xref: /linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision 79ac11393328fb1717d17c12e3c0eef0e9fa0647)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/gro.h>
41 #include <net/ip.h>
42 #include <net/tcp.h>
43 #include <net/udp.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 #include <net/udp_tunnel.h>
47 #include <linux/workqueue.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/log2.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <net/page_pool/helpers.h>
56 #include <linux/align.h>
57 #include <net/netdev_queues.h>
58 
59 #include "bnxt_hsi.h"
60 #include "bnxt.h"
61 #include "bnxt_hwrm.h"
62 #include "bnxt_ulp.h"
63 #include "bnxt_sriov.h"
64 #include "bnxt_ethtool.h"
65 #include "bnxt_dcb.h"
66 #include "bnxt_xdp.h"
67 #include "bnxt_ptp.h"
68 #include "bnxt_vfr.h"
69 #include "bnxt_tc.h"
70 #include "bnxt_devlink.h"
71 #include "bnxt_debugfs.h"
72 #include "bnxt_hwmon.h"
73 
74 #define BNXT_TX_TIMEOUT		(5 * HZ)
75 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW | \
76 				 NETIF_MSG_TX_ERR)
77 
78 MODULE_LICENSE("GPL");
79 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
80 
81 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
82 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
83 #define BNXT_RX_COPY_THRESH 256
84 
85 #define BNXT_TX_PUSH_THRESH 164
86 
87 /* indexed by enum board_idx */
88 static const struct {
89 	char *name;
90 } board_info[] = {
91 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
92 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
93 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
94 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
95 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
96 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
97 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
98 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
99 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
100 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
101 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
102 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
103 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
104 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
105 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
106 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
107 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
108 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
109 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
110 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
111 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
112 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
113 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
114 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
115 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
116 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
117 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
118 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
119 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
120 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
121 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
122 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
123 	[BCM57608] = { "Broadcom BCM57608 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" },
124 	[BCM57604] = { "Broadcom BCM57604 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
125 	[BCM57602] = { "Broadcom BCM57602 NetXtreme-E 10Gb/25Gb/50Gb/100Gb Ethernet" },
126 	[BCM57601] = { "Broadcom BCM57601 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" },
127 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
128 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
129 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
130 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
131 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
132 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
133 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
134 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
135 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
136 	[NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
137 	[NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
138 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
139 	[NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
140 };
141 
142 static const struct pci_device_id bnxt_pci_tbl[] = {
143 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
144 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
145 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
146 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
147 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
148 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
149 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
150 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
151 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
152 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
153 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
154 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
155 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
157 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
158 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
159 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
160 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
161 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
162 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
163 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
164 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
165 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
166 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
167 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
168 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
169 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
170 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
171 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
172 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
173 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
174 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
175 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
176 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
177 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
178 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
179 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
180 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
181 	{ PCI_VDEVICE(BROADCOM, 0x1760), .driver_data = BCM57608 },
182 	{ PCI_VDEVICE(BROADCOM, 0x1761), .driver_data = BCM57604 },
183 	{ PCI_VDEVICE(BROADCOM, 0x1762), .driver_data = BCM57602 },
184 	{ PCI_VDEVICE(BROADCOM, 0x1763), .driver_data = BCM57601 },
185 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR },
186 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
187 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR },
188 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR },
189 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
190 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR },
191 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
192 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
193 #ifdef CONFIG_BNXT_SRIOV
194 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
195 	{ PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
196 	{ PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
197 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
198 	{ PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
199 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
200 	{ PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
201 	{ PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
202 	{ PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
203 	{ PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
204 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
205 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
206 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
207 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
208 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
209 	{ PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
210 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
211 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
212 	{ PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
213 	{ PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
214 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
215 #endif
216 	{ 0 }
217 };
218 
219 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
220 
221 static const u16 bnxt_vf_req_snif[] = {
222 	HWRM_FUNC_CFG,
223 	HWRM_FUNC_VF_CFG,
224 	HWRM_PORT_PHY_QCFG,
225 	HWRM_CFA_L2_FILTER_ALLOC,
226 };
227 
228 static const u16 bnxt_async_events_arr[] = {
229 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
230 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
231 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
232 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
233 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
234 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
235 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
236 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
237 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
238 	ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
239 	ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE,
240 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
241 	ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
242 	ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP,
243 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT,
244 	ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE,
245 };
246 
247 static struct workqueue_struct *bnxt_pf_wq;
248 
249 static bool bnxt_vf_pciid(enum board_idx idx)
250 {
251 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
252 		idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
253 		idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
254 		idx == NETXTREME_E_P5_VF_HV);
255 }
256 
257 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
258 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
259 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
260 
261 #define BNXT_CP_DB_IRQ_DIS(db)						\
262 		writel(DB_CP_IRQ_DIS_FLAGS, db)
263 
264 #define BNXT_DB_CQ(db, idx)						\
265 	writel(DB_CP_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell)
266 
267 #define BNXT_DB_NQ_P5(db, idx)						\
268 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | DB_RING_IDX(db, idx),\
269 		    (db)->doorbell)
270 
271 #define BNXT_DB_NQ_P7(db, idx)						\
272 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_MASK |		\
273 		    DB_RING_IDX(db, idx), (db)->doorbell)
274 
275 #define BNXT_DB_CQ_ARM(db, idx)						\
276 	writel(DB_CP_REARM_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell)
277 
278 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
279 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM |		\
280 		    DB_RING_IDX(db, idx), (db)->doorbell)
281 
282 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
283 {
284 	if (bp->flags & BNXT_FLAG_CHIP_P7)
285 		BNXT_DB_NQ_P7(db, idx);
286 	else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
287 		BNXT_DB_NQ_P5(db, idx);
288 	else
289 		BNXT_DB_CQ(db, idx);
290 }
291 
292 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
293 {
294 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
295 		BNXT_DB_NQ_ARM_P5(db, idx);
296 	else
297 		BNXT_DB_CQ_ARM(db, idx);
298 }
299 
300 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
301 {
302 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
303 		bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL |
304 			    DB_RING_IDX(db, idx), db->doorbell);
305 	else
306 		BNXT_DB_CQ(db, idx);
307 }
308 
309 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
310 {
311 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
312 		return;
313 
314 	if (BNXT_PF(bp))
315 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
316 	else
317 		schedule_delayed_work(&bp->fw_reset_task, delay);
318 }
319 
320 static void __bnxt_queue_sp_work(struct bnxt *bp)
321 {
322 	if (BNXT_PF(bp))
323 		queue_work(bnxt_pf_wq, &bp->sp_task);
324 	else
325 		schedule_work(&bp->sp_task);
326 }
327 
328 static void bnxt_queue_sp_work(struct bnxt *bp, unsigned int event)
329 {
330 	set_bit(event, &bp->sp_event);
331 	__bnxt_queue_sp_work(bp);
332 }
333 
334 static void bnxt_sched_reset_rxr(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
335 {
336 	if (!rxr->bnapi->in_reset) {
337 		rxr->bnapi->in_reset = true;
338 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
339 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
340 		else
341 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
342 		__bnxt_queue_sp_work(bp);
343 	}
344 	rxr->rx_next_cons = 0xffff;
345 }
346 
347 void bnxt_sched_reset_txr(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
348 			  u16 curr)
349 {
350 	struct bnxt_napi *bnapi = txr->bnapi;
351 
352 	if (bnapi->tx_fault)
353 		return;
354 
355 	netdev_err(bp->dev, "Invalid Tx completion (ring:%d tx_hw_cons:%u cons:%u prod:%u curr:%u)",
356 		   txr->txq_index, txr->tx_hw_cons,
357 		   txr->tx_cons, txr->tx_prod, curr);
358 	WARN_ON_ONCE(1);
359 	bnapi->tx_fault = 1;
360 	bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT);
361 }
362 
363 const u16 bnxt_lhint_arr[] = {
364 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
365 	TX_BD_FLAGS_LHINT_512_TO_1023,
366 	TX_BD_FLAGS_LHINT_1024_TO_2047,
367 	TX_BD_FLAGS_LHINT_1024_TO_2047,
368 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
369 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
370 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
371 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
372 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
373 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
374 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
375 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
376 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
377 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
378 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
379 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
380 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
381 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
382 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
383 };
384 
385 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
386 {
387 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
388 
389 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
390 		return 0;
391 
392 	return md_dst->u.port_info.port_id;
393 }
394 
395 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
396 			     u16 prod)
397 {
398 	/* Sync BD data before updating doorbell */
399 	wmb();
400 	bnxt_db_write(bp, &txr->tx_db, prod);
401 	txr->kick_pending = 0;
402 }
403 
404 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
405 {
406 	struct bnxt *bp = netdev_priv(dev);
407 	struct tx_bd *txbd, *txbd0;
408 	struct tx_bd_ext *txbd1;
409 	struct netdev_queue *txq;
410 	int i;
411 	dma_addr_t mapping;
412 	unsigned int length, pad = 0;
413 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
414 	u16 prod, last_frag;
415 	struct pci_dev *pdev = bp->pdev;
416 	struct bnxt_tx_ring_info *txr;
417 	struct bnxt_sw_tx_bd *tx_buf;
418 	__le32 lflags = 0;
419 
420 	i = skb_get_queue_mapping(skb);
421 	if (unlikely(i >= bp->tx_nr_rings)) {
422 		dev_kfree_skb_any(skb);
423 		dev_core_stats_tx_dropped_inc(dev);
424 		return NETDEV_TX_OK;
425 	}
426 
427 	txq = netdev_get_tx_queue(dev, i);
428 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
429 	prod = txr->tx_prod;
430 
431 	free_size = bnxt_tx_avail(bp, txr);
432 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
433 		/* We must have raced with NAPI cleanup */
434 		if (net_ratelimit() && txr->kick_pending)
435 			netif_warn(bp, tx_err, dev,
436 				   "bnxt: ring busy w/ flush pending!\n");
437 		if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr),
438 					bp->tx_wake_thresh))
439 			return NETDEV_TX_BUSY;
440 	}
441 
442 	if (unlikely(ipv6_hopopt_jumbo_remove(skb)))
443 		goto tx_free;
444 
445 	length = skb->len;
446 	len = skb_headlen(skb);
447 	last_frag = skb_shinfo(skb)->nr_frags;
448 
449 	txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
450 
451 	tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
452 	tx_buf->skb = skb;
453 	tx_buf->nr_frags = last_frag;
454 
455 	vlan_tag_flags = 0;
456 	cfa_action = bnxt_xmit_get_cfa_action(skb);
457 	if (skb_vlan_tag_present(skb)) {
458 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
459 				 skb_vlan_tag_get(skb);
460 		/* Currently supports 8021Q, 8021AD vlan offloads
461 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
462 		 */
463 		if (skb->vlan_proto == htons(ETH_P_8021Q))
464 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
465 	}
466 
467 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
468 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
469 
470 		if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) &&
471 		    atomic_dec_if_positive(&ptp->tx_avail) >= 0) {
472 			if (!bnxt_ptp_parse(skb, &ptp->tx_seqid,
473 					    &ptp->tx_hdr_off)) {
474 				if (vlan_tag_flags)
475 					ptp->tx_hdr_off += VLAN_HLEN;
476 				lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
477 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
478 			} else {
479 				atomic_inc(&bp->ptp_cfg->tx_avail);
480 			}
481 		}
482 	}
483 
484 	if (unlikely(skb->no_fcs))
485 		lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
486 
487 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh &&
488 	    !lflags) {
489 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
490 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
491 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
492 		void __iomem *db = txr->tx_db.doorbell;
493 		void *pdata = tx_push_buf->data;
494 		u64 *end;
495 		int j, push_len;
496 
497 		/* Set COAL_NOW to be ready quickly for the next push */
498 		tx_push->tx_bd_len_flags_type =
499 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
500 					TX_BD_TYPE_LONG_TX_BD |
501 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
502 					TX_BD_FLAGS_COAL_NOW |
503 					TX_BD_FLAGS_PACKET_END |
504 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
505 
506 		if (skb->ip_summed == CHECKSUM_PARTIAL)
507 			tx_push1->tx_bd_hsize_lflags =
508 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
509 		else
510 			tx_push1->tx_bd_hsize_lflags = 0;
511 
512 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
513 		tx_push1->tx_bd_cfa_action =
514 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
515 
516 		end = pdata + length;
517 		end = PTR_ALIGN(end, 8) - 1;
518 		*end = 0;
519 
520 		skb_copy_from_linear_data(skb, pdata, len);
521 		pdata += len;
522 		for (j = 0; j < last_frag; j++) {
523 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
524 			void *fptr;
525 
526 			fptr = skb_frag_address_safe(frag);
527 			if (!fptr)
528 				goto normal_tx;
529 
530 			memcpy(pdata, fptr, skb_frag_size(frag));
531 			pdata += skb_frag_size(frag);
532 		}
533 
534 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
535 		txbd->tx_bd_haddr = txr->data_mapping;
536 		txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2);
537 		prod = NEXT_TX(prod);
538 		tx_push->tx_bd_opaque = txbd->tx_bd_opaque;
539 		txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
540 		memcpy(txbd, tx_push1, sizeof(*txbd));
541 		prod = NEXT_TX(prod);
542 		tx_push->doorbell =
543 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH |
544 				    DB_RING_IDX(&txr->tx_db, prod));
545 		WRITE_ONCE(txr->tx_prod, prod);
546 
547 		tx_buf->is_push = 1;
548 		netdev_tx_sent_queue(txq, skb->len);
549 		wmb();	/* Sync is_push and byte queue before pushing data */
550 
551 		push_len = (length + sizeof(*tx_push) + 7) / 8;
552 		if (push_len > 16) {
553 			__iowrite64_copy(db, tx_push_buf, 16);
554 			__iowrite32_copy(db + 4, tx_push_buf + 1,
555 					 (push_len - 16) << 1);
556 		} else {
557 			__iowrite64_copy(db, tx_push_buf, push_len);
558 		}
559 
560 		goto tx_done;
561 	}
562 
563 normal_tx:
564 	if (length < BNXT_MIN_PKT_SIZE) {
565 		pad = BNXT_MIN_PKT_SIZE - length;
566 		if (skb_pad(skb, pad))
567 			/* SKB already freed. */
568 			goto tx_kick_pending;
569 		length = BNXT_MIN_PKT_SIZE;
570 	}
571 
572 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
573 
574 	if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
575 		goto tx_free;
576 
577 	dma_unmap_addr_set(tx_buf, mapping, mapping);
578 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
579 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
580 
581 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
582 	txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2 + last_frag);
583 
584 	prod = NEXT_TX(prod);
585 	txbd1 = (struct tx_bd_ext *)
586 		&txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
587 
588 	txbd1->tx_bd_hsize_lflags = lflags;
589 	if (skb_is_gso(skb)) {
590 		u32 hdr_len;
591 
592 		if (skb->encapsulation)
593 			hdr_len = skb_inner_tcp_all_headers(skb);
594 		else
595 			hdr_len = skb_tcp_all_headers(skb);
596 
597 		txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
598 					TX_BD_FLAGS_T_IPID |
599 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
600 		length = skb_shinfo(skb)->gso_size;
601 		txbd1->tx_bd_mss = cpu_to_le32(length);
602 		length += hdr_len;
603 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
604 		txbd1->tx_bd_hsize_lflags |=
605 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
606 		txbd1->tx_bd_mss = 0;
607 	}
608 
609 	length >>= 9;
610 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
611 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
612 				     skb->len);
613 		i = 0;
614 		goto tx_dma_error;
615 	}
616 	flags |= bnxt_lhint_arr[length];
617 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
618 
619 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
620 	txbd1->tx_bd_cfa_action =
621 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
622 	txbd0 = txbd;
623 	for (i = 0; i < last_frag; i++) {
624 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
625 
626 		prod = NEXT_TX(prod);
627 		txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
628 
629 		len = skb_frag_size(frag);
630 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
631 					   DMA_TO_DEVICE);
632 
633 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
634 			goto tx_dma_error;
635 
636 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
637 		dma_unmap_addr_set(tx_buf, mapping, mapping);
638 
639 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
640 
641 		flags = len << TX_BD_LEN_SHIFT;
642 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
643 	}
644 
645 	flags &= ~TX_BD_LEN;
646 	txbd->tx_bd_len_flags_type =
647 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
648 			    TX_BD_FLAGS_PACKET_END);
649 
650 	netdev_tx_sent_queue(txq, skb->len);
651 
652 	skb_tx_timestamp(skb);
653 
654 	prod = NEXT_TX(prod);
655 	WRITE_ONCE(txr->tx_prod, prod);
656 
657 	if (!netdev_xmit_more() || netif_xmit_stopped(txq)) {
658 		bnxt_txr_db_kick(bp, txr, prod);
659 	} else {
660 		if (free_size >= bp->tx_wake_thresh)
661 			txbd0->tx_bd_len_flags_type |=
662 				cpu_to_le32(TX_BD_FLAGS_NO_CMPL);
663 		txr->kick_pending = 1;
664 	}
665 
666 tx_done:
667 
668 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
669 		if (netdev_xmit_more() && !tx_buf->is_push)
670 			bnxt_txr_db_kick(bp, txr, prod);
671 
672 		netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr),
673 				   bp->tx_wake_thresh);
674 	}
675 	return NETDEV_TX_OK;
676 
677 tx_dma_error:
678 	if (BNXT_TX_PTP_IS_SET(lflags))
679 		atomic_inc(&bp->ptp_cfg->tx_avail);
680 
681 	last_frag = i;
682 
683 	/* start back at beginning and unmap skb */
684 	prod = txr->tx_prod;
685 	tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
686 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
687 			 skb_headlen(skb), DMA_TO_DEVICE);
688 	prod = NEXT_TX(prod);
689 
690 	/* unmap remaining mapped pages */
691 	for (i = 0; i < last_frag; i++) {
692 		prod = NEXT_TX(prod);
693 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
694 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
695 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
696 			       DMA_TO_DEVICE);
697 	}
698 
699 tx_free:
700 	dev_kfree_skb_any(skb);
701 tx_kick_pending:
702 	if (txr->kick_pending)
703 		bnxt_txr_db_kick(bp, txr, txr->tx_prod);
704 	txr->tx_buf_ring[txr->tx_prod].skb = NULL;
705 	dev_core_stats_tx_dropped_inc(dev);
706 	return NETDEV_TX_OK;
707 }
708 
709 static void __bnxt_tx_int(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
710 			  int budget)
711 {
712 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
713 	struct pci_dev *pdev = bp->pdev;
714 	u16 hw_cons = txr->tx_hw_cons;
715 	unsigned int tx_bytes = 0;
716 	u16 cons = txr->tx_cons;
717 	int tx_pkts = 0;
718 
719 	while (RING_TX(bp, cons) != hw_cons) {
720 		struct bnxt_sw_tx_bd *tx_buf;
721 		struct sk_buff *skb;
722 		int j, last;
723 
724 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)];
725 		cons = NEXT_TX(cons);
726 		skb = tx_buf->skb;
727 		tx_buf->skb = NULL;
728 
729 		if (unlikely(!skb)) {
730 			bnxt_sched_reset_txr(bp, txr, cons);
731 			return;
732 		}
733 
734 		tx_pkts++;
735 		tx_bytes += skb->len;
736 
737 		if (tx_buf->is_push) {
738 			tx_buf->is_push = 0;
739 			goto next_tx_int;
740 		}
741 
742 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
743 				 skb_headlen(skb), DMA_TO_DEVICE);
744 		last = tx_buf->nr_frags;
745 
746 		for (j = 0; j < last; j++) {
747 			cons = NEXT_TX(cons);
748 			tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)];
749 			dma_unmap_page(
750 				&pdev->dev,
751 				dma_unmap_addr(tx_buf, mapping),
752 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
753 				DMA_TO_DEVICE);
754 		}
755 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
756 			if (BNXT_CHIP_P5(bp)) {
757 				/* PTP worker takes ownership of the skb */
758 				if (!bnxt_get_tx_ts_p5(bp, skb))
759 					skb = NULL;
760 				else
761 					atomic_inc(&bp->ptp_cfg->tx_avail);
762 			}
763 		}
764 
765 next_tx_int:
766 		cons = NEXT_TX(cons);
767 
768 		dev_consume_skb_any(skb);
769 	}
770 
771 	WRITE_ONCE(txr->tx_cons, cons);
772 
773 	__netif_txq_completed_wake(txq, tx_pkts, tx_bytes,
774 				   bnxt_tx_avail(bp, txr), bp->tx_wake_thresh,
775 				   READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING);
776 }
777 
778 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
779 {
780 	struct bnxt_tx_ring_info *txr;
781 	int i;
782 
783 	bnxt_for_each_napi_tx(i, bnapi, txr) {
784 		if (txr->tx_hw_cons != txr->tx_cons)
785 			__bnxt_tx_int(bp, txr, budget);
786 	}
787 	bnapi->events &= ~BNXT_TX_CMP_EVENT;
788 }
789 
790 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
791 					 struct bnxt_rx_ring_info *rxr,
792 					 unsigned int *offset,
793 					 gfp_t gfp)
794 {
795 	struct page *page;
796 
797 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
798 		page = page_pool_dev_alloc_frag(rxr->page_pool, offset,
799 						BNXT_RX_PAGE_SIZE);
800 	} else {
801 		page = page_pool_dev_alloc_pages(rxr->page_pool);
802 		*offset = 0;
803 	}
804 	if (!page)
805 		return NULL;
806 
807 	*mapping = page_pool_get_dma_addr(page) + *offset;
808 	return page;
809 }
810 
811 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping,
812 				       gfp_t gfp)
813 {
814 	u8 *data;
815 	struct pci_dev *pdev = bp->pdev;
816 
817 	if (gfp == GFP_ATOMIC)
818 		data = napi_alloc_frag(bp->rx_buf_size);
819 	else
820 		data = netdev_alloc_frag(bp->rx_buf_size);
821 	if (!data)
822 		return NULL;
823 
824 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
825 					bp->rx_buf_use_size, bp->rx_dir,
826 					DMA_ATTR_WEAK_ORDERING);
827 
828 	if (dma_mapping_error(&pdev->dev, *mapping)) {
829 		skb_free_frag(data);
830 		data = NULL;
831 	}
832 	return data;
833 }
834 
835 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
836 		       u16 prod, gfp_t gfp)
837 {
838 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
839 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
840 	dma_addr_t mapping;
841 
842 	if (BNXT_RX_PAGE_MODE(bp)) {
843 		unsigned int offset;
844 		struct page *page =
845 			__bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp);
846 
847 		if (!page)
848 			return -ENOMEM;
849 
850 		mapping += bp->rx_dma_offset;
851 		rx_buf->data = page;
852 		rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset;
853 	} else {
854 		u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp);
855 
856 		if (!data)
857 			return -ENOMEM;
858 
859 		rx_buf->data = data;
860 		rx_buf->data_ptr = data + bp->rx_offset;
861 	}
862 	rx_buf->mapping = mapping;
863 
864 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
865 	return 0;
866 }
867 
868 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
869 {
870 	u16 prod = rxr->rx_prod;
871 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
872 	struct bnxt *bp = rxr->bnapi->bp;
873 	struct rx_bd *cons_bd, *prod_bd;
874 
875 	prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
876 	cons_rx_buf = &rxr->rx_buf_ring[cons];
877 
878 	prod_rx_buf->data = data;
879 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
880 
881 	prod_rx_buf->mapping = cons_rx_buf->mapping;
882 
883 	prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
884 	cons_bd = &rxr->rx_desc_ring[RX_RING(bp, cons)][RX_IDX(cons)];
885 
886 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
887 }
888 
889 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
890 {
891 	u16 next, max = rxr->rx_agg_bmap_size;
892 
893 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
894 	if (next >= max)
895 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
896 	return next;
897 }
898 
899 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
900 				     struct bnxt_rx_ring_info *rxr,
901 				     u16 prod, gfp_t gfp)
902 {
903 	struct rx_bd *rxbd =
904 		&rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)];
905 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
906 	struct page *page;
907 	dma_addr_t mapping;
908 	u16 sw_prod = rxr->rx_sw_agg_prod;
909 	unsigned int offset = 0;
910 
911 	page = __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp);
912 
913 	if (!page)
914 		return -ENOMEM;
915 
916 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
917 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
918 
919 	__set_bit(sw_prod, rxr->rx_agg_bmap);
920 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
921 	rxr->rx_sw_agg_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod));
922 
923 	rx_agg_buf->page = page;
924 	rx_agg_buf->offset = offset;
925 	rx_agg_buf->mapping = mapping;
926 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
927 	rxbd->rx_bd_opaque = sw_prod;
928 	return 0;
929 }
930 
931 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
932 				       struct bnxt_cp_ring_info *cpr,
933 				       u16 cp_cons, u16 curr)
934 {
935 	struct rx_agg_cmp *agg;
936 
937 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
938 	agg = (struct rx_agg_cmp *)
939 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
940 	return agg;
941 }
942 
943 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
944 					      struct bnxt_rx_ring_info *rxr,
945 					      u16 agg_id, u16 curr)
946 {
947 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
948 
949 	return &tpa_info->agg_arr[curr];
950 }
951 
952 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
953 				   u16 start, u32 agg_bufs, bool tpa)
954 {
955 	struct bnxt_napi *bnapi = cpr->bnapi;
956 	struct bnxt *bp = bnapi->bp;
957 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
958 	u16 prod = rxr->rx_agg_prod;
959 	u16 sw_prod = rxr->rx_sw_agg_prod;
960 	bool p5_tpa = false;
961 	u32 i;
962 
963 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa)
964 		p5_tpa = true;
965 
966 	for (i = 0; i < agg_bufs; i++) {
967 		u16 cons;
968 		struct rx_agg_cmp *agg;
969 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
970 		struct rx_bd *prod_bd;
971 		struct page *page;
972 
973 		if (p5_tpa)
974 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
975 		else
976 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
977 		cons = agg->rx_agg_cmp_opaque;
978 		__clear_bit(cons, rxr->rx_agg_bmap);
979 
980 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
981 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
982 
983 		__set_bit(sw_prod, rxr->rx_agg_bmap);
984 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
985 		cons_rx_buf = &rxr->rx_agg_ring[cons];
986 
987 		/* It is possible for sw_prod to be equal to cons, so
988 		 * set cons_rx_buf->page to NULL first.
989 		 */
990 		page = cons_rx_buf->page;
991 		cons_rx_buf->page = NULL;
992 		prod_rx_buf->page = page;
993 		prod_rx_buf->offset = cons_rx_buf->offset;
994 
995 		prod_rx_buf->mapping = cons_rx_buf->mapping;
996 
997 		prod_bd = &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)];
998 
999 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
1000 		prod_bd->rx_bd_opaque = sw_prod;
1001 
1002 		prod = NEXT_RX_AGG(prod);
1003 		sw_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod));
1004 	}
1005 	rxr->rx_agg_prod = prod;
1006 	rxr->rx_sw_agg_prod = sw_prod;
1007 }
1008 
1009 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp,
1010 					      struct bnxt_rx_ring_info *rxr,
1011 					      u16 cons, void *data, u8 *data_ptr,
1012 					      dma_addr_t dma_addr,
1013 					      unsigned int offset_and_len)
1014 {
1015 	unsigned int len = offset_and_len & 0xffff;
1016 	struct page *page = data;
1017 	u16 prod = rxr->rx_prod;
1018 	struct sk_buff *skb;
1019 	int err;
1020 
1021 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1022 	if (unlikely(err)) {
1023 		bnxt_reuse_rx_data(rxr, cons, data);
1024 		return NULL;
1025 	}
1026 	dma_addr -= bp->rx_dma_offset;
1027 	dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE,
1028 				bp->rx_dir);
1029 	skb = napi_build_skb(data_ptr - bp->rx_offset, BNXT_RX_PAGE_SIZE);
1030 	if (!skb) {
1031 		page_pool_recycle_direct(rxr->page_pool, page);
1032 		return NULL;
1033 	}
1034 	skb_mark_for_recycle(skb);
1035 	skb_reserve(skb, bp->rx_offset);
1036 	__skb_put(skb, len);
1037 
1038 	return skb;
1039 }
1040 
1041 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
1042 					struct bnxt_rx_ring_info *rxr,
1043 					u16 cons, void *data, u8 *data_ptr,
1044 					dma_addr_t dma_addr,
1045 					unsigned int offset_and_len)
1046 {
1047 	unsigned int payload = offset_and_len >> 16;
1048 	unsigned int len = offset_and_len & 0xffff;
1049 	skb_frag_t *frag;
1050 	struct page *page = data;
1051 	u16 prod = rxr->rx_prod;
1052 	struct sk_buff *skb;
1053 	int off, err;
1054 
1055 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1056 	if (unlikely(err)) {
1057 		bnxt_reuse_rx_data(rxr, cons, data);
1058 		return NULL;
1059 	}
1060 	dma_addr -= bp->rx_dma_offset;
1061 	dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE,
1062 				bp->rx_dir);
1063 
1064 	if (unlikely(!payload))
1065 		payload = eth_get_headlen(bp->dev, data_ptr, len);
1066 
1067 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
1068 	if (!skb) {
1069 		page_pool_recycle_direct(rxr->page_pool, page);
1070 		return NULL;
1071 	}
1072 
1073 	skb_mark_for_recycle(skb);
1074 	off = (void *)data_ptr - page_address(page);
1075 	skb_add_rx_frag(skb, 0, page, off, len, BNXT_RX_PAGE_SIZE);
1076 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
1077 	       payload + NET_IP_ALIGN);
1078 
1079 	frag = &skb_shinfo(skb)->frags[0];
1080 	skb_frag_size_sub(frag, payload);
1081 	skb_frag_off_add(frag, payload);
1082 	skb->data_len -= payload;
1083 	skb->tail += payload;
1084 
1085 	return skb;
1086 }
1087 
1088 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
1089 				   struct bnxt_rx_ring_info *rxr, u16 cons,
1090 				   void *data, u8 *data_ptr,
1091 				   dma_addr_t dma_addr,
1092 				   unsigned int offset_and_len)
1093 {
1094 	u16 prod = rxr->rx_prod;
1095 	struct sk_buff *skb;
1096 	int err;
1097 
1098 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1099 	if (unlikely(err)) {
1100 		bnxt_reuse_rx_data(rxr, cons, data);
1101 		return NULL;
1102 	}
1103 
1104 	skb = napi_build_skb(data, bp->rx_buf_size);
1105 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1106 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1107 	if (!skb) {
1108 		skb_free_frag(data);
1109 		return NULL;
1110 	}
1111 
1112 	skb_reserve(skb, bp->rx_offset);
1113 	skb_put(skb, offset_and_len & 0xffff);
1114 	return skb;
1115 }
1116 
1117 static u32 __bnxt_rx_agg_pages(struct bnxt *bp,
1118 			       struct bnxt_cp_ring_info *cpr,
1119 			       struct skb_shared_info *shinfo,
1120 			       u16 idx, u32 agg_bufs, bool tpa,
1121 			       struct xdp_buff *xdp)
1122 {
1123 	struct bnxt_napi *bnapi = cpr->bnapi;
1124 	struct pci_dev *pdev = bp->pdev;
1125 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1126 	u16 prod = rxr->rx_agg_prod;
1127 	u32 i, total_frag_len = 0;
1128 	bool p5_tpa = false;
1129 
1130 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa)
1131 		p5_tpa = true;
1132 
1133 	for (i = 0; i < agg_bufs; i++) {
1134 		skb_frag_t *frag = &shinfo->frags[i];
1135 		u16 cons, frag_len;
1136 		struct rx_agg_cmp *agg;
1137 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1138 		struct page *page;
1139 		dma_addr_t mapping;
1140 
1141 		if (p5_tpa)
1142 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1143 		else
1144 			agg = bnxt_get_agg(bp, cpr, idx, i);
1145 		cons = agg->rx_agg_cmp_opaque;
1146 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1147 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1148 
1149 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1150 		skb_frag_fill_page_desc(frag, cons_rx_buf->page,
1151 					cons_rx_buf->offset, frag_len);
1152 		shinfo->nr_frags = i + 1;
1153 		__clear_bit(cons, rxr->rx_agg_bmap);
1154 
1155 		/* It is possible for bnxt_alloc_rx_page() to allocate
1156 		 * a sw_prod index that equals the cons index, so we
1157 		 * need to clear the cons entry now.
1158 		 */
1159 		mapping = cons_rx_buf->mapping;
1160 		page = cons_rx_buf->page;
1161 		cons_rx_buf->page = NULL;
1162 
1163 		if (xdp && page_is_pfmemalloc(page))
1164 			xdp_buff_set_frag_pfmemalloc(xdp);
1165 
1166 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1167 			--shinfo->nr_frags;
1168 			cons_rx_buf->page = page;
1169 
1170 			/* Update prod since possibly some pages have been
1171 			 * allocated already.
1172 			 */
1173 			rxr->rx_agg_prod = prod;
1174 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1175 			return 0;
1176 		}
1177 
1178 		dma_sync_single_for_cpu(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1179 					bp->rx_dir);
1180 
1181 		total_frag_len += frag_len;
1182 		prod = NEXT_RX_AGG(prod);
1183 	}
1184 	rxr->rx_agg_prod = prod;
1185 	return total_frag_len;
1186 }
1187 
1188 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp,
1189 					     struct bnxt_cp_ring_info *cpr,
1190 					     struct sk_buff *skb, u16 idx,
1191 					     u32 agg_bufs, bool tpa)
1192 {
1193 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1194 	u32 total_frag_len = 0;
1195 
1196 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx,
1197 					     agg_bufs, tpa, NULL);
1198 	if (!total_frag_len) {
1199 		skb_mark_for_recycle(skb);
1200 		dev_kfree_skb(skb);
1201 		return NULL;
1202 	}
1203 
1204 	skb->data_len += total_frag_len;
1205 	skb->len += total_frag_len;
1206 	skb->truesize += BNXT_RX_PAGE_SIZE * agg_bufs;
1207 	return skb;
1208 }
1209 
1210 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp,
1211 				 struct bnxt_cp_ring_info *cpr,
1212 				 struct xdp_buff *xdp, u16 idx,
1213 				 u32 agg_bufs, bool tpa)
1214 {
1215 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp);
1216 	u32 total_frag_len = 0;
1217 
1218 	if (!xdp_buff_has_frags(xdp))
1219 		shinfo->nr_frags = 0;
1220 
1221 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo,
1222 					     idx, agg_bufs, tpa, xdp);
1223 	if (total_frag_len) {
1224 		xdp_buff_set_frags_flag(xdp);
1225 		shinfo->nr_frags = agg_bufs;
1226 		shinfo->xdp_frags_size = total_frag_len;
1227 	}
1228 	return total_frag_len;
1229 }
1230 
1231 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1232 			       u8 agg_bufs, u32 *raw_cons)
1233 {
1234 	u16 last;
1235 	struct rx_agg_cmp *agg;
1236 
1237 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1238 	last = RING_CMP(*raw_cons);
1239 	agg = (struct rx_agg_cmp *)
1240 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1241 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1242 }
1243 
1244 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1245 					    unsigned int len,
1246 					    dma_addr_t mapping)
1247 {
1248 	struct bnxt *bp = bnapi->bp;
1249 	struct pci_dev *pdev = bp->pdev;
1250 	struct sk_buff *skb;
1251 
1252 	skb = napi_alloc_skb(&bnapi->napi, len);
1253 	if (!skb)
1254 		return NULL;
1255 
1256 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1257 				bp->rx_dir);
1258 
1259 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1260 	       len + NET_IP_ALIGN);
1261 
1262 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1263 				   bp->rx_dir);
1264 
1265 	skb_put(skb, len);
1266 	return skb;
1267 }
1268 
1269 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1270 			   u32 *raw_cons, void *cmp)
1271 {
1272 	struct rx_cmp *rxcmp = cmp;
1273 	u32 tmp_raw_cons = *raw_cons;
1274 	u8 cmp_type, agg_bufs = 0;
1275 
1276 	cmp_type = RX_CMP_TYPE(rxcmp);
1277 
1278 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1279 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1280 			    RX_CMP_AGG_BUFS) >>
1281 			   RX_CMP_AGG_BUFS_SHIFT;
1282 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1283 		struct rx_tpa_end_cmp *tpa_end = cmp;
1284 
1285 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
1286 			return 0;
1287 
1288 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1289 	}
1290 
1291 	if (agg_bufs) {
1292 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1293 			return -EBUSY;
1294 	}
1295 	*raw_cons = tmp_raw_cons;
1296 	return 0;
1297 }
1298 
1299 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1300 {
1301 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1302 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1303 
1304 	if (test_bit(idx, map->agg_idx_bmap))
1305 		idx = find_first_zero_bit(map->agg_idx_bmap,
1306 					  BNXT_AGG_IDX_BMAP_SIZE);
1307 	__set_bit(idx, map->agg_idx_bmap);
1308 	map->agg_id_tbl[agg_id] = idx;
1309 	return idx;
1310 }
1311 
1312 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1313 {
1314 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1315 
1316 	__clear_bit(idx, map->agg_idx_bmap);
1317 }
1318 
1319 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1320 {
1321 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1322 
1323 	return map->agg_id_tbl[agg_id];
1324 }
1325 
1326 static void bnxt_tpa_metadata(struct bnxt_tpa_info *tpa_info,
1327 			      struct rx_tpa_start_cmp *tpa_start,
1328 			      struct rx_tpa_start_cmp_ext *tpa_start1)
1329 {
1330 	tpa_info->cfa_code_valid = 1;
1331 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1332 	tpa_info->vlan_valid = 0;
1333 	if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) {
1334 		tpa_info->vlan_valid = 1;
1335 		tpa_info->metadata =
1336 			le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1337 	}
1338 }
1339 
1340 static void bnxt_tpa_metadata_v2(struct bnxt_tpa_info *tpa_info,
1341 				 struct rx_tpa_start_cmp *tpa_start,
1342 				 struct rx_tpa_start_cmp_ext *tpa_start1)
1343 {
1344 	tpa_info->vlan_valid = 0;
1345 	if (TPA_START_VLAN_VALID(tpa_start)) {
1346 		u32 tpid_sel = TPA_START_VLAN_TPID_SEL(tpa_start);
1347 		u32 vlan_proto = ETH_P_8021Q;
1348 
1349 		tpa_info->vlan_valid = 1;
1350 		if (tpid_sel == RX_TPA_START_METADATA1_TPID_8021AD)
1351 			vlan_proto = ETH_P_8021AD;
1352 		tpa_info->metadata = vlan_proto << 16 |
1353 				     TPA_START_METADATA0_TCI(tpa_start1);
1354 	}
1355 }
1356 
1357 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1358 			   u8 cmp_type, struct rx_tpa_start_cmp *tpa_start,
1359 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1360 {
1361 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1362 	struct bnxt_tpa_info *tpa_info;
1363 	u16 cons, prod, agg_id;
1364 	struct rx_bd *prod_bd;
1365 	dma_addr_t mapping;
1366 
1367 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
1368 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1369 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1370 	} else {
1371 		agg_id = TPA_START_AGG_ID(tpa_start);
1372 	}
1373 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1374 	prod = rxr->rx_prod;
1375 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1376 	prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
1377 	tpa_info = &rxr->rx_tpa[agg_id];
1378 
1379 	if (unlikely(cons != rxr->rx_next_cons ||
1380 		     TPA_START_ERROR(tpa_start))) {
1381 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1382 			    cons, rxr->rx_next_cons,
1383 			    TPA_START_ERROR_CODE(tpa_start1));
1384 		bnxt_sched_reset_rxr(bp, rxr);
1385 		return;
1386 	}
1387 	prod_rx_buf->data = tpa_info->data;
1388 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1389 
1390 	mapping = tpa_info->mapping;
1391 	prod_rx_buf->mapping = mapping;
1392 
1393 	prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
1394 
1395 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1396 
1397 	tpa_info->data = cons_rx_buf->data;
1398 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1399 	cons_rx_buf->data = NULL;
1400 	tpa_info->mapping = cons_rx_buf->mapping;
1401 
1402 	tpa_info->len =
1403 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1404 				RX_TPA_START_CMP_LEN_SHIFT;
1405 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1406 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1407 		tpa_info->gso_type = SKB_GSO_TCPV4;
1408 		if (TPA_START_IS_IPV6(tpa_start1))
1409 			tpa_info->gso_type = SKB_GSO_TCPV6;
1410 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1411 		else if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP &&
1412 			 TPA_START_HASH_TYPE(tpa_start) == 3)
1413 			tpa_info->gso_type = SKB_GSO_TCPV6;
1414 		tpa_info->rss_hash =
1415 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1416 	} else {
1417 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1418 		tpa_info->gso_type = 0;
1419 		netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1420 	}
1421 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1422 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1423 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP)
1424 		bnxt_tpa_metadata(tpa_info, tpa_start, tpa_start1);
1425 	else
1426 		bnxt_tpa_metadata_v2(tpa_info, tpa_start, tpa_start1);
1427 	tpa_info->agg_count = 0;
1428 
1429 	rxr->rx_prod = NEXT_RX(prod);
1430 	cons = RING_RX(bp, NEXT_RX(cons));
1431 	rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons));
1432 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1433 
1434 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1435 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1436 	cons_rx_buf->data = NULL;
1437 }
1438 
1439 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1440 {
1441 	if (agg_bufs)
1442 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1443 }
1444 
1445 #ifdef CONFIG_INET
1446 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1447 {
1448 	struct udphdr *uh = NULL;
1449 
1450 	if (ip_proto == htons(ETH_P_IP)) {
1451 		struct iphdr *iph = (struct iphdr *)skb->data;
1452 
1453 		if (iph->protocol == IPPROTO_UDP)
1454 			uh = (struct udphdr *)(iph + 1);
1455 	} else {
1456 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1457 
1458 		if (iph->nexthdr == IPPROTO_UDP)
1459 			uh = (struct udphdr *)(iph + 1);
1460 	}
1461 	if (uh) {
1462 		if (uh->check)
1463 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1464 		else
1465 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1466 	}
1467 }
1468 #endif
1469 
1470 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1471 					   int payload_off, int tcp_ts,
1472 					   struct sk_buff *skb)
1473 {
1474 #ifdef CONFIG_INET
1475 	struct tcphdr *th;
1476 	int len, nw_off;
1477 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1478 	u32 hdr_info = tpa_info->hdr_info;
1479 	bool loopback = false;
1480 
1481 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1482 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1483 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1484 
1485 	/* If the packet is an internal loopback packet, the offsets will
1486 	 * have an extra 4 bytes.
1487 	 */
1488 	if (inner_mac_off == 4) {
1489 		loopback = true;
1490 	} else if (inner_mac_off > 4) {
1491 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1492 					    ETH_HLEN - 2));
1493 
1494 		/* We only support inner iPv4/ipv6.  If we don't see the
1495 		 * correct protocol ID, it must be a loopback packet where
1496 		 * the offsets are off by 4.
1497 		 */
1498 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1499 			loopback = true;
1500 	}
1501 	if (loopback) {
1502 		/* internal loopback packet, subtract all offsets by 4 */
1503 		inner_ip_off -= 4;
1504 		inner_mac_off -= 4;
1505 		outer_ip_off -= 4;
1506 	}
1507 
1508 	nw_off = inner_ip_off - ETH_HLEN;
1509 	skb_set_network_header(skb, nw_off);
1510 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1511 		struct ipv6hdr *iph = ipv6_hdr(skb);
1512 
1513 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1514 		len = skb->len - skb_transport_offset(skb);
1515 		th = tcp_hdr(skb);
1516 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1517 	} else {
1518 		struct iphdr *iph = ip_hdr(skb);
1519 
1520 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1521 		len = skb->len - skb_transport_offset(skb);
1522 		th = tcp_hdr(skb);
1523 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1524 	}
1525 
1526 	if (inner_mac_off) { /* tunnel */
1527 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1528 					    ETH_HLEN - 2));
1529 
1530 		bnxt_gro_tunnel(skb, proto);
1531 	}
1532 #endif
1533 	return skb;
1534 }
1535 
1536 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1537 					   int payload_off, int tcp_ts,
1538 					   struct sk_buff *skb)
1539 {
1540 #ifdef CONFIG_INET
1541 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1542 	u32 hdr_info = tpa_info->hdr_info;
1543 	int iphdr_len, nw_off;
1544 
1545 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1546 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1547 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1548 
1549 	nw_off = inner_ip_off - ETH_HLEN;
1550 	skb_set_network_header(skb, nw_off);
1551 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1552 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1553 	skb_set_transport_header(skb, nw_off + iphdr_len);
1554 
1555 	if (inner_mac_off) { /* tunnel */
1556 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1557 					    ETH_HLEN - 2));
1558 
1559 		bnxt_gro_tunnel(skb, proto);
1560 	}
1561 #endif
1562 	return skb;
1563 }
1564 
1565 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1566 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1567 
1568 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1569 					   int payload_off, int tcp_ts,
1570 					   struct sk_buff *skb)
1571 {
1572 #ifdef CONFIG_INET
1573 	struct tcphdr *th;
1574 	int len, nw_off, tcp_opt_len = 0;
1575 
1576 	if (tcp_ts)
1577 		tcp_opt_len = 12;
1578 
1579 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1580 		struct iphdr *iph;
1581 
1582 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1583 			 ETH_HLEN;
1584 		skb_set_network_header(skb, nw_off);
1585 		iph = ip_hdr(skb);
1586 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1587 		len = skb->len - skb_transport_offset(skb);
1588 		th = tcp_hdr(skb);
1589 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1590 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1591 		struct ipv6hdr *iph;
1592 
1593 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1594 			 ETH_HLEN;
1595 		skb_set_network_header(skb, nw_off);
1596 		iph = ipv6_hdr(skb);
1597 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1598 		len = skb->len - skb_transport_offset(skb);
1599 		th = tcp_hdr(skb);
1600 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1601 	} else {
1602 		dev_kfree_skb_any(skb);
1603 		return NULL;
1604 	}
1605 
1606 	if (nw_off) /* tunnel */
1607 		bnxt_gro_tunnel(skb, skb->protocol);
1608 #endif
1609 	return skb;
1610 }
1611 
1612 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1613 					   struct bnxt_tpa_info *tpa_info,
1614 					   struct rx_tpa_end_cmp *tpa_end,
1615 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1616 					   struct sk_buff *skb)
1617 {
1618 #ifdef CONFIG_INET
1619 	int payload_off;
1620 	u16 segs;
1621 
1622 	segs = TPA_END_TPA_SEGS(tpa_end);
1623 	if (segs == 1)
1624 		return skb;
1625 
1626 	NAPI_GRO_CB(skb)->count = segs;
1627 	skb_shinfo(skb)->gso_size =
1628 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1629 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1630 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
1631 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1632 	else
1633 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1634 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1635 	if (likely(skb))
1636 		tcp_gro_complete(skb);
1637 #endif
1638 	return skb;
1639 }
1640 
1641 /* Given the cfa_code of a received packet determine which
1642  * netdev (vf-rep or PF) the packet is destined to.
1643  */
1644 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1645 {
1646 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1647 
1648 	/* if vf-rep dev is NULL, the must belongs to the PF */
1649 	return dev ? dev : bp->dev;
1650 }
1651 
1652 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1653 					   struct bnxt_cp_ring_info *cpr,
1654 					   u32 *raw_cons,
1655 					   struct rx_tpa_end_cmp *tpa_end,
1656 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1657 					   u8 *event)
1658 {
1659 	struct bnxt_napi *bnapi = cpr->bnapi;
1660 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1661 	struct net_device *dev = bp->dev;
1662 	u8 *data_ptr, agg_bufs;
1663 	unsigned int len;
1664 	struct bnxt_tpa_info *tpa_info;
1665 	dma_addr_t mapping;
1666 	struct sk_buff *skb;
1667 	u16 idx = 0, agg_id;
1668 	void *data;
1669 	bool gro;
1670 
1671 	if (unlikely(bnapi->in_reset)) {
1672 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1673 
1674 		if (rc < 0)
1675 			return ERR_PTR(-EBUSY);
1676 		return NULL;
1677 	}
1678 
1679 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
1680 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1681 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1682 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1683 		tpa_info = &rxr->rx_tpa[agg_id];
1684 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1685 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1686 				    agg_bufs, tpa_info->agg_count);
1687 			agg_bufs = tpa_info->agg_count;
1688 		}
1689 		tpa_info->agg_count = 0;
1690 		*event |= BNXT_AGG_EVENT;
1691 		bnxt_free_agg_idx(rxr, agg_id);
1692 		idx = agg_id;
1693 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1694 	} else {
1695 		agg_id = TPA_END_AGG_ID(tpa_end);
1696 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1697 		tpa_info = &rxr->rx_tpa[agg_id];
1698 		idx = RING_CMP(*raw_cons);
1699 		if (agg_bufs) {
1700 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1701 				return ERR_PTR(-EBUSY);
1702 
1703 			*event |= BNXT_AGG_EVENT;
1704 			idx = NEXT_CMP(idx);
1705 		}
1706 		gro = !!TPA_END_GRO(tpa_end);
1707 	}
1708 	data = tpa_info->data;
1709 	data_ptr = tpa_info->data_ptr;
1710 	prefetch(data_ptr);
1711 	len = tpa_info->len;
1712 	mapping = tpa_info->mapping;
1713 
1714 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1715 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1716 		if (agg_bufs > MAX_SKB_FRAGS)
1717 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1718 				    agg_bufs, (int)MAX_SKB_FRAGS);
1719 		return NULL;
1720 	}
1721 
1722 	if (len <= bp->rx_copy_thresh) {
1723 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1724 		if (!skb) {
1725 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1726 			cpr->sw_stats.rx.rx_oom_discards += 1;
1727 			return NULL;
1728 		}
1729 	} else {
1730 		u8 *new_data;
1731 		dma_addr_t new_mapping;
1732 
1733 		new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC);
1734 		if (!new_data) {
1735 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1736 			cpr->sw_stats.rx.rx_oom_discards += 1;
1737 			return NULL;
1738 		}
1739 
1740 		tpa_info->data = new_data;
1741 		tpa_info->data_ptr = new_data + bp->rx_offset;
1742 		tpa_info->mapping = new_mapping;
1743 
1744 		skb = napi_build_skb(data, bp->rx_buf_size);
1745 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1746 				       bp->rx_buf_use_size, bp->rx_dir,
1747 				       DMA_ATTR_WEAK_ORDERING);
1748 
1749 		if (!skb) {
1750 			skb_free_frag(data);
1751 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1752 			cpr->sw_stats.rx.rx_oom_discards += 1;
1753 			return NULL;
1754 		}
1755 		skb_reserve(skb, bp->rx_offset);
1756 		skb_put(skb, len);
1757 	}
1758 
1759 	if (agg_bufs) {
1760 		skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true);
1761 		if (!skb) {
1762 			/* Page reuse already handled by bnxt_rx_pages(). */
1763 			cpr->sw_stats.rx.rx_oom_discards += 1;
1764 			return NULL;
1765 		}
1766 	}
1767 
1768 	if (tpa_info->cfa_code_valid)
1769 		dev = bnxt_get_pkt_dev(bp, tpa_info->cfa_code);
1770 	skb->protocol = eth_type_trans(skb, dev);
1771 
1772 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1773 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1774 
1775 	if (tpa_info->vlan_valid &&
1776 	    (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1777 		__be16 vlan_proto = htons(tpa_info->metadata >>
1778 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1779 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1780 
1781 		if (eth_type_vlan(vlan_proto)) {
1782 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1783 		} else {
1784 			dev_kfree_skb(skb);
1785 			return NULL;
1786 		}
1787 	}
1788 
1789 	skb_checksum_none_assert(skb);
1790 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1791 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1792 		skb->csum_level =
1793 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1794 	}
1795 
1796 	if (gro)
1797 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1798 
1799 	return skb;
1800 }
1801 
1802 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1803 			 struct rx_agg_cmp *rx_agg)
1804 {
1805 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1806 	struct bnxt_tpa_info *tpa_info;
1807 
1808 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1809 	tpa_info = &rxr->rx_tpa[agg_id];
1810 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1811 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1812 }
1813 
1814 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1815 			     struct sk_buff *skb)
1816 {
1817 	if (skb->dev != bp->dev) {
1818 		/* this packet belongs to a vf-rep */
1819 		bnxt_vf_rep_rx(bp, skb);
1820 		return;
1821 	}
1822 	skb_record_rx_queue(skb, bnapi->index);
1823 	skb_mark_for_recycle(skb);
1824 	napi_gro_receive(&bnapi->napi, skb);
1825 }
1826 
1827 static struct sk_buff *bnxt_rx_vlan(struct sk_buff *skb, u8 cmp_type,
1828 				    struct rx_cmp *rxcmp,
1829 				    struct rx_cmp_ext *rxcmp1)
1830 {
1831 	__be16 vlan_proto;
1832 	u16 vtag;
1833 
1834 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1835 		__le32 flags2 = rxcmp1->rx_cmp_flags2;
1836 		u32 meta_data;
1837 
1838 		if (!(flags2 & cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)))
1839 			return skb;
1840 
1841 		meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1842 		vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1843 		vlan_proto = htons(meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT);
1844 		if (eth_type_vlan(vlan_proto))
1845 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1846 		else
1847 			goto vlan_err;
1848 	} else if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
1849 		if (RX_CMP_VLAN_VALID(rxcmp)) {
1850 			u32 tpid_sel = RX_CMP_VLAN_TPID_SEL(rxcmp);
1851 
1852 			if (tpid_sel == RX_CMP_METADATA1_TPID_8021Q)
1853 				vlan_proto = htons(ETH_P_8021Q);
1854 			else if (tpid_sel == RX_CMP_METADATA1_TPID_8021AD)
1855 				vlan_proto = htons(ETH_P_8021AD);
1856 			else
1857 				goto vlan_err;
1858 			vtag = RX_CMP_METADATA0_TCI(rxcmp1);
1859 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1860 		}
1861 	}
1862 	return skb;
1863 vlan_err:
1864 	dev_kfree_skb(skb);
1865 	return NULL;
1866 }
1867 
1868 static enum pkt_hash_types bnxt_rss_ext_op(struct bnxt *bp,
1869 					   struct rx_cmp *rxcmp)
1870 {
1871 	u8 ext_op;
1872 
1873 	ext_op = RX_CMP_V3_HASH_TYPE(bp, rxcmp);
1874 	switch (ext_op) {
1875 	case EXT_OP_INNER_4:
1876 	case EXT_OP_OUTER_4:
1877 	case EXT_OP_INNFL_3:
1878 	case EXT_OP_OUTFL_3:
1879 		return PKT_HASH_TYPE_L4;
1880 	default:
1881 		return PKT_HASH_TYPE_L3;
1882 	}
1883 }
1884 
1885 /* returns the following:
1886  * 1       - 1 packet successfully received
1887  * 0       - successful TPA_START, packet not completed yet
1888  * -EBUSY  - completion ring does not have all the agg buffers yet
1889  * -ENOMEM - packet aborted due to out of memory
1890  * -EIO    - packet aborted due to hw error indicated in BD
1891  */
1892 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1893 		       u32 *raw_cons, u8 *event)
1894 {
1895 	struct bnxt_napi *bnapi = cpr->bnapi;
1896 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1897 	struct net_device *dev = bp->dev;
1898 	struct rx_cmp *rxcmp;
1899 	struct rx_cmp_ext *rxcmp1;
1900 	u32 tmp_raw_cons = *raw_cons;
1901 	u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1902 	struct bnxt_sw_rx_bd *rx_buf;
1903 	unsigned int len;
1904 	u8 *data_ptr, agg_bufs, cmp_type;
1905 	bool xdp_active = false;
1906 	dma_addr_t dma_addr;
1907 	struct sk_buff *skb;
1908 	struct xdp_buff xdp;
1909 	u32 flags, misc;
1910 	void *data;
1911 	int rc = 0;
1912 
1913 	rxcmp = (struct rx_cmp *)
1914 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1915 
1916 	cmp_type = RX_CMP_TYPE(rxcmp);
1917 
1918 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1919 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1920 		goto next_rx_no_prod_no_len;
1921 	}
1922 
1923 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1924 	cp_cons = RING_CMP(tmp_raw_cons);
1925 	rxcmp1 = (struct rx_cmp_ext *)
1926 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1927 
1928 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1929 		return -EBUSY;
1930 
1931 	/* The valid test of the entry must be done first before
1932 	 * reading any further.
1933 	 */
1934 	dma_rmb();
1935 	prod = rxr->rx_prod;
1936 
1937 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP ||
1938 	    cmp_type == CMP_TYPE_RX_L2_TPA_START_V3_CMP) {
1939 		bnxt_tpa_start(bp, rxr, cmp_type,
1940 			       (struct rx_tpa_start_cmp *)rxcmp,
1941 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1942 
1943 		*event |= BNXT_RX_EVENT;
1944 		goto next_rx_no_prod_no_len;
1945 
1946 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1947 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1948 				   (struct rx_tpa_end_cmp *)rxcmp,
1949 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1950 
1951 		if (IS_ERR(skb))
1952 			return -EBUSY;
1953 
1954 		rc = -ENOMEM;
1955 		if (likely(skb)) {
1956 			bnxt_deliver_skb(bp, bnapi, skb);
1957 			rc = 1;
1958 		}
1959 		*event |= BNXT_RX_EVENT;
1960 		goto next_rx_no_prod_no_len;
1961 	}
1962 
1963 	cons = rxcmp->rx_cmp_opaque;
1964 	if (unlikely(cons != rxr->rx_next_cons)) {
1965 		int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
1966 
1967 		/* 0xffff is forced error, don't print it */
1968 		if (rxr->rx_next_cons != 0xffff)
1969 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1970 				    cons, rxr->rx_next_cons);
1971 		bnxt_sched_reset_rxr(bp, rxr);
1972 		if (rc1)
1973 			return rc1;
1974 		goto next_rx_no_prod_no_len;
1975 	}
1976 	rx_buf = &rxr->rx_buf_ring[cons];
1977 	data = rx_buf->data;
1978 	data_ptr = rx_buf->data_ptr;
1979 	prefetch(data_ptr);
1980 
1981 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1982 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1983 
1984 	if (agg_bufs) {
1985 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1986 			return -EBUSY;
1987 
1988 		cp_cons = NEXT_CMP(cp_cons);
1989 		*event |= BNXT_AGG_EVENT;
1990 	}
1991 	*event |= BNXT_RX_EVENT;
1992 
1993 	rx_buf->data = NULL;
1994 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1995 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1996 
1997 		bnxt_reuse_rx_data(rxr, cons, data);
1998 		if (agg_bufs)
1999 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
2000 					       false);
2001 
2002 		rc = -EIO;
2003 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
2004 			bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
2005 			if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
2006 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
2007 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
2008 						 rx_err);
2009 				bnxt_sched_reset_rxr(bp, rxr);
2010 			}
2011 		}
2012 		goto next_rx_no_len;
2013 	}
2014 
2015 	flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type);
2016 	len = flags >> RX_CMP_LEN_SHIFT;
2017 	dma_addr = rx_buf->mapping;
2018 
2019 	if (bnxt_xdp_attached(bp, rxr)) {
2020 		bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp);
2021 		if (agg_bufs) {
2022 			u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp,
2023 							     cp_cons, agg_bufs,
2024 							     false);
2025 			if (!frag_len) {
2026 				cpr->sw_stats.rx.rx_oom_discards += 1;
2027 				rc = -ENOMEM;
2028 				goto next_rx;
2029 			}
2030 		}
2031 		xdp_active = true;
2032 	}
2033 
2034 	if (xdp_active) {
2035 		if (bnxt_rx_xdp(bp, rxr, cons, xdp, data, &data_ptr, &len, event)) {
2036 			rc = 1;
2037 			goto next_rx;
2038 		}
2039 	}
2040 
2041 	if (len <= bp->rx_copy_thresh) {
2042 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
2043 		bnxt_reuse_rx_data(rxr, cons, data);
2044 		if (!skb) {
2045 			if (agg_bufs) {
2046 				if (!xdp_active)
2047 					bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
2048 							       agg_bufs, false);
2049 				else
2050 					bnxt_xdp_buff_frags_free(rxr, &xdp);
2051 			}
2052 			cpr->sw_stats.rx.rx_oom_discards += 1;
2053 			rc = -ENOMEM;
2054 			goto next_rx;
2055 		}
2056 	} else {
2057 		u32 payload;
2058 
2059 		if (rx_buf->data_ptr == data_ptr)
2060 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
2061 		else
2062 			payload = 0;
2063 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
2064 				      payload | len);
2065 		if (!skb) {
2066 			cpr->sw_stats.rx.rx_oom_discards += 1;
2067 			rc = -ENOMEM;
2068 			goto next_rx;
2069 		}
2070 	}
2071 
2072 	if (agg_bufs) {
2073 		if (!xdp_active) {
2074 			skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false);
2075 			if (!skb) {
2076 				cpr->sw_stats.rx.rx_oom_discards += 1;
2077 				rc = -ENOMEM;
2078 				goto next_rx;
2079 			}
2080 		} else {
2081 			skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1);
2082 			if (!skb) {
2083 				/* we should be able to free the old skb here */
2084 				bnxt_xdp_buff_frags_free(rxr, &xdp);
2085 				cpr->sw_stats.rx.rx_oom_discards += 1;
2086 				rc = -ENOMEM;
2087 				goto next_rx;
2088 			}
2089 		}
2090 	}
2091 
2092 	if (RX_CMP_HASH_VALID(rxcmp)) {
2093 		enum pkt_hash_types type;
2094 
2095 		if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
2096 			type = bnxt_rss_ext_op(bp, rxcmp);
2097 		} else {
2098 			u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
2099 
2100 			/* RSS profiles 1 and 3 with extract code 0 for inner
2101 			 * 4-tuple
2102 			 */
2103 			if (hash_type != 1 && hash_type != 3)
2104 				type = PKT_HASH_TYPE_L3;
2105 			else
2106 				type = PKT_HASH_TYPE_L4;
2107 		}
2108 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
2109 	}
2110 
2111 	if (cmp_type == CMP_TYPE_RX_L2_CMP)
2112 		dev = bnxt_get_pkt_dev(bp, RX_CMP_CFA_CODE(rxcmp1));
2113 	skb->protocol = eth_type_trans(skb, dev);
2114 
2115 	if (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) {
2116 		skb = bnxt_rx_vlan(skb, cmp_type, rxcmp, rxcmp1);
2117 		if (!skb)
2118 			goto next_rx;
2119 	}
2120 
2121 	skb_checksum_none_assert(skb);
2122 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
2123 		if (dev->features & NETIF_F_RXCSUM) {
2124 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2125 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
2126 		}
2127 	} else {
2128 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
2129 			if (dev->features & NETIF_F_RXCSUM)
2130 				bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
2131 		}
2132 	}
2133 
2134 	if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) ==
2135 		     RX_CMP_FLAGS_ITYPE_PTP_W_TS) || bp->ptp_all_rx_tstamp) {
2136 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
2137 			u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp);
2138 			u64 ns, ts;
2139 
2140 			if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) {
2141 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2142 
2143 				spin_lock_bh(&ptp->ptp_lock);
2144 				ns = timecounter_cyc2time(&ptp->tc, ts);
2145 				spin_unlock_bh(&ptp->ptp_lock);
2146 				memset(skb_hwtstamps(skb), 0,
2147 				       sizeof(*skb_hwtstamps(skb)));
2148 				skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
2149 			}
2150 		}
2151 	}
2152 	bnxt_deliver_skb(bp, bnapi, skb);
2153 	rc = 1;
2154 
2155 next_rx:
2156 	cpr->rx_packets += 1;
2157 	cpr->rx_bytes += len;
2158 
2159 next_rx_no_len:
2160 	rxr->rx_prod = NEXT_RX(prod);
2161 	rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons));
2162 
2163 next_rx_no_prod_no_len:
2164 	*raw_cons = tmp_raw_cons;
2165 
2166 	return rc;
2167 }
2168 
2169 /* In netpoll mode, if we are using a combined completion ring, we need to
2170  * discard the rx packets and recycle the buffers.
2171  */
2172 static int bnxt_force_rx_discard(struct bnxt *bp,
2173 				 struct bnxt_cp_ring_info *cpr,
2174 				 u32 *raw_cons, u8 *event)
2175 {
2176 	u32 tmp_raw_cons = *raw_cons;
2177 	struct rx_cmp_ext *rxcmp1;
2178 	struct rx_cmp *rxcmp;
2179 	u16 cp_cons;
2180 	u8 cmp_type;
2181 	int rc;
2182 
2183 	cp_cons = RING_CMP(tmp_raw_cons);
2184 	rxcmp = (struct rx_cmp *)
2185 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2186 
2187 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2188 	cp_cons = RING_CMP(tmp_raw_cons);
2189 	rxcmp1 = (struct rx_cmp_ext *)
2190 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2191 
2192 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2193 		return -EBUSY;
2194 
2195 	/* The valid test of the entry must be done first before
2196 	 * reading any further.
2197 	 */
2198 	dma_rmb();
2199 	cmp_type = RX_CMP_TYPE(rxcmp);
2200 	if (cmp_type == CMP_TYPE_RX_L2_CMP ||
2201 	    cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
2202 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2203 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2204 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2205 		struct rx_tpa_end_cmp_ext *tpa_end1;
2206 
2207 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
2208 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
2209 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
2210 	}
2211 	rc = bnxt_rx_pkt(bp, cpr, raw_cons, event);
2212 	if (rc && rc != -EBUSY)
2213 		cpr->sw_stats.rx.rx_netpoll_discards += 1;
2214 	return rc;
2215 }
2216 
2217 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
2218 {
2219 	struct bnxt_fw_health *fw_health = bp->fw_health;
2220 	u32 reg = fw_health->regs[reg_idx];
2221 	u32 reg_type, reg_off, val = 0;
2222 
2223 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
2224 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
2225 	switch (reg_type) {
2226 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
2227 		pci_read_config_dword(bp->pdev, reg_off, &val);
2228 		break;
2229 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
2230 		reg_off = fw_health->mapped_regs[reg_idx];
2231 		fallthrough;
2232 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
2233 		val = readl(bp->bar0 + reg_off);
2234 		break;
2235 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
2236 		val = readl(bp->bar1 + reg_off);
2237 		break;
2238 	}
2239 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
2240 		val &= fw_health->fw_reset_inprog_reg_mask;
2241 	return val;
2242 }
2243 
2244 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
2245 {
2246 	int i;
2247 
2248 	for (i = 0; i < bp->rx_nr_rings; i++) {
2249 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
2250 		struct bnxt_ring_grp_info *grp_info;
2251 
2252 		grp_info = &bp->grp_info[grp_idx];
2253 		if (grp_info->agg_fw_ring_id == ring_id)
2254 			return grp_idx;
2255 	}
2256 	return INVALID_HW_RING_ID;
2257 }
2258 
2259 static u16 bnxt_get_force_speed(struct bnxt_link_info *link_info)
2260 {
2261 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2262 
2263 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2)
2264 		return link_info->force_link_speed2;
2265 	if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4)
2266 		return link_info->force_pam4_link_speed;
2267 	return link_info->force_link_speed;
2268 }
2269 
2270 static void bnxt_set_force_speed(struct bnxt_link_info *link_info)
2271 {
2272 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2273 
2274 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2275 		link_info->req_link_speed = link_info->force_link_speed2;
2276 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2277 		switch (link_info->req_link_speed) {
2278 		case BNXT_LINK_SPEED_50GB_PAM4:
2279 		case BNXT_LINK_SPEED_100GB_PAM4:
2280 		case BNXT_LINK_SPEED_200GB_PAM4:
2281 		case BNXT_LINK_SPEED_400GB_PAM4:
2282 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
2283 			break;
2284 		case BNXT_LINK_SPEED_100GB_PAM4_112:
2285 		case BNXT_LINK_SPEED_200GB_PAM4_112:
2286 		case BNXT_LINK_SPEED_400GB_PAM4_112:
2287 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4_112;
2288 			break;
2289 		default:
2290 			link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2291 		}
2292 		return;
2293 	}
2294 	link_info->req_link_speed = link_info->force_link_speed;
2295 	link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2296 	if (link_info->force_pam4_link_speed) {
2297 		link_info->req_link_speed = link_info->force_pam4_link_speed;
2298 		link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
2299 	}
2300 }
2301 
2302 static void bnxt_set_auto_speed(struct bnxt_link_info *link_info)
2303 {
2304 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2305 
2306 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2307 		link_info->advertising = link_info->auto_link_speeds2;
2308 		return;
2309 	}
2310 	link_info->advertising = link_info->auto_link_speeds;
2311 	link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
2312 }
2313 
2314 static bool bnxt_force_speed_updated(struct bnxt_link_info *link_info)
2315 {
2316 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2317 
2318 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2319 		if (link_info->req_link_speed != link_info->force_link_speed2)
2320 			return true;
2321 		return false;
2322 	}
2323 	if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
2324 	    link_info->req_link_speed != link_info->force_link_speed)
2325 		return true;
2326 	if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
2327 	    link_info->req_link_speed != link_info->force_pam4_link_speed)
2328 		return true;
2329 	return false;
2330 }
2331 
2332 static bool bnxt_auto_speed_updated(struct bnxt_link_info *link_info)
2333 {
2334 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2335 
2336 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2337 		if (link_info->advertising != link_info->auto_link_speeds2)
2338 			return true;
2339 		return false;
2340 	}
2341 	if (link_info->advertising != link_info->auto_link_speeds ||
2342 	    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
2343 		return true;
2344 	return false;
2345 }
2346 
2347 #define BNXT_EVENT_THERMAL_CURRENT_TEMP(data2)				\
2348 	((data2) &							\
2349 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_CURRENT_TEMP_MASK)
2350 
2351 #define BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2)			\
2352 	(((data2) &							\
2353 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_MASK) >>\
2354 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_SFT)
2355 
2356 #define EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1)			\
2357 	((data1) &							\
2358 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_MASK)
2359 
2360 #define EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)		\
2361 	(((data1) &							\
2362 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR) ==\
2363 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR_INCREASING)
2364 
2365 /* Return true if the workqueue has to be scheduled */
2366 static bool bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2)
2367 {
2368 	u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1);
2369 
2370 	switch (err_type) {
2371 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL:
2372 		netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n",
2373 			   BNXT_EVENT_INVALID_SIGNAL_DATA(data2));
2374 		break;
2375 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM:
2376 		netdev_warn(bp->dev, "Pause Storm detected!\n");
2377 		break;
2378 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD:
2379 		netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n");
2380 		break;
2381 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_THERMAL_THRESHOLD: {
2382 		u32 type = EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1);
2383 		char *threshold_type;
2384 		bool notify = false;
2385 		char *dir_str;
2386 
2387 		switch (type) {
2388 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_WARN:
2389 			threshold_type = "warning";
2390 			break;
2391 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_CRITICAL:
2392 			threshold_type = "critical";
2393 			break;
2394 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_FATAL:
2395 			threshold_type = "fatal";
2396 			break;
2397 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_SHUTDOWN:
2398 			threshold_type = "shutdown";
2399 			break;
2400 		default:
2401 			netdev_err(bp->dev, "Unknown Thermal threshold type event\n");
2402 			return false;
2403 		}
2404 		if (EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)) {
2405 			dir_str = "above";
2406 			notify = true;
2407 		} else {
2408 			dir_str = "below";
2409 		}
2410 		netdev_warn(bp->dev, "Chip temperature has gone %s the %s thermal threshold!\n",
2411 			    dir_str, threshold_type);
2412 		netdev_warn(bp->dev, "Temperature (In Celsius), Current: %lu, threshold: %lu\n",
2413 			    BNXT_EVENT_THERMAL_CURRENT_TEMP(data2),
2414 			    BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2));
2415 		if (notify) {
2416 			bp->thermal_threshold_type = type;
2417 			set_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event);
2418 			return true;
2419 		}
2420 		return false;
2421 	}
2422 	default:
2423 		netdev_err(bp->dev, "FW reported unknown error type %u\n",
2424 			   err_type);
2425 		break;
2426 	}
2427 	return false;
2428 }
2429 
2430 #define BNXT_GET_EVENT_PORT(data)	\
2431 	((data) &			\
2432 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
2433 
2434 #define BNXT_EVENT_RING_TYPE(data2)	\
2435 	((data2) &			\
2436 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
2437 
2438 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
2439 	(BNXT_EVENT_RING_TYPE(data2) ==	\
2440 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
2441 
2442 #define BNXT_EVENT_PHC_EVENT_TYPE(data1)	\
2443 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\
2444 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT)
2445 
2446 #define BNXT_EVENT_PHC_RTC_UPDATE(data1)	\
2447 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\
2448 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT)
2449 
2450 #define BNXT_PHC_BITS	48
2451 
2452 static int bnxt_async_event_process(struct bnxt *bp,
2453 				    struct hwrm_async_event_cmpl *cmpl)
2454 {
2455 	u16 event_id = le16_to_cpu(cmpl->event_id);
2456 	u32 data1 = le32_to_cpu(cmpl->event_data1);
2457 	u32 data2 = le32_to_cpu(cmpl->event_data2);
2458 
2459 	netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n",
2460 		   event_id, data1, data2);
2461 
2462 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
2463 	switch (event_id) {
2464 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2465 		struct bnxt_link_info *link_info = &bp->link_info;
2466 
2467 		if (BNXT_VF(bp))
2468 			goto async_event_process_exit;
2469 
2470 		/* print unsupported speed warning in forced speed mode only */
2471 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2472 		    (data1 & 0x20000)) {
2473 			u16 fw_speed = bnxt_get_force_speed(link_info);
2474 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2475 
2476 			if (speed != SPEED_UNKNOWN)
2477 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2478 					    speed);
2479 		}
2480 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2481 	}
2482 		fallthrough;
2483 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2484 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2485 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2486 		fallthrough;
2487 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2488 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2489 		break;
2490 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2491 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2492 		break;
2493 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2494 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2495 
2496 		if (BNXT_VF(bp))
2497 			break;
2498 
2499 		if (bp->pf.port_id != port_id)
2500 			break;
2501 
2502 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2503 		break;
2504 	}
2505 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2506 		if (BNXT_PF(bp))
2507 			goto async_event_process_exit;
2508 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2509 		break;
2510 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2511 		char *type_str = "Solicited";
2512 
2513 		if (!bp->fw_health)
2514 			goto async_event_process_exit;
2515 
2516 		bp->fw_reset_timestamp = jiffies;
2517 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2518 		if (!bp->fw_reset_min_dsecs)
2519 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2520 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2521 		if (!bp->fw_reset_max_dsecs)
2522 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2523 		if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) {
2524 			set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state);
2525 		} else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2526 			type_str = "Fatal";
2527 			bp->fw_health->fatalities++;
2528 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2529 		} else if (data2 && BNXT_FW_STATUS_HEALTHY !=
2530 			   EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) {
2531 			type_str = "Non-fatal";
2532 			bp->fw_health->survivals++;
2533 			set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
2534 		}
2535 		netif_warn(bp, hw, bp->dev,
2536 			   "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2537 			   type_str, data1, data2,
2538 			   bp->fw_reset_min_dsecs * 100,
2539 			   bp->fw_reset_max_dsecs * 100);
2540 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2541 		break;
2542 	}
2543 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2544 		struct bnxt_fw_health *fw_health = bp->fw_health;
2545 		char *status_desc = "healthy";
2546 		u32 status;
2547 
2548 		if (!fw_health)
2549 			goto async_event_process_exit;
2550 
2551 		if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) {
2552 			fw_health->enabled = false;
2553 			netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n");
2554 			break;
2555 		}
2556 		fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2557 		fw_health->tmr_multiplier =
2558 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2559 				     bp->current_interval * 10);
2560 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2561 		if (!fw_health->enabled)
2562 			fw_health->last_fw_heartbeat =
2563 				bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2564 		fw_health->last_fw_reset_cnt =
2565 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2566 		status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
2567 		if (status != BNXT_FW_STATUS_HEALTHY)
2568 			status_desc = "unhealthy";
2569 		netif_info(bp, drv, bp->dev,
2570 			   "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n",
2571 			   fw_health->primary ? "primary" : "backup", status,
2572 			   status_desc, fw_health->last_fw_reset_cnt);
2573 		if (!fw_health->enabled) {
2574 			/* Make sure tmr_counter is set and visible to
2575 			 * bnxt_health_check() before setting enabled to true.
2576 			 */
2577 			smp_wmb();
2578 			fw_health->enabled = true;
2579 		}
2580 		goto async_event_process_exit;
2581 	}
2582 	case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2583 		netif_notice(bp, hw, bp->dev,
2584 			     "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2585 			     data1, data2);
2586 		goto async_event_process_exit;
2587 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2588 		struct bnxt_rx_ring_info *rxr;
2589 		u16 grp_idx;
2590 
2591 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
2592 			goto async_event_process_exit;
2593 
2594 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2595 			    BNXT_EVENT_RING_TYPE(data2), data1);
2596 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2597 			goto async_event_process_exit;
2598 
2599 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2600 		if (grp_idx == INVALID_HW_RING_ID) {
2601 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2602 				    data1);
2603 			goto async_event_process_exit;
2604 		}
2605 		rxr = bp->bnapi[grp_idx]->rx_ring;
2606 		bnxt_sched_reset_rxr(bp, rxr);
2607 		goto async_event_process_exit;
2608 	}
2609 	case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2610 		struct bnxt_fw_health *fw_health = bp->fw_health;
2611 
2612 		netif_notice(bp, hw, bp->dev,
2613 			     "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2614 			     data1, data2);
2615 		if (fw_health) {
2616 			fw_health->echo_req_data1 = data1;
2617 			fw_health->echo_req_data2 = data2;
2618 			set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2619 			break;
2620 		}
2621 		goto async_event_process_exit;
2622 	}
2623 	case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: {
2624 		bnxt_ptp_pps_event(bp, data1, data2);
2625 		goto async_event_process_exit;
2626 	}
2627 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: {
2628 		if (bnxt_event_error_report(bp, data1, data2))
2629 			break;
2630 		goto async_event_process_exit;
2631 	}
2632 	case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: {
2633 		switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) {
2634 		case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE:
2635 			if (BNXT_PTP_USE_RTC(bp)) {
2636 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2637 				u64 ns;
2638 
2639 				if (!ptp)
2640 					goto async_event_process_exit;
2641 
2642 				spin_lock_bh(&ptp->ptp_lock);
2643 				bnxt_ptp_update_current_time(bp);
2644 				ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) <<
2645 				       BNXT_PHC_BITS) | ptp->current_time);
2646 				bnxt_ptp_rtc_timecounter_init(ptp, ns);
2647 				spin_unlock_bh(&ptp->ptp_lock);
2648 			}
2649 			break;
2650 		}
2651 		goto async_event_process_exit;
2652 	}
2653 	case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: {
2654 		u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff;
2655 
2656 		hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED);
2657 		goto async_event_process_exit;
2658 	}
2659 	default:
2660 		goto async_event_process_exit;
2661 	}
2662 	__bnxt_queue_sp_work(bp);
2663 async_event_process_exit:
2664 	return 0;
2665 }
2666 
2667 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2668 {
2669 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2670 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2671 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2672 				(struct hwrm_fwd_req_cmpl *)txcmp;
2673 
2674 	switch (cmpl_type) {
2675 	case CMPL_BASE_TYPE_HWRM_DONE:
2676 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2677 		hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE);
2678 		break;
2679 
2680 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2681 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2682 
2683 		if ((vf_id < bp->pf.first_vf_id) ||
2684 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2685 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2686 				   vf_id);
2687 			return -EINVAL;
2688 		}
2689 
2690 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2691 		bnxt_queue_sp_work(bp, BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT);
2692 		break;
2693 
2694 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2695 		bnxt_async_event_process(bp,
2696 					 (struct hwrm_async_event_cmpl *)txcmp);
2697 		break;
2698 
2699 	default:
2700 		break;
2701 	}
2702 
2703 	return 0;
2704 }
2705 
2706 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2707 {
2708 	struct bnxt_napi *bnapi = dev_instance;
2709 	struct bnxt *bp = bnapi->bp;
2710 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2711 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2712 
2713 	cpr->event_ctr++;
2714 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2715 	napi_schedule(&bnapi->napi);
2716 	return IRQ_HANDLED;
2717 }
2718 
2719 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2720 {
2721 	u32 raw_cons = cpr->cp_raw_cons;
2722 	u16 cons = RING_CMP(raw_cons);
2723 	struct tx_cmp *txcmp;
2724 
2725 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2726 
2727 	return TX_CMP_VALID(txcmp, raw_cons);
2728 }
2729 
2730 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2731 {
2732 	struct bnxt_napi *bnapi = dev_instance;
2733 	struct bnxt *bp = bnapi->bp;
2734 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2735 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2736 	u32 int_status;
2737 
2738 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2739 
2740 	if (!bnxt_has_work(bp, cpr)) {
2741 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2742 		/* return if erroneous interrupt */
2743 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2744 			return IRQ_NONE;
2745 	}
2746 
2747 	/* disable ring IRQ */
2748 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2749 
2750 	/* Return here if interrupt is shared and is disabled. */
2751 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2752 		return IRQ_HANDLED;
2753 
2754 	napi_schedule(&bnapi->napi);
2755 	return IRQ_HANDLED;
2756 }
2757 
2758 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2759 			    int budget)
2760 {
2761 	struct bnxt_napi *bnapi = cpr->bnapi;
2762 	u32 raw_cons = cpr->cp_raw_cons;
2763 	u32 cons;
2764 	int rx_pkts = 0;
2765 	u8 event = 0;
2766 	struct tx_cmp *txcmp;
2767 
2768 	cpr->has_more_work = 0;
2769 	cpr->had_work_done = 1;
2770 	while (1) {
2771 		u8 cmp_type;
2772 		int rc;
2773 
2774 		cons = RING_CMP(raw_cons);
2775 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2776 
2777 		if (!TX_CMP_VALID(txcmp, raw_cons))
2778 			break;
2779 
2780 		/* The valid test of the entry must be done first before
2781 		 * reading any further.
2782 		 */
2783 		dma_rmb();
2784 		cmp_type = TX_CMP_TYPE(txcmp);
2785 		if (cmp_type == CMP_TYPE_TX_L2_CMP) {
2786 			u32 opaque = txcmp->tx_cmp_opaque;
2787 			struct bnxt_tx_ring_info *txr;
2788 			u16 tx_freed;
2789 
2790 			txr = bnapi->tx_ring[TX_OPAQUE_RING(opaque)];
2791 			event |= BNXT_TX_CMP_EVENT;
2792 			txr->tx_hw_cons = TX_OPAQUE_PROD(bp, opaque);
2793 			tx_freed = (txr->tx_hw_cons - txr->tx_cons) &
2794 				   bp->tx_ring_mask;
2795 			/* return full budget so NAPI will complete. */
2796 			if (unlikely(tx_freed >= bp->tx_wake_thresh)) {
2797 				rx_pkts = budget;
2798 				raw_cons = NEXT_RAW_CMP(raw_cons);
2799 				if (budget)
2800 					cpr->has_more_work = 1;
2801 				break;
2802 			}
2803 		} else if (cmp_type >= CMP_TYPE_RX_L2_CMP &&
2804 			   cmp_type <= CMP_TYPE_RX_L2_TPA_START_V3_CMP) {
2805 			if (likely(budget))
2806 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2807 			else
2808 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2809 							   &event);
2810 			if (likely(rc >= 0))
2811 				rx_pkts += rc;
2812 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2813 			 * the NAPI budget.  Otherwise, we may potentially loop
2814 			 * here forever if we consistently cannot allocate
2815 			 * buffers.
2816 			 */
2817 			else if (rc == -ENOMEM && budget)
2818 				rx_pkts++;
2819 			else if (rc == -EBUSY)	/* partial completion */
2820 				break;
2821 		} else if (unlikely(cmp_type == CMPL_BASE_TYPE_HWRM_DONE ||
2822 				    cmp_type == CMPL_BASE_TYPE_HWRM_FWD_REQ ||
2823 				    cmp_type == CMPL_BASE_TYPE_HWRM_ASYNC_EVENT)) {
2824 			bnxt_hwrm_handler(bp, txcmp);
2825 		}
2826 		raw_cons = NEXT_RAW_CMP(raw_cons);
2827 
2828 		if (rx_pkts && rx_pkts == budget) {
2829 			cpr->has_more_work = 1;
2830 			break;
2831 		}
2832 	}
2833 
2834 	if (event & BNXT_REDIRECT_EVENT)
2835 		xdp_do_flush();
2836 
2837 	if (event & BNXT_TX_EVENT) {
2838 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring[0];
2839 		u16 prod = txr->tx_prod;
2840 
2841 		/* Sync BD data before updating doorbell */
2842 		wmb();
2843 
2844 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2845 	}
2846 
2847 	cpr->cp_raw_cons = raw_cons;
2848 	bnapi->events |= event;
2849 	return rx_pkts;
2850 }
2851 
2852 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2853 				  int budget)
2854 {
2855 	if ((bnapi->events & BNXT_TX_CMP_EVENT) && !bnapi->tx_fault)
2856 		bnapi->tx_int(bp, bnapi, budget);
2857 
2858 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2859 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2860 
2861 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2862 	}
2863 	if (bnapi->events & BNXT_AGG_EVENT) {
2864 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2865 
2866 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2867 	}
2868 	bnapi->events &= BNXT_TX_CMP_EVENT;
2869 }
2870 
2871 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2872 			  int budget)
2873 {
2874 	struct bnxt_napi *bnapi = cpr->bnapi;
2875 	int rx_pkts;
2876 
2877 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2878 
2879 	/* ACK completion ring before freeing tx ring and producing new
2880 	 * buffers in rx/agg rings to prevent overflowing the completion
2881 	 * ring.
2882 	 */
2883 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2884 
2885 	__bnxt_poll_work_done(bp, bnapi, budget);
2886 	return rx_pkts;
2887 }
2888 
2889 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2890 {
2891 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2892 	struct bnxt *bp = bnapi->bp;
2893 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2894 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2895 	struct tx_cmp *txcmp;
2896 	struct rx_cmp_ext *rxcmp1;
2897 	u32 cp_cons, tmp_raw_cons;
2898 	u32 raw_cons = cpr->cp_raw_cons;
2899 	bool flush_xdp = false;
2900 	u32 rx_pkts = 0;
2901 	u8 event = 0;
2902 
2903 	while (1) {
2904 		int rc;
2905 
2906 		cp_cons = RING_CMP(raw_cons);
2907 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2908 
2909 		if (!TX_CMP_VALID(txcmp, raw_cons))
2910 			break;
2911 
2912 		/* The valid test of the entry must be done first before
2913 		 * reading any further.
2914 		 */
2915 		dma_rmb();
2916 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2917 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2918 			cp_cons = RING_CMP(tmp_raw_cons);
2919 			rxcmp1 = (struct rx_cmp_ext *)
2920 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2921 
2922 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2923 				break;
2924 
2925 			/* force an error to recycle the buffer */
2926 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2927 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2928 
2929 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2930 			if (likely(rc == -EIO) && budget)
2931 				rx_pkts++;
2932 			else if (rc == -EBUSY)	/* partial completion */
2933 				break;
2934 			if (event & BNXT_REDIRECT_EVENT)
2935 				flush_xdp = true;
2936 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2937 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2938 			bnxt_hwrm_handler(bp, txcmp);
2939 		} else {
2940 			netdev_err(bp->dev,
2941 				   "Invalid completion received on special ring\n");
2942 		}
2943 		raw_cons = NEXT_RAW_CMP(raw_cons);
2944 
2945 		if (rx_pkts == budget)
2946 			break;
2947 	}
2948 
2949 	cpr->cp_raw_cons = raw_cons;
2950 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2951 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2952 
2953 	if (event & BNXT_AGG_EVENT)
2954 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2955 	if (flush_xdp)
2956 		xdp_do_flush();
2957 
2958 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2959 		napi_complete_done(napi, rx_pkts);
2960 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2961 	}
2962 	return rx_pkts;
2963 }
2964 
2965 static int bnxt_poll(struct napi_struct *napi, int budget)
2966 {
2967 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2968 	struct bnxt *bp = bnapi->bp;
2969 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2970 	int work_done = 0;
2971 
2972 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2973 		napi_complete(napi);
2974 		return 0;
2975 	}
2976 	while (1) {
2977 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2978 
2979 		if (work_done >= budget) {
2980 			if (!budget)
2981 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2982 			break;
2983 		}
2984 
2985 		if (!bnxt_has_work(bp, cpr)) {
2986 			if (napi_complete_done(napi, work_done))
2987 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2988 			break;
2989 		}
2990 	}
2991 	if (bp->flags & BNXT_FLAG_DIM) {
2992 		struct dim_sample dim_sample = {};
2993 
2994 		dim_update_sample(cpr->event_ctr,
2995 				  cpr->rx_packets,
2996 				  cpr->rx_bytes,
2997 				  &dim_sample);
2998 		net_dim(&cpr->dim, dim_sample);
2999 	}
3000 	return work_done;
3001 }
3002 
3003 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
3004 {
3005 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3006 	int i, work_done = 0;
3007 
3008 	for (i = 0; i < cpr->cp_ring_count; i++) {
3009 		struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i];
3010 
3011 		if (cpr2->had_nqe_notify) {
3012 			work_done += __bnxt_poll_work(bp, cpr2,
3013 						      budget - work_done);
3014 			cpr->has_more_work |= cpr2->has_more_work;
3015 		}
3016 	}
3017 	return work_done;
3018 }
3019 
3020 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
3021 				 u64 dbr_type, int budget)
3022 {
3023 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3024 	int i;
3025 
3026 	for (i = 0; i < cpr->cp_ring_count; i++) {
3027 		struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i];
3028 		struct bnxt_db_info *db;
3029 
3030 		if (cpr2->had_work_done) {
3031 			u32 tgl = 0;
3032 
3033 			if (dbr_type == DBR_TYPE_CQ_ARMALL) {
3034 				cpr2->had_nqe_notify = 0;
3035 				tgl = cpr2->toggle;
3036 			}
3037 			db = &cpr2->cp_db;
3038 			bnxt_writeq(bp,
3039 				    db->db_key64 | dbr_type | DB_TOGGLE(tgl) |
3040 				    DB_RING_IDX(db, cpr2->cp_raw_cons),
3041 				    db->doorbell);
3042 			cpr2->had_work_done = 0;
3043 		}
3044 	}
3045 	__bnxt_poll_work_done(bp, bnapi, budget);
3046 }
3047 
3048 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
3049 {
3050 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
3051 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3052 	struct bnxt_cp_ring_info *cpr_rx;
3053 	u32 raw_cons = cpr->cp_raw_cons;
3054 	struct bnxt *bp = bnapi->bp;
3055 	struct nqe_cn *nqcmp;
3056 	int work_done = 0;
3057 	u32 cons;
3058 
3059 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
3060 		napi_complete(napi);
3061 		return 0;
3062 	}
3063 	if (cpr->has_more_work) {
3064 		cpr->has_more_work = 0;
3065 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
3066 	}
3067 	while (1) {
3068 		u16 type;
3069 
3070 		cons = RING_CMP(raw_cons);
3071 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
3072 
3073 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
3074 			if (cpr->has_more_work)
3075 				break;
3076 
3077 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL,
3078 					     budget);
3079 			cpr->cp_raw_cons = raw_cons;
3080 			if (napi_complete_done(napi, work_done))
3081 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
3082 						  cpr->cp_raw_cons);
3083 			goto poll_done;
3084 		}
3085 
3086 		/* The valid test of the entry must be done first before
3087 		 * reading any further.
3088 		 */
3089 		dma_rmb();
3090 
3091 		type = le16_to_cpu(nqcmp->type);
3092 		if (NQE_CN_TYPE(type) == NQ_CN_TYPE_CQ_NOTIFICATION) {
3093 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
3094 			u32 cq_type = BNXT_NQ_HDL_TYPE(idx);
3095 			struct bnxt_cp_ring_info *cpr2;
3096 
3097 			/* No more budget for RX work */
3098 			if (budget && work_done >= budget &&
3099 			    cq_type == BNXT_NQ_HDL_TYPE_RX)
3100 				break;
3101 
3102 			idx = BNXT_NQ_HDL_IDX(idx);
3103 			cpr2 = &cpr->cp_ring_arr[idx];
3104 			cpr2->had_nqe_notify = 1;
3105 			cpr2->toggle = NQE_CN_TOGGLE(type);
3106 			work_done += __bnxt_poll_work(bp, cpr2,
3107 						      budget - work_done);
3108 			cpr->has_more_work |= cpr2->has_more_work;
3109 		} else {
3110 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
3111 		}
3112 		raw_cons = NEXT_RAW_CMP(raw_cons);
3113 	}
3114 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget);
3115 	if (raw_cons != cpr->cp_raw_cons) {
3116 		cpr->cp_raw_cons = raw_cons;
3117 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
3118 	}
3119 poll_done:
3120 	cpr_rx = &cpr->cp_ring_arr[0];
3121 	if (cpr_rx->cp_ring_type == BNXT_NQ_HDL_TYPE_RX &&
3122 	    (bp->flags & BNXT_FLAG_DIM)) {
3123 		struct dim_sample dim_sample = {};
3124 
3125 		dim_update_sample(cpr->event_ctr,
3126 				  cpr_rx->rx_packets,
3127 				  cpr_rx->rx_bytes,
3128 				  &dim_sample);
3129 		net_dim(&cpr->dim, dim_sample);
3130 	}
3131 	return work_done;
3132 }
3133 
3134 static void bnxt_free_tx_skbs(struct bnxt *bp)
3135 {
3136 	int i, max_idx;
3137 	struct pci_dev *pdev = bp->pdev;
3138 
3139 	if (!bp->tx_ring)
3140 		return;
3141 
3142 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
3143 	for (i = 0; i < bp->tx_nr_rings; i++) {
3144 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3145 		int j;
3146 
3147 		if (!txr->tx_buf_ring)
3148 			continue;
3149 
3150 		for (j = 0; j < max_idx;) {
3151 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
3152 			struct sk_buff *skb;
3153 			int k, last;
3154 
3155 			if (i < bp->tx_nr_rings_xdp &&
3156 			    tx_buf->action == XDP_REDIRECT) {
3157 				dma_unmap_single(&pdev->dev,
3158 					dma_unmap_addr(tx_buf, mapping),
3159 					dma_unmap_len(tx_buf, len),
3160 					DMA_TO_DEVICE);
3161 				xdp_return_frame(tx_buf->xdpf);
3162 				tx_buf->action = 0;
3163 				tx_buf->xdpf = NULL;
3164 				j++;
3165 				continue;
3166 			}
3167 
3168 			skb = tx_buf->skb;
3169 			if (!skb) {
3170 				j++;
3171 				continue;
3172 			}
3173 
3174 			tx_buf->skb = NULL;
3175 
3176 			if (tx_buf->is_push) {
3177 				dev_kfree_skb(skb);
3178 				j += 2;
3179 				continue;
3180 			}
3181 
3182 			dma_unmap_single(&pdev->dev,
3183 					 dma_unmap_addr(tx_buf, mapping),
3184 					 skb_headlen(skb),
3185 					 DMA_TO_DEVICE);
3186 
3187 			last = tx_buf->nr_frags;
3188 			j += 2;
3189 			for (k = 0; k < last; k++, j++) {
3190 				int ring_idx = j & bp->tx_ring_mask;
3191 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
3192 
3193 				tx_buf = &txr->tx_buf_ring[ring_idx];
3194 				dma_unmap_page(
3195 					&pdev->dev,
3196 					dma_unmap_addr(tx_buf, mapping),
3197 					skb_frag_size(frag), DMA_TO_DEVICE);
3198 			}
3199 			dev_kfree_skb(skb);
3200 		}
3201 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
3202 	}
3203 }
3204 
3205 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
3206 {
3207 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3208 	struct pci_dev *pdev = bp->pdev;
3209 	struct bnxt_tpa_idx_map *map;
3210 	int i, max_idx, max_agg_idx;
3211 
3212 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
3213 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
3214 	if (!rxr->rx_tpa)
3215 		goto skip_rx_tpa_free;
3216 
3217 	for (i = 0; i < bp->max_tpa; i++) {
3218 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
3219 		u8 *data = tpa_info->data;
3220 
3221 		if (!data)
3222 			continue;
3223 
3224 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
3225 				       bp->rx_buf_use_size, bp->rx_dir,
3226 				       DMA_ATTR_WEAK_ORDERING);
3227 
3228 		tpa_info->data = NULL;
3229 
3230 		skb_free_frag(data);
3231 	}
3232 
3233 skip_rx_tpa_free:
3234 	if (!rxr->rx_buf_ring)
3235 		goto skip_rx_buf_free;
3236 
3237 	for (i = 0; i < max_idx; i++) {
3238 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
3239 		dma_addr_t mapping = rx_buf->mapping;
3240 		void *data = rx_buf->data;
3241 
3242 		if (!data)
3243 			continue;
3244 
3245 		rx_buf->data = NULL;
3246 		if (BNXT_RX_PAGE_MODE(bp)) {
3247 			page_pool_recycle_direct(rxr->page_pool, data);
3248 		} else {
3249 			dma_unmap_single_attrs(&pdev->dev, mapping,
3250 					       bp->rx_buf_use_size, bp->rx_dir,
3251 					       DMA_ATTR_WEAK_ORDERING);
3252 			skb_free_frag(data);
3253 		}
3254 	}
3255 
3256 skip_rx_buf_free:
3257 	if (!rxr->rx_agg_ring)
3258 		goto skip_rx_agg_free;
3259 
3260 	for (i = 0; i < max_agg_idx; i++) {
3261 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
3262 		struct page *page = rx_agg_buf->page;
3263 
3264 		if (!page)
3265 			continue;
3266 
3267 		rx_agg_buf->page = NULL;
3268 		__clear_bit(i, rxr->rx_agg_bmap);
3269 
3270 		page_pool_recycle_direct(rxr->page_pool, page);
3271 	}
3272 
3273 skip_rx_agg_free:
3274 	map = rxr->rx_tpa_idx_map;
3275 	if (map)
3276 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
3277 }
3278 
3279 static void bnxt_free_rx_skbs(struct bnxt *bp)
3280 {
3281 	int i;
3282 
3283 	if (!bp->rx_ring)
3284 		return;
3285 
3286 	for (i = 0; i < bp->rx_nr_rings; i++)
3287 		bnxt_free_one_rx_ring_skbs(bp, i);
3288 }
3289 
3290 static void bnxt_free_skbs(struct bnxt *bp)
3291 {
3292 	bnxt_free_tx_skbs(bp);
3293 	bnxt_free_rx_skbs(bp);
3294 }
3295 
3296 static void bnxt_init_ctx_mem(struct bnxt_ctx_mem_type *ctxm, void *p, int len)
3297 {
3298 	u8 init_val = ctxm->init_value;
3299 	u16 offset = ctxm->init_offset;
3300 	u8 *p2 = p;
3301 	int i;
3302 
3303 	if (!init_val)
3304 		return;
3305 	if (offset == BNXT_CTX_INIT_INVALID_OFFSET) {
3306 		memset(p, init_val, len);
3307 		return;
3308 	}
3309 	for (i = 0; i < len; i += ctxm->entry_size)
3310 		*(p2 + i + offset) = init_val;
3311 }
3312 
3313 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3314 {
3315 	struct pci_dev *pdev = bp->pdev;
3316 	int i;
3317 
3318 	if (!rmem->pg_arr)
3319 		goto skip_pages;
3320 
3321 	for (i = 0; i < rmem->nr_pages; i++) {
3322 		if (!rmem->pg_arr[i])
3323 			continue;
3324 
3325 		dma_free_coherent(&pdev->dev, rmem->page_size,
3326 				  rmem->pg_arr[i], rmem->dma_arr[i]);
3327 
3328 		rmem->pg_arr[i] = NULL;
3329 	}
3330 skip_pages:
3331 	if (rmem->pg_tbl) {
3332 		size_t pg_tbl_size = rmem->nr_pages * 8;
3333 
3334 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3335 			pg_tbl_size = rmem->page_size;
3336 		dma_free_coherent(&pdev->dev, pg_tbl_size,
3337 				  rmem->pg_tbl, rmem->pg_tbl_map);
3338 		rmem->pg_tbl = NULL;
3339 	}
3340 	if (rmem->vmem_size && *rmem->vmem) {
3341 		vfree(*rmem->vmem);
3342 		*rmem->vmem = NULL;
3343 	}
3344 }
3345 
3346 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3347 {
3348 	struct pci_dev *pdev = bp->pdev;
3349 	u64 valid_bit = 0;
3350 	int i;
3351 
3352 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
3353 		valid_bit = PTU_PTE_VALID;
3354 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
3355 		size_t pg_tbl_size = rmem->nr_pages * 8;
3356 
3357 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3358 			pg_tbl_size = rmem->page_size;
3359 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
3360 						  &rmem->pg_tbl_map,
3361 						  GFP_KERNEL);
3362 		if (!rmem->pg_tbl)
3363 			return -ENOMEM;
3364 	}
3365 
3366 	for (i = 0; i < rmem->nr_pages; i++) {
3367 		u64 extra_bits = valid_bit;
3368 
3369 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
3370 						     rmem->page_size,
3371 						     &rmem->dma_arr[i],
3372 						     GFP_KERNEL);
3373 		if (!rmem->pg_arr[i])
3374 			return -ENOMEM;
3375 
3376 		if (rmem->ctx_mem)
3377 			bnxt_init_ctx_mem(rmem->ctx_mem, rmem->pg_arr[i],
3378 					  rmem->page_size);
3379 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
3380 			if (i == rmem->nr_pages - 2 &&
3381 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3382 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
3383 			else if (i == rmem->nr_pages - 1 &&
3384 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3385 				extra_bits |= PTU_PTE_LAST;
3386 			rmem->pg_tbl[i] =
3387 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
3388 		}
3389 	}
3390 
3391 	if (rmem->vmem_size) {
3392 		*rmem->vmem = vzalloc(rmem->vmem_size);
3393 		if (!(*rmem->vmem))
3394 			return -ENOMEM;
3395 	}
3396 	return 0;
3397 }
3398 
3399 static void bnxt_free_tpa_info(struct bnxt *bp)
3400 {
3401 	int i, j;
3402 
3403 	for (i = 0; i < bp->rx_nr_rings; i++) {
3404 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3405 
3406 		kfree(rxr->rx_tpa_idx_map);
3407 		rxr->rx_tpa_idx_map = NULL;
3408 		if (rxr->rx_tpa) {
3409 			for (j = 0; j < bp->max_tpa; j++) {
3410 				kfree(rxr->rx_tpa[j].agg_arr);
3411 				rxr->rx_tpa[j].agg_arr = NULL;
3412 			}
3413 		}
3414 		kfree(rxr->rx_tpa);
3415 		rxr->rx_tpa = NULL;
3416 	}
3417 }
3418 
3419 static int bnxt_alloc_tpa_info(struct bnxt *bp)
3420 {
3421 	int i, j;
3422 
3423 	bp->max_tpa = MAX_TPA;
3424 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
3425 		if (!bp->max_tpa_v2)
3426 			return 0;
3427 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
3428 	}
3429 
3430 	for (i = 0; i < bp->rx_nr_rings; i++) {
3431 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3432 		struct rx_agg_cmp *agg;
3433 
3434 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
3435 				      GFP_KERNEL);
3436 		if (!rxr->rx_tpa)
3437 			return -ENOMEM;
3438 
3439 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
3440 			continue;
3441 		for (j = 0; j < bp->max_tpa; j++) {
3442 			agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL);
3443 			if (!agg)
3444 				return -ENOMEM;
3445 			rxr->rx_tpa[j].agg_arr = agg;
3446 		}
3447 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
3448 					      GFP_KERNEL);
3449 		if (!rxr->rx_tpa_idx_map)
3450 			return -ENOMEM;
3451 	}
3452 	return 0;
3453 }
3454 
3455 static void bnxt_free_rx_rings(struct bnxt *bp)
3456 {
3457 	int i;
3458 
3459 	if (!bp->rx_ring)
3460 		return;
3461 
3462 	bnxt_free_tpa_info(bp);
3463 	for (i = 0; i < bp->rx_nr_rings; i++) {
3464 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3465 		struct bnxt_ring_struct *ring;
3466 
3467 		if (rxr->xdp_prog)
3468 			bpf_prog_put(rxr->xdp_prog);
3469 
3470 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
3471 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3472 
3473 		page_pool_destroy(rxr->page_pool);
3474 		rxr->page_pool = NULL;
3475 
3476 		kfree(rxr->rx_agg_bmap);
3477 		rxr->rx_agg_bmap = NULL;
3478 
3479 		ring = &rxr->rx_ring_struct;
3480 		bnxt_free_ring(bp, &ring->ring_mem);
3481 
3482 		ring = &rxr->rx_agg_ring_struct;
3483 		bnxt_free_ring(bp, &ring->ring_mem);
3484 	}
3485 }
3486 
3487 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
3488 				   struct bnxt_rx_ring_info *rxr)
3489 {
3490 	struct page_pool_params pp = { 0 };
3491 
3492 	pp.pool_size = bp->rx_agg_ring_size;
3493 	if (BNXT_RX_PAGE_MODE(bp))
3494 		pp.pool_size += bp->rx_ring_size;
3495 	pp.nid = dev_to_node(&bp->pdev->dev);
3496 	pp.napi = &rxr->bnapi->napi;
3497 	pp.netdev = bp->dev;
3498 	pp.dev = &bp->pdev->dev;
3499 	pp.dma_dir = bp->rx_dir;
3500 	pp.max_len = PAGE_SIZE;
3501 	pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
3502 
3503 	rxr->page_pool = page_pool_create(&pp);
3504 	if (IS_ERR(rxr->page_pool)) {
3505 		int err = PTR_ERR(rxr->page_pool);
3506 
3507 		rxr->page_pool = NULL;
3508 		return err;
3509 	}
3510 	return 0;
3511 }
3512 
3513 static int bnxt_alloc_rx_rings(struct bnxt *bp)
3514 {
3515 	int i, rc = 0, agg_rings = 0;
3516 
3517 	if (!bp->rx_ring)
3518 		return -ENOMEM;
3519 
3520 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
3521 		agg_rings = 1;
3522 
3523 	for (i = 0; i < bp->rx_nr_rings; i++) {
3524 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3525 		struct bnxt_ring_struct *ring;
3526 
3527 		ring = &rxr->rx_ring_struct;
3528 
3529 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
3530 		if (rc)
3531 			return rc;
3532 
3533 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
3534 		if (rc < 0)
3535 			return rc;
3536 
3537 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
3538 						MEM_TYPE_PAGE_POOL,
3539 						rxr->page_pool);
3540 		if (rc) {
3541 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3542 			return rc;
3543 		}
3544 
3545 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3546 		if (rc)
3547 			return rc;
3548 
3549 		ring->grp_idx = i;
3550 		if (agg_rings) {
3551 			u16 mem_size;
3552 
3553 			ring = &rxr->rx_agg_ring_struct;
3554 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3555 			if (rc)
3556 				return rc;
3557 
3558 			ring->grp_idx = i;
3559 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
3560 			mem_size = rxr->rx_agg_bmap_size / 8;
3561 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
3562 			if (!rxr->rx_agg_bmap)
3563 				return -ENOMEM;
3564 		}
3565 	}
3566 	if (bp->flags & BNXT_FLAG_TPA)
3567 		rc = bnxt_alloc_tpa_info(bp);
3568 	return rc;
3569 }
3570 
3571 static void bnxt_free_tx_rings(struct bnxt *bp)
3572 {
3573 	int i;
3574 	struct pci_dev *pdev = bp->pdev;
3575 
3576 	if (!bp->tx_ring)
3577 		return;
3578 
3579 	for (i = 0; i < bp->tx_nr_rings; i++) {
3580 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3581 		struct bnxt_ring_struct *ring;
3582 
3583 		if (txr->tx_push) {
3584 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
3585 					  txr->tx_push, txr->tx_push_mapping);
3586 			txr->tx_push = NULL;
3587 		}
3588 
3589 		ring = &txr->tx_ring_struct;
3590 
3591 		bnxt_free_ring(bp, &ring->ring_mem);
3592 	}
3593 }
3594 
3595 #define BNXT_TC_TO_RING_BASE(bp, tc)	\
3596 	((tc) * (bp)->tx_nr_rings_per_tc)
3597 
3598 #define BNXT_RING_TO_TC_OFF(bp, tx)	\
3599 	((tx) % (bp)->tx_nr_rings_per_tc)
3600 
3601 #define BNXT_RING_TO_TC(bp, tx)		\
3602 	((tx) / (bp)->tx_nr_rings_per_tc)
3603 
3604 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3605 {
3606 	int i, j, rc;
3607 	struct pci_dev *pdev = bp->pdev;
3608 
3609 	bp->tx_push_size = 0;
3610 	if (bp->tx_push_thresh) {
3611 		int push_size;
3612 
3613 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3614 					bp->tx_push_thresh);
3615 
3616 		if (push_size > 256) {
3617 			push_size = 0;
3618 			bp->tx_push_thresh = 0;
3619 		}
3620 
3621 		bp->tx_push_size = push_size;
3622 	}
3623 
3624 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3625 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3626 		struct bnxt_ring_struct *ring;
3627 		u8 qidx;
3628 
3629 		ring = &txr->tx_ring_struct;
3630 
3631 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3632 		if (rc)
3633 			return rc;
3634 
3635 		ring->grp_idx = txr->bnapi->index;
3636 		if (bp->tx_push_size) {
3637 			dma_addr_t mapping;
3638 
3639 			/* One pre-allocated DMA buffer to backup
3640 			 * TX push operation
3641 			 */
3642 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
3643 						bp->tx_push_size,
3644 						&txr->tx_push_mapping,
3645 						GFP_KERNEL);
3646 
3647 			if (!txr->tx_push)
3648 				return -ENOMEM;
3649 
3650 			mapping = txr->tx_push_mapping +
3651 				sizeof(struct tx_push_bd);
3652 			txr->data_mapping = cpu_to_le64(mapping);
3653 		}
3654 		qidx = bp->tc_to_qidx[j];
3655 		ring->queue_id = bp->q_info[qidx].queue_id;
3656 		spin_lock_init(&txr->xdp_tx_lock);
3657 		if (i < bp->tx_nr_rings_xdp)
3658 			continue;
3659 		if (BNXT_RING_TO_TC_OFF(bp, i) == (bp->tx_nr_rings_per_tc - 1))
3660 			j++;
3661 	}
3662 	return 0;
3663 }
3664 
3665 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr)
3666 {
3667 	struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3668 
3669 	kfree(cpr->cp_desc_ring);
3670 	cpr->cp_desc_ring = NULL;
3671 	ring->ring_mem.pg_arr = NULL;
3672 	kfree(cpr->cp_desc_mapping);
3673 	cpr->cp_desc_mapping = NULL;
3674 	ring->ring_mem.dma_arr = NULL;
3675 }
3676 
3677 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n)
3678 {
3679 	cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL);
3680 	if (!cpr->cp_desc_ring)
3681 		return -ENOMEM;
3682 	cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping),
3683 				       GFP_KERNEL);
3684 	if (!cpr->cp_desc_mapping)
3685 		return -ENOMEM;
3686 	return 0;
3687 }
3688 
3689 static void bnxt_free_all_cp_arrays(struct bnxt *bp)
3690 {
3691 	int i;
3692 
3693 	if (!bp->bnapi)
3694 		return;
3695 	for (i = 0; i < bp->cp_nr_rings; i++) {
3696 		struct bnxt_napi *bnapi = bp->bnapi[i];
3697 
3698 		if (!bnapi)
3699 			continue;
3700 		bnxt_free_cp_arrays(&bnapi->cp_ring);
3701 	}
3702 }
3703 
3704 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp)
3705 {
3706 	int i, n = bp->cp_nr_pages;
3707 
3708 	for (i = 0; i < bp->cp_nr_rings; i++) {
3709 		struct bnxt_napi *bnapi = bp->bnapi[i];
3710 		int rc;
3711 
3712 		if (!bnapi)
3713 			continue;
3714 		rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n);
3715 		if (rc)
3716 			return rc;
3717 	}
3718 	return 0;
3719 }
3720 
3721 static void bnxt_free_cp_rings(struct bnxt *bp)
3722 {
3723 	int i;
3724 
3725 	if (!bp->bnapi)
3726 		return;
3727 
3728 	for (i = 0; i < bp->cp_nr_rings; i++) {
3729 		struct bnxt_napi *bnapi = bp->bnapi[i];
3730 		struct bnxt_cp_ring_info *cpr;
3731 		struct bnxt_ring_struct *ring;
3732 		int j;
3733 
3734 		if (!bnapi)
3735 			continue;
3736 
3737 		cpr = &bnapi->cp_ring;
3738 		ring = &cpr->cp_ring_struct;
3739 
3740 		bnxt_free_ring(bp, &ring->ring_mem);
3741 
3742 		if (!cpr->cp_ring_arr)
3743 			continue;
3744 
3745 		for (j = 0; j < cpr->cp_ring_count; j++) {
3746 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
3747 
3748 			ring = &cpr2->cp_ring_struct;
3749 			bnxt_free_ring(bp, &ring->ring_mem);
3750 			bnxt_free_cp_arrays(cpr2);
3751 		}
3752 		kfree(cpr->cp_ring_arr);
3753 		cpr->cp_ring_arr = NULL;
3754 		cpr->cp_ring_count = 0;
3755 	}
3756 }
3757 
3758 static int bnxt_alloc_cp_sub_ring(struct bnxt *bp,
3759 				  struct bnxt_cp_ring_info *cpr)
3760 {
3761 	struct bnxt_ring_mem_info *rmem;
3762 	struct bnxt_ring_struct *ring;
3763 	int rc;
3764 
3765 	rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages);
3766 	if (rc) {
3767 		bnxt_free_cp_arrays(cpr);
3768 		return -ENOMEM;
3769 	}
3770 	ring = &cpr->cp_ring_struct;
3771 	rmem = &ring->ring_mem;
3772 	rmem->nr_pages = bp->cp_nr_pages;
3773 	rmem->page_size = HW_CMPD_RING_SIZE;
3774 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3775 	rmem->dma_arr = cpr->cp_desc_mapping;
3776 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3777 	rc = bnxt_alloc_ring(bp, rmem);
3778 	if (rc) {
3779 		bnxt_free_ring(bp, rmem);
3780 		bnxt_free_cp_arrays(cpr);
3781 	}
3782 	return rc;
3783 }
3784 
3785 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3786 {
3787 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3788 	int i, j, rc, ulp_base_vec, ulp_msix;
3789 	int tcs = netdev_get_num_tc(bp->dev);
3790 
3791 	if (!tcs)
3792 		tcs = 1;
3793 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3794 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3795 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
3796 		struct bnxt_napi *bnapi = bp->bnapi[i];
3797 		struct bnxt_cp_ring_info *cpr, *cpr2;
3798 		struct bnxt_ring_struct *ring;
3799 		int cp_count = 0, k;
3800 		int rx = 0, tx = 0;
3801 
3802 		if (!bnapi)
3803 			continue;
3804 
3805 		cpr = &bnapi->cp_ring;
3806 		cpr->bnapi = bnapi;
3807 		ring = &cpr->cp_ring_struct;
3808 
3809 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3810 		if (rc)
3811 			return rc;
3812 
3813 		if (ulp_msix && i >= ulp_base_vec)
3814 			ring->map_idx = i + ulp_msix;
3815 		else
3816 			ring->map_idx = i;
3817 
3818 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
3819 			continue;
3820 
3821 		if (i < bp->rx_nr_rings) {
3822 			cp_count++;
3823 			rx = 1;
3824 		}
3825 		if (i < bp->tx_nr_rings_xdp) {
3826 			cp_count++;
3827 			tx = 1;
3828 		} else if ((sh && i < bp->tx_nr_rings) ||
3829 			 (!sh && i >= bp->rx_nr_rings)) {
3830 			cp_count += tcs;
3831 			tx = 1;
3832 		}
3833 
3834 		cpr->cp_ring_arr = kcalloc(cp_count, sizeof(*cpr),
3835 					   GFP_KERNEL);
3836 		if (!cpr->cp_ring_arr)
3837 			return -ENOMEM;
3838 		cpr->cp_ring_count = cp_count;
3839 
3840 		for (k = 0; k < cp_count; k++) {
3841 			cpr2 = &cpr->cp_ring_arr[k];
3842 			rc = bnxt_alloc_cp_sub_ring(bp, cpr2);
3843 			if (rc)
3844 				return rc;
3845 			cpr2->bnapi = bnapi;
3846 			cpr2->cp_idx = k;
3847 			if (!k && rx) {
3848 				bp->rx_ring[i].rx_cpr = cpr2;
3849 				cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_RX;
3850 			} else {
3851 				int n, tc = k - rx;
3852 
3853 				n = BNXT_TC_TO_RING_BASE(bp, tc) + j;
3854 				bp->tx_ring[n].tx_cpr = cpr2;
3855 				cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_TX;
3856 			}
3857 		}
3858 		if (tx)
3859 			j++;
3860 	}
3861 	return 0;
3862 }
3863 
3864 static void bnxt_init_ring_struct(struct bnxt *bp)
3865 {
3866 	int i, j;
3867 
3868 	for (i = 0; i < bp->cp_nr_rings; i++) {
3869 		struct bnxt_napi *bnapi = bp->bnapi[i];
3870 		struct bnxt_ring_mem_info *rmem;
3871 		struct bnxt_cp_ring_info *cpr;
3872 		struct bnxt_rx_ring_info *rxr;
3873 		struct bnxt_tx_ring_info *txr;
3874 		struct bnxt_ring_struct *ring;
3875 
3876 		if (!bnapi)
3877 			continue;
3878 
3879 		cpr = &bnapi->cp_ring;
3880 		ring = &cpr->cp_ring_struct;
3881 		rmem = &ring->ring_mem;
3882 		rmem->nr_pages = bp->cp_nr_pages;
3883 		rmem->page_size = HW_CMPD_RING_SIZE;
3884 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3885 		rmem->dma_arr = cpr->cp_desc_mapping;
3886 		rmem->vmem_size = 0;
3887 
3888 		rxr = bnapi->rx_ring;
3889 		if (!rxr)
3890 			goto skip_rx;
3891 
3892 		ring = &rxr->rx_ring_struct;
3893 		rmem = &ring->ring_mem;
3894 		rmem->nr_pages = bp->rx_nr_pages;
3895 		rmem->page_size = HW_RXBD_RING_SIZE;
3896 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3897 		rmem->dma_arr = rxr->rx_desc_mapping;
3898 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3899 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3900 
3901 		ring = &rxr->rx_agg_ring_struct;
3902 		rmem = &ring->ring_mem;
3903 		rmem->nr_pages = bp->rx_agg_nr_pages;
3904 		rmem->page_size = HW_RXBD_RING_SIZE;
3905 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3906 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3907 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3908 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3909 
3910 skip_rx:
3911 		bnxt_for_each_napi_tx(j, bnapi, txr) {
3912 			ring = &txr->tx_ring_struct;
3913 			rmem = &ring->ring_mem;
3914 			rmem->nr_pages = bp->tx_nr_pages;
3915 			rmem->page_size = HW_TXBD_RING_SIZE;
3916 			rmem->pg_arr = (void **)txr->tx_desc_ring;
3917 			rmem->dma_arr = txr->tx_desc_mapping;
3918 			rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3919 			rmem->vmem = (void **)&txr->tx_buf_ring;
3920 		}
3921 	}
3922 }
3923 
3924 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3925 {
3926 	int i;
3927 	u32 prod;
3928 	struct rx_bd **rx_buf_ring;
3929 
3930 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3931 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3932 		int j;
3933 		struct rx_bd *rxbd;
3934 
3935 		rxbd = rx_buf_ring[i];
3936 		if (!rxbd)
3937 			continue;
3938 
3939 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3940 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3941 			rxbd->rx_bd_opaque = prod;
3942 		}
3943 	}
3944 }
3945 
3946 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
3947 {
3948 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3949 	struct net_device *dev = bp->dev;
3950 	u32 prod;
3951 	int i;
3952 
3953 	prod = rxr->rx_prod;
3954 	for (i = 0; i < bp->rx_ring_size; i++) {
3955 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
3956 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3957 				    ring_nr, i, bp->rx_ring_size);
3958 			break;
3959 		}
3960 		prod = NEXT_RX(prod);
3961 	}
3962 	rxr->rx_prod = prod;
3963 
3964 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3965 		return 0;
3966 
3967 	prod = rxr->rx_agg_prod;
3968 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
3969 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
3970 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3971 				    ring_nr, i, bp->rx_ring_size);
3972 			break;
3973 		}
3974 		prod = NEXT_RX_AGG(prod);
3975 	}
3976 	rxr->rx_agg_prod = prod;
3977 
3978 	if (rxr->rx_tpa) {
3979 		dma_addr_t mapping;
3980 		u8 *data;
3981 
3982 		for (i = 0; i < bp->max_tpa; i++) {
3983 			data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL);
3984 			if (!data)
3985 				return -ENOMEM;
3986 
3987 			rxr->rx_tpa[i].data = data;
3988 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3989 			rxr->rx_tpa[i].mapping = mapping;
3990 		}
3991 	}
3992 	return 0;
3993 }
3994 
3995 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3996 {
3997 	struct bnxt_rx_ring_info *rxr;
3998 	struct bnxt_ring_struct *ring;
3999 	u32 type;
4000 
4001 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
4002 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
4003 
4004 	if (NET_IP_ALIGN == 2)
4005 		type |= RX_BD_FLAGS_SOP;
4006 
4007 	rxr = &bp->rx_ring[ring_nr];
4008 	ring = &rxr->rx_ring_struct;
4009 	bnxt_init_rxbd_pages(ring, type);
4010 
4011 	netif_queue_set_napi(bp->dev, ring_nr, NETDEV_QUEUE_TYPE_RX,
4012 			     &rxr->bnapi->napi);
4013 
4014 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
4015 		bpf_prog_add(bp->xdp_prog, 1);
4016 		rxr->xdp_prog = bp->xdp_prog;
4017 	}
4018 	ring->fw_ring_id = INVALID_HW_RING_ID;
4019 
4020 	ring = &rxr->rx_agg_ring_struct;
4021 	ring->fw_ring_id = INVALID_HW_RING_ID;
4022 
4023 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
4024 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
4025 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
4026 
4027 		bnxt_init_rxbd_pages(ring, type);
4028 	}
4029 
4030 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
4031 }
4032 
4033 static void bnxt_init_cp_rings(struct bnxt *bp)
4034 {
4035 	int i, j;
4036 
4037 	for (i = 0; i < bp->cp_nr_rings; i++) {
4038 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
4039 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4040 
4041 		ring->fw_ring_id = INVALID_HW_RING_ID;
4042 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
4043 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
4044 		if (!cpr->cp_ring_arr)
4045 			continue;
4046 		for (j = 0; j < cpr->cp_ring_count; j++) {
4047 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
4048 
4049 			ring = &cpr2->cp_ring_struct;
4050 			ring->fw_ring_id = INVALID_HW_RING_ID;
4051 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
4052 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
4053 		}
4054 	}
4055 }
4056 
4057 static int bnxt_init_rx_rings(struct bnxt *bp)
4058 {
4059 	int i, rc = 0;
4060 
4061 	if (BNXT_RX_PAGE_MODE(bp)) {
4062 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
4063 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
4064 	} else {
4065 		bp->rx_offset = BNXT_RX_OFFSET;
4066 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
4067 	}
4068 
4069 	for (i = 0; i < bp->rx_nr_rings; i++) {
4070 		rc = bnxt_init_one_rx_ring(bp, i);
4071 		if (rc)
4072 			break;
4073 	}
4074 
4075 	return rc;
4076 }
4077 
4078 static int bnxt_init_tx_rings(struct bnxt *bp)
4079 {
4080 	u16 i;
4081 
4082 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
4083 				   BNXT_MIN_TX_DESC_CNT);
4084 
4085 	for (i = 0; i < bp->tx_nr_rings; i++) {
4086 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4087 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4088 
4089 		ring->fw_ring_id = INVALID_HW_RING_ID;
4090 
4091 		if (i >= bp->tx_nr_rings_xdp)
4092 			netif_queue_set_napi(bp->dev, i - bp->tx_nr_rings_xdp,
4093 					     NETDEV_QUEUE_TYPE_TX,
4094 					     &txr->bnapi->napi);
4095 	}
4096 
4097 	return 0;
4098 }
4099 
4100 static void bnxt_free_ring_grps(struct bnxt *bp)
4101 {
4102 	kfree(bp->grp_info);
4103 	bp->grp_info = NULL;
4104 }
4105 
4106 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
4107 {
4108 	int i;
4109 
4110 	if (irq_re_init) {
4111 		bp->grp_info = kcalloc(bp->cp_nr_rings,
4112 				       sizeof(struct bnxt_ring_grp_info),
4113 				       GFP_KERNEL);
4114 		if (!bp->grp_info)
4115 			return -ENOMEM;
4116 	}
4117 	for (i = 0; i < bp->cp_nr_rings; i++) {
4118 		if (irq_re_init)
4119 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
4120 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
4121 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
4122 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
4123 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
4124 	}
4125 	return 0;
4126 }
4127 
4128 static void bnxt_free_vnics(struct bnxt *bp)
4129 {
4130 	kfree(bp->vnic_info);
4131 	bp->vnic_info = NULL;
4132 	bp->nr_vnics = 0;
4133 }
4134 
4135 static int bnxt_alloc_vnics(struct bnxt *bp)
4136 {
4137 	int num_vnics = 1;
4138 
4139 #ifdef CONFIG_RFS_ACCEL
4140 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5_PLUS)) == BNXT_FLAG_RFS)
4141 		num_vnics += bp->rx_nr_rings;
4142 #endif
4143 
4144 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4145 		num_vnics++;
4146 
4147 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
4148 				GFP_KERNEL);
4149 	if (!bp->vnic_info)
4150 		return -ENOMEM;
4151 
4152 	bp->nr_vnics = num_vnics;
4153 	return 0;
4154 }
4155 
4156 static void bnxt_init_vnics(struct bnxt *bp)
4157 {
4158 	int i;
4159 
4160 	for (i = 0; i < bp->nr_vnics; i++) {
4161 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4162 		int j;
4163 
4164 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
4165 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
4166 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
4167 
4168 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
4169 
4170 		if (bp->vnic_info[i].rss_hash_key) {
4171 			if (i == 0)
4172 				get_random_bytes(vnic->rss_hash_key,
4173 					      HW_HASH_KEY_SIZE);
4174 			else
4175 				memcpy(vnic->rss_hash_key,
4176 				       bp->vnic_info[0].rss_hash_key,
4177 				       HW_HASH_KEY_SIZE);
4178 		}
4179 	}
4180 }
4181 
4182 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
4183 {
4184 	int pages;
4185 
4186 	pages = ring_size / desc_per_pg;
4187 
4188 	if (!pages)
4189 		return 1;
4190 
4191 	pages++;
4192 
4193 	while (pages & (pages - 1))
4194 		pages++;
4195 
4196 	return pages;
4197 }
4198 
4199 void bnxt_set_tpa_flags(struct bnxt *bp)
4200 {
4201 	bp->flags &= ~BNXT_FLAG_TPA;
4202 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
4203 		return;
4204 	if (bp->dev->features & NETIF_F_LRO)
4205 		bp->flags |= BNXT_FLAG_LRO;
4206 	else if (bp->dev->features & NETIF_F_GRO_HW)
4207 		bp->flags |= BNXT_FLAG_GRO;
4208 }
4209 
4210 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
4211  * be set on entry.
4212  */
4213 void bnxt_set_ring_params(struct bnxt *bp)
4214 {
4215 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
4216 	u32 agg_factor = 0, agg_ring_size = 0;
4217 
4218 	/* 8 for CRC and VLAN */
4219 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
4220 
4221 	rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) +
4222 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4223 
4224 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
4225 	ring_size = bp->rx_ring_size;
4226 	bp->rx_agg_ring_size = 0;
4227 	bp->rx_agg_nr_pages = 0;
4228 
4229 	if (bp->flags & BNXT_FLAG_TPA)
4230 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
4231 
4232 	bp->flags &= ~BNXT_FLAG_JUMBO;
4233 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
4234 		u32 jumbo_factor;
4235 
4236 		bp->flags |= BNXT_FLAG_JUMBO;
4237 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
4238 		if (jumbo_factor > agg_factor)
4239 			agg_factor = jumbo_factor;
4240 	}
4241 	if (agg_factor) {
4242 		if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) {
4243 			ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA;
4244 			netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n",
4245 				    bp->rx_ring_size, ring_size);
4246 			bp->rx_ring_size = ring_size;
4247 		}
4248 		agg_ring_size = ring_size * agg_factor;
4249 
4250 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
4251 							RX_DESC_CNT);
4252 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
4253 			u32 tmp = agg_ring_size;
4254 
4255 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
4256 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
4257 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
4258 				    tmp, agg_ring_size);
4259 		}
4260 		bp->rx_agg_ring_size = agg_ring_size;
4261 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
4262 
4263 		if (BNXT_RX_PAGE_MODE(bp)) {
4264 			rx_space = PAGE_SIZE;
4265 			rx_size = PAGE_SIZE -
4266 				  ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) -
4267 				  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4268 		} else {
4269 			rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
4270 			rx_space = rx_size + NET_SKB_PAD +
4271 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4272 		}
4273 	}
4274 
4275 	bp->rx_buf_use_size = rx_size;
4276 	bp->rx_buf_size = rx_space;
4277 
4278 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
4279 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
4280 
4281 	ring_size = bp->tx_ring_size;
4282 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
4283 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
4284 
4285 	max_rx_cmpl = bp->rx_ring_size;
4286 	/* MAX TPA needs to be added because TPA_START completions are
4287 	 * immediately recycled, so the TPA completions are not bound by
4288 	 * the RX ring size.
4289 	 */
4290 	if (bp->flags & BNXT_FLAG_TPA)
4291 		max_rx_cmpl += bp->max_tpa;
4292 	/* RX and TPA completions are 32-byte, all others are 16-byte */
4293 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
4294 	bp->cp_ring_size = ring_size;
4295 
4296 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
4297 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
4298 		bp->cp_nr_pages = MAX_CP_PAGES;
4299 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
4300 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
4301 			    ring_size, bp->cp_ring_size);
4302 	}
4303 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
4304 	bp->cp_ring_mask = bp->cp_bit - 1;
4305 }
4306 
4307 /* Changing allocation mode of RX rings.
4308  * TODO: Update when extending xdp_rxq_info to support allocation modes.
4309  */
4310 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
4311 {
4312 	struct net_device *dev = bp->dev;
4313 
4314 	if (page_mode) {
4315 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
4316 		bp->flags |= BNXT_FLAG_RX_PAGE_MODE;
4317 
4318 		if (bp->xdp_prog->aux->xdp_has_frags)
4319 			dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU);
4320 		else
4321 			dev->max_mtu =
4322 				min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
4323 		if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) {
4324 			bp->flags |= BNXT_FLAG_JUMBO;
4325 			bp->rx_skb_func = bnxt_rx_multi_page_skb;
4326 		} else {
4327 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
4328 			bp->rx_skb_func = bnxt_rx_page_skb;
4329 		}
4330 		bp->rx_dir = DMA_BIDIRECTIONAL;
4331 		/* Disable LRO or GRO_HW */
4332 		netdev_update_features(dev);
4333 	} else {
4334 		dev->max_mtu = bp->max_mtu;
4335 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
4336 		bp->rx_dir = DMA_FROM_DEVICE;
4337 		bp->rx_skb_func = bnxt_rx_skb;
4338 	}
4339 	return 0;
4340 }
4341 
4342 static void bnxt_free_vnic_attributes(struct bnxt *bp)
4343 {
4344 	int i;
4345 	struct bnxt_vnic_info *vnic;
4346 	struct pci_dev *pdev = bp->pdev;
4347 
4348 	if (!bp->vnic_info)
4349 		return;
4350 
4351 	for (i = 0; i < bp->nr_vnics; i++) {
4352 		vnic = &bp->vnic_info[i];
4353 
4354 		kfree(vnic->fw_grp_ids);
4355 		vnic->fw_grp_ids = NULL;
4356 
4357 		kfree(vnic->uc_list);
4358 		vnic->uc_list = NULL;
4359 
4360 		if (vnic->mc_list) {
4361 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
4362 					  vnic->mc_list, vnic->mc_list_mapping);
4363 			vnic->mc_list = NULL;
4364 		}
4365 
4366 		if (vnic->rss_table) {
4367 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
4368 					  vnic->rss_table,
4369 					  vnic->rss_table_dma_addr);
4370 			vnic->rss_table = NULL;
4371 		}
4372 
4373 		vnic->rss_hash_key = NULL;
4374 		vnic->flags = 0;
4375 	}
4376 }
4377 
4378 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
4379 {
4380 	int i, rc = 0, size;
4381 	struct bnxt_vnic_info *vnic;
4382 	struct pci_dev *pdev = bp->pdev;
4383 	int max_rings;
4384 
4385 	for (i = 0; i < bp->nr_vnics; i++) {
4386 		vnic = &bp->vnic_info[i];
4387 
4388 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
4389 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
4390 
4391 			if (mem_size > 0) {
4392 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
4393 				if (!vnic->uc_list) {
4394 					rc = -ENOMEM;
4395 					goto out;
4396 				}
4397 			}
4398 		}
4399 
4400 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
4401 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
4402 			vnic->mc_list =
4403 				dma_alloc_coherent(&pdev->dev,
4404 						   vnic->mc_list_size,
4405 						   &vnic->mc_list_mapping,
4406 						   GFP_KERNEL);
4407 			if (!vnic->mc_list) {
4408 				rc = -ENOMEM;
4409 				goto out;
4410 			}
4411 		}
4412 
4413 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4414 			goto vnic_skip_grps;
4415 
4416 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4417 			max_rings = bp->rx_nr_rings;
4418 		else
4419 			max_rings = 1;
4420 
4421 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
4422 		if (!vnic->fw_grp_ids) {
4423 			rc = -ENOMEM;
4424 			goto out;
4425 		}
4426 vnic_skip_grps:
4427 		if ((bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) &&
4428 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
4429 			continue;
4430 
4431 		/* Allocate rss table and hash key */
4432 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
4433 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4434 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
4435 
4436 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
4437 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
4438 						     vnic->rss_table_size,
4439 						     &vnic->rss_table_dma_addr,
4440 						     GFP_KERNEL);
4441 		if (!vnic->rss_table) {
4442 			rc = -ENOMEM;
4443 			goto out;
4444 		}
4445 
4446 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
4447 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
4448 	}
4449 	return 0;
4450 
4451 out:
4452 	return rc;
4453 }
4454 
4455 static void bnxt_free_hwrm_resources(struct bnxt *bp)
4456 {
4457 	struct bnxt_hwrm_wait_token *token;
4458 
4459 	dma_pool_destroy(bp->hwrm_dma_pool);
4460 	bp->hwrm_dma_pool = NULL;
4461 
4462 	rcu_read_lock();
4463 	hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node)
4464 		WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED);
4465 	rcu_read_unlock();
4466 }
4467 
4468 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
4469 {
4470 	bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev,
4471 					    BNXT_HWRM_DMA_SIZE,
4472 					    BNXT_HWRM_DMA_ALIGN, 0);
4473 	if (!bp->hwrm_dma_pool)
4474 		return -ENOMEM;
4475 
4476 	INIT_HLIST_HEAD(&bp->hwrm_pending_list);
4477 
4478 	return 0;
4479 }
4480 
4481 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
4482 {
4483 	kfree(stats->hw_masks);
4484 	stats->hw_masks = NULL;
4485 	kfree(stats->sw_stats);
4486 	stats->sw_stats = NULL;
4487 	if (stats->hw_stats) {
4488 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
4489 				  stats->hw_stats_map);
4490 		stats->hw_stats = NULL;
4491 	}
4492 }
4493 
4494 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
4495 				bool alloc_masks)
4496 {
4497 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
4498 					     &stats->hw_stats_map, GFP_KERNEL);
4499 	if (!stats->hw_stats)
4500 		return -ENOMEM;
4501 
4502 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
4503 	if (!stats->sw_stats)
4504 		goto stats_mem_err;
4505 
4506 	if (alloc_masks) {
4507 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
4508 		if (!stats->hw_masks)
4509 			goto stats_mem_err;
4510 	}
4511 	return 0;
4512 
4513 stats_mem_err:
4514 	bnxt_free_stats_mem(bp, stats);
4515 	return -ENOMEM;
4516 }
4517 
4518 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
4519 {
4520 	int i;
4521 
4522 	for (i = 0; i < count; i++)
4523 		mask_arr[i] = mask;
4524 }
4525 
4526 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
4527 {
4528 	int i;
4529 
4530 	for (i = 0; i < count; i++)
4531 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
4532 }
4533 
4534 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
4535 				    struct bnxt_stats_mem *stats)
4536 {
4537 	struct hwrm_func_qstats_ext_output *resp;
4538 	struct hwrm_func_qstats_ext_input *req;
4539 	__le64 *hw_masks;
4540 	int rc;
4541 
4542 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
4543 	    !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
4544 		return -EOPNOTSUPP;
4545 
4546 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT);
4547 	if (rc)
4548 		return rc;
4549 
4550 	req->fid = cpu_to_le16(0xffff);
4551 	req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4552 
4553 	resp = hwrm_req_hold(bp, req);
4554 	rc = hwrm_req_send(bp, req);
4555 	if (!rc) {
4556 		hw_masks = &resp->rx_ucast_pkts;
4557 		bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
4558 	}
4559 	hwrm_req_drop(bp, req);
4560 	return rc;
4561 }
4562 
4563 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
4564 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
4565 
4566 static void bnxt_init_stats(struct bnxt *bp)
4567 {
4568 	struct bnxt_napi *bnapi = bp->bnapi[0];
4569 	struct bnxt_cp_ring_info *cpr;
4570 	struct bnxt_stats_mem *stats;
4571 	__le64 *rx_stats, *tx_stats;
4572 	int rc, rx_count, tx_count;
4573 	u64 *rx_masks, *tx_masks;
4574 	u64 mask;
4575 	u8 flags;
4576 
4577 	cpr = &bnapi->cp_ring;
4578 	stats = &cpr->stats;
4579 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
4580 	if (rc) {
4581 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4582 			mask = (1ULL << 48) - 1;
4583 		else
4584 			mask = -1ULL;
4585 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
4586 	}
4587 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
4588 		stats = &bp->port_stats;
4589 		rx_stats = stats->hw_stats;
4590 		rx_masks = stats->hw_masks;
4591 		rx_count = sizeof(struct rx_port_stats) / 8;
4592 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4593 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4594 		tx_count = sizeof(struct tx_port_stats) / 8;
4595 
4596 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
4597 		rc = bnxt_hwrm_port_qstats(bp, flags);
4598 		if (rc) {
4599 			mask = (1ULL << 40) - 1;
4600 
4601 			bnxt_fill_masks(rx_masks, mask, rx_count);
4602 			bnxt_fill_masks(tx_masks, mask, tx_count);
4603 		} else {
4604 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4605 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
4606 			bnxt_hwrm_port_qstats(bp, 0);
4607 		}
4608 	}
4609 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
4610 		stats = &bp->rx_port_stats_ext;
4611 		rx_stats = stats->hw_stats;
4612 		rx_masks = stats->hw_masks;
4613 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
4614 		stats = &bp->tx_port_stats_ext;
4615 		tx_stats = stats->hw_stats;
4616 		tx_masks = stats->hw_masks;
4617 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
4618 
4619 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4620 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
4621 		if (rc) {
4622 			mask = (1ULL << 40) - 1;
4623 
4624 			bnxt_fill_masks(rx_masks, mask, rx_count);
4625 			if (tx_stats)
4626 				bnxt_fill_masks(tx_masks, mask, tx_count);
4627 		} else {
4628 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4629 			if (tx_stats)
4630 				bnxt_copy_hw_masks(tx_masks, tx_stats,
4631 						   tx_count);
4632 			bnxt_hwrm_port_qstats_ext(bp, 0);
4633 		}
4634 	}
4635 }
4636 
4637 static void bnxt_free_port_stats(struct bnxt *bp)
4638 {
4639 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
4640 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
4641 
4642 	bnxt_free_stats_mem(bp, &bp->port_stats);
4643 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
4644 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
4645 }
4646 
4647 static void bnxt_free_ring_stats(struct bnxt *bp)
4648 {
4649 	int i;
4650 
4651 	if (!bp->bnapi)
4652 		return;
4653 
4654 	for (i = 0; i < bp->cp_nr_rings; i++) {
4655 		struct bnxt_napi *bnapi = bp->bnapi[i];
4656 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4657 
4658 		bnxt_free_stats_mem(bp, &cpr->stats);
4659 	}
4660 }
4661 
4662 static int bnxt_alloc_stats(struct bnxt *bp)
4663 {
4664 	u32 size, i;
4665 	int rc;
4666 
4667 	size = bp->hw_ring_stats_size;
4668 
4669 	for (i = 0; i < bp->cp_nr_rings; i++) {
4670 		struct bnxt_napi *bnapi = bp->bnapi[i];
4671 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4672 
4673 		cpr->stats.len = size;
4674 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4675 		if (rc)
4676 			return rc;
4677 
4678 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4679 	}
4680 
4681 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4682 		return 0;
4683 
4684 	if (bp->port_stats.hw_stats)
4685 		goto alloc_ext_stats;
4686 
4687 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4688 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4689 	if (rc)
4690 		return rc;
4691 
4692 	bp->flags |= BNXT_FLAG_PORT_STATS;
4693 
4694 alloc_ext_stats:
4695 	/* Display extended statistics only if FW supports it */
4696 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4697 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4698 			return 0;
4699 
4700 	if (bp->rx_port_stats_ext.hw_stats)
4701 		goto alloc_tx_ext_stats;
4702 
4703 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4704 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4705 	/* Extended stats are optional */
4706 	if (rc)
4707 		return 0;
4708 
4709 alloc_tx_ext_stats:
4710 	if (bp->tx_port_stats_ext.hw_stats)
4711 		return 0;
4712 
4713 	if (bp->hwrm_spec_code >= 0x10902 ||
4714 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4715 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4716 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4717 		/* Extended stats are optional */
4718 		if (rc)
4719 			return 0;
4720 	}
4721 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4722 	return 0;
4723 }
4724 
4725 static void bnxt_clear_ring_indices(struct bnxt *bp)
4726 {
4727 	int i, j;
4728 
4729 	if (!bp->bnapi)
4730 		return;
4731 
4732 	for (i = 0; i < bp->cp_nr_rings; i++) {
4733 		struct bnxt_napi *bnapi = bp->bnapi[i];
4734 		struct bnxt_cp_ring_info *cpr;
4735 		struct bnxt_rx_ring_info *rxr;
4736 		struct bnxt_tx_ring_info *txr;
4737 
4738 		if (!bnapi)
4739 			continue;
4740 
4741 		cpr = &bnapi->cp_ring;
4742 		cpr->cp_raw_cons = 0;
4743 
4744 		bnxt_for_each_napi_tx(j, bnapi, txr) {
4745 			txr->tx_prod = 0;
4746 			txr->tx_cons = 0;
4747 			txr->tx_hw_cons = 0;
4748 		}
4749 
4750 		rxr = bnapi->rx_ring;
4751 		if (rxr) {
4752 			rxr->rx_prod = 0;
4753 			rxr->rx_agg_prod = 0;
4754 			rxr->rx_sw_agg_prod = 0;
4755 			rxr->rx_next_cons = 0;
4756 		}
4757 		bnapi->events = 0;
4758 	}
4759 }
4760 
4761 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
4762 {
4763 #ifdef CONFIG_RFS_ACCEL
4764 	int i;
4765 
4766 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
4767 	 * safe to delete the hash table.
4768 	 */
4769 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4770 		struct hlist_head *head;
4771 		struct hlist_node *tmp;
4772 		struct bnxt_ntuple_filter *fltr;
4773 
4774 		head = &bp->ntp_fltr_hash_tbl[i];
4775 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
4776 			hlist_del(&fltr->hash);
4777 			kfree(fltr);
4778 		}
4779 	}
4780 	if (irq_reinit) {
4781 		bitmap_free(bp->ntp_fltr_bmap);
4782 		bp->ntp_fltr_bmap = NULL;
4783 	}
4784 	bp->ntp_fltr_count = 0;
4785 #endif
4786 }
4787 
4788 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4789 {
4790 #ifdef CONFIG_RFS_ACCEL
4791 	int i, rc = 0;
4792 
4793 	if (!(bp->flags & BNXT_FLAG_RFS))
4794 		return 0;
4795 
4796 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4797 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4798 
4799 	bp->ntp_fltr_count = 0;
4800 	bp->ntp_fltr_bmap = bitmap_zalloc(BNXT_NTP_FLTR_MAX_FLTR, GFP_KERNEL);
4801 
4802 	if (!bp->ntp_fltr_bmap)
4803 		rc = -ENOMEM;
4804 
4805 	return rc;
4806 #else
4807 	return 0;
4808 #endif
4809 }
4810 
4811 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4812 {
4813 	bnxt_free_vnic_attributes(bp);
4814 	bnxt_free_tx_rings(bp);
4815 	bnxt_free_rx_rings(bp);
4816 	bnxt_free_cp_rings(bp);
4817 	bnxt_free_all_cp_arrays(bp);
4818 	bnxt_free_ntp_fltrs(bp, irq_re_init);
4819 	if (irq_re_init) {
4820 		bnxt_free_ring_stats(bp);
4821 		if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
4822 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
4823 			bnxt_free_port_stats(bp);
4824 		bnxt_free_ring_grps(bp);
4825 		bnxt_free_vnics(bp);
4826 		kfree(bp->tx_ring_map);
4827 		bp->tx_ring_map = NULL;
4828 		kfree(bp->tx_ring);
4829 		bp->tx_ring = NULL;
4830 		kfree(bp->rx_ring);
4831 		bp->rx_ring = NULL;
4832 		kfree(bp->bnapi);
4833 		bp->bnapi = NULL;
4834 	} else {
4835 		bnxt_clear_ring_indices(bp);
4836 	}
4837 }
4838 
4839 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
4840 {
4841 	int i, j, rc, size, arr_size;
4842 	void *bnapi;
4843 
4844 	if (irq_re_init) {
4845 		/* Allocate bnapi mem pointer array and mem block for
4846 		 * all queues
4847 		 */
4848 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
4849 				bp->cp_nr_rings);
4850 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
4851 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
4852 		if (!bnapi)
4853 			return -ENOMEM;
4854 
4855 		bp->bnapi = bnapi;
4856 		bnapi += arr_size;
4857 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
4858 			bp->bnapi[i] = bnapi;
4859 			bp->bnapi[i]->index = i;
4860 			bp->bnapi[i]->bp = bp;
4861 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
4862 				struct bnxt_cp_ring_info *cpr =
4863 					&bp->bnapi[i]->cp_ring;
4864 
4865 				cpr->cp_ring_struct.ring_mem.flags =
4866 					BNXT_RMEM_RING_PTE_FLAG;
4867 			}
4868 		}
4869 
4870 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
4871 				      sizeof(struct bnxt_rx_ring_info),
4872 				      GFP_KERNEL);
4873 		if (!bp->rx_ring)
4874 			return -ENOMEM;
4875 
4876 		for (i = 0; i < bp->rx_nr_rings; i++) {
4877 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4878 
4879 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
4880 				rxr->rx_ring_struct.ring_mem.flags =
4881 					BNXT_RMEM_RING_PTE_FLAG;
4882 				rxr->rx_agg_ring_struct.ring_mem.flags =
4883 					BNXT_RMEM_RING_PTE_FLAG;
4884 			} else {
4885 				rxr->rx_cpr =  &bp->bnapi[i]->cp_ring;
4886 			}
4887 			rxr->bnapi = bp->bnapi[i];
4888 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4889 		}
4890 
4891 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
4892 				      sizeof(struct bnxt_tx_ring_info),
4893 				      GFP_KERNEL);
4894 		if (!bp->tx_ring)
4895 			return -ENOMEM;
4896 
4897 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4898 					  GFP_KERNEL);
4899 
4900 		if (!bp->tx_ring_map)
4901 			return -ENOMEM;
4902 
4903 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4904 			j = 0;
4905 		else
4906 			j = bp->rx_nr_rings;
4907 
4908 		for (i = 0; i < bp->tx_nr_rings; i++) {
4909 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4910 			struct bnxt_napi *bnapi2;
4911 
4912 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4913 				txr->tx_ring_struct.ring_mem.flags =
4914 					BNXT_RMEM_RING_PTE_FLAG;
4915 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4916 			if (i >= bp->tx_nr_rings_xdp) {
4917 				int k = j + BNXT_RING_TO_TC_OFF(bp, i);
4918 
4919 				bnapi2 = bp->bnapi[k];
4920 				txr->txq_index = i - bp->tx_nr_rings_xdp;
4921 				txr->tx_napi_idx =
4922 					BNXT_RING_TO_TC(bp, txr->txq_index);
4923 				bnapi2->tx_ring[txr->tx_napi_idx] = txr;
4924 				bnapi2->tx_int = bnxt_tx_int;
4925 			} else {
4926 				bnapi2 = bp->bnapi[j];
4927 				bnapi2->flags |= BNXT_NAPI_FLAG_XDP;
4928 				bnapi2->tx_ring[0] = txr;
4929 				bnapi2->tx_int = bnxt_tx_int_xdp;
4930 				j++;
4931 			}
4932 			txr->bnapi = bnapi2;
4933 			if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
4934 				txr->tx_cpr = &bnapi2->cp_ring;
4935 		}
4936 
4937 		rc = bnxt_alloc_stats(bp);
4938 		if (rc)
4939 			goto alloc_mem_err;
4940 		bnxt_init_stats(bp);
4941 
4942 		rc = bnxt_alloc_ntp_fltrs(bp);
4943 		if (rc)
4944 			goto alloc_mem_err;
4945 
4946 		rc = bnxt_alloc_vnics(bp);
4947 		if (rc)
4948 			goto alloc_mem_err;
4949 	}
4950 
4951 	rc = bnxt_alloc_all_cp_arrays(bp);
4952 	if (rc)
4953 		goto alloc_mem_err;
4954 
4955 	bnxt_init_ring_struct(bp);
4956 
4957 	rc = bnxt_alloc_rx_rings(bp);
4958 	if (rc)
4959 		goto alloc_mem_err;
4960 
4961 	rc = bnxt_alloc_tx_rings(bp);
4962 	if (rc)
4963 		goto alloc_mem_err;
4964 
4965 	rc = bnxt_alloc_cp_rings(bp);
4966 	if (rc)
4967 		goto alloc_mem_err;
4968 
4969 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4970 				  BNXT_VNIC_UCAST_FLAG;
4971 	rc = bnxt_alloc_vnic_attributes(bp);
4972 	if (rc)
4973 		goto alloc_mem_err;
4974 	return 0;
4975 
4976 alloc_mem_err:
4977 	bnxt_free_mem(bp, true);
4978 	return rc;
4979 }
4980 
4981 static void bnxt_disable_int(struct bnxt *bp)
4982 {
4983 	int i;
4984 
4985 	if (!bp->bnapi)
4986 		return;
4987 
4988 	for (i = 0; i < bp->cp_nr_rings; i++) {
4989 		struct bnxt_napi *bnapi = bp->bnapi[i];
4990 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4991 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4992 
4993 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
4994 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4995 	}
4996 }
4997 
4998 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4999 {
5000 	struct bnxt_napi *bnapi = bp->bnapi[n];
5001 	struct bnxt_cp_ring_info *cpr;
5002 
5003 	cpr = &bnapi->cp_ring;
5004 	return cpr->cp_ring_struct.map_idx;
5005 }
5006 
5007 static void bnxt_disable_int_sync(struct bnxt *bp)
5008 {
5009 	int i;
5010 
5011 	if (!bp->irq_tbl)
5012 		return;
5013 
5014 	atomic_inc(&bp->intr_sem);
5015 
5016 	bnxt_disable_int(bp);
5017 	for (i = 0; i < bp->cp_nr_rings; i++) {
5018 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
5019 
5020 		synchronize_irq(bp->irq_tbl[map_idx].vector);
5021 	}
5022 }
5023 
5024 static void bnxt_enable_int(struct bnxt *bp)
5025 {
5026 	int i;
5027 
5028 	atomic_set(&bp->intr_sem, 0);
5029 	for (i = 0; i < bp->cp_nr_rings; i++) {
5030 		struct bnxt_napi *bnapi = bp->bnapi[i];
5031 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5032 
5033 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
5034 	}
5035 }
5036 
5037 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
5038 			    bool async_only)
5039 {
5040 	DECLARE_BITMAP(async_events_bmap, 256);
5041 	u32 *events = (u32 *)async_events_bmap;
5042 	struct hwrm_func_drv_rgtr_output *resp;
5043 	struct hwrm_func_drv_rgtr_input *req;
5044 	u32 flags;
5045 	int rc, i;
5046 
5047 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR);
5048 	if (rc)
5049 		return rc;
5050 
5051 	req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
5052 				   FUNC_DRV_RGTR_REQ_ENABLES_VER |
5053 				   FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
5054 
5055 	req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
5056 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
5057 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
5058 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
5059 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
5060 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
5061 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
5062 	req->flags = cpu_to_le32(flags);
5063 	req->ver_maj_8b = DRV_VER_MAJ;
5064 	req->ver_min_8b = DRV_VER_MIN;
5065 	req->ver_upd_8b = DRV_VER_UPD;
5066 	req->ver_maj = cpu_to_le16(DRV_VER_MAJ);
5067 	req->ver_min = cpu_to_le16(DRV_VER_MIN);
5068 	req->ver_upd = cpu_to_le16(DRV_VER_UPD);
5069 
5070 	if (BNXT_PF(bp)) {
5071 		u32 data[8];
5072 		int i;
5073 
5074 		memset(data, 0, sizeof(data));
5075 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
5076 			u16 cmd = bnxt_vf_req_snif[i];
5077 			unsigned int bit, idx;
5078 
5079 			idx = cmd / 32;
5080 			bit = cmd % 32;
5081 			data[idx] |= 1 << bit;
5082 		}
5083 
5084 		for (i = 0; i < 8; i++)
5085 			req->vf_req_fwd[i] = cpu_to_le32(data[i]);
5086 
5087 		req->enables |=
5088 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
5089 	}
5090 
5091 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
5092 		req->flags |= cpu_to_le32(
5093 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
5094 
5095 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
5096 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
5097 		u16 event_id = bnxt_async_events_arr[i];
5098 
5099 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
5100 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
5101 			continue;
5102 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE &&
5103 		    !bp->ptp_cfg)
5104 			continue;
5105 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
5106 	}
5107 	if (bmap && bmap_size) {
5108 		for (i = 0; i < bmap_size; i++) {
5109 			if (test_bit(i, bmap))
5110 				__set_bit(i, async_events_bmap);
5111 		}
5112 	}
5113 	for (i = 0; i < 8; i++)
5114 		req->async_event_fwd[i] |= cpu_to_le32(events[i]);
5115 
5116 	if (async_only)
5117 		req->enables =
5118 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
5119 
5120 	resp = hwrm_req_hold(bp, req);
5121 	rc = hwrm_req_send(bp, req);
5122 	if (!rc) {
5123 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
5124 		if (resp->flags &
5125 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
5126 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
5127 	}
5128 	hwrm_req_drop(bp, req);
5129 	return rc;
5130 }
5131 
5132 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
5133 {
5134 	struct hwrm_func_drv_unrgtr_input *req;
5135 	int rc;
5136 
5137 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
5138 		return 0;
5139 
5140 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR);
5141 	if (rc)
5142 		return rc;
5143 	return hwrm_req_send(bp, req);
5144 }
5145 
5146 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
5147 {
5148 	struct hwrm_tunnel_dst_port_free_input *req;
5149 	int rc;
5150 
5151 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN &&
5152 	    bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID)
5153 		return 0;
5154 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE &&
5155 	    bp->nge_fw_dst_port_id == INVALID_HW_RING_ID)
5156 		return 0;
5157 
5158 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE);
5159 	if (rc)
5160 		return rc;
5161 
5162 	req->tunnel_type = tunnel_type;
5163 
5164 	switch (tunnel_type) {
5165 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
5166 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
5167 		bp->vxlan_port = 0;
5168 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
5169 		break;
5170 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
5171 		req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
5172 		bp->nge_port = 0;
5173 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
5174 		break;
5175 	default:
5176 		break;
5177 	}
5178 
5179 	rc = hwrm_req_send(bp, req);
5180 	if (rc)
5181 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
5182 			   rc);
5183 	return rc;
5184 }
5185 
5186 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
5187 					   u8 tunnel_type)
5188 {
5189 	struct hwrm_tunnel_dst_port_alloc_output *resp;
5190 	struct hwrm_tunnel_dst_port_alloc_input *req;
5191 	int rc;
5192 
5193 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC);
5194 	if (rc)
5195 		return rc;
5196 
5197 	req->tunnel_type = tunnel_type;
5198 	req->tunnel_dst_port_val = port;
5199 
5200 	resp = hwrm_req_hold(bp, req);
5201 	rc = hwrm_req_send(bp, req);
5202 	if (rc) {
5203 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
5204 			   rc);
5205 		goto err_out;
5206 	}
5207 
5208 	switch (tunnel_type) {
5209 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
5210 		bp->vxlan_port = port;
5211 		bp->vxlan_fw_dst_port_id =
5212 			le16_to_cpu(resp->tunnel_dst_port_id);
5213 		break;
5214 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
5215 		bp->nge_port = port;
5216 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
5217 		break;
5218 	default:
5219 		break;
5220 	}
5221 
5222 err_out:
5223 	hwrm_req_drop(bp, req);
5224 	return rc;
5225 }
5226 
5227 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
5228 {
5229 	struct hwrm_cfa_l2_set_rx_mask_input *req;
5230 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5231 	int rc;
5232 
5233 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK);
5234 	if (rc)
5235 		return rc;
5236 
5237 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5238 	if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) {
5239 		req->num_mc_entries = cpu_to_le32(vnic->mc_list_count);
5240 		req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
5241 	}
5242 	req->mask = cpu_to_le32(vnic->rx_mask);
5243 	return hwrm_req_send_silent(bp, req);
5244 }
5245 
5246 #ifdef CONFIG_RFS_ACCEL
5247 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
5248 					    struct bnxt_ntuple_filter *fltr)
5249 {
5250 	struct hwrm_cfa_ntuple_filter_free_input *req;
5251 	int rc;
5252 
5253 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE);
5254 	if (rc)
5255 		return rc;
5256 
5257 	req->ntuple_filter_id = fltr->filter_id;
5258 	return hwrm_req_send(bp, req);
5259 }
5260 
5261 #define BNXT_NTP_FLTR_FLAGS					\
5262 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
5263 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
5264 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
5265 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
5266 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
5267 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
5268 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
5269 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
5270 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
5271 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
5272 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
5273 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
5274 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
5275 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
5276 
5277 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
5278 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
5279 
5280 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
5281 					     struct bnxt_ntuple_filter *fltr)
5282 {
5283 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
5284 	struct hwrm_cfa_ntuple_filter_alloc_input *req;
5285 	struct flow_keys *keys = &fltr->fkeys;
5286 	struct bnxt_vnic_info *vnic;
5287 	u32 flags = 0;
5288 	int rc;
5289 
5290 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC);
5291 	if (rc)
5292 		return rc;
5293 
5294 	req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
5295 
5296 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
5297 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
5298 		req->dst_id = cpu_to_le16(fltr->rxq);
5299 	} else {
5300 		vnic = &bp->vnic_info[fltr->rxq + 1];
5301 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
5302 	}
5303 	req->flags = cpu_to_le32(flags);
5304 	req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
5305 
5306 	req->ethertype = htons(ETH_P_IP);
5307 	memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN);
5308 	req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
5309 	req->ip_protocol = keys->basic.ip_proto;
5310 
5311 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
5312 		int i;
5313 
5314 		req->ethertype = htons(ETH_P_IPV6);
5315 		req->ip_addr_type =
5316 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
5317 		*(struct in6_addr *)&req->src_ipaddr[0] =
5318 			keys->addrs.v6addrs.src;
5319 		*(struct in6_addr *)&req->dst_ipaddr[0] =
5320 			keys->addrs.v6addrs.dst;
5321 		for (i = 0; i < 4; i++) {
5322 			req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
5323 			req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
5324 		}
5325 	} else {
5326 		req->src_ipaddr[0] = keys->addrs.v4addrs.src;
5327 		req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
5328 		req->dst_ipaddr[0] = keys->addrs.v4addrs.dst;
5329 		req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
5330 	}
5331 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
5332 		req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
5333 		req->tunnel_type =
5334 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
5335 	}
5336 
5337 	req->src_port = keys->ports.src;
5338 	req->src_port_mask = cpu_to_be16(0xffff);
5339 	req->dst_port = keys->ports.dst;
5340 	req->dst_port_mask = cpu_to_be16(0xffff);
5341 
5342 	resp = hwrm_req_hold(bp, req);
5343 	rc = hwrm_req_send(bp, req);
5344 	if (!rc)
5345 		fltr->filter_id = resp->ntuple_filter_id;
5346 	hwrm_req_drop(bp, req);
5347 	return rc;
5348 }
5349 #endif
5350 
5351 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
5352 				     const u8 *mac_addr)
5353 {
5354 	struct hwrm_cfa_l2_filter_alloc_output *resp;
5355 	struct hwrm_cfa_l2_filter_alloc_input *req;
5356 	int rc;
5357 
5358 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC);
5359 	if (rc)
5360 		return rc;
5361 
5362 	req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
5363 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
5364 		req->flags |=
5365 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
5366 	req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
5367 	req->enables =
5368 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
5369 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
5370 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
5371 	memcpy(req->l2_addr, mac_addr, ETH_ALEN);
5372 	req->l2_addr_mask[0] = 0xff;
5373 	req->l2_addr_mask[1] = 0xff;
5374 	req->l2_addr_mask[2] = 0xff;
5375 	req->l2_addr_mask[3] = 0xff;
5376 	req->l2_addr_mask[4] = 0xff;
5377 	req->l2_addr_mask[5] = 0xff;
5378 
5379 	resp = hwrm_req_hold(bp, req);
5380 	rc = hwrm_req_send(bp, req);
5381 	if (!rc)
5382 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
5383 							resp->l2_filter_id;
5384 	hwrm_req_drop(bp, req);
5385 	return rc;
5386 }
5387 
5388 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
5389 {
5390 	struct hwrm_cfa_l2_filter_free_input *req;
5391 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
5392 	int rc;
5393 
5394 	/* Any associated ntuple filters will also be cleared by firmware. */
5395 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
5396 	if (rc)
5397 		return rc;
5398 	hwrm_req_hold(bp, req);
5399 	for (i = 0; i < num_of_vnics; i++) {
5400 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5401 
5402 		for (j = 0; j < vnic->uc_filter_count; j++) {
5403 			req->l2_filter_id = vnic->fw_l2_filter_id[j];
5404 
5405 			rc = hwrm_req_send(bp, req);
5406 		}
5407 		vnic->uc_filter_count = 0;
5408 	}
5409 	hwrm_req_drop(bp, req);
5410 	return rc;
5411 }
5412 
5413 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
5414 {
5415 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5416 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
5417 	struct hwrm_vnic_tpa_cfg_input *req;
5418 	int rc;
5419 
5420 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
5421 		return 0;
5422 
5423 	rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG);
5424 	if (rc)
5425 		return rc;
5426 
5427 	if (tpa_flags) {
5428 		u16 mss = bp->dev->mtu - 40;
5429 		u32 nsegs, n, segs = 0, flags;
5430 
5431 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
5432 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
5433 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
5434 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
5435 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
5436 		if (tpa_flags & BNXT_FLAG_GRO)
5437 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
5438 
5439 		req->flags = cpu_to_le32(flags);
5440 
5441 		req->enables =
5442 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
5443 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
5444 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
5445 
5446 		/* Number of segs are log2 units, and first packet is not
5447 		 * included as part of this units.
5448 		 */
5449 		if (mss <= BNXT_RX_PAGE_SIZE) {
5450 			n = BNXT_RX_PAGE_SIZE / mss;
5451 			nsegs = (MAX_SKB_FRAGS - 1) * n;
5452 		} else {
5453 			n = mss / BNXT_RX_PAGE_SIZE;
5454 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
5455 				n++;
5456 			nsegs = (MAX_SKB_FRAGS - n) / n;
5457 		}
5458 
5459 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
5460 			segs = MAX_TPA_SEGS_P5;
5461 			max_aggs = bp->max_tpa;
5462 		} else {
5463 			segs = ilog2(nsegs);
5464 		}
5465 		req->max_agg_segs = cpu_to_le16(segs);
5466 		req->max_aggs = cpu_to_le16(max_aggs);
5467 
5468 		req->min_agg_len = cpu_to_le32(512);
5469 	}
5470 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5471 
5472 	return hwrm_req_send(bp, req);
5473 }
5474 
5475 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
5476 {
5477 	struct bnxt_ring_grp_info *grp_info;
5478 
5479 	grp_info = &bp->grp_info[ring->grp_idx];
5480 	return grp_info->cp_fw_ring_id;
5481 }
5482 
5483 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
5484 {
5485 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
5486 		return rxr->rx_cpr->cp_ring_struct.fw_ring_id;
5487 	else
5488 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
5489 }
5490 
5491 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
5492 {
5493 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
5494 		return txr->tx_cpr->cp_ring_struct.fw_ring_id;
5495 	else
5496 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
5497 }
5498 
5499 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
5500 {
5501 	int entries;
5502 
5503 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
5504 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
5505 	else
5506 		entries = HW_HASH_INDEX_SIZE;
5507 
5508 	bp->rss_indir_tbl_entries = entries;
5509 	bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
5510 					  GFP_KERNEL);
5511 	if (!bp->rss_indir_tbl)
5512 		return -ENOMEM;
5513 	return 0;
5514 }
5515 
5516 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
5517 {
5518 	u16 max_rings, max_entries, pad, i;
5519 
5520 	if (!bp->rx_nr_rings)
5521 		return;
5522 
5523 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5524 		max_rings = bp->rx_nr_rings - 1;
5525 	else
5526 		max_rings = bp->rx_nr_rings;
5527 
5528 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
5529 
5530 	for (i = 0; i < max_entries; i++)
5531 		bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
5532 
5533 	pad = bp->rss_indir_tbl_entries - max_entries;
5534 	if (pad)
5535 		memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
5536 }
5537 
5538 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
5539 {
5540 	u16 i, tbl_size, max_ring = 0;
5541 
5542 	if (!bp->rss_indir_tbl)
5543 		return 0;
5544 
5545 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5546 	for (i = 0; i < tbl_size; i++)
5547 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
5548 	return max_ring;
5549 }
5550 
5551 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
5552 {
5553 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
5554 		return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
5555 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5556 		return 2;
5557 	return 1;
5558 }
5559 
5560 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5561 {
5562 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
5563 	u16 i, j;
5564 
5565 	/* Fill the RSS indirection table with ring group ids */
5566 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
5567 		if (!no_rss)
5568 			j = bp->rss_indir_tbl[i];
5569 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
5570 	}
5571 }
5572 
5573 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
5574 				    struct bnxt_vnic_info *vnic)
5575 {
5576 	__le16 *ring_tbl = vnic->rss_table;
5577 	struct bnxt_rx_ring_info *rxr;
5578 	u16 tbl_size, i;
5579 
5580 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5581 
5582 	for (i = 0; i < tbl_size; i++) {
5583 		u16 ring_id, j;
5584 
5585 		j = bp->rss_indir_tbl[i];
5586 		rxr = &bp->rx_ring[j];
5587 
5588 		ring_id = rxr->rx_ring_struct.fw_ring_id;
5589 		*ring_tbl++ = cpu_to_le16(ring_id);
5590 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5591 		*ring_tbl++ = cpu_to_le16(ring_id);
5592 	}
5593 }
5594 
5595 static void
5596 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req,
5597 			 struct bnxt_vnic_info *vnic)
5598 {
5599 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
5600 		bnxt_fill_hw_rss_tbl_p5(bp, vnic);
5601 	else
5602 		bnxt_fill_hw_rss_tbl(bp, vnic);
5603 
5604 	if (bp->rss_hash_delta) {
5605 		req->hash_type = cpu_to_le32(bp->rss_hash_delta);
5606 		if (bp->rss_hash_cfg & bp->rss_hash_delta)
5607 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE;
5608 		else
5609 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE;
5610 	} else {
5611 		req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5612 	}
5613 	req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5614 	req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
5615 	req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
5616 }
5617 
5618 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
5619 {
5620 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5621 	struct hwrm_vnic_rss_cfg_input *req;
5622 	int rc;
5623 
5624 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) ||
5625 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
5626 		return 0;
5627 
5628 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5629 	if (rc)
5630 		return rc;
5631 
5632 	if (set_rss)
5633 		__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
5634 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5635 	return hwrm_req_send(bp, req);
5636 }
5637 
5638 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
5639 {
5640 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5641 	struct hwrm_vnic_rss_cfg_input *req;
5642 	dma_addr_t ring_tbl_map;
5643 	u32 i, nr_ctxs;
5644 	int rc;
5645 
5646 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5647 	if (rc)
5648 		return rc;
5649 
5650 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5651 	if (!set_rss)
5652 		return hwrm_req_send(bp, req);
5653 
5654 	__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
5655 	ring_tbl_map = vnic->rss_table_dma_addr;
5656 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
5657 
5658 	hwrm_req_hold(bp, req);
5659 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
5660 		req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
5661 		req->ring_table_pair_index = i;
5662 		req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
5663 		rc = hwrm_req_send(bp, req);
5664 		if (rc)
5665 			goto exit;
5666 	}
5667 
5668 exit:
5669 	hwrm_req_drop(bp, req);
5670 	return rc;
5671 }
5672 
5673 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp)
5674 {
5675 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5676 	struct hwrm_vnic_rss_qcfg_output *resp;
5677 	struct hwrm_vnic_rss_qcfg_input *req;
5678 
5679 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG))
5680 		return;
5681 
5682 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5683 	/* all contexts configured to same hash_type, zero always exists */
5684 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5685 	resp = hwrm_req_hold(bp, req);
5686 	if (!hwrm_req_send(bp, req)) {
5687 		bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg;
5688 		bp->rss_hash_delta = 0;
5689 	}
5690 	hwrm_req_drop(bp, req);
5691 }
5692 
5693 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
5694 {
5695 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5696 	struct hwrm_vnic_plcmodes_cfg_input *req;
5697 	int rc;
5698 
5699 	rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG);
5700 	if (rc)
5701 		return rc;
5702 
5703 	req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT);
5704 	req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID);
5705 
5706 	if (BNXT_RX_PAGE_MODE(bp)) {
5707 		req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size);
5708 	} else {
5709 		req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
5710 					  VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
5711 		req->enables |=
5712 			cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
5713 		req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
5714 		req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
5715 	}
5716 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5717 	return hwrm_req_send(bp, req);
5718 }
5719 
5720 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
5721 					u16 ctx_idx)
5722 {
5723 	struct hwrm_vnic_rss_cos_lb_ctx_free_input *req;
5724 
5725 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE))
5726 		return;
5727 
5728 	req->rss_cos_lb_ctx_id =
5729 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
5730 
5731 	hwrm_req_send(bp, req);
5732 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
5733 }
5734 
5735 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
5736 {
5737 	int i, j;
5738 
5739 	for (i = 0; i < bp->nr_vnics; i++) {
5740 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5741 
5742 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
5743 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
5744 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
5745 		}
5746 	}
5747 	bp->rsscos_nr_ctxs = 0;
5748 }
5749 
5750 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
5751 {
5752 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp;
5753 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req;
5754 	int rc;
5755 
5756 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC);
5757 	if (rc)
5758 		return rc;
5759 
5760 	resp = hwrm_req_hold(bp, req);
5761 	rc = hwrm_req_send(bp, req);
5762 	if (!rc)
5763 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
5764 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
5765 	hwrm_req_drop(bp, req);
5766 
5767 	return rc;
5768 }
5769 
5770 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
5771 {
5772 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
5773 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
5774 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
5775 }
5776 
5777 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
5778 {
5779 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5780 	struct hwrm_vnic_cfg_input *req;
5781 	unsigned int ring = 0, grp_idx;
5782 	u16 def_vlan = 0;
5783 	int rc;
5784 
5785 	rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG);
5786 	if (rc)
5787 		return rc;
5788 
5789 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
5790 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5791 
5792 		req->default_rx_ring_id =
5793 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5794 		req->default_cmpl_ring_id =
5795 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5796 		req->enables =
5797 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5798 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5799 		goto vnic_mru;
5800 	}
5801 	req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5802 	/* Only RSS support for now TBD: COS & LB */
5803 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5804 		req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5805 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5806 					   VNIC_CFG_REQ_ENABLES_MRU);
5807 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5808 		req->rss_rule =
5809 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5810 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5811 					   VNIC_CFG_REQ_ENABLES_MRU);
5812 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5813 	} else {
5814 		req->rss_rule = cpu_to_le16(0xffff);
5815 	}
5816 
5817 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5818 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5819 		req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5820 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5821 	} else {
5822 		req->cos_rule = cpu_to_le16(0xffff);
5823 	}
5824 
5825 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5826 		ring = 0;
5827 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5828 		ring = vnic_id - 1;
5829 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5830 		ring = bp->rx_nr_rings - 1;
5831 
5832 	grp_idx = bp->rx_ring[ring].bnapi->index;
5833 	req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5834 	req->lb_rule = cpu_to_le16(0xffff);
5835 vnic_mru:
5836 	req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
5837 
5838 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5839 #ifdef CONFIG_BNXT_SRIOV
5840 	if (BNXT_VF(bp))
5841 		def_vlan = bp->vf.vlan;
5842 #endif
5843 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5844 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5845 	if (!vnic_id && bnxt_ulp_registered(bp->edev))
5846 		req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5847 
5848 	return hwrm_req_send(bp, req);
5849 }
5850 
5851 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5852 {
5853 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5854 		struct hwrm_vnic_free_input *req;
5855 
5856 		if (hwrm_req_init(bp, req, HWRM_VNIC_FREE))
5857 			return;
5858 
5859 		req->vnic_id =
5860 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5861 
5862 		hwrm_req_send(bp, req);
5863 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5864 	}
5865 }
5866 
5867 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5868 {
5869 	u16 i;
5870 
5871 	for (i = 0; i < bp->nr_vnics; i++)
5872 		bnxt_hwrm_vnic_free_one(bp, i);
5873 }
5874 
5875 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5876 				unsigned int start_rx_ring_idx,
5877 				unsigned int nr_rings)
5878 {
5879 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5880 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5881 	struct hwrm_vnic_alloc_output *resp;
5882 	struct hwrm_vnic_alloc_input *req;
5883 	int rc;
5884 
5885 	rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC);
5886 	if (rc)
5887 		return rc;
5888 
5889 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
5890 		goto vnic_no_ring_grps;
5891 
5892 	/* map ring groups to this vnic */
5893 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5894 		grp_idx = bp->rx_ring[i].bnapi->index;
5895 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5896 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5897 				   j, nr_rings);
5898 			break;
5899 		}
5900 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5901 	}
5902 
5903 vnic_no_ring_grps:
5904 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5905 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5906 	if (vnic_id == 0)
5907 		req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5908 
5909 	resp = hwrm_req_hold(bp, req);
5910 	rc = hwrm_req_send(bp, req);
5911 	if (!rc)
5912 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5913 	hwrm_req_drop(bp, req);
5914 	return rc;
5915 }
5916 
5917 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5918 {
5919 	struct hwrm_vnic_qcaps_output *resp;
5920 	struct hwrm_vnic_qcaps_input *req;
5921 	int rc;
5922 
5923 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5924 	bp->flags &= ~BNXT_FLAG_ROCE_MIRROR_CAP;
5925 	bp->rss_cap &= ~BNXT_RSS_CAP_NEW_RSS_CAP;
5926 	if (bp->hwrm_spec_code < 0x10600)
5927 		return 0;
5928 
5929 	rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS);
5930 	if (rc)
5931 		return rc;
5932 
5933 	resp = hwrm_req_hold(bp, req);
5934 	rc = hwrm_req_send(bp, req);
5935 	if (!rc) {
5936 		u32 flags = le32_to_cpu(resp->flags);
5937 
5938 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
5939 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5940 			bp->rss_cap |= BNXT_RSS_CAP_NEW_RSS_CAP;
5941 		if (flags &
5942 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5943 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5944 
5945 		/* Older P5 fw before EXT_HW_STATS support did not set
5946 		 * VLAN_STRIP_CAP properly.
5947 		 */
5948 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
5949 		    (BNXT_CHIP_P5(bp) &&
5950 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
5951 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
5952 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP)
5953 			bp->rss_cap |= BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA;
5954 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_PROF_TCAM_MODE_ENABLED)
5955 			bp->rss_cap |= BNXT_RSS_CAP_RSS_TCAM;
5956 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5957 		if (bp->max_tpa_v2) {
5958 			if (BNXT_CHIP_P5(bp))
5959 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
5960 			else
5961 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P7;
5962 		}
5963 	}
5964 	hwrm_req_drop(bp, req);
5965 	return rc;
5966 }
5967 
5968 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5969 {
5970 	struct hwrm_ring_grp_alloc_output *resp;
5971 	struct hwrm_ring_grp_alloc_input *req;
5972 	int rc;
5973 	u16 i;
5974 
5975 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
5976 		return 0;
5977 
5978 	rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC);
5979 	if (rc)
5980 		return rc;
5981 
5982 	resp = hwrm_req_hold(bp, req);
5983 	for (i = 0; i < bp->rx_nr_rings; i++) {
5984 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5985 
5986 		req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5987 		req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5988 		req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5989 		req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5990 
5991 		rc = hwrm_req_send(bp, req);
5992 
5993 		if (rc)
5994 			break;
5995 
5996 		bp->grp_info[grp_idx].fw_grp_id =
5997 			le32_to_cpu(resp->ring_group_id);
5998 	}
5999 	hwrm_req_drop(bp, req);
6000 	return rc;
6001 }
6002 
6003 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
6004 {
6005 	struct hwrm_ring_grp_free_input *req;
6006 	u16 i;
6007 
6008 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
6009 		return;
6010 
6011 	if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE))
6012 		return;
6013 
6014 	hwrm_req_hold(bp, req);
6015 	for (i = 0; i < bp->cp_nr_rings; i++) {
6016 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
6017 			continue;
6018 		req->ring_group_id =
6019 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
6020 
6021 		hwrm_req_send(bp, req);
6022 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
6023 	}
6024 	hwrm_req_drop(bp, req);
6025 }
6026 
6027 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
6028 				    struct bnxt_ring_struct *ring,
6029 				    u32 ring_type, u32 map_index)
6030 {
6031 	struct hwrm_ring_alloc_output *resp;
6032 	struct hwrm_ring_alloc_input *req;
6033 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
6034 	struct bnxt_ring_grp_info *grp_info;
6035 	int rc, err = 0;
6036 	u16 ring_id;
6037 
6038 	rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC);
6039 	if (rc)
6040 		goto exit;
6041 
6042 	req->enables = 0;
6043 	if (rmem->nr_pages > 1) {
6044 		req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
6045 		/* Page size is in log2 units */
6046 		req->page_size = BNXT_PAGE_SHIFT;
6047 		req->page_tbl_depth = 1;
6048 	} else {
6049 		req->page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
6050 	}
6051 	req->fbo = 0;
6052 	/* Association of ring index with doorbell index and MSIX number */
6053 	req->logical_id = cpu_to_le16(map_index);
6054 
6055 	switch (ring_type) {
6056 	case HWRM_RING_ALLOC_TX: {
6057 		struct bnxt_tx_ring_info *txr;
6058 
6059 		txr = container_of(ring, struct bnxt_tx_ring_info,
6060 				   tx_ring_struct);
6061 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
6062 		/* Association of transmit ring with completion ring */
6063 		grp_info = &bp->grp_info[ring->grp_idx];
6064 		req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
6065 		req->length = cpu_to_le32(bp->tx_ring_mask + 1);
6066 		req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6067 		req->queue_id = cpu_to_le16(ring->queue_id);
6068 		break;
6069 	}
6070 	case HWRM_RING_ALLOC_RX:
6071 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
6072 		req->length = cpu_to_le32(bp->rx_ring_mask + 1);
6073 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6074 			u16 flags = 0;
6075 
6076 			/* Association of rx ring with stats context */
6077 			grp_info = &bp->grp_info[ring->grp_idx];
6078 			req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
6079 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6080 			req->enables |= cpu_to_le32(
6081 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
6082 			if (NET_IP_ALIGN == 2)
6083 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
6084 			req->flags = cpu_to_le16(flags);
6085 		}
6086 		break;
6087 	case HWRM_RING_ALLOC_AGG:
6088 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6089 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
6090 			/* Association of agg ring with rx ring */
6091 			grp_info = &bp->grp_info[ring->grp_idx];
6092 			req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
6093 			req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
6094 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6095 			req->enables |= cpu_to_le32(
6096 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
6097 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
6098 		} else {
6099 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
6100 		}
6101 		req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
6102 		break;
6103 	case HWRM_RING_ALLOC_CMPL:
6104 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
6105 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
6106 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6107 			/* Association of cp ring with nq */
6108 			grp_info = &bp->grp_info[map_index];
6109 			req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
6110 			req->cq_handle = cpu_to_le64(ring->handle);
6111 			req->enables |= cpu_to_le32(
6112 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
6113 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
6114 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
6115 		}
6116 		break;
6117 	case HWRM_RING_ALLOC_NQ:
6118 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
6119 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
6120 		if (bp->flags & BNXT_FLAG_USING_MSIX)
6121 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
6122 		break;
6123 	default:
6124 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
6125 			   ring_type);
6126 		return -1;
6127 	}
6128 
6129 	resp = hwrm_req_hold(bp, req);
6130 	rc = hwrm_req_send(bp, req);
6131 	err = le16_to_cpu(resp->error_code);
6132 	ring_id = le16_to_cpu(resp->ring_id);
6133 	hwrm_req_drop(bp, req);
6134 
6135 exit:
6136 	if (rc || err) {
6137 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
6138 			   ring_type, rc, err);
6139 		return -EIO;
6140 	}
6141 	ring->fw_ring_id = ring_id;
6142 	return rc;
6143 }
6144 
6145 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
6146 {
6147 	int rc;
6148 
6149 	if (BNXT_PF(bp)) {
6150 		struct hwrm_func_cfg_input *req;
6151 
6152 		rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
6153 		if (rc)
6154 			return rc;
6155 
6156 		req->fid = cpu_to_le16(0xffff);
6157 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
6158 		req->async_event_cr = cpu_to_le16(idx);
6159 		return hwrm_req_send(bp, req);
6160 	} else {
6161 		struct hwrm_func_vf_cfg_input *req;
6162 
6163 		rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
6164 		if (rc)
6165 			return rc;
6166 
6167 		req->enables =
6168 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
6169 		req->async_event_cr = cpu_to_le16(idx);
6170 		return hwrm_req_send(bp, req);
6171 	}
6172 }
6173 
6174 static void bnxt_set_db_mask(struct bnxt *bp, struct bnxt_db_info *db,
6175 			     u32 ring_type)
6176 {
6177 	switch (ring_type) {
6178 	case HWRM_RING_ALLOC_TX:
6179 		db->db_ring_mask = bp->tx_ring_mask;
6180 		break;
6181 	case HWRM_RING_ALLOC_RX:
6182 		db->db_ring_mask = bp->rx_ring_mask;
6183 		break;
6184 	case HWRM_RING_ALLOC_AGG:
6185 		db->db_ring_mask = bp->rx_agg_ring_mask;
6186 		break;
6187 	case HWRM_RING_ALLOC_CMPL:
6188 	case HWRM_RING_ALLOC_NQ:
6189 		db->db_ring_mask = bp->cp_ring_mask;
6190 		break;
6191 	}
6192 	if (bp->flags & BNXT_FLAG_CHIP_P7) {
6193 		db->db_epoch_mask = db->db_ring_mask + 1;
6194 		db->db_epoch_shift = DBR_EPOCH_SFT - ilog2(db->db_epoch_mask);
6195 	}
6196 }
6197 
6198 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
6199 			u32 map_idx, u32 xid)
6200 {
6201 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6202 		switch (ring_type) {
6203 		case HWRM_RING_ALLOC_TX:
6204 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
6205 			break;
6206 		case HWRM_RING_ALLOC_RX:
6207 		case HWRM_RING_ALLOC_AGG:
6208 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
6209 			break;
6210 		case HWRM_RING_ALLOC_CMPL:
6211 			db->db_key64 = DBR_PATH_L2;
6212 			break;
6213 		case HWRM_RING_ALLOC_NQ:
6214 			db->db_key64 = DBR_PATH_L2;
6215 			break;
6216 		}
6217 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
6218 
6219 		if (bp->flags & BNXT_FLAG_CHIP_P7)
6220 			db->db_key64 |= DBR_VALID;
6221 
6222 		db->doorbell = bp->bar1 + bp->db_offset;
6223 	} else {
6224 		db->doorbell = bp->bar1 + map_idx * 0x80;
6225 		switch (ring_type) {
6226 		case HWRM_RING_ALLOC_TX:
6227 			db->db_key32 = DB_KEY_TX;
6228 			break;
6229 		case HWRM_RING_ALLOC_RX:
6230 		case HWRM_RING_ALLOC_AGG:
6231 			db->db_key32 = DB_KEY_RX;
6232 			break;
6233 		case HWRM_RING_ALLOC_CMPL:
6234 			db->db_key32 = DB_KEY_CP;
6235 			break;
6236 		}
6237 	}
6238 	bnxt_set_db_mask(bp, db, ring_type);
6239 }
6240 
6241 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
6242 {
6243 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
6244 	int i, rc = 0;
6245 	u32 type;
6246 
6247 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6248 		type = HWRM_RING_ALLOC_NQ;
6249 	else
6250 		type = HWRM_RING_ALLOC_CMPL;
6251 	for (i = 0; i < bp->cp_nr_rings; i++) {
6252 		struct bnxt_napi *bnapi = bp->bnapi[i];
6253 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6254 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
6255 		u32 map_idx = ring->map_idx;
6256 		unsigned int vector;
6257 
6258 		vector = bp->irq_tbl[map_idx].vector;
6259 		disable_irq_nosync(vector);
6260 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
6261 		if (rc) {
6262 			enable_irq(vector);
6263 			goto err_out;
6264 		}
6265 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
6266 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
6267 		enable_irq(vector);
6268 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
6269 
6270 		if (!i) {
6271 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
6272 			if (rc)
6273 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
6274 		}
6275 	}
6276 
6277 	type = HWRM_RING_ALLOC_TX;
6278 	for (i = 0; i < bp->tx_nr_rings; i++) {
6279 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
6280 		struct bnxt_ring_struct *ring;
6281 		u32 map_idx;
6282 
6283 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6284 			struct bnxt_cp_ring_info *cpr2 = txr->tx_cpr;
6285 			struct bnxt_napi *bnapi = txr->bnapi;
6286 			u32 type2 = HWRM_RING_ALLOC_CMPL;
6287 
6288 			ring = &cpr2->cp_ring_struct;
6289 			ring->handle = BNXT_SET_NQ_HDL(cpr2);
6290 			map_idx = bnapi->index;
6291 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
6292 			if (rc)
6293 				goto err_out;
6294 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
6295 				    ring->fw_ring_id);
6296 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
6297 		}
6298 		ring = &txr->tx_ring_struct;
6299 		map_idx = i;
6300 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
6301 		if (rc)
6302 			goto err_out;
6303 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
6304 	}
6305 
6306 	type = HWRM_RING_ALLOC_RX;
6307 	for (i = 0; i < bp->rx_nr_rings; i++) {
6308 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6309 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
6310 		struct bnxt_napi *bnapi = rxr->bnapi;
6311 		u32 map_idx = bnapi->index;
6312 
6313 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
6314 		if (rc)
6315 			goto err_out;
6316 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
6317 		/* If we have agg rings, post agg buffers first. */
6318 		if (!agg_rings)
6319 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
6320 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
6321 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6322 			struct bnxt_cp_ring_info *cpr2 = rxr->rx_cpr;
6323 			u32 type2 = HWRM_RING_ALLOC_CMPL;
6324 
6325 			ring = &cpr2->cp_ring_struct;
6326 			ring->handle = BNXT_SET_NQ_HDL(cpr2);
6327 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
6328 			if (rc)
6329 				goto err_out;
6330 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
6331 				    ring->fw_ring_id);
6332 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
6333 		}
6334 	}
6335 
6336 	if (agg_rings) {
6337 		type = HWRM_RING_ALLOC_AGG;
6338 		for (i = 0; i < bp->rx_nr_rings; i++) {
6339 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6340 			struct bnxt_ring_struct *ring =
6341 						&rxr->rx_agg_ring_struct;
6342 			u32 grp_idx = ring->grp_idx;
6343 			u32 map_idx = grp_idx + bp->rx_nr_rings;
6344 
6345 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
6346 			if (rc)
6347 				goto err_out;
6348 
6349 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
6350 				    ring->fw_ring_id);
6351 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
6352 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
6353 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
6354 		}
6355 	}
6356 err_out:
6357 	return rc;
6358 }
6359 
6360 static int hwrm_ring_free_send_msg(struct bnxt *bp,
6361 				   struct bnxt_ring_struct *ring,
6362 				   u32 ring_type, int cmpl_ring_id)
6363 {
6364 	struct hwrm_ring_free_output *resp;
6365 	struct hwrm_ring_free_input *req;
6366 	u16 error_code = 0;
6367 	int rc;
6368 
6369 	if (BNXT_NO_FW_ACCESS(bp))
6370 		return 0;
6371 
6372 	rc = hwrm_req_init(bp, req, HWRM_RING_FREE);
6373 	if (rc)
6374 		goto exit;
6375 
6376 	req->cmpl_ring = cpu_to_le16(cmpl_ring_id);
6377 	req->ring_type = ring_type;
6378 	req->ring_id = cpu_to_le16(ring->fw_ring_id);
6379 
6380 	resp = hwrm_req_hold(bp, req);
6381 	rc = hwrm_req_send(bp, req);
6382 	error_code = le16_to_cpu(resp->error_code);
6383 	hwrm_req_drop(bp, req);
6384 exit:
6385 	if (rc || error_code) {
6386 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
6387 			   ring_type, rc, error_code);
6388 		return -EIO;
6389 	}
6390 	return 0;
6391 }
6392 
6393 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
6394 {
6395 	u32 type;
6396 	int i;
6397 
6398 	if (!bp->bnapi)
6399 		return;
6400 
6401 	for (i = 0; i < bp->tx_nr_rings; i++) {
6402 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
6403 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
6404 
6405 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6406 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
6407 
6408 			hwrm_ring_free_send_msg(bp, ring,
6409 						RING_FREE_REQ_RING_TYPE_TX,
6410 						close_path ? cmpl_ring_id :
6411 						INVALID_HW_RING_ID);
6412 			ring->fw_ring_id = INVALID_HW_RING_ID;
6413 		}
6414 	}
6415 
6416 	for (i = 0; i < bp->rx_nr_rings; i++) {
6417 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6418 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
6419 		u32 grp_idx = rxr->bnapi->index;
6420 
6421 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6422 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6423 
6424 			hwrm_ring_free_send_msg(bp, ring,
6425 						RING_FREE_REQ_RING_TYPE_RX,
6426 						close_path ? cmpl_ring_id :
6427 						INVALID_HW_RING_ID);
6428 			ring->fw_ring_id = INVALID_HW_RING_ID;
6429 			bp->grp_info[grp_idx].rx_fw_ring_id =
6430 				INVALID_HW_RING_ID;
6431 		}
6432 	}
6433 
6434 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6435 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
6436 	else
6437 		type = RING_FREE_REQ_RING_TYPE_RX;
6438 	for (i = 0; i < bp->rx_nr_rings; i++) {
6439 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6440 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
6441 		u32 grp_idx = rxr->bnapi->index;
6442 
6443 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6444 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6445 
6446 			hwrm_ring_free_send_msg(bp, ring, type,
6447 						close_path ? cmpl_ring_id :
6448 						INVALID_HW_RING_ID);
6449 			ring->fw_ring_id = INVALID_HW_RING_ID;
6450 			bp->grp_info[grp_idx].agg_fw_ring_id =
6451 				INVALID_HW_RING_ID;
6452 		}
6453 	}
6454 
6455 	/* The completion rings are about to be freed.  After that the
6456 	 * IRQ doorbell will not work anymore.  So we need to disable
6457 	 * IRQ here.
6458 	 */
6459 	bnxt_disable_int_sync(bp);
6460 
6461 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6462 		type = RING_FREE_REQ_RING_TYPE_NQ;
6463 	else
6464 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
6465 	for (i = 0; i < bp->cp_nr_rings; i++) {
6466 		struct bnxt_napi *bnapi = bp->bnapi[i];
6467 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6468 		struct bnxt_ring_struct *ring;
6469 		int j;
6470 
6471 		for (j = 0; j < cpr->cp_ring_count && cpr->cp_ring_arr; j++) {
6472 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
6473 
6474 			ring = &cpr2->cp_ring_struct;
6475 			if (ring->fw_ring_id == INVALID_HW_RING_ID)
6476 				continue;
6477 			hwrm_ring_free_send_msg(bp, ring,
6478 						RING_FREE_REQ_RING_TYPE_L2_CMPL,
6479 						INVALID_HW_RING_ID);
6480 			ring->fw_ring_id = INVALID_HW_RING_ID;
6481 		}
6482 		ring = &cpr->cp_ring_struct;
6483 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6484 			hwrm_ring_free_send_msg(bp, ring, type,
6485 						INVALID_HW_RING_ID);
6486 			ring->fw_ring_id = INVALID_HW_RING_ID;
6487 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
6488 		}
6489 	}
6490 }
6491 
6492 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
6493 			   bool shared);
6494 
6495 static int bnxt_hwrm_get_rings(struct bnxt *bp)
6496 {
6497 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6498 	struct hwrm_func_qcfg_output *resp;
6499 	struct hwrm_func_qcfg_input *req;
6500 	int rc;
6501 
6502 	if (bp->hwrm_spec_code < 0x10601)
6503 		return 0;
6504 
6505 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6506 	if (rc)
6507 		return rc;
6508 
6509 	req->fid = cpu_to_le16(0xffff);
6510 	resp = hwrm_req_hold(bp, req);
6511 	rc = hwrm_req_send(bp, req);
6512 	if (rc) {
6513 		hwrm_req_drop(bp, req);
6514 		return rc;
6515 	}
6516 
6517 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6518 	if (BNXT_NEW_RM(bp)) {
6519 		u16 cp, stats;
6520 
6521 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
6522 		hw_resc->resv_hw_ring_grps =
6523 			le32_to_cpu(resp->alloc_hw_ring_grps);
6524 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
6525 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
6526 		stats = le16_to_cpu(resp->alloc_stat_ctx);
6527 		hw_resc->resv_irqs = cp;
6528 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6529 			int rx = hw_resc->resv_rx_rings;
6530 			int tx = hw_resc->resv_tx_rings;
6531 
6532 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
6533 				rx >>= 1;
6534 			if (cp < (rx + tx)) {
6535 				rx = cp / 2;
6536 				tx = rx;
6537 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
6538 					rx <<= 1;
6539 				hw_resc->resv_rx_rings = rx;
6540 				hw_resc->resv_tx_rings = tx;
6541 			}
6542 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
6543 			hw_resc->resv_hw_ring_grps = rx;
6544 		}
6545 		hw_resc->resv_cp_rings = cp;
6546 		hw_resc->resv_stat_ctxs = stats;
6547 	}
6548 	hwrm_req_drop(bp, req);
6549 	return 0;
6550 }
6551 
6552 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
6553 {
6554 	struct hwrm_func_qcfg_output *resp;
6555 	struct hwrm_func_qcfg_input *req;
6556 	int rc;
6557 
6558 	if (bp->hwrm_spec_code < 0x10601)
6559 		return 0;
6560 
6561 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6562 	if (rc)
6563 		return rc;
6564 
6565 	req->fid = cpu_to_le16(fid);
6566 	resp = hwrm_req_hold(bp, req);
6567 	rc = hwrm_req_send(bp, req);
6568 	if (!rc)
6569 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6570 
6571 	hwrm_req_drop(bp, req);
6572 	return rc;
6573 }
6574 
6575 static bool bnxt_rfs_supported(struct bnxt *bp);
6576 
6577 static struct hwrm_func_cfg_input *
6578 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6579 			     int ring_grps, int cp_rings, int stats, int vnics)
6580 {
6581 	struct hwrm_func_cfg_input *req;
6582 	u32 enables = 0;
6583 
6584 	if (bnxt_hwrm_func_cfg_short_req_init(bp, &req))
6585 		return NULL;
6586 
6587 	req->fid = cpu_to_le16(0xffff);
6588 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6589 	req->num_tx_rings = cpu_to_le16(tx_rings);
6590 	if (BNXT_NEW_RM(bp)) {
6591 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
6592 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6593 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6594 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
6595 			enables |= tx_rings + ring_grps ?
6596 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6597 			enables |= rx_rings ?
6598 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6599 		} else {
6600 			enables |= cp_rings ?
6601 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6602 			enables |= ring_grps ?
6603 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
6604 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6605 		}
6606 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
6607 
6608 		req->num_rx_rings = cpu_to_le16(rx_rings);
6609 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6610 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6611 			req->num_msix = cpu_to_le16(cp_rings);
6612 			req->num_rsscos_ctxs =
6613 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6614 		} else {
6615 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
6616 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6617 			req->num_rsscos_ctxs = cpu_to_le16(1);
6618 			if (!(bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) &&
6619 			    bnxt_rfs_supported(bp))
6620 				req->num_rsscos_ctxs =
6621 					cpu_to_le16(ring_grps + 1);
6622 		}
6623 		req->num_stat_ctxs = cpu_to_le16(stats);
6624 		req->num_vnics = cpu_to_le16(vnics);
6625 	}
6626 	req->enables = cpu_to_le32(enables);
6627 	return req;
6628 }
6629 
6630 static struct hwrm_func_vf_cfg_input *
6631 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6632 			     int ring_grps, int cp_rings, int stats, int vnics)
6633 {
6634 	struct hwrm_func_vf_cfg_input *req;
6635 	u32 enables = 0;
6636 
6637 	if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG))
6638 		return NULL;
6639 
6640 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6641 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
6642 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6643 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6644 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6645 		enables |= tx_rings + ring_grps ?
6646 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6647 	} else {
6648 		enables |= cp_rings ?
6649 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6650 		enables |= ring_grps ?
6651 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
6652 	}
6653 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
6654 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
6655 
6656 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
6657 	req->num_tx_rings = cpu_to_le16(tx_rings);
6658 	req->num_rx_rings = cpu_to_le16(rx_rings);
6659 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6660 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6661 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6662 	} else {
6663 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
6664 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6665 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
6666 	}
6667 	req->num_stat_ctxs = cpu_to_le16(stats);
6668 	req->num_vnics = cpu_to_le16(vnics);
6669 
6670 	req->enables = cpu_to_le32(enables);
6671 	return req;
6672 }
6673 
6674 static int
6675 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6676 			   int ring_grps, int cp_rings, int stats, int vnics)
6677 {
6678 	struct hwrm_func_cfg_input *req;
6679 	int rc;
6680 
6681 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6682 					   cp_rings, stats, vnics);
6683 	if (!req)
6684 		return -ENOMEM;
6685 
6686 	if (!req->enables) {
6687 		hwrm_req_drop(bp, req);
6688 		return 0;
6689 	}
6690 
6691 	rc = hwrm_req_send(bp, req);
6692 	if (rc)
6693 		return rc;
6694 
6695 	if (bp->hwrm_spec_code < 0x10601)
6696 		bp->hw_resc.resv_tx_rings = tx_rings;
6697 
6698 	return bnxt_hwrm_get_rings(bp);
6699 }
6700 
6701 static int
6702 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6703 			   int ring_grps, int cp_rings, int stats, int vnics)
6704 {
6705 	struct hwrm_func_vf_cfg_input *req;
6706 	int rc;
6707 
6708 	if (!BNXT_NEW_RM(bp)) {
6709 		bp->hw_resc.resv_tx_rings = tx_rings;
6710 		return 0;
6711 	}
6712 
6713 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6714 					   cp_rings, stats, vnics);
6715 	if (!req)
6716 		return -ENOMEM;
6717 
6718 	rc = hwrm_req_send(bp, req);
6719 	if (rc)
6720 		return rc;
6721 
6722 	return bnxt_hwrm_get_rings(bp);
6723 }
6724 
6725 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
6726 				   int cp, int stat, int vnic)
6727 {
6728 	if (BNXT_PF(bp))
6729 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
6730 						  vnic);
6731 	else
6732 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
6733 						  vnic);
6734 }
6735 
6736 int bnxt_nq_rings_in_use(struct bnxt *bp)
6737 {
6738 	int cp = bp->cp_nr_rings;
6739 	int ulp_msix, ulp_base;
6740 
6741 	ulp_msix = bnxt_get_ulp_msix_num(bp);
6742 	if (ulp_msix) {
6743 		ulp_base = bnxt_get_ulp_msix_base(bp);
6744 		cp += ulp_msix;
6745 		if ((ulp_base + ulp_msix) > cp)
6746 			cp = ulp_base + ulp_msix;
6747 	}
6748 	return cp;
6749 }
6750 
6751 static int bnxt_cp_rings_in_use(struct bnxt *bp)
6752 {
6753 	int cp;
6754 
6755 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
6756 		return bnxt_nq_rings_in_use(bp);
6757 
6758 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
6759 	return cp;
6760 }
6761 
6762 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
6763 {
6764 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
6765 	int cp = bp->cp_nr_rings;
6766 
6767 	if (!ulp_stat)
6768 		return cp;
6769 
6770 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
6771 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
6772 
6773 	return cp + ulp_stat;
6774 }
6775 
6776 /* Check if a default RSS map needs to be setup.  This function is only
6777  * used on older firmware that does not require reserving RX rings.
6778  */
6779 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
6780 {
6781 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6782 
6783 	/* The RSS map is valid for RX rings set to resv_rx_rings */
6784 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
6785 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
6786 		if (!netif_is_rxfh_configured(bp->dev))
6787 			bnxt_set_dflt_rss_indir_tbl(bp);
6788 	}
6789 }
6790 
6791 static bool bnxt_need_reserve_rings(struct bnxt *bp)
6792 {
6793 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6794 	int cp = bnxt_cp_rings_in_use(bp);
6795 	int nq = bnxt_nq_rings_in_use(bp);
6796 	int rx = bp->rx_nr_rings, stat;
6797 	int vnic = 1, grp = rx;
6798 
6799 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
6800 	    bp->hwrm_spec_code >= 0x10601)
6801 		return true;
6802 
6803 	/* Old firmware does not need RX ring reservations but we still
6804 	 * need to setup a default RSS map when needed.  With new firmware
6805 	 * we go through RX ring reservations first and then set up the
6806 	 * RSS map for the successfully reserved RX rings when needed.
6807 	 */
6808 	if (!BNXT_NEW_RM(bp)) {
6809 		bnxt_check_rss_tbl_no_rmgr(bp);
6810 		return false;
6811 	}
6812 	if ((bp->flags & BNXT_FLAG_RFS) &&
6813 	    !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
6814 		vnic = rx + 1;
6815 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6816 		rx <<= 1;
6817 	stat = bnxt_get_func_stat_ctxs(bp);
6818 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
6819 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
6820 	    (hw_resc->resv_hw_ring_grps != grp &&
6821 	     !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)))
6822 		return true;
6823 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && BNXT_PF(bp) &&
6824 	    hw_resc->resv_irqs != nq)
6825 		return true;
6826 	return false;
6827 }
6828 
6829 static int __bnxt_reserve_rings(struct bnxt *bp)
6830 {
6831 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6832 	int cp = bnxt_nq_rings_in_use(bp);
6833 	int tx = bp->tx_nr_rings;
6834 	int rx = bp->rx_nr_rings;
6835 	int grp, rx_rings, rc;
6836 	int vnic = 1, stat;
6837 	bool sh = false;
6838 	int tx_cp;
6839 
6840 	if (!bnxt_need_reserve_rings(bp))
6841 		return 0;
6842 
6843 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6844 		sh = true;
6845 	if ((bp->flags & BNXT_FLAG_RFS) &&
6846 	    !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
6847 		vnic = rx + 1;
6848 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6849 		rx <<= 1;
6850 	grp = bp->rx_nr_rings;
6851 	stat = bnxt_get_func_stat_ctxs(bp);
6852 
6853 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
6854 	if (rc)
6855 		return rc;
6856 
6857 	tx = hw_resc->resv_tx_rings;
6858 	if (BNXT_NEW_RM(bp)) {
6859 		rx = hw_resc->resv_rx_rings;
6860 		cp = hw_resc->resv_irqs;
6861 		grp = hw_resc->resv_hw_ring_grps;
6862 		vnic = hw_resc->resv_vnics;
6863 		stat = hw_resc->resv_stat_ctxs;
6864 	}
6865 
6866 	rx_rings = rx;
6867 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6868 		if (rx >= 2) {
6869 			rx_rings = rx >> 1;
6870 		} else {
6871 			if (netif_running(bp->dev))
6872 				return -ENOMEM;
6873 
6874 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
6875 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
6876 			bp->dev->hw_features &= ~NETIF_F_LRO;
6877 			bp->dev->features &= ~NETIF_F_LRO;
6878 			bnxt_set_ring_params(bp);
6879 		}
6880 	}
6881 	rx_rings = min_t(int, rx_rings, grp);
6882 	cp = min_t(int, cp, bp->cp_nr_rings);
6883 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
6884 		stat -= bnxt_get_ulp_stat_ctxs(bp);
6885 	cp = min_t(int, cp, stat);
6886 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
6887 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6888 		rx = rx_rings << 1;
6889 	tx_cp = bnxt_num_tx_to_cp(bp, tx);
6890 	cp = sh ? max_t(int, tx_cp, rx_rings) : tx_cp + rx_rings;
6891 	bp->tx_nr_rings = tx;
6892 
6893 	/* If we cannot reserve all the RX rings, reset the RSS map only
6894 	 * if absolutely necessary
6895 	 */
6896 	if (rx_rings != bp->rx_nr_rings) {
6897 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
6898 			    rx_rings, bp->rx_nr_rings);
6899 		if (netif_is_rxfh_configured(bp->dev) &&
6900 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
6901 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
6902 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
6903 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
6904 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
6905 		}
6906 	}
6907 	bp->rx_nr_rings = rx_rings;
6908 	bp->cp_nr_rings = cp;
6909 
6910 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
6911 		return -ENOMEM;
6912 
6913 	if (!netif_is_rxfh_configured(bp->dev))
6914 		bnxt_set_dflt_rss_indir_tbl(bp);
6915 
6916 	return rc;
6917 }
6918 
6919 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6920 				    int ring_grps, int cp_rings, int stats,
6921 				    int vnics)
6922 {
6923 	struct hwrm_func_vf_cfg_input *req;
6924 	u32 flags;
6925 
6926 	if (!BNXT_NEW_RM(bp))
6927 		return 0;
6928 
6929 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6930 					   cp_rings, stats, vnics);
6931 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6932 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6933 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6934 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6935 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6936 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6937 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
6938 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6939 
6940 	req->flags = cpu_to_le32(flags);
6941 	return hwrm_req_send_silent(bp, req);
6942 }
6943 
6944 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6945 				    int ring_grps, int cp_rings, int stats,
6946 				    int vnics)
6947 {
6948 	struct hwrm_func_cfg_input *req;
6949 	u32 flags;
6950 
6951 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6952 					   cp_rings, stats, vnics);
6953 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6954 	if (BNXT_NEW_RM(bp)) {
6955 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6956 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6957 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6958 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6959 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6960 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6961 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6962 		else
6963 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6964 	}
6965 
6966 	req->flags = cpu_to_le32(flags);
6967 	return hwrm_req_send_silent(bp, req);
6968 }
6969 
6970 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6971 				 int ring_grps, int cp_rings, int stats,
6972 				 int vnics)
6973 {
6974 	if (bp->hwrm_spec_code < 0x10801)
6975 		return 0;
6976 
6977 	if (BNXT_PF(bp))
6978 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6979 						ring_grps, cp_rings, stats,
6980 						vnics);
6981 
6982 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6983 					cp_rings, stats, vnics);
6984 }
6985 
6986 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6987 {
6988 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6989 	struct hwrm_ring_aggint_qcaps_output *resp;
6990 	struct hwrm_ring_aggint_qcaps_input *req;
6991 	int rc;
6992 
6993 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6994 	coal_cap->num_cmpl_dma_aggr_max = 63;
6995 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6996 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6997 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6998 	coal_cap->int_lat_tmr_min_max = 65535;
6999 	coal_cap->int_lat_tmr_max_max = 65535;
7000 	coal_cap->num_cmpl_aggr_int_max = 65535;
7001 	coal_cap->timer_units = 80;
7002 
7003 	if (bp->hwrm_spec_code < 0x10902)
7004 		return;
7005 
7006 	if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS))
7007 		return;
7008 
7009 	resp = hwrm_req_hold(bp, req);
7010 	rc = hwrm_req_send_silent(bp, req);
7011 	if (!rc) {
7012 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
7013 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
7014 		coal_cap->num_cmpl_dma_aggr_max =
7015 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
7016 		coal_cap->num_cmpl_dma_aggr_during_int_max =
7017 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
7018 		coal_cap->cmpl_aggr_dma_tmr_max =
7019 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
7020 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
7021 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
7022 		coal_cap->int_lat_tmr_min_max =
7023 			le16_to_cpu(resp->int_lat_tmr_min_max);
7024 		coal_cap->int_lat_tmr_max_max =
7025 			le16_to_cpu(resp->int_lat_tmr_max_max);
7026 		coal_cap->num_cmpl_aggr_int_max =
7027 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
7028 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
7029 	}
7030 	hwrm_req_drop(bp, req);
7031 }
7032 
7033 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
7034 {
7035 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7036 
7037 	return usec * 1000 / coal_cap->timer_units;
7038 }
7039 
7040 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
7041 	struct bnxt_coal *hw_coal,
7042 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
7043 {
7044 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7045 	u16 val, tmr, max, flags = hw_coal->flags;
7046 	u32 cmpl_params = coal_cap->cmpl_params;
7047 
7048 	max = hw_coal->bufs_per_record * 128;
7049 	if (hw_coal->budget)
7050 		max = hw_coal->bufs_per_record * hw_coal->budget;
7051 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
7052 
7053 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
7054 	req->num_cmpl_aggr_int = cpu_to_le16(val);
7055 
7056 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
7057 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
7058 
7059 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
7060 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
7061 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
7062 
7063 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
7064 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
7065 	req->int_lat_tmr_max = cpu_to_le16(tmr);
7066 
7067 	/* min timer set to 1/2 of interrupt timer */
7068 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
7069 		val = tmr / 2;
7070 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
7071 		req->int_lat_tmr_min = cpu_to_le16(val);
7072 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
7073 	}
7074 
7075 	/* buf timer set to 1/4 of interrupt timer */
7076 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
7077 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
7078 
7079 	if (cmpl_params &
7080 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
7081 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
7082 		val = clamp_t(u16, tmr, 1,
7083 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
7084 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
7085 		req->enables |=
7086 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
7087 	}
7088 
7089 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
7090 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
7091 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
7092 	req->flags = cpu_to_le16(flags);
7093 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
7094 }
7095 
7096 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
7097 				   struct bnxt_coal *hw_coal)
7098 {
7099 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req;
7100 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7101 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7102 	u32 nq_params = coal_cap->nq_params;
7103 	u16 tmr;
7104 	int rc;
7105 
7106 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
7107 		return 0;
7108 
7109 	rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7110 	if (rc)
7111 		return rc;
7112 
7113 	req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
7114 	req->flags =
7115 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
7116 
7117 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
7118 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
7119 	req->int_lat_tmr_min = cpu_to_le16(tmr);
7120 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
7121 	return hwrm_req_send(bp, req);
7122 }
7123 
7124 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
7125 {
7126 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx;
7127 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7128 	struct bnxt_coal coal;
7129 	int rc;
7130 
7131 	/* Tick values in micro seconds.
7132 	 * 1 coal_buf x bufs_per_record = 1 completion record.
7133 	 */
7134 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
7135 
7136 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
7137 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
7138 
7139 	if (!bnapi->rx_ring)
7140 		return -ENODEV;
7141 
7142 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7143 	if (rc)
7144 		return rc;
7145 
7146 	bnxt_hwrm_set_coal_params(bp, &coal, req_rx);
7147 
7148 	req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
7149 
7150 	return hwrm_req_send(bp, req_rx);
7151 }
7152 
7153 static int
7154 bnxt_hwrm_set_rx_coal(struct bnxt *bp, struct bnxt_napi *bnapi,
7155 		      struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
7156 {
7157 	u16 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
7158 
7159 	req->ring_id = cpu_to_le16(ring_id);
7160 	return hwrm_req_send(bp, req);
7161 }
7162 
7163 static int
7164 bnxt_hwrm_set_tx_coal(struct bnxt *bp, struct bnxt_napi *bnapi,
7165 		      struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
7166 {
7167 	struct bnxt_tx_ring_info *txr;
7168 	int i, rc;
7169 
7170 	bnxt_for_each_napi_tx(i, bnapi, txr) {
7171 		u16 ring_id;
7172 
7173 		ring_id = bnxt_cp_ring_for_tx(bp, txr);
7174 		req->ring_id = cpu_to_le16(ring_id);
7175 		rc = hwrm_req_send(bp, req);
7176 		if (rc)
7177 			return rc;
7178 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7179 			return 0;
7180 	}
7181 	return 0;
7182 }
7183 
7184 int bnxt_hwrm_set_coal(struct bnxt *bp)
7185 {
7186 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx;
7187 	int i, rc;
7188 
7189 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7190 	if (rc)
7191 		return rc;
7192 
7193 	rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7194 	if (rc) {
7195 		hwrm_req_drop(bp, req_rx);
7196 		return rc;
7197 	}
7198 
7199 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx);
7200 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx);
7201 
7202 	hwrm_req_hold(bp, req_rx);
7203 	hwrm_req_hold(bp, req_tx);
7204 	for (i = 0; i < bp->cp_nr_rings; i++) {
7205 		struct bnxt_napi *bnapi = bp->bnapi[i];
7206 		struct bnxt_coal *hw_coal;
7207 
7208 		if (!bnapi->rx_ring)
7209 			rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx);
7210 		else
7211 			rc = bnxt_hwrm_set_rx_coal(bp, bnapi, req_rx);
7212 		if (rc)
7213 			break;
7214 
7215 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7216 			continue;
7217 
7218 		if (bnapi->rx_ring && bnapi->tx_ring[0]) {
7219 			rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx);
7220 			if (rc)
7221 				break;
7222 		}
7223 		if (bnapi->rx_ring)
7224 			hw_coal = &bp->rx_coal;
7225 		else
7226 			hw_coal = &bp->tx_coal;
7227 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
7228 	}
7229 	hwrm_req_drop(bp, req_rx);
7230 	hwrm_req_drop(bp, req_tx);
7231 	return rc;
7232 }
7233 
7234 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
7235 {
7236 	struct hwrm_stat_ctx_clr_stats_input *req0 = NULL;
7237 	struct hwrm_stat_ctx_free_input *req;
7238 	int i;
7239 
7240 	if (!bp->bnapi)
7241 		return;
7242 
7243 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
7244 		return;
7245 
7246 	if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE))
7247 		return;
7248 	if (BNXT_FW_MAJ(bp) <= 20) {
7249 		if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) {
7250 			hwrm_req_drop(bp, req);
7251 			return;
7252 		}
7253 		hwrm_req_hold(bp, req0);
7254 	}
7255 	hwrm_req_hold(bp, req);
7256 	for (i = 0; i < bp->cp_nr_rings; i++) {
7257 		struct bnxt_napi *bnapi = bp->bnapi[i];
7258 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7259 
7260 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
7261 			req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
7262 			if (req0) {
7263 				req0->stat_ctx_id = req->stat_ctx_id;
7264 				hwrm_req_send(bp, req0);
7265 			}
7266 			hwrm_req_send(bp, req);
7267 
7268 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
7269 		}
7270 	}
7271 	hwrm_req_drop(bp, req);
7272 	if (req0)
7273 		hwrm_req_drop(bp, req0);
7274 }
7275 
7276 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
7277 {
7278 	struct hwrm_stat_ctx_alloc_output *resp;
7279 	struct hwrm_stat_ctx_alloc_input *req;
7280 	int rc, i;
7281 
7282 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
7283 		return 0;
7284 
7285 	rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC);
7286 	if (rc)
7287 		return rc;
7288 
7289 	req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
7290 	req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
7291 
7292 	resp = hwrm_req_hold(bp, req);
7293 	for (i = 0; i < bp->cp_nr_rings; i++) {
7294 		struct bnxt_napi *bnapi = bp->bnapi[i];
7295 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7296 
7297 		req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
7298 
7299 		rc = hwrm_req_send(bp, req);
7300 		if (rc)
7301 			break;
7302 
7303 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
7304 
7305 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
7306 	}
7307 	hwrm_req_drop(bp, req);
7308 	return rc;
7309 }
7310 
7311 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
7312 {
7313 	struct hwrm_func_qcfg_output *resp;
7314 	struct hwrm_func_qcfg_input *req;
7315 	u16 flags;
7316 	int rc;
7317 
7318 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
7319 	if (rc)
7320 		return rc;
7321 
7322 	req->fid = cpu_to_le16(0xffff);
7323 	resp = hwrm_req_hold(bp, req);
7324 	rc = hwrm_req_send(bp, req);
7325 	if (rc)
7326 		goto func_qcfg_exit;
7327 
7328 #ifdef CONFIG_BNXT_SRIOV
7329 	if (BNXT_VF(bp)) {
7330 		struct bnxt_vf_info *vf = &bp->vf;
7331 
7332 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
7333 	} else {
7334 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
7335 	}
7336 #endif
7337 	flags = le16_to_cpu(resp->flags);
7338 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
7339 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
7340 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
7341 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
7342 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
7343 	}
7344 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
7345 		bp->flags |= BNXT_FLAG_MULTI_HOST;
7346 
7347 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
7348 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
7349 
7350 	switch (resp->port_partition_type) {
7351 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
7352 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
7353 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
7354 		bp->port_partition_type = resp->port_partition_type;
7355 		break;
7356 	}
7357 	if (bp->hwrm_spec_code < 0x10707 ||
7358 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
7359 		bp->br_mode = BRIDGE_MODE_VEB;
7360 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
7361 		bp->br_mode = BRIDGE_MODE_VEPA;
7362 	else
7363 		bp->br_mode = BRIDGE_MODE_UNDEF;
7364 
7365 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
7366 	if (!bp->max_mtu)
7367 		bp->max_mtu = BNXT_MAX_MTU;
7368 
7369 	if (bp->db_size)
7370 		goto func_qcfg_exit;
7371 
7372 	bp->db_offset = le16_to_cpu(resp->legacy_l2_db_size_kb) * 1024;
7373 	if (BNXT_CHIP_P5(bp)) {
7374 		if (BNXT_PF(bp))
7375 			bp->db_offset = DB_PF_OFFSET_P5;
7376 		else
7377 			bp->db_offset = DB_VF_OFFSET_P5;
7378 	}
7379 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
7380 				 1024);
7381 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
7382 	    bp->db_size <= bp->db_offset)
7383 		bp->db_size = pci_resource_len(bp->pdev, 2);
7384 
7385 func_qcfg_exit:
7386 	hwrm_req_drop(bp, req);
7387 	return rc;
7388 }
7389 
7390 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_type *ctxm,
7391 				      u8 init_val, u8 init_offset,
7392 				      bool init_mask_set)
7393 {
7394 	ctxm->init_value = init_val;
7395 	ctxm->init_offset = BNXT_CTX_INIT_INVALID_OFFSET;
7396 	if (init_mask_set)
7397 		ctxm->init_offset = init_offset * 4;
7398 	else
7399 		ctxm->init_value = 0;
7400 }
7401 
7402 static int bnxt_alloc_all_ctx_pg_info(struct bnxt *bp, int ctx_max)
7403 {
7404 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7405 	u16 type;
7406 
7407 	for (type = 0; type < ctx_max; type++) {
7408 		struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type];
7409 		int n = 1;
7410 
7411 		if (!ctxm->max_entries)
7412 			continue;
7413 
7414 		if (ctxm->instance_bmap)
7415 			n = hweight32(ctxm->instance_bmap);
7416 		ctxm->pg_info = kcalloc(n, sizeof(*ctxm->pg_info), GFP_KERNEL);
7417 		if (!ctxm->pg_info)
7418 			return -ENOMEM;
7419 	}
7420 	return 0;
7421 }
7422 
7423 #define BNXT_CTX_INIT_VALID(flags)	\
7424 	(!!((flags) &			\
7425 	    FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_ENABLE_CTX_KIND_INIT))
7426 
7427 static int bnxt_hwrm_func_backing_store_qcaps_v2(struct bnxt *bp)
7428 {
7429 	struct hwrm_func_backing_store_qcaps_v2_output *resp;
7430 	struct hwrm_func_backing_store_qcaps_v2_input *req;
7431 	struct bnxt_ctx_mem_info *ctx;
7432 	u16 type;
7433 	int rc;
7434 
7435 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS_V2);
7436 	if (rc)
7437 		return rc;
7438 
7439 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
7440 	if (!ctx)
7441 		return -ENOMEM;
7442 	bp->ctx = ctx;
7443 
7444 	resp = hwrm_req_hold(bp, req);
7445 
7446 	for (type = 0; type < BNXT_CTX_V2_MAX; ) {
7447 		struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type];
7448 		u8 init_val, init_off, i;
7449 		__le32 *p;
7450 		u32 flags;
7451 
7452 		req->type = cpu_to_le16(type);
7453 		rc = hwrm_req_send(bp, req);
7454 		if (rc)
7455 			goto ctx_done;
7456 		flags = le32_to_cpu(resp->flags);
7457 		type = le16_to_cpu(resp->next_valid_type);
7458 		if (!(flags & FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_TYPE_VALID))
7459 			continue;
7460 
7461 		ctxm->type = le16_to_cpu(resp->type);
7462 		ctxm->entry_size = le16_to_cpu(resp->entry_size);
7463 		ctxm->flags = flags;
7464 		ctxm->instance_bmap = le32_to_cpu(resp->instance_bit_map);
7465 		ctxm->entry_multiple = resp->entry_multiple;
7466 		ctxm->max_entries = le32_to_cpu(resp->max_num_entries);
7467 		ctxm->min_entries = le32_to_cpu(resp->min_num_entries);
7468 		init_val = resp->ctx_init_value;
7469 		init_off = resp->ctx_init_offset;
7470 		bnxt_init_ctx_initializer(ctxm, init_val, init_off,
7471 					  BNXT_CTX_INIT_VALID(flags));
7472 		ctxm->split_entry_cnt = min_t(u8, resp->subtype_valid_cnt,
7473 					      BNXT_MAX_SPLIT_ENTRY);
7474 		for (i = 0, p = &resp->split_entry_0; i < ctxm->split_entry_cnt;
7475 		     i++, p++)
7476 			ctxm->split[i] = le32_to_cpu(*p);
7477 	}
7478 	rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_V2_MAX);
7479 
7480 ctx_done:
7481 	hwrm_req_drop(bp, req);
7482 	return rc;
7483 }
7484 
7485 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
7486 {
7487 	struct hwrm_func_backing_store_qcaps_output *resp;
7488 	struct hwrm_func_backing_store_qcaps_input *req;
7489 	int rc;
7490 
7491 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
7492 		return 0;
7493 
7494 	if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2)
7495 		return bnxt_hwrm_func_backing_store_qcaps_v2(bp);
7496 
7497 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS);
7498 	if (rc)
7499 		return rc;
7500 
7501 	resp = hwrm_req_hold(bp, req);
7502 	rc = hwrm_req_send_silent(bp, req);
7503 	if (!rc) {
7504 		struct bnxt_ctx_mem_type *ctxm;
7505 		struct bnxt_ctx_mem_info *ctx;
7506 		u8 init_val, init_idx = 0;
7507 		u16 init_mask;
7508 
7509 		ctx = bp->ctx;
7510 		if (!ctx) {
7511 			ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
7512 			if (!ctx) {
7513 				rc = -ENOMEM;
7514 				goto ctx_err;
7515 			}
7516 			bp->ctx = ctx;
7517 		}
7518 		init_val = resp->ctx_kind_initializer;
7519 		init_mask = le16_to_cpu(resp->ctx_init_mask);
7520 
7521 		ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
7522 		ctxm->max_entries = le32_to_cpu(resp->qp_max_entries);
7523 		ctxm->qp_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
7524 		ctxm->qp_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
7525 		ctxm->entry_size = le16_to_cpu(resp->qp_entry_size);
7526 		bnxt_init_ctx_initializer(ctxm, init_val, resp->qp_init_offset,
7527 					  (init_mask & (1 << init_idx++)) != 0);
7528 
7529 		ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
7530 		ctxm->srq_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
7531 		ctxm->max_entries = le32_to_cpu(resp->srq_max_entries);
7532 		ctxm->entry_size = le16_to_cpu(resp->srq_entry_size);
7533 		bnxt_init_ctx_initializer(ctxm, init_val, resp->srq_init_offset,
7534 					  (init_mask & (1 << init_idx++)) != 0);
7535 
7536 		ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
7537 		ctxm->cq_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
7538 		ctxm->max_entries = le32_to_cpu(resp->cq_max_entries);
7539 		ctxm->entry_size = le16_to_cpu(resp->cq_entry_size);
7540 		bnxt_init_ctx_initializer(ctxm, init_val, resp->cq_init_offset,
7541 					  (init_mask & (1 << init_idx++)) != 0);
7542 
7543 		ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
7544 		ctxm->vnic_entries = le16_to_cpu(resp->vnic_max_vnic_entries);
7545 		ctxm->max_entries = ctxm->vnic_entries +
7546 			le16_to_cpu(resp->vnic_max_ring_table_entries);
7547 		ctxm->entry_size = le16_to_cpu(resp->vnic_entry_size);
7548 		bnxt_init_ctx_initializer(ctxm, init_val,
7549 					  resp->vnic_init_offset,
7550 					  (init_mask & (1 << init_idx++)) != 0);
7551 
7552 		ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
7553 		ctxm->max_entries = le32_to_cpu(resp->stat_max_entries);
7554 		ctxm->entry_size = le16_to_cpu(resp->stat_entry_size);
7555 		bnxt_init_ctx_initializer(ctxm, init_val,
7556 					  resp->stat_init_offset,
7557 					  (init_mask & (1 << init_idx++)) != 0);
7558 
7559 		ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
7560 		ctxm->entry_size = le16_to_cpu(resp->tqm_entry_size);
7561 		ctxm->min_entries = le32_to_cpu(resp->tqm_min_entries_per_ring);
7562 		ctxm->max_entries = le32_to_cpu(resp->tqm_max_entries_per_ring);
7563 		ctxm->entry_multiple = resp->tqm_entries_multiple;
7564 		if (!ctxm->entry_multiple)
7565 			ctxm->entry_multiple = 1;
7566 
7567 		memcpy(&ctx->ctx_arr[BNXT_CTX_FTQM], ctxm, sizeof(*ctxm));
7568 
7569 		ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
7570 		ctxm->max_entries = le32_to_cpu(resp->mrav_max_entries);
7571 		ctxm->entry_size = le16_to_cpu(resp->mrav_entry_size);
7572 		ctxm->mrav_num_entries_units =
7573 			le16_to_cpu(resp->mrav_num_entries_units);
7574 		bnxt_init_ctx_initializer(ctxm, init_val,
7575 					  resp->mrav_init_offset,
7576 					  (init_mask & (1 << init_idx++)) != 0);
7577 
7578 		ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
7579 		ctxm->entry_size = le16_to_cpu(resp->tim_entry_size);
7580 		ctxm->max_entries = le32_to_cpu(resp->tim_max_entries);
7581 
7582 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
7583 		if (!ctx->tqm_fp_rings_count)
7584 			ctx->tqm_fp_rings_count = bp->max_q;
7585 		else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
7586 			ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
7587 
7588 		ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM];
7589 		memcpy(ctxm, &ctx->ctx_arr[BNXT_CTX_STQM], sizeof(*ctxm));
7590 		ctxm->instance_bmap = (1 << ctx->tqm_fp_rings_count) - 1;
7591 
7592 		rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_MAX);
7593 	} else {
7594 		rc = 0;
7595 	}
7596 ctx_err:
7597 	hwrm_req_drop(bp, req);
7598 	return rc;
7599 }
7600 
7601 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
7602 				  __le64 *pg_dir)
7603 {
7604 	if (!rmem->nr_pages)
7605 		return;
7606 
7607 	BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
7608 	if (rmem->depth >= 1) {
7609 		if (rmem->depth == 2)
7610 			*pg_attr |= 2;
7611 		else
7612 			*pg_attr |= 1;
7613 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
7614 	} else {
7615 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
7616 	}
7617 }
7618 
7619 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
7620 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
7621 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
7622 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
7623 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
7624 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
7625 
7626 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
7627 {
7628 	struct hwrm_func_backing_store_cfg_input *req;
7629 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7630 	struct bnxt_ctx_pg_info *ctx_pg;
7631 	struct bnxt_ctx_mem_type *ctxm;
7632 	void **__req = (void **)&req;
7633 	u32 req_len = sizeof(*req);
7634 	__le32 *num_entries;
7635 	__le64 *pg_dir;
7636 	u32 flags = 0;
7637 	u8 *pg_attr;
7638 	u32 ena;
7639 	int rc;
7640 	int i;
7641 
7642 	if (!ctx)
7643 		return 0;
7644 
7645 	if (req_len > bp->hwrm_max_ext_req_len)
7646 		req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
7647 	rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len);
7648 	if (rc)
7649 		return rc;
7650 
7651 	req->enables = cpu_to_le32(enables);
7652 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
7653 		ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
7654 		ctx_pg = ctxm->pg_info;
7655 		req->qp_num_entries = cpu_to_le32(ctx_pg->entries);
7656 		req->qp_num_qp1_entries = cpu_to_le16(ctxm->qp_qp1_entries);
7657 		req->qp_num_l2_entries = cpu_to_le16(ctxm->qp_l2_entries);
7658 		req->qp_entry_size = cpu_to_le16(ctxm->entry_size);
7659 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7660 				      &req->qpc_pg_size_qpc_lvl,
7661 				      &req->qpc_page_dir);
7662 	}
7663 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
7664 		ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
7665 		ctx_pg = ctxm->pg_info;
7666 		req->srq_num_entries = cpu_to_le32(ctx_pg->entries);
7667 		req->srq_num_l2_entries = cpu_to_le16(ctxm->srq_l2_entries);
7668 		req->srq_entry_size = cpu_to_le16(ctxm->entry_size);
7669 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7670 				      &req->srq_pg_size_srq_lvl,
7671 				      &req->srq_page_dir);
7672 	}
7673 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
7674 		ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
7675 		ctx_pg = ctxm->pg_info;
7676 		req->cq_num_entries = cpu_to_le32(ctx_pg->entries);
7677 		req->cq_num_l2_entries = cpu_to_le16(ctxm->cq_l2_entries);
7678 		req->cq_entry_size = cpu_to_le16(ctxm->entry_size);
7679 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7680 				      &req->cq_pg_size_cq_lvl,
7681 				      &req->cq_page_dir);
7682 	}
7683 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
7684 		ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
7685 		ctx_pg = ctxm->pg_info;
7686 		req->vnic_num_vnic_entries = cpu_to_le16(ctxm->vnic_entries);
7687 		req->vnic_num_ring_table_entries =
7688 			cpu_to_le16(ctxm->max_entries - ctxm->vnic_entries);
7689 		req->vnic_entry_size = cpu_to_le16(ctxm->entry_size);
7690 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7691 				      &req->vnic_pg_size_vnic_lvl,
7692 				      &req->vnic_page_dir);
7693 	}
7694 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
7695 		ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
7696 		ctx_pg = ctxm->pg_info;
7697 		req->stat_num_entries = cpu_to_le32(ctxm->max_entries);
7698 		req->stat_entry_size = cpu_to_le16(ctxm->entry_size);
7699 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7700 				      &req->stat_pg_size_stat_lvl,
7701 				      &req->stat_page_dir);
7702 	}
7703 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
7704 		u32 units;
7705 
7706 		ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
7707 		ctx_pg = ctxm->pg_info;
7708 		req->mrav_num_entries = cpu_to_le32(ctx_pg->entries);
7709 		units = ctxm->mrav_num_entries_units;
7710 		if (units) {
7711 			u32 num_mr, num_ah = ctxm->mrav_av_entries;
7712 			u32 entries;
7713 
7714 			num_mr = ctx_pg->entries - num_ah;
7715 			entries = ((num_mr / units) << 16) | (num_ah / units);
7716 			req->mrav_num_entries = cpu_to_le32(entries);
7717 			flags |= FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
7718 		}
7719 		req->mrav_entry_size = cpu_to_le16(ctxm->entry_size);
7720 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7721 				      &req->mrav_pg_size_mrav_lvl,
7722 				      &req->mrav_page_dir);
7723 	}
7724 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
7725 		ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
7726 		ctx_pg = ctxm->pg_info;
7727 		req->tim_num_entries = cpu_to_le32(ctx_pg->entries);
7728 		req->tim_entry_size = cpu_to_le16(ctxm->entry_size);
7729 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7730 				      &req->tim_pg_size_tim_lvl,
7731 				      &req->tim_page_dir);
7732 	}
7733 	ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
7734 	for (i = 0, num_entries = &req->tqm_sp_num_entries,
7735 	     pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl,
7736 	     pg_dir = &req->tqm_sp_page_dir,
7737 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP,
7738 	     ctx_pg = ctxm->pg_info;
7739 	     i < BNXT_MAX_TQM_RINGS;
7740 	     ctx_pg = &ctx->ctx_arr[BNXT_CTX_FTQM].pg_info[i],
7741 	     i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
7742 		if (!(enables & ena))
7743 			continue;
7744 
7745 		req->tqm_entry_size = cpu_to_le16(ctxm->entry_size);
7746 		*num_entries = cpu_to_le32(ctx_pg->entries);
7747 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
7748 	}
7749 	req->flags = cpu_to_le32(flags);
7750 	return hwrm_req_send(bp, req);
7751 }
7752 
7753 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
7754 				  struct bnxt_ctx_pg_info *ctx_pg)
7755 {
7756 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7757 
7758 	rmem->page_size = BNXT_PAGE_SIZE;
7759 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
7760 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
7761 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
7762 	if (rmem->depth >= 1)
7763 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
7764 	return bnxt_alloc_ring(bp, rmem);
7765 }
7766 
7767 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
7768 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
7769 				  u8 depth, struct bnxt_ctx_mem_type *ctxm)
7770 {
7771 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7772 	int rc;
7773 
7774 	if (!mem_size)
7775 		return -EINVAL;
7776 
7777 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7778 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
7779 		ctx_pg->nr_pages = 0;
7780 		return -EINVAL;
7781 	}
7782 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
7783 		int nr_tbls, i;
7784 
7785 		rmem->depth = 2;
7786 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
7787 					     GFP_KERNEL);
7788 		if (!ctx_pg->ctx_pg_tbl)
7789 			return -ENOMEM;
7790 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
7791 		rmem->nr_pages = nr_tbls;
7792 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7793 		if (rc)
7794 			return rc;
7795 		for (i = 0; i < nr_tbls; i++) {
7796 			struct bnxt_ctx_pg_info *pg_tbl;
7797 
7798 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
7799 			if (!pg_tbl)
7800 				return -ENOMEM;
7801 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
7802 			rmem = &pg_tbl->ring_mem;
7803 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
7804 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
7805 			rmem->depth = 1;
7806 			rmem->nr_pages = MAX_CTX_PAGES;
7807 			rmem->ctx_mem = ctxm;
7808 			if (i == (nr_tbls - 1)) {
7809 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
7810 
7811 				if (rem)
7812 					rmem->nr_pages = rem;
7813 			}
7814 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
7815 			if (rc)
7816 				break;
7817 		}
7818 	} else {
7819 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7820 		if (rmem->nr_pages > 1 || depth)
7821 			rmem->depth = 1;
7822 		rmem->ctx_mem = ctxm;
7823 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7824 	}
7825 	return rc;
7826 }
7827 
7828 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
7829 				  struct bnxt_ctx_pg_info *ctx_pg)
7830 {
7831 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7832 
7833 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
7834 	    ctx_pg->ctx_pg_tbl) {
7835 		int i, nr_tbls = rmem->nr_pages;
7836 
7837 		for (i = 0; i < nr_tbls; i++) {
7838 			struct bnxt_ctx_pg_info *pg_tbl;
7839 			struct bnxt_ring_mem_info *rmem2;
7840 
7841 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
7842 			if (!pg_tbl)
7843 				continue;
7844 			rmem2 = &pg_tbl->ring_mem;
7845 			bnxt_free_ring(bp, rmem2);
7846 			ctx_pg->ctx_pg_arr[i] = NULL;
7847 			kfree(pg_tbl);
7848 			ctx_pg->ctx_pg_tbl[i] = NULL;
7849 		}
7850 		kfree(ctx_pg->ctx_pg_tbl);
7851 		ctx_pg->ctx_pg_tbl = NULL;
7852 	}
7853 	bnxt_free_ring(bp, rmem);
7854 	ctx_pg->nr_pages = 0;
7855 }
7856 
7857 static int bnxt_setup_ctxm_pg_tbls(struct bnxt *bp,
7858 				   struct bnxt_ctx_mem_type *ctxm, u32 entries,
7859 				   u8 pg_lvl)
7860 {
7861 	struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info;
7862 	int i, rc = 0, n = 1;
7863 	u32 mem_size;
7864 
7865 	if (!ctxm->entry_size || !ctx_pg)
7866 		return -EINVAL;
7867 	if (ctxm->instance_bmap)
7868 		n = hweight32(ctxm->instance_bmap);
7869 	if (ctxm->entry_multiple)
7870 		entries = roundup(entries, ctxm->entry_multiple);
7871 	entries = clamp_t(u32, entries, ctxm->min_entries, ctxm->max_entries);
7872 	mem_size = entries * ctxm->entry_size;
7873 	for (i = 0; i < n && !rc; i++) {
7874 		ctx_pg[i].entries = entries;
7875 		rc = bnxt_alloc_ctx_pg_tbls(bp, &ctx_pg[i], mem_size, pg_lvl,
7876 					    ctxm->init_value ? ctxm : NULL);
7877 	}
7878 	return rc;
7879 }
7880 
7881 static int bnxt_hwrm_func_backing_store_cfg_v2(struct bnxt *bp,
7882 					       struct bnxt_ctx_mem_type *ctxm,
7883 					       bool last)
7884 {
7885 	struct hwrm_func_backing_store_cfg_v2_input *req;
7886 	u32 instance_bmap = ctxm->instance_bmap;
7887 	int i, j, rc = 0, n = 1;
7888 	__le32 *p;
7889 
7890 	if (!(ctxm->flags & BNXT_CTX_MEM_TYPE_VALID) || !ctxm->pg_info)
7891 		return 0;
7892 
7893 	if (instance_bmap)
7894 		n = hweight32(ctxm->instance_bmap);
7895 	else
7896 		instance_bmap = 1;
7897 
7898 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_CFG_V2);
7899 	if (rc)
7900 		return rc;
7901 	hwrm_req_hold(bp, req);
7902 	req->type = cpu_to_le16(ctxm->type);
7903 	req->entry_size = cpu_to_le16(ctxm->entry_size);
7904 	req->subtype_valid_cnt = ctxm->split_entry_cnt;
7905 	for (i = 0, p = &req->split_entry_0; i < ctxm->split_entry_cnt; i++)
7906 		p[i] = cpu_to_le32(ctxm->split[i]);
7907 	for (i = 0, j = 0; j < n && !rc; i++) {
7908 		struct bnxt_ctx_pg_info *ctx_pg;
7909 
7910 		if (!(instance_bmap & (1 << i)))
7911 			continue;
7912 		req->instance = cpu_to_le16(i);
7913 		ctx_pg = &ctxm->pg_info[j++];
7914 		if (!ctx_pg->entries)
7915 			continue;
7916 		req->num_entries = cpu_to_le32(ctx_pg->entries);
7917 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7918 				      &req->page_size_pbl_level,
7919 				      &req->page_dir);
7920 		if (last && j == n)
7921 			req->flags =
7922 				cpu_to_le32(FUNC_BACKING_STORE_CFG_V2_REQ_FLAGS_BS_CFG_ALL_DONE);
7923 		rc = hwrm_req_send(bp, req);
7924 	}
7925 	hwrm_req_drop(bp, req);
7926 	return rc;
7927 }
7928 
7929 static int bnxt_backing_store_cfg_v2(struct bnxt *bp, u32 ena)
7930 {
7931 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7932 	struct bnxt_ctx_mem_type *ctxm;
7933 	u16 last_type;
7934 	int rc = 0;
7935 	u16 type;
7936 
7937 	if (!ena)
7938 		return 0;
7939 	else if (ena & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM)
7940 		last_type = BNXT_CTX_MAX - 1;
7941 	else
7942 		last_type = BNXT_CTX_L2_MAX - 1;
7943 	ctx->ctx_arr[last_type].last = 1;
7944 
7945 	for (type = 0 ; type < BNXT_CTX_V2_MAX; type++) {
7946 		ctxm = &ctx->ctx_arr[type];
7947 
7948 		rc = bnxt_hwrm_func_backing_store_cfg_v2(bp, ctxm, ctxm->last);
7949 		if (rc)
7950 			return rc;
7951 	}
7952 	return 0;
7953 }
7954 
7955 void bnxt_free_ctx_mem(struct bnxt *bp)
7956 {
7957 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7958 	u16 type;
7959 
7960 	if (!ctx)
7961 		return;
7962 
7963 	for (type = 0; type < BNXT_CTX_V2_MAX; type++) {
7964 		struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type];
7965 		struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info;
7966 		int i, n = 1;
7967 
7968 		if (!ctx_pg)
7969 			continue;
7970 		if (ctxm->instance_bmap)
7971 			n = hweight32(ctxm->instance_bmap);
7972 		for (i = 0; i < n; i++)
7973 			bnxt_free_ctx_pg_tbls(bp, &ctx_pg[i]);
7974 
7975 		kfree(ctx_pg);
7976 		ctxm->pg_info = NULL;
7977 	}
7978 
7979 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
7980 	kfree(ctx);
7981 	bp->ctx = NULL;
7982 }
7983 
7984 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
7985 {
7986 	struct bnxt_ctx_mem_type *ctxm;
7987 	struct bnxt_ctx_mem_info *ctx;
7988 	u32 l2_qps, qp1_qps, max_qps;
7989 	u32 ena, entries_sp, entries;
7990 	u32 srqs, max_srqs, min;
7991 	u32 num_mr, num_ah;
7992 	u32 extra_srqs = 0;
7993 	u32 extra_qps = 0;
7994 	u8 pg_lvl = 1;
7995 	int i, rc;
7996 
7997 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
7998 	if (rc) {
7999 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
8000 			   rc);
8001 		return rc;
8002 	}
8003 	ctx = bp->ctx;
8004 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
8005 		return 0;
8006 
8007 	ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8008 	l2_qps = ctxm->qp_l2_entries;
8009 	qp1_qps = ctxm->qp_qp1_entries;
8010 	max_qps = ctxm->max_entries;
8011 	ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8012 	srqs = ctxm->srq_l2_entries;
8013 	max_srqs = ctxm->max_entries;
8014 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
8015 		pg_lvl = 2;
8016 		extra_qps = min_t(u32, 65536, max_qps - l2_qps - qp1_qps);
8017 		extra_srqs = min_t(u32, 8192, max_srqs - srqs);
8018 	}
8019 
8020 	ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8021 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps,
8022 				     pg_lvl);
8023 	if (rc)
8024 		return rc;
8025 
8026 	ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8027 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, srqs + extra_srqs, pg_lvl);
8028 	if (rc)
8029 		return rc;
8030 
8031 	ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
8032 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->cq_l2_entries +
8033 				     extra_qps * 2, pg_lvl);
8034 	if (rc)
8035 		return rc;
8036 
8037 	ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
8038 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1);
8039 	if (rc)
8040 		return rc;
8041 
8042 	ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
8043 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1);
8044 	if (rc)
8045 		return rc;
8046 
8047 	ena = 0;
8048 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
8049 		goto skip_rdma;
8050 
8051 	ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
8052 	/* 128K extra is needed to accommodate static AH context
8053 	 * allocation by f/w.
8054 	 */
8055 	num_mr = min_t(u32, ctxm->max_entries / 2, 1024 * 256);
8056 	num_ah = min_t(u32, num_mr, 1024 * 128);
8057 	ctxm->split_entry_cnt = BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1;
8058 	if (!ctxm->mrav_av_entries || ctxm->mrav_av_entries > num_ah)
8059 		ctxm->mrav_av_entries = num_ah;
8060 
8061 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, num_mr + num_ah, 2);
8062 	if (rc)
8063 		return rc;
8064 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
8065 
8066 	ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
8067 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 1);
8068 	if (rc)
8069 		return rc;
8070 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
8071 
8072 skip_rdma:
8073 	ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
8074 	min = ctxm->min_entries;
8075 	entries_sp = ctx->ctx_arr[BNXT_CTX_VNIC].vnic_entries + l2_qps +
8076 		     2 * (extra_qps + qp1_qps) + min;
8077 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries_sp, 2);
8078 	if (rc)
8079 		return rc;
8080 
8081 	ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM];
8082 	entries = l2_qps + 2 * (extra_qps + qp1_qps);
8083 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries, 2);
8084 	if (rc)
8085 		return rc;
8086 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
8087 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
8088 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
8089 
8090 	if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2)
8091 		rc = bnxt_backing_store_cfg_v2(bp, ena);
8092 	else
8093 		rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
8094 	if (rc) {
8095 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
8096 			   rc);
8097 		return rc;
8098 	}
8099 	ctx->flags |= BNXT_CTX_FLAG_INITED;
8100 	return 0;
8101 }
8102 
8103 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
8104 {
8105 	struct hwrm_func_resource_qcaps_output *resp;
8106 	struct hwrm_func_resource_qcaps_input *req;
8107 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8108 	int rc;
8109 
8110 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS);
8111 	if (rc)
8112 		return rc;
8113 
8114 	req->fid = cpu_to_le16(0xffff);
8115 	resp = hwrm_req_hold(bp, req);
8116 	rc = hwrm_req_send_silent(bp, req);
8117 	if (rc)
8118 		goto hwrm_func_resc_qcaps_exit;
8119 
8120 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
8121 	if (!all)
8122 		goto hwrm_func_resc_qcaps_exit;
8123 
8124 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
8125 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
8126 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
8127 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
8128 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
8129 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
8130 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
8131 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
8132 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
8133 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
8134 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
8135 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
8136 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
8137 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
8138 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
8139 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
8140 
8141 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
8142 		u16 max_msix = le16_to_cpu(resp->max_msix);
8143 
8144 		hw_resc->max_nqs = max_msix;
8145 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
8146 	}
8147 
8148 	if (BNXT_PF(bp)) {
8149 		struct bnxt_pf_info *pf = &bp->pf;
8150 
8151 		pf->vf_resv_strategy =
8152 			le16_to_cpu(resp->vf_reservation_strategy);
8153 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
8154 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
8155 	}
8156 hwrm_func_resc_qcaps_exit:
8157 	hwrm_req_drop(bp, req);
8158 	return rc;
8159 }
8160 
8161 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
8162 {
8163 	struct hwrm_port_mac_ptp_qcfg_output *resp;
8164 	struct hwrm_port_mac_ptp_qcfg_input *req;
8165 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
8166 	bool phc_cfg;
8167 	u8 flags;
8168 	int rc;
8169 
8170 	if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5(bp)) {
8171 		rc = -ENODEV;
8172 		goto no_ptp;
8173 	}
8174 
8175 	rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG);
8176 	if (rc)
8177 		goto no_ptp;
8178 
8179 	req->port_id = cpu_to_le16(bp->pf.port_id);
8180 	resp = hwrm_req_hold(bp, req);
8181 	rc = hwrm_req_send(bp, req);
8182 	if (rc)
8183 		goto exit;
8184 
8185 	flags = resp->flags;
8186 	if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) {
8187 		rc = -ENODEV;
8188 		goto exit;
8189 	}
8190 	if (!ptp) {
8191 		ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
8192 		if (!ptp) {
8193 			rc = -ENOMEM;
8194 			goto exit;
8195 		}
8196 		ptp->bp = bp;
8197 		bp->ptp_cfg = ptp;
8198 	}
8199 	if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) {
8200 		ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower);
8201 		ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper);
8202 	} else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
8203 		ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER;
8204 		ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER;
8205 	} else {
8206 		rc = -ENODEV;
8207 		goto exit;
8208 	}
8209 	phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0;
8210 	rc = bnxt_ptp_init(bp, phc_cfg);
8211 	if (rc)
8212 		netdev_warn(bp->dev, "PTP initialization failed.\n");
8213 exit:
8214 	hwrm_req_drop(bp, req);
8215 	if (!rc)
8216 		return 0;
8217 
8218 no_ptp:
8219 	bnxt_ptp_clear(bp);
8220 	kfree(ptp);
8221 	bp->ptp_cfg = NULL;
8222 	return rc;
8223 }
8224 
8225 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
8226 {
8227 	struct hwrm_func_qcaps_output *resp;
8228 	struct hwrm_func_qcaps_input *req;
8229 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8230 	u32 flags, flags_ext, flags_ext2;
8231 	int rc;
8232 
8233 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS);
8234 	if (rc)
8235 		return rc;
8236 
8237 	req->fid = cpu_to_le16(0xffff);
8238 	resp = hwrm_req_hold(bp, req);
8239 	rc = hwrm_req_send(bp, req);
8240 	if (rc)
8241 		goto hwrm_func_qcaps_exit;
8242 
8243 	flags = le32_to_cpu(resp->flags);
8244 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
8245 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
8246 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
8247 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
8248 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
8249 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
8250 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
8251 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
8252 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
8253 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
8254 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
8255 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
8256 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
8257 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
8258 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
8259 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
8260 	if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED)
8261 		bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS;
8262 
8263 	flags_ext = le32_to_cpu(resp->flags_ext);
8264 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
8265 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
8266 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED))
8267 		bp->fw_cap |= BNXT_FW_CAP_PTP_PPS;
8268 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED)
8269 		bp->fw_cap |= BNXT_FW_CAP_PTP_RTC;
8270 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT))
8271 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF;
8272 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED))
8273 		bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH;
8274 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_BS_V2_SUPPORTED)
8275 		bp->fw_cap |= BNXT_FW_CAP_BACKING_STORE_V2;
8276 
8277 	flags_ext2 = le32_to_cpu(resp->flags_ext2);
8278 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED)
8279 		bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS;
8280 
8281 	bp->tx_push_thresh = 0;
8282 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
8283 	    BNXT_FW_MAJ(bp) > 217)
8284 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
8285 
8286 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
8287 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
8288 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
8289 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
8290 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
8291 	if (!hw_resc->max_hw_ring_grps)
8292 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
8293 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
8294 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
8295 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
8296 
8297 	if (BNXT_PF(bp)) {
8298 		struct bnxt_pf_info *pf = &bp->pf;
8299 
8300 		pf->fw_fid = le16_to_cpu(resp->fid);
8301 		pf->port_id = le16_to_cpu(resp->port_id);
8302 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
8303 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
8304 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
8305 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
8306 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
8307 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
8308 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
8309 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
8310 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
8311 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
8312 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
8313 			bp->flags |= BNXT_FLAG_WOL_CAP;
8314 		if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) {
8315 			bp->fw_cap |= BNXT_FW_CAP_PTP;
8316 		} else {
8317 			bnxt_ptp_clear(bp);
8318 			kfree(bp->ptp_cfg);
8319 			bp->ptp_cfg = NULL;
8320 		}
8321 	} else {
8322 #ifdef CONFIG_BNXT_SRIOV
8323 		struct bnxt_vf_info *vf = &bp->vf;
8324 
8325 		vf->fw_fid = le16_to_cpu(resp->fid);
8326 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
8327 #endif
8328 	}
8329 
8330 hwrm_func_qcaps_exit:
8331 	hwrm_req_drop(bp, req);
8332 	return rc;
8333 }
8334 
8335 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp)
8336 {
8337 	struct hwrm_dbg_qcaps_output *resp;
8338 	struct hwrm_dbg_qcaps_input *req;
8339 	int rc;
8340 
8341 	bp->fw_dbg_cap = 0;
8342 	if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS))
8343 		return;
8344 
8345 	rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS);
8346 	if (rc)
8347 		return;
8348 
8349 	req->fid = cpu_to_le16(0xffff);
8350 	resp = hwrm_req_hold(bp, req);
8351 	rc = hwrm_req_send(bp, req);
8352 	if (rc)
8353 		goto hwrm_dbg_qcaps_exit;
8354 
8355 	bp->fw_dbg_cap = le32_to_cpu(resp->flags);
8356 
8357 hwrm_dbg_qcaps_exit:
8358 	hwrm_req_drop(bp, req);
8359 }
8360 
8361 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
8362 
8363 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
8364 {
8365 	int rc;
8366 
8367 	rc = __bnxt_hwrm_func_qcaps(bp);
8368 	if (rc)
8369 		return rc;
8370 
8371 	bnxt_hwrm_dbg_qcaps(bp);
8372 
8373 	rc = bnxt_hwrm_queue_qportcfg(bp);
8374 	if (rc) {
8375 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
8376 		return rc;
8377 	}
8378 	if (bp->hwrm_spec_code >= 0x10803) {
8379 		rc = bnxt_alloc_ctx_mem(bp);
8380 		if (rc)
8381 			return rc;
8382 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
8383 		if (!rc)
8384 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
8385 	}
8386 	return 0;
8387 }
8388 
8389 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
8390 {
8391 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
8392 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req;
8393 	u32 flags;
8394 	int rc;
8395 
8396 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
8397 		return 0;
8398 
8399 	rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS);
8400 	if (rc)
8401 		return rc;
8402 
8403 	resp = hwrm_req_hold(bp, req);
8404 	rc = hwrm_req_send(bp, req);
8405 	if (rc)
8406 		goto hwrm_cfa_adv_qcaps_exit;
8407 
8408 	flags = le32_to_cpu(resp->flags);
8409 	if (flags &
8410 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
8411 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
8412 
8413 hwrm_cfa_adv_qcaps_exit:
8414 	hwrm_req_drop(bp, req);
8415 	return rc;
8416 }
8417 
8418 static int __bnxt_alloc_fw_health(struct bnxt *bp)
8419 {
8420 	if (bp->fw_health)
8421 		return 0;
8422 
8423 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
8424 	if (!bp->fw_health)
8425 		return -ENOMEM;
8426 
8427 	mutex_init(&bp->fw_health->lock);
8428 	return 0;
8429 }
8430 
8431 static int bnxt_alloc_fw_health(struct bnxt *bp)
8432 {
8433 	int rc;
8434 
8435 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
8436 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
8437 		return 0;
8438 
8439 	rc = __bnxt_alloc_fw_health(bp);
8440 	if (rc) {
8441 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
8442 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
8443 		return rc;
8444 	}
8445 
8446 	return 0;
8447 }
8448 
8449 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
8450 {
8451 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
8452 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
8453 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
8454 }
8455 
8456 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
8457 {
8458 	struct bnxt_fw_health *fw_health = bp->fw_health;
8459 	u32 reg_type;
8460 
8461 	if (!fw_health)
8462 		return;
8463 
8464 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
8465 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
8466 		fw_health->status_reliable = false;
8467 
8468 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]);
8469 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
8470 		fw_health->resets_reliable = false;
8471 }
8472 
8473 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
8474 {
8475 	void __iomem *hs;
8476 	u32 status_loc;
8477 	u32 reg_type;
8478 	u32 sig;
8479 
8480 	if (bp->fw_health)
8481 		bp->fw_health->status_reliable = false;
8482 
8483 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
8484 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
8485 
8486 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
8487 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
8488 		if (!bp->chip_num) {
8489 			__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
8490 			bp->chip_num = readl(bp->bar0 +
8491 					     BNXT_FW_HEALTH_WIN_BASE +
8492 					     BNXT_GRC_REG_CHIP_NUM);
8493 		}
8494 		if (!BNXT_CHIP_P5(bp))
8495 			return;
8496 
8497 		status_loc = BNXT_GRC_REG_STATUS_P5 |
8498 			     BNXT_FW_HEALTH_REG_TYPE_BAR0;
8499 	} else {
8500 		status_loc = readl(hs + offsetof(struct hcomm_status,
8501 						 fw_status_loc));
8502 	}
8503 
8504 	if (__bnxt_alloc_fw_health(bp)) {
8505 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
8506 		return;
8507 	}
8508 
8509 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
8510 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
8511 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
8512 		__bnxt_map_fw_health_reg(bp, status_loc);
8513 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
8514 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
8515 	}
8516 
8517 	bp->fw_health->status_reliable = true;
8518 }
8519 
8520 static int bnxt_map_fw_health_regs(struct bnxt *bp)
8521 {
8522 	struct bnxt_fw_health *fw_health = bp->fw_health;
8523 	u32 reg_base = 0xffffffff;
8524 	int i;
8525 
8526 	bp->fw_health->status_reliable = false;
8527 	bp->fw_health->resets_reliable = false;
8528 	/* Only pre-map the monitoring GRC registers using window 3 */
8529 	for (i = 0; i < 4; i++) {
8530 		u32 reg = fw_health->regs[i];
8531 
8532 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
8533 			continue;
8534 		if (reg_base == 0xffffffff)
8535 			reg_base = reg & BNXT_GRC_BASE_MASK;
8536 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
8537 			return -ERANGE;
8538 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
8539 	}
8540 	bp->fw_health->status_reliable = true;
8541 	bp->fw_health->resets_reliable = true;
8542 	if (reg_base == 0xffffffff)
8543 		return 0;
8544 
8545 	__bnxt_map_fw_health_reg(bp, reg_base);
8546 	return 0;
8547 }
8548 
8549 static void bnxt_remap_fw_health_regs(struct bnxt *bp)
8550 {
8551 	if (!bp->fw_health)
8552 		return;
8553 
8554 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) {
8555 		bp->fw_health->status_reliable = true;
8556 		bp->fw_health->resets_reliable = true;
8557 	} else {
8558 		bnxt_try_map_fw_health_reg(bp);
8559 	}
8560 }
8561 
8562 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
8563 {
8564 	struct bnxt_fw_health *fw_health = bp->fw_health;
8565 	struct hwrm_error_recovery_qcfg_output *resp;
8566 	struct hwrm_error_recovery_qcfg_input *req;
8567 	int rc, i;
8568 
8569 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
8570 		return 0;
8571 
8572 	rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG);
8573 	if (rc)
8574 		return rc;
8575 
8576 	resp = hwrm_req_hold(bp, req);
8577 	rc = hwrm_req_send(bp, req);
8578 	if (rc)
8579 		goto err_recovery_out;
8580 	fw_health->flags = le32_to_cpu(resp->flags);
8581 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
8582 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
8583 		rc = -EINVAL;
8584 		goto err_recovery_out;
8585 	}
8586 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
8587 	fw_health->master_func_wait_dsecs =
8588 		le32_to_cpu(resp->master_func_wait_period);
8589 	fw_health->normal_func_wait_dsecs =
8590 		le32_to_cpu(resp->normal_func_wait_period);
8591 	fw_health->post_reset_wait_dsecs =
8592 		le32_to_cpu(resp->master_func_wait_period_after_reset);
8593 	fw_health->post_reset_max_wait_dsecs =
8594 		le32_to_cpu(resp->max_bailout_time_after_reset);
8595 	fw_health->regs[BNXT_FW_HEALTH_REG] =
8596 		le32_to_cpu(resp->fw_health_status_reg);
8597 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
8598 		le32_to_cpu(resp->fw_heartbeat_reg);
8599 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
8600 		le32_to_cpu(resp->fw_reset_cnt_reg);
8601 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
8602 		le32_to_cpu(resp->reset_inprogress_reg);
8603 	fw_health->fw_reset_inprog_reg_mask =
8604 		le32_to_cpu(resp->reset_inprogress_reg_mask);
8605 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
8606 	if (fw_health->fw_reset_seq_cnt >= 16) {
8607 		rc = -EINVAL;
8608 		goto err_recovery_out;
8609 	}
8610 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
8611 		fw_health->fw_reset_seq_regs[i] =
8612 			le32_to_cpu(resp->reset_reg[i]);
8613 		fw_health->fw_reset_seq_vals[i] =
8614 			le32_to_cpu(resp->reset_reg_val[i]);
8615 		fw_health->fw_reset_seq_delay_msec[i] =
8616 			resp->delay_after_reset[i];
8617 	}
8618 err_recovery_out:
8619 	hwrm_req_drop(bp, req);
8620 	if (!rc)
8621 		rc = bnxt_map_fw_health_regs(bp);
8622 	if (rc)
8623 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
8624 	return rc;
8625 }
8626 
8627 static int bnxt_hwrm_func_reset(struct bnxt *bp)
8628 {
8629 	struct hwrm_func_reset_input *req;
8630 	int rc;
8631 
8632 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET);
8633 	if (rc)
8634 		return rc;
8635 
8636 	req->enables = 0;
8637 	hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT);
8638 	return hwrm_req_send(bp, req);
8639 }
8640 
8641 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
8642 {
8643 	struct hwrm_nvm_get_dev_info_output nvm_info;
8644 
8645 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
8646 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
8647 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
8648 			 nvm_info.nvm_cfg_ver_upd);
8649 }
8650 
8651 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
8652 {
8653 	struct hwrm_queue_qportcfg_output *resp;
8654 	struct hwrm_queue_qportcfg_input *req;
8655 	u8 i, j, *qptr;
8656 	bool no_rdma;
8657 	int rc = 0;
8658 
8659 	rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG);
8660 	if (rc)
8661 		return rc;
8662 
8663 	resp = hwrm_req_hold(bp, req);
8664 	rc = hwrm_req_send(bp, req);
8665 	if (rc)
8666 		goto qportcfg_exit;
8667 
8668 	if (!resp->max_configurable_queues) {
8669 		rc = -EINVAL;
8670 		goto qportcfg_exit;
8671 	}
8672 	bp->max_tc = resp->max_configurable_queues;
8673 	bp->max_lltc = resp->max_configurable_lossless_queues;
8674 	if (bp->max_tc > BNXT_MAX_QUEUE)
8675 		bp->max_tc = BNXT_MAX_QUEUE;
8676 
8677 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
8678 	qptr = &resp->queue_id0;
8679 	for (i = 0, j = 0; i < bp->max_tc; i++) {
8680 		bp->q_info[j].queue_id = *qptr;
8681 		bp->q_ids[i] = *qptr++;
8682 		bp->q_info[j].queue_profile = *qptr++;
8683 		bp->tc_to_qidx[j] = j;
8684 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
8685 		    (no_rdma && BNXT_PF(bp)))
8686 			j++;
8687 	}
8688 	bp->max_q = bp->max_tc;
8689 	bp->max_tc = max_t(u8, j, 1);
8690 
8691 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
8692 		bp->max_tc = 1;
8693 
8694 	if (bp->max_lltc > bp->max_tc)
8695 		bp->max_lltc = bp->max_tc;
8696 
8697 qportcfg_exit:
8698 	hwrm_req_drop(bp, req);
8699 	return rc;
8700 }
8701 
8702 static int bnxt_hwrm_poll(struct bnxt *bp)
8703 {
8704 	struct hwrm_ver_get_input *req;
8705 	int rc;
8706 
8707 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8708 	if (rc)
8709 		return rc;
8710 
8711 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8712 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8713 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8714 
8715 	hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT);
8716 	rc = hwrm_req_send(bp, req);
8717 	return rc;
8718 }
8719 
8720 static int bnxt_hwrm_ver_get(struct bnxt *bp)
8721 {
8722 	struct hwrm_ver_get_output *resp;
8723 	struct hwrm_ver_get_input *req;
8724 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
8725 	u32 dev_caps_cfg, hwrm_ver;
8726 	int rc, len;
8727 
8728 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8729 	if (rc)
8730 		return rc;
8731 
8732 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
8733 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
8734 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8735 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8736 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8737 
8738 	resp = hwrm_req_hold(bp, req);
8739 	rc = hwrm_req_send(bp, req);
8740 	if (rc)
8741 		goto hwrm_ver_get_exit;
8742 
8743 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
8744 
8745 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
8746 			     resp->hwrm_intf_min_8b << 8 |
8747 			     resp->hwrm_intf_upd_8b;
8748 	if (resp->hwrm_intf_maj_8b < 1) {
8749 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
8750 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8751 			    resp->hwrm_intf_upd_8b);
8752 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
8753 	}
8754 
8755 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
8756 			HWRM_VERSION_UPDATE;
8757 
8758 	if (bp->hwrm_spec_code > hwrm_ver)
8759 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8760 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
8761 			 HWRM_VERSION_UPDATE);
8762 	else
8763 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8764 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8765 			 resp->hwrm_intf_upd_8b);
8766 
8767 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
8768 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
8769 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
8770 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
8771 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
8772 		len = FW_VER_STR_LEN;
8773 	} else {
8774 		fw_maj = resp->hwrm_fw_maj_8b;
8775 		fw_min = resp->hwrm_fw_min_8b;
8776 		fw_bld = resp->hwrm_fw_bld_8b;
8777 		fw_rsv = resp->hwrm_fw_rsvd_8b;
8778 		len = BC_HWRM_STR_LEN;
8779 	}
8780 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
8781 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
8782 		 fw_rsv);
8783 
8784 	if (strlen(resp->active_pkg_name)) {
8785 		int fw_ver_len = strlen(bp->fw_ver_str);
8786 
8787 		snprintf(bp->fw_ver_str + fw_ver_len,
8788 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
8789 			 resp->active_pkg_name);
8790 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
8791 	}
8792 
8793 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
8794 	if (!bp->hwrm_cmd_timeout)
8795 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
8796 	bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000;
8797 	if (!bp->hwrm_cmd_max_timeout)
8798 		bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT;
8799 	else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT)
8800 		netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n",
8801 			    bp->hwrm_cmd_max_timeout / 1000);
8802 
8803 	if (resp->hwrm_intf_maj_8b >= 1) {
8804 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
8805 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
8806 	}
8807 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
8808 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
8809 
8810 	bp->chip_num = le16_to_cpu(resp->chip_num);
8811 	bp->chip_rev = resp->chip_rev;
8812 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
8813 	    !resp->chip_metal)
8814 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
8815 
8816 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
8817 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
8818 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
8819 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
8820 
8821 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
8822 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
8823 
8824 	if (dev_caps_cfg &
8825 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
8826 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
8827 
8828 	if (dev_caps_cfg &
8829 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
8830 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
8831 
8832 	if (dev_caps_cfg &
8833 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
8834 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
8835 
8836 hwrm_ver_get_exit:
8837 	hwrm_req_drop(bp, req);
8838 	return rc;
8839 }
8840 
8841 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
8842 {
8843 	struct hwrm_fw_set_time_input *req;
8844 	struct tm tm;
8845 	time64_t now = ktime_get_real_seconds();
8846 	int rc;
8847 
8848 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
8849 	    bp->hwrm_spec_code < 0x10400)
8850 		return -EOPNOTSUPP;
8851 
8852 	time64_to_tm(now, 0, &tm);
8853 	rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME);
8854 	if (rc)
8855 		return rc;
8856 
8857 	req->year = cpu_to_le16(1900 + tm.tm_year);
8858 	req->month = 1 + tm.tm_mon;
8859 	req->day = tm.tm_mday;
8860 	req->hour = tm.tm_hour;
8861 	req->minute = tm.tm_min;
8862 	req->second = tm.tm_sec;
8863 	return hwrm_req_send(bp, req);
8864 }
8865 
8866 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
8867 {
8868 	u64 sw_tmp;
8869 
8870 	hw &= mask;
8871 	sw_tmp = (*sw & ~mask) | hw;
8872 	if (hw < (*sw & mask))
8873 		sw_tmp += mask + 1;
8874 	WRITE_ONCE(*sw, sw_tmp);
8875 }
8876 
8877 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
8878 				    int count, bool ignore_zero)
8879 {
8880 	int i;
8881 
8882 	for (i = 0; i < count; i++) {
8883 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
8884 
8885 		if (ignore_zero && !hw)
8886 			continue;
8887 
8888 		if (masks[i] == -1ULL)
8889 			sw_stats[i] = hw;
8890 		else
8891 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
8892 	}
8893 }
8894 
8895 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
8896 {
8897 	if (!stats->hw_stats)
8898 		return;
8899 
8900 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8901 				stats->hw_masks, stats->len / 8, false);
8902 }
8903 
8904 static void bnxt_accumulate_all_stats(struct bnxt *bp)
8905 {
8906 	struct bnxt_stats_mem *ring0_stats;
8907 	bool ignore_zero = false;
8908 	int i;
8909 
8910 	/* Chip bug.  Counter intermittently becomes 0. */
8911 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
8912 		ignore_zero = true;
8913 
8914 	for (i = 0; i < bp->cp_nr_rings; i++) {
8915 		struct bnxt_napi *bnapi = bp->bnapi[i];
8916 		struct bnxt_cp_ring_info *cpr;
8917 		struct bnxt_stats_mem *stats;
8918 
8919 		cpr = &bnapi->cp_ring;
8920 		stats = &cpr->stats;
8921 		if (!i)
8922 			ring0_stats = stats;
8923 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8924 					ring0_stats->hw_masks,
8925 					ring0_stats->len / 8, ignore_zero);
8926 	}
8927 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
8928 		struct bnxt_stats_mem *stats = &bp->port_stats;
8929 		__le64 *hw_stats = stats->hw_stats;
8930 		u64 *sw_stats = stats->sw_stats;
8931 		u64 *masks = stats->hw_masks;
8932 		int cnt;
8933 
8934 		cnt = sizeof(struct rx_port_stats) / 8;
8935 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8936 
8937 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8938 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8939 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8940 		cnt = sizeof(struct tx_port_stats) / 8;
8941 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8942 	}
8943 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
8944 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
8945 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
8946 	}
8947 }
8948 
8949 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
8950 {
8951 	struct hwrm_port_qstats_input *req;
8952 	struct bnxt_pf_info *pf = &bp->pf;
8953 	int rc;
8954 
8955 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
8956 		return 0;
8957 
8958 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8959 		return -EOPNOTSUPP;
8960 
8961 	rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS);
8962 	if (rc)
8963 		return rc;
8964 
8965 	req->flags = flags;
8966 	req->port_id = cpu_to_le16(pf->port_id);
8967 	req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
8968 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
8969 	req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
8970 	return hwrm_req_send(bp, req);
8971 }
8972 
8973 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
8974 {
8975 	struct hwrm_queue_pri2cos_qcfg_output *resp_qc;
8976 	struct hwrm_queue_pri2cos_qcfg_input *req_qc;
8977 	struct hwrm_port_qstats_ext_output *resp_qs;
8978 	struct hwrm_port_qstats_ext_input *req_qs;
8979 	struct bnxt_pf_info *pf = &bp->pf;
8980 	u32 tx_stat_size;
8981 	int rc;
8982 
8983 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
8984 		return 0;
8985 
8986 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8987 		return -EOPNOTSUPP;
8988 
8989 	rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT);
8990 	if (rc)
8991 		return rc;
8992 
8993 	req_qs->flags = flags;
8994 	req_qs->port_id = cpu_to_le16(pf->port_id);
8995 	req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
8996 	req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
8997 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
8998 		       sizeof(struct tx_port_stats_ext) : 0;
8999 	req_qs->tx_stat_size = cpu_to_le16(tx_stat_size);
9000 	req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
9001 	resp_qs = hwrm_req_hold(bp, req_qs);
9002 	rc = hwrm_req_send(bp, req_qs);
9003 	if (!rc) {
9004 		bp->fw_rx_stats_ext_size =
9005 			le16_to_cpu(resp_qs->rx_stat_size) / 8;
9006 		if (BNXT_FW_MAJ(bp) < 220 &&
9007 		    bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY)
9008 			bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY;
9009 
9010 		bp->fw_tx_stats_ext_size = tx_stat_size ?
9011 			le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0;
9012 	} else {
9013 		bp->fw_rx_stats_ext_size = 0;
9014 		bp->fw_tx_stats_ext_size = 0;
9015 	}
9016 	hwrm_req_drop(bp, req_qs);
9017 
9018 	if (flags)
9019 		return rc;
9020 
9021 	if (bp->fw_tx_stats_ext_size <=
9022 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
9023 		bp->pri2cos_valid = 0;
9024 		return rc;
9025 	}
9026 
9027 	rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG);
9028 	if (rc)
9029 		return rc;
9030 
9031 	req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
9032 
9033 	resp_qc = hwrm_req_hold(bp, req_qc);
9034 	rc = hwrm_req_send(bp, req_qc);
9035 	if (!rc) {
9036 		u8 *pri2cos;
9037 		int i, j;
9038 
9039 		pri2cos = &resp_qc->pri0_cos_queue_id;
9040 		for (i = 0; i < 8; i++) {
9041 			u8 queue_id = pri2cos[i];
9042 			u8 queue_idx;
9043 
9044 			/* Per port queue IDs start from 0, 10, 20, etc */
9045 			queue_idx = queue_id % 10;
9046 			if (queue_idx > BNXT_MAX_QUEUE) {
9047 				bp->pri2cos_valid = false;
9048 				hwrm_req_drop(bp, req_qc);
9049 				return rc;
9050 			}
9051 			for (j = 0; j < bp->max_q; j++) {
9052 				if (bp->q_ids[j] == queue_id)
9053 					bp->pri2cos_idx[i] = queue_idx;
9054 			}
9055 		}
9056 		bp->pri2cos_valid = true;
9057 	}
9058 	hwrm_req_drop(bp, req_qc);
9059 
9060 	return rc;
9061 }
9062 
9063 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
9064 {
9065 	bnxt_hwrm_tunnel_dst_port_free(bp,
9066 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
9067 	bnxt_hwrm_tunnel_dst_port_free(bp,
9068 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
9069 }
9070 
9071 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
9072 {
9073 	int rc, i;
9074 	u32 tpa_flags = 0;
9075 
9076 	if (set_tpa)
9077 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
9078 	else if (BNXT_NO_FW_ACCESS(bp))
9079 		return 0;
9080 	for (i = 0; i < bp->nr_vnics; i++) {
9081 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
9082 		if (rc) {
9083 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
9084 				   i, rc);
9085 			return rc;
9086 		}
9087 	}
9088 	return 0;
9089 }
9090 
9091 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
9092 {
9093 	int i;
9094 
9095 	for (i = 0; i < bp->nr_vnics; i++)
9096 		bnxt_hwrm_vnic_set_rss(bp, i, false);
9097 }
9098 
9099 static void bnxt_clear_vnic(struct bnxt *bp)
9100 {
9101 	if (!bp->vnic_info)
9102 		return;
9103 
9104 	bnxt_hwrm_clear_vnic_filter(bp);
9105 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) {
9106 		/* clear all RSS setting before free vnic ctx */
9107 		bnxt_hwrm_clear_vnic_rss(bp);
9108 		bnxt_hwrm_vnic_ctx_free(bp);
9109 	}
9110 	/* before free the vnic, undo the vnic tpa settings */
9111 	if (bp->flags & BNXT_FLAG_TPA)
9112 		bnxt_set_tpa(bp, false);
9113 	bnxt_hwrm_vnic_free(bp);
9114 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9115 		bnxt_hwrm_vnic_ctx_free(bp);
9116 }
9117 
9118 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
9119 				    bool irq_re_init)
9120 {
9121 	bnxt_clear_vnic(bp);
9122 	bnxt_hwrm_ring_free(bp, close_path);
9123 	bnxt_hwrm_ring_grp_free(bp);
9124 	if (irq_re_init) {
9125 		bnxt_hwrm_stat_ctx_free(bp);
9126 		bnxt_hwrm_free_tunnel_ports(bp);
9127 	}
9128 }
9129 
9130 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
9131 {
9132 	struct hwrm_func_cfg_input *req;
9133 	u8 evb_mode;
9134 	int rc;
9135 
9136 	if (br_mode == BRIDGE_MODE_VEB)
9137 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
9138 	else if (br_mode == BRIDGE_MODE_VEPA)
9139 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
9140 	else
9141 		return -EINVAL;
9142 
9143 	rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
9144 	if (rc)
9145 		return rc;
9146 
9147 	req->fid = cpu_to_le16(0xffff);
9148 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
9149 	req->evb_mode = evb_mode;
9150 	return hwrm_req_send(bp, req);
9151 }
9152 
9153 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
9154 {
9155 	struct hwrm_func_cfg_input *req;
9156 	int rc;
9157 
9158 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
9159 		return 0;
9160 
9161 	rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
9162 	if (rc)
9163 		return rc;
9164 
9165 	req->fid = cpu_to_le16(0xffff);
9166 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
9167 	req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
9168 	if (size == 128)
9169 		req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
9170 
9171 	return hwrm_req_send(bp, req);
9172 }
9173 
9174 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
9175 {
9176 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
9177 	int rc;
9178 
9179 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
9180 		goto skip_rss_ctx;
9181 
9182 	/* allocate context for vnic */
9183 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
9184 	if (rc) {
9185 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
9186 			   vnic_id, rc);
9187 		goto vnic_setup_err;
9188 	}
9189 	bp->rsscos_nr_ctxs++;
9190 
9191 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
9192 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
9193 		if (rc) {
9194 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
9195 				   vnic_id, rc);
9196 			goto vnic_setup_err;
9197 		}
9198 		bp->rsscos_nr_ctxs++;
9199 	}
9200 
9201 skip_rss_ctx:
9202 	/* configure default vnic, ring grp */
9203 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
9204 	if (rc) {
9205 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
9206 			   vnic_id, rc);
9207 		goto vnic_setup_err;
9208 	}
9209 
9210 	/* Enable RSS hashing on vnic */
9211 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
9212 	if (rc) {
9213 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
9214 			   vnic_id, rc);
9215 		goto vnic_setup_err;
9216 	}
9217 
9218 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
9219 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
9220 		if (rc) {
9221 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
9222 				   vnic_id, rc);
9223 		}
9224 	}
9225 
9226 vnic_setup_err:
9227 	return rc;
9228 }
9229 
9230 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
9231 {
9232 	int rc, i, nr_ctxs;
9233 
9234 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
9235 	for (i = 0; i < nr_ctxs; i++) {
9236 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
9237 		if (rc) {
9238 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
9239 				   vnic_id, i, rc);
9240 			break;
9241 		}
9242 		bp->rsscos_nr_ctxs++;
9243 	}
9244 	if (i < nr_ctxs)
9245 		return -ENOMEM;
9246 
9247 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
9248 	if (rc) {
9249 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
9250 			   vnic_id, rc);
9251 		return rc;
9252 	}
9253 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
9254 	if (rc) {
9255 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
9256 			   vnic_id, rc);
9257 		return rc;
9258 	}
9259 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
9260 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
9261 		if (rc) {
9262 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
9263 				   vnic_id, rc);
9264 		}
9265 	}
9266 	return rc;
9267 }
9268 
9269 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
9270 {
9271 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9272 		return __bnxt_setup_vnic_p5(bp, vnic_id);
9273 	else
9274 		return __bnxt_setup_vnic(bp, vnic_id);
9275 }
9276 
9277 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
9278 {
9279 #ifdef CONFIG_RFS_ACCEL
9280 	int i, rc = 0;
9281 
9282 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9283 		return 0;
9284 
9285 	for (i = 0; i < bp->rx_nr_rings; i++) {
9286 		struct bnxt_vnic_info *vnic;
9287 		u16 vnic_id = i + 1;
9288 		u16 ring_id = i;
9289 
9290 		if (vnic_id >= bp->nr_vnics)
9291 			break;
9292 
9293 		vnic = &bp->vnic_info[vnic_id];
9294 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
9295 		if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP)
9296 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
9297 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
9298 		if (rc) {
9299 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
9300 				   vnic_id, rc);
9301 			break;
9302 		}
9303 		rc = bnxt_setup_vnic(bp, vnic_id);
9304 		if (rc)
9305 			break;
9306 	}
9307 	return rc;
9308 #else
9309 	return 0;
9310 #endif
9311 }
9312 
9313 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
9314 static bool bnxt_promisc_ok(struct bnxt *bp)
9315 {
9316 #ifdef CONFIG_BNXT_SRIOV
9317 	if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
9318 		return false;
9319 #endif
9320 	return true;
9321 }
9322 
9323 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
9324 {
9325 	unsigned int rc = 0;
9326 
9327 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
9328 	if (rc) {
9329 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
9330 			   rc);
9331 		return rc;
9332 	}
9333 
9334 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
9335 	if (rc) {
9336 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
9337 			   rc);
9338 		return rc;
9339 	}
9340 	return rc;
9341 }
9342 
9343 static int bnxt_cfg_rx_mode(struct bnxt *);
9344 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
9345 
9346 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
9347 {
9348 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9349 	int rc = 0;
9350 	unsigned int rx_nr_rings = bp->rx_nr_rings;
9351 
9352 	if (irq_re_init) {
9353 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
9354 		if (rc) {
9355 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
9356 				   rc);
9357 			goto err_out;
9358 		}
9359 	}
9360 
9361 	rc = bnxt_hwrm_ring_alloc(bp);
9362 	if (rc) {
9363 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
9364 		goto err_out;
9365 	}
9366 
9367 	rc = bnxt_hwrm_ring_grp_alloc(bp);
9368 	if (rc) {
9369 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
9370 		goto err_out;
9371 	}
9372 
9373 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
9374 		rx_nr_rings--;
9375 
9376 	/* default vnic 0 */
9377 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
9378 	if (rc) {
9379 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
9380 		goto err_out;
9381 	}
9382 
9383 	if (BNXT_VF(bp))
9384 		bnxt_hwrm_func_qcfg(bp);
9385 
9386 	rc = bnxt_setup_vnic(bp, 0);
9387 	if (rc)
9388 		goto err_out;
9389 	if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA)
9390 		bnxt_hwrm_update_rss_hash_cfg(bp);
9391 
9392 	if (bp->flags & BNXT_FLAG_RFS) {
9393 		rc = bnxt_alloc_rfs_vnics(bp);
9394 		if (rc)
9395 			goto err_out;
9396 	}
9397 
9398 	if (bp->flags & BNXT_FLAG_TPA) {
9399 		rc = bnxt_set_tpa(bp, true);
9400 		if (rc)
9401 			goto err_out;
9402 	}
9403 
9404 	if (BNXT_VF(bp))
9405 		bnxt_update_vf_mac(bp);
9406 
9407 	/* Filter for default vnic 0 */
9408 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
9409 	if (rc) {
9410 		if (BNXT_VF(bp) && rc == -ENODEV)
9411 			netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n");
9412 		else
9413 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
9414 		goto err_out;
9415 	}
9416 	vnic->uc_filter_count = 1;
9417 
9418 	vnic->rx_mask = 0;
9419 	if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state))
9420 		goto skip_rx_mask;
9421 
9422 	if (bp->dev->flags & IFF_BROADCAST)
9423 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
9424 
9425 	if (bp->dev->flags & IFF_PROMISC)
9426 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
9427 
9428 	if (bp->dev->flags & IFF_ALLMULTI) {
9429 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9430 		vnic->mc_list_count = 0;
9431 	} else if (bp->dev->flags & IFF_MULTICAST) {
9432 		u32 mask = 0;
9433 
9434 		bnxt_mc_list_updated(bp, &mask);
9435 		vnic->rx_mask |= mask;
9436 	}
9437 
9438 	rc = bnxt_cfg_rx_mode(bp);
9439 	if (rc)
9440 		goto err_out;
9441 
9442 skip_rx_mask:
9443 	rc = bnxt_hwrm_set_coal(bp);
9444 	if (rc)
9445 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
9446 				rc);
9447 
9448 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
9449 		rc = bnxt_setup_nitroa0_vnic(bp);
9450 		if (rc)
9451 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
9452 				   rc);
9453 	}
9454 
9455 	if (BNXT_VF(bp)) {
9456 		bnxt_hwrm_func_qcfg(bp);
9457 		netdev_update_features(bp->dev);
9458 	}
9459 
9460 	return 0;
9461 
9462 err_out:
9463 	bnxt_hwrm_resource_free(bp, 0, true);
9464 
9465 	return rc;
9466 }
9467 
9468 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
9469 {
9470 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
9471 	return 0;
9472 }
9473 
9474 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
9475 {
9476 	bnxt_init_cp_rings(bp);
9477 	bnxt_init_rx_rings(bp);
9478 	bnxt_init_tx_rings(bp);
9479 	bnxt_init_ring_grps(bp, irq_re_init);
9480 	bnxt_init_vnics(bp);
9481 
9482 	return bnxt_init_chip(bp, irq_re_init);
9483 }
9484 
9485 static int bnxt_set_real_num_queues(struct bnxt *bp)
9486 {
9487 	int rc;
9488 	struct net_device *dev = bp->dev;
9489 
9490 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
9491 					  bp->tx_nr_rings_xdp);
9492 	if (rc)
9493 		return rc;
9494 
9495 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
9496 	if (rc)
9497 		return rc;
9498 
9499 #ifdef CONFIG_RFS_ACCEL
9500 	if (bp->flags & BNXT_FLAG_RFS)
9501 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
9502 #endif
9503 
9504 	return rc;
9505 }
9506 
9507 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
9508 			     bool shared)
9509 {
9510 	int _rx = *rx, _tx = *tx;
9511 
9512 	if (shared) {
9513 		*rx = min_t(int, _rx, max);
9514 		*tx = min_t(int, _tx, max);
9515 	} else {
9516 		if (max < 2)
9517 			return -ENOMEM;
9518 
9519 		while (_rx + _tx > max) {
9520 			if (_rx > _tx && _rx > 1)
9521 				_rx--;
9522 			else if (_tx > 1)
9523 				_tx--;
9524 		}
9525 		*rx = _rx;
9526 		*tx = _tx;
9527 	}
9528 	return 0;
9529 }
9530 
9531 static int __bnxt_num_tx_to_cp(struct bnxt *bp, int tx, int tx_sets, int tx_xdp)
9532 {
9533 	return (tx - tx_xdp) / tx_sets + tx_xdp;
9534 }
9535 
9536 int bnxt_num_tx_to_cp(struct bnxt *bp, int tx)
9537 {
9538 	int tcs = netdev_get_num_tc(bp->dev);
9539 
9540 	if (!tcs)
9541 		tcs = 1;
9542 	return __bnxt_num_tx_to_cp(bp, tx, tcs, bp->tx_nr_rings_xdp);
9543 }
9544 
9545 static int bnxt_num_cp_to_tx(struct bnxt *bp, int tx_cp)
9546 {
9547 	int tcs = netdev_get_num_tc(bp->dev);
9548 
9549 	return (tx_cp - bp->tx_nr_rings_xdp) * tcs +
9550 	       bp->tx_nr_rings_xdp;
9551 }
9552 
9553 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
9554 			   bool sh)
9555 {
9556 	int tx_cp = bnxt_num_tx_to_cp(bp, *tx);
9557 
9558 	if (tx_cp != *tx) {
9559 		int tx_saved = tx_cp, rc;
9560 
9561 		rc = __bnxt_trim_rings(bp, rx, &tx_cp, max, sh);
9562 		if (rc)
9563 			return rc;
9564 		if (tx_cp != tx_saved)
9565 			*tx = bnxt_num_cp_to_tx(bp, tx_cp);
9566 		return 0;
9567 	}
9568 	return __bnxt_trim_rings(bp, rx, tx, max, sh);
9569 }
9570 
9571 static void bnxt_setup_msix(struct bnxt *bp)
9572 {
9573 	const int len = sizeof(bp->irq_tbl[0].name);
9574 	struct net_device *dev = bp->dev;
9575 	int tcs, i;
9576 
9577 	tcs = netdev_get_num_tc(dev);
9578 	if (tcs) {
9579 		int i, off, count;
9580 
9581 		for (i = 0; i < tcs; i++) {
9582 			count = bp->tx_nr_rings_per_tc;
9583 			off = BNXT_TC_TO_RING_BASE(bp, i);
9584 			netdev_set_tc_queue(dev, i, count, off);
9585 		}
9586 	}
9587 
9588 	for (i = 0; i < bp->cp_nr_rings; i++) {
9589 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9590 		char *attr;
9591 
9592 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
9593 			attr = "TxRx";
9594 		else if (i < bp->rx_nr_rings)
9595 			attr = "rx";
9596 		else
9597 			attr = "tx";
9598 
9599 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
9600 			 attr, i);
9601 		bp->irq_tbl[map_idx].handler = bnxt_msix;
9602 	}
9603 }
9604 
9605 static void bnxt_setup_inta(struct bnxt *bp)
9606 {
9607 	const int len = sizeof(bp->irq_tbl[0].name);
9608 
9609 	if (netdev_get_num_tc(bp->dev))
9610 		netdev_reset_tc(bp->dev);
9611 
9612 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
9613 		 0);
9614 	bp->irq_tbl[0].handler = bnxt_inta;
9615 }
9616 
9617 static int bnxt_init_int_mode(struct bnxt *bp);
9618 
9619 static int bnxt_setup_int_mode(struct bnxt *bp)
9620 {
9621 	int rc;
9622 
9623 	if (!bp->irq_tbl) {
9624 		rc = bnxt_init_int_mode(bp);
9625 		if (rc || !bp->irq_tbl)
9626 			return rc ?: -ENODEV;
9627 	}
9628 
9629 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9630 		bnxt_setup_msix(bp);
9631 	else
9632 		bnxt_setup_inta(bp);
9633 
9634 	rc = bnxt_set_real_num_queues(bp);
9635 	return rc;
9636 }
9637 
9638 #ifdef CONFIG_RFS_ACCEL
9639 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
9640 {
9641 	return bp->hw_resc.max_rsscos_ctxs;
9642 }
9643 
9644 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
9645 {
9646 	return bp->hw_resc.max_vnics;
9647 }
9648 #endif
9649 
9650 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
9651 {
9652 	return bp->hw_resc.max_stat_ctxs;
9653 }
9654 
9655 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
9656 {
9657 	return bp->hw_resc.max_cp_rings;
9658 }
9659 
9660 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
9661 {
9662 	unsigned int cp = bp->hw_resc.max_cp_rings;
9663 
9664 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
9665 		cp -= bnxt_get_ulp_msix_num(bp);
9666 
9667 	return cp;
9668 }
9669 
9670 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
9671 {
9672 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9673 
9674 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9675 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
9676 
9677 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
9678 }
9679 
9680 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
9681 {
9682 	bp->hw_resc.max_irqs = max_irqs;
9683 }
9684 
9685 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
9686 {
9687 	unsigned int cp;
9688 
9689 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
9690 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9691 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
9692 	else
9693 		return cp - bp->cp_nr_rings;
9694 }
9695 
9696 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
9697 {
9698 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
9699 }
9700 
9701 int bnxt_get_avail_msix(struct bnxt *bp, int num)
9702 {
9703 	int max_cp = bnxt_get_max_func_cp_rings(bp);
9704 	int max_irq = bnxt_get_max_func_irqs(bp);
9705 	int total_req = bp->cp_nr_rings + num;
9706 	int max_idx, avail_msix;
9707 
9708 	max_idx = bp->total_irqs;
9709 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
9710 		max_idx = min_t(int, bp->total_irqs, max_cp);
9711 	avail_msix = max_idx - bp->cp_nr_rings;
9712 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
9713 		return avail_msix;
9714 
9715 	if (max_irq < total_req) {
9716 		num = max_irq - bp->cp_nr_rings;
9717 		if (num <= 0)
9718 			return 0;
9719 	}
9720 	return num;
9721 }
9722 
9723 static int bnxt_get_num_msix(struct bnxt *bp)
9724 {
9725 	if (!BNXT_NEW_RM(bp))
9726 		return bnxt_get_max_func_irqs(bp);
9727 
9728 	return bnxt_nq_rings_in_use(bp);
9729 }
9730 
9731 static int bnxt_init_msix(struct bnxt *bp)
9732 {
9733 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix, tx_cp;
9734 	struct msix_entry *msix_ent;
9735 
9736 	total_vecs = bnxt_get_num_msix(bp);
9737 	max = bnxt_get_max_func_irqs(bp);
9738 	if (total_vecs > max)
9739 		total_vecs = max;
9740 
9741 	if (!total_vecs)
9742 		return 0;
9743 
9744 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
9745 	if (!msix_ent)
9746 		return -ENOMEM;
9747 
9748 	for (i = 0; i < total_vecs; i++) {
9749 		msix_ent[i].entry = i;
9750 		msix_ent[i].vector = 0;
9751 	}
9752 
9753 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
9754 		min = 2;
9755 
9756 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
9757 	ulp_msix = bnxt_get_ulp_msix_num(bp);
9758 	if (total_vecs < 0 || total_vecs < ulp_msix) {
9759 		rc = -ENODEV;
9760 		goto msix_setup_exit;
9761 	}
9762 
9763 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
9764 	if (bp->irq_tbl) {
9765 		for (i = 0; i < total_vecs; i++)
9766 			bp->irq_tbl[i].vector = msix_ent[i].vector;
9767 
9768 		bp->total_irqs = total_vecs;
9769 		/* Trim rings based upon num of vectors allocated */
9770 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
9771 				     total_vecs - ulp_msix, min == 1);
9772 		if (rc)
9773 			goto msix_setup_exit;
9774 
9775 		tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings);
9776 		bp->cp_nr_rings = (min == 1) ?
9777 				  max_t(int, tx_cp, bp->rx_nr_rings) :
9778 				  tx_cp + bp->rx_nr_rings;
9779 
9780 	} else {
9781 		rc = -ENOMEM;
9782 		goto msix_setup_exit;
9783 	}
9784 	bp->flags |= BNXT_FLAG_USING_MSIX;
9785 	kfree(msix_ent);
9786 	return 0;
9787 
9788 msix_setup_exit:
9789 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
9790 	kfree(bp->irq_tbl);
9791 	bp->irq_tbl = NULL;
9792 	pci_disable_msix(bp->pdev);
9793 	kfree(msix_ent);
9794 	return rc;
9795 }
9796 
9797 static int bnxt_init_inta(struct bnxt *bp)
9798 {
9799 	bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL);
9800 	if (!bp->irq_tbl)
9801 		return -ENOMEM;
9802 
9803 	bp->total_irqs = 1;
9804 	bp->rx_nr_rings = 1;
9805 	bp->tx_nr_rings = 1;
9806 	bp->cp_nr_rings = 1;
9807 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
9808 	bp->irq_tbl[0].vector = bp->pdev->irq;
9809 	return 0;
9810 }
9811 
9812 static int bnxt_init_int_mode(struct bnxt *bp)
9813 {
9814 	int rc = -ENODEV;
9815 
9816 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
9817 		rc = bnxt_init_msix(bp);
9818 
9819 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
9820 		/* fallback to INTA */
9821 		rc = bnxt_init_inta(bp);
9822 	}
9823 	return rc;
9824 }
9825 
9826 static void bnxt_clear_int_mode(struct bnxt *bp)
9827 {
9828 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9829 		pci_disable_msix(bp->pdev);
9830 
9831 	kfree(bp->irq_tbl);
9832 	bp->irq_tbl = NULL;
9833 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
9834 }
9835 
9836 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
9837 {
9838 	int tcs = netdev_get_num_tc(bp->dev);
9839 	bool irq_cleared = false;
9840 	int rc;
9841 
9842 	if (!bnxt_need_reserve_rings(bp))
9843 		return 0;
9844 
9845 	if (irq_re_init && BNXT_NEW_RM(bp) &&
9846 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
9847 		bnxt_ulp_irq_stop(bp);
9848 		bnxt_clear_int_mode(bp);
9849 		irq_cleared = true;
9850 	}
9851 	rc = __bnxt_reserve_rings(bp);
9852 	if (irq_cleared) {
9853 		if (!rc)
9854 			rc = bnxt_init_int_mode(bp);
9855 		bnxt_ulp_irq_restart(bp, rc);
9856 	}
9857 	if (rc) {
9858 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
9859 		return rc;
9860 	}
9861 	if (tcs && (bp->tx_nr_rings_per_tc * tcs !=
9862 		    bp->tx_nr_rings - bp->tx_nr_rings_xdp)) {
9863 		netdev_err(bp->dev, "tx ring reservation failure\n");
9864 		netdev_reset_tc(bp->dev);
9865 		if (bp->tx_nr_rings_xdp)
9866 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp;
9867 		else
9868 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
9869 		return -ENOMEM;
9870 	}
9871 	return 0;
9872 }
9873 
9874 static void bnxt_free_irq(struct bnxt *bp)
9875 {
9876 	struct bnxt_irq *irq;
9877 	int i;
9878 
9879 #ifdef CONFIG_RFS_ACCEL
9880 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
9881 	bp->dev->rx_cpu_rmap = NULL;
9882 #endif
9883 	if (!bp->irq_tbl || !bp->bnapi)
9884 		return;
9885 
9886 	for (i = 0; i < bp->cp_nr_rings; i++) {
9887 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9888 
9889 		irq = &bp->irq_tbl[map_idx];
9890 		if (irq->requested) {
9891 			if (irq->have_cpumask) {
9892 				irq_set_affinity_hint(irq->vector, NULL);
9893 				free_cpumask_var(irq->cpu_mask);
9894 				irq->have_cpumask = 0;
9895 			}
9896 			free_irq(irq->vector, bp->bnapi[i]);
9897 		}
9898 
9899 		irq->requested = 0;
9900 	}
9901 }
9902 
9903 static int bnxt_request_irq(struct bnxt *bp)
9904 {
9905 	int i, j, rc = 0;
9906 	unsigned long flags = 0;
9907 #ifdef CONFIG_RFS_ACCEL
9908 	struct cpu_rmap *rmap;
9909 #endif
9910 
9911 	rc = bnxt_setup_int_mode(bp);
9912 	if (rc) {
9913 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
9914 			   rc);
9915 		return rc;
9916 	}
9917 #ifdef CONFIG_RFS_ACCEL
9918 	rmap = bp->dev->rx_cpu_rmap;
9919 #endif
9920 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
9921 		flags = IRQF_SHARED;
9922 
9923 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
9924 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9925 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
9926 
9927 #ifdef CONFIG_RFS_ACCEL
9928 		if (rmap && bp->bnapi[i]->rx_ring) {
9929 			rc = irq_cpu_rmap_add(rmap, irq->vector);
9930 			if (rc)
9931 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
9932 					    j);
9933 			j++;
9934 		}
9935 #endif
9936 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
9937 				 bp->bnapi[i]);
9938 		if (rc)
9939 			break;
9940 
9941 		netif_napi_set_irq(&bp->bnapi[i]->napi, irq->vector);
9942 		irq->requested = 1;
9943 
9944 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
9945 			int numa_node = dev_to_node(&bp->pdev->dev);
9946 
9947 			irq->have_cpumask = 1;
9948 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
9949 					irq->cpu_mask);
9950 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
9951 			if (rc) {
9952 				netdev_warn(bp->dev,
9953 					    "Set affinity failed, IRQ = %d\n",
9954 					    irq->vector);
9955 				break;
9956 			}
9957 		}
9958 	}
9959 	return rc;
9960 }
9961 
9962 static void bnxt_del_napi(struct bnxt *bp)
9963 {
9964 	int i;
9965 
9966 	if (!bp->bnapi)
9967 		return;
9968 
9969 	for (i = 0; i < bp->rx_nr_rings; i++)
9970 		netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_RX, NULL);
9971 	for (i = 0; i < bp->tx_nr_rings - bp->tx_nr_rings_xdp; i++)
9972 		netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_TX, NULL);
9973 
9974 	for (i = 0; i < bp->cp_nr_rings; i++) {
9975 		struct bnxt_napi *bnapi = bp->bnapi[i];
9976 
9977 		__netif_napi_del(&bnapi->napi);
9978 	}
9979 	/* We called __netif_napi_del(), we need
9980 	 * to respect an RCU grace period before freeing napi structures.
9981 	 */
9982 	synchronize_net();
9983 }
9984 
9985 static void bnxt_init_napi(struct bnxt *bp)
9986 {
9987 	int i;
9988 	unsigned int cp_nr_rings = bp->cp_nr_rings;
9989 	struct bnxt_napi *bnapi;
9990 
9991 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
9992 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
9993 
9994 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9995 			poll_fn = bnxt_poll_p5;
9996 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
9997 			cp_nr_rings--;
9998 		for (i = 0; i < cp_nr_rings; i++) {
9999 			bnapi = bp->bnapi[i];
10000 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn);
10001 		}
10002 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
10003 			bnapi = bp->bnapi[cp_nr_rings];
10004 			netif_napi_add(bp->dev, &bnapi->napi,
10005 				       bnxt_poll_nitroa0);
10006 		}
10007 	} else {
10008 		bnapi = bp->bnapi[0];
10009 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll);
10010 	}
10011 }
10012 
10013 static void bnxt_disable_napi(struct bnxt *bp)
10014 {
10015 	int i;
10016 
10017 	if (!bp->bnapi ||
10018 	    test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
10019 		return;
10020 
10021 	for (i = 0; i < bp->cp_nr_rings; i++) {
10022 		struct bnxt_napi *bnapi = bp->bnapi[i];
10023 		struct bnxt_cp_ring_info *cpr;
10024 
10025 		cpr = &bnapi->cp_ring;
10026 		if (bnapi->tx_fault)
10027 			cpr->sw_stats.tx.tx_resets++;
10028 		if (bnapi->in_reset)
10029 			cpr->sw_stats.rx.rx_resets++;
10030 		napi_disable(&bnapi->napi);
10031 		if (bnapi->rx_ring)
10032 			cancel_work_sync(&cpr->dim.work);
10033 	}
10034 }
10035 
10036 static void bnxt_enable_napi(struct bnxt *bp)
10037 {
10038 	int i;
10039 
10040 	clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
10041 	for (i = 0; i < bp->cp_nr_rings; i++) {
10042 		struct bnxt_napi *bnapi = bp->bnapi[i];
10043 		struct bnxt_cp_ring_info *cpr;
10044 
10045 		bnapi->tx_fault = 0;
10046 
10047 		cpr = &bnapi->cp_ring;
10048 		bnapi->in_reset = false;
10049 
10050 		if (bnapi->rx_ring) {
10051 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
10052 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
10053 		}
10054 		napi_enable(&bnapi->napi);
10055 	}
10056 }
10057 
10058 void bnxt_tx_disable(struct bnxt *bp)
10059 {
10060 	int i;
10061 	struct bnxt_tx_ring_info *txr;
10062 
10063 	if (bp->tx_ring) {
10064 		for (i = 0; i < bp->tx_nr_rings; i++) {
10065 			txr = &bp->tx_ring[i];
10066 			WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
10067 		}
10068 	}
10069 	/* Make sure napi polls see @dev_state change */
10070 	synchronize_net();
10071 	/* Drop carrier first to prevent TX timeout */
10072 	netif_carrier_off(bp->dev);
10073 	/* Stop all TX queues */
10074 	netif_tx_disable(bp->dev);
10075 }
10076 
10077 void bnxt_tx_enable(struct bnxt *bp)
10078 {
10079 	int i;
10080 	struct bnxt_tx_ring_info *txr;
10081 
10082 	for (i = 0; i < bp->tx_nr_rings; i++) {
10083 		txr = &bp->tx_ring[i];
10084 		WRITE_ONCE(txr->dev_state, 0);
10085 	}
10086 	/* Make sure napi polls see @dev_state change */
10087 	synchronize_net();
10088 	netif_tx_wake_all_queues(bp->dev);
10089 	if (BNXT_LINK_IS_UP(bp))
10090 		netif_carrier_on(bp->dev);
10091 }
10092 
10093 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
10094 {
10095 	u8 active_fec = link_info->active_fec_sig_mode &
10096 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
10097 
10098 	switch (active_fec) {
10099 	default:
10100 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
10101 		return "None";
10102 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
10103 		return "Clause 74 BaseR";
10104 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
10105 		return "Clause 91 RS(528,514)";
10106 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
10107 		return "Clause 91 RS544_1XN";
10108 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
10109 		return "Clause 91 RS(544,514)";
10110 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
10111 		return "Clause 91 RS272_1XN";
10112 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
10113 		return "Clause 91 RS(272,257)";
10114 	}
10115 }
10116 
10117 void bnxt_report_link(struct bnxt *bp)
10118 {
10119 	if (BNXT_LINK_IS_UP(bp)) {
10120 		const char *signal = "";
10121 		const char *flow_ctrl;
10122 		const char *duplex;
10123 		u32 speed;
10124 		u16 fec;
10125 
10126 		netif_carrier_on(bp->dev);
10127 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
10128 		if (speed == SPEED_UNKNOWN) {
10129 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
10130 			return;
10131 		}
10132 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
10133 			duplex = "full";
10134 		else
10135 			duplex = "half";
10136 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
10137 			flow_ctrl = "ON - receive & transmit";
10138 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
10139 			flow_ctrl = "ON - transmit";
10140 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
10141 			flow_ctrl = "ON - receive";
10142 		else
10143 			flow_ctrl = "none";
10144 		if (bp->link_info.phy_qcfg_resp.option_flags &
10145 		    PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
10146 			u8 sig_mode = bp->link_info.active_fec_sig_mode &
10147 				      PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
10148 			switch (sig_mode) {
10149 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
10150 				signal = "(NRZ) ";
10151 				break;
10152 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
10153 				signal = "(PAM4 56Gbps) ";
10154 				break;
10155 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4_112:
10156 				signal = "(PAM4 112Gbps) ";
10157 				break;
10158 			default:
10159 				break;
10160 			}
10161 		}
10162 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
10163 			    speed, signal, duplex, flow_ctrl);
10164 		if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
10165 			netdev_info(bp->dev, "EEE is %s\n",
10166 				    bp->eee.eee_active ? "active" :
10167 							 "not active");
10168 		fec = bp->link_info.fec_cfg;
10169 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
10170 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
10171 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
10172 				    bnxt_report_fec(&bp->link_info));
10173 	} else {
10174 		netif_carrier_off(bp->dev);
10175 		netdev_err(bp->dev, "NIC Link is Down\n");
10176 	}
10177 }
10178 
10179 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
10180 {
10181 	if (!resp->supported_speeds_auto_mode &&
10182 	    !resp->supported_speeds_force_mode &&
10183 	    !resp->supported_pam4_speeds_auto_mode &&
10184 	    !resp->supported_pam4_speeds_force_mode &&
10185 	    !resp->supported_speeds2_auto_mode &&
10186 	    !resp->supported_speeds2_force_mode)
10187 		return true;
10188 	return false;
10189 }
10190 
10191 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
10192 {
10193 	struct bnxt_link_info *link_info = &bp->link_info;
10194 	struct hwrm_port_phy_qcaps_output *resp;
10195 	struct hwrm_port_phy_qcaps_input *req;
10196 	int rc = 0;
10197 
10198 	if (bp->hwrm_spec_code < 0x10201)
10199 		return 0;
10200 
10201 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS);
10202 	if (rc)
10203 		return rc;
10204 
10205 	resp = hwrm_req_hold(bp, req);
10206 	rc = hwrm_req_send(bp, req);
10207 	if (rc)
10208 		goto hwrm_phy_qcaps_exit;
10209 
10210 	bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8);
10211 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
10212 		struct ethtool_eee *eee = &bp->eee;
10213 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
10214 
10215 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
10216 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
10217 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
10218 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
10219 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
10220 	}
10221 
10222 	if (bp->hwrm_spec_code >= 0x10a01) {
10223 		if (bnxt_phy_qcaps_no_speed(resp)) {
10224 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
10225 			netdev_warn(bp->dev, "Ethernet link disabled\n");
10226 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
10227 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
10228 			netdev_info(bp->dev, "Ethernet link enabled\n");
10229 			/* Phy re-enabled, reprobe the speeds */
10230 			link_info->support_auto_speeds = 0;
10231 			link_info->support_pam4_auto_speeds = 0;
10232 			link_info->support_auto_speeds2 = 0;
10233 		}
10234 	}
10235 	if (resp->supported_speeds_auto_mode)
10236 		link_info->support_auto_speeds =
10237 			le16_to_cpu(resp->supported_speeds_auto_mode);
10238 	if (resp->supported_pam4_speeds_auto_mode)
10239 		link_info->support_pam4_auto_speeds =
10240 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
10241 	if (resp->supported_speeds2_auto_mode)
10242 		link_info->support_auto_speeds2 =
10243 			le16_to_cpu(resp->supported_speeds2_auto_mode);
10244 
10245 	bp->port_count = resp->port_cnt;
10246 
10247 hwrm_phy_qcaps_exit:
10248 	hwrm_req_drop(bp, req);
10249 	return rc;
10250 }
10251 
10252 static bool bnxt_support_dropped(u16 advertising, u16 supported)
10253 {
10254 	u16 diff = advertising ^ supported;
10255 
10256 	return ((supported | diff) != supported);
10257 }
10258 
10259 static bool bnxt_support_speed_dropped(struct bnxt_link_info *link_info)
10260 {
10261 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
10262 
10263 	/* Check if any advertised speeds are no longer supported. The caller
10264 	 * holds the link_lock mutex, so we can modify link_info settings.
10265 	 */
10266 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
10267 		if (bnxt_support_dropped(link_info->advertising,
10268 					 link_info->support_auto_speeds2)) {
10269 			link_info->advertising = link_info->support_auto_speeds2;
10270 			return true;
10271 		}
10272 		return false;
10273 	}
10274 	if (bnxt_support_dropped(link_info->advertising,
10275 				 link_info->support_auto_speeds)) {
10276 		link_info->advertising = link_info->support_auto_speeds;
10277 		return true;
10278 	}
10279 	if (bnxt_support_dropped(link_info->advertising_pam4,
10280 				 link_info->support_pam4_auto_speeds)) {
10281 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
10282 		return true;
10283 	}
10284 	return false;
10285 }
10286 
10287 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
10288 {
10289 	struct bnxt_link_info *link_info = &bp->link_info;
10290 	struct hwrm_port_phy_qcfg_output *resp;
10291 	struct hwrm_port_phy_qcfg_input *req;
10292 	u8 link_state = link_info->link_state;
10293 	bool support_changed;
10294 	int rc;
10295 
10296 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG);
10297 	if (rc)
10298 		return rc;
10299 
10300 	resp = hwrm_req_hold(bp, req);
10301 	rc = hwrm_req_send(bp, req);
10302 	if (rc) {
10303 		hwrm_req_drop(bp, req);
10304 		if (BNXT_VF(bp) && rc == -ENODEV) {
10305 			netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n");
10306 			rc = 0;
10307 		}
10308 		return rc;
10309 	}
10310 
10311 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
10312 	link_info->phy_link_status = resp->link;
10313 	link_info->duplex = resp->duplex_cfg;
10314 	if (bp->hwrm_spec_code >= 0x10800)
10315 		link_info->duplex = resp->duplex_state;
10316 	link_info->pause = resp->pause;
10317 	link_info->auto_mode = resp->auto_mode;
10318 	link_info->auto_pause_setting = resp->auto_pause;
10319 	link_info->lp_pause = resp->link_partner_adv_pause;
10320 	link_info->force_pause_setting = resp->force_pause;
10321 	link_info->duplex_setting = resp->duplex_cfg;
10322 	if (link_info->phy_link_status == BNXT_LINK_LINK) {
10323 		link_info->link_speed = le16_to_cpu(resp->link_speed);
10324 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2)
10325 			link_info->active_lanes = resp->active_lanes;
10326 	} else {
10327 		link_info->link_speed = 0;
10328 		link_info->active_lanes = 0;
10329 	}
10330 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
10331 	link_info->force_pam4_link_speed =
10332 		le16_to_cpu(resp->force_pam4_link_speed);
10333 	link_info->force_link_speed2 = le16_to_cpu(resp->force_link_speeds2);
10334 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
10335 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
10336 	link_info->support_speeds2 = le16_to_cpu(resp->support_speeds2);
10337 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
10338 	link_info->auto_pam4_link_speeds =
10339 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
10340 	link_info->auto_link_speeds2 = le16_to_cpu(resp->auto_link_speeds2);
10341 	link_info->lp_auto_link_speeds =
10342 		le16_to_cpu(resp->link_partner_adv_speeds);
10343 	link_info->lp_auto_pam4_link_speeds =
10344 		resp->link_partner_pam4_adv_speeds;
10345 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
10346 	link_info->phy_ver[0] = resp->phy_maj;
10347 	link_info->phy_ver[1] = resp->phy_min;
10348 	link_info->phy_ver[2] = resp->phy_bld;
10349 	link_info->media_type = resp->media_type;
10350 	link_info->phy_type = resp->phy_type;
10351 	link_info->transceiver = resp->xcvr_pkg_type;
10352 	link_info->phy_addr = resp->eee_config_phy_addr &
10353 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
10354 	link_info->module_status = resp->module_status;
10355 
10356 	if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
10357 		struct ethtool_eee *eee = &bp->eee;
10358 		u16 fw_speeds;
10359 
10360 		eee->eee_active = 0;
10361 		if (resp->eee_config_phy_addr &
10362 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
10363 			eee->eee_active = 1;
10364 			fw_speeds = le16_to_cpu(
10365 				resp->link_partner_adv_eee_link_speed_mask);
10366 			eee->lp_advertised =
10367 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
10368 		}
10369 
10370 		/* Pull initial EEE config */
10371 		if (!chng_link_state) {
10372 			if (resp->eee_config_phy_addr &
10373 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
10374 				eee->eee_enabled = 1;
10375 
10376 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
10377 			eee->advertised =
10378 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
10379 
10380 			if (resp->eee_config_phy_addr &
10381 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
10382 				__le32 tmr;
10383 
10384 				eee->tx_lpi_enabled = 1;
10385 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
10386 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
10387 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
10388 			}
10389 		}
10390 	}
10391 
10392 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
10393 	if (bp->hwrm_spec_code >= 0x10504) {
10394 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
10395 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
10396 	}
10397 	/* TODO: need to add more logic to report VF link */
10398 	if (chng_link_state) {
10399 		if (link_info->phy_link_status == BNXT_LINK_LINK)
10400 			link_info->link_state = BNXT_LINK_STATE_UP;
10401 		else
10402 			link_info->link_state = BNXT_LINK_STATE_DOWN;
10403 		if (link_state != link_info->link_state)
10404 			bnxt_report_link(bp);
10405 	} else {
10406 		/* always link down if not require to update link state */
10407 		link_info->link_state = BNXT_LINK_STATE_DOWN;
10408 	}
10409 	hwrm_req_drop(bp, req);
10410 
10411 	if (!BNXT_PHY_CFG_ABLE(bp))
10412 		return 0;
10413 
10414 	support_changed = bnxt_support_speed_dropped(link_info);
10415 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
10416 		bnxt_hwrm_set_link_setting(bp, true, false);
10417 	return 0;
10418 }
10419 
10420 static void bnxt_get_port_module_status(struct bnxt *bp)
10421 {
10422 	struct bnxt_link_info *link_info = &bp->link_info;
10423 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
10424 	u8 module_status;
10425 
10426 	if (bnxt_update_link(bp, true))
10427 		return;
10428 
10429 	module_status = link_info->module_status;
10430 	switch (module_status) {
10431 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
10432 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
10433 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
10434 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
10435 			    bp->pf.port_id);
10436 		if (bp->hwrm_spec_code >= 0x10201) {
10437 			netdev_warn(bp->dev, "Module part number %s\n",
10438 				    resp->phy_vendor_partnumber);
10439 		}
10440 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
10441 			netdev_warn(bp->dev, "TX is disabled\n");
10442 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
10443 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
10444 	}
10445 }
10446 
10447 static void
10448 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
10449 {
10450 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
10451 		if (bp->hwrm_spec_code >= 0x10201)
10452 			req->auto_pause =
10453 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
10454 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
10455 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
10456 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
10457 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
10458 		req->enables |=
10459 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
10460 	} else {
10461 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
10462 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
10463 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
10464 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
10465 		req->enables |=
10466 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
10467 		if (bp->hwrm_spec_code >= 0x10201) {
10468 			req->auto_pause = req->force_pause;
10469 			req->enables |= cpu_to_le32(
10470 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
10471 		}
10472 	}
10473 }
10474 
10475 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
10476 {
10477 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
10478 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
10479 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
10480 			req->enables |=
10481 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEEDS2_MASK);
10482 			req->auto_link_speeds2_mask = cpu_to_le16(bp->link_info.advertising);
10483 		} else if (bp->link_info.advertising) {
10484 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
10485 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
10486 		}
10487 		if (bp->link_info.advertising_pam4) {
10488 			req->enables |=
10489 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
10490 			req->auto_link_pam4_speed_mask =
10491 				cpu_to_le16(bp->link_info.advertising_pam4);
10492 		}
10493 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
10494 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
10495 	} else {
10496 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
10497 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
10498 			req->force_link_speeds2 = cpu_to_le16(bp->link_info.req_link_speed);
10499 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_LINK_SPEEDS2);
10500 			netif_info(bp, link, bp->dev, "Forcing FW speed2: %d\n",
10501 				   (u32)bp->link_info.req_link_speed);
10502 		} else if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
10503 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
10504 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
10505 		} else {
10506 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
10507 		}
10508 	}
10509 
10510 	/* tell chimp that the setting takes effect immediately */
10511 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
10512 }
10513 
10514 int bnxt_hwrm_set_pause(struct bnxt *bp)
10515 {
10516 	struct hwrm_port_phy_cfg_input *req;
10517 	int rc;
10518 
10519 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
10520 	if (rc)
10521 		return rc;
10522 
10523 	bnxt_hwrm_set_pause_common(bp, req);
10524 
10525 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
10526 	    bp->link_info.force_link_chng)
10527 		bnxt_hwrm_set_link_common(bp, req);
10528 
10529 	rc = hwrm_req_send(bp, req);
10530 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
10531 		/* since changing of pause setting doesn't trigger any link
10532 		 * change event, the driver needs to update the current pause
10533 		 * result upon successfully return of the phy_cfg command
10534 		 */
10535 		bp->link_info.pause =
10536 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
10537 		bp->link_info.auto_pause_setting = 0;
10538 		if (!bp->link_info.force_link_chng)
10539 			bnxt_report_link(bp);
10540 	}
10541 	bp->link_info.force_link_chng = false;
10542 	return rc;
10543 }
10544 
10545 static void bnxt_hwrm_set_eee(struct bnxt *bp,
10546 			      struct hwrm_port_phy_cfg_input *req)
10547 {
10548 	struct ethtool_eee *eee = &bp->eee;
10549 
10550 	if (eee->eee_enabled) {
10551 		u16 eee_speeds;
10552 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
10553 
10554 		if (eee->tx_lpi_enabled)
10555 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
10556 		else
10557 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
10558 
10559 		req->flags |= cpu_to_le32(flags);
10560 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
10561 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
10562 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
10563 	} else {
10564 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
10565 	}
10566 }
10567 
10568 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
10569 {
10570 	struct hwrm_port_phy_cfg_input *req;
10571 	int rc;
10572 
10573 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
10574 	if (rc)
10575 		return rc;
10576 
10577 	if (set_pause)
10578 		bnxt_hwrm_set_pause_common(bp, req);
10579 
10580 	bnxt_hwrm_set_link_common(bp, req);
10581 
10582 	if (set_eee)
10583 		bnxt_hwrm_set_eee(bp, req);
10584 	return hwrm_req_send(bp, req);
10585 }
10586 
10587 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
10588 {
10589 	struct hwrm_port_phy_cfg_input *req;
10590 	int rc;
10591 
10592 	if (!BNXT_SINGLE_PF(bp))
10593 		return 0;
10594 
10595 	if (pci_num_vf(bp->pdev) &&
10596 	    !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
10597 		return 0;
10598 
10599 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
10600 	if (rc)
10601 		return rc;
10602 
10603 	req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
10604 	rc = hwrm_req_send(bp, req);
10605 	if (!rc) {
10606 		mutex_lock(&bp->link_lock);
10607 		/* Device is not obliged link down in certain scenarios, even
10608 		 * when forced. Setting the state unknown is consistent with
10609 		 * driver startup and will force link state to be reported
10610 		 * during subsequent open based on PORT_PHY_QCFG.
10611 		 */
10612 		bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN;
10613 		mutex_unlock(&bp->link_lock);
10614 	}
10615 	return rc;
10616 }
10617 
10618 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
10619 {
10620 #ifdef CONFIG_TEE_BNXT_FW
10621 	int rc = tee_bnxt_fw_load();
10622 
10623 	if (rc)
10624 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
10625 
10626 	return rc;
10627 #else
10628 	netdev_err(bp->dev, "OP-TEE not supported\n");
10629 	return -ENODEV;
10630 #endif
10631 }
10632 
10633 static int bnxt_try_recover_fw(struct bnxt *bp)
10634 {
10635 	if (bp->fw_health && bp->fw_health->status_reliable) {
10636 		int retry = 0, rc;
10637 		u32 sts;
10638 
10639 		do {
10640 			sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
10641 			rc = bnxt_hwrm_poll(bp);
10642 			if (!BNXT_FW_IS_BOOTING(sts) &&
10643 			    !BNXT_FW_IS_RECOVERING(sts))
10644 				break;
10645 			retry++;
10646 		} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
10647 
10648 		if (!BNXT_FW_IS_HEALTHY(sts)) {
10649 			netdev_err(bp->dev,
10650 				   "Firmware not responding, status: 0x%x\n",
10651 				   sts);
10652 			rc = -ENODEV;
10653 		}
10654 		if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
10655 			netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
10656 			return bnxt_fw_reset_via_optee(bp);
10657 		}
10658 		return rc;
10659 	}
10660 
10661 	return -ENODEV;
10662 }
10663 
10664 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset)
10665 {
10666 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10667 
10668 	if (!BNXT_NEW_RM(bp))
10669 		return; /* no resource reservations required */
10670 
10671 	hw_resc->resv_cp_rings = 0;
10672 	hw_resc->resv_stat_ctxs = 0;
10673 	hw_resc->resv_irqs = 0;
10674 	hw_resc->resv_tx_rings = 0;
10675 	hw_resc->resv_rx_rings = 0;
10676 	hw_resc->resv_hw_ring_grps = 0;
10677 	hw_resc->resv_vnics = 0;
10678 	if (!fw_reset) {
10679 		bp->tx_nr_rings = 0;
10680 		bp->rx_nr_rings = 0;
10681 	}
10682 }
10683 
10684 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset)
10685 {
10686 	int rc;
10687 
10688 	if (!BNXT_NEW_RM(bp))
10689 		return 0; /* no resource reservations required */
10690 
10691 	rc = bnxt_hwrm_func_resc_qcaps(bp, true);
10692 	if (rc)
10693 		netdev_err(bp->dev, "resc_qcaps failed\n");
10694 
10695 	bnxt_clear_reservations(bp, fw_reset);
10696 
10697 	return rc;
10698 }
10699 
10700 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
10701 {
10702 	struct hwrm_func_drv_if_change_output *resp;
10703 	struct hwrm_func_drv_if_change_input *req;
10704 	bool fw_reset = !bp->irq_tbl;
10705 	bool resc_reinit = false;
10706 	int rc, retry = 0;
10707 	u32 flags = 0;
10708 
10709 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
10710 		return 0;
10711 
10712 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE);
10713 	if (rc)
10714 		return rc;
10715 
10716 	if (up)
10717 		req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
10718 	resp = hwrm_req_hold(bp, req);
10719 
10720 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
10721 	while (retry < BNXT_FW_IF_RETRY) {
10722 		rc = hwrm_req_send(bp, req);
10723 		if (rc != -EAGAIN)
10724 			break;
10725 
10726 		msleep(50);
10727 		retry++;
10728 	}
10729 
10730 	if (rc == -EAGAIN) {
10731 		hwrm_req_drop(bp, req);
10732 		return rc;
10733 	} else if (!rc) {
10734 		flags = le32_to_cpu(resp->flags);
10735 	} else if (up) {
10736 		rc = bnxt_try_recover_fw(bp);
10737 		fw_reset = true;
10738 	}
10739 	hwrm_req_drop(bp, req);
10740 	if (rc)
10741 		return rc;
10742 
10743 	if (!up) {
10744 		bnxt_inv_fw_health_reg(bp);
10745 		return 0;
10746 	}
10747 
10748 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
10749 		resc_reinit = true;
10750 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE ||
10751 	    test_bit(BNXT_STATE_FW_RESET_DET, &bp->state))
10752 		fw_reset = true;
10753 	else
10754 		bnxt_remap_fw_health_regs(bp);
10755 
10756 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
10757 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
10758 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10759 		return -ENODEV;
10760 	}
10761 	if (resc_reinit || fw_reset) {
10762 		if (fw_reset) {
10763 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10764 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10765 				bnxt_ulp_stop(bp);
10766 			bnxt_free_ctx_mem(bp);
10767 			bnxt_dcb_free(bp);
10768 			rc = bnxt_fw_init_one(bp);
10769 			if (rc) {
10770 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10771 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10772 				return rc;
10773 			}
10774 			bnxt_clear_int_mode(bp);
10775 			rc = bnxt_init_int_mode(bp);
10776 			if (rc) {
10777 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10778 				netdev_err(bp->dev, "init int mode failed\n");
10779 				return rc;
10780 			}
10781 		}
10782 		rc = bnxt_cancel_reservations(bp, fw_reset);
10783 	}
10784 	return rc;
10785 }
10786 
10787 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
10788 {
10789 	struct hwrm_port_led_qcaps_output *resp;
10790 	struct hwrm_port_led_qcaps_input *req;
10791 	struct bnxt_pf_info *pf = &bp->pf;
10792 	int rc;
10793 
10794 	bp->num_leds = 0;
10795 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
10796 		return 0;
10797 
10798 	rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS);
10799 	if (rc)
10800 		return rc;
10801 
10802 	req->port_id = cpu_to_le16(pf->port_id);
10803 	resp = hwrm_req_hold(bp, req);
10804 	rc = hwrm_req_send(bp, req);
10805 	if (rc) {
10806 		hwrm_req_drop(bp, req);
10807 		return rc;
10808 	}
10809 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
10810 		int i;
10811 
10812 		bp->num_leds = resp->num_leds;
10813 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
10814 						 bp->num_leds);
10815 		for (i = 0; i < bp->num_leds; i++) {
10816 			struct bnxt_led_info *led = &bp->leds[i];
10817 			__le16 caps = led->led_state_caps;
10818 
10819 			if (!led->led_group_id ||
10820 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
10821 				bp->num_leds = 0;
10822 				break;
10823 			}
10824 		}
10825 	}
10826 	hwrm_req_drop(bp, req);
10827 	return 0;
10828 }
10829 
10830 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
10831 {
10832 	struct hwrm_wol_filter_alloc_output *resp;
10833 	struct hwrm_wol_filter_alloc_input *req;
10834 	int rc;
10835 
10836 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC);
10837 	if (rc)
10838 		return rc;
10839 
10840 	req->port_id = cpu_to_le16(bp->pf.port_id);
10841 	req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
10842 	req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
10843 	memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN);
10844 
10845 	resp = hwrm_req_hold(bp, req);
10846 	rc = hwrm_req_send(bp, req);
10847 	if (!rc)
10848 		bp->wol_filter_id = resp->wol_filter_id;
10849 	hwrm_req_drop(bp, req);
10850 	return rc;
10851 }
10852 
10853 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
10854 {
10855 	struct hwrm_wol_filter_free_input *req;
10856 	int rc;
10857 
10858 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE);
10859 	if (rc)
10860 		return rc;
10861 
10862 	req->port_id = cpu_to_le16(bp->pf.port_id);
10863 	req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
10864 	req->wol_filter_id = bp->wol_filter_id;
10865 
10866 	return hwrm_req_send(bp, req);
10867 }
10868 
10869 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
10870 {
10871 	struct hwrm_wol_filter_qcfg_output *resp;
10872 	struct hwrm_wol_filter_qcfg_input *req;
10873 	u16 next_handle = 0;
10874 	int rc;
10875 
10876 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG);
10877 	if (rc)
10878 		return rc;
10879 
10880 	req->port_id = cpu_to_le16(bp->pf.port_id);
10881 	req->handle = cpu_to_le16(handle);
10882 	resp = hwrm_req_hold(bp, req);
10883 	rc = hwrm_req_send(bp, req);
10884 	if (!rc) {
10885 		next_handle = le16_to_cpu(resp->next_handle);
10886 		if (next_handle != 0) {
10887 			if (resp->wol_type ==
10888 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
10889 				bp->wol = 1;
10890 				bp->wol_filter_id = resp->wol_filter_id;
10891 			}
10892 		}
10893 	}
10894 	hwrm_req_drop(bp, req);
10895 	return next_handle;
10896 }
10897 
10898 static void bnxt_get_wol_settings(struct bnxt *bp)
10899 {
10900 	u16 handle = 0;
10901 
10902 	bp->wol = 0;
10903 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
10904 		return;
10905 
10906 	do {
10907 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
10908 	} while (handle && handle != 0xffff);
10909 }
10910 
10911 static bool bnxt_eee_config_ok(struct bnxt *bp)
10912 {
10913 	struct ethtool_eee *eee = &bp->eee;
10914 	struct bnxt_link_info *link_info = &bp->link_info;
10915 
10916 	if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
10917 		return true;
10918 
10919 	if (eee->eee_enabled) {
10920 		u32 advertising =
10921 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
10922 
10923 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10924 			eee->eee_enabled = 0;
10925 			return false;
10926 		}
10927 		if (eee->advertised & ~advertising) {
10928 			eee->advertised = advertising & eee->supported;
10929 			return false;
10930 		}
10931 	}
10932 	return true;
10933 }
10934 
10935 static int bnxt_update_phy_setting(struct bnxt *bp)
10936 {
10937 	int rc;
10938 	bool update_link = false;
10939 	bool update_pause = false;
10940 	bool update_eee = false;
10941 	struct bnxt_link_info *link_info = &bp->link_info;
10942 
10943 	rc = bnxt_update_link(bp, true);
10944 	if (rc) {
10945 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
10946 			   rc);
10947 		return rc;
10948 	}
10949 	if (!BNXT_SINGLE_PF(bp))
10950 		return 0;
10951 
10952 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10953 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
10954 	    link_info->req_flow_ctrl)
10955 		update_pause = true;
10956 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10957 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
10958 		update_pause = true;
10959 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10960 		if (BNXT_AUTO_MODE(link_info->auto_mode))
10961 			update_link = true;
10962 		if (bnxt_force_speed_updated(link_info))
10963 			update_link = true;
10964 		if (link_info->req_duplex != link_info->duplex_setting)
10965 			update_link = true;
10966 	} else {
10967 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
10968 			update_link = true;
10969 		if (bnxt_auto_speed_updated(link_info))
10970 			update_link = true;
10971 	}
10972 
10973 	/* The last close may have shutdown the link, so need to call
10974 	 * PHY_CFG to bring it back up.
10975 	 */
10976 	if (!BNXT_LINK_IS_UP(bp))
10977 		update_link = true;
10978 
10979 	if (!bnxt_eee_config_ok(bp))
10980 		update_eee = true;
10981 
10982 	if (update_link)
10983 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
10984 	else if (update_pause)
10985 		rc = bnxt_hwrm_set_pause(bp);
10986 	if (rc) {
10987 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
10988 			   rc);
10989 		return rc;
10990 	}
10991 
10992 	return rc;
10993 }
10994 
10995 /* Common routine to pre-map certain register block to different GRC window.
10996  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
10997  * in PF and 3 windows in VF that can be customized to map in different
10998  * register blocks.
10999  */
11000 static void bnxt_preset_reg_win(struct bnxt *bp)
11001 {
11002 	if (BNXT_PF(bp)) {
11003 		/* CAG registers map to GRC window #4 */
11004 		writel(BNXT_CAG_REG_BASE,
11005 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
11006 	}
11007 }
11008 
11009 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
11010 
11011 static int bnxt_reinit_after_abort(struct bnxt *bp)
11012 {
11013 	int rc;
11014 
11015 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11016 		return -EBUSY;
11017 
11018 	if (bp->dev->reg_state == NETREG_UNREGISTERED)
11019 		return -ENODEV;
11020 
11021 	rc = bnxt_fw_init_one(bp);
11022 	if (!rc) {
11023 		bnxt_clear_int_mode(bp);
11024 		rc = bnxt_init_int_mode(bp);
11025 		if (!rc) {
11026 			clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
11027 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
11028 		}
11029 	}
11030 	return rc;
11031 }
11032 
11033 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
11034 {
11035 	int rc = 0;
11036 
11037 	bnxt_preset_reg_win(bp);
11038 	netif_carrier_off(bp->dev);
11039 	if (irq_re_init) {
11040 		/* Reserve rings now if none were reserved at driver probe. */
11041 		rc = bnxt_init_dflt_ring_mode(bp);
11042 		if (rc) {
11043 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
11044 			return rc;
11045 		}
11046 	}
11047 	rc = bnxt_reserve_rings(bp, irq_re_init);
11048 	if (rc)
11049 		return rc;
11050 	if ((bp->flags & BNXT_FLAG_RFS) &&
11051 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
11052 		/* disable RFS if falling back to INTA */
11053 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
11054 		bp->flags &= ~BNXT_FLAG_RFS;
11055 	}
11056 
11057 	rc = bnxt_alloc_mem(bp, irq_re_init);
11058 	if (rc) {
11059 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
11060 		goto open_err_free_mem;
11061 	}
11062 
11063 	if (irq_re_init) {
11064 		bnxt_init_napi(bp);
11065 		rc = bnxt_request_irq(bp);
11066 		if (rc) {
11067 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
11068 			goto open_err_irq;
11069 		}
11070 	}
11071 
11072 	rc = bnxt_init_nic(bp, irq_re_init);
11073 	if (rc) {
11074 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
11075 		goto open_err_irq;
11076 	}
11077 
11078 	bnxt_enable_napi(bp);
11079 	bnxt_debug_dev_init(bp);
11080 
11081 	if (link_re_init) {
11082 		mutex_lock(&bp->link_lock);
11083 		rc = bnxt_update_phy_setting(bp);
11084 		mutex_unlock(&bp->link_lock);
11085 		if (rc) {
11086 			netdev_warn(bp->dev, "failed to update phy settings\n");
11087 			if (BNXT_SINGLE_PF(bp)) {
11088 				bp->link_info.phy_retry = true;
11089 				bp->link_info.phy_retry_expires =
11090 					jiffies + 5 * HZ;
11091 			}
11092 		}
11093 	}
11094 
11095 	if (irq_re_init)
11096 		udp_tunnel_nic_reset_ntf(bp->dev);
11097 
11098 	if (bp->tx_nr_rings_xdp < num_possible_cpus()) {
11099 		if (!static_key_enabled(&bnxt_xdp_locking_key))
11100 			static_branch_enable(&bnxt_xdp_locking_key);
11101 	} else if (static_key_enabled(&bnxt_xdp_locking_key)) {
11102 		static_branch_disable(&bnxt_xdp_locking_key);
11103 	}
11104 	set_bit(BNXT_STATE_OPEN, &bp->state);
11105 	bnxt_enable_int(bp);
11106 	/* Enable TX queues */
11107 	bnxt_tx_enable(bp);
11108 	mod_timer(&bp->timer, jiffies + bp->current_interval);
11109 	/* Poll link status and check for SFP+ module status */
11110 	mutex_lock(&bp->link_lock);
11111 	bnxt_get_port_module_status(bp);
11112 	mutex_unlock(&bp->link_lock);
11113 
11114 	/* VF-reps may need to be re-opened after the PF is re-opened */
11115 	if (BNXT_PF(bp))
11116 		bnxt_vf_reps_open(bp);
11117 	bnxt_ptp_init_rtc(bp, true);
11118 	bnxt_ptp_cfg_tstamp_filters(bp);
11119 	return 0;
11120 
11121 open_err_irq:
11122 	bnxt_del_napi(bp);
11123 
11124 open_err_free_mem:
11125 	bnxt_free_skbs(bp);
11126 	bnxt_free_irq(bp);
11127 	bnxt_free_mem(bp, true);
11128 	return rc;
11129 }
11130 
11131 /* rtnl_lock held */
11132 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
11133 {
11134 	int rc = 0;
11135 
11136 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
11137 		rc = -EIO;
11138 	if (!rc)
11139 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
11140 	if (rc) {
11141 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
11142 		dev_close(bp->dev);
11143 	}
11144 	return rc;
11145 }
11146 
11147 /* rtnl_lock held, open the NIC half way by allocating all resources, but
11148  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
11149  * self tests.
11150  */
11151 int bnxt_half_open_nic(struct bnxt *bp)
11152 {
11153 	int rc = 0;
11154 
11155 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
11156 		netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n");
11157 		rc = -ENODEV;
11158 		goto half_open_err;
11159 	}
11160 
11161 	rc = bnxt_alloc_mem(bp, true);
11162 	if (rc) {
11163 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
11164 		goto half_open_err;
11165 	}
11166 	set_bit(BNXT_STATE_HALF_OPEN, &bp->state);
11167 	rc = bnxt_init_nic(bp, true);
11168 	if (rc) {
11169 		clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
11170 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
11171 		goto half_open_err;
11172 	}
11173 	return 0;
11174 
11175 half_open_err:
11176 	bnxt_free_skbs(bp);
11177 	bnxt_free_mem(bp, true);
11178 	dev_close(bp->dev);
11179 	return rc;
11180 }
11181 
11182 /* rtnl_lock held, this call can only be made after a previous successful
11183  * call to bnxt_half_open_nic().
11184  */
11185 void bnxt_half_close_nic(struct bnxt *bp)
11186 {
11187 	bnxt_hwrm_resource_free(bp, false, true);
11188 	bnxt_free_skbs(bp);
11189 	bnxt_free_mem(bp, true);
11190 	clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
11191 }
11192 
11193 void bnxt_reenable_sriov(struct bnxt *bp)
11194 {
11195 	if (BNXT_PF(bp)) {
11196 		struct bnxt_pf_info *pf = &bp->pf;
11197 		int n = pf->active_vfs;
11198 
11199 		if (n)
11200 			bnxt_cfg_hw_sriov(bp, &n, true);
11201 	}
11202 }
11203 
11204 static int bnxt_open(struct net_device *dev)
11205 {
11206 	struct bnxt *bp = netdev_priv(dev);
11207 	int rc;
11208 
11209 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
11210 		rc = bnxt_reinit_after_abort(bp);
11211 		if (rc) {
11212 			if (rc == -EBUSY)
11213 				netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
11214 			else
11215 				netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
11216 			return -ENODEV;
11217 		}
11218 	}
11219 
11220 	rc = bnxt_hwrm_if_change(bp, true);
11221 	if (rc)
11222 		return rc;
11223 
11224 	rc = __bnxt_open_nic(bp, true, true);
11225 	if (rc) {
11226 		bnxt_hwrm_if_change(bp, false);
11227 	} else {
11228 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
11229 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11230 				bnxt_ulp_start(bp, 0);
11231 				bnxt_reenable_sriov(bp);
11232 			}
11233 		}
11234 	}
11235 
11236 	return rc;
11237 }
11238 
11239 static bool bnxt_drv_busy(struct bnxt *bp)
11240 {
11241 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
11242 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
11243 }
11244 
11245 static void bnxt_get_ring_stats(struct bnxt *bp,
11246 				struct rtnl_link_stats64 *stats);
11247 
11248 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
11249 			     bool link_re_init)
11250 {
11251 	/* Close the VF-reps before closing PF */
11252 	if (BNXT_PF(bp))
11253 		bnxt_vf_reps_close(bp);
11254 
11255 	/* Change device state to avoid TX queue wake up's */
11256 	bnxt_tx_disable(bp);
11257 
11258 	clear_bit(BNXT_STATE_OPEN, &bp->state);
11259 	smp_mb__after_atomic();
11260 	while (bnxt_drv_busy(bp))
11261 		msleep(20);
11262 
11263 	/* Flush rings and disable interrupts */
11264 	bnxt_shutdown_nic(bp, irq_re_init);
11265 
11266 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
11267 
11268 	bnxt_debug_dev_exit(bp);
11269 	bnxt_disable_napi(bp);
11270 	del_timer_sync(&bp->timer);
11271 	bnxt_free_skbs(bp);
11272 
11273 	/* Save ring stats before shutdown */
11274 	if (bp->bnapi && irq_re_init) {
11275 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
11276 		bnxt_get_ring_err_stats(bp, &bp->ring_err_stats_prev);
11277 	}
11278 	if (irq_re_init) {
11279 		bnxt_free_irq(bp);
11280 		bnxt_del_napi(bp);
11281 	}
11282 	bnxt_free_mem(bp, irq_re_init);
11283 }
11284 
11285 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
11286 {
11287 	int rc = 0;
11288 
11289 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11290 		/* If we get here, it means firmware reset is in progress
11291 		 * while we are trying to close.  We can safely proceed with
11292 		 * the close because we are holding rtnl_lock().  Some firmware
11293 		 * messages may fail as we proceed to close.  We set the
11294 		 * ABORT_ERR flag here so that the FW reset thread will later
11295 		 * abort when it gets the rtnl_lock() and sees the flag.
11296 		 */
11297 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
11298 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
11299 	}
11300 
11301 #ifdef CONFIG_BNXT_SRIOV
11302 	if (bp->sriov_cfg) {
11303 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
11304 						      !bp->sriov_cfg,
11305 						      BNXT_SRIOV_CFG_WAIT_TMO);
11306 		if (rc)
11307 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
11308 	}
11309 #endif
11310 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
11311 	return rc;
11312 }
11313 
11314 static int bnxt_close(struct net_device *dev)
11315 {
11316 	struct bnxt *bp = netdev_priv(dev);
11317 
11318 	bnxt_close_nic(bp, true, true);
11319 	bnxt_hwrm_shutdown_link(bp);
11320 	bnxt_hwrm_if_change(bp, false);
11321 	return 0;
11322 }
11323 
11324 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
11325 				   u16 *val)
11326 {
11327 	struct hwrm_port_phy_mdio_read_output *resp;
11328 	struct hwrm_port_phy_mdio_read_input *req;
11329 	int rc;
11330 
11331 	if (bp->hwrm_spec_code < 0x10a00)
11332 		return -EOPNOTSUPP;
11333 
11334 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ);
11335 	if (rc)
11336 		return rc;
11337 
11338 	req->port_id = cpu_to_le16(bp->pf.port_id);
11339 	req->phy_addr = phy_addr;
11340 	req->reg_addr = cpu_to_le16(reg & 0x1f);
11341 	if (mdio_phy_id_is_c45(phy_addr)) {
11342 		req->cl45_mdio = 1;
11343 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
11344 		req->dev_addr = mdio_phy_id_devad(phy_addr);
11345 		req->reg_addr = cpu_to_le16(reg);
11346 	}
11347 
11348 	resp = hwrm_req_hold(bp, req);
11349 	rc = hwrm_req_send(bp, req);
11350 	if (!rc)
11351 		*val = le16_to_cpu(resp->reg_data);
11352 	hwrm_req_drop(bp, req);
11353 	return rc;
11354 }
11355 
11356 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
11357 				    u16 val)
11358 {
11359 	struct hwrm_port_phy_mdio_write_input *req;
11360 	int rc;
11361 
11362 	if (bp->hwrm_spec_code < 0x10a00)
11363 		return -EOPNOTSUPP;
11364 
11365 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE);
11366 	if (rc)
11367 		return rc;
11368 
11369 	req->port_id = cpu_to_le16(bp->pf.port_id);
11370 	req->phy_addr = phy_addr;
11371 	req->reg_addr = cpu_to_le16(reg & 0x1f);
11372 	if (mdio_phy_id_is_c45(phy_addr)) {
11373 		req->cl45_mdio = 1;
11374 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
11375 		req->dev_addr = mdio_phy_id_devad(phy_addr);
11376 		req->reg_addr = cpu_to_le16(reg);
11377 	}
11378 	req->reg_data = cpu_to_le16(val);
11379 
11380 	return hwrm_req_send(bp, req);
11381 }
11382 
11383 /* rtnl_lock held */
11384 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
11385 {
11386 	struct mii_ioctl_data *mdio = if_mii(ifr);
11387 	struct bnxt *bp = netdev_priv(dev);
11388 	int rc;
11389 
11390 	switch (cmd) {
11391 	case SIOCGMIIPHY:
11392 		mdio->phy_id = bp->link_info.phy_addr;
11393 
11394 		fallthrough;
11395 	case SIOCGMIIREG: {
11396 		u16 mii_regval = 0;
11397 
11398 		if (!netif_running(dev))
11399 			return -EAGAIN;
11400 
11401 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
11402 					     &mii_regval);
11403 		mdio->val_out = mii_regval;
11404 		return rc;
11405 	}
11406 
11407 	case SIOCSMIIREG:
11408 		if (!netif_running(dev))
11409 			return -EAGAIN;
11410 
11411 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
11412 						mdio->val_in);
11413 
11414 	case SIOCSHWTSTAMP:
11415 		return bnxt_hwtstamp_set(dev, ifr);
11416 
11417 	case SIOCGHWTSTAMP:
11418 		return bnxt_hwtstamp_get(dev, ifr);
11419 
11420 	default:
11421 		/* do nothing */
11422 		break;
11423 	}
11424 	return -EOPNOTSUPP;
11425 }
11426 
11427 static void bnxt_get_ring_stats(struct bnxt *bp,
11428 				struct rtnl_link_stats64 *stats)
11429 {
11430 	int i;
11431 
11432 	for (i = 0; i < bp->cp_nr_rings; i++) {
11433 		struct bnxt_napi *bnapi = bp->bnapi[i];
11434 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
11435 		u64 *sw = cpr->stats.sw_stats;
11436 
11437 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
11438 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
11439 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
11440 
11441 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
11442 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
11443 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
11444 
11445 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
11446 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
11447 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
11448 
11449 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
11450 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
11451 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
11452 
11453 		stats->rx_missed_errors +=
11454 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
11455 
11456 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
11457 
11458 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
11459 
11460 		stats->rx_dropped +=
11461 			cpr->sw_stats.rx.rx_netpoll_discards +
11462 			cpr->sw_stats.rx.rx_oom_discards;
11463 	}
11464 }
11465 
11466 static void bnxt_add_prev_stats(struct bnxt *bp,
11467 				struct rtnl_link_stats64 *stats)
11468 {
11469 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
11470 
11471 	stats->rx_packets += prev_stats->rx_packets;
11472 	stats->tx_packets += prev_stats->tx_packets;
11473 	stats->rx_bytes += prev_stats->rx_bytes;
11474 	stats->tx_bytes += prev_stats->tx_bytes;
11475 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
11476 	stats->multicast += prev_stats->multicast;
11477 	stats->rx_dropped += prev_stats->rx_dropped;
11478 	stats->tx_dropped += prev_stats->tx_dropped;
11479 }
11480 
11481 static void
11482 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
11483 {
11484 	struct bnxt *bp = netdev_priv(dev);
11485 
11486 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
11487 	/* Make sure bnxt_close_nic() sees that we are reading stats before
11488 	 * we check the BNXT_STATE_OPEN flag.
11489 	 */
11490 	smp_mb__after_atomic();
11491 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11492 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
11493 		*stats = bp->net_stats_prev;
11494 		return;
11495 	}
11496 
11497 	bnxt_get_ring_stats(bp, stats);
11498 	bnxt_add_prev_stats(bp, stats);
11499 
11500 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
11501 		u64 *rx = bp->port_stats.sw_stats;
11502 		u64 *tx = bp->port_stats.sw_stats +
11503 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
11504 
11505 		stats->rx_crc_errors =
11506 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
11507 		stats->rx_frame_errors =
11508 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
11509 		stats->rx_length_errors =
11510 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
11511 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
11512 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
11513 		stats->rx_errors =
11514 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
11515 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
11516 		stats->collisions =
11517 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
11518 		stats->tx_fifo_errors =
11519 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
11520 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
11521 	}
11522 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
11523 }
11524 
11525 static void bnxt_get_one_ring_err_stats(struct bnxt *bp,
11526 					struct bnxt_total_ring_err_stats *stats,
11527 					struct bnxt_cp_ring_info *cpr)
11528 {
11529 	struct bnxt_sw_stats *sw_stats = &cpr->sw_stats;
11530 	u64 *hw_stats = cpr->stats.sw_stats;
11531 
11532 	stats->rx_total_l4_csum_errors += sw_stats->rx.rx_l4_csum_errors;
11533 	stats->rx_total_resets += sw_stats->rx.rx_resets;
11534 	stats->rx_total_buf_errors += sw_stats->rx.rx_buf_errors;
11535 	stats->rx_total_oom_discards += sw_stats->rx.rx_oom_discards;
11536 	stats->rx_total_netpoll_discards += sw_stats->rx.rx_netpoll_discards;
11537 	stats->rx_total_ring_discards +=
11538 		BNXT_GET_RING_STATS64(hw_stats, rx_discard_pkts);
11539 	stats->tx_total_resets += sw_stats->tx.tx_resets;
11540 	stats->tx_total_ring_discards +=
11541 		BNXT_GET_RING_STATS64(hw_stats, tx_discard_pkts);
11542 	stats->total_missed_irqs += sw_stats->cmn.missed_irqs;
11543 }
11544 
11545 void bnxt_get_ring_err_stats(struct bnxt *bp,
11546 			     struct bnxt_total_ring_err_stats *stats)
11547 {
11548 	int i;
11549 
11550 	for (i = 0; i < bp->cp_nr_rings; i++)
11551 		bnxt_get_one_ring_err_stats(bp, stats, &bp->bnapi[i]->cp_ring);
11552 }
11553 
11554 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
11555 {
11556 	struct net_device *dev = bp->dev;
11557 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11558 	struct netdev_hw_addr *ha;
11559 	u8 *haddr;
11560 	int mc_count = 0;
11561 	bool update = false;
11562 	int off = 0;
11563 
11564 	netdev_for_each_mc_addr(ha, dev) {
11565 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
11566 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
11567 			vnic->mc_list_count = 0;
11568 			return false;
11569 		}
11570 		haddr = ha->addr;
11571 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
11572 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
11573 			update = true;
11574 		}
11575 		off += ETH_ALEN;
11576 		mc_count++;
11577 	}
11578 	if (mc_count)
11579 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
11580 
11581 	if (mc_count != vnic->mc_list_count) {
11582 		vnic->mc_list_count = mc_count;
11583 		update = true;
11584 	}
11585 	return update;
11586 }
11587 
11588 static bool bnxt_uc_list_updated(struct bnxt *bp)
11589 {
11590 	struct net_device *dev = bp->dev;
11591 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11592 	struct netdev_hw_addr *ha;
11593 	int off = 0;
11594 
11595 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
11596 		return true;
11597 
11598 	netdev_for_each_uc_addr(ha, dev) {
11599 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
11600 			return true;
11601 
11602 		off += ETH_ALEN;
11603 	}
11604 	return false;
11605 }
11606 
11607 static void bnxt_set_rx_mode(struct net_device *dev)
11608 {
11609 	struct bnxt *bp = netdev_priv(dev);
11610 	struct bnxt_vnic_info *vnic;
11611 	bool mc_update = false;
11612 	bool uc_update;
11613 	u32 mask;
11614 
11615 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
11616 		return;
11617 
11618 	vnic = &bp->vnic_info[0];
11619 	mask = vnic->rx_mask;
11620 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
11621 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
11622 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
11623 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
11624 
11625 	if (dev->flags & IFF_PROMISC)
11626 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11627 
11628 	uc_update = bnxt_uc_list_updated(bp);
11629 
11630 	if (dev->flags & IFF_BROADCAST)
11631 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
11632 	if (dev->flags & IFF_ALLMULTI) {
11633 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
11634 		vnic->mc_list_count = 0;
11635 	} else if (dev->flags & IFF_MULTICAST) {
11636 		mc_update = bnxt_mc_list_updated(bp, &mask);
11637 	}
11638 
11639 	if (mask != vnic->rx_mask || uc_update || mc_update) {
11640 		vnic->rx_mask = mask;
11641 
11642 		bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT);
11643 	}
11644 }
11645 
11646 static int bnxt_cfg_rx_mode(struct bnxt *bp)
11647 {
11648 	struct net_device *dev = bp->dev;
11649 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11650 	struct hwrm_cfa_l2_filter_free_input *req;
11651 	struct netdev_hw_addr *ha;
11652 	int i, off = 0, rc;
11653 	bool uc_update;
11654 
11655 	netif_addr_lock_bh(dev);
11656 	uc_update = bnxt_uc_list_updated(bp);
11657 	netif_addr_unlock_bh(dev);
11658 
11659 	if (!uc_update)
11660 		goto skip_uc;
11661 
11662 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
11663 	if (rc)
11664 		return rc;
11665 	hwrm_req_hold(bp, req);
11666 	for (i = 1; i < vnic->uc_filter_count; i++) {
11667 		req->l2_filter_id = vnic->fw_l2_filter_id[i];
11668 
11669 		rc = hwrm_req_send(bp, req);
11670 	}
11671 	hwrm_req_drop(bp, req);
11672 
11673 	vnic->uc_filter_count = 1;
11674 
11675 	netif_addr_lock_bh(dev);
11676 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
11677 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11678 	} else {
11679 		netdev_for_each_uc_addr(ha, dev) {
11680 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
11681 			off += ETH_ALEN;
11682 			vnic->uc_filter_count++;
11683 		}
11684 	}
11685 	netif_addr_unlock_bh(dev);
11686 
11687 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
11688 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
11689 		if (rc) {
11690 			if (BNXT_VF(bp) && rc == -ENODEV) {
11691 				if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
11692 					netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n");
11693 				else
11694 					netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n");
11695 				rc = 0;
11696 			} else {
11697 				netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
11698 			}
11699 			vnic->uc_filter_count = i;
11700 			return rc;
11701 		}
11702 	}
11703 	if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
11704 		netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n");
11705 
11706 skip_uc:
11707 	if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
11708 	    !bnxt_promisc_ok(bp))
11709 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11710 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
11711 	if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) {
11712 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
11713 			    rc);
11714 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
11715 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
11716 		vnic->mc_list_count = 0;
11717 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
11718 	}
11719 	if (rc)
11720 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
11721 			   rc);
11722 
11723 	return rc;
11724 }
11725 
11726 static bool bnxt_can_reserve_rings(struct bnxt *bp)
11727 {
11728 #ifdef CONFIG_BNXT_SRIOV
11729 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
11730 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
11731 
11732 		/* No minimum rings were provisioned by the PF.  Don't
11733 		 * reserve rings by default when device is down.
11734 		 */
11735 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
11736 			return true;
11737 
11738 		if (!netif_running(bp->dev))
11739 			return false;
11740 	}
11741 #endif
11742 	return true;
11743 }
11744 
11745 /* If the chip and firmware supports RFS */
11746 static bool bnxt_rfs_supported(struct bnxt *bp)
11747 {
11748 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
11749 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
11750 			return true;
11751 		return false;
11752 	}
11753 	/* 212 firmware is broken for aRFS */
11754 	if (BNXT_FW_MAJ(bp) == 212)
11755 		return false;
11756 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
11757 		return true;
11758 	if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP)
11759 		return true;
11760 	return false;
11761 }
11762 
11763 /* If runtime conditions support RFS */
11764 static bool bnxt_rfs_capable(struct bnxt *bp)
11765 {
11766 #ifdef CONFIG_RFS_ACCEL
11767 	int vnics, max_vnics, max_rss_ctxs;
11768 
11769 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
11770 		return bnxt_rfs_supported(bp);
11771 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings)
11772 		return false;
11773 
11774 	vnics = 1 + bp->rx_nr_rings;
11775 	max_vnics = bnxt_get_max_func_vnics(bp);
11776 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
11777 
11778 	/* RSS contexts not a limiting factor */
11779 	if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP)
11780 		max_rss_ctxs = max_vnics;
11781 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
11782 		if (bp->rx_nr_rings > 1)
11783 			netdev_warn(bp->dev,
11784 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
11785 				    min(max_rss_ctxs - 1, max_vnics - 1));
11786 		return false;
11787 	}
11788 
11789 	if (!BNXT_NEW_RM(bp))
11790 		return true;
11791 
11792 	if (vnics == bp->hw_resc.resv_vnics)
11793 		return true;
11794 
11795 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
11796 	if (vnics <= bp->hw_resc.resv_vnics)
11797 		return true;
11798 
11799 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
11800 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
11801 	return false;
11802 #else
11803 	return false;
11804 #endif
11805 }
11806 
11807 static netdev_features_t bnxt_fix_features(struct net_device *dev,
11808 					   netdev_features_t features)
11809 {
11810 	struct bnxt *bp = netdev_priv(dev);
11811 	netdev_features_t vlan_features;
11812 
11813 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
11814 		features &= ~NETIF_F_NTUPLE;
11815 
11816 	if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog)
11817 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11818 
11819 	if (!(features & NETIF_F_GRO))
11820 		features &= ~NETIF_F_GRO_HW;
11821 
11822 	if (features & NETIF_F_GRO_HW)
11823 		features &= ~NETIF_F_LRO;
11824 
11825 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
11826 	 * turned on or off together.
11827 	 */
11828 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
11829 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
11830 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11831 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11832 		else if (vlan_features)
11833 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
11834 	}
11835 #ifdef CONFIG_BNXT_SRIOV
11836 	if (BNXT_VF(bp) && bp->vf.vlan)
11837 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11838 #endif
11839 	return features;
11840 }
11841 
11842 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
11843 {
11844 	struct bnxt *bp = netdev_priv(dev);
11845 	u32 flags = bp->flags;
11846 	u32 changes;
11847 	int rc = 0;
11848 	bool re_init = false;
11849 	bool update_tpa = false;
11850 
11851 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
11852 	if (features & NETIF_F_GRO_HW)
11853 		flags |= BNXT_FLAG_GRO;
11854 	else if (features & NETIF_F_LRO)
11855 		flags |= BNXT_FLAG_LRO;
11856 
11857 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
11858 		flags &= ~BNXT_FLAG_TPA;
11859 
11860 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11861 		flags |= BNXT_FLAG_STRIP_VLAN;
11862 
11863 	if (features & NETIF_F_NTUPLE)
11864 		flags |= BNXT_FLAG_RFS;
11865 
11866 	changes = flags ^ bp->flags;
11867 	if (changes & BNXT_FLAG_TPA) {
11868 		update_tpa = true;
11869 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
11870 		    (flags & BNXT_FLAG_TPA) == 0 ||
11871 		    (bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
11872 			re_init = true;
11873 	}
11874 
11875 	if (changes & ~BNXT_FLAG_TPA)
11876 		re_init = true;
11877 
11878 	if (flags != bp->flags) {
11879 		u32 old_flags = bp->flags;
11880 
11881 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11882 			bp->flags = flags;
11883 			if (update_tpa)
11884 				bnxt_set_ring_params(bp);
11885 			return rc;
11886 		}
11887 
11888 		if (re_init) {
11889 			bnxt_close_nic(bp, false, false);
11890 			bp->flags = flags;
11891 			if (update_tpa)
11892 				bnxt_set_ring_params(bp);
11893 
11894 			return bnxt_open_nic(bp, false, false);
11895 		}
11896 		if (update_tpa) {
11897 			bp->flags = flags;
11898 			rc = bnxt_set_tpa(bp,
11899 					  (flags & BNXT_FLAG_TPA) ?
11900 					  true : false);
11901 			if (rc)
11902 				bp->flags = old_flags;
11903 		}
11904 	}
11905 	return rc;
11906 }
11907 
11908 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
11909 			      u8 **nextp)
11910 {
11911 	struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
11912 	struct hop_jumbo_hdr *jhdr;
11913 	int hdr_count = 0;
11914 	u8 *nexthdr;
11915 	int start;
11916 
11917 	/* Check that there are at most 2 IPv6 extension headers, no
11918 	 * fragment header, and each is <= 64 bytes.
11919 	 */
11920 	start = nw_off + sizeof(*ip6h);
11921 	nexthdr = &ip6h->nexthdr;
11922 	while (ipv6_ext_hdr(*nexthdr)) {
11923 		struct ipv6_opt_hdr *hp;
11924 		int hdrlen;
11925 
11926 		if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
11927 		    *nexthdr == NEXTHDR_FRAGMENT)
11928 			return false;
11929 		hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
11930 					  skb_headlen(skb), NULL);
11931 		if (!hp)
11932 			return false;
11933 		if (*nexthdr == NEXTHDR_AUTH)
11934 			hdrlen = ipv6_authlen(hp);
11935 		else
11936 			hdrlen = ipv6_optlen(hp);
11937 
11938 		if (hdrlen > 64)
11939 			return false;
11940 
11941 		/* The ext header may be a hop-by-hop header inserted for
11942 		 * big TCP purposes. This will be removed before sending
11943 		 * from NIC, so do not count it.
11944 		 */
11945 		if (*nexthdr == NEXTHDR_HOP) {
11946 			if (likely(skb->len <= GRO_LEGACY_MAX_SIZE))
11947 				goto increment_hdr;
11948 
11949 			jhdr = (struct hop_jumbo_hdr *)hp;
11950 			if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 ||
11951 			    jhdr->nexthdr != IPPROTO_TCP)
11952 				goto increment_hdr;
11953 
11954 			goto next_hdr;
11955 		}
11956 increment_hdr:
11957 		hdr_count++;
11958 next_hdr:
11959 		nexthdr = &hp->nexthdr;
11960 		start += hdrlen;
11961 	}
11962 	if (nextp) {
11963 		/* Caller will check inner protocol */
11964 		if (skb->encapsulation) {
11965 			*nextp = nexthdr;
11966 			return true;
11967 		}
11968 		*nextp = NULL;
11969 	}
11970 	/* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
11971 	return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
11972 }
11973 
11974 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
11975 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
11976 {
11977 	struct udphdr *uh = udp_hdr(skb);
11978 	__be16 udp_port = uh->dest;
11979 
11980 	if (udp_port != bp->vxlan_port && udp_port != bp->nge_port)
11981 		return false;
11982 	if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) {
11983 		struct ethhdr *eh = inner_eth_hdr(skb);
11984 
11985 		switch (eh->h_proto) {
11986 		case htons(ETH_P_IP):
11987 			return true;
11988 		case htons(ETH_P_IPV6):
11989 			return bnxt_exthdr_check(bp, skb,
11990 						 skb_inner_network_offset(skb),
11991 						 NULL);
11992 		}
11993 	}
11994 	return false;
11995 }
11996 
11997 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
11998 {
11999 	switch (l4_proto) {
12000 	case IPPROTO_UDP:
12001 		return bnxt_udp_tunl_check(bp, skb);
12002 	case IPPROTO_IPIP:
12003 		return true;
12004 	case IPPROTO_GRE: {
12005 		switch (skb->inner_protocol) {
12006 		default:
12007 			return false;
12008 		case htons(ETH_P_IP):
12009 			return true;
12010 		case htons(ETH_P_IPV6):
12011 			fallthrough;
12012 		}
12013 	}
12014 	case IPPROTO_IPV6:
12015 		/* Check ext headers of inner ipv6 */
12016 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
12017 					 NULL);
12018 	}
12019 	return false;
12020 }
12021 
12022 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
12023 					     struct net_device *dev,
12024 					     netdev_features_t features)
12025 {
12026 	struct bnxt *bp = netdev_priv(dev);
12027 	u8 *l4_proto;
12028 
12029 	features = vlan_features_check(skb, features);
12030 	switch (vlan_get_protocol(skb)) {
12031 	case htons(ETH_P_IP):
12032 		if (!skb->encapsulation)
12033 			return features;
12034 		l4_proto = &ip_hdr(skb)->protocol;
12035 		if (bnxt_tunl_check(bp, skb, *l4_proto))
12036 			return features;
12037 		break;
12038 	case htons(ETH_P_IPV6):
12039 		if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
12040 				       &l4_proto))
12041 			break;
12042 		if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
12043 			return features;
12044 		break;
12045 	}
12046 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
12047 }
12048 
12049 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
12050 			 u32 *reg_buf)
12051 {
12052 	struct hwrm_dbg_read_direct_output *resp;
12053 	struct hwrm_dbg_read_direct_input *req;
12054 	__le32 *dbg_reg_buf;
12055 	dma_addr_t mapping;
12056 	int rc, i;
12057 
12058 	rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT);
12059 	if (rc)
12060 		return rc;
12061 
12062 	dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4,
12063 					 &mapping);
12064 	if (!dbg_reg_buf) {
12065 		rc = -ENOMEM;
12066 		goto dbg_rd_reg_exit;
12067 	}
12068 
12069 	req->host_dest_addr = cpu_to_le64(mapping);
12070 
12071 	resp = hwrm_req_hold(bp, req);
12072 	req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
12073 	req->read_len32 = cpu_to_le32(num_words);
12074 
12075 	rc = hwrm_req_send(bp, req);
12076 	if (rc || resp->error_code) {
12077 		rc = -EIO;
12078 		goto dbg_rd_reg_exit;
12079 	}
12080 	for (i = 0; i < num_words; i++)
12081 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
12082 
12083 dbg_rd_reg_exit:
12084 	hwrm_req_drop(bp, req);
12085 	return rc;
12086 }
12087 
12088 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
12089 				       u32 ring_id, u32 *prod, u32 *cons)
12090 {
12091 	struct hwrm_dbg_ring_info_get_output *resp;
12092 	struct hwrm_dbg_ring_info_get_input *req;
12093 	int rc;
12094 
12095 	rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET);
12096 	if (rc)
12097 		return rc;
12098 
12099 	req->ring_type = ring_type;
12100 	req->fw_ring_id = cpu_to_le32(ring_id);
12101 	resp = hwrm_req_hold(bp, req);
12102 	rc = hwrm_req_send(bp, req);
12103 	if (!rc) {
12104 		*prod = le32_to_cpu(resp->producer_index);
12105 		*cons = le32_to_cpu(resp->consumer_index);
12106 	}
12107 	hwrm_req_drop(bp, req);
12108 	return rc;
12109 }
12110 
12111 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
12112 {
12113 	struct bnxt_tx_ring_info *txr;
12114 	int i = bnapi->index, j;
12115 
12116 	bnxt_for_each_napi_tx(j, bnapi, txr)
12117 		netdev_info(bnapi->bp->dev, "[%d.%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
12118 			    i, j, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
12119 			    txr->tx_cons);
12120 }
12121 
12122 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
12123 {
12124 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
12125 	int i = bnapi->index;
12126 
12127 	if (!rxr)
12128 		return;
12129 
12130 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
12131 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
12132 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
12133 		    rxr->rx_sw_agg_prod);
12134 }
12135 
12136 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
12137 {
12138 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
12139 	int i = bnapi->index;
12140 
12141 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
12142 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
12143 }
12144 
12145 static void bnxt_dbg_dump_states(struct bnxt *bp)
12146 {
12147 	int i;
12148 	struct bnxt_napi *bnapi;
12149 
12150 	for (i = 0; i < bp->cp_nr_rings; i++) {
12151 		bnapi = bp->bnapi[i];
12152 		if (netif_msg_drv(bp)) {
12153 			bnxt_dump_tx_sw_state(bnapi);
12154 			bnxt_dump_rx_sw_state(bnapi);
12155 			bnxt_dump_cp_sw_state(bnapi);
12156 		}
12157 	}
12158 }
12159 
12160 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
12161 {
12162 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
12163 	struct hwrm_ring_reset_input *req;
12164 	struct bnxt_napi *bnapi = rxr->bnapi;
12165 	struct bnxt_cp_ring_info *cpr;
12166 	u16 cp_ring_id;
12167 	int rc;
12168 
12169 	rc = hwrm_req_init(bp, req, HWRM_RING_RESET);
12170 	if (rc)
12171 		return rc;
12172 
12173 	cpr = &bnapi->cp_ring;
12174 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
12175 	req->cmpl_ring = cpu_to_le16(cp_ring_id);
12176 	req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
12177 	req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
12178 	return hwrm_req_send_silent(bp, req);
12179 }
12180 
12181 static void bnxt_reset_task(struct bnxt *bp, bool silent)
12182 {
12183 	if (!silent)
12184 		bnxt_dbg_dump_states(bp);
12185 	if (netif_running(bp->dev)) {
12186 		int rc;
12187 
12188 		if (silent) {
12189 			bnxt_close_nic(bp, false, false);
12190 			bnxt_open_nic(bp, false, false);
12191 		} else {
12192 			bnxt_ulp_stop(bp);
12193 			bnxt_close_nic(bp, true, false);
12194 			rc = bnxt_open_nic(bp, true, false);
12195 			bnxt_ulp_start(bp, rc);
12196 		}
12197 	}
12198 }
12199 
12200 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
12201 {
12202 	struct bnxt *bp = netdev_priv(dev);
12203 
12204 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
12205 	bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT);
12206 }
12207 
12208 static void bnxt_fw_health_check(struct bnxt *bp)
12209 {
12210 	struct bnxt_fw_health *fw_health = bp->fw_health;
12211 	struct pci_dev *pdev = bp->pdev;
12212 	u32 val;
12213 
12214 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
12215 		return;
12216 
12217 	/* Make sure it is enabled before checking the tmr_counter. */
12218 	smp_rmb();
12219 	if (fw_health->tmr_counter) {
12220 		fw_health->tmr_counter--;
12221 		return;
12222 	}
12223 
12224 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
12225 	if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) {
12226 		fw_health->arrests++;
12227 		goto fw_reset;
12228 	}
12229 
12230 	fw_health->last_fw_heartbeat = val;
12231 
12232 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
12233 	if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) {
12234 		fw_health->discoveries++;
12235 		goto fw_reset;
12236 	}
12237 
12238 	fw_health->tmr_counter = fw_health->tmr_multiplier;
12239 	return;
12240 
12241 fw_reset:
12242 	bnxt_queue_sp_work(bp, BNXT_FW_EXCEPTION_SP_EVENT);
12243 }
12244 
12245 static void bnxt_timer(struct timer_list *t)
12246 {
12247 	struct bnxt *bp = from_timer(bp, t, timer);
12248 	struct net_device *dev = bp->dev;
12249 
12250 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
12251 		return;
12252 
12253 	if (atomic_read(&bp->intr_sem) != 0)
12254 		goto bnxt_restart_timer;
12255 
12256 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
12257 		bnxt_fw_health_check(bp);
12258 
12259 	if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks)
12260 		bnxt_queue_sp_work(bp, BNXT_PERIODIC_STATS_SP_EVENT);
12261 
12262 	if (bnxt_tc_flower_enabled(bp))
12263 		bnxt_queue_sp_work(bp, BNXT_FLOW_STATS_SP_EVENT);
12264 
12265 #ifdef CONFIG_RFS_ACCEL
12266 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count)
12267 		bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT);
12268 #endif /*CONFIG_RFS_ACCEL*/
12269 
12270 	if (bp->link_info.phy_retry) {
12271 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
12272 			bp->link_info.phy_retry = false;
12273 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
12274 		} else {
12275 			bnxt_queue_sp_work(bp, BNXT_UPDATE_PHY_SP_EVENT);
12276 		}
12277 	}
12278 
12279 	if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
12280 		bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT);
12281 
12282 	if ((BNXT_CHIP_P5(bp)) && !bp->chip_rev && netif_carrier_ok(dev))
12283 		bnxt_queue_sp_work(bp, BNXT_RING_COAL_NOW_SP_EVENT);
12284 
12285 bnxt_restart_timer:
12286 	mod_timer(&bp->timer, jiffies + bp->current_interval);
12287 }
12288 
12289 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
12290 {
12291 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
12292 	 * set.  If the device is being closed, bnxt_close() may be holding
12293 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
12294 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
12295 	 */
12296 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12297 	rtnl_lock();
12298 }
12299 
12300 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
12301 {
12302 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12303 	rtnl_unlock();
12304 }
12305 
12306 /* Only called from bnxt_sp_task() */
12307 static void bnxt_reset(struct bnxt *bp, bool silent)
12308 {
12309 	bnxt_rtnl_lock_sp(bp);
12310 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
12311 		bnxt_reset_task(bp, silent);
12312 	bnxt_rtnl_unlock_sp(bp);
12313 }
12314 
12315 /* Only called from bnxt_sp_task() */
12316 static void bnxt_rx_ring_reset(struct bnxt *bp)
12317 {
12318 	int i;
12319 
12320 	bnxt_rtnl_lock_sp(bp);
12321 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
12322 		bnxt_rtnl_unlock_sp(bp);
12323 		return;
12324 	}
12325 	/* Disable and flush TPA before resetting the RX ring */
12326 	if (bp->flags & BNXT_FLAG_TPA)
12327 		bnxt_set_tpa(bp, false);
12328 	for (i = 0; i < bp->rx_nr_rings; i++) {
12329 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
12330 		struct bnxt_cp_ring_info *cpr;
12331 		int rc;
12332 
12333 		if (!rxr->bnapi->in_reset)
12334 			continue;
12335 
12336 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
12337 		if (rc) {
12338 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
12339 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
12340 			else
12341 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
12342 					    rc);
12343 			bnxt_reset_task(bp, true);
12344 			break;
12345 		}
12346 		bnxt_free_one_rx_ring_skbs(bp, i);
12347 		rxr->rx_prod = 0;
12348 		rxr->rx_agg_prod = 0;
12349 		rxr->rx_sw_agg_prod = 0;
12350 		rxr->rx_next_cons = 0;
12351 		rxr->bnapi->in_reset = false;
12352 		bnxt_alloc_one_rx_ring(bp, i);
12353 		cpr = &rxr->bnapi->cp_ring;
12354 		cpr->sw_stats.rx.rx_resets++;
12355 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
12356 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
12357 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
12358 	}
12359 	if (bp->flags & BNXT_FLAG_TPA)
12360 		bnxt_set_tpa(bp, true);
12361 	bnxt_rtnl_unlock_sp(bp);
12362 }
12363 
12364 static void bnxt_fw_reset_close(struct bnxt *bp)
12365 {
12366 	bnxt_ulp_stop(bp);
12367 	/* When firmware is in fatal state, quiesce device and disable
12368 	 * bus master to prevent any potential bad DMAs before freeing
12369 	 * kernel memory.
12370 	 */
12371 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
12372 		u16 val = 0;
12373 
12374 		pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
12375 		if (val == 0xffff)
12376 			bp->fw_reset_min_dsecs = 0;
12377 		bnxt_tx_disable(bp);
12378 		bnxt_disable_napi(bp);
12379 		bnxt_disable_int_sync(bp);
12380 		bnxt_free_irq(bp);
12381 		bnxt_clear_int_mode(bp);
12382 		pci_disable_device(bp->pdev);
12383 	}
12384 	__bnxt_close_nic(bp, true, false);
12385 	bnxt_vf_reps_free(bp);
12386 	bnxt_clear_int_mode(bp);
12387 	bnxt_hwrm_func_drv_unrgtr(bp);
12388 	if (pci_is_enabled(bp->pdev))
12389 		pci_disable_device(bp->pdev);
12390 	bnxt_free_ctx_mem(bp);
12391 }
12392 
12393 static bool is_bnxt_fw_ok(struct bnxt *bp)
12394 {
12395 	struct bnxt_fw_health *fw_health = bp->fw_health;
12396 	bool no_heartbeat = false, has_reset = false;
12397 	u32 val;
12398 
12399 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
12400 	if (val == fw_health->last_fw_heartbeat)
12401 		no_heartbeat = true;
12402 
12403 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
12404 	if (val != fw_health->last_fw_reset_cnt)
12405 		has_reset = true;
12406 
12407 	if (!no_heartbeat && has_reset)
12408 		return true;
12409 
12410 	return false;
12411 }
12412 
12413 /* rtnl_lock is acquired before calling this function */
12414 static void bnxt_force_fw_reset(struct bnxt *bp)
12415 {
12416 	struct bnxt_fw_health *fw_health = bp->fw_health;
12417 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
12418 	u32 wait_dsecs;
12419 
12420 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
12421 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
12422 		return;
12423 
12424 	if (ptp) {
12425 		spin_lock_bh(&ptp->ptp_lock);
12426 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12427 		spin_unlock_bh(&ptp->ptp_lock);
12428 	} else {
12429 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12430 	}
12431 	bnxt_fw_reset_close(bp);
12432 	wait_dsecs = fw_health->master_func_wait_dsecs;
12433 	if (fw_health->primary) {
12434 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
12435 			wait_dsecs = 0;
12436 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
12437 	} else {
12438 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
12439 		wait_dsecs = fw_health->normal_func_wait_dsecs;
12440 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12441 	}
12442 
12443 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
12444 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
12445 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
12446 }
12447 
12448 void bnxt_fw_exception(struct bnxt *bp)
12449 {
12450 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
12451 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
12452 	bnxt_rtnl_lock_sp(bp);
12453 	bnxt_force_fw_reset(bp);
12454 	bnxt_rtnl_unlock_sp(bp);
12455 }
12456 
12457 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
12458  * < 0 on error.
12459  */
12460 static int bnxt_get_registered_vfs(struct bnxt *bp)
12461 {
12462 #ifdef CONFIG_BNXT_SRIOV
12463 	int rc;
12464 
12465 	if (!BNXT_PF(bp))
12466 		return 0;
12467 
12468 	rc = bnxt_hwrm_func_qcfg(bp);
12469 	if (rc) {
12470 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
12471 		return rc;
12472 	}
12473 	if (bp->pf.registered_vfs)
12474 		return bp->pf.registered_vfs;
12475 	if (bp->sriov_cfg)
12476 		return 1;
12477 #endif
12478 	return 0;
12479 }
12480 
12481 void bnxt_fw_reset(struct bnxt *bp)
12482 {
12483 	bnxt_rtnl_lock_sp(bp);
12484 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
12485 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
12486 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
12487 		int n = 0, tmo;
12488 
12489 		if (ptp) {
12490 			spin_lock_bh(&ptp->ptp_lock);
12491 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12492 			spin_unlock_bh(&ptp->ptp_lock);
12493 		} else {
12494 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12495 		}
12496 		if (bp->pf.active_vfs &&
12497 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
12498 			n = bnxt_get_registered_vfs(bp);
12499 		if (n < 0) {
12500 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
12501 				   n);
12502 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12503 			dev_close(bp->dev);
12504 			goto fw_reset_exit;
12505 		} else if (n > 0) {
12506 			u16 vf_tmo_dsecs = n * 10;
12507 
12508 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
12509 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
12510 			bp->fw_reset_state =
12511 				BNXT_FW_RESET_STATE_POLL_VF;
12512 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12513 			goto fw_reset_exit;
12514 		}
12515 		bnxt_fw_reset_close(bp);
12516 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12517 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
12518 			tmo = HZ / 10;
12519 		} else {
12520 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12521 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
12522 		}
12523 		bnxt_queue_fw_reset_work(bp, tmo);
12524 	}
12525 fw_reset_exit:
12526 	bnxt_rtnl_unlock_sp(bp);
12527 }
12528 
12529 static void bnxt_chk_missed_irq(struct bnxt *bp)
12530 {
12531 	int i;
12532 
12533 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
12534 		return;
12535 
12536 	for (i = 0; i < bp->cp_nr_rings; i++) {
12537 		struct bnxt_napi *bnapi = bp->bnapi[i];
12538 		struct bnxt_cp_ring_info *cpr;
12539 		u32 fw_ring_id;
12540 		int j;
12541 
12542 		if (!bnapi)
12543 			continue;
12544 
12545 		cpr = &bnapi->cp_ring;
12546 		for (j = 0; j < cpr->cp_ring_count; j++) {
12547 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
12548 			u32 val[2];
12549 
12550 			if (cpr2->has_more_work || !bnxt_has_work(bp, cpr2))
12551 				continue;
12552 
12553 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
12554 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
12555 				continue;
12556 			}
12557 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
12558 			bnxt_dbg_hwrm_ring_info_get(bp,
12559 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
12560 				fw_ring_id, &val[0], &val[1]);
12561 			cpr->sw_stats.cmn.missed_irqs++;
12562 		}
12563 	}
12564 }
12565 
12566 static void bnxt_cfg_ntp_filters(struct bnxt *);
12567 
12568 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
12569 {
12570 	struct bnxt_link_info *link_info = &bp->link_info;
12571 
12572 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
12573 		link_info->autoneg = BNXT_AUTONEG_SPEED;
12574 		if (bp->hwrm_spec_code >= 0x10201) {
12575 			if (link_info->auto_pause_setting &
12576 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
12577 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
12578 		} else {
12579 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
12580 		}
12581 		bnxt_set_auto_speed(link_info);
12582 	} else {
12583 		bnxt_set_force_speed(link_info);
12584 		link_info->req_duplex = link_info->duplex_setting;
12585 	}
12586 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
12587 		link_info->req_flow_ctrl =
12588 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
12589 	else
12590 		link_info->req_flow_ctrl = link_info->force_pause_setting;
12591 }
12592 
12593 static void bnxt_fw_echo_reply(struct bnxt *bp)
12594 {
12595 	struct bnxt_fw_health *fw_health = bp->fw_health;
12596 	struct hwrm_func_echo_response_input *req;
12597 	int rc;
12598 
12599 	rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE);
12600 	if (rc)
12601 		return;
12602 	req->event_data1 = cpu_to_le32(fw_health->echo_req_data1);
12603 	req->event_data2 = cpu_to_le32(fw_health->echo_req_data2);
12604 	hwrm_req_send(bp, req);
12605 }
12606 
12607 static void bnxt_sp_task(struct work_struct *work)
12608 {
12609 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
12610 
12611 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12612 	smp_mb__after_atomic();
12613 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
12614 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12615 		return;
12616 	}
12617 
12618 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
12619 		bnxt_cfg_rx_mode(bp);
12620 
12621 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
12622 		bnxt_cfg_ntp_filters(bp);
12623 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
12624 		bnxt_hwrm_exec_fwd_req(bp);
12625 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
12626 		bnxt_hwrm_port_qstats(bp, 0);
12627 		bnxt_hwrm_port_qstats_ext(bp, 0);
12628 		bnxt_accumulate_all_stats(bp);
12629 	}
12630 
12631 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
12632 		int rc;
12633 
12634 		mutex_lock(&bp->link_lock);
12635 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
12636 				       &bp->sp_event))
12637 			bnxt_hwrm_phy_qcaps(bp);
12638 
12639 		rc = bnxt_update_link(bp, true);
12640 		if (rc)
12641 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
12642 				   rc);
12643 
12644 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
12645 				       &bp->sp_event))
12646 			bnxt_init_ethtool_link_settings(bp);
12647 		mutex_unlock(&bp->link_lock);
12648 	}
12649 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
12650 		int rc;
12651 
12652 		mutex_lock(&bp->link_lock);
12653 		rc = bnxt_update_phy_setting(bp);
12654 		mutex_unlock(&bp->link_lock);
12655 		if (rc) {
12656 			netdev_warn(bp->dev, "update phy settings retry failed\n");
12657 		} else {
12658 			bp->link_info.phy_retry = false;
12659 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
12660 		}
12661 	}
12662 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
12663 		mutex_lock(&bp->link_lock);
12664 		bnxt_get_port_module_status(bp);
12665 		mutex_unlock(&bp->link_lock);
12666 	}
12667 
12668 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
12669 		bnxt_tc_flow_stats_work(bp);
12670 
12671 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
12672 		bnxt_chk_missed_irq(bp);
12673 
12674 	if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
12675 		bnxt_fw_echo_reply(bp);
12676 
12677 	if (test_and_clear_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event))
12678 		bnxt_hwmon_notify_event(bp);
12679 
12680 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
12681 	 * must be the last functions to be called before exiting.
12682 	 */
12683 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
12684 		bnxt_reset(bp, false);
12685 
12686 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
12687 		bnxt_reset(bp, true);
12688 
12689 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
12690 		bnxt_rx_ring_reset(bp);
12691 
12692 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) {
12693 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) ||
12694 		    test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state))
12695 			bnxt_devlink_health_fw_report(bp);
12696 		else
12697 			bnxt_fw_reset(bp);
12698 	}
12699 
12700 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
12701 		if (!is_bnxt_fw_ok(bp))
12702 			bnxt_devlink_health_fw_report(bp);
12703 	}
12704 
12705 	smp_mb__before_atomic();
12706 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12707 }
12708 
12709 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
12710 				int *max_cp);
12711 
12712 /* Under rtnl_lock */
12713 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
12714 		     int tx_xdp)
12715 {
12716 	int max_rx, max_tx, max_cp, tx_sets = 1, tx_cp;
12717 	int tx_rings_needed, stats;
12718 	int rx_rings = rx;
12719 	int cp, vnics;
12720 
12721 	if (tcs)
12722 		tx_sets = tcs;
12723 
12724 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
12725 		rx_rings <<= 1;
12726 
12727 	_bnxt_get_max_rings(bp, &max_rx, &max_tx, &max_cp);
12728 
12729 	if (max_rx < rx_rings)
12730 		return -ENOMEM;
12731 
12732 	tx_rings_needed = tx * tx_sets + tx_xdp;
12733 	if (max_tx < tx_rings_needed)
12734 		return -ENOMEM;
12735 
12736 	vnics = 1;
12737 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5_PLUS)) ==
12738 	    BNXT_FLAG_RFS)
12739 		vnics += rx;
12740 
12741 	tx_cp = __bnxt_num_tx_to_cp(bp, tx_rings_needed, tx_sets, tx_xdp);
12742 	cp = sh ? max_t(int, tx_cp, rx) : tx_cp + rx;
12743 	if (max_cp < cp)
12744 		return -ENOMEM;
12745 	stats = cp;
12746 	if (BNXT_NEW_RM(bp)) {
12747 		cp += bnxt_get_ulp_msix_num(bp);
12748 		stats += bnxt_get_ulp_stat_ctxs(bp);
12749 	}
12750 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
12751 				     stats, vnics);
12752 }
12753 
12754 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
12755 {
12756 	if (bp->bar2) {
12757 		pci_iounmap(pdev, bp->bar2);
12758 		bp->bar2 = NULL;
12759 	}
12760 
12761 	if (bp->bar1) {
12762 		pci_iounmap(pdev, bp->bar1);
12763 		bp->bar1 = NULL;
12764 	}
12765 
12766 	if (bp->bar0) {
12767 		pci_iounmap(pdev, bp->bar0);
12768 		bp->bar0 = NULL;
12769 	}
12770 }
12771 
12772 static void bnxt_cleanup_pci(struct bnxt *bp)
12773 {
12774 	bnxt_unmap_bars(bp, bp->pdev);
12775 	pci_release_regions(bp->pdev);
12776 	if (pci_is_enabled(bp->pdev))
12777 		pci_disable_device(bp->pdev);
12778 }
12779 
12780 static void bnxt_init_dflt_coal(struct bnxt *bp)
12781 {
12782 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
12783 	struct bnxt_coal *coal;
12784 	u16 flags = 0;
12785 
12786 	if (coal_cap->cmpl_params &
12787 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
12788 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
12789 
12790 	/* Tick values in micro seconds.
12791 	 * 1 coal_buf x bufs_per_record = 1 completion record.
12792 	 */
12793 	coal = &bp->rx_coal;
12794 	coal->coal_ticks = 10;
12795 	coal->coal_bufs = 30;
12796 	coal->coal_ticks_irq = 1;
12797 	coal->coal_bufs_irq = 2;
12798 	coal->idle_thresh = 50;
12799 	coal->bufs_per_record = 2;
12800 	coal->budget = 64;		/* NAPI budget */
12801 	coal->flags = flags;
12802 
12803 	coal = &bp->tx_coal;
12804 	coal->coal_ticks = 28;
12805 	coal->coal_bufs = 30;
12806 	coal->coal_ticks_irq = 2;
12807 	coal->coal_bufs_irq = 2;
12808 	coal->bufs_per_record = 1;
12809 	coal->flags = flags;
12810 
12811 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
12812 }
12813 
12814 /* FW that pre-reserves 1 VNIC per function */
12815 static bool bnxt_fw_pre_resv_vnics(struct bnxt *bp)
12816 {
12817 	u16 fw_maj = BNXT_FW_MAJ(bp), fw_bld = BNXT_FW_BLD(bp);
12818 
12819 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
12820 	    (fw_maj > 218 || (fw_maj == 218 && fw_bld >= 18)))
12821 		return true;
12822 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
12823 	    (fw_maj > 216 || (fw_maj == 216 && fw_bld >= 172)))
12824 		return true;
12825 	return false;
12826 }
12827 
12828 static int bnxt_fw_init_one_p1(struct bnxt *bp)
12829 {
12830 	int rc;
12831 
12832 	bp->fw_cap = 0;
12833 	rc = bnxt_hwrm_ver_get(bp);
12834 	bnxt_try_map_fw_health_reg(bp);
12835 	if (rc) {
12836 		rc = bnxt_try_recover_fw(bp);
12837 		if (rc)
12838 			return rc;
12839 		rc = bnxt_hwrm_ver_get(bp);
12840 		if (rc)
12841 			return rc;
12842 	}
12843 
12844 	bnxt_nvm_cfg_ver_get(bp);
12845 
12846 	rc = bnxt_hwrm_func_reset(bp);
12847 	if (rc)
12848 		return -ENODEV;
12849 
12850 	bnxt_hwrm_fw_set_time(bp);
12851 	return 0;
12852 }
12853 
12854 static int bnxt_fw_init_one_p2(struct bnxt *bp)
12855 {
12856 	int rc;
12857 
12858 	/* Get the MAX capabilities for this function */
12859 	rc = bnxt_hwrm_func_qcaps(bp);
12860 	if (rc) {
12861 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
12862 			   rc);
12863 		return -ENODEV;
12864 	}
12865 
12866 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
12867 	if (rc)
12868 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
12869 			    rc);
12870 
12871 	if (bnxt_alloc_fw_health(bp)) {
12872 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
12873 	} else {
12874 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
12875 		if (rc)
12876 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
12877 				    rc);
12878 	}
12879 
12880 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
12881 	if (rc)
12882 		return -ENODEV;
12883 
12884 	if (bnxt_fw_pre_resv_vnics(bp))
12885 		bp->fw_cap |= BNXT_FW_CAP_PRE_RESV_VNICS;
12886 
12887 	bnxt_hwrm_func_qcfg(bp);
12888 	bnxt_hwrm_vnic_qcaps(bp);
12889 	bnxt_hwrm_port_led_qcaps(bp);
12890 	bnxt_ethtool_init(bp);
12891 	if (bp->fw_cap & BNXT_FW_CAP_PTP)
12892 		__bnxt_hwrm_ptp_qcfg(bp);
12893 	bnxt_dcb_init(bp);
12894 	bnxt_hwmon_init(bp);
12895 	return 0;
12896 }
12897 
12898 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
12899 {
12900 	bp->rss_cap &= ~BNXT_RSS_CAP_UDP_RSS_CAP;
12901 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
12902 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
12903 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
12904 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
12905 	if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA)
12906 		bp->rss_hash_delta = bp->rss_hash_cfg;
12907 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
12908 		bp->rss_cap |= BNXT_RSS_CAP_UDP_RSS_CAP;
12909 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
12910 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
12911 	}
12912 }
12913 
12914 static void bnxt_set_dflt_rfs(struct bnxt *bp)
12915 {
12916 	struct net_device *dev = bp->dev;
12917 
12918 	dev->hw_features &= ~NETIF_F_NTUPLE;
12919 	dev->features &= ~NETIF_F_NTUPLE;
12920 	bp->flags &= ~BNXT_FLAG_RFS;
12921 	if (bnxt_rfs_supported(bp)) {
12922 		dev->hw_features |= NETIF_F_NTUPLE;
12923 		if (bnxt_rfs_capable(bp)) {
12924 			bp->flags |= BNXT_FLAG_RFS;
12925 			dev->features |= NETIF_F_NTUPLE;
12926 		}
12927 	}
12928 }
12929 
12930 static void bnxt_fw_init_one_p3(struct bnxt *bp)
12931 {
12932 	struct pci_dev *pdev = bp->pdev;
12933 
12934 	bnxt_set_dflt_rss_hash_type(bp);
12935 	bnxt_set_dflt_rfs(bp);
12936 
12937 	bnxt_get_wol_settings(bp);
12938 	if (bp->flags & BNXT_FLAG_WOL_CAP)
12939 		device_set_wakeup_enable(&pdev->dev, bp->wol);
12940 	else
12941 		device_set_wakeup_capable(&pdev->dev, false);
12942 
12943 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
12944 	bnxt_hwrm_coal_params_qcaps(bp);
12945 }
12946 
12947 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt);
12948 
12949 int bnxt_fw_init_one(struct bnxt *bp)
12950 {
12951 	int rc;
12952 
12953 	rc = bnxt_fw_init_one_p1(bp);
12954 	if (rc) {
12955 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
12956 		return rc;
12957 	}
12958 	rc = bnxt_fw_init_one_p2(bp);
12959 	if (rc) {
12960 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
12961 		return rc;
12962 	}
12963 	rc = bnxt_probe_phy(bp, false);
12964 	if (rc)
12965 		return rc;
12966 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
12967 	if (rc)
12968 		return rc;
12969 
12970 	bnxt_fw_init_one_p3(bp);
12971 	return 0;
12972 }
12973 
12974 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
12975 {
12976 	struct bnxt_fw_health *fw_health = bp->fw_health;
12977 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
12978 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
12979 	u32 reg_type, reg_off, delay_msecs;
12980 
12981 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
12982 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
12983 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
12984 	switch (reg_type) {
12985 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
12986 		pci_write_config_dword(bp->pdev, reg_off, val);
12987 		break;
12988 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
12989 		writel(reg_off & BNXT_GRC_BASE_MASK,
12990 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
12991 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
12992 		fallthrough;
12993 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
12994 		writel(val, bp->bar0 + reg_off);
12995 		break;
12996 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
12997 		writel(val, bp->bar1 + reg_off);
12998 		break;
12999 	}
13000 	if (delay_msecs) {
13001 		pci_read_config_dword(bp->pdev, 0, &val);
13002 		msleep(delay_msecs);
13003 	}
13004 }
13005 
13006 bool bnxt_hwrm_reset_permitted(struct bnxt *bp)
13007 {
13008 	struct hwrm_func_qcfg_output *resp;
13009 	struct hwrm_func_qcfg_input *req;
13010 	bool result = true; /* firmware will enforce if unknown */
13011 
13012 	if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF)
13013 		return result;
13014 
13015 	if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG))
13016 		return result;
13017 
13018 	req->fid = cpu_to_le16(0xffff);
13019 	resp = hwrm_req_hold(bp, req);
13020 	if (!hwrm_req_send(bp, req))
13021 		result = !!(le16_to_cpu(resp->flags) &
13022 			    FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED);
13023 	hwrm_req_drop(bp, req);
13024 	return result;
13025 }
13026 
13027 static void bnxt_reset_all(struct bnxt *bp)
13028 {
13029 	struct bnxt_fw_health *fw_health = bp->fw_health;
13030 	int i, rc;
13031 
13032 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
13033 		bnxt_fw_reset_via_optee(bp);
13034 		bp->fw_reset_timestamp = jiffies;
13035 		return;
13036 	}
13037 
13038 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
13039 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
13040 			bnxt_fw_reset_writel(bp, i);
13041 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
13042 		struct hwrm_fw_reset_input *req;
13043 
13044 		rc = hwrm_req_init(bp, req, HWRM_FW_RESET);
13045 		if (!rc) {
13046 			req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG);
13047 			req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
13048 			req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
13049 			req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
13050 			rc = hwrm_req_send(bp, req);
13051 		}
13052 		if (rc != -ENODEV)
13053 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
13054 	}
13055 	bp->fw_reset_timestamp = jiffies;
13056 }
13057 
13058 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
13059 {
13060 	return time_after(jiffies, bp->fw_reset_timestamp +
13061 			  (bp->fw_reset_max_dsecs * HZ / 10));
13062 }
13063 
13064 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc)
13065 {
13066 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13067 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) {
13068 		bnxt_ulp_start(bp, rc);
13069 		bnxt_dl_health_fw_status_update(bp, false);
13070 	}
13071 	bp->fw_reset_state = 0;
13072 	dev_close(bp->dev);
13073 }
13074 
13075 static void bnxt_fw_reset_task(struct work_struct *work)
13076 {
13077 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
13078 	int rc = 0;
13079 
13080 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
13081 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
13082 		return;
13083 	}
13084 
13085 	switch (bp->fw_reset_state) {
13086 	case BNXT_FW_RESET_STATE_POLL_VF: {
13087 		int n = bnxt_get_registered_vfs(bp);
13088 		int tmo;
13089 
13090 		if (n < 0) {
13091 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
13092 				   n, jiffies_to_msecs(jiffies -
13093 				   bp->fw_reset_timestamp));
13094 			goto fw_reset_abort;
13095 		} else if (n > 0) {
13096 			if (bnxt_fw_reset_timeout(bp)) {
13097 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13098 				bp->fw_reset_state = 0;
13099 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
13100 					   n);
13101 				return;
13102 			}
13103 			bnxt_queue_fw_reset_work(bp, HZ / 10);
13104 			return;
13105 		}
13106 		bp->fw_reset_timestamp = jiffies;
13107 		rtnl_lock();
13108 		if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
13109 			bnxt_fw_reset_abort(bp, rc);
13110 			rtnl_unlock();
13111 			return;
13112 		}
13113 		bnxt_fw_reset_close(bp);
13114 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
13115 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
13116 			tmo = HZ / 10;
13117 		} else {
13118 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
13119 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
13120 		}
13121 		rtnl_unlock();
13122 		bnxt_queue_fw_reset_work(bp, tmo);
13123 		return;
13124 	}
13125 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
13126 		u32 val;
13127 
13128 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
13129 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
13130 		    !bnxt_fw_reset_timeout(bp)) {
13131 			bnxt_queue_fw_reset_work(bp, HZ / 5);
13132 			return;
13133 		}
13134 
13135 		if (!bp->fw_health->primary) {
13136 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
13137 
13138 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
13139 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
13140 			return;
13141 		}
13142 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
13143 	}
13144 		fallthrough;
13145 	case BNXT_FW_RESET_STATE_RESET_FW:
13146 		bnxt_reset_all(bp);
13147 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
13148 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
13149 		return;
13150 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
13151 		bnxt_inv_fw_health_reg(bp);
13152 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
13153 		    !bp->fw_reset_min_dsecs) {
13154 			u16 val;
13155 
13156 			pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
13157 			if (val == 0xffff) {
13158 				if (bnxt_fw_reset_timeout(bp)) {
13159 					netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
13160 					rc = -ETIMEDOUT;
13161 					goto fw_reset_abort;
13162 				}
13163 				bnxt_queue_fw_reset_work(bp, HZ / 1000);
13164 				return;
13165 			}
13166 		}
13167 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
13168 		clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
13169 		if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) &&
13170 		    !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state))
13171 			bnxt_dl_remote_reload(bp);
13172 		if (pci_enable_device(bp->pdev)) {
13173 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
13174 			rc = -ENODEV;
13175 			goto fw_reset_abort;
13176 		}
13177 		pci_set_master(bp->pdev);
13178 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
13179 		fallthrough;
13180 	case BNXT_FW_RESET_STATE_POLL_FW:
13181 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
13182 		rc = bnxt_hwrm_poll(bp);
13183 		if (rc) {
13184 			if (bnxt_fw_reset_timeout(bp)) {
13185 				netdev_err(bp->dev, "Firmware reset aborted\n");
13186 				goto fw_reset_abort_status;
13187 			}
13188 			bnxt_queue_fw_reset_work(bp, HZ / 5);
13189 			return;
13190 		}
13191 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
13192 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
13193 		fallthrough;
13194 	case BNXT_FW_RESET_STATE_OPENING:
13195 		while (!rtnl_trylock()) {
13196 			bnxt_queue_fw_reset_work(bp, HZ / 10);
13197 			return;
13198 		}
13199 		rc = bnxt_open(bp->dev);
13200 		if (rc) {
13201 			netdev_err(bp->dev, "bnxt_open() failed during FW reset\n");
13202 			bnxt_fw_reset_abort(bp, rc);
13203 			rtnl_unlock();
13204 			return;
13205 		}
13206 
13207 		if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) &&
13208 		    bp->fw_health->enabled) {
13209 			bp->fw_health->last_fw_reset_cnt =
13210 				bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
13211 		}
13212 		bp->fw_reset_state = 0;
13213 		/* Make sure fw_reset_state is 0 before clearing the flag */
13214 		smp_mb__before_atomic();
13215 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13216 		bnxt_ulp_start(bp, 0);
13217 		bnxt_reenable_sriov(bp);
13218 		bnxt_vf_reps_alloc(bp);
13219 		bnxt_vf_reps_open(bp);
13220 		bnxt_ptp_reapply_pps(bp);
13221 		clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state);
13222 		if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) {
13223 			bnxt_dl_health_fw_recovery_done(bp);
13224 			bnxt_dl_health_fw_status_update(bp, true);
13225 		}
13226 		rtnl_unlock();
13227 		break;
13228 	}
13229 	return;
13230 
13231 fw_reset_abort_status:
13232 	if (bp->fw_health->status_reliable ||
13233 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
13234 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
13235 
13236 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
13237 	}
13238 fw_reset_abort:
13239 	rtnl_lock();
13240 	bnxt_fw_reset_abort(bp, rc);
13241 	rtnl_unlock();
13242 }
13243 
13244 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
13245 {
13246 	int rc;
13247 	struct bnxt *bp = netdev_priv(dev);
13248 
13249 	SET_NETDEV_DEV(dev, &pdev->dev);
13250 
13251 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
13252 	rc = pci_enable_device(pdev);
13253 	if (rc) {
13254 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
13255 		goto init_err;
13256 	}
13257 
13258 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13259 		dev_err(&pdev->dev,
13260 			"Cannot find PCI device base address, aborting\n");
13261 		rc = -ENODEV;
13262 		goto init_err_disable;
13263 	}
13264 
13265 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13266 	if (rc) {
13267 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
13268 		goto init_err_disable;
13269 	}
13270 
13271 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
13272 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
13273 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
13274 		rc = -EIO;
13275 		goto init_err_release;
13276 	}
13277 
13278 	pci_set_master(pdev);
13279 
13280 	bp->dev = dev;
13281 	bp->pdev = pdev;
13282 
13283 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
13284 	 * determines the BAR size.
13285 	 */
13286 	bp->bar0 = pci_ioremap_bar(pdev, 0);
13287 	if (!bp->bar0) {
13288 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
13289 		rc = -ENOMEM;
13290 		goto init_err_release;
13291 	}
13292 
13293 	bp->bar2 = pci_ioremap_bar(pdev, 4);
13294 	if (!bp->bar2) {
13295 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
13296 		rc = -ENOMEM;
13297 		goto init_err_release;
13298 	}
13299 
13300 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
13301 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
13302 
13303 	spin_lock_init(&bp->ntp_fltr_lock);
13304 #if BITS_PER_LONG == 32
13305 	spin_lock_init(&bp->db_lock);
13306 #endif
13307 
13308 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
13309 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
13310 
13311 	timer_setup(&bp->timer, bnxt_timer, 0);
13312 	bp->current_interval = BNXT_TIMER_INTERVAL;
13313 
13314 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
13315 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
13316 
13317 	clear_bit(BNXT_STATE_OPEN, &bp->state);
13318 	return 0;
13319 
13320 init_err_release:
13321 	bnxt_unmap_bars(bp, pdev);
13322 	pci_release_regions(pdev);
13323 
13324 init_err_disable:
13325 	pci_disable_device(pdev);
13326 
13327 init_err:
13328 	return rc;
13329 }
13330 
13331 /* rtnl_lock held */
13332 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
13333 {
13334 	struct sockaddr *addr = p;
13335 	struct bnxt *bp = netdev_priv(dev);
13336 	int rc = 0;
13337 
13338 	if (!is_valid_ether_addr(addr->sa_data))
13339 		return -EADDRNOTAVAIL;
13340 
13341 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
13342 		return 0;
13343 
13344 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
13345 	if (rc)
13346 		return rc;
13347 
13348 	eth_hw_addr_set(dev, addr->sa_data);
13349 	if (netif_running(dev)) {
13350 		bnxt_close_nic(bp, false, false);
13351 		rc = bnxt_open_nic(bp, false, false);
13352 	}
13353 
13354 	return rc;
13355 }
13356 
13357 /* rtnl_lock held */
13358 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
13359 {
13360 	struct bnxt *bp = netdev_priv(dev);
13361 
13362 	if (netif_running(dev))
13363 		bnxt_close_nic(bp, true, false);
13364 
13365 	dev->mtu = new_mtu;
13366 	bnxt_set_ring_params(bp);
13367 
13368 	if (netif_running(dev))
13369 		return bnxt_open_nic(bp, true, false);
13370 
13371 	return 0;
13372 }
13373 
13374 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
13375 {
13376 	struct bnxt *bp = netdev_priv(dev);
13377 	bool sh = false;
13378 	int rc, tx_cp;
13379 
13380 	if (tc > bp->max_tc) {
13381 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
13382 			   tc, bp->max_tc);
13383 		return -EINVAL;
13384 	}
13385 
13386 	if (netdev_get_num_tc(dev) == tc)
13387 		return 0;
13388 
13389 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
13390 		sh = true;
13391 
13392 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
13393 			      sh, tc, bp->tx_nr_rings_xdp);
13394 	if (rc)
13395 		return rc;
13396 
13397 	/* Needs to close the device and do hw resource re-allocations */
13398 	if (netif_running(bp->dev))
13399 		bnxt_close_nic(bp, true, false);
13400 
13401 	if (tc) {
13402 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
13403 		netdev_set_num_tc(dev, tc);
13404 	} else {
13405 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13406 		netdev_reset_tc(dev);
13407 	}
13408 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
13409 	tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings);
13410 	bp->cp_nr_rings = sh ? max_t(int, tx_cp, bp->rx_nr_rings) :
13411 			       tx_cp + bp->rx_nr_rings;
13412 
13413 	if (netif_running(bp->dev))
13414 		return bnxt_open_nic(bp, true, false);
13415 
13416 	return 0;
13417 }
13418 
13419 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
13420 				  void *cb_priv)
13421 {
13422 	struct bnxt *bp = cb_priv;
13423 
13424 	if (!bnxt_tc_flower_enabled(bp) ||
13425 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
13426 		return -EOPNOTSUPP;
13427 
13428 	switch (type) {
13429 	case TC_SETUP_CLSFLOWER:
13430 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
13431 	default:
13432 		return -EOPNOTSUPP;
13433 	}
13434 }
13435 
13436 LIST_HEAD(bnxt_block_cb_list);
13437 
13438 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
13439 			 void *type_data)
13440 {
13441 	struct bnxt *bp = netdev_priv(dev);
13442 
13443 	switch (type) {
13444 	case TC_SETUP_BLOCK:
13445 		return flow_block_cb_setup_simple(type_data,
13446 						  &bnxt_block_cb_list,
13447 						  bnxt_setup_tc_block_cb,
13448 						  bp, bp, true);
13449 	case TC_SETUP_QDISC_MQPRIO: {
13450 		struct tc_mqprio_qopt *mqprio = type_data;
13451 
13452 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
13453 
13454 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
13455 	}
13456 	default:
13457 		return -EOPNOTSUPP;
13458 	}
13459 }
13460 
13461 #ifdef CONFIG_RFS_ACCEL
13462 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
13463 			    struct bnxt_ntuple_filter *f2)
13464 {
13465 	struct flow_keys *keys1 = &f1->fkeys;
13466 	struct flow_keys *keys2 = &f2->fkeys;
13467 
13468 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
13469 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
13470 		return false;
13471 
13472 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
13473 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
13474 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
13475 			return false;
13476 	} else {
13477 		if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
13478 			   sizeof(keys1->addrs.v6addrs.src)) ||
13479 		    memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
13480 			   sizeof(keys1->addrs.v6addrs.dst)))
13481 			return false;
13482 	}
13483 
13484 	if (keys1->ports.ports == keys2->ports.ports &&
13485 	    keys1->control.flags == keys2->control.flags &&
13486 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
13487 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
13488 		return true;
13489 
13490 	return false;
13491 }
13492 
13493 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
13494 			      u16 rxq_index, u32 flow_id)
13495 {
13496 	struct bnxt *bp = netdev_priv(dev);
13497 	struct bnxt_ntuple_filter *fltr, *new_fltr;
13498 	struct flow_keys *fkeys;
13499 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
13500 	int rc = 0, idx, bit_id, l2_idx = 0;
13501 	struct hlist_head *head;
13502 	u32 flags;
13503 
13504 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
13505 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
13506 		int off = 0, j;
13507 
13508 		netif_addr_lock_bh(dev);
13509 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
13510 			if (ether_addr_equal(eth->h_dest,
13511 					     vnic->uc_list + off)) {
13512 				l2_idx = j + 1;
13513 				break;
13514 			}
13515 		}
13516 		netif_addr_unlock_bh(dev);
13517 		if (!l2_idx)
13518 			return -EINVAL;
13519 	}
13520 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
13521 	if (!new_fltr)
13522 		return -ENOMEM;
13523 
13524 	fkeys = &new_fltr->fkeys;
13525 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
13526 		rc = -EPROTONOSUPPORT;
13527 		goto err_free;
13528 	}
13529 
13530 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
13531 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
13532 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
13533 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
13534 		rc = -EPROTONOSUPPORT;
13535 		goto err_free;
13536 	}
13537 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
13538 	    bp->hwrm_spec_code < 0x10601) {
13539 		rc = -EPROTONOSUPPORT;
13540 		goto err_free;
13541 	}
13542 	flags = fkeys->control.flags;
13543 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
13544 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
13545 		rc = -EPROTONOSUPPORT;
13546 		goto err_free;
13547 	}
13548 
13549 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
13550 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
13551 
13552 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
13553 	head = &bp->ntp_fltr_hash_tbl[idx];
13554 	rcu_read_lock();
13555 	hlist_for_each_entry_rcu(fltr, head, hash) {
13556 		if (bnxt_fltr_match(fltr, new_fltr)) {
13557 			rc = fltr->sw_id;
13558 			rcu_read_unlock();
13559 			goto err_free;
13560 		}
13561 	}
13562 	rcu_read_unlock();
13563 
13564 	spin_lock_bh(&bp->ntp_fltr_lock);
13565 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
13566 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
13567 	if (bit_id < 0) {
13568 		spin_unlock_bh(&bp->ntp_fltr_lock);
13569 		rc = -ENOMEM;
13570 		goto err_free;
13571 	}
13572 
13573 	new_fltr->sw_id = (u16)bit_id;
13574 	new_fltr->flow_id = flow_id;
13575 	new_fltr->l2_fltr_idx = l2_idx;
13576 	new_fltr->rxq = rxq_index;
13577 	hlist_add_head_rcu(&new_fltr->hash, head);
13578 	bp->ntp_fltr_count++;
13579 	spin_unlock_bh(&bp->ntp_fltr_lock);
13580 
13581 	bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT);
13582 
13583 	return new_fltr->sw_id;
13584 
13585 err_free:
13586 	kfree(new_fltr);
13587 	return rc;
13588 }
13589 
13590 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
13591 {
13592 	int i;
13593 
13594 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
13595 		struct hlist_head *head;
13596 		struct hlist_node *tmp;
13597 		struct bnxt_ntuple_filter *fltr;
13598 		int rc;
13599 
13600 		head = &bp->ntp_fltr_hash_tbl[i];
13601 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
13602 			bool del = false;
13603 
13604 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
13605 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
13606 							fltr->flow_id,
13607 							fltr->sw_id)) {
13608 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
13609 									 fltr);
13610 					del = true;
13611 				}
13612 			} else {
13613 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
13614 								       fltr);
13615 				if (rc)
13616 					del = true;
13617 				else
13618 					set_bit(BNXT_FLTR_VALID, &fltr->state);
13619 			}
13620 
13621 			if (del) {
13622 				spin_lock_bh(&bp->ntp_fltr_lock);
13623 				hlist_del_rcu(&fltr->hash);
13624 				bp->ntp_fltr_count--;
13625 				spin_unlock_bh(&bp->ntp_fltr_lock);
13626 				synchronize_rcu();
13627 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
13628 				kfree(fltr);
13629 			}
13630 		}
13631 	}
13632 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
13633 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
13634 }
13635 
13636 #else
13637 
13638 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
13639 {
13640 }
13641 
13642 #endif /* CONFIG_RFS_ACCEL */
13643 
13644 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
13645 				    unsigned int entry, struct udp_tunnel_info *ti)
13646 {
13647 	struct bnxt *bp = netdev_priv(netdev);
13648 	unsigned int cmd;
13649 
13650 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
13651 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
13652 	else
13653 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
13654 
13655 	return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd);
13656 }
13657 
13658 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
13659 				      unsigned int entry, struct udp_tunnel_info *ti)
13660 {
13661 	struct bnxt *bp = netdev_priv(netdev);
13662 	unsigned int cmd;
13663 
13664 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
13665 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
13666 	else
13667 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
13668 
13669 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
13670 }
13671 
13672 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
13673 	.set_port	= bnxt_udp_tunnel_set_port,
13674 	.unset_port	= bnxt_udp_tunnel_unset_port,
13675 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
13676 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
13677 	.tables		= {
13678 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
13679 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
13680 	},
13681 };
13682 
13683 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
13684 			       struct net_device *dev, u32 filter_mask,
13685 			       int nlflags)
13686 {
13687 	struct bnxt *bp = netdev_priv(dev);
13688 
13689 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
13690 				       nlflags, filter_mask, NULL);
13691 }
13692 
13693 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
13694 			       u16 flags, struct netlink_ext_ack *extack)
13695 {
13696 	struct bnxt *bp = netdev_priv(dev);
13697 	struct nlattr *attr, *br_spec;
13698 	int rem, rc = 0;
13699 
13700 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
13701 		return -EOPNOTSUPP;
13702 
13703 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
13704 	if (!br_spec)
13705 		return -EINVAL;
13706 
13707 	nla_for_each_nested(attr, br_spec, rem) {
13708 		u16 mode;
13709 
13710 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
13711 			continue;
13712 
13713 		mode = nla_get_u16(attr);
13714 		if (mode == bp->br_mode)
13715 			break;
13716 
13717 		rc = bnxt_hwrm_set_br_mode(bp, mode);
13718 		if (!rc)
13719 			bp->br_mode = mode;
13720 		break;
13721 	}
13722 	return rc;
13723 }
13724 
13725 int bnxt_get_port_parent_id(struct net_device *dev,
13726 			    struct netdev_phys_item_id *ppid)
13727 {
13728 	struct bnxt *bp = netdev_priv(dev);
13729 
13730 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
13731 		return -EOPNOTSUPP;
13732 
13733 	/* The PF and it's VF-reps only support the switchdev framework */
13734 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
13735 		return -EOPNOTSUPP;
13736 
13737 	ppid->id_len = sizeof(bp->dsn);
13738 	memcpy(ppid->id, bp->dsn, ppid->id_len);
13739 
13740 	return 0;
13741 }
13742 
13743 static const struct net_device_ops bnxt_netdev_ops = {
13744 	.ndo_open		= bnxt_open,
13745 	.ndo_start_xmit		= bnxt_start_xmit,
13746 	.ndo_stop		= bnxt_close,
13747 	.ndo_get_stats64	= bnxt_get_stats64,
13748 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
13749 	.ndo_eth_ioctl		= bnxt_ioctl,
13750 	.ndo_validate_addr	= eth_validate_addr,
13751 	.ndo_set_mac_address	= bnxt_change_mac_addr,
13752 	.ndo_change_mtu		= bnxt_change_mtu,
13753 	.ndo_fix_features	= bnxt_fix_features,
13754 	.ndo_set_features	= bnxt_set_features,
13755 	.ndo_features_check	= bnxt_features_check,
13756 	.ndo_tx_timeout		= bnxt_tx_timeout,
13757 #ifdef CONFIG_BNXT_SRIOV
13758 	.ndo_get_vf_config	= bnxt_get_vf_config,
13759 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
13760 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
13761 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
13762 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
13763 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
13764 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
13765 #endif
13766 	.ndo_setup_tc           = bnxt_setup_tc,
13767 #ifdef CONFIG_RFS_ACCEL
13768 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
13769 #endif
13770 	.ndo_bpf		= bnxt_xdp,
13771 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
13772 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
13773 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
13774 };
13775 
13776 static void bnxt_remove_one(struct pci_dev *pdev)
13777 {
13778 	struct net_device *dev = pci_get_drvdata(pdev);
13779 	struct bnxt *bp = netdev_priv(dev);
13780 
13781 	if (BNXT_PF(bp))
13782 		bnxt_sriov_disable(bp);
13783 
13784 	bnxt_rdma_aux_device_uninit(bp);
13785 
13786 	bnxt_ptp_clear(bp);
13787 	unregister_netdev(dev);
13788 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13789 	/* Flush any pending tasks */
13790 	cancel_work_sync(&bp->sp_task);
13791 	cancel_delayed_work_sync(&bp->fw_reset_task);
13792 	bp->sp_event = 0;
13793 
13794 	bnxt_dl_fw_reporters_destroy(bp);
13795 	bnxt_dl_unregister(bp);
13796 	bnxt_shutdown_tc(bp);
13797 
13798 	bnxt_clear_int_mode(bp);
13799 	bnxt_hwrm_func_drv_unrgtr(bp);
13800 	bnxt_free_hwrm_resources(bp);
13801 	bnxt_hwmon_uninit(bp);
13802 	bnxt_ethtool_free(bp);
13803 	bnxt_dcb_free(bp);
13804 	kfree(bp->ptp_cfg);
13805 	bp->ptp_cfg = NULL;
13806 	kfree(bp->fw_health);
13807 	bp->fw_health = NULL;
13808 	bnxt_cleanup_pci(bp);
13809 	bnxt_free_ctx_mem(bp);
13810 	kfree(bp->rss_indir_tbl);
13811 	bp->rss_indir_tbl = NULL;
13812 	bnxt_free_port_stats(bp);
13813 	free_netdev(dev);
13814 }
13815 
13816 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
13817 {
13818 	int rc = 0;
13819 	struct bnxt_link_info *link_info = &bp->link_info;
13820 
13821 	bp->phy_flags = 0;
13822 	rc = bnxt_hwrm_phy_qcaps(bp);
13823 	if (rc) {
13824 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
13825 			   rc);
13826 		return rc;
13827 	}
13828 	if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
13829 		bp->dev->priv_flags |= IFF_SUPP_NOFCS;
13830 	else
13831 		bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
13832 	if (!fw_dflt)
13833 		return 0;
13834 
13835 	mutex_lock(&bp->link_lock);
13836 	rc = bnxt_update_link(bp, false);
13837 	if (rc) {
13838 		mutex_unlock(&bp->link_lock);
13839 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
13840 			   rc);
13841 		return rc;
13842 	}
13843 
13844 	/* Older firmware does not have supported_auto_speeds, so assume
13845 	 * that all supported speeds can be autonegotiated.
13846 	 */
13847 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
13848 		link_info->support_auto_speeds = link_info->support_speeds;
13849 
13850 	bnxt_init_ethtool_link_settings(bp);
13851 	mutex_unlock(&bp->link_lock);
13852 	return 0;
13853 }
13854 
13855 static int bnxt_get_max_irq(struct pci_dev *pdev)
13856 {
13857 	u16 ctrl;
13858 
13859 	if (!pdev->msix_cap)
13860 		return 1;
13861 
13862 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
13863 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
13864 }
13865 
13866 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13867 				int *max_cp)
13868 {
13869 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
13870 	int max_ring_grps = 0, max_irq;
13871 
13872 	*max_tx = hw_resc->max_tx_rings;
13873 	*max_rx = hw_resc->max_rx_rings;
13874 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
13875 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
13876 			bnxt_get_ulp_msix_num(bp),
13877 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
13878 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
13879 		*max_cp = min_t(int, *max_cp, max_irq);
13880 	max_ring_grps = hw_resc->max_hw_ring_grps;
13881 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
13882 		*max_cp -= 1;
13883 		*max_rx -= 2;
13884 	}
13885 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
13886 		*max_rx >>= 1;
13887 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
13888 		if (*max_cp < (*max_rx + *max_tx)) {
13889 			*max_rx = *max_cp / 2;
13890 			*max_tx = *max_rx;
13891 		}
13892 		/* On P5 chips, max_cp output param should be available NQs */
13893 		*max_cp = max_irq;
13894 	}
13895 	*max_rx = min_t(int, *max_rx, max_ring_grps);
13896 }
13897 
13898 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
13899 {
13900 	int rx, tx, cp;
13901 
13902 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
13903 	*max_rx = rx;
13904 	*max_tx = tx;
13905 	if (!rx || !tx || !cp)
13906 		return -ENOMEM;
13907 
13908 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
13909 }
13910 
13911 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13912 			       bool shared)
13913 {
13914 	int rc;
13915 
13916 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13917 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
13918 		/* Not enough rings, try disabling agg rings. */
13919 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
13920 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13921 		if (rc) {
13922 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
13923 			bp->flags |= BNXT_FLAG_AGG_RINGS;
13924 			return rc;
13925 		}
13926 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
13927 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13928 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13929 		bnxt_set_ring_params(bp);
13930 	}
13931 
13932 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
13933 		int max_cp, max_stat, max_irq;
13934 
13935 		/* Reserve minimum resources for RoCE */
13936 		max_cp = bnxt_get_max_func_cp_rings(bp);
13937 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
13938 		max_irq = bnxt_get_max_func_irqs(bp);
13939 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
13940 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
13941 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
13942 			return 0;
13943 
13944 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
13945 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
13946 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
13947 		max_cp = min_t(int, max_cp, max_irq);
13948 		max_cp = min_t(int, max_cp, max_stat);
13949 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
13950 		if (rc)
13951 			rc = 0;
13952 	}
13953 	return rc;
13954 }
13955 
13956 /* In initial default shared ring setting, each shared ring must have a
13957  * RX/TX ring pair.
13958  */
13959 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
13960 {
13961 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
13962 	bp->rx_nr_rings = bp->cp_nr_rings;
13963 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
13964 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13965 }
13966 
13967 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
13968 {
13969 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
13970 
13971 	if (!bnxt_can_reserve_rings(bp))
13972 		return 0;
13973 
13974 	if (sh)
13975 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
13976 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
13977 	/* Reduce default rings on multi-port cards so that total default
13978 	 * rings do not exceed CPU count.
13979 	 */
13980 	if (bp->port_count > 1) {
13981 		int max_rings =
13982 			max_t(int, num_online_cpus() / bp->port_count, 1);
13983 
13984 		dflt_rings = min_t(int, dflt_rings, max_rings);
13985 	}
13986 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
13987 	if (rc)
13988 		return rc;
13989 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
13990 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
13991 	if (sh)
13992 		bnxt_trim_dflt_sh_rings(bp);
13993 	else
13994 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
13995 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13996 
13997 	rc = __bnxt_reserve_rings(bp);
13998 	if (rc && rc != -ENODEV)
13999 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
14000 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
14001 	if (sh)
14002 		bnxt_trim_dflt_sh_rings(bp);
14003 
14004 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
14005 	if (bnxt_need_reserve_rings(bp)) {
14006 		rc = __bnxt_reserve_rings(bp);
14007 		if (rc && rc != -ENODEV)
14008 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
14009 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
14010 	}
14011 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
14012 		bp->rx_nr_rings++;
14013 		bp->cp_nr_rings++;
14014 	}
14015 	if (rc) {
14016 		bp->tx_nr_rings = 0;
14017 		bp->rx_nr_rings = 0;
14018 	}
14019 	return rc;
14020 }
14021 
14022 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
14023 {
14024 	int rc;
14025 
14026 	if (bp->tx_nr_rings)
14027 		return 0;
14028 
14029 	bnxt_ulp_irq_stop(bp);
14030 	bnxt_clear_int_mode(bp);
14031 	rc = bnxt_set_dflt_rings(bp, true);
14032 	if (rc) {
14033 		if (BNXT_VF(bp) && rc == -ENODEV)
14034 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
14035 		else
14036 			netdev_err(bp->dev, "Not enough rings available.\n");
14037 		goto init_dflt_ring_err;
14038 	}
14039 	rc = bnxt_init_int_mode(bp);
14040 	if (rc)
14041 		goto init_dflt_ring_err;
14042 
14043 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
14044 
14045 	bnxt_set_dflt_rfs(bp);
14046 
14047 init_dflt_ring_err:
14048 	bnxt_ulp_irq_restart(bp, rc);
14049 	return rc;
14050 }
14051 
14052 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
14053 {
14054 	int rc;
14055 
14056 	ASSERT_RTNL();
14057 	bnxt_hwrm_func_qcaps(bp);
14058 
14059 	if (netif_running(bp->dev))
14060 		__bnxt_close_nic(bp, true, false);
14061 
14062 	bnxt_ulp_irq_stop(bp);
14063 	bnxt_clear_int_mode(bp);
14064 	rc = bnxt_init_int_mode(bp);
14065 	bnxt_ulp_irq_restart(bp, rc);
14066 
14067 	if (netif_running(bp->dev)) {
14068 		if (rc)
14069 			dev_close(bp->dev);
14070 		else
14071 			rc = bnxt_open_nic(bp, true, false);
14072 	}
14073 
14074 	return rc;
14075 }
14076 
14077 static int bnxt_init_mac_addr(struct bnxt *bp)
14078 {
14079 	int rc = 0;
14080 
14081 	if (BNXT_PF(bp)) {
14082 		eth_hw_addr_set(bp->dev, bp->pf.mac_addr);
14083 	} else {
14084 #ifdef CONFIG_BNXT_SRIOV
14085 		struct bnxt_vf_info *vf = &bp->vf;
14086 		bool strict_approval = true;
14087 
14088 		if (is_valid_ether_addr(vf->mac_addr)) {
14089 			/* overwrite netdev dev_addr with admin VF MAC */
14090 			eth_hw_addr_set(bp->dev, vf->mac_addr);
14091 			/* Older PF driver or firmware may not approve this
14092 			 * correctly.
14093 			 */
14094 			strict_approval = false;
14095 		} else {
14096 			eth_hw_addr_random(bp->dev);
14097 		}
14098 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
14099 #endif
14100 	}
14101 	return rc;
14102 }
14103 
14104 static void bnxt_vpd_read_info(struct bnxt *bp)
14105 {
14106 	struct pci_dev *pdev = bp->pdev;
14107 	unsigned int vpd_size, kw_len;
14108 	int pos, size;
14109 	u8 *vpd_data;
14110 
14111 	vpd_data = pci_vpd_alloc(pdev, &vpd_size);
14112 	if (IS_ERR(vpd_data)) {
14113 		pci_warn(pdev, "Unable to read VPD\n");
14114 		return;
14115 	}
14116 
14117 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
14118 					   PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
14119 	if (pos < 0)
14120 		goto read_sn;
14121 
14122 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
14123 	memcpy(bp->board_partno, &vpd_data[pos], size);
14124 
14125 read_sn:
14126 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
14127 					   PCI_VPD_RO_KEYWORD_SERIALNO,
14128 					   &kw_len);
14129 	if (pos < 0)
14130 		goto exit;
14131 
14132 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
14133 	memcpy(bp->board_serialno, &vpd_data[pos], size);
14134 exit:
14135 	kfree(vpd_data);
14136 }
14137 
14138 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
14139 {
14140 	struct pci_dev *pdev = bp->pdev;
14141 	u64 qword;
14142 
14143 	qword = pci_get_dsn(pdev);
14144 	if (!qword) {
14145 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
14146 		return -EOPNOTSUPP;
14147 	}
14148 
14149 	put_unaligned_le64(qword, dsn);
14150 
14151 	bp->flags |= BNXT_FLAG_DSN_VALID;
14152 	return 0;
14153 }
14154 
14155 static int bnxt_map_db_bar(struct bnxt *bp)
14156 {
14157 	if (!bp->db_size)
14158 		return -ENODEV;
14159 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
14160 	if (!bp->bar1)
14161 		return -ENOMEM;
14162 	return 0;
14163 }
14164 
14165 void bnxt_print_device_info(struct bnxt *bp)
14166 {
14167 	netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n",
14168 		    board_info[bp->board_idx].name,
14169 		    (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr);
14170 
14171 	pcie_print_link_status(bp->pdev);
14172 }
14173 
14174 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
14175 {
14176 	struct net_device *dev;
14177 	struct bnxt *bp;
14178 	int rc, max_irqs;
14179 
14180 	if (pci_is_bridge(pdev))
14181 		return -ENODEV;
14182 
14183 	/* Clear any pending DMA transactions from crash kernel
14184 	 * while loading driver in capture kernel.
14185 	 */
14186 	if (is_kdump_kernel()) {
14187 		pci_clear_master(pdev);
14188 		pcie_flr(pdev);
14189 	}
14190 
14191 	max_irqs = bnxt_get_max_irq(pdev);
14192 	dev = alloc_etherdev_mqs(sizeof(*bp), max_irqs * BNXT_MAX_QUEUE,
14193 				 max_irqs);
14194 	if (!dev)
14195 		return -ENOMEM;
14196 
14197 	bp = netdev_priv(dev);
14198 	bp->board_idx = ent->driver_data;
14199 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
14200 	bnxt_set_max_func_irqs(bp, max_irqs);
14201 
14202 	if (bnxt_vf_pciid(bp->board_idx))
14203 		bp->flags |= BNXT_FLAG_VF;
14204 
14205 	/* No devlink port registration in case of a VF */
14206 	if (BNXT_PF(bp))
14207 		SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port);
14208 
14209 	if (pdev->msix_cap)
14210 		bp->flags |= BNXT_FLAG_MSIX_CAP;
14211 
14212 	rc = bnxt_init_board(pdev, dev);
14213 	if (rc < 0)
14214 		goto init_err_free;
14215 
14216 	dev->netdev_ops = &bnxt_netdev_ops;
14217 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
14218 	dev->ethtool_ops = &bnxt_ethtool_ops;
14219 	pci_set_drvdata(pdev, dev);
14220 
14221 	rc = bnxt_alloc_hwrm_resources(bp);
14222 	if (rc)
14223 		goto init_err_pci_clean;
14224 
14225 	mutex_init(&bp->hwrm_cmd_lock);
14226 	mutex_init(&bp->link_lock);
14227 
14228 	rc = bnxt_fw_init_one_p1(bp);
14229 	if (rc)
14230 		goto init_err_pci_clean;
14231 
14232 	if (BNXT_PF(bp))
14233 		bnxt_vpd_read_info(bp);
14234 
14235 	if (BNXT_CHIP_P5_PLUS(bp)) {
14236 		bp->flags |= BNXT_FLAG_CHIP_P5_PLUS;
14237 		if (BNXT_CHIP_P7(bp))
14238 			bp->flags |= BNXT_FLAG_CHIP_P7;
14239 	}
14240 
14241 	rc = bnxt_alloc_rss_indir_tbl(bp);
14242 	if (rc)
14243 		goto init_err_pci_clean;
14244 
14245 	rc = bnxt_fw_init_one_p2(bp);
14246 	if (rc)
14247 		goto init_err_pci_clean;
14248 
14249 	rc = bnxt_map_db_bar(bp);
14250 	if (rc) {
14251 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
14252 			rc);
14253 		goto init_err_pci_clean;
14254 	}
14255 
14256 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
14257 			   NETIF_F_TSO | NETIF_F_TSO6 |
14258 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
14259 			   NETIF_F_GSO_IPXIP4 |
14260 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
14261 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
14262 			   NETIF_F_RXCSUM | NETIF_F_GRO;
14263 
14264 	if (BNXT_SUPPORTS_TPA(bp))
14265 		dev->hw_features |= NETIF_F_LRO;
14266 
14267 	dev->hw_enc_features =
14268 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
14269 			NETIF_F_TSO | NETIF_F_TSO6 |
14270 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
14271 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
14272 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
14273 	dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
14274 
14275 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
14276 				    NETIF_F_GSO_GRE_CSUM;
14277 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
14278 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
14279 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
14280 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
14281 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
14282 	if (BNXT_SUPPORTS_TPA(bp))
14283 		dev->hw_features |= NETIF_F_GRO_HW;
14284 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
14285 	if (dev->features & NETIF_F_GRO_HW)
14286 		dev->features &= ~NETIF_F_LRO;
14287 	dev->priv_flags |= IFF_UNICAST_FLT;
14288 
14289 	netif_set_tso_max_size(dev, GSO_MAX_SIZE);
14290 
14291 	dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
14292 			    NETDEV_XDP_ACT_RX_SG;
14293 
14294 #ifdef CONFIG_BNXT_SRIOV
14295 	init_waitqueue_head(&bp->sriov_cfg_wait);
14296 #endif
14297 	if (BNXT_SUPPORTS_TPA(bp)) {
14298 		bp->gro_func = bnxt_gro_func_5730x;
14299 		if (BNXT_CHIP_P4(bp))
14300 			bp->gro_func = bnxt_gro_func_5731x;
14301 		else if (BNXT_CHIP_P5_PLUS(bp))
14302 			bp->gro_func = bnxt_gro_func_5750x;
14303 	}
14304 	if (!BNXT_CHIP_P4_PLUS(bp))
14305 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
14306 
14307 	rc = bnxt_init_mac_addr(bp);
14308 	if (rc) {
14309 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
14310 		rc = -EADDRNOTAVAIL;
14311 		goto init_err_pci_clean;
14312 	}
14313 
14314 	if (BNXT_PF(bp)) {
14315 		/* Read the adapter's DSN to use as the eswitch switch_id */
14316 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
14317 	}
14318 
14319 	/* MTU range: 60 - FW defined max */
14320 	dev->min_mtu = ETH_ZLEN;
14321 	dev->max_mtu = bp->max_mtu;
14322 
14323 	rc = bnxt_probe_phy(bp, true);
14324 	if (rc)
14325 		goto init_err_pci_clean;
14326 
14327 	bnxt_set_rx_skb_mode(bp, false);
14328 	bnxt_set_tpa_flags(bp);
14329 	bnxt_set_ring_params(bp);
14330 	rc = bnxt_set_dflt_rings(bp, true);
14331 	if (rc) {
14332 		if (BNXT_VF(bp) && rc == -ENODEV) {
14333 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
14334 		} else {
14335 			netdev_err(bp->dev, "Not enough rings available.\n");
14336 			rc = -ENOMEM;
14337 		}
14338 		goto init_err_pci_clean;
14339 	}
14340 
14341 	bnxt_fw_init_one_p3(bp);
14342 
14343 	bnxt_init_dflt_coal(bp);
14344 
14345 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
14346 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
14347 
14348 	rc = bnxt_init_int_mode(bp);
14349 	if (rc)
14350 		goto init_err_pci_clean;
14351 
14352 	/* No TC has been set yet and rings may have been trimmed due to
14353 	 * limited MSIX, so we re-initialize the TX rings per TC.
14354 	 */
14355 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
14356 
14357 	if (BNXT_PF(bp)) {
14358 		if (!bnxt_pf_wq) {
14359 			bnxt_pf_wq =
14360 				create_singlethread_workqueue("bnxt_pf_wq");
14361 			if (!bnxt_pf_wq) {
14362 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
14363 				rc = -ENOMEM;
14364 				goto init_err_pci_clean;
14365 			}
14366 		}
14367 		rc = bnxt_init_tc(bp);
14368 		if (rc)
14369 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
14370 				   rc);
14371 	}
14372 
14373 	bnxt_inv_fw_health_reg(bp);
14374 	rc = bnxt_dl_register(bp);
14375 	if (rc)
14376 		goto init_err_dl;
14377 
14378 	rc = register_netdev(dev);
14379 	if (rc)
14380 		goto init_err_cleanup;
14381 
14382 	bnxt_dl_fw_reporters_create(bp);
14383 
14384 	bnxt_rdma_aux_device_init(bp);
14385 
14386 	bnxt_print_device_info(bp);
14387 
14388 	pci_save_state(pdev);
14389 
14390 	return 0;
14391 init_err_cleanup:
14392 	bnxt_dl_unregister(bp);
14393 init_err_dl:
14394 	bnxt_shutdown_tc(bp);
14395 	bnxt_clear_int_mode(bp);
14396 
14397 init_err_pci_clean:
14398 	bnxt_hwrm_func_drv_unrgtr(bp);
14399 	bnxt_free_hwrm_resources(bp);
14400 	bnxt_hwmon_uninit(bp);
14401 	bnxt_ethtool_free(bp);
14402 	bnxt_ptp_clear(bp);
14403 	kfree(bp->ptp_cfg);
14404 	bp->ptp_cfg = NULL;
14405 	kfree(bp->fw_health);
14406 	bp->fw_health = NULL;
14407 	bnxt_cleanup_pci(bp);
14408 	bnxt_free_ctx_mem(bp);
14409 	kfree(bp->rss_indir_tbl);
14410 	bp->rss_indir_tbl = NULL;
14411 
14412 init_err_free:
14413 	free_netdev(dev);
14414 	return rc;
14415 }
14416 
14417 static void bnxt_shutdown(struct pci_dev *pdev)
14418 {
14419 	struct net_device *dev = pci_get_drvdata(pdev);
14420 	struct bnxt *bp;
14421 
14422 	if (!dev)
14423 		return;
14424 
14425 	rtnl_lock();
14426 	bp = netdev_priv(dev);
14427 	if (!bp)
14428 		goto shutdown_exit;
14429 
14430 	if (netif_running(dev))
14431 		dev_close(dev);
14432 
14433 	bnxt_clear_int_mode(bp);
14434 	pci_disable_device(pdev);
14435 
14436 	if (system_state == SYSTEM_POWER_OFF) {
14437 		pci_wake_from_d3(pdev, bp->wol);
14438 		pci_set_power_state(pdev, PCI_D3hot);
14439 	}
14440 
14441 shutdown_exit:
14442 	rtnl_unlock();
14443 }
14444 
14445 #ifdef CONFIG_PM_SLEEP
14446 static int bnxt_suspend(struct device *device)
14447 {
14448 	struct net_device *dev = dev_get_drvdata(device);
14449 	struct bnxt *bp = netdev_priv(dev);
14450 	int rc = 0;
14451 
14452 	rtnl_lock();
14453 	bnxt_ulp_stop(bp);
14454 	if (netif_running(dev)) {
14455 		netif_device_detach(dev);
14456 		rc = bnxt_close(dev);
14457 	}
14458 	bnxt_hwrm_func_drv_unrgtr(bp);
14459 	pci_disable_device(bp->pdev);
14460 	bnxt_free_ctx_mem(bp);
14461 	rtnl_unlock();
14462 	return rc;
14463 }
14464 
14465 static int bnxt_resume(struct device *device)
14466 {
14467 	struct net_device *dev = dev_get_drvdata(device);
14468 	struct bnxt *bp = netdev_priv(dev);
14469 	int rc = 0;
14470 
14471 	rtnl_lock();
14472 	rc = pci_enable_device(bp->pdev);
14473 	if (rc) {
14474 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
14475 			   rc);
14476 		goto resume_exit;
14477 	}
14478 	pci_set_master(bp->pdev);
14479 	if (bnxt_hwrm_ver_get(bp)) {
14480 		rc = -ENODEV;
14481 		goto resume_exit;
14482 	}
14483 	rc = bnxt_hwrm_func_reset(bp);
14484 	if (rc) {
14485 		rc = -EBUSY;
14486 		goto resume_exit;
14487 	}
14488 
14489 	rc = bnxt_hwrm_func_qcaps(bp);
14490 	if (rc)
14491 		goto resume_exit;
14492 
14493 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
14494 		rc = -ENODEV;
14495 		goto resume_exit;
14496 	}
14497 
14498 	bnxt_get_wol_settings(bp);
14499 	if (netif_running(dev)) {
14500 		rc = bnxt_open(dev);
14501 		if (!rc)
14502 			netif_device_attach(dev);
14503 	}
14504 
14505 resume_exit:
14506 	bnxt_ulp_start(bp, rc);
14507 	if (!rc)
14508 		bnxt_reenable_sriov(bp);
14509 	rtnl_unlock();
14510 	return rc;
14511 }
14512 
14513 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
14514 #define BNXT_PM_OPS (&bnxt_pm_ops)
14515 
14516 #else
14517 
14518 #define BNXT_PM_OPS NULL
14519 
14520 #endif /* CONFIG_PM_SLEEP */
14521 
14522 /**
14523  * bnxt_io_error_detected - called when PCI error is detected
14524  * @pdev: Pointer to PCI device
14525  * @state: The current pci connection state
14526  *
14527  * This function is called after a PCI bus error affecting
14528  * this device has been detected.
14529  */
14530 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
14531 					       pci_channel_state_t state)
14532 {
14533 	struct net_device *netdev = pci_get_drvdata(pdev);
14534 	struct bnxt *bp = netdev_priv(netdev);
14535 
14536 	netdev_info(netdev, "PCI I/O error detected\n");
14537 
14538 	rtnl_lock();
14539 	netif_device_detach(netdev);
14540 
14541 	bnxt_ulp_stop(bp);
14542 
14543 	if (state == pci_channel_io_perm_failure) {
14544 		rtnl_unlock();
14545 		return PCI_ERS_RESULT_DISCONNECT;
14546 	}
14547 
14548 	if (state == pci_channel_io_frozen)
14549 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
14550 
14551 	if (netif_running(netdev))
14552 		bnxt_close(netdev);
14553 
14554 	if (pci_is_enabled(pdev))
14555 		pci_disable_device(pdev);
14556 	bnxt_free_ctx_mem(bp);
14557 	rtnl_unlock();
14558 
14559 	/* Request a slot slot reset. */
14560 	return PCI_ERS_RESULT_NEED_RESET;
14561 }
14562 
14563 /**
14564  * bnxt_io_slot_reset - called after the pci bus has been reset.
14565  * @pdev: Pointer to PCI device
14566  *
14567  * Restart the card from scratch, as if from a cold-boot.
14568  * At this point, the card has exprienced a hard reset,
14569  * followed by fixups by BIOS, and has its config space
14570  * set up identically to what it was at cold boot.
14571  */
14572 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
14573 {
14574 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
14575 	struct net_device *netdev = pci_get_drvdata(pdev);
14576 	struct bnxt *bp = netdev_priv(netdev);
14577 	int retry = 0;
14578 	int err = 0;
14579 	int off;
14580 
14581 	netdev_info(bp->dev, "PCI Slot Reset\n");
14582 
14583 	rtnl_lock();
14584 
14585 	if (pci_enable_device(pdev)) {
14586 		dev_err(&pdev->dev,
14587 			"Cannot re-enable PCI device after reset.\n");
14588 	} else {
14589 		pci_set_master(pdev);
14590 		/* Upon fatal error, our device internal logic that latches to
14591 		 * BAR value is getting reset and will restore only upon
14592 		 * rewritting the BARs.
14593 		 *
14594 		 * As pci_restore_state() does not re-write the BARs if the
14595 		 * value is same as saved value earlier, driver needs to
14596 		 * write the BARs to 0 to force restore, in case of fatal error.
14597 		 */
14598 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
14599 				       &bp->state)) {
14600 			for (off = PCI_BASE_ADDRESS_0;
14601 			     off <= PCI_BASE_ADDRESS_5; off += 4)
14602 				pci_write_config_dword(bp->pdev, off, 0);
14603 		}
14604 		pci_restore_state(pdev);
14605 		pci_save_state(pdev);
14606 
14607 		bnxt_inv_fw_health_reg(bp);
14608 		bnxt_try_map_fw_health_reg(bp);
14609 
14610 		/* In some PCIe AER scenarios, firmware may take up to
14611 		 * 10 seconds to become ready in the worst case.
14612 		 */
14613 		do {
14614 			err = bnxt_try_recover_fw(bp);
14615 			if (!err)
14616 				break;
14617 			retry++;
14618 		} while (retry < BNXT_FW_SLOT_RESET_RETRY);
14619 
14620 		if (err) {
14621 			dev_err(&pdev->dev, "Firmware not ready\n");
14622 			goto reset_exit;
14623 		}
14624 
14625 		err = bnxt_hwrm_func_reset(bp);
14626 		if (!err)
14627 			result = PCI_ERS_RESULT_RECOVERED;
14628 
14629 		bnxt_ulp_irq_stop(bp);
14630 		bnxt_clear_int_mode(bp);
14631 		err = bnxt_init_int_mode(bp);
14632 		bnxt_ulp_irq_restart(bp, err);
14633 	}
14634 
14635 reset_exit:
14636 	bnxt_clear_reservations(bp, true);
14637 	rtnl_unlock();
14638 
14639 	return result;
14640 }
14641 
14642 /**
14643  * bnxt_io_resume - called when traffic can start flowing again.
14644  * @pdev: Pointer to PCI device
14645  *
14646  * This callback is called when the error recovery driver tells
14647  * us that its OK to resume normal operation.
14648  */
14649 static void bnxt_io_resume(struct pci_dev *pdev)
14650 {
14651 	struct net_device *netdev = pci_get_drvdata(pdev);
14652 	struct bnxt *bp = netdev_priv(netdev);
14653 	int err;
14654 
14655 	netdev_info(bp->dev, "PCI Slot Resume\n");
14656 	rtnl_lock();
14657 
14658 	err = bnxt_hwrm_func_qcaps(bp);
14659 	if (!err && netif_running(netdev))
14660 		err = bnxt_open(netdev);
14661 
14662 	bnxt_ulp_start(bp, err);
14663 	if (!err) {
14664 		bnxt_reenable_sriov(bp);
14665 		netif_device_attach(netdev);
14666 	}
14667 
14668 	rtnl_unlock();
14669 }
14670 
14671 static const struct pci_error_handlers bnxt_err_handler = {
14672 	.error_detected	= bnxt_io_error_detected,
14673 	.slot_reset	= bnxt_io_slot_reset,
14674 	.resume		= bnxt_io_resume
14675 };
14676 
14677 static struct pci_driver bnxt_pci_driver = {
14678 	.name		= DRV_MODULE_NAME,
14679 	.id_table	= bnxt_pci_tbl,
14680 	.probe		= bnxt_init_one,
14681 	.remove		= bnxt_remove_one,
14682 	.shutdown	= bnxt_shutdown,
14683 	.driver.pm	= BNXT_PM_OPS,
14684 	.err_handler	= &bnxt_err_handler,
14685 #if defined(CONFIG_BNXT_SRIOV)
14686 	.sriov_configure = bnxt_sriov_configure,
14687 #endif
14688 };
14689 
14690 static int __init bnxt_init(void)
14691 {
14692 	int err;
14693 
14694 	bnxt_debug_init();
14695 	err = pci_register_driver(&bnxt_pci_driver);
14696 	if (err) {
14697 		bnxt_debug_exit();
14698 		return err;
14699 	}
14700 
14701 	return 0;
14702 }
14703 
14704 static void __exit bnxt_exit(void)
14705 {
14706 	pci_unregister_driver(&bnxt_pci_driver);
14707 	if (bnxt_pf_wq)
14708 		destroy_workqueue(bnxt_pf_wq);
14709 	bnxt_debug_exit();
14710 }
14711 
14712 module_init(bnxt_init);
14713 module_exit(bnxt_exit);
14714