1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/gro.h> 41 #include <net/ip.h> 42 #include <net/tcp.h> 43 #include <net/udp.h> 44 #include <net/checksum.h> 45 #include <net/ip6_checksum.h> 46 #include <net/udp_tunnel.h> 47 #include <linux/workqueue.h> 48 #include <linux/prefetch.h> 49 #include <linux/cache.h> 50 #include <linux/log2.h> 51 #include <linux/bitmap.h> 52 #include <linux/cpu_rmap.h> 53 #include <linux/cpumask.h> 54 #include <net/pkt_cls.h> 55 #include <net/page_pool/helpers.h> 56 #include <linux/align.h> 57 #include <net/netdev_queues.h> 58 59 #include "bnxt_hsi.h" 60 #include "bnxt.h" 61 #include "bnxt_hwrm.h" 62 #include "bnxt_ulp.h" 63 #include "bnxt_sriov.h" 64 #include "bnxt_ethtool.h" 65 #include "bnxt_dcb.h" 66 #include "bnxt_xdp.h" 67 #include "bnxt_ptp.h" 68 #include "bnxt_vfr.h" 69 #include "bnxt_tc.h" 70 #include "bnxt_devlink.h" 71 #include "bnxt_debugfs.h" 72 #include "bnxt_coredump.h" 73 #include "bnxt_hwmon.h" 74 75 #define BNXT_TX_TIMEOUT (5 * HZ) 76 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \ 77 NETIF_MSG_TX_ERR) 78 79 MODULE_LICENSE("GPL"); 80 MODULE_DESCRIPTION("Broadcom NetXtreme network driver"); 81 82 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 83 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 84 #define BNXT_RX_COPY_THRESH 256 85 86 #define BNXT_TX_PUSH_THRESH 164 87 88 /* indexed by enum board_idx */ 89 static const struct { 90 char *name; 91 } board_info[] = { 92 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 93 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 94 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 95 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 96 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 97 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 98 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 99 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 100 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 101 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 102 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 103 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 104 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 105 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 106 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 107 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 108 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 109 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 110 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 111 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 112 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 113 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 114 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 115 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 116 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 117 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 118 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 119 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 120 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 121 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 122 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 123 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 124 [BCM57608] = { "Broadcom BCM57608 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 125 [BCM57604] = { "Broadcom BCM57604 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 126 [BCM57602] = { "Broadcom BCM57602 NetXtreme-E 10Gb/25Gb/50Gb/100Gb Ethernet" }, 127 [BCM57601] = { "Broadcom BCM57601 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 128 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 129 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 130 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 131 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 132 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 133 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 134 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 135 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 136 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 137 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 138 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 139 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 140 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 141 [NETXTREME_E_P7_VF] = { "Broadcom BCM5760X Virtual Function" }, 142 }; 143 144 static const struct pci_device_id bnxt_pci_tbl[] = { 145 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 146 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 147 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 148 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 149 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 150 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 151 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 152 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 153 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 154 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 155 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 156 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 157 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 158 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 159 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 160 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 161 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 162 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 163 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 164 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 165 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 166 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 167 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 168 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 169 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 170 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 171 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 172 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 173 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 174 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 175 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 176 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 177 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 178 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 179 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 180 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 181 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 182 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 183 { PCI_VDEVICE(BROADCOM, 0x1760), .driver_data = BCM57608 }, 184 { PCI_VDEVICE(BROADCOM, 0x1761), .driver_data = BCM57604 }, 185 { PCI_VDEVICE(BROADCOM, 0x1762), .driver_data = BCM57602 }, 186 { PCI_VDEVICE(BROADCOM, 0x1763), .driver_data = BCM57601 }, 187 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR }, 188 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 189 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR }, 190 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR }, 191 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 192 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR }, 193 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 194 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 195 #ifdef CONFIG_BNXT_SRIOV 196 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 197 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 198 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 199 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 200 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 201 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 202 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 203 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 204 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 205 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 206 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 207 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 208 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 209 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 210 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 211 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 212 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 213 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 214 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 215 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 216 { PCI_VDEVICE(BROADCOM, 0x1819), .driver_data = NETXTREME_E_P7_VF }, 217 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 218 #endif 219 { 0 } 220 }; 221 222 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 223 224 static const u16 bnxt_vf_req_snif[] = { 225 HWRM_FUNC_CFG, 226 HWRM_FUNC_VF_CFG, 227 HWRM_PORT_PHY_QCFG, 228 HWRM_CFA_L2_FILTER_ALLOC, 229 }; 230 231 static const u16 bnxt_async_events_arr[] = { 232 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 233 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 234 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 235 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 236 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 237 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 238 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 239 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 240 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 241 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 242 ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE, 243 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 244 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 245 ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP, 246 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT, 247 ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE, 248 ASYNC_EVENT_CMPL_EVENT_ID_DBG_BUF_PRODUCER, 249 }; 250 251 const u16 bnxt_bstore_to_trace[] = { 252 [BNXT_CTX_SRT] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_SRT_TRACE, 253 [BNXT_CTX_SRT2] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_SRT2_TRACE, 254 [BNXT_CTX_CRT] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CRT_TRACE, 255 [BNXT_CTX_CRT2] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CRT2_TRACE, 256 [BNXT_CTX_RIGP0] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_RIGP0_TRACE, 257 [BNXT_CTX_L2HWRM] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_L2_HWRM_TRACE, 258 [BNXT_CTX_REHWRM] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_ROCE_HWRM_TRACE, 259 [BNXT_CTX_CA0] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CA0_TRACE, 260 [BNXT_CTX_CA1] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CA1_TRACE, 261 [BNXT_CTX_CA2] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CA2_TRACE, 262 [BNXT_CTX_RIGP1] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_RIGP1_TRACE, 263 }; 264 265 static struct workqueue_struct *bnxt_pf_wq; 266 267 #define BNXT_IPV6_MASK_ALL {{{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, \ 268 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }}} 269 #define BNXT_IPV6_MASK_NONE {{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }}} 270 271 const struct bnxt_flow_masks BNXT_FLOW_MASK_NONE = { 272 .ports = { 273 .src = 0, 274 .dst = 0, 275 }, 276 .addrs = { 277 .v6addrs = { 278 .src = BNXT_IPV6_MASK_NONE, 279 .dst = BNXT_IPV6_MASK_NONE, 280 }, 281 }, 282 }; 283 284 const struct bnxt_flow_masks BNXT_FLOW_IPV6_MASK_ALL = { 285 .ports = { 286 .src = cpu_to_be16(0xffff), 287 .dst = cpu_to_be16(0xffff), 288 }, 289 .addrs = { 290 .v6addrs = { 291 .src = BNXT_IPV6_MASK_ALL, 292 .dst = BNXT_IPV6_MASK_ALL, 293 }, 294 }, 295 }; 296 297 const struct bnxt_flow_masks BNXT_FLOW_IPV4_MASK_ALL = { 298 .ports = { 299 .src = cpu_to_be16(0xffff), 300 .dst = cpu_to_be16(0xffff), 301 }, 302 .addrs = { 303 .v4addrs = { 304 .src = cpu_to_be32(0xffffffff), 305 .dst = cpu_to_be32(0xffffffff), 306 }, 307 }, 308 }; 309 310 static bool bnxt_vf_pciid(enum board_idx idx) 311 { 312 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 313 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 314 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || 315 idx == NETXTREME_E_P5_VF_HV || idx == NETXTREME_E_P7_VF); 316 } 317 318 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 319 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 320 321 #define BNXT_DB_CQ(db, idx) \ 322 writel(DB_CP_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 323 324 #define BNXT_DB_NQ_P5(db, idx) \ 325 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | DB_RING_IDX(db, idx),\ 326 (db)->doorbell) 327 328 #define BNXT_DB_NQ_P7(db, idx) \ 329 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_MASK | \ 330 DB_RING_IDX(db, idx), (db)->doorbell) 331 332 #define BNXT_DB_CQ_ARM(db, idx) \ 333 writel(DB_CP_REARM_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 334 335 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 336 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | \ 337 DB_RING_IDX(db, idx), (db)->doorbell) 338 339 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 340 { 341 if (bp->flags & BNXT_FLAG_CHIP_P7) 342 BNXT_DB_NQ_P7(db, idx); 343 else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 344 BNXT_DB_NQ_P5(db, idx); 345 else 346 BNXT_DB_CQ(db, idx); 347 } 348 349 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 350 { 351 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 352 BNXT_DB_NQ_ARM_P5(db, idx); 353 else 354 BNXT_DB_CQ_ARM(db, idx); 355 } 356 357 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 358 { 359 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 360 bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL | 361 DB_RING_IDX(db, idx), db->doorbell); 362 else 363 BNXT_DB_CQ(db, idx); 364 } 365 366 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 367 { 368 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 369 return; 370 371 if (BNXT_PF(bp)) 372 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 373 else 374 schedule_delayed_work(&bp->fw_reset_task, delay); 375 } 376 377 static void __bnxt_queue_sp_work(struct bnxt *bp) 378 { 379 if (BNXT_PF(bp)) 380 queue_work(bnxt_pf_wq, &bp->sp_task); 381 else 382 schedule_work(&bp->sp_task); 383 } 384 385 static void bnxt_queue_sp_work(struct bnxt *bp, unsigned int event) 386 { 387 set_bit(event, &bp->sp_event); 388 __bnxt_queue_sp_work(bp); 389 } 390 391 static void bnxt_sched_reset_rxr(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 392 { 393 if (!rxr->bnapi->in_reset) { 394 rxr->bnapi->in_reset = true; 395 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 396 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 397 else 398 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 399 __bnxt_queue_sp_work(bp); 400 } 401 rxr->rx_next_cons = 0xffff; 402 } 403 404 void bnxt_sched_reset_txr(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 405 u16 curr) 406 { 407 struct bnxt_napi *bnapi = txr->bnapi; 408 409 if (bnapi->tx_fault) 410 return; 411 412 netdev_err(bp->dev, "Invalid Tx completion (ring:%d tx_hw_cons:%u cons:%u prod:%u curr:%u)", 413 txr->txq_index, txr->tx_hw_cons, 414 txr->tx_cons, txr->tx_prod, curr); 415 WARN_ON_ONCE(1); 416 bnapi->tx_fault = 1; 417 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 418 } 419 420 const u16 bnxt_lhint_arr[] = { 421 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 422 TX_BD_FLAGS_LHINT_512_TO_1023, 423 TX_BD_FLAGS_LHINT_1024_TO_2047, 424 TX_BD_FLAGS_LHINT_1024_TO_2047, 425 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 426 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 427 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 428 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 429 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 430 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 431 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 432 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 433 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 434 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 435 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 436 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 437 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 438 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 439 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 440 }; 441 442 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 443 { 444 struct metadata_dst *md_dst = skb_metadata_dst(skb); 445 446 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 447 return 0; 448 449 return md_dst->u.port_info.port_id; 450 } 451 452 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 453 u16 prod) 454 { 455 /* Sync BD data before updating doorbell */ 456 wmb(); 457 bnxt_db_write(bp, &txr->tx_db, prod); 458 txr->kick_pending = 0; 459 } 460 461 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 462 { 463 struct bnxt *bp = netdev_priv(dev); 464 struct tx_bd *txbd, *txbd0; 465 struct tx_bd_ext *txbd1; 466 struct netdev_queue *txq; 467 int i; 468 dma_addr_t mapping; 469 unsigned int length, pad = 0; 470 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 471 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 472 struct pci_dev *pdev = bp->pdev; 473 u16 prod, last_frag, txts_prod; 474 struct bnxt_tx_ring_info *txr; 475 struct bnxt_sw_tx_bd *tx_buf; 476 __le32 lflags = 0; 477 478 i = skb_get_queue_mapping(skb); 479 if (unlikely(i >= bp->tx_nr_rings)) { 480 dev_kfree_skb_any(skb); 481 dev_core_stats_tx_dropped_inc(dev); 482 return NETDEV_TX_OK; 483 } 484 485 txq = netdev_get_tx_queue(dev, i); 486 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 487 prod = txr->tx_prod; 488 489 free_size = bnxt_tx_avail(bp, txr); 490 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 491 /* We must have raced with NAPI cleanup */ 492 if (net_ratelimit() && txr->kick_pending) 493 netif_warn(bp, tx_err, dev, 494 "bnxt: ring busy w/ flush pending!\n"); 495 if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 496 bp->tx_wake_thresh)) 497 return NETDEV_TX_BUSY; 498 } 499 500 if (unlikely(ipv6_hopopt_jumbo_remove(skb))) 501 goto tx_free; 502 503 length = skb->len; 504 len = skb_headlen(skb); 505 last_frag = skb_shinfo(skb)->nr_frags; 506 507 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 508 509 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 510 tx_buf->skb = skb; 511 tx_buf->nr_frags = last_frag; 512 513 vlan_tag_flags = 0; 514 cfa_action = bnxt_xmit_get_cfa_action(skb); 515 if (skb_vlan_tag_present(skb)) { 516 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 517 skb_vlan_tag_get(skb); 518 /* Currently supports 8021Q, 8021AD vlan offloads 519 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 520 */ 521 if (skb->vlan_proto == htons(ETH_P_8021Q)) 522 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 523 } 524 525 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && ptp && 526 ptp->tx_tstamp_en) { 527 if (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) { 528 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 529 tx_buf->is_ts_pkt = 1; 530 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 531 } else if (!skb_is_gso(skb)) { 532 u16 seq_id, hdr_off; 533 534 if (!bnxt_ptp_parse(skb, &seq_id, &hdr_off) && 535 !bnxt_ptp_get_txts_prod(ptp, &txts_prod)) { 536 if (vlan_tag_flags) 537 hdr_off += VLAN_HLEN; 538 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 539 tx_buf->is_ts_pkt = 1; 540 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 541 542 ptp->txts_req[txts_prod].tx_seqid = seq_id; 543 ptp->txts_req[txts_prod].tx_hdr_off = hdr_off; 544 tx_buf->txts_prod = txts_prod; 545 } 546 } 547 } 548 if (unlikely(skb->no_fcs)) 549 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 550 551 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && 552 !lflags) { 553 struct tx_push_buffer *tx_push_buf = txr->tx_push; 554 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 555 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 556 void __iomem *db = txr->tx_db.doorbell; 557 void *pdata = tx_push_buf->data; 558 u64 *end; 559 int j, push_len; 560 561 /* Set COAL_NOW to be ready quickly for the next push */ 562 tx_push->tx_bd_len_flags_type = 563 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 564 TX_BD_TYPE_LONG_TX_BD | 565 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 566 TX_BD_FLAGS_COAL_NOW | 567 TX_BD_FLAGS_PACKET_END | 568 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 569 570 if (skb->ip_summed == CHECKSUM_PARTIAL) 571 tx_push1->tx_bd_hsize_lflags = 572 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 573 else 574 tx_push1->tx_bd_hsize_lflags = 0; 575 576 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 577 tx_push1->tx_bd_cfa_action = 578 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 579 580 end = pdata + length; 581 end = PTR_ALIGN(end, 8) - 1; 582 *end = 0; 583 584 skb_copy_from_linear_data(skb, pdata, len); 585 pdata += len; 586 for (j = 0; j < last_frag; j++) { 587 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 588 void *fptr; 589 590 fptr = skb_frag_address_safe(frag); 591 if (!fptr) 592 goto normal_tx; 593 594 memcpy(pdata, fptr, skb_frag_size(frag)); 595 pdata += skb_frag_size(frag); 596 } 597 598 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 599 txbd->tx_bd_haddr = txr->data_mapping; 600 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2); 601 prod = NEXT_TX(prod); 602 tx_push->tx_bd_opaque = txbd->tx_bd_opaque; 603 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 604 memcpy(txbd, tx_push1, sizeof(*txbd)); 605 prod = NEXT_TX(prod); 606 tx_push->doorbell = 607 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | 608 DB_RING_IDX(&txr->tx_db, prod)); 609 WRITE_ONCE(txr->tx_prod, prod); 610 611 tx_buf->is_push = 1; 612 netdev_tx_sent_queue(txq, skb->len); 613 wmb(); /* Sync is_push and byte queue before pushing data */ 614 615 push_len = (length + sizeof(*tx_push) + 7) / 8; 616 if (push_len > 16) { 617 __iowrite64_copy(db, tx_push_buf, 16); 618 __iowrite32_copy(db + 4, tx_push_buf + 1, 619 (push_len - 16) << 1); 620 } else { 621 __iowrite64_copy(db, tx_push_buf, push_len); 622 } 623 624 goto tx_done; 625 } 626 627 normal_tx: 628 if (length < BNXT_MIN_PKT_SIZE) { 629 pad = BNXT_MIN_PKT_SIZE - length; 630 if (skb_pad(skb, pad)) 631 /* SKB already freed. */ 632 goto tx_kick_pending; 633 length = BNXT_MIN_PKT_SIZE; 634 } 635 636 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 637 638 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 639 goto tx_free; 640 641 dma_unmap_addr_set(tx_buf, mapping, mapping); 642 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 643 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 644 645 txbd->tx_bd_haddr = cpu_to_le64(mapping); 646 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2 + last_frag); 647 648 prod = NEXT_TX(prod); 649 txbd1 = (struct tx_bd_ext *) 650 &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 651 652 txbd1->tx_bd_hsize_lflags = lflags; 653 if (skb_is_gso(skb)) { 654 bool udp_gso = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4); 655 u32 hdr_len; 656 657 if (skb->encapsulation) { 658 if (udp_gso) 659 hdr_len = skb_inner_transport_offset(skb) + 660 sizeof(struct udphdr); 661 else 662 hdr_len = skb_inner_tcp_all_headers(skb); 663 } else if (udp_gso) { 664 hdr_len = skb_transport_offset(skb) + 665 sizeof(struct udphdr); 666 } else { 667 hdr_len = skb_tcp_all_headers(skb); 668 } 669 670 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 671 TX_BD_FLAGS_T_IPID | 672 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 673 length = skb_shinfo(skb)->gso_size; 674 txbd1->tx_bd_mss = cpu_to_le32(length); 675 length += hdr_len; 676 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 677 txbd1->tx_bd_hsize_lflags |= 678 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 679 txbd1->tx_bd_mss = 0; 680 } 681 682 length >>= 9; 683 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 684 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 685 skb->len); 686 i = 0; 687 goto tx_dma_error; 688 } 689 flags |= bnxt_lhint_arr[length]; 690 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 691 692 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 693 txbd1->tx_bd_cfa_action = 694 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 695 txbd0 = txbd; 696 for (i = 0; i < last_frag; i++) { 697 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 698 699 prod = NEXT_TX(prod); 700 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 701 702 len = skb_frag_size(frag); 703 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 704 DMA_TO_DEVICE); 705 706 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 707 goto tx_dma_error; 708 709 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 710 dma_unmap_addr_set(tx_buf, mapping, mapping); 711 712 txbd->tx_bd_haddr = cpu_to_le64(mapping); 713 714 flags = len << TX_BD_LEN_SHIFT; 715 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 716 } 717 718 flags &= ~TX_BD_LEN; 719 txbd->tx_bd_len_flags_type = 720 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 721 TX_BD_FLAGS_PACKET_END); 722 723 netdev_tx_sent_queue(txq, skb->len); 724 725 skb_tx_timestamp(skb); 726 727 prod = NEXT_TX(prod); 728 WRITE_ONCE(txr->tx_prod, prod); 729 730 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) { 731 bnxt_txr_db_kick(bp, txr, prod); 732 } else { 733 if (free_size >= bp->tx_wake_thresh) 734 txbd0->tx_bd_len_flags_type |= 735 cpu_to_le32(TX_BD_FLAGS_NO_CMPL); 736 txr->kick_pending = 1; 737 } 738 739 tx_done: 740 741 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 742 if (netdev_xmit_more() && !tx_buf->is_push) { 743 txbd0->tx_bd_len_flags_type &= 744 cpu_to_le32(~TX_BD_FLAGS_NO_CMPL); 745 bnxt_txr_db_kick(bp, txr, prod); 746 } 747 748 netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 749 bp->tx_wake_thresh); 750 } 751 return NETDEV_TX_OK; 752 753 tx_dma_error: 754 last_frag = i; 755 756 /* start back at beginning and unmap skb */ 757 prod = txr->tx_prod; 758 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 759 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 760 skb_headlen(skb), DMA_TO_DEVICE); 761 prod = NEXT_TX(prod); 762 763 /* unmap remaining mapped pages */ 764 for (i = 0; i < last_frag; i++) { 765 prod = NEXT_TX(prod); 766 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 767 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 768 skb_frag_size(&skb_shinfo(skb)->frags[i]), 769 DMA_TO_DEVICE); 770 } 771 772 tx_free: 773 dev_kfree_skb_any(skb); 774 tx_kick_pending: 775 if (BNXT_TX_PTP_IS_SET(lflags)) { 776 txr->tx_buf_ring[txr->tx_prod].is_ts_pkt = 0; 777 atomic64_inc(&bp->ptp_cfg->stats.ts_err); 778 if (!(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) 779 /* set SKB to err so PTP worker will clean up */ 780 ptp->txts_req[txts_prod].tx_skb = ERR_PTR(-EIO); 781 } 782 if (txr->kick_pending) 783 bnxt_txr_db_kick(bp, txr, txr->tx_prod); 784 txr->tx_buf_ring[txr->tx_prod].skb = NULL; 785 dev_core_stats_tx_dropped_inc(dev); 786 return NETDEV_TX_OK; 787 } 788 789 /* Returns true if some remaining TX packets not processed. */ 790 static bool __bnxt_tx_int(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 791 int budget) 792 { 793 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 794 struct pci_dev *pdev = bp->pdev; 795 u16 hw_cons = txr->tx_hw_cons; 796 unsigned int tx_bytes = 0; 797 u16 cons = txr->tx_cons; 798 int tx_pkts = 0; 799 bool rc = false; 800 801 while (RING_TX(bp, cons) != hw_cons) { 802 struct bnxt_sw_tx_bd *tx_buf; 803 struct sk_buff *skb; 804 bool is_ts_pkt; 805 int j, last; 806 807 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 808 skb = tx_buf->skb; 809 810 if (unlikely(!skb)) { 811 bnxt_sched_reset_txr(bp, txr, cons); 812 return rc; 813 } 814 815 is_ts_pkt = tx_buf->is_ts_pkt; 816 if (is_ts_pkt && (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) { 817 rc = true; 818 break; 819 } 820 821 cons = NEXT_TX(cons); 822 tx_pkts++; 823 tx_bytes += skb->len; 824 tx_buf->skb = NULL; 825 tx_buf->is_ts_pkt = 0; 826 827 if (tx_buf->is_push) { 828 tx_buf->is_push = 0; 829 goto next_tx_int; 830 } 831 832 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 833 skb_headlen(skb), DMA_TO_DEVICE); 834 last = tx_buf->nr_frags; 835 836 for (j = 0; j < last; j++) { 837 cons = NEXT_TX(cons); 838 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 839 dma_unmap_page( 840 &pdev->dev, 841 dma_unmap_addr(tx_buf, mapping), 842 skb_frag_size(&skb_shinfo(skb)->frags[j]), 843 DMA_TO_DEVICE); 844 } 845 if (unlikely(is_ts_pkt)) { 846 if (BNXT_CHIP_P5(bp)) { 847 /* PTP worker takes ownership of the skb */ 848 bnxt_get_tx_ts_p5(bp, skb, tx_buf->txts_prod); 849 skb = NULL; 850 } 851 } 852 853 next_tx_int: 854 cons = NEXT_TX(cons); 855 856 dev_consume_skb_any(skb); 857 } 858 859 WRITE_ONCE(txr->tx_cons, cons); 860 861 __netif_txq_completed_wake(txq, tx_pkts, tx_bytes, 862 bnxt_tx_avail(bp, txr), bp->tx_wake_thresh, 863 READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING); 864 865 return rc; 866 } 867 868 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 869 { 870 struct bnxt_tx_ring_info *txr; 871 bool more = false; 872 int i; 873 874 bnxt_for_each_napi_tx(i, bnapi, txr) { 875 if (txr->tx_hw_cons != RING_TX(bp, txr->tx_cons)) 876 more |= __bnxt_tx_int(bp, txr, budget); 877 } 878 if (!more) 879 bnapi->events &= ~BNXT_TX_CMP_EVENT; 880 } 881 882 static bool bnxt_separate_head_pool(void) 883 { 884 return PAGE_SIZE > BNXT_RX_PAGE_SIZE; 885 } 886 887 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 888 struct bnxt_rx_ring_info *rxr, 889 unsigned int *offset, 890 gfp_t gfp) 891 { 892 struct page *page; 893 894 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 895 page = page_pool_dev_alloc_frag(rxr->page_pool, offset, 896 BNXT_RX_PAGE_SIZE); 897 } else { 898 page = page_pool_dev_alloc_pages(rxr->page_pool); 899 *offset = 0; 900 } 901 if (!page) 902 return NULL; 903 904 *mapping = page_pool_get_dma_addr(page) + *offset; 905 return page; 906 } 907 908 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping, 909 struct bnxt_rx_ring_info *rxr, 910 gfp_t gfp) 911 { 912 unsigned int offset; 913 struct page *page; 914 915 page = page_pool_alloc_frag(rxr->head_pool, &offset, 916 bp->rx_buf_size, gfp); 917 if (!page) 918 return NULL; 919 920 *mapping = page_pool_get_dma_addr(page) + bp->rx_dma_offset + offset; 921 return page_address(page) + offset; 922 } 923 924 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 925 u16 prod, gfp_t gfp) 926 { 927 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 928 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 929 dma_addr_t mapping; 930 931 if (BNXT_RX_PAGE_MODE(bp)) { 932 unsigned int offset; 933 struct page *page = 934 __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 935 936 if (!page) 937 return -ENOMEM; 938 939 mapping += bp->rx_dma_offset; 940 rx_buf->data = page; 941 rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset; 942 } else { 943 u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, rxr, gfp); 944 945 if (!data) 946 return -ENOMEM; 947 948 rx_buf->data = data; 949 rx_buf->data_ptr = data + bp->rx_offset; 950 } 951 rx_buf->mapping = mapping; 952 953 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 954 return 0; 955 } 956 957 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 958 { 959 u16 prod = rxr->rx_prod; 960 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 961 struct bnxt *bp = rxr->bnapi->bp; 962 struct rx_bd *cons_bd, *prod_bd; 963 964 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 965 cons_rx_buf = &rxr->rx_buf_ring[cons]; 966 967 prod_rx_buf->data = data; 968 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 969 970 prod_rx_buf->mapping = cons_rx_buf->mapping; 971 972 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 973 cons_bd = &rxr->rx_desc_ring[RX_RING(bp, cons)][RX_IDX(cons)]; 974 975 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 976 } 977 978 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 979 { 980 u16 next, max = rxr->rx_agg_bmap_size; 981 982 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 983 if (next >= max) 984 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 985 return next; 986 } 987 988 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 989 struct bnxt_rx_ring_info *rxr, 990 u16 prod, gfp_t gfp) 991 { 992 struct rx_bd *rxbd = 993 &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 994 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 995 struct page *page; 996 dma_addr_t mapping; 997 u16 sw_prod = rxr->rx_sw_agg_prod; 998 unsigned int offset = 0; 999 1000 page = __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 1001 1002 if (!page) 1003 return -ENOMEM; 1004 1005 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 1006 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 1007 1008 __set_bit(sw_prod, rxr->rx_agg_bmap); 1009 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 1010 rxr->rx_sw_agg_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 1011 1012 rx_agg_buf->page = page; 1013 rx_agg_buf->offset = offset; 1014 rx_agg_buf->mapping = mapping; 1015 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 1016 rxbd->rx_bd_opaque = sw_prod; 1017 return 0; 1018 } 1019 1020 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 1021 struct bnxt_cp_ring_info *cpr, 1022 u16 cp_cons, u16 curr) 1023 { 1024 struct rx_agg_cmp *agg; 1025 1026 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 1027 agg = (struct rx_agg_cmp *) 1028 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1029 return agg; 1030 } 1031 1032 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 1033 struct bnxt_rx_ring_info *rxr, 1034 u16 agg_id, u16 curr) 1035 { 1036 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 1037 1038 return &tpa_info->agg_arr[curr]; 1039 } 1040 1041 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 1042 u16 start, u32 agg_bufs, bool tpa) 1043 { 1044 struct bnxt_napi *bnapi = cpr->bnapi; 1045 struct bnxt *bp = bnapi->bp; 1046 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1047 u16 prod = rxr->rx_agg_prod; 1048 u16 sw_prod = rxr->rx_sw_agg_prod; 1049 bool p5_tpa = false; 1050 u32 i; 1051 1052 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1053 p5_tpa = true; 1054 1055 for (i = 0; i < agg_bufs; i++) { 1056 u16 cons; 1057 struct rx_agg_cmp *agg; 1058 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 1059 struct rx_bd *prod_bd; 1060 struct page *page; 1061 1062 if (p5_tpa) 1063 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 1064 else 1065 agg = bnxt_get_agg(bp, cpr, idx, start + i); 1066 cons = agg->rx_agg_cmp_opaque; 1067 __clear_bit(cons, rxr->rx_agg_bmap); 1068 1069 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 1070 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 1071 1072 __set_bit(sw_prod, rxr->rx_agg_bmap); 1073 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 1074 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1075 1076 /* It is possible for sw_prod to be equal to cons, so 1077 * set cons_rx_buf->page to NULL first. 1078 */ 1079 page = cons_rx_buf->page; 1080 cons_rx_buf->page = NULL; 1081 prod_rx_buf->page = page; 1082 prod_rx_buf->offset = cons_rx_buf->offset; 1083 1084 prod_rx_buf->mapping = cons_rx_buf->mapping; 1085 1086 prod_bd = &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 1087 1088 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 1089 prod_bd->rx_bd_opaque = sw_prod; 1090 1091 prod = NEXT_RX_AGG(prod); 1092 sw_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 1093 } 1094 rxr->rx_agg_prod = prod; 1095 rxr->rx_sw_agg_prod = sw_prod; 1096 } 1097 1098 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp, 1099 struct bnxt_rx_ring_info *rxr, 1100 u16 cons, void *data, u8 *data_ptr, 1101 dma_addr_t dma_addr, 1102 unsigned int offset_and_len) 1103 { 1104 unsigned int len = offset_and_len & 0xffff; 1105 struct page *page = data; 1106 u16 prod = rxr->rx_prod; 1107 struct sk_buff *skb; 1108 int err; 1109 1110 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1111 if (unlikely(err)) { 1112 bnxt_reuse_rx_data(rxr, cons, data); 1113 return NULL; 1114 } 1115 dma_addr -= bp->rx_dma_offset; 1116 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1117 bp->rx_dir); 1118 skb = napi_build_skb(data_ptr - bp->rx_offset, BNXT_RX_PAGE_SIZE); 1119 if (!skb) { 1120 page_pool_recycle_direct(rxr->page_pool, page); 1121 return NULL; 1122 } 1123 skb_mark_for_recycle(skb); 1124 skb_reserve(skb, bp->rx_offset); 1125 __skb_put(skb, len); 1126 1127 return skb; 1128 } 1129 1130 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 1131 struct bnxt_rx_ring_info *rxr, 1132 u16 cons, void *data, u8 *data_ptr, 1133 dma_addr_t dma_addr, 1134 unsigned int offset_and_len) 1135 { 1136 unsigned int payload = offset_and_len >> 16; 1137 unsigned int len = offset_and_len & 0xffff; 1138 skb_frag_t *frag; 1139 struct page *page = data; 1140 u16 prod = rxr->rx_prod; 1141 struct sk_buff *skb; 1142 int off, err; 1143 1144 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1145 if (unlikely(err)) { 1146 bnxt_reuse_rx_data(rxr, cons, data); 1147 return NULL; 1148 } 1149 dma_addr -= bp->rx_dma_offset; 1150 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1151 bp->rx_dir); 1152 1153 if (unlikely(!payload)) 1154 payload = eth_get_headlen(bp->dev, data_ptr, len); 1155 1156 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 1157 if (!skb) { 1158 page_pool_recycle_direct(rxr->page_pool, page); 1159 return NULL; 1160 } 1161 1162 skb_mark_for_recycle(skb); 1163 off = (void *)data_ptr - page_address(page); 1164 skb_add_rx_frag(skb, 0, page, off, len, BNXT_RX_PAGE_SIZE); 1165 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 1166 payload + NET_IP_ALIGN); 1167 1168 frag = &skb_shinfo(skb)->frags[0]; 1169 skb_frag_size_sub(frag, payload); 1170 skb_frag_off_add(frag, payload); 1171 skb->data_len -= payload; 1172 skb->tail += payload; 1173 1174 return skb; 1175 } 1176 1177 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 1178 struct bnxt_rx_ring_info *rxr, u16 cons, 1179 void *data, u8 *data_ptr, 1180 dma_addr_t dma_addr, 1181 unsigned int offset_and_len) 1182 { 1183 u16 prod = rxr->rx_prod; 1184 struct sk_buff *skb; 1185 int err; 1186 1187 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1188 if (unlikely(err)) { 1189 bnxt_reuse_rx_data(rxr, cons, data); 1190 return NULL; 1191 } 1192 1193 skb = napi_build_skb(data, bp->rx_buf_size); 1194 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1195 bp->rx_dir); 1196 if (!skb) { 1197 page_pool_free_va(rxr->head_pool, data, true); 1198 return NULL; 1199 } 1200 1201 skb_mark_for_recycle(skb); 1202 skb_reserve(skb, bp->rx_offset); 1203 skb_put(skb, offset_and_len & 0xffff); 1204 return skb; 1205 } 1206 1207 static u32 __bnxt_rx_agg_pages(struct bnxt *bp, 1208 struct bnxt_cp_ring_info *cpr, 1209 struct skb_shared_info *shinfo, 1210 u16 idx, u32 agg_bufs, bool tpa, 1211 struct xdp_buff *xdp) 1212 { 1213 struct bnxt_napi *bnapi = cpr->bnapi; 1214 struct pci_dev *pdev = bp->pdev; 1215 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1216 u16 prod = rxr->rx_agg_prod; 1217 u32 i, total_frag_len = 0; 1218 bool p5_tpa = false; 1219 1220 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1221 p5_tpa = true; 1222 1223 for (i = 0; i < agg_bufs; i++) { 1224 skb_frag_t *frag = &shinfo->frags[i]; 1225 u16 cons, frag_len; 1226 struct rx_agg_cmp *agg; 1227 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1228 struct page *page; 1229 dma_addr_t mapping; 1230 1231 if (p5_tpa) 1232 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1233 else 1234 agg = bnxt_get_agg(bp, cpr, idx, i); 1235 cons = agg->rx_agg_cmp_opaque; 1236 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1237 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1238 1239 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1240 skb_frag_fill_page_desc(frag, cons_rx_buf->page, 1241 cons_rx_buf->offset, frag_len); 1242 shinfo->nr_frags = i + 1; 1243 __clear_bit(cons, rxr->rx_agg_bmap); 1244 1245 /* It is possible for bnxt_alloc_rx_page() to allocate 1246 * a sw_prod index that equals the cons index, so we 1247 * need to clear the cons entry now. 1248 */ 1249 mapping = cons_rx_buf->mapping; 1250 page = cons_rx_buf->page; 1251 cons_rx_buf->page = NULL; 1252 1253 if (xdp && page_is_pfmemalloc(page)) 1254 xdp_buff_set_frag_pfmemalloc(xdp); 1255 1256 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 1257 --shinfo->nr_frags; 1258 cons_rx_buf->page = page; 1259 1260 /* Update prod since possibly some pages have been 1261 * allocated already. 1262 */ 1263 rxr->rx_agg_prod = prod; 1264 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1265 return 0; 1266 } 1267 1268 dma_sync_single_for_cpu(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, 1269 bp->rx_dir); 1270 1271 total_frag_len += frag_len; 1272 prod = NEXT_RX_AGG(prod); 1273 } 1274 rxr->rx_agg_prod = prod; 1275 return total_frag_len; 1276 } 1277 1278 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp, 1279 struct bnxt_cp_ring_info *cpr, 1280 struct sk_buff *skb, u16 idx, 1281 u32 agg_bufs, bool tpa) 1282 { 1283 struct skb_shared_info *shinfo = skb_shinfo(skb); 1284 u32 total_frag_len = 0; 1285 1286 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx, 1287 agg_bufs, tpa, NULL); 1288 if (!total_frag_len) { 1289 skb_mark_for_recycle(skb); 1290 dev_kfree_skb(skb); 1291 return NULL; 1292 } 1293 1294 skb->data_len += total_frag_len; 1295 skb->len += total_frag_len; 1296 skb->truesize += BNXT_RX_PAGE_SIZE * agg_bufs; 1297 return skb; 1298 } 1299 1300 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp, 1301 struct bnxt_cp_ring_info *cpr, 1302 struct xdp_buff *xdp, u16 idx, 1303 u32 agg_bufs, bool tpa) 1304 { 1305 struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp); 1306 u32 total_frag_len = 0; 1307 1308 if (!xdp_buff_has_frags(xdp)) 1309 shinfo->nr_frags = 0; 1310 1311 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, 1312 idx, agg_bufs, tpa, xdp); 1313 if (total_frag_len) { 1314 xdp_buff_set_frags_flag(xdp); 1315 shinfo->nr_frags = agg_bufs; 1316 shinfo->xdp_frags_size = total_frag_len; 1317 } 1318 return total_frag_len; 1319 } 1320 1321 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1322 u8 agg_bufs, u32 *raw_cons) 1323 { 1324 u16 last; 1325 struct rx_agg_cmp *agg; 1326 1327 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1328 last = RING_CMP(*raw_cons); 1329 agg = (struct rx_agg_cmp *) 1330 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1331 return RX_AGG_CMP_VALID(agg, *raw_cons); 1332 } 1333 1334 static struct sk_buff *bnxt_copy_data(struct bnxt_napi *bnapi, u8 *data, 1335 unsigned int len, 1336 dma_addr_t mapping) 1337 { 1338 struct bnxt *bp = bnapi->bp; 1339 struct pci_dev *pdev = bp->pdev; 1340 struct sk_buff *skb; 1341 1342 skb = napi_alloc_skb(&bnapi->napi, len); 1343 if (!skb) 1344 return NULL; 1345 1346 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh, 1347 bp->rx_dir); 1348 1349 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1350 len + NET_IP_ALIGN); 1351 1352 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh, 1353 bp->rx_dir); 1354 1355 skb_put(skb, len); 1356 1357 return skb; 1358 } 1359 1360 static struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1361 unsigned int len, 1362 dma_addr_t mapping) 1363 { 1364 return bnxt_copy_data(bnapi, data, len, mapping); 1365 } 1366 1367 static struct sk_buff *bnxt_copy_xdp(struct bnxt_napi *bnapi, 1368 struct xdp_buff *xdp, 1369 unsigned int len, 1370 dma_addr_t mapping) 1371 { 1372 unsigned int metasize = 0; 1373 u8 *data = xdp->data; 1374 struct sk_buff *skb; 1375 1376 len = xdp->data_end - xdp->data_meta; 1377 metasize = xdp->data - xdp->data_meta; 1378 data = xdp->data_meta; 1379 1380 skb = bnxt_copy_data(bnapi, data, len, mapping); 1381 if (!skb) 1382 return skb; 1383 1384 if (metasize) { 1385 skb_metadata_set(skb, metasize); 1386 __skb_pull(skb, metasize); 1387 } 1388 1389 return skb; 1390 } 1391 1392 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1393 u32 *raw_cons, void *cmp) 1394 { 1395 struct rx_cmp *rxcmp = cmp; 1396 u32 tmp_raw_cons = *raw_cons; 1397 u8 cmp_type, agg_bufs = 0; 1398 1399 cmp_type = RX_CMP_TYPE(rxcmp); 1400 1401 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1402 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1403 RX_CMP_AGG_BUFS) >> 1404 RX_CMP_AGG_BUFS_SHIFT; 1405 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1406 struct rx_tpa_end_cmp *tpa_end = cmp; 1407 1408 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1409 return 0; 1410 1411 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1412 } 1413 1414 if (agg_bufs) { 1415 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1416 return -EBUSY; 1417 } 1418 *raw_cons = tmp_raw_cons; 1419 return 0; 1420 } 1421 1422 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1423 { 1424 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1425 u16 idx = agg_id & MAX_TPA_P5_MASK; 1426 1427 if (test_bit(idx, map->agg_idx_bmap)) 1428 idx = find_first_zero_bit(map->agg_idx_bmap, 1429 BNXT_AGG_IDX_BMAP_SIZE); 1430 __set_bit(idx, map->agg_idx_bmap); 1431 map->agg_id_tbl[agg_id] = idx; 1432 return idx; 1433 } 1434 1435 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1436 { 1437 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1438 1439 __clear_bit(idx, map->agg_idx_bmap); 1440 } 1441 1442 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1443 { 1444 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1445 1446 return map->agg_id_tbl[agg_id]; 1447 } 1448 1449 static void bnxt_tpa_metadata(struct bnxt_tpa_info *tpa_info, 1450 struct rx_tpa_start_cmp *tpa_start, 1451 struct rx_tpa_start_cmp_ext *tpa_start1) 1452 { 1453 tpa_info->cfa_code_valid = 1; 1454 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1455 tpa_info->vlan_valid = 0; 1456 if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) { 1457 tpa_info->vlan_valid = 1; 1458 tpa_info->metadata = 1459 le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1460 } 1461 } 1462 1463 static void bnxt_tpa_metadata_v2(struct bnxt_tpa_info *tpa_info, 1464 struct rx_tpa_start_cmp *tpa_start, 1465 struct rx_tpa_start_cmp_ext *tpa_start1) 1466 { 1467 tpa_info->vlan_valid = 0; 1468 if (TPA_START_VLAN_VALID(tpa_start)) { 1469 u32 tpid_sel = TPA_START_VLAN_TPID_SEL(tpa_start); 1470 u32 vlan_proto = ETH_P_8021Q; 1471 1472 tpa_info->vlan_valid = 1; 1473 if (tpid_sel == RX_TPA_START_METADATA1_TPID_8021AD) 1474 vlan_proto = ETH_P_8021AD; 1475 tpa_info->metadata = vlan_proto << 16 | 1476 TPA_START_METADATA0_TCI(tpa_start1); 1477 } 1478 } 1479 1480 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1481 u8 cmp_type, struct rx_tpa_start_cmp *tpa_start, 1482 struct rx_tpa_start_cmp_ext *tpa_start1) 1483 { 1484 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1485 struct bnxt_tpa_info *tpa_info; 1486 u16 cons, prod, agg_id; 1487 struct rx_bd *prod_bd; 1488 dma_addr_t mapping; 1489 1490 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1491 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1492 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1493 } else { 1494 agg_id = TPA_START_AGG_ID(tpa_start); 1495 } 1496 cons = tpa_start->rx_tpa_start_cmp_opaque; 1497 prod = rxr->rx_prod; 1498 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1499 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 1500 tpa_info = &rxr->rx_tpa[agg_id]; 1501 1502 if (unlikely(cons != rxr->rx_next_cons || 1503 TPA_START_ERROR(tpa_start))) { 1504 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1505 cons, rxr->rx_next_cons, 1506 TPA_START_ERROR_CODE(tpa_start1)); 1507 bnxt_sched_reset_rxr(bp, rxr); 1508 return; 1509 } 1510 prod_rx_buf->data = tpa_info->data; 1511 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1512 1513 mapping = tpa_info->mapping; 1514 prod_rx_buf->mapping = mapping; 1515 1516 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 1517 1518 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1519 1520 tpa_info->data = cons_rx_buf->data; 1521 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1522 cons_rx_buf->data = NULL; 1523 tpa_info->mapping = cons_rx_buf->mapping; 1524 1525 tpa_info->len = 1526 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1527 RX_TPA_START_CMP_LEN_SHIFT; 1528 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1529 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1530 tpa_info->gso_type = SKB_GSO_TCPV4; 1531 if (TPA_START_IS_IPV6(tpa_start1)) 1532 tpa_info->gso_type = SKB_GSO_TCPV6; 1533 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1534 else if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP && 1535 TPA_START_HASH_TYPE(tpa_start) == 3) 1536 tpa_info->gso_type = SKB_GSO_TCPV6; 1537 tpa_info->rss_hash = 1538 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1539 } else { 1540 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1541 tpa_info->gso_type = 0; 1542 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1543 } 1544 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1545 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1546 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) 1547 bnxt_tpa_metadata(tpa_info, tpa_start, tpa_start1); 1548 else 1549 bnxt_tpa_metadata_v2(tpa_info, tpa_start, tpa_start1); 1550 tpa_info->agg_count = 0; 1551 1552 rxr->rx_prod = NEXT_RX(prod); 1553 cons = RING_RX(bp, NEXT_RX(cons)); 1554 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 1555 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1556 1557 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1558 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1559 cons_rx_buf->data = NULL; 1560 } 1561 1562 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1563 { 1564 if (agg_bufs) 1565 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1566 } 1567 1568 #ifdef CONFIG_INET 1569 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1570 { 1571 struct udphdr *uh = NULL; 1572 1573 if (ip_proto == htons(ETH_P_IP)) { 1574 struct iphdr *iph = (struct iphdr *)skb->data; 1575 1576 if (iph->protocol == IPPROTO_UDP) 1577 uh = (struct udphdr *)(iph + 1); 1578 } else { 1579 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1580 1581 if (iph->nexthdr == IPPROTO_UDP) 1582 uh = (struct udphdr *)(iph + 1); 1583 } 1584 if (uh) { 1585 if (uh->check) 1586 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1587 else 1588 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1589 } 1590 } 1591 #endif 1592 1593 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1594 int payload_off, int tcp_ts, 1595 struct sk_buff *skb) 1596 { 1597 #ifdef CONFIG_INET 1598 struct tcphdr *th; 1599 int len, nw_off; 1600 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1601 u32 hdr_info = tpa_info->hdr_info; 1602 bool loopback = false; 1603 1604 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1605 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1606 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1607 1608 /* If the packet is an internal loopback packet, the offsets will 1609 * have an extra 4 bytes. 1610 */ 1611 if (inner_mac_off == 4) { 1612 loopback = true; 1613 } else if (inner_mac_off > 4) { 1614 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1615 ETH_HLEN - 2)); 1616 1617 /* We only support inner iPv4/ipv6. If we don't see the 1618 * correct protocol ID, it must be a loopback packet where 1619 * the offsets are off by 4. 1620 */ 1621 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1622 loopback = true; 1623 } 1624 if (loopback) { 1625 /* internal loopback packet, subtract all offsets by 4 */ 1626 inner_ip_off -= 4; 1627 inner_mac_off -= 4; 1628 outer_ip_off -= 4; 1629 } 1630 1631 nw_off = inner_ip_off - ETH_HLEN; 1632 skb_set_network_header(skb, nw_off); 1633 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1634 struct ipv6hdr *iph = ipv6_hdr(skb); 1635 1636 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1637 len = skb->len - skb_transport_offset(skb); 1638 th = tcp_hdr(skb); 1639 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1640 } else { 1641 struct iphdr *iph = ip_hdr(skb); 1642 1643 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1644 len = skb->len - skb_transport_offset(skb); 1645 th = tcp_hdr(skb); 1646 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1647 } 1648 1649 if (inner_mac_off) { /* tunnel */ 1650 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1651 ETH_HLEN - 2)); 1652 1653 bnxt_gro_tunnel(skb, proto); 1654 } 1655 #endif 1656 return skb; 1657 } 1658 1659 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1660 int payload_off, int tcp_ts, 1661 struct sk_buff *skb) 1662 { 1663 #ifdef CONFIG_INET 1664 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1665 u32 hdr_info = tpa_info->hdr_info; 1666 int iphdr_len, nw_off; 1667 1668 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1669 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1670 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1671 1672 nw_off = inner_ip_off - ETH_HLEN; 1673 skb_set_network_header(skb, nw_off); 1674 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1675 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1676 skb_set_transport_header(skb, nw_off + iphdr_len); 1677 1678 if (inner_mac_off) { /* tunnel */ 1679 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1680 ETH_HLEN - 2)); 1681 1682 bnxt_gro_tunnel(skb, proto); 1683 } 1684 #endif 1685 return skb; 1686 } 1687 1688 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1689 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1690 1691 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1692 int payload_off, int tcp_ts, 1693 struct sk_buff *skb) 1694 { 1695 #ifdef CONFIG_INET 1696 struct tcphdr *th; 1697 int len, nw_off, tcp_opt_len = 0; 1698 1699 if (tcp_ts) 1700 tcp_opt_len = 12; 1701 1702 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1703 struct iphdr *iph; 1704 1705 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1706 ETH_HLEN; 1707 skb_set_network_header(skb, nw_off); 1708 iph = ip_hdr(skb); 1709 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1710 len = skb->len - skb_transport_offset(skb); 1711 th = tcp_hdr(skb); 1712 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1713 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1714 struct ipv6hdr *iph; 1715 1716 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1717 ETH_HLEN; 1718 skb_set_network_header(skb, nw_off); 1719 iph = ipv6_hdr(skb); 1720 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1721 len = skb->len - skb_transport_offset(skb); 1722 th = tcp_hdr(skb); 1723 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1724 } else { 1725 dev_kfree_skb_any(skb); 1726 return NULL; 1727 } 1728 1729 if (nw_off) /* tunnel */ 1730 bnxt_gro_tunnel(skb, skb->protocol); 1731 #endif 1732 return skb; 1733 } 1734 1735 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1736 struct bnxt_tpa_info *tpa_info, 1737 struct rx_tpa_end_cmp *tpa_end, 1738 struct rx_tpa_end_cmp_ext *tpa_end1, 1739 struct sk_buff *skb) 1740 { 1741 #ifdef CONFIG_INET 1742 int payload_off; 1743 u16 segs; 1744 1745 segs = TPA_END_TPA_SEGS(tpa_end); 1746 if (segs == 1) 1747 return skb; 1748 1749 NAPI_GRO_CB(skb)->count = segs; 1750 skb_shinfo(skb)->gso_size = 1751 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1752 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1753 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1754 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1755 else 1756 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1757 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1758 if (likely(skb)) 1759 tcp_gro_complete(skb); 1760 #endif 1761 return skb; 1762 } 1763 1764 /* Given the cfa_code of a received packet determine which 1765 * netdev (vf-rep or PF) the packet is destined to. 1766 */ 1767 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1768 { 1769 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1770 1771 /* if vf-rep dev is NULL, the must belongs to the PF */ 1772 return dev ? dev : bp->dev; 1773 } 1774 1775 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1776 struct bnxt_cp_ring_info *cpr, 1777 u32 *raw_cons, 1778 struct rx_tpa_end_cmp *tpa_end, 1779 struct rx_tpa_end_cmp_ext *tpa_end1, 1780 u8 *event) 1781 { 1782 struct bnxt_napi *bnapi = cpr->bnapi; 1783 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1784 struct net_device *dev = bp->dev; 1785 u8 *data_ptr, agg_bufs; 1786 unsigned int len; 1787 struct bnxt_tpa_info *tpa_info; 1788 dma_addr_t mapping; 1789 struct sk_buff *skb; 1790 u16 idx = 0, agg_id; 1791 void *data; 1792 bool gro; 1793 1794 if (unlikely(bnapi->in_reset)) { 1795 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1796 1797 if (rc < 0) 1798 return ERR_PTR(-EBUSY); 1799 return NULL; 1800 } 1801 1802 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1803 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1804 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1805 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1806 tpa_info = &rxr->rx_tpa[agg_id]; 1807 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1808 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1809 agg_bufs, tpa_info->agg_count); 1810 agg_bufs = tpa_info->agg_count; 1811 } 1812 tpa_info->agg_count = 0; 1813 *event |= BNXT_AGG_EVENT; 1814 bnxt_free_agg_idx(rxr, agg_id); 1815 idx = agg_id; 1816 gro = !!(bp->flags & BNXT_FLAG_GRO); 1817 } else { 1818 agg_id = TPA_END_AGG_ID(tpa_end); 1819 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1820 tpa_info = &rxr->rx_tpa[agg_id]; 1821 idx = RING_CMP(*raw_cons); 1822 if (agg_bufs) { 1823 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1824 return ERR_PTR(-EBUSY); 1825 1826 *event |= BNXT_AGG_EVENT; 1827 idx = NEXT_CMP(idx); 1828 } 1829 gro = !!TPA_END_GRO(tpa_end); 1830 } 1831 data = tpa_info->data; 1832 data_ptr = tpa_info->data_ptr; 1833 prefetch(data_ptr); 1834 len = tpa_info->len; 1835 mapping = tpa_info->mapping; 1836 1837 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1838 bnxt_abort_tpa(cpr, idx, agg_bufs); 1839 if (agg_bufs > MAX_SKB_FRAGS) 1840 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1841 agg_bufs, (int)MAX_SKB_FRAGS); 1842 return NULL; 1843 } 1844 1845 if (len <= bp->rx_copy_thresh) { 1846 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1847 if (!skb) { 1848 bnxt_abort_tpa(cpr, idx, agg_bufs); 1849 cpr->sw_stats->rx.rx_oom_discards += 1; 1850 return NULL; 1851 } 1852 } else { 1853 u8 *new_data; 1854 dma_addr_t new_mapping; 1855 1856 new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, rxr, 1857 GFP_ATOMIC); 1858 if (!new_data) { 1859 bnxt_abort_tpa(cpr, idx, agg_bufs); 1860 cpr->sw_stats->rx.rx_oom_discards += 1; 1861 return NULL; 1862 } 1863 1864 tpa_info->data = new_data; 1865 tpa_info->data_ptr = new_data + bp->rx_offset; 1866 tpa_info->mapping = new_mapping; 1867 1868 skb = napi_build_skb(data, bp->rx_buf_size); 1869 dma_sync_single_for_cpu(&bp->pdev->dev, mapping, 1870 bp->rx_buf_use_size, bp->rx_dir); 1871 1872 if (!skb) { 1873 page_pool_free_va(rxr->head_pool, data, true); 1874 bnxt_abort_tpa(cpr, idx, agg_bufs); 1875 cpr->sw_stats->rx.rx_oom_discards += 1; 1876 return NULL; 1877 } 1878 skb_mark_for_recycle(skb); 1879 skb_reserve(skb, bp->rx_offset); 1880 skb_put(skb, len); 1881 } 1882 1883 if (agg_bufs) { 1884 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true); 1885 if (!skb) { 1886 /* Page reuse already handled by bnxt_rx_pages(). */ 1887 cpr->sw_stats->rx.rx_oom_discards += 1; 1888 return NULL; 1889 } 1890 } 1891 1892 if (tpa_info->cfa_code_valid) 1893 dev = bnxt_get_pkt_dev(bp, tpa_info->cfa_code); 1894 skb->protocol = eth_type_trans(skb, dev); 1895 1896 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1897 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1898 1899 if (tpa_info->vlan_valid && 1900 (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1901 __be16 vlan_proto = htons(tpa_info->metadata >> 1902 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1903 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1904 1905 if (eth_type_vlan(vlan_proto)) { 1906 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1907 } else { 1908 dev_kfree_skb(skb); 1909 return NULL; 1910 } 1911 } 1912 1913 skb_checksum_none_assert(skb); 1914 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1915 skb->ip_summed = CHECKSUM_UNNECESSARY; 1916 skb->csum_level = 1917 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1918 } 1919 1920 if (gro) 1921 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1922 1923 return skb; 1924 } 1925 1926 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1927 struct rx_agg_cmp *rx_agg) 1928 { 1929 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1930 struct bnxt_tpa_info *tpa_info; 1931 1932 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1933 tpa_info = &rxr->rx_tpa[agg_id]; 1934 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1935 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1936 } 1937 1938 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1939 struct sk_buff *skb) 1940 { 1941 skb_mark_for_recycle(skb); 1942 1943 if (skb->dev != bp->dev) { 1944 /* this packet belongs to a vf-rep */ 1945 bnxt_vf_rep_rx(bp, skb); 1946 return; 1947 } 1948 skb_record_rx_queue(skb, bnapi->index); 1949 napi_gro_receive(&bnapi->napi, skb); 1950 } 1951 1952 static bool bnxt_rx_ts_valid(struct bnxt *bp, u32 flags, 1953 struct rx_cmp_ext *rxcmp1, u32 *cmpl_ts) 1954 { 1955 u32 ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); 1956 1957 if (BNXT_PTP_RX_TS_VALID(flags)) 1958 goto ts_valid; 1959 if (!bp->ptp_all_rx_tstamp || !ts || !BNXT_ALL_RX_TS_VALID(flags)) 1960 return false; 1961 1962 ts_valid: 1963 *cmpl_ts = ts; 1964 return true; 1965 } 1966 1967 static struct sk_buff *bnxt_rx_vlan(struct sk_buff *skb, u8 cmp_type, 1968 struct rx_cmp *rxcmp, 1969 struct rx_cmp_ext *rxcmp1) 1970 { 1971 __be16 vlan_proto; 1972 u16 vtag; 1973 1974 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1975 __le32 flags2 = rxcmp1->rx_cmp_flags2; 1976 u32 meta_data; 1977 1978 if (!(flags2 & cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN))) 1979 return skb; 1980 1981 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 1982 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1983 vlan_proto = htons(meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT); 1984 if (eth_type_vlan(vlan_proto)) 1985 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1986 else 1987 goto vlan_err; 1988 } else if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 1989 if (RX_CMP_VLAN_VALID(rxcmp)) { 1990 u32 tpid_sel = RX_CMP_VLAN_TPID_SEL(rxcmp); 1991 1992 if (tpid_sel == RX_CMP_METADATA1_TPID_8021Q) 1993 vlan_proto = htons(ETH_P_8021Q); 1994 else if (tpid_sel == RX_CMP_METADATA1_TPID_8021AD) 1995 vlan_proto = htons(ETH_P_8021AD); 1996 else 1997 goto vlan_err; 1998 vtag = RX_CMP_METADATA0_TCI(rxcmp1); 1999 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 2000 } 2001 } 2002 return skb; 2003 vlan_err: 2004 dev_kfree_skb(skb); 2005 return NULL; 2006 } 2007 2008 static enum pkt_hash_types bnxt_rss_ext_op(struct bnxt *bp, 2009 struct rx_cmp *rxcmp) 2010 { 2011 u8 ext_op; 2012 2013 ext_op = RX_CMP_V3_HASH_TYPE(bp, rxcmp); 2014 switch (ext_op) { 2015 case EXT_OP_INNER_4: 2016 case EXT_OP_OUTER_4: 2017 case EXT_OP_INNFL_3: 2018 case EXT_OP_OUTFL_3: 2019 return PKT_HASH_TYPE_L4; 2020 default: 2021 return PKT_HASH_TYPE_L3; 2022 } 2023 } 2024 2025 /* returns the following: 2026 * 1 - 1 packet successfully received 2027 * 0 - successful TPA_START, packet not completed yet 2028 * -EBUSY - completion ring does not have all the agg buffers yet 2029 * -ENOMEM - packet aborted due to out of memory 2030 * -EIO - packet aborted due to hw error indicated in BD 2031 */ 2032 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2033 u32 *raw_cons, u8 *event) 2034 { 2035 struct bnxt_napi *bnapi = cpr->bnapi; 2036 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2037 struct net_device *dev = bp->dev; 2038 struct rx_cmp *rxcmp; 2039 struct rx_cmp_ext *rxcmp1; 2040 u32 tmp_raw_cons = *raw_cons; 2041 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 2042 struct bnxt_sw_rx_bd *rx_buf; 2043 unsigned int len; 2044 u8 *data_ptr, agg_bufs, cmp_type; 2045 bool xdp_active = false; 2046 dma_addr_t dma_addr; 2047 struct sk_buff *skb; 2048 struct xdp_buff xdp; 2049 u32 flags, misc; 2050 u32 cmpl_ts; 2051 void *data; 2052 int rc = 0; 2053 2054 rxcmp = (struct rx_cmp *) 2055 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2056 2057 cmp_type = RX_CMP_TYPE(rxcmp); 2058 2059 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 2060 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 2061 goto next_rx_no_prod_no_len; 2062 } 2063 2064 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2065 cp_cons = RING_CMP(tmp_raw_cons); 2066 rxcmp1 = (struct rx_cmp_ext *) 2067 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2068 2069 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2070 return -EBUSY; 2071 2072 /* The valid test of the entry must be done first before 2073 * reading any further. 2074 */ 2075 dma_rmb(); 2076 prod = rxr->rx_prod; 2077 2078 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP || 2079 cmp_type == CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 2080 bnxt_tpa_start(bp, rxr, cmp_type, 2081 (struct rx_tpa_start_cmp *)rxcmp, 2082 (struct rx_tpa_start_cmp_ext *)rxcmp1); 2083 2084 *event |= BNXT_RX_EVENT; 2085 goto next_rx_no_prod_no_len; 2086 2087 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2088 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 2089 (struct rx_tpa_end_cmp *)rxcmp, 2090 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 2091 2092 if (IS_ERR(skb)) 2093 return -EBUSY; 2094 2095 rc = -ENOMEM; 2096 if (likely(skb)) { 2097 bnxt_deliver_skb(bp, bnapi, skb); 2098 rc = 1; 2099 } 2100 *event |= BNXT_RX_EVENT; 2101 goto next_rx_no_prod_no_len; 2102 } 2103 2104 cons = rxcmp->rx_cmp_opaque; 2105 if (unlikely(cons != rxr->rx_next_cons)) { 2106 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 2107 2108 /* 0xffff is forced error, don't print it */ 2109 if (rxr->rx_next_cons != 0xffff) 2110 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 2111 cons, rxr->rx_next_cons); 2112 bnxt_sched_reset_rxr(bp, rxr); 2113 if (rc1) 2114 return rc1; 2115 goto next_rx_no_prod_no_len; 2116 } 2117 rx_buf = &rxr->rx_buf_ring[cons]; 2118 data = rx_buf->data; 2119 data_ptr = rx_buf->data_ptr; 2120 prefetch(data_ptr); 2121 2122 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 2123 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 2124 2125 if (agg_bufs) { 2126 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 2127 return -EBUSY; 2128 2129 cp_cons = NEXT_CMP(cp_cons); 2130 *event |= BNXT_AGG_EVENT; 2131 } 2132 *event |= BNXT_RX_EVENT; 2133 2134 rx_buf->data = NULL; 2135 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 2136 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 2137 2138 bnxt_reuse_rx_data(rxr, cons, data); 2139 if (agg_bufs) 2140 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 2141 false); 2142 2143 rc = -EIO; 2144 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 2145 bnapi->cp_ring.sw_stats->rx.rx_buf_errors++; 2146 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 2147 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 2148 netdev_warn_once(bp->dev, "RX buffer error %x\n", 2149 rx_err); 2150 bnxt_sched_reset_rxr(bp, rxr); 2151 } 2152 } 2153 goto next_rx_no_len; 2154 } 2155 2156 flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); 2157 len = flags >> RX_CMP_LEN_SHIFT; 2158 dma_addr = rx_buf->mapping; 2159 2160 if (bnxt_xdp_attached(bp, rxr)) { 2161 bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp); 2162 if (agg_bufs) { 2163 u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp, 2164 cp_cons, agg_bufs, 2165 false); 2166 if (!frag_len) 2167 goto oom_next_rx; 2168 } 2169 xdp_active = true; 2170 } 2171 2172 if (xdp_active) { 2173 if (bnxt_rx_xdp(bp, rxr, cons, &xdp, data, &data_ptr, &len, event)) { 2174 rc = 1; 2175 goto next_rx; 2176 } 2177 } 2178 2179 if (len <= bp->rx_copy_thresh) { 2180 if (!xdp_active) 2181 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 2182 else 2183 skb = bnxt_copy_xdp(bnapi, &xdp, len, dma_addr); 2184 bnxt_reuse_rx_data(rxr, cons, data); 2185 if (!skb) { 2186 if (agg_bufs) { 2187 if (!xdp_active) 2188 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 2189 agg_bufs, false); 2190 else 2191 bnxt_xdp_buff_frags_free(rxr, &xdp); 2192 } 2193 goto oom_next_rx; 2194 } 2195 } else { 2196 u32 payload; 2197 2198 if (rx_buf->data_ptr == data_ptr) 2199 payload = misc & RX_CMP_PAYLOAD_OFFSET; 2200 else 2201 payload = 0; 2202 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 2203 payload | len); 2204 if (!skb) 2205 goto oom_next_rx; 2206 } 2207 2208 if (agg_bufs) { 2209 if (!xdp_active) { 2210 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false); 2211 if (!skb) 2212 goto oom_next_rx; 2213 } else { 2214 skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1); 2215 if (!skb) { 2216 /* we should be able to free the old skb here */ 2217 bnxt_xdp_buff_frags_free(rxr, &xdp); 2218 goto oom_next_rx; 2219 } 2220 } 2221 } 2222 2223 if (RX_CMP_HASH_VALID(rxcmp)) { 2224 enum pkt_hash_types type; 2225 2226 if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2227 type = bnxt_rss_ext_op(bp, rxcmp); 2228 } else { 2229 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 2230 2231 /* RSS profiles 1 and 3 with extract code 0 for inner 2232 * 4-tuple 2233 */ 2234 if (hash_type != 1 && hash_type != 3) 2235 type = PKT_HASH_TYPE_L3; 2236 else 2237 type = PKT_HASH_TYPE_L4; 2238 } 2239 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 2240 } 2241 2242 if (cmp_type == CMP_TYPE_RX_L2_CMP) 2243 dev = bnxt_get_pkt_dev(bp, RX_CMP_CFA_CODE(rxcmp1)); 2244 skb->protocol = eth_type_trans(skb, dev); 2245 2246 if (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) { 2247 skb = bnxt_rx_vlan(skb, cmp_type, rxcmp, rxcmp1); 2248 if (!skb) 2249 goto next_rx; 2250 } 2251 2252 skb_checksum_none_assert(skb); 2253 if (RX_CMP_L4_CS_OK(rxcmp1)) { 2254 if (dev->features & NETIF_F_RXCSUM) { 2255 skb->ip_summed = CHECKSUM_UNNECESSARY; 2256 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 2257 } 2258 } else { 2259 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 2260 if (dev->features & NETIF_F_RXCSUM) 2261 bnapi->cp_ring.sw_stats->rx.rx_l4_csum_errors++; 2262 } 2263 } 2264 2265 if (bnxt_rx_ts_valid(bp, flags, rxcmp1, &cmpl_ts)) { 2266 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 2267 u64 ns, ts; 2268 2269 if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { 2270 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2271 2272 ns = bnxt_timecounter_cyc2time(ptp, ts); 2273 memset(skb_hwtstamps(skb), 0, 2274 sizeof(*skb_hwtstamps(skb))); 2275 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 2276 } 2277 } 2278 } 2279 bnxt_deliver_skb(bp, bnapi, skb); 2280 rc = 1; 2281 2282 next_rx: 2283 cpr->rx_packets += 1; 2284 cpr->rx_bytes += len; 2285 2286 next_rx_no_len: 2287 rxr->rx_prod = NEXT_RX(prod); 2288 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 2289 2290 next_rx_no_prod_no_len: 2291 *raw_cons = tmp_raw_cons; 2292 2293 return rc; 2294 2295 oom_next_rx: 2296 cpr->sw_stats->rx.rx_oom_discards += 1; 2297 rc = -ENOMEM; 2298 goto next_rx; 2299 } 2300 2301 /* In netpoll mode, if we are using a combined completion ring, we need to 2302 * discard the rx packets and recycle the buffers. 2303 */ 2304 static int bnxt_force_rx_discard(struct bnxt *bp, 2305 struct bnxt_cp_ring_info *cpr, 2306 u32 *raw_cons, u8 *event) 2307 { 2308 u32 tmp_raw_cons = *raw_cons; 2309 struct rx_cmp_ext *rxcmp1; 2310 struct rx_cmp *rxcmp; 2311 u16 cp_cons; 2312 u8 cmp_type; 2313 int rc; 2314 2315 cp_cons = RING_CMP(tmp_raw_cons); 2316 rxcmp = (struct rx_cmp *) 2317 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2318 2319 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2320 cp_cons = RING_CMP(tmp_raw_cons); 2321 rxcmp1 = (struct rx_cmp_ext *) 2322 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2323 2324 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2325 return -EBUSY; 2326 2327 /* The valid test of the entry must be done first before 2328 * reading any further. 2329 */ 2330 dma_rmb(); 2331 cmp_type = RX_CMP_TYPE(rxcmp); 2332 if (cmp_type == CMP_TYPE_RX_L2_CMP || 2333 cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2334 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2335 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2336 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2337 struct rx_tpa_end_cmp_ext *tpa_end1; 2338 2339 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 2340 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 2341 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 2342 } 2343 rc = bnxt_rx_pkt(bp, cpr, raw_cons, event); 2344 if (rc && rc != -EBUSY) 2345 cpr->sw_stats->rx.rx_netpoll_discards += 1; 2346 return rc; 2347 } 2348 2349 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 2350 { 2351 struct bnxt_fw_health *fw_health = bp->fw_health; 2352 u32 reg = fw_health->regs[reg_idx]; 2353 u32 reg_type, reg_off, val = 0; 2354 2355 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 2356 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 2357 switch (reg_type) { 2358 case BNXT_FW_HEALTH_REG_TYPE_CFG: 2359 pci_read_config_dword(bp->pdev, reg_off, &val); 2360 break; 2361 case BNXT_FW_HEALTH_REG_TYPE_GRC: 2362 reg_off = fw_health->mapped_regs[reg_idx]; 2363 fallthrough; 2364 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 2365 val = readl(bp->bar0 + reg_off); 2366 break; 2367 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 2368 val = readl(bp->bar1 + reg_off); 2369 break; 2370 } 2371 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 2372 val &= fw_health->fw_reset_inprog_reg_mask; 2373 return val; 2374 } 2375 2376 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 2377 { 2378 int i; 2379 2380 for (i = 0; i < bp->rx_nr_rings; i++) { 2381 u16 grp_idx = bp->rx_ring[i].bnapi->index; 2382 struct bnxt_ring_grp_info *grp_info; 2383 2384 grp_info = &bp->grp_info[grp_idx]; 2385 if (grp_info->agg_fw_ring_id == ring_id) 2386 return grp_idx; 2387 } 2388 return INVALID_HW_RING_ID; 2389 } 2390 2391 static u16 bnxt_get_force_speed(struct bnxt_link_info *link_info) 2392 { 2393 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2394 2395 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 2396 return link_info->force_link_speed2; 2397 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4) 2398 return link_info->force_pam4_link_speed; 2399 return link_info->force_link_speed; 2400 } 2401 2402 static void bnxt_set_force_speed(struct bnxt_link_info *link_info) 2403 { 2404 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2405 2406 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2407 link_info->req_link_speed = link_info->force_link_speed2; 2408 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2409 switch (link_info->req_link_speed) { 2410 case BNXT_LINK_SPEED_50GB_PAM4: 2411 case BNXT_LINK_SPEED_100GB_PAM4: 2412 case BNXT_LINK_SPEED_200GB_PAM4: 2413 case BNXT_LINK_SPEED_400GB_PAM4: 2414 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2415 break; 2416 case BNXT_LINK_SPEED_100GB_PAM4_112: 2417 case BNXT_LINK_SPEED_200GB_PAM4_112: 2418 case BNXT_LINK_SPEED_400GB_PAM4_112: 2419 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4_112; 2420 break; 2421 default: 2422 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2423 } 2424 return; 2425 } 2426 link_info->req_link_speed = link_info->force_link_speed; 2427 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2428 if (link_info->force_pam4_link_speed) { 2429 link_info->req_link_speed = link_info->force_pam4_link_speed; 2430 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2431 } 2432 } 2433 2434 static void bnxt_set_auto_speed(struct bnxt_link_info *link_info) 2435 { 2436 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2437 2438 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2439 link_info->advertising = link_info->auto_link_speeds2; 2440 return; 2441 } 2442 link_info->advertising = link_info->auto_link_speeds; 2443 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 2444 } 2445 2446 static bool bnxt_force_speed_updated(struct bnxt_link_info *link_info) 2447 { 2448 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2449 2450 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2451 if (link_info->req_link_speed != link_info->force_link_speed2) 2452 return true; 2453 return false; 2454 } 2455 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 2456 link_info->req_link_speed != link_info->force_link_speed) 2457 return true; 2458 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 2459 link_info->req_link_speed != link_info->force_pam4_link_speed) 2460 return true; 2461 return false; 2462 } 2463 2464 static bool bnxt_auto_speed_updated(struct bnxt_link_info *link_info) 2465 { 2466 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2467 2468 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2469 if (link_info->advertising != link_info->auto_link_speeds2) 2470 return true; 2471 return false; 2472 } 2473 if (link_info->advertising != link_info->auto_link_speeds || 2474 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 2475 return true; 2476 return false; 2477 } 2478 2479 bool bnxt_bs_trace_avail(struct bnxt *bp, u16 type) 2480 { 2481 u32 flags = bp->ctx->ctx_arr[type].flags; 2482 2483 return (flags & BNXT_CTX_MEM_TYPE_VALID) && 2484 ((flags & BNXT_CTX_MEM_FW_TRACE) || 2485 (flags & BNXT_CTX_MEM_FW_BIN_TRACE)); 2486 } 2487 2488 static void bnxt_bs_trace_init(struct bnxt *bp, struct bnxt_ctx_mem_type *ctxm) 2489 { 2490 u32 mem_size, pages, rem_bytes, magic_byte_offset; 2491 u16 trace_type = bnxt_bstore_to_trace[ctxm->type]; 2492 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 2493 struct bnxt_ring_mem_info *rmem, *rmem_pg_tbl; 2494 struct bnxt_bs_trace_info *bs_trace; 2495 int last_pg; 2496 2497 if (ctxm->instance_bmap && ctxm->instance_bmap > 1) 2498 return; 2499 2500 mem_size = ctxm->max_entries * ctxm->entry_size; 2501 rem_bytes = mem_size % BNXT_PAGE_SIZE; 2502 pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 2503 2504 last_pg = (pages - 1) & (MAX_CTX_PAGES - 1); 2505 magic_byte_offset = (rem_bytes ? rem_bytes : BNXT_PAGE_SIZE) - 1; 2506 2507 rmem = &ctx_pg[0].ring_mem; 2508 bs_trace = &bp->bs_trace[trace_type]; 2509 bs_trace->ctx_type = ctxm->type; 2510 bs_trace->trace_type = trace_type; 2511 if (pages > MAX_CTX_PAGES) { 2512 int last_pg_dir = rmem->nr_pages - 1; 2513 2514 rmem_pg_tbl = &ctx_pg[0].ctx_pg_tbl[last_pg_dir]->ring_mem; 2515 bs_trace->magic_byte = rmem_pg_tbl->pg_arr[last_pg]; 2516 } else { 2517 bs_trace->magic_byte = rmem->pg_arr[last_pg]; 2518 } 2519 bs_trace->magic_byte += magic_byte_offset; 2520 *bs_trace->magic_byte = BNXT_TRACE_BUF_MAGIC_BYTE; 2521 } 2522 2523 #define BNXT_EVENT_BUF_PRODUCER_TYPE(data1) \ 2524 (((data1) & ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA1_TYPE_MASK) >>\ 2525 ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA1_TYPE_SFT) 2526 2527 #define BNXT_EVENT_BUF_PRODUCER_OFFSET(data2) \ 2528 (((data2) & \ 2529 ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA2_CURR_OFF_MASK) >>\ 2530 ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA2_CURR_OFF_SFT) 2531 2532 #define BNXT_EVENT_THERMAL_CURRENT_TEMP(data2) \ 2533 ((data2) & \ 2534 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_CURRENT_TEMP_MASK) 2535 2536 #define BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2) \ 2537 (((data2) & \ 2538 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_MASK) >>\ 2539 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_SFT) 2540 2541 #define EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1) \ 2542 ((data1) & \ 2543 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_MASK) 2544 2545 #define EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1) \ 2546 (((data1) & \ 2547 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR) ==\ 2548 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR_INCREASING) 2549 2550 /* Return true if the workqueue has to be scheduled */ 2551 static bool bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2) 2552 { 2553 u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1); 2554 2555 switch (err_type) { 2556 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL: 2557 netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n", 2558 BNXT_EVENT_INVALID_SIGNAL_DATA(data2)); 2559 break; 2560 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM: 2561 netdev_warn(bp->dev, "Pause Storm detected!\n"); 2562 break; 2563 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD: 2564 netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n"); 2565 break; 2566 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_THERMAL_THRESHOLD: { 2567 u32 type = EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1); 2568 char *threshold_type; 2569 bool notify = false; 2570 char *dir_str; 2571 2572 switch (type) { 2573 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_WARN: 2574 threshold_type = "warning"; 2575 break; 2576 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_CRITICAL: 2577 threshold_type = "critical"; 2578 break; 2579 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_FATAL: 2580 threshold_type = "fatal"; 2581 break; 2582 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_SHUTDOWN: 2583 threshold_type = "shutdown"; 2584 break; 2585 default: 2586 netdev_err(bp->dev, "Unknown Thermal threshold type event\n"); 2587 return false; 2588 } 2589 if (EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)) { 2590 dir_str = "above"; 2591 notify = true; 2592 } else { 2593 dir_str = "below"; 2594 } 2595 netdev_warn(bp->dev, "Chip temperature has gone %s the %s thermal threshold!\n", 2596 dir_str, threshold_type); 2597 netdev_warn(bp->dev, "Temperature (In Celsius), Current: %lu, threshold: %lu\n", 2598 BNXT_EVENT_THERMAL_CURRENT_TEMP(data2), 2599 BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2)); 2600 if (notify) { 2601 bp->thermal_threshold_type = type; 2602 set_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event); 2603 return true; 2604 } 2605 return false; 2606 } 2607 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DUAL_DATA_RATE_NOT_SUPPORTED: 2608 netdev_warn(bp->dev, "Speed change not supported with dual rate transceivers on this board\n"); 2609 break; 2610 default: 2611 netdev_err(bp->dev, "FW reported unknown error type %u\n", 2612 err_type); 2613 break; 2614 } 2615 return false; 2616 } 2617 2618 #define BNXT_GET_EVENT_PORT(data) \ 2619 ((data) & \ 2620 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 2621 2622 #define BNXT_EVENT_RING_TYPE(data2) \ 2623 ((data2) & \ 2624 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 2625 2626 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 2627 (BNXT_EVENT_RING_TYPE(data2) == \ 2628 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 2629 2630 #define BNXT_EVENT_PHC_EVENT_TYPE(data1) \ 2631 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\ 2632 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT) 2633 2634 #define BNXT_EVENT_PHC_RTC_UPDATE(data1) \ 2635 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\ 2636 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT) 2637 2638 #define BNXT_PHC_BITS 48 2639 2640 static int bnxt_async_event_process(struct bnxt *bp, 2641 struct hwrm_async_event_cmpl *cmpl) 2642 { 2643 u16 event_id = le16_to_cpu(cmpl->event_id); 2644 u32 data1 = le32_to_cpu(cmpl->event_data1); 2645 u32 data2 = le32_to_cpu(cmpl->event_data2); 2646 2647 netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n", 2648 event_id, data1, data2); 2649 2650 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2651 switch (event_id) { 2652 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2653 struct bnxt_link_info *link_info = &bp->link_info; 2654 2655 if (BNXT_VF(bp)) 2656 goto async_event_process_exit; 2657 2658 /* print unsupported speed warning in forced speed mode only */ 2659 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2660 (data1 & 0x20000)) { 2661 u16 fw_speed = bnxt_get_force_speed(link_info); 2662 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2663 2664 if (speed != SPEED_UNKNOWN) 2665 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2666 speed); 2667 } 2668 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2669 } 2670 fallthrough; 2671 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2672 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2673 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2674 fallthrough; 2675 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2676 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2677 break; 2678 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2679 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2680 break; 2681 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2682 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2683 2684 if (BNXT_VF(bp)) 2685 break; 2686 2687 if (bp->pf.port_id != port_id) 2688 break; 2689 2690 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2691 break; 2692 } 2693 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2694 if (BNXT_PF(bp)) 2695 goto async_event_process_exit; 2696 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2697 break; 2698 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2699 char *type_str = "Solicited"; 2700 2701 if (!bp->fw_health) 2702 goto async_event_process_exit; 2703 2704 bp->fw_reset_timestamp = jiffies; 2705 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2706 if (!bp->fw_reset_min_dsecs) 2707 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2708 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2709 if (!bp->fw_reset_max_dsecs) 2710 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2711 if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) { 2712 set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state); 2713 } else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2714 type_str = "Fatal"; 2715 bp->fw_health->fatalities++; 2716 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2717 } else if (data2 && BNXT_FW_STATUS_HEALTHY != 2718 EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) { 2719 type_str = "Non-fatal"; 2720 bp->fw_health->survivals++; 2721 set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 2722 } 2723 netif_warn(bp, hw, bp->dev, 2724 "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2725 type_str, data1, data2, 2726 bp->fw_reset_min_dsecs * 100, 2727 bp->fw_reset_max_dsecs * 100); 2728 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2729 break; 2730 } 2731 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2732 struct bnxt_fw_health *fw_health = bp->fw_health; 2733 char *status_desc = "healthy"; 2734 u32 status; 2735 2736 if (!fw_health) 2737 goto async_event_process_exit; 2738 2739 if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) { 2740 fw_health->enabled = false; 2741 netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n"); 2742 break; 2743 } 2744 fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2745 fw_health->tmr_multiplier = 2746 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2747 bp->current_interval * 10); 2748 fw_health->tmr_counter = fw_health->tmr_multiplier; 2749 if (!fw_health->enabled) 2750 fw_health->last_fw_heartbeat = 2751 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2752 fw_health->last_fw_reset_cnt = 2753 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2754 status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 2755 if (status != BNXT_FW_STATUS_HEALTHY) 2756 status_desc = "unhealthy"; 2757 netif_info(bp, drv, bp->dev, 2758 "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n", 2759 fw_health->primary ? "primary" : "backup", status, 2760 status_desc, fw_health->last_fw_reset_cnt); 2761 if (!fw_health->enabled) { 2762 /* Make sure tmr_counter is set and visible to 2763 * bnxt_health_check() before setting enabled to true. 2764 */ 2765 smp_wmb(); 2766 fw_health->enabled = true; 2767 } 2768 goto async_event_process_exit; 2769 } 2770 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2771 netif_notice(bp, hw, bp->dev, 2772 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2773 data1, data2); 2774 goto async_event_process_exit; 2775 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2776 struct bnxt_rx_ring_info *rxr; 2777 u16 grp_idx; 2778 2779 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 2780 goto async_event_process_exit; 2781 2782 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2783 BNXT_EVENT_RING_TYPE(data2), data1); 2784 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2785 goto async_event_process_exit; 2786 2787 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2788 if (grp_idx == INVALID_HW_RING_ID) { 2789 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2790 data1); 2791 goto async_event_process_exit; 2792 } 2793 rxr = bp->bnapi[grp_idx]->rx_ring; 2794 bnxt_sched_reset_rxr(bp, rxr); 2795 goto async_event_process_exit; 2796 } 2797 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2798 struct bnxt_fw_health *fw_health = bp->fw_health; 2799 2800 netif_notice(bp, hw, bp->dev, 2801 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2802 data1, data2); 2803 if (fw_health) { 2804 fw_health->echo_req_data1 = data1; 2805 fw_health->echo_req_data2 = data2; 2806 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2807 break; 2808 } 2809 goto async_event_process_exit; 2810 } 2811 case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: { 2812 bnxt_ptp_pps_event(bp, data1, data2); 2813 goto async_event_process_exit; 2814 } 2815 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: { 2816 if (bnxt_event_error_report(bp, data1, data2)) 2817 break; 2818 goto async_event_process_exit; 2819 } 2820 case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: { 2821 switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) { 2822 case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE: 2823 if (BNXT_PTP_USE_RTC(bp)) { 2824 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2825 unsigned long flags; 2826 u64 ns; 2827 2828 if (!ptp) 2829 goto async_event_process_exit; 2830 2831 bnxt_ptp_update_current_time(bp); 2832 ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) << 2833 BNXT_PHC_BITS) | ptp->current_time); 2834 write_seqlock_irqsave(&ptp->ptp_lock, flags); 2835 bnxt_ptp_rtc_timecounter_init(ptp, ns); 2836 write_sequnlock_irqrestore(&ptp->ptp_lock, flags); 2837 } 2838 break; 2839 } 2840 goto async_event_process_exit; 2841 } 2842 case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: { 2843 u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff; 2844 2845 hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED); 2846 goto async_event_process_exit; 2847 } 2848 case ASYNC_EVENT_CMPL_EVENT_ID_DBG_BUF_PRODUCER: { 2849 u16 type = (u16)BNXT_EVENT_BUF_PRODUCER_TYPE(data1); 2850 u32 offset = BNXT_EVENT_BUF_PRODUCER_OFFSET(data2); 2851 2852 bnxt_bs_trace_check_wrap(&bp->bs_trace[type], offset); 2853 goto async_event_process_exit; 2854 } 2855 default: 2856 goto async_event_process_exit; 2857 } 2858 __bnxt_queue_sp_work(bp); 2859 async_event_process_exit: 2860 return 0; 2861 } 2862 2863 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2864 { 2865 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2866 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2867 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2868 (struct hwrm_fwd_req_cmpl *)txcmp; 2869 2870 switch (cmpl_type) { 2871 case CMPL_BASE_TYPE_HWRM_DONE: 2872 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2873 hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE); 2874 break; 2875 2876 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2877 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2878 2879 if ((vf_id < bp->pf.first_vf_id) || 2880 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2881 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2882 vf_id); 2883 return -EINVAL; 2884 } 2885 2886 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2887 bnxt_queue_sp_work(bp, BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT); 2888 break; 2889 2890 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2891 bnxt_async_event_process(bp, 2892 (struct hwrm_async_event_cmpl *)txcmp); 2893 break; 2894 2895 default: 2896 break; 2897 } 2898 2899 return 0; 2900 } 2901 2902 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2903 { 2904 struct bnxt_napi *bnapi = dev_instance; 2905 struct bnxt *bp = bnapi->bp; 2906 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2907 u32 cons = RING_CMP(cpr->cp_raw_cons); 2908 2909 cpr->event_ctr++; 2910 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2911 napi_schedule(&bnapi->napi); 2912 return IRQ_HANDLED; 2913 } 2914 2915 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2916 { 2917 u32 raw_cons = cpr->cp_raw_cons; 2918 u16 cons = RING_CMP(raw_cons); 2919 struct tx_cmp *txcmp; 2920 2921 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2922 2923 return TX_CMP_VALID(txcmp, raw_cons); 2924 } 2925 2926 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2927 int budget) 2928 { 2929 struct bnxt_napi *bnapi = cpr->bnapi; 2930 u32 raw_cons = cpr->cp_raw_cons; 2931 u32 cons; 2932 int rx_pkts = 0; 2933 u8 event = 0; 2934 struct tx_cmp *txcmp; 2935 2936 cpr->has_more_work = 0; 2937 cpr->had_work_done = 1; 2938 while (1) { 2939 u8 cmp_type; 2940 int rc; 2941 2942 cons = RING_CMP(raw_cons); 2943 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2944 2945 if (!TX_CMP_VALID(txcmp, raw_cons)) 2946 break; 2947 2948 /* The valid test of the entry must be done first before 2949 * reading any further. 2950 */ 2951 dma_rmb(); 2952 cmp_type = TX_CMP_TYPE(txcmp); 2953 if (cmp_type == CMP_TYPE_TX_L2_CMP || 2954 cmp_type == CMP_TYPE_TX_L2_COAL_CMP) { 2955 u32 opaque = txcmp->tx_cmp_opaque; 2956 struct bnxt_tx_ring_info *txr; 2957 u16 tx_freed; 2958 2959 txr = bnapi->tx_ring[TX_OPAQUE_RING(opaque)]; 2960 event |= BNXT_TX_CMP_EVENT; 2961 if (cmp_type == CMP_TYPE_TX_L2_COAL_CMP) 2962 txr->tx_hw_cons = TX_CMP_SQ_CONS_IDX(txcmp); 2963 else 2964 txr->tx_hw_cons = TX_OPAQUE_PROD(bp, opaque); 2965 tx_freed = (txr->tx_hw_cons - txr->tx_cons) & 2966 bp->tx_ring_mask; 2967 /* return full budget so NAPI will complete. */ 2968 if (unlikely(tx_freed >= bp->tx_wake_thresh)) { 2969 rx_pkts = budget; 2970 raw_cons = NEXT_RAW_CMP(raw_cons); 2971 if (budget) 2972 cpr->has_more_work = 1; 2973 break; 2974 } 2975 } else if (cmp_type == CMP_TYPE_TX_L2_PKT_TS_CMP) { 2976 bnxt_tx_ts_cmp(bp, bnapi, (struct tx_ts_cmp *)txcmp); 2977 } else if (cmp_type >= CMP_TYPE_RX_L2_CMP && 2978 cmp_type <= CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 2979 if (likely(budget)) 2980 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2981 else 2982 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 2983 &event); 2984 if (likely(rc >= 0)) 2985 rx_pkts += rc; 2986 /* Increment rx_pkts when rc is -ENOMEM to count towards 2987 * the NAPI budget. Otherwise, we may potentially loop 2988 * here forever if we consistently cannot allocate 2989 * buffers. 2990 */ 2991 else if (rc == -ENOMEM && budget) 2992 rx_pkts++; 2993 else if (rc == -EBUSY) /* partial completion */ 2994 break; 2995 } else if (unlikely(cmp_type == CMPL_BASE_TYPE_HWRM_DONE || 2996 cmp_type == CMPL_BASE_TYPE_HWRM_FWD_REQ || 2997 cmp_type == CMPL_BASE_TYPE_HWRM_ASYNC_EVENT)) { 2998 bnxt_hwrm_handler(bp, txcmp); 2999 } 3000 raw_cons = NEXT_RAW_CMP(raw_cons); 3001 3002 if (rx_pkts && rx_pkts == budget) { 3003 cpr->has_more_work = 1; 3004 break; 3005 } 3006 } 3007 3008 if (event & BNXT_REDIRECT_EVENT) { 3009 xdp_do_flush(); 3010 event &= ~BNXT_REDIRECT_EVENT; 3011 } 3012 3013 if (event & BNXT_TX_EVENT) { 3014 struct bnxt_tx_ring_info *txr = bnapi->tx_ring[0]; 3015 u16 prod = txr->tx_prod; 3016 3017 /* Sync BD data before updating doorbell */ 3018 wmb(); 3019 3020 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 3021 event &= ~BNXT_TX_EVENT; 3022 } 3023 3024 cpr->cp_raw_cons = raw_cons; 3025 bnapi->events |= event; 3026 return rx_pkts; 3027 } 3028 3029 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi, 3030 int budget) 3031 { 3032 if ((bnapi->events & BNXT_TX_CMP_EVENT) && !bnapi->tx_fault) 3033 bnapi->tx_int(bp, bnapi, budget); 3034 3035 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 3036 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3037 3038 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 3039 bnapi->events &= ~BNXT_RX_EVENT; 3040 } 3041 if (bnapi->events & BNXT_AGG_EVENT) { 3042 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3043 3044 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 3045 bnapi->events &= ~BNXT_AGG_EVENT; 3046 } 3047 } 3048 3049 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 3050 int budget) 3051 { 3052 struct bnxt_napi *bnapi = cpr->bnapi; 3053 int rx_pkts; 3054 3055 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 3056 3057 /* ACK completion ring before freeing tx ring and producing new 3058 * buffers in rx/agg rings to prevent overflowing the completion 3059 * ring. 3060 */ 3061 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 3062 3063 __bnxt_poll_work_done(bp, bnapi, budget); 3064 return rx_pkts; 3065 } 3066 3067 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 3068 { 3069 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3070 struct bnxt *bp = bnapi->bp; 3071 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3072 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3073 struct tx_cmp *txcmp; 3074 struct rx_cmp_ext *rxcmp1; 3075 u32 cp_cons, tmp_raw_cons; 3076 u32 raw_cons = cpr->cp_raw_cons; 3077 bool flush_xdp = false; 3078 u32 rx_pkts = 0; 3079 u8 event = 0; 3080 3081 while (1) { 3082 int rc; 3083 3084 cp_cons = RING_CMP(raw_cons); 3085 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 3086 3087 if (!TX_CMP_VALID(txcmp, raw_cons)) 3088 break; 3089 3090 /* The valid test of the entry must be done first before 3091 * reading any further. 3092 */ 3093 dma_rmb(); 3094 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 3095 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 3096 cp_cons = RING_CMP(tmp_raw_cons); 3097 rxcmp1 = (struct rx_cmp_ext *) 3098 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 3099 3100 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 3101 break; 3102 3103 /* force an error to recycle the buffer */ 3104 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 3105 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 3106 3107 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 3108 if (likely(rc == -EIO) && budget) 3109 rx_pkts++; 3110 else if (rc == -EBUSY) /* partial completion */ 3111 break; 3112 if (event & BNXT_REDIRECT_EVENT) 3113 flush_xdp = true; 3114 } else if (unlikely(TX_CMP_TYPE(txcmp) == 3115 CMPL_BASE_TYPE_HWRM_DONE)) { 3116 bnxt_hwrm_handler(bp, txcmp); 3117 } else { 3118 netdev_err(bp->dev, 3119 "Invalid completion received on special ring\n"); 3120 } 3121 raw_cons = NEXT_RAW_CMP(raw_cons); 3122 3123 if (rx_pkts == budget) 3124 break; 3125 } 3126 3127 cpr->cp_raw_cons = raw_cons; 3128 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 3129 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 3130 3131 if (event & BNXT_AGG_EVENT) 3132 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 3133 if (flush_xdp) 3134 xdp_do_flush(); 3135 3136 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 3137 napi_complete_done(napi, rx_pkts); 3138 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3139 } 3140 return rx_pkts; 3141 } 3142 3143 static int bnxt_poll(struct napi_struct *napi, int budget) 3144 { 3145 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3146 struct bnxt *bp = bnapi->bp; 3147 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3148 int work_done = 0; 3149 3150 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3151 napi_complete(napi); 3152 return 0; 3153 } 3154 while (1) { 3155 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 3156 3157 if (work_done >= budget) { 3158 if (!budget) 3159 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3160 break; 3161 } 3162 3163 if (!bnxt_has_work(bp, cpr)) { 3164 if (napi_complete_done(napi, work_done)) 3165 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3166 break; 3167 } 3168 } 3169 if (bp->flags & BNXT_FLAG_DIM) { 3170 struct dim_sample dim_sample = {}; 3171 3172 dim_update_sample(cpr->event_ctr, 3173 cpr->rx_packets, 3174 cpr->rx_bytes, 3175 &dim_sample); 3176 net_dim(&cpr->dim, &dim_sample); 3177 } 3178 return work_done; 3179 } 3180 3181 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 3182 { 3183 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3184 int i, work_done = 0; 3185 3186 for (i = 0; i < cpr->cp_ring_count; i++) { 3187 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3188 3189 if (cpr2->had_nqe_notify) { 3190 work_done += __bnxt_poll_work(bp, cpr2, 3191 budget - work_done); 3192 cpr->has_more_work |= cpr2->has_more_work; 3193 } 3194 } 3195 return work_done; 3196 } 3197 3198 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 3199 u64 dbr_type, int budget) 3200 { 3201 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3202 int i; 3203 3204 for (i = 0; i < cpr->cp_ring_count; i++) { 3205 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3206 struct bnxt_db_info *db; 3207 3208 if (cpr2->had_work_done) { 3209 u32 tgl = 0; 3210 3211 if (dbr_type == DBR_TYPE_CQ_ARMALL) { 3212 cpr2->had_nqe_notify = 0; 3213 tgl = cpr2->toggle; 3214 } 3215 db = &cpr2->cp_db; 3216 bnxt_writeq(bp, 3217 db->db_key64 | dbr_type | DB_TOGGLE(tgl) | 3218 DB_RING_IDX(db, cpr2->cp_raw_cons), 3219 db->doorbell); 3220 cpr2->had_work_done = 0; 3221 } 3222 } 3223 __bnxt_poll_work_done(bp, bnapi, budget); 3224 } 3225 3226 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 3227 { 3228 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3229 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3230 struct bnxt_cp_ring_info *cpr_rx; 3231 u32 raw_cons = cpr->cp_raw_cons; 3232 struct bnxt *bp = bnapi->bp; 3233 struct nqe_cn *nqcmp; 3234 int work_done = 0; 3235 u32 cons; 3236 3237 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3238 napi_complete(napi); 3239 return 0; 3240 } 3241 if (cpr->has_more_work) { 3242 cpr->has_more_work = 0; 3243 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 3244 } 3245 while (1) { 3246 u16 type; 3247 3248 cons = RING_CMP(raw_cons); 3249 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 3250 3251 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 3252 if (cpr->has_more_work) 3253 break; 3254 3255 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL, 3256 budget); 3257 cpr->cp_raw_cons = raw_cons; 3258 if (napi_complete_done(napi, work_done)) 3259 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 3260 cpr->cp_raw_cons); 3261 goto poll_done; 3262 } 3263 3264 /* The valid test of the entry must be done first before 3265 * reading any further. 3266 */ 3267 dma_rmb(); 3268 3269 type = le16_to_cpu(nqcmp->type); 3270 if (NQE_CN_TYPE(type) == NQ_CN_TYPE_CQ_NOTIFICATION) { 3271 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 3272 u32 cq_type = BNXT_NQ_HDL_TYPE(idx); 3273 struct bnxt_cp_ring_info *cpr2; 3274 3275 /* No more budget for RX work */ 3276 if (budget && work_done >= budget && 3277 cq_type == BNXT_NQ_HDL_TYPE_RX) 3278 break; 3279 3280 idx = BNXT_NQ_HDL_IDX(idx); 3281 cpr2 = &cpr->cp_ring_arr[idx]; 3282 cpr2->had_nqe_notify = 1; 3283 cpr2->toggle = NQE_CN_TOGGLE(type); 3284 work_done += __bnxt_poll_work(bp, cpr2, 3285 budget - work_done); 3286 cpr->has_more_work |= cpr2->has_more_work; 3287 } else { 3288 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 3289 } 3290 raw_cons = NEXT_RAW_CMP(raw_cons); 3291 } 3292 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget); 3293 if (raw_cons != cpr->cp_raw_cons) { 3294 cpr->cp_raw_cons = raw_cons; 3295 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 3296 } 3297 poll_done: 3298 cpr_rx = &cpr->cp_ring_arr[0]; 3299 if (cpr_rx->cp_ring_type == BNXT_NQ_HDL_TYPE_RX && 3300 (bp->flags & BNXT_FLAG_DIM)) { 3301 struct dim_sample dim_sample = {}; 3302 3303 dim_update_sample(cpr->event_ctr, 3304 cpr_rx->rx_packets, 3305 cpr_rx->rx_bytes, 3306 &dim_sample); 3307 net_dim(&cpr->dim, &dim_sample); 3308 } 3309 return work_done; 3310 } 3311 3312 static void bnxt_free_tx_skbs(struct bnxt *bp) 3313 { 3314 int i, max_idx; 3315 struct pci_dev *pdev = bp->pdev; 3316 3317 if (!bp->tx_ring) 3318 return; 3319 3320 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 3321 for (i = 0; i < bp->tx_nr_rings; i++) { 3322 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3323 int j; 3324 3325 if (!txr->tx_buf_ring) 3326 continue; 3327 3328 for (j = 0; j < max_idx;) { 3329 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 3330 struct sk_buff *skb; 3331 int k, last; 3332 3333 if (i < bp->tx_nr_rings_xdp && 3334 tx_buf->action == XDP_REDIRECT) { 3335 dma_unmap_single(&pdev->dev, 3336 dma_unmap_addr(tx_buf, mapping), 3337 dma_unmap_len(tx_buf, len), 3338 DMA_TO_DEVICE); 3339 xdp_return_frame(tx_buf->xdpf); 3340 tx_buf->action = 0; 3341 tx_buf->xdpf = NULL; 3342 j++; 3343 continue; 3344 } 3345 3346 skb = tx_buf->skb; 3347 if (!skb) { 3348 j++; 3349 continue; 3350 } 3351 3352 tx_buf->skb = NULL; 3353 3354 if (tx_buf->is_push) { 3355 dev_kfree_skb(skb); 3356 j += 2; 3357 continue; 3358 } 3359 3360 dma_unmap_single(&pdev->dev, 3361 dma_unmap_addr(tx_buf, mapping), 3362 skb_headlen(skb), 3363 DMA_TO_DEVICE); 3364 3365 last = tx_buf->nr_frags; 3366 j += 2; 3367 for (k = 0; k < last; k++, j++) { 3368 int ring_idx = j & bp->tx_ring_mask; 3369 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 3370 3371 tx_buf = &txr->tx_buf_ring[ring_idx]; 3372 dma_unmap_page( 3373 &pdev->dev, 3374 dma_unmap_addr(tx_buf, mapping), 3375 skb_frag_size(frag), DMA_TO_DEVICE); 3376 } 3377 dev_kfree_skb(skb); 3378 } 3379 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 3380 } 3381 } 3382 3383 static void bnxt_free_one_rx_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3384 { 3385 int i, max_idx; 3386 3387 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 3388 3389 for (i = 0; i < max_idx; i++) { 3390 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 3391 void *data = rx_buf->data; 3392 3393 if (!data) 3394 continue; 3395 3396 rx_buf->data = NULL; 3397 if (BNXT_RX_PAGE_MODE(bp)) 3398 page_pool_recycle_direct(rxr->page_pool, data); 3399 else 3400 page_pool_free_va(rxr->head_pool, data, true); 3401 } 3402 } 3403 3404 static void bnxt_free_one_rx_agg_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3405 { 3406 int i, max_idx; 3407 3408 max_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 3409 3410 for (i = 0; i < max_idx; i++) { 3411 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 3412 struct page *page = rx_agg_buf->page; 3413 3414 if (!page) 3415 continue; 3416 3417 rx_agg_buf->page = NULL; 3418 __clear_bit(i, rxr->rx_agg_bmap); 3419 3420 page_pool_recycle_direct(rxr->page_pool, page); 3421 } 3422 } 3423 3424 static void bnxt_free_one_tpa_info_data(struct bnxt *bp, 3425 struct bnxt_rx_ring_info *rxr) 3426 { 3427 int i; 3428 3429 for (i = 0; i < bp->max_tpa; i++) { 3430 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 3431 u8 *data = tpa_info->data; 3432 3433 if (!data) 3434 continue; 3435 3436 tpa_info->data = NULL; 3437 page_pool_free_va(rxr->head_pool, data, false); 3438 } 3439 } 3440 3441 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, 3442 struct bnxt_rx_ring_info *rxr) 3443 { 3444 struct bnxt_tpa_idx_map *map; 3445 3446 if (!rxr->rx_tpa) 3447 goto skip_rx_tpa_free; 3448 3449 bnxt_free_one_tpa_info_data(bp, rxr); 3450 3451 skip_rx_tpa_free: 3452 if (!rxr->rx_buf_ring) 3453 goto skip_rx_buf_free; 3454 3455 bnxt_free_one_rx_ring(bp, rxr); 3456 3457 skip_rx_buf_free: 3458 if (!rxr->rx_agg_ring) 3459 goto skip_rx_agg_free; 3460 3461 bnxt_free_one_rx_agg_ring(bp, rxr); 3462 3463 skip_rx_agg_free: 3464 map = rxr->rx_tpa_idx_map; 3465 if (map) 3466 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 3467 } 3468 3469 static void bnxt_free_rx_skbs(struct bnxt *bp) 3470 { 3471 int i; 3472 3473 if (!bp->rx_ring) 3474 return; 3475 3476 for (i = 0; i < bp->rx_nr_rings; i++) 3477 bnxt_free_one_rx_ring_skbs(bp, &bp->rx_ring[i]); 3478 } 3479 3480 static void bnxt_free_skbs(struct bnxt *bp) 3481 { 3482 bnxt_free_tx_skbs(bp); 3483 bnxt_free_rx_skbs(bp); 3484 } 3485 3486 static void bnxt_init_ctx_mem(struct bnxt_ctx_mem_type *ctxm, void *p, int len) 3487 { 3488 u8 init_val = ctxm->init_value; 3489 u16 offset = ctxm->init_offset; 3490 u8 *p2 = p; 3491 int i; 3492 3493 if (!init_val) 3494 return; 3495 if (offset == BNXT_CTX_INIT_INVALID_OFFSET) { 3496 memset(p, init_val, len); 3497 return; 3498 } 3499 for (i = 0; i < len; i += ctxm->entry_size) 3500 *(p2 + i + offset) = init_val; 3501 } 3502 3503 static size_t __bnxt_copy_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem, 3504 void *buf, size_t offset, size_t head, 3505 size_t tail) 3506 { 3507 int i, head_page, start_idx, source_offset; 3508 size_t len, rem_len, total_len, max_bytes; 3509 3510 head_page = head / rmem->page_size; 3511 source_offset = head % rmem->page_size; 3512 total_len = (tail - head) & MAX_CTX_BYTES_MASK; 3513 if (!total_len) 3514 total_len = MAX_CTX_BYTES; 3515 start_idx = head_page % MAX_CTX_PAGES; 3516 max_bytes = (rmem->nr_pages - start_idx) * rmem->page_size - 3517 source_offset; 3518 total_len = min(total_len, max_bytes); 3519 rem_len = total_len; 3520 3521 for (i = start_idx; rem_len; i++, source_offset = 0) { 3522 len = min((size_t)(rmem->page_size - source_offset), rem_len); 3523 if (buf) 3524 memcpy(buf + offset, rmem->pg_arr[i] + source_offset, 3525 len); 3526 offset += len; 3527 rem_len -= len; 3528 } 3529 return total_len; 3530 } 3531 3532 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3533 { 3534 struct pci_dev *pdev = bp->pdev; 3535 int i; 3536 3537 if (!rmem->pg_arr) 3538 goto skip_pages; 3539 3540 for (i = 0; i < rmem->nr_pages; i++) { 3541 if (!rmem->pg_arr[i]) 3542 continue; 3543 3544 dma_free_coherent(&pdev->dev, rmem->page_size, 3545 rmem->pg_arr[i], rmem->dma_arr[i]); 3546 3547 rmem->pg_arr[i] = NULL; 3548 } 3549 skip_pages: 3550 if (rmem->pg_tbl) { 3551 size_t pg_tbl_size = rmem->nr_pages * 8; 3552 3553 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3554 pg_tbl_size = rmem->page_size; 3555 dma_free_coherent(&pdev->dev, pg_tbl_size, 3556 rmem->pg_tbl, rmem->pg_tbl_map); 3557 rmem->pg_tbl = NULL; 3558 } 3559 if (rmem->vmem_size && *rmem->vmem) { 3560 vfree(*rmem->vmem); 3561 *rmem->vmem = NULL; 3562 } 3563 } 3564 3565 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3566 { 3567 struct pci_dev *pdev = bp->pdev; 3568 u64 valid_bit = 0; 3569 int i; 3570 3571 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 3572 valid_bit = PTU_PTE_VALID; 3573 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 3574 size_t pg_tbl_size = rmem->nr_pages * 8; 3575 3576 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3577 pg_tbl_size = rmem->page_size; 3578 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 3579 &rmem->pg_tbl_map, 3580 GFP_KERNEL); 3581 if (!rmem->pg_tbl) 3582 return -ENOMEM; 3583 } 3584 3585 for (i = 0; i < rmem->nr_pages; i++) { 3586 u64 extra_bits = valid_bit; 3587 3588 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 3589 rmem->page_size, 3590 &rmem->dma_arr[i], 3591 GFP_KERNEL); 3592 if (!rmem->pg_arr[i]) 3593 return -ENOMEM; 3594 3595 if (rmem->ctx_mem) 3596 bnxt_init_ctx_mem(rmem->ctx_mem, rmem->pg_arr[i], 3597 rmem->page_size); 3598 if (rmem->nr_pages > 1 || rmem->depth > 0) { 3599 if (i == rmem->nr_pages - 2 && 3600 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3601 extra_bits |= PTU_PTE_NEXT_TO_LAST; 3602 else if (i == rmem->nr_pages - 1 && 3603 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3604 extra_bits |= PTU_PTE_LAST; 3605 rmem->pg_tbl[i] = 3606 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 3607 } 3608 } 3609 3610 if (rmem->vmem_size) { 3611 *rmem->vmem = vzalloc(rmem->vmem_size); 3612 if (!(*rmem->vmem)) 3613 return -ENOMEM; 3614 } 3615 return 0; 3616 } 3617 3618 static void bnxt_free_one_tpa_info(struct bnxt *bp, 3619 struct bnxt_rx_ring_info *rxr) 3620 { 3621 int i; 3622 3623 kfree(rxr->rx_tpa_idx_map); 3624 rxr->rx_tpa_idx_map = NULL; 3625 if (rxr->rx_tpa) { 3626 for (i = 0; i < bp->max_tpa; i++) { 3627 kfree(rxr->rx_tpa[i].agg_arr); 3628 rxr->rx_tpa[i].agg_arr = NULL; 3629 } 3630 } 3631 kfree(rxr->rx_tpa); 3632 rxr->rx_tpa = NULL; 3633 } 3634 3635 static void bnxt_free_tpa_info(struct bnxt *bp) 3636 { 3637 int i; 3638 3639 for (i = 0; i < bp->rx_nr_rings; i++) { 3640 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3641 3642 bnxt_free_one_tpa_info(bp, rxr); 3643 } 3644 } 3645 3646 static int bnxt_alloc_one_tpa_info(struct bnxt *bp, 3647 struct bnxt_rx_ring_info *rxr) 3648 { 3649 struct rx_agg_cmp *agg; 3650 int i; 3651 3652 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 3653 GFP_KERNEL); 3654 if (!rxr->rx_tpa) 3655 return -ENOMEM; 3656 3657 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 3658 return 0; 3659 for (i = 0; i < bp->max_tpa; i++) { 3660 agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL); 3661 if (!agg) 3662 return -ENOMEM; 3663 rxr->rx_tpa[i].agg_arr = agg; 3664 } 3665 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 3666 GFP_KERNEL); 3667 if (!rxr->rx_tpa_idx_map) 3668 return -ENOMEM; 3669 3670 return 0; 3671 } 3672 3673 static int bnxt_alloc_tpa_info(struct bnxt *bp) 3674 { 3675 int i, rc; 3676 3677 bp->max_tpa = MAX_TPA; 3678 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 3679 if (!bp->max_tpa_v2) 3680 return 0; 3681 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 3682 } 3683 3684 for (i = 0; i < bp->rx_nr_rings; i++) { 3685 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3686 3687 rc = bnxt_alloc_one_tpa_info(bp, rxr); 3688 if (rc) 3689 return rc; 3690 } 3691 return 0; 3692 } 3693 3694 static void bnxt_free_rx_rings(struct bnxt *bp) 3695 { 3696 int i; 3697 3698 if (!bp->rx_ring) 3699 return; 3700 3701 bnxt_free_tpa_info(bp); 3702 for (i = 0; i < bp->rx_nr_rings; i++) { 3703 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3704 struct bnxt_ring_struct *ring; 3705 3706 if (rxr->xdp_prog) 3707 bpf_prog_put(rxr->xdp_prog); 3708 3709 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 3710 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3711 3712 page_pool_destroy(rxr->page_pool); 3713 if (bnxt_separate_head_pool()) 3714 page_pool_destroy(rxr->head_pool); 3715 rxr->page_pool = rxr->head_pool = NULL; 3716 3717 kfree(rxr->rx_agg_bmap); 3718 rxr->rx_agg_bmap = NULL; 3719 3720 ring = &rxr->rx_ring_struct; 3721 bnxt_free_ring(bp, &ring->ring_mem); 3722 3723 ring = &rxr->rx_agg_ring_struct; 3724 bnxt_free_ring(bp, &ring->ring_mem); 3725 } 3726 } 3727 3728 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 3729 struct bnxt_rx_ring_info *rxr, 3730 int numa_node) 3731 { 3732 struct page_pool_params pp = { 0 }; 3733 struct page_pool *pool; 3734 3735 pp.pool_size = bp->rx_agg_ring_size; 3736 if (BNXT_RX_PAGE_MODE(bp)) 3737 pp.pool_size += bp->rx_ring_size; 3738 pp.nid = numa_node; 3739 pp.napi = &rxr->bnapi->napi; 3740 pp.netdev = bp->dev; 3741 pp.dev = &bp->pdev->dev; 3742 pp.dma_dir = bp->rx_dir; 3743 pp.max_len = PAGE_SIZE; 3744 pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 3745 3746 pool = page_pool_create(&pp); 3747 if (IS_ERR(pool)) 3748 return PTR_ERR(pool); 3749 rxr->page_pool = pool; 3750 3751 if (bnxt_separate_head_pool()) { 3752 pp.pool_size = max(bp->rx_ring_size, 1024); 3753 pool = page_pool_create(&pp); 3754 if (IS_ERR(pool)) 3755 goto err_destroy_pp; 3756 } 3757 rxr->head_pool = pool; 3758 3759 return 0; 3760 3761 err_destroy_pp: 3762 page_pool_destroy(rxr->page_pool); 3763 rxr->page_pool = NULL; 3764 return PTR_ERR(pool); 3765 } 3766 3767 static int bnxt_alloc_rx_agg_bmap(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3768 { 3769 u16 mem_size; 3770 3771 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 3772 mem_size = rxr->rx_agg_bmap_size / 8; 3773 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 3774 if (!rxr->rx_agg_bmap) 3775 return -ENOMEM; 3776 3777 return 0; 3778 } 3779 3780 static int bnxt_alloc_rx_rings(struct bnxt *bp) 3781 { 3782 int numa_node = dev_to_node(&bp->pdev->dev); 3783 int i, rc = 0, agg_rings = 0, cpu; 3784 3785 if (!bp->rx_ring) 3786 return -ENOMEM; 3787 3788 if (bp->flags & BNXT_FLAG_AGG_RINGS) 3789 agg_rings = 1; 3790 3791 for (i = 0; i < bp->rx_nr_rings; i++) { 3792 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3793 struct bnxt_ring_struct *ring; 3794 int cpu_node; 3795 3796 ring = &rxr->rx_ring_struct; 3797 3798 cpu = cpumask_local_spread(i, numa_node); 3799 cpu_node = cpu_to_node(cpu); 3800 netdev_dbg(bp->dev, "Allocating page pool for rx_ring[%d] on numa_node: %d\n", 3801 i, cpu_node); 3802 rc = bnxt_alloc_rx_page_pool(bp, rxr, cpu_node); 3803 if (rc) 3804 return rc; 3805 3806 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 3807 if (rc < 0) 3808 return rc; 3809 3810 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 3811 MEM_TYPE_PAGE_POOL, 3812 rxr->page_pool); 3813 if (rc) { 3814 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3815 return rc; 3816 } 3817 3818 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3819 if (rc) 3820 return rc; 3821 3822 ring->grp_idx = i; 3823 if (agg_rings) { 3824 ring = &rxr->rx_agg_ring_struct; 3825 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3826 if (rc) 3827 return rc; 3828 3829 ring->grp_idx = i; 3830 rc = bnxt_alloc_rx_agg_bmap(bp, rxr); 3831 if (rc) 3832 return rc; 3833 } 3834 } 3835 if (bp->flags & BNXT_FLAG_TPA) 3836 rc = bnxt_alloc_tpa_info(bp); 3837 return rc; 3838 } 3839 3840 static void bnxt_free_tx_rings(struct bnxt *bp) 3841 { 3842 int i; 3843 struct pci_dev *pdev = bp->pdev; 3844 3845 if (!bp->tx_ring) 3846 return; 3847 3848 for (i = 0; i < bp->tx_nr_rings; i++) { 3849 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3850 struct bnxt_ring_struct *ring; 3851 3852 if (txr->tx_push) { 3853 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3854 txr->tx_push, txr->tx_push_mapping); 3855 txr->tx_push = NULL; 3856 } 3857 3858 ring = &txr->tx_ring_struct; 3859 3860 bnxt_free_ring(bp, &ring->ring_mem); 3861 } 3862 } 3863 3864 #define BNXT_TC_TO_RING_BASE(bp, tc) \ 3865 ((tc) * (bp)->tx_nr_rings_per_tc) 3866 3867 #define BNXT_RING_TO_TC_OFF(bp, tx) \ 3868 ((tx) % (bp)->tx_nr_rings_per_tc) 3869 3870 #define BNXT_RING_TO_TC(bp, tx) \ 3871 ((tx) / (bp)->tx_nr_rings_per_tc) 3872 3873 static int bnxt_alloc_tx_rings(struct bnxt *bp) 3874 { 3875 int i, j, rc; 3876 struct pci_dev *pdev = bp->pdev; 3877 3878 bp->tx_push_size = 0; 3879 if (bp->tx_push_thresh) { 3880 int push_size; 3881 3882 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 3883 bp->tx_push_thresh); 3884 3885 if (push_size > 256) { 3886 push_size = 0; 3887 bp->tx_push_thresh = 0; 3888 } 3889 3890 bp->tx_push_size = push_size; 3891 } 3892 3893 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 3894 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3895 struct bnxt_ring_struct *ring; 3896 u8 qidx; 3897 3898 ring = &txr->tx_ring_struct; 3899 3900 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3901 if (rc) 3902 return rc; 3903 3904 ring->grp_idx = txr->bnapi->index; 3905 if (bp->tx_push_size) { 3906 dma_addr_t mapping; 3907 3908 /* One pre-allocated DMA buffer to backup 3909 * TX push operation 3910 */ 3911 txr->tx_push = dma_alloc_coherent(&pdev->dev, 3912 bp->tx_push_size, 3913 &txr->tx_push_mapping, 3914 GFP_KERNEL); 3915 3916 if (!txr->tx_push) 3917 return -ENOMEM; 3918 3919 mapping = txr->tx_push_mapping + 3920 sizeof(struct tx_push_bd); 3921 txr->data_mapping = cpu_to_le64(mapping); 3922 } 3923 qidx = bp->tc_to_qidx[j]; 3924 ring->queue_id = bp->q_info[qidx].queue_id; 3925 spin_lock_init(&txr->xdp_tx_lock); 3926 if (i < bp->tx_nr_rings_xdp) 3927 continue; 3928 if (BNXT_RING_TO_TC_OFF(bp, i) == (bp->tx_nr_rings_per_tc - 1)) 3929 j++; 3930 } 3931 return 0; 3932 } 3933 3934 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr) 3935 { 3936 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3937 3938 kfree(cpr->cp_desc_ring); 3939 cpr->cp_desc_ring = NULL; 3940 ring->ring_mem.pg_arr = NULL; 3941 kfree(cpr->cp_desc_mapping); 3942 cpr->cp_desc_mapping = NULL; 3943 ring->ring_mem.dma_arr = NULL; 3944 } 3945 3946 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n) 3947 { 3948 cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL); 3949 if (!cpr->cp_desc_ring) 3950 return -ENOMEM; 3951 cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping), 3952 GFP_KERNEL); 3953 if (!cpr->cp_desc_mapping) 3954 return -ENOMEM; 3955 return 0; 3956 } 3957 3958 static void bnxt_free_all_cp_arrays(struct bnxt *bp) 3959 { 3960 int i; 3961 3962 if (!bp->bnapi) 3963 return; 3964 for (i = 0; i < bp->cp_nr_rings; i++) { 3965 struct bnxt_napi *bnapi = bp->bnapi[i]; 3966 3967 if (!bnapi) 3968 continue; 3969 bnxt_free_cp_arrays(&bnapi->cp_ring); 3970 } 3971 } 3972 3973 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp) 3974 { 3975 int i, n = bp->cp_nr_pages; 3976 3977 for (i = 0; i < bp->cp_nr_rings; i++) { 3978 struct bnxt_napi *bnapi = bp->bnapi[i]; 3979 int rc; 3980 3981 if (!bnapi) 3982 continue; 3983 rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n); 3984 if (rc) 3985 return rc; 3986 } 3987 return 0; 3988 } 3989 3990 static void bnxt_free_cp_rings(struct bnxt *bp) 3991 { 3992 int i; 3993 3994 if (!bp->bnapi) 3995 return; 3996 3997 for (i = 0; i < bp->cp_nr_rings; i++) { 3998 struct bnxt_napi *bnapi = bp->bnapi[i]; 3999 struct bnxt_cp_ring_info *cpr; 4000 struct bnxt_ring_struct *ring; 4001 int j; 4002 4003 if (!bnapi) 4004 continue; 4005 4006 cpr = &bnapi->cp_ring; 4007 ring = &cpr->cp_ring_struct; 4008 4009 bnxt_free_ring(bp, &ring->ring_mem); 4010 4011 if (!cpr->cp_ring_arr) 4012 continue; 4013 4014 for (j = 0; j < cpr->cp_ring_count; j++) { 4015 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 4016 4017 ring = &cpr2->cp_ring_struct; 4018 bnxt_free_ring(bp, &ring->ring_mem); 4019 bnxt_free_cp_arrays(cpr2); 4020 } 4021 kfree(cpr->cp_ring_arr); 4022 cpr->cp_ring_arr = NULL; 4023 cpr->cp_ring_count = 0; 4024 } 4025 } 4026 4027 static int bnxt_alloc_cp_sub_ring(struct bnxt *bp, 4028 struct bnxt_cp_ring_info *cpr) 4029 { 4030 struct bnxt_ring_mem_info *rmem; 4031 struct bnxt_ring_struct *ring; 4032 int rc; 4033 4034 rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages); 4035 if (rc) { 4036 bnxt_free_cp_arrays(cpr); 4037 return -ENOMEM; 4038 } 4039 ring = &cpr->cp_ring_struct; 4040 rmem = &ring->ring_mem; 4041 rmem->nr_pages = bp->cp_nr_pages; 4042 rmem->page_size = HW_CMPD_RING_SIZE; 4043 rmem->pg_arr = (void **)cpr->cp_desc_ring; 4044 rmem->dma_arr = cpr->cp_desc_mapping; 4045 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 4046 rc = bnxt_alloc_ring(bp, rmem); 4047 if (rc) { 4048 bnxt_free_ring(bp, rmem); 4049 bnxt_free_cp_arrays(cpr); 4050 } 4051 return rc; 4052 } 4053 4054 static int bnxt_alloc_cp_rings(struct bnxt *bp) 4055 { 4056 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 4057 int i, j, rc, ulp_msix; 4058 int tcs = bp->num_tc; 4059 4060 if (!tcs) 4061 tcs = 1; 4062 ulp_msix = bnxt_get_ulp_msix_num(bp); 4063 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 4064 struct bnxt_napi *bnapi = bp->bnapi[i]; 4065 struct bnxt_cp_ring_info *cpr, *cpr2; 4066 struct bnxt_ring_struct *ring; 4067 int cp_count = 0, k; 4068 int rx = 0, tx = 0; 4069 4070 if (!bnapi) 4071 continue; 4072 4073 cpr = &bnapi->cp_ring; 4074 cpr->bnapi = bnapi; 4075 ring = &cpr->cp_ring_struct; 4076 4077 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 4078 if (rc) 4079 return rc; 4080 4081 ring->map_idx = ulp_msix + i; 4082 4083 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4084 continue; 4085 4086 if (i < bp->rx_nr_rings) { 4087 cp_count++; 4088 rx = 1; 4089 } 4090 if (i < bp->tx_nr_rings_xdp) { 4091 cp_count++; 4092 tx = 1; 4093 } else if ((sh && i < bp->tx_nr_rings) || 4094 (!sh && i >= bp->rx_nr_rings)) { 4095 cp_count += tcs; 4096 tx = 1; 4097 } 4098 4099 cpr->cp_ring_arr = kcalloc(cp_count, sizeof(*cpr), 4100 GFP_KERNEL); 4101 if (!cpr->cp_ring_arr) 4102 return -ENOMEM; 4103 cpr->cp_ring_count = cp_count; 4104 4105 for (k = 0; k < cp_count; k++) { 4106 cpr2 = &cpr->cp_ring_arr[k]; 4107 rc = bnxt_alloc_cp_sub_ring(bp, cpr2); 4108 if (rc) 4109 return rc; 4110 cpr2->bnapi = bnapi; 4111 cpr2->sw_stats = cpr->sw_stats; 4112 cpr2->cp_idx = k; 4113 if (!k && rx) { 4114 bp->rx_ring[i].rx_cpr = cpr2; 4115 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_RX; 4116 } else { 4117 int n, tc = k - rx; 4118 4119 n = BNXT_TC_TO_RING_BASE(bp, tc) + j; 4120 bp->tx_ring[n].tx_cpr = cpr2; 4121 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_TX; 4122 } 4123 } 4124 if (tx) 4125 j++; 4126 } 4127 return 0; 4128 } 4129 4130 static void bnxt_init_rx_ring_struct(struct bnxt *bp, 4131 struct bnxt_rx_ring_info *rxr) 4132 { 4133 struct bnxt_ring_mem_info *rmem; 4134 struct bnxt_ring_struct *ring; 4135 4136 ring = &rxr->rx_ring_struct; 4137 rmem = &ring->ring_mem; 4138 rmem->nr_pages = bp->rx_nr_pages; 4139 rmem->page_size = HW_RXBD_RING_SIZE; 4140 rmem->pg_arr = (void **)rxr->rx_desc_ring; 4141 rmem->dma_arr = rxr->rx_desc_mapping; 4142 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 4143 rmem->vmem = (void **)&rxr->rx_buf_ring; 4144 4145 ring = &rxr->rx_agg_ring_struct; 4146 rmem = &ring->ring_mem; 4147 rmem->nr_pages = bp->rx_agg_nr_pages; 4148 rmem->page_size = HW_RXBD_RING_SIZE; 4149 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 4150 rmem->dma_arr = rxr->rx_agg_desc_mapping; 4151 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 4152 rmem->vmem = (void **)&rxr->rx_agg_ring; 4153 } 4154 4155 static void bnxt_reset_rx_ring_struct(struct bnxt *bp, 4156 struct bnxt_rx_ring_info *rxr) 4157 { 4158 struct bnxt_ring_mem_info *rmem; 4159 struct bnxt_ring_struct *ring; 4160 int i; 4161 4162 rxr->page_pool->p.napi = NULL; 4163 rxr->page_pool = NULL; 4164 memset(&rxr->xdp_rxq, 0, sizeof(struct xdp_rxq_info)); 4165 4166 ring = &rxr->rx_ring_struct; 4167 rmem = &ring->ring_mem; 4168 rmem->pg_tbl = NULL; 4169 rmem->pg_tbl_map = 0; 4170 for (i = 0; i < rmem->nr_pages; i++) { 4171 rmem->pg_arr[i] = NULL; 4172 rmem->dma_arr[i] = 0; 4173 } 4174 *rmem->vmem = NULL; 4175 4176 ring = &rxr->rx_agg_ring_struct; 4177 rmem = &ring->ring_mem; 4178 rmem->pg_tbl = NULL; 4179 rmem->pg_tbl_map = 0; 4180 for (i = 0; i < rmem->nr_pages; i++) { 4181 rmem->pg_arr[i] = NULL; 4182 rmem->dma_arr[i] = 0; 4183 } 4184 *rmem->vmem = NULL; 4185 } 4186 4187 static void bnxt_init_ring_struct(struct bnxt *bp) 4188 { 4189 int i, j; 4190 4191 for (i = 0; i < bp->cp_nr_rings; i++) { 4192 struct bnxt_napi *bnapi = bp->bnapi[i]; 4193 struct bnxt_ring_mem_info *rmem; 4194 struct bnxt_cp_ring_info *cpr; 4195 struct bnxt_rx_ring_info *rxr; 4196 struct bnxt_tx_ring_info *txr; 4197 struct bnxt_ring_struct *ring; 4198 4199 if (!bnapi) 4200 continue; 4201 4202 cpr = &bnapi->cp_ring; 4203 ring = &cpr->cp_ring_struct; 4204 rmem = &ring->ring_mem; 4205 rmem->nr_pages = bp->cp_nr_pages; 4206 rmem->page_size = HW_CMPD_RING_SIZE; 4207 rmem->pg_arr = (void **)cpr->cp_desc_ring; 4208 rmem->dma_arr = cpr->cp_desc_mapping; 4209 rmem->vmem_size = 0; 4210 4211 rxr = bnapi->rx_ring; 4212 if (!rxr) 4213 goto skip_rx; 4214 4215 ring = &rxr->rx_ring_struct; 4216 rmem = &ring->ring_mem; 4217 rmem->nr_pages = bp->rx_nr_pages; 4218 rmem->page_size = HW_RXBD_RING_SIZE; 4219 rmem->pg_arr = (void **)rxr->rx_desc_ring; 4220 rmem->dma_arr = rxr->rx_desc_mapping; 4221 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 4222 rmem->vmem = (void **)&rxr->rx_buf_ring; 4223 4224 ring = &rxr->rx_agg_ring_struct; 4225 rmem = &ring->ring_mem; 4226 rmem->nr_pages = bp->rx_agg_nr_pages; 4227 rmem->page_size = HW_RXBD_RING_SIZE; 4228 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 4229 rmem->dma_arr = rxr->rx_agg_desc_mapping; 4230 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 4231 rmem->vmem = (void **)&rxr->rx_agg_ring; 4232 4233 skip_rx: 4234 bnxt_for_each_napi_tx(j, bnapi, txr) { 4235 ring = &txr->tx_ring_struct; 4236 rmem = &ring->ring_mem; 4237 rmem->nr_pages = bp->tx_nr_pages; 4238 rmem->page_size = HW_TXBD_RING_SIZE; 4239 rmem->pg_arr = (void **)txr->tx_desc_ring; 4240 rmem->dma_arr = txr->tx_desc_mapping; 4241 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 4242 rmem->vmem = (void **)&txr->tx_buf_ring; 4243 } 4244 } 4245 } 4246 4247 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 4248 { 4249 int i; 4250 u32 prod; 4251 struct rx_bd **rx_buf_ring; 4252 4253 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 4254 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 4255 int j; 4256 struct rx_bd *rxbd; 4257 4258 rxbd = rx_buf_ring[i]; 4259 if (!rxbd) 4260 continue; 4261 4262 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 4263 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 4264 rxbd->rx_bd_opaque = prod; 4265 } 4266 } 4267 } 4268 4269 static void bnxt_alloc_one_rx_ring_skb(struct bnxt *bp, 4270 struct bnxt_rx_ring_info *rxr, 4271 int ring_nr) 4272 { 4273 u32 prod; 4274 int i; 4275 4276 prod = rxr->rx_prod; 4277 for (i = 0; i < bp->rx_ring_size; i++) { 4278 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 4279 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n", 4280 ring_nr, i, bp->rx_ring_size); 4281 break; 4282 } 4283 prod = NEXT_RX(prod); 4284 } 4285 rxr->rx_prod = prod; 4286 } 4287 4288 static void bnxt_alloc_one_rx_ring_page(struct bnxt *bp, 4289 struct bnxt_rx_ring_info *rxr, 4290 int ring_nr) 4291 { 4292 u32 prod; 4293 int i; 4294 4295 prod = rxr->rx_agg_prod; 4296 for (i = 0; i < bp->rx_agg_ring_size; i++) { 4297 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) { 4298 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d pages only\n", 4299 ring_nr, i, bp->rx_ring_size); 4300 break; 4301 } 4302 prod = NEXT_RX_AGG(prod); 4303 } 4304 rxr->rx_agg_prod = prod; 4305 } 4306 4307 static int bnxt_alloc_one_tpa_info_data(struct bnxt *bp, 4308 struct bnxt_rx_ring_info *rxr) 4309 { 4310 dma_addr_t mapping; 4311 u8 *data; 4312 int i; 4313 4314 for (i = 0; i < bp->max_tpa; i++) { 4315 data = __bnxt_alloc_rx_frag(bp, &mapping, rxr, 4316 GFP_KERNEL); 4317 if (!data) 4318 return -ENOMEM; 4319 4320 rxr->rx_tpa[i].data = data; 4321 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 4322 rxr->rx_tpa[i].mapping = mapping; 4323 } 4324 4325 return 0; 4326 } 4327 4328 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 4329 { 4330 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 4331 int rc; 4332 4333 bnxt_alloc_one_rx_ring_skb(bp, rxr, ring_nr); 4334 4335 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 4336 return 0; 4337 4338 bnxt_alloc_one_rx_ring_page(bp, rxr, ring_nr); 4339 4340 if (rxr->rx_tpa) { 4341 rc = bnxt_alloc_one_tpa_info_data(bp, rxr); 4342 if (rc) 4343 return rc; 4344 } 4345 return 0; 4346 } 4347 4348 static void bnxt_init_one_rx_ring_rxbd(struct bnxt *bp, 4349 struct bnxt_rx_ring_info *rxr) 4350 { 4351 struct bnxt_ring_struct *ring; 4352 u32 type; 4353 4354 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 4355 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 4356 4357 if (NET_IP_ALIGN == 2) 4358 type |= RX_BD_FLAGS_SOP; 4359 4360 ring = &rxr->rx_ring_struct; 4361 bnxt_init_rxbd_pages(ring, type); 4362 ring->fw_ring_id = INVALID_HW_RING_ID; 4363 } 4364 4365 static void bnxt_init_one_rx_agg_ring_rxbd(struct bnxt *bp, 4366 struct bnxt_rx_ring_info *rxr) 4367 { 4368 struct bnxt_ring_struct *ring; 4369 u32 type; 4370 4371 ring = &rxr->rx_agg_ring_struct; 4372 ring->fw_ring_id = INVALID_HW_RING_ID; 4373 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 4374 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 4375 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 4376 4377 bnxt_init_rxbd_pages(ring, type); 4378 } 4379 } 4380 4381 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 4382 { 4383 struct bnxt_rx_ring_info *rxr; 4384 4385 rxr = &bp->rx_ring[ring_nr]; 4386 bnxt_init_one_rx_ring_rxbd(bp, rxr); 4387 4388 netif_queue_set_napi(bp->dev, ring_nr, NETDEV_QUEUE_TYPE_RX, 4389 &rxr->bnapi->napi); 4390 4391 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 4392 bpf_prog_add(bp->xdp_prog, 1); 4393 rxr->xdp_prog = bp->xdp_prog; 4394 } 4395 4396 bnxt_init_one_rx_agg_ring_rxbd(bp, rxr); 4397 4398 return bnxt_alloc_one_rx_ring(bp, ring_nr); 4399 } 4400 4401 static void bnxt_init_cp_rings(struct bnxt *bp) 4402 { 4403 int i, j; 4404 4405 for (i = 0; i < bp->cp_nr_rings; i++) { 4406 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 4407 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4408 4409 ring->fw_ring_id = INVALID_HW_RING_ID; 4410 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4411 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4412 if (!cpr->cp_ring_arr) 4413 continue; 4414 for (j = 0; j < cpr->cp_ring_count; j++) { 4415 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 4416 4417 ring = &cpr2->cp_ring_struct; 4418 ring->fw_ring_id = INVALID_HW_RING_ID; 4419 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4420 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4421 } 4422 } 4423 } 4424 4425 static int bnxt_init_rx_rings(struct bnxt *bp) 4426 { 4427 int i, rc = 0; 4428 4429 if (BNXT_RX_PAGE_MODE(bp)) { 4430 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 4431 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 4432 } else { 4433 bp->rx_offset = BNXT_RX_OFFSET; 4434 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 4435 } 4436 4437 for (i = 0; i < bp->rx_nr_rings; i++) { 4438 rc = bnxt_init_one_rx_ring(bp, i); 4439 if (rc) 4440 break; 4441 } 4442 4443 return rc; 4444 } 4445 4446 static int bnxt_init_tx_rings(struct bnxt *bp) 4447 { 4448 u16 i; 4449 4450 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 4451 BNXT_MIN_TX_DESC_CNT); 4452 4453 for (i = 0; i < bp->tx_nr_rings; i++) { 4454 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4455 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 4456 4457 ring->fw_ring_id = INVALID_HW_RING_ID; 4458 4459 if (i >= bp->tx_nr_rings_xdp) 4460 netif_queue_set_napi(bp->dev, i - bp->tx_nr_rings_xdp, 4461 NETDEV_QUEUE_TYPE_TX, 4462 &txr->bnapi->napi); 4463 } 4464 4465 return 0; 4466 } 4467 4468 static void bnxt_free_ring_grps(struct bnxt *bp) 4469 { 4470 kfree(bp->grp_info); 4471 bp->grp_info = NULL; 4472 } 4473 4474 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 4475 { 4476 int i; 4477 4478 if (irq_re_init) { 4479 bp->grp_info = kcalloc(bp->cp_nr_rings, 4480 sizeof(struct bnxt_ring_grp_info), 4481 GFP_KERNEL); 4482 if (!bp->grp_info) 4483 return -ENOMEM; 4484 } 4485 for (i = 0; i < bp->cp_nr_rings; i++) { 4486 if (irq_re_init) 4487 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 4488 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 4489 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 4490 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 4491 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 4492 } 4493 return 0; 4494 } 4495 4496 static void bnxt_free_vnics(struct bnxt *bp) 4497 { 4498 kfree(bp->vnic_info); 4499 bp->vnic_info = NULL; 4500 bp->nr_vnics = 0; 4501 } 4502 4503 static int bnxt_alloc_vnics(struct bnxt *bp) 4504 { 4505 int num_vnics = 1; 4506 4507 #ifdef CONFIG_RFS_ACCEL 4508 if (bp->flags & BNXT_FLAG_RFS) { 4509 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 4510 num_vnics++; 4511 else if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4512 num_vnics += bp->rx_nr_rings; 4513 } 4514 #endif 4515 4516 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 4517 num_vnics++; 4518 4519 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 4520 GFP_KERNEL); 4521 if (!bp->vnic_info) 4522 return -ENOMEM; 4523 4524 bp->nr_vnics = num_vnics; 4525 return 0; 4526 } 4527 4528 static void bnxt_init_vnics(struct bnxt *bp) 4529 { 4530 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 4531 int i; 4532 4533 for (i = 0; i < bp->nr_vnics; i++) { 4534 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 4535 int j; 4536 4537 vnic->fw_vnic_id = INVALID_HW_RING_ID; 4538 vnic->vnic_id = i; 4539 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 4540 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 4541 4542 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 4543 4544 if (bp->vnic_info[i].rss_hash_key) { 4545 if (i == BNXT_VNIC_DEFAULT) { 4546 u8 *key = (void *)vnic->rss_hash_key; 4547 int k; 4548 4549 if (!bp->rss_hash_key_valid && 4550 !bp->rss_hash_key_updated) { 4551 get_random_bytes(bp->rss_hash_key, 4552 HW_HASH_KEY_SIZE); 4553 bp->rss_hash_key_updated = true; 4554 } 4555 4556 memcpy(vnic->rss_hash_key, bp->rss_hash_key, 4557 HW_HASH_KEY_SIZE); 4558 4559 if (!bp->rss_hash_key_updated) 4560 continue; 4561 4562 bp->rss_hash_key_updated = false; 4563 bp->rss_hash_key_valid = true; 4564 4565 bp->toeplitz_prefix = 0; 4566 for (k = 0; k < 8; k++) { 4567 bp->toeplitz_prefix <<= 8; 4568 bp->toeplitz_prefix |= key[k]; 4569 } 4570 } else { 4571 memcpy(vnic->rss_hash_key, vnic0->rss_hash_key, 4572 HW_HASH_KEY_SIZE); 4573 } 4574 } 4575 } 4576 } 4577 4578 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 4579 { 4580 int pages; 4581 4582 pages = ring_size / desc_per_pg; 4583 4584 if (!pages) 4585 return 1; 4586 4587 pages++; 4588 4589 while (pages & (pages - 1)) 4590 pages++; 4591 4592 return pages; 4593 } 4594 4595 void bnxt_set_tpa_flags(struct bnxt *bp) 4596 { 4597 bp->flags &= ~BNXT_FLAG_TPA; 4598 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 4599 return; 4600 if (bp->dev->features & NETIF_F_LRO) 4601 bp->flags |= BNXT_FLAG_LRO; 4602 else if (bp->dev->features & NETIF_F_GRO_HW) 4603 bp->flags |= BNXT_FLAG_GRO; 4604 } 4605 4606 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 4607 * be set on entry. 4608 */ 4609 void bnxt_set_ring_params(struct bnxt *bp) 4610 { 4611 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 4612 u32 agg_factor = 0, agg_ring_size = 0; 4613 4614 /* 8 for CRC and VLAN */ 4615 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 4616 4617 rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) + 4618 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4619 4620 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 4621 ring_size = bp->rx_ring_size; 4622 bp->rx_agg_ring_size = 0; 4623 bp->rx_agg_nr_pages = 0; 4624 4625 if (bp->flags & BNXT_FLAG_TPA) 4626 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 4627 4628 bp->flags &= ~BNXT_FLAG_JUMBO; 4629 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 4630 u32 jumbo_factor; 4631 4632 bp->flags |= BNXT_FLAG_JUMBO; 4633 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 4634 if (jumbo_factor > agg_factor) 4635 agg_factor = jumbo_factor; 4636 } 4637 if (agg_factor) { 4638 if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) { 4639 ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA; 4640 netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n", 4641 bp->rx_ring_size, ring_size); 4642 bp->rx_ring_size = ring_size; 4643 } 4644 agg_ring_size = ring_size * agg_factor; 4645 4646 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 4647 RX_DESC_CNT); 4648 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 4649 u32 tmp = agg_ring_size; 4650 4651 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 4652 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 4653 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 4654 tmp, agg_ring_size); 4655 } 4656 bp->rx_agg_ring_size = agg_ring_size; 4657 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 4658 4659 if (BNXT_RX_PAGE_MODE(bp)) { 4660 rx_space = PAGE_SIZE; 4661 rx_size = PAGE_SIZE - 4662 ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) - 4663 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4664 } else { 4665 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 4666 rx_space = rx_size + NET_SKB_PAD + 4667 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4668 } 4669 } 4670 4671 bp->rx_buf_use_size = rx_size; 4672 bp->rx_buf_size = rx_space; 4673 4674 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 4675 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 4676 4677 ring_size = bp->tx_ring_size; 4678 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 4679 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 4680 4681 max_rx_cmpl = bp->rx_ring_size; 4682 /* MAX TPA needs to be added because TPA_START completions are 4683 * immediately recycled, so the TPA completions are not bound by 4684 * the RX ring size. 4685 */ 4686 if (bp->flags & BNXT_FLAG_TPA) 4687 max_rx_cmpl += bp->max_tpa; 4688 /* RX and TPA completions are 32-byte, all others are 16-byte */ 4689 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 4690 bp->cp_ring_size = ring_size; 4691 4692 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 4693 if (bp->cp_nr_pages > MAX_CP_PAGES) { 4694 bp->cp_nr_pages = MAX_CP_PAGES; 4695 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 4696 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 4697 ring_size, bp->cp_ring_size); 4698 } 4699 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 4700 bp->cp_ring_mask = bp->cp_bit - 1; 4701 } 4702 4703 /* Changing allocation mode of RX rings. 4704 * TODO: Update when extending xdp_rxq_info to support allocation modes. 4705 */ 4706 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 4707 { 4708 struct net_device *dev = bp->dev; 4709 4710 if (page_mode) { 4711 bp->flags &= ~(BNXT_FLAG_AGG_RINGS | BNXT_FLAG_NO_AGG_RINGS); 4712 bp->flags |= BNXT_FLAG_RX_PAGE_MODE; 4713 4714 if (bp->xdp_prog->aux->xdp_has_frags) 4715 dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU); 4716 else 4717 dev->max_mtu = 4718 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 4719 if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) { 4720 bp->flags |= BNXT_FLAG_JUMBO; 4721 bp->rx_skb_func = bnxt_rx_multi_page_skb; 4722 } else { 4723 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 4724 bp->rx_skb_func = bnxt_rx_page_skb; 4725 } 4726 bp->rx_dir = DMA_BIDIRECTIONAL; 4727 /* Disable LRO or GRO_HW */ 4728 netdev_update_features(dev); 4729 } else { 4730 dev->max_mtu = bp->max_mtu; 4731 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 4732 bp->rx_dir = DMA_FROM_DEVICE; 4733 bp->rx_skb_func = bnxt_rx_skb; 4734 } 4735 return 0; 4736 } 4737 4738 static void bnxt_free_vnic_attributes(struct bnxt *bp) 4739 { 4740 int i; 4741 struct bnxt_vnic_info *vnic; 4742 struct pci_dev *pdev = bp->pdev; 4743 4744 if (!bp->vnic_info) 4745 return; 4746 4747 for (i = 0; i < bp->nr_vnics; i++) { 4748 vnic = &bp->vnic_info[i]; 4749 4750 kfree(vnic->fw_grp_ids); 4751 vnic->fw_grp_ids = NULL; 4752 4753 kfree(vnic->uc_list); 4754 vnic->uc_list = NULL; 4755 4756 if (vnic->mc_list) { 4757 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 4758 vnic->mc_list, vnic->mc_list_mapping); 4759 vnic->mc_list = NULL; 4760 } 4761 4762 if (vnic->rss_table) { 4763 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 4764 vnic->rss_table, 4765 vnic->rss_table_dma_addr); 4766 vnic->rss_table = NULL; 4767 } 4768 4769 vnic->rss_hash_key = NULL; 4770 vnic->flags = 0; 4771 } 4772 } 4773 4774 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 4775 { 4776 int i, rc = 0, size; 4777 struct bnxt_vnic_info *vnic; 4778 struct pci_dev *pdev = bp->pdev; 4779 int max_rings; 4780 4781 for (i = 0; i < bp->nr_vnics; i++) { 4782 vnic = &bp->vnic_info[i]; 4783 4784 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 4785 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 4786 4787 if (mem_size > 0) { 4788 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 4789 if (!vnic->uc_list) { 4790 rc = -ENOMEM; 4791 goto out; 4792 } 4793 } 4794 } 4795 4796 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 4797 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 4798 vnic->mc_list = 4799 dma_alloc_coherent(&pdev->dev, 4800 vnic->mc_list_size, 4801 &vnic->mc_list_mapping, 4802 GFP_KERNEL); 4803 if (!vnic->mc_list) { 4804 rc = -ENOMEM; 4805 goto out; 4806 } 4807 } 4808 4809 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4810 goto vnic_skip_grps; 4811 4812 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 4813 max_rings = bp->rx_nr_rings; 4814 else 4815 max_rings = 1; 4816 4817 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 4818 if (!vnic->fw_grp_ids) { 4819 rc = -ENOMEM; 4820 goto out; 4821 } 4822 vnic_skip_grps: 4823 if ((bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && 4824 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 4825 continue; 4826 4827 /* Allocate rss table and hash key */ 4828 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 4829 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4830 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 4831 4832 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 4833 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 4834 vnic->rss_table_size, 4835 &vnic->rss_table_dma_addr, 4836 GFP_KERNEL); 4837 if (!vnic->rss_table) { 4838 rc = -ENOMEM; 4839 goto out; 4840 } 4841 4842 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 4843 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 4844 } 4845 return 0; 4846 4847 out: 4848 return rc; 4849 } 4850 4851 static void bnxt_free_hwrm_resources(struct bnxt *bp) 4852 { 4853 struct bnxt_hwrm_wait_token *token; 4854 4855 dma_pool_destroy(bp->hwrm_dma_pool); 4856 bp->hwrm_dma_pool = NULL; 4857 4858 rcu_read_lock(); 4859 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) 4860 WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED); 4861 rcu_read_unlock(); 4862 } 4863 4864 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 4865 { 4866 bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev, 4867 BNXT_HWRM_DMA_SIZE, 4868 BNXT_HWRM_DMA_ALIGN, 0); 4869 if (!bp->hwrm_dma_pool) 4870 return -ENOMEM; 4871 4872 INIT_HLIST_HEAD(&bp->hwrm_pending_list); 4873 4874 return 0; 4875 } 4876 4877 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 4878 { 4879 kfree(stats->hw_masks); 4880 stats->hw_masks = NULL; 4881 kfree(stats->sw_stats); 4882 stats->sw_stats = NULL; 4883 if (stats->hw_stats) { 4884 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 4885 stats->hw_stats_map); 4886 stats->hw_stats = NULL; 4887 } 4888 } 4889 4890 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 4891 bool alloc_masks) 4892 { 4893 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 4894 &stats->hw_stats_map, GFP_KERNEL); 4895 if (!stats->hw_stats) 4896 return -ENOMEM; 4897 4898 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 4899 if (!stats->sw_stats) 4900 goto stats_mem_err; 4901 4902 if (alloc_masks) { 4903 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 4904 if (!stats->hw_masks) 4905 goto stats_mem_err; 4906 } 4907 return 0; 4908 4909 stats_mem_err: 4910 bnxt_free_stats_mem(bp, stats); 4911 return -ENOMEM; 4912 } 4913 4914 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 4915 { 4916 int i; 4917 4918 for (i = 0; i < count; i++) 4919 mask_arr[i] = mask; 4920 } 4921 4922 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 4923 { 4924 int i; 4925 4926 for (i = 0; i < count; i++) 4927 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 4928 } 4929 4930 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 4931 struct bnxt_stats_mem *stats) 4932 { 4933 struct hwrm_func_qstats_ext_output *resp; 4934 struct hwrm_func_qstats_ext_input *req; 4935 __le64 *hw_masks; 4936 int rc; 4937 4938 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 4939 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4940 return -EOPNOTSUPP; 4941 4942 rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT); 4943 if (rc) 4944 return rc; 4945 4946 req->fid = cpu_to_le16(0xffff); 4947 req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4948 4949 resp = hwrm_req_hold(bp, req); 4950 rc = hwrm_req_send(bp, req); 4951 if (!rc) { 4952 hw_masks = &resp->rx_ucast_pkts; 4953 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 4954 } 4955 hwrm_req_drop(bp, req); 4956 return rc; 4957 } 4958 4959 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 4960 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 4961 4962 static void bnxt_init_stats(struct bnxt *bp) 4963 { 4964 struct bnxt_napi *bnapi = bp->bnapi[0]; 4965 struct bnxt_cp_ring_info *cpr; 4966 struct bnxt_stats_mem *stats; 4967 __le64 *rx_stats, *tx_stats; 4968 int rc, rx_count, tx_count; 4969 u64 *rx_masks, *tx_masks; 4970 u64 mask; 4971 u8 flags; 4972 4973 cpr = &bnapi->cp_ring; 4974 stats = &cpr->stats; 4975 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 4976 if (rc) { 4977 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4978 mask = (1ULL << 48) - 1; 4979 else 4980 mask = -1ULL; 4981 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 4982 } 4983 if (bp->flags & BNXT_FLAG_PORT_STATS) { 4984 stats = &bp->port_stats; 4985 rx_stats = stats->hw_stats; 4986 rx_masks = stats->hw_masks; 4987 rx_count = sizeof(struct rx_port_stats) / 8; 4988 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4989 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4990 tx_count = sizeof(struct tx_port_stats) / 8; 4991 4992 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 4993 rc = bnxt_hwrm_port_qstats(bp, flags); 4994 if (rc) { 4995 mask = (1ULL << 40) - 1; 4996 4997 bnxt_fill_masks(rx_masks, mask, rx_count); 4998 bnxt_fill_masks(tx_masks, mask, tx_count); 4999 } else { 5000 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 5001 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 5002 bnxt_hwrm_port_qstats(bp, 0); 5003 } 5004 } 5005 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 5006 stats = &bp->rx_port_stats_ext; 5007 rx_stats = stats->hw_stats; 5008 rx_masks = stats->hw_masks; 5009 rx_count = sizeof(struct rx_port_stats_ext) / 8; 5010 stats = &bp->tx_port_stats_ext; 5011 tx_stats = stats->hw_stats; 5012 tx_masks = stats->hw_masks; 5013 tx_count = sizeof(struct tx_port_stats_ext) / 8; 5014 5015 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 5016 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 5017 if (rc) { 5018 mask = (1ULL << 40) - 1; 5019 5020 bnxt_fill_masks(rx_masks, mask, rx_count); 5021 if (tx_stats) 5022 bnxt_fill_masks(tx_masks, mask, tx_count); 5023 } else { 5024 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 5025 if (tx_stats) 5026 bnxt_copy_hw_masks(tx_masks, tx_stats, 5027 tx_count); 5028 bnxt_hwrm_port_qstats_ext(bp, 0); 5029 } 5030 } 5031 } 5032 5033 static void bnxt_free_port_stats(struct bnxt *bp) 5034 { 5035 bp->flags &= ~BNXT_FLAG_PORT_STATS; 5036 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 5037 5038 bnxt_free_stats_mem(bp, &bp->port_stats); 5039 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 5040 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 5041 } 5042 5043 static void bnxt_free_ring_stats(struct bnxt *bp) 5044 { 5045 int i; 5046 5047 if (!bp->bnapi) 5048 return; 5049 5050 for (i = 0; i < bp->cp_nr_rings; i++) { 5051 struct bnxt_napi *bnapi = bp->bnapi[i]; 5052 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5053 5054 bnxt_free_stats_mem(bp, &cpr->stats); 5055 5056 kfree(cpr->sw_stats); 5057 cpr->sw_stats = NULL; 5058 } 5059 } 5060 5061 static int bnxt_alloc_stats(struct bnxt *bp) 5062 { 5063 u32 size, i; 5064 int rc; 5065 5066 size = bp->hw_ring_stats_size; 5067 5068 for (i = 0; i < bp->cp_nr_rings; i++) { 5069 struct bnxt_napi *bnapi = bp->bnapi[i]; 5070 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5071 5072 cpr->sw_stats = kzalloc(sizeof(*cpr->sw_stats), GFP_KERNEL); 5073 if (!cpr->sw_stats) 5074 return -ENOMEM; 5075 5076 cpr->stats.len = size; 5077 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 5078 if (rc) 5079 return rc; 5080 5081 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 5082 } 5083 5084 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 5085 return 0; 5086 5087 if (bp->port_stats.hw_stats) 5088 goto alloc_ext_stats; 5089 5090 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 5091 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 5092 if (rc) 5093 return rc; 5094 5095 bp->flags |= BNXT_FLAG_PORT_STATS; 5096 5097 alloc_ext_stats: 5098 /* Display extended statistics only if FW supports it */ 5099 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 5100 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 5101 return 0; 5102 5103 if (bp->rx_port_stats_ext.hw_stats) 5104 goto alloc_tx_ext_stats; 5105 5106 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 5107 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 5108 /* Extended stats are optional */ 5109 if (rc) 5110 return 0; 5111 5112 alloc_tx_ext_stats: 5113 if (bp->tx_port_stats_ext.hw_stats) 5114 return 0; 5115 5116 if (bp->hwrm_spec_code >= 0x10902 || 5117 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 5118 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 5119 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 5120 /* Extended stats are optional */ 5121 if (rc) 5122 return 0; 5123 } 5124 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 5125 return 0; 5126 } 5127 5128 static void bnxt_clear_ring_indices(struct bnxt *bp) 5129 { 5130 int i, j; 5131 5132 if (!bp->bnapi) 5133 return; 5134 5135 for (i = 0; i < bp->cp_nr_rings; i++) { 5136 struct bnxt_napi *bnapi = bp->bnapi[i]; 5137 struct bnxt_cp_ring_info *cpr; 5138 struct bnxt_rx_ring_info *rxr; 5139 struct bnxt_tx_ring_info *txr; 5140 5141 if (!bnapi) 5142 continue; 5143 5144 cpr = &bnapi->cp_ring; 5145 cpr->cp_raw_cons = 0; 5146 5147 bnxt_for_each_napi_tx(j, bnapi, txr) { 5148 txr->tx_prod = 0; 5149 txr->tx_cons = 0; 5150 txr->tx_hw_cons = 0; 5151 } 5152 5153 rxr = bnapi->rx_ring; 5154 if (rxr) { 5155 rxr->rx_prod = 0; 5156 rxr->rx_agg_prod = 0; 5157 rxr->rx_sw_agg_prod = 0; 5158 rxr->rx_next_cons = 0; 5159 } 5160 bnapi->events = 0; 5161 } 5162 } 5163 5164 void bnxt_insert_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5165 { 5166 u8 type = fltr->type, flags = fltr->flags; 5167 5168 INIT_LIST_HEAD(&fltr->list); 5169 if ((type == BNXT_FLTR_TYPE_L2 && flags & BNXT_ACT_RING_DST) || 5170 (type == BNXT_FLTR_TYPE_NTUPLE && flags & BNXT_ACT_NO_AGING)) 5171 list_add_tail(&fltr->list, &bp->usr_fltr_list); 5172 } 5173 5174 void bnxt_del_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5175 { 5176 if (!list_empty(&fltr->list)) 5177 list_del_init(&fltr->list); 5178 } 5179 5180 static void bnxt_clear_usr_fltrs(struct bnxt *bp, bool all) 5181 { 5182 struct bnxt_filter_base *usr_fltr, *tmp; 5183 5184 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) { 5185 if (!all && usr_fltr->type == BNXT_FLTR_TYPE_L2) 5186 continue; 5187 bnxt_del_one_usr_fltr(bp, usr_fltr); 5188 } 5189 } 5190 5191 static void bnxt_del_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5192 { 5193 hlist_del(&fltr->hash); 5194 bnxt_del_one_usr_fltr(bp, fltr); 5195 if (fltr->flags) { 5196 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 5197 bp->ntp_fltr_count--; 5198 } 5199 kfree(fltr); 5200 } 5201 5202 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool all) 5203 { 5204 int i; 5205 5206 /* Under rtnl_lock and all our NAPIs have been disabled. It's 5207 * safe to delete the hash table. 5208 */ 5209 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 5210 struct hlist_head *head; 5211 struct hlist_node *tmp; 5212 struct bnxt_ntuple_filter *fltr; 5213 5214 head = &bp->ntp_fltr_hash_tbl[i]; 5215 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 5216 bnxt_del_l2_filter(bp, fltr->l2_fltr); 5217 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 5218 !list_empty(&fltr->base.list))) 5219 continue; 5220 bnxt_del_fltr(bp, &fltr->base); 5221 } 5222 } 5223 if (!all) 5224 return; 5225 5226 bitmap_free(bp->ntp_fltr_bmap); 5227 bp->ntp_fltr_bmap = NULL; 5228 bp->ntp_fltr_count = 0; 5229 } 5230 5231 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 5232 { 5233 int i, rc = 0; 5234 5235 if (!(bp->flags & BNXT_FLAG_RFS) || bp->ntp_fltr_bmap) 5236 return 0; 5237 5238 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 5239 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 5240 5241 bp->ntp_fltr_count = 0; 5242 bp->ntp_fltr_bmap = bitmap_zalloc(bp->max_fltr, GFP_KERNEL); 5243 5244 if (!bp->ntp_fltr_bmap) 5245 rc = -ENOMEM; 5246 5247 return rc; 5248 } 5249 5250 static void bnxt_free_l2_filters(struct bnxt *bp, bool all) 5251 { 5252 int i; 5253 5254 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) { 5255 struct hlist_head *head; 5256 struct hlist_node *tmp; 5257 struct bnxt_l2_filter *fltr; 5258 5259 head = &bp->l2_fltr_hash_tbl[i]; 5260 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 5261 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 5262 !list_empty(&fltr->base.list))) 5263 continue; 5264 bnxt_del_fltr(bp, &fltr->base); 5265 } 5266 } 5267 } 5268 5269 static void bnxt_init_l2_fltr_tbl(struct bnxt *bp) 5270 { 5271 int i; 5272 5273 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) 5274 INIT_HLIST_HEAD(&bp->l2_fltr_hash_tbl[i]); 5275 get_random_bytes(&bp->hash_seed, sizeof(bp->hash_seed)); 5276 } 5277 5278 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 5279 { 5280 bnxt_free_vnic_attributes(bp); 5281 bnxt_free_tx_rings(bp); 5282 bnxt_free_rx_rings(bp); 5283 bnxt_free_cp_rings(bp); 5284 bnxt_free_all_cp_arrays(bp); 5285 bnxt_free_ntp_fltrs(bp, false); 5286 bnxt_free_l2_filters(bp, false); 5287 if (irq_re_init) { 5288 bnxt_free_ring_stats(bp); 5289 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 5290 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 5291 bnxt_free_port_stats(bp); 5292 bnxt_free_ring_grps(bp); 5293 bnxt_free_vnics(bp); 5294 kfree(bp->tx_ring_map); 5295 bp->tx_ring_map = NULL; 5296 kfree(bp->tx_ring); 5297 bp->tx_ring = NULL; 5298 kfree(bp->rx_ring); 5299 bp->rx_ring = NULL; 5300 kfree(bp->bnapi); 5301 bp->bnapi = NULL; 5302 } else { 5303 bnxt_clear_ring_indices(bp); 5304 } 5305 } 5306 5307 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 5308 { 5309 int i, j, rc, size, arr_size; 5310 void *bnapi; 5311 5312 if (irq_re_init) { 5313 /* Allocate bnapi mem pointer array and mem block for 5314 * all queues 5315 */ 5316 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 5317 bp->cp_nr_rings); 5318 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 5319 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 5320 if (!bnapi) 5321 return -ENOMEM; 5322 5323 bp->bnapi = bnapi; 5324 bnapi += arr_size; 5325 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 5326 bp->bnapi[i] = bnapi; 5327 bp->bnapi[i]->index = i; 5328 bp->bnapi[i]->bp = bp; 5329 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5330 struct bnxt_cp_ring_info *cpr = 5331 &bp->bnapi[i]->cp_ring; 5332 5333 cpr->cp_ring_struct.ring_mem.flags = 5334 BNXT_RMEM_RING_PTE_FLAG; 5335 } 5336 } 5337 5338 bp->rx_ring = kcalloc(bp->rx_nr_rings, 5339 sizeof(struct bnxt_rx_ring_info), 5340 GFP_KERNEL); 5341 if (!bp->rx_ring) 5342 return -ENOMEM; 5343 5344 for (i = 0; i < bp->rx_nr_rings; i++) { 5345 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5346 5347 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5348 rxr->rx_ring_struct.ring_mem.flags = 5349 BNXT_RMEM_RING_PTE_FLAG; 5350 rxr->rx_agg_ring_struct.ring_mem.flags = 5351 BNXT_RMEM_RING_PTE_FLAG; 5352 } else { 5353 rxr->rx_cpr = &bp->bnapi[i]->cp_ring; 5354 } 5355 rxr->bnapi = bp->bnapi[i]; 5356 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 5357 } 5358 5359 bp->tx_ring = kcalloc(bp->tx_nr_rings, 5360 sizeof(struct bnxt_tx_ring_info), 5361 GFP_KERNEL); 5362 if (!bp->tx_ring) 5363 return -ENOMEM; 5364 5365 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 5366 GFP_KERNEL); 5367 5368 if (!bp->tx_ring_map) 5369 return -ENOMEM; 5370 5371 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 5372 j = 0; 5373 else 5374 j = bp->rx_nr_rings; 5375 5376 for (i = 0; i < bp->tx_nr_rings; i++) { 5377 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5378 struct bnxt_napi *bnapi2; 5379 5380 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 5381 txr->tx_ring_struct.ring_mem.flags = 5382 BNXT_RMEM_RING_PTE_FLAG; 5383 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 5384 if (i >= bp->tx_nr_rings_xdp) { 5385 int k = j + BNXT_RING_TO_TC_OFF(bp, i); 5386 5387 bnapi2 = bp->bnapi[k]; 5388 txr->txq_index = i - bp->tx_nr_rings_xdp; 5389 txr->tx_napi_idx = 5390 BNXT_RING_TO_TC(bp, txr->txq_index); 5391 bnapi2->tx_ring[txr->tx_napi_idx] = txr; 5392 bnapi2->tx_int = bnxt_tx_int; 5393 } else { 5394 bnapi2 = bp->bnapi[j]; 5395 bnapi2->flags |= BNXT_NAPI_FLAG_XDP; 5396 bnapi2->tx_ring[0] = txr; 5397 bnapi2->tx_int = bnxt_tx_int_xdp; 5398 j++; 5399 } 5400 txr->bnapi = bnapi2; 5401 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 5402 txr->tx_cpr = &bnapi2->cp_ring; 5403 } 5404 5405 rc = bnxt_alloc_stats(bp); 5406 if (rc) 5407 goto alloc_mem_err; 5408 bnxt_init_stats(bp); 5409 5410 rc = bnxt_alloc_ntp_fltrs(bp); 5411 if (rc) 5412 goto alloc_mem_err; 5413 5414 rc = bnxt_alloc_vnics(bp); 5415 if (rc) 5416 goto alloc_mem_err; 5417 } 5418 5419 rc = bnxt_alloc_all_cp_arrays(bp); 5420 if (rc) 5421 goto alloc_mem_err; 5422 5423 bnxt_init_ring_struct(bp); 5424 5425 rc = bnxt_alloc_rx_rings(bp); 5426 if (rc) 5427 goto alloc_mem_err; 5428 5429 rc = bnxt_alloc_tx_rings(bp); 5430 if (rc) 5431 goto alloc_mem_err; 5432 5433 rc = bnxt_alloc_cp_rings(bp); 5434 if (rc) 5435 goto alloc_mem_err; 5436 5437 bp->vnic_info[BNXT_VNIC_DEFAULT].flags |= BNXT_VNIC_RSS_FLAG | 5438 BNXT_VNIC_MCAST_FLAG | 5439 BNXT_VNIC_UCAST_FLAG; 5440 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp) && (bp->flags & BNXT_FLAG_RFS)) 5441 bp->vnic_info[BNXT_VNIC_NTUPLE].flags |= 5442 BNXT_VNIC_RSS_FLAG | BNXT_VNIC_NTUPLE_FLAG; 5443 5444 rc = bnxt_alloc_vnic_attributes(bp); 5445 if (rc) 5446 goto alloc_mem_err; 5447 return 0; 5448 5449 alloc_mem_err: 5450 bnxt_free_mem(bp, true); 5451 return rc; 5452 } 5453 5454 static void bnxt_disable_int(struct bnxt *bp) 5455 { 5456 int i; 5457 5458 if (!bp->bnapi) 5459 return; 5460 5461 for (i = 0; i < bp->cp_nr_rings; i++) { 5462 struct bnxt_napi *bnapi = bp->bnapi[i]; 5463 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5464 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5465 5466 if (ring->fw_ring_id != INVALID_HW_RING_ID) 5467 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5468 } 5469 } 5470 5471 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 5472 { 5473 struct bnxt_napi *bnapi = bp->bnapi[n]; 5474 struct bnxt_cp_ring_info *cpr; 5475 5476 cpr = &bnapi->cp_ring; 5477 return cpr->cp_ring_struct.map_idx; 5478 } 5479 5480 static void bnxt_disable_int_sync(struct bnxt *bp) 5481 { 5482 int i; 5483 5484 if (!bp->irq_tbl) 5485 return; 5486 5487 atomic_inc(&bp->intr_sem); 5488 5489 bnxt_disable_int(bp); 5490 for (i = 0; i < bp->cp_nr_rings; i++) { 5491 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 5492 5493 synchronize_irq(bp->irq_tbl[map_idx].vector); 5494 } 5495 } 5496 5497 static void bnxt_enable_int(struct bnxt *bp) 5498 { 5499 int i; 5500 5501 atomic_set(&bp->intr_sem, 0); 5502 for (i = 0; i < bp->cp_nr_rings; i++) { 5503 struct bnxt_napi *bnapi = bp->bnapi[i]; 5504 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5505 5506 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 5507 } 5508 } 5509 5510 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 5511 bool async_only) 5512 { 5513 DECLARE_BITMAP(async_events_bmap, 256); 5514 u32 *events = (u32 *)async_events_bmap; 5515 struct hwrm_func_drv_rgtr_output *resp; 5516 struct hwrm_func_drv_rgtr_input *req; 5517 u32 flags; 5518 int rc, i; 5519 5520 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR); 5521 if (rc) 5522 return rc; 5523 5524 req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 5525 FUNC_DRV_RGTR_REQ_ENABLES_VER | 5526 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5527 5528 req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 5529 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 5530 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 5531 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 5532 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 5533 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 5534 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 5535 req->flags = cpu_to_le32(flags); 5536 req->ver_maj_8b = DRV_VER_MAJ; 5537 req->ver_min_8b = DRV_VER_MIN; 5538 req->ver_upd_8b = DRV_VER_UPD; 5539 req->ver_maj = cpu_to_le16(DRV_VER_MAJ); 5540 req->ver_min = cpu_to_le16(DRV_VER_MIN); 5541 req->ver_upd = cpu_to_le16(DRV_VER_UPD); 5542 5543 if (BNXT_PF(bp)) { 5544 u32 data[8]; 5545 int i; 5546 5547 memset(data, 0, sizeof(data)); 5548 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 5549 u16 cmd = bnxt_vf_req_snif[i]; 5550 unsigned int bit, idx; 5551 5552 idx = cmd / 32; 5553 bit = cmd % 32; 5554 data[idx] |= 1 << bit; 5555 } 5556 5557 for (i = 0; i < 8; i++) 5558 req->vf_req_fwd[i] = cpu_to_le32(data[i]); 5559 5560 req->enables |= 5561 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 5562 } 5563 5564 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 5565 req->flags |= cpu_to_le32( 5566 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 5567 5568 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 5569 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 5570 u16 event_id = bnxt_async_events_arr[i]; 5571 5572 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 5573 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 5574 continue; 5575 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE && 5576 !bp->ptp_cfg) 5577 continue; 5578 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 5579 } 5580 if (bmap && bmap_size) { 5581 for (i = 0; i < bmap_size; i++) { 5582 if (test_bit(i, bmap)) 5583 __set_bit(i, async_events_bmap); 5584 } 5585 } 5586 for (i = 0; i < 8; i++) 5587 req->async_event_fwd[i] |= cpu_to_le32(events[i]); 5588 5589 if (async_only) 5590 req->enables = 5591 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5592 5593 resp = hwrm_req_hold(bp, req); 5594 rc = hwrm_req_send(bp, req); 5595 if (!rc) { 5596 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 5597 if (resp->flags & 5598 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 5599 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 5600 } 5601 hwrm_req_drop(bp, req); 5602 return rc; 5603 } 5604 5605 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 5606 { 5607 struct hwrm_func_drv_unrgtr_input *req; 5608 int rc; 5609 5610 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 5611 return 0; 5612 5613 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR); 5614 if (rc) 5615 return rc; 5616 return hwrm_req_send(bp, req); 5617 } 5618 5619 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa); 5620 5621 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 5622 { 5623 struct hwrm_tunnel_dst_port_free_input *req; 5624 int rc; 5625 5626 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN && 5627 bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID) 5628 return 0; 5629 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE && 5630 bp->nge_fw_dst_port_id == INVALID_HW_RING_ID) 5631 return 0; 5632 5633 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE); 5634 if (rc) 5635 return rc; 5636 5637 req->tunnel_type = tunnel_type; 5638 5639 switch (tunnel_type) { 5640 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 5641 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 5642 bp->vxlan_port = 0; 5643 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 5644 break; 5645 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 5646 req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 5647 bp->nge_port = 0; 5648 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 5649 break; 5650 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE: 5651 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_gpe_fw_dst_port_id); 5652 bp->vxlan_gpe_port = 0; 5653 bp->vxlan_gpe_fw_dst_port_id = INVALID_HW_RING_ID; 5654 break; 5655 default: 5656 break; 5657 } 5658 5659 rc = hwrm_req_send(bp, req); 5660 if (rc) 5661 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 5662 rc); 5663 if (bp->flags & BNXT_FLAG_TPA) 5664 bnxt_set_tpa(bp, true); 5665 return rc; 5666 } 5667 5668 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 5669 u8 tunnel_type) 5670 { 5671 struct hwrm_tunnel_dst_port_alloc_output *resp; 5672 struct hwrm_tunnel_dst_port_alloc_input *req; 5673 int rc; 5674 5675 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC); 5676 if (rc) 5677 return rc; 5678 5679 req->tunnel_type = tunnel_type; 5680 req->tunnel_dst_port_val = port; 5681 5682 resp = hwrm_req_hold(bp, req); 5683 rc = hwrm_req_send(bp, req); 5684 if (rc) { 5685 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 5686 rc); 5687 goto err_out; 5688 } 5689 5690 switch (tunnel_type) { 5691 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 5692 bp->vxlan_port = port; 5693 bp->vxlan_fw_dst_port_id = 5694 le16_to_cpu(resp->tunnel_dst_port_id); 5695 break; 5696 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 5697 bp->nge_port = port; 5698 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 5699 break; 5700 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE: 5701 bp->vxlan_gpe_port = port; 5702 bp->vxlan_gpe_fw_dst_port_id = 5703 le16_to_cpu(resp->tunnel_dst_port_id); 5704 break; 5705 default: 5706 break; 5707 } 5708 if (bp->flags & BNXT_FLAG_TPA) 5709 bnxt_set_tpa(bp, true); 5710 5711 err_out: 5712 hwrm_req_drop(bp, req); 5713 return rc; 5714 } 5715 5716 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 5717 { 5718 struct hwrm_cfa_l2_set_rx_mask_input *req; 5719 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5720 int rc; 5721 5722 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK); 5723 if (rc) 5724 return rc; 5725 5726 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5727 if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) { 5728 req->num_mc_entries = cpu_to_le32(vnic->mc_list_count); 5729 req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 5730 } 5731 req->mask = cpu_to_le32(vnic->rx_mask); 5732 return hwrm_req_send_silent(bp, req); 5733 } 5734 5735 void bnxt_del_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5736 { 5737 if (!atomic_dec_and_test(&fltr->refcnt)) 5738 return; 5739 spin_lock_bh(&bp->ntp_fltr_lock); 5740 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 5741 spin_unlock_bh(&bp->ntp_fltr_lock); 5742 return; 5743 } 5744 hlist_del_rcu(&fltr->base.hash); 5745 bnxt_del_one_usr_fltr(bp, &fltr->base); 5746 if (fltr->base.flags) { 5747 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 5748 bp->ntp_fltr_count--; 5749 } 5750 spin_unlock_bh(&bp->ntp_fltr_lock); 5751 kfree_rcu(fltr, base.rcu); 5752 } 5753 5754 static struct bnxt_l2_filter *__bnxt_lookup_l2_filter(struct bnxt *bp, 5755 struct bnxt_l2_key *key, 5756 u32 idx) 5757 { 5758 struct hlist_head *head = &bp->l2_fltr_hash_tbl[idx]; 5759 struct bnxt_l2_filter *fltr; 5760 5761 hlist_for_each_entry_rcu(fltr, head, base.hash) { 5762 struct bnxt_l2_key *l2_key = &fltr->l2_key; 5763 5764 if (ether_addr_equal(l2_key->dst_mac_addr, key->dst_mac_addr) && 5765 l2_key->vlan == key->vlan) 5766 return fltr; 5767 } 5768 return NULL; 5769 } 5770 5771 static struct bnxt_l2_filter *bnxt_lookup_l2_filter(struct bnxt *bp, 5772 struct bnxt_l2_key *key, 5773 u32 idx) 5774 { 5775 struct bnxt_l2_filter *fltr = NULL; 5776 5777 rcu_read_lock(); 5778 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 5779 if (fltr) 5780 atomic_inc(&fltr->refcnt); 5781 rcu_read_unlock(); 5782 return fltr; 5783 } 5784 5785 #define BNXT_IPV4_4TUPLE(bp, fkeys) \ 5786 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5787 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4) || \ 5788 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5789 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4)) 5790 5791 #define BNXT_IPV6_4TUPLE(bp, fkeys) \ 5792 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5793 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6) || \ 5794 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5795 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6)) 5796 5797 static u32 bnxt_get_rss_flow_tuple_len(struct bnxt *bp, struct flow_keys *fkeys) 5798 { 5799 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 5800 if (BNXT_IPV4_4TUPLE(bp, fkeys)) 5801 return sizeof(fkeys->addrs.v4addrs) + 5802 sizeof(fkeys->ports); 5803 5804 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4) 5805 return sizeof(fkeys->addrs.v4addrs); 5806 } 5807 5808 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 5809 if (BNXT_IPV6_4TUPLE(bp, fkeys)) 5810 return sizeof(fkeys->addrs.v6addrs) + 5811 sizeof(fkeys->ports); 5812 5813 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6) 5814 return sizeof(fkeys->addrs.v6addrs); 5815 } 5816 5817 return 0; 5818 } 5819 5820 static u32 bnxt_toeplitz(struct bnxt *bp, struct flow_keys *fkeys, 5821 const unsigned char *key) 5822 { 5823 u64 prefix = bp->toeplitz_prefix, hash = 0; 5824 struct bnxt_ipv4_tuple tuple4; 5825 struct bnxt_ipv6_tuple tuple6; 5826 int i, j, len = 0; 5827 u8 *four_tuple; 5828 5829 len = bnxt_get_rss_flow_tuple_len(bp, fkeys); 5830 if (!len) 5831 return 0; 5832 5833 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 5834 tuple4.v4addrs = fkeys->addrs.v4addrs; 5835 tuple4.ports = fkeys->ports; 5836 four_tuple = (unsigned char *)&tuple4; 5837 } else { 5838 tuple6.v6addrs = fkeys->addrs.v6addrs; 5839 tuple6.ports = fkeys->ports; 5840 four_tuple = (unsigned char *)&tuple6; 5841 } 5842 5843 for (i = 0, j = 8; i < len; i++, j++) { 5844 u8 byte = four_tuple[i]; 5845 int bit; 5846 5847 for (bit = 0; bit < 8; bit++, prefix <<= 1, byte <<= 1) { 5848 if (byte & 0x80) 5849 hash ^= prefix; 5850 } 5851 prefix |= (j < HW_HASH_KEY_SIZE) ? key[j] : 0; 5852 } 5853 5854 /* The valid part of the hash is in the upper 32 bits. */ 5855 return (hash >> 32) & BNXT_NTP_FLTR_HASH_MASK; 5856 } 5857 5858 #ifdef CONFIG_RFS_ACCEL 5859 static struct bnxt_l2_filter * 5860 bnxt_lookup_l2_filter_from_key(struct bnxt *bp, struct bnxt_l2_key *key) 5861 { 5862 struct bnxt_l2_filter *fltr; 5863 u32 idx; 5864 5865 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5866 BNXT_L2_FLTR_HASH_MASK; 5867 fltr = bnxt_lookup_l2_filter(bp, key, idx); 5868 return fltr; 5869 } 5870 #endif 5871 5872 static int bnxt_init_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr, 5873 struct bnxt_l2_key *key, u32 idx) 5874 { 5875 struct hlist_head *head; 5876 5877 ether_addr_copy(fltr->l2_key.dst_mac_addr, key->dst_mac_addr); 5878 fltr->l2_key.vlan = key->vlan; 5879 fltr->base.type = BNXT_FLTR_TYPE_L2; 5880 if (fltr->base.flags) { 5881 int bit_id; 5882 5883 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 5884 bp->max_fltr, 0); 5885 if (bit_id < 0) 5886 return -ENOMEM; 5887 fltr->base.sw_id = (u16)bit_id; 5888 bp->ntp_fltr_count++; 5889 } 5890 head = &bp->l2_fltr_hash_tbl[idx]; 5891 hlist_add_head_rcu(&fltr->base.hash, head); 5892 bnxt_insert_usr_fltr(bp, &fltr->base); 5893 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 5894 atomic_set(&fltr->refcnt, 1); 5895 return 0; 5896 } 5897 5898 static struct bnxt_l2_filter *bnxt_alloc_l2_filter(struct bnxt *bp, 5899 struct bnxt_l2_key *key, 5900 gfp_t gfp) 5901 { 5902 struct bnxt_l2_filter *fltr; 5903 u32 idx; 5904 int rc; 5905 5906 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5907 BNXT_L2_FLTR_HASH_MASK; 5908 fltr = bnxt_lookup_l2_filter(bp, key, idx); 5909 if (fltr) 5910 return fltr; 5911 5912 fltr = kzalloc(sizeof(*fltr), gfp); 5913 if (!fltr) 5914 return ERR_PTR(-ENOMEM); 5915 spin_lock_bh(&bp->ntp_fltr_lock); 5916 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 5917 spin_unlock_bh(&bp->ntp_fltr_lock); 5918 if (rc) { 5919 bnxt_del_l2_filter(bp, fltr); 5920 fltr = ERR_PTR(rc); 5921 } 5922 return fltr; 5923 } 5924 5925 struct bnxt_l2_filter *bnxt_alloc_new_l2_filter(struct bnxt *bp, 5926 struct bnxt_l2_key *key, 5927 u16 flags) 5928 { 5929 struct bnxt_l2_filter *fltr; 5930 u32 idx; 5931 int rc; 5932 5933 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5934 BNXT_L2_FLTR_HASH_MASK; 5935 spin_lock_bh(&bp->ntp_fltr_lock); 5936 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 5937 if (fltr) { 5938 fltr = ERR_PTR(-EEXIST); 5939 goto l2_filter_exit; 5940 } 5941 fltr = kzalloc(sizeof(*fltr), GFP_ATOMIC); 5942 if (!fltr) { 5943 fltr = ERR_PTR(-ENOMEM); 5944 goto l2_filter_exit; 5945 } 5946 fltr->base.flags = flags; 5947 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 5948 if (rc) { 5949 spin_unlock_bh(&bp->ntp_fltr_lock); 5950 bnxt_del_l2_filter(bp, fltr); 5951 return ERR_PTR(rc); 5952 } 5953 5954 l2_filter_exit: 5955 spin_unlock_bh(&bp->ntp_fltr_lock); 5956 return fltr; 5957 } 5958 5959 static u16 bnxt_vf_target_id(struct bnxt_pf_info *pf, u16 vf_idx) 5960 { 5961 #ifdef CONFIG_BNXT_SRIOV 5962 struct bnxt_vf_info *vf = &pf->vf[vf_idx]; 5963 5964 return vf->fw_fid; 5965 #else 5966 return INVALID_HW_RING_ID; 5967 #endif 5968 } 5969 5970 int bnxt_hwrm_l2_filter_free(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5971 { 5972 struct hwrm_cfa_l2_filter_free_input *req; 5973 u16 target_id = 0xffff; 5974 int rc; 5975 5976 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 5977 struct bnxt_pf_info *pf = &bp->pf; 5978 5979 if (fltr->base.vf_idx >= pf->active_vfs) 5980 return -EINVAL; 5981 5982 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 5983 if (target_id == INVALID_HW_RING_ID) 5984 return -EINVAL; 5985 } 5986 5987 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 5988 if (rc) 5989 return rc; 5990 5991 req->target_id = cpu_to_le16(target_id); 5992 req->l2_filter_id = fltr->base.filter_id; 5993 return hwrm_req_send(bp, req); 5994 } 5995 5996 int bnxt_hwrm_l2_filter_alloc(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5997 { 5998 struct hwrm_cfa_l2_filter_alloc_output *resp; 5999 struct hwrm_cfa_l2_filter_alloc_input *req; 6000 u16 target_id = 0xffff; 6001 int rc; 6002 6003 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 6004 struct bnxt_pf_info *pf = &bp->pf; 6005 6006 if (fltr->base.vf_idx >= pf->active_vfs) 6007 return -EINVAL; 6008 6009 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 6010 } 6011 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC); 6012 if (rc) 6013 return rc; 6014 6015 req->target_id = cpu_to_le16(target_id); 6016 req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 6017 6018 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 6019 req->flags |= 6020 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 6021 req->dst_id = cpu_to_le16(fltr->base.fw_vnic_id); 6022 req->enables = 6023 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 6024 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 6025 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 6026 ether_addr_copy(req->l2_addr, fltr->l2_key.dst_mac_addr); 6027 eth_broadcast_addr(req->l2_addr_mask); 6028 6029 if (fltr->l2_key.vlan) { 6030 req->enables |= 6031 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN | 6032 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN_MASK | 6033 CFA_L2_FILTER_ALLOC_REQ_ENABLES_NUM_VLANS); 6034 req->num_vlans = 1; 6035 req->l2_ivlan = cpu_to_le16(fltr->l2_key.vlan); 6036 req->l2_ivlan_mask = cpu_to_le16(0xfff); 6037 } 6038 6039 resp = hwrm_req_hold(bp, req); 6040 rc = hwrm_req_send(bp, req); 6041 if (!rc) { 6042 fltr->base.filter_id = resp->l2_filter_id; 6043 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 6044 } 6045 hwrm_req_drop(bp, req); 6046 return rc; 6047 } 6048 6049 int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 6050 struct bnxt_ntuple_filter *fltr) 6051 { 6052 struct hwrm_cfa_ntuple_filter_free_input *req; 6053 int rc; 6054 6055 set_bit(BNXT_FLTR_FW_DELETED, &fltr->base.state); 6056 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE); 6057 if (rc) 6058 return rc; 6059 6060 req->ntuple_filter_id = fltr->base.filter_id; 6061 return hwrm_req_send(bp, req); 6062 } 6063 6064 #define BNXT_NTP_FLTR_FLAGS \ 6065 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 6066 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 6067 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 6068 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 6069 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 6070 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 6071 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 6072 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 6073 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 6074 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 6075 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 6076 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 6077 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 6078 6079 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 6080 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 6081 6082 void bnxt_fill_ipv6_mask(__be32 mask[4]) 6083 { 6084 int i; 6085 6086 for (i = 0; i < 4; i++) 6087 mask[i] = cpu_to_be32(~0); 6088 } 6089 6090 static void 6091 bnxt_cfg_rfs_ring_tbl_idx(struct bnxt *bp, 6092 struct hwrm_cfa_ntuple_filter_alloc_input *req, 6093 struct bnxt_ntuple_filter *fltr) 6094 { 6095 u16 rxq = fltr->base.rxq; 6096 6097 if (fltr->base.flags & BNXT_ACT_RSS_CTX) { 6098 struct ethtool_rxfh_context *ctx; 6099 struct bnxt_rss_ctx *rss_ctx; 6100 struct bnxt_vnic_info *vnic; 6101 6102 ctx = xa_load(&bp->dev->ethtool->rss_ctx, 6103 fltr->base.fw_vnic_id); 6104 if (ctx) { 6105 rss_ctx = ethtool_rxfh_context_priv(ctx); 6106 vnic = &rss_ctx->vnic; 6107 6108 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 6109 } 6110 return; 6111 } 6112 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 6113 struct bnxt_vnic_info *vnic; 6114 u32 enables; 6115 6116 vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE]; 6117 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 6118 enables = CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_RFS_RING_TBL_IDX; 6119 req->enables |= cpu_to_le32(enables); 6120 req->rfs_ring_tbl_idx = cpu_to_le16(rxq); 6121 } else { 6122 u32 flags; 6123 6124 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 6125 req->flags |= cpu_to_le32(flags); 6126 req->dst_id = cpu_to_le16(rxq); 6127 } 6128 } 6129 6130 int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 6131 struct bnxt_ntuple_filter *fltr) 6132 { 6133 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 6134 struct hwrm_cfa_ntuple_filter_alloc_input *req; 6135 struct bnxt_flow_masks *masks = &fltr->fmasks; 6136 struct flow_keys *keys = &fltr->fkeys; 6137 struct bnxt_l2_filter *l2_fltr; 6138 struct bnxt_vnic_info *vnic; 6139 int rc; 6140 6141 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC); 6142 if (rc) 6143 return rc; 6144 6145 l2_fltr = fltr->l2_fltr; 6146 req->l2_filter_id = l2_fltr->base.filter_id; 6147 6148 if (fltr->base.flags & BNXT_ACT_DROP) { 6149 req->flags = 6150 cpu_to_le32(CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DROP); 6151 } else if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 6152 bnxt_cfg_rfs_ring_tbl_idx(bp, req, fltr); 6153 } else { 6154 vnic = &bp->vnic_info[fltr->base.rxq + 1]; 6155 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 6156 } 6157 req->enables |= cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 6158 6159 req->ethertype = htons(ETH_P_IP); 6160 req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 6161 req->ip_protocol = keys->basic.ip_proto; 6162 6163 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 6164 req->ethertype = htons(ETH_P_IPV6); 6165 req->ip_addr_type = 6166 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 6167 *(struct in6_addr *)&req->src_ipaddr[0] = keys->addrs.v6addrs.src; 6168 *(struct in6_addr *)&req->src_ipaddr_mask[0] = masks->addrs.v6addrs.src; 6169 *(struct in6_addr *)&req->dst_ipaddr[0] = keys->addrs.v6addrs.dst; 6170 *(struct in6_addr *)&req->dst_ipaddr_mask[0] = masks->addrs.v6addrs.dst; 6171 } else { 6172 req->src_ipaddr[0] = keys->addrs.v4addrs.src; 6173 req->src_ipaddr_mask[0] = masks->addrs.v4addrs.src; 6174 req->dst_ipaddr[0] = keys->addrs.v4addrs.dst; 6175 req->dst_ipaddr_mask[0] = masks->addrs.v4addrs.dst; 6176 } 6177 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 6178 req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 6179 req->tunnel_type = 6180 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 6181 } 6182 6183 req->src_port = keys->ports.src; 6184 req->src_port_mask = masks->ports.src; 6185 req->dst_port = keys->ports.dst; 6186 req->dst_port_mask = masks->ports.dst; 6187 6188 resp = hwrm_req_hold(bp, req); 6189 rc = hwrm_req_send(bp, req); 6190 if (!rc) 6191 fltr->base.filter_id = resp->ntuple_filter_id; 6192 hwrm_req_drop(bp, req); 6193 return rc; 6194 } 6195 6196 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 6197 const u8 *mac_addr) 6198 { 6199 struct bnxt_l2_filter *fltr; 6200 struct bnxt_l2_key key; 6201 int rc; 6202 6203 ether_addr_copy(key.dst_mac_addr, mac_addr); 6204 key.vlan = 0; 6205 fltr = bnxt_alloc_l2_filter(bp, &key, GFP_KERNEL); 6206 if (IS_ERR(fltr)) 6207 return PTR_ERR(fltr); 6208 6209 fltr->base.fw_vnic_id = bp->vnic_info[vnic_id].fw_vnic_id; 6210 rc = bnxt_hwrm_l2_filter_alloc(bp, fltr); 6211 if (rc) 6212 bnxt_del_l2_filter(bp, fltr); 6213 else 6214 bp->vnic_info[vnic_id].l2_filters[idx] = fltr; 6215 return rc; 6216 } 6217 6218 static void bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 6219 { 6220 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 6221 6222 /* Any associated ntuple filters will also be cleared by firmware. */ 6223 for (i = 0; i < num_of_vnics; i++) { 6224 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 6225 6226 for (j = 0; j < vnic->uc_filter_count; j++) { 6227 struct bnxt_l2_filter *fltr = vnic->l2_filters[j]; 6228 6229 bnxt_hwrm_l2_filter_free(bp, fltr); 6230 bnxt_del_l2_filter(bp, fltr); 6231 } 6232 vnic->uc_filter_count = 0; 6233 } 6234 } 6235 6236 #define BNXT_DFLT_TUNL_TPA_BMAP \ 6237 (VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GRE | \ 6238 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV4 | \ 6239 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV6) 6240 6241 static void bnxt_hwrm_vnic_update_tunl_tpa(struct bnxt *bp, 6242 struct hwrm_vnic_tpa_cfg_input *req) 6243 { 6244 u32 tunl_tpa_bmap = BNXT_DFLT_TUNL_TPA_BMAP; 6245 6246 if (!(bp->fw_cap & BNXT_FW_CAP_VNIC_TUNNEL_TPA)) 6247 return; 6248 6249 if (bp->vxlan_port) 6250 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN; 6251 if (bp->vxlan_gpe_port) 6252 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN_GPE; 6253 if (bp->nge_port) 6254 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GENEVE; 6255 6256 req->enables |= cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_TNL_TPA_EN); 6257 req->tnl_tpa_en_bitmap = cpu_to_le32(tunl_tpa_bmap); 6258 } 6259 6260 int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6261 u32 tpa_flags) 6262 { 6263 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 6264 struct hwrm_vnic_tpa_cfg_input *req; 6265 int rc; 6266 6267 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 6268 return 0; 6269 6270 rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG); 6271 if (rc) 6272 return rc; 6273 6274 if (tpa_flags) { 6275 u16 mss = bp->dev->mtu - 40; 6276 u32 nsegs, n, segs = 0, flags; 6277 6278 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 6279 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 6280 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 6281 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 6282 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 6283 if (tpa_flags & BNXT_FLAG_GRO) 6284 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 6285 6286 req->flags = cpu_to_le32(flags); 6287 6288 req->enables = 6289 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 6290 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 6291 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 6292 6293 /* Number of segs are log2 units, and first packet is not 6294 * included as part of this units. 6295 */ 6296 if (mss <= BNXT_RX_PAGE_SIZE) { 6297 n = BNXT_RX_PAGE_SIZE / mss; 6298 nsegs = (MAX_SKB_FRAGS - 1) * n; 6299 } else { 6300 n = mss / BNXT_RX_PAGE_SIZE; 6301 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 6302 n++; 6303 nsegs = (MAX_SKB_FRAGS - n) / n; 6304 } 6305 6306 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6307 segs = MAX_TPA_SEGS_P5; 6308 max_aggs = bp->max_tpa; 6309 } else { 6310 segs = ilog2(nsegs); 6311 } 6312 req->max_agg_segs = cpu_to_le16(segs); 6313 req->max_aggs = cpu_to_le16(max_aggs); 6314 6315 req->min_agg_len = cpu_to_le32(512); 6316 bnxt_hwrm_vnic_update_tunl_tpa(bp, req); 6317 } 6318 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6319 6320 return hwrm_req_send(bp, req); 6321 } 6322 6323 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 6324 { 6325 struct bnxt_ring_grp_info *grp_info; 6326 6327 grp_info = &bp->grp_info[ring->grp_idx]; 6328 return grp_info->cp_fw_ring_id; 6329 } 6330 6331 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 6332 { 6333 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6334 return rxr->rx_cpr->cp_ring_struct.fw_ring_id; 6335 else 6336 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 6337 } 6338 6339 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 6340 { 6341 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6342 return txr->tx_cpr->cp_ring_struct.fw_ring_id; 6343 else 6344 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 6345 } 6346 6347 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp) 6348 { 6349 int entries; 6350 6351 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6352 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 6353 else 6354 entries = HW_HASH_INDEX_SIZE; 6355 6356 bp->rss_indir_tbl_entries = entries; 6357 bp->rss_indir_tbl = 6358 kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), GFP_KERNEL); 6359 if (!bp->rss_indir_tbl) 6360 return -ENOMEM; 6361 6362 return 0; 6363 } 6364 6365 void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp, 6366 struct ethtool_rxfh_context *rss_ctx) 6367 { 6368 u16 max_rings, max_entries, pad, i; 6369 u32 *rss_indir_tbl; 6370 6371 if (!bp->rx_nr_rings) 6372 return; 6373 6374 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6375 max_rings = bp->rx_nr_rings - 1; 6376 else 6377 max_rings = bp->rx_nr_rings; 6378 6379 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 6380 if (rss_ctx) 6381 rss_indir_tbl = ethtool_rxfh_context_indir(rss_ctx); 6382 else 6383 rss_indir_tbl = &bp->rss_indir_tbl[0]; 6384 6385 for (i = 0; i < max_entries; i++) 6386 rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 6387 6388 pad = bp->rss_indir_tbl_entries - max_entries; 6389 if (pad) 6390 memset(&rss_indir_tbl[i], 0, pad * sizeof(*rss_indir_tbl)); 6391 } 6392 6393 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 6394 { 6395 u32 i, tbl_size, max_ring = 0; 6396 6397 if (!bp->rss_indir_tbl) 6398 return 0; 6399 6400 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6401 for (i = 0; i < tbl_size; i++) 6402 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 6403 return max_ring; 6404 } 6405 6406 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 6407 { 6408 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6409 if (!rx_rings) 6410 return 0; 6411 return bnxt_calc_nr_ring_pages(rx_rings - 1, 6412 BNXT_RSS_TABLE_ENTRIES_P5); 6413 } 6414 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6415 return 2; 6416 return 1; 6417 } 6418 6419 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6420 { 6421 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 6422 u16 i, j; 6423 6424 /* Fill the RSS indirection table with ring group ids */ 6425 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 6426 if (!no_rss) 6427 j = bp->rss_indir_tbl[i]; 6428 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 6429 } 6430 } 6431 6432 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 6433 struct bnxt_vnic_info *vnic) 6434 { 6435 __le16 *ring_tbl = vnic->rss_table; 6436 struct bnxt_rx_ring_info *rxr; 6437 u16 tbl_size, i; 6438 6439 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6440 6441 for (i = 0; i < tbl_size; i++) { 6442 u16 ring_id, j; 6443 6444 if (vnic->flags & BNXT_VNIC_NTUPLE_FLAG) 6445 j = ethtool_rxfh_indir_default(i, bp->rx_nr_rings); 6446 else if (vnic->flags & BNXT_VNIC_RSSCTX_FLAG) 6447 j = ethtool_rxfh_context_indir(vnic->rss_ctx)[i]; 6448 else 6449 j = bp->rss_indir_tbl[i]; 6450 rxr = &bp->rx_ring[j]; 6451 6452 ring_id = rxr->rx_ring_struct.fw_ring_id; 6453 *ring_tbl++ = cpu_to_le16(ring_id); 6454 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6455 *ring_tbl++ = cpu_to_le16(ring_id); 6456 } 6457 } 6458 6459 static void 6460 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req, 6461 struct bnxt_vnic_info *vnic) 6462 { 6463 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6464 bnxt_fill_hw_rss_tbl_p5(bp, vnic); 6465 if (bp->flags & BNXT_FLAG_CHIP_P7) 6466 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_IPSEC_HASH_TYPE_CFG_SUPPORT; 6467 } else { 6468 bnxt_fill_hw_rss_tbl(bp, vnic); 6469 } 6470 6471 if (bp->rss_hash_delta) { 6472 req->hash_type = cpu_to_le32(bp->rss_hash_delta); 6473 if (bp->rss_hash_cfg & bp->rss_hash_delta) 6474 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE; 6475 else 6476 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE; 6477 } else { 6478 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 6479 } 6480 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 6481 req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 6482 req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 6483 } 6484 6485 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6486 bool set_rss) 6487 { 6488 struct hwrm_vnic_rss_cfg_input *req; 6489 int rc; 6490 6491 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) || 6492 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 6493 return 0; 6494 6495 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6496 if (rc) 6497 return rc; 6498 6499 if (set_rss) 6500 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6501 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6502 return hwrm_req_send(bp, req); 6503 } 6504 6505 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, 6506 struct bnxt_vnic_info *vnic, bool set_rss) 6507 { 6508 struct hwrm_vnic_rss_cfg_input *req; 6509 dma_addr_t ring_tbl_map; 6510 u32 i, nr_ctxs; 6511 int rc; 6512 6513 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6514 if (rc) 6515 return rc; 6516 6517 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6518 if (!set_rss) 6519 return hwrm_req_send(bp, req); 6520 6521 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6522 ring_tbl_map = vnic->rss_table_dma_addr; 6523 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 6524 6525 hwrm_req_hold(bp, req); 6526 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 6527 req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 6528 req->ring_table_pair_index = i; 6529 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 6530 rc = hwrm_req_send(bp, req); 6531 if (rc) 6532 goto exit; 6533 } 6534 6535 exit: 6536 hwrm_req_drop(bp, req); 6537 return rc; 6538 } 6539 6540 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp) 6541 { 6542 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6543 struct hwrm_vnic_rss_qcfg_output *resp; 6544 struct hwrm_vnic_rss_qcfg_input *req; 6545 6546 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG)) 6547 return; 6548 6549 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6550 /* all contexts configured to same hash_type, zero always exists */ 6551 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6552 resp = hwrm_req_hold(bp, req); 6553 if (!hwrm_req_send(bp, req)) { 6554 bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg; 6555 bp->rss_hash_delta = 0; 6556 } 6557 hwrm_req_drop(bp, req); 6558 } 6559 6560 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6561 { 6562 struct hwrm_vnic_plcmodes_cfg_input *req; 6563 int rc; 6564 6565 rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG); 6566 if (rc) 6567 return rc; 6568 6569 req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT); 6570 req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID); 6571 6572 if (BNXT_RX_PAGE_MODE(bp)) { 6573 req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size); 6574 } else { 6575 req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 6576 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 6577 req->enables |= 6578 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 6579 req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 6580 req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 6581 } 6582 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 6583 return hwrm_req_send(bp, req); 6584 } 6585 6586 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, 6587 struct bnxt_vnic_info *vnic, 6588 u16 ctx_idx) 6589 { 6590 struct hwrm_vnic_rss_cos_lb_ctx_free_input *req; 6591 6592 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE)) 6593 return; 6594 6595 req->rss_cos_lb_ctx_id = 6596 cpu_to_le16(vnic->fw_rss_cos_lb_ctx[ctx_idx]); 6597 6598 hwrm_req_send(bp, req); 6599 vnic->fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 6600 } 6601 6602 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 6603 { 6604 int i, j; 6605 6606 for (i = 0; i < bp->nr_vnics; i++) { 6607 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 6608 6609 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 6610 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 6611 bnxt_hwrm_vnic_ctx_free_one(bp, vnic, j); 6612 } 6613 } 6614 bp->rsscos_nr_ctxs = 0; 6615 } 6616 6617 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, 6618 struct bnxt_vnic_info *vnic, u16 ctx_idx) 6619 { 6620 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp; 6621 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req; 6622 int rc; 6623 6624 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC); 6625 if (rc) 6626 return rc; 6627 6628 resp = hwrm_req_hold(bp, req); 6629 rc = hwrm_req_send(bp, req); 6630 if (!rc) 6631 vnic->fw_rss_cos_lb_ctx[ctx_idx] = 6632 le16_to_cpu(resp->rss_cos_lb_ctx_id); 6633 hwrm_req_drop(bp, req); 6634 6635 return rc; 6636 } 6637 6638 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 6639 { 6640 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 6641 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 6642 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 6643 } 6644 6645 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6646 { 6647 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6648 struct hwrm_vnic_cfg_input *req; 6649 unsigned int ring = 0, grp_idx; 6650 u16 def_vlan = 0; 6651 int rc; 6652 6653 rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG); 6654 if (rc) 6655 return rc; 6656 6657 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6658 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 6659 6660 req->default_rx_ring_id = 6661 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 6662 req->default_cmpl_ring_id = 6663 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 6664 req->enables = 6665 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 6666 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 6667 goto vnic_mru; 6668 } 6669 req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 6670 /* Only RSS support for now TBD: COS & LB */ 6671 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 6672 req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6673 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6674 VNIC_CFG_REQ_ENABLES_MRU); 6675 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 6676 req->rss_rule = cpu_to_le16(vnic0->fw_rss_cos_lb_ctx[0]); 6677 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6678 VNIC_CFG_REQ_ENABLES_MRU); 6679 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 6680 } else { 6681 req->rss_rule = cpu_to_le16(0xffff); 6682 } 6683 6684 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 6685 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 6686 req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 6687 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 6688 } else { 6689 req->cos_rule = cpu_to_le16(0xffff); 6690 } 6691 6692 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 6693 ring = 0; 6694 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 6695 ring = vnic->vnic_id - 1; 6696 else if ((vnic->vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 6697 ring = bp->rx_nr_rings - 1; 6698 6699 grp_idx = bp->rx_ring[ring].bnapi->index; 6700 req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 6701 req->lb_rule = cpu_to_le16(0xffff); 6702 vnic_mru: 6703 vnic->mru = bp->dev->mtu + ETH_HLEN + VLAN_HLEN; 6704 req->mru = cpu_to_le16(vnic->mru); 6705 6706 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6707 #ifdef CONFIG_BNXT_SRIOV 6708 if (BNXT_VF(bp)) 6709 def_vlan = bp->vf.vlan; 6710 #endif 6711 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 6712 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 6713 if (vnic->vnic_id == BNXT_VNIC_DEFAULT && bnxt_ulp_registered(bp->edev)) 6714 req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 6715 6716 return hwrm_req_send(bp, req); 6717 } 6718 6719 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, 6720 struct bnxt_vnic_info *vnic) 6721 { 6722 if (vnic->fw_vnic_id != INVALID_HW_RING_ID) { 6723 struct hwrm_vnic_free_input *req; 6724 6725 if (hwrm_req_init(bp, req, HWRM_VNIC_FREE)) 6726 return; 6727 6728 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 6729 6730 hwrm_req_send(bp, req); 6731 vnic->fw_vnic_id = INVALID_HW_RING_ID; 6732 } 6733 } 6734 6735 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 6736 { 6737 u16 i; 6738 6739 for (i = 0; i < bp->nr_vnics; i++) 6740 bnxt_hwrm_vnic_free_one(bp, &bp->vnic_info[i]); 6741 } 6742 6743 int bnxt_hwrm_vnic_alloc(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6744 unsigned int start_rx_ring_idx, 6745 unsigned int nr_rings) 6746 { 6747 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 6748 struct hwrm_vnic_alloc_output *resp; 6749 struct hwrm_vnic_alloc_input *req; 6750 int rc; 6751 6752 rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC); 6753 if (rc) 6754 return rc; 6755 6756 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6757 goto vnic_no_ring_grps; 6758 6759 /* map ring groups to this vnic */ 6760 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 6761 grp_idx = bp->rx_ring[i].bnapi->index; 6762 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 6763 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 6764 j, nr_rings); 6765 break; 6766 } 6767 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 6768 } 6769 6770 vnic_no_ring_grps: 6771 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 6772 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 6773 if (vnic->vnic_id == BNXT_VNIC_DEFAULT) 6774 req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 6775 6776 resp = hwrm_req_hold(bp, req); 6777 rc = hwrm_req_send(bp, req); 6778 if (!rc) 6779 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 6780 hwrm_req_drop(bp, req); 6781 return rc; 6782 } 6783 6784 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 6785 { 6786 struct hwrm_vnic_qcaps_output *resp; 6787 struct hwrm_vnic_qcaps_input *req; 6788 int rc; 6789 6790 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 6791 bp->flags &= ~BNXT_FLAG_ROCE_MIRROR_CAP; 6792 bp->rss_cap &= ~BNXT_RSS_CAP_NEW_RSS_CAP; 6793 if (bp->hwrm_spec_code < 0x10600) 6794 return 0; 6795 6796 rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS); 6797 if (rc) 6798 return rc; 6799 6800 resp = hwrm_req_hold(bp, req); 6801 rc = hwrm_req_send(bp, req); 6802 if (!rc) { 6803 u32 flags = le32_to_cpu(resp->flags); 6804 6805 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 6806 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 6807 bp->rss_cap |= BNXT_RSS_CAP_NEW_RSS_CAP; 6808 if (flags & 6809 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 6810 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 6811 6812 /* Older P5 fw before EXT_HW_STATS support did not set 6813 * VLAN_STRIP_CAP properly. 6814 */ 6815 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 6816 (BNXT_CHIP_P5(bp) && 6817 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 6818 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 6819 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP) 6820 bp->rss_cap |= BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA; 6821 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_PROF_TCAM_MODE_ENABLED) 6822 bp->rss_cap |= BNXT_RSS_CAP_RSS_TCAM; 6823 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 6824 if (bp->max_tpa_v2) { 6825 if (BNXT_CHIP_P5(bp)) 6826 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 6827 else 6828 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P7; 6829 } 6830 if (flags & VNIC_QCAPS_RESP_FLAGS_HW_TUNNEL_TPA_CAP) 6831 bp->fw_cap |= BNXT_FW_CAP_VNIC_TUNNEL_TPA; 6832 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV4_CAP) 6833 bp->rss_cap |= BNXT_RSS_CAP_AH_V4_RSS_CAP; 6834 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV6_CAP) 6835 bp->rss_cap |= BNXT_RSS_CAP_AH_V6_RSS_CAP; 6836 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV4_CAP) 6837 bp->rss_cap |= BNXT_RSS_CAP_ESP_V4_RSS_CAP; 6838 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV6_CAP) 6839 bp->rss_cap |= BNXT_RSS_CAP_ESP_V6_RSS_CAP; 6840 if (flags & VNIC_QCAPS_RESP_FLAGS_RE_FLUSH_CAP) 6841 bp->fw_cap |= BNXT_FW_CAP_VNIC_RE_FLUSH; 6842 } 6843 hwrm_req_drop(bp, req); 6844 return rc; 6845 } 6846 6847 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 6848 { 6849 struct hwrm_ring_grp_alloc_output *resp; 6850 struct hwrm_ring_grp_alloc_input *req; 6851 int rc; 6852 u16 i; 6853 6854 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6855 return 0; 6856 6857 rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC); 6858 if (rc) 6859 return rc; 6860 6861 resp = hwrm_req_hold(bp, req); 6862 for (i = 0; i < bp->rx_nr_rings; i++) { 6863 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 6864 6865 req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 6866 req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 6867 req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 6868 req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 6869 6870 rc = hwrm_req_send(bp, req); 6871 6872 if (rc) 6873 break; 6874 6875 bp->grp_info[grp_idx].fw_grp_id = 6876 le32_to_cpu(resp->ring_group_id); 6877 } 6878 hwrm_req_drop(bp, req); 6879 return rc; 6880 } 6881 6882 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 6883 { 6884 struct hwrm_ring_grp_free_input *req; 6885 u16 i; 6886 6887 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 6888 return; 6889 6890 if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE)) 6891 return; 6892 6893 hwrm_req_hold(bp, req); 6894 for (i = 0; i < bp->cp_nr_rings; i++) { 6895 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 6896 continue; 6897 req->ring_group_id = 6898 cpu_to_le32(bp->grp_info[i].fw_grp_id); 6899 6900 hwrm_req_send(bp, req); 6901 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 6902 } 6903 hwrm_req_drop(bp, req); 6904 } 6905 6906 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 6907 struct bnxt_ring_struct *ring, 6908 u32 ring_type, u32 map_index) 6909 { 6910 struct hwrm_ring_alloc_output *resp; 6911 struct hwrm_ring_alloc_input *req; 6912 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 6913 struct bnxt_ring_grp_info *grp_info; 6914 int rc, err = 0; 6915 u16 ring_id; 6916 6917 rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC); 6918 if (rc) 6919 goto exit; 6920 6921 req->enables = 0; 6922 if (rmem->nr_pages > 1) { 6923 req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 6924 /* Page size is in log2 units */ 6925 req->page_size = BNXT_PAGE_SHIFT; 6926 req->page_tbl_depth = 1; 6927 } else { 6928 req->page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 6929 } 6930 req->fbo = 0; 6931 /* Association of ring index with doorbell index and MSIX number */ 6932 req->logical_id = cpu_to_le16(map_index); 6933 6934 switch (ring_type) { 6935 case HWRM_RING_ALLOC_TX: { 6936 struct bnxt_tx_ring_info *txr; 6937 u16 flags = 0; 6938 6939 txr = container_of(ring, struct bnxt_tx_ring_info, 6940 tx_ring_struct); 6941 req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 6942 /* Association of transmit ring with completion ring */ 6943 grp_info = &bp->grp_info[ring->grp_idx]; 6944 req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 6945 req->length = cpu_to_le32(bp->tx_ring_mask + 1); 6946 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6947 req->queue_id = cpu_to_le16(ring->queue_id); 6948 if (bp->flags & BNXT_FLAG_TX_COAL_CMPL) 6949 req->cmpl_coal_cnt = 6950 RING_ALLOC_REQ_CMPL_COAL_CNT_COAL_64; 6951 if ((bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) && bp->ptp_cfg) 6952 flags |= RING_ALLOC_REQ_FLAGS_TX_PKT_TS_CMPL_ENABLE; 6953 req->flags = cpu_to_le16(flags); 6954 break; 6955 } 6956 case HWRM_RING_ALLOC_RX: 6957 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 6958 req->length = cpu_to_le32(bp->rx_ring_mask + 1); 6959 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6960 u16 flags = 0; 6961 6962 /* Association of rx ring with stats context */ 6963 grp_info = &bp->grp_info[ring->grp_idx]; 6964 req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 6965 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6966 req->enables |= cpu_to_le32( 6967 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 6968 if (NET_IP_ALIGN == 2) 6969 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD; 6970 req->flags = cpu_to_le16(flags); 6971 } 6972 break; 6973 case HWRM_RING_ALLOC_AGG: 6974 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6975 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 6976 /* Association of agg ring with rx ring */ 6977 grp_info = &bp->grp_info[ring->grp_idx]; 6978 req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 6979 req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 6980 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6981 req->enables |= cpu_to_le32( 6982 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID | 6983 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 6984 } else { 6985 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 6986 } 6987 req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 6988 break; 6989 case HWRM_RING_ALLOC_CMPL: 6990 req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 6991 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 6992 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6993 /* Association of cp ring with nq */ 6994 grp_info = &bp->grp_info[map_index]; 6995 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 6996 req->cq_handle = cpu_to_le64(ring->handle); 6997 req->enables |= cpu_to_le32( 6998 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 6999 } else { 7000 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 7001 } 7002 break; 7003 case HWRM_RING_ALLOC_NQ: 7004 req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 7005 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 7006 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 7007 break; 7008 default: 7009 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 7010 ring_type); 7011 return -1; 7012 } 7013 7014 resp = hwrm_req_hold(bp, req); 7015 rc = hwrm_req_send(bp, req); 7016 err = le16_to_cpu(resp->error_code); 7017 ring_id = le16_to_cpu(resp->ring_id); 7018 hwrm_req_drop(bp, req); 7019 7020 exit: 7021 if (rc || err) { 7022 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 7023 ring_type, rc, err); 7024 return -EIO; 7025 } 7026 ring->fw_ring_id = ring_id; 7027 return rc; 7028 } 7029 7030 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 7031 { 7032 int rc; 7033 7034 if (BNXT_PF(bp)) { 7035 struct hwrm_func_cfg_input *req; 7036 7037 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 7038 if (rc) 7039 return rc; 7040 7041 req->fid = cpu_to_le16(0xffff); 7042 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 7043 req->async_event_cr = cpu_to_le16(idx); 7044 return hwrm_req_send(bp, req); 7045 } else { 7046 struct hwrm_func_vf_cfg_input *req; 7047 7048 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); 7049 if (rc) 7050 return rc; 7051 7052 req->enables = 7053 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 7054 req->async_event_cr = cpu_to_le16(idx); 7055 return hwrm_req_send(bp, req); 7056 } 7057 } 7058 7059 static void bnxt_set_db_mask(struct bnxt *bp, struct bnxt_db_info *db, 7060 u32 ring_type) 7061 { 7062 switch (ring_type) { 7063 case HWRM_RING_ALLOC_TX: 7064 db->db_ring_mask = bp->tx_ring_mask; 7065 break; 7066 case HWRM_RING_ALLOC_RX: 7067 db->db_ring_mask = bp->rx_ring_mask; 7068 break; 7069 case HWRM_RING_ALLOC_AGG: 7070 db->db_ring_mask = bp->rx_agg_ring_mask; 7071 break; 7072 case HWRM_RING_ALLOC_CMPL: 7073 case HWRM_RING_ALLOC_NQ: 7074 db->db_ring_mask = bp->cp_ring_mask; 7075 break; 7076 } 7077 if (bp->flags & BNXT_FLAG_CHIP_P7) { 7078 db->db_epoch_mask = db->db_ring_mask + 1; 7079 db->db_epoch_shift = DBR_EPOCH_SFT - ilog2(db->db_epoch_mask); 7080 } 7081 } 7082 7083 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 7084 u32 map_idx, u32 xid) 7085 { 7086 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7087 switch (ring_type) { 7088 case HWRM_RING_ALLOC_TX: 7089 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 7090 break; 7091 case HWRM_RING_ALLOC_RX: 7092 case HWRM_RING_ALLOC_AGG: 7093 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 7094 break; 7095 case HWRM_RING_ALLOC_CMPL: 7096 db->db_key64 = DBR_PATH_L2; 7097 break; 7098 case HWRM_RING_ALLOC_NQ: 7099 db->db_key64 = DBR_PATH_L2; 7100 break; 7101 } 7102 db->db_key64 |= (u64)xid << DBR_XID_SFT; 7103 7104 if (bp->flags & BNXT_FLAG_CHIP_P7) 7105 db->db_key64 |= DBR_VALID; 7106 7107 db->doorbell = bp->bar1 + bp->db_offset; 7108 } else { 7109 db->doorbell = bp->bar1 + map_idx * 0x80; 7110 switch (ring_type) { 7111 case HWRM_RING_ALLOC_TX: 7112 db->db_key32 = DB_KEY_TX; 7113 break; 7114 case HWRM_RING_ALLOC_RX: 7115 case HWRM_RING_ALLOC_AGG: 7116 db->db_key32 = DB_KEY_RX; 7117 break; 7118 case HWRM_RING_ALLOC_CMPL: 7119 db->db_key32 = DB_KEY_CP; 7120 break; 7121 } 7122 } 7123 bnxt_set_db_mask(bp, db, ring_type); 7124 } 7125 7126 static int bnxt_hwrm_rx_ring_alloc(struct bnxt *bp, 7127 struct bnxt_rx_ring_info *rxr) 7128 { 7129 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 7130 struct bnxt_napi *bnapi = rxr->bnapi; 7131 u32 type = HWRM_RING_ALLOC_RX; 7132 u32 map_idx = bnapi->index; 7133 int rc; 7134 7135 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7136 if (rc) 7137 return rc; 7138 7139 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 7140 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 7141 7142 return 0; 7143 } 7144 7145 static int bnxt_hwrm_rx_agg_ring_alloc(struct bnxt *bp, 7146 struct bnxt_rx_ring_info *rxr) 7147 { 7148 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 7149 u32 type = HWRM_RING_ALLOC_AGG; 7150 u32 grp_idx = ring->grp_idx; 7151 u32 map_idx; 7152 int rc; 7153 7154 map_idx = grp_idx + bp->rx_nr_rings; 7155 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7156 if (rc) 7157 return rc; 7158 7159 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 7160 ring->fw_ring_id); 7161 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 7162 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 7163 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 7164 7165 return 0; 7166 } 7167 7168 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 7169 { 7170 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 7171 int i, rc = 0; 7172 u32 type; 7173 7174 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7175 type = HWRM_RING_ALLOC_NQ; 7176 else 7177 type = HWRM_RING_ALLOC_CMPL; 7178 for (i = 0; i < bp->cp_nr_rings; i++) { 7179 struct bnxt_napi *bnapi = bp->bnapi[i]; 7180 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7181 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 7182 u32 map_idx = ring->map_idx; 7183 unsigned int vector; 7184 7185 vector = bp->irq_tbl[map_idx].vector; 7186 disable_irq_nosync(vector); 7187 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7188 if (rc) { 7189 enable_irq(vector); 7190 goto err_out; 7191 } 7192 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 7193 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 7194 enable_irq(vector); 7195 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 7196 7197 if (!i) { 7198 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 7199 if (rc) 7200 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 7201 } 7202 } 7203 7204 type = HWRM_RING_ALLOC_TX; 7205 for (i = 0; i < bp->tx_nr_rings; i++) { 7206 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 7207 struct bnxt_ring_struct *ring; 7208 u32 map_idx; 7209 7210 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7211 struct bnxt_cp_ring_info *cpr2 = txr->tx_cpr; 7212 struct bnxt_napi *bnapi = txr->bnapi; 7213 u32 type2 = HWRM_RING_ALLOC_CMPL; 7214 7215 ring = &cpr2->cp_ring_struct; 7216 ring->handle = BNXT_SET_NQ_HDL(cpr2); 7217 map_idx = bnapi->index; 7218 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 7219 if (rc) 7220 goto err_out; 7221 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 7222 ring->fw_ring_id); 7223 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 7224 } 7225 ring = &txr->tx_ring_struct; 7226 map_idx = i; 7227 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7228 if (rc) 7229 goto err_out; 7230 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id); 7231 } 7232 7233 for (i = 0; i < bp->rx_nr_rings; i++) { 7234 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 7235 7236 rc = bnxt_hwrm_rx_ring_alloc(bp, rxr); 7237 if (rc) 7238 goto err_out; 7239 /* If we have agg rings, post agg buffers first. */ 7240 if (!agg_rings) 7241 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 7242 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7243 struct bnxt_cp_ring_info *cpr2 = rxr->rx_cpr; 7244 struct bnxt_napi *bnapi = rxr->bnapi; 7245 u32 type2 = HWRM_RING_ALLOC_CMPL; 7246 struct bnxt_ring_struct *ring; 7247 u32 map_idx = bnapi->index; 7248 7249 ring = &cpr2->cp_ring_struct; 7250 ring->handle = BNXT_SET_NQ_HDL(cpr2); 7251 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 7252 if (rc) 7253 goto err_out; 7254 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 7255 ring->fw_ring_id); 7256 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 7257 } 7258 } 7259 7260 if (agg_rings) { 7261 for (i = 0; i < bp->rx_nr_rings; i++) { 7262 rc = bnxt_hwrm_rx_agg_ring_alloc(bp, &bp->rx_ring[i]); 7263 if (rc) 7264 goto err_out; 7265 } 7266 } 7267 err_out: 7268 return rc; 7269 } 7270 7271 static int hwrm_ring_free_send_msg(struct bnxt *bp, 7272 struct bnxt_ring_struct *ring, 7273 u32 ring_type, int cmpl_ring_id) 7274 { 7275 struct hwrm_ring_free_output *resp; 7276 struct hwrm_ring_free_input *req; 7277 u16 error_code = 0; 7278 int rc; 7279 7280 if (BNXT_NO_FW_ACCESS(bp)) 7281 return 0; 7282 7283 rc = hwrm_req_init(bp, req, HWRM_RING_FREE); 7284 if (rc) 7285 goto exit; 7286 7287 req->cmpl_ring = cpu_to_le16(cmpl_ring_id); 7288 req->ring_type = ring_type; 7289 req->ring_id = cpu_to_le16(ring->fw_ring_id); 7290 7291 resp = hwrm_req_hold(bp, req); 7292 rc = hwrm_req_send(bp, req); 7293 error_code = le16_to_cpu(resp->error_code); 7294 hwrm_req_drop(bp, req); 7295 exit: 7296 if (rc || error_code) { 7297 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 7298 ring_type, rc, error_code); 7299 return -EIO; 7300 } 7301 return 0; 7302 } 7303 7304 static void bnxt_hwrm_rx_ring_free(struct bnxt *bp, 7305 struct bnxt_rx_ring_info *rxr, 7306 bool close_path) 7307 { 7308 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 7309 u32 grp_idx = rxr->bnapi->index; 7310 u32 cmpl_ring_id; 7311 7312 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7313 return; 7314 7315 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 7316 hwrm_ring_free_send_msg(bp, ring, 7317 RING_FREE_REQ_RING_TYPE_RX, 7318 close_path ? cmpl_ring_id : 7319 INVALID_HW_RING_ID); 7320 ring->fw_ring_id = INVALID_HW_RING_ID; 7321 bp->grp_info[grp_idx].rx_fw_ring_id = INVALID_HW_RING_ID; 7322 } 7323 7324 static void bnxt_hwrm_rx_agg_ring_free(struct bnxt *bp, 7325 struct bnxt_rx_ring_info *rxr, 7326 bool close_path) 7327 { 7328 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 7329 u32 grp_idx = rxr->bnapi->index; 7330 u32 type, cmpl_ring_id; 7331 7332 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7333 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 7334 else 7335 type = RING_FREE_REQ_RING_TYPE_RX; 7336 7337 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7338 return; 7339 7340 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 7341 hwrm_ring_free_send_msg(bp, ring, type, 7342 close_path ? cmpl_ring_id : 7343 INVALID_HW_RING_ID); 7344 ring->fw_ring_id = INVALID_HW_RING_ID; 7345 bp->grp_info[grp_idx].agg_fw_ring_id = INVALID_HW_RING_ID; 7346 } 7347 7348 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 7349 { 7350 u32 type; 7351 int i; 7352 7353 if (!bp->bnapi) 7354 return; 7355 7356 for (i = 0; i < bp->tx_nr_rings; i++) { 7357 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 7358 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 7359 7360 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 7361 u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr); 7362 7363 hwrm_ring_free_send_msg(bp, ring, 7364 RING_FREE_REQ_RING_TYPE_TX, 7365 close_path ? cmpl_ring_id : 7366 INVALID_HW_RING_ID); 7367 ring->fw_ring_id = INVALID_HW_RING_ID; 7368 } 7369 } 7370 7371 for (i = 0; i < bp->rx_nr_rings; i++) { 7372 bnxt_hwrm_rx_ring_free(bp, &bp->rx_ring[i], close_path); 7373 bnxt_hwrm_rx_agg_ring_free(bp, &bp->rx_ring[i], close_path); 7374 } 7375 7376 /* The completion rings are about to be freed. After that the 7377 * IRQ doorbell will not work anymore. So we need to disable 7378 * IRQ here. 7379 */ 7380 bnxt_disable_int_sync(bp); 7381 7382 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7383 type = RING_FREE_REQ_RING_TYPE_NQ; 7384 else 7385 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 7386 for (i = 0; i < bp->cp_nr_rings; i++) { 7387 struct bnxt_napi *bnapi = bp->bnapi[i]; 7388 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7389 struct bnxt_ring_struct *ring; 7390 int j; 7391 7392 for (j = 0; j < cpr->cp_ring_count && cpr->cp_ring_arr; j++) { 7393 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 7394 7395 ring = &cpr2->cp_ring_struct; 7396 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7397 continue; 7398 hwrm_ring_free_send_msg(bp, ring, 7399 RING_FREE_REQ_RING_TYPE_L2_CMPL, 7400 INVALID_HW_RING_ID); 7401 ring->fw_ring_id = INVALID_HW_RING_ID; 7402 } 7403 ring = &cpr->cp_ring_struct; 7404 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 7405 hwrm_ring_free_send_msg(bp, ring, type, 7406 INVALID_HW_RING_ID); 7407 ring->fw_ring_id = INVALID_HW_RING_ID; 7408 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 7409 } 7410 } 7411 } 7412 7413 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7414 bool shared); 7415 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7416 bool shared); 7417 7418 static int bnxt_hwrm_get_rings(struct bnxt *bp) 7419 { 7420 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7421 struct hwrm_func_qcfg_output *resp; 7422 struct hwrm_func_qcfg_input *req; 7423 int rc; 7424 7425 if (bp->hwrm_spec_code < 0x10601) 7426 return 0; 7427 7428 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7429 if (rc) 7430 return rc; 7431 7432 req->fid = cpu_to_le16(0xffff); 7433 resp = hwrm_req_hold(bp, req); 7434 rc = hwrm_req_send(bp, req); 7435 if (rc) { 7436 hwrm_req_drop(bp, req); 7437 return rc; 7438 } 7439 7440 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7441 if (BNXT_NEW_RM(bp)) { 7442 u16 cp, stats; 7443 7444 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 7445 hw_resc->resv_hw_ring_grps = 7446 le32_to_cpu(resp->alloc_hw_ring_grps); 7447 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 7448 hw_resc->resv_rsscos_ctxs = le16_to_cpu(resp->alloc_rsscos_ctx); 7449 cp = le16_to_cpu(resp->alloc_cmpl_rings); 7450 stats = le16_to_cpu(resp->alloc_stat_ctx); 7451 hw_resc->resv_irqs = cp; 7452 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7453 int rx = hw_resc->resv_rx_rings; 7454 int tx = hw_resc->resv_tx_rings; 7455 7456 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7457 rx >>= 1; 7458 if (cp < (rx + tx)) { 7459 rc = __bnxt_trim_rings(bp, &rx, &tx, cp, false); 7460 if (rc) 7461 goto get_rings_exit; 7462 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7463 rx <<= 1; 7464 hw_resc->resv_rx_rings = rx; 7465 hw_resc->resv_tx_rings = tx; 7466 } 7467 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 7468 hw_resc->resv_hw_ring_grps = rx; 7469 } 7470 hw_resc->resv_cp_rings = cp; 7471 hw_resc->resv_stat_ctxs = stats; 7472 } 7473 get_rings_exit: 7474 hwrm_req_drop(bp, req); 7475 return rc; 7476 } 7477 7478 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 7479 { 7480 struct hwrm_func_qcfg_output *resp; 7481 struct hwrm_func_qcfg_input *req; 7482 int rc; 7483 7484 if (bp->hwrm_spec_code < 0x10601) 7485 return 0; 7486 7487 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7488 if (rc) 7489 return rc; 7490 7491 req->fid = cpu_to_le16(fid); 7492 resp = hwrm_req_hold(bp, req); 7493 rc = hwrm_req_send(bp, req); 7494 if (!rc) 7495 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7496 7497 hwrm_req_drop(bp, req); 7498 return rc; 7499 } 7500 7501 static bool bnxt_rfs_supported(struct bnxt *bp); 7502 7503 static struct hwrm_func_cfg_input * 7504 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7505 { 7506 struct hwrm_func_cfg_input *req; 7507 u32 enables = 0; 7508 7509 if (bnxt_hwrm_func_cfg_short_req_init(bp, &req)) 7510 return NULL; 7511 7512 req->fid = cpu_to_le16(0xffff); 7513 enables |= hwr->tx ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7514 req->num_tx_rings = cpu_to_le16(hwr->tx); 7515 if (BNXT_NEW_RM(bp)) { 7516 enables |= hwr->rx ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 7517 enables |= hwr->stat ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7518 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7519 enables |= hwr->cp ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 7520 enables |= hwr->cp_p5 ? 7521 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7522 } else { 7523 enables |= hwr->cp ? 7524 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7525 enables |= hwr->grp ? 7526 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7527 } 7528 enables |= hwr->vnic ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 7529 enables |= hwr->rss_ctx ? FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 7530 0; 7531 req->num_rx_rings = cpu_to_le16(hwr->rx); 7532 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7533 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7534 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7535 req->num_msix = cpu_to_le16(hwr->cp); 7536 } else { 7537 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7538 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7539 } 7540 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7541 req->num_vnics = cpu_to_le16(hwr->vnic); 7542 } 7543 req->enables = cpu_to_le32(enables); 7544 return req; 7545 } 7546 7547 static struct hwrm_func_vf_cfg_input * 7548 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7549 { 7550 struct hwrm_func_vf_cfg_input *req; 7551 u32 enables = 0; 7552 7553 if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG)) 7554 return NULL; 7555 7556 enables |= hwr->tx ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7557 enables |= hwr->rx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 7558 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7559 enables |= hwr->stat ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7560 enables |= hwr->rss_ctx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7561 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7562 enables |= hwr->cp_p5 ? 7563 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7564 } else { 7565 enables |= hwr->cp ? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7566 enables |= hwr->grp ? 7567 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7568 } 7569 enables |= hwr->vnic ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 7570 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 7571 7572 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 7573 req->num_tx_rings = cpu_to_le16(hwr->tx); 7574 req->num_rx_rings = cpu_to_le16(hwr->rx); 7575 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7576 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7577 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7578 } else { 7579 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7580 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7581 } 7582 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7583 req->num_vnics = cpu_to_le16(hwr->vnic); 7584 7585 req->enables = cpu_to_le32(enables); 7586 return req; 7587 } 7588 7589 static int 7590 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7591 { 7592 struct hwrm_func_cfg_input *req; 7593 int rc; 7594 7595 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 7596 if (!req) 7597 return -ENOMEM; 7598 7599 if (!req->enables) { 7600 hwrm_req_drop(bp, req); 7601 return 0; 7602 } 7603 7604 rc = hwrm_req_send(bp, req); 7605 if (rc) 7606 return rc; 7607 7608 if (bp->hwrm_spec_code < 0x10601) 7609 bp->hw_resc.resv_tx_rings = hwr->tx; 7610 7611 return bnxt_hwrm_get_rings(bp); 7612 } 7613 7614 static int 7615 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7616 { 7617 struct hwrm_func_vf_cfg_input *req; 7618 int rc; 7619 7620 if (!BNXT_NEW_RM(bp)) { 7621 bp->hw_resc.resv_tx_rings = hwr->tx; 7622 return 0; 7623 } 7624 7625 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 7626 if (!req) 7627 return -ENOMEM; 7628 7629 rc = hwrm_req_send(bp, req); 7630 if (rc) 7631 return rc; 7632 7633 return bnxt_hwrm_get_rings(bp); 7634 } 7635 7636 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7637 { 7638 if (BNXT_PF(bp)) 7639 return bnxt_hwrm_reserve_pf_rings(bp, hwr); 7640 else 7641 return bnxt_hwrm_reserve_vf_rings(bp, hwr); 7642 } 7643 7644 int bnxt_nq_rings_in_use(struct bnxt *bp) 7645 { 7646 return bp->cp_nr_rings + bnxt_get_ulp_msix_num(bp); 7647 } 7648 7649 static int bnxt_cp_rings_in_use(struct bnxt *bp) 7650 { 7651 int cp; 7652 7653 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7654 return bnxt_nq_rings_in_use(bp); 7655 7656 cp = bp->tx_nr_rings + bp->rx_nr_rings; 7657 return cp; 7658 } 7659 7660 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 7661 { 7662 return bp->cp_nr_rings + bnxt_get_ulp_stat_ctxs(bp); 7663 } 7664 7665 static int bnxt_get_total_rss_ctxs(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7666 { 7667 if (!hwr->grp) 7668 return 0; 7669 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7670 int rss_ctx = bnxt_get_nr_rss_ctxs(bp, hwr->grp); 7671 7672 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7673 rss_ctx *= hwr->vnic; 7674 return rss_ctx; 7675 } 7676 if (BNXT_VF(bp)) 7677 return BNXT_VF_MAX_RSS_CTX; 7678 if (!(bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && bnxt_rfs_supported(bp)) 7679 return hwr->grp + 1; 7680 return 1; 7681 } 7682 7683 /* Check if a default RSS map needs to be setup. This function is only 7684 * used on older firmware that does not require reserving RX rings. 7685 */ 7686 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 7687 { 7688 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7689 7690 /* The RSS map is valid for RX rings set to resv_rx_rings */ 7691 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 7692 hw_resc->resv_rx_rings = bp->rx_nr_rings; 7693 if (!netif_is_rxfh_configured(bp->dev)) 7694 bnxt_set_dflt_rss_indir_tbl(bp, NULL); 7695 } 7696 } 7697 7698 static int bnxt_get_total_vnics(struct bnxt *bp, int rx_rings) 7699 { 7700 if (bp->flags & BNXT_FLAG_RFS) { 7701 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7702 return 2 + bp->num_rss_ctx; 7703 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7704 return rx_rings + 1; 7705 } 7706 return 1; 7707 } 7708 7709 static bool bnxt_need_reserve_rings(struct bnxt *bp) 7710 { 7711 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7712 int cp = bnxt_cp_rings_in_use(bp); 7713 int nq = bnxt_nq_rings_in_use(bp); 7714 int rx = bp->rx_nr_rings, stat; 7715 int vnic, grp = rx; 7716 7717 /* Old firmware does not need RX ring reservations but we still 7718 * need to setup a default RSS map when needed. With new firmware 7719 * we go through RX ring reservations first and then set up the 7720 * RSS map for the successfully reserved RX rings when needed. 7721 */ 7722 if (!BNXT_NEW_RM(bp)) 7723 bnxt_check_rss_tbl_no_rmgr(bp); 7724 7725 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 7726 bp->hwrm_spec_code >= 0x10601) 7727 return true; 7728 7729 if (!BNXT_NEW_RM(bp)) 7730 return false; 7731 7732 vnic = bnxt_get_total_vnics(bp, rx); 7733 7734 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7735 rx <<= 1; 7736 stat = bnxt_get_func_stat_ctxs(bp); 7737 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 7738 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 7739 (hw_resc->resv_hw_ring_grps != grp && 7740 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))) 7741 return true; 7742 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && BNXT_PF(bp) && 7743 hw_resc->resv_irqs != nq) 7744 return true; 7745 return false; 7746 } 7747 7748 static void bnxt_copy_reserved_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7749 { 7750 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7751 7752 hwr->tx = hw_resc->resv_tx_rings; 7753 if (BNXT_NEW_RM(bp)) { 7754 hwr->rx = hw_resc->resv_rx_rings; 7755 hwr->cp = hw_resc->resv_irqs; 7756 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7757 hwr->cp_p5 = hw_resc->resv_cp_rings; 7758 hwr->grp = hw_resc->resv_hw_ring_grps; 7759 hwr->vnic = hw_resc->resv_vnics; 7760 hwr->stat = hw_resc->resv_stat_ctxs; 7761 hwr->rss_ctx = hw_resc->resv_rsscos_ctxs; 7762 } 7763 } 7764 7765 static bool bnxt_rings_ok(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7766 { 7767 return hwr->tx && hwr->rx && hwr->cp && hwr->grp && hwr->vnic && 7768 hwr->stat && (hwr->cp_p5 || !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)); 7769 } 7770 7771 static int bnxt_get_avail_msix(struct bnxt *bp, int num); 7772 7773 static int __bnxt_reserve_rings(struct bnxt *bp) 7774 { 7775 struct bnxt_hw_rings hwr = {0}; 7776 int rx_rings, old_rx_rings, rc; 7777 int cp = bp->cp_nr_rings; 7778 int ulp_msix = 0; 7779 bool sh = false; 7780 int tx_cp; 7781 7782 if (!bnxt_need_reserve_rings(bp)) 7783 return 0; 7784 7785 if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) { 7786 ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want); 7787 if (!ulp_msix) 7788 bnxt_set_ulp_stat_ctxs(bp, 0); 7789 7790 if (ulp_msix > bp->ulp_num_msix_want) 7791 ulp_msix = bp->ulp_num_msix_want; 7792 hwr.cp = cp + ulp_msix; 7793 } else { 7794 hwr.cp = bnxt_nq_rings_in_use(bp); 7795 } 7796 7797 hwr.tx = bp->tx_nr_rings; 7798 hwr.rx = bp->rx_nr_rings; 7799 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 7800 sh = true; 7801 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7802 hwr.cp_p5 = hwr.rx + hwr.tx; 7803 7804 hwr.vnic = bnxt_get_total_vnics(bp, hwr.rx); 7805 7806 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7807 hwr.rx <<= 1; 7808 hwr.grp = bp->rx_nr_rings; 7809 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 7810 hwr.stat = bnxt_get_func_stat_ctxs(bp); 7811 old_rx_rings = bp->hw_resc.resv_rx_rings; 7812 7813 rc = bnxt_hwrm_reserve_rings(bp, &hwr); 7814 if (rc) 7815 return rc; 7816 7817 bnxt_copy_reserved_rings(bp, &hwr); 7818 7819 rx_rings = hwr.rx; 7820 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 7821 if (hwr.rx >= 2) { 7822 rx_rings = hwr.rx >> 1; 7823 } else { 7824 if (netif_running(bp->dev)) 7825 return -ENOMEM; 7826 7827 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 7828 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 7829 bp->dev->hw_features &= ~NETIF_F_LRO; 7830 bp->dev->features &= ~NETIF_F_LRO; 7831 bnxt_set_ring_params(bp); 7832 } 7833 } 7834 rx_rings = min_t(int, rx_rings, hwr.grp); 7835 hwr.cp = min_t(int, hwr.cp, bp->cp_nr_rings); 7836 if (hwr.stat > bnxt_get_ulp_stat_ctxs(bp)) 7837 hwr.stat -= bnxt_get_ulp_stat_ctxs(bp); 7838 hwr.cp = min_t(int, hwr.cp, hwr.stat); 7839 rc = bnxt_trim_rings(bp, &rx_rings, &hwr.tx, hwr.cp, sh); 7840 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7841 hwr.rx = rx_rings << 1; 7842 tx_cp = bnxt_num_tx_to_cp(bp, hwr.tx); 7843 hwr.cp = sh ? max_t(int, tx_cp, rx_rings) : tx_cp + rx_rings; 7844 bp->tx_nr_rings = hwr.tx; 7845 7846 /* If we cannot reserve all the RX rings, reset the RSS map only 7847 * if absolutely necessary 7848 */ 7849 if (rx_rings != bp->rx_nr_rings) { 7850 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 7851 rx_rings, bp->rx_nr_rings); 7852 if (netif_is_rxfh_configured(bp->dev) && 7853 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 7854 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 7855 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 7856 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 7857 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 7858 } 7859 } 7860 bp->rx_nr_rings = rx_rings; 7861 bp->cp_nr_rings = hwr.cp; 7862 7863 if (!bnxt_rings_ok(bp, &hwr)) 7864 return -ENOMEM; 7865 7866 if (old_rx_rings != bp->hw_resc.resv_rx_rings && 7867 !netif_is_rxfh_configured(bp->dev)) 7868 bnxt_set_dflt_rss_indir_tbl(bp, NULL); 7869 7870 if (!bnxt_ulp_registered(bp->edev) && BNXT_NEW_RM(bp)) { 7871 int resv_msix, resv_ctx, ulp_ctxs; 7872 struct bnxt_hw_resc *hw_resc; 7873 7874 hw_resc = &bp->hw_resc; 7875 resv_msix = hw_resc->resv_irqs - bp->cp_nr_rings; 7876 ulp_msix = min_t(int, resv_msix, ulp_msix); 7877 bnxt_set_ulp_msix_num(bp, ulp_msix); 7878 resv_ctx = hw_resc->resv_stat_ctxs - bp->cp_nr_rings; 7879 ulp_ctxs = min(resv_ctx, bnxt_get_ulp_stat_ctxs(bp)); 7880 bnxt_set_ulp_stat_ctxs(bp, ulp_ctxs); 7881 } 7882 7883 return rc; 7884 } 7885 7886 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7887 { 7888 struct hwrm_func_vf_cfg_input *req; 7889 u32 flags; 7890 7891 if (!BNXT_NEW_RM(bp)) 7892 return 0; 7893 7894 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 7895 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 7896 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 7897 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 7898 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 7899 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 7900 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 7901 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7902 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 7903 7904 req->flags = cpu_to_le32(flags); 7905 return hwrm_req_send_silent(bp, req); 7906 } 7907 7908 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7909 { 7910 struct hwrm_func_cfg_input *req; 7911 u32 flags; 7912 7913 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 7914 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 7915 if (BNXT_NEW_RM(bp)) { 7916 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 7917 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 7918 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 7919 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 7920 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7921 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 7922 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 7923 else 7924 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 7925 } 7926 7927 req->flags = cpu_to_le32(flags); 7928 return hwrm_req_send_silent(bp, req); 7929 } 7930 7931 static int bnxt_hwrm_check_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7932 { 7933 if (bp->hwrm_spec_code < 0x10801) 7934 return 0; 7935 7936 if (BNXT_PF(bp)) 7937 return bnxt_hwrm_check_pf_rings(bp, hwr); 7938 7939 return bnxt_hwrm_check_vf_rings(bp, hwr); 7940 } 7941 7942 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 7943 { 7944 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7945 struct hwrm_ring_aggint_qcaps_output *resp; 7946 struct hwrm_ring_aggint_qcaps_input *req; 7947 int rc; 7948 7949 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 7950 coal_cap->num_cmpl_dma_aggr_max = 63; 7951 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 7952 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 7953 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 7954 coal_cap->int_lat_tmr_min_max = 65535; 7955 coal_cap->int_lat_tmr_max_max = 65535; 7956 coal_cap->num_cmpl_aggr_int_max = 65535; 7957 coal_cap->timer_units = 80; 7958 7959 if (bp->hwrm_spec_code < 0x10902) 7960 return; 7961 7962 if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS)) 7963 return; 7964 7965 resp = hwrm_req_hold(bp, req); 7966 rc = hwrm_req_send_silent(bp, req); 7967 if (!rc) { 7968 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 7969 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 7970 coal_cap->num_cmpl_dma_aggr_max = 7971 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 7972 coal_cap->num_cmpl_dma_aggr_during_int_max = 7973 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 7974 coal_cap->cmpl_aggr_dma_tmr_max = 7975 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 7976 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 7977 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 7978 coal_cap->int_lat_tmr_min_max = 7979 le16_to_cpu(resp->int_lat_tmr_min_max); 7980 coal_cap->int_lat_tmr_max_max = 7981 le16_to_cpu(resp->int_lat_tmr_max_max); 7982 coal_cap->num_cmpl_aggr_int_max = 7983 le16_to_cpu(resp->num_cmpl_aggr_int_max); 7984 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 7985 } 7986 hwrm_req_drop(bp, req); 7987 } 7988 7989 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 7990 { 7991 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7992 7993 return usec * 1000 / coal_cap->timer_units; 7994 } 7995 7996 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 7997 struct bnxt_coal *hw_coal, 7998 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 7999 { 8000 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 8001 u16 val, tmr, max, flags = hw_coal->flags; 8002 u32 cmpl_params = coal_cap->cmpl_params; 8003 8004 max = hw_coal->bufs_per_record * 128; 8005 if (hw_coal->budget) 8006 max = hw_coal->bufs_per_record * hw_coal->budget; 8007 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 8008 8009 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 8010 req->num_cmpl_aggr_int = cpu_to_le16(val); 8011 8012 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 8013 req->num_cmpl_dma_aggr = cpu_to_le16(val); 8014 8015 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 8016 coal_cap->num_cmpl_dma_aggr_during_int_max); 8017 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 8018 8019 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 8020 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 8021 req->int_lat_tmr_max = cpu_to_le16(tmr); 8022 8023 /* min timer set to 1/2 of interrupt timer */ 8024 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 8025 val = tmr / 2; 8026 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 8027 req->int_lat_tmr_min = cpu_to_le16(val); 8028 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 8029 } 8030 8031 /* buf timer set to 1/4 of interrupt timer */ 8032 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 8033 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 8034 8035 if (cmpl_params & 8036 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 8037 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 8038 val = clamp_t(u16, tmr, 1, 8039 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 8040 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 8041 req->enables |= 8042 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 8043 } 8044 8045 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 8046 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 8047 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 8048 req->flags = cpu_to_le16(flags); 8049 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 8050 } 8051 8052 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 8053 struct bnxt_coal *hw_coal) 8054 { 8055 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req; 8056 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8057 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 8058 u32 nq_params = coal_cap->nq_params; 8059 u16 tmr; 8060 int rc; 8061 8062 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 8063 return 0; 8064 8065 rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8066 if (rc) 8067 return rc; 8068 8069 req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 8070 req->flags = 8071 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 8072 8073 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 8074 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 8075 req->int_lat_tmr_min = cpu_to_le16(tmr); 8076 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 8077 return hwrm_req_send(bp, req); 8078 } 8079 8080 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 8081 { 8082 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx; 8083 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8084 struct bnxt_coal coal; 8085 int rc; 8086 8087 /* Tick values in micro seconds. 8088 * 1 coal_buf x bufs_per_record = 1 completion record. 8089 */ 8090 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 8091 8092 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 8093 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 8094 8095 if (!bnapi->rx_ring) 8096 return -ENODEV; 8097 8098 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8099 if (rc) 8100 return rc; 8101 8102 bnxt_hwrm_set_coal_params(bp, &coal, req_rx); 8103 8104 req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 8105 8106 return hwrm_req_send(bp, req_rx); 8107 } 8108 8109 static int 8110 bnxt_hwrm_set_rx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 8111 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 8112 { 8113 u16 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 8114 8115 req->ring_id = cpu_to_le16(ring_id); 8116 return hwrm_req_send(bp, req); 8117 } 8118 8119 static int 8120 bnxt_hwrm_set_tx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 8121 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 8122 { 8123 struct bnxt_tx_ring_info *txr; 8124 int i, rc; 8125 8126 bnxt_for_each_napi_tx(i, bnapi, txr) { 8127 u16 ring_id; 8128 8129 ring_id = bnxt_cp_ring_for_tx(bp, txr); 8130 req->ring_id = cpu_to_le16(ring_id); 8131 rc = hwrm_req_send(bp, req); 8132 if (rc) 8133 return rc; 8134 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 8135 return 0; 8136 } 8137 return 0; 8138 } 8139 8140 int bnxt_hwrm_set_coal(struct bnxt *bp) 8141 { 8142 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx; 8143 int i, rc; 8144 8145 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8146 if (rc) 8147 return rc; 8148 8149 rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8150 if (rc) { 8151 hwrm_req_drop(bp, req_rx); 8152 return rc; 8153 } 8154 8155 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx); 8156 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx); 8157 8158 hwrm_req_hold(bp, req_rx); 8159 hwrm_req_hold(bp, req_tx); 8160 for (i = 0; i < bp->cp_nr_rings; i++) { 8161 struct bnxt_napi *bnapi = bp->bnapi[i]; 8162 struct bnxt_coal *hw_coal; 8163 8164 if (!bnapi->rx_ring) 8165 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 8166 else 8167 rc = bnxt_hwrm_set_rx_coal(bp, bnapi, req_rx); 8168 if (rc) 8169 break; 8170 8171 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 8172 continue; 8173 8174 if (bnapi->rx_ring && bnapi->tx_ring[0]) { 8175 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 8176 if (rc) 8177 break; 8178 } 8179 if (bnapi->rx_ring) 8180 hw_coal = &bp->rx_coal; 8181 else 8182 hw_coal = &bp->tx_coal; 8183 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 8184 } 8185 hwrm_req_drop(bp, req_rx); 8186 hwrm_req_drop(bp, req_tx); 8187 return rc; 8188 } 8189 8190 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 8191 { 8192 struct hwrm_stat_ctx_clr_stats_input *req0 = NULL; 8193 struct hwrm_stat_ctx_free_input *req; 8194 int i; 8195 8196 if (!bp->bnapi) 8197 return; 8198 8199 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8200 return; 8201 8202 if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE)) 8203 return; 8204 if (BNXT_FW_MAJ(bp) <= 20) { 8205 if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) { 8206 hwrm_req_drop(bp, req); 8207 return; 8208 } 8209 hwrm_req_hold(bp, req0); 8210 } 8211 hwrm_req_hold(bp, req); 8212 for (i = 0; i < bp->cp_nr_rings; i++) { 8213 struct bnxt_napi *bnapi = bp->bnapi[i]; 8214 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8215 8216 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 8217 req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 8218 if (req0) { 8219 req0->stat_ctx_id = req->stat_ctx_id; 8220 hwrm_req_send(bp, req0); 8221 } 8222 hwrm_req_send(bp, req); 8223 8224 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 8225 } 8226 } 8227 hwrm_req_drop(bp, req); 8228 if (req0) 8229 hwrm_req_drop(bp, req0); 8230 } 8231 8232 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 8233 { 8234 struct hwrm_stat_ctx_alloc_output *resp; 8235 struct hwrm_stat_ctx_alloc_input *req; 8236 int rc, i; 8237 8238 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8239 return 0; 8240 8241 rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC); 8242 if (rc) 8243 return rc; 8244 8245 req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 8246 req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 8247 8248 resp = hwrm_req_hold(bp, req); 8249 for (i = 0; i < bp->cp_nr_rings; i++) { 8250 struct bnxt_napi *bnapi = bp->bnapi[i]; 8251 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8252 8253 req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 8254 8255 rc = hwrm_req_send(bp, req); 8256 if (rc) 8257 break; 8258 8259 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 8260 8261 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 8262 } 8263 hwrm_req_drop(bp, req); 8264 return rc; 8265 } 8266 8267 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 8268 { 8269 struct hwrm_func_qcfg_output *resp; 8270 struct hwrm_func_qcfg_input *req; 8271 u16 flags; 8272 int rc; 8273 8274 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 8275 if (rc) 8276 return rc; 8277 8278 req->fid = cpu_to_le16(0xffff); 8279 resp = hwrm_req_hold(bp, req); 8280 rc = hwrm_req_send(bp, req); 8281 if (rc) 8282 goto func_qcfg_exit; 8283 8284 #ifdef CONFIG_BNXT_SRIOV 8285 if (BNXT_VF(bp)) { 8286 struct bnxt_vf_info *vf = &bp->vf; 8287 8288 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 8289 } else { 8290 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 8291 } 8292 #endif 8293 flags = le16_to_cpu(resp->flags); 8294 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 8295 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 8296 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 8297 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 8298 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 8299 } 8300 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 8301 bp->flags |= BNXT_FLAG_MULTI_HOST; 8302 8303 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 8304 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 8305 8306 if (flags & FUNC_QCFG_RESP_FLAGS_ENABLE_RDMA_SRIOV) 8307 bp->fw_cap |= BNXT_FW_CAP_ENABLE_RDMA_SRIOV; 8308 8309 switch (resp->port_partition_type) { 8310 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 8311 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 8312 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 8313 bp->port_partition_type = resp->port_partition_type; 8314 break; 8315 } 8316 if (bp->hwrm_spec_code < 0x10707 || 8317 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 8318 bp->br_mode = BRIDGE_MODE_VEB; 8319 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 8320 bp->br_mode = BRIDGE_MODE_VEPA; 8321 else 8322 bp->br_mode = BRIDGE_MODE_UNDEF; 8323 8324 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 8325 if (!bp->max_mtu) 8326 bp->max_mtu = BNXT_MAX_MTU; 8327 8328 if (bp->db_size) 8329 goto func_qcfg_exit; 8330 8331 bp->db_offset = le16_to_cpu(resp->legacy_l2_db_size_kb) * 1024; 8332 if (BNXT_CHIP_P5(bp)) { 8333 if (BNXT_PF(bp)) 8334 bp->db_offset = DB_PF_OFFSET_P5; 8335 else 8336 bp->db_offset = DB_VF_OFFSET_P5; 8337 } 8338 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 8339 1024); 8340 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 8341 bp->db_size <= bp->db_offset) 8342 bp->db_size = pci_resource_len(bp->pdev, 2); 8343 8344 func_qcfg_exit: 8345 hwrm_req_drop(bp, req); 8346 return rc; 8347 } 8348 8349 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_type *ctxm, 8350 u8 init_val, u8 init_offset, 8351 bool init_mask_set) 8352 { 8353 ctxm->init_value = init_val; 8354 ctxm->init_offset = BNXT_CTX_INIT_INVALID_OFFSET; 8355 if (init_mask_set) 8356 ctxm->init_offset = init_offset * 4; 8357 else 8358 ctxm->init_value = 0; 8359 } 8360 8361 static int bnxt_alloc_all_ctx_pg_info(struct bnxt *bp, int ctx_max) 8362 { 8363 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8364 u16 type; 8365 8366 for (type = 0; type < ctx_max; type++) { 8367 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8368 int n = 1; 8369 8370 if (!ctxm->max_entries) 8371 continue; 8372 8373 if (ctxm->instance_bmap) 8374 n = hweight32(ctxm->instance_bmap); 8375 ctxm->pg_info = kcalloc(n, sizeof(*ctxm->pg_info), GFP_KERNEL); 8376 if (!ctxm->pg_info) 8377 return -ENOMEM; 8378 } 8379 return 0; 8380 } 8381 8382 static void bnxt_free_one_ctx_mem(struct bnxt *bp, 8383 struct bnxt_ctx_mem_type *ctxm, bool force); 8384 8385 #define BNXT_CTX_INIT_VALID(flags) \ 8386 (!!((flags) & \ 8387 FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_ENABLE_CTX_KIND_INIT)) 8388 8389 static int bnxt_hwrm_func_backing_store_qcaps_v2(struct bnxt *bp) 8390 { 8391 struct hwrm_func_backing_store_qcaps_v2_output *resp; 8392 struct hwrm_func_backing_store_qcaps_v2_input *req; 8393 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8394 u16 type; 8395 int rc; 8396 8397 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS_V2); 8398 if (rc) 8399 return rc; 8400 8401 if (!ctx) { 8402 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8403 if (!ctx) 8404 return -ENOMEM; 8405 bp->ctx = ctx; 8406 } 8407 8408 resp = hwrm_req_hold(bp, req); 8409 8410 for (type = 0; type < BNXT_CTX_V2_MAX; ) { 8411 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8412 u8 init_val, init_off, i; 8413 u32 max_entries; 8414 u16 entry_size; 8415 __le32 *p; 8416 u32 flags; 8417 8418 req->type = cpu_to_le16(type); 8419 rc = hwrm_req_send(bp, req); 8420 if (rc) 8421 goto ctx_done; 8422 flags = le32_to_cpu(resp->flags); 8423 type = le16_to_cpu(resp->next_valid_type); 8424 if (!(flags & BNXT_CTX_MEM_TYPE_VALID)) { 8425 bnxt_free_one_ctx_mem(bp, ctxm, true); 8426 continue; 8427 } 8428 entry_size = le16_to_cpu(resp->entry_size); 8429 max_entries = le32_to_cpu(resp->max_num_entries); 8430 if (ctxm->mem_valid) { 8431 if (!(flags & BNXT_CTX_MEM_PERSIST) || 8432 ctxm->entry_size != entry_size || 8433 ctxm->max_entries != max_entries) 8434 bnxt_free_one_ctx_mem(bp, ctxm, true); 8435 else 8436 continue; 8437 } 8438 ctxm->type = le16_to_cpu(resp->type); 8439 ctxm->entry_size = entry_size; 8440 ctxm->flags = flags; 8441 ctxm->instance_bmap = le32_to_cpu(resp->instance_bit_map); 8442 ctxm->entry_multiple = resp->entry_multiple; 8443 ctxm->max_entries = max_entries; 8444 ctxm->min_entries = le32_to_cpu(resp->min_num_entries); 8445 init_val = resp->ctx_init_value; 8446 init_off = resp->ctx_init_offset; 8447 bnxt_init_ctx_initializer(ctxm, init_val, init_off, 8448 BNXT_CTX_INIT_VALID(flags)); 8449 ctxm->split_entry_cnt = min_t(u8, resp->subtype_valid_cnt, 8450 BNXT_MAX_SPLIT_ENTRY); 8451 for (i = 0, p = &resp->split_entry_0; i < ctxm->split_entry_cnt; 8452 i++, p++) 8453 ctxm->split[i] = le32_to_cpu(*p); 8454 } 8455 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_V2_MAX); 8456 8457 ctx_done: 8458 hwrm_req_drop(bp, req); 8459 return rc; 8460 } 8461 8462 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 8463 { 8464 struct hwrm_func_backing_store_qcaps_output *resp; 8465 struct hwrm_func_backing_store_qcaps_input *req; 8466 int rc; 8467 8468 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || 8469 (bp->ctx && bp->ctx->flags & BNXT_CTX_FLAG_INITED)) 8470 return 0; 8471 8472 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 8473 return bnxt_hwrm_func_backing_store_qcaps_v2(bp); 8474 8475 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS); 8476 if (rc) 8477 return rc; 8478 8479 resp = hwrm_req_hold(bp, req); 8480 rc = hwrm_req_send_silent(bp, req); 8481 if (!rc) { 8482 struct bnxt_ctx_mem_type *ctxm; 8483 struct bnxt_ctx_mem_info *ctx; 8484 u8 init_val, init_idx = 0; 8485 u16 init_mask; 8486 8487 ctx = bp->ctx; 8488 if (!ctx) { 8489 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8490 if (!ctx) { 8491 rc = -ENOMEM; 8492 goto ctx_err; 8493 } 8494 bp->ctx = ctx; 8495 } 8496 init_val = resp->ctx_kind_initializer; 8497 init_mask = le16_to_cpu(resp->ctx_init_mask); 8498 8499 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8500 ctxm->max_entries = le32_to_cpu(resp->qp_max_entries); 8501 ctxm->qp_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 8502 ctxm->qp_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 8503 ctxm->qp_fast_qpmd_entries = le16_to_cpu(resp->fast_qpmd_qp_num_entries); 8504 ctxm->entry_size = le16_to_cpu(resp->qp_entry_size); 8505 bnxt_init_ctx_initializer(ctxm, init_val, resp->qp_init_offset, 8506 (init_mask & (1 << init_idx++)) != 0); 8507 8508 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8509 ctxm->srq_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 8510 ctxm->max_entries = le32_to_cpu(resp->srq_max_entries); 8511 ctxm->entry_size = le16_to_cpu(resp->srq_entry_size); 8512 bnxt_init_ctx_initializer(ctxm, init_val, resp->srq_init_offset, 8513 (init_mask & (1 << init_idx++)) != 0); 8514 8515 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8516 ctxm->cq_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 8517 ctxm->max_entries = le32_to_cpu(resp->cq_max_entries); 8518 ctxm->entry_size = le16_to_cpu(resp->cq_entry_size); 8519 bnxt_init_ctx_initializer(ctxm, init_val, resp->cq_init_offset, 8520 (init_mask & (1 << init_idx++)) != 0); 8521 8522 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8523 ctxm->vnic_entries = le16_to_cpu(resp->vnic_max_vnic_entries); 8524 ctxm->max_entries = ctxm->vnic_entries + 8525 le16_to_cpu(resp->vnic_max_ring_table_entries); 8526 ctxm->entry_size = le16_to_cpu(resp->vnic_entry_size); 8527 bnxt_init_ctx_initializer(ctxm, init_val, 8528 resp->vnic_init_offset, 8529 (init_mask & (1 << init_idx++)) != 0); 8530 8531 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8532 ctxm->max_entries = le32_to_cpu(resp->stat_max_entries); 8533 ctxm->entry_size = le16_to_cpu(resp->stat_entry_size); 8534 bnxt_init_ctx_initializer(ctxm, init_val, 8535 resp->stat_init_offset, 8536 (init_mask & (1 << init_idx++)) != 0); 8537 8538 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8539 ctxm->entry_size = le16_to_cpu(resp->tqm_entry_size); 8540 ctxm->min_entries = le32_to_cpu(resp->tqm_min_entries_per_ring); 8541 ctxm->max_entries = le32_to_cpu(resp->tqm_max_entries_per_ring); 8542 ctxm->entry_multiple = resp->tqm_entries_multiple; 8543 if (!ctxm->entry_multiple) 8544 ctxm->entry_multiple = 1; 8545 8546 memcpy(&ctx->ctx_arr[BNXT_CTX_FTQM], ctxm, sizeof(*ctxm)); 8547 8548 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8549 ctxm->max_entries = le32_to_cpu(resp->mrav_max_entries); 8550 ctxm->entry_size = le16_to_cpu(resp->mrav_entry_size); 8551 ctxm->mrav_num_entries_units = 8552 le16_to_cpu(resp->mrav_num_entries_units); 8553 bnxt_init_ctx_initializer(ctxm, init_val, 8554 resp->mrav_init_offset, 8555 (init_mask & (1 << init_idx++)) != 0); 8556 8557 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8558 ctxm->entry_size = le16_to_cpu(resp->tim_entry_size); 8559 ctxm->max_entries = le32_to_cpu(resp->tim_max_entries); 8560 8561 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 8562 if (!ctx->tqm_fp_rings_count) 8563 ctx->tqm_fp_rings_count = bp->max_q; 8564 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 8565 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 8566 8567 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 8568 memcpy(ctxm, &ctx->ctx_arr[BNXT_CTX_STQM], sizeof(*ctxm)); 8569 ctxm->instance_bmap = (1 << ctx->tqm_fp_rings_count) - 1; 8570 8571 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_MAX); 8572 } else { 8573 rc = 0; 8574 } 8575 ctx_err: 8576 hwrm_req_drop(bp, req); 8577 return rc; 8578 } 8579 8580 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 8581 __le64 *pg_dir) 8582 { 8583 if (!rmem->nr_pages) 8584 return; 8585 8586 BNXT_SET_CTX_PAGE_ATTR(*pg_attr); 8587 if (rmem->depth >= 1) { 8588 if (rmem->depth == 2) 8589 *pg_attr |= 2; 8590 else 8591 *pg_attr |= 1; 8592 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 8593 } else { 8594 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 8595 } 8596 } 8597 8598 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 8599 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 8600 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 8601 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 8602 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 8603 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 8604 8605 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 8606 { 8607 struct hwrm_func_backing_store_cfg_input *req; 8608 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8609 struct bnxt_ctx_pg_info *ctx_pg; 8610 struct bnxt_ctx_mem_type *ctxm; 8611 void **__req = (void **)&req; 8612 u32 req_len = sizeof(*req); 8613 __le32 *num_entries; 8614 __le64 *pg_dir; 8615 u32 flags = 0; 8616 u8 *pg_attr; 8617 u32 ena; 8618 int rc; 8619 int i; 8620 8621 if (!ctx) 8622 return 0; 8623 8624 if (req_len > bp->hwrm_max_ext_req_len) 8625 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 8626 rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len); 8627 if (rc) 8628 return rc; 8629 8630 req->enables = cpu_to_le32(enables); 8631 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 8632 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8633 ctx_pg = ctxm->pg_info; 8634 req->qp_num_entries = cpu_to_le32(ctx_pg->entries); 8635 req->qp_num_qp1_entries = cpu_to_le16(ctxm->qp_qp1_entries); 8636 req->qp_num_l2_entries = cpu_to_le16(ctxm->qp_l2_entries); 8637 req->qp_entry_size = cpu_to_le16(ctxm->entry_size); 8638 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8639 &req->qpc_pg_size_qpc_lvl, 8640 &req->qpc_page_dir); 8641 8642 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD) 8643 req->qp_num_fast_qpmd_entries = cpu_to_le16(ctxm->qp_fast_qpmd_entries); 8644 } 8645 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 8646 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8647 ctx_pg = ctxm->pg_info; 8648 req->srq_num_entries = cpu_to_le32(ctx_pg->entries); 8649 req->srq_num_l2_entries = cpu_to_le16(ctxm->srq_l2_entries); 8650 req->srq_entry_size = cpu_to_le16(ctxm->entry_size); 8651 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8652 &req->srq_pg_size_srq_lvl, 8653 &req->srq_page_dir); 8654 } 8655 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 8656 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8657 ctx_pg = ctxm->pg_info; 8658 req->cq_num_entries = cpu_to_le32(ctx_pg->entries); 8659 req->cq_num_l2_entries = cpu_to_le16(ctxm->cq_l2_entries); 8660 req->cq_entry_size = cpu_to_le16(ctxm->entry_size); 8661 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8662 &req->cq_pg_size_cq_lvl, 8663 &req->cq_page_dir); 8664 } 8665 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 8666 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8667 ctx_pg = ctxm->pg_info; 8668 req->vnic_num_vnic_entries = cpu_to_le16(ctxm->vnic_entries); 8669 req->vnic_num_ring_table_entries = 8670 cpu_to_le16(ctxm->max_entries - ctxm->vnic_entries); 8671 req->vnic_entry_size = cpu_to_le16(ctxm->entry_size); 8672 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8673 &req->vnic_pg_size_vnic_lvl, 8674 &req->vnic_page_dir); 8675 } 8676 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 8677 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8678 ctx_pg = ctxm->pg_info; 8679 req->stat_num_entries = cpu_to_le32(ctxm->max_entries); 8680 req->stat_entry_size = cpu_to_le16(ctxm->entry_size); 8681 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8682 &req->stat_pg_size_stat_lvl, 8683 &req->stat_page_dir); 8684 } 8685 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 8686 u32 units; 8687 8688 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8689 ctx_pg = ctxm->pg_info; 8690 req->mrav_num_entries = cpu_to_le32(ctx_pg->entries); 8691 units = ctxm->mrav_num_entries_units; 8692 if (units) { 8693 u32 num_mr, num_ah = ctxm->mrav_av_entries; 8694 u32 entries; 8695 8696 num_mr = ctx_pg->entries - num_ah; 8697 entries = ((num_mr / units) << 16) | (num_ah / units); 8698 req->mrav_num_entries = cpu_to_le32(entries); 8699 flags |= FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 8700 } 8701 req->mrav_entry_size = cpu_to_le16(ctxm->entry_size); 8702 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8703 &req->mrav_pg_size_mrav_lvl, 8704 &req->mrav_page_dir); 8705 } 8706 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 8707 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8708 ctx_pg = ctxm->pg_info; 8709 req->tim_num_entries = cpu_to_le32(ctx_pg->entries); 8710 req->tim_entry_size = cpu_to_le16(ctxm->entry_size); 8711 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8712 &req->tim_pg_size_tim_lvl, 8713 &req->tim_page_dir); 8714 } 8715 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8716 for (i = 0, num_entries = &req->tqm_sp_num_entries, 8717 pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl, 8718 pg_dir = &req->tqm_sp_page_dir, 8719 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP, 8720 ctx_pg = ctxm->pg_info; 8721 i < BNXT_MAX_TQM_RINGS; 8722 ctx_pg = &ctx->ctx_arr[BNXT_CTX_FTQM].pg_info[i], 8723 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 8724 if (!(enables & ena)) 8725 continue; 8726 8727 req->tqm_entry_size = cpu_to_le16(ctxm->entry_size); 8728 *num_entries = cpu_to_le32(ctx_pg->entries); 8729 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 8730 } 8731 req->flags = cpu_to_le32(flags); 8732 return hwrm_req_send(bp, req); 8733 } 8734 8735 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 8736 struct bnxt_ctx_pg_info *ctx_pg) 8737 { 8738 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8739 8740 rmem->page_size = BNXT_PAGE_SIZE; 8741 rmem->pg_arr = ctx_pg->ctx_pg_arr; 8742 rmem->dma_arr = ctx_pg->ctx_dma_arr; 8743 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 8744 if (rmem->depth >= 1) 8745 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 8746 return bnxt_alloc_ring(bp, rmem); 8747 } 8748 8749 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 8750 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 8751 u8 depth, struct bnxt_ctx_mem_type *ctxm) 8752 { 8753 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8754 int rc; 8755 8756 if (!mem_size) 8757 return -EINVAL; 8758 8759 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 8760 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 8761 ctx_pg->nr_pages = 0; 8762 return -EINVAL; 8763 } 8764 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 8765 int nr_tbls, i; 8766 8767 rmem->depth = 2; 8768 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 8769 GFP_KERNEL); 8770 if (!ctx_pg->ctx_pg_tbl) 8771 return -ENOMEM; 8772 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 8773 rmem->nr_pages = nr_tbls; 8774 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 8775 if (rc) 8776 return rc; 8777 for (i = 0; i < nr_tbls; i++) { 8778 struct bnxt_ctx_pg_info *pg_tbl; 8779 8780 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 8781 if (!pg_tbl) 8782 return -ENOMEM; 8783 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 8784 rmem = &pg_tbl->ring_mem; 8785 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 8786 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 8787 rmem->depth = 1; 8788 rmem->nr_pages = MAX_CTX_PAGES; 8789 rmem->ctx_mem = ctxm; 8790 if (i == (nr_tbls - 1)) { 8791 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 8792 8793 if (rem) 8794 rmem->nr_pages = rem; 8795 } 8796 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 8797 if (rc) 8798 break; 8799 } 8800 } else { 8801 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 8802 if (rmem->nr_pages > 1 || depth) 8803 rmem->depth = 1; 8804 rmem->ctx_mem = ctxm; 8805 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 8806 } 8807 return rc; 8808 } 8809 8810 static size_t bnxt_copy_ctx_pg_tbls(struct bnxt *bp, 8811 struct bnxt_ctx_pg_info *ctx_pg, 8812 void *buf, size_t offset, size_t head, 8813 size_t tail) 8814 { 8815 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8816 size_t nr_pages = ctx_pg->nr_pages; 8817 int page_size = rmem->page_size; 8818 size_t len = 0, total_len = 0; 8819 u16 depth = rmem->depth; 8820 8821 tail %= nr_pages * page_size; 8822 do { 8823 if (depth > 1) { 8824 int i = head / (page_size * MAX_CTX_PAGES); 8825 struct bnxt_ctx_pg_info *pg_tbl; 8826 8827 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 8828 rmem = &pg_tbl->ring_mem; 8829 } 8830 len = __bnxt_copy_ring(bp, rmem, buf, offset, head, tail); 8831 head += len; 8832 offset += len; 8833 total_len += len; 8834 if (head >= nr_pages * page_size) 8835 head = 0; 8836 } while (head != tail); 8837 return total_len; 8838 } 8839 8840 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 8841 struct bnxt_ctx_pg_info *ctx_pg) 8842 { 8843 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8844 8845 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 8846 ctx_pg->ctx_pg_tbl) { 8847 int i, nr_tbls = rmem->nr_pages; 8848 8849 for (i = 0; i < nr_tbls; i++) { 8850 struct bnxt_ctx_pg_info *pg_tbl; 8851 struct bnxt_ring_mem_info *rmem2; 8852 8853 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 8854 if (!pg_tbl) 8855 continue; 8856 rmem2 = &pg_tbl->ring_mem; 8857 bnxt_free_ring(bp, rmem2); 8858 ctx_pg->ctx_pg_arr[i] = NULL; 8859 kfree(pg_tbl); 8860 ctx_pg->ctx_pg_tbl[i] = NULL; 8861 } 8862 kfree(ctx_pg->ctx_pg_tbl); 8863 ctx_pg->ctx_pg_tbl = NULL; 8864 } 8865 bnxt_free_ring(bp, rmem); 8866 ctx_pg->nr_pages = 0; 8867 } 8868 8869 static int bnxt_setup_ctxm_pg_tbls(struct bnxt *bp, 8870 struct bnxt_ctx_mem_type *ctxm, u32 entries, 8871 u8 pg_lvl) 8872 { 8873 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 8874 int i, rc = 0, n = 1; 8875 u32 mem_size; 8876 8877 if (!ctxm->entry_size || !ctx_pg) 8878 return -EINVAL; 8879 if (ctxm->instance_bmap) 8880 n = hweight32(ctxm->instance_bmap); 8881 if (ctxm->entry_multiple) 8882 entries = roundup(entries, ctxm->entry_multiple); 8883 entries = clamp_t(u32, entries, ctxm->min_entries, ctxm->max_entries); 8884 mem_size = entries * ctxm->entry_size; 8885 for (i = 0; i < n && !rc; i++) { 8886 ctx_pg[i].entries = entries; 8887 rc = bnxt_alloc_ctx_pg_tbls(bp, &ctx_pg[i], mem_size, pg_lvl, 8888 ctxm->init_value ? ctxm : NULL); 8889 } 8890 if (!rc) 8891 ctxm->mem_valid = 1; 8892 return rc; 8893 } 8894 8895 static int bnxt_hwrm_func_backing_store_cfg_v2(struct bnxt *bp, 8896 struct bnxt_ctx_mem_type *ctxm, 8897 bool last) 8898 { 8899 struct hwrm_func_backing_store_cfg_v2_input *req; 8900 u32 instance_bmap = ctxm->instance_bmap; 8901 int i, j, rc = 0, n = 1; 8902 __le32 *p; 8903 8904 if (!(ctxm->flags & BNXT_CTX_MEM_TYPE_VALID) || !ctxm->pg_info) 8905 return 0; 8906 8907 if (instance_bmap) 8908 n = hweight32(ctxm->instance_bmap); 8909 else 8910 instance_bmap = 1; 8911 8912 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_CFG_V2); 8913 if (rc) 8914 return rc; 8915 hwrm_req_hold(bp, req); 8916 req->type = cpu_to_le16(ctxm->type); 8917 req->entry_size = cpu_to_le16(ctxm->entry_size); 8918 if ((ctxm->flags & BNXT_CTX_MEM_PERSIST) && 8919 bnxt_bs_trace_avail(bp, ctxm->type)) { 8920 struct bnxt_bs_trace_info *bs_trace; 8921 u32 enables; 8922 8923 enables = FUNC_BACKING_STORE_CFG_V2_REQ_ENABLES_NEXT_BS_OFFSET; 8924 req->enables = cpu_to_le32(enables); 8925 bs_trace = &bp->bs_trace[bnxt_bstore_to_trace[ctxm->type]]; 8926 req->next_bs_offset = cpu_to_le32(bs_trace->last_offset); 8927 } 8928 req->subtype_valid_cnt = ctxm->split_entry_cnt; 8929 for (i = 0, p = &req->split_entry_0; i < ctxm->split_entry_cnt; i++) 8930 p[i] = cpu_to_le32(ctxm->split[i]); 8931 for (i = 0, j = 0; j < n && !rc; i++) { 8932 struct bnxt_ctx_pg_info *ctx_pg; 8933 8934 if (!(instance_bmap & (1 << i))) 8935 continue; 8936 req->instance = cpu_to_le16(i); 8937 ctx_pg = &ctxm->pg_info[j++]; 8938 if (!ctx_pg->entries) 8939 continue; 8940 req->num_entries = cpu_to_le32(ctx_pg->entries); 8941 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8942 &req->page_size_pbl_level, 8943 &req->page_dir); 8944 if (last && j == n) 8945 req->flags = 8946 cpu_to_le32(FUNC_BACKING_STORE_CFG_V2_REQ_FLAGS_BS_CFG_ALL_DONE); 8947 rc = hwrm_req_send(bp, req); 8948 } 8949 hwrm_req_drop(bp, req); 8950 return rc; 8951 } 8952 8953 static int bnxt_backing_store_cfg_v2(struct bnxt *bp, u32 ena) 8954 { 8955 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8956 struct bnxt_ctx_mem_type *ctxm; 8957 u16 last_type = BNXT_CTX_INV; 8958 int rc = 0; 8959 u16 type; 8960 8961 for (type = BNXT_CTX_SRT; type <= BNXT_CTX_RIGP1; type++) { 8962 ctxm = &ctx->ctx_arr[type]; 8963 if (!bnxt_bs_trace_avail(bp, type)) 8964 continue; 8965 if (!ctxm->mem_valid) { 8966 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, 8967 ctxm->max_entries, 1); 8968 if (rc) { 8969 netdev_warn(bp->dev, "Unable to setup ctx page for type:0x%x.\n", 8970 type); 8971 continue; 8972 } 8973 bnxt_bs_trace_init(bp, ctxm); 8974 last_type = type; 8975 } 8976 } 8977 8978 if (last_type == BNXT_CTX_INV) { 8979 if (!ena) 8980 return 0; 8981 else if (ena & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) 8982 last_type = BNXT_CTX_MAX - 1; 8983 else 8984 last_type = BNXT_CTX_L2_MAX - 1; 8985 } 8986 ctx->ctx_arr[last_type].last = 1; 8987 8988 for (type = 0 ; type < BNXT_CTX_V2_MAX; type++) { 8989 ctxm = &ctx->ctx_arr[type]; 8990 8991 if (!ctxm->mem_valid) 8992 continue; 8993 rc = bnxt_hwrm_func_backing_store_cfg_v2(bp, ctxm, ctxm->last); 8994 if (rc) 8995 return rc; 8996 } 8997 return 0; 8998 } 8999 9000 /** 9001 * __bnxt_copy_ctx_mem - copy host context memory 9002 * @bp: The driver context 9003 * @ctxm: The pointer to the context memory type 9004 * @buf: The destination buffer or NULL to just obtain the length 9005 * @offset: The buffer offset to copy the data to 9006 * @head: The head offset of context memory to copy from 9007 * @tail: The tail offset (last byte + 1) of context memory to end the copy 9008 * 9009 * This function is called for debugging purposes to dump the host context 9010 * used by the chip. 9011 * 9012 * Return: Length of memory copied 9013 */ 9014 static size_t __bnxt_copy_ctx_mem(struct bnxt *bp, 9015 struct bnxt_ctx_mem_type *ctxm, void *buf, 9016 size_t offset, size_t head, size_t tail) 9017 { 9018 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 9019 size_t len = 0, total_len = 0; 9020 int i, n = 1; 9021 9022 if (!ctx_pg) 9023 return 0; 9024 9025 if (ctxm->instance_bmap) 9026 n = hweight32(ctxm->instance_bmap); 9027 for (i = 0; i < n; i++) { 9028 len = bnxt_copy_ctx_pg_tbls(bp, &ctx_pg[i], buf, offset, head, 9029 tail); 9030 offset += len; 9031 total_len += len; 9032 } 9033 return total_len; 9034 } 9035 9036 size_t bnxt_copy_ctx_mem(struct bnxt *bp, struct bnxt_ctx_mem_type *ctxm, 9037 void *buf, size_t offset) 9038 { 9039 size_t tail = ctxm->max_entries * ctxm->entry_size; 9040 9041 return __bnxt_copy_ctx_mem(bp, ctxm, buf, offset, 0, tail); 9042 } 9043 9044 static void bnxt_free_one_ctx_mem(struct bnxt *bp, 9045 struct bnxt_ctx_mem_type *ctxm, bool force) 9046 { 9047 struct bnxt_ctx_pg_info *ctx_pg; 9048 int i, n = 1; 9049 9050 ctxm->last = 0; 9051 9052 if (ctxm->mem_valid && !force && (ctxm->flags & BNXT_CTX_MEM_PERSIST)) 9053 return; 9054 9055 ctx_pg = ctxm->pg_info; 9056 if (ctx_pg) { 9057 if (ctxm->instance_bmap) 9058 n = hweight32(ctxm->instance_bmap); 9059 for (i = 0; i < n; i++) 9060 bnxt_free_ctx_pg_tbls(bp, &ctx_pg[i]); 9061 9062 kfree(ctx_pg); 9063 ctxm->pg_info = NULL; 9064 ctxm->mem_valid = 0; 9065 } 9066 memset(ctxm, 0, sizeof(*ctxm)); 9067 } 9068 9069 void bnxt_free_ctx_mem(struct bnxt *bp, bool force) 9070 { 9071 struct bnxt_ctx_mem_info *ctx = bp->ctx; 9072 u16 type; 9073 9074 if (!ctx) 9075 return; 9076 9077 for (type = 0; type < BNXT_CTX_V2_MAX; type++) 9078 bnxt_free_one_ctx_mem(bp, &ctx->ctx_arr[type], force); 9079 9080 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 9081 if (force) { 9082 kfree(ctx); 9083 bp->ctx = NULL; 9084 } 9085 } 9086 9087 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 9088 { 9089 struct bnxt_ctx_mem_type *ctxm; 9090 struct bnxt_ctx_mem_info *ctx; 9091 u32 l2_qps, qp1_qps, max_qps; 9092 u32 ena, entries_sp, entries; 9093 u32 srqs, max_srqs, min; 9094 u32 num_mr, num_ah; 9095 u32 extra_srqs = 0; 9096 u32 extra_qps = 0; 9097 u32 fast_qpmd_qps; 9098 u8 pg_lvl = 1; 9099 int i, rc; 9100 9101 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 9102 if (rc) { 9103 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 9104 rc); 9105 return rc; 9106 } 9107 ctx = bp->ctx; 9108 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 9109 return 0; 9110 9111 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 9112 l2_qps = ctxm->qp_l2_entries; 9113 qp1_qps = ctxm->qp_qp1_entries; 9114 fast_qpmd_qps = ctxm->qp_fast_qpmd_entries; 9115 max_qps = ctxm->max_entries; 9116 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 9117 srqs = ctxm->srq_l2_entries; 9118 max_srqs = ctxm->max_entries; 9119 ena = 0; 9120 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 9121 pg_lvl = 2; 9122 extra_qps = min_t(u32, 65536, max_qps - l2_qps - qp1_qps); 9123 /* allocate extra qps if fw supports RoCE fast qp destroy feature */ 9124 extra_qps += fast_qpmd_qps; 9125 extra_srqs = min_t(u32, 8192, max_srqs - srqs); 9126 if (fast_qpmd_qps) 9127 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD; 9128 } 9129 9130 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 9131 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 9132 pg_lvl); 9133 if (rc) 9134 return rc; 9135 9136 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 9137 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, srqs + extra_srqs, pg_lvl); 9138 if (rc) 9139 return rc; 9140 9141 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 9142 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->cq_l2_entries + 9143 extra_qps * 2, pg_lvl); 9144 if (rc) 9145 return rc; 9146 9147 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 9148 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 9149 if (rc) 9150 return rc; 9151 9152 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 9153 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 9154 if (rc) 9155 return rc; 9156 9157 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 9158 goto skip_rdma; 9159 9160 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 9161 /* 128K extra is needed to accommodate static AH context 9162 * allocation by f/w. 9163 */ 9164 num_mr = min_t(u32, ctxm->max_entries / 2, 1024 * 256); 9165 num_ah = min_t(u32, num_mr, 1024 * 128); 9166 ctxm->split_entry_cnt = BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1; 9167 if (!ctxm->mrav_av_entries || ctxm->mrav_av_entries > num_ah) 9168 ctxm->mrav_av_entries = num_ah; 9169 9170 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, num_mr + num_ah, 2); 9171 if (rc) 9172 return rc; 9173 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 9174 9175 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 9176 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 1); 9177 if (rc) 9178 return rc; 9179 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 9180 9181 skip_rdma: 9182 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 9183 min = ctxm->min_entries; 9184 entries_sp = ctx->ctx_arr[BNXT_CTX_VNIC].vnic_entries + l2_qps + 9185 2 * (extra_qps + qp1_qps) + min; 9186 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries_sp, 2); 9187 if (rc) 9188 return rc; 9189 9190 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 9191 entries = l2_qps + 2 * (extra_qps + qp1_qps); 9192 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries, 2); 9193 if (rc) 9194 return rc; 9195 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 9196 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 9197 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 9198 9199 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 9200 rc = bnxt_backing_store_cfg_v2(bp, ena); 9201 else 9202 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 9203 if (rc) { 9204 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 9205 rc); 9206 return rc; 9207 } 9208 ctx->flags |= BNXT_CTX_FLAG_INITED; 9209 return 0; 9210 } 9211 9212 static int bnxt_hwrm_crash_dump_mem_cfg(struct bnxt *bp) 9213 { 9214 struct hwrm_dbg_crashdump_medium_cfg_input *req; 9215 u16 page_attr; 9216 int rc; 9217 9218 if (!(bp->fw_dbg_cap & DBG_QCAPS_RESP_FLAGS_CRASHDUMP_HOST_DDR)) 9219 return 0; 9220 9221 rc = hwrm_req_init(bp, req, HWRM_DBG_CRASHDUMP_MEDIUM_CFG); 9222 if (rc) 9223 return rc; 9224 9225 if (BNXT_PAGE_SIZE == 0x2000) 9226 page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_8K; 9227 else if (BNXT_PAGE_SIZE == 0x10000) 9228 page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_64K; 9229 else 9230 page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_4K; 9231 req->pg_size_lvl = cpu_to_le16(page_attr | 9232 bp->fw_crash_mem->ring_mem.depth); 9233 req->pbl = cpu_to_le64(bp->fw_crash_mem->ring_mem.pg_tbl_map); 9234 req->size = cpu_to_le32(bp->fw_crash_len); 9235 req->output_dest_flags = cpu_to_le16(BNXT_DBG_CR_DUMP_MDM_CFG_DDR); 9236 return hwrm_req_send(bp, req); 9237 } 9238 9239 static void bnxt_free_crash_dump_mem(struct bnxt *bp) 9240 { 9241 if (bp->fw_crash_mem) { 9242 bnxt_free_ctx_pg_tbls(bp, bp->fw_crash_mem); 9243 kfree(bp->fw_crash_mem); 9244 bp->fw_crash_mem = NULL; 9245 } 9246 } 9247 9248 static int bnxt_alloc_crash_dump_mem(struct bnxt *bp) 9249 { 9250 u32 mem_size = 0; 9251 int rc; 9252 9253 if (!(bp->fw_dbg_cap & DBG_QCAPS_RESP_FLAGS_CRASHDUMP_HOST_DDR)) 9254 return 0; 9255 9256 rc = bnxt_hwrm_get_dump_len(bp, BNXT_DUMP_CRASH, &mem_size); 9257 if (rc) 9258 return rc; 9259 9260 mem_size = round_up(mem_size, 4); 9261 9262 /* keep and use the existing pages */ 9263 if (bp->fw_crash_mem && 9264 mem_size <= bp->fw_crash_mem->nr_pages * BNXT_PAGE_SIZE) 9265 goto alloc_done; 9266 9267 if (bp->fw_crash_mem) 9268 bnxt_free_ctx_pg_tbls(bp, bp->fw_crash_mem); 9269 else 9270 bp->fw_crash_mem = kzalloc(sizeof(*bp->fw_crash_mem), 9271 GFP_KERNEL); 9272 if (!bp->fw_crash_mem) 9273 return -ENOMEM; 9274 9275 rc = bnxt_alloc_ctx_pg_tbls(bp, bp->fw_crash_mem, mem_size, 1, NULL); 9276 if (rc) { 9277 bnxt_free_crash_dump_mem(bp); 9278 return rc; 9279 } 9280 9281 alloc_done: 9282 bp->fw_crash_len = mem_size; 9283 return 0; 9284 } 9285 9286 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 9287 { 9288 struct hwrm_func_resource_qcaps_output *resp; 9289 struct hwrm_func_resource_qcaps_input *req; 9290 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9291 int rc; 9292 9293 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS); 9294 if (rc) 9295 return rc; 9296 9297 req->fid = cpu_to_le16(0xffff); 9298 resp = hwrm_req_hold(bp, req); 9299 rc = hwrm_req_send_silent(bp, req); 9300 if (rc) 9301 goto hwrm_func_resc_qcaps_exit; 9302 9303 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 9304 if (!all) 9305 goto hwrm_func_resc_qcaps_exit; 9306 9307 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 9308 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 9309 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 9310 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 9311 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 9312 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 9313 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 9314 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 9315 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 9316 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 9317 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 9318 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 9319 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 9320 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 9321 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 9322 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 9323 9324 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 9325 u16 max_msix = le16_to_cpu(resp->max_msix); 9326 9327 hw_resc->max_nqs = max_msix; 9328 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 9329 } 9330 9331 if (BNXT_PF(bp)) { 9332 struct bnxt_pf_info *pf = &bp->pf; 9333 9334 pf->vf_resv_strategy = 9335 le16_to_cpu(resp->vf_reservation_strategy); 9336 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 9337 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 9338 } 9339 hwrm_func_resc_qcaps_exit: 9340 hwrm_req_drop(bp, req); 9341 return rc; 9342 } 9343 9344 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) 9345 { 9346 struct hwrm_port_mac_ptp_qcfg_output *resp; 9347 struct hwrm_port_mac_ptp_qcfg_input *req; 9348 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 9349 u8 flags; 9350 int rc; 9351 9352 if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5_PLUS(bp)) { 9353 rc = -ENODEV; 9354 goto no_ptp; 9355 } 9356 9357 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG); 9358 if (rc) 9359 goto no_ptp; 9360 9361 req->port_id = cpu_to_le16(bp->pf.port_id); 9362 resp = hwrm_req_hold(bp, req); 9363 rc = hwrm_req_send(bp, req); 9364 if (rc) 9365 goto exit; 9366 9367 flags = resp->flags; 9368 if (BNXT_CHIP_P5_AND_MINUS(bp) && 9369 !(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { 9370 rc = -ENODEV; 9371 goto exit; 9372 } 9373 if (!ptp) { 9374 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); 9375 if (!ptp) { 9376 rc = -ENOMEM; 9377 goto exit; 9378 } 9379 ptp->bp = bp; 9380 bp->ptp_cfg = ptp; 9381 } 9382 9383 if (flags & 9384 (PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK | 9385 PORT_MAC_PTP_QCFG_RESP_FLAGS_64B_PHC_TIME)) { 9386 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); 9387 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); 9388 } else if (BNXT_CHIP_P5(bp)) { 9389 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; 9390 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; 9391 } else { 9392 rc = -ENODEV; 9393 goto exit; 9394 } 9395 ptp->rtc_configured = 9396 (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0; 9397 rc = bnxt_ptp_init(bp); 9398 if (rc) 9399 netdev_warn(bp->dev, "PTP initialization failed.\n"); 9400 exit: 9401 hwrm_req_drop(bp, req); 9402 if (!rc) 9403 return 0; 9404 9405 no_ptp: 9406 bnxt_ptp_clear(bp); 9407 kfree(ptp); 9408 bp->ptp_cfg = NULL; 9409 return rc; 9410 } 9411 9412 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 9413 { 9414 struct hwrm_func_qcaps_output *resp; 9415 struct hwrm_func_qcaps_input *req; 9416 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9417 u32 flags, flags_ext, flags_ext2; 9418 int rc; 9419 9420 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS); 9421 if (rc) 9422 return rc; 9423 9424 req->fid = cpu_to_le16(0xffff); 9425 resp = hwrm_req_hold(bp, req); 9426 rc = hwrm_req_send(bp, req); 9427 if (rc) 9428 goto hwrm_func_qcaps_exit; 9429 9430 flags = le32_to_cpu(resp->flags); 9431 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 9432 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 9433 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 9434 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 9435 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 9436 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 9437 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 9438 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 9439 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 9440 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 9441 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 9442 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 9443 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 9444 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 9445 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 9446 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 9447 if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED) 9448 bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS; 9449 9450 flags_ext = le32_to_cpu(resp->flags_ext); 9451 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 9452 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 9453 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED)) 9454 bp->fw_cap |= BNXT_FW_CAP_PTP_PPS; 9455 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED) 9456 bp->fw_cap |= BNXT_FW_CAP_PTP_RTC; 9457 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT)) 9458 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF; 9459 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED)) 9460 bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH; 9461 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_DFLT_VLAN_TPID_PCP_SUPPORTED)) 9462 bp->fw_cap |= BNXT_FW_CAP_DFLT_VLAN_TPID_PCP; 9463 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_BS_V2_SUPPORTED) 9464 bp->fw_cap |= BNXT_FW_CAP_BACKING_STORE_V2; 9465 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_TX_COAL_CMPL_CAP) 9466 bp->flags |= BNXT_FLAG_TX_COAL_CMPL; 9467 9468 flags_ext2 = le32_to_cpu(resp->flags_ext2); 9469 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED) 9470 bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS; 9471 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_UDP_GSO_SUPPORTED) 9472 bp->flags |= BNXT_FLAG_UDP_GSO_CAP; 9473 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_TX_PKT_TS_CMPL_SUPPORTED) 9474 bp->fw_cap |= BNXT_FW_CAP_TX_TS_CMP; 9475 if (BNXT_PF(bp) && 9476 (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_ROCE_VF_RESOURCE_MGMT_SUPPORTED)) 9477 bp->fw_cap |= BNXT_FW_CAP_ROCE_VF_RESC_MGMT_SUPPORTED; 9478 9479 bp->tx_push_thresh = 0; 9480 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 9481 BNXT_FW_MAJ(bp) > 217) 9482 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 9483 9484 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 9485 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 9486 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 9487 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 9488 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 9489 if (!hw_resc->max_hw_ring_grps) 9490 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 9491 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 9492 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 9493 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 9494 9495 hw_resc->max_encap_records = le32_to_cpu(resp->max_encap_records); 9496 hw_resc->max_decap_records = le32_to_cpu(resp->max_decap_records); 9497 hw_resc->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 9498 hw_resc->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 9499 hw_resc->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 9500 hw_resc->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 9501 9502 if (BNXT_PF(bp)) { 9503 struct bnxt_pf_info *pf = &bp->pf; 9504 9505 pf->fw_fid = le16_to_cpu(resp->fid); 9506 pf->port_id = le16_to_cpu(resp->port_id); 9507 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 9508 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 9509 pf->max_vfs = le16_to_cpu(resp->max_vfs); 9510 bp->flags &= ~BNXT_FLAG_WOL_CAP; 9511 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 9512 bp->flags |= BNXT_FLAG_WOL_CAP; 9513 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { 9514 bp->fw_cap |= BNXT_FW_CAP_PTP; 9515 } else { 9516 bnxt_ptp_clear(bp); 9517 kfree(bp->ptp_cfg); 9518 bp->ptp_cfg = NULL; 9519 } 9520 } else { 9521 #ifdef CONFIG_BNXT_SRIOV 9522 struct bnxt_vf_info *vf = &bp->vf; 9523 9524 vf->fw_fid = le16_to_cpu(resp->fid); 9525 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 9526 #endif 9527 } 9528 bp->tso_max_segs = le16_to_cpu(resp->max_tso_segs); 9529 9530 hwrm_func_qcaps_exit: 9531 hwrm_req_drop(bp, req); 9532 return rc; 9533 } 9534 9535 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp) 9536 { 9537 struct hwrm_dbg_qcaps_output *resp; 9538 struct hwrm_dbg_qcaps_input *req; 9539 int rc; 9540 9541 bp->fw_dbg_cap = 0; 9542 if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS)) 9543 return; 9544 9545 rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS); 9546 if (rc) 9547 return; 9548 9549 req->fid = cpu_to_le16(0xffff); 9550 resp = hwrm_req_hold(bp, req); 9551 rc = hwrm_req_send(bp, req); 9552 if (rc) 9553 goto hwrm_dbg_qcaps_exit; 9554 9555 bp->fw_dbg_cap = le32_to_cpu(resp->flags); 9556 9557 hwrm_dbg_qcaps_exit: 9558 hwrm_req_drop(bp, req); 9559 } 9560 9561 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 9562 9563 int bnxt_hwrm_func_qcaps(struct bnxt *bp) 9564 { 9565 int rc; 9566 9567 rc = __bnxt_hwrm_func_qcaps(bp); 9568 if (rc) 9569 return rc; 9570 9571 bnxt_hwrm_dbg_qcaps(bp); 9572 9573 rc = bnxt_hwrm_queue_qportcfg(bp); 9574 if (rc) { 9575 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 9576 return rc; 9577 } 9578 if (bp->hwrm_spec_code >= 0x10803) { 9579 rc = bnxt_alloc_ctx_mem(bp); 9580 if (rc) 9581 return rc; 9582 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 9583 if (!rc) 9584 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 9585 } 9586 return 0; 9587 } 9588 9589 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 9590 { 9591 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 9592 struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req; 9593 u32 flags; 9594 int rc; 9595 9596 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 9597 return 0; 9598 9599 rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS); 9600 if (rc) 9601 return rc; 9602 9603 resp = hwrm_req_hold(bp, req); 9604 rc = hwrm_req_send(bp, req); 9605 if (rc) 9606 goto hwrm_cfa_adv_qcaps_exit; 9607 9608 flags = le32_to_cpu(resp->flags); 9609 if (flags & 9610 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 9611 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 9612 9613 if (flags & 9614 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V3_SUPPORTED) 9615 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V3; 9616 9617 if (flags & 9618 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_NTUPLE_FLOW_RX_EXT_IP_PROTO_SUPPORTED) 9619 bp->fw_cap |= BNXT_FW_CAP_CFA_NTUPLE_RX_EXT_IP_PROTO; 9620 9621 hwrm_cfa_adv_qcaps_exit: 9622 hwrm_req_drop(bp, req); 9623 return rc; 9624 } 9625 9626 static int __bnxt_alloc_fw_health(struct bnxt *bp) 9627 { 9628 if (bp->fw_health) 9629 return 0; 9630 9631 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 9632 if (!bp->fw_health) 9633 return -ENOMEM; 9634 9635 mutex_init(&bp->fw_health->lock); 9636 return 0; 9637 } 9638 9639 static int bnxt_alloc_fw_health(struct bnxt *bp) 9640 { 9641 int rc; 9642 9643 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 9644 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 9645 return 0; 9646 9647 rc = __bnxt_alloc_fw_health(bp); 9648 if (rc) { 9649 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 9650 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 9651 return rc; 9652 } 9653 9654 return 0; 9655 } 9656 9657 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 9658 { 9659 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 9660 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 9661 BNXT_FW_HEALTH_WIN_MAP_OFF); 9662 } 9663 9664 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 9665 { 9666 struct bnxt_fw_health *fw_health = bp->fw_health; 9667 u32 reg_type; 9668 9669 if (!fw_health) 9670 return; 9671 9672 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 9673 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9674 fw_health->status_reliable = false; 9675 9676 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]); 9677 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9678 fw_health->resets_reliable = false; 9679 } 9680 9681 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 9682 { 9683 void __iomem *hs; 9684 u32 status_loc; 9685 u32 reg_type; 9686 u32 sig; 9687 9688 if (bp->fw_health) 9689 bp->fw_health->status_reliable = false; 9690 9691 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 9692 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 9693 9694 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 9695 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 9696 if (!bp->chip_num) { 9697 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 9698 bp->chip_num = readl(bp->bar0 + 9699 BNXT_FW_HEALTH_WIN_BASE + 9700 BNXT_GRC_REG_CHIP_NUM); 9701 } 9702 if (!BNXT_CHIP_P5_PLUS(bp)) 9703 return; 9704 9705 status_loc = BNXT_GRC_REG_STATUS_P5 | 9706 BNXT_FW_HEALTH_REG_TYPE_BAR0; 9707 } else { 9708 status_loc = readl(hs + offsetof(struct hcomm_status, 9709 fw_status_loc)); 9710 } 9711 9712 if (__bnxt_alloc_fw_health(bp)) { 9713 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 9714 return; 9715 } 9716 9717 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 9718 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 9719 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 9720 __bnxt_map_fw_health_reg(bp, status_loc); 9721 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 9722 BNXT_FW_HEALTH_WIN_OFF(status_loc); 9723 } 9724 9725 bp->fw_health->status_reliable = true; 9726 } 9727 9728 static int bnxt_map_fw_health_regs(struct bnxt *bp) 9729 { 9730 struct bnxt_fw_health *fw_health = bp->fw_health; 9731 u32 reg_base = 0xffffffff; 9732 int i; 9733 9734 bp->fw_health->status_reliable = false; 9735 bp->fw_health->resets_reliable = false; 9736 /* Only pre-map the monitoring GRC registers using window 3 */ 9737 for (i = 0; i < 4; i++) { 9738 u32 reg = fw_health->regs[i]; 9739 9740 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 9741 continue; 9742 if (reg_base == 0xffffffff) 9743 reg_base = reg & BNXT_GRC_BASE_MASK; 9744 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 9745 return -ERANGE; 9746 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 9747 } 9748 bp->fw_health->status_reliable = true; 9749 bp->fw_health->resets_reliable = true; 9750 if (reg_base == 0xffffffff) 9751 return 0; 9752 9753 __bnxt_map_fw_health_reg(bp, reg_base); 9754 return 0; 9755 } 9756 9757 static void bnxt_remap_fw_health_regs(struct bnxt *bp) 9758 { 9759 if (!bp->fw_health) 9760 return; 9761 9762 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) { 9763 bp->fw_health->status_reliable = true; 9764 bp->fw_health->resets_reliable = true; 9765 } else { 9766 bnxt_try_map_fw_health_reg(bp); 9767 } 9768 } 9769 9770 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 9771 { 9772 struct bnxt_fw_health *fw_health = bp->fw_health; 9773 struct hwrm_error_recovery_qcfg_output *resp; 9774 struct hwrm_error_recovery_qcfg_input *req; 9775 int rc, i; 9776 9777 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 9778 return 0; 9779 9780 rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG); 9781 if (rc) 9782 return rc; 9783 9784 resp = hwrm_req_hold(bp, req); 9785 rc = hwrm_req_send(bp, req); 9786 if (rc) 9787 goto err_recovery_out; 9788 fw_health->flags = le32_to_cpu(resp->flags); 9789 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 9790 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 9791 rc = -EINVAL; 9792 goto err_recovery_out; 9793 } 9794 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 9795 fw_health->master_func_wait_dsecs = 9796 le32_to_cpu(resp->master_func_wait_period); 9797 fw_health->normal_func_wait_dsecs = 9798 le32_to_cpu(resp->normal_func_wait_period); 9799 fw_health->post_reset_wait_dsecs = 9800 le32_to_cpu(resp->master_func_wait_period_after_reset); 9801 fw_health->post_reset_max_wait_dsecs = 9802 le32_to_cpu(resp->max_bailout_time_after_reset); 9803 fw_health->regs[BNXT_FW_HEALTH_REG] = 9804 le32_to_cpu(resp->fw_health_status_reg); 9805 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 9806 le32_to_cpu(resp->fw_heartbeat_reg); 9807 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 9808 le32_to_cpu(resp->fw_reset_cnt_reg); 9809 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 9810 le32_to_cpu(resp->reset_inprogress_reg); 9811 fw_health->fw_reset_inprog_reg_mask = 9812 le32_to_cpu(resp->reset_inprogress_reg_mask); 9813 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 9814 if (fw_health->fw_reset_seq_cnt >= 16) { 9815 rc = -EINVAL; 9816 goto err_recovery_out; 9817 } 9818 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 9819 fw_health->fw_reset_seq_regs[i] = 9820 le32_to_cpu(resp->reset_reg[i]); 9821 fw_health->fw_reset_seq_vals[i] = 9822 le32_to_cpu(resp->reset_reg_val[i]); 9823 fw_health->fw_reset_seq_delay_msec[i] = 9824 resp->delay_after_reset[i]; 9825 } 9826 err_recovery_out: 9827 hwrm_req_drop(bp, req); 9828 if (!rc) 9829 rc = bnxt_map_fw_health_regs(bp); 9830 if (rc) 9831 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 9832 return rc; 9833 } 9834 9835 static int bnxt_hwrm_func_reset(struct bnxt *bp) 9836 { 9837 struct hwrm_func_reset_input *req; 9838 int rc; 9839 9840 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET); 9841 if (rc) 9842 return rc; 9843 9844 req->enables = 0; 9845 hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT); 9846 return hwrm_req_send(bp, req); 9847 } 9848 9849 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 9850 { 9851 struct hwrm_nvm_get_dev_info_output nvm_info; 9852 9853 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 9854 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 9855 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 9856 nvm_info.nvm_cfg_ver_upd); 9857 } 9858 9859 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 9860 { 9861 struct hwrm_queue_qportcfg_output *resp; 9862 struct hwrm_queue_qportcfg_input *req; 9863 u8 i, j, *qptr; 9864 bool no_rdma; 9865 int rc = 0; 9866 9867 rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG); 9868 if (rc) 9869 return rc; 9870 9871 resp = hwrm_req_hold(bp, req); 9872 rc = hwrm_req_send(bp, req); 9873 if (rc) 9874 goto qportcfg_exit; 9875 9876 if (!resp->max_configurable_queues) { 9877 rc = -EINVAL; 9878 goto qportcfg_exit; 9879 } 9880 bp->max_tc = resp->max_configurable_queues; 9881 bp->max_lltc = resp->max_configurable_lossless_queues; 9882 if (bp->max_tc > BNXT_MAX_QUEUE) 9883 bp->max_tc = BNXT_MAX_QUEUE; 9884 9885 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 9886 qptr = &resp->queue_id0; 9887 for (i = 0, j = 0; i < bp->max_tc; i++) { 9888 bp->q_info[j].queue_id = *qptr; 9889 bp->q_ids[i] = *qptr++; 9890 bp->q_info[j].queue_profile = *qptr++; 9891 bp->tc_to_qidx[j] = j; 9892 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 9893 (no_rdma && BNXT_PF(bp))) 9894 j++; 9895 } 9896 bp->max_q = bp->max_tc; 9897 bp->max_tc = max_t(u8, j, 1); 9898 9899 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 9900 bp->max_tc = 1; 9901 9902 if (bp->max_lltc > bp->max_tc) 9903 bp->max_lltc = bp->max_tc; 9904 9905 qportcfg_exit: 9906 hwrm_req_drop(bp, req); 9907 return rc; 9908 } 9909 9910 static int bnxt_hwrm_poll(struct bnxt *bp) 9911 { 9912 struct hwrm_ver_get_input *req; 9913 int rc; 9914 9915 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 9916 if (rc) 9917 return rc; 9918 9919 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 9920 req->hwrm_intf_min = HWRM_VERSION_MINOR; 9921 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 9922 9923 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT); 9924 rc = hwrm_req_send(bp, req); 9925 return rc; 9926 } 9927 9928 static int bnxt_hwrm_ver_get(struct bnxt *bp) 9929 { 9930 struct hwrm_ver_get_output *resp; 9931 struct hwrm_ver_get_input *req; 9932 u16 fw_maj, fw_min, fw_bld, fw_rsv; 9933 u32 dev_caps_cfg, hwrm_ver; 9934 int rc, len; 9935 9936 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 9937 if (rc) 9938 return rc; 9939 9940 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 9941 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 9942 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 9943 req->hwrm_intf_min = HWRM_VERSION_MINOR; 9944 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 9945 9946 resp = hwrm_req_hold(bp, req); 9947 rc = hwrm_req_send(bp, req); 9948 if (rc) 9949 goto hwrm_ver_get_exit; 9950 9951 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 9952 9953 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 9954 resp->hwrm_intf_min_8b << 8 | 9955 resp->hwrm_intf_upd_8b; 9956 if (resp->hwrm_intf_maj_8b < 1) { 9957 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 9958 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 9959 resp->hwrm_intf_upd_8b); 9960 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 9961 } 9962 9963 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 9964 HWRM_VERSION_UPDATE; 9965 9966 if (bp->hwrm_spec_code > hwrm_ver) 9967 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 9968 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 9969 HWRM_VERSION_UPDATE); 9970 else 9971 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 9972 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 9973 resp->hwrm_intf_upd_8b); 9974 9975 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 9976 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 9977 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 9978 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 9979 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 9980 len = FW_VER_STR_LEN; 9981 } else { 9982 fw_maj = resp->hwrm_fw_maj_8b; 9983 fw_min = resp->hwrm_fw_min_8b; 9984 fw_bld = resp->hwrm_fw_bld_8b; 9985 fw_rsv = resp->hwrm_fw_rsvd_8b; 9986 len = BC_HWRM_STR_LEN; 9987 } 9988 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 9989 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 9990 fw_rsv); 9991 9992 if (strlen(resp->active_pkg_name)) { 9993 int fw_ver_len = strlen(bp->fw_ver_str); 9994 9995 snprintf(bp->fw_ver_str + fw_ver_len, 9996 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 9997 resp->active_pkg_name); 9998 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 9999 } 10000 10001 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 10002 if (!bp->hwrm_cmd_timeout) 10003 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 10004 bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000; 10005 if (!bp->hwrm_cmd_max_timeout) 10006 bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT; 10007 else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT) 10008 netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n", 10009 bp->hwrm_cmd_max_timeout / 1000); 10010 10011 if (resp->hwrm_intf_maj_8b >= 1) { 10012 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 10013 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 10014 } 10015 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 10016 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 10017 10018 bp->chip_num = le16_to_cpu(resp->chip_num); 10019 bp->chip_rev = resp->chip_rev; 10020 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 10021 !resp->chip_metal) 10022 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 10023 10024 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 10025 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 10026 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 10027 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 10028 10029 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 10030 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 10031 10032 if (dev_caps_cfg & 10033 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 10034 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 10035 10036 if (dev_caps_cfg & 10037 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 10038 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 10039 10040 if (dev_caps_cfg & 10041 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 10042 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 10043 10044 hwrm_ver_get_exit: 10045 hwrm_req_drop(bp, req); 10046 return rc; 10047 } 10048 10049 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 10050 { 10051 struct hwrm_fw_set_time_input *req; 10052 struct tm tm; 10053 time64_t now = ktime_get_real_seconds(); 10054 int rc; 10055 10056 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 10057 bp->hwrm_spec_code < 0x10400) 10058 return -EOPNOTSUPP; 10059 10060 time64_to_tm(now, 0, &tm); 10061 rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME); 10062 if (rc) 10063 return rc; 10064 10065 req->year = cpu_to_le16(1900 + tm.tm_year); 10066 req->month = 1 + tm.tm_mon; 10067 req->day = tm.tm_mday; 10068 req->hour = tm.tm_hour; 10069 req->minute = tm.tm_min; 10070 req->second = tm.tm_sec; 10071 return hwrm_req_send(bp, req); 10072 } 10073 10074 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 10075 { 10076 u64 sw_tmp; 10077 10078 hw &= mask; 10079 sw_tmp = (*sw & ~mask) | hw; 10080 if (hw < (*sw & mask)) 10081 sw_tmp += mask + 1; 10082 WRITE_ONCE(*sw, sw_tmp); 10083 } 10084 10085 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 10086 int count, bool ignore_zero) 10087 { 10088 int i; 10089 10090 for (i = 0; i < count; i++) { 10091 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 10092 10093 if (ignore_zero && !hw) 10094 continue; 10095 10096 if (masks[i] == -1ULL) 10097 sw_stats[i] = hw; 10098 else 10099 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 10100 } 10101 } 10102 10103 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 10104 { 10105 if (!stats->hw_stats) 10106 return; 10107 10108 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 10109 stats->hw_masks, stats->len / 8, false); 10110 } 10111 10112 static void bnxt_accumulate_all_stats(struct bnxt *bp) 10113 { 10114 struct bnxt_stats_mem *ring0_stats; 10115 bool ignore_zero = false; 10116 int i; 10117 10118 /* Chip bug. Counter intermittently becomes 0. */ 10119 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10120 ignore_zero = true; 10121 10122 for (i = 0; i < bp->cp_nr_rings; i++) { 10123 struct bnxt_napi *bnapi = bp->bnapi[i]; 10124 struct bnxt_cp_ring_info *cpr; 10125 struct bnxt_stats_mem *stats; 10126 10127 cpr = &bnapi->cp_ring; 10128 stats = &cpr->stats; 10129 if (!i) 10130 ring0_stats = stats; 10131 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 10132 ring0_stats->hw_masks, 10133 ring0_stats->len / 8, ignore_zero); 10134 } 10135 if (bp->flags & BNXT_FLAG_PORT_STATS) { 10136 struct bnxt_stats_mem *stats = &bp->port_stats; 10137 __le64 *hw_stats = stats->hw_stats; 10138 u64 *sw_stats = stats->sw_stats; 10139 u64 *masks = stats->hw_masks; 10140 int cnt; 10141 10142 cnt = sizeof(struct rx_port_stats) / 8; 10143 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 10144 10145 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10146 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10147 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10148 cnt = sizeof(struct tx_port_stats) / 8; 10149 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 10150 } 10151 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 10152 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 10153 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 10154 } 10155 } 10156 10157 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 10158 { 10159 struct hwrm_port_qstats_input *req; 10160 struct bnxt_pf_info *pf = &bp->pf; 10161 int rc; 10162 10163 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 10164 return 0; 10165 10166 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 10167 return -EOPNOTSUPP; 10168 10169 rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS); 10170 if (rc) 10171 return rc; 10172 10173 req->flags = flags; 10174 req->port_id = cpu_to_le16(pf->port_id); 10175 req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 10176 BNXT_TX_PORT_STATS_BYTE_OFFSET); 10177 req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 10178 return hwrm_req_send(bp, req); 10179 } 10180 10181 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 10182 { 10183 struct hwrm_queue_pri2cos_qcfg_output *resp_qc; 10184 struct hwrm_queue_pri2cos_qcfg_input *req_qc; 10185 struct hwrm_port_qstats_ext_output *resp_qs; 10186 struct hwrm_port_qstats_ext_input *req_qs; 10187 struct bnxt_pf_info *pf = &bp->pf; 10188 u32 tx_stat_size; 10189 int rc; 10190 10191 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 10192 return 0; 10193 10194 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 10195 return -EOPNOTSUPP; 10196 10197 rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT); 10198 if (rc) 10199 return rc; 10200 10201 req_qs->flags = flags; 10202 req_qs->port_id = cpu_to_le16(pf->port_id); 10203 req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 10204 req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 10205 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 10206 sizeof(struct tx_port_stats_ext) : 0; 10207 req_qs->tx_stat_size = cpu_to_le16(tx_stat_size); 10208 req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 10209 resp_qs = hwrm_req_hold(bp, req_qs); 10210 rc = hwrm_req_send(bp, req_qs); 10211 if (!rc) { 10212 bp->fw_rx_stats_ext_size = 10213 le16_to_cpu(resp_qs->rx_stat_size) / 8; 10214 if (BNXT_FW_MAJ(bp) < 220 && 10215 bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY) 10216 bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY; 10217 10218 bp->fw_tx_stats_ext_size = tx_stat_size ? 10219 le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0; 10220 } else { 10221 bp->fw_rx_stats_ext_size = 0; 10222 bp->fw_tx_stats_ext_size = 0; 10223 } 10224 hwrm_req_drop(bp, req_qs); 10225 10226 if (flags) 10227 return rc; 10228 10229 if (bp->fw_tx_stats_ext_size <= 10230 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 10231 bp->pri2cos_valid = 0; 10232 return rc; 10233 } 10234 10235 rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG); 10236 if (rc) 10237 return rc; 10238 10239 req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 10240 10241 resp_qc = hwrm_req_hold(bp, req_qc); 10242 rc = hwrm_req_send(bp, req_qc); 10243 if (!rc) { 10244 u8 *pri2cos; 10245 int i, j; 10246 10247 pri2cos = &resp_qc->pri0_cos_queue_id; 10248 for (i = 0; i < 8; i++) { 10249 u8 queue_id = pri2cos[i]; 10250 u8 queue_idx; 10251 10252 /* Per port queue IDs start from 0, 10, 20, etc */ 10253 queue_idx = queue_id % 10; 10254 if (queue_idx > BNXT_MAX_QUEUE) { 10255 bp->pri2cos_valid = false; 10256 hwrm_req_drop(bp, req_qc); 10257 return rc; 10258 } 10259 for (j = 0; j < bp->max_q; j++) { 10260 if (bp->q_ids[j] == queue_id) 10261 bp->pri2cos_idx[i] = queue_idx; 10262 } 10263 } 10264 bp->pri2cos_valid = true; 10265 } 10266 hwrm_req_drop(bp, req_qc); 10267 10268 return rc; 10269 } 10270 10271 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 10272 { 10273 bnxt_hwrm_tunnel_dst_port_free(bp, 10274 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 10275 bnxt_hwrm_tunnel_dst_port_free(bp, 10276 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 10277 } 10278 10279 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 10280 { 10281 int rc, i; 10282 u32 tpa_flags = 0; 10283 10284 if (set_tpa) 10285 tpa_flags = bp->flags & BNXT_FLAG_TPA; 10286 else if (BNXT_NO_FW_ACCESS(bp)) 10287 return 0; 10288 for (i = 0; i < bp->nr_vnics; i++) { 10289 rc = bnxt_hwrm_vnic_set_tpa(bp, &bp->vnic_info[i], tpa_flags); 10290 if (rc) { 10291 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 10292 i, rc); 10293 return rc; 10294 } 10295 } 10296 return 0; 10297 } 10298 10299 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 10300 { 10301 int i; 10302 10303 for (i = 0; i < bp->nr_vnics; i++) 10304 bnxt_hwrm_vnic_set_rss(bp, &bp->vnic_info[i], false); 10305 } 10306 10307 static void bnxt_clear_vnic(struct bnxt *bp) 10308 { 10309 if (!bp->vnic_info) 10310 return; 10311 10312 bnxt_hwrm_clear_vnic_filter(bp); 10313 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) { 10314 /* clear all RSS setting before free vnic ctx */ 10315 bnxt_hwrm_clear_vnic_rss(bp); 10316 bnxt_hwrm_vnic_ctx_free(bp); 10317 } 10318 /* before free the vnic, undo the vnic tpa settings */ 10319 if (bp->flags & BNXT_FLAG_TPA) 10320 bnxt_set_tpa(bp, false); 10321 bnxt_hwrm_vnic_free(bp); 10322 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10323 bnxt_hwrm_vnic_ctx_free(bp); 10324 } 10325 10326 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 10327 bool irq_re_init) 10328 { 10329 bnxt_clear_vnic(bp); 10330 bnxt_hwrm_ring_free(bp, close_path); 10331 bnxt_hwrm_ring_grp_free(bp); 10332 if (irq_re_init) { 10333 bnxt_hwrm_stat_ctx_free(bp); 10334 bnxt_hwrm_free_tunnel_ports(bp); 10335 } 10336 } 10337 10338 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 10339 { 10340 struct hwrm_func_cfg_input *req; 10341 u8 evb_mode; 10342 int rc; 10343 10344 if (br_mode == BRIDGE_MODE_VEB) 10345 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 10346 else if (br_mode == BRIDGE_MODE_VEPA) 10347 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 10348 else 10349 return -EINVAL; 10350 10351 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 10352 if (rc) 10353 return rc; 10354 10355 req->fid = cpu_to_le16(0xffff); 10356 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 10357 req->evb_mode = evb_mode; 10358 return hwrm_req_send(bp, req); 10359 } 10360 10361 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 10362 { 10363 struct hwrm_func_cfg_input *req; 10364 int rc; 10365 10366 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 10367 return 0; 10368 10369 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 10370 if (rc) 10371 return rc; 10372 10373 req->fid = cpu_to_le16(0xffff); 10374 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 10375 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 10376 if (size == 128) 10377 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 10378 10379 return hwrm_req_send(bp, req); 10380 } 10381 10382 static int __bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10383 { 10384 int rc; 10385 10386 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 10387 goto skip_rss_ctx; 10388 10389 /* allocate context for vnic */ 10390 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 0); 10391 if (rc) { 10392 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 10393 vnic->vnic_id, rc); 10394 goto vnic_setup_err; 10395 } 10396 bp->rsscos_nr_ctxs++; 10397 10398 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10399 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 1); 10400 if (rc) { 10401 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 10402 vnic->vnic_id, rc); 10403 goto vnic_setup_err; 10404 } 10405 bp->rsscos_nr_ctxs++; 10406 } 10407 10408 skip_rss_ctx: 10409 /* configure default vnic, ring grp */ 10410 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10411 if (rc) { 10412 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 10413 vnic->vnic_id, rc); 10414 goto vnic_setup_err; 10415 } 10416 10417 /* Enable RSS hashing on vnic */ 10418 rc = bnxt_hwrm_vnic_set_rss(bp, vnic, true); 10419 if (rc) { 10420 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 10421 vnic->vnic_id, rc); 10422 goto vnic_setup_err; 10423 } 10424 10425 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 10426 rc = bnxt_hwrm_vnic_set_hds(bp, vnic); 10427 if (rc) { 10428 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 10429 vnic->vnic_id, rc); 10430 } 10431 } 10432 10433 vnic_setup_err: 10434 return rc; 10435 } 10436 10437 int bnxt_hwrm_vnic_update(struct bnxt *bp, struct bnxt_vnic_info *vnic, 10438 u8 valid) 10439 { 10440 struct hwrm_vnic_update_input *req; 10441 int rc; 10442 10443 rc = hwrm_req_init(bp, req, HWRM_VNIC_UPDATE); 10444 if (rc) 10445 return rc; 10446 10447 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 10448 10449 if (valid & VNIC_UPDATE_REQ_ENABLES_MRU_VALID) 10450 req->mru = cpu_to_le16(vnic->mru); 10451 10452 req->enables = cpu_to_le32(valid); 10453 10454 return hwrm_req_send(bp, req); 10455 } 10456 10457 int bnxt_hwrm_vnic_rss_cfg_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10458 { 10459 int rc; 10460 10461 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic, true); 10462 if (rc) { 10463 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 10464 vnic->vnic_id, rc); 10465 return rc; 10466 } 10467 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10468 if (rc) 10469 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 10470 vnic->vnic_id, rc); 10471 return rc; 10472 } 10473 10474 int __bnxt_setup_vnic_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10475 { 10476 int rc, i, nr_ctxs; 10477 10478 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 10479 for (i = 0; i < nr_ctxs; i++) { 10480 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, i); 10481 if (rc) { 10482 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 10483 vnic->vnic_id, i, rc); 10484 break; 10485 } 10486 bp->rsscos_nr_ctxs++; 10487 } 10488 if (i < nr_ctxs) 10489 return -ENOMEM; 10490 10491 rc = bnxt_hwrm_vnic_rss_cfg_p5(bp, vnic); 10492 if (rc) 10493 return rc; 10494 10495 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 10496 rc = bnxt_hwrm_vnic_set_hds(bp, vnic); 10497 if (rc) { 10498 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 10499 vnic->vnic_id, rc); 10500 } 10501 } 10502 return rc; 10503 } 10504 10505 static int bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10506 { 10507 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10508 return __bnxt_setup_vnic_p5(bp, vnic); 10509 else 10510 return __bnxt_setup_vnic(bp, vnic); 10511 } 10512 10513 static int bnxt_alloc_and_setup_vnic(struct bnxt *bp, 10514 struct bnxt_vnic_info *vnic, 10515 u16 start_rx_ring_idx, int rx_rings) 10516 { 10517 int rc; 10518 10519 rc = bnxt_hwrm_vnic_alloc(bp, vnic, start_rx_ring_idx, rx_rings); 10520 if (rc) { 10521 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 10522 vnic->vnic_id, rc); 10523 return rc; 10524 } 10525 return bnxt_setup_vnic(bp, vnic); 10526 } 10527 10528 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 10529 { 10530 struct bnxt_vnic_info *vnic; 10531 int i, rc = 0; 10532 10533 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 10534 vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE]; 10535 return bnxt_alloc_and_setup_vnic(bp, vnic, 0, bp->rx_nr_rings); 10536 } 10537 10538 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10539 return 0; 10540 10541 for (i = 0; i < bp->rx_nr_rings; i++) { 10542 u16 vnic_id = i + 1; 10543 u16 ring_id = i; 10544 10545 if (vnic_id >= bp->nr_vnics) 10546 break; 10547 10548 vnic = &bp->vnic_info[vnic_id]; 10549 vnic->flags |= BNXT_VNIC_RFS_FLAG; 10550 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 10551 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 10552 if (bnxt_alloc_and_setup_vnic(bp, &bp->vnic_info[vnic_id], ring_id, 1)) 10553 break; 10554 } 10555 return rc; 10556 } 10557 10558 void bnxt_del_one_rss_ctx(struct bnxt *bp, struct bnxt_rss_ctx *rss_ctx, 10559 bool all) 10560 { 10561 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10562 struct bnxt_filter_base *usr_fltr, *tmp; 10563 struct bnxt_ntuple_filter *ntp_fltr; 10564 int i; 10565 10566 if (netif_running(bp->dev)) { 10567 bnxt_hwrm_vnic_free_one(bp, &rss_ctx->vnic); 10568 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) { 10569 if (vnic->fw_rss_cos_lb_ctx[i] != INVALID_HW_RING_ID) 10570 bnxt_hwrm_vnic_ctx_free_one(bp, vnic, i); 10571 } 10572 } 10573 if (!all) 10574 return; 10575 10576 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) { 10577 if ((usr_fltr->flags & BNXT_ACT_RSS_CTX) && 10578 usr_fltr->fw_vnic_id == rss_ctx->index) { 10579 ntp_fltr = container_of(usr_fltr, 10580 struct bnxt_ntuple_filter, 10581 base); 10582 bnxt_hwrm_cfa_ntuple_filter_free(bp, ntp_fltr); 10583 bnxt_del_ntp_filter(bp, ntp_fltr); 10584 bnxt_del_one_usr_fltr(bp, usr_fltr); 10585 } 10586 } 10587 10588 if (vnic->rss_table) 10589 dma_free_coherent(&bp->pdev->dev, vnic->rss_table_size, 10590 vnic->rss_table, 10591 vnic->rss_table_dma_addr); 10592 bp->num_rss_ctx--; 10593 } 10594 10595 static void bnxt_hwrm_realloc_rss_ctx_vnic(struct bnxt *bp) 10596 { 10597 bool set_tpa = !!(bp->flags & BNXT_FLAG_TPA); 10598 struct ethtool_rxfh_context *ctx; 10599 unsigned long context; 10600 10601 xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) { 10602 struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx); 10603 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10604 10605 if (bnxt_hwrm_vnic_alloc(bp, vnic, 0, bp->rx_nr_rings) || 10606 bnxt_hwrm_vnic_set_tpa(bp, vnic, set_tpa) || 10607 __bnxt_setup_vnic_p5(bp, vnic)) { 10608 netdev_err(bp->dev, "Failed to restore RSS ctx %d\n", 10609 rss_ctx->index); 10610 bnxt_del_one_rss_ctx(bp, rss_ctx, true); 10611 ethtool_rxfh_context_lost(bp->dev, rss_ctx->index); 10612 } 10613 } 10614 } 10615 10616 static void bnxt_clear_rss_ctxs(struct bnxt *bp) 10617 { 10618 struct ethtool_rxfh_context *ctx; 10619 unsigned long context; 10620 10621 xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) { 10622 struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx); 10623 10624 bnxt_del_one_rss_ctx(bp, rss_ctx, false); 10625 } 10626 } 10627 10628 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 10629 static bool bnxt_promisc_ok(struct bnxt *bp) 10630 { 10631 #ifdef CONFIG_BNXT_SRIOV 10632 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 10633 return false; 10634 #endif 10635 return true; 10636 } 10637 10638 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 10639 { 10640 struct bnxt_vnic_info *vnic = &bp->vnic_info[1]; 10641 unsigned int rc = 0; 10642 10643 rc = bnxt_hwrm_vnic_alloc(bp, vnic, bp->rx_nr_rings - 1, 1); 10644 if (rc) { 10645 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 10646 rc); 10647 return rc; 10648 } 10649 10650 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10651 if (rc) { 10652 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 10653 rc); 10654 return rc; 10655 } 10656 return rc; 10657 } 10658 10659 static int bnxt_cfg_rx_mode(struct bnxt *); 10660 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 10661 10662 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 10663 { 10664 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 10665 int rc = 0; 10666 unsigned int rx_nr_rings = bp->rx_nr_rings; 10667 10668 if (irq_re_init) { 10669 rc = bnxt_hwrm_stat_ctx_alloc(bp); 10670 if (rc) { 10671 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 10672 rc); 10673 goto err_out; 10674 } 10675 } 10676 10677 rc = bnxt_hwrm_ring_alloc(bp); 10678 if (rc) { 10679 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 10680 goto err_out; 10681 } 10682 10683 rc = bnxt_hwrm_ring_grp_alloc(bp); 10684 if (rc) { 10685 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 10686 goto err_out; 10687 } 10688 10689 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 10690 rx_nr_rings--; 10691 10692 /* default vnic 0 */ 10693 rc = bnxt_hwrm_vnic_alloc(bp, vnic, 0, rx_nr_rings); 10694 if (rc) { 10695 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 10696 goto err_out; 10697 } 10698 10699 if (BNXT_VF(bp)) 10700 bnxt_hwrm_func_qcfg(bp); 10701 10702 rc = bnxt_setup_vnic(bp, vnic); 10703 if (rc) 10704 goto err_out; 10705 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 10706 bnxt_hwrm_update_rss_hash_cfg(bp); 10707 10708 if (bp->flags & BNXT_FLAG_RFS) { 10709 rc = bnxt_alloc_rfs_vnics(bp); 10710 if (rc) 10711 goto err_out; 10712 } 10713 10714 if (bp->flags & BNXT_FLAG_TPA) { 10715 rc = bnxt_set_tpa(bp, true); 10716 if (rc) 10717 goto err_out; 10718 } 10719 10720 if (BNXT_VF(bp)) 10721 bnxt_update_vf_mac(bp); 10722 10723 /* Filter for default vnic 0 */ 10724 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 10725 if (rc) { 10726 if (BNXT_VF(bp) && rc == -ENODEV) 10727 netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n"); 10728 else 10729 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 10730 goto err_out; 10731 } 10732 vnic->uc_filter_count = 1; 10733 10734 vnic->rx_mask = 0; 10735 if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state)) 10736 goto skip_rx_mask; 10737 10738 if (bp->dev->flags & IFF_BROADCAST) 10739 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 10740 10741 if (bp->dev->flags & IFF_PROMISC) 10742 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10743 10744 if (bp->dev->flags & IFF_ALLMULTI) { 10745 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10746 vnic->mc_list_count = 0; 10747 } else if (bp->dev->flags & IFF_MULTICAST) { 10748 u32 mask = 0; 10749 10750 bnxt_mc_list_updated(bp, &mask); 10751 vnic->rx_mask |= mask; 10752 } 10753 10754 rc = bnxt_cfg_rx_mode(bp); 10755 if (rc) 10756 goto err_out; 10757 10758 skip_rx_mask: 10759 rc = bnxt_hwrm_set_coal(bp); 10760 if (rc) 10761 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 10762 rc); 10763 10764 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10765 rc = bnxt_setup_nitroa0_vnic(bp); 10766 if (rc) 10767 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 10768 rc); 10769 } 10770 10771 if (BNXT_VF(bp)) { 10772 bnxt_hwrm_func_qcfg(bp); 10773 netdev_update_features(bp->dev); 10774 } 10775 10776 return 0; 10777 10778 err_out: 10779 bnxt_hwrm_resource_free(bp, 0, true); 10780 10781 return rc; 10782 } 10783 10784 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 10785 { 10786 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 10787 return 0; 10788 } 10789 10790 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 10791 { 10792 bnxt_init_cp_rings(bp); 10793 bnxt_init_rx_rings(bp); 10794 bnxt_init_tx_rings(bp); 10795 bnxt_init_ring_grps(bp, irq_re_init); 10796 bnxt_init_vnics(bp); 10797 10798 return bnxt_init_chip(bp, irq_re_init); 10799 } 10800 10801 static int bnxt_set_real_num_queues(struct bnxt *bp) 10802 { 10803 int rc; 10804 struct net_device *dev = bp->dev; 10805 10806 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 10807 bp->tx_nr_rings_xdp); 10808 if (rc) 10809 return rc; 10810 10811 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 10812 if (rc) 10813 return rc; 10814 10815 #ifdef CONFIG_RFS_ACCEL 10816 if (bp->flags & BNXT_FLAG_RFS) 10817 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 10818 #endif 10819 10820 return rc; 10821 } 10822 10823 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 10824 bool shared) 10825 { 10826 int _rx = *rx, _tx = *tx; 10827 10828 if (shared) { 10829 *rx = min_t(int, _rx, max); 10830 *tx = min_t(int, _tx, max); 10831 } else { 10832 if (max < 2) 10833 return -ENOMEM; 10834 10835 while (_rx + _tx > max) { 10836 if (_rx > _tx && _rx > 1) 10837 _rx--; 10838 else if (_tx > 1) 10839 _tx--; 10840 } 10841 *rx = _rx; 10842 *tx = _tx; 10843 } 10844 return 0; 10845 } 10846 10847 static int __bnxt_num_tx_to_cp(struct bnxt *bp, int tx, int tx_sets, int tx_xdp) 10848 { 10849 return (tx - tx_xdp) / tx_sets + tx_xdp; 10850 } 10851 10852 int bnxt_num_tx_to_cp(struct bnxt *bp, int tx) 10853 { 10854 int tcs = bp->num_tc; 10855 10856 if (!tcs) 10857 tcs = 1; 10858 return __bnxt_num_tx_to_cp(bp, tx, tcs, bp->tx_nr_rings_xdp); 10859 } 10860 10861 static int bnxt_num_cp_to_tx(struct bnxt *bp, int tx_cp) 10862 { 10863 int tcs = bp->num_tc; 10864 10865 return (tx_cp - bp->tx_nr_rings_xdp) * tcs + 10866 bp->tx_nr_rings_xdp; 10867 } 10868 10869 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 10870 bool sh) 10871 { 10872 int tx_cp = bnxt_num_tx_to_cp(bp, *tx); 10873 10874 if (tx_cp != *tx) { 10875 int tx_saved = tx_cp, rc; 10876 10877 rc = __bnxt_trim_rings(bp, rx, &tx_cp, max, sh); 10878 if (rc) 10879 return rc; 10880 if (tx_cp != tx_saved) 10881 *tx = bnxt_num_cp_to_tx(bp, tx_cp); 10882 return 0; 10883 } 10884 return __bnxt_trim_rings(bp, rx, tx, max, sh); 10885 } 10886 10887 static void bnxt_setup_msix(struct bnxt *bp) 10888 { 10889 const int len = sizeof(bp->irq_tbl[0].name); 10890 struct net_device *dev = bp->dev; 10891 int tcs, i; 10892 10893 tcs = bp->num_tc; 10894 if (tcs) { 10895 int i, off, count; 10896 10897 for (i = 0; i < tcs; i++) { 10898 count = bp->tx_nr_rings_per_tc; 10899 off = BNXT_TC_TO_RING_BASE(bp, i); 10900 netdev_set_tc_queue(dev, i, count, off); 10901 } 10902 } 10903 10904 for (i = 0; i < bp->cp_nr_rings; i++) { 10905 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 10906 char *attr; 10907 10908 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 10909 attr = "TxRx"; 10910 else if (i < bp->rx_nr_rings) 10911 attr = "rx"; 10912 else 10913 attr = "tx"; 10914 10915 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 10916 attr, i); 10917 bp->irq_tbl[map_idx].handler = bnxt_msix; 10918 } 10919 } 10920 10921 static int bnxt_init_int_mode(struct bnxt *bp); 10922 10923 static int bnxt_change_msix(struct bnxt *bp, int total) 10924 { 10925 struct msi_map map; 10926 int i; 10927 10928 /* add MSIX to the end if needed */ 10929 for (i = bp->total_irqs; i < total; i++) { 10930 map = pci_msix_alloc_irq_at(bp->pdev, i, NULL); 10931 if (map.index < 0) 10932 return bp->total_irqs; 10933 bp->irq_tbl[i].vector = map.virq; 10934 bp->total_irqs++; 10935 } 10936 10937 /* trim MSIX from the end if needed */ 10938 for (i = bp->total_irqs; i > total; i--) { 10939 map.index = i - 1; 10940 map.virq = bp->irq_tbl[i - 1].vector; 10941 pci_msix_free_irq(bp->pdev, map); 10942 bp->total_irqs--; 10943 } 10944 return bp->total_irqs; 10945 } 10946 10947 static int bnxt_setup_int_mode(struct bnxt *bp) 10948 { 10949 int rc; 10950 10951 if (!bp->irq_tbl) { 10952 rc = bnxt_init_int_mode(bp); 10953 if (rc || !bp->irq_tbl) 10954 return rc ?: -ENODEV; 10955 } 10956 10957 bnxt_setup_msix(bp); 10958 10959 rc = bnxt_set_real_num_queues(bp); 10960 return rc; 10961 } 10962 10963 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 10964 { 10965 return bp->hw_resc.max_rsscos_ctxs; 10966 } 10967 10968 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 10969 { 10970 return bp->hw_resc.max_vnics; 10971 } 10972 10973 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 10974 { 10975 return bp->hw_resc.max_stat_ctxs; 10976 } 10977 10978 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 10979 { 10980 return bp->hw_resc.max_cp_rings; 10981 } 10982 10983 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 10984 { 10985 unsigned int cp = bp->hw_resc.max_cp_rings; 10986 10987 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 10988 cp -= bnxt_get_ulp_msix_num(bp); 10989 10990 return cp; 10991 } 10992 10993 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 10994 { 10995 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 10996 10997 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10998 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 10999 11000 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 11001 } 11002 11003 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 11004 { 11005 bp->hw_resc.max_irqs = max_irqs; 11006 } 11007 11008 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 11009 { 11010 unsigned int cp; 11011 11012 cp = bnxt_get_max_func_cp_rings_for_en(bp); 11013 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 11014 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 11015 else 11016 return cp - bp->cp_nr_rings; 11017 } 11018 11019 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 11020 { 11021 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 11022 } 11023 11024 static int bnxt_get_avail_msix(struct bnxt *bp, int num) 11025 { 11026 int max_irq = bnxt_get_max_func_irqs(bp); 11027 int total_req = bp->cp_nr_rings + num; 11028 11029 if (max_irq < total_req) { 11030 num = max_irq - bp->cp_nr_rings; 11031 if (num <= 0) 11032 return 0; 11033 } 11034 return num; 11035 } 11036 11037 static int bnxt_get_num_msix(struct bnxt *bp) 11038 { 11039 if (!BNXT_NEW_RM(bp)) 11040 return bnxt_get_max_func_irqs(bp); 11041 11042 return bnxt_nq_rings_in_use(bp); 11043 } 11044 11045 static int bnxt_init_int_mode(struct bnxt *bp) 11046 { 11047 int i, total_vecs, max, rc = 0, min = 1, ulp_msix, tx_cp, tbl_size; 11048 11049 total_vecs = bnxt_get_num_msix(bp); 11050 max = bnxt_get_max_func_irqs(bp); 11051 if (total_vecs > max) 11052 total_vecs = max; 11053 11054 if (!total_vecs) 11055 return 0; 11056 11057 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 11058 min = 2; 11059 11060 total_vecs = pci_alloc_irq_vectors(bp->pdev, min, total_vecs, 11061 PCI_IRQ_MSIX); 11062 ulp_msix = bnxt_get_ulp_msix_num(bp); 11063 if (total_vecs < 0 || total_vecs < ulp_msix) { 11064 rc = -ENODEV; 11065 goto msix_setup_exit; 11066 } 11067 11068 tbl_size = total_vecs; 11069 if (pci_msix_can_alloc_dyn(bp->pdev)) 11070 tbl_size = max; 11071 bp->irq_tbl = kcalloc(tbl_size, sizeof(*bp->irq_tbl), GFP_KERNEL); 11072 if (bp->irq_tbl) { 11073 for (i = 0; i < total_vecs; i++) 11074 bp->irq_tbl[i].vector = pci_irq_vector(bp->pdev, i); 11075 11076 bp->total_irqs = total_vecs; 11077 /* Trim rings based upon num of vectors allocated */ 11078 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 11079 total_vecs - ulp_msix, min == 1); 11080 if (rc) 11081 goto msix_setup_exit; 11082 11083 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 11084 bp->cp_nr_rings = (min == 1) ? 11085 max_t(int, tx_cp, bp->rx_nr_rings) : 11086 tx_cp + bp->rx_nr_rings; 11087 11088 } else { 11089 rc = -ENOMEM; 11090 goto msix_setup_exit; 11091 } 11092 return 0; 11093 11094 msix_setup_exit: 11095 netdev_err(bp->dev, "bnxt_init_int_mode err: %x\n", rc); 11096 kfree(bp->irq_tbl); 11097 bp->irq_tbl = NULL; 11098 pci_free_irq_vectors(bp->pdev); 11099 return rc; 11100 } 11101 11102 static void bnxt_clear_int_mode(struct bnxt *bp) 11103 { 11104 pci_free_irq_vectors(bp->pdev); 11105 11106 kfree(bp->irq_tbl); 11107 bp->irq_tbl = NULL; 11108 } 11109 11110 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 11111 { 11112 bool irq_cleared = false; 11113 bool irq_change = false; 11114 int tcs = bp->num_tc; 11115 int irqs_required; 11116 int rc; 11117 11118 if (!bnxt_need_reserve_rings(bp)) 11119 return 0; 11120 11121 if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) { 11122 int ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want); 11123 11124 if (ulp_msix > bp->ulp_num_msix_want) 11125 ulp_msix = bp->ulp_num_msix_want; 11126 irqs_required = ulp_msix + bp->cp_nr_rings; 11127 } else { 11128 irqs_required = bnxt_get_num_msix(bp); 11129 } 11130 11131 if (irq_re_init && BNXT_NEW_RM(bp) && irqs_required != bp->total_irqs) { 11132 irq_change = true; 11133 if (!pci_msix_can_alloc_dyn(bp->pdev)) { 11134 bnxt_ulp_irq_stop(bp); 11135 bnxt_clear_int_mode(bp); 11136 irq_cleared = true; 11137 } 11138 } 11139 rc = __bnxt_reserve_rings(bp); 11140 if (irq_cleared) { 11141 if (!rc) 11142 rc = bnxt_init_int_mode(bp); 11143 bnxt_ulp_irq_restart(bp, rc); 11144 } else if (irq_change && !rc) { 11145 if (bnxt_change_msix(bp, irqs_required) != irqs_required) 11146 rc = -ENOSPC; 11147 } 11148 if (rc) { 11149 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 11150 return rc; 11151 } 11152 if (tcs && (bp->tx_nr_rings_per_tc * tcs != 11153 bp->tx_nr_rings - bp->tx_nr_rings_xdp)) { 11154 netdev_err(bp->dev, "tx ring reservation failure\n"); 11155 netdev_reset_tc(bp->dev); 11156 bp->num_tc = 0; 11157 if (bp->tx_nr_rings_xdp) 11158 bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp; 11159 else 11160 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 11161 return -ENOMEM; 11162 } 11163 return 0; 11164 } 11165 11166 static void bnxt_free_irq(struct bnxt *bp) 11167 { 11168 struct bnxt_irq *irq; 11169 int i; 11170 11171 #ifdef CONFIG_RFS_ACCEL 11172 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 11173 bp->dev->rx_cpu_rmap = NULL; 11174 #endif 11175 if (!bp->irq_tbl || !bp->bnapi) 11176 return; 11177 11178 for (i = 0; i < bp->cp_nr_rings; i++) { 11179 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 11180 11181 irq = &bp->irq_tbl[map_idx]; 11182 if (irq->requested) { 11183 if (irq->have_cpumask) { 11184 irq_update_affinity_hint(irq->vector, NULL); 11185 free_cpumask_var(irq->cpu_mask); 11186 irq->have_cpumask = 0; 11187 } 11188 free_irq(irq->vector, bp->bnapi[i]); 11189 } 11190 11191 irq->requested = 0; 11192 } 11193 } 11194 11195 static int bnxt_request_irq(struct bnxt *bp) 11196 { 11197 int i, j, rc = 0; 11198 unsigned long flags = 0; 11199 #ifdef CONFIG_RFS_ACCEL 11200 struct cpu_rmap *rmap; 11201 #endif 11202 11203 rc = bnxt_setup_int_mode(bp); 11204 if (rc) { 11205 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 11206 rc); 11207 return rc; 11208 } 11209 #ifdef CONFIG_RFS_ACCEL 11210 rmap = bp->dev->rx_cpu_rmap; 11211 #endif 11212 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 11213 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 11214 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 11215 11216 #ifdef CONFIG_RFS_ACCEL 11217 if (rmap && bp->bnapi[i]->rx_ring) { 11218 rc = irq_cpu_rmap_add(rmap, irq->vector); 11219 if (rc) 11220 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 11221 j); 11222 j++; 11223 } 11224 #endif 11225 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 11226 bp->bnapi[i]); 11227 if (rc) 11228 break; 11229 11230 netif_napi_set_irq(&bp->bnapi[i]->napi, irq->vector); 11231 irq->requested = 1; 11232 11233 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 11234 int numa_node = dev_to_node(&bp->pdev->dev); 11235 11236 irq->have_cpumask = 1; 11237 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 11238 irq->cpu_mask); 11239 rc = irq_update_affinity_hint(irq->vector, irq->cpu_mask); 11240 if (rc) { 11241 netdev_warn(bp->dev, 11242 "Update affinity hint failed, IRQ = %d\n", 11243 irq->vector); 11244 break; 11245 } 11246 } 11247 } 11248 return rc; 11249 } 11250 11251 static void bnxt_del_napi(struct bnxt *bp) 11252 { 11253 int i; 11254 11255 if (!bp->bnapi) 11256 return; 11257 11258 for (i = 0; i < bp->rx_nr_rings; i++) 11259 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_RX, NULL); 11260 for (i = 0; i < bp->tx_nr_rings - bp->tx_nr_rings_xdp; i++) 11261 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_TX, NULL); 11262 11263 for (i = 0; i < bp->cp_nr_rings; i++) { 11264 struct bnxt_napi *bnapi = bp->bnapi[i]; 11265 11266 __netif_napi_del(&bnapi->napi); 11267 } 11268 /* We called __netif_napi_del(), we need 11269 * to respect an RCU grace period before freeing napi structures. 11270 */ 11271 synchronize_net(); 11272 } 11273 11274 static void bnxt_init_napi(struct bnxt *bp) 11275 { 11276 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 11277 unsigned int cp_nr_rings = bp->cp_nr_rings; 11278 struct bnxt_napi *bnapi; 11279 int i; 11280 11281 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 11282 poll_fn = bnxt_poll_p5; 11283 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 11284 cp_nr_rings--; 11285 for (i = 0; i < cp_nr_rings; i++) { 11286 bnapi = bp->bnapi[i]; 11287 netif_napi_add_config(bp->dev, &bnapi->napi, poll_fn, 11288 bnapi->index); 11289 } 11290 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 11291 bnapi = bp->bnapi[cp_nr_rings]; 11292 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll_nitroa0); 11293 } 11294 } 11295 11296 static void bnxt_disable_napi(struct bnxt *bp) 11297 { 11298 int i; 11299 11300 if (!bp->bnapi || 11301 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 11302 return; 11303 11304 for (i = 0; i < bp->cp_nr_rings; i++) { 11305 struct bnxt_napi *bnapi = bp->bnapi[i]; 11306 struct bnxt_cp_ring_info *cpr; 11307 11308 cpr = &bnapi->cp_ring; 11309 if (bnapi->tx_fault) 11310 cpr->sw_stats->tx.tx_resets++; 11311 if (bnapi->in_reset) 11312 cpr->sw_stats->rx.rx_resets++; 11313 napi_disable(&bnapi->napi); 11314 if (bnapi->rx_ring) 11315 cancel_work_sync(&cpr->dim.work); 11316 } 11317 } 11318 11319 static void bnxt_enable_napi(struct bnxt *bp) 11320 { 11321 int i; 11322 11323 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 11324 for (i = 0; i < bp->cp_nr_rings; i++) { 11325 struct bnxt_napi *bnapi = bp->bnapi[i]; 11326 struct bnxt_cp_ring_info *cpr; 11327 11328 bnapi->tx_fault = 0; 11329 11330 cpr = &bnapi->cp_ring; 11331 bnapi->in_reset = false; 11332 11333 if (bnapi->rx_ring) { 11334 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 11335 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 11336 } 11337 napi_enable(&bnapi->napi); 11338 } 11339 } 11340 11341 void bnxt_tx_disable(struct bnxt *bp) 11342 { 11343 int i; 11344 struct bnxt_tx_ring_info *txr; 11345 11346 if (bp->tx_ring) { 11347 for (i = 0; i < bp->tx_nr_rings; i++) { 11348 txr = &bp->tx_ring[i]; 11349 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 11350 } 11351 } 11352 /* Make sure napi polls see @dev_state change */ 11353 synchronize_net(); 11354 /* Drop carrier first to prevent TX timeout */ 11355 netif_carrier_off(bp->dev); 11356 /* Stop all TX queues */ 11357 netif_tx_disable(bp->dev); 11358 } 11359 11360 void bnxt_tx_enable(struct bnxt *bp) 11361 { 11362 int i; 11363 struct bnxt_tx_ring_info *txr; 11364 11365 for (i = 0; i < bp->tx_nr_rings; i++) { 11366 txr = &bp->tx_ring[i]; 11367 WRITE_ONCE(txr->dev_state, 0); 11368 } 11369 /* Make sure napi polls see @dev_state change */ 11370 synchronize_net(); 11371 netif_tx_wake_all_queues(bp->dev); 11372 if (BNXT_LINK_IS_UP(bp)) 11373 netif_carrier_on(bp->dev); 11374 } 11375 11376 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 11377 { 11378 u8 active_fec = link_info->active_fec_sig_mode & 11379 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 11380 11381 switch (active_fec) { 11382 default: 11383 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 11384 return "None"; 11385 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 11386 return "Clause 74 BaseR"; 11387 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 11388 return "Clause 91 RS(528,514)"; 11389 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 11390 return "Clause 91 RS544_1XN"; 11391 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 11392 return "Clause 91 RS(544,514)"; 11393 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 11394 return "Clause 91 RS272_1XN"; 11395 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 11396 return "Clause 91 RS(272,257)"; 11397 } 11398 } 11399 11400 void bnxt_report_link(struct bnxt *bp) 11401 { 11402 if (BNXT_LINK_IS_UP(bp)) { 11403 const char *signal = ""; 11404 const char *flow_ctrl; 11405 const char *duplex; 11406 u32 speed; 11407 u16 fec; 11408 11409 netif_carrier_on(bp->dev); 11410 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 11411 if (speed == SPEED_UNKNOWN) { 11412 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 11413 return; 11414 } 11415 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 11416 duplex = "full"; 11417 else 11418 duplex = "half"; 11419 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 11420 flow_ctrl = "ON - receive & transmit"; 11421 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 11422 flow_ctrl = "ON - transmit"; 11423 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 11424 flow_ctrl = "ON - receive"; 11425 else 11426 flow_ctrl = "none"; 11427 if (bp->link_info.phy_qcfg_resp.option_flags & 11428 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 11429 u8 sig_mode = bp->link_info.active_fec_sig_mode & 11430 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 11431 switch (sig_mode) { 11432 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 11433 signal = "(NRZ) "; 11434 break; 11435 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 11436 signal = "(PAM4 56Gbps) "; 11437 break; 11438 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4_112: 11439 signal = "(PAM4 112Gbps) "; 11440 break; 11441 default: 11442 break; 11443 } 11444 } 11445 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 11446 speed, signal, duplex, flow_ctrl); 11447 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 11448 netdev_info(bp->dev, "EEE is %s\n", 11449 bp->eee.eee_active ? "active" : 11450 "not active"); 11451 fec = bp->link_info.fec_cfg; 11452 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 11453 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 11454 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 11455 bnxt_report_fec(&bp->link_info)); 11456 } else { 11457 netif_carrier_off(bp->dev); 11458 netdev_err(bp->dev, "NIC Link is Down\n"); 11459 } 11460 } 11461 11462 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 11463 { 11464 if (!resp->supported_speeds_auto_mode && 11465 !resp->supported_speeds_force_mode && 11466 !resp->supported_pam4_speeds_auto_mode && 11467 !resp->supported_pam4_speeds_force_mode && 11468 !resp->supported_speeds2_auto_mode && 11469 !resp->supported_speeds2_force_mode) 11470 return true; 11471 return false; 11472 } 11473 11474 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 11475 { 11476 struct bnxt_link_info *link_info = &bp->link_info; 11477 struct hwrm_port_phy_qcaps_output *resp; 11478 struct hwrm_port_phy_qcaps_input *req; 11479 int rc = 0; 11480 11481 if (bp->hwrm_spec_code < 0x10201) 11482 return 0; 11483 11484 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS); 11485 if (rc) 11486 return rc; 11487 11488 resp = hwrm_req_hold(bp, req); 11489 rc = hwrm_req_send(bp, req); 11490 if (rc) 11491 goto hwrm_phy_qcaps_exit; 11492 11493 bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8); 11494 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 11495 struct ethtool_keee *eee = &bp->eee; 11496 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 11497 11498 _bnxt_fw_to_linkmode(eee->supported, fw_speeds); 11499 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 11500 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 11501 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 11502 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 11503 } 11504 11505 if (bp->hwrm_spec_code >= 0x10a01) { 11506 if (bnxt_phy_qcaps_no_speed(resp)) { 11507 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 11508 netdev_warn(bp->dev, "Ethernet link disabled\n"); 11509 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 11510 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 11511 netdev_info(bp->dev, "Ethernet link enabled\n"); 11512 /* Phy re-enabled, reprobe the speeds */ 11513 link_info->support_auto_speeds = 0; 11514 link_info->support_pam4_auto_speeds = 0; 11515 link_info->support_auto_speeds2 = 0; 11516 } 11517 } 11518 if (resp->supported_speeds_auto_mode) 11519 link_info->support_auto_speeds = 11520 le16_to_cpu(resp->supported_speeds_auto_mode); 11521 if (resp->supported_pam4_speeds_auto_mode) 11522 link_info->support_pam4_auto_speeds = 11523 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 11524 if (resp->supported_speeds2_auto_mode) 11525 link_info->support_auto_speeds2 = 11526 le16_to_cpu(resp->supported_speeds2_auto_mode); 11527 11528 bp->port_count = resp->port_cnt; 11529 11530 hwrm_phy_qcaps_exit: 11531 hwrm_req_drop(bp, req); 11532 return rc; 11533 } 11534 11535 static bool bnxt_support_dropped(u16 advertising, u16 supported) 11536 { 11537 u16 diff = advertising ^ supported; 11538 11539 return ((supported | diff) != supported); 11540 } 11541 11542 static bool bnxt_support_speed_dropped(struct bnxt_link_info *link_info) 11543 { 11544 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 11545 11546 /* Check if any advertised speeds are no longer supported. The caller 11547 * holds the link_lock mutex, so we can modify link_info settings. 11548 */ 11549 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 11550 if (bnxt_support_dropped(link_info->advertising, 11551 link_info->support_auto_speeds2)) { 11552 link_info->advertising = link_info->support_auto_speeds2; 11553 return true; 11554 } 11555 return false; 11556 } 11557 if (bnxt_support_dropped(link_info->advertising, 11558 link_info->support_auto_speeds)) { 11559 link_info->advertising = link_info->support_auto_speeds; 11560 return true; 11561 } 11562 if (bnxt_support_dropped(link_info->advertising_pam4, 11563 link_info->support_pam4_auto_speeds)) { 11564 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 11565 return true; 11566 } 11567 return false; 11568 } 11569 11570 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 11571 { 11572 struct bnxt_link_info *link_info = &bp->link_info; 11573 struct hwrm_port_phy_qcfg_output *resp; 11574 struct hwrm_port_phy_qcfg_input *req; 11575 u8 link_state = link_info->link_state; 11576 bool support_changed; 11577 int rc; 11578 11579 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG); 11580 if (rc) 11581 return rc; 11582 11583 resp = hwrm_req_hold(bp, req); 11584 rc = hwrm_req_send(bp, req); 11585 if (rc) { 11586 hwrm_req_drop(bp, req); 11587 if (BNXT_VF(bp) && rc == -ENODEV) { 11588 netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n"); 11589 rc = 0; 11590 } 11591 return rc; 11592 } 11593 11594 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 11595 link_info->phy_link_status = resp->link; 11596 link_info->duplex = resp->duplex_cfg; 11597 if (bp->hwrm_spec_code >= 0x10800) 11598 link_info->duplex = resp->duplex_state; 11599 link_info->pause = resp->pause; 11600 link_info->auto_mode = resp->auto_mode; 11601 link_info->auto_pause_setting = resp->auto_pause; 11602 link_info->lp_pause = resp->link_partner_adv_pause; 11603 link_info->force_pause_setting = resp->force_pause; 11604 link_info->duplex_setting = resp->duplex_cfg; 11605 if (link_info->phy_link_status == BNXT_LINK_LINK) { 11606 link_info->link_speed = le16_to_cpu(resp->link_speed); 11607 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 11608 link_info->active_lanes = resp->active_lanes; 11609 } else { 11610 link_info->link_speed = 0; 11611 link_info->active_lanes = 0; 11612 } 11613 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 11614 link_info->force_pam4_link_speed = 11615 le16_to_cpu(resp->force_pam4_link_speed); 11616 link_info->force_link_speed2 = le16_to_cpu(resp->force_link_speeds2); 11617 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 11618 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 11619 link_info->support_speeds2 = le16_to_cpu(resp->support_speeds2); 11620 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 11621 link_info->auto_pam4_link_speeds = 11622 le16_to_cpu(resp->auto_pam4_link_speed_mask); 11623 link_info->auto_link_speeds2 = le16_to_cpu(resp->auto_link_speeds2); 11624 link_info->lp_auto_link_speeds = 11625 le16_to_cpu(resp->link_partner_adv_speeds); 11626 link_info->lp_auto_pam4_link_speeds = 11627 resp->link_partner_pam4_adv_speeds; 11628 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 11629 link_info->phy_ver[0] = resp->phy_maj; 11630 link_info->phy_ver[1] = resp->phy_min; 11631 link_info->phy_ver[2] = resp->phy_bld; 11632 link_info->media_type = resp->media_type; 11633 link_info->phy_type = resp->phy_type; 11634 link_info->transceiver = resp->xcvr_pkg_type; 11635 link_info->phy_addr = resp->eee_config_phy_addr & 11636 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 11637 link_info->module_status = resp->module_status; 11638 11639 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 11640 struct ethtool_keee *eee = &bp->eee; 11641 u16 fw_speeds; 11642 11643 eee->eee_active = 0; 11644 if (resp->eee_config_phy_addr & 11645 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 11646 eee->eee_active = 1; 11647 fw_speeds = le16_to_cpu( 11648 resp->link_partner_adv_eee_link_speed_mask); 11649 _bnxt_fw_to_linkmode(eee->lp_advertised, fw_speeds); 11650 } 11651 11652 /* Pull initial EEE config */ 11653 if (!chng_link_state) { 11654 if (resp->eee_config_phy_addr & 11655 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 11656 eee->eee_enabled = 1; 11657 11658 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 11659 _bnxt_fw_to_linkmode(eee->advertised, fw_speeds); 11660 11661 if (resp->eee_config_phy_addr & 11662 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 11663 __le32 tmr; 11664 11665 eee->tx_lpi_enabled = 1; 11666 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 11667 eee->tx_lpi_timer = le32_to_cpu(tmr) & 11668 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 11669 } 11670 } 11671 } 11672 11673 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 11674 if (bp->hwrm_spec_code >= 0x10504) { 11675 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 11676 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 11677 } 11678 /* TODO: need to add more logic to report VF link */ 11679 if (chng_link_state) { 11680 if (link_info->phy_link_status == BNXT_LINK_LINK) 11681 link_info->link_state = BNXT_LINK_STATE_UP; 11682 else 11683 link_info->link_state = BNXT_LINK_STATE_DOWN; 11684 if (link_state != link_info->link_state) 11685 bnxt_report_link(bp); 11686 } else { 11687 /* always link down if not require to update link state */ 11688 link_info->link_state = BNXT_LINK_STATE_DOWN; 11689 } 11690 hwrm_req_drop(bp, req); 11691 11692 if (!BNXT_PHY_CFG_ABLE(bp)) 11693 return 0; 11694 11695 support_changed = bnxt_support_speed_dropped(link_info); 11696 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 11697 bnxt_hwrm_set_link_setting(bp, true, false); 11698 return 0; 11699 } 11700 11701 static void bnxt_get_port_module_status(struct bnxt *bp) 11702 { 11703 struct bnxt_link_info *link_info = &bp->link_info; 11704 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 11705 u8 module_status; 11706 11707 if (bnxt_update_link(bp, true)) 11708 return; 11709 11710 module_status = link_info->module_status; 11711 switch (module_status) { 11712 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 11713 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 11714 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 11715 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 11716 bp->pf.port_id); 11717 if (bp->hwrm_spec_code >= 0x10201) { 11718 netdev_warn(bp->dev, "Module part number %s\n", 11719 resp->phy_vendor_partnumber); 11720 } 11721 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 11722 netdev_warn(bp->dev, "TX is disabled\n"); 11723 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 11724 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 11725 } 11726 } 11727 11728 static void 11729 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 11730 { 11731 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 11732 if (bp->hwrm_spec_code >= 0x10201) 11733 req->auto_pause = 11734 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 11735 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 11736 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 11737 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 11738 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 11739 req->enables |= 11740 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 11741 } else { 11742 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 11743 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 11744 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 11745 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 11746 req->enables |= 11747 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 11748 if (bp->hwrm_spec_code >= 0x10201) { 11749 req->auto_pause = req->force_pause; 11750 req->enables |= cpu_to_le32( 11751 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 11752 } 11753 } 11754 } 11755 11756 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 11757 { 11758 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 11759 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 11760 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 11761 req->enables |= 11762 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEEDS2_MASK); 11763 req->auto_link_speeds2_mask = cpu_to_le16(bp->link_info.advertising); 11764 } else if (bp->link_info.advertising) { 11765 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 11766 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 11767 } 11768 if (bp->link_info.advertising_pam4) { 11769 req->enables |= 11770 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 11771 req->auto_link_pam4_speed_mask = 11772 cpu_to_le16(bp->link_info.advertising_pam4); 11773 } 11774 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 11775 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 11776 } else { 11777 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 11778 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 11779 req->force_link_speeds2 = cpu_to_le16(bp->link_info.req_link_speed); 11780 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_LINK_SPEEDS2); 11781 netif_info(bp, link, bp->dev, "Forcing FW speed2: %d\n", 11782 (u32)bp->link_info.req_link_speed); 11783 } else if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 11784 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 11785 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 11786 } else { 11787 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 11788 } 11789 } 11790 11791 /* tell chimp that the setting takes effect immediately */ 11792 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 11793 } 11794 11795 int bnxt_hwrm_set_pause(struct bnxt *bp) 11796 { 11797 struct hwrm_port_phy_cfg_input *req; 11798 int rc; 11799 11800 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 11801 if (rc) 11802 return rc; 11803 11804 bnxt_hwrm_set_pause_common(bp, req); 11805 11806 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 11807 bp->link_info.force_link_chng) 11808 bnxt_hwrm_set_link_common(bp, req); 11809 11810 rc = hwrm_req_send(bp, req); 11811 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 11812 /* since changing of pause setting doesn't trigger any link 11813 * change event, the driver needs to update the current pause 11814 * result upon successfully return of the phy_cfg command 11815 */ 11816 bp->link_info.pause = 11817 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 11818 bp->link_info.auto_pause_setting = 0; 11819 if (!bp->link_info.force_link_chng) 11820 bnxt_report_link(bp); 11821 } 11822 bp->link_info.force_link_chng = false; 11823 return rc; 11824 } 11825 11826 static void bnxt_hwrm_set_eee(struct bnxt *bp, 11827 struct hwrm_port_phy_cfg_input *req) 11828 { 11829 struct ethtool_keee *eee = &bp->eee; 11830 11831 if (eee->eee_enabled) { 11832 u16 eee_speeds; 11833 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 11834 11835 if (eee->tx_lpi_enabled) 11836 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 11837 else 11838 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 11839 11840 req->flags |= cpu_to_le32(flags); 11841 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 11842 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 11843 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 11844 } else { 11845 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 11846 } 11847 } 11848 11849 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 11850 { 11851 struct hwrm_port_phy_cfg_input *req; 11852 int rc; 11853 11854 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 11855 if (rc) 11856 return rc; 11857 11858 if (set_pause) 11859 bnxt_hwrm_set_pause_common(bp, req); 11860 11861 bnxt_hwrm_set_link_common(bp, req); 11862 11863 if (set_eee) 11864 bnxt_hwrm_set_eee(bp, req); 11865 return hwrm_req_send(bp, req); 11866 } 11867 11868 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 11869 { 11870 struct hwrm_port_phy_cfg_input *req; 11871 int rc; 11872 11873 if (!BNXT_SINGLE_PF(bp)) 11874 return 0; 11875 11876 if (pci_num_vf(bp->pdev) && 11877 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 11878 return 0; 11879 11880 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 11881 if (rc) 11882 return rc; 11883 11884 req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 11885 rc = hwrm_req_send(bp, req); 11886 if (!rc) { 11887 mutex_lock(&bp->link_lock); 11888 /* Device is not obliged link down in certain scenarios, even 11889 * when forced. Setting the state unknown is consistent with 11890 * driver startup and will force link state to be reported 11891 * during subsequent open based on PORT_PHY_QCFG. 11892 */ 11893 bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN; 11894 mutex_unlock(&bp->link_lock); 11895 } 11896 return rc; 11897 } 11898 11899 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 11900 { 11901 #ifdef CONFIG_TEE_BNXT_FW 11902 int rc = tee_bnxt_fw_load(); 11903 11904 if (rc) 11905 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 11906 11907 return rc; 11908 #else 11909 netdev_err(bp->dev, "OP-TEE not supported\n"); 11910 return -ENODEV; 11911 #endif 11912 } 11913 11914 static int bnxt_try_recover_fw(struct bnxt *bp) 11915 { 11916 if (bp->fw_health && bp->fw_health->status_reliable) { 11917 int retry = 0, rc; 11918 u32 sts; 11919 11920 do { 11921 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 11922 rc = bnxt_hwrm_poll(bp); 11923 if (!BNXT_FW_IS_BOOTING(sts) && 11924 !BNXT_FW_IS_RECOVERING(sts)) 11925 break; 11926 retry++; 11927 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 11928 11929 if (!BNXT_FW_IS_HEALTHY(sts)) { 11930 netdev_err(bp->dev, 11931 "Firmware not responding, status: 0x%x\n", 11932 sts); 11933 rc = -ENODEV; 11934 } 11935 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 11936 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 11937 return bnxt_fw_reset_via_optee(bp); 11938 } 11939 return rc; 11940 } 11941 11942 return -ENODEV; 11943 } 11944 11945 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset) 11946 { 11947 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 11948 11949 if (!BNXT_NEW_RM(bp)) 11950 return; /* no resource reservations required */ 11951 11952 hw_resc->resv_cp_rings = 0; 11953 hw_resc->resv_stat_ctxs = 0; 11954 hw_resc->resv_irqs = 0; 11955 hw_resc->resv_tx_rings = 0; 11956 hw_resc->resv_rx_rings = 0; 11957 hw_resc->resv_hw_ring_grps = 0; 11958 hw_resc->resv_vnics = 0; 11959 hw_resc->resv_rsscos_ctxs = 0; 11960 if (!fw_reset) { 11961 bp->tx_nr_rings = 0; 11962 bp->rx_nr_rings = 0; 11963 } 11964 } 11965 11966 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset) 11967 { 11968 int rc; 11969 11970 if (!BNXT_NEW_RM(bp)) 11971 return 0; /* no resource reservations required */ 11972 11973 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 11974 if (rc) 11975 netdev_err(bp->dev, "resc_qcaps failed\n"); 11976 11977 bnxt_clear_reservations(bp, fw_reset); 11978 11979 return rc; 11980 } 11981 11982 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 11983 { 11984 struct hwrm_func_drv_if_change_output *resp; 11985 struct hwrm_func_drv_if_change_input *req; 11986 bool fw_reset = !bp->irq_tbl; 11987 bool resc_reinit = false; 11988 int rc, retry = 0; 11989 u32 flags = 0; 11990 11991 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 11992 return 0; 11993 11994 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE); 11995 if (rc) 11996 return rc; 11997 11998 if (up) 11999 req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 12000 resp = hwrm_req_hold(bp, req); 12001 12002 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 12003 while (retry < BNXT_FW_IF_RETRY) { 12004 rc = hwrm_req_send(bp, req); 12005 if (rc != -EAGAIN) 12006 break; 12007 12008 msleep(50); 12009 retry++; 12010 } 12011 12012 if (rc == -EAGAIN) { 12013 hwrm_req_drop(bp, req); 12014 return rc; 12015 } else if (!rc) { 12016 flags = le32_to_cpu(resp->flags); 12017 } else if (up) { 12018 rc = bnxt_try_recover_fw(bp); 12019 fw_reset = true; 12020 } 12021 hwrm_req_drop(bp, req); 12022 if (rc) 12023 return rc; 12024 12025 if (!up) { 12026 bnxt_inv_fw_health_reg(bp); 12027 return 0; 12028 } 12029 12030 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 12031 resc_reinit = true; 12032 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE || 12033 test_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) 12034 fw_reset = true; 12035 else 12036 bnxt_remap_fw_health_regs(bp); 12037 12038 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 12039 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 12040 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12041 return -ENODEV; 12042 } 12043 if (resc_reinit || fw_reset) { 12044 if (fw_reset) { 12045 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 12046 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 12047 bnxt_ulp_irq_stop(bp); 12048 bnxt_free_ctx_mem(bp, false); 12049 bnxt_dcb_free(bp); 12050 rc = bnxt_fw_init_one(bp); 12051 if (rc) { 12052 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 12053 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12054 return rc; 12055 } 12056 bnxt_clear_int_mode(bp); 12057 rc = bnxt_init_int_mode(bp); 12058 if (rc) { 12059 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 12060 netdev_err(bp->dev, "init int mode failed\n"); 12061 return rc; 12062 } 12063 } 12064 rc = bnxt_cancel_reservations(bp, fw_reset); 12065 } 12066 return rc; 12067 } 12068 12069 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 12070 { 12071 struct hwrm_port_led_qcaps_output *resp; 12072 struct hwrm_port_led_qcaps_input *req; 12073 struct bnxt_pf_info *pf = &bp->pf; 12074 int rc; 12075 12076 bp->num_leds = 0; 12077 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 12078 return 0; 12079 12080 rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS); 12081 if (rc) 12082 return rc; 12083 12084 req->port_id = cpu_to_le16(pf->port_id); 12085 resp = hwrm_req_hold(bp, req); 12086 rc = hwrm_req_send(bp, req); 12087 if (rc) { 12088 hwrm_req_drop(bp, req); 12089 return rc; 12090 } 12091 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 12092 int i; 12093 12094 bp->num_leds = resp->num_leds; 12095 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 12096 bp->num_leds); 12097 for (i = 0; i < bp->num_leds; i++) { 12098 struct bnxt_led_info *led = &bp->leds[i]; 12099 __le16 caps = led->led_state_caps; 12100 12101 if (!led->led_group_id || 12102 !BNXT_LED_ALT_BLINK_CAP(caps)) { 12103 bp->num_leds = 0; 12104 break; 12105 } 12106 } 12107 } 12108 hwrm_req_drop(bp, req); 12109 return 0; 12110 } 12111 12112 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 12113 { 12114 struct hwrm_wol_filter_alloc_output *resp; 12115 struct hwrm_wol_filter_alloc_input *req; 12116 int rc; 12117 12118 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC); 12119 if (rc) 12120 return rc; 12121 12122 req->port_id = cpu_to_le16(bp->pf.port_id); 12123 req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 12124 req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 12125 memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN); 12126 12127 resp = hwrm_req_hold(bp, req); 12128 rc = hwrm_req_send(bp, req); 12129 if (!rc) 12130 bp->wol_filter_id = resp->wol_filter_id; 12131 hwrm_req_drop(bp, req); 12132 return rc; 12133 } 12134 12135 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 12136 { 12137 struct hwrm_wol_filter_free_input *req; 12138 int rc; 12139 12140 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE); 12141 if (rc) 12142 return rc; 12143 12144 req->port_id = cpu_to_le16(bp->pf.port_id); 12145 req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 12146 req->wol_filter_id = bp->wol_filter_id; 12147 12148 return hwrm_req_send(bp, req); 12149 } 12150 12151 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 12152 { 12153 struct hwrm_wol_filter_qcfg_output *resp; 12154 struct hwrm_wol_filter_qcfg_input *req; 12155 u16 next_handle = 0; 12156 int rc; 12157 12158 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG); 12159 if (rc) 12160 return rc; 12161 12162 req->port_id = cpu_to_le16(bp->pf.port_id); 12163 req->handle = cpu_to_le16(handle); 12164 resp = hwrm_req_hold(bp, req); 12165 rc = hwrm_req_send(bp, req); 12166 if (!rc) { 12167 next_handle = le16_to_cpu(resp->next_handle); 12168 if (next_handle != 0) { 12169 if (resp->wol_type == 12170 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 12171 bp->wol = 1; 12172 bp->wol_filter_id = resp->wol_filter_id; 12173 } 12174 } 12175 } 12176 hwrm_req_drop(bp, req); 12177 return next_handle; 12178 } 12179 12180 static void bnxt_get_wol_settings(struct bnxt *bp) 12181 { 12182 u16 handle = 0; 12183 12184 bp->wol = 0; 12185 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 12186 return; 12187 12188 do { 12189 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 12190 } while (handle && handle != 0xffff); 12191 } 12192 12193 static bool bnxt_eee_config_ok(struct bnxt *bp) 12194 { 12195 struct ethtool_keee *eee = &bp->eee; 12196 struct bnxt_link_info *link_info = &bp->link_info; 12197 12198 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 12199 return true; 12200 12201 if (eee->eee_enabled) { 12202 __ETHTOOL_DECLARE_LINK_MODE_MASK(advertising); 12203 __ETHTOOL_DECLARE_LINK_MODE_MASK(tmp); 12204 12205 _bnxt_fw_to_linkmode(advertising, link_info->advertising); 12206 12207 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 12208 eee->eee_enabled = 0; 12209 return false; 12210 } 12211 if (linkmode_andnot(tmp, eee->advertised, advertising)) { 12212 linkmode_and(eee->advertised, advertising, 12213 eee->supported); 12214 return false; 12215 } 12216 } 12217 return true; 12218 } 12219 12220 static int bnxt_update_phy_setting(struct bnxt *bp) 12221 { 12222 int rc; 12223 bool update_link = false; 12224 bool update_pause = false; 12225 bool update_eee = false; 12226 struct bnxt_link_info *link_info = &bp->link_info; 12227 12228 rc = bnxt_update_link(bp, true); 12229 if (rc) { 12230 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 12231 rc); 12232 return rc; 12233 } 12234 if (!BNXT_SINGLE_PF(bp)) 12235 return 0; 12236 12237 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 12238 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 12239 link_info->req_flow_ctrl) 12240 update_pause = true; 12241 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 12242 link_info->force_pause_setting != link_info->req_flow_ctrl) 12243 update_pause = true; 12244 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 12245 if (BNXT_AUTO_MODE(link_info->auto_mode)) 12246 update_link = true; 12247 if (bnxt_force_speed_updated(link_info)) 12248 update_link = true; 12249 if (link_info->req_duplex != link_info->duplex_setting) 12250 update_link = true; 12251 } else { 12252 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 12253 update_link = true; 12254 if (bnxt_auto_speed_updated(link_info)) 12255 update_link = true; 12256 } 12257 12258 /* The last close may have shutdown the link, so need to call 12259 * PHY_CFG to bring it back up. 12260 */ 12261 if (!BNXT_LINK_IS_UP(bp)) 12262 update_link = true; 12263 12264 if (!bnxt_eee_config_ok(bp)) 12265 update_eee = true; 12266 12267 if (update_link) 12268 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 12269 else if (update_pause) 12270 rc = bnxt_hwrm_set_pause(bp); 12271 if (rc) { 12272 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 12273 rc); 12274 return rc; 12275 } 12276 12277 return rc; 12278 } 12279 12280 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 12281 12282 static int bnxt_reinit_after_abort(struct bnxt *bp) 12283 { 12284 int rc; 12285 12286 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 12287 return -EBUSY; 12288 12289 if (bp->dev->reg_state == NETREG_UNREGISTERED) 12290 return -ENODEV; 12291 12292 rc = bnxt_fw_init_one(bp); 12293 if (!rc) { 12294 bnxt_clear_int_mode(bp); 12295 rc = bnxt_init_int_mode(bp); 12296 if (!rc) { 12297 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12298 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 12299 } 12300 } 12301 return rc; 12302 } 12303 12304 static void bnxt_cfg_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 12305 { 12306 struct bnxt_ntuple_filter *ntp_fltr; 12307 struct bnxt_l2_filter *l2_fltr; 12308 12309 if (list_empty(&fltr->list)) 12310 return; 12311 12312 if (fltr->type == BNXT_FLTR_TYPE_NTUPLE) { 12313 ntp_fltr = container_of(fltr, struct bnxt_ntuple_filter, base); 12314 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 12315 atomic_inc(&l2_fltr->refcnt); 12316 ntp_fltr->l2_fltr = l2_fltr; 12317 if (bnxt_hwrm_cfa_ntuple_filter_alloc(bp, ntp_fltr)) { 12318 bnxt_del_ntp_filter(bp, ntp_fltr); 12319 netdev_err(bp->dev, "restoring previously configured ntuple filter id %d failed\n", 12320 fltr->sw_id); 12321 } 12322 } else if (fltr->type == BNXT_FLTR_TYPE_L2) { 12323 l2_fltr = container_of(fltr, struct bnxt_l2_filter, base); 12324 if (bnxt_hwrm_l2_filter_alloc(bp, l2_fltr)) { 12325 bnxt_del_l2_filter(bp, l2_fltr); 12326 netdev_err(bp->dev, "restoring previously configured l2 filter id %d failed\n", 12327 fltr->sw_id); 12328 } 12329 } 12330 } 12331 12332 static void bnxt_cfg_usr_fltrs(struct bnxt *bp) 12333 { 12334 struct bnxt_filter_base *usr_fltr, *tmp; 12335 12336 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) 12337 bnxt_cfg_one_usr_fltr(bp, usr_fltr); 12338 } 12339 12340 static int bnxt_set_xps_mapping(struct bnxt *bp) 12341 { 12342 int numa_node = dev_to_node(&bp->pdev->dev); 12343 unsigned int q_idx, map_idx, cpu, i; 12344 const struct cpumask *cpu_mask_ptr; 12345 int nr_cpus = num_online_cpus(); 12346 cpumask_t *q_map; 12347 int rc = 0; 12348 12349 q_map = kcalloc(bp->tx_nr_rings_per_tc, sizeof(*q_map), GFP_KERNEL); 12350 if (!q_map) 12351 return -ENOMEM; 12352 12353 /* Create CPU mask for all TX queues across MQPRIO traffic classes. 12354 * Each TC has the same number of TX queues. The nth TX queue for each 12355 * TC will have the same CPU mask. 12356 */ 12357 for (i = 0; i < nr_cpus; i++) { 12358 map_idx = i % bp->tx_nr_rings_per_tc; 12359 cpu = cpumask_local_spread(i, numa_node); 12360 cpu_mask_ptr = get_cpu_mask(cpu); 12361 cpumask_or(&q_map[map_idx], &q_map[map_idx], cpu_mask_ptr); 12362 } 12363 12364 /* Register CPU mask for each TX queue except the ones marked for XDP */ 12365 for (q_idx = 0; q_idx < bp->dev->real_num_tx_queues; q_idx++) { 12366 map_idx = q_idx % bp->tx_nr_rings_per_tc; 12367 rc = netif_set_xps_queue(bp->dev, &q_map[map_idx], q_idx); 12368 if (rc) { 12369 netdev_warn(bp->dev, "Error setting XPS for q:%d\n", 12370 q_idx); 12371 break; 12372 } 12373 } 12374 12375 kfree(q_map); 12376 12377 return rc; 12378 } 12379 12380 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12381 { 12382 int rc = 0; 12383 12384 netif_carrier_off(bp->dev); 12385 if (irq_re_init) { 12386 /* Reserve rings now if none were reserved at driver probe. */ 12387 rc = bnxt_init_dflt_ring_mode(bp); 12388 if (rc) { 12389 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 12390 return rc; 12391 } 12392 } 12393 rc = bnxt_reserve_rings(bp, irq_re_init); 12394 if (rc) 12395 return rc; 12396 12397 rc = bnxt_alloc_mem(bp, irq_re_init); 12398 if (rc) { 12399 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 12400 goto open_err_free_mem; 12401 } 12402 12403 if (irq_re_init) { 12404 bnxt_init_napi(bp); 12405 rc = bnxt_request_irq(bp); 12406 if (rc) { 12407 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 12408 goto open_err_irq; 12409 } 12410 } 12411 12412 rc = bnxt_init_nic(bp, irq_re_init); 12413 if (rc) { 12414 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 12415 goto open_err_irq; 12416 } 12417 12418 bnxt_enable_napi(bp); 12419 bnxt_debug_dev_init(bp); 12420 12421 if (link_re_init) { 12422 mutex_lock(&bp->link_lock); 12423 rc = bnxt_update_phy_setting(bp); 12424 mutex_unlock(&bp->link_lock); 12425 if (rc) { 12426 netdev_warn(bp->dev, "failed to update phy settings\n"); 12427 if (BNXT_SINGLE_PF(bp)) { 12428 bp->link_info.phy_retry = true; 12429 bp->link_info.phy_retry_expires = 12430 jiffies + 5 * HZ; 12431 } 12432 } 12433 } 12434 12435 if (irq_re_init) { 12436 udp_tunnel_nic_reset_ntf(bp->dev); 12437 rc = bnxt_set_xps_mapping(bp); 12438 if (rc) 12439 netdev_warn(bp->dev, "failed to set xps mapping\n"); 12440 } 12441 12442 if (bp->tx_nr_rings_xdp < num_possible_cpus()) { 12443 if (!static_key_enabled(&bnxt_xdp_locking_key)) 12444 static_branch_enable(&bnxt_xdp_locking_key); 12445 } else if (static_key_enabled(&bnxt_xdp_locking_key)) { 12446 static_branch_disable(&bnxt_xdp_locking_key); 12447 } 12448 set_bit(BNXT_STATE_OPEN, &bp->state); 12449 bnxt_enable_int(bp); 12450 /* Enable TX queues */ 12451 bnxt_tx_enable(bp); 12452 mod_timer(&bp->timer, jiffies + bp->current_interval); 12453 /* Poll link status and check for SFP+ module status */ 12454 mutex_lock(&bp->link_lock); 12455 bnxt_get_port_module_status(bp); 12456 mutex_unlock(&bp->link_lock); 12457 12458 /* VF-reps may need to be re-opened after the PF is re-opened */ 12459 if (BNXT_PF(bp)) 12460 bnxt_vf_reps_open(bp); 12461 if (bp->ptp_cfg && !(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) 12462 WRITE_ONCE(bp->ptp_cfg->tx_avail, BNXT_MAX_TX_TS); 12463 bnxt_ptp_init_rtc(bp, true); 12464 bnxt_ptp_cfg_tstamp_filters(bp); 12465 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 12466 bnxt_hwrm_realloc_rss_ctx_vnic(bp); 12467 bnxt_cfg_usr_fltrs(bp); 12468 return 0; 12469 12470 open_err_irq: 12471 bnxt_del_napi(bp); 12472 12473 open_err_free_mem: 12474 bnxt_free_skbs(bp); 12475 bnxt_free_irq(bp); 12476 bnxt_free_mem(bp, true); 12477 return rc; 12478 } 12479 12480 /* rtnl_lock held */ 12481 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12482 { 12483 int rc = 0; 12484 12485 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 12486 rc = -EIO; 12487 if (!rc) 12488 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 12489 if (rc) { 12490 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 12491 dev_close(bp->dev); 12492 } 12493 return rc; 12494 } 12495 12496 /* rtnl_lock held, open the NIC half way by allocating all resources, but 12497 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline 12498 * self tests. 12499 */ 12500 int bnxt_half_open_nic(struct bnxt *bp) 12501 { 12502 int rc = 0; 12503 12504 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12505 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); 12506 rc = -ENODEV; 12507 goto half_open_err; 12508 } 12509 12510 rc = bnxt_alloc_mem(bp, true); 12511 if (rc) { 12512 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 12513 goto half_open_err; 12514 } 12515 bnxt_init_napi(bp); 12516 set_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12517 rc = bnxt_init_nic(bp, true); 12518 if (rc) { 12519 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12520 bnxt_del_napi(bp); 12521 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 12522 goto half_open_err; 12523 } 12524 return 0; 12525 12526 half_open_err: 12527 bnxt_free_skbs(bp); 12528 bnxt_free_mem(bp, true); 12529 dev_close(bp->dev); 12530 return rc; 12531 } 12532 12533 /* rtnl_lock held, this call can only be made after a previous successful 12534 * call to bnxt_half_open_nic(). 12535 */ 12536 void bnxt_half_close_nic(struct bnxt *bp) 12537 { 12538 bnxt_hwrm_resource_free(bp, false, true); 12539 bnxt_del_napi(bp); 12540 bnxt_free_skbs(bp); 12541 bnxt_free_mem(bp, true); 12542 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12543 } 12544 12545 void bnxt_reenable_sriov(struct bnxt *bp) 12546 { 12547 if (BNXT_PF(bp)) { 12548 struct bnxt_pf_info *pf = &bp->pf; 12549 int n = pf->active_vfs; 12550 12551 if (n) 12552 bnxt_cfg_hw_sriov(bp, &n, true); 12553 } 12554 } 12555 12556 static int bnxt_open(struct net_device *dev) 12557 { 12558 struct bnxt *bp = netdev_priv(dev); 12559 int rc; 12560 12561 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12562 rc = bnxt_reinit_after_abort(bp); 12563 if (rc) { 12564 if (rc == -EBUSY) 12565 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 12566 else 12567 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 12568 return -ENODEV; 12569 } 12570 } 12571 12572 rc = bnxt_hwrm_if_change(bp, true); 12573 if (rc) 12574 return rc; 12575 12576 rc = __bnxt_open_nic(bp, true, true); 12577 if (rc) { 12578 bnxt_hwrm_if_change(bp, false); 12579 } else { 12580 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 12581 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 12582 bnxt_queue_sp_work(bp, 12583 BNXT_RESTART_ULP_SP_EVENT); 12584 } 12585 } 12586 12587 return rc; 12588 } 12589 12590 static bool bnxt_drv_busy(struct bnxt *bp) 12591 { 12592 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 12593 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 12594 } 12595 12596 static void bnxt_get_ring_stats(struct bnxt *bp, 12597 struct rtnl_link_stats64 *stats); 12598 12599 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 12600 bool link_re_init) 12601 { 12602 /* Close the VF-reps before closing PF */ 12603 if (BNXT_PF(bp)) 12604 bnxt_vf_reps_close(bp); 12605 12606 /* Change device state to avoid TX queue wake up's */ 12607 bnxt_tx_disable(bp); 12608 12609 clear_bit(BNXT_STATE_OPEN, &bp->state); 12610 smp_mb__after_atomic(); 12611 while (bnxt_drv_busy(bp)) 12612 msleep(20); 12613 12614 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 12615 bnxt_clear_rss_ctxs(bp); 12616 /* Flush rings and disable interrupts */ 12617 bnxt_shutdown_nic(bp, irq_re_init); 12618 12619 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 12620 12621 bnxt_debug_dev_exit(bp); 12622 bnxt_disable_napi(bp); 12623 del_timer_sync(&bp->timer); 12624 bnxt_free_skbs(bp); 12625 12626 /* Save ring stats before shutdown */ 12627 if (bp->bnapi && irq_re_init) { 12628 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 12629 bnxt_get_ring_err_stats(bp, &bp->ring_err_stats_prev); 12630 } 12631 if (irq_re_init) { 12632 bnxt_free_irq(bp); 12633 bnxt_del_napi(bp); 12634 } 12635 bnxt_free_mem(bp, irq_re_init); 12636 } 12637 12638 void bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12639 { 12640 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 12641 /* If we get here, it means firmware reset is in progress 12642 * while we are trying to close. We can safely proceed with 12643 * the close because we are holding rtnl_lock(). Some firmware 12644 * messages may fail as we proceed to close. We set the 12645 * ABORT_ERR flag here so that the FW reset thread will later 12646 * abort when it gets the rtnl_lock() and sees the flag. 12647 */ 12648 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 12649 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12650 } 12651 12652 #ifdef CONFIG_BNXT_SRIOV 12653 if (bp->sriov_cfg) { 12654 int rc; 12655 12656 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 12657 !bp->sriov_cfg, 12658 BNXT_SRIOV_CFG_WAIT_TMO); 12659 if (!rc) 12660 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete, proceeding to close!\n"); 12661 else if (rc < 0) 12662 netdev_warn(bp->dev, "SRIOV config operation interrupted, proceeding to close!\n"); 12663 } 12664 #endif 12665 __bnxt_close_nic(bp, irq_re_init, link_re_init); 12666 } 12667 12668 static int bnxt_close(struct net_device *dev) 12669 { 12670 struct bnxt *bp = netdev_priv(dev); 12671 12672 bnxt_close_nic(bp, true, true); 12673 bnxt_hwrm_shutdown_link(bp); 12674 bnxt_hwrm_if_change(bp, false); 12675 return 0; 12676 } 12677 12678 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 12679 u16 *val) 12680 { 12681 struct hwrm_port_phy_mdio_read_output *resp; 12682 struct hwrm_port_phy_mdio_read_input *req; 12683 int rc; 12684 12685 if (bp->hwrm_spec_code < 0x10a00) 12686 return -EOPNOTSUPP; 12687 12688 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ); 12689 if (rc) 12690 return rc; 12691 12692 req->port_id = cpu_to_le16(bp->pf.port_id); 12693 req->phy_addr = phy_addr; 12694 req->reg_addr = cpu_to_le16(reg & 0x1f); 12695 if (mdio_phy_id_is_c45(phy_addr)) { 12696 req->cl45_mdio = 1; 12697 req->phy_addr = mdio_phy_id_prtad(phy_addr); 12698 req->dev_addr = mdio_phy_id_devad(phy_addr); 12699 req->reg_addr = cpu_to_le16(reg); 12700 } 12701 12702 resp = hwrm_req_hold(bp, req); 12703 rc = hwrm_req_send(bp, req); 12704 if (!rc) 12705 *val = le16_to_cpu(resp->reg_data); 12706 hwrm_req_drop(bp, req); 12707 return rc; 12708 } 12709 12710 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 12711 u16 val) 12712 { 12713 struct hwrm_port_phy_mdio_write_input *req; 12714 int rc; 12715 12716 if (bp->hwrm_spec_code < 0x10a00) 12717 return -EOPNOTSUPP; 12718 12719 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE); 12720 if (rc) 12721 return rc; 12722 12723 req->port_id = cpu_to_le16(bp->pf.port_id); 12724 req->phy_addr = phy_addr; 12725 req->reg_addr = cpu_to_le16(reg & 0x1f); 12726 if (mdio_phy_id_is_c45(phy_addr)) { 12727 req->cl45_mdio = 1; 12728 req->phy_addr = mdio_phy_id_prtad(phy_addr); 12729 req->dev_addr = mdio_phy_id_devad(phy_addr); 12730 req->reg_addr = cpu_to_le16(reg); 12731 } 12732 req->reg_data = cpu_to_le16(val); 12733 12734 return hwrm_req_send(bp, req); 12735 } 12736 12737 /* rtnl_lock held */ 12738 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 12739 { 12740 struct mii_ioctl_data *mdio = if_mii(ifr); 12741 struct bnxt *bp = netdev_priv(dev); 12742 int rc; 12743 12744 switch (cmd) { 12745 case SIOCGMIIPHY: 12746 mdio->phy_id = bp->link_info.phy_addr; 12747 12748 fallthrough; 12749 case SIOCGMIIREG: { 12750 u16 mii_regval = 0; 12751 12752 if (!netif_running(dev)) 12753 return -EAGAIN; 12754 12755 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 12756 &mii_regval); 12757 mdio->val_out = mii_regval; 12758 return rc; 12759 } 12760 12761 case SIOCSMIIREG: 12762 if (!netif_running(dev)) 12763 return -EAGAIN; 12764 12765 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 12766 mdio->val_in); 12767 12768 case SIOCSHWTSTAMP: 12769 return bnxt_hwtstamp_set(dev, ifr); 12770 12771 case SIOCGHWTSTAMP: 12772 return bnxt_hwtstamp_get(dev, ifr); 12773 12774 default: 12775 /* do nothing */ 12776 break; 12777 } 12778 return -EOPNOTSUPP; 12779 } 12780 12781 static void bnxt_get_ring_stats(struct bnxt *bp, 12782 struct rtnl_link_stats64 *stats) 12783 { 12784 int i; 12785 12786 for (i = 0; i < bp->cp_nr_rings; i++) { 12787 struct bnxt_napi *bnapi = bp->bnapi[i]; 12788 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 12789 u64 *sw = cpr->stats.sw_stats; 12790 12791 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 12792 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 12793 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 12794 12795 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 12796 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 12797 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 12798 12799 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 12800 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 12801 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 12802 12803 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 12804 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 12805 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 12806 12807 stats->rx_missed_errors += 12808 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 12809 12810 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 12811 12812 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 12813 12814 stats->rx_dropped += 12815 cpr->sw_stats->rx.rx_netpoll_discards + 12816 cpr->sw_stats->rx.rx_oom_discards; 12817 } 12818 } 12819 12820 static void bnxt_add_prev_stats(struct bnxt *bp, 12821 struct rtnl_link_stats64 *stats) 12822 { 12823 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 12824 12825 stats->rx_packets += prev_stats->rx_packets; 12826 stats->tx_packets += prev_stats->tx_packets; 12827 stats->rx_bytes += prev_stats->rx_bytes; 12828 stats->tx_bytes += prev_stats->tx_bytes; 12829 stats->rx_missed_errors += prev_stats->rx_missed_errors; 12830 stats->multicast += prev_stats->multicast; 12831 stats->rx_dropped += prev_stats->rx_dropped; 12832 stats->tx_dropped += prev_stats->tx_dropped; 12833 } 12834 12835 static void 12836 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 12837 { 12838 struct bnxt *bp = netdev_priv(dev); 12839 12840 set_bit(BNXT_STATE_READ_STATS, &bp->state); 12841 /* Make sure bnxt_close_nic() sees that we are reading stats before 12842 * we check the BNXT_STATE_OPEN flag. 12843 */ 12844 smp_mb__after_atomic(); 12845 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 12846 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 12847 *stats = bp->net_stats_prev; 12848 return; 12849 } 12850 12851 bnxt_get_ring_stats(bp, stats); 12852 bnxt_add_prev_stats(bp, stats); 12853 12854 if (bp->flags & BNXT_FLAG_PORT_STATS) { 12855 u64 *rx = bp->port_stats.sw_stats; 12856 u64 *tx = bp->port_stats.sw_stats + 12857 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 12858 12859 stats->rx_crc_errors = 12860 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 12861 stats->rx_frame_errors = 12862 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 12863 stats->rx_length_errors = 12864 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 12865 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 12866 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 12867 stats->rx_errors = 12868 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 12869 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 12870 stats->collisions = 12871 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 12872 stats->tx_fifo_errors = 12873 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 12874 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 12875 } 12876 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 12877 } 12878 12879 static void bnxt_get_one_ring_err_stats(struct bnxt *bp, 12880 struct bnxt_total_ring_err_stats *stats, 12881 struct bnxt_cp_ring_info *cpr) 12882 { 12883 struct bnxt_sw_stats *sw_stats = cpr->sw_stats; 12884 u64 *hw_stats = cpr->stats.sw_stats; 12885 12886 stats->rx_total_l4_csum_errors += sw_stats->rx.rx_l4_csum_errors; 12887 stats->rx_total_resets += sw_stats->rx.rx_resets; 12888 stats->rx_total_buf_errors += sw_stats->rx.rx_buf_errors; 12889 stats->rx_total_oom_discards += sw_stats->rx.rx_oom_discards; 12890 stats->rx_total_netpoll_discards += sw_stats->rx.rx_netpoll_discards; 12891 stats->rx_total_ring_discards += 12892 BNXT_GET_RING_STATS64(hw_stats, rx_discard_pkts); 12893 stats->tx_total_resets += sw_stats->tx.tx_resets; 12894 stats->tx_total_ring_discards += 12895 BNXT_GET_RING_STATS64(hw_stats, tx_discard_pkts); 12896 stats->total_missed_irqs += sw_stats->cmn.missed_irqs; 12897 } 12898 12899 void bnxt_get_ring_err_stats(struct bnxt *bp, 12900 struct bnxt_total_ring_err_stats *stats) 12901 { 12902 int i; 12903 12904 for (i = 0; i < bp->cp_nr_rings; i++) 12905 bnxt_get_one_ring_err_stats(bp, stats, &bp->bnapi[i]->cp_ring); 12906 } 12907 12908 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 12909 { 12910 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12911 struct net_device *dev = bp->dev; 12912 struct netdev_hw_addr *ha; 12913 u8 *haddr; 12914 int mc_count = 0; 12915 bool update = false; 12916 int off = 0; 12917 12918 netdev_for_each_mc_addr(ha, dev) { 12919 if (mc_count >= BNXT_MAX_MC_ADDRS) { 12920 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 12921 vnic->mc_list_count = 0; 12922 return false; 12923 } 12924 haddr = ha->addr; 12925 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 12926 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 12927 update = true; 12928 } 12929 off += ETH_ALEN; 12930 mc_count++; 12931 } 12932 if (mc_count) 12933 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 12934 12935 if (mc_count != vnic->mc_list_count) { 12936 vnic->mc_list_count = mc_count; 12937 update = true; 12938 } 12939 return update; 12940 } 12941 12942 static bool bnxt_uc_list_updated(struct bnxt *bp) 12943 { 12944 struct net_device *dev = bp->dev; 12945 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12946 struct netdev_hw_addr *ha; 12947 int off = 0; 12948 12949 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 12950 return true; 12951 12952 netdev_for_each_uc_addr(ha, dev) { 12953 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 12954 return true; 12955 12956 off += ETH_ALEN; 12957 } 12958 return false; 12959 } 12960 12961 static void bnxt_set_rx_mode(struct net_device *dev) 12962 { 12963 struct bnxt *bp = netdev_priv(dev); 12964 struct bnxt_vnic_info *vnic; 12965 bool mc_update = false; 12966 bool uc_update; 12967 u32 mask; 12968 12969 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 12970 return; 12971 12972 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12973 mask = vnic->rx_mask; 12974 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 12975 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 12976 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 12977 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 12978 12979 if (dev->flags & IFF_PROMISC) 12980 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 12981 12982 uc_update = bnxt_uc_list_updated(bp); 12983 12984 if (dev->flags & IFF_BROADCAST) 12985 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 12986 if (dev->flags & IFF_ALLMULTI) { 12987 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 12988 vnic->mc_list_count = 0; 12989 } else if (dev->flags & IFF_MULTICAST) { 12990 mc_update = bnxt_mc_list_updated(bp, &mask); 12991 } 12992 12993 if (mask != vnic->rx_mask || uc_update || mc_update) { 12994 vnic->rx_mask = mask; 12995 12996 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 12997 } 12998 } 12999 13000 static int bnxt_cfg_rx_mode(struct bnxt *bp) 13001 { 13002 struct net_device *dev = bp->dev; 13003 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 13004 struct netdev_hw_addr *ha; 13005 int i, off = 0, rc; 13006 bool uc_update; 13007 13008 netif_addr_lock_bh(dev); 13009 uc_update = bnxt_uc_list_updated(bp); 13010 netif_addr_unlock_bh(dev); 13011 13012 if (!uc_update) 13013 goto skip_uc; 13014 13015 for (i = 1; i < vnic->uc_filter_count; i++) { 13016 struct bnxt_l2_filter *fltr = vnic->l2_filters[i]; 13017 13018 bnxt_hwrm_l2_filter_free(bp, fltr); 13019 bnxt_del_l2_filter(bp, fltr); 13020 } 13021 13022 vnic->uc_filter_count = 1; 13023 13024 netif_addr_lock_bh(dev); 13025 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 13026 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 13027 } else { 13028 netdev_for_each_uc_addr(ha, dev) { 13029 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 13030 off += ETH_ALEN; 13031 vnic->uc_filter_count++; 13032 } 13033 } 13034 netif_addr_unlock_bh(dev); 13035 13036 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 13037 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 13038 if (rc) { 13039 if (BNXT_VF(bp) && rc == -ENODEV) { 13040 if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 13041 netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n"); 13042 else 13043 netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n"); 13044 rc = 0; 13045 } else { 13046 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 13047 } 13048 vnic->uc_filter_count = i; 13049 return rc; 13050 } 13051 } 13052 if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 13053 netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n"); 13054 13055 skip_uc: 13056 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 13057 !bnxt_promisc_ok(bp)) 13058 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 13059 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 13060 if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) { 13061 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 13062 rc); 13063 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 13064 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 13065 vnic->mc_list_count = 0; 13066 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 13067 } 13068 if (rc) 13069 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 13070 rc); 13071 13072 return rc; 13073 } 13074 13075 static bool bnxt_can_reserve_rings(struct bnxt *bp) 13076 { 13077 #ifdef CONFIG_BNXT_SRIOV 13078 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 13079 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 13080 13081 /* No minimum rings were provisioned by the PF. Don't 13082 * reserve rings by default when device is down. 13083 */ 13084 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 13085 return true; 13086 13087 if (!netif_running(bp->dev)) 13088 return false; 13089 } 13090 #endif 13091 return true; 13092 } 13093 13094 /* If the chip and firmware supports RFS */ 13095 static bool bnxt_rfs_supported(struct bnxt *bp) 13096 { 13097 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 13098 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 13099 return true; 13100 return false; 13101 } 13102 /* 212 firmware is broken for aRFS */ 13103 if (BNXT_FW_MAJ(bp) == 212) 13104 return false; 13105 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 13106 return true; 13107 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 13108 return true; 13109 return false; 13110 } 13111 13112 /* If runtime conditions support RFS */ 13113 bool bnxt_rfs_capable(struct bnxt *bp, bool new_rss_ctx) 13114 { 13115 struct bnxt_hw_rings hwr = {0}; 13116 int max_vnics, max_rss_ctxs; 13117 13118 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 13119 !BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 13120 return bnxt_rfs_supported(bp); 13121 13122 if (!bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings) 13123 return false; 13124 13125 hwr.grp = bp->rx_nr_rings; 13126 hwr.vnic = bnxt_get_total_vnics(bp, bp->rx_nr_rings); 13127 if (new_rss_ctx) 13128 hwr.vnic++; 13129 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 13130 max_vnics = bnxt_get_max_func_vnics(bp); 13131 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 13132 13133 if (hwr.vnic > max_vnics || hwr.rss_ctx > max_rss_ctxs) { 13134 if (bp->rx_nr_rings > 1) 13135 netdev_warn(bp->dev, 13136 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 13137 min(max_rss_ctxs - 1, max_vnics - 1)); 13138 return false; 13139 } 13140 13141 if (!BNXT_NEW_RM(bp)) 13142 return true; 13143 13144 /* Do not reduce VNIC and RSS ctx reservations. There is a FW 13145 * issue that will mess up the default VNIC if we reduce the 13146 * reservations. 13147 */ 13148 if (hwr.vnic <= bp->hw_resc.resv_vnics && 13149 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 13150 return true; 13151 13152 bnxt_hwrm_reserve_rings(bp, &hwr); 13153 if (hwr.vnic <= bp->hw_resc.resv_vnics && 13154 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 13155 return true; 13156 13157 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 13158 hwr.vnic = 1; 13159 hwr.rss_ctx = 0; 13160 bnxt_hwrm_reserve_rings(bp, &hwr); 13161 return false; 13162 } 13163 13164 static netdev_features_t bnxt_fix_features(struct net_device *dev, 13165 netdev_features_t features) 13166 { 13167 struct bnxt *bp = netdev_priv(dev); 13168 netdev_features_t vlan_features; 13169 13170 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp, false)) 13171 features &= ~NETIF_F_NTUPLE; 13172 13173 if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog) 13174 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 13175 13176 if (!(features & NETIF_F_GRO)) 13177 features &= ~NETIF_F_GRO_HW; 13178 13179 if (features & NETIF_F_GRO_HW) 13180 features &= ~NETIF_F_LRO; 13181 13182 /* Both CTAG and STAG VLAN acceleration on the RX side have to be 13183 * turned on or off together. 13184 */ 13185 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 13186 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 13187 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13188 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 13189 else if (vlan_features) 13190 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 13191 } 13192 #ifdef CONFIG_BNXT_SRIOV 13193 if (BNXT_VF(bp) && bp->vf.vlan) 13194 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 13195 #endif 13196 return features; 13197 } 13198 13199 static int bnxt_reinit_features(struct bnxt *bp, bool irq_re_init, 13200 bool link_re_init, u32 flags, bool update_tpa) 13201 { 13202 bnxt_close_nic(bp, irq_re_init, link_re_init); 13203 bp->flags = flags; 13204 if (update_tpa) 13205 bnxt_set_ring_params(bp); 13206 return bnxt_open_nic(bp, irq_re_init, link_re_init); 13207 } 13208 13209 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 13210 { 13211 bool update_tpa = false, update_ntuple = false; 13212 struct bnxt *bp = netdev_priv(dev); 13213 u32 flags = bp->flags; 13214 u32 changes; 13215 int rc = 0; 13216 bool re_init = false; 13217 13218 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 13219 if (features & NETIF_F_GRO_HW) 13220 flags |= BNXT_FLAG_GRO; 13221 else if (features & NETIF_F_LRO) 13222 flags |= BNXT_FLAG_LRO; 13223 13224 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 13225 flags &= ~BNXT_FLAG_TPA; 13226 13227 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13228 flags |= BNXT_FLAG_STRIP_VLAN; 13229 13230 if (features & NETIF_F_NTUPLE) 13231 flags |= BNXT_FLAG_RFS; 13232 else 13233 bnxt_clear_usr_fltrs(bp, true); 13234 13235 changes = flags ^ bp->flags; 13236 if (changes & BNXT_FLAG_TPA) { 13237 update_tpa = true; 13238 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 13239 (flags & BNXT_FLAG_TPA) == 0 || 13240 (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 13241 re_init = true; 13242 } 13243 13244 if (changes & ~BNXT_FLAG_TPA) 13245 re_init = true; 13246 13247 if (changes & BNXT_FLAG_RFS) 13248 update_ntuple = true; 13249 13250 if (flags != bp->flags) { 13251 u32 old_flags = bp->flags; 13252 13253 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13254 bp->flags = flags; 13255 if (update_tpa) 13256 bnxt_set_ring_params(bp); 13257 return rc; 13258 } 13259 13260 if (update_ntuple) 13261 return bnxt_reinit_features(bp, true, false, flags, update_tpa); 13262 13263 if (re_init) 13264 return bnxt_reinit_features(bp, false, false, flags, update_tpa); 13265 13266 if (update_tpa) { 13267 bp->flags = flags; 13268 rc = bnxt_set_tpa(bp, 13269 (flags & BNXT_FLAG_TPA) ? 13270 true : false); 13271 if (rc) 13272 bp->flags = old_flags; 13273 } 13274 } 13275 return rc; 13276 } 13277 13278 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, 13279 u8 **nextp) 13280 { 13281 struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); 13282 struct hop_jumbo_hdr *jhdr; 13283 int hdr_count = 0; 13284 u8 *nexthdr; 13285 int start; 13286 13287 /* Check that there are at most 2 IPv6 extension headers, no 13288 * fragment header, and each is <= 64 bytes. 13289 */ 13290 start = nw_off + sizeof(*ip6h); 13291 nexthdr = &ip6h->nexthdr; 13292 while (ipv6_ext_hdr(*nexthdr)) { 13293 struct ipv6_opt_hdr *hp; 13294 int hdrlen; 13295 13296 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || 13297 *nexthdr == NEXTHDR_FRAGMENT) 13298 return false; 13299 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, 13300 skb_headlen(skb), NULL); 13301 if (!hp) 13302 return false; 13303 if (*nexthdr == NEXTHDR_AUTH) 13304 hdrlen = ipv6_authlen(hp); 13305 else 13306 hdrlen = ipv6_optlen(hp); 13307 13308 if (hdrlen > 64) 13309 return false; 13310 13311 /* The ext header may be a hop-by-hop header inserted for 13312 * big TCP purposes. This will be removed before sending 13313 * from NIC, so do not count it. 13314 */ 13315 if (*nexthdr == NEXTHDR_HOP) { 13316 if (likely(skb->len <= GRO_LEGACY_MAX_SIZE)) 13317 goto increment_hdr; 13318 13319 jhdr = (struct hop_jumbo_hdr *)hp; 13320 if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 || 13321 jhdr->nexthdr != IPPROTO_TCP) 13322 goto increment_hdr; 13323 13324 goto next_hdr; 13325 } 13326 increment_hdr: 13327 hdr_count++; 13328 next_hdr: 13329 nexthdr = &hp->nexthdr; 13330 start += hdrlen; 13331 } 13332 if (nextp) { 13333 /* Caller will check inner protocol */ 13334 if (skb->encapsulation) { 13335 *nextp = nexthdr; 13336 return true; 13337 } 13338 *nextp = NULL; 13339 } 13340 /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ 13341 return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; 13342 } 13343 13344 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 13345 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) 13346 { 13347 struct udphdr *uh = udp_hdr(skb); 13348 __be16 udp_port = uh->dest; 13349 13350 if (udp_port != bp->vxlan_port && udp_port != bp->nge_port && 13351 udp_port != bp->vxlan_gpe_port) 13352 return false; 13353 if (skb->inner_protocol == htons(ETH_P_TEB)) { 13354 struct ethhdr *eh = inner_eth_hdr(skb); 13355 13356 switch (eh->h_proto) { 13357 case htons(ETH_P_IP): 13358 return true; 13359 case htons(ETH_P_IPV6): 13360 return bnxt_exthdr_check(bp, skb, 13361 skb_inner_network_offset(skb), 13362 NULL); 13363 } 13364 } else if (skb->inner_protocol == htons(ETH_P_IP)) { 13365 return true; 13366 } else if (skb->inner_protocol == htons(ETH_P_IPV6)) { 13367 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 13368 NULL); 13369 } 13370 return false; 13371 } 13372 13373 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) 13374 { 13375 switch (l4_proto) { 13376 case IPPROTO_UDP: 13377 return bnxt_udp_tunl_check(bp, skb); 13378 case IPPROTO_IPIP: 13379 return true; 13380 case IPPROTO_GRE: { 13381 switch (skb->inner_protocol) { 13382 default: 13383 return false; 13384 case htons(ETH_P_IP): 13385 return true; 13386 case htons(ETH_P_IPV6): 13387 fallthrough; 13388 } 13389 } 13390 case IPPROTO_IPV6: 13391 /* Check ext headers of inner ipv6 */ 13392 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 13393 NULL); 13394 } 13395 return false; 13396 } 13397 13398 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 13399 struct net_device *dev, 13400 netdev_features_t features) 13401 { 13402 struct bnxt *bp = netdev_priv(dev); 13403 u8 *l4_proto; 13404 13405 features = vlan_features_check(skb, features); 13406 switch (vlan_get_protocol(skb)) { 13407 case htons(ETH_P_IP): 13408 if (!skb->encapsulation) 13409 return features; 13410 l4_proto = &ip_hdr(skb)->protocol; 13411 if (bnxt_tunl_check(bp, skb, *l4_proto)) 13412 return features; 13413 break; 13414 case htons(ETH_P_IPV6): 13415 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), 13416 &l4_proto)) 13417 break; 13418 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) 13419 return features; 13420 break; 13421 } 13422 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 13423 } 13424 13425 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 13426 u32 *reg_buf) 13427 { 13428 struct hwrm_dbg_read_direct_output *resp; 13429 struct hwrm_dbg_read_direct_input *req; 13430 __le32 *dbg_reg_buf; 13431 dma_addr_t mapping; 13432 int rc, i; 13433 13434 rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT); 13435 if (rc) 13436 return rc; 13437 13438 dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4, 13439 &mapping); 13440 if (!dbg_reg_buf) { 13441 rc = -ENOMEM; 13442 goto dbg_rd_reg_exit; 13443 } 13444 13445 req->host_dest_addr = cpu_to_le64(mapping); 13446 13447 resp = hwrm_req_hold(bp, req); 13448 req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 13449 req->read_len32 = cpu_to_le32(num_words); 13450 13451 rc = hwrm_req_send(bp, req); 13452 if (rc || resp->error_code) { 13453 rc = -EIO; 13454 goto dbg_rd_reg_exit; 13455 } 13456 for (i = 0; i < num_words; i++) 13457 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 13458 13459 dbg_rd_reg_exit: 13460 hwrm_req_drop(bp, req); 13461 return rc; 13462 } 13463 13464 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 13465 u32 ring_id, u32 *prod, u32 *cons) 13466 { 13467 struct hwrm_dbg_ring_info_get_output *resp; 13468 struct hwrm_dbg_ring_info_get_input *req; 13469 int rc; 13470 13471 rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET); 13472 if (rc) 13473 return rc; 13474 13475 req->ring_type = ring_type; 13476 req->fw_ring_id = cpu_to_le32(ring_id); 13477 resp = hwrm_req_hold(bp, req); 13478 rc = hwrm_req_send(bp, req); 13479 if (!rc) { 13480 *prod = le32_to_cpu(resp->producer_index); 13481 *cons = le32_to_cpu(resp->consumer_index); 13482 } 13483 hwrm_req_drop(bp, req); 13484 return rc; 13485 } 13486 13487 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 13488 { 13489 struct bnxt_tx_ring_info *txr; 13490 int i = bnapi->index, j; 13491 13492 bnxt_for_each_napi_tx(j, bnapi, txr) 13493 netdev_info(bnapi->bp->dev, "[%d.%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 13494 i, j, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 13495 txr->tx_cons); 13496 } 13497 13498 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 13499 { 13500 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 13501 int i = bnapi->index; 13502 13503 if (!rxr) 13504 return; 13505 13506 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 13507 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 13508 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 13509 rxr->rx_sw_agg_prod); 13510 } 13511 13512 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 13513 { 13514 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 13515 int i = bnapi->index; 13516 13517 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 13518 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 13519 } 13520 13521 static void bnxt_dbg_dump_states(struct bnxt *bp) 13522 { 13523 int i; 13524 struct bnxt_napi *bnapi; 13525 13526 for (i = 0; i < bp->cp_nr_rings; i++) { 13527 bnapi = bp->bnapi[i]; 13528 if (netif_msg_drv(bp)) { 13529 bnxt_dump_tx_sw_state(bnapi); 13530 bnxt_dump_rx_sw_state(bnapi); 13531 bnxt_dump_cp_sw_state(bnapi); 13532 } 13533 } 13534 } 13535 13536 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 13537 { 13538 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 13539 struct hwrm_ring_reset_input *req; 13540 struct bnxt_napi *bnapi = rxr->bnapi; 13541 struct bnxt_cp_ring_info *cpr; 13542 u16 cp_ring_id; 13543 int rc; 13544 13545 rc = hwrm_req_init(bp, req, HWRM_RING_RESET); 13546 if (rc) 13547 return rc; 13548 13549 cpr = &bnapi->cp_ring; 13550 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 13551 req->cmpl_ring = cpu_to_le16(cp_ring_id); 13552 req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 13553 req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 13554 return hwrm_req_send_silent(bp, req); 13555 } 13556 13557 static void bnxt_reset_task(struct bnxt *bp, bool silent) 13558 { 13559 if (!silent) 13560 bnxt_dbg_dump_states(bp); 13561 if (netif_running(bp->dev)) { 13562 bnxt_close_nic(bp, !silent, false); 13563 bnxt_open_nic(bp, !silent, false); 13564 } 13565 } 13566 13567 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 13568 { 13569 struct bnxt *bp = netdev_priv(dev); 13570 13571 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 13572 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 13573 } 13574 13575 static void bnxt_fw_health_check(struct bnxt *bp) 13576 { 13577 struct bnxt_fw_health *fw_health = bp->fw_health; 13578 struct pci_dev *pdev = bp->pdev; 13579 u32 val; 13580 13581 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 13582 return; 13583 13584 /* Make sure it is enabled before checking the tmr_counter. */ 13585 smp_rmb(); 13586 if (fw_health->tmr_counter) { 13587 fw_health->tmr_counter--; 13588 return; 13589 } 13590 13591 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 13592 if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) { 13593 fw_health->arrests++; 13594 goto fw_reset; 13595 } 13596 13597 fw_health->last_fw_heartbeat = val; 13598 13599 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 13600 if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) { 13601 fw_health->discoveries++; 13602 goto fw_reset; 13603 } 13604 13605 fw_health->tmr_counter = fw_health->tmr_multiplier; 13606 return; 13607 13608 fw_reset: 13609 bnxt_queue_sp_work(bp, BNXT_FW_EXCEPTION_SP_EVENT); 13610 } 13611 13612 static void bnxt_timer(struct timer_list *t) 13613 { 13614 struct bnxt *bp = from_timer(bp, t, timer); 13615 struct net_device *dev = bp->dev; 13616 13617 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 13618 return; 13619 13620 if (atomic_read(&bp->intr_sem) != 0) 13621 goto bnxt_restart_timer; 13622 13623 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 13624 bnxt_fw_health_check(bp); 13625 13626 if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) 13627 bnxt_queue_sp_work(bp, BNXT_PERIODIC_STATS_SP_EVENT); 13628 13629 if (bnxt_tc_flower_enabled(bp)) 13630 bnxt_queue_sp_work(bp, BNXT_FLOW_STATS_SP_EVENT); 13631 13632 #ifdef CONFIG_RFS_ACCEL 13633 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) 13634 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 13635 #endif /*CONFIG_RFS_ACCEL*/ 13636 13637 if (bp->link_info.phy_retry) { 13638 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 13639 bp->link_info.phy_retry = false; 13640 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 13641 } else { 13642 bnxt_queue_sp_work(bp, BNXT_UPDATE_PHY_SP_EVENT); 13643 } 13644 } 13645 13646 if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 13647 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 13648 13649 if ((BNXT_CHIP_P5(bp)) && !bp->chip_rev && netif_carrier_ok(dev)) 13650 bnxt_queue_sp_work(bp, BNXT_RING_COAL_NOW_SP_EVENT); 13651 13652 bnxt_restart_timer: 13653 mod_timer(&bp->timer, jiffies + bp->current_interval); 13654 } 13655 13656 static void bnxt_rtnl_lock_sp(struct bnxt *bp) 13657 { 13658 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 13659 * set. If the device is being closed, bnxt_close() may be holding 13660 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we 13661 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). 13662 */ 13663 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13664 rtnl_lock(); 13665 } 13666 13667 static void bnxt_rtnl_unlock_sp(struct bnxt *bp) 13668 { 13669 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13670 rtnl_unlock(); 13671 } 13672 13673 /* Only called from bnxt_sp_task() */ 13674 static void bnxt_reset(struct bnxt *bp, bool silent) 13675 { 13676 bnxt_rtnl_lock_sp(bp); 13677 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 13678 bnxt_reset_task(bp, silent); 13679 bnxt_rtnl_unlock_sp(bp); 13680 } 13681 13682 /* Only called from bnxt_sp_task() */ 13683 static void bnxt_rx_ring_reset(struct bnxt *bp) 13684 { 13685 int i; 13686 13687 bnxt_rtnl_lock_sp(bp); 13688 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13689 bnxt_rtnl_unlock_sp(bp); 13690 return; 13691 } 13692 /* Disable and flush TPA before resetting the RX ring */ 13693 if (bp->flags & BNXT_FLAG_TPA) 13694 bnxt_set_tpa(bp, false); 13695 for (i = 0; i < bp->rx_nr_rings; i++) { 13696 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 13697 struct bnxt_cp_ring_info *cpr; 13698 int rc; 13699 13700 if (!rxr->bnapi->in_reset) 13701 continue; 13702 13703 rc = bnxt_hwrm_rx_ring_reset(bp, i); 13704 if (rc) { 13705 if (rc == -EINVAL || rc == -EOPNOTSUPP) 13706 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 13707 else 13708 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 13709 rc); 13710 bnxt_reset_task(bp, true); 13711 break; 13712 } 13713 bnxt_free_one_rx_ring_skbs(bp, rxr); 13714 rxr->rx_prod = 0; 13715 rxr->rx_agg_prod = 0; 13716 rxr->rx_sw_agg_prod = 0; 13717 rxr->rx_next_cons = 0; 13718 rxr->bnapi->in_reset = false; 13719 bnxt_alloc_one_rx_ring(bp, i); 13720 cpr = &rxr->bnapi->cp_ring; 13721 cpr->sw_stats->rx.rx_resets++; 13722 if (bp->flags & BNXT_FLAG_AGG_RINGS) 13723 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 13724 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 13725 } 13726 if (bp->flags & BNXT_FLAG_TPA) 13727 bnxt_set_tpa(bp, true); 13728 bnxt_rtnl_unlock_sp(bp); 13729 } 13730 13731 static void bnxt_fw_fatal_close(struct bnxt *bp) 13732 { 13733 bnxt_tx_disable(bp); 13734 bnxt_disable_napi(bp); 13735 bnxt_disable_int_sync(bp); 13736 bnxt_free_irq(bp); 13737 bnxt_clear_int_mode(bp); 13738 pci_disable_device(bp->pdev); 13739 } 13740 13741 static void bnxt_fw_reset_close(struct bnxt *bp) 13742 { 13743 /* When firmware is in fatal state, quiesce device and disable 13744 * bus master to prevent any potential bad DMAs before freeing 13745 * kernel memory. 13746 */ 13747 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 13748 u16 val = 0; 13749 13750 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 13751 if (val == 0xffff) 13752 bp->fw_reset_min_dsecs = 0; 13753 bnxt_fw_fatal_close(bp); 13754 } 13755 __bnxt_close_nic(bp, true, false); 13756 bnxt_vf_reps_free(bp); 13757 bnxt_clear_int_mode(bp); 13758 bnxt_hwrm_func_drv_unrgtr(bp); 13759 if (pci_is_enabled(bp->pdev)) 13760 pci_disable_device(bp->pdev); 13761 bnxt_free_ctx_mem(bp, false); 13762 } 13763 13764 static bool is_bnxt_fw_ok(struct bnxt *bp) 13765 { 13766 struct bnxt_fw_health *fw_health = bp->fw_health; 13767 bool no_heartbeat = false, has_reset = false; 13768 u32 val; 13769 13770 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 13771 if (val == fw_health->last_fw_heartbeat) 13772 no_heartbeat = true; 13773 13774 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 13775 if (val != fw_health->last_fw_reset_cnt) 13776 has_reset = true; 13777 13778 if (!no_heartbeat && has_reset) 13779 return true; 13780 13781 return false; 13782 } 13783 13784 /* rtnl_lock is acquired before calling this function */ 13785 static void bnxt_force_fw_reset(struct bnxt *bp) 13786 { 13787 struct bnxt_fw_health *fw_health = bp->fw_health; 13788 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 13789 u32 wait_dsecs; 13790 13791 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 13792 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 13793 return; 13794 13795 /* we have to serialize with bnxt_refclk_read()*/ 13796 if (ptp) { 13797 unsigned long flags; 13798 13799 write_seqlock_irqsave(&ptp->ptp_lock, flags); 13800 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13801 write_sequnlock_irqrestore(&ptp->ptp_lock, flags); 13802 } else { 13803 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13804 } 13805 bnxt_fw_reset_close(bp); 13806 wait_dsecs = fw_health->master_func_wait_dsecs; 13807 if (fw_health->primary) { 13808 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 13809 wait_dsecs = 0; 13810 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 13811 } else { 13812 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 13813 wait_dsecs = fw_health->normal_func_wait_dsecs; 13814 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 13815 } 13816 13817 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 13818 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 13819 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 13820 } 13821 13822 void bnxt_fw_exception(struct bnxt *bp) 13823 { 13824 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 13825 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 13826 bnxt_ulp_stop(bp); 13827 bnxt_rtnl_lock_sp(bp); 13828 bnxt_force_fw_reset(bp); 13829 bnxt_rtnl_unlock_sp(bp); 13830 } 13831 13832 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 13833 * < 0 on error. 13834 */ 13835 static int bnxt_get_registered_vfs(struct bnxt *bp) 13836 { 13837 #ifdef CONFIG_BNXT_SRIOV 13838 int rc; 13839 13840 if (!BNXT_PF(bp)) 13841 return 0; 13842 13843 rc = bnxt_hwrm_func_qcfg(bp); 13844 if (rc) { 13845 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 13846 return rc; 13847 } 13848 if (bp->pf.registered_vfs) 13849 return bp->pf.registered_vfs; 13850 if (bp->sriov_cfg) 13851 return 1; 13852 #endif 13853 return 0; 13854 } 13855 13856 void bnxt_fw_reset(struct bnxt *bp) 13857 { 13858 bnxt_ulp_stop(bp); 13859 bnxt_rtnl_lock_sp(bp); 13860 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 13861 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 13862 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 13863 int n = 0, tmo; 13864 13865 /* we have to serialize with bnxt_refclk_read()*/ 13866 if (ptp) { 13867 unsigned long flags; 13868 13869 write_seqlock_irqsave(&ptp->ptp_lock, flags); 13870 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13871 write_sequnlock_irqrestore(&ptp->ptp_lock, flags); 13872 } else { 13873 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13874 } 13875 if (bp->pf.active_vfs && 13876 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 13877 n = bnxt_get_registered_vfs(bp); 13878 if (n < 0) { 13879 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 13880 n); 13881 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13882 dev_close(bp->dev); 13883 goto fw_reset_exit; 13884 } else if (n > 0) { 13885 u16 vf_tmo_dsecs = n * 10; 13886 13887 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 13888 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 13889 bp->fw_reset_state = 13890 BNXT_FW_RESET_STATE_POLL_VF; 13891 bnxt_queue_fw_reset_work(bp, HZ / 10); 13892 goto fw_reset_exit; 13893 } 13894 bnxt_fw_reset_close(bp); 13895 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 13896 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 13897 tmo = HZ / 10; 13898 } else { 13899 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 13900 tmo = bp->fw_reset_min_dsecs * HZ / 10; 13901 } 13902 bnxt_queue_fw_reset_work(bp, tmo); 13903 } 13904 fw_reset_exit: 13905 bnxt_rtnl_unlock_sp(bp); 13906 } 13907 13908 static void bnxt_chk_missed_irq(struct bnxt *bp) 13909 { 13910 int i; 13911 13912 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 13913 return; 13914 13915 for (i = 0; i < bp->cp_nr_rings; i++) { 13916 struct bnxt_napi *bnapi = bp->bnapi[i]; 13917 struct bnxt_cp_ring_info *cpr; 13918 u32 fw_ring_id; 13919 int j; 13920 13921 if (!bnapi) 13922 continue; 13923 13924 cpr = &bnapi->cp_ring; 13925 for (j = 0; j < cpr->cp_ring_count; j++) { 13926 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 13927 u32 val[2]; 13928 13929 if (cpr2->has_more_work || !bnxt_has_work(bp, cpr2)) 13930 continue; 13931 13932 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 13933 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 13934 continue; 13935 } 13936 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 13937 bnxt_dbg_hwrm_ring_info_get(bp, 13938 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 13939 fw_ring_id, &val[0], &val[1]); 13940 cpr->sw_stats->cmn.missed_irqs++; 13941 } 13942 } 13943 } 13944 13945 static void bnxt_cfg_ntp_filters(struct bnxt *); 13946 13947 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 13948 { 13949 struct bnxt_link_info *link_info = &bp->link_info; 13950 13951 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 13952 link_info->autoneg = BNXT_AUTONEG_SPEED; 13953 if (bp->hwrm_spec_code >= 0x10201) { 13954 if (link_info->auto_pause_setting & 13955 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 13956 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 13957 } else { 13958 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 13959 } 13960 bnxt_set_auto_speed(link_info); 13961 } else { 13962 bnxt_set_force_speed(link_info); 13963 link_info->req_duplex = link_info->duplex_setting; 13964 } 13965 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 13966 link_info->req_flow_ctrl = 13967 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 13968 else 13969 link_info->req_flow_ctrl = link_info->force_pause_setting; 13970 } 13971 13972 static void bnxt_fw_echo_reply(struct bnxt *bp) 13973 { 13974 struct bnxt_fw_health *fw_health = bp->fw_health; 13975 struct hwrm_func_echo_response_input *req; 13976 int rc; 13977 13978 rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE); 13979 if (rc) 13980 return; 13981 req->event_data1 = cpu_to_le32(fw_health->echo_req_data1); 13982 req->event_data2 = cpu_to_le32(fw_health->echo_req_data2); 13983 hwrm_req_send(bp, req); 13984 } 13985 13986 static void bnxt_ulp_restart(struct bnxt *bp) 13987 { 13988 bnxt_ulp_stop(bp); 13989 bnxt_ulp_start(bp, 0); 13990 } 13991 13992 static void bnxt_sp_task(struct work_struct *work) 13993 { 13994 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 13995 13996 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13997 smp_mb__after_atomic(); 13998 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13999 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14000 return; 14001 } 14002 14003 if (test_and_clear_bit(BNXT_RESTART_ULP_SP_EVENT, &bp->sp_event)) { 14004 bnxt_ulp_restart(bp); 14005 bnxt_reenable_sriov(bp); 14006 } 14007 14008 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 14009 bnxt_cfg_rx_mode(bp); 14010 14011 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 14012 bnxt_cfg_ntp_filters(bp); 14013 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 14014 bnxt_hwrm_exec_fwd_req(bp); 14015 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 14016 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 14017 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 14018 bnxt_hwrm_port_qstats(bp, 0); 14019 bnxt_hwrm_port_qstats_ext(bp, 0); 14020 bnxt_accumulate_all_stats(bp); 14021 } 14022 14023 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 14024 int rc; 14025 14026 mutex_lock(&bp->link_lock); 14027 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 14028 &bp->sp_event)) 14029 bnxt_hwrm_phy_qcaps(bp); 14030 14031 rc = bnxt_update_link(bp, true); 14032 if (rc) 14033 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 14034 rc); 14035 14036 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 14037 &bp->sp_event)) 14038 bnxt_init_ethtool_link_settings(bp); 14039 mutex_unlock(&bp->link_lock); 14040 } 14041 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 14042 int rc; 14043 14044 mutex_lock(&bp->link_lock); 14045 rc = bnxt_update_phy_setting(bp); 14046 mutex_unlock(&bp->link_lock); 14047 if (rc) { 14048 netdev_warn(bp->dev, "update phy settings retry failed\n"); 14049 } else { 14050 bp->link_info.phy_retry = false; 14051 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 14052 } 14053 } 14054 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 14055 mutex_lock(&bp->link_lock); 14056 bnxt_get_port_module_status(bp); 14057 mutex_unlock(&bp->link_lock); 14058 } 14059 14060 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 14061 bnxt_tc_flow_stats_work(bp); 14062 14063 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 14064 bnxt_chk_missed_irq(bp); 14065 14066 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 14067 bnxt_fw_echo_reply(bp); 14068 14069 if (test_and_clear_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event)) 14070 bnxt_hwmon_notify_event(bp); 14071 14072 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 14073 * must be the last functions to be called before exiting. 14074 */ 14075 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 14076 bnxt_reset(bp, false); 14077 14078 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 14079 bnxt_reset(bp, true); 14080 14081 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 14082 bnxt_rx_ring_reset(bp); 14083 14084 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) { 14085 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) || 14086 test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state)) 14087 bnxt_devlink_health_fw_report(bp); 14088 else 14089 bnxt_fw_reset(bp); 14090 } 14091 14092 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 14093 if (!is_bnxt_fw_ok(bp)) 14094 bnxt_devlink_health_fw_report(bp); 14095 } 14096 14097 smp_mb__before_atomic(); 14098 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14099 } 14100 14101 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 14102 int *max_cp); 14103 14104 /* Under rtnl_lock */ 14105 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 14106 int tx_xdp) 14107 { 14108 int max_rx, max_tx, max_cp, tx_sets = 1, tx_cp; 14109 struct bnxt_hw_rings hwr = {0}; 14110 int rx_rings = rx; 14111 int rc; 14112 14113 if (tcs) 14114 tx_sets = tcs; 14115 14116 _bnxt_get_max_rings(bp, &max_rx, &max_tx, &max_cp); 14117 14118 if (max_rx < rx_rings) 14119 return -ENOMEM; 14120 14121 if (bp->flags & BNXT_FLAG_AGG_RINGS) 14122 rx_rings <<= 1; 14123 14124 hwr.rx = rx_rings; 14125 hwr.tx = tx * tx_sets + tx_xdp; 14126 if (max_tx < hwr.tx) 14127 return -ENOMEM; 14128 14129 hwr.vnic = bnxt_get_total_vnics(bp, rx); 14130 14131 tx_cp = __bnxt_num_tx_to_cp(bp, hwr.tx, tx_sets, tx_xdp); 14132 hwr.cp = sh ? max_t(int, tx_cp, rx) : tx_cp + rx; 14133 if (max_cp < hwr.cp) 14134 return -ENOMEM; 14135 hwr.stat = hwr.cp; 14136 if (BNXT_NEW_RM(bp)) { 14137 hwr.cp += bnxt_get_ulp_msix_num_in_use(bp); 14138 hwr.stat += bnxt_get_ulp_stat_ctxs_in_use(bp); 14139 hwr.grp = rx; 14140 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 14141 } 14142 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 14143 hwr.cp_p5 = hwr.tx + rx; 14144 rc = bnxt_hwrm_check_rings(bp, &hwr); 14145 if (!rc && pci_msix_can_alloc_dyn(bp->pdev)) { 14146 if (!bnxt_ulp_registered(bp->edev)) { 14147 hwr.cp += bnxt_get_ulp_msix_num(bp); 14148 hwr.cp = min_t(int, hwr.cp, bnxt_get_max_func_irqs(bp)); 14149 } 14150 if (hwr.cp > bp->total_irqs) { 14151 int total_msix = bnxt_change_msix(bp, hwr.cp); 14152 14153 if (total_msix < hwr.cp) { 14154 netdev_warn(bp->dev, "Unable to allocate %d MSIX vectors, maximum available %d\n", 14155 hwr.cp, total_msix); 14156 rc = -ENOSPC; 14157 } 14158 } 14159 } 14160 return rc; 14161 } 14162 14163 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 14164 { 14165 if (bp->bar2) { 14166 pci_iounmap(pdev, bp->bar2); 14167 bp->bar2 = NULL; 14168 } 14169 14170 if (bp->bar1) { 14171 pci_iounmap(pdev, bp->bar1); 14172 bp->bar1 = NULL; 14173 } 14174 14175 if (bp->bar0) { 14176 pci_iounmap(pdev, bp->bar0); 14177 bp->bar0 = NULL; 14178 } 14179 } 14180 14181 static void bnxt_cleanup_pci(struct bnxt *bp) 14182 { 14183 bnxt_unmap_bars(bp, bp->pdev); 14184 pci_release_regions(bp->pdev); 14185 if (pci_is_enabled(bp->pdev)) 14186 pci_disable_device(bp->pdev); 14187 } 14188 14189 static void bnxt_init_dflt_coal(struct bnxt *bp) 14190 { 14191 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 14192 struct bnxt_coal *coal; 14193 u16 flags = 0; 14194 14195 if (coal_cap->cmpl_params & 14196 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 14197 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 14198 14199 /* Tick values in micro seconds. 14200 * 1 coal_buf x bufs_per_record = 1 completion record. 14201 */ 14202 coal = &bp->rx_coal; 14203 coal->coal_ticks = 10; 14204 coal->coal_bufs = 30; 14205 coal->coal_ticks_irq = 1; 14206 coal->coal_bufs_irq = 2; 14207 coal->idle_thresh = 50; 14208 coal->bufs_per_record = 2; 14209 coal->budget = 64; /* NAPI budget */ 14210 coal->flags = flags; 14211 14212 coal = &bp->tx_coal; 14213 coal->coal_ticks = 28; 14214 coal->coal_bufs = 30; 14215 coal->coal_ticks_irq = 2; 14216 coal->coal_bufs_irq = 2; 14217 coal->bufs_per_record = 1; 14218 coal->flags = flags; 14219 14220 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 14221 } 14222 14223 /* FW that pre-reserves 1 VNIC per function */ 14224 static bool bnxt_fw_pre_resv_vnics(struct bnxt *bp) 14225 { 14226 u16 fw_maj = BNXT_FW_MAJ(bp), fw_bld = BNXT_FW_BLD(bp); 14227 14228 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 14229 (fw_maj > 218 || (fw_maj == 218 && fw_bld >= 18))) 14230 return true; 14231 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 14232 (fw_maj > 216 || (fw_maj == 216 && fw_bld >= 172))) 14233 return true; 14234 return false; 14235 } 14236 14237 static int bnxt_fw_init_one_p1(struct bnxt *bp) 14238 { 14239 int rc; 14240 14241 bp->fw_cap = 0; 14242 rc = bnxt_hwrm_ver_get(bp); 14243 /* FW may be unresponsive after FLR. FLR must complete within 100 msec 14244 * so wait before continuing with recovery. 14245 */ 14246 if (rc) 14247 msleep(100); 14248 bnxt_try_map_fw_health_reg(bp); 14249 if (rc) { 14250 rc = bnxt_try_recover_fw(bp); 14251 if (rc) 14252 return rc; 14253 rc = bnxt_hwrm_ver_get(bp); 14254 if (rc) 14255 return rc; 14256 } 14257 14258 bnxt_nvm_cfg_ver_get(bp); 14259 14260 rc = bnxt_hwrm_func_reset(bp); 14261 if (rc) 14262 return -ENODEV; 14263 14264 bnxt_hwrm_fw_set_time(bp); 14265 return 0; 14266 } 14267 14268 static int bnxt_fw_init_one_p2(struct bnxt *bp) 14269 { 14270 int rc; 14271 14272 /* Get the MAX capabilities for this function */ 14273 rc = bnxt_hwrm_func_qcaps(bp); 14274 if (rc) { 14275 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 14276 rc); 14277 return -ENODEV; 14278 } 14279 14280 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 14281 if (rc) 14282 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 14283 rc); 14284 14285 if (bnxt_alloc_fw_health(bp)) { 14286 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 14287 } else { 14288 rc = bnxt_hwrm_error_recovery_qcfg(bp); 14289 if (rc) 14290 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 14291 rc); 14292 } 14293 14294 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 14295 if (rc) 14296 return -ENODEV; 14297 14298 rc = bnxt_alloc_crash_dump_mem(bp); 14299 if (rc) 14300 netdev_warn(bp->dev, "crash dump mem alloc failure rc: %d\n", 14301 rc); 14302 if (!rc) { 14303 rc = bnxt_hwrm_crash_dump_mem_cfg(bp); 14304 if (rc) { 14305 bnxt_free_crash_dump_mem(bp); 14306 netdev_warn(bp->dev, 14307 "hwrm crash dump mem failure rc: %d\n", rc); 14308 } 14309 } 14310 14311 if (bnxt_fw_pre_resv_vnics(bp)) 14312 bp->fw_cap |= BNXT_FW_CAP_PRE_RESV_VNICS; 14313 14314 bnxt_hwrm_func_qcfg(bp); 14315 bnxt_hwrm_vnic_qcaps(bp); 14316 bnxt_hwrm_port_led_qcaps(bp); 14317 bnxt_ethtool_init(bp); 14318 if (bp->fw_cap & BNXT_FW_CAP_PTP) 14319 __bnxt_hwrm_ptp_qcfg(bp); 14320 bnxt_dcb_init(bp); 14321 bnxt_hwmon_init(bp); 14322 return 0; 14323 } 14324 14325 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 14326 { 14327 bp->rss_cap &= ~BNXT_RSS_CAP_UDP_RSS_CAP; 14328 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 14329 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 14330 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 14331 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 14332 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 14333 bp->rss_hash_delta = bp->rss_hash_cfg; 14334 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 14335 bp->rss_cap |= BNXT_RSS_CAP_UDP_RSS_CAP; 14336 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 14337 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 14338 } 14339 } 14340 14341 static void bnxt_set_dflt_rfs(struct bnxt *bp) 14342 { 14343 struct net_device *dev = bp->dev; 14344 14345 dev->hw_features &= ~NETIF_F_NTUPLE; 14346 dev->features &= ~NETIF_F_NTUPLE; 14347 bp->flags &= ~BNXT_FLAG_RFS; 14348 if (bnxt_rfs_supported(bp)) { 14349 dev->hw_features |= NETIF_F_NTUPLE; 14350 if (bnxt_rfs_capable(bp, false)) { 14351 bp->flags |= BNXT_FLAG_RFS; 14352 dev->features |= NETIF_F_NTUPLE; 14353 } 14354 } 14355 } 14356 14357 static void bnxt_fw_init_one_p3(struct bnxt *bp) 14358 { 14359 struct pci_dev *pdev = bp->pdev; 14360 14361 bnxt_set_dflt_rss_hash_type(bp); 14362 bnxt_set_dflt_rfs(bp); 14363 14364 bnxt_get_wol_settings(bp); 14365 if (bp->flags & BNXT_FLAG_WOL_CAP) 14366 device_set_wakeup_enable(&pdev->dev, bp->wol); 14367 else 14368 device_set_wakeup_capable(&pdev->dev, false); 14369 14370 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 14371 bnxt_hwrm_coal_params_qcaps(bp); 14372 } 14373 14374 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); 14375 14376 int bnxt_fw_init_one(struct bnxt *bp) 14377 { 14378 int rc; 14379 14380 rc = bnxt_fw_init_one_p1(bp); 14381 if (rc) { 14382 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 14383 return rc; 14384 } 14385 rc = bnxt_fw_init_one_p2(bp); 14386 if (rc) { 14387 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 14388 return rc; 14389 } 14390 rc = bnxt_probe_phy(bp, false); 14391 if (rc) 14392 return rc; 14393 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 14394 if (rc) 14395 return rc; 14396 14397 bnxt_fw_init_one_p3(bp); 14398 return 0; 14399 } 14400 14401 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 14402 { 14403 struct bnxt_fw_health *fw_health = bp->fw_health; 14404 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 14405 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 14406 u32 reg_type, reg_off, delay_msecs; 14407 14408 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 14409 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 14410 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 14411 switch (reg_type) { 14412 case BNXT_FW_HEALTH_REG_TYPE_CFG: 14413 pci_write_config_dword(bp->pdev, reg_off, val); 14414 break; 14415 case BNXT_FW_HEALTH_REG_TYPE_GRC: 14416 writel(reg_off & BNXT_GRC_BASE_MASK, 14417 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 14418 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 14419 fallthrough; 14420 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 14421 writel(val, bp->bar0 + reg_off); 14422 break; 14423 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 14424 writel(val, bp->bar1 + reg_off); 14425 break; 14426 } 14427 if (delay_msecs) { 14428 pci_read_config_dword(bp->pdev, 0, &val); 14429 msleep(delay_msecs); 14430 } 14431 } 14432 14433 bool bnxt_hwrm_reset_permitted(struct bnxt *bp) 14434 { 14435 struct hwrm_func_qcfg_output *resp; 14436 struct hwrm_func_qcfg_input *req; 14437 bool result = true; /* firmware will enforce if unknown */ 14438 14439 if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF) 14440 return result; 14441 14442 if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG)) 14443 return result; 14444 14445 req->fid = cpu_to_le16(0xffff); 14446 resp = hwrm_req_hold(bp, req); 14447 if (!hwrm_req_send(bp, req)) 14448 result = !!(le16_to_cpu(resp->flags) & 14449 FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED); 14450 hwrm_req_drop(bp, req); 14451 return result; 14452 } 14453 14454 static void bnxt_reset_all(struct bnxt *bp) 14455 { 14456 struct bnxt_fw_health *fw_health = bp->fw_health; 14457 int i, rc; 14458 14459 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 14460 bnxt_fw_reset_via_optee(bp); 14461 bp->fw_reset_timestamp = jiffies; 14462 return; 14463 } 14464 14465 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 14466 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 14467 bnxt_fw_reset_writel(bp, i); 14468 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 14469 struct hwrm_fw_reset_input *req; 14470 14471 rc = hwrm_req_init(bp, req, HWRM_FW_RESET); 14472 if (!rc) { 14473 req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG); 14474 req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 14475 req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 14476 req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 14477 rc = hwrm_req_send(bp, req); 14478 } 14479 if (rc != -ENODEV) 14480 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 14481 } 14482 bp->fw_reset_timestamp = jiffies; 14483 } 14484 14485 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 14486 { 14487 return time_after(jiffies, bp->fw_reset_timestamp + 14488 (bp->fw_reset_max_dsecs * HZ / 10)); 14489 } 14490 14491 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) 14492 { 14493 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14494 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) 14495 bnxt_dl_health_fw_status_update(bp, false); 14496 bp->fw_reset_state = 0; 14497 dev_close(bp->dev); 14498 } 14499 14500 static void bnxt_fw_reset_task(struct work_struct *work) 14501 { 14502 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 14503 int rc = 0; 14504 14505 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 14506 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 14507 return; 14508 } 14509 14510 switch (bp->fw_reset_state) { 14511 case BNXT_FW_RESET_STATE_POLL_VF: { 14512 int n = bnxt_get_registered_vfs(bp); 14513 int tmo; 14514 14515 if (n < 0) { 14516 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 14517 n, jiffies_to_msecs(jiffies - 14518 bp->fw_reset_timestamp)); 14519 goto fw_reset_abort; 14520 } else if (n > 0) { 14521 if (bnxt_fw_reset_timeout(bp)) { 14522 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14523 bp->fw_reset_state = 0; 14524 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 14525 n); 14526 goto ulp_start; 14527 } 14528 bnxt_queue_fw_reset_work(bp, HZ / 10); 14529 return; 14530 } 14531 bp->fw_reset_timestamp = jiffies; 14532 rtnl_lock(); 14533 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 14534 bnxt_fw_reset_abort(bp, rc); 14535 rtnl_unlock(); 14536 goto ulp_start; 14537 } 14538 bnxt_fw_reset_close(bp); 14539 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 14540 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 14541 tmo = HZ / 10; 14542 } else { 14543 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14544 tmo = bp->fw_reset_min_dsecs * HZ / 10; 14545 } 14546 rtnl_unlock(); 14547 bnxt_queue_fw_reset_work(bp, tmo); 14548 return; 14549 } 14550 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 14551 u32 val; 14552 14553 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 14554 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 14555 !bnxt_fw_reset_timeout(bp)) { 14556 bnxt_queue_fw_reset_work(bp, HZ / 5); 14557 return; 14558 } 14559 14560 if (!bp->fw_health->primary) { 14561 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 14562 14563 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14564 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 14565 return; 14566 } 14567 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 14568 } 14569 fallthrough; 14570 case BNXT_FW_RESET_STATE_RESET_FW: 14571 bnxt_reset_all(bp); 14572 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14573 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 14574 return; 14575 case BNXT_FW_RESET_STATE_ENABLE_DEV: 14576 bnxt_inv_fw_health_reg(bp); 14577 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 14578 !bp->fw_reset_min_dsecs) { 14579 u16 val; 14580 14581 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 14582 if (val == 0xffff) { 14583 if (bnxt_fw_reset_timeout(bp)) { 14584 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 14585 rc = -ETIMEDOUT; 14586 goto fw_reset_abort; 14587 } 14588 bnxt_queue_fw_reset_work(bp, HZ / 1000); 14589 return; 14590 } 14591 } 14592 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 14593 clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 14594 if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) && 14595 !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state)) 14596 bnxt_dl_remote_reload(bp); 14597 if (pci_enable_device(bp->pdev)) { 14598 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 14599 rc = -ENODEV; 14600 goto fw_reset_abort; 14601 } 14602 pci_set_master(bp->pdev); 14603 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 14604 fallthrough; 14605 case BNXT_FW_RESET_STATE_POLL_FW: 14606 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 14607 rc = bnxt_hwrm_poll(bp); 14608 if (rc) { 14609 if (bnxt_fw_reset_timeout(bp)) { 14610 netdev_err(bp->dev, "Firmware reset aborted\n"); 14611 goto fw_reset_abort_status; 14612 } 14613 bnxt_queue_fw_reset_work(bp, HZ / 5); 14614 return; 14615 } 14616 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 14617 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 14618 fallthrough; 14619 case BNXT_FW_RESET_STATE_OPENING: 14620 while (!rtnl_trylock()) { 14621 bnxt_queue_fw_reset_work(bp, HZ / 10); 14622 return; 14623 } 14624 rc = bnxt_open(bp->dev); 14625 if (rc) { 14626 netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); 14627 bnxt_fw_reset_abort(bp, rc); 14628 rtnl_unlock(); 14629 goto ulp_start; 14630 } 14631 14632 if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) && 14633 bp->fw_health->enabled) { 14634 bp->fw_health->last_fw_reset_cnt = 14635 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 14636 } 14637 bp->fw_reset_state = 0; 14638 /* Make sure fw_reset_state is 0 before clearing the flag */ 14639 smp_mb__before_atomic(); 14640 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14641 bnxt_ptp_reapply_pps(bp); 14642 clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state); 14643 if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) { 14644 bnxt_dl_health_fw_recovery_done(bp); 14645 bnxt_dl_health_fw_status_update(bp, true); 14646 } 14647 rtnl_unlock(); 14648 bnxt_ulp_start(bp, 0); 14649 bnxt_reenable_sriov(bp); 14650 rtnl_lock(); 14651 bnxt_vf_reps_alloc(bp); 14652 bnxt_vf_reps_open(bp); 14653 rtnl_unlock(); 14654 break; 14655 } 14656 return; 14657 14658 fw_reset_abort_status: 14659 if (bp->fw_health->status_reliable || 14660 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 14661 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 14662 14663 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 14664 } 14665 fw_reset_abort: 14666 rtnl_lock(); 14667 bnxt_fw_reset_abort(bp, rc); 14668 rtnl_unlock(); 14669 ulp_start: 14670 bnxt_ulp_start(bp, rc); 14671 } 14672 14673 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 14674 { 14675 int rc; 14676 struct bnxt *bp = netdev_priv(dev); 14677 14678 SET_NETDEV_DEV(dev, &pdev->dev); 14679 14680 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 14681 rc = pci_enable_device(pdev); 14682 if (rc) { 14683 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 14684 goto init_err; 14685 } 14686 14687 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 14688 dev_err(&pdev->dev, 14689 "Cannot find PCI device base address, aborting\n"); 14690 rc = -ENODEV; 14691 goto init_err_disable; 14692 } 14693 14694 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 14695 if (rc) { 14696 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 14697 goto init_err_disable; 14698 } 14699 14700 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 14701 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 14702 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 14703 rc = -EIO; 14704 goto init_err_release; 14705 } 14706 14707 pci_set_master(pdev); 14708 14709 bp->dev = dev; 14710 bp->pdev = pdev; 14711 14712 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 14713 * determines the BAR size. 14714 */ 14715 bp->bar0 = pci_ioremap_bar(pdev, 0); 14716 if (!bp->bar0) { 14717 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 14718 rc = -ENOMEM; 14719 goto init_err_release; 14720 } 14721 14722 bp->bar2 = pci_ioremap_bar(pdev, 4); 14723 if (!bp->bar2) { 14724 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 14725 rc = -ENOMEM; 14726 goto init_err_release; 14727 } 14728 14729 INIT_WORK(&bp->sp_task, bnxt_sp_task); 14730 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 14731 14732 spin_lock_init(&bp->ntp_fltr_lock); 14733 #if BITS_PER_LONG == 32 14734 spin_lock_init(&bp->db_lock); 14735 #endif 14736 14737 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 14738 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 14739 14740 timer_setup(&bp->timer, bnxt_timer, 0); 14741 bp->current_interval = BNXT_TIMER_INTERVAL; 14742 14743 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 14744 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 14745 14746 clear_bit(BNXT_STATE_OPEN, &bp->state); 14747 return 0; 14748 14749 init_err_release: 14750 bnxt_unmap_bars(bp, pdev); 14751 pci_release_regions(pdev); 14752 14753 init_err_disable: 14754 pci_disable_device(pdev); 14755 14756 init_err: 14757 return rc; 14758 } 14759 14760 /* rtnl_lock held */ 14761 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 14762 { 14763 struct sockaddr *addr = p; 14764 struct bnxt *bp = netdev_priv(dev); 14765 int rc = 0; 14766 14767 if (!is_valid_ether_addr(addr->sa_data)) 14768 return -EADDRNOTAVAIL; 14769 14770 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 14771 return 0; 14772 14773 rc = bnxt_approve_mac(bp, addr->sa_data, true); 14774 if (rc) 14775 return rc; 14776 14777 eth_hw_addr_set(dev, addr->sa_data); 14778 bnxt_clear_usr_fltrs(bp, true); 14779 if (netif_running(dev)) { 14780 bnxt_close_nic(bp, false, false); 14781 rc = bnxt_open_nic(bp, false, false); 14782 } 14783 14784 return rc; 14785 } 14786 14787 /* rtnl_lock held */ 14788 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 14789 { 14790 struct bnxt *bp = netdev_priv(dev); 14791 14792 if (netif_running(dev)) 14793 bnxt_close_nic(bp, true, false); 14794 14795 WRITE_ONCE(dev->mtu, new_mtu); 14796 14797 /* MTU change may change the AGG ring settings if an XDP multi-buffer 14798 * program is attached. We need to set the AGG rings settings and 14799 * rx_skb_func accordingly. 14800 */ 14801 if (READ_ONCE(bp->xdp_prog)) 14802 bnxt_set_rx_skb_mode(bp, true); 14803 14804 bnxt_set_ring_params(bp); 14805 14806 if (netif_running(dev)) 14807 return bnxt_open_nic(bp, true, false); 14808 14809 return 0; 14810 } 14811 14812 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 14813 { 14814 struct bnxt *bp = netdev_priv(dev); 14815 bool sh = false; 14816 int rc, tx_cp; 14817 14818 if (tc > bp->max_tc) { 14819 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 14820 tc, bp->max_tc); 14821 return -EINVAL; 14822 } 14823 14824 if (bp->num_tc == tc) 14825 return 0; 14826 14827 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 14828 sh = true; 14829 14830 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 14831 sh, tc, bp->tx_nr_rings_xdp); 14832 if (rc) 14833 return rc; 14834 14835 /* Needs to close the device and do hw resource re-allocations */ 14836 if (netif_running(bp->dev)) 14837 bnxt_close_nic(bp, true, false); 14838 14839 if (tc) { 14840 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 14841 netdev_set_num_tc(dev, tc); 14842 bp->num_tc = tc; 14843 } else { 14844 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 14845 netdev_reset_tc(dev); 14846 bp->num_tc = 0; 14847 } 14848 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 14849 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 14850 bp->cp_nr_rings = sh ? max_t(int, tx_cp, bp->rx_nr_rings) : 14851 tx_cp + bp->rx_nr_rings; 14852 14853 if (netif_running(bp->dev)) 14854 return bnxt_open_nic(bp, true, false); 14855 14856 return 0; 14857 } 14858 14859 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 14860 void *cb_priv) 14861 { 14862 struct bnxt *bp = cb_priv; 14863 14864 if (!bnxt_tc_flower_enabled(bp) || 14865 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 14866 return -EOPNOTSUPP; 14867 14868 switch (type) { 14869 case TC_SETUP_CLSFLOWER: 14870 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 14871 default: 14872 return -EOPNOTSUPP; 14873 } 14874 } 14875 14876 LIST_HEAD(bnxt_block_cb_list); 14877 14878 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 14879 void *type_data) 14880 { 14881 struct bnxt *bp = netdev_priv(dev); 14882 14883 switch (type) { 14884 case TC_SETUP_BLOCK: 14885 return flow_block_cb_setup_simple(type_data, 14886 &bnxt_block_cb_list, 14887 bnxt_setup_tc_block_cb, 14888 bp, bp, true); 14889 case TC_SETUP_QDISC_MQPRIO: { 14890 struct tc_mqprio_qopt *mqprio = type_data; 14891 14892 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 14893 14894 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 14895 } 14896 default: 14897 return -EOPNOTSUPP; 14898 } 14899 } 14900 14901 u32 bnxt_get_ntp_filter_idx(struct bnxt *bp, struct flow_keys *fkeys, 14902 const struct sk_buff *skb) 14903 { 14904 struct bnxt_vnic_info *vnic; 14905 14906 if (skb) 14907 return skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 14908 14909 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 14910 return bnxt_toeplitz(bp, fkeys, (void *)vnic->rss_hash_key); 14911 } 14912 14913 int bnxt_insert_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr, 14914 u32 idx) 14915 { 14916 struct hlist_head *head; 14917 int bit_id; 14918 14919 spin_lock_bh(&bp->ntp_fltr_lock); 14920 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, bp->max_fltr, 0); 14921 if (bit_id < 0) { 14922 spin_unlock_bh(&bp->ntp_fltr_lock); 14923 return -ENOMEM; 14924 } 14925 14926 fltr->base.sw_id = (u16)bit_id; 14927 fltr->base.type = BNXT_FLTR_TYPE_NTUPLE; 14928 fltr->base.flags |= BNXT_ACT_RING_DST; 14929 head = &bp->ntp_fltr_hash_tbl[idx]; 14930 hlist_add_head_rcu(&fltr->base.hash, head); 14931 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 14932 bnxt_insert_usr_fltr(bp, &fltr->base); 14933 bp->ntp_fltr_count++; 14934 spin_unlock_bh(&bp->ntp_fltr_lock); 14935 return 0; 14936 } 14937 14938 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 14939 struct bnxt_ntuple_filter *f2) 14940 { 14941 struct bnxt_flow_masks *masks1 = &f1->fmasks; 14942 struct bnxt_flow_masks *masks2 = &f2->fmasks; 14943 struct flow_keys *keys1 = &f1->fkeys; 14944 struct flow_keys *keys2 = &f2->fkeys; 14945 14946 if (keys1->basic.n_proto != keys2->basic.n_proto || 14947 keys1->basic.ip_proto != keys2->basic.ip_proto) 14948 return false; 14949 14950 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 14951 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 14952 masks1->addrs.v4addrs.src != masks2->addrs.v4addrs.src || 14953 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst || 14954 masks1->addrs.v4addrs.dst != masks2->addrs.v4addrs.dst) 14955 return false; 14956 } else { 14957 if (!ipv6_addr_equal(&keys1->addrs.v6addrs.src, 14958 &keys2->addrs.v6addrs.src) || 14959 !ipv6_addr_equal(&masks1->addrs.v6addrs.src, 14960 &masks2->addrs.v6addrs.src) || 14961 !ipv6_addr_equal(&keys1->addrs.v6addrs.dst, 14962 &keys2->addrs.v6addrs.dst) || 14963 !ipv6_addr_equal(&masks1->addrs.v6addrs.dst, 14964 &masks2->addrs.v6addrs.dst)) 14965 return false; 14966 } 14967 14968 return keys1->ports.src == keys2->ports.src && 14969 masks1->ports.src == masks2->ports.src && 14970 keys1->ports.dst == keys2->ports.dst && 14971 masks1->ports.dst == masks2->ports.dst && 14972 keys1->control.flags == keys2->control.flags && 14973 f1->l2_fltr == f2->l2_fltr; 14974 } 14975 14976 struct bnxt_ntuple_filter * 14977 bnxt_lookup_ntp_filter_from_idx(struct bnxt *bp, 14978 struct bnxt_ntuple_filter *fltr, u32 idx) 14979 { 14980 struct bnxt_ntuple_filter *f; 14981 struct hlist_head *head; 14982 14983 head = &bp->ntp_fltr_hash_tbl[idx]; 14984 hlist_for_each_entry_rcu(f, head, base.hash) { 14985 if (bnxt_fltr_match(f, fltr)) 14986 return f; 14987 } 14988 return NULL; 14989 } 14990 14991 #ifdef CONFIG_RFS_ACCEL 14992 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 14993 u16 rxq_index, u32 flow_id) 14994 { 14995 struct bnxt *bp = netdev_priv(dev); 14996 struct bnxt_ntuple_filter *fltr, *new_fltr; 14997 struct flow_keys *fkeys; 14998 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 14999 struct bnxt_l2_filter *l2_fltr; 15000 int rc = 0, idx; 15001 u32 flags; 15002 15003 if (ether_addr_equal(dev->dev_addr, eth->h_dest)) { 15004 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 15005 atomic_inc(&l2_fltr->refcnt); 15006 } else { 15007 struct bnxt_l2_key key; 15008 15009 ether_addr_copy(key.dst_mac_addr, eth->h_dest); 15010 key.vlan = 0; 15011 l2_fltr = bnxt_lookup_l2_filter_from_key(bp, &key); 15012 if (!l2_fltr) 15013 return -EINVAL; 15014 if (l2_fltr->base.flags & BNXT_ACT_FUNC_DST) { 15015 bnxt_del_l2_filter(bp, l2_fltr); 15016 return -EINVAL; 15017 } 15018 } 15019 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 15020 if (!new_fltr) { 15021 bnxt_del_l2_filter(bp, l2_fltr); 15022 return -ENOMEM; 15023 } 15024 15025 fkeys = &new_fltr->fkeys; 15026 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 15027 rc = -EPROTONOSUPPORT; 15028 goto err_free; 15029 } 15030 15031 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 15032 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 15033 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 15034 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 15035 rc = -EPROTONOSUPPORT; 15036 goto err_free; 15037 } 15038 new_fltr->fmasks = BNXT_FLOW_IPV4_MASK_ALL; 15039 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 15040 if (bp->hwrm_spec_code < 0x10601) { 15041 rc = -EPROTONOSUPPORT; 15042 goto err_free; 15043 } 15044 new_fltr->fmasks = BNXT_FLOW_IPV6_MASK_ALL; 15045 } 15046 flags = fkeys->control.flags; 15047 if (((flags & FLOW_DIS_ENCAPSULATION) && 15048 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 15049 rc = -EPROTONOSUPPORT; 15050 goto err_free; 15051 } 15052 new_fltr->l2_fltr = l2_fltr; 15053 15054 idx = bnxt_get_ntp_filter_idx(bp, fkeys, skb); 15055 rcu_read_lock(); 15056 fltr = bnxt_lookup_ntp_filter_from_idx(bp, new_fltr, idx); 15057 if (fltr) { 15058 rc = fltr->base.sw_id; 15059 rcu_read_unlock(); 15060 goto err_free; 15061 } 15062 rcu_read_unlock(); 15063 15064 new_fltr->flow_id = flow_id; 15065 new_fltr->base.rxq = rxq_index; 15066 rc = bnxt_insert_ntp_filter(bp, new_fltr, idx); 15067 if (!rc) { 15068 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 15069 return new_fltr->base.sw_id; 15070 } 15071 15072 err_free: 15073 bnxt_del_l2_filter(bp, l2_fltr); 15074 kfree(new_fltr); 15075 return rc; 15076 } 15077 #endif 15078 15079 void bnxt_del_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr) 15080 { 15081 spin_lock_bh(&bp->ntp_fltr_lock); 15082 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 15083 spin_unlock_bh(&bp->ntp_fltr_lock); 15084 return; 15085 } 15086 hlist_del_rcu(&fltr->base.hash); 15087 bnxt_del_one_usr_fltr(bp, &fltr->base); 15088 bp->ntp_fltr_count--; 15089 spin_unlock_bh(&bp->ntp_fltr_lock); 15090 bnxt_del_l2_filter(bp, fltr->l2_fltr); 15091 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 15092 kfree_rcu(fltr, base.rcu); 15093 } 15094 15095 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 15096 { 15097 #ifdef CONFIG_RFS_ACCEL 15098 int i; 15099 15100 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 15101 struct hlist_head *head; 15102 struct hlist_node *tmp; 15103 struct bnxt_ntuple_filter *fltr; 15104 int rc; 15105 15106 head = &bp->ntp_fltr_hash_tbl[i]; 15107 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 15108 bool del = false; 15109 15110 if (test_bit(BNXT_FLTR_VALID, &fltr->base.state)) { 15111 if (fltr->base.flags & BNXT_ACT_NO_AGING) 15112 continue; 15113 if (rps_may_expire_flow(bp->dev, fltr->base.rxq, 15114 fltr->flow_id, 15115 fltr->base.sw_id)) { 15116 bnxt_hwrm_cfa_ntuple_filter_free(bp, 15117 fltr); 15118 del = true; 15119 } 15120 } else { 15121 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 15122 fltr); 15123 if (rc) 15124 del = true; 15125 else 15126 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 15127 } 15128 15129 if (del) 15130 bnxt_del_ntp_filter(bp, fltr); 15131 } 15132 } 15133 #endif 15134 } 15135 15136 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 15137 unsigned int entry, struct udp_tunnel_info *ti) 15138 { 15139 struct bnxt *bp = netdev_priv(netdev); 15140 unsigned int cmd; 15141 15142 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 15143 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN; 15144 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 15145 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE; 15146 else 15147 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE; 15148 15149 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd); 15150 } 15151 15152 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 15153 unsigned int entry, struct udp_tunnel_info *ti) 15154 { 15155 struct bnxt *bp = netdev_priv(netdev); 15156 unsigned int cmd; 15157 15158 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 15159 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 15160 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 15161 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 15162 else 15163 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE; 15164 15165 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 15166 } 15167 15168 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 15169 .set_port = bnxt_udp_tunnel_set_port, 15170 .unset_port = bnxt_udp_tunnel_unset_port, 15171 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 15172 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 15173 .tables = { 15174 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 15175 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 15176 }, 15177 }, bnxt_udp_tunnels_p7 = { 15178 .set_port = bnxt_udp_tunnel_set_port, 15179 .unset_port = bnxt_udp_tunnel_unset_port, 15180 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 15181 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 15182 .tables = { 15183 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 15184 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 15185 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN_GPE, }, 15186 }, 15187 }; 15188 15189 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 15190 struct net_device *dev, u32 filter_mask, 15191 int nlflags) 15192 { 15193 struct bnxt *bp = netdev_priv(dev); 15194 15195 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 15196 nlflags, filter_mask, NULL); 15197 } 15198 15199 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 15200 u16 flags, struct netlink_ext_ack *extack) 15201 { 15202 struct bnxt *bp = netdev_priv(dev); 15203 struct nlattr *attr, *br_spec; 15204 int rem, rc = 0; 15205 15206 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 15207 return -EOPNOTSUPP; 15208 15209 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 15210 if (!br_spec) 15211 return -EINVAL; 15212 15213 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 15214 u16 mode; 15215 15216 mode = nla_get_u16(attr); 15217 if (mode == bp->br_mode) 15218 break; 15219 15220 rc = bnxt_hwrm_set_br_mode(bp, mode); 15221 if (!rc) 15222 bp->br_mode = mode; 15223 break; 15224 } 15225 return rc; 15226 } 15227 15228 int bnxt_get_port_parent_id(struct net_device *dev, 15229 struct netdev_phys_item_id *ppid) 15230 { 15231 struct bnxt *bp = netdev_priv(dev); 15232 15233 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 15234 return -EOPNOTSUPP; 15235 15236 /* The PF and it's VF-reps only support the switchdev framework */ 15237 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 15238 return -EOPNOTSUPP; 15239 15240 ppid->id_len = sizeof(bp->dsn); 15241 memcpy(ppid->id, bp->dsn, ppid->id_len); 15242 15243 return 0; 15244 } 15245 15246 static const struct net_device_ops bnxt_netdev_ops = { 15247 .ndo_open = bnxt_open, 15248 .ndo_start_xmit = bnxt_start_xmit, 15249 .ndo_stop = bnxt_close, 15250 .ndo_get_stats64 = bnxt_get_stats64, 15251 .ndo_set_rx_mode = bnxt_set_rx_mode, 15252 .ndo_eth_ioctl = bnxt_ioctl, 15253 .ndo_validate_addr = eth_validate_addr, 15254 .ndo_set_mac_address = bnxt_change_mac_addr, 15255 .ndo_change_mtu = bnxt_change_mtu, 15256 .ndo_fix_features = bnxt_fix_features, 15257 .ndo_set_features = bnxt_set_features, 15258 .ndo_features_check = bnxt_features_check, 15259 .ndo_tx_timeout = bnxt_tx_timeout, 15260 #ifdef CONFIG_BNXT_SRIOV 15261 .ndo_get_vf_config = bnxt_get_vf_config, 15262 .ndo_set_vf_mac = bnxt_set_vf_mac, 15263 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 15264 .ndo_set_vf_rate = bnxt_set_vf_bw, 15265 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 15266 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 15267 .ndo_set_vf_trust = bnxt_set_vf_trust, 15268 #endif 15269 .ndo_setup_tc = bnxt_setup_tc, 15270 #ifdef CONFIG_RFS_ACCEL 15271 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 15272 #endif 15273 .ndo_bpf = bnxt_xdp, 15274 .ndo_xdp_xmit = bnxt_xdp_xmit, 15275 .ndo_bridge_getlink = bnxt_bridge_getlink, 15276 .ndo_bridge_setlink = bnxt_bridge_setlink, 15277 }; 15278 15279 static void bnxt_get_queue_stats_rx(struct net_device *dev, int i, 15280 struct netdev_queue_stats_rx *stats) 15281 { 15282 struct bnxt *bp = netdev_priv(dev); 15283 struct bnxt_cp_ring_info *cpr; 15284 u64 *sw; 15285 15286 cpr = &bp->bnapi[i]->cp_ring; 15287 sw = cpr->stats.sw_stats; 15288 15289 stats->packets = 0; 15290 stats->packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 15291 stats->packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 15292 stats->packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 15293 15294 stats->bytes = 0; 15295 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 15296 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 15297 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 15298 15299 stats->alloc_fail = cpr->sw_stats->rx.rx_oom_discards; 15300 } 15301 15302 static void bnxt_get_queue_stats_tx(struct net_device *dev, int i, 15303 struct netdev_queue_stats_tx *stats) 15304 { 15305 struct bnxt *bp = netdev_priv(dev); 15306 struct bnxt_napi *bnapi; 15307 u64 *sw; 15308 15309 bnapi = bp->tx_ring[bp->tx_ring_map[i]].bnapi; 15310 sw = bnapi->cp_ring.stats.sw_stats; 15311 15312 stats->packets = 0; 15313 stats->packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 15314 stats->packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 15315 stats->packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 15316 15317 stats->bytes = 0; 15318 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 15319 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 15320 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 15321 } 15322 15323 static void bnxt_get_base_stats(struct net_device *dev, 15324 struct netdev_queue_stats_rx *rx, 15325 struct netdev_queue_stats_tx *tx) 15326 { 15327 struct bnxt *bp = netdev_priv(dev); 15328 15329 rx->packets = bp->net_stats_prev.rx_packets; 15330 rx->bytes = bp->net_stats_prev.rx_bytes; 15331 rx->alloc_fail = bp->ring_err_stats_prev.rx_total_oom_discards; 15332 15333 tx->packets = bp->net_stats_prev.tx_packets; 15334 tx->bytes = bp->net_stats_prev.tx_bytes; 15335 } 15336 15337 static const struct netdev_stat_ops bnxt_stat_ops = { 15338 .get_queue_stats_rx = bnxt_get_queue_stats_rx, 15339 .get_queue_stats_tx = bnxt_get_queue_stats_tx, 15340 .get_base_stats = bnxt_get_base_stats, 15341 }; 15342 15343 static int bnxt_queue_mem_alloc(struct net_device *dev, void *qmem, int idx) 15344 { 15345 struct bnxt_rx_ring_info *rxr, *clone; 15346 struct bnxt *bp = netdev_priv(dev); 15347 struct bnxt_ring_struct *ring; 15348 int rc; 15349 15350 rxr = &bp->rx_ring[idx]; 15351 clone = qmem; 15352 memcpy(clone, rxr, sizeof(*rxr)); 15353 bnxt_init_rx_ring_struct(bp, clone); 15354 bnxt_reset_rx_ring_struct(bp, clone); 15355 15356 clone->rx_prod = 0; 15357 clone->rx_agg_prod = 0; 15358 clone->rx_sw_agg_prod = 0; 15359 clone->rx_next_cons = 0; 15360 15361 rc = bnxt_alloc_rx_page_pool(bp, clone, rxr->page_pool->p.nid); 15362 if (rc) 15363 return rc; 15364 15365 rc = xdp_rxq_info_reg(&clone->xdp_rxq, bp->dev, idx, 0); 15366 if (rc < 0) 15367 goto err_page_pool_destroy; 15368 15369 rc = xdp_rxq_info_reg_mem_model(&clone->xdp_rxq, 15370 MEM_TYPE_PAGE_POOL, 15371 clone->page_pool); 15372 if (rc) 15373 goto err_rxq_info_unreg; 15374 15375 ring = &clone->rx_ring_struct; 15376 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 15377 if (rc) 15378 goto err_free_rx_ring; 15379 15380 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 15381 ring = &clone->rx_agg_ring_struct; 15382 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 15383 if (rc) 15384 goto err_free_rx_agg_ring; 15385 15386 rc = bnxt_alloc_rx_agg_bmap(bp, clone); 15387 if (rc) 15388 goto err_free_rx_agg_ring; 15389 } 15390 15391 if (bp->flags & BNXT_FLAG_TPA) { 15392 rc = bnxt_alloc_one_tpa_info(bp, clone); 15393 if (rc) 15394 goto err_free_tpa_info; 15395 } 15396 15397 bnxt_init_one_rx_ring_rxbd(bp, clone); 15398 bnxt_init_one_rx_agg_ring_rxbd(bp, clone); 15399 15400 bnxt_alloc_one_rx_ring_skb(bp, clone, idx); 15401 if (bp->flags & BNXT_FLAG_AGG_RINGS) 15402 bnxt_alloc_one_rx_ring_page(bp, clone, idx); 15403 if (bp->flags & BNXT_FLAG_TPA) 15404 bnxt_alloc_one_tpa_info_data(bp, clone); 15405 15406 return 0; 15407 15408 err_free_tpa_info: 15409 bnxt_free_one_tpa_info(bp, clone); 15410 err_free_rx_agg_ring: 15411 bnxt_free_ring(bp, &clone->rx_agg_ring_struct.ring_mem); 15412 err_free_rx_ring: 15413 bnxt_free_ring(bp, &clone->rx_ring_struct.ring_mem); 15414 err_rxq_info_unreg: 15415 xdp_rxq_info_unreg(&clone->xdp_rxq); 15416 err_page_pool_destroy: 15417 page_pool_destroy(clone->page_pool); 15418 if (bnxt_separate_head_pool()) 15419 page_pool_destroy(clone->head_pool); 15420 clone->page_pool = NULL; 15421 clone->head_pool = NULL; 15422 return rc; 15423 } 15424 15425 static void bnxt_queue_mem_free(struct net_device *dev, void *qmem) 15426 { 15427 struct bnxt_rx_ring_info *rxr = qmem; 15428 struct bnxt *bp = netdev_priv(dev); 15429 struct bnxt_ring_struct *ring; 15430 15431 bnxt_free_one_rx_ring_skbs(bp, rxr); 15432 15433 xdp_rxq_info_unreg(&rxr->xdp_rxq); 15434 15435 page_pool_destroy(rxr->page_pool); 15436 if (bnxt_separate_head_pool()) 15437 page_pool_destroy(rxr->head_pool); 15438 rxr->page_pool = NULL; 15439 rxr->head_pool = NULL; 15440 15441 ring = &rxr->rx_ring_struct; 15442 bnxt_free_ring(bp, &ring->ring_mem); 15443 15444 ring = &rxr->rx_agg_ring_struct; 15445 bnxt_free_ring(bp, &ring->ring_mem); 15446 15447 kfree(rxr->rx_agg_bmap); 15448 rxr->rx_agg_bmap = NULL; 15449 } 15450 15451 static void bnxt_copy_rx_ring(struct bnxt *bp, 15452 struct bnxt_rx_ring_info *dst, 15453 struct bnxt_rx_ring_info *src) 15454 { 15455 struct bnxt_ring_mem_info *dst_rmem, *src_rmem; 15456 struct bnxt_ring_struct *dst_ring, *src_ring; 15457 int i; 15458 15459 dst_ring = &dst->rx_ring_struct; 15460 dst_rmem = &dst_ring->ring_mem; 15461 src_ring = &src->rx_ring_struct; 15462 src_rmem = &src_ring->ring_mem; 15463 15464 WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages); 15465 WARN_ON(dst_rmem->page_size != src_rmem->page_size); 15466 WARN_ON(dst_rmem->flags != src_rmem->flags); 15467 WARN_ON(dst_rmem->depth != src_rmem->depth); 15468 WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size); 15469 WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem); 15470 15471 dst_rmem->pg_tbl = src_rmem->pg_tbl; 15472 dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map; 15473 *dst_rmem->vmem = *src_rmem->vmem; 15474 for (i = 0; i < dst_rmem->nr_pages; i++) { 15475 dst_rmem->pg_arr[i] = src_rmem->pg_arr[i]; 15476 dst_rmem->dma_arr[i] = src_rmem->dma_arr[i]; 15477 } 15478 15479 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 15480 return; 15481 15482 dst_ring = &dst->rx_agg_ring_struct; 15483 dst_rmem = &dst_ring->ring_mem; 15484 src_ring = &src->rx_agg_ring_struct; 15485 src_rmem = &src_ring->ring_mem; 15486 15487 WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages); 15488 WARN_ON(dst_rmem->page_size != src_rmem->page_size); 15489 WARN_ON(dst_rmem->flags != src_rmem->flags); 15490 WARN_ON(dst_rmem->depth != src_rmem->depth); 15491 WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size); 15492 WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem); 15493 WARN_ON(dst->rx_agg_bmap_size != src->rx_agg_bmap_size); 15494 15495 dst_rmem->pg_tbl = src_rmem->pg_tbl; 15496 dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map; 15497 *dst_rmem->vmem = *src_rmem->vmem; 15498 for (i = 0; i < dst_rmem->nr_pages; i++) { 15499 dst_rmem->pg_arr[i] = src_rmem->pg_arr[i]; 15500 dst_rmem->dma_arr[i] = src_rmem->dma_arr[i]; 15501 } 15502 15503 dst->rx_agg_bmap = src->rx_agg_bmap; 15504 } 15505 15506 static int bnxt_queue_start(struct net_device *dev, void *qmem, int idx) 15507 { 15508 struct bnxt *bp = netdev_priv(dev); 15509 struct bnxt_rx_ring_info *rxr, *clone; 15510 struct bnxt_cp_ring_info *cpr; 15511 struct bnxt_vnic_info *vnic; 15512 int i, rc; 15513 15514 rxr = &bp->rx_ring[idx]; 15515 clone = qmem; 15516 15517 rxr->rx_prod = clone->rx_prod; 15518 rxr->rx_agg_prod = clone->rx_agg_prod; 15519 rxr->rx_sw_agg_prod = clone->rx_sw_agg_prod; 15520 rxr->rx_next_cons = clone->rx_next_cons; 15521 rxr->rx_tpa = clone->rx_tpa; 15522 rxr->rx_tpa_idx_map = clone->rx_tpa_idx_map; 15523 rxr->page_pool = clone->page_pool; 15524 rxr->head_pool = clone->head_pool; 15525 rxr->xdp_rxq = clone->xdp_rxq; 15526 15527 bnxt_copy_rx_ring(bp, rxr, clone); 15528 15529 rc = bnxt_hwrm_rx_ring_alloc(bp, rxr); 15530 if (rc) 15531 return rc; 15532 rc = bnxt_hwrm_rx_agg_ring_alloc(bp, rxr); 15533 if (rc) 15534 goto err_free_hwrm_rx_ring; 15535 15536 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 15537 if (bp->flags & BNXT_FLAG_AGG_RINGS) 15538 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 15539 15540 cpr = &rxr->bnapi->cp_ring; 15541 cpr->sw_stats->rx.rx_resets++; 15542 15543 for (i = 0; i <= BNXT_VNIC_NTUPLE; i++) { 15544 vnic = &bp->vnic_info[i]; 15545 15546 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic, true); 15547 if (rc) { 15548 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 15549 vnic->vnic_id, rc); 15550 return rc; 15551 } 15552 vnic->mru = bp->dev->mtu + ETH_HLEN + VLAN_HLEN; 15553 bnxt_hwrm_vnic_update(bp, vnic, 15554 VNIC_UPDATE_REQ_ENABLES_MRU_VALID); 15555 } 15556 15557 return 0; 15558 15559 err_free_hwrm_rx_ring: 15560 bnxt_hwrm_rx_ring_free(bp, rxr, false); 15561 return rc; 15562 } 15563 15564 static int bnxt_queue_stop(struct net_device *dev, void *qmem, int idx) 15565 { 15566 struct bnxt *bp = netdev_priv(dev); 15567 struct bnxt_rx_ring_info *rxr; 15568 struct bnxt_vnic_info *vnic; 15569 int i; 15570 15571 for (i = 0; i <= BNXT_VNIC_NTUPLE; i++) { 15572 vnic = &bp->vnic_info[i]; 15573 vnic->mru = 0; 15574 bnxt_hwrm_vnic_update(bp, vnic, 15575 VNIC_UPDATE_REQ_ENABLES_MRU_VALID); 15576 } 15577 15578 rxr = &bp->rx_ring[idx]; 15579 bnxt_hwrm_rx_ring_free(bp, rxr, false); 15580 bnxt_hwrm_rx_agg_ring_free(bp, rxr, false); 15581 rxr->rx_next_cons = 0; 15582 page_pool_disable_direct_recycling(rxr->page_pool); 15583 if (bnxt_separate_head_pool()) 15584 page_pool_disable_direct_recycling(rxr->head_pool); 15585 15586 memcpy(qmem, rxr, sizeof(*rxr)); 15587 bnxt_init_rx_ring_struct(bp, qmem); 15588 15589 return 0; 15590 } 15591 15592 static const struct netdev_queue_mgmt_ops bnxt_queue_mgmt_ops = { 15593 .ndo_queue_mem_size = sizeof(struct bnxt_rx_ring_info), 15594 .ndo_queue_mem_alloc = bnxt_queue_mem_alloc, 15595 .ndo_queue_mem_free = bnxt_queue_mem_free, 15596 .ndo_queue_start = bnxt_queue_start, 15597 .ndo_queue_stop = bnxt_queue_stop, 15598 }; 15599 15600 static void bnxt_remove_one(struct pci_dev *pdev) 15601 { 15602 struct net_device *dev = pci_get_drvdata(pdev); 15603 struct bnxt *bp = netdev_priv(dev); 15604 15605 if (BNXT_PF(bp)) 15606 bnxt_sriov_disable(bp); 15607 15608 bnxt_rdma_aux_device_del(bp); 15609 15610 bnxt_ptp_clear(bp); 15611 unregister_netdev(dev); 15612 15613 bnxt_rdma_aux_device_uninit(bp); 15614 15615 bnxt_free_l2_filters(bp, true); 15616 bnxt_free_ntp_fltrs(bp, true); 15617 WARN_ON(bp->num_rss_ctx); 15618 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 15619 /* Flush any pending tasks */ 15620 cancel_work_sync(&bp->sp_task); 15621 cancel_delayed_work_sync(&bp->fw_reset_task); 15622 bp->sp_event = 0; 15623 15624 bnxt_dl_fw_reporters_destroy(bp); 15625 bnxt_dl_unregister(bp); 15626 bnxt_shutdown_tc(bp); 15627 15628 bnxt_clear_int_mode(bp); 15629 bnxt_hwrm_func_drv_unrgtr(bp); 15630 bnxt_free_hwrm_resources(bp); 15631 bnxt_hwmon_uninit(bp); 15632 bnxt_ethtool_free(bp); 15633 bnxt_dcb_free(bp); 15634 kfree(bp->ptp_cfg); 15635 bp->ptp_cfg = NULL; 15636 kfree(bp->fw_health); 15637 bp->fw_health = NULL; 15638 bnxt_cleanup_pci(bp); 15639 bnxt_free_ctx_mem(bp, true); 15640 bnxt_free_crash_dump_mem(bp); 15641 kfree(bp->rss_indir_tbl); 15642 bp->rss_indir_tbl = NULL; 15643 bnxt_free_port_stats(bp); 15644 free_netdev(dev); 15645 } 15646 15647 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 15648 { 15649 int rc = 0; 15650 struct bnxt_link_info *link_info = &bp->link_info; 15651 15652 bp->phy_flags = 0; 15653 rc = bnxt_hwrm_phy_qcaps(bp); 15654 if (rc) { 15655 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 15656 rc); 15657 return rc; 15658 } 15659 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 15660 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 15661 else 15662 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 15663 if (!fw_dflt) 15664 return 0; 15665 15666 mutex_lock(&bp->link_lock); 15667 rc = bnxt_update_link(bp, false); 15668 if (rc) { 15669 mutex_unlock(&bp->link_lock); 15670 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 15671 rc); 15672 return rc; 15673 } 15674 15675 /* Older firmware does not have supported_auto_speeds, so assume 15676 * that all supported speeds can be autonegotiated. 15677 */ 15678 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 15679 link_info->support_auto_speeds = link_info->support_speeds; 15680 15681 bnxt_init_ethtool_link_settings(bp); 15682 mutex_unlock(&bp->link_lock); 15683 return 0; 15684 } 15685 15686 static int bnxt_get_max_irq(struct pci_dev *pdev) 15687 { 15688 u16 ctrl; 15689 15690 if (!pdev->msix_cap) 15691 return 1; 15692 15693 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 15694 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 15695 } 15696 15697 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 15698 int *max_cp) 15699 { 15700 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 15701 int max_ring_grps = 0, max_irq; 15702 15703 *max_tx = hw_resc->max_tx_rings; 15704 *max_rx = hw_resc->max_rx_rings; 15705 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 15706 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 15707 bnxt_get_ulp_msix_num_in_use(bp), 15708 hw_resc->max_stat_ctxs - 15709 bnxt_get_ulp_stat_ctxs_in_use(bp)); 15710 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 15711 *max_cp = min_t(int, *max_cp, max_irq); 15712 max_ring_grps = hw_resc->max_hw_ring_grps; 15713 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 15714 *max_cp -= 1; 15715 *max_rx -= 2; 15716 } 15717 if (bp->flags & BNXT_FLAG_AGG_RINGS) 15718 *max_rx >>= 1; 15719 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 15720 int rc; 15721 15722 rc = __bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 15723 if (rc) { 15724 *max_rx = 0; 15725 *max_tx = 0; 15726 } 15727 /* On P5 chips, max_cp output param should be available NQs */ 15728 *max_cp = max_irq; 15729 } 15730 *max_rx = min_t(int, *max_rx, max_ring_grps); 15731 } 15732 15733 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 15734 { 15735 int rx, tx, cp; 15736 15737 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 15738 *max_rx = rx; 15739 *max_tx = tx; 15740 if (!rx || !tx || !cp) 15741 return -ENOMEM; 15742 15743 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 15744 } 15745 15746 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 15747 bool shared) 15748 { 15749 int rc; 15750 15751 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 15752 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 15753 /* Not enough rings, try disabling agg rings. */ 15754 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 15755 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 15756 if (rc) { 15757 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 15758 bp->flags |= BNXT_FLAG_AGG_RINGS; 15759 return rc; 15760 } 15761 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 15762 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 15763 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 15764 bnxt_set_ring_params(bp); 15765 } 15766 15767 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 15768 int max_cp, max_stat, max_irq; 15769 15770 /* Reserve minimum resources for RoCE */ 15771 max_cp = bnxt_get_max_func_cp_rings(bp); 15772 max_stat = bnxt_get_max_func_stat_ctxs(bp); 15773 max_irq = bnxt_get_max_func_irqs(bp); 15774 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 15775 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 15776 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 15777 return 0; 15778 15779 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 15780 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 15781 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 15782 max_cp = min_t(int, max_cp, max_irq); 15783 max_cp = min_t(int, max_cp, max_stat); 15784 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 15785 if (rc) 15786 rc = 0; 15787 } 15788 return rc; 15789 } 15790 15791 /* In initial default shared ring setting, each shared ring must have a 15792 * RX/TX ring pair. 15793 */ 15794 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 15795 { 15796 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 15797 bp->rx_nr_rings = bp->cp_nr_rings; 15798 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 15799 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 15800 } 15801 15802 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 15803 { 15804 int dflt_rings, max_rx_rings, max_tx_rings, rc; 15805 int avail_msix; 15806 15807 if (!bnxt_can_reserve_rings(bp)) 15808 return 0; 15809 15810 if (sh) 15811 bp->flags |= BNXT_FLAG_SHARED_RINGS; 15812 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 15813 /* Reduce default rings on multi-port cards so that total default 15814 * rings do not exceed CPU count. 15815 */ 15816 if (bp->port_count > 1) { 15817 int max_rings = 15818 max_t(int, num_online_cpus() / bp->port_count, 1); 15819 15820 dflt_rings = min_t(int, dflt_rings, max_rings); 15821 } 15822 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 15823 if (rc) 15824 return rc; 15825 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 15826 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 15827 if (sh) 15828 bnxt_trim_dflt_sh_rings(bp); 15829 else 15830 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 15831 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 15832 15833 avail_msix = bnxt_get_max_func_irqs(bp) - bp->cp_nr_rings; 15834 if (avail_msix >= BNXT_MIN_ROCE_CP_RINGS) { 15835 int ulp_num_msix = min(avail_msix, bp->ulp_num_msix_want); 15836 15837 bnxt_set_ulp_msix_num(bp, ulp_num_msix); 15838 bnxt_set_dflt_ulp_stat_ctxs(bp); 15839 } 15840 15841 rc = __bnxt_reserve_rings(bp); 15842 if (rc && rc != -ENODEV) 15843 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 15844 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15845 if (sh) 15846 bnxt_trim_dflt_sh_rings(bp); 15847 15848 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 15849 if (bnxt_need_reserve_rings(bp)) { 15850 rc = __bnxt_reserve_rings(bp); 15851 if (rc && rc != -ENODEV) 15852 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 15853 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15854 } 15855 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 15856 bp->rx_nr_rings++; 15857 bp->cp_nr_rings++; 15858 } 15859 if (rc) { 15860 bp->tx_nr_rings = 0; 15861 bp->rx_nr_rings = 0; 15862 } 15863 return rc; 15864 } 15865 15866 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 15867 { 15868 int rc; 15869 15870 if (bp->tx_nr_rings) 15871 return 0; 15872 15873 bnxt_ulp_irq_stop(bp); 15874 bnxt_clear_int_mode(bp); 15875 rc = bnxt_set_dflt_rings(bp, true); 15876 if (rc) { 15877 if (BNXT_VF(bp) && rc == -ENODEV) 15878 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 15879 else 15880 netdev_err(bp->dev, "Not enough rings available.\n"); 15881 goto init_dflt_ring_err; 15882 } 15883 rc = bnxt_init_int_mode(bp); 15884 if (rc) 15885 goto init_dflt_ring_err; 15886 15887 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15888 15889 bnxt_set_dflt_rfs(bp); 15890 15891 init_dflt_ring_err: 15892 bnxt_ulp_irq_restart(bp, rc); 15893 return rc; 15894 } 15895 15896 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 15897 { 15898 int rc; 15899 15900 ASSERT_RTNL(); 15901 bnxt_hwrm_func_qcaps(bp); 15902 15903 if (netif_running(bp->dev)) 15904 __bnxt_close_nic(bp, true, false); 15905 15906 bnxt_ulp_irq_stop(bp); 15907 bnxt_clear_int_mode(bp); 15908 rc = bnxt_init_int_mode(bp); 15909 bnxt_ulp_irq_restart(bp, rc); 15910 15911 if (netif_running(bp->dev)) { 15912 if (rc) 15913 dev_close(bp->dev); 15914 else 15915 rc = bnxt_open_nic(bp, true, false); 15916 } 15917 15918 return rc; 15919 } 15920 15921 static int bnxt_init_mac_addr(struct bnxt *bp) 15922 { 15923 int rc = 0; 15924 15925 if (BNXT_PF(bp)) { 15926 eth_hw_addr_set(bp->dev, bp->pf.mac_addr); 15927 } else { 15928 #ifdef CONFIG_BNXT_SRIOV 15929 struct bnxt_vf_info *vf = &bp->vf; 15930 bool strict_approval = true; 15931 15932 if (is_valid_ether_addr(vf->mac_addr)) { 15933 /* overwrite netdev dev_addr with admin VF MAC */ 15934 eth_hw_addr_set(bp->dev, vf->mac_addr); 15935 /* Older PF driver or firmware may not approve this 15936 * correctly. 15937 */ 15938 strict_approval = false; 15939 } else { 15940 eth_hw_addr_random(bp->dev); 15941 } 15942 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 15943 #endif 15944 } 15945 return rc; 15946 } 15947 15948 static void bnxt_vpd_read_info(struct bnxt *bp) 15949 { 15950 struct pci_dev *pdev = bp->pdev; 15951 unsigned int vpd_size, kw_len; 15952 int pos, size; 15953 u8 *vpd_data; 15954 15955 vpd_data = pci_vpd_alloc(pdev, &vpd_size); 15956 if (IS_ERR(vpd_data)) { 15957 pci_warn(pdev, "Unable to read VPD\n"); 15958 return; 15959 } 15960 15961 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 15962 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); 15963 if (pos < 0) 15964 goto read_sn; 15965 15966 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 15967 memcpy(bp->board_partno, &vpd_data[pos], size); 15968 15969 read_sn: 15970 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 15971 PCI_VPD_RO_KEYWORD_SERIALNO, 15972 &kw_len); 15973 if (pos < 0) 15974 goto exit; 15975 15976 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 15977 memcpy(bp->board_serialno, &vpd_data[pos], size); 15978 exit: 15979 kfree(vpd_data); 15980 } 15981 15982 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 15983 { 15984 struct pci_dev *pdev = bp->pdev; 15985 u64 qword; 15986 15987 qword = pci_get_dsn(pdev); 15988 if (!qword) { 15989 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 15990 return -EOPNOTSUPP; 15991 } 15992 15993 put_unaligned_le64(qword, dsn); 15994 15995 bp->flags |= BNXT_FLAG_DSN_VALID; 15996 return 0; 15997 } 15998 15999 static int bnxt_map_db_bar(struct bnxt *bp) 16000 { 16001 if (!bp->db_size) 16002 return -ENODEV; 16003 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 16004 if (!bp->bar1) 16005 return -ENOMEM; 16006 return 0; 16007 } 16008 16009 void bnxt_print_device_info(struct bnxt *bp) 16010 { 16011 netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n", 16012 board_info[bp->board_idx].name, 16013 (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr); 16014 16015 pcie_print_link_status(bp->pdev); 16016 } 16017 16018 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 16019 { 16020 struct bnxt_hw_resc *hw_resc; 16021 struct net_device *dev; 16022 struct bnxt *bp; 16023 int rc, max_irqs; 16024 16025 if (pci_is_bridge(pdev)) 16026 return -ENODEV; 16027 16028 if (!pdev->msix_cap) { 16029 dev_err(&pdev->dev, "MSIX capability not found, aborting\n"); 16030 return -ENODEV; 16031 } 16032 16033 /* Clear any pending DMA transactions from crash kernel 16034 * while loading driver in capture kernel. 16035 */ 16036 if (is_kdump_kernel()) { 16037 pci_clear_master(pdev); 16038 pcie_flr(pdev); 16039 } 16040 16041 max_irqs = bnxt_get_max_irq(pdev); 16042 dev = alloc_etherdev_mqs(sizeof(*bp), max_irqs * BNXT_MAX_QUEUE, 16043 max_irqs); 16044 if (!dev) 16045 return -ENOMEM; 16046 16047 bp = netdev_priv(dev); 16048 bp->board_idx = ent->driver_data; 16049 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 16050 bnxt_set_max_func_irqs(bp, max_irqs); 16051 16052 if (bnxt_vf_pciid(bp->board_idx)) 16053 bp->flags |= BNXT_FLAG_VF; 16054 16055 /* No devlink port registration in case of a VF */ 16056 if (BNXT_PF(bp)) 16057 SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port); 16058 16059 rc = bnxt_init_board(pdev, dev); 16060 if (rc < 0) 16061 goto init_err_free; 16062 16063 dev->netdev_ops = &bnxt_netdev_ops; 16064 dev->stat_ops = &bnxt_stat_ops; 16065 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 16066 dev->ethtool_ops = &bnxt_ethtool_ops; 16067 pci_set_drvdata(pdev, dev); 16068 16069 rc = bnxt_alloc_hwrm_resources(bp); 16070 if (rc) 16071 goto init_err_pci_clean; 16072 16073 mutex_init(&bp->hwrm_cmd_lock); 16074 mutex_init(&bp->link_lock); 16075 16076 rc = bnxt_fw_init_one_p1(bp); 16077 if (rc) 16078 goto init_err_pci_clean; 16079 16080 if (BNXT_PF(bp)) 16081 bnxt_vpd_read_info(bp); 16082 16083 if (BNXT_CHIP_P5_PLUS(bp)) { 16084 bp->flags |= BNXT_FLAG_CHIP_P5_PLUS; 16085 if (BNXT_CHIP_P7(bp)) 16086 bp->flags |= BNXT_FLAG_CHIP_P7; 16087 } 16088 16089 rc = bnxt_alloc_rss_indir_tbl(bp); 16090 if (rc) 16091 goto init_err_pci_clean; 16092 16093 rc = bnxt_fw_init_one_p2(bp); 16094 if (rc) 16095 goto init_err_pci_clean; 16096 16097 rc = bnxt_map_db_bar(bp); 16098 if (rc) { 16099 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 16100 rc); 16101 goto init_err_pci_clean; 16102 } 16103 16104 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 16105 NETIF_F_TSO | NETIF_F_TSO6 | 16106 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 16107 NETIF_F_GSO_IPXIP4 | 16108 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 16109 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 16110 NETIF_F_RXCSUM | NETIF_F_GRO; 16111 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 16112 dev->hw_features |= NETIF_F_GSO_UDP_L4; 16113 16114 if (BNXT_SUPPORTS_TPA(bp)) 16115 dev->hw_features |= NETIF_F_LRO; 16116 16117 dev->hw_enc_features = 16118 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 16119 NETIF_F_TSO | NETIF_F_TSO6 | 16120 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 16121 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 16122 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 16123 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 16124 dev->hw_enc_features |= NETIF_F_GSO_UDP_L4; 16125 if (bp->flags & BNXT_FLAG_CHIP_P7) 16126 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels_p7; 16127 else 16128 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 16129 16130 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 16131 NETIF_F_GSO_GRE_CSUM; 16132 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 16133 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 16134 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 16135 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 16136 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 16137 if (BNXT_SUPPORTS_TPA(bp)) 16138 dev->hw_features |= NETIF_F_GRO_HW; 16139 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 16140 if (dev->features & NETIF_F_GRO_HW) 16141 dev->features &= ~NETIF_F_LRO; 16142 dev->priv_flags |= IFF_UNICAST_FLT; 16143 16144 netif_set_tso_max_size(dev, GSO_MAX_SIZE); 16145 if (bp->tso_max_segs) 16146 netif_set_tso_max_segs(dev, bp->tso_max_segs); 16147 16148 dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 16149 NETDEV_XDP_ACT_RX_SG; 16150 16151 #ifdef CONFIG_BNXT_SRIOV 16152 init_waitqueue_head(&bp->sriov_cfg_wait); 16153 #endif 16154 if (BNXT_SUPPORTS_TPA(bp)) { 16155 bp->gro_func = bnxt_gro_func_5730x; 16156 if (BNXT_CHIP_P4(bp)) 16157 bp->gro_func = bnxt_gro_func_5731x; 16158 else if (BNXT_CHIP_P5_PLUS(bp)) 16159 bp->gro_func = bnxt_gro_func_5750x; 16160 } 16161 if (!BNXT_CHIP_P4_PLUS(bp)) 16162 bp->flags |= BNXT_FLAG_DOUBLE_DB; 16163 16164 rc = bnxt_init_mac_addr(bp); 16165 if (rc) { 16166 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 16167 rc = -EADDRNOTAVAIL; 16168 goto init_err_pci_clean; 16169 } 16170 16171 if (BNXT_PF(bp)) { 16172 /* Read the adapter's DSN to use as the eswitch switch_id */ 16173 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 16174 } 16175 16176 /* MTU range: 60 - FW defined max */ 16177 dev->min_mtu = ETH_ZLEN; 16178 dev->max_mtu = bp->max_mtu; 16179 16180 rc = bnxt_probe_phy(bp, true); 16181 if (rc) 16182 goto init_err_pci_clean; 16183 16184 hw_resc = &bp->hw_resc; 16185 bp->max_fltr = hw_resc->max_rx_em_flows + hw_resc->max_rx_wm_flows + 16186 BNXT_L2_FLTR_MAX_FLTR; 16187 /* Older firmware may not report these filters properly */ 16188 if (bp->max_fltr < BNXT_MAX_FLTR) 16189 bp->max_fltr = BNXT_MAX_FLTR; 16190 bnxt_init_l2_fltr_tbl(bp); 16191 bnxt_set_rx_skb_mode(bp, false); 16192 bnxt_set_tpa_flags(bp); 16193 bnxt_set_ring_params(bp); 16194 bnxt_rdma_aux_device_init(bp); 16195 rc = bnxt_set_dflt_rings(bp, true); 16196 if (rc) { 16197 if (BNXT_VF(bp) && rc == -ENODEV) { 16198 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 16199 } else { 16200 netdev_err(bp->dev, "Not enough rings available.\n"); 16201 rc = -ENOMEM; 16202 } 16203 goto init_err_pci_clean; 16204 } 16205 16206 bnxt_fw_init_one_p3(bp); 16207 16208 bnxt_init_dflt_coal(bp); 16209 16210 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 16211 bp->flags |= BNXT_FLAG_STRIP_VLAN; 16212 16213 rc = bnxt_init_int_mode(bp); 16214 if (rc) 16215 goto init_err_pci_clean; 16216 16217 /* No TC has been set yet and rings may have been trimmed due to 16218 * limited MSIX, so we re-initialize the TX rings per TC. 16219 */ 16220 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 16221 16222 if (BNXT_PF(bp)) { 16223 if (!bnxt_pf_wq) { 16224 bnxt_pf_wq = 16225 create_singlethread_workqueue("bnxt_pf_wq"); 16226 if (!bnxt_pf_wq) { 16227 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 16228 rc = -ENOMEM; 16229 goto init_err_pci_clean; 16230 } 16231 } 16232 rc = bnxt_init_tc(bp); 16233 if (rc) 16234 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 16235 rc); 16236 } 16237 16238 bnxt_inv_fw_health_reg(bp); 16239 rc = bnxt_dl_register(bp); 16240 if (rc) 16241 goto init_err_dl; 16242 16243 INIT_LIST_HEAD(&bp->usr_fltr_list); 16244 16245 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 16246 bp->rss_cap |= BNXT_RSS_CAP_MULTI_RSS_CTX; 16247 if (BNXT_SUPPORTS_QUEUE_API(bp)) 16248 dev->queue_mgmt_ops = &bnxt_queue_mgmt_ops; 16249 16250 rc = register_netdev(dev); 16251 if (rc) 16252 goto init_err_cleanup; 16253 16254 bnxt_dl_fw_reporters_create(bp); 16255 16256 bnxt_rdma_aux_device_add(bp); 16257 16258 bnxt_print_device_info(bp); 16259 16260 pci_save_state(pdev); 16261 16262 return 0; 16263 init_err_cleanup: 16264 bnxt_rdma_aux_device_uninit(bp); 16265 bnxt_dl_unregister(bp); 16266 init_err_dl: 16267 bnxt_shutdown_tc(bp); 16268 bnxt_clear_int_mode(bp); 16269 16270 init_err_pci_clean: 16271 bnxt_hwrm_func_drv_unrgtr(bp); 16272 bnxt_free_hwrm_resources(bp); 16273 bnxt_hwmon_uninit(bp); 16274 bnxt_ethtool_free(bp); 16275 bnxt_ptp_clear(bp); 16276 kfree(bp->ptp_cfg); 16277 bp->ptp_cfg = NULL; 16278 kfree(bp->fw_health); 16279 bp->fw_health = NULL; 16280 bnxt_cleanup_pci(bp); 16281 bnxt_free_ctx_mem(bp, true); 16282 bnxt_free_crash_dump_mem(bp); 16283 kfree(bp->rss_indir_tbl); 16284 bp->rss_indir_tbl = NULL; 16285 16286 init_err_free: 16287 free_netdev(dev); 16288 return rc; 16289 } 16290 16291 static void bnxt_shutdown(struct pci_dev *pdev) 16292 { 16293 struct net_device *dev = pci_get_drvdata(pdev); 16294 struct bnxt *bp; 16295 16296 if (!dev) 16297 return; 16298 16299 rtnl_lock(); 16300 bp = netdev_priv(dev); 16301 if (!bp) 16302 goto shutdown_exit; 16303 16304 if (netif_running(dev)) 16305 dev_close(dev); 16306 16307 bnxt_ptp_clear(bp); 16308 bnxt_clear_int_mode(bp); 16309 pci_disable_device(pdev); 16310 16311 if (system_state == SYSTEM_POWER_OFF) { 16312 pci_wake_from_d3(pdev, bp->wol); 16313 pci_set_power_state(pdev, PCI_D3hot); 16314 } 16315 16316 shutdown_exit: 16317 rtnl_unlock(); 16318 } 16319 16320 #ifdef CONFIG_PM_SLEEP 16321 static int bnxt_suspend(struct device *device) 16322 { 16323 struct net_device *dev = dev_get_drvdata(device); 16324 struct bnxt *bp = netdev_priv(dev); 16325 int rc = 0; 16326 16327 bnxt_ulp_stop(bp); 16328 16329 rtnl_lock(); 16330 if (netif_running(dev)) { 16331 netif_device_detach(dev); 16332 rc = bnxt_close(dev); 16333 } 16334 bnxt_hwrm_func_drv_unrgtr(bp); 16335 bnxt_ptp_clear(bp); 16336 pci_disable_device(bp->pdev); 16337 bnxt_free_ctx_mem(bp, false); 16338 rtnl_unlock(); 16339 return rc; 16340 } 16341 16342 static int bnxt_resume(struct device *device) 16343 { 16344 struct net_device *dev = dev_get_drvdata(device); 16345 struct bnxt *bp = netdev_priv(dev); 16346 int rc = 0; 16347 16348 rtnl_lock(); 16349 rc = pci_enable_device(bp->pdev); 16350 if (rc) { 16351 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 16352 rc); 16353 goto resume_exit; 16354 } 16355 pci_set_master(bp->pdev); 16356 if (bnxt_hwrm_ver_get(bp)) { 16357 rc = -ENODEV; 16358 goto resume_exit; 16359 } 16360 rc = bnxt_hwrm_func_reset(bp); 16361 if (rc) { 16362 rc = -EBUSY; 16363 goto resume_exit; 16364 } 16365 16366 rc = bnxt_hwrm_func_qcaps(bp); 16367 if (rc) 16368 goto resume_exit; 16369 16370 bnxt_clear_reservations(bp, true); 16371 16372 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 16373 rc = -ENODEV; 16374 goto resume_exit; 16375 } 16376 if (bp->fw_crash_mem) 16377 bnxt_hwrm_crash_dump_mem_cfg(bp); 16378 16379 if (bnxt_ptp_init(bp)) { 16380 kfree(bp->ptp_cfg); 16381 bp->ptp_cfg = NULL; 16382 } 16383 bnxt_get_wol_settings(bp); 16384 if (netif_running(dev)) { 16385 rc = bnxt_open(dev); 16386 if (!rc) 16387 netif_device_attach(dev); 16388 } 16389 16390 resume_exit: 16391 rtnl_unlock(); 16392 bnxt_ulp_start(bp, rc); 16393 if (!rc) 16394 bnxt_reenable_sriov(bp); 16395 return rc; 16396 } 16397 16398 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 16399 #define BNXT_PM_OPS (&bnxt_pm_ops) 16400 16401 #else 16402 16403 #define BNXT_PM_OPS NULL 16404 16405 #endif /* CONFIG_PM_SLEEP */ 16406 16407 /** 16408 * bnxt_io_error_detected - called when PCI error is detected 16409 * @pdev: Pointer to PCI device 16410 * @state: The current pci connection state 16411 * 16412 * This function is called after a PCI bus error affecting 16413 * this device has been detected. 16414 */ 16415 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 16416 pci_channel_state_t state) 16417 { 16418 struct net_device *netdev = pci_get_drvdata(pdev); 16419 struct bnxt *bp = netdev_priv(netdev); 16420 bool abort = false; 16421 16422 netdev_info(netdev, "PCI I/O error detected\n"); 16423 16424 bnxt_ulp_stop(bp); 16425 16426 rtnl_lock(); 16427 netif_device_detach(netdev); 16428 16429 if (test_and_set_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 16430 netdev_err(bp->dev, "Firmware reset already in progress\n"); 16431 abort = true; 16432 } 16433 16434 if (abort || state == pci_channel_io_perm_failure) { 16435 rtnl_unlock(); 16436 return PCI_ERS_RESULT_DISCONNECT; 16437 } 16438 16439 /* Link is not reliable anymore if state is pci_channel_io_frozen 16440 * so we disable bus master to prevent any potential bad DMAs before 16441 * freeing kernel memory. 16442 */ 16443 if (state == pci_channel_io_frozen) { 16444 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 16445 bnxt_fw_fatal_close(bp); 16446 } 16447 16448 if (netif_running(netdev)) 16449 __bnxt_close_nic(bp, true, true); 16450 16451 if (pci_is_enabled(pdev)) 16452 pci_disable_device(pdev); 16453 bnxt_free_ctx_mem(bp, false); 16454 rtnl_unlock(); 16455 16456 /* Request a slot slot reset. */ 16457 return PCI_ERS_RESULT_NEED_RESET; 16458 } 16459 16460 /** 16461 * bnxt_io_slot_reset - called after the pci bus has been reset. 16462 * @pdev: Pointer to PCI device 16463 * 16464 * Restart the card from scratch, as if from a cold-boot. 16465 * At this point, the card has experienced a hard reset, 16466 * followed by fixups by BIOS, and has its config space 16467 * set up identically to what it was at cold boot. 16468 */ 16469 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 16470 { 16471 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 16472 struct net_device *netdev = pci_get_drvdata(pdev); 16473 struct bnxt *bp = netdev_priv(netdev); 16474 int retry = 0; 16475 int err = 0; 16476 int off; 16477 16478 netdev_info(bp->dev, "PCI Slot Reset\n"); 16479 16480 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 16481 test_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state)) 16482 msleep(900); 16483 16484 rtnl_lock(); 16485 16486 if (pci_enable_device(pdev)) { 16487 dev_err(&pdev->dev, 16488 "Cannot re-enable PCI device after reset.\n"); 16489 } else { 16490 pci_set_master(pdev); 16491 /* Upon fatal error, our device internal logic that latches to 16492 * BAR value is getting reset and will restore only upon 16493 * rewriting the BARs. 16494 * 16495 * As pci_restore_state() does not re-write the BARs if the 16496 * value is same as saved value earlier, driver needs to 16497 * write the BARs to 0 to force restore, in case of fatal error. 16498 */ 16499 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 16500 &bp->state)) { 16501 for (off = PCI_BASE_ADDRESS_0; 16502 off <= PCI_BASE_ADDRESS_5; off += 4) 16503 pci_write_config_dword(bp->pdev, off, 0); 16504 } 16505 pci_restore_state(pdev); 16506 pci_save_state(pdev); 16507 16508 bnxt_inv_fw_health_reg(bp); 16509 bnxt_try_map_fw_health_reg(bp); 16510 16511 /* In some PCIe AER scenarios, firmware may take up to 16512 * 10 seconds to become ready in the worst case. 16513 */ 16514 do { 16515 err = bnxt_try_recover_fw(bp); 16516 if (!err) 16517 break; 16518 retry++; 16519 } while (retry < BNXT_FW_SLOT_RESET_RETRY); 16520 16521 if (err) { 16522 dev_err(&pdev->dev, "Firmware not ready\n"); 16523 goto reset_exit; 16524 } 16525 16526 err = bnxt_hwrm_func_reset(bp); 16527 if (!err) 16528 result = PCI_ERS_RESULT_RECOVERED; 16529 16530 bnxt_ulp_irq_stop(bp); 16531 bnxt_clear_int_mode(bp); 16532 err = bnxt_init_int_mode(bp); 16533 bnxt_ulp_irq_restart(bp, err); 16534 } 16535 16536 reset_exit: 16537 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 16538 bnxt_clear_reservations(bp, true); 16539 rtnl_unlock(); 16540 16541 return result; 16542 } 16543 16544 /** 16545 * bnxt_io_resume - called when traffic can start flowing again. 16546 * @pdev: Pointer to PCI device 16547 * 16548 * This callback is called when the error recovery driver tells 16549 * us that its OK to resume normal operation. 16550 */ 16551 static void bnxt_io_resume(struct pci_dev *pdev) 16552 { 16553 struct net_device *netdev = pci_get_drvdata(pdev); 16554 struct bnxt *bp = netdev_priv(netdev); 16555 int err; 16556 16557 netdev_info(bp->dev, "PCI Slot Resume\n"); 16558 rtnl_lock(); 16559 16560 err = bnxt_hwrm_func_qcaps(bp); 16561 if (!err) { 16562 if (netif_running(netdev)) 16563 err = bnxt_open(netdev); 16564 else 16565 err = bnxt_reserve_rings(bp, true); 16566 } 16567 16568 if (!err) 16569 netif_device_attach(netdev); 16570 16571 rtnl_unlock(); 16572 bnxt_ulp_start(bp, err); 16573 if (!err) 16574 bnxt_reenable_sriov(bp); 16575 } 16576 16577 static const struct pci_error_handlers bnxt_err_handler = { 16578 .error_detected = bnxt_io_error_detected, 16579 .slot_reset = bnxt_io_slot_reset, 16580 .resume = bnxt_io_resume 16581 }; 16582 16583 static struct pci_driver bnxt_pci_driver = { 16584 .name = DRV_MODULE_NAME, 16585 .id_table = bnxt_pci_tbl, 16586 .probe = bnxt_init_one, 16587 .remove = bnxt_remove_one, 16588 .shutdown = bnxt_shutdown, 16589 .driver.pm = BNXT_PM_OPS, 16590 .err_handler = &bnxt_err_handler, 16591 #if defined(CONFIG_BNXT_SRIOV) 16592 .sriov_configure = bnxt_sriov_configure, 16593 #endif 16594 }; 16595 16596 static int __init bnxt_init(void) 16597 { 16598 int err; 16599 16600 bnxt_debug_init(); 16601 err = pci_register_driver(&bnxt_pci_driver); 16602 if (err) { 16603 bnxt_debug_exit(); 16604 return err; 16605 } 16606 16607 return 0; 16608 } 16609 16610 static void __exit bnxt_exit(void) 16611 { 16612 pci_unregister_driver(&bnxt_pci_driver); 16613 if (bnxt_pf_wq) 16614 destroy_workqueue(bnxt_pf_wq); 16615 bnxt_debug_exit(); 16616 } 16617 16618 module_init(bnxt_init); 16619 module_exit(bnxt_exit); 16620