xref: /linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision 60ccf62d3ceb37c89391e60d5ba402f52b720b62)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/gro.h>
41 #include <net/ip.h>
42 #include <net/tcp.h>
43 #include <net/udp.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 #include <net/udp_tunnel.h>
47 #include <linux/workqueue.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/log2.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <net/page_pool/helpers.h>
56 #include <linux/align.h>
57 #include <net/netdev_queues.h>
58 
59 #include "bnxt_hsi.h"
60 #include "bnxt.h"
61 #include "bnxt_hwrm.h"
62 #include "bnxt_ulp.h"
63 #include "bnxt_sriov.h"
64 #include "bnxt_ethtool.h"
65 #include "bnxt_dcb.h"
66 #include "bnxt_xdp.h"
67 #include "bnxt_ptp.h"
68 #include "bnxt_vfr.h"
69 #include "bnxt_tc.h"
70 #include "bnxt_devlink.h"
71 #include "bnxt_debugfs.h"
72 #include "bnxt_hwmon.h"
73 
74 #define BNXT_TX_TIMEOUT		(5 * HZ)
75 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW | \
76 				 NETIF_MSG_TX_ERR)
77 
78 MODULE_LICENSE("GPL");
79 MODULE_DESCRIPTION("Broadcom NetXtreme network driver");
80 
81 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
82 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
83 #define BNXT_RX_COPY_THRESH 256
84 
85 #define BNXT_TX_PUSH_THRESH 164
86 
87 /* indexed by enum board_idx */
88 static const struct {
89 	char *name;
90 } board_info[] = {
91 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
92 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
93 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
94 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
95 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
96 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
97 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
98 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
99 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
100 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
101 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
102 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
103 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
104 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
105 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
106 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
107 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
108 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
109 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
110 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
111 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
112 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
113 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
114 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
115 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
116 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
117 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
118 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
119 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
120 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
121 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
122 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
123 	[BCM57608] = { "Broadcom BCM57608 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" },
124 	[BCM57604] = { "Broadcom BCM57604 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
125 	[BCM57602] = { "Broadcom BCM57602 NetXtreme-E 10Gb/25Gb/50Gb/100Gb Ethernet" },
126 	[BCM57601] = { "Broadcom BCM57601 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" },
127 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
128 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
129 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
130 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
131 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
132 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
133 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
134 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
135 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
136 	[NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
137 	[NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
138 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
139 	[NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
140 	[NETXTREME_E_P7_VF] = { "Broadcom BCM5760X Virtual Function" },
141 };
142 
143 static const struct pci_device_id bnxt_pci_tbl[] = {
144 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
145 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
146 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
147 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
148 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
149 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
150 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
151 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
152 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
153 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
154 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
155 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
157 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
158 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
159 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
160 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
161 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
162 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
163 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
164 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
165 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
166 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
167 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
168 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
169 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
170 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
171 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
172 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
173 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
174 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
175 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
176 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
177 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
178 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
179 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
180 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
181 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
182 	{ PCI_VDEVICE(BROADCOM, 0x1760), .driver_data = BCM57608 },
183 	{ PCI_VDEVICE(BROADCOM, 0x1761), .driver_data = BCM57604 },
184 	{ PCI_VDEVICE(BROADCOM, 0x1762), .driver_data = BCM57602 },
185 	{ PCI_VDEVICE(BROADCOM, 0x1763), .driver_data = BCM57601 },
186 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR },
187 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
188 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR },
189 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR },
190 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
191 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR },
192 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
193 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
194 #ifdef CONFIG_BNXT_SRIOV
195 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
196 	{ PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
197 	{ PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
198 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
199 	{ PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
200 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
201 	{ PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
202 	{ PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
203 	{ PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
204 	{ PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
205 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
206 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
207 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
208 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
209 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
210 	{ PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
211 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
212 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
213 	{ PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
214 	{ PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
215 	{ PCI_VDEVICE(BROADCOM, 0x1819), .driver_data = NETXTREME_E_P7_VF },
216 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
217 #endif
218 	{ 0 }
219 };
220 
221 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
222 
223 static const u16 bnxt_vf_req_snif[] = {
224 	HWRM_FUNC_CFG,
225 	HWRM_FUNC_VF_CFG,
226 	HWRM_PORT_PHY_QCFG,
227 	HWRM_CFA_L2_FILTER_ALLOC,
228 };
229 
230 static const u16 bnxt_async_events_arr[] = {
231 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
232 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
233 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
234 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
235 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
236 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
237 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
238 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
239 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
240 	ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
241 	ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE,
242 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
243 	ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
244 	ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP,
245 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT,
246 	ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE,
247 };
248 
249 static struct workqueue_struct *bnxt_pf_wq;
250 
251 #define BNXT_IPV6_MASK_ALL {{{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, \
252 			       0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }}}
253 #define BNXT_IPV6_MASK_NONE {{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }}}
254 
255 const struct bnxt_flow_masks BNXT_FLOW_MASK_NONE = {
256 	.ports = {
257 		.src = 0,
258 		.dst = 0,
259 	},
260 	.addrs = {
261 		.v6addrs = {
262 			.src = BNXT_IPV6_MASK_NONE,
263 			.dst = BNXT_IPV6_MASK_NONE,
264 		},
265 	},
266 };
267 
268 const struct bnxt_flow_masks BNXT_FLOW_IPV6_MASK_ALL = {
269 	.ports = {
270 		.src = cpu_to_be16(0xffff),
271 		.dst = cpu_to_be16(0xffff),
272 	},
273 	.addrs = {
274 		.v6addrs = {
275 			.src = BNXT_IPV6_MASK_ALL,
276 			.dst = BNXT_IPV6_MASK_ALL,
277 		},
278 	},
279 };
280 
281 const struct bnxt_flow_masks BNXT_FLOW_IPV4_MASK_ALL = {
282 	.ports = {
283 		.src = cpu_to_be16(0xffff),
284 		.dst = cpu_to_be16(0xffff),
285 	},
286 	.addrs = {
287 		.v4addrs = {
288 			.src = cpu_to_be32(0xffffffff),
289 			.dst = cpu_to_be32(0xffffffff),
290 		},
291 	},
292 };
293 
294 static bool bnxt_vf_pciid(enum board_idx idx)
295 {
296 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
297 		idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
298 		idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
299 		idx == NETXTREME_E_P5_VF_HV || idx == NETXTREME_E_P7_VF);
300 }
301 
302 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
303 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
304 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
305 
306 #define BNXT_CP_DB_IRQ_DIS(db)						\
307 		writel(DB_CP_IRQ_DIS_FLAGS, db)
308 
309 #define BNXT_DB_CQ(db, idx)						\
310 	writel(DB_CP_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell)
311 
312 #define BNXT_DB_NQ_P5(db, idx)						\
313 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | DB_RING_IDX(db, idx),\
314 		    (db)->doorbell)
315 
316 #define BNXT_DB_NQ_P7(db, idx)						\
317 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_MASK |		\
318 		    DB_RING_IDX(db, idx), (db)->doorbell)
319 
320 #define BNXT_DB_CQ_ARM(db, idx)						\
321 	writel(DB_CP_REARM_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell)
322 
323 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
324 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM |		\
325 		    DB_RING_IDX(db, idx), (db)->doorbell)
326 
327 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
328 {
329 	if (bp->flags & BNXT_FLAG_CHIP_P7)
330 		BNXT_DB_NQ_P7(db, idx);
331 	else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
332 		BNXT_DB_NQ_P5(db, idx);
333 	else
334 		BNXT_DB_CQ(db, idx);
335 }
336 
337 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
338 {
339 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
340 		BNXT_DB_NQ_ARM_P5(db, idx);
341 	else
342 		BNXT_DB_CQ_ARM(db, idx);
343 }
344 
345 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
346 {
347 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
348 		bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL |
349 			    DB_RING_IDX(db, idx), db->doorbell);
350 	else
351 		BNXT_DB_CQ(db, idx);
352 }
353 
354 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
355 {
356 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
357 		return;
358 
359 	if (BNXT_PF(bp))
360 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
361 	else
362 		schedule_delayed_work(&bp->fw_reset_task, delay);
363 }
364 
365 static void __bnxt_queue_sp_work(struct bnxt *bp)
366 {
367 	if (BNXT_PF(bp))
368 		queue_work(bnxt_pf_wq, &bp->sp_task);
369 	else
370 		schedule_work(&bp->sp_task);
371 }
372 
373 static void bnxt_queue_sp_work(struct bnxt *bp, unsigned int event)
374 {
375 	set_bit(event, &bp->sp_event);
376 	__bnxt_queue_sp_work(bp);
377 }
378 
379 static void bnxt_sched_reset_rxr(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
380 {
381 	if (!rxr->bnapi->in_reset) {
382 		rxr->bnapi->in_reset = true;
383 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
384 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
385 		else
386 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
387 		__bnxt_queue_sp_work(bp);
388 	}
389 	rxr->rx_next_cons = 0xffff;
390 }
391 
392 void bnxt_sched_reset_txr(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
393 			  u16 curr)
394 {
395 	struct bnxt_napi *bnapi = txr->bnapi;
396 
397 	if (bnapi->tx_fault)
398 		return;
399 
400 	netdev_err(bp->dev, "Invalid Tx completion (ring:%d tx_hw_cons:%u cons:%u prod:%u curr:%u)",
401 		   txr->txq_index, txr->tx_hw_cons,
402 		   txr->tx_cons, txr->tx_prod, curr);
403 	WARN_ON_ONCE(1);
404 	bnapi->tx_fault = 1;
405 	bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT);
406 }
407 
408 const u16 bnxt_lhint_arr[] = {
409 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
410 	TX_BD_FLAGS_LHINT_512_TO_1023,
411 	TX_BD_FLAGS_LHINT_1024_TO_2047,
412 	TX_BD_FLAGS_LHINT_1024_TO_2047,
413 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
414 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
415 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
416 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
417 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
418 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
419 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
420 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
421 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
422 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
423 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
424 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
425 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
426 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
427 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
428 };
429 
430 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
431 {
432 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
433 
434 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
435 		return 0;
436 
437 	return md_dst->u.port_info.port_id;
438 }
439 
440 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
441 			     u16 prod)
442 {
443 	/* Sync BD data before updating doorbell */
444 	wmb();
445 	bnxt_db_write(bp, &txr->tx_db, prod);
446 	txr->kick_pending = 0;
447 }
448 
449 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
450 {
451 	struct bnxt *bp = netdev_priv(dev);
452 	struct tx_bd *txbd, *txbd0;
453 	struct tx_bd_ext *txbd1;
454 	struct netdev_queue *txq;
455 	int i;
456 	dma_addr_t mapping;
457 	unsigned int length, pad = 0;
458 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
459 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
460 	struct pci_dev *pdev = bp->pdev;
461 	u16 prod, last_frag, txts_prod;
462 	struct bnxt_tx_ring_info *txr;
463 	struct bnxt_sw_tx_bd *tx_buf;
464 	__le32 lflags = 0;
465 
466 	i = skb_get_queue_mapping(skb);
467 	if (unlikely(i >= bp->tx_nr_rings)) {
468 		dev_kfree_skb_any(skb);
469 		dev_core_stats_tx_dropped_inc(dev);
470 		return NETDEV_TX_OK;
471 	}
472 
473 	txq = netdev_get_tx_queue(dev, i);
474 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
475 	prod = txr->tx_prod;
476 
477 	free_size = bnxt_tx_avail(bp, txr);
478 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
479 		/* We must have raced with NAPI cleanup */
480 		if (net_ratelimit() && txr->kick_pending)
481 			netif_warn(bp, tx_err, dev,
482 				   "bnxt: ring busy w/ flush pending!\n");
483 		if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr),
484 					bp->tx_wake_thresh))
485 			return NETDEV_TX_BUSY;
486 	}
487 
488 	if (unlikely(ipv6_hopopt_jumbo_remove(skb)))
489 		goto tx_free;
490 
491 	length = skb->len;
492 	len = skb_headlen(skb);
493 	last_frag = skb_shinfo(skb)->nr_frags;
494 
495 	txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
496 
497 	tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
498 	tx_buf->skb = skb;
499 	tx_buf->nr_frags = last_frag;
500 
501 	vlan_tag_flags = 0;
502 	cfa_action = bnxt_xmit_get_cfa_action(skb);
503 	if (skb_vlan_tag_present(skb)) {
504 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
505 				 skb_vlan_tag_get(skb);
506 		/* Currently supports 8021Q, 8021AD vlan offloads
507 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
508 		 */
509 		if (skb->vlan_proto == htons(ETH_P_8021Q))
510 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
511 	}
512 
513 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && ptp &&
514 	    ptp->tx_tstamp_en) {
515 		if (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) {
516 			lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
517 			tx_buf->is_ts_pkt = 1;
518 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
519 		} else if (!skb_is_gso(skb)) {
520 			u16 seq_id, hdr_off;
521 
522 			if (!bnxt_ptp_parse(skb, &seq_id, &hdr_off) &&
523 			    !bnxt_ptp_get_txts_prod(ptp, &txts_prod)) {
524 				if (vlan_tag_flags)
525 					hdr_off += VLAN_HLEN;
526 				lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
527 				tx_buf->is_ts_pkt = 1;
528 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
529 
530 				ptp->txts_req[txts_prod].tx_seqid = seq_id;
531 				ptp->txts_req[txts_prod].tx_hdr_off = hdr_off;
532 				tx_buf->txts_prod = txts_prod;
533 			}
534 		}
535 	}
536 	if (unlikely(skb->no_fcs))
537 		lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
538 
539 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh &&
540 	    !lflags) {
541 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
542 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
543 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
544 		void __iomem *db = txr->tx_db.doorbell;
545 		void *pdata = tx_push_buf->data;
546 		u64 *end;
547 		int j, push_len;
548 
549 		/* Set COAL_NOW to be ready quickly for the next push */
550 		tx_push->tx_bd_len_flags_type =
551 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
552 					TX_BD_TYPE_LONG_TX_BD |
553 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
554 					TX_BD_FLAGS_COAL_NOW |
555 					TX_BD_FLAGS_PACKET_END |
556 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
557 
558 		if (skb->ip_summed == CHECKSUM_PARTIAL)
559 			tx_push1->tx_bd_hsize_lflags =
560 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
561 		else
562 			tx_push1->tx_bd_hsize_lflags = 0;
563 
564 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
565 		tx_push1->tx_bd_cfa_action =
566 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
567 
568 		end = pdata + length;
569 		end = PTR_ALIGN(end, 8) - 1;
570 		*end = 0;
571 
572 		skb_copy_from_linear_data(skb, pdata, len);
573 		pdata += len;
574 		for (j = 0; j < last_frag; j++) {
575 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
576 			void *fptr;
577 
578 			fptr = skb_frag_address_safe(frag);
579 			if (!fptr)
580 				goto normal_tx;
581 
582 			memcpy(pdata, fptr, skb_frag_size(frag));
583 			pdata += skb_frag_size(frag);
584 		}
585 
586 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
587 		txbd->tx_bd_haddr = txr->data_mapping;
588 		txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2);
589 		prod = NEXT_TX(prod);
590 		tx_push->tx_bd_opaque = txbd->tx_bd_opaque;
591 		txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
592 		memcpy(txbd, tx_push1, sizeof(*txbd));
593 		prod = NEXT_TX(prod);
594 		tx_push->doorbell =
595 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH |
596 				    DB_RING_IDX(&txr->tx_db, prod));
597 		WRITE_ONCE(txr->tx_prod, prod);
598 
599 		tx_buf->is_push = 1;
600 		netdev_tx_sent_queue(txq, skb->len);
601 		wmb();	/* Sync is_push and byte queue before pushing data */
602 
603 		push_len = (length + sizeof(*tx_push) + 7) / 8;
604 		if (push_len > 16) {
605 			__iowrite64_copy(db, tx_push_buf, 16);
606 			__iowrite32_copy(db + 4, tx_push_buf + 1,
607 					 (push_len - 16) << 1);
608 		} else {
609 			__iowrite64_copy(db, tx_push_buf, push_len);
610 		}
611 
612 		goto tx_done;
613 	}
614 
615 normal_tx:
616 	if (length < BNXT_MIN_PKT_SIZE) {
617 		pad = BNXT_MIN_PKT_SIZE - length;
618 		if (skb_pad(skb, pad))
619 			/* SKB already freed. */
620 			goto tx_kick_pending;
621 		length = BNXT_MIN_PKT_SIZE;
622 	}
623 
624 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
625 
626 	if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
627 		goto tx_free;
628 
629 	dma_unmap_addr_set(tx_buf, mapping, mapping);
630 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
631 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
632 
633 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
634 	txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2 + last_frag);
635 
636 	prod = NEXT_TX(prod);
637 	txbd1 = (struct tx_bd_ext *)
638 		&txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
639 
640 	txbd1->tx_bd_hsize_lflags = lflags;
641 	if (skb_is_gso(skb)) {
642 		bool udp_gso = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4);
643 		u32 hdr_len;
644 
645 		if (skb->encapsulation) {
646 			if (udp_gso)
647 				hdr_len = skb_inner_transport_offset(skb) +
648 					  sizeof(struct udphdr);
649 			else
650 				hdr_len = skb_inner_tcp_all_headers(skb);
651 		} else if (udp_gso) {
652 			hdr_len = skb_transport_offset(skb) +
653 				  sizeof(struct udphdr);
654 		} else {
655 			hdr_len = skb_tcp_all_headers(skb);
656 		}
657 
658 		txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
659 					TX_BD_FLAGS_T_IPID |
660 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
661 		length = skb_shinfo(skb)->gso_size;
662 		txbd1->tx_bd_mss = cpu_to_le32(length);
663 		length += hdr_len;
664 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
665 		txbd1->tx_bd_hsize_lflags |=
666 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
667 		txbd1->tx_bd_mss = 0;
668 	}
669 
670 	length >>= 9;
671 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
672 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
673 				     skb->len);
674 		i = 0;
675 		goto tx_dma_error;
676 	}
677 	flags |= bnxt_lhint_arr[length];
678 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
679 
680 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
681 	txbd1->tx_bd_cfa_action =
682 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
683 	txbd0 = txbd;
684 	for (i = 0; i < last_frag; i++) {
685 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
686 
687 		prod = NEXT_TX(prod);
688 		txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
689 
690 		len = skb_frag_size(frag);
691 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
692 					   DMA_TO_DEVICE);
693 
694 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
695 			goto tx_dma_error;
696 
697 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
698 		dma_unmap_addr_set(tx_buf, mapping, mapping);
699 
700 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
701 
702 		flags = len << TX_BD_LEN_SHIFT;
703 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
704 	}
705 
706 	flags &= ~TX_BD_LEN;
707 	txbd->tx_bd_len_flags_type =
708 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
709 			    TX_BD_FLAGS_PACKET_END);
710 
711 	netdev_tx_sent_queue(txq, skb->len);
712 
713 	skb_tx_timestamp(skb);
714 
715 	prod = NEXT_TX(prod);
716 	WRITE_ONCE(txr->tx_prod, prod);
717 
718 	if (!netdev_xmit_more() || netif_xmit_stopped(txq)) {
719 		bnxt_txr_db_kick(bp, txr, prod);
720 	} else {
721 		if (free_size >= bp->tx_wake_thresh)
722 			txbd0->tx_bd_len_flags_type |=
723 				cpu_to_le32(TX_BD_FLAGS_NO_CMPL);
724 		txr->kick_pending = 1;
725 	}
726 
727 tx_done:
728 
729 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
730 		if (netdev_xmit_more() && !tx_buf->is_push) {
731 			txbd0->tx_bd_len_flags_type &=
732 				cpu_to_le32(~TX_BD_FLAGS_NO_CMPL);
733 			bnxt_txr_db_kick(bp, txr, prod);
734 		}
735 
736 		netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr),
737 				   bp->tx_wake_thresh);
738 	}
739 	return NETDEV_TX_OK;
740 
741 tx_dma_error:
742 	last_frag = i;
743 
744 	/* start back at beginning and unmap skb */
745 	prod = txr->tx_prod;
746 	tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
747 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
748 			 skb_headlen(skb), DMA_TO_DEVICE);
749 	prod = NEXT_TX(prod);
750 
751 	/* unmap remaining mapped pages */
752 	for (i = 0; i < last_frag; i++) {
753 		prod = NEXT_TX(prod);
754 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
755 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
756 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
757 			       DMA_TO_DEVICE);
758 	}
759 
760 tx_free:
761 	dev_kfree_skb_any(skb);
762 tx_kick_pending:
763 	if (BNXT_TX_PTP_IS_SET(lflags)) {
764 		txr->tx_buf_ring[txr->tx_prod].is_ts_pkt = 0;
765 		atomic64_inc(&bp->ptp_cfg->stats.ts_err);
766 		if (!(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP))
767 			/* set SKB to err so PTP worker will clean up */
768 			ptp->txts_req[txts_prod].tx_skb = ERR_PTR(-EIO);
769 	}
770 	if (txr->kick_pending)
771 		bnxt_txr_db_kick(bp, txr, txr->tx_prod);
772 	txr->tx_buf_ring[txr->tx_prod].skb = NULL;
773 	dev_core_stats_tx_dropped_inc(dev);
774 	return NETDEV_TX_OK;
775 }
776 
777 /* Returns true if some remaining TX packets not processed. */
778 static bool __bnxt_tx_int(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
779 			  int budget)
780 {
781 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
782 	struct pci_dev *pdev = bp->pdev;
783 	u16 hw_cons = txr->tx_hw_cons;
784 	unsigned int tx_bytes = 0;
785 	u16 cons = txr->tx_cons;
786 	int tx_pkts = 0;
787 	bool rc = false;
788 
789 	while (RING_TX(bp, cons) != hw_cons) {
790 		struct bnxt_sw_tx_bd *tx_buf;
791 		struct sk_buff *skb;
792 		bool is_ts_pkt;
793 		int j, last;
794 
795 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)];
796 		skb = tx_buf->skb;
797 
798 		if (unlikely(!skb)) {
799 			bnxt_sched_reset_txr(bp, txr, cons);
800 			return rc;
801 		}
802 
803 		is_ts_pkt = tx_buf->is_ts_pkt;
804 		if (is_ts_pkt && (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) {
805 			rc = true;
806 			break;
807 		}
808 
809 		cons = NEXT_TX(cons);
810 		tx_pkts++;
811 		tx_bytes += skb->len;
812 		tx_buf->skb = NULL;
813 		tx_buf->is_ts_pkt = 0;
814 
815 		if (tx_buf->is_push) {
816 			tx_buf->is_push = 0;
817 			goto next_tx_int;
818 		}
819 
820 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
821 				 skb_headlen(skb), DMA_TO_DEVICE);
822 		last = tx_buf->nr_frags;
823 
824 		for (j = 0; j < last; j++) {
825 			cons = NEXT_TX(cons);
826 			tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)];
827 			dma_unmap_page(
828 				&pdev->dev,
829 				dma_unmap_addr(tx_buf, mapping),
830 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
831 				DMA_TO_DEVICE);
832 		}
833 		if (unlikely(is_ts_pkt)) {
834 			if (BNXT_CHIP_P5(bp)) {
835 				/* PTP worker takes ownership of the skb */
836 				bnxt_get_tx_ts_p5(bp, skb, tx_buf->txts_prod);
837 				skb = NULL;
838 			}
839 		}
840 
841 next_tx_int:
842 		cons = NEXT_TX(cons);
843 
844 		dev_consume_skb_any(skb);
845 	}
846 
847 	WRITE_ONCE(txr->tx_cons, cons);
848 
849 	__netif_txq_completed_wake(txq, tx_pkts, tx_bytes,
850 				   bnxt_tx_avail(bp, txr), bp->tx_wake_thresh,
851 				   READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING);
852 
853 	return rc;
854 }
855 
856 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
857 {
858 	struct bnxt_tx_ring_info *txr;
859 	bool more = false;
860 	int i;
861 
862 	bnxt_for_each_napi_tx(i, bnapi, txr) {
863 		if (txr->tx_hw_cons != RING_TX(bp, txr->tx_cons))
864 			more |= __bnxt_tx_int(bp, txr, budget);
865 	}
866 	if (!more)
867 		bnapi->events &= ~BNXT_TX_CMP_EVENT;
868 }
869 
870 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
871 					 struct bnxt_rx_ring_info *rxr,
872 					 unsigned int *offset,
873 					 gfp_t gfp)
874 {
875 	struct page *page;
876 
877 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
878 		page = page_pool_dev_alloc_frag(rxr->page_pool, offset,
879 						BNXT_RX_PAGE_SIZE);
880 	} else {
881 		page = page_pool_dev_alloc_pages(rxr->page_pool);
882 		*offset = 0;
883 	}
884 	if (!page)
885 		return NULL;
886 
887 	*mapping = page_pool_get_dma_addr(page) + *offset;
888 	return page;
889 }
890 
891 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping,
892 				       gfp_t gfp)
893 {
894 	u8 *data;
895 	struct pci_dev *pdev = bp->pdev;
896 
897 	if (gfp == GFP_ATOMIC)
898 		data = napi_alloc_frag(bp->rx_buf_size);
899 	else
900 		data = netdev_alloc_frag(bp->rx_buf_size);
901 	if (!data)
902 		return NULL;
903 
904 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
905 					bp->rx_buf_use_size, bp->rx_dir,
906 					DMA_ATTR_WEAK_ORDERING);
907 
908 	if (dma_mapping_error(&pdev->dev, *mapping)) {
909 		skb_free_frag(data);
910 		data = NULL;
911 	}
912 	return data;
913 }
914 
915 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
916 		       u16 prod, gfp_t gfp)
917 {
918 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
919 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
920 	dma_addr_t mapping;
921 
922 	if (BNXT_RX_PAGE_MODE(bp)) {
923 		unsigned int offset;
924 		struct page *page =
925 			__bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp);
926 
927 		if (!page)
928 			return -ENOMEM;
929 
930 		mapping += bp->rx_dma_offset;
931 		rx_buf->data = page;
932 		rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset;
933 	} else {
934 		u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp);
935 
936 		if (!data)
937 			return -ENOMEM;
938 
939 		rx_buf->data = data;
940 		rx_buf->data_ptr = data + bp->rx_offset;
941 	}
942 	rx_buf->mapping = mapping;
943 
944 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
945 	return 0;
946 }
947 
948 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
949 {
950 	u16 prod = rxr->rx_prod;
951 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
952 	struct bnxt *bp = rxr->bnapi->bp;
953 	struct rx_bd *cons_bd, *prod_bd;
954 
955 	prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
956 	cons_rx_buf = &rxr->rx_buf_ring[cons];
957 
958 	prod_rx_buf->data = data;
959 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
960 
961 	prod_rx_buf->mapping = cons_rx_buf->mapping;
962 
963 	prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
964 	cons_bd = &rxr->rx_desc_ring[RX_RING(bp, cons)][RX_IDX(cons)];
965 
966 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
967 }
968 
969 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
970 {
971 	u16 next, max = rxr->rx_agg_bmap_size;
972 
973 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
974 	if (next >= max)
975 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
976 	return next;
977 }
978 
979 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
980 				     struct bnxt_rx_ring_info *rxr,
981 				     u16 prod, gfp_t gfp)
982 {
983 	struct rx_bd *rxbd =
984 		&rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)];
985 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
986 	struct page *page;
987 	dma_addr_t mapping;
988 	u16 sw_prod = rxr->rx_sw_agg_prod;
989 	unsigned int offset = 0;
990 
991 	page = __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp);
992 
993 	if (!page)
994 		return -ENOMEM;
995 
996 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
997 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
998 
999 	__set_bit(sw_prod, rxr->rx_agg_bmap);
1000 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
1001 	rxr->rx_sw_agg_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod));
1002 
1003 	rx_agg_buf->page = page;
1004 	rx_agg_buf->offset = offset;
1005 	rx_agg_buf->mapping = mapping;
1006 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
1007 	rxbd->rx_bd_opaque = sw_prod;
1008 	return 0;
1009 }
1010 
1011 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
1012 				       struct bnxt_cp_ring_info *cpr,
1013 				       u16 cp_cons, u16 curr)
1014 {
1015 	struct rx_agg_cmp *agg;
1016 
1017 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
1018 	agg = (struct rx_agg_cmp *)
1019 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1020 	return agg;
1021 }
1022 
1023 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
1024 					      struct bnxt_rx_ring_info *rxr,
1025 					      u16 agg_id, u16 curr)
1026 {
1027 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
1028 
1029 	return &tpa_info->agg_arr[curr];
1030 }
1031 
1032 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
1033 				   u16 start, u32 agg_bufs, bool tpa)
1034 {
1035 	struct bnxt_napi *bnapi = cpr->bnapi;
1036 	struct bnxt *bp = bnapi->bp;
1037 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1038 	u16 prod = rxr->rx_agg_prod;
1039 	u16 sw_prod = rxr->rx_sw_agg_prod;
1040 	bool p5_tpa = false;
1041 	u32 i;
1042 
1043 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa)
1044 		p5_tpa = true;
1045 
1046 	for (i = 0; i < agg_bufs; i++) {
1047 		u16 cons;
1048 		struct rx_agg_cmp *agg;
1049 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
1050 		struct rx_bd *prod_bd;
1051 		struct page *page;
1052 
1053 		if (p5_tpa)
1054 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
1055 		else
1056 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
1057 		cons = agg->rx_agg_cmp_opaque;
1058 		__clear_bit(cons, rxr->rx_agg_bmap);
1059 
1060 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
1061 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
1062 
1063 		__set_bit(sw_prod, rxr->rx_agg_bmap);
1064 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
1065 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1066 
1067 		/* It is possible for sw_prod to be equal to cons, so
1068 		 * set cons_rx_buf->page to NULL first.
1069 		 */
1070 		page = cons_rx_buf->page;
1071 		cons_rx_buf->page = NULL;
1072 		prod_rx_buf->page = page;
1073 		prod_rx_buf->offset = cons_rx_buf->offset;
1074 
1075 		prod_rx_buf->mapping = cons_rx_buf->mapping;
1076 
1077 		prod_bd = &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)];
1078 
1079 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
1080 		prod_bd->rx_bd_opaque = sw_prod;
1081 
1082 		prod = NEXT_RX_AGG(prod);
1083 		sw_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod));
1084 	}
1085 	rxr->rx_agg_prod = prod;
1086 	rxr->rx_sw_agg_prod = sw_prod;
1087 }
1088 
1089 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp,
1090 					      struct bnxt_rx_ring_info *rxr,
1091 					      u16 cons, void *data, u8 *data_ptr,
1092 					      dma_addr_t dma_addr,
1093 					      unsigned int offset_and_len)
1094 {
1095 	unsigned int len = offset_and_len & 0xffff;
1096 	struct page *page = data;
1097 	u16 prod = rxr->rx_prod;
1098 	struct sk_buff *skb;
1099 	int err;
1100 
1101 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1102 	if (unlikely(err)) {
1103 		bnxt_reuse_rx_data(rxr, cons, data);
1104 		return NULL;
1105 	}
1106 	dma_addr -= bp->rx_dma_offset;
1107 	dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE,
1108 				bp->rx_dir);
1109 	skb = napi_build_skb(data_ptr - bp->rx_offset, BNXT_RX_PAGE_SIZE);
1110 	if (!skb) {
1111 		page_pool_recycle_direct(rxr->page_pool, page);
1112 		return NULL;
1113 	}
1114 	skb_mark_for_recycle(skb);
1115 	skb_reserve(skb, bp->rx_offset);
1116 	__skb_put(skb, len);
1117 
1118 	return skb;
1119 }
1120 
1121 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
1122 					struct bnxt_rx_ring_info *rxr,
1123 					u16 cons, void *data, u8 *data_ptr,
1124 					dma_addr_t dma_addr,
1125 					unsigned int offset_and_len)
1126 {
1127 	unsigned int payload = offset_and_len >> 16;
1128 	unsigned int len = offset_and_len & 0xffff;
1129 	skb_frag_t *frag;
1130 	struct page *page = data;
1131 	u16 prod = rxr->rx_prod;
1132 	struct sk_buff *skb;
1133 	int off, err;
1134 
1135 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1136 	if (unlikely(err)) {
1137 		bnxt_reuse_rx_data(rxr, cons, data);
1138 		return NULL;
1139 	}
1140 	dma_addr -= bp->rx_dma_offset;
1141 	dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE,
1142 				bp->rx_dir);
1143 
1144 	if (unlikely(!payload))
1145 		payload = eth_get_headlen(bp->dev, data_ptr, len);
1146 
1147 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
1148 	if (!skb) {
1149 		page_pool_recycle_direct(rxr->page_pool, page);
1150 		return NULL;
1151 	}
1152 
1153 	skb_mark_for_recycle(skb);
1154 	off = (void *)data_ptr - page_address(page);
1155 	skb_add_rx_frag(skb, 0, page, off, len, BNXT_RX_PAGE_SIZE);
1156 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
1157 	       payload + NET_IP_ALIGN);
1158 
1159 	frag = &skb_shinfo(skb)->frags[0];
1160 	skb_frag_size_sub(frag, payload);
1161 	skb_frag_off_add(frag, payload);
1162 	skb->data_len -= payload;
1163 	skb->tail += payload;
1164 
1165 	return skb;
1166 }
1167 
1168 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
1169 				   struct bnxt_rx_ring_info *rxr, u16 cons,
1170 				   void *data, u8 *data_ptr,
1171 				   dma_addr_t dma_addr,
1172 				   unsigned int offset_and_len)
1173 {
1174 	u16 prod = rxr->rx_prod;
1175 	struct sk_buff *skb;
1176 	int err;
1177 
1178 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1179 	if (unlikely(err)) {
1180 		bnxt_reuse_rx_data(rxr, cons, data);
1181 		return NULL;
1182 	}
1183 
1184 	skb = napi_build_skb(data, bp->rx_buf_size);
1185 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1186 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1187 	if (!skb) {
1188 		skb_free_frag(data);
1189 		return NULL;
1190 	}
1191 
1192 	skb_reserve(skb, bp->rx_offset);
1193 	skb_put(skb, offset_and_len & 0xffff);
1194 	return skb;
1195 }
1196 
1197 static u32 __bnxt_rx_agg_pages(struct bnxt *bp,
1198 			       struct bnxt_cp_ring_info *cpr,
1199 			       struct skb_shared_info *shinfo,
1200 			       u16 idx, u32 agg_bufs, bool tpa,
1201 			       struct xdp_buff *xdp)
1202 {
1203 	struct bnxt_napi *bnapi = cpr->bnapi;
1204 	struct pci_dev *pdev = bp->pdev;
1205 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1206 	u16 prod = rxr->rx_agg_prod;
1207 	u32 i, total_frag_len = 0;
1208 	bool p5_tpa = false;
1209 
1210 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa)
1211 		p5_tpa = true;
1212 
1213 	for (i = 0; i < agg_bufs; i++) {
1214 		skb_frag_t *frag = &shinfo->frags[i];
1215 		u16 cons, frag_len;
1216 		struct rx_agg_cmp *agg;
1217 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1218 		struct page *page;
1219 		dma_addr_t mapping;
1220 
1221 		if (p5_tpa)
1222 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1223 		else
1224 			agg = bnxt_get_agg(bp, cpr, idx, i);
1225 		cons = agg->rx_agg_cmp_opaque;
1226 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1227 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1228 
1229 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1230 		skb_frag_fill_page_desc(frag, cons_rx_buf->page,
1231 					cons_rx_buf->offset, frag_len);
1232 		shinfo->nr_frags = i + 1;
1233 		__clear_bit(cons, rxr->rx_agg_bmap);
1234 
1235 		/* It is possible for bnxt_alloc_rx_page() to allocate
1236 		 * a sw_prod index that equals the cons index, so we
1237 		 * need to clear the cons entry now.
1238 		 */
1239 		mapping = cons_rx_buf->mapping;
1240 		page = cons_rx_buf->page;
1241 		cons_rx_buf->page = NULL;
1242 
1243 		if (xdp && page_is_pfmemalloc(page))
1244 			xdp_buff_set_frag_pfmemalloc(xdp);
1245 
1246 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1247 			--shinfo->nr_frags;
1248 			cons_rx_buf->page = page;
1249 
1250 			/* Update prod since possibly some pages have been
1251 			 * allocated already.
1252 			 */
1253 			rxr->rx_agg_prod = prod;
1254 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1255 			return 0;
1256 		}
1257 
1258 		dma_sync_single_for_cpu(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1259 					bp->rx_dir);
1260 
1261 		total_frag_len += frag_len;
1262 		prod = NEXT_RX_AGG(prod);
1263 	}
1264 	rxr->rx_agg_prod = prod;
1265 	return total_frag_len;
1266 }
1267 
1268 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp,
1269 					     struct bnxt_cp_ring_info *cpr,
1270 					     struct sk_buff *skb, u16 idx,
1271 					     u32 agg_bufs, bool tpa)
1272 {
1273 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1274 	u32 total_frag_len = 0;
1275 
1276 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx,
1277 					     agg_bufs, tpa, NULL);
1278 	if (!total_frag_len) {
1279 		skb_mark_for_recycle(skb);
1280 		dev_kfree_skb(skb);
1281 		return NULL;
1282 	}
1283 
1284 	skb->data_len += total_frag_len;
1285 	skb->len += total_frag_len;
1286 	skb->truesize += BNXT_RX_PAGE_SIZE * agg_bufs;
1287 	return skb;
1288 }
1289 
1290 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp,
1291 				 struct bnxt_cp_ring_info *cpr,
1292 				 struct xdp_buff *xdp, u16 idx,
1293 				 u32 agg_bufs, bool tpa)
1294 {
1295 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp);
1296 	u32 total_frag_len = 0;
1297 
1298 	if (!xdp_buff_has_frags(xdp))
1299 		shinfo->nr_frags = 0;
1300 
1301 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo,
1302 					     idx, agg_bufs, tpa, xdp);
1303 	if (total_frag_len) {
1304 		xdp_buff_set_frags_flag(xdp);
1305 		shinfo->nr_frags = agg_bufs;
1306 		shinfo->xdp_frags_size = total_frag_len;
1307 	}
1308 	return total_frag_len;
1309 }
1310 
1311 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1312 			       u8 agg_bufs, u32 *raw_cons)
1313 {
1314 	u16 last;
1315 	struct rx_agg_cmp *agg;
1316 
1317 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1318 	last = RING_CMP(*raw_cons);
1319 	agg = (struct rx_agg_cmp *)
1320 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1321 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1322 }
1323 
1324 static struct sk_buff *bnxt_copy_data(struct bnxt_napi *bnapi, u8 *data,
1325 				      unsigned int len,
1326 				      dma_addr_t mapping)
1327 {
1328 	struct bnxt *bp = bnapi->bp;
1329 	struct pci_dev *pdev = bp->pdev;
1330 	struct sk_buff *skb;
1331 
1332 	skb = napi_alloc_skb(&bnapi->napi, len);
1333 	if (!skb)
1334 		return NULL;
1335 
1336 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1337 				bp->rx_dir);
1338 
1339 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1340 	       len + NET_IP_ALIGN);
1341 
1342 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1343 				   bp->rx_dir);
1344 
1345 	skb_put(skb, len);
1346 
1347 	return skb;
1348 }
1349 
1350 static struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1351 				     unsigned int len,
1352 				     dma_addr_t mapping)
1353 {
1354 	return bnxt_copy_data(bnapi, data, len, mapping);
1355 }
1356 
1357 static struct sk_buff *bnxt_copy_xdp(struct bnxt_napi *bnapi,
1358 				     struct xdp_buff *xdp,
1359 				     unsigned int len,
1360 				     dma_addr_t mapping)
1361 {
1362 	unsigned int metasize = 0;
1363 	u8 *data = xdp->data;
1364 	struct sk_buff *skb;
1365 
1366 	len = xdp->data_end - xdp->data_meta;
1367 	metasize = xdp->data - xdp->data_meta;
1368 	data = xdp->data_meta;
1369 
1370 	skb = bnxt_copy_data(bnapi, data, len, mapping);
1371 	if (!skb)
1372 		return skb;
1373 
1374 	if (metasize) {
1375 		skb_metadata_set(skb, metasize);
1376 		__skb_pull(skb, metasize);
1377 	}
1378 
1379 	return skb;
1380 }
1381 
1382 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1383 			   u32 *raw_cons, void *cmp)
1384 {
1385 	struct rx_cmp *rxcmp = cmp;
1386 	u32 tmp_raw_cons = *raw_cons;
1387 	u8 cmp_type, agg_bufs = 0;
1388 
1389 	cmp_type = RX_CMP_TYPE(rxcmp);
1390 
1391 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1392 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1393 			    RX_CMP_AGG_BUFS) >>
1394 			   RX_CMP_AGG_BUFS_SHIFT;
1395 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1396 		struct rx_tpa_end_cmp *tpa_end = cmp;
1397 
1398 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
1399 			return 0;
1400 
1401 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1402 	}
1403 
1404 	if (agg_bufs) {
1405 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1406 			return -EBUSY;
1407 	}
1408 	*raw_cons = tmp_raw_cons;
1409 	return 0;
1410 }
1411 
1412 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1413 {
1414 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1415 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1416 
1417 	if (test_bit(idx, map->agg_idx_bmap))
1418 		idx = find_first_zero_bit(map->agg_idx_bmap,
1419 					  BNXT_AGG_IDX_BMAP_SIZE);
1420 	__set_bit(idx, map->agg_idx_bmap);
1421 	map->agg_id_tbl[agg_id] = idx;
1422 	return idx;
1423 }
1424 
1425 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1426 {
1427 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1428 
1429 	__clear_bit(idx, map->agg_idx_bmap);
1430 }
1431 
1432 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1433 {
1434 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1435 
1436 	return map->agg_id_tbl[agg_id];
1437 }
1438 
1439 static void bnxt_tpa_metadata(struct bnxt_tpa_info *tpa_info,
1440 			      struct rx_tpa_start_cmp *tpa_start,
1441 			      struct rx_tpa_start_cmp_ext *tpa_start1)
1442 {
1443 	tpa_info->cfa_code_valid = 1;
1444 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1445 	tpa_info->vlan_valid = 0;
1446 	if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) {
1447 		tpa_info->vlan_valid = 1;
1448 		tpa_info->metadata =
1449 			le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1450 	}
1451 }
1452 
1453 static void bnxt_tpa_metadata_v2(struct bnxt_tpa_info *tpa_info,
1454 				 struct rx_tpa_start_cmp *tpa_start,
1455 				 struct rx_tpa_start_cmp_ext *tpa_start1)
1456 {
1457 	tpa_info->vlan_valid = 0;
1458 	if (TPA_START_VLAN_VALID(tpa_start)) {
1459 		u32 tpid_sel = TPA_START_VLAN_TPID_SEL(tpa_start);
1460 		u32 vlan_proto = ETH_P_8021Q;
1461 
1462 		tpa_info->vlan_valid = 1;
1463 		if (tpid_sel == RX_TPA_START_METADATA1_TPID_8021AD)
1464 			vlan_proto = ETH_P_8021AD;
1465 		tpa_info->metadata = vlan_proto << 16 |
1466 				     TPA_START_METADATA0_TCI(tpa_start1);
1467 	}
1468 }
1469 
1470 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1471 			   u8 cmp_type, struct rx_tpa_start_cmp *tpa_start,
1472 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1473 {
1474 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1475 	struct bnxt_tpa_info *tpa_info;
1476 	u16 cons, prod, agg_id;
1477 	struct rx_bd *prod_bd;
1478 	dma_addr_t mapping;
1479 
1480 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
1481 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1482 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1483 	} else {
1484 		agg_id = TPA_START_AGG_ID(tpa_start);
1485 	}
1486 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1487 	prod = rxr->rx_prod;
1488 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1489 	prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
1490 	tpa_info = &rxr->rx_tpa[agg_id];
1491 
1492 	if (unlikely(cons != rxr->rx_next_cons ||
1493 		     TPA_START_ERROR(tpa_start))) {
1494 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1495 			    cons, rxr->rx_next_cons,
1496 			    TPA_START_ERROR_CODE(tpa_start1));
1497 		bnxt_sched_reset_rxr(bp, rxr);
1498 		return;
1499 	}
1500 	prod_rx_buf->data = tpa_info->data;
1501 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1502 
1503 	mapping = tpa_info->mapping;
1504 	prod_rx_buf->mapping = mapping;
1505 
1506 	prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
1507 
1508 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1509 
1510 	tpa_info->data = cons_rx_buf->data;
1511 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1512 	cons_rx_buf->data = NULL;
1513 	tpa_info->mapping = cons_rx_buf->mapping;
1514 
1515 	tpa_info->len =
1516 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1517 				RX_TPA_START_CMP_LEN_SHIFT;
1518 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1519 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1520 		tpa_info->gso_type = SKB_GSO_TCPV4;
1521 		if (TPA_START_IS_IPV6(tpa_start1))
1522 			tpa_info->gso_type = SKB_GSO_TCPV6;
1523 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1524 		else if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP &&
1525 			 TPA_START_HASH_TYPE(tpa_start) == 3)
1526 			tpa_info->gso_type = SKB_GSO_TCPV6;
1527 		tpa_info->rss_hash =
1528 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1529 	} else {
1530 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1531 		tpa_info->gso_type = 0;
1532 		netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1533 	}
1534 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1535 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1536 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP)
1537 		bnxt_tpa_metadata(tpa_info, tpa_start, tpa_start1);
1538 	else
1539 		bnxt_tpa_metadata_v2(tpa_info, tpa_start, tpa_start1);
1540 	tpa_info->agg_count = 0;
1541 
1542 	rxr->rx_prod = NEXT_RX(prod);
1543 	cons = RING_RX(bp, NEXT_RX(cons));
1544 	rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons));
1545 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1546 
1547 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1548 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1549 	cons_rx_buf->data = NULL;
1550 }
1551 
1552 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1553 {
1554 	if (agg_bufs)
1555 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1556 }
1557 
1558 #ifdef CONFIG_INET
1559 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1560 {
1561 	struct udphdr *uh = NULL;
1562 
1563 	if (ip_proto == htons(ETH_P_IP)) {
1564 		struct iphdr *iph = (struct iphdr *)skb->data;
1565 
1566 		if (iph->protocol == IPPROTO_UDP)
1567 			uh = (struct udphdr *)(iph + 1);
1568 	} else {
1569 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1570 
1571 		if (iph->nexthdr == IPPROTO_UDP)
1572 			uh = (struct udphdr *)(iph + 1);
1573 	}
1574 	if (uh) {
1575 		if (uh->check)
1576 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1577 		else
1578 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1579 	}
1580 }
1581 #endif
1582 
1583 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1584 					   int payload_off, int tcp_ts,
1585 					   struct sk_buff *skb)
1586 {
1587 #ifdef CONFIG_INET
1588 	struct tcphdr *th;
1589 	int len, nw_off;
1590 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1591 	u32 hdr_info = tpa_info->hdr_info;
1592 	bool loopback = false;
1593 
1594 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1595 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1596 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1597 
1598 	/* If the packet is an internal loopback packet, the offsets will
1599 	 * have an extra 4 bytes.
1600 	 */
1601 	if (inner_mac_off == 4) {
1602 		loopback = true;
1603 	} else if (inner_mac_off > 4) {
1604 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1605 					    ETH_HLEN - 2));
1606 
1607 		/* We only support inner iPv4/ipv6.  If we don't see the
1608 		 * correct protocol ID, it must be a loopback packet where
1609 		 * the offsets are off by 4.
1610 		 */
1611 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1612 			loopback = true;
1613 	}
1614 	if (loopback) {
1615 		/* internal loopback packet, subtract all offsets by 4 */
1616 		inner_ip_off -= 4;
1617 		inner_mac_off -= 4;
1618 		outer_ip_off -= 4;
1619 	}
1620 
1621 	nw_off = inner_ip_off - ETH_HLEN;
1622 	skb_set_network_header(skb, nw_off);
1623 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1624 		struct ipv6hdr *iph = ipv6_hdr(skb);
1625 
1626 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1627 		len = skb->len - skb_transport_offset(skb);
1628 		th = tcp_hdr(skb);
1629 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1630 	} else {
1631 		struct iphdr *iph = ip_hdr(skb);
1632 
1633 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1634 		len = skb->len - skb_transport_offset(skb);
1635 		th = tcp_hdr(skb);
1636 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1637 	}
1638 
1639 	if (inner_mac_off) { /* tunnel */
1640 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1641 					    ETH_HLEN - 2));
1642 
1643 		bnxt_gro_tunnel(skb, proto);
1644 	}
1645 #endif
1646 	return skb;
1647 }
1648 
1649 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1650 					   int payload_off, int tcp_ts,
1651 					   struct sk_buff *skb)
1652 {
1653 #ifdef CONFIG_INET
1654 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1655 	u32 hdr_info = tpa_info->hdr_info;
1656 	int iphdr_len, nw_off;
1657 
1658 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1659 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1660 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1661 
1662 	nw_off = inner_ip_off - ETH_HLEN;
1663 	skb_set_network_header(skb, nw_off);
1664 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1665 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1666 	skb_set_transport_header(skb, nw_off + iphdr_len);
1667 
1668 	if (inner_mac_off) { /* tunnel */
1669 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1670 					    ETH_HLEN - 2));
1671 
1672 		bnxt_gro_tunnel(skb, proto);
1673 	}
1674 #endif
1675 	return skb;
1676 }
1677 
1678 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1679 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1680 
1681 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1682 					   int payload_off, int tcp_ts,
1683 					   struct sk_buff *skb)
1684 {
1685 #ifdef CONFIG_INET
1686 	struct tcphdr *th;
1687 	int len, nw_off, tcp_opt_len = 0;
1688 
1689 	if (tcp_ts)
1690 		tcp_opt_len = 12;
1691 
1692 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1693 		struct iphdr *iph;
1694 
1695 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1696 			 ETH_HLEN;
1697 		skb_set_network_header(skb, nw_off);
1698 		iph = ip_hdr(skb);
1699 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1700 		len = skb->len - skb_transport_offset(skb);
1701 		th = tcp_hdr(skb);
1702 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1703 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1704 		struct ipv6hdr *iph;
1705 
1706 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1707 			 ETH_HLEN;
1708 		skb_set_network_header(skb, nw_off);
1709 		iph = ipv6_hdr(skb);
1710 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1711 		len = skb->len - skb_transport_offset(skb);
1712 		th = tcp_hdr(skb);
1713 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1714 	} else {
1715 		dev_kfree_skb_any(skb);
1716 		return NULL;
1717 	}
1718 
1719 	if (nw_off) /* tunnel */
1720 		bnxt_gro_tunnel(skb, skb->protocol);
1721 #endif
1722 	return skb;
1723 }
1724 
1725 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1726 					   struct bnxt_tpa_info *tpa_info,
1727 					   struct rx_tpa_end_cmp *tpa_end,
1728 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1729 					   struct sk_buff *skb)
1730 {
1731 #ifdef CONFIG_INET
1732 	int payload_off;
1733 	u16 segs;
1734 
1735 	segs = TPA_END_TPA_SEGS(tpa_end);
1736 	if (segs == 1)
1737 		return skb;
1738 
1739 	NAPI_GRO_CB(skb)->count = segs;
1740 	skb_shinfo(skb)->gso_size =
1741 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1742 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1743 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
1744 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1745 	else
1746 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1747 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1748 	if (likely(skb))
1749 		tcp_gro_complete(skb);
1750 #endif
1751 	return skb;
1752 }
1753 
1754 /* Given the cfa_code of a received packet determine which
1755  * netdev (vf-rep or PF) the packet is destined to.
1756  */
1757 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1758 {
1759 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1760 
1761 	/* if vf-rep dev is NULL, the must belongs to the PF */
1762 	return dev ? dev : bp->dev;
1763 }
1764 
1765 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1766 					   struct bnxt_cp_ring_info *cpr,
1767 					   u32 *raw_cons,
1768 					   struct rx_tpa_end_cmp *tpa_end,
1769 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1770 					   u8 *event)
1771 {
1772 	struct bnxt_napi *bnapi = cpr->bnapi;
1773 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1774 	struct net_device *dev = bp->dev;
1775 	u8 *data_ptr, agg_bufs;
1776 	unsigned int len;
1777 	struct bnxt_tpa_info *tpa_info;
1778 	dma_addr_t mapping;
1779 	struct sk_buff *skb;
1780 	u16 idx = 0, agg_id;
1781 	void *data;
1782 	bool gro;
1783 
1784 	if (unlikely(bnapi->in_reset)) {
1785 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1786 
1787 		if (rc < 0)
1788 			return ERR_PTR(-EBUSY);
1789 		return NULL;
1790 	}
1791 
1792 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
1793 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1794 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1795 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1796 		tpa_info = &rxr->rx_tpa[agg_id];
1797 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1798 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1799 				    agg_bufs, tpa_info->agg_count);
1800 			agg_bufs = tpa_info->agg_count;
1801 		}
1802 		tpa_info->agg_count = 0;
1803 		*event |= BNXT_AGG_EVENT;
1804 		bnxt_free_agg_idx(rxr, agg_id);
1805 		idx = agg_id;
1806 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1807 	} else {
1808 		agg_id = TPA_END_AGG_ID(tpa_end);
1809 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1810 		tpa_info = &rxr->rx_tpa[agg_id];
1811 		idx = RING_CMP(*raw_cons);
1812 		if (agg_bufs) {
1813 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1814 				return ERR_PTR(-EBUSY);
1815 
1816 			*event |= BNXT_AGG_EVENT;
1817 			idx = NEXT_CMP(idx);
1818 		}
1819 		gro = !!TPA_END_GRO(tpa_end);
1820 	}
1821 	data = tpa_info->data;
1822 	data_ptr = tpa_info->data_ptr;
1823 	prefetch(data_ptr);
1824 	len = tpa_info->len;
1825 	mapping = tpa_info->mapping;
1826 
1827 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1828 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1829 		if (agg_bufs > MAX_SKB_FRAGS)
1830 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1831 				    agg_bufs, (int)MAX_SKB_FRAGS);
1832 		return NULL;
1833 	}
1834 
1835 	if (len <= bp->rx_copy_thresh) {
1836 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1837 		if (!skb) {
1838 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1839 			cpr->sw_stats->rx.rx_oom_discards += 1;
1840 			return NULL;
1841 		}
1842 	} else {
1843 		u8 *new_data;
1844 		dma_addr_t new_mapping;
1845 
1846 		new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC);
1847 		if (!new_data) {
1848 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1849 			cpr->sw_stats->rx.rx_oom_discards += 1;
1850 			return NULL;
1851 		}
1852 
1853 		tpa_info->data = new_data;
1854 		tpa_info->data_ptr = new_data + bp->rx_offset;
1855 		tpa_info->mapping = new_mapping;
1856 
1857 		skb = napi_build_skb(data, bp->rx_buf_size);
1858 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1859 				       bp->rx_buf_use_size, bp->rx_dir,
1860 				       DMA_ATTR_WEAK_ORDERING);
1861 
1862 		if (!skb) {
1863 			skb_free_frag(data);
1864 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1865 			cpr->sw_stats->rx.rx_oom_discards += 1;
1866 			return NULL;
1867 		}
1868 		skb_reserve(skb, bp->rx_offset);
1869 		skb_put(skb, len);
1870 	}
1871 
1872 	if (agg_bufs) {
1873 		skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true);
1874 		if (!skb) {
1875 			/* Page reuse already handled by bnxt_rx_pages(). */
1876 			cpr->sw_stats->rx.rx_oom_discards += 1;
1877 			return NULL;
1878 		}
1879 	}
1880 
1881 	if (tpa_info->cfa_code_valid)
1882 		dev = bnxt_get_pkt_dev(bp, tpa_info->cfa_code);
1883 	skb->protocol = eth_type_trans(skb, dev);
1884 
1885 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1886 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1887 
1888 	if (tpa_info->vlan_valid &&
1889 	    (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1890 		__be16 vlan_proto = htons(tpa_info->metadata >>
1891 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1892 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1893 
1894 		if (eth_type_vlan(vlan_proto)) {
1895 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1896 		} else {
1897 			dev_kfree_skb(skb);
1898 			return NULL;
1899 		}
1900 	}
1901 
1902 	skb_checksum_none_assert(skb);
1903 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1904 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1905 		skb->csum_level =
1906 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1907 	}
1908 
1909 	if (gro)
1910 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1911 
1912 	return skb;
1913 }
1914 
1915 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1916 			 struct rx_agg_cmp *rx_agg)
1917 {
1918 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1919 	struct bnxt_tpa_info *tpa_info;
1920 
1921 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1922 	tpa_info = &rxr->rx_tpa[agg_id];
1923 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1924 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1925 }
1926 
1927 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1928 			     struct sk_buff *skb)
1929 {
1930 	skb_mark_for_recycle(skb);
1931 
1932 	if (skb->dev != bp->dev) {
1933 		/* this packet belongs to a vf-rep */
1934 		bnxt_vf_rep_rx(bp, skb);
1935 		return;
1936 	}
1937 	skb_record_rx_queue(skb, bnapi->index);
1938 	napi_gro_receive(&bnapi->napi, skb);
1939 }
1940 
1941 static bool bnxt_rx_ts_valid(struct bnxt *bp, u32 flags,
1942 			     struct rx_cmp_ext *rxcmp1, u32 *cmpl_ts)
1943 {
1944 	u32 ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp);
1945 
1946 	if (BNXT_PTP_RX_TS_VALID(flags))
1947 		goto ts_valid;
1948 	if (!bp->ptp_all_rx_tstamp || !ts || !BNXT_ALL_RX_TS_VALID(flags))
1949 		return false;
1950 
1951 ts_valid:
1952 	*cmpl_ts = ts;
1953 	return true;
1954 }
1955 
1956 static struct sk_buff *bnxt_rx_vlan(struct sk_buff *skb, u8 cmp_type,
1957 				    struct rx_cmp *rxcmp,
1958 				    struct rx_cmp_ext *rxcmp1)
1959 {
1960 	__be16 vlan_proto;
1961 	u16 vtag;
1962 
1963 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1964 		__le32 flags2 = rxcmp1->rx_cmp_flags2;
1965 		u32 meta_data;
1966 
1967 		if (!(flags2 & cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)))
1968 			return skb;
1969 
1970 		meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1971 		vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1972 		vlan_proto = htons(meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT);
1973 		if (eth_type_vlan(vlan_proto))
1974 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1975 		else
1976 			goto vlan_err;
1977 	} else if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
1978 		if (RX_CMP_VLAN_VALID(rxcmp)) {
1979 			u32 tpid_sel = RX_CMP_VLAN_TPID_SEL(rxcmp);
1980 
1981 			if (tpid_sel == RX_CMP_METADATA1_TPID_8021Q)
1982 				vlan_proto = htons(ETH_P_8021Q);
1983 			else if (tpid_sel == RX_CMP_METADATA1_TPID_8021AD)
1984 				vlan_proto = htons(ETH_P_8021AD);
1985 			else
1986 				goto vlan_err;
1987 			vtag = RX_CMP_METADATA0_TCI(rxcmp1);
1988 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1989 		}
1990 	}
1991 	return skb;
1992 vlan_err:
1993 	dev_kfree_skb(skb);
1994 	return NULL;
1995 }
1996 
1997 static enum pkt_hash_types bnxt_rss_ext_op(struct bnxt *bp,
1998 					   struct rx_cmp *rxcmp)
1999 {
2000 	u8 ext_op;
2001 
2002 	ext_op = RX_CMP_V3_HASH_TYPE(bp, rxcmp);
2003 	switch (ext_op) {
2004 	case EXT_OP_INNER_4:
2005 	case EXT_OP_OUTER_4:
2006 	case EXT_OP_INNFL_3:
2007 	case EXT_OP_OUTFL_3:
2008 		return PKT_HASH_TYPE_L4;
2009 	default:
2010 		return PKT_HASH_TYPE_L3;
2011 	}
2012 }
2013 
2014 /* returns the following:
2015  * 1       - 1 packet successfully received
2016  * 0       - successful TPA_START, packet not completed yet
2017  * -EBUSY  - completion ring does not have all the agg buffers yet
2018  * -ENOMEM - packet aborted due to out of memory
2019  * -EIO    - packet aborted due to hw error indicated in BD
2020  */
2021 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2022 		       u32 *raw_cons, u8 *event)
2023 {
2024 	struct bnxt_napi *bnapi = cpr->bnapi;
2025 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2026 	struct net_device *dev = bp->dev;
2027 	struct rx_cmp *rxcmp;
2028 	struct rx_cmp_ext *rxcmp1;
2029 	u32 tmp_raw_cons = *raw_cons;
2030 	u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
2031 	struct bnxt_sw_rx_bd *rx_buf;
2032 	unsigned int len;
2033 	u8 *data_ptr, agg_bufs, cmp_type;
2034 	bool xdp_active = false;
2035 	dma_addr_t dma_addr;
2036 	struct sk_buff *skb;
2037 	struct xdp_buff xdp;
2038 	u32 flags, misc;
2039 	u32 cmpl_ts;
2040 	void *data;
2041 	int rc = 0;
2042 
2043 	rxcmp = (struct rx_cmp *)
2044 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2045 
2046 	cmp_type = RX_CMP_TYPE(rxcmp);
2047 
2048 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
2049 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
2050 		goto next_rx_no_prod_no_len;
2051 	}
2052 
2053 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2054 	cp_cons = RING_CMP(tmp_raw_cons);
2055 	rxcmp1 = (struct rx_cmp_ext *)
2056 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2057 
2058 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2059 		return -EBUSY;
2060 
2061 	/* The valid test of the entry must be done first before
2062 	 * reading any further.
2063 	 */
2064 	dma_rmb();
2065 	prod = rxr->rx_prod;
2066 
2067 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP ||
2068 	    cmp_type == CMP_TYPE_RX_L2_TPA_START_V3_CMP) {
2069 		bnxt_tpa_start(bp, rxr, cmp_type,
2070 			       (struct rx_tpa_start_cmp *)rxcmp,
2071 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
2072 
2073 		*event |= BNXT_RX_EVENT;
2074 		goto next_rx_no_prod_no_len;
2075 
2076 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2077 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
2078 				   (struct rx_tpa_end_cmp *)rxcmp,
2079 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
2080 
2081 		if (IS_ERR(skb))
2082 			return -EBUSY;
2083 
2084 		rc = -ENOMEM;
2085 		if (likely(skb)) {
2086 			bnxt_deliver_skb(bp, bnapi, skb);
2087 			rc = 1;
2088 		}
2089 		*event |= BNXT_RX_EVENT;
2090 		goto next_rx_no_prod_no_len;
2091 	}
2092 
2093 	cons = rxcmp->rx_cmp_opaque;
2094 	if (unlikely(cons != rxr->rx_next_cons)) {
2095 		int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
2096 
2097 		/* 0xffff is forced error, don't print it */
2098 		if (rxr->rx_next_cons != 0xffff)
2099 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
2100 				    cons, rxr->rx_next_cons);
2101 		bnxt_sched_reset_rxr(bp, rxr);
2102 		if (rc1)
2103 			return rc1;
2104 		goto next_rx_no_prod_no_len;
2105 	}
2106 	rx_buf = &rxr->rx_buf_ring[cons];
2107 	data = rx_buf->data;
2108 	data_ptr = rx_buf->data_ptr;
2109 	prefetch(data_ptr);
2110 
2111 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
2112 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
2113 
2114 	if (agg_bufs) {
2115 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
2116 			return -EBUSY;
2117 
2118 		cp_cons = NEXT_CMP(cp_cons);
2119 		*event |= BNXT_AGG_EVENT;
2120 	}
2121 	*event |= BNXT_RX_EVENT;
2122 
2123 	rx_buf->data = NULL;
2124 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
2125 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
2126 
2127 		bnxt_reuse_rx_data(rxr, cons, data);
2128 		if (agg_bufs)
2129 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
2130 					       false);
2131 
2132 		rc = -EIO;
2133 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
2134 			bnapi->cp_ring.sw_stats->rx.rx_buf_errors++;
2135 			if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
2136 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
2137 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
2138 						 rx_err);
2139 				bnxt_sched_reset_rxr(bp, rxr);
2140 			}
2141 		}
2142 		goto next_rx_no_len;
2143 	}
2144 
2145 	flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type);
2146 	len = flags >> RX_CMP_LEN_SHIFT;
2147 	dma_addr = rx_buf->mapping;
2148 
2149 	if (bnxt_xdp_attached(bp, rxr)) {
2150 		bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp);
2151 		if (agg_bufs) {
2152 			u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp,
2153 							     cp_cons, agg_bufs,
2154 							     false);
2155 			if (!frag_len)
2156 				goto oom_next_rx;
2157 		}
2158 		xdp_active = true;
2159 	}
2160 
2161 	if (xdp_active) {
2162 		if (bnxt_rx_xdp(bp, rxr, cons, &xdp, data, &data_ptr, &len, event)) {
2163 			rc = 1;
2164 			goto next_rx;
2165 		}
2166 	}
2167 
2168 	if (len <= bp->rx_copy_thresh) {
2169 		if (!xdp_active)
2170 			skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
2171 		else
2172 			skb = bnxt_copy_xdp(bnapi, &xdp, len, dma_addr);
2173 		bnxt_reuse_rx_data(rxr, cons, data);
2174 		if (!skb) {
2175 			if (agg_bufs) {
2176 				if (!xdp_active)
2177 					bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
2178 							       agg_bufs, false);
2179 				else
2180 					bnxt_xdp_buff_frags_free(rxr, &xdp);
2181 			}
2182 			goto oom_next_rx;
2183 		}
2184 	} else {
2185 		u32 payload;
2186 
2187 		if (rx_buf->data_ptr == data_ptr)
2188 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
2189 		else
2190 			payload = 0;
2191 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
2192 				      payload | len);
2193 		if (!skb)
2194 			goto oom_next_rx;
2195 	}
2196 
2197 	if (agg_bufs) {
2198 		if (!xdp_active) {
2199 			skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false);
2200 			if (!skb)
2201 				goto oom_next_rx;
2202 		} else {
2203 			skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1);
2204 			if (!skb) {
2205 				/* we should be able to free the old skb here */
2206 				bnxt_xdp_buff_frags_free(rxr, &xdp);
2207 				goto oom_next_rx;
2208 			}
2209 		}
2210 	}
2211 
2212 	if (RX_CMP_HASH_VALID(rxcmp)) {
2213 		enum pkt_hash_types type;
2214 
2215 		if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
2216 			type = bnxt_rss_ext_op(bp, rxcmp);
2217 		} else {
2218 			u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
2219 
2220 			/* RSS profiles 1 and 3 with extract code 0 for inner
2221 			 * 4-tuple
2222 			 */
2223 			if (hash_type != 1 && hash_type != 3)
2224 				type = PKT_HASH_TYPE_L3;
2225 			else
2226 				type = PKT_HASH_TYPE_L4;
2227 		}
2228 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
2229 	}
2230 
2231 	if (cmp_type == CMP_TYPE_RX_L2_CMP)
2232 		dev = bnxt_get_pkt_dev(bp, RX_CMP_CFA_CODE(rxcmp1));
2233 	skb->protocol = eth_type_trans(skb, dev);
2234 
2235 	if (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) {
2236 		skb = bnxt_rx_vlan(skb, cmp_type, rxcmp, rxcmp1);
2237 		if (!skb)
2238 			goto next_rx;
2239 	}
2240 
2241 	skb_checksum_none_assert(skb);
2242 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
2243 		if (dev->features & NETIF_F_RXCSUM) {
2244 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2245 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
2246 		}
2247 	} else {
2248 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
2249 			if (dev->features & NETIF_F_RXCSUM)
2250 				bnapi->cp_ring.sw_stats->rx.rx_l4_csum_errors++;
2251 		}
2252 	}
2253 
2254 	if (bnxt_rx_ts_valid(bp, flags, rxcmp1, &cmpl_ts)) {
2255 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
2256 			u64 ns, ts;
2257 
2258 			if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) {
2259 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2260 
2261 				spin_lock_bh(&ptp->ptp_lock);
2262 				ns = timecounter_cyc2time(&ptp->tc, ts);
2263 				spin_unlock_bh(&ptp->ptp_lock);
2264 				memset(skb_hwtstamps(skb), 0,
2265 				       sizeof(*skb_hwtstamps(skb)));
2266 				skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
2267 			}
2268 		}
2269 	}
2270 	bnxt_deliver_skb(bp, bnapi, skb);
2271 	rc = 1;
2272 
2273 next_rx:
2274 	cpr->rx_packets += 1;
2275 	cpr->rx_bytes += len;
2276 
2277 next_rx_no_len:
2278 	rxr->rx_prod = NEXT_RX(prod);
2279 	rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons));
2280 
2281 next_rx_no_prod_no_len:
2282 	*raw_cons = tmp_raw_cons;
2283 
2284 	return rc;
2285 
2286 oom_next_rx:
2287 	cpr->sw_stats->rx.rx_oom_discards += 1;
2288 	rc = -ENOMEM;
2289 	goto next_rx;
2290 }
2291 
2292 /* In netpoll mode, if we are using a combined completion ring, we need to
2293  * discard the rx packets and recycle the buffers.
2294  */
2295 static int bnxt_force_rx_discard(struct bnxt *bp,
2296 				 struct bnxt_cp_ring_info *cpr,
2297 				 u32 *raw_cons, u8 *event)
2298 {
2299 	u32 tmp_raw_cons = *raw_cons;
2300 	struct rx_cmp_ext *rxcmp1;
2301 	struct rx_cmp *rxcmp;
2302 	u16 cp_cons;
2303 	u8 cmp_type;
2304 	int rc;
2305 
2306 	cp_cons = RING_CMP(tmp_raw_cons);
2307 	rxcmp = (struct rx_cmp *)
2308 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2309 
2310 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2311 	cp_cons = RING_CMP(tmp_raw_cons);
2312 	rxcmp1 = (struct rx_cmp_ext *)
2313 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2314 
2315 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2316 		return -EBUSY;
2317 
2318 	/* The valid test of the entry must be done first before
2319 	 * reading any further.
2320 	 */
2321 	dma_rmb();
2322 	cmp_type = RX_CMP_TYPE(rxcmp);
2323 	if (cmp_type == CMP_TYPE_RX_L2_CMP ||
2324 	    cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
2325 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2326 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2327 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2328 		struct rx_tpa_end_cmp_ext *tpa_end1;
2329 
2330 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
2331 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
2332 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
2333 	}
2334 	rc = bnxt_rx_pkt(bp, cpr, raw_cons, event);
2335 	if (rc && rc != -EBUSY)
2336 		cpr->sw_stats->rx.rx_netpoll_discards += 1;
2337 	return rc;
2338 }
2339 
2340 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
2341 {
2342 	struct bnxt_fw_health *fw_health = bp->fw_health;
2343 	u32 reg = fw_health->regs[reg_idx];
2344 	u32 reg_type, reg_off, val = 0;
2345 
2346 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
2347 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
2348 	switch (reg_type) {
2349 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
2350 		pci_read_config_dword(bp->pdev, reg_off, &val);
2351 		break;
2352 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
2353 		reg_off = fw_health->mapped_regs[reg_idx];
2354 		fallthrough;
2355 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
2356 		val = readl(bp->bar0 + reg_off);
2357 		break;
2358 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
2359 		val = readl(bp->bar1 + reg_off);
2360 		break;
2361 	}
2362 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
2363 		val &= fw_health->fw_reset_inprog_reg_mask;
2364 	return val;
2365 }
2366 
2367 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
2368 {
2369 	int i;
2370 
2371 	for (i = 0; i < bp->rx_nr_rings; i++) {
2372 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
2373 		struct bnxt_ring_grp_info *grp_info;
2374 
2375 		grp_info = &bp->grp_info[grp_idx];
2376 		if (grp_info->agg_fw_ring_id == ring_id)
2377 			return grp_idx;
2378 	}
2379 	return INVALID_HW_RING_ID;
2380 }
2381 
2382 static u16 bnxt_get_force_speed(struct bnxt_link_info *link_info)
2383 {
2384 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2385 
2386 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2)
2387 		return link_info->force_link_speed2;
2388 	if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4)
2389 		return link_info->force_pam4_link_speed;
2390 	return link_info->force_link_speed;
2391 }
2392 
2393 static void bnxt_set_force_speed(struct bnxt_link_info *link_info)
2394 {
2395 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2396 
2397 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2398 		link_info->req_link_speed = link_info->force_link_speed2;
2399 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2400 		switch (link_info->req_link_speed) {
2401 		case BNXT_LINK_SPEED_50GB_PAM4:
2402 		case BNXT_LINK_SPEED_100GB_PAM4:
2403 		case BNXT_LINK_SPEED_200GB_PAM4:
2404 		case BNXT_LINK_SPEED_400GB_PAM4:
2405 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
2406 			break;
2407 		case BNXT_LINK_SPEED_100GB_PAM4_112:
2408 		case BNXT_LINK_SPEED_200GB_PAM4_112:
2409 		case BNXT_LINK_SPEED_400GB_PAM4_112:
2410 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4_112;
2411 			break;
2412 		default:
2413 			link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2414 		}
2415 		return;
2416 	}
2417 	link_info->req_link_speed = link_info->force_link_speed;
2418 	link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2419 	if (link_info->force_pam4_link_speed) {
2420 		link_info->req_link_speed = link_info->force_pam4_link_speed;
2421 		link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
2422 	}
2423 }
2424 
2425 static void bnxt_set_auto_speed(struct bnxt_link_info *link_info)
2426 {
2427 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2428 
2429 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2430 		link_info->advertising = link_info->auto_link_speeds2;
2431 		return;
2432 	}
2433 	link_info->advertising = link_info->auto_link_speeds;
2434 	link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
2435 }
2436 
2437 static bool bnxt_force_speed_updated(struct bnxt_link_info *link_info)
2438 {
2439 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2440 
2441 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2442 		if (link_info->req_link_speed != link_info->force_link_speed2)
2443 			return true;
2444 		return false;
2445 	}
2446 	if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
2447 	    link_info->req_link_speed != link_info->force_link_speed)
2448 		return true;
2449 	if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
2450 	    link_info->req_link_speed != link_info->force_pam4_link_speed)
2451 		return true;
2452 	return false;
2453 }
2454 
2455 static bool bnxt_auto_speed_updated(struct bnxt_link_info *link_info)
2456 {
2457 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2458 
2459 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2460 		if (link_info->advertising != link_info->auto_link_speeds2)
2461 			return true;
2462 		return false;
2463 	}
2464 	if (link_info->advertising != link_info->auto_link_speeds ||
2465 	    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
2466 		return true;
2467 	return false;
2468 }
2469 
2470 #define BNXT_EVENT_THERMAL_CURRENT_TEMP(data2)				\
2471 	((data2) &							\
2472 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_CURRENT_TEMP_MASK)
2473 
2474 #define BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2)			\
2475 	(((data2) &							\
2476 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_MASK) >>\
2477 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_SFT)
2478 
2479 #define EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1)			\
2480 	((data1) &							\
2481 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_MASK)
2482 
2483 #define EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)		\
2484 	(((data1) &							\
2485 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR) ==\
2486 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR_INCREASING)
2487 
2488 /* Return true if the workqueue has to be scheduled */
2489 static bool bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2)
2490 {
2491 	u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1);
2492 
2493 	switch (err_type) {
2494 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL:
2495 		netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n",
2496 			   BNXT_EVENT_INVALID_SIGNAL_DATA(data2));
2497 		break;
2498 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM:
2499 		netdev_warn(bp->dev, "Pause Storm detected!\n");
2500 		break;
2501 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD:
2502 		netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n");
2503 		break;
2504 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_THERMAL_THRESHOLD: {
2505 		u32 type = EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1);
2506 		char *threshold_type;
2507 		bool notify = false;
2508 		char *dir_str;
2509 
2510 		switch (type) {
2511 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_WARN:
2512 			threshold_type = "warning";
2513 			break;
2514 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_CRITICAL:
2515 			threshold_type = "critical";
2516 			break;
2517 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_FATAL:
2518 			threshold_type = "fatal";
2519 			break;
2520 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_SHUTDOWN:
2521 			threshold_type = "shutdown";
2522 			break;
2523 		default:
2524 			netdev_err(bp->dev, "Unknown Thermal threshold type event\n");
2525 			return false;
2526 		}
2527 		if (EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)) {
2528 			dir_str = "above";
2529 			notify = true;
2530 		} else {
2531 			dir_str = "below";
2532 		}
2533 		netdev_warn(bp->dev, "Chip temperature has gone %s the %s thermal threshold!\n",
2534 			    dir_str, threshold_type);
2535 		netdev_warn(bp->dev, "Temperature (In Celsius), Current: %lu, threshold: %lu\n",
2536 			    BNXT_EVENT_THERMAL_CURRENT_TEMP(data2),
2537 			    BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2));
2538 		if (notify) {
2539 			bp->thermal_threshold_type = type;
2540 			set_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event);
2541 			return true;
2542 		}
2543 		return false;
2544 	}
2545 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DUAL_DATA_RATE_NOT_SUPPORTED:
2546 		netdev_warn(bp->dev, "Speed change not supported with dual rate transceivers on this board\n");
2547 		break;
2548 	default:
2549 		netdev_err(bp->dev, "FW reported unknown error type %u\n",
2550 			   err_type);
2551 		break;
2552 	}
2553 	return false;
2554 }
2555 
2556 #define BNXT_GET_EVENT_PORT(data)	\
2557 	((data) &			\
2558 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
2559 
2560 #define BNXT_EVENT_RING_TYPE(data2)	\
2561 	((data2) &			\
2562 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
2563 
2564 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
2565 	(BNXT_EVENT_RING_TYPE(data2) ==	\
2566 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
2567 
2568 #define BNXT_EVENT_PHC_EVENT_TYPE(data1)	\
2569 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\
2570 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT)
2571 
2572 #define BNXT_EVENT_PHC_RTC_UPDATE(data1)	\
2573 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\
2574 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT)
2575 
2576 #define BNXT_PHC_BITS	48
2577 
2578 static int bnxt_async_event_process(struct bnxt *bp,
2579 				    struct hwrm_async_event_cmpl *cmpl)
2580 {
2581 	u16 event_id = le16_to_cpu(cmpl->event_id);
2582 	u32 data1 = le32_to_cpu(cmpl->event_data1);
2583 	u32 data2 = le32_to_cpu(cmpl->event_data2);
2584 
2585 	netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n",
2586 		   event_id, data1, data2);
2587 
2588 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
2589 	switch (event_id) {
2590 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2591 		struct bnxt_link_info *link_info = &bp->link_info;
2592 
2593 		if (BNXT_VF(bp))
2594 			goto async_event_process_exit;
2595 
2596 		/* print unsupported speed warning in forced speed mode only */
2597 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2598 		    (data1 & 0x20000)) {
2599 			u16 fw_speed = bnxt_get_force_speed(link_info);
2600 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2601 
2602 			if (speed != SPEED_UNKNOWN)
2603 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2604 					    speed);
2605 		}
2606 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2607 	}
2608 		fallthrough;
2609 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2610 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2611 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2612 		fallthrough;
2613 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2614 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2615 		break;
2616 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2617 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2618 		break;
2619 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2620 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2621 
2622 		if (BNXT_VF(bp))
2623 			break;
2624 
2625 		if (bp->pf.port_id != port_id)
2626 			break;
2627 
2628 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2629 		break;
2630 	}
2631 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2632 		if (BNXT_PF(bp))
2633 			goto async_event_process_exit;
2634 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2635 		break;
2636 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2637 		char *type_str = "Solicited";
2638 
2639 		if (!bp->fw_health)
2640 			goto async_event_process_exit;
2641 
2642 		bp->fw_reset_timestamp = jiffies;
2643 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2644 		if (!bp->fw_reset_min_dsecs)
2645 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2646 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2647 		if (!bp->fw_reset_max_dsecs)
2648 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2649 		if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) {
2650 			set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state);
2651 		} else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2652 			type_str = "Fatal";
2653 			bp->fw_health->fatalities++;
2654 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2655 		} else if (data2 && BNXT_FW_STATUS_HEALTHY !=
2656 			   EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) {
2657 			type_str = "Non-fatal";
2658 			bp->fw_health->survivals++;
2659 			set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
2660 		}
2661 		netif_warn(bp, hw, bp->dev,
2662 			   "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2663 			   type_str, data1, data2,
2664 			   bp->fw_reset_min_dsecs * 100,
2665 			   bp->fw_reset_max_dsecs * 100);
2666 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2667 		break;
2668 	}
2669 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2670 		struct bnxt_fw_health *fw_health = bp->fw_health;
2671 		char *status_desc = "healthy";
2672 		u32 status;
2673 
2674 		if (!fw_health)
2675 			goto async_event_process_exit;
2676 
2677 		if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) {
2678 			fw_health->enabled = false;
2679 			netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n");
2680 			break;
2681 		}
2682 		fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2683 		fw_health->tmr_multiplier =
2684 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2685 				     bp->current_interval * 10);
2686 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2687 		if (!fw_health->enabled)
2688 			fw_health->last_fw_heartbeat =
2689 				bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2690 		fw_health->last_fw_reset_cnt =
2691 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2692 		status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
2693 		if (status != BNXT_FW_STATUS_HEALTHY)
2694 			status_desc = "unhealthy";
2695 		netif_info(bp, drv, bp->dev,
2696 			   "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n",
2697 			   fw_health->primary ? "primary" : "backup", status,
2698 			   status_desc, fw_health->last_fw_reset_cnt);
2699 		if (!fw_health->enabled) {
2700 			/* Make sure tmr_counter is set and visible to
2701 			 * bnxt_health_check() before setting enabled to true.
2702 			 */
2703 			smp_wmb();
2704 			fw_health->enabled = true;
2705 		}
2706 		goto async_event_process_exit;
2707 	}
2708 	case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2709 		netif_notice(bp, hw, bp->dev,
2710 			     "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2711 			     data1, data2);
2712 		goto async_event_process_exit;
2713 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2714 		struct bnxt_rx_ring_info *rxr;
2715 		u16 grp_idx;
2716 
2717 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
2718 			goto async_event_process_exit;
2719 
2720 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2721 			    BNXT_EVENT_RING_TYPE(data2), data1);
2722 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2723 			goto async_event_process_exit;
2724 
2725 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2726 		if (grp_idx == INVALID_HW_RING_ID) {
2727 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2728 				    data1);
2729 			goto async_event_process_exit;
2730 		}
2731 		rxr = bp->bnapi[grp_idx]->rx_ring;
2732 		bnxt_sched_reset_rxr(bp, rxr);
2733 		goto async_event_process_exit;
2734 	}
2735 	case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2736 		struct bnxt_fw_health *fw_health = bp->fw_health;
2737 
2738 		netif_notice(bp, hw, bp->dev,
2739 			     "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2740 			     data1, data2);
2741 		if (fw_health) {
2742 			fw_health->echo_req_data1 = data1;
2743 			fw_health->echo_req_data2 = data2;
2744 			set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2745 			break;
2746 		}
2747 		goto async_event_process_exit;
2748 	}
2749 	case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: {
2750 		bnxt_ptp_pps_event(bp, data1, data2);
2751 		goto async_event_process_exit;
2752 	}
2753 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: {
2754 		if (bnxt_event_error_report(bp, data1, data2))
2755 			break;
2756 		goto async_event_process_exit;
2757 	}
2758 	case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: {
2759 		switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) {
2760 		case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE:
2761 			if (BNXT_PTP_USE_RTC(bp)) {
2762 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2763 				u64 ns;
2764 
2765 				if (!ptp)
2766 					goto async_event_process_exit;
2767 
2768 				spin_lock_bh(&ptp->ptp_lock);
2769 				bnxt_ptp_update_current_time(bp);
2770 				ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) <<
2771 				       BNXT_PHC_BITS) | ptp->current_time);
2772 				bnxt_ptp_rtc_timecounter_init(ptp, ns);
2773 				spin_unlock_bh(&ptp->ptp_lock);
2774 			}
2775 			break;
2776 		}
2777 		goto async_event_process_exit;
2778 	}
2779 	case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: {
2780 		u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff;
2781 
2782 		hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED);
2783 		goto async_event_process_exit;
2784 	}
2785 	default:
2786 		goto async_event_process_exit;
2787 	}
2788 	__bnxt_queue_sp_work(bp);
2789 async_event_process_exit:
2790 	return 0;
2791 }
2792 
2793 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2794 {
2795 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2796 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2797 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2798 				(struct hwrm_fwd_req_cmpl *)txcmp;
2799 
2800 	switch (cmpl_type) {
2801 	case CMPL_BASE_TYPE_HWRM_DONE:
2802 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2803 		hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE);
2804 		break;
2805 
2806 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2807 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2808 
2809 		if ((vf_id < bp->pf.first_vf_id) ||
2810 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2811 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2812 				   vf_id);
2813 			return -EINVAL;
2814 		}
2815 
2816 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2817 		bnxt_queue_sp_work(bp, BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT);
2818 		break;
2819 
2820 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2821 		bnxt_async_event_process(bp,
2822 					 (struct hwrm_async_event_cmpl *)txcmp);
2823 		break;
2824 
2825 	default:
2826 		break;
2827 	}
2828 
2829 	return 0;
2830 }
2831 
2832 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2833 {
2834 	struct bnxt_napi *bnapi = dev_instance;
2835 	struct bnxt *bp = bnapi->bp;
2836 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2837 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2838 
2839 	cpr->event_ctr++;
2840 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2841 	napi_schedule(&bnapi->napi);
2842 	return IRQ_HANDLED;
2843 }
2844 
2845 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2846 {
2847 	u32 raw_cons = cpr->cp_raw_cons;
2848 	u16 cons = RING_CMP(raw_cons);
2849 	struct tx_cmp *txcmp;
2850 
2851 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2852 
2853 	return TX_CMP_VALID(txcmp, raw_cons);
2854 }
2855 
2856 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2857 {
2858 	struct bnxt_napi *bnapi = dev_instance;
2859 	struct bnxt *bp = bnapi->bp;
2860 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2861 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2862 	u32 int_status;
2863 
2864 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2865 
2866 	if (!bnxt_has_work(bp, cpr)) {
2867 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2868 		/* return if erroneous interrupt */
2869 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2870 			return IRQ_NONE;
2871 	}
2872 
2873 	/* disable ring IRQ */
2874 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2875 
2876 	/* Return here if interrupt is shared and is disabled. */
2877 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2878 		return IRQ_HANDLED;
2879 
2880 	napi_schedule(&bnapi->napi);
2881 	return IRQ_HANDLED;
2882 }
2883 
2884 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2885 			    int budget)
2886 {
2887 	struct bnxt_napi *bnapi = cpr->bnapi;
2888 	u32 raw_cons = cpr->cp_raw_cons;
2889 	u32 cons;
2890 	int rx_pkts = 0;
2891 	u8 event = 0;
2892 	struct tx_cmp *txcmp;
2893 
2894 	cpr->has_more_work = 0;
2895 	cpr->had_work_done = 1;
2896 	while (1) {
2897 		u8 cmp_type;
2898 		int rc;
2899 
2900 		cons = RING_CMP(raw_cons);
2901 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2902 
2903 		if (!TX_CMP_VALID(txcmp, raw_cons))
2904 			break;
2905 
2906 		/* The valid test of the entry must be done first before
2907 		 * reading any further.
2908 		 */
2909 		dma_rmb();
2910 		cmp_type = TX_CMP_TYPE(txcmp);
2911 		if (cmp_type == CMP_TYPE_TX_L2_CMP ||
2912 		    cmp_type == CMP_TYPE_TX_L2_COAL_CMP) {
2913 			u32 opaque = txcmp->tx_cmp_opaque;
2914 			struct bnxt_tx_ring_info *txr;
2915 			u16 tx_freed;
2916 
2917 			txr = bnapi->tx_ring[TX_OPAQUE_RING(opaque)];
2918 			event |= BNXT_TX_CMP_EVENT;
2919 			if (cmp_type == CMP_TYPE_TX_L2_COAL_CMP)
2920 				txr->tx_hw_cons = TX_CMP_SQ_CONS_IDX(txcmp);
2921 			else
2922 				txr->tx_hw_cons = TX_OPAQUE_PROD(bp, opaque);
2923 			tx_freed = (txr->tx_hw_cons - txr->tx_cons) &
2924 				   bp->tx_ring_mask;
2925 			/* return full budget so NAPI will complete. */
2926 			if (unlikely(tx_freed >= bp->tx_wake_thresh)) {
2927 				rx_pkts = budget;
2928 				raw_cons = NEXT_RAW_CMP(raw_cons);
2929 				if (budget)
2930 					cpr->has_more_work = 1;
2931 				break;
2932 			}
2933 		} else if (cmp_type == CMP_TYPE_TX_L2_PKT_TS_CMP) {
2934 			bnxt_tx_ts_cmp(bp, bnapi, (struct tx_ts_cmp *)txcmp);
2935 		} else if (cmp_type >= CMP_TYPE_RX_L2_CMP &&
2936 			   cmp_type <= CMP_TYPE_RX_L2_TPA_START_V3_CMP) {
2937 			if (likely(budget))
2938 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2939 			else
2940 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2941 							   &event);
2942 			if (likely(rc >= 0))
2943 				rx_pkts += rc;
2944 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2945 			 * the NAPI budget.  Otherwise, we may potentially loop
2946 			 * here forever if we consistently cannot allocate
2947 			 * buffers.
2948 			 */
2949 			else if (rc == -ENOMEM && budget)
2950 				rx_pkts++;
2951 			else if (rc == -EBUSY)	/* partial completion */
2952 				break;
2953 		} else if (unlikely(cmp_type == CMPL_BASE_TYPE_HWRM_DONE ||
2954 				    cmp_type == CMPL_BASE_TYPE_HWRM_FWD_REQ ||
2955 				    cmp_type == CMPL_BASE_TYPE_HWRM_ASYNC_EVENT)) {
2956 			bnxt_hwrm_handler(bp, txcmp);
2957 		}
2958 		raw_cons = NEXT_RAW_CMP(raw_cons);
2959 
2960 		if (rx_pkts && rx_pkts == budget) {
2961 			cpr->has_more_work = 1;
2962 			break;
2963 		}
2964 	}
2965 
2966 	if (event & BNXT_REDIRECT_EVENT) {
2967 		xdp_do_flush();
2968 		event &= ~BNXT_REDIRECT_EVENT;
2969 	}
2970 
2971 	if (event & BNXT_TX_EVENT) {
2972 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring[0];
2973 		u16 prod = txr->tx_prod;
2974 
2975 		/* Sync BD data before updating doorbell */
2976 		wmb();
2977 
2978 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2979 		event &= ~BNXT_TX_EVENT;
2980 	}
2981 
2982 	cpr->cp_raw_cons = raw_cons;
2983 	bnapi->events |= event;
2984 	return rx_pkts;
2985 }
2986 
2987 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2988 				  int budget)
2989 {
2990 	if ((bnapi->events & BNXT_TX_CMP_EVENT) && !bnapi->tx_fault)
2991 		bnapi->tx_int(bp, bnapi, budget);
2992 
2993 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2994 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2995 
2996 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2997 		bnapi->events &= ~BNXT_RX_EVENT;
2998 	}
2999 	if (bnapi->events & BNXT_AGG_EVENT) {
3000 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
3001 
3002 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
3003 		bnapi->events &= ~BNXT_AGG_EVENT;
3004 	}
3005 }
3006 
3007 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
3008 			  int budget)
3009 {
3010 	struct bnxt_napi *bnapi = cpr->bnapi;
3011 	int rx_pkts;
3012 
3013 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
3014 
3015 	/* ACK completion ring before freeing tx ring and producing new
3016 	 * buffers in rx/agg rings to prevent overflowing the completion
3017 	 * ring.
3018 	 */
3019 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
3020 
3021 	__bnxt_poll_work_done(bp, bnapi, budget);
3022 	return rx_pkts;
3023 }
3024 
3025 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
3026 {
3027 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
3028 	struct bnxt *bp = bnapi->bp;
3029 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3030 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
3031 	struct tx_cmp *txcmp;
3032 	struct rx_cmp_ext *rxcmp1;
3033 	u32 cp_cons, tmp_raw_cons;
3034 	u32 raw_cons = cpr->cp_raw_cons;
3035 	bool flush_xdp = false;
3036 	u32 rx_pkts = 0;
3037 	u8 event = 0;
3038 
3039 	while (1) {
3040 		int rc;
3041 
3042 		cp_cons = RING_CMP(raw_cons);
3043 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
3044 
3045 		if (!TX_CMP_VALID(txcmp, raw_cons))
3046 			break;
3047 
3048 		/* The valid test of the entry must be done first before
3049 		 * reading any further.
3050 		 */
3051 		dma_rmb();
3052 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
3053 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
3054 			cp_cons = RING_CMP(tmp_raw_cons);
3055 			rxcmp1 = (struct rx_cmp_ext *)
3056 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
3057 
3058 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
3059 				break;
3060 
3061 			/* force an error to recycle the buffer */
3062 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
3063 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
3064 
3065 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
3066 			if (likely(rc == -EIO) && budget)
3067 				rx_pkts++;
3068 			else if (rc == -EBUSY)	/* partial completion */
3069 				break;
3070 			if (event & BNXT_REDIRECT_EVENT)
3071 				flush_xdp = true;
3072 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
3073 				    CMPL_BASE_TYPE_HWRM_DONE)) {
3074 			bnxt_hwrm_handler(bp, txcmp);
3075 		} else {
3076 			netdev_err(bp->dev,
3077 				   "Invalid completion received on special ring\n");
3078 		}
3079 		raw_cons = NEXT_RAW_CMP(raw_cons);
3080 
3081 		if (rx_pkts == budget)
3082 			break;
3083 	}
3084 
3085 	cpr->cp_raw_cons = raw_cons;
3086 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
3087 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
3088 
3089 	if (event & BNXT_AGG_EVENT)
3090 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
3091 	if (flush_xdp)
3092 		xdp_do_flush();
3093 
3094 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
3095 		napi_complete_done(napi, rx_pkts);
3096 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
3097 	}
3098 	return rx_pkts;
3099 }
3100 
3101 static int bnxt_poll(struct napi_struct *napi, int budget)
3102 {
3103 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
3104 	struct bnxt *bp = bnapi->bp;
3105 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3106 	int work_done = 0;
3107 
3108 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
3109 		napi_complete(napi);
3110 		return 0;
3111 	}
3112 	while (1) {
3113 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
3114 
3115 		if (work_done >= budget) {
3116 			if (!budget)
3117 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
3118 			break;
3119 		}
3120 
3121 		if (!bnxt_has_work(bp, cpr)) {
3122 			if (napi_complete_done(napi, work_done))
3123 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
3124 			break;
3125 		}
3126 	}
3127 	if (bp->flags & BNXT_FLAG_DIM) {
3128 		struct dim_sample dim_sample = {};
3129 
3130 		dim_update_sample(cpr->event_ctr,
3131 				  cpr->rx_packets,
3132 				  cpr->rx_bytes,
3133 				  &dim_sample);
3134 		net_dim(&cpr->dim, dim_sample);
3135 	}
3136 	return work_done;
3137 }
3138 
3139 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
3140 {
3141 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3142 	int i, work_done = 0;
3143 
3144 	for (i = 0; i < cpr->cp_ring_count; i++) {
3145 		struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i];
3146 
3147 		if (cpr2->had_nqe_notify) {
3148 			work_done += __bnxt_poll_work(bp, cpr2,
3149 						      budget - work_done);
3150 			cpr->has_more_work |= cpr2->has_more_work;
3151 		}
3152 	}
3153 	return work_done;
3154 }
3155 
3156 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
3157 				 u64 dbr_type, int budget)
3158 {
3159 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3160 	int i;
3161 
3162 	for (i = 0; i < cpr->cp_ring_count; i++) {
3163 		struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i];
3164 		struct bnxt_db_info *db;
3165 
3166 		if (cpr2->had_work_done) {
3167 			u32 tgl = 0;
3168 
3169 			if (dbr_type == DBR_TYPE_CQ_ARMALL) {
3170 				cpr2->had_nqe_notify = 0;
3171 				tgl = cpr2->toggle;
3172 			}
3173 			db = &cpr2->cp_db;
3174 			bnxt_writeq(bp,
3175 				    db->db_key64 | dbr_type | DB_TOGGLE(tgl) |
3176 				    DB_RING_IDX(db, cpr2->cp_raw_cons),
3177 				    db->doorbell);
3178 			cpr2->had_work_done = 0;
3179 		}
3180 	}
3181 	__bnxt_poll_work_done(bp, bnapi, budget);
3182 }
3183 
3184 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
3185 {
3186 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
3187 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3188 	struct bnxt_cp_ring_info *cpr_rx;
3189 	u32 raw_cons = cpr->cp_raw_cons;
3190 	struct bnxt *bp = bnapi->bp;
3191 	struct nqe_cn *nqcmp;
3192 	int work_done = 0;
3193 	u32 cons;
3194 
3195 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
3196 		napi_complete(napi);
3197 		return 0;
3198 	}
3199 	if (cpr->has_more_work) {
3200 		cpr->has_more_work = 0;
3201 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
3202 	}
3203 	while (1) {
3204 		u16 type;
3205 
3206 		cons = RING_CMP(raw_cons);
3207 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
3208 
3209 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
3210 			if (cpr->has_more_work)
3211 				break;
3212 
3213 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL,
3214 					     budget);
3215 			cpr->cp_raw_cons = raw_cons;
3216 			if (napi_complete_done(napi, work_done))
3217 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
3218 						  cpr->cp_raw_cons);
3219 			goto poll_done;
3220 		}
3221 
3222 		/* The valid test of the entry must be done first before
3223 		 * reading any further.
3224 		 */
3225 		dma_rmb();
3226 
3227 		type = le16_to_cpu(nqcmp->type);
3228 		if (NQE_CN_TYPE(type) == NQ_CN_TYPE_CQ_NOTIFICATION) {
3229 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
3230 			u32 cq_type = BNXT_NQ_HDL_TYPE(idx);
3231 			struct bnxt_cp_ring_info *cpr2;
3232 
3233 			/* No more budget for RX work */
3234 			if (budget && work_done >= budget &&
3235 			    cq_type == BNXT_NQ_HDL_TYPE_RX)
3236 				break;
3237 
3238 			idx = BNXT_NQ_HDL_IDX(idx);
3239 			cpr2 = &cpr->cp_ring_arr[idx];
3240 			cpr2->had_nqe_notify = 1;
3241 			cpr2->toggle = NQE_CN_TOGGLE(type);
3242 			work_done += __bnxt_poll_work(bp, cpr2,
3243 						      budget - work_done);
3244 			cpr->has_more_work |= cpr2->has_more_work;
3245 		} else {
3246 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
3247 		}
3248 		raw_cons = NEXT_RAW_CMP(raw_cons);
3249 	}
3250 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget);
3251 	if (raw_cons != cpr->cp_raw_cons) {
3252 		cpr->cp_raw_cons = raw_cons;
3253 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
3254 	}
3255 poll_done:
3256 	cpr_rx = &cpr->cp_ring_arr[0];
3257 	if (cpr_rx->cp_ring_type == BNXT_NQ_HDL_TYPE_RX &&
3258 	    (bp->flags & BNXT_FLAG_DIM)) {
3259 		struct dim_sample dim_sample = {};
3260 
3261 		dim_update_sample(cpr->event_ctr,
3262 				  cpr_rx->rx_packets,
3263 				  cpr_rx->rx_bytes,
3264 				  &dim_sample);
3265 		net_dim(&cpr->dim, dim_sample);
3266 	}
3267 	return work_done;
3268 }
3269 
3270 static void bnxt_free_tx_skbs(struct bnxt *bp)
3271 {
3272 	int i, max_idx;
3273 	struct pci_dev *pdev = bp->pdev;
3274 
3275 	if (!bp->tx_ring)
3276 		return;
3277 
3278 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
3279 	for (i = 0; i < bp->tx_nr_rings; i++) {
3280 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3281 		int j;
3282 
3283 		if (!txr->tx_buf_ring)
3284 			continue;
3285 
3286 		for (j = 0; j < max_idx;) {
3287 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
3288 			struct sk_buff *skb;
3289 			int k, last;
3290 
3291 			if (i < bp->tx_nr_rings_xdp &&
3292 			    tx_buf->action == XDP_REDIRECT) {
3293 				dma_unmap_single(&pdev->dev,
3294 					dma_unmap_addr(tx_buf, mapping),
3295 					dma_unmap_len(tx_buf, len),
3296 					DMA_TO_DEVICE);
3297 				xdp_return_frame(tx_buf->xdpf);
3298 				tx_buf->action = 0;
3299 				tx_buf->xdpf = NULL;
3300 				j++;
3301 				continue;
3302 			}
3303 
3304 			skb = tx_buf->skb;
3305 			if (!skb) {
3306 				j++;
3307 				continue;
3308 			}
3309 
3310 			tx_buf->skb = NULL;
3311 
3312 			if (tx_buf->is_push) {
3313 				dev_kfree_skb(skb);
3314 				j += 2;
3315 				continue;
3316 			}
3317 
3318 			dma_unmap_single(&pdev->dev,
3319 					 dma_unmap_addr(tx_buf, mapping),
3320 					 skb_headlen(skb),
3321 					 DMA_TO_DEVICE);
3322 
3323 			last = tx_buf->nr_frags;
3324 			j += 2;
3325 			for (k = 0; k < last; k++, j++) {
3326 				int ring_idx = j & bp->tx_ring_mask;
3327 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
3328 
3329 				tx_buf = &txr->tx_buf_ring[ring_idx];
3330 				dma_unmap_page(
3331 					&pdev->dev,
3332 					dma_unmap_addr(tx_buf, mapping),
3333 					skb_frag_size(frag), DMA_TO_DEVICE);
3334 			}
3335 			dev_kfree_skb(skb);
3336 		}
3337 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
3338 	}
3339 }
3340 
3341 static void bnxt_free_one_rx_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
3342 {
3343 	struct pci_dev *pdev = bp->pdev;
3344 	int i, max_idx;
3345 
3346 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
3347 
3348 	for (i = 0; i < max_idx; i++) {
3349 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
3350 		dma_addr_t mapping = rx_buf->mapping;
3351 		void *data = rx_buf->data;
3352 
3353 		if (!data)
3354 			continue;
3355 
3356 		rx_buf->data = NULL;
3357 		if (BNXT_RX_PAGE_MODE(bp)) {
3358 			page_pool_recycle_direct(rxr->page_pool, data);
3359 		} else {
3360 			dma_unmap_single_attrs(&pdev->dev, mapping,
3361 					       bp->rx_buf_use_size, bp->rx_dir,
3362 					       DMA_ATTR_WEAK_ORDERING);
3363 			skb_free_frag(data);
3364 		}
3365 	}
3366 }
3367 
3368 static void bnxt_free_one_rx_agg_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
3369 {
3370 	int i, max_idx;
3371 
3372 	max_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
3373 
3374 	for (i = 0; i < max_idx; i++) {
3375 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
3376 		struct page *page = rx_agg_buf->page;
3377 
3378 		if (!page)
3379 			continue;
3380 
3381 		rx_agg_buf->page = NULL;
3382 		__clear_bit(i, rxr->rx_agg_bmap);
3383 
3384 		page_pool_recycle_direct(rxr->page_pool, page);
3385 	}
3386 }
3387 
3388 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
3389 {
3390 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3391 	struct pci_dev *pdev = bp->pdev;
3392 	struct bnxt_tpa_idx_map *map;
3393 	int i;
3394 
3395 	if (!rxr->rx_tpa)
3396 		goto skip_rx_tpa_free;
3397 
3398 	for (i = 0; i < bp->max_tpa; i++) {
3399 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
3400 		u8 *data = tpa_info->data;
3401 
3402 		if (!data)
3403 			continue;
3404 
3405 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
3406 				       bp->rx_buf_use_size, bp->rx_dir,
3407 				       DMA_ATTR_WEAK_ORDERING);
3408 
3409 		tpa_info->data = NULL;
3410 
3411 		skb_free_frag(data);
3412 	}
3413 
3414 skip_rx_tpa_free:
3415 	if (!rxr->rx_buf_ring)
3416 		goto skip_rx_buf_free;
3417 
3418 	bnxt_free_one_rx_ring(bp, rxr);
3419 
3420 skip_rx_buf_free:
3421 	if (!rxr->rx_agg_ring)
3422 		goto skip_rx_agg_free;
3423 
3424 	bnxt_free_one_rx_agg_ring(bp, rxr);
3425 
3426 skip_rx_agg_free:
3427 	map = rxr->rx_tpa_idx_map;
3428 	if (map)
3429 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
3430 }
3431 
3432 static void bnxt_free_rx_skbs(struct bnxt *bp)
3433 {
3434 	int i;
3435 
3436 	if (!bp->rx_ring)
3437 		return;
3438 
3439 	for (i = 0; i < bp->rx_nr_rings; i++)
3440 		bnxt_free_one_rx_ring_skbs(bp, i);
3441 }
3442 
3443 static void bnxt_free_skbs(struct bnxt *bp)
3444 {
3445 	bnxt_free_tx_skbs(bp);
3446 	bnxt_free_rx_skbs(bp);
3447 }
3448 
3449 static void bnxt_init_ctx_mem(struct bnxt_ctx_mem_type *ctxm, void *p, int len)
3450 {
3451 	u8 init_val = ctxm->init_value;
3452 	u16 offset = ctxm->init_offset;
3453 	u8 *p2 = p;
3454 	int i;
3455 
3456 	if (!init_val)
3457 		return;
3458 	if (offset == BNXT_CTX_INIT_INVALID_OFFSET) {
3459 		memset(p, init_val, len);
3460 		return;
3461 	}
3462 	for (i = 0; i < len; i += ctxm->entry_size)
3463 		*(p2 + i + offset) = init_val;
3464 }
3465 
3466 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3467 {
3468 	struct pci_dev *pdev = bp->pdev;
3469 	int i;
3470 
3471 	if (!rmem->pg_arr)
3472 		goto skip_pages;
3473 
3474 	for (i = 0; i < rmem->nr_pages; i++) {
3475 		if (!rmem->pg_arr[i])
3476 			continue;
3477 
3478 		dma_free_coherent(&pdev->dev, rmem->page_size,
3479 				  rmem->pg_arr[i], rmem->dma_arr[i]);
3480 
3481 		rmem->pg_arr[i] = NULL;
3482 	}
3483 skip_pages:
3484 	if (rmem->pg_tbl) {
3485 		size_t pg_tbl_size = rmem->nr_pages * 8;
3486 
3487 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3488 			pg_tbl_size = rmem->page_size;
3489 		dma_free_coherent(&pdev->dev, pg_tbl_size,
3490 				  rmem->pg_tbl, rmem->pg_tbl_map);
3491 		rmem->pg_tbl = NULL;
3492 	}
3493 	if (rmem->vmem_size && *rmem->vmem) {
3494 		vfree(*rmem->vmem);
3495 		*rmem->vmem = NULL;
3496 	}
3497 }
3498 
3499 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3500 {
3501 	struct pci_dev *pdev = bp->pdev;
3502 	u64 valid_bit = 0;
3503 	int i;
3504 
3505 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
3506 		valid_bit = PTU_PTE_VALID;
3507 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
3508 		size_t pg_tbl_size = rmem->nr_pages * 8;
3509 
3510 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3511 			pg_tbl_size = rmem->page_size;
3512 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
3513 						  &rmem->pg_tbl_map,
3514 						  GFP_KERNEL);
3515 		if (!rmem->pg_tbl)
3516 			return -ENOMEM;
3517 	}
3518 
3519 	for (i = 0; i < rmem->nr_pages; i++) {
3520 		u64 extra_bits = valid_bit;
3521 
3522 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
3523 						     rmem->page_size,
3524 						     &rmem->dma_arr[i],
3525 						     GFP_KERNEL);
3526 		if (!rmem->pg_arr[i])
3527 			return -ENOMEM;
3528 
3529 		if (rmem->ctx_mem)
3530 			bnxt_init_ctx_mem(rmem->ctx_mem, rmem->pg_arr[i],
3531 					  rmem->page_size);
3532 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
3533 			if (i == rmem->nr_pages - 2 &&
3534 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3535 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
3536 			else if (i == rmem->nr_pages - 1 &&
3537 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3538 				extra_bits |= PTU_PTE_LAST;
3539 			rmem->pg_tbl[i] =
3540 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
3541 		}
3542 	}
3543 
3544 	if (rmem->vmem_size) {
3545 		*rmem->vmem = vzalloc(rmem->vmem_size);
3546 		if (!(*rmem->vmem))
3547 			return -ENOMEM;
3548 	}
3549 	return 0;
3550 }
3551 
3552 static void bnxt_free_tpa_info(struct bnxt *bp)
3553 {
3554 	int i, j;
3555 
3556 	for (i = 0; i < bp->rx_nr_rings; i++) {
3557 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3558 
3559 		kfree(rxr->rx_tpa_idx_map);
3560 		rxr->rx_tpa_idx_map = NULL;
3561 		if (rxr->rx_tpa) {
3562 			for (j = 0; j < bp->max_tpa; j++) {
3563 				kfree(rxr->rx_tpa[j].agg_arr);
3564 				rxr->rx_tpa[j].agg_arr = NULL;
3565 			}
3566 		}
3567 		kfree(rxr->rx_tpa);
3568 		rxr->rx_tpa = NULL;
3569 	}
3570 }
3571 
3572 static int bnxt_alloc_tpa_info(struct bnxt *bp)
3573 {
3574 	int i, j;
3575 
3576 	bp->max_tpa = MAX_TPA;
3577 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
3578 		if (!bp->max_tpa_v2)
3579 			return 0;
3580 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
3581 	}
3582 
3583 	for (i = 0; i < bp->rx_nr_rings; i++) {
3584 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3585 		struct rx_agg_cmp *agg;
3586 
3587 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
3588 				      GFP_KERNEL);
3589 		if (!rxr->rx_tpa)
3590 			return -ENOMEM;
3591 
3592 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
3593 			continue;
3594 		for (j = 0; j < bp->max_tpa; j++) {
3595 			agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL);
3596 			if (!agg)
3597 				return -ENOMEM;
3598 			rxr->rx_tpa[j].agg_arr = agg;
3599 		}
3600 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
3601 					      GFP_KERNEL);
3602 		if (!rxr->rx_tpa_idx_map)
3603 			return -ENOMEM;
3604 	}
3605 	return 0;
3606 }
3607 
3608 static void bnxt_free_rx_rings(struct bnxt *bp)
3609 {
3610 	int i;
3611 
3612 	if (!bp->rx_ring)
3613 		return;
3614 
3615 	bnxt_free_tpa_info(bp);
3616 	for (i = 0; i < bp->rx_nr_rings; i++) {
3617 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3618 		struct bnxt_ring_struct *ring;
3619 
3620 		if (rxr->xdp_prog)
3621 			bpf_prog_put(rxr->xdp_prog);
3622 
3623 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
3624 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3625 
3626 		page_pool_destroy(rxr->page_pool);
3627 		rxr->page_pool = NULL;
3628 
3629 		kfree(rxr->rx_agg_bmap);
3630 		rxr->rx_agg_bmap = NULL;
3631 
3632 		ring = &rxr->rx_ring_struct;
3633 		bnxt_free_ring(bp, &ring->ring_mem);
3634 
3635 		ring = &rxr->rx_agg_ring_struct;
3636 		bnxt_free_ring(bp, &ring->ring_mem);
3637 	}
3638 }
3639 
3640 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
3641 				   struct bnxt_rx_ring_info *rxr,
3642 				   int numa_node)
3643 {
3644 	struct page_pool_params pp = { 0 };
3645 
3646 	pp.pool_size = bp->rx_agg_ring_size;
3647 	if (BNXT_RX_PAGE_MODE(bp))
3648 		pp.pool_size += bp->rx_ring_size;
3649 	pp.nid = numa_node;
3650 	pp.napi = &rxr->bnapi->napi;
3651 	pp.netdev = bp->dev;
3652 	pp.dev = &bp->pdev->dev;
3653 	pp.dma_dir = bp->rx_dir;
3654 	pp.max_len = PAGE_SIZE;
3655 	pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
3656 
3657 	rxr->page_pool = page_pool_create(&pp);
3658 	if (IS_ERR(rxr->page_pool)) {
3659 		int err = PTR_ERR(rxr->page_pool);
3660 
3661 		rxr->page_pool = NULL;
3662 		return err;
3663 	}
3664 	return 0;
3665 }
3666 
3667 static int bnxt_alloc_rx_rings(struct bnxt *bp)
3668 {
3669 	int numa_node = dev_to_node(&bp->pdev->dev);
3670 	int i, rc = 0, agg_rings = 0, cpu;
3671 
3672 	if (!bp->rx_ring)
3673 		return -ENOMEM;
3674 
3675 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
3676 		agg_rings = 1;
3677 
3678 	for (i = 0; i < bp->rx_nr_rings; i++) {
3679 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3680 		struct bnxt_ring_struct *ring;
3681 		int cpu_node;
3682 
3683 		ring = &rxr->rx_ring_struct;
3684 
3685 		cpu = cpumask_local_spread(i, numa_node);
3686 		cpu_node = cpu_to_node(cpu);
3687 		netdev_dbg(bp->dev, "Allocating page pool for rx_ring[%d] on numa_node: %d\n",
3688 			   i, cpu_node);
3689 		rc = bnxt_alloc_rx_page_pool(bp, rxr, cpu_node);
3690 		if (rc)
3691 			return rc;
3692 
3693 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
3694 		if (rc < 0)
3695 			return rc;
3696 
3697 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
3698 						MEM_TYPE_PAGE_POOL,
3699 						rxr->page_pool);
3700 		if (rc) {
3701 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3702 			return rc;
3703 		}
3704 
3705 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3706 		if (rc)
3707 			return rc;
3708 
3709 		ring->grp_idx = i;
3710 		if (agg_rings) {
3711 			u16 mem_size;
3712 
3713 			ring = &rxr->rx_agg_ring_struct;
3714 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3715 			if (rc)
3716 				return rc;
3717 
3718 			ring->grp_idx = i;
3719 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
3720 			mem_size = rxr->rx_agg_bmap_size / 8;
3721 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
3722 			if (!rxr->rx_agg_bmap)
3723 				return -ENOMEM;
3724 		}
3725 	}
3726 	if (bp->flags & BNXT_FLAG_TPA)
3727 		rc = bnxt_alloc_tpa_info(bp);
3728 	return rc;
3729 }
3730 
3731 static void bnxt_free_tx_rings(struct bnxt *bp)
3732 {
3733 	int i;
3734 	struct pci_dev *pdev = bp->pdev;
3735 
3736 	if (!bp->tx_ring)
3737 		return;
3738 
3739 	for (i = 0; i < bp->tx_nr_rings; i++) {
3740 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3741 		struct bnxt_ring_struct *ring;
3742 
3743 		if (txr->tx_push) {
3744 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
3745 					  txr->tx_push, txr->tx_push_mapping);
3746 			txr->tx_push = NULL;
3747 		}
3748 
3749 		ring = &txr->tx_ring_struct;
3750 
3751 		bnxt_free_ring(bp, &ring->ring_mem);
3752 	}
3753 }
3754 
3755 #define BNXT_TC_TO_RING_BASE(bp, tc)	\
3756 	((tc) * (bp)->tx_nr_rings_per_tc)
3757 
3758 #define BNXT_RING_TO_TC_OFF(bp, tx)	\
3759 	((tx) % (bp)->tx_nr_rings_per_tc)
3760 
3761 #define BNXT_RING_TO_TC(bp, tx)		\
3762 	((tx) / (bp)->tx_nr_rings_per_tc)
3763 
3764 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3765 {
3766 	int i, j, rc;
3767 	struct pci_dev *pdev = bp->pdev;
3768 
3769 	bp->tx_push_size = 0;
3770 	if (bp->tx_push_thresh) {
3771 		int push_size;
3772 
3773 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3774 					bp->tx_push_thresh);
3775 
3776 		if (push_size > 256) {
3777 			push_size = 0;
3778 			bp->tx_push_thresh = 0;
3779 		}
3780 
3781 		bp->tx_push_size = push_size;
3782 	}
3783 
3784 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3785 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3786 		struct bnxt_ring_struct *ring;
3787 		u8 qidx;
3788 
3789 		ring = &txr->tx_ring_struct;
3790 
3791 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3792 		if (rc)
3793 			return rc;
3794 
3795 		ring->grp_idx = txr->bnapi->index;
3796 		if (bp->tx_push_size) {
3797 			dma_addr_t mapping;
3798 
3799 			/* One pre-allocated DMA buffer to backup
3800 			 * TX push operation
3801 			 */
3802 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
3803 						bp->tx_push_size,
3804 						&txr->tx_push_mapping,
3805 						GFP_KERNEL);
3806 
3807 			if (!txr->tx_push)
3808 				return -ENOMEM;
3809 
3810 			mapping = txr->tx_push_mapping +
3811 				sizeof(struct tx_push_bd);
3812 			txr->data_mapping = cpu_to_le64(mapping);
3813 		}
3814 		qidx = bp->tc_to_qidx[j];
3815 		ring->queue_id = bp->q_info[qidx].queue_id;
3816 		spin_lock_init(&txr->xdp_tx_lock);
3817 		if (i < bp->tx_nr_rings_xdp)
3818 			continue;
3819 		if (BNXT_RING_TO_TC_OFF(bp, i) == (bp->tx_nr_rings_per_tc - 1))
3820 			j++;
3821 	}
3822 	return 0;
3823 }
3824 
3825 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr)
3826 {
3827 	struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3828 
3829 	kfree(cpr->cp_desc_ring);
3830 	cpr->cp_desc_ring = NULL;
3831 	ring->ring_mem.pg_arr = NULL;
3832 	kfree(cpr->cp_desc_mapping);
3833 	cpr->cp_desc_mapping = NULL;
3834 	ring->ring_mem.dma_arr = NULL;
3835 }
3836 
3837 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n)
3838 {
3839 	cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL);
3840 	if (!cpr->cp_desc_ring)
3841 		return -ENOMEM;
3842 	cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping),
3843 				       GFP_KERNEL);
3844 	if (!cpr->cp_desc_mapping)
3845 		return -ENOMEM;
3846 	return 0;
3847 }
3848 
3849 static void bnxt_free_all_cp_arrays(struct bnxt *bp)
3850 {
3851 	int i;
3852 
3853 	if (!bp->bnapi)
3854 		return;
3855 	for (i = 0; i < bp->cp_nr_rings; i++) {
3856 		struct bnxt_napi *bnapi = bp->bnapi[i];
3857 
3858 		if (!bnapi)
3859 			continue;
3860 		bnxt_free_cp_arrays(&bnapi->cp_ring);
3861 	}
3862 }
3863 
3864 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp)
3865 {
3866 	int i, n = bp->cp_nr_pages;
3867 
3868 	for (i = 0; i < bp->cp_nr_rings; i++) {
3869 		struct bnxt_napi *bnapi = bp->bnapi[i];
3870 		int rc;
3871 
3872 		if (!bnapi)
3873 			continue;
3874 		rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n);
3875 		if (rc)
3876 			return rc;
3877 	}
3878 	return 0;
3879 }
3880 
3881 static void bnxt_free_cp_rings(struct bnxt *bp)
3882 {
3883 	int i;
3884 
3885 	if (!bp->bnapi)
3886 		return;
3887 
3888 	for (i = 0; i < bp->cp_nr_rings; i++) {
3889 		struct bnxt_napi *bnapi = bp->bnapi[i];
3890 		struct bnxt_cp_ring_info *cpr;
3891 		struct bnxt_ring_struct *ring;
3892 		int j;
3893 
3894 		if (!bnapi)
3895 			continue;
3896 
3897 		cpr = &bnapi->cp_ring;
3898 		ring = &cpr->cp_ring_struct;
3899 
3900 		bnxt_free_ring(bp, &ring->ring_mem);
3901 
3902 		if (!cpr->cp_ring_arr)
3903 			continue;
3904 
3905 		for (j = 0; j < cpr->cp_ring_count; j++) {
3906 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
3907 
3908 			ring = &cpr2->cp_ring_struct;
3909 			bnxt_free_ring(bp, &ring->ring_mem);
3910 			bnxt_free_cp_arrays(cpr2);
3911 		}
3912 		kfree(cpr->cp_ring_arr);
3913 		cpr->cp_ring_arr = NULL;
3914 		cpr->cp_ring_count = 0;
3915 	}
3916 }
3917 
3918 static int bnxt_alloc_cp_sub_ring(struct bnxt *bp,
3919 				  struct bnxt_cp_ring_info *cpr)
3920 {
3921 	struct bnxt_ring_mem_info *rmem;
3922 	struct bnxt_ring_struct *ring;
3923 	int rc;
3924 
3925 	rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages);
3926 	if (rc) {
3927 		bnxt_free_cp_arrays(cpr);
3928 		return -ENOMEM;
3929 	}
3930 	ring = &cpr->cp_ring_struct;
3931 	rmem = &ring->ring_mem;
3932 	rmem->nr_pages = bp->cp_nr_pages;
3933 	rmem->page_size = HW_CMPD_RING_SIZE;
3934 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3935 	rmem->dma_arr = cpr->cp_desc_mapping;
3936 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3937 	rc = bnxt_alloc_ring(bp, rmem);
3938 	if (rc) {
3939 		bnxt_free_ring(bp, rmem);
3940 		bnxt_free_cp_arrays(cpr);
3941 	}
3942 	return rc;
3943 }
3944 
3945 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3946 {
3947 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3948 	int i, j, rc, ulp_msix;
3949 	int tcs = bp->num_tc;
3950 
3951 	if (!tcs)
3952 		tcs = 1;
3953 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3954 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
3955 		struct bnxt_napi *bnapi = bp->bnapi[i];
3956 		struct bnxt_cp_ring_info *cpr, *cpr2;
3957 		struct bnxt_ring_struct *ring;
3958 		int cp_count = 0, k;
3959 		int rx = 0, tx = 0;
3960 
3961 		if (!bnapi)
3962 			continue;
3963 
3964 		cpr = &bnapi->cp_ring;
3965 		cpr->bnapi = bnapi;
3966 		ring = &cpr->cp_ring_struct;
3967 
3968 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3969 		if (rc)
3970 			return rc;
3971 
3972 		ring->map_idx = ulp_msix + i;
3973 
3974 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
3975 			continue;
3976 
3977 		if (i < bp->rx_nr_rings) {
3978 			cp_count++;
3979 			rx = 1;
3980 		}
3981 		if (i < bp->tx_nr_rings_xdp) {
3982 			cp_count++;
3983 			tx = 1;
3984 		} else if ((sh && i < bp->tx_nr_rings) ||
3985 			 (!sh && i >= bp->rx_nr_rings)) {
3986 			cp_count += tcs;
3987 			tx = 1;
3988 		}
3989 
3990 		cpr->cp_ring_arr = kcalloc(cp_count, sizeof(*cpr),
3991 					   GFP_KERNEL);
3992 		if (!cpr->cp_ring_arr)
3993 			return -ENOMEM;
3994 		cpr->cp_ring_count = cp_count;
3995 
3996 		for (k = 0; k < cp_count; k++) {
3997 			cpr2 = &cpr->cp_ring_arr[k];
3998 			rc = bnxt_alloc_cp_sub_ring(bp, cpr2);
3999 			if (rc)
4000 				return rc;
4001 			cpr2->bnapi = bnapi;
4002 			cpr2->sw_stats = cpr->sw_stats;
4003 			cpr2->cp_idx = k;
4004 			if (!k && rx) {
4005 				bp->rx_ring[i].rx_cpr = cpr2;
4006 				cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_RX;
4007 			} else {
4008 				int n, tc = k - rx;
4009 
4010 				n = BNXT_TC_TO_RING_BASE(bp, tc) + j;
4011 				bp->tx_ring[n].tx_cpr = cpr2;
4012 				cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_TX;
4013 			}
4014 		}
4015 		if (tx)
4016 			j++;
4017 	}
4018 	return 0;
4019 }
4020 
4021 static void bnxt_init_rx_ring_struct(struct bnxt *bp,
4022 				     struct bnxt_rx_ring_info *rxr)
4023 {
4024 	struct bnxt_ring_mem_info *rmem;
4025 	struct bnxt_ring_struct *ring;
4026 
4027 	ring = &rxr->rx_ring_struct;
4028 	rmem = &ring->ring_mem;
4029 	rmem->nr_pages = bp->rx_nr_pages;
4030 	rmem->page_size = HW_RXBD_RING_SIZE;
4031 	rmem->pg_arr = (void **)rxr->rx_desc_ring;
4032 	rmem->dma_arr = rxr->rx_desc_mapping;
4033 	rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
4034 	rmem->vmem = (void **)&rxr->rx_buf_ring;
4035 
4036 	ring = &rxr->rx_agg_ring_struct;
4037 	rmem = &ring->ring_mem;
4038 	rmem->nr_pages = bp->rx_agg_nr_pages;
4039 	rmem->page_size = HW_RXBD_RING_SIZE;
4040 	rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
4041 	rmem->dma_arr = rxr->rx_agg_desc_mapping;
4042 	rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
4043 	rmem->vmem = (void **)&rxr->rx_agg_ring;
4044 }
4045 
4046 static void bnxt_reset_rx_ring_struct(struct bnxt *bp,
4047 				      struct bnxt_rx_ring_info *rxr)
4048 {
4049 	struct bnxt_ring_mem_info *rmem;
4050 	struct bnxt_ring_struct *ring;
4051 	int i;
4052 
4053 	rxr->page_pool->p.napi = NULL;
4054 	rxr->page_pool = NULL;
4055 
4056 	ring = &rxr->rx_ring_struct;
4057 	rmem = &ring->ring_mem;
4058 	rmem->pg_tbl = NULL;
4059 	rmem->pg_tbl_map = 0;
4060 	for (i = 0; i < rmem->nr_pages; i++) {
4061 		rmem->pg_arr[i] = NULL;
4062 		rmem->dma_arr[i] = 0;
4063 	}
4064 	*rmem->vmem = NULL;
4065 
4066 	ring = &rxr->rx_agg_ring_struct;
4067 	rmem = &ring->ring_mem;
4068 	rmem->pg_tbl = NULL;
4069 	rmem->pg_tbl_map = 0;
4070 	for (i = 0; i < rmem->nr_pages; i++) {
4071 		rmem->pg_arr[i] = NULL;
4072 		rmem->dma_arr[i] = 0;
4073 	}
4074 	*rmem->vmem = NULL;
4075 }
4076 
4077 static void bnxt_init_ring_struct(struct bnxt *bp)
4078 {
4079 	int i, j;
4080 
4081 	for (i = 0; i < bp->cp_nr_rings; i++) {
4082 		struct bnxt_napi *bnapi = bp->bnapi[i];
4083 		struct bnxt_ring_mem_info *rmem;
4084 		struct bnxt_cp_ring_info *cpr;
4085 		struct bnxt_rx_ring_info *rxr;
4086 		struct bnxt_tx_ring_info *txr;
4087 		struct bnxt_ring_struct *ring;
4088 
4089 		if (!bnapi)
4090 			continue;
4091 
4092 		cpr = &bnapi->cp_ring;
4093 		ring = &cpr->cp_ring_struct;
4094 		rmem = &ring->ring_mem;
4095 		rmem->nr_pages = bp->cp_nr_pages;
4096 		rmem->page_size = HW_CMPD_RING_SIZE;
4097 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
4098 		rmem->dma_arr = cpr->cp_desc_mapping;
4099 		rmem->vmem_size = 0;
4100 
4101 		rxr = bnapi->rx_ring;
4102 		if (!rxr)
4103 			goto skip_rx;
4104 
4105 		ring = &rxr->rx_ring_struct;
4106 		rmem = &ring->ring_mem;
4107 		rmem->nr_pages = bp->rx_nr_pages;
4108 		rmem->page_size = HW_RXBD_RING_SIZE;
4109 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
4110 		rmem->dma_arr = rxr->rx_desc_mapping;
4111 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
4112 		rmem->vmem = (void **)&rxr->rx_buf_ring;
4113 
4114 		ring = &rxr->rx_agg_ring_struct;
4115 		rmem = &ring->ring_mem;
4116 		rmem->nr_pages = bp->rx_agg_nr_pages;
4117 		rmem->page_size = HW_RXBD_RING_SIZE;
4118 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
4119 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
4120 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
4121 		rmem->vmem = (void **)&rxr->rx_agg_ring;
4122 
4123 skip_rx:
4124 		bnxt_for_each_napi_tx(j, bnapi, txr) {
4125 			ring = &txr->tx_ring_struct;
4126 			rmem = &ring->ring_mem;
4127 			rmem->nr_pages = bp->tx_nr_pages;
4128 			rmem->page_size = HW_TXBD_RING_SIZE;
4129 			rmem->pg_arr = (void **)txr->tx_desc_ring;
4130 			rmem->dma_arr = txr->tx_desc_mapping;
4131 			rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
4132 			rmem->vmem = (void **)&txr->tx_buf_ring;
4133 		}
4134 	}
4135 }
4136 
4137 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
4138 {
4139 	int i;
4140 	u32 prod;
4141 	struct rx_bd **rx_buf_ring;
4142 
4143 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
4144 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
4145 		int j;
4146 		struct rx_bd *rxbd;
4147 
4148 		rxbd = rx_buf_ring[i];
4149 		if (!rxbd)
4150 			continue;
4151 
4152 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
4153 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
4154 			rxbd->rx_bd_opaque = prod;
4155 		}
4156 	}
4157 }
4158 
4159 static void bnxt_alloc_one_rx_ring_skb(struct bnxt *bp,
4160 				       struct bnxt_rx_ring_info *rxr,
4161 				       int ring_nr)
4162 {
4163 	u32 prod;
4164 	int i;
4165 
4166 	prod = rxr->rx_prod;
4167 	for (i = 0; i < bp->rx_ring_size; i++) {
4168 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
4169 			netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
4170 				    ring_nr, i, bp->rx_ring_size);
4171 			break;
4172 		}
4173 		prod = NEXT_RX(prod);
4174 	}
4175 	rxr->rx_prod = prod;
4176 }
4177 
4178 static void bnxt_alloc_one_rx_ring_page(struct bnxt *bp,
4179 					struct bnxt_rx_ring_info *rxr,
4180 					int ring_nr)
4181 {
4182 	u32 prod;
4183 	int i;
4184 
4185 	prod = rxr->rx_agg_prod;
4186 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
4187 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
4188 			netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d pages only\n",
4189 				    ring_nr, i, bp->rx_ring_size);
4190 			break;
4191 		}
4192 		prod = NEXT_RX_AGG(prod);
4193 	}
4194 	rxr->rx_agg_prod = prod;
4195 }
4196 
4197 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
4198 {
4199 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
4200 	int i;
4201 
4202 	bnxt_alloc_one_rx_ring_skb(bp, rxr, ring_nr);
4203 
4204 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
4205 		return 0;
4206 
4207 	bnxt_alloc_one_rx_ring_page(bp, rxr, ring_nr);
4208 
4209 	if (rxr->rx_tpa) {
4210 		dma_addr_t mapping;
4211 		u8 *data;
4212 
4213 		for (i = 0; i < bp->max_tpa; i++) {
4214 			data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL);
4215 			if (!data)
4216 				return -ENOMEM;
4217 
4218 			rxr->rx_tpa[i].data = data;
4219 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
4220 			rxr->rx_tpa[i].mapping = mapping;
4221 		}
4222 	}
4223 	return 0;
4224 }
4225 
4226 static void bnxt_init_one_rx_ring_rxbd(struct bnxt *bp,
4227 				       struct bnxt_rx_ring_info *rxr)
4228 {
4229 	struct bnxt_ring_struct *ring;
4230 	u32 type;
4231 
4232 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
4233 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
4234 
4235 	if (NET_IP_ALIGN == 2)
4236 		type |= RX_BD_FLAGS_SOP;
4237 
4238 	ring = &rxr->rx_ring_struct;
4239 	bnxt_init_rxbd_pages(ring, type);
4240 	ring->fw_ring_id = INVALID_HW_RING_ID;
4241 }
4242 
4243 static void bnxt_init_one_rx_agg_ring_rxbd(struct bnxt *bp,
4244 					   struct bnxt_rx_ring_info *rxr)
4245 {
4246 	struct bnxt_ring_struct *ring;
4247 	u32 type;
4248 
4249 	ring = &rxr->rx_agg_ring_struct;
4250 	ring->fw_ring_id = INVALID_HW_RING_ID;
4251 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
4252 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
4253 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
4254 
4255 		bnxt_init_rxbd_pages(ring, type);
4256 	}
4257 }
4258 
4259 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
4260 {
4261 	struct bnxt_rx_ring_info *rxr;
4262 
4263 	rxr = &bp->rx_ring[ring_nr];
4264 	bnxt_init_one_rx_ring_rxbd(bp, rxr);
4265 
4266 	netif_queue_set_napi(bp->dev, ring_nr, NETDEV_QUEUE_TYPE_RX,
4267 			     &rxr->bnapi->napi);
4268 
4269 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
4270 		bpf_prog_add(bp->xdp_prog, 1);
4271 		rxr->xdp_prog = bp->xdp_prog;
4272 	}
4273 
4274 	bnxt_init_one_rx_agg_ring_rxbd(bp, rxr);
4275 
4276 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
4277 }
4278 
4279 static void bnxt_init_cp_rings(struct bnxt *bp)
4280 {
4281 	int i, j;
4282 
4283 	for (i = 0; i < bp->cp_nr_rings; i++) {
4284 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
4285 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4286 
4287 		ring->fw_ring_id = INVALID_HW_RING_ID;
4288 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
4289 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
4290 		if (!cpr->cp_ring_arr)
4291 			continue;
4292 		for (j = 0; j < cpr->cp_ring_count; j++) {
4293 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
4294 
4295 			ring = &cpr2->cp_ring_struct;
4296 			ring->fw_ring_id = INVALID_HW_RING_ID;
4297 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
4298 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
4299 		}
4300 	}
4301 }
4302 
4303 static int bnxt_init_rx_rings(struct bnxt *bp)
4304 {
4305 	int i, rc = 0;
4306 
4307 	if (BNXT_RX_PAGE_MODE(bp)) {
4308 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
4309 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
4310 	} else {
4311 		bp->rx_offset = BNXT_RX_OFFSET;
4312 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
4313 	}
4314 
4315 	for (i = 0; i < bp->rx_nr_rings; i++) {
4316 		rc = bnxt_init_one_rx_ring(bp, i);
4317 		if (rc)
4318 			break;
4319 	}
4320 
4321 	return rc;
4322 }
4323 
4324 static int bnxt_init_tx_rings(struct bnxt *bp)
4325 {
4326 	u16 i;
4327 
4328 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
4329 				   BNXT_MIN_TX_DESC_CNT);
4330 
4331 	for (i = 0; i < bp->tx_nr_rings; i++) {
4332 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4333 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4334 
4335 		ring->fw_ring_id = INVALID_HW_RING_ID;
4336 
4337 		if (i >= bp->tx_nr_rings_xdp)
4338 			netif_queue_set_napi(bp->dev, i - bp->tx_nr_rings_xdp,
4339 					     NETDEV_QUEUE_TYPE_TX,
4340 					     &txr->bnapi->napi);
4341 	}
4342 
4343 	return 0;
4344 }
4345 
4346 static void bnxt_free_ring_grps(struct bnxt *bp)
4347 {
4348 	kfree(bp->grp_info);
4349 	bp->grp_info = NULL;
4350 }
4351 
4352 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
4353 {
4354 	int i;
4355 
4356 	if (irq_re_init) {
4357 		bp->grp_info = kcalloc(bp->cp_nr_rings,
4358 				       sizeof(struct bnxt_ring_grp_info),
4359 				       GFP_KERNEL);
4360 		if (!bp->grp_info)
4361 			return -ENOMEM;
4362 	}
4363 	for (i = 0; i < bp->cp_nr_rings; i++) {
4364 		if (irq_re_init)
4365 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
4366 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
4367 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
4368 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
4369 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
4370 	}
4371 	return 0;
4372 }
4373 
4374 static void bnxt_free_vnics(struct bnxt *bp)
4375 {
4376 	kfree(bp->vnic_info);
4377 	bp->vnic_info = NULL;
4378 	bp->nr_vnics = 0;
4379 }
4380 
4381 static int bnxt_alloc_vnics(struct bnxt *bp)
4382 {
4383 	int num_vnics = 1;
4384 
4385 #ifdef CONFIG_RFS_ACCEL
4386 	if (bp->flags & BNXT_FLAG_RFS) {
4387 		if (BNXT_SUPPORTS_NTUPLE_VNIC(bp))
4388 			num_vnics++;
4389 		else if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
4390 			num_vnics += bp->rx_nr_rings;
4391 	}
4392 #endif
4393 
4394 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4395 		num_vnics++;
4396 
4397 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
4398 				GFP_KERNEL);
4399 	if (!bp->vnic_info)
4400 		return -ENOMEM;
4401 
4402 	bp->nr_vnics = num_vnics;
4403 	return 0;
4404 }
4405 
4406 static void bnxt_init_vnics(struct bnxt *bp)
4407 {
4408 	struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT];
4409 	int i;
4410 
4411 	for (i = 0; i < bp->nr_vnics; i++) {
4412 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4413 		int j;
4414 
4415 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
4416 		vnic->vnic_id = i;
4417 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
4418 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
4419 
4420 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
4421 
4422 		if (bp->vnic_info[i].rss_hash_key) {
4423 			if (i == BNXT_VNIC_DEFAULT) {
4424 				u8 *key = (void *)vnic->rss_hash_key;
4425 				int k;
4426 
4427 				if (!bp->rss_hash_key_valid &&
4428 				    !bp->rss_hash_key_updated) {
4429 					get_random_bytes(bp->rss_hash_key,
4430 							 HW_HASH_KEY_SIZE);
4431 					bp->rss_hash_key_updated = true;
4432 				}
4433 
4434 				memcpy(vnic->rss_hash_key, bp->rss_hash_key,
4435 				       HW_HASH_KEY_SIZE);
4436 
4437 				if (!bp->rss_hash_key_updated)
4438 					continue;
4439 
4440 				bp->rss_hash_key_updated = false;
4441 				bp->rss_hash_key_valid = true;
4442 
4443 				bp->toeplitz_prefix = 0;
4444 				for (k = 0; k < 8; k++) {
4445 					bp->toeplitz_prefix <<= 8;
4446 					bp->toeplitz_prefix |= key[k];
4447 				}
4448 			} else {
4449 				memcpy(vnic->rss_hash_key, vnic0->rss_hash_key,
4450 				       HW_HASH_KEY_SIZE);
4451 			}
4452 		}
4453 	}
4454 }
4455 
4456 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
4457 {
4458 	int pages;
4459 
4460 	pages = ring_size / desc_per_pg;
4461 
4462 	if (!pages)
4463 		return 1;
4464 
4465 	pages++;
4466 
4467 	while (pages & (pages - 1))
4468 		pages++;
4469 
4470 	return pages;
4471 }
4472 
4473 void bnxt_set_tpa_flags(struct bnxt *bp)
4474 {
4475 	bp->flags &= ~BNXT_FLAG_TPA;
4476 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
4477 		return;
4478 	if (bp->dev->features & NETIF_F_LRO)
4479 		bp->flags |= BNXT_FLAG_LRO;
4480 	else if (bp->dev->features & NETIF_F_GRO_HW)
4481 		bp->flags |= BNXT_FLAG_GRO;
4482 }
4483 
4484 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
4485  * be set on entry.
4486  */
4487 void bnxt_set_ring_params(struct bnxt *bp)
4488 {
4489 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
4490 	u32 agg_factor = 0, agg_ring_size = 0;
4491 
4492 	/* 8 for CRC and VLAN */
4493 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
4494 
4495 	rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) +
4496 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4497 
4498 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
4499 	ring_size = bp->rx_ring_size;
4500 	bp->rx_agg_ring_size = 0;
4501 	bp->rx_agg_nr_pages = 0;
4502 
4503 	if (bp->flags & BNXT_FLAG_TPA)
4504 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
4505 
4506 	bp->flags &= ~BNXT_FLAG_JUMBO;
4507 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
4508 		u32 jumbo_factor;
4509 
4510 		bp->flags |= BNXT_FLAG_JUMBO;
4511 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
4512 		if (jumbo_factor > agg_factor)
4513 			agg_factor = jumbo_factor;
4514 	}
4515 	if (agg_factor) {
4516 		if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) {
4517 			ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA;
4518 			netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n",
4519 				    bp->rx_ring_size, ring_size);
4520 			bp->rx_ring_size = ring_size;
4521 		}
4522 		agg_ring_size = ring_size * agg_factor;
4523 
4524 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
4525 							RX_DESC_CNT);
4526 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
4527 			u32 tmp = agg_ring_size;
4528 
4529 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
4530 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
4531 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
4532 				    tmp, agg_ring_size);
4533 		}
4534 		bp->rx_agg_ring_size = agg_ring_size;
4535 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
4536 
4537 		if (BNXT_RX_PAGE_MODE(bp)) {
4538 			rx_space = PAGE_SIZE;
4539 			rx_size = PAGE_SIZE -
4540 				  ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) -
4541 				  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4542 		} else {
4543 			rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
4544 			rx_space = rx_size + NET_SKB_PAD +
4545 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4546 		}
4547 	}
4548 
4549 	bp->rx_buf_use_size = rx_size;
4550 	bp->rx_buf_size = rx_space;
4551 
4552 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
4553 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
4554 
4555 	ring_size = bp->tx_ring_size;
4556 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
4557 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
4558 
4559 	max_rx_cmpl = bp->rx_ring_size;
4560 	/* MAX TPA needs to be added because TPA_START completions are
4561 	 * immediately recycled, so the TPA completions are not bound by
4562 	 * the RX ring size.
4563 	 */
4564 	if (bp->flags & BNXT_FLAG_TPA)
4565 		max_rx_cmpl += bp->max_tpa;
4566 	/* RX and TPA completions are 32-byte, all others are 16-byte */
4567 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
4568 	bp->cp_ring_size = ring_size;
4569 
4570 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
4571 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
4572 		bp->cp_nr_pages = MAX_CP_PAGES;
4573 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
4574 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
4575 			    ring_size, bp->cp_ring_size);
4576 	}
4577 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
4578 	bp->cp_ring_mask = bp->cp_bit - 1;
4579 }
4580 
4581 /* Changing allocation mode of RX rings.
4582  * TODO: Update when extending xdp_rxq_info to support allocation modes.
4583  */
4584 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
4585 {
4586 	struct net_device *dev = bp->dev;
4587 
4588 	if (page_mode) {
4589 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
4590 		bp->flags |= BNXT_FLAG_RX_PAGE_MODE;
4591 
4592 		if (bp->xdp_prog->aux->xdp_has_frags)
4593 			dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU);
4594 		else
4595 			dev->max_mtu =
4596 				min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
4597 		if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) {
4598 			bp->flags |= BNXT_FLAG_JUMBO;
4599 			bp->rx_skb_func = bnxt_rx_multi_page_skb;
4600 		} else {
4601 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
4602 			bp->rx_skb_func = bnxt_rx_page_skb;
4603 		}
4604 		bp->rx_dir = DMA_BIDIRECTIONAL;
4605 		/* Disable LRO or GRO_HW */
4606 		netdev_update_features(dev);
4607 	} else {
4608 		dev->max_mtu = bp->max_mtu;
4609 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
4610 		bp->rx_dir = DMA_FROM_DEVICE;
4611 		bp->rx_skb_func = bnxt_rx_skb;
4612 	}
4613 	return 0;
4614 }
4615 
4616 static void bnxt_free_vnic_attributes(struct bnxt *bp)
4617 {
4618 	int i;
4619 	struct bnxt_vnic_info *vnic;
4620 	struct pci_dev *pdev = bp->pdev;
4621 
4622 	if (!bp->vnic_info)
4623 		return;
4624 
4625 	for (i = 0; i < bp->nr_vnics; i++) {
4626 		vnic = &bp->vnic_info[i];
4627 
4628 		kfree(vnic->fw_grp_ids);
4629 		vnic->fw_grp_ids = NULL;
4630 
4631 		kfree(vnic->uc_list);
4632 		vnic->uc_list = NULL;
4633 
4634 		if (vnic->mc_list) {
4635 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
4636 					  vnic->mc_list, vnic->mc_list_mapping);
4637 			vnic->mc_list = NULL;
4638 		}
4639 
4640 		if (vnic->rss_table) {
4641 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
4642 					  vnic->rss_table,
4643 					  vnic->rss_table_dma_addr);
4644 			vnic->rss_table = NULL;
4645 		}
4646 
4647 		vnic->rss_hash_key = NULL;
4648 		vnic->flags = 0;
4649 	}
4650 }
4651 
4652 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
4653 {
4654 	int i, rc = 0, size;
4655 	struct bnxt_vnic_info *vnic;
4656 	struct pci_dev *pdev = bp->pdev;
4657 	int max_rings;
4658 
4659 	for (i = 0; i < bp->nr_vnics; i++) {
4660 		vnic = &bp->vnic_info[i];
4661 
4662 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
4663 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
4664 
4665 			if (mem_size > 0) {
4666 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
4667 				if (!vnic->uc_list) {
4668 					rc = -ENOMEM;
4669 					goto out;
4670 				}
4671 			}
4672 		}
4673 
4674 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
4675 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
4676 			vnic->mc_list =
4677 				dma_alloc_coherent(&pdev->dev,
4678 						   vnic->mc_list_size,
4679 						   &vnic->mc_list_mapping,
4680 						   GFP_KERNEL);
4681 			if (!vnic->mc_list) {
4682 				rc = -ENOMEM;
4683 				goto out;
4684 			}
4685 		}
4686 
4687 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4688 			goto vnic_skip_grps;
4689 
4690 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4691 			max_rings = bp->rx_nr_rings;
4692 		else
4693 			max_rings = 1;
4694 
4695 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
4696 		if (!vnic->fw_grp_ids) {
4697 			rc = -ENOMEM;
4698 			goto out;
4699 		}
4700 vnic_skip_grps:
4701 		if ((bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) &&
4702 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
4703 			continue;
4704 
4705 		/* Allocate rss table and hash key */
4706 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
4707 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4708 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
4709 
4710 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
4711 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
4712 						     vnic->rss_table_size,
4713 						     &vnic->rss_table_dma_addr,
4714 						     GFP_KERNEL);
4715 		if (!vnic->rss_table) {
4716 			rc = -ENOMEM;
4717 			goto out;
4718 		}
4719 
4720 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
4721 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
4722 	}
4723 	return 0;
4724 
4725 out:
4726 	return rc;
4727 }
4728 
4729 static void bnxt_free_hwrm_resources(struct bnxt *bp)
4730 {
4731 	struct bnxt_hwrm_wait_token *token;
4732 
4733 	dma_pool_destroy(bp->hwrm_dma_pool);
4734 	bp->hwrm_dma_pool = NULL;
4735 
4736 	rcu_read_lock();
4737 	hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node)
4738 		WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED);
4739 	rcu_read_unlock();
4740 }
4741 
4742 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
4743 {
4744 	bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev,
4745 					    BNXT_HWRM_DMA_SIZE,
4746 					    BNXT_HWRM_DMA_ALIGN, 0);
4747 	if (!bp->hwrm_dma_pool)
4748 		return -ENOMEM;
4749 
4750 	INIT_HLIST_HEAD(&bp->hwrm_pending_list);
4751 
4752 	return 0;
4753 }
4754 
4755 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
4756 {
4757 	kfree(stats->hw_masks);
4758 	stats->hw_masks = NULL;
4759 	kfree(stats->sw_stats);
4760 	stats->sw_stats = NULL;
4761 	if (stats->hw_stats) {
4762 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
4763 				  stats->hw_stats_map);
4764 		stats->hw_stats = NULL;
4765 	}
4766 }
4767 
4768 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
4769 				bool alloc_masks)
4770 {
4771 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
4772 					     &stats->hw_stats_map, GFP_KERNEL);
4773 	if (!stats->hw_stats)
4774 		return -ENOMEM;
4775 
4776 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
4777 	if (!stats->sw_stats)
4778 		goto stats_mem_err;
4779 
4780 	if (alloc_masks) {
4781 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
4782 		if (!stats->hw_masks)
4783 			goto stats_mem_err;
4784 	}
4785 	return 0;
4786 
4787 stats_mem_err:
4788 	bnxt_free_stats_mem(bp, stats);
4789 	return -ENOMEM;
4790 }
4791 
4792 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
4793 {
4794 	int i;
4795 
4796 	for (i = 0; i < count; i++)
4797 		mask_arr[i] = mask;
4798 }
4799 
4800 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
4801 {
4802 	int i;
4803 
4804 	for (i = 0; i < count; i++)
4805 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
4806 }
4807 
4808 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
4809 				    struct bnxt_stats_mem *stats)
4810 {
4811 	struct hwrm_func_qstats_ext_output *resp;
4812 	struct hwrm_func_qstats_ext_input *req;
4813 	__le64 *hw_masks;
4814 	int rc;
4815 
4816 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
4817 	    !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
4818 		return -EOPNOTSUPP;
4819 
4820 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT);
4821 	if (rc)
4822 		return rc;
4823 
4824 	req->fid = cpu_to_le16(0xffff);
4825 	req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4826 
4827 	resp = hwrm_req_hold(bp, req);
4828 	rc = hwrm_req_send(bp, req);
4829 	if (!rc) {
4830 		hw_masks = &resp->rx_ucast_pkts;
4831 		bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
4832 	}
4833 	hwrm_req_drop(bp, req);
4834 	return rc;
4835 }
4836 
4837 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
4838 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
4839 
4840 static void bnxt_init_stats(struct bnxt *bp)
4841 {
4842 	struct bnxt_napi *bnapi = bp->bnapi[0];
4843 	struct bnxt_cp_ring_info *cpr;
4844 	struct bnxt_stats_mem *stats;
4845 	__le64 *rx_stats, *tx_stats;
4846 	int rc, rx_count, tx_count;
4847 	u64 *rx_masks, *tx_masks;
4848 	u64 mask;
4849 	u8 flags;
4850 
4851 	cpr = &bnapi->cp_ring;
4852 	stats = &cpr->stats;
4853 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
4854 	if (rc) {
4855 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4856 			mask = (1ULL << 48) - 1;
4857 		else
4858 			mask = -1ULL;
4859 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
4860 	}
4861 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
4862 		stats = &bp->port_stats;
4863 		rx_stats = stats->hw_stats;
4864 		rx_masks = stats->hw_masks;
4865 		rx_count = sizeof(struct rx_port_stats) / 8;
4866 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4867 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4868 		tx_count = sizeof(struct tx_port_stats) / 8;
4869 
4870 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
4871 		rc = bnxt_hwrm_port_qstats(bp, flags);
4872 		if (rc) {
4873 			mask = (1ULL << 40) - 1;
4874 
4875 			bnxt_fill_masks(rx_masks, mask, rx_count);
4876 			bnxt_fill_masks(tx_masks, mask, tx_count);
4877 		} else {
4878 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4879 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
4880 			bnxt_hwrm_port_qstats(bp, 0);
4881 		}
4882 	}
4883 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
4884 		stats = &bp->rx_port_stats_ext;
4885 		rx_stats = stats->hw_stats;
4886 		rx_masks = stats->hw_masks;
4887 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
4888 		stats = &bp->tx_port_stats_ext;
4889 		tx_stats = stats->hw_stats;
4890 		tx_masks = stats->hw_masks;
4891 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
4892 
4893 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4894 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
4895 		if (rc) {
4896 			mask = (1ULL << 40) - 1;
4897 
4898 			bnxt_fill_masks(rx_masks, mask, rx_count);
4899 			if (tx_stats)
4900 				bnxt_fill_masks(tx_masks, mask, tx_count);
4901 		} else {
4902 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4903 			if (tx_stats)
4904 				bnxt_copy_hw_masks(tx_masks, tx_stats,
4905 						   tx_count);
4906 			bnxt_hwrm_port_qstats_ext(bp, 0);
4907 		}
4908 	}
4909 }
4910 
4911 static void bnxt_free_port_stats(struct bnxt *bp)
4912 {
4913 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
4914 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
4915 
4916 	bnxt_free_stats_mem(bp, &bp->port_stats);
4917 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
4918 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
4919 }
4920 
4921 static void bnxt_free_ring_stats(struct bnxt *bp)
4922 {
4923 	int i;
4924 
4925 	if (!bp->bnapi)
4926 		return;
4927 
4928 	for (i = 0; i < bp->cp_nr_rings; i++) {
4929 		struct bnxt_napi *bnapi = bp->bnapi[i];
4930 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4931 
4932 		bnxt_free_stats_mem(bp, &cpr->stats);
4933 
4934 		kfree(cpr->sw_stats);
4935 		cpr->sw_stats = NULL;
4936 	}
4937 }
4938 
4939 static int bnxt_alloc_stats(struct bnxt *bp)
4940 {
4941 	u32 size, i;
4942 	int rc;
4943 
4944 	size = bp->hw_ring_stats_size;
4945 
4946 	for (i = 0; i < bp->cp_nr_rings; i++) {
4947 		struct bnxt_napi *bnapi = bp->bnapi[i];
4948 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4949 
4950 		cpr->sw_stats = kzalloc(sizeof(*cpr->sw_stats), GFP_KERNEL);
4951 		if (!cpr->sw_stats)
4952 			return -ENOMEM;
4953 
4954 		cpr->stats.len = size;
4955 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4956 		if (rc)
4957 			return rc;
4958 
4959 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4960 	}
4961 
4962 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4963 		return 0;
4964 
4965 	if (bp->port_stats.hw_stats)
4966 		goto alloc_ext_stats;
4967 
4968 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4969 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4970 	if (rc)
4971 		return rc;
4972 
4973 	bp->flags |= BNXT_FLAG_PORT_STATS;
4974 
4975 alloc_ext_stats:
4976 	/* Display extended statistics only if FW supports it */
4977 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4978 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4979 			return 0;
4980 
4981 	if (bp->rx_port_stats_ext.hw_stats)
4982 		goto alloc_tx_ext_stats;
4983 
4984 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4985 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4986 	/* Extended stats are optional */
4987 	if (rc)
4988 		return 0;
4989 
4990 alloc_tx_ext_stats:
4991 	if (bp->tx_port_stats_ext.hw_stats)
4992 		return 0;
4993 
4994 	if (bp->hwrm_spec_code >= 0x10902 ||
4995 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4996 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4997 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4998 		/* Extended stats are optional */
4999 		if (rc)
5000 			return 0;
5001 	}
5002 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
5003 	return 0;
5004 }
5005 
5006 static void bnxt_clear_ring_indices(struct bnxt *bp)
5007 {
5008 	int i, j;
5009 
5010 	if (!bp->bnapi)
5011 		return;
5012 
5013 	for (i = 0; i < bp->cp_nr_rings; i++) {
5014 		struct bnxt_napi *bnapi = bp->bnapi[i];
5015 		struct bnxt_cp_ring_info *cpr;
5016 		struct bnxt_rx_ring_info *rxr;
5017 		struct bnxt_tx_ring_info *txr;
5018 
5019 		if (!bnapi)
5020 			continue;
5021 
5022 		cpr = &bnapi->cp_ring;
5023 		cpr->cp_raw_cons = 0;
5024 
5025 		bnxt_for_each_napi_tx(j, bnapi, txr) {
5026 			txr->tx_prod = 0;
5027 			txr->tx_cons = 0;
5028 			txr->tx_hw_cons = 0;
5029 		}
5030 
5031 		rxr = bnapi->rx_ring;
5032 		if (rxr) {
5033 			rxr->rx_prod = 0;
5034 			rxr->rx_agg_prod = 0;
5035 			rxr->rx_sw_agg_prod = 0;
5036 			rxr->rx_next_cons = 0;
5037 		}
5038 		bnapi->events = 0;
5039 	}
5040 }
5041 
5042 void bnxt_insert_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr)
5043 {
5044 	u8 type = fltr->type, flags = fltr->flags;
5045 
5046 	INIT_LIST_HEAD(&fltr->list);
5047 	if ((type == BNXT_FLTR_TYPE_L2 && flags & BNXT_ACT_RING_DST) ||
5048 	    (type == BNXT_FLTR_TYPE_NTUPLE && flags & BNXT_ACT_NO_AGING))
5049 		list_add_tail(&fltr->list, &bp->usr_fltr_list);
5050 }
5051 
5052 void bnxt_del_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr)
5053 {
5054 	if (!list_empty(&fltr->list))
5055 		list_del_init(&fltr->list);
5056 }
5057 
5058 void bnxt_clear_usr_fltrs(struct bnxt *bp, bool all)
5059 {
5060 	struct bnxt_filter_base *usr_fltr, *tmp;
5061 
5062 	list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) {
5063 		if (!all && usr_fltr->type == BNXT_FLTR_TYPE_L2)
5064 			continue;
5065 		bnxt_del_one_usr_fltr(bp, usr_fltr);
5066 	}
5067 }
5068 
5069 static void bnxt_del_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr)
5070 {
5071 	hlist_del(&fltr->hash);
5072 	bnxt_del_one_usr_fltr(bp, fltr);
5073 	if (fltr->flags) {
5074 		clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
5075 		bp->ntp_fltr_count--;
5076 	}
5077 	kfree(fltr);
5078 }
5079 
5080 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool all)
5081 {
5082 	int i;
5083 
5084 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
5085 	 * safe to delete the hash table.
5086 	 */
5087 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
5088 		struct hlist_head *head;
5089 		struct hlist_node *tmp;
5090 		struct bnxt_ntuple_filter *fltr;
5091 
5092 		head = &bp->ntp_fltr_hash_tbl[i];
5093 		hlist_for_each_entry_safe(fltr, tmp, head, base.hash) {
5094 			bnxt_del_l2_filter(bp, fltr->l2_fltr);
5095 			if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) ||
5096 				     !list_empty(&fltr->base.list)))
5097 				continue;
5098 			bnxt_del_fltr(bp, &fltr->base);
5099 		}
5100 	}
5101 	if (!all)
5102 		return;
5103 
5104 	bitmap_free(bp->ntp_fltr_bmap);
5105 	bp->ntp_fltr_bmap = NULL;
5106 	bp->ntp_fltr_count = 0;
5107 }
5108 
5109 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
5110 {
5111 	int i, rc = 0;
5112 
5113 	if (!(bp->flags & BNXT_FLAG_RFS) || bp->ntp_fltr_bmap)
5114 		return 0;
5115 
5116 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
5117 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
5118 
5119 	bp->ntp_fltr_count = 0;
5120 	bp->ntp_fltr_bmap = bitmap_zalloc(bp->max_fltr, GFP_KERNEL);
5121 
5122 	if (!bp->ntp_fltr_bmap)
5123 		rc = -ENOMEM;
5124 
5125 	return rc;
5126 }
5127 
5128 static void bnxt_free_l2_filters(struct bnxt *bp, bool all)
5129 {
5130 	int i;
5131 
5132 	for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) {
5133 		struct hlist_head *head;
5134 		struct hlist_node *tmp;
5135 		struct bnxt_l2_filter *fltr;
5136 
5137 		head = &bp->l2_fltr_hash_tbl[i];
5138 		hlist_for_each_entry_safe(fltr, tmp, head, base.hash) {
5139 			if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) ||
5140 				     !list_empty(&fltr->base.list)))
5141 				continue;
5142 			bnxt_del_fltr(bp, &fltr->base);
5143 		}
5144 	}
5145 }
5146 
5147 static void bnxt_init_l2_fltr_tbl(struct bnxt *bp)
5148 {
5149 	int i;
5150 
5151 	for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++)
5152 		INIT_HLIST_HEAD(&bp->l2_fltr_hash_tbl[i]);
5153 	get_random_bytes(&bp->hash_seed, sizeof(bp->hash_seed));
5154 }
5155 
5156 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
5157 {
5158 	bnxt_free_vnic_attributes(bp);
5159 	bnxt_free_tx_rings(bp);
5160 	bnxt_free_rx_rings(bp);
5161 	bnxt_free_cp_rings(bp);
5162 	bnxt_free_all_cp_arrays(bp);
5163 	bnxt_free_ntp_fltrs(bp, false);
5164 	bnxt_free_l2_filters(bp, false);
5165 	if (irq_re_init) {
5166 		bnxt_free_ring_stats(bp);
5167 		if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
5168 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
5169 			bnxt_free_port_stats(bp);
5170 		bnxt_free_ring_grps(bp);
5171 		bnxt_free_vnics(bp);
5172 		kfree(bp->tx_ring_map);
5173 		bp->tx_ring_map = NULL;
5174 		kfree(bp->tx_ring);
5175 		bp->tx_ring = NULL;
5176 		kfree(bp->rx_ring);
5177 		bp->rx_ring = NULL;
5178 		kfree(bp->bnapi);
5179 		bp->bnapi = NULL;
5180 	} else {
5181 		bnxt_clear_ring_indices(bp);
5182 	}
5183 }
5184 
5185 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
5186 {
5187 	int i, j, rc, size, arr_size;
5188 	void *bnapi;
5189 
5190 	if (irq_re_init) {
5191 		/* Allocate bnapi mem pointer array and mem block for
5192 		 * all queues
5193 		 */
5194 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
5195 				bp->cp_nr_rings);
5196 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
5197 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
5198 		if (!bnapi)
5199 			return -ENOMEM;
5200 
5201 		bp->bnapi = bnapi;
5202 		bnapi += arr_size;
5203 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
5204 			bp->bnapi[i] = bnapi;
5205 			bp->bnapi[i]->index = i;
5206 			bp->bnapi[i]->bp = bp;
5207 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
5208 				struct bnxt_cp_ring_info *cpr =
5209 					&bp->bnapi[i]->cp_ring;
5210 
5211 				cpr->cp_ring_struct.ring_mem.flags =
5212 					BNXT_RMEM_RING_PTE_FLAG;
5213 			}
5214 		}
5215 
5216 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
5217 				      sizeof(struct bnxt_rx_ring_info),
5218 				      GFP_KERNEL);
5219 		if (!bp->rx_ring)
5220 			return -ENOMEM;
5221 
5222 		for (i = 0; i < bp->rx_nr_rings; i++) {
5223 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5224 
5225 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
5226 				rxr->rx_ring_struct.ring_mem.flags =
5227 					BNXT_RMEM_RING_PTE_FLAG;
5228 				rxr->rx_agg_ring_struct.ring_mem.flags =
5229 					BNXT_RMEM_RING_PTE_FLAG;
5230 			} else {
5231 				rxr->rx_cpr =  &bp->bnapi[i]->cp_ring;
5232 			}
5233 			rxr->bnapi = bp->bnapi[i];
5234 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
5235 		}
5236 
5237 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
5238 				      sizeof(struct bnxt_tx_ring_info),
5239 				      GFP_KERNEL);
5240 		if (!bp->tx_ring)
5241 			return -ENOMEM;
5242 
5243 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
5244 					  GFP_KERNEL);
5245 
5246 		if (!bp->tx_ring_map)
5247 			return -ENOMEM;
5248 
5249 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5250 			j = 0;
5251 		else
5252 			j = bp->rx_nr_rings;
5253 
5254 		for (i = 0; i < bp->tx_nr_rings; i++) {
5255 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5256 			struct bnxt_napi *bnapi2;
5257 
5258 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
5259 				txr->tx_ring_struct.ring_mem.flags =
5260 					BNXT_RMEM_RING_PTE_FLAG;
5261 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
5262 			if (i >= bp->tx_nr_rings_xdp) {
5263 				int k = j + BNXT_RING_TO_TC_OFF(bp, i);
5264 
5265 				bnapi2 = bp->bnapi[k];
5266 				txr->txq_index = i - bp->tx_nr_rings_xdp;
5267 				txr->tx_napi_idx =
5268 					BNXT_RING_TO_TC(bp, txr->txq_index);
5269 				bnapi2->tx_ring[txr->tx_napi_idx] = txr;
5270 				bnapi2->tx_int = bnxt_tx_int;
5271 			} else {
5272 				bnapi2 = bp->bnapi[j];
5273 				bnapi2->flags |= BNXT_NAPI_FLAG_XDP;
5274 				bnapi2->tx_ring[0] = txr;
5275 				bnapi2->tx_int = bnxt_tx_int_xdp;
5276 				j++;
5277 			}
5278 			txr->bnapi = bnapi2;
5279 			if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
5280 				txr->tx_cpr = &bnapi2->cp_ring;
5281 		}
5282 
5283 		rc = bnxt_alloc_stats(bp);
5284 		if (rc)
5285 			goto alloc_mem_err;
5286 		bnxt_init_stats(bp);
5287 
5288 		rc = bnxt_alloc_ntp_fltrs(bp);
5289 		if (rc)
5290 			goto alloc_mem_err;
5291 
5292 		rc = bnxt_alloc_vnics(bp);
5293 		if (rc)
5294 			goto alloc_mem_err;
5295 	}
5296 
5297 	rc = bnxt_alloc_all_cp_arrays(bp);
5298 	if (rc)
5299 		goto alloc_mem_err;
5300 
5301 	bnxt_init_ring_struct(bp);
5302 
5303 	rc = bnxt_alloc_rx_rings(bp);
5304 	if (rc)
5305 		goto alloc_mem_err;
5306 
5307 	rc = bnxt_alloc_tx_rings(bp);
5308 	if (rc)
5309 		goto alloc_mem_err;
5310 
5311 	rc = bnxt_alloc_cp_rings(bp);
5312 	if (rc)
5313 		goto alloc_mem_err;
5314 
5315 	bp->vnic_info[BNXT_VNIC_DEFAULT].flags |= BNXT_VNIC_RSS_FLAG |
5316 						  BNXT_VNIC_MCAST_FLAG |
5317 						  BNXT_VNIC_UCAST_FLAG;
5318 	if (BNXT_SUPPORTS_NTUPLE_VNIC(bp) && (bp->flags & BNXT_FLAG_RFS))
5319 		bp->vnic_info[BNXT_VNIC_NTUPLE].flags |=
5320 			BNXT_VNIC_RSS_FLAG | BNXT_VNIC_NTUPLE_FLAG;
5321 
5322 	rc = bnxt_alloc_vnic_attributes(bp);
5323 	if (rc)
5324 		goto alloc_mem_err;
5325 	return 0;
5326 
5327 alloc_mem_err:
5328 	bnxt_free_mem(bp, true);
5329 	return rc;
5330 }
5331 
5332 static void bnxt_disable_int(struct bnxt *bp)
5333 {
5334 	int i;
5335 
5336 	if (!bp->bnapi)
5337 		return;
5338 
5339 	for (i = 0; i < bp->cp_nr_rings; i++) {
5340 		struct bnxt_napi *bnapi = bp->bnapi[i];
5341 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5342 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5343 
5344 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
5345 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5346 	}
5347 }
5348 
5349 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
5350 {
5351 	struct bnxt_napi *bnapi = bp->bnapi[n];
5352 	struct bnxt_cp_ring_info *cpr;
5353 
5354 	cpr = &bnapi->cp_ring;
5355 	return cpr->cp_ring_struct.map_idx;
5356 }
5357 
5358 static void bnxt_disable_int_sync(struct bnxt *bp)
5359 {
5360 	int i;
5361 
5362 	if (!bp->irq_tbl)
5363 		return;
5364 
5365 	atomic_inc(&bp->intr_sem);
5366 
5367 	bnxt_disable_int(bp);
5368 	for (i = 0; i < bp->cp_nr_rings; i++) {
5369 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
5370 
5371 		synchronize_irq(bp->irq_tbl[map_idx].vector);
5372 	}
5373 }
5374 
5375 static void bnxt_enable_int(struct bnxt *bp)
5376 {
5377 	int i;
5378 
5379 	atomic_set(&bp->intr_sem, 0);
5380 	for (i = 0; i < bp->cp_nr_rings; i++) {
5381 		struct bnxt_napi *bnapi = bp->bnapi[i];
5382 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5383 
5384 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
5385 	}
5386 }
5387 
5388 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
5389 			    bool async_only)
5390 {
5391 	DECLARE_BITMAP(async_events_bmap, 256);
5392 	u32 *events = (u32 *)async_events_bmap;
5393 	struct hwrm_func_drv_rgtr_output *resp;
5394 	struct hwrm_func_drv_rgtr_input *req;
5395 	u32 flags;
5396 	int rc, i;
5397 
5398 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR);
5399 	if (rc)
5400 		return rc;
5401 
5402 	req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
5403 				   FUNC_DRV_RGTR_REQ_ENABLES_VER |
5404 				   FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
5405 
5406 	req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
5407 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
5408 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
5409 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
5410 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
5411 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
5412 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
5413 	req->flags = cpu_to_le32(flags);
5414 	req->ver_maj_8b = DRV_VER_MAJ;
5415 	req->ver_min_8b = DRV_VER_MIN;
5416 	req->ver_upd_8b = DRV_VER_UPD;
5417 	req->ver_maj = cpu_to_le16(DRV_VER_MAJ);
5418 	req->ver_min = cpu_to_le16(DRV_VER_MIN);
5419 	req->ver_upd = cpu_to_le16(DRV_VER_UPD);
5420 
5421 	if (BNXT_PF(bp)) {
5422 		u32 data[8];
5423 		int i;
5424 
5425 		memset(data, 0, sizeof(data));
5426 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
5427 			u16 cmd = bnxt_vf_req_snif[i];
5428 			unsigned int bit, idx;
5429 
5430 			idx = cmd / 32;
5431 			bit = cmd % 32;
5432 			data[idx] |= 1 << bit;
5433 		}
5434 
5435 		for (i = 0; i < 8; i++)
5436 			req->vf_req_fwd[i] = cpu_to_le32(data[i]);
5437 
5438 		req->enables |=
5439 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
5440 	}
5441 
5442 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
5443 		req->flags |= cpu_to_le32(
5444 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
5445 
5446 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
5447 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
5448 		u16 event_id = bnxt_async_events_arr[i];
5449 
5450 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
5451 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
5452 			continue;
5453 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE &&
5454 		    !bp->ptp_cfg)
5455 			continue;
5456 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
5457 	}
5458 	if (bmap && bmap_size) {
5459 		for (i = 0; i < bmap_size; i++) {
5460 			if (test_bit(i, bmap))
5461 				__set_bit(i, async_events_bmap);
5462 		}
5463 	}
5464 	for (i = 0; i < 8; i++)
5465 		req->async_event_fwd[i] |= cpu_to_le32(events[i]);
5466 
5467 	if (async_only)
5468 		req->enables =
5469 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
5470 
5471 	resp = hwrm_req_hold(bp, req);
5472 	rc = hwrm_req_send(bp, req);
5473 	if (!rc) {
5474 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
5475 		if (resp->flags &
5476 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
5477 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
5478 	}
5479 	hwrm_req_drop(bp, req);
5480 	return rc;
5481 }
5482 
5483 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
5484 {
5485 	struct hwrm_func_drv_unrgtr_input *req;
5486 	int rc;
5487 
5488 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
5489 		return 0;
5490 
5491 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR);
5492 	if (rc)
5493 		return rc;
5494 	return hwrm_req_send(bp, req);
5495 }
5496 
5497 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa);
5498 
5499 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
5500 {
5501 	struct hwrm_tunnel_dst_port_free_input *req;
5502 	int rc;
5503 
5504 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN &&
5505 	    bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID)
5506 		return 0;
5507 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE &&
5508 	    bp->nge_fw_dst_port_id == INVALID_HW_RING_ID)
5509 		return 0;
5510 
5511 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE);
5512 	if (rc)
5513 		return rc;
5514 
5515 	req->tunnel_type = tunnel_type;
5516 
5517 	switch (tunnel_type) {
5518 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
5519 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
5520 		bp->vxlan_port = 0;
5521 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
5522 		break;
5523 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
5524 		req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
5525 		bp->nge_port = 0;
5526 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
5527 		break;
5528 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE:
5529 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_gpe_fw_dst_port_id);
5530 		bp->vxlan_gpe_port = 0;
5531 		bp->vxlan_gpe_fw_dst_port_id = INVALID_HW_RING_ID;
5532 		break;
5533 	default:
5534 		break;
5535 	}
5536 
5537 	rc = hwrm_req_send(bp, req);
5538 	if (rc)
5539 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
5540 			   rc);
5541 	if (bp->flags & BNXT_FLAG_TPA)
5542 		bnxt_set_tpa(bp, true);
5543 	return rc;
5544 }
5545 
5546 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
5547 					   u8 tunnel_type)
5548 {
5549 	struct hwrm_tunnel_dst_port_alloc_output *resp;
5550 	struct hwrm_tunnel_dst_port_alloc_input *req;
5551 	int rc;
5552 
5553 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC);
5554 	if (rc)
5555 		return rc;
5556 
5557 	req->tunnel_type = tunnel_type;
5558 	req->tunnel_dst_port_val = port;
5559 
5560 	resp = hwrm_req_hold(bp, req);
5561 	rc = hwrm_req_send(bp, req);
5562 	if (rc) {
5563 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
5564 			   rc);
5565 		goto err_out;
5566 	}
5567 
5568 	switch (tunnel_type) {
5569 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
5570 		bp->vxlan_port = port;
5571 		bp->vxlan_fw_dst_port_id =
5572 			le16_to_cpu(resp->tunnel_dst_port_id);
5573 		break;
5574 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
5575 		bp->nge_port = port;
5576 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
5577 		break;
5578 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE:
5579 		bp->vxlan_gpe_port = port;
5580 		bp->vxlan_gpe_fw_dst_port_id =
5581 			le16_to_cpu(resp->tunnel_dst_port_id);
5582 		break;
5583 	default:
5584 		break;
5585 	}
5586 	if (bp->flags & BNXT_FLAG_TPA)
5587 		bnxt_set_tpa(bp, true);
5588 
5589 err_out:
5590 	hwrm_req_drop(bp, req);
5591 	return rc;
5592 }
5593 
5594 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
5595 {
5596 	struct hwrm_cfa_l2_set_rx_mask_input *req;
5597 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5598 	int rc;
5599 
5600 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK);
5601 	if (rc)
5602 		return rc;
5603 
5604 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5605 	if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) {
5606 		req->num_mc_entries = cpu_to_le32(vnic->mc_list_count);
5607 		req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
5608 	}
5609 	req->mask = cpu_to_le32(vnic->rx_mask);
5610 	return hwrm_req_send_silent(bp, req);
5611 }
5612 
5613 void bnxt_del_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr)
5614 {
5615 	if (!atomic_dec_and_test(&fltr->refcnt))
5616 		return;
5617 	spin_lock_bh(&bp->ntp_fltr_lock);
5618 	if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) {
5619 		spin_unlock_bh(&bp->ntp_fltr_lock);
5620 		return;
5621 	}
5622 	hlist_del_rcu(&fltr->base.hash);
5623 	bnxt_del_one_usr_fltr(bp, &fltr->base);
5624 	if (fltr->base.flags) {
5625 		clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap);
5626 		bp->ntp_fltr_count--;
5627 	}
5628 	spin_unlock_bh(&bp->ntp_fltr_lock);
5629 	kfree_rcu(fltr, base.rcu);
5630 }
5631 
5632 static struct bnxt_l2_filter *__bnxt_lookup_l2_filter(struct bnxt *bp,
5633 						      struct bnxt_l2_key *key,
5634 						      u32 idx)
5635 {
5636 	struct hlist_head *head = &bp->l2_fltr_hash_tbl[idx];
5637 	struct bnxt_l2_filter *fltr;
5638 
5639 	hlist_for_each_entry_rcu(fltr, head, base.hash) {
5640 		struct bnxt_l2_key *l2_key = &fltr->l2_key;
5641 
5642 		if (ether_addr_equal(l2_key->dst_mac_addr, key->dst_mac_addr) &&
5643 		    l2_key->vlan == key->vlan)
5644 			return fltr;
5645 	}
5646 	return NULL;
5647 }
5648 
5649 static struct bnxt_l2_filter *bnxt_lookup_l2_filter(struct bnxt *bp,
5650 						    struct bnxt_l2_key *key,
5651 						    u32 idx)
5652 {
5653 	struct bnxt_l2_filter *fltr = NULL;
5654 
5655 	rcu_read_lock();
5656 	fltr = __bnxt_lookup_l2_filter(bp, key, idx);
5657 	if (fltr)
5658 		atomic_inc(&fltr->refcnt);
5659 	rcu_read_unlock();
5660 	return fltr;
5661 }
5662 
5663 #define BNXT_IPV4_4TUPLE(bp, fkeys)					\
5664 	(((fkeys)->basic.ip_proto == IPPROTO_TCP &&			\
5665 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4) ||	\
5666 	 ((fkeys)->basic.ip_proto == IPPROTO_UDP &&			\
5667 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4))
5668 
5669 #define BNXT_IPV6_4TUPLE(bp, fkeys)					\
5670 	(((fkeys)->basic.ip_proto == IPPROTO_TCP &&			\
5671 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6) ||	\
5672 	 ((fkeys)->basic.ip_proto == IPPROTO_UDP &&			\
5673 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6))
5674 
5675 static u32 bnxt_get_rss_flow_tuple_len(struct bnxt *bp, struct flow_keys *fkeys)
5676 {
5677 	if (fkeys->basic.n_proto == htons(ETH_P_IP)) {
5678 		if (BNXT_IPV4_4TUPLE(bp, fkeys))
5679 			return sizeof(fkeys->addrs.v4addrs) +
5680 			       sizeof(fkeys->ports);
5681 
5682 		if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4)
5683 			return sizeof(fkeys->addrs.v4addrs);
5684 	}
5685 
5686 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) {
5687 		if (BNXT_IPV6_4TUPLE(bp, fkeys))
5688 			return sizeof(fkeys->addrs.v6addrs) +
5689 			       sizeof(fkeys->ports);
5690 
5691 		if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6)
5692 			return sizeof(fkeys->addrs.v6addrs);
5693 	}
5694 
5695 	return 0;
5696 }
5697 
5698 static u32 bnxt_toeplitz(struct bnxt *bp, struct flow_keys *fkeys,
5699 			 const unsigned char *key)
5700 {
5701 	u64 prefix = bp->toeplitz_prefix, hash = 0;
5702 	struct bnxt_ipv4_tuple tuple4;
5703 	struct bnxt_ipv6_tuple tuple6;
5704 	int i, j, len = 0;
5705 	u8 *four_tuple;
5706 
5707 	len = bnxt_get_rss_flow_tuple_len(bp, fkeys);
5708 	if (!len)
5709 		return 0;
5710 
5711 	if (fkeys->basic.n_proto == htons(ETH_P_IP)) {
5712 		tuple4.v4addrs = fkeys->addrs.v4addrs;
5713 		tuple4.ports = fkeys->ports;
5714 		four_tuple = (unsigned char *)&tuple4;
5715 	} else {
5716 		tuple6.v6addrs = fkeys->addrs.v6addrs;
5717 		tuple6.ports = fkeys->ports;
5718 		four_tuple = (unsigned char *)&tuple6;
5719 	}
5720 
5721 	for (i = 0, j = 8; i < len; i++, j++) {
5722 		u8 byte = four_tuple[i];
5723 		int bit;
5724 
5725 		for (bit = 0; bit < 8; bit++, prefix <<= 1, byte <<= 1) {
5726 			if (byte & 0x80)
5727 				hash ^= prefix;
5728 		}
5729 		prefix |= (j < HW_HASH_KEY_SIZE) ? key[j] : 0;
5730 	}
5731 
5732 	/* The valid part of the hash is in the upper 32 bits. */
5733 	return (hash >> 32) & BNXT_NTP_FLTR_HASH_MASK;
5734 }
5735 
5736 #ifdef CONFIG_RFS_ACCEL
5737 static struct bnxt_l2_filter *
5738 bnxt_lookup_l2_filter_from_key(struct bnxt *bp, struct bnxt_l2_key *key)
5739 {
5740 	struct bnxt_l2_filter *fltr;
5741 	u32 idx;
5742 
5743 	idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) &
5744 	      BNXT_L2_FLTR_HASH_MASK;
5745 	fltr = bnxt_lookup_l2_filter(bp, key, idx);
5746 	return fltr;
5747 }
5748 #endif
5749 
5750 static int bnxt_init_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr,
5751 			       struct bnxt_l2_key *key, u32 idx)
5752 {
5753 	struct hlist_head *head;
5754 
5755 	ether_addr_copy(fltr->l2_key.dst_mac_addr, key->dst_mac_addr);
5756 	fltr->l2_key.vlan = key->vlan;
5757 	fltr->base.type = BNXT_FLTR_TYPE_L2;
5758 	if (fltr->base.flags) {
5759 		int bit_id;
5760 
5761 		bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
5762 						 bp->max_fltr, 0);
5763 		if (bit_id < 0)
5764 			return -ENOMEM;
5765 		fltr->base.sw_id = (u16)bit_id;
5766 		bp->ntp_fltr_count++;
5767 	}
5768 	head = &bp->l2_fltr_hash_tbl[idx];
5769 	hlist_add_head_rcu(&fltr->base.hash, head);
5770 	bnxt_insert_usr_fltr(bp, &fltr->base);
5771 	set_bit(BNXT_FLTR_INSERTED, &fltr->base.state);
5772 	atomic_set(&fltr->refcnt, 1);
5773 	return 0;
5774 }
5775 
5776 static struct bnxt_l2_filter *bnxt_alloc_l2_filter(struct bnxt *bp,
5777 						   struct bnxt_l2_key *key,
5778 						   gfp_t gfp)
5779 {
5780 	struct bnxt_l2_filter *fltr;
5781 	u32 idx;
5782 	int rc;
5783 
5784 	idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) &
5785 	      BNXT_L2_FLTR_HASH_MASK;
5786 	fltr = bnxt_lookup_l2_filter(bp, key, idx);
5787 	if (fltr)
5788 		return fltr;
5789 
5790 	fltr = kzalloc(sizeof(*fltr), gfp);
5791 	if (!fltr)
5792 		return ERR_PTR(-ENOMEM);
5793 	spin_lock_bh(&bp->ntp_fltr_lock);
5794 	rc = bnxt_init_l2_filter(bp, fltr, key, idx);
5795 	spin_unlock_bh(&bp->ntp_fltr_lock);
5796 	if (rc) {
5797 		bnxt_del_l2_filter(bp, fltr);
5798 		fltr = ERR_PTR(rc);
5799 	}
5800 	return fltr;
5801 }
5802 
5803 struct bnxt_l2_filter *bnxt_alloc_new_l2_filter(struct bnxt *bp,
5804 						struct bnxt_l2_key *key,
5805 						u16 flags)
5806 {
5807 	struct bnxt_l2_filter *fltr;
5808 	u32 idx;
5809 	int rc;
5810 
5811 	idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) &
5812 	      BNXT_L2_FLTR_HASH_MASK;
5813 	spin_lock_bh(&bp->ntp_fltr_lock);
5814 	fltr = __bnxt_lookup_l2_filter(bp, key, idx);
5815 	if (fltr) {
5816 		fltr = ERR_PTR(-EEXIST);
5817 		goto l2_filter_exit;
5818 	}
5819 	fltr = kzalloc(sizeof(*fltr), GFP_ATOMIC);
5820 	if (!fltr) {
5821 		fltr = ERR_PTR(-ENOMEM);
5822 		goto l2_filter_exit;
5823 	}
5824 	fltr->base.flags = flags;
5825 	rc = bnxt_init_l2_filter(bp, fltr, key, idx);
5826 	if (rc) {
5827 		spin_unlock_bh(&bp->ntp_fltr_lock);
5828 		bnxt_del_l2_filter(bp, fltr);
5829 		return ERR_PTR(rc);
5830 	}
5831 
5832 l2_filter_exit:
5833 	spin_unlock_bh(&bp->ntp_fltr_lock);
5834 	return fltr;
5835 }
5836 
5837 static u16 bnxt_vf_target_id(struct bnxt_pf_info *pf, u16 vf_idx)
5838 {
5839 #ifdef CONFIG_BNXT_SRIOV
5840 	struct bnxt_vf_info *vf = &pf->vf[vf_idx];
5841 
5842 	return vf->fw_fid;
5843 #else
5844 	return INVALID_HW_RING_ID;
5845 #endif
5846 }
5847 
5848 int bnxt_hwrm_l2_filter_free(struct bnxt *bp, struct bnxt_l2_filter *fltr)
5849 {
5850 	struct hwrm_cfa_l2_filter_free_input *req;
5851 	u16 target_id = 0xffff;
5852 	int rc;
5853 
5854 	if (fltr->base.flags & BNXT_ACT_FUNC_DST) {
5855 		struct bnxt_pf_info *pf = &bp->pf;
5856 
5857 		if (fltr->base.vf_idx >= pf->active_vfs)
5858 			return -EINVAL;
5859 
5860 		target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx);
5861 		if (target_id == INVALID_HW_RING_ID)
5862 			return -EINVAL;
5863 	}
5864 
5865 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
5866 	if (rc)
5867 		return rc;
5868 
5869 	req->target_id = cpu_to_le16(target_id);
5870 	req->l2_filter_id = fltr->base.filter_id;
5871 	return hwrm_req_send(bp, req);
5872 }
5873 
5874 int bnxt_hwrm_l2_filter_alloc(struct bnxt *bp, struct bnxt_l2_filter *fltr)
5875 {
5876 	struct hwrm_cfa_l2_filter_alloc_output *resp;
5877 	struct hwrm_cfa_l2_filter_alloc_input *req;
5878 	u16 target_id = 0xffff;
5879 	int rc;
5880 
5881 	if (fltr->base.flags & BNXT_ACT_FUNC_DST) {
5882 		struct bnxt_pf_info *pf = &bp->pf;
5883 
5884 		if (fltr->base.vf_idx >= pf->active_vfs)
5885 			return -EINVAL;
5886 
5887 		target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx);
5888 	}
5889 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC);
5890 	if (rc)
5891 		return rc;
5892 
5893 	req->target_id = cpu_to_le16(target_id);
5894 	req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
5895 
5896 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
5897 		req->flags |=
5898 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
5899 	req->dst_id = cpu_to_le16(fltr->base.fw_vnic_id);
5900 	req->enables =
5901 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
5902 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
5903 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
5904 	ether_addr_copy(req->l2_addr, fltr->l2_key.dst_mac_addr);
5905 	eth_broadcast_addr(req->l2_addr_mask);
5906 
5907 	if (fltr->l2_key.vlan) {
5908 		req->enables |=
5909 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN |
5910 				CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN_MASK |
5911 				CFA_L2_FILTER_ALLOC_REQ_ENABLES_NUM_VLANS);
5912 		req->num_vlans = 1;
5913 		req->l2_ivlan = cpu_to_le16(fltr->l2_key.vlan);
5914 		req->l2_ivlan_mask = cpu_to_le16(0xfff);
5915 	}
5916 
5917 	resp = hwrm_req_hold(bp, req);
5918 	rc = hwrm_req_send(bp, req);
5919 	if (!rc) {
5920 		fltr->base.filter_id = resp->l2_filter_id;
5921 		set_bit(BNXT_FLTR_VALID, &fltr->base.state);
5922 	}
5923 	hwrm_req_drop(bp, req);
5924 	return rc;
5925 }
5926 
5927 int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
5928 				     struct bnxt_ntuple_filter *fltr)
5929 {
5930 	struct hwrm_cfa_ntuple_filter_free_input *req;
5931 	int rc;
5932 
5933 	set_bit(BNXT_FLTR_FW_DELETED, &fltr->base.state);
5934 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE);
5935 	if (rc)
5936 		return rc;
5937 
5938 	req->ntuple_filter_id = fltr->base.filter_id;
5939 	return hwrm_req_send(bp, req);
5940 }
5941 
5942 #define BNXT_NTP_FLTR_FLAGS					\
5943 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
5944 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
5945 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
5946 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
5947 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
5948 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
5949 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
5950 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
5951 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
5952 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
5953 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
5954 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
5955 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
5956 
5957 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
5958 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
5959 
5960 void bnxt_fill_ipv6_mask(__be32 mask[4])
5961 {
5962 	int i;
5963 
5964 	for (i = 0; i < 4; i++)
5965 		mask[i] = cpu_to_be32(~0);
5966 }
5967 
5968 static void
5969 bnxt_cfg_rfs_ring_tbl_idx(struct bnxt *bp,
5970 			  struct hwrm_cfa_ntuple_filter_alloc_input *req,
5971 			  struct bnxt_ntuple_filter *fltr)
5972 {
5973 	struct bnxt_rss_ctx *rss_ctx, *tmp;
5974 	u16 rxq = fltr->base.rxq;
5975 
5976 	if (fltr->base.flags & BNXT_ACT_RSS_CTX) {
5977 		list_for_each_entry_safe(rss_ctx, tmp, &bp->rss_ctx_list, list) {
5978 			if (rss_ctx->index == fltr->base.fw_vnic_id) {
5979 				struct bnxt_vnic_info *vnic = &rss_ctx->vnic;
5980 
5981 				req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
5982 				break;
5983 			}
5984 		}
5985 		return;
5986 	}
5987 	if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) {
5988 		struct bnxt_vnic_info *vnic;
5989 		u32 enables;
5990 
5991 		vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE];
5992 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
5993 		enables = CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_RFS_RING_TBL_IDX;
5994 		req->enables |= cpu_to_le32(enables);
5995 		req->rfs_ring_tbl_idx = cpu_to_le16(rxq);
5996 	} else {
5997 		u32 flags;
5998 
5999 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
6000 		req->flags |= cpu_to_le32(flags);
6001 		req->dst_id = cpu_to_le16(rxq);
6002 	}
6003 }
6004 
6005 int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
6006 				      struct bnxt_ntuple_filter *fltr)
6007 {
6008 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
6009 	struct hwrm_cfa_ntuple_filter_alloc_input *req;
6010 	struct bnxt_flow_masks *masks = &fltr->fmasks;
6011 	struct flow_keys *keys = &fltr->fkeys;
6012 	struct bnxt_l2_filter *l2_fltr;
6013 	struct bnxt_vnic_info *vnic;
6014 	int rc;
6015 
6016 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC);
6017 	if (rc)
6018 		return rc;
6019 
6020 	l2_fltr = fltr->l2_fltr;
6021 	req->l2_filter_id = l2_fltr->base.filter_id;
6022 
6023 	if (fltr->base.flags & BNXT_ACT_DROP) {
6024 		req->flags =
6025 			cpu_to_le32(CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DROP);
6026 	} else if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
6027 		bnxt_cfg_rfs_ring_tbl_idx(bp, req, fltr);
6028 	} else {
6029 		vnic = &bp->vnic_info[fltr->base.rxq + 1];
6030 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
6031 	}
6032 	req->enables |= cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
6033 
6034 	req->ethertype = htons(ETH_P_IP);
6035 	req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
6036 	req->ip_protocol = keys->basic.ip_proto;
6037 
6038 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
6039 		req->ethertype = htons(ETH_P_IPV6);
6040 		req->ip_addr_type =
6041 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
6042 		*(struct in6_addr *)&req->src_ipaddr[0] = keys->addrs.v6addrs.src;
6043 		*(struct in6_addr *)&req->src_ipaddr_mask[0] = masks->addrs.v6addrs.src;
6044 		*(struct in6_addr *)&req->dst_ipaddr[0] = keys->addrs.v6addrs.dst;
6045 		*(struct in6_addr *)&req->dst_ipaddr_mask[0] = masks->addrs.v6addrs.dst;
6046 	} else {
6047 		req->src_ipaddr[0] = keys->addrs.v4addrs.src;
6048 		req->src_ipaddr_mask[0] = masks->addrs.v4addrs.src;
6049 		req->dst_ipaddr[0] = keys->addrs.v4addrs.dst;
6050 		req->dst_ipaddr_mask[0] = masks->addrs.v4addrs.dst;
6051 	}
6052 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
6053 		req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
6054 		req->tunnel_type =
6055 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
6056 	}
6057 
6058 	req->src_port = keys->ports.src;
6059 	req->src_port_mask = masks->ports.src;
6060 	req->dst_port = keys->ports.dst;
6061 	req->dst_port_mask = masks->ports.dst;
6062 
6063 	resp = hwrm_req_hold(bp, req);
6064 	rc = hwrm_req_send(bp, req);
6065 	if (!rc)
6066 		fltr->base.filter_id = resp->ntuple_filter_id;
6067 	hwrm_req_drop(bp, req);
6068 	return rc;
6069 }
6070 
6071 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
6072 				     const u8 *mac_addr)
6073 {
6074 	struct bnxt_l2_filter *fltr;
6075 	struct bnxt_l2_key key;
6076 	int rc;
6077 
6078 	ether_addr_copy(key.dst_mac_addr, mac_addr);
6079 	key.vlan = 0;
6080 	fltr = bnxt_alloc_l2_filter(bp, &key, GFP_KERNEL);
6081 	if (IS_ERR(fltr))
6082 		return PTR_ERR(fltr);
6083 
6084 	fltr->base.fw_vnic_id = bp->vnic_info[vnic_id].fw_vnic_id;
6085 	rc = bnxt_hwrm_l2_filter_alloc(bp, fltr);
6086 	if (rc)
6087 		bnxt_del_l2_filter(bp, fltr);
6088 	else
6089 		bp->vnic_info[vnic_id].l2_filters[idx] = fltr;
6090 	return rc;
6091 }
6092 
6093 static void bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
6094 {
6095 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
6096 
6097 	/* Any associated ntuple filters will also be cleared by firmware. */
6098 	for (i = 0; i < num_of_vnics; i++) {
6099 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
6100 
6101 		for (j = 0; j < vnic->uc_filter_count; j++) {
6102 			struct bnxt_l2_filter *fltr = vnic->l2_filters[j];
6103 
6104 			bnxt_hwrm_l2_filter_free(bp, fltr);
6105 			bnxt_del_l2_filter(bp, fltr);
6106 		}
6107 		vnic->uc_filter_count = 0;
6108 	}
6109 }
6110 
6111 #define BNXT_DFLT_TUNL_TPA_BMAP				\
6112 	(VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GRE |	\
6113 	 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV4 |	\
6114 	 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV6)
6115 
6116 static void bnxt_hwrm_vnic_update_tunl_tpa(struct bnxt *bp,
6117 					   struct hwrm_vnic_tpa_cfg_input *req)
6118 {
6119 	u32 tunl_tpa_bmap = BNXT_DFLT_TUNL_TPA_BMAP;
6120 
6121 	if (!(bp->fw_cap & BNXT_FW_CAP_VNIC_TUNNEL_TPA))
6122 		return;
6123 
6124 	if (bp->vxlan_port)
6125 		tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN;
6126 	if (bp->vxlan_gpe_port)
6127 		tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN_GPE;
6128 	if (bp->nge_port)
6129 		tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GENEVE;
6130 
6131 	req->enables |= cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_TNL_TPA_EN);
6132 	req->tnl_tpa_en_bitmap = cpu_to_le32(tunl_tpa_bmap);
6133 }
6134 
6135 int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, struct bnxt_vnic_info *vnic,
6136 			   u32 tpa_flags)
6137 {
6138 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
6139 	struct hwrm_vnic_tpa_cfg_input *req;
6140 	int rc;
6141 
6142 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
6143 		return 0;
6144 
6145 	rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG);
6146 	if (rc)
6147 		return rc;
6148 
6149 	if (tpa_flags) {
6150 		u16 mss = bp->dev->mtu - 40;
6151 		u32 nsegs, n, segs = 0, flags;
6152 
6153 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
6154 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
6155 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
6156 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
6157 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
6158 		if (tpa_flags & BNXT_FLAG_GRO)
6159 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
6160 
6161 		req->flags = cpu_to_le32(flags);
6162 
6163 		req->enables =
6164 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
6165 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
6166 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
6167 
6168 		/* Number of segs are log2 units, and first packet is not
6169 		 * included as part of this units.
6170 		 */
6171 		if (mss <= BNXT_RX_PAGE_SIZE) {
6172 			n = BNXT_RX_PAGE_SIZE / mss;
6173 			nsegs = (MAX_SKB_FRAGS - 1) * n;
6174 		} else {
6175 			n = mss / BNXT_RX_PAGE_SIZE;
6176 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
6177 				n++;
6178 			nsegs = (MAX_SKB_FRAGS - n) / n;
6179 		}
6180 
6181 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6182 			segs = MAX_TPA_SEGS_P5;
6183 			max_aggs = bp->max_tpa;
6184 		} else {
6185 			segs = ilog2(nsegs);
6186 		}
6187 		req->max_agg_segs = cpu_to_le16(segs);
6188 		req->max_aggs = cpu_to_le16(max_aggs);
6189 
6190 		req->min_agg_len = cpu_to_le32(512);
6191 		bnxt_hwrm_vnic_update_tunl_tpa(bp, req);
6192 	}
6193 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6194 
6195 	return hwrm_req_send(bp, req);
6196 }
6197 
6198 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
6199 {
6200 	struct bnxt_ring_grp_info *grp_info;
6201 
6202 	grp_info = &bp->grp_info[ring->grp_idx];
6203 	return grp_info->cp_fw_ring_id;
6204 }
6205 
6206 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
6207 {
6208 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6209 		return rxr->rx_cpr->cp_ring_struct.fw_ring_id;
6210 	else
6211 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
6212 }
6213 
6214 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
6215 {
6216 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6217 		return txr->tx_cpr->cp_ring_struct.fw_ring_id;
6218 	else
6219 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
6220 }
6221 
6222 int bnxt_alloc_rss_indir_tbl(struct bnxt *bp, struct bnxt_rss_ctx *rss_ctx)
6223 {
6224 	int entries;
6225 	u16 *tbl;
6226 
6227 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6228 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
6229 	else
6230 		entries = HW_HASH_INDEX_SIZE;
6231 
6232 	bp->rss_indir_tbl_entries = entries;
6233 	tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), GFP_KERNEL);
6234 	if (!tbl)
6235 		return -ENOMEM;
6236 
6237 	if (rss_ctx)
6238 		rss_ctx->rss_indir_tbl = tbl;
6239 	else
6240 		bp->rss_indir_tbl = tbl;
6241 
6242 	return 0;
6243 }
6244 
6245 void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp, struct bnxt_rss_ctx *rss_ctx)
6246 {
6247 	u16 max_rings, max_entries, pad, i;
6248 	u16 *rss_indir_tbl;
6249 
6250 	if (!bp->rx_nr_rings)
6251 		return;
6252 
6253 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6254 		max_rings = bp->rx_nr_rings - 1;
6255 	else
6256 		max_rings = bp->rx_nr_rings;
6257 
6258 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
6259 	if (rss_ctx)
6260 		rss_indir_tbl = &rss_ctx->rss_indir_tbl[0];
6261 	else
6262 		rss_indir_tbl = &bp->rss_indir_tbl[0];
6263 
6264 	for (i = 0; i < max_entries; i++)
6265 		rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
6266 
6267 	pad = bp->rss_indir_tbl_entries - max_entries;
6268 	if (pad)
6269 		memset(&rss_indir_tbl[i], 0, pad * sizeof(u16));
6270 }
6271 
6272 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
6273 {
6274 	u16 i, tbl_size, max_ring = 0;
6275 
6276 	if (!bp->rss_indir_tbl)
6277 		return 0;
6278 
6279 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
6280 	for (i = 0; i < tbl_size; i++)
6281 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
6282 	return max_ring;
6283 }
6284 
6285 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
6286 {
6287 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6288 		if (!rx_rings)
6289 			return 0;
6290 		return bnxt_calc_nr_ring_pages(rx_rings - 1,
6291 					       BNXT_RSS_TABLE_ENTRIES_P5);
6292 	}
6293 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6294 		return 2;
6295 	return 1;
6296 }
6297 
6298 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
6299 {
6300 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
6301 	u16 i, j;
6302 
6303 	/* Fill the RSS indirection table with ring group ids */
6304 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
6305 		if (!no_rss)
6306 			j = bp->rss_indir_tbl[i];
6307 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
6308 	}
6309 }
6310 
6311 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
6312 				    struct bnxt_vnic_info *vnic)
6313 {
6314 	__le16 *ring_tbl = vnic->rss_table;
6315 	struct bnxt_rx_ring_info *rxr;
6316 	u16 tbl_size, i;
6317 
6318 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
6319 
6320 	for (i = 0; i < tbl_size; i++) {
6321 		u16 ring_id, j;
6322 
6323 		if (vnic->flags & BNXT_VNIC_NTUPLE_FLAG)
6324 			j = ethtool_rxfh_indir_default(i, bp->rx_nr_rings);
6325 		else if (vnic->flags & BNXT_VNIC_RSSCTX_FLAG)
6326 			j = vnic->rss_ctx->rss_indir_tbl[i];
6327 		else
6328 			j = bp->rss_indir_tbl[i];
6329 		rxr = &bp->rx_ring[j];
6330 
6331 		ring_id = rxr->rx_ring_struct.fw_ring_id;
6332 		*ring_tbl++ = cpu_to_le16(ring_id);
6333 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6334 		*ring_tbl++ = cpu_to_le16(ring_id);
6335 	}
6336 }
6337 
6338 static void
6339 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req,
6340 			 struct bnxt_vnic_info *vnic)
6341 {
6342 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6343 		bnxt_fill_hw_rss_tbl_p5(bp, vnic);
6344 		if (bp->flags & BNXT_FLAG_CHIP_P7)
6345 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_IPSEC_HASH_TYPE_CFG_SUPPORT;
6346 	} else {
6347 		bnxt_fill_hw_rss_tbl(bp, vnic);
6348 	}
6349 
6350 	if (bp->rss_hash_delta) {
6351 		req->hash_type = cpu_to_le32(bp->rss_hash_delta);
6352 		if (bp->rss_hash_cfg & bp->rss_hash_delta)
6353 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE;
6354 		else
6355 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE;
6356 	} else {
6357 		req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
6358 	}
6359 	req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
6360 	req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
6361 	req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
6362 }
6363 
6364 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct bnxt_vnic_info *vnic,
6365 				  bool set_rss)
6366 {
6367 	struct hwrm_vnic_rss_cfg_input *req;
6368 	int rc;
6369 
6370 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) ||
6371 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
6372 		return 0;
6373 
6374 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
6375 	if (rc)
6376 		return rc;
6377 
6378 	if (set_rss)
6379 		__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
6380 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
6381 	return hwrm_req_send(bp, req);
6382 }
6383 
6384 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp,
6385 				     struct bnxt_vnic_info *vnic, bool set_rss)
6386 {
6387 	struct hwrm_vnic_rss_cfg_input *req;
6388 	dma_addr_t ring_tbl_map;
6389 	u32 i, nr_ctxs;
6390 	int rc;
6391 
6392 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
6393 	if (rc)
6394 		return rc;
6395 
6396 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6397 	if (!set_rss)
6398 		return hwrm_req_send(bp, req);
6399 
6400 	__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
6401 	ring_tbl_map = vnic->rss_table_dma_addr;
6402 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
6403 
6404 	hwrm_req_hold(bp, req);
6405 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
6406 		req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
6407 		req->ring_table_pair_index = i;
6408 		req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
6409 		rc = hwrm_req_send(bp, req);
6410 		if (rc)
6411 			goto exit;
6412 	}
6413 
6414 exit:
6415 	hwrm_req_drop(bp, req);
6416 	return rc;
6417 }
6418 
6419 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp)
6420 {
6421 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
6422 	struct hwrm_vnic_rss_qcfg_output *resp;
6423 	struct hwrm_vnic_rss_qcfg_input *req;
6424 
6425 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG))
6426 		return;
6427 
6428 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6429 	/* all contexts configured to same hash_type, zero always exists */
6430 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
6431 	resp = hwrm_req_hold(bp, req);
6432 	if (!hwrm_req_send(bp, req)) {
6433 		bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg;
6434 		bp->rss_hash_delta = 0;
6435 	}
6436 	hwrm_req_drop(bp, req);
6437 }
6438 
6439 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, struct bnxt_vnic_info *vnic)
6440 {
6441 	struct hwrm_vnic_plcmodes_cfg_input *req;
6442 	int rc;
6443 
6444 	rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG);
6445 	if (rc)
6446 		return rc;
6447 
6448 	req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT);
6449 	req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID);
6450 
6451 	if (BNXT_RX_PAGE_MODE(bp)) {
6452 		req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size);
6453 	} else {
6454 		req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
6455 					  VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
6456 		req->enables |=
6457 			cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
6458 		req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
6459 		req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
6460 	}
6461 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
6462 	return hwrm_req_send(bp, req);
6463 }
6464 
6465 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp,
6466 					struct bnxt_vnic_info *vnic,
6467 					u16 ctx_idx)
6468 {
6469 	struct hwrm_vnic_rss_cos_lb_ctx_free_input *req;
6470 
6471 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE))
6472 		return;
6473 
6474 	req->rss_cos_lb_ctx_id =
6475 		cpu_to_le16(vnic->fw_rss_cos_lb_ctx[ctx_idx]);
6476 
6477 	hwrm_req_send(bp, req);
6478 	vnic->fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
6479 }
6480 
6481 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
6482 {
6483 	int i, j;
6484 
6485 	for (i = 0; i < bp->nr_vnics; i++) {
6486 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
6487 
6488 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
6489 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
6490 				bnxt_hwrm_vnic_ctx_free_one(bp, vnic, j);
6491 		}
6492 	}
6493 	bp->rsscos_nr_ctxs = 0;
6494 }
6495 
6496 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp,
6497 				    struct bnxt_vnic_info *vnic, u16 ctx_idx)
6498 {
6499 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp;
6500 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req;
6501 	int rc;
6502 
6503 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC);
6504 	if (rc)
6505 		return rc;
6506 
6507 	resp = hwrm_req_hold(bp, req);
6508 	rc = hwrm_req_send(bp, req);
6509 	if (!rc)
6510 		vnic->fw_rss_cos_lb_ctx[ctx_idx] =
6511 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
6512 	hwrm_req_drop(bp, req);
6513 
6514 	return rc;
6515 }
6516 
6517 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
6518 {
6519 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
6520 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
6521 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
6522 }
6523 
6524 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, struct bnxt_vnic_info *vnic)
6525 {
6526 	struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT];
6527 	struct hwrm_vnic_cfg_input *req;
6528 	unsigned int ring = 0, grp_idx;
6529 	u16 def_vlan = 0;
6530 	int rc;
6531 
6532 	rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG);
6533 	if (rc)
6534 		return rc;
6535 
6536 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6537 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
6538 
6539 		req->default_rx_ring_id =
6540 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
6541 		req->default_cmpl_ring_id =
6542 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
6543 		req->enables =
6544 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
6545 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
6546 		goto vnic_mru;
6547 	}
6548 	req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
6549 	/* Only RSS support for now TBD: COS & LB */
6550 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
6551 		req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
6552 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
6553 					   VNIC_CFG_REQ_ENABLES_MRU);
6554 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
6555 		req->rss_rule = cpu_to_le16(vnic0->fw_rss_cos_lb_ctx[0]);
6556 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
6557 					   VNIC_CFG_REQ_ENABLES_MRU);
6558 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
6559 	} else {
6560 		req->rss_rule = cpu_to_le16(0xffff);
6561 	}
6562 
6563 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
6564 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
6565 		req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
6566 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
6567 	} else {
6568 		req->cos_rule = cpu_to_le16(0xffff);
6569 	}
6570 
6571 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
6572 		ring = 0;
6573 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
6574 		ring = vnic->vnic_id - 1;
6575 	else if ((vnic->vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
6576 		ring = bp->rx_nr_rings - 1;
6577 
6578 	grp_idx = bp->rx_ring[ring].bnapi->index;
6579 	req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
6580 	req->lb_rule = cpu_to_le16(0xffff);
6581 vnic_mru:
6582 	req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
6583 
6584 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6585 #ifdef CONFIG_BNXT_SRIOV
6586 	if (BNXT_VF(bp))
6587 		def_vlan = bp->vf.vlan;
6588 #endif
6589 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
6590 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
6591 	if (vnic->vnic_id == BNXT_VNIC_DEFAULT && bnxt_ulp_registered(bp->edev))
6592 		req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
6593 
6594 	return hwrm_req_send(bp, req);
6595 }
6596 
6597 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp,
6598 				    struct bnxt_vnic_info *vnic)
6599 {
6600 	if (vnic->fw_vnic_id != INVALID_HW_RING_ID) {
6601 		struct hwrm_vnic_free_input *req;
6602 
6603 		if (hwrm_req_init(bp, req, HWRM_VNIC_FREE))
6604 			return;
6605 
6606 		req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
6607 
6608 		hwrm_req_send(bp, req);
6609 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
6610 	}
6611 }
6612 
6613 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
6614 {
6615 	u16 i;
6616 
6617 	for (i = 0; i < bp->nr_vnics; i++)
6618 		bnxt_hwrm_vnic_free_one(bp, &bp->vnic_info[i]);
6619 }
6620 
6621 int bnxt_hwrm_vnic_alloc(struct bnxt *bp, struct bnxt_vnic_info *vnic,
6622 			 unsigned int start_rx_ring_idx,
6623 			 unsigned int nr_rings)
6624 {
6625 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
6626 	struct hwrm_vnic_alloc_output *resp;
6627 	struct hwrm_vnic_alloc_input *req;
6628 	int rc;
6629 
6630 	rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC);
6631 	if (rc)
6632 		return rc;
6633 
6634 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6635 		goto vnic_no_ring_grps;
6636 
6637 	/* map ring groups to this vnic */
6638 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
6639 		grp_idx = bp->rx_ring[i].bnapi->index;
6640 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
6641 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
6642 				   j, nr_rings);
6643 			break;
6644 		}
6645 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
6646 	}
6647 
6648 vnic_no_ring_grps:
6649 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
6650 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
6651 	if (vnic->vnic_id == BNXT_VNIC_DEFAULT)
6652 		req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
6653 
6654 	resp = hwrm_req_hold(bp, req);
6655 	rc = hwrm_req_send(bp, req);
6656 	if (!rc)
6657 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
6658 	hwrm_req_drop(bp, req);
6659 	return rc;
6660 }
6661 
6662 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
6663 {
6664 	struct hwrm_vnic_qcaps_output *resp;
6665 	struct hwrm_vnic_qcaps_input *req;
6666 	int rc;
6667 
6668 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
6669 	bp->flags &= ~BNXT_FLAG_ROCE_MIRROR_CAP;
6670 	bp->rss_cap &= ~BNXT_RSS_CAP_NEW_RSS_CAP;
6671 	if (bp->hwrm_spec_code < 0x10600)
6672 		return 0;
6673 
6674 	rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS);
6675 	if (rc)
6676 		return rc;
6677 
6678 	resp = hwrm_req_hold(bp, req);
6679 	rc = hwrm_req_send(bp, req);
6680 	if (!rc) {
6681 		u32 flags = le32_to_cpu(resp->flags);
6682 
6683 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
6684 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
6685 			bp->rss_cap |= BNXT_RSS_CAP_NEW_RSS_CAP;
6686 		if (flags &
6687 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
6688 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
6689 
6690 		/* Older P5 fw before EXT_HW_STATS support did not set
6691 		 * VLAN_STRIP_CAP properly.
6692 		 */
6693 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
6694 		    (BNXT_CHIP_P5(bp) &&
6695 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
6696 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
6697 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP)
6698 			bp->rss_cap |= BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA;
6699 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_PROF_TCAM_MODE_ENABLED)
6700 			bp->rss_cap |= BNXT_RSS_CAP_RSS_TCAM;
6701 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
6702 		if (bp->max_tpa_v2) {
6703 			if (BNXT_CHIP_P5(bp))
6704 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
6705 			else
6706 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P7;
6707 		}
6708 		if (flags & VNIC_QCAPS_RESP_FLAGS_HW_TUNNEL_TPA_CAP)
6709 			bp->fw_cap |= BNXT_FW_CAP_VNIC_TUNNEL_TPA;
6710 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV4_CAP)
6711 			bp->rss_cap |= BNXT_RSS_CAP_AH_V4_RSS_CAP;
6712 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV6_CAP)
6713 			bp->rss_cap |= BNXT_RSS_CAP_AH_V6_RSS_CAP;
6714 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV4_CAP)
6715 			bp->rss_cap |= BNXT_RSS_CAP_ESP_V4_RSS_CAP;
6716 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV6_CAP)
6717 			bp->rss_cap |= BNXT_RSS_CAP_ESP_V6_RSS_CAP;
6718 	}
6719 	hwrm_req_drop(bp, req);
6720 	return rc;
6721 }
6722 
6723 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
6724 {
6725 	struct hwrm_ring_grp_alloc_output *resp;
6726 	struct hwrm_ring_grp_alloc_input *req;
6727 	int rc;
6728 	u16 i;
6729 
6730 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6731 		return 0;
6732 
6733 	rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC);
6734 	if (rc)
6735 		return rc;
6736 
6737 	resp = hwrm_req_hold(bp, req);
6738 	for (i = 0; i < bp->rx_nr_rings; i++) {
6739 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
6740 
6741 		req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
6742 		req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
6743 		req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
6744 		req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
6745 
6746 		rc = hwrm_req_send(bp, req);
6747 
6748 		if (rc)
6749 			break;
6750 
6751 		bp->grp_info[grp_idx].fw_grp_id =
6752 			le32_to_cpu(resp->ring_group_id);
6753 	}
6754 	hwrm_req_drop(bp, req);
6755 	return rc;
6756 }
6757 
6758 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
6759 {
6760 	struct hwrm_ring_grp_free_input *req;
6761 	u16 i;
6762 
6763 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
6764 		return;
6765 
6766 	if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE))
6767 		return;
6768 
6769 	hwrm_req_hold(bp, req);
6770 	for (i = 0; i < bp->cp_nr_rings; i++) {
6771 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
6772 			continue;
6773 		req->ring_group_id =
6774 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
6775 
6776 		hwrm_req_send(bp, req);
6777 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
6778 	}
6779 	hwrm_req_drop(bp, req);
6780 }
6781 
6782 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
6783 				    struct bnxt_ring_struct *ring,
6784 				    u32 ring_type, u32 map_index)
6785 {
6786 	struct hwrm_ring_alloc_output *resp;
6787 	struct hwrm_ring_alloc_input *req;
6788 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
6789 	struct bnxt_ring_grp_info *grp_info;
6790 	int rc, err = 0;
6791 	u16 ring_id;
6792 
6793 	rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC);
6794 	if (rc)
6795 		goto exit;
6796 
6797 	req->enables = 0;
6798 	if (rmem->nr_pages > 1) {
6799 		req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
6800 		/* Page size is in log2 units */
6801 		req->page_size = BNXT_PAGE_SHIFT;
6802 		req->page_tbl_depth = 1;
6803 	} else {
6804 		req->page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
6805 	}
6806 	req->fbo = 0;
6807 	/* Association of ring index with doorbell index and MSIX number */
6808 	req->logical_id = cpu_to_le16(map_index);
6809 
6810 	switch (ring_type) {
6811 	case HWRM_RING_ALLOC_TX: {
6812 		struct bnxt_tx_ring_info *txr;
6813 		u16 flags = 0;
6814 
6815 		txr = container_of(ring, struct bnxt_tx_ring_info,
6816 				   tx_ring_struct);
6817 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
6818 		/* Association of transmit ring with completion ring */
6819 		grp_info = &bp->grp_info[ring->grp_idx];
6820 		req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
6821 		req->length = cpu_to_le32(bp->tx_ring_mask + 1);
6822 		req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6823 		req->queue_id = cpu_to_le16(ring->queue_id);
6824 		if (bp->flags & BNXT_FLAG_TX_COAL_CMPL)
6825 			req->cmpl_coal_cnt =
6826 				RING_ALLOC_REQ_CMPL_COAL_CNT_COAL_64;
6827 		if ((bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) && bp->ptp_cfg)
6828 			flags |= RING_ALLOC_REQ_FLAGS_TX_PKT_TS_CMPL_ENABLE;
6829 		req->flags = cpu_to_le16(flags);
6830 		break;
6831 	}
6832 	case HWRM_RING_ALLOC_RX:
6833 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
6834 		req->length = cpu_to_le32(bp->rx_ring_mask + 1);
6835 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6836 			u16 flags = 0;
6837 
6838 			/* Association of rx ring with stats context */
6839 			grp_info = &bp->grp_info[ring->grp_idx];
6840 			req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
6841 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6842 			req->enables |= cpu_to_le32(
6843 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
6844 			if (NET_IP_ALIGN == 2)
6845 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
6846 			req->flags = cpu_to_le16(flags);
6847 		}
6848 		break;
6849 	case HWRM_RING_ALLOC_AGG:
6850 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6851 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
6852 			/* Association of agg ring with rx ring */
6853 			grp_info = &bp->grp_info[ring->grp_idx];
6854 			req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
6855 			req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
6856 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6857 			req->enables |= cpu_to_le32(
6858 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
6859 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
6860 		} else {
6861 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
6862 		}
6863 		req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
6864 		break;
6865 	case HWRM_RING_ALLOC_CMPL:
6866 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
6867 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
6868 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6869 			/* Association of cp ring with nq */
6870 			grp_info = &bp->grp_info[map_index];
6871 			req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
6872 			req->cq_handle = cpu_to_le64(ring->handle);
6873 			req->enables |= cpu_to_le32(
6874 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
6875 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
6876 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
6877 		}
6878 		break;
6879 	case HWRM_RING_ALLOC_NQ:
6880 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
6881 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
6882 		if (bp->flags & BNXT_FLAG_USING_MSIX)
6883 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
6884 		break;
6885 	default:
6886 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
6887 			   ring_type);
6888 		return -1;
6889 	}
6890 
6891 	resp = hwrm_req_hold(bp, req);
6892 	rc = hwrm_req_send(bp, req);
6893 	err = le16_to_cpu(resp->error_code);
6894 	ring_id = le16_to_cpu(resp->ring_id);
6895 	hwrm_req_drop(bp, req);
6896 
6897 exit:
6898 	if (rc || err) {
6899 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
6900 			   ring_type, rc, err);
6901 		return -EIO;
6902 	}
6903 	ring->fw_ring_id = ring_id;
6904 	return rc;
6905 }
6906 
6907 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
6908 {
6909 	int rc;
6910 
6911 	if (BNXT_PF(bp)) {
6912 		struct hwrm_func_cfg_input *req;
6913 
6914 		rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
6915 		if (rc)
6916 			return rc;
6917 
6918 		req->fid = cpu_to_le16(0xffff);
6919 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
6920 		req->async_event_cr = cpu_to_le16(idx);
6921 		return hwrm_req_send(bp, req);
6922 	} else {
6923 		struct hwrm_func_vf_cfg_input *req;
6924 
6925 		rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
6926 		if (rc)
6927 			return rc;
6928 
6929 		req->enables =
6930 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
6931 		req->async_event_cr = cpu_to_le16(idx);
6932 		return hwrm_req_send(bp, req);
6933 	}
6934 }
6935 
6936 static void bnxt_set_db_mask(struct bnxt *bp, struct bnxt_db_info *db,
6937 			     u32 ring_type)
6938 {
6939 	switch (ring_type) {
6940 	case HWRM_RING_ALLOC_TX:
6941 		db->db_ring_mask = bp->tx_ring_mask;
6942 		break;
6943 	case HWRM_RING_ALLOC_RX:
6944 		db->db_ring_mask = bp->rx_ring_mask;
6945 		break;
6946 	case HWRM_RING_ALLOC_AGG:
6947 		db->db_ring_mask = bp->rx_agg_ring_mask;
6948 		break;
6949 	case HWRM_RING_ALLOC_CMPL:
6950 	case HWRM_RING_ALLOC_NQ:
6951 		db->db_ring_mask = bp->cp_ring_mask;
6952 		break;
6953 	}
6954 	if (bp->flags & BNXT_FLAG_CHIP_P7) {
6955 		db->db_epoch_mask = db->db_ring_mask + 1;
6956 		db->db_epoch_shift = DBR_EPOCH_SFT - ilog2(db->db_epoch_mask);
6957 	}
6958 }
6959 
6960 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
6961 			u32 map_idx, u32 xid)
6962 {
6963 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6964 		switch (ring_type) {
6965 		case HWRM_RING_ALLOC_TX:
6966 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
6967 			break;
6968 		case HWRM_RING_ALLOC_RX:
6969 		case HWRM_RING_ALLOC_AGG:
6970 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
6971 			break;
6972 		case HWRM_RING_ALLOC_CMPL:
6973 			db->db_key64 = DBR_PATH_L2;
6974 			break;
6975 		case HWRM_RING_ALLOC_NQ:
6976 			db->db_key64 = DBR_PATH_L2;
6977 			break;
6978 		}
6979 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
6980 
6981 		if (bp->flags & BNXT_FLAG_CHIP_P7)
6982 			db->db_key64 |= DBR_VALID;
6983 
6984 		db->doorbell = bp->bar1 + bp->db_offset;
6985 	} else {
6986 		db->doorbell = bp->bar1 + map_idx * 0x80;
6987 		switch (ring_type) {
6988 		case HWRM_RING_ALLOC_TX:
6989 			db->db_key32 = DB_KEY_TX;
6990 			break;
6991 		case HWRM_RING_ALLOC_RX:
6992 		case HWRM_RING_ALLOC_AGG:
6993 			db->db_key32 = DB_KEY_RX;
6994 			break;
6995 		case HWRM_RING_ALLOC_CMPL:
6996 			db->db_key32 = DB_KEY_CP;
6997 			break;
6998 		}
6999 	}
7000 	bnxt_set_db_mask(bp, db, ring_type);
7001 }
7002 
7003 static int bnxt_hwrm_rx_ring_alloc(struct bnxt *bp,
7004 				   struct bnxt_rx_ring_info *rxr)
7005 {
7006 	struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
7007 	struct bnxt_napi *bnapi = rxr->bnapi;
7008 	u32 type = HWRM_RING_ALLOC_RX;
7009 	u32 map_idx = bnapi->index;
7010 	int rc;
7011 
7012 	rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
7013 	if (rc)
7014 		return rc;
7015 
7016 	bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
7017 	bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
7018 
7019 	return 0;
7020 }
7021 
7022 static int bnxt_hwrm_rx_agg_ring_alloc(struct bnxt *bp,
7023 				       struct bnxt_rx_ring_info *rxr)
7024 {
7025 	struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
7026 	u32 type = HWRM_RING_ALLOC_AGG;
7027 	u32 grp_idx = ring->grp_idx;
7028 	u32 map_idx;
7029 	int rc;
7030 
7031 	map_idx = grp_idx + bp->rx_nr_rings;
7032 	rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
7033 	if (rc)
7034 		return rc;
7035 
7036 	bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
7037 		    ring->fw_ring_id);
7038 	bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
7039 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
7040 	bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
7041 
7042 	return 0;
7043 }
7044 
7045 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
7046 {
7047 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
7048 	int i, rc = 0;
7049 	u32 type;
7050 
7051 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7052 		type = HWRM_RING_ALLOC_NQ;
7053 	else
7054 		type = HWRM_RING_ALLOC_CMPL;
7055 	for (i = 0; i < bp->cp_nr_rings; i++) {
7056 		struct bnxt_napi *bnapi = bp->bnapi[i];
7057 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7058 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
7059 		u32 map_idx = ring->map_idx;
7060 		unsigned int vector;
7061 
7062 		vector = bp->irq_tbl[map_idx].vector;
7063 		disable_irq_nosync(vector);
7064 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
7065 		if (rc) {
7066 			enable_irq(vector);
7067 			goto err_out;
7068 		}
7069 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
7070 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
7071 		enable_irq(vector);
7072 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
7073 
7074 		if (!i) {
7075 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
7076 			if (rc)
7077 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
7078 		}
7079 	}
7080 
7081 	type = HWRM_RING_ALLOC_TX;
7082 	for (i = 0; i < bp->tx_nr_rings; i++) {
7083 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
7084 		struct bnxt_ring_struct *ring;
7085 		u32 map_idx;
7086 
7087 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7088 			struct bnxt_cp_ring_info *cpr2 = txr->tx_cpr;
7089 			struct bnxt_napi *bnapi = txr->bnapi;
7090 			u32 type2 = HWRM_RING_ALLOC_CMPL;
7091 
7092 			ring = &cpr2->cp_ring_struct;
7093 			ring->handle = BNXT_SET_NQ_HDL(cpr2);
7094 			map_idx = bnapi->index;
7095 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
7096 			if (rc)
7097 				goto err_out;
7098 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
7099 				    ring->fw_ring_id);
7100 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
7101 		}
7102 		ring = &txr->tx_ring_struct;
7103 		map_idx = i;
7104 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
7105 		if (rc)
7106 			goto err_out;
7107 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
7108 	}
7109 
7110 	for (i = 0; i < bp->rx_nr_rings; i++) {
7111 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
7112 
7113 		rc = bnxt_hwrm_rx_ring_alloc(bp, rxr);
7114 		if (rc)
7115 			goto err_out;
7116 		/* If we have agg rings, post agg buffers first. */
7117 		if (!agg_rings)
7118 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
7119 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7120 			struct bnxt_cp_ring_info *cpr2 = rxr->rx_cpr;
7121 			struct bnxt_napi *bnapi = rxr->bnapi;
7122 			u32 type2 = HWRM_RING_ALLOC_CMPL;
7123 			struct bnxt_ring_struct *ring;
7124 			u32 map_idx = bnapi->index;
7125 
7126 			ring = &cpr2->cp_ring_struct;
7127 			ring->handle = BNXT_SET_NQ_HDL(cpr2);
7128 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
7129 			if (rc)
7130 				goto err_out;
7131 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
7132 				    ring->fw_ring_id);
7133 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
7134 		}
7135 	}
7136 
7137 	if (agg_rings) {
7138 		for (i = 0; i < bp->rx_nr_rings; i++) {
7139 			rc = bnxt_hwrm_rx_agg_ring_alloc(bp, &bp->rx_ring[i]);
7140 			if (rc)
7141 				goto err_out;
7142 		}
7143 	}
7144 err_out:
7145 	return rc;
7146 }
7147 
7148 static int hwrm_ring_free_send_msg(struct bnxt *bp,
7149 				   struct bnxt_ring_struct *ring,
7150 				   u32 ring_type, int cmpl_ring_id)
7151 {
7152 	struct hwrm_ring_free_output *resp;
7153 	struct hwrm_ring_free_input *req;
7154 	u16 error_code = 0;
7155 	int rc;
7156 
7157 	if (BNXT_NO_FW_ACCESS(bp))
7158 		return 0;
7159 
7160 	rc = hwrm_req_init(bp, req, HWRM_RING_FREE);
7161 	if (rc)
7162 		goto exit;
7163 
7164 	req->cmpl_ring = cpu_to_le16(cmpl_ring_id);
7165 	req->ring_type = ring_type;
7166 	req->ring_id = cpu_to_le16(ring->fw_ring_id);
7167 
7168 	resp = hwrm_req_hold(bp, req);
7169 	rc = hwrm_req_send(bp, req);
7170 	error_code = le16_to_cpu(resp->error_code);
7171 	hwrm_req_drop(bp, req);
7172 exit:
7173 	if (rc || error_code) {
7174 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
7175 			   ring_type, rc, error_code);
7176 		return -EIO;
7177 	}
7178 	return 0;
7179 }
7180 
7181 static void bnxt_hwrm_rx_ring_free(struct bnxt *bp,
7182 				   struct bnxt_rx_ring_info *rxr,
7183 				   bool close_path)
7184 {
7185 	struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
7186 	u32 grp_idx = rxr->bnapi->index;
7187 	u32 cmpl_ring_id;
7188 
7189 	if (ring->fw_ring_id == INVALID_HW_RING_ID)
7190 		return;
7191 
7192 	cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
7193 	hwrm_ring_free_send_msg(bp, ring,
7194 				RING_FREE_REQ_RING_TYPE_RX,
7195 				close_path ? cmpl_ring_id :
7196 				INVALID_HW_RING_ID);
7197 	ring->fw_ring_id = INVALID_HW_RING_ID;
7198 	bp->grp_info[grp_idx].rx_fw_ring_id = INVALID_HW_RING_ID;
7199 }
7200 
7201 static void bnxt_hwrm_rx_agg_ring_free(struct bnxt *bp,
7202 				       struct bnxt_rx_ring_info *rxr,
7203 				       bool close_path)
7204 {
7205 	struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
7206 	u32 grp_idx = rxr->bnapi->index;
7207 	u32 type, cmpl_ring_id;
7208 
7209 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7210 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
7211 	else
7212 		type = RING_FREE_REQ_RING_TYPE_RX;
7213 
7214 	if (ring->fw_ring_id == INVALID_HW_RING_ID)
7215 		return;
7216 
7217 	cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
7218 	hwrm_ring_free_send_msg(bp, ring, type,
7219 				close_path ? cmpl_ring_id :
7220 				INVALID_HW_RING_ID);
7221 	ring->fw_ring_id = INVALID_HW_RING_ID;
7222 	bp->grp_info[grp_idx].agg_fw_ring_id = INVALID_HW_RING_ID;
7223 }
7224 
7225 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
7226 {
7227 	u32 type;
7228 	int i;
7229 
7230 	if (!bp->bnapi)
7231 		return;
7232 
7233 	for (i = 0; i < bp->tx_nr_rings; i++) {
7234 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
7235 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
7236 
7237 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
7238 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
7239 
7240 			hwrm_ring_free_send_msg(bp, ring,
7241 						RING_FREE_REQ_RING_TYPE_TX,
7242 						close_path ? cmpl_ring_id :
7243 						INVALID_HW_RING_ID);
7244 			ring->fw_ring_id = INVALID_HW_RING_ID;
7245 		}
7246 	}
7247 
7248 	for (i = 0; i < bp->rx_nr_rings; i++) {
7249 		bnxt_hwrm_rx_ring_free(bp, &bp->rx_ring[i], close_path);
7250 		bnxt_hwrm_rx_agg_ring_free(bp, &bp->rx_ring[i], close_path);
7251 	}
7252 
7253 	/* The completion rings are about to be freed.  After that the
7254 	 * IRQ doorbell will not work anymore.  So we need to disable
7255 	 * IRQ here.
7256 	 */
7257 	bnxt_disable_int_sync(bp);
7258 
7259 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7260 		type = RING_FREE_REQ_RING_TYPE_NQ;
7261 	else
7262 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
7263 	for (i = 0; i < bp->cp_nr_rings; i++) {
7264 		struct bnxt_napi *bnapi = bp->bnapi[i];
7265 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7266 		struct bnxt_ring_struct *ring;
7267 		int j;
7268 
7269 		for (j = 0; j < cpr->cp_ring_count && cpr->cp_ring_arr; j++) {
7270 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
7271 
7272 			ring = &cpr2->cp_ring_struct;
7273 			if (ring->fw_ring_id == INVALID_HW_RING_ID)
7274 				continue;
7275 			hwrm_ring_free_send_msg(bp, ring,
7276 						RING_FREE_REQ_RING_TYPE_L2_CMPL,
7277 						INVALID_HW_RING_ID);
7278 			ring->fw_ring_id = INVALID_HW_RING_ID;
7279 		}
7280 		ring = &cpr->cp_ring_struct;
7281 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
7282 			hwrm_ring_free_send_msg(bp, ring, type,
7283 						INVALID_HW_RING_ID);
7284 			ring->fw_ring_id = INVALID_HW_RING_ID;
7285 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
7286 		}
7287 	}
7288 }
7289 
7290 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
7291 			     bool shared);
7292 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
7293 			   bool shared);
7294 
7295 static int bnxt_hwrm_get_rings(struct bnxt *bp)
7296 {
7297 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7298 	struct hwrm_func_qcfg_output *resp;
7299 	struct hwrm_func_qcfg_input *req;
7300 	int rc;
7301 
7302 	if (bp->hwrm_spec_code < 0x10601)
7303 		return 0;
7304 
7305 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
7306 	if (rc)
7307 		return rc;
7308 
7309 	req->fid = cpu_to_le16(0xffff);
7310 	resp = hwrm_req_hold(bp, req);
7311 	rc = hwrm_req_send(bp, req);
7312 	if (rc) {
7313 		hwrm_req_drop(bp, req);
7314 		return rc;
7315 	}
7316 
7317 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
7318 	if (BNXT_NEW_RM(bp)) {
7319 		u16 cp, stats;
7320 
7321 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
7322 		hw_resc->resv_hw_ring_grps =
7323 			le32_to_cpu(resp->alloc_hw_ring_grps);
7324 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
7325 		hw_resc->resv_rsscos_ctxs = le16_to_cpu(resp->alloc_rsscos_ctx);
7326 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
7327 		stats = le16_to_cpu(resp->alloc_stat_ctx);
7328 		hw_resc->resv_irqs = cp;
7329 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7330 			int rx = hw_resc->resv_rx_rings;
7331 			int tx = hw_resc->resv_tx_rings;
7332 
7333 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
7334 				rx >>= 1;
7335 			if (cp < (rx + tx)) {
7336 				rc = __bnxt_trim_rings(bp, &rx, &tx, cp, false);
7337 				if (rc)
7338 					goto get_rings_exit;
7339 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
7340 					rx <<= 1;
7341 				hw_resc->resv_rx_rings = rx;
7342 				hw_resc->resv_tx_rings = tx;
7343 			}
7344 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
7345 			hw_resc->resv_hw_ring_grps = rx;
7346 		}
7347 		hw_resc->resv_cp_rings = cp;
7348 		hw_resc->resv_stat_ctxs = stats;
7349 	}
7350 get_rings_exit:
7351 	hwrm_req_drop(bp, req);
7352 	return rc;
7353 }
7354 
7355 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
7356 {
7357 	struct hwrm_func_qcfg_output *resp;
7358 	struct hwrm_func_qcfg_input *req;
7359 	int rc;
7360 
7361 	if (bp->hwrm_spec_code < 0x10601)
7362 		return 0;
7363 
7364 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
7365 	if (rc)
7366 		return rc;
7367 
7368 	req->fid = cpu_to_le16(fid);
7369 	resp = hwrm_req_hold(bp, req);
7370 	rc = hwrm_req_send(bp, req);
7371 	if (!rc)
7372 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
7373 
7374 	hwrm_req_drop(bp, req);
7375 	return rc;
7376 }
7377 
7378 static bool bnxt_rfs_supported(struct bnxt *bp);
7379 
7380 static struct hwrm_func_cfg_input *
7381 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7382 {
7383 	struct hwrm_func_cfg_input *req;
7384 	u32 enables = 0;
7385 
7386 	if (bnxt_hwrm_func_cfg_short_req_init(bp, &req))
7387 		return NULL;
7388 
7389 	req->fid = cpu_to_le16(0xffff);
7390 	enables |= hwr->tx ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
7391 	req->num_tx_rings = cpu_to_le16(hwr->tx);
7392 	if (BNXT_NEW_RM(bp)) {
7393 		enables |= hwr->rx ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
7394 		enables |= hwr->stat ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
7395 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7396 			enables |= hwr->cp ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
7397 			enables |= hwr->cp_p5 ?
7398 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
7399 		} else {
7400 			enables |= hwr->cp ?
7401 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
7402 			enables |= hwr->grp ?
7403 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
7404 		}
7405 		enables |= hwr->vnic ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
7406 		enables |= hwr->rss_ctx ? FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS :
7407 					  0;
7408 		req->num_rx_rings = cpu_to_le16(hwr->rx);
7409 		req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx);
7410 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7411 			req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5);
7412 			req->num_msix = cpu_to_le16(hwr->cp);
7413 		} else {
7414 			req->num_cmpl_rings = cpu_to_le16(hwr->cp);
7415 			req->num_hw_ring_grps = cpu_to_le16(hwr->grp);
7416 		}
7417 		req->num_stat_ctxs = cpu_to_le16(hwr->stat);
7418 		req->num_vnics = cpu_to_le16(hwr->vnic);
7419 	}
7420 	req->enables = cpu_to_le32(enables);
7421 	return req;
7422 }
7423 
7424 static struct hwrm_func_vf_cfg_input *
7425 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7426 {
7427 	struct hwrm_func_vf_cfg_input *req;
7428 	u32 enables = 0;
7429 
7430 	if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG))
7431 		return NULL;
7432 
7433 	enables |= hwr->tx ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
7434 	enables |= hwr->rx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
7435 			     FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
7436 	enables |= hwr->stat ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
7437 	enables |= hwr->rss_ctx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
7438 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7439 		enables |= hwr->cp_p5 ?
7440 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
7441 	} else {
7442 		enables |= hwr->cp ? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
7443 		enables |= hwr->grp ?
7444 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
7445 	}
7446 	enables |= hwr->vnic ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
7447 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
7448 
7449 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
7450 	req->num_tx_rings = cpu_to_le16(hwr->tx);
7451 	req->num_rx_rings = cpu_to_le16(hwr->rx);
7452 	req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx);
7453 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7454 		req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5);
7455 	} else {
7456 		req->num_cmpl_rings = cpu_to_le16(hwr->cp);
7457 		req->num_hw_ring_grps = cpu_to_le16(hwr->grp);
7458 	}
7459 	req->num_stat_ctxs = cpu_to_le16(hwr->stat);
7460 	req->num_vnics = cpu_to_le16(hwr->vnic);
7461 
7462 	req->enables = cpu_to_le32(enables);
7463 	return req;
7464 }
7465 
7466 static int
7467 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7468 {
7469 	struct hwrm_func_cfg_input *req;
7470 	int rc;
7471 
7472 	req = __bnxt_hwrm_reserve_pf_rings(bp, hwr);
7473 	if (!req)
7474 		return -ENOMEM;
7475 
7476 	if (!req->enables) {
7477 		hwrm_req_drop(bp, req);
7478 		return 0;
7479 	}
7480 
7481 	rc = hwrm_req_send(bp, req);
7482 	if (rc)
7483 		return rc;
7484 
7485 	if (bp->hwrm_spec_code < 0x10601)
7486 		bp->hw_resc.resv_tx_rings = hwr->tx;
7487 
7488 	return bnxt_hwrm_get_rings(bp);
7489 }
7490 
7491 static int
7492 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7493 {
7494 	struct hwrm_func_vf_cfg_input *req;
7495 	int rc;
7496 
7497 	if (!BNXT_NEW_RM(bp)) {
7498 		bp->hw_resc.resv_tx_rings = hwr->tx;
7499 		return 0;
7500 	}
7501 
7502 	req = __bnxt_hwrm_reserve_vf_rings(bp, hwr);
7503 	if (!req)
7504 		return -ENOMEM;
7505 
7506 	rc = hwrm_req_send(bp, req);
7507 	if (rc)
7508 		return rc;
7509 
7510 	return bnxt_hwrm_get_rings(bp);
7511 }
7512 
7513 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7514 {
7515 	if (BNXT_PF(bp))
7516 		return bnxt_hwrm_reserve_pf_rings(bp, hwr);
7517 	else
7518 		return bnxt_hwrm_reserve_vf_rings(bp, hwr);
7519 }
7520 
7521 int bnxt_nq_rings_in_use(struct bnxt *bp)
7522 {
7523 	return bp->cp_nr_rings + bnxt_get_ulp_msix_num(bp);
7524 }
7525 
7526 static int bnxt_cp_rings_in_use(struct bnxt *bp)
7527 {
7528 	int cp;
7529 
7530 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7531 		return bnxt_nq_rings_in_use(bp);
7532 
7533 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
7534 	return cp;
7535 }
7536 
7537 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
7538 {
7539 	return bp->cp_nr_rings + bnxt_get_ulp_stat_ctxs(bp);
7540 }
7541 
7542 static int bnxt_get_total_rss_ctxs(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7543 {
7544 	if (!hwr->grp)
7545 		return 0;
7546 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7547 		int rss_ctx = bnxt_get_nr_rss_ctxs(bp, hwr->grp);
7548 
7549 		if (BNXT_SUPPORTS_NTUPLE_VNIC(bp))
7550 			rss_ctx *= hwr->vnic;
7551 		return rss_ctx;
7552 	}
7553 	if (BNXT_VF(bp))
7554 		return BNXT_VF_MAX_RSS_CTX;
7555 	if (!(bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && bnxt_rfs_supported(bp))
7556 		return hwr->grp + 1;
7557 	return 1;
7558 }
7559 
7560 /* Check if a default RSS map needs to be setup.  This function is only
7561  * used on older firmware that does not require reserving RX rings.
7562  */
7563 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
7564 {
7565 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7566 
7567 	/* The RSS map is valid for RX rings set to resv_rx_rings */
7568 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
7569 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
7570 		if (!netif_is_rxfh_configured(bp->dev))
7571 			bnxt_set_dflt_rss_indir_tbl(bp, NULL);
7572 	}
7573 }
7574 
7575 static int bnxt_get_total_vnics(struct bnxt *bp, int rx_rings)
7576 {
7577 	if (bp->flags & BNXT_FLAG_RFS) {
7578 		if (BNXT_SUPPORTS_NTUPLE_VNIC(bp))
7579 			return 2 + bp->num_rss_ctx;
7580 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7581 			return rx_rings + 1;
7582 	}
7583 	return 1;
7584 }
7585 
7586 static bool bnxt_need_reserve_rings(struct bnxt *bp)
7587 {
7588 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7589 	int cp = bnxt_cp_rings_in_use(bp);
7590 	int nq = bnxt_nq_rings_in_use(bp);
7591 	int rx = bp->rx_nr_rings, stat;
7592 	int vnic, grp = rx;
7593 
7594 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
7595 	    bp->hwrm_spec_code >= 0x10601)
7596 		return true;
7597 
7598 	/* Old firmware does not need RX ring reservations but we still
7599 	 * need to setup a default RSS map when needed.  With new firmware
7600 	 * we go through RX ring reservations first and then set up the
7601 	 * RSS map for the successfully reserved RX rings when needed.
7602 	 */
7603 	if (!BNXT_NEW_RM(bp)) {
7604 		bnxt_check_rss_tbl_no_rmgr(bp);
7605 		return false;
7606 	}
7607 
7608 	vnic = bnxt_get_total_vnics(bp, rx);
7609 
7610 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7611 		rx <<= 1;
7612 	stat = bnxt_get_func_stat_ctxs(bp);
7613 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
7614 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
7615 	    (hw_resc->resv_hw_ring_grps != grp &&
7616 	     !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)))
7617 		return true;
7618 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && BNXT_PF(bp) &&
7619 	    hw_resc->resv_irqs != nq)
7620 		return true;
7621 	return false;
7622 }
7623 
7624 static void bnxt_copy_reserved_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7625 {
7626 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7627 
7628 	hwr->tx = hw_resc->resv_tx_rings;
7629 	if (BNXT_NEW_RM(bp)) {
7630 		hwr->rx = hw_resc->resv_rx_rings;
7631 		hwr->cp = hw_resc->resv_irqs;
7632 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7633 			hwr->cp_p5 = hw_resc->resv_cp_rings;
7634 		hwr->grp = hw_resc->resv_hw_ring_grps;
7635 		hwr->vnic = hw_resc->resv_vnics;
7636 		hwr->stat = hw_resc->resv_stat_ctxs;
7637 		hwr->rss_ctx = hw_resc->resv_rsscos_ctxs;
7638 	}
7639 }
7640 
7641 static bool bnxt_rings_ok(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7642 {
7643 	return hwr->tx && hwr->rx && hwr->cp && hwr->grp && hwr->vnic &&
7644 	       hwr->stat && (hwr->cp_p5 || !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS));
7645 }
7646 
7647 static int bnxt_get_avail_msix(struct bnxt *bp, int num);
7648 
7649 static int __bnxt_reserve_rings(struct bnxt *bp)
7650 {
7651 	struct bnxt_hw_rings hwr = {0};
7652 	int cp = bp->cp_nr_rings;
7653 	int rx_rings, rc;
7654 	int ulp_msix = 0;
7655 	bool sh = false;
7656 	int tx_cp;
7657 
7658 	if (!bnxt_need_reserve_rings(bp))
7659 		return 0;
7660 
7661 	if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) {
7662 		ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want);
7663 		if (!ulp_msix)
7664 			bnxt_set_ulp_stat_ctxs(bp, 0);
7665 
7666 		if (ulp_msix > bp->ulp_num_msix_want)
7667 			ulp_msix = bp->ulp_num_msix_want;
7668 		hwr.cp = cp + ulp_msix;
7669 	} else {
7670 		hwr.cp = bnxt_nq_rings_in_use(bp);
7671 	}
7672 
7673 	hwr.tx = bp->tx_nr_rings;
7674 	hwr.rx = bp->rx_nr_rings;
7675 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7676 		sh = true;
7677 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7678 		hwr.cp_p5 = hwr.rx + hwr.tx;
7679 
7680 	hwr.vnic = bnxt_get_total_vnics(bp, hwr.rx);
7681 
7682 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7683 		hwr.rx <<= 1;
7684 	hwr.grp = bp->rx_nr_rings;
7685 	hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr);
7686 	hwr.stat = bnxt_get_func_stat_ctxs(bp);
7687 
7688 	rc = bnxt_hwrm_reserve_rings(bp, &hwr);
7689 	if (rc)
7690 		return rc;
7691 
7692 	bnxt_copy_reserved_rings(bp, &hwr);
7693 
7694 	rx_rings = hwr.rx;
7695 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
7696 		if (hwr.rx >= 2) {
7697 			rx_rings = hwr.rx >> 1;
7698 		} else {
7699 			if (netif_running(bp->dev))
7700 				return -ENOMEM;
7701 
7702 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
7703 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
7704 			bp->dev->hw_features &= ~NETIF_F_LRO;
7705 			bp->dev->features &= ~NETIF_F_LRO;
7706 			bnxt_set_ring_params(bp);
7707 		}
7708 	}
7709 	rx_rings = min_t(int, rx_rings, hwr.grp);
7710 	hwr.cp = min_t(int, hwr.cp, bp->cp_nr_rings);
7711 	if (hwr.stat > bnxt_get_ulp_stat_ctxs(bp))
7712 		hwr.stat -= bnxt_get_ulp_stat_ctxs(bp);
7713 	hwr.cp = min_t(int, hwr.cp, hwr.stat);
7714 	rc = bnxt_trim_rings(bp, &rx_rings, &hwr.tx, hwr.cp, sh);
7715 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7716 		hwr.rx = rx_rings << 1;
7717 	tx_cp = bnxt_num_tx_to_cp(bp, hwr.tx);
7718 	hwr.cp = sh ? max_t(int, tx_cp, rx_rings) : tx_cp + rx_rings;
7719 	bp->tx_nr_rings = hwr.tx;
7720 
7721 	/* If we cannot reserve all the RX rings, reset the RSS map only
7722 	 * if absolutely necessary
7723 	 */
7724 	if (rx_rings != bp->rx_nr_rings) {
7725 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
7726 			    rx_rings, bp->rx_nr_rings);
7727 		if (netif_is_rxfh_configured(bp->dev) &&
7728 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
7729 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
7730 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
7731 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
7732 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
7733 		}
7734 	}
7735 	bp->rx_nr_rings = rx_rings;
7736 	bp->cp_nr_rings = hwr.cp;
7737 
7738 	if (!bnxt_rings_ok(bp, &hwr))
7739 		return -ENOMEM;
7740 
7741 	if (!netif_is_rxfh_configured(bp->dev))
7742 		bnxt_set_dflt_rss_indir_tbl(bp, NULL);
7743 
7744 	if (!bnxt_ulp_registered(bp->edev) && BNXT_NEW_RM(bp)) {
7745 		int resv_msix, resv_ctx, ulp_ctxs;
7746 		struct bnxt_hw_resc *hw_resc;
7747 
7748 		hw_resc = &bp->hw_resc;
7749 		resv_msix = hw_resc->resv_irqs - bp->cp_nr_rings;
7750 		ulp_msix = min_t(int, resv_msix, ulp_msix);
7751 		bnxt_set_ulp_msix_num(bp, ulp_msix);
7752 		resv_ctx = hw_resc->resv_stat_ctxs  - bp->cp_nr_rings;
7753 		ulp_ctxs = min(resv_ctx, bnxt_get_ulp_stat_ctxs(bp));
7754 		bnxt_set_ulp_stat_ctxs(bp, ulp_ctxs);
7755 	}
7756 
7757 	return rc;
7758 }
7759 
7760 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7761 {
7762 	struct hwrm_func_vf_cfg_input *req;
7763 	u32 flags;
7764 
7765 	if (!BNXT_NEW_RM(bp))
7766 		return 0;
7767 
7768 	req = __bnxt_hwrm_reserve_vf_rings(bp, hwr);
7769 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
7770 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
7771 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
7772 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
7773 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
7774 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
7775 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7776 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
7777 
7778 	req->flags = cpu_to_le32(flags);
7779 	return hwrm_req_send_silent(bp, req);
7780 }
7781 
7782 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7783 {
7784 	struct hwrm_func_cfg_input *req;
7785 	u32 flags;
7786 
7787 	req = __bnxt_hwrm_reserve_pf_rings(bp, hwr);
7788 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
7789 	if (BNXT_NEW_RM(bp)) {
7790 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
7791 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
7792 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
7793 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
7794 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7795 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
7796 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
7797 		else
7798 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
7799 	}
7800 
7801 	req->flags = cpu_to_le32(flags);
7802 	return hwrm_req_send_silent(bp, req);
7803 }
7804 
7805 static int bnxt_hwrm_check_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7806 {
7807 	if (bp->hwrm_spec_code < 0x10801)
7808 		return 0;
7809 
7810 	if (BNXT_PF(bp))
7811 		return bnxt_hwrm_check_pf_rings(bp, hwr);
7812 
7813 	return bnxt_hwrm_check_vf_rings(bp, hwr);
7814 }
7815 
7816 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
7817 {
7818 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7819 	struct hwrm_ring_aggint_qcaps_output *resp;
7820 	struct hwrm_ring_aggint_qcaps_input *req;
7821 	int rc;
7822 
7823 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
7824 	coal_cap->num_cmpl_dma_aggr_max = 63;
7825 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
7826 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
7827 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
7828 	coal_cap->int_lat_tmr_min_max = 65535;
7829 	coal_cap->int_lat_tmr_max_max = 65535;
7830 	coal_cap->num_cmpl_aggr_int_max = 65535;
7831 	coal_cap->timer_units = 80;
7832 
7833 	if (bp->hwrm_spec_code < 0x10902)
7834 		return;
7835 
7836 	if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS))
7837 		return;
7838 
7839 	resp = hwrm_req_hold(bp, req);
7840 	rc = hwrm_req_send_silent(bp, req);
7841 	if (!rc) {
7842 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
7843 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
7844 		coal_cap->num_cmpl_dma_aggr_max =
7845 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
7846 		coal_cap->num_cmpl_dma_aggr_during_int_max =
7847 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
7848 		coal_cap->cmpl_aggr_dma_tmr_max =
7849 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
7850 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
7851 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
7852 		coal_cap->int_lat_tmr_min_max =
7853 			le16_to_cpu(resp->int_lat_tmr_min_max);
7854 		coal_cap->int_lat_tmr_max_max =
7855 			le16_to_cpu(resp->int_lat_tmr_max_max);
7856 		coal_cap->num_cmpl_aggr_int_max =
7857 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
7858 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
7859 	}
7860 	hwrm_req_drop(bp, req);
7861 }
7862 
7863 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
7864 {
7865 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7866 
7867 	return usec * 1000 / coal_cap->timer_units;
7868 }
7869 
7870 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
7871 	struct bnxt_coal *hw_coal,
7872 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
7873 {
7874 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7875 	u16 val, tmr, max, flags = hw_coal->flags;
7876 	u32 cmpl_params = coal_cap->cmpl_params;
7877 
7878 	max = hw_coal->bufs_per_record * 128;
7879 	if (hw_coal->budget)
7880 		max = hw_coal->bufs_per_record * hw_coal->budget;
7881 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
7882 
7883 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
7884 	req->num_cmpl_aggr_int = cpu_to_le16(val);
7885 
7886 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
7887 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
7888 
7889 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
7890 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
7891 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
7892 
7893 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
7894 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
7895 	req->int_lat_tmr_max = cpu_to_le16(tmr);
7896 
7897 	/* min timer set to 1/2 of interrupt timer */
7898 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
7899 		val = tmr / 2;
7900 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
7901 		req->int_lat_tmr_min = cpu_to_le16(val);
7902 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
7903 	}
7904 
7905 	/* buf timer set to 1/4 of interrupt timer */
7906 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
7907 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
7908 
7909 	if (cmpl_params &
7910 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
7911 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
7912 		val = clamp_t(u16, tmr, 1,
7913 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
7914 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
7915 		req->enables |=
7916 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
7917 	}
7918 
7919 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
7920 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
7921 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
7922 	req->flags = cpu_to_le16(flags);
7923 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
7924 }
7925 
7926 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
7927 				   struct bnxt_coal *hw_coal)
7928 {
7929 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req;
7930 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7931 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7932 	u32 nq_params = coal_cap->nq_params;
7933 	u16 tmr;
7934 	int rc;
7935 
7936 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
7937 		return 0;
7938 
7939 	rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7940 	if (rc)
7941 		return rc;
7942 
7943 	req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
7944 	req->flags =
7945 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
7946 
7947 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
7948 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
7949 	req->int_lat_tmr_min = cpu_to_le16(tmr);
7950 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
7951 	return hwrm_req_send(bp, req);
7952 }
7953 
7954 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
7955 {
7956 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx;
7957 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7958 	struct bnxt_coal coal;
7959 	int rc;
7960 
7961 	/* Tick values in micro seconds.
7962 	 * 1 coal_buf x bufs_per_record = 1 completion record.
7963 	 */
7964 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
7965 
7966 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
7967 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
7968 
7969 	if (!bnapi->rx_ring)
7970 		return -ENODEV;
7971 
7972 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7973 	if (rc)
7974 		return rc;
7975 
7976 	bnxt_hwrm_set_coal_params(bp, &coal, req_rx);
7977 
7978 	req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
7979 
7980 	return hwrm_req_send(bp, req_rx);
7981 }
7982 
7983 static int
7984 bnxt_hwrm_set_rx_coal(struct bnxt *bp, struct bnxt_napi *bnapi,
7985 		      struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
7986 {
7987 	u16 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
7988 
7989 	req->ring_id = cpu_to_le16(ring_id);
7990 	return hwrm_req_send(bp, req);
7991 }
7992 
7993 static int
7994 bnxt_hwrm_set_tx_coal(struct bnxt *bp, struct bnxt_napi *bnapi,
7995 		      struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
7996 {
7997 	struct bnxt_tx_ring_info *txr;
7998 	int i, rc;
7999 
8000 	bnxt_for_each_napi_tx(i, bnapi, txr) {
8001 		u16 ring_id;
8002 
8003 		ring_id = bnxt_cp_ring_for_tx(bp, txr);
8004 		req->ring_id = cpu_to_le16(ring_id);
8005 		rc = hwrm_req_send(bp, req);
8006 		if (rc)
8007 			return rc;
8008 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
8009 			return 0;
8010 	}
8011 	return 0;
8012 }
8013 
8014 int bnxt_hwrm_set_coal(struct bnxt *bp)
8015 {
8016 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx;
8017 	int i, rc;
8018 
8019 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
8020 	if (rc)
8021 		return rc;
8022 
8023 	rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
8024 	if (rc) {
8025 		hwrm_req_drop(bp, req_rx);
8026 		return rc;
8027 	}
8028 
8029 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx);
8030 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx);
8031 
8032 	hwrm_req_hold(bp, req_rx);
8033 	hwrm_req_hold(bp, req_tx);
8034 	for (i = 0; i < bp->cp_nr_rings; i++) {
8035 		struct bnxt_napi *bnapi = bp->bnapi[i];
8036 		struct bnxt_coal *hw_coal;
8037 
8038 		if (!bnapi->rx_ring)
8039 			rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx);
8040 		else
8041 			rc = bnxt_hwrm_set_rx_coal(bp, bnapi, req_rx);
8042 		if (rc)
8043 			break;
8044 
8045 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
8046 			continue;
8047 
8048 		if (bnapi->rx_ring && bnapi->tx_ring[0]) {
8049 			rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx);
8050 			if (rc)
8051 				break;
8052 		}
8053 		if (bnapi->rx_ring)
8054 			hw_coal = &bp->rx_coal;
8055 		else
8056 			hw_coal = &bp->tx_coal;
8057 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
8058 	}
8059 	hwrm_req_drop(bp, req_rx);
8060 	hwrm_req_drop(bp, req_tx);
8061 	return rc;
8062 }
8063 
8064 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
8065 {
8066 	struct hwrm_stat_ctx_clr_stats_input *req0 = NULL;
8067 	struct hwrm_stat_ctx_free_input *req;
8068 	int i;
8069 
8070 	if (!bp->bnapi)
8071 		return;
8072 
8073 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8074 		return;
8075 
8076 	if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE))
8077 		return;
8078 	if (BNXT_FW_MAJ(bp) <= 20) {
8079 		if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) {
8080 			hwrm_req_drop(bp, req);
8081 			return;
8082 		}
8083 		hwrm_req_hold(bp, req0);
8084 	}
8085 	hwrm_req_hold(bp, req);
8086 	for (i = 0; i < bp->cp_nr_rings; i++) {
8087 		struct bnxt_napi *bnapi = bp->bnapi[i];
8088 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
8089 
8090 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
8091 			req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
8092 			if (req0) {
8093 				req0->stat_ctx_id = req->stat_ctx_id;
8094 				hwrm_req_send(bp, req0);
8095 			}
8096 			hwrm_req_send(bp, req);
8097 
8098 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
8099 		}
8100 	}
8101 	hwrm_req_drop(bp, req);
8102 	if (req0)
8103 		hwrm_req_drop(bp, req0);
8104 }
8105 
8106 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
8107 {
8108 	struct hwrm_stat_ctx_alloc_output *resp;
8109 	struct hwrm_stat_ctx_alloc_input *req;
8110 	int rc, i;
8111 
8112 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8113 		return 0;
8114 
8115 	rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC);
8116 	if (rc)
8117 		return rc;
8118 
8119 	req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
8120 	req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
8121 
8122 	resp = hwrm_req_hold(bp, req);
8123 	for (i = 0; i < bp->cp_nr_rings; i++) {
8124 		struct bnxt_napi *bnapi = bp->bnapi[i];
8125 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
8126 
8127 		req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
8128 
8129 		rc = hwrm_req_send(bp, req);
8130 		if (rc)
8131 			break;
8132 
8133 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
8134 
8135 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
8136 	}
8137 	hwrm_req_drop(bp, req);
8138 	return rc;
8139 }
8140 
8141 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
8142 {
8143 	struct hwrm_func_qcfg_output *resp;
8144 	struct hwrm_func_qcfg_input *req;
8145 	u16 flags;
8146 	int rc;
8147 
8148 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
8149 	if (rc)
8150 		return rc;
8151 
8152 	req->fid = cpu_to_le16(0xffff);
8153 	resp = hwrm_req_hold(bp, req);
8154 	rc = hwrm_req_send(bp, req);
8155 	if (rc)
8156 		goto func_qcfg_exit;
8157 
8158 #ifdef CONFIG_BNXT_SRIOV
8159 	if (BNXT_VF(bp)) {
8160 		struct bnxt_vf_info *vf = &bp->vf;
8161 
8162 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
8163 	} else {
8164 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
8165 	}
8166 #endif
8167 	flags = le16_to_cpu(resp->flags);
8168 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
8169 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
8170 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
8171 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
8172 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
8173 	}
8174 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
8175 		bp->flags |= BNXT_FLAG_MULTI_HOST;
8176 
8177 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
8178 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
8179 
8180 	switch (resp->port_partition_type) {
8181 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
8182 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
8183 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
8184 		bp->port_partition_type = resp->port_partition_type;
8185 		break;
8186 	}
8187 	if (bp->hwrm_spec_code < 0x10707 ||
8188 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
8189 		bp->br_mode = BRIDGE_MODE_VEB;
8190 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
8191 		bp->br_mode = BRIDGE_MODE_VEPA;
8192 	else
8193 		bp->br_mode = BRIDGE_MODE_UNDEF;
8194 
8195 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
8196 	if (!bp->max_mtu)
8197 		bp->max_mtu = BNXT_MAX_MTU;
8198 
8199 	if (bp->db_size)
8200 		goto func_qcfg_exit;
8201 
8202 	bp->db_offset = le16_to_cpu(resp->legacy_l2_db_size_kb) * 1024;
8203 	if (BNXT_CHIP_P5(bp)) {
8204 		if (BNXT_PF(bp))
8205 			bp->db_offset = DB_PF_OFFSET_P5;
8206 		else
8207 			bp->db_offset = DB_VF_OFFSET_P5;
8208 	}
8209 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
8210 				 1024);
8211 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
8212 	    bp->db_size <= bp->db_offset)
8213 		bp->db_size = pci_resource_len(bp->pdev, 2);
8214 
8215 func_qcfg_exit:
8216 	hwrm_req_drop(bp, req);
8217 	return rc;
8218 }
8219 
8220 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_type *ctxm,
8221 				      u8 init_val, u8 init_offset,
8222 				      bool init_mask_set)
8223 {
8224 	ctxm->init_value = init_val;
8225 	ctxm->init_offset = BNXT_CTX_INIT_INVALID_OFFSET;
8226 	if (init_mask_set)
8227 		ctxm->init_offset = init_offset * 4;
8228 	else
8229 		ctxm->init_value = 0;
8230 }
8231 
8232 static int bnxt_alloc_all_ctx_pg_info(struct bnxt *bp, int ctx_max)
8233 {
8234 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8235 	u16 type;
8236 
8237 	for (type = 0; type < ctx_max; type++) {
8238 		struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type];
8239 		int n = 1;
8240 
8241 		if (!ctxm->max_entries)
8242 			continue;
8243 
8244 		if (ctxm->instance_bmap)
8245 			n = hweight32(ctxm->instance_bmap);
8246 		ctxm->pg_info = kcalloc(n, sizeof(*ctxm->pg_info), GFP_KERNEL);
8247 		if (!ctxm->pg_info)
8248 			return -ENOMEM;
8249 	}
8250 	return 0;
8251 }
8252 
8253 #define BNXT_CTX_INIT_VALID(flags)	\
8254 	(!!((flags) &			\
8255 	    FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_ENABLE_CTX_KIND_INIT))
8256 
8257 static int bnxt_hwrm_func_backing_store_qcaps_v2(struct bnxt *bp)
8258 {
8259 	struct hwrm_func_backing_store_qcaps_v2_output *resp;
8260 	struct hwrm_func_backing_store_qcaps_v2_input *req;
8261 	struct bnxt_ctx_mem_info *ctx;
8262 	u16 type;
8263 	int rc;
8264 
8265 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS_V2);
8266 	if (rc)
8267 		return rc;
8268 
8269 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
8270 	if (!ctx)
8271 		return -ENOMEM;
8272 	bp->ctx = ctx;
8273 
8274 	resp = hwrm_req_hold(bp, req);
8275 
8276 	for (type = 0; type < BNXT_CTX_V2_MAX; ) {
8277 		struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type];
8278 		u8 init_val, init_off, i;
8279 		__le32 *p;
8280 		u32 flags;
8281 
8282 		req->type = cpu_to_le16(type);
8283 		rc = hwrm_req_send(bp, req);
8284 		if (rc)
8285 			goto ctx_done;
8286 		flags = le32_to_cpu(resp->flags);
8287 		type = le16_to_cpu(resp->next_valid_type);
8288 		if (!(flags & FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_TYPE_VALID))
8289 			continue;
8290 
8291 		ctxm->type = le16_to_cpu(resp->type);
8292 		ctxm->entry_size = le16_to_cpu(resp->entry_size);
8293 		ctxm->flags = flags;
8294 		ctxm->instance_bmap = le32_to_cpu(resp->instance_bit_map);
8295 		ctxm->entry_multiple = resp->entry_multiple;
8296 		ctxm->max_entries = le32_to_cpu(resp->max_num_entries);
8297 		ctxm->min_entries = le32_to_cpu(resp->min_num_entries);
8298 		init_val = resp->ctx_init_value;
8299 		init_off = resp->ctx_init_offset;
8300 		bnxt_init_ctx_initializer(ctxm, init_val, init_off,
8301 					  BNXT_CTX_INIT_VALID(flags));
8302 		ctxm->split_entry_cnt = min_t(u8, resp->subtype_valid_cnt,
8303 					      BNXT_MAX_SPLIT_ENTRY);
8304 		for (i = 0, p = &resp->split_entry_0; i < ctxm->split_entry_cnt;
8305 		     i++, p++)
8306 			ctxm->split[i] = le32_to_cpu(*p);
8307 	}
8308 	rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_V2_MAX);
8309 
8310 ctx_done:
8311 	hwrm_req_drop(bp, req);
8312 	return rc;
8313 }
8314 
8315 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
8316 {
8317 	struct hwrm_func_backing_store_qcaps_output *resp;
8318 	struct hwrm_func_backing_store_qcaps_input *req;
8319 	int rc;
8320 
8321 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
8322 		return 0;
8323 
8324 	if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2)
8325 		return bnxt_hwrm_func_backing_store_qcaps_v2(bp);
8326 
8327 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS);
8328 	if (rc)
8329 		return rc;
8330 
8331 	resp = hwrm_req_hold(bp, req);
8332 	rc = hwrm_req_send_silent(bp, req);
8333 	if (!rc) {
8334 		struct bnxt_ctx_mem_type *ctxm;
8335 		struct bnxt_ctx_mem_info *ctx;
8336 		u8 init_val, init_idx = 0;
8337 		u16 init_mask;
8338 
8339 		ctx = bp->ctx;
8340 		if (!ctx) {
8341 			ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
8342 			if (!ctx) {
8343 				rc = -ENOMEM;
8344 				goto ctx_err;
8345 			}
8346 			bp->ctx = ctx;
8347 		}
8348 		init_val = resp->ctx_kind_initializer;
8349 		init_mask = le16_to_cpu(resp->ctx_init_mask);
8350 
8351 		ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8352 		ctxm->max_entries = le32_to_cpu(resp->qp_max_entries);
8353 		ctxm->qp_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
8354 		ctxm->qp_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
8355 		ctxm->qp_fast_qpmd_entries = le16_to_cpu(resp->fast_qpmd_qp_num_entries);
8356 		ctxm->entry_size = le16_to_cpu(resp->qp_entry_size);
8357 		bnxt_init_ctx_initializer(ctxm, init_val, resp->qp_init_offset,
8358 					  (init_mask & (1 << init_idx++)) != 0);
8359 
8360 		ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8361 		ctxm->srq_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
8362 		ctxm->max_entries = le32_to_cpu(resp->srq_max_entries);
8363 		ctxm->entry_size = le16_to_cpu(resp->srq_entry_size);
8364 		bnxt_init_ctx_initializer(ctxm, init_val, resp->srq_init_offset,
8365 					  (init_mask & (1 << init_idx++)) != 0);
8366 
8367 		ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
8368 		ctxm->cq_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
8369 		ctxm->max_entries = le32_to_cpu(resp->cq_max_entries);
8370 		ctxm->entry_size = le16_to_cpu(resp->cq_entry_size);
8371 		bnxt_init_ctx_initializer(ctxm, init_val, resp->cq_init_offset,
8372 					  (init_mask & (1 << init_idx++)) != 0);
8373 
8374 		ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
8375 		ctxm->vnic_entries = le16_to_cpu(resp->vnic_max_vnic_entries);
8376 		ctxm->max_entries = ctxm->vnic_entries +
8377 			le16_to_cpu(resp->vnic_max_ring_table_entries);
8378 		ctxm->entry_size = le16_to_cpu(resp->vnic_entry_size);
8379 		bnxt_init_ctx_initializer(ctxm, init_val,
8380 					  resp->vnic_init_offset,
8381 					  (init_mask & (1 << init_idx++)) != 0);
8382 
8383 		ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
8384 		ctxm->max_entries = le32_to_cpu(resp->stat_max_entries);
8385 		ctxm->entry_size = le16_to_cpu(resp->stat_entry_size);
8386 		bnxt_init_ctx_initializer(ctxm, init_val,
8387 					  resp->stat_init_offset,
8388 					  (init_mask & (1 << init_idx++)) != 0);
8389 
8390 		ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
8391 		ctxm->entry_size = le16_to_cpu(resp->tqm_entry_size);
8392 		ctxm->min_entries = le32_to_cpu(resp->tqm_min_entries_per_ring);
8393 		ctxm->max_entries = le32_to_cpu(resp->tqm_max_entries_per_ring);
8394 		ctxm->entry_multiple = resp->tqm_entries_multiple;
8395 		if (!ctxm->entry_multiple)
8396 			ctxm->entry_multiple = 1;
8397 
8398 		memcpy(&ctx->ctx_arr[BNXT_CTX_FTQM], ctxm, sizeof(*ctxm));
8399 
8400 		ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
8401 		ctxm->max_entries = le32_to_cpu(resp->mrav_max_entries);
8402 		ctxm->entry_size = le16_to_cpu(resp->mrav_entry_size);
8403 		ctxm->mrav_num_entries_units =
8404 			le16_to_cpu(resp->mrav_num_entries_units);
8405 		bnxt_init_ctx_initializer(ctxm, init_val,
8406 					  resp->mrav_init_offset,
8407 					  (init_mask & (1 << init_idx++)) != 0);
8408 
8409 		ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
8410 		ctxm->entry_size = le16_to_cpu(resp->tim_entry_size);
8411 		ctxm->max_entries = le32_to_cpu(resp->tim_max_entries);
8412 
8413 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
8414 		if (!ctx->tqm_fp_rings_count)
8415 			ctx->tqm_fp_rings_count = bp->max_q;
8416 		else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
8417 			ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
8418 
8419 		ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM];
8420 		memcpy(ctxm, &ctx->ctx_arr[BNXT_CTX_STQM], sizeof(*ctxm));
8421 		ctxm->instance_bmap = (1 << ctx->tqm_fp_rings_count) - 1;
8422 
8423 		rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_MAX);
8424 	} else {
8425 		rc = 0;
8426 	}
8427 ctx_err:
8428 	hwrm_req_drop(bp, req);
8429 	return rc;
8430 }
8431 
8432 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
8433 				  __le64 *pg_dir)
8434 {
8435 	if (!rmem->nr_pages)
8436 		return;
8437 
8438 	BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
8439 	if (rmem->depth >= 1) {
8440 		if (rmem->depth == 2)
8441 			*pg_attr |= 2;
8442 		else
8443 			*pg_attr |= 1;
8444 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
8445 	} else {
8446 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
8447 	}
8448 }
8449 
8450 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
8451 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
8452 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
8453 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
8454 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
8455 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
8456 
8457 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
8458 {
8459 	struct hwrm_func_backing_store_cfg_input *req;
8460 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8461 	struct bnxt_ctx_pg_info *ctx_pg;
8462 	struct bnxt_ctx_mem_type *ctxm;
8463 	void **__req = (void **)&req;
8464 	u32 req_len = sizeof(*req);
8465 	__le32 *num_entries;
8466 	__le64 *pg_dir;
8467 	u32 flags = 0;
8468 	u8 *pg_attr;
8469 	u32 ena;
8470 	int rc;
8471 	int i;
8472 
8473 	if (!ctx)
8474 		return 0;
8475 
8476 	if (req_len > bp->hwrm_max_ext_req_len)
8477 		req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
8478 	rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len);
8479 	if (rc)
8480 		return rc;
8481 
8482 	req->enables = cpu_to_le32(enables);
8483 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
8484 		ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8485 		ctx_pg = ctxm->pg_info;
8486 		req->qp_num_entries = cpu_to_le32(ctx_pg->entries);
8487 		req->qp_num_qp1_entries = cpu_to_le16(ctxm->qp_qp1_entries);
8488 		req->qp_num_l2_entries = cpu_to_le16(ctxm->qp_l2_entries);
8489 		req->qp_entry_size = cpu_to_le16(ctxm->entry_size);
8490 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8491 				      &req->qpc_pg_size_qpc_lvl,
8492 				      &req->qpc_page_dir);
8493 
8494 		if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD)
8495 			req->qp_num_fast_qpmd_entries = cpu_to_le16(ctxm->qp_fast_qpmd_entries);
8496 	}
8497 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
8498 		ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8499 		ctx_pg = ctxm->pg_info;
8500 		req->srq_num_entries = cpu_to_le32(ctx_pg->entries);
8501 		req->srq_num_l2_entries = cpu_to_le16(ctxm->srq_l2_entries);
8502 		req->srq_entry_size = cpu_to_le16(ctxm->entry_size);
8503 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8504 				      &req->srq_pg_size_srq_lvl,
8505 				      &req->srq_page_dir);
8506 	}
8507 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
8508 		ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
8509 		ctx_pg = ctxm->pg_info;
8510 		req->cq_num_entries = cpu_to_le32(ctx_pg->entries);
8511 		req->cq_num_l2_entries = cpu_to_le16(ctxm->cq_l2_entries);
8512 		req->cq_entry_size = cpu_to_le16(ctxm->entry_size);
8513 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8514 				      &req->cq_pg_size_cq_lvl,
8515 				      &req->cq_page_dir);
8516 	}
8517 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
8518 		ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
8519 		ctx_pg = ctxm->pg_info;
8520 		req->vnic_num_vnic_entries = cpu_to_le16(ctxm->vnic_entries);
8521 		req->vnic_num_ring_table_entries =
8522 			cpu_to_le16(ctxm->max_entries - ctxm->vnic_entries);
8523 		req->vnic_entry_size = cpu_to_le16(ctxm->entry_size);
8524 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8525 				      &req->vnic_pg_size_vnic_lvl,
8526 				      &req->vnic_page_dir);
8527 	}
8528 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
8529 		ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
8530 		ctx_pg = ctxm->pg_info;
8531 		req->stat_num_entries = cpu_to_le32(ctxm->max_entries);
8532 		req->stat_entry_size = cpu_to_le16(ctxm->entry_size);
8533 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8534 				      &req->stat_pg_size_stat_lvl,
8535 				      &req->stat_page_dir);
8536 	}
8537 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
8538 		u32 units;
8539 
8540 		ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
8541 		ctx_pg = ctxm->pg_info;
8542 		req->mrav_num_entries = cpu_to_le32(ctx_pg->entries);
8543 		units = ctxm->mrav_num_entries_units;
8544 		if (units) {
8545 			u32 num_mr, num_ah = ctxm->mrav_av_entries;
8546 			u32 entries;
8547 
8548 			num_mr = ctx_pg->entries - num_ah;
8549 			entries = ((num_mr / units) << 16) | (num_ah / units);
8550 			req->mrav_num_entries = cpu_to_le32(entries);
8551 			flags |= FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
8552 		}
8553 		req->mrav_entry_size = cpu_to_le16(ctxm->entry_size);
8554 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8555 				      &req->mrav_pg_size_mrav_lvl,
8556 				      &req->mrav_page_dir);
8557 	}
8558 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
8559 		ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
8560 		ctx_pg = ctxm->pg_info;
8561 		req->tim_num_entries = cpu_to_le32(ctx_pg->entries);
8562 		req->tim_entry_size = cpu_to_le16(ctxm->entry_size);
8563 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8564 				      &req->tim_pg_size_tim_lvl,
8565 				      &req->tim_page_dir);
8566 	}
8567 	ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
8568 	for (i = 0, num_entries = &req->tqm_sp_num_entries,
8569 	     pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl,
8570 	     pg_dir = &req->tqm_sp_page_dir,
8571 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP,
8572 	     ctx_pg = ctxm->pg_info;
8573 	     i < BNXT_MAX_TQM_RINGS;
8574 	     ctx_pg = &ctx->ctx_arr[BNXT_CTX_FTQM].pg_info[i],
8575 	     i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
8576 		if (!(enables & ena))
8577 			continue;
8578 
8579 		req->tqm_entry_size = cpu_to_le16(ctxm->entry_size);
8580 		*num_entries = cpu_to_le32(ctx_pg->entries);
8581 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
8582 	}
8583 	req->flags = cpu_to_le32(flags);
8584 	return hwrm_req_send(bp, req);
8585 }
8586 
8587 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
8588 				  struct bnxt_ctx_pg_info *ctx_pg)
8589 {
8590 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
8591 
8592 	rmem->page_size = BNXT_PAGE_SIZE;
8593 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
8594 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
8595 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
8596 	if (rmem->depth >= 1)
8597 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
8598 	return bnxt_alloc_ring(bp, rmem);
8599 }
8600 
8601 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
8602 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
8603 				  u8 depth, struct bnxt_ctx_mem_type *ctxm)
8604 {
8605 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
8606 	int rc;
8607 
8608 	if (!mem_size)
8609 		return -EINVAL;
8610 
8611 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
8612 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
8613 		ctx_pg->nr_pages = 0;
8614 		return -EINVAL;
8615 	}
8616 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
8617 		int nr_tbls, i;
8618 
8619 		rmem->depth = 2;
8620 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
8621 					     GFP_KERNEL);
8622 		if (!ctx_pg->ctx_pg_tbl)
8623 			return -ENOMEM;
8624 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
8625 		rmem->nr_pages = nr_tbls;
8626 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
8627 		if (rc)
8628 			return rc;
8629 		for (i = 0; i < nr_tbls; i++) {
8630 			struct bnxt_ctx_pg_info *pg_tbl;
8631 
8632 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
8633 			if (!pg_tbl)
8634 				return -ENOMEM;
8635 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
8636 			rmem = &pg_tbl->ring_mem;
8637 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
8638 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
8639 			rmem->depth = 1;
8640 			rmem->nr_pages = MAX_CTX_PAGES;
8641 			rmem->ctx_mem = ctxm;
8642 			if (i == (nr_tbls - 1)) {
8643 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
8644 
8645 				if (rem)
8646 					rmem->nr_pages = rem;
8647 			}
8648 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
8649 			if (rc)
8650 				break;
8651 		}
8652 	} else {
8653 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
8654 		if (rmem->nr_pages > 1 || depth)
8655 			rmem->depth = 1;
8656 		rmem->ctx_mem = ctxm;
8657 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
8658 	}
8659 	return rc;
8660 }
8661 
8662 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
8663 				  struct bnxt_ctx_pg_info *ctx_pg)
8664 {
8665 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
8666 
8667 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
8668 	    ctx_pg->ctx_pg_tbl) {
8669 		int i, nr_tbls = rmem->nr_pages;
8670 
8671 		for (i = 0; i < nr_tbls; i++) {
8672 			struct bnxt_ctx_pg_info *pg_tbl;
8673 			struct bnxt_ring_mem_info *rmem2;
8674 
8675 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
8676 			if (!pg_tbl)
8677 				continue;
8678 			rmem2 = &pg_tbl->ring_mem;
8679 			bnxt_free_ring(bp, rmem2);
8680 			ctx_pg->ctx_pg_arr[i] = NULL;
8681 			kfree(pg_tbl);
8682 			ctx_pg->ctx_pg_tbl[i] = NULL;
8683 		}
8684 		kfree(ctx_pg->ctx_pg_tbl);
8685 		ctx_pg->ctx_pg_tbl = NULL;
8686 	}
8687 	bnxt_free_ring(bp, rmem);
8688 	ctx_pg->nr_pages = 0;
8689 }
8690 
8691 static int bnxt_setup_ctxm_pg_tbls(struct bnxt *bp,
8692 				   struct bnxt_ctx_mem_type *ctxm, u32 entries,
8693 				   u8 pg_lvl)
8694 {
8695 	struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info;
8696 	int i, rc = 0, n = 1;
8697 	u32 mem_size;
8698 
8699 	if (!ctxm->entry_size || !ctx_pg)
8700 		return -EINVAL;
8701 	if (ctxm->instance_bmap)
8702 		n = hweight32(ctxm->instance_bmap);
8703 	if (ctxm->entry_multiple)
8704 		entries = roundup(entries, ctxm->entry_multiple);
8705 	entries = clamp_t(u32, entries, ctxm->min_entries, ctxm->max_entries);
8706 	mem_size = entries * ctxm->entry_size;
8707 	for (i = 0; i < n && !rc; i++) {
8708 		ctx_pg[i].entries = entries;
8709 		rc = bnxt_alloc_ctx_pg_tbls(bp, &ctx_pg[i], mem_size, pg_lvl,
8710 					    ctxm->init_value ? ctxm : NULL);
8711 	}
8712 	return rc;
8713 }
8714 
8715 static int bnxt_hwrm_func_backing_store_cfg_v2(struct bnxt *bp,
8716 					       struct bnxt_ctx_mem_type *ctxm,
8717 					       bool last)
8718 {
8719 	struct hwrm_func_backing_store_cfg_v2_input *req;
8720 	u32 instance_bmap = ctxm->instance_bmap;
8721 	int i, j, rc = 0, n = 1;
8722 	__le32 *p;
8723 
8724 	if (!(ctxm->flags & BNXT_CTX_MEM_TYPE_VALID) || !ctxm->pg_info)
8725 		return 0;
8726 
8727 	if (instance_bmap)
8728 		n = hweight32(ctxm->instance_bmap);
8729 	else
8730 		instance_bmap = 1;
8731 
8732 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_CFG_V2);
8733 	if (rc)
8734 		return rc;
8735 	hwrm_req_hold(bp, req);
8736 	req->type = cpu_to_le16(ctxm->type);
8737 	req->entry_size = cpu_to_le16(ctxm->entry_size);
8738 	req->subtype_valid_cnt = ctxm->split_entry_cnt;
8739 	for (i = 0, p = &req->split_entry_0; i < ctxm->split_entry_cnt; i++)
8740 		p[i] = cpu_to_le32(ctxm->split[i]);
8741 	for (i = 0, j = 0; j < n && !rc; i++) {
8742 		struct bnxt_ctx_pg_info *ctx_pg;
8743 
8744 		if (!(instance_bmap & (1 << i)))
8745 			continue;
8746 		req->instance = cpu_to_le16(i);
8747 		ctx_pg = &ctxm->pg_info[j++];
8748 		if (!ctx_pg->entries)
8749 			continue;
8750 		req->num_entries = cpu_to_le32(ctx_pg->entries);
8751 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8752 				      &req->page_size_pbl_level,
8753 				      &req->page_dir);
8754 		if (last && j == n)
8755 			req->flags =
8756 				cpu_to_le32(FUNC_BACKING_STORE_CFG_V2_REQ_FLAGS_BS_CFG_ALL_DONE);
8757 		rc = hwrm_req_send(bp, req);
8758 	}
8759 	hwrm_req_drop(bp, req);
8760 	return rc;
8761 }
8762 
8763 static int bnxt_backing_store_cfg_v2(struct bnxt *bp, u32 ena)
8764 {
8765 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8766 	struct bnxt_ctx_mem_type *ctxm;
8767 	u16 last_type;
8768 	int rc = 0;
8769 	u16 type;
8770 
8771 	if (!ena)
8772 		return 0;
8773 	else if (ena & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM)
8774 		last_type = BNXT_CTX_MAX - 1;
8775 	else
8776 		last_type = BNXT_CTX_L2_MAX - 1;
8777 	ctx->ctx_arr[last_type].last = 1;
8778 
8779 	for (type = 0 ; type < BNXT_CTX_V2_MAX; type++) {
8780 		ctxm = &ctx->ctx_arr[type];
8781 
8782 		rc = bnxt_hwrm_func_backing_store_cfg_v2(bp, ctxm, ctxm->last);
8783 		if (rc)
8784 			return rc;
8785 	}
8786 	return 0;
8787 }
8788 
8789 void bnxt_free_ctx_mem(struct bnxt *bp)
8790 {
8791 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8792 	u16 type;
8793 
8794 	if (!ctx)
8795 		return;
8796 
8797 	for (type = 0; type < BNXT_CTX_V2_MAX; type++) {
8798 		struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type];
8799 		struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info;
8800 		int i, n = 1;
8801 
8802 		if (!ctx_pg)
8803 			continue;
8804 		if (ctxm->instance_bmap)
8805 			n = hweight32(ctxm->instance_bmap);
8806 		for (i = 0; i < n; i++)
8807 			bnxt_free_ctx_pg_tbls(bp, &ctx_pg[i]);
8808 
8809 		kfree(ctx_pg);
8810 		ctxm->pg_info = NULL;
8811 	}
8812 
8813 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
8814 	kfree(ctx);
8815 	bp->ctx = NULL;
8816 }
8817 
8818 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
8819 {
8820 	struct bnxt_ctx_mem_type *ctxm;
8821 	struct bnxt_ctx_mem_info *ctx;
8822 	u32 l2_qps, qp1_qps, max_qps;
8823 	u32 ena, entries_sp, entries;
8824 	u32 srqs, max_srqs, min;
8825 	u32 num_mr, num_ah;
8826 	u32 extra_srqs = 0;
8827 	u32 extra_qps = 0;
8828 	u32 fast_qpmd_qps;
8829 	u8 pg_lvl = 1;
8830 	int i, rc;
8831 
8832 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
8833 	if (rc) {
8834 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
8835 			   rc);
8836 		return rc;
8837 	}
8838 	ctx = bp->ctx;
8839 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
8840 		return 0;
8841 
8842 	ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8843 	l2_qps = ctxm->qp_l2_entries;
8844 	qp1_qps = ctxm->qp_qp1_entries;
8845 	fast_qpmd_qps = ctxm->qp_fast_qpmd_entries;
8846 	max_qps = ctxm->max_entries;
8847 	ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8848 	srqs = ctxm->srq_l2_entries;
8849 	max_srqs = ctxm->max_entries;
8850 	ena = 0;
8851 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
8852 		pg_lvl = 2;
8853 		extra_qps = min_t(u32, 65536, max_qps - l2_qps - qp1_qps);
8854 		/* allocate extra qps if fw supports RoCE fast qp destroy feature */
8855 		extra_qps += fast_qpmd_qps;
8856 		extra_srqs = min_t(u32, 8192, max_srqs - srqs);
8857 		if (fast_qpmd_qps)
8858 			ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD;
8859 	}
8860 
8861 	ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8862 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps,
8863 				     pg_lvl);
8864 	if (rc)
8865 		return rc;
8866 
8867 	ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8868 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, srqs + extra_srqs, pg_lvl);
8869 	if (rc)
8870 		return rc;
8871 
8872 	ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
8873 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->cq_l2_entries +
8874 				     extra_qps * 2, pg_lvl);
8875 	if (rc)
8876 		return rc;
8877 
8878 	ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
8879 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1);
8880 	if (rc)
8881 		return rc;
8882 
8883 	ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
8884 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1);
8885 	if (rc)
8886 		return rc;
8887 
8888 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
8889 		goto skip_rdma;
8890 
8891 	ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
8892 	/* 128K extra is needed to accommodate static AH context
8893 	 * allocation by f/w.
8894 	 */
8895 	num_mr = min_t(u32, ctxm->max_entries / 2, 1024 * 256);
8896 	num_ah = min_t(u32, num_mr, 1024 * 128);
8897 	ctxm->split_entry_cnt = BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1;
8898 	if (!ctxm->mrav_av_entries || ctxm->mrav_av_entries > num_ah)
8899 		ctxm->mrav_av_entries = num_ah;
8900 
8901 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, num_mr + num_ah, 2);
8902 	if (rc)
8903 		return rc;
8904 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
8905 
8906 	ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
8907 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 1);
8908 	if (rc)
8909 		return rc;
8910 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
8911 
8912 skip_rdma:
8913 	ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
8914 	min = ctxm->min_entries;
8915 	entries_sp = ctx->ctx_arr[BNXT_CTX_VNIC].vnic_entries + l2_qps +
8916 		     2 * (extra_qps + qp1_qps) + min;
8917 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries_sp, 2);
8918 	if (rc)
8919 		return rc;
8920 
8921 	ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM];
8922 	entries = l2_qps + 2 * (extra_qps + qp1_qps);
8923 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries, 2);
8924 	if (rc)
8925 		return rc;
8926 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
8927 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
8928 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
8929 
8930 	if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2)
8931 		rc = bnxt_backing_store_cfg_v2(bp, ena);
8932 	else
8933 		rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
8934 	if (rc) {
8935 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
8936 			   rc);
8937 		return rc;
8938 	}
8939 	ctx->flags |= BNXT_CTX_FLAG_INITED;
8940 	return 0;
8941 }
8942 
8943 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
8944 {
8945 	struct hwrm_func_resource_qcaps_output *resp;
8946 	struct hwrm_func_resource_qcaps_input *req;
8947 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8948 	int rc;
8949 
8950 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS);
8951 	if (rc)
8952 		return rc;
8953 
8954 	req->fid = cpu_to_le16(0xffff);
8955 	resp = hwrm_req_hold(bp, req);
8956 	rc = hwrm_req_send_silent(bp, req);
8957 	if (rc)
8958 		goto hwrm_func_resc_qcaps_exit;
8959 
8960 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
8961 	if (!all)
8962 		goto hwrm_func_resc_qcaps_exit;
8963 
8964 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
8965 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
8966 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
8967 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
8968 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
8969 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
8970 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
8971 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
8972 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
8973 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
8974 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
8975 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
8976 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
8977 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
8978 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
8979 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
8980 
8981 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
8982 		u16 max_msix = le16_to_cpu(resp->max_msix);
8983 
8984 		hw_resc->max_nqs = max_msix;
8985 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
8986 	}
8987 
8988 	if (BNXT_PF(bp)) {
8989 		struct bnxt_pf_info *pf = &bp->pf;
8990 
8991 		pf->vf_resv_strategy =
8992 			le16_to_cpu(resp->vf_reservation_strategy);
8993 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
8994 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
8995 	}
8996 hwrm_func_resc_qcaps_exit:
8997 	hwrm_req_drop(bp, req);
8998 	return rc;
8999 }
9000 
9001 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
9002 {
9003 	struct hwrm_port_mac_ptp_qcfg_output *resp;
9004 	struct hwrm_port_mac_ptp_qcfg_input *req;
9005 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
9006 	bool phc_cfg;
9007 	u8 flags;
9008 	int rc;
9009 
9010 	if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5_PLUS(bp)) {
9011 		rc = -ENODEV;
9012 		goto no_ptp;
9013 	}
9014 
9015 	rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG);
9016 	if (rc)
9017 		goto no_ptp;
9018 
9019 	req->port_id = cpu_to_le16(bp->pf.port_id);
9020 	resp = hwrm_req_hold(bp, req);
9021 	rc = hwrm_req_send(bp, req);
9022 	if (rc)
9023 		goto exit;
9024 
9025 	flags = resp->flags;
9026 	if (BNXT_CHIP_P5_AND_MINUS(bp) &&
9027 	    !(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) {
9028 		rc = -ENODEV;
9029 		goto exit;
9030 	}
9031 	if (!ptp) {
9032 		ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
9033 		if (!ptp) {
9034 			rc = -ENOMEM;
9035 			goto exit;
9036 		}
9037 		ptp->bp = bp;
9038 		bp->ptp_cfg = ptp;
9039 	}
9040 
9041 	if (flags &
9042 	    (PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK |
9043 	     PORT_MAC_PTP_QCFG_RESP_FLAGS_64B_PHC_TIME)) {
9044 		ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower);
9045 		ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper);
9046 	} else if (BNXT_CHIP_P5(bp)) {
9047 		ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER;
9048 		ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER;
9049 	} else {
9050 		rc = -ENODEV;
9051 		goto exit;
9052 	}
9053 	phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0;
9054 	rc = bnxt_ptp_init(bp, phc_cfg);
9055 	if (rc)
9056 		netdev_warn(bp->dev, "PTP initialization failed.\n");
9057 exit:
9058 	hwrm_req_drop(bp, req);
9059 	if (!rc)
9060 		return 0;
9061 
9062 no_ptp:
9063 	bnxt_ptp_clear(bp);
9064 	kfree(ptp);
9065 	bp->ptp_cfg = NULL;
9066 	return rc;
9067 }
9068 
9069 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
9070 {
9071 	struct hwrm_func_qcaps_output *resp;
9072 	struct hwrm_func_qcaps_input *req;
9073 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9074 	u32 flags, flags_ext, flags_ext2;
9075 	int rc;
9076 
9077 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS);
9078 	if (rc)
9079 		return rc;
9080 
9081 	req->fid = cpu_to_le16(0xffff);
9082 	resp = hwrm_req_hold(bp, req);
9083 	rc = hwrm_req_send(bp, req);
9084 	if (rc)
9085 		goto hwrm_func_qcaps_exit;
9086 
9087 	flags = le32_to_cpu(resp->flags);
9088 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
9089 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
9090 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
9091 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
9092 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
9093 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
9094 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
9095 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
9096 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
9097 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
9098 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
9099 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
9100 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
9101 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
9102 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
9103 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
9104 	if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED)
9105 		bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS;
9106 
9107 	flags_ext = le32_to_cpu(resp->flags_ext);
9108 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
9109 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
9110 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED))
9111 		bp->fw_cap |= BNXT_FW_CAP_PTP_PPS;
9112 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED)
9113 		bp->fw_cap |= BNXT_FW_CAP_PTP_RTC;
9114 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT))
9115 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF;
9116 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED))
9117 		bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH;
9118 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_BS_V2_SUPPORTED)
9119 		bp->fw_cap |= BNXT_FW_CAP_BACKING_STORE_V2;
9120 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_TX_COAL_CMPL_CAP)
9121 		bp->flags |= BNXT_FLAG_TX_COAL_CMPL;
9122 
9123 	flags_ext2 = le32_to_cpu(resp->flags_ext2);
9124 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED)
9125 		bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS;
9126 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_UDP_GSO_SUPPORTED)
9127 		bp->flags |= BNXT_FLAG_UDP_GSO_CAP;
9128 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_TX_PKT_TS_CMPL_SUPPORTED)
9129 		bp->fw_cap |= BNXT_FW_CAP_TX_TS_CMP;
9130 
9131 	bp->tx_push_thresh = 0;
9132 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
9133 	    BNXT_FW_MAJ(bp) > 217)
9134 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
9135 
9136 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
9137 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
9138 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
9139 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
9140 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
9141 	if (!hw_resc->max_hw_ring_grps)
9142 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
9143 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
9144 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
9145 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
9146 
9147 	hw_resc->max_encap_records = le32_to_cpu(resp->max_encap_records);
9148 	hw_resc->max_decap_records = le32_to_cpu(resp->max_decap_records);
9149 	hw_resc->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
9150 	hw_resc->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
9151 	hw_resc->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
9152 	hw_resc->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
9153 
9154 	if (BNXT_PF(bp)) {
9155 		struct bnxt_pf_info *pf = &bp->pf;
9156 
9157 		pf->fw_fid = le16_to_cpu(resp->fid);
9158 		pf->port_id = le16_to_cpu(resp->port_id);
9159 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
9160 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
9161 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
9162 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
9163 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
9164 			bp->flags |= BNXT_FLAG_WOL_CAP;
9165 		if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) {
9166 			bp->fw_cap |= BNXT_FW_CAP_PTP;
9167 		} else {
9168 			bnxt_ptp_clear(bp);
9169 			kfree(bp->ptp_cfg);
9170 			bp->ptp_cfg = NULL;
9171 		}
9172 	} else {
9173 #ifdef CONFIG_BNXT_SRIOV
9174 		struct bnxt_vf_info *vf = &bp->vf;
9175 
9176 		vf->fw_fid = le16_to_cpu(resp->fid);
9177 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
9178 #endif
9179 	}
9180 	bp->tso_max_segs = le16_to_cpu(resp->max_tso_segs);
9181 
9182 hwrm_func_qcaps_exit:
9183 	hwrm_req_drop(bp, req);
9184 	return rc;
9185 }
9186 
9187 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp)
9188 {
9189 	struct hwrm_dbg_qcaps_output *resp;
9190 	struct hwrm_dbg_qcaps_input *req;
9191 	int rc;
9192 
9193 	bp->fw_dbg_cap = 0;
9194 	if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS))
9195 		return;
9196 
9197 	rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS);
9198 	if (rc)
9199 		return;
9200 
9201 	req->fid = cpu_to_le16(0xffff);
9202 	resp = hwrm_req_hold(bp, req);
9203 	rc = hwrm_req_send(bp, req);
9204 	if (rc)
9205 		goto hwrm_dbg_qcaps_exit;
9206 
9207 	bp->fw_dbg_cap = le32_to_cpu(resp->flags);
9208 
9209 hwrm_dbg_qcaps_exit:
9210 	hwrm_req_drop(bp, req);
9211 }
9212 
9213 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
9214 
9215 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
9216 {
9217 	int rc;
9218 
9219 	rc = __bnxt_hwrm_func_qcaps(bp);
9220 	if (rc)
9221 		return rc;
9222 
9223 	bnxt_hwrm_dbg_qcaps(bp);
9224 
9225 	rc = bnxt_hwrm_queue_qportcfg(bp);
9226 	if (rc) {
9227 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
9228 		return rc;
9229 	}
9230 	if (bp->hwrm_spec_code >= 0x10803) {
9231 		rc = bnxt_alloc_ctx_mem(bp);
9232 		if (rc)
9233 			return rc;
9234 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
9235 		if (!rc)
9236 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
9237 	}
9238 	return 0;
9239 }
9240 
9241 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
9242 {
9243 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
9244 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req;
9245 	u32 flags;
9246 	int rc;
9247 
9248 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
9249 		return 0;
9250 
9251 	rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS);
9252 	if (rc)
9253 		return rc;
9254 
9255 	resp = hwrm_req_hold(bp, req);
9256 	rc = hwrm_req_send(bp, req);
9257 	if (rc)
9258 		goto hwrm_cfa_adv_qcaps_exit;
9259 
9260 	flags = le32_to_cpu(resp->flags);
9261 	if (flags &
9262 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
9263 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
9264 
9265 	if (flags &
9266 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V3_SUPPORTED)
9267 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V3;
9268 
9269 	if (flags &
9270 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_NTUPLE_FLOW_RX_EXT_IP_PROTO_SUPPORTED)
9271 		bp->fw_cap |= BNXT_FW_CAP_CFA_NTUPLE_RX_EXT_IP_PROTO;
9272 
9273 hwrm_cfa_adv_qcaps_exit:
9274 	hwrm_req_drop(bp, req);
9275 	return rc;
9276 }
9277 
9278 static int __bnxt_alloc_fw_health(struct bnxt *bp)
9279 {
9280 	if (bp->fw_health)
9281 		return 0;
9282 
9283 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
9284 	if (!bp->fw_health)
9285 		return -ENOMEM;
9286 
9287 	mutex_init(&bp->fw_health->lock);
9288 	return 0;
9289 }
9290 
9291 static int bnxt_alloc_fw_health(struct bnxt *bp)
9292 {
9293 	int rc;
9294 
9295 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
9296 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
9297 		return 0;
9298 
9299 	rc = __bnxt_alloc_fw_health(bp);
9300 	if (rc) {
9301 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
9302 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
9303 		return rc;
9304 	}
9305 
9306 	return 0;
9307 }
9308 
9309 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
9310 {
9311 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
9312 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
9313 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
9314 }
9315 
9316 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
9317 {
9318 	struct bnxt_fw_health *fw_health = bp->fw_health;
9319 	u32 reg_type;
9320 
9321 	if (!fw_health)
9322 		return;
9323 
9324 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
9325 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
9326 		fw_health->status_reliable = false;
9327 
9328 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]);
9329 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
9330 		fw_health->resets_reliable = false;
9331 }
9332 
9333 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
9334 {
9335 	void __iomem *hs;
9336 	u32 status_loc;
9337 	u32 reg_type;
9338 	u32 sig;
9339 
9340 	if (bp->fw_health)
9341 		bp->fw_health->status_reliable = false;
9342 
9343 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
9344 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
9345 
9346 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
9347 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
9348 		if (!bp->chip_num) {
9349 			__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
9350 			bp->chip_num = readl(bp->bar0 +
9351 					     BNXT_FW_HEALTH_WIN_BASE +
9352 					     BNXT_GRC_REG_CHIP_NUM);
9353 		}
9354 		if (!BNXT_CHIP_P5_PLUS(bp))
9355 			return;
9356 
9357 		status_loc = BNXT_GRC_REG_STATUS_P5 |
9358 			     BNXT_FW_HEALTH_REG_TYPE_BAR0;
9359 	} else {
9360 		status_loc = readl(hs + offsetof(struct hcomm_status,
9361 						 fw_status_loc));
9362 	}
9363 
9364 	if (__bnxt_alloc_fw_health(bp)) {
9365 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
9366 		return;
9367 	}
9368 
9369 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
9370 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
9371 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
9372 		__bnxt_map_fw_health_reg(bp, status_loc);
9373 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
9374 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
9375 	}
9376 
9377 	bp->fw_health->status_reliable = true;
9378 }
9379 
9380 static int bnxt_map_fw_health_regs(struct bnxt *bp)
9381 {
9382 	struct bnxt_fw_health *fw_health = bp->fw_health;
9383 	u32 reg_base = 0xffffffff;
9384 	int i;
9385 
9386 	bp->fw_health->status_reliable = false;
9387 	bp->fw_health->resets_reliable = false;
9388 	/* Only pre-map the monitoring GRC registers using window 3 */
9389 	for (i = 0; i < 4; i++) {
9390 		u32 reg = fw_health->regs[i];
9391 
9392 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
9393 			continue;
9394 		if (reg_base == 0xffffffff)
9395 			reg_base = reg & BNXT_GRC_BASE_MASK;
9396 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
9397 			return -ERANGE;
9398 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
9399 	}
9400 	bp->fw_health->status_reliable = true;
9401 	bp->fw_health->resets_reliable = true;
9402 	if (reg_base == 0xffffffff)
9403 		return 0;
9404 
9405 	__bnxt_map_fw_health_reg(bp, reg_base);
9406 	return 0;
9407 }
9408 
9409 static void bnxt_remap_fw_health_regs(struct bnxt *bp)
9410 {
9411 	if (!bp->fw_health)
9412 		return;
9413 
9414 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) {
9415 		bp->fw_health->status_reliable = true;
9416 		bp->fw_health->resets_reliable = true;
9417 	} else {
9418 		bnxt_try_map_fw_health_reg(bp);
9419 	}
9420 }
9421 
9422 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
9423 {
9424 	struct bnxt_fw_health *fw_health = bp->fw_health;
9425 	struct hwrm_error_recovery_qcfg_output *resp;
9426 	struct hwrm_error_recovery_qcfg_input *req;
9427 	int rc, i;
9428 
9429 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
9430 		return 0;
9431 
9432 	rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG);
9433 	if (rc)
9434 		return rc;
9435 
9436 	resp = hwrm_req_hold(bp, req);
9437 	rc = hwrm_req_send(bp, req);
9438 	if (rc)
9439 		goto err_recovery_out;
9440 	fw_health->flags = le32_to_cpu(resp->flags);
9441 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
9442 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
9443 		rc = -EINVAL;
9444 		goto err_recovery_out;
9445 	}
9446 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
9447 	fw_health->master_func_wait_dsecs =
9448 		le32_to_cpu(resp->master_func_wait_period);
9449 	fw_health->normal_func_wait_dsecs =
9450 		le32_to_cpu(resp->normal_func_wait_period);
9451 	fw_health->post_reset_wait_dsecs =
9452 		le32_to_cpu(resp->master_func_wait_period_after_reset);
9453 	fw_health->post_reset_max_wait_dsecs =
9454 		le32_to_cpu(resp->max_bailout_time_after_reset);
9455 	fw_health->regs[BNXT_FW_HEALTH_REG] =
9456 		le32_to_cpu(resp->fw_health_status_reg);
9457 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
9458 		le32_to_cpu(resp->fw_heartbeat_reg);
9459 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
9460 		le32_to_cpu(resp->fw_reset_cnt_reg);
9461 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
9462 		le32_to_cpu(resp->reset_inprogress_reg);
9463 	fw_health->fw_reset_inprog_reg_mask =
9464 		le32_to_cpu(resp->reset_inprogress_reg_mask);
9465 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
9466 	if (fw_health->fw_reset_seq_cnt >= 16) {
9467 		rc = -EINVAL;
9468 		goto err_recovery_out;
9469 	}
9470 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
9471 		fw_health->fw_reset_seq_regs[i] =
9472 			le32_to_cpu(resp->reset_reg[i]);
9473 		fw_health->fw_reset_seq_vals[i] =
9474 			le32_to_cpu(resp->reset_reg_val[i]);
9475 		fw_health->fw_reset_seq_delay_msec[i] =
9476 			resp->delay_after_reset[i];
9477 	}
9478 err_recovery_out:
9479 	hwrm_req_drop(bp, req);
9480 	if (!rc)
9481 		rc = bnxt_map_fw_health_regs(bp);
9482 	if (rc)
9483 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
9484 	return rc;
9485 }
9486 
9487 static int bnxt_hwrm_func_reset(struct bnxt *bp)
9488 {
9489 	struct hwrm_func_reset_input *req;
9490 	int rc;
9491 
9492 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET);
9493 	if (rc)
9494 		return rc;
9495 
9496 	req->enables = 0;
9497 	hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT);
9498 	return hwrm_req_send(bp, req);
9499 }
9500 
9501 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
9502 {
9503 	struct hwrm_nvm_get_dev_info_output nvm_info;
9504 
9505 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
9506 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
9507 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
9508 			 nvm_info.nvm_cfg_ver_upd);
9509 }
9510 
9511 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
9512 {
9513 	struct hwrm_queue_qportcfg_output *resp;
9514 	struct hwrm_queue_qportcfg_input *req;
9515 	u8 i, j, *qptr;
9516 	bool no_rdma;
9517 	int rc = 0;
9518 
9519 	rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG);
9520 	if (rc)
9521 		return rc;
9522 
9523 	resp = hwrm_req_hold(bp, req);
9524 	rc = hwrm_req_send(bp, req);
9525 	if (rc)
9526 		goto qportcfg_exit;
9527 
9528 	if (!resp->max_configurable_queues) {
9529 		rc = -EINVAL;
9530 		goto qportcfg_exit;
9531 	}
9532 	bp->max_tc = resp->max_configurable_queues;
9533 	bp->max_lltc = resp->max_configurable_lossless_queues;
9534 	if (bp->max_tc > BNXT_MAX_QUEUE)
9535 		bp->max_tc = BNXT_MAX_QUEUE;
9536 
9537 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
9538 	qptr = &resp->queue_id0;
9539 	for (i = 0, j = 0; i < bp->max_tc; i++) {
9540 		bp->q_info[j].queue_id = *qptr;
9541 		bp->q_ids[i] = *qptr++;
9542 		bp->q_info[j].queue_profile = *qptr++;
9543 		bp->tc_to_qidx[j] = j;
9544 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
9545 		    (no_rdma && BNXT_PF(bp)))
9546 			j++;
9547 	}
9548 	bp->max_q = bp->max_tc;
9549 	bp->max_tc = max_t(u8, j, 1);
9550 
9551 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
9552 		bp->max_tc = 1;
9553 
9554 	if (bp->max_lltc > bp->max_tc)
9555 		bp->max_lltc = bp->max_tc;
9556 
9557 qportcfg_exit:
9558 	hwrm_req_drop(bp, req);
9559 	return rc;
9560 }
9561 
9562 static int bnxt_hwrm_poll(struct bnxt *bp)
9563 {
9564 	struct hwrm_ver_get_input *req;
9565 	int rc;
9566 
9567 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
9568 	if (rc)
9569 		return rc;
9570 
9571 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
9572 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
9573 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
9574 
9575 	hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT);
9576 	rc = hwrm_req_send(bp, req);
9577 	return rc;
9578 }
9579 
9580 static int bnxt_hwrm_ver_get(struct bnxt *bp)
9581 {
9582 	struct hwrm_ver_get_output *resp;
9583 	struct hwrm_ver_get_input *req;
9584 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
9585 	u32 dev_caps_cfg, hwrm_ver;
9586 	int rc, len;
9587 
9588 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
9589 	if (rc)
9590 		return rc;
9591 
9592 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
9593 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
9594 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
9595 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
9596 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
9597 
9598 	resp = hwrm_req_hold(bp, req);
9599 	rc = hwrm_req_send(bp, req);
9600 	if (rc)
9601 		goto hwrm_ver_get_exit;
9602 
9603 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
9604 
9605 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
9606 			     resp->hwrm_intf_min_8b << 8 |
9607 			     resp->hwrm_intf_upd_8b;
9608 	if (resp->hwrm_intf_maj_8b < 1) {
9609 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
9610 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
9611 			    resp->hwrm_intf_upd_8b);
9612 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
9613 	}
9614 
9615 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
9616 			HWRM_VERSION_UPDATE;
9617 
9618 	if (bp->hwrm_spec_code > hwrm_ver)
9619 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
9620 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
9621 			 HWRM_VERSION_UPDATE);
9622 	else
9623 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
9624 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
9625 			 resp->hwrm_intf_upd_8b);
9626 
9627 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
9628 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
9629 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
9630 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
9631 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
9632 		len = FW_VER_STR_LEN;
9633 	} else {
9634 		fw_maj = resp->hwrm_fw_maj_8b;
9635 		fw_min = resp->hwrm_fw_min_8b;
9636 		fw_bld = resp->hwrm_fw_bld_8b;
9637 		fw_rsv = resp->hwrm_fw_rsvd_8b;
9638 		len = BC_HWRM_STR_LEN;
9639 	}
9640 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
9641 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
9642 		 fw_rsv);
9643 
9644 	if (strlen(resp->active_pkg_name)) {
9645 		int fw_ver_len = strlen(bp->fw_ver_str);
9646 
9647 		snprintf(bp->fw_ver_str + fw_ver_len,
9648 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
9649 			 resp->active_pkg_name);
9650 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
9651 	}
9652 
9653 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
9654 	if (!bp->hwrm_cmd_timeout)
9655 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
9656 	bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000;
9657 	if (!bp->hwrm_cmd_max_timeout)
9658 		bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT;
9659 	else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT)
9660 		netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n",
9661 			    bp->hwrm_cmd_max_timeout / 1000);
9662 
9663 	if (resp->hwrm_intf_maj_8b >= 1) {
9664 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
9665 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
9666 	}
9667 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
9668 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
9669 
9670 	bp->chip_num = le16_to_cpu(resp->chip_num);
9671 	bp->chip_rev = resp->chip_rev;
9672 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
9673 	    !resp->chip_metal)
9674 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
9675 
9676 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
9677 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
9678 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
9679 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
9680 
9681 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
9682 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
9683 
9684 	if (dev_caps_cfg &
9685 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
9686 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
9687 
9688 	if (dev_caps_cfg &
9689 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
9690 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
9691 
9692 	if (dev_caps_cfg &
9693 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
9694 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
9695 
9696 hwrm_ver_get_exit:
9697 	hwrm_req_drop(bp, req);
9698 	return rc;
9699 }
9700 
9701 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
9702 {
9703 	struct hwrm_fw_set_time_input *req;
9704 	struct tm tm;
9705 	time64_t now = ktime_get_real_seconds();
9706 	int rc;
9707 
9708 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
9709 	    bp->hwrm_spec_code < 0x10400)
9710 		return -EOPNOTSUPP;
9711 
9712 	time64_to_tm(now, 0, &tm);
9713 	rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME);
9714 	if (rc)
9715 		return rc;
9716 
9717 	req->year = cpu_to_le16(1900 + tm.tm_year);
9718 	req->month = 1 + tm.tm_mon;
9719 	req->day = tm.tm_mday;
9720 	req->hour = tm.tm_hour;
9721 	req->minute = tm.tm_min;
9722 	req->second = tm.tm_sec;
9723 	return hwrm_req_send(bp, req);
9724 }
9725 
9726 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
9727 {
9728 	u64 sw_tmp;
9729 
9730 	hw &= mask;
9731 	sw_tmp = (*sw & ~mask) | hw;
9732 	if (hw < (*sw & mask))
9733 		sw_tmp += mask + 1;
9734 	WRITE_ONCE(*sw, sw_tmp);
9735 }
9736 
9737 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
9738 				    int count, bool ignore_zero)
9739 {
9740 	int i;
9741 
9742 	for (i = 0; i < count; i++) {
9743 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
9744 
9745 		if (ignore_zero && !hw)
9746 			continue;
9747 
9748 		if (masks[i] == -1ULL)
9749 			sw_stats[i] = hw;
9750 		else
9751 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
9752 	}
9753 }
9754 
9755 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
9756 {
9757 	if (!stats->hw_stats)
9758 		return;
9759 
9760 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
9761 				stats->hw_masks, stats->len / 8, false);
9762 }
9763 
9764 static void bnxt_accumulate_all_stats(struct bnxt *bp)
9765 {
9766 	struct bnxt_stats_mem *ring0_stats;
9767 	bool ignore_zero = false;
9768 	int i;
9769 
9770 	/* Chip bug.  Counter intermittently becomes 0. */
9771 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9772 		ignore_zero = true;
9773 
9774 	for (i = 0; i < bp->cp_nr_rings; i++) {
9775 		struct bnxt_napi *bnapi = bp->bnapi[i];
9776 		struct bnxt_cp_ring_info *cpr;
9777 		struct bnxt_stats_mem *stats;
9778 
9779 		cpr = &bnapi->cp_ring;
9780 		stats = &cpr->stats;
9781 		if (!i)
9782 			ring0_stats = stats;
9783 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
9784 					ring0_stats->hw_masks,
9785 					ring0_stats->len / 8, ignore_zero);
9786 	}
9787 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
9788 		struct bnxt_stats_mem *stats = &bp->port_stats;
9789 		__le64 *hw_stats = stats->hw_stats;
9790 		u64 *sw_stats = stats->sw_stats;
9791 		u64 *masks = stats->hw_masks;
9792 		int cnt;
9793 
9794 		cnt = sizeof(struct rx_port_stats) / 8;
9795 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
9796 
9797 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
9798 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
9799 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
9800 		cnt = sizeof(struct tx_port_stats) / 8;
9801 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
9802 	}
9803 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
9804 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
9805 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
9806 	}
9807 }
9808 
9809 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
9810 {
9811 	struct hwrm_port_qstats_input *req;
9812 	struct bnxt_pf_info *pf = &bp->pf;
9813 	int rc;
9814 
9815 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
9816 		return 0;
9817 
9818 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
9819 		return -EOPNOTSUPP;
9820 
9821 	rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS);
9822 	if (rc)
9823 		return rc;
9824 
9825 	req->flags = flags;
9826 	req->port_id = cpu_to_le16(pf->port_id);
9827 	req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
9828 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
9829 	req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
9830 	return hwrm_req_send(bp, req);
9831 }
9832 
9833 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
9834 {
9835 	struct hwrm_queue_pri2cos_qcfg_output *resp_qc;
9836 	struct hwrm_queue_pri2cos_qcfg_input *req_qc;
9837 	struct hwrm_port_qstats_ext_output *resp_qs;
9838 	struct hwrm_port_qstats_ext_input *req_qs;
9839 	struct bnxt_pf_info *pf = &bp->pf;
9840 	u32 tx_stat_size;
9841 	int rc;
9842 
9843 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
9844 		return 0;
9845 
9846 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
9847 		return -EOPNOTSUPP;
9848 
9849 	rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT);
9850 	if (rc)
9851 		return rc;
9852 
9853 	req_qs->flags = flags;
9854 	req_qs->port_id = cpu_to_le16(pf->port_id);
9855 	req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
9856 	req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
9857 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
9858 		       sizeof(struct tx_port_stats_ext) : 0;
9859 	req_qs->tx_stat_size = cpu_to_le16(tx_stat_size);
9860 	req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
9861 	resp_qs = hwrm_req_hold(bp, req_qs);
9862 	rc = hwrm_req_send(bp, req_qs);
9863 	if (!rc) {
9864 		bp->fw_rx_stats_ext_size =
9865 			le16_to_cpu(resp_qs->rx_stat_size) / 8;
9866 		if (BNXT_FW_MAJ(bp) < 220 &&
9867 		    bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY)
9868 			bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY;
9869 
9870 		bp->fw_tx_stats_ext_size = tx_stat_size ?
9871 			le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0;
9872 	} else {
9873 		bp->fw_rx_stats_ext_size = 0;
9874 		bp->fw_tx_stats_ext_size = 0;
9875 	}
9876 	hwrm_req_drop(bp, req_qs);
9877 
9878 	if (flags)
9879 		return rc;
9880 
9881 	if (bp->fw_tx_stats_ext_size <=
9882 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
9883 		bp->pri2cos_valid = 0;
9884 		return rc;
9885 	}
9886 
9887 	rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG);
9888 	if (rc)
9889 		return rc;
9890 
9891 	req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
9892 
9893 	resp_qc = hwrm_req_hold(bp, req_qc);
9894 	rc = hwrm_req_send(bp, req_qc);
9895 	if (!rc) {
9896 		u8 *pri2cos;
9897 		int i, j;
9898 
9899 		pri2cos = &resp_qc->pri0_cos_queue_id;
9900 		for (i = 0; i < 8; i++) {
9901 			u8 queue_id = pri2cos[i];
9902 			u8 queue_idx;
9903 
9904 			/* Per port queue IDs start from 0, 10, 20, etc */
9905 			queue_idx = queue_id % 10;
9906 			if (queue_idx > BNXT_MAX_QUEUE) {
9907 				bp->pri2cos_valid = false;
9908 				hwrm_req_drop(bp, req_qc);
9909 				return rc;
9910 			}
9911 			for (j = 0; j < bp->max_q; j++) {
9912 				if (bp->q_ids[j] == queue_id)
9913 					bp->pri2cos_idx[i] = queue_idx;
9914 			}
9915 		}
9916 		bp->pri2cos_valid = true;
9917 	}
9918 	hwrm_req_drop(bp, req_qc);
9919 
9920 	return rc;
9921 }
9922 
9923 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
9924 {
9925 	bnxt_hwrm_tunnel_dst_port_free(bp,
9926 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
9927 	bnxt_hwrm_tunnel_dst_port_free(bp,
9928 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
9929 }
9930 
9931 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
9932 {
9933 	int rc, i;
9934 	u32 tpa_flags = 0;
9935 
9936 	if (set_tpa)
9937 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
9938 	else if (BNXT_NO_FW_ACCESS(bp))
9939 		return 0;
9940 	for (i = 0; i < bp->nr_vnics; i++) {
9941 		rc = bnxt_hwrm_vnic_set_tpa(bp, &bp->vnic_info[i], tpa_flags);
9942 		if (rc) {
9943 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
9944 				   i, rc);
9945 			return rc;
9946 		}
9947 	}
9948 	return 0;
9949 }
9950 
9951 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
9952 {
9953 	int i;
9954 
9955 	for (i = 0; i < bp->nr_vnics; i++)
9956 		bnxt_hwrm_vnic_set_rss(bp, &bp->vnic_info[i], false);
9957 }
9958 
9959 static void bnxt_clear_vnic(struct bnxt *bp)
9960 {
9961 	if (!bp->vnic_info)
9962 		return;
9963 
9964 	bnxt_hwrm_clear_vnic_filter(bp);
9965 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) {
9966 		/* clear all RSS setting before free vnic ctx */
9967 		bnxt_hwrm_clear_vnic_rss(bp);
9968 		bnxt_hwrm_vnic_ctx_free(bp);
9969 	}
9970 	/* before free the vnic, undo the vnic tpa settings */
9971 	if (bp->flags & BNXT_FLAG_TPA)
9972 		bnxt_set_tpa(bp, false);
9973 	bnxt_hwrm_vnic_free(bp);
9974 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9975 		bnxt_hwrm_vnic_ctx_free(bp);
9976 }
9977 
9978 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
9979 				    bool irq_re_init)
9980 {
9981 	bnxt_clear_vnic(bp);
9982 	bnxt_hwrm_ring_free(bp, close_path);
9983 	bnxt_hwrm_ring_grp_free(bp);
9984 	if (irq_re_init) {
9985 		bnxt_hwrm_stat_ctx_free(bp);
9986 		bnxt_hwrm_free_tunnel_ports(bp);
9987 	}
9988 }
9989 
9990 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
9991 {
9992 	struct hwrm_func_cfg_input *req;
9993 	u8 evb_mode;
9994 	int rc;
9995 
9996 	if (br_mode == BRIDGE_MODE_VEB)
9997 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
9998 	else if (br_mode == BRIDGE_MODE_VEPA)
9999 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
10000 	else
10001 		return -EINVAL;
10002 
10003 	rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
10004 	if (rc)
10005 		return rc;
10006 
10007 	req->fid = cpu_to_le16(0xffff);
10008 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
10009 	req->evb_mode = evb_mode;
10010 	return hwrm_req_send(bp, req);
10011 }
10012 
10013 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
10014 {
10015 	struct hwrm_func_cfg_input *req;
10016 	int rc;
10017 
10018 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
10019 		return 0;
10020 
10021 	rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
10022 	if (rc)
10023 		return rc;
10024 
10025 	req->fid = cpu_to_le16(0xffff);
10026 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
10027 	req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
10028 	if (size == 128)
10029 		req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
10030 
10031 	return hwrm_req_send(bp, req);
10032 }
10033 
10034 static int __bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic)
10035 {
10036 	int rc;
10037 
10038 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
10039 		goto skip_rss_ctx;
10040 
10041 	/* allocate context for vnic */
10042 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 0);
10043 	if (rc) {
10044 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
10045 			   vnic->vnic_id, rc);
10046 		goto vnic_setup_err;
10047 	}
10048 	bp->rsscos_nr_ctxs++;
10049 
10050 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
10051 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 1);
10052 		if (rc) {
10053 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
10054 				   vnic->vnic_id, rc);
10055 			goto vnic_setup_err;
10056 		}
10057 		bp->rsscos_nr_ctxs++;
10058 	}
10059 
10060 skip_rss_ctx:
10061 	/* configure default vnic, ring grp */
10062 	rc = bnxt_hwrm_vnic_cfg(bp, vnic);
10063 	if (rc) {
10064 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
10065 			   vnic->vnic_id, rc);
10066 		goto vnic_setup_err;
10067 	}
10068 
10069 	/* Enable RSS hashing on vnic */
10070 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic, true);
10071 	if (rc) {
10072 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
10073 			   vnic->vnic_id, rc);
10074 		goto vnic_setup_err;
10075 	}
10076 
10077 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
10078 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic);
10079 		if (rc) {
10080 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
10081 				   vnic->vnic_id, rc);
10082 		}
10083 	}
10084 
10085 vnic_setup_err:
10086 	return rc;
10087 }
10088 
10089 int bnxt_hwrm_vnic_rss_cfg_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic)
10090 {
10091 	int rc;
10092 
10093 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic, true);
10094 	if (rc) {
10095 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
10096 			   vnic->vnic_id, rc);
10097 		return rc;
10098 	}
10099 	rc = bnxt_hwrm_vnic_cfg(bp, vnic);
10100 	if (rc)
10101 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
10102 			   vnic->vnic_id, rc);
10103 	return rc;
10104 }
10105 
10106 int __bnxt_setup_vnic_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic)
10107 {
10108 	int rc, i, nr_ctxs;
10109 
10110 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
10111 	for (i = 0; i < nr_ctxs; i++) {
10112 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, i);
10113 		if (rc) {
10114 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
10115 				   vnic->vnic_id, i, rc);
10116 			break;
10117 		}
10118 		bp->rsscos_nr_ctxs++;
10119 	}
10120 	if (i < nr_ctxs)
10121 		return -ENOMEM;
10122 
10123 	rc = bnxt_hwrm_vnic_rss_cfg_p5(bp, vnic);
10124 	if (rc)
10125 		return rc;
10126 
10127 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
10128 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic);
10129 		if (rc) {
10130 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
10131 				   vnic->vnic_id, rc);
10132 		}
10133 	}
10134 	return rc;
10135 }
10136 
10137 static int bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic)
10138 {
10139 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10140 		return __bnxt_setup_vnic_p5(bp, vnic);
10141 	else
10142 		return __bnxt_setup_vnic(bp, vnic);
10143 }
10144 
10145 static int bnxt_alloc_and_setup_vnic(struct bnxt *bp,
10146 				     struct bnxt_vnic_info *vnic,
10147 				     u16 start_rx_ring_idx, int rx_rings)
10148 {
10149 	int rc;
10150 
10151 	rc = bnxt_hwrm_vnic_alloc(bp, vnic, start_rx_ring_idx, rx_rings);
10152 	if (rc) {
10153 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
10154 			   vnic->vnic_id, rc);
10155 		return rc;
10156 	}
10157 	return bnxt_setup_vnic(bp, vnic);
10158 }
10159 
10160 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
10161 {
10162 	struct bnxt_vnic_info *vnic;
10163 	int i, rc = 0;
10164 
10165 	if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) {
10166 		vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE];
10167 		return bnxt_alloc_and_setup_vnic(bp, vnic, 0, bp->rx_nr_rings);
10168 	}
10169 
10170 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10171 		return 0;
10172 
10173 	for (i = 0; i < bp->rx_nr_rings; i++) {
10174 		u16 vnic_id = i + 1;
10175 		u16 ring_id = i;
10176 
10177 		if (vnic_id >= bp->nr_vnics)
10178 			break;
10179 
10180 		vnic = &bp->vnic_info[vnic_id];
10181 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
10182 		if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP)
10183 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
10184 		if (bnxt_alloc_and_setup_vnic(bp, &bp->vnic_info[vnic_id], ring_id, 1))
10185 			break;
10186 	}
10187 	return rc;
10188 }
10189 
10190 void bnxt_del_one_rss_ctx(struct bnxt *bp, struct bnxt_rss_ctx *rss_ctx,
10191 			  bool all)
10192 {
10193 	struct bnxt_vnic_info *vnic = &rss_ctx->vnic;
10194 	struct bnxt_filter_base *usr_fltr, *tmp;
10195 	struct bnxt_ntuple_filter *ntp_fltr;
10196 	int i;
10197 
10198 	bnxt_hwrm_vnic_free_one(bp, &rss_ctx->vnic);
10199 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) {
10200 		if (vnic->fw_rss_cos_lb_ctx[i] != INVALID_HW_RING_ID)
10201 			bnxt_hwrm_vnic_ctx_free_one(bp, vnic, i);
10202 	}
10203 	if (!all)
10204 		return;
10205 
10206 	list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) {
10207 		if ((usr_fltr->flags & BNXT_ACT_RSS_CTX) &&
10208 		    usr_fltr->fw_vnic_id == rss_ctx->index) {
10209 			ntp_fltr = container_of(usr_fltr,
10210 						struct bnxt_ntuple_filter,
10211 						base);
10212 			bnxt_hwrm_cfa_ntuple_filter_free(bp, ntp_fltr);
10213 			bnxt_del_ntp_filter(bp, ntp_fltr);
10214 			bnxt_del_one_usr_fltr(bp, usr_fltr);
10215 		}
10216 	}
10217 
10218 	if (vnic->rss_table)
10219 		dma_free_coherent(&bp->pdev->dev, vnic->rss_table_size,
10220 				  vnic->rss_table,
10221 				  vnic->rss_table_dma_addr);
10222 	kfree(rss_ctx->rss_indir_tbl);
10223 	list_del(&rss_ctx->list);
10224 	bp->num_rss_ctx--;
10225 	clear_bit(rss_ctx->index, bp->rss_ctx_bmap);
10226 	kfree(rss_ctx);
10227 }
10228 
10229 static void bnxt_hwrm_realloc_rss_ctx_vnic(struct bnxt *bp)
10230 {
10231 	bool set_tpa = !!(bp->flags & BNXT_FLAG_TPA);
10232 	struct bnxt_rss_ctx *rss_ctx, *tmp;
10233 
10234 	list_for_each_entry_safe(rss_ctx, tmp, &bp->rss_ctx_list, list) {
10235 		struct bnxt_vnic_info *vnic = &rss_ctx->vnic;
10236 
10237 		if (bnxt_hwrm_vnic_alloc(bp, vnic, 0, bp->rx_nr_rings) ||
10238 		    bnxt_hwrm_vnic_set_tpa(bp, vnic, set_tpa) ||
10239 		    __bnxt_setup_vnic_p5(bp, vnic)) {
10240 			netdev_err(bp->dev, "Failed to restore RSS ctx %d\n",
10241 				   rss_ctx->index);
10242 			bnxt_del_one_rss_ctx(bp, rss_ctx, true);
10243 		}
10244 	}
10245 }
10246 
10247 struct bnxt_rss_ctx *bnxt_alloc_rss_ctx(struct bnxt *bp)
10248 {
10249 	struct bnxt_rss_ctx *rss_ctx = NULL;
10250 
10251 	rss_ctx = kzalloc(sizeof(*rss_ctx), GFP_KERNEL);
10252 	if (rss_ctx) {
10253 		rss_ctx->vnic.rss_ctx = rss_ctx;
10254 		list_add_tail(&rss_ctx->list, &bp->rss_ctx_list);
10255 		bp->num_rss_ctx++;
10256 	}
10257 	return rss_ctx;
10258 }
10259 
10260 void bnxt_clear_rss_ctxs(struct bnxt *bp, bool all)
10261 {
10262 	struct bnxt_rss_ctx *rss_ctx, *tmp;
10263 
10264 	list_for_each_entry_safe(rss_ctx, tmp, &bp->rss_ctx_list, list)
10265 		bnxt_del_one_rss_ctx(bp, rss_ctx, all);
10266 
10267 	if (all)
10268 		bitmap_free(bp->rss_ctx_bmap);
10269 }
10270 
10271 static void bnxt_init_multi_rss_ctx(struct bnxt *bp)
10272 {
10273 	bp->rss_ctx_bmap = bitmap_zalloc(BNXT_RSS_CTX_BMAP_LEN, GFP_KERNEL);
10274 	if (bp->rss_ctx_bmap) {
10275 		/* burn index 0 since we cannot have context 0 */
10276 		__set_bit(0, bp->rss_ctx_bmap);
10277 		INIT_LIST_HEAD(&bp->rss_ctx_list);
10278 		bp->rss_cap |= BNXT_RSS_CAP_MULTI_RSS_CTX;
10279 	}
10280 }
10281 
10282 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
10283 static bool bnxt_promisc_ok(struct bnxt *bp)
10284 {
10285 #ifdef CONFIG_BNXT_SRIOV
10286 	if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
10287 		return false;
10288 #endif
10289 	return true;
10290 }
10291 
10292 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
10293 {
10294 	struct bnxt_vnic_info *vnic = &bp->vnic_info[1];
10295 	unsigned int rc = 0;
10296 
10297 	rc = bnxt_hwrm_vnic_alloc(bp, vnic, bp->rx_nr_rings - 1, 1);
10298 	if (rc) {
10299 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
10300 			   rc);
10301 		return rc;
10302 	}
10303 
10304 	rc = bnxt_hwrm_vnic_cfg(bp, vnic);
10305 	if (rc) {
10306 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
10307 			   rc);
10308 		return rc;
10309 	}
10310 	return rc;
10311 }
10312 
10313 static int bnxt_cfg_rx_mode(struct bnxt *);
10314 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
10315 
10316 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
10317 {
10318 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
10319 	int rc = 0;
10320 	unsigned int rx_nr_rings = bp->rx_nr_rings;
10321 
10322 	if (irq_re_init) {
10323 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
10324 		if (rc) {
10325 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
10326 				   rc);
10327 			goto err_out;
10328 		}
10329 	}
10330 
10331 	rc = bnxt_hwrm_ring_alloc(bp);
10332 	if (rc) {
10333 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
10334 		goto err_out;
10335 	}
10336 
10337 	rc = bnxt_hwrm_ring_grp_alloc(bp);
10338 	if (rc) {
10339 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
10340 		goto err_out;
10341 	}
10342 
10343 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
10344 		rx_nr_rings--;
10345 
10346 	/* default vnic 0 */
10347 	rc = bnxt_hwrm_vnic_alloc(bp, vnic, 0, rx_nr_rings);
10348 	if (rc) {
10349 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
10350 		goto err_out;
10351 	}
10352 
10353 	if (BNXT_VF(bp))
10354 		bnxt_hwrm_func_qcfg(bp);
10355 
10356 	rc = bnxt_setup_vnic(bp, vnic);
10357 	if (rc)
10358 		goto err_out;
10359 	if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA)
10360 		bnxt_hwrm_update_rss_hash_cfg(bp);
10361 
10362 	if (bp->flags & BNXT_FLAG_RFS) {
10363 		rc = bnxt_alloc_rfs_vnics(bp);
10364 		if (rc)
10365 			goto err_out;
10366 	}
10367 
10368 	if (bp->flags & BNXT_FLAG_TPA) {
10369 		rc = bnxt_set_tpa(bp, true);
10370 		if (rc)
10371 			goto err_out;
10372 	}
10373 
10374 	if (BNXT_VF(bp))
10375 		bnxt_update_vf_mac(bp);
10376 
10377 	/* Filter for default vnic 0 */
10378 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
10379 	if (rc) {
10380 		if (BNXT_VF(bp) && rc == -ENODEV)
10381 			netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n");
10382 		else
10383 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
10384 		goto err_out;
10385 	}
10386 	vnic->uc_filter_count = 1;
10387 
10388 	vnic->rx_mask = 0;
10389 	if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state))
10390 		goto skip_rx_mask;
10391 
10392 	if (bp->dev->flags & IFF_BROADCAST)
10393 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
10394 
10395 	if (bp->dev->flags & IFF_PROMISC)
10396 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10397 
10398 	if (bp->dev->flags & IFF_ALLMULTI) {
10399 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10400 		vnic->mc_list_count = 0;
10401 	} else if (bp->dev->flags & IFF_MULTICAST) {
10402 		u32 mask = 0;
10403 
10404 		bnxt_mc_list_updated(bp, &mask);
10405 		vnic->rx_mask |= mask;
10406 	}
10407 
10408 	rc = bnxt_cfg_rx_mode(bp);
10409 	if (rc)
10410 		goto err_out;
10411 
10412 skip_rx_mask:
10413 	rc = bnxt_hwrm_set_coal(bp);
10414 	if (rc)
10415 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
10416 				rc);
10417 
10418 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
10419 		rc = bnxt_setup_nitroa0_vnic(bp);
10420 		if (rc)
10421 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
10422 				   rc);
10423 	}
10424 
10425 	if (BNXT_VF(bp)) {
10426 		bnxt_hwrm_func_qcfg(bp);
10427 		netdev_update_features(bp->dev);
10428 	}
10429 
10430 	return 0;
10431 
10432 err_out:
10433 	bnxt_hwrm_resource_free(bp, 0, true);
10434 
10435 	return rc;
10436 }
10437 
10438 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
10439 {
10440 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
10441 	return 0;
10442 }
10443 
10444 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
10445 {
10446 	bnxt_init_cp_rings(bp);
10447 	bnxt_init_rx_rings(bp);
10448 	bnxt_init_tx_rings(bp);
10449 	bnxt_init_ring_grps(bp, irq_re_init);
10450 	bnxt_init_vnics(bp);
10451 
10452 	return bnxt_init_chip(bp, irq_re_init);
10453 }
10454 
10455 static int bnxt_set_real_num_queues(struct bnxt *bp)
10456 {
10457 	int rc;
10458 	struct net_device *dev = bp->dev;
10459 
10460 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
10461 					  bp->tx_nr_rings_xdp);
10462 	if (rc)
10463 		return rc;
10464 
10465 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
10466 	if (rc)
10467 		return rc;
10468 
10469 #ifdef CONFIG_RFS_ACCEL
10470 	if (bp->flags & BNXT_FLAG_RFS)
10471 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
10472 #endif
10473 
10474 	return rc;
10475 }
10476 
10477 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
10478 			     bool shared)
10479 {
10480 	int _rx = *rx, _tx = *tx;
10481 
10482 	if (shared) {
10483 		*rx = min_t(int, _rx, max);
10484 		*tx = min_t(int, _tx, max);
10485 	} else {
10486 		if (max < 2)
10487 			return -ENOMEM;
10488 
10489 		while (_rx + _tx > max) {
10490 			if (_rx > _tx && _rx > 1)
10491 				_rx--;
10492 			else if (_tx > 1)
10493 				_tx--;
10494 		}
10495 		*rx = _rx;
10496 		*tx = _tx;
10497 	}
10498 	return 0;
10499 }
10500 
10501 static int __bnxt_num_tx_to_cp(struct bnxt *bp, int tx, int tx_sets, int tx_xdp)
10502 {
10503 	return (tx - tx_xdp) / tx_sets + tx_xdp;
10504 }
10505 
10506 int bnxt_num_tx_to_cp(struct bnxt *bp, int tx)
10507 {
10508 	int tcs = bp->num_tc;
10509 
10510 	if (!tcs)
10511 		tcs = 1;
10512 	return __bnxt_num_tx_to_cp(bp, tx, tcs, bp->tx_nr_rings_xdp);
10513 }
10514 
10515 static int bnxt_num_cp_to_tx(struct bnxt *bp, int tx_cp)
10516 {
10517 	int tcs = bp->num_tc;
10518 
10519 	return (tx_cp - bp->tx_nr_rings_xdp) * tcs +
10520 	       bp->tx_nr_rings_xdp;
10521 }
10522 
10523 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
10524 			   bool sh)
10525 {
10526 	int tx_cp = bnxt_num_tx_to_cp(bp, *tx);
10527 
10528 	if (tx_cp != *tx) {
10529 		int tx_saved = tx_cp, rc;
10530 
10531 		rc = __bnxt_trim_rings(bp, rx, &tx_cp, max, sh);
10532 		if (rc)
10533 			return rc;
10534 		if (tx_cp != tx_saved)
10535 			*tx = bnxt_num_cp_to_tx(bp, tx_cp);
10536 		return 0;
10537 	}
10538 	return __bnxt_trim_rings(bp, rx, tx, max, sh);
10539 }
10540 
10541 static void bnxt_setup_msix(struct bnxt *bp)
10542 {
10543 	const int len = sizeof(bp->irq_tbl[0].name);
10544 	struct net_device *dev = bp->dev;
10545 	int tcs, i;
10546 
10547 	tcs = bp->num_tc;
10548 	if (tcs) {
10549 		int i, off, count;
10550 
10551 		for (i = 0; i < tcs; i++) {
10552 			count = bp->tx_nr_rings_per_tc;
10553 			off = BNXT_TC_TO_RING_BASE(bp, i);
10554 			netdev_set_tc_queue(dev, i, count, off);
10555 		}
10556 	}
10557 
10558 	for (i = 0; i < bp->cp_nr_rings; i++) {
10559 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
10560 		char *attr;
10561 
10562 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
10563 			attr = "TxRx";
10564 		else if (i < bp->rx_nr_rings)
10565 			attr = "rx";
10566 		else
10567 			attr = "tx";
10568 
10569 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
10570 			 attr, i);
10571 		bp->irq_tbl[map_idx].handler = bnxt_msix;
10572 	}
10573 }
10574 
10575 static void bnxt_setup_inta(struct bnxt *bp)
10576 {
10577 	const int len = sizeof(bp->irq_tbl[0].name);
10578 
10579 	if (bp->num_tc) {
10580 		netdev_reset_tc(bp->dev);
10581 		bp->num_tc = 0;
10582 	}
10583 
10584 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
10585 		 0);
10586 	bp->irq_tbl[0].handler = bnxt_inta;
10587 }
10588 
10589 static int bnxt_init_int_mode(struct bnxt *bp);
10590 
10591 static int bnxt_setup_int_mode(struct bnxt *bp)
10592 {
10593 	int rc;
10594 
10595 	if (!bp->irq_tbl) {
10596 		rc = bnxt_init_int_mode(bp);
10597 		if (rc || !bp->irq_tbl)
10598 			return rc ?: -ENODEV;
10599 	}
10600 
10601 	if (bp->flags & BNXT_FLAG_USING_MSIX)
10602 		bnxt_setup_msix(bp);
10603 	else
10604 		bnxt_setup_inta(bp);
10605 
10606 	rc = bnxt_set_real_num_queues(bp);
10607 	return rc;
10608 }
10609 
10610 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
10611 {
10612 	return bp->hw_resc.max_rsscos_ctxs;
10613 }
10614 
10615 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
10616 {
10617 	return bp->hw_resc.max_vnics;
10618 }
10619 
10620 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
10621 {
10622 	return bp->hw_resc.max_stat_ctxs;
10623 }
10624 
10625 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
10626 {
10627 	return bp->hw_resc.max_cp_rings;
10628 }
10629 
10630 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
10631 {
10632 	unsigned int cp = bp->hw_resc.max_cp_rings;
10633 
10634 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
10635 		cp -= bnxt_get_ulp_msix_num(bp);
10636 
10637 	return cp;
10638 }
10639 
10640 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
10641 {
10642 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10643 
10644 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10645 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
10646 
10647 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
10648 }
10649 
10650 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
10651 {
10652 	bp->hw_resc.max_irqs = max_irqs;
10653 }
10654 
10655 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
10656 {
10657 	unsigned int cp;
10658 
10659 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
10660 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10661 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
10662 	else
10663 		return cp - bp->cp_nr_rings;
10664 }
10665 
10666 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
10667 {
10668 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
10669 }
10670 
10671 static int bnxt_get_avail_msix(struct bnxt *bp, int num)
10672 {
10673 	int max_irq = bnxt_get_max_func_irqs(bp);
10674 	int total_req = bp->cp_nr_rings + num;
10675 
10676 	if (max_irq < total_req) {
10677 		num = max_irq - bp->cp_nr_rings;
10678 		if (num <= 0)
10679 			return 0;
10680 	}
10681 	return num;
10682 }
10683 
10684 static int bnxt_get_num_msix(struct bnxt *bp)
10685 {
10686 	if (!BNXT_NEW_RM(bp))
10687 		return bnxt_get_max_func_irqs(bp);
10688 
10689 	return bnxt_nq_rings_in_use(bp);
10690 }
10691 
10692 static int bnxt_init_msix(struct bnxt *bp)
10693 {
10694 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix, tx_cp;
10695 	struct msix_entry *msix_ent;
10696 
10697 	total_vecs = bnxt_get_num_msix(bp);
10698 	max = bnxt_get_max_func_irqs(bp);
10699 	if (total_vecs > max)
10700 		total_vecs = max;
10701 
10702 	if (!total_vecs)
10703 		return 0;
10704 
10705 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
10706 	if (!msix_ent)
10707 		return -ENOMEM;
10708 
10709 	for (i = 0; i < total_vecs; i++) {
10710 		msix_ent[i].entry = i;
10711 		msix_ent[i].vector = 0;
10712 	}
10713 
10714 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
10715 		min = 2;
10716 
10717 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
10718 	ulp_msix = bnxt_get_ulp_msix_num(bp);
10719 	if (total_vecs < 0 || total_vecs < ulp_msix) {
10720 		rc = -ENODEV;
10721 		goto msix_setup_exit;
10722 	}
10723 
10724 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
10725 	if (bp->irq_tbl) {
10726 		for (i = 0; i < total_vecs; i++)
10727 			bp->irq_tbl[i].vector = msix_ent[i].vector;
10728 
10729 		bp->total_irqs = total_vecs;
10730 		/* Trim rings based upon num of vectors allocated */
10731 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
10732 				     total_vecs - ulp_msix, min == 1);
10733 		if (rc)
10734 			goto msix_setup_exit;
10735 
10736 		tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings);
10737 		bp->cp_nr_rings = (min == 1) ?
10738 				  max_t(int, tx_cp, bp->rx_nr_rings) :
10739 				  tx_cp + bp->rx_nr_rings;
10740 
10741 	} else {
10742 		rc = -ENOMEM;
10743 		goto msix_setup_exit;
10744 	}
10745 	bp->flags |= BNXT_FLAG_USING_MSIX;
10746 	kfree(msix_ent);
10747 	return 0;
10748 
10749 msix_setup_exit:
10750 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
10751 	kfree(bp->irq_tbl);
10752 	bp->irq_tbl = NULL;
10753 	pci_disable_msix(bp->pdev);
10754 	kfree(msix_ent);
10755 	return rc;
10756 }
10757 
10758 static int bnxt_init_inta(struct bnxt *bp)
10759 {
10760 	bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL);
10761 	if (!bp->irq_tbl)
10762 		return -ENOMEM;
10763 
10764 	bp->total_irqs = 1;
10765 	bp->rx_nr_rings = 1;
10766 	bp->tx_nr_rings = 1;
10767 	bp->cp_nr_rings = 1;
10768 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
10769 	bp->irq_tbl[0].vector = bp->pdev->irq;
10770 	return 0;
10771 }
10772 
10773 static int bnxt_init_int_mode(struct bnxt *bp)
10774 {
10775 	int rc = -ENODEV;
10776 
10777 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
10778 		rc = bnxt_init_msix(bp);
10779 
10780 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
10781 		/* fallback to INTA */
10782 		rc = bnxt_init_inta(bp);
10783 	}
10784 	return rc;
10785 }
10786 
10787 static void bnxt_clear_int_mode(struct bnxt *bp)
10788 {
10789 	if (bp->flags & BNXT_FLAG_USING_MSIX)
10790 		pci_disable_msix(bp->pdev);
10791 
10792 	kfree(bp->irq_tbl);
10793 	bp->irq_tbl = NULL;
10794 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
10795 }
10796 
10797 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
10798 {
10799 	bool irq_cleared = false;
10800 	int tcs = bp->num_tc;
10801 	int irqs_required;
10802 	int rc;
10803 
10804 	if (!bnxt_need_reserve_rings(bp))
10805 		return 0;
10806 
10807 	if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) {
10808 		int ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want);
10809 
10810 		if (ulp_msix > bp->ulp_num_msix_want)
10811 			ulp_msix = bp->ulp_num_msix_want;
10812 		irqs_required = ulp_msix + bp->cp_nr_rings;
10813 	} else {
10814 		irqs_required = bnxt_get_num_msix(bp);
10815 	}
10816 
10817 	if (irq_re_init && BNXT_NEW_RM(bp) && irqs_required != bp->total_irqs) {
10818 		bnxt_ulp_irq_stop(bp);
10819 		bnxt_clear_int_mode(bp);
10820 		irq_cleared = true;
10821 	}
10822 	rc = __bnxt_reserve_rings(bp);
10823 	if (irq_cleared) {
10824 		if (!rc)
10825 			rc = bnxt_init_int_mode(bp);
10826 		bnxt_ulp_irq_restart(bp, rc);
10827 	}
10828 	if (rc) {
10829 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
10830 		return rc;
10831 	}
10832 	if (tcs && (bp->tx_nr_rings_per_tc * tcs !=
10833 		    bp->tx_nr_rings - bp->tx_nr_rings_xdp)) {
10834 		netdev_err(bp->dev, "tx ring reservation failure\n");
10835 		netdev_reset_tc(bp->dev);
10836 		bp->num_tc = 0;
10837 		if (bp->tx_nr_rings_xdp)
10838 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp;
10839 		else
10840 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10841 		return -ENOMEM;
10842 	}
10843 	return 0;
10844 }
10845 
10846 static void bnxt_free_irq(struct bnxt *bp)
10847 {
10848 	struct bnxt_irq *irq;
10849 	int i;
10850 
10851 #ifdef CONFIG_RFS_ACCEL
10852 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
10853 	bp->dev->rx_cpu_rmap = NULL;
10854 #endif
10855 	if (!bp->irq_tbl || !bp->bnapi)
10856 		return;
10857 
10858 	for (i = 0; i < bp->cp_nr_rings; i++) {
10859 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
10860 
10861 		irq = &bp->irq_tbl[map_idx];
10862 		if (irq->requested) {
10863 			if (irq->have_cpumask) {
10864 				irq_set_affinity_hint(irq->vector, NULL);
10865 				free_cpumask_var(irq->cpu_mask);
10866 				irq->have_cpumask = 0;
10867 			}
10868 			free_irq(irq->vector, bp->bnapi[i]);
10869 		}
10870 
10871 		irq->requested = 0;
10872 	}
10873 }
10874 
10875 static int bnxt_request_irq(struct bnxt *bp)
10876 {
10877 	int i, j, rc = 0;
10878 	unsigned long flags = 0;
10879 #ifdef CONFIG_RFS_ACCEL
10880 	struct cpu_rmap *rmap;
10881 #endif
10882 
10883 	rc = bnxt_setup_int_mode(bp);
10884 	if (rc) {
10885 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
10886 			   rc);
10887 		return rc;
10888 	}
10889 #ifdef CONFIG_RFS_ACCEL
10890 	rmap = bp->dev->rx_cpu_rmap;
10891 #endif
10892 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
10893 		flags = IRQF_SHARED;
10894 
10895 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
10896 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
10897 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
10898 
10899 #ifdef CONFIG_RFS_ACCEL
10900 		if (rmap && bp->bnapi[i]->rx_ring) {
10901 			rc = irq_cpu_rmap_add(rmap, irq->vector);
10902 			if (rc)
10903 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
10904 					    j);
10905 			j++;
10906 		}
10907 #endif
10908 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
10909 				 bp->bnapi[i]);
10910 		if (rc)
10911 			break;
10912 
10913 		netif_napi_set_irq(&bp->bnapi[i]->napi, irq->vector);
10914 		irq->requested = 1;
10915 
10916 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
10917 			int numa_node = dev_to_node(&bp->pdev->dev);
10918 
10919 			irq->have_cpumask = 1;
10920 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
10921 					irq->cpu_mask);
10922 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
10923 			if (rc) {
10924 				netdev_warn(bp->dev,
10925 					    "Set affinity failed, IRQ = %d\n",
10926 					    irq->vector);
10927 				break;
10928 			}
10929 		}
10930 	}
10931 	return rc;
10932 }
10933 
10934 static void bnxt_del_napi(struct bnxt *bp)
10935 {
10936 	int i;
10937 
10938 	if (!bp->bnapi)
10939 		return;
10940 
10941 	for (i = 0; i < bp->rx_nr_rings; i++)
10942 		netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_RX, NULL);
10943 	for (i = 0; i < bp->tx_nr_rings - bp->tx_nr_rings_xdp; i++)
10944 		netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_TX, NULL);
10945 
10946 	for (i = 0; i < bp->cp_nr_rings; i++) {
10947 		struct bnxt_napi *bnapi = bp->bnapi[i];
10948 
10949 		__netif_napi_del(&bnapi->napi);
10950 	}
10951 	/* We called __netif_napi_del(), we need
10952 	 * to respect an RCU grace period before freeing napi structures.
10953 	 */
10954 	synchronize_net();
10955 }
10956 
10957 static void bnxt_init_napi(struct bnxt *bp)
10958 {
10959 	int i;
10960 	unsigned int cp_nr_rings = bp->cp_nr_rings;
10961 	struct bnxt_napi *bnapi;
10962 
10963 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
10964 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
10965 
10966 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10967 			poll_fn = bnxt_poll_p5;
10968 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
10969 			cp_nr_rings--;
10970 		for (i = 0; i < cp_nr_rings; i++) {
10971 			bnapi = bp->bnapi[i];
10972 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn);
10973 		}
10974 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
10975 			bnapi = bp->bnapi[cp_nr_rings];
10976 			netif_napi_add(bp->dev, &bnapi->napi,
10977 				       bnxt_poll_nitroa0);
10978 		}
10979 	} else {
10980 		bnapi = bp->bnapi[0];
10981 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll);
10982 	}
10983 }
10984 
10985 static void bnxt_disable_napi(struct bnxt *bp)
10986 {
10987 	int i;
10988 
10989 	if (!bp->bnapi ||
10990 	    test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
10991 		return;
10992 
10993 	for (i = 0; i < bp->cp_nr_rings; i++) {
10994 		struct bnxt_napi *bnapi = bp->bnapi[i];
10995 		struct bnxt_cp_ring_info *cpr;
10996 
10997 		cpr = &bnapi->cp_ring;
10998 		if (bnapi->tx_fault)
10999 			cpr->sw_stats->tx.tx_resets++;
11000 		if (bnapi->in_reset)
11001 			cpr->sw_stats->rx.rx_resets++;
11002 		napi_disable(&bnapi->napi);
11003 		if (bnapi->rx_ring)
11004 			cancel_work_sync(&cpr->dim.work);
11005 	}
11006 }
11007 
11008 static void bnxt_enable_napi(struct bnxt *bp)
11009 {
11010 	int i;
11011 
11012 	clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
11013 	for (i = 0; i < bp->cp_nr_rings; i++) {
11014 		struct bnxt_napi *bnapi = bp->bnapi[i];
11015 		struct bnxt_cp_ring_info *cpr;
11016 
11017 		bnapi->tx_fault = 0;
11018 
11019 		cpr = &bnapi->cp_ring;
11020 		bnapi->in_reset = false;
11021 
11022 		if (bnapi->rx_ring) {
11023 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
11024 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
11025 		}
11026 		napi_enable(&bnapi->napi);
11027 	}
11028 }
11029 
11030 void bnxt_tx_disable(struct bnxt *bp)
11031 {
11032 	int i;
11033 	struct bnxt_tx_ring_info *txr;
11034 
11035 	if (bp->tx_ring) {
11036 		for (i = 0; i < bp->tx_nr_rings; i++) {
11037 			txr = &bp->tx_ring[i];
11038 			WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
11039 		}
11040 	}
11041 	/* Make sure napi polls see @dev_state change */
11042 	synchronize_net();
11043 	/* Drop carrier first to prevent TX timeout */
11044 	netif_carrier_off(bp->dev);
11045 	/* Stop all TX queues */
11046 	netif_tx_disable(bp->dev);
11047 }
11048 
11049 void bnxt_tx_enable(struct bnxt *bp)
11050 {
11051 	int i;
11052 	struct bnxt_tx_ring_info *txr;
11053 
11054 	for (i = 0; i < bp->tx_nr_rings; i++) {
11055 		txr = &bp->tx_ring[i];
11056 		WRITE_ONCE(txr->dev_state, 0);
11057 	}
11058 	/* Make sure napi polls see @dev_state change */
11059 	synchronize_net();
11060 	netif_tx_wake_all_queues(bp->dev);
11061 	if (BNXT_LINK_IS_UP(bp))
11062 		netif_carrier_on(bp->dev);
11063 }
11064 
11065 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
11066 {
11067 	u8 active_fec = link_info->active_fec_sig_mode &
11068 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
11069 
11070 	switch (active_fec) {
11071 	default:
11072 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
11073 		return "None";
11074 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
11075 		return "Clause 74 BaseR";
11076 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
11077 		return "Clause 91 RS(528,514)";
11078 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
11079 		return "Clause 91 RS544_1XN";
11080 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
11081 		return "Clause 91 RS(544,514)";
11082 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
11083 		return "Clause 91 RS272_1XN";
11084 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
11085 		return "Clause 91 RS(272,257)";
11086 	}
11087 }
11088 
11089 void bnxt_report_link(struct bnxt *bp)
11090 {
11091 	if (BNXT_LINK_IS_UP(bp)) {
11092 		const char *signal = "";
11093 		const char *flow_ctrl;
11094 		const char *duplex;
11095 		u32 speed;
11096 		u16 fec;
11097 
11098 		netif_carrier_on(bp->dev);
11099 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
11100 		if (speed == SPEED_UNKNOWN) {
11101 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
11102 			return;
11103 		}
11104 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
11105 			duplex = "full";
11106 		else
11107 			duplex = "half";
11108 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
11109 			flow_ctrl = "ON - receive & transmit";
11110 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
11111 			flow_ctrl = "ON - transmit";
11112 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
11113 			flow_ctrl = "ON - receive";
11114 		else
11115 			flow_ctrl = "none";
11116 		if (bp->link_info.phy_qcfg_resp.option_flags &
11117 		    PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
11118 			u8 sig_mode = bp->link_info.active_fec_sig_mode &
11119 				      PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
11120 			switch (sig_mode) {
11121 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
11122 				signal = "(NRZ) ";
11123 				break;
11124 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
11125 				signal = "(PAM4 56Gbps) ";
11126 				break;
11127 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4_112:
11128 				signal = "(PAM4 112Gbps) ";
11129 				break;
11130 			default:
11131 				break;
11132 			}
11133 		}
11134 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
11135 			    speed, signal, duplex, flow_ctrl);
11136 		if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
11137 			netdev_info(bp->dev, "EEE is %s\n",
11138 				    bp->eee.eee_active ? "active" :
11139 							 "not active");
11140 		fec = bp->link_info.fec_cfg;
11141 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
11142 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
11143 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
11144 				    bnxt_report_fec(&bp->link_info));
11145 	} else {
11146 		netif_carrier_off(bp->dev);
11147 		netdev_err(bp->dev, "NIC Link is Down\n");
11148 	}
11149 }
11150 
11151 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
11152 {
11153 	if (!resp->supported_speeds_auto_mode &&
11154 	    !resp->supported_speeds_force_mode &&
11155 	    !resp->supported_pam4_speeds_auto_mode &&
11156 	    !resp->supported_pam4_speeds_force_mode &&
11157 	    !resp->supported_speeds2_auto_mode &&
11158 	    !resp->supported_speeds2_force_mode)
11159 		return true;
11160 	return false;
11161 }
11162 
11163 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
11164 {
11165 	struct bnxt_link_info *link_info = &bp->link_info;
11166 	struct hwrm_port_phy_qcaps_output *resp;
11167 	struct hwrm_port_phy_qcaps_input *req;
11168 	int rc = 0;
11169 
11170 	if (bp->hwrm_spec_code < 0x10201)
11171 		return 0;
11172 
11173 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS);
11174 	if (rc)
11175 		return rc;
11176 
11177 	resp = hwrm_req_hold(bp, req);
11178 	rc = hwrm_req_send(bp, req);
11179 	if (rc)
11180 		goto hwrm_phy_qcaps_exit;
11181 
11182 	bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8);
11183 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
11184 		struct ethtool_keee *eee = &bp->eee;
11185 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
11186 
11187 		_bnxt_fw_to_linkmode(eee->supported, fw_speeds);
11188 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
11189 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
11190 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
11191 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
11192 	}
11193 
11194 	if (bp->hwrm_spec_code >= 0x10a01) {
11195 		if (bnxt_phy_qcaps_no_speed(resp)) {
11196 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
11197 			netdev_warn(bp->dev, "Ethernet link disabled\n");
11198 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
11199 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
11200 			netdev_info(bp->dev, "Ethernet link enabled\n");
11201 			/* Phy re-enabled, reprobe the speeds */
11202 			link_info->support_auto_speeds = 0;
11203 			link_info->support_pam4_auto_speeds = 0;
11204 			link_info->support_auto_speeds2 = 0;
11205 		}
11206 	}
11207 	if (resp->supported_speeds_auto_mode)
11208 		link_info->support_auto_speeds =
11209 			le16_to_cpu(resp->supported_speeds_auto_mode);
11210 	if (resp->supported_pam4_speeds_auto_mode)
11211 		link_info->support_pam4_auto_speeds =
11212 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
11213 	if (resp->supported_speeds2_auto_mode)
11214 		link_info->support_auto_speeds2 =
11215 			le16_to_cpu(resp->supported_speeds2_auto_mode);
11216 
11217 	bp->port_count = resp->port_cnt;
11218 
11219 hwrm_phy_qcaps_exit:
11220 	hwrm_req_drop(bp, req);
11221 	return rc;
11222 }
11223 
11224 static bool bnxt_support_dropped(u16 advertising, u16 supported)
11225 {
11226 	u16 diff = advertising ^ supported;
11227 
11228 	return ((supported | diff) != supported);
11229 }
11230 
11231 static bool bnxt_support_speed_dropped(struct bnxt_link_info *link_info)
11232 {
11233 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
11234 
11235 	/* Check if any advertised speeds are no longer supported. The caller
11236 	 * holds the link_lock mutex, so we can modify link_info settings.
11237 	 */
11238 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
11239 		if (bnxt_support_dropped(link_info->advertising,
11240 					 link_info->support_auto_speeds2)) {
11241 			link_info->advertising = link_info->support_auto_speeds2;
11242 			return true;
11243 		}
11244 		return false;
11245 	}
11246 	if (bnxt_support_dropped(link_info->advertising,
11247 				 link_info->support_auto_speeds)) {
11248 		link_info->advertising = link_info->support_auto_speeds;
11249 		return true;
11250 	}
11251 	if (bnxt_support_dropped(link_info->advertising_pam4,
11252 				 link_info->support_pam4_auto_speeds)) {
11253 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
11254 		return true;
11255 	}
11256 	return false;
11257 }
11258 
11259 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
11260 {
11261 	struct bnxt_link_info *link_info = &bp->link_info;
11262 	struct hwrm_port_phy_qcfg_output *resp;
11263 	struct hwrm_port_phy_qcfg_input *req;
11264 	u8 link_state = link_info->link_state;
11265 	bool support_changed;
11266 	int rc;
11267 
11268 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG);
11269 	if (rc)
11270 		return rc;
11271 
11272 	resp = hwrm_req_hold(bp, req);
11273 	rc = hwrm_req_send(bp, req);
11274 	if (rc) {
11275 		hwrm_req_drop(bp, req);
11276 		if (BNXT_VF(bp) && rc == -ENODEV) {
11277 			netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n");
11278 			rc = 0;
11279 		}
11280 		return rc;
11281 	}
11282 
11283 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
11284 	link_info->phy_link_status = resp->link;
11285 	link_info->duplex = resp->duplex_cfg;
11286 	if (bp->hwrm_spec_code >= 0x10800)
11287 		link_info->duplex = resp->duplex_state;
11288 	link_info->pause = resp->pause;
11289 	link_info->auto_mode = resp->auto_mode;
11290 	link_info->auto_pause_setting = resp->auto_pause;
11291 	link_info->lp_pause = resp->link_partner_adv_pause;
11292 	link_info->force_pause_setting = resp->force_pause;
11293 	link_info->duplex_setting = resp->duplex_cfg;
11294 	if (link_info->phy_link_status == BNXT_LINK_LINK) {
11295 		link_info->link_speed = le16_to_cpu(resp->link_speed);
11296 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2)
11297 			link_info->active_lanes = resp->active_lanes;
11298 	} else {
11299 		link_info->link_speed = 0;
11300 		link_info->active_lanes = 0;
11301 	}
11302 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
11303 	link_info->force_pam4_link_speed =
11304 		le16_to_cpu(resp->force_pam4_link_speed);
11305 	link_info->force_link_speed2 = le16_to_cpu(resp->force_link_speeds2);
11306 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
11307 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
11308 	link_info->support_speeds2 = le16_to_cpu(resp->support_speeds2);
11309 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
11310 	link_info->auto_pam4_link_speeds =
11311 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
11312 	link_info->auto_link_speeds2 = le16_to_cpu(resp->auto_link_speeds2);
11313 	link_info->lp_auto_link_speeds =
11314 		le16_to_cpu(resp->link_partner_adv_speeds);
11315 	link_info->lp_auto_pam4_link_speeds =
11316 		resp->link_partner_pam4_adv_speeds;
11317 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
11318 	link_info->phy_ver[0] = resp->phy_maj;
11319 	link_info->phy_ver[1] = resp->phy_min;
11320 	link_info->phy_ver[2] = resp->phy_bld;
11321 	link_info->media_type = resp->media_type;
11322 	link_info->phy_type = resp->phy_type;
11323 	link_info->transceiver = resp->xcvr_pkg_type;
11324 	link_info->phy_addr = resp->eee_config_phy_addr &
11325 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
11326 	link_info->module_status = resp->module_status;
11327 
11328 	if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
11329 		struct ethtool_keee *eee = &bp->eee;
11330 		u16 fw_speeds;
11331 
11332 		eee->eee_active = 0;
11333 		if (resp->eee_config_phy_addr &
11334 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
11335 			eee->eee_active = 1;
11336 			fw_speeds = le16_to_cpu(
11337 				resp->link_partner_adv_eee_link_speed_mask);
11338 			_bnxt_fw_to_linkmode(eee->lp_advertised, fw_speeds);
11339 		}
11340 
11341 		/* Pull initial EEE config */
11342 		if (!chng_link_state) {
11343 			if (resp->eee_config_phy_addr &
11344 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
11345 				eee->eee_enabled = 1;
11346 
11347 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
11348 			_bnxt_fw_to_linkmode(eee->advertised, fw_speeds);
11349 
11350 			if (resp->eee_config_phy_addr &
11351 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
11352 				__le32 tmr;
11353 
11354 				eee->tx_lpi_enabled = 1;
11355 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
11356 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
11357 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
11358 			}
11359 		}
11360 	}
11361 
11362 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
11363 	if (bp->hwrm_spec_code >= 0x10504) {
11364 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
11365 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
11366 	}
11367 	/* TODO: need to add more logic to report VF link */
11368 	if (chng_link_state) {
11369 		if (link_info->phy_link_status == BNXT_LINK_LINK)
11370 			link_info->link_state = BNXT_LINK_STATE_UP;
11371 		else
11372 			link_info->link_state = BNXT_LINK_STATE_DOWN;
11373 		if (link_state != link_info->link_state)
11374 			bnxt_report_link(bp);
11375 	} else {
11376 		/* always link down if not require to update link state */
11377 		link_info->link_state = BNXT_LINK_STATE_DOWN;
11378 	}
11379 	hwrm_req_drop(bp, req);
11380 
11381 	if (!BNXT_PHY_CFG_ABLE(bp))
11382 		return 0;
11383 
11384 	support_changed = bnxt_support_speed_dropped(link_info);
11385 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
11386 		bnxt_hwrm_set_link_setting(bp, true, false);
11387 	return 0;
11388 }
11389 
11390 static void bnxt_get_port_module_status(struct bnxt *bp)
11391 {
11392 	struct bnxt_link_info *link_info = &bp->link_info;
11393 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
11394 	u8 module_status;
11395 
11396 	if (bnxt_update_link(bp, true))
11397 		return;
11398 
11399 	module_status = link_info->module_status;
11400 	switch (module_status) {
11401 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
11402 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
11403 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
11404 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
11405 			    bp->pf.port_id);
11406 		if (bp->hwrm_spec_code >= 0x10201) {
11407 			netdev_warn(bp->dev, "Module part number %s\n",
11408 				    resp->phy_vendor_partnumber);
11409 		}
11410 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
11411 			netdev_warn(bp->dev, "TX is disabled\n");
11412 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
11413 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
11414 	}
11415 }
11416 
11417 static void
11418 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
11419 {
11420 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
11421 		if (bp->hwrm_spec_code >= 0x10201)
11422 			req->auto_pause =
11423 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
11424 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
11425 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
11426 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
11427 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
11428 		req->enables |=
11429 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
11430 	} else {
11431 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
11432 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
11433 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
11434 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
11435 		req->enables |=
11436 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
11437 		if (bp->hwrm_spec_code >= 0x10201) {
11438 			req->auto_pause = req->force_pause;
11439 			req->enables |= cpu_to_le32(
11440 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
11441 		}
11442 	}
11443 }
11444 
11445 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
11446 {
11447 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
11448 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
11449 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
11450 			req->enables |=
11451 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEEDS2_MASK);
11452 			req->auto_link_speeds2_mask = cpu_to_le16(bp->link_info.advertising);
11453 		} else if (bp->link_info.advertising) {
11454 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
11455 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
11456 		}
11457 		if (bp->link_info.advertising_pam4) {
11458 			req->enables |=
11459 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
11460 			req->auto_link_pam4_speed_mask =
11461 				cpu_to_le16(bp->link_info.advertising_pam4);
11462 		}
11463 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
11464 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
11465 	} else {
11466 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
11467 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
11468 			req->force_link_speeds2 = cpu_to_le16(bp->link_info.req_link_speed);
11469 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_LINK_SPEEDS2);
11470 			netif_info(bp, link, bp->dev, "Forcing FW speed2: %d\n",
11471 				   (u32)bp->link_info.req_link_speed);
11472 		} else if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
11473 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
11474 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
11475 		} else {
11476 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
11477 		}
11478 	}
11479 
11480 	/* tell chimp that the setting takes effect immediately */
11481 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
11482 }
11483 
11484 int bnxt_hwrm_set_pause(struct bnxt *bp)
11485 {
11486 	struct hwrm_port_phy_cfg_input *req;
11487 	int rc;
11488 
11489 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
11490 	if (rc)
11491 		return rc;
11492 
11493 	bnxt_hwrm_set_pause_common(bp, req);
11494 
11495 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
11496 	    bp->link_info.force_link_chng)
11497 		bnxt_hwrm_set_link_common(bp, req);
11498 
11499 	rc = hwrm_req_send(bp, req);
11500 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
11501 		/* since changing of pause setting doesn't trigger any link
11502 		 * change event, the driver needs to update the current pause
11503 		 * result upon successfully return of the phy_cfg command
11504 		 */
11505 		bp->link_info.pause =
11506 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
11507 		bp->link_info.auto_pause_setting = 0;
11508 		if (!bp->link_info.force_link_chng)
11509 			bnxt_report_link(bp);
11510 	}
11511 	bp->link_info.force_link_chng = false;
11512 	return rc;
11513 }
11514 
11515 static void bnxt_hwrm_set_eee(struct bnxt *bp,
11516 			      struct hwrm_port_phy_cfg_input *req)
11517 {
11518 	struct ethtool_keee *eee = &bp->eee;
11519 
11520 	if (eee->eee_enabled) {
11521 		u16 eee_speeds;
11522 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
11523 
11524 		if (eee->tx_lpi_enabled)
11525 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
11526 		else
11527 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
11528 
11529 		req->flags |= cpu_to_le32(flags);
11530 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
11531 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
11532 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
11533 	} else {
11534 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
11535 	}
11536 }
11537 
11538 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
11539 {
11540 	struct hwrm_port_phy_cfg_input *req;
11541 	int rc;
11542 
11543 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
11544 	if (rc)
11545 		return rc;
11546 
11547 	if (set_pause)
11548 		bnxt_hwrm_set_pause_common(bp, req);
11549 
11550 	bnxt_hwrm_set_link_common(bp, req);
11551 
11552 	if (set_eee)
11553 		bnxt_hwrm_set_eee(bp, req);
11554 	return hwrm_req_send(bp, req);
11555 }
11556 
11557 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
11558 {
11559 	struct hwrm_port_phy_cfg_input *req;
11560 	int rc;
11561 
11562 	if (!BNXT_SINGLE_PF(bp))
11563 		return 0;
11564 
11565 	if (pci_num_vf(bp->pdev) &&
11566 	    !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
11567 		return 0;
11568 
11569 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
11570 	if (rc)
11571 		return rc;
11572 
11573 	req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
11574 	rc = hwrm_req_send(bp, req);
11575 	if (!rc) {
11576 		mutex_lock(&bp->link_lock);
11577 		/* Device is not obliged link down in certain scenarios, even
11578 		 * when forced. Setting the state unknown is consistent with
11579 		 * driver startup and will force link state to be reported
11580 		 * during subsequent open based on PORT_PHY_QCFG.
11581 		 */
11582 		bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN;
11583 		mutex_unlock(&bp->link_lock);
11584 	}
11585 	return rc;
11586 }
11587 
11588 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
11589 {
11590 #ifdef CONFIG_TEE_BNXT_FW
11591 	int rc = tee_bnxt_fw_load();
11592 
11593 	if (rc)
11594 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
11595 
11596 	return rc;
11597 #else
11598 	netdev_err(bp->dev, "OP-TEE not supported\n");
11599 	return -ENODEV;
11600 #endif
11601 }
11602 
11603 static int bnxt_try_recover_fw(struct bnxt *bp)
11604 {
11605 	if (bp->fw_health && bp->fw_health->status_reliable) {
11606 		int retry = 0, rc;
11607 		u32 sts;
11608 
11609 		do {
11610 			sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
11611 			rc = bnxt_hwrm_poll(bp);
11612 			if (!BNXT_FW_IS_BOOTING(sts) &&
11613 			    !BNXT_FW_IS_RECOVERING(sts))
11614 				break;
11615 			retry++;
11616 		} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
11617 
11618 		if (!BNXT_FW_IS_HEALTHY(sts)) {
11619 			netdev_err(bp->dev,
11620 				   "Firmware not responding, status: 0x%x\n",
11621 				   sts);
11622 			rc = -ENODEV;
11623 		}
11624 		if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
11625 			netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
11626 			return bnxt_fw_reset_via_optee(bp);
11627 		}
11628 		return rc;
11629 	}
11630 
11631 	return -ENODEV;
11632 }
11633 
11634 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset)
11635 {
11636 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
11637 
11638 	if (!BNXT_NEW_RM(bp))
11639 		return; /* no resource reservations required */
11640 
11641 	hw_resc->resv_cp_rings = 0;
11642 	hw_resc->resv_stat_ctxs = 0;
11643 	hw_resc->resv_irqs = 0;
11644 	hw_resc->resv_tx_rings = 0;
11645 	hw_resc->resv_rx_rings = 0;
11646 	hw_resc->resv_hw_ring_grps = 0;
11647 	hw_resc->resv_vnics = 0;
11648 	hw_resc->resv_rsscos_ctxs = 0;
11649 	if (!fw_reset) {
11650 		bp->tx_nr_rings = 0;
11651 		bp->rx_nr_rings = 0;
11652 	}
11653 }
11654 
11655 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset)
11656 {
11657 	int rc;
11658 
11659 	if (!BNXT_NEW_RM(bp))
11660 		return 0; /* no resource reservations required */
11661 
11662 	rc = bnxt_hwrm_func_resc_qcaps(bp, true);
11663 	if (rc)
11664 		netdev_err(bp->dev, "resc_qcaps failed\n");
11665 
11666 	bnxt_clear_reservations(bp, fw_reset);
11667 
11668 	return rc;
11669 }
11670 
11671 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
11672 {
11673 	struct hwrm_func_drv_if_change_output *resp;
11674 	struct hwrm_func_drv_if_change_input *req;
11675 	bool fw_reset = !bp->irq_tbl;
11676 	bool resc_reinit = false;
11677 	int rc, retry = 0;
11678 	u32 flags = 0;
11679 
11680 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
11681 		return 0;
11682 
11683 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE);
11684 	if (rc)
11685 		return rc;
11686 
11687 	if (up)
11688 		req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
11689 	resp = hwrm_req_hold(bp, req);
11690 
11691 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
11692 	while (retry < BNXT_FW_IF_RETRY) {
11693 		rc = hwrm_req_send(bp, req);
11694 		if (rc != -EAGAIN)
11695 			break;
11696 
11697 		msleep(50);
11698 		retry++;
11699 	}
11700 
11701 	if (rc == -EAGAIN) {
11702 		hwrm_req_drop(bp, req);
11703 		return rc;
11704 	} else if (!rc) {
11705 		flags = le32_to_cpu(resp->flags);
11706 	} else if (up) {
11707 		rc = bnxt_try_recover_fw(bp);
11708 		fw_reset = true;
11709 	}
11710 	hwrm_req_drop(bp, req);
11711 	if (rc)
11712 		return rc;
11713 
11714 	if (!up) {
11715 		bnxt_inv_fw_health_reg(bp);
11716 		return 0;
11717 	}
11718 
11719 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
11720 		resc_reinit = true;
11721 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE ||
11722 	    test_bit(BNXT_STATE_FW_RESET_DET, &bp->state))
11723 		fw_reset = true;
11724 	else
11725 		bnxt_remap_fw_health_regs(bp);
11726 
11727 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
11728 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
11729 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
11730 		return -ENODEV;
11731 	}
11732 	if (resc_reinit || fw_reset) {
11733 		if (fw_reset) {
11734 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
11735 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11736 				bnxt_ulp_irq_stop(bp);
11737 			bnxt_free_ctx_mem(bp);
11738 			bnxt_dcb_free(bp);
11739 			rc = bnxt_fw_init_one(bp);
11740 			if (rc) {
11741 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
11742 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
11743 				return rc;
11744 			}
11745 			bnxt_clear_int_mode(bp);
11746 			rc = bnxt_init_int_mode(bp);
11747 			if (rc) {
11748 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
11749 				netdev_err(bp->dev, "init int mode failed\n");
11750 				return rc;
11751 			}
11752 		}
11753 		rc = bnxt_cancel_reservations(bp, fw_reset);
11754 	}
11755 	return rc;
11756 }
11757 
11758 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
11759 {
11760 	struct hwrm_port_led_qcaps_output *resp;
11761 	struct hwrm_port_led_qcaps_input *req;
11762 	struct bnxt_pf_info *pf = &bp->pf;
11763 	int rc;
11764 
11765 	bp->num_leds = 0;
11766 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
11767 		return 0;
11768 
11769 	rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS);
11770 	if (rc)
11771 		return rc;
11772 
11773 	req->port_id = cpu_to_le16(pf->port_id);
11774 	resp = hwrm_req_hold(bp, req);
11775 	rc = hwrm_req_send(bp, req);
11776 	if (rc) {
11777 		hwrm_req_drop(bp, req);
11778 		return rc;
11779 	}
11780 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
11781 		int i;
11782 
11783 		bp->num_leds = resp->num_leds;
11784 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
11785 						 bp->num_leds);
11786 		for (i = 0; i < bp->num_leds; i++) {
11787 			struct bnxt_led_info *led = &bp->leds[i];
11788 			__le16 caps = led->led_state_caps;
11789 
11790 			if (!led->led_group_id ||
11791 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
11792 				bp->num_leds = 0;
11793 				break;
11794 			}
11795 		}
11796 	}
11797 	hwrm_req_drop(bp, req);
11798 	return 0;
11799 }
11800 
11801 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
11802 {
11803 	struct hwrm_wol_filter_alloc_output *resp;
11804 	struct hwrm_wol_filter_alloc_input *req;
11805 	int rc;
11806 
11807 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC);
11808 	if (rc)
11809 		return rc;
11810 
11811 	req->port_id = cpu_to_le16(bp->pf.port_id);
11812 	req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
11813 	req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
11814 	memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN);
11815 
11816 	resp = hwrm_req_hold(bp, req);
11817 	rc = hwrm_req_send(bp, req);
11818 	if (!rc)
11819 		bp->wol_filter_id = resp->wol_filter_id;
11820 	hwrm_req_drop(bp, req);
11821 	return rc;
11822 }
11823 
11824 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
11825 {
11826 	struct hwrm_wol_filter_free_input *req;
11827 	int rc;
11828 
11829 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE);
11830 	if (rc)
11831 		return rc;
11832 
11833 	req->port_id = cpu_to_le16(bp->pf.port_id);
11834 	req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
11835 	req->wol_filter_id = bp->wol_filter_id;
11836 
11837 	return hwrm_req_send(bp, req);
11838 }
11839 
11840 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
11841 {
11842 	struct hwrm_wol_filter_qcfg_output *resp;
11843 	struct hwrm_wol_filter_qcfg_input *req;
11844 	u16 next_handle = 0;
11845 	int rc;
11846 
11847 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG);
11848 	if (rc)
11849 		return rc;
11850 
11851 	req->port_id = cpu_to_le16(bp->pf.port_id);
11852 	req->handle = cpu_to_le16(handle);
11853 	resp = hwrm_req_hold(bp, req);
11854 	rc = hwrm_req_send(bp, req);
11855 	if (!rc) {
11856 		next_handle = le16_to_cpu(resp->next_handle);
11857 		if (next_handle != 0) {
11858 			if (resp->wol_type ==
11859 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
11860 				bp->wol = 1;
11861 				bp->wol_filter_id = resp->wol_filter_id;
11862 			}
11863 		}
11864 	}
11865 	hwrm_req_drop(bp, req);
11866 	return next_handle;
11867 }
11868 
11869 static void bnxt_get_wol_settings(struct bnxt *bp)
11870 {
11871 	u16 handle = 0;
11872 
11873 	bp->wol = 0;
11874 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
11875 		return;
11876 
11877 	do {
11878 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
11879 	} while (handle && handle != 0xffff);
11880 }
11881 
11882 static bool bnxt_eee_config_ok(struct bnxt *bp)
11883 {
11884 	struct ethtool_keee *eee = &bp->eee;
11885 	struct bnxt_link_info *link_info = &bp->link_info;
11886 
11887 	if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
11888 		return true;
11889 
11890 	if (eee->eee_enabled) {
11891 		__ETHTOOL_DECLARE_LINK_MODE_MASK(advertising);
11892 		__ETHTOOL_DECLARE_LINK_MODE_MASK(tmp);
11893 
11894 		_bnxt_fw_to_linkmode(advertising, link_info->advertising);
11895 
11896 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
11897 			eee->eee_enabled = 0;
11898 			return false;
11899 		}
11900 		if (linkmode_andnot(tmp, eee->advertised, advertising)) {
11901 			linkmode_and(eee->advertised, advertising,
11902 				     eee->supported);
11903 			return false;
11904 		}
11905 	}
11906 	return true;
11907 }
11908 
11909 static int bnxt_update_phy_setting(struct bnxt *bp)
11910 {
11911 	int rc;
11912 	bool update_link = false;
11913 	bool update_pause = false;
11914 	bool update_eee = false;
11915 	struct bnxt_link_info *link_info = &bp->link_info;
11916 
11917 	rc = bnxt_update_link(bp, true);
11918 	if (rc) {
11919 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
11920 			   rc);
11921 		return rc;
11922 	}
11923 	if (!BNXT_SINGLE_PF(bp))
11924 		return 0;
11925 
11926 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
11927 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
11928 	    link_info->req_flow_ctrl)
11929 		update_pause = true;
11930 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
11931 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
11932 		update_pause = true;
11933 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
11934 		if (BNXT_AUTO_MODE(link_info->auto_mode))
11935 			update_link = true;
11936 		if (bnxt_force_speed_updated(link_info))
11937 			update_link = true;
11938 		if (link_info->req_duplex != link_info->duplex_setting)
11939 			update_link = true;
11940 	} else {
11941 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
11942 			update_link = true;
11943 		if (bnxt_auto_speed_updated(link_info))
11944 			update_link = true;
11945 	}
11946 
11947 	/* The last close may have shutdown the link, so need to call
11948 	 * PHY_CFG to bring it back up.
11949 	 */
11950 	if (!BNXT_LINK_IS_UP(bp))
11951 		update_link = true;
11952 
11953 	if (!bnxt_eee_config_ok(bp))
11954 		update_eee = true;
11955 
11956 	if (update_link)
11957 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
11958 	else if (update_pause)
11959 		rc = bnxt_hwrm_set_pause(bp);
11960 	if (rc) {
11961 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
11962 			   rc);
11963 		return rc;
11964 	}
11965 
11966 	return rc;
11967 }
11968 
11969 /* Common routine to pre-map certain register block to different GRC window.
11970  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
11971  * in PF and 3 windows in VF that can be customized to map in different
11972  * register blocks.
11973  */
11974 static void bnxt_preset_reg_win(struct bnxt *bp)
11975 {
11976 	if (BNXT_PF(bp)) {
11977 		/* CAG registers map to GRC window #4 */
11978 		writel(BNXT_CAG_REG_BASE,
11979 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
11980 	}
11981 }
11982 
11983 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
11984 
11985 static int bnxt_reinit_after_abort(struct bnxt *bp)
11986 {
11987 	int rc;
11988 
11989 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11990 		return -EBUSY;
11991 
11992 	if (bp->dev->reg_state == NETREG_UNREGISTERED)
11993 		return -ENODEV;
11994 
11995 	rc = bnxt_fw_init_one(bp);
11996 	if (!rc) {
11997 		bnxt_clear_int_mode(bp);
11998 		rc = bnxt_init_int_mode(bp);
11999 		if (!rc) {
12000 			clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
12001 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
12002 		}
12003 	}
12004 	return rc;
12005 }
12006 
12007 static void bnxt_cfg_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr)
12008 {
12009 	struct bnxt_ntuple_filter *ntp_fltr;
12010 	struct bnxt_l2_filter *l2_fltr;
12011 
12012 	if (list_empty(&fltr->list))
12013 		return;
12014 
12015 	if (fltr->type == BNXT_FLTR_TYPE_NTUPLE) {
12016 		ntp_fltr = container_of(fltr, struct bnxt_ntuple_filter, base);
12017 		l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0];
12018 		atomic_inc(&l2_fltr->refcnt);
12019 		ntp_fltr->l2_fltr = l2_fltr;
12020 		if (bnxt_hwrm_cfa_ntuple_filter_alloc(bp, ntp_fltr)) {
12021 			bnxt_del_ntp_filter(bp, ntp_fltr);
12022 			netdev_err(bp->dev, "restoring previously configured ntuple filter id %d failed\n",
12023 				   fltr->sw_id);
12024 		}
12025 	} else if (fltr->type == BNXT_FLTR_TYPE_L2) {
12026 		l2_fltr = container_of(fltr, struct bnxt_l2_filter, base);
12027 		if (bnxt_hwrm_l2_filter_alloc(bp, l2_fltr)) {
12028 			bnxt_del_l2_filter(bp, l2_fltr);
12029 			netdev_err(bp->dev, "restoring previously configured l2 filter id %d failed\n",
12030 				   fltr->sw_id);
12031 		}
12032 	}
12033 }
12034 
12035 static void bnxt_cfg_usr_fltrs(struct bnxt *bp)
12036 {
12037 	struct bnxt_filter_base *usr_fltr, *tmp;
12038 
12039 	list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list)
12040 		bnxt_cfg_one_usr_fltr(bp, usr_fltr);
12041 }
12042 
12043 static int bnxt_set_xps_mapping(struct bnxt *bp)
12044 {
12045 	int numa_node = dev_to_node(&bp->pdev->dev);
12046 	unsigned int q_idx, map_idx, cpu, i;
12047 	const struct cpumask *cpu_mask_ptr;
12048 	int nr_cpus = num_online_cpus();
12049 	cpumask_t *q_map;
12050 	int rc = 0;
12051 
12052 	q_map = kcalloc(bp->tx_nr_rings_per_tc, sizeof(*q_map), GFP_KERNEL);
12053 	if (!q_map)
12054 		return -ENOMEM;
12055 
12056 	/* Create CPU mask for all TX queues across MQPRIO traffic classes.
12057 	 * Each TC has the same number of TX queues. The nth TX queue for each
12058 	 * TC will have the same CPU mask.
12059 	 */
12060 	for (i = 0; i < nr_cpus; i++) {
12061 		map_idx = i % bp->tx_nr_rings_per_tc;
12062 		cpu = cpumask_local_spread(i, numa_node);
12063 		cpu_mask_ptr = get_cpu_mask(cpu);
12064 		cpumask_or(&q_map[map_idx], &q_map[map_idx], cpu_mask_ptr);
12065 	}
12066 
12067 	/* Register CPU mask for each TX queue except the ones marked for XDP */
12068 	for (q_idx = 0; q_idx < bp->dev->real_num_tx_queues; q_idx++) {
12069 		map_idx = q_idx % bp->tx_nr_rings_per_tc;
12070 		rc = netif_set_xps_queue(bp->dev, &q_map[map_idx], q_idx);
12071 		if (rc) {
12072 			netdev_warn(bp->dev, "Error setting XPS for q:%d\n",
12073 				    q_idx);
12074 			break;
12075 		}
12076 	}
12077 
12078 	kfree(q_map);
12079 
12080 	return rc;
12081 }
12082 
12083 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
12084 {
12085 	int rc = 0;
12086 
12087 	bnxt_preset_reg_win(bp);
12088 	netif_carrier_off(bp->dev);
12089 	if (irq_re_init) {
12090 		/* Reserve rings now if none were reserved at driver probe. */
12091 		rc = bnxt_init_dflt_ring_mode(bp);
12092 		if (rc) {
12093 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
12094 			return rc;
12095 		}
12096 	}
12097 	rc = bnxt_reserve_rings(bp, irq_re_init);
12098 	if (rc)
12099 		return rc;
12100 	if ((bp->flags & BNXT_FLAG_RFS) &&
12101 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
12102 		/* disable RFS if falling back to INTA */
12103 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
12104 		bp->flags &= ~BNXT_FLAG_RFS;
12105 	}
12106 
12107 	rc = bnxt_alloc_mem(bp, irq_re_init);
12108 	if (rc) {
12109 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
12110 		goto open_err_free_mem;
12111 	}
12112 
12113 	if (irq_re_init) {
12114 		bnxt_init_napi(bp);
12115 		rc = bnxt_request_irq(bp);
12116 		if (rc) {
12117 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
12118 			goto open_err_irq;
12119 		}
12120 	}
12121 
12122 	rc = bnxt_init_nic(bp, irq_re_init);
12123 	if (rc) {
12124 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
12125 		goto open_err_irq;
12126 	}
12127 
12128 	bnxt_enable_napi(bp);
12129 	bnxt_debug_dev_init(bp);
12130 
12131 	if (link_re_init) {
12132 		mutex_lock(&bp->link_lock);
12133 		rc = bnxt_update_phy_setting(bp);
12134 		mutex_unlock(&bp->link_lock);
12135 		if (rc) {
12136 			netdev_warn(bp->dev, "failed to update phy settings\n");
12137 			if (BNXT_SINGLE_PF(bp)) {
12138 				bp->link_info.phy_retry = true;
12139 				bp->link_info.phy_retry_expires =
12140 					jiffies + 5 * HZ;
12141 			}
12142 		}
12143 	}
12144 
12145 	if (irq_re_init) {
12146 		udp_tunnel_nic_reset_ntf(bp->dev);
12147 		rc = bnxt_set_xps_mapping(bp);
12148 		if (rc)
12149 			netdev_warn(bp->dev, "failed to set xps mapping\n");
12150 	}
12151 
12152 	if (bp->tx_nr_rings_xdp < num_possible_cpus()) {
12153 		if (!static_key_enabled(&bnxt_xdp_locking_key))
12154 			static_branch_enable(&bnxt_xdp_locking_key);
12155 	} else if (static_key_enabled(&bnxt_xdp_locking_key)) {
12156 		static_branch_disable(&bnxt_xdp_locking_key);
12157 	}
12158 	set_bit(BNXT_STATE_OPEN, &bp->state);
12159 	bnxt_enable_int(bp);
12160 	/* Enable TX queues */
12161 	bnxt_tx_enable(bp);
12162 	mod_timer(&bp->timer, jiffies + bp->current_interval);
12163 	/* Poll link status and check for SFP+ module status */
12164 	mutex_lock(&bp->link_lock);
12165 	bnxt_get_port_module_status(bp);
12166 	mutex_unlock(&bp->link_lock);
12167 
12168 	/* VF-reps may need to be re-opened after the PF is re-opened */
12169 	if (BNXT_PF(bp))
12170 		bnxt_vf_reps_open(bp);
12171 	if (bp->ptp_cfg && !(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP))
12172 		WRITE_ONCE(bp->ptp_cfg->tx_avail, BNXT_MAX_TX_TS);
12173 	bnxt_ptp_init_rtc(bp, true);
12174 	bnxt_ptp_cfg_tstamp_filters(bp);
12175 	if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp))
12176 		bnxt_hwrm_realloc_rss_ctx_vnic(bp);
12177 	bnxt_cfg_usr_fltrs(bp);
12178 	return 0;
12179 
12180 open_err_irq:
12181 	bnxt_del_napi(bp);
12182 
12183 open_err_free_mem:
12184 	bnxt_free_skbs(bp);
12185 	bnxt_free_irq(bp);
12186 	bnxt_free_mem(bp, true);
12187 	return rc;
12188 }
12189 
12190 /* rtnl_lock held */
12191 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
12192 {
12193 	int rc = 0;
12194 
12195 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
12196 		rc = -EIO;
12197 	if (!rc)
12198 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
12199 	if (rc) {
12200 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
12201 		dev_close(bp->dev);
12202 	}
12203 	return rc;
12204 }
12205 
12206 /* rtnl_lock held, open the NIC half way by allocating all resources, but
12207  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
12208  * self tests.
12209  */
12210 int bnxt_half_open_nic(struct bnxt *bp)
12211 {
12212 	int rc = 0;
12213 
12214 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
12215 		netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n");
12216 		rc = -ENODEV;
12217 		goto half_open_err;
12218 	}
12219 
12220 	rc = bnxt_alloc_mem(bp, true);
12221 	if (rc) {
12222 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
12223 		goto half_open_err;
12224 	}
12225 	bnxt_init_napi(bp);
12226 	set_bit(BNXT_STATE_HALF_OPEN, &bp->state);
12227 	rc = bnxt_init_nic(bp, true);
12228 	if (rc) {
12229 		clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
12230 		bnxt_del_napi(bp);
12231 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
12232 		goto half_open_err;
12233 	}
12234 	return 0;
12235 
12236 half_open_err:
12237 	bnxt_free_skbs(bp);
12238 	bnxt_free_mem(bp, true);
12239 	dev_close(bp->dev);
12240 	return rc;
12241 }
12242 
12243 /* rtnl_lock held, this call can only be made after a previous successful
12244  * call to bnxt_half_open_nic().
12245  */
12246 void bnxt_half_close_nic(struct bnxt *bp)
12247 {
12248 	bnxt_hwrm_resource_free(bp, false, true);
12249 	bnxt_del_napi(bp);
12250 	bnxt_free_skbs(bp);
12251 	bnxt_free_mem(bp, true);
12252 	clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
12253 }
12254 
12255 void bnxt_reenable_sriov(struct bnxt *bp)
12256 {
12257 	if (BNXT_PF(bp)) {
12258 		struct bnxt_pf_info *pf = &bp->pf;
12259 		int n = pf->active_vfs;
12260 
12261 		if (n)
12262 			bnxt_cfg_hw_sriov(bp, &n, true);
12263 	}
12264 }
12265 
12266 static int bnxt_open(struct net_device *dev)
12267 {
12268 	struct bnxt *bp = netdev_priv(dev);
12269 	int rc;
12270 
12271 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
12272 		rc = bnxt_reinit_after_abort(bp);
12273 		if (rc) {
12274 			if (rc == -EBUSY)
12275 				netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
12276 			else
12277 				netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
12278 			return -ENODEV;
12279 		}
12280 	}
12281 
12282 	rc = bnxt_hwrm_if_change(bp, true);
12283 	if (rc)
12284 		return rc;
12285 
12286 	rc = __bnxt_open_nic(bp, true, true);
12287 	if (rc) {
12288 		bnxt_hwrm_if_change(bp, false);
12289 	} else {
12290 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
12291 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
12292 				bnxt_queue_sp_work(bp,
12293 						   BNXT_RESTART_ULP_SP_EVENT);
12294 		}
12295 	}
12296 
12297 	return rc;
12298 }
12299 
12300 static bool bnxt_drv_busy(struct bnxt *bp)
12301 {
12302 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
12303 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
12304 }
12305 
12306 static void bnxt_get_ring_stats(struct bnxt *bp,
12307 				struct rtnl_link_stats64 *stats);
12308 
12309 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
12310 			     bool link_re_init)
12311 {
12312 	/* Close the VF-reps before closing PF */
12313 	if (BNXT_PF(bp))
12314 		bnxt_vf_reps_close(bp);
12315 
12316 	/* Change device state to avoid TX queue wake up's */
12317 	bnxt_tx_disable(bp);
12318 
12319 	clear_bit(BNXT_STATE_OPEN, &bp->state);
12320 	smp_mb__after_atomic();
12321 	while (bnxt_drv_busy(bp))
12322 		msleep(20);
12323 
12324 	if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp))
12325 		bnxt_clear_rss_ctxs(bp, false);
12326 	/* Flush rings and disable interrupts */
12327 	bnxt_shutdown_nic(bp, irq_re_init);
12328 
12329 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
12330 
12331 	bnxt_debug_dev_exit(bp);
12332 	bnxt_disable_napi(bp);
12333 	del_timer_sync(&bp->timer);
12334 	bnxt_free_skbs(bp);
12335 
12336 	/* Save ring stats before shutdown */
12337 	if (bp->bnapi && irq_re_init) {
12338 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
12339 		bnxt_get_ring_err_stats(bp, &bp->ring_err_stats_prev);
12340 	}
12341 	if (irq_re_init) {
12342 		bnxt_free_irq(bp);
12343 		bnxt_del_napi(bp);
12344 	}
12345 	bnxt_free_mem(bp, irq_re_init);
12346 }
12347 
12348 void bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
12349 {
12350 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
12351 		/* If we get here, it means firmware reset is in progress
12352 		 * while we are trying to close.  We can safely proceed with
12353 		 * the close because we are holding rtnl_lock().  Some firmware
12354 		 * messages may fail as we proceed to close.  We set the
12355 		 * ABORT_ERR flag here so that the FW reset thread will later
12356 		 * abort when it gets the rtnl_lock() and sees the flag.
12357 		 */
12358 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
12359 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
12360 	}
12361 
12362 #ifdef CONFIG_BNXT_SRIOV
12363 	if (bp->sriov_cfg) {
12364 		int rc;
12365 
12366 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
12367 						      !bp->sriov_cfg,
12368 						      BNXT_SRIOV_CFG_WAIT_TMO);
12369 		if (!rc)
12370 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete, proceeding to close!\n");
12371 		else if (rc < 0)
12372 			netdev_warn(bp->dev, "SRIOV config operation interrupted, proceeding to close!\n");
12373 	}
12374 #endif
12375 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
12376 }
12377 
12378 static int bnxt_close(struct net_device *dev)
12379 {
12380 	struct bnxt *bp = netdev_priv(dev);
12381 
12382 	bnxt_close_nic(bp, true, true);
12383 	bnxt_hwrm_shutdown_link(bp);
12384 	bnxt_hwrm_if_change(bp, false);
12385 	return 0;
12386 }
12387 
12388 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
12389 				   u16 *val)
12390 {
12391 	struct hwrm_port_phy_mdio_read_output *resp;
12392 	struct hwrm_port_phy_mdio_read_input *req;
12393 	int rc;
12394 
12395 	if (bp->hwrm_spec_code < 0x10a00)
12396 		return -EOPNOTSUPP;
12397 
12398 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ);
12399 	if (rc)
12400 		return rc;
12401 
12402 	req->port_id = cpu_to_le16(bp->pf.port_id);
12403 	req->phy_addr = phy_addr;
12404 	req->reg_addr = cpu_to_le16(reg & 0x1f);
12405 	if (mdio_phy_id_is_c45(phy_addr)) {
12406 		req->cl45_mdio = 1;
12407 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
12408 		req->dev_addr = mdio_phy_id_devad(phy_addr);
12409 		req->reg_addr = cpu_to_le16(reg);
12410 	}
12411 
12412 	resp = hwrm_req_hold(bp, req);
12413 	rc = hwrm_req_send(bp, req);
12414 	if (!rc)
12415 		*val = le16_to_cpu(resp->reg_data);
12416 	hwrm_req_drop(bp, req);
12417 	return rc;
12418 }
12419 
12420 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
12421 				    u16 val)
12422 {
12423 	struct hwrm_port_phy_mdio_write_input *req;
12424 	int rc;
12425 
12426 	if (bp->hwrm_spec_code < 0x10a00)
12427 		return -EOPNOTSUPP;
12428 
12429 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE);
12430 	if (rc)
12431 		return rc;
12432 
12433 	req->port_id = cpu_to_le16(bp->pf.port_id);
12434 	req->phy_addr = phy_addr;
12435 	req->reg_addr = cpu_to_le16(reg & 0x1f);
12436 	if (mdio_phy_id_is_c45(phy_addr)) {
12437 		req->cl45_mdio = 1;
12438 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
12439 		req->dev_addr = mdio_phy_id_devad(phy_addr);
12440 		req->reg_addr = cpu_to_le16(reg);
12441 	}
12442 	req->reg_data = cpu_to_le16(val);
12443 
12444 	return hwrm_req_send(bp, req);
12445 }
12446 
12447 /* rtnl_lock held */
12448 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12449 {
12450 	struct mii_ioctl_data *mdio = if_mii(ifr);
12451 	struct bnxt *bp = netdev_priv(dev);
12452 	int rc;
12453 
12454 	switch (cmd) {
12455 	case SIOCGMIIPHY:
12456 		mdio->phy_id = bp->link_info.phy_addr;
12457 
12458 		fallthrough;
12459 	case SIOCGMIIREG: {
12460 		u16 mii_regval = 0;
12461 
12462 		if (!netif_running(dev))
12463 			return -EAGAIN;
12464 
12465 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
12466 					     &mii_regval);
12467 		mdio->val_out = mii_regval;
12468 		return rc;
12469 	}
12470 
12471 	case SIOCSMIIREG:
12472 		if (!netif_running(dev))
12473 			return -EAGAIN;
12474 
12475 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
12476 						mdio->val_in);
12477 
12478 	case SIOCSHWTSTAMP:
12479 		return bnxt_hwtstamp_set(dev, ifr);
12480 
12481 	case SIOCGHWTSTAMP:
12482 		return bnxt_hwtstamp_get(dev, ifr);
12483 
12484 	default:
12485 		/* do nothing */
12486 		break;
12487 	}
12488 	return -EOPNOTSUPP;
12489 }
12490 
12491 static void bnxt_get_ring_stats(struct bnxt *bp,
12492 				struct rtnl_link_stats64 *stats)
12493 {
12494 	int i;
12495 
12496 	for (i = 0; i < bp->cp_nr_rings; i++) {
12497 		struct bnxt_napi *bnapi = bp->bnapi[i];
12498 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
12499 		u64 *sw = cpr->stats.sw_stats;
12500 
12501 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
12502 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
12503 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
12504 
12505 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
12506 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
12507 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
12508 
12509 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
12510 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
12511 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
12512 
12513 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
12514 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
12515 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
12516 
12517 		stats->rx_missed_errors +=
12518 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
12519 
12520 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
12521 
12522 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
12523 
12524 		stats->rx_dropped +=
12525 			cpr->sw_stats->rx.rx_netpoll_discards +
12526 			cpr->sw_stats->rx.rx_oom_discards;
12527 	}
12528 }
12529 
12530 static void bnxt_add_prev_stats(struct bnxt *bp,
12531 				struct rtnl_link_stats64 *stats)
12532 {
12533 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
12534 
12535 	stats->rx_packets += prev_stats->rx_packets;
12536 	stats->tx_packets += prev_stats->tx_packets;
12537 	stats->rx_bytes += prev_stats->rx_bytes;
12538 	stats->tx_bytes += prev_stats->tx_bytes;
12539 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
12540 	stats->multicast += prev_stats->multicast;
12541 	stats->rx_dropped += prev_stats->rx_dropped;
12542 	stats->tx_dropped += prev_stats->tx_dropped;
12543 }
12544 
12545 static void
12546 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
12547 {
12548 	struct bnxt *bp = netdev_priv(dev);
12549 
12550 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
12551 	/* Make sure bnxt_close_nic() sees that we are reading stats before
12552 	 * we check the BNXT_STATE_OPEN flag.
12553 	 */
12554 	smp_mb__after_atomic();
12555 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
12556 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
12557 		*stats = bp->net_stats_prev;
12558 		return;
12559 	}
12560 
12561 	bnxt_get_ring_stats(bp, stats);
12562 	bnxt_add_prev_stats(bp, stats);
12563 
12564 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
12565 		u64 *rx = bp->port_stats.sw_stats;
12566 		u64 *tx = bp->port_stats.sw_stats +
12567 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
12568 
12569 		stats->rx_crc_errors =
12570 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
12571 		stats->rx_frame_errors =
12572 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
12573 		stats->rx_length_errors =
12574 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
12575 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
12576 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
12577 		stats->rx_errors =
12578 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
12579 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
12580 		stats->collisions =
12581 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
12582 		stats->tx_fifo_errors =
12583 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
12584 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
12585 	}
12586 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
12587 }
12588 
12589 static void bnxt_get_one_ring_err_stats(struct bnxt *bp,
12590 					struct bnxt_total_ring_err_stats *stats,
12591 					struct bnxt_cp_ring_info *cpr)
12592 {
12593 	struct bnxt_sw_stats *sw_stats = cpr->sw_stats;
12594 	u64 *hw_stats = cpr->stats.sw_stats;
12595 
12596 	stats->rx_total_l4_csum_errors += sw_stats->rx.rx_l4_csum_errors;
12597 	stats->rx_total_resets += sw_stats->rx.rx_resets;
12598 	stats->rx_total_buf_errors += sw_stats->rx.rx_buf_errors;
12599 	stats->rx_total_oom_discards += sw_stats->rx.rx_oom_discards;
12600 	stats->rx_total_netpoll_discards += sw_stats->rx.rx_netpoll_discards;
12601 	stats->rx_total_ring_discards +=
12602 		BNXT_GET_RING_STATS64(hw_stats, rx_discard_pkts);
12603 	stats->tx_total_resets += sw_stats->tx.tx_resets;
12604 	stats->tx_total_ring_discards +=
12605 		BNXT_GET_RING_STATS64(hw_stats, tx_discard_pkts);
12606 	stats->total_missed_irqs += sw_stats->cmn.missed_irqs;
12607 }
12608 
12609 void bnxt_get_ring_err_stats(struct bnxt *bp,
12610 			     struct bnxt_total_ring_err_stats *stats)
12611 {
12612 	int i;
12613 
12614 	for (i = 0; i < bp->cp_nr_rings; i++)
12615 		bnxt_get_one_ring_err_stats(bp, stats, &bp->bnapi[i]->cp_ring);
12616 }
12617 
12618 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
12619 {
12620 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
12621 	struct net_device *dev = bp->dev;
12622 	struct netdev_hw_addr *ha;
12623 	u8 *haddr;
12624 	int mc_count = 0;
12625 	bool update = false;
12626 	int off = 0;
12627 
12628 	netdev_for_each_mc_addr(ha, dev) {
12629 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
12630 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
12631 			vnic->mc_list_count = 0;
12632 			return false;
12633 		}
12634 		haddr = ha->addr;
12635 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
12636 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
12637 			update = true;
12638 		}
12639 		off += ETH_ALEN;
12640 		mc_count++;
12641 	}
12642 	if (mc_count)
12643 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
12644 
12645 	if (mc_count != vnic->mc_list_count) {
12646 		vnic->mc_list_count = mc_count;
12647 		update = true;
12648 	}
12649 	return update;
12650 }
12651 
12652 static bool bnxt_uc_list_updated(struct bnxt *bp)
12653 {
12654 	struct net_device *dev = bp->dev;
12655 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
12656 	struct netdev_hw_addr *ha;
12657 	int off = 0;
12658 
12659 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
12660 		return true;
12661 
12662 	netdev_for_each_uc_addr(ha, dev) {
12663 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
12664 			return true;
12665 
12666 		off += ETH_ALEN;
12667 	}
12668 	return false;
12669 }
12670 
12671 static void bnxt_set_rx_mode(struct net_device *dev)
12672 {
12673 	struct bnxt *bp = netdev_priv(dev);
12674 	struct bnxt_vnic_info *vnic;
12675 	bool mc_update = false;
12676 	bool uc_update;
12677 	u32 mask;
12678 
12679 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
12680 		return;
12681 
12682 	vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
12683 	mask = vnic->rx_mask;
12684 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
12685 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
12686 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
12687 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
12688 
12689 	if (dev->flags & IFF_PROMISC)
12690 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
12691 
12692 	uc_update = bnxt_uc_list_updated(bp);
12693 
12694 	if (dev->flags & IFF_BROADCAST)
12695 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
12696 	if (dev->flags & IFF_ALLMULTI) {
12697 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
12698 		vnic->mc_list_count = 0;
12699 	} else if (dev->flags & IFF_MULTICAST) {
12700 		mc_update = bnxt_mc_list_updated(bp, &mask);
12701 	}
12702 
12703 	if (mask != vnic->rx_mask || uc_update || mc_update) {
12704 		vnic->rx_mask = mask;
12705 
12706 		bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT);
12707 	}
12708 }
12709 
12710 static int bnxt_cfg_rx_mode(struct bnxt *bp)
12711 {
12712 	struct net_device *dev = bp->dev;
12713 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
12714 	struct netdev_hw_addr *ha;
12715 	int i, off = 0, rc;
12716 	bool uc_update;
12717 
12718 	netif_addr_lock_bh(dev);
12719 	uc_update = bnxt_uc_list_updated(bp);
12720 	netif_addr_unlock_bh(dev);
12721 
12722 	if (!uc_update)
12723 		goto skip_uc;
12724 
12725 	for (i = 1; i < vnic->uc_filter_count; i++) {
12726 		struct bnxt_l2_filter *fltr = vnic->l2_filters[i];
12727 
12728 		bnxt_hwrm_l2_filter_free(bp, fltr);
12729 		bnxt_del_l2_filter(bp, fltr);
12730 	}
12731 
12732 	vnic->uc_filter_count = 1;
12733 
12734 	netif_addr_lock_bh(dev);
12735 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
12736 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
12737 	} else {
12738 		netdev_for_each_uc_addr(ha, dev) {
12739 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
12740 			off += ETH_ALEN;
12741 			vnic->uc_filter_count++;
12742 		}
12743 	}
12744 	netif_addr_unlock_bh(dev);
12745 
12746 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
12747 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
12748 		if (rc) {
12749 			if (BNXT_VF(bp) && rc == -ENODEV) {
12750 				if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
12751 					netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n");
12752 				else
12753 					netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n");
12754 				rc = 0;
12755 			} else {
12756 				netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
12757 			}
12758 			vnic->uc_filter_count = i;
12759 			return rc;
12760 		}
12761 	}
12762 	if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
12763 		netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n");
12764 
12765 skip_uc:
12766 	if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
12767 	    !bnxt_promisc_ok(bp))
12768 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
12769 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
12770 	if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) {
12771 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
12772 			    rc);
12773 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
12774 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
12775 		vnic->mc_list_count = 0;
12776 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
12777 	}
12778 	if (rc)
12779 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
12780 			   rc);
12781 
12782 	return rc;
12783 }
12784 
12785 static bool bnxt_can_reserve_rings(struct bnxt *bp)
12786 {
12787 #ifdef CONFIG_BNXT_SRIOV
12788 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
12789 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
12790 
12791 		/* No minimum rings were provisioned by the PF.  Don't
12792 		 * reserve rings by default when device is down.
12793 		 */
12794 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
12795 			return true;
12796 
12797 		if (!netif_running(bp->dev))
12798 			return false;
12799 	}
12800 #endif
12801 	return true;
12802 }
12803 
12804 /* If the chip and firmware supports RFS */
12805 static bool bnxt_rfs_supported(struct bnxt *bp)
12806 {
12807 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
12808 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
12809 			return true;
12810 		return false;
12811 	}
12812 	/* 212 firmware is broken for aRFS */
12813 	if (BNXT_FW_MAJ(bp) == 212)
12814 		return false;
12815 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
12816 		return true;
12817 	if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP)
12818 		return true;
12819 	return false;
12820 }
12821 
12822 /* If runtime conditions support RFS */
12823 bool bnxt_rfs_capable(struct bnxt *bp, bool new_rss_ctx)
12824 {
12825 	struct bnxt_hw_rings hwr = {0};
12826 	int max_vnics, max_rss_ctxs;
12827 
12828 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
12829 	    !BNXT_SUPPORTS_NTUPLE_VNIC(bp))
12830 		return bnxt_rfs_supported(bp);
12831 
12832 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings)
12833 		return false;
12834 
12835 	hwr.grp = bp->rx_nr_rings;
12836 	hwr.vnic = bnxt_get_total_vnics(bp, bp->rx_nr_rings);
12837 	if (new_rss_ctx)
12838 		hwr.vnic++;
12839 	hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr);
12840 	max_vnics = bnxt_get_max_func_vnics(bp);
12841 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
12842 
12843 	if (hwr.vnic > max_vnics || hwr.rss_ctx > max_rss_ctxs) {
12844 		if (bp->rx_nr_rings > 1)
12845 			netdev_warn(bp->dev,
12846 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
12847 				    min(max_rss_ctxs - 1, max_vnics - 1));
12848 		return false;
12849 	}
12850 
12851 	if (!BNXT_NEW_RM(bp))
12852 		return true;
12853 
12854 	/* Do not reduce VNIC and RSS ctx reservations.  There is a FW
12855 	 * issue that will mess up the default VNIC if we reduce the
12856 	 * reservations.
12857 	 */
12858 	if (hwr.vnic <= bp->hw_resc.resv_vnics &&
12859 	    hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs)
12860 		return true;
12861 
12862 	bnxt_hwrm_reserve_rings(bp, &hwr);
12863 	if (hwr.vnic <= bp->hw_resc.resv_vnics &&
12864 	    hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs)
12865 		return true;
12866 
12867 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
12868 	hwr.vnic = 1;
12869 	hwr.rss_ctx = 0;
12870 	bnxt_hwrm_reserve_rings(bp, &hwr);
12871 	return false;
12872 }
12873 
12874 static netdev_features_t bnxt_fix_features(struct net_device *dev,
12875 					   netdev_features_t features)
12876 {
12877 	struct bnxt *bp = netdev_priv(dev);
12878 	netdev_features_t vlan_features;
12879 
12880 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp, false))
12881 		features &= ~NETIF_F_NTUPLE;
12882 
12883 	if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog)
12884 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12885 
12886 	if (!(features & NETIF_F_GRO))
12887 		features &= ~NETIF_F_GRO_HW;
12888 
12889 	if (features & NETIF_F_GRO_HW)
12890 		features &= ~NETIF_F_LRO;
12891 
12892 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
12893 	 * turned on or off together.
12894 	 */
12895 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
12896 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
12897 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
12898 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
12899 		else if (vlan_features)
12900 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
12901 	}
12902 #ifdef CONFIG_BNXT_SRIOV
12903 	if (BNXT_VF(bp) && bp->vf.vlan)
12904 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
12905 #endif
12906 	return features;
12907 }
12908 
12909 static int bnxt_reinit_features(struct bnxt *bp, bool irq_re_init,
12910 				bool link_re_init, u32 flags, bool update_tpa)
12911 {
12912 	bnxt_close_nic(bp, irq_re_init, link_re_init);
12913 	bp->flags = flags;
12914 	if (update_tpa)
12915 		bnxt_set_ring_params(bp);
12916 	return bnxt_open_nic(bp, irq_re_init, link_re_init);
12917 }
12918 
12919 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
12920 {
12921 	bool update_tpa = false, update_ntuple = false;
12922 	struct bnxt *bp = netdev_priv(dev);
12923 	u32 flags = bp->flags;
12924 	u32 changes;
12925 	int rc = 0;
12926 	bool re_init = false;
12927 
12928 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
12929 	if (features & NETIF_F_GRO_HW)
12930 		flags |= BNXT_FLAG_GRO;
12931 	else if (features & NETIF_F_LRO)
12932 		flags |= BNXT_FLAG_LRO;
12933 
12934 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
12935 		flags &= ~BNXT_FLAG_TPA;
12936 
12937 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
12938 		flags |= BNXT_FLAG_STRIP_VLAN;
12939 
12940 	if (features & NETIF_F_NTUPLE)
12941 		flags |= BNXT_FLAG_RFS;
12942 	else
12943 		bnxt_clear_usr_fltrs(bp, true);
12944 
12945 	changes = flags ^ bp->flags;
12946 	if (changes & BNXT_FLAG_TPA) {
12947 		update_tpa = true;
12948 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
12949 		    (flags & BNXT_FLAG_TPA) == 0 ||
12950 		    (bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
12951 			re_init = true;
12952 	}
12953 
12954 	if (changes & ~BNXT_FLAG_TPA)
12955 		re_init = true;
12956 
12957 	if (changes & BNXT_FLAG_RFS)
12958 		update_ntuple = true;
12959 
12960 	if (flags != bp->flags) {
12961 		u32 old_flags = bp->flags;
12962 
12963 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
12964 			bp->flags = flags;
12965 			if (update_tpa)
12966 				bnxt_set_ring_params(bp);
12967 			return rc;
12968 		}
12969 
12970 		if (update_ntuple)
12971 			return bnxt_reinit_features(bp, true, false, flags, update_tpa);
12972 
12973 		if (re_init)
12974 			return bnxt_reinit_features(bp, false, false, flags, update_tpa);
12975 
12976 		if (update_tpa) {
12977 			bp->flags = flags;
12978 			rc = bnxt_set_tpa(bp,
12979 					  (flags & BNXT_FLAG_TPA) ?
12980 					  true : false);
12981 			if (rc)
12982 				bp->flags = old_flags;
12983 		}
12984 	}
12985 	return rc;
12986 }
12987 
12988 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
12989 			      u8 **nextp)
12990 {
12991 	struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
12992 	struct hop_jumbo_hdr *jhdr;
12993 	int hdr_count = 0;
12994 	u8 *nexthdr;
12995 	int start;
12996 
12997 	/* Check that there are at most 2 IPv6 extension headers, no
12998 	 * fragment header, and each is <= 64 bytes.
12999 	 */
13000 	start = nw_off + sizeof(*ip6h);
13001 	nexthdr = &ip6h->nexthdr;
13002 	while (ipv6_ext_hdr(*nexthdr)) {
13003 		struct ipv6_opt_hdr *hp;
13004 		int hdrlen;
13005 
13006 		if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
13007 		    *nexthdr == NEXTHDR_FRAGMENT)
13008 			return false;
13009 		hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
13010 					  skb_headlen(skb), NULL);
13011 		if (!hp)
13012 			return false;
13013 		if (*nexthdr == NEXTHDR_AUTH)
13014 			hdrlen = ipv6_authlen(hp);
13015 		else
13016 			hdrlen = ipv6_optlen(hp);
13017 
13018 		if (hdrlen > 64)
13019 			return false;
13020 
13021 		/* The ext header may be a hop-by-hop header inserted for
13022 		 * big TCP purposes. This will be removed before sending
13023 		 * from NIC, so do not count it.
13024 		 */
13025 		if (*nexthdr == NEXTHDR_HOP) {
13026 			if (likely(skb->len <= GRO_LEGACY_MAX_SIZE))
13027 				goto increment_hdr;
13028 
13029 			jhdr = (struct hop_jumbo_hdr *)hp;
13030 			if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 ||
13031 			    jhdr->nexthdr != IPPROTO_TCP)
13032 				goto increment_hdr;
13033 
13034 			goto next_hdr;
13035 		}
13036 increment_hdr:
13037 		hdr_count++;
13038 next_hdr:
13039 		nexthdr = &hp->nexthdr;
13040 		start += hdrlen;
13041 	}
13042 	if (nextp) {
13043 		/* Caller will check inner protocol */
13044 		if (skb->encapsulation) {
13045 			*nextp = nexthdr;
13046 			return true;
13047 		}
13048 		*nextp = NULL;
13049 	}
13050 	/* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
13051 	return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
13052 }
13053 
13054 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
13055 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
13056 {
13057 	struct udphdr *uh = udp_hdr(skb);
13058 	__be16 udp_port = uh->dest;
13059 
13060 	if (udp_port != bp->vxlan_port && udp_port != bp->nge_port &&
13061 	    udp_port != bp->vxlan_gpe_port)
13062 		return false;
13063 	if (skb->inner_protocol == htons(ETH_P_TEB)) {
13064 		struct ethhdr *eh = inner_eth_hdr(skb);
13065 
13066 		switch (eh->h_proto) {
13067 		case htons(ETH_P_IP):
13068 			return true;
13069 		case htons(ETH_P_IPV6):
13070 			return bnxt_exthdr_check(bp, skb,
13071 						 skb_inner_network_offset(skb),
13072 						 NULL);
13073 		}
13074 	} else if (skb->inner_protocol == htons(ETH_P_IP)) {
13075 		return true;
13076 	} else if (skb->inner_protocol == htons(ETH_P_IPV6)) {
13077 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
13078 					 NULL);
13079 	}
13080 	return false;
13081 }
13082 
13083 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
13084 {
13085 	switch (l4_proto) {
13086 	case IPPROTO_UDP:
13087 		return bnxt_udp_tunl_check(bp, skb);
13088 	case IPPROTO_IPIP:
13089 		return true;
13090 	case IPPROTO_GRE: {
13091 		switch (skb->inner_protocol) {
13092 		default:
13093 			return false;
13094 		case htons(ETH_P_IP):
13095 			return true;
13096 		case htons(ETH_P_IPV6):
13097 			fallthrough;
13098 		}
13099 	}
13100 	case IPPROTO_IPV6:
13101 		/* Check ext headers of inner ipv6 */
13102 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
13103 					 NULL);
13104 	}
13105 	return false;
13106 }
13107 
13108 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
13109 					     struct net_device *dev,
13110 					     netdev_features_t features)
13111 {
13112 	struct bnxt *bp = netdev_priv(dev);
13113 	u8 *l4_proto;
13114 
13115 	features = vlan_features_check(skb, features);
13116 	switch (vlan_get_protocol(skb)) {
13117 	case htons(ETH_P_IP):
13118 		if (!skb->encapsulation)
13119 			return features;
13120 		l4_proto = &ip_hdr(skb)->protocol;
13121 		if (bnxt_tunl_check(bp, skb, *l4_proto))
13122 			return features;
13123 		break;
13124 	case htons(ETH_P_IPV6):
13125 		if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
13126 				       &l4_proto))
13127 			break;
13128 		if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
13129 			return features;
13130 		break;
13131 	}
13132 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
13133 }
13134 
13135 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
13136 			 u32 *reg_buf)
13137 {
13138 	struct hwrm_dbg_read_direct_output *resp;
13139 	struct hwrm_dbg_read_direct_input *req;
13140 	__le32 *dbg_reg_buf;
13141 	dma_addr_t mapping;
13142 	int rc, i;
13143 
13144 	rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT);
13145 	if (rc)
13146 		return rc;
13147 
13148 	dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4,
13149 					 &mapping);
13150 	if (!dbg_reg_buf) {
13151 		rc = -ENOMEM;
13152 		goto dbg_rd_reg_exit;
13153 	}
13154 
13155 	req->host_dest_addr = cpu_to_le64(mapping);
13156 
13157 	resp = hwrm_req_hold(bp, req);
13158 	req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
13159 	req->read_len32 = cpu_to_le32(num_words);
13160 
13161 	rc = hwrm_req_send(bp, req);
13162 	if (rc || resp->error_code) {
13163 		rc = -EIO;
13164 		goto dbg_rd_reg_exit;
13165 	}
13166 	for (i = 0; i < num_words; i++)
13167 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
13168 
13169 dbg_rd_reg_exit:
13170 	hwrm_req_drop(bp, req);
13171 	return rc;
13172 }
13173 
13174 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
13175 				       u32 ring_id, u32 *prod, u32 *cons)
13176 {
13177 	struct hwrm_dbg_ring_info_get_output *resp;
13178 	struct hwrm_dbg_ring_info_get_input *req;
13179 	int rc;
13180 
13181 	rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET);
13182 	if (rc)
13183 		return rc;
13184 
13185 	req->ring_type = ring_type;
13186 	req->fw_ring_id = cpu_to_le32(ring_id);
13187 	resp = hwrm_req_hold(bp, req);
13188 	rc = hwrm_req_send(bp, req);
13189 	if (!rc) {
13190 		*prod = le32_to_cpu(resp->producer_index);
13191 		*cons = le32_to_cpu(resp->consumer_index);
13192 	}
13193 	hwrm_req_drop(bp, req);
13194 	return rc;
13195 }
13196 
13197 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
13198 {
13199 	struct bnxt_tx_ring_info *txr;
13200 	int i = bnapi->index, j;
13201 
13202 	bnxt_for_each_napi_tx(j, bnapi, txr)
13203 		netdev_info(bnapi->bp->dev, "[%d.%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
13204 			    i, j, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
13205 			    txr->tx_cons);
13206 }
13207 
13208 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
13209 {
13210 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
13211 	int i = bnapi->index;
13212 
13213 	if (!rxr)
13214 		return;
13215 
13216 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
13217 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
13218 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
13219 		    rxr->rx_sw_agg_prod);
13220 }
13221 
13222 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
13223 {
13224 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
13225 	int i = bnapi->index;
13226 
13227 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
13228 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
13229 }
13230 
13231 static void bnxt_dbg_dump_states(struct bnxt *bp)
13232 {
13233 	int i;
13234 	struct bnxt_napi *bnapi;
13235 
13236 	for (i = 0; i < bp->cp_nr_rings; i++) {
13237 		bnapi = bp->bnapi[i];
13238 		if (netif_msg_drv(bp)) {
13239 			bnxt_dump_tx_sw_state(bnapi);
13240 			bnxt_dump_rx_sw_state(bnapi);
13241 			bnxt_dump_cp_sw_state(bnapi);
13242 		}
13243 	}
13244 }
13245 
13246 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
13247 {
13248 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
13249 	struct hwrm_ring_reset_input *req;
13250 	struct bnxt_napi *bnapi = rxr->bnapi;
13251 	struct bnxt_cp_ring_info *cpr;
13252 	u16 cp_ring_id;
13253 	int rc;
13254 
13255 	rc = hwrm_req_init(bp, req, HWRM_RING_RESET);
13256 	if (rc)
13257 		return rc;
13258 
13259 	cpr = &bnapi->cp_ring;
13260 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
13261 	req->cmpl_ring = cpu_to_le16(cp_ring_id);
13262 	req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
13263 	req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
13264 	return hwrm_req_send_silent(bp, req);
13265 }
13266 
13267 static void bnxt_reset_task(struct bnxt *bp, bool silent)
13268 {
13269 	if (!silent)
13270 		bnxt_dbg_dump_states(bp);
13271 	if (netif_running(bp->dev)) {
13272 		bnxt_close_nic(bp, !silent, false);
13273 		bnxt_open_nic(bp, !silent, false);
13274 	}
13275 }
13276 
13277 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
13278 {
13279 	struct bnxt *bp = netdev_priv(dev);
13280 
13281 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
13282 	bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT);
13283 }
13284 
13285 static void bnxt_fw_health_check(struct bnxt *bp)
13286 {
13287 	struct bnxt_fw_health *fw_health = bp->fw_health;
13288 	struct pci_dev *pdev = bp->pdev;
13289 	u32 val;
13290 
13291 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
13292 		return;
13293 
13294 	/* Make sure it is enabled before checking the tmr_counter. */
13295 	smp_rmb();
13296 	if (fw_health->tmr_counter) {
13297 		fw_health->tmr_counter--;
13298 		return;
13299 	}
13300 
13301 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
13302 	if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) {
13303 		fw_health->arrests++;
13304 		goto fw_reset;
13305 	}
13306 
13307 	fw_health->last_fw_heartbeat = val;
13308 
13309 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
13310 	if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) {
13311 		fw_health->discoveries++;
13312 		goto fw_reset;
13313 	}
13314 
13315 	fw_health->tmr_counter = fw_health->tmr_multiplier;
13316 	return;
13317 
13318 fw_reset:
13319 	bnxt_queue_sp_work(bp, BNXT_FW_EXCEPTION_SP_EVENT);
13320 }
13321 
13322 static void bnxt_timer(struct timer_list *t)
13323 {
13324 	struct bnxt *bp = from_timer(bp, t, timer);
13325 	struct net_device *dev = bp->dev;
13326 
13327 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
13328 		return;
13329 
13330 	if (atomic_read(&bp->intr_sem) != 0)
13331 		goto bnxt_restart_timer;
13332 
13333 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
13334 		bnxt_fw_health_check(bp);
13335 
13336 	if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks)
13337 		bnxt_queue_sp_work(bp, BNXT_PERIODIC_STATS_SP_EVENT);
13338 
13339 	if (bnxt_tc_flower_enabled(bp))
13340 		bnxt_queue_sp_work(bp, BNXT_FLOW_STATS_SP_EVENT);
13341 
13342 #ifdef CONFIG_RFS_ACCEL
13343 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count)
13344 		bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT);
13345 #endif /*CONFIG_RFS_ACCEL*/
13346 
13347 	if (bp->link_info.phy_retry) {
13348 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
13349 			bp->link_info.phy_retry = false;
13350 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
13351 		} else {
13352 			bnxt_queue_sp_work(bp, BNXT_UPDATE_PHY_SP_EVENT);
13353 		}
13354 	}
13355 
13356 	if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
13357 		bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT);
13358 
13359 	if ((BNXT_CHIP_P5(bp)) && !bp->chip_rev && netif_carrier_ok(dev))
13360 		bnxt_queue_sp_work(bp, BNXT_RING_COAL_NOW_SP_EVENT);
13361 
13362 bnxt_restart_timer:
13363 	mod_timer(&bp->timer, jiffies + bp->current_interval);
13364 }
13365 
13366 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
13367 {
13368 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
13369 	 * set.  If the device is being closed, bnxt_close() may be holding
13370 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
13371 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
13372 	 */
13373 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13374 	rtnl_lock();
13375 }
13376 
13377 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
13378 {
13379 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13380 	rtnl_unlock();
13381 }
13382 
13383 /* Only called from bnxt_sp_task() */
13384 static void bnxt_reset(struct bnxt *bp, bool silent)
13385 {
13386 	bnxt_rtnl_lock_sp(bp);
13387 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
13388 		bnxt_reset_task(bp, silent);
13389 	bnxt_rtnl_unlock_sp(bp);
13390 }
13391 
13392 /* Only called from bnxt_sp_task() */
13393 static void bnxt_rx_ring_reset(struct bnxt *bp)
13394 {
13395 	int i;
13396 
13397 	bnxt_rtnl_lock_sp(bp);
13398 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
13399 		bnxt_rtnl_unlock_sp(bp);
13400 		return;
13401 	}
13402 	/* Disable and flush TPA before resetting the RX ring */
13403 	if (bp->flags & BNXT_FLAG_TPA)
13404 		bnxt_set_tpa(bp, false);
13405 	for (i = 0; i < bp->rx_nr_rings; i++) {
13406 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
13407 		struct bnxt_cp_ring_info *cpr;
13408 		int rc;
13409 
13410 		if (!rxr->bnapi->in_reset)
13411 			continue;
13412 
13413 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
13414 		if (rc) {
13415 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
13416 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
13417 			else
13418 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
13419 					    rc);
13420 			bnxt_reset_task(bp, true);
13421 			break;
13422 		}
13423 		bnxt_free_one_rx_ring_skbs(bp, i);
13424 		rxr->rx_prod = 0;
13425 		rxr->rx_agg_prod = 0;
13426 		rxr->rx_sw_agg_prod = 0;
13427 		rxr->rx_next_cons = 0;
13428 		rxr->bnapi->in_reset = false;
13429 		bnxt_alloc_one_rx_ring(bp, i);
13430 		cpr = &rxr->bnapi->cp_ring;
13431 		cpr->sw_stats->rx.rx_resets++;
13432 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
13433 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
13434 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
13435 	}
13436 	if (bp->flags & BNXT_FLAG_TPA)
13437 		bnxt_set_tpa(bp, true);
13438 	bnxt_rtnl_unlock_sp(bp);
13439 }
13440 
13441 static void bnxt_fw_fatal_close(struct bnxt *bp)
13442 {
13443 	bnxt_tx_disable(bp);
13444 	bnxt_disable_napi(bp);
13445 	bnxt_disable_int_sync(bp);
13446 	bnxt_free_irq(bp);
13447 	bnxt_clear_int_mode(bp);
13448 	pci_disable_device(bp->pdev);
13449 }
13450 
13451 static void bnxt_fw_reset_close(struct bnxt *bp)
13452 {
13453 	/* When firmware is in fatal state, quiesce device and disable
13454 	 * bus master to prevent any potential bad DMAs before freeing
13455 	 * kernel memory.
13456 	 */
13457 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
13458 		u16 val = 0;
13459 
13460 		pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
13461 		if (val == 0xffff)
13462 			bp->fw_reset_min_dsecs = 0;
13463 		bnxt_fw_fatal_close(bp);
13464 	}
13465 	__bnxt_close_nic(bp, true, false);
13466 	bnxt_vf_reps_free(bp);
13467 	bnxt_clear_int_mode(bp);
13468 	bnxt_hwrm_func_drv_unrgtr(bp);
13469 	if (pci_is_enabled(bp->pdev))
13470 		pci_disable_device(bp->pdev);
13471 	bnxt_free_ctx_mem(bp);
13472 }
13473 
13474 static bool is_bnxt_fw_ok(struct bnxt *bp)
13475 {
13476 	struct bnxt_fw_health *fw_health = bp->fw_health;
13477 	bool no_heartbeat = false, has_reset = false;
13478 	u32 val;
13479 
13480 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
13481 	if (val == fw_health->last_fw_heartbeat)
13482 		no_heartbeat = true;
13483 
13484 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
13485 	if (val != fw_health->last_fw_reset_cnt)
13486 		has_reset = true;
13487 
13488 	if (!no_heartbeat && has_reset)
13489 		return true;
13490 
13491 	return false;
13492 }
13493 
13494 /* rtnl_lock is acquired before calling this function */
13495 static void bnxt_force_fw_reset(struct bnxt *bp)
13496 {
13497 	struct bnxt_fw_health *fw_health = bp->fw_health;
13498 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
13499 	u32 wait_dsecs;
13500 
13501 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
13502 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
13503 		return;
13504 
13505 	if (ptp) {
13506 		spin_lock_bh(&ptp->ptp_lock);
13507 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13508 		spin_unlock_bh(&ptp->ptp_lock);
13509 	} else {
13510 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13511 	}
13512 	bnxt_fw_reset_close(bp);
13513 	wait_dsecs = fw_health->master_func_wait_dsecs;
13514 	if (fw_health->primary) {
13515 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
13516 			wait_dsecs = 0;
13517 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
13518 	} else {
13519 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
13520 		wait_dsecs = fw_health->normal_func_wait_dsecs;
13521 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
13522 	}
13523 
13524 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
13525 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
13526 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
13527 }
13528 
13529 void bnxt_fw_exception(struct bnxt *bp)
13530 {
13531 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
13532 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
13533 	bnxt_ulp_stop(bp);
13534 	bnxt_rtnl_lock_sp(bp);
13535 	bnxt_force_fw_reset(bp);
13536 	bnxt_rtnl_unlock_sp(bp);
13537 }
13538 
13539 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
13540  * < 0 on error.
13541  */
13542 static int bnxt_get_registered_vfs(struct bnxt *bp)
13543 {
13544 #ifdef CONFIG_BNXT_SRIOV
13545 	int rc;
13546 
13547 	if (!BNXT_PF(bp))
13548 		return 0;
13549 
13550 	rc = bnxt_hwrm_func_qcfg(bp);
13551 	if (rc) {
13552 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
13553 		return rc;
13554 	}
13555 	if (bp->pf.registered_vfs)
13556 		return bp->pf.registered_vfs;
13557 	if (bp->sriov_cfg)
13558 		return 1;
13559 #endif
13560 	return 0;
13561 }
13562 
13563 void bnxt_fw_reset(struct bnxt *bp)
13564 {
13565 	bnxt_ulp_stop(bp);
13566 	bnxt_rtnl_lock_sp(bp);
13567 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
13568 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
13569 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
13570 		int n = 0, tmo;
13571 
13572 		if (ptp) {
13573 			spin_lock_bh(&ptp->ptp_lock);
13574 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13575 			spin_unlock_bh(&ptp->ptp_lock);
13576 		} else {
13577 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13578 		}
13579 		if (bp->pf.active_vfs &&
13580 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
13581 			n = bnxt_get_registered_vfs(bp);
13582 		if (n < 0) {
13583 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
13584 				   n);
13585 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13586 			dev_close(bp->dev);
13587 			goto fw_reset_exit;
13588 		} else if (n > 0) {
13589 			u16 vf_tmo_dsecs = n * 10;
13590 
13591 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
13592 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
13593 			bp->fw_reset_state =
13594 				BNXT_FW_RESET_STATE_POLL_VF;
13595 			bnxt_queue_fw_reset_work(bp, HZ / 10);
13596 			goto fw_reset_exit;
13597 		}
13598 		bnxt_fw_reset_close(bp);
13599 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
13600 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
13601 			tmo = HZ / 10;
13602 		} else {
13603 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
13604 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
13605 		}
13606 		bnxt_queue_fw_reset_work(bp, tmo);
13607 	}
13608 fw_reset_exit:
13609 	bnxt_rtnl_unlock_sp(bp);
13610 }
13611 
13612 static void bnxt_chk_missed_irq(struct bnxt *bp)
13613 {
13614 	int i;
13615 
13616 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
13617 		return;
13618 
13619 	for (i = 0; i < bp->cp_nr_rings; i++) {
13620 		struct bnxt_napi *bnapi = bp->bnapi[i];
13621 		struct bnxt_cp_ring_info *cpr;
13622 		u32 fw_ring_id;
13623 		int j;
13624 
13625 		if (!bnapi)
13626 			continue;
13627 
13628 		cpr = &bnapi->cp_ring;
13629 		for (j = 0; j < cpr->cp_ring_count; j++) {
13630 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
13631 			u32 val[2];
13632 
13633 			if (cpr2->has_more_work || !bnxt_has_work(bp, cpr2))
13634 				continue;
13635 
13636 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
13637 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
13638 				continue;
13639 			}
13640 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
13641 			bnxt_dbg_hwrm_ring_info_get(bp,
13642 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
13643 				fw_ring_id, &val[0], &val[1]);
13644 			cpr->sw_stats->cmn.missed_irqs++;
13645 		}
13646 	}
13647 }
13648 
13649 static void bnxt_cfg_ntp_filters(struct bnxt *);
13650 
13651 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
13652 {
13653 	struct bnxt_link_info *link_info = &bp->link_info;
13654 
13655 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
13656 		link_info->autoneg = BNXT_AUTONEG_SPEED;
13657 		if (bp->hwrm_spec_code >= 0x10201) {
13658 			if (link_info->auto_pause_setting &
13659 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
13660 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
13661 		} else {
13662 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
13663 		}
13664 		bnxt_set_auto_speed(link_info);
13665 	} else {
13666 		bnxt_set_force_speed(link_info);
13667 		link_info->req_duplex = link_info->duplex_setting;
13668 	}
13669 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
13670 		link_info->req_flow_ctrl =
13671 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
13672 	else
13673 		link_info->req_flow_ctrl = link_info->force_pause_setting;
13674 }
13675 
13676 static void bnxt_fw_echo_reply(struct bnxt *bp)
13677 {
13678 	struct bnxt_fw_health *fw_health = bp->fw_health;
13679 	struct hwrm_func_echo_response_input *req;
13680 	int rc;
13681 
13682 	rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE);
13683 	if (rc)
13684 		return;
13685 	req->event_data1 = cpu_to_le32(fw_health->echo_req_data1);
13686 	req->event_data2 = cpu_to_le32(fw_health->echo_req_data2);
13687 	hwrm_req_send(bp, req);
13688 }
13689 
13690 static void bnxt_ulp_restart(struct bnxt *bp)
13691 {
13692 	bnxt_ulp_stop(bp);
13693 	bnxt_ulp_start(bp, 0);
13694 }
13695 
13696 static void bnxt_sp_task(struct work_struct *work)
13697 {
13698 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
13699 
13700 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13701 	smp_mb__after_atomic();
13702 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
13703 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13704 		return;
13705 	}
13706 
13707 	if (test_and_clear_bit(BNXT_RESTART_ULP_SP_EVENT, &bp->sp_event)) {
13708 		bnxt_ulp_restart(bp);
13709 		bnxt_reenable_sriov(bp);
13710 	}
13711 
13712 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
13713 		bnxt_cfg_rx_mode(bp);
13714 
13715 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
13716 		bnxt_cfg_ntp_filters(bp);
13717 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
13718 		bnxt_hwrm_exec_fwd_req(bp);
13719 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
13720 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
13721 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
13722 		bnxt_hwrm_port_qstats(bp, 0);
13723 		bnxt_hwrm_port_qstats_ext(bp, 0);
13724 		bnxt_accumulate_all_stats(bp);
13725 	}
13726 
13727 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
13728 		int rc;
13729 
13730 		mutex_lock(&bp->link_lock);
13731 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
13732 				       &bp->sp_event))
13733 			bnxt_hwrm_phy_qcaps(bp);
13734 
13735 		rc = bnxt_update_link(bp, true);
13736 		if (rc)
13737 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
13738 				   rc);
13739 
13740 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
13741 				       &bp->sp_event))
13742 			bnxt_init_ethtool_link_settings(bp);
13743 		mutex_unlock(&bp->link_lock);
13744 	}
13745 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
13746 		int rc;
13747 
13748 		mutex_lock(&bp->link_lock);
13749 		rc = bnxt_update_phy_setting(bp);
13750 		mutex_unlock(&bp->link_lock);
13751 		if (rc) {
13752 			netdev_warn(bp->dev, "update phy settings retry failed\n");
13753 		} else {
13754 			bp->link_info.phy_retry = false;
13755 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
13756 		}
13757 	}
13758 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
13759 		mutex_lock(&bp->link_lock);
13760 		bnxt_get_port_module_status(bp);
13761 		mutex_unlock(&bp->link_lock);
13762 	}
13763 
13764 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
13765 		bnxt_tc_flow_stats_work(bp);
13766 
13767 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
13768 		bnxt_chk_missed_irq(bp);
13769 
13770 	if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
13771 		bnxt_fw_echo_reply(bp);
13772 
13773 	if (test_and_clear_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event))
13774 		bnxt_hwmon_notify_event(bp);
13775 
13776 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
13777 	 * must be the last functions to be called before exiting.
13778 	 */
13779 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
13780 		bnxt_reset(bp, false);
13781 
13782 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
13783 		bnxt_reset(bp, true);
13784 
13785 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
13786 		bnxt_rx_ring_reset(bp);
13787 
13788 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) {
13789 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) ||
13790 		    test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state))
13791 			bnxt_devlink_health_fw_report(bp);
13792 		else
13793 			bnxt_fw_reset(bp);
13794 	}
13795 
13796 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
13797 		if (!is_bnxt_fw_ok(bp))
13798 			bnxt_devlink_health_fw_report(bp);
13799 	}
13800 
13801 	smp_mb__before_atomic();
13802 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13803 }
13804 
13805 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13806 				int *max_cp);
13807 
13808 /* Under rtnl_lock */
13809 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
13810 		     int tx_xdp)
13811 {
13812 	int max_rx, max_tx, max_cp, tx_sets = 1, tx_cp;
13813 	struct bnxt_hw_rings hwr = {0};
13814 	int rx_rings = rx;
13815 
13816 	if (tcs)
13817 		tx_sets = tcs;
13818 
13819 	_bnxt_get_max_rings(bp, &max_rx, &max_tx, &max_cp);
13820 
13821 	if (max_rx < rx_rings)
13822 		return -ENOMEM;
13823 
13824 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
13825 		rx_rings <<= 1;
13826 
13827 	hwr.rx = rx_rings;
13828 	hwr.tx = tx * tx_sets + tx_xdp;
13829 	if (max_tx < hwr.tx)
13830 		return -ENOMEM;
13831 
13832 	hwr.vnic = bnxt_get_total_vnics(bp, rx);
13833 
13834 	tx_cp = __bnxt_num_tx_to_cp(bp, hwr.tx, tx_sets, tx_xdp);
13835 	hwr.cp = sh ? max_t(int, tx_cp, rx) : tx_cp + rx;
13836 	if (max_cp < hwr.cp)
13837 		return -ENOMEM;
13838 	hwr.stat = hwr.cp;
13839 	if (BNXT_NEW_RM(bp)) {
13840 		hwr.cp += bnxt_get_ulp_msix_num_in_use(bp);
13841 		hwr.stat += bnxt_get_ulp_stat_ctxs_in_use(bp);
13842 		hwr.grp = rx;
13843 		hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr);
13844 	}
13845 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
13846 		hwr.cp_p5 = hwr.tx + rx;
13847 	return bnxt_hwrm_check_rings(bp, &hwr);
13848 }
13849 
13850 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
13851 {
13852 	if (bp->bar2) {
13853 		pci_iounmap(pdev, bp->bar2);
13854 		bp->bar2 = NULL;
13855 	}
13856 
13857 	if (bp->bar1) {
13858 		pci_iounmap(pdev, bp->bar1);
13859 		bp->bar1 = NULL;
13860 	}
13861 
13862 	if (bp->bar0) {
13863 		pci_iounmap(pdev, bp->bar0);
13864 		bp->bar0 = NULL;
13865 	}
13866 }
13867 
13868 static void bnxt_cleanup_pci(struct bnxt *bp)
13869 {
13870 	bnxt_unmap_bars(bp, bp->pdev);
13871 	pci_release_regions(bp->pdev);
13872 	if (pci_is_enabled(bp->pdev))
13873 		pci_disable_device(bp->pdev);
13874 }
13875 
13876 static void bnxt_init_dflt_coal(struct bnxt *bp)
13877 {
13878 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
13879 	struct bnxt_coal *coal;
13880 	u16 flags = 0;
13881 
13882 	if (coal_cap->cmpl_params &
13883 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
13884 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
13885 
13886 	/* Tick values in micro seconds.
13887 	 * 1 coal_buf x bufs_per_record = 1 completion record.
13888 	 */
13889 	coal = &bp->rx_coal;
13890 	coal->coal_ticks = 10;
13891 	coal->coal_bufs = 30;
13892 	coal->coal_ticks_irq = 1;
13893 	coal->coal_bufs_irq = 2;
13894 	coal->idle_thresh = 50;
13895 	coal->bufs_per_record = 2;
13896 	coal->budget = 64;		/* NAPI budget */
13897 	coal->flags = flags;
13898 
13899 	coal = &bp->tx_coal;
13900 	coal->coal_ticks = 28;
13901 	coal->coal_bufs = 30;
13902 	coal->coal_ticks_irq = 2;
13903 	coal->coal_bufs_irq = 2;
13904 	coal->bufs_per_record = 1;
13905 	coal->flags = flags;
13906 
13907 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
13908 }
13909 
13910 /* FW that pre-reserves 1 VNIC per function */
13911 static bool bnxt_fw_pre_resv_vnics(struct bnxt *bp)
13912 {
13913 	u16 fw_maj = BNXT_FW_MAJ(bp), fw_bld = BNXT_FW_BLD(bp);
13914 
13915 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
13916 	    (fw_maj > 218 || (fw_maj == 218 && fw_bld >= 18)))
13917 		return true;
13918 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
13919 	    (fw_maj > 216 || (fw_maj == 216 && fw_bld >= 172)))
13920 		return true;
13921 	return false;
13922 }
13923 
13924 static int bnxt_fw_init_one_p1(struct bnxt *bp)
13925 {
13926 	int rc;
13927 
13928 	bp->fw_cap = 0;
13929 	rc = bnxt_hwrm_ver_get(bp);
13930 	/* FW may be unresponsive after FLR. FLR must complete within 100 msec
13931 	 * so wait before continuing with recovery.
13932 	 */
13933 	if (rc)
13934 		msleep(100);
13935 	bnxt_try_map_fw_health_reg(bp);
13936 	if (rc) {
13937 		rc = bnxt_try_recover_fw(bp);
13938 		if (rc)
13939 			return rc;
13940 		rc = bnxt_hwrm_ver_get(bp);
13941 		if (rc)
13942 			return rc;
13943 	}
13944 
13945 	bnxt_nvm_cfg_ver_get(bp);
13946 
13947 	rc = bnxt_hwrm_func_reset(bp);
13948 	if (rc)
13949 		return -ENODEV;
13950 
13951 	bnxt_hwrm_fw_set_time(bp);
13952 	return 0;
13953 }
13954 
13955 static int bnxt_fw_init_one_p2(struct bnxt *bp)
13956 {
13957 	int rc;
13958 
13959 	/* Get the MAX capabilities for this function */
13960 	rc = bnxt_hwrm_func_qcaps(bp);
13961 	if (rc) {
13962 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
13963 			   rc);
13964 		return -ENODEV;
13965 	}
13966 
13967 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
13968 	if (rc)
13969 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
13970 			    rc);
13971 
13972 	if (bnxt_alloc_fw_health(bp)) {
13973 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
13974 	} else {
13975 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
13976 		if (rc)
13977 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
13978 				    rc);
13979 	}
13980 
13981 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
13982 	if (rc)
13983 		return -ENODEV;
13984 
13985 	if (bnxt_fw_pre_resv_vnics(bp))
13986 		bp->fw_cap |= BNXT_FW_CAP_PRE_RESV_VNICS;
13987 
13988 	bnxt_hwrm_func_qcfg(bp);
13989 	bnxt_hwrm_vnic_qcaps(bp);
13990 	bnxt_hwrm_port_led_qcaps(bp);
13991 	bnxt_ethtool_init(bp);
13992 	if (bp->fw_cap & BNXT_FW_CAP_PTP)
13993 		__bnxt_hwrm_ptp_qcfg(bp);
13994 	bnxt_dcb_init(bp);
13995 	bnxt_hwmon_init(bp);
13996 	return 0;
13997 }
13998 
13999 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
14000 {
14001 	bp->rss_cap &= ~BNXT_RSS_CAP_UDP_RSS_CAP;
14002 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
14003 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
14004 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
14005 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
14006 	if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA)
14007 		bp->rss_hash_delta = bp->rss_hash_cfg;
14008 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
14009 		bp->rss_cap |= BNXT_RSS_CAP_UDP_RSS_CAP;
14010 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
14011 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
14012 	}
14013 }
14014 
14015 static void bnxt_set_dflt_rfs(struct bnxt *bp)
14016 {
14017 	struct net_device *dev = bp->dev;
14018 
14019 	dev->hw_features &= ~NETIF_F_NTUPLE;
14020 	dev->features &= ~NETIF_F_NTUPLE;
14021 	bp->flags &= ~BNXT_FLAG_RFS;
14022 	if (bnxt_rfs_supported(bp)) {
14023 		dev->hw_features |= NETIF_F_NTUPLE;
14024 		if (bnxt_rfs_capable(bp, false)) {
14025 			bp->flags |= BNXT_FLAG_RFS;
14026 			dev->features |= NETIF_F_NTUPLE;
14027 		}
14028 	}
14029 }
14030 
14031 static void bnxt_fw_init_one_p3(struct bnxt *bp)
14032 {
14033 	struct pci_dev *pdev = bp->pdev;
14034 
14035 	bnxt_set_dflt_rss_hash_type(bp);
14036 	bnxt_set_dflt_rfs(bp);
14037 
14038 	bnxt_get_wol_settings(bp);
14039 	if (bp->flags & BNXT_FLAG_WOL_CAP)
14040 		device_set_wakeup_enable(&pdev->dev, bp->wol);
14041 	else
14042 		device_set_wakeup_capable(&pdev->dev, false);
14043 
14044 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
14045 	bnxt_hwrm_coal_params_qcaps(bp);
14046 }
14047 
14048 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt);
14049 
14050 int bnxt_fw_init_one(struct bnxt *bp)
14051 {
14052 	int rc;
14053 
14054 	rc = bnxt_fw_init_one_p1(bp);
14055 	if (rc) {
14056 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
14057 		return rc;
14058 	}
14059 	rc = bnxt_fw_init_one_p2(bp);
14060 	if (rc) {
14061 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
14062 		return rc;
14063 	}
14064 	rc = bnxt_probe_phy(bp, false);
14065 	if (rc)
14066 		return rc;
14067 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
14068 	if (rc)
14069 		return rc;
14070 
14071 	bnxt_fw_init_one_p3(bp);
14072 	return 0;
14073 }
14074 
14075 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
14076 {
14077 	struct bnxt_fw_health *fw_health = bp->fw_health;
14078 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
14079 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
14080 	u32 reg_type, reg_off, delay_msecs;
14081 
14082 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
14083 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
14084 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
14085 	switch (reg_type) {
14086 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
14087 		pci_write_config_dword(bp->pdev, reg_off, val);
14088 		break;
14089 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
14090 		writel(reg_off & BNXT_GRC_BASE_MASK,
14091 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
14092 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
14093 		fallthrough;
14094 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
14095 		writel(val, bp->bar0 + reg_off);
14096 		break;
14097 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
14098 		writel(val, bp->bar1 + reg_off);
14099 		break;
14100 	}
14101 	if (delay_msecs) {
14102 		pci_read_config_dword(bp->pdev, 0, &val);
14103 		msleep(delay_msecs);
14104 	}
14105 }
14106 
14107 bool bnxt_hwrm_reset_permitted(struct bnxt *bp)
14108 {
14109 	struct hwrm_func_qcfg_output *resp;
14110 	struct hwrm_func_qcfg_input *req;
14111 	bool result = true; /* firmware will enforce if unknown */
14112 
14113 	if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF)
14114 		return result;
14115 
14116 	if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG))
14117 		return result;
14118 
14119 	req->fid = cpu_to_le16(0xffff);
14120 	resp = hwrm_req_hold(bp, req);
14121 	if (!hwrm_req_send(bp, req))
14122 		result = !!(le16_to_cpu(resp->flags) &
14123 			    FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED);
14124 	hwrm_req_drop(bp, req);
14125 	return result;
14126 }
14127 
14128 static void bnxt_reset_all(struct bnxt *bp)
14129 {
14130 	struct bnxt_fw_health *fw_health = bp->fw_health;
14131 	int i, rc;
14132 
14133 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
14134 		bnxt_fw_reset_via_optee(bp);
14135 		bp->fw_reset_timestamp = jiffies;
14136 		return;
14137 	}
14138 
14139 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
14140 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
14141 			bnxt_fw_reset_writel(bp, i);
14142 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
14143 		struct hwrm_fw_reset_input *req;
14144 
14145 		rc = hwrm_req_init(bp, req, HWRM_FW_RESET);
14146 		if (!rc) {
14147 			req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG);
14148 			req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
14149 			req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
14150 			req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
14151 			rc = hwrm_req_send(bp, req);
14152 		}
14153 		if (rc != -ENODEV)
14154 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
14155 	}
14156 	bp->fw_reset_timestamp = jiffies;
14157 }
14158 
14159 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
14160 {
14161 	return time_after(jiffies, bp->fw_reset_timestamp +
14162 			  (bp->fw_reset_max_dsecs * HZ / 10));
14163 }
14164 
14165 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc)
14166 {
14167 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
14168 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF)
14169 		bnxt_dl_health_fw_status_update(bp, false);
14170 	bp->fw_reset_state = 0;
14171 	dev_close(bp->dev);
14172 }
14173 
14174 static void bnxt_fw_reset_task(struct work_struct *work)
14175 {
14176 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
14177 	int rc = 0;
14178 
14179 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
14180 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
14181 		return;
14182 	}
14183 
14184 	switch (bp->fw_reset_state) {
14185 	case BNXT_FW_RESET_STATE_POLL_VF: {
14186 		int n = bnxt_get_registered_vfs(bp);
14187 		int tmo;
14188 
14189 		if (n < 0) {
14190 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
14191 				   n, jiffies_to_msecs(jiffies -
14192 				   bp->fw_reset_timestamp));
14193 			goto fw_reset_abort;
14194 		} else if (n > 0) {
14195 			if (bnxt_fw_reset_timeout(bp)) {
14196 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
14197 				bp->fw_reset_state = 0;
14198 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
14199 					   n);
14200 				goto ulp_start;
14201 			}
14202 			bnxt_queue_fw_reset_work(bp, HZ / 10);
14203 			return;
14204 		}
14205 		bp->fw_reset_timestamp = jiffies;
14206 		rtnl_lock();
14207 		if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
14208 			bnxt_fw_reset_abort(bp, rc);
14209 			rtnl_unlock();
14210 			goto ulp_start;
14211 		}
14212 		bnxt_fw_reset_close(bp);
14213 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
14214 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
14215 			tmo = HZ / 10;
14216 		} else {
14217 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
14218 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
14219 		}
14220 		rtnl_unlock();
14221 		bnxt_queue_fw_reset_work(bp, tmo);
14222 		return;
14223 	}
14224 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
14225 		u32 val;
14226 
14227 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
14228 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
14229 		    !bnxt_fw_reset_timeout(bp)) {
14230 			bnxt_queue_fw_reset_work(bp, HZ / 5);
14231 			return;
14232 		}
14233 
14234 		if (!bp->fw_health->primary) {
14235 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
14236 
14237 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
14238 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
14239 			return;
14240 		}
14241 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
14242 	}
14243 		fallthrough;
14244 	case BNXT_FW_RESET_STATE_RESET_FW:
14245 		bnxt_reset_all(bp);
14246 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
14247 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
14248 		return;
14249 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
14250 		bnxt_inv_fw_health_reg(bp);
14251 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
14252 		    !bp->fw_reset_min_dsecs) {
14253 			u16 val;
14254 
14255 			pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
14256 			if (val == 0xffff) {
14257 				if (bnxt_fw_reset_timeout(bp)) {
14258 					netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
14259 					rc = -ETIMEDOUT;
14260 					goto fw_reset_abort;
14261 				}
14262 				bnxt_queue_fw_reset_work(bp, HZ / 1000);
14263 				return;
14264 			}
14265 		}
14266 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
14267 		clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
14268 		if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) &&
14269 		    !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state))
14270 			bnxt_dl_remote_reload(bp);
14271 		if (pci_enable_device(bp->pdev)) {
14272 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
14273 			rc = -ENODEV;
14274 			goto fw_reset_abort;
14275 		}
14276 		pci_set_master(bp->pdev);
14277 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
14278 		fallthrough;
14279 	case BNXT_FW_RESET_STATE_POLL_FW:
14280 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
14281 		rc = bnxt_hwrm_poll(bp);
14282 		if (rc) {
14283 			if (bnxt_fw_reset_timeout(bp)) {
14284 				netdev_err(bp->dev, "Firmware reset aborted\n");
14285 				goto fw_reset_abort_status;
14286 			}
14287 			bnxt_queue_fw_reset_work(bp, HZ / 5);
14288 			return;
14289 		}
14290 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
14291 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
14292 		fallthrough;
14293 	case BNXT_FW_RESET_STATE_OPENING:
14294 		while (!rtnl_trylock()) {
14295 			bnxt_queue_fw_reset_work(bp, HZ / 10);
14296 			return;
14297 		}
14298 		rc = bnxt_open(bp->dev);
14299 		if (rc) {
14300 			netdev_err(bp->dev, "bnxt_open() failed during FW reset\n");
14301 			bnxt_fw_reset_abort(bp, rc);
14302 			rtnl_unlock();
14303 			goto ulp_start;
14304 		}
14305 
14306 		if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) &&
14307 		    bp->fw_health->enabled) {
14308 			bp->fw_health->last_fw_reset_cnt =
14309 				bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
14310 		}
14311 		bp->fw_reset_state = 0;
14312 		/* Make sure fw_reset_state is 0 before clearing the flag */
14313 		smp_mb__before_atomic();
14314 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
14315 		bnxt_ptp_reapply_pps(bp);
14316 		clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state);
14317 		if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) {
14318 			bnxt_dl_health_fw_recovery_done(bp);
14319 			bnxt_dl_health_fw_status_update(bp, true);
14320 		}
14321 		rtnl_unlock();
14322 		bnxt_ulp_start(bp, 0);
14323 		bnxt_reenable_sriov(bp);
14324 		rtnl_lock();
14325 		bnxt_vf_reps_alloc(bp);
14326 		bnxt_vf_reps_open(bp);
14327 		rtnl_unlock();
14328 		break;
14329 	}
14330 	return;
14331 
14332 fw_reset_abort_status:
14333 	if (bp->fw_health->status_reliable ||
14334 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
14335 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
14336 
14337 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
14338 	}
14339 fw_reset_abort:
14340 	rtnl_lock();
14341 	bnxt_fw_reset_abort(bp, rc);
14342 	rtnl_unlock();
14343 ulp_start:
14344 	bnxt_ulp_start(bp, rc);
14345 }
14346 
14347 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
14348 {
14349 	int rc;
14350 	struct bnxt *bp = netdev_priv(dev);
14351 
14352 	SET_NETDEV_DEV(dev, &pdev->dev);
14353 
14354 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
14355 	rc = pci_enable_device(pdev);
14356 	if (rc) {
14357 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
14358 		goto init_err;
14359 	}
14360 
14361 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
14362 		dev_err(&pdev->dev,
14363 			"Cannot find PCI device base address, aborting\n");
14364 		rc = -ENODEV;
14365 		goto init_err_disable;
14366 	}
14367 
14368 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
14369 	if (rc) {
14370 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
14371 		goto init_err_disable;
14372 	}
14373 
14374 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
14375 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
14376 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
14377 		rc = -EIO;
14378 		goto init_err_release;
14379 	}
14380 
14381 	pci_set_master(pdev);
14382 
14383 	bp->dev = dev;
14384 	bp->pdev = pdev;
14385 
14386 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
14387 	 * determines the BAR size.
14388 	 */
14389 	bp->bar0 = pci_ioremap_bar(pdev, 0);
14390 	if (!bp->bar0) {
14391 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
14392 		rc = -ENOMEM;
14393 		goto init_err_release;
14394 	}
14395 
14396 	bp->bar2 = pci_ioremap_bar(pdev, 4);
14397 	if (!bp->bar2) {
14398 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
14399 		rc = -ENOMEM;
14400 		goto init_err_release;
14401 	}
14402 
14403 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
14404 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
14405 
14406 	spin_lock_init(&bp->ntp_fltr_lock);
14407 #if BITS_PER_LONG == 32
14408 	spin_lock_init(&bp->db_lock);
14409 #endif
14410 
14411 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
14412 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
14413 
14414 	timer_setup(&bp->timer, bnxt_timer, 0);
14415 	bp->current_interval = BNXT_TIMER_INTERVAL;
14416 
14417 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
14418 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
14419 
14420 	clear_bit(BNXT_STATE_OPEN, &bp->state);
14421 	return 0;
14422 
14423 init_err_release:
14424 	bnxt_unmap_bars(bp, pdev);
14425 	pci_release_regions(pdev);
14426 
14427 init_err_disable:
14428 	pci_disable_device(pdev);
14429 
14430 init_err:
14431 	return rc;
14432 }
14433 
14434 /* rtnl_lock held */
14435 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
14436 {
14437 	struct sockaddr *addr = p;
14438 	struct bnxt *bp = netdev_priv(dev);
14439 	int rc = 0;
14440 
14441 	if (!is_valid_ether_addr(addr->sa_data))
14442 		return -EADDRNOTAVAIL;
14443 
14444 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
14445 		return 0;
14446 
14447 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
14448 	if (rc)
14449 		return rc;
14450 
14451 	eth_hw_addr_set(dev, addr->sa_data);
14452 	bnxt_clear_usr_fltrs(bp, true);
14453 	if (netif_running(dev)) {
14454 		bnxt_close_nic(bp, false, false);
14455 		rc = bnxt_open_nic(bp, false, false);
14456 	}
14457 
14458 	return rc;
14459 }
14460 
14461 /* rtnl_lock held */
14462 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
14463 {
14464 	struct bnxt *bp = netdev_priv(dev);
14465 
14466 	if (netif_running(dev))
14467 		bnxt_close_nic(bp, true, false);
14468 
14469 	WRITE_ONCE(dev->mtu, new_mtu);
14470 	bnxt_set_ring_params(bp);
14471 
14472 	if (netif_running(dev))
14473 		return bnxt_open_nic(bp, true, false);
14474 
14475 	return 0;
14476 }
14477 
14478 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
14479 {
14480 	struct bnxt *bp = netdev_priv(dev);
14481 	bool sh = false;
14482 	int rc, tx_cp;
14483 
14484 	if (tc > bp->max_tc) {
14485 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
14486 			   tc, bp->max_tc);
14487 		return -EINVAL;
14488 	}
14489 
14490 	if (bp->num_tc == tc)
14491 		return 0;
14492 
14493 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
14494 		sh = true;
14495 
14496 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
14497 			      sh, tc, bp->tx_nr_rings_xdp);
14498 	if (rc)
14499 		return rc;
14500 
14501 	/* Needs to close the device and do hw resource re-allocations */
14502 	if (netif_running(bp->dev))
14503 		bnxt_close_nic(bp, true, false);
14504 
14505 	if (tc) {
14506 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
14507 		netdev_set_num_tc(dev, tc);
14508 		bp->num_tc = tc;
14509 	} else {
14510 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
14511 		netdev_reset_tc(dev);
14512 		bp->num_tc = 0;
14513 	}
14514 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
14515 	tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings);
14516 	bp->cp_nr_rings = sh ? max_t(int, tx_cp, bp->rx_nr_rings) :
14517 			       tx_cp + bp->rx_nr_rings;
14518 
14519 	if (netif_running(bp->dev))
14520 		return bnxt_open_nic(bp, true, false);
14521 
14522 	return 0;
14523 }
14524 
14525 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
14526 				  void *cb_priv)
14527 {
14528 	struct bnxt *bp = cb_priv;
14529 
14530 	if (!bnxt_tc_flower_enabled(bp) ||
14531 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
14532 		return -EOPNOTSUPP;
14533 
14534 	switch (type) {
14535 	case TC_SETUP_CLSFLOWER:
14536 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
14537 	default:
14538 		return -EOPNOTSUPP;
14539 	}
14540 }
14541 
14542 LIST_HEAD(bnxt_block_cb_list);
14543 
14544 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
14545 			 void *type_data)
14546 {
14547 	struct bnxt *bp = netdev_priv(dev);
14548 
14549 	switch (type) {
14550 	case TC_SETUP_BLOCK:
14551 		return flow_block_cb_setup_simple(type_data,
14552 						  &bnxt_block_cb_list,
14553 						  bnxt_setup_tc_block_cb,
14554 						  bp, bp, true);
14555 	case TC_SETUP_QDISC_MQPRIO: {
14556 		struct tc_mqprio_qopt *mqprio = type_data;
14557 
14558 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
14559 
14560 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
14561 	}
14562 	default:
14563 		return -EOPNOTSUPP;
14564 	}
14565 }
14566 
14567 u32 bnxt_get_ntp_filter_idx(struct bnxt *bp, struct flow_keys *fkeys,
14568 			    const struct sk_buff *skb)
14569 {
14570 	struct bnxt_vnic_info *vnic;
14571 
14572 	if (skb)
14573 		return skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
14574 
14575 	vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
14576 	return bnxt_toeplitz(bp, fkeys, (void *)vnic->rss_hash_key);
14577 }
14578 
14579 int bnxt_insert_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr,
14580 			   u32 idx)
14581 {
14582 	struct hlist_head *head;
14583 	int bit_id;
14584 
14585 	spin_lock_bh(&bp->ntp_fltr_lock);
14586 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, bp->max_fltr, 0);
14587 	if (bit_id < 0) {
14588 		spin_unlock_bh(&bp->ntp_fltr_lock);
14589 		return -ENOMEM;
14590 	}
14591 
14592 	fltr->base.sw_id = (u16)bit_id;
14593 	fltr->base.type = BNXT_FLTR_TYPE_NTUPLE;
14594 	fltr->base.flags |= BNXT_ACT_RING_DST;
14595 	head = &bp->ntp_fltr_hash_tbl[idx];
14596 	hlist_add_head_rcu(&fltr->base.hash, head);
14597 	set_bit(BNXT_FLTR_INSERTED, &fltr->base.state);
14598 	bnxt_insert_usr_fltr(bp, &fltr->base);
14599 	bp->ntp_fltr_count++;
14600 	spin_unlock_bh(&bp->ntp_fltr_lock);
14601 	return 0;
14602 }
14603 
14604 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
14605 			    struct bnxt_ntuple_filter *f2)
14606 {
14607 	struct bnxt_flow_masks *masks1 = &f1->fmasks;
14608 	struct bnxt_flow_masks *masks2 = &f2->fmasks;
14609 	struct flow_keys *keys1 = &f1->fkeys;
14610 	struct flow_keys *keys2 = &f2->fkeys;
14611 
14612 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
14613 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
14614 		return false;
14615 
14616 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
14617 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
14618 		    masks1->addrs.v4addrs.src != masks2->addrs.v4addrs.src ||
14619 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst ||
14620 		    masks1->addrs.v4addrs.dst != masks2->addrs.v4addrs.dst)
14621 			return false;
14622 	} else {
14623 		if (!ipv6_addr_equal(&keys1->addrs.v6addrs.src,
14624 				     &keys2->addrs.v6addrs.src) ||
14625 		    !ipv6_addr_equal(&masks1->addrs.v6addrs.src,
14626 				     &masks2->addrs.v6addrs.src) ||
14627 		    !ipv6_addr_equal(&keys1->addrs.v6addrs.dst,
14628 				     &keys2->addrs.v6addrs.dst) ||
14629 		    !ipv6_addr_equal(&masks1->addrs.v6addrs.dst,
14630 				     &masks2->addrs.v6addrs.dst))
14631 			return false;
14632 	}
14633 
14634 	return keys1->ports.src == keys2->ports.src &&
14635 	       masks1->ports.src == masks2->ports.src &&
14636 	       keys1->ports.dst == keys2->ports.dst &&
14637 	       masks1->ports.dst == masks2->ports.dst &&
14638 	       keys1->control.flags == keys2->control.flags &&
14639 	       f1->l2_fltr == f2->l2_fltr;
14640 }
14641 
14642 struct bnxt_ntuple_filter *
14643 bnxt_lookup_ntp_filter_from_idx(struct bnxt *bp,
14644 				struct bnxt_ntuple_filter *fltr, u32 idx)
14645 {
14646 	struct bnxt_ntuple_filter *f;
14647 	struct hlist_head *head;
14648 
14649 	head = &bp->ntp_fltr_hash_tbl[idx];
14650 	hlist_for_each_entry_rcu(f, head, base.hash) {
14651 		if (bnxt_fltr_match(f, fltr))
14652 			return f;
14653 	}
14654 	return NULL;
14655 }
14656 
14657 #ifdef CONFIG_RFS_ACCEL
14658 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
14659 			      u16 rxq_index, u32 flow_id)
14660 {
14661 	struct bnxt *bp = netdev_priv(dev);
14662 	struct bnxt_ntuple_filter *fltr, *new_fltr;
14663 	struct flow_keys *fkeys;
14664 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
14665 	struct bnxt_l2_filter *l2_fltr;
14666 	int rc = 0, idx;
14667 	u32 flags;
14668 
14669 	if (ether_addr_equal(dev->dev_addr, eth->h_dest)) {
14670 		l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0];
14671 		atomic_inc(&l2_fltr->refcnt);
14672 	} else {
14673 		struct bnxt_l2_key key;
14674 
14675 		ether_addr_copy(key.dst_mac_addr, eth->h_dest);
14676 		key.vlan = 0;
14677 		l2_fltr = bnxt_lookup_l2_filter_from_key(bp, &key);
14678 		if (!l2_fltr)
14679 			return -EINVAL;
14680 		if (l2_fltr->base.flags & BNXT_ACT_FUNC_DST) {
14681 			bnxt_del_l2_filter(bp, l2_fltr);
14682 			return -EINVAL;
14683 		}
14684 	}
14685 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
14686 	if (!new_fltr) {
14687 		bnxt_del_l2_filter(bp, l2_fltr);
14688 		return -ENOMEM;
14689 	}
14690 
14691 	fkeys = &new_fltr->fkeys;
14692 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
14693 		rc = -EPROTONOSUPPORT;
14694 		goto err_free;
14695 	}
14696 
14697 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
14698 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
14699 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
14700 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
14701 		rc = -EPROTONOSUPPORT;
14702 		goto err_free;
14703 	}
14704 	new_fltr->fmasks = BNXT_FLOW_IPV4_MASK_ALL;
14705 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) {
14706 		if (bp->hwrm_spec_code < 0x10601) {
14707 			rc = -EPROTONOSUPPORT;
14708 			goto err_free;
14709 		}
14710 		new_fltr->fmasks = BNXT_FLOW_IPV6_MASK_ALL;
14711 	}
14712 	flags = fkeys->control.flags;
14713 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
14714 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
14715 		rc = -EPROTONOSUPPORT;
14716 		goto err_free;
14717 	}
14718 	new_fltr->l2_fltr = l2_fltr;
14719 
14720 	idx = bnxt_get_ntp_filter_idx(bp, fkeys, skb);
14721 	rcu_read_lock();
14722 	fltr = bnxt_lookup_ntp_filter_from_idx(bp, new_fltr, idx);
14723 	if (fltr) {
14724 		rc = fltr->base.sw_id;
14725 		rcu_read_unlock();
14726 		goto err_free;
14727 	}
14728 	rcu_read_unlock();
14729 
14730 	new_fltr->flow_id = flow_id;
14731 	new_fltr->base.rxq = rxq_index;
14732 	rc = bnxt_insert_ntp_filter(bp, new_fltr, idx);
14733 	if (!rc) {
14734 		bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT);
14735 		return new_fltr->base.sw_id;
14736 	}
14737 
14738 err_free:
14739 	bnxt_del_l2_filter(bp, l2_fltr);
14740 	kfree(new_fltr);
14741 	return rc;
14742 }
14743 #endif
14744 
14745 void bnxt_del_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr)
14746 {
14747 	spin_lock_bh(&bp->ntp_fltr_lock);
14748 	if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) {
14749 		spin_unlock_bh(&bp->ntp_fltr_lock);
14750 		return;
14751 	}
14752 	hlist_del_rcu(&fltr->base.hash);
14753 	bnxt_del_one_usr_fltr(bp, &fltr->base);
14754 	bp->ntp_fltr_count--;
14755 	spin_unlock_bh(&bp->ntp_fltr_lock);
14756 	bnxt_del_l2_filter(bp, fltr->l2_fltr);
14757 	clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap);
14758 	kfree_rcu(fltr, base.rcu);
14759 }
14760 
14761 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
14762 {
14763 #ifdef CONFIG_RFS_ACCEL
14764 	int i;
14765 
14766 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
14767 		struct hlist_head *head;
14768 		struct hlist_node *tmp;
14769 		struct bnxt_ntuple_filter *fltr;
14770 		int rc;
14771 
14772 		head = &bp->ntp_fltr_hash_tbl[i];
14773 		hlist_for_each_entry_safe(fltr, tmp, head, base.hash) {
14774 			bool del = false;
14775 
14776 			if (test_bit(BNXT_FLTR_VALID, &fltr->base.state)) {
14777 				if (fltr->base.flags & BNXT_ACT_NO_AGING)
14778 					continue;
14779 				if (rps_may_expire_flow(bp->dev, fltr->base.rxq,
14780 							fltr->flow_id,
14781 							fltr->base.sw_id)) {
14782 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
14783 									 fltr);
14784 					del = true;
14785 				}
14786 			} else {
14787 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
14788 								       fltr);
14789 				if (rc)
14790 					del = true;
14791 				else
14792 					set_bit(BNXT_FLTR_VALID, &fltr->base.state);
14793 			}
14794 
14795 			if (del)
14796 				bnxt_del_ntp_filter(bp, fltr);
14797 		}
14798 	}
14799 #endif
14800 }
14801 
14802 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
14803 				    unsigned int entry, struct udp_tunnel_info *ti)
14804 {
14805 	struct bnxt *bp = netdev_priv(netdev);
14806 	unsigned int cmd;
14807 
14808 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
14809 		cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
14810 	else if (ti->type == UDP_TUNNEL_TYPE_GENEVE)
14811 		cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE;
14812 	else
14813 		cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE;
14814 
14815 	return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd);
14816 }
14817 
14818 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
14819 				      unsigned int entry, struct udp_tunnel_info *ti)
14820 {
14821 	struct bnxt *bp = netdev_priv(netdev);
14822 	unsigned int cmd;
14823 
14824 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
14825 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
14826 	else if (ti->type == UDP_TUNNEL_TYPE_GENEVE)
14827 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
14828 	else
14829 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE;
14830 
14831 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
14832 }
14833 
14834 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
14835 	.set_port	= bnxt_udp_tunnel_set_port,
14836 	.unset_port	= bnxt_udp_tunnel_unset_port,
14837 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
14838 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
14839 	.tables		= {
14840 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
14841 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
14842 	},
14843 }, bnxt_udp_tunnels_p7 = {
14844 	.set_port	= bnxt_udp_tunnel_set_port,
14845 	.unset_port	= bnxt_udp_tunnel_unset_port,
14846 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
14847 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
14848 	.tables		= {
14849 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
14850 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
14851 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN_GPE, },
14852 	},
14853 };
14854 
14855 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
14856 			       struct net_device *dev, u32 filter_mask,
14857 			       int nlflags)
14858 {
14859 	struct bnxt *bp = netdev_priv(dev);
14860 
14861 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
14862 				       nlflags, filter_mask, NULL);
14863 }
14864 
14865 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
14866 			       u16 flags, struct netlink_ext_ack *extack)
14867 {
14868 	struct bnxt *bp = netdev_priv(dev);
14869 	struct nlattr *attr, *br_spec;
14870 	int rem, rc = 0;
14871 
14872 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
14873 		return -EOPNOTSUPP;
14874 
14875 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
14876 	if (!br_spec)
14877 		return -EINVAL;
14878 
14879 	nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) {
14880 		u16 mode;
14881 
14882 		mode = nla_get_u16(attr);
14883 		if (mode == bp->br_mode)
14884 			break;
14885 
14886 		rc = bnxt_hwrm_set_br_mode(bp, mode);
14887 		if (!rc)
14888 			bp->br_mode = mode;
14889 		break;
14890 	}
14891 	return rc;
14892 }
14893 
14894 int bnxt_get_port_parent_id(struct net_device *dev,
14895 			    struct netdev_phys_item_id *ppid)
14896 {
14897 	struct bnxt *bp = netdev_priv(dev);
14898 
14899 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
14900 		return -EOPNOTSUPP;
14901 
14902 	/* The PF and it's VF-reps only support the switchdev framework */
14903 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
14904 		return -EOPNOTSUPP;
14905 
14906 	ppid->id_len = sizeof(bp->dsn);
14907 	memcpy(ppid->id, bp->dsn, ppid->id_len);
14908 
14909 	return 0;
14910 }
14911 
14912 static const struct net_device_ops bnxt_netdev_ops = {
14913 	.ndo_open		= bnxt_open,
14914 	.ndo_start_xmit		= bnxt_start_xmit,
14915 	.ndo_stop		= bnxt_close,
14916 	.ndo_get_stats64	= bnxt_get_stats64,
14917 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
14918 	.ndo_eth_ioctl		= bnxt_ioctl,
14919 	.ndo_validate_addr	= eth_validate_addr,
14920 	.ndo_set_mac_address	= bnxt_change_mac_addr,
14921 	.ndo_change_mtu		= bnxt_change_mtu,
14922 	.ndo_fix_features	= bnxt_fix_features,
14923 	.ndo_set_features	= bnxt_set_features,
14924 	.ndo_features_check	= bnxt_features_check,
14925 	.ndo_tx_timeout		= bnxt_tx_timeout,
14926 #ifdef CONFIG_BNXT_SRIOV
14927 	.ndo_get_vf_config	= bnxt_get_vf_config,
14928 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
14929 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
14930 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
14931 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
14932 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
14933 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
14934 #endif
14935 	.ndo_setup_tc           = bnxt_setup_tc,
14936 #ifdef CONFIG_RFS_ACCEL
14937 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
14938 #endif
14939 	.ndo_bpf		= bnxt_xdp,
14940 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
14941 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
14942 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
14943 };
14944 
14945 static void bnxt_get_queue_stats_rx(struct net_device *dev, int i,
14946 				    struct netdev_queue_stats_rx *stats)
14947 {
14948 	struct bnxt *bp = netdev_priv(dev);
14949 	struct bnxt_cp_ring_info *cpr;
14950 	u64 *sw;
14951 
14952 	cpr = &bp->bnapi[i]->cp_ring;
14953 	sw = cpr->stats.sw_stats;
14954 
14955 	stats->packets = 0;
14956 	stats->packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
14957 	stats->packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
14958 	stats->packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
14959 
14960 	stats->bytes = 0;
14961 	stats->bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
14962 	stats->bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
14963 	stats->bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
14964 
14965 	stats->alloc_fail = cpr->sw_stats->rx.rx_oom_discards;
14966 }
14967 
14968 static void bnxt_get_queue_stats_tx(struct net_device *dev, int i,
14969 				    struct netdev_queue_stats_tx *stats)
14970 {
14971 	struct bnxt *bp = netdev_priv(dev);
14972 	struct bnxt_napi *bnapi;
14973 	u64 *sw;
14974 
14975 	bnapi = bp->tx_ring[bp->tx_ring_map[i]].bnapi;
14976 	sw = bnapi->cp_ring.stats.sw_stats;
14977 
14978 	stats->packets = 0;
14979 	stats->packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
14980 	stats->packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
14981 	stats->packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
14982 
14983 	stats->bytes = 0;
14984 	stats->bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
14985 	stats->bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
14986 	stats->bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
14987 }
14988 
14989 static void bnxt_get_base_stats(struct net_device *dev,
14990 				struct netdev_queue_stats_rx *rx,
14991 				struct netdev_queue_stats_tx *tx)
14992 {
14993 	struct bnxt *bp = netdev_priv(dev);
14994 
14995 	rx->packets = bp->net_stats_prev.rx_packets;
14996 	rx->bytes = bp->net_stats_prev.rx_bytes;
14997 	rx->alloc_fail = bp->ring_err_stats_prev.rx_total_oom_discards;
14998 
14999 	tx->packets = bp->net_stats_prev.tx_packets;
15000 	tx->bytes = bp->net_stats_prev.tx_bytes;
15001 }
15002 
15003 static const struct netdev_stat_ops bnxt_stat_ops = {
15004 	.get_queue_stats_rx	= bnxt_get_queue_stats_rx,
15005 	.get_queue_stats_tx	= bnxt_get_queue_stats_tx,
15006 	.get_base_stats		= bnxt_get_base_stats,
15007 };
15008 
15009 static int bnxt_alloc_rx_agg_bmap(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
15010 {
15011 	u16 mem_size;
15012 
15013 	rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
15014 	mem_size = rxr->rx_agg_bmap_size / 8;
15015 	rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
15016 	if (!rxr->rx_agg_bmap)
15017 		return -ENOMEM;
15018 
15019 	return 0;
15020 }
15021 
15022 static int bnxt_queue_mem_alloc(struct net_device *dev, void *qmem, int idx)
15023 {
15024 	struct bnxt_rx_ring_info *rxr, *clone;
15025 	struct bnxt *bp = netdev_priv(dev);
15026 	struct bnxt_ring_struct *ring;
15027 	int rc;
15028 
15029 	rxr = &bp->rx_ring[idx];
15030 	clone = qmem;
15031 	memcpy(clone, rxr, sizeof(*rxr));
15032 	bnxt_init_rx_ring_struct(bp, clone);
15033 	bnxt_reset_rx_ring_struct(bp, clone);
15034 
15035 	clone->rx_prod = 0;
15036 	clone->rx_agg_prod = 0;
15037 	clone->rx_sw_agg_prod = 0;
15038 	clone->rx_next_cons = 0;
15039 
15040 	rc = bnxt_alloc_rx_page_pool(bp, clone, rxr->page_pool->p.nid);
15041 	if (rc)
15042 		return rc;
15043 
15044 	ring = &clone->rx_ring_struct;
15045 	rc = bnxt_alloc_ring(bp, &ring->ring_mem);
15046 	if (rc)
15047 		goto err_free_rx_ring;
15048 
15049 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
15050 		ring = &clone->rx_agg_ring_struct;
15051 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
15052 		if (rc)
15053 			goto err_free_rx_agg_ring;
15054 
15055 		rc = bnxt_alloc_rx_agg_bmap(bp, clone);
15056 		if (rc)
15057 			goto err_free_rx_agg_ring;
15058 	}
15059 
15060 	bnxt_init_one_rx_ring_rxbd(bp, clone);
15061 	bnxt_init_one_rx_agg_ring_rxbd(bp, clone);
15062 
15063 	bnxt_alloc_one_rx_ring_skb(bp, clone, idx);
15064 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
15065 		bnxt_alloc_one_rx_ring_page(bp, clone, idx);
15066 
15067 	return 0;
15068 
15069 err_free_rx_agg_ring:
15070 	bnxt_free_ring(bp, &clone->rx_agg_ring_struct.ring_mem);
15071 err_free_rx_ring:
15072 	bnxt_free_ring(bp, &clone->rx_ring_struct.ring_mem);
15073 	clone->page_pool->p.napi = NULL;
15074 	page_pool_destroy(clone->page_pool);
15075 	clone->page_pool = NULL;
15076 	return rc;
15077 }
15078 
15079 static void bnxt_queue_mem_free(struct net_device *dev, void *qmem)
15080 {
15081 	struct bnxt_rx_ring_info *rxr = qmem;
15082 	struct bnxt *bp = netdev_priv(dev);
15083 	struct bnxt_ring_struct *ring;
15084 
15085 	bnxt_free_one_rx_ring(bp, rxr);
15086 	bnxt_free_one_rx_agg_ring(bp, rxr);
15087 
15088 	page_pool_destroy(rxr->page_pool);
15089 	rxr->page_pool = NULL;
15090 
15091 	ring = &rxr->rx_ring_struct;
15092 	bnxt_free_ring(bp, &ring->ring_mem);
15093 
15094 	ring = &rxr->rx_agg_ring_struct;
15095 	bnxt_free_ring(bp, &ring->ring_mem);
15096 
15097 	kfree(rxr->rx_agg_bmap);
15098 	rxr->rx_agg_bmap = NULL;
15099 }
15100 
15101 static void bnxt_copy_rx_ring(struct bnxt *bp,
15102 			      struct bnxt_rx_ring_info *dst,
15103 			      struct bnxt_rx_ring_info *src)
15104 {
15105 	struct bnxt_ring_mem_info *dst_rmem, *src_rmem;
15106 	struct bnxt_ring_struct *dst_ring, *src_ring;
15107 	int i;
15108 
15109 	dst_ring = &dst->rx_ring_struct;
15110 	dst_rmem = &dst_ring->ring_mem;
15111 	src_ring = &src->rx_ring_struct;
15112 	src_rmem = &src_ring->ring_mem;
15113 
15114 	WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages);
15115 	WARN_ON(dst_rmem->page_size != src_rmem->page_size);
15116 	WARN_ON(dst_rmem->flags != src_rmem->flags);
15117 	WARN_ON(dst_rmem->depth != src_rmem->depth);
15118 	WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size);
15119 	WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem);
15120 
15121 	dst_rmem->pg_tbl = src_rmem->pg_tbl;
15122 	dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map;
15123 	*dst_rmem->vmem = *src_rmem->vmem;
15124 	for (i = 0; i < dst_rmem->nr_pages; i++) {
15125 		dst_rmem->pg_arr[i] = src_rmem->pg_arr[i];
15126 		dst_rmem->dma_arr[i] = src_rmem->dma_arr[i];
15127 	}
15128 
15129 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
15130 		return;
15131 
15132 	dst_ring = &dst->rx_agg_ring_struct;
15133 	dst_rmem = &dst_ring->ring_mem;
15134 	src_ring = &src->rx_agg_ring_struct;
15135 	src_rmem = &src_ring->ring_mem;
15136 
15137 	WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages);
15138 	WARN_ON(dst_rmem->page_size != src_rmem->page_size);
15139 	WARN_ON(dst_rmem->flags != src_rmem->flags);
15140 	WARN_ON(dst_rmem->depth != src_rmem->depth);
15141 	WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size);
15142 	WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem);
15143 	WARN_ON(dst->rx_agg_bmap_size != src->rx_agg_bmap_size);
15144 
15145 	dst_rmem->pg_tbl = src_rmem->pg_tbl;
15146 	dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map;
15147 	*dst_rmem->vmem = *src_rmem->vmem;
15148 	for (i = 0; i < dst_rmem->nr_pages; i++) {
15149 		dst_rmem->pg_arr[i] = src_rmem->pg_arr[i];
15150 		dst_rmem->dma_arr[i] = src_rmem->dma_arr[i];
15151 	}
15152 
15153 	dst->rx_agg_bmap = src->rx_agg_bmap;
15154 }
15155 
15156 static int bnxt_queue_start(struct net_device *dev, void *qmem, int idx)
15157 {
15158 	struct bnxt *bp = netdev_priv(dev);
15159 	struct bnxt_rx_ring_info *rxr, *clone;
15160 	struct bnxt_cp_ring_info *cpr;
15161 	int rc;
15162 
15163 	rxr = &bp->rx_ring[idx];
15164 	clone = qmem;
15165 
15166 	rxr->rx_prod = clone->rx_prod;
15167 	rxr->rx_agg_prod = clone->rx_agg_prod;
15168 	rxr->rx_sw_agg_prod = clone->rx_sw_agg_prod;
15169 	rxr->rx_next_cons = clone->rx_next_cons;
15170 	rxr->page_pool = clone->page_pool;
15171 
15172 	bnxt_copy_rx_ring(bp, rxr, clone);
15173 
15174 	rc = bnxt_hwrm_rx_ring_alloc(bp, rxr);
15175 	if (rc)
15176 		return rc;
15177 	rc = bnxt_hwrm_rx_agg_ring_alloc(bp, rxr);
15178 	if (rc)
15179 		goto err_free_hwrm_rx_ring;
15180 
15181 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
15182 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
15183 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
15184 
15185 	napi_enable(&rxr->bnapi->napi);
15186 
15187 	cpr = &rxr->bnapi->cp_ring;
15188 	cpr->sw_stats->rx.rx_resets++;
15189 
15190 	return 0;
15191 
15192 err_free_hwrm_rx_ring:
15193 	bnxt_hwrm_rx_ring_free(bp, rxr, false);
15194 	return rc;
15195 }
15196 
15197 static int bnxt_queue_stop(struct net_device *dev, void *qmem, int idx)
15198 {
15199 	struct bnxt *bp = netdev_priv(dev);
15200 	struct bnxt_rx_ring_info *rxr;
15201 
15202 	rxr = &bp->rx_ring[idx];
15203 	napi_disable(&rxr->bnapi->napi);
15204 	bnxt_hwrm_rx_ring_free(bp, rxr, false);
15205 	bnxt_hwrm_rx_agg_ring_free(bp, rxr, false);
15206 	rxr->rx_next_cons = 0;
15207 	page_pool_disable_direct_recycling(rxr->page_pool);
15208 
15209 	memcpy(qmem, rxr, sizeof(*rxr));
15210 	bnxt_init_rx_ring_struct(bp, qmem);
15211 
15212 	return 0;
15213 }
15214 
15215 static const struct netdev_queue_mgmt_ops bnxt_queue_mgmt_ops = {
15216 	.ndo_queue_mem_size	= sizeof(struct bnxt_rx_ring_info),
15217 	.ndo_queue_mem_alloc	= bnxt_queue_mem_alloc,
15218 	.ndo_queue_mem_free	= bnxt_queue_mem_free,
15219 	.ndo_queue_start	= bnxt_queue_start,
15220 	.ndo_queue_stop		= bnxt_queue_stop,
15221 };
15222 
15223 static void bnxt_remove_one(struct pci_dev *pdev)
15224 {
15225 	struct net_device *dev = pci_get_drvdata(pdev);
15226 	struct bnxt *bp = netdev_priv(dev);
15227 
15228 	if (BNXT_PF(bp))
15229 		bnxt_sriov_disable(bp);
15230 
15231 	bnxt_rdma_aux_device_del(bp);
15232 
15233 	bnxt_ptp_clear(bp);
15234 	unregister_netdev(dev);
15235 
15236 	bnxt_rdma_aux_device_uninit(bp);
15237 
15238 	bnxt_free_l2_filters(bp, true);
15239 	bnxt_free_ntp_fltrs(bp, true);
15240 	if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp))
15241 		bnxt_clear_rss_ctxs(bp, true);
15242 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
15243 	/* Flush any pending tasks */
15244 	cancel_work_sync(&bp->sp_task);
15245 	cancel_delayed_work_sync(&bp->fw_reset_task);
15246 	bp->sp_event = 0;
15247 
15248 	bnxt_dl_fw_reporters_destroy(bp);
15249 	bnxt_dl_unregister(bp);
15250 	bnxt_shutdown_tc(bp);
15251 
15252 	bnxt_clear_int_mode(bp);
15253 	bnxt_hwrm_func_drv_unrgtr(bp);
15254 	bnxt_free_hwrm_resources(bp);
15255 	bnxt_hwmon_uninit(bp);
15256 	bnxt_ethtool_free(bp);
15257 	bnxt_dcb_free(bp);
15258 	kfree(bp->ptp_cfg);
15259 	bp->ptp_cfg = NULL;
15260 	kfree(bp->fw_health);
15261 	bp->fw_health = NULL;
15262 	bnxt_cleanup_pci(bp);
15263 	bnxt_free_ctx_mem(bp);
15264 	kfree(bp->rss_indir_tbl);
15265 	bp->rss_indir_tbl = NULL;
15266 	bnxt_free_port_stats(bp);
15267 	free_netdev(dev);
15268 }
15269 
15270 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
15271 {
15272 	int rc = 0;
15273 	struct bnxt_link_info *link_info = &bp->link_info;
15274 
15275 	bp->phy_flags = 0;
15276 	rc = bnxt_hwrm_phy_qcaps(bp);
15277 	if (rc) {
15278 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
15279 			   rc);
15280 		return rc;
15281 	}
15282 	if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
15283 		bp->dev->priv_flags |= IFF_SUPP_NOFCS;
15284 	else
15285 		bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
15286 	if (!fw_dflt)
15287 		return 0;
15288 
15289 	mutex_lock(&bp->link_lock);
15290 	rc = bnxt_update_link(bp, false);
15291 	if (rc) {
15292 		mutex_unlock(&bp->link_lock);
15293 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
15294 			   rc);
15295 		return rc;
15296 	}
15297 
15298 	/* Older firmware does not have supported_auto_speeds, so assume
15299 	 * that all supported speeds can be autonegotiated.
15300 	 */
15301 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
15302 		link_info->support_auto_speeds = link_info->support_speeds;
15303 
15304 	bnxt_init_ethtool_link_settings(bp);
15305 	mutex_unlock(&bp->link_lock);
15306 	return 0;
15307 }
15308 
15309 static int bnxt_get_max_irq(struct pci_dev *pdev)
15310 {
15311 	u16 ctrl;
15312 
15313 	if (!pdev->msix_cap)
15314 		return 1;
15315 
15316 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
15317 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
15318 }
15319 
15320 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
15321 				int *max_cp)
15322 {
15323 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
15324 	int max_ring_grps = 0, max_irq;
15325 
15326 	*max_tx = hw_resc->max_tx_rings;
15327 	*max_rx = hw_resc->max_rx_rings;
15328 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
15329 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
15330 			bnxt_get_ulp_msix_num_in_use(bp),
15331 			hw_resc->max_stat_ctxs -
15332 			bnxt_get_ulp_stat_ctxs_in_use(bp));
15333 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
15334 		*max_cp = min_t(int, *max_cp, max_irq);
15335 	max_ring_grps = hw_resc->max_hw_ring_grps;
15336 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
15337 		*max_cp -= 1;
15338 		*max_rx -= 2;
15339 	}
15340 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
15341 		*max_rx >>= 1;
15342 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
15343 		int rc;
15344 
15345 		rc = __bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
15346 		if (rc) {
15347 			*max_rx = 0;
15348 			*max_tx = 0;
15349 		}
15350 		/* On P5 chips, max_cp output param should be available NQs */
15351 		*max_cp = max_irq;
15352 	}
15353 	*max_rx = min_t(int, *max_rx, max_ring_grps);
15354 }
15355 
15356 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
15357 {
15358 	int rx, tx, cp;
15359 
15360 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
15361 	*max_rx = rx;
15362 	*max_tx = tx;
15363 	if (!rx || !tx || !cp)
15364 		return -ENOMEM;
15365 
15366 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
15367 }
15368 
15369 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
15370 			       bool shared)
15371 {
15372 	int rc;
15373 
15374 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
15375 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
15376 		/* Not enough rings, try disabling agg rings. */
15377 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
15378 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
15379 		if (rc) {
15380 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
15381 			bp->flags |= BNXT_FLAG_AGG_RINGS;
15382 			return rc;
15383 		}
15384 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
15385 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
15386 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
15387 		bnxt_set_ring_params(bp);
15388 	}
15389 
15390 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
15391 		int max_cp, max_stat, max_irq;
15392 
15393 		/* Reserve minimum resources for RoCE */
15394 		max_cp = bnxt_get_max_func_cp_rings(bp);
15395 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
15396 		max_irq = bnxt_get_max_func_irqs(bp);
15397 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
15398 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
15399 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
15400 			return 0;
15401 
15402 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
15403 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
15404 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
15405 		max_cp = min_t(int, max_cp, max_irq);
15406 		max_cp = min_t(int, max_cp, max_stat);
15407 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
15408 		if (rc)
15409 			rc = 0;
15410 	}
15411 	return rc;
15412 }
15413 
15414 /* In initial default shared ring setting, each shared ring must have a
15415  * RX/TX ring pair.
15416  */
15417 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
15418 {
15419 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
15420 	bp->rx_nr_rings = bp->cp_nr_rings;
15421 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
15422 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
15423 }
15424 
15425 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
15426 {
15427 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
15428 	int avail_msix;
15429 
15430 	if (!bnxt_can_reserve_rings(bp))
15431 		return 0;
15432 
15433 	if (sh)
15434 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
15435 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
15436 	/* Reduce default rings on multi-port cards so that total default
15437 	 * rings do not exceed CPU count.
15438 	 */
15439 	if (bp->port_count > 1) {
15440 		int max_rings =
15441 			max_t(int, num_online_cpus() / bp->port_count, 1);
15442 
15443 		dflt_rings = min_t(int, dflt_rings, max_rings);
15444 	}
15445 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
15446 	if (rc)
15447 		return rc;
15448 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
15449 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
15450 	if (sh)
15451 		bnxt_trim_dflt_sh_rings(bp);
15452 	else
15453 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
15454 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
15455 
15456 	avail_msix = bnxt_get_max_func_irqs(bp) - bp->cp_nr_rings;
15457 	if (avail_msix >= BNXT_MIN_ROCE_CP_RINGS) {
15458 		int ulp_num_msix = min(avail_msix, bp->ulp_num_msix_want);
15459 
15460 		bnxt_set_ulp_msix_num(bp, ulp_num_msix);
15461 		bnxt_set_dflt_ulp_stat_ctxs(bp);
15462 	}
15463 
15464 	rc = __bnxt_reserve_rings(bp);
15465 	if (rc && rc != -ENODEV)
15466 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
15467 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
15468 	if (sh)
15469 		bnxt_trim_dflt_sh_rings(bp);
15470 
15471 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
15472 	if (bnxt_need_reserve_rings(bp)) {
15473 		rc = __bnxt_reserve_rings(bp);
15474 		if (rc && rc != -ENODEV)
15475 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
15476 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
15477 	}
15478 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
15479 		bp->rx_nr_rings++;
15480 		bp->cp_nr_rings++;
15481 	}
15482 	if (rc) {
15483 		bp->tx_nr_rings = 0;
15484 		bp->rx_nr_rings = 0;
15485 	}
15486 	return rc;
15487 }
15488 
15489 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
15490 {
15491 	int rc;
15492 
15493 	if (bp->tx_nr_rings)
15494 		return 0;
15495 
15496 	bnxt_ulp_irq_stop(bp);
15497 	bnxt_clear_int_mode(bp);
15498 	rc = bnxt_set_dflt_rings(bp, true);
15499 	if (rc) {
15500 		if (BNXT_VF(bp) && rc == -ENODEV)
15501 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
15502 		else
15503 			netdev_err(bp->dev, "Not enough rings available.\n");
15504 		goto init_dflt_ring_err;
15505 	}
15506 	rc = bnxt_init_int_mode(bp);
15507 	if (rc)
15508 		goto init_dflt_ring_err;
15509 
15510 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
15511 
15512 	bnxt_set_dflt_rfs(bp);
15513 
15514 init_dflt_ring_err:
15515 	bnxt_ulp_irq_restart(bp, rc);
15516 	return rc;
15517 }
15518 
15519 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
15520 {
15521 	int rc;
15522 
15523 	ASSERT_RTNL();
15524 	bnxt_hwrm_func_qcaps(bp);
15525 
15526 	if (netif_running(bp->dev))
15527 		__bnxt_close_nic(bp, true, false);
15528 
15529 	bnxt_ulp_irq_stop(bp);
15530 	bnxt_clear_int_mode(bp);
15531 	rc = bnxt_init_int_mode(bp);
15532 	bnxt_ulp_irq_restart(bp, rc);
15533 
15534 	if (netif_running(bp->dev)) {
15535 		if (rc)
15536 			dev_close(bp->dev);
15537 		else
15538 			rc = bnxt_open_nic(bp, true, false);
15539 	}
15540 
15541 	return rc;
15542 }
15543 
15544 static int bnxt_init_mac_addr(struct bnxt *bp)
15545 {
15546 	int rc = 0;
15547 
15548 	if (BNXT_PF(bp)) {
15549 		eth_hw_addr_set(bp->dev, bp->pf.mac_addr);
15550 	} else {
15551 #ifdef CONFIG_BNXT_SRIOV
15552 		struct bnxt_vf_info *vf = &bp->vf;
15553 		bool strict_approval = true;
15554 
15555 		if (is_valid_ether_addr(vf->mac_addr)) {
15556 			/* overwrite netdev dev_addr with admin VF MAC */
15557 			eth_hw_addr_set(bp->dev, vf->mac_addr);
15558 			/* Older PF driver or firmware may not approve this
15559 			 * correctly.
15560 			 */
15561 			strict_approval = false;
15562 		} else {
15563 			eth_hw_addr_random(bp->dev);
15564 		}
15565 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
15566 #endif
15567 	}
15568 	return rc;
15569 }
15570 
15571 static void bnxt_vpd_read_info(struct bnxt *bp)
15572 {
15573 	struct pci_dev *pdev = bp->pdev;
15574 	unsigned int vpd_size, kw_len;
15575 	int pos, size;
15576 	u8 *vpd_data;
15577 
15578 	vpd_data = pci_vpd_alloc(pdev, &vpd_size);
15579 	if (IS_ERR(vpd_data)) {
15580 		pci_warn(pdev, "Unable to read VPD\n");
15581 		return;
15582 	}
15583 
15584 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
15585 					   PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
15586 	if (pos < 0)
15587 		goto read_sn;
15588 
15589 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
15590 	memcpy(bp->board_partno, &vpd_data[pos], size);
15591 
15592 read_sn:
15593 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
15594 					   PCI_VPD_RO_KEYWORD_SERIALNO,
15595 					   &kw_len);
15596 	if (pos < 0)
15597 		goto exit;
15598 
15599 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
15600 	memcpy(bp->board_serialno, &vpd_data[pos], size);
15601 exit:
15602 	kfree(vpd_data);
15603 }
15604 
15605 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
15606 {
15607 	struct pci_dev *pdev = bp->pdev;
15608 	u64 qword;
15609 
15610 	qword = pci_get_dsn(pdev);
15611 	if (!qword) {
15612 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
15613 		return -EOPNOTSUPP;
15614 	}
15615 
15616 	put_unaligned_le64(qword, dsn);
15617 
15618 	bp->flags |= BNXT_FLAG_DSN_VALID;
15619 	return 0;
15620 }
15621 
15622 static int bnxt_map_db_bar(struct bnxt *bp)
15623 {
15624 	if (!bp->db_size)
15625 		return -ENODEV;
15626 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
15627 	if (!bp->bar1)
15628 		return -ENOMEM;
15629 	return 0;
15630 }
15631 
15632 void bnxt_print_device_info(struct bnxt *bp)
15633 {
15634 	netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n",
15635 		    board_info[bp->board_idx].name,
15636 		    (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr);
15637 
15638 	pcie_print_link_status(bp->pdev);
15639 }
15640 
15641 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
15642 {
15643 	struct bnxt_hw_resc *hw_resc;
15644 	struct net_device *dev;
15645 	struct bnxt *bp;
15646 	int rc, max_irqs;
15647 
15648 	if (pci_is_bridge(pdev))
15649 		return -ENODEV;
15650 
15651 	/* Clear any pending DMA transactions from crash kernel
15652 	 * while loading driver in capture kernel.
15653 	 */
15654 	if (is_kdump_kernel()) {
15655 		pci_clear_master(pdev);
15656 		pcie_flr(pdev);
15657 	}
15658 
15659 	max_irqs = bnxt_get_max_irq(pdev);
15660 	dev = alloc_etherdev_mqs(sizeof(*bp), max_irqs * BNXT_MAX_QUEUE,
15661 				 max_irqs);
15662 	if (!dev)
15663 		return -ENOMEM;
15664 
15665 	bp = netdev_priv(dev);
15666 	bp->board_idx = ent->driver_data;
15667 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
15668 	bnxt_set_max_func_irqs(bp, max_irqs);
15669 
15670 	if (bnxt_vf_pciid(bp->board_idx))
15671 		bp->flags |= BNXT_FLAG_VF;
15672 
15673 	/* No devlink port registration in case of a VF */
15674 	if (BNXT_PF(bp))
15675 		SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port);
15676 
15677 	if (pdev->msix_cap)
15678 		bp->flags |= BNXT_FLAG_MSIX_CAP;
15679 
15680 	rc = bnxt_init_board(pdev, dev);
15681 	if (rc < 0)
15682 		goto init_err_free;
15683 
15684 	dev->netdev_ops = &bnxt_netdev_ops;
15685 	dev->stat_ops = &bnxt_stat_ops;
15686 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
15687 	dev->ethtool_ops = &bnxt_ethtool_ops;
15688 	dev->queue_mgmt_ops = &bnxt_queue_mgmt_ops;
15689 	pci_set_drvdata(pdev, dev);
15690 
15691 	rc = bnxt_alloc_hwrm_resources(bp);
15692 	if (rc)
15693 		goto init_err_pci_clean;
15694 
15695 	mutex_init(&bp->hwrm_cmd_lock);
15696 	mutex_init(&bp->link_lock);
15697 
15698 	rc = bnxt_fw_init_one_p1(bp);
15699 	if (rc)
15700 		goto init_err_pci_clean;
15701 
15702 	if (BNXT_PF(bp))
15703 		bnxt_vpd_read_info(bp);
15704 
15705 	if (BNXT_CHIP_P5_PLUS(bp)) {
15706 		bp->flags |= BNXT_FLAG_CHIP_P5_PLUS;
15707 		if (BNXT_CHIP_P7(bp))
15708 			bp->flags |= BNXT_FLAG_CHIP_P7;
15709 	}
15710 
15711 	rc = bnxt_alloc_rss_indir_tbl(bp, NULL);
15712 	if (rc)
15713 		goto init_err_pci_clean;
15714 
15715 	rc = bnxt_fw_init_one_p2(bp);
15716 	if (rc)
15717 		goto init_err_pci_clean;
15718 
15719 	rc = bnxt_map_db_bar(bp);
15720 	if (rc) {
15721 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
15722 			rc);
15723 		goto init_err_pci_clean;
15724 	}
15725 
15726 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
15727 			   NETIF_F_TSO | NETIF_F_TSO6 |
15728 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
15729 			   NETIF_F_GSO_IPXIP4 |
15730 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
15731 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
15732 			   NETIF_F_RXCSUM | NETIF_F_GRO;
15733 	if (bp->flags & BNXT_FLAG_UDP_GSO_CAP)
15734 		dev->hw_features |= NETIF_F_GSO_UDP_L4;
15735 
15736 	if (BNXT_SUPPORTS_TPA(bp))
15737 		dev->hw_features |= NETIF_F_LRO;
15738 
15739 	dev->hw_enc_features =
15740 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
15741 			NETIF_F_TSO | NETIF_F_TSO6 |
15742 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
15743 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
15744 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
15745 	if (bp->flags & BNXT_FLAG_UDP_GSO_CAP)
15746 		dev->hw_enc_features |= NETIF_F_GSO_UDP_L4;
15747 	if (bp->flags & BNXT_FLAG_CHIP_P7)
15748 		dev->udp_tunnel_nic_info = &bnxt_udp_tunnels_p7;
15749 	else
15750 		dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
15751 
15752 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
15753 				    NETIF_F_GSO_GRE_CSUM;
15754 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
15755 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
15756 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
15757 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
15758 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
15759 	if (BNXT_SUPPORTS_TPA(bp))
15760 		dev->hw_features |= NETIF_F_GRO_HW;
15761 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
15762 	if (dev->features & NETIF_F_GRO_HW)
15763 		dev->features &= ~NETIF_F_LRO;
15764 	dev->priv_flags |= IFF_UNICAST_FLT;
15765 
15766 	netif_set_tso_max_size(dev, GSO_MAX_SIZE);
15767 	if (bp->tso_max_segs)
15768 		netif_set_tso_max_segs(dev, bp->tso_max_segs);
15769 
15770 	dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
15771 			    NETDEV_XDP_ACT_RX_SG;
15772 
15773 #ifdef CONFIG_BNXT_SRIOV
15774 	init_waitqueue_head(&bp->sriov_cfg_wait);
15775 #endif
15776 	if (BNXT_SUPPORTS_TPA(bp)) {
15777 		bp->gro_func = bnxt_gro_func_5730x;
15778 		if (BNXT_CHIP_P4(bp))
15779 			bp->gro_func = bnxt_gro_func_5731x;
15780 		else if (BNXT_CHIP_P5_PLUS(bp))
15781 			bp->gro_func = bnxt_gro_func_5750x;
15782 	}
15783 	if (!BNXT_CHIP_P4_PLUS(bp))
15784 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
15785 
15786 	rc = bnxt_init_mac_addr(bp);
15787 	if (rc) {
15788 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
15789 		rc = -EADDRNOTAVAIL;
15790 		goto init_err_pci_clean;
15791 	}
15792 
15793 	if (BNXT_PF(bp)) {
15794 		/* Read the adapter's DSN to use as the eswitch switch_id */
15795 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
15796 	}
15797 
15798 	/* MTU range: 60 - FW defined max */
15799 	dev->min_mtu = ETH_ZLEN;
15800 	dev->max_mtu = bp->max_mtu;
15801 
15802 	rc = bnxt_probe_phy(bp, true);
15803 	if (rc)
15804 		goto init_err_pci_clean;
15805 
15806 	hw_resc = &bp->hw_resc;
15807 	bp->max_fltr = hw_resc->max_rx_em_flows + hw_resc->max_rx_wm_flows +
15808 		       BNXT_L2_FLTR_MAX_FLTR;
15809 	/* Older firmware may not report these filters properly */
15810 	if (bp->max_fltr < BNXT_MAX_FLTR)
15811 		bp->max_fltr = BNXT_MAX_FLTR;
15812 	bnxt_init_l2_fltr_tbl(bp);
15813 	bnxt_set_rx_skb_mode(bp, false);
15814 	bnxt_set_tpa_flags(bp);
15815 	bnxt_set_ring_params(bp);
15816 	bnxt_rdma_aux_device_init(bp);
15817 	rc = bnxt_set_dflt_rings(bp, true);
15818 	if (rc) {
15819 		if (BNXT_VF(bp) && rc == -ENODEV) {
15820 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
15821 		} else {
15822 			netdev_err(bp->dev, "Not enough rings available.\n");
15823 			rc = -ENOMEM;
15824 		}
15825 		goto init_err_pci_clean;
15826 	}
15827 
15828 	bnxt_fw_init_one_p3(bp);
15829 
15830 	bnxt_init_dflt_coal(bp);
15831 
15832 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
15833 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
15834 
15835 	rc = bnxt_init_int_mode(bp);
15836 	if (rc)
15837 		goto init_err_pci_clean;
15838 
15839 	/* No TC has been set yet and rings may have been trimmed due to
15840 	 * limited MSIX, so we re-initialize the TX rings per TC.
15841 	 */
15842 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
15843 
15844 	if (BNXT_PF(bp)) {
15845 		if (!bnxt_pf_wq) {
15846 			bnxt_pf_wq =
15847 				create_singlethread_workqueue("bnxt_pf_wq");
15848 			if (!bnxt_pf_wq) {
15849 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
15850 				rc = -ENOMEM;
15851 				goto init_err_pci_clean;
15852 			}
15853 		}
15854 		rc = bnxt_init_tc(bp);
15855 		if (rc)
15856 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
15857 				   rc);
15858 	}
15859 
15860 	bnxt_inv_fw_health_reg(bp);
15861 	rc = bnxt_dl_register(bp);
15862 	if (rc)
15863 		goto init_err_dl;
15864 
15865 	INIT_LIST_HEAD(&bp->usr_fltr_list);
15866 
15867 	if (BNXT_SUPPORTS_NTUPLE_VNIC(bp))
15868 		bnxt_init_multi_rss_ctx(bp);
15869 
15870 
15871 	rc = register_netdev(dev);
15872 	if (rc)
15873 		goto init_err_cleanup;
15874 
15875 	bnxt_dl_fw_reporters_create(bp);
15876 
15877 	bnxt_rdma_aux_device_add(bp);
15878 
15879 	bnxt_print_device_info(bp);
15880 
15881 	pci_save_state(pdev);
15882 
15883 	return 0;
15884 init_err_cleanup:
15885 	bnxt_rdma_aux_device_uninit(bp);
15886 	bnxt_dl_unregister(bp);
15887 init_err_dl:
15888 	bnxt_shutdown_tc(bp);
15889 	bnxt_clear_int_mode(bp);
15890 
15891 init_err_pci_clean:
15892 	if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp))
15893 		bnxt_clear_rss_ctxs(bp, true);
15894 	bnxt_hwrm_func_drv_unrgtr(bp);
15895 	bnxt_free_hwrm_resources(bp);
15896 	bnxt_hwmon_uninit(bp);
15897 	bnxt_ethtool_free(bp);
15898 	bnxt_ptp_clear(bp);
15899 	kfree(bp->ptp_cfg);
15900 	bp->ptp_cfg = NULL;
15901 	kfree(bp->fw_health);
15902 	bp->fw_health = NULL;
15903 	bnxt_cleanup_pci(bp);
15904 	bnxt_free_ctx_mem(bp);
15905 	kfree(bp->rss_indir_tbl);
15906 	bp->rss_indir_tbl = NULL;
15907 
15908 init_err_free:
15909 	free_netdev(dev);
15910 	return rc;
15911 }
15912 
15913 static void bnxt_shutdown(struct pci_dev *pdev)
15914 {
15915 	struct net_device *dev = pci_get_drvdata(pdev);
15916 	struct bnxt *bp;
15917 
15918 	if (!dev)
15919 		return;
15920 
15921 	rtnl_lock();
15922 	bp = netdev_priv(dev);
15923 	if (!bp)
15924 		goto shutdown_exit;
15925 
15926 	if (netif_running(dev))
15927 		dev_close(dev);
15928 
15929 	bnxt_clear_int_mode(bp);
15930 	pci_disable_device(pdev);
15931 
15932 	if (system_state == SYSTEM_POWER_OFF) {
15933 		pci_wake_from_d3(pdev, bp->wol);
15934 		pci_set_power_state(pdev, PCI_D3hot);
15935 	}
15936 
15937 shutdown_exit:
15938 	rtnl_unlock();
15939 }
15940 
15941 #ifdef CONFIG_PM_SLEEP
15942 static int bnxt_suspend(struct device *device)
15943 {
15944 	struct net_device *dev = dev_get_drvdata(device);
15945 	struct bnxt *bp = netdev_priv(dev);
15946 	int rc = 0;
15947 
15948 	bnxt_ulp_stop(bp);
15949 
15950 	rtnl_lock();
15951 	if (netif_running(dev)) {
15952 		netif_device_detach(dev);
15953 		rc = bnxt_close(dev);
15954 	}
15955 	bnxt_hwrm_func_drv_unrgtr(bp);
15956 	pci_disable_device(bp->pdev);
15957 	bnxt_free_ctx_mem(bp);
15958 	rtnl_unlock();
15959 	return rc;
15960 }
15961 
15962 static int bnxt_resume(struct device *device)
15963 {
15964 	struct net_device *dev = dev_get_drvdata(device);
15965 	struct bnxt *bp = netdev_priv(dev);
15966 	int rc = 0;
15967 
15968 	rtnl_lock();
15969 	rc = pci_enable_device(bp->pdev);
15970 	if (rc) {
15971 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
15972 			   rc);
15973 		goto resume_exit;
15974 	}
15975 	pci_set_master(bp->pdev);
15976 	if (bnxt_hwrm_ver_get(bp)) {
15977 		rc = -ENODEV;
15978 		goto resume_exit;
15979 	}
15980 	rc = bnxt_hwrm_func_reset(bp);
15981 	if (rc) {
15982 		rc = -EBUSY;
15983 		goto resume_exit;
15984 	}
15985 
15986 	rc = bnxt_hwrm_func_qcaps(bp);
15987 	if (rc)
15988 		goto resume_exit;
15989 
15990 	bnxt_clear_reservations(bp, true);
15991 
15992 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
15993 		rc = -ENODEV;
15994 		goto resume_exit;
15995 	}
15996 
15997 	bnxt_get_wol_settings(bp);
15998 	if (netif_running(dev)) {
15999 		rc = bnxt_open(dev);
16000 		if (!rc)
16001 			netif_device_attach(dev);
16002 	}
16003 
16004 resume_exit:
16005 	rtnl_unlock();
16006 	bnxt_ulp_start(bp, rc);
16007 	if (!rc)
16008 		bnxt_reenable_sriov(bp);
16009 	return rc;
16010 }
16011 
16012 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
16013 #define BNXT_PM_OPS (&bnxt_pm_ops)
16014 
16015 #else
16016 
16017 #define BNXT_PM_OPS NULL
16018 
16019 #endif /* CONFIG_PM_SLEEP */
16020 
16021 /**
16022  * bnxt_io_error_detected - called when PCI error is detected
16023  * @pdev: Pointer to PCI device
16024  * @state: The current pci connection state
16025  *
16026  * This function is called after a PCI bus error affecting
16027  * this device has been detected.
16028  */
16029 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
16030 					       pci_channel_state_t state)
16031 {
16032 	struct net_device *netdev = pci_get_drvdata(pdev);
16033 	struct bnxt *bp = netdev_priv(netdev);
16034 	bool abort = false;
16035 
16036 	netdev_info(netdev, "PCI I/O error detected\n");
16037 
16038 	bnxt_ulp_stop(bp);
16039 
16040 	rtnl_lock();
16041 	netif_device_detach(netdev);
16042 
16043 	if (test_and_set_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
16044 		netdev_err(bp->dev, "Firmware reset already in progress\n");
16045 		abort = true;
16046 	}
16047 
16048 	if (abort || state == pci_channel_io_perm_failure) {
16049 		rtnl_unlock();
16050 		return PCI_ERS_RESULT_DISCONNECT;
16051 	}
16052 
16053 	/* Link is not reliable anymore if state is pci_channel_io_frozen
16054 	 * so we disable bus master to prevent any potential bad DMAs before
16055 	 * freeing kernel memory.
16056 	 */
16057 	if (state == pci_channel_io_frozen) {
16058 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
16059 		bnxt_fw_fatal_close(bp);
16060 	}
16061 
16062 	if (netif_running(netdev))
16063 		__bnxt_close_nic(bp, true, true);
16064 
16065 	if (pci_is_enabled(pdev))
16066 		pci_disable_device(pdev);
16067 	bnxt_free_ctx_mem(bp);
16068 	rtnl_unlock();
16069 
16070 	/* Request a slot slot reset. */
16071 	return PCI_ERS_RESULT_NEED_RESET;
16072 }
16073 
16074 /**
16075  * bnxt_io_slot_reset - called after the pci bus has been reset.
16076  * @pdev: Pointer to PCI device
16077  *
16078  * Restart the card from scratch, as if from a cold-boot.
16079  * At this point, the card has exprienced a hard reset,
16080  * followed by fixups by BIOS, and has its config space
16081  * set up identically to what it was at cold boot.
16082  */
16083 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
16084 {
16085 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
16086 	struct net_device *netdev = pci_get_drvdata(pdev);
16087 	struct bnxt *bp = netdev_priv(netdev);
16088 	int retry = 0;
16089 	int err = 0;
16090 	int off;
16091 
16092 	netdev_info(bp->dev, "PCI Slot Reset\n");
16093 
16094 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
16095 	    test_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state))
16096 		msleep(900);
16097 
16098 	rtnl_lock();
16099 
16100 	if (pci_enable_device(pdev)) {
16101 		dev_err(&pdev->dev,
16102 			"Cannot re-enable PCI device after reset.\n");
16103 	} else {
16104 		pci_set_master(pdev);
16105 		/* Upon fatal error, our device internal logic that latches to
16106 		 * BAR value is getting reset and will restore only upon
16107 		 * rewritting the BARs.
16108 		 *
16109 		 * As pci_restore_state() does not re-write the BARs if the
16110 		 * value is same as saved value earlier, driver needs to
16111 		 * write the BARs to 0 to force restore, in case of fatal error.
16112 		 */
16113 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
16114 				       &bp->state)) {
16115 			for (off = PCI_BASE_ADDRESS_0;
16116 			     off <= PCI_BASE_ADDRESS_5; off += 4)
16117 				pci_write_config_dword(bp->pdev, off, 0);
16118 		}
16119 		pci_restore_state(pdev);
16120 		pci_save_state(pdev);
16121 
16122 		bnxt_inv_fw_health_reg(bp);
16123 		bnxt_try_map_fw_health_reg(bp);
16124 
16125 		/* In some PCIe AER scenarios, firmware may take up to
16126 		 * 10 seconds to become ready in the worst case.
16127 		 */
16128 		do {
16129 			err = bnxt_try_recover_fw(bp);
16130 			if (!err)
16131 				break;
16132 			retry++;
16133 		} while (retry < BNXT_FW_SLOT_RESET_RETRY);
16134 
16135 		if (err) {
16136 			dev_err(&pdev->dev, "Firmware not ready\n");
16137 			goto reset_exit;
16138 		}
16139 
16140 		err = bnxt_hwrm_func_reset(bp);
16141 		if (!err)
16142 			result = PCI_ERS_RESULT_RECOVERED;
16143 
16144 		bnxt_ulp_irq_stop(bp);
16145 		bnxt_clear_int_mode(bp);
16146 		err = bnxt_init_int_mode(bp);
16147 		bnxt_ulp_irq_restart(bp, err);
16148 	}
16149 
16150 reset_exit:
16151 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
16152 	bnxt_clear_reservations(bp, true);
16153 	rtnl_unlock();
16154 
16155 	return result;
16156 }
16157 
16158 /**
16159  * bnxt_io_resume - called when traffic can start flowing again.
16160  * @pdev: Pointer to PCI device
16161  *
16162  * This callback is called when the error recovery driver tells
16163  * us that its OK to resume normal operation.
16164  */
16165 static void bnxt_io_resume(struct pci_dev *pdev)
16166 {
16167 	struct net_device *netdev = pci_get_drvdata(pdev);
16168 	struct bnxt *bp = netdev_priv(netdev);
16169 	int err;
16170 
16171 	netdev_info(bp->dev, "PCI Slot Resume\n");
16172 	rtnl_lock();
16173 
16174 	err = bnxt_hwrm_func_qcaps(bp);
16175 	if (!err && netif_running(netdev))
16176 		err = bnxt_open(netdev);
16177 
16178 	if (!err)
16179 		netif_device_attach(netdev);
16180 
16181 	rtnl_unlock();
16182 	bnxt_ulp_start(bp, err);
16183 	if (!err)
16184 		bnxt_reenable_sriov(bp);
16185 }
16186 
16187 static const struct pci_error_handlers bnxt_err_handler = {
16188 	.error_detected	= bnxt_io_error_detected,
16189 	.slot_reset	= bnxt_io_slot_reset,
16190 	.resume		= bnxt_io_resume
16191 };
16192 
16193 static struct pci_driver bnxt_pci_driver = {
16194 	.name		= DRV_MODULE_NAME,
16195 	.id_table	= bnxt_pci_tbl,
16196 	.probe		= bnxt_init_one,
16197 	.remove		= bnxt_remove_one,
16198 	.shutdown	= bnxt_shutdown,
16199 	.driver.pm	= BNXT_PM_OPS,
16200 	.err_handler	= &bnxt_err_handler,
16201 #if defined(CONFIG_BNXT_SRIOV)
16202 	.sriov_configure = bnxt_sriov_configure,
16203 #endif
16204 };
16205 
16206 static int __init bnxt_init(void)
16207 {
16208 	int err;
16209 
16210 	bnxt_debug_init();
16211 	err = pci_register_driver(&bnxt_pci_driver);
16212 	if (err) {
16213 		bnxt_debug_exit();
16214 		return err;
16215 	}
16216 
16217 	return 0;
16218 }
16219 
16220 static void __exit bnxt_exit(void)
16221 {
16222 	pci_unregister_driver(&bnxt_pci_driver);
16223 	if (bnxt_pf_wq)
16224 		destroy_workqueue(bnxt_pf_wq);
16225 	bnxt_debug_exit();
16226 }
16227 
16228 module_init(bnxt_init);
16229 module_exit(bnxt_exit);
16230