6746 	rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6747 	if (rc)
6748 		return rc;
6749 
6750 	req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
6751 	req->flags =
6752 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
6753 
6754 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
6755 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
6756 	req->int_lat_tmr_min = cpu_to_le16(tmr);
6757 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6758 	return hwrm_req_send(bp, req);
6759 }
6760 
6761 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
6762 {
6763 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx;
6764 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6765 	struct bnxt_coal coal;
6766 	int rc;
6767 
6768 	/* Tick values in micro seconds.
6769 	 * 1 coal_buf x bufs_per_record = 1 completion record.
6770 	 */
6771 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
6772 
6773 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
6774 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
6775 
6776 	if (!bnapi->rx_ring)
6777 		return -ENODEV;
6778 
6779 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6780 	if (rc)
6781 		return rc;
6782 
6783 	bnxt_hwrm_set_coal_params(bp, &coal, req_rx);
6784 
6785 	req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
6786 
6787 	return hwrm_req_send(bp, req_rx);
6788 }
6789 
6790 int bnxt_hwrm_set_coal(struct bnxt *bp)
6791 {
6792 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx,
6793 							   *req;
6794 	int i, rc;
6795 
6796 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6797 	if (rc)
6798 		return rc;
6799 
6800 	rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6801 	if (rc) {
6802 		hwrm_req_drop(bp, req_rx);
6803 		return rc;
6804 	}
6805 
6806 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx);
6807 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx);
6808 
6809 	hwrm_req_hold(bp, req_rx);
6810 	hwrm_req_hold(bp, req_tx);
6811 	for (i = 0; i < bp->cp_nr_rings; i++) {
6812 		struct bnxt_napi *bnapi = bp->bnapi[i];
6813 		struct bnxt_coal *hw_coal;
6814 		u16 ring_id;
6815 
6816 		req = req_rx;
6817 		if (!bnapi->rx_ring) {
6818 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6819 			req = req_tx;
6820 		} else {
6821 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
6822 		}
6823 		req->ring_id = cpu_to_le16(ring_id);
6824 
6825 		rc = hwrm_req_send(bp, req);
6826 		if (rc)
6827 			break;
6828 
6829 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6830 			continue;
6831 
6832 		if (bnapi->rx_ring && bnapi->tx_ring) {
6833 			req = req_tx;
6834 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6835 			req->ring_id = cpu_to_le16(ring_id);
6836 			rc = hwrm_req_send(bp, req);
6837 			if (rc)
6838 				break;
6839 		}
6840 		if (bnapi->rx_ring)
6841 			hw_coal = &bp->rx_coal;
6842 		else
6843 			hw_coal = &bp->tx_coal;
6844 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
6845 	}
6846 	hwrm_req_drop(bp, req_rx);
6847 	hwrm_req_drop(bp, req_tx);
6848 	return rc;
6849 }
6850 
6851 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
6852 {
6853 	struct hwrm_stat_ctx_clr_stats_input *req0 = NULL;
6854 	struct hwrm_stat_ctx_free_input *req;
6855 	int i;
6856 
6857 	if (!bp->bnapi)
6858 		return;
6859 
6860 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6861 		return;
6862 
6863 	if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE))
6864 		return;
6865 	if (BNXT_FW_MAJ(bp) <= 20) {
6866 		if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) {
6867 			hwrm_req_drop(bp, req);
6868 			return;
6869 		}
6870 		hwrm_req_hold(bp, req0);
6871 	}
6872 	hwrm_req_hold(bp, req);
6873 	for (i = 0; i < bp->cp_nr_rings; i++) {
6874 		struct bnxt_napi *bnapi = bp->bnapi[i];
6875 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6876 
6877 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
6878 			req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
6879 			if (req0) {
6880 				req0->stat_ctx_id = req->stat_ctx_id;
6881 				hwrm_req_send(bp, req0);
6882 			}
6883 			hwrm_req_send(bp, req);
6884 
6885 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6886 		}
6887 	}
6888 	hwrm_req_drop(bp, req);
6889 	if (req0)
6890 		hwrm_req_drop(bp, req0);
6891 }
6892 
6893 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6894 {
6895 	struct hwrm_stat_ctx_alloc_output *resp;
6896 	struct hwrm_stat_ctx_alloc_input *req;
6897 	int rc, i;
6898 
6899 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6900 		return 0;
6901 
6902 	rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC);
6903 	if (rc)
6904 		return rc;
6905 
6906 	req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
6907 	req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6908 
6909 	resp = hwrm_req_hold(bp, req);
6910 	for (i = 0; i < bp->cp_nr_rings; i++) {
6911 		struct bnxt_napi *bnapi = bp->bnapi[i];
6912 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6913 
6914 		req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
6915 
6916 		rc = hwrm_req_send(bp, req);
6917 		if (rc)
6918 			break;
6919 
6920 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6921 
6922 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6923 	}
6924 	hwrm_req_drop(bp, req);
6925 	return rc;
6926 }
6927 
6928 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6929 {
6930 	struct hwrm_func_qcfg_output *resp;
6931 	struct hwrm_func_qcfg_input *req;
6932 	u32 min_db_offset = 0;
6933 	u16 flags;
6934 	int rc;
6935 
6936 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6937 	if (rc)
6938 		return rc;
6939 
6940 	req->fid = cpu_to_le16(0xffff);
6941 	resp = hwrm_req_hold(bp, req);
6942 	rc = hwrm_req_send(bp, req);
6943 	if (rc)
6944 		goto func_qcfg_exit;
6945 
6946 #ifdef CONFIG_BNXT_SRIOV
6947 	if (BNXT_VF(bp)) {
6948 		struct bnxt_vf_info *vf = &bp->vf;
6949 
6950 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6951 	} else {
6952 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
6953 	}
6954 #endif
6955 	flags = le16_to_cpu(resp->flags);
6956 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6957 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6958 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6959 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6960 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6961 	}
6962 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6963 		bp->flags |= BNXT_FLAG_MULTI_HOST;
6964 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
6965 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
6966 
6967 	switch (resp->port_partition_type) {
6968 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
6969 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
6970 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
6971 		bp->port_partition_type = resp->port_partition_type;
6972 		break;
6973 	}
6974 	if (bp->hwrm_spec_code < 0x10707 ||
6975 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
6976 		bp->br_mode = BRIDGE_MODE_VEB;
6977 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
6978 		bp->br_mode = BRIDGE_MODE_VEPA;
6979 	else
6980 		bp->br_mode = BRIDGE_MODE_UNDEF;
6981 
6982 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
6983 	if (!bp->max_mtu)
6984 		bp->max_mtu = BNXT_MAX_MTU;
6985 
6986 	if (bp->db_size)
6987 		goto func_qcfg_exit;
6988 
6989 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6990 		if (BNXT_PF(bp))
6991 			min_db_offset = DB_PF_OFFSET_P5;
6992 		else
6993 			min_db_offset = DB_VF_OFFSET_P5;
6994 	}
6995 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
6996 				 1024);
6997 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
6998 	    bp->db_size <= min_db_offset)
6999 		bp->db_size = pci_resource_len(bp->pdev, 2);
7000 
7001 func_qcfg_exit:
7002 	hwrm_req_drop(bp, req);
7003 	return rc;
7004 }
7005 
7006 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx,
7007 			struct hwrm_func_backing_store_qcaps_output *resp)
7008 {
7009 	struct bnxt_mem_init *mem_init;
7010 	u16 init_mask;
7011 	u8 init_val;
7012 	u8 *offset;
7013 	int i;
7014 
7015 	init_val = resp->ctx_kind_initializer;
7016 	init_mask = le16_to_cpu(resp->ctx_init_mask);
7017 	offset = &resp->qp_init_offset;
7018 	mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7019 	for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) {
7020 		mem_init->init_val = init_val;
7021 		mem_init->offset = BNXT_MEM_INVALID_OFFSET;
7022 		if (!init_mask)
7023 			continue;
7024 		if (i == BNXT_CTX_MEM_INIT_STAT)
7025 			offset = &resp->stat_init_offset;
7026 		if (init_mask & (1 << i))
7027 			mem_init->offset = *offset * 4;
7028 		else
7029 			mem_init->init_val = 0;
7030 	}
7031 	ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size;
7032 	ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size;
7033 	ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size;
7034 	ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size;
7035 	ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size;
7036 	ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size;
7037 }
7038 
7039 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
7040 {
7041 	struct hwrm_func_backing_store_qcaps_output *resp;
7042 	struct hwrm_func_backing_store_qcaps_input *req;
7043 	int rc;
7044 
7045 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
7046 		return 0;
7047 
7048 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS);
7049 	if (rc)
7050 		return rc;
7051 
7052 	resp = hwrm_req_hold(bp, req);
7053 	rc = hwrm_req_send_silent(bp, req);
7054 	if (!rc) {
7055 		struct bnxt_ctx_pg_info *ctx_pg;
7056 		struct bnxt_ctx_mem_info *ctx;
7057 		int i, tqm_rings;
7058 
7059 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
7060 		if (!ctx) {
7061 			rc = -ENOMEM;
7062 			goto ctx_err;
7063 		}
7064 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
7065 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
7066 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
7067 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
7068 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
7069 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
7070 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
7071 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
7072 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
7073 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
7074 		ctx->vnic_max_vnic_entries =
7075 			le16_to_cpu(resp->vnic_max_vnic_entries);
7076 		ctx->vnic_max_ring_table_entries =
7077 			le16_to_cpu(resp->vnic_max_ring_table_entries);
7078 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
7079 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
7080 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
7081 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
7082 		ctx->tqm_min_entries_per_ring =
7083 			le32_to_cpu(resp->tqm_min_entries_per_ring);
7084 		ctx->tqm_max_entries_per_ring =
7085 			le32_to_cpu(resp->tqm_max_entries_per_ring);
7086 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
7087 		if (!ctx->tqm_entries_multiple)
7088 			ctx->tqm_entries_multiple = 1;
7089 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
7090 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
7091 		ctx->mrav_num_entries_units =
7092 			le16_to_cpu(resp->mrav_num_entries_units);
7093 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
7094 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
7095 
7096 		bnxt_init_ctx_initializer(ctx, resp);
7097 
7098 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
7099 		if (!ctx->tqm_fp_rings_count)
7100 			ctx->tqm_fp_rings_count = bp->max_q;
7101 		else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
7102 			ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
7103 
7104 		tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS;
7105 		ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL);
7106 		if (!ctx_pg) {
7107 			kfree(ctx);
7108 			rc = -ENOMEM;
7109 			goto ctx_err;
7110 		}
7111 		for (i = 0; i < tqm_rings; i++, ctx_pg++)
7112 			ctx->tqm_mem[i] = ctx_pg;
7113 		bp->ctx = ctx;
7114 	} else {
7115 		rc = 0;
7116 	}
7117 ctx_err:
7118 	hwrm_req_drop(bp, req);
7119 	return rc;
7120 }
7121 
7122 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
7123 				  __le64 *pg_dir)
7124 {
7125 	if (!rmem->nr_pages)
7126 		return;
7127 
7128 	BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
7129 	if (rmem->depth >= 1) {
7130 		if (rmem->depth == 2)
7131 			*pg_attr |= 2;
7132 		else
7133 			*pg_attr |= 1;
7134 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
7135 	} else {
7136 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
7137 	}
7138 }
7139 
7140 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
7141 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
7142 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
7143 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
7144 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
7145 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
7146 
7147 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
7148 {
7149 	struct hwrm_func_backing_store_cfg_input *req;
7150 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7151 	struct bnxt_ctx_pg_info *ctx_pg;
7152 	void **__req = (void **)&req;
7153 	u32 req_len = sizeof(*req);
7154 	__le32 *num_entries;
7155 	__le64 *pg_dir;
7156 	u32 flags = 0;
7157 	u8 *pg_attr;
7158 	u32 ena;
7159 	int rc;
7160 	int i;
7161 
7162 	if (!ctx)
7163 		return 0;
7164 
7165 	if (req_len > bp->hwrm_max_ext_req_len)
7166 		req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
7167 	rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len);
7168 	if (rc)
7169 		return rc;
7170 
7171 	req->enables = cpu_to_le32(enables);
7172 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
7173 		ctx_pg = &ctx->qp_mem;
7174 		req->qp_num_entries = cpu_to_le32(ctx_pg->entries);
7175 		req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
7176 		req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
7177 		req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
7178 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7179 				      &req->qpc_pg_size_qpc_lvl,
7180 				      &req->qpc_page_dir);
7181 	}
7182 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
7183 		ctx_pg = &ctx->srq_mem;
7184 		req->srq_num_entries = cpu_to_le32(ctx_pg->entries);
7185 		req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
7186 		req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
7187 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7188 				      &req->srq_pg_size_srq_lvl,
7189 				      &req->srq_page_dir);
7190 	}
7191 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
7192 		ctx_pg = &ctx->cq_mem;
7193 		req->cq_num_entries = cpu_to_le32(ctx_pg->entries);
7194 		req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
7195 		req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
7196 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7197 				      &req->cq_pg_size_cq_lvl,
7198 				      &req->cq_page_dir);
7199 	}
7200 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
7201 		ctx_pg = &ctx->vnic_mem;
7202 		req->vnic_num_vnic_entries =
7203 			cpu_to_le16(ctx->vnic_max_vnic_entries);
7204 		req->vnic_num_ring_table_entries =
7205 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
7206 		req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
7207 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7208 				      &req->vnic_pg_size_vnic_lvl,
7209 				      &req->vnic_page_dir);
7210 	}
7211 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
7212 		ctx_pg = &ctx->stat_mem;
7213 		req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
7214 		req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
7215 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7216 				      &req->stat_pg_size_stat_lvl,
7217 				      &req->stat_page_dir);
7218 	}
7219 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
7220 		ctx_pg = &ctx->mrav_mem;
7221 		req->mrav_num_entries = cpu_to_le32(ctx_pg->entries);
7222 		if (ctx->mrav_num_entries_units)
7223 			flags |=
7224 			FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
7225 		req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
7226 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7227 				      &req->mrav_pg_size_mrav_lvl,
7228 				      &req->mrav_page_dir);
7229 	}
7230 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
7231 		ctx_pg = &ctx->tim_mem;
7232 		req->tim_num_entries = cpu_to_le32(ctx_pg->entries);
7233 		req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
7234 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7235 				      &req->tim_pg_size_tim_lvl,
7236 				      &req->tim_page_dir);
7237 	}
7238 	for (i = 0, num_entries = &req->tqm_sp_num_entries,
7239 	     pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl,
7240 	     pg_dir = &req->tqm_sp_page_dir,
7241 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
7242 	     i < BNXT_MAX_TQM_RINGS;
7243 	     i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
7244 		if (!(enables & ena))
7245 			continue;
7246 
7247 		req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
7248 		ctx_pg = ctx->tqm_mem[i];
7249 		*num_entries = cpu_to_le32(ctx_pg->entries);
7250 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
7251 	}
7252 	req->flags = cpu_to_le32(flags);
7253 	return hwrm_req_send(bp, req);
7254 }
7255 
7256 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
7257 				  struct bnxt_ctx_pg_info *ctx_pg)
7258 {
7259 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7260 
7261 	rmem->page_size = BNXT_PAGE_SIZE;
7262 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
7263 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
7264 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
7265 	if (rmem->depth >= 1)
7266 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
7267 	return bnxt_alloc_ring(bp, rmem);
7268 }
7269 
7270 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
7271 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
7272 				  u8 depth, struct bnxt_mem_init *mem_init)
7273 {
7274 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7275 	int rc;
7276 
7277 	if (!mem_size)
7278 		return -EINVAL;
7279 
7280 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7281 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
7282 		ctx_pg->nr_pages = 0;
7283 		return -EINVAL;
7284 	}
7285 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
7286 		int nr_tbls, i;
7287 
7288 		rmem->depth = 2;
7289 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
7290 					     GFP_KERNEL);
7291 		if (!ctx_pg->ctx_pg_tbl)
7292 			return -ENOMEM;
7293 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
7294 		rmem->nr_pages = nr_tbls;
7295 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7296 		if (rc)
7297 			return rc;
7298 		for (i = 0; i < nr_tbls; i++) {
7299 			struct bnxt_ctx_pg_info *pg_tbl;
7300 
7301 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
7302 			if (!pg_tbl)
7303 				return -ENOMEM;
7304 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
7305 			rmem = &pg_tbl->ring_mem;
7306 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
7307 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
7308 			rmem->depth = 1;
7309 			rmem->nr_pages = MAX_CTX_PAGES;
7310 			rmem->mem_init = mem_init;
7311 			if (i == (nr_tbls - 1)) {
7312 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
7313 
7314 				if (rem)
7315 					rmem->nr_pages = rem;
7316 			}
7317 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
7318 			if (rc)
7319 				break;
7320 		}
7321 	} else {
7322 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7323 		if (rmem->nr_pages > 1 || depth)
7324 			rmem->depth = 1;
7325 		rmem->mem_init = mem_init;
7326 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7327 	}
7328 	return rc;
7329 }
7330 
7331 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
7332 				  struct bnxt_ctx_pg_info *ctx_pg)
7333 {
7334 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7335 
7336 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
7337 	    ctx_pg->ctx_pg_tbl) {
7338 		int i, nr_tbls = rmem->nr_pages;
7339 
7340 		for (i = 0; i < nr_tbls; i++) {
7341 			struct bnxt_ctx_pg_info *pg_tbl;
7342 			struct bnxt_ring_mem_info *rmem2;
7343 
7344 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
7345 			if (!pg_tbl)
7346 				continue;
7347 			rmem2 = &pg_tbl->ring_mem;
7348 			bnxt_free_ring(bp, rmem2);
7349 			ctx_pg->ctx_pg_arr[i] = NULL;
7350 			kfree(pg_tbl);
7351 			ctx_pg->ctx_pg_tbl[i] = NULL;
7352 		}
7353 		kfree(ctx_pg->ctx_pg_tbl);
7354 		ctx_pg->ctx_pg_tbl = NULL;
7355 	}
7356 	bnxt_free_ring(bp, rmem);
7357 	ctx_pg->nr_pages = 0;
7358 }
7359 
7360 void bnxt_free_ctx_mem(struct bnxt *bp)
7361 {
7362 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7363 	int i;
7364 
7365 	if (!ctx)
7366 		return;
7367 
7368 	if (ctx->tqm_mem[0]) {
7369 		for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
7370 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
7371 		kfree(ctx->tqm_mem[0]);
7372 		ctx->tqm_mem[0] = NULL;
7373 	}
7374 
7375 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
7376 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
7377 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
7378 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
7379 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
7380 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
7381 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
7382 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
7383 }
7384 
7385 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
7386 {
7387 	struct bnxt_ctx_pg_info *ctx_pg;
7388 	struct bnxt_ctx_mem_info *ctx;
7389 	struct bnxt_mem_init *init;
7390 	u32 mem_size, ena, entries;
7391 	u32 entries_sp, min;
7392 	u32 num_mr, num_ah;
7393 	u32 extra_srqs = 0;
7394 	u32 extra_qps = 0;
7395 	u8 pg_lvl = 1;
7396 	int i, rc;
7397 
7398 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
7399 	if (rc) {
7400 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
7401 			   rc);
7402 		return rc;
7403 	}
7404 	ctx = bp->ctx;
7405 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
7406 		return 0;
7407 
7408 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
7409 		pg_lvl = 2;
7410 		extra_qps = 65536;
7411 		extra_srqs = 8192;
7412 	}
7413 
7414 	ctx_pg = &ctx->qp_mem;
7415 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
7416 			  extra_qps;
7417 	if (ctx->qp_entry_size) {
7418 		mem_size = ctx->qp_entry_size * ctx_pg->entries;
7419 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7420 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7421 		if (rc)
7422 			return rc;
7423 	}
7424 
7425 	ctx_pg = &ctx->srq_mem;
7426 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
7427 	if (ctx->srq_entry_size) {
7428 		mem_size = ctx->srq_entry_size * ctx_pg->entries;
7429 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ];
7430 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7431 		if (rc)
7432 			return rc;
7433 	}
7434 
7435 	ctx_pg = &ctx->cq_mem;
7436 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
7437 	if (ctx->cq_entry_size) {
7438 		mem_size = ctx->cq_entry_size * ctx_pg->entries;
7439 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ];
7440 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7441 		if (rc)
7442 			return rc;
7443 	}
7444 
7445 	ctx_pg = &ctx->vnic_mem;
7446 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
7447 			  ctx->vnic_max_ring_table_entries;
7448 	if (ctx->vnic_entry_size) {
7449 		mem_size = ctx->vnic_entry_size * ctx_pg->entries;
7450 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC];
7451 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7452 		if (rc)
7453 			return rc;
7454 	}
7455 
7456 	ctx_pg = &ctx->stat_mem;
7457 	ctx_pg->entries = ctx->stat_max_entries;
7458 	if (ctx->stat_entry_size) {
7459 		mem_size = ctx->stat_entry_size * ctx_pg->entries;
7460 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT];
7461 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7462 		if (rc)
7463 			return rc;
7464 	}
7465 
7466 	ena = 0;
7467 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
7468 		goto skip_rdma;
7469 
7470 	ctx_pg = &ctx->mrav_mem;
7471 	/* 128K extra is needed to accommodate static AH context
7472 	 * allocation by f/w.
7473 	 */
7474 	num_mr = 1024 * 256;
7475 	num_ah = 1024 * 128;
7476 	ctx_pg->entries = num_mr + num_ah;
7477 	if (ctx->mrav_entry_size) {
7478 		mem_size = ctx->mrav_entry_size * ctx_pg->entries;
7479 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV];
7480 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init);
7481 		if (rc)
7482 			return rc;
7483 	}
7484 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
7485 	if (ctx->mrav_num_entries_units)
7486 		ctx_pg->entries =
7487 			((num_mr / ctx->mrav_num_entries_units) << 16) |
7488 			 (num_ah / ctx->mrav_num_entries_units);
7489 
7490 	ctx_pg = &ctx->tim_mem;
7491 	ctx_pg->entries = ctx->qp_mem.entries;
7492 	if (ctx->tim_entry_size) {
7493 		mem_size = ctx->tim_entry_size * ctx_pg->entries;
7494 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL);
7495 		if (rc)
7496 			return rc;
7497 	}
7498 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
7499 
7500 skip_rdma:
7501 	min = ctx->tqm_min_entries_per_ring;
7502 	entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries +
7503 		     2 * (extra_qps + ctx->qp_min_qp1_entries) + min;
7504 	entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple);
7505 	entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries);
7506 	entries = roundup(entries, ctx->tqm_entries_multiple);
7507 	entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring);
7508 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
7509 		ctx_pg = ctx->tqm_mem[i];
7510 		ctx_pg->entries = i ? entries : entries_sp;
7511 		if (ctx->tqm_entry_size) {
7512 			mem_size = ctx->tqm_entry_size * ctx_pg->entries;
7513 			rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1,
7514 						    NULL);
7515 			if (rc)
7516 				return rc;
7517 		}
7518 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
7519 	}
7520 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
7521 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
7522 	if (rc) {
7523 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
7524 			   rc);
7525 		return rc;
7526 	}
7527 	ctx->flags |= BNXT_CTX_FLAG_INITED;
7528 	return 0;
7529 }
7530 
7531 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
7532 {
7533 	struct hwrm_func_resource_qcaps_output *resp;
7534 	struct hwrm_func_resource_qcaps_input *req;
7535 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7536 	int rc;
7537 
7538 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS);
7539 	if (rc)
7540 		return rc;
7541 
7542 	req->fid = cpu_to_le16(0xffff);
7543 	resp = hwrm_req_hold(bp, req);
7544 	rc = hwrm_req_send_silent(bp, req);
7545 	if (rc)
7546 		goto hwrm_func_resc_qcaps_exit;
7547 
7548 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
7549 	if (!all)
7550 		goto hwrm_func_resc_qcaps_exit;
7551 
7552 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
7553 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7554 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
7555 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7556 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
7557 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7558 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
7559 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7560 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
7561 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
7562 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
7563 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7564 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
7565 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7566 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
7567 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7568 
7569 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
7570 		u16 max_msix = le16_to_cpu(resp->max_msix);
7571 
7572 		hw_resc->max_nqs = max_msix;
7573 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
7574 	}
7575 
7576 	if (BNXT_PF(bp)) {
7577 		struct bnxt_pf_info *pf = &bp->pf;
7578 
7579 		pf->vf_resv_strategy =
7580 			le16_to_cpu(resp->vf_reservation_strategy);
7581 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
7582 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
7583 	}
7584 hwrm_func_resc_qcaps_exit:
7585 	hwrm_req_drop(bp, req);
7586 	return rc;
7587 }
7588 
7589 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
7590 {
7591 	struct hwrm_port_mac_ptp_qcfg_output *resp;
7592 	struct hwrm_port_mac_ptp_qcfg_input *req;
7593 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
7594 	bool phc_cfg;
7595 	u8 flags;
7596 	int rc;
7597 
7598 	if (bp->hwrm_spec_code < 0x10801) {
7599 		rc = -ENODEV;
7600 		goto no_ptp;
7601 	}
7602 
7603 	rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG);
7604 	if (rc)
7605 		goto no_ptp;
7606 
7607 	req->port_id = cpu_to_le16(bp->pf.port_id);
7608 	resp = hwrm_req_hold(bp, req);
7609 	rc = hwrm_req_send(bp, req);
7610 	if (rc)
7611 		goto exit;
7612 
7613 	flags = resp->flags;
7614 	if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) {
7615 		rc = -ENODEV;
7616 		goto exit;
7617 	}
7618 	if (!ptp) {
7619 		ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
7620 		if (!ptp) {
7621 			rc = -ENOMEM;
7622 			goto exit;
7623 		}
7624 		ptp->bp = bp;
7625 		bp->ptp_cfg = ptp;
7626 	}
7627 	if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) {
7628 		ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower);
7629 		ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper);
7630 	} else if (bp->flags & BNXT_FLAG_CHIP_P5) {
7631 		ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER;
7632 		ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER;
7633 	} else {
7634 		rc = -ENODEV;
7635 		goto exit;
7636 	}
7637 	phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0;
7638 	rc = bnxt_ptp_init(bp, phc_cfg);
7639 	if (rc)
7640 		netdev_warn(bp->dev, "PTP initialization failed.\n");
7641 exit:
7642 	hwrm_req_drop(bp, req);
7643 	if (!rc)
7644 		return 0;
7645 
7646 no_ptp:
7647 	bnxt_ptp_clear(bp);
7648 	kfree(ptp);
7649 	bp->ptp_cfg = NULL;
7650 	return rc;
7651 }
7652 
7653 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
7654 {
7655 	struct hwrm_func_qcaps_output *resp;
7656 	struct hwrm_func_qcaps_input *req;
7657 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7658 	u32 flags, flags_ext;
7659 	int rc;
7660 
7661 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS);
7662 	if (rc)
7663 		return rc;
7664 
7665 	req->fid = cpu_to_le16(0xffff);
7666 	resp = hwrm_req_hold(bp, req);
7667 	rc = hwrm_req_send(bp, req);
7668 	if (rc)
7669 		goto hwrm_func_qcaps_exit;
7670 
7671 	flags = le32_to_cpu(resp->flags);
7672 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
7673 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
7674 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
7675 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
7676 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
7677 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
7678 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
7679 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
7680 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
7681 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
7682 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
7683 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
7684 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
7685 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
7686 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
7687 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
7688 	if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED)
7689 		bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS;
7690 
7691 	flags_ext = le32_to_cpu(resp->flags_ext);
7692 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
7693 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
7694 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED))
7695 		bp->fw_cap |= BNXT_FW_CAP_PTP_PPS;
7696 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED)
7697 		bp->fw_cap |= BNXT_FW_CAP_PTP_RTC;
7698 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT))
7699 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF;
7700 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED))
7701 		bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH;
7702 
7703 	bp->tx_push_thresh = 0;
7704 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
7705 	    BNXT_FW_MAJ(bp) > 217)
7706 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
7707 
7708 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7709 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7710 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7711 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7712 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
7713 	if (!hw_resc->max_hw_ring_grps)
7714 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
7715 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7716 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7717 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7718 
7719 	if (BNXT_PF(bp)) {
7720 		struct bnxt_pf_info *pf = &bp->pf;
7721 
7722 		pf->fw_fid = le16_to_cpu(resp->fid);
7723 		pf->port_id = le16_to_cpu(resp->port_id);
7724 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
7725 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
7726 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
7727 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
7728 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
7729 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
7730 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
7731 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
7732 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
7733 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
7734 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
7735 			bp->flags |= BNXT_FLAG_WOL_CAP;
7736 		if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) {
7737 			__bnxt_hwrm_ptp_qcfg(bp);
7738 		} else {
7739 			bnxt_ptp_clear(bp);
7740 			kfree(bp->ptp_cfg);
7741 			bp->ptp_cfg = NULL;
7742 		}
7743 	} else {
7744 #ifdef CONFIG_BNXT_SRIOV
7745 		struct bnxt_vf_info *vf = &bp->vf;
7746 
7747 		vf->fw_fid = le16_to_cpu(resp->fid);
7748 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
7749 #endif
7750 	}
7751 
7752 hwrm_func_qcaps_exit:
7753 	hwrm_req_drop(bp, req);
7754 	return rc;
7755 }
7756 
7757 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp)
7758 {
7759 	struct hwrm_dbg_qcaps_output *resp;
7760 	struct hwrm_dbg_qcaps_input *req;
7761 	int rc;
7762 
7763 	bp->fw_dbg_cap = 0;
7764 	if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS))
7765 		return;
7766 
7767 	rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS);
7768 	if (rc)
7769 		return;
7770 
7771 	req->fid = cpu_to_le16(0xffff);
7772 	resp = hwrm_req_hold(bp, req);
7773 	rc = hwrm_req_send(bp, req);
7774 	if (rc)
7775 		goto hwrm_dbg_qcaps_exit;
7776 
7777 	bp->fw_dbg_cap = le32_to_cpu(resp->flags);
7778 
7779 hwrm_dbg_qcaps_exit:
7780 	hwrm_req_drop(bp, req);
7781 }
7782 
7783 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
7784 
7785 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
7786 {
7787 	int rc;
7788 
7789 	rc = __bnxt_hwrm_func_qcaps(bp);
7790 	if (rc)
7791 		return rc;
7792 
7793 	bnxt_hwrm_dbg_qcaps(bp);
7794 
7795 	rc = bnxt_hwrm_queue_qportcfg(bp);
7796 	if (rc) {
7797 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
7798 		return rc;
7799 	}
7800 	if (bp->hwrm_spec_code >= 0x10803) {
7801 		rc = bnxt_alloc_ctx_mem(bp);
7802 		if (rc)
7803 			return rc;
7804 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
7805 		if (!rc)
7806 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
7807 	}
7808 	return 0;
7809 }
7810 
7811 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
7812 {
7813 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
7814 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req;
7815 	u32 flags;
7816 	int rc;
7817 
7818 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
7819 		return 0;
7820 
7821 	rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS);
7822 	if (rc)
7823 		return rc;
7824 
7825 	resp = hwrm_req_hold(bp, req);
7826 	rc = hwrm_req_send(bp, req);
7827 	if (rc)
7828 		goto hwrm_cfa_adv_qcaps_exit;
7829 
7830 	flags = le32_to_cpu(resp->flags);
7831 	if (flags &
7832 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
7833 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
7834 
7835 hwrm_cfa_adv_qcaps_exit:
7836 	hwrm_req_drop(bp, req);
7837 	return rc;
7838 }
7839 
7840 static int __bnxt_alloc_fw_health(struct bnxt *bp)
7841 {
7842 	if (bp->fw_health)
7843 		return 0;
7844 
7845 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
7846 	if (!bp->fw_health)
7847 		return -ENOMEM;
7848 
7849 	mutex_init(&bp->fw_health->lock);
7850 	return 0;
7851 }
7852 
7853 static int bnxt_alloc_fw_health(struct bnxt *bp)
7854 {
7855 	int rc;
7856 
7857 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
7858 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7859 		return 0;
7860 
7861 	rc = __bnxt_alloc_fw_health(bp);
7862 	if (rc) {
7863 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
7864 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7865 		return rc;
7866 	}
7867 
7868 	return 0;
7869 }
7870 
7871 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
7872 {
7873 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
7874 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
7875 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
7876 }
7877 
7878 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
7879 {
7880 	struct bnxt_fw_health *fw_health = bp->fw_health;
7881 	u32 reg_type;
7882 
7883 	if (!fw_health)
7884 		return;
7885 
7886 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
7887 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7888 		fw_health->status_reliable = false;
7889 
7890 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]);
7891 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7892 		fw_health->resets_reliable = false;
7893 }
7894 
7895 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
7896 {
7897 	void __iomem *hs;
7898 	u32 status_loc;
7899 	u32 reg_type;
7900 	u32 sig;
7901 
7902 	if (bp->fw_health)
7903 		bp->fw_health->status_reliable = false;
7904 
7905 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
7906 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
7907 
7908 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
7909 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
7910 		if (!bp->chip_num) {
7911 			__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
7912 			bp->chip_num = readl(bp->bar0 +
7913 					     BNXT_FW_HEALTH_WIN_BASE +
7914 					     BNXT_GRC_REG_CHIP_NUM);
7915 		}
7916 		if (!BNXT_CHIP_P5(bp))
7917 			return;
7918 
7919 		status_loc = BNXT_GRC_REG_STATUS_P5 |
7920 			     BNXT_FW_HEALTH_REG_TYPE_BAR0;
7921 	} else {
7922 		status_loc = readl(hs + offsetof(struct hcomm_status,
7923 						 fw_status_loc));
7924 	}
7925 
7926 	if (__bnxt_alloc_fw_health(bp)) {
7927 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
7928 		return;
7929 	}
7930 
7931 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
7932 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
7933 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
7934 		__bnxt_map_fw_health_reg(bp, status_loc);
7935 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
7936 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
7937 	}
7938 
7939 	bp->fw_health->status_reliable = true;
7940 }
7941 
7942 static int bnxt_map_fw_health_regs(struct bnxt *bp)
7943 {
7944 	struct bnxt_fw_health *fw_health = bp->fw_health;
7945 	u32 reg_base = 0xffffffff;
7946 	int i;
7947 
7948 	bp->fw_health->status_reliable = false;
7949 	bp->fw_health->resets_reliable = false;
7950 	/* Only pre-map the monitoring GRC registers using window 3 */
7951 	for (i = 0; i < 4; i++) {
7952 		u32 reg = fw_health->regs[i];
7953 
7954 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
7955 			continue;
7956 		if (reg_base == 0xffffffff)
7957 			reg_base = reg & BNXT_GRC_BASE_MASK;
7958 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
7959 			return -ERANGE;
7960 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
7961 	}
7962 	bp->fw_health->status_reliable = true;
7963 	bp->fw_health->resets_reliable = true;
7964 	if (reg_base == 0xffffffff)
7965 		return 0;
7966 
7967 	__bnxt_map_fw_health_reg(bp, reg_base);
7968 	return 0;
7969 }
7970 
7971 static void bnxt_remap_fw_health_regs(struct bnxt *bp)
7972 {
7973 	if (!bp->fw_health)
7974 		return;
7975 
7976 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) {
7977 		bp->fw_health->status_reliable = true;
7978 		bp->fw_health->resets_reliable = true;
7979 	} else {
7980 		bnxt_try_map_fw_health_reg(bp);
7981 	}
7982 }
7983 
7984 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
7985 {
7986 	struct bnxt_fw_health *fw_health = bp->fw_health;
7987 	struct hwrm_error_recovery_qcfg_output *resp;
7988 	struct hwrm_error_recovery_qcfg_input *req;
7989 	int rc, i;
7990 
7991 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7992 		return 0;
7993 
7994 	rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG);
7995 	if (rc)
7996 		return rc;
7997 
7998 	resp = hwrm_req_hold(bp, req);
7999 	rc = hwrm_req_send(bp, req);
8000 	if (rc)
8001 		goto err_recovery_out;
8002 	fw_health->flags = le32_to_cpu(resp->flags);
8003 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
8004 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
8005 		rc = -EINVAL;
8006 		goto err_recovery_out;
8007 	}
8008 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
8009 	fw_health->master_func_wait_dsecs =
8010 		le32_to_cpu(resp->master_func_wait_period);
8011 	fw_health->normal_func_wait_dsecs =
8012 		le32_to_cpu(resp->normal_func_wait_period);
8013 	fw_health->post_reset_wait_dsecs =
8014 		le32_to_cpu(resp->master_func_wait_period_after_reset);
8015 	fw_health->post_reset_max_wait_dsecs =
8016 		le32_to_cpu(resp->max_bailout_time_after_reset);
8017 	fw_health->regs[BNXT_FW_HEALTH_REG] =
8018 		le32_to_cpu(resp->fw_health_status_reg);
8019 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
8020 		le32_to_cpu(resp->fw_heartbeat_reg);
8021 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
8022 		le32_to_cpu(resp->fw_reset_cnt_reg);
8023 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
8024 		le32_to_cpu(resp->reset_inprogress_reg);
8025 	fw_health->fw_reset_inprog_reg_mask =
8026 		le32_to_cpu(resp->reset_inprogress_reg_mask);
8027 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
8028 	if (fw_health->fw_reset_seq_cnt >= 16) {
8029 		rc = -EINVAL;
8030 		goto err_recovery_out;
8031 	}
8032 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
8033 		fw_health->fw_reset_seq_regs[i] =
8034 			le32_to_cpu(resp->reset_reg[i]);
8035 		fw_health->fw_reset_seq_vals[i] =
8036 			le32_to_cpu(resp->reset_reg_val[i]);
8037 		fw_health->fw_reset_seq_delay_msec[i] =
8038 			resp->delay_after_reset[i];
8039 	}
8040 err_recovery_out:
8041 	hwrm_req_drop(bp, req);
8042 	if (!rc)
8043 		rc = bnxt_map_fw_health_regs(bp);
8044 	if (rc)
8045 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
8046 	return rc;
8047 }
8048 
8049 static int bnxt_hwrm_func_reset(struct bnxt *bp)
8050 {
8051 	struct hwrm_func_reset_input *req;
8052 	int rc;
8053 
8054 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET);
8055 	if (rc)
8056 		return rc;
8057 
8058 	req->enables = 0;
8059 	hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT);
8060 	return hwrm_req_send(bp, req);
8061 }
8062 
8063 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
8064 {
8065 	struct hwrm_nvm_get_dev_info_output nvm_info;
8066 
8067 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
8068 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
8069 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
8070 			 nvm_info.nvm_cfg_ver_upd);
8071 }
8072 
8073 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
8074 {
8075 	struct hwrm_queue_qportcfg_output *resp;
8076 	struct hwrm_queue_qportcfg_input *req;
8077 	u8 i, j, *qptr;
8078 	bool no_rdma;
8079 	int rc = 0;
8080 
8081 	rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG);
8082 	if (rc)
8083 		return rc;
8084 
8085 	resp = hwrm_req_hold(bp, req);
8086 	rc = hwrm_req_send(bp, req);
8087 	if (rc)
8088 		goto qportcfg_exit;
8089 
8090 	if (!resp->max_configurable_queues) {
8091 		rc = -EINVAL;
8092 		goto qportcfg_exit;
8093 	}
8094 	bp->max_tc = resp->max_configurable_queues;
8095 	bp->max_lltc = resp->max_configurable_lossless_queues;
8096 	if (bp->max_tc > BNXT_MAX_QUEUE)
8097 		bp->max_tc = BNXT_MAX_QUEUE;
8098 
8099 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
8100 	qptr = &resp->queue_id0;
8101 	for (i = 0, j = 0; i < bp->max_tc; i++) {
8102 		bp->q_info[j].queue_id = *qptr;
8103 		bp->q_ids[i] = *qptr++;
8104 		bp->q_info[j].queue_profile = *qptr++;
8105 		bp->tc_to_qidx[j] = j;
8106 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
8107 		    (no_rdma && BNXT_PF(bp)))
8108 			j++;
8109 	}
8110 	bp->max_q = bp->max_tc;
8111 	bp->max_tc = max_t(u8, j, 1);
8112 
8113 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
8114 		bp->max_tc = 1;
8115 
8116 	if (bp->max_lltc > bp->max_tc)
8117 		bp->max_lltc = bp->max_tc;
8118 
8119 qportcfg_exit:
8120 	hwrm_req_drop(bp, req);
8121 	return rc;
8122 }
8123 
8124 static int bnxt_hwrm_poll(struct bnxt *bp)
8125 {
8126 	struct hwrm_ver_get_input *req;
8127 	int rc;
8128 
8129 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8130 	if (rc)
8131 		return rc;
8132 
8133 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8134 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8135 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8136 
8137 	hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT);
8138 	rc = hwrm_req_send(bp, req);
8139 	return rc;
8140 }
8141 
8142 static int bnxt_hwrm_ver_get(struct bnxt *bp)
8143 {
8144 	struct hwrm_ver_get_output *resp;
8145 	struct hwrm_ver_get_input *req;
8146 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
8147 	u32 dev_caps_cfg, hwrm_ver;
8148 	int rc, len;
8149 
8150 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8151 	if (rc)
8152 		return rc;
8153 
8154 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
8155 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
8156 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8157 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8158 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8159 
8160 	resp = hwrm_req_hold(bp, req);
8161 	rc = hwrm_req_send(bp, req);
8162 	if (rc)
8163 		goto hwrm_ver_get_exit;
8164 
8165 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
8166 
8167 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
8168 			     resp->hwrm_intf_min_8b << 8 |
8169 			     resp->hwrm_intf_upd_8b;
8170 	if (resp->hwrm_intf_maj_8b < 1) {
8171 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
8172 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8173 			    resp->hwrm_intf_upd_8b);
8174 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
8175 	}
8176 
8177 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
8178 			HWRM_VERSION_UPDATE;
8179 
8180 	if (bp->hwrm_spec_code > hwrm_ver)
8181 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8182 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
8183 			 HWRM_VERSION_UPDATE);
8184 	else
8185 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8186 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8187 			 resp->hwrm_intf_upd_8b);
8188 
8189 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
8190 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
8191 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
8192 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
8193 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
8194 		len = FW_VER_STR_LEN;
8195 	} else {
8196 		fw_maj = resp->hwrm_fw_maj_8b;
8197 		fw_min = resp->hwrm_fw_min_8b;
8198 		fw_bld = resp->hwrm_fw_bld_8b;
8199 		fw_rsv = resp->hwrm_fw_rsvd_8b;
8200 		len = BC_HWRM_STR_LEN;
8201 	}
8202 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
8203 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
8204 		 fw_rsv);
8205 
8206 	if (strlen(resp->active_pkg_name)) {
8207 		int fw_ver_len = strlen(bp->fw_ver_str);
8208 
8209 		snprintf(bp->fw_ver_str + fw_ver_len,
8210 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
8211 			 resp->active_pkg_name);
8212 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
8213 	}
8214 
8215 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
8216 	if (!bp->hwrm_cmd_timeout)
8217 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
8218 	bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000;
8219 	if (!bp->hwrm_cmd_max_timeout)
8220 		bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT;
8221 	else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT)
8222 		netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n",
8223 			    bp->hwrm_cmd_max_timeout / 1000);
8224 
8225 	if (resp->hwrm_intf_maj_8b >= 1) {
8226 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
8227 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
8228 	}
8229 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
8230 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
8231 
8232 	bp->chip_num = le16_to_cpu(resp->chip_num);
8233 	bp->chip_rev = resp->chip_rev;
8234 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
8235 	    !resp->chip_metal)
8236 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
8237 
8238 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
8239 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
8240 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
8241 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
8242 
8243 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
8244 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
8245 
8246 	if (dev_caps_cfg &
8247 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
8248 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
8249 
8250 	if (dev_caps_cfg &
8251 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
8252 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
8253 
8254 	if (dev_caps_cfg &
8255 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
8256 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
8257 
8258 hwrm_ver_get_exit:
8259 	hwrm_req_drop(bp, req);
8260 	return rc;
8261 }
8262 
8263 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
8264 {
8265 	struct hwrm_fw_set_time_input *req;
8266 	struct tm tm;
8267 	time64_t now = ktime_get_real_seconds();
8268 	int rc;
8269 
8270 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
8271 	    bp->hwrm_spec_code < 0x10400)
8272 		return -EOPNOTSUPP;
8273 
8274 	time64_to_tm(now, 0, &tm);
8275 	rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME);
8276 	if (rc)
8277 		return rc;
8278 
8279 	req->year = cpu_to_le16(1900 + tm.tm_year);
8280 	req->month = 1 + tm.tm_mon;
8281 	req->day = tm.tm_mday;
8282 	req->hour = tm.tm_hour;
8283 	req->minute = tm.tm_min;
8284 	req->second = tm.tm_sec;
8285 	return hwrm_req_send(bp, req);
8286 }
8287 
8288 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
8289 {
8290 	u64 sw_tmp;
8291 
8292 	hw &= mask;
8293 	sw_tmp = (*sw & ~mask) | hw;
8294 	if (hw < (*sw & mask))
8295 		sw_tmp += mask + 1;
8296 	WRITE_ONCE(*sw, sw_tmp);
8297 }
8298 
8299 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
8300 				    int count, bool ignore_zero)
8301 {
8302 	int i;
8303 
8304 	for (i = 0; i < count; i++) {
8305 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
8306 
8307 		if (ignore_zero && !hw)
8308 			continue;
8309 
8310 		if (masks[i] == -1ULL)
8311 			sw_stats[i] = hw;
8312 		else
8313 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
8314 	}
8315 }
8316 
8317 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
8318 {
8319 	if (!stats->hw_stats)
8320 		return;
8321 
8322 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8323 				stats->hw_masks, stats->len / 8, false);
8324 }
8325 
8326 static void bnxt_accumulate_all_stats(struct bnxt *bp)
8327 {
8328 	struct bnxt_stats_mem *ring0_stats;
8329 	bool ignore_zero = false;
8330 	int i;
8331 
8332 	/* Chip bug.  Counter intermittently becomes 0. */
8333 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8334 		ignore_zero = true;
8335 
8336 	for (i = 0; i < bp->cp_nr_rings; i++) {
8337 		struct bnxt_napi *bnapi = bp->bnapi[i];
8338 		struct bnxt_cp_ring_info *cpr;
8339 		struct bnxt_stats_mem *stats;
8340 
8341 		cpr = &bnapi->cp_ring;
8342 		stats = &cpr->stats;
8343 		if (!i)
8344 			ring0_stats = stats;
8345 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8346 					ring0_stats->hw_masks,
8347 					ring0_stats->len / 8, ignore_zero);
8348 	}
8349 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
8350 		struct bnxt_stats_mem *stats = &bp->port_stats;
8351 		__le64 *hw_stats = stats->hw_stats;
8352 		u64 *sw_stats = stats->sw_stats;
8353 		u64 *masks = stats->hw_masks;
8354 		int cnt;
8355 
8356 		cnt = sizeof(struct rx_port_stats) / 8;
8357 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8358 
8359 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8360 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8361 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8362 		cnt = sizeof(struct tx_port_stats) / 8;
8363 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8364 	}
8365 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
8366 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
8367 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
8368 	}
8369 }
8370 
8371 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
8372 {
8373 	struct hwrm_port_qstats_input *req;
8374 	struct bnxt_pf_info *pf = &bp->pf;
8375 	int rc;
8376 
8377 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
8378 		return 0;
8379 
8380 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8381 		return -EOPNOTSUPP;
8382 
8383 	rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS);
8384 	if (rc)
8385 		return rc;
8386 
8387 	req->flags = flags;
8388 	req->port_id = cpu_to_le16(pf->port_id);
8389 	req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
8390 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
8391 	req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
8392 	return hwrm_req_send(bp, req);
8393 }
8394 
8395 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
8396 {
8397 	struct hwrm_queue_pri2cos_qcfg_output *resp_qc;
8398 	struct hwrm_queue_pri2cos_qcfg_input *req_qc;
8399 	struct hwrm_port_qstats_ext_output *resp_qs;
8400 	struct hwrm_port_qstats_ext_input *req_qs;
8401 	struct bnxt_pf_info *pf = &bp->pf;
8402 	u32 tx_stat_size;
8403 	int rc;
8404 
8405 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
8406 		return 0;
8407 
8408 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8409 		return -EOPNOTSUPP;
8410 
8411 	rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT);
8412 	if (rc)
8413 		return rc;
8414 
8415 	req_qs->flags = flags;
8416 	req_qs->port_id = cpu_to_le16(pf->port_id);
8417 	req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
8418 	req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
8419 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
8420 		       sizeof(struct tx_port_stats_ext) : 0;
8421 	req_qs->tx_stat_size = cpu_to_le16(tx_stat_size);
8422 	req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
8423 	resp_qs = hwrm_req_hold(bp, req_qs);
8424 	rc = hwrm_req_send(bp, req_qs);
8425 	if (!rc) {
8426 		bp->fw_rx_stats_ext_size =
8427 			le16_to_cpu(resp_qs->rx_stat_size) / 8;
8428 		if (BNXT_FW_MAJ(bp) < 220 &&
8429 		    bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY)
8430 			bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY;
8431 
8432 		bp->fw_tx_stats_ext_size = tx_stat_size ?
8433 			le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0;
8434 	} else {
8435 		bp->fw_rx_stats_ext_size = 0;
8436 		bp->fw_tx_stats_ext_size = 0;
8437 	}
8438 	hwrm_req_drop(bp, req_qs);
8439 
8440 	if (flags)
8441 		return rc;
8442 
8443 	if (bp->fw_tx_stats_ext_size <=
8444 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
8445 		bp->pri2cos_valid = 0;
8446 		return rc;
8447 	}
8448 
8449 	rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG);
8450 	if (rc)
8451 		return rc;
8452 
8453 	req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
8454 
8455 	resp_qc = hwrm_req_hold(bp, req_qc);
8456 	rc = hwrm_req_send(bp, req_qc);
8457 	if (!rc) {
8458 		u8 *pri2cos;
8459 		int i, j;
8460 
8461 		pri2cos = &resp_qc->pri0_cos_queue_id;
8462 		for (i = 0; i < 8; i++) {
8463 			u8 queue_id = pri2cos[i];
8464 			u8 queue_idx;
8465 
8466 			/* Per port queue IDs start from 0, 10, 20, etc */
8467 			queue_idx = queue_id % 10;
8468 			if (queue_idx > BNXT_MAX_QUEUE) {
8469 				bp->pri2cos_valid = false;
8470 				hwrm_req_drop(bp, req_qc);
8471 				return rc;
8472 			}
8473 			for (j = 0; j < bp->max_q; j++) {
8474 				if (bp->q_ids[j] == queue_id)
8475 					bp->pri2cos_idx[i] = queue_idx;
8476 			}
8477 		}
8478 		bp->pri2cos_valid = true;
8479 	}
8480 	hwrm_req_drop(bp, req_qc);
8481 
8482 	return rc;
8483 }
8484 
8485 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
8486 {
8487 	bnxt_hwrm_tunnel_dst_port_free(bp,
8488 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
8489 	bnxt_hwrm_tunnel_dst_port_free(bp,
8490 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
8491 }
8492 
8493 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
8494 {
8495 	int rc, i;
8496 	u32 tpa_flags = 0;
8497 
8498 	if (set_tpa)
8499 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
8500 	else if (BNXT_NO_FW_ACCESS(bp))
8501 		return 0;
8502 	for (i = 0; i < bp->nr_vnics; i++) {
8503 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
8504 		if (rc) {
8505 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
8506 				   i, rc);
8507 			return rc;
8508 		}
8509 	}
8510 	return 0;
8511 }
8512 
8513 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
8514 {
8515 	int i;
8516 
8517 	for (i = 0; i < bp->nr_vnics; i++)
8518 		bnxt_hwrm_vnic_set_rss(bp, i, false);
8519 }
8520 
8521 static void bnxt_clear_vnic(struct bnxt *bp)
8522 {
8523 	if (!bp->vnic_info)
8524 		return;
8525 
8526 	bnxt_hwrm_clear_vnic_filter(bp);
8527 	if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
8528 		/* clear all RSS setting before free vnic ctx */
8529 		bnxt_hwrm_clear_vnic_rss(bp);
8530 		bnxt_hwrm_vnic_ctx_free(bp);
8531 	}
8532 	/* before free the vnic, undo the vnic tpa settings */
8533 	if (bp->flags & BNXT_FLAG_TPA)
8534 		bnxt_set_tpa(bp, false);
8535 	bnxt_hwrm_vnic_free(bp);
8536 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8537 		bnxt_hwrm_vnic_ctx_free(bp);
8538 }
8539 
8540 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
8541 				    bool irq_re_init)
8542 {
8543 	bnxt_clear_vnic(bp);
8544 	bnxt_hwrm_ring_free(bp, close_path);
8545 	bnxt_hwrm_ring_grp_free(bp);
8546 	if (irq_re_init) {
8547 		bnxt_hwrm_stat_ctx_free(bp);
8548 		bnxt_hwrm_free_tunnel_ports(bp);
8549 	}
8550 }
8551 
8552 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
8553 {
8554 	struct hwrm_func_cfg_input *req;
8555 	u8 evb_mode;
8556 	int rc;
8557 
8558 	if (br_mode == BRIDGE_MODE_VEB)
8559 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
8560 	else if (br_mode == BRIDGE_MODE_VEPA)
8561 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
8562 	else
8563 		return -EINVAL;
8564 
8565 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8566 	if (rc)
8567 		return rc;
8568 
8569 	req->fid = cpu_to_le16(0xffff);
8570 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
8571 	req->evb_mode = evb_mode;
8572 	return hwrm_req_send(bp, req);
8573 }
8574 
8575 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
8576 {
8577 	struct hwrm_func_cfg_input *req;
8578 	int rc;
8579 
8580 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
8581 		return 0;
8582 
8583 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8584 	if (rc)
8585 		return rc;
8586 
8587 	req->fid = cpu_to_le16(0xffff);
8588 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
8589 	req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
8590 	if (size == 128)
8591 		req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
8592 
8593 	return hwrm_req_send(bp, req);
8594 }
8595 
8596 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8597 {
8598 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
8599 	int rc;
8600 
8601 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
8602 		goto skip_rss_ctx;
8603 
8604 	/* allocate context for vnic */
8605 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
8606 	if (rc) {
8607 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8608 			   vnic_id, rc);
8609 		goto vnic_setup_err;
8610 	}
8611 	bp->rsscos_nr_ctxs++;
8612 
8613 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8614 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
8615 		if (rc) {
8616 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
8617 				   vnic_id, rc);
8618 			goto vnic_setup_err;
8619 		}
8620 		bp->rsscos_nr_ctxs++;
8621 	}
8622 
8623 skip_rss_ctx:
8624 	/* configure default vnic, ring grp */
8625 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8626 	if (rc) {
8627 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8628 			   vnic_id, rc);
8629 		goto vnic_setup_err;
8630 	}
8631 
8632 	/* Enable RSS hashing on vnic */
8633 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
8634 	if (rc) {
8635 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
8636 			   vnic_id, rc);
8637 		goto vnic_setup_err;
8638 	}
8639 
8640 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8641 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8642 		if (rc) {
8643 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8644 				   vnic_id, rc);
8645 		}
8646 	}
8647 
8648 vnic_setup_err:
8649 	return rc;
8650 }
8651 
8652 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
8653 {
8654 	int rc, i, nr_ctxs;
8655 
8656 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
8657 	for (i = 0; i < nr_ctxs; i++) {
8658 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
8659 		if (rc) {
8660 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
8661 				   vnic_id, i, rc);
8662 			break;
8663 		}
8664 		bp->rsscos_nr_ctxs++;
8665 	}
8666 	if (i < nr_ctxs)
8667 		return -ENOMEM;
8668 
8669 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
8670 	if (rc) {
8671 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
8672 			   vnic_id, rc);
8673 		return rc;
8674 	}
8675 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8676 	if (rc) {
8677 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8678 			   vnic_id, rc);
8679 		return rc;
8680 	}
8681 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8682 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8683 		if (rc) {
8684 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8685 				   vnic_id, rc);
8686 		}
8687 	}
8688 	return rc;
8689 }
8690 
8691 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8692 {
8693 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8694 		return __bnxt_setup_vnic_p5(bp, vnic_id);
8695 	else
8696 		return __bnxt_setup_vnic(bp, vnic_id);
8697 }
8698 
8699 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
8700 {
8701 #ifdef CONFIG_RFS_ACCEL
8702 	int i, rc = 0;
8703 
8704 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8705 		return 0;
8706 
8707 	for (i = 0; i < bp->rx_nr_rings; i++) {
8708 		struct bnxt_vnic_info *vnic;
8709 		u16 vnic_id = i + 1;
8710 		u16 ring_id = i;
8711 
8712 		if (vnic_id >= bp->nr_vnics)
8713 			break;
8714 
8715 		vnic = &bp->vnic_info[vnic_id];
8716 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
8717 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
8718 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
8719 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
8720 		if (rc) {
8721 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8722 				   vnic_id, rc);
8723 			break;
8724 		}
8725 		rc = bnxt_setup_vnic(bp, vnic_id);
8726 		if (rc)
8727 			break;
8728 	}
8729 	return rc;
8730 #else
8731 	return 0;
8732 #endif
8733 }
8734 
8735 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
8736 static bool bnxt_promisc_ok(struct bnxt *bp)
8737 {
8738 #ifdef CONFIG_BNXT_SRIOV
8739 	if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
8740 		return false;
8741 #endif
8742 	return true;
8743 }
8744 
8745 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
8746 {
8747 	unsigned int rc = 0;
8748 
8749 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
8750 	if (rc) {
8751 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8752 			   rc);
8753 		return rc;
8754 	}
8755 
8756 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
8757 	if (rc) {
8758 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8759 			   rc);
8760 		return rc;
8761 	}
8762 	return rc;
8763 }
8764 
8765 static int bnxt_cfg_rx_mode(struct bnxt *);
8766 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
8767 
8768 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
8769 {
8770 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8771 	int rc = 0;
8772 	unsigned int rx_nr_rings = bp->rx_nr_rings;
8773 
8774 	if (irq_re_init) {
8775 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
8776 		if (rc) {
8777 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
8778 				   rc);
8779 			goto err_out;
8780 		}
8781 	}
8782 
8783 	rc = bnxt_hwrm_ring_alloc(bp);
8784 	if (rc) {
8785 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
8786 		goto err_out;
8787 	}
8788 
8789 	rc = bnxt_hwrm_ring_grp_alloc(bp);
8790 	if (rc) {
8791 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
8792 		goto err_out;
8793 	}
8794 
8795 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8796 		rx_nr_rings--;
8797 
8798 	/* default vnic 0 */
8799 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
8800 	if (rc) {
8801 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
8802 		goto err_out;
8803 	}
8804 
8805 	rc = bnxt_setup_vnic(bp, 0);
8806 	if (rc)
8807 		goto err_out;
8808 
8809 	if (bp->flags & BNXT_FLAG_RFS) {
8810 		rc = bnxt_alloc_rfs_vnics(bp);
8811 		if (rc)
8812 			goto err_out;
8813 	}
8814 
8815 	if (bp->flags & BNXT_FLAG_TPA) {
8816 		rc = bnxt_set_tpa(bp, true);
8817 		if (rc)
8818 			goto err_out;
8819 	}
8820 
8821 	if (BNXT_VF(bp))
8822 		bnxt_update_vf_mac(bp);
8823 
8824 	/* Filter for default vnic 0 */
8825 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
8826 	if (rc) {
8827 		if (BNXT_VF(bp) && rc == -ENODEV)
8828 			netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n");
8829 		else
8830 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
8831 		goto err_out;
8832 	}
8833 	vnic->uc_filter_count = 1;
8834 
8835 	vnic->rx_mask = 0;
8836 	if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state))
8837 		goto skip_rx_mask;
8838 
8839 	if (bp->dev->flags & IFF_BROADCAST)
8840 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
8841 
8842 	if (bp->dev->flags & IFF_PROMISC)
8843 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8844 
8845 	if (bp->dev->flags & IFF_ALLMULTI) {
8846 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8847 		vnic->mc_list_count = 0;
8848 	} else if (bp->dev->flags & IFF_MULTICAST) {
8849 		u32 mask = 0;
8850 
8851 		bnxt_mc_list_updated(bp, &mask);
8852 		vnic->rx_mask |= mask;
8853 	}
8854 
8855 	rc = bnxt_cfg_rx_mode(bp);
8856 	if (rc)
8857 		goto err_out;
8858 
8859 skip_rx_mask:
8860 	rc = bnxt_hwrm_set_coal(bp);
8861 	if (rc)
8862 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
8863 				rc);
8864 
8865 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8866 		rc = bnxt_setup_nitroa0_vnic(bp);
8867 		if (rc)
8868 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
8869 				   rc);
8870 	}
8871 
8872 	if (BNXT_VF(bp)) {
8873 		bnxt_hwrm_func_qcfg(bp);
8874 		netdev_update_features(bp->dev);
8875 	}
8876 
8877 	return 0;
8878 
8879 err_out:
8880 	bnxt_hwrm_resource_free(bp, 0, true);
8881 
8882 	return rc;
8883 }
8884 
8885 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
8886 {
8887 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
8888 	return 0;
8889 }
8890 
8891 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
8892 {
8893 	bnxt_init_cp_rings(bp);
8894 	bnxt_init_rx_rings(bp);
8895 	bnxt_init_tx_rings(bp);
8896 	bnxt_init_ring_grps(bp, irq_re_init);
8897 	bnxt_init_vnics(bp);
8898 
8899 	return bnxt_init_chip(bp, irq_re_init);
8900 }
8901 
8902 static int bnxt_set_real_num_queues(struct bnxt *bp)
8903 {
8904 	int rc;
8905 	struct net_device *dev = bp->dev;
8906 
8907 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
8908 					  bp->tx_nr_rings_xdp);
8909 	if (rc)
8910 		return rc;
8911 
8912 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
8913 	if (rc)
8914 		return rc;
8915 
8916 #ifdef CONFIG_RFS_ACCEL
8917 	if (bp->flags & BNXT_FLAG_RFS)
8918 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
8919 #endif
8920 
8921 	return rc;
8922 }
8923 
8924 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
8925 			   bool shared)
8926 {
8927 	int _rx = *rx, _tx = *tx;
8928 
8929 	if (shared) {
8930 		*rx = min_t(int, _rx, max);
8931 		*tx = min_t(int, _tx, max);
8932 	} else {
8933 		if (max < 2)
8934 			return -ENOMEM;
8935 
8936 		while (_rx + _tx > max) {
8937 			if (_rx > _tx && _rx > 1)
8938 				_rx--;
8939 			else if (_tx > 1)
8940 				_tx--;
8941 		}
8942 		*rx = _rx;
8943 		*tx = _tx;
8944 	}
8945 	return 0;
8946 }
8947 
8948 static void bnxt_setup_msix(struct bnxt *bp)
8949 {
8950 	const int len = sizeof(bp->irq_tbl[0].name);
8951 	struct net_device *dev = bp->dev;
8952 	int tcs, i;
8953 
8954 	tcs = netdev_get_num_tc(dev);
8955 	if (tcs) {
8956 		int i, off, count;
8957 
8958 		for (i = 0; i < tcs; i++) {
8959 			count = bp->tx_nr_rings_per_tc;
8960 			off = i * count;
8961 			netdev_set_tc_queue(dev, i, count, off);
8962 		}
8963 	}
8964 
8965 	for (i = 0; i < bp->cp_nr_rings; i++) {
8966 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8967 		char *attr;
8968 
8969 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
8970 			attr = "TxRx";
8971 		else if (i < bp->rx_nr_rings)
8972 			attr = "rx";
8973 		else
8974 			attr = "tx";
8975 
8976 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
8977 			 attr, i);
8978 		bp->irq_tbl[map_idx].handler = bnxt_msix;
8979 	}
8980 }
8981 
8982 static void bnxt_setup_inta(struct bnxt *bp)
8983 {
8984 	const int len = sizeof(bp->irq_tbl[0].name);
8985 
8986 	if (netdev_get_num_tc(bp->dev))
8987 		netdev_reset_tc(bp->dev);
8988 
8989 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
8990 		 0);
8991 	bp->irq_tbl[0].handler = bnxt_inta;
8992 }
8993 
8994 static int bnxt_init_int_mode(struct bnxt *bp);
8995 
8996 static int bnxt_setup_int_mode(struct bnxt *bp)
8997 {
8998 	int rc;
8999 
9000 	if (!bp->irq_tbl) {
9001 		rc = bnxt_init_int_mode(bp);
9002 		if (rc || !bp->irq_tbl)
9003 			return rc ?: -ENODEV;
9004 	}
9005 
9006 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9007 		bnxt_setup_msix(bp);
9008 	else
9009 		bnxt_setup_inta(bp);
9010 
9011 	rc = bnxt_set_real_num_queues(bp);
9012 	return rc;
9013 }
9014 
9015 #ifdef CONFIG_RFS_ACCEL
9016 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
9017 {
9018 	return bp->hw_resc.max_rsscos_ctxs;
9019 }
9020 
9021 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
9022 {
9023 	return bp->hw_resc.max_vnics;
9024 }
9025 #endif
9026 
9027 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
9028 {
9029 	return bp->hw_resc.max_stat_ctxs;
9030 }
9031 
9032 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
9033 {
9034 	return bp->hw_resc.max_cp_rings;
9035 }
9036 
9037 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
9038 {
9039 	unsigned int cp = bp->hw_resc.max_cp_rings;
9040 
9041 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9042 		cp -= bnxt_get_ulp_msix_num(bp);
9043 
9044 	return cp;
9045 }
9046 
9047 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
9048 {
9049 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9050 
9051 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9052 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
9053 
9054 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
9055 }
9056 
9057 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
9058 {
9059 	bp->hw_resc.max_irqs = max_irqs;
9060 }
9061 
9062 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
9063 {
9064 	unsigned int cp;
9065 
9066 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
9067 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9068 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
9069 	else
9070 		return cp - bp->cp_nr_rings;
9071 }
9072 
9073 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
9074 {
9075 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
9076 }
9077 
9078 int bnxt_get_avail_msix(struct bnxt *bp, int num)
9079 {
9080 	int max_cp = bnxt_get_max_func_cp_rings(bp);
9081 	int max_irq = bnxt_get_max_func_irqs(bp);
9082 	int total_req = bp->cp_nr_rings + num;
9083 	int max_idx, avail_msix;
9084 
9085 	max_idx = bp->total_irqs;
9086 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9087 		max_idx = min_t(int, bp->total_irqs, max_cp);
9088 	avail_msix = max_idx - bp->cp_nr_rings;
9089 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
9090 		return avail_msix;
9091 
9092 	if (max_irq < total_req) {
9093 		num = max_irq - bp->cp_nr_rings;
9094 		if (num <= 0)
9095 			return 0;
9096 	}
9097 	return num;
9098 }
9099 
9100 static int bnxt_get_num_msix(struct bnxt *bp)
9101 {
9102 	if (!BNXT_NEW_RM(bp))
9103 		return bnxt_get_max_func_irqs(bp);
9104 
9105 	return bnxt_nq_rings_in_use(bp);
9106 }
9107 
9108 static int bnxt_init_msix(struct bnxt *bp)
9109 {
9110 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
9111 	struct msix_entry *msix_ent;
9112 
9113 	total_vecs = bnxt_get_num_msix(bp);
9114 	max = bnxt_get_max_func_irqs(bp);
9115 	if (total_vecs > max)
9116 		total_vecs = max;
9117 
9118 	if (!total_vecs)
9119 		return 0;
9120 
9121 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
9122 	if (!msix_ent)
9123 		return -ENOMEM;
9124 
9125 	for (i = 0; i < total_vecs; i++) {
9126 		msix_ent[i].entry = i;
9127 		msix_ent[i].vector = 0;
9128 	}
9129 
9130 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
9131 		min = 2;
9132 
9133 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
9134 	ulp_msix = bnxt_get_ulp_msix_num(bp);
9135 	if (total_vecs < 0 || total_vecs < ulp_msix) {
9136 		rc = -ENODEV;
9137 		goto msix_setup_exit;
9138 	}
9139 
9140 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
9141 	if (bp->irq_tbl) {
9142 		for (i = 0; i < total_vecs; i++)
9143 			bp->irq_tbl[i].vector = msix_ent[i].vector;
9144 
9145 		bp->total_irqs = total_vecs;
9146 		/* Trim rings based upon num of vectors allocated */
9147 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
9148 				     total_vecs - ulp_msix, min == 1);
9149 		if (rc)
9150 			goto msix_setup_exit;
9151 
9152 		bp->cp_nr_rings = (min == 1) ?
9153 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
9154 				  bp->tx_nr_rings + bp->rx_nr_rings;
9155 
9156 	} else {
9157 		rc = -ENOMEM;
9158 		goto msix_setup_exit;
9159 	}
9160 	bp->flags |= BNXT_FLAG_USING_MSIX;
9161 	kfree(msix_ent);
9162 	return 0;
9163 
9164 msix_setup_exit:
9165 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
9166 	kfree(bp->irq_tbl);
9167 	bp->irq_tbl = NULL;
9168 	pci_disable_msix(bp->pdev);
9169 	kfree(msix_ent);
9170 	return rc;
9171 }
9172 
9173 static int bnxt_init_inta(struct bnxt *bp)
9174 {
9175 	bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL);
9176 	if (!bp->irq_tbl)
9177 		return -ENOMEM;
9178 
9179 	bp->total_irqs = 1;
9180 	bp->rx_nr_rings = 1;
9181 	bp->tx_nr_rings = 1;
9182 	bp->cp_nr_rings = 1;
9183 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
9184 	bp->irq_tbl[0].vector = bp->pdev->irq;
9185 	return 0;
9186 }
9187 
9188 static int bnxt_init_int_mode(struct bnxt *bp)
9189 {
9190 	int rc = -ENODEV;
9191 
9192 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
9193 		rc = bnxt_init_msix(bp);
9194 
9195 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
9196 		/* fallback to INTA */
9197 		rc = bnxt_init_inta(bp);
9198 	}
9199 	return rc;
9200 }
9201 
9202 static void bnxt_clear_int_mode(struct bnxt *bp)
9203 {
9204 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9205 		pci_disable_msix(bp->pdev);
9206 
9207 	kfree(bp->irq_tbl);
9208 	bp->irq_tbl = NULL;
9209 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
9210 }
9211 
9212 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
9213 {
9214 	int tcs = netdev_get_num_tc(bp->dev);
9215 	bool irq_cleared = false;
9216 	int rc;
9217 
9218 	if (!bnxt_need_reserve_rings(bp))
9219 		return 0;
9220 
9221 	if (irq_re_init && BNXT_NEW_RM(bp) &&
9222 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
9223 		bnxt_ulp_irq_stop(bp);
9224 		bnxt_clear_int_mode(bp);
9225 		irq_cleared = true;
9226 	}
9227 	rc = __bnxt_reserve_rings(bp);
9228 	if (irq_cleared) {
9229 		if (!rc)
9230 			rc = bnxt_init_int_mode(bp);
9231 		bnxt_ulp_irq_restart(bp, rc);
9232 	}
9233 	if (rc) {
9234 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
9235 		return rc;
9236 	}
9237 	if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
9238 		netdev_err(bp->dev, "tx ring reservation failure\n");
9239 		netdev_reset_tc(bp->dev);
9240 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
9241 		return -ENOMEM;
9242 	}
9243 	return 0;
9244 }
9245 
9246 static void bnxt_free_irq(struct bnxt *bp)
9247 {
9248 	struct bnxt_irq *irq;
9249 	int i;
9250 
9251 #ifdef CONFIG_RFS_ACCEL
9252 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
9253 	bp->dev->rx_cpu_rmap = NULL;
9254 #endif
9255 	if (!bp->irq_tbl || !bp->bnapi)
9256 		return;
9257 
9258 	for (i = 0; i < bp->cp_nr_rings; i++) {
9259 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9260 
9261 		irq = &bp->irq_tbl[map_idx];
9262 		if (irq->requested) {
9263 			if (irq->have_cpumask) {
9264 				irq_set_affinity_hint(irq->vector, NULL);
9265 				free_cpumask_var(irq->cpu_mask);
9266 				irq->have_cpumask = 0;
9267 			}
9268 			free_irq(irq->vector, bp->bnapi[i]);
9269 		}
9270 
9271 		irq->requested = 0;
9272 	}
9273 }
9274 
9275 static int bnxt_request_irq(struct bnxt *bp)
9276 {
9277 	int i, j, rc = 0;
9278 	unsigned long flags = 0;
9279 #ifdef CONFIG_RFS_ACCEL
9280 	struct cpu_rmap *rmap;
9281 #endif
9282 
9283 	rc = bnxt_setup_int_mode(bp);
9284 	if (rc) {
9285 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
9286 			   rc);
9287 		return rc;
9288 	}
9289 #ifdef CONFIG_RFS_ACCEL
9290 	rmap = bp->dev->rx_cpu_rmap;
9291 #endif
9292 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
9293 		flags = IRQF_SHARED;
9294 
9295 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
9296 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9297 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
9298 
9299 #ifdef CONFIG_RFS_ACCEL
9300 		if (rmap && bp->bnapi[i]->rx_ring) {
9301 			rc = irq_cpu_rmap_add(rmap, irq->vector);
9302 			if (rc)
9303 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
9304 					    j);
9305 			j++;
9306 		}
9307 #endif
9308 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
9309 				 bp->bnapi[i]);
9310 		if (rc)
9311 			break;
9312 
9313 		irq->requested = 1;
9314 
9315 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
9316 			int numa_node = dev_to_node(&bp->pdev->dev);
9317 
9318 			irq->have_cpumask = 1;
9319 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
9320 					irq->cpu_mask);
9321 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
9322 			if (rc) {
9323 				netdev_warn(bp->dev,
9324 					    "Set affinity failed, IRQ = %d\n",
9325 					    irq->vector);
9326 				break;
9327 			}
9328 		}
9329 	}
9330 	return rc;
9331 }
9332 
9333 static void bnxt_del_napi(struct bnxt *bp)
9334 {
9335 	int i;
9336 
9337 	if (!bp->bnapi)
9338 		return;
9339 
9340 	for (i = 0; i < bp->cp_nr_rings; i++) {
9341 		struct bnxt_napi *bnapi = bp->bnapi[i];
9342 
9343 		__netif_napi_del(&bnapi->napi);
9344 	}
9345 	/* We called __netif_napi_del(), we need
9346 	 * to respect an RCU grace period before freeing napi structures.
9347 	 */
9348 	synchronize_net();
9349 }
9350 
9351 static void bnxt_init_napi(struct bnxt *bp)
9352 {
9353 	int i;
9354 	unsigned int cp_nr_rings = bp->cp_nr_rings;
9355 	struct bnxt_napi *bnapi;
9356 
9357 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
9358 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
9359 
9360 		if (bp->flags & BNXT_FLAG_CHIP_P5)
9361 			poll_fn = bnxt_poll_p5;
9362 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
9363 			cp_nr_rings--;
9364 		for (i = 0; i < cp_nr_rings; i++) {
9365 			bnapi = bp->bnapi[i];
9366 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64);
9367 		}
9368 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
9369 			bnapi = bp->bnapi[cp_nr_rings];
9370 			netif_napi_add(bp->dev, &bnapi->napi,
9371 				       bnxt_poll_nitroa0, 64);
9372 		}
9373 	} else {
9374 		bnapi = bp->bnapi[0];
9375 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
9376 	}
9377 }
9378 
9379 static void bnxt_disable_napi(struct bnxt *bp)
9380 {
9381 	int i;
9382 
9383 	if (!bp->bnapi ||
9384 	    test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
9385 		return;
9386 
9387 	for (i = 0; i < bp->cp_nr_rings; i++) {
9388 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
9389 
9390 		napi_disable(&bp->bnapi[i]->napi);
9391 		if (bp->bnapi[i]->rx_ring)
9392 			cancel_work_sync(&cpr->dim.work);
9393 	}
9394 }
9395 
9396 static void bnxt_enable_napi(struct bnxt *bp)
9397 {
9398 	int i;
9399 
9400 	clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
9401 	for (i = 0; i < bp->cp_nr_rings; i++) {
9402 		struct bnxt_napi *bnapi = bp->bnapi[i];
9403 		struct bnxt_cp_ring_info *cpr;
9404 
9405 		cpr = &bnapi->cp_ring;
9406 		if (bnapi->in_reset)
9407 			cpr->sw_stats.rx.rx_resets++;
9408 		bnapi->in_reset = false;
9409 
9410 		if (bnapi->rx_ring) {
9411 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
9412 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
9413 		}
9414 		napi_enable(&bnapi->napi);
9415 	}
9416 }
9417 
9418 void bnxt_tx_disable(struct bnxt *bp)
9419 {
9420 	int i;
9421 	struct bnxt_tx_ring_info *txr;
9422 
9423 	if (bp->tx_ring) {
9424 		for (i = 0; i < bp->tx_nr_rings; i++) {
9425 			txr = &bp->tx_ring[i];
9426 			WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
9427 		}
9428 	}
9429 	/* Make sure napi polls see @dev_state change */
9430 	synchronize_net();
9431 	/* Drop carrier first to prevent TX timeout */
9432 	netif_carrier_off(bp->dev);
9433 	/* Stop all TX queues */
9434 	netif_tx_disable(bp->dev);
9435 }
9436 
9437 void bnxt_tx_enable(struct bnxt *bp)
9438 {
9439 	int i;
9440 	struct bnxt_tx_ring_info *txr;
9441 
9442 	for (i = 0; i < bp->tx_nr_rings; i++) {
9443 		txr = &bp->tx_ring[i];
9444 		WRITE_ONCE(txr->dev_state, 0);
9445 	}
9446 	/* Make sure napi polls see @dev_state change */
9447 	synchronize_net();
9448 	netif_tx_wake_all_queues(bp->dev);
9449 	if (BNXT_LINK_IS_UP(bp))
9450 		netif_carrier_on(bp->dev);
9451 }
9452 
9453 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
9454 {
9455 	u8 active_fec = link_info->active_fec_sig_mode &
9456 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
9457 
9458 	switch (active_fec) {
9459 	default:
9460 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
9461 		return "None";
9462 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
9463 		return "Clause 74 BaseR";
9464 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
9465 		return "Clause 91 RS(528,514)";
9466 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
9467 		return "Clause 91 RS544_1XN";
9468 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
9469 		return "Clause 91 RS(544,514)";
9470 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
9471 		return "Clause 91 RS272_1XN";
9472 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
9473 		return "Clause 91 RS(272,257)";
9474 	}
9475 }
9476 
9477 void bnxt_report_link(struct bnxt *bp)
9478 {
9479 	if (BNXT_LINK_IS_UP(bp)) {
9480 		const char *signal = "";
9481 		const char *flow_ctrl;
9482 		const char *duplex;
9483 		u32 speed;
9484 		u16 fec;
9485 
9486 		netif_carrier_on(bp->dev);
9487 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
9488 		if (speed == SPEED_UNKNOWN) {
9489 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
9490 			return;
9491 		}
9492 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
9493 			duplex = "full";
9494 		else
9495 			duplex = "half";
9496 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
9497 			flow_ctrl = "ON - receive & transmit";
9498 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
9499 			flow_ctrl = "ON - transmit";
9500 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
9501 			flow_ctrl = "ON - receive";
9502 		else
9503 			flow_ctrl = "none";
9504 		if (bp->link_info.phy_qcfg_resp.option_flags &
9505 		    PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
9506 			u8 sig_mode = bp->link_info.active_fec_sig_mode &
9507 				      PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
9508 			switch (sig_mode) {
9509 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
9510 				signal = "(NRZ) ";
9511 				break;
9512 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
9513 				signal = "(PAM4) ";
9514 				break;
9515 			default:
9516 				break;
9517 			}
9518 		}
9519 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
9520 			    speed, signal, duplex, flow_ctrl);
9521 		if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
9522 			netdev_info(bp->dev, "EEE is %s\n",
9523 				    bp->eee.eee_active ? "active" :
9524 							 "not active");
9525 		fec = bp->link_info.fec_cfg;
9526 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
9527 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
9528 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
9529 				    bnxt_report_fec(&bp->link_info));
9530 	} else {
9531 		netif_carrier_off(bp->dev);
9532 		netdev_err(bp->dev, "NIC Link is Down\n");
9533 	}
9534 }
9535 
9536 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
9537 {
9538 	if (!resp->supported_speeds_auto_mode &&
9539 	    !resp->supported_speeds_force_mode &&
9540 	    !resp->supported_pam4_speeds_auto_mode &&
9541 	    !resp->supported_pam4_speeds_force_mode)
9542 		return true;
9543 	return false;
9544 }
9545 
9546 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
9547 {
9548 	struct bnxt_link_info *link_info = &bp->link_info;
9549 	struct hwrm_port_phy_qcaps_output *resp;
9550 	struct hwrm_port_phy_qcaps_input *req;
9551 	int rc = 0;
9552 
9553 	if (bp->hwrm_spec_code < 0x10201)
9554 		return 0;
9555 
9556 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS);
9557 	if (rc)
9558 		return rc;
9559 
9560 	resp = hwrm_req_hold(bp, req);
9561 	rc = hwrm_req_send(bp, req);
9562 	if (rc)
9563 		goto hwrm_phy_qcaps_exit;
9564 
9565 	bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8);
9566 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
9567 		struct ethtool_eee *eee = &bp->eee;
9568 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
9569 
9570 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9571 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
9572 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
9573 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
9574 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
9575 	}
9576 
9577 	if (bp->hwrm_spec_code >= 0x10a01) {
9578 		if (bnxt_phy_qcaps_no_speed(resp)) {
9579 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
9580 			netdev_warn(bp->dev, "Ethernet link disabled\n");
9581 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
9582 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
9583 			netdev_info(bp->dev, "Ethernet link enabled\n");
9584 			/* Phy re-enabled, reprobe the speeds */
9585 			link_info->support_auto_speeds = 0;
9586 			link_info->support_pam4_auto_speeds = 0;
9587 		}
9588 	}
9589 	if (resp->supported_speeds_auto_mode)
9590 		link_info->support_auto_speeds =
9591 			le16_to_cpu(resp->supported_speeds_auto_mode);
9592 	if (resp->supported_pam4_speeds_auto_mode)
9593 		link_info->support_pam4_auto_speeds =
9594 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
9595 
9596 	bp->port_count = resp->port_cnt;
9597 
9598 hwrm_phy_qcaps_exit:
9599 	hwrm_req_drop(bp, req);
9600 	return rc;
9601 }
9602 
9603 static bool bnxt_support_dropped(u16 advertising, u16 supported)
9604 {
9605 	u16 diff = advertising ^ supported;
9606 
9607 	return ((supported | diff) != supported);
9608 }
9609 
9610 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
9611 {
9612 	struct bnxt_link_info *link_info = &bp->link_info;
9613 	struct hwrm_port_phy_qcfg_output *resp;
9614 	struct hwrm_port_phy_qcfg_input *req;
9615 	u8 link_state = link_info->link_state;
9616 	bool support_changed = false;
9617 	int rc;
9618 
9619 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG);
9620 	if (rc)
9621 		return rc;
9622 
9623 	resp = hwrm_req_hold(bp, req);
9624 	rc = hwrm_req_send(bp, req);
9625 	if (rc) {
9626 		hwrm_req_drop(bp, req);
9627 		if (BNXT_VF(bp) && rc == -ENODEV) {
9628 			netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n");
9629 			rc = 0;
9630 		}
9631 		return rc;
9632 	}
9633 
9634 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
9635 	link_info->phy_link_status = resp->link;
9636 	link_info->duplex = resp->duplex_cfg;
9637 	if (bp->hwrm_spec_code >= 0x10800)
9638 		link_info->duplex = resp->duplex_state;
9639 	link_info->pause = resp->pause;
9640 	link_info->auto_mode = resp->auto_mode;
9641 	link_info->auto_pause_setting = resp->auto_pause;
9642 	link_info->lp_pause = resp->link_partner_adv_pause;
9643 	link_info->force_pause_setting = resp->force_pause;
9644 	link_info->duplex_setting = resp->duplex_cfg;
9645 	if (link_info->phy_link_status == BNXT_LINK_LINK)
9646 		link_info->link_speed = le16_to_cpu(resp->link_speed);
9647 	else
9648 		link_info->link_speed = 0;
9649 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
9650 	link_info->force_pam4_link_speed =
9651 		le16_to_cpu(resp->force_pam4_link_speed);
9652 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
9653 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
9654 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
9655 	link_info->auto_pam4_link_speeds =
9656 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
9657 	link_info->lp_auto_link_speeds =
9658 		le16_to_cpu(resp->link_partner_adv_speeds);
9659 	link_info->lp_auto_pam4_link_speeds =
9660 		resp->link_partner_pam4_adv_speeds;
9661 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
9662 	link_info->phy_ver[0] = resp->phy_maj;
9663 	link_info->phy_ver[1] = resp->phy_min;
9664 	link_info->phy_ver[2] = resp->phy_bld;
9665 	link_info->media_type = resp->media_type;
9666 	link_info->phy_type = resp->phy_type;
9667 	link_info->transceiver = resp->xcvr_pkg_type;
9668 	link_info->phy_addr = resp->eee_config_phy_addr &
9669 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
9670 	link_info->module_status = resp->module_status;
9671 
9672 	if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
9673 		struct ethtool_eee *eee = &bp->eee;
9674 		u16 fw_speeds;
9675 
9676 		eee->eee_active = 0;
9677 		if (resp->eee_config_phy_addr &
9678 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
9679 			eee->eee_active = 1;
9680 			fw_speeds = le16_to_cpu(
9681 				resp->link_partner_adv_eee_link_speed_mask);
9682 			eee->lp_advertised =
9683 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9684 		}
9685 
9686 		/* Pull initial EEE config */
9687 		if (!chng_link_state) {
9688 			if (resp->eee_config_phy_addr &
9689 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
9690 				eee->eee_enabled = 1;
9691 
9692 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
9693 			eee->advertised =
9694 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9695 
9696 			if (resp->eee_config_phy_addr &
9697 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
9698 				__le32 tmr;
9699 
9700 				eee->tx_lpi_enabled = 1;
9701 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
9702 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
9703 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
9704 			}
9705 		}
9706 	}
9707 
9708 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
9709 	if (bp->hwrm_spec_code >= 0x10504) {
9710 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
9711 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
9712 	}
9713 	/* TODO: need to add more logic to report VF link */
9714 	if (chng_link_state) {
9715 		if (link_info->phy_link_status == BNXT_LINK_LINK)
9716 			link_info->link_state = BNXT_LINK_STATE_UP;
9717 		else
9718 			link_info->link_state = BNXT_LINK_STATE_DOWN;
9719 		if (link_state != link_info->link_state)
9720 			bnxt_report_link(bp);
9721 	} else {
9722 		/* always link down if not require to update link state */
9723 		link_info->link_state = BNXT_LINK_STATE_DOWN;
9724 	}
9725 	hwrm_req_drop(bp, req);
9726 
9727 	if (!BNXT_PHY_CFG_ABLE(bp))
9728 		return 0;
9729 
9730 	/* Check if any advertised speeds are no longer supported. The caller
9731 	 * holds the link_lock mutex, so we can modify link_info settings.
9732 	 */
9733 	if (bnxt_support_dropped(link_info->advertising,
9734 				 link_info->support_auto_speeds)) {
9735 		link_info->advertising = link_info->support_auto_speeds;
9736 		support_changed = true;
9737 	}
9738 	if (bnxt_support_dropped(link_info->advertising_pam4,
9739 				 link_info->support_pam4_auto_speeds)) {
9740 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
9741 		support_changed = true;
9742 	}
9743 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
9744 		bnxt_hwrm_set_link_setting(bp, true, false);
9745 	return 0;
9746 }
9747 
9748 static void bnxt_get_port_module_status(struct bnxt *bp)
9749 {
9750 	struct bnxt_link_info *link_info = &bp->link_info;
9751 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
9752 	u8 module_status;
9753 
9754 	if (bnxt_update_link(bp, true))
9755 		return;
9756 
9757 	module_status = link_info->module_status;
9758 	switch (module_status) {
9759 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
9760 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
9761 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
9762 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
9763 			    bp->pf.port_id);
9764 		if (bp->hwrm_spec_code >= 0x10201) {
9765 			netdev_warn(bp->dev, "Module part number %s\n",
9766 				    resp->phy_vendor_partnumber);
9767 		}
9768 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
9769 			netdev_warn(bp->dev, "TX is disabled\n");
9770 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
9771 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
9772 	}
9773 }
9774 
9775 static void
9776 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9777 {
9778 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
9779 		if (bp->hwrm_spec_code >= 0x10201)
9780 			req->auto_pause =
9781 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
9782 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9783 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
9784 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9785 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
9786 		req->enables |=
9787 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9788 	} else {
9789 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9790 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
9791 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9792 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
9793 		req->enables |=
9794 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
9795 		if (bp->hwrm_spec_code >= 0x10201) {
9796 			req->auto_pause = req->force_pause;
9797 			req->enables |= cpu_to_le32(
9798 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9799 		}
9800 	}
9801 }
9802 
9803 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9804 {
9805 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
9806 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
9807 		if (bp->link_info.advertising) {
9808 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
9809 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
9810 		}
9811 		if (bp->link_info.advertising_pam4) {
9812 			req->enables |=
9813 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
9814 			req->auto_link_pam4_speed_mask =
9815 				cpu_to_le16(bp->link_info.advertising_pam4);
9816 		}
9817 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
9818 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
9819 	} else {
9820 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
9821 		if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
9822 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9823 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
9824 		} else {
9825 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9826 		}
9827 	}
9828 
9829 	/* tell chimp that the setting takes effect immediately */
9830 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
9831 }
9832 
9833 int bnxt_hwrm_set_pause(struct bnxt *bp)
9834 {
9835 	struct hwrm_port_phy_cfg_input *req;
9836 	int rc;
9837 
9838 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9839 	if (rc)
9840 		return rc;
9841 
9842 	bnxt_hwrm_set_pause_common(bp, req);
9843 
9844 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
9845 	    bp->link_info.force_link_chng)
9846 		bnxt_hwrm_set_link_common(bp, req);
9847 
9848 	rc = hwrm_req_send(bp, req);
9849 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
9850 		/* since changing of pause setting doesn't trigger any link
9851 		 * change event, the driver needs to update the current pause
9852 		 * result upon successfully return of the phy_cfg command
9853 		 */
9854 		bp->link_info.pause =
9855 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
9856 		bp->link_info.auto_pause_setting = 0;
9857 		if (!bp->link_info.force_link_chng)
9858 			bnxt_report_link(bp);
9859 	}
9860 	bp->link_info.force_link_chng = false;
9861 	return rc;
9862 }
9863 
9864 static void bnxt_hwrm_set_eee(struct bnxt *bp,
9865 			      struct hwrm_port_phy_cfg_input *req)
9866 {
9867 	struct ethtool_eee *eee = &bp->eee;
9868 
9869 	if (eee->eee_enabled) {
9870 		u16 eee_speeds;
9871 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
9872 
9873 		if (eee->tx_lpi_enabled)
9874 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
9875 		else
9876 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
9877 
9878 		req->flags |= cpu_to_le32(flags);
9879 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
9880 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
9881 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
9882 	} else {
9883 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
9884 	}
9885 }
9886 
9887 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
9888 {
9889 	struct hwrm_port_phy_cfg_input *req;
9890 	int rc;
9891 
9892 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9893 	if (rc)
9894 		return rc;
9895 
9896 	if (set_pause)
9897 		bnxt_hwrm_set_pause_common(bp, req);
9898 
9899 	bnxt_hwrm_set_link_common(bp, req);
9900 
9901 	if (set_eee)
9902 		bnxt_hwrm_set_eee(bp, req);
9903 	return hwrm_req_send(bp, req);
9904 }
9905 
9906 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
9907 {
9908 	struct hwrm_port_phy_cfg_input *req;
9909 	int rc;
9910 
9911 	if (!BNXT_SINGLE_PF(bp))
9912 		return 0;
9913 
9914 	if (pci_num_vf(bp->pdev) &&
9915 	    !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
9916 		return 0;
9917 
9918 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9919 	if (rc)
9920 		return rc;
9921 
9922 	req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
9923 	rc = hwrm_req_send(bp, req);
9924 	if (!rc) {
9925 		mutex_lock(&bp->link_lock);
9926 		/* Device is not obliged link down in certain scenarios, even
9927 		 * when forced. Setting the state unknown is consistent with
9928 		 * driver startup and will force link state to be reported
9929 		 * during subsequent open based on PORT_PHY_QCFG.
9930 		 */
9931 		bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN;
9932 		mutex_unlock(&bp->link_lock);
9933 	}
9934 	return rc;
9935 }
9936 
9937 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
9938 {
9939 #ifdef CONFIG_TEE_BNXT_FW
9940 	int rc = tee_bnxt_fw_load();
9941 
9942 	if (rc)
9943 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
9944 
9945 	return rc;
9946 #else
9947 	netdev_err(bp->dev, "OP-TEE not supported\n");
9948 	return -ENODEV;
9949 #endif
9950 }
9951 
9952 static int bnxt_try_recover_fw(struct bnxt *bp)
9953 {
9954 	if (bp->fw_health && bp->fw_health->status_reliable) {
9955 		int retry = 0, rc;
9956 		u32 sts;
9957 
9958 		do {
9959 			sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
9960 			rc = bnxt_hwrm_poll(bp);
9961 			if (!BNXT_FW_IS_BOOTING(sts) &&
9962 			    !BNXT_FW_IS_RECOVERING(sts))
9963 				break;
9964 			retry++;
9965 		} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
9966 
9967 		if (!BNXT_FW_IS_HEALTHY(sts)) {
9968 			netdev_err(bp->dev,
9969 				   "Firmware not responding, status: 0x%x\n",
9970 				   sts);
9971 			rc = -ENODEV;
9972 		}
9973 		if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
9974 			netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
9975 			return bnxt_fw_reset_via_optee(bp);
9976 		}
9977 		return rc;
9978 	}
9979 
9980 	return -ENODEV;
9981 }
9982 
9983 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset)
9984 {
9985 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9986 	int rc;
9987 
9988 	if (!BNXT_NEW_RM(bp))
9989 		return 0; /* no resource reservations required */
9990 
9991 	rc = bnxt_hwrm_func_resc_qcaps(bp, true);
9992 	if (rc)
9993 		netdev_err(bp->dev, "resc_qcaps failed\n");
9994 
9995 	hw_resc->resv_cp_rings = 0;
9996 	hw_resc->resv_stat_ctxs = 0;
9997 	hw_resc->resv_irqs = 0;
9998 	hw_resc->resv_tx_rings = 0;
9999 	hw_resc->resv_rx_rings = 0;
10000 	hw_resc->resv_hw_ring_grps = 0;
10001 	hw_resc->resv_vnics = 0;
10002 	if (!fw_reset) {
10003 		bp->tx_nr_rings = 0;
10004 		bp->rx_nr_rings = 0;
10005 	}
10006 
10007 	return rc;
10008 }
10009 
10010 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
10011 {
10012 	struct hwrm_func_drv_if_change_output *resp;
10013 	struct hwrm_func_drv_if_change_input *req;
10014 	bool fw_reset = !bp->irq_tbl;
10015 	bool resc_reinit = false;
10016 	int rc, retry = 0;
10017 	u32 flags = 0;
10018 
10019 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
10020 		return 0;
10021 
10022 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE);
10023 	if (rc)
10024 		return rc;
10025 
10026 	if (up)
10027 		req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
10028 	resp = hwrm_req_hold(bp, req);
10029 
10030 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
10031 	while (retry < BNXT_FW_IF_RETRY) {
10032 		rc = hwrm_req_send(bp, req);
10033 		if (rc != -EAGAIN)
10034 			break;
10035 
10036 		msleep(50);
10037 		retry++;
10038 	}
10039 
10040 	if (rc == -EAGAIN) {
10041 		hwrm_req_drop(bp, req);
10042 		return rc;
10043 	} else if (!rc) {
10044 		flags = le32_to_cpu(resp->flags);
10045 	} else if (up) {
10046 		rc = bnxt_try_recover_fw(bp);
10047 		fw_reset = true;
10048 	}
10049 	hwrm_req_drop(bp, req);
10050 	if (rc)
10051 		return rc;
10052 
10053 	if (!up) {
10054 		bnxt_inv_fw_health_reg(bp);
10055 		return 0;
10056 	}
10057 
10058 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
10059 		resc_reinit = true;
10060 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE)
10061 		fw_reset = true;
10062 	else
10063 		bnxt_remap_fw_health_regs(bp);
10064 
10065 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
10066 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
10067 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10068 		return -ENODEV;
10069 	}
10070 	if (resc_reinit || fw_reset) {
10071 		if (fw_reset) {
10072 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10073 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10074 				bnxt_ulp_stop(bp);
10075 			bnxt_free_ctx_mem(bp);
10076 			kfree(bp->ctx);
10077 			bp->ctx = NULL;
10078 			bnxt_dcb_free(bp);
10079 			rc = bnxt_fw_init_one(bp);
10080 			if (rc) {
10081 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10082 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10083 				return rc;
10084 			}
10085 			bnxt_clear_int_mode(bp);
10086 			rc = bnxt_init_int_mode(bp);
10087 			if (rc) {
10088 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10089 				netdev_err(bp->dev, "init int mode failed\n");
10090 				return rc;
10091 			}
10092 		}
10093 		rc = bnxt_cancel_reservations(bp, fw_reset);
10094 	}
10095 	return rc;
10096 }
10097 
10098 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
10099 {
10100 	struct hwrm_port_led_qcaps_output *resp;
10101 	struct hwrm_port_led_qcaps_input *req;
10102 	struct bnxt_pf_info *pf = &bp->pf;
10103 	int rc;
10104 
10105 	bp->num_leds = 0;
10106 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
10107 		return 0;
10108 
10109 	rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS);
10110 	if (rc)
10111 		return rc;
10112 
10113 	req->port_id = cpu_to_le16(pf->port_id);
10114 	resp = hwrm_req_hold(bp, req);
10115 	rc = hwrm_req_send(bp, req);
10116 	if (rc) {
10117 		hwrm_req_drop(bp, req);
10118 		return rc;
10119 	}
10120 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
10121 		int i;
10122 
10123 		bp->num_leds = resp->num_leds;
10124 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
10125 						 bp->num_leds);
10126 		for (i = 0; i < bp->num_leds; i++) {
10127 			struct bnxt_led_info *led = &bp->leds[i];
10128 			__le16 caps = led->led_state_caps;
10129 
10130 			if (!led->led_group_id ||
10131 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
10132 				bp->num_leds = 0;
10133 				break;
10134 			}
10135 		}
10136 	}
10137 	hwrm_req_drop(bp, req);
10138 	return 0;
10139 }
10140 
10141 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
10142 {
10143 	struct hwrm_wol_filter_alloc_output *resp;
10144 	struct hwrm_wol_filter_alloc_input *req;
10145 	int rc;
10146 
10147 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC);
10148 	if (rc)
10149 		return rc;
10150 
10151 	req->port_id = cpu_to_le16(bp->pf.port_id);
10152 	req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
10153 	req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
10154 	memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN);
10155 
10156 	resp = hwrm_req_hold(bp, req);
10157 	rc = hwrm_req_send(bp, req);
10158 	if (!rc)
10159 		bp->wol_filter_id = resp->wol_filter_id;
10160 	hwrm_req_drop(bp, req);
10161 	return rc;
10162 }
10163 
10164 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
10165 {
10166 	struct hwrm_wol_filter_free_input *req;
10167 	int rc;
10168 
10169 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE);
10170 	if (rc)
10171 		return rc;
10172 
10173 	req->port_id = cpu_to_le16(bp->pf.port_id);
10174 	req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
10175 	req->wol_filter_id = bp->wol_filter_id;
10176 
10177 	return hwrm_req_send(bp, req);
10178 }
10179 
10180 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
10181 {
10182 	struct hwrm_wol_filter_qcfg_output *resp;
10183 	struct hwrm_wol_filter_qcfg_input *req;
10184 	u16 next_handle = 0;
10185 	int rc;
10186 
10187 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG);
10188 	if (rc)
10189 		return rc;
10190 
10191 	req->port_id = cpu_to_le16(bp->pf.port_id);
10192 	req->handle = cpu_to_le16(handle);
10193 	resp = hwrm_req_hold(bp, req);
10194 	rc = hwrm_req_send(bp, req);
10195 	if (!rc) {
10196 		next_handle = le16_to_cpu(resp->next_handle);
10197 		if (next_handle != 0) {
10198 			if (resp->wol_type ==
10199 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
10200 				bp->wol = 1;
10201 				bp->wol_filter_id = resp->wol_filter_id;
10202 			}
10203 		}
10204 	}
10205 	hwrm_req_drop(bp, req);
10206 	return next_handle;
10207 }
10208 
10209 static void bnxt_get_wol_settings(struct bnxt *bp)
10210 {
10211 	u16 handle = 0;
10212 
10213 	bp->wol = 0;
10214 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
10215 		return;
10216 
10217 	do {
10218 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
10219 	} while (handle && handle != 0xffff);
10220 }
10221 
10222 #ifdef CONFIG_BNXT_HWMON
10223 static ssize_t bnxt_show_temp(struct device *dev,
10224 			      struct device_attribute *devattr, char *buf)
10225 {
10226 	struct hwrm_temp_monitor_query_output *resp;
10227 	struct hwrm_temp_monitor_query_input *req;
10228 	struct bnxt *bp = dev_get_drvdata(dev);
10229 	u32 len = 0;
10230 	int rc;
10231 
10232 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10233 	if (rc)
10234 		return rc;
10235 	resp = hwrm_req_hold(bp, req);
10236 	rc = hwrm_req_send(bp, req);
10237 	if (!rc)
10238 		len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */
10239 	hwrm_req_drop(bp, req);
10240 	if (rc)
10241 		return rc;
10242 	return len;
10243 }
10244 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
10245 
10246 static struct attribute *bnxt_attrs[] = {
10247 	&sensor_dev_attr_temp1_input.dev_attr.attr,
10248 	NULL
10249 };
10250 ATTRIBUTE_GROUPS(bnxt);
10251 
10252 static void bnxt_hwmon_close(struct bnxt *bp)
10253 {
10254 	if (bp->hwmon_dev) {
10255 		hwmon_device_unregister(bp->hwmon_dev);
10256 		bp->hwmon_dev = NULL;
10257 	}
10258 }
10259 
10260 static void bnxt_hwmon_open(struct bnxt *bp)
10261 {
10262 	struct hwrm_temp_monitor_query_input *req;
10263 	struct pci_dev *pdev = bp->pdev;
10264 	int rc;
10265 
10266 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10267 	if (!rc)
10268 		rc = hwrm_req_send_silent(bp, req);
10269 	if (rc == -EACCES || rc == -EOPNOTSUPP) {
10270 		bnxt_hwmon_close(bp);
10271 		return;
10272 	}
10273 
10274 	if (bp->hwmon_dev)
10275 		return;
10276 
10277 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
10278 							  DRV_MODULE_NAME, bp,
10279 							  bnxt_groups);
10280 	if (IS_ERR(bp->hwmon_dev)) {
10281 		bp->hwmon_dev = NULL;
10282 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
10283 	}
10284 }
10285 #else
10286 static void bnxt_hwmon_close(struct bnxt *bp)
10287 {
10288 }
10289 
10290 static void bnxt_hwmon_open(struct bnxt *bp)
10291 {
10292 }
10293 #endif
10294 
10295 static bool bnxt_eee_config_ok(struct bnxt *bp)
10296 {
10297 	struct ethtool_eee *eee = &bp->eee;
10298 	struct bnxt_link_info *link_info = &bp->link_info;
10299 
10300 	if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
10301 		return true;
10302 
10303 	if (eee->eee_enabled) {
10304 		u32 advertising =
10305 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
10306 
10307 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10308 			eee->eee_enabled = 0;
10309 			return false;
10310 		}
10311 		if (eee->advertised & ~advertising) {
10312 			eee->advertised = advertising & eee->supported;
10313 			return false;
10314 		}
10315 	}
10316 	return true;
10317 }
10318 
10319 static int bnxt_update_phy_setting(struct bnxt *bp)
10320 {
10321 	int rc;
10322 	bool update_link = false;
10323 	bool update_pause = false;
10324 	bool update_eee = false;
10325 	struct bnxt_link_info *link_info = &bp->link_info;
10326 
10327 	rc = bnxt_update_link(bp, true);
10328 	if (rc) {
10329 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
10330 			   rc);
10331 		return rc;
10332 	}
10333 	if (!BNXT_SINGLE_PF(bp))
10334 		return 0;
10335 
10336 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10337 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
10338 	    link_info->req_flow_ctrl)
10339 		update_pause = true;
10340 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10341 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
10342 		update_pause = true;
10343 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10344 		if (BNXT_AUTO_MODE(link_info->auto_mode))
10345 			update_link = true;
10346 		if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
10347 		    link_info->req_link_speed != link_info->force_link_speed)
10348 			update_link = true;
10349 		else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
10350 			 link_info->req_link_speed != link_info->force_pam4_link_speed)
10351 			update_link = true;
10352 		if (link_info->req_duplex != link_info->duplex_setting)
10353 			update_link = true;
10354 	} else {
10355 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
10356 			update_link = true;
10357 		if (link_info->advertising != link_info->auto_link_speeds ||
10358 		    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
10359 			update_link = true;
10360 	}
10361 
10362 	/* The last close may have shutdown the link, so need to call
10363 	 * PHY_CFG to bring it back up.
10364 	 */
10365 	if (!BNXT_LINK_IS_UP(bp))
10366 		update_link = true;
10367 
10368 	if (!bnxt_eee_config_ok(bp))
10369 		update_eee = true;
10370 
10371 	if (update_link)
10372 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
10373 	else if (update_pause)
10374 		rc = bnxt_hwrm_set_pause(bp);
10375 	if (rc) {
10376 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
10377 			   rc);
10378 		return rc;
10379 	}
10380 
10381 	return rc;
10382 }
10383 
10384 /* Common routine to pre-map certain register block to different GRC window.
10385  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
10386  * in PF and 3 windows in VF that can be customized to map in different
10387  * register blocks.
10388  */
10389 static void bnxt_preset_reg_win(struct bnxt *bp)
10390 {
10391 	if (BNXT_PF(bp)) {
10392 		/* CAG registers map to GRC window #4 */
10393 		writel(BNXT_CAG_REG_BASE,
10394 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
10395 	}
10396 }
10397 
10398 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
10399 
10400 static int bnxt_reinit_after_abort(struct bnxt *bp)
10401 {
10402 	int rc;
10403 
10404 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10405 		return -EBUSY;
10406 
10407 	if (bp->dev->reg_state == NETREG_UNREGISTERED)
10408 		return -ENODEV;
10409 
10410 	rc = bnxt_fw_init_one(bp);
10411 	if (!rc) {
10412 		bnxt_clear_int_mode(bp);
10413 		rc = bnxt_init_int_mode(bp);
10414 		if (!rc) {
10415 			clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10416 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10417 		}
10418 	}
10419 	return rc;
10420 }
10421 
10422 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10423 {
10424 	int rc = 0;
10425 
10426 	bnxt_preset_reg_win(bp);
10427 	netif_carrier_off(bp->dev);
10428 	if (irq_re_init) {
10429 		/* Reserve rings now if none were reserved at driver probe. */
10430 		rc = bnxt_init_dflt_ring_mode(bp);
10431 		if (rc) {
10432 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
10433 			return rc;
10434 		}
10435 	}
10436 	rc = bnxt_reserve_rings(bp, irq_re_init);
10437 	if (rc)
10438 		return rc;
10439 	if ((bp->flags & BNXT_FLAG_RFS) &&
10440 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
10441 		/* disable RFS if falling back to INTA */
10442 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
10443 		bp->flags &= ~BNXT_FLAG_RFS;
10444 	}
10445 
10446 	rc = bnxt_alloc_mem(bp, irq_re_init);
10447 	if (rc) {
10448 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10449 		goto open_err_free_mem;
10450 	}
10451 
10452 	if (irq_re_init) {
10453 		bnxt_init_napi(bp);
10454 		rc = bnxt_request_irq(bp);
10455 		if (rc) {
10456 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
10457 			goto open_err_irq;
10458 		}
10459 	}
10460 
10461 	rc = bnxt_init_nic(bp, irq_re_init);
10462 	if (rc) {
10463 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10464 		goto open_err_irq;
10465 	}
10466 
10467 	bnxt_enable_napi(bp);
10468 	bnxt_debug_dev_init(bp);
10469 
10470 	if (link_re_init) {
10471 		mutex_lock(&bp->link_lock);
10472 		rc = bnxt_update_phy_setting(bp);
10473 		mutex_unlock(&bp->link_lock);
10474 		if (rc) {
10475 			netdev_warn(bp->dev, "failed to update phy settings\n");
10476 			if (BNXT_SINGLE_PF(bp)) {
10477 				bp->link_info.phy_retry = true;
10478 				bp->link_info.phy_retry_expires =
10479 					jiffies + 5 * HZ;
10480 			}
10481 		}
10482 	}
10483 
10484 	if (irq_re_init)
10485 		udp_tunnel_nic_reset_ntf(bp->dev);
10486 
10487 	if (bp->tx_nr_rings_xdp < num_possible_cpus()) {
10488 		if (!static_key_enabled(&bnxt_xdp_locking_key))
10489 			static_branch_enable(&bnxt_xdp_locking_key);
10490 	} else if (static_key_enabled(&bnxt_xdp_locking_key)) {
10491 		static_branch_disable(&bnxt_xdp_locking_key);
10492 	}
10493 	set_bit(BNXT_STATE_OPEN, &bp->state);
10494 	bnxt_enable_int(bp);
10495 	/* Enable TX queues */
10496 	bnxt_tx_enable(bp);
10497 	mod_timer(&bp->timer, jiffies + bp->current_interval);
10498 	/* Poll link status and check for SFP+ module status */
10499 	mutex_lock(&bp->link_lock);
10500 	bnxt_get_port_module_status(bp);
10501 	mutex_unlock(&bp->link_lock);
10502 
10503 	/* VF-reps may need to be re-opened after the PF is re-opened */
10504 	if (BNXT_PF(bp))
10505 		bnxt_vf_reps_open(bp);
10506 	bnxt_ptp_init_rtc(bp, true);
10507 	return 0;
10508 
10509 open_err_irq:
10510 	bnxt_del_napi(bp);
10511 
10512 open_err_free_mem:
10513 	bnxt_free_skbs(bp);
10514 	bnxt_free_irq(bp);
10515 	bnxt_free_mem(bp, true);
10516 	return rc;
10517 }
10518 
10519 /* rtnl_lock held */
10520 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10521 {
10522 	int rc = 0;
10523 
10524 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
10525 		rc = -EIO;
10526 	if (!rc)
10527 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
10528 	if (rc) {
10529 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
10530 		dev_close(bp->dev);
10531 	}
10532 	return rc;
10533 }
10534 
10535 /* rtnl_lock held, open the NIC half way by allocating all resources, but
10536  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
10537  * self tests.
10538  */
10539 int bnxt_half_open_nic(struct bnxt *bp)
10540 {
10541 	int rc = 0;
10542 
10543 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10544 		netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n");
10545 		rc = -ENODEV;
10546 		goto half_open_err;
10547 	}
10548 
10549 	rc = bnxt_alloc_mem(bp, true);
10550 	if (rc) {
10551 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10552 		goto half_open_err;
10553 	}
10554 	set_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10555 	rc = bnxt_init_nic(bp, true);
10556 	if (rc) {
10557 		clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10558 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10559 		goto half_open_err;
10560 	}
10561 	return 0;
10562 
10563 half_open_err:
10564 	bnxt_free_skbs(bp);
10565 	bnxt_free_mem(bp, true);
10566 	dev_close(bp->dev);
10567 	return rc;
10568 }
10569 
10570 /* rtnl_lock held, this call can only be made after a previous successful
10571  * call to bnxt_half_open_nic().
10572  */
10573 void bnxt_half_close_nic(struct bnxt *bp)
10574 {
10575 	bnxt_hwrm_resource_free(bp, false, true);
10576 	bnxt_free_skbs(bp);
10577 	bnxt_free_mem(bp, true);
10578 	clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10579 }
10580 
10581 void bnxt_reenable_sriov(struct bnxt *bp)
10582 {
10583 	if (BNXT_PF(bp)) {
10584 		struct bnxt_pf_info *pf = &bp->pf;
10585 		int n = pf->active_vfs;
10586 
10587 		if (n)
10588 			bnxt_cfg_hw_sriov(bp, &n, true);
10589 	}
10590 }
10591 
10592 static int bnxt_open(struct net_device *dev)
10593 {
10594 	struct bnxt *bp = netdev_priv(dev);
10595 	int rc;
10596 
10597 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10598 		rc = bnxt_reinit_after_abort(bp);
10599 		if (rc) {
10600 			if (rc == -EBUSY)
10601 				netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
10602 			else
10603 				netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
10604 			return -ENODEV;
10605 		}
10606 	}
10607 
10608 	rc = bnxt_hwrm_if_change(bp, true);
10609 	if (rc)
10610 		return rc;
10611 
10612 	rc = __bnxt_open_nic(bp, true, true);
10613 	if (rc) {
10614 		bnxt_hwrm_if_change(bp, false);
10615 	} else {
10616 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
10617 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10618 				bnxt_ulp_start(bp, 0);
10619 				bnxt_reenable_sriov(bp);
10620 			}
10621 		}
10622 		bnxt_hwmon_open(bp);
10623 	}
10624 
10625 	return rc;
10626 }
10627 
10628 static bool bnxt_drv_busy(struct bnxt *bp)
10629 {
10630 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
10631 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
10632 }
10633 
10634 static void bnxt_get_ring_stats(struct bnxt *bp,
10635 				struct rtnl_link_stats64 *stats);
10636 
10637 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
10638 			     bool link_re_init)
10639 {
10640 	/* Close the VF-reps before closing PF */
10641 	if (BNXT_PF(bp))
10642 		bnxt_vf_reps_close(bp);
10643 
10644 	/* Change device state to avoid TX queue wake up's */
10645 	bnxt_tx_disable(bp);
10646 
10647 	clear_bit(BNXT_STATE_OPEN, &bp->state);
10648 	smp_mb__after_atomic();
10649 	while (bnxt_drv_busy(bp))
10650 		msleep(20);
10651 
10652 	/* Flush rings and and disable interrupts */
10653 	bnxt_shutdown_nic(bp, irq_re_init);
10654 
10655 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
10656 
10657 	bnxt_debug_dev_exit(bp);
10658 	bnxt_disable_napi(bp);
10659 	del_timer_sync(&bp->timer);
10660 	bnxt_free_skbs(bp);
10661 
10662 	/* Save ring stats before shutdown */
10663 	if (bp->bnapi && irq_re_init)
10664 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
10665 	if (irq_re_init) {
10666 		bnxt_free_irq(bp);
10667 		bnxt_del_napi(bp);
10668 	}
10669 	bnxt_free_mem(bp, irq_re_init);
10670 }
10671 
10672 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10673 {
10674 	int rc = 0;
10675 
10676 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10677 		/* If we get here, it means firmware reset is in progress
10678 		 * while we are trying to close.  We can safely proceed with
10679 		 * the close because we are holding rtnl_lock().  Some firmware
10680 		 * messages may fail as we proceed to close.  We set the
10681 		 * ABORT_ERR flag here so that the FW reset thread will later
10682 		 * abort when it gets the rtnl_lock() and sees the flag.
10683 		 */
10684 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
10685 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10686 	}
10687 
10688 #ifdef CONFIG_BNXT_SRIOV
10689 	if (bp->sriov_cfg) {
10690 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
10691 						      !bp->sriov_cfg,
10692 						      BNXT_SRIOV_CFG_WAIT_TMO);
10693 		if (rc)
10694 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
10695 	}
10696 #endif
10697 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
10698 	return rc;
10699 }
10700 
10701 static int bnxt_close(struct net_device *dev)
10702 {
10703 	struct bnxt *bp = netdev_priv(dev);
10704 
10705 	bnxt_hwmon_close(bp);
10706 	bnxt_close_nic(bp, true, true);
10707 	bnxt_hwrm_shutdown_link(bp);
10708 	bnxt_hwrm_if_change(bp, false);
10709 	return 0;
10710 }
10711 
10712 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
10713 				   u16 *val)
10714 {
10715 	struct hwrm_port_phy_mdio_read_output *resp;
10716 	struct hwrm_port_phy_mdio_read_input *req;
10717 	int rc;
10718 
10719 	if (bp->hwrm_spec_code < 0x10a00)
10720 		return -EOPNOTSUPP;
10721 
10722 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ);
10723 	if (rc)
10724 		return rc;
10725 
10726 	req->port_id = cpu_to_le16(bp->pf.port_id);
10727 	req->phy_addr = phy_addr;
10728 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10729 	if (mdio_phy_id_is_c45(phy_addr)) {
10730 		req->cl45_mdio = 1;
10731 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10732 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10733 		req->reg_addr = cpu_to_le16(reg);
10734 	}
10735 
10736 	resp = hwrm_req_hold(bp, req);
10737 	rc = hwrm_req_send(bp, req);
10738 	if (!rc)
10739 		*val = le16_to_cpu(resp->reg_data);
10740 	hwrm_req_drop(bp, req);
10741 	return rc;
10742 }
10743 
10744 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
10745 				    u16 val)
10746 {
10747 	struct hwrm_port_phy_mdio_write_input *req;
10748 	int rc;
10749 
10750 	if (bp->hwrm_spec_code < 0x10a00)
10751 		return -EOPNOTSUPP;
10752 
10753 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE);
10754 	if (rc)
10755 		return rc;
10756 
10757 	req->port_id = cpu_to_le16(bp->pf.port_id);
10758 	req->phy_addr = phy_addr;
10759 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10760 	if (mdio_phy_id_is_c45(phy_addr)) {
10761 		req->cl45_mdio = 1;
10762 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10763 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10764 		req->reg_addr = cpu_to_le16(reg);
10765 	}
10766 	req->reg_data = cpu_to_le16(val);
10767 
10768 	return hwrm_req_send(bp, req);
10769 }
10770 
10771 /* rtnl_lock held */
10772 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10773 {
10774 	struct mii_ioctl_data *mdio = if_mii(ifr);
10775 	struct bnxt *bp = netdev_priv(dev);
10776 	int rc;
10777 
10778 	switch (cmd) {
10779 	case SIOCGMIIPHY:
10780 		mdio->phy_id = bp->link_info.phy_addr;
10781 
10782 		fallthrough;
10783 	case SIOCGMIIREG: {
10784 		u16 mii_regval = 0;
10785 
10786 		if (!netif_running(dev))
10787 			return -EAGAIN;
10788 
10789 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
10790 					     &mii_regval);
10791 		mdio->val_out = mii_regval;
10792 		return rc;
10793 	}
10794 
10795 	case SIOCSMIIREG:
10796 		if (!netif_running(dev))
10797 			return -EAGAIN;
10798 
10799 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
10800 						mdio->val_in);
10801 
10802 	case SIOCSHWTSTAMP:
10803 		return bnxt_hwtstamp_set(dev, ifr);
10804 
10805 	case SIOCGHWTSTAMP:
10806 		return bnxt_hwtstamp_get(dev, ifr);
10807 
10808 	default:
10809 		/* do nothing */
10810 		break;
10811 	}
10812 	return -EOPNOTSUPP;
10813 }
10814 
10815 static void bnxt_get_ring_stats(struct bnxt *bp,
10816 				struct rtnl_link_stats64 *stats)
10817 {
10818 	int i;
10819 
10820 	for (i = 0; i < bp->cp_nr_rings; i++) {
10821 		struct bnxt_napi *bnapi = bp->bnapi[i];
10822 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10823 		u64 *sw = cpr->stats.sw_stats;
10824 
10825 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
10826 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10827 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
10828 
10829 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
10830 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
10831 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
10832 
10833 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
10834 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
10835 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
10836 
10837 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
10838 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
10839 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
10840 
10841 		stats->rx_missed_errors +=
10842 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
10843 
10844 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10845 
10846 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
10847 
10848 		stats->rx_dropped +=
10849 			cpr->sw_stats.rx.rx_netpoll_discards +
10850 			cpr->sw_stats.rx.rx_oom_discards;
10851 	}
10852 }
10853 
10854 static void bnxt_add_prev_stats(struct bnxt *bp,
10855 				struct rtnl_link_stats64 *stats)
10856 {
10857 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
10858 
10859 	stats->rx_packets += prev_stats->rx_packets;
10860 	stats->tx_packets += prev_stats->tx_packets;
10861 	stats->rx_bytes += prev_stats->rx_bytes;
10862 	stats->tx_bytes += prev_stats->tx_bytes;
10863 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
10864 	stats->multicast += prev_stats->multicast;
10865 	stats->rx_dropped += prev_stats->rx_dropped;
10866 	stats->tx_dropped += prev_stats->tx_dropped;
10867 }
10868 
10869 static void
10870 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
10871 {
10872 	struct bnxt *bp = netdev_priv(dev);
10873 
10874 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
10875 	/* Make sure bnxt_close_nic() sees that we are reading stats before
10876 	 * we check the BNXT_STATE_OPEN flag.
10877 	 */
10878 	smp_mb__after_atomic();
10879 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10880 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10881 		*stats = bp->net_stats_prev;
10882 		return;
10883 	}
10884 
10885 	bnxt_get_ring_stats(bp, stats);
10886 	bnxt_add_prev_stats(bp, stats);
10887 
10888 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
10889 		u64 *rx = bp->port_stats.sw_stats;
10890 		u64 *tx = bp->port_stats.sw_stats +
10891 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
10892 
10893 		stats->rx_crc_errors =
10894 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
10895 		stats->rx_frame_errors =
10896 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
10897 		stats->rx_length_errors =
10898 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
10899 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
10900 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
10901 		stats->rx_errors =
10902 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
10903 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
10904 		stats->collisions =
10905 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
10906 		stats->tx_fifo_errors =
10907 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
10908 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
10909 	}
10910 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10911 }
10912 
10913 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
10914 {
10915 	struct net_device *dev = bp->dev;
10916 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10917 	struct netdev_hw_addr *ha;
10918 	u8 *haddr;
10919 	int mc_count = 0;
10920 	bool update = false;
10921 	int off = 0;
10922 
10923 	netdev_for_each_mc_addr(ha, dev) {
10924 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
10925 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10926 			vnic->mc_list_count = 0;
10927 			return false;
10928 		}
10929 		haddr = ha->addr;
10930 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
10931 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
10932 			update = true;
10933 		}
10934 		off += ETH_ALEN;
10935 		mc_count++;
10936 	}
10937 	if (mc_count)
10938 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
10939 
10940 	if (mc_count != vnic->mc_list_count) {
10941 		vnic->mc_list_count = mc_count;
10942 		update = true;
10943 	}
10944 	return update;
10945 }
10946 
10947 static bool bnxt_uc_list_updated(struct bnxt *bp)
10948 {
10949 	struct net_device *dev = bp->dev;
10950 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10951 	struct netdev_hw_addr *ha;
10952 	int off = 0;
10953 
10954 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
10955 		return true;
10956 
10957 	netdev_for_each_uc_addr(ha, dev) {
10958 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
10959 			return true;
10960 
10961 		off += ETH_ALEN;
10962 	}
10963 	return false;
10964 }
10965 
10966 static void bnxt_set_rx_mode(struct net_device *dev)
10967 {
10968 	struct bnxt *bp = netdev_priv(dev);
10969 	struct bnxt_vnic_info *vnic;
10970 	bool mc_update = false;
10971 	bool uc_update;
10972 	u32 mask;
10973 
10974 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
10975 		return;
10976 
10977 	vnic = &bp->vnic_info[0];
10978 	mask = vnic->rx_mask;
10979 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
10980 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
10981 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
10982 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
10983 
10984 	if (dev->flags & IFF_PROMISC)
10985 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10986 
10987 	uc_update = bnxt_uc_list_updated(bp);
10988 
10989 	if (dev->flags & IFF_BROADCAST)
10990 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
10991 	if (dev->flags & IFF_ALLMULTI) {
10992 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10993 		vnic->mc_list_count = 0;
10994 	} else if (dev->flags & IFF_MULTICAST) {
10995 		mc_update = bnxt_mc_list_updated(bp, &mask);
10996 	}
10997 
10998 	if (mask != vnic->rx_mask || uc_update || mc_update) {
10999 		vnic->rx_mask = mask;
11000 
11001 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
11002 		bnxt_queue_sp_work(bp);
11003 	}
11004 }
11005 
11006 static int bnxt_cfg_rx_mode(struct bnxt *bp)
11007 {
11008 	struct net_device *dev = bp->dev;
11009 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11010 	struct hwrm_cfa_l2_filter_free_input *req;
11011 	struct netdev_hw_addr *ha;
11012 	int i, off = 0, rc;
11013 	bool uc_update;
11014 
11015 	netif_addr_lock_bh(dev);
11016 	uc_update = bnxt_uc_list_updated(bp);
11017 	netif_addr_unlock_bh(dev);
11018 
11019 	if (!uc_update)
11020 		goto skip_uc;
11021 
11022 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
11023 	if (rc)
11024 		return rc;
11025 	hwrm_req_hold(bp, req);
11026 	for (i = 1; i < vnic->uc_filter_count; i++) {
11027 		req->l2_filter_id = vnic->fw_l2_filter_id[i];
11028 
11029 		rc = hwrm_req_send(bp, req);
11030 	}
11031 	hwrm_req_drop(bp, req);
11032 
11033 	vnic->uc_filter_count = 1;
11034 
11035 	netif_addr_lock_bh(dev);
11036 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
11037 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11038 	} else {
11039 		netdev_for_each_uc_addr(ha, dev) {
11040 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
11041 			off += ETH_ALEN;
11042 			vnic->uc_filter_count++;
11043 		}
11044 	}
11045 	netif_addr_unlock_bh(dev);
11046 
11047 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
11048 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
11049 		if (rc) {
11050 			if (BNXT_VF(bp) && rc == -ENODEV) {
11051 				if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
11052 					netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n");
11053 				else
11054 					netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n");
11055 				rc = 0;
11056 			} else {
11057 				netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
11058 			}
11059 			vnic->uc_filter_count = i;
11060 			return rc;
11061 		}
11062 	}
11063 	if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
11064 		netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n");
11065 
11066 skip_uc:
11067 	if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
11068 	    !bnxt_promisc_ok(bp))
11069 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11070 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
11071 	if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) {
11072 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
11073 			    rc);
11074 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
11075 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
11076 		vnic->mc_list_count = 0;
11077 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
11078 	}
11079 	if (rc)
11080 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
11081 			   rc);
11082 
11083 	return rc;
11084 }
11085 
11086 static bool bnxt_can_reserve_rings(struct bnxt *bp)
11087 {
11088 #ifdef CONFIG_BNXT_SRIOV
11089 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
11090 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
11091 
11092 		/* No minimum rings were provisioned by the PF.  Don't
11093 		 * reserve rings by default when device is down.
11094 		 */
11095 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
11096 			return true;
11097 
11098 		if (!netif_running(bp->dev))
11099 			return false;
11100 	}
11101 #endif
11102 	return true;
11103 }
11104 
11105 /* If the chip and firmware supports RFS */
11106 static bool bnxt_rfs_supported(struct bnxt *bp)
11107 {
11108 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
11109 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
11110 			return true;
11111 		return false;
11112 	}
11113 	/* 212 firmware is broken for aRFS */
11114 	if (BNXT_FW_MAJ(bp) == 212)
11115 		return false;
11116 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
11117 		return true;
11118 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
11119 		return true;
11120 	return false;
11121 }
11122 
11123 /* If runtime conditions support RFS */
11124 static bool bnxt_rfs_capable(struct bnxt *bp)
11125 {
11126 #ifdef CONFIG_RFS_ACCEL
11127 	int vnics, max_vnics, max_rss_ctxs;
11128 
11129 	if (bp->flags & BNXT_FLAG_CHIP_P5)
11130 		return bnxt_rfs_supported(bp);
11131 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp))
11132 		return false;
11133 
11134 	vnics = 1 + bp->rx_nr_rings;
11135 	max_vnics = bnxt_get_max_func_vnics(bp);
11136 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
11137 
11138 	/* RSS contexts not a limiting factor */
11139 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
11140 		max_rss_ctxs = max_vnics;
11141 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
11142 		if (bp->rx_nr_rings > 1)
11143 			netdev_warn(bp->dev,
11144 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
11145 				    min(max_rss_ctxs - 1, max_vnics - 1));
11146 		return false;
11147 	}
11148 
11149 	if (!BNXT_NEW_RM(bp))
11150 		return true;
11151 
11152 	if (vnics == bp->hw_resc.resv_vnics)
11153 		return true;
11154 
11155 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
11156 	if (vnics <= bp->hw_resc.resv_vnics)
11157 		return true;
11158 
11159 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
11160 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
11161 	return false;
11162 #else
11163 	return false;
11164 #endif
11165 }
11166 
11167 static netdev_features_t bnxt_fix_features(struct net_device *dev,
11168 					   netdev_features_t features)
11169 {
11170 	struct bnxt *bp = netdev_priv(dev);
11171 	netdev_features_t vlan_features;
11172 
11173 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
11174 		features &= ~NETIF_F_NTUPLE;
11175 
11176 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
11177 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11178 
11179 	if (!(bp->flags & BNXT_FLAG_TPA))
11180 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11181 
11182 	if (!(features & NETIF_F_GRO))
11183 		features &= ~NETIF_F_GRO_HW;
11184 
11185 	if (features & NETIF_F_GRO_HW)
11186 		features &= ~NETIF_F_LRO;
11187 
11188 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
11189 	 * turned on or off together.
11190 	 */
11191 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
11192 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
11193 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11194 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11195 		else if (vlan_features)
11196 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
11197 	}
11198 #ifdef CONFIG_BNXT_SRIOV
11199 	if (BNXT_VF(bp) && bp->vf.vlan)
11200 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11201 #endif
11202 	return features;
11203 }
11204 
11205 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
11206 {
11207 	struct bnxt *bp = netdev_priv(dev);
11208 	u32 flags = bp->flags;
11209 	u32 changes;
11210 	int rc = 0;
11211 	bool re_init = false;
11212 	bool update_tpa = false;
11213 
11214 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
11215 	if (features & NETIF_F_GRO_HW)
11216 		flags |= BNXT_FLAG_GRO;
11217 	else if (features & NETIF_F_LRO)
11218 		flags |= BNXT_FLAG_LRO;
11219 
11220 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
11221 		flags &= ~BNXT_FLAG_TPA;
11222 
11223 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11224 		flags |= BNXT_FLAG_STRIP_VLAN;
11225 
11226 	if (features & NETIF_F_NTUPLE)
11227 		flags |= BNXT_FLAG_RFS;
11228 
11229 	changes = flags ^ bp->flags;
11230 	if (changes & BNXT_FLAG_TPA) {
11231 		update_tpa = true;
11232 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
11233 		    (flags & BNXT_FLAG_TPA) == 0 ||
11234 		    (bp->flags & BNXT_FLAG_CHIP_P5))
11235 			re_init = true;
11236 	}
11237 
11238 	if (changes & ~BNXT_FLAG_TPA)
11239 		re_init = true;
11240 
11241 	if (flags != bp->flags) {
11242 		u32 old_flags = bp->flags;
11243 
11244 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11245 			bp->flags = flags;
11246 			if (update_tpa)
11247 				bnxt_set_ring_params(bp);
11248 			return rc;
11249 		}
11250 
11251 		if (re_init) {
11252 			bnxt_close_nic(bp, false, false);
11253 			bp->flags = flags;
11254 			if (update_tpa)
11255 				bnxt_set_ring_params(bp);
11256 
11257 			return bnxt_open_nic(bp, false, false);
11258 		}
11259 		if (update_tpa) {
11260 			bp->flags = flags;
11261 			rc = bnxt_set_tpa(bp,
11262 					  (flags & BNXT_FLAG_TPA) ?
11263 					  true : false);
11264 			if (rc)
11265 				bp->flags = old_flags;
11266 		}
11267 	}
11268 	return rc;
11269 }
11270 
11271 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
11272 			      u8 **nextp)
11273 {
11274 	struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
11275 	int hdr_count = 0;
11276 	u8 *nexthdr;
11277 	int start;
11278 
11279 	/* Check that there are at most 2 IPv6 extension headers, no
11280 	 * fragment header, and each is <= 64 bytes.
11281 	 */
11282 	start = nw_off + sizeof(*ip6h);
11283 	nexthdr = &ip6h->nexthdr;
11284 	while (ipv6_ext_hdr(*nexthdr)) {
11285 		struct ipv6_opt_hdr *hp;
11286 		int hdrlen;
11287 
11288 		if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
11289 		    *nexthdr == NEXTHDR_FRAGMENT)
11290 			return false;
11291 		hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
11292 					  skb_headlen(skb), NULL);
11293 		if (!hp)
11294 			return false;
11295 		if (*nexthdr == NEXTHDR_AUTH)
11296 			hdrlen = ipv6_authlen(hp);
11297 		else
11298 			hdrlen = ipv6_optlen(hp);
11299 
11300 		if (hdrlen > 64)
11301 			return false;
11302 		nexthdr = &hp->nexthdr;
11303 		start += hdrlen;
11304 		hdr_count++;
11305 	}
11306 	if (nextp) {
11307 		/* Caller will check inner protocol */
11308 		if (skb->encapsulation) {
11309 			*nextp = nexthdr;
11310 			return true;
11311 		}
11312 		*nextp = NULL;
11313 	}
11314 	/* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
11315 	return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
11316 }
11317 
11318 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
11319 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
11320 {
11321 	struct udphdr *uh = udp_hdr(skb);
11322 	__be16 udp_port = uh->dest;
11323 
11324 	if (udp_port != bp->vxlan_port && udp_port != bp->nge_port)
11325 		return false;
11326 	if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) {
11327 		struct ethhdr *eh = inner_eth_hdr(skb);
11328 
11329 		switch (eh->h_proto) {
11330 		case htons(ETH_P_IP):
11331 			return true;
11332 		case htons(ETH_P_IPV6):
11333 			return bnxt_exthdr_check(bp, skb,
11334 						 skb_inner_network_offset(skb),
11335 						 NULL);
11336 		}
11337 	}
11338 	return false;
11339 }
11340 
11341 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
11342 {
11343 	switch (l4_proto) {
11344 	case IPPROTO_UDP:
11345 		return bnxt_udp_tunl_check(bp, skb);
11346 	case IPPROTO_IPIP:
11347 		return true;
11348 	case IPPROTO_GRE: {
11349 		switch (skb->inner_protocol) {
11350 		default:
11351 			return false;
11352 		case htons(ETH_P_IP):
11353 			return true;
11354 		case htons(ETH_P_IPV6):
11355 			fallthrough;
11356 		}
11357 	}
11358 	case IPPROTO_IPV6:
11359 		/* Check ext headers of inner ipv6 */
11360 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
11361 					 NULL);
11362 	}
11363 	return false;
11364 }
11365 
11366 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
11367 					     struct net_device *dev,
11368 					     netdev_features_t features)
11369 {
11370 	struct bnxt *bp = netdev_priv(dev);
11371 	u8 *l4_proto;
11372 
11373 	features = vlan_features_check(skb, features);
11374 	switch (vlan_get_protocol(skb)) {
11375 	case htons(ETH_P_IP):
11376 		if (!skb->encapsulation)
11377 			return features;
11378 		l4_proto = &ip_hdr(skb)->protocol;
11379 		if (bnxt_tunl_check(bp, skb, *l4_proto))
11380 			return features;
11381 		break;
11382 	case htons(ETH_P_IPV6):
11383 		if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
11384 				       &l4_proto))
11385 			break;
11386 		if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
11387 			return features;
11388 		break;
11389 	}
11390 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
11391 }
11392 
11393 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
11394 			 u32 *reg_buf)
11395 {
11396 	struct hwrm_dbg_read_direct_output *resp;
11397 	struct hwrm_dbg_read_direct_input *req;
11398 	__le32 *dbg_reg_buf;
11399 	dma_addr_t mapping;
11400 	int rc, i;
11401 
11402 	rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT);
11403 	if (rc)
11404 		return rc;
11405 
11406 	dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4,
11407 					 &mapping);
11408 	if (!dbg_reg_buf) {
11409 		rc = -ENOMEM;
11410 		goto dbg_rd_reg_exit;
11411 	}
11412 
11413 	req->host_dest_addr = cpu_to_le64(mapping);
11414 
11415 	resp = hwrm_req_hold(bp, req);
11416 	req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
11417 	req->read_len32 = cpu_to_le32(num_words);
11418 
11419 	rc = hwrm_req_send(bp, req);
11420 	if (rc || resp->error_code) {
11421 		rc = -EIO;
11422 		goto dbg_rd_reg_exit;
11423 	}
11424 	for (i = 0; i < num_words; i++)
11425 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
11426 
11427 dbg_rd_reg_exit:
11428 	hwrm_req_drop(bp, req);
11429 	return rc;
11430 }
11431 
11432 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
11433 				       u32 ring_id, u32 *prod, u32 *cons)
11434 {
11435 	struct hwrm_dbg_ring_info_get_output *resp;
11436 	struct hwrm_dbg_ring_info_get_input *req;
11437 	int rc;
11438 
11439 	rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET);
11440 	if (rc)
11441 		return rc;
11442 
11443 	req->ring_type = ring_type;
11444 	req->fw_ring_id = cpu_to_le32(ring_id);
11445 	resp = hwrm_req_hold(bp, req);
11446 	rc = hwrm_req_send(bp, req);
11447 	if (!rc) {
11448 		*prod = le32_to_cpu(resp->producer_index);
11449 		*cons = le32_to_cpu(resp->consumer_index);
11450 	}
11451 	hwrm_req_drop(bp, req);
11452 	return rc;
11453 }
11454 
11455 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
11456 {
11457 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
11458 	int i = bnapi->index;
11459 
11460 	if (!txr)
11461 		return;
11462 
11463 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
11464 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
11465 		    txr->tx_cons);
11466 }
11467 
11468 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
11469 {
11470 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
11471 	int i = bnapi->index;
11472 
11473 	if (!rxr)
11474 		return;
11475 
11476 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
11477 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
11478 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
11479 		    rxr->rx_sw_agg_prod);
11480 }
11481 
11482 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
11483 {
11484 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
11485 	int i = bnapi->index;
11486 
11487 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
11488 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
11489 }
11490 
11491 static void bnxt_dbg_dump_states(struct bnxt *bp)
11492 {
11493 	int i;
11494 	struct bnxt_napi *bnapi;
11495 
11496 	for (i = 0; i < bp->cp_nr_rings; i++) {
11497 		bnapi = bp->bnapi[i];
11498 		if (netif_msg_drv(bp)) {
11499 			bnxt_dump_tx_sw_state(bnapi);
11500 			bnxt_dump_rx_sw_state(bnapi);
11501 			bnxt_dump_cp_sw_state(bnapi);
11502 		}
11503 	}
11504 }
11505 
11506 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
11507 {
11508 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
11509 	struct hwrm_ring_reset_input *req;
11510 	struct bnxt_napi *bnapi = rxr->bnapi;
11511 	struct bnxt_cp_ring_info *cpr;
11512 	u16 cp_ring_id;
11513 	int rc;
11514 
11515 	rc = hwrm_req_init(bp, req, HWRM_RING_RESET);
11516 	if (rc)
11517 		return rc;
11518 
11519 	cpr = &bnapi->cp_ring;
11520 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
11521 	req->cmpl_ring = cpu_to_le16(cp_ring_id);
11522 	req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
11523 	req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
11524 	return hwrm_req_send_silent(bp, req);
11525 }
11526 
11527 static void bnxt_reset_task(struct bnxt *bp, bool silent)
11528 {
11529 	if (!silent)
11530 		bnxt_dbg_dump_states(bp);
11531 	if (netif_running(bp->dev)) {
11532 		int rc;
11533 
11534 		if (silent) {
11535 			bnxt_close_nic(bp, false, false);
11536 			bnxt_open_nic(bp, false, false);
11537 		} else {
11538 			bnxt_ulp_stop(bp);
11539 			bnxt_close_nic(bp, true, false);
11540 			rc = bnxt_open_nic(bp, true, false);
11541 			bnxt_ulp_start(bp, rc);
11542 		}
11543 	}
11544 }
11545 
11546 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
11547 {
11548 	struct bnxt *bp = netdev_priv(dev);
11549 
11550 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
11551 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
11552 	bnxt_queue_sp_work(bp);
11553 }
11554 
11555 static void bnxt_fw_health_check(struct bnxt *bp)
11556 {
11557 	struct bnxt_fw_health *fw_health = bp->fw_health;
11558 	u32 val;
11559 
11560 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11561 		return;
11562 
11563 	/* Make sure it is enabled before checking the tmr_counter. */
11564 	smp_rmb();
11565 	if (fw_health->tmr_counter) {
11566 		fw_health->tmr_counter--;
11567 		return;
11568 	}
11569 
11570 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11571 	if (val == fw_health->last_fw_heartbeat) {
11572 		fw_health->arrests++;
11573 		goto fw_reset;
11574 	}
11575 
11576 	fw_health->last_fw_heartbeat = val;
11577 
11578 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11579 	if (val != fw_health->last_fw_reset_cnt) {
11580 		fw_health->discoveries++;
11581 		goto fw_reset;
11582 	}
11583 
11584 	fw_health->tmr_counter = fw_health->tmr_multiplier;
11585 	return;
11586 
11587 fw_reset:
11588 	set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
11589 	bnxt_queue_sp_work(bp);
11590 }
11591 
11592 static void bnxt_timer(struct timer_list *t)
11593 {
11594 	struct bnxt *bp = from_timer(bp, t, timer);
11595 	struct net_device *dev = bp->dev;
11596 
11597 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
11598 		return;
11599 
11600 	if (atomic_read(&bp->intr_sem) != 0)
11601 		goto bnxt_restart_timer;
11602 
11603 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
11604 		bnxt_fw_health_check(bp);
11605 
11606 	if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) {
11607 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
11608 		bnxt_queue_sp_work(bp);
11609 	}
11610 
11611 	if (bnxt_tc_flower_enabled(bp)) {
11612 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
11613 		bnxt_queue_sp_work(bp);
11614 	}
11615 
11616 #ifdef CONFIG_RFS_ACCEL
11617 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) {
11618 		set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
11619 		bnxt_queue_sp_work(bp);
11620 	}
11621 #endif /*CONFIG_RFS_ACCEL*/
11622 
11623 	if (bp->link_info.phy_retry) {
11624 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
11625 			bp->link_info.phy_retry = false;
11626 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
11627 		} else {
11628 			set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
11629 			bnxt_queue_sp_work(bp);
11630 		}
11631 	}
11632 
11633 	if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) {
11634 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
11635 		bnxt_queue_sp_work(bp);
11636 	}
11637 
11638 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev &&
11639 	    netif_carrier_ok(dev)) {
11640 		set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
11641 		bnxt_queue_sp_work(bp);
11642 	}
11643 bnxt_restart_timer:
11644 	mod_timer(&bp->timer, jiffies + bp->current_interval);
11645 }
11646 
11647 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
11648 {
11649 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
11650 	 * set.  If the device is being closed, bnxt_close() may be holding
11651 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
11652 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
11653 	 */
11654 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11655 	rtnl_lock();
11656 }
11657 
11658 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
11659 {
11660 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11661 	rtnl_unlock();
11662 }
11663 
11664 /* Only called from bnxt_sp_task() */
11665 static void bnxt_reset(struct bnxt *bp, bool silent)
11666 {
11667 	bnxt_rtnl_lock_sp(bp);
11668 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
11669 		bnxt_reset_task(bp, silent);
11670 	bnxt_rtnl_unlock_sp(bp);
11671 }
11672 
11673 /* Only called from bnxt_sp_task() */
11674 static void bnxt_rx_ring_reset(struct bnxt *bp)
11675 {
11676 	int i;
11677 
11678 	bnxt_rtnl_lock_sp(bp);
11679 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11680 		bnxt_rtnl_unlock_sp(bp);
11681 		return;
11682 	}
11683 	/* Disable and flush TPA before resetting the RX ring */
11684 	if (bp->flags & BNXT_FLAG_TPA)
11685 		bnxt_set_tpa(bp, false);
11686 	for (i = 0; i < bp->rx_nr_rings; i++) {
11687 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
11688 		struct bnxt_cp_ring_info *cpr;
11689 		int rc;
11690 
11691 		if (!rxr->bnapi->in_reset)
11692 			continue;
11693 
11694 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
11695 		if (rc) {
11696 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
11697 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
11698 			else
11699 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
11700 					    rc);
11701 			bnxt_reset_task(bp, true);
11702 			break;
11703 		}
11704 		bnxt_free_one_rx_ring_skbs(bp, i);
11705 		rxr->rx_prod = 0;
11706 		rxr->rx_agg_prod = 0;
11707 		rxr->rx_sw_agg_prod = 0;
11708 		rxr->rx_next_cons = 0;
11709 		rxr->bnapi->in_reset = false;
11710 		bnxt_alloc_one_rx_ring(bp, i);
11711 		cpr = &rxr->bnapi->cp_ring;
11712 		cpr->sw_stats.rx.rx_resets++;
11713 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
11714 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
11715 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
11716 	}
11717 	if (bp->flags & BNXT_FLAG_TPA)
11718 		bnxt_set_tpa(bp, true);
11719 	bnxt_rtnl_unlock_sp(bp);
11720 }
11721 
11722 static void bnxt_fw_reset_close(struct bnxt *bp)
11723 {
11724 	bnxt_ulp_stop(bp);
11725 	/* When firmware is in fatal state, quiesce device and disable
11726 	 * bus master to prevent any potential bad DMAs before freeing
11727 	 * kernel memory.
11728 	 */
11729 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
11730 		u16 val = 0;
11731 
11732 		pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
11733 		if (val == 0xffff)
11734 			bp->fw_reset_min_dsecs = 0;
11735 		bnxt_tx_disable(bp);
11736 		bnxt_disable_napi(bp);
11737 		bnxt_disable_int_sync(bp);
11738 		bnxt_free_irq(bp);
11739 		bnxt_clear_int_mode(bp);
11740 		pci_disable_device(bp->pdev);
11741 	}
11742 	__bnxt_close_nic(bp, true, false);
11743 	bnxt_vf_reps_free(bp);
11744 	bnxt_clear_int_mode(bp);
11745 	bnxt_hwrm_func_drv_unrgtr(bp);
11746 	if (pci_is_enabled(bp->pdev))
11747 		pci_disable_device(bp->pdev);
11748 	bnxt_free_ctx_mem(bp);
11749 	kfree(bp->ctx);
11750 	bp->ctx = NULL;
11751 }
11752 
11753 static bool is_bnxt_fw_ok(struct bnxt *bp)
11754 {
11755 	struct bnxt_fw_health *fw_health = bp->fw_health;
11756 	bool no_heartbeat = false, has_reset = false;
11757 	u32 val;
11758 
11759 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11760 	if (val == fw_health->last_fw_heartbeat)
11761 		no_heartbeat = true;
11762 
11763 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11764 	if (val != fw_health->last_fw_reset_cnt)
11765 		has_reset = true;
11766 
11767 	if (!no_heartbeat && has_reset)
11768 		return true;
11769 
11770 	return false;
11771 }
11772 
11773 /* rtnl_lock is acquired before calling this function */
11774 static void bnxt_force_fw_reset(struct bnxt *bp)
11775 {
11776 	struct bnxt_fw_health *fw_health = bp->fw_health;
11777 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11778 	u32 wait_dsecs;
11779 
11780 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
11781 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11782 		return;
11783 
11784 	if (ptp) {
11785 		spin_lock_bh(&ptp->ptp_lock);
11786 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11787 		spin_unlock_bh(&ptp->ptp_lock);
11788 	} else {
11789 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11790 	}
11791 	bnxt_fw_reset_close(bp);
11792 	wait_dsecs = fw_health->master_func_wait_dsecs;
11793 	if (fw_health->primary) {
11794 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
11795 			wait_dsecs = 0;
11796 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
11797 	} else {
11798 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
11799 		wait_dsecs = fw_health->normal_func_wait_dsecs;
11800 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11801 	}
11802 
11803 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
11804 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
11805 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
11806 }
11807 
11808 void bnxt_fw_exception(struct bnxt *bp)
11809 {
11810 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
11811 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
11812 	bnxt_rtnl_lock_sp(bp);
11813 	bnxt_force_fw_reset(bp);
11814 	bnxt_rtnl_unlock_sp(bp);
11815 }
11816 
11817 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
11818  * < 0 on error.
11819  */
11820 static int bnxt_get_registered_vfs(struct bnxt *bp)
11821 {
11822 #ifdef CONFIG_BNXT_SRIOV
11823 	int rc;
11824 
11825 	if (!BNXT_PF(bp))
11826 		return 0;
11827 
11828 	rc = bnxt_hwrm_func_qcfg(bp);
11829 	if (rc) {
11830 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
11831 		return rc;
11832 	}
11833 	if (bp->pf.registered_vfs)
11834 		return bp->pf.registered_vfs;
11835 	if (bp->sriov_cfg)
11836 		return 1;
11837 #endif
11838 	return 0;
11839 }
11840 
11841 void bnxt_fw_reset(struct bnxt *bp)
11842 {
11843 	bnxt_rtnl_lock_sp(bp);
11844 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
11845 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11846 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11847 		int n = 0, tmo;
11848 
11849 		if (ptp) {
11850 			spin_lock_bh(&ptp->ptp_lock);
11851 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11852 			spin_unlock_bh(&ptp->ptp_lock);
11853 		} else {
11854 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11855 		}
11856 		if (bp->pf.active_vfs &&
11857 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
11858 			n = bnxt_get_registered_vfs(bp);
11859 		if (n < 0) {
11860 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
11861 				   n);
11862 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11863 			dev_close(bp->dev);
11864 			goto fw_reset_exit;
11865 		} else if (n > 0) {
11866 			u16 vf_tmo_dsecs = n * 10;
11867 
11868 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
11869 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
11870 			bp->fw_reset_state =
11871 				BNXT_FW_RESET_STATE_POLL_VF;
11872 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11873 			goto fw_reset_exit;
11874 		}
11875 		bnxt_fw_reset_close(bp);
11876 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11877 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
11878 			tmo = HZ / 10;
11879 		} else {
11880 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11881 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
11882 		}
11883 		bnxt_queue_fw_reset_work(bp, tmo);
11884 	}
11885 fw_reset_exit:
11886 	bnxt_rtnl_unlock_sp(bp);
11887 }
11888 
11889 static void bnxt_chk_missed_irq(struct bnxt *bp)
11890 {
11891 	int i;
11892 
11893 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
11894 		return;
11895 
11896 	for (i = 0; i < bp->cp_nr_rings; i++) {
11897 		struct bnxt_napi *bnapi = bp->bnapi[i];
11898 		struct bnxt_cp_ring_info *cpr;
11899 		u32 fw_ring_id;
11900 		int j;
11901 
11902 		if (!bnapi)
11903 			continue;
11904 
11905 		cpr = &bnapi->cp_ring;
11906 		for (j = 0; j < 2; j++) {
11907 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
11908 			u32 val[2];
11909 
11910 			if (!cpr2 || cpr2->has_more_work ||
11911 			    !bnxt_has_work(bp, cpr2))
11912 				continue;
11913 
11914 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
11915 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
11916 				continue;
11917 			}
11918 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
11919 			bnxt_dbg_hwrm_ring_info_get(bp,
11920 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
11921 				fw_ring_id, &val[0], &val[1]);
11922 			cpr->sw_stats.cmn.missed_irqs++;
11923 		}
11924 	}
11925 }
11926 
11927 static void bnxt_cfg_ntp_filters(struct bnxt *);
11928 
11929 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
11930 {
11931 	struct bnxt_link_info *link_info = &bp->link_info;
11932 
11933 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
11934 		link_info->autoneg = BNXT_AUTONEG_SPEED;
11935 		if (bp->hwrm_spec_code >= 0x10201) {
11936 			if (link_info->auto_pause_setting &
11937 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
11938 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11939 		} else {
11940 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11941 		}
11942 		link_info->advertising = link_info->auto_link_speeds;
11943 		link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
11944 	} else {
11945 		link_info->req_link_speed = link_info->force_link_speed;
11946 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
11947 		if (link_info->force_pam4_link_speed) {
11948 			link_info->req_link_speed =
11949 				link_info->force_pam4_link_speed;
11950 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
11951 		}
11952 		link_info->req_duplex = link_info->duplex_setting;
11953 	}
11954 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
11955 		link_info->req_flow_ctrl =
11956 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
11957 	else
11958 		link_info->req_flow_ctrl = link_info->force_pause_setting;
11959 }
11960 
11961 static void bnxt_fw_echo_reply(struct bnxt *bp)
11962 {
11963 	struct bnxt_fw_health *fw_health = bp->fw_health;
11964 	struct hwrm_func_echo_response_input *req;
11965 	int rc;
11966 
11967 	rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE);
11968 	if (rc)
11969 		return;
11970 	req->event_data1 = cpu_to_le32(fw_health->echo_req_data1);
11971 	req->event_data2 = cpu_to_le32(fw_health->echo_req_data2);
11972 	hwrm_req_send(bp, req);
11973 }
11974 
11975 static void bnxt_sp_task(struct work_struct *work)
11976 {
11977 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
11978 
11979 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11980 	smp_mb__after_atomic();
11981 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11982 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11983 		return;
11984 	}
11985 
11986 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
11987 		bnxt_cfg_rx_mode(bp);
11988 
11989 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
11990 		bnxt_cfg_ntp_filters(bp);
11991 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
11992 		bnxt_hwrm_exec_fwd_req(bp);
11993 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
11994 		bnxt_hwrm_port_qstats(bp, 0);
11995 		bnxt_hwrm_port_qstats_ext(bp, 0);
11996 		bnxt_accumulate_all_stats(bp);
11997 	}
11998 
11999 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
12000 		int rc;
12001 
12002 		mutex_lock(&bp->link_lock);
12003 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
12004 				       &bp->sp_event))
12005 			bnxt_hwrm_phy_qcaps(bp);
12006 
12007 		rc = bnxt_update_link(bp, true);
12008 		if (rc)
12009 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
12010 				   rc);
12011 
12012 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
12013 				       &bp->sp_event))
12014 			bnxt_init_ethtool_link_settings(bp);
12015 		mutex_unlock(&bp->link_lock);
12016 	}
12017 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
12018 		int rc;
12019 
12020 		mutex_lock(&bp->link_lock);
12021 		rc = bnxt_update_phy_setting(bp);
12022 		mutex_unlock(&bp->link_lock);
12023 		if (rc) {
12024 			netdev_warn(bp->dev, "update phy settings retry failed\n");
12025 		} else {
12026 			bp->link_info.phy_retry = false;
12027 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
12028 		}
12029 	}
12030 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
12031 		mutex_lock(&bp->link_lock);
12032 		bnxt_get_port_module_status(bp);
12033 		mutex_unlock(&bp->link_lock);
12034 	}
12035 
12036 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
12037 		bnxt_tc_flow_stats_work(bp);
12038 
12039 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
12040 		bnxt_chk_missed_irq(bp);
12041 
12042 	if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
12043 		bnxt_fw_echo_reply(bp);
12044 
12045 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
12046 	 * must be the last functions to be called before exiting.
12047 	 */
12048 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
12049 		bnxt_reset(bp, false);
12050 
12051 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
12052 		bnxt_reset(bp, true);
12053 
12054 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
12055 		bnxt_rx_ring_reset(bp);
12056 
12057 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) {
12058 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) ||
12059 		    test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state))
12060 			bnxt_devlink_health_fw_report(bp);
12061 		else
12062 			bnxt_fw_reset(bp);
12063 	}
12064 
12065 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
12066 		if (!is_bnxt_fw_ok(bp))
12067 			bnxt_devlink_health_fw_report(bp);
12068 	}
12069 
12070 	smp_mb__before_atomic();
12071 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12072 }
12073 
12074 /* Under rtnl_lock */
12075 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
12076 		     int tx_xdp)
12077 {
12078 	int max_rx, max_tx, tx_sets = 1;
12079 	int tx_rings_needed, stats;
12080 	int rx_rings = rx;
12081 	int cp, vnics, rc;
12082 
12083 	if (tcs)
12084 		tx_sets = tcs;
12085 
12086 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
12087 	if (rc)
12088 		return rc;
12089 
12090 	if (max_rx < rx)
12091 		return -ENOMEM;
12092 
12093 	tx_rings_needed = tx * tx_sets + tx_xdp;
12094 	if (max_tx < tx_rings_needed)
12095 		return -ENOMEM;
12096 
12097 	vnics = 1;
12098 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
12099 		vnics += rx_rings;
12100 
12101 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
12102 		rx_rings <<= 1;
12103 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
12104 	stats = cp;
12105 	if (BNXT_NEW_RM(bp)) {
12106 		cp += bnxt_get_ulp_msix_num(bp);
12107 		stats += bnxt_get_ulp_stat_ctxs(bp);
12108 	}
12109 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
12110 				     stats, vnics);
12111 }
12112 
12113 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
12114 {
12115 	if (bp->bar2) {
12116 		pci_iounmap(pdev, bp->bar2);
12117 		bp->bar2 = NULL;
12118 	}
12119 
12120 	if (bp->bar1) {
12121 		pci_iounmap(pdev, bp->bar1);
12122 		bp->bar1 = NULL;
12123 	}
12124 
12125 	if (bp->bar0) {
12126 		pci_iounmap(pdev, bp->bar0);
12127 		bp->bar0 = NULL;
12128 	}
12129 }
12130 
12131 static void bnxt_cleanup_pci(struct bnxt *bp)
12132 {
12133 	bnxt_unmap_bars(bp, bp->pdev);
12134 	pci_release_regions(bp->pdev);
12135 	if (pci_is_enabled(bp->pdev))
12136 		pci_disable_device(bp->pdev);
12137 }
12138 
12139 static void bnxt_init_dflt_coal(struct bnxt *bp)
12140 {
12141 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
12142 	struct bnxt_coal *coal;
12143 	u16 flags = 0;
12144 
12145 	if (coal_cap->cmpl_params &
12146 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
12147 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
12148 
12149 	/* Tick values in micro seconds.
12150 	 * 1 coal_buf x bufs_per_record = 1 completion record.
12151 	 */
12152 	coal = &bp->rx_coal;
12153 	coal->coal_ticks = 10;
12154 	coal->coal_bufs = 30;
12155 	coal->coal_ticks_irq = 1;
12156 	coal->coal_bufs_irq = 2;
12157 	coal->idle_thresh = 50;
12158 	coal->bufs_per_record = 2;
12159 	coal->budget = 64;		/* NAPI budget */
12160 	coal->flags = flags;
12161 
12162 	coal = &bp->tx_coal;
12163 	coal->coal_ticks = 28;
12164 	coal->coal_bufs = 30;
12165 	coal->coal_ticks_irq = 2;
12166 	coal->coal_bufs_irq = 2;
12167 	coal->bufs_per_record = 1;
12168 	coal->flags = flags;
12169 
12170 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
12171 }
12172 
12173 static int bnxt_fw_init_one_p1(struct bnxt *bp)
12174 {
12175 	int rc;
12176 
12177 	bp->fw_cap = 0;
12178 	rc = bnxt_hwrm_ver_get(bp);
12179 	bnxt_try_map_fw_health_reg(bp);
12180 	if (rc) {
12181 		rc = bnxt_try_recover_fw(bp);
12182 		if (rc)
12183 			return rc;
12184 		rc = bnxt_hwrm_ver_get(bp);
12185 		if (rc)
12186 			return rc;
12187 	}
12188 
12189 	bnxt_nvm_cfg_ver_get(bp);
12190 
12191 	rc = bnxt_hwrm_func_reset(bp);
12192 	if (rc)
12193 		return -ENODEV;
12194 
12195 	bnxt_hwrm_fw_set_time(bp);
12196 	return 0;
12197 }
12198 
12199 static int bnxt_fw_init_one_p2(struct bnxt *bp)
12200 {
12201 	int rc;
12202 
12203 	/* Get the MAX capabilities for this function */
12204 	rc = bnxt_hwrm_func_qcaps(bp);
12205 	if (rc) {
12206 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
12207 			   rc);
12208 		return -ENODEV;
12209 	}
12210 
12211 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
12212 	if (rc)
12213 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
12214 			    rc);
12215 
12216 	if (bnxt_alloc_fw_health(bp)) {
12217 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
12218 	} else {
12219 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
12220 		if (rc)
12221 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
12222 				    rc);
12223 	}
12224 
12225 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
12226 	if (rc)
12227 		return -ENODEV;
12228 
12229 	bnxt_hwrm_func_qcfg(bp);
12230 	bnxt_hwrm_vnic_qcaps(bp);
12231 	bnxt_hwrm_port_led_qcaps(bp);
12232 	bnxt_ethtool_init(bp);
12233 	bnxt_dcb_init(bp);
12234 	return 0;
12235 }
12236 
12237 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
12238 {
12239 	bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
12240 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
12241 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
12242 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
12243 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
12244 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
12245 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
12246 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
12247 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
12248 	}
12249 }
12250 
12251 static void bnxt_set_dflt_rfs(struct bnxt *bp)
12252 {
12253 	struct net_device *dev = bp->dev;
12254 
12255 	dev->hw_features &= ~NETIF_F_NTUPLE;
12256 	dev->features &= ~NETIF_F_NTUPLE;
12257 	bp->flags &= ~BNXT_FLAG_RFS;
12258 	if (bnxt_rfs_supported(bp)) {
12259 		dev->hw_features |= NETIF_F_NTUPLE;
12260 		if (bnxt_rfs_capable(bp)) {
12261 			bp->flags |= BNXT_FLAG_RFS;
12262 			dev->features |= NETIF_F_NTUPLE;
12263 		}
12264 	}
12265 }
12266 
12267 static void bnxt_fw_init_one_p3(struct bnxt *bp)
12268 {
12269 	struct pci_dev *pdev = bp->pdev;
12270 
12271 	bnxt_set_dflt_rss_hash_type(bp);
12272 	bnxt_set_dflt_rfs(bp);
12273 
12274 	bnxt_get_wol_settings(bp);
12275 	if (bp->flags & BNXT_FLAG_WOL_CAP)
12276 		device_set_wakeup_enable(&pdev->dev, bp->wol);
12277 	else
12278 		device_set_wakeup_capable(&pdev->dev, false);
12279 
12280 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
12281 	bnxt_hwrm_coal_params_qcaps(bp);
12282 }
12283 
12284 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt);
12285 
12286 int bnxt_fw_init_one(struct bnxt *bp)
12287 {
12288 	int rc;
12289 
12290 	rc = bnxt_fw_init_one_p1(bp);
12291 	if (rc) {
12292 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
12293 		return rc;
12294 	}
12295 	rc = bnxt_fw_init_one_p2(bp);
12296 	if (rc) {
12297 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
12298 		return rc;
12299 	}
12300 	rc = bnxt_probe_phy(bp, false);
12301 	if (rc)
12302 		return rc;
12303 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
12304 	if (rc)
12305 		return rc;
12306 
12307 	bnxt_fw_init_one_p3(bp);
12308 	return 0;
12309 }
12310 
12311 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
12312 {
12313 	struct bnxt_fw_health *fw_health = bp->fw_health;
12314 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
12315 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
12316 	u32 reg_type, reg_off, delay_msecs;
12317 
12318 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
12319 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
12320 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
12321 	switch (reg_type) {
12322 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
12323 		pci_write_config_dword(bp->pdev, reg_off, val);
12324 		break;
12325 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
12326 		writel(reg_off & BNXT_GRC_BASE_MASK,
12327 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
12328 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
12329 		fallthrough;
12330 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
12331 		writel(val, bp->bar0 + reg_off);
12332 		break;
12333 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
12334 		writel(val, bp->bar1 + reg_off);
12335 		break;
12336 	}
12337 	if (delay_msecs) {
12338 		pci_read_config_dword(bp->pdev, 0, &val);
12339 		msleep(delay_msecs);
12340 	}
12341 }
12342 
12343 bool bnxt_hwrm_reset_permitted(struct bnxt *bp)
12344 {
12345 	struct hwrm_func_qcfg_output *resp;
12346 	struct hwrm_func_qcfg_input *req;
12347 	bool result = true; /* firmware will enforce if unknown */
12348 
12349 	if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF)
12350 		return result;
12351 
12352 	if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG))
12353 		return result;
12354 
12355 	req->fid = cpu_to_le16(0xffff);
12356 	resp = hwrm_req_hold(bp, req);
12357 	if (!hwrm_req_send(bp, req))
12358 		result = !!(le16_to_cpu(resp->flags) &
12359 			    FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED);
12360 	hwrm_req_drop(bp, req);
12361 	return result;
12362 }
12363 
12364 static void bnxt_reset_all(struct bnxt *bp)
12365 {
12366 	struct bnxt_fw_health *fw_health = bp->fw_health;
12367 	int i, rc;
12368 
12369 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12370 		bnxt_fw_reset_via_optee(bp);
12371 		bp->fw_reset_timestamp = jiffies;
12372 		return;
12373 	}
12374 
12375 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
12376 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
12377 			bnxt_fw_reset_writel(bp, i);
12378 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
12379 		struct hwrm_fw_reset_input *req;
12380 
12381 		rc = hwrm_req_init(bp, req, HWRM_FW_RESET);
12382 		if (!rc) {
12383 			req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG);
12384 			req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
12385 			req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
12386 			req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
12387 			rc = hwrm_req_send(bp, req);
12388 		}
12389 		if (rc != -ENODEV)
12390 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
12391 	}
12392 	bp->fw_reset_timestamp = jiffies;
12393 }
12394 
12395 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
12396 {
12397 	return time_after(jiffies, bp->fw_reset_timestamp +
12398 			  (bp->fw_reset_max_dsecs * HZ / 10));
12399 }
12400 
12401 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc)
12402 {
12403 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12404 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) {
12405 		bnxt_ulp_start(bp, rc);
12406 		bnxt_dl_health_fw_status_update(bp, false);
12407 	}
12408 	bp->fw_reset_state = 0;
12409 	dev_close(bp->dev);
12410 }
12411 
12412 static void bnxt_fw_reset_task(struct work_struct *work)
12413 {
12414 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
12415 	int rc = 0;
12416 
12417 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
12418 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
12419 		return;
12420 	}
12421 
12422 	switch (bp->fw_reset_state) {
12423 	case BNXT_FW_RESET_STATE_POLL_VF: {
12424 		int n = bnxt_get_registered_vfs(bp);
12425 		int tmo;
12426 
12427 		if (n < 0) {
12428 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
12429 				   n, jiffies_to_msecs(jiffies -
12430 				   bp->fw_reset_timestamp));
12431 			goto fw_reset_abort;
12432 		} else if (n > 0) {
12433 			if (bnxt_fw_reset_timeout(bp)) {
12434 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12435 				bp->fw_reset_state = 0;
12436 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
12437 					   n);
12438 				return;
12439 			}
12440 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12441 			return;
12442 		}
12443 		bp->fw_reset_timestamp = jiffies;
12444 		rtnl_lock();
12445 		if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
12446 			bnxt_fw_reset_abort(bp, rc);
12447 			rtnl_unlock();
12448 			return;
12449 		}
12450 		bnxt_fw_reset_close(bp);
12451 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12452 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
12453 			tmo = HZ / 10;
12454 		} else {
12455 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12456 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
12457 		}
12458 		rtnl_unlock();
12459 		bnxt_queue_fw_reset_work(bp, tmo);
12460 		return;
12461 	}
12462 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
12463 		u32 val;
12464 
12465 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12466 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
12467 		    !bnxt_fw_reset_timeout(bp)) {
12468 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12469 			return;
12470 		}
12471 
12472 		if (!bp->fw_health->primary) {
12473 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
12474 
12475 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12476 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
12477 			return;
12478 		}
12479 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
12480 	}
12481 		fallthrough;
12482 	case BNXT_FW_RESET_STATE_RESET_FW:
12483 		bnxt_reset_all(bp);
12484 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12485 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
12486 		return;
12487 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
12488 		bnxt_inv_fw_health_reg(bp);
12489 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
12490 		    !bp->fw_reset_min_dsecs) {
12491 			u16 val;
12492 
12493 			pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
12494 			if (val == 0xffff) {
12495 				if (bnxt_fw_reset_timeout(bp)) {
12496 					netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
12497 					rc = -ETIMEDOUT;
12498 					goto fw_reset_abort;
12499 				}
12500 				bnxt_queue_fw_reset_work(bp, HZ / 1000);
12501 				return;
12502 			}
12503 		}
12504 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
12505 		clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
12506 		if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) &&
12507 		    !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state))
12508 			bnxt_dl_remote_reload(bp);
12509 		if (pci_enable_device(bp->pdev)) {
12510 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
12511 			rc = -ENODEV;
12512 			goto fw_reset_abort;
12513 		}
12514 		pci_set_master(bp->pdev);
12515 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
12516 		fallthrough;
12517 	case BNXT_FW_RESET_STATE_POLL_FW:
12518 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
12519 		rc = bnxt_hwrm_poll(bp);
12520 		if (rc) {
12521 			if (bnxt_fw_reset_timeout(bp)) {
12522 				netdev_err(bp->dev, "Firmware reset aborted\n");
12523 				goto fw_reset_abort_status;
12524 			}
12525 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12526 			return;
12527 		}
12528 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
12529 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
12530 		fallthrough;
12531 	case BNXT_FW_RESET_STATE_OPENING:
12532 		while (!rtnl_trylock()) {
12533 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12534 			return;
12535 		}
12536 		rc = bnxt_open(bp->dev);
12537 		if (rc) {
12538 			netdev_err(bp->dev, "bnxt_open() failed during FW reset\n");
12539 			bnxt_fw_reset_abort(bp, rc);
12540 			rtnl_unlock();
12541 			return;
12542 		}
12543 
12544 		if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) &&
12545 		    bp->fw_health->enabled) {
12546 			bp->fw_health->last_fw_reset_cnt =
12547 				bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
12548 		}
12549 		bp->fw_reset_state = 0;
12550 		/* Make sure fw_reset_state is 0 before clearing the flag */
12551 		smp_mb__before_atomic();
12552 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12553 		bnxt_ulp_start(bp, 0);
12554 		bnxt_reenable_sriov(bp);
12555 		bnxt_vf_reps_alloc(bp);
12556 		bnxt_vf_reps_open(bp);
12557 		bnxt_ptp_reapply_pps(bp);
12558 		clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state);
12559 		if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) {
12560 			bnxt_dl_health_fw_recovery_done(bp);
12561 			bnxt_dl_health_fw_status_update(bp, true);
12562 		}
12563 		rtnl_unlock();
12564 		break;
12565 	}
12566 	return;
12567 
12568 fw_reset_abort_status:
12569 	if (bp->fw_health->status_reliable ||
12570 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
12571 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12572 
12573 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
12574 	}
12575 fw_reset_abort:
12576 	rtnl_lock();
12577 	bnxt_fw_reset_abort(bp, rc);
12578 	rtnl_unlock();
12579 }
12580 
12581 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
12582 {
12583 	int rc;
12584 	struct bnxt *bp = netdev_priv(dev);
12585 
12586 	SET_NETDEV_DEV(dev, &pdev->dev);
12587 
12588 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
12589 	rc = pci_enable_device(pdev);
12590 	if (rc) {
12591 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
12592 		goto init_err;
12593 	}
12594 
12595 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12596 		dev_err(&pdev->dev,
12597 			"Cannot find PCI device base address, aborting\n");
12598 		rc = -ENODEV;
12599 		goto init_err_disable;
12600 	}
12601 
12602 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12603 	if (rc) {
12604 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
12605 		goto init_err_disable;
12606 	}
12607 
12608 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
12609 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
12610 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
12611 		rc = -EIO;
12612 		goto init_err_release;
12613 	}
12614 
12615 	pci_set_master(pdev);
12616 
12617 	bp->dev = dev;
12618 	bp->pdev = pdev;
12619 
12620 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
12621 	 * determines the BAR size.
12622 	 */
12623 	bp->bar0 = pci_ioremap_bar(pdev, 0);
12624 	if (!bp->bar0) {
12625 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
12626 		rc = -ENOMEM;
12627 		goto init_err_release;
12628 	}
12629 
12630 	bp->bar2 = pci_ioremap_bar(pdev, 4);
12631 	if (!bp->bar2) {
12632 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
12633 		rc = -ENOMEM;
12634 		goto init_err_release;
12635 	}
12636 
12637 	pci_enable_pcie_error_reporting(pdev);
12638 
12639 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
12640 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
12641 
12642 	spin_lock_init(&bp->ntp_fltr_lock);
12643 #if BITS_PER_LONG == 32
12644 	spin_lock_init(&bp->db_lock);
12645 #endif
12646 
12647 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
12648 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
12649 
12650 	timer_setup(&bp->timer, bnxt_timer, 0);
12651 	bp->current_interval = BNXT_TIMER_INTERVAL;
12652 
12653 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
12654 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
12655 
12656 	clear_bit(BNXT_STATE_OPEN, &bp->state);
12657 	return 0;
12658 
12659 init_err_release:
12660 	bnxt_unmap_bars(bp, pdev);
12661 	pci_release_regions(pdev);
12662 
12663 init_err_disable:
12664 	pci_disable_device(pdev);
12665 
12666 init_err:
12667 	return rc;
12668 }
12669 
12670 /* rtnl_lock held */
12671 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
12672 {
12673 	struct sockaddr *addr = p;
12674 	struct bnxt *bp = netdev_priv(dev);
12675 	int rc = 0;
12676 
12677 	if (!is_valid_ether_addr(addr->sa_data))
12678 		return -EADDRNOTAVAIL;
12679 
12680 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
12681 		return 0;
12682 
12683 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
12684 	if (rc)
12685 		return rc;
12686 
12687 	eth_hw_addr_set(dev, addr->sa_data);
12688 	if (netif_running(dev)) {
12689 		bnxt_close_nic(bp, false, false);
12690 		rc = bnxt_open_nic(bp, false, false);
12691 	}
12692 
12693 	return rc;
12694 }
12695 
12696 /* rtnl_lock held */
12697 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
12698 {
12699 	struct bnxt *bp = netdev_priv(dev);
12700 
12701 	if (netif_running(dev))
12702 		bnxt_close_nic(bp, true, false);
12703 
12704 	dev->mtu = new_mtu;
12705 	bnxt_set_ring_params(bp);
12706 
12707 	if (netif_running(dev))
12708 		return bnxt_open_nic(bp, true, false);
12709 
12710 	return 0;
12711 }
12712 
12713 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
12714 {
12715 	struct bnxt *bp = netdev_priv(dev);
12716 	bool sh = false;
12717 	int rc;
12718 
12719 	if (tc > bp->max_tc) {
12720 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
12721 			   tc, bp->max_tc);
12722 		return -EINVAL;
12723 	}
12724 
12725 	if (netdev_get_num_tc(dev) == tc)
12726 		return 0;
12727 
12728 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
12729 		sh = true;
12730 
12731 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
12732 			      sh, tc, bp->tx_nr_rings_xdp);
12733 	if (rc)
12734 		return rc;
12735 
12736 	/* Needs to close the device and do hw resource re-allocations */
12737 	if (netif_running(bp->dev))
12738 		bnxt_close_nic(bp, true, false);
12739 
12740 	if (tc) {
12741 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
12742 		netdev_set_num_tc(dev, tc);
12743 	} else {
12744 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12745 		netdev_reset_tc(dev);
12746 	}
12747 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
12748 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
12749 			       bp->tx_nr_rings + bp->rx_nr_rings;
12750 
12751 	if (netif_running(bp->dev))
12752 		return bnxt_open_nic(bp, true, false);
12753 
12754 	return 0;
12755 }
12756 
12757 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
12758 				  void *cb_priv)
12759 {
12760 	struct bnxt *bp = cb_priv;
12761 
12762 	if (!bnxt_tc_flower_enabled(bp) ||
12763 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
12764 		return -EOPNOTSUPP;
12765 
12766 	switch (type) {
12767 	case TC_SETUP_CLSFLOWER:
12768 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
12769 	default:
12770 		return -EOPNOTSUPP;
12771 	}
12772 }
12773 
12774 LIST_HEAD(bnxt_block_cb_list);
12775 
12776 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
12777 			 void *type_data)
12778 {
12779 	struct bnxt *bp = netdev_priv(dev);
12780 
12781 	switch (type) {
12782 	case TC_SETUP_BLOCK:
12783 		return flow_block_cb_setup_simple(type_data,
12784 						  &bnxt_block_cb_list,
12785 						  bnxt_setup_tc_block_cb,
12786 						  bp, bp, true);
12787 	case TC_SETUP_QDISC_MQPRIO: {
12788 		struct tc_mqprio_qopt *mqprio = type_data;
12789 
12790 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
12791 
12792 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
12793 	}
12794 	default:
12795 		return -EOPNOTSUPP;
12796 	}
12797 }
12798 
12799 #ifdef CONFIG_RFS_ACCEL
12800 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
12801 			    struct bnxt_ntuple_filter *f2)
12802 {
12803 	struct flow_keys *keys1 = &f1->fkeys;
12804 	struct flow_keys *keys2 = &f2->fkeys;
12805 
12806 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
12807 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
12808 		return false;
12809 
12810 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
12811 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
12812 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
12813 			return false;
12814 	} else {
12815 		if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
12816 			   sizeof(keys1->addrs.v6addrs.src)) ||
12817 		    memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
12818 			   sizeof(keys1->addrs.v6addrs.dst)))
12819 			return false;
12820 	}
12821 
12822 	if (keys1->ports.ports == keys2->ports.ports &&
12823 	    keys1->control.flags == keys2->control.flags &&
12824 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
12825 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
12826 		return true;
12827 
12828 	return false;
12829 }
12830 
12831 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
12832 			      u16 rxq_index, u32 flow_id)
12833 {
12834 	struct bnxt *bp = netdev_priv(dev);
12835 	struct bnxt_ntuple_filter *fltr, *new_fltr;
12836 	struct flow_keys *fkeys;
12837 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
12838 	int rc = 0, idx, bit_id, l2_idx = 0;
12839 	struct hlist_head *head;
12840 	u32 flags;
12841 
12842 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
12843 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
12844 		int off = 0, j;
12845 
12846 		netif_addr_lock_bh(dev);
12847 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
12848 			if (ether_addr_equal(eth->h_dest,
12849 					     vnic->uc_list + off)) {
12850 				l2_idx = j + 1;
12851 				break;
12852 			}
12853 		}
12854 		netif_addr_unlock_bh(dev);
12855 		if (!l2_idx)
12856 			return -EINVAL;
12857 	}
12858 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
12859 	if (!new_fltr)
12860 		return -ENOMEM;
12861 
12862 	fkeys = &new_fltr->fkeys;
12863 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
12864 		rc = -EPROTONOSUPPORT;
12865 		goto err_free;
12866 	}
12867 
12868 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
12869 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
12870 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
12871 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
12872 		rc = -EPROTONOSUPPORT;
12873 		goto err_free;
12874 	}
12875 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
12876 	    bp->hwrm_spec_code < 0x10601) {
12877 		rc = -EPROTONOSUPPORT;
12878 		goto err_free;
12879 	}
12880 	flags = fkeys->control.flags;
12881 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
12882 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
12883 		rc = -EPROTONOSUPPORT;
12884 		goto err_free;
12885 	}
12886 
12887 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
12888 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
12889 
12890 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
12891 	head = &bp->ntp_fltr_hash_tbl[idx];
12892 	rcu_read_lock();
12893 	hlist_for_each_entry_rcu(fltr, head, hash) {
12894 		if (bnxt_fltr_match(fltr, new_fltr)) {
12895 			rcu_read_unlock();
12896 			rc = 0;
12897 			goto err_free;
12898 		}
12899 	}
12900 	rcu_read_unlock();
12901 
12902 	spin_lock_bh(&bp->ntp_fltr_lock);
12903 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
12904 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
12905 	if (bit_id < 0) {
12906 		spin_unlock_bh(&bp->ntp_fltr_lock);
12907 		rc = -ENOMEM;
12908 		goto err_free;
12909 	}
12910 
12911 	new_fltr->sw_id = (u16)bit_id;
12912 	new_fltr->flow_id = flow_id;
12913 	new_fltr->l2_fltr_idx = l2_idx;
12914 	new_fltr->rxq = rxq_index;
12915 	hlist_add_head_rcu(&new_fltr->hash, head);
12916 	bp->ntp_fltr_count++;
12917 	spin_unlock_bh(&bp->ntp_fltr_lock);
12918 
12919 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
12920 	bnxt_queue_sp_work(bp);
12921 
12922 	return new_fltr->sw_id;
12923 
12924 err_free:
12925 	kfree(new_fltr);
12926 	return rc;
12927 }
12928 
12929 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12930 {
12931 	int i;
12932 
12933 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
12934 		struct hlist_head *head;
12935 		struct hlist_node *tmp;
12936 		struct bnxt_ntuple_filter *fltr;
12937 		int rc;
12938 
12939 		head = &bp->ntp_fltr_hash_tbl[i];
12940 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
12941 			bool del = false;
12942 
12943 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
12944 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
12945 							fltr->flow_id,
12946 							fltr->sw_id)) {
12947 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
12948 									 fltr);
12949 					del = true;
12950 				}
12951 			} else {
12952 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
12953 								       fltr);
12954 				if (rc)
12955 					del = true;
12956 				else
12957 					set_bit(BNXT_FLTR_VALID, &fltr->state);
12958 			}
12959 
12960 			if (del) {
12961 				spin_lock_bh(&bp->ntp_fltr_lock);
12962 				hlist_del_rcu(&fltr->hash);
12963 				bp->ntp_fltr_count--;
12964 				spin_unlock_bh(&bp->ntp_fltr_lock);
12965 				synchronize_rcu();
12966 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
12967 				kfree(fltr);
12968 			}
12969 		}
12970 	}
12971 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
12972 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
12973 }
12974 
12975 #else
12976 
12977 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12978 {
12979 }
12980 
12981 #endif /* CONFIG_RFS_ACCEL */
12982 
12983 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
12984 {
12985 	struct bnxt *bp = netdev_priv(netdev);
12986 	struct udp_tunnel_info ti;
12987 	unsigned int cmd;
12988 
12989 	udp_tunnel_nic_get_port(netdev, table, 0, &ti);
12990 	if (ti.type == UDP_TUNNEL_TYPE_VXLAN)
12991 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
12992 	else
12993 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
12994 
12995 	if (ti.port)
12996 		return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd);
12997 
12998 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
12999 }
13000 
13001 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
13002 	.sync_table	= bnxt_udp_tunnel_sync,
13003 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
13004 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
13005 	.tables		= {
13006 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
13007 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
13008 	},
13009 };
13010 
13011 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
13012 			       struct net_device *dev, u32 filter_mask,
13013 			       int nlflags)
13014 {
13015 	struct bnxt *bp = netdev_priv(dev);
13016 
13017 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
13018 				       nlflags, filter_mask, NULL);
13019 }
13020 
13021 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
13022 			       u16 flags, struct netlink_ext_ack *extack)
13023 {
13024 	struct bnxt *bp = netdev_priv(dev);
13025 	struct nlattr *attr, *br_spec;
13026 	int rem, rc = 0;
13027 
13028 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
13029 		return -EOPNOTSUPP;
13030 
13031 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
13032 	if (!br_spec)
13033 		return -EINVAL;
13034 
13035 	nla_for_each_nested(attr, br_spec, rem) {
13036 		u16 mode;
13037 
13038 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
13039 			continue;
13040 
13041 		if (nla_len(attr) < sizeof(mode))
13042 			return -EINVAL;
13043 
13044 		mode = nla_get_u16(attr);
13045 		if (mode == bp->br_mode)
13046 			break;
13047 
13048 		rc = bnxt_hwrm_set_br_mode(bp, mode);
13049 		if (!rc)
13050 			bp->br_mode = mode;
13051 		break;
13052 	}
13053 	return rc;
13054 }
13055 
13056 int bnxt_get_port_parent_id(struct net_device *dev,
13057 			    struct netdev_phys_item_id *ppid)
13058 {
13059 	struct bnxt *bp = netdev_priv(dev);
13060 
13061 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
13062 		return -EOPNOTSUPP;
13063 
13064 	/* The PF and it's VF-reps only support the switchdev framework */
13065 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
13066 		return -EOPNOTSUPP;
13067 
13068 	ppid->id_len = sizeof(bp->dsn);
13069 	memcpy(ppid->id, bp->dsn, ppid->id_len);
13070 
13071 	return 0;
13072 }
13073 
13074 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev)
13075 {
13076 	struct bnxt *bp = netdev_priv(dev);
13077 
13078 	return &bp->dl_port;
13079 }
13080 
13081 static const struct net_device_ops bnxt_netdev_ops = {
13082 	.ndo_open		= bnxt_open,
13083 	.ndo_start_xmit		= bnxt_start_xmit,
13084 	.ndo_stop		= bnxt_close,
13085 	.ndo_get_stats64	= bnxt_get_stats64,
13086 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
13087 	.ndo_eth_ioctl		= bnxt_ioctl,
13088 	.ndo_validate_addr	= eth_validate_addr,
13089 	.ndo_set_mac_address	= bnxt_change_mac_addr,
13090 	.ndo_change_mtu		= bnxt_change_mtu,
13091 	.ndo_fix_features	= bnxt_fix_features,
13092 	.ndo_set_features	= bnxt_set_features,
13093 	.ndo_features_check	= bnxt_features_check,
13094 	.ndo_tx_timeout		= bnxt_tx_timeout,
13095 #ifdef CONFIG_BNXT_SRIOV
13096 	.ndo_get_vf_config	= bnxt_get_vf_config,
13097 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
13098 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
13099 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
13100 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
13101 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
13102 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
13103 #endif
13104 	.ndo_setup_tc           = bnxt_setup_tc,
13105 #ifdef CONFIG_RFS_ACCEL
13106 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
13107 #endif
13108 	.ndo_bpf		= bnxt_xdp,
13109 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
13110 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
13111 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
13112 	.ndo_get_devlink_port	= bnxt_get_devlink_port,
13113 };
13114 
13115 static void bnxt_remove_one(struct pci_dev *pdev)
13116 {
13117 	struct net_device *dev = pci_get_drvdata(pdev);
13118 	struct bnxt *bp = netdev_priv(dev);
13119 
13120 	if (BNXT_PF(bp))
13121 		bnxt_sriov_disable(bp);
13122 
13123 	if (BNXT_PF(bp))
13124 		devlink_port_type_clear(&bp->dl_port);
13125 
13126 	bnxt_ptp_clear(bp);
13127 	pci_disable_pcie_error_reporting(pdev);
13128 	unregister_netdev(dev);
13129 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13130 	/* Flush any pending tasks */
13131 	cancel_work_sync(&bp->sp_task);
13132 	cancel_delayed_work_sync(&bp->fw_reset_task);
13133 	bp->sp_event = 0;
13134 
13135 	bnxt_dl_fw_reporters_destroy(bp);
13136 	bnxt_dl_unregister(bp);
13137 	bnxt_shutdown_tc(bp);
13138 
13139 	bnxt_clear_int_mode(bp);
13140 	bnxt_hwrm_func_drv_unrgtr(bp);
13141 	bnxt_free_hwrm_resources(bp);
13142 	bnxt_ethtool_free(bp);
13143 	bnxt_dcb_free(bp);
13144 	kfree(bp->edev);
13145 	bp->edev = NULL;
13146 	kfree(bp->ptp_cfg);
13147 	bp->ptp_cfg = NULL;
13148 	kfree(bp->fw_health);
13149 	bp->fw_health = NULL;
13150 	bnxt_cleanup_pci(bp);
13151 	bnxt_free_ctx_mem(bp);
13152 	kfree(bp->ctx);
13153 	bp->ctx = NULL;
13154 	kfree(bp->rss_indir_tbl);
13155 	bp->rss_indir_tbl = NULL;
13156 	bnxt_free_port_stats(bp);
13157 	free_netdev(dev);
13158 }
13159 
13160 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
13161 {
13162 	int rc = 0;
13163 	struct bnxt_link_info *link_info = &bp->link_info;
13164 
13165 	bp->phy_flags = 0;
13166 	rc = bnxt_hwrm_phy_qcaps(bp);
13167 	if (rc) {
13168 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
13169 			   rc);
13170 		return rc;
13171 	}
13172 	if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
13173 		bp->dev->priv_flags |= IFF_SUPP_NOFCS;
13174 	else
13175 		bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
13176 	if (!fw_dflt)
13177 		return 0;
13178 
13179 	mutex_lock(&bp->link_lock);
13180 	rc = bnxt_update_link(bp, false);
13181 	if (rc) {
13182 		mutex_unlock(&bp->link_lock);
13183 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
13184 			   rc);
13185 		return rc;
13186 	}
13187 
13188 	/* Older firmware does not have supported_auto_speeds, so assume
13189 	 * that all supported speeds can be autonegotiated.
13190 	 */
13191 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
13192 		link_info->support_auto_speeds = link_info->support_speeds;
13193 
13194 	bnxt_init_ethtool_link_settings(bp);
13195 	mutex_unlock(&bp->link_lock);
13196 	return 0;
13197 }
13198 
13199 static int bnxt_get_max_irq(struct pci_dev *pdev)
13200 {
13201 	u16 ctrl;
13202 
13203 	if (!pdev->msix_cap)
13204 		return 1;
13205 
13206 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
13207 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
13208 }
13209 
13210 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13211 				int *max_cp)
13212 {
13213 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
13214 	int max_ring_grps = 0, max_irq;
13215 
13216 	*max_tx = hw_resc->max_tx_rings;
13217 	*max_rx = hw_resc->max_rx_rings;
13218 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
13219 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
13220 			bnxt_get_ulp_msix_num(bp),
13221 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
13222 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
13223 		*max_cp = min_t(int, *max_cp, max_irq);
13224 	max_ring_grps = hw_resc->max_hw_ring_grps;
13225 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
13226 		*max_cp -= 1;
13227 		*max_rx -= 2;
13228 	}
13229 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
13230 		*max_rx >>= 1;
13231 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
13232 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
13233 		/* On P5 chips, max_cp output param should be available NQs */
13234 		*max_cp = max_irq;
13235 	}
13236 	*max_rx = min_t(int, *max_rx, max_ring_grps);
13237 }
13238 
13239 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
13240 {
13241 	int rx, tx, cp;
13242 
13243 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
13244 	*max_rx = rx;
13245 	*max_tx = tx;
13246 	if (!rx || !tx || !cp)
13247 		return -ENOMEM;
13248 
13249 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
13250 }
13251 
13252 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13253 			       bool shared)
13254 {
13255 	int rc;
13256 
13257 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13258 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
13259 		/* Not enough rings, try disabling agg rings. */
13260 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
13261 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13262 		if (rc) {
13263 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
13264 			bp->flags |= BNXT_FLAG_AGG_RINGS;
13265 			return rc;
13266 		}
13267 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
13268 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13269 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13270 		bnxt_set_ring_params(bp);
13271 	}
13272 
13273 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
13274 		int max_cp, max_stat, max_irq;
13275 
13276 		/* Reserve minimum resources for RoCE */
13277 		max_cp = bnxt_get_max_func_cp_rings(bp);
13278 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
13279 		max_irq = bnxt_get_max_func_irqs(bp);
13280 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
13281 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
13282 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
13283 			return 0;
13284 
13285 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
13286 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
13287 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
13288 		max_cp = min_t(int, max_cp, max_irq);
13289 		max_cp = min_t(int, max_cp, max_stat);
13290 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
13291 		if (rc)
13292 			rc = 0;
13293 	}
13294 	return rc;
13295 }
13296 
13297 /* In initial default shared ring setting, each shared ring must have a
13298  * RX/TX ring pair.
13299  */
13300 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
13301 {
13302 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
13303 	bp->rx_nr_rings = bp->cp_nr_rings;
13304 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
13305 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13306 }
13307 
13308 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
13309 {
13310 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
13311 
13312 	if (!bnxt_can_reserve_rings(bp))
13313 		return 0;
13314 
13315 	if (sh)
13316 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
13317 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
13318 	/* Reduce default rings on multi-port cards so that total default
13319 	 * rings do not exceed CPU count.
13320 	 */
13321 	if (bp->port_count > 1) {
13322 		int max_rings =
13323 			max_t(int, num_online_cpus() / bp->port_count, 1);
13324 
13325 		dflt_rings = min_t(int, dflt_rings, max_rings);
13326 	}
13327 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
13328 	if (rc)
13329 		return rc;
13330 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
13331 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
13332 	if (sh)
13333 		bnxt_trim_dflt_sh_rings(bp);
13334 	else
13335 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
13336 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13337 
13338 	rc = __bnxt_reserve_rings(bp);
13339 	if (rc && rc != -ENODEV)
13340 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
13341 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13342 	if (sh)
13343 		bnxt_trim_dflt_sh_rings(bp);
13344 
13345 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
13346 	if (bnxt_need_reserve_rings(bp)) {
13347 		rc = __bnxt_reserve_rings(bp);
13348 		if (rc && rc != -ENODEV)
13349 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
13350 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13351 	}
13352 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
13353 		bp->rx_nr_rings++;
13354 		bp->cp_nr_rings++;
13355 	}
13356 	if (rc) {
13357 		bp->tx_nr_rings = 0;
13358 		bp->rx_nr_rings = 0;
13359 	}
13360 	return rc;
13361 }
13362 
13363 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
13364 {
13365 	int rc;
13366 
13367 	if (bp->tx_nr_rings)
13368 		return 0;
13369 
13370 	bnxt_ulp_irq_stop(bp);
13371 	bnxt_clear_int_mode(bp);
13372 	rc = bnxt_set_dflt_rings(bp, true);
13373 	if (rc) {
13374 		if (BNXT_VF(bp) && rc == -ENODEV)
13375 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13376 		else
13377 			netdev_err(bp->dev, "Not enough rings available.\n");
13378 		goto init_dflt_ring_err;
13379 	}
13380 	rc = bnxt_init_int_mode(bp);
13381 	if (rc)
13382 		goto init_dflt_ring_err;
13383 
13384 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13385 	if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) {
13386 		bp->flags |= BNXT_FLAG_RFS;
13387 		bp->dev->features |= NETIF_F_NTUPLE;
13388 	}
13389 init_dflt_ring_err:
13390 	bnxt_ulp_irq_restart(bp, rc);
13391 	return rc;
13392 }
13393 
13394 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
13395 {
13396 	int rc;
13397 
13398 	ASSERT_RTNL();
13399 	bnxt_hwrm_func_qcaps(bp);
13400 
13401 	if (netif_running(bp->dev))
13402 		__bnxt_close_nic(bp, true, false);
13403 
13404 	bnxt_ulp_irq_stop(bp);
13405 	bnxt_clear_int_mode(bp);
13406 	rc = bnxt_init_int_mode(bp);
13407 	bnxt_ulp_irq_restart(bp, rc);
13408 
13409 	if (netif_running(bp->dev)) {
13410 		if (rc)
13411 			dev_close(bp->dev);
13412 		else
13413 			rc = bnxt_open_nic(bp, true, false);
13414 	}
13415 
13416 	return rc;
13417 }
13418 
13419 static int bnxt_init_mac_addr(struct bnxt *bp)
13420 {
13421 	int rc = 0;
13422 
13423 	if (BNXT_PF(bp)) {
13424 		eth_hw_addr_set(bp->dev, bp->pf.mac_addr);
13425 	} else {
13426 #ifdef CONFIG_BNXT_SRIOV
13427 		struct bnxt_vf_info *vf = &bp->vf;
13428 		bool strict_approval = true;
13429 
13430 		if (is_valid_ether_addr(vf->mac_addr)) {
13431 			/* overwrite netdev dev_addr with admin VF MAC */
13432 			eth_hw_addr_set(bp->dev, vf->mac_addr);
13433 			/* Older PF driver or firmware may not approve this
13434 			 * correctly.
13435 			 */
13436 			strict_approval = false;
13437 		} else {
13438 			eth_hw_addr_random(bp->dev);
13439 		}
13440 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
13441 #endif
13442 	}
13443 	return rc;
13444 }
13445 
13446 static void bnxt_vpd_read_info(struct bnxt *bp)
13447 {
13448 	struct pci_dev *pdev = bp->pdev;
13449 	unsigned int vpd_size, kw_len;
13450 	int pos, size;
13451 	u8 *vpd_data;
13452 
13453 	vpd_data = pci_vpd_alloc(pdev, &vpd_size);
13454 	if (IS_ERR(vpd_data)) {
13455 		pci_warn(pdev, "Unable to read VPD\n");
13456 		return;
13457 	}
13458 
13459 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13460 					   PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
13461 	if (pos < 0)
13462 		goto read_sn;
13463 
13464 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13465 	memcpy(bp->board_partno, &vpd_data[pos], size);
13466 
13467 read_sn:
13468 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13469 					   PCI_VPD_RO_KEYWORD_SERIALNO,
13470 					   &kw_len);
13471 	if (pos < 0)
13472 		goto exit;
13473 
13474 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13475 	memcpy(bp->board_serialno, &vpd_data[pos], size);
13476 exit:
13477 	kfree(vpd_data);
13478 }
13479 
13480 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
13481 {
13482 	struct pci_dev *pdev = bp->pdev;
13483 	u64 qword;
13484 
13485 	qword = pci_get_dsn(pdev);
13486 	if (!qword) {
13487 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
13488 		return -EOPNOTSUPP;
13489 	}
13490 
13491 	put_unaligned_le64(qword, dsn);
13492 
13493 	bp->flags |= BNXT_FLAG_DSN_VALID;
13494 	return 0;
13495 }
13496 
13497 static int bnxt_map_db_bar(struct bnxt *bp)
13498 {
13499 	if (!bp->db_size)
13500 		return -ENODEV;
13501 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
13502 	if (!bp->bar1)
13503 		return -ENOMEM;
13504 	return 0;
13505 }
13506 
13507 void bnxt_print_device_info(struct bnxt *bp)
13508 {
13509 	netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n",
13510 		    board_info[bp->board_idx].name,
13511 		    (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr);
13512 
13513 	pcie_print_link_status(bp->pdev);
13514 }
13515 
13516 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
13517 {
13518 	struct net_device *dev;
13519 	struct bnxt *bp;
13520 	int rc, max_irqs;
13521 
13522 	if (pci_is_bridge(pdev))
13523 		return -ENODEV;
13524 
13525 	/* Clear any pending DMA transactions from crash kernel
13526 	 * while loading driver in capture kernel.
13527 	 */
13528 	if (is_kdump_kernel()) {
13529 		pci_clear_master(pdev);
13530 		pcie_flr(pdev);
13531 	}
13532 
13533 	max_irqs = bnxt_get_max_irq(pdev);
13534 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
13535 	if (!dev)
13536 		return -ENOMEM;
13537 
13538 	bp = netdev_priv(dev);
13539 	bp->board_idx = ent->driver_data;
13540 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
13541 	bnxt_set_max_func_irqs(bp, max_irqs);
13542 
13543 	if (bnxt_vf_pciid(bp->board_idx))
13544 		bp->flags |= BNXT_FLAG_VF;
13545 
13546 	if (pdev->msix_cap)
13547 		bp->flags |= BNXT_FLAG_MSIX_CAP;
13548 
13549 	rc = bnxt_init_board(pdev, dev);
13550 	if (rc < 0)
13551 		goto init_err_free;
13552 
13553 	dev->netdev_ops = &bnxt_netdev_ops;
13554 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
13555 	dev->ethtool_ops = &bnxt_ethtool_ops;
13556 	pci_set_drvdata(pdev, dev);
13557 
13558 	rc = bnxt_alloc_hwrm_resources(bp);
13559 	if (rc)
13560 		goto init_err_pci_clean;
13561 
13562 	mutex_init(&bp->hwrm_cmd_lock);
13563 	mutex_init(&bp->link_lock);
13564 
13565 	rc = bnxt_fw_init_one_p1(bp);
13566 	if (rc)
13567 		goto init_err_pci_clean;
13568 
13569 	if (BNXT_PF(bp))
13570 		bnxt_vpd_read_info(bp);
13571 
13572 	if (BNXT_CHIP_P5(bp)) {
13573 		bp->flags |= BNXT_FLAG_CHIP_P5;
13574 		if (BNXT_CHIP_SR2(bp))
13575 			bp->flags |= BNXT_FLAG_CHIP_SR2;
13576 	}
13577 
13578 	rc = bnxt_alloc_rss_indir_tbl(bp);
13579 	if (rc)
13580 		goto init_err_pci_clean;
13581 
13582 	rc = bnxt_fw_init_one_p2(bp);
13583 	if (rc)
13584 		goto init_err_pci_clean;
13585 
13586 	rc = bnxt_map_db_bar(bp);
13587 	if (rc) {
13588 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
13589 			rc);
13590 		goto init_err_pci_clean;
13591 	}
13592 
13593 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13594 			   NETIF_F_TSO | NETIF_F_TSO6 |
13595 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13596 			   NETIF_F_GSO_IPXIP4 |
13597 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13598 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
13599 			   NETIF_F_RXCSUM | NETIF_F_GRO;
13600 
13601 	if (BNXT_SUPPORTS_TPA(bp))
13602 		dev->hw_features |= NETIF_F_LRO;
13603 
13604 	dev->hw_enc_features =
13605 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13606 			NETIF_F_TSO | NETIF_F_TSO6 |
13607 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13608 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13609 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
13610 	dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
13611 
13612 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
13613 				    NETIF_F_GSO_GRE_CSUM;
13614 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
13615 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
13616 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
13617 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
13618 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
13619 	if (BNXT_SUPPORTS_TPA(bp))
13620 		dev->hw_features |= NETIF_F_GRO_HW;
13621 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
13622 	if (dev->features & NETIF_F_GRO_HW)
13623 		dev->features &= ~NETIF_F_LRO;
13624 	dev->priv_flags |= IFF_UNICAST_FLT;
13625 
13626 #ifdef CONFIG_BNXT_SRIOV
13627 	init_waitqueue_head(&bp->sriov_cfg_wait);
13628 #endif
13629 	if (BNXT_SUPPORTS_TPA(bp)) {
13630 		bp->gro_func = bnxt_gro_func_5730x;
13631 		if (BNXT_CHIP_P4(bp))
13632 			bp->gro_func = bnxt_gro_func_5731x;
13633 		else if (BNXT_CHIP_P5(bp))
13634 			bp->gro_func = bnxt_gro_func_5750x;
13635 	}
13636 	if (!BNXT_CHIP_P4_PLUS(bp))
13637 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
13638 
13639 	rc = bnxt_init_mac_addr(bp);
13640 	if (rc) {
13641 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
13642 		rc = -EADDRNOTAVAIL;
13643 		goto init_err_pci_clean;
13644 	}
13645 
13646 	if (BNXT_PF(bp)) {
13647 		/* Read the adapter's DSN to use as the eswitch switch_id */
13648 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
13649 	}
13650 
13651 	/* MTU range: 60 - FW defined max */
13652 	dev->min_mtu = ETH_ZLEN;
13653 	dev->max_mtu = bp->max_mtu;
13654 
13655 	rc = bnxt_probe_phy(bp, true);
13656 	if (rc)
13657 		goto init_err_pci_clean;
13658 
13659 	bnxt_set_rx_skb_mode(bp, false);
13660 	bnxt_set_tpa_flags(bp);
13661 	bnxt_set_ring_params(bp);
13662 	rc = bnxt_set_dflt_rings(bp, true);
13663 	if (rc) {
13664 		if (BNXT_VF(bp) && rc == -ENODEV) {
13665 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13666 		} else {
13667 			netdev_err(bp->dev, "Not enough rings available.\n");
13668 			rc = -ENOMEM;
13669 		}
13670 		goto init_err_pci_clean;
13671 	}
13672 
13673 	bnxt_fw_init_one_p3(bp);
13674 
13675 	bnxt_init_dflt_coal(bp);
13676 
13677 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
13678 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
13679 
13680 	rc = bnxt_init_int_mode(bp);
13681 	if (rc)
13682 		goto init_err_pci_clean;
13683 
13684 	/* No TC has been set yet and rings may have been trimmed due to
13685 	 * limited MSIX, so we re-initialize the TX rings per TC.
13686 	 */
13687 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13688 
13689 	if (BNXT_PF(bp)) {
13690 		if (!bnxt_pf_wq) {
13691 			bnxt_pf_wq =
13692 				create_singlethread_workqueue("bnxt_pf_wq");
13693 			if (!bnxt_pf_wq) {
13694 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
13695 				rc = -ENOMEM;
13696 				goto init_err_pci_clean;
13697 			}
13698 		}
13699 		rc = bnxt_init_tc(bp);
13700 		if (rc)
13701 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
13702 				   rc);
13703 	}
13704 
13705 	bnxt_inv_fw_health_reg(bp);
13706 	rc = bnxt_dl_register(bp);
13707 	if (rc)
13708 		goto init_err_dl;
13709 
13710 	rc = register_netdev(dev);
13711 	if (rc)
13712 		goto init_err_cleanup;
13713 
13714 	if (BNXT_PF(bp))
13715 		devlink_port_type_eth_set(&bp->dl_port, bp->dev);
13716 	bnxt_dl_fw_reporters_create(bp);
13717 
13718 	bnxt_print_device_info(bp);
13719 
13720 	pci_save_state(pdev);
13721 	return 0;
13722 
13723 init_err_cleanup:
13724 	bnxt_dl_unregister(bp);
13725 init_err_dl:
13726 	bnxt_shutdown_tc(bp);
13727 	bnxt_clear_int_mode(bp);
13728 
13729 init_err_pci_clean:
13730 	bnxt_hwrm_func_drv_unrgtr(bp);
13731 	bnxt_free_hwrm_resources(bp);
13732 	bnxt_ethtool_free(bp);
13733 	bnxt_ptp_clear(bp);
13734 	kfree(bp->ptp_cfg);
13735 	bp->ptp_cfg = NULL;
13736 	kfree(bp->fw_health);
13737 	bp->fw_health = NULL;
13738 	bnxt_cleanup_pci(bp);
13739 	bnxt_free_ctx_mem(bp);
13740 	kfree(bp->ctx);
13741 	bp->ctx = NULL;
13742 	kfree(bp->rss_indir_tbl);
13743 	bp->rss_indir_tbl = NULL;
13744 
13745 init_err_free:
13746 	free_netdev(dev);
13747 	return rc;
13748 }
13749 
13750 static void bnxt_shutdown(struct pci_dev *pdev)
13751 {
13752 	struct net_device *dev = pci_get_drvdata(pdev);
13753 	struct bnxt *bp;
13754 
13755 	if (!dev)
13756 		return;
13757 
13758 	rtnl_lock();
13759 	bp = netdev_priv(dev);
13760 	if (!bp)
13761 		goto shutdown_exit;
13762 
13763 	if (netif_running(dev))
13764 		dev_close(dev);
13765 
13766 	bnxt_ulp_shutdown(bp);
13767 	bnxt_clear_int_mode(bp);
13768 	pci_disable_device(pdev);
13769 
13770 	if (system_state == SYSTEM_POWER_OFF) {
13771 		pci_wake_from_d3(pdev, bp->wol);
13772 		pci_set_power_state(pdev, PCI_D3hot);
13773 	}
13774 
13775 shutdown_exit:
13776 	rtnl_unlock();
13777 }
13778 
13779 #ifdef CONFIG_PM_SLEEP
13780 static int bnxt_suspend(struct device *device)
13781 {
13782 	struct net_device *dev = dev_get_drvdata(device);
13783 	struct bnxt *bp = netdev_priv(dev);
13784 	int rc = 0;
13785 
13786 	rtnl_lock();
13787 	bnxt_ulp_stop(bp);
13788 	if (netif_running(dev)) {
13789 		netif_device_detach(dev);
13790 		rc = bnxt_close(dev);
13791 	}
13792 	bnxt_hwrm_func_drv_unrgtr(bp);
13793 	pci_disable_device(bp->pdev);
13794 	bnxt_free_ctx_mem(bp);
13795 	kfree(bp->ctx);
13796 	bp->ctx = NULL;
13797 	rtnl_unlock();
13798 	return rc;
13799 }
13800 
13801 static int bnxt_resume(struct device *device)
13802 {
13803 	struct net_device *dev = dev_get_drvdata(device);
13804 	struct bnxt *bp = netdev_priv(dev);
13805 	int rc = 0;
13806 
13807 	rtnl_lock();
13808 	rc = pci_enable_device(bp->pdev);
13809 	if (rc) {
13810 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
13811 			   rc);
13812 		goto resume_exit;
13813 	}
13814 	pci_set_master(bp->pdev);
13815 	if (bnxt_hwrm_ver_get(bp)) {
13816 		rc = -ENODEV;
13817 		goto resume_exit;
13818 	}
13819 	rc = bnxt_hwrm_func_reset(bp);
13820 	if (rc) {
13821 		rc = -EBUSY;
13822 		goto resume_exit;
13823 	}
13824 
13825 	rc = bnxt_hwrm_func_qcaps(bp);
13826 	if (rc)
13827 		goto resume_exit;
13828 
13829 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
13830 		rc = -ENODEV;
13831 		goto resume_exit;
13832 	}
13833 
13834 	bnxt_get_wol_settings(bp);
13835 	if (netif_running(dev)) {
13836 		rc = bnxt_open(dev);
13837 		if (!rc)
13838 			netif_device_attach(dev);
13839 	}
13840 
13841 resume_exit:
13842 	bnxt_ulp_start(bp, rc);
13843 	if (!rc)
13844 		bnxt_reenable_sriov(bp);
13845 	rtnl_unlock();
13846 	return rc;
13847 }
13848 
13849 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
13850 #define BNXT_PM_OPS (&bnxt_pm_ops)
13851 
13852 #else
13853 
13854 #define BNXT_PM_OPS NULL
13855 
13856 #endif /* CONFIG_PM_SLEEP */
13857 
13858 /**
13859  * bnxt_io_error_detected - called when PCI error is detected
13860  * @pdev: Pointer to PCI device
13861  * @state: The current pci connection state
13862  *
13863  * This function is called after a PCI bus error affecting
13864  * this device has been detected.
13865  */
13866 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
13867 					       pci_channel_state_t state)
13868 {
13869 	struct net_device *netdev = pci_get_drvdata(pdev);
13870 	struct bnxt *bp = netdev_priv(netdev);
13871 
13872 	netdev_info(netdev, "PCI I/O error detected\n");
13873 
13874 	rtnl_lock();
13875 	netif_device_detach(netdev);
13876 
13877 	bnxt_ulp_stop(bp);
13878 
13879 	if (state == pci_channel_io_perm_failure) {
13880 		rtnl_unlock();
13881 		return PCI_ERS_RESULT_DISCONNECT;
13882 	}
13883 
13884 	if (state == pci_channel_io_frozen)
13885 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
13886 
13887 	if (netif_running(netdev))
13888 		bnxt_close(netdev);
13889 
13890 	if (pci_is_enabled(pdev))
13891 		pci_disable_device(pdev);
13892 	bnxt_free_ctx_mem(bp);
13893 	kfree(bp->ctx);
13894 	bp->ctx = NULL;
13895 	rtnl_unlock();
13896 
13897 	/* Request a slot slot reset. */
13898 	return PCI_ERS_RESULT_NEED_RESET;
13899 }
13900 
13901 /**
13902  * bnxt_io_slot_reset - called after the pci bus has been reset.
13903  * @pdev: Pointer to PCI device
13904  *
13905  * Restart the card from scratch, as if from a cold-boot.
13906  * At this point, the card has exprienced a hard reset,
13907  * followed by fixups by BIOS, and has its config space
13908  * set up identically to what it was at cold boot.
13909  */
13910 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
13911 {
13912 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
13913 	struct net_device *netdev = pci_get_drvdata(pdev);
13914 	struct bnxt *bp = netdev_priv(netdev);
13915 	int err = 0, off;
13916 
13917 	netdev_info(bp->dev, "PCI Slot Reset\n");
13918 
13919 	rtnl_lock();
13920 
13921 	if (pci_enable_device(pdev)) {
13922 		dev_err(&pdev->dev,
13923 			"Cannot re-enable PCI device after reset.\n");
13924 	} else {
13925 		pci_set_master(pdev);
13926 		/* Upon fatal error, our device internal logic that latches to
13927 		 * BAR value is getting reset and will restore only upon
13928 		 * rewritting the BARs.
13929 		 *
13930 		 * As pci_restore_state() does not re-write the BARs if the
13931 		 * value is same as saved value earlier, driver needs to
13932 		 * write the BARs to 0 to force restore, in case of fatal error.
13933 		 */
13934 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
13935 				       &bp->state)) {
13936 			for (off = PCI_BASE_ADDRESS_0;
13937 			     off <= PCI_BASE_ADDRESS_5; off += 4)
13938 				pci_write_config_dword(bp->pdev, off, 0);
13939 		}
13940 		pci_restore_state(pdev);
13941 		pci_save_state(pdev);
13942 
13943 		err = bnxt_hwrm_func_reset(bp);
13944 		if (!err)
13945 			result = PCI_ERS_RESULT_RECOVERED;
13946 	}
13947 
13948 	rtnl_unlock();
13949 
13950 	return result;
13951 }
13952 
13953 /**
13954  * bnxt_io_resume - called when traffic can start flowing again.
13955  * @pdev: Pointer to PCI device
13956  *
13957  * This callback is called when the error recovery driver tells
13958  * us that its OK to resume normal operation.
13959  */
13960 static void bnxt_io_resume(struct pci_dev *pdev)
13961 {
13962 	struct net_device *netdev = pci_get_drvdata(pdev);
13963 	struct bnxt *bp = netdev_priv(netdev);
13964 	int err;
13965 
13966 	netdev_info(bp->dev, "PCI Slot Resume\n");
13967 	rtnl_lock();
13968 
13969 	err = bnxt_hwrm_func_qcaps(bp);
13970 	if (!err && netif_running(netdev))
13971 		err = bnxt_open(netdev);
13972 
13973 	bnxt_ulp_start(bp, err);
13974 	if (!err) {
13975 		bnxt_reenable_sriov(bp);
13976 		netif_device_attach(netdev);
13977 	}
13978 
13979 	rtnl_unlock();
13980 }
13981 
13982 static const struct pci_error_handlers bnxt_err_handler = {
13983 	.error_detected	= bnxt_io_error_detected,
13984 	.slot_reset	= bnxt_io_slot_reset,
13985 	.resume		= bnxt_io_resume
13986 };
13987 
13988 static struct pci_driver bnxt_pci_driver = {
13989 	.name		= DRV_MODULE_NAME,
13990 	.id_table	= bnxt_pci_tbl,
13991 	.probe		= bnxt_init_one,
13992 	.remove		= bnxt_remove_one,
13993 	.shutdown	= bnxt_shutdown,
13994 	.driver.pm	= BNXT_PM_OPS,
13995 	.err_handler	= &bnxt_err_handler,
13996 #if defined(CONFIG_BNXT_SRIOV)
13997 	.sriov_configure = bnxt_sriov_configure,
13998 #endif
13999 };
14000 
14001 static int __init bnxt_init(void)
14002 {
14003 	bnxt_debug_init();
14004 	return pci_register_driver(&bnxt_pci_driver);
14005 }
14006 
14007 static void __exit bnxt_exit(void)
14008 {
14009 	pci_unregister_driver(&bnxt_pci_driver);
14010 	if (bnxt_pf_wq)
14011 		destroy_workqueue(bnxt_pf_wq);
14012 	bnxt_debug_exit();
14013 }
14014 
14015 module_init(bnxt_init);
14016 module_exit(bnxt_exit);
14017