1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/gro.h> 41 #include <net/ip.h> 42 #include <net/tcp.h> 43 #include <net/udp.h> 44 #include <net/checksum.h> 45 #include <net/ip6_checksum.h> 46 #include <net/udp_tunnel.h> 47 #include <linux/workqueue.h> 48 #include <linux/prefetch.h> 49 #include <linux/cache.h> 50 #include <linux/log2.h> 51 #include <linux/bitmap.h> 52 #include <linux/cpu_rmap.h> 53 #include <linux/cpumask.h> 54 #include <net/pkt_cls.h> 55 #include <net/page_pool/helpers.h> 56 #include <linux/align.h> 57 #include <net/netdev_queues.h> 58 59 #include "bnxt_hsi.h" 60 #include "bnxt.h" 61 #include "bnxt_hwrm.h" 62 #include "bnxt_ulp.h" 63 #include "bnxt_sriov.h" 64 #include "bnxt_ethtool.h" 65 #include "bnxt_dcb.h" 66 #include "bnxt_xdp.h" 67 #include "bnxt_ptp.h" 68 #include "bnxt_vfr.h" 69 #include "bnxt_tc.h" 70 #include "bnxt_devlink.h" 71 #include "bnxt_debugfs.h" 72 #include "bnxt_hwmon.h" 73 74 #define BNXT_TX_TIMEOUT (5 * HZ) 75 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \ 76 NETIF_MSG_TX_ERR) 77 78 MODULE_LICENSE("GPL"); 79 MODULE_DESCRIPTION("Broadcom BCM573xx network driver"); 80 81 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 82 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 83 #define BNXT_RX_COPY_THRESH 256 84 85 #define BNXT_TX_PUSH_THRESH 164 86 87 /* indexed by enum board_idx */ 88 static const struct { 89 char *name; 90 } board_info[] = { 91 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 92 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 93 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 94 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 95 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 96 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 97 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 98 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 99 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 100 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 101 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 102 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 103 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 104 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 105 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 106 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 107 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 108 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 109 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 110 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 111 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 112 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 113 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 114 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 115 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 116 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 117 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 118 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 119 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 120 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 121 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 122 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 123 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 124 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 125 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 126 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 127 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 128 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 129 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 130 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 131 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 132 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 133 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 134 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 135 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 136 }; 137 138 static const struct pci_device_id bnxt_pci_tbl[] = { 139 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 140 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 141 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 142 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 143 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 144 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 145 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 146 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 147 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 148 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 149 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 150 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 151 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 152 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 153 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 154 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 155 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 156 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 157 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 158 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 159 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 160 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 161 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 162 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 163 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 164 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 165 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 166 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 167 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 168 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 169 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 170 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 171 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 172 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 173 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 174 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 175 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 176 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 177 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR }, 178 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 179 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR }, 180 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR }, 181 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 182 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR }, 183 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 184 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 185 #ifdef CONFIG_BNXT_SRIOV 186 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 187 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 188 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 189 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 190 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 191 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 192 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 193 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 194 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 195 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 196 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 197 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 198 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 199 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 200 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 201 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 202 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 203 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 204 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 205 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 206 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 207 #endif 208 { 0 } 209 }; 210 211 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 212 213 static const u16 bnxt_vf_req_snif[] = { 214 HWRM_FUNC_CFG, 215 HWRM_FUNC_VF_CFG, 216 HWRM_PORT_PHY_QCFG, 217 HWRM_CFA_L2_FILTER_ALLOC, 218 }; 219 220 static const u16 bnxt_async_events_arr[] = { 221 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 222 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 223 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 224 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 225 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 226 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 227 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 228 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 229 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 230 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 231 ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE, 232 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 233 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 234 ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP, 235 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT, 236 ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE, 237 }; 238 239 static struct workqueue_struct *bnxt_pf_wq; 240 241 static bool bnxt_vf_pciid(enum board_idx idx) 242 { 243 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 244 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 245 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || 246 idx == NETXTREME_E_P5_VF_HV); 247 } 248 249 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 250 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 251 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) 252 253 #define BNXT_CP_DB_IRQ_DIS(db) \ 254 writel(DB_CP_IRQ_DIS_FLAGS, db) 255 256 #define BNXT_DB_CQ(db, idx) \ 257 writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell) 258 259 #define BNXT_DB_NQ_P5(db, idx) \ 260 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), \ 261 (db)->doorbell) 262 263 #define BNXT_DB_CQ_ARM(db, idx) \ 264 writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell) 265 266 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 267 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx),\ 268 (db)->doorbell) 269 270 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 271 { 272 if (bp->flags & BNXT_FLAG_CHIP_P5) 273 BNXT_DB_NQ_P5(db, idx); 274 else 275 BNXT_DB_CQ(db, idx); 276 } 277 278 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 279 { 280 if (bp->flags & BNXT_FLAG_CHIP_P5) 281 BNXT_DB_NQ_ARM_P5(db, idx); 282 else 283 BNXT_DB_CQ_ARM(db, idx); 284 } 285 286 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 287 { 288 if (bp->flags & BNXT_FLAG_CHIP_P5) 289 bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL | 290 RING_CMP(idx), db->doorbell); 291 else 292 BNXT_DB_CQ(db, idx); 293 } 294 295 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 296 { 297 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 298 return; 299 300 if (BNXT_PF(bp)) 301 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 302 else 303 schedule_delayed_work(&bp->fw_reset_task, delay); 304 } 305 306 static void __bnxt_queue_sp_work(struct bnxt *bp) 307 { 308 if (BNXT_PF(bp)) 309 queue_work(bnxt_pf_wq, &bp->sp_task); 310 else 311 schedule_work(&bp->sp_task); 312 } 313 314 static void bnxt_queue_sp_work(struct bnxt *bp, unsigned int event) 315 { 316 set_bit(event, &bp->sp_event); 317 __bnxt_queue_sp_work(bp); 318 } 319 320 static void bnxt_sched_reset_rxr(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 321 { 322 if (!rxr->bnapi->in_reset) { 323 rxr->bnapi->in_reset = true; 324 if (bp->flags & BNXT_FLAG_CHIP_P5) 325 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 326 else 327 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 328 __bnxt_queue_sp_work(bp); 329 } 330 rxr->rx_next_cons = 0xffff; 331 } 332 333 void bnxt_sched_reset_txr(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 334 int idx) 335 { 336 struct bnxt_napi *bnapi = txr->bnapi; 337 338 if (bnapi->tx_fault) 339 return; 340 341 netdev_err(bp->dev, "Invalid Tx completion (ring:%d tx_pkts:%d cons:%u prod:%u i:%d)", 342 txr->txq_index, bnapi->tx_pkts, 343 txr->tx_cons, txr->tx_prod, idx); 344 WARN_ON_ONCE(1); 345 bnapi->tx_fault = 1; 346 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 347 } 348 349 const u16 bnxt_lhint_arr[] = { 350 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 351 TX_BD_FLAGS_LHINT_512_TO_1023, 352 TX_BD_FLAGS_LHINT_1024_TO_2047, 353 TX_BD_FLAGS_LHINT_1024_TO_2047, 354 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 355 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 356 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 357 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 358 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 359 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 360 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 361 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 362 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 363 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 364 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 365 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 366 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 367 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 368 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 369 }; 370 371 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 372 { 373 struct metadata_dst *md_dst = skb_metadata_dst(skb); 374 375 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 376 return 0; 377 378 return md_dst->u.port_info.port_id; 379 } 380 381 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 382 u16 prod) 383 { 384 bnxt_db_write(bp, &txr->tx_db, prod); 385 txr->kick_pending = 0; 386 } 387 388 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 389 { 390 struct bnxt *bp = netdev_priv(dev); 391 struct tx_bd *txbd; 392 struct tx_bd_ext *txbd1; 393 struct netdev_queue *txq; 394 int i; 395 dma_addr_t mapping; 396 unsigned int length, pad = 0; 397 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 398 u16 prod, last_frag; 399 struct pci_dev *pdev = bp->pdev; 400 struct bnxt_tx_ring_info *txr; 401 struct bnxt_sw_tx_bd *tx_buf; 402 __le32 lflags = 0; 403 404 i = skb_get_queue_mapping(skb); 405 if (unlikely(i >= bp->tx_nr_rings)) { 406 dev_kfree_skb_any(skb); 407 dev_core_stats_tx_dropped_inc(dev); 408 return NETDEV_TX_OK; 409 } 410 411 txq = netdev_get_tx_queue(dev, i); 412 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 413 prod = txr->tx_prod; 414 415 free_size = bnxt_tx_avail(bp, txr); 416 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 417 /* We must have raced with NAPI cleanup */ 418 if (net_ratelimit() && txr->kick_pending) 419 netif_warn(bp, tx_err, dev, 420 "bnxt: ring busy w/ flush pending!\n"); 421 if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 422 bp->tx_wake_thresh)) 423 return NETDEV_TX_BUSY; 424 } 425 426 if (unlikely(ipv6_hopopt_jumbo_remove(skb))) 427 goto tx_free; 428 429 length = skb->len; 430 len = skb_headlen(skb); 431 last_frag = skb_shinfo(skb)->nr_frags; 432 433 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 434 435 txbd->tx_bd_opaque = prod; 436 437 tx_buf = &txr->tx_buf_ring[prod]; 438 tx_buf->skb = skb; 439 tx_buf->nr_frags = last_frag; 440 441 vlan_tag_flags = 0; 442 cfa_action = bnxt_xmit_get_cfa_action(skb); 443 if (skb_vlan_tag_present(skb)) { 444 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 445 skb_vlan_tag_get(skb); 446 /* Currently supports 8021Q, 8021AD vlan offloads 447 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 448 */ 449 if (skb->vlan_proto == htons(ETH_P_8021Q)) 450 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 451 } 452 453 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 454 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 455 456 if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) && 457 atomic_dec_if_positive(&ptp->tx_avail) >= 0) { 458 if (!bnxt_ptp_parse(skb, &ptp->tx_seqid, 459 &ptp->tx_hdr_off)) { 460 if (vlan_tag_flags) 461 ptp->tx_hdr_off += VLAN_HLEN; 462 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 463 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 464 } else { 465 atomic_inc(&bp->ptp_cfg->tx_avail); 466 } 467 } 468 } 469 470 if (unlikely(skb->no_fcs)) 471 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 472 473 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && 474 !lflags) { 475 struct tx_push_buffer *tx_push_buf = txr->tx_push; 476 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 477 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 478 void __iomem *db = txr->tx_db.doorbell; 479 void *pdata = tx_push_buf->data; 480 u64 *end; 481 int j, push_len; 482 483 /* Set COAL_NOW to be ready quickly for the next push */ 484 tx_push->tx_bd_len_flags_type = 485 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 486 TX_BD_TYPE_LONG_TX_BD | 487 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 488 TX_BD_FLAGS_COAL_NOW | 489 TX_BD_FLAGS_PACKET_END | 490 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 491 492 if (skb->ip_summed == CHECKSUM_PARTIAL) 493 tx_push1->tx_bd_hsize_lflags = 494 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 495 else 496 tx_push1->tx_bd_hsize_lflags = 0; 497 498 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 499 tx_push1->tx_bd_cfa_action = 500 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 501 502 end = pdata + length; 503 end = PTR_ALIGN(end, 8) - 1; 504 *end = 0; 505 506 skb_copy_from_linear_data(skb, pdata, len); 507 pdata += len; 508 for (j = 0; j < last_frag; j++) { 509 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 510 void *fptr; 511 512 fptr = skb_frag_address_safe(frag); 513 if (!fptr) 514 goto normal_tx; 515 516 memcpy(pdata, fptr, skb_frag_size(frag)); 517 pdata += skb_frag_size(frag); 518 } 519 520 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 521 txbd->tx_bd_haddr = txr->data_mapping; 522 prod = NEXT_TX(prod); 523 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 524 memcpy(txbd, tx_push1, sizeof(*txbd)); 525 prod = NEXT_TX(prod); 526 tx_push->doorbell = 527 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod); 528 WRITE_ONCE(txr->tx_prod, prod); 529 530 tx_buf->is_push = 1; 531 netdev_tx_sent_queue(txq, skb->len); 532 wmb(); /* Sync is_push and byte queue before pushing data */ 533 534 push_len = (length + sizeof(*tx_push) + 7) / 8; 535 if (push_len > 16) { 536 __iowrite64_copy(db, tx_push_buf, 16); 537 __iowrite32_copy(db + 4, tx_push_buf + 1, 538 (push_len - 16) << 1); 539 } else { 540 __iowrite64_copy(db, tx_push_buf, push_len); 541 } 542 543 goto tx_done; 544 } 545 546 normal_tx: 547 if (length < BNXT_MIN_PKT_SIZE) { 548 pad = BNXT_MIN_PKT_SIZE - length; 549 if (skb_pad(skb, pad)) 550 /* SKB already freed. */ 551 goto tx_kick_pending; 552 length = BNXT_MIN_PKT_SIZE; 553 } 554 555 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 556 557 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 558 goto tx_free; 559 560 dma_unmap_addr_set(tx_buf, mapping, mapping); 561 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 562 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 563 564 txbd->tx_bd_haddr = cpu_to_le64(mapping); 565 566 prod = NEXT_TX(prod); 567 txbd1 = (struct tx_bd_ext *) 568 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 569 570 txbd1->tx_bd_hsize_lflags = lflags; 571 if (skb_is_gso(skb)) { 572 u32 hdr_len; 573 574 if (skb->encapsulation) 575 hdr_len = skb_inner_tcp_all_headers(skb); 576 else 577 hdr_len = skb_tcp_all_headers(skb); 578 579 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 580 TX_BD_FLAGS_T_IPID | 581 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 582 length = skb_shinfo(skb)->gso_size; 583 txbd1->tx_bd_mss = cpu_to_le32(length); 584 length += hdr_len; 585 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 586 txbd1->tx_bd_hsize_lflags |= 587 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 588 txbd1->tx_bd_mss = 0; 589 } 590 591 length >>= 9; 592 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 593 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 594 skb->len); 595 i = 0; 596 goto tx_dma_error; 597 } 598 flags |= bnxt_lhint_arr[length]; 599 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 600 601 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 602 txbd1->tx_bd_cfa_action = 603 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 604 for (i = 0; i < last_frag; i++) { 605 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 606 607 prod = NEXT_TX(prod); 608 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 609 610 len = skb_frag_size(frag); 611 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 612 DMA_TO_DEVICE); 613 614 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 615 goto tx_dma_error; 616 617 tx_buf = &txr->tx_buf_ring[prod]; 618 dma_unmap_addr_set(tx_buf, mapping, mapping); 619 620 txbd->tx_bd_haddr = cpu_to_le64(mapping); 621 622 flags = len << TX_BD_LEN_SHIFT; 623 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 624 } 625 626 flags &= ~TX_BD_LEN; 627 txbd->tx_bd_len_flags_type = 628 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 629 TX_BD_FLAGS_PACKET_END); 630 631 netdev_tx_sent_queue(txq, skb->len); 632 633 skb_tx_timestamp(skb); 634 635 /* Sync BD data before updating doorbell */ 636 wmb(); 637 638 prod = NEXT_TX(prod); 639 WRITE_ONCE(txr->tx_prod, prod); 640 641 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) 642 bnxt_txr_db_kick(bp, txr, prod); 643 else 644 txr->kick_pending = 1; 645 646 tx_done: 647 648 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 649 if (netdev_xmit_more() && !tx_buf->is_push) 650 bnxt_txr_db_kick(bp, txr, prod); 651 652 netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 653 bp->tx_wake_thresh); 654 } 655 return NETDEV_TX_OK; 656 657 tx_dma_error: 658 if (BNXT_TX_PTP_IS_SET(lflags)) 659 atomic_inc(&bp->ptp_cfg->tx_avail); 660 661 last_frag = i; 662 663 /* start back at beginning and unmap skb */ 664 prod = txr->tx_prod; 665 tx_buf = &txr->tx_buf_ring[prod]; 666 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 667 skb_headlen(skb), DMA_TO_DEVICE); 668 prod = NEXT_TX(prod); 669 670 /* unmap remaining mapped pages */ 671 for (i = 0; i < last_frag; i++) { 672 prod = NEXT_TX(prod); 673 tx_buf = &txr->tx_buf_ring[prod]; 674 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 675 skb_frag_size(&skb_shinfo(skb)->frags[i]), 676 DMA_TO_DEVICE); 677 } 678 679 tx_free: 680 dev_kfree_skb_any(skb); 681 tx_kick_pending: 682 if (txr->kick_pending) 683 bnxt_txr_db_kick(bp, txr, txr->tx_prod); 684 txr->tx_buf_ring[txr->tx_prod].skb = NULL; 685 dev_core_stats_tx_dropped_inc(dev); 686 return NETDEV_TX_OK; 687 } 688 689 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 690 { 691 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 692 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 693 u16 cons = txr->tx_cons; 694 struct pci_dev *pdev = bp->pdev; 695 int nr_pkts = bnapi->tx_pkts; 696 int i; 697 unsigned int tx_bytes = 0; 698 699 for (i = 0; i < nr_pkts; i++) { 700 struct bnxt_sw_tx_bd *tx_buf; 701 struct sk_buff *skb; 702 int j, last; 703 704 tx_buf = &txr->tx_buf_ring[cons]; 705 cons = NEXT_TX(cons); 706 skb = tx_buf->skb; 707 tx_buf->skb = NULL; 708 709 if (unlikely(!skb)) { 710 bnxt_sched_reset_txr(bp, txr, i); 711 return; 712 } 713 714 tx_bytes += skb->len; 715 716 if (tx_buf->is_push) { 717 tx_buf->is_push = 0; 718 goto next_tx_int; 719 } 720 721 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 722 skb_headlen(skb), DMA_TO_DEVICE); 723 last = tx_buf->nr_frags; 724 725 for (j = 0; j < last; j++) { 726 cons = NEXT_TX(cons); 727 tx_buf = &txr->tx_buf_ring[cons]; 728 dma_unmap_page( 729 &pdev->dev, 730 dma_unmap_addr(tx_buf, mapping), 731 skb_frag_size(&skb_shinfo(skb)->frags[j]), 732 DMA_TO_DEVICE); 733 } 734 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 735 if (bp->flags & BNXT_FLAG_CHIP_P5) { 736 /* PTP worker takes ownership of the skb */ 737 if (!bnxt_get_tx_ts_p5(bp, skb)) 738 skb = NULL; 739 else 740 atomic_inc(&bp->ptp_cfg->tx_avail); 741 } 742 } 743 744 next_tx_int: 745 cons = NEXT_TX(cons); 746 747 dev_consume_skb_any(skb); 748 } 749 750 bnapi->tx_pkts = 0; 751 WRITE_ONCE(txr->tx_cons, cons); 752 753 __netif_txq_completed_wake(txq, nr_pkts, tx_bytes, 754 bnxt_tx_avail(bp, txr), bp->tx_wake_thresh, 755 READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING); 756 } 757 758 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 759 struct bnxt_rx_ring_info *rxr, 760 unsigned int *offset, 761 gfp_t gfp) 762 { 763 struct page *page; 764 765 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 766 page = page_pool_dev_alloc_frag(rxr->page_pool, offset, 767 BNXT_RX_PAGE_SIZE); 768 } else { 769 page = page_pool_dev_alloc_pages(rxr->page_pool); 770 *offset = 0; 771 } 772 if (!page) 773 return NULL; 774 775 *mapping = page_pool_get_dma_addr(page) + *offset; 776 return page; 777 } 778 779 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping, 780 gfp_t gfp) 781 { 782 u8 *data; 783 struct pci_dev *pdev = bp->pdev; 784 785 if (gfp == GFP_ATOMIC) 786 data = napi_alloc_frag(bp->rx_buf_size); 787 else 788 data = netdev_alloc_frag(bp->rx_buf_size); 789 if (!data) 790 return NULL; 791 792 *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset, 793 bp->rx_buf_use_size, bp->rx_dir, 794 DMA_ATTR_WEAK_ORDERING); 795 796 if (dma_mapping_error(&pdev->dev, *mapping)) { 797 skb_free_frag(data); 798 data = NULL; 799 } 800 return data; 801 } 802 803 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 804 u16 prod, gfp_t gfp) 805 { 806 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 807 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod]; 808 dma_addr_t mapping; 809 810 if (BNXT_RX_PAGE_MODE(bp)) { 811 unsigned int offset; 812 struct page *page = 813 __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 814 815 if (!page) 816 return -ENOMEM; 817 818 mapping += bp->rx_dma_offset; 819 rx_buf->data = page; 820 rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset; 821 } else { 822 u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp); 823 824 if (!data) 825 return -ENOMEM; 826 827 rx_buf->data = data; 828 rx_buf->data_ptr = data + bp->rx_offset; 829 } 830 rx_buf->mapping = mapping; 831 832 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 833 return 0; 834 } 835 836 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 837 { 838 u16 prod = rxr->rx_prod; 839 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 840 struct rx_bd *cons_bd, *prod_bd; 841 842 prod_rx_buf = &rxr->rx_buf_ring[prod]; 843 cons_rx_buf = &rxr->rx_buf_ring[cons]; 844 845 prod_rx_buf->data = data; 846 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 847 848 prod_rx_buf->mapping = cons_rx_buf->mapping; 849 850 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 851 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)]; 852 853 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 854 } 855 856 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 857 { 858 u16 next, max = rxr->rx_agg_bmap_size; 859 860 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 861 if (next >= max) 862 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 863 return next; 864 } 865 866 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 867 struct bnxt_rx_ring_info *rxr, 868 u16 prod, gfp_t gfp) 869 { 870 struct rx_bd *rxbd = 871 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 872 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 873 struct page *page; 874 dma_addr_t mapping; 875 u16 sw_prod = rxr->rx_sw_agg_prod; 876 unsigned int offset = 0; 877 878 page = __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 879 880 if (!page) 881 return -ENOMEM; 882 883 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 884 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 885 886 __set_bit(sw_prod, rxr->rx_agg_bmap); 887 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 888 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod); 889 890 rx_agg_buf->page = page; 891 rx_agg_buf->offset = offset; 892 rx_agg_buf->mapping = mapping; 893 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 894 rxbd->rx_bd_opaque = sw_prod; 895 return 0; 896 } 897 898 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 899 struct bnxt_cp_ring_info *cpr, 900 u16 cp_cons, u16 curr) 901 { 902 struct rx_agg_cmp *agg; 903 904 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 905 agg = (struct rx_agg_cmp *) 906 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 907 return agg; 908 } 909 910 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 911 struct bnxt_rx_ring_info *rxr, 912 u16 agg_id, u16 curr) 913 { 914 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 915 916 return &tpa_info->agg_arr[curr]; 917 } 918 919 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 920 u16 start, u32 agg_bufs, bool tpa) 921 { 922 struct bnxt_napi *bnapi = cpr->bnapi; 923 struct bnxt *bp = bnapi->bp; 924 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 925 u16 prod = rxr->rx_agg_prod; 926 u16 sw_prod = rxr->rx_sw_agg_prod; 927 bool p5_tpa = false; 928 u32 i; 929 930 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 931 p5_tpa = true; 932 933 for (i = 0; i < agg_bufs; i++) { 934 u16 cons; 935 struct rx_agg_cmp *agg; 936 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 937 struct rx_bd *prod_bd; 938 struct page *page; 939 940 if (p5_tpa) 941 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 942 else 943 agg = bnxt_get_agg(bp, cpr, idx, start + i); 944 cons = agg->rx_agg_cmp_opaque; 945 __clear_bit(cons, rxr->rx_agg_bmap); 946 947 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 948 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 949 950 __set_bit(sw_prod, rxr->rx_agg_bmap); 951 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 952 cons_rx_buf = &rxr->rx_agg_ring[cons]; 953 954 /* It is possible for sw_prod to be equal to cons, so 955 * set cons_rx_buf->page to NULL first. 956 */ 957 page = cons_rx_buf->page; 958 cons_rx_buf->page = NULL; 959 prod_rx_buf->page = page; 960 prod_rx_buf->offset = cons_rx_buf->offset; 961 962 prod_rx_buf->mapping = cons_rx_buf->mapping; 963 964 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 965 966 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 967 prod_bd->rx_bd_opaque = sw_prod; 968 969 prod = NEXT_RX_AGG(prod); 970 sw_prod = NEXT_RX_AGG(sw_prod); 971 } 972 rxr->rx_agg_prod = prod; 973 rxr->rx_sw_agg_prod = sw_prod; 974 } 975 976 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp, 977 struct bnxt_rx_ring_info *rxr, 978 u16 cons, void *data, u8 *data_ptr, 979 dma_addr_t dma_addr, 980 unsigned int offset_and_len) 981 { 982 unsigned int len = offset_and_len & 0xffff; 983 struct page *page = data; 984 u16 prod = rxr->rx_prod; 985 struct sk_buff *skb; 986 int err; 987 988 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 989 if (unlikely(err)) { 990 bnxt_reuse_rx_data(rxr, cons, data); 991 return NULL; 992 } 993 dma_addr -= bp->rx_dma_offset; 994 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 995 bp->rx_dir); 996 skb = napi_build_skb(data_ptr - bp->rx_offset, BNXT_RX_PAGE_SIZE); 997 if (!skb) { 998 page_pool_recycle_direct(rxr->page_pool, page); 999 return NULL; 1000 } 1001 skb_mark_for_recycle(skb); 1002 skb_reserve(skb, bp->rx_offset); 1003 __skb_put(skb, len); 1004 1005 return skb; 1006 } 1007 1008 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 1009 struct bnxt_rx_ring_info *rxr, 1010 u16 cons, void *data, u8 *data_ptr, 1011 dma_addr_t dma_addr, 1012 unsigned int offset_and_len) 1013 { 1014 unsigned int payload = offset_and_len >> 16; 1015 unsigned int len = offset_and_len & 0xffff; 1016 skb_frag_t *frag; 1017 struct page *page = data; 1018 u16 prod = rxr->rx_prod; 1019 struct sk_buff *skb; 1020 int off, err; 1021 1022 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1023 if (unlikely(err)) { 1024 bnxt_reuse_rx_data(rxr, cons, data); 1025 return NULL; 1026 } 1027 dma_addr -= bp->rx_dma_offset; 1028 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1029 bp->rx_dir); 1030 1031 if (unlikely(!payload)) 1032 payload = eth_get_headlen(bp->dev, data_ptr, len); 1033 1034 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 1035 if (!skb) { 1036 page_pool_recycle_direct(rxr->page_pool, page); 1037 return NULL; 1038 } 1039 1040 skb_mark_for_recycle(skb); 1041 off = (void *)data_ptr - page_address(page); 1042 skb_add_rx_frag(skb, 0, page, off, len, BNXT_RX_PAGE_SIZE); 1043 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 1044 payload + NET_IP_ALIGN); 1045 1046 frag = &skb_shinfo(skb)->frags[0]; 1047 skb_frag_size_sub(frag, payload); 1048 skb_frag_off_add(frag, payload); 1049 skb->data_len -= payload; 1050 skb->tail += payload; 1051 1052 return skb; 1053 } 1054 1055 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 1056 struct bnxt_rx_ring_info *rxr, u16 cons, 1057 void *data, u8 *data_ptr, 1058 dma_addr_t dma_addr, 1059 unsigned int offset_and_len) 1060 { 1061 u16 prod = rxr->rx_prod; 1062 struct sk_buff *skb; 1063 int err; 1064 1065 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1066 if (unlikely(err)) { 1067 bnxt_reuse_rx_data(rxr, cons, data); 1068 return NULL; 1069 } 1070 1071 skb = napi_build_skb(data, bp->rx_buf_size); 1072 dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1073 bp->rx_dir, DMA_ATTR_WEAK_ORDERING); 1074 if (!skb) { 1075 skb_free_frag(data); 1076 return NULL; 1077 } 1078 1079 skb_reserve(skb, bp->rx_offset); 1080 skb_put(skb, offset_and_len & 0xffff); 1081 return skb; 1082 } 1083 1084 static u32 __bnxt_rx_agg_pages(struct bnxt *bp, 1085 struct bnxt_cp_ring_info *cpr, 1086 struct skb_shared_info *shinfo, 1087 u16 idx, u32 agg_bufs, bool tpa, 1088 struct xdp_buff *xdp) 1089 { 1090 struct bnxt_napi *bnapi = cpr->bnapi; 1091 struct pci_dev *pdev = bp->pdev; 1092 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1093 u16 prod = rxr->rx_agg_prod; 1094 u32 i, total_frag_len = 0; 1095 bool p5_tpa = false; 1096 1097 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 1098 p5_tpa = true; 1099 1100 for (i = 0; i < agg_bufs; i++) { 1101 skb_frag_t *frag = &shinfo->frags[i]; 1102 u16 cons, frag_len; 1103 struct rx_agg_cmp *agg; 1104 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1105 struct page *page; 1106 dma_addr_t mapping; 1107 1108 if (p5_tpa) 1109 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1110 else 1111 agg = bnxt_get_agg(bp, cpr, idx, i); 1112 cons = agg->rx_agg_cmp_opaque; 1113 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1114 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1115 1116 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1117 skb_frag_fill_page_desc(frag, cons_rx_buf->page, 1118 cons_rx_buf->offset, frag_len); 1119 shinfo->nr_frags = i + 1; 1120 __clear_bit(cons, rxr->rx_agg_bmap); 1121 1122 /* It is possible for bnxt_alloc_rx_page() to allocate 1123 * a sw_prod index that equals the cons index, so we 1124 * need to clear the cons entry now. 1125 */ 1126 mapping = cons_rx_buf->mapping; 1127 page = cons_rx_buf->page; 1128 cons_rx_buf->page = NULL; 1129 1130 if (xdp && page_is_pfmemalloc(page)) 1131 xdp_buff_set_frag_pfmemalloc(xdp); 1132 1133 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 1134 --shinfo->nr_frags; 1135 cons_rx_buf->page = page; 1136 1137 /* Update prod since possibly some pages have been 1138 * allocated already. 1139 */ 1140 rxr->rx_agg_prod = prod; 1141 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1142 return 0; 1143 } 1144 1145 dma_sync_single_for_cpu(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, 1146 bp->rx_dir); 1147 1148 total_frag_len += frag_len; 1149 prod = NEXT_RX_AGG(prod); 1150 } 1151 rxr->rx_agg_prod = prod; 1152 return total_frag_len; 1153 } 1154 1155 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp, 1156 struct bnxt_cp_ring_info *cpr, 1157 struct sk_buff *skb, u16 idx, 1158 u32 agg_bufs, bool tpa) 1159 { 1160 struct skb_shared_info *shinfo = skb_shinfo(skb); 1161 u32 total_frag_len = 0; 1162 1163 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx, 1164 agg_bufs, tpa, NULL); 1165 if (!total_frag_len) { 1166 skb_mark_for_recycle(skb); 1167 dev_kfree_skb(skb); 1168 return NULL; 1169 } 1170 1171 skb->data_len += total_frag_len; 1172 skb->len += total_frag_len; 1173 skb->truesize += BNXT_RX_PAGE_SIZE * agg_bufs; 1174 return skb; 1175 } 1176 1177 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp, 1178 struct bnxt_cp_ring_info *cpr, 1179 struct xdp_buff *xdp, u16 idx, 1180 u32 agg_bufs, bool tpa) 1181 { 1182 struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp); 1183 u32 total_frag_len = 0; 1184 1185 if (!xdp_buff_has_frags(xdp)) 1186 shinfo->nr_frags = 0; 1187 1188 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, 1189 idx, agg_bufs, tpa, xdp); 1190 if (total_frag_len) { 1191 xdp_buff_set_frags_flag(xdp); 1192 shinfo->nr_frags = agg_bufs; 1193 shinfo->xdp_frags_size = total_frag_len; 1194 } 1195 return total_frag_len; 1196 } 1197 1198 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1199 u8 agg_bufs, u32 *raw_cons) 1200 { 1201 u16 last; 1202 struct rx_agg_cmp *agg; 1203 1204 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1205 last = RING_CMP(*raw_cons); 1206 agg = (struct rx_agg_cmp *) 1207 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1208 return RX_AGG_CMP_VALID(agg, *raw_cons); 1209 } 1210 1211 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1212 unsigned int len, 1213 dma_addr_t mapping) 1214 { 1215 struct bnxt *bp = bnapi->bp; 1216 struct pci_dev *pdev = bp->pdev; 1217 struct sk_buff *skb; 1218 1219 skb = napi_alloc_skb(&bnapi->napi, len); 1220 if (!skb) 1221 return NULL; 1222 1223 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh, 1224 bp->rx_dir); 1225 1226 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1227 len + NET_IP_ALIGN); 1228 1229 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh, 1230 bp->rx_dir); 1231 1232 skb_put(skb, len); 1233 return skb; 1234 } 1235 1236 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1237 u32 *raw_cons, void *cmp) 1238 { 1239 struct rx_cmp *rxcmp = cmp; 1240 u32 tmp_raw_cons = *raw_cons; 1241 u8 cmp_type, agg_bufs = 0; 1242 1243 cmp_type = RX_CMP_TYPE(rxcmp); 1244 1245 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1246 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1247 RX_CMP_AGG_BUFS) >> 1248 RX_CMP_AGG_BUFS_SHIFT; 1249 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1250 struct rx_tpa_end_cmp *tpa_end = cmp; 1251 1252 if (bp->flags & BNXT_FLAG_CHIP_P5) 1253 return 0; 1254 1255 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1256 } 1257 1258 if (agg_bufs) { 1259 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1260 return -EBUSY; 1261 } 1262 *raw_cons = tmp_raw_cons; 1263 return 0; 1264 } 1265 1266 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1267 { 1268 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1269 u16 idx = agg_id & MAX_TPA_P5_MASK; 1270 1271 if (test_bit(idx, map->agg_idx_bmap)) 1272 idx = find_first_zero_bit(map->agg_idx_bmap, 1273 BNXT_AGG_IDX_BMAP_SIZE); 1274 __set_bit(idx, map->agg_idx_bmap); 1275 map->agg_id_tbl[agg_id] = idx; 1276 return idx; 1277 } 1278 1279 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1280 { 1281 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1282 1283 __clear_bit(idx, map->agg_idx_bmap); 1284 } 1285 1286 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1287 { 1288 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1289 1290 return map->agg_id_tbl[agg_id]; 1291 } 1292 1293 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1294 struct rx_tpa_start_cmp *tpa_start, 1295 struct rx_tpa_start_cmp_ext *tpa_start1) 1296 { 1297 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1298 struct bnxt_tpa_info *tpa_info; 1299 u16 cons, prod, agg_id; 1300 struct rx_bd *prod_bd; 1301 dma_addr_t mapping; 1302 1303 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1304 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1305 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1306 } else { 1307 agg_id = TPA_START_AGG_ID(tpa_start); 1308 } 1309 cons = tpa_start->rx_tpa_start_cmp_opaque; 1310 prod = rxr->rx_prod; 1311 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1312 prod_rx_buf = &rxr->rx_buf_ring[prod]; 1313 tpa_info = &rxr->rx_tpa[agg_id]; 1314 1315 if (unlikely(cons != rxr->rx_next_cons || 1316 TPA_START_ERROR(tpa_start))) { 1317 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1318 cons, rxr->rx_next_cons, 1319 TPA_START_ERROR_CODE(tpa_start1)); 1320 bnxt_sched_reset_rxr(bp, rxr); 1321 return; 1322 } 1323 /* Store cfa_code in tpa_info to use in tpa_end 1324 * completion processing. 1325 */ 1326 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1327 prod_rx_buf->data = tpa_info->data; 1328 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1329 1330 mapping = tpa_info->mapping; 1331 prod_rx_buf->mapping = mapping; 1332 1333 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 1334 1335 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1336 1337 tpa_info->data = cons_rx_buf->data; 1338 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1339 cons_rx_buf->data = NULL; 1340 tpa_info->mapping = cons_rx_buf->mapping; 1341 1342 tpa_info->len = 1343 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1344 RX_TPA_START_CMP_LEN_SHIFT; 1345 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1346 u32 hash_type = TPA_START_HASH_TYPE(tpa_start); 1347 1348 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1349 tpa_info->gso_type = SKB_GSO_TCPV4; 1350 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1351 if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1)) 1352 tpa_info->gso_type = SKB_GSO_TCPV6; 1353 tpa_info->rss_hash = 1354 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1355 } else { 1356 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1357 tpa_info->gso_type = 0; 1358 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1359 } 1360 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1361 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1362 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1363 tpa_info->agg_count = 0; 1364 1365 rxr->rx_prod = NEXT_RX(prod); 1366 cons = NEXT_RX(cons); 1367 rxr->rx_next_cons = NEXT_RX(cons); 1368 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1369 1370 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1371 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1372 cons_rx_buf->data = NULL; 1373 } 1374 1375 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1376 { 1377 if (agg_bufs) 1378 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1379 } 1380 1381 #ifdef CONFIG_INET 1382 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1383 { 1384 struct udphdr *uh = NULL; 1385 1386 if (ip_proto == htons(ETH_P_IP)) { 1387 struct iphdr *iph = (struct iphdr *)skb->data; 1388 1389 if (iph->protocol == IPPROTO_UDP) 1390 uh = (struct udphdr *)(iph + 1); 1391 } else { 1392 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1393 1394 if (iph->nexthdr == IPPROTO_UDP) 1395 uh = (struct udphdr *)(iph + 1); 1396 } 1397 if (uh) { 1398 if (uh->check) 1399 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1400 else 1401 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1402 } 1403 } 1404 #endif 1405 1406 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1407 int payload_off, int tcp_ts, 1408 struct sk_buff *skb) 1409 { 1410 #ifdef CONFIG_INET 1411 struct tcphdr *th; 1412 int len, nw_off; 1413 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1414 u32 hdr_info = tpa_info->hdr_info; 1415 bool loopback = false; 1416 1417 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1418 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1419 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1420 1421 /* If the packet is an internal loopback packet, the offsets will 1422 * have an extra 4 bytes. 1423 */ 1424 if (inner_mac_off == 4) { 1425 loopback = true; 1426 } else if (inner_mac_off > 4) { 1427 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1428 ETH_HLEN - 2)); 1429 1430 /* We only support inner iPv4/ipv6. If we don't see the 1431 * correct protocol ID, it must be a loopback packet where 1432 * the offsets are off by 4. 1433 */ 1434 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1435 loopback = true; 1436 } 1437 if (loopback) { 1438 /* internal loopback packet, subtract all offsets by 4 */ 1439 inner_ip_off -= 4; 1440 inner_mac_off -= 4; 1441 outer_ip_off -= 4; 1442 } 1443 1444 nw_off = inner_ip_off - ETH_HLEN; 1445 skb_set_network_header(skb, nw_off); 1446 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1447 struct ipv6hdr *iph = ipv6_hdr(skb); 1448 1449 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1450 len = skb->len - skb_transport_offset(skb); 1451 th = tcp_hdr(skb); 1452 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1453 } else { 1454 struct iphdr *iph = ip_hdr(skb); 1455 1456 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1457 len = skb->len - skb_transport_offset(skb); 1458 th = tcp_hdr(skb); 1459 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1460 } 1461 1462 if (inner_mac_off) { /* tunnel */ 1463 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1464 ETH_HLEN - 2)); 1465 1466 bnxt_gro_tunnel(skb, proto); 1467 } 1468 #endif 1469 return skb; 1470 } 1471 1472 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1473 int payload_off, int tcp_ts, 1474 struct sk_buff *skb) 1475 { 1476 #ifdef CONFIG_INET 1477 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1478 u32 hdr_info = tpa_info->hdr_info; 1479 int iphdr_len, nw_off; 1480 1481 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1482 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1483 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1484 1485 nw_off = inner_ip_off - ETH_HLEN; 1486 skb_set_network_header(skb, nw_off); 1487 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1488 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1489 skb_set_transport_header(skb, nw_off + iphdr_len); 1490 1491 if (inner_mac_off) { /* tunnel */ 1492 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1493 ETH_HLEN - 2)); 1494 1495 bnxt_gro_tunnel(skb, proto); 1496 } 1497 #endif 1498 return skb; 1499 } 1500 1501 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1502 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1503 1504 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1505 int payload_off, int tcp_ts, 1506 struct sk_buff *skb) 1507 { 1508 #ifdef CONFIG_INET 1509 struct tcphdr *th; 1510 int len, nw_off, tcp_opt_len = 0; 1511 1512 if (tcp_ts) 1513 tcp_opt_len = 12; 1514 1515 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1516 struct iphdr *iph; 1517 1518 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1519 ETH_HLEN; 1520 skb_set_network_header(skb, nw_off); 1521 iph = ip_hdr(skb); 1522 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1523 len = skb->len - skb_transport_offset(skb); 1524 th = tcp_hdr(skb); 1525 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1526 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1527 struct ipv6hdr *iph; 1528 1529 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1530 ETH_HLEN; 1531 skb_set_network_header(skb, nw_off); 1532 iph = ipv6_hdr(skb); 1533 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1534 len = skb->len - skb_transport_offset(skb); 1535 th = tcp_hdr(skb); 1536 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1537 } else { 1538 dev_kfree_skb_any(skb); 1539 return NULL; 1540 } 1541 1542 if (nw_off) /* tunnel */ 1543 bnxt_gro_tunnel(skb, skb->protocol); 1544 #endif 1545 return skb; 1546 } 1547 1548 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1549 struct bnxt_tpa_info *tpa_info, 1550 struct rx_tpa_end_cmp *tpa_end, 1551 struct rx_tpa_end_cmp_ext *tpa_end1, 1552 struct sk_buff *skb) 1553 { 1554 #ifdef CONFIG_INET 1555 int payload_off; 1556 u16 segs; 1557 1558 segs = TPA_END_TPA_SEGS(tpa_end); 1559 if (segs == 1) 1560 return skb; 1561 1562 NAPI_GRO_CB(skb)->count = segs; 1563 skb_shinfo(skb)->gso_size = 1564 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1565 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1566 if (bp->flags & BNXT_FLAG_CHIP_P5) 1567 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1568 else 1569 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1570 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1571 if (likely(skb)) 1572 tcp_gro_complete(skb); 1573 #endif 1574 return skb; 1575 } 1576 1577 /* Given the cfa_code of a received packet determine which 1578 * netdev (vf-rep or PF) the packet is destined to. 1579 */ 1580 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1581 { 1582 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1583 1584 /* if vf-rep dev is NULL, the must belongs to the PF */ 1585 return dev ? dev : bp->dev; 1586 } 1587 1588 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1589 struct bnxt_cp_ring_info *cpr, 1590 u32 *raw_cons, 1591 struct rx_tpa_end_cmp *tpa_end, 1592 struct rx_tpa_end_cmp_ext *tpa_end1, 1593 u8 *event) 1594 { 1595 struct bnxt_napi *bnapi = cpr->bnapi; 1596 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1597 u8 *data_ptr, agg_bufs; 1598 unsigned int len; 1599 struct bnxt_tpa_info *tpa_info; 1600 dma_addr_t mapping; 1601 struct sk_buff *skb; 1602 u16 idx = 0, agg_id; 1603 void *data; 1604 bool gro; 1605 1606 if (unlikely(bnapi->in_reset)) { 1607 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1608 1609 if (rc < 0) 1610 return ERR_PTR(-EBUSY); 1611 return NULL; 1612 } 1613 1614 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1615 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1616 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1617 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1618 tpa_info = &rxr->rx_tpa[agg_id]; 1619 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1620 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1621 agg_bufs, tpa_info->agg_count); 1622 agg_bufs = tpa_info->agg_count; 1623 } 1624 tpa_info->agg_count = 0; 1625 *event |= BNXT_AGG_EVENT; 1626 bnxt_free_agg_idx(rxr, agg_id); 1627 idx = agg_id; 1628 gro = !!(bp->flags & BNXT_FLAG_GRO); 1629 } else { 1630 agg_id = TPA_END_AGG_ID(tpa_end); 1631 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1632 tpa_info = &rxr->rx_tpa[agg_id]; 1633 idx = RING_CMP(*raw_cons); 1634 if (agg_bufs) { 1635 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1636 return ERR_PTR(-EBUSY); 1637 1638 *event |= BNXT_AGG_EVENT; 1639 idx = NEXT_CMP(idx); 1640 } 1641 gro = !!TPA_END_GRO(tpa_end); 1642 } 1643 data = tpa_info->data; 1644 data_ptr = tpa_info->data_ptr; 1645 prefetch(data_ptr); 1646 len = tpa_info->len; 1647 mapping = tpa_info->mapping; 1648 1649 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1650 bnxt_abort_tpa(cpr, idx, agg_bufs); 1651 if (agg_bufs > MAX_SKB_FRAGS) 1652 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1653 agg_bufs, (int)MAX_SKB_FRAGS); 1654 return NULL; 1655 } 1656 1657 if (len <= bp->rx_copy_thresh) { 1658 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1659 if (!skb) { 1660 bnxt_abort_tpa(cpr, idx, agg_bufs); 1661 cpr->sw_stats.rx.rx_oom_discards += 1; 1662 return NULL; 1663 } 1664 } else { 1665 u8 *new_data; 1666 dma_addr_t new_mapping; 1667 1668 new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC); 1669 if (!new_data) { 1670 bnxt_abort_tpa(cpr, idx, agg_bufs); 1671 cpr->sw_stats.rx.rx_oom_discards += 1; 1672 return NULL; 1673 } 1674 1675 tpa_info->data = new_data; 1676 tpa_info->data_ptr = new_data + bp->rx_offset; 1677 tpa_info->mapping = new_mapping; 1678 1679 skb = napi_build_skb(data, bp->rx_buf_size); 1680 dma_unmap_single_attrs(&bp->pdev->dev, mapping, 1681 bp->rx_buf_use_size, bp->rx_dir, 1682 DMA_ATTR_WEAK_ORDERING); 1683 1684 if (!skb) { 1685 skb_free_frag(data); 1686 bnxt_abort_tpa(cpr, idx, agg_bufs); 1687 cpr->sw_stats.rx.rx_oom_discards += 1; 1688 return NULL; 1689 } 1690 skb_reserve(skb, bp->rx_offset); 1691 skb_put(skb, len); 1692 } 1693 1694 if (agg_bufs) { 1695 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true); 1696 if (!skb) { 1697 /* Page reuse already handled by bnxt_rx_pages(). */ 1698 cpr->sw_stats.rx.rx_oom_discards += 1; 1699 return NULL; 1700 } 1701 } 1702 1703 skb->protocol = 1704 eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code)); 1705 1706 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1707 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1708 1709 if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) && 1710 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1711 __be16 vlan_proto = htons(tpa_info->metadata >> 1712 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1713 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1714 1715 if (eth_type_vlan(vlan_proto)) { 1716 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1717 } else { 1718 dev_kfree_skb(skb); 1719 return NULL; 1720 } 1721 } 1722 1723 skb_checksum_none_assert(skb); 1724 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1725 skb->ip_summed = CHECKSUM_UNNECESSARY; 1726 skb->csum_level = 1727 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1728 } 1729 1730 if (gro) 1731 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1732 1733 return skb; 1734 } 1735 1736 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1737 struct rx_agg_cmp *rx_agg) 1738 { 1739 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1740 struct bnxt_tpa_info *tpa_info; 1741 1742 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1743 tpa_info = &rxr->rx_tpa[agg_id]; 1744 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1745 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1746 } 1747 1748 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1749 struct sk_buff *skb) 1750 { 1751 skb_mark_for_recycle(skb); 1752 1753 if (skb->dev != bp->dev) { 1754 /* this packet belongs to a vf-rep */ 1755 bnxt_vf_rep_rx(bp, skb); 1756 return; 1757 } 1758 skb_record_rx_queue(skb, bnapi->index); 1759 napi_gro_receive(&bnapi->napi, skb); 1760 } 1761 1762 static bool bnxt_rx_ts_valid(struct bnxt *bp, u32 flags, 1763 struct rx_cmp_ext *rxcmp1, u32 *cmpl_ts) 1764 { 1765 u32 ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); 1766 1767 if (BNXT_PTP_RX_TS_VALID(flags)) 1768 goto ts_valid; 1769 if (!bp->ptp_all_rx_tstamp || !ts || !BNXT_ALL_RX_TS_VALID(flags)) 1770 return false; 1771 1772 ts_valid: 1773 *cmpl_ts = ts; 1774 return true; 1775 } 1776 1777 /* returns the following: 1778 * 1 - 1 packet successfully received 1779 * 0 - successful TPA_START, packet not completed yet 1780 * -EBUSY - completion ring does not have all the agg buffers yet 1781 * -ENOMEM - packet aborted due to out of memory 1782 * -EIO - packet aborted due to hw error indicated in BD 1783 */ 1784 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1785 u32 *raw_cons, u8 *event) 1786 { 1787 struct bnxt_napi *bnapi = cpr->bnapi; 1788 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1789 struct net_device *dev = bp->dev; 1790 struct rx_cmp *rxcmp; 1791 struct rx_cmp_ext *rxcmp1; 1792 u32 tmp_raw_cons = *raw_cons; 1793 u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 1794 struct bnxt_sw_rx_bd *rx_buf; 1795 unsigned int len; 1796 u8 *data_ptr, agg_bufs, cmp_type; 1797 bool xdp_active = false; 1798 dma_addr_t dma_addr; 1799 struct sk_buff *skb; 1800 struct xdp_buff xdp; 1801 u32 flags, misc; 1802 u32 cmpl_ts; 1803 void *data; 1804 int rc = 0; 1805 1806 rxcmp = (struct rx_cmp *) 1807 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1808 1809 cmp_type = RX_CMP_TYPE(rxcmp); 1810 1811 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 1812 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 1813 goto next_rx_no_prod_no_len; 1814 } 1815 1816 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1817 cp_cons = RING_CMP(tmp_raw_cons); 1818 rxcmp1 = (struct rx_cmp_ext *) 1819 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1820 1821 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1822 return -EBUSY; 1823 1824 /* The valid test of the entry must be done first before 1825 * reading any further. 1826 */ 1827 dma_rmb(); 1828 prod = rxr->rx_prod; 1829 1830 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) { 1831 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp, 1832 (struct rx_tpa_start_cmp_ext *)rxcmp1); 1833 1834 *event |= BNXT_RX_EVENT; 1835 goto next_rx_no_prod_no_len; 1836 1837 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1838 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 1839 (struct rx_tpa_end_cmp *)rxcmp, 1840 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 1841 1842 if (IS_ERR(skb)) 1843 return -EBUSY; 1844 1845 rc = -ENOMEM; 1846 if (likely(skb)) { 1847 bnxt_deliver_skb(bp, bnapi, skb); 1848 rc = 1; 1849 } 1850 *event |= BNXT_RX_EVENT; 1851 goto next_rx_no_prod_no_len; 1852 } 1853 1854 cons = rxcmp->rx_cmp_opaque; 1855 if (unlikely(cons != rxr->rx_next_cons)) { 1856 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 1857 1858 /* 0xffff is forced error, don't print it */ 1859 if (rxr->rx_next_cons != 0xffff) 1860 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 1861 cons, rxr->rx_next_cons); 1862 bnxt_sched_reset_rxr(bp, rxr); 1863 if (rc1) 1864 return rc1; 1865 goto next_rx_no_prod_no_len; 1866 } 1867 rx_buf = &rxr->rx_buf_ring[cons]; 1868 data = rx_buf->data; 1869 data_ptr = rx_buf->data_ptr; 1870 prefetch(data_ptr); 1871 1872 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 1873 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 1874 1875 if (agg_bufs) { 1876 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1877 return -EBUSY; 1878 1879 cp_cons = NEXT_CMP(cp_cons); 1880 *event |= BNXT_AGG_EVENT; 1881 } 1882 *event |= BNXT_RX_EVENT; 1883 1884 rx_buf->data = NULL; 1885 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 1886 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 1887 1888 bnxt_reuse_rx_data(rxr, cons, data); 1889 if (agg_bufs) 1890 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 1891 false); 1892 1893 rc = -EIO; 1894 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 1895 bnapi->cp_ring.sw_stats.rx.rx_buf_errors++; 1896 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 1897 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 1898 netdev_warn_once(bp->dev, "RX buffer error %x\n", 1899 rx_err); 1900 bnxt_sched_reset_rxr(bp, rxr); 1901 } 1902 } 1903 goto next_rx_no_len; 1904 } 1905 1906 flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); 1907 len = flags >> RX_CMP_LEN_SHIFT; 1908 dma_addr = rx_buf->mapping; 1909 1910 if (bnxt_xdp_attached(bp, rxr)) { 1911 bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp); 1912 if (agg_bufs) { 1913 u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp, 1914 cp_cons, agg_bufs, 1915 false); 1916 if (!frag_len) { 1917 cpr->sw_stats.rx.rx_oom_discards += 1; 1918 rc = -ENOMEM; 1919 goto next_rx; 1920 } 1921 } 1922 xdp_active = true; 1923 } 1924 1925 if (xdp_active) { 1926 if (bnxt_rx_xdp(bp, rxr, cons, xdp, data, &data_ptr, &len, event)) { 1927 rc = 1; 1928 goto next_rx; 1929 } 1930 } 1931 1932 if (len <= bp->rx_copy_thresh) { 1933 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 1934 bnxt_reuse_rx_data(rxr, cons, data); 1935 if (!skb) { 1936 if (agg_bufs) { 1937 if (!xdp_active) 1938 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 1939 agg_bufs, false); 1940 else 1941 bnxt_xdp_buff_frags_free(rxr, &xdp); 1942 } 1943 cpr->sw_stats.rx.rx_oom_discards += 1; 1944 rc = -ENOMEM; 1945 goto next_rx; 1946 } 1947 } else { 1948 u32 payload; 1949 1950 if (rx_buf->data_ptr == data_ptr) 1951 payload = misc & RX_CMP_PAYLOAD_OFFSET; 1952 else 1953 payload = 0; 1954 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 1955 payload | len); 1956 if (!skb) { 1957 cpr->sw_stats.rx.rx_oom_discards += 1; 1958 rc = -ENOMEM; 1959 goto next_rx; 1960 } 1961 } 1962 1963 if (agg_bufs) { 1964 if (!xdp_active) { 1965 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false); 1966 if (!skb) { 1967 cpr->sw_stats.rx.rx_oom_discards += 1; 1968 rc = -ENOMEM; 1969 goto next_rx; 1970 } 1971 } else { 1972 skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1); 1973 if (!skb) { 1974 /* we should be able to free the old skb here */ 1975 bnxt_xdp_buff_frags_free(rxr, &xdp); 1976 cpr->sw_stats.rx.rx_oom_discards += 1; 1977 rc = -ENOMEM; 1978 goto next_rx; 1979 } 1980 } 1981 } 1982 1983 if (RX_CMP_HASH_VALID(rxcmp)) { 1984 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 1985 enum pkt_hash_types type = PKT_HASH_TYPE_L4; 1986 1987 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1988 if (hash_type != 1 && hash_type != 3) 1989 type = PKT_HASH_TYPE_L3; 1990 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 1991 } 1992 1993 cfa_code = RX_CMP_CFA_CODE(rxcmp1); 1994 skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code)); 1995 1996 if ((rxcmp1->rx_cmp_flags2 & 1997 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) && 1998 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1999 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 2000 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 2001 __be16 vlan_proto = htons(meta_data >> 2002 RX_CMP_FLAGS2_METADATA_TPID_SFT); 2003 2004 if (eth_type_vlan(vlan_proto)) { 2005 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 2006 } else { 2007 dev_kfree_skb(skb); 2008 goto next_rx; 2009 } 2010 } 2011 2012 skb_checksum_none_assert(skb); 2013 if (RX_CMP_L4_CS_OK(rxcmp1)) { 2014 if (dev->features & NETIF_F_RXCSUM) { 2015 skb->ip_summed = CHECKSUM_UNNECESSARY; 2016 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 2017 } 2018 } else { 2019 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 2020 if (dev->features & NETIF_F_RXCSUM) 2021 bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++; 2022 } 2023 } 2024 2025 if (bnxt_rx_ts_valid(bp, flags, rxcmp1, &cmpl_ts)) { 2026 if (bp->flags & BNXT_FLAG_CHIP_P5) { 2027 u64 ns, ts; 2028 2029 if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { 2030 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2031 2032 spin_lock_bh(&ptp->ptp_lock); 2033 ns = timecounter_cyc2time(&ptp->tc, ts); 2034 spin_unlock_bh(&ptp->ptp_lock); 2035 memset(skb_hwtstamps(skb), 0, 2036 sizeof(*skb_hwtstamps(skb))); 2037 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 2038 } 2039 } 2040 } 2041 bnxt_deliver_skb(bp, bnapi, skb); 2042 rc = 1; 2043 2044 next_rx: 2045 cpr->rx_packets += 1; 2046 cpr->rx_bytes += len; 2047 2048 next_rx_no_len: 2049 rxr->rx_prod = NEXT_RX(prod); 2050 rxr->rx_next_cons = NEXT_RX(cons); 2051 2052 next_rx_no_prod_no_len: 2053 *raw_cons = tmp_raw_cons; 2054 2055 return rc; 2056 } 2057 2058 /* In netpoll mode, if we are using a combined completion ring, we need to 2059 * discard the rx packets and recycle the buffers. 2060 */ 2061 static int bnxt_force_rx_discard(struct bnxt *bp, 2062 struct bnxt_cp_ring_info *cpr, 2063 u32 *raw_cons, u8 *event) 2064 { 2065 u32 tmp_raw_cons = *raw_cons; 2066 struct rx_cmp_ext *rxcmp1; 2067 struct rx_cmp *rxcmp; 2068 u16 cp_cons; 2069 u8 cmp_type; 2070 int rc; 2071 2072 cp_cons = RING_CMP(tmp_raw_cons); 2073 rxcmp = (struct rx_cmp *) 2074 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2075 2076 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2077 cp_cons = RING_CMP(tmp_raw_cons); 2078 rxcmp1 = (struct rx_cmp_ext *) 2079 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2080 2081 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2082 return -EBUSY; 2083 2084 /* The valid test of the entry must be done first before 2085 * reading any further. 2086 */ 2087 dma_rmb(); 2088 cmp_type = RX_CMP_TYPE(rxcmp); 2089 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 2090 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2091 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2092 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2093 struct rx_tpa_end_cmp_ext *tpa_end1; 2094 2095 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 2096 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 2097 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 2098 } 2099 rc = bnxt_rx_pkt(bp, cpr, raw_cons, event); 2100 if (rc && rc != -EBUSY) 2101 cpr->sw_stats.rx.rx_netpoll_discards += 1; 2102 return rc; 2103 } 2104 2105 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 2106 { 2107 struct bnxt_fw_health *fw_health = bp->fw_health; 2108 u32 reg = fw_health->regs[reg_idx]; 2109 u32 reg_type, reg_off, val = 0; 2110 2111 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 2112 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 2113 switch (reg_type) { 2114 case BNXT_FW_HEALTH_REG_TYPE_CFG: 2115 pci_read_config_dword(bp->pdev, reg_off, &val); 2116 break; 2117 case BNXT_FW_HEALTH_REG_TYPE_GRC: 2118 reg_off = fw_health->mapped_regs[reg_idx]; 2119 fallthrough; 2120 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 2121 val = readl(bp->bar0 + reg_off); 2122 break; 2123 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 2124 val = readl(bp->bar1 + reg_off); 2125 break; 2126 } 2127 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 2128 val &= fw_health->fw_reset_inprog_reg_mask; 2129 return val; 2130 } 2131 2132 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 2133 { 2134 int i; 2135 2136 for (i = 0; i < bp->rx_nr_rings; i++) { 2137 u16 grp_idx = bp->rx_ring[i].bnapi->index; 2138 struct bnxt_ring_grp_info *grp_info; 2139 2140 grp_info = &bp->grp_info[grp_idx]; 2141 if (grp_info->agg_fw_ring_id == ring_id) 2142 return grp_idx; 2143 } 2144 return INVALID_HW_RING_ID; 2145 } 2146 2147 static u16 bnxt_get_force_speed(struct bnxt_link_info *link_info) 2148 { 2149 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4) 2150 return link_info->force_pam4_link_speed; 2151 return link_info->force_link_speed; 2152 } 2153 2154 static void bnxt_set_force_speed(struct bnxt_link_info *link_info) 2155 { 2156 link_info->req_link_speed = link_info->force_link_speed; 2157 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2158 if (link_info->force_pam4_link_speed) { 2159 link_info->req_link_speed = link_info->force_pam4_link_speed; 2160 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2161 } 2162 } 2163 2164 static void bnxt_set_auto_speed(struct bnxt_link_info *link_info) 2165 { 2166 link_info->advertising = link_info->auto_link_speeds; 2167 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 2168 } 2169 2170 static bool bnxt_force_speed_updated(struct bnxt_link_info *link_info) 2171 { 2172 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 2173 link_info->req_link_speed != link_info->force_link_speed) 2174 return true; 2175 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 2176 link_info->req_link_speed != link_info->force_pam4_link_speed) 2177 return true; 2178 return false; 2179 } 2180 2181 static bool bnxt_auto_speed_updated(struct bnxt_link_info *link_info) 2182 { 2183 if (link_info->advertising != link_info->auto_link_speeds || 2184 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 2185 return true; 2186 return false; 2187 } 2188 2189 #define BNXT_EVENT_THERMAL_CURRENT_TEMP(data2) \ 2190 ((data2) & \ 2191 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_CURRENT_TEMP_MASK) 2192 2193 #define BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2) \ 2194 (((data2) & \ 2195 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_MASK) >>\ 2196 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_SFT) 2197 2198 #define EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1) \ 2199 ((data1) & \ 2200 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_MASK) 2201 2202 #define EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1) \ 2203 (((data1) & \ 2204 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR) ==\ 2205 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR_INCREASING) 2206 2207 /* Return true if the workqueue has to be scheduled */ 2208 static bool bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2) 2209 { 2210 u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1); 2211 2212 switch (err_type) { 2213 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL: 2214 netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n", 2215 BNXT_EVENT_INVALID_SIGNAL_DATA(data2)); 2216 break; 2217 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM: 2218 netdev_warn(bp->dev, "Pause Storm detected!\n"); 2219 break; 2220 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD: 2221 netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n"); 2222 break; 2223 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_THERMAL_THRESHOLD: { 2224 u32 type = EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1); 2225 char *threshold_type; 2226 bool notify = false; 2227 char *dir_str; 2228 2229 switch (type) { 2230 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_WARN: 2231 threshold_type = "warning"; 2232 break; 2233 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_CRITICAL: 2234 threshold_type = "critical"; 2235 break; 2236 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_FATAL: 2237 threshold_type = "fatal"; 2238 break; 2239 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_SHUTDOWN: 2240 threshold_type = "shutdown"; 2241 break; 2242 default: 2243 netdev_err(bp->dev, "Unknown Thermal threshold type event\n"); 2244 return false; 2245 } 2246 if (EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)) { 2247 dir_str = "above"; 2248 notify = true; 2249 } else { 2250 dir_str = "below"; 2251 } 2252 netdev_warn(bp->dev, "Chip temperature has gone %s the %s thermal threshold!\n", 2253 dir_str, threshold_type); 2254 netdev_warn(bp->dev, "Temperature (In Celsius), Current: %lu, threshold: %lu\n", 2255 BNXT_EVENT_THERMAL_CURRENT_TEMP(data2), 2256 BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2)); 2257 if (notify) { 2258 bp->thermal_threshold_type = type; 2259 set_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event); 2260 return true; 2261 } 2262 return false; 2263 } 2264 default: 2265 netdev_err(bp->dev, "FW reported unknown error type %u\n", 2266 err_type); 2267 break; 2268 } 2269 return false; 2270 } 2271 2272 #define BNXT_GET_EVENT_PORT(data) \ 2273 ((data) & \ 2274 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 2275 2276 #define BNXT_EVENT_RING_TYPE(data2) \ 2277 ((data2) & \ 2278 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 2279 2280 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 2281 (BNXT_EVENT_RING_TYPE(data2) == \ 2282 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 2283 2284 #define BNXT_EVENT_PHC_EVENT_TYPE(data1) \ 2285 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\ 2286 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT) 2287 2288 #define BNXT_EVENT_PHC_RTC_UPDATE(data1) \ 2289 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\ 2290 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT) 2291 2292 #define BNXT_PHC_BITS 48 2293 2294 static int bnxt_async_event_process(struct bnxt *bp, 2295 struct hwrm_async_event_cmpl *cmpl) 2296 { 2297 u16 event_id = le16_to_cpu(cmpl->event_id); 2298 u32 data1 = le32_to_cpu(cmpl->event_data1); 2299 u32 data2 = le32_to_cpu(cmpl->event_data2); 2300 2301 netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n", 2302 event_id, data1, data2); 2303 2304 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2305 switch (event_id) { 2306 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2307 struct bnxt_link_info *link_info = &bp->link_info; 2308 2309 if (BNXT_VF(bp)) 2310 goto async_event_process_exit; 2311 2312 /* print unsupported speed warning in forced speed mode only */ 2313 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2314 (data1 & 0x20000)) { 2315 u16 fw_speed = bnxt_get_force_speed(link_info); 2316 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2317 2318 if (speed != SPEED_UNKNOWN) 2319 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2320 speed); 2321 } 2322 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2323 } 2324 fallthrough; 2325 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2326 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2327 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2328 fallthrough; 2329 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2330 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2331 break; 2332 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2333 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2334 break; 2335 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2336 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2337 2338 if (BNXT_VF(bp)) 2339 break; 2340 2341 if (bp->pf.port_id != port_id) 2342 break; 2343 2344 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2345 break; 2346 } 2347 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2348 if (BNXT_PF(bp)) 2349 goto async_event_process_exit; 2350 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2351 break; 2352 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2353 char *type_str = "Solicited"; 2354 2355 if (!bp->fw_health) 2356 goto async_event_process_exit; 2357 2358 bp->fw_reset_timestamp = jiffies; 2359 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2360 if (!bp->fw_reset_min_dsecs) 2361 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2362 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2363 if (!bp->fw_reset_max_dsecs) 2364 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2365 if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) { 2366 set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state); 2367 } else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2368 type_str = "Fatal"; 2369 bp->fw_health->fatalities++; 2370 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2371 } else if (data2 && BNXT_FW_STATUS_HEALTHY != 2372 EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) { 2373 type_str = "Non-fatal"; 2374 bp->fw_health->survivals++; 2375 set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 2376 } 2377 netif_warn(bp, hw, bp->dev, 2378 "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2379 type_str, data1, data2, 2380 bp->fw_reset_min_dsecs * 100, 2381 bp->fw_reset_max_dsecs * 100); 2382 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2383 break; 2384 } 2385 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2386 struct bnxt_fw_health *fw_health = bp->fw_health; 2387 char *status_desc = "healthy"; 2388 u32 status; 2389 2390 if (!fw_health) 2391 goto async_event_process_exit; 2392 2393 if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) { 2394 fw_health->enabled = false; 2395 netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n"); 2396 break; 2397 } 2398 fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2399 fw_health->tmr_multiplier = 2400 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2401 bp->current_interval * 10); 2402 fw_health->tmr_counter = fw_health->tmr_multiplier; 2403 if (!fw_health->enabled) 2404 fw_health->last_fw_heartbeat = 2405 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2406 fw_health->last_fw_reset_cnt = 2407 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2408 status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 2409 if (status != BNXT_FW_STATUS_HEALTHY) 2410 status_desc = "unhealthy"; 2411 netif_info(bp, drv, bp->dev, 2412 "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n", 2413 fw_health->primary ? "primary" : "backup", status, 2414 status_desc, fw_health->last_fw_reset_cnt); 2415 if (!fw_health->enabled) { 2416 /* Make sure tmr_counter is set and visible to 2417 * bnxt_health_check() before setting enabled to true. 2418 */ 2419 smp_wmb(); 2420 fw_health->enabled = true; 2421 } 2422 goto async_event_process_exit; 2423 } 2424 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2425 netif_notice(bp, hw, bp->dev, 2426 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2427 data1, data2); 2428 goto async_event_process_exit; 2429 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2430 struct bnxt_rx_ring_info *rxr; 2431 u16 grp_idx; 2432 2433 if (bp->flags & BNXT_FLAG_CHIP_P5) 2434 goto async_event_process_exit; 2435 2436 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2437 BNXT_EVENT_RING_TYPE(data2), data1); 2438 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2439 goto async_event_process_exit; 2440 2441 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2442 if (grp_idx == INVALID_HW_RING_ID) { 2443 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2444 data1); 2445 goto async_event_process_exit; 2446 } 2447 rxr = bp->bnapi[grp_idx]->rx_ring; 2448 bnxt_sched_reset_rxr(bp, rxr); 2449 goto async_event_process_exit; 2450 } 2451 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2452 struct bnxt_fw_health *fw_health = bp->fw_health; 2453 2454 netif_notice(bp, hw, bp->dev, 2455 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2456 data1, data2); 2457 if (fw_health) { 2458 fw_health->echo_req_data1 = data1; 2459 fw_health->echo_req_data2 = data2; 2460 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2461 break; 2462 } 2463 goto async_event_process_exit; 2464 } 2465 case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: { 2466 bnxt_ptp_pps_event(bp, data1, data2); 2467 goto async_event_process_exit; 2468 } 2469 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: { 2470 if (bnxt_event_error_report(bp, data1, data2)) 2471 break; 2472 goto async_event_process_exit; 2473 } 2474 case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: { 2475 switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) { 2476 case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE: 2477 if (BNXT_PTP_USE_RTC(bp)) { 2478 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2479 u64 ns; 2480 2481 if (!ptp) 2482 goto async_event_process_exit; 2483 2484 spin_lock_bh(&ptp->ptp_lock); 2485 bnxt_ptp_update_current_time(bp); 2486 ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) << 2487 BNXT_PHC_BITS) | ptp->current_time); 2488 bnxt_ptp_rtc_timecounter_init(ptp, ns); 2489 spin_unlock_bh(&ptp->ptp_lock); 2490 } 2491 break; 2492 } 2493 goto async_event_process_exit; 2494 } 2495 case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: { 2496 u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff; 2497 2498 hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED); 2499 goto async_event_process_exit; 2500 } 2501 default: 2502 goto async_event_process_exit; 2503 } 2504 __bnxt_queue_sp_work(bp); 2505 async_event_process_exit: 2506 return 0; 2507 } 2508 2509 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2510 { 2511 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2512 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2513 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2514 (struct hwrm_fwd_req_cmpl *)txcmp; 2515 2516 switch (cmpl_type) { 2517 case CMPL_BASE_TYPE_HWRM_DONE: 2518 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2519 hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE); 2520 break; 2521 2522 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2523 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2524 2525 if ((vf_id < bp->pf.first_vf_id) || 2526 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2527 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2528 vf_id); 2529 return -EINVAL; 2530 } 2531 2532 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2533 bnxt_queue_sp_work(bp, BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT); 2534 break; 2535 2536 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2537 bnxt_async_event_process(bp, 2538 (struct hwrm_async_event_cmpl *)txcmp); 2539 break; 2540 2541 default: 2542 break; 2543 } 2544 2545 return 0; 2546 } 2547 2548 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2549 { 2550 struct bnxt_napi *bnapi = dev_instance; 2551 struct bnxt *bp = bnapi->bp; 2552 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2553 u32 cons = RING_CMP(cpr->cp_raw_cons); 2554 2555 cpr->event_ctr++; 2556 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2557 napi_schedule(&bnapi->napi); 2558 return IRQ_HANDLED; 2559 } 2560 2561 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2562 { 2563 u32 raw_cons = cpr->cp_raw_cons; 2564 u16 cons = RING_CMP(raw_cons); 2565 struct tx_cmp *txcmp; 2566 2567 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2568 2569 return TX_CMP_VALID(txcmp, raw_cons); 2570 } 2571 2572 static irqreturn_t bnxt_inta(int irq, void *dev_instance) 2573 { 2574 struct bnxt_napi *bnapi = dev_instance; 2575 struct bnxt *bp = bnapi->bp; 2576 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2577 u32 cons = RING_CMP(cpr->cp_raw_cons); 2578 u32 int_status; 2579 2580 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2581 2582 if (!bnxt_has_work(bp, cpr)) { 2583 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); 2584 /* return if erroneous interrupt */ 2585 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) 2586 return IRQ_NONE; 2587 } 2588 2589 /* disable ring IRQ */ 2590 BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell); 2591 2592 /* Return here if interrupt is shared and is disabled. */ 2593 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 2594 return IRQ_HANDLED; 2595 2596 napi_schedule(&bnapi->napi); 2597 return IRQ_HANDLED; 2598 } 2599 2600 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2601 int budget) 2602 { 2603 struct bnxt_napi *bnapi = cpr->bnapi; 2604 u32 raw_cons = cpr->cp_raw_cons; 2605 u32 cons; 2606 int tx_pkts = 0; 2607 int rx_pkts = 0; 2608 u8 event = 0; 2609 struct tx_cmp *txcmp; 2610 2611 cpr->has_more_work = 0; 2612 cpr->had_work_done = 1; 2613 while (1) { 2614 int rc; 2615 2616 cons = RING_CMP(raw_cons); 2617 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2618 2619 if (!TX_CMP_VALID(txcmp, raw_cons)) 2620 break; 2621 2622 /* The valid test of the entry must be done first before 2623 * reading any further. 2624 */ 2625 dma_rmb(); 2626 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) { 2627 tx_pkts++; 2628 /* return full budget so NAPI will complete. */ 2629 if (unlikely(tx_pkts >= bp->tx_wake_thresh)) { 2630 rx_pkts = budget; 2631 raw_cons = NEXT_RAW_CMP(raw_cons); 2632 if (budget) 2633 cpr->has_more_work = 1; 2634 break; 2635 } 2636 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2637 if (likely(budget)) 2638 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2639 else 2640 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 2641 &event); 2642 if (likely(rc >= 0)) 2643 rx_pkts += rc; 2644 /* Increment rx_pkts when rc is -ENOMEM to count towards 2645 * the NAPI budget. Otherwise, we may potentially loop 2646 * here forever if we consistently cannot allocate 2647 * buffers. 2648 */ 2649 else if (rc == -ENOMEM && budget) 2650 rx_pkts++; 2651 else if (rc == -EBUSY) /* partial completion */ 2652 break; 2653 } else if (unlikely((TX_CMP_TYPE(txcmp) == 2654 CMPL_BASE_TYPE_HWRM_DONE) || 2655 (TX_CMP_TYPE(txcmp) == 2656 CMPL_BASE_TYPE_HWRM_FWD_REQ) || 2657 (TX_CMP_TYPE(txcmp) == 2658 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) { 2659 bnxt_hwrm_handler(bp, txcmp); 2660 } 2661 raw_cons = NEXT_RAW_CMP(raw_cons); 2662 2663 if (rx_pkts && rx_pkts == budget) { 2664 cpr->has_more_work = 1; 2665 break; 2666 } 2667 } 2668 2669 if (event & BNXT_REDIRECT_EVENT) 2670 xdp_do_flush(); 2671 2672 if (event & BNXT_TX_EVENT) { 2673 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 2674 u16 prod = txr->tx_prod; 2675 2676 /* Sync BD data before updating doorbell */ 2677 wmb(); 2678 2679 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 2680 } 2681 2682 cpr->cp_raw_cons = raw_cons; 2683 bnapi->tx_pkts += tx_pkts; 2684 bnapi->events |= event; 2685 return rx_pkts; 2686 } 2687 2688 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi, 2689 int budget) 2690 { 2691 if (bnapi->tx_pkts && !bnapi->tx_fault) 2692 bnapi->tx_int(bp, bnapi, budget); 2693 2694 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 2695 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2696 2697 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2698 } 2699 if (bnapi->events & BNXT_AGG_EVENT) { 2700 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2701 2702 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2703 } 2704 bnapi->events = 0; 2705 } 2706 2707 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2708 int budget) 2709 { 2710 struct bnxt_napi *bnapi = cpr->bnapi; 2711 int rx_pkts; 2712 2713 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 2714 2715 /* ACK completion ring before freeing tx ring and producing new 2716 * buffers in rx/agg rings to prevent overflowing the completion 2717 * ring. 2718 */ 2719 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 2720 2721 __bnxt_poll_work_done(bp, bnapi, budget); 2722 return rx_pkts; 2723 } 2724 2725 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 2726 { 2727 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2728 struct bnxt *bp = bnapi->bp; 2729 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2730 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2731 struct tx_cmp *txcmp; 2732 struct rx_cmp_ext *rxcmp1; 2733 u32 cp_cons, tmp_raw_cons; 2734 u32 raw_cons = cpr->cp_raw_cons; 2735 bool flush_xdp = false; 2736 u32 rx_pkts = 0; 2737 u8 event = 0; 2738 2739 while (1) { 2740 int rc; 2741 2742 cp_cons = RING_CMP(raw_cons); 2743 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2744 2745 if (!TX_CMP_VALID(txcmp, raw_cons)) 2746 break; 2747 2748 /* The valid test of the entry must be done first before 2749 * reading any further. 2750 */ 2751 dma_rmb(); 2752 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2753 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 2754 cp_cons = RING_CMP(tmp_raw_cons); 2755 rxcmp1 = (struct rx_cmp_ext *) 2756 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2757 2758 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2759 break; 2760 2761 /* force an error to recycle the buffer */ 2762 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2763 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2764 2765 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2766 if (likely(rc == -EIO) && budget) 2767 rx_pkts++; 2768 else if (rc == -EBUSY) /* partial completion */ 2769 break; 2770 if (event & BNXT_REDIRECT_EVENT) 2771 flush_xdp = true; 2772 } else if (unlikely(TX_CMP_TYPE(txcmp) == 2773 CMPL_BASE_TYPE_HWRM_DONE)) { 2774 bnxt_hwrm_handler(bp, txcmp); 2775 } else { 2776 netdev_err(bp->dev, 2777 "Invalid completion received on special ring\n"); 2778 } 2779 raw_cons = NEXT_RAW_CMP(raw_cons); 2780 2781 if (rx_pkts == budget) 2782 break; 2783 } 2784 2785 cpr->cp_raw_cons = raw_cons; 2786 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 2787 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2788 2789 if (event & BNXT_AGG_EVENT) 2790 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2791 if (flush_xdp) 2792 xdp_do_flush(); 2793 2794 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 2795 napi_complete_done(napi, rx_pkts); 2796 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2797 } 2798 return rx_pkts; 2799 } 2800 2801 static int bnxt_poll(struct napi_struct *napi, int budget) 2802 { 2803 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2804 struct bnxt *bp = bnapi->bp; 2805 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2806 int work_done = 0; 2807 2808 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 2809 napi_complete(napi); 2810 return 0; 2811 } 2812 while (1) { 2813 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 2814 2815 if (work_done >= budget) { 2816 if (!budget) 2817 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2818 break; 2819 } 2820 2821 if (!bnxt_has_work(bp, cpr)) { 2822 if (napi_complete_done(napi, work_done)) 2823 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2824 break; 2825 } 2826 } 2827 if (bp->flags & BNXT_FLAG_DIM) { 2828 struct dim_sample dim_sample = {}; 2829 2830 dim_update_sample(cpr->event_ctr, 2831 cpr->rx_packets, 2832 cpr->rx_bytes, 2833 &dim_sample); 2834 net_dim(&cpr->dim, dim_sample); 2835 } 2836 return work_done; 2837 } 2838 2839 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 2840 { 2841 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2842 int i, work_done = 0; 2843 2844 for (i = 0; i < 2; i++) { 2845 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2846 2847 if (cpr2) { 2848 work_done += __bnxt_poll_work(bp, cpr2, 2849 budget - work_done); 2850 cpr->has_more_work |= cpr2->has_more_work; 2851 } 2852 } 2853 return work_done; 2854 } 2855 2856 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 2857 u64 dbr_type, int budget) 2858 { 2859 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2860 int i; 2861 2862 for (i = 0; i < 2; i++) { 2863 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2864 struct bnxt_db_info *db; 2865 2866 if (cpr2 && cpr2->had_work_done) { 2867 db = &cpr2->cp_db; 2868 bnxt_writeq(bp, db->db_key64 | dbr_type | 2869 RING_CMP(cpr2->cp_raw_cons), db->doorbell); 2870 cpr2->had_work_done = 0; 2871 } 2872 } 2873 __bnxt_poll_work_done(bp, bnapi, budget); 2874 } 2875 2876 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 2877 { 2878 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2879 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2880 struct bnxt_cp_ring_info *cpr_rx; 2881 u32 raw_cons = cpr->cp_raw_cons; 2882 struct bnxt *bp = bnapi->bp; 2883 struct nqe_cn *nqcmp; 2884 int work_done = 0; 2885 u32 cons; 2886 2887 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 2888 napi_complete(napi); 2889 return 0; 2890 } 2891 if (cpr->has_more_work) { 2892 cpr->has_more_work = 0; 2893 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 2894 } 2895 while (1) { 2896 cons = RING_CMP(raw_cons); 2897 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2898 2899 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 2900 if (cpr->has_more_work) 2901 break; 2902 2903 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL, 2904 budget); 2905 cpr->cp_raw_cons = raw_cons; 2906 if (napi_complete_done(napi, work_done)) 2907 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 2908 cpr->cp_raw_cons); 2909 goto poll_done; 2910 } 2911 2912 /* The valid test of the entry must be done first before 2913 * reading any further. 2914 */ 2915 dma_rmb(); 2916 2917 if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) { 2918 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 2919 struct bnxt_cp_ring_info *cpr2; 2920 2921 /* No more budget for RX work */ 2922 if (budget && work_done >= budget && idx == BNXT_RX_HDL) 2923 break; 2924 2925 cpr2 = cpr->cp_ring_arr[idx]; 2926 work_done += __bnxt_poll_work(bp, cpr2, 2927 budget - work_done); 2928 cpr->has_more_work |= cpr2->has_more_work; 2929 } else { 2930 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 2931 } 2932 raw_cons = NEXT_RAW_CMP(raw_cons); 2933 } 2934 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget); 2935 if (raw_cons != cpr->cp_raw_cons) { 2936 cpr->cp_raw_cons = raw_cons; 2937 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 2938 } 2939 poll_done: 2940 cpr_rx = cpr->cp_ring_arr[BNXT_RX_HDL]; 2941 if (cpr_rx && (bp->flags & BNXT_FLAG_DIM)) { 2942 struct dim_sample dim_sample = {}; 2943 2944 dim_update_sample(cpr->event_ctr, 2945 cpr_rx->rx_packets, 2946 cpr_rx->rx_bytes, 2947 &dim_sample); 2948 net_dim(&cpr->dim, dim_sample); 2949 } 2950 return work_done; 2951 } 2952 2953 static void bnxt_free_tx_skbs(struct bnxt *bp) 2954 { 2955 int i, max_idx; 2956 struct pci_dev *pdev = bp->pdev; 2957 2958 if (!bp->tx_ring) 2959 return; 2960 2961 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 2962 for (i = 0; i < bp->tx_nr_rings; i++) { 2963 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 2964 int j; 2965 2966 if (!txr->tx_buf_ring) 2967 continue; 2968 2969 for (j = 0; j < max_idx;) { 2970 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 2971 struct sk_buff *skb; 2972 int k, last; 2973 2974 if (i < bp->tx_nr_rings_xdp && 2975 tx_buf->action == XDP_REDIRECT) { 2976 dma_unmap_single(&pdev->dev, 2977 dma_unmap_addr(tx_buf, mapping), 2978 dma_unmap_len(tx_buf, len), 2979 DMA_TO_DEVICE); 2980 xdp_return_frame(tx_buf->xdpf); 2981 tx_buf->action = 0; 2982 tx_buf->xdpf = NULL; 2983 j++; 2984 continue; 2985 } 2986 2987 skb = tx_buf->skb; 2988 if (!skb) { 2989 j++; 2990 continue; 2991 } 2992 2993 tx_buf->skb = NULL; 2994 2995 if (tx_buf->is_push) { 2996 dev_kfree_skb(skb); 2997 j += 2; 2998 continue; 2999 } 3000 3001 dma_unmap_single(&pdev->dev, 3002 dma_unmap_addr(tx_buf, mapping), 3003 skb_headlen(skb), 3004 DMA_TO_DEVICE); 3005 3006 last = tx_buf->nr_frags; 3007 j += 2; 3008 for (k = 0; k < last; k++, j++) { 3009 int ring_idx = j & bp->tx_ring_mask; 3010 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 3011 3012 tx_buf = &txr->tx_buf_ring[ring_idx]; 3013 dma_unmap_page( 3014 &pdev->dev, 3015 dma_unmap_addr(tx_buf, mapping), 3016 skb_frag_size(frag), DMA_TO_DEVICE); 3017 } 3018 dev_kfree_skb(skb); 3019 } 3020 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 3021 } 3022 } 3023 3024 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr) 3025 { 3026 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 3027 struct pci_dev *pdev = bp->pdev; 3028 struct bnxt_tpa_idx_map *map; 3029 int i, max_idx, max_agg_idx; 3030 3031 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 3032 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 3033 if (!rxr->rx_tpa) 3034 goto skip_rx_tpa_free; 3035 3036 for (i = 0; i < bp->max_tpa; i++) { 3037 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 3038 u8 *data = tpa_info->data; 3039 3040 if (!data) 3041 continue; 3042 3043 dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping, 3044 bp->rx_buf_use_size, bp->rx_dir, 3045 DMA_ATTR_WEAK_ORDERING); 3046 3047 tpa_info->data = NULL; 3048 3049 skb_free_frag(data); 3050 } 3051 3052 skip_rx_tpa_free: 3053 if (!rxr->rx_buf_ring) 3054 goto skip_rx_buf_free; 3055 3056 for (i = 0; i < max_idx; i++) { 3057 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 3058 dma_addr_t mapping = rx_buf->mapping; 3059 void *data = rx_buf->data; 3060 3061 if (!data) 3062 continue; 3063 3064 rx_buf->data = NULL; 3065 if (BNXT_RX_PAGE_MODE(bp)) { 3066 page_pool_recycle_direct(rxr->page_pool, data); 3067 } else { 3068 dma_unmap_single_attrs(&pdev->dev, mapping, 3069 bp->rx_buf_use_size, bp->rx_dir, 3070 DMA_ATTR_WEAK_ORDERING); 3071 skb_free_frag(data); 3072 } 3073 } 3074 3075 skip_rx_buf_free: 3076 if (!rxr->rx_agg_ring) 3077 goto skip_rx_agg_free; 3078 3079 for (i = 0; i < max_agg_idx; i++) { 3080 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 3081 struct page *page = rx_agg_buf->page; 3082 3083 if (!page) 3084 continue; 3085 3086 rx_agg_buf->page = NULL; 3087 __clear_bit(i, rxr->rx_agg_bmap); 3088 3089 page_pool_recycle_direct(rxr->page_pool, page); 3090 } 3091 3092 skip_rx_agg_free: 3093 map = rxr->rx_tpa_idx_map; 3094 if (map) 3095 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 3096 } 3097 3098 static void bnxt_free_rx_skbs(struct bnxt *bp) 3099 { 3100 int i; 3101 3102 if (!bp->rx_ring) 3103 return; 3104 3105 for (i = 0; i < bp->rx_nr_rings; i++) 3106 bnxt_free_one_rx_ring_skbs(bp, i); 3107 } 3108 3109 static void bnxt_free_skbs(struct bnxt *bp) 3110 { 3111 bnxt_free_tx_skbs(bp); 3112 bnxt_free_rx_skbs(bp); 3113 } 3114 3115 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len) 3116 { 3117 u8 init_val = mem_init->init_val; 3118 u16 offset = mem_init->offset; 3119 u8 *p2 = p; 3120 int i; 3121 3122 if (!init_val) 3123 return; 3124 if (offset == BNXT_MEM_INVALID_OFFSET) { 3125 memset(p, init_val, len); 3126 return; 3127 } 3128 for (i = 0; i < len; i += mem_init->size) 3129 *(p2 + i + offset) = init_val; 3130 } 3131 3132 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3133 { 3134 struct pci_dev *pdev = bp->pdev; 3135 int i; 3136 3137 if (!rmem->pg_arr) 3138 goto skip_pages; 3139 3140 for (i = 0; i < rmem->nr_pages; i++) { 3141 if (!rmem->pg_arr[i]) 3142 continue; 3143 3144 dma_free_coherent(&pdev->dev, rmem->page_size, 3145 rmem->pg_arr[i], rmem->dma_arr[i]); 3146 3147 rmem->pg_arr[i] = NULL; 3148 } 3149 skip_pages: 3150 if (rmem->pg_tbl) { 3151 size_t pg_tbl_size = rmem->nr_pages * 8; 3152 3153 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3154 pg_tbl_size = rmem->page_size; 3155 dma_free_coherent(&pdev->dev, pg_tbl_size, 3156 rmem->pg_tbl, rmem->pg_tbl_map); 3157 rmem->pg_tbl = NULL; 3158 } 3159 if (rmem->vmem_size && *rmem->vmem) { 3160 vfree(*rmem->vmem); 3161 *rmem->vmem = NULL; 3162 } 3163 } 3164 3165 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3166 { 3167 struct pci_dev *pdev = bp->pdev; 3168 u64 valid_bit = 0; 3169 int i; 3170 3171 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 3172 valid_bit = PTU_PTE_VALID; 3173 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 3174 size_t pg_tbl_size = rmem->nr_pages * 8; 3175 3176 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3177 pg_tbl_size = rmem->page_size; 3178 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 3179 &rmem->pg_tbl_map, 3180 GFP_KERNEL); 3181 if (!rmem->pg_tbl) 3182 return -ENOMEM; 3183 } 3184 3185 for (i = 0; i < rmem->nr_pages; i++) { 3186 u64 extra_bits = valid_bit; 3187 3188 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 3189 rmem->page_size, 3190 &rmem->dma_arr[i], 3191 GFP_KERNEL); 3192 if (!rmem->pg_arr[i]) 3193 return -ENOMEM; 3194 3195 if (rmem->mem_init) 3196 bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i], 3197 rmem->page_size); 3198 if (rmem->nr_pages > 1 || rmem->depth > 0) { 3199 if (i == rmem->nr_pages - 2 && 3200 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3201 extra_bits |= PTU_PTE_NEXT_TO_LAST; 3202 else if (i == rmem->nr_pages - 1 && 3203 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3204 extra_bits |= PTU_PTE_LAST; 3205 rmem->pg_tbl[i] = 3206 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 3207 } 3208 } 3209 3210 if (rmem->vmem_size) { 3211 *rmem->vmem = vzalloc(rmem->vmem_size); 3212 if (!(*rmem->vmem)) 3213 return -ENOMEM; 3214 } 3215 return 0; 3216 } 3217 3218 static void bnxt_free_tpa_info(struct bnxt *bp) 3219 { 3220 int i, j; 3221 3222 for (i = 0; i < bp->rx_nr_rings; i++) { 3223 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3224 3225 kfree(rxr->rx_tpa_idx_map); 3226 rxr->rx_tpa_idx_map = NULL; 3227 if (rxr->rx_tpa) { 3228 for (j = 0; j < bp->max_tpa; j++) { 3229 kfree(rxr->rx_tpa[j].agg_arr); 3230 rxr->rx_tpa[j].agg_arr = NULL; 3231 } 3232 } 3233 kfree(rxr->rx_tpa); 3234 rxr->rx_tpa = NULL; 3235 } 3236 } 3237 3238 static int bnxt_alloc_tpa_info(struct bnxt *bp) 3239 { 3240 int i, j; 3241 3242 bp->max_tpa = MAX_TPA; 3243 if (bp->flags & BNXT_FLAG_CHIP_P5) { 3244 if (!bp->max_tpa_v2) 3245 return 0; 3246 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 3247 } 3248 3249 for (i = 0; i < bp->rx_nr_rings; i++) { 3250 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3251 struct rx_agg_cmp *agg; 3252 3253 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 3254 GFP_KERNEL); 3255 if (!rxr->rx_tpa) 3256 return -ENOMEM; 3257 3258 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 3259 continue; 3260 for (j = 0; j < bp->max_tpa; j++) { 3261 agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL); 3262 if (!agg) 3263 return -ENOMEM; 3264 rxr->rx_tpa[j].agg_arr = agg; 3265 } 3266 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 3267 GFP_KERNEL); 3268 if (!rxr->rx_tpa_idx_map) 3269 return -ENOMEM; 3270 } 3271 return 0; 3272 } 3273 3274 static void bnxt_free_rx_rings(struct bnxt *bp) 3275 { 3276 int i; 3277 3278 if (!bp->rx_ring) 3279 return; 3280 3281 bnxt_free_tpa_info(bp); 3282 for (i = 0; i < bp->rx_nr_rings; i++) { 3283 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3284 struct bnxt_ring_struct *ring; 3285 3286 if (rxr->xdp_prog) 3287 bpf_prog_put(rxr->xdp_prog); 3288 3289 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 3290 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3291 3292 page_pool_destroy(rxr->page_pool); 3293 rxr->page_pool = NULL; 3294 3295 kfree(rxr->rx_agg_bmap); 3296 rxr->rx_agg_bmap = NULL; 3297 3298 ring = &rxr->rx_ring_struct; 3299 bnxt_free_ring(bp, &ring->ring_mem); 3300 3301 ring = &rxr->rx_agg_ring_struct; 3302 bnxt_free_ring(bp, &ring->ring_mem); 3303 } 3304 } 3305 3306 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 3307 struct bnxt_rx_ring_info *rxr) 3308 { 3309 struct page_pool_params pp = { 0 }; 3310 3311 pp.pool_size = bp->rx_agg_ring_size; 3312 if (BNXT_RX_PAGE_MODE(bp)) 3313 pp.pool_size += bp->rx_ring_size; 3314 pp.nid = dev_to_node(&bp->pdev->dev); 3315 pp.napi = &rxr->bnapi->napi; 3316 pp.dev = &bp->pdev->dev; 3317 pp.dma_dir = bp->rx_dir; 3318 pp.max_len = PAGE_SIZE; 3319 pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 3320 3321 rxr->page_pool = page_pool_create(&pp); 3322 if (IS_ERR(rxr->page_pool)) { 3323 int err = PTR_ERR(rxr->page_pool); 3324 3325 rxr->page_pool = NULL; 3326 return err; 3327 } 3328 return 0; 3329 } 3330 3331 static int bnxt_alloc_rx_rings(struct bnxt *bp) 3332 { 3333 int i, rc = 0, agg_rings = 0; 3334 3335 if (!bp->rx_ring) 3336 return -ENOMEM; 3337 3338 if (bp->flags & BNXT_FLAG_AGG_RINGS) 3339 agg_rings = 1; 3340 3341 for (i = 0; i < bp->rx_nr_rings; i++) { 3342 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3343 struct bnxt_ring_struct *ring; 3344 3345 ring = &rxr->rx_ring_struct; 3346 3347 rc = bnxt_alloc_rx_page_pool(bp, rxr); 3348 if (rc) 3349 return rc; 3350 3351 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 3352 if (rc < 0) 3353 return rc; 3354 3355 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 3356 MEM_TYPE_PAGE_POOL, 3357 rxr->page_pool); 3358 if (rc) { 3359 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3360 return rc; 3361 } 3362 3363 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3364 if (rc) 3365 return rc; 3366 3367 ring->grp_idx = i; 3368 if (agg_rings) { 3369 u16 mem_size; 3370 3371 ring = &rxr->rx_agg_ring_struct; 3372 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3373 if (rc) 3374 return rc; 3375 3376 ring->grp_idx = i; 3377 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 3378 mem_size = rxr->rx_agg_bmap_size / 8; 3379 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 3380 if (!rxr->rx_agg_bmap) 3381 return -ENOMEM; 3382 } 3383 } 3384 if (bp->flags & BNXT_FLAG_TPA) 3385 rc = bnxt_alloc_tpa_info(bp); 3386 return rc; 3387 } 3388 3389 static void bnxt_free_tx_rings(struct bnxt *bp) 3390 { 3391 int i; 3392 struct pci_dev *pdev = bp->pdev; 3393 3394 if (!bp->tx_ring) 3395 return; 3396 3397 for (i = 0; i < bp->tx_nr_rings; i++) { 3398 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3399 struct bnxt_ring_struct *ring; 3400 3401 if (txr->tx_push) { 3402 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3403 txr->tx_push, txr->tx_push_mapping); 3404 txr->tx_push = NULL; 3405 } 3406 3407 ring = &txr->tx_ring_struct; 3408 3409 bnxt_free_ring(bp, &ring->ring_mem); 3410 } 3411 } 3412 3413 static int bnxt_alloc_tx_rings(struct bnxt *bp) 3414 { 3415 int i, j, rc; 3416 struct pci_dev *pdev = bp->pdev; 3417 3418 bp->tx_push_size = 0; 3419 if (bp->tx_push_thresh) { 3420 int push_size; 3421 3422 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 3423 bp->tx_push_thresh); 3424 3425 if (push_size > 256) { 3426 push_size = 0; 3427 bp->tx_push_thresh = 0; 3428 } 3429 3430 bp->tx_push_size = push_size; 3431 } 3432 3433 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 3434 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3435 struct bnxt_ring_struct *ring; 3436 u8 qidx; 3437 3438 ring = &txr->tx_ring_struct; 3439 3440 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3441 if (rc) 3442 return rc; 3443 3444 ring->grp_idx = txr->bnapi->index; 3445 if (bp->tx_push_size) { 3446 dma_addr_t mapping; 3447 3448 /* One pre-allocated DMA buffer to backup 3449 * TX push operation 3450 */ 3451 txr->tx_push = dma_alloc_coherent(&pdev->dev, 3452 bp->tx_push_size, 3453 &txr->tx_push_mapping, 3454 GFP_KERNEL); 3455 3456 if (!txr->tx_push) 3457 return -ENOMEM; 3458 3459 mapping = txr->tx_push_mapping + 3460 sizeof(struct tx_push_bd); 3461 txr->data_mapping = cpu_to_le64(mapping); 3462 } 3463 qidx = bp->tc_to_qidx[j]; 3464 ring->queue_id = bp->q_info[qidx].queue_id; 3465 spin_lock_init(&txr->xdp_tx_lock); 3466 if (i < bp->tx_nr_rings_xdp) 3467 continue; 3468 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1)) 3469 j++; 3470 } 3471 return 0; 3472 } 3473 3474 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr) 3475 { 3476 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3477 3478 kfree(cpr->cp_desc_ring); 3479 cpr->cp_desc_ring = NULL; 3480 ring->ring_mem.pg_arr = NULL; 3481 kfree(cpr->cp_desc_mapping); 3482 cpr->cp_desc_mapping = NULL; 3483 ring->ring_mem.dma_arr = NULL; 3484 } 3485 3486 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n) 3487 { 3488 cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL); 3489 if (!cpr->cp_desc_ring) 3490 return -ENOMEM; 3491 cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping), 3492 GFP_KERNEL); 3493 if (!cpr->cp_desc_mapping) 3494 return -ENOMEM; 3495 return 0; 3496 } 3497 3498 static void bnxt_free_all_cp_arrays(struct bnxt *bp) 3499 { 3500 int i; 3501 3502 if (!bp->bnapi) 3503 return; 3504 for (i = 0; i < bp->cp_nr_rings; i++) { 3505 struct bnxt_napi *bnapi = bp->bnapi[i]; 3506 3507 if (!bnapi) 3508 continue; 3509 bnxt_free_cp_arrays(&bnapi->cp_ring); 3510 } 3511 } 3512 3513 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp) 3514 { 3515 int i, n = bp->cp_nr_pages; 3516 3517 for (i = 0; i < bp->cp_nr_rings; i++) { 3518 struct bnxt_napi *bnapi = bp->bnapi[i]; 3519 int rc; 3520 3521 if (!bnapi) 3522 continue; 3523 rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n); 3524 if (rc) 3525 return rc; 3526 } 3527 return 0; 3528 } 3529 3530 static void bnxt_free_cp_rings(struct bnxt *bp) 3531 { 3532 int i; 3533 3534 if (!bp->bnapi) 3535 return; 3536 3537 for (i = 0; i < bp->cp_nr_rings; i++) { 3538 struct bnxt_napi *bnapi = bp->bnapi[i]; 3539 struct bnxt_cp_ring_info *cpr; 3540 struct bnxt_ring_struct *ring; 3541 int j; 3542 3543 if (!bnapi) 3544 continue; 3545 3546 cpr = &bnapi->cp_ring; 3547 ring = &cpr->cp_ring_struct; 3548 3549 bnxt_free_ring(bp, &ring->ring_mem); 3550 3551 for (j = 0; j < 2; j++) { 3552 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3553 3554 if (cpr2) { 3555 ring = &cpr2->cp_ring_struct; 3556 bnxt_free_ring(bp, &ring->ring_mem); 3557 bnxt_free_cp_arrays(cpr2); 3558 kfree(cpr2); 3559 cpr->cp_ring_arr[j] = NULL; 3560 } 3561 } 3562 } 3563 } 3564 3565 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp) 3566 { 3567 struct bnxt_ring_mem_info *rmem; 3568 struct bnxt_ring_struct *ring; 3569 struct bnxt_cp_ring_info *cpr; 3570 int rc; 3571 3572 cpr = kzalloc(sizeof(*cpr), GFP_KERNEL); 3573 if (!cpr) 3574 return NULL; 3575 3576 rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages); 3577 if (rc) { 3578 bnxt_free_cp_arrays(cpr); 3579 kfree(cpr); 3580 return NULL; 3581 } 3582 ring = &cpr->cp_ring_struct; 3583 rmem = &ring->ring_mem; 3584 rmem->nr_pages = bp->cp_nr_pages; 3585 rmem->page_size = HW_CMPD_RING_SIZE; 3586 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3587 rmem->dma_arr = cpr->cp_desc_mapping; 3588 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 3589 rc = bnxt_alloc_ring(bp, rmem); 3590 if (rc) { 3591 bnxt_free_ring(bp, rmem); 3592 bnxt_free_cp_arrays(cpr); 3593 kfree(cpr); 3594 cpr = NULL; 3595 } 3596 return cpr; 3597 } 3598 3599 static int bnxt_alloc_cp_rings(struct bnxt *bp) 3600 { 3601 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 3602 int i, rc, ulp_base_vec, ulp_msix; 3603 3604 ulp_msix = bnxt_get_ulp_msix_num(bp); 3605 ulp_base_vec = bnxt_get_ulp_msix_base(bp); 3606 for (i = 0; i < bp->cp_nr_rings; i++) { 3607 struct bnxt_napi *bnapi = bp->bnapi[i]; 3608 struct bnxt_cp_ring_info *cpr; 3609 struct bnxt_ring_struct *ring; 3610 3611 if (!bnapi) 3612 continue; 3613 3614 cpr = &bnapi->cp_ring; 3615 cpr->bnapi = bnapi; 3616 ring = &cpr->cp_ring_struct; 3617 3618 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3619 if (rc) 3620 return rc; 3621 3622 if (ulp_msix && i >= ulp_base_vec) 3623 ring->map_idx = i + ulp_msix; 3624 else 3625 ring->map_idx = i; 3626 3627 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 3628 continue; 3629 3630 if (i < bp->rx_nr_rings) { 3631 struct bnxt_cp_ring_info *cpr2 = 3632 bnxt_alloc_cp_sub_ring(bp); 3633 3634 cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2; 3635 if (!cpr2) 3636 return -ENOMEM; 3637 cpr2->bnapi = bnapi; 3638 } 3639 if ((sh && i < bp->tx_nr_rings) || 3640 (!sh && i >= bp->rx_nr_rings)) { 3641 struct bnxt_cp_ring_info *cpr2 = 3642 bnxt_alloc_cp_sub_ring(bp); 3643 3644 cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2; 3645 if (!cpr2) 3646 return -ENOMEM; 3647 cpr2->bnapi = bnapi; 3648 } 3649 } 3650 return 0; 3651 } 3652 3653 static void bnxt_init_ring_struct(struct bnxt *bp) 3654 { 3655 int i; 3656 3657 for (i = 0; i < bp->cp_nr_rings; i++) { 3658 struct bnxt_napi *bnapi = bp->bnapi[i]; 3659 struct bnxt_ring_mem_info *rmem; 3660 struct bnxt_cp_ring_info *cpr; 3661 struct bnxt_rx_ring_info *rxr; 3662 struct bnxt_tx_ring_info *txr; 3663 struct bnxt_ring_struct *ring; 3664 3665 if (!bnapi) 3666 continue; 3667 3668 cpr = &bnapi->cp_ring; 3669 ring = &cpr->cp_ring_struct; 3670 rmem = &ring->ring_mem; 3671 rmem->nr_pages = bp->cp_nr_pages; 3672 rmem->page_size = HW_CMPD_RING_SIZE; 3673 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3674 rmem->dma_arr = cpr->cp_desc_mapping; 3675 rmem->vmem_size = 0; 3676 3677 rxr = bnapi->rx_ring; 3678 if (!rxr) 3679 goto skip_rx; 3680 3681 ring = &rxr->rx_ring_struct; 3682 rmem = &ring->ring_mem; 3683 rmem->nr_pages = bp->rx_nr_pages; 3684 rmem->page_size = HW_RXBD_RING_SIZE; 3685 rmem->pg_arr = (void **)rxr->rx_desc_ring; 3686 rmem->dma_arr = rxr->rx_desc_mapping; 3687 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 3688 rmem->vmem = (void **)&rxr->rx_buf_ring; 3689 3690 ring = &rxr->rx_agg_ring_struct; 3691 rmem = &ring->ring_mem; 3692 rmem->nr_pages = bp->rx_agg_nr_pages; 3693 rmem->page_size = HW_RXBD_RING_SIZE; 3694 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 3695 rmem->dma_arr = rxr->rx_agg_desc_mapping; 3696 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 3697 rmem->vmem = (void **)&rxr->rx_agg_ring; 3698 3699 skip_rx: 3700 txr = bnapi->tx_ring; 3701 if (!txr) 3702 continue; 3703 3704 ring = &txr->tx_ring_struct; 3705 rmem = &ring->ring_mem; 3706 rmem->nr_pages = bp->tx_nr_pages; 3707 rmem->page_size = HW_RXBD_RING_SIZE; 3708 rmem->pg_arr = (void **)txr->tx_desc_ring; 3709 rmem->dma_arr = txr->tx_desc_mapping; 3710 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 3711 rmem->vmem = (void **)&txr->tx_buf_ring; 3712 } 3713 } 3714 3715 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 3716 { 3717 int i; 3718 u32 prod; 3719 struct rx_bd **rx_buf_ring; 3720 3721 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 3722 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 3723 int j; 3724 struct rx_bd *rxbd; 3725 3726 rxbd = rx_buf_ring[i]; 3727 if (!rxbd) 3728 continue; 3729 3730 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 3731 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 3732 rxbd->rx_bd_opaque = prod; 3733 } 3734 } 3735 } 3736 3737 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 3738 { 3739 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 3740 struct net_device *dev = bp->dev; 3741 u32 prod; 3742 int i; 3743 3744 prod = rxr->rx_prod; 3745 for (i = 0; i < bp->rx_ring_size; i++) { 3746 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 3747 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n", 3748 ring_nr, i, bp->rx_ring_size); 3749 break; 3750 } 3751 prod = NEXT_RX(prod); 3752 } 3753 rxr->rx_prod = prod; 3754 3755 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 3756 return 0; 3757 3758 prod = rxr->rx_agg_prod; 3759 for (i = 0; i < bp->rx_agg_ring_size; i++) { 3760 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) { 3761 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n", 3762 ring_nr, i, bp->rx_ring_size); 3763 break; 3764 } 3765 prod = NEXT_RX_AGG(prod); 3766 } 3767 rxr->rx_agg_prod = prod; 3768 3769 if (rxr->rx_tpa) { 3770 dma_addr_t mapping; 3771 u8 *data; 3772 3773 for (i = 0; i < bp->max_tpa; i++) { 3774 data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL); 3775 if (!data) 3776 return -ENOMEM; 3777 3778 rxr->rx_tpa[i].data = data; 3779 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 3780 rxr->rx_tpa[i].mapping = mapping; 3781 } 3782 } 3783 return 0; 3784 } 3785 3786 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 3787 { 3788 struct bnxt_rx_ring_info *rxr; 3789 struct bnxt_ring_struct *ring; 3790 u32 type; 3791 3792 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 3793 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 3794 3795 if (NET_IP_ALIGN == 2) 3796 type |= RX_BD_FLAGS_SOP; 3797 3798 rxr = &bp->rx_ring[ring_nr]; 3799 ring = &rxr->rx_ring_struct; 3800 bnxt_init_rxbd_pages(ring, type); 3801 3802 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 3803 bpf_prog_add(bp->xdp_prog, 1); 3804 rxr->xdp_prog = bp->xdp_prog; 3805 } 3806 ring->fw_ring_id = INVALID_HW_RING_ID; 3807 3808 ring = &rxr->rx_agg_ring_struct; 3809 ring->fw_ring_id = INVALID_HW_RING_ID; 3810 3811 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 3812 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 3813 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 3814 3815 bnxt_init_rxbd_pages(ring, type); 3816 } 3817 3818 return bnxt_alloc_one_rx_ring(bp, ring_nr); 3819 } 3820 3821 static void bnxt_init_cp_rings(struct bnxt *bp) 3822 { 3823 int i, j; 3824 3825 for (i = 0; i < bp->cp_nr_rings; i++) { 3826 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 3827 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3828 3829 ring->fw_ring_id = INVALID_HW_RING_ID; 3830 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3831 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3832 for (j = 0; j < 2; j++) { 3833 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3834 3835 if (!cpr2) 3836 continue; 3837 3838 ring = &cpr2->cp_ring_struct; 3839 ring->fw_ring_id = INVALID_HW_RING_ID; 3840 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3841 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3842 } 3843 } 3844 } 3845 3846 static int bnxt_init_rx_rings(struct bnxt *bp) 3847 { 3848 int i, rc = 0; 3849 3850 if (BNXT_RX_PAGE_MODE(bp)) { 3851 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 3852 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 3853 } else { 3854 bp->rx_offset = BNXT_RX_OFFSET; 3855 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 3856 } 3857 3858 for (i = 0; i < bp->rx_nr_rings; i++) { 3859 rc = bnxt_init_one_rx_ring(bp, i); 3860 if (rc) 3861 break; 3862 } 3863 3864 return rc; 3865 } 3866 3867 static int bnxt_init_tx_rings(struct bnxt *bp) 3868 { 3869 u16 i; 3870 3871 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 3872 BNXT_MIN_TX_DESC_CNT); 3873 3874 for (i = 0; i < bp->tx_nr_rings; i++) { 3875 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3876 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 3877 3878 ring->fw_ring_id = INVALID_HW_RING_ID; 3879 } 3880 3881 return 0; 3882 } 3883 3884 static void bnxt_free_ring_grps(struct bnxt *bp) 3885 { 3886 kfree(bp->grp_info); 3887 bp->grp_info = NULL; 3888 } 3889 3890 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 3891 { 3892 int i; 3893 3894 if (irq_re_init) { 3895 bp->grp_info = kcalloc(bp->cp_nr_rings, 3896 sizeof(struct bnxt_ring_grp_info), 3897 GFP_KERNEL); 3898 if (!bp->grp_info) 3899 return -ENOMEM; 3900 } 3901 for (i = 0; i < bp->cp_nr_rings; i++) { 3902 if (irq_re_init) 3903 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 3904 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 3905 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 3906 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 3907 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 3908 } 3909 return 0; 3910 } 3911 3912 static void bnxt_free_vnics(struct bnxt *bp) 3913 { 3914 kfree(bp->vnic_info); 3915 bp->vnic_info = NULL; 3916 bp->nr_vnics = 0; 3917 } 3918 3919 static int bnxt_alloc_vnics(struct bnxt *bp) 3920 { 3921 int num_vnics = 1; 3922 3923 #ifdef CONFIG_RFS_ACCEL 3924 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 3925 num_vnics += bp->rx_nr_rings; 3926 #endif 3927 3928 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 3929 num_vnics++; 3930 3931 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 3932 GFP_KERNEL); 3933 if (!bp->vnic_info) 3934 return -ENOMEM; 3935 3936 bp->nr_vnics = num_vnics; 3937 return 0; 3938 } 3939 3940 static void bnxt_init_vnics(struct bnxt *bp) 3941 { 3942 int i; 3943 3944 for (i = 0; i < bp->nr_vnics; i++) { 3945 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 3946 int j; 3947 3948 vnic->fw_vnic_id = INVALID_HW_RING_ID; 3949 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 3950 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 3951 3952 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 3953 3954 if (bp->vnic_info[i].rss_hash_key) { 3955 if (i == 0) 3956 get_random_bytes(vnic->rss_hash_key, 3957 HW_HASH_KEY_SIZE); 3958 else 3959 memcpy(vnic->rss_hash_key, 3960 bp->vnic_info[0].rss_hash_key, 3961 HW_HASH_KEY_SIZE); 3962 } 3963 } 3964 } 3965 3966 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 3967 { 3968 int pages; 3969 3970 pages = ring_size / desc_per_pg; 3971 3972 if (!pages) 3973 return 1; 3974 3975 pages++; 3976 3977 while (pages & (pages - 1)) 3978 pages++; 3979 3980 return pages; 3981 } 3982 3983 void bnxt_set_tpa_flags(struct bnxt *bp) 3984 { 3985 bp->flags &= ~BNXT_FLAG_TPA; 3986 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 3987 return; 3988 if (bp->dev->features & NETIF_F_LRO) 3989 bp->flags |= BNXT_FLAG_LRO; 3990 else if (bp->dev->features & NETIF_F_GRO_HW) 3991 bp->flags |= BNXT_FLAG_GRO; 3992 } 3993 3994 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 3995 * be set on entry. 3996 */ 3997 void bnxt_set_ring_params(struct bnxt *bp) 3998 { 3999 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 4000 u32 agg_factor = 0, agg_ring_size = 0; 4001 4002 /* 8 for CRC and VLAN */ 4003 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 4004 4005 rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) + 4006 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4007 4008 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 4009 ring_size = bp->rx_ring_size; 4010 bp->rx_agg_ring_size = 0; 4011 bp->rx_agg_nr_pages = 0; 4012 4013 if (bp->flags & BNXT_FLAG_TPA) 4014 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 4015 4016 bp->flags &= ~BNXT_FLAG_JUMBO; 4017 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 4018 u32 jumbo_factor; 4019 4020 bp->flags |= BNXT_FLAG_JUMBO; 4021 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 4022 if (jumbo_factor > agg_factor) 4023 agg_factor = jumbo_factor; 4024 } 4025 if (agg_factor) { 4026 if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) { 4027 ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA; 4028 netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n", 4029 bp->rx_ring_size, ring_size); 4030 bp->rx_ring_size = ring_size; 4031 } 4032 agg_ring_size = ring_size * agg_factor; 4033 4034 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 4035 RX_DESC_CNT); 4036 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 4037 u32 tmp = agg_ring_size; 4038 4039 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 4040 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 4041 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 4042 tmp, agg_ring_size); 4043 } 4044 bp->rx_agg_ring_size = agg_ring_size; 4045 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 4046 4047 if (BNXT_RX_PAGE_MODE(bp)) { 4048 rx_space = PAGE_SIZE; 4049 rx_size = PAGE_SIZE - 4050 ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) - 4051 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4052 } else { 4053 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 4054 rx_space = rx_size + NET_SKB_PAD + 4055 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4056 } 4057 } 4058 4059 bp->rx_buf_use_size = rx_size; 4060 bp->rx_buf_size = rx_space; 4061 4062 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 4063 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 4064 4065 ring_size = bp->tx_ring_size; 4066 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 4067 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 4068 4069 max_rx_cmpl = bp->rx_ring_size; 4070 /* MAX TPA needs to be added because TPA_START completions are 4071 * immediately recycled, so the TPA completions are not bound by 4072 * the RX ring size. 4073 */ 4074 if (bp->flags & BNXT_FLAG_TPA) 4075 max_rx_cmpl += bp->max_tpa; 4076 /* RX and TPA completions are 32-byte, all others are 16-byte */ 4077 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 4078 bp->cp_ring_size = ring_size; 4079 4080 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 4081 if (bp->cp_nr_pages > MAX_CP_PAGES) { 4082 bp->cp_nr_pages = MAX_CP_PAGES; 4083 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 4084 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 4085 ring_size, bp->cp_ring_size); 4086 } 4087 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 4088 bp->cp_ring_mask = bp->cp_bit - 1; 4089 } 4090 4091 /* Changing allocation mode of RX rings. 4092 * TODO: Update when extending xdp_rxq_info to support allocation modes. 4093 */ 4094 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 4095 { 4096 struct net_device *dev = bp->dev; 4097 4098 if (page_mode) { 4099 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 4100 bp->flags |= BNXT_FLAG_RX_PAGE_MODE; 4101 4102 if (bp->xdp_prog->aux->xdp_has_frags) 4103 dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU); 4104 else 4105 dev->max_mtu = 4106 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 4107 if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) { 4108 bp->flags |= BNXT_FLAG_JUMBO; 4109 bp->rx_skb_func = bnxt_rx_multi_page_skb; 4110 } else { 4111 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 4112 bp->rx_skb_func = bnxt_rx_page_skb; 4113 } 4114 bp->rx_dir = DMA_BIDIRECTIONAL; 4115 /* Disable LRO or GRO_HW */ 4116 netdev_update_features(dev); 4117 } else { 4118 dev->max_mtu = bp->max_mtu; 4119 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 4120 bp->rx_dir = DMA_FROM_DEVICE; 4121 bp->rx_skb_func = bnxt_rx_skb; 4122 } 4123 return 0; 4124 } 4125 4126 static void bnxt_free_vnic_attributes(struct bnxt *bp) 4127 { 4128 int i; 4129 struct bnxt_vnic_info *vnic; 4130 struct pci_dev *pdev = bp->pdev; 4131 4132 if (!bp->vnic_info) 4133 return; 4134 4135 for (i = 0; i < bp->nr_vnics; i++) { 4136 vnic = &bp->vnic_info[i]; 4137 4138 kfree(vnic->fw_grp_ids); 4139 vnic->fw_grp_ids = NULL; 4140 4141 kfree(vnic->uc_list); 4142 vnic->uc_list = NULL; 4143 4144 if (vnic->mc_list) { 4145 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 4146 vnic->mc_list, vnic->mc_list_mapping); 4147 vnic->mc_list = NULL; 4148 } 4149 4150 if (vnic->rss_table) { 4151 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 4152 vnic->rss_table, 4153 vnic->rss_table_dma_addr); 4154 vnic->rss_table = NULL; 4155 } 4156 4157 vnic->rss_hash_key = NULL; 4158 vnic->flags = 0; 4159 } 4160 } 4161 4162 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 4163 { 4164 int i, rc = 0, size; 4165 struct bnxt_vnic_info *vnic; 4166 struct pci_dev *pdev = bp->pdev; 4167 int max_rings; 4168 4169 for (i = 0; i < bp->nr_vnics; i++) { 4170 vnic = &bp->vnic_info[i]; 4171 4172 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 4173 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 4174 4175 if (mem_size > 0) { 4176 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 4177 if (!vnic->uc_list) { 4178 rc = -ENOMEM; 4179 goto out; 4180 } 4181 } 4182 } 4183 4184 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 4185 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 4186 vnic->mc_list = 4187 dma_alloc_coherent(&pdev->dev, 4188 vnic->mc_list_size, 4189 &vnic->mc_list_mapping, 4190 GFP_KERNEL); 4191 if (!vnic->mc_list) { 4192 rc = -ENOMEM; 4193 goto out; 4194 } 4195 } 4196 4197 if (bp->flags & BNXT_FLAG_CHIP_P5) 4198 goto vnic_skip_grps; 4199 4200 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 4201 max_rings = bp->rx_nr_rings; 4202 else 4203 max_rings = 1; 4204 4205 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 4206 if (!vnic->fw_grp_ids) { 4207 rc = -ENOMEM; 4208 goto out; 4209 } 4210 vnic_skip_grps: 4211 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 4212 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 4213 continue; 4214 4215 /* Allocate rss table and hash key */ 4216 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 4217 if (bp->flags & BNXT_FLAG_CHIP_P5) 4218 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 4219 4220 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 4221 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 4222 vnic->rss_table_size, 4223 &vnic->rss_table_dma_addr, 4224 GFP_KERNEL); 4225 if (!vnic->rss_table) { 4226 rc = -ENOMEM; 4227 goto out; 4228 } 4229 4230 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 4231 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 4232 } 4233 return 0; 4234 4235 out: 4236 return rc; 4237 } 4238 4239 static void bnxt_free_hwrm_resources(struct bnxt *bp) 4240 { 4241 struct bnxt_hwrm_wait_token *token; 4242 4243 dma_pool_destroy(bp->hwrm_dma_pool); 4244 bp->hwrm_dma_pool = NULL; 4245 4246 rcu_read_lock(); 4247 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) 4248 WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED); 4249 rcu_read_unlock(); 4250 } 4251 4252 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 4253 { 4254 bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev, 4255 BNXT_HWRM_DMA_SIZE, 4256 BNXT_HWRM_DMA_ALIGN, 0); 4257 if (!bp->hwrm_dma_pool) 4258 return -ENOMEM; 4259 4260 INIT_HLIST_HEAD(&bp->hwrm_pending_list); 4261 4262 return 0; 4263 } 4264 4265 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 4266 { 4267 kfree(stats->hw_masks); 4268 stats->hw_masks = NULL; 4269 kfree(stats->sw_stats); 4270 stats->sw_stats = NULL; 4271 if (stats->hw_stats) { 4272 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 4273 stats->hw_stats_map); 4274 stats->hw_stats = NULL; 4275 } 4276 } 4277 4278 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 4279 bool alloc_masks) 4280 { 4281 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 4282 &stats->hw_stats_map, GFP_KERNEL); 4283 if (!stats->hw_stats) 4284 return -ENOMEM; 4285 4286 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 4287 if (!stats->sw_stats) 4288 goto stats_mem_err; 4289 4290 if (alloc_masks) { 4291 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 4292 if (!stats->hw_masks) 4293 goto stats_mem_err; 4294 } 4295 return 0; 4296 4297 stats_mem_err: 4298 bnxt_free_stats_mem(bp, stats); 4299 return -ENOMEM; 4300 } 4301 4302 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 4303 { 4304 int i; 4305 4306 for (i = 0; i < count; i++) 4307 mask_arr[i] = mask; 4308 } 4309 4310 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 4311 { 4312 int i; 4313 4314 for (i = 0; i < count; i++) 4315 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 4316 } 4317 4318 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 4319 struct bnxt_stats_mem *stats) 4320 { 4321 struct hwrm_func_qstats_ext_output *resp; 4322 struct hwrm_func_qstats_ext_input *req; 4323 __le64 *hw_masks; 4324 int rc; 4325 4326 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 4327 !(bp->flags & BNXT_FLAG_CHIP_P5)) 4328 return -EOPNOTSUPP; 4329 4330 rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT); 4331 if (rc) 4332 return rc; 4333 4334 req->fid = cpu_to_le16(0xffff); 4335 req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4336 4337 resp = hwrm_req_hold(bp, req); 4338 rc = hwrm_req_send(bp, req); 4339 if (!rc) { 4340 hw_masks = &resp->rx_ucast_pkts; 4341 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 4342 } 4343 hwrm_req_drop(bp, req); 4344 return rc; 4345 } 4346 4347 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 4348 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 4349 4350 static void bnxt_init_stats(struct bnxt *bp) 4351 { 4352 struct bnxt_napi *bnapi = bp->bnapi[0]; 4353 struct bnxt_cp_ring_info *cpr; 4354 struct bnxt_stats_mem *stats; 4355 __le64 *rx_stats, *tx_stats; 4356 int rc, rx_count, tx_count; 4357 u64 *rx_masks, *tx_masks; 4358 u64 mask; 4359 u8 flags; 4360 4361 cpr = &bnapi->cp_ring; 4362 stats = &cpr->stats; 4363 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 4364 if (rc) { 4365 if (bp->flags & BNXT_FLAG_CHIP_P5) 4366 mask = (1ULL << 48) - 1; 4367 else 4368 mask = -1ULL; 4369 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 4370 } 4371 if (bp->flags & BNXT_FLAG_PORT_STATS) { 4372 stats = &bp->port_stats; 4373 rx_stats = stats->hw_stats; 4374 rx_masks = stats->hw_masks; 4375 rx_count = sizeof(struct rx_port_stats) / 8; 4376 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4377 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4378 tx_count = sizeof(struct tx_port_stats) / 8; 4379 4380 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 4381 rc = bnxt_hwrm_port_qstats(bp, flags); 4382 if (rc) { 4383 mask = (1ULL << 40) - 1; 4384 4385 bnxt_fill_masks(rx_masks, mask, rx_count); 4386 bnxt_fill_masks(tx_masks, mask, tx_count); 4387 } else { 4388 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4389 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 4390 bnxt_hwrm_port_qstats(bp, 0); 4391 } 4392 } 4393 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 4394 stats = &bp->rx_port_stats_ext; 4395 rx_stats = stats->hw_stats; 4396 rx_masks = stats->hw_masks; 4397 rx_count = sizeof(struct rx_port_stats_ext) / 8; 4398 stats = &bp->tx_port_stats_ext; 4399 tx_stats = stats->hw_stats; 4400 tx_masks = stats->hw_masks; 4401 tx_count = sizeof(struct tx_port_stats_ext) / 8; 4402 4403 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4404 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 4405 if (rc) { 4406 mask = (1ULL << 40) - 1; 4407 4408 bnxt_fill_masks(rx_masks, mask, rx_count); 4409 if (tx_stats) 4410 bnxt_fill_masks(tx_masks, mask, tx_count); 4411 } else { 4412 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4413 if (tx_stats) 4414 bnxt_copy_hw_masks(tx_masks, tx_stats, 4415 tx_count); 4416 bnxt_hwrm_port_qstats_ext(bp, 0); 4417 } 4418 } 4419 } 4420 4421 static void bnxt_free_port_stats(struct bnxt *bp) 4422 { 4423 bp->flags &= ~BNXT_FLAG_PORT_STATS; 4424 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 4425 4426 bnxt_free_stats_mem(bp, &bp->port_stats); 4427 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 4428 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 4429 } 4430 4431 static void bnxt_free_ring_stats(struct bnxt *bp) 4432 { 4433 int i; 4434 4435 if (!bp->bnapi) 4436 return; 4437 4438 for (i = 0; i < bp->cp_nr_rings; i++) { 4439 struct bnxt_napi *bnapi = bp->bnapi[i]; 4440 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4441 4442 bnxt_free_stats_mem(bp, &cpr->stats); 4443 } 4444 } 4445 4446 static int bnxt_alloc_stats(struct bnxt *bp) 4447 { 4448 u32 size, i; 4449 int rc; 4450 4451 size = bp->hw_ring_stats_size; 4452 4453 for (i = 0; i < bp->cp_nr_rings; i++) { 4454 struct bnxt_napi *bnapi = bp->bnapi[i]; 4455 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4456 4457 cpr->stats.len = size; 4458 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 4459 if (rc) 4460 return rc; 4461 4462 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 4463 } 4464 4465 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 4466 return 0; 4467 4468 if (bp->port_stats.hw_stats) 4469 goto alloc_ext_stats; 4470 4471 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 4472 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 4473 if (rc) 4474 return rc; 4475 4476 bp->flags |= BNXT_FLAG_PORT_STATS; 4477 4478 alloc_ext_stats: 4479 /* Display extended statistics only if FW supports it */ 4480 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 4481 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 4482 return 0; 4483 4484 if (bp->rx_port_stats_ext.hw_stats) 4485 goto alloc_tx_ext_stats; 4486 4487 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 4488 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 4489 /* Extended stats are optional */ 4490 if (rc) 4491 return 0; 4492 4493 alloc_tx_ext_stats: 4494 if (bp->tx_port_stats_ext.hw_stats) 4495 return 0; 4496 4497 if (bp->hwrm_spec_code >= 0x10902 || 4498 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 4499 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 4500 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 4501 /* Extended stats are optional */ 4502 if (rc) 4503 return 0; 4504 } 4505 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 4506 return 0; 4507 } 4508 4509 static void bnxt_clear_ring_indices(struct bnxt *bp) 4510 { 4511 int i; 4512 4513 if (!bp->bnapi) 4514 return; 4515 4516 for (i = 0; i < bp->cp_nr_rings; i++) { 4517 struct bnxt_napi *bnapi = bp->bnapi[i]; 4518 struct bnxt_cp_ring_info *cpr; 4519 struct bnxt_rx_ring_info *rxr; 4520 struct bnxt_tx_ring_info *txr; 4521 4522 if (!bnapi) 4523 continue; 4524 4525 cpr = &bnapi->cp_ring; 4526 cpr->cp_raw_cons = 0; 4527 4528 txr = bnapi->tx_ring; 4529 if (txr) { 4530 txr->tx_prod = 0; 4531 txr->tx_cons = 0; 4532 } 4533 4534 rxr = bnapi->rx_ring; 4535 if (rxr) { 4536 rxr->rx_prod = 0; 4537 rxr->rx_agg_prod = 0; 4538 rxr->rx_sw_agg_prod = 0; 4539 rxr->rx_next_cons = 0; 4540 } 4541 } 4542 } 4543 4544 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit) 4545 { 4546 #ifdef CONFIG_RFS_ACCEL 4547 int i; 4548 4549 /* Under rtnl_lock and all our NAPIs have been disabled. It's 4550 * safe to delete the hash table. 4551 */ 4552 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 4553 struct hlist_head *head; 4554 struct hlist_node *tmp; 4555 struct bnxt_ntuple_filter *fltr; 4556 4557 head = &bp->ntp_fltr_hash_tbl[i]; 4558 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 4559 hlist_del(&fltr->hash); 4560 kfree(fltr); 4561 } 4562 } 4563 if (irq_reinit) { 4564 bitmap_free(bp->ntp_fltr_bmap); 4565 bp->ntp_fltr_bmap = NULL; 4566 } 4567 bp->ntp_fltr_count = 0; 4568 #endif 4569 } 4570 4571 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 4572 { 4573 #ifdef CONFIG_RFS_ACCEL 4574 int i, rc = 0; 4575 4576 if (!(bp->flags & BNXT_FLAG_RFS)) 4577 return 0; 4578 4579 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 4580 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 4581 4582 bp->ntp_fltr_count = 0; 4583 bp->ntp_fltr_bmap = bitmap_zalloc(BNXT_NTP_FLTR_MAX_FLTR, GFP_KERNEL); 4584 4585 if (!bp->ntp_fltr_bmap) 4586 rc = -ENOMEM; 4587 4588 return rc; 4589 #else 4590 return 0; 4591 #endif 4592 } 4593 4594 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 4595 { 4596 bnxt_free_vnic_attributes(bp); 4597 bnxt_free_tx_rings(bp); 4598 bnxt_free_rx_rings(bp); 4599 bnxt_free_cp_rings(bp); 4600 bnxt_free_all_cp_arrays(bp); 4601 bnxt_free_ntp_fltrs(bp, irq_re_init); 4602 if (irq_re_init) { 4603 bnxt_free_ring_stats(bp); 4604 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 4605 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 4606 bnxt_free_port_stats(bp); 4607 bnxt_free_ring_grps(bp); 4608 bnxt_free_vnics(bp); 4609 kfree(bp->tx_ring_map); 4610 bp->tx_ring_map = NULL; 4611 kfree(bp->tx_ring); 4612 bp->tx_ring = NULL; 4613 kfree(bp->rx_ring); 4614 bp->rx_ring = NULL; 4615 kfree(bp->bnapi); 4616 bp->bnapi = NULL; 4617 } else { 4618 bnxt_clear_ring_indices(bp); 4619 } 4620 } 4621 4622 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 4623 { 4624 int i, j, rc, size, arr_size; 4625 void *bnapi; 4626 4627 if (irq_re_init) { 4628 /* Allocate bnapi mem pointer array and mem block for 4629 * all queues 4630 */ 4631 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 4632 bp->cp_nr_rings); 4633 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 4634 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 4635 if (!bnapi) 4636 return -ENOMEM; 4637 4638 bp->bnapi = bnapi; 4639 bnapi += arr_size; 4640 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 4641 bp->bnapi[i] = bnapi; 4642 bp->bnapi[i]->index = i; 4643 bp->bnapi[i]->bp = bp; 4644 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4645 struct bnxt_cp_ring_info *cpr = 4646 &bp->bnapi[i]->cp_ring; 4647 4648 cpr->cp_ring_struct.ring_mem.flags = 4649 BNXT_RMEM_RING_PTE_FLAG; 4650 } 4651 } 4652 4653 bp->rx_ring = kcalloc(bp->rx_nr_rings, 4654 sizeof(struct bnxt_rx_ring_info), 4655 GFP_KERNEL); 4656 if (!bp->rx_ring) 4657 return -ENOMEM; 4658 4659 for (i = 0; i < bp->rx_nr_rings; i++) { 4660 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 4661 4662 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4663 rxr->rx_ring_struct.ring_mem.flags = 4664 BNXT_RMEM_RING_PTE_FLAG; 4665 rxr->rx_agg_ring_struct.ring_mem.flags = 4666 BNXT_RMEM_RING_PTE_FLAG; 4667 } 4668 rxr->bnapi = bp->bnapi[i]; 4669 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 4670 } 4671 4672 bp->tx_ring = kcalloc(bp->tx_nr_rings, 4673 sizeof(struct bnxt_tx_ring_info), 4674 GFP_KERNEL); 4675 if (!bp->tx_ring) 4676 return -ENOMEM; 4677 4678 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 4679 GFP_KERNEL); 4680 4681 if (!bp->tx_ring_map) 4682 return -ENOMEM; 4683 4684 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 4685 j = 0; 4686 else 4687 j = bp->rx_nr_rings; 4688 4689 for (i = 0; i < bp->tx_nr_rings; i++, j++) { 4690 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4691 4692 if (bp->flags & BNXT_FLAG_CHIP_P5) 4693 txr->tx_ring_struct.ring_mem.flags = 4694 BNXT_RMEM_RING_PTE_FLAG; 4695 txr->bnapi = bp->bnapi[j]; 4696 bp->bnapi[j]->tx_ring = txr; 4697 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 4698 if (i >= bp->tx_nr_rings_xdp) { 4699 txr->txq_index = i - bp->tx_nr_rings_xdp; 4700 bp->bnapi[j]->tx_int = bnxt_tx_int; 4701 } else { 4702 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP; 4703 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp; 4704 } 4705 } 4706 4707 rc = bnxt_alloc_stats(bp); 4708 if (rc) 4709 goto alloc_mem_err; 4710 bnxt_init_stats(bp); 4711 4712 rc = bnxt_alloc_ntp_fltrs(bp); 4713 if (rc) 4714 goto alloc_mem_err; 4715 4716 rc = bnxt_alloc_vnics(bp); 4717 if (rc) 4718 goto alloc_mem_err; 4719 } 4720 4721 rc = bnxt_alloc_all_cp_arrays(bp); 4722 if (rc) 4723 goto alloc_mem_err; 4724 4725 bnxt_init_ring_struct(bp); 4726 4727 rc = bnxt_alloc_rx_rings(bp); 4728 if (rc) 4729 goto alloc_mem_err; 4730 4731 rc = bnxt_alloc_tx_rings(bp); 4732 if (rc) 4733 goto alloc_mem_err; 4734 4735 rc = bnxt_alloc_cp_rings(bp); 4736 if (rc) 4737 goto alloc_mem_err; 4738 4739 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG | 4740 BNXT_VNIC_UCAST_FLAG; 4741 rc = bnxt_alloc_vnic_attributes(bp); 4742 if (rc) 4743 goto alloc_mem_err; 4744 return 0; 4745 4746 alloc_mem_err: 4747 bnxt_free_mem(bp, true); 4748 return rc; 4749 } 4750 4751 static void bnxt_disable_int(struct bnxt *bp) 4752 { 4753 int i; 4754 4755 if (!bp->bnapi) 4756 return; 4757 4758 for (i = 0; i < bp->cp_nr_rings; i++) { 4759 struct bnxt_napi *bnapi = bp->bnapi[i]; 4760 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4761 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4762 4763 if (ring->fw_ring_id != INVALID_HW_RING_ID) 4764 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 4765 } 4766 } 4767 4768 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 4769 { 4770 struct bnxt_napi *bnapi = bp->bnapi[n]; 4771 struct bnxt_cp_ring_info *cpr; 4772 4773 cpr = &bnapi->cp_ring; 4774 return cpr->cp_ring_struct.map_idx; 4775 } 4776 4777 static void bnxt_disable_int_sync(struct bnxt *bp) 4778 { 4779 int i; 4780 4781 if (!bp->irq_tbl) 4782 return; 4783 4784 atomic_inc(&bp->intr_sem); 4785 4786 bnxt_disable_int(bp); 4787 for (i = 0; i < bp->cp_nr_rings; i++) { 4788 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 4789 4790 synchronize_irq(bp->irq_tbl[map_idx].vector); 4791 } 4792 } 4793 4794 static void bnxt_enable_int(struct bnxt *bp) 4795 { 4796 int i; 4797 4798 atomic_set(&bp->intr_sem, 0); 4799 for (i = 0; i < bp->cp_nr_rings; i++) { 4800 struct bnxt_napi *bnapi = bp->bnapi[i]; 4801 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4802 4803 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 4804 } 4805 } 4806 4807 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 4808 bool async_only) 4809 { 4810 DECLARE_BITMAP(async_events_bmap, 256); 4811 u32 *events = (u32 *)async_events_bmap; 4812 struct hwrm_func_drv_rgtr_output *resp; 4813 struct hwrm_func_drv_rgtr_input *req; 4814 u32 flags; 4815 int rc, i; 4816 4817 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR); 4818 if (rc) 4819 return rc; 4820 4821 req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 4822 FUNC_DRV_RGTR_REQ_ENABLES_VER | 4823 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4824 4825 req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 4826 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 4827 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 4828 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 4829 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 4830 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 4831 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 4832 req->flags = cpu_to_le32(flags); 4833 req->ver_maj_8b = DRV_VER_MAJ; 4834 req->ver_min_8b = DRV_VER_MIN; 4835 req->ver_upd_8b = DRV_VER_UPD; 4836 req->ver_maj = cpu_to_le16(DRV_VER_MAJ); 4837 req->ver_min = cpu_to_le16(DRV_VER_MIN); 4838 req->ver_upd = cpu_to_le16(DRV_VER_UPD); 4839 4840 if (BNXT_PF(bp)) { 4841 u32 data[8]; 4842 int i; 4843 4844 memset(data, 0, sizeof(data)); 4845 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 4846 u16 cmd = bnxt_vf_req_snif[i]; 4847 unsigned int bit, idx; 4848 4849 idx = cmd / 32; 4850 bit = cmd % 32; 4851 data[idx] |= 1 << bit; 4852 } 4853 4854 for (i = 0; i < 8; i++) 4855 req->vf_req_fwd[i] = cpu_to_le32(data[i]); 4856 4857 req->enables |= 4858 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 4859 } 4860 4861 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 4862 req->flags |= cpu_to_le32( 4863 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 4864 4865 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 4866 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 4867 u16 event_id = bnxt_async_events_arr[i]; 4868 4869 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 4870 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 4871 continue; 4872 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE && 4873 !bp->ptp_cfg) 4874 continue; 4875 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 4876 } 4877 if (bmap && bmap_size) { 4878 for (i = 0; i < bmap_size; i++) { 4879 if (test_bit(i, bmap)) 4880 __set_bit(i, async_events_bmap); 4881 } 4882 } 4883 for (i = 0; i < 8; i++) 4884 req->async_event_fwd[i] |= cpu_to_le32(events[i]); 4885 4886 if (async_only) 4887 req->enables = 4888 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4889 4890 resp = hwrm_req_hold(bp, req); 4891 rc = hwrm_req_send(bp, req); 4892 if (!rc) { 4893 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 4894 if (resp->flags & 4895 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 4896 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 4897 } 4898 hwrm_req_drop(bp, req); 4899 return rc; 4900 } 4901 4902 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 4903 { 4904 struct hwrm_func_drv_unrgtr_input *req; 4905 int rc; 4906 4907 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 4908 return 0; 4909 4910 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR); 4911 if (rc) 4912 return rc; 4913 return hwrm_req_send(bp, req); 4914 } 4915 4916 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 4917 { 4918 struct hwrm_tunnel_dst_port_free_input *req; 4919 int rc; 4920 4921 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN && 4922 bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID) 4923 return 0; 4924 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE && 4925 bp->nge_fw_dst_port_id == INVALID_HW_RING_ID) 4926 return 0; 4927 4928 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE); 4929 if (rc) 4930 return rc; 4931 4932 req->tunnel_type = tunnel_type; 4933 4934 switch (tunnel_type) { 4935 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 4936 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 4937 bp->vxlan_port = 0; 4938 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 4939 break; 4940 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 4941 req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 4942 bp->nge_port = 0; 4943 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 4944 break; 4945 default: 4946 break; 4947 } 4948 4949 rc = hwrm_req_send(bp, req); 4950 if (rc) 4951 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 4952 rc); 4953 return rc; 4954 } 4955 4956 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 4957 u8 tunnel_type) 4958 { 4959 struct hwrm_tunnel_dst_port_alloc_output *resp; 4960 struct hwrm_tunnel_dst_port_alloc_input *req; 4961 int rc; 4962 4963 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC); 4964 if (rc) 4965 return rc; 4966 4967 req->tunnel_type = tunnel_type; 4968 req->tunnel_dst_port_val = port; 4969 4970 resp = hwrm_req_hold(bp, req); 4971 rc = hwrm_req_send(bp, req); 4972 if (rc) { 4973 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 4974 rc); 4975 goto err_out; 4976 } 4977 4978 switch (tunnel_type) { 4979 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 4980 bp->vxlan_port = port; 4981 bp->vxlan_fw_dst_port_id = 4982 le16_to_cpu(resp->tunnel_dst_port_id); 4983 break; 4984 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 4985 bp->nge_port = port; 4986 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 4987 break; 4988 default: 4989 break; 4990 } 4991 4992 err_out: 4993 hwrm_req_drop(bp, req); 4994 return rc; 4995 } 4996 4997 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 4998 { 4999 struct hwrm_cfa_l2_set_rx_mask_input *req; 5000 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5001 int rc; 5002 5003 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK); 5004 if (rc) 5005 return rc; 5006 5007 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5008 if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) { 5009 req->num_mc_entries = cpu_to_le32(vnic->mc_list_count); 5010 req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 5011 } 5012 req->mask = cpu_to_le32(vnic->rx_mask); 5013 return hwrm_req_send_silent(bp, req); 5014 } 5015 5016 #ifdef CONFIG_RFS_ACCEL 5017 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 5018 struct bnxt_ntuple_filter *fltr) 5019 { 5020 struct hwrm_cfa_ntuple_filter_free_input *req; 5021 int rc; 5022 5023 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE); 5024 if (rc) 5025 return rc; 5026 5027 req->ntuple_filter_id = fltr->filter_id; 5028 return hwrm_req_send(bp, req); 5029 } 5030 5031 #define BNXT_NTP_FLTR_FLAGS \ 5032 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 5033 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 5034 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \ 5035 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 5036 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 5037 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 5038 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 5039 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 5040 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 5041 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 5042 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 5043 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 5044 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 5045 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 5046 5047 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 5048 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 5049 5050 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 5051 struct bnxt_ntuple_filter *fltr) 5052 { 5053 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 5054 struct hwrm_cfa_ntuple_filter_alloc_input *req; 5055 struct flow_keys *keys = &fltr->fkeys; 5056 struct bnxt_vnic_info *vnic; 5057 u32 flags = 0; 5058 int rc; 5059 5060 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC); 5061 if (rc) 5062 return rc; 5063 5064 req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx]; 5065 5066 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 5067 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 5068 req->dst_id = cpu_to_le16(fltr->rxq); 5069 } else { 5070 vnic = &bp->vnic_info[fltr->rxq + 1]; 5071 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 5072 } 5073 req->flags = cpu_to_le32(flags); 5074 req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 5075 5076 req->ethertype = htons(ETH_P_IP); 5077 memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN); 5078 req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 5079 req->ip_protocol = keys->basic.ip_proto; 5080 5081 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 5082 int i; 5083 5084 req->ethertype = htons(ETH_P_IPV6); 5085 req->ip_addr_type = 5086 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 5087 *(struct in6_addr *)&req->src_ipaddr[0] = 5088 keys->addrs.v6addrs.src; 5089 *(struct in6_addr *)&req->dst_ipaddr[0] = 5090 keys->addrs.v6addrs.dst; 5091 for (i = 0; i < 4; i++) { 5092 req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 5093 req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 5094 } 5095 } else { 5096 req->src_ipaddr[0] = keys->addrs.v4addrs.src; 5097 req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 5098 req->dst_ipaddr[0] = keys->addrs.v4addrs.dst; 5099 req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 5100 } 5101 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 5102 req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 5103 req->tunnel_type = 5104 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 5105 } 5106 5107 req->src_port = keys->ports.src; 5108 req->src_port_mask = cpu_to_be16(0xffff); 5109 req->dst_port = keys->ports.dst; 5110 req->dst_port_mask = cpu_to_be16(0xffff); 5111 5112 resp = hwrm_req_hold(bp, req); 5113 rc = hwrm_req_send(bp, req); 5114 if (!rc) 5115 fltr->filter_id = resp->ntuple_filter_id; 5116 hwrm_req_drop(bp, req); 5117 return rc; 5118 } 5119 #endif 5120 5121 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 5122 const u8 *mac_addr) 5123 { 5124 struct hwrm_cfa_l2_filter_alloc_output *resp; 5125 struct hwrm_cfa_l2_filter_alloc_input *req; 5126 int rc; 5127 5128 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC); 5129 if (rc) 5130 return rc; 5131 5132 req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 5133 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 5134 req->flags |= 5135 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 5136 req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id); 5137 req->enables = 5138 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 5139 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 5140 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 5141 memcpy(req->l2_addr, mac_addr, ETH_ALEN); 5142 req->l2_addr_mask[0] = 0xff; 5143 req->l2_addr_mask[1] = 0xff; 5144 req->l2_addr_mask[2] = 0xff; 5145 req->l2_addr_mask[3] = 0xff; 5146 req->l2_addr_mask[4] = 0xff; 5147 req->l2_addr_mask[5] = 0xff; 5148 5149 resp = hwrm_req_hold(bp, req); 5150 rc = hwrm_req_send(bp, req); 5151 if (!rc) 5152 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] = 5153 resp->l2_filter_id; 5154 hwrm_req_drop(bp, req); 5155 return rc; 5156 } 5157 5158 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 5159 { 5160 struct hwrm_cfa_l2_filter_free_input *req; 5161 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 5162 int rc; 5163 5164 /* Any associated ntuple filters will also be cleared by firmware. */ 5165 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 5166 if (rc) 5167 return rc; 5168 hwrm_req_hold(bp, req); 5169 for (i = 0; i < num_of_vnics; i++) { 5170 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 5171 5172 for (j = 0; j < vnic->uc_filter_count; j++) { 5173 req->l2_filter_id = vnic->fw_l2_filter_id[j]; 5174 5175 rc = hwrm_req_send(bp, req); 5176 } 5177 vnic->uc_filter_count = 0; 5178 } 5179 hwrm_req_drop(bp, req); 5180 return rc; 5181 } 5182 5183 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags) 5184 { 5185 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5186 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 5187 struct hwrm_vnic_tpa_cfg_input *req; 5188 int rc; 5189 5190 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 5191 return 0; 5192 5193 rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG); 5194 if (rc) 5195 return rc; 5196 5197 if (tpa_flags) { 5198 u16 mss = bp->dev->mtu - 40; 5199 u32 nsegs, n, segs = 0, flags; 5200 5201 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 5202 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 5203 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 5204 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 5205 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 5206 if (tpa_flags & BNXT_FLAG_GRO) 5207 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 5208 5209 req->flags = cpu_to_le32(flags); 5210 5211 req->enables = 5212 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 5213 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 5214 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 5215 5216 /* Number of segs are log2 units, and first packet is not 5217 * included as part of this units. 5218 */ 5219 if (mss <= BNXT_RX_PAGE_SIZE) { 5220 n = BNXT_RX_PAGE_SIZE / mss; 5221 nsegs = (MAX_SKB_FRAGS - 1) * n; 5222 } else { 5223 n = mss / BNXT_RX_PAGE_SIZE; 5224 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 5225 n++; 5226 nsegs = (MAX_SKB_FRAGS - n) / n; 5227 } 5228 5229 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5230 segs = MAX_TPA_SEGS_P5; 5231 max_aggs = bp->max_tpa; 5232 } else { 5233 segs = ilog2(nsegs); 5234 } 5235 req->max_agg_segs = cpu_to_le16(segs); 5236 req->max_aggs = cpu_to_le16(max_aggs); 5237 5238 req->min_agg_len = cpu_to_le32(512); 5239 } 5240 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5241 5242 return hwrm_req_send(bp, req); 5243 } 5244 5245 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 5246 { 5247 struct bnxt_ring_grp_info *grp_info; 5248 5249 grp_info = &bp->grp_info[ring->grp_idx]; 5250 return grp_info->cp_fw_ring_id; 5251 } 5252 5253 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 5254 { 5255 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5256 struct bnxt_napi *bnapi = rxr->bnapi; 5257 struct bnxt_cp_ring_info *cpr; 5258 5259 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL]; 5260 return cpr->cp_ring_struct.fw_ring_id; 5261 } else { 5262 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 5263 } 5264 } 5265 5266 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 5267 { 5268 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5269 struct bnxt_napi *bnapi = txr->bnapi; 5270 struct bnxt_cp_ring_info *cpr; 5271 5272 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL]; 5273 return cpr->cp_ring_struct.fw_ring_id; 5274 } else { 5275 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 5276 } 5277 } 5278 5279 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp) 5280 { 5281 int entries; 5282 5283 if (bp->flags & BNXT_FLAG_CHIP_P5) 5284 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 5285 else 5286 entries = HW_HASH_INDEX_SIZE; 5287 5288 bp->rss_indir_tbl_entries = entries; 5289 bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), 5290 GFP_KERNEL); 5291 if (!bp->rss_indir_tbl) 5292 return -ENOMEM; 5293 return 0; 5294 } 5295 5296 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp) 5297 { 5298 u16 max_rings, max_entries, pad, i; 5299 5300 if (!bp->rx_nr_rings) 5301 return; 5302 5303 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5304 max_rings = bp->rx_nr_rings - 1; 5305 else 5306 max_rings = bp->rx_nr_rings; 5307 5308 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 5309 5310 for (i = 0; i < max_entries; i++) 5311 bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 5312 5313 pad = bp->rss_indir_tbl_entries - max_entries; 5314 if (pad) 5315 memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16)); 5316 } 5317 5318 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 5319 { 5320 u16 i, tbl_size, max_ring = 0; 5321 5322 if (!bp->rss_indir_tbl) 5323 return 0; 5324 5325 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5326 for (i = 0; i < tbl_size; i++) 5327 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 5328 return max_ring; 5329 } 5330 5331 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 5332 { 5333 if (bp->flags & BNXT_FLAG_CHIP_P5) 5334 return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5); 5335 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5336 return 2; 5337 return 1; 5338 } 5339 5340 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 5341 { 5342 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 5343 u16 i, j; 5344 5345 /* Fill the RSS indirection table with ring group ids */ 5346 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 5347 if (!no_rss) 5348 j = bp->rss_indir_tbl[i]; 5349 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 5350 } 5351 } 5352 5353 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 5354 struct bnxt_vnic_info *vnic) 5355 { 5356 __le16 *ring_tbl = vnic->rss_table; 5357 struct bnxt_rx_ring_info *rxr; 5358 u16 tbl_size, i; 5359 5360 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5361 5362 for (i = 0; i < tbl_size; i++) { 5363 u16 ring_id, j; 5364 5365 j = bp->rss_indir_tbl[i]; 5366 rxr = &bp->rx_ring[j]; 5367 5368 ring_id = rxr->rx_ring_struct.fw_ring_id; 5369 *ring_tbl++ = cpu_to_le16(ring_id); 5370 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5371 *ring_tbl++ = cpu_to_le16(ring_id); 5372 } 5373 } 5374 5375 static void 5376 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req, 5377 struct bnxt_vnic_info *vnic) 5378 { 5379 if (bp->flags & BNXT_FLAG_CHIP_P5) 5380 bnxt_fill_hw_rss_tbl_p5(bp, vnic); 5381 else 5382 bnxt_fill_hw_rss_tbl(bp, vnic); 5383 5384 if (bp->rss_hash_delta) { 5385 req->hash_type = cpu_to_le32(bp->rss_hash_delta); 5386 if (bp->rss_hash_cfg & bp->rss_hash_delta) 5387 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE; 5388 else 5389 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE; 5390 } else { 5391 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 5392 } 5393 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 5394 req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 5395 req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 5396 } 5397 5398 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss) 5399 { 5400 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5401 struct hwrm_vnic_rss_cfg_input *req; 5402 int rc; 5403 5404 if ((bp->flags & BNXT_FLAG_CHIP_P5) || 5405 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 5406 return 0; 5407 5408 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 5409 if (rc) 5410 return rc; 5411 5412 if (set_rss) 5413 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 5414 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5415 return hwrm_req_send(bp, req); 5416 } 5417 5418 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss) 5419 { 5420 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5421 struct hwrm_vnic_rss_cfg_input *req; 5422 dma_addr_t ring_tbl_map; 5423 u32 i, nr_ctxs; 5424 int rc; 5425 5426 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 5427 if (rc) 5428 return rc; 5429 5430 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5431 if (!set_rss) 5432 return hwrm_req_send(bp, req); 5433 5434 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 5435 ring_tbl_map = vnic->rss_table_dma_addr; 5436 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 5437 5438 hwrm_req_hold(bp, req); 5439 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 5440 req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 5441 req->ring_table_pair_index = i; 5442 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 5443 rc = hwrm_req_send(bp, req); 5444 if (rc) 5445 goto exit; 5446 } 5447 5448 exit: 5449 hwrm_req_drop(bp, req); 5450 return rc; 5451 } 5452 5453 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp) 5454 { 5455 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 5456 struct hwrm_vnic_rss_qcfg_output *resp; 5457 struct hwrm_vnic_rss_qcfg_input *req; 5458 5459 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG)) 5460 return; 5461 5462 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5463 /* all contexts configured to same hash_type, zero always exists */ 5464 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5465 resp = hwrm_req_hold(bp, req); 5466 if (!hwrm_req_send(bp, req)) { 5467 bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg; 5468 bp->rss_hash_delta = 0; 5469 } 5470 hwrm_req_drop(bp, req); 5471 } 5472 5473 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id) 5474 { 5475 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5476 struct hwrm_vnic_plcmodes_cfg_input *req; 5477 int rc; 5478 5479 rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG); 5480 if (rc) 5481 return rc; 5482 5483 req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT); 5484 req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID); 5485 5486 if (BNXT_RX_PAGE_MODE(bp)) { 5487 req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size); 5488 } else { 5489 req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 5490 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 5491 req->enables |= 5492 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 5493 req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 5494 req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 5495 } 5496 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5497 return hwrm_req_send(bp, req); 5498 } 5499 5500 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id, 5501 u16 ctx_idx) 5502 { 5503 struct hwrm_vnic_rss_cos_lb_ctx_free_input *req; 5504 5505 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE)) 5506 return; 5507 5508 req->rss_cos_lb_ctx_id = 5509 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]); 5510 5511 hwrm_req_send(bp, req); 5512 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 5513 } 5514 5515 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 5516 { 5517 int i, j; 5518 5519 for (i = 0; i < bp->nr_vnics; i++) { 5520 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 5521 5522 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 5523 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 5524 bnxt_hwrm_vnic_ctx_free_one(bp, i, j); 5525 } 5526 } 5527 bp->rsscos_nr_ctxs = 0; 5528 } 5529 5530 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx) 5531 { 5532 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp; 5533 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req; 5534 int rc; 5535 5536 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC); 5537 if (rc) 5538 return rc; 5539 5540 resp = hwrm_req_hold(bp, req); 5541 rc = hwrm_req_send(bp, req); 5542 if (!rc) 5543 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = 5544 le16_to_cpu(resp->rss_cos_lb_ctx_id); 5545 hwrm_req_drop(bp, req); 5546 5547 return rc; 5548 } 5549 5550 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 5551 { 5552 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 5553 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 5554 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 5555 } 5556 5557 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id) 5558 { 5559 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5560 struct hwrm_vnic_cfg_input *req; 5561 unsigned int ring = 0, grp_idx; 5562 u16 def_vlan = 0; 5563 int rc; 5564 5565 rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG); 5566 if (rc) 5567 return rc; 5568 5569 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5570 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 5571 5572 req->default_rx_ring_id = 5573 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 5574 req->default_cmpl_ring_id = 5575 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 5576 req->enables = 5577 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 5578 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 5579 goto vnic_mru; 5580 } 5581 req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 5582 /* Only RSS support for now TBD: COS & LB */ 5583 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 5584 req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5585 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5586 VNIC_CFG_REQ_ENABLES_MRU); 5587 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 5588 req->rss_rule = 5589 cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]); 5590 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5591 VNIC_CFG_REQ_ENABLES_MRU); 5592 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 5593 } else { 5594 req->rss_rule = cpu_to_le16(0xffff); 5595 } 5596 5597 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 5598 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 5599 req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 5600 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 5601 } else { 5602 req->cos_rule = cpu_to_le16(0xffff); 5603 } 5604 5605 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 5606 ring = 0; 5607 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 5608 ring = vnic_id - 1; 5609 else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 5610 ring = bp->rx_nr_rings - 1; 5611 5612 grp_idx = bp->rx_ring[ring].bnapi->index; 5613 req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 5614 req->lb_rule = cpu_to_le16(0xffff); 5615 vnic_mru: 5616 req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN); 5617 5618 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5619 #ifdef CONFIG_BNXT_SRIOV 5620 if (BNXT_VF(bp)) 5621 def_vlan = bp->vf.vlan; 5622 #endif 5623 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 5624 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 5625 if (!vnic_id && bnxt_ulp_registered(bp->edev)) 5626 req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 5627 5628 return hwrm_req_send(bp, req); 5629 } 5630 5631 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id) 5632 { 5633 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) { 5634 struct hwrm_vnic_free_input *req; 5635 5636 if (hwrm_req_init(bp, req, HWRM_VNIC_FREE)) 5637 return; 5638 5639 req->vnic_id = 5640 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id); 5641 5642 hwrm_req_send(bp, req); 5643 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID; 5644 } 5645 } 5646 5647 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 5648 { 5649 u16 i; 5650 5651 for (i = 0; i < bp->nr_vnics; i++) 5652 bnxt_hwrm_vnic_free_one(bp, i); 5653 } 5654 5655 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id, 5656 unsigned int start_rx_ring_idx, 5657 unsigned int nr_rings) 5658 { 5659 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 5660 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5661 struct hwrm_vnic_alloc_output *resp; 5662 struct hwrm_vnic_alloc_input *req; 5663 int rc; 5664 5665 rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC); 5666 if (rc) 5667 return rc; 5668 5669 if (bp->flags & BNXT_FLAG_CHIP_P5) 5670 goto vnic_no_ring_grps; 5671 5672 /* map ring groups to this vnic */ 5673 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 5674 grp_idx = bp->rx_ring[i].bnapi->index; 5675 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 5676 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 5677 j, nr_rings); 5678 break; 5679 } 5680 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 5681 } 5682 5683 vnic_no_ring_grps: 5684 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 5685 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 5686 if (vnic_id == 0) 5687 req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 5688 5689 resp = hwrm_req_hold(bp, req); 5690 rc = hwrm_req_send(bp, req); 5691 if (!rc) 5692 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 5693 hwrm_req_drop(bp, req); 5694 return rc; 5695 } 5696 5697 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 5698 { 5699 struct hwrm_vnic_qcaps_output *resp; 5700 struct hwrm_vnic_qcaps_input *req; 5701 int rc; 5702 5703 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 5704 bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP); 5705 if (bp->hwrm_spec_code < 0x10600) 5706 return 0; 5707 5708 rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS); 5709 if (rc) 5710 return rc; 5711 5712 resp = hwrm_req_hold(bp, req); 5713 rc = hwrm_req_send(bp, req); 5714 if (!rc) { 5715 u32 flags = le32_to_cpu(resp->flags); 5716 5717 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 5718 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 5719 bp->flags |= BNXT_FLAG_NEW_RSS_CAP; 5720 if (flags & 5721 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 5722 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 5723 5724 /* Older P5 fw before EXT_HW_STATS support did not set 5725 * VLAN_STRIP_CAP properly. 5726 */ 5727 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 5728 (BNXT_CHIP_P5_THOR(bp) && 5729 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 5730 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 5731 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP) 5732 bp->fw_cap |= BNXT_FW_CAP_RSS_HASH_TYPE_DELTA; 5733 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 5734 if (bp->max_tpa_v2) { 5735 if (BNXT_CHIP_P5_THOR(bp)) 5736 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 5737 else 5738 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2; 5739 } 5740 } 5741 hwrm_req_drop(bp, req); 5742 return rc; 5743 } 5744 5745 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 5746 { 5747 struct hwrm_ring_grp_alloc_output *resp; 5748 struct hwrm_ring_grp_alloc_input *req; 5749 int rc; 5750 u16 i; 5751 5752 if (bp->flags & BNXT_FLAG_CHIP_P5) 5753 return 0; 5754 5755 rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC); 5756 if (rc) 5757 return rc; 5758 5759 resp = hwrm_req_hold(bp, req); 5760 for (i = 0; i < bp->rx_nr_rings; i++) { 5761 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 5762 5763 req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 5764 req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 5765 req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 5766 req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 5767 5768 rc = hwrm_req_send(bp, req); 5769 5770 if (rc) 5771 break; 5772 5773 bp->grp_info[grp_idx].fw_grp_id = 5774 le32_to_cpu(resp->ring_group_id); 5775 } 5776 hwrm_req_drop(bp, req); 5777 return rc; 5778 } 5779 5780 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 5781 { 5782 struct hwrm_ring_grp_free_input *req; 5783 u16 i; 5784 5785 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5)) 5786 return; 5787 5788 if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE)) 5789 return; 5790 5791 hwrm_req_hold(bp, req); 5792 for (i = 0; i < bp->cp_nr_rings; i++) { 5793 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 5794 continue; 5795 req->ring_group_id = 5796 cpu_to_le32(bp->grp_info[i].fw_grp_id); 5797 5798 hwrm_req_send(bp, req); 5799 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 5800 } 5801 hwrm_req_drop(bp, req); 5802 } 5803 5804 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 5805 struct bnxt_ring_struct *ring, 5806 u32 ring_type, u32 map_index) 5807 { 5808 struct hwrm_ring_alloc_output *resp; 5809 struct hwrm_ring_alloc_input *req; 5810 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 5811 struct bnxt_ring_grp_info *grp_info; 5812 int rc, err = 0; 5813 u16 ring_id; 5814 5815 rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC); 5816 if (rc) 5817 goto exit; 5818 5819 req->enables = 0; 5820 if (rmem->nr_pages > 1) { 5821 req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 5822 /* Page size is in log2 units */ 5823 req->page_size = BNXT_PAGE_SHIFT; 5824 req->page_tbl_depth = 1; 5825 } else { 5826 req->page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 5827 } 5828 req->fbo = 0; 5829 /* Association of ring index with doorbell index and MSIX number */ 5830 req->logical_id = cpu_to_le16(map_index); 5831 5832 switch (ring_type) { 5833 case HWRM_RING_ALLOC_TX: { 5834 struct bnxt_tx_ring_info *txr; 5835 5836 txr = container_of(ring, struct bnxt_tx_ring_info, 5837 tx_ring_struct); 5838 req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 5839 /* Association of transmit ring with completion ring */ 5840 grp_info = &bp->grp_info[ring->grp_idx]; 5841 req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 5842 req->length = cpu_to_le32(bp->tx_ring_mask + 1); 5843 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5844 req->queue_id = cpu_to_le16(ring->queue_id); 5845 break; 5846 } 5847 case HWRM_RING_ALLOC_RX: 5848 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5849 req->length = cpu_to_le32(bp->rx_ring_mask + 1); 5850 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5851 u16 flags = 0; 5852 5853 /* Association of rx ring with stats context */ 5854 grp_info = &bp->grp_info[ring->grp_idx]; 5855 req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 5856 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5857 req->enables |= cpu_to_le32( 5858 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5859 if (NET_IP_ALIGN == 2) 5860 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD; 5861 req->flags = cpu_to_le16(flags); 5862 } 5863 break; 5864 case HWRM_RING_ALLOC_AGG: 5865 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5866 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 5867 /* Association of agg ring with rx ring */ 5868 grp_info = &bp->grp_info[ring->grp_idx]; 5869 req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 5870 req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 5871 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5872 req->enables |= cpu_to_le32( 5873 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID | 5874 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5875 } else { 5876 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5877 } 5878 req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 5879 break; 5880 case HWRM_RING_ALLOC_CMPL: 5881 req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 5882 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 5883 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5884 /* Association of cp ring with nq */ 5885 grp_info = &bp->grp_info[map_index]; 5886 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 5887 req->cq_handle = cpu_to_le64(ring->handle); 5888 req->enables |= cpu_to_le32( 5889 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 5890 } else if (bp->flags & BNXT_FLAG_USING_MSIX) { 5891 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5892 } 5893 break; 5894 case HWRM_RING_ALLOC_NQ: 5895 req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 5896 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 5897 if (bp->flags & BNXT_FLAG_USING_MSIX) 5898 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5899 break; 5900 default: 5901 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 5902 ring_type); 5903 return -1; 5904 } 5905 5906 resp = hwrm_req_hold(bp, req); 5907 rc = hwrm_req_send(bp, req); 5908 err = le16_to_cpu(resp->error_code); 5909 ring_id = le16_to_cpu(resp->ring_id); 5910 hwrm_req_drop(bp, req); 5911 5912 exit: 5913 if (rc || err) { 5914 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 5915 ring_type, rc, err); 5916 return -EIO; 5917 } 5918 ring->fw_ring_id = ring_id; 5919 return rc; 5920 } 5921 5922 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 5923 { 5924 int rc; 5925 5926 if (BNXT_PF(bp)) { 5927 struct hwrm_func_cfg_input *req; 5928 5929 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 5930 if (rc) 5931 return rc; 5932 5933 req->fid = cpu_to_le16(0xffff); 5934 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5935 req->async_event_cr = cpu_to_le16(idx); 5936 return hwrm_req_send(bp, req); 5937 } else { 5938 struct hwrm_func_vf_cfg_input *req; 5939 5940 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); 5941 if (rc) 5942 return rc; 5943 5944 req->enables = 5945 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5946 req->async_event_cr = cpu_to_le16(idx); 5947 return hwrm_req_send(bp, req); 5948 } 5949 } 5950 5951 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 5952 u32 map_idx, u32 xid) 5953 { 5954 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5955 if (BNXT_PF(bp)) 5956 db->doorbell = bp->bar1 + DB_PF_OFFSET_P5; 5957 else 5958 db->doorbell = bp->bar1 + DB_VF_OFFSET_P5; 5959 switch (ring_type) { 5960 case HWRM_RING_ALLOC_TX: 5961 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 5962 break; 5963 case HWRM_RING_ALLOC_RX: 5964 case HWRM_RING_ALLOC_AGG: 5965 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 5966 break; 5967 case HWRM_RING_ALLOC_CMPL: 5968 db->db_key64 = DBR_PATH_L2; 5969 break; 5970 case HWRM_RING_ALLOC_NQ: 5971 db->db_key64 = DBR_PATH_L2; 5972 break; 5973 } 5974 db->db_key64 |= (u64)xid << DBR_XID_SFT; 5975 } else { 5976 db->doorbell = bp->bar1 + map_idx * 0x80; 5977 switch (ring_type) { 5978 case HWRM_RING_ALLOC_TX: 5979 db->db_key32 = DB_KEY_TX; 5980 break; 5981 case HWRM_RING_ALLOC_RX: 5982 case HWRM_RING_ALLOC_AGG: 5983 db->db_key32 = DB_KEY_RX; 5984 break; 5985 case HWRM_RING_ALLOC_CMPL: 5986 db->db_key32 = DB_KEY_CP; 5987 break; 5988 } 5989 } 5990 } 5991 5992 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 5993 { 5994 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 5995 int i, rc = 0; 5996 u32 type; 5997 5998 if (bp->flags & BNXT_FLAG_CHIP_P5) 5999 type = HWRM_RING_ALLOC_NQ; 6000 else 6001 type = HWRM_RING_ALLOC_CMPL; 6002 for (i = 0; i < bp->cp_nr_rings; i++) { 6003 struct bnxt_napi *bnapi = bp->bnapi[i]; 6004 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6005 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 6006 u32 map_idx = ring->map_idx; 6007 unsigned int vector; 6008 6009 vector = bp->irq_tbl[map_idx].vector; 6010 disable_irq_nosync(vector); 6011 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 6012 if (rc) { 6013 enable_irq(vector); 6014 goto err_out; 6015 } 6016 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 6017 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 6018 enable_irq(vector); 6019 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 6020 6021 if (!i) { 6022 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 6023 if (rc) 6024 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 6025 } 6026 } 6027 6028 type = HWRM_RING_ALLOC_TX; 6029 for (i = 0; i < bp->tx_nr_rings; i++) { 6030 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 6031 struct bnxt_ring_struct *ring; 6032 u32 map_idx; 6033 6034 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6035 struct bnxt_napi *bnapi = txr->bnapi; 6036 struct bnxt_cp_ring_info *cpr, *cpr2; 6037 u32 type2 = HWRM_RING_ALLOC_CMPL; 6038 6039 cpr = &bnapi->cp_ring; 6040 cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL]; 6041 ring = &cpr2->cp_ring_struct; 6042 ring->handle = BNXT_TX_HDL; 6043 map_idx = bnapi->index; 6044 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 6045 if (rc) 6046 goto err_out; 6047 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 6048 ring->fw_ring_id); 6049 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 6050 } 6051 ring = &txr->tx_ring_struct; 6052 map_idx = i; 6053 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 6054 if (rc) 6055 goto err_out; 6056 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id); 6057 } 6058 6059 type = HWRM_RING_ALLOC_RX; 6060 for (i = 0; i < bp->rx_nr_rings; i++) { 6061 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6062 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 6063 struct bnxt_napi *bnapi = rxr->bnapi; 6064 u32 map_idx = bnapi->index; 6065 6066 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 6067 if (rc) 6068 goto err_out; 6069 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 6070 /* If we have agg rings, post agg buffers first. */ 6071 if (!agg_rings) 6072 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 6073 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 6074 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6075 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6076 u32 type2 = HWRM_RING_ALLOC_CMPL; 6077 struct bnxt_cp_ring_info *cpr2; 6078 6079 cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL]; 6080 ring = &cpr2->cp_ring_struct; 6081 ring->handle = BNXT_RX_HDL; 6082 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 6083 if (rc) 6084 goto err_out; 6085 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 6086 ring->fw_ring_id); 6087 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 6088 } 6089 } 6090 6091 if (agg_rings) { 6092 type = HWRM_RING_ALLOC_AGG; 6093 for (i = 0; i < bp->rx_nr_rings; i++) { 6094 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6095 struct bnxt_ring_struct *ring = 6096 &rxr->rx_agg_ring_struct; 6097 u32 grp_idx = ring->grp_idx; 6098 u32 map_idx = grp_idx + bp->rx_nr_rings; 6099 6100 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 6101 if (rc) 6102 goto err_out; 6103 6104 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 6105 ring->fw_ring_id); 6106 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 6107 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 6108 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 6109 } 6110 } 6111 err_out: 6112 return rc; 6113 } 6114 6115 static int hwrm_ring_free_send_msg(struct bnxt *bp, 6116 struct bnxt_ring_struct *ring, 6117 u32 ring_type, int cmpl_ring_id) 6118 { 6119 struct hwrm_ring_free_output *resp; 6120 struct hwrm_ring_free_input *req; 6121 u16 error_code = 0; 6122 int rc; 6123 6124 if (BNXT_NO_FW_ACCESS(bp)) 6125 return 0; 6126 6127 rc = hwrm_req_init(bp, req, HWRM_RING_FREE); 6128 if (rc) 6129 goto exit; 6130 6131 req->cmpl_ring = cpu_to_le16(cmpl_ring_id); 6132 req->ring_type = ring_type; 6133 req->ring_id = cpu_to_le16(ring->fw_ring_id); 6134 6135 resp = hwrm_req_hold(bp, req); 6136 rc = hwrm_req_send(bp, req); 6137 error_code = le16_to_cpu(resp->error_code); 6138 hwrm_req_drop(bp, req); 6139 exit: 6140 if (rc || error_code) { 6141 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 6142 ring_type, rc, error_code); 6143 return -EIO; 6144 } 6145 return 0; 6146 } 6147 6148 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 6149 { 6150 u32 type; 6151 int i; 6152 6153 if (!bp->bnapi) 6154 return; 6155 6156 for (i = 0; i < bp->tx_nr_rings; i++) { 6157 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 6158 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 6159 6160 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6161 u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr); 6162 6163 hwrm_ring_free_send_msg(bp, ring, 6164 RING_FREE_REQ_RING_TYPE_TX, 6165 close_path ? cmpl_ring_id : 6166 INVALID_HW_RING_ID); 6167 ring->fw_ring_id = INVALID_HW_RING_ID; 6168 } 6169 } 6170 6171 for (i = 0; i < bp->rx_nr_rings; i++) { 6172 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6173 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 6174 u32 grp_idx = rxr->bnapi->index; 6175 6176 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6177 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6178 6179 hwrm_ring_free_send_msg(bp, ring, 6180 RING_FREE_REQ_RING_TYPE_RX, 6181 close_path ? cmpl_ring_id : 6182 INVALID_HW_RING_ID); 6183 ring->fw_ring_id = INVALID_HW_RING_ID; 6184 bp->grp_info[grp_idx].rx_fw_ring_id = 6185 INVALID_HW_RING_ID; 6186 } 6187 } 6188 6189 if (bp->flags & BNXT_FLAG_CHIP_P5) 6190 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 6191 else 6192 type = RING_FREE_REQ_RING_TYPE_RX; 6193 for (i = 0; i < bp->rx_nr_rings; i++) { 6194 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6195 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 6196 u32 grp_idx = rxr->bnapi->index; 6197 6198 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6199 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6200 6201 hwrm_ring_free_send_msg(bp, ring, type, 6202 close_path ? cmpl_ring_id : 6203 INVALID_HW_RING_ID); 6204 ring->fw_ring_id = INVALID_HW_RING_ID; 6205 bp->grp_info[grp_idx].agg_fw_ring_id = 6206 INVALID_HW_RING_ID; 6207 } 6208 } 6209 6210 /* The completion rings are about to be freed. After that the 6211 * IRQ doorbell will not work anymore. So we need to disable 6212 * IRQ here. 6213 */ 6214 bnxt_disable_int_sync(bp); 6215 6216 if (bp->flags & BNXT_FLAG_CHIP_P5) 6217 type = RING_FREE_REQ_RING_TYPE_NQ; 6218 else 6219 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 6220 for (i = 0; i < bp->cp_nr_rings; i++) { 6221 struct bnxt_napi *bnapi = bp->bnapi[i]; 6222 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6223 struct bnxt_ring_struct *ring; 6224 int j; 6225 6226 for (j = 0; j < 2; j++) { 6227 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 6228 6229 if (cpr2) { 6230 ring = &cpr2->cp_ring_struct; 6231 if (ring->fw_ring_id == INVALID_HW_RING_ID) 6232 continue; 6233 hwrm_ring_free_send_msg(bp, ring, 6234 RING_FREE_REQ_RING_TYPE_L2_CMPL, 6235 INVALID_HW_RING_ID); 6236 ring->fw_ring_id = INVALID_HW_RING_ID; 6237 } 6238 } 6239 ring = &cpr->cp_ring_struct; 6240 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6241 hwrm_ring_free_send_msg(bp, ring, type, 6242 INVALID_HW_RING_ID); 6243 ring->fw_ring_id = INVALID_HW_RING_ID; 6244 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 6245 } 6246 } 6247 } 6248 6249 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 6250 bool shared); 6251 6252 static int bnxt_hwrm_get_rings(struct bnxt *bp) 6253 { 6254 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6255 struct hwrm_func_qcfg_output *resp; 6256 struct hwrm_func_qcfg_input *req; 6257 int rc; 6258 6259 if (bp->hwrm_spec_code < 0x10601) 6260 return 0; 6261 6262 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 6263 if (rc) 6264 return rc; 6265 6266 req->fid = cpu_to_le16(0xffff); 6267 resp = hwrm_req_hold(bp, req); 6268 rc = hwrm_req_send(bp, req); 6269 if (rc) { 6270 hwrm_req_drop(bp, req); 6271 return rc; 6272 } 6273 6274 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 6275 if (BNXT_NEW_RM(bp)) { 6276 u16 cp, stats; 6277 6278 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 6279 hw_resc->resv_hw_ring_grps = 6280 le32_to_cpu(resp->alloc_hw_ring_grps); 6281 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 6282 cp = le16_to_cpu(resp->alloc_cmpl_rings); 6283 stats = le16_to_cpu(resp->alloc_stat_ctx); 6284 hw_resc->resv_irqs = cp; 6285 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6286 int rx = hw_resc->resv_rx_rings; 6287 int tx = hw_resc->resv_tx_rings; 6288 6289 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6290 rx >>= 1; 6291 if (cp < (rx + tx)) { 6292 bnxt_trim_rings(bp, &rx, &tx, cp, false); 6293 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6294 rx <<= 1; 6295 hw_resc->resv_rx_rings = rx; 6296 hw_resc->resv_tx_rings = tx; 6297 } 6298 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 6299 hw_resc->resv_hw_ring_grps = rx; 6300 } 6301 hw_resc->resv_cp_rings = cp; 6302 hw_resc->resv_stat_ctxs = stats; 6303 } 6304 hwrm_req_drop(bp, req); 6305 return 0; 6306 } 6307 6308 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 6309 { 6310 struct hwrm_func_qcfg_output *resp; 6311 struct hwrm_func_qcfg_input *req; 6312 int rc; 6313 6314 if (bp->hwrm_spec_code < 0x10601) 6315 return 0; 6316 6317 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 6318 if (rc) 6319 return rc; 6320 6321 req->fid = cpu_to_le16(fid); 6322 resp = hwrm_req_hold(bp, req); 6323 rc = hwrm_req_send(bp, req); 6324 if (!rc) 6325 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 6326 6327 hwrm_req_drop(bp, req); 6328 return rc; 6329 } 6330 6331 static bool bnxt_rfs_supported(struct bnxt *bp); 6332 6333 static struct hwrm_func_cfg_input * 6334 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6335 int ring_grps, int cp_rings, int stats, int vnics) 6336 { 6337 struct hwrm_func_cfg_input *req; 6338 u32 enables = 0; 6339 6340 if (bnxt_hwrm_func_cfg_short_req_init(bp, &req)) 6341 return NULL; 6342 6343 req->fid = cpu_to_le16(0xffff); 6344 enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6345 req->num_tx_rings = cpu_to_le16(tx_rings); 6346 if (BNXT_NEW_RM(bp)) { 6347 enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 6348 enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6349 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6350 enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 6351 enables |= tx_rings + ring_grps ? 6352 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6353 enables |= rx_rings ? 6354 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6355 } else { 6356 enables |= cp_rings ? 6357 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6358 enables |= ring_grps ? 6359 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS | 6360 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6361 } 6362 enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 6363 6364 req->num_rx_rings = cpu_to_le16(rx_rings); 6365 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6366 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6367 req->num_msix = cpu_to_le16(cp_rings); 6368 req->num_rsscos_ctxs = 6369 cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6370 } else { 6371 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6372 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6373 req->num_rsscos_ctxs = cpu_to_le16(1); 6374 if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 6375 bnxt_rfs_supported(bp)) 6376 req->num_rsscos_ctxs = 6377 cpu_to_le16(ring_grps + 1); 6378 } 6379 req->num_stat_ctxs = cpu_to_le16(stats); 6380 req->num_vnics = cpu_to_le16(vnics); 6381 } 6382 req->enables = cpu_to_le32(enables); 6383 return req; 6384 } 6385 6386 static struct hwrm_func_vf_cfg_input * 6387 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6388 int ring_grps, int cp_rings, int stats, int vnics) 6389 { 6390 struct hwrm_func_vf_cfg_input *req; 6391 u32 enables = 0; 6392 6393 if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG)) 6394 return NULL; 6395 6396 enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6397 enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 6398 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6399 enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6400 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6401 enables |= tx_rings + ring_grps ? 6402 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6403 } else { 6404 enables |= cp_rings ? 6405 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6406 enables |= ring_grps ? 6407 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 6408 } 6409 enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 6410 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 6411 6412 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 6413 req->num_tx_rings = cpu_to_le16(tx_rings); 6414 req->num_rx_rings = cpu_to_le16(rx_rings); 6415 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6416 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6417 req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6418 } else { 6419 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6420 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6421 req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX); 6422 } 6423 req->num_stat_ctxs = cpu_to_le16(stats); 6424 req->num_vnics = cpu_to_le16(vnics); 6425 6426 req->enables = cpu_to_le32(enables); 6427 return req; 6428 } 6429 6430 static int 6431 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6432 int ring_grps, int cp_rings, int stats, int vnics) 6433 { 6434 struct hwrm_func_cfg_input *req; 6435 int rc; 6436 6437 req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps, 6438 cp_rings, stats, vnics); 6439 if (!req) 6440 return -ENOMEM; 6441 6442 if (!req->enables) { 6443 hwrm_req_drop(bp, req); 6444 return 0; 6445 } 6446 6447 rc = hwrm_req_send(bp, req); 6448 if (rc) 6449 return rc; 6450 6451 if (bp->hwrm_spec_code < 0x10601) 6452 bp->hw_resc.resv_tx_rings = tx_rings; 6453 6454 return bnxt_hwrm_get_rings(bp); 6455 } 6456 6457 static int 6458 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6459 int ring_grps, int cp_rings, int stats, int vnics) 6460 { 6461 struct hwrm_func_vf_cfg_input *req; 6462 int rc; 6463 6464 if (!BNXT_NEW_RM(bp)) { 6465 bp->hw_resc.resv_tx_rings = tx_rings; 6466 return 0; 6467 } 6468 6469 req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6470 cp_rings, stats, vnics); 6471 if (!req) 6472 return -ENOMEM; 6473 6474 rc = hwrm_req_send(bp, req); 6475 if (rc) 6476 return rc; 6477 6478 return bnxt_hwrm_get_rings(bp); 6479 } 6480 6481 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp, 6482 int cp, int stat, int vnic) 6483 { 6484 if (BNXT_PF(bp)) 6485 return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat, 6486 vnic); 6487 else 6488 return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat, 6489 vnic); 6490 } 6491 6492 int bnxt_nq_rings_in_use(struct bnxt *bp) 6493 { 6494 int cp = bp->cp_nr_rings; 6495 int ulp_msix, ulp_base; 6496 6497 ulp_msix = bnxt_get_ulp_msix_num(bp); 6498 if (ulp_msix) { 6499 ulp_base = bnxt_get_ulp_msix_base(bp); 6500 cp += ulp_msix; 6501 if ((ulp_base + ulp_msix) > cp) 6502 cp = ulp_base + ulp_msix; 6503 } 6504 return cp; 6505 } 6506 6507 static int bnxt_cp_rings_in_use(struct bnxt *bp) 6508 { 6509 int cp; 6510 6511 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6512 return bnxt_nq_rings_in_use(bp); 6513 6514 cp = bp->tx_nr_rings + bp->rx_nr_rings; 6515 return cp; 6516 } 6517 6518 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 6519 { 6520 int ulp_stat = bnxt_get_ulp_stat_ctxs(bp); 6521 int cp = bp->cp_nr_rings; 6522 6523 if (!ulp_stat) 6524 return cp; 6525 6526 if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp)) 6527 return bnxt_get_ulp_msix_base(bp) + ulp_stat; 6528 6529 return cp + ulp_stat; 6530 } 6531 6532 /* Check if a default RSS map needs to be setup. This function is only 6533 * used on older firmware that does not require reserving RX rings. 6534 */ 6535 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 6536 { 6537 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6538 6539 /* The RSS map is valid for RX rings set to resv_rx_rings */ 6540 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 6541 hw_resc->resv_rx_rings = bp->rx_nr_rings; 6542 if (!netif_is_rxfh_configured(bp->dev)) 6543 bnxt_set_dflt_rss_indir_tbl(bp); 6544 } 6545 } 6546 6547 static bool bnxt_need_reserve_rings(struct bnxt *bp) 6548 { 6549 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6550 int cp = bnxt_cp_rings_in_use(bp); 6551 int nq = bnxt_nq_rings_in_use(bp); 6552 int rx = bp->rx_nr_rings, stat; 6553 int vnic = 1, grp = rx; 6554 6555 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 6556 bp->hwrm_spec_code >= 0x10601) 6557 return true; 6558 6559 /* Old firmware does not need RX ring reservations but we still 6560 * need to setup a default RSS map when needed. With new firmware 6561 * we go through RX ring reservations first and then set up the 6562 * RSS map for the successfully reserved RX rings when needed. 6563 */ 6564 if (!BNXT_NEW_RM(bp)) { 6565 bnxt_check_rss_tbl_no_rmgr(bp); 6566 return false; 6567 } 6568 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6569 vnic = rx + 1; 6570 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6571 rx <<= 1; 6572 stat = bnxt_get_func_stat_ctxs(bp); 6573 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 6574 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 6575 (hw_resc->resv_hw_ring_grps != grp && 6576 !(bp->flags & BNXT_FLAG_CHIP_P5))) 6577 return true; 6578 if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) && 6579 hw_resc->resv_irqs != nq) 6580 return true; 6581 return false; 6582 } 6583 6584 static int __bnxt_reserve_rings(struct bnxt *bp) 6585 { 6586 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6587 int cp = bnxt_nq_rings_in_use(bp); 6588 int tx = bp->tx_nr_rings; 6589 int rx = bp->rx_nr_rings; 6590 int grp, rx_rings, rc; 6591 int vnic = 1, stat; 6592 bool sh = false; 6593 6594 if (!bnxt_need_reserve_rings(bp)) 6595 return 0; 6596 6597 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 6598 sh = true; 6599 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6600 vnic = rx + 1; 6601 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6602 rx <<= 1; 6603 grp = bp->rx_nr_rings; 6604 stat = bnxt_get_func_stat_ctxs(bp); 6605 6606 rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic); 6607 if (rc) 6608 return rc; 6609 6610 tx = hw_resc->resv_tx_rings; 6611 if (BNXT_NEW_RM(bp)) { 6612 rx = hw_resc->resv_rx_rings; 6613 cp = hw_resc->resv_irqs; 6614 grp = hw_resc->resv_hw_ring_grps; 6615 vnic = hw_resc->resv_vnics; 6616 stat = hw_resc->resv_stat_ctxs; 6617 } 6618 6619 rx_rings = rx; 6620 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 6621 if (rx >= 2) { 6622 rx_rings = rx >> 1; 6623 } else { 6624 if (netif_running(bp->dev)) 6625 return -ENOMEM; 6626 6627 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 6628 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 6629 bp->dev->hw_features &= ~NETIF_F_LRO; 6630 bp->dev->features &= ~NETIF_F_LRO; 6631 bnxt_set_ring_params(bp); 6632 } 6633 } 6634 rx_rings = min_t(int, rx_rings, grp); 6635 cp = min_t(int, cp, bp->cp_nr_rings); 6636 if (stat > bnxt_get_ulp_stat_ctxs(bp)) 6637 stat -= bnxt_get_ulp_stat_ctxs(bp); 6638 cp = min_t(int, cp, stat); 6639 rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh); 6640 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6641 rx = rx_rings << 1; 6642 cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings; 6643 bp->tx_nr_rings = tx; 6644 6645 /* If we cannot reserve all the RX rings, reset the RSS map only 6646 * if absolutely necessary 6647 */ 6648 if (rx_rings != bp->rx_nr_rings) { 6649 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 6650 rx_rings, bp->rx_nr_rings); 6651 if (netif_is_rxfh_configured(bp->dev) && 6652 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 6653 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 6654 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 6655 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 6656 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 6657 } 6658 } 6659 bp->rx_nr_rings = rx_rings; 6660 bp->cp_nr_rings = cp; 6661 6662 if (!tx || !rx || !cp || !grp || !vnic || !stat) 6663 return -ENOMEM; 6664 6665 if (!netif_is_rxfh_configured(bp->dev)) 6666 bnxt_set_dflt_rss_indir_tbl(bp); 6667 6668 return rc; 6669 } 6670 6671 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6672 int ring_grps, int cp_rings, int stats, 6673 int vnics) 6674 { 6675 struct hwrm_func_vf_cfg_input *req; 6676 u32 flags; 6677 6678 if (!BNXT_NEW_RM(bp)) 6679 return 0; 6680 6681 req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6682 cp_rings, stats, vnics); 6683 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 6684 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6685 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6686 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6687 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 6688 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 6689 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6690 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6691 6692 req->flags = cpu_to_le32(flags); 6693 return hwrm_req_send_silent(bp, req); 6694 } 6695 6696 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6697 int ring_grps, int cp_rings, int stats, 6698 int vnics) 6699 { 6700 struct hwrm_func_cfg_input *req; 6701 u32 flags; 6702 6703 req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps, 6704 cp_rings, stats, vnics); 6705 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 6706 if (BNXT_NEW_RM(bp)) { 6707 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6708 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6709 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6710 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 6711 if (bp->flags & BNXT_FLAG_CHIP_P5) 6712 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 6713 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 6714 else 6715 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6716 } 6717 6718 req->flags = cpu_to_le32(flags); 6719 return hwrm_req_send_silent(bp, req); 6720 } 6721 6722 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6723 int ring_grps, int cp_rings, int stats, 6724 int vnics) 6725 { 6726 if (bp->hwrm_spec_code < 0x10801) 6727 return 0; 6728 6729 if (BNXT_PF(bp)) 6730 return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings, 6731 ring_grps, cp_rings, stats, 6732 vnics); 6733 6734 return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6735 cp_rings, stats, vnics); 6736 } 6737 6738 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 6739 { 6740 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6741 struct hwrm_ring_aggint_qcaps_output *resp; 6742 struct hwrm_ring_aggint_qcaps_input *req; 6743 int rc; 6744 6745 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 6746 coal_cap->num_cmpl_dma_aggr_max = 63; 6747 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 6748 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 6749 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 6750 coal_cap->int_lat_tmr_min_max = 65535; 6751 coal_cap->int_lat_tmr_max_max = 65535; 6752 coal_cap->num_cmpl_aggr_int_max = 65535; 6753 coal_cap->timer_units = 80; 6754 6755 if (bp->hwrm_spec_code < 0x10902) 6756 return; 6757 6758 if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS)) 6759 return; 6760 6761 resp = hwrm_req_hold(bp, req); 6762 rc = hwrm_req_send_silent(bp, req); 6763 if (!rc) { 6764 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 6765 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 6766 coal_cap->num_cmpl_dma_aggr_max = 6767 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 6768 coal_cap->num_cmpl_dma_aggr_during_int_max = 6769 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 6770 coal_cap->cmpl_aggr_dma_tmr_max = 6771 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 6772 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 6773 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 6774 coal_cap->int_lat_tmr_min_max = 6775 le16_to_cpu(resp->int_lat_tmr_min_max); 6776 coal_cap->int_lat_tmr_max_max = 6777 le16_to_cpu(resp->int_lat_tmr_max_max); 6778 coal_cap->num_cmpl_aggr_int_max = 6779 le16_to_cpu(resp->num_cmpl_aggr_int_max); 6780 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 6781 } 6782 hwrm_req_drop(bp, req); 6783 } 6784 6785 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 6786 { 6787 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6788 6789 return usec * 1000 / coal_cap->timer_units; 6790 } 6791 6792 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 6793 struct bnxt_coal *hw_coal, 6794 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 6795 { 6796 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6797 u16 val, tmr, max, flags = hw_coal->flags; 6798 u32 cmpl_params = coal_cap->cmpl_params; 6799 6800 max = hw_coal->bufs_per_record * 128; 6801 if (hw_coal->budget) 6802 max = hw_coal->bufs_per_record * hw_coal->budget; 6803 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 6804 6805 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 6806 req->num_cmpl_aggr_int = cpu_to_le16(val); 6807 6808 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 6809 req->num_cmpl_dma_aggr = cpu_to_le16(val); 6810 6811 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 6812 coal_cap->num_cmpl_dma_aggr_during_int_max); 6813 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 6814 6815 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 6816 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 6817 req->int_lat_tmr_max = cpu_to_le16(tmr); 6818 6819 /* min timer set to 1/2 of interrupt timer */ 6820 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 6821 val = tmr / 2; 6822 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 6823 req->int_lat_tmr_min = cpu_to_le16(val); 6824 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6825 } 6826 6827 /* buf timer set to 1/4 of interrupt timer */ 6828 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 6829 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 6830 6831 if (cmpl_params & 6832 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 6833 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 6834 val = clamp_t(u16, tmr, 1, 6835 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 6836 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 6837 req->enables |= 6838 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 6839 } 6840 6841 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 6842 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 6843 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 6844 req->flags = cpu_to_le16(flags); 6845 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 6846 } 6847 6848 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 6849 struct bnxt_coal *hw_coal) 6850 { 6851 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req; 6852 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6853 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6854 u32 nq_params = coal_cap->nq_params; 6855 u16 tmr; 6856 int rc; 6857 6858 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 6859 return 0; 6860 6861 rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6862 if (rc) 6863 return rc; 6864 6865 req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 6866 req->flags = 6867 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 6868 6869 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 6870 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 6871 req->int_lat_tmr_min = cpu_to_le16(tmr); 6872 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6873 return hwrm_req_send(bp, req); 6874 } 6875 6876 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 6877 { 6878 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx; 6879 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6880 struct bnxt_coal coal; 6881 int rc; 6882 6883 /* Tick values in micro seconds. 6884 * 1 coal_buf x bufs_per_record = 1 completion record. 6885 */ 6886 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 6887 6888 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 6889 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 6890 6891 if (!bnapi->rx_ring) 6892 return -ENODEV; 6893 6894 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6895 if (rc) 6896 return rc; 6897 6898 bnxt_hwrm_set_coal_params(bp, &coal, req_rx); 6899 6900 req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 6901 6902 return hwrm_req_send(bp, req_rx); 6903 } 6904 6905 int bnxt_hwrm_set_coal(struct bnxt *bp) 6906 { 6907 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx, 6908 *req; 6909 int i, rc; 6910 6911 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6912 if (rc) 6913 return rc; 6914 6915 rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6916 if (rc) { 6917 hwrm_req_drop(bp, req_rx); 6918 return rc; 6919 } 6920 6921 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx); 6922 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx); 6923 6924 hwrm_req_hold(bp, req_rx); 6925 hwrm_req_hold(bp, req_tx); 6926 for (i = 0; i < bp->cp_nr_rings; i++) { 6927 struct bnxt_napi *bnapi = bp->bnapi[i]; 6928 struct bnxt_coal *hw_coal; 6929 u16 ring_id; 6930 6931 req = req_rx; 6932 if (!bnapi->rx_ring) { 6933 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6934 req = req_tx; 6935 } else { 6936 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 6937 } 6938 req->ring_id = cpu_to_le16(ring_id); 6939 6940 rc = hwrm_req_send(bp, req); 6941 if (rc) 6942 break; 6943 6944 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6945 continue; 6946 6947 if (bnapi->rx_ring && bnapi->tx_ring) { 6948 req = req_tx; 6949 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6950 req->ring_id = cpu_to_le16(ring_id); 6951 rc = hwrm_req_send(bp, req); 6952 if (rc) 6953 break; 6954 } 6955 if (bnapi->rx_ring) 6956 hw_coal = &bp->rx_coal; 6957 else 6958 hw_coal = &bp->tx_coal; 6959 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 6960 } 6961 hwrm_req_drop(bp, req_rx); 6962 hwrm_req_drop(bp, req_tx); 6963 return rc; 6964 } 6965 6966 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 6967 { 6968 struct hwrm_stat_ctx_clr_stats_input *req0 = NULL; 6969 struct hwrm_stat_ctx_free_input *req; 6970 int i; 6971 6972 if (!bp->bnapi) 6973 return; 6974 6975 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6976 return; 6977 6978 if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE)) 6979 return; 6980 if (BNXT_FW_MAJ(bp) <= 20) { 6981 if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) { 6982 hwrm_req_drop(bp, req); 6983 return; 6984 } 6985 hwrm_req_hold(bp, req0); 6986 } 6987 hwrm_req_hold(bp, req); 6988 for (i = 0; i < bp->cp_nr_rings; i++) { 6989 struct bnxt_napi *bnapi = bp->bnapi[i]; 6990 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6991 6992 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 6993 req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 6994 if (req0) { 6995 req0->stat_ctx_id = req->stat_ctx_id; 6996 hwrm_req_send(bp, req0); 6997 } 6998 hwrm_req_send(bp, req); 6999 7000 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 7001 } 7002 } 7003 hwrm_req_drop(bp, req); 7004 if (req0) 7005 hwrm_req_drop(bp, req0); 7006 } 7007 7008 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 7009 { 7010 struct hwrm_stat_ctx_alloc_output *resp; 7011 struct hwrm_stat_ctx_alloc_input *req; 7012 int rc, i; 7013 7014 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 7015 return 0; 7016 7017 rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC); 7018 if (rc) 7019 return rc; 7020 7021 req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 7022 req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 7023 7024 resp = hwrm_req_hold(bp, req); 7025 for (i = 0; i < bp->cp_nr_rings; i++) { 7026 struct bnxt_napi *bnapi = bp->bnapi[i]; 7027 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7028 7029 req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 7030 7031 rc = hwrm_req_send(bp, req); 7032 if (rc) 7033 break; 7034 7035 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 7036 7037 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 7038 } 7039 hwrm_req_drop(bp, req); 7040 return rc; 7041 } 7042 7043 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 7044 { 7045 struct hwrm_func_qcfg_output *resp; 7046 struct hwrm_func_qcfg_input *req; 7047 u32 min_db_offset = 0; 7048 u16 flags; 7049 int rc; 7050 7051 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7052 if (rc) 7053 return rc; 7054 7055 req->fid = cpu_to_le16(0xffff); 7056 resp = hwrm_req_hold(bp, req); 7057 rc = hwrm_req_send(bp, req); 7058 if (rc) 7059 goto func_qcfg_exit; 7060 7061 #ifdef CONFIG_BNXT_SRIOV 7062 if (BNXT_VF(bp)) { 7063 struct bnxt_vf_info *vf = &bp->vf; 7064 7065 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 7066 } else { 7067 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 7068 } 7069 #endif 7070 flags = le16_to_cpu(resp->flags); 7071 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 7072 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 7073 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 7074 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 7075 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 7076 } 7077 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 7078 bp->flags |= BNXT_FLAG_MULTI_HOST; 7079 7080 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 7081 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 7082 7083 switch (resp->port_partition_type) { 7084 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 7085 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 7086 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 7087 bp->port_partition_type = resp->port_partition_type; 7088 break; 7089 } 7090 if (bp->hwrm_spec_code < 0x10707 || 7091 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 7092 bp->br_mode = BRIDGE_MODE_VEB; 7093 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 7094 bp->br_mode = BRIDGE_MODE_VEPA; 7095 else 7096 bp->br_mode = BRIDGE_MODE_UNDEF; 7097 7098 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 7099 if (!bp->max_mtu) 7100 bp->max_mtu = BNXT_MAX_MTU; 7101 7102 if (bp->db_size) 7103 goto func_qcfg_exit; 7104 7105 if (bp->flags & BNXT_FLAG_CHIP_P5) { 7106 if (BNXT_PF(bp)) 7107 min_db_offset = DB_PF_OFFSET_P5; 7108 else 7109 min_db_offset = DB_VF_OFFSET_P5; 7110 } 7111 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 7112 1024); 7113 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 7114 bp->db_size <= min_db_offset) 7115 bp->db_size = pci_resource_len(bp->pdev, 2); 7116 7117 func_qcfg_exit: 7118 hwrm_req_drop(bp, req); 7119 return rc; 7120 } 7121 7122 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx, 7123 struct hwrm_func_backing_store_qcaps_output *resp) 7124 { 7125 struct bnxt_mem_init *mem_init; 7126 u16 init_mask; 7127 u8 init_val; 7128 u8 *offset; 7129 int i; 7130 7131 init_val = resp->ctx_kind_initializer; 7132 init_mask = le16_to_cpu(resp->ctx_init_mask); 7133 offset = &resp->qp_init_offset; 7134 mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; 7135 for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) { 7136 mem_init->init_val = init_val; 7137 mem_init->offset = BNXT_MEM_INVALID_OFFSET; 7138 if (!init_mask) 7139 continue; 7140 if (i == BNXT_CTX_MEM_INIT_STAT) 7141 offset = &resp->stat_init_offset; 7142 if (init_mask & (1 << i)) 7143 mem_init->offset = *offset * 4; 7144 else 7145 mem_init->init_val = 0; 7146 } 7147 ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size; 7148 ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size; 7149 ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size; 7150 ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size; 7151 ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size; 7152 ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size; 7153 } 7154 7155 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 7156 { 7157 struct hwrm_func_backing_store_qcaps_output *resp; 7158 struct hwrm_func_backing_store_qcaps_input *req; 7159 int rc; 7160 7161 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx) 7162 return 0; 7163 7164 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS); 7165 if (rc) 7166 return rc; 7167 7168 resp = hwrm_req_hold(bp, req); 7169 rc = hwrm_req_send_silent(bp, req); 7170 if (!rc) { 7171 struct bnxt_ctx_pg_info *ctx_pg; 7172 struct bnxt_ctx_mem_info *ctx; 7173 int i, tqm_rings; 7174 7175 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 7176 if (!ctx) { 7177 rc = -ENOMEM; 7178 goto ctx_err; 7179 } 7180 ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries); 7181 ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 7182 ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 7183 ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size); 7184 ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 7185 ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries); 7186 ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size); 7187 ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 7188 ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries); 7189 ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size); 7190 ctx->vnic_max_vnic_entries = 7191 le16_to_cpu(resp->vnic_max_vnic_entries); 7192 ctx->vnic_max_ring_table_entries = 7193 le16_to_cpu(resp->vnic_max_ring_table_entries); 7194 ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size); 7195 ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries); 7196 ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size); 7197 ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size); 7198 ctx->tqm_min_entries_per_ring = 7199 le32_to_cpu(resp->tqm_min_entries_per_ring); 7200 ctx->tqm_max_entries_per_ring = 7201 le32_to_cpu(resp->tqm_max_entries_per_ring); 7202 ctx->tqm_entries_multiple = resp->tqm_entries_multiple; 7203 if (!ctx->tqm_entries_multiple) 7204 ctx->tqm_entries_multiple = 1; 7205 ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries); 7206 ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size); 7207 ctx->mrav_num_entries_units = 7208 le16_to_cpu(resp->mrav_num_entries_units); 7209 ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size); 7210 ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries); 7211 7212 bnxt_init_ctx_initializer(ctx, resp); 7213 7214 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 7215 if (!ctx->tqm_fp_rings_count) 7216 ctx->tqm_fp_rings_count = bp->max_q; 7217 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 7218 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 7219 7220 tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS; 7221 ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL); 7222 if (!ctx_pg) { 7223 kfree(ctx); 7224 rc = -ENOMEM; 7225 goto ctx_err; 7226 } 7227 for (i = 0; i < tqm_rings; i++, ctx_pg++) 7228 ctx->tqm_mem[i] = ctx_pg; 7229 bp->ctx = ctx; 7230 } else { 7231 rc = 0; 7232 } 7233 ctx_err: 7234 hwrm_req_drop(bp, req); 7235 return rc; 7236 } 7237 7238 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 7239 __le64 *pg_dir) 7240 { 7241 if (!rmem->nr_pages) 7242 return; 7243 7244 BNXT_SET_CTX_PAGE_ATTR(*pg_attr); 7245 if (rmem->depth >= 1) { 7246 if (rmem->depth == 2) 7247 *pg_attr |= 2; 7248 else 7249 *pg_attr |= 1; 7250 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 7251 } else { 7252 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 7253 } 7254 } 7255 7256 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 7257 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 7258 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 7259 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 7260 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 7261 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 7262 7263 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 7264 { 7265 struct hwrm_func_backing_store_cfg_input *req; 7266 struct bnxt_ctx_mem_info *ctx = bp->ctx; 7267 struct bnxt_ctx_pg_info *ctx_pg; 7268 void **__req = (void **)&req; 7269 u32 req_len = sizeof(*req); 7270 __le32 *num_entries; 7271 __le64 *pg_dir; 7272 u32 flags = 0; 7273 u8 *pg_attr; 7274 u32 ena; 7275 int rc; 7276 int i; 7277 7278 if (!ctx) 7279 return 0; 7280 7281 if (req_len > bp->hwrm_max_ext_req_len) 7282 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 7283 rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len); 7284 if (rc) 7285 return rc; 7286 7287 req->enables = cpu_to_le32(enables); 7288 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 7289 ctx_pg = &ctx->qp_mem; 7290 req->qp_num_entries = cpu_to_le32(ctx_pg->entries); 7291 req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries); 7292 req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries); 7293 req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size); 7294 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7295 &req->qpc_pg_size_qpc_lvl, 7296 &req->qpc_page_dir); 7297 } 7298 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 7299 ctx_pg = &ctx->srq_mem; 7300 req->srq_num_entries = cpu_to_le32(ctx_pg->entries); 7301 req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries); 7302 req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size); 7303 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7304 &req->srq_pg_size_srq_lvl, 7305 &req->srq_page_dir); 7306 } 7307 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 7308 ctx_pg = &ctx->cq_mem; 7309 req->cq_num_entries = cpu_to_le32(ctx_pg->entries); 7310 req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries); 7311 req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size); 7312 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7313 &req->cq_pg_size_cq_lvl, 7314 &req->cq_page_dir); 7315 } 7316 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 7317 ctx_pg = &ctx->vnic_mem; 7318 req->vnic_num_vnic_entries = 7319 cpu_to_le16(ctx->vnic_max_vnic_entries); 7320 req->vnic_num_ring_table_entries = 7321 cpu_to_le16(ctx->vnic_max_ring_table_entries); 7322 req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size); 7323 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7324 &req->vnic_pg_size_vnic_lvl, 7325 &req->vnic_page_dir); 7326 } 7327 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 7328 ctx_pg = &ctx->stat_mem; 7329 req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries); 7330 req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size); 7331 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7332 &req->stat_pg_size_stat_lvl, 7333 &req->stat_page_dir); 7334 } 7335 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 7336 ctx_pg = &ctx->mrav_mem; 7337 req->mrav_num_entries = cpu_to_le32(ctx_pg->entries); 7338 if (ctx->mrav_num_entries_units) 7339 flags |= 7340 FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 7341 req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size); 7342 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7343 &req->mrav_pg_size_mrav_lvl, 7344 &req->mrav_page_dir); 7345 } 7346 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 7347 ctx_pg = &ctx->tim_mem; 7348 req->tim_num_entries = cpu_to_le32(ctx_pg->entries); 7349 req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size); 7350 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7351 &req->tim_pg_size_tim_lvl, 7352 &req->tim_page_dir); 7353 } 7354 for (i = 0, num_entries = &req->tqm_sp_num_entries, 7355 pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl, 7356 pg_dir = &req->tqm_sp_page_dir, 7357 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP; 7358 i < BNXT_MAX_TQM_RINGS; 7359 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 7360 if (!(enables & ena)) 7361 continue; 7362 7363 req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size); 7364 ctx_pg = ctx->tqm_mem[i]; 7365 *num_entries = cpu_to_le32(ctx_pg->entries); 7366 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 7367 } 7368 req->flags = cpu_to_le32(flags); 7369 return hwrm_req_send(bp, req); 7370 } 7371 7372 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 7373 struct bnxt_ctx_pg_info *ctx_pg) 7374 { 7375 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7376 7377 rmem->page_size = BNXT_PAGE_SIZE; 7378 rmem->pg_arr = ctx_pg->ctx_pg_arr; 7379 rmem->dma_arr = ctx_pg->ctx_dma_arr; 7380 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 7381 if (rmem->depth >= 1) 7382 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 7383 return bnxt_alloc_ring(bp, rmem); 7384 } 7385 7386 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 7387 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 7388 u8 depth, struct bnxt_mem_init *mem_init) 7389 { 7390 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7391 int rc; 7392 7393 if (!mem_size) 7394 return -EINVAL; 7395 7396 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7397 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 7398 ctx_pg->nr_pages = 0; 7399 return -EINVAL; 7400 } 7401 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 7402 int nr_tbls, i; 7403 7404 rmem->depth = 2; 7405 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 7406 GFP_KERNEL); 7407 if (!ctx_pg->ctx_pg_tbl) 7408 return -ENOMEM; 7409 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 7410 rmem->nr_pages = nr_tbls; 7411 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7412 if (rc) 7413 return rc; 7414 for (i = 0; i < nr_tbls; i++) { 7415 struct bnxt_ctx_pg_info *pg_tbl; 7416 7417 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 7418 if (!pg_tbl) 7419 return -ENOMEM; 7420 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 7421 rmem = &pg_tbl->ring_mem; 7422 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 7423 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 7424 rmem->depth = 1; 7425 rmem->nr_pages = MAX_CTX_PAGES; 7426 rmem->mem_init = mem_init; 7427 if (i == (nr_tbls - 1)) { 7428 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 7429 7430 if (rem) 7431 rmem->nr_pages = rem; 7432 } 7433 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 7434 if (rc) 7435 break; 7436 } 7437 } else { 7438 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7439 if (rmem->nr_pages > 1 || depth) 7440 rmem->depth = 1; 7441 rmem->mem_init = mem_init; 7442 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7443 } 7444 return rc; 7445 } 7446 7447 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 7448 struct bnxt_ctx_pg_info *ctx_pg) 7449 { 7450 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7451 7452 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 7453 ctx_pg->ctx_pg_tbl) { 7454 int i, nr_tbls = rmem->nr_pages; 7455 7456 for (i = 0; i < nr_tbls; i++) { 7457 struct bnxt_ctx_pg_info *pg_tbl; 7458 struct bnxt_ring_mem_info *rmem2; 7459 7460 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 7461 if (!pg_tbl) 7462 continue; 7463 rmem2 = &pg_tbl->ring_mem; 7464 bnxt_free_ring(bp, rmem2); 7465 ctx_pg->ctx_pg_arr[i] = NULL; 7466 kfree(pg_tbl); 7467 ctx_pg->ctx_pg_tbl[i] = NULL; 7468 } 7469 kfree(ctx_pg->ctx_pg_tbl); 7470 ctx_pg->ctx_pg_tbl = NULL; 7471 } 7472 bnxt_free_ring(bp, rmem); 7473 ctx_pg->nr_pages = 0; 7474 } 7475 7476 void bnxt_free_ctx_mem(struct bnxt *bp) 7477 { 7478 struct bnxt_ctx_mem_info *ctx = bp->ctx; 7479 int i; 7480 7481 if (!ctx) 7482 return; 7483 7484 if (ctx->tqm_mem[0]) { 7485 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 7486 bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]); 7487 kfree(ctx->tqm_mem[0]); 7488 ctx->tqm_mem[0] = NULL; 7489 } 7490 7491 bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem); 7492 bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem); 7493 bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem); 7494 bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem); 7495 bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem); 7496 bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem); 7497 bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem); 7498 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 7499 } 7500 7501 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 7502 { 7503 struct bnxt_ctx_pg_info *ctx_pg; 7504 struct bnxt_ctx_mem_info *ctx; 7505 struct bnxt_mem_init *init; 7506 u32 mem_size, ena, entries; 7507 u32 entries_sp, min; 7508 u32 num_mr, num_ah; 7509 u32 extra_srqs = 0; 7510 u32 extra_qps = 0; 7511 u8 pg_lvl = 1; 7512 int i, rc; 7513 7514 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 7515 if (rc) { 7516 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 7517 rc); 7518 return rc; 7519 } 7520 ctx = bp->ctx; 7521 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 7522 return 0; 7523 7524 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 7525 pg_lvl = 2; 7526 extra_qps = 65536; 7527 extra_srqs = 8192; 7528 } 7529 7530 ctx_pg = &ctx->qp_mem; 7531 ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries + 7532 extra_qps; 7533 if (ctx->qp_entry_size) { 7534 mem_size = ctx->qp_entry_size * ctx_pg->entries; 7535 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; 7536 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7537 if (rc) 7538 return rc; 7539 } 7540 7541 ctx_pg = &ctx->srq_mem; 7542 ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs; 7543 if (ctx->srq_entry_size) { 7544 mem_size = ctx->srq_entry_size * ctx_pg->entries; 7545 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ]; 7546 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7547 if (rc) 7548 return rc; 7549 } 7550 7551 ctx_pg = &ctx->cq_mem; 7552 ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2; 7553 if (ctx->cq_entry_size) { 7554 mem_size = ctx->cq_entry_size * ctx_pg->entries; 7555 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ]; 7556 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7557 if (rc) 7558 return rc; 7559 } 7560 7561 ctx_pg = &ctx->vnic_mem; 7562 ctx_pg->entries = ctx->vnic_max_vnic_entries + 7563 ctx->vnic_max_ring_table_entries; 7564 if (ctx->vnic_entry_size) { 7565 mem_size = ctx->vnic_entry_size * ctx_pg->entries; 7566 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC]; 7567 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); 7568 if (rc) 7569 return rc; 7570 } 7571 7572 ctx_pg = &ctx->stat_mem; 7573 ctx_pg->entries = ctx->stat_max_entries; 7574 if (ctx->stat_entry_size) { 7575 mem_size = ctx->stat_entry_size * ctx_pg->entries; 7576 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT]; 7577 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); 7578 if (rc) 7579 return rc; 7580 } 7581 7582 ena = 0; 7583 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 7584 goto skip_rdma; 7585 7586 ctx_pg = &ctx->mrav_mem; 7587 /* 128K extra is needed to accommodate static AH context 7588 * allocation by f/w. 7589 */ 7590 num_mr = 1024 * 256; 7591 num_ah = 1024 * 128; 7592 ctx_pg->entries = num_mr + num_ah; 7593 if (ctx->mrav_entry_size) { 7594 mem_size = ctx->mrav_entry_size * ctx_pg->entries; 7595 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV]; 7596 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init); 7597 if (rc) 7598 return rc; 7599 } 7600 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 7601 if (ctx->mrav_num_entries_units) 7602 ctx_pg->entries = 7603 ((num_mr / ctx->mrav_num_entries_units) << 16) | 7604 (num_ah / ctx->mrav_num_entries_units); 7605 7606 ctx_pg = &ctx->tim_mem; 7607 ctx_pg->entries = ctx->qp_mem.entries; 7608 if (ctx->tim_entry_size) { 7609 mem_size = ctx->tim_entry_size * ctx_pg->entries; 7610 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL); 7611 if (rc) 7612 return rc; 7613 } 7614 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 7615 7616 skip_rdma: 7617 min = ctx->tqm_min_entries_per_ring; 7618 entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries + 7619 2 * (extra_qps + ctx->qp_min_qp1_entries) + min; 7620 entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple); 7621 entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries); 7622 entries = roundup(entries, ctx->tqm_entries_multiple); 7623 entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring); 7624 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) { 7625 ctx_pg = ctx->tqm_mem[i]; 7626 ctx_pg->entries = i ? entries : entries_sp; 7627 if (ctx->tqm_entry_size) { 7628 mem_size = ctx->tqm_entry_size * ctx_pg->entries; 7629 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, 7630 NULL); 7631 if (rc) 7632 return rc; 7633 } 7634 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 7635 } 7636 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 7637 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 7638 if (rc) { 7639 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 7640 rc); 7641 return rc; 7642 } 7643 ctx->flags |= BNXT_CTX_FLAG_INITED; 7644 return 0; 7645 } 7646 7647 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 7648 { 7649 struct hwrm_func_resource_qcaps_output *resp; 7650 struct hwrm_func_resource_qcaps_input *req; 7651 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7652 int rc; 7653 7654 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS); 7655 if (rc) 7656 return rc; 7657 7658 req->fid = cpu_to_le16(0xffff); 7659 resp = hwrm_req_hold(bp, req); 7660 rc = hwrm_req_send_silent(bp, req); 7661 if (rc) 7662 goto hwrm_func_resc_qcaps_exit; 7663 7664 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 7665 if (!all) 7666 goto hwrm_func_resc_qcaps_exit; 7667 7668 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 7669 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7670 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 7671 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7672 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 7673 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7674 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 7675 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7676 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 7677 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 7678 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 7679 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7680 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 7681 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7682 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 7683 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7684 7685 if (bp->flags & BNXT_FLAG_CHIP_P5) { 7686 u16 max_msix = le16_to_cpu(resp->max_msix); 7687 7688 hw_resc->max_nqs = max_msix; 7689 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 7690 } 7691 7692 if (BNXT_PF(bp)) { 7693 struct bnxt_pf_info *pf = &bp->pf; 7694 7695 pf->vf_resv_strategy = 7696 le16_to_cpu(resp->vf_reservation_strategy); 7697 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 7698 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 7699 } 7700 hwrm_func_resc_qcaps_exit: 7701 hwrm_req_drop(bp, req); 7702 return rc; 7703 } 7704 7705 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) 7706 { 7707 struct hwrm_port_mac_ptp_qcfg_output *resp; 7708 struct hwrm_port_mac_ptp_qcfg_input *req; 7709 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 7710 bool phc_cfg; 7711 u8 flags; 7712 int rc; 7713 7714 if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5_THOR(bp)) { 7715 rc = -ENODEV; 7716 goto no_ptp; 7717 } 7718 7719 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG); 7720 if (rc) 7721 goto no_ptp; 7722 7723 req->port_id = cpu_to_le16(bp->pf.port_id); 7724 resp = hwrm_req_hold(bp, req); 7725 rc = hwrm_req_send(bp, req); 7726 if (rc) 7727 goto exit; 7728 7729 flags = resp->flags; 7730 if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { 7731 rc = -ENODEV; 7732 goto exit; 7733 } 7734 if (!ptp) { 7735 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); 7736 if (!ptp) { 7737 rc = -ENOMEM; 7738 goto exit; 7739 } 7740 ptp->bp = bp; 7741 bp->ptp_cfg = ptp; 7742 } 7743 if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) { 7744 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); 7745 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); 7746 } else if (bp->flags & BNXT_FLAG_CHIP_P5) { 7747 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; 7748 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; 7749 } else { 7750 rc = -ENODEV; 7751 goto exit; 7752 } 7753 phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0; 7754 rc = bnxt_ptp_init(bp, phc_cfg); 7755 if (rc) 7756 netdev_warn(bp->dev, "PTP initialization failed.\n"); 7757 exit: 7758 hwrm_req_drop(bp, req); 7759 if (!rc) 7760 return 0; 7761 7762 no_ptp: 7763 bnxt_ptp_clear(bp); 7764 kfree(ptp); 7765 bp->ptp_cfg = NULL; 7766 return rc; 7767 } 7768 7769 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 7770 { 7771 struct hwrm_func_qcaps_output *resp; 7772 struct hwrm_func_qcaps_input *req; 7773 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7774 u32 flags, flags_ext, flags_ext2; 7775 int rc; 7776 7777 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS); 7778 if (rc) 7779 return rc; 7780 7781 req->fid = cpu_to_le16(0xffff); 7782 resp = hwrm_req_hold(bp, req); 7783 rc = hwrm_req_send(bp, req); 7784 if (rc) 7785 goto hwrm_func_qcaps_exit; 7786 7787 flags = le32_to_cpu(resp->flags); 7788 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 7789 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 7790 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 7791 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 7792 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 7793 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 7794 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 7795 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 7796 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 7797 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 7798 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 7799 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 7800 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 7801 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 7802 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 7803 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 7804 if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED) 7805 bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS; 7806 7807 flags_ext = le32_to_cpu(resp->flags_ext); 7808 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 7809 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 7810 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED)) 7811 bp->fw_cap |= BNXT_FW_CAP_PTP_PPS; 7812 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED) 7813 bp->fw_cap |= BNXT_FW_CAP_PTP_RTC; 7814 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT)) 7815 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF; 7816 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED)) 7817 bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH; 7818 7819 flags_ext2 = le32_to_cpu(resp->flags_ext2); 7820 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED) 7821 bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS; 7822 7823 bp->tx_push_thresh = 0; 7824 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 7825 BNXT_FW_MAJ(bp) > 217) 7826 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 7827 7828 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7829 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7830 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7831 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7832 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 7833 if (!hw_resc->max_hw_ring_grps) 7834 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 7835 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7836 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7837 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7838 7839 if (BNXT_PF(bp)) { 7840 struct bnxt_pf_info *pf = &bp->pf; 7841 7842 pf->fw_fid = le16_to_cpu(resp->fid); 7843 pf->port_id = le16_to_cpu(resp->port_id); 7844 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 7845 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 7846 pf->max_vfs = le16_to_cpu(resp->max_vfs); 7847 pf->max_encap_records = le32_to_cpu(resp->max_encap_records); 7848 pf->max_decap_records = le32_to_cpu(resp->max_decap_records); 7849 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 7850 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 7851 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 7852 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 7853 bp->flags &= ~BNXT_FLAG_WOL_CAP; 7854 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 7855 bp->flags |= BNXT_FLAG_WOL_CAP; 7856 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { 7857 bp->fw_cap |= BNXT_FW_CAP_PTP; 7858 } else { 7859 bnxt_ptp_clear(bp); 7860 kfree(bp->ptp_cfg); 7861 bp->ptp_cfg = NULL; 7862 } 7863 } else { 7864 #ifdef CONFIG_BNXT_SRIOV 7865 struct bnxt_vf_info *vf = &bp->vf; 7866 7867 vf->fw_fid = le16_to_cpu(resp->fid); 7868 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 7869 #endif 7870 } 7871 7872 hwrm_func_qcaps_exit: 7873 hwrm_req_drop(bp, req); 7874 return rc; 7875 } 7876 7877 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp) 7878 { 7879 struct hwrm_dbg_qcaps_output *resp; 7880 struct hwrm_dbg_qcaps_input *req; 7881 int rc; 7882 7883 bp->fw_dbg_cap = 0; 7884 if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS)) 7885 return; 7886 7887 rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS); 7888 if (rc) 7889 return; 7890 7891 req->fid = cpu_to_le16(0xffff); 7892 resp = hwrm_req_hold(bp, req); 7893 rc = hwrm_req_send(bp, req); 7894 if (rc) 7895 goto hwrm_dbg_qcaps_exit; 7896 7897 bp->fw_dbg_cap = le32_to_cpu(resp->flags); 7898 7899 hwrm_dbg_qcaps_exit: 7900 hwrm_req_drop(bp, req); 7901 } 7902 7903 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 7904 7905 int bnxt_hwrm_func_qcaps(struct bnxt *bp) 7906 { 7907 int rc; 7908 7909 rc = __bnxt_hwrm_func_qcaps(bp); 7910 if (rc) 7911 return rc; 7912 7913 bnxt_hwrm_dbg_qcaps(bp); 7914 7915 rc = bnxt_hwrm_queue_qportcfg(bp); 7916 if (rc) { 7917 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 7918 return rc; 7919 } 7920 if (bp->hwrm_spec_code >= 0x10803) { 7921 rc = bnxt_alloc_ctx_mem(bp); 7922 if (rc) 7923 return rc; 7924 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 7925 if (!rc) 7926 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 7927 } 7928 return 0; 7929 } 7930 7931 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 7932 { 7933 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 7934 struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req; 7935 u32 flags; 7936 int rc; 7937 7938 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 7939 return 0; 7940 7941 rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS); 7942 if (rc) 7943 return rc; 7944 7945 resp = hwrm_req_hold(bp, req); 7946 rc = hwrm_req_send(bp, req); 7947 if (rc) 7948 goto hwrm_cfa_adv_qcaps_exit; 7949 7950 flags = le32_to_cpu(resp->flags); 7951 if (flags & 7952 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 7953 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 7954 7955 hwrm_cfa_adv_qcaps_exit: 7956 hwrm_req_drop(bp, req); 7957 return rc; 7958 } 7959 7960 static int __bnxt_alloc_fw_health(struct bnxt *bp) 7961 { 7962 if (bp->fw_health) 7963 return 0; 7964 7965 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 7966 if (!bp->fw_health) 7967 return -ENOMEM; 7968 7969 mutex_init(&bp->fw_health->lock); 7970 return 0; 7971 } 7972 7973 static int bnxt_alloc_fw_health(struct bnxt *bp) 7974 { 7975 int rc; 7976 7977 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 7978 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 7979 return 0; 7980 7981 rc = __bnxt_alloc_fw_health(bp); 7982 if (rc) { 7983 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 7984 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 7985 return rc; 7986 } 7987 7988 return 0; 7989 } 7990 7991 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 7992 { 7993 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 7994 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 7995 BNXT_FW_HEALTH_WIN_MAP_OFF); 7996 } 7997 7998 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 7999 { 8000 struct bnxt_fw_health *fw_health = bp->fw_health; 8001 u32 reg_type; 8002 8003 if (!fw_health) 8004 return; 8005 8006 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 8007 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 8008 fw_health->status_reliable = false; 8009 8010 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]); 8011 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 8012 fw_health->resets_reliable = false; 8013 } 8014 8015 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 8016 { 8017 void __iomem *hs; 8018 u32 status_loc; 8019 u32 reg_type; 8020 u32 sig; 8021 8022 if (bp->fw_health) 8023 bp->fw_health->status_reliable = false; 8024 8025 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 8026 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 8027 8028 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 8029 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 8030 if (!bp->chip_num) { 8031 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 8032 bp->chip_num = readl(bp->bar0 + 8033 BNXT_FW_HEALTH_WIN_BASE + 8034 BNXT_GRC_REG_CHIP_NUM); 8035 } 8036 if (!BNXT_CHIP_P5(bp)) 8037 return; 8038 8039 status_loc = BNXT_GRC_REG_STATUS_P5 | 8040 BNXT_FW_HEALTH_REG_TYPE_BAR0; 8041 } else { 8042 status_loc = readl(hs + offsetof(struct hcomm_status, 8043 fw_status_loc)); 8044 } 8045 8046 if (__bnxt_alloc_fw_health(bp)) { 8047 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 8048 return; 8049 } 8050 8051 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 8052 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 8053 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 8054 __bnxt_map_fw_health_reg(bp, status_loc); 8055 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 8056 BNXT_FW_HEALTH_WIN_OFF(status_loc); 8057 } 8058 8059 bp->fw_health->status_reliable = true; 8060 } 8061 8062 static int bnxt_map_fw_health_regs(struct bnxt *bp) 8063 { 8064 struct bnxt_fw_health *fw_health = bp->fw_health; 8065 u32 reg_base = 0xffffffff; 8066 int i; 8067 8068 bp->fw_health->status_reliable = false; 8069 bp->fw_health->resets_reliable = false; 8070 /* Only pre-map the monitoring GRC registers using window 3 */ 8071 for (i = 0; i < 4; i++) { 8072 u32 reg = fw_health->regs[i]; 8073 8074 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 8075 continue; 8076 if (reg_base == 0xffffffff) 8077 reg_base = reg & BNXT_GRC_BASE_MASK; 8078 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 8079 return -ERANGE; 8080 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 8081 } 8082 bp->fw_health->status_reliable = true; 8083 bp->fw_health->resets_reliable = true; 8084 if (reg_base == 0xffffffff) 8085 return 0; 8086 8087 __bnxt_map_fw_health_reg(bp, reg_base); 8088 return 0; 8089 } 8090 8091 static void bnxt_remap_fw_health_regs(struct bnxt *bp) 8092 { 8093 if (!bp->fw_health) 8094 return; 8095 8096 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) { 8097 bp->fw_health->status_reliable = true; 8098 bp->fw_health->resets_reliable = true; 8099 } else { 8100 bnxt_try_map_fw_health_reg(bp); 8101 } 8102 } 8103 8104 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 8105 { 8106 struct bnxt_fw_health *fw_health = bp->fw_health; 8107 struct hwrm_error_recovery_qcfg_output *resp; 8108 struct hwrm_error_recovery_qcfg_input *req; 8109 int rc, i; 8110 8111 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 8112 return 0; 8113 8114 rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG); 8115 if (rc) 8116 return rc; 8117 8118 resp = hwrm_req_hold(bp, req); 8119 rc = hwrm_req_send(bp, req); 8120 if (rc) 8121 goto err_recovery_out; 8122 fw_health->flags = le32_to_cpu(resp->flags); 8123 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 8124 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 8125 rc = -EINVAL; 8126 goto err_recovery_out; 8127 } 8128 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 8129 fw_health->master_func_wait_dsecs = 8130 le32_to_cpu(resp->master_func_wait_period); 8131 fw_health->normal_func_wait_dsecs = 8132 le32_to_cpu(resp->normal_func_wait_period); 8133 fw_health->post_reset_wait_dsecs = 8134 le32_to_cpu(resp->master_func_wait_period_after_reset); 8135 fw_health->post_reset_max_wait_dsecs = 8136 le32_to_cpu(resp->max_bailout_time_after_reset); 8137 fw_health->regs[BNXT_FW_HEALTH_REG] = 8138 le32_to_cpu(resp->fw_health_status_reg); 8139 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 8140 le32_to_cpu(resp->fw_heartbeat_reg); 8141 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 8142 le32_to_cpu(resp->fw_reset_cnt_reg); 8143 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 8144 le32_to_cpu(resp->reset_inprogress_reg); 8145 fw_health->fw_reset_inprog_reg_mask = 8146 le32_to_cpu(resp->reset_inprogress_reg_mask); 8147 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 8148 if (fw_health->fw_reset_seq_cnt >= 16) { 8149 rc = -EINVAL; 8150 goto err_recovery_out; 8151 } 8152 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 8153 fw_health->fw_reset_seq_regs[i] = 8154 le32_to_cpu(resp->reset_reg[i]); 8155 fw_health->fw_reset_seq_vals[i] = 8156 le32_to_cpu(resp->reset_reg_val[i]); 8157 fw_health->fw_reset_seq_delay_msec[i] = 8158 resp->delay_after_reset[i]; 8159 } 8160 err_recovery_out: 8161 hwrm_req_drop(bp, req); 8162 if (!rc) 8163 rc = bnxt_map_fw_health_regs(bp); 8164 if (rc) 8165 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 8166 return rc; 8167 } 8168 8169 static int bnxt_hwrm_func_reset(struct bnxt *bp) 8170 { 8171 struct hwrm_func_reset_input *req; 8172 int rc; 8173 8174 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET); 8175 if (rc) 8176 return rc; 8177 8178 req->enables = 0; 8179 hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT); 8180 return hwrm_req_send(bp, req); 8181 } 8182 8183 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 8184 { 8185 struct hwrm_nvm_get_dev_info_output nvm_info; 8186 8187 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 8188 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 8189 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 8190 nvm_info.nvm_cfg_ver_upd); 8191 } 8192 8193 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 8194 { 8195 struct hwrm_queue_qportcfg_output *resp; 8196 struct hwrm_queue_qportcfg_input *req; 8197 u8 i, j, *qptr; 8198 bool no_rdma; 8199 int rc = 0; 8200 8201 rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG); 8202 if (rc) 8203 return rc; 8204 8205 resp = hwrm_req_hold(bp, req); 8206 rc = hwrm_req_send(bp, req); 8207 if (rc) 8208 goto qportcfg_exit; 8209 8210 if (!resp->max_configurable_queues) { 8211 rc = -EINVAL; 8212 goto qportcfg_exit; 8213 } 8214 bp->max_tc = resp->max_configurable_queues; 8215 bp->max_lltc = resp->max_configurable_lossless_queues; 8216 if (bp->max_tc > BNXT_MAX_QUEUE) 8217 bp->max_tc = BNXT_MAX_QUEUE; 8218 8219 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 8220 qptr = &resp->queue_id0; 8221 for (i = 0, j = 0; i < bp->max_tc; i++) { 8222 bp->q_info[j].queue_id = *qptr; 8223 bp->q_ids[i] = *qptr++; 8224 bp->q_info[j].queue_profile = *qptr++; 8225 bp->tc_to_qidx[j] = j; 8226 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 8227 (no_rdma && BNXT_PF(bp))) 8228 j++; 8229 } 8230 bp->max_q = bp->max_tc; 8231 bp->max_tc = max_t(u8, j, 1); 8232 8233 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 8234 bp->max_tc = 1; 8235 8236 if (bp->max_lltc > bp->max_tc) 8237 bp->max_lltc = bp->max_tc; 8238 8239 qportcfg_exit: 8240 hwrm_req_drop(bp, req); 8241 return rc; 8242 } 8243 8244 static int bnxt_hwrm_poll(struct bnxt *bp) 8245 { 8246 struct hwrm_ver_get_input *req; 8247 int rc; 8248 8249 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 8250 if (rc) 8251 return rc; 8252 8253 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 8254 req->hwrm_intf_min = HWRM_VERSION_MINOR; 8255 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 8256 8257 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT); 8258 rc = hwrm_req_send(bp, req); 8259 return rc; 8260 } 8261 8262 static int bnxt_hwrm_ver_get(struct bnxt *bp) 8263 { 8264 struct hwrm_ver_get_output *resp; 8265 struct hwrm_ver_get_input *req; 8266 u16 fw_maj, fw_min, fw_bld, fw_rsv; 8267 u32 dev_caps_cfg, hwrm_ver; 8268 int rc, len; 8269 8270 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 8271 if (rc) 8272 return rc; 8273 8274 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 8275 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 8276 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 8277 req->hwrm_intf_min = HWRM_VERSION_MINOR; 8278 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 8279 8280 resp = hwrm_req_hold(bp, req); 8281 rc = hwrm_req_send(bp, req); 8282 if (rc) 8283 goto hwrm_ver_get_exit; 8284 8285 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 8286 8287 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 8288 resp->hwrm_intf_min_8b << 8 | 8289 resp->hwrm_intf_upd_8b; 8290 if (resp->hwrm_intf_maj_8b < 1) { 8291 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 8292 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 8293 resp->hwrm_intf_upd_8b); 8294 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 8295 } 8296 8297 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 8298 HWRM_VERSION_UPDATE; 8299 8300 if (bp->hwrm_spec_code > hwrm_ver) 8301 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 8302 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 8303 HWRM_VERSION_UPDATE); 8304 else 8305 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 8306 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 8307 resp->hwrm_intf_upd_8b); 8308 8309 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 8310 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 8311 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 8312 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 8313 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 8314 len = FW_VER_STR_LEN; 8315 } else { 8316 fw_maj = resp->hwrm_fw_maj_8b; 8317 fw_min = resp->hwrm_fw_min_8b; 8318 fw_bld = resp->hwrm_fw_bld_8b; 8319 fw_rsv = resp->hwrm_fw_rsvd_8b; 8320 len = BC_HWRM_STR_LEN; 8321 } 8322 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 8323 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 8324 fw_rsv); 8325 8326 if (strlen(resp->active_pkg_name)) { 8327 int fw_ver_len = strlen(bp->fw_ver_str); 8328 8329 snprintf(bp->fw_ver_str + fw_ver_len, 8330 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 8331 resp->active_pkg_name); 8332 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 8333 } 8334 8335 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 8336 if (!bp->hwrm_cmd_timeout) 8337 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 8338 bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000; 8339 if (!bp->hwrm_cmd_max_timeout) 8340 bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT; 8341 else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT) 8342 netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n", 8343 bp->hwrm_cmd_max_timeout / 1000); 8344 8345 if (resp->hwrm_intf_maj_8b >= 1) { 8346 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 8347 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 8348 } 8349 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 8350 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 8351 8352 bp->chip_num = le16_to_cpu(resp->chip_num); 8353 bp->chip_rev = resp->chip_rev; 8354 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 8355 !resp->chip_metal) 8356 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 8357 8358 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 8359 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 8360 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 8361 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 8362 8363 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 8364 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 8365 8366 if (dev_caps_cfg & 8367 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 8368 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 8369 8370 if (dev_caps_cfg & 8371 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 8372 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 8373 8374 if (dev_caps_cfg & 8375 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 8376 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 8377 8378 hwrm_ver_get_exit: 8379 hwrm_req_drop(bp, req); 8380 return rc; 8381 } 8382 8383 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 8384 { 8385 struct hwrm_fw_set_time_input *req; 8386 struct tm tm; 8387 time64_t now = ktime_get_real_seconds(); 8388 int rc; 8389 8390 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 8391 bp->hwrm_spec_code < 0x10400) 8392 return -EOPNOTSUPP; 8393 8394 time64_to_tm(now, 0, &tm); 8395 rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME); 8396 if (rc) 8397 return rc; 8398 8399 req->year = cpu_to_le16(1900 + tm.tm_year); 8400 req->month = 1 + tm.tm_mon; 8401 req->day = tm.tm_mday; 8402 req->hour = tm.tm_hour; 8403 req->minute = tm.tm_min; 8404 req->second = tm.tm_sec; 8405 return hwrm_req_send(bp, req); 8406 } 8407 8408 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 8409 { 8410 u64 sw_tmp; 8411 8412 hw &= mask; 8413 sw_tmp = (*sw & ~mask) | hw; 8414 if (hw < (*sw & mask)) 8415 sw_tmp += mask + 1; 8416 WRITE_ONCE(*sw, sw_tmp); 8417 } 8418 8419 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 8420 int count, bool ignore_zero) 8421 { 8422 int i; 8423 8424 for (i = 0; i < count; i++) { 8425 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 8426 8427 if (ignore_zero && !hw) 8428 continue; 8429 8430 if (masks[i] == -1ULL) 8431 sw_stats[i] = hw; 8432 else 8433 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 8434 } 8435 } 8436 8437 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 8438 { 8439 if (!stats->hw_stats) 8440 return; 8441 8442 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 8443 stats->hw_masks, stats->len / 8, false); 8444 } 8445 8446 static void bnxt_accumulate_all_stats(struct bnxt *bp) 8447 { 8448 struct bnxt_stats_mem *ring0_stats; 8449 bool ignore_zero = false; 8450 int i; 8451 8452 /* Chip bug. Counter intermittently becomes 0. */ 8453 if (bp->flags & BNXT_FLAG_CHIP_P5) 8454 ignore_zero = true; 8455 8456 for (i = 0; i < bp->cp_nr_rings; i++) { 8457 struct bnxt_napi *bnapi = bp->bnapi[i]; 8458 struct bnxt_cp_ring_info *cpr; 8459 struct bnxt_stats_mem *stats; 8460 8461 cpr = &bnapi->cp_ring; 8462 stats = &cpr->stats; 8463 if (!i) 8464 ring0_stats = stats; 8465 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 8466 ring0_stats->hw_masks, 8467 ring0_stats->len / 8, ignore_zero); 8468 } 8469 if (bp->flags & BNXT_FLAG_PORT_STATS) { 8470 struct bnxt_stats_mem *stats = &bp->port_stats; 8471 __le64 *hw_stats = stats->hw_stats; 8472 u64 *sw_stats = stats->sw_stats; 8473 u64 *masks = stats->hw_masks; 8474 int cnt; 8475 8476 cnt = sizeof(struct rx_port_stats) / 8; 8477 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 8478 8479 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8480 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8481 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8482 cnt = sizeof(struct tx_port_stats) / 8; 8483 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 8484 } 8485 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 8486 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 8487 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 8488 } 8489 } 8490 8491 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 8492 { 8493 struct hwrm_port_qstats_input *req; 8494 struct bnxt_pf_info *pf = &bp->pf; 8495 int rc; 8496 8497 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 8498 return 0; 8499 8500 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 8501 return -EOPNOTSUPP; 8502 8503 rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS); 8504 if (rc) 8505 return rc; 8506 8507 req->flags = flags; 8508 req->port_id = cpu_to_le16(pf->port_id); 8509 req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 8510 BNXT_TX_PORT_STATS_BYTE_OFFSET); 8511 req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 8512 return hwrm_req_send(bp, req); 8513 } 8514 8515 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 8516 { 8517 struct hwrm_queue_pri2cos_qcfg_output *resp_qc; 8518 struct hwrm_queue_pri2cos_qcfg_input *req_qc; 8519 struct hwrm_port_qstats_ext_output *resp_qs; 8520 struct hwrm_port_qstats_ext_input *req_qs; 8521 struct bnxt_pf_info *pf = &bp->pf; 8522 u32 tx_stat_size; 8523 int rc; 8524 8525 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 8526 return 0; 8527 8528 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 8529 return -EOPNOTSUPP; 8530 8531 rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT); 8532 if (rc) 8533 return rc; 8534 8535 req_qs->flags = flags; 8536 req_qs->port_id = cpu_to_le16(pf->port_id); 8537 req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 8538 req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 8539 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 8540 sizeof(struct tx_port_stats_ext) : 0; 8541 req_qs->tx_stat_size = cpu_to_le16(tx_stat_size); 8542 req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 8543 resp_qs = hwrm_req_hold(bp, req_qs); 8544 rc = hwrm_req_send(bp, req_qs); 8545 if (!rc) { 8546 bp->fw_rx_stats_ext_size = 8547 le16_to_cpu(resp_qs->rx_stat_size) / 8; 8548 if (BNXT_FW_MAJ(bp) < 220 && 8549 bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY) 8550 bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY; 8551 8552 bp->fw_tx_stats_ext_size = tx_stat_size ? 8553 le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0; 8554 } else { 8555 bp->fw_rx_stats_ext_size = 0; 8556 bp->fw_tx_stats_ext_size = 0; 8557 } 8558 hwrm_req_drop(bp, req_qs); 8559 8560 if (flags) 8561 return rc; 8562 8563 if (bp->fw_tx_stats_ext_size <= 8564 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 8565 bp->pri2cos_valid = 0; 8566 return rc; 8567 } 8568 8569 rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG); 8570 if (rc) 8571 return rc; 8572 8573 req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 8574 8575 resp_qc = hwrm_req_hold(bp, req_qc); 8576 rc = hwrm_req_send(bp, req_qc); 8577 if (!rc) { 8578 u8 *pri2cos; 8579 int i, j; 8580 8581 pri2cos = &resp_qc->pri0_cos_queue_id; 8582 for (i = 0; i < 8; i++) { 8583 u8 queue_id = pri2cos[i]; 8584 u8 queue_idx; 8585 8586 /* Per port queue IDs start from 0, 10, 20, etc */ 8587 queue_idx = queue_id % 10; 8588 if (queue_idx > BNXT_MAX_QUEUE) { 8589 bp->pri2cos_valid = false; 8590 hwrm_req_drop(bp, req_qc); 8591 return rc; 8592 } 8593 for (j = 0; j < bp->max_q; j++) { 8594 if (bp->q_ids[j] == queue_id) 8595 bp->pri2cos_idx[i] = queue_idx; 8596 } 8597 } 8598 bp->pri2cos_valid = true; 8599 } 8600 hwrm_req_drop(bp, req_qc); 8601 8602 return rc; 8603 } 8604 8605 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 8606 { 8607 bnxt_hwrm_tunnel_dst_port_free(bp, 8608 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 8609 bnxt_hwrm_tunnel_dst_port_free(bp, 8610 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 8611 } 8612 8613 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 8614 { 8615 int rc, i; 8616 u32 tpa_flags = 0; 8617 8618 if (set_tpa) 8619 tpa_flags = bp->flags & BNXT_FLAG_TPA; 8620 else if (BNXT_NO_FW_ACCESS(bp)) 8621 return 0; 8622 for (i = 0; i < bp->nr_vnics; i++) { 8623 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags); 8624 if (rc) { 8625 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 8626 i, rc); 8627 return rc; 8628 } 8629 } 8630 return 0; 8631 } 8632 8633 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 8634 { 8635 int i; 8636 8637 for (i = 0; i < bp->nr_vnics; i++) 8638 bnxt_hwrm_vnic_set_rss(bp, i, false); 8639 } 8640 8641 static void bnxt_clear_vnic(struct bnxt *bp) 8642 { 8643 if (!bp->vnic_info) 8644 return; 8645 8646 bnxt_hwrm_clear_vnic_filter(bp); 8647 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) { 8648 /* clear all RSS setting before free vnic ctx */ 8649 bnxt_hwrm_clear_vnic_rss(bp); 8650 bnxt_hwrm_vnic_ctx_free(bp); 8651 } 8652 /* before free the vnic, undo the vnic tpa settings */ 8653 if (bp->flags & BNXT_FLAG_TPA) 8654 bnxt_set_tpa(bp, false); 8655 bnxt_hwrm_vnic_free(bp); 8656 if (bp->flags & BNXT_FLAG_CHIP_P5) 8657 bnxt_hwrm_vnic_ctx_free(bp); 8658 } 8659 8660 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 8661 bool irq_re_init) 8662 { 8663 bnxt_clear_vnic(bp); 8664 bnxt_hwrm_ring_free(bp, close_path); 8665 bnxt_hwrm_ring_grp_free(bp); 8666 if (irq_re_init) { 8667 bnxt_hwrm_stat_ctx_free(bp); 8668 bnxt_hwrm_free_tunnel_ports(bp); 8669 } 8670 } 8671 8672 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 8673 { 8674 struct hwrm_func_cfg_input *req; 8675 u8 evb_mode; 8676 int rc; 8677 8678 if (br_mode == BRIDGE_MODE_VEB) 8679 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 8680 else if (br_mode == BRIDGE_MODE_VEPA) 8681 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 8682 else 8683 return -EINVAL; 8684 8685 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 8686 if (rc) 8687 return rc; 8688 8689 req->fid = cpu_to_le16(0xffff); 8690 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 8691 req->evb_mode = evb_mode; 8692 return hwrm_req_send(bp, req); 8693 } 8694 8695 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 8696 { 8697 struct hwrm_func_cfg_input *req; 8698 int rc; 8699 8700 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 8701 return 0; 8702 8703 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 8704 if (rc) 8705 return rc; 8706 8707 req->fid = cpu_to_le16(0xffff); 8708 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 8709 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 8710 if (size == 128) 8711 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 8712 8713 return hwrm_req_send(bp, req); 8714 } 8715 8716 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8717 { 8718 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 8719 int rc; 8720 8721 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 8722 goto skip_rss_ctx; 8723 8724 /* allocate context for vnic */ 8725 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0); 8726 if (rc) { 8727 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8728 vnic_id, rc); 8729 goto vnic_setup_err; 8730 } 8731 bp->rsscos_nr_ctxs++; 8732 8733 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8734 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1); 8735 if (rc) { 8736 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 8737 vnic_id, rc); 8738 goto vnic_setup_err; 8739 } 8740 bp->rsscos_nr_ctxs++; 8741 } 8742 8743 skip_rss_ctx: 8744 /* configure default vnic, ring grp */ 8745 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8746 if (rc) { 8747 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8748 vnic_id, rc); 8749 goto vnic_setup_err; 8750 } 8751 8752 /* Enable RSS hashing on vnic */ 8753 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true); 8754 if (rc) { 8755 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 8756 vnic_id, rc); 8757 goto vnic_setup_err; 8758 } 8759 8760 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8761 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8762 if (rc) { 8763 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8764 vnic_id, rc); 8765 } 8766 } 8767 8768 vnic_setup_err: 8769 return rc; 8770 } 8771 8772 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id) 8773 { 8774 int rc, i, nr_ctxs; 8775 8776 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 8777 for (i = 0; i < nr_ctxs; i++) { 8778 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i); 8779 if (rc) { 8780 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 8781 vnic_id, i, rc); 8782 break; 8783 } 8784 bp->rsscos_nr_ctxs++; 8785 } 8786 if (i < nr_ctxs) 8787 return -ENOMEM; 8788 8789 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true); 8790 if (rc) { 8791 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 8792 vnic_id, rc); 8793 return rc; 8794 } 8795 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8796 if (rc) { 8797 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8798 vnic_id, rc); 8799 return rc; 8800 } 8801 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8802 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8803 if (rc) { 8804 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8805 vnic_id, rc); 8806 } 8807 } 8808 return rc; 8809 } 8810 8811 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8812 { 8813 if (bp->flags & BNXT_FLAG_CHIP_P5) 8814 return __bnxt_setup_vnic_p5(bp, vnic_id); 8815 else 8816 return __bnxt_setup_vnic(bp, vnic_id); 8817 } 8818 8819 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 8820 { 8821 #ifdef CONFIG_RFS_ACCEL 8822 int i, rc = 0; 8823 8824 if (bp->flags & BNXT_FLAG_CHIP_P5) 8825 return 0; 8826 8827 for (i = 0; i < bp->rx_nr_rings; i++) { 8828 struct bnxt_vnic_info *vnic; 8829 u16 vnic_id = i + 1; 8830 u16 ring_id = i; 8831 8832 if (vnic_id >= bp->nr_vnics) 8833 break; 8834 8835 vnic = &bp->vnic_info[vnic_id]; 8836 vnic->flags |= BNXT_VNIC_RFS_FLAG; 8837 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 8838 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 8839 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1); 8840 if (rc) { 8841 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8842 vnic_id, rc); 8843 break; 8844 } 8845 rc = bnxt_setup_vnic(bp, vnic_id); 8846 if (rc) 8847 break; 8848 } 8849 return rc; 8850 #else 8851 return 0; 8852 #endif 8853 } 8854 8855 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 8856 static bool bnxt_promisc_ok(struct bnxt *bp) 8857 { 8858 #ifdef CONFIG_BNXT_SRIOV 8859 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 8860 return false; 8861 #endif 8862 return true; 8863 } 8864 8865 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 8866 { 8867 unsigned int rc = 0; 8868 8869 rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1); 8870 if (rc) { 8871 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8872 rc); 8873 return rc; 8874 } 8875 8876 rc = bnxt_hwrm_vnic_cfg(bp, 1); 8877 if (rc) { 8878 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8879 rc); 8880 return rc; 8881 } 8882 return rc; 8883 } 8884 8885 static int bnxt_cfg_rx_mode(struct bnxt *); 8886 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 8887 8888 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 8889 { 8890 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 8891 int rc = 0; 8892 unsigned int rx_nr_rings = bp->rx_nr_rings; 8893 8894 if (irq_re_init) { 8895 rc = bnxt_hwrm_stat_ctx_alloc(bp); 8896 if (rc) { 8897 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 8898 rc); 8899 goto err_out; 8900 } 8901 } 8902 8903 rc = bnxt_hwrm_ring_alloc(bp); 8904 if (rc) { 8905 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 8906 goto err_out; 8907 } 8908 8909 rc = bnxt_hwrm_ring_grp_alloc(bp); 8910 if (rc) { 8911 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 8912 goto err_out; 8913 } 8914 8915 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8916 rx_nr_rings--; 8917 8918 /* default vnic 0 */ 8919 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings); 8920 if (rc) { 8921 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 8922 goto err_out; 8923 } 8924 8925 if (BNXT_VF(bp)) 8926 bnxt_hwrm_func_qcfg(bp); 8927 8928 rc = bnxt_setup_vnic(bp, 0); 8929 if (rc) 8930 goto err_out; 8931 if (bp->fw_cap & BNXT_FW_CAP_RSS_HASH_TYPE_DELTA) 8932 bnxt_hwrm_update_rss_hash_cfg(bp); 8933 8934 if (bp->flags & BNXT_FLAG_RFS) { 8935 rc = bnxt_alloc_rfs_vnics(bp); 8936 if (rc) 8937 goto err_out; 8938 } 8939 8940 if (bp->flags & BNXT_FLAG_TPA) { 8941 rc = bnxt_set_tpa(bp, true); 8942 if (rc) 8943 goto err_out; 8944 } 8945 8946 if (BNXT_VF(bp)) 8947 bnxt_update_vf_mac(bp); 8948 8949 /* Filter for default vnic 0 */ 8950 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 8951 if (rc) { 8952 if (BNXT_VF(bp) && rc == -ENODEV) 8953 netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n"); 8954 else 8955 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 8956 goto err_out; 8957 } 8958 vnic->uc_filter_count = 1; 8959 8960 vnic->rx_mask = 0; 8961 if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state)) 8962 goto skip_rx_mask; 8963 8964 if (bp->dev->flags & IFF_BROADCAST) 8965 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 8966 8967 if (bp->dev->flags & IFF_PROMISC) 8968 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 8969 8970 if (bp->dev->flags & IFF_ALLMULTI) { 8971 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 8972 vnic->mc_list_count = 0; 8973 } else if (bp->dev->flags & IFF_MULTICAST) { 8974 u32 mask = 0; 8975 8976 bnxt_mc_list_updated(bp, &mask); 8977 vnic->rx_mask |= mask; 8978 } 8979 8980 rc = bnxt_cfg_rx_mode(bp); 8981 if (rc) 8982 goto err_out; 8983 8984 skip_rx_mask: 8985 rc = bnxt_hwrm_set_coal(bp); 8986 if (rc) 8987 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 8988 rc); 8989 8990 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8991 rc = bnxt_setup_nitroa0_vnic(bp); 8992 if (rc) 8993 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 8994 rc); 8995 } 8996 8997 if (BNXT_VF(bp)) { 8998 bnxt_hwrm_func_qcfg(bp); 8999 netdev_update_features(bp->dev); 9000 } 9001 9002 return 0; 9003 9004 err_out: 9005 bnxt_hwrm_resource_free(bp, 0, true); 9006 9007 return rc; 9008 } 9009 9010 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 9011 { 9012 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 9013 return 0; 9014 } 9015 9016 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 9017 { 9018 bnxt_init_cp_rings(bp); 9019 bnxt_init_rx_rings(bp); 9020 bnxt_init_tx_rings(bp); 9021 bnxt_init_ring_grps(bp, irq_re_init); 9022 bnxt_init_vnics(bp); 9023 9024 return bnxt_init_chip(bp, irq_re_init); 9025 } 9026 9027 static int bnxt_set_real_num_queues(struct bnxt *bp) 9028 { 9029 int rc; 9030 struct net_device *dev = bp->dev; 9031 9032 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 9033 bp->tx_nr_rings_xdp); 9034 if (rc) 9035 return rc; 9036 9037 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 9038 if (rc) 9039 return rc; 9040 9041 #ifdef CONFIG_RFS_ACCEL 9042 if (bp->flags & BNXT_FLAG_RFS) 9043 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 9044 #endif 9045 9046 return rc; 9047 } 9048 9049 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 9050 bool shared) 9051 { 9052 int _rx = *rx, _tx = *tx; 9053 9054 if (shared) { 9055 *rx = min_t(int, _rx, max); 9056 *tx = min_t(int, _tx, max); 9057 } else { 9058 if (max < 2) 9059 return -ENOMEM; 9060 9061 while (_rx + _tx > max) { 9062 if (_rx > _tx && _rx > 1) 9063 _rx--; 9064 else if (_tx > 1) 9065 _tx--; 9066 } 9067 *rx = _rx; 9068 *tx = _tx; 9069 } 9070 return 0; 9071 } 9072 9073 static void bnxt_setup_msix(struct bnxt *bp) 9074 { 9075 const int len = sizeof(bp->irq_tbl[0].name); 9076 struct net_device *dev = bp->dev; 9077 int tcs, i; 9078 9079 tcs = netdev_get_num_tc(dev); 9080 if (tcs) { 9081 int i, off, count; 9082 9083 for (i = 0; i < tcs; i++) { 9084 count = bp->tx_nr_rings_per_tc; 9085 off = i * count; 9086 netdev_set_tc_queue(dev, i, count, off); 9087 } 9088 } 9089 9090 for (i = 0; i < bp->cp_nr_rings; i++) { 9091 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9092 char *attr; 9093 9094 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 9095 attr = "TxRx"; 9096 else if (i < bp->rx_nr_rings) 9097 attr = "rx"; 9098 else 9099 attr = "tx"; 9100 9101 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 9102 attr, i); 9103 bp->irq_tbl[map_idx].handler = bnxt_msix; 9104 } 9105 } 9106 9107 static void bnxt_setup_inta(struct bnxt *bp) 9108 { 9109 const int len = sizeof(bp->irq_tbl[0].name); 9110 9111 if (netdev_get_num_tc(bp->dev)) 9112 netdev_reset_tc(bp->dev); 9113 9114 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx", 9115 0); 9116 bp->irq_tbl[0].handler = bnxt_inta; 9117 } 9118 9119 static int bnxt_init_int_mode(struct bnxt *bp); 9120 9121 static int bnxt_setup_int_mode(struct bnxt *bp) 9122 { 9123 int rc; 9124 9125 if (!bp->irq_tbl) { 9126 rc = bnxt_init_int_mode(bp); 9127 if (rc || !bp->irq_tbl) 9128 return rc ?: -ENODEV; 9129 } 9130 9131 if (bp->flags & BNXT_FLAG_USING_MSIX) 9132 bnxt_setup_msix(bp); 9133 else 9134 bnxt_setup_inta(bp); 9135 9136 rc = bnxt_set_real_num_queues(bp); 9137 return rc; 9138 } 9139 9140 #ifdef CONFIG_RFS_ACCEL 9141 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 9142 { 9143 return bp->hw_resc.max_rsscos_ctxs; 9144 } 9145 9146 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 9147 { 9148 return bp->hw_resc.max_vnics; 9149 } 9150 #endif 9151 9152 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 9153 { 9154 return bp->hw_resc.max_stat_ctxs; 9155 } 9156 9157 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 9158 { 9159 return bp->hw_resc.max_cp_rings; 9160 } 9161 9162 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 9163 { 9164 unsigned int cp = bp->hw_resc.max_cp_rings; 9165 9166 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 9167 cp -= bnxt_get_ulp_msix_num(bp); 9168 9169 return cp; 9170 } 9171 9172 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 9173 { 9174 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9175 9176 if (bp->flags & BNXT_FLAG_CHIP_P5) 9177 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 9178 9179 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 9180 } 9181 9182 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 9183 { 9184 bp->hw_resc.max_irqs = max_irqs; 9185 } 9186 9187 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 9188 { 9189 unsigned int cp; 9190 9191 cp = bnxt_get_max_func_cp_rings_for_en(bp); 9192 if (bp->flags & BNXT_FLAG_CHIP_P5) 9193 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 9194 else 9195 return cp - bp->cp_nr_rings; 9196 } 9197 9198 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 9199 { 9200 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 9201 } 9202 9203 int bnxt_get_avail_msix(struct bnxt *bp, int num) 9204 { 9205 int max_cp = bnxt_get_max_func_cp_rings(bp); 9206 int max_irq = bnxt_get_max_func_irqs(bp); 9207 int total_req = bp->cp_nr_rings + num; 9208 int max_idx, avail_msix; 9209 9210 max_idx = bp->total_irqs; 9211 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 9212 max_idx = min_t(int, bp->total_irqs, max_cp); 9213 avail_msix = max_idx - bp->cp_nr_rings; 9214 if (!BNXT_NEW_RM(bp) || avail_msix >= num) 9215 return avail_msix; 9216 9217 if (max_irq < total_req) { 9218 num = max_irq - bp->cp_nr_rings; 9219 if (num <= 0) 9220 return 0; 9221 } 9222 return num; 9223 } 9224 9225 static int bnxt_get_num_msix(struct bnxt *bp) 9226 { 9227 if (!BNXT_NEW_RM(bp)) 9228 return bnxt_get_max_func_irqs(bp); 9229 9230 return bnxt_nq_rings_in_use(bp); 9231 } 9232 9233 static int bnxt_init_msix(struct bnxt *bp) 9234 { 9235 int i, total_vecs, max, rc = 0, min = 1, ulp_msix; 9236 struct msix_entry *msix_ent; 9237 9238 total_vecs = bnxt_get_num_msix(bp); 9239 max = bnxt_get_max_func_irqs(bp); 9240 if (total_vecs > max) 9241 total_vecs = max; 9242 9243 if (!total_vecs) 9244 return 0; 9245 9246 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); 9247 if (!msix_ent) 9248 return -ENOMEM; 9249 9250 for (i = 0; i < total_vecs; i++) { 9251 msix_ent[i].entry = i; 9252 msix_ent[i].vector = 0; 9253 } 9254 9255 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 9256 min = 2; 9257 9258 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs); 9259 ulp_msix = bnxt_get_ulp_msix_num(bp); 9260 if (total_vecs < 0 || total_vecs < ulp_msix) { 9261 rc = -ENODEV; 9262 goto msix_setup_exit; 9263 } 9264 9265 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); 9266 if (bp->irq_tbl) { 9267 for (i = 0; i < total_vecs; i++) 9268 bp->irq_tbl[i].vector = msix_ent[i].vector; 9269 9270 bp->total_irqs = total_vecs; 9271 /* Trim rings based upon num of vectors allocated */ 9272 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 9273 total_vecs - ulp_msix, min == 1); 9274 if (rc) 9275 goto msix_setup_exit; 9276 9277 bp->cp_nr_rings = (min == 1) ? 9278 max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 9279 bp->tx_nr_rings + bp->rx_nr_rings; 9280 9281 } else { 9282 rc = -ENOMEM; 9283 goto msix_setup_exit; 9284 } 9285 bp->flags |= BNXT_FLAG_USING_MSIX; 9286 kfree(msix_ent); 9287 return 0; 9288 9289 msix_setup_exit: 9290 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc); 9291 kfree(bp->irq_tbl); 9292 bp->irq_tbl = NULL; 9293 pci_disable_msix(bp->pdev); 9294 kfree(msix_ent); 9295 return rc; 9296 } 9297 9298 static int bnxt_init_inta(struct bnxt *bp) 9299 { 9300 bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL); 9301 if (!bp->irq_tbl) 9302 return -ENOMEM; 9303 9304 bp->total_irqs = 1; 9305 bp->rx_nr_rings = 1; 9306 bp->tx_nr_rings = 1; 9307 bp->cp_nr_rings = 1; 9308 bp->flags |= BNXT_FLAG_SHARED_RINGS; 9309 bp->irq_tbl[0].vector = bp->pdev->irq; 9310 return 0; 9311 } 9312 9313 static int bnxt_init_int_mode(struct bnxt *bp) 9314 { 9315 int rc = -ENODEV; 9316 9317 if (bp->flags & BNXT_FLAG_MSIX_CAP) 9318 rc = bnxt_init_msix(bp); 9319 9320 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) { 9321 /* fallback to INTA */ 9322 rc = bnxt_init_inta(bp); 9323 } 9324 return rc; 9325 } 9326 9327 static void bnxt_clear_int_mode(struct bnxt *bp) 9328 { 9329 if (bp->flags & BNXT_FLAG_USING_MSIX) 9330 pci_disable_msix(bp->pdev); 9331 9332 kfree(bp->irq_tbl); 9333 bp->irq_tbl = NULL; 9334 bp->flags &= ~BNXT_FLAG_USING_MSIX; 9335 } 9336 9337 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 9338 { 9339 int tcs = netdev_get_num_tc(bp->dev); 9340 bool irq_cleared = false; 9341 int rc; 9342 9343 if (!bnxt_need_reserve_rings(bp)) 9344 return 0; 9345 9346 if (irq_re_init && BNXT_NEW_RM(bp) && 9347 bnxt_get_num_msix(bp) != bp->total_irqs) { 9348 bnxt_ulp_irq_stop(bp); 9349 bnxt_clear_int_mode(bp); 9350 irq_cleared = true; 9351 } 9352 rc = __bnxt_reserve_rings(bp); 9353 if (irq_cleared) { 9354 if (!rc) 9355 rc = bnxt_init_int_mode(bp); 9356 bnxt_ulp_irq_restart(bp, rc); 9357 } 9358 if (rc) { 9359 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 9360 return rc; 9361 } 9362 if (tcs && (bp->tx_nr_rings_per_tc * tcs != 9363 bp->tx_nr_rings - bp->tx_nr_rings_xdp)) { 9364 netdev_err(bp->dev, "tx ring reservation failure\n"); 9365 netdev_reset_tc(bp->dev); 9366 if (bp->tx_nr_rings_xdp) 9367 bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp; 9368 else 9369 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 9370 return -ENOMEM; 9371 } 9372 return 0; 9373 } 9374 9375 static void bnxt_free_irq(struct bnxt *bp) 9376 { 9377 struct bnxt_irq *irq; 9378 int i; 9379 9380 #ifdef CONFIG_RFS_ACCEL 9381 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 9382 bp->dev->rx_cpu_rmap = NULL; 9383 #endif 9384 if (!bp->irq_tbl || !bp->bnapi) 9385 return; 9386 9387 for (i = 0; i < bp->cp_nr_rings; i++) { 9388 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9389 9390 irq = &bp->irq_tbl[map_idx]; 9391 if (irq->requested) { 9392 if (irq->have_cpumask) { 9393 irq_set_affinity_hint(irq->vector, NULL); 9394 free_cpumask_var(irq->cpu_mask); 9395 irq->have_cpumask = 0; 9396 } 9397 free_irq(irq->vector, bp->bnapi[i]); 9398 } 9399 9400 irq->requested = 0; 9401 } 9402 } 9403 9404 static int bnxt_request_irq(struct bnxt *bp) 9405 { 9406 int i, j, rc = 0; 9407 unsigned long flags = 0; 9408 #ifdef CONFIG_RFS_ACCEL 9409 struct cpu_rmap *rmap; 9410 #endif 9411 9412 rc = bnxt_setup_int_mode(bp); 9413 if (rc) { 9414 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 9415 rc); 9416 return rc; 9417 } 9418 #ifdef CONFIG_RFS_ACCEL 9419 rmap = bp->dev->rx_cpu_rmap; 9420 #endif 9421 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) 9422 flags = IRQF_SHARED; 9423 9424 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 9425 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9426 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 9427 9428 #ifdef CONFIG_RFS_ACCEL 9429 if (rmap && bp->bnapi[i]->rx_ring) { 9430 rc = irq_cpu_rmap_add(rmap, irq->vector); 9431 if (rc) 9432 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 9433 j); 9434 j++; 9435 } 9436 #endif 9437 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 9438 bp->bnapi[i]); 9439 if (rc) 9440 break; 9441 9442 irq->requested = 1; 9443 9444 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 9445 int numa_node = dev_to_node(&bp->pdev->dev); 9446 9447 irq->have_cpumask = 1; 9448 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 9449 irq->cpu_mask); 9450 rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask); 9451 if (rc) { 9452 netdev_warn(bp->dev, 9453 "Set affinity failed, IRQ = %d\n", 9454 irq->vector); 9455 break; 9456 } 9457 } 9458 } 9459 return rc; 9460 } 9461 9462 static void bnxt_del_napi(struct bnxt *bp) 9463 { 9464 int i; 9465 9466 if (!bp->bnapi) 9467 return; 9468 9469 for (i = 0; i < bp->cp_nr_rings; i++) { 9470 struct bnxt_napi *bnapi = bp->bnapi[i]; 9471 9472 __netif_napi_del(&bnapi->napi); 9473 } 9474 /* We called __netif_napi_del(), we need 9475 * to respect an RCU grace period before freeing napi structures. 9476 */ 9477 synchronize_net(); 9478 } 9479 9480 static void bnxt_init_napi(struct bnxt *bp) 9481 { 9482 int i; 9483 unsigned int cp_nr_rings = bp->cp_nr_rings; 9484 struct bnxt_napi *bnapi; 9485 9486 if (bp->flags & BNXT_FLAG_USING_MSIX) { 9487 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 9488 9489 if (bp->flags & BNXT_FLAG_CHIP_P5) 9490 poll_fn = bnxt_poll_p5; 9491 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 9492 cp_nr_rings--; 9493 for (i = 0; i < cp_nr_rings; i++) { 9494 bnapi = bp->bnapi[i]; 9495 netif_napi_add(bp->dev, &bnapi->napi, poll_fn); 9496 } 9497 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 9498 bnapi = bp->bnapi[cp_nr_rings]; 9499 netif_napi_add(bp->dev, &bnapi->napi, 9500 bnxt_poll_nitroa0); 9501 } 9502 } else { 9503 bnapi = bp->bnapi[0]; 9504 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll); 9505 } 9506 } 9507 9508 static void bnxt_disable_napi(struct bnxt *bp) 9509 { 9510 int i; 9511 9512 if (!bp->bnapi || 9513 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 9514 return; 9515 9516 for (i = 0; i < bp->cp_nr_rings; i++) { 9517 struct bnxt_napi *bnapi = bp->bnapi[i]; 9518 struct bnxt_cp_ring_info *cpr; 9519 9520 cpr = &bnapi->cp_ring; 9521 if (bnapi->tx_fault) 9522 cpr->sw_stats.tx.tx_resets++; 9523 if (bnapi->in_reset) 9524 cpr->sw_stats.rx.rx_resets++; 9525 napi_disable(&bnapi->napi); 9526 if (bnapi->rx_ring) 9527 cancel_work_sync(&cpr->dim.work); 9528 } 9529 } 9530 9531 static void bnxt_enable_napi(struct bnxt *bp) 9532 { 9533 int i; 9534 9535 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 9536 for (i = 0; i < bp->cp_nr_rings; i++) { 9537 struct bnxt_napi *bnapi = bp->bnapi[i]; 9538 struct bnxt_cp_ring_info *cpr; 9539 9540 bnapi->tx_fault = 0; 9541 9542 cpr = &bnapi->cp_ring; 9543 bnapi->in_reset = false; 9544 9545 bnapi->tx_pkts = 0; 9546 9547 if (bnapi->rx_ring) { 9548 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 9549 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 9550 } 9551 napi_enable(&bnapi->napi); 9552 } 9553 } 9554 9555 void bnxt_tx_disable(struct bnxt *bp) 9556 { 9557 int i; 9558 struct bnxt_tx_ring_info *txr; 9559 9560 if (bp->tx_ring) { 9561 for (i = 0; i < bp->tx_nr_rings; i++) { 9562 txr = &bp->tx_ring[i]; 9563 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 9564 } 9565 } 9566 /* Make sure napi polls see @dev_state change */ 9567 synchronize_net(); 9568 /* Drop carrier first to prevent TX timeout */ 9569 netif_carrier_off(bp->dev); 9570 /* Stop all TX queues */ 9571 netif_tx_disable(bp->dev); 9572 } 9573 9574 void bnxt_tx_enable(struct bnxt *bp) 9575 { 9576 int i; 9577 struct bnxt_tx_ring_info *txr; 9578 9579 for (i = 0; i < bp->tx_nr_rings; i++) { 9580 txr = &bp->tx_ring[i]; 9581 WRITE_ONCE(txr->dev_state, 0); 9582 } 9583 /* Make sure napi polls see @dev_state change */ 9584 synchronize_net(); 9585 netif_tx_wake_all_queues(bp->dev); 9586 if (BNXT_LINK_IS_UP(bp)) 9587 netif_carrier_on(bp->dev); 9588 } 9589 9590 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 9591 { 9592 u8 active_fec = link_info->active_fec_sig_mode & 9593 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 9594 9595 switch (active_fec) { 9596 default: 9597 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 9598 return "None"; 9599 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 9600 return "Clause 74 BaseR"; 9601 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 9602 return "Clause 91 RS(528,514)"; 9603 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 9604 return "Clause 91 RS544_1XN"; 9605 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 9606 return "Clause 91 RS(544,514)"; 9607 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 9608 return "Clause 91 RS272_1XN"; 9609 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 9610 return "Clause 91 RS(272,257)"; 9611 } 9612 } 9613 9614 void bnxt_report_link(struct bnxt *bp) 9615 { 9616 if (BNXT_LINK_IS_UP(bp)) { 9617 const char *signal = ""; 9618 const char *flow_ctrl; 9619 const char *duplex; 9620 u32 speed; 9621 u16 fec; 9622 9623 netif_carrier_on(bp->dev); 9624 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 9625 if (speed == SPEED_UNKNOWN) { 9626 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 9627 return; 9628 } 9629 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 9630 duplex = "full"; 9631 else 9632 duplex = "half"; 9633 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 9634 flow_ctrl = "ON - receive & transmit"; 9635 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 9636 flow_ctrl = "ON - transmit"; 9637 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 9638 flow_ctrl = "ON - receive"; 9639 else 9640 flow_ctrl = "none"; 9641 if (bp->link_info.phy_qcfg_resp.option_flags & 9642 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 9643 u8 sig_mode = bp->link_info.active_fec_sig_mode & 9644 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 9645 switch (sig_mode) { 9646 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 9647 signal = "(NRZ) "; 9648 break; 9649 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 9650 signal = "(PAM4) "; 9651 break; 9652 default: 9653 break; 9654 } 9655 } 9656 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 9657 speed, signal, duplex, flow_ctrl); 9658 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 9659 netdev_info(bp->dev, "EEE is %s\n", 9660 bp->eee.eee_active ? "active" : 9661 "not active"); 9662 fec = bp->link_info.fec_cfg; 9663 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 9664 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 9665 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 9666 bnxt_report_fec(&bp->link_info)); 9667 } else { 9668 netif_carrier_off(bp->dev); 9669 netdev_err(bp->dev, "NIC Link is Down\n"); 9670 } 9671 } 9672 9673 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 9674 { 9675 if (!resp->supported_speeds_auto_mode && 9676 !resp->supported_speeds_force_mode && 9677 !resp->supported_pam4_speeds_auto_mode && 9678 !resp->supported_pam4_speeds_force_mode) 9679 return true; 9680 return false; 9681 } 9682 9683 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 9684 { 9685 struct bnxt_link_info *link_info = &bp->link_info; 9686 struct hwrm_port_phy_qcaps_output *resp; 9687 struct hwrm_port_phy_qcaps_input *req; 9688 int rc = 0; 9689 9690 if (bp->hwrm_spec_code < 0x10201) 9691 return 0; 9692 9693 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS); 9694 if (rc) 9695 return rc; 9696 9697 resp = hwrm_req_hold(bp, req); 9698 rc = hwrm_req_send(bp, req); 9699 if (rc) 9700 goto hwrm_phy_qcaps_exit; 9701 9702 bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8); 9703 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 9704 struct ethtool_eee *eee = &bp->eee; 9705 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 9706 9707 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9708 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 9709 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 9710 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 9711 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 9712 } 9713 9714 if (bp->hwrm_spec_code >= 0x10a01) { 9715 if (bnxt_phy_qcaps_no_speed(resp)) { 9716 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 9717 netdev_warn(bp->dev, "Ethernet link disabled\n"); 9718 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 9719 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 9720 netdev_info(bp->dev, "Ethernet link enabled\n"); 9721 /* Phy re-enabled, reprobe the speeds */ 9722 link_info->support_auto_speeds = 0; 9723 link_info->support_pam4_auto_speeds = 0; 9724 } 9725 } 9726 if (resp->supported_speeds_auto_mode) 9727 link_info->support_auto_speeds = 9728 le16_to_cpu(resp->supported_speeds_auto_mode); 9729 if (resp->supported_pam4_speeds_auto_mode) 9730 link_info->support_pam4_auto_speeds = 9731 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 9732 9733 bp->port_count = resp->port_cnt; 9734 9735 hwrm_phy_qcaps_exit: 9736 hwrm_req_drop(bp, req); 9737 return rc; 9738 } 9739 9740 static bool bnxt_support_dropped(u16 advertising, u16 supported) 9741 { 9742 u16 diff = advertising ^ supported; 9743 9744 return ((supported | diff) != supported); 9745 } 9746 9747 static bool bnxt_support_speed_dropped(struct bnxt_link_info *link_info) 9748 { 9749 /* Check if any advertised speeds are no longer supported. The caller 9750 * holds the link_lock mutex, so we can modify link_info settings. 9751 */ 9752 if (bnxt_support_dropped(link_info->advertising, 9753 link_info->support_auto_speeds)) { 9754 link_info->advertising = link_info->support_auto_speeds; 9755 return true; 9756 } 9757 if (bnxt_support_dropped(link_info->advertising_pam4, 9758 link_info->support_pam4_auto_speeds)) { 9759 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 9760 return true; 9761 } 9762 return false; 9763 } 9764 9765 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 9766 { 9767 struct bnxt_link_info *link_info = &bp->link_info; 9768 struct hwrm_port_phy_qcfg_output *resp; 9769 struct hwrm_port_phy_qcfg_input *req; 9770 u8 link_state = link_info->link_state; 9771 bool support_changed; 9772 int rc; 9773 9774 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG); 9775 if (rc) 9776 return rc; 9777 9778 resp = hwrm_req_hold(bp, req); 9779 rc = hwrm_req_send(bp, req); 9780 if (rc) { 9781 hwrm_req_drop(bp, req); 9782 if (BNXT_VF(bp) && rc == -ENODEV) { 9783 netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n"); 9784 rc = 0; 9785 } 9786 return rc; 9787 } 9788 9789 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 9790 link_info->phy_link_status = resp->link; 9791 link_info->duplex = resp->duplex_cfg; 9792 if (bp->hwrm_spec_code >= 0x10800) 9793 link_info->duplex = resp->duplex_state; 9794 link_info->pause = resp->pause; 9795 link_info->auto_mode = resp->auto_mode; 9796 link_info->auto_pause_setting = resp->auto_pause; 9797 link_info->lp_pause = resp->link_partner_adv_pause; 9798 link_info->force_pause_setting = resp->force_pause; 9799 link_info->duplex_setting = resp->duplex_cfg; 9800 if (link_info->phy_link_status == BNXT_LINK_LINK) 9801 link_info->link_speed = le16_to_cpu(resp->link_speed); 9802 else 9803 link_info->link_speed = 0; 9804 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 9805 link_info->force_pam4_link_speed = 9806 le16_to_cpu(resp->force_pam4_link_speed); 9807 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 9808 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 9809 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 9810 link_info->auto_pam4_link_speeds = 9811 le16_to_cpu(resp->auto_pam4_link_speed_mask); 9812 link_info->lp_auto_link_speeds = 9813 le16_to_cpu(resp->link_partner_adv_speeds); 9814 link_info->lp_auto_pam4_link_speeds = 9815 resp->link_partner_pam4_adv_speeds; 9816 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 9817 link_info->phy_ver[0] = resp->phy_maj; 9818 link_info->phy_ver[1] = resp->phy_min; 9819 link_info->phy_ver[2] = resp->phy_bld; 9820 link_info->media_type = resp->media_type; 9821 link_info->phy_type = resp->phy_type; 9822 link_info->transceiver = resp->xcvr_pkg_type; 9823 link_info->phy_addr = resp->eee_config_phy_addr & 9824 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 9825 link_info->module_status = resp->module_status; 9826 9827 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 9828 struct ethtool_eee *eee = &bp->eee; 9829 u16 fw_speeds; 9830 9831 eee->eee_active = 0; 9832 if (resp->eee_config_phy_addr & 9833 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 9834 eee->eee_active = 1; 9835 fw_speeds = le16_to_cpu( 9836 resp->link_partner_adv_eee_link_speed_mask); 9837 eee->lp_advertised = 9838 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9839 } 9840 9841 /* Pull initial EEE config */ 9842 if (!chng_link_state) { 9843 if (resp->eee_config_phy_addr & 9844 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 9845 eee->eee_enabled = 1; 9846 9847 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 9848 eee->advertised = 9849 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9850 9851 if (resp->eee_config_phy_addr & 9852 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 9853 __le32 tmr; 9854 9855 eee->tx_lpi_enabled = 1; 9856 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 9857 eee->tx_lpi_timer = le32_to_cpu(tmr) & 9858 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 9859 } 9860 } 9861 } 9862 9863 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 9864 if (bp->hwrm_spec_code >= 0x10504) { 9865 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 9866 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 9867 } 9868 /* TODO: need to add more logic to report VF link */ 9869 if (chng_link_state) { 9870 if (link_info->phy_link_status == BNXT_LINK_LINK) 9871 link_info->link_state = BNXT_LINK_STATE_UP; 9872 else 9873 link_info->link_state = BNXT_LINK_STATE_DOWN; 9874 if (link_state != link_info->link_state) 9875 bnxt_report_link(bp); 9876 } else { 9877 /* always link down if not require to update link state */ 9878 link_info->link_state = BNXT_LINK_STATE_DOWN; 9879 } 9880 hwrm_req_drop(bp, req); 9881 9882 if (!BNXT_PHY_CFG_ABLE(bp)) 9883 return 0; 9884 9885 support_changed = bnxt_support_speed_dropped(link_info); 9886 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 9887 bnxt_hwrm_set_link_setting(bp, true, false); 9888 return 0; 9889 } 9890 9891 static void bnxt_get_port_module_status(struct bnxt *bp) 9892 { 9893 struct bnxt_link_info *link_info = &bp->link_info; 9894 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 9895 u8 module_status; 9896 9897 if (bnxt_update_link(bp, true)) 9898 return; 9899 9900 module_status = link_info->module_status; 9901 switch (module_status) { 9902 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 9903 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 9904 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 9905 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 9906 bp->pf.port_id); 9907 if (bp->hwrm_spec_code >= 0x10201) { 9908 netdev_warn(bp->dev, "Module part number %s\n", 9909 resp->phy_vendor_partnumber); 9910 } 9911 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 9912 netdev_warn(bp->dev, "TX is disabled\n"); 9913 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 9914 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 9915 } 9916 } 9917 9918 static void 9919 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9920 { 9921 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 9922 if (bp->hwrm_spec_code >= 0x10201) 9923 req->auto_pause = 9924 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 9925 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9926 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 9927 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9928 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 9929 req->enables |= 9930 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9931 } else { 9932 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9933 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 9934 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9935 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 9936 req->enables |= 9937 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 9938 if (bp->hwrm_spec_code >= 0x10201) { 9939 req->auto_pause = req->force_pause; 9940 req->enables |= cpu_to_le32( 9941 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9942 } 9943 } 9944 } 9945 9946 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9947 { 9948 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 9949 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 9950 if (bp->link_info.advertising) { 9951 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 9952 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 9953 } 9954 if (bp->link_info.advertising_pam4) { 9955 req->enables |= 9956 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 9957 req->auto_link_pam4_speed_mask = 9958 cpu_to_le16(bp->link_info.advertising_pam4); 9959 } 9960 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 9961 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 9962 } else { 9963 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 9964 if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 9965 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9966 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 9967 } else { 9968 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9969 } 9970 } 9971 9972 /* tell chimp that the setting takes effect immediately */ 9973 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 9974 } 9975 9976 int bnxt_hwrm_set_pause(struct bnxt *bp) 9977 { 9978 struct hwrm_port_phy_cfg_input *req; 9979 int rc; 9980 9981 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 9982 if (rc) 9983 return rc; 9984 9985 bnxt_hwrm_set_pause_common(bp, req); 9986 9987 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 9988 bp->link_info.force_link_chng) 9989 bnxt_hwrm_set_link_common(bp, req); 9990 9991 rc = hwrm_req_send(bp, req); 9992 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 9993 /* since changing of pause setting doesn't trigger any link 9994 * change event, the driver needs to update the current pause 9995 * result upon successfully return of the phy_cfg command 9996 */ 9997 bp->link_info.pause = 9998 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 9999 bp->link_info.auto_pause_setting = 0; 10000 if (!bp->link_info.force_link_chng) 10001 bnxt_report_link(bp); 10002 } 10003 bp->link_info.force_link_chng = false; 10004 return rc; 10005 } 10006 10007 static void bnxt_hwrm_set_eee(struct bnxt *bp, 10008 struct hwrm_port_phy_cfg_input *req) 10009 { 10010 struct ethtool_eee *eee = &bp->eee; 10011 10012 if (eee->eee_enabled) { 10013 u16 eee_speeds; 10014 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 10015 10016 if (eee->tx_lpi_enabled) 10017 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 10018 else 10019 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 10020 10021 req->flags |= cpu_to_le32(flags); 10022 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 10023 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 10024 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 10025 } else { 10026 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 10027 } 10028 } 10029 10030 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 10031 { 10032 struct hwrm_port_phy_cfg_input *req; 10033 int rc; 10034 10035 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 10036 if (rc) 10037 return rc; 10038 10039 if (set_pause) 10040 bnxt_hwrm_set_pause_common(bp, req); 10041 10042 bnxt_hwrm_set_link_common(bp, req); 10043 10044 if (set_eee) 10045 bnxt_hwrm_set_eee(bp, req); 10046 return hwrm_req_send(bp, req); 10047 } 10048 10049 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 10050 { 10051 struct hwrm_port_phy_cfg_input *req; 10052 int rc; 10053 10054 if (!BNXT_SINGLE_PF(bp)) 10055 return 0; 10056 10057 if (pci_num_vf(bp->pdev) && 10058 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 10059 return 0; 10060 10061 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 10062 if (rc) 10063 return rc; 10064 10065 req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 10066 rc = hwrm_req_send(bp, req); 10067 if (!rc) { 10068 mutex_lock(&bp->link_lock); 10069 /* Device is not obliged link down in certain scenarios, even 10070 * when forced. Setting the state unknown is consistent with 10071 * driver startup and will force link state to be reported 10072 * during subsequent open based on PORT_PHY_QCFG. 10073 */ 10074 bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN; 10075 mutex_unlock(&bp->link_lock); 10076 } 10077 return rc; 10078 } 10079 10080 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 10081 { 10082 #ifdef CONFIG_TEE_BNXT_FW 10083 int rc = tee_bnxt_fw_load(); 10084 10085 if (rc) 10086 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 10087 10088 return rc; 10089 #else 10090 netdev_err(bp->dev, "OP-TEE not supported\n"); 10091 return -ENODEV; 10092 #endif 10093 } 10094 10095 static int bnxt_try_recover_fw(struct bnxt *bp) 10096 { 10097 if (bp->fw_health && bp->fw_health->status_reliable) { 10098 int retry = 0, rc; 10099 u32 sts; 10100 10101 do { 10102 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 10103 rc = bnxt_hwrm_poll(bp); 10104 if (!BNXT_FW_IS_BOOTING(sts) && 10105 !BNXT_FW_IS_RECOVERING(sts)) 10106 break; 10107 retry++; 10108 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 10109 10110 if (!BNXT_FW_IS_HEALTHY(sts)) { 10111 netdev_err(bp->dev, 10112 "Firmware not responding, status: 0x%x\n", 10113 sts); 10114 rc = -ENODEV; 10115 } 10116 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 10117 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 10118 return bnxt_fw_reset_via_optee(bp); 10119 } 10120 return rc; 10121 } 10122 10123 return -ENODEV; 10124 } 10125 10126 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset) 10127 { 10128 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 10129 10130 if (!BNXT_NEW_RM(bp)) 10131 return; /* no resource reservations required */ 10132 10133 hw_resc->resv_cp_rings = 0; 10134 hw_resc->resv_stat_ctxs = 0; 10135 hw_resc->resv_irqs = 0; 10136 hw_resc->resv_tx_rings = 0; 10137 hw_resc->resv_rx_rings = 0; 10138 hw_resc->resv_hw_ring_grps = 0; 10139 hw_resc->resv_vnics = 0; 10140 if (!fw_reset) { 10141 bp->tx_nr_rings = 0; 10142 bp->rx_nr_rings = 0; 10143 } 10144 } 10145 10146 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset) 10147 { 10148 int rc; 10149 10150 if (!BNXT_NEW_RM(bp)) 10151 return 0; /* no resource reservations required */ 10152 10153 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 10154 if (rc) 10155 netdev_err(bp->dev, "resc_qcaps failed\n"); 10156 10157 bnxt_clear_reservations(bp, fw_reset); 10158 10159 return rc; 10160 } 10161 10162 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 10163 { 10164 struct hwrm_func_drv_if_change_output *resp; 10165 struct hwrm_func_drv_if_change_input *req; 10166 bool fw_reset = !bp->irq_tbl; 10167 bool resc_reinit = false; 10168 int rc, retry = 0; 10169 u32 flags = 0; 10170 10171 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 10172 return 0; 10173 10174 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE); 10175 if (rc) 10176 return rc; 10177 10178 if (up) 10179 req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 10180 resp = hwrm_req_hold(bp, req); 10181 10182 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 10183 while (retry < BNXT_FW_IF_RETRY) { 10184 rc = hwrm_req_send(bp, req); 10185 if (rc != -EAGAIN) 10186 break; 10187 10188 msleep(50); 10189 retry++; 10190 } 10191 10192 if (rc == -EAGAIN) { 10193 hwrm_req_drop(bp, req); 10194 return rc; 10195 } else if (!rc) { 10196 flags = le32_to_cpu(resp->flags); 10197 } else if (up) { 10198 rc = bnxt_try_recover_fw(bp); 10199 fw_reset = true; 10200 } 10201 hwrm_req_drop(bp, req); 10202 if (rc) 10203 return rc; 10204 10205 if (!up) { 10206 bnxt_inv_fw_health_reg(bp); 10207 return 0; 10208 } 10209 10210 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 10211 resc_reinit = true; 10212 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE || 10213 test_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) 10214 fw_reset = true; 10215 else 10216 bnxt_remap_fw_health_regs(bp); 10217 10218 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 10219 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 10220 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10221 return -ENODEV; 10222 } 10223 if (resc_reinit || fw_reset) { 10224 if (fw_reset) { 10225 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 10226 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 10227 bnxt_ulp_stop(bp); 10228 bnxt_free_ctx_mem(bp); 10229 kfree(bp->ctx); 10230 bp->ctx = NULL; 10231 bnxt_dcb_free(bp); 10232 rc = bnxt_fw_init_one(bp); 10233 if (rc) { 10234 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 10235 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10236 return rc; 10237 } 10238 bnxt_clear_int_mode(bp); 10239 rc = bnxt_init_int_mode(bp); 10240 if (rc) { 10241 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 10242 netdev_err(bp->dev, "init int mode failed\n"); 10243 return rc; 10244 } 10245 } 10246 rc = bnxt_cancel_reservations(bp, fw_reset); 10247 } 10248 return rc; 10249 } 10250 10251 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 10252 { 10253 struct hwrm_port_led_qcaps_output *resp; 10254 struct hwrm_port_led_qcaps_input *req; 10255 struct bnxt_pf_info *pf = &bp->pf; 10256 int rc; 10257 10258 bp->num_leds = 0; 10259 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 10260 return 0; 10261 10262 rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS); 10263 if (rc) 10264 return rc; 10265 10266 req->port_id = cpu_to_le16(pf->port_id); 10267 resp = hwrm_req_hold(bp, req); 10268 rc = hwrm_req_send(bp, req); 10269 if (rc) { 10270 hwrm_req_drop(bp, req); 10271 return rc; 10272 } 10273 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 10274 int i; 10275 10276 bp->num_leds = resp->num_leds; 10277 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 10278 bp->num_leds); 10279 for (i = 0; i < bp->num_leds; i++) { 10280 struct bnxt_led_info *led = &bp->leds[i]; 10281 __le16 caps = led->led_state_caps; 10282 10283 if (!led->led_group_id || 10284 !BNXT_LED_ALT_BLINK_CAP(caps)) { 10285 bp->num_leds = 0; 10286 break; 10287 } 10288 } 10289 } 10290 hwrm_req_drop(bp, req); 10291 return 0; 10292 } 10293 10294 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 10295 { 10296 struct hwrm_wol_filter_alloc_output *resp; 10297 struct hwrm_wol_filter_alloc_input *req; 10298 int rc; 10299 10300 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC); 10301 if (rc) 10302 return rc; 10303 10304 req->port_id = cpu_to_le16(bp->pf.port_id); 10305 req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 10306 req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 10307 memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN); 10308 10309 resp = hwrm_req_hold(bp, req); 10310 rc = hwrm_req_send(bp, req); 10311 if (!rc) 10312 bp->wol_filter_id = resp->wol_filter_id; 10313 hwrm_req_drop(bp, req); 10314 return rc; 10315 } 10316 10317 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 10318 { 10319 struct hwrm_wol_filter_free_input *req; 10320 int rc; 10321 10322 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE); 10323 if (rc) 10324 return rc; 10325 10326 req->port_id = cpu_to_le16(bp->pf.port_id); 10327 req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 10328 req->wol_filter_id = bp->wol_filter_id; 10329 10330 return hwrm_req_send(bp, req); 10331 } 10332 10333 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 10334 { 10335 struct hwrm_wol_filter_qcfg_output *resp; 10336 struct hwrm_wol_filter_qcfg_input *req; 10337 u16 next_handle = 0; 10338 int rc; 10339 10340 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG); 10341 if (rc) 10342 return rc; 10343 10344 req->port_id = cpu_to_le16(bp->pf.port_id); 10345 req->handle = cpu_to_le16(handle); 10346 resp = hwrm_req_hold(bp, req); 10347 rc = hwrm_req_send(bp, req); 10348 if (!rc) { 10349 next_handle = le16_to_cpu(resp->next_handle); 10350 if (next_handle != 0) { 10351 if (resp->wol_type == 10352 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 10353 bp->wol = 1; 10354 bp->wol_filter_id = resp->wol_filter_id; 10355 } 10356 } 10357 } 10358 hwrm_req_drop(bp, req); 10359 return next_handle; 10360 } 10361 10362 static void bnxt_get_wol_settings(struct bnxt *bp) 10363 { 10364 u16 handle = 0; 10365 10366 bp->wol = 0; 10367 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 10368 return; 10369 10370 do { 10371 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 10372 } while (handle && handle != 0xffff); 10373 } 10374 10375 static bool bnxt_eee_config_ok(struct bnxt *bp) 10376 { 10377 struct ethtool_eee *eee = &bp->eee; 10378 struct bnxt_link_info *link_info = &bp->link_info; 10379 10380 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 10381 return true; 10382 10383 if (eee->eee_enabled) { 10384 u32 advertising = 10385 _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0); 10386 10387 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 10388 eee->eee_enabled = 0; 10389 return false; 10390 } 10391 if (eee->advertised & ~advertising) { 10392 eee->advertised = advertising & eee->supported; 10393 return false; 10394 } 10395 } 10396 return true; 10397 } 10398 10399 static int bnxt_update_phy_setting(struct bnxt *bp) 10400 { 10401 int rc; 10402 bool update_link = false; 10403 bool update_pause = false; 10404 bool update_eee = false; 10405 struct bnxt_link_info *link_info = &bp->link_info; 10406 10407 rc = bnxt_update_link(bp, true); 10408 if (rc) { 10409 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 10410 rc); 10411 return rc; 10412 } 10413 if (!BNXT_SINGLE_PF(bp)) 10414 return 0; 10415 10416 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 10417 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 10418 link_info->req_flow_ctrl) 10419 update_pause = true; 10420 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 10421 link_info->force_pause_setting != link_info->req_flow_ctrl) 10422 update_pause = true; 10423 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 10424 if (BNXT_AUTO_MODE(link_info->auto_mode)) 10425 update_link = true; 10426 if (bnxt_force_speed_updated(link_info)) 10427 update_link = true; 10428 if (link_info->req_duplex != link_info->duplex_setting) 10429 update_link = true; 10430 } else { 10431 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 10432 update_link = true; 10433 if (bnxt_auto_speed_updated(link_info)) 10434 update_link = true; 10435 } 10436 10437 /* The last close may have shutdown the link, so need to call 10438 * PHY_CFG to bring it back up. 10439 */ 10440 if (!BNXT_LINK_IS_UP(bp)) 10441 update_link = true; 10442 10443 if (!bnxt_eee_config_ok(bp)) 10444 update_eee = true; 10445 10446 if (update_link) 10447 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 10448 else if (update_pause) 10449 rc = bnxt_hwrm_set_pause(bp); 10450 if (rc) { 10451 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 10452 rc); 10453 return rc; 10454 } 10455 10456 return rc; 10457 } 10458 10459 /* Common routine to pre-map certain register block to different GRC window. 10460 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows 10461 * in PF and 3 windows in VF that can be customized to map in different 10462 * register blocks. 10463 */ 10464 static void bnxt_preset_reg_win(struct bnxt *bp) 10465 { 10466 if (BNXT_PF(bp)) { 10467 /* CAG registers map to GRC window #4 */ 10468 writel(BNXT_CAG_REG_BASE, 10469 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); 10470 } 10471 } 10472 10473 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 10474 10475 static int bnxt_reinit_after_abort(struct bnxt *bp) 10476 { 10477 int rc; 10478 10479 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 10480 return -EBUSY; 10481 10482 if (bp->dev->reg_state == NETREG_UNREGISTERED) 10483 return -ENODEV; 10484 10485 rc = bnxt_fw_init_one(bp); 10486 if (!rc) { 10487 bnxt_clear_int_mode(bp); 10488 rc = bnxt_init_int_mode(bp); 10489 if (!rc) { 10490 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10491 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 10492 } 10493 } 10494 return rc; 10495 } 10496 10497 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10498 { 10499 int rc = 0; 10500 10501 bnxt_preset_reg_win(bp); 10502 netif_carrier_off(bp->dev); 10503 if (irq_re_init) { 10504 /* Reserve rings now if none were reserved at driver probe. */ 10505 rc = bnxt_init_dflt_ring_mode(bp); 10506 if (rc) { 10507 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 10508 return rc; 10509 } 10510 } 10511 rc = bnxt_reserve_rings(bp, irq_re_init); 10512 if (rc) 10513 return rc; 10514 if ((bp->flags & BNXT_FLAG_RFS) && 10515 !(bp->flags & BNXT_FLAG_USING_MSIX)) { 10516 /* disable RFS if falling back to INTA */ 10517 bp->dev->hw_features &= ~NETIF_F_NTUPLE; 10518 bp->flags &= ~BNXT_FLAG_RFS; 10519 } 10520 10521 rc = bnxt_alloc_mem(bp, irq_re_init); 10522 if (rc) { 10523 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 10524 goto open_err_free_mem; 10525 } 10526 10527 if (irq_re_init) { 10528 bnxt_init_napi(bp); 10529 rc = bnxt_request_irq(bp); 10530 if (rc) { 10531 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 10532 goto open_err_irq; 10533 } 10534 } 10535 10536 rc = bnxt_init_nic(bp, irq_re_init); 10537 if (rc) { 10538 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 10539 goto open_err_irq; 10540 } 10541 10542 bnxt_enable_napi(bp); 10543 bnxt_debug_dev_init(bp); 10544 10545 if (link_re_init) { 10546 mutex_lock(&bp->link_lock); 10547 rc = bnxt_update_phy_setting(bp); 10548 mutex_unlock(&bp->link_lock); 10549 if (rc) { 10550 netdev_warn(bp->dev, "failed to update phy settings\n"); 10551 if (BNXT_SINGLE_PF(bp)) { 10552 bp->link_info.phy_retry = true; 10553 bp->link_info.phy_retry_expires = 10554 jiffies + 5 * HZ; 10555 } 10556 } 10557 } 10558 10559 if (irq_re_init) 10560 udp_tunnel_nic_reset_ntf(bp->dev); 10561 10562 if (bp->tx_nr_rings_xdp < num_possible_cpus()) { 10563 if (!static_key_enabled(&bnxt_xdp_locking_key)) 10564 static_branch_enable(&bnxt_xdp_locking_key); 10565 } else if (static_key_enabled(&bnxt_xdp_locking_key)) { 10566 static_branch_disable(&bnxt_xdp_locking_key); 10567 } 10568 set_bit(BNXT_STATE_OPEN, &bp->state); 10569 bnxt_enable_int(bp); 10570 /* Enable TX queues */ 10571 bnxt_tx_enable(bp); 10572 mod_timer(&bp->timer, jiffies + bp->current_interval); 10573 /* Poll link status and check for SFP+ module status */ 10574 mutex_lock(&bp->link_lock); 10575 bnxt_get_port_module_status(bp); 10576 mutex_unlock(&bp->link_lock); 10577 10578 /* VF-reps may need to be re-opened after the PF is re-opened */ 10579 if (BNXT_PF(bp)) 10580 bnxt_vf_reps_open(bp); 10581 bnxt_ptp_init_rtc(bp, true); 10582 bnxt_ptp_cfg_tstamp_filters(bp); 10583 return 0; 10584 10585 open_err_irq: 10586 bnxt_del_napi(bp); 10587 10588 open_err_free_mem: 10589 bnxt_free_skbs(bp); 10590 bnxt_free_irq(bp); 10591 bnxt_free_mem(bp, true); 10592 return rc; 10593 } 10594 10595 /* rtnl_lock held */ 10596 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10597 { 10598 int rc = 0; 10599 10600 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 10601 rc = -EIO; 10602 if (!rc) 10603 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 10604 if (rc) { 10605 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 10606 dev_close(bp->dev); 10607 } 10608 return rc; 10609 } 10610 10611 /* rtnl_lock held, open the NIC half way by allocating all resources, but 10612 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline 10613 * self tests. 10614 */ 10615 int bnxt_half_open_nic(struct bnxt *bp) 10616 { 10617 int rc = 0; 10618 10619 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 10620 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); 10621 rc = -ENODEV; 10622 goto half_open_err; 10623 } 10624 10625 rc = bnxt_alloc_mem(bp, true); 10626 if (rc) { 10627 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 10628 goto half_open_err; 10629 } 10630 set_bit(BNXT_STATE_HALF_OPEN, &bp->state); 10631 rc = bnxt_init_nic(bp, true); 10632 if (rc) { 10633 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 10634 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 10635 goto half_open_err; 10636 } 10637 return 0; 10638 10639 half_open_err: 10640 bnxt_free_skbs(bp); 10641 bnxt_free_mem(bp, true); 10642 dev_close(bp->dev); 10643 return rc; 10644 } 10645 10646 /* rtnl_lock held, this call can only be made after a previous successful 10647 * call to bnxt_half_open_nic(). 10648 */ 10649 void bnxt_half_close_nic(struct bnxt *bp) 10650 { 10651 bnxt_hwrm_resource_free(bp, false, true); 10652 bnxt_free_skbs(bp); 10653 bnxt_free_mem(bp, true); 10654 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 10655 } 10656 10657 void bnxt_reenable_sriov(struct bnxt *bp) 10658 { 10659 if (BNXT_PF(bp)) { 10660 struct bnxt_pf_info *pf = &bp->pf; 10661 int n = pf->active_vfs; 10662 10663 if (n) 10664 bnxt_cfg_hw_sriov(bp, &n, true); 10665 } 10666 } 10667 10668 static int bnxt_open(struct net_device *dev) 10669 { 10670 struct bnxt *bp = netdev_priv(dev); 10671 int rc; 10672 10673 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 10674 rc = bnxt_reinit_after_abort(bp); 10675 if (rc) { 10676 if (rc == -EBUSY) 10677 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 10678 else 10679 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 10680 return -ENODEV; 10681 } 10682 } 10683 10684 rc = bnxt_hwrm_if_change(bp, true); 10685 if (rc) 10686 return rc; 10687 10688 rc = __bnxt_open_nic(bp, true, true); 10689 if (rc) { 10690 bnxt_hwrm_if_change(bp, false); 10691 } else { 10692 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 10693 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10694 bnxt_ulp_start(bp, 0); 10695 bnxt_reenable_sriov(bp); 10696 } 10697 } 10698 } 10699 10700 return rc; 10701 } 10702 10703 static bool bnxt_drv_busy(struct bnxt *bp) 10704 { 10705 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 10706 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 10707 } 10708 10709 static void bnxt_get_ring_stats(struct bnxt *bp, 10710 struct rtnl_link_stats64 *stats); 10711 10712 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 10713 bool link_re_init) 10714 { 10715 /* Close the VF-reps before closing PF */ 10716 if (BNXT_PF(bp)) 10717 bnxt_vf_reps_close(bp); 10718 10719 /* Change device state to avoid TX queue wake up's */ 10720 bnxt_tx_disable(bp); 10721 10722 clear_bit(BNXT_STATE_OPEN, &bp->state); 10723 smp_mb__after_atomic(); 10724 while (bnxt_drv_busy(bp)) 10725 msleep(20); 10726 10727 /* Flush rings and disable interrupts */ 10728 bnxt_shutdown_nic(bp, irq_re_init); 10729 10730 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 10731 10732 bnxt_debug_dev_exit(bp); 10733 bnxt_disable_napi(bp); 10734 del_timer_sync(&bp->timer); 10735 bnxt_free_skbs(bp); 10736 10737 /* Save ring stats before shutdown */ 10738 if (bp->bnapi && irq_re_init) { 10739 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 10740 bnxt_get_ring_err_stats(bp, &bp->ring_err_stats_prev); 10741 } 10742 if (irq_re_init) { 10743 bnxt_free_irq(bp); 10744 bnxt_del_napi(bp); 10745 } 10746 bnxt_free_mem(bp, irq_re_init); 10747 } 10748 10749 void bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10750 { 10751 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10752 /* If we get here, it means firmware reset is in progress 10753 * while we are trying to close. We can safely proceed with 10754 * the close because we are holding rtnl_lock(). Some firmware 10755 * messages may fail as we proceed to close. We set the 10756 * ABORT_ERR flag here so that the FW reset thread will later 10757 * abort when it gets the rtnl_lock() and sees the flag. 10758 */ 10759 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 10760 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10761 } 10762 10763 #ifdef CONFIG_BNXT_SRIOV 10764 if (bp->sriov_cfg) { 10765 int rc; 10766 10767 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 10768 !bp->sriov_cfg, 10769 BNXT_SRIOV_CFG_WAIT_TMO); 10770 if (!rc) 10771 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete, proceeding to close!\n"); 10772 else if (rc < 0) 10773 netdev_warn(bp->dev, "SRIOV config operation interrupted, proceeding to close!\n"); 10774 } 10775 #endif 10776 __bnxt_close_nic(bp, irq_re_init, link_re_init); 10777 } 10778 10779 static int bnxt_close(struct net_device *dev) 10780 { 10781 struct bnxt *bp = netdev_priv(dev); 10782 10783 bnxt_close_nic(bp, true, true); 10784 bnxt_hwrm_shutdown_link(bp); 10785 bnxt_hwrm_if_change(bp, false); 10786 return 0; 10787 } 10788 10789 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 10790 u16 *val) 10791 { 10792 struct hwrm_port_phy_mdio_read_output *resp; 10793 struct hwrm_port_phy_mdio_read_input *req; 10794 int rc; 10795 10796 if (bp->hwrm_spec_code < 0x10a00) 10797 return -EOPNOTSUPP; 10798 10799 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ); 10800 if (rc) 10801 return rc; 10802 10803 req->port_id = cpu_to_le16(bp->pf.port_id); 10804 req->phy_addr = phy_addr; 10805 req->reg_addr = cpu_to_le16(reg & 0x1f); 10806 if (mdio_phy_id_is_c45(phy_addr)) { 10807 req->cl45_mdio = 1; 10808 req->phy_addr = mdio_phy_id_prtad(phy_addr); 10809 req->dev_addr = mdio_phy_id_devad(phy_addr); 10810 req->reg_addr = cpu_to_le16(reg); 10811 } 10812 10813 resp = hwrm_req_hold(bp, req); 10814 rc = hwrm_req_send(bp, req); 10815 if (!rc) 10816 *val = le16_to_cpu(resp->reg_data); 10817 hwrm_req_drop(bp, req); 10818 return rc; 10819 } 10820 10821 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 10822 u16 val) 10823 { 10824 struct hwrm_port_phy_mdio_write_input *req; 10825 int rc; 10826 10827 if (bp->hwrm_spec_code < 0x10a00) 10828 return -EOPNOTSUPP; 10829 10830 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE); 10831 if (rc) 10832 return rc; 10833 10834 req->port_id = cpu_to_le16(bp->pf.port_id); 10835 req->phy_addr = phy_addr; 10836 req->reg_addr = cpu_to_le16(reg & 0x1f); 10837 if (mdio_phy_id_is_c45(phy_addr)) { 10838 req->cl45_mdio = 1; 10839 req->phy_addr = mdio_phy_id_prtad(phy_addr); 10840 req->dev_addr = mdio_phy_id_devad(phy_addr); 10841 req->reg_addr = cpu_to_le16(reg); 10842 } 10843 req->reg_data = cpu_to_le16(val); 10844 10845 return hwrm_req_send(bp, req); 10846 } 10847 10848 /* rtnl_lock held */ 10849 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 10850 { 10851 struct mii_ioctl_data *mdio = if_mii(ifr); 10852 struct bnxt *bp = netdev_priv(dev); 10853 int rc; 10854 10855 switch (cmd) { 10856 case SIOCGMIIPHY: 10857 mdio->phy_id = bp->link_info.phy_addr; 10858 10859 fallthrough; 10860 case SIOCGMIIREG: { 10861 u16 mii_regval = 0; 10862 10863 if (!netif_running(dev)) 10864 return -EAGAIN; 10865 10866 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 10867 &mii_regval); 10868 mdio->val_out = mii_regval; 10869 return rc; 10870 } 10871 10872 case SIOCSMIIREG: 10873 if (!netif_running(dev)) 10874 return -EAGAIN; 10875 10876 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 10877 mdio->val_in); 10878 10879 case SIOCSHWTSTAMP: 10880 return bnxt_hwtstamp_set(dev, ifr); 10881 10882 case SIOCGHWTSTAMP: 10883 return bnxt_hwtstamp_get(dev, ifr); 10884 10885 default: 10886 /* do nothing */ 10887 break; 10888 } 10889 return -EOPNOTSUPP; 10890 } 10891 10892 static void bnxt_get_ring_stats(struct bnxt *bp, 10893 struct rtnl_link_stats64 *stats) 10894 { 10895 int i; 10896 10897 for (i = 0; i < bp->cp_nr_rings; i++) { 10898 struct bnxt_napi *bnapi = bp->bnapi[i]; 10899 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 10900 u64 *sw = cpr->stats.sw_stats; 10901 10902 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 10903 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10904 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 10905 10906 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 10907 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 10908 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 10909 10910 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 10911 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 10912 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 10913 10914 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 10915 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 10916 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 10917 10918 stats->rx_missed_errors += 10919 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 10920 10921 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10922 10923 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 10924 10925 stats->rx_dropped += 10926 cpr->sw_stats.rx.rx_netpoll_discards + 10927 cpr->sw_stats.rx.rx_oom_discards; 10928 } 10929 } 10930 10931 static void bnxt_add_prev_stats(struct bnxt *bp, 10932 struct rtnl_link_stats64 *stats) 10933 { 10934 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 10935 10936 stats->rx_packets += prev_stats->rx_packets; 10937 stats->tx_packets += prev_stats->tx_packets; 10938 stats->rx_bytes += prev_stats->rx_bytes; 10939 stats->tx_bytes += prev_stats->tx_bytes; 10940 stats->rx_missed_errors += prev_stats->rx_missed_errors; 10941 stats->multicast += prev_stats->multicast; 10942 stats->rx_dropped += prev_stats->rx_dropped; 10943 stats->tx_dropped += prev_stats->tx_dropped; 10944 } 10945 10946 static void 10947 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 10948 { 10949 struct bnxt *bp = netdev_priv(dev); 10950 10951 set_bit(BNXT_STATE_READ_STATS, &bp->state); 10952 /* Make sure bnxt_close_nic() sees that we are reading stats before 10953 * we check the BNXT_STATE_OPEN flag. 10954 */ 10955 smp_mb__after_atomic(); 10956 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 10957 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10958 *stats = bp->net_stats_prev; 10959 return; 10960 } 10961 10962 bnxt_get_ring_stats(bp, stats); 10963 bnxt_add_prev_stats(bp, stats); 10964 10965 if (bp->flags & BNXT_FLAG_PORT_STATS) { 10966 u64 *rx = bp->port_stats.sw_stats; 10967 u64 *tx = bp->port_stats.sw_stats + 10968 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10969 10970 stats->rx_crc_errors = 10971 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 10972 stats->rx_frame_errors = 10973 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 10974 stats->rx_length_errors = 10975 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 10976 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 10977 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 10978 stats->rx_errors = 10979 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 10980 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 10981 stats->collisions = 10982 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 10983 stats->tx_fifo_errors = 10984 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 10985 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 10986 } 10987 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10988 } 10989 10990 static void bnxt_get_one_ring_err_stats(struct bnxt *bp, 10991 struct bnxt_total_ring_err_stats *stats, 10992 struct bnxt_cp_ring_info *cpr) 10993 { 10994 struct bnxt_sw_stats *sw_stats = &cpr->sw_stats; 10995 u64 *hw_stats = cpr->stats.sw_stats; 10996 10997 stats->rx_total_l4_csum_errors += sw_stats->rx.rx_l4_csum_errors; 10998 stats->rx_total_resets += sw_stats->rx.rx_resets; 10999 stats->rx_total_buf_errors += sw_stats->rx.rx_buf_errors; 11000 stats->rx_total_oom_discards += sw_stats->rx.rx_oom_discards; 11001 stats->rx_total_netpoll_discards += sw_stats->rx.rx_netpoll_discards; 11002 stats->rx_total_ring_discards += 11003 BNXT_GET_RING_STATS64(hw_stats, rx_discard_pkts); 11004 stats->tx_total_resets += sw_stats->tx.tx_resets; 11005 stats->tx_total_ring_discards += 11006 BNXT_GET_RING_STATS64(hw_stats, tx_discard_pkts); 11007 stats->total_missed_irqs += sw_stats->cmn.missed_irqs; 11008 } 11009 11010 void bnxt_get_ring_err_stats(struct bnxt *bp, 11011 struct bnxt_total_ring_err_stats *stats) 11012 { 11013 int i; 11014 11015 for (i = 0; i < bp->cp_nr_rings; i++) 11016 bnxt_get_one_ring_err_stats(bp, stats, &bp->bnapi[i]->cp_ring); 11017 } 11018 11019 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 11020 { 11021 struct net_device *dev = bp->dev; 11022 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 11023 struct netdev_hw_addr *ha; 11024 u8 *haddr; 11025 int mc_count = 0; 11026 bool update = false; 11027 int off = 0; 11028 11029 netdev_for_each_mc_addr(ha, dev) { 11030 if (mc_count >= BNXT_MAX_MC_ADDRS) { 11031 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 11032 vnic->mc_list_count = 0; 11033 return false; 11034 } 11035 haddr = ha->addr; 11036 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 11037 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 11038 update = true; 11039 } 11040 off += ETH_ALEN; 11041 mc_count++; 11042 } 11043 if (mc_count) 11044 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 11045 11046 if (mc_count != vnic->mc_list_count) { 11047 vnic->mc_list_count = mc_count; 11048 update = true; 11049 } 11050 return update; 11051 } 11052 11053 static bool bnxt_uc_list_updated(struct bnxt *bp) 11054 { 11055 struct net_device *dev = bp->dev; 11056 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 11057 struct netdev_hw_addr *ha; 11058 int off = 0; 11059 11060 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 11061 return true; 11062 11063 netdev_for_each_uc_addr(ha, dev) { 11064 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 11065 return true; 11066 11067 off += ETH_ALEN; 11068 } 11069 return false; 11070 } 11071 11072 static void bnxt_set_rx_mode(struct net_device *dev) 11073 { 11074 struct bnxt *bp = netdev_priv(dev); 11075 struct bnxt_vnic_info *vnic; 11076 bool mc_update = false; 11077 bool uc_update; 11078 u32 mask; 11079 11080 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 11081 return; 11082 11083 vnic = &bp->vnic_info[0]; 11084 mask = vnic->rx_mask; 11085 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 11086 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 11087 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 11088 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 11089 11090 if (dev->flags & IFF_PROMISC) 11091 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 11092 11093 uc_update = bnxt_uc_list_updated(bp); 11094 11095 if (dev->flags & IFF_BROADCAST) 11096 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 11097 if (dev->flags & IFF_ALLMULTI) { 11098 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 11099 vnic->mc_list_count = 0; 11100 } else if (dev->flags & IFF_MULTICAST) { 11101 mc_update = bnxt_mc_list_updated(bp, &mask); 11102 } 11103 11104 if (mask != vnic->rx_mask || uc_update || mc_update) { 11105 vnic->rx_mask = mask; 11106 11107 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 11108 } 11109 } 11110 11111 static int bnxt_cfg_rx_mode(struct bnxt *bp) 11112 { 11113 struct net_device *dev = bp->dev; 11114 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 11115 struct hwrm_cfa_l2_filter_free_input *req; 11116 struct netdev_hw_addr *ha; 11117 int i, off = 0, rc; 11118 bool uc_update; 11119 11120 netif_addr_lock_bh(dev); 11121 uc_update = bnxt_uc_list_updated(bp); 11122 netif_addr_unlock_bh(dev); 11123 11124 if (!uc_update) 11125 goto skip_uc; 11126 11127 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 11128 if (rc) 11129 return rc; 11130 hwrm_req_hold(bp, req); 11131 for (i = 1; i < vnic->uc_filter_count; i++) { 11132 req->l2_filter_id = vnic->fw_l2_filter_id[i]; 11133 11134 rc = hwrm_req_send(bp, req); 11135 } 11136 hwrm_req_drop(bp, req); 11137 11138 vnic->uc_filter_count = 1; 11139 11140 netif_addr_lock_bh(dev); 11141 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 11142 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 11143 } else { 11144 netdev_for_each_uc_addr(ha, dev) { 11145 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 11146 off += ETH_ALEN; 11147 vnic->uc_filter_count++; 11148 } 11149 } 11150 netif_addr_unlock_bh(dev); 11151 11152 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 11153 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 11154 if (rc) { 11155 if (BNXT_VF(bp) && rc == -ENODEV) { 11156 if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 11157 netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n"); 11158 else 11159 netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n"); 11160 rc = 0; 11161 } else { 11162 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 11163 } 11164 vnic->uc_filter_count = i; 11165 return rc; 11166 } 11167 } 11168 if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 11169 netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n"); 11170 11171 skip_uc: 11172 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 11173 !bnxt_promisc_ok(bp)) 11174 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 11175 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 11176 if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) { 11177 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 11178 rc); 11179 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 11180 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 11181 vnic->mc_list_count = 0; 11182 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 11183 } 11184 if (rc) 11185 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 11186 rc); 11187 11188 return rc; 11189 } 11190 11191 static bool bnxt_can_reserve_rings(struct bnxt *bp) 11192 { 11193 #ifdef CONFIG_BNXT_SRIOV 11194 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 11195 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 11196 11197 /* No minimum rings were provisioned by the PF. Don't 11198 * reserve rings by default when device is down. 11199 */ 11200 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 11201 return true; 11202 11203 if (!netif_running(bp->dev)) 11204 return false; 11205 } 11206 #endif 11207 return true; 11208 } 11209 11210 /* If the chip and firmware supports RFS */ 11211 static bool bnxt_rfs_supported(struct bnxt *bp) 11212 { 11213 if (bp->flags & BNXT_FLAG_CHIP_P5) { 11214 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 11215 return true; 11216 return false; 11217 } 11218 /* 212 firmware is broken for aRFS */ 11219 if (BNXT_FW_MAJ(bp) == 212) 11220 return false; 11221 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 11222 return true; 11223 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 11224 return true; 11225 return false; 11226 } 11227 11228 /* If runtime conditions support RFS */ 11229 static bool bnxt_rfs_capable(struct bnxt *bp) 11230 { 11231 #ifdef CONFIG_RFS_ACCEL 11232 int vnics, max_vnics, max_rss_ctxs; 11233 11234 if (bp->flags & BNXT_FLAG_CHIP_P5) 11235 return bnxt_rfs_supported(bp); 11236 if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings) 11237 return false; 11238 11239 vnics = 1 + bp->rx_nr_rings; 11240 max_vnics = bnxt_get_max_func_vnics(bp); 11241 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 11242 11243 /* RSS contexts not a limiting factor */ 11244 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 11245 max_rss_ctxs = max_vnics; 11246 if (vnics > max_vnics || vnics > max_rss_ctxs) { 11247 if (bp->rx_nr_rings > 1) 11248 netdev_warn(bp->dev, 11249 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 11250 min(max_rss_ctxs - 1, max_vnics - 1)); 11251 return false; 11252 } 11253 11254 if (!BNXT_NEW_RM(bp)) 11255 return true; 11256 11257 if (vnics == bp->hw_resc.resv_vnics) 11258 return true; 11259 11260 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics); 11261 if (vnics <= bp->hw_resc.resv_vnics) 11262 return true; 11263 11264 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 11265 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1); 11266 return false; 11267 #else 11268 return false; 11269 #endif 11270 } 11271 11272 static netdev_features_t bnxt_fix_features(struct net_device *dev, 11273 netdev_features_t features) 11274 { 11275 struct bnxt *bp = netdev_priv(dev); 11276 netdev_features_t vlan_features; 11277 11278 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp)) 11279 features &= ~NETIF_F_NTUPLE; 11280 11281 if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog) 11282 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 11283 11284 if (!(features & NETIF_F_GRO)) 11285 features &= ~NETIF_F_GRO_HW; 11286 11287 if (features & NETIF_F_GRO_HW) 11288 features &= ~NETIF_F_LRO; 11289 11290 /* Both CTAG and STAG VLAN accelaration on the RX side have to be 11291 * turned on or off together. 11292 */ 11293 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 11294 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 11295 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 11296 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 11297 else if (vlan_features) 11298 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 11299 } 11300 #ifdef CONFIG_BNXT_SRIOV 11301 if (BNXT_VF(bp) && bp->vf.vlan) 11302 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 11303 #endif 11304 return features; 11305 } 11306 11307 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 11308 { 11309 struct bnxt *bp = netdev_priv(dev); 11310 u32 flags = bp->flags; 11311 u32 changes; 11312 int rc = 0; 11313 bool re_init = false; 11314 bool update_tpa = false; 11315 11316 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 11317 if (features & NETIF_F_GRO_HW) 11318 flags |= BNXT_FLAG_GRO; 11319 else if (features & NETIF_F_LRO) 11320 flags |= BNXT_FLAG_LRO; 11321 11322 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 11323 flags &= ~BNXT_FLAG_TPA; 11324 11325 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 11326 flags |= BNXT_FLAG_STRIP_VLAN; 11327 11328 if (features & NETIF_F_NTUPLE) 11329 flags |= BNXT_FLAG_RFS; 11330 11331 changes = flags ^ bp->flags; 11332 if (changes & BNXT_FLAG_TPA) { 11333 update_tpa = true; 11334 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 11335 (flags & BNXT_FLAG_TPA) == 0 || 11336 (bp->flags & BNXT_FLAG_CHIP_P5)) 11337 re_init = true; 11338 } 11339 11340 if (changes & ~BNXT_FLAG_TPA) 11341 re_init = true; 11342 11343 if (flags != bp->flags) { 11344 u32 old_flags = bp->flags; 11345 11346 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11347 bp->flags = flags; 11348 if (update_tpa) 11349 bnxt_set_ring_params(bp); 11350 return rc; 11351 } 11352 11353 if (re_init) { 11354 bnxt_close_nic(bp, false, false); 11355 bp->flags = flags; 11356 if (update_tpa) 11357 bnxt_set_ring_params(bp); 11358 11359 return bnxt_open_nic(bp, false, false); 11360 } 11361 if (update_tpa) { 11362 bp->flags = flags; 11363 rc = bnxt_set_tpa(bp, 11364 (flags & BNXT_FLAG_TPA) ? 11365 true : false); 11366 if (rc) 11367 bp->flags = old_flags; 11368 } 11369 } 11370 return rc; 11371 } 11372 11373 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, 11374 u8 **nextp) 11375 { 11376 struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); 11377 struct hop_jumbo_hdr *jhdr; 11378 int hdr_count = 0; 11379 u8 *nexthdr; 11380 int start; 11381 11382 /* Check that there are at most 2 IPv6 extension headers, no 11383 * fragment header, and each is <= 64 bytes. 11384 */ 11385 start = nw_off + sizeof(*ip6h); 11386 nexthdr = &ip6h->nexthdr; 11387 while (ipv6_ext_hdr(*nexthdr)) { 11388 struct ipv6_opt_hdr *hp; 11389 int hdrlen; 11390 11391 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || 11392 *nexthdr == NEXTHDR_FRAGMENT) 11393 return false; 11394 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, 11395 skb_headlen(skb), NULL); 11396 if (!hp) 11397 return false; 11398 if (*nexthdr == NEXTHDR_AUTH) 11399 hdrlen = ipv6_authlen(hp); 11400 else 11401 hdrlen = ipv6_optlen(hp); 11402 11403 if (hdrlen > 64) 11404 return false; 11405 11406 /* The ext header may be a hop-by-hop header inserted for 11407 * big TCP purposes. This will be removed before sending 11408 * from NIC, so do not count it. 11409 */ 11410 if (*nexthdr == NEXTHDR_HOP) { 11411 if (likely(skb->len <= GRO_LEGACY_MAX_SIZE)) 11412 goto increment_hdr; 11413 11414 jhdr = (struct hop_jumbo_hdr *)hp; 11415 if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 || 11416 jhdr->nexthdr != IPPROTO_TCP) 11417 goto increment_hdr; 11418 11419 goto next_hdr; 11420 } 11421 increment_hdr: 11422 hdr_count++; 11423 next_hdr: 11424 nexthdr = &hp->nexthdr; 11425 start += hdrlen; 11426 } 11427 if (nextp) { 11428 /* Caller will check inner protocol */ 11429 if (skb->encapsulation) { 11430 *nextp = nexthdr; 11431 return true; 11432 } 11433 *nextp = NULL; 11434 } 11435 /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ 11436 return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; 11437 } 11438 11439 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 11440 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) 11441 { 11442 struct udphdr *uh = udp_hdr(skb); 11443 __be16 udp_port = uh->dest; 11444 11445 if (udp_port != bp->vxlan_port && udp_port != bp->nge_port) 11446 return false; 11447 if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) { 11448 struct ethhdr *eh = inner_eth_hdr(skb); 11449 11450 switch (eh->h_proto) { 11451 case htons(ETH_P_IP): 11452 return true; 11453 case htons(ETH_P_IPV6): 11454 return bnxt_exthdr_check(bp, skb, 11455 skb_inner_network_offset(skb), 11456 NULL); 11457 } 11458 } 11459 return false; 11460 } 11461 11462 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) 11463 { 11464 switch (l4_proto) { 11465 case IPPROTO_UDP: 11466 return bnxt_udp_tunl_check(bp, skb); 11467 case IPPROTO_IPIP: 11468 return true; 11469 case IPPROTO_GRE: { 11470 switch (skb->inner_protocol) { 11471 default: 11472 return false; 11473 case htons(ETH_P_IP): 11474 return true; 11475 case htons(ETH_P_IPV6): 11476 fallthrough; 11477 } 11478 } 11479 case IPPROTO_IPV6: 11480 /* Check ext headers of inner ipv6 */ 11481 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 11482 NULL); 11483 } 11484 return false; 11485 } 11486 11487 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 11488 struct net_device *dev, 11489 netdev_features_t features) 11490 { 11491 struct bnxt *bp = netdev_priv(dev); 11492 u8 *l4_proto; 11493 11494 features = vlan_features_check(skb, features); 11495 switch (vlan_get_protocol(skb)) { 11496 case htons(ETH_P_IP): 11497 if (!skb->encapsulation) 11498 return features; 11499 l4_proto = &ip_hdr(skb)->protocol; 11500 if (bnxt_tunl_check(bp, skb, *l4_proto)) 11501 return features; 11502 break; 11503 case htons(ETH_P_IPV6): 11504 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), 11505 &l4_proto)) 11506 break; 11507 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) 11508 return features; 11509 break; 11510 } 11511 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 11512 } 11513 11514 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 11515 u32 *reg_buf) 11516 { 11517 struct hwrm_dbg_read_direct_output *resp; 11518 struct hwrm_dbg_read_direct_input *req; 11519 __le32 *dbg_reg_buf; 11520 dma_addr_t mapping; 11521 int rc, i; 11522 11523 rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT); 11524 if (rc) 11525 return rc; 11526 11527 dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4, 11528 &mapping); 11529 if (!dbg_reg_buf) { 11530 rc = -ENOMEM; 11531 goto dbg_rd_reg_exit; 11532 } 11533 11534 req->host_dest_addr = cpu_to_le64(mapping); 11535 11536 resp = hwrm_req_hold(bp, req); 11537 req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 11538 req->read_len32 = cpu_to_le32(num_words); 11539 11540 rc = hwrm_req_send(bp, req); 11541 if (rc || resp->error_code) { 11542 rc = -EIO; 11543 goto dbg_rd_reg_exit; 11544 } 11545 for (i = 0; i < num_words; i++) 11546 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 11547 11548 dbg_rd_reg_exit: 11549 hwrm_req_drop(bp, req); 11550 return rc; 11551 } 11552 11553 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 11554 u32 ring_id, u32 *prod, u32 *cons) 11555 { 11556 struct hwrm_dbg_ring_info_get_output *resp; 11557 struct hwrm_dbg_ring_info_get_input *req; 11558 int rc; 11559 11560 rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET); 11561 if (rc) 11562 return rc; 11563 11564 req->ring_type = ring_type; 11565 req->fw_ring_id = cpu_to_le32(ring_id); 11566 resp = hwrm_req_hold(bp, req); 11567 rc = hwrm_req_send(bp, req); 11568 if (!rc) { 11569 *prod = le32_to_cpu(resp->producer_index); 11570 *cons = le32_to_cpu(resp->consumer_index); 11571 } 11572 hwrm_req_drop(bp, req); 11573 return rc; 11574 } 11575 11576 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 11577 { 11578 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 11579 int i = bnapi->index; 11580 11581 if (!txr) 11582 return; 11583 11584 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 11585 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 11586 txr->tx_cons); 11587 } 11588 11589 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 11590 { 11591 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 11592 int i = bnapi->index; 11593 11594 if (!rxr) 11595 return; 11596 11597 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 11598 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 11599 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 11600 rxr->rx_sw_agg_prod); 11601 } 11602 11603 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 11604 { 11605 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 11606 int i = bnapi->index; 11607 11608 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 11609 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 11610 } 11611 11612 static void bnxt_dbg_dump_states(struct bnxt *bp) 11613 { 11614 int i; 11615 struct bnxt_napi *bnapi; 11616 11617 for (i = 0; i < bp->cp_nr_rings; i++) { 11618 bnapi = bp->bnapi[i]; 11619 if (netif_msg_drv(bp)) { 11620 bnxt_dump_tx_sw_state(bnapi); 11621 bnxt_dump_rx_sw_state(bnapi); 11622 bnxt_dump_cp_sw_state(bnapi); 11623 } 11624 } 11625 } 11626 11627 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 11628 { 11629 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 11630 struct hwrm_ring_reset_input *req; 11631 struct bnxt_napi *bnapi = rxr->bnapi; 11632 struct bnxt_cp_ring_info *cpr; 11633 u16 cp_ring_id; 11634 int rc; 11635 11636 rc = hwrm_req_init(bp, req, HWRM_RING_RESET); 11637 if (rc) 11638 return rc; 11639 11640 cpr = &bnapi->cp_ring; 11641 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 11642 req->cmpl_ring = cpu_to_le16(cp_ring_id); 11643 req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 11644 req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 11645 return hwrm_req_send_silent(bp, req); 11646 } 11647 11648 static void bnxt_reset_task(struct bnxt *bp, bool silent) 11649 { 11650 if (!silent) 11651 bnxt_dbg_dump_states(bp); 11652 if (netif_running(bp->dev)) { 11653 int rc; 11654 11655 if (silent) { 11656 bnxt_close_nic(bp, false, false); 11657 bnxt_open_nic(bp, false, false); 11658 } else { 11659 bnxt_ulp_stop(bp); 11660 bnxt_close_nic(bp, true, false); 11661 rc = bnxt_open_nic(bp, true, false); 11662 bnxt_ulp_start(bp, rc); 11663 } 11664 } 11665 } 11666 11667 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 11668 { 11669 struct bnxt *bp = netdev_priv(dev); 11670 11671 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 11672 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 11673 } 11674 11675 static void bnxt_fw_health_check(struct bnxt *bp) 11676 { 11677 struct bnxt_fw_health *fw_health = bp->fw_health; 11678 struct pci_dev *pdev = bp->pdev; 11679 u32 val; 11680 11681 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11682 return; 11683 11684 /* Make sure it is enabled before checking the tmr_counter. */ 11685 smp_rmb(); 11686 if (fw_health->tmr_counter) { 11687 fw_health->tmr_counter--; 11688 return; 11689 } 11690 11691 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 11692 if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) { 11693 fw_health->arrests++; 11694 goto fw_reset; 11695 } 11696 11697 fw_health->last_fw_heartbeat = val; 11698 11699 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 11700 if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) { 11701 fw_health->discoveries++; 11702 goto fw_reset; 11703 } 11704 11705 fw_health->tmr_counter = fw_health->tmr_multiplier; 11706 return; 11707 11708 fw_reset: 11709 bnxt_queue_sp_work(bp, BNXT_FW_EXCEPTION_SP_EVENT); 11710 } 11711 11712 static void bnxt_timer(struct timer_list *t) 11713 { 11714 struct bnxt *bp = from_timer(bp, t, timer); 11715 struct net_device *dev = bp->dev; 11716 11717 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 11718 return; 11719 11720 if (atomic_read(&bp->intr_sem) != 0) 11721 goto bnxt_restart_timer; 11722 11723 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 11724 bnxt_fw_health_check(bp); 11725 11726 if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) 11727 bnxt_queue_sp_work(bp, BNXT_PERIODIC_STATS_SP_EVENT); 11728 11729 if (bnxt_tc_flower_enabled(bp)) 11730 bnxt_queue_sp_work(bp, BNXT_FLOW_STATS_SP_EVENT); 11731 11732 #ifdef CONFIG_RFS_ACCEL 11733 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) 11734 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 11735 #endif /*CONFIG_RFS_ACCEL*/ 11736 11737 if (bp->link_info.phy_retry) { 11738 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 11739 bp->link_info.phy_retry = false; 11740 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 11741 } else { 11742 bnxt_queue_sp_work(bp, BNXT_UPDATE_PHY_SP_EVENT); 11743 } 11744 } 11745 11746 if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 11747 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 11748 11749 if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev && 11750 netif_carrier_ok(dev)) 11751 bnxt_queue_sp_work(bp, BNXT_RING_COAL_NOW_SP_EVENT); 11752 11753 bnxt_restart_timer: 11754 mod_timer(&bp->timer, jiffies + bp->current_interval); 11755 } 11756 11757 static void bnxt_rtnl_lock_sp(struct bnxt *bp) 11758 { 11759 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 11760 * set. If the device is being closed, bnxt_close() may be holding 11761 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we 11762 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). 11763 */ 11764 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11765 rtnl_lock(); 11766 } 11767 11768 static void bnxt_rtnl_unlock_sp(struct bnxt *bp) 11769 { 11770 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11771 rtnl_unlock(); 11772 } 11773 11774 /* Only called from bnxt_sp_task() */ 11775 static void bnxt_reset(struct bnxt *bp, bool silent) 11776 { 11777 bnxt_rtnl_lock_sp(bp); 11778 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 11779 bnxt_reset_task(bp, silent); 11780 bnxt_rtnl_unlock_sp(bp); 11781 } 11782 11783 /* Only called from bnxt_sp_task() */ 11784 static void bnxt_rx_ring_reset(struct bnxt *bp) 11785 { 11786 int i; 11787 11788 bnxt_rtnl_lock_sp(bp); 11789 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11790 bnxt_rtnl_unlock_sp(bp); 11791 return; 11792 } 11793 /* Disable and flush TPA before resetting the RX ring */ 11794 if (bp->flags & BNXT_FLAG_TPA) 11795 bnxt_set_tpa(bp, false); 11796 for (i = 0; i < bp->rx_nr_rings; i++) { 11797 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 11798 struct bnxt_cp_ring_info *cpr; 11799 int rc; 11800 11801 if (!rxr->bnapi->in_reset) 11802 continue; 11803 11804 rc = bnxt_hwrm_rx_ring_reset(bp, i); 11805 if (rc) { 11806 if (rc == -EINVAL || rc == -EOPNOTSUPP) 11807 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 11808 else 11809 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 11810 rc); 11811 bnxt_reset_task(bp, true); 11812 break; 11813 } 11814 bnxt_free_one_rx_ring_skbs(bp, i); 11815 rxr->rx_prod = 0; 11816 rxr->rx_agg_prod = 0; 11817 rxr->rx_sw_agg_prod = 0; 11818 rxr->rx_next_cons = 0; 11819 rxr->bnapi->in_reset = false; 11820 bnxt_alloc_one_rx_ring(bp, i); 11821 cpr = &rxr->bnapi->cp_ring; 11822 cpr->sw_stats.rx.rx_resets++; 11823 if (bp->flags & BNXT_FLAG_AGG_RINGS) 11824 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 11825 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 11826 } 11827 if (bp->flags & BNXT_FLAG_TPA) 11828 bnxt_set_tpa(bp, true); 11829 bnxt_rtnl_unlock_sp(bp); 11830 } 11831 11832 static void bnxt_fw_reset_close(struct bnxt *bp) 11833 { 11834 bnxt_ulp_stop(bp); 11835 /* When firmware is in fatal state, quiesce device and disable 11836 * bus master to prevent any potential bad DMAs before freeing 11837 * kernel memory. 11838 */ 11839 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 11840 u16 val = 0; 11841 11842 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 11843 if (val == 0xffff) 11844 bp->fw_reset_min_dsecs = 0; 11845 bnxt_tx_disable(bp); 11846 bnxt_disable_napi(bp); 11847 bnxt_disable_int_sync(bp); 11848 bnxt_free_irq(bp); 11849 bnxt_clear_int_mode(bp); 11850 pci_disable_device(bp->pdev); 11851 } 11852 __bnxt_close_nic(bp, true, false); 11853 bnxt_vf_reps_free(bp); 11854 bnxt_clear_int_mode(bp); 11855 bnxt_hwrm_func_drv_unrgtr(bp); 11856 if (pci_is_enabled(bp->pdev)) 11857 pci_disable_device(bp->pdev); 11858 bnxt_free_ctx_mem(bp); 11859 kfree(bp->ctx); 11860 bp->ctx = NULL; 11861 } 11862 11863 static bool is_bnxt_fw_ok(struct bnxt *bp) 11864 { 11865 struct bnxt_fw_health *fw_health = bp->fw_health; 11866 bool no_heartbeat = false, has_reset = false; 11867 u32 val; 11868 11869 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 11870 if (val == fw_health->last_fw_heartbeat) 11871 no_heartbeat = true; 11872 11873 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 11874 if (val != fw_health->last_fw_reset_cnt) 11875 has_reset = true; 11876 11877 if (!no_heartbeat && has_reset) 11878 return true; 11879 11880 return false; 11881 } 11882 11883 /* rtnl_lock is acquired before calling this function */ 11884 static void bnxt_force_fw_reset(struct bnxt *bp) 11885 { 11886 struct bnxt_fw_health *fw_health = bp->fw_health; 11887 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 11888 u32 wait_dsecs; 11889 11890 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 11891 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11892 return; 11893 11894 if (ptp) { 11895 spin_lock_bh(&ptp->ptp_lock); 11896 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11897 spin_unlock_bh(&ptp->ptp_lock); 11898 } else { 11899 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11900 } 11901 bnxt_fw_reset_close(bp); 11902 wait_dsecs = fw_health->master_func_wait_dsecs; 11903 if (fw_health->primary) { 11904 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 11905 wait_dsecs = 0; 11906 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 11907 } else { 11908 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 11909 wait_dsecs = fw_health->normal_func_wait_dsecs; 11910 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11911 } 11912 11913 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 11914 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 11915 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 11916 } 11917 11918 void bnxt_fw_exception(struct bnxt *bp) 11919 { 11920 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 11921 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 11922 bnxt_rtnl_lock_sp(bp); 11923 bnxt_force_fw_reset(bp); 11924 bnxt_rtnl_unlock_sp(bp); 11925 } 11926 11927 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 11928 * < 0 on error. 11929 */ 11930 static int bnxt_get_registered_vfs(struct bnxt *bp) 11931 { 11932 #ifdef CONFIG_BNXT_SRIOV 11933 int rc; 11934 11935 if (!BNXT_PF(bp)) 11936 return 0; 11937 11938 rc = bnxt_hwrm_func_qcfg(bp); 11939 if (rc) { 11940 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 11941 return rc; 11942 } 11943 if (bp->pf.registered_vfs) 11944 return bp->pf.registered_vfs; 11945 if (bp->sriov_cfg) 11946 return 1; 11947 #endif 11948 return 0; 11949 } 11950 11951 void bnxt_fw_reset(struct bnxt *bp) 11952 { 11953 bnxt_rtnl_lock_sp(bp); 11954 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 11955 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 11956 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 11957 int n = 0, tmo; 11958 11959 if (ptp) { 11960 spin_lock_bh(&ptp->ptp_lock); 11961 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11962 spin_unlock_bh(&ptp->ptp_lock); 11963 } else { 11964 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11965 } 11966 if (bp->pf.active_vfs && 11967 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 11968 n = bnxt_get_registered_vfs(bp); 11969 if (n < 0) { 11970 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 11971 n); 11972 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11973 dev_close(bp->dev); 11974 goto fw_reset_exit; 11975 } else if (n > 0) { 11976 u16 vf_tmo_dsecs = n * 10; 11977 11978 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 11979 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 11980 bp->fw_reset_state = 11981 BNXT_FW_RESET_STATE_POLL_VF; 11982 bnxt_queue_fw_reset_work(bp, HZ / 10); 11983 goto fw_reset_exit; 11984 } 11985 bnxt_fw_reset_close(bp); 11986 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 11987 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 11988 tmo = HZ / 10; 11989 } else { 11990 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11991 tmo = bp->fw_reset_min_dsecs * HZ / 10; 11992 } 11993 bnxt_queue_fw_reset_work(bp, tmo); 11994 } 11995 fw_reset_exit: 11996 bnxt_rtnl_unlock_sp(bp); 11997 } 11998 11999 static void bnxt_chk_missed_irq(struct bnxt *bp) 12000 { 12001 int i; 12002 12003 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 12004 return; 12005 12006 for (i = 0; i < bp->cp_nr_rings; i++) { 12007 struct bnxt_napi *bnapi = bp->bnapi[i]; 12008 struct bnxt_cp_ring_info *cpr; 12009 u32 fw_ring_id; 12010 int j; 12011 12012 if (!bnapi) 12013 continue; 12014 12015 cpr = &bnapi->cp_ring; 12016 for (j = 0; j < 2; j++) { 12017 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 12018 u32 val[2]; 12019 12020 if (!cpr2 || cpr2->has_more_work || 12021 !bnxt_has_work(bp, cpr2)) 12022 continue; 12023 12024 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 12025 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 12026 continue; 12027 } 12028 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 12029 bnxt_dbg_hwrm_ring_info_get(bp, 12030 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 12031 fw_ring_id, &val[0], &val[1]); 12032 cpr->sw_stats.cmn.missed_irqs++; 12033 } 12034 } 12035 } 12036 12037 static void bnxt_cfg_ntp_filters(struct bnxt *); 12038 12039 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 12040 { 12041 struct bnxt_link_info *link_info = &bp->link_info; 12042 12043 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 12044 link_info->autoneg = BNXT_AUTONEG_SPEED; 12045 if (bp->hwrm_spec_code >= 0x10201) { 12046 if (link_info->auto_pause_setting & 12047 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 12048 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 12049 } else { 12050 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 12051 } 12052 bnxt_set_auto_speed(link_info); 12053 } else { 12054 bnxt_set_force_speed(link_info); 12055 link_info->req_duplex = link_info->duplex_setting; 12056 } 12057 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 12058 link_info->req_flow_ctrl = 12059 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 12060 else 12061 link_info->req_flow_ctrl = link_info->force_pause_setting; 12062 } 12063 12064 static void bnxt_fw_echo_reply(struct bnxt *bp) 12065 { 12066 struct bnxt_fw_health *fw_health = bp->fw_health; 12067 struct hwrm_func_echo_response_input *req; 12068 int rc; 12069 12070 rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE); 12071 if (rc) 12072 return; 12073 req->event_data1 = cpu_to_le32(fw_health->echo_req_data1); 12074 req->event_data2 = cpu_to_le32(fw_health->echo_req_data2); 12075 hwrm_req_send(bp, req); 12076 } 12077 12078 static void bnxt_sp_task(struct work_struct *work) 12079 { 12080 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 12081 12082 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 12083 smp_mb__after_atomic(); 12084 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 12085 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 12086 return; 12087 } 12088 12089 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 12090 bnxt_cfg_rx_mode(bp); 12091 12092 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 12093 bnxt_cfg_ntp_filters(bp); 12094 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 12095 bnxt_hwrm_exec_fwd_req(bp); 12096 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 12097 bnxt_hwrm_port_qstats(bp, 0); 12098 bnxt_hwrm_port_qstats_ext(bp, 0); 12099 bnxt_accumulate_all_stats(bp); 12100 } 12101 12102 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 12103 int rc; 12104 12105 mutex_lock(&bp->link_lock); 12106 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 12107 &bp->sp_event)) 12108 bnxt_hwrm_phy_qcaps(bp); 12109 12110 rc = bnxt_update_link(bp, true); 12111 if (rc) 12112 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 12113 rc); 12114 12115 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 12116 &bp->sp_event)) 12117 bnxt_init_ethtool_link_settings(bp); 12118 mutex_unlock(&bp->link_lock); 12119 } 12120 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 12121 int rc; 12122 12123 mutex_lock(&bp->link_lock); 12124 rc = bnxt_update_phy_setting(bp); 12125 mutex_unlock(&bp->link_lock); 12126 if (rc) { 12127 netdev_warn(bp->dev, "update phy settings retry failed\n"); 12128 } else { 12129 bp->link_info.phy_retry = false; 12130 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 12131 } 12132 } 12133 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 12134 mutex_lock(&bp->link_lock); 12135 bnxt_get_port_module_status(bp); 12136 mutex_unlock(&bp->link_lock); 12137 } 12138 12139 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 12140 bnxt_tc_flow_stats_work(bp); 12141 12142 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 12143 bnxt_chk_missed_irq(bp); 12144 12145 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 12146 bnxt_fw_echo_reply(bp); 12147 12148 if (test_and_clear_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event)) 12149 bnxt_hwmon_notify_event(bp); 12150 12151 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 12152 * must be the last functions to be called before exiting. 12153 */ 12154 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 12155 bnxt_reset(bp, false); 12156 12157 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 12158 bnxt_reset(bp, true); 12159 12160 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 12161 bnxt_rx_ring_reset(bp); 12162 12163 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) { 12164 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) || 12165 test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state)) 12166 bnxt_devlink_health_fw_report(bp); 12167 else 12168 bnxt_fw_reset(bp); 12169 } 12170 12171 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 12172 if (!is_bnxt_fw_ok(bp)) 12173 bnxt_devlink_health_fw_report(bp); 12174 } 12175 12176 smp_mb__before_atomic(); 12177 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 12178 } 12179 12180 /* Under rtnl_lock */ 12181 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 12182 int tx_xdp) 12183 { 12184 int max_rx, max_tx, tx_sets = 1; 12185 int tx_rings_needed, stats; 12186 int rx_rings = rx; 12187 int cp, vnics, rc; 12188 12189 if (tcs) 12190 tx_sets = tcs; 12191 12192 rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh); 12193 if (rc) 12194 return rc; 12195 12196 if (max_rx < rx) 12197 return -ENOMEM; 12198 12199 tx_rings_needed = tx * tx_sets + tx_xdp; 12200 if (max_tx < tx_rings_needed) 12201 return -ENOMEM; 12202 12203 vnics = 1; 12204 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 12205 vnics += rx_rings; 12206 12207 if (bp->flags & BNXT_FLAG_AGG_RINGS) 12208 rx_rings <<= 1; 12209 cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx; 12210 stats = cp; 12211 if (BNXT_NEW_RM(bp)) { 12212 cp += bnxt_get_ulp_msix_num(bp); 12213 stats += bnxt_get_ulp_stat_ctxs(bp); 12214 } 12215 return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp, 12216 stats, vnics); 12217 } 12218 12219 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 12220 { 12221 if (bp->bar2) { 12222 pci_iounmap(pdev, bp->bar2); 12223 bp->bar2 = NULL; 12224 } 12225 12226 if (bp->bar1) { 12227 pci_iounmap(pdev, bp->bar1); 12228 bp->bar1 = NULL; 12229 } 12230 12231 if (bp->bar0) { 12232 pci_iounmap(pdev, bp->bar0); 12233 bp->bar0 = NULL; 12234 } 12235 } 12236 12237 static void bnxt_cleanup_pci(struct bnxt *bp) 12238 { 12239 bnxt_unmap_bars(bp, bp->pdev); 12240 pci_release_regions(bp->pdev); 12241 if (pci_is_enabled(bp->pdev)) 12242 pci_disable_device(bp->pdev); 12243 } 12244 12245 static void bnxt_init_dflt_coal(struct bnxt *bp) 12246 { 12247 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 12248 struct bnxt_coal *coal; 12249 u16 flags = 0; 12250 12251 if (coal_cap->cmpl_params & 12252 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 12253 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 12254 12255 /* Tick values in micro seconds. 12256 * 1 coal_buf x bufs_per_record = 1 completion record. 12257 */ 12258 coal = &bp->rx_coal; 12259 coal->coal_ticks = 10; 12260 coal->coal_bufs = 30; 12261 coal->coal_ticks_irq = 1; 12262 coal->coal_bufs_irq = 2; 12263 coal->idle_thresh = 50; 12264 coal->bufs_per_record = 2; 12265 coal->budget = 64; /* NAPI budget */ 12266 coal->flags = flags; 12267 12268 coal = &bp->tx_coal; 12269 coal->coal_ticks = 28; 12270 coal->coal_bufs = 30; 12271 coal->coal_ticks_irq = 2; 12272 coal->coal_bufs_irq = 2; 12273 coal->bufs_per_record = 1; 12274 coal->flags = flags; 12275 12276 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 12277 } 12278 12279 /* FW that pre-reserves 1 VNIC per function */ 12280 static bool bnxt_fw_pre_resv_vnics(struct bnxt *bp) 12281 { 12282 u16 fw_maj = BNXT_FW_MAJ(bp), fw_bld = BNXT_FW_BLD(bp); 12283 12284 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 12285 (fw_maj > 218 || (fw_maj == 218 && fw_bld >= 18))) 12286 return true; 12287 if ((bp->flags & BNXT_FLAG_CHIP_P5) && 12288 (fw_maj > 216 || (fw_maj == 216 && fw_bld >= 172))) 12289 return true; 12290 return false; 12291 } 12292 12293 static int bnxt_fw_init_one_p1(struct bnxt *bp) 12294 { 12295 int rc; 12296 12297 bp->fw_cap = 0; 12298 rc = bnxt_hwrm_ver_get(bp); 12299 bnxt_try_map_fw_health_reg(bp); 12300 if (rc) { 12301 rc = bnxt_try_recover_fw(bp); 12302 if (rc) 12303 return rc; 12304 rc = bnxt_hwrm_ver_get(bp); 12305 if (rc) 12306 return rc; 12307 } 12308 12309 bnxt_nvm_cfg_ver_get(bp); 12310 12311 rc = bnxt_hwrm_func_reset(bp); 12312 if (rc) 12313 return -ENODEV; 12314 12315 bnxt_hwrm_fw_set_time(bp); 12316 return 0; 12317 } 12318 12319 static int bnxt_fw_init_one_p2(struct bnxt *bp) 12320 { 12321 int rc; 12322 12323 /* Get the MAX capabilities for this function */ 12324 rc = bnxt_hwrm_func_qcaps(bp); 12325 if (rc) { 12326 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 12327 rc); 12328 return -ENODEV; 12329 } 12330 12331 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 12332 if (rc) 12333 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 12334 rc); 12335 12336 if (bnxt_alloc_fw_health(bp)) { 12337 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 12338 } else { 12339 rc = bnxt_hwrm_error_recovery_qcfg(bp); 12340 if (rc) 12341 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 12342 rc); 12343 } 12344 12345 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 12346 if (rc) 12347 return -ENODEV; 12348 12349 if (bnxt_fw_pre_resv_vnics(bp)) 12350 bp->fw_cap |= BNXT_FW_CAP_PRE_RESV_VNICS; 12351 12352 bnxt_hwrm_func_qcfg(bp); 12353 bnxt_hwrm_vnic_qcaps(bp); 12354 bnxt_hwrm_port_led_qcaps(bp); 12355 bnxt_ethtool_init(bp); 12356 if (bp->fw_cap & BNXT_FW_CAP_PTP) 12357 __bnxt_hwrm_ptp_qcfg(bp); 12358 bnxt_dcb_init(bp); 12359 bnxt_hwmon_init(bp); 12360 return 0; 12361 } 12362 12363 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 12364 { 12365 bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP; 12366 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 12367 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 12368 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 12369 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 12370 if (bp->fw_cap & BNXT_FW_CAP_RSS_HASH_TYPE_DELTA) 12371 bp->rss_hash_delta = bp->rss_hash_cfg; 12372 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 12373 bp->flags |= BNXT_FLAG_UDP_RSS_CAP; 12374 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 12375 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 12376 } 12377 } 12378 12379 static void bnxt_set_dflt_rfs(struct bnxt *bp) 12380 { 12381 struct net_device *dev = bp->dev; 12382 12383 dev->hw_features &= ~NETIF_F_NTUPLE; 12384 dev->features &= ~NETIF_F_NTUPLE; 12385 bp->flags &= ~BNXT_FLAG_RFS; 12386 if (bnxt_rfs_supported(bp)) { 12387 dev->hw_features |= NETIF_F_NTUPLE; 12388 if (bnxt_rfs_capable(bp)) { 12389 bp->flags |= BNXT_FLAG_RFS; 12390 dev->features |= NETIF_F_NTUPLE; 12391 } 12392 } 12393 } 12394 12395 static void bnxt_fw_init_one_p3(struct bnxt *bp) 12396 { 12397 struct pci_dev *pdev = bp->pdev; 12398 12399 bnxt_set_dflt_rss_hash_type(bp); 12400 bnxt_set_dflt_rfs(bp); 12401 12402 bnxt_get_wol_settings(bp); 12403 if (bp->flags & BNXT_FLAG_WOL_CAP) 12404 device_set_wakeup_enable(&pdev->dev, bp->wol); 12405 else 12406 device_set_wakeup_capable(&pdev->dev, false); 12407 12408 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 12409 bnxt_hwrm_coal_params_qcaps(bp); 12410 } 12411 12412 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); 12413 12414 int bnxt_fw_init_one(struct bnxt *bp) 12415 { 12416 int rc; 12417 12418 rc = bnxt_fw_init_one_p1(bp); 12419 if (rc) { 12420 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 12421 return rc; 12422 } 12423 rc = bnxt_fw_init_one_p2(bp); 12424 if (rc) { 12425 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 12426 return rc; 12427 } 12428 rc = bnxt_probe_phy(bp, false); 12429 if (rc) 12430 return rc; 12431 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 12432 if (rc) 12433 return rc; 12434 12435 bnxt_fw_init_one_p3(bp); 12436 return 0; 12437 } 12438 12439 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 12440 { 12441 struct bnxt_fw_health *fw_health = bp->fw_health; 12442 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 12443 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 12444 u32 reg_type, reg_off, delay_msecs; 12445 12446 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 12447 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 12448 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 12449 switch (reg_type) { 12450 case BNXT_FW_HEALTH_REG_TYPE_CFG: 12451 pci_write_config_dword(bp->pdev, reg_off, val); 12452 break; 12453 case BNXT_FW_HEALTH_REG_TYPE_GRC: 12454 writel(reg_off & BNXT_GRC_BASE_MASK, 12455 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 12456 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 12457 fallthrough; 12458 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 12459 writel(val, bp->bar0 + reg_off); 12460 break; 12461 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 12462 writel(val, bp->bar1 + reg_off); 12463 break; 12464 } 12465 if (delay_msecs) { 12466 pci_read_config_dword(bp->pdev, 0, &val); 12467 msleep(delay_msecs); 12468 } 12469 } 12470 12471 bool bnxt_hwrm_reset_permitted(struct bnxt *bp) 12472 { 12473 struct hwrm_func_qcfg_output *resp; 12474 struct hwrm_func_qcfg_input *req; 12475 bool result = true; /* firmware will enforce if unknown */ 12476 12477 if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF) 12478 return result; 12479 12480 if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG)) 12481 return result; 12482 12483 req->fid = cpu_to_le16(0xffff); 12484 resp = hwrm_req_hold(bp, req); 12485 if (!hwrm_req_send(bp, req)) 12486 result = !!(le16_to_cpu(resp->flags) & 12487 FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED); 12488 hwrm_req_drop(bp, req); 12489 return result; 12490 } 12491 12492 static void bnxt_reset_all(struct bnxt *bp) 12493 { 12494 struct bnxt_fw_health *fw_health = bp->fw_health; 12495 int i, rc; 12496 12497 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 12498 bnxt_fw_reset_via_optee(bp); 12499 bp->fw_reset_timestamp = jiffies; 12500 return; 12501 } 12502 12503 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 12504 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 12505 bnxt_fw_reset_writel(bp, i); 12506 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 12507 struct hwrm_fw_reset_input *req; 12508 12509 rc = hwrm_req_init(bp, req, HWRM_FW_RESET); 12510 if (!rc) { 12511 req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG); 12512 req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 12513 req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 12514 req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 12515 rc = hwrm_req_send(bp, req); 12516 } 12517 if (rc != -ENODEV) 12518 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 12519 } 12520 bp->fw_reset_timestamp = jiffies; 12521 } 12522 12523 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 12524 { 12525 return time_after(jiffies, bp->fw_reset_timestamp + 12526 (bp->fw_reset_max_dsecs * HZ / 10)); 12527 } 12528 12529 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) 12530 { 12531 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12532 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) { 12533 bnxt_ulp_start(bp, rc); 12534 bnxt_dl_health_fw_status_update(bp, false); 12535 } 12536 bp->fw_reset_state = 0; 12537 dev_close(bp->dev); 12538 } 12539 12540 static void bnxt_fw_reset_task(struct work_struct *work) 12541 { 12542 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 12543 int rc = 0; 12544 12545 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 12546 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 12547 return; 12548 } 12549 12550 switch (bp->fw_reset_state) { 12551 case BNXT_FW_RESET_STATE_POLL_VF: { 12552 int n = bnxt_get_registered_vfs(bp); 12553 int tmo; 12554 12555 if (n < 0) { 12556 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 12557 n, jiffies_to_msecs(jiffies - 12558 bp->fw_reset_timestamp)); 12559 goto fw_reset_abort; 12560 } else if (n > 0) { 12561 if (bnxt_fw_reset_timeout(bp)) { 12562 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12563 bp->fw_reset_state = 0; 12564 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 12565 n); 12566 return; 12567 } 12568 bnxt_queue_fw_reset_work(bp, HZ / 10); 12569 return; 12570 } 12571 bp->fw_reset_timestamp = jiffies; 12572 rtnl_lock(); 12573 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12574 bnxt_fw_reset_abort(bp, rc); 12575 rtnl_unlock(); 12576 return; 12577 } 12578 bnxt_fw_reset_close(bp); 12579 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 12580 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 12581 tmo = HZ / 10; 12582 } else { 12583 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12584 tmo = bp->fw_reset_min_dsecs * HZ / 10; 12585 } 12586 rtnl_unlock(); 12587 bnxt_queue_fw_reset_work(bp, tmo); 12588 return; 12589 } 12590 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 12591 u32 val; 12592 12593 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12594 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 12595 !bnxt_fw_reset_timeout(bp)) { 12596 bnxt_queue_fw_reset_work(bp, HZ / 5); 12597 return; 12598 } 12599 12600 if (!bp->fw_health->primary) { 12601 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 12602 12603 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12604 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 12605 return; 12606 } 12607 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 12608 } 12609 fallthrough; 12610 case BNXT_FW_RESET_STATE_RESET_FW: 12611 bnxt_reset_all(bp); 12612 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12613 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 12614 return; 12615 case BNXT_FW_RESET_STATE_ENABLE_DEV: 12616 bnxt_inv_fw_health_reg(bp); 12617 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 12618 !bp->fw_reset_min_dsecs) { 12619 u16 val; 12620 12621 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 12622 if (val == 0xffff) { 12623 if (bnxt_fw_reset_timeout(bp)) { 12624 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 12625 rc = -ETIMEDOUT; 12626 goto fw_reset_abort; 12627 } 12628 bnxt_queue_fw_reset_work(bp, HZ / 1000); 12629 return; 12630 } 12631 } 12632 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 12633 clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 12634 if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) && 12635 !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state)) 12636 bnxt_dl_remote_reload(bp); 12637 if (pci_enable_device(bp->pdev)) { 12638 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 12639 rc = -ENODEV; 12640 goto fw_reset_abort; 12641 } 12642 pci_set_master(bp->pdev); 12643 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 12644 fallthrough; 12645 case BNXT_FW_RESET_STATE_POLL_FW: 12646 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 12647 rc = bnxt_hwrm_poll(bp); 12648 if (rc) { 12649 if (bnxt_fw_reset_timeout(bp)) { 12650 netdev_err(bp->dev, "Firmware reset aborted\n"); 12651 goto fw_reset_abort_status; 12652 } 12653 bnxt_queue_fw_reset_work(bp, HZ / 5); 12654 return; 12655 } 12656 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 12657 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 12658 fallthrough; 12659 case BNXT_FW_RESET_STATE_OPENING: 12660 while (!rtnl_trylock()) { 12661 bnxt_queue_fw_reset_work(bp, HZ / 10); 12662 return; 12663 } 12664 rc = bnxt_open(bp->dev); 12665 if (rc) { 12666 netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); 12667 bnxt_fw_reset_abort(bp, rc); 12668 rtnl_unlock(); 12669 return; 12670 } 12671 12672 if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) && 12673 bp->fw_health->enabled) { 12674 bp->fw_health->last_fw_reset_cnt = 12675 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 12676 } 12677 bp->fw_reset_state = 0; 12678 /* Make sure fw_reset_state is 0 before clearing the flag */ 12679 smp_mb__before_atomic(); 12680 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12681 bnxt_ulp_start(bp, 0); 12682 bnxt_reenable_sriov(bp); 12683 bnxt_vf_reps_alloc(bp); 12684 bnxt_vf_reps_open(bp); 12685 bnxt_ptp_reapply_pps(bp); 12686 clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state); 12687 if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) { 12688 bnxt_dl_health_fw_recovery_done(bp); 12689 bnxt_dl_health_fw_status_update(bp, true); 12690 } 12691 rtnl_unlock(); 12692 break; 12693 } 12694 return; 12695 12696 fw_reset_abort_status: 12697 if (bp->fw_health->status_reliable || 12698 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 12699 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12700 12701 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 12702 } 12703 fw_reset_abort: 12704 rtnl_lock(); 12705 bnxt_fw_reset_abort(bp, rc); 12706 rtnl_unlock(); 12707 } 12708 12709 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 12710 { 12711 int rc; 12712 struct bnxt *bp = netdev_priv(dev); 12713 12714 SET_NETDEV_DEV(dev, &pdev->dev); 12715 12716 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 12717 rc = pci_enable_device(pdev); 12718 if (rc) { 12719 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 12720 goto init_err; 12721 } 12722 12723 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 12724 dev_err(&pdev->dev, 12725 "Cannot find PCI device base address, aborting\n"); 12726 rc = -ENODEV; 12727 goto init_err_disable; 12728 } 12729 12730 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 12731 if (rc) { 12732 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 12733 goto init_err_disable; 12734 } 12735 12736 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 12737 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 12738 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 12739 rc = -EIO; 12740 goto init_err_release; 12741 } 12742 12743 pci_set_master(pdev); 12744 12745 bp->dev = dev; 12746 bp->pdev = pdev; 12747 12748 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 12749 * determines the BAR size. 12750 */ 12751 bp->bar0 = pci_ioremap_bar(pdev, 0); 12752 if (!bp->bar0) { 12753 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 12754 rc = -ENOMEM; 12755 goto init_err_release; 12756 } 12757 12758 bp->bar2 = pci_ioremap_bar(pdev, 4); 12759 if (!bp->bar2) { 12760 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 12761 rc = -ENOMEM; 12762 goto init_err_release; 12763 } 12764 12765 INIT_WORK(&bp->sp_task, bnxt_sp_task); 12766 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 12767 12768 spin_lock_init(&bp->ntp_fltr_lock); 12769 #if BITS_PER_LONG == 32 12770 spin_lock_init(&bp->db_lock); 12771 #endif 12772 12773 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 12774 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 12775 12776 timer_setup(&bp->timer, bnxt_timer, 0); 12777 bp->current_interval = BNXT_TIMER_INTERVAL; 12778 12779 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 12780 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 12781 12782 clear_bit(BNXT_STATE_OPEN, &bp->state); 12783 return 0; 12784 12785 init_err_release: 12786 bnxt_unmap_bars(bp, pdev); 12787 pci_release_regions(pdev); 12788 12789 init_err_disable: 12790 pci_disable_device(pdev); 12791 12792 init_err: 12793 return rc; 12794 } 12795 12796 /* rtnl_lock held */ 12797 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 12798 { 12799 struct sockaddr *addr = p; 12800 struct bnxt *bp = netdev_priv(dev); 12801 int rc = 0; 12802 12803 if (!is_valid_ether_addr(addr->sa_data)) 12804 return -EADDRNOTAVAIL; 12805 12806 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 12807 return 0; 12808 12809 rc = bnxt_approve_mac(bp, addr->sa_data, true); 12810 if (rc) 12811 return rc; 12812 12813 eth_hw_addr_set(dev, addr->sa_data); 12814 if (netif_running(dev)) { 12815 bnxt_close_nic(bp, false, false); 12816 rc = bnxt_open_nic(bp, false, false); 12817 } 12818 12819 return rc; 12820 } 12821 12822 /* rtnl_lock held */ 12823 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 12824 { 12825 struct bnxt *bp = netdev_priv(dev); 12826 12827 if (netif_running(dev)) 12828 bnxt_close_nic(bp, true, false); 12829 12830 dev->mtu = new_mtu; 12831 bnxt_set_ring_params(bp); 12832 12833 if (netif_running(dev)) 12834 return bnxt_open_nic(bp, true, false); 12835 12836 return 0; 12837 } 12838 12839 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 12840 { 12841 struct bnxt *bp = netdev_priv(dev); 12842 bool sh = false; 12843 int rc; 12844 12845 if (tc > bp->max_tc) { 12846 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 12847 tc, bp->max_tc); 12848 return -EINVAL; 12849 } 12850 12851 if (netdev_get_num_tc(dev) == tc) 12852 return 0; 12853 12854 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 12855 sh = true; 12856 12857 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 12858 sh, tc, bp->tx_nr_rings_xdp); 12859 if (rc) 12860 return rc; 12861 12862 /* Needs to close the device and do hw resource re-allocations */ 12863 if (netif_running(bp->dev)) 12864 bnxt_close_nic(bp, true, false); 12865 12866 if (tc) { 12867 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 12868 netdev_set_num_tc(dev, tc); 12869 } else { 12870 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 12871 netdev_reset_tc(dev); 12872 } 12873 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 12874 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 12875 bp->tx_nr_rings + bp->rx_nr_rings; 12876 12877 if (netif_running(bp->dev)) 12878 return bnxt_open_nic(bp, true, false); 12879 12880 return 0; 12881 } 12882 12883 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 12884 void *cb_priv) 12885 { 12886 struct bnxt *bp = cb_priv; 12887 12888 if (!bnxt_tc_flower_enabled(bp) || 12889 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 12890 return -EOPNOTSUPP; 12891 12892 switch (type) { 12893 case TC_SETUP_CLSFLOWER: 12894 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 12895 default: 12896 return -EOPNOTSUPP; 12897 } 12898 } 12899 12900 LIST_HEAD(bnxt_block_cb_list); 12901 12902 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 12903 void *type_data) 12904 { 12905 struct bnxt *bp = netdev_priv(dev); 12906 12907 switch (type) { 12908 case TC_SETUP_BLOCK: 12909 return flow_block_cb_setup_simple(type_data, 12910 &bnxt_block_cb_list, 12911 bnxt_setup_tc_block_cb, 12912 bp, bp, true); 12913 case TC_SETUP_QDISC_MQPRIO: { 12914 struct tc_mqprio_qopt *mqprio = type_data; 12915 12916 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 12917 12918 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 12919 } 12920 default: 12921 return -EOPNOTSUPP; 12922 } 12923 } 12924 12925 #ifdef CONFIG_RFS_ACCEL 12926 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 12927 struct bnxt_ntuple_filter *f2) 12928 { 12929 struct flow_keys *keys1 = &f1->fkeys; 12930 struct flow_keys *keys2 = &f2->fkeys; 12931 12932 if (keys1->basic.n_proto != keys2->basic.n_proto || 12933 keys1->basic.ip_proto != keys2->basic.ip_proto) 12934 return false; 12935 12936 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 12937 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 12938 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst) 12939 return false; 12940 } else { 12941 if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src, 12942 sizeof(keys1->addrs.v6addrs.src)) || 12943 memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst, 12944 sizeof(keys1->addrs.v6addrs.dst))) 12945 return false; 12946 } 12947 12948 if (keys1->ports.ports == keys2->ports.ports && 12949 keys1->control.flags == keys2->control.flags && 12950 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) && 12951 ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr)) 12952 return true; 12953 12954 return false; 12955 } 12956 12957 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 12958 u16 rxq_index, u32 flow_id) 12959 { 12960 struct bnxt *bp = netdev_priv(dev); 12961 struct bnxt_ntuple_filter *fltr, *new_fltr; 12962 struct flow_keys *fkeys; 12963 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 12964 int rc = 0, idx, bit_id, l2_idx = 0; 12965 struct hlist_head *head; 12966 u32 flags; 12967 12968 if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) { 12969 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 12970 int off = 0, j; 12971 12972 netif_addr_lock_bh(dev); 12973 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) { 12974 if (ether_addr_equal(eth->h_dest, 12975 vnic->uc_list + off)) { 12976 l2_idx = j + 1; 12977 break; 12978 } 12979 } 12980 netif_addr_unlock_bh(dev); 12981 if (!l2_idx) 12982 return -EINVAL; 12983 } 12984 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 12985 if (!new_fltr) 12986 return -ENOMEM; 12987 12988 fkeys = &new_fltr->fkeys; 12989 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 12990 rc = -EPROTONOSUPPORT; 12991 goto err_free; 12992 } 12993 12994 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 12995 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 12996 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 12997 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 12998 rc = -EPROTONOSUPPORT; 12999 goto err_free; 13000 } 13001 if (fkeys->basic.n_proto == htons(ETH_P_IPV6) && 13002 bp->hwrm_spec_code < 0x10601) { 13003 rc = -EPROTONOSUPPORT; 13004 goto err_free; 13005 } 13006 flags = fkeys->control.flags; 13007 if (((flags & FLOW_DIS_ENCAPSULATION) && 13008 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 13009 rc = -EPROTONOSUPPORT; 13010 goto err_free; 13011 } 13012 13013 memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN); 13014 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN); 13015 13016 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 13017 head = &bp->ntp_fltr_hash_tbl[idx]; 13018 rcu_read_lock(); 13019 hlist_for_each_entry_rcu(fltr, head, hash) { 13020 if (bnxt_fltr_match(fltr, new_fltr)) { 13021 rc = fltr->sw_id; 13022 rcu_read_unlock(); 13023 goto err_free; 13024 } 13025 } 13026 rcu_read_unlock(); 13027 13028 spin_lock_bh(&bp->ntp_fltr_lock); 13029 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 13030 BNXT_NTP_FLTR_MAX_FLTR, 0); 13031 if (bit_id < 0) { 13032 spin_unlock_bh(&bp->ntp_fltr_lock); 13033 rc = -ENOMEM; 13034 goto err_free; 13035 } 13036 13037 new_fltr->sw_id = (u16)bit_id; 13038 new_fltr->flow_id = flow_id; 13039 new_fltr->l2_fltr_idx = l2_idx; 13040 new_fltr->rxq = rxq_index; 13041 hlist_add_head_rcu(&new_fltr->hash, head); 13042 bp->ntp_fltr_count++; 13043 spin_unlock_bh(&bp->ntp_fltr_lock); 13044 13045 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 13046 13047 return new_fltr->sw_id; 13048 13049 err_free: 13050 kfree(new_fltr); 13051 return rc; 13052 } 13053 13054 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 13055 { 13056 int i; 13057 13058 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 13059 struct hlist_head *head; 13060 struct hlist_node *tmp; 13061 struct bnxt_ntuple_filter *fltr; 13062 int rc; 13063 13064 head = &bp->ntp_fltr_hash_tbl[i]; 13065 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 13066 bool del = false; 13067 13068 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) { 13069 if (rps_may_expire_flow(bp->dev, fltr->rxq, 13070 fltr->flow_id, 13071 fltr->sw_id)) { 13072 bnxt_hwrm_cfa_ntuple_filter_free(bp, 13073 fltr); 13074 del = true; 13075 } 13076 } else { 13077 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 13078 fltr); 13079 if (rc) 13080 del = true; 13081 else 13082 set_bit(BNXT_FLTR_VALID, &fltr->state); 13083 } 13084 13085 if (del) { 13086 spin_lock_bh(&bp->ntp_fltr_lock); 13087 hlist_del_rcu(&fltr->hash); 13088 bp->ntp_fltr_count--; 13089 spin_unlock_bh(&bp->ntp_fltr_lock); 13090 synchronize_rcu(); 13091 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 13092 kfree(fltr); 13093 } 13094 } 13095 } 13096 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 13097 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 13098 } 13099 13100 #else 13101 13102 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 13103 { 13104 } 13105 13106 #endif /* CONFIG_RFS_ACCEL */ 13107 13108 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 13109 unsigned int entry, struct udp_tunnel_info *ti) 13110 { 13111 struct bnxt *bp = netdev_priv(netdev); 13112 unsigned int cmd; 13113 13114 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 13115 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 13116 else 13117 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 13118 13119 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd); 13120 } 13121 13122 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 13123 unsigned int entry, struct udp_tunnel_info *ti) 13124 { 13125 struct bnxt *bp = netdev_priv(netdev); 13126 unsigned int cmd; 13127 13128 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 13129 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 13130 else 13131 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 13132 13133 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 13134 } 13135 13136 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 13137 .set_port = bnxt_udp_tunnel_set_port, 13138 .unset_port = bnxt_udp_tunnel_unset_port, 13139 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 13140 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 13141 .tables = { 13142 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 13143 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 13144 }, 13145 }; 13146 13147 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 13148 struct net_device *dev, u32 filter_mask, 13149 int nlflags) 13150 { 13151 struct bnxt *bp = netdev_priv(dev); 13152 13153 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 13154 nlflags, filter_mask, NULL); 13155 } 13156 13157 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 13158 u16 flags, struct netlink_ext_ack *extack) 13159 { 13160 struct bnxt *bp = netdev_priv(dev); 13161 struct nlattr *attr, *br_spec; 13162 int rem, rc = 0; 13163 13164 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 13165 return -EOPNOTSUPP; 13166 13167 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 13168 if (!br_spec) 13169 return -EINVAL; 13170 13171 nla_for_each_nested(attr, br_spec, rem) { 13172 u16 mode; 13173 13174 if (nla_type(attr) != IFLA_BRIDGE_MODE) 13175 continue; 13176 13177 mode = nla_get_u16(attr); 13178 if (mode == bp->br_mode) 13179 break; 13180 13181 rc = bnxt_hwrm_set_br_mode(bp, mode); 13182 if (!rc) 13183 bp->br_mode = mode; 13184 break; 13185 } 13186 return rc; 13187 } 13188 13189 int bnxt_get_port_parent_id(struct net_device *dev, 13190 struct netdev_phys_item_id *ppid) 13191 { 13192 struct bnxt *bp = netdev_priv(dev); 13193 13194 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 13195 return -EOPNOTSUPP; 13196 13197 /* The PF and it's VF-reps only support the switchdev framework */ 13198 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 13199 return -EOPNOTSUPP; 13200 13201 ppid->id_len = sizeof(bp->dsn); 13202 memcpy(ppid->id, bp->dsn, ppid->id_len); 13203 13204 return 0; 13205 } 13206 13207 static const struct net_device_ops bnxt_netdev_ops = { 13208 .ndo_open = bnxt_open, 13209 .ndo_start_xmit = bnxt_start_xmit, 13210 .ndo_stop = bnxt_close, 13211 .ndo_get_stats64 = bnxt_get_stats64, 13212 .ndo_set_rx_mode = bnxt_set_rx_mode, 13213 .ndo_eth_ioctl = bnxt_ioctl, 13214 .ndo_validate_addr = eth_validate_addr, 13215 .ndo_set_mac_address = bnxt_change_mac_addr, 13216 .ndo_change_mtu = bnxt_change_mtu, 13217 .ndo_fix_features = bnxt_fix_features, 13218 .ndo_set_features = bnxt_set_features, 13219 .ndo_features_check = bnxt_features_check, 13220 .ndo_tx_timeout = bnxt_tx_timeout, 13221 #ifdef CONFIG_BNXT_SRIOV 13222 .ndo_get_vf_config = bnxt_get_vf_config, 13223 .ndo_set_vf_mac = bnxt_set_vf_mac, 13224 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 13225 .ndo_set_vf_rate = bnxt_set_vf_bw, 13226 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 13227 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 13228 .ndo_set_vf_trust = bnxt_set_vf_trust, 13229 #endif 13230 .ndo_setup_tc = bnxt_setup_tc, 13231 #ifdef CONFIG_RFS_ACCEL 13232 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 13233 #endif 13234 .ndo_bpf = bnxt_xdp, 13235 .ndo_xdp_xmit = bnxt_xdp_xmit, 13236 .ndo_bridge_getlink = bnxt_bridge_getlink, 13237 .ndo_bridge_setlink = bnxt_bridge_setlink, 13238 }; 13239 13240 static void bnxt_remove_one(struct pci_dev *pdev) 13241 { 13242 struct net_device *dev = pci_get_drvdata(pdev); 13243 struct bnxt *bp = netdev_priv(dev); 13244 13245 if (BNXT_PF(bp)) 13246 bnxt_sriov_disable(bp); 13247 13248 bnxt_rdma_aux_device_uninit(bp); 13249 13250 bnxt_ptp_clear(bp); 13251 unregister_netdev(dev); 13252 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13253 /* Flush any pending tasks */ 13254 cancel_work_sync(&bp->sp_task); 13255 cancel_delayed_work_sync(&bp->fw_reset_task); 13256 bp->sp_event = 0; 13257 13258 bnxt_dl_fw_reporters_destroy(bp); 13259 bnxt_dl_unregister(bp); 13260 bnxt_shutdown_tc(bp); 13261 13262 bnxt_clear_int_mode(bp); 13263 bnxt_hwrm_func_drv_unrgtr(bp); 13264 bnxt_free_hwrm_resources(bp); 13265 bnxt_hwmon_uninit(bp); 13266 bnxt_ethtool_free(bp); 13267 bnxt_dcb_free(bp); 13268 kfree(bp->ptp_cfg); 13269 bp->ptp_cfg = NULL; 13270 kfree(bp->fw_health); 13271 bp->fw_health = NULL; 13272 bnxt_cleanup_pci(bp); 13273 bnxt_free_ctx_mem(bp); 13274 kfree(bp->ctx); 13275 bp->ctx = NULL; 13276 kfree(bp->rss_indir_tbl); 13277 bp->rss_indir_tbl = NULL; 13278 bnxt_free_port_stats(bp); 13279 free_netdev(dev); 13280 } 13281 13282 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 13283 { 13284 int rc = 0; 13285 struct bnxt_link_info *link_info = &bp->link_info; 13286 13287 bp->phy_flags = 0; 13288 rc = bnxt_hwrm_phy_qcaps(bp); 13289 if (rc) { 13290 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 13291 rc); 13292 return rc; 13293 } 13294 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 13295 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 13296 else 13297 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 13298 if (!fw_dflt) 13299 return 0; 13300 13301 mutex_lock(&bp->link_lock); 13302 rc = bnxt_update_link(bp, false); 13303 if (rc) { 13304 mutex_unlock(&bp->link_lock); 13305 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 13306 rc); 13307 return rc; 13308 } 13309 13310 /* Older firmware does not have supported_auto_speeds, so assume 13311 * that all supported speeds can be autonegotiated. 13312 */ 13313 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 13314 link_info->support_auto_speeds = link_info->support_speeds; 13315 13316 bnxt_init_ethtool_link_settings(bp); 13317 mutex_unlock(&bp->link_lock); 13318 return 0; 13319 } 13320 13321 static int bnxt_get_max_irq(struct pci_dev *pdev) 13322 { 13323 u16 ctrl; 13324 13325 if (!pdev->msix_cap) 13326 return 1; 13327 13328 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 13329 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 13330 } 13331 13332 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 13333 int *max_cp) 13334 { 13335 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 13336 int max_ring_grps = 0, max_irq; 13337 13338 *max_tx = hw_resc->max_tx_rings; 13339 *max_rx = hw_resc->max_rx_rings; 13340 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 13341 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 13342 bnxt_get_ulp_msix_num(bp), 13343 hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp)); 13344 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 13345 *max_cp = min_t(int, *max_cp, max_irq); 13346 max_ring_grps = hw_resc->max_hw_ring_grps; 13347 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 13348 *max_cp -= 1; 13349 *max_rx -= 2; 13350 } 13351 if (bp->flags & BNXT_FLAG_AGG_RINGS) 13352 *max_rx >>= 1; 13353 if (bp->flags & BNXT_FLAG_CHIP_P5) { 13354 bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 13355 /* On P5 chips, max_cp output param should be available NQs */ 13356 *max_cp = max_irq; 13357 } 13358 *max_rx = min_t(int, *max_rx, max_ring_grps); 13359 } 13360 13361 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 13362 { 13363 int rx, tx, cp; 13364 13365 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 13366 *max_rx = rx; 13367 *max_tx = tx; 13368 if (!rx || !tx || !cp) 13369 return -ENOMEM; 13370 13371 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 13372 } 13373 13374 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 13375 bool shared) 13376 { 13377 int rc; 13378 13379 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 13380 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 13381 /* Not enough rings, try disabling agg rings. */ 13382 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 13383 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 13384 if (rc) { 13385 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 13386 bp->flags |= BNXT_FLAG_AGG_RINGS; 13387 return rc; 13388 } 13389 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 13390 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 13391 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 13392 bnxt_set_ring_params(bp); 13393 } 13394 13395 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 13396 int max_cp, max_stat, max_irq; 13397 13398 /* Reserve minimum resources for RoCE */ 13399 max_cp = bnxt_get_max_func_cp_rings(bp); 13400 max_stat = bnxt_get_max_func_stat_ctxs(bp); 13401 max_irq = bnxt_get_max_func_irqs(bp); 13402 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 13403 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 13404 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 13405 return 0; 13406 13407 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 13408 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 13409 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 13410 max_cp = min_t(int, max_cp, max_irq); 13411 max_cp = min_t(int, max_cp, max_stat); 13412 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 13413 if (rc) 13414 rc = 0; 13415 } 13416 return rc; 13417 } 13418 13419 /* In initial default shared ring setting, each shared ring must have a 13420 * RX/TX ring pair. 13421 */ 13422 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 13423 { 13424 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 13425 bp->rx_nr_rings = bp->cp_nr_rings; 13426 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 13427 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 13428 } 13429 13430 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 13431 { 13432 int dflt_rings, max_rx_rings, max_tx_rings, rc; 13433 13434 if (!bnxt_can_reserve_rings(bp)) 13435 return 0; 13436 13437 if (sh) 13438 bp->flags |= BNXT_FLAG_SHARED_RINGS; 13439 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 13440 /* Reduce default rings on multi-port cards so that total default 13441 * rings do not exceed CPU count. 13442 */ 13443 if (bp->port_count > 1) { 13444 int max_rings = 13445 max_t(int, num_online_cpus() / bp->port_count, 1); 13446 13447 dflt_rings = min_t(int, dflt_rings, max_rings); 13448 } 13449 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 13450 if (rc) 13451 return rc; 13452 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 13453 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 13454 if (sh) 13455 bnxt_trim_dflt_sh_rings(bp); 13456 else 13457 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 13458 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 13459 13460 rc = __bnxt_reserve_rings(bp); 13461 if (rc && rc != -ENODEV) 13462 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 13463 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13464 if (sh) 13465 bnxt_trim_dflt_sh_rings(bp); 13466 13467 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 13468 if (bnxt_need_reserve_rings(bp)) { 13469 rc = __bnxt_reserve_rings(bp); 13470 if (rc && rc != -ENODEV) 13471 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 13472 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13473 } 13474 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 13475 bp->rx_nr_rings++; 13476 bp->cp_nr_rings++; 13477 } 13478 if (rc) { 13479 bp->tx_nr_rings = 0; 13480 bp->rx_nr_rings = 0; 13481 } 13482 return rc; 13483 } 13484 13485 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 13486 { 13487 int rc; 13488 13489 if (bp->tx_nr_rings) 13490 return 0; 13491 13492 bnxt_ulp_irq_stop(bp); 13493 bnxt_clear_int_mode(bp); 13494 rc = bnxt_set_dflt_rings(bp, true); 13495 if (rc) { 13496 if (BNXT_VF(bp) && rc == -ENODEV) 13497 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 13498 else 13499 netdev_err(bp->dev, "Not enough rings available.\n"); 13500 goto init_dflt_ring_err; 13501 } 13502 rc = bnxt_init_int_mode(bp); 13503 if (rc) 13504 goto init_dflt_ring_err; 13505 13506 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13507 13508 bnxt_set_dflt_rfs(bp); 13509 13510 init_dflt_ring_err: 13511 bnxt_ulp_irq_restart(bp, rc); 13512 return rc; 13513 } 13514 13515 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 13516 { 13517 int rc; 13518 13519 ASSERT_RTNL(); 13520 bnxt_hwrm_func_qcaps(bp); 13521 13522 if (netif_running(bp->dev)) 13523 __bnxt_close_nic(bp, true, false); 13524 13525 bnxt_ulp_irq_stop(bp); 13526 bnxt_clear_int_mode(bp); 13527 rc = bnxt_init_int_mode(bp); 13528 bnxt_ulp_irq_restart(bp, rc); 13529 13530 if (netif_running(bp->dev)) { 13531 if (rc) 13532 dev_close(bp->dev); 13533 else 13534 rc = bnxt_open_nic(bp, true, false); 13535 } 13536 13537 return rc; 13538 } 13539 13540 static int bnxt_init_mac_addr(struct bnxt *bp) 13541 { 13542 int rc = 0; 13543 13544 if (BNXT_PF(bp)) { 13545 eth_hw_addr_set(bp->dev, bp->pf.mac_addr); 13546 } else { 13547 #ifdef CONFIG_BNXT_SRIOV 13548 struct bnxt_vf_info *vf = &bp->vf; 13549 bool strict_approval = true; 13550 13551 if (is_valid_ether_addr(vf->mac_addr)) { 13552 /* overwrite netdev dev_addr with admin VF MAC */ 13553 eth_hw_addr_set(bp->dev, vf->mac_addr); 13554 /* Older PF driver or firmware may not approve this 13555 * correctly. 13556 */ 13557 strict_approval = false; 13558 } else { 13559 eth_hw_addr_random(bp->dev); 13560 } 13561 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 13562 #endif 13563 } 13564 return rc; 13565 } 13566 13567 static void bnxt_vpd_read_info(struct bnxt *bp) 13568 { 13569 struct pci_dev *pdev = bp->pdev; 13570 unsigned int vpd_size, kw_len; 13571 int pos, size; 13572 u8 *vpd_data; 13573 13574 vpd_data = pci_vpd_alloc(pdev, &vpd_size); 13575 if (IS_ERR(vpd_data)) { 13576 pci_warn(pdev, "Unable to read VPD\n"); 13577 return; 13578 } 13579 13580 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 13581 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); 13582 if (pos < 0) 13583 goto read_sn; 13584 13585 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 13586 memcpy(bp->board_partno, &vpd_data[pos], size); 13587 13588 read_sn: 13589 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 13590 PCI_VPD_RO_KEYWORD_SERIALNO, 13591 &kw_len); 13592 if (pos < 0) 13593 goto exit; 13594 13595 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 13596 memcpy(bp->board_serialno, &vpd_data[pos], size); 13597 exit: 13598 kfree(vpd_data); 13599 } 13600 13601 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 13602 { 13603 struct pci_dev *pdev = bp->pdev; 13604 u64 qword; 13605 13606 qword = pci_get_dsn(pdev); 13607 if (!qword) { 13608 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 13609 return -EOPNOTSUPP; 13610 } 13611 13612 put_unaligned_le64(qword, dsn); 13613 13614 bp->flags |= BNXT_FLAG_DSN_VALID; 13615 return 0; 13616 } 13617 13618 static int bnxt_map_db_bar(struct bnxt *bp) 13619 { 13620 if (!bp->db_size) 13621 return -ENODEV; 13622 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 13623 if (!bp->bar1) 13624 return -ENOMEM; 13625 return 0; 13626 } 13627 13628 void bnxt_print_device_info(struct bnxt *bp) 13629 { 13630 netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n", 13631 board_info[bp->board_idx].name, 13632 (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr); 13633 13634 pcie_print_link_status(bp->pdev); 13635 } 13636 13637 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 13638 { 13639 struct net_device *dev; 13640 struct bnxt *bp; 13641 int rc, max_irqs; 13642 13643 if (pci_is_bridge(pdev)) 13644 return -ENODEV; 13645 13646 /* Clear any pending DMA transactions from crash kernel 13647 * while loading driver in capture kernel. 13648 */ 13649 if (is_kdump_kernel()) { 13650 pci_clear_master(pdev); 13651 pcie_flr(pdev); 13652 } 13653 13654 max_irqs = bnxt_get_max_irq(pdev); 13655 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs); 13656 if (!dev) 13657 return -ENOMEM; 13658 13659 bp = netdev_priv(dev); 13660 bp->board_idx = ent->driver_data; 13661 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 13662 bnxt_set_max_func_irqs(bp, max_irqs); 13663 13664 if (bnxt_vf_pciid(bp->board_idx)) 13665 bp->flags |= BNXT_FLAG_VF; 13666 13667 /* No devlink port registration in case of a VF */ 13668 if (BNXT_PF(bp)) 13669 SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port); 13670 13671 if (pdev->msix_cap) 13672 bp->flags |= BNXT_FLAG_MSIX_CAP; 13673 13674 rc = bnxt_init_board(pdev, dev); 13675 if (rc < 0) 13676 goto init_err_free; 13677 13678 dev->netdev_ops = &bnxt_netdev_ops; 13679 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 13680 dev->ethtool_ops = &bnxt_ethtool_ops; 13681 pci_set_drvdata(pdev, dev); 13682 13683 rc = bnxt_alloc_hwrm_resources(bp); 13684 if (rc) 13685 goto init_err_pci_clean; 13686 13687 mutex_init(&bp->hwrm_cmd_lock); 13688 mutex_init(&bp->link_lock); 13689 13690 rc = bnxt_fw_init_one_p1(bp); 13691 if (rc) 13692 goto init_err_pci_clean; 13693 13694 if (BNXT_PF(bp)) 13695 bnxt_vpd_read_info(bp); 13696 13697 if (BNXT_CHIP_P5(bp)) { 13698 bp->flags |= BNXT_FLAG_CHIP_P5; 13699 if (BNXT_CHIP_SR2(bp)) 13700 bp->flags |= BNXT_FLAG_CHIP_SR2; 13701 } 13702 13703 rc = bnxt_alloc_rss_indir_tbl(bp); 13704 if (rc) 13705 goto init_err_pci_clean; 13706 13707 rc = bnxt_fw_init_one_p2(bp); 13708 if (rc) 13709 goto init_err_pci_clean; 13710 13711 rc = bnxt_map_db_bar(bp); 13712 if (rc) { 13713 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 13714 rc); 13715 goto init_err_pci_clean; 13716 } 13717 13718 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13719 NETIF_F_TSO | NETIF_F_TSO6 | 13720 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 13721 NETIF_F_GSO_IPXIP4 | 13722 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 13723 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 13724 NETIF_F_RXCSUM | NETIF_F_GRO; 13725 13726 if (BNXT_SUPPORTS_TPA(bp)) 13727 dev->hw_features |= NETIF_F_LRO; 13728 13729 dev->hw_enc_features = 13730 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13731 NETIF_F_TSO | NETIF_F_TSO6 | 13732 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 13733 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 13734 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 13735 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 13736 13737 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 13738 NETIF_F_GSO_GRE_CSUM; 13739 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 13740 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 13741 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 13742 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 13743 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 13744 if (BNXT_SUPPORTS_TPA(bp)) 13745 dev->hw_features |= NETIF_F_GRO_HW; 13746 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 13747 if (dev->features & NETIF_F_GRO_HW) 13748 dev->features &= ~NETIF_F_LRO; 13749 dev->priv_flags |= IFF_UNICAST_FLT; 13750 13751 netif_set_tso_max_size(dev, GSO_MAX_SIZE); 13752 13753 dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 13754 NETDEV_XDP_ACT_RX_SG; 13755 13756 #ifdef CONFIG_BNXT_SRIOV 13757 init_waitqueue_head(&bp->sriov_cfg_wait); 13758 #endif 13759 if (BNXT_SUPPORTS_TPA(bp)) { 13760 bp->gro_func = bnxt_gro_func_5730x; 13761 if (BNXT_CHIP_P4(bp)) 13762 bp->gro_func = bnxt_gro_func_5731x; 13763 else if (BNXT_CHIP_P5(bp)) 13764 bp->gro_func = bnxt_gro_func_5750x; 13765 } 13766 if (!BNXT_CHIP_P4_PLUS(bp)) 13767 bp->flags |= BNXT_FLAG_DOUBLE_DB; 13768 13769 rc = bnxt_init_mac_addr(bp); 13770 if (rc) { 13771 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 13772 rc = -EADDRNOTAVAIL; 13773 goto init_err_pci_clean; 13774 } 13775 13776 if (BNXT_PF(bp)) { 13777 /* Read the adapter's DSN to use as the eswitch switch_id */ 13778 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 13779 } 13780 13781 /* MTU range: 60 - FW defined max */ 13782 dev->min_mtu = ETH_ZLEN; 13783 dev->max_mtu = bp->max_mtu; 13784 13785 rc = bnxt_probe_phy(bp, true); 13786 if (rc) 13787 goto init_err_pci_clean; 13788 13789 bnxt_set_rx_skb_mode(bp, false); 13790 bnxt_set_tpa_flags(bp); 13791 bnxt_set_ring_params(bp); 13792 rc = bnxt_set_dflt_rings(bp, true); 13793 if (rc) { 13794 if (BNXT_VF(bp) && rc == -ENODEV) { 13795 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 13796 } else { 13797 netdev_err(bp->dev, "Not enough rings available.\n"); 13798 rc = -ENOMEM; 13799 } 13800 goto init_err_pci_clean; 13801 } 13802 13803 bnxt_fw_init_one_p3(bp); 13804 13805 bnxt_init_dflt_coal(bp); 13806 13807 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13808 bp->flags |= BNXT_FLAG_STRIP_VLAN; 13809 13810 rc = bnxt_init_int_mode(bp); 13811 if (rc) 13812 goto init_err_pci_clean; 13813 13814 /* No TC has been set yet and rings may have been trimmed due to 13815 * limited MSIX, so we re-initialize the TX rings per TC. 13816 */ 13817 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13818 13819 if (BNXT_PF(bp)) { 13820 if (!bnxt_pf_wq) { 13821 bnxt_pf_wq = 13822 create_singlethread_workqueue("bnxt_pf_wq"); 13823 if (!bnxt_pf_wq) { 13824 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 13825 rc = -ENOMEM; 13826 goto init_err_pci_clean; 13827 } 13828 } 13829 rc = bnxt_init_tc(bp); 13830 if (rc) 13831 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 13832 rc); 13833 } 13834 13835 bnxt_inv_fw_health_reg(bp); 13836 rc = bnxt_dl_register(bp); 13837 if (rc) 13838 goto init_err_dl; 13839 13840 rc = register_netdev(dev); 13841 if (rc) 13842 goto init_err_cleanup; 13843 13844 bnxt_dl_fw_reporters_create(bp); 13845 13846 bnxt_rdma_aux_device_init(bp); 13847 13848 bnxt_print_device_info(bp); 13849 13850 pci_save_state(pdev); 13851 13852 return 0; 13853 init_err_cleanup: 13854 bnxt_dl_unregister(bp); 13855 init_err_dl: 13856 bnxt_shutdown_tc(bp); 13857 bnxt_clear_int_mode(bp); 13858 13859 init_err_pci_clean: 13860 bnxt_hwrm_func_drv_unrgtr(bp); 13861 bnxt_free_hwrm_resources(bp); 13862 bnxt_hwmon_uninit(bp); 13863 bnxt_ethtool_free(bp); 13864 bnxt_ptp_clear(bp); 13865 kfree(bp->ptp_cfg); 13866 bp->ptp_cfg = NULL; 13867 kfree(bp->fw_health); 13868 bp->fw_health = NULL; 13869 bnxt_cleanup_pci(bp); 13870 bnxt_free_ctx_mem(bp); 13871 kfree(bp->ctx); 13872 bp->ctx = NULL; 13873 kfree(bp->rss_indir_tbl); 13874 bp->rss_indir_tbl = NULL; 13875 13876 init_err_free: 13877 free_netdev(dev); 13878 return rc; 13879 } 13880 13881 static void bnxt_shutdown(struct pci_dev *pdev) 13882 { 13883 struct net_device *dev = pci_get_drvdata(pdev); 13884 struct bnxt *bp; 13885 13886 if (!dev) 13887 return; 13888 13889 rtnl_lock(); 13890 bp = netdev_priv(dev); 13891 if (!bp) 13892 goto shutdown_exit; 13893 13894 if (netif_running(dev)) 13895 dev_close(dev); 13896 13897 bnxt_clear_int_mode(bp); 13898 pci_disable_device(pdev); 13899 13900 if (system_state == SYSTEM_POWER_OFF) { 13901 pci_wake_from_d3(pdev, bp->wol); 13902 pci_set_power_state(pdev, PCI_D3hot); 13903 } 13904 13905 shutdown_exit: 13906 rtnl_unlock(); 13907 } 13908 13909 #ifdef CONFIG_PM_SLEEP 13910 static int bnxt_suspend(struct device *device) 13911 { 13912 struct net_device *dev = dev_get_drvdata(device); 13913 struct bnxt *bp = netdev_priv(dev); 13914 int rc = 0; 13915 13916 rtnl_lock(); 13917 bnxt_ulp_stop(bp); 13918 if (netif_running(dev)) { 13919 netif_device_detach(dev); 13920 rc = bnxt_close(dev); 13921 } 13922 bnxt_hwrm_func_drv_unrgtr(bp); 13923 pci_disable_device(bp->pdev); 13924 bnxt_free_ctx_mem(bp); 13925 kfree(bp->ctx); 13926 bp->ctx = NULL; 13927 rtnl_unlock(); 13928 return rc; 13929 } 13930 13931 static int bnxt_resume(struct device *device) 13932 { 13933 struct net_device *dev = dev_get_drvdata(device); 13934 struct bnxt *bp = netdev_priv(dev); 13935 int rc = 0; 13936 13937 rtnl_lock(); 13938 rc = pci_enable_device(bp->pdev); 13939 if (rc) { 13940 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 13941 rc); 13942 goto resume_exit; 13943 } 13944 pci_set_master(bp->pdev); 13945 if (bnxt_hwrm_ver_get(bp)) { 13946 rc = -ENODEV; 13947 goto resume_exit; 13948 } 13949 rc = bnxt_hwrm_func_reset(bp); 13950 if (rc) { 13951 rc = -EBUSY; 13952 goto resume_exit; 13953 } 13954 13955 rc = bnxt_hwrm_func_qcaps(bp); 13956 if (rc) 13957 goto resume_exit; 13958 13959 bnxt_clear_reservations(bp, true); 13960 13961 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 13962 rc = -ENODEV; 13963 goto resume_exit; 13964 } 13965 13966 bnxt_get_wol_settings(bp); 13967 if (netif_running(dev)) { 13968 rc = bnxt_open(dev); 13969 if (!rc) 13970 netif_device_attach(dev); 13971 } 13972 13973 resume_exit: 13974 bnxt_ulp_start(bp, rc); 13975 if (!rc) 13976 bnxt_reenable_sriov(bp); 13977 rtnl_unlock(); 13978 return rc; 13979 } 13980 13981 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 13982 #define BNXT_PM_OPS (&bnxt_pm_ops) 13983 13984 #else 13985 13986 #define BNXT_PM_OPS NULL 13987 13988 #endif /* CONFIG_PM_SLEEP */ 13989 13990 /** 13991 * bnxt_io_error_detected - called when PCI error is detected 13992 * @pdev: Pointer to PCI device 13993 * @state: The current pci connection state 13994 * 13995 * This function is called after a PCI bus error affecting 13996 * this device has been detected. 13997 */ 13998 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 13999 pci_channel_state_t state) 14000 { 14001 struct net_device *netdev = pci_get_drvdata(pdev); 14002 struct bnxt *bp = netdev_priv(netdev); 14003 14004 netdev_info(netdev, "PCI I/O error detected\n"); 14005 14006 rtnl_lock(); 14007 netif_device_detach(netdev); 14008 14009 bnxt_ulp_stop(bp); 14010 14011 if (state == pci_channel_io_perm_failure) { 14012 rtnl_unlock(); 14013 return PCI_ERS_RESULT_DISCONNECT; 14014 } 14015 14016 if (state == pci_channel_io_frozen) 14017 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 14018 14019 if (netif_running(netdev)) 14020 bnxt_close(netdev); 14021 14022 if (pci_is_enabled(pdev)) 14023 pci_disable_device(pdev); 14024 bnxt_free_ctx_mem(bp); 14025 kfree(bp->ctx); 14026 bp->ctx = NULL; 14027 rtnl_unlock(); 14028 14029 /* Request a slot slot reset. */ 14030 return PCI_ERS_RESULT_NEED_RESET; 14031 } 14032 14033 /** 14034 * bnxt_io_slot_reset - called after the pci bus has been reset. 14035 * @pdev: Pointer to PCI device 14036 * 14037 * Restart the card from scratch, as if from a cold-boot. 14038 * At this point, the card has exprienced a hard reset, 14039 * followed by fixups by BIOS, and has its config space 14040 * set up identically to what it was at cold boot. 14041 */ 14042 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 14043 { 14044 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 14045 struct net_device *netdev = pci_get_drvdata(pdev); 14046 struct bnxt *bp = netdev_priv(netdev); 14047 int retry = 0; 14048 int err = 0; 14049 int off; 14050 14051 netdev_info(bp->dev, "PCI Slot Reset\n"); 14052 14053 rtnl_lock(); 14054 14055 if (pci_enable_device(pdev)) { 14056 dev_err(&pdev->dev, 14057 "Cannot re-enable PCI device after reset.\n"); 14058 } else { 14059 pci_set_master(pdev); 14060 /* Upon fatal error, our device internal logic that latches to 14061 * BAR value is getting reset and will restore only upon 14062 * rewritting the BARs. 14063 * 14064 * As pci_restore_state() does not re-write the BARs if the 14065 * value is same as saved value earlier, driver needs to 14066 * write the BARs to 0 to force restore, in case of fatal error. 14067 */ 14068 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 14069 &bp->state)) { 14070 for (off = PCI_BASE_ADDRESS_0; 14071 off <= PCI_BASE_ADDRESS_5; off += 4) 14072 pci_write_config_dword(bp->pdev, off, 0); 14073 } 14074 pci_restore_state(pdev); 14075 pci_save_state(pdev); 14076 14077 bnxt_inv_fw_health_reg(bp); 14078 bnxt_try_map_fw_health_reg(bp); 14079 14080 /* In some PCIe AER scenarios, firmware may take up to 14081 * 10 seconds to become ready in the worst case. 14082 */ 14083 do { 14084 err = bnxt_try_recover_fw(bp); 14085 if (!err) 14086 break; 14087 retry++; 14088 } while (retry < BNXT_FW_SLOT_RESET_RETRY); 14089 14090 if (err) { 14091 dev_err(&pdev->dev, "Firmware not ready\n"); 14092 goto reset_exit; 14093 } 14094 14095 err = bnxt_hwrm_func_reset(bp); 14096 if (!err) 14097 result = PCI_ERS_RESULT_RECOVERED; 14098 14099 bnxt_ulp_irq_stop(bp); 14100 bnxt_clear_int_mode(bp); 14101 err = bnxt_init_int_mode(bp); 14102 bnxt_ulp_irq_restart(bp, err); 14103 } 14104 14105 reset_exit: 14106 bnxt_clear_reservations(bp, true); 14107 rtnl_unlock(); 14108 14109 return result; 14110 } 14111 14112 /** 14113 * bnxt_io_resume - called when traffic can start flowing again. 14114 * @pdev: Pointer to PCI device 14115 * 14116 * This callback is called when the error recovery driver tells 14117 * us that its OK to resume normal operation. 14118 */ 14119 static void bnxt_io_resume(struct pci_dev *pdev) 14120 { 14121 struct net_device *netdev = pci_get_drvdata(pdev); 14122 struct bnxt *bp = netdev_priv(netdev); 14123 int err; 14124 14125 netdev_info(bp->dev, "PCI Slot Resume\n"); 14126 rtnl_lock(); 14127 14128 err = bnxt_hwrm_func_qcaps(bp); 14129 if (!err && netif_running(netdev)) 14130 err = bnxt_open(netdev); 14131 14132 bnxt_ulp_start(bp, err); 14133 if (!err) { 14134 bnxt_reenable_sriov(bp); 14135 netif_device_attach(netdev); 14136 } 14137 14138 rtnl_unlock(); 14139 } 14140 14141 static const struct pci_error_handlers bnxt_err_handler = { 14142 .error_detected = bnxt_io_error_detected, 14143 .slot_reset = bnxt_io_slot_reset, 14144 .resume = bnxt_io_resume 14145 }; 14146 14147 static struct pci_driver bnxt_pci_driver = { 14148 .name = DRV_MODULE_NAME, 14149 .id_table = bnxt_pci_tbl, 14150 .probe = bnxt_init_one, 14151 .remove = bnxt_remove_one, 14152 .shutdown = bnxt_shutdown, 14153 .driver.pm = BNXT_PM_OPS, 14154 .err_handler = &bnxt_err_handler, 14155 #if defined(CONFIG_BNXT_SRIOV) 14156 .sriov_configure = bnxt_sriov_configure, 14157 #endif 14158 }; 14159 14160 static int __init bnxt_init(void) 14161 { 14162 int err; 14163 14164 bnxt_debug_init(); 14165 err = pci_register_driver(&bnxt_pci_driver); 14166 if (err) { 14167 bnxt_debug_exit(); 14168 return err; 14169 } 14170 14171 return 0; 14172 } 14173 14174 static void __exit bnxt_exit(void) 14175 { 14176 pci_unregister_driver(&bnxt_pci_driver); 14177 if (bnxt_pf_wq) 14178 destroy_workqueue(bnxt_pf_wq); 14179 bnxt_debug_exit(); 14180 } 14181 14182 module_init(bnxt_init); 14183 module_exit(bnxt_exit); 14184