xref: /linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision 6ede2b7df92f4f8da1abfa831a038688fcf409ea)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2017 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/if.h>
35 #include <linux/if_vlan.h>
36 #include <linux/rtc.h>
37 #include <linux/bpf.h>
38 #include <net/ip.h>
39 #include <net/tcp.h>
40 #include <net/udp.h>
41 #include <net/checksum.h>
42 #include <net/ip6_checksum.h>
43 #include <net/udp_tunnel.h>
44 #include <linux/workqueue.h>
45 #include <linux/prefetch.h>
46 #include <linux/cache.h>
47 #include <linux/log2.h>
48 #include <linux/aer.h>
49 #include <linux/bitmap.h>
50 #include <linux/cpu_rmap.h>
51 
52 #include "bnxt_hsi.h"
53 #include "bnxt.h"
54 #include "bnxt_ulp.h"
55 #include "bnxt_sriov.h"
56 #include "bnxt_ethtool.h"
57 #include "bnxt_dcb.h"
58 #include "bnxt_xdp.h"
59 
60 #define BNXT_TX_TIMEOUT		(5 * HZ)
61 
62 static const char version[] =
63 	"Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
64 
65 MODULE_LICENSE("GPL");
66 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
67 MODULE_VERSION(DRV_MODULE_VERSION);
68 
69 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
70 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
71 #define BNXT_RX_COPY_THRESH 256
72 
73 #define BNXT_TX_PUSH_THRESH 164
74 
75 enum board_idx {
76 	BCM57301,
77 	BCM57302,
78 	BCM57304,
79 	BCM57417_NPAR,
80 	BCM58700,
81 	BCM57311,
82 	BCM57312,
83 	BCM57402,
84 	BCM57404,
85 	BCM57406,
86 	BCM57402_NPAR,
87 	BCM57407,
88 	BCM57412,
89 	BCM57414,
90 	BCM57416,
91 	BCM57417,
92 	BCM57412_NPAR,
93 	BCM57314,
94 	BCM57417_SFP,
95 	BCM57416_SFP,
96 	BCM57404_NPAR,
97 	BCM57406_NPAR,
98 	BCM57407_SFP,
99 	BCM57407_NPAR,
100 	BCM57414_NPAR,
101 	BCM57416_NPAR,
102 	BCM57452,
103 	BCM57454,
104 	NETXTREME_E_VF,
105 	NETXTREME_C_VF,
106 };
107 
108 /* indexed by enum above */
109 static const struct {
110 	char *name;
111 } board_info[] = {
112 	{ "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
113 	{ "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
114 	{ "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
115 	{ "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
116 	{ "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
117 	{ "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
118 	{ "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
119 	{ "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
120 	{ "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
121 	{ "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
122 	{ "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
123 	{ "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
124 	{ "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
125 	{ "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
126 	{ "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
127 	{ "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
128 	{ "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
129 	{ "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
130 	{ "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
131 	{ "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
132 	{ "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
133 	{ "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
134 	{ "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
135 	{ "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
136 	{ "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
137 	{ "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
138 	{ "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
139 	{ "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
140 	{ "Broadcom NetXtreme-E Ethernet Virtual Function" },
141 	{ "Broadcom NetXtreme-C Ethernet Virtual Function" },
142 };
143 
144 static const struct pci_device_id bnxt_pci_tbl[] = {
145 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
146 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
147 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
148 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
149 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
150 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
151 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
152 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
153 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
154 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
155 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
157 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
158 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
159 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
160 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
161 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
162 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
163 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
164 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
165 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
166 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
167 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
168 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
169 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
170 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
171 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
172 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
173 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
174 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
175 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
176 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
177 #ifdef CONFIG_BNXT_SRIOV
178 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
179 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
180 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
181 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
182 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
183 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
184 #endif
185 	{ 0 }
186 };
187 
188 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
189 
190 static const u16 bnxt_vf_req_snif[] = {
191 	HWRM_FUNC_CFG,
192 	HWRM_PORT_PHY_QCFG,
193 	HWRM_CFA_L2_FILTER_ALLOC,
194 };
195 
196 static const u16 bnxt_async_events_arr[] = {
197 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
198 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
199 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
200 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
201 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
202 };
203 
204 static bool bnxt_vf_pciid(enum board_idx idx)
205 {
206 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF);
207 }
208 
209 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
210 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
211 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
212 
213 #define BNXT_CP_DB_REARM(db, raw_cons)					\
214 		writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
215 
216 #define BNXT_CP_DB(db, raw_cons)					\
217 		writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
218 
219 #define BNXT_CP_DB_IRQ_DIS(db)						\
220 		writel(DB_CP_IRQ_DIS_FLAGS, db)
221 
222 const u16 bnxt_lhint_arr[] = {
223 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
224 	TX_BD_FLAGS_LHINT_512_TO_1023,
225 	TX_BD_FLAGS_LHINT_1024_TO_2047,
226 	TX_BD_FLAGS_LHINT_1024_TO_2047,
227 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
228 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
229 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
230 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
231 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
232 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
233 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
234 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
235 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
236 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
237 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
238 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
239 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
240 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
241 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
242 };
243 
244 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
245 {
246 	struct bnxt *bp = netdev_priv(dev);
247 	struct tx_bd *txbd;
248 	struct tx_bd_ext *txbd1;
249 	struct netdev_queue *txq;
250 	int i;
251 	dma_addr_t mapping;
252 	unsigned int length, pad = 0;
253 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
254 	u16 prod, last_frag;
255 	struct pci_dev *pdev = bp->pdev;
256 	struct bnxt_tx_ring_info *txr;
257 	struct bnxt_sw_tx_bd *tx_buf;
258 
259 	i = skb_get_queue_mapping(skb);
260 	if (unlikely(i >= bp->tx_nr_rings)) {
261 		dev_kfree_skb_any(skb);
262 		return NETDEV_TX_OK;
263 	}
264 
265 	txq = netdev_get_tx_queue(dev, i);
266 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
267 	prod = txr->tx_prod;
268 
269 	free_size = bnxt_tx_avail(bp, txr);
270 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
271 		netif_tx_stop_queue(txq);
272 		return NETDEV_TX_BUSY;
273 	}
274 
275 	length = skb->len;
276 	len = skb_headlen(skb);
277 	last_frag = skb_shinfo(skb)->nr_frags;
278 
279 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
280 
281 	txbd->tx_bd_opaque = prod;
282 
283 	tx_buf = &txr->tx_buf_ring[prod];
284 	tx_buf->skb = skb;
285 	tx_buf->nr_frags = last_frag;
286 
287 	vlan_tag_flags = 0;
288 	cfa_action = 0;
289 	if (skb_vlan_tag_present(skb)) {
290 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
291 				 skb_vlan_tag_get(skb);
292 		/* Currently supports 8021Q, 8021AD vlan offloads
293 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
294 		 */
295 		if (skb->vlan_proto == htons(ETH_P_8021Q))
296 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
297 	}
298 
299 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
300 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
301 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
302 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
303 		void *pdata = tx_push_buf->data;
304 		u64 *end;
305 		int j, push_len;
306 
307 		/* Set COAL_NOW to be ready quickly for the next push */
308 		tx_push->tx_bd_len_flags_type =
309 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
310 					TX_BD_TYPE_LONG_TX_BD |
311 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
312 					TX_BD_FLAGS_COAL_NOW |
313 					TX_BD_FLAGS_PACKET_END |
314 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
315 
316 		if (skb->ip_summed == CHECKSUM_PARTIAL)
317 			tx_push1->tx_bd_hsize_lflags =
318 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
319 		else
320 			tx_push1->tx_bd_hsize_lflags = 0;
321 
322 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
323 		tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
324 
325 		end = pdata + length;
326 		end = PTR_ALIGN(end, 8) - 1;
327 		*end = 0;
328 
329 		skb_copy_from_linear_data(skb, pdata, len);
330 		pdata += len;
331 		for (j = 0; j < last_frag; j++) {
332 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
333 			void *fptr;
334 
335 			fptr = skb_frag_address_safe(frag);
336 			if (!fptr)
337 				goto normal_tx;
338 
339 			memcpy(pdata, fptr, skb_frag_size(frag));
340 			pdata += skb_frag_size(frag);
341 		}
342 
343 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
344 		txbd->tx_bd_haddr = txr->data_mapping;
345 		prod = NEXT_TX(prod);
346 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
347 		memcpy(txbd, tx_push1, sizeof(*txbd));
348 		prod = NEXT_TX(prod);
349 		tx_push->doorbell =
350 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
351 		txr->tx_prod = prod;
352 
353 		tx_buf->is_push = 1;
354 		netdev_tx_sent_queue(txq, skb->len);
355 		wmb();	/* Sync is_push and byte queue before pushing data */
356 
357 		push_len = (length + sizeof(*tx_push) + 7) / 8;
358 		if (push_len > 16) {
359 			__iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
360 			__iowrite32_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
361 					 (push_len - 16) << 1);
362 		} else {
363 			__iowrite64_copy(txr->tx_doorbell, tx_push_buf,
364 					 push_len);
365 		}
366 
367 		goto tx_done;
368 	}
369 
370 normal_tx:
371 	if (length < BNXT_MIN_PKT_SIZE) {
372 		pad = BNXT_MIN_PKT_SIZE - length;
373 		if (skb_pad(skb, pad)) {
374 			/* SKB already freed. */
375 			tx_buf->skb = NULL;
376 			return NETDEV_TX_OK;
377 		}
378 		length = BNXT_MIN_PKT_SIZE;
379 	}
380 
381 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
382 
383 	if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
384 		dev_kfree_skb_any(skb);
385 		tx_buf->skb = NULL;
386 		return NETDEV_TX_OK;
387 	}
388 
389 	dma_unmap_addr_set(tx_buf, mapping, mapping);
390 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
391 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
392 
393 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
394 
395 	prod = NEXT_TX(prod);
396 	txbd1 = (struct tx_bd_ext *)
397 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
398 
399 	txbd1->tx_bd_hsize_lflags = 0;
400 	if (skb_is_gso(skb)) {
401 		u32 hdr_len;
402 
403 		if (skb->encapsulation)
404 			hdr_len = skb_inner_network_offset(skb) +
405 				skb_inner_network_header_len(skb) +
406 				inner_tcp_hdrlen(skb);
407 		else
408 			hdr_len = skb_transport_offset(skb) +
409 				tcp_hdrlen(skb);
410 
411 		txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
412 					TX_BD_FLAGS_T_IPID |
413 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
414 		length = skb_shinfo(skb)->gso_size;
415 		txbd1->tx_bd_mss = cpu_to_le32(length);
416 		length += hdr_len;
417 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
418 		txbd1->tx_bd_hsize_lflags =
419 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
420 		txbd1->tx_bd_mss = 0;
421 	}
422 
423 	length >>= 9;
424 	flags |= bnxt_lhint_arr[length];
425 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
426 
427 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
428 	txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
429 	for (i = 0; i < last_frag; i++) {
430 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
431 
432 		prod = NEXT_TX(prod);
433 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
434 
435 		len = skb_frag_size(frag);
436 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
437 					   DMA_TO_DEVICE);
438 
439 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
440 			goto tx_dma_error;
441 
442 		tx_buf = &txr->tx_buf_ring[prod];
443 		dma_unmap_addr_set(tx_buf, mapping, mapping);
444 
445 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
446 
447 		flags = len << TX_BD_LEN_SHIFT;
448 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
449 	}
450 
451 	flags &= ~TX_BD_LEN;
452 	txbd->tx_bd_len_flags_type =
453 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
454 			    TX_BD_FLAGS_PACKET_END);
455 
456 	netdev_tx_sent_queue(txq, skb->len);
457 
458 	/* Sync BD data before updating doorbell */
459 	wmb();
460 
461 	prod = NEXT_TX(prod);
462 	txr->tx_prod = prod;
463 
464 	writel(DB_KEY_TX | prod, txr->tx_doorbell);
465 	writel(DB_KEY_TX | prod, txr->tx_doorbell);
466 
467 tx_done:
468 
469 	mmiowb();
470 
471 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
472 		netif_tx_stop_queue(txq);
473 
474 		/* netif_tx_stop_queue() must be done before checking
475 		 * tx index in bnxt_tx_avail() below, because in
476 		 * bnxt_tx_int(), we update tx index before checking for
477 		 * netif_tx_queue_stopped().
478 		 */
479 		smp_mb();
480 		if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
481 			netif_tx_wake_queue(txq);
482 	}
483 	return NETDEV_TX_OK;
484 
485 tx_dma_error:
486 	last_frag = i;
487 
488 	/* start back at beginning and unmap skb */
489 	prod = txr->tx_prod;
490 	tx_buf = &txr->tx_buf_ring[prod];
491 	tx_buf->skb = NULL;
492 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
493 			 skb_headlen(skb), PCI_DMA_TODEVICE);
494 	prod = NEXT_TX(prod);
495 
496 	/* unmap remaining mapped pages */
497 	for (i = 0; i < last_frag; i++) {
498 		prod = NEXT_TX(prod);
499 		tx_buf = &txr->tx_buf_ring[prod];
500 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
501 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
502 			       PCI_DMA_TODEVICE);
503 	}
504 
505 	dev_kfree_skb_any(skb);
506 	return NETDEV_TX_OK;
507 }
508 
509 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
510 {
511 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
512 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
513 	u16 cons = txr->tx_cons;
514 	struct pci_dev *pdev = bp->pdev;
515 	int i;
516 	unsigned int tx_bytes = 0;
517 
518 	for (i = 0; i < nr_pkts; i++) {
519 		struct bnxt_sw_tx_bd *tx_buf;
520 		struct sk_buff *skb;
521 		int j, last;
522 
523 		tx_buf = &txr->tx_buf_ring[cons];
524 		cons = NEXT_TX(cons);
525 		skb = tx_buf->skb;
526 		tx_buf->skb = NULL;
527 
528 		if (tx_buf->is_push) {
529 			tx_buf->is_push = 0;
530 			goto next_tx_int;
531 		}
532 
533 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
534 				 skb_headlen(skb), PCI_DMA_TODEVICE);
535 		last = tx_buf->nr_frags;
536 
537 		for (j = 0; j < last; j++) {
538 			cons = NEXT_TX(cons);
539 			tx_buf = &txr->tx_buf_ring[cons];
540 			dma_unmap_page(
541 				&pdev->dev,
542 				dma_unmap_addr(tx_buf, mapping),
543 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
544 				PCI_DMA_TODEVICE);
545 		}
546 
547 next_tx_int:
548 		cons = NEXT_TX(cons);
549 
550 		tx_bytes += skb->len;
551 		dev_kfree_skb_any(skb);
552 	}
553 
554 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
555 	txr->tx_cons = cons;
556 
557 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
558 	 * before checking for netif_tx_queue_stopped().  Without the
559 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
560 	 * will miss it and cause the queue to be stopped forever.
561 	 */
562 	smp_mb();
563 
564 	if (unlikely(netif_tx_queue_stopped(txq)) &&
565 	    (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
566 		__netif_tx_lock(txq, smp_processor_id());
567 		if (netif_tx_queue_stopped(txq) &&
568 		    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
569 		    txr->dev_state != BNXT_DEV_STATE_CLOSING)
570 			netif_tx_wake_queue(txq);
571 		__netif_tx_unlock(txq);
572 	}
573 }
574 
575 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
576 					 gfp_t gfp)
577 {
578 	struct device *dev = &bp->pdev->dev;
579 	struct page *page;
580 
581 	page = alloc_page(gfp);
582 	if (!page)
583 		return NULL;
584 
585 	*mapping = dma_map_page(dev, page, 0, PAGE_SIZE, bp->rx_dir);
586 	if (dma_mapping_error(dev, *mapping)) {
587 		__free_page(page);
588 		return NULL;
589 	}
590 	*mapping += bp->rx_dma_offset;
591 	return page;
592 }
593 
594 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
595 				       gfp_t gfp)
596 {
597 	u8 *data;
598 	struct pci_dev *pdev = bp->pdev;
599 
600 	data = kmalloc(bp->rx_buf_size, gfp);
601 	if (!data)
602 		return NULL;
603 
604 	*mapping = dma_map_single(&pdev->dev, data + bp->rx_dma_offset,
605 				  bp->rx_buf_use_size, bp->rx_dir);
606 
607 	if (dma_mapping_error(&pdev->dev, *mapping)) {
608 		kfree(data);
609 		data = NULL;
610 	}
611 	return data;
612 }
613 
614 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
615 		       u16 prod, gfp_t gfp)
616 {
617 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
618 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
619 	dma_addr_t mapping;
620 
621 	if (BNXT_RX_PAGE_MODE(bp)) {
622 		struct page *page = __bnxt_alloc_rx_page(bp, &mapping, gfp);
623 
624 		if (!page)
625 			return -ENOMEM;
626 
627 		rx_buf->data = page;
628 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
629 	} else {
630 		u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
631 
632 		if (!data)
633 			return -ENOMEM;
634 
635 		rx_buf->data = data;
636 		rx_buf->data_ptr = data + bp->rx_offset;
637 	}
638 	rx_buf->mapping = mapping;
639 
640 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
641 	return 0;
642 }
643 
644 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
645 {
646 	u16 prod = rxr->rx_prod;
647 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
648 	struct rx_bd *cons_bd, *prod_bd;
649 
650 	prod_rx_buf = &rxr->rx_buf_ring[prod];
651 	cons_rx_buf = &rxr->rx_buf_ring[cons];
652 
653 	prod_rx_buf->data = data;
654 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
655 
656 	prod_rx_buf->mapping = cons_rx_buf->mapping;
657 
658 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
659 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
660 
661 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
662 }
663 
664 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
665 {
666 	u16 next, max = rxr->rx_agg_bmap_size;
667 
668 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
669 	if (next >= max)
670 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
671 	return next;
672 }
673 
674 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
675 				     struct bnxt_rx_ring_info *rxr,
676 				     u16 prod, gfp_t gfp)
677 {
678 	struct rx_bd *rxbd =
679 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
680 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
681 	struct pci_dev *pdev = bp->pdev;
682 	struct page *page;
683 	dma_addr_t mapping;
684 	u16 sw_prod = rxr->rx_sw_agg_prod;
685 	unsigned int offset = 0;
686 
687 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
688 		page = rxr->rx_page;
689 		if (!page) {
690 			page = alloc_page(gfp);
691 			if (!page)
692 				return -ENOMEM;
693 			rxr->rx_page = page;
694 			rxr->rx_page_offset = 0;
695 		}
696 		offset = rxr->rx_page_offset;
697 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
698 		if (rxr->rx_page_offset == PAGE_SIZE)
699 			rxr->rx_page = NULL;
700 		else
701 			get_page(page);
702 	} else {
703 		page = alloc_page(gfp);
704 		if (!page)
705 			return -ENOMEM;
706 	}
707 
708 	mapping = dma_map_page(&pdev->dev, page, offset, BNXT_RX_PAGE_SIZE,
709 			       PCI_DMA_FROMDEVICE);
710 	if (dma_mapping_error(&pdev->dev, mapping)) {
711 		__free_page(page);
712 		return -EIO;
713 	}
714 
715 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
716 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
717 
718 	__set_bit(sw_prod, rxr->rx_agg_bmap);
719 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
720 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
721 
722 	rx_agg_buf->page = page;
723 	rx_agg_buf->offset = offset;
724 	rx_agg_buf->mapping = mapping;
725 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
726 	rxbd->rx_bd_opaque = sw_prod;
727 	return 0;
728 }
729 
730 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
731 				   u32 agg_bufs)
732 {
733 	struct bnxt *bp = bnapi->bp;
734 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
735 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
736 	u16 prod = rxr->rx_agg_prod;
737 	u16 sw_prod = rxr->rx_sw_agg_prod;
738 	u32 i;
739 
740 	for (i = 0; i < agg_bufs; i++) {
741 		u16 cons;
742 		struct rx_agg_cmp *agg;
743 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
744 		struct rx_bd *prod_bd;
745 		struct page *page;
746 
747 		agg = (struct rx_agg_cmp *)
748 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
749 		cons = agg->rx_agg_cmp_opaque;
750 		__clear_bit(cons, rxr->rx_agg_bmap);
751 
752 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
753 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
754 
755 		__set_bit(sw_prod, rxr->rx_agg_bmap);
756 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
757 		cons_rx_buf = &rxr->rx_agg_ring[cons];
758 
759 		/* It is possible for sw_prod to be equal to cons, so
760 		 * set cons_rx_buf->page to NULL first.
761 		 */
762 		page = cons_rx_buf->page;
763 		cons_rx_buf->page = NULL;
764 		prod_rx_buf->page = page;
765 		prod_rx_buf->offset = cons_rx_buf->offset;
766 
767 		prod_rx_buf->mapping = cons_rx_buf->mapping;
768 
769 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
770 
771 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
772 		prod_bd->rx_bd_opaque = sw_prod;
773 
774 		prod = NEXT_RX_AGG(prod);
775 		sw_prod = NEXT_RX_AGG(sw_prod);
776 		cp_cons = NEXT_CMP(cp_cons);
777 	}
778 	rxr->rx_agg_prod = prod;
779 	rxr->rx_sw_agg_prod = sw_prod;
780 }
781 
782 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
783 					struct bnxt_rx_ring_info *rxr,
784 					u16 cons, void *data, u8 *data_ptr,
785 					dma_addr_t dma_addr,
786 					unsigned int offset_and_len)
787 {
788 	unsigned int payload = offset_and_len >> 16;
789 	unsigned int len = offset_and_len & 0xffff;
790 	struct skb_frag_struct *frag;
791 	struct page *page = data;
792 	u16 prod = rxr->rx_prod;
793 	struct sk_buff *skb;
794 	int off, err;
795 
796 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
797 	if (unlikely(err)) {
798 		bnxt_reuse_rx_data(rxr, cons, data);
799 		return NULL;
800 	}
801 	dma_addr -= bp->rx_dma_offset;
802 	dma_unmap_page(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir);
803 
804 	if (unlikely(!payload))
805 		payload = eth_get_headlen(data_ptr, len);
806 
807 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
808 	if (!skb) {
809 		__free_page(page);
810 		return NULL;
811 	}
812 
813 	off = (void *)data_ptr - page_address(page);
814 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
815 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
816 	       payload + NET_IP_ALIGN);
817 
818 	frag = &skb_shinfo(skb)->frags[0];
819 	skb_frag_size_sub(frag, payload);
820 	frag->page_offset += payload;
821 	skb->data_len -= payload;
822 	skb->tail += payload;
823 
824 	return skb;
825 }
826 
827 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
828 				   struct bnxt_rx_ring_info *rxr, u16 cons,
829 				   void *data, u8 *data_ptr,
830 				   dma_addr_t dma_addr,
831 				   unsigned int offset_and_len)
832 {
833 	u16 prod = rxr->rx_prod;
834 	struct sk_buff *skb;
835 	int err;
836 
837 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
838 	if (unlikely(err)) {
839 		bnxt_reuse_rx_data(rxr, cons, data);
840 		return NULL;
841 	}
842 
843 	skb = build_skb(data, 0);
844 	dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
845 			 bp->rx_dir);
846 	if (!skb) {
847 		kfree(data);
848 		return NULL;
849 	}
850 
851 	skb_reserve(skb, bp->rx_offset);
852 	skb_put(skb, offset_and_len & 0xffff);
853 	return skb;
854 }
855 
856 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
857 				     struct sk_buff *skb, u16 cp_cons,
858 				     u32 agg_bufs)
859 {
860 	struct pci_dev *pdev = bp->pdev;
861 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
862 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
863 	u16 prod = rxr->rx_agg_prod;
864 	u32 i;
865 
866 	for (i = 0; i < agg_bufs; i++) {
867 		u16 cons, frag_len;
868 		struct rx_agg_cmp *agg;
869 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
870 		struct page *page;
871 		dma_addr_t mapping;
872 
873 		agg = (struct rx_agg_cmp *)
874 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
875 		cons = agg->rx_agg_cmp_opaque;
876 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
877 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
878 
879 		cons_rx_buf = &rxr->rx_agg_ring[cons];
880 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
881 				   cons_rx_buf->offset, frag_len);
882 		__clear_bit(cons, rxr->rx_agg_bmap);
883 
884 		/* It is possible for bnxt_alloc_rx_page() to allocate
885 		 * a sw_prod index that equals the cons index, so we
886 		 * need to clear the cons entry now.
887 		 */
888 		mapping = cons_rx_buf->mapping;
889 		page = cons_rx_buf->page;
890 		cons_rx_buf->page = NULL;
891 
892 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
893 			struct skb_shared_info *shinfo;
894 			unsigned int nr_frags;
895 
896 			shinfo = skb_shinfo(skb);
897 			nr_frags = --shinfo->nr_frags;
898 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
899 
900 			dev_kfree_skb(skb);
901 
902 			cons_rx_buf->page = page;
903 
904 			/* Update prod since possibly some pages have been
905 			 * allocated already.
906 			 */
907 			rxr->rx_agg_prod = prod;
908 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
909 			return NULL;
910 		}
911 
912 		dma_unmap_page(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
913 			       PCI_DMA_FROMDEVICE);
914 
915 		skb->data_len += frag_len;
916 		skb->len += frag_len;
917 		skb->truesize += PAGE_SIZE;
918 
919 		prod = NEXT_RX_AGG(prod);
920 		cp_cons = NEXT_CMP(cp_cons);
921 	}
922 	rxr->rx_agg_prod = prod;
923 	return skb;
924 }
925 
926 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
927 			       u8 agg_bufs, u32 *raw_cons)
928 {
929 	u16 last;
930 	struct rx_agg_cmp *agg;
931 
932 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
933 	last = RING_CMP(*raw_cons);
934 	agg = (struct rx_agg_cmp *)
935 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
936 	return RX_AGG_CMP_VALID(agg, *raw_cons);
937 }
938 
939 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
940 					    unsigned int len,
941 					    dma_addr_t mapping)
942 {
943 	struct bnxt *bp = bnapi->bp;
944 	struct pci_dev *pdev = bp->pdev;
945 	struct sk_buff *skb;
946 
947 	skb = napi_alloc_skb(&bnapi->napi, len);
948 	if (!skb)
949 		return NULL;
950 
951 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
952 				bp->rx_dir);
953 
954 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
955 	       len + NET_IP_ALIGN);
956 
957 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
958 				   bp->rx_dir);
959 
960 	skb_put(skb, len);
961 	return skb;
962 }
963 
964 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
965 			   u32 *raw_cons, void *cmp)
966 {
967 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
968 	struct rx_cmp *rxcmp = cmp;
969 	u32 tmp_raw_cons = *raw_cons;
970 	u8 cmp_type, agg_bufs = 0;
971 
972 	cmp_type = RX_CMP_TYPE(rxcmp);
973 
974 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
975 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
976 			    RX_CMP_AGG_BUFS) >>
977 			   RX_CMP_AGG_BUFS_SHIFT;
978 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
979 		struct rx_tpa_end_cmp *tpa_end = cmp;
980 
981 		agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
982 			    RX_TPA_END_CMP_AGG_BUFS) >>
983 			   RX_TPA_END_CMP_AGG_BUFS_SHIFT;
984 	}
985 
986 	if (agg_bufs) {
987 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
988 			return -EBUSY;
989 	}
990 	*raw_cons = tmp_raw_cons;
991 	return 0;
992 }
993 
994 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
995 {
996 	if (!rxr->bnapi->in_reset) {
997 		rxr->bnapi->in_reset = true;
998 		set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
999 		schedule_work(&bp->sp_task);
1000 	}
1001 	rxr->rx_next_cons = 0xffff;
1002 }
1003 
1004 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1005 			   struct rx_tpa_start_cmp *tpa_start,
1006 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1007 {
1008 	u8 agg_id = TPA_START_AGG_ID(tpa_start);
1009 	u16 cons, prod;
1010 	struct bnxt_tpa_info *tpa_info;
1011 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1012 	struct rx_bd *prod_bd;
1013 	dma_addr_t mapping;
1014 
1015 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1016 	prod = rxr->rx_prod;
1017 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1018 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1019 	tpa_info = &rxr->rx_tpa[agg_id];
1020 
1021 	if (unlikely(cons != rxr->rx_next_cons)) {
1022 		bnxt_sched_reset(bp, rxr);
1023 		return;
1024 	}
1025 
1026 	prod_rx_buf->data = tpa_info->data;
1027 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1028 
1029 	mapping = tpa_info->mapping;
1030 	prod_rx_buf->mapping = mapping;
1031 
1032 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1033 
1034 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1035 
1036 	tpa_info->data = cons_rx_buf->data;
1037 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1038 	cons_rx_buf->data = NULL;
1039 	tpa_info->mapping = cons_rx_buf->mapping;
1040 
1041 	tpa_info->len =
1042 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1043 				RX_TPA_START_CMP_LEN_SHIFT;
1044 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1045 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1046 
1047 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1048 		tpa_info->gso_type = SKB_GSO_TCPV4;
1049 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1050 		if (hash_type == 3)
1051 			tpa_info->gso_type = SKB_GSO_TCPV6;
1052 		tpa_info->rss_hash =
1053 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1054 	} else {
1055 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1056 		tpa_info->gso_type = 0;
1057 		if (netif_msg_rx_err(bp))
1058 			netdev_warn(bp->dev, "TPA packet without valid hash\n");
1059 	}
1060 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1061 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1062 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1063 
1064 	rxr->rx_prod = NEXT_RX(prod);
1065 	cons = NEXT_RX(cons);
1066 	rxr->rx_next_cons = NEXT_RX(cons);
1067 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1068 
1069 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1070 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1071 	cons_rx_buf->data = NULL;
1072 }
1073 
1074 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
1075 			   u16 cp_cons, u32 agg_bufs)
1076 {
1077 	if (agg_bufs)
1078 		bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1079 }
1080 
1081 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1082 					   int payload_off, int tcp_ts,
1083 					   struct sk_buff *skb)
1084 {
1085 #ifdef CONFIG_INET
1086 	struct tcphdr *th;
1087 	int len, nw_off;
1088 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1089 	u32 hdr_info = tpa_info->hdr_info;
1090 	bool loopback = false;
1091 
1092 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1093 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1094 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1095 
1096 	/* If the packet is an internal loopback packet, the offsets will
1097 	 * have an extra 4 bytes.
1098 	 */
1099 	if (inner_mac_off == 4) {
1100 		loopback = true;
1101 	} else if (inner_mac_off > 4) {
1102 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1103 					    ETH_HLEN - 2));
1104 
1105 		/* We only support inner iPv4/ipv6.  If we don't see the
1106 		 * correct protocol ID, it must be a loopback packet where
1107 		 * the offsets are off by 4.
1108 		 */
1109 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1110 			loopback = true;
1111 	}
1112 	if (loopback) {
1113 		/* internal loopback packet, subtract all offsets by 4 */
1114 		inner_ip_off -= 4;
1115 		inner_mac_off -= 4;
1116 		outer_ip_off -= 4;
1117 	}
1118 
1119 	nw_off = inner_ip_off - ETH_HLEN;
1120 	skb_set_network_header(skb, nw_off);
1121 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1122 		struct ipv6hdr *iph = ipv6_hdr(skb);
1123 
1124 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1125 		len = skb->len - skb_transport_offset(skb);
1126 		th = tcp_hdr(skb);
1127 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1128 	} else {
1129 		struct iphdr *iph = ip_hdr(skb);
1130 
1131 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1132 		len = skb->len - skb_transport_offset(skb);
1133 		th = tcp_hdr(skb);
1134 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1135 	}
1136 
1137 	if (inner_mac_off) { /* tunnel */
1138 		struct udphdr *uh = NULL;
1139 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1140 					    ETH_HLEN - 2));
1141 
1142 		if (proto == htons(ETH_P_IP)) {
1143 			struct iphdr *iph = (struct iphdr *)skb->data;
1144 
1145 			if (iph->protocol == IPPROTO_UDP)
1146 				uh = (struct udphdr *)(iph + 1);
1147 		} else {
1148 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1149 
1150 			if (iph->nexthdr == IPPROTO_UDP)
1151 				uh = (struct udphdr *)(iph + 1);
1152 		}
1153 		if (uh) {
1154 			if (uh->check)
1155 				skb_shinfo(skb)->gso_type |=
1156 					SKB_GSO_UDP_TUNNEL_CSUM;
1157 			else
1158 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1159 		}
1160 	}
1161 #endif
1162 	return skb;
1163 }
1164 
1165 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1166 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1167 
1168 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1169 					   int payload_off, int tcp_ts,
1170 					   struct sk_buff *skb)
1171 {
1172 #ifdef CONFIG_INET
1173 	struct tcphdr *th;
1174 	int len, nw_off, tcp_opt_len = 0;
1175 
1176 	if (tcp_ts)
1177 		tcp_opt_len = 12;
1178 
1179 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1180 		struct iphdr *iph;
1181 
1182 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1183 			 ETH_HLEN;
1184 		skb_set_network_header(skb, nw_off);
1185 		iph = ip_hdr(skb);
1186 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1187 		len = skb->len - skb_transport_offset(skb);
1188 		th = tcp_hdr(skb);
1189 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1190 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1191 		struct ipv6hdr *iph;
1192 
1193 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1194 			 ETH_HLEN;
1195 		skb_set_network_header(skb, nw_off);
1196 		iph = ipv6_hdr(skb);
1197 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1198 		len = skb->len - skb_transport_offset(skb);
1199 		th = tcp_hdr(skb);
1200 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1201 	} else {
1202 		dev_kfree_skb_any(skb);
1203 		return NULL;
1204 	}
1205 
1206 	if (nw_off) { /* tunnel */
1207 		struct udphdr *uh = NULL;
1208 
1209 		if (skb->protocol == htons(ETH_P_IP)) {
1210 			struct iphdr *iph = (struct iphdr *)skb->data;
1211 
1212 			if (iph->protocol == IPPROTO_UDP)
1213 				uh = (struct udphdr *)(iph + 1);
1214 		} else {
1215 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1216 
1217 			if (iph->nexthdr == IPPROTO_UDP)
1218 				uh = (struct udphdr *)(iph + 1);
1219 		}
1220 		if (uh) {
1221 			if (uh->check)
1222 				skb_shinfo(skb)->gso_type |=
1223 					SKB_GSO_UDP_TUNNEL_CSUM;
1224 			else
1225 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1226 		}
1227 	}
1228 #endif
1229 	return skb;
1230 }
1231 
1232 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1233 					   struct bnxt_tpa_info *tpa_info,
1234 					   struct rx_tpa_end_cmp *tpa_end,
1235 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1236 					   struct sk_buff *skb)
1237 {
1238 #ifdef CONFIG_INET
1239 	int payload_off;
1240 	u16 segs;
1241 
1242 	segs = TPA_END_TPA_SEGS(tpa_end);
1243 	if (segs == 1)
1244 		return skb;
1245 
1246 	NAPI_GRO_CB(skb)->count = segs;
1247 	skb_shinfo(skb)->gso_size =
1248 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1249 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1250 	payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1251 		       RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
1252 		      RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
1253 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1254 	if (likely(skb))
1255 		tcp_gro_complete(skb);
1256 #endif
1257 	return skb;
1258 }
1259 
1260 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1261 					   struct bnxt_napi *bnapi,
1262 					   u32 *raw_cons,
1263 					   struct rx_tpa_end_cmp *tpa_end,
1264 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1265 					   u8 *event)
1266 {
1267 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1268 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1269 	u8 agg_id = TPA_END_AGG_ID(tpa_end);
1270 	u8 *data_ptr, agg_bufs;
1271 	u16 cp_cons = RING_CMP(*raw_cons);
1272 	unsigned int len;
1273 	struct bnxt_tpa_info *tpa_info;
1274 	dma_addr_t mapping;
1275 	struct sk_buff *skb;
1276 	void *data;
1277 
1278 	if (unlikely(bnapi->in_reset)) {
1279 		int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
1280 
1281 		if (rc < 0)
1282 			return ERR_PTR(-EBUSY);
1283 		return NULL;
1284 	}
1285 
1286 	tpa_info = &rxr->rx_tpa[agg_id];
1287 	data = tpa_info->data;
1288 	data_ptr = tpa_info->data_ptr;
1289 	prefetch(data_ptr);
1290 	len = tpa_info->len;
1291 	mapping = tpa_info->mapping;
1292 
1293 	agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1294 		    RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1295 
1296 	if (agg_bufs) {
1297 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1298 			return ERR_PTR(-EBUSY);
1299 
1300 		*event |= BNXT_AGG_EVENT;
1301 		cp_cons = NEXT_CMP(cp_cons);
1302 	}
1303 
1304 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1305 		bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1306 		if (agg_bufs > MAX_SKB_FRAGS)
1307 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1308 				    agg_bufs, (int)MAX_SKB_FRAGS);
1309 		return NULL;
1310 	}
1311 
1312 	if (len <= bp->rx_copy_thresh) {
1313 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1314 		if (!skb) {
1315 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1316 			return NULL;
1317 		}
1318 	} else {
1319 		u8 *new_data;
1320 		dma_addr_t new_mapping;
1321 
1322 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1323 		if (!new_data) {
1324 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1325 			return NULL;
1326 		}
1327 
1328 		tpa_info->data = new_data;
1329 		tpa_info->data_ptr = new_data + bp->rx_offset;
1330 		tpa_info->mapping = new_mapping;
1331 
1332 		skb = build_skb(data, 0);
1333 		dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
1334 				 bp->rx_dir);
1335 
1336 		if (!skb) {
1337 			kfree(data);
1338 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1339 			return NULL;
1340 		}
1341 		skb_reserve(skb, bp->rx_offset);
1342 		skb_put(skb, len);
1343 	}
1344 
1345 	if (agg_bufs) {
1346 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1347 		if (!skb) {
1348 			/* Page reuse already handled by bnxt_rx_pages(). */
1349 			return NULL;
1350 		}
1351 	}
1352 	skb->protocol = eth_type_trans(skb, bp->dev);
1353 
1354 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1355 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1356 
1357 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1358 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1359 		u16 vlan_proto = tpa_info->metadata >>
1360 			RX_CMP_FLAGS2_METADATA_TPID_SFT;
1361 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_VID_MASK;
1362 
1363 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1364 	}
1365 
1366 	skb_checksum_none_assert(skb);
1367 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1368 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1369 		skb->csum_level =
1370 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1371 	}
1372 
1373 	if (TPA_END_GRO(tpa_end))
1374 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1375 
1376 	return skb;
1377 }
1378 
1379 /* returns the following:
1380  * 1       - 1 packet successfully received
1381  * 0       - successful TPA_START, packet not completed yet
1382  * -EBUSY  - completion ring does not have all the agg buffers yet
1383  * -ENOMEM - packet aborted due to out of memory
1384  * -EIO    - packet aborted due to hw error indicated in BD
1385  */
1386 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1387 		       u8 *event)
1388 {
1389 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1390 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1391 	struct net_device *dev = bp->dev;
1392 	struct rx_cmp *rxcmp;
1393 	struct rx_cmp_ext *rxcmp1;
1394 	u32 tmp_raw_cons = *raw_cons;
1395 	u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1396 	struct bnxt_sw_rx_bd *rx_buf;
1397 	unsigned int len;
1398 	u8 *data_ptr, agg_bufs, cmp_type;
1399 	dma_addr_t dma_addr;
1400 	struct sk_buff *skb;
1401 	void *data;
1402 	int rc = 0;
1403 	u32 misc;
1404 
1405 	rxcmp = (struct rx_cmp *)
1406 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1407 
1408 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1409 	cp_cons = RING_CMP(tmp_raw_cons);
1410 	rxcmp1 = (struct rx_cmp_ext *)
1411 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1412 
1413 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1414 		return -EBUSY;
1415 
1416 	cmp_type = RX_CMP_TYPE(rxcmp);
1417 
1418 	prod = rxr->rx_prod;
1419 
1420 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1421 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1422 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1423 
1424 		*event |= BNXT_RX_EVENT;
1425 		goto next_rx_no_prod;
1426 
1427 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1428 		skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1429 				   (struct rx_tpa_end_cmp *)rxcmp,
1430 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1431 
1432 		if (unlikely(IS_ERR(skb)))
1433 			return -EBUSY;
1434 
1435 		rc = -ENOMEM;
1436 		if (likely(skb)) {
1437 			skb_record_rx_queue(skb, bnapi->index);
1438 			napi_gro_receive(&bnapi->napi, skb);
1439 			rc = 1;
1440 		}
1441 		*event |= BNXT_RX_EVENT;
1442 		goto next_rx_no_prod;
1443 	}
1444 
1445 	cons = rxcmp->rx_cmp_opaque;
1446 	rx_buf = &rxr->rx_buf_ring[cons];
1447 	data = rx_buf->data;
1448 	data_ptr = rx_buf->data_ptr;
1449 	if (unlikely(cons != rxr->rx_next_cons)) {
1450 		int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
1451 
1452 		bnxt_sched_reset(bp, rxr);
1453 		return rc1;
1454 	}
1455 	prefetch(data_ptr);
1456 
1457 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1458 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1459 
1460 	if (agg_bufs) {
1461 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1462 			return -EBUSY;
1463 
1464 		cp_cons = NEXT_CMP(cp_cons);
1465 		*event |= BNXT_AGG_EVENT;
1466 	}
1467 	*event |= BNXT_RX_EVENT;
1468 
1469 	rx_buf->data = NULL;
1470 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1471 		bnxt_reuse_rx_data(rxr, cons, data);
1472 		if (agg_bufs)
1473 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1474 
1475 		rc = -EIO;
1476 		goto next_rx;
1477 	}
1478 
1479 	len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1480 	dma_addr = rx_buf->mapping;
1481 
1482 	if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1483 		rc = 1;
1484 		goto next_rx;
1485 	}
1486 
1487 	if (len <= bp->rx_copy_thresh) {
1488 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1489 		bnxt_reuse_rx_data(rxr, cons, data);
1490 		if (!skb) {
1491 			rc = -ENOMEM;
1492 			goto next_rx;
1493 		}
1494 	} else {
1495 		u32 payload;
1496 
1497 		if (rx_buf->data_ptr == data_ptr)
1498 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1499 		else
1500 			payload = 0;
1501 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1502 				      payload | len);
1503 		if (!skb) {
1504 			rc = -ENOMEM;
1505 			goto next_rx;
1506 		}
1507 	}
1508 
1509 	if (agg_bufs) {
1510 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1511 		if (!skb) {
1512 			rc = -ENOMEM;
1513 			goto next_rx;
1514 		}
1515 	}
1516 
1517 	if (RX_CMP_HASH_VALID(rxcmp)) {
1518 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1519 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1520 
1521 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1522 		if (hash_type != 1 && hash_type != 3)
1523 			type = PKT_HASH_TYPE_L3;
1524 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1525 	}
1526 
1527 	skb->protocol = eth_type_trans(skb, dev);
1528 
1529 	if ((rxcmp1->rx_cmp_flags2 &
1530 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1531 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1532 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1533 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_VID_MASK;
1534 		u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1535 
1536 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1537 	}
1538 
1539 	skb_checksum_none_assert(skb);
1540 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1541 		if (dev->features & NETIF_F_RXCSUM) {
1542 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1543 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1544 		}
1545 	} else {
1546 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1547 			if (dev->features & NETIF_F_RXCSUM)
1548 				cpr->rx_l4_csum_errors++;
1549 		}
1550 	}
1551 
1552 	skb_record_rx_queue(skb, bnapi->index);
1553 	napi_gro_receive(&bnapi->napi, skb);
1554 	rc = 1;
1555 
1556 next_rx:
1557 	rxr->rx_prod = NEXT_RX(prod);
1558 	rxr->rx_next_cons = NEXT_RX(cons);
1559 
1560 next_rx_no_prod:
1561 	*raw_cons = tmp_raw_cons;
1562 
1563 	return rc;
1564 }
1565 
1566 /* In netpoll mode, if we are using a combined completion ring, we need to
1567  * discard the rx packets and recycle the buffers.
1568  */
1569 static int bnxt_force_rx_discard(struct bnxt *bp, struct bnxt_napi *bnapi,
1570 				 u32 *raw_cons, u8 *event)
1571 {
1572 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1573 	u32 tmp_raw_cons = *raw_cons;
1574 	struct rx_cmp_ext *rxcmp1;
1575 	struct rx_cmp *rxcmp;
1576 	u16 cp_cons;
1577 	u8 cmp_type;
1578 
1579 	cp_cons = RING_CMP(tmp_raw_cons);
1580 	rxcmp = (struct rx_cmp *)
1581 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1582 
1583 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1584 	cp_cons = RING_CMP(tmp_raw_cons);
1585 	rxcmp1 = (struct rx_cmp_ext *)
1586 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1587 
1588 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1589 		return -EBUSY;
1590 
1591 	cmp_type = RX_CMP_TYPE(rxcmp);
1592 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1593 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1594 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1595 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1596 		struct rx_tpa_end_cmp_ext *tpa_end1;
1597 
1598 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1599 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1600 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1601 	}
1602 	return bnxt_rx_pkt(bp, bnapi, raw_cons, event);
1603 }
1604 
1605 #define BNXT_GET_EVENT_PORT(data)	\
1606 	((data) &			\
1607 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1608 
1609 static int bnxt_async_event_process(struct bnxt *bp,
1610 				    struct hwrm_async_event_cmpl *cmpl)
1611 {
1612 	u16 event_id = le16_to_cpu(cmpl->event_id);
1613 
1614 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
1615 	switch (event_id) {
1616 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1617 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1618 		struct bnxt_link_info *link_info = &bp->link_info;
1619 
1620 		if (BNXT_VF(bp))
1621 			goto async_event_process_exit;
1622 		if (data1 & 0x20000) {
1623 			u16 fw_speed = link_info->force_link_speed;
1624 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1625 
1626 			netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1627 				    speed);
1628 		}
1629 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1630 		/* fall thru */
1631 	}
1632 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1633 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1634 		break;
1635 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1636 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1637 		break;
1638 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1639 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1640 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
1641 
1642 		if (BNXT_VF(bp))
1643 			break;
1644 
1645 		if (bp->pf.port_id != port_id)
1646 			break;
1647 
1648 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1649 		break;
1650 	}
1651 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1652 		if (BNXT_PF(bp))
1653 			goto async_event_process_exit;
1654 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1655 		break;
1656 	default:
1657 		goto async_event_process_exit;
1658 	}
1659 	schedule_work(&bp->sp_task);
1660 async_event_process_exit:
1661 	bnxt_ulp_async_events(bp, cmpl);
1662 	return 0;
1663 }
1664 
1665 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1666 {
1667 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1668 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1669 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1670 				(struct hwrm_fwd_req_cmpl *)txcmp;
1671 
1672 	switch (cmpl_type) {
1673 	case CMPL_BASE_TYPE_HWRM_DONE:
1674 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
1675 		if (seq_id == bp->hwrm_intr_seq_id)
1676 			bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1677 		else
1678 			netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1679 		break;
1680 
1681 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1682 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1683 
1684 		if ((vf_id < bp->pf.first_vf_id) ||
1685 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1686 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1687 				   vf_id);
1688 			return -EINVAL;
1689 		}
1690 
1691 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1692 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1693 		schedule_work(&bp->sp_task);
1694 		break;
1695 
1696 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1697 		bnxt_async_event_process(bp,
1698 					 (struct hwrm_async_event_cmpl *)txcmp);
1699 
1700 	default:
1701 		break;
1702 	}
1703 
1704 	return 0;
1705 }
1706 
1707 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1708 {
1709 	struct bnxt_napi *bnapi = dev_instance;
1710 	struct bnxt *bp = bnapi->bp;
1711 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1712 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1713 
1714 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1715 	napi_schedule(&bnapi->napi);
1716 	return IRQ_HANDLED;
1717 }
1718 
1719 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1720 {
1721 	u32 raw_cons = cpr->cp_raw_cons;
1722 	u16 cons = RING_CMP(raw_cons);
1723 	struct tx_cmp *txcmp;
1724 
1725 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1726 
1727 	return TX_CMP_VALID(txcmp, raw_cons);
1728 }
1729 
1730 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1731 {
1732 	struct bnxt_napi *bnapi = dev_instance;
1733 	struct bnxt *bp = bnapi->bp;
1734 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1735 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1736 	u32 int_status;
1737 
1738 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1739 
1740 	if (!bnxt_has_work(bp, cpr)) {
1741 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1742 		/* return if erroneous interrupt */
1743 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1744 			return IRQ_NONE;
1745 	}
1746 
1747 	/* disable ring IRQ */
1748 	BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1749 
1750 	/* Return here if interrupt is shared and is disabled. */
1751 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
1752 		return IRQ_HANDLED;
1753 
1754 	napi_schedule(&bnapi->napi);
1755 	return IRQ_HANDLED;
1756 }
1757 
1758 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1759 {
1760 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1761 	u32 raw_cons = cpr->cp_raw_cons;
1762 	u32 cons;
1763 	int tx_pkts = 0;
1764 	int rx_pkts = 0;
1765 	u8 event = 0;
1766 	struct tx_cmp *txcmp;
1767 
1768 	while (1) {
1769 		int rc;
1770 
1771 		cons = RING_CMP(raw_cons);
1772 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1773 
1774 		if (!TX_CMP_VALID(txcmp, raw_cons))
1775 			break;
1776 
1777 		/* The valid test of the entry must be done first before
1778 		 * reading any further.
1779 		 */
1780 		dma_rmb();
1781 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1782 			tx_pkts++;
1783 			/* return full budget so NAPI will complete. */
1784 			if (unlikely(tx_pkts > bp->tx_wake_thresh))
1785 				rx_pkts = budget;
1786 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1787 			if (likely(budget))
1788 				rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1789 			else
1790 				rc = bnxt_force_rx_discard(bp, bnapi, &raw_cons,
1791 							   &event);
1792 			if (likely(rc >= 0))
1793 				rx_pkts += rc;
1794 			else if (rc == -EBUSY)	/* partial completion */
1795 				break;
1796 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
1797 				     CMPL_BASE_TYPE_HWRM_DONE) ||
1798 				    (TX_CMP_TYPE(txcmp) ==
1799 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1800 				    (TX_CMP_TYPE(txcmp) ==
1801 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1802 			bnxt_hwrm_handler(bp, txcmp);
1803 		}
1804 		raw_cons = NEXT_RAW_CMP(raw_cons);
1805 
1806 		if (rx_pkts == budget)
1807 			break;
1808 	}
1809 
1810 	if (event & BNXT_TX_EVENT) {
1811 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
1812 		void __iomem *db = txr->tx_doorbell;
1813 		u16 prod = txr->tx_prod;
1814 
1815 		/* Sync BD data before updating doorbell */
1816 		wmb();
1817 
1818 		writel(DB_KEY_TX | prod, db);
1819 		writel(DB_KEY_TX | prod, db);
1820 	}
1821 
1822 	cpr->cp_raw_cons = raw_cons;
1823 	/* ACK completion ring before freeing tx ring and producing new
1824 	 * buffers in rx/agg rings to prevent overflowing the completion
1825 	 * ring.
1826 	 */
1827 	BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1828 
1829 	if (tx_pkts)
1830 		bnapi->tx_int(bp, bnapi, tx_pkts);
1831 
1832 	if (event & BNXT_RX_EVENT) {
1833 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1834 
1835 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1836 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1837 		if (event & BNXT_AGG_EVENT) {
1838 			writel(DB_KEY_RX | rxr->rx_agg_prod,
1839 			       rxr->rx_agg_doorbell);
1840 			writel(DB_KEY_RX | rxr->rx_agg_prod,
1841 			       rxr->rx_agg_doorbell);
1842 		}
1843 	}
1844 	return rx_pkts;
1845 }
1846 
1847 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
1848 {
1849 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1850 	struct bnxt *bp = bnapi->bp;
1851 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1852 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1853 	struct tx_cmp *txcmp;
1854 	struct rx_cmp_ext *rxcmp1;
1855 	u32 cp_cons, tmp_raw_cons;
1856 	u32 raw_cons = cpr->cp_raw_cons;
1857 	u32 rx_pkts = 0;
1858 	u8 event = 0;
1859 
1860 	while (1) {
1861 		int rc;
1862 
1863 		cp_cons = RING_CMP(raw_cons);
1864 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1865 
1866 		if (!TX_CMP_VALID(txcmp, raw_cons))
1867 			break;
1868 
1869 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1870 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
1871 			cp_cons = RING_CMP(tmp_raw_cons);
1872 			rxcmp1 = (struct rx_cmp_ext *)
1873 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1874 
1875 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1876 				break;
1877 
1878 			/* force an error to recycle the buffer */
1879 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1880 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1881 
1882 			rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1883 			if (likely(rc == -EIO))
1884 				rx_pkts++;
1885 			else if (rc == -EBUSY)	/* partial completion */
1886 				break;
1887 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
1888 				    CMPL_BASE_TYPE_HWRM_DONE)) {
1889 			bnxt_hwrm_handler(bp, txcmp);
1890 		} else {
1891 			netdev_err(bp->dev,
1892 				   "Invalid completion received on special ring\n");
1893 		}
1894 		raw_cons = NEXT_RAW_CMP(raw_cons);
1895 
1896 		if (rx_pkts == budget)
1897 			break;
1898 	}
1899 
1900 	cpr->cp_raw_cons = raw_cons;
1901 	BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1902 	writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1903 	writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1904 
1905 	if (event & BNXT_AGG_EVENT) {
1906 		writel(DB_KEY_RX | rxr->rx_agg_prod, rxr->rx_agg_doorbell);
1907 		writel(DB_KEY_RX | rxr->rx_agg_prod, rxr->rx_agg_doorbell);
1908 	}
1909 
1910 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
1911 		napi_complete_done(napi, rx_pkts);
1912 		BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1913 	}
1914 	return rx_pkts;
1915 }
1916 
1917 static int bnxt_poll(struct napi_struct *napi, int budget)
1918 {
1919 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1920 	struct bnxt *bp = bnapi->bp;
1921 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1922 	int work_done = 0;
1923 
1924 	while (1) {
1925 		work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1926 
1927 		if (work_done >= budget)
1928 			break;
1929 
1930 		if (!bnxt_has_work(bp, cpr)) {
1931 			if (napi_complete_done(napi, work_done))
1932 				BNXT_CP_DB_REARM(cpr->cp_doorbell,
1933 						 cpr->cp_raw_cons);
1934 			break;
1935 		}
1936 	}
1937 	mmiowb();
1938 	return work_done;
1939 }
1940 
1941 static void bnxt_free_tx_skbs(struct bnxt *bp)
1942 {
1943 	int i, max_idx;
1944 	struct pci_dev *pdev = bp->pdev;
1945 
1946 	if (!bp->tx_ring)
1947 		return;
1948 
1949 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1950 	for (i = 0; i < bp->tx_nr_rings; i++) {
1951 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1952 		int j;
1953 
1954 		for (j = 0; j < max_idx;) {
1955 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1956 			struct sk_buff *skb = tx_buf->skb;
1957 			int k, last;
1958 
1959 			if (!skb) {
1960 				j++;
1961 				continue;
1962 			}
1963 
1964 			tx_buf->skb = NULL;
1965 
1966 			if (tx_buf->is_push) {
1967 				dev_kfree_skb(skb);
1968 				j += 2;
1969 				continue;
1970 			}
1971 
1972 			dma_unmap_single(&pdev->dev,
1973 					 dma_unmap_addr(tx_buf, mapping),
1974 					 skb_headlen(skb),
1975 					 PCI_DMA_TODEVICE);
1976 
1977 			last = tx_buf->nr_frags;
1978 			j += 2;
1979 			for (k = 0; k < last; k++, j++) {
1980 				int ring_idx = j & bp->tx_ring_mask;
1981 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1982 
1983 				tx_buf = &txr->tx_buf_ring[ring_idx];
1984 				dma_unmap_page(
1985 					&pdev->dev,
1986 					dma_unmap_addr(tx_buf, mapping),
1987 					skb_frag_size(frag), PCI_DMA_TODEVICE);
1988 			}
1989 			dev_kfree_skb(skb);
1990 		}
1991 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1992 	}
1993 }
1994 
1995 static void bnxt_free_rx_skbs(struct bnxt *bp)
1996 {
1997 	int i, max_idx, max_agg_idx;
1998 	struct pci_dev *pdev = bp->pdev;
1999 
2000 	if (!bp->rx_ring)
2001 		return;
2002 
2003 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2004 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2005 	for (i = 0; i < bp->rx_nr_rings; i++) {
2006 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2007 		int j;
2008 
2009 		if (rxr->rx_tpa) {
2010 			for (j = 0; j < MAX_TPA; j++) {
2011 				struct bnxt_tpa_info *tpa_info =
2012 							&rxr->rx_tpa[j];
2013 				u8 *data = tpa_info->data;
2014 
2015 				if (!data)
2016 					continue;
2017 
2018 				dma_unmap_single(&pdev->dev, tpa_info->mapping,
2019 						 bp->rx_buf_use_size,
2020 						 bp->rx_dir);
2021 
2022 				tpa_info->data = NULL;
2023 
2024 				kfree(data);
2025 			}
2026 		}
2027 
2028 		for (j = 0; j < max_idx; j++) {
2029 			struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
2030 			dma_addr_t mapping = rx_buf->mapping;
2031 			void *data = rx_buf->data;
2032 
2033 			if (!data)
2034 				continue;
2035 
2036 			rx_buf->data = NULL;
2037 
2038 			if (BNXT_RX_PAGE_MODE(bp)) {
2039 				mapping -= bp->rx_dma_offset;
2040 				dma_unmap_page(&pdev->dev, mapping,
2041 					       PAGE_SIZE, bp->rx_dir);
2042 				__free_page(data);
2043 			} else {
2044 				dma_unmap_single(&pdev->dev, mapping,
2045 						 bp->rx_buf_use_size,
2046 						 bp->rx_dir);
2047 				kfree(data);
2048 			}
2049 		}
2050 
2051 		for (j = 0; j < max_agg_idx; j++) {
2052 			struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2053 				&rxr->rx_agg_ring[j];
2054 			struct page *page = rx_agg_buf->page;
2055 
2056 			if (!page)
2057 				continue;
2058 
2059 			dma_unmap_page(&pdev->dev, rx_agg_buf->mapping,
2060 				       BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE);
2061 
2062 			rx_agg_buf->page = NULL;
2063 			__clear_bit(j, rxr->rx_agg_bmap);
2064 
2065 			__free_page(page);
2066 		}
2067 		if (rxr->rx_page) {
2068 			__free_page(rxr->rx_page);
2069 			rxr->rx_page = NULL;
2070 		}
2071 	}
2072 }
2073 
2074 static void bnxt_free_skbs(struct bnxt *bp)
2075 {
2076 	bnxt_free_tx_skbs(bp);
2077 	bnxt_free_rx_skbs(bp);
2078 }
2079 
2080 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2081 {
2082 	struct pci_dev *pdev = bp->pdev;
2083 	int i;
2084 
2085 	for (i = 0; i < ring->nr_pages; i++) {
2086 		if (!ring->pg_arr[i])
2087 			continue;
2088 
2089 		dma_free_coherent(&pdev->dev, ring->page_size,
2090 				  ring->pg_arr[i], ring->dma_arr[i]);
2091 
2092 		ring->pg_arr[i] = NULL;
2093 	}
2094 	if (ring->pg_tbl) {
2095 		dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
2096 				  ring->pg_tbl, ring->pg_tbl_map);
2097 		ring->pg_tbl = NULL;
2098 	}
2099 	if (ring->vmem_size && *ring->vmem) {
2100 		vfree(*ring->vmem);
2101 		*ring->vmem = NULL;
2102 	}
2103 }
2104 
2105 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2106 {
2107 	int i;
2108 	struct pci_dev *pdev = bp->pdev;
2109 
2110 	if (ring->nr_pages > 1) {
2111 		ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
2112 						  ring->nr_pages * 8,
2113 						  &ring->pg_tbl_map,
2114 						  GFP_KERNEL);
2115 		if (!ring->pg_tbl)
2116 			return -ENOMEM;
2117 	}
2118 
2119 	for (i = 0; i < ring->nr_pages; i++) {
2120 		ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2121 						     ring->page_size,
2122 						     &ring->dma_arr[i],
2123 						     GFP_KERNEL);
2124 		if (!ring->pg_arr[i])
2125 			return -ENOMEM;
2126 
2127 		if (ring->nr_pages > 1)
2128 			ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
2129 	}
2130 
2131 	if (ring->vmem_size) {
2132 		*ring->vmem = vzalloc(ring->vmem_size);
2133 		if (!(*ring->vmem))
2134 			return -ENOMEM;
2135 	}
2136 	return 0;
2137 }
2138 
2139 static void bnxt_free_rx_rings(struct bnxt *bp)
2140 {
2141 	int i;
2142 
2143 	if (!bp->rx_ring)
2144 		return;
2145 
2146 	for (i = 0; i < bp->rx_nr_rings; i++) {
2147 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2148 		struct bnxt_ring_struct *ring;
2149 
2150 		if (rxr->xdp_prog)
2151 			bpf_prog_put(rxr->xdp_prog);
2152 
2153 		kfree(rxr->rx_tpa);
2154 		rxr->rx_tpa = NULL;
2155 
2156 		kfree(rxr->rx_agg_bmap);
2157 		rxr->rx_agg_bmap = NULL;
2158 
2159 		ring = &rxr->rx_ring_struct;
2160 		bnxt_free_ring(bp, ring);
2161 
2162 		ring = &rxr->rx_agg_ring_struct;
2163 		bnxt_free_ring(bp, ring);
2164 	}
2165 }
2166 
2167 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2168 {
2169 	int i, rc, agg_rings = 0, tpa_rings = 0;
2170 
2171 	if (!bp->rx_ring)
2172 		return -ENOMEM;
2173 
2174 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
2175 		agg_rings = 1;
2176 
2177 	if (bp->flags & BNXT_FLAG_TPA)
2178 		tpa_rings = 1;
2179 
2180 	for (i = 0; i < bp->rx_nr_rings; i++) {
2181 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2182 		struct bnxt_ring_struct *ring;
2183 
2184 		ring = &rxr->rx_ring_struct;
2185 
2186 		rc = bnxt_alloc_ring(bp, ring);
2187 		if (rc)
2188 			return rc;
2189 
2190 		if (agg_rings) {
2191 			u16 mem_size;
2192 
2193 			ring = &rxr->rx_agg_ring_struct;
2194 			rc = bnxt_alloc_ring(bp, ring);
2195 			if (rc)
2196 				return rc;
2197 
2198 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2199 			mem_size = rxr->rx_agg_bmap_size / 8;
2200 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2201 			if (!rxr->rx_agg_bmap)
2202 				return -ENOMEM;
2203 
2204 			if (tpa_rings) {
2205 				rxr->rx_tpa = kcalloc(MAX_TPA,
2206 						sizeof(struct bnxt_tpa_info),
2207 						GFP_KERNEL);
2208 				if (!rxr->rx_tpa)
2209 					return -ENOMEM;
2210 			}
2211 		}
2212 	}
2213 	return 0;
2214 }
2215 
2216 static void bnxt_free_tx_rings(struct bnxt *bp)
2217 {
2218 	int i;
2219 	struct pci_dev *pdev = bp->pdev;
2220 
2221 	if (!bp->tx_ring)
2222 		return;
2223 
2224 	for (i = 0; i < bp->tx_nr_rings; i++) {
2225 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2226 		struct bnxt_ring_struct *ring;
2227 
2228 		if (txr->tx_push) {
2229 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
2230 					  txr->tx_push, txr->tx_push_mapping);
2231 			txr->tx_push = NULL;
2232 		}
2233 
2234 		ring = &txr->tx_ring_struct;
2235 
2236 		bnxt_free_ring(bp, ring);
2237 	}
2238 }
2239 
2240 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2241 {
2242 	int i, j, rc;
2243 	struct pci_dev *pdev = bp->pdev;
2244 
2245 	bp->tx_push_size = 0;
2246 	if (bp->tx_push_thresh) {
2247 		int push_size;
2248 
2249 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2250 					bp->tx_push_thresh);
2251 
2252 		if (push_size > 256) {
2253 			push_size = 0;
2254 			bp->tx_push_thresh = 0;
2255 		}
2256 
2257 		bp->tx_push_size = push_size;
2258 	}
2259 
2260 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2261 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2262 		struct bnxt_ring_struct *ring;
2263 
2264 		ring = &txr->tx_ring_struct;
2265 
2266 		rc = bnxt_alloc_ring(bp, ring);
2267 		if (rc)
2268 			return rc;
2269 
2270 		if (bp->tx_push_size) {
2271 			dma_addr_t mapping;
2272 
2273 			/* One pre-allocated DMA buffer to backup
2274 			 * TX push operation
2275 			 */
2276 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
2277 						bp->tx_push_size,
2278 						&txr->tx_push_mapping,
2279 						GFP_KERNEL);
2280 
2281 			if (!txr->tx_push)
2282 				return -ENOMEM;
2283 
2284 			mapping = txr->tx_push_mapping +
2285 				sizeof(struct tx_push_bd);
2286 			txr->data_mapping = cpu_to_le64(mapping);
2287 
2288 			memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
2289 		}
2290 		ring->queue_id = bp->q_info[j].queue_id;
2291 		if (i < bp->tx_nr_rings_xdp)
2292 			continue;
2293 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2294 			j++;
2295 	}
2296 	return 0;
2297 }
2298 
2299 static void bnxt_free_cp_rings(struct bnxt *bp)
2300 {
2301 	int i;
2302 
2303 	if (!bp->bnapi)
2304 		return;
2305 
2306 	for (i = 0; i < bp->cp_nr_rings; i++) {
2307 		struct bnxt_napi *bnapi = bp->bnapi[i];
2308 		struct bnxt_cp_ring_info *cpr;
2309 		struct bnxt_ring_struct *ring;
2310 
2311 		if (!bnapi)
2312 			continue;
2313 
2314 		cpr = &bnapi->cp_ring;
2315 		ring = &cpr->cp_ring_struct;
2316 
2317 		bnxt_free_ring(bp, ring);
2318 	}
2319 }
2320 
2321 static int bnxt_alloc_cp_rings(struct bnxt *bp)
2322 {
2323 	int i, rc;
2324 
2325 	for (i = 0; i < bp->cp_nr_rings; i++) {
2326 		struct bnxt_napi *bnapi = bp->bnapi[i];
2327 		struct bnxt_cp_ring_info *cpr;
2328 		struct bnxt_ring_struct *ring;
2329 
2330 		if (!bnapi)
2331 			continue;
2332 
2333 		cpr = &bnapi->cp_ring;
2334 		ring = &cpr->cp_ring_struct;
2335 
2336 		rc = bnxt_alloc_ring(bp, ring);
2337 		if (rc)
2338 			return rc;
2339 	}
2340 	return 0;
2341 }
2342 
2343 static void bnxt_init_ring_struct(struct bnxt *bp)
2344 {
2345 	int i;
2346 
2347 	for (i = 0; i < bp->cp_nr_rings; i++) {
2348 		struct bnxt_napi *bnapi = bp->bnapi[i];
2349 		struct bnxt_cp_ring_info *cpr;
2350 		struct bnxt_rx_ring_info *rxr;
2351 		struct bnxt_tx_ring_info *txr;
2352 		struct bnxt_ring_struct *ring;
2353 
2354 		if (!bnapi)
2355 			continue;
2356 
2357 		cpr = &bnapi->cp_ring;
2358 		ring = &cpr->cp_ring_struct;
2359 		ring->nr_pages = bp->cp_nr_pages;
2360 		ring->page_size = HW_CMPD_RING_SIZE;
2361 		ring->pg_arr = (void **)cpr->cp_desc_ring;
2362 		ring->dma_arr = cpr->cp_desc_mapping;
2363 		ring->vmem_size = 0;
2364 
2365 		rxr = bnapi->rx_ring;
2366 		if (!rxr)
2367 			goto skip_rx;
2368 
2369 		ring = &rxr->rx_ring_struct;
2370 		ring->nr_pages = bp->rx_nr_pages;
2371 		ring->page_size = HW_RXBD_RING_SIZE;
2372 		ring->pg_arr = (void **)rxr->rx_desc_ring;
2373 		ring->dma_arr = rxr->rx_desc_mapping;
2374 		ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2375 		ring->vmem = (void **)&rxr->rx_buf_ring;
2376 
2377 		ring = &rxr->rx_agg_ring_struct;
2378 		ring->nr_pages = bp->rx_agg_nr_pages;
2379 		ring->page_size = HW_RXBD_RING_SIZE;
2380 		ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
2381 		ring->dma_arr = rxr->rx_agg_desc_mapping;
2382 		ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2383 		ring->vmem = (void **)&rxr->rx_agg_ring;
2384 
2385 skip_rx:
2386 		txr = bnapi->tx_ring;
2387 		if (!txr)
2388 			continue;
2389 
2390 		ring = &txr->tx_ring_struct;
2391 		ring->nr_pages = bp->tx_nr_pages;
2392 		ring->page_size = HW_RXBD_RING_SIZE;
2393 		ring->pg_arr = (void **)txr->tx_desc_ring;
2394 		ring->dma_arr = txr->tx_desc_mapping;
2395 		ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2396 		ring->vmem = (void **)&txr->tx_buf_ring;
2397 	}
2398 }
2399 
2400 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2401 {
2402 	int i;
2403 	u32 prod;
2404 	struct rx_bd **rx_buf_ring;
2405 
2406 	rx_buf_ring = (struct rx_bd **)ring->pg_arr;
2407 	for (i = 0, prod = 0; i < ring->nr_pages; i++) {
2408 		int j;
2409 		struct rx_bd *rxbd;
2410 
2411 		rxbd = rx_buf_ring[i];
2412 		if (!rxbd)
2413 			continue;
2414 
2415 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2416 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2417 			rxbd->rx_bd_opaque = prod;
2418 		}
2419 	}
2420 }
2421 
2422 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2423 {
2424 	struct net_device *dev = bp->dev;
2425 	struct bnxt_rx_ring_info *rxr;
2426 	struct bnxt_ring_struct *ring;
2427 	u32 prod, type;
2428 	int i;
2429 
2430 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2431 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2432 
2433 	if (NET_IP_ALIGN == 2)
2434 		type |= RX_BD_FLAGS_SOP;
2435 
2436 	rxr = &bp->rx_ring[ring_nr];
2437 	ring = &rxr->rx_ring_struct;
2438 	bnxt_init_rxbd_pages(ring, type);
2439 
2440 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
2441 		rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
2442 		if (IS_ERR(rxr->xdp_prog)) {
2443 			int rc = PTR_ERR(rxr->xdp_prog);
2444 
2445 			rxr->xdp_prog = NULL;
2446 			return rc;
2447 		}
2448 	}
2449 	prod = rxr->rx_prod;
2450 	for (i = 0; i < bp->rx_ring_size; i++) {
2451 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2452 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2453 				    ring_nr, i, bp->rx_ring_size);
2454 			break;
2455 		}
2456 		prod = NEXT_RX(prod);
2457 	}
2458 	rxr->rx_prod = prod;
2459 	ring->fw_ring_id = INVALID_HW_RING_ID;
2460 
2461 	ring = &rxr->rx_agg_ring_struct;
2462 	ring->fw_ring_id = INVALID_HW_RING_ID;
2463 
2464 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2465 		return 0;
2466 
2467 	type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2468 		RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2469 
2470 	bnxt_init_rxbd_pages(ring, type);
2471 
2472 	prod = rxr->rx_agg_prod;
2473 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
2474 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2475 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2476 				    ring_nr, i, bp->rx_ring_size);
2477 			break;
2478 		}
2479 		prod = NEXT_RX_AGG(prod);
2480 	}
2481 	rxr->rx_agg_prod = prod;
2482 
2483 	if (bp->flags & BNXT_FLAG_TPA) {
2484 		if (rxr->rx_tpa) {
2485 			u8 *data;
2486 			dma_addr_t mapping;
2487 
2488 			for (i = 0; i < MAX_TPA; i++) {
2489 				data = __bnxt_alloc_rx_data(bp, &mapping,
2490 							    GFP_KERNEL);
2491 				if (!data)
2492 					return -ENOMEM;
2493 
2494 				rxr->rx_tpa[i].data = data;
2495 				rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
2496 				rxr->rx_tpa[i].mapping = mapping;
2497 			}
2498 		} else {
2499 			netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2500 			return -ENOMEM;
2501 		}
2502 	}
2503 
2504 	return 0;
2505 }
2506 
2507 static void bnxt_init_cp_rings(struct bnxt *bp)
2508 {
2509 	int i;
2510 
2511 	for (i = 0; i < bp->cp_nr_rings; i++) {
2512 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
2513 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
2514 
2515 		ring->fw_ring_id = INVALID_HW_RING_ID;
2516 	}
2517 }
2518 
2519 static int bnxt_init_rx_rings(struct bnxt *bp)
2520 {
2521 	int i, rc = 0;
2522 
2523 	if (BNXT_RX_PAGE_MODE(bp)) {
2524 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
2525 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
2526 	} else {
2527 		bp->rx_offset = BNXT_RX_OFFSET;
2528 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
2529 	}
2530 
2531 	for (i = 0; i < bp->rx_nr_rings; i++) {
2532 		rc = bnxt_init_one_rx_ring(bp, i);
2533 		if (rc)
2534 			break;
2535 	}
2536 
2537 	return rc;
2538 }
2539 
2540 static int bnxt_init_tx_rings(struct bnxt *bp)
2541 {
2542 	u16 i;
2543 
2544 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2545 				   MAX_SKB_FRAGS + 1);
2546 
2547 	for (i = 0; i < bp->tx_nr_rings; i++) {
2548 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2549 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2550 
2551 		ring->fw_ring_id = INVALID_HW_RING_ID;
2552 	}
2553 
2554 	return 0;
2555 }
2556 
2557 static void bnxt_free_ring_grps(struct bnxt *bp)
2558 {
2559 	kfree(bp->grp_info);
2560 	bp->grp_info = NULL;
2561 }
2562 
2563 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2564 {
2565 	int i;
2566 
2567 	if (irq_re_init) {
2568 		bp->grp_info = kcalloc(bp->cp_nr_rings,
2569 				       sizeof(struct bnxt_ring_grp_info),
2570 				       GFP_KERNEL);
2571 		if (!bp->grp_info)
2572 			return -ENOMEM;
2573 	}
2574 	for (i = 0; i < bp->cp_nr_rings; i++) {
2575 		if (irq_re_init)
2576 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2577 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2578 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2579 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2580 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2581 	}
2582 	return 0;
2583 }
2584 
2585 static void bnxt_free_vnics(struct bnxt *bp)
2586 {
2587 	kfree(bp->vnic_info);
2588 	bp->vnic_info = NULL;
2589 	bp->nr_vnics = 0;
2590 }
2591 
2592 static int bnxt_alloc_vnics(struct bnxt *bp)
2593 {
2594 	int num_vnics = 1;
2595 
2596 #ifdef CONFIG_RFS_ACCEL
2597 	if (bp->flags & BNXT_FLAG_RFS)
2598 		num_vnics += bp->rx_nr_rings;
2599 #endif
2600 
2601 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
2602 		num_vnics++;
2603 
2604 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2605 				GFP_KERNEL);
2606 	if (!bp->vnic_info)
2607 		return -ENOMEM;
2608 
2609 	bp->nr_vnics = num_vnics;
2610 	return 0;
2611 }
2612 
2613 static void bnxt_init_vnics(struct bnxt *bp)
2614 {
2615 	int i;
2616 
2617 	for (i = 0; i < bp->nr_vnics; i++) {
2618 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2619 
2620 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
2621 		vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
2622 		vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
2623 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2624 
2625 		if (bp->vnic_info[i].rss_hash_key) {
2626 			if (i == 0)
2627 				prandom_bytes(vnic->rss_hash_key,
2628 					      HW_HASH_KEY_SIZE);
2629 			else
2630 				memcpy(vnic->rss_hash_key,
2631 				       bp->vnic_info[0].rss_hash_key,
2632 				       HW_HASH_KEY_SIZE);
2633 		}
2634 	}
2635 }
2636 
2637 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2638 {
2639 	int pages;
2640 
2641 	pages = ring_size / desc_per_pg;
2642 
2643 	if (!pages)
2644 		return 1;
2645 
2646 	pages++;
2647 
2648 	while (pages & (pages - 1))
2649 		pages++;
2650 
2651 	return pages;
2652 }
2653 
2654 void bnxt_set_tpa_flags(struct bnxt *bp)
2655 {
2656 	bp->flags &= ~BNXT_FLAG_TPA;
2657 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
2658 		return;
2659 	if (bp->dev->features & NETIF_F_LRO)
2660 		bp->flags |= BNXT_FLAG_LRO;
2661 	if (bp->dev->features & NETIF_F_GRO)
2662 		bp->flags |= BNXT_FLAG_GRO;
2663 }
2664 
2665 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2666  * be set on entry.
2667  */
2668 void bnxt_set_ring_params(struct bnxt *bp)
2669 {
2670 	u32 ring_size, rx_size, rx_space;
2671 	u32 agg_factor = 0, agg_ring_size = 0;
2672 
2673 	/* 8 for CRC and VLAN */
2674 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2675 
2676 	rx_space = rx_size + NET_SKB_PAD +
2677 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2678 
2679 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2680 	ring_size = bp->rx_ring_size;
2681 	bp->rx_agg_ring_size = 0;
2682 	bp->rx_agg_nr_pages = 0;
2683 
2684 	if (bp->flags & BNXT_FLAG_TPA)
2685 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
2686 
2687 	bp->flags &= ~BNXT_FLAG_JUMBO;
2688 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
2689 		u32 jumbo_factor;
2690 
2691 		bp->flags |= BNXT_FLAG_JUMBO;
2692 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2693 		if (jumbo_factor > agg_factor)
2694 			agg_factor = jumbo_factor;
2695 	}
2696 	agg_ring_size = ring_size * agg_factor;
2697 
2698 	if (agg_ring_size) {
2699 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2700 							RX_DESC_CNT);
2701 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2702 			u32 tmp = agg_ring_size;
2703 
2704 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2705 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2706 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2707 				    tmp, agg_ring_size);
2708 		}
2709 		bp->rx_agg_ring_size = agg_ring_size;
2710 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2711 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2712 		rx_space = rx_size + NET_SKB_PAD +
2713 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2714 	}
2715 
2716 	bp->rx_buf_use_size = rx_size;
2717 	bp->rx_buf_size = rx_space;
2718 
2719 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2720 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2721 
2722 	ring_size = bp->tx_ring_size;
2723 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2724 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2725 
2726 	ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2727 	bp->cp_ring_size = ring_size;
2728 
2729 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2730 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
2731 		bp->cp_nr_pages = MAX_CP_PAGES;
2732 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2733 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2734 			    ring_size, bp->cp_ring_size);
2735 	}
2736 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2737 	bp->cp_ring_mask = bp->cp_bit - 1;
2738 }
2739 
2740 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
2741 {
2742 	if (page_mode) {
2743 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
2744 			return -EOPNOTSUPP;
2745 		bp->dev->max_mtu = BNXT_MAX_PAGE_MODE_MTU;
2746 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
2747 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
2748 		bp->dev->hw_features &= ~NETIF_F_LRO;
2749 		bp->dev->features &= ~NETIF_F_LRO;
2750 		bp->rx_dir = DMA_BIDIRECTIONAL;
2751 		bp->rx_skb_func = bnxt_rx_page_skb;
2752 	} else {
2753 		bp->dev->max_mtu = BNXT_MAX_MTU;
2754 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
2755 		bp->rx_dir = DMA_FROM_DEVICE;
2756 		bp->rx_skb_func = bnxt_rx_skb;
2757 	}
2758 	return 0;
2759 }
2760 
2761 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2762 {
2763 	int i;
2764 	struct bnxt_vnic_info *vnic;
2765 	struct pci_dev *pdev = bp->pdev;
2766 
2767 	if (!bp->vnic_info)
2768 		return;
2769 
2770 	for (i = 0; i < bp->nr_vnics; i++) {
2771 		vnic = &bp->vnic_info[i];
2772 
2773 		kfree(vnic->fw_grp_ids);
2774 		vnic->fw_grp_ids = NULL;
2775 
2776 		kfree(vnic->uc_list);
2777 		vnic->uc_list = NULL;
2778 
2779 		if (vnic->mc_list) {
2780 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2781 					  vnic->mc_list, vnic->mc_list_mapping);
2782 			vnic->mc_list = NULL;
2783 		}
2784 
2785 		if (vnic->rss_table) {
2786 			dma_free_coherent(&pdev->dev, PAGE_SIZE,
2787 					  vnic->rss_table,
2788 					  vnic->rss_table_dma_addr);
2789 			vnic->rss_table = NULL;
2790 		}
2791 
2792 		vnic->rss_hash_key = NULL;
2793 		vnic->flags = 0;
2794 	}
2795 }
2796 
2797 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2798 {
2799 	int i, rc = 0, size;
2800 	struct bnxt_vnic_info *vnic;
2801 	struct pci_dev *pdev = bp->pdev;
2802 	int max_rings;
2803 
2804 	for (i = 0; i < bp->nr_vnics; i++) {
2805 		vnic = &bp->vnic_info[i];
2806 
2807 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2808 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2809 
2810 			if (mem_size > 0) {
2811 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2812 				if (!vnic->uc_list) {
2813 					rc = -ENOMEM;
2814 					goto out;
2815 				}
2816 			}
2817 		}
2818 
2819 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2820 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2821 			vnic->mc_list =
2822 				dma_alloc_coherent(&pdev->dev,
2823 						   vnic->mc_list_size,
2824 						   &vnic->mc_list_mapping,
2825 						   GFP_KERNEL);
2826 			if (!vnic->mc_list) {
2827 				rc = -ENOMEM;
2828 				goto out;
2829 			}
2830 		}
2831 
2832 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2833 			max_rings = bp->rx_nr_rings;
2834 		else
2835 			max_rings = 1;
2836 
2837 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2838 		if (!vnic->fw_grp_ids) {
2839 			rc = -ENOMEM;
2840 			goto out;
2841 		}
2842 
2843 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
2844 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
2845 			continue;
2846 
2847 		/* Allocate rss table and hash key */
2848 		vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2849 						     &vnic->rss_table_dma_addr,
2850 						     GFP_KERNEL);
2851 		if (!vnic->rss_table) {
2852 			rc = -ENOMEM;
2853 			goto out;
2854 		}
2855 
2856 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2857 
2858 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2859 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2860 	}
2861 	return 0;
2862 
2863 out:
2864 	return rc;
2865 }
2866 
2867 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2868 {
2869 	struct pci_dev *pdev = bp->pdev;
2870 
2871 	dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2872 			  bp->hwrm_cmd_resp_dma_addr);
2873 
2874 	bp->hwrm_cmd_resp_addr = NULL;
2875 	if (bp->hwrm_dbg_resp_addr) {
2876 		dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2877 				  bp->hwrm_dbg_resp_addr,
2878 				  bp->hwrm_dbg_resp_dma_addr);
2879 
2880 		bp->hwrm_dbg_resp_addr = NULL;
2881 	}
2882 }
2883 
2884 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2885 {
2886 	struct pci_dev *pdev = bp->pdev;
2887 
2888 	bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2889 						   &bp->hwrm_cmd_resp_dma_addr,
2890 						   GFP_KERNEL);
2891 	if (!bp->hwrm_cmd_resp_addr)
2892 		return -ENOMEM;
2893 	bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2894 						    HWRM_DBG_REG_BUF_SIZE,
2895 						    &bp->hwrm_dbg_resp_dma_addr,
2896 						    GFP_KERNEL);
2897 	if (!bp->hwrm_dbg_resp_addr)
2898 		netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2899 
2900 	return 0;
2901 }
2902 
2903 static void bnxt_free_stats(struct bnxt *bp)
2904 {
2905 	u32 size, i;
2906 	struct pci_dev *pdev = bp->pdev;
2907 
2908 	if (bp->hw_rx_port_stats) {
2909 		dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
2910 				  bp->hw_rx_port_stats,
2911 				  bp->hw_rx_port_stats_map);
2912 		bp->hw_rx_port_stats = NULL;
2913 		bp->flags &= ~BNXT_FLAG_PORT_STATS;
2914 	}
2915 
2916 	if (!bp->bnapi)
2917 		return;
2918 
2919 	size = sizeof(struct ctx_hw_stats);
2920 
2921 	for (i = 0; i < bp->cp_nr_rings; i++) {
2922 		struct bnxt_napi *bnapi = bp->bnapi[i];
2923 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2924 
2925 		if (cpr->hw_stats) {
2926 			dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2927 					  cpr->hw_stats_map);
2928 			cpr->hw_stats = NULL;
2929 		}
2930 	}
2931 }
2932 
2933 static int bnxt_alloc_stats(struct bnxt *bp)
2934 {
2935 	u32 size, i;
2936 	struct pci_dev *pdev = bp->pdev;
2937 
2938 	size = sizeof(struct ctx_hw_stats);
2939 
2940 	for (i = 0; i < bp->cp_nr_rings; i++) {
2941 		struct bnxt_napi *bnapi = bp->bnapi[i];
2942 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2943 
2944 		cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2945 						   &cpr->hw_stats_map,
2946 						   GFP_KERNEL);
2947 		if (!cpr->hw_stats)
2948 			return -ENOMEM;
2949 
2950 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2951 	}
2952 
2953 	if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) {
2954 		bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
2955 					 sizeof(struct tx_port_stats) + 1024;
2956 
2957 		bp->hw_rx_port_stats =
2958 			dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
2959 					   &bp->hw_rx_port_stats_map,
2960 					   GFP_KERNEL);
2961 		if (!bp->hw_rx_port_stats)
2962 			return -ENOMEM;
2963 
2964 		bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
2965 				       512;
2966 		bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
2967 					   sizeof(struct rx_port_stats) + 512;
2968 		bp->flags |= BNXT_FLAG_PORT_STATS;
2969 	}
2970 	return 0;
2971 }
2972 
2973 static void bnxt_clear_ring_indices(struct bnxt *bp)
2974 {
2975 	int i;
2976 
2977 	if (!bp->bnapi)
2978 		return;
2979 
2980 	for (i = 0; i < bp->cp_nr_rings; i++) {
2981 		struct bnxt_napi *bnapi = bp->bnapi[i];
2982 		struct bnxt_cp_ring_info *cpr;
2983 		struct bnxt_rx_ring_info *rxr;
2984 		struct bnxt_tx_ring_info *txr;
2985 
2986 		if (!bnapi)
2987 			continue;
2988 
2989 		cpr = &bnapi->cp_ring;
2990 		cpr->cp_raw_cons = 0;
2991 
2992 		txr = bnapi->tx_ring;
2993 		if (txr) {
2994 			txr->tx_prod = 0;
2995 			txr->tx_cons = 0;
2996 		}
2997 
2998 		rxr = bnapi->rx_ring;
2999 		if (rxr) {
3000 			rxr->rx_prod = 0;
3001 			rxr->rx_agg_prod = 0;
3002 			rxr->rx_sw_agg_prod = 0;
3003 			rxr->rx_next_cons = 0;
3004 		}
3005 	}
3006 }
3007 
3008 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
3009 {
3010 #ifdef CONFIG_RFS_ACCEL
3011 	int i;
3012 
3013 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
3014 	 * safe to delete the hash table.
3015 	 */
3016 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
3017 		struct hlist_head *head;
3018 		struct hlist_node *tmp;
3019 		struct bnxt_ntuple_filter *fltr;
3020 
3021 		head = &bp->ntp_fltr_hash_tbl[i];
3022 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
3023 			hlist_del(&fltr->hash);
3024 			kfree(fltr);
3025 		}
3026 	}
3027 	if (irq_reinit) {
3028 		kfree(bp->ntp_fltr_bmap);
3029 		bp->ntp_fltr_bmap = NULL;
3030 	}
3031 	bp->ntp_fltr_count = 0;
3032 #endif
3033 }
3034 
3035 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
3036 {
3037 #ifdef CONFIG_RFS_ACCEL
3038 	int i, rc = 0;
3039 
3040 	if (!(bp->flags & BNXT_FLAG_RFS))
3041 		return 0;
3042 
3043 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
3044 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
3045 
3046 	bp->ntp_fltr_count = 0;
3047 	bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
3048 				    sizeof(long),
3049 				    GFP_KERNEL);
3050 
3051 	if (!bp->ntp_fltr_bmap)
3052 		rc = -ENOMEM;
3053 
3054 	return rc;
3055 #else
3056 	return 0;
3057 #endif
3058 }
3059 
3060 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
3061 {
3062 	bnxt_free_vnic_attributes(bp);
3063 	bnxt_free_tx_rings(bp);
3064 	bnxt_free_rx_rings(bp);
3065 	bnxt_free_cp_rings(bp);
3066 	bnxt_free_ntp_fltrs(bp, irq_re_init);
3067 	if (irq_re_init) {
3068 		bnxt_free_stats(bp);
3069 		bnxt_free_ring_grps(bp);
3070 		bnxt_free_vnics(bp);
3071 		kfree(bp->tx_ring_map);
3072 		bp->tx_ring_map = NULL;
3073 		kfree(bp->tx_ring);
3074 		bp->tx_ring = NULL;
3075 		kfree(bp->rx_ring);
3076 		bp->rx_ring = NULL;
3077 		kfree(bp->bnapi);
3078 		bp->bnapi = NULL;
3079 	} else {
3080 		bnxt_clear_ring_indices(bp);
3081 	}
3082 }
3083 
3084 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
3085 {
3086 	int i, j, rc, size, arr_size;
3087 	void *bnapi;
3088 
3089 	if (irq_re_init) {
3090 		/* Allocate bnapi mem pointer array and mem block for
3091 		 * all queues
3092 		 */
3093 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
3094 				bp->cp_nr_rings);
3095 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
3096 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
3097 		if (!bnapi)
3098 			return -ENOMEM;
3099 
3100 		bp->bnapi = bnapi;
3101 		bnapi += arr_size;
3102 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
3103 			bp->bnapi[i] = bnapi;
3104 			bp->bnapi[i]->index = i;
3105 			bp->bnapi[i]->bp = bp;
3106 		}
3107 
3108 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
3109 				      sizeof(struct bnxt_rx_ring_info),
3110 				      GFP_KERNEL);
3111 		if (!bp->rx_ring)
3112 			return -ENOMEM;
3113 
3114 		for (i = 0; i < bp->rx_nr_rings; i++) {
3115 			bp->rx_ring[i].bnapi = bp->bnapi[i];
3116 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
3117 		}
3118 
3119 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
3120 				      sizeof(struct bnxt_tx_ring_info),
3121 				      GFP_KERNEL);
3122 		if (!bp->tx_ring)
3123 			return -ENOMEM;
3124 
3125 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
3126 					  GFP_KERNEL);
3127 
3128 		if (!bp->tx_ring_map)
3129 			return -ENOMEM;
3130 
3131 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
3132 			j = 0;
3133 		else
3134 			j = bp->rx_nr_rings;
3135 
3136 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
3137 			bp->tx_ring[i].bnapi = bp->bnapi[j];
3138 			bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
3139 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
3140 			if (i >= bp->tx_nr_rings_xdp) {
3141 				bp->tx_ring[i].txq_index = i -
3142 					bp->tx_nr_rings_xdp;
3143 				bp->bnapi[j]->tx_int = bnxt_tx_int;
3144 			} else {
3145 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
3146 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
3147 			}
3148 		}
3149 
3150 		rc = bnxt_alloc_stats(bp);
3151 		if (rc)
3152 			goto alloc_mem_err;
3153 
3154 		rc = bnxt_alloc_ntp_fltrs(bp);
3155 		if (rc)
3156 			goto alloc_mem_err;
3157 
3158 		rc = bnxt_alloc_vnics(bp);
3159 		if (rc)
3160 			goto alloc_mem_err;
3161 	}
3162 
3163 	bnxt_init_ring_struct(bp);
3164 
3165 	rc = bnxt_alloc_rx_rings(bp);
3166 	if (rc)
3167 		goto alloc_mem_err;
3168 
3169 	rc = bnxt_alloc_tx_rings(bp);
3170 	if (rc)
3171 		goto alloc_mem_err;
3172 
3173 	rc = bnxt_alloc_cp_rings(bp);
3174 	if (rc)
3175 		goto alloc_mem_err;
3176 
3177 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
3178 				  BNXT_VNIC_UCAST_FLAG;
3179 	rc = bnxt_alloc_vnic_attributes(bp);
3180 	if (rc)
3181 		goto alloc_mem_err;
3182 	return 0;
3183 
3184 alloc_mem_err:
3185 	bnxt_free_mem(bp, true);
3186 	return rc;
3187 }
3188 
3189 static void bnxt_disable_int(struct bnxt *bp)
3190 {
3191 	int i;
3192 
3193 	if (!bp->bnapi)
3194 		return;
3195 
3196 	for (i = 0; i < bp->cp_nr_rings; i++) {
3197 		struct bnxt_napi *bnapi = bp->bnapi[i];
3198 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3199 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3200 
3201 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
3202 			BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3203 	}
3204 }
3205 
3206 static void bnxt_disable_int_sync(struct bnxt *bp)
3207 {
3208 	int i;
3209 
3210 	atomic_inc(&bp->intr_sem);
3211 
3212 	bnxt_disable_int(bp);
3213 	for (i = 0; i < bp->cp_nr_rings; i++)
3214 		synchronize_irq(bp->irq_tbl[i].vector);
3215 }
3216 
3217 static void bnxt_enable_int(struct bnxt *bp)
3218 {
3219 	int i;
3220 
3221 	atomic_set(&bp->intr_sem, 0);
3222 	for (i = 0; i < bp->cp_nr_rings; i++) {
3223 		struct bnxt_napi *bnapi = bp->bnapi[i];
3224 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3225 
3226 		BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
3227 	}
3228 }
3229 
3230 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
3231 			    u16 cmpl_ring, u16 target_id)
3232 {
3233 	struct input *req = request;
3234 
3235 	req->req_type = cpu_to_le16(req_type);
3236 	req->cmpl_ring = cpu_to_le16(cmpl_ring);
3237 	req->target_id = cpu_to_le16(target_id);
3238 	req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
3239 }
3240 
3241 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
3242 				 int timeout, bool silent)
3243 {
3244 	int i, intr_process, rc, tmo_count;
3245 	struct input *req = msg;
3246 	u32 *data = msg;
3247 	__le32 *resp_len, *valid;
3248 	u16 cp_ring_id, len = 0;
3249 	struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
3250 
3251 	req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
3252 	memset(resp, 0, PAGE_SIZE);
3253 	cp_ring_id = le16_to_cpu(req->cmpl_ring);
3254 	intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
3255 
3256 	/* Write request msg to hwrm channel */
3257 	__iowrite32_copy(bp->bar0, data, msg_len / 4);
3258 
3259 	for (i = msg_len; i < BNXT_HWRM_MAX_REQ_LEN; i += 4)
3260 		writel(0, bp->bar0 + i);
3261 
3262 	/* currently supports only one outstanding message */
3263 	if (intr_process)
3264 		bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
3265 
3266 	/* Ring channel doorbell */
3267 	writel(1, bp->bar0 + 0x100);
3268 
3269 	if (!timeout)
3270 		timeout = DFLT_HWRM_CMD_TIMEOUT;
3271 
3272 	i = 0;
3273 	tmo_count = timeout * 40;
3274 	if (intr_process) {
3275 		/* Wait until hwrm response cmpl interrupt is processed */
3276 		while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
3277 		       i++ < tmo_count) {
3278 			usleep_range(25, 40);
3279 		}
3280 
3281 		if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
3282 			netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
3283 				   le16_to_cpu(req->req_type));
3284 			return -1;
3285 		}
3286 	} else {
3287 		/* Check if response len is updated */
3288 		resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
3289 		for (i = 0; i < tmo_count; i++) {
3290 			len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3291 			      HWRM_RESP_LEN_SFT;
3292 			if (len)
3293 				break;
3294 			usleep_range(25, 40);
3295 		}
3296 
3297 		if (i >= tmo_count) {
3298 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
3299 				   timeout, le16_to_cpu(req->req_type),
3300 				   le16_to_cpu(req->seq_id), len);
3301 			return -1;
3302 		}
3303 
3304 		/* Last word of resp contains valid bit */
3305 		valid = bp->hwrm_cmd_resp_addr + len - 4;
3306 		for (i = 0; i < 5; i++) {
3307 			if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
3308 				break;
3309 			udelay(1);
3310 		}
3311 
3312 		if (i >= 5) {
3313 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
3314 				   timeout, le16_to_cpu(req->req_type),
3315 				   le16_to_cpu(req->seq_id), len, *valid);
3316 			return -1;
3317 		}
3318 	}
3319 
3320 	rc = le16_to_cpu(resp->error_code);
3321 	if (rc && !silent)
3322 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
3323 			   le16_to_cpu(resp->req_type),
3324 			   le16_to_cpu(resp->seq_id), rc);
3325 	return rc;
3326 }
3327 
3328 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3329 {
3330 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
3331 }
3332 
3333 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3334 {
3335 	int rc;
3336 
3337 	mutex_lock(&bp->hwrm_cmd_lock);
3338 	rc = _hwrm_send_message(bp, msg, msg_len, timeout);
3339 	mutex_unlock(&bp->hwrm_cmd_lock);
3340 	return rc;
3341 }
3342 
3343 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3344 			     int timeout)
3345 {
3346 	int rc;
3347 
3348 	mutex_lock(&bp->hwrm_cmd_lock);
3349 	rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3350 	mutex_unlock(&bp->hwrm_cmd_lock);
3351 	return rc;
3352 }
3353 
3354 int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
3355 				     int bmap_size)
3356 {
3357 	struct hwrm_func_drv_rgtr_input req = {0};
3358 	DECLARE_BITMAP(async_events_bmap, 256);
3359 	u32 *events = (u32 *)async_events_bmap;
3360 	int i;
3361 
3362 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3363 
3364 	req.enables =
3365 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
3366 
3367 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
3368 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
3369 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
3370 
3371 	if (bmap && bmap_size) {
3372 		for (i = 0; i < bmap_size; i++) {
3373 			if (test_bit(i, bmap))
3374 				__set_bit(i, async_events_bmap);
3375 		}
3376 	}
3377 
3378 	for (i = 0; i < 8; i++)
3379 		req.async_event_fwd[i] |= cpu_to_le32(events[i]);
3380 
3381 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3382 }
3383 
3384 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
3385 {
3386 	struct hwrm_func_drv_rgtr_input req = {0};
3387 
3388 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3389 
3390 	req.enables =
3391 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
3392 			    FUNC_DRV_RGTR_REQ_ENABLES_VER);
3393 
3394 	req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
3395 	req.ver_maj = DRV_VER_MAJ;
3396 	req.ver_min = DRV_VER_MIN;
3397 	req.ver_upd = DRV_VER_UPD;
3398 
3399 	if (BNXT_PF(bp)) {
3400 		DECLARE_BITMAP(vf_req_snif_bmap, 256);
3401 		u32 *data = (u32 *)vf_req_snif_bmap;
3402 		int i;
3403 
3404 		memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
3405 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
3406 			__set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
3407 
3408 		for (i = 0; i < 8; i++)
3409 			req.vf_req_fwd[i] = cpu_to_le32(data[i]);
3410 
3411 		req.enables |=
3412 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
3413 	}
3414 
3415 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3416 }
3417 
3418 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
3419 {
3420 	struct hwrm_func_drv_unrgtr_input req = {0};
3421 
3422 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
3423 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3424 }
3425 
3426 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
3427 {
3428 	u32 rc = 0;
3429 	struct hwrm_tunnel_dst_port_free_input req = {0};
3430 
3431 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
3432 	req.tunnel_type = tunnel_type;
3433 
3434 	switch (tunnel_type) {
3435 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
3436 		req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
3437 		break;
3438 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
3439 		req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
3440 		break;
3441 	default:
3442 		break;
3443 	}
3444 
3445 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3446 	if (rc)
3447 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
3448 			   rc);
3449 	return rc;
3450 }
3451 
3452 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
3453 					   u8 tunnel_type)
3454 {
3455 	u32 rc = 0;
3456 	struct hwrm_tunnel_dst_port_alloc_input req = {0};
3457 	struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3458 
3459 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
3460 
3461 	req.tunnel_type = tunnel_type;
3462 	req.tunnel_dst_port_val = port;
3463 
3464 	mutex_lock(&bp->hwrm_cmd_lock);
3465 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3466 	if (rc) {
3467 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
3468 			   rc);
3469 		goto err_out;
3470 	}
3471 
3472 	switch (tunnel_type) {
3473 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
3474 		bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
3475 		break;
3476 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
3477 		bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
3478 		break;
3479 	default:
3480 		break;
3481 	}
3482 
3483 err_out:
3484 	mutex_unlock(&bp->hwrm_cmd_lock);
3485 	return rc;
3486 }
3487 
3488 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
3489 {
3490 	struct hwrm_cfa_l2_set_rx_mask_input req = {0};
3491 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3492 
3493 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
3494 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3495 
3496 	req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
3497 	req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
3498 	req.mask = cpu_to_le32(vnic->rx_mask);
3499 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3500 }
3501 
3502 #ifdef CONFIG_RFS_ACCEL
3503 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
3504 					    struct bnxt_ntuple_filter *fltr)
3505 {
3506 	struct hwrm_cfa_ntuple_filter_free_input req = {0};
3507 
3508 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
3509 	req.ntuple_filter_id = fltr->filter_id;
3510 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3511 }
3512 
3513 #define BNXT_NTP_FLTR_FLAGS					\
3514 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
3515 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
3516 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
3517 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
3518 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
3519 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
3520 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
3521 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
3522 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
3523 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
3524 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
3525 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
3526 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
3527 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
3528 
3529 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
3530 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
3531 
3532 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
3533 					     struct bnxt_ntuple_filter *fltr)
3534 {
3535 	int rc = 0;
3536 	struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
3537 	struct hwrm_cfa_ntuple_filter_alloc_output *resp =
3538 		bp->hwrm_cmd_resp_addr;
3539 	struct flow_keys *keys = &fltr->fkeys;
3540 	struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
3541 
3542 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
3543 	req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
3544 
3545 	req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
3546 
3547 	req.ethertype = htons(ETH_P_IP);
3548 	memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
3549 	req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
3550 	req.ip_protocol = keys->basic.ip_proto;
3551 
3552 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
3553 		int i;
3554 
3555 		req.ethertype = htons(ETH_P_IPV6);
3556 		req.ip_addr_type =
3557 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
3558 		*(struct in6_addr *)&req.src_ipaddr[0] =
3559 			keys->addrs.v6addrs.src;
3560 		*(struct in6_addr *)&req.dst_ipaddr[0] =
3561 			keys->addrs.v6addrs.dst;
3562 		for (i = 0; i < 4; i++) {
3563 			req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3564 			req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3565 		}
3566 	} else {
3567 		req.src_ipaddr[0] = keys->addrs.v4addrs.src;
3568 		req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3569 		req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
3570 		req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3571 	}
3572 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
3573 		req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
3574 		req.tunnel_type =
3575 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
3576 	}
3577 
3578 	req.src_port = keys->ports.src;
3579 	req.src_port_mask = cpu_to_be16(0xffff);
3580 	req.dst_port = keys->ports.dst;
3581 	req.dst_port_mask = cpu_to_be16(0xffff);
3582 
3583 	req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
3584 	mutex_lock(&bp->hwrm_cmd_lock);
3585 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3586 	if (!rc)
3587 		fltr->filter_id = resp->ntuple_filter_id;
3588 	mutex_unlock(&bp->hwrm_cmd_lock);
3589 	return rc;
3590 }
3591 #endif
3592 
3593 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
3594 				     u8 *mac_addr)
3595 {
3596 	u32 rc = 0;
3597 	struct hwrm_cfa_l2_filter_alloc_input req = {0};
3598 	struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3599 
3600 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
3601 	req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
3602 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
3603 		req.flags |=
3604 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
3605 	req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
3606 	req.enables =
3607 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
3608 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
3609 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
3610 	memcpy(req.l2_addr, mac_addr, ETH_ALEN);
3611 	req.l2_addr_mask[0] = 0xff;
3612 	req.l2_addr_mask[1] = 0xff;
3613 	req.l2_addr_mask[2] = 0xff;
3614 	req.l2_addr_mask[3] = 0xff;
3615 	req.l2_addr_mask[4] = 0xff;
3616 	req.l2_addr_mask[5] = 0xff;
3617 
3618 	mutex_lock(&bp->hwrm_cmd_lock);
3619 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3620 	if (!rc)
3621 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
3622 							resp->l2_filter_id;
3623 	mutex_unlock(&bp->hwrm_cmd_lock);
3624 	return rc;
3625 }
3626 
3627 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
3628 {
3629 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
3630 	int rc = 0;
3631 
3632 	/* Any associated ntuple filters will also be cleared by firmware. */
3633 	mutex_lock(&bp->hwrm_cmd_lock);
3634 	for (i = 0; i < num_of_vnics; i++) {
3635 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3636 
3637 		for (j = 0; j < vnic->uc_filter_count; j++) {
3638 			struct hwrm_cfa_l2_filter_free_input req = {0};
3639 
3640 			bnxt_hwrm_cmd_hdr_init(bp, &req,
3641 					       HWRM_CFA_L2_FILTER_FREE, -1, -1);
3642 
3643 			req.l2_filter_id = vnic->fw_l2_filter_id[j];
3644 
3645 			rc = _hwrm_send_message(bp, &req, sizeof(req),
3646 						HWRM_CMD_TIMEOUT);
3647 		}
3648 		vnic->uc_filter_count = 0;
3649 	}
3650 	mutex_unlock(&bp->hwrm_cmd_lock);
3651 
3652 	return rc;
3653 }
3654 
3655 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
3656 {
3657 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3658 	struct hwrm_vnic_tpa_cfg_input req = {0};
3659 
3660 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3661 
3662 	if (tpa_flags) {
3663 		u16 mss = bp->dev->mtu - 40;
3664 		u32 nsegs, n, segs = 0, flags;
3665 
3666 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3667 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3668 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3669 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3670 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3671 		if (tpa_flags & BNXT_FLAG_GRO)
3672 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3673 
3674 		req.flags = cpu_to_le32(flags);
3675 
3676 		req.enables =
3677 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3678 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3679 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3680 
3681 		/* Number of segs are log2 units, and first packet is not
3682 		 * included as part of this units.
3683 		 */
3684 		if (mss <= BNXT_RX_PAGE_SIZE) {
3685 			n = BNXT_RX_PAGE_SIZE / mss;
3686 			nsegs = (MAX_SKB_FRAGS - 1) * n;
3687 		} else {
3688 			n = mss / BNXT_RX_PAGE_SIZE;
3689 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
3690 				n++;
3691 			nsegs = (MAX_SKB_FRAGS - n) / n;
3692 		}
3693 
3694 		segs = ilog2(nsegs);
3695 		req.max_agg_segs = cpu_to_le16(segs);
3696 		req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3697 
3698 		req.min_agg_len = cpu_to_le32(512);
3699 	}
3700 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3701 
3702 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3703 }
3704 
3705 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3706 {
3707 	u32 i, j, max_rings;
3708 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3709 	struct hwrm_vnic_rss_cfg_input req = {0};
3710 
3711 	if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
3712 		return 0;
3713 
3714 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3715 	if (set_rss) {
3716 		req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
3717 		if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
3718 			if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3719 				max_rings = bp->rx_nr_rings - 1;
3720 			else
3721 				max_rings = bp->rx_nr_rings;
3722 		} else {
3723 			max_rings = 1;
3724 		}
3725 
3726 		/* Fill the RSS indirection table with ring group ids */
3727 		for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3728 			if (j == max_rings)
3729 				j = 0;
3730 			vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3731 		}
3732 
3733 		req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3734 		req.hash_key_tbl_addr =
3735 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
3736 	}
3737 	req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3738 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3739 }
3740 
3741 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3742 {
3743 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3744 	struct hwrm_vnic_plcmodes_cfg_input req = {0};
3745 
3746 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3747 	req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3748 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3749 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3750 	req.enables =
3751 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3752 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3753 	/* thresholds not implemented in firmware yet */
3754 	req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3755 	req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3756 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3757 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3758 }
3759 
3760 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
3761 					u16 ctx_idx)
3762 {
3763 	struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3764 
3765 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3766 	req.rss_cos_lb_ctx_id =
3767 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
3768 
3769 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3770 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
3771 }
3772 
3773 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3774 {
3775 	int i, j;
3776 
3777 	for (i = 0; i < bp->nr_vnics; i++) {
3778 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3779 
3780 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
3781 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
3782 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
3783 		}
3784 	}
3785 	bp->rsscos_nr_ctxs = 0;
3786 }
3787 
3788 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
3789 {
3790 	int rc;
3791 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3792 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3793 						bp->hwrm_cmd_resp_addr;
3794 
3795 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3796 			       -1);
3797 
3798 	mutex_lock(&bp->hwrm_cmd_lock);
3799 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3800 	if (!rc)
3801 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
3802 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
3803 	mutex_unlock(&bp->hwrm_cmd_lock);
3804 
3805 	return rc;
3806 }
3807 
3808 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3809 {
3810 	unsigned int ring = 0, grp_idx;
3811 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3812 	struct hwrm_vnic_cfg_input req = {0};
3813 	u16 def_vlan = 0;
3814 
3815 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3816 
3817 	req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
3818 	/* Only RSS support for now TBD: COS & LB */
3819 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
3820 		req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3821 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
3822 					   VNIC_CFG_REQ_ENABLES_MRU);
3823 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
3824 		req.rss_rule =
3825 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
3826 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
3827 					   VNIC_CFG_REQ_ENABLES_MRU);
3828 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
3829 	} else {
3830 		req.rss_rule = cpu_to_le16(0xffff);
3831 	}
3832 
3833 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
3834 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
3835 		req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
3836 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
3837 	} else {
3838 		req.cos_rule = cpu_to_le16(0xffff);
3839 	}
3840 
3841 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3842 		ring = 0;
3843 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3844 		ring = vnic_id - 1;
3845 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
3846 		ring = bp->rx_nr_rings - 1;
3847 
3848 	grp_idx = bp->rx_ring[ring].bnapi->index;
3849 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3850 	req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3851 
3852 	req.lb_rule = cpu_to_le16(0xffff);
3853 	req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3854 			      VLAN_HLEN);
3855 
3856 #ifdef CONFIG_BNXT_SRIOV
3857 	if (BNXT_VF(bp))
3858 		def_vlan = bp->vf.vlan;
3859 #endif
3860 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
3861 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3862 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
3863 		req.flags |=
3864 			cpu_to_le32(VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE);
3865 
3866 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3867 }
3868 
3869 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3870 {
3871 	u32 rc = 0;
3872 
3873 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3874 		struct hwrm_vnic_free_input req = {0};
3875 
3876 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3877 		req.vnic_id =
3878 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3879 
3880 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3881 		if (rc)
3882 			return rc;
3883 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3884 	}
3885 	return rc;
3886 }
3887 
3888 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3889 {
3890 	u16 i;
3891 
3892 	for (i = 0; i < bp->nr_vnics; i++)
3893 		bnxt_hwrm_vnic_free_one(bp, i);
3894 }
3895 
3896 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
3897 				unsigned int start_rx_ring_idx,
3898 				unsigned int nr_rings)
3899 {
3900 	int rc = 0;
3901 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
3902 	struct hwrm_vnic_alloc_input req = {0};
3903 	struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3904 
3905 	/* map ring groups to this vnic */
3906 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
3907 		grp_idx = bp->rx_ring[i].bnapi->index;
3908 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
3909 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3910 				   j, nr_rings);
3911 			break;
3912 		}
3913 		bp->vnic_info[vnic_id].fw_grp_ids[j] =
3914 					bp->grp_info[grp_idx].fw_grp_id;
3915 	}
3916 
3917 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
3918 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
3919 	if (vnic_id == 0)
3920 		req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3921 
3922 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3923 
3924 	mutex_lock(&bp->hwrm_cmd_lock);
3925 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3926 	if (!rc)
3927 		bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3928 	mutex_unlock(&bp->hwrm_cmd_lock);
3929 	return rc;
3930 }
3931 
3932 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
3933 {
3934 	struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
3935 	struct hwrm_vnic_qcaps_input req = {0};
3936 	int rc;
3937 
3938 	if (bp->hwrm_spec_code < 0x10600)
3939 		return 0;
3940 
3941 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
3942 	mutex_lock(&bp->hwrm_cmd_lock);
3943 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3944 	if (!rc) {
3945 		if (resp->flags &
3946 		    cpu_to_le32(VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
3947 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
3948 	}
3949 	mutex_unlock(&bp->hwrm_cmd_lock);
3950 	return rc;
3951 }
3952 
3953 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3954 {
3955 	u16 i;
3956 	u32 rc = 0;
3957 
3958 	mutex_lock(&bp->hwrm_cmd_lock);
3959 	for (i = 0; i < bp->rx_nr_rings; i++) {
3960 		struct hwrm_ring_grp_alloc_input req = {0};
3961 		struct hwrm_ring_grp_alloc_output *resp =
3962 					bp->hwrm_cmd_resp_addr;
3963 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
3964 
3965 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3966 
3967 		req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
3968 		req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
3969 		req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
3970 		req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
3971 
3972 		rc = _hwrm_send_message(bp, &req, sizeof(req),
3973 					HWRM_CMD_TIMEOUT);
3974 		if (rc)
3975 			break;
3976 
3977 		bp->grp_info[grp_idx].fw_grp_id =
3978 			le32_to_cpu(resp->ring_group_id);
3979 	}
3980 	mutex_unlock(&bp->hwrm_cmd_lock);
3981 	return rc;
3982 }
3983 
3984 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3985 {
3986 	u16 i;
3987 	u32 rc = 0;
3988 	struct hwrm_ring_grp_free_input req = {0};
3989 
3990 	if (!bp->grp_info)
3991 		return 0;
3992 
3993 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3994 
3995 	mutex_lock(&bp->hwrm_cmd_lock);
3996 	for (i = 0; i < bp->cp_nr_rings; i++) {
3997 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3998 			continue;
3999 		req.ring_group_id =
4000 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
4001 
4002 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4003 					HWRM_CMD_TIMEOUT);
4004 		if (rc)
4005 			break;
4006 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
4007 	}
4008 	mutex_unlock(&bp->hwrm_cmd_lock);
4009 	return rc;
4010 }
4011 
4012 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
4013 				    struct bnxt_ring_struct *ring,
4014 				    u32 ring_type, u32 map_index,
4015 				    u32 stats_ctx_id)
4016 {
4017 	int rc = 0, err = 0;
4018 	struct hwrm_ring_alloc_input req = {0};
4019 	struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4020 	u16 ring_id;
4021 
4022 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
4023 
4024 	req.enables = 0;
4025 	if (ring->nr_pages > 1) {
4026 		req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
4027 		/* Page size is in log2 units */
4028 		req.page_size = BNXT_PAGE_SHIFT;
4029 		req.page_tbl_depth = 1;
4030 	} else {
4031 		req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
4032 	}
4033 	req.fbo = 0;
4034 	/* Association of ring index with doorbell index and MSIX number */
4035 	req.logical_id = cpu_to_le16(map_index);
4036 
4037 	switch (ring_type) {
4038 	case HWRM_RING_ALLOC_TX:
4039 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
4040 		/* Association of transmit ring with completion ring */
4041 		req.cmpl_ring_id =
4042 			cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
4043 		req.length = cpu_to_le32(bp->tx_ring_mask + 1);
4044 		req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
4045 		req.queue_id = cpu_to_le16(ring->queue_id);
4046 		break;
4047 	case HWRM_RING_ALLOC_RX:
4048 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4049 		req.length = cpu_to_le32(bp->rx_ring_mask + 1);
4050 		break;
4051 	case HWRM_RING_ALLOC_AGG:
4052 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4053 		req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
4054 		break;
4055 	case HWRM_RING_ALLOC_CMPL:
4056 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
4057 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
4058 		if (bp->flags & BNXT_FLAG_USING_MSIX)
4059 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
4060 		break;
4061 	default:
4062 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
4063 			   ring_type);
4064 		return -1;
4065 	}
4066 
4067 	mutex_lock(&bp->hwrm_cmd_lock);
4068 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4069 	err = le16_to_cpu(resp->error_code);
4070 	ring_id = le16_to_cpu(resp->ring_id);
4071 	mutex_unlock(&bp->hwrm_cmd_lock);
4072 
4073 	if (rc || err) {
4074 		switch (ring_type) {
4075 		case RING_FREE_REQ_RING_TYPE_L2_CMPL:
4076 			netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
4077 				   rc, err);
4078 			return -1;
4079 
4080 		case RING_FREE_REQ_RING_TYPE_RX:
4081 			netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
4082 				   rc, err);
4083 			return -1;
4084 
4085 		case RING_FREE_REQ_RING_TYPE_TX:
4086 			netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
4087 				   rc, err);
4088 			return -1;
4089 
4090 		default:
4091 			netdev_err(bp->dev, "Invalid ring\n");
4092 			return -1;
4093 		}
4094 	}
4095 	ring->fw_ring_id = ring_id;
4096 	return rc;
4097 }
4098 
4099 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
4100 {
4101 	int rc;
4102 
4103 	if (BNXT_PF(bp)) {
4104 		struct hwrm_func_cfg_input req = {0};
4105 
4106 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4107 		req.fid = cpu_to_le16(0xffff);
4108 		req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4109 		req.async_event_cr = cpu_to_le16(idx);
4110 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4111 	} else {
4112 		struct hwrm_func_vf_cfg_input req = {0};
4113 
4114 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
4115 		req.enables =
4116 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4117 		req.async_event_cr = cpu_to_le16(idx);
4118 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4119 	}
4120 	return rc;
4121 }
4122 
4123 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
4124 {
4125 	int i, rc = 0;
4126 
4127 	for (i = 0; i < bp->cp_nr_rings; i++) {
4128 		struct bnxt_napi *bnapi = bp->bnapi[i];
4129 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4130 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4131 
4132 		cpr->cp_doorbell = bp->bar1 + i * 0x80;
4133 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
4134 					      INVALID_STATS_CTX_ID);
4135 		if (rc)
4136 			goto err_out;
4137 		BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4138 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
4139 
4140 		if (!i) {
4141 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
4142 			if (rc)
4143 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
4144 		}
4145 	}
4146 
4147 	for (i = 0; i < bp->tx_nr_rings; i++) {
4148 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4149 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4150 		u32 map_idx = txr->bnapi->index;
4151 		u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
4152 
4153 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
4154 					      map_idx, fw_stats_ctx);
4155 		if (rc)
4156 			goto err_out;
4157 		txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
4158 	}
4159 
4160 	for (i = 0; i < bp->rx_nr_rings; i++) {
4161 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4162 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4163 		u32 map_idx = rxr->bnapi->index;
4164 
4165 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
4166 					      map_idx, INVALID_STATS_CTX_ID);
4167 		if (rc)
4168 			goto err_out;
4169 		rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
4170 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
4171 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
4172 	}
4173 
4174 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4175 		for (i = 0; i < bp->rx_nr_rings; i++) {
4176 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4177 			struct bnxt_ring_struct *ring =
4178 						&rxr->rx_agg_ring_struct;
4179 			u32 grp_idx = rxr->bnapi->index;
4180 			u32 map_idx = grp_idx + bp->rx_nr_rings;
4181 
4182 			rc = hwrm_ring_alloc_send_msg(bp, ring,
4183 						      HWRM_RING_ALLOC_AGG,
4184 						      map_idx,
4185 						      INVALID_STATS_CTX_ID);
4186 			if (rc)
4187 				goto err_out;
4188 
4189 			rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
4190 			writel(DB_KEY_RX | rxr->rx_agg_prod,
4191 			       rxr->rx_agg_doorbell);
4192 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
4193 		}
4194 	}
4195 err_out:
4196 	return rc;
4197 }
4198 
4199 static int hwrm_ring_free_send_msg(struct bnxt *bp,
4200 				   struct bnxt_ring_struct *ring,
4201 				   u32 ring_type, int cmpl_ring_id)
4202 {
4203 	int rc;
4204 	struct hwrm_ring_free_input req = {0};
4205 	struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
4206 	u16 error_code;
4207 
4208 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
4209 	req.ring_type = ring_type;
4210 	req.ring_id = cpu_to_le16(ring->fw_ring_id);
4211 
4212 	mutex_lock(&bp->hwrm_cmd_lock);
4213 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4214 	error_code = le16_to_cpu(resp->error_code);
4215 	mutex_unlock(&bp->hwrm_cmd_lock);
4216 
4217 	if (rc || error_code) {
4218 		switch (ring_type) {
4219 		case RING_FREE_REQ_RING_TYPE_L2_CMPL:
4220 			netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
4221 				   rc);
4222 			return rc;
4223 		case RING_FREE_REQ_RING_TYPE_RX:
4224 			netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
4225 				   rc);
4226 			return rc;
4227 		case RING_FREE_REQ_RING_TYPE_TX:
4228 			netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
4229 				   rc);
4230 			return rc;
4231 		default:
4232 			netdev_err(bp->dev, "Invalid ring\n");
4233 			return -1;
4234 		}
4235 	}
4236 	return 0;
4237 }
4238 
4239 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
4240 {
4241 	int i;
4242 
4243 	if (!bp->bnapi)
4244 		return;
4245 
4246 	for (i = 0; i < bp->tx_nr_rings; i++) {
4247 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4248 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4249 		u32 grp_idx = txr->bnapi->index;
4250 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4251 
4252 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4253 			hwrm_ring_free_send_msg(bp, ring,
4254 						RING_FREE_REQ_RING_TYPE_TX,
4255 						close_path ? cmpl_ring_id :
4256 						INVALID_HW_RING_ID);
4257 			ring->fw_ring_id = INVALID_HW_RING_ID;
4258 		}
4259 	}
4260 
4261 	for (i = 0; i < bp->rx_nr_rings; i++) {
4262 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4263 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4264 		u32 grp_idx = rxr->bnapi->index;
4265 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4266 
4267 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4268 			hwrm_ring_free_send_msg(bp, ring,
4269 						RING_FREE_REQ_RING_TYPE_RX,
4270 						close_path ? cmpl_ring_id :
4271 						INVALID_HW_RING_ID);
4272 			ring->fw_ring_id = INVALID_HW_RING_ID;
4273 			bp->grp_info[grp_idx].rx_fw_ring_id =
4274 				INVALID_HW_RING_ID;
4275 		}
4276 	}
4277 
4278 	for (i = 0; i < bp->rx_nr_rings; i++) {
4279 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4280 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
4281 		u32 grp_idx = rxr->bnapi->index;
4282 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4283 
4284 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4285 			hwrm_ring_free_send_msg(bp, ring,
4286 						RING_FREE_REQ_RING_TYPE_RX,
4287 						close_path ? cmpl_ring_id :
4288 						INVALID_HW_RING_ID);
4289 			ring->fw_ring_id = INVALID_HW_RING_ID;
4290 			bp->grp_info[grp_idx].agg_fw_ring_id =
4291 				INVALID_HW_RING_ID;
4292 		}
4293 	}
4294 
4295 	/* The completion rings are about to be freed.  After that the
4296 	 * IRQ doorbell will not work anymore.  So we need to disable
4297 	 * IRQ here.
4298 	 */
4299 	bnxt_disable_int_sync(bp);
4300 
4301 	for (i = 0; i < bp->cp_nr_rings; i++) {
4302 		struct bnxt_napi *bnapi = bp->bnapi[i];
4303 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4304 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4305 
4306 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4307 			hwrm_ring_free_send_msg(bp, ring,
4308 						RING_FREE_REQ_RING_TYPE_L2_CMPL,
4309 						INVALID_HW_RING_ID);
4310 			ring->fw_ring_id = INVALID_HW_RING_ID;
4311 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
4312 		}
4313 	}
4314 }
4315 
4316 /* Caller must hold bp->hwrm_cmd_lock */
4317 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
4318 {
4319 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4320 	struct hwrm_func_qcfg_input req = {0};
4321 	int rc;
4322 
4323 	if (bp->hwrm_spec_code < 0x10601)
4324 		return 0;
4325 
4326 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4327 	req.fid = cpu_to_le16(fid);
4328 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4329 	if (!rc)
4330 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
4331 
4332 	return rc;
4333 }
4334 
4335 static int bnxt_hwrm_reserve_tx_rings(struct bnxt *bp, int *tx_rings)
4336 {
4337 	struct hwrm_func_cfg_input req = {0};
4338 	int rc;
4339 
4340 	if (bp->hwrm_spec_code < 0x10601)
4341 		return 0;
4342 
4343 	if (BNXT_VF(bp))
4344 		return 0;
4345 
4346 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4347 	req.fid = cpu_to_le16(0xffff);
4348 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS);
4349 	req.num_tx_rings = cpu_to_le16(*tx_rings);
4350 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4351 	if (rc)
4352 		return rc;
4353 
4354 	mutex_lock(&bp->hwrm_cmd_lock);
4355 	rc = __bnxt_hwrm_get_tx_rings(bp, 0xffff, tx_rings);
4356 	mutex_unlock(&bp->hwrm_cmd_lock);
4357 	return rc;
4358 }
4359 
4360 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, u32 max_bufs,
4361 	u32 buf_tmrs, u16 flags,
4362 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
4363 {
4364 	req->flags = cpu_to_le16(flags);
4365 	req->num_cmpl_dma_aggr = cpu_to_le16((u16)max_bufs);
4366 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(max_bufs >> 16);
4367 	req->cmpl_aggr_dma_tmr = cpu_to_le16((u16)buf_tmrs);
4368 	req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmrs >> 16);
4369 	/* Minimum time between 2 interrupts set to buf_tmr x 2 */
4370 	req->int_lat_tmr_min = cpu_to_le16((u16)buf_tmrs * 2);
4371 	req->int_lat_tmr_max = cpu_to_le16((u16)buf_tmrs * 4);
4372 	req->num_cmpl_aggr_int = cpu_to_le16((u16)max_bufs * 4);
4373 }
4374 
4375 int bnxt_hwrm_set_coal(struct bnxt *bp)
4376 {
4377 	int i, rc = 0;
4378 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
4379 							   req_tx = {0}, *req;
4380 	u16 max_buf, max_buf_irq;
4381 	u16 buf_tmr, buf_tmr_irq;
4382 	u32 flags;
4383 
4384 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
4385 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4386 	bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
4387 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4388 
4389 	/* Each rx completion (2 records) should be DMAed immediately.
4390 	 * DMA 1/4 of the completion buffers at a time.
4391 	 */
4392 	max_buf = min_t(u16, bp->rx_coal_bufs / 4, 2);
4393 	/* max_buf must not be zero */
4394 	max_buf = clamp_t(u16, max_buf, 1, 63);
4395 	max_buf_irq = clamp_t(u16, bp->rx_coal_bufs_irq, 1, 63);
4396 	buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks);
4397 	/* buf timer set to 1/4 of interrupt timer */
4398 	buf_tmr = max_t(u16, buf_tmr / 4, 1);
4399 	buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks_irq);
4400 	buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
4401 
4402 	flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4403 
4404 	/* RING_IDLE generates more IRQs for lower latency.  Enable it only
4405 	 * if coal_ticks is less than 25 us.
4406 	 */
4407 	if (bp->rx_coal_ticks < 25)
4408 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
4409 
4410 	bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
4411 				  buf_tmr_irq << 16 | buf_tmr, flags, &req_rx);
4412 
4413 	/* max_buf must not be zero */
4414 	max_buf = clamp_t(u16, bp->tx_coal_bufs, 1, 63);
4415 	max_buf_irq = clamp_t(u16, bp->tx_coal_bufs_irq, 1, 63);
4416 	buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks);
4417 	/* buf timer set to 1/4 of interrupt timer */
4418 	buf_tmr = max_t(u16, buf_tmr / 4, 1);
4419 	buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks_irq);
4420 	buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
4421 
4422 	flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4423 	bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
4424 				  buf_tmr_irq << 16 | buf_tmr, flags, &req_tx);
4425 
4426 	mutex_lock(&bp->hwrm_cmd_lock);
4427 	for (i = 0; i < bp->cp_nr_rings; i++) {
4428 		struct bnxt_napi *bnapi = bp->bnapi[i];
4429 
4430 		req = &req_rx;
4431 		if (!bnapi->rx_ring)
4432 			req = &req_tx;
4433 		req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
4434 
4435 		rc = _hwrm_send_message(bp, req, sizeof(*req),
4436 					HWRM_CMD_TIMEOUT);
4437 		if (rc)
4438 			break;
4439 	}
4440 	mutex_unlock(&bp->hwrm_cmd_lock);
4441 	return rc;
4442 }
4443 
4444 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
4445 {
4446 	int rc = 0, i;
4447 	struct hwrm_stat_ctx_free_input req = {0};
4448 
4449 	if (!bp->bnapi)
4450 		return 0;
4451 
4452 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4453 		return 0;
4454 
4455 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
4456 
4457 	mutex_lock(&bp->hwrm_cmd_lock);
4458 	for (i = 0; i < bp->cp_nr_rings; i++) {
4459 		struct bnxt_napi *bnapi = bp->bnapi[i];
4460 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4461 
4462 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
4463 			req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
4464 
4465 			rc = _hwrm_send_message(bp, &req, sizeof(req),
4466 						HWRM_CMD_TIMEOUT);
4467 			if (rc)
4468 				break;
4469 
4470 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4471 		}
4472 	}
4473 	mutex_unlock(&bp->hwrm_cmd_lock);
4474 	return rc;
4475 }
4476 
4477 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
4478 {
4479 	int rc = 0, i;
4480 	struct hwrm_stat_ctx_alloc_input req = {0};
4481 	struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4482 
4483 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4484 		return 0;
4485 
4486 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
4487 
4488 	req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
4489 
4490 	mutex_lock(&bp->hwrm_cmd_lock);
4491 	for (i = 0; i < bp->cp_nr_rings; i++) {
4492 		struct bnxt_napi *bnapi = bp->bnapi[i];
4493 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4494 
4495 		req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
4496 
4497 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4498 					HWRM_CMD_TIMEOUT);
4499 		if (rc)
4500 			break;
4501 
4502 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
4503 
4504 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
4505 	}
4506 	mutex_unlock(&bp->hwrm_cmd_lock);
4507 	return rc;
4508 }
4509 
4510 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
4511 {
4512 	struct hwrm_func_qcfg_input req = {0};
4513 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4514 	int rc;
4515 
4516 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4517 	req.fid = cpu_to_le16(0xffff);
4518 	mutex_lock(&bp->hwrm_cmd_lock);
4519 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4520 	if (rc)
4521 		goto func_qcfg_exit;
4522 
4523 #ifdef CONFIG_BNXT_SRIOV
4524 	if (BNXT_VF(bp)) {
4525 		struct bnxt_vf_info *vf = &bp->vf;
4526 
4527 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
4528 	}
4529 #endif
4530 	if (BNXT_PF(bp)) {
4531 		u16 flags = le16_to_cpu(resp->flags);
4532 
4533 		if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
4534 			     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED))
4535 			bp->flags |= BNXT_FLAG_FW_LLDP_AGENT;
4536 		if (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)
4537 			bp->flags |= BNXT_FLAG_MULTI_HOST;
4538 	}
4539 
4540 	switch (resp->port_partition_type) {
4541 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
4542 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
4543 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
4544 		bp->port_partition_type = resp->port_partition_type;
4545 		break;
4546 	}
4547 
4548 func_qcfg_exit:
4549 	mutex_unlock(&bp->hwrm_cmd_lock);
4550 	return rc;
4551 }
4552 
4553 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
4554 {
4555 	int rc = 0;
4556 	struct hwrm_func_qcaps_input req = {0};
4557 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4558 
4559 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
4560 	req.fid = cpu_to_le16(0xffff);
4561 
4562 	mutex_lock(&bp->hwrm_cmd_lock);
4563 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4564 	if (rc)
4565 		goto hwrm_func_qcaps_exit;
4566 
4567 	if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED))
4568 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
4569 	if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED))
4570 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
4571 
4572 	bp->tx_push_thresh = 0;
4573 	if (resp->flags &
4574 	    cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
4575 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
4576 
4577 	if (BNXT_PF(bp)) {
4578 		struct bnxt_pf_info *pf = &bp->pf;
4579 
4580 		pf->fw_fid = le16_to_cpu(resp->fid);
4581 		pf->port_id = le16_to_cpu(resp->port_id);
4582 		bp->dev->dev_port = pf->port_id;
4583 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
4584 		memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
4585 		pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4586 		pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4587 		pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4588 		pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4589 		pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4590 		if (!pf->max_hw_ring_grps)
4591 			pf->max_hw_ring_grps = pf->max_tx_rings;
4592 		pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4593 		pf->max_vnics = le16_to_cpu(resp->max_vnics);
4594 		pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4595 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
4596 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
4597 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
4598 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
4599 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
4600 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
4601 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
4602 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
4603 		if (resp->flags &
4604 		    cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED))
4605 			bp->flags |= BNXT_FLAG_WOL_CAP;
4606 	} else {
4607 #ifdef CONFIG_BNXT_SRIOV
4608 		struct bnxt_vf_info *vf = &bp->vf;
4609 
4610 		vf->fw_fid = le16_to_cpu(resp->fid);
4611 
4612 		vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4613 		vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4614 		vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4615 		vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4616 		vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4617 		if (!vf->max_hw_ring_grps)
4618 			vf->max_hw_ring_grps = vf->max_tx_rings;
4619 		vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4620 		vf->max_vnics = le16_to_cpu(resp->max_vnics);
4621 		vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4622 
4623 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
4624 		mutex_unlock(&bp->hwrm_cmd_lock);
4625 
4626 		if (is_valid_ether_addr(vf->mac_addr)) {
4627 			/* overwrite netdev dev_adr with admin VF MAC */
4628 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
4629 		} else {
4630 			eth_hw_addr_random(bp->dev);
4631 			rc = bnxt_approve_mac(bp, bp->dev->dev_addr);
4632 		}
4633 		return rc;
4634 #endif
4635 	}
4636 
4637 hwrm_func_qcaps_exit:
4638 	mutex_unlock(&bp->hwrm_cmd_lock);
4639 	return rc;
4640 }
4641 
4642 static int bnxt_hwrm_func_reset(struct bnxt *bp)
4643 {
4644 	struct hwrm_func_reset_input req = {0};
4645 
4646 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
4647 	req.enables = 0;
4648 
4649 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
4650 }
4651 
4652 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
4653 {
4654 	int rc = 0;
4655 	struct hwrm_queue_qportcfg_input req = {0};
4656 	struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
4657 	u8 i, *qptr;
4658 
4659 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
4660 
4661 	mutex_lock(&bp->hwrm_cmd_lock);
4662 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4663 	if (rc)
4664 		goto qportcfg_exit;
4665 
4666 	if (!resp->max_configurable_queues) {
4667 		rc = -EINVAL;
4668 		goto qportcfg_exit;
4669 	}
4670 	bp->max_tc = resp->max_configurable_queues;
4671 	bp->max_lltc = resp->max_configurable_lossless_queues;
4672 	if (bp->max_tc > BNXT_MAX_QUEUE)
4673 		bp->max_tc = BNXT_MAX_QUEUE;
4674 
4675 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
4676 		bp->max_tc = 1;
4677 
4678 	if (bp->max_lltc > bp->max_tc)
4679 		bp->max_lltc = bp->max_tc;
4680 
4681 	qptr = &resp->queue_id0;
4682 	for (i = 0; i < bp->max_tc; i++) {
4683 		bp->q_info[i].queue_id = *qptr++;
4684 		bp->q_info[i].queue_profile = *qptr++;
4685 	}
4686 
4687 qportcfg_exit:
4688 	mutex_unlock(&bp->hwrm_cmd_lock);
4689 	return rc;
4690 }
4691 
4692 static int bnxt_hwrm_ver_get(struct bnxt *bp)
4693 {
4694 	int rc;
4695 	struct hwrm_ver_get_input req = {0};
4696 	struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
4697 
4698 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
4699 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
4700 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
4701 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
4702 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
4703 	mutex_lock(&bp->hwrm_cmd_lock);
4704 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4705 	if (rc)
4706 		goto hwrm_ver_get_exit;
4707 
4708 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
4709 
4710 	bp->hwrm_spec_code = resp->hwrm_intf_maj << 16 |
4711 			     resp->hwrm_intf_min << 8 | resp->hwrm_intf_upd;
4712 	if (resp->hwrm_intf_maj < 1) {
4713 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
4714 			    resp->hwrm_intf_maj, resp->hwrm_intf_min,
4715 			    resp->hwrm_intf_upd);
4716 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
4717 	}
4718 	snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d/%d.%d.%d",
4719 		 resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
4720 		 resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
4721 
4722 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
4723 	if (!bp->hwrm_cmd_timeout)
4724 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
4725 
4726 	if (resp->hwrm_intf_maj >= 1)
4727 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
4728 
4729 	bp->chip_num = le16_to_cpu(resp->chip_num);
4730 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
4731 	    !resp->chip_metal)
4732 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
4733 
4734 hwrm_ver_get_exit:
4735 	mutex_unlock(&bp->hwrm_cmd_lock);
4736 	return rc;
4737 }
4738 
4739 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
4740 {
4741 #if IS_ENABLED(CONFIG_RTC_LIB)
4742 	struct hwrm_fw_set_time_input req = {0};
4743 	struct rtc_time tm;
4744 	struct timeval tv;
4745 
4746 	if (bp->hwrm_spec_code < 0x10400)
4747 		return -EOPNOTSUPP;
4748 
4749 	do_gettimeofday(&tv);
4750 	rtc_time_to_tm(tv.tv_sec, &tm);
4751 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
4752 	req.year = cpu_to_le16(1900 + tm.tm_year);
4753 	req.month = 1 + tm.tm_mon;
4754 	req.day = tm.tm_mday;
4755 	req.hour = tm.tm_hour;
4756 	req.minute = tm.tm_min;
4757 	req.second = tm.tm_sec;
4758 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4759 #else
4760 	return -EOPNOTSUPP;
4761 #endif
4762 }
4763 
4764 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
4765 {
4766 	int rc;
4767 	struct bnxt_pf_info *pf = &bp->pf;
4768 	struct hwrm_port_qstats_input req = {0};
4769 
4770 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
4771 		return 0;
4772 
4773 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
4774 	req.port_id = cpu_to_le16(pf->port_id);
4775 	req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
4776 	req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
4777 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4778 	return rc;
4779 }
4780 
4781 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
4782 {
4783 	if (bp->vxlan_port_cnt) {
4784 		bnxt_hwrm_tunnel_dst_port_free(
4785 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
4786 	}
4787 	bp->vxlan_port_cnt = 0;
4788 	if (bp->nge_port_cnt) {
4789 		bnxt_hwrm_tunnel_dst_port_free(
4790 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
4791 	}
4792 	bp->nge_port_cnt = 0;
4793 }
4794 
4795 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
4796 {
4797 	int rc, i;
4798 	u32 tpa_flags = 0;
4799 
4800 	if (set_tpa)
4801 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
4802 	for (i = 0; i < bp->nr_vnics; i++) {
4803 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
4804 		if (rc) {
4805 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
4806 				   i, rc);
4807 			return rc;
4808 		}
4809 	}
4810 	return 0;
4811 }
4812 
4813 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
4814 {
4815 	int i;
4816 
4817 	for (i = 0; i < bp->nr_vnics; i++)
4818 		bnxt_hwrm_vnic_set_rss(bp, i, false);
4819 }
4820 
4821 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
4822 				    bool irq_re_init)
4823 {
4824 	if (bp->vnic_info) {
4825 		bnxt_hwrm_clear_vnic_filter(bp);
4826 		/* clear all RSS setting before free vnic ctx */
4827 		bnxt_hwrm_clear_vnic_rss(bp);
4828 		bnxt_hwrm_vnic_ctx_free(bp);
4829 		/* before free the vnic, undo the vnic tpa settings */
4830 		if (bp->flags & BNXT_FLAG_TPA)
4831 			bnxt_set_tpa(bp, false);
4832 		bnxt_hwrm_vnic_free(bp);
4833 	}
4834 	bnxt_hwrm_ring_free(bp, close_path);
4835 	bnxt_hwrm_ring_grp_free(bp);
4836 	if (irq_re_init) {
4837 		bnxt_hwrm_stat_ctx_free(bp);
4838 		bnxt_hwrm_free_tunnel_ports(bp);
4839 	}
4840 }
4841 
4842 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
4843 {
4844 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4845 	int rc;
4846 
4847 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
4848 		goto skip_rss_ctx;
4849 
4850 	/* allocate context for vnic */
4851 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
4852 	if (rc) {
4853 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4854 			   vnic_id, rc);
4855 		goto vnic_setup_err;
4856 	}
4857 	bp->rsscos_nr_ctxs++;
4858 
4859 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
4860 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
4861 		if (rc) {
4862 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
4863 				   vnic_id, rc);
4864 			goto vnic_setup_err;
4865 		}
4866 		bp->rsscos_nr_ctxs++;
4867 	}
4868 
4869 skip_rss_ctx:
4870 	/* configure default vnic, ring grp */
4871 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
4872 	if (rc) {
4873 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
4874 			   vnic_id, rc);
4875 		goto vnic_setup_err;
4876 	}
4877 
4878 	/* Enable RSS hashing on vnic */
4879 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
4880 	if (rc) {
4881 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
4882 			   vnic_id, rc);
4883 		goto vnic_setup_err;
4884 	}
4885 
4886 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4887 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
4888 		if (rc) {
4889 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
4890 				   vnic_id, rc);
4891 		}
4892 	}
4893 
4894 vnic_setup_err:
4895 	return rc;
4896 }
4897 
4898 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
4899 {
4900 #ifdef CONFIG_RFS_ACCEL
4901 	int i, rc = 0;
4902 
4903 	for (i = 0; i < bp->rx_nr_rings; i++) {
4904 		struct bnxt_vnic_info *vnic;
4905 		u16 vnic_id = i + 1;
4906 		u16 ring_id = i;
4907 
4908 		if (vnic_id >= bp->nr_vnics)
4909 			break;
4910 
4911 		vnic = &bp->vnic_info[vnic_id];
4912 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
4913 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
4914 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
4915 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
4916 		if (rc) {
4917 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4918 				   vnic_id, rc);
4919 			break;
4920 		}
4921 		rc = bnxt_setup_vnic(bp, vnic_id);
4922 		if (rc)
4923 			break;
4924 	}
4925 	return rc;
4926 #else
4927 	return 0;
4928 #endif
4929 }
4930 
4931 /* Allow PF and VF with default VLAN to be in promiscuous mode */
4932 static bool bnxt_promisc_ok(struct bnxt *bp)
4933 {
4934 #ifdef CONFIG_BNXT_SRIOV
4935 	if (BNXT_VF(bp) && !bp->vf.vlan)
4936 		return false;
4937 #endif
4938 	return true;
4939 }
4940 
4941 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
4942 {
4943 	unsigned int rc = 0;
4944 
4945 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
4946 	if (rc) {
4947 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
4948 			   rc);
4949 		return rc;
4950 	}
4951 
4952 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
4953 	if (rc) {
4954 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
4955 			   rc);
4956 		return rc;
4957 	}
4958 	return rc;
4959 }
4960 
4961 static int bnxt_cfg_rx_mode(struct bnxt *);
4962 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
4963 
4964 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
4965 {
4966 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4967 	int rc = 0;
4968 	unsigned int rx_nr_rings = bp->rx_nr_rings;
4969 
4970 	if (irq_re_init) {
4971 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
4972 		if (rc) {
4973 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
4974 				   rc);
4975 			goto err_out;
4976 		}
4977 	}
4978 
4979 	rc = bnxt_hwrm_ring_alloc(bp);
4980 	if (rc) {
4981 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
4982 		goto err_out;
4983 	}
4984 
4985 	rc = bnxt_hwrm_ring_grp_alloc(bp);
4986 	if (rc) {
4987 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
4988 		goto err_out;
4989 	}
4990 
4991 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4992 		rx_nr_rings--;
4993 
4994 	/* default vnic 0 */
4995 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
4996 	if (rc) {
4997 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
4998 		goto err_out;
4999 	}
5000 
5001 	rc = bnxt_setup_vnic(bp, 0);
5002 	if (rc)
5003 		goto err_out;
5004 
5005 	if (bp->flags & BNXT_FLAG_RFS) {
5006 		rc = bnxt_alloc_rfs_vnics(bp);
5007 		if (rc)
5008 			goto err_out;
5009 	}
5010 
5011 	if (bp->flags & BNXT_FLAG_TPA) {
5012 		rc = bnxt_set_tpa(bp, true);
5013 		if (rc)
5014 			goto err_out;
5015 	}
5016 
5017 	if (BNXT_VF(bp))
5018 		bnxt_update_vf_mac(bp);
5019 
5020 	/* Filter for default vnic 0 */
5021 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
5022 	if (rc) {
5023 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
5024 		goto err_out;
5025 	}
5026 	vnic->uc_filter_count = 1;
5027 
5028 	vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
5029 
5030 	if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
5031 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5032 
5033 	if (bp->dev->flags & IFF_ALLMULTI) {
5034 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5035 		vnic->mc_list_count = 0;
5036 	} else {
5037 		u32 mask = 0;
5038 
5039 		bnxt_mc_list_updated(bp, &mask);
5040 		vnic->rx_mask |= mask;
5041 	}
5042 
5043 	rc = bnxt_cfg_rx_mode(bp);
5044 	if (rc)
5045 		goto err_out;
5046 
5047 	rc = bnxt_hwrm_set_coal(bp);
5048 	if (rc)
5049 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
5050 				rc);
5051 
5052 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5053 		rc = bnxt_setup_nitroa0_vnic(bp);
5054 		if (rc)
5055 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
5056 				   rc);
5057 	}
5058 
5059 	if (BNXT_VF(bp)) {
5060 		bnxt_hwrm_func_qcfg(bp);
5061 		netdev_update_features(bp->dev);
5062 	}
5063 
5064 	return 0;
5065 
5066 err_out:
5067 	bnxt_hwrm_resource_free(bp, 0, true);
5068 
5069 	return rc;
5070 }
5071 
5072 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
5073 {
5074 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
5075 	return 0;
5076 }
5077 
5078 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
5079 {
5080 	bnxt_init_cp_rings(bp);
5081 	bnxt_init_rx_rings(bp);
5082 	bnxt_init_tx_rings(bp);
5083 	bnxt_init_ring_grps(bp, irq_re_init);
5084 	bnxt_init_vnics(bp);
5085 
5086 	return bnxt_init_chip(bp, irq_re_init);
5087 }
5088 
5089 static int bnxt_set_real_num_queues(struct bnxt *bp)
5090 {
5091 	int rc;
5092 	struct net_device *dev = bp->dev;
5093 
5094 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
5095 					  bp->tx_nr_rings_xdp);
5096 	if (rc)
5097 		return rc;
5098 
5099 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
5100 	if (rc)
5101 		return rc;
5102 
5103 #ifdef CONFIG_RFS_ACCEL
5104 	if (bp->flags & BNXT_FLAG_RFS)
5105 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
5106 #endif
5107 
5108 	return rc;
5109 }
5110 
5111 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5112 			   bool shared)
5113 {
5114 	int _rx = *rx, _tx = *tx;
5115 
5116 	if (shared) {
5117 		*rx = min_t(int, _rx, max);
5118 		*tx = min_t(int, _tx, max);
5119 	} else {
5120 		if (max < 2)
5121 			return -ENOMEM;
5122 
5123 		while (_rx + _tx > max) {
5124 			if (_rx > _tx && _rx > 1)
5125 				_rx--;
5126 			else if (_tx > 1)
5127 				_tx--;
5128 		}
5129 		*rx = _rx;
5130 		*tx = _tx;
5131 	}
5132 	return 0;
5133 }
5134 
5135 static void bnxt_setup_msix(struct bnxt *bp)
5136 {
5137 	const int len = sizeof(bp->irq_tbl[0].name);
5138 	struct net_device *dev = bp->dev;
5139 	int tcs, i;
5140 
5141 	tcs = netdev_get_num_tc(dev);
5142 	if (tcs > 1) {
5143 		int i, off, count;
5144 
5145 		for (i = 0; i < tcs; i++) {
5146 			count = bp->tx_nr_rings_per_tc;
5147 			off = i * count;
5148 			netdev_set_tc_queue(dev, i, count, off);
5149 		}
5150 	}
5151 
5152 	for (i = 0; i < bp->cp_nr_rings; i++) {
5153 		char *attr;
5154 
5155 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5156 			attr = "TxRx";
5157 		else if (i < bp->rx_nr_rings)
5158 			attr = "rx";
5159 		else
5160 			attr = "tx";
5161 
5162 		snprintf(bp->irq_tbl[i].name, len, "%s-%s-%d", dev->name, attr,
5163 			 i);
5164 		bp->irq_tbl[i].handler = bnxt_msix;
5165 	}
5166 }
5167 
5168 static void bnxt_setup_inta(struct bnxt *bp)
5169 {
5170 	const int len = sizeof(bp->irq_tbl[0].name);
5171 
5172 	if (netdev_get_num_tc(bp->dev))
5173 		netdev_reset_tc(bp->dev);
5174 
5175 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
5176 		 0);
5177 	bp->irq_tbl[0].handler = bnxt_inta;
5178 }
5179 
5180 static int bnxt_setup_int_mode(struct bnxt *bp)
5181 {
5182 	int rc;
5183 
5184 	if (bp->flags & BNXT_FLAG_USING_MSIX)
5185 		bnxt_setup_msix(bp);
5186 	else
5187 		bnxt_setup_inta(bp);
5188 
5189 	rc = bnxt_set_real_num_queues(bp);
5190 	return rc;
5191 }
5192 
5193 #ifdef CONFIG_RFS_ACCEL
5194 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
5195 {
5196 #if defined(CONFIG_BNXT_SRIOV)
5197 	if (BNXT_VF(bp))
5198 		return bp->vf.max_rsscos_ctxs;
5199 #endif
5200 	return bp->pf.max_rsscos_ctxs;
5201 }
5202 
5203 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
5204 {
5205 #if defined(CONFIG_BNXT_SRIOV)
5206 	if (BNXT_VF(bp))
5207 		return bp->vf.max_vnics;
5208 #endif
5209 	return bp->pf.max_vnics;
5210 }
5211 #endif
5212 
5213 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
5214 {
5215 #if defined(CONFIG_BNXT_SRIOV)
5216 	if (BNXT_VF(bp))
5217 		return bp->vf.max_stat_ctxs;
5218 #endif
5219 	return bp->pf.max_stat_ctxs;
5220 }
5221 
5222 void bnxt_set_max_func_stat_ctxs(struct bnxt *bp, unsigned int max)
5223 {
5224 #if defined(CONFIG_BNXT_SRIOV)
5225 	if (BNXT_VF(bp))
5226 		bp->vf.max_stat_ctxs = max;
5227 	else
5228 #endif
5229 		bp->pf.max_stat_ctxs = max;
5230 }
5231 
5232 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
5233 {
5234 #if defined(CONFIG_BNXT_SRIOV)
5235 	if (BNXT_VF(bp))
5236 		return bp->vf.max_cp_rings;
5237 #endif
5238 	return bp->pf.max_cp_rings;
5239 }
5240 
5241 void bnxt_set_max_func_cp_rings(struct bnxt *bp, unsigned int max)
5242 {
5243 #if defined(CONFIG_BNXT_SRIOV)
5244 	if (BNXT_VF(bp))
5245 		bp->vf.max_cp_rings = max;
5246 	else
5247 #endif
5248 		bp->pf.max_cp_rings = max;
5249 }
5250 
5251 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
5252 {
5253 #if defined(CONFIG_BNXT_SRIOV)
5254 	if (BNXT_VF(bp))
5255 		return min_t(unsigned int, bp->vf.max_irqs,
5256 			     bp->vf.max_cp_rings);
5257 #endif
5258 	return min_t(unsigned int, bp->pf.max_irqs, bp->pf.max_cp_rings);
5259 }
5260 
5261 void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
5262 {
5263 #if defined(CONFIG_BNXT_SRIOV)
5264 	if (BNXT_VF(bp))
5265 		bp->vf.max_irqs = max_irqs;
5266 	else
5267 #endif
5268 		bp->pf.max_irqs = max_irqs;
5269 }
5270 
5271 static int bnxt_init_msix(struct bnxt *bp)
5272 {
5273 	int i, total_vecs, rc = 0, min = 1;
5274 	struct msix_entry *msix_ent;
5275 
5276 	total_vecs = bnxt_get_max_func_irqs(bp);
5277 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
5278 	if (!msix_ent)
5279 		return -ENOMEM;
5280 
5281 	for (i = 0; i < total_vecs; i++) {
5282 		msix_ent[i].entry = i;
5283 		msix_ent[i].vector = 0;
5284 	}
5285 
5286 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
5287 		min = 2;
5288 
5289 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
5290 	if (total_vecs < 0) {
5291 		rc = -ENODEV;
5292 		goto msix_setup_exit;
5293 	}
5294 
5295 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
5296 	if (bp->irq_tbl) {
5297 		for (i = 0; i < total_vecs; i++)
5298 			bp->irq_tbl[i].vector = msix_ent[i].vector;
5299 
5300 		bp->total_irqs = total_vecs;
5301 		/* Trim rings based upon num of vectors allocated */
5302 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
5303 				     total_vecs, min == 1);
5304 		if (rc)
5305 			goto msix_setup_exit;
5306 
5307 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
5308 		bp->cp_nr_rings = (min == 1) ?
5309 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
5310 				  bp->tx_nr_rings + bp->rx_nr_rings;
5311 
5312 	} else {
5313 		rc = -ENOMEM;
5314 		goto msix_setup_exit;
5315 	}
5316 	bp->flags |= BNXT_FLAG_USING_MSIX;
5317 	kfree(msix_ent);
5318 	return 0;
5319 
5320 msix_setup_exit:
5321 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
5322 	kfree(bp->irq_tbl);
5323 	bp->irq_tbl = NULL;
5324 	pci_disable_msix(bp->pdev);
5325 	kfree(msix_ent);
5326 	return rc;
5327 }
5328 
5329 static int bnxt_init_inta(struct bnxt *bp)
5330 {
5331 	bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
5332 	if (!bp->irq_tbl)
5333 		return -ENOMEM;
5334 
5335 	bp->total_irqs = 1;
5336 	bp->rx_nr_rings = 1;
5337 	bp->tx_nr_rings = 1;
5338 	bp->cp_nr_rings = 1;
5339 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
5340 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
5341 	bp->irq_tbl[0].vector = bp->pdev->irq;
5342 	return 0;
5343 }
5344 
5345 static int bnxt_init_int_mode(struct bnxt *bp)
5346 {
5347 	int rc = 0;
5348 
5349 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
5350 		rc = bnxt_init_msix(bp);
5351 
5352 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
5353 		/* fallback to INTA */
5354 		rc = bnxt_init_inta(bp);
5355 	}
5356 	return rc;
5357 }
5358 
5359 static void bnxt_clear_int_mode(struct bnxt *bp)
5360 {
5361 	if (bp->flags & BNXT_FLAG_USING_MSIX)
5362 		pci_disable_msix(bp->pdev);
5363 
5364 	kfree(bp->irq_tbl);
5365 	bp->irq_tbl = NULL;
5366 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
5367 }
5368 
5369 static void bnxt_free_irq(struct bnxt *bp)
5370 {
5371 	struct bnxt_irq *irq;
5372 	int i;
5373 
5374 #ifdef CONFIG_RFS_ACCEL
5375 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
5376 	bp->dev->rx_cpu_rmap = NULL;
5377 #endif
5378 	if (!bp->irq_tbl)
5379 		return;
5380 
5381 	for (i = 0; i < bp->cp_nr_rings; i++) {
5382 		irq = &bp->irq_tbl[i];
5383 		if (irq->requested)
5384 			free_irq(irq->vector, bp->bnapi[i]);
5385 		irq->requested = 0;
5386 	}
5387 }
5388 
5389 static int bnxt_request_irq(struct bnxt *bp)
5390 {
5391 	int i, j, rc = 0;
5392 	unsigned long flags = 0;
5393 #ifdef CONFIG_RFS_ACCEL
5394 	struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
5395 #endif
5396 
5397 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
5398 		flags = IRQF_SHARED;
5399 
5400 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
5401 		struct bnxt_irq *irq = &bp->irq_tbl[i];
5402 #ifdef CONFIG_RFS_ACCEL
5403 		if (rmap && bp->bnapi[i]->rx_ring) {
5404 			rc = irq_cpu_rmap_add(rmap, irq->vector);
5405 			if (rc)
5406 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
5407 					    j);
5408 			j++;
5409 		}
5410 #endif
5411 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
5412 				 bp->bnapi[i]);
5413 		if (rc)
5414 			break;
5415 
5416 		irq->requested = 1;
5417 	}
5418 	return rc;
5419 }
5420 
5421 static void bnxt_del_napi(struct bnxt *bp)
5422 {
5423 	int i;
5424 
5425 	if (!bp->bnapi)
5426 		return;
5427 
5428 	for (i = 0; i < bp->cp_nr_rings; i++) {
5429 		struct bnxt_napi *bnapi = bp->bnapi[i];
5430 
5431 		napi_hash_del(&bnapi->napi);
5432 		netif_napi_del(&bnapi->napi);
5433 	}
5434 	/* We called napi_hash_del() before netif_napi_del(), we need
5435 	 * to respect an RCU grace period before freeing napi structures.
5436 	 */
5437 	synchronize_net();
5438 }
5439 
5440 static void bnxt_init_napi(struct bnxt *bp)
5441 {
5442 	int i;
5443 	unsigned int cp_nr_rings = bp->cp_nr_rings;
5444 	struct bnxt_napi *bnapi;
5445 
5446 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
5447 		if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5448 			cp_nr_rings--;
5449 		for (i = 0; i < cp_nr_rings; i++) {
5450 			bnapi = bp->bnapi[i];
5451 			netif_napi_add(bp->dev, &bnapi->napi,
5452 				       bnxt_poll, 64);
5453 		}
5454 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5455 			bnapi = bp->bnapi[cp_nr_rings];
5456 			netif_napi_add(bp->dev, &bnapi->napi,
5457 				       bnxt_poll_nitroa0, 64);
5458 		}
5459 	} else {
5460 		bnapi = bp->bnapi[0];
5461 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
5462 	}
5463 }
5464 
5465 static void bnxt_disable_napi(struct bnxt *bp)
5466 {
5467 	int i;
5468 
5469 	if (!bp->bnapi)
5470 		return;
5471 
5472 	for (i = 0; i < bp->cp_nr_rings; i++)
5473 		napi_disable(&bp->bnapi[i]->napi);
5474 }
5475 
5476 static void bnxt_enable_napi(struct bnxt *bp)
5477 {
5478 	int i;
5479 
5480 	for (i = 0; i < bp->cp_nr_rings; i++) {
5481 		bp->bnapi[i]->in_reset = false;
5482 		napi_enable(&bp->bnapi[i]->napi);
5483 	}
5484 }
5485 
5486 void bnxt_tx_disable(struct bnxt *bp)
5487 {
5488 	int i;
5489 	struct bnxt_tx_ring_info *txr;
5490 	struct netdev_queue *txq;
5491 
5492 	if (bp->tx_ring) {
5493 		for (i = 0; i < bp->tx_nr_rings; i++) {
5494 			txr = &bp->tx_ring[i];
5495 			txq = netdev_get_tx_queue(bp->dev, i);
5496 			txr->dev_state = BNXT_DEV_STATE_CLOSING;
5497 		}
5498 	}
5499 	/* Stop all TX queues */
5500 	netif_tx_disable(bp->dev);
5501 	netif_carrier_off(bp->dev);
5502 }
5503 
5504 void bnxt_tx_enable(struct bnxt *bp)
5505 {
5506 	int i;
5507 	struct bnxt_tx_ring_info *txr;
5508 	struct netdev_queue *txq;
5509 
5510 	for (i = 0; i < bp->tx_nr_rings; i++) {
5511 		txr = &bp->tx_ring[i];
5512 		txq = netdev_get_tx_queue(bp->dev, i);
5513 		txr->dev_state = 0;
5514 	}
5515 	netif_tx_wake_all_queues(bp->dev);
5516 	if (bp->link_info.link_up)
5517 		netif_carrier_on(bp->dev);
5518 }
5519 
5520 static void bnxt_report_link(struct bnxt *bp)
5521 {
5522 	if (bp->link_info.link_up) {
5523 		const char *duplex;
5524 		const char *flow_ctrl;
5525 		u32 speed;
5526 		u16 fec;
5527 
5528 		netif_carrier_on(bp->dev);
5529 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
5530 			duplex = "full";
5531 		else
5532 			duplex = "half";
5533 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
5534 			flow_ctrl = "ON - receive & transmit";
5535 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
5536 			flow_ctrl = "ON - transmit";
5537 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
5538 			flow_ctrl = "ON - receive";
5539 		else
5540 			flow_ctrl = "none";
5541 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
5542 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
5543 			    speed, duplex, flow_ctrl);
5544 		if (bp->flags & BNXT_FLAG_EEE_CAP)
5545 			netdev_info(bp->dev, "EEE is %s\n",
5546 				    bp->eee.eee_active ? "active" :
5547 							 "not active");
5548 		fec = bp->link_info.fec_cfg;
5549 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
5550 			netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
5551 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
5552 				    (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
5553 				     (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
5554 	} else {
5555 		netif_carrier_off(bp->dev);
5556 		netdev_err(bp->dev, "NIC Link is Down\n");
5557 	}
5558 }
5559 
5560 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
5561 {
5562 	int rc = 0;
5563 	struct hwrm_port_phy_qcaps_input req = {0};
5564 	struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5565 	struct bnxt_link_info *link_info = &bp->link_info;
5566 
5567 	if (bp->hwrm_spec_code < 0x10201)
5568 		return 0;
5569 
5570 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
5571 
5572 	mutex_lock(&bp->hwrm_cmd_lock);
5573 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5574 	if (rc)
5575 		goto hwrm_phy_qcaps_exit;
5576 
5577 	if (resp->eee_supported & PORT_PHY_QCAPS_RESP_EEE_SUPPORTED) {
5578 		struct ethtool_eee *eee = &bp->eee;
5579 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
5580 
5581 		bp->flags |= BNXT_FLAG_EEE_CAP;
5582 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5583 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
5584 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
5585 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
5586 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
5587 	}
5588 	if (resp->supported_speeds_auto_mode)
5589 		link_info->support_auto_speeds =
5590 			le16_to_cpu(resp->supported_speeds_auto_mode);
5591 
5592 hwrm_phy_qcaps_exit:
5593 	mutex_unlock(&bp->hwrm_cmd_lock);
5594 	return rc;
5595 }
5596 
5597 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
5598 {
5599 	int rc = 0;
5600 	struct bnxt_link_info *link_info = &bp->link_info;
5601 	struct hwrm_port_phy_qcfg_input req = {0};
5602 	struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5603 	u8 link_up = link_info->link_up;
5604 	u16 diff;
5605 
5606 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
5607 
5608 	mutex_lock(&bp->hwrm_cmd_lock);
5609 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5610 	if (rc) {
5611 		mutex_unlock(&bp->hwrm_cmd_lock);
5612 		return rc;
5613 	}
5614 
5615 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
5616 	link_info->phy_link_status = resp->link;
5617 	link_info->duplex =  resp->duplex;
5618 	link_info->pause = resp->pause;
5619 	link_info->auto_mode = resp->auto_mode;
5620 	link_info->auto_pause_setting = resp->auto_pause;
5621 	link_info->lp_pause = resp->link_partner_adv_pause;
5622 	link_info->force_pause_setting = resp->force_pause;
5623 	link_info->duplex_setting = resp->duplex;
5624 	if (link_info->phy_link_status == BNXT_LINK_LINK)
5625 		link_info->link_speed = le16_to_cpu(resp->link_speed);
5626 	else
5627 		link_info->link_speed = 0;
5628 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
5629 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
5630 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
5631 	link_info->lp_auto_link_speeds =
5632 		le16_to_cpu(resp->link_partner_adv_speeds);
5633 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
5634 	link_info->phy_ver[0] = resp->phy_maj;
5635 	link_info->phy_ver[1] = resp->phy_min;
5636 	link_info->phy_ver[2] = resp->phy_bld;
5637 	link_info->media_type = resp->media_type;
5638 	link_info->phy_type = resp->phy_type;
5639 	link_info->transceiver = resp->xcvr_pkg_type;
5640 	link_info->phy_addr = resp->eee_config_phy_addr &
5641 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
5642 	link_info->module_status = resp->module_status;
5643 
5644 	if (bp->flags & BNXT_FLAG_EEE_CAP) {
5645 		struct ethtool_eee *eee = &bp->eee;
5646 		u16 fw_speeds;
5647 
5648 		eee->eee_active = 0;
5649 		if (resp->eee_config_phy_addr &
5650 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
5651 			eee->eee_active = 1;
5652 			fw_speeds = le16_to_cpu(
5653 				resp->link_partner_adv_eee_link_speed_mask);
5654 			eee->lp_advertised =
5655 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5656 		}
5657 
5658 		/* Pull initial EEE config */
5659 		if (!chng_link_state) {
5660 			if (resp->eee_config_phy_addr &
5661 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
5662 				eee->eee_enabled = 1;
5663 
5664 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
5665 			eee->advertised =
5666 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5667 
5668 			if (resp->eee_config_phy_addr &
5669 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
5670 				__le32 tmr;
5671 
5672 				eee->tx_lpi_enabled = 1;
5673 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
5674 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
5675 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
5676 			}
5677 		}
5678 	}
5679 
5680 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
5681 	if (bp->hwrm_spec_code >= 0x10504)
5682 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
5683 
5684 	/* TODO: need to add more logic to report VF link */
5685 	if (chng_link_state) {
5686 		if (link_info->phy_link_status == BNXT_LINK_LINK)
5687 			link_info->link_up = 1;
5688 		else
5689 			link_info->link_up = 0;
5690 		if (link_up != link_info->link_up)
5691 			bnxt_report_link(bp);
5692 	} else {
5693 		/* alwasy link down if not require to update link state */
5694 		link_info->link_up = 0;
5695 	}
5696 	mutex_unlock(&bp->hwrm_cmd_lock);
5697 
5698 	diff = link_info->support_auto_speeds ^ link_info->advertising;
5699 	if ((link_info->support_auto_speeds | diff) !=
5700 	    link_info->support_auto_speeds) {
5701 		/* An advertised speed is no longer supported, so we need to
5702 		 * update the advertisement settings.  Caller holds RTNL
5703 		 * so we can modify link settings.
5704 		 */
5705 		link_info->advertising = link_info->support_auto_speeds;
5706 		if (link_info->autoneg & BNXT_AUTONEG_SPEED)
5707 			bnxt_hwrm_set_link_setting(bp, true, false);
5708 	}
5709 	return 0;
5710 }
5711 
5712 static void bnxt_get_port_module_status(struct bnxt *bp)
5713 {
5714 	struct bnxt_link_info *link_info = &bp->link_info;
5715 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
5716 	u8 module_status;
5717 
5718 	if (bnxt_update_link(bp, true))
5719 		return;
5720 
5721 	module_status = link_info->module_status;
5722 	switch (module_status) {
5723 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
5724 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
5725 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
5726 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
5727 			    bp->pf.port_id);
5728 		if (bp->hwrm_spec_code >= 0x10201) {
5729 			netdev_warn(bp->dev, "Module part number %s\n",
5730 				    resp->phy_vendor_partnumber);
5731 		}
5732 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
5733 			netdev_warn(bp->dev, "TX is disabled\n");
5734 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
5735 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
5736 	}
5737 }
5738 
5739 static void
5740 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
5741 {
5742 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
5743 		if (bp->hwrm_spec_code >= 0x10201)
5744 			req->auto_pause =
5745 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
5746 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5747 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
5748 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5749 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
5750 		req->enables |=
5751 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5752 	} else {
5753 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5754 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
5755 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5756 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
5757 		req->enables |=
5758 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
5759 		if (bp->hwrm_spec_code >= 0x10201) {
5760 			req->auto_pause = req->force_pause;
5761 			req->enables |= cpu_to_le32(
5762 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5763 		}
5764 	}
5765 }
5766 
5767 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
5768 				      struct hwrm_port_phy_cfg_input *req)
5769 {
5770 	u8 autoneg = bp->link_info.autoneg;
5771 	u16 fw_link_speed = bp->link_info.req_link_speed;
5772 	u16 advertising = bp->link_info.advertising;
5773 
5774 	if (autoneg & BNXT_AUTONEG_SPEED) {
5775 		req->auto_mode |=
5776 			PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
5777 
5778 		req->enables |= cpu_to_le32(
5779 			PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
5780 		req->auto_link_speed_mask = cpu_to_le16(advertising);
5781 
5782 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
5783 		req->flags |=
5784 			cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
5785 	} else {
5786 		req->force_link_speed = cpu_to_le16(fw_link_speed);
5787 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
5788 	}
5789 
5790 	/* tell chimp that the setting takes effect immediately */
5791 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
5792 }
5793 
5794 int bnxt_hwrm_set_pause(struct bnxt *bp)
5795 {
5796 	struct hwrm_port_phy_cfg_input req = {0};
5797 	int rc;
5798 
5799 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5800 	bnxt_hwrm_set_pause_common(bp, &req);
5801 
5802 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
5803 	    bp->link_info.force_link_chng)
5804 		bnxt_hwrm_set_link_common(bp, &req);
5805 
5806 	mutex_lock(&bp->hwrm_cmd_lock);
5807 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5808 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
5809 		/* since changing of pause setting doesn't trigger any link
5810 		 * change event, the driver needs to update the current pause
5811 		 * result upon successfully return of the phy_cfg command
5812 		 */
5813 		bp->link_info.pause =
5814 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
5815 		bp->link_info.auto_pause_setting = 0;
5816 		if (!bp->link_info.force_link_chng)
5817 			bnxt_report_link(bp);
5818 	}
5819 	bp->link_info.force_link_chng = false;
5820 	mutex_unlock(&bp->hwrm_cmd_lock);
5821 	return rc;
5822 }
5823 
5824 static void bnxt_hwrm_set_eee(struct bnxt *bp,
5825 			      struct hwrm_port_phy_cfg_input *req)
5826 {
5827 	struct ethtool_eee *eee = &bp->eee;
5828 
5829 	if (eee->eee_enabled) {
5830 		u16 eee_speeds;
5831 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
5832 
5833 		if (eee->tx_lpi_enabled)
5834 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
5835 		else
5836 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
5837 
5838 		req->flags |= cpu_to_le32(flags);
5839 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
5840 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
5841 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
5842 	} else {
5843 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
5844 	}
5845 }
5846 
5847 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
5848 {
5849 	struct hwrm_port_phy_cfg_input req = {0};
5850 
5851 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5852 	if (set_pause)
5853 		bnxt_hwrm_set_pause_common(bp, &req);
5854 
5855 	bnxt_hwrm_set_link_common(bp, &req);
5856 
5857 	if (set_eee)
5858 		bnxt_hwrm_set_eee(bp, &req);
5859 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5860 }
5861 
5862 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
5863 {
5864 	struct hwrm_port_phy_cfg_input req = {0};
5865 
5866 	if (!BNXT_SINGLE_PF(bp))
5867 		return 0;
5868 
5869 	if (pci_num_vf(bp->pdev))
5870 		return 0;
5871 
5872 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5873 	req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
5874 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5875 }
5876 
5877 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
5878 {
5879 	struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5880 	struct hwrm_port_led_qcaps_input req = {0};
5881 	struct bnxt_pf_info *pf = &bp->pf;
5882 	int rc;
5883 
5884 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
5885 		return 0;
5886 
5887 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
5888 	req.port_id = cpu_to_le16(pf->port_id);
5889 	mutex_lock(&bp->hwrm_cmd_lock);
5890 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5891 	if (rc) {
5892 		mutex_unlock(&bp->hwrm_cmd_lock);
5893 		return rc;
5894 	}
5895 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
5896 		int i;
5897 
5898 		bp->num_leds = resp->num_leds;
5899 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
5900 						 bp->num_leds);
5901 		for (i = 0; i < bp->num_leds; i++) {
5902 			struct bnxt_led_info *led = &bp->leds[i];
5903 			__le16 caps = led->led_state_caps;
5904 
5905 			if (!led->led_group_id ||
5906 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
5907 				bp->num_leds = 0;
5908 				break;
5909 			}
5910 		}
5911 	}
5912 	mutex_unlock(&bp->hwrm_cmd_lock);
5913 	return 0;
5914 }
5915 
5916 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
5917 {
5918 	struct hwrm_wol_filter_alloc_input req = {0};
5919 	struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5920 	int rc;
5921 
5922 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
5923 	req.port_id = cpu_to_le16(bp->pf.port_id);
5924 	req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
5925 	req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
5926 	memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
5927 	mutex_lock(&bp->hwrm_cmd_lock);
5928 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5929 	if (!rc)
5930 		bp->wol_filter_id = resp->wol_filter_id;
5931 	mutex_unlock(&bp->hwrm_cmd_lock);
5932 	return rc;
5933 }
5934 
5935 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
5936 {
5937 	struct hwrm_wol_filter_free_input req = {0};
5938 	int rc;
5939 
5940 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
5941 	req.port_id = cpu_to_le16(bp->pf.port_id);
5942 	req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
5943 	req.wol_filter_id = bp->wol_filter_id;
5944 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5945 	return rc;
5946 }
5947 
5948 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
5949 {
5950 	struct hwrm_wol_filter_qcfg_input req = {0};
5951 	struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5952 	u16 next_handle = 0;
5953 	int rc;
5954 
5955 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
5956 	req.port_id = cpu_to_le16(bp->pf.port_id);
5957 	req.handle = cpu_to_le16(handle);
5958 	mutex_lock(&bp->hwrm_cmd_lock);
5959 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5960 	if (!rc) {
5961 		next_handle = le16_to_cpu(resp->next_handle);
5962 		if (next_handle != 0) {
5963 			if (resp->wol_type ==
5964 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
5965 				bp->wol = 1;
5966 				bp->wol_filter_id = resp->wol_filter_id;
5967 			}
5968 		}
5969 	}
5970 	mutex_unlock(&bp->hwrm_cmd_lock);
5971 	return next_handle;
5972 }
5973 
5974 static void bnxt_get_wol_settings(struct bnxt *bp)
5975 {
5976 	u16 handle = 0;
5977 
5978 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
5979 		return;
5980 
5981 	do {
5982 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
5983 	} while (handle && handle != 0xffff);
5984 }
5985 
5986 static bool bnxt_eee_config_ok(struct bnxt *bp)
5987 {
5988 	struct ethtool_eee *eee = &bp->eee;
5989 	struct bnxt_link_info *link_info = &bp->link_info;
5990 
5991 	if (!(bp->flags & BNXT_FLAG_EEE_CAP))
5992 		return true;
5993 
5994 	if (eee->eee_enabled) {
5995 		u32 advertising =
5996 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
5997 
5998 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
5999 			eee->eee_enabled = 0;
6000 			return false;
6001 		}
6002 		if (eee->advertised & ~advertising) {
6003 			eee->advertised = advertising & eee->supported;
6004 			return false;
6005 		}
6006 	}
6007 	return true;
6008 }
6009 
6010 static int bnxt_update_phy_setting(struct bnxt *bp)
6011 {
6012 	int rc;
6013 	bool update_link = false;
6014 	bool update_pause = false;
6015 	bool update_eee = false;
6016 	struct bnxt_link_info *link_info = &bp->link_info;
6017 
6018 	rc = bnxt_update_link(bp, true);
6019 	if (rc) {
6020 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
6021 			   rc);
6022 		return rc;
6023 	}
6024 	if (!BNXT_SINGLE_PF(bp))
6025 		return 0;
6026 
6027 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
6028 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
6029 	    link_info->req_flow_ctrl)
6030 		update_pause = true;
6031 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
6032 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
6033 		update_pause = true;
6034 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
6035 		if (BNXT_AUTO_MODE(link_info->auto_mode))
6036 			update_link = true;
6037 		if (link_info->req_link_speed != link_info->force_link_speed)
6038 			update_link = true;
6039 		if (link_info->req_duplex != link_info->duplex_setting)
6040 			update_link = true;
6041 	} else {
6042 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
6043 			update_link = true;
6044 		if (link_info->advertising != link_info->auto_link_speeds)
6045 			update_link = true;
6046 	}
6047 
6048 	/* The last close may have shutdown the link, so need to call
6049 	 * PHY_CFG to bring it back up.
6050 	 */
6051 	if (!netif_carrier_ok(bp->dev))
6052 		update_link = true;
6053 
6054 	if (!bnxt_eee_config_ok(bp))
6055 		update_eee = true;
6056 
6057 	if (update_link)
6058 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
6059 	else if (update_pause)
6060 		rc = bnxt_hwrm_set_pause(bp);
6061 	if (rc) {
6062 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
6063 			   rc);
6064 		return rc;
6065 	}
6066 
6067 	return rc;
6068 }
6069 
6070 /* Common routine to pre-map certain register block to different GRC window.
6071  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
6072  * in PF and 3 windows in VF that can be customized to map in different
6073  * register blocks.
6074  */
6075 static void bnxt_preset_reg_win(struct bnxt *bp)
6076 {
6077 	if (BNXT_PF(bp)) {
6078 		/* CAG registers map to GRC window #4 */
6079 		writel(BNXT_CAG_REG_BASE,
6080 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
6081 	}
6082 }
6083 
6084 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6085 {
6086 	int rc = 0;
6087 
6088 	bnxt_preset_reg_win(bp);
6089 	netif_carrier_off(bp->dev);
6090 	if (irq_re_init) {
6091 		rc = bnxt_setup_int_mode(bp);
6092 		if (rc) {
6093 			netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
6094 				   rc);
6095 			return rc;
6096 		}
6097 	}
6098 	if ((bp->flags & BNXT_FLAG_RFS) &&
6099 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
6100 		/* disable RFS if falling back to INTA */
6101 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
6102 		bp->flags &= ~BNXT_FLAG_RFS;
6103 	}
6104 
6105 	rc = bnxt_alloc_mem(bp, irq_re_init);
6106 	if (rc) {
6107 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
6108 		goto open_err_free_mem;
6109 	}
6110 
6111 	if (irq_re_init) {
6112 		bnxt_init_napi(bp);
6113 		rc = bnxt_request_irq(bp);
6114 		if (rc) {
6115 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
6116 			goto open_err;
6117 		}
6118 	}
6119 
6120 	bnxt_enable_napi(bp);
6121 
6122 	rc = bnxt_init_nic(bp, irq_re_init);
6123 	if (rc) {
6124 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
6125 		goto open_err;
6126 	}
6127 
6128 	if (link_re_init) {
6129 		rc = bnxt_update_phy_setting(bp);
6130 		if (rc)
6131 			netdev_warn(bp->dev, "failed to update phy settings\n");
6132 	}
6133 
6134 	if (irq_re_init)
6135 		udp_tunnel_get_rx_info(bp->dev);
6136 
6137 	set_bit(BNXT_STATE_OPEN, &bp->state);
6138 	bnxt_enable_int(bp);
6139 	/* Enable TX queues */
6140 	bnxt_tx_enable(bp);
6141 	mod_timer(&bp->timer, jiffies + bp->current_interval);
6142 	/* Poll link status and check for SFP+ module status */
6143 	bnxt_get_port_module_status(bp);
6144 
6145 	return 0;
6146 
6147 open_err:
6148 	bnxt_disable_napi(bp);
6149 	bnxt_del_napi(bp);
6150 
6151 open_err_free_mem:
6152 	bnxt_free_skbs(bp);
6153 	bnxt_free_irq(bp);
6154 	bnxt_free_mem(bp, true);
6155 	return rc;
6156 }
6157 
6158 /* rtnl_lock held */
6159 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6160 {
6161 	int rc = 0;
6162 
6163 	rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
6164 	if (rc) {
6165 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
6166 		dev_close(bp->dev);
6167 	}
6168 	return rc;
6169 }
6170 
6171 /* rtnl_lock held, open the NIC half way by allocating all resources, but
6172  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
6173  * self tests.
6174  */
6175 int bnxt_half_open_nic(struct bnxt *bp)
6176 {
6177 	int rc = 0;
6178 
6179 	rc = bnxt_alloc_mem(bp, false);
6180 	if (rc) {
6181 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
6182 		goto half_open_err;
6183 	}
6184 	rc = bnxt_init_nic(bp, false);
6185 	if (rc) {
6186 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
6187 		goto half_open_err;
6188 	}
6189 	return 0;
6190 
6191 half_open_err:
6192 	bnxt_free_skbs(bp);
6193 	bnxt_free_mem(bp, false);
6194 	dev_close(bp->dev);
6195 	return rc;
6196 }
6197 
6198 /* rtnl_lock held, this call can only be made after a previous successful
6199  * call to bnxt_half_open_nic().
6200  */
6201 void bnxt_half_close_nic(struct bnxt *bp)
6202 {
6203 	bnxt_hwrm_resource_free(bp, false, false);
6204 	bnxt_free_skbs(bp);
6205 	bnxt_free_mem(bp, false);
6206 }
6207 
6208 static int bnxt_open(struct net_device *dev)
6209 {
6210 	struct bnxt *bp = netdev_priv(dev);
6211 
6212 	return __bnxt_open_nic(bp, true, true);
6213 }
6214 
6215 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6216 {
6217 	int rc = 0;
6218 
6219 #ifdef CONFIG_BNXT_SRIOV
6220 	if (bp->sriov_cfg) {
6221 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
6222 						      !bp->sriov_cfg,
6223 						      BNXT_SRIOV_CFG_WAIT_TMO);
6224 		if (rc)
6225 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
6226 	}
6227 #endif
6228 	/* Change device state to avoid TX queue wake up's */
6229 	bnxt_tx_disable(bp);
6230 
6231 	clear_bit(BNXT_STATE_OPEN, &bp->state);
6232 	smp_mb__after_atomic();
6233 	while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
6234 		msleep(20);
6235 
6236 	/* Flush rings and and disable interrupts */
6237 	bnxt_shutdown_nic(bp, irq_re_init);
6238 
6239 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
6240 
6241 	bnxt_disable_napi(bp);
6242 	del_timer_sync(&bp->timer);
6243 	bnxt_free_skbs(bp);
6244 
6245 	if (irq_re_init) {
6246 		bnxt_free_irq(bp);
6247 		bnxt_del_napi(bp);
6248 	}
6249 	bnxt_free_mem(bp, irq_re_init);
6250 	return rc;
6251 }
6252 
6253 static int bnxt_close(struct net_device *dev)
6254 {
6255 	struct bnxt *bp = netdev_priv(dev);
6256 
6257 	bnxt_close_nic(bp, true, true);
6258 	bnxt_hwrm_shutdown_link(bp);
6259 	return 0;
6260 }
6261 
6262 /* rtnl_lock held */
6263 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
6264 {
6265 	switch (cmd) {
6266 	case SIOCGMIIPHY:
6267 		/* fallthru */
6268 	case SIOCGMIIREG: {
6269 		if (!netif_running(dev))
6270 			return -EAGAIN;
6271 
6272 		return 0;
6273 	}
6274 
6275 	case SIOCSMIIREG:
6276 		if (!netif_running(dev))
6277 			return -EAGAIN;
6278 
6279 		return 0;
6280 
6281 	default:
6282 		/* do nothing */
6283 		break;
6284 	}
6285 	return -EOPNOTSUPP;
6286 }
6287 
6288 static void
6289 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
6290 {
6291 	u32 i;
6292 	struct bnxt *bp = netdev_priv(dev);
6293 
6294 	if (!bp->bnapi)
6295 		return;
6296 
6297 	/* TODO check if we need to synchronize with bnxt_close path */
6298 	for (i = 0; i < bp->cp_nr_rings; i++) {
6299 		struct bnxt_napi *bnapi = bp->bnapi[i];
6300 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6301 		struct ctx_hw_stats *hw_stats = cpr->hw_stats;
6302 
6303 		stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
6304 		stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
6305 		stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
6306 
6307 		stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
6308 		stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
6309 		stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
6310 
6311 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
6312 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
6313 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
6314 
6315 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
6316 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
6317 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
6318 
6319 		stats->rx_missed_errors +=
6320 			le64_to_cpu(hw_stats->rx_discard_pkts);
6321 
6322 		stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
6323 
6324 		stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
6325 	}
6326 
6327 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
6328 		struct rx_port_stats *rx = bp->hw_rx_port_stats;
6329 		struct tx_port_stats *tx = bp->hw_tx_port_stats;
6330 
6331 		stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
6332 		stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
6333 		stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
6334 					  le64_to_cpu(rx->rx_ovrsz_frames) +
6335 					  le64_to_cpu(rx->rx_runt_frames);
6336 		stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
6337 				   le64_to_cpu(rx->rx_jbr_frames);
6338 		stats->collisions = le64_to_cpu(tx->tx_total_collisions);
6339 		stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
6340 		stats->tx_errors = le64_to_cpu(tx->tx_err);
6341 	}
6342 }
6343 
6344 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
6345 {
6346 	struct net_device *dev = bp->dev;
6347 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6348 	struct netdev_hw_addr *ha;
6349 	u8 *haddr;
6350 	int mc_count = 0;
6351 	bool update = false;
6352 	int off = 0;
6353 
6354 	netdev_for_each_mc_addr(ha, dev) {
6355 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
6356 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
6357 			vnic->mc_list_count = 0;
6358 			return false;
6359 		}
6360 		haddr = ha->addr;
6361 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
6362 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
6363 			update = true;
6364 		}
6365 		off += ETH_ALEN;
6366 		mc_count++;
6367 	}
6368 	if (mc_count)
6369 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
6370 
6371 	if (mc_count != vnic->mc_list_count) {
6372 		vnic->mc_list_count = mc_count;
6373 		update = true;
6374 	}
6375 	return update;
6376 }
6377 
6378 static bool bnxt_uc_list_updated(struct bnxt *bp)
6379 {
6380 	struct net_device *dev = bp->dev;
6381 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6382 	struct netdev_hw_addr *ha;
6383 	int off = 0;
6384 
6385 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
6386 		return true;
6387 
6388 	netdev_for_each_uc_addr(ha, dev) {
6389 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
6390 			return true;
6391 
6392 		off += ETH_ALEN;
6393 	}
6394 	return false;
6395 }
6396 
6397 static void bnxt_set_rx_mode(struct net_device *dev)
6398 {
6399 	struct bnxt *bp = netdev_priv(dev);
6400 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6401 	u32 mask = vnic->rx_mask;
6402 	bool mc_update = false;
6403 	bool uc_update;
6404 
6405 	if (!netif_running(dev))
6406 		return;
6407 
6408 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
6409 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
6410 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
6411 
6412 	if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
6413 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
6414 
6415 	uc_update = bnxt_uc_list_updated(bp);
6416 
6417 	if (dev->flags & IFF_ALLMULTI) {
6418 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
6419 		vnic->mc_list_count = 0;
6420 	} else {
6421 		mc_update = bnxt_mc_list_updated(bp, &mask);
6422 	}
6423 
6424 	if (mask != vnic->rx_mask || uc_update || mc_update) {
6425 		vnic->rx_mask = mask;
6426 
6427 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
6428 		schedule_work(&bp->sp_task);
6429 	}
6430 }
6431 
6432 static int bnxt_cfg_rx_mode(struct bnxt *bp)
6433 {
6434 	struct net_device *dev = bp->dev;
6435 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6436 	struct netdev_hw_addr *ha;
6437 	int i, off = 0, rc;
6438 	bool uc_update;
6439 
6440 	netif_addr_lock_bh(dev);
6441 	uc_update = bnxt_uc_list_updated(bp);
6442 	netif_addr_unlock_bh(dev);
6443 
6444 	if (!uc_update)
6445 		goto skip_uc;
6446 
6447 	mutex_lock(&bp->hwrm_cmd_lock);
6448 	for (i = 1; i < vnic->uc_filter_count; i++) {
6449 		struct hwrm_cfa_l2_filter_free_input req = {0};
6450 
6451 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
6452 				       -1);
6453 
6454 		req.l2_filter_id = vnic->fw_l2_filter_id[i];
6455 
6456 		rc = _hwrm_send_message(bp, &req, sizeof(req),
6457 					HWRM_CMD_TIMEOUT);
6458 	}
6459 	mutex_unlock(&bp->hwrm_cmd_lock);
6460 
6461 	vnic->uc_filter_count = 1;
6462 
6463 	netif_addr_lock_bh(dev);
6464 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
6465 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
6466 	} else {
6467 		netdev_for_each_uc_addr(ha, dev) {
6468 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
6469 			off += ETH_ALEN;
6470 			vnic->uc_filter_count++;
6471 		}
6472 	}
6473 	netif_addr_unlock_bh(dev);
6474 
6475 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
6476 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
6477 		if (rc) {
6478 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
6479 				   rc);
6480 			vnic->uc_filter_count = i;
6481 			return rc;
6482 		}
6483 	}
6484 
6485 skip_uc:
6486 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
6487 	if (rc)
6488 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
6489 			   rc);
6490 
6491 	return rc;
6492 }
6493 
6494 /* If the chip and firmware supports RFS */
6495 static bool bnxt_rfs_supported(struct bnxt *bp)
6496 {
6497 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
6498 		return true;
6499 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
6500 		return true;
6501 	return false;
6502 }
6503 
6504 /* If runtime conditions support RFS */
6505 static bool bnxt_rfs_capable(struct bnxt *bp)
6506 {
6507 #ifdef CONFIG_RFS_ACCEL
6508 	int vnics, max_vnics, max_rss_ctxs;
6509 
6510 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP))
6511 		return false;
6512 
6513 	vnics = 1 + bp->rx_nr_rings;
6514 	max_vnics = bnxt_get_max_func_vnics(bp);
6515 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
6516 
6517 	/* RSS contexts not a limiting factor */
6518 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
6519 		max_rss_ctxs = max_vnics;
6520 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
6521 		netdev_warn(bp->dev,
6522 			    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
6523 			    min(max_rss_ctxs - 1, max_vnics - 1));
6524 		return false;
6525 	}
6526 
6527 	return true;
6528 #else
6529 	return false;
6530 #endif
6531 }
6532 
6533 static netdev_features_t bnxt_fix_features(struct net_device *dev,
6534 					   netdev_features_t features)
6535 {
6536 	struct bnxt *bp = netdev_priv(dev);
6537 
6538 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
6539 		features &= ~NETIF_F_NTUPLE;
6540 
6541 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
6542 	 * turned on or off together.
6543 	 */
6544 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
6545 	    (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
6546 		if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
6547 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
6548 				      NETIF_F_HW_VLAN_STAG_RX);
6549 		else
6550 			features |= NETIF_F_HW_VLAN_CTAG_RX |
6551 				    NETIF_F_HW_VLAN_STAG_RX;
6552 	}
6553 #ifdef CONFIG_BNXT_SRIOV
6554 	if (BNXT_VF(bp)) {
6555 		if (bp->vf.vlan) {
6556 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
6557 				      NETIF_F_HW_VLAN_STAG_RX);
6558 		}
6559 	}
6560 #endif
6561 	return features;
6562 }
6563 
6564 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
6565 {
6566 	struct bnxt *bp = netdev_priv(dev);
6567 	u32 flags = bp->flags;
6568 	u32 changes;
6569 	int rc = 0;
6570 	bool re_init = false;
6571 	bool update_tpa = false;
6572 
6573 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
6574 	if ((features & NETIF_F_GRO) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
6575 		flags |= BNXT_FLAG_GRO;
6576 	if (features & NETIF_F_LRO)
6577 		flags |= BNXT_FLAG_LRO;
6578 
6579 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
6580 		flags &= ~BNXT_FLAG_TPA;
6581 
6582 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
6583 		flags |= BNXT_FLAG_STRIP_VLAN;
6584 
6585 	if (features & NETIF_F_NTUPLE)
6586 		flags |= BNXT_FLAG_RFS;
6587 
6588 	changes = flags ^ bp->flags;
6589 	if (changes & BNXT_FLAG_TPA) {
6590 		update_tpa = true;
6591 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
6592 		    (flags & BNXT_FLAG_TPA) == 0)
6593 			re_init = true;
6594 	}
6595 
6596 	if (changes & ~BNXT_FLAG_TPA)
6597 		re_init = true;
6598 
6599 	if (flags != bp->flags) {
6600 		u32 old_flags = bp->flags;
6601 
6602 		bp->flags = flags;
6603 
6604 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6605 			if (update_tpa)
6606 				bnxt_set_ring_params(bp);
6607 			return rc;
6608 		}
6609 
6610 		if (re_init) {
6611 			bnxt_close_nic(bp, false, false);
6612 			if (update_tpa)
6613 				bnxt_set_ring_params(bp);
6614 
6615 			return bnxt_open_nic(bp, false, false);
6616 		}
6617 		if (update_tpa) {
6618 			rc = bnxt_set_tpa(bp,
6619 					  (flags & BNXT_FLAG_TPA) ?
6620 					  true : false);
6621 			if (rc)
6622 				bp->flags = old_flags;
6623 		}
6624 	}
6625 	return rc;
6626 }
6627 
6628 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
6629 {
6630 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
6631 	int i = bnapi->index;
6632 
6633 	if (!txr)
6634 		return;
6635 
6636 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
6637 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
6638 		    txr->tx_cons);
6639 }
6640 
6641 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
6642 {
6643 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
6644 	int i = bnapi->index;
6645 
6646 	if (!rxr)
6647 		return;
6648 
6649 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
6650 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
6651 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
6652 		    rxr->rx_sw_agg_prod);
6653 }
6654 
6655 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
6656 {
6657 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6658 	int i = bnapi->index;
6659 
6660 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
6661 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
6662 }
6663 
6664 static void bnxt_dbg_dump_states(struct bnxt *bp)
6665 {
6666 	int i;
6667 	struct bnxt_napi *bnapi;
6668 
6669 	for (i = 0; i < bp->cp_nr_rings; i++) {
6670 		bnapi = bp->bnapi[i];
6671 		if (netif_msg_drv(bp)) {
6672 			bnxt_dump_tx_sw_state(bnapi);
6673 			bnxt_dump_rx_sw_state(bnapi);
6674 			bnxt_dump_cp_sw_state(bnapi);
6675 		}
6676 	}
6677 }
6678 
6679 static void bnxt_reset_task(struct bnxt *bp, bool silent)
6680 {
6681 	if (!silent)
6682 		bnxt_dbg_dump_states(bp);
6683 	if (netif_running(bp->dev)) {
6684 		int rc;
6685 
6686 		if (!silent)
6687 			bnxt_ulp_stop(bp);
6688 		bnxt_close_nic(bp, false, false);
6689 		rc = bnxt_open_nic(bp, false, false);
6690 		if (!silent && !rc)
6691 			bnxt_ulp_start(bp);
6692 	}
6693 }
6694 
6695 static void bnxt_tx_timeout(struct net_device *dev)
6696 {
6697 	struct bnxt *bp = netdev_priv(dev);
6698 
6699 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
6700 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
6701 	schedule_work(&bp->sp_task);
6702 }
6703 
6704 #ifdef CONFIG_NET_POLL_CONTROLLER
6705 static void bnxt_poll_controller(struct net_device *dev)
6706 {
6707 	struct bnxt *bp = netdev_priv(dev);
6708 	int i;
6709 
6710 	/* Only process tx rings/combined rings in netpoll mode. */
6711 	for (i = 0; i < bp->tx_nr_rings; i++) {
6712 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
6713 
6714 		napi_schedule(&txr->bnapi->napi);
6715 	}
6716 }
6717 #endif
6718 
6719 static void bnxt_timer(unsigned long data)
6720 {
6721 	struct bnxt *bp = (struct bnxt *)data;
6722 	struct net_device *dev = bp->dev;
6723 
6724 	if (!netif_running(dev))
6725 		return;
6726 
6727 	if (atomic_read(&bp->intr_sem) != 0)
6728 		goto bnxt_restart_timer;
6729 
6730 	if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS)) {
6731 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
6732 		schedule_work(&bp->sp_task);
6733 	}
6734 bnxt_restart_timer:
6735 	mod_timer(&bp->timer, jiffies + bp->current_interval);
6736 }
6737 
6738 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
6739 {
6740 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
6741 	 * set.  If the device is being closed, bnxt_close() may be holding
6742 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
6743 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
6744 	 */
6745 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6746 	rtnl_lock();
6747 }
6748 
6749 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
6750 {
6751 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6752 	rtnl_unlock();
6753 }
6754 
6755 /* Only called from bnxt_sp_task() */
6756 static void bnxt_reset(struct bnxt *bp, bool silent)
6757 {
6758 	bnxt_rtnl_lock_sp(bp);
6759 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
6760 		bnxt_reset_task(bp, silent);
6761 	bnxt_rtnl_unlock_sp(bp);
6762 }
6763 
6764 static void bnxt_cfg_ntp_filters(struct bnxt *);
6765 
6766 static void bnxt_sp_task(struct work_struct *work)
6767 {
6768 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
6769 
6770 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6771 	smp_mb__after_atomic();
6772 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6773 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6774 		return;
6775 	}
6776 
6777 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
6778 		bnxt_cfg_rx_mode(bp);
6779 
6780 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
6781 		bnxt_cfg_ntp_filters(bp);
6782 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
6783 		bnxt_hwrm_exec_fwd_req(bp);
6784 	if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
6785 		bnxt_hwrm_tunnel_dst_port_alloc(
6786 			bp, bp->vxlan_port,
6787 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
6788 	}
6789 	if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
6790 		bnxt_hwrm_tunnel_dst_port_free(
6791 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
6792 	}
6793 	if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
6794 		bnxt_hwrm_tunnel_dst_port_alloc(
6795 			bp, bp->nge_port,
6796 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
6797 	}
6798 	if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
6799 		bnxt_hwrm_tunnel_dst_port_free(
6800 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
6801 	}
6802 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event))
6803 		bnxt_hwrm_port_qstats(bp);
6804 
6805 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
6806 	 * must be the last functions to be called before exiting.
6807 	 */
6808 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
6809 		int rc = 0;
6810 
6811 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
6812 				       &bp->sp_event))
6813 			bnxt_hwrm_phy_qcaps(bp);
6814 
6815 		bnxt_rtnl_lock_sp(bp);
6816 		if (test_bit(BNXT_STATE_OPEN, &bp->state))
6817 			rc = bnxt_update_link(bp, true);
6818 		bnxt_rtnl_unlock_sp(bp);
6819 		if (rc)
6820 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
6821 				   rc);
6822 	}
6823 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
6824 		bnxt_rtnl_lock_sp(bp);
6825 		if (test_bit(BNXT_STATE_OPEN, &bp->state))
6826 			bnxt_get_port_module_status(bp);
6827 		bnxt_rtnl_unlock_sp(bp);
6828 	}
6829 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
6830 		bnxt_reset(bp, false);
6831 
6832 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
6833 		bnxt_reset(bp, true);
6834 
6835 	smp_mb__before_atomic();
6836 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6837 }
6838 
6839 /* Under rtnl_lock */
6840 int bnxt_reserve_rings(struct bnxt *bp, int tx, int rx, int tcs, int tx_xdp)
6841 {
6842 	int max_rx, max_tx, tx_sets = 1;
6843 	int tx_rings_needed;
6844 	bool sh = true;
6845 	int rc;
6846 
6847 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
6848 		sh = false;
6849 
6850 	if (tcs)
6851 		tx_sets = tcs;
6852 
6853 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
6854 	if (rc)
6855 		return rc;
6856 
6857 	if (max_rx < rx)
6858 		return -ENOMEM;
6859 
6860 	tx_rings_needed = tx * tx_sets + tx_xdp;
6861 	if (max_tx < tx_rings_needed)
6862 		return -ENOMEM;
6863 
6864 	if (bnxt_hwrm_reserve_tx_rings(bp, &tx_rings_needed) ||
6865 	    tx_rings_needed < (tx * tx_sets + tx_xdp))
6866 		return -ENOMEM;
6867 	return 0;
6868 }
6869 
6870 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
6871 {
6872 	if (bp->bar2) {
6873 		pci_iounmap(pdev, bp->bar2);
6874 		bp->bar2 = NULL;
6875 	}
6876 
6877 	if (bp->bar1) {
6878 		pci_iounmap(pdev, bp->bar1);
6879 		bp->bar1 = NULL;
6880 	}
6881 
6882 	if (bp->bar0) {
6883 		pci_iounmap(pdev, bp->bar0);
6884 		bp->bar0 = NULL;
6885 	}
6886 }
6887 
6888 static void bnxt_cleanup_pci(struct bnxt *bp)
6889 {
6890 	bnxt_unmap_bars(bp, bp->pdev);
6891 	pci_release_regions(bp->pdev);
6892 	pci_disable_device(bp->pdev);
6893 }
6894 
6895 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
6896 {
6897 	int rc;
6898 	struct bnxt *bp = netdev_priv(dev);
6899 
6900 	SET_NETDEV_DEV(dev, &pdev->dev);
6901 
6902 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
6903 	rc = pci_enable_device(pdev);
6904 	if (rc) {
6905 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
6906 		goto init_err;
6907 	}
6908 
6909 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
6910 		dev_err(&pdev->dev,
6911 			"Cannot find PCI device base address, aborting\n");
6912 		rc = -ENODEV;
6913 		goto init_err_disable;
6914 	}
6915 
6916 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
6917 	if (rc) {
6918 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
6919 		goto init_err_disable;
6920 	}
6921 
6922 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
6923 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
6924 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
6925 		goto init_err_disable;
6926 	}
6927 
6928 	pci_set_master(pdev);
6929 
6930 	bp->dev = dev;
6931 	bp->pdev = pdev;
6932 
6933 	bp->bar0 = pci_ioremap_bar(pdev, 0);
6934 	if (!bp->bar0) {
6935 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
6936 		rc = -ENOMEM;
6937 		goto init_err_release;
6938 	}
6939 
6940 	bp->bar1 = pci_ioremap_bar(pdev, 2);
6941 	if (!bp->bar1) {
6942 		dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
6943 		rc = -ENOMEM;
6944 		goto init_err_release;
6945 	}
6946 
6947 	bp->bar2 = pci_ioremap_bar(pdev, 4);
6948 	if (!bp->bar2) {
6949 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
6950 		rc = -ENOMEM;
6951 		goto init_err_release;
6952 	}
6953 
6954 	pci_enable_pcie_error_reporting(pdev);
6955 
6956 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
6957 
6958 	spin_lock_init(&bp->ntp_fltr_lock);
6959 
6960 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
6961 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
6962 
6963 	/* tick values in micro seconds */
6964 	bp->rx_coal_ticks = 12;
6965 	bp->rx_coal_bufs = 30;
6966 	bp->rx_coal_ticks_irq = 1;
6967 	bp->rx_coal_bufs_irq = 2;
6968 
6969 	bp->tx_coal_ticks = 25;
6970 	bp->tx_coal_bufs = 30;
6971 	bp->tx_coal_ticks_irq = 2;
6972 	bp->tx_coal_bufs_irq = 2;
6973 
6974 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
6975 
6976 	init_timer(&bp->timer);
6977 	bp->timer.data = (unsigned long)bp;
6978 	bp->timer.function = bnxt_timer;
6979 	bp->current_interval = BNXT_TIMER_INTERVAL;
6980 
6981 	clear_bit(BNXT_STATE_OPEN, &bp->state);
6982 	return 0;
6983 
6984 init_err_release:
6985 	bnxt_unmap_bars(bp, pdev);
6986 	pci_release_regions(pdev);
6987 
6988 init_err_disable:
6989 	pci_disable_device(pdev);
6990 
6991 init_err:
6992 	return rc;
6993 }
6994 
6995 /* rtnl_lock held */
6996 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
6997 {
6998 	struct sockaddr *addr = p;
6999 	struct bnxt *bp = netdev_priv(dev);
7000 	int rc = 0;
7001 
7002 	if (!is_valid_ether_addr(addr->sa_data))
7003 		return -EADDRNOTAVAIL;
7004 
7005 	rc = bnxt_approve_mac(bp, addr->sa_data);
7006 	if (rc)
7007 		return rc;
7008 
7009 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
7010 		return 0;
7011 
7012 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7013 	if (netif_running(dev)) {
7014 		bnxt_close_nic(bp, false, false);
7015 		rc = bnxt_open_nic(bp, false, false);
7016 	}
7017 
7018 	return rc;
7019 }
7020 
7021 /* rtnl_lock held */
7022 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
7023 {
7024 	struct bnxt *bp = netdev_priv(dev);
7025 
7026 	if (netif_running(dev))
7027 		bnxt_close_nic(bp, false, false);
7028 
7029 	dev->mtu = new_mtu;
7030 	bnxt_set_ring_params(bp);
7031 
7032 	if (netif_running(dev))
7033 		return bnxt_open_nic(bp, false, false);
7034 
7035 	return 0;
7036 }
7037 
7038 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
7039 {
7040 	struct bnxt *bp = netdev_priv(dev);
7041 	bool sh = false;
7042 	int rc;
7043 
7044 	if (tc > bp->max_tc) {
7045 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
7046 			   tc, bp->max_tc);
7047 		return -EINVAL;
7048 	}
7049 
7050 	if (netdev_get_num_tc(dev) == tc)
7051 		return 0;
7052 
7053 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7054 		sh = true;
7055 
7056 	rc = bnxt_reserve_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
7057 				tc, bp->tx_nr_rings_xdp);
7058 	if (rc)
7059 		return rc;
7060 
7061 	/* Needs to close the device and do hw resource re-allocations */
7062 	if (netif_running(bp->dev))
7063 		bnxt_close_nic(bp, true, false);
7064 
7065 	if (tc) {
7066 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
7067 		netdev_set_num_tc(dev, tc);
7068 	} else {
7069 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
7070 		netdev_reset_tc(dev);
7071 	}
7072 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7073 			       bp->tx_nr_rings + bp->rx_nr_rings;
7074 	bp->num_stat_ctxs = bp->cp_nr_rings;
7075 
7076 	if (netif_running(bp->dev))
7077 		return bnxt_open_nic(bp, true, false);
7078 
7079 	return 0;
7080 }
7081 
7082 static int bnxt_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
7083 			 struct tc_to_netdev *ntc)
7084 {
7085 	if (ntc->type != TC_SETUP_MQPRIO)
7086 		return -EINVAL;
7087 
7088 	ntc->mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
7089 
7090 	return bnxt_setup_mq_tc(dev, ntc->mqprio->num_tc);
7091 }
7092 
7093 #ifdef CONFIG_RFS_ACCEL
7094 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
7095 			    struct bnxt_ntuple_filter *f2)
7096 {
7097 	struct flow_keys *keys1 = &f1->fkeys;
7098 	struct flow_keys *keys2 = &f2->fkeys;
7099 
7100 	if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
7101 	    keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
7102 	    keys1->ports.ports == keys2->ports.ports &&
7103 	    keys1->basic.ip_proto == keys2->basic.ip_proto &&
7104 	    keys1->basic.n_proto == keys2->basic.n_proto &&
7105 	    keys1->control.flags == keys2->control.flags &&
7106 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
7107 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
7108 		return true;
7109 
7110 	return false;
7111 }
7112 
7113 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
7114 			      u16 rxq_index, u32 flow_id)
7115 {
7116 	struct bnxt *bp = netdev_priv(dev);
7117 	struct bnxt_ntuple_filter *fltr, *new_fltr;
7118 	struct flow_keys *fkeys;
7119 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
7120 	int rc = 0, idx, bit_id, l2_idx = 0;
7121 	struct hlist_head *head;
7122 
7123 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
7124 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7125 		int off = 0, j;
7126 
7127 		netif_addr_lock_bh(dev);
7128 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
7129 			if (ether_addr_equal(eth->h_dest,
7130 					     vnic->uc_list + off)) {
7131 				l2_idx = j + 1;
7132 				break;
7133 			}
7134 		}
7135 		netif_addr_unlock_bh(dev);
7136 		if (!l2_idx)
7137 			return -EINVAL;
7138 	}
7139 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
7140 	if (!new_fltr)
7141 		return -ENOMEM;
7142 
7143 	fkeys = &new_fltr->fkeys;
7144 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
7145 		rc = -EPROTONOSUPPORT;
7146 		goto err_free;
7147 	}
7148 
7149 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
7150 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
7151 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
7152 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
7153 		rc = -EPROTONOSUPPORT;
7154 		goto err_free;
7155 	}
7156 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
7157 	    bp->hwrm_spec_code < 0x10601) {
7158 		rc = -EPROTONOSUPPORT;
7159 		goto err_free;
7160 	}
7161 	if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
7162 	    bp->hwrm_spec_code < 0x10601) {
7163 		rc = -EPROTONOSUPPORT;
7164 		goto err_free;
7165 	}
7166 
7167 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
7168 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
7169 
7170 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
7171 	head = &bp->ntp_fltr_hash_tbl[idx];
7172 	rcu_read_lock();
7173 	hlist_for_each_entry_rcu(fltr, head, hash) {
7174 		if (bnxt_fltr_match(fltr, new_fltr)) {
7175 			rcu_read_unlock();
7176 			rc = 0;
7177 			goto err_free;
7178 		}
7179 	}
7180 	rcu_read_unlock();
7181 
7182 	spin_lock_bh(&bp->ntp_fltr_lock);
7183 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
7184 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
7185 	if (bit_id < 0) {
7186 		spin_unlock_bh(&bp->ntp_fltr_lock);
7187 		rc = -ENOMEM;
7188 		goto err_free;
7189 	}
7190 
7191 	new_fltr->sw_id = (u16)bit_id;
7192 	new_fltr->flow_id = flow_id;
7193 	new_fltr->l2_fltr_idx = l2_idx;
7194 	new_fltr->rxq = rxq_index;
7195 	hlist_add_head_rcu(&new_fltr->hash, head);
7196 	bp->ntp_fltr_count++;
7197 	spin_unlock_bh(&bp->ntp_fltr_lock);
7198 
7199 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
7200 	schedule_work(&bp->sp_task);
7201 
7202 	return new_fltr->sw_id;
7203 
7204 err_free:
7205 	kfree(new_fltr);
7206 	return rc;
7207 }
7208 
7209 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
7210 {
7211 	int i;
7212 
7213 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
7214 		struct hlist_head *head;
7215 		struct hlist_node *tmp;
7216 		struct bnxt_ntuple_filter *fltr;
7217 		int rc;
7218 
7219 		head = &bp->ntp_fltr_hash_tbl[i];
7220 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
7221 			bool del = false;
7222 
7223 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
7224 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
7225 							fltr->flow_id,
7226 							fltr->sw_id)) {
7227 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
7228 									 fltr);
7229 					del = true;
7230 				}
7231 			} else {
7232 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
7233 								       fltr);
7234 				if (rc)
7235 					del = true;
7236 				else
7237 					set_bit(BNXT_FLTR_VALID, &fltr->state);
7238 			}
7239 
7240 			if (del) {
7241 				spin_lock_bh(&bp->ntp_fltr_lock);
7242 				hlist_del_rcu(&fltr->hash);
7243 				bp->ntp_fltr_count--;
7244 				spin_unlock_bh(&bp->ntp_fltr_lock);
7245 				synchronize_rcu();
7246 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
7247 				kfree(fltr);
7248 			}
7249 		}
7250 	}
7251 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
7252 		netdev_info(bp->dev, "Receive PF driver unload event!");
7253 }
7254 
7255 #else
7256 
7257 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
7258 {
7259 }
7260 
7261 #endif /* CONFIG_RFS_ACCEL */
7262 
7263 static void bnxt_udp_tunnel_add(struct net_device *dev,
7264 				struct udp_tunnel_info *ti)
7265 {
7266 	struct bnxt *bp = netdev_priv(dev);
7267 
7268 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
7269 		return;
7270 
7271 	if (!netif_running(dev))
7272 		return;
7273 
7274 	switch (ti->type) {
7275 	case UDP_TUNNEL_TYPE_VXLAN:
7276 		if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
7277 			return;
7278 
7279 		bp->vxlan_port_cnt++;
7280 		if (bp->vxlan_port_cnt == 1) {
7281 			bp->vxlan_port = ti->port;
7282 			set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
7283 			schedule_work(&bp->sp_task);
7284 		}
7285 		break;
7286 	case UDP_TUNNEL_TYPE_GENEVE:
7287 		if (bp->nge_port_cnt && bp->nge_port != ti->port)
7288 			return;
7289 
7290 		bp->nge_port_cnt++;
7291 		if (bp->nge_port_cnt == 1) {
7292 			bp->nge_port = ti->port;
7293 			set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
7294 		}
7295 		break;
7296 	default:
7297 		return;
7298 	}
7299 
7300 	schedule_work(&bp->sp_task);
7301 }
7302 
7303 static void bnxt_udp_tunnel_del(struct net_device *dev,
7304 				struct udp_tunnel_info *ti)
7305 {
7306 	struct bnxt *bp = netdev_priv(dev);
7307 
7308 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
7309 		return;
7310 
7311 	if (!netif_running(dev))
7312 		return;
7313 
7314 	switch (ti->type) {
7315 	case UDP_TUNNEL_TYPE_VXLAN:
7316 		if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
7317 			return;
7318 		bp->vxlan_port_cnt--;
7319 
7320 		if (bp->vxlan_port_cnt != 0)
7321 			return;
7322 
7323 		set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
7324 		break;
7325 	case UDP_TUNNEL_TYPE_GENEVE:
7326 		if (!bp->nge_port_cnt || bp->nge_port != ti->port)
7327 			return;
7328 		bp->nge_port_cnt--;
7329 
7330 		if (bp->nge_port_cnt != 0)
7331 			return;
7332 
7333 		set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
7334 		break;
7335 	default:
7336 		return;
7337 	}
7338 
7339 	schedule_work(&bp->sp_task);
7340 }
7341 
7342 static const struct net_device_ops bnxt_netdev_ops = {
7343 	.ndo_open		= bnxt_open,
7344 	.ndo_start_xmit		= bnxt_start_xmit,
7345 	.ndo_stop		= bnxt_close,
7346 	.ndo_get_stats64	= bnxt_get_stats64,
7347 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
7348 	.ndo_do_ioctl		= bnxt_ioctl,
7349 	.ndo_validate_addr	= eth_validate_addr,
7350 	.ndo_set_mac_address	= bnxt_change_mac_addr,
7351 	.ndo_change_mtu		= bnxt_change_mtu,
7352 	.ndo_fix_features	= bnxt_fix_features,
7353 	.ndo_set_features	= bnxt_set_features,
7354 	.ndo_tx_timeout		= bnxt_tx_timeout,
7355 #ifdef CONFIG_BNXT_SRIOV
7356 	.ndo_get_vf_config	= bnxt_get_vf_config,
7357 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
7358 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
7359 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
7360 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
7361 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
7362 #endif
7363 #ifdef CONFIG_NET_POLL_CONTROLLER
7364 	.ndo_poll_controller	= bnxt_poll_controller,
7365 #endif
7366 	.ndo_setup_tc           = bnxt_setup_tc,
7367 #ifdef CONFIG_RFS_ACCEL
7368 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
7369 #endif
7370 	.ndo_udp_tunnel_add	= bnxt_udp_tunnel_add,
7371 	.ndo_udp_tunnel_del	= bnxt_udp_tunnel_del,
7372 	.ndo_xdp		= bnxt_xdp,
7373 };
7374 
7375 static void bnxt_remove_one(struct pci_dev *pdev)
7376 {
7377 	struct net_device *dev = pci_get_drvdata(pdev);
7378 	struct bnxt *bp = netdev_priv(dev);
7379 
7380 	if (BNXT_PF(bp))
7381 		bnxt_sriov_disable(bp);
7382 
7383 	pci_disable_pcie_error_reporting(pdev);
7384 	unregister_netdev(dev);
7385 	cancel_work_sync(&bp->sp_task);
7386 	bp->sp_event = 0;
7387 
7388 	bnxt_clear_int_mode(bp);
7389 	bnxt_hwrm_func_drv_unrgtr(bp);
7390 	bnxt_free_hwrm_resources(bp);
7391 	bnxt_ethtool_free(bp);
7392 	bnxt_dcb_free(bp);
7393 	kfree(bp->edev);
7394 	bp->edev = NULL;
7395 	if (bp->xdp_prog)
7396 		bpf_prog_put(bp->xdp_prog);
7397 	bnxt_cleanup_pci(bp);
7398 	free_netdev(dev);
7399 }
7400 
7401 static int bnxt_probe_phy(struct bnxt *bp)
7402 {
7403 	int rc = 0;
7404 	struct bnxt_link_info *link_info = &bp->link_info;
7405 
7406 	rc = bnxt_hwrm_phy_qcaps(bp);
7407 	if (rc) {
7408 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
7409 			   rc);
7410 		return rc;
7411 	}
7412 
7413 	rc = bnxt_update_link(bp, false);
7414 	if (rc) {
7415 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
7416 			   rc);
7417 		return rc;
7418 	}
7419 
7420 	/* Older firmware does not have supported_auto_speeds, so assume
7421 	 * that all supported speeds can be autonegotiated.
7422 	 */
7423 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
7424 		link_info->support_auto_speeds = link_info->support_speeds;
7425 
7426 	/*initialize the ethool setting copy with NVM settings */
7427 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
7428 		link_info->autoneg = BNXT_AUTONEG_SPEED;
7429 		if (bp->hwrm_spec_code >= 0x10201) {
7430 			if (link_info->auto_pause_setting &
7431 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
7432 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
7433 		} else {
7434 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
7435 		}
7436 		link_info->advertising = link_info->auto_link_speeds;
7437 	} else {
7438 		link_info->req_link_speed = link_info->force_link_speed;
7439 		link_info->req_duplex = link_info->duplex_setting;
7440 	}
7441 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
7442 		link_info->req_flow_ctrl =
7443 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
7444 	else
7445 		link_info->req_flow_ctrl = link_info->force_pause_setting;
7446 	return rc;
7447 }
7448 
7449 static int bnxt_get_max_irq(struct pci_dev *pdev)
7450 {
7451 	u16 ctrl;
7452 
7453 	if (!pdev->msix_cap)
7454 		return 1;
7455 
7456 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
7457 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
7458 }
7459 
7460 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
7461 				int *max_cp)
7462 {
7463 	int max_ring_grps = 0;
7464 
7465 #ifdef CONFIG_BNXT_SRIOV
7466 	if (!BNXT_PF(bp)) {
7467 		*max_tx = bp->vf.max_tx_rings;
7468 		*max_rx = bp->vf.max_rx_rings;
7469 		*max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
7470 		*max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
7471 		max_ring_grps = bp->vf.max_hw_ring_grps;
7472 	} else
7473 #endif
7474 	{
7475 		*max_tx = bp->pf.max_tx_rings;
7476 		*max_rx = bp->pf.max_rx_rings;
7477 		*max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
7478 		*max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
7479 		max_ring_grps = bp->pf.max_hw_ring_grps;
7480 	}
7481 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
7482 		*max_cp -= 1;
7483 		*max_rx -= 2;
7484 	}
7485 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7486 		*max_rx >>= 1;
7487 	*max_rx = min_t(int, *max_rx, max_ring_grps);
7488 }
7489 
7490 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
7491 {
7492 	int rx, tx, cp;
7493 
7494 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
7495 	if (!rx || !tx || !cp)
7496 		return -ENOMEM;
7497 
7498 	*max_rx = rx;
7499 	*max_tx = tx;
7500 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
7501 }
7502 
7503 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
7504 			       bool shared)
7505 {
7506 	int rc;
7507 
7508 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
7509 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
7510 		/* Not enough rings, try disabling agg rings. */
7511 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
7512 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
7513 		if (rc)
7514 			return rc;
7515 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
7516 		bp->dev->hw_features &= ~NETIF_F_LRO;
7517 		bp->dev->features &= ~NETIF_F_LRO;
7518 		bnxt_set_ring_params(bp);
7519 	}
7520 
7521 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
7522 		int max_cp, max_stat, max_irq;
7523 
7524 		/* Reserve minimum resources for RoCE */
7525 		max_cp = bnxt_get_max_func_cp_rings(bp);
7526 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
7527 		max_irq = bnxt_get_max_func_irqs(bp);
7528 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
7529 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
7530 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
7531 			return 0;
7532 
7533 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
7534 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
7535 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
7536 		max_cp = min_t(int, max_cp, max_irq);
7537 		max_cp = min_t(int, max_cp, max_stat);
7538 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
7539 		if (rc)
7540 			rc = 0;
7541 	}
7542 	return rc;
7543 }
7544 
7545 static int bnxt_set_dflt_rings(struct bnxt *bp)
7546 {
7547 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
7548 	bool sh = true;
7549 
7550 	if (sh)
7551 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
7552 	dflt_rings = netif_get_num_default_rss_queues();
7553 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
7554 	if (rc)
7555 		return rc;
7556 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
7557 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
7558 
7559 	rc = bnxt_hwrm_reserve_tx_rings(bp, &bp->tx_nr_rings_per_tc);
7560 	if (rc)
7561 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
7562 
7563 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
7564 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7565 			       bp->tx_nr_rings + bp->rx_nr_rings;
7566 	bp->num_stat_ctxs = bp->cp_nr_rings;
7567 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7568 		bp->rx_nr_rings++;
7569 		bp->cp_nr_rings++;
7570 	}
7571 	return rc;
7572 }
7573 
7574 void bnxt_restore_pf_fw_resources(struct bnxt *bp)
7575 {
7576 	ASSERT_RTNL();
7577 	bnxt_hwrm_func_qcaps(bp);
7578 	bnxt_subtract_ulp_resources(bp, BNXT_ROCE_ULP);
7579 }
7580 
7581 static void bnxt_parse_log_pcie_link(struct bnxt *bp)
7582 {
7583 	enum pcie_link_width width = PCIE_LNK_WIDTH_UNKNOWN;
7584 	enum pci_bus_speed speed = PCI_SPEED_UNKNOWN;
7585 
7586 	if (pcie_get_minimum_link(bp->pdev, &speed, &width) ||
7587 	    speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN)
7588 		netdev_info(bp->dev, "Failed to determine PCIe Link Info\n");
7589 	else
7590 		netdev_info(bp->dev, "PCIe: Speed %s Width x%d\n",
7591 			    speed == PCIE_SPEED_2_5GT ? "2.5GT/s" :
7592 			    speed == PCIE_SPEED_5_0GT ? "5.0GT/s" :
7593 			    speed == PCIE_SPEED_8_0GT ? "8.0GT/s" :
7594 			    "Unknown", width);
7595 }
7596 
7597 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
7598 {
7599 	static int version_printed;
7600 	struct net_device *dev;
7601 	struct bnxt *bp;
7602 	int rc, max_irqs;
7603 
7604 	if (pci_is_bridge(pdev))
7605 		return -ENODEV;
7606 
7607 	if (version_printed++ == 0)
7608 		pr_info("%s", version);
7609 
7610 	max_irqs = bnxt_get_max_irq(pdev);
7611 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
7612 	if (!dev)
7613 		return -ENOMEM;
7614 
7615 	bp = netdev_priv(dev);
7616 
7617 	if (bnxt_vf_pciid(ent->driver_data))
7618 		bp->flags |= BNXT_FLAG_VF;
7619 
7620 	if (pdev->msix_cap)
7621 		bp->flags |= BNXT_FLAG_MSIX_CAP;
7622 
7623 	rc = bnxt_init_board(pdev, dev);
7624 	if (rc < 0)
7625 		goto init_err_free;
7626 
7627 	dev->netdev_ops = &bnxt_netdev_ops;
7628 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
7629 	dev->ethtool_ops = &bnxt_ethtool_ops;
7630 	pci_set_drvdata(pdev, dev);
7631 
7632 	rc = bnxt_alloc_hwrm_resources(bp);
7633 	if (rc)
7634 		goto init_err_pci_clean;
7635 
7636 	mutex_init(&bp->hwrm_cmd_lock);
7637 	rc = bnxt_hwrm_ver_get(bp);
7638 	if (rc)
7639 		goto init_err_pci_clean;
7640 
7641 	rc = bnxt_hwrm_func_reset(bp);
7642 	if (rc)
7643 		goto init_err_pci_clean;
7644 
7645 	bnxt_hwrm_fw_set_time(bp);
7646 
7647 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
7648 			   NETIF_F_TSO | NETIF_F_TSO6 |
7649 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
7650 			   NETIF_F_GSO_IPXIP4 |
7651 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
7652 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
7653 			   NETIF_F_RXCSUM | NETIF_F_GRO;
7654 
7655 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
7656 		dev->hw_features |= NETIF_F_LRO;
7657 
7658 	dev->hw_enc_features =
7659 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
7660 			NETIF_F_TSO | NETIF_F_TSO6 |
7661 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
7662 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
7663 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
7664 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
7665 				    NETIF_F_GSO_GRE_CSUM;
7666 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
7667 	dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7668 			    NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
7669 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
7670 	dev->priv_flags |= IFF_UNICAST_FLT;
7671 
7672 	/* MTU range: 60 - 9500 */
7673 	dev->min_mtu = ETH_ZLEN;
7674 	dev->max_mtu = BNXT_MAX_MTU;
7675 
7676 #ifdef CONFIG_BNXT_SRIOV
7677 	init_waitqueue_head(&bp->sriov_cfg_wait);
7678 #endif
7679 	bp->gro_func = bnxt_gro_func_5730x;
7680 	if (BNXT_CHIP_NUM_57X1X(bp->chip_num))
7681 		bp->gro_func = bnxt_gro_func_5731x;
7682 
7683 	rc = bnxt_hwrm_func_drv_rgtr(bp);
7684 	if (rc)
7685 		goto init_err_pci_clean;
7686 
7687 	rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
7688 	if (rc)
7689 		goto init_err_pci_clean;
7690 
7691 	bp->ulp_probe = bnxt_ulp_probe;
7692 
7693 	/* Get the MAX capabilities for this function */
7694 	rc = bnxt_hwrm_func_qcaps(bp);
7695 	if (rc) {
7696 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
7697 			   rc);
7698 		rc = -1;
7699 		goto init_err_pci_clean;
7700 	}
7701 
7702 	rc = bnxt_hwrm_queue_qportcfg(bp);
7703 	if (rc) {
7704 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
7705 			   rc);
7706 		rc = -1;
7707 		goto init_err_pci_clean;
7708 	}
7709 
7710 	bnxt_hwrm_func_qcfg(bp);
7711 	bnxt_hwrm_port_led_qcaps(bp);
7712 	bnxt_ethtool_init(bp);
7713 	bnxt_dcb_init(bp);
7714 
7715 	bnxt_set_rx_skb_mode(bp, false);
7716 	bnxt_set_tpa_flags(bp);
7717 	bnxt_set_ring_params(bp);
7718 	bnxt_set_max_func_irqs(bp, max_irqs);
7719 	rc = bnxt_set_dflt_rings(bp);
7720 	if (rc) {
7721 		netdev_err(bp->dev, "Not enough rings available.\n");
7722 		rc = -ENOMEM;
7723 		goto init_err_pci_clean;
7724 	}
7725 
7726 	/* Default RSS hash cfg. */
7727 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
7728 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
7729 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
7730 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
7731 	if (!BNXT_CHIP_NUM_57X0X(bp->chip_num) &&
7732 	    !BNXT_CHIP_TYPE_NITRO_A0(bp) &&
7733 	    bp->hwrm_spec_code >= 0x10501) {
7734 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
7735 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
7736 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
7737 	}
7738 
7739 	bnxt_hwrm_vnic_qcaps(bp);
7740 	if (bnxt_rfs_supported(bp)) {
7741 		dev->hw_features |= NETIF_F_NTUPLE;
7742 		if (bnxt_rfs_capable(bp)) {
7743 			bp->flags |= BNXT_FLAG_RFS;
7744 			dev->features |= NETIF_F_NTUPLE;
7745 		}
7746 	}
7747 
7748 	if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
7749 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
7750 
7751 	rc = bnxt_probe_phy(bp);
7752 	if (rc)
7753 		goto init_err_pci_clean;
7754 
7755 	rc = bnxt_init_int_mode(bp);
7756 	if (rc)
7757 		goto init_err_pci_clean;
7758 
7759 	bnxt_get_wol_settings(bp);
7760 	if (bp->flags & BNXT_FLAG_WOL_CAP)
7761 		device_set_wakeup_enable(&pdev->dev, bp->wol);
7762 	else
7763 		device_set_wakeup_capable(&pdev->dev, false);
7764 
7765 	rc = register_netdev(dev);
7766 	if (rc)
7767 		goto init_err_clr_int;
7768 
7769 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
7770 		    board_info[ent->driver_data].name,
7771 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
7772 
7773 	bnxt_parse_log_pcie_link(bp);
7774 
7775 	return 0;
7776 
7777 init_err_clr_int:
7778 	bnxt_clear_int_mode(bp);
7779 
7780 init_err_pci_clean:
7781 	bnxt_cleanup_pci(bp);
7782 
7783 init_err_free:
7784 	free_netdev(dev);
7785 	return rc;
7786 }
7787 
7788 static void bnxt_shutdown(struct pci_dev *pdev)
7789 {
7790 	struct net_device *dev = pci_get_drvdata(pdev);
7791 	struct bnxt *bp;
7792 
7793 	if (!dev)
7794 		return;
7795 
7796 	rtnl_lock();
7797 	bp = netdev_priv(dev);
7798 	if (!bp)
7799 		goto shutdown_exit;
7800 
7801 	if (netif_running(dev))
7802 		dev_close(dev);
7803 
7804 	if (system_state == SYSTEM_POWER_OFF) {
7805 		bnxt_clear_int_mode(bp);
7806 		pci_wake_from_d3(pdev, bp->wol);
7807 		pci_set_power_state(pdev, PCI_D3hot);
7808 	}
7809 
7810 shutdown_exit:
7811 	rtnl_unlock();
7812 }
7813 
7814 #ifdef CONFIG_PM_SLEEP
7815 static int bnxt_suspend(struct device *device)
7816 {
7817 	struct pci_dev *pdev = to_pci_dev(device);
7818 	struct net_device *dev = pci_get_drvdata(pdev);
7819 	struct bnxt *bp = netdev_priv(dev);
7820 	int rc = 0;
7821 
7822 	rtnl_lock();
7823 	if (netif_running(dev)) {
7824 		netif_device_detach(dev);
7825 		rc = bnxt_close(dev);
7826 	}
7827 	bnxt_hwrm_func_drv_unrgtr(bp);
7828 	rtnl_unlock();
7829 	return rc;
7830 }
7831 
7832 static int bnxt_resume(struct device *device)
7833 {
7834 	struct pci_dev *pdev = to_pci_dev(device);
7835 	struct net_device *dev = pci_get_drvdata(pdev);
7836 	struct bnxt *bp = netdev_priv(dev);
7837 	int rc = 0;
7838 
7839 	rtnl_lock();
7840 	if (bnxt_hwrm_ver_get(bp) || bnxt_hwrm_func_drv_rgtr(bp)) {
7841 		rc = -ENODEV;
7842 		goto resume_exit;
7843 	}
7844 	rc = bnxt_hwrm_func_reset(bp);
7845 	if (rc) {
7846 		rc = -EBUSY;
7847 		goto resume_exit;
7848 	}
7849 	bnxt_get_wol_settings(bp);
7850 	if (netif_running(dev)) {
7851 		rc = bnxt_open(dev);
7852 		if (!rc)
7853 			netif_device_attach(dev);
7854 	}
7855 
7856 resume_exit:
7857 	rtnl_unlock();
7858 	return rc;
7859 }
7860 
7861 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
7862 #define BNXT_PM_OPS (&bnxt_pm_ops)
7863 
7864 #else
7865 
7866 #define BNXT_PM_OPS NULL
7867 
7868 #endif /* CONFIG_PM_SLEEP */
7869 
7870 /**
7871  * bnxt_io_error_detected - called when PCI error is detected
7872  * @pdev: Pointer to PCI device
7873  * @state: The current pci connection state
7874  *
7875  * This function is called after a PCI bus error affecting
7876  * this device has been detected.
7877  */
7878 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
7879 					       pci_channel_state_t state)
7880 {
7881 	struct net_device *netdev = pci_get_drvdata(pdev);
7882 	struct bnxt *bp = netdev_priv(netdev);
7883 
7884 	netdev_info(netdev, "PCI I/O error detected\n");
7885 
7886 	rtnl_lock();
7887 	netif_device_detach(netdev);
7888 
7889 	bnxt_ulp_stop(bp);
7890 
7891 	if (state == pci_channel_io_perm_failure) {
7892 		rtnl_unlock();
7893 		return PCI_ERS_RESULT_DISCONNECT;
7894 	}
7895 
7896 	if (netif_running(netdev))
7897 		bnxt_close(netdev);
7898 
7899 	pci_disable_device(pdev);
7900 	rtnl_unlock();
7901 
7902 	/* Request a slot slot reset. */
7903 	return PCI_ERS_RESULT_NEED_RESET;
7904 }
7905 
7906 /**
7907  * bnxt_io_slot_reset - called after the pci bus has been reset.
7908  * @pdev: Pointer to PCI device
7909  *
7910  * Restart the card from scratch, as if from a cold-boot.
7911  * At this point, the card has exprienced a hard reset,
7912  * followed by fixups by BIOS, and has its config space
7913  * set up identically to what it was at cold boot.
7914  */
7915 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
7916 {
7917 	struct net_device *netdev = pci_get_drvdata(pdev);
7918 	struct bnxt *bp = netdev_priv(netdev);
7919 	int err = 0;
7920 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
7921 
7922 	netdev_info(bp->dev, "PCI Slot Reset\n");
7923 
7924 	rtnl_lock();
7925 
7926 	if (pci_enable_device(pdev)) {
7927 		dev_err(&pdev->dev,
7928 			"Cannot re-enable PCI device after reset.\n");
7929 	} else {
7930 		pci_set_master(pdev);
7931 
7932 		err = bnxt_hwrm_func_reset(bp);
7933 		if (!err && netif_running(netdev))
7934 			err = bnxt_open(netdev);
7935 
7936 		if (!err) {
7937 			result = PCI_ERS_RESULT_RECOVERED;
7938 			bnxt_ulp_start(bp);
7939 		}
7940 	}
7941 
7942 	if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
7943 		dev_close(netdev);
7944 
7945 	rtnl_unlock();
7946 
7947 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7948 	if (err) {
7949 		dev_err(&pdev->dev,
7950 			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7951 			 err); /* non-fatal, continue */
7952 	}
7953 
7954 	return PCI_ERS_RESULT_RECOVERED;
7955 }
7956 
7957 /**
7958  * bnxt_io_resume - called when traffic can start flowing again.
7959  * @pdev: Pointer to PCI device
7960  *
7961  * This callback is called when the error recovery driver tells
7962  * us that its OK to resume normal operation.
7963  */
7964 static void bnxt_io_resume(struct pci_dev *pdev)
7965 {
7966 	struct net_device *netdev = pci_get_drvdata(pdev);
7967 
7968 	rtnl_lock();
7969 
7970 	netif_device_attach(netdev);
7971 
7972 	rtnl_unlock();
7973 }
7974 
7975 static const struct pci_error_handlers bnxt_err_handler = {
7976 	.error_detected	= bnxt_io_error_detected,
7977 	.slot_reset	= bnxt_io_slot_reset,
7978 	.resume		= bnxt_io_resume
7979 };
7980 
7981 static struct pci_driver bnxt_pci_driver = {
7982 	.name		= DRV_MODULE_NAME,
7983 	.id_table	= bnxt_pci_tbl,
7984 	.probe		= bnxt_init_one,
7985 	.remove		= bnxt_remove_one,
7986 	.shutdown	= bnxt_shutdown,
7987 	.driver.pm	= BNXT_PM_OPS,
7988 	.err_handler	= &bnxt_err_handler,
7989 #if defined(CONFIG_BNXT_SRIOV)
7990 	.sriov_configure = bnxt_sriov_configure,
7991 #endif
7992 };
7993 
7994 module_pci_driver(bnxt_pci_driver);
7995