1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/gro.h> 41 #include <net/ip.h> 42 #include <net/tcp.h> 43 #include <net/udp.h> 44 #include <net/checksum.h> 45 #include <net/ip6_checksum.h> 46 #include <net/udp_tunnel.h> 47 #include <linux/workqueue.h> 48 #include <linux/prefetch.h> 49 #include <linux/cache.h> 50 #include <linux/log2.h> 51 #include <linux/bitmap.h> 52 #include <linux/cpu_rmap.h> 53 #include <linux/cpumask.h> 54 #include <net/pkt_cls.h> 55 #include <net/page_pool/helpers.h> 56 #include <linux/align.h> 57 #include <net/netdev_lock.h> 58 #include <net/netdev_queues.h> 59 #include <net/netdev_rx_queue.h> 60 #include <linux/pci-tph.h> 61 #include <linux/bnxt/hsi.h> 62 63 #include "bnxt.h" 64 #include "bnxt_hwrm.h" 65 #include "bnxt_ulp.h" 66 #include "bnxt_sriov.h" 67 #include "bnxt_ethtool.h" 68 #include "bnxt_dcb.h" 69 #include "bnxt_xdp.h" 70 #include "bnxt_ptp.h" 71 #include "bnxt_vfr.h" 72 #include "bnxt_tc.h" 73 #include "bnxt_devlink.h" 74 #include "bnxt_debugfs.h" 75 #include "bnxt_coredump.h" 76 #include "bnxt_hwmon.h" 77 78 #define BNXT_TX_TIMEOUT (5 * HZ) 79 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \ 80 NETIF_MSG_TX_ERR) 81 82 MODULE_IMPORT_NS("NETDEV_INTERNAL"); 83 MODULE_LICENSE("GPL"); 84 MODULE_DESCRIPTION("Broadcom NetXtreme network driver"); 85 86 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 87 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 88 89 #define BNXT_TX_PUSH_THRESH 164 90 91 /* indexed by enum board_idx */ 92 static const struct { 93 char *name; 94 } board_info[] = { 95 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 96 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 97 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 98 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 99 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 100 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 101 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 102 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 103 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 104 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 105 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 106 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 107 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 108 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 109 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 110 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 111 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 112 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 113 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 114 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 115 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 116 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 117 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 118 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 119 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 120 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 121 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 122 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 123 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 124 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 125 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 126 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 127 [BCM57608] = { "Broadcom BCM57608 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 128 [BCM57604] = { "Broadcom BCM57604 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 129 [BCM57602] = { "Broadcom BCM57602 NetXtreme-E 10Gb/25Gb/50Gb/100Gb Ethernet" }, 130 [BCM57601] = { "Broadcom BCM57601 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 131 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 132 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 133 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 134 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 135 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 136 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 137 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 138 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 139 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 140 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 141 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 142 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 143 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 144 [NETXTREME_E_P7_VF] = { "Broadcom BCM5760X Virtual Function" }, 145 [NETXTREME_E_P7_VF_HV] = { "Broadcom BCM5760X Virtual Function for Hyper-V" }, 146 }; 147 148 static const struct pci_device_id bnxt_pci_tbl[] = { 149 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 150 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 151 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 152 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 153 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 154 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 155 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 156 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 157 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 158 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 159 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 160 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 161 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 162 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 163 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 164 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 165 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 166 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 167 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 168 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 169 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 170 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 171 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 172 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 173 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 174 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 175 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 176 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 177 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 178 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 179 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 180 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 181 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 182 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 183 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 184 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 185 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 186 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 187 { PCI_VDEVICE(BROADCOM, 0x1760), .driver_data = BCM57608 }, 188 { PCI_VDEVICE(BROADCOM, 0x1761), .driver_data = BCM57604 }, 189 { PCI_VDEVICE(BROADCOM, 0x1762), .driver_data = BCM57602 }, 190 { PCI_VDEVICE(BROADCOM, 0x1763), .driver_data = BCM57601 }, 191 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR }, 192 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 193 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR }, 194 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR }, 195 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 196 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR }, 197 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 198 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 199 #ifdef CONFIG_BNXT_SRIOV 200 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 201 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 202 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 203 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 204 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 205 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 206 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 207 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 208 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 209 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 210 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 211 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 212 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 213 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 214 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 215 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 216 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 217 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 218 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 219 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 220 { PCI_VDEVICE(BROADCOM, 0x1819), .driver_data = NETXTREME_E_P7_VF }, 221 { PCI_VDEVICE(BROADCOM, 0x181b), .driver_data = NETXTREME_E_P7_VF_HV }, 222 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 223 #endif 224 { 0 } 225 }; 226 227 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 228 229 static const u16 bnxt_vf_req_snif[] = { 230 HWRM_FUNC_CFG, 231 HWRM_FUNC_VF_CFG, 232 HWRM_PORT_PHY_QCFG, 233 HWRM_CFA_L2_FILTER_ALLOC, 234 }; 235 236 static const u16 bnxt_async_events_arr[] = { 237 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 238 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 239 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 240 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 241 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 242 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 243 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 244 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 245 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 246 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 247 ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE, 248 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 249 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 250 ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP, 251 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT, 252 ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE, 253 ASYNC_EVENT_CMPL_EVENT_ID_DBG_BUF_PRODUCER, 254 }; 255 256 const u16 bnxt_bstore_to_trace[] = { 257 [BNXT_CTX_SRT] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_SRT_TRACE, 258 [BNXT_CTX_SRT2] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_SRT2_TRACE, 259 [BNXT_CTX_CRT] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CRT_TRACE, 260 [BNXT_CTX_CRT2] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CRT2_TRACE, 261 [BNXT_CTX_RIGP0] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_RIGP0_TRACE, 262 [BNXT_CTX_L2HWRM] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_L2_HWRM_TRACE, 263 [BNXT_CTX_REHWRM] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_ROCE_HWRM_TRACE, 264 [BNXT_CTX_CA0] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CA0_TRACE, 265 [BNXT_CTX_CA1] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CA1_TRACE, 266 [BNXT_CTX_CA2] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CA2_TRACE, 267 [BNXT_CTX_RIGP1] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_RIGP1_TRACE, 268 }; 269 270 static struct workqueue_struct *bnxt_pf_wq; 271 272 #define BNXT_IPV6_MASK_ALL {{{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, \ 273 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }}} 274 #define BNXT_IPV6_MASK_NONE {{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }}} 275 276 const struct bnxt_flow_masks BNXT_FLOW_MASK_NONE = { 277 .ports = { 278 .src = 0, 279 .dst = 0, 280 }, 281 .addrs = { 282 .v6addrs = { 283 .src = BNXT_IPV6_MASK_NONE, 284 .dst = BNXT_IPV6_MASK_NONE, 285 }, 286 }, 287 }; 288 289 const struct bnxt_flow_masks BNXT_FLOW_IPV6_MASK_ALL = { 290 .ports = { 291 .src = cpu_to_be16(0xffff), 292 .dst = cpu_to_be16(0xffff), 293 }, 294 .addrs = { 295 .v6addrs = { 296 .src = BNXT_IPV6_MASK_ALL, 297 .dst = BNXT_IPV6_MASK_ALL, 298 }, 299 }, 300 }; 301 302 const struct bnxt_flow_masks BNXT_FLOW_IPV4_MASK_ALL = { 303 .ports = { 304 .src = cpu_to_be16(0xffff), 305 .dst = cpu_to_be16(0xffff), 306 }, 307 .addrs = { 308 .v4addrs = { 309 .src = cpu_to_be32(0xffffffff), 310 .dst = cpu_to_be32(0xffffffff), 311 }, 312 }, 313 }; 314 315 static bool bnxt_vf_pciid(enum board_idx idx) 316 { 317 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 318 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 319 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || 320 idx == NETXTREME_E_P5_VF_HV || idx == NETXTREME_E_P7_VF || 321 idx == NETXTREME_E_P7_VF_HV); 322 } 323 324 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 325 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 326 327 #define BNXT_DB_CQ(db, idx) \ 328 writel(DB_CP_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 329 330 #define BNXT_DB_NQ_P5(db, idx) \ 331 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | DB_RING_IDX(db, idx),\ 332 (db)->doorbell) 333 334 #define BNXT_DB_NQ_P7(db, idx) \ 335 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_MASK | \ 336 DB_RING_IDX(db, idx), (db)->doorbell) 337 338 #define BNXT_DB_CQ_ARM(db, idx) \ 339 writel(DB_CP_REARM_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 340 341 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 342 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | \ 343 DB_RING_IDX(db, idx), (db)->doorbell) 344 345 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 346 { 347 if (bp->flags & BNXT_FLAG_CHIP_P7) 348 BNXT_DB_NQ_P7(db, idx); 349 else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 350 BNXT_DB_NQ_P5(db, idx); 351 else 352 BNXT_DB_CQ(db, idx); 353 } 354 355 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 356 { 357 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 358 BNXT_DB_NQ_ARM_P5(db, idx); 359 else 360 BNXT_DB_CQ_ARM(db, idx); 361 } 362 363 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 364 { 365 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 366 bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL | 367 DB_RING_IDX(db, idx), db->doorbell); 368 else 369 BNXT_DB_CQ(db, idx); 370 } 371 372 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 373 { 374 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 375 return; 376 377 if (BNXT_PF(bp)) 378 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 379 else 380 schedule_delayed_work(&bp->fw_reset_task, delay); 381 } 382 383 static void __bnxt_queue_sp_work(struct bnxt *bp) 384 { 385 if (BNXT_PF(bp)) 386 queue_work(bnxt_pf_wq, &bp->sp_task); 387 else 388 schedule_work(&bp->sp_task); 389 } 390 391 static void bnxt_queue_sp_work(struct bnxt *bp, unsigned int event) 392 { 393 set_bit(event, &bp->sp_event); 394 __bnxt_queue_sp_work(bp); 395 } 396 397 static void bnxt_sched_reset_rxr(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 398 { 399 if (!rxr->bnapi->in_reset) { 400 rxr->bnapi->in_reset = true; 401 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 402 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 403 else 404 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 405 __bnxt_queue_sp_work(bp); 406 } 407 rxr->rx_next_cons = 0xffff; 408 } 409 410 void bnxt_sched_reset_txr(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 411 u16 curr) 412 { 413 struct bnxt_napi *bnapi = txr->bnapi; 414 415 if (bnapi->tx_fault) 416 return; 417 418 netdev_err(bp->dev, "Invalid Tx completion (ring:%d tx_hw_cons:%u cons:%u prod:%u curr:%u)", 419 txr->txq_index, txr->tx_hw_cons, 420 txr->tx_cons, txr->tx_prod, curr); 421 WARN_ON_ONCE(1); 422 bnapi->tx_fault = 1; 423 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 424 } 425 426 const u16 bnxt_lhint_arr[] = { 427 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 428 TX_BD_FLAGS_LHINT_512_TO_1023, 429 TX_BD_FLAGS_LHINT_1024_TO_2047, 430 TX_BD_FLAGS_LHINT_1024_TO_2047, 431 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 432 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 433 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 434 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 435 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 436 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 437 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 438 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 439 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 440 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 441 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 442 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 443 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 444 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 445 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 446 }; 447 448 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 449 { 450 struct metadata_dst *md_dst = skb_metadata_dst(skb); 451 452 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 453 return 0; 454 455 return md_dst->u.port_info.port_id; 456 } 457 458 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 459 u16 prod) 460 { 461 /* Sync BD data before updating doorbell */ 462 wmb(); 463 bnxt_db_write(bp, &txr->tx_db, prod); 464 txr->kick_pending = 0; 465 } 466 467 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 468 { 469 struct bnxt *bp = netdev_priv(dev); 470 struct tx_bd *txbd, *txbd0; 471 struct tx_bd_ext *txbd1; 472 struct netdev_queue *txq; 473 int i; 474 dma_addr_t mapping; 475 unsigned int length, pad = 0; 476 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 477 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 478 struct pci_dev *pdev = bp->pdev; 479 u16 prod, last_frag, txts_prod; 480 struct bnxt_tx_ring_info *txr; 481 struct bnxt_sw_tx_bd *tx_buf; 482 __le32 lflags = 0; 483 skb_frag_t *frag; 484 485 i = skb_get_queue_mapping(skb); 486 if (unlikely(i >= bp->tx_nr_rings)) { 487 dev_kfree_skb_any(skb); 488 dev_core_stats_tx_dropped_inc(dev); 489 return NETDEV_TX_OK; 490 } 491 492 txq = netdev_get_tx_queue(dev, i); 493 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 494 prod = txr->tx_prod; 495 496 #if (MAX_SKB_FRAGS > TX_MAX_FRAGS) 497 if (skb_shinfo(skb)->nr_frags > TX_MAX_FRAGS) { 498 netdev_warn_once(dev, "SKB has too many (%d) fragments, max supported is %d. SKB will be linearized.\n", 499 skb_shinfo(skb)->nr_frags, TX_MAX_FRAGS); 500 if (skb_linearize(skb)) { 501 dev_kfree_skb_any(skb); 502 dev_core_stats_tx_dropped_inc(dev); 503 return NETDEV_TX_OK; 504 } 505 } 506 #endif 507 free_size = bnxt_tx_avail(bp, txr); 508 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 509 /* We must have raced with NAPI cleanup */ 510 if (net_ratelimit() && txr->kick_pending) 511 netif_warn(bp, tx_err, dev, 512 "bnxt: ring busy w/ flush pending!\n"); 513 if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 514 bp->tx_wake_thresh)) 515 return NETDEV_TX_BUSY; 516 } 517 518 if (unlikely(ipv6_hopopt_jumbo_remove(skb))) 519 goto tx_free; 520 521 length = skb->len; 522 len = skb_headlen(skb); 523 last_frag = skb_shinfo(skb)->nr_frags; 524 525 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 526 527 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 528 tx_buf->skb = skb; 529 tx_buf->nr_frags = last_frag; 530 531 vlan_tag_flags = 0; 532 cfa_action = bnxt_xmit_get_cfa_action(skb); 533 if (skb_vlan_tag_present(skb)) { 534 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 535 skb_vlan_tag_get(skb); 536 /* Currently supports 8021Q, 8021AD vlan offloads 537 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 538 */ 539 if (skb->vlan_proto == htons(ETH_P_8021Q)) 540 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 541 } 542 543 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && ptp && 544 ptp->tx_tstamp_en) { 545 if (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) { 546 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 547 tx_buf->is_ts_pkt = 1; 548 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 549 } else if (!skb_is_gso(skb)) { 550 u16 seq_id, hdr_off; 551 552 if (!bnxt_ptp_parse(skb, &seq_id, &hdr_off) && 553 !bnxt_ptp_get_txts_prod(ptp, &txts_prod)) { 554 if (vlan_tag_flags) 555 hdr_off += VLAN_HLEN; 556 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 557 tx_buf->is_ts_pkt = 1; 558 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 559 560 ptp->txts_req[txts_prod].tx_seqid = seq_id; 561 ptp->txts_req[txts_prod].tx_hdr_off = hdr_off; 562 tx_buf->txts_prod = txts_prod; 563 } 564 } 565 } 566 if (unlikely(skb->no_fcs)) 567 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 568 569 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && 570 skb_frags_readable(skb) && !lflags) { 571 struct tx_push_buffer *tx_push_buf = txr->tx_push; 572 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 573 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 574 void __iomem *db = txr->tx_db.doorbell; 575 void *pdata = tx_push_buf->data; 576 u64 *end; 577 int j, push_len; 578 579 /* Set COAL_NOW to be ready quickly for the next push */ 580 tx_push->tx_bd_len_flags_type = 581 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 582 TX_BD_TYPE_LONG_TX_BD | 583 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 584 TX_BD_FLAGS_COAL_NOW | 585 TX_BD_FLAGS_PACKET_END | 586 TX_BD_CNT(2)); 587 588 if (skb->ip_summed == CHECKSUM_PARTIAL) 589 tx_push1->tx_bd_hsize_lflags = 590 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 591 else 592 tx_push1->tx_bd_hsize_lflags = 0; 593 594 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 595 tx_push1->tx_bd_cfa_action = 596 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 597 598 end = pdata + length; 599 end = PTR_ALIGN(end, 8) - 1; 600 *end = 0; 601 602 skb_copy_from_linear_data(skb, pdata, len); 603 pdata += len; 604 for (j = 0; j < last_frag; j++) { 605 void *fptr; 606 607 frag = &skb_shinfo(skb)->frags[j]; 608 fptr = skb_frag_address_safe(frag); 609 if (!fptr) 610 goto normal_tx; 611 612 memcpy(pdata, fptr, skb_frag_size(frag)); 613 pdata += skb_frag_size(frag); 614 } 615 616 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 617 txbd->tx_bd_haddr = txr->data_mapping; 618 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2); 619 prod = NEXT_TX(prod); 620 tx_push->tx_bd_opaque = txbd->tx_bd_opaque; 621 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 622 memcpy(txbd, tx_push1, sizeof(*txbd)); 623 prod = NEXT_TX(prod); 624 tx_push->doorbell = 625 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | 626 DB_RING_IDX(&txr->tx_db, prod)); 627 WRITE_ONCE(txr->tx_prod, prod); 628 629 tx_buf->is_push = 1; 630 netdev_tx_sent_queue(txq, skb->len); 631 wmb(); /* Sync is_push and byte queue before pushing data */ 632 633 push_len = (length + sizeof(*tx_push) + 7) / 8; 634 if (push_len > 16) { 635 __iowrite64_copy(db, tx_push_buf, 16); 636 __iowrite32_copy(db + 4, tx_push_buf + 1, 637 (push_len - 16) << 1); 638 } else { 639 __iowrite64_copy(db, tx_push_buf, push_len); 640 } 641 642 goto tx_done; 643 } 644 645 normal_tx: 646 if (length < BNXT_MIN_PKT_SIZE) { 647 pad = BNXT_MIN_PKT_SIZE - length; 648 if (skb_pad(skb, pad)) 649 /* SKB already freed. */ 650 goto tx_kick_pending; 651 length = BNXT_MIN_PKT_SIZE; 652 } 653 654 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 655 656 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 657 goto tx_free; 658 659 dma_unmap_addr_set(tx_buf, mapping, mapping); 660 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 661 TX_BD_CNT(last_frag + 2); 662 663 txbd->tx_bd_haddr = cpu_to_le64(mapping); 664 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2 + last_frag); 665 666 prod = NEXT_TX(prod); 667 txbd1 = (struct tx_bd_ext *) 668 &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 669 670 txbd1->tx_bd_hsize_lflags = lflags; 671 if (skb_is_gso(skb)) { 672 bool udp_gso = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4); 673 u32 hdr_len; 674 675 if (skb->encapsulation) { 676 if (udp_gso) 677 hdr_len = skb_inner_transport_offset(skb) + 678 sizeof(struct udphdr); 679 else 680 hdr_len = skb_inner_tcp_all_headers(skb); 681 } else if (udp_gso) { 682 hdr_len = skb_transport_offset(skb) + 683 sizeof(struct udphdr); 684 } else { 685 hdr_len = skb_tcp_all_headers(skb); 686 } 687 688 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 689 TX_BD_FLAGS_T_IPID | 690 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 691 length = skb_shinfo(skb)->gso_size; 692 txbd1->tx_bd_mss = cpu_to_le32(length); 693 length += hdr_len; 694 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 695 txbd1->tx_bd_hsize_lflags |= 696 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 697 txbd1->tx_bd_mss = 0; 698 } 699 700 length >>= 9; 701 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 702 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 703 skb->len); 704 i = 0; 705 goto tx_dma_error; 706 } 707 flags |= bnxt_lhint_arr[length]; 708 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 709 710 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 711 txbd1->tx_bd_cfa_action = 712 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 713 txbd0 = txbd; 714 for (i = 0; i < last_frag; i++) { 715 frag = &skb_shinfo(skb)->frags[i]; 716 prod = NEXT_TX(prod); 717 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 718 719 len = skb_frag_size(frag); 720 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 721 DMA_TO_DEVICE); 722 723 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 724 goto tx_dma_error; 725 726 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 727 netmem_dma_unmap_addr_set(skb_frag_netmem(frag), tx_buf, 728 mapping, mapping); 729 730 txbd->tx_bd_haddr = cpu_to_le64(mapping); 731 732 flags = len << TX_BD_LEN_SHIFT; 733 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 734 } 735 736 flags &= ~TX_BD_LEN; 737 txbd->tx_bd_len_flags_type = 738 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 739 TX_BD_FLAGS_PACKET_END); 740 741 netdev_tx_sent_queue(txq, skb->len); 742 743 skb_tx_timestamp(skb); 744 745 prod = NEXT_TX(prod); 746 WRITE_ONCE(txr->tx_prod, prod); 747 748 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) { 749 bnxt_txr_db_kick(bp, txr, prod); 750 } else { 751 if (free_size >= bp->tx_wake_thresh) 752 txbd0->tx_bd_len_flags_type |= 753 cpu_to_le32(TX_BD_FLAGS_NO_CMPL); 754 txr->kick_pending = 1; 755 } 756 757 tx_done: 758 759 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 760 if (netdev_xmit_more() && !tx_buf->is_push) { 761 txbd0->tx_bd_len_flags_type &= 762 cpu_to_le32(~TX_BD_FLAGS_NO_CMPL); 763 bnxt_txr_db_kick(bp, txr, prod); 764 } 765 766 netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 767 bp->tx_wake_thresh); 768 } 769 return NETDEV_TX_OK; 770 771 tx_dma_error: 772 last_frag = i; 773 774 /* start back at beginning and unmap skb */ 775 prod = txr->tx_prod; 776 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 777 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 778 skb_headlen(skb), DMA_TO_DEVICE); 779 prod = NEXT_TX(prod); 780 781 /* unmap remaining mapped pages */ 782 for (i = 0; i < last_frag; i++) { 783 prod = NEXT_TX(prod); 784 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 785 frag = &skb_shinfo(skb)->frags[i]; 786 netmem_dma_unmap_page_attrs(&pdev->dev, 787 dma_unmap_addr(tx_buf, mapping), 788 skb_frag_size(frag), 789 DMA_TO_DEVICE, 0); 790 } 791 792 tx_free: 793 dev_kfree_skb_any(skb); 794 tx_kick_pending: 795 if (BNXT_TX_PTP_IS_SET(lflags)) { 796 txr->tx_buf_ring[RING_TX(bp, txr->tx_prod)].is_ts_pkt = 0; 797 atomic64_inc(&bp->ptp_cfg->stats.ts_err); 798 if (!(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) 799 /* set SKB to err so PTP worker will clean up */ 800 ptp->txts_req[txts_prod].tx_skb = ERR_PTR(-EIO); 801 } 802 if (txr->kick_pending) 803 bnxt_txr_db_kick(bp, txr, txr->tx_prod); 804 txr->tx_buf_ring[RING_TX(bp, txr->tx_prod)].skb = NULL; 805 dev_core_stats_tx_dropped_inc(dev); 806 return NETDEV_TX_OK; 807 } 808 809 /* Returns true if some remaining TX packets not processed. */ 810 static bool __bnxt_tx_int(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 811 int budget) 812 { 813 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 814 struct pci_dev *pdev = bp->pdev; 815 u16 hw_cons = txr->tx_hw_cons; 816 unsigned int tx_bytes = 0; 817 u16 cons = txr->tx_cons; 818 skb_frag_t *frag; 819 int tx_pkts = 0; 820 bool rc = false; 821 822 while (RING_TX(bp, cons) != hw_cons) { 823 struct bnxt_sw_tx_bd *tx_buf; 824 struct sk_buff *skb; 825 bool is_ts_pkt; 826 int j, last; 827 828 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 829 skb = tx_buf->skb; 830 831 if (unlikely(!skb)) { 832 bnxt_sched_reset_txr(bp, txr, cons); 833 return rc; 834 } 835 836 is_ts_pkt = tx_buf->is_ts_pkt; 837 if (is_ts_pkt && (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) { 838 rc = true; 839 break; 840 } 841 842 cons = NEXT_TX(cons); 843 tx_pkts++; 844 tx_bytes += skb->len; 845 tx_buf->skb = NULL; 846 tx_buf->is_ts_pkt = 0; 847 848 if (tx_buf->is_push) { 849 tx_buf->is_push = 0; 850 goto next_tx_int; 851 } 852 853 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 854 skb_headlen(skb), DMA_TO_DEVICE); 855 last = tx_buf->nr_frags; 856 857 for (j = 0; j < last; j++) { 858 frag = &skb_shinfo(skb)->frags[j]; 859 cons = NEXT_TX(cons); 860 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 861 netmem_dma_unmap_page_attrs(&pdev->dev, 862 dma_unmap_addr(tx_buf, 863 mapping), 864 skb_frag_size(frag), 865 DMA_TO_DEVICE, 0); 866 } 867 if (unlikely(is_ts_pkt)) { 868 if (BNXT_CHIP_P5(bp)) { 869 /* PTP worker takes ownership of the skb */ 870 bnxt_get_tx_ts_p5(bp, skb, tx_buf->txts_prod); 871 skb = NULL; 872 } 873 } 874 875 next_tx_int: 876 cons = NEXT_TX(cons); 877 878 dev_consume_skb_any(skb); 879 } 880 881 WRITE_ONCE(txr->tx_cons, cons); 882 883 __netif_txq_completed_wake(txq, tx_pkts, tx_bytes, 884 bnxt_tx_avail(bp, txr), bp->tx_wake_thresh, 885 READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING); 886 887 return rc; 888 } 889 890 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 891 { 892 struct bnxt_tx_ring_info *txr; 893 bool more = false; 894 int i; 895 896 bnxt_for_each_napi_tx(i, bnapi, txr) { 897 if (txr->tx_hw_cons != RING_TX(bp, txr->tx_cons)) 898 more |= __bnxt_tx_int(bp, txr, budget); 899 } 900 if (!more) 901 bnapi->events &= ~BNXT_TX_CMP_EVENT; 902 } 903 904 static bool bnxt_separate_head_pool(struct bnxt_rx_ring_info *rxr) 905 { 906 return rxr->need_head_pool || PAGE_SIZE > BNXT_RX_PAGE_SIZE; 907 } 908 909 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 910 struct bnxt_rx_ring_info *rxr, 911 unsigned int *offset, 912 gfp_t gfp) 913 { 914 struct page *page; 915 916 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 917 page = page_pool_dev_alloc_frag(rxr->page_pool, offset, 918 BNXT_RX_PAGE_SIZE); 919 } else { 920 page = page_pool_dev_alloc_pages(rxr->page_pool); 921 *offset = 0; 922 } 923 if (!page) 924 return NULL; 925 926 *mapping = page_pool_get_dma_addr(page) + *offset; 927 return page; 928 } 929 930 static netmem_ref __bnxt_alloc_rx_netmem(struct bnxt *bp, dma_addr_t *mapping, 931 struct bnxt_rx_ring_info *rxr, 932 unsigned int *offset, 933 gfp_t gfp) 934 { 935 netmem_ref netmem; 936 937 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 938 netmem = page_pool_alloc_frag_netmem(rxr->page_pool, offset, BNXT_RX_PAGE_SIZE, gfp); 939 } else { 940 netmem = page_pool_alloc_netmems(rxr->page_pool, gfp); 941 *offset = 0; 942 } 943 if (!netmem) 944 return 0; 945 946 *mapping = page_pool_get_dma_addr_netmem(netmem) + *offset; 947 return netmem; 948 } 949 950 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping, 951 struct bnxt_rx_ring_info *rxr, 952 gfp_t gfp) 953 { 954 unsigned int offset; 955 struct page *page; 956 957 page = page_pool_alloc_frag(rxr->head_pool, &offset, 958 bp->rx_buf_size, gfp); 959 if (!page) 960 return NULL; 961 962 *mapping = page_pool_get_dma_addr(page) + bp->rx_dma_offset + offset; 963 return page_address(page) + offset; 964 } 965 966 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 967 u16 prod, gfp_t gfp) 968 { 969 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 970 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 971 dma_addr_t mapping; 972 973 if (BNXT_RX_PAGE_MODE(bp)) { 974 unsigned int offset; 975 struct page *page = 976 __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 977 978 if (!page) 979 return -ENOMEM; 980 981 mapping += bp->rx_dma_offset; 982 rx_buf->data = page; 983 rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset; 984 } else { 985 u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, rxr, gfp); 986 987 if (!data) 988 return -ENOMEM; 989 990 rx_buf->data = data; 991 rx_buf->data_ptr = data + bp->rx_offset; 992 } 993 rx_buf->mapping = mapping; 994 995 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 996 return 0; 997 } 998 999 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 1000 { 1001 u16 prod = rxr->rx_prod; 1002 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1003 struct bnxt *bp = rxr->bnapi->bp; 1004 struct rx_bd *cons_bd, *prod_bd; 1005 1006 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 1007 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1008 1009 prod_rx_buf->data = data; 1010 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 1011 1012 prod_rx_buf->mapping = cons_rx_buf->mapping; 1013 1014 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 1015 cons_bd = &rxr->rx_desc_ring[RX_RING(bp, cons)][RX_IDX(cons)]; 1016 1017 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 1018 } 1019 1020 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1021 { 1022 u16 next, max = rxr->rx_agg_bmap_size; 1023 1024 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 1025 if (next >= max) 1026 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 1027 return next; 1028 } 1029 1030 static int bnxt_alloc_rx_netmem(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1031 u16 prod, gfp_t gfp) 1032 { 1033 struct rx_bd *rxbd = 1034 &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 1035 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 1036 u16 sw_prod = rxr->rx_sw_agg_prod; 1037 unsigned int offset = 0; 1038 dma_addr_t mapping; 1039 netmem_ref netmem; 1040 1041 netmem = __bnxt_alloc_rx_netmem(bp, &mapping, rxr, &offset, gfp); 1042 if (!netmem) 1043 return -ENOMEM; 1044 1045 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 1046 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 1047 1048 __set_bit(sw_prod, rxr->rx_agg_bmap); 1049 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 1050 rxr->rx_sw_agg_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 1051 1052 rx_agg_buf->netmem = netmem; 1053 rx_agg_buf->offset = offset; 1054 rx_agg_buf->mapping = mapping; 1055 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 1056 rxbd->rx_bd_opaque = sw_prod; 1057 return 0; 1058 } 1059 1060 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 1061 struct bnxt_cp_ring_info *cpr, 1062 u16 cp_cons, u16 curr) 1063 { 1064 struct rx_agg_cmp *agg; 1065 1066 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 1067 agg = (struct rx_agg_cmp *) 1068 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1069 return agg; 1070 } 1071 1072 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 1073 struct bnxt_rx_ring_info *rxr, 1074 u16 agg_id, u16 curr) 1075 { 1076 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 1077 1078 return &tpa_info->agg_arr[curr]; 1079 } 1080 1081 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 1082 u16 start, u32 agg_bufs, bool tpa) 1083 { 1084 struct bnxt_napi *bnapi = cpr->bnapi; 1085 struct bnxt *bp = bnapi->bp; 1086 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1087 u16 prod = rxr->rx_agg_prod; 1088 u16 sw_prod = rxr->rx_sw_agg_prod; 1089 bool p5_tpa = false; 1090 u32 i; 1091 1092 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1093 p5_tpa = true; 1094 1095 for (i = 0; i < agg_bufs; i++) { 1096 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 1097 struct rx_agg_cmp *agg; 1098 struct rx_bd *prod_bd; 1099 netmem_ref netmem; 1100 u16 cons; 1101 1102 if (p5_tpa) 1103 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 1104 else 1105 agg = bnxt_get_agg(bp, cpr, idx, start + i); 1106 cons = agg->rx_agg_cmp_opaque; 1107 __clear_bit(cons, rxr->rx_agg_bmap); 1108 1109 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 1110 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 1111 1112 __set_bit(sw_prod, rxr->rx_agg_bmap); 1113 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 1114 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1115 1116 /* It is possible for sw_prod to be equal to cons, so 1117 * set cons_rx_buf->netmem to 0 first. 1118 */ 1119 netmem = cons_rx_buf->netmem; 1120 cons_rx_buf->netmem = 0; 1121 prod_rx_buf->netmem = netmem; 1122 prod_rx_buf->offset = cons_rx_buf->offset; 1123 1124 prod_rx_buf->mapping = cons_rx_buf->mapping; 1125 1126 prod_bd = &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 1127 1128 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 1129 prod_bd->rx_bd_opaque = sw_prod; 1130 1131 prod = NEXT_RX_AGG(prod); 1132 sw_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 1133 } 1134 rxr->rx_agg_prod = prod; 1135 rxr->rx_sw_agg_prod = sw_prod; 1136 } 1137 1138 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp, 1139 struct bnxt_rx_ring_info *rxr, 1140 u16 cons, void *data, u8 *data_ptr, 1141 dma_addr_t dma_addr, 1142 unsigned int offset_and_len) 1143 { 1144 unsigned int len = offset_and_len & 0xffff; 1145 struct page *page = data; 1146 u16 prod = rxr->rx_prod; 1147 struct sk_buff *skb; 1148 int err; 1149 1150 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1151 if (unlikely(err)) { 1152 bnxt_reuse_rx_data(rxr, cons, data); 1153 return NULL; 1154 } 1155 dma_addr -= bp->rx_dma_offset; 1156 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1157 bp->rx_dir); 1158 skb = napi_build_skb(data_ptr - bp->rx_offset, BNXT_RX_PAGE_SIZE); 1159 if (!skb) { 1160 page_pool_recycle_direct(rxr->page_pool, page); 1161 return NULL; 1162 } 1163 skb_mark_for_recycle(skb); 1164 skb_reserve(skb, bp->rx_offset); 1165 __skb_put(skb, len); 1166 1167 return skb; 1168 } 1169 1170 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 1171 struct bnxt_rx_ring_info *rxr, 1172 u16 cons, void *data, u8 *data_ptr, 1173 dma_addr_t dma_addr, 1174 unsigned int offset_and_len) 1175 { 1176 unsigned int payload = offset_and_len >> 16; 1177 unsigned int len = offset_and_len & 0xffff; 1178 skb_frag_t *frag; 1179 struct page *page = data; 1180 u16 prod = rxr->rx_prod; 1181 struct sk_buff *skb; 1182 int off, err; 1183 1184 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1185 if (unlikely(err)) { 1186 bnxt_reuse_rx_data(rxr, cons, data); 1187 return NULL; 1188 } 1189 dma_addr -= bp->rx_dma_offset; 1190 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1191 bp->rx_dir); 1192 1193 if (unlikely(!payload)) 1194 payload = eth_get_headlen(bp->dev, data_ptr, len); 1195 1196 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 1197 if (!skb) { 1198 page_pool_recycle_direct(rxr->page_pool, page); 1199 return NULL; 1200 } 1201 1202 skb_mark_for_recycle(skb); 1203 off = (void *)data_ptr - page_address(page); 1204 skb_add_rx_frag(skb, 0, page, off, len, BNXT_RX_PAGE_SIZE); 1205 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 1206 payload + NET_IP_ALIGN); 1207 1208 frag = &skb_shinfo(skb)->frags[0]; 1209 skb_frag_size_sub(frag, payload); 1210 skb_frag_off_add(frag, payload); 1211 skb->data_len -= payload; 1212 skb->tail += payload; 1213 1214 return skb; 1215 } 1216 1217 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 1218 struct bnxt_rx_ring_info *rxr, u16 cons, 1219 void *data, u8 *data_ptr, 1220 dma_addr_t dma_addr, 1221 unsigned int offset_and_len) 1222 { 1223 u16 prod = rxr->rx_prod; 1224 struct sk_buff *skb; 1225 int err; 1226 1227 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1228 if (unlikely(err)) { 1229 bnxt_reuse_rx_data(rxr, cons, data); 1230 return NULL; 1231 } 1232 1233 skb = napi_build_skb(data, bp->rx_buf_size); 1234 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1235 bp->rx_dir); 1236 if (!skb) { 1237 page_pool_free_va(rxr->head_pool, data, true); 1238 return NULL; 1239 } 1240 1241 skb_mark_for_recycle(skb); 1242 skb_reserve(skb, bp->rx_offset); 1243 skb_put(skb, offset_and_len & 0xffff); 1244 return skb; 1245 } 1246 1247 static u32 __bnxt_rx_agg_netmems(struct bnxt *bp, 1248 struct bnxt_cp_ring_info *cpr, 1249 u16 idx, u32 agg_bufs, bool tpa, 1250 struct sk_buff *skb, 1251 struct xdp_buff *xdp) 1252 { 1253 struct bnxt_napi *bnapi = cpr->bnapi; 1254 struct skb_shared_info *shinfo; 1255 struct bnxt_rx_ring_info *rxr; 1256 u32 i, total_frag_len = 0; 1257 bool p5_tpa = false; 1258 u16 prod; 1259 1260 rxr = bnapi->rx_ring; 1261 prod = rxr->rx_agg_prod; 1262 1263 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1264 p5_tpa = true; 1265 1266 if (skb) 1267 shinfo = skb_shinfo(skb); 1268 else 1269 shinfo = xdp_get_shared_info_from_buff(xdp); 1270 1271 for (i = 0; i < agg_bufs; i++) { 1272 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1273 struct rx_agg_cmp *agg; 1274 u16 cons, frag_len; 1275 netmem_ref netmem; 1276 1277 if (p5_tpa) 1278 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1279 else 1280 agg = bnxt_get_agg(bp, cpr, idx, i); 1281 cons = agg->rx_agg_cmp_opaque; 1282 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1283 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1284 1285 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1286 if (skb) { 1287 skb_add_rx_frag_netmem(skb, i, cons_rx_buf->netmem, 1288 cons_rx_buf->offset, 1289 frag_len, BNXT_RX_PAGE_SIZE); 1290 } else { 1291 skb_frag_t *frag = &shinfo->frags[i]; 1292 1293 skb_frag_fill_netmem_desc(frag, cons_rx_buf->netmem, 1294 cons_rx_buf->offset, 1295 frag_len); 1296 shinfo->nr_frags = i + 1; 1297 } 1298 __clear_bit(cons, rxr->rx_agg_bmap); 1299 1300 /* It is possible for bnxt_alloc_rx_netmem() to allocate 1301 * a sw_prod index that equals the cons index, so we 1302 * need to clear the cons entry now. 1303 */ 1304 netmem = cons_rx_buf->netmem; 1305 cons_rx_buf->netmem = 0; 1306 1307 if (xdp && netmem_is_pfmemalloc(netmem)) 1308 xdp_buff_set_frag_pfmemalloc(xdp); 1309 1310 if (bnxt_alloc_rx_netmem(bp, rxr, prod, GFP_ATOMIC) != 0) { 1311 if (skb) { 1312 skb->len -= frag_len; 1313 skb->data_len -= frag_len; 1314 skb->truesize -= BNXT_RX_PAGE_SIZE; 1315 } 1316 1317 --shinfo->nr_frags; 1318 cons_rx_buf->netmem = netmem; 1319 1320 /* Update prod since possibly some netmems have been 1321 * allocated already. 1322 */ 1323 rxr->rx_agg_prod = prod; 1324 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1325 return 0; 1326 } 1327 1328 page_pool_dma_sync_netmem_for_cpu(rxr->page_pool, netmem, 0, 1329 BNXT_RX_PAGE_SIZE); 1330 1331 total_frag_len += frag_len; 1332 prod = NEXT_RX_AGG(prod); 1333 } 1334 rxr->rx_agg_prod = prod; 1335 return total_frag_len; 1336 } 1337 1338 static struct sk_buff *bnxt_rx_agg_netmems_skb(struct bnxt *bp, 1339 struct bnxt_cp_ring_info *cpr, 1340 struct sk_buff *skb, u16 idx, 1341 u32 agg_bufs, bool tpa) 1342 { 1343 u32 total_frag_len = 0; 1344 1345 total_frag_len = __bnxt_rx_agg_netmems(bp, cpr, idx, agg_bufs, tpa, 1346 skb, NULL); 1347 if (!total_frag_len) { 1348 skb_mark_for_recycle(skb); 1349 dev_kfree_skb(skb); 1350 return NULL; 1351 } 1352 1353 return skb; 1354 } 1355 1356 static u32 bnxt_rx_agg_netmems_xdp(struct bnxt *bp, 1357 struct bnxt_cp_ring_info *cpr, 1358 struct xdp_buff *xdp, u16 idx, 1359 u32 agg_bufs, bool tpa) 1360 { 1361 struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp); 1362 u32 total_frag_len = 0; 1363 1364 if (!xdp_buff_has_frags(xdp)) 1365 shinfo->nr_frags = 0; 1366 1367 total_frag_len = __bnxt_rx_agg_netmems(bp, cpr, idx, agg_bufs, tpa, 1368 NULL, xdp); 1369 if (total_frag_len) { 1370 xdp_buff_set_frags_flag(xdp); 1371 shinfo->nr_frags = agg_bufs; 1372 shinfo->xdp_frags_size = total_frag_len; 1373 } 1374 return total_frag_len; 1375 } 1376 1377 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1378 u8 agg_bufs, u32 *raw_cons) 1379 { 1380 u16 last; 1381 struct rx_agg_cmp *agg; 1382 1383 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1384 last = RING_CMP(*raw_cons); 1385 agg = (struct rx_agg_cmp *) 1386 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1387 return RX_AGG_CMP_VALID(agg, *raw_cons); 1388 } 1389 1390 static struct sk_buff *bnxt_copy_data(struct bnxt_napi *bnapi, u8 *data, 1391 unsigned int len, 1392 dma_addr_t mapping) 1393 { 1394 struct bnxt *bp = bnapi->bp; 1395 struct pci_dev *pdev = bp->pdev; 1396 struct sk_buff *skb; 1397 1398 skb = napi_alloc_skb(&bnapi->napi, len); 1399 if (!skb) 1400 return NULL; 1401 1402 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copybreak, 1403 bp->rx_dir); 1404 1405 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1406 len + NET_IP_ALIGN); 1407 1408 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copybreak, 1409 bp->rx_dir); 1410 1411 skb_put(skb, len); 1412 1413 return skb; 1414 } 1415 1416 static struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1417 unsigned int len, 1418 dma_addr_t mapping) 1419 { 1420 return bnxt_copy_data(bnapi, data, len, mapping); 1421 } 1422 1423 static struct sk_buff *bnxt_copy_xdp(struct bnxt_napi *bnapi, 1424 struct xdp_buff *xdp, 1425 unsigned int len, 1426 dma_addr_t mapping) 1427 { 1428 unsigned int metasize = 0; 1429 u8 *data = xdp->data; 1430 struct sk_buff *skb; 1431 1432 len = xdp->data_end - xdp->data_meta; 1433 metasize = xdp->data - xdp->data_meta; 1434 data = xdp->data_meta; 1435 1436 skb = bnxt_copy_data(bnapi, data, len, mapping); 1437 if (!skb) 1438 return skb; 1439 1440 if (metasize) { 1441 skb_metadata_set(skb, metasize); 1442 __skb_pull(skb, metasize); 1443 } 1444 1445 return skb; 1446 } 1447 1448 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1449 u32 *raw_cons, void *cmp) 1450 { 1451 struct rx_cmp *rxcmp = cmp; 1452 u32 tmp_raw_cons = *raw_cons; 1453 u8 cmp_type, agg_bufs = 0; 1454 1455 cmp_type = RX_CMP_TYPE(rxcmp); 1456 1457 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1458 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1459 RX_CMP_AGG_BUFS) >> 1460 RX_CMP_AGG_BUFS_SHIFT; 1461 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1462 struct rx_tpa_end_cmp *tpa_end = cmp; 1463 1464 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1465 return 0; 1466 1467 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1468 } 1469 1470 if (agg_bufs) { 1471 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1472 return -EBUSY; 1473 } 1474 *raw_cons = tmp_raw_cons; 1475 return 0; 1476 } 1477 1478 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1479 { 1480 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1481 u16 idx = agg_id & MAX_TPA_P5_MASK; 1482 1483 if (test_bit(idx, map->agg_idx_bmap)) 1484 idx = find_first_zero_bit(map->agg_idx_bmap, 1485 BNXT_AGG_IDX_BMAP_SIZE); 1486 __set_bit(idx, map->agg_idx_bmap); 1487 map->agg_id_tbl[agg_id] = idx; 1488 return idx; 1489 } 1490 1491 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1492 { 1493 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1494 1495 __clear_bit(idx, map->agg_idx_bmap); 1496 } 1497 1498 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1499 { 1500 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1501 1502 return map->agg_id_tbl[agg_id]; 1503 } 1504 1505 static void bnxt_tpa_metadata(struct bnxt_tpa_info *tpa_info, 1506 struct rx_tpa_start_cmp *tpa_start, 1507 struct rx_tpa_start_cmp_ext *tpa_start1) 1508 { 1509 tpa_info->cfa_code_valid = 1; 1510 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1511 tpa_info->vlan_valid = 0; 1512 if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) { 1513 tpa_info->vlan_valid = 1; 1514 tpa_info->metadata = 1515 le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1516 } 1517 } 1518 1519 static void bnxt_tpa_metadata_v2(struct bnxt_tpa_info *tpa_info, 1520 struct rx_tpa_start_cmp *tpa_start, 1521 struct rx_tpa_start_cmp_ext *tpa_start1) 1522 { 1523 tpa_info->vlan_valid = 0; 1524 if (TPA_START_VLAN_VALID(tpa_start)) { 1525 u32 tpid_sel = TPA_START_VLAN_TPID_SEL(tpa_start); 1526 u32 vlan_proto = ETH_P_8021Q; 1527 1528 tpa_info->vlan_valid = 1; 1529 if (tpid_sel == RX_TPA_START_METADATA1_TPID_8021AD) 1530 vlan_proto = ETH_P_8021AD; 1531 tpa_info->metadata = vlan_proto << 16 | 1532 TPA_START_METADATA0_TCI(tpa_start1); 1533 } 1534 } 1535 1536 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1537 u8 cmp_type, struct rx_tpa_start_cmp *tpa_start, 1538 struct rx_tpa_start_cmp_ext *tpa_start1) 1539 { 1540 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1541 struct bnxt_tpa_info *tpa_info; 1542 u16 cons, prod, agg_id; 1543 struct rx_bd *prod_bd; 1544 dma_addr_t mapping; 1545 1546 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1547 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1548 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1549 } else { 1550 agg_id = TPA_START_AGG_ID(tpa_start); 1551 } 1552 cons = tpa_start->rx_tpa_start_cmp_opaque; 1553 prod = rxr->rx_prod; 1554 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1555 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 1556 tpa_info = &rxr->rx_tpa[agg_id]; 1557 1558 if (unlikely(cons != rxr->rx_next_cons || 1559 TPA_START_ERROR(tpa_start))) { 1560 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1561 cons, rxr->rx_next_cons, 1562 TPA_START_ERROR_CODE(tpa_start1)); 1563 bnxt_sched_reset_rxr(bp, rxr); 1564 return; 1565 } 1566 prod_rx_buf->data = tpa_info->data; 1567 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1568 1569 mapping = tpa_info->mapping; 1570 prod_rx_buf->mapping = mapping; 1571 1572 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 1573 1574 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1575 1576 tpa_info->data = cons_rx_buf->data; 1577 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1578 cons_rx_buf->data = NULL; 1579 tpa_info->mapping = cons_rx_buf->mapping; 1580 1581 tpa_info->len = 1582 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1583 RX_TPA_START_CMP_LEN_SHIFT; 1584 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1585 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1586 tpa_info->gso_type = SKB_GSO_TCPV4; 1587 if (TPA_START_IS_IPV6(tpa_start1)) 1588 tpa_info->gso_type = SKB_GSO_TCPV6; 1589 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1590 else if (!BNXT_CHIP_P4_PLUS(bp) && 1591 TPA_START_HASH_TYPE(tpa_start) == 3) 1592 tpa_info->gso_type = SKB_GSO_TCPV6; 1593 tpa_info->rss_hash = 1594 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1595 } else { 1596 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1597 tpa_info->gso_type = 0; 1598 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1599 } 1600 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1601 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1602 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) 1603 bnxt_tpa_metadata(tpa_info, tpa_start, tpa_start1); 1604 else 1605 bnxt_tpa_metadata_v2(tpa_info, tpa_start, tpa_start1); 1606 tpa_info->agg_count = 0; 1607 1608 rxr->rx_prod = NEXT_RX(prod); 1609 cons = RING_RX(bp, NEXT_RX(cons)); 1610 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 1611 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1612 1613 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1614 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1615 cons_rx_buf->data = NULL; 1616 } 1617 1618 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1619 { 1620 if (agg_bufs) 1621 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1622 } 1623 1624 #ifdef CONFIG_INET 1625 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1626 { 1627 struct udphdr *uh = NULL; 1628 1629 if (ip_proto == htons(ETH_P_IP)) { 1630 struct iphdr *iph = (struct iphdr *)skb->data; 1631 1632 if (iph->protocol == IPPROTO_UDP) 1633 uh = (struct udphdr *)(iph + 1); 1634 } else { 1635 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1636 1637 if (iph->nexthdr == IPPROTO_UDP) 1638 uh = (struct udphdr *)(iph + 1); 1639 } 1640 if (uh) { 1641 if (uh->check) 1642 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1643 else 1644 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1645 } 1646 } 1647 #endif 1648 1649 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1650 int payload_off, int tcp_ts, 1651 struct sk_buff *skb) 1652 { 1653 #ifdef CONFIG_INET 1654 struct tcphdr *th; 1655 int len, nw_off; 1656 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1657 u32 hdr_info = tpa_info->hdr_info; 1658 bool loopback = false; 1659 1660 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1661 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1662 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1663 1664 /* If the packet is an internal loopback packet, the offsets will 1665 * have an extra 4 bytes. 1666 */ 1667 if (inner_mac_off == 4) { 1668 loopback = true; 1669 } else if (inner_mac_off > 4) { 1670 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1671 ETH_HLEN - 2)); 1672 1673 /* We only support inner iPv4/ipv6. If we don't see the 1674 * correct protocol ID, it must be a loopback packet where 1675 * the offsets are off by 4. 1676 */ 1677 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1678 loopback = true; 1679 } 1680 if (loopback) { 1681 /* internal loopback packet, subtract all offsets by 4 */ 1682 inner_ip_off -= 4; 1683 inner_mac_off -= 4; 1684 outer_ip_off -= 4; 1685 } 1686 1687 nw_off = inner_ip_off - ETH_HLEN; 1688 skb_set_network_header(skb, nw_off); 1689 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1690 struct ipv6hdr *iph = ipv6_hdr(skb); 1691 1692 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1693 len = skb->len - skb_transport_offset(skb); 1694 th = tcp_hdr(skb); 1695 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1696 } else { 1697 struct iphdr *iph = ip_hdr(skb); 1698 1699 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1700 len = skb->len - skb_transport_offset(skb); 1701 th = tcp_hdr(skb); 1702 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1703 } 1704 1705 if (inner_mac_off) { /* tunnel */ 1706 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1707 ETH_HLEN - 2)); 1708 1709 bnxt_gro_tunnel(skb, proto); 1710 } 1711 #endif 1712 return skb; 1713 } 1714 1715 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1716 int payload_off, int tcp_ts, 1717 struct sk_buff *skb) 1718 { 1719 #ifdef CONFIG_INET 1720 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1721 u32 hdr_info = tpa_info->hdr_info; 1722 int iphdr_len, nw_off; 1723 1724 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1725 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1726 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1727 1728 nw_off = inner_ip_off - ETH_HLEN; 1729 skb_set_network_header(skb, nw_off); 1730 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1731 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1732 skb_set_transport_header(skb, nw_off + iphdr_len); 1733 1734 if (inner_mac_off) { /* tunnel */ 1735 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1736 ETH_HLEN - 2)); 1737 1738 bnxt_gro_tunnel(skb, proto); 1739 } 1740 #endif 1741 return skb; 1742 } 1743 1744 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1745 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1746 1747 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1748 int payload_off, int tcp_ts, 1749 struct sk_buff *skb) 1750 { 1751 #ifdef CONFIG_INET 1752 struct tcphdr *th; 1753 int len, nw_off, tcp_opt_len = 0; 1754 1755 if (tcp_ts) 1756 tcp_opt_len = 12; 1757 1758 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1759 struct iphdr *iph; 1760 1761 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1762 ETH_HLEN; 1763 skb_set_network_header(skb, nw_off); 1764 iph = ip_hdr(skb); 1765 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1766 len = skb->len - skb_transport_offset(skb); 1767 th = tcp_hdr(skb); 1768 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1769 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1770 struct ipv6hdr *iph; 1771 1772 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1773 ETH_HLEN; 1774 skb_set_network_header(skb, nw_off); 1775 iph = ipv6_hdr(skb); 1776 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1777 len = skb->len - skb_transport_offset(skb); 1778 th = tcp_hdr(skb); 1779 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1780 } else { 1781 dev_kfree_skb_any(skb); 1782 return NULL; 1783 } 1784 1785 if (nw_off) /* tunnel */ 1786 bnxt_gro_tunnel(skb, skb->protocol); 1787 #endif 1788 return skb; 1789 } 1790 1791 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1792 struct bnxt_tpa_info *tpa_info, 1793 struct rx_tpa_end_cmp *tpa_end, 1794 struct rx_tpa_end_cmp_ext *tpa_end1, 1795 struct sk_buff *skb) 1796 { 1797 #ifdef CONFIG_INET 1798 int payload_off; 1799 u16 segs; 1800 1801 segs = TPA_END_TPA_SEGS(tpa_end); 1802 if (segs == 1) 1803 return skb; 1804 1805 NAPI_GRO_CB(skb)->count = segs; 1806 skb_shinfo(skb)->gso_size = 1807 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1808 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1809 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1810 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1811 else 1812 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1813 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1814 if (likely(skb)) 1815 tcp_gro_complete(skb); 1816 #endif 1817 return skb; 1818 } 1819 1820 /* Given the cfa_code of a received packet determine which 1821 * netdev (vf-rep or PF) the packet is destined to. 1822 */ 1823 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1824 { 1825 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1826 1827 /* if vf-rep dev is NULL, it must belong to the PF */ 1828 return dev ? dev : bp->dev; 1829 } 1830 1831 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1832 struct bnxt_cp_ring_info *cpr, 1833 u32 *raw_cons, 1834 struct rx_tpa_end_cmp *tpa_end, 1835 struct rx_tpa_end_cmp_ext *tpa_end1, 1836 u8 *event) 1837 { 1838 struct bnxt_napi *bnapi = cpr->bnapi; 1839 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1840 struct net_device *dev = bp->dev; 1841 u8 *data_ptr, agg_bufs; 1842 unsigned int len; 1843 struct bnxt_tpa_info *tpa_info; 1844 dma_addr_t mapping; 1845 struct sk_buff *skb; 1846 u16 idx = 0, agg_id; 1847 void *data; 1848 bool gro; 1849 1850 if (unlikely(bnapi->in_reset)) { 1851 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1852 1853 if (rc < 0) 1854 return ERR_PTR(-EBUSY); 1855 return NULL; 1856 } 1857 1858 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1859 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1860 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1861 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1862 tpa_info = &rxr->rx_tpa[agg_id]; 1863 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1864 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1865 agg_bufs, tpa_info->agg_count); 1866 agg_bufs = tpa_info->agg_count; 1867 } 1868 tpa_info->agg_count = 0; 1869 *event |= BNXT_AGG_EVENT; 1870 bnxt_free_agg_idx(rxr, agg_id); 1871 idx = agg_id; 1872 gro = !!(bp->flags & BNXT_FLAG_GRO); 1873 } else { 1874 agg_id = TPA_END_AGG_ID(tpa_end); 1875 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1876 tpa_info = &rxr->rx_tpa[agg_id]; 1877 idx = RING_CMP(*raw_cons); 1878 if (agg_bufs) { 1879 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1880 return ERR_PTR(-EBUSY); 1881 1882 *event |= BNXT_AGG_EVENT; 1883 idx = NEXT_CMP(idx); 1884 } 1885 gro = !!TPA_END_GRO(tpa_end); 1886 } 1887 data = tpa_info->data; 1888 data_ptr = tpa_info->data_ptr; 1889 prefetch(data_ptr); 1890 len = tpa_info->len; 1891 mapping = tpa_info->mapping; 1892 1893 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1894 bnxt_abort_tpa(cpr, idx, agg_bufs); 1895 if (agg_bufs > MAX_SKB_FRAGS) 1896 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1897 agg_bufs, (int)MAX_SKB_FRAGS); 1898 return NULL; 1899 } 1900 1901 if (len <= bp->rx_copybreak) { 1902 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1903 if (!skb) { 1904 bnxt_abort_tpa(cpr, idx, agg_bufs); 1905 cpr->sw_stats->rx.rx_oom_discards += 1; 1906 return NULL; 1907 } 1908 } else { 1909 u8 *new_data; 1910 dma_addr_t new_mapping; 1911 1912 new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, rxr, 1913 GFP_ATOMIC); 1914 if (!new_data) { 1915 bnxt_abort_tpa(cpr, idx, agg_bufs); 1916 cpr->sw_stats->rx.rx_oom_discards += 1; 1917 return NULL; 1918 } 1919 1920 tpa_info->data = new_data; 1921 tpa_info->data_ptr = new_data + bp->rx_offset; 1922 tpa_info->mapping = new_mapping; 1923 1924 skb = napi_build_skb(data, bp->rx_buf_size); 1925 dma_sync_single_for_cpu(&bp->pdev->dev, mapping, 1926 bp->rx_buf_use_size, bp->rx_dir); 1927 1928 if (!skb) { 1929 page_pool_free_va(rxr->head_pool, data, true); 1930 bnxt_abort_tpa(cpr, idx, agg_bufs); 1931 cpr->sw_stats->rx.rx_oom_discards += 1; 1932 return NULL; 1933 } 1934 skb_mark_for_recycle(skb); 1935 skb_reserve(skb, bp->rx_offset); 1936 skb_put(skb, len); 1937 } 1938 1939 if (agg_bufs) { 1940 skb = bnxt_rx_agg_netmems_skb(bp, cpr, skb, idx, agg_bufs, 1941 true); 1942 if (!skb) { 1943 /* Page reuse already handled by bnxt_rx_pages(). */ 1944 cpr->sw_stats->rx.rx_oom_discards += 1; 1945 return NULL; 1946 } 1947 } 1948 1949 if (tpa_info->cfa_code_valid) 1950 dev = bnxt_get_pkt_dev(bp, tpa_info->cfa_code); 1951 skb->protocol = eth_type_trans(skb, dev); 1952 1953 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1954 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1955 1956 if (tpa_info->vlan_valid && 1957 (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1958 __be16 vlan_proto = htons(tpa_info->metadata >> 1959 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1960 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1961 1962 if (eth_type_vlan(vlan_proto)) { 1963 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1964 } else { 1965 dev_kfree_skb(skb); 1966 return NULL; 1967 } 1968 } 1969 1970 skb_checksum_none_assert(skb); 1971 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1972 skb->ip_summed = CHECKSUM_UNNECESSARY; 1973 skb->csum_level = 1974 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1975 } 1976 1977 if (gro) 1978 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1979 1980 return skb; 1981 } 1982 1983 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1984 struct rx_agg_cmp *rx_agg) 1985 { 1986 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1987 struct bnxt_tpa_info *tpa_info; 1988 1989 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1990 tpa_info = &rxr->rx_tpa[agg_id]; 1991 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1992 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1993 } 1994 1995 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1996 struct sk_buff *skb) 1997 { 1998 skb_mark_for_recycle(skb); 1999 2000 if (skb->dev != bp->dev) { 2001 /* this packet belongs to a vf-rep */ 2002 bnxt_vf_rep_rx(bp, skb); 2003 return; 2004 } 2005 skb_record_rx_queue(skb, bnapi->index); 2006 napi_gro_receive(&bnapi->napi, skb); 2007 } 2008 2009 static bool bnxt_rx_ts_valid(struct bnxt *bp, u32 flags, 2010 struct rx_cmp_ext *rxcmp1, u32 *cmpl_ts) 2011 { 2012 u32 ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); 2013 2014 if (BNXT_PTP_RX_TS_VALID(flags)) 2015 goto ts_valid; 2016 if (!bp->ptp_all_rx_tstamp || !ts || !BNXT_ALL_RX_TS_VALID(flags)) 2017 return false; 2018 2019 ts_valid: 2020 *cmpl_ts = ts; 2021 return true; 2022 } 2023 2024 static struct sk_buff *bnxt_rx_vlan(struct sk_buff *skb, u8 cmp_type, 2025 struct rx_cmp *rxcmp, 2026 struct rx_cmp_ext *rxcmp1) 2027 { 2028 __be16 vlan_proto; 2029 u16 vtag; 2030 2031 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 2032 __le32 flags2 = rxcmp1->rx_cmp_flags2; 2033 u32 meta_data; 2034 2035 if (!(flags2 & cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN))) 2036 return skb; 2037 2038 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 2039 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 2040 vlan_proto = htons(meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT); 2041 if (eth_type_vlan(vlan_proto)) 2042 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 2043 else 2044 goto vlan_err; 2045 } else if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2046 if (RX_CMP_VLAN_VALID(rxcmp)) { 2047 u32 tpid_sel = RX_CMP_VLAN_TPID_SEL(rxcmp); 2048 2049 if (tpid_sel == RX_CMP_METADATA1_TPID_8021Q) 2050 vlan_proto = htons(ETH_P_8021Q); 2051 else if (tpid_sel == RX_CMP_METADATA1_TPID_8021AD) 2052 vlan_proto = htons(ETH_P_8021AD); 2053 else 2054 goto vlan_err; 2055 vtag = RX_CMP_METADATA0_TCI(rxcmp1); 2056 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 2057 } 2058 } 2059 return skb; 2060 vlan_err: 2061 skb_mark_for_recycle(skb); 2062 dev_kfree_skb(skb); 2063 return NULL; 2064 } 2065 2066 static enum pkt_hash_types bnxt_rss_ext_op(struct bnxt *bp, 2067 struct rx_cmp *rxcmp) 2068 { 2069 u8 ext_op; 2070 2071 ext_op = RX_CMP_V3_HASH_TYPE(bp, rxcmp); 2072 switch (ext_op) { 2073 case EXT_OP_INNER_4: 2074 case EXT_OP_OUTER_4: 2075 case EXT_OP_INNFL_3: 2076 case EXT_OP_OUTFL_3: 2077 return PKT_HASH_TYPE_L4; 2078 default: 2079 return PKT_HASH_TYPE_L3; 2080 } 2081 } 2082 2083 /* returns the following: 2084 * 1 - 1 packet successfully received 2085 * 0 - successful TPA_START, packet not completed yet 2086 * -EBUSY - completion ring does not have all the agg buffers yet 2087 * -ENOMEM - packet aborted due to out of memory 2088 * -EIO - packet aborted due to hw error indicated in BD 2089 */ 2090 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2091 u32 *raw_cons, u8 *event) 2092 { 2093 struct bnxt_napi *bnapi = cpr->bnapi; 2094 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2095 struct net_device *dev = bp->dev; 2096 struct rx_cmp *rxcmp; 2097 struct rx_cmp_ext *rxcmp1; 2098 u32 tmp_raw_cons = *raw_cons; 2099 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 2100 struct skb_shared_info *sinfo; 2101 struct bnxt_sw_rx_bd *rx_buf; 2102 unsigned int len; 2103 u8 *data_ptr, agg_bufs, cmp_type; 2104 bool xdp_active = false; 2105 dma_addr_t dma_addr; 2106 struct sk_buff *skb; 2107 struct xdp_buff xdp; 2108 u32 flags, misc; 2109 u32 cmpl_ts; 2110 void *data; 2111 int rc = 0; 2112 2113 rxcmp = (struct rx_cmp *) 2114 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2115 2116 cmp_type = RX_CMP_TYPE(rxcmp); 2117 2118 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 2119 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 2120 goto next_rx_no_prod_no_len; 2121 } 2122 2123 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2124 cp_cons = RING_CMP(tmp_raw_cons); 2125 rxcmp1 = (struct rx_cmp_ext *) 2126 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2127 2128 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2129 return -EBUSY; 2130 2131 /* The valid test of the entry must be done first before 2132 * reading any further. 2133 */ 2134 dma_rmb(); 2135 prod = rxr->rx_prod; 2136 2137 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP || 2138 cmp_type == CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 2139 bnxt_tpa_start(bp, rxr, cmp_type, 2140 (struct rx_tpa_start_cmp *)rxcmp, 2141 (struct rx_tpa_start_cmp_ext *)rxcmp1); 2142 2143 *event |= BNXT_RX_EVENT; 2144 goto next_rx_no_prod_no_len; 2145 2146 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2147 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 2148 (struct rx_tpa_end_cmp *)rxcmp, 2149 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 2150 2151 if (IS_ERR(skb)) 2152 return -EBUSY; 2153 2154 rc = -ENOMEM; 2155 if (likely(skb)) { 2156 bnxt_deliver_skb(bp, bnapi, skb); 2157 rc = 1; 2158 } 2159 *event |= BNXT_RX_EVENT; 2160 goto next_rx_no_prod_no_len; 2161 } 2162 2163 cons = rxcmp->rx_cmp_opaque; 2164 if (unlikely(cons != rxr->rx_next_cons)) { 2165 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 2166 2167 /* 0xffff is forced error, don't print it */ 2168 if (rxr->rx_next_cons != 0xffff) 2169 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 2170 cons, rxr->rx_next_cons); 2171 bnxt_sched_reset_rxr(bp, rxr); 2172 if (rc1) 2173 return rc1; 2174 goto next_rx_no_prod_no_len; 2175 } 2176 rx_buf = &rxr->rx_buf_ring[cons]; 2177 data = rx_buf->data; 2178 data_ptr = rx_buf->data_ptr; 2179 prefetch(data_ptr); 2180 2181 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 2182 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 2183 2184 if (agg_bufs) { 2185 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 2186 return -EBUSY; 2187 2188 cp_cons = NEXT_CMP(cp_cons); 2189 *event |= BNXT_AGG_EVENT; 2190 } 2191 *event |= BNXT_RX_EVENT; 2192 2193 rx_buf->data = NULL; 2194 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 2195 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 2196 2197 bnxt_reuse_rx_data(rxr, cons, data); 2198 if (agg_bufs) 2199 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 2200 false); 2201 2202 rc = -EIO; 2203 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 2204 bnapi->cp_ring.sw_stats->rx.rx_buf_errors++; 2205 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 2206 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 2207 netdev_warn_once(bp->dev, "RX buffer error %x\n", 2208 rx_err); 2209 bnxt_sched_reset_rxr(bp, rxr); 2210 } 2211 } 2212 goto next_rx_no_len; 2213 } 2214 2215 flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); 2216 len = flags >> RX_CMP_LEN_SHIFT; 2217 dma_addr = rx_buf->mapping; 2218 2219 if (bnxt_xdp_attached(bp, rxr)) { 2220 bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp); 2221 if (agg_bufs) { 2222 u32 frag_len = bnxt_rx_agg_netmems_xdp(bp, cpr, &xdp, 2223 cp_cons, 2224 agg_bufs, 2225 false); 2226 if (!frag_len) 2227 goto oom_next_rx; 2228 2229 } 2230 xdp_active = true; 2231 } 2232 2233 if (xdp_active) { 2234 if (bnxt_rx_xdp(bp, rxr, cons, &xdp, data, &data_ptr, &len, event)) { 2235 rc = 1; 2236 goto next_rx; 2237 } 2238 if (xdp_buff_has_frags(&xdp)) { 2239 sinfo = xdp_get_shared_info_from_buff(&xdp); 2240 agg_bufs = sinfo->nr_frags; 2241 } else { 2242 agg_bufs = 0; 2243 } 2244 } 2245 2246 if (len <= bp->rx_copybreak) { 2247 if (!xdp_active) 2248 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 2249 else 2250 skb = bnxt_copy_xdp(bnapi, &xdp, len, dma_addr); 2251 bnxt_reuse_rx_data(rxr, cons, data); 2252 if (!skb) { 2253 if (agg_bufs) { 2254 if (!xdp_active) 2255 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 2256 agg_bufs, false); 2257 else 2258 bnxt_xdp_buff_frags_free(rxr, &xdp); 2259 } 2260 goto oom_next_rx; 2261 } 2262 } else { 2263 u32 payload; 2264 2265 if (rx_buf->data_ptr == data_ptr) 2266 payload = misc & RX_CMP_PAYLOAD_OFFSET; 2267 else 2268 payload = 0; 2269 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 2270 payload | len); 2271 if (!skb) 2272 goto oom_next_rx; 2273 } 2274 2275 if (agg_bufs) { 2276 if (!xdp_active) { 2277 skb = bnxt_rx_agg_netmems_skb(bp, cpr, skb, cp_cons, 2278 agg_bufs, false); 2279 if (!skb) 2280 goto oom_next_rx; 2281 } else { 2282 skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, 2283 rxr->page_pool, &xdp); 2284 if (!skb) { 2285 /* we should be able to free the old skb here */ 2286 bnxt_xdp_buff_frags_free(rxr, &xdp); 2287 goto oom_next_rx; 2288 } 2289 } 2290 } 2291 2292 if (RX_CMP_HASH_VALID(rxcmp)) { 2293 enum pkt_hash_types type; 2294 2295 if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2296 type = bnxt_rss_ext_op(bp, rxcmp); 2297 } else { 2298 u32 itypes = RX_CMP_ITYPES(rxcmp); 2299 2300 if (itypes == RX_CMP_FLAGS_ITYPE_TCP || 2301 itypes == RX_CMP_FLAGS_ITYPE_UDP) 2302 type = PKT_HASH_TYPE_L4; 2303 else 2304 type = PKT_HASH_TYPE_L3; 2305 } 2306 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 2307 } 2308 2309 if (cmp_type == CMP_TYPE_RX_L2_CMP) 2310 dev = bnxt_get_pkt_dev(bp, RX_CMP_CFA_CODE(rxcmp1)); 2311 skb->protocol = eth_type_trans(skb, dev); 2312 2313 if (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) { 2314 skb = bnxt_rx_vlan(skb, cmp_type, rxcmp, rxcmp1); 2315 if (!skb) 2316 goto next_rx; 2317 } 2318 2319 skb_checksum_none_assert(skb); 2320 if (RX_CMP_L4_CS_OK(rxcmp1)) { 2321 if (dev->features & NETIF_F_RXCSUM) { 2322 skb->ip_summed = CHECKSUM_UNNECESSARY; 2323 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 2324 } 2325 } else { 2326 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 2327 if (dev->features & NETIF_F_RXCSUM) 2328 bnapi->cp_ring.sw_stats->rx.rx_l4_csum_errors++; 2329 } 2330 } 2331 2332 if (bnxt_rx_ts_valid(bp, flags, rxcmp1, &cmpl_ts)) { 2333 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 2334 u64 ns, ts; 2335 2336 if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { 2337 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2338 2339 ns = bnxt_timecounter_cyc2time(ptp, ts); 2340 memset(skb_hwtstamps(skb), 0, 2341 sizeof(*skb_hwtstamps(skb))); 2342 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 2343 } 2344 } 2345 } 2346 bnxt_deliver_skb(bp, bnapi, skb); 2347 rc = 1; 2348 2349 next_rx: 2350 cpr->rx_packets += 1; 2351 cpr->rx_bytes += len; 2352 2353 next_rx_no_len: 2354 rxr->rx_prod = NEXT_RX(prod); 2355 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 2356 2357 next_rx_no_prod_no_len: 2358 *raw_cons = tmp_raw_cons; 2359 2360 return rc; 2361 2362 oom_next_rx: 2363 cpr->sw_stats->rx.rx_oom_discards += 1; 2364 rc = -ENOMEM; 2365 goto next_rx; 2366 } 2367 2368 /* In netpoll mode, if we are using a combined completion ring, we need to 2369 * discard the rx packets and recycle the buffers. 2370 */ 2371 static int bnxt_force_rx_discard(struct bnxt *bp, 2372 struct bnxt_cp_ring_info *cpr, 2373 u32 *raw_cons, u8 *event) 2374 { 2375 u32 tmp_raw_cons = *raw_cons; 2376 struct rx_cmp_ext *rxcmp1; 2377 struct rx_cmp *rxcmp; 2378 u16 cp_cons; 2379 u8 cmp_type; 2380 int rc; 2381 2382 cp_cons = RING_CMP(tmp_raw_cons); 2383 rxcmp = (struct rx_cmp *) 2384 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2385 2386 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2387 cp_cons = RING_CMP(tmp_raw_cons); 2388 rxcmp1 = (struct rx_cmp_ext *) 2389 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2390 2391 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2392 return -EBUSY; 2393 2394 /* The valid test of the entry must be done first before 2395 * reading any further. 2396 */ 2397 dma_rmb(); 2398 cmp_type = RX_CMP_TYPE(rxcmp); 2399 if (cmp_type == CMP_TYPE_RX_L2_CMP || 2400 cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2401 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2402 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2403 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2404 struct rx_tpa_end_cmp_ext *tpa_end1; 2405 2406 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 2407 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 2408 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 2409 } 2410 rc = bnxt_rx_pkt(bp, cpr, raw_cons, event); 2411 if (rc && rc != -EBUSY) 2412 cpr->sw_stats->rx.rx_netpoll_discards += 1; 2413 return rc; 2414 } 2415 2416 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 2417 { 2418 struct bnxt_fw_health *fw_health = bp->fw_health; 2419 u32 reg = fw_health->regs[reg_idx]; 2420 u32 reg_type, reg_off, val = 0; 2421 2422 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 2423 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 2424 switch (reg_type) { 2425 case BNXT_FW_HEALTH_REG_TYPE_CFG: 2426 pci_read_config_dword(bp->pdev, reg_off, &val); 2427 break; 2428 case BNXT_FW_HEALTH_REG_TYPE_GRC: 2429 reg_off = fw_health->mapped_regs[reg_idx]; 2430 fallthrough; 2431 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 2432 val = readl(bp->bar0 + reg_off); 2433 break; 2434 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 2435 val = readl(bp->bar1 + reg_off); 2436 break; 2437 } 2438 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 2439 val &= fw_health->fw_reset_inprog_reg_mask; 2440 return val; 2441 } 2442 2443 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 2444 { 2445 int i; 2446 2447 for (i = 0; i < bp->rx_nr_rings; i++) { 2448 u16 grp_idx = bp->rx_ring[i].bnapi->index; 2449 struct bnxt_ring_grp_info *grp_info; 2450 2451 grp_info = &bp->grp_info[grp_idx]; 2452 if (grp_info->agg_fw_ring_id == ring_id) 2453 return grp_idx; 2454 } 2455 return INVALID_HW_RING_ID; 2456 } 2457 2458 static u16 bnxt_get_force_speed(struct bnxt_link_info *link_info) 2459 { 2460 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2461 2462 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 2463 return link_info->force_link_speed2; 2464 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4) 2465 return link_info->force_pam4_link_speed; 2466 return link_info->force_link_speed; 2467 } 2468 2469 static void bnxt_set_force_speed(struct bnxt_link_info *link_info) 2470 { 2471 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2472 2473 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2474 link_info->req_link_speed = link_info->force_link_speed2; 2475 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2476 switch (link_info->req_link_speed) { 2477 case BNXT_LINK_SPEED_50GB_PAM4: 2478 case BNXT_LINK_SPEED_100GB_PAM4: 2479 case BNXT_LINK_SPEED_200GB_PAM4: 2480 case BNXT_LINK_SPEED_400GB_PAM4: 2481 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2482 break; 2483 case BNXT_LINK_SPEED_100GB_PAM4_112: 2484 case BNXT_LINK_SPEED_200GB_PAM4_112: 2485 case BNXT_LINK_SPEED_400GB_PAM4_112: 2486 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4_112; 2487 break; 2488 default: 2489 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2490 } 2491 return; 2492 } 2493 link_info->req_link_speed = link_info->force_link_speed; 2494 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2495 if (link_info->force_pam4_link_speed) { 2496 link_info->req_link_speed = link_info->force_pam4_link_speed; 2497 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2498 } 2499 } 2500 2501 static void bnxt_set_auto_speed(struct bnxt_link_info *link_info) 2502 { 2503 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2504 2505 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2506 link_info->advertising = link_info->auto_link_speeds2; 2507 return; 2508 } 2509 link_info->advertising = link_info->auto_link_speeds; 2510 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 2511 } 2512 2513 static bool bnxt_force_speed_updated(struct bnxt_link_info *link_info) 2514 { 2515 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2516 2517 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2518 if (link_info->req_link_speed != link_info->force_link_speed2) 2519 return true; 2520 return false; 2521 } 2522 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 2523 link_info->req_link_speed != link_info->force_link_speed) 2524 return true; 2525 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 2526 link_info->req_link_speed != link_info->force_pam4_link_speed) 2527 return true; 2528 return false; 2529 } 2530 2531 static bool bnxt_auto_speed_updated(struct bnxt_link_info *link_info) 2532 { 2533 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2534 2535 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2536 if (link_info->advertising != link_info->auto_link_speeds2) 2537 return true; 2538 return false; 2539 } 2540 if (link_info->advertising != link_info->auto_link_speeds || 2541 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 2542 return true; 2543 return false; 2544 } 2545 2546 bool bnxt_bs_trace_avail(struct bnxt *bp, u16 type) 2547 { 2548 u32 flags = bp->ctx->ctx_arr[type].flags; 2549 2550 return (flags & BNXT_CTX_MEM_TYPE_VALID) && 2551 ((flags & BNXT_CTX_MEM_FW_TRACE) || 2552 (flags & BNXT_CTX_MEM_FW_BIN_TRACE)); 2553 } 2554 2555 static void bnxt_bs_trace_init(struct bnxt *bp, struct bnxt_ctx_mem_type *ctxm) 2556 { 2557 u32 mem_size, pages, rem_bytes, magic_byte_offset; 2558 u16 trace_type = bnxt_bstore_to_trace[ctxm->type]; 2559 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 2560 struct bnxt_ring_mem_info *rmem, *rmem_pg_tbl; 2561 struct bnxt_bs_trace_info *bs_trace; 2562 int last_pg; 2563 2564 if (ctxm->instance_bmap && ctxm->instance_bmap > 1) 2565 return; 2566 2567 mem_size = ctxm->max_entries * ctxm->entry_size; 2568 rem_bytes = mem_size % BNXT_PAGE_SIZE; 2569 pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 2570 2571 last_pg = (pages - 1) & (MAX_CTX_PAGES - 1); 2572 magic_byte_offset = (rem_bytes ? rem_bytes : BNXT_PAGE_SIZE) - 1; 2573 2574 rmem = &ctx_pg[0].ring_mem; 2575 bs_trace = &bp->bs_trace[trace_type]; 2576 bs_trace->ctx_type = ctxm->type; 2577 bs_trace->trace_type = trace_type; 2578 if (pages > MAX_CTX_PAGES) { 2579 int last_pg_dir = rmem->nr_pages - 1; 2580 2581 rmem_pg_tbl = &ctx_pg[0].ctx_pg_tbl[last_pg_dir]->ring_mem; 2582 bs_trace->magic_byte = rmem_pg_tbl->pg_arr[last_pg]; 2583 } else { 2584 bs_trace->magic_byte = rmem->pg_arr[last_pg]; 2585 } 2586 bs_trace->magic_byte += magic_byte_offset; 2587 *bs_trace->magic_byte = BNXT_TRACE_BUF_MAGIC_BYTE; 2588 } 2589 2590 #define BNXT_EVENT_BUF_PRODUCER_TYPE(data1) \ 2591 (((data1) & ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA1_TYPE_MASK) >>\ 2592 ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA1_TYPE_SFT) 2593 2594 #define BNXT_EVENT_BUF_PRODUCER_OFFSET(data2) \ 2595 (((data2) & \ 2596 ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA2_CURR_OFF_MASK) >>\ 2597 ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA2_CURR_OFF_SFT) 2598 2599 #define BNXT_EVENT_THERMAL_CURRENT_TEMP(data2) \ 2600 ((data2) & \ 2601 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_CURRENT_TEMP_MASK) 2602 2603 #define BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2) \ 2604 (((data2) & \ 2605 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_MASK) >>\ 2606 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_SFT) 2607 2608 #define EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1) \ 2609 ((data1) & \ 2610 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_MASK) 2611 2612 #define EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1) \ 2613 (((data1) & \ 2614 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR) ==\ 2615 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR_INCREASING) 2616 2617 /* Return true if the workqueue has to be scheduled */ 2618 static bool bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2) 2619 { 2620 u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1); 2621 2622 switch (err_type) { 2623 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL: 2624 netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n", 2625 BNXT_EVENT_INVALID_SIGNAL_DATA(data2)); 2626 break; 2627 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM: 2628 netdev_warn(bp->dev, "Pause Storm detected!\n"); 2629 break; 2630 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD: 2631 netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n"); 2632 break; 2633 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_THERMAL_THRESHOLD: { 2634 u32 type = EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1); 2635 char *threshold_type; 2636 bool notify = false; 2637 char *dir_str; 2638 2639 switch (type) { 2640 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_WARN: 2641 threshold_type = "warning"; 2642 break; 2643 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_CRITICAL: 2644 threshold_type = "critical"; 2645 break; 2646 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_FATAL: 2647 threshold_type = "fatal"; 2648 break; 2649 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_SHUTDOWN: 2650 threshold_type = "shutdown"; 2651 break; 2652 default: 2653 netdev_err(bp->dev, "Unknown Thermal threshold type event\n"); 2654 return false; 2655 } 2656 if (EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)) { 2657 dir_str = "above"; 2658 notify = true; 2659 } else { 2660 dir_str = "below"; 2661 } 2662 netdev_warn(bp->dev, "Chip temperature has gone %s the %s thermal threshold!\n", 2663 dir_str, threshold_type); 2664 netdev_warn(bp->dev, "Temperature (In Celsius), Current: %lu, threshold: %lu\n", 2665 BNXT_EVENT_THERMAL_CURRENT_TEMP(data2), 2666 BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2)); 2667 if (notify) { 2668 bp->thermal_threshold_type = type; 2669 set_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event); 2670 return true; 2671 } 2672 return false; 2673 } 2674 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DUAL_DATA_RATE_NOT_SUPPORTED: 2675 netdev_warn(bp->dev, "Speed change not supported with dual rate transceivers on this board\n"); 2676 break; 2677 default: 2678 netdev_err(bp->dev, "FW reported unknown error type %u\n", 2679 err_type); 2680 break; 2681 } 2682 return false; 2683 } 2684 2685 #define BNXT_GET_EVENT_PORT(data) \ 2686 ((data) & \ 2687 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 2688 2689 #define BNXT_EVENT_RING_TYPE(data2) \ 2690 ((data2) & \ 2691 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 2692 2693 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 2694 (BNXT_EVENT_RING_TYPE(data2) == \ 2695 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 2696 2697 #define BNXT_EVENT_PHC_EVENT_TYPE(data1) \ 2698 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\ 2699 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT) 2700 2701 #define BNXT_EVENT_PHC_RTC_UPDATE(data1) \ 2702 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\ 2703 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT) 2704 2705 #define BNXT_PHC_BITS 48 2706 2707 static int bnxt_async_event_process(struct bnxt *bp, 2708 struct hwrm_async_event_cmpl *cmpl) 2709 { 2710 u16 event_id = le16_to_cpu(cmpl->event_id); 2711 u32 data1 = le32_to_cpu(cmpl->event_data1); 2712 u32 data2 = le32_to_cpu(cmpl->event_data2); 2713 2714 netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n", 2715 event_id, data1, data2); 2716 2717 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2718 switch (event_id) { 2719 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2720 struct bnxt_link_info *link_info = &bp->link_info; 2721 2722 if (BNXT_VF(bp)) 2723 goto async_event_process_exit; 2724 2725 /* print unsupported speed warning in forced speed mode only */ 2726 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2727 (data1 & 0x20000)) { 2728 u16 fw_speed = bnxt_get_force_speed(link_info); 2729 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2730 2731 if (speed != SPEED_UNKNOWN) 2732 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2733 speed); 2734 } 2735 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2736 } 2737 fallthrough; 2738 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2739 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2740 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2741 fallthrough; 2742 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2743 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2744 break; 2745 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2746 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2747 break; 2748 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2749 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2750 2751 if (BNXT_VF(bp)) 2752 break; 2753 2754 if (bp->pf.port_id != port_id) 2755 break; 2756 2757 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2758 break; 2759 } 2760 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2761 if (BNXT_PF(bp)) 2762 goto async_event_process_exit; 2763 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2764 break; 2765 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2766 char *type_str = "Solicited"; 2767 2768 if (!bp->fw_health) 2769 goto async_event_process_exit; 2770 2771 bp->fw_reset_timestamp = jiffies; 2772 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2773 if (!bp->fw_reset_min_dsecs) 2774 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2775 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2776 if (!bp->fw_reset_max_dsecs) 2777 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2778 if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) { 2779 set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state); 2780 } else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2781 type_str = "Fatal"; 2782 bp->fw_health->fatalities++; 2783 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2784 } else if (data2 && BNXT_FW_STATUS_HEALTHY != 2785 EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) { 2786 type_str = "Non-fatal"; 2787 bp->fw_health->survivals++; 2788 set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 2789 } 2790 netif_warn(bp, hw, bp->dev, 2791 "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2792 type_str, data1, data2, 2793 bp->fw_reset_min_dsecs * 100, 2794 bp->fw_reset_max_dsecs * 100); 2795 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2796 break; 2797 } 2798 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2799 struct bnxt_fw_health *fw_health = bp->fw_health; 2800 char *status_desc = "healthy"; 2801 u32 status; 2802 2803 if (!fw_health) 2804 goto async_event_process_exit; 2805 2806 if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) { 2807 fw_health->enabled = false; 2808 netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n"); 2809 break; 2810 } 2811 fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2812 fw_health->tmr_multiplier = 2813 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2814 bp->current_interval * 10); 2815 fw_health->tmr_counter = fw_health->tmr_multiplier; 2816 if (!fw_health->enabled) 2817 fw_health->last_fw_heartbeat = 2818 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2819 fw_health->last_fw_reset_cnt = 2820 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2821 status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 2822 if (status != BNXT_FW_STATUS_HEALTHY) 2823 status_desc = "unhealthy"; 2824 netif_info(bp, drv, bp->dev, 2825 "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n", 2826 fw_health->primary ? "primary" : "backup", status, 2827 status_desc, fw_health->last_fw_reset_cnt); 2828 if (!fw_health->enabled) { 2829 /* Make sure tmr_counter is set and visible to 2830 * bnxt_health_check() before setting enabled to true. 2831 */ 2832 smp_wmb(); 2833 fw_health->enabled = true; 2834 } 2835 goto async_event_process_exit; 2836 } 2837 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2838 netif_notice(bp, hw, bp->dev, 2839 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2840 data1, data2); 2841 goto async_event_process_exit; 2842 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2843 struct bnxt_rx_ring_info *rxr; 2844 u16 grp_idx; 2845 2846 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 2847 goto async_event_process_exit; 2848 2849 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2850 BNXT_EVENT_RING_TYPE(data2), data1); 2851 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2852 goto async_event_process_exit; 2853 2854 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2855 if (grp_idx == INVALID_HW_RING_ID) { 2856 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2857 data1); 2858 goto async_event_process_exit; 2859 } 2860 rxr = bp->bnapi[grp_idx]->rx_ring; 2861 bnxt_sched_reset_rxr(bp, rxr); 2862 goto async_event_process_exit; 2863 } 2864 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2865 struct bnxt_fw_health *fw_health = bp->fw_health; 2866 2867 netif_notice(bp, hw, bp->dev, 2868 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2869 data1, data2); 2870 if (fw_health) { 2871 fw_health->echo_req_data1 = data1; 2872 fw_health->echo_req_data2 = data2; 2873 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2874 break; 2875 } 2876 goto async_event_process_exit; 2877 } 2878 case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: { 2879 bnxt_ptp_pps_event(bp, data1, data2); 2880 goto async_event_process_exit; 2881 } 2882 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: { 2883 if (bnxt_event_error_report(bp, data1, data2)) 2884 break; 2885 goto async_event_process_exit; 2886 } 2887 case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: { 2888 switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) { 2889 case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE: 2890 if (BNXT_PTP_USE_RTC(bp)) { 2891 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2892 unsigned long flags; 2893 u64 ns; 2894 2895 if (!ptp) 2896 goto async_event_process_exit; 2897 2898 bnxt_ptp_update_current_time(bp); 2899 ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) << 2900 BNXT_PHC_BITS) | ptp->current_time); 2901 write_seqlock_irqsave(&ptp->ptp_lock, flags); 2902 bnxt_ptp_rtc_timecounter_init(ptp, ns); 2903 write_sequnlock_irqrestore(&ptp->ptp_lock, flags); 2904 } 2905 break; 2906 } 2907 goto async_event_process_exit; 2908 } 2909 case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: { 2910 u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff; 2911 2912 hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED); 2913 goto async_event_process_exit; 2914 } 2915 case ASYNC_EVENT_CMPL_EVENT_ID_DBG_BUF_PRODUCER: { 2916 u16 type = (u16)BNXT_EVENT_BUF_PRODUCER_TYPE(data1); 2917 u32 offset = BNXT_EVENT_BUF_PRODUCER_OFFSET(data2); 2918 2919 bnxt_bs_trace_check_wrap(&bp->bs_trace[type], offset); 2920 goto async_event_process_exit; 2921 } 2922 default: 2923 goto async_event_process_exit; 2924 } 2925 __bnxt_queue_sp_work(bp); 2926 async_event_process_exit: 2927 bnxt_ulp_async_events(bp, cmpl); 2928 return 0; 2929 } 2930 2931 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2932 { 2933 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2934 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2935 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2936 (struct hwrm_fwd_req_cmpl *)txcmp; 2937 2938 switch (cmpl_type) { 2939 case CMPL_BASE_TYPE_HWRM_DONE: 2940 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2941 hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE); 2942 break; 2943 2944 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2945 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2946 2947 if ((vf_id < bp->pf.first_vf_id) || 2948 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2949 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2950 vf_id); 2951 return -EINVAL; 2952 } 2953 2954 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2955 bnxt_queue_sp_work(bp, BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT); 2956 break; 2957 2958 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2959 bnxt_async_event_process(bp, 2960 (struct hwrm_async_event_cmpl *)txcmp); 2961 break; 2962 2963 default: 2964 break; 2965 } 2966 2967 return 0; 2968 } 2969 2970 static bool bnxt_vnic_is_active(struct bnxt *bp) 2971 { 2972 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 2973 2974 return vnic->fw_vnic_id != INVALID_HW_RING_ID && vnic->mru > 0; 2975 } 2976 2977 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2978 { 2979 struct bnxt_napi *bnapi = dev_instance; 2980 struct bnxt *bp = bnapi->bp; 2981 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2982 u32 cons = RING_CMP(cpr->cp_raw_cons); 2983 2984 cpr->event_ctr++; 2985 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2986 napi_schedule(&bnapi->napi); 2987 return IRQ_HANDLED; 2988 } 2989 2990 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2991 { 2992 u32 raw_cons = cpr->cp_raw_cons; 2993 u16 cons = RING_CMP(raw_cons); 2994 struct tx_cmp *txcmp; 2995 2996 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2997 2998 return TX_CMP_VALID(txcmp, raw_cons); 2999 } 3000 3001 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 3002 int budget) 3003 { 3004 struct bnxt_napi *bnapi = cpr->bnapi; 3005 u32 raw_cons = cpr->cp_raw_cons; 3006 bool flush_xdp = false; 3007 u32 cons; 3008 int rx_pkts = 0; 3009 u8 event = 0; 3010 struct tx_cmp *txcmp; 3011 3012 cpr->has_more_work = 0; 3013 cpr->had_work_done = 1; 3014 while (1) { 3015 u8 cmp_type; 3016 int rc; 3017 3018 cons = RING_CMP(raw_cons); 3019 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 3020 3021 if (!TX_CMP_VALID(txcmp, raw_cons)) 3022 break; 3023 3024 /* The valid test of the entry must be done first before 3025 * reading any further. 3026 */ 3027 dma_rmb(); 3028 cmp_type = TX_CMP_TYPE(txcmp); 3029 if (cmp_type == CMP_TYPE_TX_L2_CMP || 3030 cmp_type == CMP_TYPE_TX_L2_COAL_CMP) { 3031 u32 opaque = txcmp->tx_cmp_opaque; 3032 struct bnxt_tx_ring_info *txr; 3033 u16 tx_freed; 3034 3035 txr = bnapi->tx_ring[TX_OPAQUE_RING(opaque)]; 3036 event |= BNXT_TX_CMP_EVENT; 3037 if (cmp_type == CMP_TYPE_TX_L2_COAL_CMP) 3038 txr->tx_hw_cons = TX_CMP_SQ_CONS_IDX(txcmp); 3039 else 3040 txr->tx_hw_cons = TX_OPAQUE_PROD(bp, opaque); 3041 tx_freed = (txr->tx_hw_cons - txr->tx_cons) & 3042 bp->tx_ring_mask; 3043 /* return full budget so NAPI will complete. */ 3044 if (unlikely(tx_freed >= bp->tx_wake_thresh)) { 3045 rx_pkts = budget; 3046 raw_cons = NEXT_RAW_CMP(raw_cons); 3047 if (budget) 3048 cpr->has_more_work = 1; 3049 break; 3050 } 3051 } else if (cmp_type == CMP_TYPE_TX_L2_PKT_TS_CMP) { 3052 bnxt_tx_ts_cmp(bp, bnapi, (struct tx_ts_cmp *)txcmp); 3053 } else if (cmp_type >= CMP_TYPE_RX_L2_CMP && 3054 cmp_type <= CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 3055 if (likely(budget)) 3056 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 3057 else 3058 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 3059 &event); 3060 if (event & BNXT_REDIRECT_EVENT) 3061 flush_xdp = true; 3062 if (likely(rc >= 0)) 3063 rx_pkts += rc; 3064 /* Increment rx_pkts when rc is -ENOMEM to count towards 3065 * the NAPI budget. Otherwise, we may potentially loop 3066 * here forever if we consistently cannot allocate 3067 * buffers. 3068 */ 3069 else if (rc == -ENOMEM && budget) 3070 rx_pkts++; 3071 else if (rc == -EBUSY) /* partial completion */ 3072 break; 3073 } else if (unlikely(cmp_type == CMPL_BASE_TYPE_HWRM_DONE || 3074 cmp_type == CMPL_BASE_TYPE_HWRM_FWD_REQ || 3075 cmp_type == CMPL_BASE_TYPE_HWRM_ASYNC_EVENT)) { 3076 bnxt_hwrm_handler(bp, txcmp); 3077 } 3078 raw_cons = NEXT_RAW_CMP(raw_cons); 3079 3080 if (rx_pkts && rx_pkts == budget) { 3081 cpr->has_more_work = 1; 3082 break; 3083 } 3084 } 3085 3086 if (flush_xdp) { 3087 xdp_do_flush(); 3088 event &= ~BNXT_REDIRECT_EVENT; 3089 } 3090 3091 if (event & BNXT_TX_EVENT) { 3092 struct bnxt_tx_ring_info *txr = bnapi->tx_ring[0]; 3093 u16 prod = txr->tx_prod; 3094 3095 /* Sync BD data before updating doorbell */ 3096 wmb(); 3097 3098 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 3099 event &= ~BNXT_TX_EVENT; 3100 } 3101 3102 cpr->cp_raw_cons = raw_cons; 3103 bnapi->events |= event; 3104 return rx_pkts; 3105 } 3106 3107 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi, 3108 int budget) 3109 { 3110 if ((bnapi->events & BNXT_TX_CMP_EVENT) && !bnapi->tx_fault) 3111 bnapi->tx_int(bp, bnapi, budget); 3112 3113 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 3114 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3115 3116 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 3117 bnapi->events &= ~BNXT_RX_EVENT; 3118 } 3119 if (bnapi->events & BNXT_AGG_EVENT) { 3120 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3121 3122 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 3123 bnapi->events &= ~BNXT_AGG_EVENT; 3124 } 3125 } 3126 3127 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 3128 int budget) 3129 { 3130 struct bnxt_napi *bnapi = cpr->bnapi; 3131 int rx_pkts; 3132 3133 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 3134 3135 /* ACK completion ring before freeing tx ring and producing new 3136 * buffers in rx/agg rings to prevent overflowing the completion 3137 * ring. 3138 */ 3139 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 3140 3141 __bnxt_poll_work_done(bp, bnapi, budget); 3142 return rx_pkts; 3143 } 3144 3145 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 3146 { 3147 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3148 struct bnxt *bp = bnapi->bp; 3149 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3150 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3151 struct tx_cmp *txcmp; 3152 struct rx_cmp_ext *rxcmp1; 3153 u32 cp_cons, tmp_raw_cons; 3154 u32 raw_cons = cpr->cp_raw_cons; 3155 bool flush_xdp = false; 3156 u32 rx_pkts = 0; 3157 u8 event = 0; 3158 3159 while (1) { 3160 int rc; 3161 3162 cp_cons = RING_CMP(raw_cons); 3163 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 3164 3165 if (!TX_CMP_VALID(txcmp, raw_cons)) 3166 break; 3167 3168 /* The valid test of the entry must be done first before 3169 * reading any further. 3170 */ 3171 dma_rmb(); 3172 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 3173 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 3174 cp_cons = RING_CMP(tmp_raw_cons); 3175 rxcmp1 = (struct rx_cmp_ext *) 3176 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 3177 3178 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 3179 break; 3180 3181 /* force an error to recycle the buffer */ 3182 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 3183 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 3184 3185 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 3186 if (likely(rc == -EIO) && budget) 3187 rx_pkts++; 3188 else if (rc == -EBUSY) /* partial completion */ 3189 break; 3190 if (event & BNXT_REDIRECT_EVENT) 3191 flush_xdp = true; 3192 } else if (unlikely(TX_CMP_TYPE(txcmp) == 3193 CMPL_BASE_TYPE_HWRM_DONE)) { 3194 bnxt_hwrm_handler(bp, txcmp); 3195 } else { 3196 netdev_err(bp->dev, 3197 "Invalid completion received on special ring\n"); 3198 } 3199 raw_cons = NEXT_RAW_CMP(raw_cons); 3200 3201 if (rx_pkts == budget) 3202 break; 3203 } 3204 3205 cpr->cp_raw_cons = raw_cons; 3206 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 3207 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 3208 3209 if (event & BNXT_AGG_EVENT) 3210 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 3211 if (flush_xdp) 3212 xdp_do_flush(); 3213 3214 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 3215 napi_complete_done(napi, rx_pkts); 3216 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3217 } 3218 return rx_pkts; 3219 } 3220 3221 static int bnxt_poll(struct napi_struct *napi, int budget) 3222 { 3223 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3224 struct bnxt *bp = bnapi->bp; 3225 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3226 int work_done = 0; 3227 3228 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3229 napi_complete(napi); 3230 return 0; 3231 } 3232 while (1) { 3233 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 3234 3235 if (work_done >= budget) { 3236 if (!budget) 3237 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3238 break; 3239 } 3240 3241 if (!bnxt_has_work(bp, cpr)) { 3242 if (napi_complete_done(napi, work_done)) 3243 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3244 break; 3245 } 3246 } 3247 if ((bp->flags & BNXT_FLAG_DIM) && bnxt_vnic_is_active(bp)) { 3248 struct dim_sample dim_sample = {}; 3249 3250 dim_update_sample(cpr->event_ctr, 3251 cpr->rx_packets, 3252 cpr->rx_bytes, 3253 &dim_sample); 3254 net_dim(&cpr->dim, &dim_sample); 3255 } 3256 return work_done; 3257 } 3258 3259 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 3260 { 3261 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3262 int i, work_done = 0; 3263 3264 for (i = 0; i < cpr->cp_ring_count; i++) { 3265 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3266 3267 if (cpr2->had_nqe_notify) { 3268 work_done += __bnxt_poll_work(bp, cpr2, 3269 budget - work_done); 3270 cpr->has_more_work |= cpr2->has_more_work; 3271 } 3272 } 3273 return work_done; 3274 } 3275 3276 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 3277 u64 dbr_type, int budget) 3278 { 3279 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3280 int i; 3281 3282 for (i = 0; i < cpr->cp_ring_count; i++) { 3283 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3284 struct bnxt_db_info *db; 3285 3286 if (cpr2->had_work_done) { 3287 u32 tgl = 0; 3288 3289 if (dbr_type == DBR_TYPE_CQ_ARMALL) { 3290 cpr2->had_nqe_notify = 0; 3291 tgl = cpr2->toggle; 3292 } 3293 db = &cpr2->cp_db; 3294 bnxt_writeq(bp, 3295 db->db_key64 | dbr_type | DB_TOGGLE(tgl) | 3296 DB_RING_IDX(db, cpr2->cp_raw_cons), 3297 db->doorbell); 3298 cpr2->had_work_done = 0; 3299 } 3300 } 3301 __bnxt_poll_work_done(bp, bnapi, budget); 3302 } 3303 3304 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 3305 { 3306 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3307 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3308 struct bnxt_cp_ring_info *cpr_rx; 3309 u32 raw_cons = cpr->cp_raw_cons; 3310 struct bnxt *bp = bnapi->bp; 3311 struct nqe_cn *nqcmp; 3312 int work_done = 0; 3313 u32 cons; 3314 3315 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3316 napi_complete(napi); 3317 return 0; 3318 } 3319 if (cpr->has_more_work) { 3320 cpr->has_more_work = 0; 3321 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 3322 } 3323 while (1) { 3324 u16 type; 3325 3326 cons = RING_CMP(raw_cons); 3327 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 3328 3329 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 3330 if (cpr->has_more_work) 3331 break; 3332 3333 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL, 3334 budget); 3335 cpr->cp_raw_cons = raw_cons; 3336 if (napi_complete_done(napi, work_done)) 3337 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 3338 cpr->cp_raw_cons); 3339 goto poll_done; 3340 } 3341 3342 /* The valid test of the entry must be done first before 3343 * reading any further. 3344 */ 3345 dma_rmb(); 3346 3347 type = le16_to_cpu(nqcmp->type); 3348 if (NQE_CN_TYPE(type) == NQ_CN_TYPE_CQ_NOTIFICATION) { 3349 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 3350 u32 cq_type = BNXT_NQ_HDL_TYPE(idx); 3351 struct bnxt_cp_ring_info *cpr2; 3352 3353 /* No more budget for RX work */ 3354 if (budget && work_done >= budget && 3355 cq_type == BNXT_NQ_HDL_TYPE_RX) 3356 break; 3357 3358 idx = BNXT_NQ_HDL_IDX(idx); 3359 cpr2 = &cpr->cp_ring_arr[idx]; 3360 cpr2->had_nqe_notify = 1; 3361 cpr2->toggle = NQE_CN_TOGGLE(type); 3362 work_done += __bnxt_poll_work(bp, cpr2, 3363 budget - work_done); 3364 cpr->has_more_work |= cpr2->has_more_work; 3365 } else { 3366 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 3367 } 3368 raw_cons = NEXT_RAW_CMP(raw_cons); 3369 } 3370 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget); 3371 if (raw_cons != cpr->cp_raw_cons) { 3372 cpr->cp_raw_cons = raw_cons; 3373 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 3374 } 3375 poll_done: 3376 cpr_rx = &cpr->cp_ring_arr[0]; 3377 if (cpr_rx->cp_ring_type == BNXT_NQ_HDL_TYPE_RX && 3378 (bp->flags & BNXT_FLAG_DIM) && bnxt_vnic_is_active(bp)) { 3379 struct dim_sample dim_sample = {}; 3380 3381 dim_update_sample(cpr->event_ctr, 3382 cpr_rx->rx_packets, 3383 cpr_rx->rx_bytes, 3384 &dim_sample); 3385 net_dim(&cpr->dim, &dim_sample); 3386 } 3387 return work_done; 3388 } 3389 3390 static void bnxt_free_one_tx_ring_skbs(struct bnxt *bp, 3391 struct bnxt_tx_ring_info *txr, int idx) 3392 { 3393 int i, max_idx; 3394 struct pci_dev *pdev = bp->pdev; 3395 3396 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 3397 3398 for (i = 0; i < max_idx;) { 3399 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[i]; 3400 struct sk_buff *skb; 3401 int j, last; 3402 3403 if (idx < bp->tx_nr_rings_xdp && 3404 tx_buf->action == XDP_REDIRECT) { 3405 dma_unmap_single(&pdev->dev, 3406 dma_unmap_addr(tx_buf, mapping), 3407 dma_unmap_len(tx_buf, len), 3408 DMA_TO_DEVICE); 3409 xdp_return_frame(tx_buf->xdpf); 3410 tx_buf->action = 0; 3411 tx_buf->xdpf = NULL; 3412 i++; 3413 continue; 3414 } 3415 3416 skb = tx_buf->skb; 3417 if (!skb) { 3418 i++; 3419 continue; 3420 } 3421 3422 tx_buf->skb = NULL; 3423 3424 if (tx_buf->is_push) { 3425 dev_kfree_skb(skb); 3426 i += 2; 3427 continue; 3428 } 3429 3430 dma_unmap_single(&pdev->dev, 3431 dma_unmap_addr(tx_buf, mapping), 3432 skb_headlen(skb), 3433 DMA_TO_DEVICE); 3434 3435 last = tx_buf->nr_frags; 3436 i += 2; 3437 for (j = 0; j < last; j++, i++) { 3438 int ring_idx = i & bp->tx_ring_mask; 3439 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 3440 3441 tx_buf = &txr->tx_buf_ring[ring_idx]; 3442 netmem_dma_unmap_page_attrs(&pdev->dev, 3443 dma_unmap_addr(tx_buf, 3444 mapping), 3445 skb_frag_size(frag), 3446 DMA_TO_DEVICE, 0); 3447 } 3448 dev_kfree_skb(skb); 3449 } 3450 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, idx)); 3451 } 3452 3453 static void bnxt_free_tx_skbs(struct bnxt *bp) 3454 { 3455 int i; 3456 3457 if (!bp->tx_ring) 3458 return; 3459 3460 for (i = 0; i < bp->tx_nr_rings; i++) { 3461 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3462 3463 if (!txr->tx_buf_ring) 3464 continue; 3465 3466 bnxt_free_one_tx_ring_skbs(bp, txr, i); 3467 } 3468 3469 if (bp->ptp_cfg && !(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) 3470 bnxt_ptp_free_txts_skbs(bp->ptp_cfg); 3471 } 3472 3473 static void bnxt_free_one_rx_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3474 { 3475 int i, max_idx; 3476 3477 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 3478 3479 for (i = 0; i < max_idx; i++) { 3480 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 3481 void *data = rx_buf->data; 3482 3483 if (!data) 3484 continue; 3485 3486 rx_buf->data = NULL; 3487 if (BNXT_RX_PAGE_MODE(bp)) 3488 page_pool_recycle_direct(rxr->page_pool, data); 3489 else 3490 page_pool_free_va(rxr->head_pool, data, true); 3491 } 3492 } 3493 3494 static void bnxt_free_one_rx_agg_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3495 { 3496 int i, max_idx; 3497 3498 max_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 3499 3500 for (i = 0; i < max_idx; i++) { 3501 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 3502 netmem_ref netmem = rx_agg_buf->netmem; 3503 3504 if (!netmem) 3505 continue; 3506 3507 rx_agg_buf->netmem = 0; 3508 __clear_bit(i, rxr->rx_agg_bmap); 3509 3510 page_pool_recycle_direct_netmem(rxr->page_pool, netmem); 3511 } 3512 } 3513 3514 static void bnxt_free_one_tpa_info_data(struct bnxt *bp, 3515 struct bnxt_rx_ring_info *rxr) 3516 { 3517 int i; 3518 3519 for (i = 0; i < bp->max_tpa; i++) { 3520 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 3521 u8 *data = tpa_info->data; 3522 3523 if (!data) 3524 continue; 3525 3526 tpa_info->data = NULL; 3527 page_pool_free_va(rxr->head_pool, data, false); 3528 } 3529 } 3530 3531 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, 3532 struct bnxt_rx_ring_info *rxr) 3533 { 3534 struct bnxt_tpa_idx_map *map; 3535 3536 if (!rxr->rx_tpa) 3537 goto skip_rx_tpa_free; 3538 3539 bnxt_free_one_tpa_info_data(bp, rxr); 3540 3541 skip_rx_tpa_free: 3542 if (!rxr->rx_buf_ring) 3543 goto skip_rx_buf_free; 3544 3545 bnxt_free_one_rx_ring(bp, rxr); 3546 3547 skip_rx_buf_free: 3548 if (!rxr->rx_agg_ring) 3549 goto skip_rx_agg_free; 3550 3551 bnxt_free_one_rx_agg_ring(bp, rxr); 3552 3553 skip_rx_agg_free: 3554 map = rxr->rx_tpa_idx_map; 3555 if (map) 3556 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 3557 } 3558 3559 static void bnxt_free_rx_skbs(struct bnxt *bp) 3560 { 3561 int i; 3562 3563 if (!bp->rx_ring) 3564 return; 3565 3566 for (i = 0; i < bp->rx_nr_rings; i++) 3567 bnxt_free_one_rx_ring_skbs(bp, &bp->rx_ring[i]); 3568 } 3569 3570 static void bnxt_free_skbs(struct bnxt *bp) 3571 { 3572 bnxt_free_tx_skbs(bp); 3573 bnxt_free_rx_skbs(bp); 3574 } 3575 3576 static void bnxt_init_ctx_mem(struct bnxt_ctx_mem_type *ctxm, void *p, int len) 3577 { 3578 u8 init_val = ctxm->init_value; 3579 u16 offset = ctxm->init_offset; 3580 u8 *p2 = p; 3581 int i; 3582 3583 if (!init_val) 3584 return; 3585 if (offset == BNXT_CTX_INIT_INVALID_OFFSET) { 3586 memset(p, init_val, len); 3587 return; 3588 } 3589 for (i = 0; i < len; i += ctxm->entry_size) 3590 *(p2 + i + offset) = init_val; 3591 } 3592 3593 static size_t __bnxt_copy_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem, 3594 void *buf, size_t offset, size_t head, 3595 size_t tail) 3596 { 3597 int i, head_page, start_idx, source_offset; 3598 size_t len, rem_len, total_len, max_bytes; 3599 3600 head_page = head / rmem->page_size; 3601 source_offset = head % rmem->page_size; 3602 total_len = (tail - head) & MAX_CTX_BYTES_MASK; 3603 if (!total_len) 3604 total_len = MAX_CTX_BYTES; 3605 start_idx = head_page % MAX_CTX_PAGES; 3606 max_bytes = (rmem->nr_pages - start_idx) * rmem->page_size - 3607 source_offset; 3608 total_len = min(total_len, max_bytes); 3609 rem_len = total_len; 3610 3611 for (i = start_idx; rem_len; i++, source_offset = 0) { 3612 len = min((size_t)(rmem->page_size - source_offset), rem_len); 3613 if (buf) 3614 memcpy(buf + offset, rmem->pg_arr[i] + source_offset, 3615 len); 3616 offset += len; 3617 rem_len -= len; 3618 } 3619 return total_len; 3620 } 3621 3622 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3623 { 3624 struct pci_dev *pdev = bp->pdev; 3625 int i; 3626 3627 if (!rmem->pg_arr) 3628 goto skip_pages; 3629 3630 for (i = 0; i < rmem->nr_pages; i++) { 3631 if (!rmem->pg_arr[i]) 3632 continue; 3633 3634 dma_free_coherent(&pdev->dev, rmem->page_size, 3635 rmem->pg_arr[i], rmem->dma_arr[i]); 3636 3637 rmem->pg_arr[i] = NULL; 3638 } 3639 skip_pages: 3640 if (rmem->pg_tbl) { 3641 size_t pg_tbl_size = rmem->nr_pages * 8; 3642 3643 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3644 pg_tbl_size = rmem->page_size; 3645 dma_free_coherent(&pdev->dev, pg_tbl_size, 3646 rmem->pg_tbl, rmem->pg_tbl_map); 3647 rmem->pg_tbl = NULL; 3648 } 3649 if (rmem->vmem_size && *rmem->vmem) { 3650 vfree(*rmem->vmem); 3651 *rmem->vmem = NULL; 3652 } 3653 } 3654 3655 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3656 { 3657 struct pci_dev *pdev = bp->pdev; 3658 u64 valid_bit = 0; 3659 int i; 3660 3661 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 3662 valid_bit = PTU_PTE_VALID; 3663 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 3664 size_t pg_tbl_size = rmem->nr_pages * 8; 3665 3666 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3667 pg_tbl_size = rmem->page_size; 3668 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 3669 &rmem->pg_tbl_map, 3670 GFP_KERNEL); 3671 if (!rmem->pg_tbl) 3672 return -ENOMEM; 3673 } 3674 3675 for (i = 0; i < rmem->nr_pages; i++) { 3676 u64 extra_bits = valid_bit; 3677 3678 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 3679 rmem->page_size, 3680 &rmem->dma_arr[i], 3681 GFP_KERNEL); 3682 if (!rmem->pg_arr[i]) 3683 return -ENOMEM; 3684 3685 if (rmem->ctx_mem) 3686 bnxt_init_ctx_mem(rmem->ctx_mem, rmem->pg_arr[i], 3687 rmem->page_size); 3688 if (rmem->nr_pages > 1 || rmem->depth > 0) { 3689 if (i == rmem->nr_pages - 2 && 3690 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3691 extra_bits |= PTU_PTE_NEXT_TO_LAST; 3692 else if (i == rmem->nr_pages - 1 && 3693 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3694 extra_bits |= PTU_PTE_LAST; 3695 rmem->pg_tbl[i] = 3696 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 3697 } 3698 } 3699 3700 if (rmem->vmem_size) { 3701 *rmem->vmem = vzalloc(rmem->vmem_size); 3702 if (!(*rmem->vmem)) 3703 return -ENOMEM; 3704 } 3705 return 0; 3706 } 3707 3708 static void bnxt_free_one_tpa_info(struct bnxt *bp, 3709 struct bnxt_rx_ring_info *rxr) 3710 { 3711 int i; 3712 3713 kfree(rxr->rx_tpa_idx_map); 3714 rxr->rx_tpa_idx_map = NULL; 3715 if (rxr->rx_tpa) { 3716 for (i = 0; i < bp->max_tpa; i++) { 3717 kfree(rxr->rx_tpa[i].agg_arr); 3718 rxr->rx_tpa[i].agg_arr = NULL; 3719 } 3720 } 3721 kfree(rxr->rx_tpa); 3722 rxr->rx_tpa = NULL; 3723 } 3724 3725 static void bnxt_free_tpa_info(struct bnxt *bp) 3726 { 3727 int i; 3728 3729 for (i = 0; i < bp->rx_nr_rings; i++) { 3730 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3731 3732 bnxt_free_one_tpa_info(bp, rxr); 3733 } 3734 } 3735 3736 static int bnxt_alloc_one_tpa_info(struct bnxt *bp, 3737 struct bnxt_rx_ring_info *rxr) 3738 { 3739 struct rx_agg_cmp *agg; 3740 int i; 3741 3742 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 3743 GFP_KERNEL); 3744 if (!rxr->rx_tpa) 3745 return -ENOMEM; 3746 3747 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 3748 return 0; 3749 for (i = 0; i < bp->max_tpa; i++) { 3750 agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL); 3751 if (!agg) 3752 return -ENOMEM; 3753 rxr->rx_tpa[i].agg_arr = agg; 3754 } 3755 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 3756 GFP_KERNEL); 3757 if (!rxr->rx_tpa_idx_map) 3758 return -ENOMEM; 3759 3760 return 0; 3761 } 3762 3763 static int bnxt_alloc_tpa_info(struct bnxt *bp) 3764 { 3765 int i, rc; 3766 3767 bp->max_tpa = MAX_TPA; 3768 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 3769 if (!bp->max_tpa_v2) 3770 return 0; 3771 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 3772 } 3773 3774 for (i = 0; i < bp->rx_nr_rings; i++) { 3775 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3776 3777 rc = bnxt_alloc_one_tpa_info(bp, rxr); 3778 if (rc) 3779 return rc; 3780 } 3781 return 0; 3782 } 3783 3784 static void bnxt_free_rx_rings(struct bnxt *bp) 3785 { 3786 int i; 3787 3788 if (!bp->rx_ring) 3789 return; 3790 3791 bnxt_free_tpa_info(bp); 3792 for (i = 0; i < bp->rx_nr_rings; i++) { 3793 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3794 struct bnxt_ring_struct *ring; 3795 3796 if (rxr->xdp_prog) 3797 bpf_prog_put(rxr->xdp_prog); 3798 3799 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 3800 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3801 3802 page_pool_destroy(rxr->page_pool); 3803 page_pool_destroy(rxr->head_pool); 3804 rxr->page_pool = rxr->head_pool = NULL; 3805 3806 kfree(rxr->rx_agg_bmap); 3807 rxr->rx_agg_bmap = NULL; 3808 3809 ring = &rxr->rx_ring_struct; 3810 bnxt_free_ring(bp, &ring->ring_mem); 3811 3812 ring = &rxr->rx_agg_ring_struct; 3813 bnxt_free_ring(bp, &ring->ring_mem); 3814 } 3815 } 3816 3817 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 3818 struct bnxt_rx_ring_info *rxr, 3819 int numa_node) 3820 { 3821 const unsigned int agg_size_fac = PAGE_SIZE / BNXT_RX_PAGE_SIZE; 3822 const unsigned int rx_size_fac = PAGE_SIZE / SZ_4K; 3823 struct page_pool_params pp = { 0 }; 3824 struct page_pool *pool; 3825 3826 pp.pool_size = bp->rx_agg_ring_size / agg_size_fac; 3827 if (BNXT_RX_PAGE_MODE(bp)) 3828 pp.pool_size += bp->rx_ring_size / rx_size_fac; 3829 pp.nid = numa_node; 3830 pp.netdev = bp->dev; 3831 pp.dev = &bp->pdev->dev; 3832 pp.dma_dir = bp->rx_dir; 3833 pp.max_len = PAGE_SIZE; 3834 pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV | 3835 PP_FLAG_ALLOW_UNREADABLE_NETMEM; 3836 pp.queue_idx = rxr->bnapi->index; 3837 3838 pool = page_pool_create(&pp); 3839 if (IS_ERR(pool)) 3840 return PTR_ERR(pool); 3841 rxr->page_pool = pool; 3842 3843 rxr->need_head_pool = page_pool_is_unreadable(pool); 3844 if (bnxt_separate_head_pool(rxr)) { 3845 pp.pool_size = min(bp->rx_ring_size / rx_size_fac, 1024); 3846 pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 3847 pool = page_pool_create(&pp); 3848 if (IS_ERR(pool)) 3849 goto err_destroy_pp; 3850 } else { 3851 page_pool_get(pool); 3852 } 3853 rxr->head_pool = pool; 3854 3855 return 0; 3856 3857 err_destroy_pp: 3858 page_pool_destroy(rxr->page_pool); 3859 rxr->page_pool = NULL; 3860 return PTR_ERR(pool); 3861 } 3862 3863 static void bnxt_enable_rx_page_pool(struct bnxt_rx_ring_info *rxr) 3864 { 3865 page_pool_enable_direct_recycling(rxr->head_pool, &rxr->bnapi->napi); 3866 page_pool_enable_direct_recycling(rxr->page_pool, &rxr->bnapi->napi); 3867 } 3868 3869 static int bnxt_alloc_rx_agg_bmap(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3870 { 3871 u16 mem_size; 3872 3873 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 3874 mem_size = rxr->rx_agg_bmap_size / 8; 3875 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 3876 if (!rxr->rx_agg_bmap) 3877 return -ENOMEM; 3878 3879 return 0; 3880 } 3881 3882 static int bnxt_alloc_rx_rings(struct bnxt *bp) 3883 { 3884 int numa_node = dev_to_node(&bp->pdev->dev); 3885 int i, rc = 0, agg_rings = 0, cpu; 3886 3887 if (!bp->rx_ring) 3888 return -ENOMEM; 3889 3890 if (bp->flags & BNXT_FLAG_AGG_RINGS) 3891 agg_rings = 1; 3892 3893 for (i = 0; i < bp->rx_nr_rings; i++) { 3894 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3895 struct bnxt_ring_struct *ring; 3896 int cpu_node; 3897 3898 ring = &rxr->rx_ring_struct; 3899 3900 cpu = cpumask_local_spread(i, numa_node); 3901 cpu_node = cpu_to_node(cpu); 3902 netdev_dbg(bp->dev, "Allocating page pool for rx_ring[%d] on numa_node: %d\n", 3903 i, cpu_node); 3904 rc = bnxt_alloc_rx_page_pool(bp, rxr, cpu_node); 3905 if (rc) 3906 return rc; 3907 bnxt_enable_rx_page_pool(rxr); 3908 3909 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 3910 if (rc < 0) 3911 return rc; 3912 3913 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 3914 MEM_TYPE_PAGE_POOL, 3915 rxr->page_pool); 3916 if (rc) { 3917 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3918 return rc; 3919 } 3920 3921 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3922 if (rc) 3923 return rc; 3924 3925 ring->grp_idx = i; 3926 if (agg_rings) { 3927 ring = &rxr->rx_agg_ring_struct; 3928 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3929 if (rc) 3930 return rc; 3931 3932 ring->grp_idx = i; 3933 rc = bnxt_alloc_rx_agg_bmap(bp, rxr); 3934 if (rc) 3935 return rc; 3936 } 3937 } 3938 if (bp->flags & BNXT_FLAG_TPA) 3939 rc = bnxt_alloc_tpa_info(bp); 3940 return rc; 3941 } 3942 3943 static void bnxt_free_tx_rings(struct bnxt *bp) 3944 { 3945 int i; 3946 struct pci_dev *pdev = bp->pdev; 3947 3948 if (!bp->tx_ring) 3949 return; 3950 3951 for (i = 0; i < bp->tx_nr_rings; i++) { 3952 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3953 struct bnxt_ring_struct *ring; 3954 3955 if (txr->tx_push) { 3956 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3957 txr->tx_push, txr->tx_push_mapping); 3958 txr->tx_push = NULL; 3959 } 3960 3961 ring = &txr->tx_ring_struct; 3962 3963 bnxt_free_ring(bp, &ring->ring_mem); 3964 } 3965 } 3966 3967 #define BNXT_TC_TO_RING_BASE(bp, tc) \ 3968 ((tc) * (bp)->tx_nr_rings_per_tc) 3969 3970 #define BNXT_RING_TO_TC_OFF(bp, tx) \ 3971 ((tx) % (bp)->tx_nr_rings_per_tc) 3972 3973 #define BNXT_RING_TO_TC(bp, tx) \ 3974 ((tx) / (bp)->tx_nr_rings_per_tc) 3975 3976 static int bnxt_alloc_tx_rings(struct bnxt *bp) 3977 { 3978 int i, j, rc; 3979 struct pci_dev *pdev = bp->pdev; 3980 3981 bp->tx_push_size = 0; 3982 if (bp->tx_push_thresh) { 3983 int push_size; 3984 3985 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 3986 bp->tx_push_thresh); 3987 3988 if (push_size > 256) { 3989 push_size = 0; 3990 bp->tx_push_thresh = 0; 3991 } 3992 3993 bp->tx_push_size = push_size; 3994 } 3995 3996 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 3997 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3998 struct bnxt_ring_struct *ring; 3999 u8 qidx; 4000 4001 ring = &txr->tx_ring_struct; 4002 4003 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 4004 if (rc) 4005 return rc; 4006 4007 ring->grp_idx = txr->bnapi->index; 4008 if (bp->tx_push_size) { 4009 dma_addr_t mapping; 4010 4011 /* One pre-allocated DMA buffer to backup 4012 * TX push operation 4013 */ 4014 txr->tx_push = dma_alloc_coherent(&pdev->dev, 4015 bp->tx_push_size, 4016 &txr->tx_push_mapping, 4017 GFP_KERNEL); 4018 4019 if (!txr->tx_push) 4020 return -ENOMEM; 4021 4022 mapping = txr->tx_push_mapping + 4023 sizeof(struct tx_push_bd); 4024 txr->data_mapping = cpu_to_le64(mapping); 4025 } 4026 qidx = bp->tc_to_qidx[j]; 4027 ring->queue_id = bp->q_info[qidx].queue_id; 4028 spin_lock_init(&txr->xdp_tx_lock); 4029 if (i < bp->tx_nr_rings_xdp) 4030 continue; 4031 if (BNXT_RING_TO_TC_OFF(bp, i) == (bp->tx_nr_rings_per_tc - 1)) 4032 j++; 4033 } 4034 return 0; 4035 } 4036 4037 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr) 4038 { 4039 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4040 4041 kfree(cpr->cp_desc_ring); 4042 cpr->cp_desc_ring = NULL; 4043 ring->ring_mem.pg_arr = NULL; 4044 kfree(cpr->cp_desc_mapping); 4045 cpr->cp_desc_mapping = NULL; 4046 ring->ring_mem.dma_arr = NULL; 4047 } 4048 4049 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n) 4050 { 4051 cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL); 4052 if (!cpr->cp_desc_ring) 4053 return -ENOMEM; 4054 cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping), 4055 GFP_KERNEL); 4056 if (!cpr->cp_desc_mapping) 4057 return -ENOMEM; 4058 return 0; 4059 } 4060 4061 static void bnxt_free_all_cp_arrays(struct bnxt *bp) 4062 { 4063 int i; 4064 4065 if (!bp->bnapi) 4066 return; 4067 for (i = 0; i < bp->cp_nr_rings; i++) { 4068 struct bnxt_napi *bnapi = bp->bnapi[i]; 4069 4070 if (!bnapi) 4071 continue; 4072 bnxt_free_cp_arrays(&bnapi->cp_ring); 4073 } 4074 } 4075 4076 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp) 4077 { 4078 int i, n = bp->cp_nr_pages; 4079 4080 for (i = 0; i < bp->cp_nr_rings; i++) { 4081 struct bnxt_napi *bnapi = bp->bnapi[i]; 4082 int rc; 4083 4084 if (!bnapi) 4085 continue; 4086 rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n); 4087 if (rc) 4088 return rc; 4089 } 4090 return 0; 4091 } 4092 4093 static void bnxt_free_cp_rings(struct bnxt *bp) 4094 { 4095 int i; 4096 4097 if (!bp->bnapi) 4098 return; 4099 4100 for (i = 0; i < bp->cp_nr_rings; i++) { 4101 struct bnxt_napi *bnapi = bp->bnapi[i]; 4102 struct bnxt_cp_ring_info *cpr; 4103 struct bnxt_ring_struct *ring; 4104 int j; 4105 4106 if (!bnapi) 4107 continue; 4108 4109 cpr = &bnapi->cp_ring; 4110 ring = &cpr->cp_ring_struct; 4111 4112 bnxt_free_ring(bp, &ring->ring_mem); 4113 4114 if (!cpr->cp_ring_arr) 4115 continue; 4116 4117 for (j = 0; j < cpr->cp_ring_count; j++) { 4118 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 4119 4120 ring = &cpr2->cp_ring_struct; 4121 bnxt_free_ring(bp, &ring->ring_mem); 4122 bnxt_free_cp_arrays(cpr2); 4123 } 4124 kfree(cpr->cp_ring_arr); 4125 cpr->cp_ring_arr = NULL; 4126 cpr->cp_ring_count = 0; 4127 } 4128 } 4129 4130 static int bnxt_alloc_cp_sub_ring(struct bnxt *bp, 4131 struct bnxt_cp_ring_info *cpr) 4132 { 4133 struct bnxt_ring_mem_info *rmem; 4134 struct bnxt_ring_struct *ring; 4135 int rc; 4136 4137 rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages); 4138 if (rc) { 4139 bnxt_free_cp_arrays(cpr); 4140 return -ENOMEM; 4141 } 4142 ring = &cpr->cp_ring_struct; 4143 rmem = &ring->ring_mem; 4144 rmem->nr_pages = bp->cp_nr_pages; 4145 rmem->page_size = HW_CMPD_RING_SIZE; 4146 rmem->pg_arr = (void **)cpr->cp_desc_ring; 4147 rmem->dma_arr = cpr->cp_desc_mapping; 4148 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 4149 rc = bnxt_alloc_ring(bp, rmem); 4150 if (rc) { 4151 bnxt_free_ring(bp, rmem); 4152 bnxt_free_cp_arrays(cpr); 4153 } 4154 return rc; 4155 } 4156 4157 static int bnxt_alloc_cp_rings(struct bnxt *bp) 4158 { 4159 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 4160 int i, j, rc, ulp_msix; 4161 int tcs = bp->num_tc; 4162 4163 if (!tcs) 4164 tcs = 1; 4165 ulp_msix = bnxt_get_ulp_msix_num(bp); 4166 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 4167 struct bnxt_napi *bnapi = bp->bnapi[i]; 4168 struct bnxt_cp_ring_info *cpr, *cpr2; 4169 struct bnxt_ring_struct *ring; 4170 int cp_count = 0, k; 4171 int rx = 0, tx = 0; 4172 4173 if (!bnapi) 4174 continue; 4175 4176 cpr = &bnapi->cp_ring; 4177 cpr->bnapi = bnapi; 4178 ring = &cpr->cp_ring_struct; 4179 4180 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 4181 if (rc) 4182 return rc; 4183 4184 ring->map_idx = ulp_msix + i; 4185 4186 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4187 continue; 4188 4189 if (i < bp->rx_nr_rings) { 4190 cp_count++; 4191 rx = 1; 4192 } 4193 if (i < bp->tx_nr_rings_xdp) { 4194 cp_count++; 4195 tx = 1; 4196 } else if ((sh && i < bp->tx_nr_rings) || 4197 (!sh && i >= bp->rx_nr_rings)) { 4198 cp_count += tcs; 4199 tx = 1; 4200 } 4201 4202 cpr->cp_ring_arr = kcalloc(cp_count, sizeof(*cpr), 4203 GFP_KERNEL); 4204 if (!cpr->cp_ring_arr) 4205 return -ENOMEM; 4206 cpr->cp_ring_count = cp_count; 4207 4208 for (k = 0; k < cp_count; k++) { 4209 cpr2 = &cpr->cp_ring_arr[k]; 4210 rc = bnxt_alloc_cp_sub_ring(bp, cpr2); 4211 if (rc) 4212 return rc; 4213 cpr2->bnapi = bnapi; 4214 cpr2->sw_stats = cpr->sw_stats; 4215 cpr2->cp_idx = k; 4216 if (!k && rx) { 4217 bp->rx_ring[i].rx_cpr = cpr2; 4218 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_RX; 4219 } else { 4220 int n, tc = k - rx; 4221 4222 n = BNXT_TC_TO_RING_BASE(bp, tc) + j; 4223 bp->tx_ring[n].tx_cpr = cpr2; 4224 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_TX; 4225 } 4226 } 4227 if (tx) 4228 j++; 4229 } 4230 return 0; 4231 } 4232 4233 static void bnxt_init_rx_ring_struct(struct bnxt *bp, 4234 struct bnxt_rx_ring_info *rxr) 4235 { 4236 struct bnxt_ring_mem_info *rmem; 4237 struct bnxt_ring_struct *ring; 4238 4239 ring = &rxr->rx_ring_struct; 4240 rmem = &ring->ring_mem; 4241 rmem->nr_pages = bp->rx_nr_pages; 4242 rmem->page_size = HW_RXBD_RING_SIZE; 4243 rmem->pg_arr = (void **)rxr->rx_desc_ring; 4244 rmem->dma_arr = rxr->rx_desc_mapping; 4245 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 4246 rmem->vmem = (void **)&rxr->rx_buf_ring; 4247 4248 ring = &rxr->rx_agg_ring_struct; 4249 rmem = &ring->ring_mem; 4250 rmem->nr_pages = bp->rx_agg_nr_pages; 4251 rmem->page_size = HW_RXBD_RING_SIZE; 4252 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 4253 rmem->dma_arr = rxr->rx_agg_desc_mapping; 4254 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 4255 rmem->vmem = (void **)&rxr->rx_agg_ring; 4256 } 4257 4258 static void bnxt_reset_rx_ring_struct(struct bnxt *bp, 4259 struct bnxt_rx_ring_info *rxr) 4260 { 4261 struct bnxt_ring_mem_info *rmem; 4262 struct bnxt_ring_struct *ring; 4263 int i; 4264 4265 rxr->page_pool->p.napi = NULL; 4266 rxr->page_pool = NULL; 4267 rxr->head_pool->p.napi = NULL; 4268 rxr->head_pool = NULL; 4269 memset(&rxr->xdp_rxq, 0, sizeof(struct xdp_rxq_info)); 4270 4271 ring = &rxr->rx_ring_struct; 4272 rmem = &ring->ring_mem; 4273 rmem->pg_tbl = NULL; 4274 rmem->pg_tbl_map = 0; 4275 for (i = 0; i < rmem->nr_pages; i++) { 4276 rmem->pg_arr[i] = NULL; 4277 rmem->dma_arr[i] = 0; 4278 } 4279 *rmem->vmem = NULL; 4280 4281 ring = &rxr->rx_agg_ring_struct; 4282 rmem = &ring->ring_mem; 4283 rmem->pg_tbl = NULL; 4284 rmem->pg_tbl_map = 0; 4285 for (i = 0; i < rmem->nr_pages; i++) { 4286 rmem->pg_arr[i] = NULL; 4287 rmem->dma_arr[i] = 0; 4288 } 4289 *rmem->vmem = NULL; 4290 } 4291 4292 static void bnxt_init_ring_struct(struct bnxt *bp) 4293 { 4294 int i, j; 4295 4296 for (i = 0; i < bp->cp_nr_rings; i++) { 4297 struct bnxt_napi *bnapi = bp->bnapi[i]; 4298 struct bnxt_ring_mem_info *rmem; 4299 struct bnxt_cp_ring_info *cpr; 4300 struct bnxt_rx_ring_info *rxr; 4301 struct bnxt_tx_ring_info *txr; 4302 struct bnxt_ring_struct *ring; 4303 4304 if (!bnapi) 4305 continue; 4306 4307 cpr = &bnapi->cp_ring; 4308 ring = &cpr->cp_ring_struct; 4309 rmem = &ring->ring_mem; 4310 rmem->nr_pages = bp->cp_nr_pages; 4311 rmem->page_size = HW_CMPD_RING_SIZE; 4312 rmem->pg_arr = (void **)cpr->cp_desc_ring; 4313 rmem->dma_arr = cpr->cp_desc_mapping; 4314 rmem->vmem_size = 0; 4315 4316 rxr = bnapi->rx_ring; 4317 if (!rxr) 4318 goto skip_rx; 4319 4320 ring = &rxr->rx_ring_struct; 4321 rmem = &ring->ring_mem; 4322 rmem->nr_pages = bp->rx_nr_pages; 4323 rmem->page_size = HW_RXBD_RING_SIZE; 4324 rmem->pg_arr = (void **)rxr->rx_desc_ring; 4325 rmem->dma_arr = rxr->rx_desc_mapping; 4326 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 4327 rmem->vmem = (void **)&rxr->rx_buf_ring; 4328 4329 ring = &rxr->rx_agg_ring_struct; 4330 rmem = &ring->ring_mem; 4331 rmem->nr_pages = bp->rx_agg_nr_pages; 4332 rmem->page_size = HW_RXBD_RING_SIZE; 4333 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 4334 rmem->dma_arr = rxr->rx_agg_desc_mapping; 4335 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 4336 rmem->vmem = (void **)&rxr->rx_agg_ring; 4337 4338 skip_rx: 4339 bnxt_for_each_napi_tx(j, bnapi, txr) { 4340 ring = &txr->tx_ring_struct; 4341 rmem = &ring->ring_mem; 4342 rmem->nr_pages = bp->tx_nr_pages; 4343 rmem->page_size = HW_TXBD_RING_SIZE; 4344 rmem->pg_arr = (void **)txr->tx_desc_ring; 4345 rmem->dma_arr = txr->tx_desc_mapping; 4346 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 4347 rmem->vmem = (void **)&txr->tx_buf_ring; 4348 } 4349 } 4350 } 4351 4352 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 4353 { 4354 int i; 4355 u32 prod; 4356 struct rx_bd **rx_buf_ring; 4357 4358 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 4359 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 4360 int j; 4361 struct rx_bd *rxbd; 4362 4363 rxbd = rx_buf_ring[i]; 4364 if (!rxbd) 4365 continue; 4366 4367 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 4368 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 4369 rxbd->rx_bd_opaque = prod; 4370 } 4371 } 4372 } 4373 4374 static void bnxt_alloc_one_rx_ring_skb(struct bnxt *bp, 4375 struct bnxt_rx_ring_info *rxr, 4376 int ring_nr) 4377 { 4378 u32 prod; 4379 int i; 4380 4381 prod = rxr->rx_prod; 4382 for (i = 0; i < bp->rx_ring_size; i++) { 4383 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 4384 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n", 4385 ring_nr, i, bp->rx_ring_size); 4386 break; 4387 } 4388 prod = NEXT_RX(prod); 4389 } 4390 rxr->rx_prod = prod; 4391 } 4392 4393 static void bnxt_alloc_one_rx_ring_netmem(struct bnxt *bp, 4394 struct bnxt_rx_ring_info *rxr, 4395 int ring_nr) 4396 { 4397 u32 prod; 4398 int i; 4399 4400 prod = rxr->rx_agg_prod; 4401 for (i = 0; i < bp->rx_agg_ring_size; i++) { 4402 if (bnxt_alloc_rx_netmem(bp, rxr, prod, GFP_KERNEL)) { 4403 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d pages only\n", 4404 ring_nr, i, bp->rx_ring_size); 4405 break; 4406 } 4407 prod = NEXT_RX_AGG(prod); 4408 } 4409 rxr->rx_agg_prod = prod; 4410 } 4411 4412 static int bnxt_alloc_one_tpa_info_data(struct bnxt *bp, 4413 struct bnxt_rx_ring_info *rxr) 4414 { 4415 dma_addr_t mapping; 4416 u8 *data; 4417 int i; 4418 4419 for (i = 0; i < bp->max_tpa; i++) { 4420 data = __bnxt_alloc_rx_frag(bp, &mapping, rxr, 4421 GFP_KERNEL); 4422 if (!data) 4423 return -ENOMEM; 4424 4425 rxr->rx_tpa[i].data = data; 4426 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 4427 rxr->rx_tpa[i].mapping = mapping; 4428 } 4429 4430 return 0; 4431 } 4432 4433 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 4434 { 4435 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 4436 int rc; 4437 4438 bnxt_alloc_one_rx_ring_skb(bp, rxr, ring_nr); 4439 4440 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 4441 return 0; 4442 4443 bnxt_alloc_one_rx_ring_netmem(bp, rxr, ring_nr); 4444 4445 if (rxr->rx_tpa) { 4446 rc = bnxt_alloc_one_tpa_info_data(bp, rxr); 4447 if (rc) 4448 return rc; 4449 } 4450 return 0; 4451 } 4452 4453 static void bnxt_init_one_rx_ring_rxbd(struct bnxt *bp, 4454 struct bnxt_rx_ring_info *rxr) 4455 { 4456 struct bnxt_ring_struct *ring; 4457 u32 type; 4458 4459 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 4460 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 4461 4462 if (NET_IP_ALIGN == 2) 4463 type |= RX_BD_FLAGS_SOP; 4464 4465 ring = &rxr->rx_ring_struct; 4466 bnxt_init_rxbd_pages(ring, type); 4467 ring->fw_ring_id = INVALID_HW_RING_ID; 4468 } 4469 4470 static void bnxt_init_one_rx_agg_ring_rxbd(struct bnxt *bp, 4471 struct bnxt_rx_ring_info *rxr) 4472 { 4473 struct bnxt_ring_struct *ring; 4474 u32 type; 4475 4476 ring = &rxr->rx_agg_ring_struct; 4477 ring->fw_ring_id = INVALID_HW_RING_ID; 4478 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 4479 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 4480 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 4481 4482 bnxt_init_rxbd_pages(ring, type); 4483 } 4484 } 4485 4486 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 4487 { 4488 struct bnxt_rx_ring_info *rxr; 4489 4490 rxr = &bp->rx_ring[ring_nr]; 4491 bnxt_init_one_rx_ring_rxbd(bp, rxr); 4492 4493 netif_queue_set_napi(bp->dev, ring_nr, NETDEV_QUEUE_TYPE_RX, 4494 &rxr->bnapi->napi); 4495 4496 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 4497 bpf_prog_add(bp->xdp_prog, 1); 4498 rxr->xdp_prog = bp->xdp_prog; 4499 } 4500 4501 bnxt_init_one_rx_agg_ring_rxbd(bp, rxr); 4502 4503 return bnxt_alloc_one_rx_ring(bp, ring_nr); 4504 } 4505 4506 static void bnxt_init_cp_rings(struct bnxt *bp) 4507 { 4508 int i, j; 4509 4510 for (i = 0; i < bp->cp_nr_rings; i++) { 4511 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 4512 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4513 4514 ring->fw_ring_id = INVALID_HW_RING_ID; 4515 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4516 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4517 if (!cpr->cp_ring_arr) 4518 continue; 4519 for (j = 0; j < cpr->cp_ring_count; j++) { 4520 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 4521 4522 ring = &cpr2->cp_ring_struct; 4523 ring->fw_ring_id = INVALID_HW_RING_ID; 4524 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4525 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4526 } 4527 } 4528 } 4529 4530 static int bnxt_init_rx_rings(struct bnxt *bp) 4531 { 4532 int i, rc = 0; 4533 4534 if (BNXT_RX_PAGE_MODE(bp)) { 4535 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 4536 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 4537 } else { 4538 bp->rx_offset = BNXT_RX_OFFSET; 4539 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 4540 } 4541 4542 for (i = 0; i < bp->rx_nr_rings; i++) { 4543 rc = bnxt_init_one_rx_ring(bp, i); 4544 if (rc) 4545 break; 4546 } 4547 4548 return rc; 4549 } 4550 4551 static int bnxt_init_tx_rings(struct bnxt *bp) 4552 { 4553 u16 i; 4554 4555 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 4556 BNXT_MIN_TX_DESC_CNT); 4557 4558 for (i = 0; i < bp->tx_nr_rings; i++) { 4559 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4560 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 4561 4562 ring->fw_ring_id = INVALID_HW_RING_ID; 4563 4564 if (i >= bp->tx_nr_rings_xdp) 4565 netif_queue_set_napi(bp->dev, i - bp->tx_nr_rings_xdp, 4566 NETDEV_QUEUE_TYPE_TX, 4567 &txr->bnapi->napi); 4568 } 4569 4570 return 0; 4571 } 4572 4573 static void bnxt_free_ring_grps(struct bnxt *bp) 4574 { 4575 kfree(bp->grp_info); 4576 bp->grp_info = NULL; 4577 } 4578 4579 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 4580 { 4581 int i; 4582 4583 if (irq_re_init) { 4584 bp->grp_info = kcalloc(bp->cp_nr_rings, 4585 sizeof(struct bnxt_ring_grp_info), 4586 GFP_KERNEL); 4587 if (!bp->grp_info) 4588 return -ENOMEM; 4589 } 4590 for (i = 0; i < bp->cp_nr_rings; i++) { 4591 if (irq_re_init) 4592 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 4593 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 4594 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 4595 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 4596 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 4597 } 4598 return 0; 4599 } 4600 4601 static void bnxt_free_vnics(struct bnxt *bp) 4602 { 4603 kfree(bp->vnic_info); 4604 bp->vnic_info = NULL; 4605 bp->nr_vnics = 0; 4606 } 4607 4608 static int bnxt_alloc_vnics(struct bnxt *bp) 4609 { 4610 int num_vnics = 1; 4611 4612 #ifdef CONFIG_RFS_ACCEL 4613 if (bp->flags & BNXT_FLAG_RFS) { 4614 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 4615 num_vnics++; 4616 else if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4617 num_vnics += bp->rx_nr_rings; 4618 } 4619 #endif 4620 4621 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 4622 num_vnics++; 4623 4624 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 4625 GFP_KERNEL); 4626 if (!bp->vnic_info) 4627 return -ENOMEM; 4628 4629 bp->nr_vnics = num_vnics; 4630 return 0; 4631 } 4632 4633 static void bnxt_init_vnics(struct bnxt *bp) 4634 { 4635 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 4636 int i; 4637 4638 for (i = 0; i < bp->nr_vnics; i++) { 4639 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 4640 int j; 4641 4642 vnic->fw_vnic_id = INVALID_HW_RING_ID; 4643 vnic->vnic_id = i; 4644 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 4645 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 4646 4647 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 4648 4649 if (bp->vnic_info[i].rss_hash_key) { 4650 if (i == BNXT_VNIC_DEFAULT) { 4651 u8 *key = (void *)vnic->rss_hash_key; 4652 int k; 4653 4654 if (!bp->rss_hash_key_valid && 4655 !bp->rss_hash_key_updated) { 4656 get_random_bytes(bp->rss_hash_key, 4657 HW_HASH_KEY_SIZE); 4658 bp->rss_hash_key_updated = true; 4659 } 4660 4661 memcpy(vnic->rss_hash_key, bp->rss_hash_key, 4662 HW_HASH_KEY_SIZE); 4663 4664 if (!bp->rss_hash_key_updated) 4665 continue; 4666 4667 bp->rss_hash_key_updated = false; 4668 bp->rss_hash_key_valid = true; 4669 4670 bp->toeplitz_prefix = 0; 4671 for (k = 0; k < 8; k++) { 4672 bp->toeplitz_prefix <<= 8; 4673 bp->toeplitz_prefix |= key[k]; 4674 } 4675 } else { 4676 memcpy(vnic->rss_hash_key, vnic0->rss_hash_key, 4677 HW_HASH_KEY_SIZE); 4678 } 4679 } 4680 } 4681 } 4682 4683 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 4684 { 4685 int pages; 4686 4687 pages = ring_size / desc_per_pg; 4688 4689 if (!pages) 4690 return 1; 4691 4692 pages++; 4693 4694 while (pages & (pages - 1)) 4695 pages++; 4696 4697 return pages; 4698 } 4699 4700 void bnxt_set_tpa_flags(struct bnxt *bp) 4701 { 4702 bp->flags &= ~BNXT_FLAG_TPA; 4703 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 4704 return; 4705 if (bp->dev->features & NETIF_F_LRO) 4706 bp->flags |= BNXT_FLAG_LRO; 4707 else if (bp->dev->features & NETIF_F_GRO_HW) 4708 bp->flags |= BNXT_FLAG_GRO; 4709 } 4710 4711 static void bnxt_init_ring_params(struct bnxt *bp) 4712 { 4713 unsigned int rx_size; 4714 4715 bp->rx_copybreak = BNXT_DEFAULT_RX_COPYBREAK; 4716 /* Try to fit 4 chunks into a 4k page */ 4717 rx_size = SZ_1K - 4718 NET_SKB_PAD - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4719 bp->dev->cfg->hds_thresh = max(BNXT_DEFAULT_RX_COPYBREAK, rx_size); 4720 } 4721 4722 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 4723 * be set on entry. 4724 */ 4725 void bnxt_set_ring_params(struct bnxt *bp) 4726 { 4727 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 4728 u32 agg_factor = 0, agg_ring_size = 0; 4729 4730 /* 8 for CRC and VLAN */ 4731 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 4732 4733 rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) + 4734 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4735 4736 ring_size = bp->rx_ring_size; 4737 bp->rx_agg_ring_size = 0; 4738 bp->rx_agg_nr_pages = 0; 4739 4740 if (bp->flags & BNXT_FLAG_TPA || bp->flags & BNXT_FLAG_HDS) 4741 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 4742 4743 bp->flags &= ~BNXT_FLAG_JUMBO; 4744 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 4745 u32 jumbo_factor; 4746 4747 bp->flags |= BNXT_FLAG_JUMBO; 4748 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 4749 if (jumbo_factor > agg_factor) 4750 agg_factor = jumbo_factor; 4751 } 4752 if (agg_factor) { 4753 if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) { 4754 ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA; 4755 netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n", 4756 bp->rx_ring_size, ring_size); 4757 bp->rx_ring_size = ring_size; 4758 } 4759 agg_ring_size = ring_size * agg_factor; 4760 4761 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 4762 RX_DESC_CNT); 4763 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 4764 u32 tmp = agg_ring_size; 4765 4766 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 4767 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 4768 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 4769 tmp, agg_ring_size); 4770 } 4771 bp->rx_agg_ring_size = agg_ring_size; 4772 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 4773 4774 if (BNXT_RX_PAGE_MODE(bp)) { 4775 rx_space = PAGE_SIZE; 4776 rx_size = PAGE_SIZE - 4777 ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) - 4778 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4779 } else { 4780 rx_size = max3(BNXT_DEFAULT_RX_COPYBREAK, 4781 bp->rx_copybreak, 4782 bp->dev->cfg_pending->hds_thresh); 4783 rx_size = SKB_DATA_ALIGN(rx_size + NET_IP_ALIGN); 4784 rx_space = rx_size + NET_SKB_PAD + 4785 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4786 } 4787 } 4788 4789 bp->rx_buf_use_size = rx_size; 4790 bp->rx_buf_size = rx_space; 4791 4792 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 4793 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 4794 4795 ring_size = bp->tx_ring_size; 4796 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 4797 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 4798 4799 max_rx_cmpl = bp->rx_ring_size; 4800 /* MAX TPA needs to be added because TPA_START completions are 4801 * immediately recycled, so the TPA completions are not bound by 4802 * the RX ring size. 4803 */ 4804 if (bp->flags & BNXT_FLAG_TPA) 4805 max_rx_cmpl += bp->max_tpa; 4806 /* RX and TPA completions are 32-byte, all others are 16-byte */ 4807 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 4808 bp->cp_ring_size = ring_size; 4809 4810 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 4811 if (bp->cp_nr_pages > MAX_CP_PAGES) { 4812 bp->cp_nr_pages = MAX_CP_PAGES; 4813 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 4814 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 4815 ring_size, bp->cp_ring_size); 4816 } 4817 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 4818 bp->cp_ring_mask = bp->cp_bit - 1; 4819 } 4820 4821 /* Changing allocation mode of RX rings. 4822 * TODO: Update when extending xdp_rxq_info to support allocation modes. 4823 */ 4824 static void __bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 4825 { 4826 struct net_device *dev = bp->dev; 4827 4828 if (page_mode) { 4829 bp->flags &= ~(BNXT_FLAG_AGG_RINGS | BNXT_FLAG_NO_AGG_RINGS); 4830 bp->flags |= BNXT_FLAG_RX_PAGE_MODE; 4831 4832 if (bp->xdp_prog->aux->xdp_has_frags) 4833 dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU); 4834 else 4835 dev->max_mtu = 4836 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 4837 if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) { 4838 bp->flags |= BNXT_FLAG_JUMBO; 4839 bp->rx_skb_func = bnxt_rx_multi_page_skb; 4840 } else { 4841 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 4842 bp->rx_skb_func = bnxt_rx_page_skb; 4843 } 4844 bp->rx_dir = DMA_BIDIRECTIONAL; 4845 } else { 4846 dev->max_mtu = bp->max_mtu; 4847 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 4848 bp->rx_dir = DMA_FROM_DEVICE; 4849 bp->rx_skb_func = bnxt_rx_skb; 4850 } 4851 } 4852 4853 void bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 4854 { 4855 __bnxt_set_rx_skb_mode(bp, page_mode); 4856 4857 if (!page_mode) { 4858 int rx, tx; 4859 4860 bnxt_get_max_rings(bp, &rx, &tx, true); 4861 if (rx > 1) { 4862 bp->flags &= ~BNXT_FLAG_NO_AGG_RINGS; 4863 bp->dev->hw_features |= NETIF_F_LRO; 4864 } 4865 } 4866 4867 /* Update LRO and GRO_HW availability */ 4868 netdev_update_features(bp->dev); 4869 } 4870 4871 static void bnxt_free_vnic_attributes(struct bnxt *bp) 4872 { 4873 int i; 4874 struct bnxt_vnic_info *vnic; 4875 struct pci_dev *pdev = bp->pdev; 4876 4877 if (!bp->vnic_info) 4878 return; 4879 4880 for (i = 0; i < bp->nr_vnics; i++) { 4881 vnic = &bp->vnic_info[i]; 4882 4883 kfree(vnic->fw_grp_ids); 4884 vnic->fw_grp_ids = NULL; 4885 4886 kfree(vnic->uc_list); 4887 vnic->uc_list = NULL; 4888 4889 if (vnic->mc_list) { 4890 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 4891 vnic->mc_list, vnic->mc_list_mapping); 4892 vnic->mc_list = NULL; 4893 } 4894 4895 if (vnic->rss_table) { 4896 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 4897 vnic->rss_table, 4898 vnic->rss_table_dma_addr); 4899 vnic->rss_table = NULL; 4900 } 4901 4902 vnic->rss_hash_key = NULL; 4903 vnic->flags = 0; 4904 } 4905 } 4906 4907 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 4908 { 4909 int i, rc = 0, size; 4910 struct bnxt_vnic_info *vnic; 4911 struct pci_dev *pdev = bp->pdev; 4912 int max_rings; 4913 4914 for (i = 0; i < bp->nr_vnics; i++) { 4915 vnic = &bp->vnic_info[i]; 4916 4917 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 4918 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 4919 4920 if (mem_size > 0) { 4921 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 4922 if (!vnic->uc_list) { 4923 rc = -ENOMEM; 4924 goto out; 4925 } 4926 } 4927 } 4928 4929 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 4930 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 4931 vnic->mc_list = 4932 dma_alloc_coherent(&pdev->dev, 4933 vnic->mc_list_size, 4934 &vnic->mc_list_mapping, 4935 GFP_KERNEL); 4936 if (!vnic->mc_list) { 4937 rc = -ENOMEM; 4938 goto out; 4939 } 4940 } 4941 4942 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4943 goto vnic_skip_grps; 4944 4945 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 4946 max_rings = bp->rx_nr_rings; 4947 else 4948 max_rings = 1; 4949 4950 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 4951 if (!vnic->fw_grp_ids) { 4952 rc = -ENOMEM; 4953 goto out; 4954 } 4955 vnic_skip_grps: 4956 if ((bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && 4957 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 4958 continue; 4959 4960 /* Allocate rss table and hash key */ 4961 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 4962 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4963 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 4964 4965 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 4966 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 4967 vnic->rss_table_size, 4968 &vnic->rss_table_dma_addr, 4969 GFP_KERNEL); 4970 if (!vnic->rss_table) { 4971 rc = -ENOMEM; 4972 goto out; 4973 } 4974 4975 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 4976 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 4977 } 4978 return 0; 4979 4980 out: 4981 return rc; 4982 } 4983 4984 static void bnxt_free_hwrm_resources(struct bnxt *bp) 4985 { 4986 struct bnxt_hwrm_wait_token *token; 4987 4988 dma_pool_destroy(bp->hwrm_dma_pool); 4989 bp->hwrm_dma_pool = NULL; 4990 4991 rcu_read_lock(); 4992 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) 4993 WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED); 4994 rcu_read_unlock(); 4995 } 4996 4997 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 4998 { 4999 bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev, 5000 BNXT_HWRM_DMA_SIZE, 5001 BNXT_HWRM_DMA_ALIGN, 0); 5002 if (!bp->hwrm_dma_pool) 5003 return -ENOMEM; 5004 5005 INIT_HLIST_HEAD(&bp->hwrm_pending_list); 5006 5007 return 0; 5008 } 5009 5010 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 5011 { 5012 kfree(stats->hw_masks); 5013 stats->hw_masks = NULL; 5014 kfree(stats->sw_stats); 5015 stats->sw_stats = NULL; 5016 if (stats->hw_stats) { 5017 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 5018 stats->hw_stats_map); 5019 stats->hw_stats = NULL; 5020 } 5021 } 5022 5023 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 5024 bool alloc_masks) 5025 { 5026 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 5027 &stats->hw_stats_map, GFP_KERNEL); 5028 if (!stats->hw_stats) 5029 return -ENOMEM; 5030 5031 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 5032 if (!stats->sw_stats) 5033 goto stats_mem_err; 5034 5035 if (alloc_masks) { 5036 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 5037 if (!stats->hw_masks) 5038 goto stats_mem_err; 5039 } 5040 return 0; 5041 5042 stats_mem_err: 5043 bnxt_free_stats_mem(bp, stats); 5044 return -ENOMEM; 5045 } 5046 5047 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 5048 { 5049 int i; 5050 5051 for (i = 0; i < count; i++) 5052 mask_arr[i] = mask; 5053 } 5054 5055 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 5056 { 5057 int i; 5058 5059 for (i = 0; i < count; i++) 5060 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 5061 } 5062 5063 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 5064 struct bnxt_stats_mem *stats) 5065 { 5066 struct hwrm_func_qstats_ext_output *resp; 5067 struct hwrm_func_qstats_ext_input *req; 5068 __le64 *hw_masks; 5069 int rc; 5070 5071 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 5072 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 5073 return -EOPNOTSUPP; 5074 5075 rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT); 5076 if (rc) 5077 return rc; 5078 5079 req->fid = cpu_to_le16(0xffff); 5080 req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 5081 5082 resp = hwrm_req_hold(bp, req); 5083 rc = hwrm_req_send(bp, req); 5084 if (!rc) { 5085 hw_masks = &resp->rx_ucast_pkts; 5086 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 5087 } 5088 hwrm_req_drop(bp, req); 5089 return rc; 5090 } 5091 5092 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 5093 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 5094 5095 static void bnxt_init_stats(struct bnxt *bp) 5096 { 5097 struct bnxt_napi *bnapi = bp->bnapi[0]; 5098 struct bnxt_cp_ring_info *cpr; 5099 struct bnxt_stats_mem *stats; 5100 __le64 *rx_stats, *tx_stats; 5101 int rc, rx_count, tx_count; 5102 u64 *rx_masks, *tx_masks; 5103 u64 mask; 5104 u8 flags; 5105 5106 cpr = &bnapi->cp_ring; 5107 stats = &cpr->stats; 5108 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 5109 if (rc) { 5110 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 5111 mask = (1ULL << 48) - 1; 5112 else 5113 mask = -1ULL; 5114 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 5115 } 5116 if (bp->flags & BNXT_FLAG_PORT_STATS) { 5117 stats = &bp->port_stats; 5118 rx_stats = stats->hw_stats; 5119 rx_masks = stats->hw_masks; 5120 rx_count = sizeof(struct rx_port_stats) / 8; 5121 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 5122 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 5123 tx_count = sizeof(struct tx_port_stats) / 8; 5124 5125 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 5126 rc = bnxt_hwrm_port_qstats(bp, flags); 5127 if (rc) { 5128 mask = (1ULL << 40) - 1; 5129 5130 bnxt_fill_masks(rx_masks, mask, rx_count); 5131 bnxt_fill_masks(tx_masks, mask, tx_count); 5132 } else { 5133 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 5134 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 5135 bnxt_hwrm_port_qstats(bp, 0); 5136 } 5137 } 5138 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 5139 stats = &bp->rx_port_stats_ext; 5140 rx_stats = stats->hw_stats; 5141 rx_masks = stats->hw_masks; 5142 rx_count = sizeof(struct rx_port_stats_ext) / 8; 5143 stats = &bp->tx_port_stats_ext; 5144 tx_stats = stats->hw_stats; 5145 tx_masks = stats->hw_masks; 5146 tx_count = sizeof(struct tx_port_stats_ext) / 8; 5147 5148 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 5149 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 5150 if (rc) { 5151 mask = (1ULL << 40) - 1; 5152 5153 bnxt_fill_masks(rx_masks, mask, rx_count); 5154 if (tx_stats) 5155 bnxt_fill_masks(tx_masks, mask, tx_count); 5156 } else { 5157 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 5158 if (tx_stats) 5159 bnxt_copy_hw_masks(tx_masks, tx_stats, 5160 tx_count); 5161 bnxt_hwrm_port_qstats_ext(bp, 0); 5162 } 5163 } 5164 } 5165 5166 static void bnxt_free_port_stats(struct bnxt *bp) 5167 { 5168 bp->flags &= ~BNXT_FLAG_PORT_STATS; 5169 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 5170 5171 bnxt_free_stats_mem(bp, &bp->port_stats); 5172 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 5173 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 5174 } 5175 5176 static void bnxt_free_ring_stats(struct bnxt *bp) 5177 { 5178 int i; 5179 5180 if (!bp->bnapi) 5181 return; 5182 5183 for (i = 0; i < bp->cp_nr_rings; i++) { 5184 struct bnxt_napi *bnapi = bp->bnapi[i]; 5185 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5186 5187 bnxt_free_stats_mem(bp, &cpr->stats); 5188 5189 kfree(cpr->sw_stats); 5190 cpr->sw_stats = NULL; 5191 } 5192 } 5193 5194 static int bnxt_alloc_stats(struct bnxt *bp) 5195 { 5196 u32 size, i; 5197 int rc; 5198 5199 size = bp->hw_ring_stats_size; 5200 5201 for (i = 0; i < bp->cp_nr_rings; i++) { 5202 struct bnxt_napi *bnapi = bp->bnapi[i]; 5203 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5204 5205 cpr->sw_stats = kzalloc(sizeof(*cpr->sw_stats), GFP_KERNEL); 5206 if (!cpr->sw_stats) 5207 return -ENOMEM; 5208 5209 cpr->stats.len = size; 5210 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 5211 if (rc) 5212 return rc; 5213 5214 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 5215 } 5216 5217 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 5218 return 0; 5219 5220 if (bp->port_stats.hw_stats) 5221 goto alloc_ext_stats; 5222 5223 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 5224 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 5225 if (rc) 5226 return rc; 5227 5228 bp->flags |= BNXT_FLAG_PORT_STATS; 5229 5230 alloc_ext_stats: 5231 /* Display extended statistics only if FW supports it */ 5232 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 5233 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 5234 return 0; 5235 5236 if (bp->rx_port_stats_ext.hw_stats) 5237 goto alloc_tx_ext_stats; 5238 5239 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 5240 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 5241 /* Extended stats are optional */ 5242 if (rc) 5243 return 0; 5244 5245 alloc_tx_ext_stats: 5246 if (bp->tx_port_stats_ext.hw_stats) 5247 return 0; 5248 5249 if (bp->hwrm_spec_code >= 0x10902 || 5250 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 5251 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 5252 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 5253 /* Extended stats are optional */ 5254 if (rc) 5255 return 0; 5256 } 5257 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 5258 return 0; 5259 } 5260 5261 static void bnxt_clear_ring_indices(struct bnxt *bp) 5262 { 5263 int i, j; 5264 5265 if (!bp->bnapi) 5266 return; 5267 5268 for (i = 0; i < bp->cp_nr_rings; i++) { 5269 struct bnxt_napi *bnapi = bp->bnapi[i]; 5270 struct bnxt_cp_ring_info *cpr; 5271 struct bnxt_rx_ring_info *rxr; 5272 struct bnxt_tx_ring_info *txr; 5273 5274 if (!bnapi) 5275 continue; 5276 5277 cpr = &bnapi->cp_ring; 5278 cpr->cp_raw_cons = 0; 5279 5280 bnxt_for_each_napi_tx(j, bnapi, txr) { 5281 txr->tx_prod = 0; 5282 txr->tx_cons = 0; 5283 txr->tx_hw_cons = 0; 5284 } 5285 5286 rxr = bnapi->rx_ring; 5287 if (rxr) { 5288 rxr->rx_prod = 0; 5289 rxr->rx_agg_prod = 0; 5290 rxr->rx_sw_agg_prod = 0; 5291 rxr->rx_next_cons = 0; 5292 } 5293 bnapi->events = 0; 5294 } 5295 } 5296 5297 void bnxt_insert_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5298 { 5299 u8 type = fltr->type, flags = fltr->flags; 5300 5301 INIT_LIST_HEAD(&fltr->list); 5302 if ((type == BNXT_FLTR_TYPE_L2 && flags & BNXT_ACT_RING_DST) || 5303 (type == BNXT_FLTR_TYPE_NTUPLE && flags & BNXT_ACT_NO_AGING)) 5304 list_add_tail(&fltr->list, &bp->usr_fltr_list); 5305 } 5306 5307 void bnxt_del_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5308 { 5309 if (!list_empty(&fltr->list)) 5310 list_del_init(&fltr->list); 5311 } 5312 5313 static void bnxt_clear_usr_fltrs(struct bnxt *bp, bool all) 5314 { 5315 struct bnxt_filter_base *usr_fltr, *tmp; 5316 5317 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) { 5318 if (!all && usr_fltr->type == BNXT_FLTR_TYPE_L2) 5319 continue; 5320 bnxt_del_one_usr_fltr(bp, usr_fltr); 5321 } 5322 } 5323 5324 static void bnxt_del_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5325 { 5326 hlist_del(&fltr->hash); 5327 bnxt_del_one_usr_fltr(bp, fltr); 5328 if (fltr->flags) { 5329 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 5330 bp->ntp_fltr_count--; 5331 } 5332 kfree(fltr); 5333 } 5334 5335 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool all) 5336 { 5337 int i; 5338 5339 netdev_assert_locked_or_invisible(bp->dev); 5340 5341 /* Under netdev instance lock and all our NAPIs have been disabled. 5342 * It's safe to delete the hash table. 5343 */ 5344 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 5345 struct hlist_head *head; 5346 struct hlist_node *tmp; 5347 struct bnxt_ntuple_filter *fltr; 5348 5349 head = &bp->ntp_fltr_hash_tbl[i]; 5350 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 5351 bnxt_del_l2_filter(bp, fltr->l2_fltr); 5352 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 5353 !list_empty(&fltr->base.list))) 5354 continue; 5355 bnxt_del_fltr(bp, &fltr->base); 5356 } 5357 } 5358 if (!all) 5359 return; 5360 5361 bitmap_free(bp->ntp_fltr_bmap); 5362 bp->ntp_fltr_bmap = NULL; 5363 bp->ntp_fltr_count = 0; 5364 } 5365 5366 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 5367 { 5368 int i, rc = 0; 5369 5370 if (!(bp->flags & BNXT_FLAG_RFS) || bp->ntp_fltr_bmap) 5371 return 0; 5372 5373 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 5374 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 5375 5376 bp->ntp_fltr_count = 0; 5377 bp->ntp_fltr_bmap = bitmap_zalloc(bp->max_fltr, GFP_KERNEL); 5378 5379 if (!bp->ntp_fltr_bmap) 5380 rc = -ENOMEM; 5381 5382 return rc; 5383 } 5384 5385 static void bnxt_free_l2_filters(struct bnxt *bp, bool all) 5386 { 5387 int i; 5388 5389 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) { 5390 struct hlist_head *head; 5391 struct hlist_node *tmp; 5392 struct bnxt_l2_filter *fltr; 5393 5394 head = &bp->l2_fltr_hash_tbl[i]; 5395 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 5396 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 5397 !list_empty(&fltr->base.list))) 5398 continue; 5399 bnxt_del_fltr(bp, &fltr->base); 5400 } 5401 } 5402 } 5403 5404 static void bnxt_init_l2_fltr_tbl(struct bnxt *bp) 5405 { 5406 int i; 5407 5408 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) 5409 INIT_HLIST_HEAD(&bp->l2_fltr_hash_tbl[i]); 5410 get_random_bytes(&bp->hash_seed, sizeof(bp->hash_seed)); 5411 } 5412 5413 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 5414 { 5415 bnxt_free_vnic_attributes(bp); 5416 bnxt_free_tx_rings(bp); 5417 bnxt_free_rx_rings(bp); 5418 bnxt_free_cp_rings(bp); 5419 bnxt_free_all_cp_arrays(bp); 5420 bnxt_free_ntp_fltrs(bp, false); 5421 bnxt_free_l2_filters(bp, false); 5422 if (irq_re_init) { 5423 bnxt_free_ring_stats(bp); 5424 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 5425 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 5426 bnxt_free_port_stats(bp); 5427 bnxt_free_ring_grps(bp); 5428 bnxt_free_vnics(bp); 5429 kfree(bp->tx_ring_map); 5430 bp->tx_ring_map = NULL; 5431 kfree(bp->tx_ring); 5432 bp->tx_ring = NULL; 5433 kfree(bp->rx_ring); 5434 bp->rx_ring = NULL; 5435 kfree(bp->bnapi); 5436 bp->bnapi = NULL; 5437 } else { 5438 bnxt_clear_ring_indices(bp); 5439 } 5440 } 5441 5442 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 5443 { 5444 int i, j, rc, size, arr_size; 5445 void *bnapi; 5446 5447 if (irq_re_init) { 5448 /* Allocate bnapi mem pointer array and mem block for 5449 * all queues 5450 */ 5451 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 5452 bp->cp_nr_rings); 5453 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 5454 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 5455 if (!bnapi) 5456 return -ENOMEM; 5457 5458 bp->bnapi = bnapi; 5459 bnapi += arr_size; 5460 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 5461 bp->bnapi[i] = bnapi; 5462 bp->bnapi[i]->index = i; 5463 bp->bnapi[i]->bp = bp; 5464 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5465 struct bnxt_cp_ring_info *cpr = 5466 &bp->bnapi[i]->cp_ring; 5467 5468 cpr->cp_ring_struct.ring_mem.flags = 5469 BNXT_RMEM_RING_PTE_FLAG; 5470 } 5471 } 5472 5473 bp->rx_ring = kcalloc(bp->rx_nr_rings, 5474 sizeof(struct bnxt_rx_ring_info), 5475 GFP_KERNEL); 5476 if (!bp->rx_ring) 5477 return -ENOMEM; 5478 5479 for (i = 0; i < bp->rx_nr_rings; i++) { 5480 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5481 5482 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5483 rxr->rx_ring_struct.ring_mem.flags = 5484 BNXT_RMEM_RING_PTE_FLAG; 5485 rxr->rx_agg_ring_struct.ring_mem.flags = 5486 BNXT_RMEM_RING_PTE_FLAG; 5487 } else { 5488 rxr->rx_cpr = &bp->bnapi[i]->cp_ring; 5489 } 5490 rxr->bnapi = bp->bnapi[i]; 5491 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 5492 } 5493 5494 bp->tx_ring = kcalloc(bp->tx_nr_rings, 5495 sizeof(struct bnxt_tx_ring_info), 5496 GFP_KERNEL); 5497 if (!bp->tx_ring) 5498 return -ENOMEM; 5499 5500 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 5501 GFP_KERNEL); 5502 5503 if (!bp->tx_ring_map) 5504 return -ENOMEM; 5505 5506 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 5507 j = 0; 5508 else 5509 j = bp->rx_nr_rings; 5510 5511 for (i = 0; i < bp->tx_nr_rings; i++) { 5512 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5513 struct bnxt_napi *bnapi2; 5514 5515 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 5516 txr->tx_ring_struct.ring_mem.flags = 5517 BNXT_RMEM_RING_PTE_FLAG; 5518 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 5519 if (i >= bp->tx_nr_rings_xdp) { 5520 int k = j + BNXT_RING_TO_TC_OFF(bp, i); 5521 5522 bnapi2 = bp->bnapi[k]; 5523 txr->txq_index = i - bp->tx_nr_rings_xdp; 5524 txr->tx_napi_idx = 5525 BNXT_RING_TO_TC(bp, txr->txq_index); 5526 bnapi2->tx_ring[txr->tx_napi_idx] = txr; 5527 bnapi2->tx_int = bnxt_tx_int; 5528 } else { 5529 bnapi2 = bp->bnapi[j]; 5530 bnapi2->flags |= BNXT_NAPI_FLAG_XDP; 5531 bnapi2->tx_ring[0] = txr; 5532 bnapi2->tx_int = bnxt_tx_int_xdp; 5533 j++; 5534 } 5535 txr->bnapi = bnapi2; 5536 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 5537 txr->tx_cpr = &bnapi2->cp_ring; 5538 } 5539 5540 rc = bnxt_alloc_stats(bp); 5541 if (rc) 5542 goto alloc_mem_err; 5543 bnxt_init_stats(bp); 5544 5545 rc = bnxt_alloc_ntp_fltrs(bp); 5546 if (rc) 5547 goto alloc_mem_err; 5548 5549 rc = bnxt_alloc_vnics(bp); 5550 if (rc) 5551 goto alloc_mem_err; 5552 } 5553 5554 rc = bnxt_alloc_all_cp_arrays(bp); 5555 if (rc) 5556 goto alloc_mem_err; 5557 5558 bnxt_init_ring_struct(bp); 5559 5560 rc = bnxt_alloc_rx_rings(bp); 5561 if (rc) 5562 goto alloc_mem_err; 5563 5564 rc = bnxt_alloc_tx_rings(bp); 5565 if (rc) 5566 goto alloc_mem_err; 5567 5568 rc = bnxt_alloc_cp_rings(bp); 5569 if (rc) 5570 goto alloc_mem_err; 5571 5572 bp->vnic_info[BNXT_VNIC_DEFAULT].flags |= BNXT_VNIC_RSS_FLAG | 5573 BNXT_VNIC_MCAST_FLAG | 5574 BNXT_VNIC_UCAST_FLAG; 5575 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp) && (bp->flags & BNXT_FLAG_RFS)) 5576 bp->vnic_info[BNXT_VNIC_NTUPLE].flags |= 5577 BNXT_VNIC_RSS_FLAG | BNXT_VNIC_NTUPLE_FLAG; 5578 5579 rc = bnxt_alloc_vnic_attributes(bp); 5580 if (rc) 5581 goto alloc_mem_err; 5582 return 0; 5583 5584 alloc_mem_err: 5585 bnxt_free_mem(bp, true); 5586 return rc; 5587 } 5588 5589 static void bnxt_disable_int(struct bnxt *bp) 5590 { 5591 int i; 5592 5593 if (!bp->bnapi) 5594 return; 5595 5596 for (i = 0; i < bp->cp_nr_rings; i++) { 5597 struct bnxt_napi *bnapi = bp->bnapi[i]; 5598 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5599 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5600 5601 if (ring->fw_ring_id != INVALID_HW_RING_ID) 5602 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5603 } 5604 } 5605 5606 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 5607 { 5608 struct bnxt_napi *bnapi = bp->bnapi[n]; 5609 struct bnxt_cp_ring_info *cpr; 5610 5611 cpr = &bnapi->cp_ring; 5612 return cpr->cp_ring_struct.map_idx; 5613 } 5614 5615 static void bnxt_disable_int_sync(struct bnxt *bp) 5616 { 5617 int i; 5618 5619 if (!bp->irq_tbl) 5620 return; 5621 5622 atomic_inc(&bp->intr_sem); 5623 5624 bnxt_disable_int(bp); 5625 for (i = 0; i < bp->cp_nr_rings; i++) { 5626 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 5627 5628 synchronize_irq(bp->irq_tbl[map_idx].vector); 5629 } 5630 } 5631 5632 static void bnxt_enable_int(struct bnxt *bp) 5633 { 5634 int i; 5635 5636 atomic_set(&bp->intr_sem, 0); 5637 for (i = 0; i < bp->cp_nr_rings; i++) { 5638 struct bnxt_napi *bnapi = bp->bnapi[i]; 5639 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5640 5641 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 5642 } 5643 } 5644 5645 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 5646 bool async_only) 5647 { 5648 DECLARE_BITMAP(async_events_bmap, 256); 5649 u32 *events = (u32 *)async_events_bmap; 5650 struct hwrm_func_drv_rgtr_output *resp; 5651 struct hwrm_func_drv_rgtr_input *req; 5652 u32 flags; 5653 int rc, i; 5654 5655 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR); 5656 if (rc) 5657 return rc; 5658 5659 req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 5660 FUNC_DRV_RGTR_REQ_ENABLES_VER | 5661 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5662 5663 req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 5664 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 5665 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 5666 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 5667 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 5668 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 5669 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 5670 if (bp->fw_cap & BNXT_FW_CAP_NPAR_1_2) 5671 flags |= FUNC_DRV_RGTR_REQ_FLAGS_NPAR_1_2_SUPPORT; 5672 req->flags = cpu_to_le32(flags); 5673 req->ver_maj_8b = DRV_VER_MAJ; 5674 req->ver_min_8b = DRV_VER_MIN; 5675 req->ver_upd_8b = DRV_VER_UPD; 5676 req->ver_maj = cpu_to_le16(DRV_VER_MAJ); 5677 req->ver_min = cpu_to_le16(DRV_VER_MIN); 5678 req->ver_upd = cpu_to_le16(DRV_VER_UPD); 5679 5680 if (BNXT_PF(bp)) { 5681 u32 data[8]; 5682 int i; 5683 5684 memset(data, 0, sizeof(data)); 5685 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 5686 u16 cmd = bnxt_vf_req_snif[i]; 5687 unsigned int bit, idx; 5688 5689 idx = cmd / 32; 5690 bit = cmd % 32; 5691 data[idx] |= 1 << bit; 5692 } 5693 5694 for (i = 0; i < 8; i++) 5695 req->vf_req_fwd[i] = cpu_to_le32(data[i]); 5696 5697 req->enables |= 5698 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 5699 } 5700 5701 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 5702 req->flags |= cpu_to_le32( 5703 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 5704 5705 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 5706 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 5707 u16 event_id = bnxt_async_events_arr[i]; 5708 5709 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 5710 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 5711 continue; 5712 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE && 5713 !bp->ptp_cfg) 5714 continue; 5715 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 5716 } 5717 if (bmap && bmap_size) { 5718 for (i = 0; i < bmap_size; i++) { 5719 if (test_bit(i, bmap)) 5720 __set_bit(i, async_events_bmap); 5721 } 5722 } 5723 for (i = 0; i < 8; i++) 5724 req->async_event_fwd[i] |= cpu_to_le32(events[i]); 5725 5726 if (async_only) 5727 req->enables = 5728 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5729 5730 resp = hwrm_req_hold(bp, req); 5731 rc = hwrm_req_send(bp, req); 5732 if (!rc) { 5733 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 5734 if (resp->flags & 5735 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 5736 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 5737 } 5738 hwrm_req_drop(bp, req); 5739 return rc; 5740 } 5741 5742 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 5743 { 5744 struct hwrm_func_drv_unrgtr_input *req; 5745 int rc; 5746 5747 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 5748 return 0; 5749 5750 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR); 5751 if (rc) 5752 return rc; 5753 return hwrm_req_send(bp, req); 5754 } 5755 5756 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa); 5757 5758 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 5759 { 5760 struct hwrm_tunnel_dst_port_free_input *req; 5761 int rc; 5762 5763 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN && 5764 bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID) 5765 return 0; 5766 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE && 5767 bp->nge_fw_dst_port_id == INVALID_HW_RING_ID) 5768 return 0; 5769 5770 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE); 5771 if (rc) 5772 return rc; 5773 5774 req->tunnel_type = tunnel_type; 5775 5776 switch (tunnel_type) { 5777 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 5778 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 5779 bp->vxlan_port = 0; 5780 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 5781 break; 5782 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 5783 req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 5784 bp->nge_port = 0; 5785 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 5786 break; 5787 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE: 5788 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_gpe_fw_dst_port_id); 5789 bp->vxlan_gpe_port = 0; 5790 bp->vxlan_gpe_fw_dst_port_id = INVALID_HW_RING_ID; 5791 break; 5792 default: 5793 break; 5794 } 5795 5796 rc = hwrm_req_send(bp, req); 5797 if (rc) 5798 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 5799 rc); 5800 if (bp->flags & BNXT_FLAG_TPA) 5801 bnxt_set_tpa(bp, true); 5802 return rc; 5803 } 5804 5805 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 5806 u8 tunnel_type) 5807 { 5808 struct hwrm_tunnel_dst_port_alloc_output *resp; 5809 struct hwrm_tunnel_dst_port_alloc_input *req; 5810 int rc; 5811 5812 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC); 5813 if (rc) 5814 return rc; 5815 5816 req->tunnel_type = tunnel_type; 5817 req->tunnel_dst_port_val = port; 5818 5819 resp = hwrm_req_hold(bp, req); 5820 rc = hwrm_req_send(bp, req); 5821 if (rc) { 5822 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 5823 rc); 5824 goto err_out; 5825 } 5826 5827 switch (tunnel_type) { 5828 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 5829 bp->vxlan_port = port; 5830 bp->vxlan_fw_dst_port_id = 5831 le16_to_cpu(resp->tunnel_dst_port_id); 5832 break; 5833 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 5834 bp->nge_port = port; 5835 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 5836 break; 5837 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE: 5838 bp->vxlan_gpe_port = port; 5839 bp->vxlan_gpe_fw_dst_port_id = 5840 le16_to_cpu(resp->tunnel_dst_port_id); 5841 break; 5842 default: 5843 break; 5844 } 5845 if (bp->flags & BNXT_FLAG_TPA) 5846 bnxt_set_tpa(bp, true); 5847 5848 err_out: 5849 hwrm_req_drop(bp, req); 5850 return rc; 5851 } 5852 5853 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 5854 { 5855 struct hwrm_cfa_l2_set_rx_mask_input *req; 5856 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5857 int rc; 5858 5859 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK); 5860 if (rc) 5861 return rc; 5862 5863 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5864 if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) { 5865 req->num_mc_entries = cpu_to_le32(vnic->mc_list_count); 5866 req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 5867 } 5868 req->mask = cpu_to_le32(vnic->rx_mask); 5869 return hwrm_req_send_silent(bp, req); 5870 } 5871 5872 void bnxt_del_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5873 { 5874 if (!atomic_dec_and_test(&fltr->refcnt)) 5875 return; 5876 spin_lock_bh(&bp->ntp_fltr_lock); 5877 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 5878 spin_unlock_bh(&bp->ntp_fltr_lock); 5879 return; 5880 } 5881 hlist_del_rcu(&fltr->base.hash); 5882 bnxt_del_one_usr_fltr(bp, &fltr->base); 5883 if (fltr->base.flags) { 5884 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 5885 bp->ntp_fltr_count--; 5886 } 5887 spin_unlock_bh(&bp->ntp_fltr_lock); 5888 kfree_rcu(fltr, base.rcu); 5889 } 5890 5891 static struct bnxt_l2_filter *__bnxt_lookup_l2_filter(struct bnxt *bp, 5892 struct bnxt_l2_key *key, 5893 u32 idx) 5894 { 5895 struct hlist_head *head = &bp->l2_fltr_hash_tbl[idx]; 5896 struct bnxt_l2_filter *fltr; 5897 5898 hlist_for_each_entry_rcu(fltr, head, base.hash) { 5899 struct bnxt_l2_key *l2_key = &fltr->l2_key; 5900 5901 if (ether_addr_equal(l2_key->dst_mac_addr, key->dst_mac_addr) && 5902 l2_key->vlan == key->vlan) 5903 return fltr; 5904 } 5905 return NULL; 5906 } 5907 5908 static struct bnxt_l2_filter *bnxt_lookup_l2_filter(struct bnxt *bp, 5909 struct bnxt_l2_key *key, 5910 u32 idx) 5911 { 5912 struct bnxt_l2_filter *fltr = NULL; 5913 5914 rcu_read_lock(); 5915 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 5916 if (fltr) 5917 atomic_inc(&fltr->refcnt); 5918 rcu_read_unlock(); 5919 return fltr; 5920 } 5921 5922 #define BNXT_IPV4_4TUPLE(bp, fkeys) \ 5923 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5924 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4) || \ 5925 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5926 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4)) 5927 5928 #define BNXT_IPV6_4TUPLE(bp, fkeys) \ 5929 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5930 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6) || \ 5931 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5932 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6)) 5933 5934 static u32 bnxt_get_rss_flow_tuple_len(struct bnxt *bp, struct flow_keys *fkeys) 5935 { 5936 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 5937 if (BNXT_IPV4_4TUPLE(bp, fkeys)) 5938 return sizeof(fkeys->addrs.v4addrs) + 5939 sizeof(fkeys->ports); 5940 5941 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4) 5942 return sizeof(fkeys->addrs.v4addrs); 5943 } 5944 5945 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 5946 if (BNXT_IPV6_4TUPLE(bp, fkeys)) 5947 return sizeof(fkeys->addrs.v6addrs) + 5948 sizeof(fkeys->ports); 5949 5950 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6) 5951 return sizeof(fkeys->addrs.v6addrs); 5952 } 5953 5954 return 0; 5955 } 5956 5957 static u32 bnxt_toeplitz(struct bnxt *bp, struct flow_keys *fkeys, 5958 const unsigned char *key) 5959 { 5960 u64 prefix = bp->toeplitz_prefix, hash = 0; 5961 struct bnxt_ipv4_tuple tuple4; 5962 struct bnxt_ipv6_tuple tuple6; 5963 int i, j, len = 0; 5964 u8 *four_tuple; 5965 5966 len = bnxt_get_rss_flow_tuple_len(bp, fkeys); 5967 if (!len) 5968 return 0; 5969 5970 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 5971 tuple4.v4addrs = fkeys->addrs.v4addrs; 5972 tuple4.ports = fkeys->ports; 5973 four_tuple = (unsigned char *)&tuple4; 5974 } else { 5975 tuple6.v6addrs = fkeys->addrs.v6addrs; 5976 tuple6.ports = fkeys->ports; 5977 four_tuple = (unsigned char *)&tuple6; 5978 } 5979 5980 for (i = 0, j = 8; i < len; i++, j++) { 5981 u8 byte = four_tuple[i]; 5982 int bit; 5983 5984 for (bit = 0; bit < 8; bit++, prefix <<= 1, byte <<= 1) { 5985 if (byte & 0x80) 5986 hash ^= prefix; 5987 } 5988 prefix |= (j < HW_HASH_KEY_SIZE) ? key[j] : 0; 5989 } 5990 5991 /* The valid part of the hash is in the upper 32 bits. */ 5992 return (hash >> 32) & BNXT_NTP_FLTR_HASH_MASK; 5993 } 5994 5995 #ifdef CONFIG_RFS_ACCEL 5996 static struct bnxt_l2_filter * 5997 bnxt_lookup_l2_filter_from_key(struct bnxt *bp, struct bnxt_l2_key *key) 5998 { 5999 struct bnxt_l2_filter *fltr; 6000 u32 idx; 6001 6002 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 6003 BNXT_L2_FLTR_HASH_MASK; 6004 fltr = bnxt_lookup_l2_filter(bp, key, idx); 6005 return fltr; 6006 } 6007 #endif 6008 6009 static int bnxt_init_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr, 6010 struct bnxt_l2_key *key, u32 idx) 6011 { 6012 struct hlist_head *head; 6013 6014 ether_addr_copy(fltr->l2_key.dst_mac_addr, key->dst_mac_addr); 6015 fltr->l2_key.vlan = key->vlan; 6016 fltr->base.type = BNXT_FLTR_TYPE_L2; 6017 if (fltr->base.flags) { 6018 int bit_id; 6019 6020 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 6021 bp->max_fltr, 0); 6022 if (bit_id < 0) 6023 return -ENOMEM; 6024 fltr->base.sw_id = (u16)bit_id; 6025 bp->ntp_fltr_count++; 6026 } 6027 head = &bp->l2_fltr_hash_tbl[idx]; 6028 hlist_add_head_rcu(&fltr->base.hash, head); 6029 bnxt_insert_usr_fltr(bp, &fltr->base); 6030 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 6031 atomic_set(&fltr->refcnt, 1); 6032 return 0; 6033 } 6034 6035 static struct bnxt_l2_filter *bnxt_alloc_l2_filter(struct bnxt *bp, 6036 struct bnxt_l2_key *key, 6037 gfp_t gfp) 6038 { 6039 struct bnxt_l2_filter *fltr; 6040 u32 idx; 6041 int rc; 6042 6043 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 6044 BNXT_L2_FLTR_HASH_MASK; 6045 fltr = bnxt_lookup_l2_filter(bp, key, idx); 6046 if (fltr) 6047 return fltr; 6048 6049 fltr = kzalloc(sizeof(*fltr), gfp); 6050 if (!fltr) 6051 return ERR_PTR(-ENOMEM); 6052 spin_lock_bh(&bp->ntp_fltr_lock); 6053 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 6054 spin_unlock_bh(&bp->ntp_fltr_lock); 6055 if (rc) { 6056 bnxt_del_l2_filter(bp, fltr); 6057 fltr = ERR_PTR(rc); 6058 } 6059 return fltr; 6060 } 6061 6062 struct bnxt_l2_filter *bnxt_alloc_new_l2_filter(struct bnxt *bp, 6063 struct bnxt_l2_key *key, 6064 u16 flags) 6065 { 6066 struct bnxt_l2_filter *fltr; 6067 u32 idx; 6068 int rc; 6069 6070 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 6071 BNXT_L2_FLTR_HASH_MASK; 6072 spin_lock_bh(&bp->ntp_fltr_lock); 6073 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 6074 if (fltr) { 6075 fltr = ERR_PTR(-EEXIST); 6076 goto l2_filter_exit; 6077 } 6078 fltr = kzalloc(sizeof(*fltr), GFP_ATOMIC); 6079 if (!fltr) { 6080 fltr = ERR_PTR(-ENOMEM); 6081 goto l2_filter_exit; 6082 } 6083 fltr->base.flags = flags; 6084 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 6085 if (rc) { 6086 spin_unlock_bh(&bp->ntp_fltr_lock); 6087 bnxt_del_l2_filter(bp, fltr); 6088 return ERR_PTR(rc); 6089 } 6090 6091 l2_filter_exit: 6092 spin_unlock_bh(&bp->ntp_fltr_lock); 6093 return fltr; 6094 } 6095 6096 static u16 bnxt_vf_target_id(struct bnxt_pf_info *pf, u16 vf_idx) 6097 { 6098 #ifdef CONFIG_BNXT_SRIOV 6099 struct bnxt_vf_info *vf = &pf->vf[vf_idx]; 6100 6101 return vf->fw_fid; 6102 #else 6103 return INVALID_HW_RING_ID; 6104 #endif 6105 } 6106 6107 int bnxt_hwrm_l2_filter_free(struct bnxt *bp, struct bnxt_l2_filter *fltr) 6108 { 6109 struct hwrm_cfa_l2_filter_free_input *req; 6110 u16 target_id = 0xffff; 6111 int rc; 6112 6113 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 6114 struct bnxt_pf_info *pf = &bp->pf; 6115 6116 if (fltr->base.vf_idx >= pf->active_vfs) 6117 return -EINVAL; 6118 6119 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 6120 if (target_id == INVALID_HW_RING_ID) 6121 return -EINVAL; 6122 } 6123 6124 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 6125 if (rc) 6126 return rc; 6127 6128 req->target_id = cpu_to_le16(target_id); 6129 req->l2_filter_id = fltr->base.filter_id; 6130 return hwrm_req_send(bp, req); 6131 } 6132 6133 int bnxt_hwrm_l2_filter_alloc(struct bnxt *bp, struct bnxt_l2_filter *fltr) 6134 { 6135 struct hwrm_cfa_l2_filter_alloc_output *resp; 6136 struct hwrm_cfa_l2_filter_alloc_input *req; 6137 u16 target_id = 0xffff; 6138 int rc; 6139 6140 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 6141 struct bnxt_pf_info *pf = &bp->pf; 6142 6143 if (fltr->base.vf_idx >= pf->active_vfs) 6144 return -EINVAL; 6145 6146 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 6147 } 6148 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC); 6149 if (rc) 6150 return rc; 6151 6152 req->target_id = cpu_to_le16(target_id); 6153 req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 6154 6155 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 6156 req->flags |= 6157 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 6158 req->dst_id = cpu_to_le16(fltr->base.fw_vnic_id); 6159 req->enables = 6160 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 6161 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 6162 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 6163 ether_addr_copy(req->l2_addr, fltr->l2_key.dst_mac_addr); 6164 eth_broadcast_addr(req->l2_addr_mask); 6165 6166 if (fltr->l2_key.vlan) { 6167 req->enables |= 6168 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN | 6169 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN_MASK | 6170 CFA_L2_FILTER_ALLOC_REQ_ENABLES_NUM_VLANS); 6171 req->num_vlans = 1; 6172 req->l2_ivlan = cpu_to_le16(fltr->l2_key.vlan); 6173 req->l2_ivlan_mask = cpu_to_le16(0xfff); 6174 } 6175 6176 resp = hwrm_req_hold(bp, req); 6177 rc = hwrm_req_send(bp, req); 6178 if (!rc) { 6179 fltr->base.filter_id = resp->l2_filter_id; 6180 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 6181 } 6182 hwrm_req_drop(bp, req); 6183 return rc; 6184 } 6185 6186 int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 6187 struct bnxt_ntuple_filter *fltr) 6188 { 6189 struct hwrm_cfa_ntuple_filter_free_input *req; 6190 int rc; 6191 6192 set_bit(BNXT_FLTR_FW_DELETED, &fltr->base.state); 6193 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE); 6194 if (rc) 6195 return rc; 6196 6197 req->ntuple_filter_id = fltr->base.filter_id; 6198 return hwrm_req_send(bp, req); 6199 } 6200 6201 #define BNXT_NTP_FLTR_FLAGS \ 6202 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 6203 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 6204 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 6205 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 6206 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 6207 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 6208 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 6209 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 6210 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 6211 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 6212 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 6213 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 6214 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 6215 6216 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 6217 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 6218 6219 void bnxt_fill_ipv6_mask(__be32 mask[4]) 6220 { 6221 int i; 6222 6223 for (i = 0; i < 4; i++) 6224 mask[i] = cpu_to_be32(~0); 6225 } 6226 6227 static void 6228 bnxt_cfg_rfs_ring_tbl_idx(struct bnxt *bp, 6229 struct hwrm_cfa_ntuple_filter_alloc_input *req, 6230 struct bnxt_ntuple_filter *fltr) 6231 { 6232 u16 rxq = fltr->base.rxq; 6233 6234 if (fltr->base.flags & BNXT_ACT_RSS_CTX) { 6235 struct ethtool_rxfh_context *ctx; 6236 struct bnxt_rss_ctx *rss_ctx; 6237 struct bnxt_vnic_info *vnic; 6238 6239 ctx = xa_load(&bp->dev->ethtool->rss_ctx, 6240 fltr->base.fw_vnic_id); 6241 if (ctx) { 6242 rss_ctx = ethtool_rxfh_context_priv(ctx); 6243 vnic = &rss_ctx->vnic; 6244 6245 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 6246 } 6247 return; 6248 } 6249 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 6250 struct bnxt_vnic_info *vnic; 6251 u32 enables; 6252 6253 vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE]; 6254 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 6255 enables = CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_RFS_RING_TBL_IDX; 6256 req->enables |= cpu_to_le32(enables); 6257 req->rfs_ring_tbl_idx = cpu_to_le16(rxq); 6258 } else { 6259 u32 flags; 6260 6261 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 6262 req->flags |= cpu_to_le32(flags); 6263 req->dst_id = cpu_to_le16(rxq); 6264 } 6265 } 6266 6267 int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 6268 struct bnxt_ntuple_filter *fltr) 6269 { 6270 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 6271 struct hwrm_cfa_ntuple_filter_alloc_input *req; 6272 struct bnxt_flow_masks *masks = &fltr->fmasks; 6273 struct flow_keys *keys = &fltr->fkeys; 6274 struct bnxt_l2_filter *l2_fltr; 6275 struct bnxt_vnic_info *vnic; 6276 int rc; 6277 6278 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC); 6279 if (rc) 6280 return rc; 6281 6282 l2_fltr = fltr->l2_fltr; 6283 req->l2_filter_id = l2_fltr->base.filter_id; 6284 6285 if (fltr->base.flags & BNXT_ACT_DROP) { 6286 req->flags = 6287 cpu_to_le32(CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DROP); 6288 } else if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 6289 bnxt_cfg_rfs_ring_tbl_idx(bp, req, fltr); 6290 } else { 6291 vnic = &bp->vnic_info[fltr->base.rxq + 1]; 6292 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 6293 } 6294 req->enables |= cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 6295 6296 req->ethertype = htons(ETH_P_IP); 6297 req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 6298 req->ip_protocol = keys->basic.ip_proto; 6299 6300 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 6301 req->ethertype = htons(ETH_P_IPV6); 6302 req->ip_addr_type = 6303 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 6304 *(struct in6_addr *)&req->src_ipaddr[0] = keys->addrs.v6addrs.src; 6305 *(struct in6_addr *)&req->src_ipaddr_mask[0] = masks->addrs.v6addrs.src; 6306 *(struct in6_addr *)&req->dst_ipaddr[0] = keys->addrs.v6addrs.dst; 6307 *(struct in6_addr *)&req->dst_ipaddr_mask[0] = masks->addrs.v6addrs.dst; 6308 } else { 6309 req->src_ipaddr[0] = keys->addrs.v4addrs.src; 6310 req->src_ipaddr_mask[0] = masks->addrs.v4addrs.src; 6311 req->dst_ipaddr[0] = keys->addrs.v4addrs.dst; 6312 req->dst_ipaddr_mask[0] = masks->addrs.v4addrs.dst; 6313 } 6314 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 6315 req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 6316 req->tunnel_type = 6317 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 6318 } 6319 6320 req->src_port = keys->ports.src; 6321 req->src_port_mask = masks->ports.src; 6322 req->dst_port = keys->ports.dst; 6323 req->dst_port_mask = masks->ports.dst; 6324 6325 resp = hwrm_req_hold(bp, req); 6326 rc = hwrm_req_send(bp, req); 6327 if (!rc) 6328 fltr->base.filter_id = resp->ntuple_filter_id; 6329 hwrm_req_drop(bp, req); 6330 return rc; 6331 } 6332 6333 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 6334 const u8 *mac_addr) 6335 { 6336 struct bnxt_l2_filter *fltr; 6337 struct bnxt_l2_key key; 6338 int rc; 6339 6340 ether_addr_copy(key.dst_mac_addr, mac_addr); 6341 key.vlan = 0; 6342 fltr = bnxt_alloc_l2_filter(bp, &key, GFP_KERNEL); 6343 if (IS_ERR(fltr)) 6344 return PTR_ERR(fltr); 6345 6346 fltr->base.fw_vnic_id = bp->vnic_info[vnic_id].fw_vnic_id; 6347 rc = bnxt_hwrm_l2_filter_alloc(bp, fltr); 6348 if (rc) 6349 bnxt_del_l2_filter(bp, fltr); 6350 else 6351 bp->vnic_info[vnic_id].l2_filters[idx] = fltr; 6352 return rc; 6353 } 6354 6355 static void bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 6356 { 6357 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 6358 6359 /* Any associated ntuple filters will also be cleared by firmware. */ 6360 for (i = 0; i < num_of_vnics; i++) { 6361 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 6362 6363 for (j = 0; j < vnic->uc_filter_count; j++) { 6364 struct bnxt_l2_filter *fltr = vnic->l2_filters[j]; 6365 6366 bnxt_hwrm_l2_filter_free(bp, fltr); 6367 bnxt_del_l2_filter(bp, fltr); 6368 } 6369 vnic->uc_filter_count = 0; 6370 } 6371 } 6372 6373 #define BNXT_DFLT_TUNL_TPA_BMAP \ 6374 (VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GRE | \ 6375 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV4 | \ 6376 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV6) 6377 6378 static void bnxt_hwrm_vnic_update_tunl_tpa(struct bnxt *bp, 6379 struct hwrm_vnic_tpa_cfg_input *req) 6380 { 6381 u32 tunl_tpa_bmap = BNXT_DFLT_TUNL_TPA_BMAP; 6382 6383 if (!(bp->fw_cap & BNXT_FW_CAP_VNIC_TUNNEL_TPA)) 6384 return; 6385 6386 if (bp->vxlan_port) 6387 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN; 6388 if (bp->vxlan_gpe_port) 6389 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN_GPE; 6390 if (bp->nge_port) 6391 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GENEVE; 6392 6393 req->enables |= cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_TNL_TPA_EN); 6394 req->tnl_tpa_en_bitmap = cpu_to_le32(tunl_tpa_bmap); 6395 } 6396 6397 int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6398 u32 tpa_flags) 6399 { 6400 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 6401 struct hwrm_vnic_tpa_cfg_input *req; 6402 int rc; 6403 6404 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 6405 return 0; 6406 6407 rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG); 6408 if (rc) 6409 return rc; 6410 6411 if (tpa_flags) { 6412 u16 mss = bp->dev->mtu - 40; 6413 u32 nsegs, n, segs = 0, flags; 6414 6415 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 6416 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 6417 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 6418 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 6419 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 6420 if (tpa_flags & BNXT_FLAG_GRO) 6421 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 6422 6423 req->flags = cpu_to_le32(flags); 6424 6425 req->enables = 6426 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 6427 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 6428 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 6429 6430 /* Number of segs are log2 units, and first packet is not 6431 * included as part of this units. 6432 */ 6433 if (mss <= BNXT_RX_PAGE_SIZE) { 6434 n = BNXT_RX_PAGE_SIZE / mss; 6435 nsegs = (MAX_SKB_FRAGS - 1) * n; 6436 } else { 6437 n = mss / BNXT_RX_PAGE_SIZE; 6438 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 6439 n++; 6440 nsegs = (MAX_SKB_FRAGS - n) / n; 6441 } 6442 6443 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6444 segs = MAX_TPA_SEGS_P5; 6445 max_aggs = bp->max_tpa; 6446 } else { 6447 segs = ilog2(nsegs); 6448 } 6449 req->max_agg_segs = cpu_to_le16(segs); 6450 req->max_aggs = cpu_to_le16(max_aggs); 6451 6452 req->min_agg_len = cpu_to_le32(512); 6453 bnxt_hwrm_vnic_update_tunl_tpa(bp, req); 6454 } 6455 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6456 6457 return hwrm_req_send(bp, req); 6458 } 6459 6460 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 6461 { 6462 struct bnxt_ring_grp_info *grp_info; 6463 6464 grp_info = &bp->grp_info[ring->grp_idx]; 6465 return grp_info->cp_fw_ring_id; 6466 } 6467 6468 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 6469 { 6470 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6471 return rxr->rx_cpr->cp_ring_struct.fw_ring_id; 6472 else 6473 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 6474 } 6475 6476 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 6477 { 6478 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6479 return txr->tx_cpr->cp_ring_struct.fw_ring_id; 6480 else 6481 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 6482 } 6483 6484 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp) 6485 { 6486 int entries; 6487 6488 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6489 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 6490 else 6491 entries = HW_HASH_INDEX_SIZE; 6492 6493 bp->rss_indir_tbl_entries = entries; 6494 bp->rss_indir_tbl = 6495 kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), GFP_KERNEL); 6496 if (!bp->rss_indir_tbl) 6497 return -ENOMEM; 6498 6499 return 0; 6500 } 6501 6502 void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp, 6503 struct ethtool_rxfh_context *rss_ctx) 6504 { 6505 u16 max_rings, max_entries, pad, i; 6506 u32 *rss_indir_tbl; 6507 6508 if (!bp->rx_nr_rings) 6509 return; 6510 6511 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6512 max_rings = bp->rx_nr_rings - 1; 6513 else 6514 max_rings = bp->rx_nr_rings; 6515 6516 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 6517 if (rss_ctx) 6518 rss_indir_tbl = ethtool_rxfh_context_indir(rss_ctx); 6519 else 6520 rss_indir_tbl = &bp->rss_indir_tbl[0]; 6521 6522 for (i = 0; i < max_entries; i++) 6523 rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 6524 6525 pad = bp->rss_indir_tbl_entries - max_entries; 6526 if (pad) 6527 memset(&rss_indir_tbl[i], 0, pad * sizeof(*rss_indir_tbl)); 6528 } 6529 6530 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 6531 { 6532 u32 i, tbl_size, max_ring = 0; 6533 6534 if (!bp->rss_indir_tbl) 6535 return 0; 6536 6537 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6538 for (i = 0; i < tbl_size; i++) 6539 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 6540 return max_ring; 6541 } 6542 6543 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 6544 { 6545 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6546 if (!rx_rings) 6547 return 0; 6548 return bnxt_calc_nr_ring_pages(rx_rings - 1, 6549 BNXT_RSS_TABLE_ENTRIES_P5); 6550 } 6551 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6552 return 2; 6553 return 1; 6554 } 6555 6556 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6557 { 6558 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 6559 u16 i, j; 6560 6561 /* Fill the RSS indirection table with ring group ids */ 6562 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 6563 if (!no_rss) 6564 j = bp->rss_indir_tbl[i]; 6565 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 6566 } 6567 } 6568 6569 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 6570 struct bnxt_vnic_info *vnic) 6571 { 6572 __le16 *ring_tbl = vnic->rss_table; 6573 struct bnxt_rx_ring_info *rxr; 6574 u16 tbl_size, i; 6575 6576 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6577 6578 for (i = 0; i < tbl_size; i++) { 6579 u16 ring_id, j; 6580 6581 if (vnic->flags & BNXT_VNIC_NTUPLE_FLAG) 6582 j = ethtool_rxfh_indir_default(i, bp->rx_nr_rings); 6583 else if (vnic->flags & BNXT_VNIC_RSSCTX_FLAG) 6584 j = ethtool_rxfh_context_indir(vnic->rss_ctx)[i]; 6585 else 6586 j = bp->rss_indir_tbl[i]; 6587 rxr = &bp->rx_ring[j]; 6588 6589 ring_id = rxr->rx_ring_struct.fw_ring_id; 6590 *ring_tbl++ = cpu_to_le16(ring_id); 6591 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6592 *ring_tbl++ = cpu_to_le16(ring_id); 6593 } 6594 } 6595 6596 static void 6597 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req, 6598 struct bnxt_vnic_info *vnic) 6599 { 6600 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6601 bnxt_fill_hw_rss_tbl_p5(bp, vnic); 6602 if (bp->flags & BNXT_FLAG_CHIP_P7) 6603 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_IPSEC_HASH_TYPE_CFG_SUPPORT; 6604 } else { 6605 bnxt_fill_hw_rss_tbl(bp, vnic); 6606 } 6607 6608 if (bp->rss_hash_delta) { 6609 req->hash_type = cpu_to_le32(bp->rss_hash_delta); 6610 if (bp->rss_hash_cfg & bp->rss_hash_delta) 6611 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE; 6612 else 6613 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE; 6614 } else { 6615 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 6616 } 6617 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 6618 req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 6619 req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 6620 } 6621 6622 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6623 bool set_rss) 6624 { 6625 struct hwrm_vnic_rss_cfg_input *req; 6626 int rc; 6627 6628 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) || 6629 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 6630 return 0; 6631 6632 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6633 if (rc) 6634 return rc; 6635 6636 if (set_rss) 6637 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6638 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6639 return hwrm_req_send(bp, req); 6640 } 6641 6642 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, 6643 struct bnxt_vnic_info *vnic, bool set_rss) 6644 { 6645 struct hwrm_vnic_rss_cfg_input *req; 6646 dma_addr_t ring_tbl_map; 6647 u32 i, nr_ctxs; 6648 int rc; 6649 6650 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6651 if (rc) 6652 return rc; 6653 6654 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6655 if (!set_rss) 6656 return hwrm_req_send(bp, req); 6657 6658 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6659 ring_tbl_map = vnic->rss_table_dma_addr; 6660 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 6661 6662 hwrm_req_hold(bp, req); 6663 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 6664 req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 6665 req->ring_table_pair_index = i; 6666 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 6667 rc = hwrm_req_send(bp, req); 6668 if (rc) 6669 goto exit; 6670 } 6671 6672 exit: 6673 hwrm_req_drop(bp, req); 6674 return rc; 6675 } 6676 6677 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp) 6678 { 6679 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6680 struct hwrm_vnic_rss_qcfg_output *resp; 6681 struct hwrm_vnic_rss_qcfg_input *req; 6682 6683 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG)) 6684 return; 6685 6686 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6687 /* all contexts configured to same hash_type, zero always exists */ 6688 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6689 resp = hwrm_req_hold(bp, req); 6690 if (!hwrm_req_send(bp, req)) { 6691 bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg; 6692 bp->rss_hash_delta = 0; 6693 } 6694 hwrm_req_drop(bp, req); 6695 } 6696 6697 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6698 { 6699 u16 hds_thresh = (u16)bp->dev->cfg_pending->hds_thresh; 6700 struct hwrm_vnic_plcmodes_cfg_input *req; 6701 int rc; 6702 6703 rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG); 6704 if (rc) 6705 return rc; 6706 6707 req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT); 6708 req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID); 6709 req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size); 6710 6711 if (!BNXT_RX_PAGE_MODE(bp) && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 6712 req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 6713 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 6714 req->enables |= 6715 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 6716 req->hds_threshold = cpu_to_le16(hds_thresh); 6717 } 6718 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 6719 return hwrm_req_send(bp, req); 6720 } 6721 6722 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, 6723 struct bnxt_vnic_info *vnic, 6724 u16 ctx_idx) 6725 { 6726 struct hwrm_vnic_rss_cos_lb_ctx_free_input *req; 6727 6728 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE)) 6729 return; 6730 6731 req->rss_cos_lb_ctx_id = 6732 cpu_to_le16(vnic->fw_rss_cos_lb_ctx[ctx_idx]); 6733 6734 hwrm_req_send(bp, req); 6735 vnic->fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 6736 } 6737 6738 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 6739 { 6740 int i, j; 6741 6742 for (i = 0; i < bp->nr_vnics; i++) { 6743 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 6744 6745 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 6746 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 6747 bnxt_hwrm_vnic_ctx_free_one(bp, vnic, j); 6748 } 6749 } 6750 bp->rsscos_nr_ctxs = 0; 6751 } 6752 6753 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, 6754 struct bnxt_vnic_info *vnic, u16 ctx_idx) 6755 { 6756 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp; 6757 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req; 6758 int rc; 6759 6760 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC); 6761 if (rc) 6762 return rc; 6763 6764 resp = hwrm_req_hold(bp, req); 6765 rc = hwrm_req_send(bp, req); 6766 if (!rc) 6767 vnic->fw_rss_cos_lb_ctx[ctx_idx] = 6768 le16_to_cpu(resp->rss_cos_lb_ctx_id); 6769 hwrm_req_drop(bp, req); 6770 6771 return rc; 6772 } 6773 6774 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 6775 { 6776 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 6777 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 6778 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 6779 } 6780 6781 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6782 { 6783 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6784 struct hwrm_vnic_cfg_input *req; 6785 unsigned int ring = 0, grp_idx; 6786 u16 def_vlan = 0; 6787 int rc; 6788 6789 rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG); 6790 if (rc) 6791 return rc; 6792 6793 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6794 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 6795 6796 req->default_rx_ring_id = 6797 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 6798 req->default_cmpl_ring_id = 6799 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 6800 req->enables = 6801 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 6802 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 6803 goto vnic_mru; 6804 } 6805 req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 6806 /* Only RSS support for now TBD: COS & LB */ 6807 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 6808 req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6809 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6810 VNIC_CFG_REQ_ENABLES_MRU); 6811 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 6812 req->rss_rule = cpu_to_le16(vnic0->fw_rss_cos_lb_ctx[0]); 6813 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6814 VNIC_CFG_REQ_ENABLES_MRU); 6815 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 6816 } else { 6817 req->rss_rule = cpu_to_le16(0xffff); 6818 } 6819 6820 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 6821 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 6822 req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 6823 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 6824 } else { 6825 req->cos_rule = cpu_to_le16(0xffff); 6826 } 6827 6828 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 6829 ring = 0; 6830 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 6831 ring = vnic->vnic_id - 1; 6832 else if ((vnic->vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 6833 ring = bp->rx_nr_rings - 1; 6834 6835 grp_idx = bp->rx_ring[ring].bnapi->index; 6836 req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 6837 req->lb_rule = cpu_to_le16(0xffff); 6838 vnic_mru: 6839 vnic->mru = bp->dev->mtu + ETH_HLEN + VLAN_HLEN; 6840 req->mru = cpu_to_le16(vnic->mru); 6841 6842 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6843 #ifdef CONFIG_BNXT_SRIOV 6844 if (BNXT_VF(bp)) 6845 def_vlan = bp->vf.vlan; 6846 #endif 6847 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 6848 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 6849 if (vnic->vnic_id == BNXT_VNIC_DEFAULT && bnxt_ulp_registered(bp->edev)) 6850 req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 6851 6852 return hwrm_req_send(bp, req); 6853 } 6854 6855 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, 6856 struct bnxt_vnic_info *vnic) 6857 { 6858 if (vnic->fw_vnic_id != INVALID_HW_RING_ID) { 6859 struct hwrm_vnic_free_input *req; 6860 6861 if (hwrm_req_init(bp, req, HWRM_VNIC_FREE)) 6862 return; 6863 6864 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 6865 6866 hwrm_req_send(bp, req); 6867 vnic->fw_vnic_id = INVALID_HW_RING_ID; 6868 } 6869 } 6870 6871 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 6872 { 6873 u16 i; 6874 6875 for (i = 0; i < bp->nr_vnics; i++) 6876 bnxt_hwrm_vnic_free_one(bp, &bp->vnic_info[i]); 6877 } 6878 6879 int bnxt_hwrm_vnic_alloc(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6880 unsigned int start_rx_ring_idx, 6881 unsigned int nr_rings) 6882 { 6883 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 6884 struct hwrm_vnic_alloc_output *resp; 6885 struct hwrm_vnic_alloc_input *req; 6886 int rc; 6887 6888 rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC); 6889 if (rc) 6890 return rc; 6891 6892 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6893 goto vnic_no_ring_grps; 6894 6895 /* map ring groups to this vnic */ 6896 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 6897 grp_idx = bp->rx_ring[i].bnapi->index; 6898 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 6899 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 6900 j, nr_rings); 6901 break; 6902 } 6903 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 6904 } 6905 6906 vnic_no_ring_grps: 6907 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 6908 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 6909 if (vnic->vnic_id == BNXT_VNIC_DEFAULT) 6910 req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 6911 6912 resp = hwrm_req_hold(bp, req); 6913 rc = hwrm_req_send(bp, req); 6914 if (!rc) 6915 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 6916 hwrm_req_drop(bp, req); 6917 return rc; 6918 } 6919 6920 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 6921 { 6922 struct hwrm_vnic_qcaps_output *resp; 6923 struct hwrm_vnic_qcaps_input *req; 6924 int rc; 6925 6926 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 6927 bp->flags &= ~BNXT_FLAG_ROCE_MIRROR_CAP; 6928 bp->rss_cap &= ~BNXT_RSS_CAP_NEW_RSS_CAP; 6929 if (bp->hwrm_spec_code < 0x10600) 6930 return 0; 6931 6932 rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS); 6933 if (rc) 6934 return rc; 6935 6936 resp = hwrm_req_hold(bp, req); 6937 rc = hwrm_req_send(bp, req); 6938 if (!rc) { 6939 u32 flags = le32_to_cpu(resp->flags); 6940 6941 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 6942 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 6943 bp->rss_cap |= BNXT_RSS_CAP_NEW_RSS_CAP; 6944 if (flags & 6945 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 6946 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 6947 6948 /* Older P5 fw before EXT_HW_STATS support did not set 6949 * VLAN_STRIP_CAP properly. 6950 */ 6951 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 6952 (BNXT_CHIP_P5(bp) && 6953 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 6954 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 6955 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP) 6956 bp->rss_cap |= BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA; 6957 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_PROF_TCAM_MODE_ENABLED) 6958 bp->rss_cap |= BNXT_RSS_CAP_RSS_TCAM; 6959 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 6960 if (bp->max_tpa_v2) { 6961 if (BNXT_CHIP_P5(bp)) 6962 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 6963 else 6964 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P7; 6965 } 6966 if (flags & VNIC_QCAPS_RESP_FLAGS_HW_TUNNEL_TPA_CAP) 6967 bp->fw_cap |= BNXT_FW_CAP_VNIC_TUNNEL_TPA; 6968 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV4_CAP) 6969 bp->rss_cap |= BNXT_RSS_CAP_AH_V4_RSS_CAP; 6970 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV6_CAP) 6971 bp->rss_cap |= BNXT_RSS_CAP_AH_V6_RSS_CAP; 6972 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV4_CAP) 6973 bp->rss_cap |= BNXT_RSS_CAP_ESP_V4_RSS_CAP; 6974 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV6_CAP) 6975 bp->rss_cap |= BNXT_RSS_CAP_ESP_V6_RSS_CAP; 6976 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPV6_FLOW_LABEL_CAP) 6977 bp->rss_cap |= BNXT_RSS_CAP_IPV6_FLOW_LABEL_RSS_CAP; 6978 if (flags & VNIC_QCAPS_RESP_FLAGS_RE_FLUSH_CAP) 6979 bp->fw_cap |= BNXT_FW_CAP_VNIC_RE_FLUSH; 6980 } 6981 hwrm_req_drop(bp, req); 6982 return rc; 6983 } 6984 6985 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 6986 { 6987 struct hwrm_ring_grp_alloc_output *resp; 6988 struct hwrm_ring_grp_alloc_input *req; 6989 int rc; 6990 u16 i; 6991 6992 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6993 return 0; 6994 6995 rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC); 6996 if (rc) 6997 return rc; 6998 6999 resp = hwrm_req_hold(bp, req); 7000 for (i = 0; i < bp->rx_nr_rings; i++) { 7001 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 7002 7003 req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 7004 req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 7005 req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 7006 req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 7007 7008 rc = hwrm_req_send(bp, req); 7009 7010 if (rc) 7011 break; 7012 7013 bp->grp_info[grp_idx].fw_grp_id = 7014 le32_to_cpu(resp->ring_group_id); 7015 } 7016 hwrm_req_drop(bp, req); 7017 return rc; 7018 } 7019 7020 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 7021 { 7022 struct hwrm_ring_grp_free_input *req; 7023 u16 i; 7024 7025 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7026 return; 7027 7028 if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE)) 7029 return; 7030 7031 hwrm_req_hold(bp, req); 7032 for (i = 0; i < bp->cp_nr_rings; i++) { 7033 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 7034 continue; 7035 req->ring_group_id = 7036 cpu_to_le32(bp->grp_info[i].fw_grp_id); 7037 7038 hwrm_req_send(bp, req); 7039 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 7040 } 7041 hwrm_req_drop(bp, req); 7042 } 7043 7044 static void bnxt_set_rx_ring_params_p5(struct bnxt *bp, u32 ring_type, 7045 struct hwrm_ring_alloc_input *req, 7046 struct bnxt_ring_struct *ring) 7047 { 7048 struct bnxt_ring_grp_info *grp_info = &bp->grp_info[ring->grp_idx]; 7049 u32 enables = RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID | 7050 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID; 7051 7052 if (ring_type == HWRM_RING_ALLOC_AGG) { 7053 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 7054 req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 7055 req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 7056 enables |= RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID; 7057 } else { 7058 req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 7059 if (NET_IP_ALIGN == 2) 7060 req->flags = 7061 cpu_to_le16(RING_ALLOC_REQ_FLAGS_RX_SOP_PAD); 7062 } 7063 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 7064 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 7065 req->enables |= cpu_to_le32(enables); 7066 } 7067 7068 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 7069 struct bnxt_ring_struct *ring, 7070 u32 ring_type, u32 map_index) 7071 { 7072 struct hwrm_ring_alloc_output *resp; 7073 struct hwrm_ring_alloc_input *req; 7074 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 7075 struct bnxt_ring_grp_info *grp_info; 7076 int rc, err = 0; 7077 u16 ring_id; 7078 7079 rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC); 7080 if (rc) 7081 goto exit; 7082 7083 req->enables = 0; 7084 if (rmem->nr_pages > 1) { 7085 req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 7086 /* Page size is in log2 units */ 7087 req->page_size = BNXT_PAGE_SHIFT; 7088 req->page_tbl_depth = 1; 7089 } else { 7090 req->page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 7091 } 7092 req->fbo = 0; 7093 /* Association of ring index with doorbell index and MSIX number */ 7094 req->logical_id = cpu_to_le16(map_index); 7095 7096 switch (ring_type) { 7097 case HWRM_RING_ALLOC_TX: { 7098 struct bnxt_tx_ring_info *txr; 7099 u16 flags = 0; 7100 7101 txr = container_of(ring, struct bnxt_tx_ring_info, 7102 tx_ring_struct); 7103 req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 7104 /* Association of transmit ring with completion ring */ 7105 grp_info = &bp->grp_info[ring->grp_idx]; 7106 req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 7107 req->length = cpu_to_le32(bp->tx_ring_mask + 1); 7108 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 7109 req->queue_id = cpu_to_le16(ring->queue_id); 7110 if (bp->flags & BNXT_FLAG_TX_COAL_CMPL) 7111 req->cmpl_coal_cnt = 7112 RING_ALLOC_REQ_CMPL_COAL_CNT_COAL_64; 7113 if ((bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) && bp->ptp_cfg) 7114 flags |= RING_ALLOC_REQ_FLAGS_TX_PKT_TS_CMPL_ENABLE; 7115 req->flags = cpu_to_le16(flags); 7116 break; 7117 } 7118 case HWRM_RING_ALLOC_RX: 7119 case HWRM_RING_ALLOC_AGG: 7120 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 7121 req->length = (ring_type == HWRM_RING_ALLOC_RX) ? 7122 cpu_to_le32(bp->rx_ring_mask + 1) : 7123 cpu_to_le32(bp->rx_agg_ring_mask + 1); 7124 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7125 bnxt_set_rx_ring_params_p5(bp, ring_type, req, ring); 7126 break; 7127 case HWRM_RING_ALLOC_CMPL: 7128 req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 7129 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 7130 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7131 /* Association of cp ring with nq */ 7132 grp_info = &bp->grp_info[map_index]; 7133 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 7134 req->cq_handle = cpu_to_le64(ring->handle); 7135 req->enables |= cpu_to_le32( 7136 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 7137 } else { 7138 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 7139 } 7140 break; 7141 case HWRM_RING_ALLOC_NQ: 7142 req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 7143 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 7144 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 7145 break; 7146 default: 7147 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 7148 ring_type); 7149 return -EINVAL; 7150 } 7151 7152 resp = hwrm_req_hold(bp, req); 7153 rc = hwrm_req_send(bp, req); 7154 err = le16_to_cpu(resp->error_code); 7155 ring_id = le16_to_cpu(resp->ring_id); 7156 hwrm_req_drop(bp, req); 7157 7158 exit: 7159 if (rc || err) { 7160 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 7161 ring_type, rc, err); 7162 return -EIO; 7163 } 7164 ring->fw_ring_id = ring_id; 7165 return rc; 7166 } 7167 7168 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 7169 { 7170 int rc; 7171 7172 if (BNXT_PF(bp)) { 7173 struct hwrm_func_cfg_input *req; 7174 7175 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 7176 if (rc) 7177 return rc; 7178 7179 req->fid = cpu_to_le16(0xffff); 7180 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 7181 req->async_event_cr = cpu_to_le16(idx); 7182 return hwrm_req_send(bp, req); 7183 } else { 7184 struct hwrm_func_vf_cfg_input *req; 7185 7186 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); 7187 if (rc) 7188 return rc; 7189 7190 req->enables = 7191 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 7192 req->async_event_cr = cpu_to_le16(idx); 7193 return hwrm_req_send(bp, req); 7194 } 7195 } 7196 7197 static void bnxt_set_db_mask(struct bnxt *bp, struct bnxt_db_info *db, 7198 u32 ring_type) 7199 { 7200 switch (ring_type) { 7201 case HWRM_RING_ALLOC_TX: 7202 db->db_ring_mask = bp->tx_ring_mask; 7203 break; 7204 case HWRM_RING_ALLOC_RX: 7205 db->db_ring_mask = bp->rx_ring_mask; 7206 break; 7207 case HWRM_RING_ALLOC_AGG: 7208 db->db_ring_mask = bp->rx_agg_ring_mask; 7209 break; 7210 case HWRM_RING_ALLOC_CMPL: 7211 case HWRM_RING_ALLOC_NQ: 7212 db->db_ring_mask = bp->cp_ring_mask; 7213 break; 7214 } 7215 if (bp->flags & BNXT_FLAG_CHIP_P7) { 7216 db->db_epoch_mask = db->db_ring_mask + 1; 7217 db->db_epoch_shift = DBR_EPOCH_SFT - ilog2(db->db_epoch_mask); 7218 } 7219 } 7220 7221 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 7222 u32 map_idx, u32 xid) 7223 { 7224 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7225 switch (ring_type) { 7226 case HWRM_RING_ALLOC_TX: 7227 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 7228 break; 7229 case HWRM_RING_ALLOC_RX: 7230 case HWRM_RING_ALLOC_AGG: 7231 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 7232 break; 7233 case HWRM_RING_ALLOC_CMPL: 7234 db->db_key64 = DBR_PATH_L2; 7235 break; 7236 case HWRM_RING_ALLOC_NQ: 7237 db->db_key64 = DBR_PATH_L2; 7238 break; 7239 } 7240 db->db_key64 |= (u64)xid << DBR_XID_SFT; 7241 7242 if (bp->flags & BNXT_FLAG_CHIP_P7) 7243 db->db_key64 |= DBR_VALID; 7244 7245 db->doorbell = bp->bar1 + bp->db_offset; 7246 } else { 7247 db->doorbell = bp->bar1 + map_idx * 0x80; 7248 switch (ring_type) { 7249 case HWRM_RING_ALLOC_TX: 7250 db->db_key32 = DB_KEY_TX; 7251 break; 7252 case HWRM_RING_ALLOC_RX: 7253 case HWRM_RING_ALLOC_AGG: 7254 db->db_key32 = DB_KEY_RX; 7255 break; 7256 case HWRM_RING_ALLOC_CMPL: 7257 db->db_key32 = DB_KEY_CP; 7258 break; 7259 } 7260 } 7261 bnxt_set_db_mask(bp, db, ring_type); 7262 } 7263 7264 static int bnxt_hwrm_rx_ring_alloc(struct bnxt *bp, 7265 struct bnxt_rx_ring_info *rxr) 7266 { 7267 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 7268 struct bnxt_napi *bnapi = rxr->bnapi; 7269 u32 type = HWRM_RING_ALLOC_RX; 7270 u32 map_idx = bnapi->index; 7271 int rc; 7272 7273 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7274 if (rc) 7275 return rc; 7276 7277 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 7278 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 7279 7280 return 0; 7281 } 7282 7283 static int bnxt_hwrm_rx_agg_ring_alloc(struct bnxt *bp, 7284 struct bnxt_rx_ring_info *rxr) 7285 { 7286 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 7287 u32 type = HWRM_RING_ALLOC_AGG; 7288 u32 grp_idx = ring->grp_idx; 7289 u32 map_idx; 7290 int rc; 7291 7292 map_idx = grp_idx + bp->rx_nr_rings; 7293 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7294 if (rc) 7295 return rc; 7296 7297 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 7298 ring->fw_ring_id); 7299 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 7300 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 7301 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 7302 7303 return 0; 7304 } 7305 7306 static int bnxt_hwrm_cp_ring_alloc_p5(struct bnxt *bp, 7307 struct bnxt_cp_ring_info *cpr) 7308 { 7309 const u32 type = HWRM_RING_ALLOC_CMPL; 7310 struct bnxt_napi *bnapi = cpr->bnapi; 7311 struct bnxt_ring_struct *ring; 7312 u32 map_idx = bnapi->index; 7313 int rc; 7314 7315 ring = &cpr->cp_ring_struct; 7316 ring->handle = BNXT_SET_NQ_HDL(cpr); 7317 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7318 if (rc) 7319 return rc; 7320 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 7321 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 7322 return 0; 7323 } 7324 7325 static int bnxt_hwrm_tx_ring_alloc(struct bnxt *bp, 7326 struct bnxt_tx_ring_info *txr, u32 tx_idx) 7327 { 7328 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 7329 const u32 type = HWRM_RING_ALLOC_TX; 7330 int rc; 7331 7332 rc = hwrm_ring_alloc_send_msg(bp, ring, type, tx_idx); 7333 if (rc) 7334 return rc; 7335 bnxt_set_db(bp, &txr->tx_db, type, tx_idx, ring->fw_ring_id); 7336 return 0; 7337 } 7338 7339 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 7340 { 7341 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 7342 int i, rc = 0; 7343 u32 type; 7344 7345 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7346 type = HWRM_RING_ALLOC_NQ; 7347 else 7348 type = HWRM_RING_ALLOC_CMPL; 7349 for (i = 0; i < bp->cp_nr_rings; i++) { 7350 struct bnxt_napi *bnapi = bp->bnapi[i]; 7351 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7352 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 7353 u32 map_idx = ring->map_idx; 7354 unsigned int vector; 7355 7356 vector = bp->irq_tbl[map_idx].vector; 7357 disable_irq_nosync(vector); 7358 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7359 if (rc) { 7360 enable_irq(vector); 7361 goto err_out; 7362 } 7363 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 7364 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 7365 enable_irq(vector); 7366 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 7367 7368 if (!i) { 7369 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 7370 if (rc) 7371 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 7372 } 7373 } 7374 7375 for (i = 0; i < bp->tx_nr_rings; i++) { 7376 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 7377 7378 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7379 rc = bnxt_hwrm_cp_ring_alloc_p5(bp, txr->tx_cpr); 7380 if (rc) 7381 goto err_out; 7382 } 7383 rc = bnxt_hwrm_tx_ring_alloc(bp, txr, i); 7384 if (rc) 7385 goto err_out; 7386 } 7387 7388 for (i = 0; i < bp->rx_nr_rings; i++) { 7389 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 7390 7391 rc = bnxt_hwrm_rx_ring_alloc(bp, rxr); 7392 if (rc) 7393 goto err_out; 7394 /* If we have agg rings, post agg buffers first. */ 7395 if (!agg_rings) 7396 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 7397 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7398 rc = bnxt_hwrm_cp_ring_alloc_p5(bp, rxr->rx_cpr); 7399 if (rc) 7400 goto err_out; 7401 } 7402 } 7403 7404 if (agg_rings) { 7405 for (i = 0; i < bp->rx_nr_rings; i++) { 7406 rc = bnxt_hwrm_rx_agg_ring_alloc(bp, &bp->rx_ring[i]); 7407 if (rc) 7408 goto err_out; 7409 } 7410 } 7411 err_out: 7412 return rc; 7413 } 7414 7415 static void bnxt_cancel_dim(struct bnxt *bp) 7416 { 7417 int i; 7418 7419 /* DIM work is initialized in bnxt_enable_napi(). Proceed only 7420 * if NAPI is enabled. 7421 */ 7422 if (!bp->bnapi || test_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 7423 return; 7424 7425 /* Make sure NAPI sees that the VNIC is disabled */ 7426 synchronize_net(); 7427 for (i = 0; i < bp->rx_nr_rings; i++) { 7428 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 7429 struct bnxt_napi *bnapi = rxr->bnapi; 7430 7431 cancel_work_sync(&bnapi->cp_ring.dim.work); 7432 } 7433 } 7434 7435 static int hwrm_ring_free_send_msg(struct bnxt *bp, 7436 struct bnxt_ring_struct *ring, 7437 u32 ring_type, int cmpl_ring_id) 7438 { 7439 struct hwrm_ring_free_output *resp; 7440 struct hwrm_ring_free_input *req; 7441 u16 error_code = 0; 7442 int rc; 7443 7444 if (BNXT_NO_FW_ACCESS(bp)) 7445 return 0; 7446 7447 rc = hwrm_req_init(bp, req, HWRM_RING_FREE); 7448 if (rc) 7449 goto exit; 7450 7451 req->cmpl_ring = cpu_to_le16(cmpl_ring_id); 7452 req->ring_type = ring_type; 7453 req->ring_id = cpu_to_le16(ring->fw_ring_id); 7454 7455 resp = hwrm_req_hold(bp, req); 7456 rc = hwrm_req_send(bp, req); 7457 error_code = le16_to_cpu(resp->error_code); 7458 hwrm_req_drop(bp, req); 7459 exit: 7460 if (rc || error_code) { 7461 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 7462 ring_type, rc, error_code); 7463 return -EIO; 7464 } 7465 return 0; 7466 } 7467 7468 static void bnxt_hwrm_tx_ring_free(struct bnxt *bp, 7469 struct bnxt_tx_ring_info *txr, 7470 bool close_path) 7471 { 7472 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 7473 u32 cmpl_ring_id; 7474 7475 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7476 return; 7477 7478 cmpl_ring_id = close_path ? bnxt_cp_ring_for_tx(bp, txr) : 7479 INVALID_HW_RING_ID; 7480 hwrm_ring_free_send_msg(bp, ring, RING_FREE_REQ_RING_TYPE_TX, 7481 cmpl_ring_id); 7482 ring->fw_ring_id = INVALID_HW_RING_ID; 7483 } 7484 7485 static void bnxt_hwrm_rx_ring_free(struct bnxt *bp, 7486 struct bnxt_rx_ring_info *rxr, 7487 bool close_path) 7488 { 7489 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 7490 u32 grp_idx = rxr->bnapi->index; 7491 u32 cmpl_ring_id; 7492 7493 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7494 return; 7495 7496 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 7497 hwrm_ring_free_send_msg(bp, ring, 7498 RING_FREE_REQ_RING_TYPE_RX, 7499 close_path ? cmpl_ring_id : 7500 INVALID_HW_RING_ID); 7501 ring->fw_ring_id = INVALID_HW_RING_ID; 7502 bp->grp_info[grp_idx].rx_fw_ring_id = INVALID_HW_RING_ID; 7503 } 7504 7505 static void bnxt_hwrm_rx_agg_ring_free(struct bnxt *bp, 7506 struct bnxt_rx_ring_info *rxr, 7507 bool close_path) 7508 { 7509 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 7510 u32 grp_idx = rxr->bnapi->index; 7511 u32 type, cmpl_ring_id; 7512 7513 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7514 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 7515 else 7516 type = RING_FREE_REQ_RING_TYPE_RX; 7517 7518 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7519 return; 7520 7521 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 7522 hwrm_ring_free_send_msg(bp, ring, type, 7523 close_path ? cmpl_ring_id : 7524 INVALID_HW_RING_ID); 7525 ring->fw_ring_id = INVALID_HW_RING_ID; 7526 bp->grp_info[grp_idx].agg_fw_ring_id = INVALID_HW_RING_ID; 7527 } 7528 7529 static void bnxt_hwrm_cp_ring_free(struct bnxt *bp, 7530 struct bnxt_cp_ring_info *cpr) 7531 { 7532 struct bnxt_ring_struct *ring; 7533 7534 ring = &cpr->cp_ring_struct; 7535 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7536 return; 7537 7538 hwrm_ring_free_send_msg(bp, ring, RING_FREE_REQ_RING_TYPE_L2_CMPL, 7539 INVALID_HW_RING_ID); 7540 ring->fw_ring_id = INVALID_HW_RING_ID; 7541 } 7542 7543 static void bnxt_clear_one_cp_ring(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 7544 { 7545 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 7546 int i, size = ring->ring_mem.page_size; 7547 7548 cpr->cp_raw_cons = 0; 7549 cpr->toggle = 0; 7550 7551 for (i = 0; i < bp->cp_nr_pages; i++) 7552 if (cpr->cp_desc_ring[i]) 7553 memset(cpr->cp_desc_ring[i], 0, size); 7554 } 7555 7556 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 7557 { 7558 u32 type; 7559 int i; 7560 7561 if (!bp->bnapi) 7562 return; 7563 7564 for (i = 0; i < bp->tx_nr_rings; i++) 7565 bnxt_hwrm_tx_ring_free(bp, &bp->tx_ring[i], close_path); 7566 7567 bnxt_cancel_dim(bp); 7568 for (i = 0; i < bp->rx_nr_rings; i++) { 7569 bnxt_hwrm_rx_ring_free(bp, &bp->rx_ring[i], close_path); 7570 bnxt_hwrm_rx_agg_ring_free(bp, &bp->rx_ring[i], close_path); 7571 } 7572 7573 /* The completion rings are about to be freed. After that the 7574 * IRQ doorbell will not work anymore. So we need to disable 7575 * IRQ here. 7576 */ 7577 bnxt_disable_int_sync(bp); 7578 7579 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7580 type = RING_FREE_REQ_RING_TYPE_NQ; 7581 else 7582 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 7583 for (i = 0; i < bp->cp_nr_rings; i++) { 7584 struct bnxt_napi *bnapi = bp->bnapi[i]; 7585 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7586 struct bnxt_ring_struct *ring; 7587 int j; 7588 7589 for (j = 0; j < cpr->cp_ring_count && cpr->cp_ring_arr; j++) 7590 bnxt_hwrm_cp_ring_free(bp, &cpr->cp_ring_arr[j]); 7591 7592 ring = &cpr->cp_ring_struct; 7593 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 7594 hwrm_ring_free_send_msg(bp, ring, type, 7595 INVALID_HW_RING_ID); 7596 ring->fw_ring_id = INVALID_HW_RING_ID; 7597 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 7598 } 7599 } 7600 } 7601 7602 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7603 bool shared); 7604 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7605 bool shared); 7606 7607 static int bnxt_hwrm_get_rings(struct bnxt *bp) 7608 { 7609 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7610 struct hwrm_func_qcfg_output *resp; 7611 struct hwrm_func_qcfg_input *req; 7612 int rc; 7613 7614 if (bp->hwrm_spec_code < 0x10601) 7615 return 0; 7616 7617 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7618 if (rc) 7619 return rc; 7620 7621 req->fid = cpu_to_le16(0xffff); 7622 resp = hwrm_req_hold(bp, req); 7623 rc = hwrm_req_send(bp, req); 7624 if (rc) { 7625 hwrm_req_drop(bp, req); 7626 return rc; 7627 } 7628 7629 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7630 if (BNXT_NEW_RM(bp)) { 7631 u16 cp, stats; 7632 7633 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 7634 hw_resc->resv_hw_ring_grps = 7635 le32_to_cpu(resp->alloc_hw_ring_grps); 7636 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 7637 hw_resc->resv_rsscos_ctxs = le16_to_cpu(resp->alloc_rsscos_ctx); 7638 cp = le16_to_cpu(resp->alloc_cmpl_rings); 7639 stats = le16_to_cpu(resp->alloc_stat_ctx); 7640 hw_resc->resv_irqs = cp; 7641 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7642 int rx = hw_resc->resv_rx_rings; 7643 int tx = hw_resc->resv_tx_rings; 7644 7645 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7646 rx >>= 1; 7647 if (cp < (rx + tx)) { 7648 rc = __bnxt_trim_rings(bp, &rx, &tx, cp, false); 7649 if (rc) 7650 goto get_rings_exit; 7651 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7652 rx <<= 1; 7653 hw_resc->resv_rx_rings = rx; 7654 hw_resc->resv_tx_rings = tx; 7655 } 7656 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 7657 hw_resc->resv_hw_ring_grps = rx; 7658 } 7659 hw_resc->resv_cp_rings = cp; 7660 hw_resc->resv_stat_ctxs = stats; 7661 } 7662 get_rings_exit: 7663 hwrm_req_drop(bp, req); 7664 return rc; 7665 } 7666 7667 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 7668 { 7669 struct hwrm_func_qcfg_output *resp; 7670 struct hwrm_func_qcfg_input *req; 7671 int rc; 7672 7673 if (bp->hwrm_spec_code < 0x10601) 7674 return 0; 7675 7676 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7677 if (rc) 7678 return rc; 7679 7680 req->fid = cpu_to_le16(fid); 7681 resp = hwrm_req_hold(bp, req); 7682 rc = hwrm_req_send(bp, req); 7683 if (!rc) 7684 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7685 7686 hwrm_req_drop(bp, req); 7687 return rc; 7688 } 7689 7690 static bool bnxt_rfs_supported(struct bnxt *bp); 7691 7692 static struct hwrm_func_cfg_input * 7693 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7694 { 7695 struct hwrm_func_cfg_input *req; 7696 u32 enables = 0; 7697 7698 if (bnxt_hwrm_func_cfg_short_req_init(bp, &req)) 7699 return NULL; 7700 7701 req->fid = cpu_to_le16(0xffff); 7702 enables |= hwr->tx ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7703 req->num_tx_rings = cpu_to_le16(hwr->tx); 7704 if (BNXT_NEW_RM(bp)) { 7705 enables |= hwr->rx ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 7706 enables |= hwr->stat ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7707 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7708 enables |= hwr->cp ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 7709 enables |= hwr->cp_p5 ? 7710 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7711 } else { 7712 enables |= hwr->cp ? 7713 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7714 enables |= hwr->grp ? 7715 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7716 } 7717 enables |= hwr->vnic ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 7718 enables |= hwr->rss_ctx ? FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 7719 0; 7720 req->num_rx_rings = cpu_to_le16(hwr->rx); 7721 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7722 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7723 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7724 req->num_msix = cpu_to_le16(hwr->cp); 7725 } else { 7726 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7727 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7728 } 7729 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7730 req->num_vnics = cpu_to_le16(hwr->vnic); 7731 } 7732 req->enables = cpu_to_le32(enables); 7733 return req; 7734 } 7735 7736 static struct hwrm_func_vf_cfg_input * 7737 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7738 { 7739 struct hwrm_func_vf_cfg_input *req; 7740 u32 enables = 0; 7741 7742 if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG)) 7743 return NULL; 7744 7745 enables |= hwr->tx ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7746 enables |= hwr->rx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 7747 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7748 enables |= hwr->stat ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7749 enables |= hwr->rss_ctx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7750 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7751 enables |= hwr->cp_p5 ? 7752 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7753 } else { 7754 enables |= hwr->cp ? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7755 enables |= hwr->grp ? 7756 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7757 } 7758 enables |= hwr->vnic ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 7759 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 7760 7761 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 7762 req->num_tx_rings = cpu_to_le16(hwr->tx); 7763 req->num_rx_rings = cpu_to_le16(hwr->rx); 7764 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7765 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7766 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7767 } else { 7768 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7769 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7770 } 7771 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7772 req->num_vnics = cpu_to_le16(hwr->vnic); 7773 7774 req->enables = cpu_to_le32(enables); 7775 return req; 7776 } 7777 7778 static int 7779 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7780 { 7781 struct hwrm_func_cfg_input *req; 7782 int rc; 7783 7784 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 7785 if (!req) 7786 return -ENOMEM; 7787 7788 if (!req->enables) { 7789 hwrm_req_drop(bp, req); 7790 return 0; 7791 } 7792 7793 rc = hwrm_req_send(bp, req); 7794 if (rc) 7795 return rc; 7796 7797 if (bp->hwrm_spec_code < 0x10601) 7798 bp->hw_resc.resv_tx_rings = hwr->tx; 7799 7800 return bnxt_hwrm_get_rings(bp); 7801 } 7802 7803 static int 7804 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7805 { 7806 struct hwrm_func_vf_cfg_input *req; 7807 int rc; 7808 7809 if (!BNXT_NEW_RM(bp)) { 7810 bp->hw_resc.resv_tx_rings = hwr->tx; 7811 return 0; 7812 } 7813 7814 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 7815 if (!req) 7816 return -ENOMEM; 7817 7818 rc = hwrm_req_send(bp, req); 7819 if (rc) 7820 return rc; 7821 7822 return bnxt_hwrm_get_rings(bp); 7823 } 7824 7825 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7826 { 7827 if (BNXT_PF(bp)) 7828 return bnxt_hwrm_reserve_pf_rings(bp, hwr); 7829 else 7830 return bnxt_hwrm_reserve_vf_rings(bp, hwr); 7831 } 7832 7833 int bnxt_nq_rings_in_use(struct bnxt *bp) 7834 { 7835 return bp->cp_nr_rings + bnxt_get_ulp_msix_num(bp); 7836 } 7837 7838 static int bnxt_cp_rings_in_use(struct bnxt *bp) 7839 { 7840 int cp; 7841 7842 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7843 return bnxt_nq_rings_in_use(bp); 7844 7845 cp = bp->tx_nr_rings + bp->rx_nr_rings; 7846 return cp; 7847 } 7848 7849 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 7850 { 7851 return bp->cp_nr_rings + bnxt_get_ulp_stat_ctxs(bp); 7852 } 7853 7854 static int bnxt_get_total_rss_ctxs(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7855 { 7856 if (!hwr->grp) 7857 return 0; 7858 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7859 int rss_ctx = bnxt_get_nr_rss_ctxs(bp, hwr->grp); 7860 7861 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7862 rss_ctx *= hwr->vnic; 7863 return rss_ctx; 7864 } 7865 if (BNXT_VF(bp)) 7866 return BNXT_VF_MAX_RSS_CTX; 7867 if (!(bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && bnxt_rfs_supported(bp)) 7868 return hwr->grp + 1; 7869 return 1; 7870 } 7871 7872 /* Check if a default RSS map needs to be setup. This function is only 7873 * used on older firmware that does not require reserving RX rings. 7874 */ 7875 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 7876 { 7877 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7878 7879 /* The RSS map is valid for RX rings set to resv_rx_rings */ 7880 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 7881 hw_resc->resv_rx_rings = bp->rx_nr_rings; 7882 if (!netif_is_rxfh_configured(bp->dev)) 7883 bnxt_set_dflt_rss_indir_tbl(bp, NULL); 7884 } 7885 } 7886 7887 static int bnxt_get_total_vnics(struct bnxt *bp, int rx_rings) 7888 { 7889 if (bp->flags & BNXT_FLAG_RFS) { 7890 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7891 return 2 + bp->num_rss_ctx; 7892 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7893 return rx_rings + 1; 7894 } 7895 return 1; 7896 } 7897 7898 static bool bnxt_need_reserve_rings(struct bnxt *bp) 7899 { 7900 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7901 int cp = bnxt_cp_rings_in_use(bp); 7902 int nq = bnxt_nq_rings_in_use(bp); 7903 int rx = bp->rx_nr_rings, stat; 7904 int vnic, grp = rx; 7905 7906 /* Old firmware does not need RX ring reservations but we still 7907 * need to setup a default RSS map when needed. With new firmware 7908 * we go through RX ring reservations first and then set up the 7909 * RSS map for the successfully reserved RX rings when needed. 7910 */ 7911 if (!BNXT_NEW_RM(bp)) 7912 bnxt_check_rss_tbl_no_rmgr(bp); 7913 7914 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 7915 bp->hwrm_spec_code >= 0x10601) 7916 return true; 7917 7918 if (!BNXT_NEW_RM(bp)) 7919 return false; 7920 7921 vnic = bnxt_get_total_vnics(bp, rx); 7922 7923 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7924 rx <<= 1; 7925 stat = bnxt_get_func_stat_ctxs(bp); 7926 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 7927 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 7928 (hw_resc->resv_hw_ring_grps != grp && 7929 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))) 7930 return true; 7931 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && BNXT_PF(bp) && 7932 hw_resc->resv_irqs != nq) 7933 return true; 7934 return false; 7935 } 7936 7937 static void bnxt_copy_reserved_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7938 { 7939 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7940 7941 hwr->tx = hw_resc->resv_tx_rings; 7942 if (BNXT_NEW_RM(bp)) { 7943 hwr->rx = hw_resc->resv_rx_rings; 7944 hwr->cp = hw_resc->resv_irqs; 7945 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7946 hwr->cp_p5 = hw_resc->resv_cp_rings; 7947 hwr->grp = hw_resc->resv_hw_ring_grps; 7948 hwr->vnic = hw_resc->resv_vnics; 7949 hwr->stat = hw_resc->resv_stat_ctxs; 7950 hwr->rss_ctx = hw_resc->resv_rsscos_ctxs; 7951 } 7952 } 7953 7954 static bool bnxt_rings_ok(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7955 { 7956 return hwr->tx && hwr->rx && hwr->cp && hwr->grp && hwr->vnic && 7957 hwr->stat && (hwr->cp_p5 || !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)); 7958 } 7959 7960 static int bnxt_get_avail_msix(struct bnxt *bp, int num); 7961 7962 static int __bnxt_reserve_rings(struct bnxt *bp) 7963 { 7964 struct bnxt_hw_rings hwr = {0}; 7965 int rx_rings, old_rx_rings, rc; 7966 int cp = bp->cp_nr_rings; 7967 int ulp_msix = 0; 7968 bool sh = false; 7969 int tx_cp; 7970 7971 if (!bnxt_need_reserve_rings(bp)) 7972 return 0; 7973 7974 if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) { 7975 ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want); 7976 if (!ulp_msix) 7977 bnxt_set_ulp_stat_ctxs(bp, 0); 7978 7979 if (ulp_msix > bp->ulp_num_msix_want) 7980 ulp_msix = bp->ulp_num_msix_want; 7981 hwr.cp = cp + ulp_msix; 7982 } else { 7983 hwr.cp = bnxt_nq_rings_in_use(bp); 7984 } 7985 7986 hwr.tx = bp->tx_nr_rings; 7987 hwr.rx = bp->rx_nr_rings; 7988 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 7989 sh = true; 7990 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7991 hwr.cp_p5 = hwr.rx + hwr.tx; 7992 7993 hwr.vnic = bnxt_get_total_vnics(bp, hwr.rx); 7994 7995 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7996 hwr.rx <<= 1; 7997 hwr.grp = bp->rx_nr_rings; 7998 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 7999 hwr.stat = bnxt_get_func_stat_ctxs(bp); 8000 old_rx_rings = bp->hw_resc.resv_rx_rings; 8001 8002 rc = bnxt_hwrm_reserve_rings(bp, &hwr); 8003 if (rc) 8004 return rc; 8005 8006 bnxt_copy_reserved_rings(bp, &hwr); 8007 8008 rx_rings = hwr.rx; 8009 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8010 if (hwr.rx >= 2) { 8011 rx_rings = hwr.rx >> 1; 8012 } else { 8013 if (netif_running(bp->dev)) 8014 return -ENOMEM; 8015 8016 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 8017 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 8018 bp->dev->hw_features &= ~NETIF_F_LRO; 8019 bp->dev->features &= ~NETIF_F_LRO; 8020 bnxt_set_ring_params(bp); 8021 } 8022 } 8023 rx_rings = min_t(int, rx_rings, hwr.grp); 8024 hwr.cp = min_t(int, hwr.cp, bp->cp_nr_rings); 8025 if (bnxt_ulp_registered(bp->edev) && 8026 hwr.stat > bnxt_get_ulp_stat_ctxs(bp)) 8027 hwr.stat -= bnxt_get_ulp_stat_ctxs(bp); 8028 hwr.cp = min_t(int, hwr.cp, hwr.stat); 8029 rc = bnxt_trim_rings(bp, &rx_rings, &hwr.tx, hwr.cp, sh); 8030 if (bp->flags & BNXT_FLAG_AGG_RINGS) 8031 hwr.rx = rx_rings << 1; 8032 tx_cp = bnxt_num_tx_to_cp(bp, hwr.tx); 8033 hwr.cp = sh ? max_t(int, tx_cp, rx_rings) : tx_cp + rx_rings; 8034 if (hwr.tx != bp->tx_nr_rings) { 8035 netdev_warn(bp->dev, 8036 "Able to reserve only %d out of %d requested TX rings\n", 8037 hwr.tx, bp->tx_nr_rings); 8038 } 8039 bp->tx_nr_rings = hwr.tx; 8040 8041 /* If we cannot reserve all the RX rings, reset the RSS map only 8042 * if absolutely necessary 8043 */ 8044 if (rx_rings != bp->rx_nr_rings) { 8045 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 8046 rx_rings, bp->rx_nr_rings); 8047 if (netif_is_rxfh_configured(bp->dev) && 8048 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 8049 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 8050 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 8051 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 8052 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 8053 } 8054 } 8055 bp->rx_nr_rings = rx_rings; 8056 bp->cp_nr_rings = hwr.cp; 8057 8058 if (!bnxt_rings_ok(bp, &hwr)) 8059 return -ENOMEM; 8060 8061 if (old_rx_rings != bp->hw_resc.resv_rx_rings && 8062 !netif_is_rxfh_configured(bp->dev)) 8063 bnxt_set_dflt_rss_indir_tbl(bp, NULL); 8064 8065 if (!bnxt_ulp_registered(bp->edev) && BNXT_NEW_RM(bp)) { 8066 int resv_msix, resv_ctx, ulp_ctxs; 8067 struct bnxt_hw_resc *hw_resc; 8068 8069 hw_resc = &bp->hw_resc; 8070 resv_msix = hw_resc->resv_irqs - bp->cp_nr_rings; 8071 ulp_msix = min_t(int, resv_msix, ulp_msix); 8072 bnxt_set_ulp_msix_num(bp, ulp_msix); 8073 resv_ctx = hw_resc->resv_stat_ctxs - bp->cp_nr_rings; 8074 ulp_ctxs = min(resv_ctx, bnxt_get_ulp_stat_ctxs(bp)); 8075 bnxt_set_ulp_stat_ctxs(bp, ulp_ctxs); 8076 } 8077 8078 return rc; 8079 } 8080 8081 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 8082 { 8083 struct hwrm_func_vf_cfg_input *req; 8084 u32 flags; 8085 8086 if (!BNXT_NEW_RM(bp)) 8087 return 0; 8088 8089 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 8090 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 8091 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 8092 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 8093 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 8094 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 8095 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 8096 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 8097 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 8098 8099 req->flags = cpu_to_le32(flags); 8100 return hwrm_req_send_silent(bp, req); 8101 } 8102 8103 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 8104 { 8105 struct hwrm_func_cfg_input *req; 8106 u32 flags; 8107 8108 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 8109 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 8110 if (BNXT_NEW_RM(bp)) { 8111 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 8112 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 8113 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 8114 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 8115 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 8116 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 8117 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 8118 else 8119 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 8120 } 8121 8122 req->flags = cpu_to_le32(flags); 8123 return hwrm_req_send_silent(bp, req); 8124 } 8125 8126 static int bnxt_hwrm_check_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 8127 { 8128 if (bp->hwrm_spec_code < 0x10801) 8129 return 0; 8130 8131 if (BNXT_PF(bp)) 8132 return bnxt_hwrm_check_pf_rings(bp, hwr); 8133 8134 return bnxt_hwrm_check_vf_rings(bp, hwr); 8135 } 8136 8137 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 8138 { 8139 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 8140 struct hwrm_ring_aggint_qcaps_output *resp; 8141 struct hwrm_ring_aggint_qcaps_input *req; 8142 int rc; 8143 8144 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 8145 coal_cap->num_cmpl_dma_aggr_max = 63; 8146 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 8147 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 8148 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 8149 coal_cap->int_lat_tmr_min_max = 65535; 8150 coal_cap->int_lat_tmr_max_max = 65535; 8151 coal_cap->num_cmpl_aggr_int_max = 65535; 8152 coal_cap->timer_units = 80; 8153 8154 if (bp->hwrm_spec_code < 0x10902) 8155 return; 8156 8157 if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS)) 8158 return; 8159 8160 resp = hwrm_req_hold(bp, req); 8161 rc = hwrm_req_send_silent(bp, req); 8162 if (!rc) { 8163 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 8164 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 8165 coal_cap->num_cmpl_dma_aggr_max = 8166 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 8167 coal_cap->num_cmpl_dma_aggr_during_int_max = 8168 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 8169 coal_cap->cmpl_aggr_dma_tmr_max = 8170 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 8171 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 8172 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 8173 coal_cap->int_lat_tmr_min_max = 8174 le16_to_cpu(resp->int_lat_tmr_min_max); 8175 coal_cap->int_lat_tmr_max_max = 8176 le16_to_cpu(resp->int_lat_tmr_max_max); 8177 coal_cap->num_cmpl_aggr_int_max = 8178 le16_to_cpu(resp->num_cmpl_aggr_int_max); 8179 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 8180 } 8181 hwrm_req_drop(bp, req); 8182 } 8183 8184 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 8185 { 8186 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 8187 8188 return usec * 1000 / coal_cap->timer_units; 8189 } 8190 8191 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 8192 struct bnxt_coal *hw_coal, 8193 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 8194 { 8195 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 8196 u16 val, tmr, max, flags = hw_coal->flags; 8197 u32 cmpl_params = coal_cap->cmpl_params; 8198 8199 max = hw_coal->bufs_per_record * 128; 8200 if (hw_coal->budget) 8201 max = hw_coal->bufs_per_record * hw_coal->budget; 8202 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 8203 8204 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 8205 req->num_cmpl_aggr_int = cpu_to_le16(val); 8206 8207 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 8208 req->num_cmpl_dma_aggr = cpu_to_le16(val); 8209 8210 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 8211 coal_cap->num_cmpl_dma_aggr_during_int_max); 8212 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 8213 8214 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 8215 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 8216 req->int_lat_tmr_max = cpu_to_le16(tmr); 8217 8218 /* min timer set to 1/2 of interrupt timer */ 8219 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 8220 val = tmr / 2; 8221 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 8222 req->int_lat_tmr_min = cpu_to_le16(val); 8223 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 8224 } 8225 8226 /* buf timer set to 1/4 of interrupt timer */ 8227 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 8228 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 8229 8230 if (cmpl_params & 8231 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 8232 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 8233 val = clamp_t(u16, tmr, 1, 8234 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 8235 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 8236 req->enables |= 8237 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 8238 } 8239 8240 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 8241 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 8242 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 8243 req->flags = cpu_to_le16(flags); 8244 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 8245 } 8246 8247 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 8248 struct bnxt_coal *hw_coal) 8249 { 8250 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req; 8251 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8252 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 8253 u32 nq_params = coal_cap->nq_params; 8254 u16 tmr; 8255 int rc; 8256 8257 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 8258 return 0; 8259 8260 rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8261 if (rc) 8262 return rc; 8263 8264 req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 8265 req->flags = 8266 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 8267 8268 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 8269 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 8270 req->int_lat_tmr_min = cpu_to_le16(tmr); 8271 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 8272 return hwrm_req_send(bp, req); 8273 } 8274 8275 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 8276 { 8277 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx; 8278 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8279 struct bnxt_coal coal; 8280 int rc; 8281 8282 /* Tick values in micro seconds. 8283 * 1 coal_buf x bufs_per_record = 1 completion record. 8284 */ 8285 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 8286 8287 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 8288 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 8289 8290 if (!bnapi->rx_ring) 8291 return -ENODEV; 8292 8293 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8294 if (rc) 8295 return rc; 8296 8297 bnxt_hwrm_set_coal_params(bp, &coal, req_rx); 8298 8299 req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 8300 8301 return hwrm_req_send(bp, req_rx); 8302 } 8303 8304 static int 8305 bnxt_hwrm_set_rx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 8306 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 8307 { 8308 u16 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 8309 8310 req->ring_id = cpu_to_le16(ring_id); 8311 return hwrm_req_send(bp, req); 8312 } 8313 8314 static int 8315 bnxt_hwrm_set_tx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 8316 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 8317 { 8318 struct bnxt_tx_ring_info *txr; 8319 int i, rc; 8320 8321 bnxt_for_each_napi_tx(i, bnapi, txr) { 8322 u16 ring_id; 8323 8324 ring_id = bnxt_cp_ring_for_tx(bp, txr); 8325 req->ring_id = cpu_to_le16(ring_id); 8326 rc = hwrm_req_send(bp, req); 8327 if (rc) 8328 return rc; 8329 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 8330 return 0; 8331 } 8332 return 0; 8333 } 8334 8335 int bnxt_hwrm_set_coal(struct bnxt *bp) 8336 { 8337 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx; 8338 int i, rc; 8339 8340 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8341 if (rc) 8342 return rc; 8343 8344 rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8345 if (rc) { 8346 hwrm_req_drop(bp, req_rx); 8347 return rc; 8348 } 8349 8350 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx); 8351 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx); 8352 8353 hwrm_req_hold(bp, req_rx); 8354 hwrm_req_hold(bp, req_tx); 8355 for (i = 0; i < bp->cp_nr_rings; i++) { 8356 struct bnxt_napi *bnapi = bp->bnapi[i]; 8357 struct bnxt_coal *hw_coal; 8358 8359 if (!bnapi->rx_ring) 8360 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 8361 else 8362 rc = bnxt_hwrm_set_rx_coal(bp, bnapi, req_rx); 8363 if (rc) 8364 break; 8365 8366 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 8367 continue; 8368 8369 if (bnapi->rx_ring && bnapi->tx_ring[0]) { 8370 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 8371 if (rc) 8372 break; 8373 } 8374 if (bnapi->rx_ring) 8375 hw_coal = &bp->rx_coal; 8376 else 8377 hw_coal = &bp->tx_coal; 8378 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 8379 } 8380 hwrm_req_drop(bp, req_rx); 8381 hwrm_req_drop(bp, req_tx); 8382 return rc; 8383 } 8384 8385 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 8386 { 8387 struct hwrm_stat_ctx_clr_stats_input *req0 = NULL; 8388 struct hwrm_stat_ctx_free_input *req; 8389 int i; 8390 8391 if (!bp->bnapi) 8392 return; 8393 8394 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8395 return; 8396 8397 if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE)) 8398 return; 8399 if (BNXT_FW_MAJ(bp) <= 20) { 8400 if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) { 8401 hwrm_req_drop(bp, req); 8402 return; 8403 } 8404 hwrm_req_hold(bp, req0); 8405 } 8406 hwrm_req_hold(bp, req); 8407 for (i = 0; i < bp->cp_nr_rings; i++) { 8408 struct bnxt_napi *bnapi = bp->bnapi[i]; 8409 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8410 8411 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 8412 req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 8413 if (req0) { 8414 req0->stat_ctx_id = req->stat_ctx_id; 8415 hwrm_req_send(bp, req0); 8416 } 8417 hwrm_req_send(bp, req); 8418 8419 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 8420 } 8421 } 8422 hwrm_req_drop(bp, req); 8423 if (req0) 8424 hwrm_req_drop(bp, req0); 8425 } 8426 8427 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 8428 { 8429 struct hwrm_stat_ctx_alloc_output *resp; 8430 struct hwrm_stat_ctx_alloc_input *req; 8431 int rc, i; 8432 8433 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8434 return 0; 8435 8436 rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC); 8437 if (rc) 8438 return rc; 8439 8440 req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 8441 req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 8442 8443 resp = hwrm_req_hold(bp, req); 8444 for (i = 0; i < bp->cp_nr_rings; i++) { 8445 struct bnxt_napi *bnapi = bp->bnapi[i]; 8446 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8447 8448 req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 8449 8450 rc = hwrm_req_send(bp, req); 8451 if (rc) 8452 break; 8453 8454 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 8455 8456 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 8457 } 8458 hwrm_req_drop(bp, req); 8459 return rc; 8460 } 8461 8462 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 8463 { 8464 struct hwrm_func_qcfg_output *resp; 8465 struct hwrm_func_qcfg_input *req; 8466 u16 flags; 8467 int rc; 8468 8469 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 8470 if (rc) 8471 return rc; 8472 8473 req->fid = cpu_to_le16(0xffff); 8474 resp = hwrm_req_hold(bp, req); 8475 rc = hwrm_req_send(bp, req); 8476 if (rc) 8477 goto func_qcfg_exit; 8478 8479 flags = le16_to_cpu(resp->flags); 8480 #ifdef CONFIG_BNXT_SRIOV 8481 if (BNXT_VF(bp)) { 8482 struct bnxt_vf_info *vf = &bp->vf; 8483 8484 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 8485 if (flags & FUNC_QCFG_RESP_FLAGS_TRUSTED_VF) 8486 vf->flags |= BNXT_VF_TRUST; 8487 else 8488 vf->flags &= ~BNXT_VF_TRUST; 8489 } else { 8490 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 8491 } 8492 #endif 8493 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 8494 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 8495 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 8496 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 8497 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 8498 } 8499 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 8500 bp->flags |= BNXT_FLAG_MULTI_HOST; 8501 8502 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 8503 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 8504 8505 if (flags & FUNC_QCFG_RESP_FLAGS_ENABLE_RDMA_SRIOV) 8506 bp->fw_cap |= BNXT_FW_CAP_ENABLE_RDMA_SRIOV; 8507 8508 switch (resp->port_partition_type) { 8509 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 8510 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_2: 8511 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 8512 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 8513 bp->port_partition_type = resp->port_partition_type; 8514 break; 8515 } 8516 if (bp->hwrm_spec_code < 0x10707 || 8517 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 8518 bp->br_mode = BRIDGE_MODE_VEB; 8519 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 8520 bp->br_mode = BRIDGE_MODE_VEPA; 8521 else 8522 bp->br_mode = BRIDGE_MODE_UNDEF; 8523 8524 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 8525 if (!bp->max_mtu) 8526 bp->max_mtu = BNXT_MAX_MTU; 8527 8528 if (bp->db_size) 8529 goto func_qcfg_exit; 8530 8531 bp->db_offset = le16_to_cpu(resp->legacy_l2_db_size_kb) * 1024; 8532 if (BNXT_CHIP_P5(bp)) { 8533 if (BNXT_PF(bp)) 8534 bp->db_offset = DB_PF_OFFSET_P5; 8535 else 8536 bp->db_offset = DB_VF_OFFSET_P5; 8537 } 8538 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 8539 1024); 8540 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 8541 bp->db_size <= bp->db_offset) 8542 bp->db_size = pci_resource_len(bp->pdev, 2); 8543 8544 func_qcfg_exit: 8545 hwrm_req_drop(bp, req); 8546 return rc; 8547 } 8548 8549 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_type *ctxm, 8550 u8 init_val, u8 init_offset, 8551 bool init_mask_set) 8552 { 8553 ctxm->init_value = init_val; 8554 ctxm->init_offset = BNXT_CTX_INIT_INVALID_OFFSET; 8555 if (init_mask_set) 8556 ctxm->init_offset = init_offset * 4; 8557 else 8558 ctxm->init_value = 0; 8559 } 8560 8561 static int bnxt_alloc_all_ctx_pg_info(struct bnxt *bp, int ctx_max) 8562 { 8563 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8564 u16 type; 8565 8566 for (type = 0; type < ctx_max; type++) { 8567 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8568 int n = 1; 8569 8570 if (!ctxm->max_entries || ctxm->pg_info) 8571 continue; 8572 8573 if (ctxm->instance_bmap) 8574 n = hweight32(ctxm->instance_bmap); 8575 ctxm->pg_info = kcalloc(n, sizeof(*ctxm->pg_info), GFP_KERNEL); 8576 if (!ctxm->pg_info) 8577 return -ENOMEM; 8578 } 8579 return 0; 8580 } 8581 8582 static void bnxt_free_one_ctx_mem(struct bnxt *bp, 8583 struct bnxt_ctx_mem_type *ctxm, bool force); 8584 8585 #define BNXT_CTX_INIT_VALID(flags) \ 8586 (!!((flags) & \ 8587 FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_ENABLE_CTX_KIND_INIT)) 8588 8589 static int bnxt_hwrm_func_backing_store_qcaps_v2(struct bnxt *bp) 8590 { 8591 struct hwrm_func_backing_store_qcaps_v2_output *resp; 8592 struct hwrm_func_backing_store_qcaps_v2_input *req; 8593 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8594 u16 type; 8595 int rc; 8596 8597 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS_V2); 8598 if (rc) 8599 return rc; 8600 8601 if (!ctx) { 8602 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8603 if (!ctx) 8604 return -ENOMEM; 8605 bp->ctx = ctx; 8606 } 8607 8608 resp = hwrm_req_hold(bp, req); 8609 8610 for (type = 0; type < BNXT_CTX_V2_MAX; ) { 8611 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8612 u8 init_val, init_off, i; 8613 u32 max_entries; 8614 u16 entry_size; 8615 __le32 *p; 8616 u32 flags; 8617 8618 req->type = cpu_to_le16(type); 8619 rc = hwrm_req_send(bp, req); 8620 if (rc) 8621 goto ctx_done; 8622 flags = le32_to_cpu(resp->flags); 8623 type = le16_to_cpu(resp->next_valid_type); 8624 if (!(flags & BNXT_CTX_MEM_TYPE_VALID)) { 8625 bnxt_free_one_ctx_mem(bp, ctxm, true); 8626 continue; 8627 } 8628 entry_size = le16_to_cpu(resp->entry_size); 8629 max_entries = le32_to_cpu(resp->max_num_entries); 8630 if (ctxm->mem_valid) { 8631 if (!(flags & BNXT_CTX_MEM_PERSIST) || 8632 ctxm->entry_size != entry_size || 8633 ctxm->max_entries != max_entries) 8634 bnxt_free_one_ctx_mem(bp, ctxm, true); 8635 else 8636 continue; 8637 } 8638 ctxm->type = le16_to_cpu(resp->type); 8639 ctxm->entry_size = entry_size; 8640 ctxm->flags = flags; 8641 ctxm->instance_bmap = le32_to_cpu(resp->instance_bit_map); 8642 ctxm->entry_multiple = resp->entry_multiple; 8643 ctxm->max_entries = max_entries; 8644 ctxm->min_entries = le32_to_cpu(resp->min_num_entries); 8645 init_val = resp->ctx_init_value; 8646 init_off = resp->ctx_init_offset; 8647 bnxt_init_ctx_initializer(ctxm, init_val, init_off, 8648 BNXT_CTX_INIT_VALID(flags)); 8649 ctxm->split_entry_cnt = min_t(u8, resp->subtype_valid_cnt, 8650 BNXT_MAX_SPLIT_ENTRY); 8651 for (i = 0, p = &resp->split_entry_0; i < ctxm->split_entry_cnt; 8652 i++, p++) 8653 ctxm->split[i] = le32_to_cpu(*p); 8654 } 8655 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_V2_MAX); 8656 8657 ctx_done: 8658 hwrm_req_drop(bp, req); 8659 return rc; 8660 } 8661 8662 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 8663 { 8664 struct hwrm_func_backing_store_qcaps_output *resp; 8665 struct hwrm_func_backing_store_qcaps_input *req; 8666 int rc; 8667 8668 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || 8669 (bp->ctx && bp->ctx->flags & BNXT_CTX_FLAG_INITED)) 8670 return 0; 8671 8672 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 8673 return bnxt_hwrm_func_backing_store_qcaps_v2(bp); 8674 8675 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS); 8676 if (rc) 8677 return rc; 8678 8679 resp = hwrm_req_hold(bp, req); 8680 rc = hwrm_req_send_silent(bp, req); 8681 if (!rc) { 8682 struct bnxt_ctx_mem_type *ctxm; 8683 struct bnxt_ctx_mem_info *ctx; 8684 u8 init_val, init_idx = 0; 8685 u16 init_mask; 8686 8687 ctx = bp->ctx; 8688 if (!ctx) { 8689 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8690 if (!ctx) { 8691 rc = -ENOMEM; 8692 goto ctx_err; 8693 } 8694 bp->ctx = ctx; 8695 } 8696 init_val = resp->ctx_kind_initializer; 8697 init_mask = le16_to_cpu(resp->ctx_init_mask); 8698 8699 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8700 ctxm->max_entries = le32_to_cpu(resp->qp_max_entries); 8701 ctxm->qp_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 8702 ctxm->qp_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 8703 ctxm->qp_fast_qpmd_entries = le16_to_cpu(resp->fast_qpmd_qp_num_entries); 8704 ctxm->entry_size = le16_to_cpu(resp->qp_entry_size); 8705 bnxt_init_ctx_initializer(ctxm, init_val, resp->qp_init_offset, 8706 (init_mask & (1 << init_idx++)) != 0); 8707 8708 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8709 ctxm->srq_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 8710 ctxm->max_entries = le32_to_cpu(resp->srq_max_entries); 8711 ctxm->entry_size = le16_to_cpu(resp->srq_entry_size); 8712 bnxt_init_ctx_initializer(ctxm, init_val, resp->srq_init_offset, 8713 (init_mask & (1 << init_idx++)) != 0); 8714 8715 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8716 ctxm->cq_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 8717 ctxm->max_entries = le32_to_cpu(resp->cq_max_entries); 8718 ctxm->entry_size = le16_to_cpu(resp->cq_entry_size); 8719 bnxt_init_ctx_initializer(ctxm, init_val, resp->cq_init_offset, 8720 (init_mask & (1 << init_idx++)) != 0); 8721 8722 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8723 ctxm->vnic_entries = le16_to_cpu(resp->vnic_max_vnic_entries); 8724 ctxm->max_entries = ctxm->vnic_entries + 8725 le16_to_cpu(resp->vnic_max_ring_table_entries); 8726 ctxm->entry_size = le16_to_cpu(resp->vnic_entry_size); 8727 bnxt_init_ctx_initializer(ctxm, init_val, 8728 resp->vnic_init_offset, 8729 (init_mask & (1 << init_idx++)) != 0); 8730 8731 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8732 ctxm->max_entries = le32_to_cpu(resp->stat_max_entries); 8733 ctxm->entry_size = le16_to_cpu(resp->stat_entry_size); 8734 bnxt_init_ctx_initializer(ctxm, init_val, 8735 resp->stat_init_offset, 8736 (init_mask & (1 << init_idx++)) != 0); 8737 8738 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8739 ctxm->entry_size = le16_to_cpu(resp->tqm_entry_size); 8740 ctxm->min_entries = le32_to_cpu(resp->tqm_min_entries_per_ring); 8741 ctxm->max_entries = le32_to_cpu(resp->tqm_max_entries_per_ring); 8742 ctxm->entry_multiple = resp->tqm_entries_multiple; 8743 if (!ctxm->entry_multiple) 8744 ctxm->entry_multiple = 1; 8745 8746 memcpy(&ctx->ctx_arr[BNXT_CTX_FTQM], ctxm, sizeof(*ctxm)); 8747 8748 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8749 ctxm->max_entries = le32_to_cpu(resp->mrav_max_entries); 8750 ctxm->entry_size = le16_to_cpu(resp->mrav_entry_size); 8751 ctxm->mrav_num_entries_units = 8752 le16_to_cpu(resp->mrav_num_entries_units); 8753 bnxt_init_ctx_initializer(ctxm, init_val, 8754 resp->mrav_init_offset, 8755 (init_mask & (1 << init_idx++)) != 0); 8756 8757 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8758 ctxm->entry_size = le16_to_cpu(resp->tim_entry_size); 8759 ctxm->max_entries = le32_to_cpu(resp->tim_max_entries); 8760 8761 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 8762 if (!ctx->tqm_fp_rings_count) 8763 ctx->tqm_fp_rings_count = bp->max_q; 8764 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 8765 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 8766 8767 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 8768 memcpy(ctxm, &ctx->ctx_arr[BNXT_CTX_STQM], sizeof(*ctxm)); 8769 ctxm->instance_bmap = (1 << ctx->tqm_fp_rings_count) - 1; 8770 8771 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_MAX); 8772 } else { 8773 rc = 0; 8774 } 8775 ctx_err: 8776 hwrm_req_drop(bp, req); 8777 return rc; 8778 } 8779 8780 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 8781 __le64 *pg_dir) 8782 { 8783 if (!rmem->nr_pages) 8784 return; 8785 8786 BNXT_SET_CTX_PAGE_ATTR(*pg_attr); 8787 if (rmem->depth >= 1) { 8788 if (rmem->depth == 2) 8789 *pg_attr |= 2; 8790 else 8791 *pg_attr |= 1; 8792 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 8793 } else { 8794 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 8795 } 8796 } 8797 8798 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 8799 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 8800 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 8801 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 8802 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 8803 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 8804 8805 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 8806 { 8807 struct hwrm_func_backing_store_cfg_input *req; 8808 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8809 struct bnxt_ctx_pg_info *ctx_pg; 8810 struct bnxt_ctx_mem_type *ctxm; 8811 void **__req = (void **)&req; 8812 u32 req_len = sizeof(*req); 8813 __le32 *num_entries; 8814 __le64 *pg_dir; 8815 u32 flags = 0; 8816 u8 *pg_attr; 8817 u32 ena; 8818 int rc; 8819 int i; 8820 8821 if (!ctx) 8822 return 0; 8823 8824 if (req_len > bp->hwrm_max_ext_req_len) 8825 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 8826 rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len); 8827 if (rc) 8828 return rc; 8829 8830 req->enables = cpu_to_le32(enables); 8831 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 8832 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8833 ctx_pg = ctxm->pg_info; 8834 req->qp_num_entries = cpu_to_le32(ctx_pg->entries); 8835 req->qp_num_qp1_entries = cpu_to_le16(ctxm->qp_qp1_entries); 8836 req->qp_num_l2_entries = cpu_to_le16(ctxm->qp_l2_entries); 8837 req->qp_entry_size = cpu_to_le16(ctxm->entry_size); 8838 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8839 &req->qpc_pg_size_qpc_lvl, 8840 &req->qpc_page_dir); 8841 8842 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD) 8843 req->qp_num_fast_qpmd_entries = cpu_to_le16(ctxm->qp_fast_qpmd_entries); 8844 } 8845 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 8846 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8847 ctx_pg = ctxm->pg_info; 8848 req->srq_num_entries = cpu_to_le32(ctx_pg->entries); 8849 req->srq_num_l2_entries = cpu_to_le16(ctxm->srq_l2_entries); 8850 req->srq_entry_size = cpu_to_le16(ctxm->entry_size); 8851 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8852 &req->srq_pg_size_srq_lvl, 8853 &req->srq_page_dir); 8854 } 8855 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 8856 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8857 ctx_pg = ctxm->pg_info; 8858 req->cq_num_entries = cpu_to_le32(ctx_pg->entries); 8859 req->cq_num_l2_entries = cpu_to_le16(ctxm->cq_l2_entries); 8860 req->cq_entry_size = cpu_to_le16(ctxm->entry_size); 8861 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8862 &req->cq_pg_size_cq_lvl, 8863 &req->cq_page_dir); 8864 } 8865 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 8866 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8867 ctx_pg = ctxm->pg_info; 8868 req->vnic_num_vnic_entries = cpu_to_le16(ctxm->vnic_entries); 8869 req->vnic_num_ring_table_entries = 8870 cpu_to_le16(ctxm->max_entries - ctxm->vnic_entries); 8871 req->vnic_entry_size = cpu_to_le16(ctxm->entry_size); 8872 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8873 &req->vnic_pg_size_vnic_lvl, 8874 &req->vnic_page_dir); 8875 } 8876 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 8877 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8878 ctx_pg = ctxm->pg_info; 8879 req->stat_num_entries = cpu_to_le32(ctxm->max_entries); 8880 req->stat_entry_size = cpu_to_le16(ctxm->entry_size); 8881 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8882 &req->stat_pg_size_stat_lvl, 8883 &req->stat_page_dir); 8884 } 8885 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 8886 u32 units; 8887 8888 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8889 ctx_pg = ctxm->pg_info; 8890 req->mrav_num_entries = cpu_to_le32(ctx_pg->entries); 8891 units = ctxm->mrav_num_entries_units; 8892 if (units) { 8893 u32 num_mr, num_ah = ctxm->mrav_av_entries; 8894 u32 entries; 8895 8896 num_mr = ctx_pg->entries - num_ah; 8897 entries = ((num_mr / units) << 16) | (num_ah / units); 8898 req->mrav_num_entries = cpu_to_le32(entries); 8899 flags |= FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 8900 } 8901 req->mrav_entry_size = cpu_to_le16(ctxm->entry_size); 8902 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8903 &req->mrav_pg_size_mrav_lvl, 8904 &req->mrav_page_dir); 8905 } 8906 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 8907 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8908 ctx_pg = ctxm->pg_info; 8909 req->tim_num_entries = cpu_to_le32(ctx_pg->entries); 8910 req->tim_entry_size = cpu_to_le16(ctxm->entry_size); 8911 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8912 &req->tim_pg_size_tim_lvl, 8913 &req->tim_page_dir); 8914 } 8915 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8916 for (i = 0, num_entries = &req->tqm_sp_num_entries, 8917 pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl, 8918 pg_dir = &req->tqm_sp_page_dir, 8919 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP, 8920 ctx_pg = ctxm->pg_info; 8921 i < BNXT_MAX_TQM_RINGS; 8922 ctx_pg = &ctx->ctx_arr[BNXT_CTX_FTQM].pg_info[i], 8923 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 8924 if (!(enables & ena)) 8925 continue; 8926 8927 req->tqm_entry_size = cpu_to_le16(ctxm->entry_size); 8928 *num_entries = cpu_to_le32(ctx_pg->entries); 8929 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 8930 } 8931 req->flags = cpu_to_le32(flags); 8932 return hwrm_req_send(bp, req); 8933 } 8934 8935 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 8936 struct bnxt_ctx_pg_info *ctx_pg) 8937 { 8938 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8939 8940 rmem->page_size = BNXT_PAGE_SIZE; 8941 rmem->pg_arr = ctx_pg->ctx_pg_arr; 8942 rmem->dma_arr = ctx_pg->ctx_dma_arr; 8943 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 8944 if (rmem->depth >= 1) 8945 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 8946 return bnxt_alloc_ring(bp, rmem); 8947 } 8948 8949 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 8950 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 8951 u8 depth, struct bnxt_ctx_mem_type *ctxm) 8952 { 8953 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8954 int rc; 8955 8956 if (!mem_size) 8957 return -EINVAL; 8958 8959 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 8960 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 8961 ctx_pg->nr_pages = 0; 8962 return -EINVAL; 8963 } 8964 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 8965 int nr_tbls, i; 8966 8967 rmem->depth = 2; 8968 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 8969 GFP_KERNEL); 8970 if (!ctx_pg->ctx_pg_tbl) 8971 return -ENOMEM; 8972 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 8973 rmem->nr_pages = nr_tbls; 8974 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 8975 if (rc) 8976 return rc; 8977 for (i = 0; i < nr_tbls; i++) { 8978 struct bnxt_ctx_pg_info *pg_tbl; 8979 8980 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 8981 if (!pg_tbl) 8982 return -ENOMEM; 8983 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 8984 rmem = &pg_tbl->ring_mem; 8985 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 8986 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 8987 rmem->depth = 1; 8988 rmem->nr_pages = MAX_CTX_PAGES; 8989 rmem->ctx_mem = ctxm; 8990 if (i == (nr_tbls - 1)) { 8991 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 8992 8993 if (rem) 8994 rmem->nr_pages = rem; 8995 } 8996 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 8997 if (rc) 8998 break; 8999 } 9000 } else { 9001 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 9002 if (rmem->nr_pages > 1 || depth) 9003 rmem->depth = 1; 9004 rmem->ctx_mem = ctxm; 9005 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 9006 } 9007 return rc; 9008 } 9009 9010 static size_t bnxt_copy_ctx_pg_tbls(struct bnxt *bp, 9011 struct bnxt_ctx_pg_info *ctx_pg, 9012 void *buf, size_t offset, size_t head, 9013 size_t tail) 9014 { 9015 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 9016 size_t nr_pages = ctx_pg->nr_pages; 9017 int page_size = rmem->page_size; 9018 size_t len = 0, total_len = 0; 9019 u16 depth = rmem->depth; 9020 9021 tail %= nr_pages * page_size; 9022 do { 9023 if (depth > 1) { 9024 int i = head / (page_size * MAX_CTX_PAGES); 9025 struct bnxt_ctx_pg_info *pg_tbl; 9026 9027 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 9028 rmem = &pg_tbl->ring_mem; 9029 } 9030 len = __bnxt_copy_ring(bp, rmem, buf, offset, head, tail); 9031 head += len; 9032 offset += len; 9033 total_len += len; 9034 if (head >= nr_pages * page_size) 9035 head = 0; 9036 } while (head != tail); 9037 return total_len; 9038 } 9039 9040 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 9041 struct bnxt_ctx_pg_info *ctx_pg) 9042 { 9043 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 9044 9045 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 9046 ctx_pg->ctx_pg_tbl) { 9047 int i, nr_tbls = rmem->nr_pages; 9048 9049 for (i = 0; i < nr_tbls; i++) { 9050 struct bnxt_ctx_pg_info *pg_tbl; 9051 struct bnxt_ring_mem_info *rmem2; 9052 9053 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 9054 if (!pg_tbl) 9055 continue; 9056 rmem2 = &pg_tbl->ring_mem; 9057 bnxt_free_ring(bp, rmem2); 9058 ctx_pg->ctx_pg_arr[i] = NULL; 9059 kfree(pg_tbl); 9060 ctx_pg->ctx_pg_tbl[i] = NULL; 9061 } 9062 kfree(ctx_pg->ctx_pg_tbl); 9063 ctx_pg->ctx_pg_tbl = NULL; 9064 } 9065 bnxt_free_ring(bp, rmem); 9066 ctx_pg->nr_pages = 0; 9067 } 9068 9069 static int bnxt_setup_ctxm_pg_tbls(struct bnxt *bp, 9070 struct bnxt_ctx_mem_type *ctxm, u32 entries, 9071 u8 pg_lvl) 9072 { 9073 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 9074 int i, rc = 0, n = 1; 9075 u32 mem_size; 9076 9077 if (!ctxm->entry_size || !ctx_pg) 9078 return -EINVAL; 9079 if (ctxm->instance_bmap) 9080 n = hweight32(ctxm->instance_bmap); 9081 if (ctxm->entry_multiple) 9082 entries = roundup(entries, ctxm->entry_multiple); 9083 entries = clamp_t(u32, entries, ctxm->min_entries, ctxm->max_entries); 9084 mem_size = entries * ctxm->entry_size; 9085 for (i = 0; i < n && !rc; i++) { 9086 ctx_pg[i].entries = entries; 9087 rc = bnxt_alloc_ctx_pg_tbls(bp, &ctx_pg[i], mem_size, pg_lvl, 9088 ctxm->init_value ? ctxm : NULL); 9089 } 9090 if (!rc) 9091 ctxm->mem_valid = 1; 9092 return rc; 9093 } 9094 9095 static int bnxt_hwrm_func_backing_store_cfg_v2(struct bnxt *bp, 9096 struct bnxt_ctx_mem_type *ctxm, 9097 bool last) 9098 { 9099 struct hwrm_func_backing_store_cfg_v2_input *req; 9100 u32 instance_bmap = ctxm->instance_bmap; 9101 int i, j, rc = 0, n = 1; 9102 __le32 *p; 9103 9104 if (!(ctxm->flags & BNXT_CTX_MEM_TYPE_VALID) || !ctxm->pg_info) 9105 return 0; 9106 9107 if (instance_bmap) 9108 n = hweight32(ctxm->instance_bmap); 9109 else 9110 instance_bmap = 1; 9111 9112 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_CFG_V2); 9113 if (rc) 9114 return rc; 9115 hwrm_req_hold(bp, req); 9116 req->type = cpu_to_le16(ctxm->type); 9117 req->entry_size = cpu_to_le16(ctxm->entry_size); 9118 if ((ctxm->flags & BNXT_CTX_MEM_PERSIST) && 9119 bnxt_bs_trace_avail(bp, ctxm->type)) { 9120 struct bnxt_bs_trace_info *bs_trace; 9121 u32 enables; 9122 9123 enables = FUNC_BACKING_STORE_CFG_V2_REQ_ENABLES_NEXT_BS_OFFSET; 9124 req->enables = cpu_to_le32(enables); 9125 bs_trace = &bp->bs_trace[bnxt_bstore_to_trace[ctxm->type]]; 9126 req->next_bs_offset = cpu_to_le32(bs_trace->last_offset); 9127 } 9128 req->subtype_valid_cnt = ctxm->split_entry_cnt; 9129 for (i = 0, p = &req->split_entry_0; i < ctxm->split_entry_cnt; i++) 9130 p[i] = cpu_to_le32(ctxm->split[i]); 9131 for (i = 0, j = 0; j < n && !rc; i++) { 9132 struct bnxt_ctx_pg_info *ctx_pg; 9133 9134 if (!(instance_bmap & (1 << i))) 9135 continue; 9136 req->instance = cpu_to_le16(i); 9137 ctx_pg = &ctxm->pg_info[j++]; 9138 if (!ctx_pg->entries) 9139 continue; 9140 req->num_entries = cpu_to_le32(ctx_pg->entries); 9141 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 9142 &req->page_size_pbl_level, 9143 &req->page_dir); 9144 if (last && j == n) 9145 req->flags = 9146 cpu_to_le32(FUNC_BACKING_STORE_CFG_V2_REQ_FLAGS_BS_CFG_ALL_DONE); 9147 rc = hwrm_req_send(bp, req); 9148 } 9149 hwrm_req_drop(bp, req); 9150 return rc; 9151 } 9152 9153 static int bnxt_backing_store_cfg_v2(struct bnxt *bp, u32 ena) 9154 { 9155 struct bnxt_ctx_mem_info *ctx = bp->ctx; 9156 struct bnxt_ctx_mem_type *ctxm; 9157 u16 last_type = BNXT_CTX_INV; 9158 int rc = 0; 9159 u16 type; 9160 9161 for (type = BNXT_CTX_SRT; type <= BNXT_CTX_RIGP1; type++) { 9162 ctxm = &ctx->ctx_arr[type]; 9163 if (!bnxt_bs_trace_avail(bp, type)) 9164 continue; 9165 if (!ctxm->mem_valid) { 9166 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, 9167 ctxm->max_entries, 1); 9168 if (rc) { 9169 netdev_warn(bp->dev, "Unable to setup ctx page for type:0x%x.\n", 9170 type); 9171 continue; 9172 } 9173 bnxt_bs_trace_init(bp, ctxm); 9174 } 9175 last_type = type; 9176 } 9177 9178 if (last_type == BNXT_CTX_INV) { 9179 if (!ena) 9180 return 0; 9181 else if (ena & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) 9182 last_type = BNXT_CTX_MAX - 1; 9183 else 9184 last_type = BNXT_CTX_L2_MAX - 1; 9185 } 9186 ctx->ctx_arr[last_type].last = 1; 9187 9188 for (type = 0 ; type < BNXT_CTX_V2_MAX; type++) { 9189 ctxm = &ctx->ctx_arr[type]; 9190 9191 if (!ctxm->mem_valid) 9192 continue; 9193 rc = bnxt_hwrm_func_backing_store_cfg_v2(bp, ctxm, ctxm->last); 9194 if (rc) 9195 return rc; 9196 } 9197 return 0; 9198 } 9199 9200 /** 9201 * __bnxt_copy_ctx_mem - copy host context memory 9202 * @bp: The driver context 9203 * @ctxm: The pointer to the context memory type 9204 * @buf: The destination buffer or NULL to just obtain the length 9205 * @offset: The buffer offset to copy the data to 9206 * @head: The head offset of context memory to copy from 9207 * @tail: The tail offset (last byte + 1) of context memory to end the copy 9208 * 9209 * This function is called for debugging purposes to dump the host context 9210 * used by the chip. 9211 * 9212 * Return: Length of memory copied 9213 */ 9214 static size_t __bnxt_copy_ctx_mem(struct bnxt *bp, 9215 struct bnxt_ctx_mem_type *ctxm, void *buf, 9216 size_t offset, size_t head, size_t tail) 9217 { 9218 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 9219 size_t len = 0, total_len = 0; 9220 int i, n = 1; 9221 9222 if (!ctx_pg) 9223 return 0; 9224 9225 if (ctxm->instance_bmap) 9226 n = hweight32(ctxm->instance_bmap); 9227 for (i = 0; i < n; i++) { 9228 len = bnxt_copy_ctx_pg_tbls(bp, &ctx_pg[i], buf, offset, head, 9229 tail); 9230 offset += len; 9231 total_len += len; 9232 } 9233 return total_len; 9234 } 9235 9236 size_t bnxt_copy_ctx_mem(struct bnxt *bp, struct bnxt_ctx_mem_type *ctxm, 9237 void *buf, size_t offset) 9238 { 9239 size_t tail = ctxm->max_entries * ctxm->entry_size; 9240 9241 return __bnxt_copy_ctx_mem(bp, ctxm, buf, offset, 0, tail); 9242 } 9243 9244 static void bnxt_free_one_ctx_mem(struct bnxt *bp, 9245 struct bnxt_ctx_mem_type *ctxm, bool force) 9246 { 9247 struct bnxt_ctx_pg_info *ctx_pg; 9248 int i, n = 1; 9249 9250 ctxm->last = 0; 9251 9252 if (ctxm->mem_valid && !force && (ctxm->flags & BNXT_CTX_MEM_PERSIST)) 9253 return; 9254 9255 ctx_pg = ctxm->pg_info; 9256 if (ctx_pg) { 9257 if (ctxm->instance_bmap) 9258 n = hweight32(ctxm->instance_bmap); 9259 for (i = 0; i < n; i++) 9260 bnxt_free_ctx_pg_tbls(bp, &ctx_pg[i]); 9261 9262 kfree(ctx_pg); 9263 ctxm->pg_info = NULL; 9264 ctxm->mem_valid = 0; 9265 } 9266 memset(ctxm, 0, sizeof(*ctxm)); 9267 } 9268 9269 void bnxt_free_ctx_mem(struct bnxt *bp, bool force) 9270 { 9271 struct bnxt_ctx_mem_info *ctx = bp->ctx; 9272 u16 type; 9273 9274 if (!ctx) 9275 return; 9276 9277 for (type = 0; type < BNXT_CTX_V2_MAX; type++) 9278 bnxt_free_one_ctx_mem(bp, &ctx->ctx_arr[type], force); 9279 9280 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 9281 if (force) { 9282 kfree(ctx); 9283 bp->ctx = NULL; 9284 } 9285 } 9286 9287 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 9288 { 9289 struct bnxt_ctx_mem_type *ctxm; 9290 struct bnxt_ctx_mem_info *ctx; 9291 u32 l2_qps, qp1_qps, max_qps; 9292 u32 ena, entries_sp, entries; 9293 u32 srqs, max_srqs, min; 9294 u32 num_mr, num_ah; 9295 u32 extra_srqs = 0; 9296 u32 extra_qps = 0; 9297 u32 fast_qpmd_qps; 9298 u8 pg_lvl = 1; 9299 int i, rc; 9300 9301 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 9302 if (rc) { 9303 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 9304 rc); 9305 return rc; 9306 } 9307 ctx = bp->ctx; 9308 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 9309 return 0; 9310 9311 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 9312 l2_qps = ctxm->qp_l2_entries; 9313 qp1_qps = ctxm->qp_qp1_entries; 9314 fast_qpmd_qps = ctxm->qp_fast_qpmd_entries; 9315 max_qps = ctxm->max_entries; 9316 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 9317 srqs = ctxm->srq_l2_entries; 9318 max_srqs = ctxm->max_entries; 9319 ena = 0; 9320 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 9321 pg_lvl = 2; 9322 if (BNXT_SW_RES_LMT(bp)) { 9323 extra_qps = max_qps - l2_qps - qp1_qps; 9324 extra_srqs = max_srqs - srqs; 9325 } else { 9326 extra_qps = min_t(u32, 65536, 9327 max_qps - l2_qps - qp1_qps); 9328 /* allocate extra qps if fw supports RoCE fast qp 9329 * destroy feature 9330 */ 9331 extra_qps += fast_qpmd_qps; 9332 extra_srqs = min_t(u32, 8192, max_srqs - srqs); 9333 } 9334 if (fast_qpmd_qps) 9335 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD; 9336 } 9337 9338 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 9339 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 9340 pg_lvl); 9341 if (rc) 9342 return rc; 9343 9344 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 9345 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, srqs + extra_srqs, pg_lvl); 9346 if (rc) 9347 return rc; 9348 9349 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 9350 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->cq_l2_entries + 9351 extra_qps * 2, pg_lvl); 9352 if (rc) 9353 return rc; 9354 9355 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 9356 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 9357 if (rc) 9358 return rc; 9359 9360 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 9361 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 9362 if (rc) 9363 return rc; 9364 9365 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 9366 goto skip_rdma; 9367 9368 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 9369 if (BNXT_SW_RES_LMT(bp) && 9370 ctxm->split_entry_cnt == BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1) { 9371 num_ah = ctxm->mrav_av_entries; 9372 num_mr = ctxm->max_entries - num_ah; 9373 } else { 9374 /* 128K extra is needed to accommodate static AH context 9375 * allocation by f/w. 9376 */ 9377 num_mr = min_t(u32, ctxm->max_entries / 2, 1024 * 256); 9378 num_ah = min_t(u32, num_mr, 1024 * 128); 9379 ctxm->split_entry_cnt = BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1; 9380 if (!ctxm->mrav_av_entries || ctxm->mrav_av_entries > num_ah) 9381 ctxm->mrav_av_entries = num_ah; 9382 } 9383 9384 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, num_mr + num_ah, 2); 9385 if (rc) 9386 return rc; 9387 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 9388 9389 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 9390 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 1); 9391 if (rc) 9392 return rc; 9393 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 9394 9395 skip_rdma: 9396 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 9397 min = ctxm->min_entries; 9398 entries_sp = ctx->ctx_arr[BNXT_CTX_VNIC].vnic_entries + l2_qps + 9399 2 * (extra_qps + qp1_qps) + min; 9400 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries_sp, 2); 9401 if (rc) 9402 return rc; 9403 9404 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 9405 entries = l2_qps + 2 * (extra_qps + qp1_qps); 9406 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries, 2); 9407 if (rc) 9408 return rc; 9409 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 9410 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 9411 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 9412 9413 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 9414 rc = bnxt_backing_store_cfg_v2(bp, ena); 9415 else 9416 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 9417 if (rc) { 9418 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 9419 rc); 9420 return rc; 9421 } 9422 ctx->flags |= BNXT_CTX_FLAG_INITED; 9423 return 0; 9424 } 9425 9426 static int bnxt_hwrm_crash_dump_mem_cfg(struct bnxt *bp) 9427 { 9428 struct hwrm_dbg_crashdump_medium_cfg_input *req; 9429 u16 page_attr; 9430 int rc; 9431 9432 if (!(bp->fw_dbg_cap & DBG_QCAPS_RESP_FLAGS_CRASHDUMP_HOST_DDR)) 9433 return 0; 9434 9435 rc = hwrm_req_init(bp, req, HWRM_DBG_CRASHDUMP_MEDIUM_CFG); 9436 if (rc) 9437 return rc; 9438 9439 if (BNXT_PAGE_SIZE == 0x2000) 9440 page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_8K; 9441 else if (BNXT_PAGE_SIZE == 0x10000) 9442 page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_64K; 9443 else 9444 page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_4K; 9445 req->pg_size_lvl = cpu_to_le16(page_attr | 9446 bp->fw_crash_mem->ring_mem.depth); 9447 req->pbl = cpu_to_le64(bp->fw_crash_mem->ring_mem.pg_tbl_map); 9448 req->size = cpu_to_le32(bp->fw_crash_len); 9449 req->output_dest_flags = cpu_to_le16(BNXT_DBG_CR_DUMP_MDM_CFG_DDR); 9450 return hwrm_req_send(bp, req); 9451 } 9452 9453 static void bnxt_free_crash_dump_mem(struct bnxt *bp) 9454 { 9455 if (bp->fw_crash_mem) { 9456 bnxt_free_ctx_pg_tbls(bp, bp->fw_crash_mem); 9457 kfree(bp->fw_crash_mem); 9458 bp->fw_crash_mem = NULL; 9459 } 9460 } 9461 9462 static int bnxt_alloc_crash_dump_mem(struct bnxt *bp) 9463 { 9464 u32 mem_size = 0; 9465 int rc; 9466 9467 if (!(bp->fw_dbg_cap & DBG_QCAPS_RESP_FLAGS_CRASHDUMP_HOST_DDR)) 9468 return 0; 9469 9470 rc = bnxt_hwrm_get_dump_len(bp, BNXT_DUMP_CRASH, &mem_size); 9471 if (rc) 9472 return rc; 9473 9474 mem_size = round_up(mem_size, 4); 9475 9476 /* keep and use the existing pages */ 9477 if (bp->fw_crash_mem && 9478 mem_size <= bp->fw_crash_mem->nr_pages * BNXT_PAGE_SIZE) 9479 goto alloc_done; 9480 9481 if (bp->fw_crash_mem) 9482 bnxt_free_ctx_pg_tbls(bp, bp->fw_crash_mem); 9483 else 9484 bp->fw_crash_mem = kzalloc(sizeof(*bp->fw_crash_mem), 9485 GFP_KERNEL); 9486 if (!bp->fw_crash_mem) 9487 return -ENOMEM; 9488 9489 rc = bnxt_alloc_ctx_pg_tbls(bp, bp->fw_crash_mem, mem_size, 1, NULL); 9490 if (rc) { 9491 bnxt_free_crash_dump_mem(bp); 9492 return rc; 9493 } 9494 9495 alloc_done: 9496 bp->fw_crash_len = mem_size; 9497 return 0; 9498 } 9499 9500 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 9501 { 9502 struct hwrm_func_resource_qcaps_output *resp; 9503 struct hwrm_func_resource_qcaps_input *req; 9504 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9505 int rc; 9506 9507 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS); 9508 if (rc) 9509 return rc; 9510 9511 req->fid = cpu_to_le16(0xffff); 9512 resp = hwrm_req_hold(bp, req); 9513 rc = hwrm_req_send_silent(bp, req); 9514 if (rc) 9515 goto hwrm_func_resc_qcaps_exit; 9516 9517 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 9518 if (!all) 9519 goto hwrm_func_resc_qcaps_exit; 9520 9521 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 9522 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 9523 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 9524 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 9525 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 9526 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 9527 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 9528 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 9529 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 9530 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 9531 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 9532 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 9533 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 9534 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 9535 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 9536 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 9537 9538 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 9539 u16 max_msix = le16_to_cpu(resp->max_msix); 9540 9541 hw_resc->max_nqs = max_msix; 9542 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 9543 } 9544 9545 if (BNXT_PF(bp)) { 9546 struct bnxt_pf_info *pf = &bp->pf; 9547 9548 pf->vf_resv_strategy = 9549 le16_to_cpu(resp->vf_reservation_strategy); 9550 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 9551 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 9552 } 9553 hwrm_func_resc_qcaps_exit: 9554 hwrm_req_drop(bp, req); 9555 return rc; 9556 } 9557 9558 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) 9559 { 9560 struct hwrm_port_mac_ptp_qcfg_output *resp; 9561 struct hwrm_port_mac_ptp_qcfg_input *req; 9562 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 9563 u8 flags; 9564 int rc; 9565 9566 if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5_PLUS(bp)) { 9567 rc = -ENODEV; 9568 goto no_ptp; 9569 } 9570 9571 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG); 9572 if (rc) 9573 goto no_ptp; 9574 9575 req->port_id = cpu_to_le16(bp->pf.port_id); 9576 resp = hwrm_req_hold(bp, req); 9577 rc = hwrm_req_send(bp, req); 9578 if (rc) 9579 goto exit; 9580 9581 flags = resp->flags; 9582 if (BNXT_CHIP_P5_AND_MINUS(bp) && 9583 !(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { 9584 rc = -ENODEV; 9585 goto exit; 9586 } 9587 if (!ptp) { 9588 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); 9589 if (!ptp) { 9590 rc = -ENOMEM; 9591 goto exit; 9592 } 9593 ptp->bp = bp; 9594 bp->ptp_cfg = ptp; 9595 } 9596 9597 if (flags & 9598 (PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK | 9599 PORT_MAC_PTP_QCFG_RESP_FLAGS_64B_PHC_TIME)) { 9600 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); 9601 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); 9602 } else if (BNXT_CHIP_P5(bp)) { 9603 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; 9604 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; 9605 } else { 9606 rc = -ENODEV; 9607 goto exit; 9608 } 9609 ptp->rtc_configured = 9610 (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0; 9611 rc = bnxt_ptp_init(bp); 9612 if (rc) 9613 netdev_warn(bp->dev, "PTP initialization failed.\n"); 9614 exit: 9615 hwrm_req_drop(bp, req); 9616 if (!rc) 9617 return 0; 9618 9619 no_ptp: 9620 bnxt_ptp_clear(bp); 9621 kfree(ptp); 9622 bp->ptp_cfg = NULL; 9623 return rc; 9624 } 9625 9626 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 9627 { 9628 struct hwrm_func_qcaps_output *resp; 9629 struct hwrm_func_qcaps_input *req; 9630 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9631 u32 flags, flags_ext, flags_ext2; 9632 int rc; 9633 9634 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS); 9635 if (rc) 9636 return rc; 9637 9638 req->fid = cpu_to_le16(0xffff); 9639 resp = hwrm_req_hold(bp, req); 9640 rc = hwrm_req_send(bp, req); 9641 if (rc) 9642 goto hwrm_func_qcaps_exit; 9643 9644 flags = le32_to_cpu(resp->flags); 9645 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 9646 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 9647 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 9648 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 9649 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 9650 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 9651 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 9652 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 9653 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 9654 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 9655 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 9656 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 9657 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 9658 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 9659 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 9660 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 9661 if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED) 9662 bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS; 9663 9664 flags_ext = le32_to_cpu(resp->flags_ext); 9665 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 9666 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 9667 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED)) 9668 bp->fw_cap |= BNXT_FW_CAP_PTP_PPS; 9669 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED) 9670 bp->fw_cap |= BNXT_FW_CAP_PTP_RTC; 9671 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT)) 9672 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF; 9673 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED)) 9674 bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH; 9675 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_NPAR_1_2_SUPPORTED) 9676 bp->fw_cap |= BNXT_FW_CAP_NPAR_1_2; 9677 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_DFLT_VLAN_TPID_PCP_SUPPORTED)) 9678 bp->fw_cap |= BNXT_FW_CAP_DFLT_VLAN_TPID_PCP; 9679 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_BS_V2_SUPPORTED) 9680 bp->fw_cap |= BNXT_FW_CAP_BACKING_STORE_V2; 9681 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_TX_COAL_CMPL_CAP) 9682 bp->flags |= BNXT_FLAG_TX_COAL_CMPL; 9683 9684 flags_ext2 = le32_to_cpu(resp->flags_ext2); 9685 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED) 9686 bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS; 9687 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_UDP_GSO_SUPPORTED) 9688 bp->flags |= BNXT_FLAG_UDP_GSO_CAP; 9689 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_TX_PKT_TS_CMPL_SUPPORTED) 9690 bp->fw_cap |= BNXT_FW_CAP_TX_TS_CMP; 9691 if (flags_ext2 & 9692 FUNC_QCAPS_RESP_FLAGS_EXT2_SW_MAX_RESOURCE_LIMITS_SUPPORTED) 9693 bp->fw_cap |= BNXT_FW_CAP_SW_MAX_RESOURCE_LIMITS; 9694 if (BNXT_PF(bp) && 9695 (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_ROCE_VF_RESOURCE_MGMT_SUPPORTED)) 9696 bp->fw_cap |= BNXT_FW_CAP_ROCE_VF_RESC_MGMT_SUPPORTED; 9697 9698 bp->tx_push_thresh = 0; 9699 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 9700 BNXT_FW_MAJ(bp) > 217) 9701 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 9702 9703 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 9704 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 9705 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 9706 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 9707 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 9708 if (!hw_resc->max_hw_ring_grps) 9709 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 9710 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 9711 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 9712 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 9713 9714 hw_resc->max_encap_records = le32_to_cpu(resp->max_encap_records); 9715 hw_resc->max_decap_records = le32_to_cpu(resp->max_decap_records); 9716 hw_resc->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 9717 hw_resc->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 9718 hw_resc->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 9719 hw_resc->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 9720 9721 if (BNXT_PF(bp)) { 9722 struct bnxt_pf_info *pf = &bp->pf; 9723 9724 pf->fw_fid = le16_to_cpu(resp->fid); 9725 pf->port_id = le16_to_cpu(resp->port_id); 9726 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 9727 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 9728 pf->max_vfs = le16_to_cpu(resp->max_vfs); 9729 bp->flags &= ~BNXT_FLAG_WOL_CAP; 9730 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 9731 bp->flags |= BNXT_FLAG_WOL_CAP; 9732 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { 9733 bp->fw_cap |= BNXT_FW_CAP_PTP; 9734 } else { 9735 bnxt_ptp_clear(bp); 9736 kfree(bp->ptp_cfg); 9737 bp->ptp_cfg = NULL; 9738 } 9739 } else { 9740 #ifdef CONFIG_BNXT_SRIOV 9741 struct bnxt_vf_info *vf = &bp->vf; 9742 9743 vf->fw_fid = le16_to_cpu(resp->fid); 9744 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 9745 #endif 9746 } 9747 bp->tso_max_segs = le16_to_cpu(resp->max_tso_segs); 9748 9749 hwrm_func_qcaps_exit: 9750 hwrm_req_drop(bp, req); 9751 return rc; 9752 } 9753 9754 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp) 9755 { 9756 struct hwrm_dbg_qcaps_output *resp; 9757 struct hwrm_dbg_qcaps_input *req; 9758 int rc; 9759 9760 bp->fw_dbg_cap = 0; 9761 if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS)) 9762 return; 9763 9764 rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS); 9765 if (rc) 9766 return; 9767 9768 req->fid = cpu_to_le16(0xffff); 9769 resp = hwrm_req_hold(bp, req); 9770 rc = hwrm_req_send(bp, req); 9771 if (rc) 9772 goto hwrm_dbg_qcaps_exit; 9773 9774 bp->fw_dbg_cap = le32_to_cpu(resp->flags); 9775 9776 hwrm_dbg_qcaps_exit: 9777 hwrm_req_drop(bp, req); 9778 } 9779 9780 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 9781 9782 int bnxt_hwrm_func_qcaps(struct bnxt *bp) 9783 { 9784 int rc; 9785 9786 rc = __bnxt_hwrm_func_qcaps(bp); 9787 if (rc) 9788 return rc; 9789 9790 bnxt_hwrm_dbg_qcaps(bp); 9791 9792 rc = bnxt_hwrm_queue_qportcfg(bp); 9793 if (rc) { 9794 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 9795 return rc; 9796 } 9797 if (bp->hwrm_spec_code >= 0x10803) { 9798 rc = bnxt_alloc_ctx_mem(bp); 9799 if (rc) 9800 return rc; 9801 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 9802 if (!rc) 9803 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 9804 } 9805 return 0; 9806 } 9807 9808 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 9809 { 9810 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 9811 struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req; 9812 u32 flags; 9813 int rc; 9814 9815 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 9816 return 0; 9817 9818 rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS); 9819 if (rc) 9820 return rc; 9821 9822 resp = hwrm_req_hold(bp, req); 9823 rc = hwrm_req_send(bp, req); 9824 if (rc) 9825 goto hwrm_cfa_adv_qcaps_exit; 9826 9827 flags = le32_to_cpu(resp->flags); 9828 if (flags & 9829 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 9830 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 9831 9832 if (flags & 9833 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V3_SUPPORTED) 9834 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V3; 9835 9836 if (flags & 9837 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_NTUPLE_FLOW_RX_EXT_IP_PROTO_SUPPORTED) 9838 bp->fw_cap |= BNXT_FW_CAP_CFA_NTUPLE_RX_EXT_IP_PROTO; 9839 9840 hwrm_cfa_adv_qcaps_exit: 9841 hwrm_req_drop(bp, req); 9842 return rc; 9843 } 9844 9845 static int __bnxt_alloc_fw_health(struct bnxt *bp) 9846 { 9847 if (bp->fw_health) 9848 return 0; 9849 9850 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 9851 if (!bp->fw_health) 9852 return -ENOMEM; 9853 9854 mutex_init(&bp->fw_health->lock); 9855 return 0; 9856 } 9857 9858 static int bnxt_alloc_fw_health(struct bnxt *bp) 9859 { 9860 int rc; 9861 9862 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 9863 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 9864 return 0; 9865 9866 rc = __bnxt_alloc_fw_health(bp); 9867 if (rc) { 9868 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 9869 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 9870 return rc; 9871 } 9872 9873 return 0; 9874 } 9875 9876 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 9877 { 9878 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 9879 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 9880 BNXT_FW_HEALTH_WIN_MAP_OFF); 9881 } 9882 9883 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 9884 { 9885 struct bnxt_fw_health *fw_health = bp->fw_health; 9886 u32 reg_type; 9887 9888 if (!fw_health) 9889 return; 9890 9891 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 9892 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9893 fw_health->status_reliable = false; 9894 9895 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]); 9896 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9897 fw_health->resets_reliable = false; 9898 } 9899 9900 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 9901 { 9902 void __iomem *hs; 9903 u32 status_loc; 9904 u32 reg_type; 9905 u32 sig; 9906 9907 if (bp->fw_health) 9908 bp->fw_health->status_reliable = false; 9909 9910 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 9911 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 9912 9913 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 9914 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 9915 if (!bp->chip_num) { 9916 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 9917 bp->chip_num = readl(bp->bar0 + 9918 BNXT_FW_HEALTH_WIN_BASE + 9919 BNXT_GRC_REG_CHIP_NUM); 9920 } 9921 if (!BNXT_CHIP_P5_PLUS(bp)) 9922 return; 9923 9924 status_loc = BNXT_GRC_REG_STATUS_P5 | 9925 BNXT_FW_HEALTH_REG_TYPE_BAR0; 9926 } else { 9927 status_loc = readl(hs + offsetof(struct hcomm_status, 9928 fw_status_loc)); 9929 } 9930 9931 if (__bnxt_alloc_fw_health(bp)) { 9932 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 9933 return; 9934 } 9935 9936 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 9937 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 9938 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 9939 __bnxt_map_fw_health_reg(bp, status_loc); 9940 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 9941 BNXT_FW_HEALTH_WIN_OFF(status_loc); 9942 } 9943 9944 bp->fw_health->status_reliable = true; 9945 } 9946 9947 static int bnxt_map_fw_health_regs(struct bnxt *bp) 9948 { 9949 struct bnxt_fw_health *fw_health = bp->fw_health; 9950 u32 reg_base = 0xffffffff; 9951 int i; 9952 9953 bp->fw_health->status_reliable = false; 9954 bp->fw_health->resets_reliable = false; 9955 /* Only pre-map the monitoring GRC registers using window 3 */ 9956 for (i = 0; i < 4; i++) { 9957 u32 reg = fw_health->regs[i]; 9958 9959 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 9960 continue; 9961 if (reg_base == 0xffffffff) 9962 reg_base = reg & BNXT_GRC_BASE_MASK; 9963 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 9964 return -ERANGE; 9965 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 9966 } 9967 bp->fw_health->status_reliable = true; 9968 bp->fw_health->resets_reliable = true; 9969 if (reg_base == 0xffffffff) 9970 return 0; 9971 9972 __bnxt_map_fw_health_reg(bp, reg_base); 9973 return 0; 9974 } 9975 9976 static void bnxt_remap_fw_health_regs(struct bnxt *bp) 9977 { 9978 if (!bp->fw_health) 9979 return; 9980 9981 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) { 9982 bp->fw_health->status_reliable = true; 9983 bp->fw_health->resets_reliable = true; 9984 } else { 9985 bnxt_try_map_fw_health_reg(bp); 9986 } 9987 } 9988 9989 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 9990 { 9991 struct bnxt_fw_health *fw_health = bp->fw_health; 9992 struct hwrm_error_recovery_qcfg_output *resp; 9993 struct hwrm_error_recovery_qcfg_input *req; 9994 int rc, i; 9995 9996 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 9997 return 0; 9998 9999 rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG); 10000 if (rc) 10001 return rc; 10002 10003 resp = hwrm_req_hold(bp, req); 10004 rc = hwrm_req_send(bp, req); 10005 if (rc) 10006 goto err_recovery_out; 10007 fw_health->flags = le32_to_cpu(resp->flags); 10008 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 10009 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 10010 rc = -EINVAL; 10011 goto err_recovery_out; 10012 } 10013 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 10014 fw_health->master_func_wait_dsecs = 10015 le32_to_cpu(resp->master_func_wait_period); 10016 fw_health->normal_func_wait_dsecs = 10017 le32_to_cpu(resp->normal_func_wait_period); 10018 fw_health->post_reset_wait_dsecs = 10019 le32_to_cpu(resp->master_func_wait_period_after_reset); 10020 fw_health->post_reset_max_wait_dsecs = 10021 le32_to_cpu(resp->max_bailout_time_after_reset); 10022 fw_health->regs[BNXT_FW_HEALTH_REG] = 10023 le32_to_cpu(resp->fw_health_status_reg); 10024 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 10025 le32_to_cpu(resp->fw_heartbeat_reg); 10026 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 10027 le32_to_cpu(resp->fw_reset_cnt_reg); 10028 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 10029 le32_to_cpu(resp->reset_inprogress_reg); 10030 fw_health->fw_reset_inprog_reg_mask = 10031 le32_to_cpu(resp->reset_inprogress_reg_mask); 10032 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 10033 if (fw_health->fw_reset_seq_cnt >= 16) { 10034 rc = -EINVAL; 10035 goto err_recovery_out; 10036 } 10037 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 10038 fw_health->fw_reset_seq_regs[i] = 10039 le32_to_cpu(resp->reset_reg[i]); 10040 fw_health->fw_reset_seq_vals[i] = 10041 le32_to_cpu(resp->reset_reg_val[i]); 10042 fw_health->fw_reset_seq_delay_msec[i] = 10043 resp->delay_after_reset[i]; 10044 } 10045 err_recovery_out: 10046 hwrm_req_drop(bp, req); 10047 if (!rc) 10048 rc = bnxt_map_fw_health_regs(bp); 10049 if (rc) 10050 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 10051 return rc; 10052 } 10053 10054 static int bnxt_hwrm_func_reset(struct bnxt *bp) 10055 { 10056 struct hwrm_func_reset_input *req; 10057 int rc; 10058 10059 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET); 10060 if (rc) 10061 return rc; 10062 10063 req->enables = 0; 10064 hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT); 10065 return hwrm_req_send(bp, req); 10066 } 10067 10068 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 10069 { 10070 struct hwrm_nvm_get_dev_info_output nvm_info; 10071 10072 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 10073 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 10074 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 10075 nvm_info.nvm_cfg_ver_upd); 10076 } 10077 10078 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 10079 { 10080 struct hwrm_queue_qportcfg_output *resp; 10081 struct hwrm_queue_qportcfg_input *req; 10082 u8 i, j, *qptr; 10083 bool no_rdma; 10084 int rc = 0; 10085 10086 rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG); 10087 if (rc) 10088 return rc; 10089 10090 resp = hwrm_req_hold(bp, req); 10091 rc = hwrm_req_send(bp, req); 10092 if (rc) 10093 goto qportcfg_exit; 10094 10095 if (!resp->max_configurable_queues) { 10096 rc = -EINVAL; 10097 goto qportcfg_exit; 10098 } 10099 bp->max_tc = resp->max_configurable_queues; 10100 bp->max_lltc = resp->max_configurable_lossless_queues; 10101 if (bp->max_tc > BNXT_MAX_QUEUE) 10102 bp->max_tc = BNXT_MAX_QUEUE; 10103 10104 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 10105 qptr = &resp->queue_id0; 10106 for (i = 0, j = 0; i < bp->max_tc; i++) { 10107 bp->q_info[j].queue_id = *qptr; 10108 bp->q_ids[i] = *qptr++; 10109 bp->q_info[j].queue_profile = *qptr++; 10110 bp->tc_to_qidx[j] = j; 10111 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 10112 (no_rdma && BNXT_PF(bp))) 10113 j++; 10114 } 10115 bp->max_q = bp->max_tc; 10116 bp->max_tc = max_t(u8, j, 1); 10117 10118 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 10119 bp->max_tc = 1; 10120 10121 if (bp->max_lltc > bp->max_tc) 10122 bp->max_lltc = bp->max_tc; 10123 10124 qportcfg_exit: 10125 hwrm_req_drop(bp, req); 10126 return rc; 10127 } 10128 10129 static int bnxt_hwrm_poll(struct bnxt *bp) 10130 { 10131 struct hwrm_ver_get_input *req; 10132 int rc; 10133 10134 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 10135 if (rc) 10136 return rc; 10137 10138 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 10139 req->hwrm_intf_min = HWRM_VERSION_MINOR; 10140 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 10141 10142 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT); 10143 rc = hwrm_req_send(bp, req); 10144 return rc; 10145 } 10146 10147 static int bnxt_hwrm_ver_get(struct bnxt *bp) 10148 { 10149 struct hwrm_ver_get_output *resp; 10150 struct hwrm_ver_get_input *req; 10151 u16 fw_maj, fw_min, fw_bld, fw_rsv; 10152 u32 dev_caps_cfg, hwrm_ver; 10153 int rc, len, max_tmo_secs; 10154 10155 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 10156 if (rc) 10157 return rc; 10158 10159 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 10160 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 10161 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 10162 req->hwrm_intf_min = HWRM_VERSION_MINOR; 10163 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 10164 10165 resp = hwrm_req_hold(bp, req); 10166 rc = hwrm_req_send(bp, req); 10167 if (rc) 10168 goto hwrm_ver_get_exit; 10169 10170 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 10171 10172 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 10173 resp->hwrm_intf_min_8b << 8 | 10174 resp->hwrm_intf_upd_8b; 10175 if (resp->hwrm_intf_maj_8b < 1) { 10176 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 10177 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 10178 resp->hwrm_intf_upd_8b); 10179 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 10180 } 10181 10182 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 10183 HWRM_VERSION_UPDATE; 10184 10185 if (bp->hwrm_spec_code > hwrm_ver) 10186 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 10187 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 10188 HWRM_VERSION_UPDATE); 10189 else 10190 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 10191 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 10192 resp->hwrm_intf_upd_8b); 10193 10194 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 10195 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 10196 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 10197 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 10198 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 10199 len = FW_VER_STR_LEN; 10200 } else { 10201 fw_maj = resp->hwrm_fw_maj_8b; 10202 fw_min = resp->hwrm_fw_min_8b; 10203 fw_bld = resp->hwrm_fw_bld_8b; 10204 fw_rsv = resp->hwrm_fw_rsvd_8b; 10205 len = BC_HWRM_STR_LEN; 10206 } 10207 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 10208 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 10209 fw_rsv); 10210 10211 if (strlen(resp->active_pkg_name)) { 10212 int fw_ver_len = strlen(bp->fw_ver_str); 10213 10214 snprintf(bp->fw_ver_str + fw_ver_len, 10215 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 10216 resp->active_pkg_name); 10217 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 10218 } 10219 10220 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 10221 if (!bp->hwrm_cmd_timeout) 10222 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 10223 bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000; 10224 if (!bp->hwrm_cmd_max_timeout) 10225 bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT; 10226 max_tmo_secs = bp->hwrm_cmd_max_timeout / 1000; 10227 #ifdef CONFIG_DETECT_HUNG_TASK 10228 if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT || 10229 max_tmo_secs > CONFIG_DEFAULT_HUNG_TASK_TIMEOUT) { 10230 netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog (kernel default %ds)\n", 10231 max_tmo_secs, CONFIG_DEFAULT_HUNG_TASK_TIMEOUT); 10232 } 10233 #endif 10234 10235 if (resp->hwrm_intf_maj_8b >= 1) { 10236 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 10237 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 10238 } 10239 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 10240 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 10241 10242 bp->chip_num = le16_to_cpu(resp->chip_num); 10243 bp->chip_rev = resp->chip_rev; 10244 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 10245 !resp->chip_metal) 10246 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 10247 10248 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 10249 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 10250 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 10251 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 10252 10253 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 10254 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 10255 10256 if (dev_caps_cfg & 10257 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 10258 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 10259 10260 if (dev_caps_cfg & 10261 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 10262 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 10263 10264 if (dev_caps_cfg & 10265 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 10266 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 10267 10268 hwrm_ver_get_exit: 10269 hwrm_req_drop(bp, req); 10270 return rc; 10271 } 10272 10273 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 10274 { 10275 struct hwrm_fw_set_time_input *req; 10276 struct tm tm; 10277 time64_t now = ktime_get_real_seconds(); 10278 int rc; 10279 10280 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 10281 bp->hwrm_spec_code < 0x10400) 10282 return -EOPNOTSUPP; 10283 10284 time64_to_tm(now, 0, &tm); 10285 rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME); 10286 if (rc) 10287 return rc; 10288 10289 req->year = cpu_to_le16(1900 + tm.tm_year); 10290 req->month = 1 + tm.tm_mon; 10291 req->day = tm.tm_mday; 10292 req->hour = tm.tm_hour; 10293 req->minute = tm.tm_min; 10294 req->second = tm.tm_sec; 10295 return hwrm_req_send(bp, req); 10296 } 10297 10298 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 10299 { 10300 u64 sw_tmp; 10301 10302 hw &= mask; 10303 sw_tmp = (*sw & ~mask) | hw; 10304 if (hw < (*sw & mask)) 10305 sw_tmp += mask + 1; 10306 WRITE_ONCE(*sw, sw_tmp); 10307 } 10308 10309 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 10310 int count, bool ignore_zero) 10311 { 10312 int i; 10313 10314 for (i = 0; i < count; i++) { 10315 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 10316 10317 if (ignore_zero && !hw) 10318 continue; 10319 10320 if (masks[i] == -1ULL) 10321 sw_stats[i] = hw; 10322 else 10323 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 10324 } 10325 } 10326 10327 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 10328 { 10329 if (!stats->hw_stats) 10330 return; 10331 10332 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 10333 stats->hw_masks, stats->len / 8, false); 10334 } 10335 10336 static void bnxt_accumulate_all_stats(struct bnxt *bp) 10337 { 10338 struct bnxt_stats_mem *ring0_stats; 10339 bool ignore_zero = false; 10340 int i; 10341 10342 /* Chip bug. Counter intermittently becomes 0. */ 10343 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10344 ignore_zero = true; 10345 10346 for (i = 0; i < bp->cp_nr_rings; i++) { 10347 struct bnxt_napi *bnapi = bp->bnapi[i]; 10348 struct bnxt_cp_ring_info *cpr; 10349 struct bnxt_stats_mem *stats; 10350 10351 cpr = &bnapi->cp_ring; 10352 stats = &cpr->stats; 10353 if (!i) 10354 ring0_stats = stats; 10355 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 10356 ring0_stats->hw_masks, 10357 ring0_stats->len / 8, ignore_zero); 10358 } 10359 if (bp->flags & BNXT_FLAG_PORT_STATS) { 10360 struct bnxt_stats_mem *stats = &bp->port_stats; 10361 __le64 *hw_stats = stats->hw_stats; 10362 u64 *sw_stats = stats->sw_stats; 10363 u64 *masks = stats->hw_masks; 10364 int cnt; 10365 10366 cnt = sizeof(struct rx_port_stats) / 8; 10367 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 10368 10369 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10370 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10371 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10372 cnt = sizeof(struct tx_port_stats) / 8; 10373 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 10374 } 10375 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 10376 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 10377 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 10378 } 10379 } 10380 10381 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 10382 { 10383 struct hwrm_port_qstats_input *req; 10384 struct bnxt_pf_info *pf = &bp->pf; 10385 int rc; 10386 10387 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 10388 return 0; 10389 10390 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 10391 return -EOPNOTSUPP; 10392 10393 rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS); 10394 if (rc) 10395 return rc; 10396 10397 req->flags = flags; 10398 req->port_id = cpu_to_le16(pf->port_id); 10399 req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 10400 BNXT_TX_PORT_STATS_BYTE_OFFSET); 10401 req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 10402 return hwrm_req_send(bp, req); 10403 } 10404 10405 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 10406 { 10407 struct hwrm_queue_pri2cos_qcfg_output *resp_qc; 10408 struct hwrm_queue_pri2cos_qcfg_input *req_qc; 10409 struct hwrm_port_qstats_ext_output *resp_qs; 10410 struct hwrm_port_qstats_ext_input *req_qs; 10411 struct bnxt_pf_info *pf = &bp->pf; 10412 u32 tx_stat_size; 10413 int rc; 10414 10415 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 10416 return 0; 10417 10418 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 10419 return -EOPNOTSUPP; 10420 10421 rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT); 10422 if (rc) 10423 return rc; 10424 10425 req_qs->flags = flags; 10426 req_qs->port_id = cpu_to_le16(pf->port_id); 10427 req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 10428 req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 10429 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 10430 sizeof(struct tx_port_stats_ext) : 0; 10431 req_qs->tx_stat_size = cpu_to_le16(tx_stat_size); 10432 req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 10433 resp_qs = hwrm_req_hold(bp, req_qs); 10434 rc = hwrm_req_send(bp, req_qs); 10435 if (!rc) { 10436 bp->fw_rx_stats_ext_size = 10437 le16_to_cpu(resp_qs->rx_stat_size) / 8; 10438 if (BNXT_FW_MAJ(bp) < 220 && 10439 bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY) 10440 bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY; 10441 10442 bp->fw_tx_stats_ext_size = tx_stat_size ? 10443 le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0; 10444 } else { 10445 bp->fw_rx_stats_ext_size = 0; 10446 bp->fw_tx_stats_ext_size = 0; 10447 } 10448 hwrm_req_drop(bp, req_qs); 10449 10450 if (flags) 10451 return rc; 10452 10453 if (bp->fw_tx_stats_ext_size <= 10454 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 10455 bp->pri2cos_valid = 0; 10456 return rc; 10457 } 10458 10459 rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG); 10460 if (rc) 10461 return rc; 10462 10463 req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 10464 10465 resp_qc = hwrm_req_hold(bp, req_qc); 10466 rc = hwrm_req_send(bp, req_qc); 10467 if (!rc) { 10468 u8 *pri2cos; 10469 int i, j; 10470 10471 pri2cos = &resp_qc->pri0_cos_queue_id; 10472 for (i = 0; i < 8; i++) { 10473 u8 queue_id = pri2cos[i]; 10474 u8 queue_idx; 10475 10476 /* Per port queue IDs start from 0, 10, 20, etc */ 10477 queue_idx = queue_id % 10; 10478 if (queue_idx > BNXT_MAX_QUEUE) { 10479 bp->pri2cos_valid = false; 10480 hwrm_req_drop(bp, req_qc); 10481 return rc; 10482 } 10483 for (j = 0; j < bp->max_q; j++) { 10484 if (bp->q_ids[j] == queue_id) 10485 bp->pri2cos_idx[i] = queue_idx; 10486 } 10487 } 10488 bp->pri2cos_valid = true; 10489 } 10490 hwrm_req_drop(bp, req_qc); 10491 10492 return rc; 10493 } 10494 10495 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 10496 { 10497 bnxt_hwrm_tunnel_dst_port_free(bp, 10498 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 10499 bnxt_hwrm_tunnel_dst_port_free(bp, 10500 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 10501 } 10502 10503 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 10504 { 10505 int rc, i; 10506 u32 tpa_flags = 0; 10507 10508 if (set_tpa) 10509 tpa_flags = bp->flags & BNXT_FLAG_TPA; 10510 else if (BNXT_NO_FW_ACCESS(bp)) 10511 return 0; 10512 for (i = 0; i < bp->nr_vnics; i++) { 10513 rc = bnxt_hwrm_vnic_set_tpa(bp, &bp->vnic_info[i], tpa_flags); 10514 if (rc) { 10515 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 10516 i, rc); 10517 return rc; 10518 } 10519 } 10520 return 0; 10521 } 10522 10523 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 10524 { 10525 int i; 10526 10527 for (i = 0; i < bp->nr_vnics; i++) 10528 bnxt_hwrm_vnic_set_rss(bp, &bp->vnic_info[i], false); 10529 } 10530 10531 static void bnxt_clear_vnic(struct bnxt *bp) 10532 { 10533 if (!bp->vnic_info) 10534 return; 10535 10536 bnxt_hwrm_clear_vnic_filter(bp); 10537 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) { 10538 /* clear all RSS setting before free vnic ctx */ 10539 bnxt_hwrm_clear_vnic_rss(bp); 10540 bnxt_hwrm_vnic_ctx_free(bp); 10541 } 10542 /* before free the vnic, undo the vnic tpa settings */ 10543 if (bp->flags & BNXT_FLAG_TPA) 10544 bnxt_set_tpa(bp, false); 10545 bnxt_hwrm_vnic_free(bp); 10546 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10547 bnxt_hwrm_vnic_ctx_free(bp); 10548 } 10549 10550 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 10551 bool irq_re_init) 10552 { 10553 bnxt_clear_vnic(bp); 10554 bnxt_hwrm_ring_free(bp, close_path); 10555 bnxt_hwrm_ring_grp_free(bp); 10556 if (irq_re_init) { 10557 bnxt_hwrm_stat_ctx_free(bp); 10558 bnxt_hwrm_free_tunnel_ports(bp); 10559 } 10560 } 10561 10562 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 10563 { 10564 struct hwrm_func_cfg_input *req; 10565 u8 evb_mode; 10566 int rc; 10567 10568 if (br_mode == BRIDGE_MODE_VEB) 10569 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 10570 else if (br_mode == BRIDGE_MODE_VEPA) 10571 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 10572 else 10573 return -EINVAL; 10574 10575 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 10576 if (rc) 10577 return rc; 10578 10579 req->fid = cpu_to_le16(0xffff); 10580 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 10581 req->evb_mode = evb_mode; 10582 return hwrm_req_send(bp, req); 10583 } 10584 10585 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 10586 { 10587 struct hwrm_func_cfg_input *req; 10588 int rc; 10589 10590 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 10591 return 0; 10592 10593 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 10594 if (rc) 10595 return rc; 10596 10597 req->fid = cpu_to_le16(0xffff); 10598 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 10599 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 10600 if (size == 128) 10601 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 10602 10603 return hwrm_req_send(bp, req); 10604 } 10605 10606 static int __bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10607 { 10608 int rc; 10609 10610 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 10611 goto skip_rss_ctx; 10612 10613 /* allocate context for vnic */ 10614 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 0); 10615 if (rc) { 10616 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 10617 vnic->vnic_id, rc); 10618 goto vnic_setup_err; 10619 } 10620 bp->rsscos_nr_ctxs++; 10621 10622 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10623 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 1); 10624 if (rc) { 10625 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 10626 vnic->vnic_id, rc); 10627 goto vnic_setup_err; 10628 } 10629 bp->rsscos_nr_ctxs++; 10630 } 10631 10632 skip_rss_ctx: 10633 /* configure default vnic, ring grp */ 10634 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10635 if (rc) { 10636 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 10637 vnic->vnic_id, rc); 10638 goto vnic_setup_err; 10639 } 10640 10641 /* Enable RSS hashing on vnic */ 10642 rc = bnxt_hwrm_vnic_set_rss(bp, vnic, true); 10643 if (rc) { 10644 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 10645 vnic->vnic_id, rc); 10646 goto vnic_setup_err; 10647 } 10648 10649 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 10650 rc = bnxt_hwrm_vnic_set_hds(bp, vnic); 10651 if (rc) { 10652 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 10653 vnic->vnic_id, rc); 10654 } 10655 } 10656 10657 vnic_setup_err: 10658 return rc; 10659 } 10660 10661 int bnxt_hwrm_vnic_update(struct bnxt *bp, struct bnxt_vnic_info *vnic, 10662 u8 valid) 10663 { 10664 struct hwrm_vnic_update_input *req; 10665 int rc; 10666 10667 rc = hwrm_req_init(bp, req, HWRM_VNIC_UPDATE); 10668 if (rc) 10669 return rc; 10670 10671 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 10672 10673 if (valid & VNIC_UPDATE_REQ_ENABLES_MRU_VALID) 10674 req->mru = cpu_to_le16(vnic->mru); 10675 10676 req->enables = cpu_to_le32(valid); 10677 10678 return hwrm_req_send(bp, req); 10679 } 10680 10681 int bnxt_hwrm_vnic_rss_cfg_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10682 { 10683 int rc; 10684 10685 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic, true); 10686 if (rc) { 10687 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 10688 vnic->vnic_id, rc); 10689 return rc; 10690 } 10691 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10692 if (rc) 10693 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 10694 vnic->vnic_id, rc); 10695 return rc; 10696 } 10697 10698 int __bnxt_setup_vnic_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10699 { 10700 int rc, i, nr_ctxs; 10701 10702 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 10703 for (i = 0; i < nr_ctxs; i++) { 10704 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, i); 10705 if (rc) { 10706 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 10707 vnic->vnic_id, i, rc); 10708 break; 10709 } 10710 bp->rsscos_nr_ctxs++; 10711 } 10712 if (i < nr_ctxs) 10713 return -ENOMEM; 10714 10715 rc = bnxt_hwrm_vnic_rss_cfg_p5(bp, vnic); 10716 if (rc) 10717 return rc; 10718 10719 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 10720 rc = bnxt_hwrm_vnic_set_hds(bp, vnic); 10721 if (rc) { 10722 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 10723 vnic->vnic_id, rc); 10724 } 10725 } 10726 return rc; 10727 } 10728 10729 static int bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10730 { 10731 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10732 return __bnxt_setup_vnic_p5(bp, vnic); 10733 else 10734 return __bnxt_setup_vnic(bp, vnic); 10735 } 10736 10737 static int bnxt_alloc_and_setup_vnic(struct bnxt *bp, 10738 struct bnxt_vnic_info *vnic, 10739 u16 start_rx_ring_idx, int rx_rings) 10740 { 10741 int rc; 10742 10743 rc = bnxt_hwrm_vnic_alloc(bp, vnic, start_rx_ring_idx, rx_rings); 10744 if (rc) { 10745 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 10746 vnic->vnic_id, rc); 10747 return rc; 10748 } 10749 return bnxt_setup_vnic(bp, vnic); 10750 } 10751 10752 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 10753 { 10754 struct bnxt_vnic_info *vnic; 10755 int i, rc = 0; 10756 10757 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 10758 vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE]; 10759 return bnxt_alloc_and_setup_vnic(bp, vnic, 0, bp->rx_nr_rings); 10760 } 10761 10762 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10763 return 0; 10764 10765 for (i = 0; i < bp->rx_nr_rings; i++) { 10766 u16 vnic_id = i + 1; 10767 u16 ring_id = i; 10768 10769 if (vnic_id >= bp->nr_vnics) 10770 break; 10771 10772 vnic = &bp->vnic_info[vnic_id]; 10773 vnic->flags |= BNXT_VNIC_RFS_FLAG; 10774 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 10775 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 10776 if (bnxt_alloc_and_setup_vnic(bp, &bp->vnic_info[vnic_id], ring_id, 1)) 10777 break; 10778 } 10779 return rc; 10780 } 10781 10782 void bnxt_del_one_rss_ctx(struct bnxt *bp, struct bnxt_rss_ctx *rss_ctx, 10783 bool all) 10784 { 10785 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10786 struct bnxt_filter_base *usr_fltr, *tmp; 10787 struct bnxt_ntuple_filter *ntp_fltr; 10788 int i; 10789 10790 if (netif_running(bp->dev)) { 10791 bnxt_hwrm_vnic_free_one(bp, &rss_ctx->vnic); 10792 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) { 10793 if (vnic->fw_rss_cos_lb_ctx[i] != INVALID_HW_RING_ID) 10794 bnxt_hwrm_vnic_ctx_free_one(bp, vnic, i); 10795 } 10796 } 10797 if (!all) 10798 return; 10799 10800 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) { 10801 if ((usr_fltr->flags & BNXT_ACT_RSS_CTX) && 10802 usr_fltr->fw_vnic_id == rss_ctx->index) { 10803 ntp_fltr = container_of(usr_fltr, 10804 struct bnxt_ntuple_filter, 10805 base); 10806 bnxt_hwrm_cfa_ntuple_filter_free(bp, ntp_fltr); 10807 bnxt_del_ntp_filter(bp, ntp_fltr); 10808 bnxt_del_one_usr_fltr(bp, usr_fltr); 10809 } 10810 } 10811 10812 if (vnic->rss_table) 10813 dma_free_coherent(&bp->pdev->dev, vnic->rss_table_size, 10814 vnic->rss_table, 10815 vnic->rss_table_dma_addr); 10816 bp->num_rss_ctx--; 10817 } 10818 10819 static bool bnxt_vnic_has_rx_ring(struct bnxt *bp, struct bnxt_vnic_info *vnic, 10820 int rxr_id) 10821 { 10822 u16 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 10823 int i, vnic_rx; 10824 10825 /* Ntuple VNIC always has all the rx rings. Any change of ring id 10826 * must be updated because a future filter may use it. 10827 */ 10828 if (vnic->flags & BNXT_VNIC_NTUPLE_FLAG) 10829 return true; 10830 10831 for (i = 0; i < tbl_size; i++) { 10832 if (vnic->flags & BNXT_VNIC_RSSCTX_FLAG) 10833 vnic_rx = ethtool_rxfh_context_indir(vnic->rss_ctx)[i]; 10834 else 10835 vnic_rx = bp->rss_indir_tbl[i]; 10836 10837 if (rxr_id == vnic_rx) 10838 return true; 10839 } 10840 10841 return false; 10842 } 10843 10844 static int bnxt_set_vnic_mru_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic, 10845 u16 mru, int rxr_id) 10846 { 10847 int rc; 10848 10849 if (!bnxt_vnic_has_rx_ring(bp, vnic, rxr_id)) 10850 return 0; 10851 10852 if (mru) { 10853 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic, true); 10854 if (rc) { 10855 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 10856 vnic->vnic_id, rc); 10857 return rc; 10858 } 10859 } 10860 vnic->mru = mru; 10861 bnxt_hwrm_vnic_update(bp, vnic, 10862 VNIC_UPDATE_REQ_ENABLES_MRU_VALID); 10863 10864 return 0; 10865 } 10866 10867 static int bnxt_set_rss_ctx_vnic_mru(struct bnxt *bp, u16 mru, int rxr_id) 10868 { 10869 struct ethtool_rxfh_context *ctx; 10870 unsigned long context; 10871 int rc; 10872 10873 xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) { 10874 struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx); 10875 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10876 10877 rc = bnxt_set_vnic_mru_p5(bp, vnic, mru, rxr_id); 10878 if (rc) 10879 return rc; 10880 } 10881 10882 return 0; 10883 } 10884 10885 static void bnxt_hwrm_realloc_rss_ctx_vnic(struct bnxt *bp) 10886 { 10887 bool set_tpa = !!(bp->flags & BNXT_FLAG_TPA); 10888 struct ethtool_rxfh_context *ctx; 10889 unsigned long context; 10890 10891 xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) { 10892 struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx); 10893 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10894 10895 if (bnxt_hwrm_vnic_alloc(bp, vnic, 0, bp->rx_nr_rings) || 10896 bnxt_hwrm_vnic_set_tpa(bp, vnic, set_tpa) || 10897 __bnxt_setup_vnic_p5(bp, vnic)) { 10898 netdev_err(bp->dev, "Failed to restore RSS ctx %d\n", 10899 rss_ctx->index); 10900 bnxt_del_one_rss_ctx(bp, rss_ctx, true); 10901 ethtool_rxfh_context_lost(bp->dev, rss_ctx->index); 10902 } 10903 } 10904 } 10905 10906 static void bnxt_clear_rss_ctxs(struct bnxt *bp) 10907 { 10908 struct ethtool_rxfh_context *ctx; 10909 unsigned long context; 10910 10911 xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) { 10912 struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx); 10913 10914 bnxt_del_one_rss_ctx(bp, rss_ctx, false); 10915 } 10916 } 10917 10918 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 10919 static bool bnxt_promisc_ok(struct bnxt *bp) 10920 { 10921 #ifdef CONFIG_BNXT_SRIOV 10922 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 10923 return false; 10924 #endif 10925 return true; 10926 } 10927 10928 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 10929 { 10930 struct bnxt_vnic_info *vnic = &bp->vnic_info[1]; 10931 unsigned int rc = 0; 10932 10933 rc = bnxt_hwrm_vnic_alloc(bp, vnic, bp->rx_nr_rings - 1, 1); 10934 if (rc) { 10935 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 10936 rc); 10937 return rc; 10938 } 10939 10940 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10941 if (rc) { 10942 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 10943 rc); 10944 return rc; 10945 } 10946 return rc; 10947 } 10948 10949 static int bnxt_cfg_rx_mode(struct bnxt *); 10950 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 10951 10952 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 10953 { 10954 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 10955 int rc = 0; 10956 unsigned int rx_nr_rings = bp->rx_nr_rings; 10957 10958 if (irq_re_init) { 10959 rc = bnxt_hwrm_stat_ctx_alloc(bp); 10960 if (rc) { 10961 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 10962 rc); 10963 goto err_out; 10964 } 10965 } 10966 10967 rc = bnxt_hwrm_ring_alloc(bp); 10968 if (rc) { 10969 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 10970 goto err_out; 10971 } 10972 10973 rc = bnxt_hwrm_ring_grp_alloc(bp); 10974 if (rc) { 10975 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 10976 goto err_out; 10977 } 10978 10979 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 10980 rx_nr_rings--; 10981 10982 /* default vnic 0 */ 10983 rc = bnxt_hwrm_vnic_alloc(bp, vnic, 0, rx_nr_rings); 10984 if (rc) { 10985 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 10986 goto err_out; 10987 } 10988 10989 if (BNXT_VF(bp)) 10990 bnxt_hwrm_func_qcfg(bp); 10991 10992 rc = bnxt_setup_vnic(bp, vnic); 10993 if (rc) 10994 goto err_out; 10995 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 10996 bnxt_hwrm_update_rss_hash_cfg(bp); 10997 10998 if (bp->flags & BNXT_FLAG_RFS) { 10999 rc = bnxt_alloc_rfs_vnics(bp); 11000 if (rc) 11001 goto err_out; 11002 } 11003 11004 if (bp->flags & BNXT_FLAG_TPA) { 11005 rc = bnxt_set_tpa(bp, true); 11006 if (rc) 11007 goto err_out; 11008 } 11009 11010 if (BNXT_VF(bp)) 11011 bnxt_update_vf_mac(bp); 11012 11013 /* Filter for default vnic 0 */ 11014 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 11015 if (rc) { 11016 if (BNXT_VF(bp) && rc == -ENODEV) 11017 netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n"); 11018 else 11019 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 11020 goto err_out; 11021 } 11022 vnic->uc_filter_count = 1; 11023 11024 vnic->rx_mask = 0; 11025 if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state)) 11026 goto skip_rx_mask; 11027 11028 if (bp->dev->flags & IFF_BROADCAST) 11029 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 11030 11031 if (bp->dev->flags & IFF_PROMISC) 11032 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 11033 11034 if (bp->dev->flags & IFF_ALLMULTI) { 11035 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 11036 vnic->mc_list_count = 0; 11037 } else if (bp->dev->flags & IFF_MULTICAST) { 11038 u32 mask = 0; 11039 11040 bnxt_mc_list_updated(bp, &mask); 11041 vnic->rx_mask |= mask; 11042 } 11043 11044 rc = bnxt_cfg_rx_mode(bp); 11045 if (rc) 11046 goto err_out; 11047 11048 skip_rx_mask: 11049 rc = bnxt_hwrm_set_coal(bp); 11050 if (rc) 11051 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 11052 rc); 11053 11054 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 11055 rc = bnxt_setup_nitroa0_vnic(bp); 11056 if (rc) 11057 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 11058 rc); 11059 } 11060 11061 if (BNXT_VF(bp)) { 11062 bnxt_hwrm_func_qcfg(bp); 11063 netdev_update_features(bp->dev); 11064 } 11065 11066 return 0; 11067 11068 err_out: 11069 bnxt_hwrm_resource_free(bp, 0, true); 11070 11071 return rc; 11072 } 11073 11074 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 11075 { 11076 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 11077 return 0; 11078 } 11079 11080 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 11081 { 11082 bnxt_init_cp_rings(bp); 11083 bnxt_init_rx_rings(bp); 11084 bnxt_init_tx_rings(bp); 11085 bnxt_init_ring_grps(bp, irq_re_init); 11086 bnxt_init_vnics(bp); 11087 11088 return bnxt_init_chip(bp, irq_re_init); 11089 } 11090 11091 static int bnxt_set_real_num_queues(struct bnxt *bp) 11092 { 11093 int rc; 11094 struct net_device *dev = bp->dev; 11095 11096 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 11097 bp->tx_nr_rings_xdp); 11098 if (rc) 11099 return rc; 11100 11101 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 11102 if (rc) 11103 return rc; 11104 11105 #ifdef CONFIG_RFS_ACCEL 11106 if (bp->flags & BNXT_FLAG_RFS) 11107 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 11108 #endif 11109 11110 return rc; 11111 } 11112 11113 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 11114 bool shared) 11115 { 11116 int _rx = *rx, _tx = *tx; 11117 11118 if (shared) { 11119 *rx = min_t(int, _rx, max); 11120 *tx = min_t(int, _tx, max); 11121 } else { 11122 if (max < 2) 11123 return -ENOMEM; 11124 11125 while (_rx + _tx > max) { 11126 if (_rx > _tx && _rx > 1) 11127 _rx--; 11128 else if (_tx > 1) 11129 _tx--; 11130 } 11131 *rx = _rx; 11132 *tx = _tx; 11133 } 11134 return 0; 11135 } 11136 11137 static int __bnxt_num_tx_to_cp(struct bnxt *bp, int tx, int tx_sets, int tx_xdp) 11138 { 11139 return (tx - tx_xdp) / tx_sets + tx_xdp; 11140 } 11141 11142 int bnxt_num_tx_to_cp(struct bnxt *bp, int tx) 11143 { 11144 int tcs = bp->num_tc; 11145 11146 if (!tcs) 11147 tcs = 1; 11148 return __bnxt_num_tx_to_cp(bp, tx, tcs, bp->tx_nr_rings_xdp); 11149 } 11150 11151 static int bnxt_num_cp_to_tx(struct bnxt *bp, int tx_cp) 11152 { 11153 int tcs = bp->num_tc; 11154 11155 return (tx_cp - bp->tx_nr_rings_xdp) * tcs + 11156 bp->tx_nr_rings_xdp; 11157 } 11158 11159 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 11160 bool sh) 11161 { 11162 int tx_cp = bnxt_num_tx_to_cp(bp, *tx); 11163 11164 if (tx_cp != *tx) { 11165 int tx_saved = tx_cp, rc; 11166 11167 rc = __bnxt_trim_rings(bp, rx, &tx_cp, max, sh); 11168 if (rc) 11169 return rc; 11170 if (tx_cp != tx_saved) 11171 *tx = bnxt_num_cp_to_tx(bp, tx_cp); 11172 return 0; 11173 } 11174 return __bnxt_trim_rings(bp, rx, tx, max, sh); 11175 } 11176 11177 static void bnxt_setup_msix(struct bnxt *bp) 11178 { 11179 const int len = sizeof(bp->irq_tbl[0].name); 11180 struct net_device *dev = bp->dev; 11181 int tcs, i; 11182 11183 tcs = bp->num_tc; 11184 if (tcs) { 11185 int i, off, count; 11186 11187 for (i = 0; i < tcs; i++) { 11188 count = bp->tx_nr_rings_per_tc; 11189 off = BNXT_TC_TO_RING_BASE(bp, i); 11190 netdev_set_tc_queue(dev, i, count, off); 11191 } 11192 } 11193 11194 for (i = 0; i < bp->cp_nr_rings; i++) { 11195 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 11196 char *attr; 11197 11198 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 11199 attr = "TxRx"; 11200 else if (i < bp->rx_nr_rings) 11201 attr = "rx"; 11202 else 11203 attr = "tx"; 11204 11205 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 11206 attr, i); 11207 bp->irq_tbl[map_idx].handler = bnxt_msix; 11208 } 11209 } 11210 11211 static int bnxt_init_int_mode(struct bnxt *bp); 11212 11213 static int bnxt_change_msix(struct bnxt *bp, int total) 11214 { 11215 struct msi_map map; 11216 int i; 11217 11218 /* add MSIX to the end if needed */ 11219 for (i = bp->total_irqs; i < total; i++) { 11220 map = pci_msix_alloc_irq_at(bp->pdev, i, NULL); 11221 if (map.index < 0) 11222 return bp->total_irqs; 11223 bp->irq_tbl[i].vector = map.virq; 11224 bp->total_irqs++; 11225 } 11226 11227 /* trim MSIX from the end if needed */ 11228 for (i = bp->total_irqs; i > total; i--) { 11229 map.index = i - 1; 11230 map.virq = bp->irq_tbl[i - 1].vector; 11231 pci_msix_free_irq(bp->pdev, map); 11232 bp->total_irqs--; 11233 } 11234 return bp->total_irqs; 11235 } 11236 11237 static int bnxt_setup_int_mode(struct bnxt *bp) 11238 { 11239 int rc; 11240 11241 if (!bp->irq_tbl) { 11242 rc = bnxt_init_int_mode(bp); 11243 if (rc || !bp->irq_tbl) 11244 return rc ?: -ENODEV; 11245 } 11246 11247 bnxt_setup_msix(bp); 11248 11249 rc = bnxt_set_real_num_queues(bp); 11250 return rc; 11251 } 11252 11253 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 11254 { 11255 return bp->hw_resc.max_rsscos_ctxs; 11256 } 11257 11258 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 11259 { 11260 return bp->hw_resc.max_vnics; 11261 } 11262 11263 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 11264 { 11265 return bp->hw_resc.max_stat_ctxs; 11266 } 11267 11268 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 11269 { 11270 return bp->hw_resc.max_cp_rings; 11271 } 11272 11273 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 11274 { 11275 unsigned int cp = bp->hw_resc.max_cp_rings; 11276 11277 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 11278 cp -= bnxt_get_ulp_msix_num(bp); 11279 11280 return cp; 11281 } 11282 11283 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 11284 { 11285 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 11286 11287 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 11288 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 11289 11290 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 11291 } 11292 11293 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 11294 { 11295 bp->hw_resc.max_irqs = max_irqs; 11296 } 11297 11298 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 11299 { 11300 unsigned int cp; 11301 11302 cp = bnxt_get_max_func_cp_rings_for_en(bp); 11303 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 11304 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 11305 else 11306 return cp - bp->cp_nr_rings; 11307 } 11308 11309 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 11310 { 11311 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 11312 } 11313 11314 static int bnxt_get_avail_msix(struct bnxt *bp, int num) 11315 { 11316 int max_irq = bnxt_get_max_func_irqs(bp); 11317 int total_req = bp->cp_nr_rings + num; 11318 11319 if (max_irq < total_req) { 11320 num = max_irq - bp->cp_nr_rings; 11321 if (num <= 0) 11322 return 0; 11323 } 11324 return num; 11325 } 11326 11327 static int bnxt_get_num_msix(struct bnxt *bp) 11328 { 11329 if (!BNXT_NEW_RM(bp)) 11330 return bnxt_get_max_func_irqs(bp); 11331 11332 return bnxt_nq_rings_in_use(bp); 11333 } 11334 11335 static int bnxt_init_int_mode(struct bnxt *bp) 11336 { 11337 int i, total_vecs, max, rc = 0, min = 1, ulp_msix, tx_cp, tbl_size; 11338 11339 total_vecs = bnxt_get_num_msix(bp); 11340 max = bnxt_get_max_func_irqs(bp); 11341 if (total_vecs > max) 11342 total_vecs = max; 11343 11344 if (!total_vecs) 11345 return 0; 11346 11347 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 11348 min = 2; 11349 11350 total_vecs = pci_alloc_irq_vectors(bp->pdev, min, total_vecs, 11351 PCI_IRQ_MSIX); 11352 ulp_msix = bnxt_get_ulp_msix_num(bp); 11353 if (total_vecs < 0 || total_vecs < ulp_msix) { 11354 rc = -ENODEV; 11355 goto msix_setup_exit; 11356 } 11357 11358 tbl_size = total_vecs; 11359 if (pci_msix_can_alloc_dyn(bp->pdev)) 11360 tbl_size = max; 11361 bp->irq_tbl = kcalloc(tbl_size, sizeof(*bp->irq_tbl), GFP_KERNEL); 11362 if (bp->irq_tbl) { 11363 for (i = 0; i < total_vecs; i++) 11364 bp->irq_tbl[i].vector = pci_irq_vector(bp->pdev, i); 11365 11366 bp->total_irqs = total_vecs; 11367 /* Trim rings based upon num of vectors allocated */ 11368 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 11369 total_vecs - ulp_msix, min == 1); 11370 if (rc) 11371 goto msix_setup_exit; 11372 11373 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 11374 bp->cp_nr_rings = (min == 1) ? 11375 max_t(int, tx_cp, bp->rx_nr_rings) : 11376 tx_cp + bp->rx_nr_rings; 11377 11378 } else { 11379 rc = -ENOMEM; 11380 goto msix_setup_exit; 11381 } 11382 return 0; 11383 11384 msix_setup_exit: 11385 netdev_err(bp->dev, "bnxt_init_int_mode err: %x\n", rc); 11386 kfree(bp->irq_tbl); 11387 bp->irq_tbl = NULL; 11388 pci_free_irq_vectors(bp->pdev); 11389 return rc; 11390 } 11391 11392 static void bnxt_clear_int_mode(struct bnxt *bp) 11393 { 11394 pci_free_irq_vectors(bp->pdev); 11395 11396 kfree(bp->irq_tbl); 11397 bp->irq_tbl = NULL; 11398 } 11399 11400 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 11401 { 11402 bool irq_cleared = false; 11403 bool irq_change = false; 11404 int tcs = bp->num_tc; 11405 int irqs_required; 11406 int rc; 11407 11408 if (!bnxt_need_reserve_rings(bp)) 11409 return 0; 11410 11411 if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) { 11412 int ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want); 11413 11414 if (ulp_msix > bp->ulp_num_msix_want) 11415 ulp_msix = bp->ulp_num_msix_want; 11416 irqs_required = ulp_msix + bp->cp_nr_rings; 11417 } else { 11418 irqs_required = bnxt_get_num_msix(bp); 11419 } 11420 11421 if (irq_re_init && BNXT_NEW_RM(bp) && irqs_required != bp->total_irqs) { 11422 irq_change = true; 11423 if (!pci_msix_can_alloc_dyn(bp->pdev)) { 11424 bnxt_ulp_irq_stop(bp); 11425 bnxt_clear_int_mode(bp); 11426 irq_cleared = true; 11427 } 11428 } 11429 rc = __bnxt_reserve_rings(bp); 11430 if (irq_cleared) { 11431 if (!rc) 11432 rc = bnxt_init_int_mode(bp); 11433 bnxt_ulp_irq_restart(bp, rc); 11434 } else if (irq_change && !rc) { 11435 if (bnxt_change_msix(bp, irqs_required) != irqs_required) 11436 rc = -ENOSPC; 11437 } 11438 if (rc) { 11439 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 11440 return rc; 11441 } 11442 if (tcs && (bp->tx_nr_rings_per_tc * tcs != 11443 bp->tx_nr_rings - bp->tx_nr_rings_xdp)) { 11444 netdev_err(bp->dev, "tx ring reservation failure\n"); 11445 netdev_reset_tc(bp->dev); 11446 bp->num_tc = 0; 11447 if (bp->tx_nr_rings_xdp) 11448 bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp; 11449 else 11450 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 11451 return -ENOMEM; 11452 } 11453 return 0; 11454 } 11455 11456 static void bnxt_tx_queue_stop(struct bnxt *bp, int idx) 11457 { 11458 struct bnxt_tx_ring_info *txr; 11459 struct netdev_queue *txq; 11460 struct bnxt_napi *bnapi; 11461 int i; 11462 11463 bnapi = bp->bnapi[idx]; 11464 bnxt_for_each_napi_tx(i, bnapi, txr) { 11465 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 11466 synchronize_net(); 11467 11468 if (!(bnapi->flags & BNXT_NAPI_FLAG_XDP)) { 11469 txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 11470 if (txq) { 11471 __netif_tx_lock_bh(txq); 11472 netif_tx_stop_queue(txq); 11473 __netif_tx_unlock_bh(txq); 11474 } 11475 } 11476 11477 if (!bp->tph_mode) 11478 continue; 11479 11480 bnxt_hwrm_tx_ring_free(bp, txr, true); 11481 bnxt_hwrm_cp_ring_free(bp, txr->tx_cpr); 11482 bnxt_free_one_tx_ring_skbs(bp, txr, txr->txq_index); 11483 bnxt_clear_one_cp_ring(bp, txr->tx_cpr); 11484 } 11485 } 11486 11487 static int bnxt_tx_queue_start(struct bnxt *bp, int idx) 11488 { 11489 struct bnxt_tx_ring_info *txr; 11490 struct netdev_queue *txq; 11491 struct bnxt_napi *bnapi; 11492 int rc, i; 11493 11494 bnapi = bp->bnapi[idx]; 11495 /* All rings have been reserved and previously allocated. 11496 * Reallocating with the same parameters should never fail. 11497 */ 11498 bnxt_for_each_napi_tx(i, bnapi, txr) { 11499 if (!bp->tph_mode) 11500 goto start_tx; 11501 11502 rc = bnxt_hwrm_cp_ring_alloc_p5(bp, txr->tx_cpr); 11503 if (rc) 11504 return rc; 11505 11506 rc = bnxt_hwrm_tx_ring_alloc(bp, txr, false); 11507 if (rc) 11508 return rc; 11509 11510 txr->tx_prod = 0; 11511 txr->tx_cons = 0; 11512 txr->tx_hw_cons = 0; 11513 start_tx: 11514 WRITE_ONCE(txr->dev_state, 0); 11515 synchronize_net(); 11516 11517 if (bnapi->flags & BNXT_NAPI_FLAG_XDP) 11518 continue; 11519 11520 txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 11521 if (txq) 11522 netif_tx_start_queue(txq); 11523 } 11524 11525 return 0; 11526 } 11527 11528 static void bnxt_irq_affinity_notify(struct irq_affinity_notify *notify, 11529 const cpumask_t *mask) 11530 { 11531 struct bnxt_irq *irq; 11532 u16 tag; 11533 int err; 11534 11535 irq = container_of(notify, struct bnxt_irq, affinity_notify); 11536 11537 if (!irq->bp->tph_mode) 11538 return; 11539 11540 cpumask_copy(irq->cpu_mask, mask); 11541 11542 if (irq->ring_nr >= irq->bp->rx_nr_rings) 11543 return; 11544 11545 if (pcie_tph_get_cpu_st(irq->bp->pdev, TPH_MEM_TYPE_VM, 11546 cpumask_first(irq->cpu_mask), &tag)) 11547 return; 11548 11549 if (pcie_tph_set_st_entry(irq->bp->pdev, irq->msix_nr, tag)) 11550 return; 11551 11552 netdev_lock(irq->bp->dev); 11553 if (netif_running(irq->bp->dev)) { 11554 err = netdev_rx_queue_restart(irq->bp->dev, irq->ring_nr); 11555 if (err) 11556 netdev_err(irq->bp->dev, 11557 "RX queue restart failed: err=%d\n", err); 11558 } 11559 netdev_unlock(irq->bp->dev); 11560 } 11561 11562 static void bnxt_irq_affinity_release(struct kref *ref) 11563 { 11564 struct irq_affinity_notify *notify = 11565 container_of(ref, struct irq_affinity_notify, kref); 11566 struct bnxt_irq *irq; 11567 11568 irq = container_of(notify, struct bnxt_irq, affinity_notify); 11569 11570 if (!irq->bp->tph_mode) 11571 return; 11572 11573 if (pcie_tph_set_st_entry(irq->bp->pdev, irq->msix_nr, 0)) { 11574 netdev_err(irq->bp->dev, 11575 "Setting ST=0 for MSIX entry %d failed\n", 11576 irq->msix_nr); 11577 return; 11578 } 11579 } 11580 11581 static void bnxt_release_irq_notifier(struct bnxt_irq *irq) 11582 { 11583 irq_set_affinity_notifier(irq->vector, NULL); 11584 } 11585 11586 static void bnxt_register_irq_notifier(struct bnxt *bp, struct bnxt_irq *irq) 11587 { 11588 struct irq_affinity_notify *notify; 11589 11590 irq->bp = bp; 11591 11592 /* Nothing to do if TPH is not enabled */ 11593 if (!bp->tph_mode) 11594 return; 11595 11596 /* Register IRQ affinity notifier */ 11597 notify = &irq->affinity_notify; 11598 notify->irq = irq->vector; 11599 notify->notify = bnxt_irq_affinity_notify; 11600 notify->release = bnxt_irq_affinity_release; 11601 11602 irq_set_affinity_notifier(irq->vector, notify); 11603 } 11604 11605 static void bnxt_free_irq(struct bnxt *bp) 11606 { 11607 struct bnxt_irq *irq; 11608 int i; 11609 11610 #ifdef CONFIG_RFS_ACCEL 11611 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 11612 bp->dev->rx_cpu_rmap = NULL; 11613 #endif 11614 if (!bp->irq_tbl || !bp->bnapi) 11615 return; 11616 11617 for (i = 0; i < bp->cp_nr_rings; i++) { 11618 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 11619 11620 irq = &bp->irq_tbl[map_idx]; 11621 if (irq->requested) { 11622 if (irq->have_cpumask) { 11623 irq_update_affinity_hint(irq->vector, NULL); 11624 free_cpumask_var(irq->cpu_mask); 11625 irq->have_cpumask = 0; 11626 } 11627 11628 bnxt_release_irq_notifier(irq); 11629 11630 free_irq(irq->vector, bp->bnapi[i]); 11631 } 11632 11633 irq->requested = 0; 11634 } 11635 11636 /* Disable TPH support */ 11637 pcie_disable_tph(bp->pdev); 11638 bp->tph_mode = 0; 11639 } 11640 11641 static int bnxt_request_irq(struct bnxt *bp) 11642 { 11643 struct cpu_rmap *rmap = NULL; 11644 int i, j, rc = 0; 11645 unsigned long flags = 0; 11646 11647 rc = bnxt_setup_int_mode(bp); 11648 if (rc) { 11649 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 11650 rc); 11651 return rc; 11652 } 11653 #ifdef CONFIG_RFS_ACCEL 11654 rmap = bp->dev->rx_cpu_rmap; 11655 #endif 11656 11657 /* Enable TPH support as part of IRQ request */ 11658 rc = pcie_enable_tph(bp->pdev, PCI_TPH_ST_IV_MODE); 11659 if (!rc) 11660 bp->tph_mode = PCI_TPH_ST_IV_MODE; 11661 11662 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 11663 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 11664 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 11665 11666 if (IS_ENABLED(CONFIG_RFS_ACCEL) && 11667 rmap && bp->bnapi[i]->rx_ring) { 11668 rc = irq_cpu_rmap_add(rmap, irq->vector); 11669 if (rc) 11670 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 11671 j); 11672 j++; 11673 } 11674 11675 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 11676 bp->bnapi[i]); 11677 if (rc) 11678 break; 11679 11680 netif_napi_set_irq_locked(&bp->bnapi[i]->napi, irq->vector); 11681 irq->requested = 1; 11682 11683 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 11684 int numa_node = dev_to_node(&bp->pdev->dev); 11685 u16 tag; 11686 11687 irq->have_cpumask = 1; 11688 irq->msix_nr = map_idx; 11689 irq->ring_nr = i; 11690 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 11691 irq->cpu_mask); 11692 rc = irq_update_affinity_hint(irq->vector, irq->cpu_mask); 11693 if (rc) { 11694 netdev_warn(bp->dev, 11695 "Update affinity hint failed, IRQ = %d\n", 11696 irq->vector); 11697 break; 11698 } 11699 11700 bnxt_register_irq_notifier(bp, irq); 11701 11702 /* Init ST table entry */ 11703 if (pcie_tph_get_cpu_st(irq->bp->pdev, TPH_MEM_TYPE_VM, 11704 cpumask_first(irq->cpu_mask), 11705 &tag)) 11706 continue; 11707 11708 pcie_tph_set_st_entry(irq->bp->pdev, irq->msix_nr, tag); 11709 } 11710 } 11711 return rc; 11712 } 11713 11714 static void bnxt_del_napi(struct bnxt *bp) 11715 { 11716 int i; 11717 11718 if (!bp->bnapi) 11719 return; 11720 11721 for (i = 0; i < bp->rx_nr_rings; i++) 11722 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_RX, NULL); 11723 for (i = 0; i < bp->tx_nr_rings - bp->tx_nr_rings_xdp; i++) 11724 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_TX, NULL); 11725 11726 for (i = 0; i < bp->cp_nr_rings; i++) { 11727 struct bnxt_napi *bnapi = bp->bnapi[i]; 11728 11729 __netif_napi_del_locked(&bnapi->napi); 11730 } 11731 /* We called __netif_napi_del_locked(), we need 11732 * to respect an RCU grace period before freeing napi structures. 11733 */ 11734 synchronize_net(); 11735 } 11736 11737 static void bnxt_init_napi(struct bnxt *bp) 11738 { 11739 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 11740 unsigned int cp_nr_rings = bp->cp_nr_rings; 11741 struct bnxt_napi *bnapi; 11742 int i; 11743 11744 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 11745 poll_fn = bnxt_poll_p5; 11746 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 11747 cp_nr_rings--; 11748 11749 set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 11750 11751 for (i = 0; i < cp_nr_rings; i++) { 11752 bnapi = bp->bnapi[i]; 11753 netif_napi_add_config_locked(bp->dev, &bnapi->napi, poll_fn, 11754 bnapi->index); 11755 } 11756 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 11757 bnapi = bp->bnapi[cp_nr_rings]; 11758 netif_napi_add_locked(bp->dev, &bnapi->napi, bnxt_poll_nitroa0); 11759 } 11760 } 11761 11762 static void bnxt_disable_napi(struct bnxt *bp) 11763 { 11764 int i; 11765 11766 if (!bp->bnapi || 11767 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 11768 return; 11769 11770 for (i = 0; i < bp->cp_nr_rings; i++) { 11771 struct bnxt_napi *bnapi = bp->bnapi[i]; 11772 struct bnxt_cp_ring_info *cpr; 11773 11774 cpr = &bnapi->cp_ring; 11775 if (bnapi->tx_fault) 11776 cpr->sw_stats->tx.tx_resets++; 11777 if (bnapi->in_reset) 11778 cpr->sw_stats->rx.rx_resets++; 11779 napi_disable_locked(&bnapi->napi); 11780 } 11781 } 11782 11783 static void bnxt_enable_napi(struct bnxt *bp) 11784 { 11785 int i; 11786 11787 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 11788 for (i = 0; i < bp->cp_nr_rings; i++) { 11789 struct bnxt_napi *bnapi = bp->bnapi[i]; 11790 struct bnxt_cp_ring_info *cpr; 11791 11792 bnapi->tx_fault = 0; 11793 11794 cpr = &bnapi->cp_ring; 11795 bnapi->in_reset = false; 11796 11797 if (bnapi->rx_ring) { 11798 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 11799 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 11800 } 11801 napi_enable_locked(&bnapi->napi); 11802 } 11803 } 11804 11805 void bnxt_tx_disable(struct bnxt *bp) 11806 { 11807 int i; 11808 struct bnxt_tx_ring_info *txr; 11809 11810 if (bp->tx_ring) { 11811 for (i = 0; i < bp->tx_nr_rings; i++) { 11812 txr = &bp->tx_ring[i]; 11813 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 11814 } 11815 } 11816 /* Make sure napi polls see @dev_state change */ 11817 synchronize_net(); 11818 /* Drop carrier first to prevent TX timeout */ 11819 netif_carrier_off(bp->dev); 11820 /* Stop all TX queues */ 11821 netif_tx_disable(bp->dev); 11822 } 11823 11824 void bnxt_tx_enable(struct bnxt *bp) 11825 { 11826 int i; 11827 struct bnxt_tx_ring_info *txr; 11828 11829 for (i = 0; i < bp->tx_nr_rings; i++) { 11830 txr = &bp->tx_ring[i]; 11831 WRITE_ONCE(txr->dev_state, 0); 11832 } 11833 /* Make sure napi polls see @dev_state change */ 11834 synchronize_net(); 11835 netif_tx_wake_all_queues(bp->dev); 11836 if (BNXT_LINK_IS_UP(bp)) 11837 netif_carrier_on(bp->dev); 11838 } 11839 11840 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 11841 { 11842 u8 active_fec = link_info->active_fec_sig_mode & 11843 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 11844 11845 switch (active_fec) { 11846 default: 11847 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 11848 return "None"; 11849 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 11850 return "Clause 74 BaseR"; 11851 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 11852 return "Clause 91 RS(528,514)"; 11853 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 11854 return "Clause 91 RS544_1XN"; 11855 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 11856 return "Clause 91 RS(544,514)"; 11857 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 11858 return "Clause 91 RS272_1XN"; 11859 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 11860 return "Clause 91 RS(272,257)"; 11861 } 11862 } 11863 11864 void bnxt_report_link(struct bnxt *bp) 11865 { 11866 if (BNXT_LINK_IS_UP(bp)) { 11867 const char *signal = ""; 11868 const char *flow_ctrl; 11869 const char *duplex; 11870 u32 speed; 11871 u16 fec; 11872 11873 netif_carrier_on(bp->dev); 11874 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 11875 if (speed == SPEED_UNKNOWN) { 11876 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 11877 return; 11878 } 11879 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 11880 duplex = "full"; 11881 else 11882 duplex = "half"; 11883 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 11884 flow_ctrl = "ON - receive & transmit"; 11885 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 11886 flow_ctrl = "ON - transmit"; 11887 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 11888 flow_ctrl = "ON - receive"; 11889 else 11890 flow_ctrl = "none"; 11891 if (bp->link_info.phy_qcfg_resp.option_flags & 11892 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 11893 u8 sig_mode = bp->link_info.active_fec_sig_mode & 11894 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 11895 switch (sig_mode) { 11896 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 11897 signal = "(NRZ) "; 11898 break; 11899 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 11900 signal = "(PAM4 56Gbps) "; 11901 break; 11902 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4_112: 11903 signal = "(PAM4 112Gbps) "; 11904 break; 11905 default: 11906 break; 11907 } 11908 } 11909 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 11910 speed, signal, duplex, flow_ctrl); 11911 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 11912 netdev_info(bp->dev, "EEE is %s\n", 11913 bp->eee.eee_active ? "active" : 11914 "not active"); 11915 fec = bp->link_info.fec_cfg; 11916 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 11917 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 11918 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 11919 bnxt_report_fec(&bp->link_info)); 11920 } else { 11921 netif_carrier_off(bp->dev); 11922 netdev_err(bp->dev, "NIC Link is Down\n"); 11923 } 11924 } 11925 11926 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 11927 { 11928 if (!resp->supported_speeds_auto_mode && 11929 !resp->supported_speeds_force_mode && 11930 !resp->supported_pam4_speeds_auto_mode && 11931 !resp->supported_pam4_speeds_force_mode && 11932 !resp->supported_speeds2_auto_mode && 11933 !resp->supported_speeds2_force_mode) 11934 return true; 11935 return false; 11936 } 11937 11938 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 11939 { 11940 struct bnxt_link_info *link_info = &bp->link_info; 11941 struct hwrm_port_phy_qcaps_output *resp; 11942 struct hwrm_port_phy_qcaps_input *req; 11943 int rc = 0; 11944 11945 if (bp->hwrm_spec_code < 0x10201) 11946 return 0; 11947 11948 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS); 11949 if (rc) 11950 return rc; 11951 11952 resp = hwrm_req_hold(bp, req); 11953 rc = hwrm_req_send(bp, req); 11954 if (rc) 11955 goto hwrm_phy_qcaps_exit; 11956 11957 bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8); 11958 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 11959 struct ethtool_keee *eee = &bp->eee; 11960 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 11961 11962 _bnxt_fw_to_linkmode(eee->supported, fw_speeds); 11963 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 11964 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 11965 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 11966 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 11967 } 11968 11969 if (bp->hwrm_spec_code >= 0x10a01) { 11970 if (bnxt_phy_qcaps_no_speed(resp)) { 11971 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 11972 netdev_warn(bp->dev, "Ethernet link disabled\n"); 11973 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 11974 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 11975 netdev_info(bp->dev, "Ethernet link enabled\n"); 11976 /* Phy re-enabled, reprobe the speeds */ 11977 link_info->support_auto_speeds = 0; 11978 link_info->support_pam4_auto_speeds = 0; 11979 link_info->support_auto_speeds2 = 0; 11980 } 11981 } 11982 if (resp->supported_speeds_auto_mode) 11983 link_info->support_auto_speeds = 11984 le16_to_cpu(resp->supported_speeds_auto_mode); 11985 if (resp->supported_pam4_speeds_auto_mode) 11986 link_info->support_pam4_auto_speeds = 11987 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 11988 if (resp->supported_speeds2_auto_mode) 11989 link_info->support_auto_speeds2 = 11990 le16_to_cpu(resp->supported_speeds2_auto_mode); 11991 11992 bp->port_count = resp->port_cnt; 11993 11994 hwrm_phy_qcaps_exit: 11995 hwrm_req_drop(bp, req); 11996 return rc; 11997 } 11998 11999 static void bnxt_hwrm_mac_qcaps(struct bnxt *bp) 12000 { 12001 struct hwrm_port_mac_qcaps_output *resp; 12002 struct hwrm_port_mac_qcaps_input *req; 12003 int rc; 12004 12005 if (bp->hwrm_spec_code < 0x10a03) 12006 return; 12007 12008 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_QCAPS); 12009 if (rc) 12010 return; 12011 12012 resp = hwrm_req_hold(bp, req); 12013 rc = hwrm_req_send_silent(bp, req); 12014 if (!rc) 12015 bp->mac_flags = resp->flags; 12016 hwrm_req_drop(bp, req); 12017 } 12018 12019 static bool bnxt_support_dropped(u16 advertising, u16 supported) 12020 { 12021 u16 diff = advertising ^ supported; 12022 12023 return ((supported | diff) != supported); 12024 } 12025 12026 static bool bnxt_support_speed_dropped(struct bnxt_link_info *link_info) 12027 { 12028 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 12029 12030 /* Check if any advertised speeds are no longer supported. The caller 12031 * holds the link_lock mutex, so we can modify link_info settings. 12032 */ 12033 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 12034 if (bnxt_support_dropped(link_info->advertising, 12035 link_info->support_auto_speeds2)) { 12036 link_info->advertising = link_info->support_auto_speeds2; 12037 return true; 12038 } 12039 return false; 12040 } 12041 if (bnxt_support_dropped(link_info->advertising, 12042 link_info->support_auto_speeds)) { 12043 link_info->advertising = link_info->support_auto_speeds; 12044 return true; 12045 } 12046 if (bnxt_support_dropped(link_info->advertising_pam4, 12047 link_info->support_pam4_auto_speeds)) { 12048 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 12049 return true; 12050 } 12051 return false; 12052 } 12053 12054 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 12055 { 12056 struct bnxt_link_info *link_info = &bp->link_info; 12057 struct hwrm_port_phy_qcfg_output *resp; 12058 struct hwrm_port_phy_qcfg_input *req; 12059 u8 link_state = link_info->link_state; 12060 bool support_changed; 12061 int rc; 12062 12063 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG); 12064 if (rc) 12065 return rc; 12066 12067 resp = hwrm_req_hold(bp, req); 12068 rc = hwrm_req_send(bp, req); 12069 if (rc) { 12070 hwrm_req_drop(bp, req); 12071 if (BNXT_VF(bp) && rc == -ENODEV) { 12072 netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n"); 12073 rc = 0; 12074 } 12075 return rc; 12076 } 12077 12078 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 12079 link_info->phy_link_status = resp->link; 12080 link_info->duplex = resp->duplex_cfg; 12081 if (bp->hwrm_spec_code >= 0x10800) 12082 link_info->duplex = resp->duplex_state; 12083 link_info->pause = resp->pause; 12084 link_info->auto_mode = resp->auto_mode; 12085 link_info->auto_pause_setting = resp->auto_pause; 12086 link_info->lp_pause = resp->link_partner_adv_pause; 12087 link_info->force_pause_setting = resp->force_pause; 12088 link_info->duplex_setting = resp->duplex_cfg; 12089 if (link_info->phy_link_status == BNXT_LINK_LINK) { 12090 link_info->link_speed = le16_to_cpu(resp->link_speed); 12091 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 12092 link_info->active_lanes = resp->active_lanes; 12093 } else { 12094 link_info->link_speed = 0; 12095 link_info->active_lanes = 0; 12096 } 12097 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 12098 link_info->force_pam4_link_speed = 12099 le16_to_cpu(resp->force_pam4_link_speed); 12100 link_info->force_link_speed2 = le16_to_cpu(resp->force_link_speeds2); 12101 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 12102 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 12103 link_info->support_speeds2 = le16_to_cpu(resp->support_speeds2); 12104 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 12105 link_info->auto_pam4_link_speeds = 12106 le16_to_cpu(resp->auto_pam4_link_speed_mask); 12107 link_info->auto_link_speeds2 = le16_to_cpu(resp->auto_link_speeds2); 12108 link_info->lp_auto_link_speeds = 12109 le16_to_cpu(resp->link_partner_adv_speeds); 12110 link_info->lp_auto_pam4_link_speeds = 12111 resp->link_partner_pam4_adv_speeds; 12112 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 12113 link_info->phy_ver[0] = resp->phy_maj; 12114 link_info->phy_ver[1] = resp->phy_min; 12115 link_info->phy_ver[2] = resp->phy_bld; 12116 link_info->media_type = resp->media_type; 12117 link_info->phy_type = resp->phy_type; 12118 link_info->transceiver = resp->xcvr_pkg_type; 12119 link_info->phy_addr = resp->eee_config_phy_addr & 12120 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 12121 link_info->module_status = resp->module_status; 12122 12123 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 12124 struct ethtool_keee *eee = &bp->eee; 12125 u16 fw_speeds; 12126 12127 eee->eee_active = 0; 12128 if (resp->eee_config_phy_addr & 12129 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 12130 eee->eee_active = 1; 12131 fw_speeds = le16_to_cpu( 12132 resp->link_partner_adv_eee_link_speed_mask); 12133 _bnxt_fw_to_linkmode(eee->lp_advertised, fw_speeds); 12134 } 12135 12136 /* Pull initial EEE config */ 12137 if (!chng_link_state) { 12138 if (resp->eee_config_phy_addr & 12139 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 12140 eee->eee_enabled = 1; 12141 12142 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 12143 _bnxt_fw_to_linkmode(eee->advertised, fw_speeds); 12144 12145 if (resp->eee_config_phy_addr & 12146 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 12147 __le32 tmr; 12148 12149 eee->tx_lpi_enabled = 1; 12150 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 12151 eee->tx_lpi_timer = le32_to_cpu(tmr) & 12152 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 12153 } 12154 } 12155 } 12156 12157 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 12158 if (bp->hwrm_spec_code >= 0x10504) { 12159 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 12160 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 12161 } 12162 /* TODO: need to add more logic to report VF link */ 12163 if (chng_link_state) { 12164 if (link_info->phy_link_status == BNXT_LINK_LINK) 12165 link_info->link_state = BNXT_LINK_STATE_UP; 12166 else 12167 link_info->link_state = BNXT_LINK_STATE_DOWN; 12168 if (link_state != link_info->link_state) 12169 bnxt_report_link(bp); 12170 } else { 12171 /* always link down if not require to update link state */ 12172 link_info->link_state = BNXT_LINK_STATE_DOWN; 12173 } 12174 hwrm_req_drop(bp, req); 12175 12176 if (!BNXT_PHY_CFG_ABLE(bp)) 12177 return 0; 12178 12179 support_changed = bnxt_support_speed_dropped(link_info); 12180 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 12181 bnxt_hwrm_set_link_setting(bp, true, false); 12182 return 0; 12183 } 12184 12185 static void bnxt_get_port_module_status(struct bnxt *bp) 12186 { 12187 struct bnxt_link_info *link_info = &bp->link_info; 12188 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 12189 u8 module_status; 12190 12191 if (bnxt_update_link(bp, true)) 12192 return; 12193 12194 module_status = link_info->module_status; 12195 switch (module_status) { 12196 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 12197 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 12198 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 12199 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 12200 bp->pf.port_id); 12201 if (bp->hwrm_spec_code >= 0x10201) { 12202 netdev_warn(bp->dev, "Module part number %s\n", 12203 resp->phy_vendor_partnumber); 12204 } 12205 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 12206 netdev_warn(bp->dev, "TX is disabled\n"); 12207 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 12208 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 12209 } 12210 } 12211 12212 static void 12213 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 12214 { 12215 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 12216 if (bp->hwrm_spec_code >= 0x10201) 12217 req->auto_pause = 12218 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 12219 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 12220 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 12221 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 12222 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 12223 req->enables |= 12224 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 12225 } else { 12226 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 12227 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 12228 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 12229 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 12230 req->enables |= 12231 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 12232 if (bp->hwrm_spec_code >= 0x10201) { 12233 req->auto_pause = req->force_pause; 12234 req->enables |= cpu_to_le32( 12235 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 12236 } 12237 } 12238 } 12239 12240 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 12241 { 12242 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 12243 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 12244 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 12245 req->enables |= 12246 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEEDS2_MASK); 12247 req->auto_link_speeds2_mask = cpu_to_le16(bp->link_info.advertising); 12248 } else if (bp->link_info.advertising) { 12249 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 12250 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 12251 } 12252 if (bp->link_info.advertising_pam4) { 12253 req->enables |= 12254 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 12255 req->auto_link_pam4_speed_mask = 12256 cpu_to_le16(bp->link_info.advertising_pam4); 12257 } 12258 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 12259 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 12260 } else { 12261 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 12262 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 12263 req->force_link_speeds2 = cpu_to_le16(bp->link_info.req_link_speed); 12264 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_LINK_SPEEDS2); 12265 netif_info(bp, link, bp->dev, "Forcing FW speed2: %d\n", 12266 (u32)bp->link_info.req_link_speed); 12267 } else if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 12268 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 12269 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 12270 } else { 12271 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 12272 } 12273 } 12274 12275 /* tell chimp that the setting takes effect immediately */ 12276 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 12277 } 12278 12279 int bnxt_hwrm_set_pause(struct bnxt *bp) 12280 { 12281 struct hwrm_port_phy_cfg_input *req; 12282 int rc; 12283 12284 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 12285 if (rc) 12286 return rc; 12287 12288 bnxt_hwrm_set_pause_common(bp, req); 12289 12290 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 12291 bp->link_info.force_link_chng) 12292 bnxt_hwrm_set_link_common(bp, req); 12293 12294 rc = hwrm_req_send(bp, req); 12295 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 12296 /* since changing of pause setting doesn't trigger any link 12297 * change event, the driver needs to update the current pause 12298 * result upon successfully return of the phy_cfg command 12299 */ 12300 bp->link_info.pause = 12301 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 12302 bp->link_info.auto_pause_setting = 0; 12303 if (!bp->link_info.force_link_chng) 12304 bnxt_report_link(bp); 12305 } 12306 bp->link_info.force_link_chng = false; 12307 return rc; 12308 } 12309 12310 static void bnxt_hwrm_set_eee(struct bnxt *bp, 12311 struct hwrm_port_phy_cfg_input *req) 12312 { 12313 struct ethtool_keee *eee = &bp->eee; 12314 12315 if (eee->eee_enabled) { 12316 u16 eee_speeds; 12317 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 12318 12319 if (eee->tx_lpi_enabled) 12320 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 12321 else 12322 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 12323 12324 req->flags |= cpu_to_le32(flags); 12325 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 12326 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 12327 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 12328 } else { 12329 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 12330 } 12331 } 12332 12333 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 12334 { 12335 struct hwrm_port_phy_cfg_input *req; 12336 int rc; 12337 12338 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 12339 if (rc) 12340 return rc; 12341 12342 if (set_pause) 12343 bnxt_hwrm_set_pause_common(bp, req); 12344 12345 bnxt_hwrm_set_link_common(bp, req); 12346 12347 if (set_eee) 12348 bnxt_hwrm_set_eee(bp, req); 12349 return hwrm_req_send(bp, req); 12350 } 12351 12352 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 12353 { 12354 struct hwrm_port_phy_cfg_input *req; 12355 int rc; 12356 12357 if (!BNXT_SINGLE_PF(bp)) 12358 return 0; 12359 12360 if (pci_num_vf(bp->pdev) && 12361 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 12362 return 0; 12363 12364 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 12365 if (rc) 12366 return rc; 12367 12368 req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 12369 rc = hwrm_req_send(bp, req); 12370 if (!rc) { 12371 mutex_lock(&bp->link_lock); 12372 /* Device is not obliged link down in certain scenarios, even 12373 * when forced. Setting the state unknown is consistent with 12374 * driver startup and will force link state to be reported 12375 * during subsequent open based on PORT_PHY_QCFG. 12376 */ 12377 bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN; 12378 mutex_unlock(&bp->link_lock); 12379 } 12380 return rc; 12381 } 12382 12383 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 12384 { 12385 #ifdef CONFIG_TEE_BNXT_FW 12386 int rc = tee_bnxt_fw_load(); 12387 12388 if (rc) 12389 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 12390 12391 return rc; 12392 #else 12393 netdev_err(bp->dev, "OP-TEE not supported\n"); 12394 return -ENODEV; 12395 #endif 12396 } 12397 12398 static int bnxt_try_recover_fw(struct bnxt *bp) 12399 { 12400 if (bp->fw_health && bp->fw_health->status_reliable) { 12401 int retry = 0, rc; 12402 u32 sts; 12403 12404 do { 12405 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12406 rc = bnxt_hwrm_poll(bp); 12407 if (!BNXT_FW_IS_BOOTING(sts) && 12408 !BNXT_FW_IS_RECOVERING(sts)) 12409 break; 12410 retry++; 12411 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 12412 12413 if (!BNXT_FW_IS_HEALTHY(sts)) { 12414 netdev_err(bp->dev, 12415 "Firmware not responding, status: 0x%x\n", 12416 sts); 12417 rc = -ENODEV; 12418 } 12419 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 12420 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 12421 return bnxt_fw_reset_via_optee(bp); 12422 } 12423 return rc; 12424 } 12425 12426 return -ENODEV; 12427 } 12428 12429 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset) 12430 { 12431 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 12432 12433 if (!BNXT_NEW_RM(bp)) 12434 return; /* no resource reservations required */ 12435 12436 hw_resc->resv_cp_rings = 0; 12437 hw_resc->resv_stat_ctxs = 0; 12438 hw_resc->resv_irqs = 0; 12439 hw_resc->resv_tx_rings = 0; 12440 hw_resc->resv_rx_rings = 0; 12441 hw_resc->resv_hw_ring_grps = 0; 12442 hw_resc->resv_vnics = 0; 12443 hw_resc->resv_rsscos_ctxs = 0; 12444 if (!fw_reset) { 12445 bp->tx_nr_rings = 0; 12446 bp->rx_nr_rings = 0; 12447 } 12448 } 12449 12450 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset) 12451 { 12452 int rc; 12453 12454 if (!BNXT_NEW_RM(bp)) 12455 return 0; /* no resource reservations required */ 12456 12457 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 12458 if (rc) 12459 netdev_err(bp->dev, "resc_qcaps failed\n"); 12460 12461 bnxt_clear_reservations(bp, fw_reset); 12462 12463 return rc; 12464 } 12465 12466 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 12467 { 12468 struct hwrm_func_drv_if_change_output *resp; 12469 struct hwrm_func_drv_if_change_input *req; 12470 bool resc_reinit = false; 12471 bool caps_change = false; 12472 int rc, retry = 0; 12473 bool fw_reset; 12474 u32 flags = 0; 12475 12476 fw_reset = (bp->fw_reset_state == BNXT_FW_RESET_STATE_ABORT); 12477 bp->fw_reset_state = 0; 12478 12479 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 12480 return 0; 12481 12482 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE); 12483 if (rc) 12484 return rc; 12485 12486 if (up) 12487 req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 12488 resp = hwrm_req_hold(bp, req); 12489 12490 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 12491 while (retry < BNXT_FW_IF_RETRY) { 12492 rc = hwrm_req_send(bp, req); 12493 if (rc != -EAGAIN) 12494 break; 12495 12496 msleep(50); 12497 retry++; 12498 } 12499 12500 if (rc == -EAGAIN) { 12501 hwrm_req_drop(bp, req); 12502 return rc; 12503 } else if (!rc) { 12504 flags = le32_to_cpu(resp->flags); 12505 } else if (up) { 12506 rc = bnxt_try_recover_fw(bp); 12507 fw_reset = true; 12508 } 12509 hwrm_req_drop(bp, req); 12510 if (rc) 12511 return rc; 12512 12513 if (!up) { 12514 bnxt_inv_fw_health_reg(bp); 12515 return 0; 12516 } 12517 12518 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 12519 resc_reinit = true; 12520 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE || 12521 test_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) 12522 fw_reset = true; 12523 else 12524 bnxt_remap_fw_health_regs(bp); 12525 12526 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 12527 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 12528 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12529 return -ENODEV; 12530 } 12531 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_CAPS_CHANGE) 12532 caps_change = true; 12533 12534 if (resc_reinit || fw_reset || caps_change) { 12535 if (fw_reset || caps_change) { 12536 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 12537 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 12538 bnxt_ulp_irq_stop(bp); 12539 bnxt_free_ctx_mem(bp, false); 12540 bnxt_dcb_free(bp); 12541 rc = bnxt_fw_init_one(bp); 12542 if (rc) { 12543 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 12544 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12545 return rc; 12546 } 12547 /* IRQ will be initialized later in bnxt_request_irq()*/ 12548 bnxt_clear_int_mode(bp); 12549 } 12550 rc = bnxt_cancel_reservations(bp, fw_reset); 12551 } 12552 return rc; 12553 } 12554 12555 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 12556 { 12557 struct hwrm_port_led_qcaps_output *resp; 12558 struct hwrm_port_led_qcaps_input *req; 12559 struct bnxt_pf_info *pf = &bp->pf; 12560 int rc; 12561 12562 bp->num_leds = 0; 12563 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 12564 return 0; 12565 12566 rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS); 12567 if (rc) 12568 return rc; 12569 12570 req->port_id = cpu_to_le16(pf->port_id); 12571 resp = hwrm_req_hold(bp, req); 12572 rc = hwrm_req_send(bp, req); 12573 if (rc) { 12574 hwrm_req_drop(bp, req); 12575 return rc; 12576 } 12577 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 12578 int i; 12579 12580 bp->num_leds = resp->num_leds; 12581 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 12582 bp->num_leds); 12583 for (i = 0; i < bp->num_leds; i++) { 12584 struct bnxt_led_info *led = &bp->leds[i]; 12585 __le16 caps = led->led_state_caps; 12586 12587 if (!led->led_group_id || 12588 !BNXT_LED_ALT_BLINK_CAP(caps)) { 12589 bp->num_leds = 0; 12590 break; 12591 } 12592 } 12593 } 12594 hwrm_req_drop(bp, req); 12595 return 0; 12596 } 12597 12598 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 12599 { 12600 struct hwrm_wol_filter_alloc_output *resp; 12601 struct hwrm_wol_filter_alloc_input *req; 12602 int rc; 12603 12604 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC); 12605 if (rc) 12606 return rc; 12607 12608 req->port_id = cpu_to_le16(bp->pf.port_id); 12609 req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 12610 req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 12611 memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN); 12612 12613 resp = hwrm_req_hold(bp, req); 12614 rc = hwrm_req_send(bp, req); 12615 if (!rc) 12616 bp->wol_filter_id = resp->wol_filter_id; 12617 hwrm_req_drop(bp, req); 12618 return rc; 12619 } 12620 12621 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 12622 { 12623 struct hwrm_wol_filter_free_input *req; 12624 int rc; 12625 12626 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE); 12627 if (rc) 12628 return rc; 12629 12630 req->port_id = cpu_to_le16(bp->pf.port_id); 12631 req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 12632 req->wol_filter_id = bp->wol_filter_id; 12633 12634 return hwrm_req_send(bp, req); 12635 } 12636 12637 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 12638 { 12639 struct hwrm_wol_filter_qcfg_output *resp; 12640 struct hwrm_wol_filter_qcfg_input *req; 12641 u16 next_handle = 0; 12642 int rc; 12643 12644 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG); 12645 if (rc) 12646 return rc; 12647 12648 req->port_id = cpu_to_le16(bp->pf.port_id); 12649 req->handle = cpu_to_le16(handle); 12650 resp = hwrm_req_hold(bp, req); 12651 rc = hwrm_req_send(bp, req); 12652 if (!rc) { 12653 next_handle = le16_to_cpu(resp->next_handle); 12654 if (next_handle != 0) { 12655 if (resp->wol_type == 12656 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 12657 bp->wol = 1; 12658 bp->wol_filter_id = resp->wol_filter_id; 12659 } 12660 } 12661 } 12662 hwrm_req_drop(bp, req); 12663 return next_handle; 12664 } 12665 12666 static void bnxt_get_wol_settings(struct bnxt *bp) 12667 { 12668 u16 handle = 0; 12669 12670 bp->wol = 0; 12671 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 12672 return; 12673 12674 do { 12675 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 12676 } while (handle && handle != 0xffff); 12677 } 12678 12679 static bool bnxt_eee_config_ok(struct bnxt *bp) 12680 { 12681 struct ethtool_keee *eee = &bp->eee; 12682 struct bnxt_link_info *link_info = &bp->link_info; 12683 12684 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 12685 return true; 12686 12687 if (eee->eee_enabled) { 12688 __ETHTOOL_DECLARE_LINK_MODE_MASK(advertising); 12689 __ETHTOOL_DECLARE_LINK_MODE_MASK(tmp); 12690 12691 _bnxt_fw_to_linkmode(advertising, link_info->advertising); 12692 12693 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 12694 eee->eee_enabled = 0; 12695 return false; 12696 } 12697 if (linkmode_andnot(tmp, eee->advertised, advertising)) { 12698 linkmode_and(eee->advertised, advertising, 12699 eee->supported); 12700 return false; 12701 } 12702 } 12703 return true; 12704 } 12705 12706 static int bnxt_update_phy_setting(struct bnxt *bp) 12707 { 12708 int rc; 12709 bool update_link = false; 12710 bool update_pause = false; 12711 bool update_eee = false; 12712 struct bnxt_link_info *link_info = &bp->link_info; 12713 12714 rc = bnxt_update_link(bp, true); 12715 if (rc) { 12716 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 12717 rc); 12718 return rc; 12719 } 12720 if (!BNXT_SINGLE_PF(bp)) 12721 return 0; 12722 12723 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 12724 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 12725 link_info->req_flow_ctrl) 12726 update_pause = true; 12727 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 12728 link_info->force_pause_setting != link_info->req_flow_ctrl) 12729 update_pause = true; 12730 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 12731 if (BNXT_AUTO_MODE(link_info->auto_mode)) 12732 update_link = true; 12733 if (bnxt_force_speed_updated(link_info)) 12734 update_link = true; 12735 if (link_info->req_duplex != link_info->duplex_setting) 12736 update_link = true; 12737 } else { 12738 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 12739 update_link = true; 12740 if (bnxt_auto_speed_updated(link_info)) 12741 update_link = true; 12742 } 12743 12744 /* The last close may have shutdown the link, so need to call 12745 * PHY_CFG to bring it back up. 12746 */ 12747 if (!BNXT_LINK_IS_UP(bp)) 12748 update_link = true; 12749 12750 if (!bnxt_eee_config_ok(bp)) 12751 update_eee = true; 12752 12753 if (update_link) 12754 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 12755 else if (update_pause) 12756 rc = bnxt_hwrm_set_pause(bp); 12757 if (rc) { 12758 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 12759 rc); 12760 return rc; 12761 } 12762 12763 return rc; 12764 } 12765 12766 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 12767 12768 static int bnxt_reinit_after_abort(struct bnxt *bp) 12769 { 12770 int rc; 12771 12772 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 12773 return -EBUSY; 12774 12775 if (bp->dev->reg_state == NETREG_UNREGISTERED) 12776 return -ENODEV; 12777 12778 rc = bnxt_fw_init_one(bp); 12779 if (!rc) { 12780 bnxt_clear_int_mode(bp); 12781 rc = bnxt_init_int_mode(bp); 12782 if (!rc) { 12783 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12784 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 12785 } 12786 } 12787 return rc; 12788 } 12789 12790 static void bnxt_cfg_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 12791 { 12792 struct bnxt_ntuple_filter *ntp_fltr; 12793 struct bnxt_l2_filter *l2_fltr; 12794 12795 if (list_empty(&fltr->list)) 12796 return; 12797 12798 if (fltr->type == BNXT_FLTR_TYPE_NTUPLE) { 12799 ntp_fltr = container_of(fltr, struct bnxt_ntuple_filter, base); 12800 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 12801 atomic_inc(&l2_fltr->refcnt); 12802 ntp_fltr->l2_fltr = l2_fltr; 12803 if (bnxt_hwrm_cfa_ntuple_filter_alloc(bp, ntp_fltr)) { 12804 bnxt_del_ntp_filter(bp, ntp_fltr); 12805 netdev_err(bp->dev, "restoring previously configured ntuple filter id %d failed\n", 12806 fltr->sw_id); 12807 } 12808 } else if (fltr->type == BNXT_FLTR_TYPE_L2) { 12809 l2_fltr = container_of(fltr, struct bnxt_l2_filter, base); 12810 if (bnxt_hwrm_l2_filter_alloc(bp, l2_fltr)) { 12811 bnxt_del_l2_filter(bp, l2_fltr); 12812 netdev_err(bp->dev, "restoring previously configured l2 filter id %d failed\n", 12813 fltr->sw_id); 12814 } 12815 } 12816 } 12817 12818 static void bnxt_cfg_usr_fltrs(struct bnxt *bp) 12819 { 12820 struct bnxt_filter_base *usr_fltr, *tmp; 12821 12822 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) 12823 bnxt_cfg_one_usr_fltr(bp, usr_fltr); 12824 } 12825 12826 static int bnxt_set_xps_mapping(struct bnxt *bp) 12827 { 12828 int numa_node = dev_to_node(&bp->pdev->dev); 12829 unsigned int q_idx, map_idx, cpu, i; 12830 const struct cpumask *cpu_mask_ptr; 12831 int nr_cpus = num_online_cpus(); 12832 cpumask_t *q_map; 12833 int rc = 0; 12834 12835 q_map = kcalloc(bp->tx_nr_rings_per_tc, sizeof(*q_map), GFP_KERNEL); 12836 if (!q_map) 12837 return -ENOMEM; 12838 12839 /* Create CPU mask for all TX queues across MQPRIO traffic classes. 12840 * Each TC has the same number of TX queues. The nth TX queue for each 12841 * TC will have the same CPU mask. 12842 */ 12843 for (i = 0; i < nr_cpus; i++) { 12844 map_idx = i % bp->tx_nr_rings_per_tc; 12845 cpu = cpumask_local_spread(i, numa_node); 12846 cpu_mask_ptr = get_cpu_mask(cpu); 12847 cpumask_or(&q_map[map_idx], &q_map[map_idx], cpu_mask_ptr); 12848 } 12849 12850 /* Register CPU mask for each TX queue except the ones marked for XDP */ 12851 for (q_idx = 0; q_idx < bp->dev->real_num_tx_queues; q_idx++) { 12852 map_idx = q_idx % bp->tx_nr_rings_per_tc; 12853 rc = netif_set_xps_queue(bp->dev, &q_map[map_idx], q_idx); 12854 if (rc) { 12855 netdev_warn(bp->dev, "Error setting XPS for q:%d\n", 12856 q_idx); 12857 break; 12858 } 12859 } 12860 12861 kfree(q_map); 12862 12863 return rc; 12864 } 12865 12866 static int bnxt_tx_nr_rings(struct bnxt *bp) 12867 { 12868 return bp->num_tc ? bp->tx_nr_rings_per_tc * bp->num_tc : 12869 bp->tx_nr_rings_per_tc; 12870 } 12871 12872 static int bnxt_tx_nr_rings_per_tc(struct bnxt *bp) 12873 { 12874 return bp->num_tc ? bp->tx_nr_rings / bp->num_tc : bp->tx_nr_rings; 12875 } 12876 12877 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12878 { 12879 int rc = 0; 12880 12881 netif_carrier_off(bp->dev); 12882 if (irq_re_init) { 12883 /* Reserve rings now if none were reserved at driver probe. */ 12884 rc = bnxt_init_dflt_ring_mode(bp); 12885 if (rc) { 12886 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 12887 return rc; 12888 } 12889 } 12890 rc = bnxt_reserve_rings(bp, irq_re_init); 12891 if (rc) 12892 return rc; 12893 12894 /* Make adjustments if reserved TX rings are less than requested */ 12895 bp->tx_nr_rings -= bp->tx_nr_rings_xdp; 12896 bp->tx_nr_rings_per_tc = bnxt_tx_nr_rings_per_tc(bp); 12897 if (bp->tx_nr_rings_xdp) { 12898 bp->tx_nr_rings_xdp = bp->tx_nr_rings_per_tc; 12899 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 12900 } 12901 rc = bnxt_alloc_mem(bp, irq_re_init); 12902 if (rc) { 12903 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 12904 goto open_err_free_mem; 12905 } 12906 12907 if (irq_re_init) { 12908 bnxt_init_napi(bp); 12909 rc = bnxt_request_irq(bp); 12910 if (rc) { 12911 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 12912 goto open_err_irq; 12913 } 12914 } 12915 12916 rc = bnxt_init_nic(bp, irq_re_init); 12917 if (rc) { 12918 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 12919 goto open_err_irq; 12920 } 12921 12922 bnxt_enable_napi(bp); 12923 bnxt_debug_dev_init(bp); 12924 12925 if (link_re_init) { 12926 mutex_lock(&bp->link_lock); 12927 rc = bnxt_update_phy_setting(bp); 12928 mutex_unlock(&bp->link_lock); 12929 if (rc) { 12930 netdev_warn(bp->dev, "failed to update phy settings\n"); 12931 if (BNXT_SINGLE_PF(bp)) { 12932 bp->link_info.phy_retry = true; 12933 bp->link_info.phy_retry_expires = 12934 jiffies + 5 * HZ; 12935 } 12936 } 12937 } 12938 12939 if (irq_re_init) { 12940 udp_tunnel_nic_reset_ntf(bp->dev); 12941 rc = bnxt_set_xps_mapping(bp); 12942 if (rc) 12943 netdev_warn(bp->dev, "failed to set xps mapping\n"); 12944 } 12945 12946 if (bp->tx_nr_rings_xdp < num_possible_cpus()) { 12947 if (!static_key_enabled(&bnxt_xdp_locking_key)) 12948 static_branch_enable(&bnxt_xdp_locking_key); 12949 } else if (static_key_enabled(&bnxt_xdp_locking_key)) { 12950 static_branch_disable(&bnxt_xdp_locking_key); 12951 } 12952 set_bit(BNXT_STATE_OPEN, &bp->state); 12953 bnxt_enable_int(bp); 12954 /* Enable TX queues */ 12955 bnxt_tx_enable(bp); 12956 mod_timer(&bp->timer, jiffies + bp->current_interval); 12957 /* Poll link status and check for SFP+ module status */ 12958 mutex_lock(&bp->link_lock); 12959 bnxt_get_port_module_status(bp); 12960 mutex_unlock(&bp->link_lock); 12961 12962 /* VF-reps may need to be re-opened after the PF is re-opened */ 12963 if (BNXT_PF(bp)) 12964 bnxt_vf_reps_open(bp); 12965 bnxt_ptp_init_rtc(bp, true); 12966 bnxt_ptp_cfg_tstamp_filters(bp); 12967 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 12968 bnxt_hwrm_realloc_rss_ctx_vnic(bp); 12969 bnxt_cfg_usr_fltrs(bp); 12970 return 0; 12971 12972 open_err_irq: 12973 bnxt_del_napi(bp); 12974 12975 open_err_free_mem: 12976 bnxt_free_skbs(bp); 12977 bnxt_free_irq(bp); 12978 bnxt_free_mem(bp, true); 12979 return rc; 12980 } 12981 12982 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12983 { 12984 int rc = 0; 12985 12986 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 12987 rc = -EIO; 12988 if (!rc) 12989 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 12990 if (rc) { 12991 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 12992 netif_close(bp->dev); 12993 } 12994 return rc; 12995 } 12996 12997 /* netdev instance lock held, open the NIC half way by allocating all 12998 * resources, but NAPI, IRQ, and TX are not enabled. This is mainly used 12999 * for offline self tests. 13000 */ 13001 int bnxt_half_open_nic(struct bnxt *bp) 13002 { 13003 int rc = 0; 13004 13005 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 13006 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); 13007 rc = -ENODEV; 13008 goto half_open_err; 13009 } 13010 13011 rc = bnxt_alloc_mem(bp, true); 13012 if (rc) { 13013 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 13014 goto half_open_err; 13015 } 13016 bnxt_init_napi(bp); 13017 set_bit(BNXT_STATE_HALF_OPEN, &bp->state); 13018 rc = bnxt_init_nic(bp, true); 13019 if (rc) { 13020 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 13021 bnxt_del_napi(bp); 13022 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 13023 goto half_open_err; 13024 } 13025 return 0; 13026 13027 half_open_err: 13028 bnxt_free_skbs(bp); 13029 bnxt_free_mem(bp, true); 13030 netif_close(bp->dev); 13031 return rc; 13032 } 13033 13034 /* netdev instance lock held, this call can only be made after a previous 13035 * successful call to bnxt_half_open_nic(). 13036 */ 13037 void bnxt_half_close_nic(struct bnxt *bp) 13038 { 13039 bnxt_hwrm_resource_free(bp, false, true); 13040 bnxt_del_napi(bp); 13041 bnxt_free_skbs(bp); 13042 bnxt_free_mem(bp, true); 13043 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 13044 } 13045 13046 void bnxt_reenable_sriov(struct bnxt *bp) 13047 { 13048 if (BNXT_PF(bp)) { 13049 struct bnxt_pf_info *pf = &bp->pf; 13050 int n = pf->active_vfs; 13051 13052 if (n) 13053 bnxt_cfg_hw_sriov(bp, &n, true); 13054 } 13055 } 13056 13057 static int bnxt_open(struct net_device *dev) 13058 { 13059 struct bnxt *bp = netdev_priv(dev); 13060 int rc; 13061 13062 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 13063 rc = bnxt_reinit_after_abort(bp); 13064 if (rc) { 13065 if (rc == -EBUSY) 13066 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 13067 else 13068 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 13069 return -ENODEV; 13070 } 13071 } 13072 13073 rc = bnxt_hwrm_if_change(bp, true); 13074 if (rc) 13075 return rc; 13076 13077 rc = __bnxt_open_nic(bp, true, true); 13078 if (rc) { 13079 bnxt_hwrm_if_change(bp, false); 13080 } else { 13081 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 13082 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 13083 bnxt_queue_sp_work(bp, 13084 BNXT_RESTART_ULP_SP_EVENT); 13085 } 13086 } 13087 13088 return rc; 13089 } 13090 13091 static bool bnxt_drv_busy(struct bnxt *bp) 13092 { 13093 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 13094 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 13095 } 13096 13097 static void bnxt_get_ring_stats(struct bnxt *bp, 13098 struct rtnl_link_stats64 *stats); 13099 13100 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 13101 bool link_re_init) 13102 { 13103 /* Close the VF-reps before closing PF */ 13104 if (BNXT_PF(bp)) 13105 bnxt_vf_reps_close(bp); 13106 13107 /* Change device state to avoid TX queue wake up's */ 13108 bnxt_tx_disable(bp); 13109 13110 clear_bit(BNXT_STATE_OPEN, &bp->state); 13111 smp_mb__after_atomic(); 13112 while (bnxt_drv_busy(bp)) 13113 msleep(20); 13114 13115 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 13116 bnxt_clear_rss_ctxs(bp); 13117 /* Flush rings and disable interrupts */ 13118 bnxt_shutdown_nic(bp, irq_re_init); 13119 13120 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 13121 13122 bnxt_debug_dev_exit(bp); 13123 bnxt_disable_napi(bp); 13124 timer_delete_sync(&bp->timer); 13125 bnxt_free_skbs(bp); 13126 13127 /* Save ring stats before shutdown */ 13128 if (bp->bnapi && irq_re_init) { 13129 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 13130 bnxt_get_ring_err_stats(bp, &bp->ring_err_stats_prev); 13131 } 13132 if (irq_re_init) { 13133 bnxt_free_irq(bp); 13134 bnxt_del_napi(bp); 13135 } 13136 bnxt_free_mem(bp, irq_re_init); 13137 } 13138 13139 void bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 13140 { 13141 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 13142 /* If we get here, it means firmware reset is in progress 13143 * while we are trying to close. We can safely proceed with 13144 * the close because we are holding netdev instance lock. 13145 * Some firmware messages may fail as we proceed to close. 13146 * We set the ABORT_ERR flag here so that the FW reset thread 13147 * will later abort when it gets the netdev instance lock 13148 * and sees the flag. 13149 */ 13150 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 13151 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 13152 } 13153 13154 #ifdef CONFIG_BNXT_SRIOV 13155 if (bp->sriov_cfg) { 13156 int rc; 13157 13158 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 13159 !bp->sriov_cfg, 13160 BNXT_SRIOV_CFG_WAIT_TMO); 13161 if (!rc) 13162 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete, proceeding to close!\n"); 13163 else if (rc < 0) 13164 netdev_warn(bp->dev, "SRIOV config operation interrupted, proceeding to close!\n"); 13165 } 13166 #endif 13167 __bnxt_close_nic(bp, irq_re_init, link_re_init); 13168 } 13169 13170 static int bnxt_close(struct net_device *dev) 13171 { 13172 struct bnxt *bp = netdev_priv(dev); 13173 13174 bnxt_close_nic(bp, true, true); 13175 bnxt_hwrm_shutdown_link(bp); 13176 bnxt_hwrm_if_change(bp, false); 13177 return 0; 13178 } 13179 13180 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 13181 u16 *val) 13182 { 13183 struct hwrm_port_phy_mdio_read_output *resp; 13184 struct hwrm_port_phy_mdio_read_input *req; 13185 int rc; 13186 13187 if (bp->hwrm_spec_code < 0x10a00) 13188 return -EOPNOTSUPP; 13189 13190 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ); 13191 if (rc) 13192 return rc; 13193 13194 req->port_id = cpu_to_le16(bp->pf.port_id); 13195 req->phy_addr = phy_addr; 13196 req->reg_addr = cpu_to_le16(reg & 0x1f); 13197 if (mdio_phy_id_is_c45(phy_addr)) { 13198 req->cl45_mdio = 1; 13199 req->phy_addr = mdio_phy_id_prtad(phy_addr); 13200 req->dev_addr = mdio_phy_id_devad(phy_addr); 13201 req->reg_addr = cpu_to_le16(reg); 13202 } 13203 13204 resp = hwrm_req_hold(bp, req); 13205 rc = hwrm_req_send(bp, req); 13206 if (!rc) 13207 *val = le16_to_cpu(resp->reg_data); 13208 hwrm_req_drop(bp, req); 13209 return rc; 13210 } 13211 13212 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 13213 u16 val) 13214 { 13215 struct hwrm_port_phy_mdio_write_input *req; 13216 int rc; 13217 13218 if (bp->hwrm_spec_code < 0x10a00) 13219 return -EOPNOTSUPP; 13220 13221 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE); 13222 if (rc) 13223 return rc; 13224 13225 req->port_id = cpu_to_le16(bp->pf.port_id); 13226 req->phy_addr = phy_addr; 13227 req->reg_addr = cpu_to_le16(reg & 0x1f); 13228 if (mdio_phy_id_is_c45(phy_addr)) { 13229 req->cl45_mdio = 1; 13230 req->phy_addr = mdio_phy_id_prtad(phy_addr); 13231 req->dev_addr = mdio_phy_id_devad(phy_addr); 13232 req->reg_addr = cpu_to_le16(reg); 13233 } 13234 req->reg_data = cpu_to_le16(val); 13235 13236 return hwrm_req_send(bp, req); 13237 } 13238 13239 /* netdev instance lock held */ 13240 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 13241 { 13242 struct mii_ioctl_data *mdio = if_mii(ifr); 13243 struct bnxt *bp = netdev_priv(dev); 13244 int rc; 13245 13246 switch (cmd) { 13247 case SIOCGMIIPHY: 13248 mdio->phy_id = bp->link_info.phy_addr; 13249 13250 fallthrough; 13251 case SIOCGMIIREG: { 13252 u16 mii_regval = 0; 13253 13254 if (!netif_running(dev)) 13255 return -EAGAIN; 13256 13257 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 13258 &mii_regval); 13259 mdio->val_out = mii_regval; 13260 return rc; 13261 } 13262 13263 case SIOCSMIIREG: 13264 if (!netif_running(dev)) 13265 return -EAGAIN; 13266 13267 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 13268 mdio->val_in); 13269 13270 case SIOCSHWTSTAMP: 13271 return bnxt_hwtstamp_set(dev, ifr); 13272 13273 case SIOCGHWTSTAMP: 13274 return bnxt_hwtstamp_get(dev, ifr); 13275 13276 default: 13277 /* do nothing */ 13278 break; 13279 } 13280 return -EOPNOTSUPP; 13281 } 13282 13283 static void bnxt_get_ring_stats(struct bnxt *bp, 13284 struct rtnl_link_stats64 *stats) 13285 { 13286 int i; 13287 13288 for (i = 0; i < bp->cp_nr_rings; i++) { 13289 struct bnxt_napi *bnapi = bp->bnapi[i]; 13290 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 13291 u64 *sw = cpr->stats.sw_stats; 13292 13293 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 13294 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 13295 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 13296 13297 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 13298 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 13299 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 13300 13301 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 13302 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 13303 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 13304 13305 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 13306 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 13307 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 13308 13309 stats->rx_missed_errors += 13310 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 13311 13312 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 13313 13314 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 13315 13316 stats->rx_dropped += 13317 cpr->sw_stats->rx.rx_netpoll_discards + 13318 cpr->sw_stats->rx.rx_oom_discards; 13319 } 13320 } 13321 13322 static void bnxt_add_prev_stats(struct bnxt *bp, 13323 struct rtnl_link_stats64 *stats) 13324 { 13325 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 13326 13327 stats->rx_packets += prev_stats->rx_packets; 13328 stats->tx_packets += prev_stats->tx_packets; 13329 stats->rx_bytes += prev_stats->rx_bytes; 13330 stats->tx_bytes += prev_stats->tx_bytes; 13331 stats->rx_missed_errors += prev_stats->rx_missed_errors; 13332 stats->multicast += prev_stats->multicast; 13333 stats->rx_dropped += prev_stats->rx_dropped; 13334 stats->tx_dropped += prev_stats->tx_dropped; 13335 } 13336 13337 static void 13338 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 13339 { 13340 struct bnxt *bp = netdev_priv(dev); 13341 13342 set_bit(BNXT_STATE_READ_STATS, &bp->state); 13343 /* Make sure bnxt_close_nic() sees that we are reading stats before 13344 * we check the BNXT_STATE_OPEN flag. 13345 */ 13346 smp_mb__after_atomic(); 13347 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13348 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 13349 *stats = bp->net_stats_prev; 13350 return; 13351 } 13352 13353 bnxt_get_ring_stats(bp, stats); 13354 bnxt_add_prev_stats(bp, stats); 13355 13356 if (bp->flags & BNXT_FLAG_PORT_STATS) { 13357 u64 *rx = bp->port_stats.sw_stats; 13358 u64 *tx = bp->port_stats.sw_stats + 13359 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 13360 13361 stats->rx_crc_errors = 13362 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 13363 stats->rx_frame_errors = 13364 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 13365 stats->rx_length_errors = 13366 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 13367 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 13368 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 13369 stats->rx_errors = 13370 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 13371 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 13372 stats->collisions = 13373 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 13374 stats->tx_fifo_errors = 13375 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 13376 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 13377 } 13378 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 13379 } 13380 13381 static void bnxt_get_one_ring_err_stats(struct bnxt *bp, 13382 struct bnxt_total_ring_err_stats *stats, 13383 struct bnxt_cp_ring_info *cpr) 13384 { 13385 struct bnxt_sw_stats *sw_stats = cpr->sw_stats; 13386 u64 *hw_stats = cpr->stats.sw_stats; 13387 13388 stats->rx_total_l4_csum_errors += sw_stats->rx.rx_l4_csum_errors; 13389 stats->rx_total_resets += sw_stats->rx.rx_resets; 13390 stats->rx_total_buf_errors += sw_stats->rx.rx_buf_errors; 13391 stats->rx_total_oom_discards += sw_stats->rx.rx_oom_discards; 13392 stats->rx_total_netpoll_discards += sw_stats->rx.rx_netpoll_discards; 13393 stats->rx_total_ring_discards += 13394 BNXT_GET_RING_STATS64(hw_stats, rx_discard_pkts); 13395 stats->tx_total_resets += sw_stats->tx.tx_resets; 13396 stats->tx_total_ring_discards += 13397 BNXT_GET_RING_STATS64(hw_stats, tx_discard_pkts); 13398 stats->total_missed_irqs += sw_stats->cmn.missed_irqs; 13399 } 13400 13401 void bnxt_get_ring_err_stats(struct bnxt *bp, 13402 struct bnxt_total_ring_err_stats *stats) 13403 { 13404 int i; 13405 13406 for (i = 0; i < bp->cp_nr_rings; i++) 13407 bnxt_get_one_ring_err_stats(bp, stats, &bp->bnapi[i]->cp_ring); 13408 } 13409 13410 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 13411 { 13412 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 13413 struct net_device *dev = bp->dev; 13414 struct netdev_hw_addr *ha; 13415 u8 *haddr; 13416 int mc_count = 0; 13417 bool update = false; 13418 int off = 0; 13419 13420 netdev_for_each_mc_addr(ha, dev) { 13421 if (mc_count >= BNXT_MAX_MC_ADDRS) { 13422 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 13423 vnic->mc_list_count = 0; 13424 return false; 13425 } 13426 haddr = ha->addr; 13427 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 13428 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 13429 update = true; 13430 } 13431 off += ETH_ALEN; 13432 mc_count++; 13433 } 13434 if (mc_count) 13435 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 13436 13437 if (mc_count != vnic->mc_list_count) { 13438 vnic->mc_list_count = mc_count; 13439 update = true; 13440 } 13441 return update; 13442 } 13443 13444 static bool bnxt_uc_list_updated(struct bnxt *bp) 13445 { 13446 struct net_device *dev = bp->dev; 13447 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 13448 struct netdev_hw_addr *ha; 13449 int off = 0; 13450 13451 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 13452 return true; 13453 13454 netdev_for_each_uc_addr(ha, dev) { 13455 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 13456 return true; 13457 13458 off += ETH_ALEN; 13459 } 13460 return false; 13461 } 13462 13463 static void bnxt_set_rx_mode(struct net_device *dev) 13464 { 13465 struct bnxt *bp = netdev_priv(dev); 13466 struct bnxt_vnic_info *vnic; 13467 bool mc_update = false; 13468 bool uc_update; 13469 u32 mask; 13470 13471 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 13472 return; 13473 13474 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 13475 mask = vnic->rx_mask; 13476 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 13477 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 13478 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 13479 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 13480 13481 if (dev->flags & IFF_PROMISC) 13482 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 13483 13484 uc_update = bnxt_uc_list_updated(bp); 13485 13486 if (dev->flags & IFF_BROADCAST) 13487 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 13488 if (dev->flags & IFF_ALLMULTI) { 13489 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 13490 vnic->mc_list_count = 0; 13491 } else if (dev->flags & IFF_MULTICAST) { 13492 mc_update = bnxt_mc_list_updated(bp, &mask); 13493 } 13494 13495 if (mask != vnic->rx_mask || uc_update || mc_update) { 13496 vnic->rx_mask = mask; 13497 13498 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 13499 } 13500 } 13501 13502 static int bnxt_cfg_rx_mode(struct bnxt *bp) 13503 { 13504 struct net_device *dev = bp->dev; 13505 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 13506 struct netdev_hw_addr *ha; 13507 int i, off = 0, rc; 13508 bool uc_update; 13509 13510 netif_addr_lock_bh(dev); 13511 uc_update = bnxt_uc_list_updated(bp); 13512 netif_addr_unlock_bh(dev); 13513 13514 if (!uc_update) 13515 goto skip_uc; 13516 13517 for (i = 1; i < vnic->uc_filter_count; i++) { 13518 struct bnxt_l2_filter *fltr = vnic->l2_filters[i]; 13519 13520 bnxt_hwrm_l2_filter_free(bp, fltr); 13521 bnxt_del_l2_filter(bp, fltr); 13522 } 13523 13524 vnic->uc_filter_count = 1; 13525 13526 netif_addr_lock_bh(dev); 13527 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 13528 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 13529 } else { 13530 netdev_for_each_uc_addr(ha, dev) { 13531 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 13532 off += ETH_ALEN; 13533 vnic->uc_filter_count++; 13534 } 13535 } 13536 netif_addr_unlock_bh(dev); 13537 13538 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 13539 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 13540 if (rc) { 13541 if (BNXT_VF(bp) && rc == -ENODEV) { 13542 if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 13543 netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n"); 13544 else 13545 netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n"); 13546 rc = 0; 13547 } else { 13548 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 13549 } 13550 vnic->uc_filter_count = i; 13551 return rc; 13552 } 13553 } 13554 if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 13555 netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n"); 13556 13557 skip_uc: 13558 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 13559 !bnxt_promisc_ok(bp)) 13560 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 13561 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 13562 if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) { 13563 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 13564 rc); 13565 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 13566 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 13567 vnic->mc_list_count = 0; 13568 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 13569 } 13570 if (rc) 13571 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 13572 rc); 13573 13574 return rc; 13575 } 13576 13577 static bool bnxt_can_reserve_rings(struct bnxt *bp) 13578 { 13579 #ifdef CONFIG_BNXT_SRIOV 13580 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 13581 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 13582 13583 /* No minimum rings were provisioned by the PF. Don't 13584 * reserve rings by default when device is down. 13585 */ 13586 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 13587 return true; 13588 13589 if (!netif_running(bp->dev)) 13590 return false; 13591 } 13592 #endif 13593 return true; 13594 } 13595 13596 /* If the chip and firmware supports RFS */ 13597 static bool bnxt_rfs_supported(struct bnxt *bp) 13598 { 13599 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 13600 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 13601 return true; 13602 return false; 13603 } 13604 /* 212 firmware is broken for aRFS */ 13605 if (BNXT_FW_MAJ(bp) == 212) 13606 return false; 13607 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 13608 return true; 13609 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 13610 return true; 13611 return false; 13612 } 13613 13614 /* If runtime conditions support RFS */ 13615 bool bnxt_rfs_capable(struct bnxt *bp, bool new_rss_ctx) 13616 { 13617 struct bnxt_hw_rings hwr = {0}; 13618 int max_vnics, max_rss_ctxs; 13619 13620 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 13621 !BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 13622 return bnxt_rfs_supported(bp); 13623 13624 if (!bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings) 13625 return false; 13626 13627 hwr.grp = bp->rx_nr_rings; 13628 hwr.vnic = bnxt_get_total_vnics(bp, bp->rx_nr_rings); 13629 if (new_rss_ctx) 13630 hwr.vnic++; 13631 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 13632 max_vnics = bnxt_get_max_func_vnics(bp); 13633 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 13634 13635 if (hwr.vnic > max_vnics || hwr.rss_ctx > max_rss_ctxs) { 13636 if (bp->rx_nr_rings > 1) 13637 netdev_warn(bp->dev, 13638 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 13639 min(max_rss_ctxs - 1, max_vnics - 1)); 13640 return false; 13641 } 13642 13643 if (!BNXT_NEW_RM(bp)) 13644 return true; 13645 13646 /* Do not reduce VNIC and RSS ctx reservations. There is a FW 13647 * issue that will mess up the default VNIC if we reduce the 13648 * reservations. 13649 */ 13650 if (hwr.vnic <= bp->hw_resc.resv_vnics && 13651 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 13652 return true; 13653 13654 bnxt_hwrm_reserve_rings(bp, &hwr); 13655 if (hwr.vnic <= bp->hw_resc.resv_vnics && 13656 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 13657 return true; 13658 13659 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 13660 hwr.vnic = 1; 13661 hwr.rss_ctx = 0; 13662 bnxt_hwrm_reserve_rings(bp, &hwr); 13663 return false; 13664 } 13665 13666 static netdev_features_t bnxt_fix_features(struct net_device *dev, 13667 netdev_features_t features) 13668 { 13669 struct bnxt *bp = netdev_priv(dev); 13670 netdev_features_t vlan_features; 13671 13672 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp, false)) 13673 features &= ~NETIF_F_NTUPLE; 13674 13675 if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog) 13676 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 13677 13678 if (!(features & NETIF_F_GRO)) 13679 features &= ~NETIF_F_GRO_HW; 13680 13681 if (features & NETIF_F_GRO_HW) 13682 features &= ~NETIF_F_LRO; 13683 13684 /* Both CTAG and STAG VLAN acceleration on the RX side have to be 13685 * turned on or off together. 13686 */ 13687 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 13688 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 13689 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13690 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 13691 else if (vlan_features) 13692 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 13693 } 13694 #ifdef CONFIG_BNXT_SRIOV 13695 if (BNXT_VF(bp) && bp->vf.vlan) 13696 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 13697 #endif 13698 return features; 13699 } 13700 13701 static int bnxt_reinit_features(struct bnxt *bp, bool irq_re_init, 13702 bool link_re_init, u32 flags, bool update_tpa) 13703 { 13704 bnxt_close_nic(bp, irq_re_init, link_re_init); 13705 bp->flags = flags; 13706 if (update_tpa) 13707 bnxt_set_ring_params(bp); 13708 return bnxt_open_nic(bp, irq_re_init, link_re_init); 13709 } 13710 13711 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 13712 { 13713 bool update_tpa = false, update_ntuple = false; 13714 struct bnxt *bp = netdev_priv(dev); 13715 u32 flags = bp->flags; 13716 u32 changes; 13717 int rc = 0; 13718 bool re_init = false; 13719 13720 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 13721 if (features & NETIF_F_GRO_HW) 13722 flags |= BNXT_FLAG_GRO; 13723 else if (features & NETIF_F_LRO) 13724 flags |= BNXT_FLAG_LRO; 13725 13726 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 13727 flags &= ~BNXT_FLAG_TPA; 13728 13729 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13730 flags |= BNXT_FLAG_STRIP_VLAN; 13731 13732 if (features & NETIF_F_NTUPLE) 13733 flags |= BNXT_FLAG_RFS; 13734 else 13735 bnxt_clear_usr_fltrs(bp, true); 13736 13737 changes = flags ^ bp->flags; 13738 if (changes & BNXT_FLAG_TPA) { 13739 update_tpa = true; 13740 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 13741 (flags & BNXT_FLAG_TPA) == 0 || 13742 (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 13743 re_init = true; 13744 } 13745 13746 if (changes & ~BNXT_FLAG_TPA) 13747 re_init = true; 13748 13749 if (changes & BNXT_FLAG_RFS) 13750 update_ntuple = true; 13751 13752 if (flags != bp->flags) { 13753 u32 old_flags = bp->flags; 13754 13755 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13756 bp->flags = flags; 13757 if (update_tpa) 13758 bnxt_set_ring_params(bp); 13759 return rc; 13760 } 13761 13762 if (update_ntuple) 13763 return bnxt_reinit_features(bp, true, false, flags, update_tpa); 13764 13765 if (re_init) 13766 return bnxt_reinit_features(bp, false, false, flags, update_tpa); 13767 13768 if (update_tpa) { 13769 bp->flags = flags; 13770 rc = bnxt_set_tpa(bp, 13771 (flags & BNXT_FLAG_TPA) ? 13772 true : false); 13773 if (rc) 13774 bp->flags = old_flags; 13775 } 13776 } 13777 return rc; 13778 } 13779 13780 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, 13781 u8 **nextp) 13782 { 13783 struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); 13784 struct hop_jumbo_hdr *jhdr; 13785 int hdr_count = 0; 13786 u8 *nexthdr; 13787 int start; 13788 13789 /* Check that there are at most 2 IPv6 extension headers, no 13790 * fragment header, and each is <= 64 bytes. 13791 */ 13792 start = nw_off + sizeof(*ip6h); 13793 nexthdr = &ip6h->nexthdr; 13794 while (ipv6_ext_hdr(*nexthdr)) { 13795 struct ipv6_opt_hdr *hp; 13796 int hdrlen; 13797 13798 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || 13799 *nexthdr == NEXTHDR_FRAGMENT) 13800 return false; 13801 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, 13802 skb_headlen(skb), NULL); 13803 if (!hp) 13804 return false; 13805 if (*nexthdr == NEXTHDR_AUTH) 13806 hdrlen = ipv6_authlen(hp); 13807 else 13808 hdrlen = ipv6_optlen(hp); 13809 13810 if (hdrlen > 64) 13811 return false; 13812 13813 /* The ext header may be a hop-by-hop header inserted for 13814 * big TCP purposes. This will be removed before sending 13815 * from NIC, so do not count it. 13816 */ 13817 if (*nexthdr == NEXTHDR_HOP) { 13818 if (likely(skb->len <= GRO_LEGACY_MAX_SIZE)) 13819 goto increment_hdr; 13820 13821 jhdr = (struct hop_jumbo_hdr *)hp; 13822 if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 || 13823 jhdr->nexthdr != IPPROTO_TCP) 13824 goto increment_hdr; 13825 13826 goto next_hdr; 13827 } 13828 increment_hdr: 13829 hdr_count++; 13830 next_hdr: 13831 nexthdr = &hp->nexthdr; 13832 start += hdrlen; 13833 } 13834 if (nextp) { 13835 /* Caller will check inner protocol */ 13836 if (skb->encapsulation) { 13837 *nextp = nexthdr; 13838 return true; 13839 } 13840 *nextp = NULL; 13841 } 13842 /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ 13843 return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; 13844 } 13845 13846 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 13847 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) 13848 { 13849 struct udphdr *uh = udp_hdr(skb); 13850 __be16 udp_port = uh->dest; 13851 13852 if (udp_port != bp->vxlan_port && udp_port != bp->nge_port && 13853 udp_port != bp->vxlan_gpe_port) 13854 return false; 13855 if (skb->inner_protocol == htons(ETH_P_TEB)) { 13856 struct ethhdr *eh = inner_eth_hdr(skb); 13857 13858 switch (eh->h_proto) { 13859 case htons(ETH_P_IP): 13860 return true; 13861 case htons(ETH_P_IPV6): 13862 return bnxt_exthdr_check(bp, skb, 13863 skb_inner_network_offset(skb), 13864 NULL); 13865 } 13866 } else if (skb->inner_protocol == htons(ETH_P_IP)) { 13867 return true; 13868 } else if (skb->inner_protocol == htons(ETH_P_IPV6)) { 13869 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 13870 NULL); 13871 } 13872 return false; 13873 } 13874 13875 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) 13876 { 13877 switch (l4_proto) { 13878 case IPPROTO_UDP: 13879 return bnxt_udp_tunl_check(bp, skb); 13880 case IPPROTO_IPIP: 13881 return true; 13882 case IPPROTO_GRE: { 13883 switch (skb->inner_protocol) { 13884 default: 13885 return false; 13886 case htons(ETH_P_IP): 13887 return true; 13888 case htons(ETH_P_IPV6): 13889 fallthrough; 13890 } 13891 } 13892 case IPPROTO_IPV6: 13893 /* Check ext headers of inner ipv6 */ 13894 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 13895 NULL); 13896 } 13897 return false; 13898 } 13899 13900 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 13901 struct net_device *dev, 13902 netdev_features_t features) 13903 { 13904 struct bnxt *bp = netdev_priv(dev); 13905 u8 *l4_proto; 13906 13907 features = vlan_features_check(skb, features); 13908 switch (vlan_get_protocol(skb)) { 13909 case htons(ETH_P_IP): 13910 if (!skb->encapsulation) 13911 return features; 13912 l4_proto = &ip_hdr(skb)->protocol; 13913 if (bnxt_tunl_check(bp, skb, *l4_proto)) 13914 return features; 13915 break; 13916 case htons(ETH_P_IPV6): 13917 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), 13918 &l4_proto)) 13919 break; 13920 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) 13921 return features; 13922 break; 13923 } 13924 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 13925 } 13926 13927 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 13928 u32 *reg_buf) 13929 { 13930 struct hwrm_dbg_read_direct_output *resp; 13931 struct hwrm_dbg_read_direct_input *req; 13932 __le32 *dbg_reg_buf; 13933 dma_addr_t mapping; 13934 int rc, i; 13935 13936 rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT); 13937 if (rc) 13938 return rc; 13939 13940 dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4, 13941 &mapping); 13942 if (!dbg_reg_buf) { 13943 rc = -ENOMEM; 13944 goto dbg_rd_reg_exit; 13945 } 13946 13947 req->host_dest_addr = cpu_to_le64(mapping); 13948 13949 resp = hwrm_req_hold(bp, req); 13950 req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 13951 req->read_len32 = cpu_to_le32(num_words); 13952 13953 rc = hwrm_req_send(bp, req); 13954 if (rc || resp->error_code) { 13955 rc = -EIO; 13956 goto dbg_rd_reg_exit; 13957 } 13958 for (i = 0; i < num_words; i++) 13959 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 13960 13961 dbg_rd_reg_exit: 13962 hwrm_req_drop(bp, req); 13963 return rc; 13964 } 13965 13966 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 13967 u32 ring_id, u32 *prod, u32 *cons) 13968 { 13969 struct hwrm_dbg_ring_info_get_output *resp; 13970 struct hwrm_dbg_ring_info_get_input *req; 13971 int rc; 13972 13973 rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET); 13974 if (rc) 13975 return rc; 13976 13977 req->ring_type = ring_type; 13978 req->fw_ring_id = cpu_to_le32(ring_id); 13979 resp = hwrm_req_hold(bp, req); 13980 rc = hwrm_req_send(bp, req); 13981 if (!rc) { 13982 *prod = le32_to_cpu(resp->producer_index); 13983 *cons = le32_to_cpu(resp->consumer_index); 13984 } 13985 hwrm_req_drop(bp, req); 13986 return rc; 13987 } 13988 13989 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 13990 { 13991 struct bnxt_tx_ring_info *txr; 13992 int i = bnapi->index, j; 13993 13994 bnxt_for_each_napi_tx(j, bnapi, txr) 13995 netdev_info(bnapi->bp->dev, "[%d.%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 13996 i, j, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 13997 txr->tx_cons); 13998 } 13999 14000 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 14001 { 14002 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 14003 int i = bnapi->index; 14004 14005 if (!rxr) 14006 return; 14007 14008 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 14009 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 14010 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 14011 rxr->rx_sw_agg_prod); 14012 } 14013 14014 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 14015 { 14016 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 14017 int i = bnapi->index; 14018 14019 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 14020 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 14021 } 14022 14023 static void bnxt_dbg_dump_states(struct bnxt *bp) 14024 { 14025 int i; 14026 struct bnxt_napi *bnapi; 14027 14028 for (i = 0; i < bp->cp_nr_rings; i++) { 14029 bnapi = bp->bnapi[i]; 14030 if (netif_msg_drv(bp)) { 14031 bnxt_dump_tx_sw_state(bnapi); 14032 bnxt_dump_rx_sw_state(bnapi); 14033 bnxt_dump_cp_sw_state(bnapi); 14034 } 14035 } 14036 } 14037 14038 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 14039 { 14040 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 14041 struct hwrm_ring_reset_input *req; 14042 struct bnxt_napi *bnapi = rxr->bnapi; 14043 struct bnxt_cp_ring_info *cpr; 14044 u16 cp_ring_id; 14045 int rc; 14046 14047 rc = hwrm_req_init(bp, req, HWRM_RING_RESET); 14048 if (rc) 14049 return rc; 14050 14051 cpr = &bnapi->cp_ring; 14052 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 14053 req->cmpl_ring = cpu_to_le16(cp_ring_id); 14054 req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 14055 req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 14056 return hwrm_req_send_silent(bp, req); 14057 } 14058 14059 static void bnxt_reset_task(struct bnxt *bp, bool silent) 14060 { 14061 if (!silent) 14062 bnxt_dbg_dump_states(bp); 14063 if (netif_running(bp->dev)) { 14064 bnxt_close_nic(bp, !silent, false); 14065 bnxt_open_nic(bp, !silent, false); 14066 } 14067 } 14068 14069 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 14070 { 14071 struct bnxt *bp = netdev_priv(dev); 14072 14073 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 14074 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 14075 } 14076 14077 static void bnxt_fw_health_check(struct bnxt *bp) 14078 { 14079 struct bnxt_fw_health *fw_health = bp->fw_health; 14080 struct pci_dev *pdev = bp->pdev; 14081 u32 val; 14082 14083 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 14084 return; 14085 14086 /* Make sure it is enabled before checking the tmr_counter. */ 14087 smp_rmb(); 14088 if (fw_health->tmr_counter) { 14089 fw_health->tmr_counter--; 14090 return; 14091 } 14092 14093 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 14094 if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) { 14095 fw_health->arrests++; 14096 goto fw_reset; 14097 } 14098 14099 fw_health->last_fw_heartbeat = val; 14100 14101 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 14102 if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) { 14103 fw_health->discoveries++; 14104 goto fw_reset; 14105 } 14106 14107 fw_health->tmr_counter = fw_health->tmr_multiplier; 14108 return; 14109 14110 fw_reset: 14111 bnxt_queue_sp_work(bp, BNXT_FW_EXCEPTION_SP_EVENT); 14112 } 14113 14114 static void bnxt_timer(struct timer_list *t) 14115 { 14116 struct bnxt *bp = timer_container_of(bp, t, timer); 14117 struct net_device *dev = bp->dev; 14118 14119 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 14120 return; 14121 14122 if (atomic_read(&bp->intr_sem) != 0) 14123 goto bnxt_restart_timer; 14124 14125 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 14126 bnxt_fw_health_check(bp); 14127 14128 if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) 14129 bnxt_queue_sp_work(bp, BNXT_PERIODIC_STATS_SP_EVENT); 14130 14131 if (bnxt_tc_flower_enabled(bp)) 14132 bnxt_queue_sp_work(bp, BNXT_FLOW_STATS_SP_EVENT); 14133 14134 #ifdef CONFIG_RFS_ACCEL 14135 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) 14136 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 14137 #endif /*CONFIG_RFS_ACCEL*/ 14138 14139 if (bp->link_info.phy_retry) { 14140 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 14141 bp->link_info.phy_retry = false; 14142 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 14143 } else { 14144 bnxt_queue_sp_work(bp, BNXT_UPDATE_PHY_SP_EVENT); 14145 } 14146 } 14147 14148 if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 14149 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 14150 14151 if ((BNXT_CHIP_P5(bp)) && !bp->chip_rev && netif_carrier_ok(dev)) 14152 bnxt_queue_sp_work(bp, BNXT_RING_COAL_NOW_SP_EVENT); 14153 14154 bnxt_restart_timer: 14155 mod_timer(&bp->timer, jiffies + bp->current_interval); 14156 } 14157 14158 static void bnxt_lock_sp(struct bnxt *bp) 14159 { 14160 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 14161 * set. If the device is being closed, bnxt_close() may be holding 14162 * netdev instance lock and waiting for BNXT_STATE_IN_SP_TASK to clear. 14163 * So we must clear BNXT_STATE_IN_SP_TASK before holding netdev 14164 * instance lock. 14165 */ 14166 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14167 netdev_lock(bp->dev); 14168 } 14169 14170 static void bnxt_unlock_sp(struct bnxt *bp) 14171 { 14172 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14173 netdev_unlock(bp->dev); 14174 } 14175 14176 /* Only called from bnxt_sp_task() */ 14177 static void bnxt_reset(struct bnxt *bp, bool silent) 14178 { 14179 bnxt_lock_sp(bp); 14180 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 14181 bnxt_reset_task(bp, silent); 14182 bnxt_unlock_sp(bp); 14183 } 14184 14185 /* Only called from bnxt_sp_task() */ 14186 static void bnxt_rx_ring_reset(struct bnxt *bp) 14187 { 14188 int i; 14189 14190 bnxt_lock_sp(bp); 14191 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 14192 bnxt_unlock_sp(bp); 14193 return; 14194 } 14195 /* Disable and flush TPA before resetting the RX ring */ 14196 if (bp->flags & BNXT_FLAG_TPA) 14197 bnxt_set_tpa(bp, false); 14198 for (i = 0; i < bp->rx_nr_rings; i++) { 14199 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 14200 struct bnxt_cp_ring_info *cpr; 14201 int rc; 14202 14203 if (!rxr->bnapi->in_reset) 14204 continue; 14205 14206 rc = bnxt_hwrm_rx_ring_reset(bp, i); 14207 if (rc) { 14208 if (rc == -EINVAL || rc == -EOPNOTSUPP) 14209 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 14210 else 14211 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 14212 rc); 14213 bnxt_reset_task(bp, true); 14214 break; 14215 } 14216 bnxt_free_one_rx_ring_skbs(bp, rxr); 14217 rxr->rx_prod = 0; 14218 rxr->rx_agg_prod = 0; 14219 rxr->rx_sw_agg_prod = 0; 14220 rxr->rx_next_cons = 0; 14221 rxr->bnapi->in_reset = false; 14222 bnxt_alloc_one_rx_ring(bp, i); 14223 cpr = &rxr->bnapi->cp_ring; 14224 cpr->sw_stats->rx.rx_resets++; 14225 if (bp->flags & BNXT_FLAG_AGG_RINGS) 14226 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 14227 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 14228 } 14229 if (bp->flags & BNXT_FLAG_TPA) 14230 bnxt_set_tpa(bp, true); 14231 bnxt_unlock_sp(bp); 14232 } 14233 14234 static void bnxt_fw_fatal_close(struct bnxt *bp) 14235 { 14236 bnxt_tx_disable(bp); 14237 bnxt_disable_napi(bp); 14238 bnxt_disable_int_sync(bp); 14239 bnxt_free_irq(bp); 14240 bnxt_clear_int_mode(bp); 14241 pci_disable_device(bp->pdev); 14242 } 14243 14244 static void bnxt_fw_reset_close(struct bnxt *bp) 14245 { 14246 /* When firmware is in fatal state, quiesce device and disable 14247 * bus master to prevent any potential bad DMAs before freeing 14248 * kernel memory. 14249 */ 14250 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 14251 u16 val = 0; 14252 14253 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 14254 if (val == 0xffff) 14255 bp->fw_reset_min_dsecs = 0; 14256 bnxt_fw_fatal_close(bp); 14257 } 14258 __bnxt_close_nic(bp, true, false); 14259 bnxt_vf_reps_free(bp); 14260 bnxt_clear_int_mode(bp); 14261 bnxt_hwrm_func_drv_unrgtr(bp); 14262 if (pci_is_enabled(bp->pdev)) 14263 pci_disable_device(bp->pdev); 14264 bnxt_free_ctx_mem(bp, false); 14265 } 14266 14267 static bool is_bnxt_fw_ok(struct bnxt *bp) 14268 { 14269 struct bnxt_fw_health *fw_health = bp->fw_health; 14270 bool no_heartbeat = false, has_reset = false; 14271 u32 val; 14272 14273 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 14274 if (val == fw_health->last_fw_heartbeat) 14275 no_heartbeat = true; 14276 14277 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 14278 if (val != fw_health->last_fw_reset_cnt) 14279 has_reset = true; 14280 14281 if (!no_heartbeat && has_reset) 14282 return true; 14283 14284 return false; 14285 } 14286 14287 /* netdev instance lock is acquired before calling this function */ 14288 static void bnxt_force_fw_reset(struct bnxt *bp) 14289 { 14290 struct bnxt_fw_health *fw_health = bp->fw_health; 14291 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 14292 u32 wait_dsecs; 14293 14294 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 14295 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 14296 return; 14297 14298 /* we have to serialize with bnxt_refclk_read()*/ 14299 if (ptp) { 14300 unsigned long flags; 14301 14302 write_seqlock_irqsave(&ptp->ptp_lock, flags); 14303 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14304 write_sequnlock_irqrestore(&ptp->ptp_lock, flags); 14305 } else { 14306 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14307 } 14308 bnxt_fw_reset_close(bp); 14309 wait_dsecs = fw_health->master_func_wait_dsecs; 14310 if (fw_health->primary) { 14311 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 14312 wait_dsecs = 0; 14313 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 14314 } else { 14315 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 14316 wait_dsecs = fw_health->normal_func_wait_dsecs; 14317 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14318 } 14319 14320 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 14321 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 14322 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 14323 } 14324 14325 void bnxt_fw_exception(struct bnxt *bp) 14326 { 14327 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 14328 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 14329 bnxt_ulp_stop(bp); 14330 bnxt_lock_sp(bp); 14331 bnxt_force_fw_reset(bp); 14332 bnxt_unlock_sp(bp); 14333 } 14334 14335 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 14336 * < 0 on error. 14337 */ 14338 static int bnxt_get_registered_vfs(struct bnxt *bp) 14339 { 14340 #ifdef CONFIG_BNXT_SRIOV 14341 int rc; 14342 14343 if (!BNXT_PF(bp)) 14344 return 0; 14345 14346 rc = bnxt_hwrm_func_qcfg(bp); 14347 if (rc) { 14348 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 14349 return rc; 14350 } 14351 if (bp->pf.registered_vfs) 14352 return bp->pf.registered_vfs; 14353 if (bp->sriov_cfg) 14354 return 1; 14355 #endif 14356 return 0; 14357 } 14358 14359 void bnxt_fw_reset(struct bnxt *bp) 14360 { 14361 bnxt_ulp_stop(bp); 14362 bnxt_lock_sp(bp); 14363 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 14364 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 14365 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 14366 int n = 0, tmo; 14367 14368 /* we have to serialize with bnxt_refclk_read()*/ 14369 if (ptp) { 14370 unsigned long flags; 14371 14372 write_seqlock_irqsave(&ptp->ptp_lock, flags); 14373 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14374 write_sequnlock_irqrestore(&ptp->ptp_lock, flags); 14375 } else { 14376 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14377 } 14378 if (bp->pf.active_vfs && 14379 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 14380 n = bnxt_get_registered_vfs(bp); 14381 if (n < 0) { 14382 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 14383 n); 14384 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14385 netif_close(bp->dev); 14386 goto fw_reset_exit; 14387 } else if (n > 0) { 14388 u16 vf_tmo_dsecs = n * 10; 14389 14390 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 14391 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 14392 bp->fw_reset_state = 14393 BNXT_FW_RESET_STATE_POLL_VF; 14394 bnxt_queue_fw_reset_work(bp, HZ / 10); 14395 goto fw_reset_exit; 14396 } 14397 bnxt_fw_reset_close(bp); 14398 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 14399 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 14400 tmo = HZ / 10; 14401 } else { 14402 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14403 tmo = bp->fw_reset_min_dsecs * HZ / 10; 14404 } 14405 bnxt_queue_fw_reset_work(bp, tmo); 14406 } 14407 fw_reset_exit: 14408 bnxt_unlock_sp(bp); 14409 } 14410 14411 static void bnxt_chk_missed_irq(struct bnxt *bp) 14412 { 14413 int i; 14414 14415 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 14416 return; 14417 14418 for (i = 0; i < bp->cp_nr_rings; i++) { 14419 struct bnxt_napi *bnapi = bp->bnapi[i]; 14420 struct bnxt_cp_ring_info *cpr; 14421 u32 fw_ring_id; 14422 int j; 14423 14424 if (!bnapi) 14425 continue; 14426 14427 cpr = &bnapi->cp_ring; 14428 for (j = 0; j < cpr->cp_ring_count; j++) { 14429 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 14430 u32 val[2]; 14431 14432 if (cpr2->has_more_work || !bnxt_has_work(bp, cpr2)) 14433 continue; 14434 14435 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 14436 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 14437 continue; 14438 } 14439 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 14440 bnxt_dbg_hwrm_ring_info_get(bp, 14441 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 14442 fw_ring_id, &val[0], &val[1]); 14443 cpr->sw_stats->cmn.missed_irqs++; 14444 } 14445 } 14446 } 14447 14448 static void bnxt_cfg_ntp_filters(struct bnxt *); 14449 14450 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 14451 { 14452 struct bnxt_link_info *link_info = &bp->link_info; 14453 14454 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 14455 link_info->autoneg = BNXT_AUTONEG_SPEED; 14456 if (bp->hwrm_spec_code >= 0x10201) { 14457 if (link_info->auto_pause_setting & 14458 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 14459 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 14460 } else { 14461 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 14462 } 14463 bnxt_set_auto_speed(link_info); 14464 } else { 14465 bnxt_set_force_speed(link_info); 14466 link_info->req_duplex = link_info->duplex_setting; 14467 } 14468 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 14469 link_info->req_flow_ctrl = 14470 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 14471 else 14472 link_info->req_flow_ctrl = link_info->force_pause_setting; 14473 } 14474 14475 static void bnxt_fw_echo_reply(struct bnxt *bp) 14476 { 14477 struct bnxt_fw_health *fw_health = bp->fw_health; 14478 struct hwrm_func_echo_response_input *req; 14479 int rc; 14480 14481 rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE); 14482 if (rc) 14483 return; 14484 req->event_data1 = cpu_to_le32(fw_health->echo_req_data1); 14485 req->event_data2 = cpu_to_le32(fw_health->echo_req_data2); 14486 hwrm_req_send(bp, req); 14487 } 14488 14489 static void bnxt_ulp_restart(struct bnxt *bp) 14490 { 14491 bnxt_ulp_stop(bp); 14492 bnxt_ulp_start(bp, 0); 14493 } 14494 14495 static void bnxt_sp_task(struct work_struct *work) 14496 { 14497 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 14498 14499 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14500 smp_mb__after_atomic(); 14501 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 14502 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14503 return; 14504 } 14505 14506 if (test_and_clear_bit(BNXT_RESTART_ULP_SP_EVENT, &bp->sp_event)) { 14507 bnxt_ulp_restart(bp); 14508 bnxt_reenable_sriov(bp); 14509 } 14510 14511 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 14512 bnxt_cfg_rx_mode(bp); 14513 14514 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 14515 bnxt_cfg_ntp_filters(bp); 14516 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 14517 bnxt_hwrm_exec_fwd_req(bp); 14518 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 14519 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 14520 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 14521 bnxt_hwrm_port_qstats(bp, 0); 14522 bnxt_hwrm_port_qstats_ext(bp, 0); 14523 bnxt_accumulate_all_stats(bp); 14524 } 14525 14526 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 14527 int rc; 14528 14529 mutex_lock(&bp->link_lock); 14530 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 14531 &bp->sp_event)) 14532 bnxt_hwrm_phy_qcaps(bp); 14533 14534 rc = bnxt_update_link(bp, true); 14535 if (rc) 14536 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 14537 rc); 14538 14539 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 14540 &bp->sp_event)) 14541 bnxt_init_ethtool_link_settings(bp); 14542 mutex_unlock(&bp->link_lock); 14543 } 14544 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 14545 int rc; 14546 14547 mutex_lock(&bp->link_lock); 14548 rc = bnxt_update_phy_setting(bp); 14549 mutex_unlock(&bp->link_lock); 14550 if (rc) { 14551 netdev_warn(bp->dev, "update phy settings retry failed\n"); 14552 } else { 14553 bp->link_info.phy_retry = false; 14554 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 14555 } 14556 } 14557 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 14558 mutex_lock(&bp->link_lock); 14559 bnxt_get_port_module_status(bp); 14560 mutex_unlock(&bp->link_lock); 14561 } 14562 14563 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 14564 bnxt_tc_flow_stats_work(bp); 14565 14566 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 14567 bnxt_chk_missed_irq(bp); 14568 14569 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 14570 bnxt_fw_echo_reply(bp); 14571 14572 if (test_and_clear_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event)) 14573 bnxt_hwmon_notify_event(bp); 14574 14575 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 14576 * must be the last functions to be called before exiting. 14577 */ 14578 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 14579 bnxt_reset(bp, false); 14580 14581 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 14582 bnxt_reset(bp, true); 14583 14584 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 14585 bnxt_rx_ring_reset(bp); 14586 14587 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) { 14588 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) || 14589 test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state)) 14590 bnxt_devlink_health_fw_report(bp); 14591 else 14592 bnxt_fw_reset(bp); 14593 } 14594 14595 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 14596 if (!is_bnxt_fw_ok(bp)) 14597 bnxt_devlink_health_fw_report(bp); 14598 } 14599 14600 smp_mb__before_atomic(); 14601 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14602 } 14603 14604 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 14605 int *max_cp); 14606 14607 /* Under netdev instance lock */ 14608 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 14609 int tx_xdp) 14610 { 14611 int max_rx, max_tx, max_cp, tx_sets = 1, tx_cp; 14612 struct bnxt_hw_rings hwr = {0}; 14613 int rx_rings = rx; 14614 int rc; 14615 14616 if (tcs) 14617 tx_sets = tcs; 14618 14619 _bnxt_get_max_rings(bp, &max_rx, &max_tx, &max_cp); 14620 14621 if (max_rx < rx_rings) 14622 return -ENOMEM; 14623 14624 if (bp->flags & BNXT_FLAG_AGG_RINGS) 14625 rx_rings <<= 1; 14626 14627 hwr.rx = rx_rings; 14628 hwr.tx = tx * tx_sets + tx_xdp; 14629 if (max_tx < hwr.tx) 14630 return -ENOMEM; 14631 14632 hwr.vnic = bnxt_get_total_vnics(bp, rx); 14633 14634 tx_cp = __bnxt_num_tx_to_cp(bp, hwr.tx, tx_sets, tx_xdp); 14635 hwr.cp = sh ? max_t(int, tx_cp, rx) : tx_cp + rx; 14636 if (max_cp < hwr.cp) 14637 return -ENOMEM; 14638 hwr.stat = hwr.cp; 14639 if (BNXT_NEW_RM(bp)) { 14640 hwr.cp += bnxt_get_ulp_msix_num_in_use(bp); 14641 hwr.stat += bnxt_get_ulp_stat_ctxs_in_use(bp); 14642 hwr.grp = rx; 14643 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 14644 } 14645 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 14646 hwr.cp_p5 = hwr.tx + rx; 14647 rc = bnxt_hwrm_check_rings(bp, &hwr); 14648 if (!rc && pci_msix_can_alloc_dyn(bp->pdev)) { 14649 if (!bnxt_ulp_registered(bp->edev)) { 14650 hwr.cp += bnxt_get_ulp_msix_num(bp); 14651 hwr.cp = min_t(int, hwr.cp, bnxt_get_max_func_irqs(bp)); 14652 } 14653 if (hwr.cp > bp->total_irqs) { 14654 int total_msix = bnxt_change_msix(bp, hwr.cp); 14655 14656 if (total_msix < hwr.cp) { 14657 netdev_warn(bp->dev, "Unable to allocate %d MSIX vectors, maximum available %d\n", 14658 hwr.cp, total_msix); 14659 rc = -ENOSPC; 14660 } 14661 } 14662 } 14663 return rc; 14664 } 14665 14666 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 14667 { 14668 if (bp->bar2) { 14669 pci_iounmap(pdev, bp->bar2); 14670 bp->bar2 = NULL; 14671 } 14672 14673 if (bp->bar1) { 14674 pci_iounmap(pdev, bp->bar1); 14675 bp->bar1 = NULL; 14676 } 14677 14678 if (bp->bar0) { 14679 pci_iounmap(pdev, bp->bar0); 14680 bp->bar0 = NULL; 14681 } 14682 } 14683 14684 static void bnxt_cleanup_pci(struct bnxt *bp) 14685 { 14686 bnxt_unmap_bars(bp, bp->pdev); 14687 pci_release_regions(bp->pdev); 14688 if (pci_is_enabled(bp->pdev)) 14689 pci_disable_device(bp->pdev); 14690 } 14691 14692 static void bnxt_init_dflt_coal(struct bnxt *bp) 14693 { 14694 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 14695 struct bnxt_coal *coal; 14696 u16 flags = 0; 14697 14698 if (coal_cap->cmpl_params & 14699 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 14700 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 14701 14702 /* Tick values in micro seconds. 14703 * 1 coal_buf x bufs_per_record = 1 completion record. 14704 */ 14705 coal = &bp->rx_coal; 14706 coal->coal_ticks = 10; 14707 coal->coal_bufs = 30; 14708 coal->coal_ticks_irq = 1; 14709 coal->coal_bufs_irq = 2; 14710 coal->idle_thresh = 50; 14711 coal->bufs_per_record = 2; 14712 coal->budget = 64; /* NAPI budget */ 14713 coal->flags = flags; 14714 14715 coal = &bp->tx_coal; 14716 coal->coal_ticks = 28; 14717 coal->coal_bufs = 30; 14718 coal->coal_ticks_irq = 2; 14719 coal->coal_bufs_irq = 2; 14720 coal->bufs_per_record = 1; 14721 coal->flags = flags; 14722 14723 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 14724 } 14725 14726 /* FW that pre-reserves 1 VNIC per function */ 14727 static bool bnxt_fw_pre_resv_vnics(struct bnxt *bp) 14728 { 14729 u16 fw_maj = BNXT_FW_MAJ(bp), fw_bld = BNXT_FW_BLD(bp); 14730 14731 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 14732 (fw_maj > 218 || (fw_maj == 218 && fw_bld >= 18))) 14733 return true; 14734 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 14735 (fw_maj > 216 || (fw_maj == 216 && fw_bld >= 172))) 14736 return true; 14737 return false; 14738 } 14739 14740 static int bnxt_fw_init_one_p1(struct bnxt *bp) 14741 { 14742 int rc; 14743 14744 bp->fw_cap = 0; 14745 rc = bnxt_hwrm_ver_get(bp); 14746 /* FW may be unresponsive after FLR. FLR must complete within 100 msec 14747 * so wait before continuing with recovery. 14748 */ 14749 if (rc) 14750 msleep(100); 14751 bnxt_try_map_fw_health_reg(bp); 14752 if (rc) { 14753 rc = bnxt_try_recover_fw(bp); 14754 if (rc) 14755 return rc; 14756 rc = bnxt_hwrm_ver_get(bp); 14757 if (rc) 14758 return rc; 14759 } 14760 14761 bnxt_nvm_cfg_ver_get(bp); 14762 14763 rc = bnxt_hwrm_func_reset(bp); 14764 if (rc) 14765 return -ENODEV; 14766 14767 bnxt_hwrm_fw_set_time(bp); 14768 return 0; 14769 } 14770 14771 static int bnxt_fw_init_one_p2(struct bnxt *bp) 14772 { 14773 int rc; 14774 14775 /* Get the MAX capabilities for this function */ 14776 rc = bnxt_hwrm_func_qcaps(bp); 14777 if (rc) { 14778 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 14779 rc); 14780 return -ENODEV; 14781 } 14782 14783 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 14784 if (rc) 14785 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 14786 rc); 14787 14788 if (bnxt_alloc_fw_health(bp)) { 14789 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 14790 } else { 14791 rc = bnxt_hwrm_error_recovery_qcfg(bp); 14792 if (rc) 14793 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 14794 rc); 14795 } 14796 14797 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 14798 if (rc) 14799 return -ENODEV; 14800 14801 rc = bnxt_alloc_crash_dump_mem(bp); 14802 if (rc) 14803 netdev_warn(bp->dev, "crash dump mem alloc failure rc: %d\n", 14804 rc); 14805 if (!rc) { 14806 rc = bnxt_hwrm_crash_dump_mem_cfg(bp); 14807 if (rc) { 14808 bnxt_free_crash_dump_mem(bp); 14809 netdev_warn(bp->dev, 14810 "hwrm crash dump mem failure rc: %d\n", rc); 14811 } 14812 } 14813 14814 if (bnxt_fw_pre_resv_vnics(bp)) 14815 bp->fw_cap |= BNXT_FW_CAP_PRE_RESV_VNICS; 14816 14817 bnxt_hwrm_func_qcfg(bp); 14818 bnxt_hwrm_vnic_qcaps(bp); 14819 bnxt_hwrm_port_led_qcaps(bp); 14820 bnxt_ethtool_init(bp); 14821 if (bp->fw_cap & BNXT_FW_CAP_PTP) 14822 __bnxt_hwrm_ptp_qcfg(bp); 14823 bnxt_dcb_init(bp); 14824 bnxt_hwmon_init(bp); 14825 return 0; 14826 } 14827 14828 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 14829 { 14830 bp->rss_cap &= ~BNXT_RSS_CAP_UDP_RSS_CAP; 14831 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 14832 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 14833 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 14834 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 14835 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 14836 bp->rss_hash_delta = bp->rss_hash_cfg; 14837 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 14838 bp->rss_cap |= BNXT_RSS_CAP_UDP_RSS_CAP; 14839 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 14840 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 14841 } 14842 } 14843 14844 static void bnxt_set_dflt_rfs(struct bnxt *bp) 14845 { 14846 struct net_device *dev = bp->dev; 14847 14848 dev->hw_features &= ~NETIF_F_NTUPLE; 14849 dev->features &= ~NETIF_F_NTUPLE; 14850 bp->flags &= ~BNXT_FLAG_RFS; 14851 if (bnxt_rfs_supported(bp)) { 14852 dev->hw_features |= NETIF_F_NTUPLE; 14853 if (bnxt_rfs_capable(bp, false)) { 14854 bp->flags |= BNXT_FLAG_RFS; 14855 dev->features |= NETIF_F_NTUPLE; 14856 } 14857 } 14858 } 14859 14860 static void bnxt_fw_init_one_p3(struct bnxt *bp) 14861 { 14862 struct pci_dev *pdev = bp->pdev; 14863 14864 bnxt_set_dflt_rss_hash_type(bp); 14865 bnxt_set_dflt_rfs(bp); 14866 14867 bnxt_get_wol_settings(bp); 14868 if (bp->flags & BNXT_FLAG_WOL_CAP) 14869 device_set_wakeup_enable(&pdev->dev, bp->wol); 14870 else 14871 device_set_wakeup_capable(&pdev->dev, false); 14872 14873 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 14874 bnxt_hwrm_coal_params_qcaps(bp); 14875 } 14876 14877 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); 14878 14879 int bnxt_fw_init_one(struct bnxt *bp) 14880 { 14881 int rc; 14882 14883 rc = bnxt_fw_init_one_p1(bp); 14884 if (rc) { 14885 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 14886 return rc; 14887 } 14888 rc = bnxt_fw_init_one_p2(bp); 14889 if (rc) { 14890 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 14891 return rc; 14892 } 14893 rc = bnxt_probe_phy(bp, false); 14894 if (rc) 14895 return rc; 14896 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 14897 if (rc) 14898 return rc; 14899 14900 bnxt_fw_init_one_p3(bp); 14901 return 0; 14902 } 14903 14904 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 14905 { 14906 struct bnxt_fw_health *fw_health = bp->fw_health; 14907 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 14908 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 14909 u32 reg_type, reg_off, delay_msecs; 14910 14911 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 14912 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 14913 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 14914 switch (reg_type) { 14915 case BNXT_FW_HEALTH_REG_TYPE_CFG: 14916 pci_write_config_dword(bp->pdev, reg_off, val); 14917 break; 14918 case BNXT_FW_HEALTH_REG_TYPE_GRC: 14919 writel(reg_off & BNXT_GRC_BASE_MASK, 14920 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 14921 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 14922 fallthrough; 14923 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 14924 writel(val, bp->bar0 + reg_off); 14925 break; 14926 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 14927 writel(val, bp->bar1 + reg_off); 14928 break; 14929 } 14930 if (delay_msecs) { 14931 pci_read_config_dword(bp->pdev, 0, &val); 14932 msleep(delay_msecs); 14933 } 14934 } 14935 14936 bool bnxt_hwrm_reset_permitted(struct bnxt *bp) 14937 { 14938 struct hwrm_func_qcfg_output *resp; 14939 struct hwrm_func_qcfg_input *req; 14940 bool result = true; /* firmware will enforce if unknown */ 14941 14942 if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF) 14943 return result; 14944 14945 if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG)) 14946 return result; 14947 14948 req->fid = cpu_to_le16(0xffff); 14949 resp = hwrm_req_hold(bp, req); 14950 if (!hwrm_req_send(bp, req)) 14951 result = !!(le16_to_cpu(resp->flags) & 14952 FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED); 14953 hwrm_req_drop(bp, req); 14954 return result; 14955 } 14956 14957 static void bnxt_reset_all(struct bnxt *bp) 14958 { 14959 struct bnxt_fw_health *fw_health = bp->fw_health; 14960 int i, rc; 14961 14962 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 14963 bnxt_fw_reset_via_optee(bp); 14964 bp->fw_reset_timestamp = jiffies; 14965 return; 14966 } 14967 14968 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 14969 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 14970 bnxt_fw_reset_writel(bp, i); 14971 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 14972 struct hwrm_fw_reset_input *req; 14973 14974 rc = hwrm_req_init(bp, req, HWRM_FW_RESET); 14975 if (!rc) { 14976 req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG); 14977 req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 14978 req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 14979 req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 14980 rc = hwrm_req_send(bp, req); 14981 } 14982 if (rc != -ENODEV) 14983 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 14984 } 14985 bp->fw_reset_timestamp = jiffies; 14986 } 14987 14988 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 14989 { 14990 return time_after(jiffies, bp->fw_reset_timestamp + 14991 (bp->fw_reset_max_dsecs * HZ / 10)); 14992 } 14993 14994 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) 14995 { 14996 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14997 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) 14998 bnxt_dl_health_fw_status_update(bp, false); 14999 bp->fw_reset_state = BNXT_FW_RESET_STATE_ABORT; 15000 netif_close(bp->dev); 15001 } 15002 15003 static void bnxt_fw_reset_task(struct work_struct *work) 15004 { 15005 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 15006 int rc = 0; 15007 15008 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 15009 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 15010 return; 15011 } 15012 15013 switch (bp->fw_reset_state) { 15014 case BNXT_FW_RESET_STATE_POLL_VF: { 15015 int n = bnxt_get_registered_vfs(bp); 15016 int tmo; 15017 15018 if (n < 0) { 15019 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 15020 n, jiffies_to_msecs(jiffies - 15021 bp->fw_reset_timestamp)); 15022 goto fw_reset_abort; 15023 } else if (n > 0) { 15024 if (bnxt_fw_reset_timeout(bp)) { 15025 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 15026 bp->fw_reset_state = 0; 15027 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 15028 n); 15029 goto ulp_start; 15030 } 15031 bnxt_queue_fw_reset_work(bp, HZ / 10); 15032 return; 15033 } 15034 bp->fw_reset_timestamp = jiffies; 15035 netdev_lock(bp->dev); 15036 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 15037 bnxt_fw_reset_abort(bp, rc); 15038 netdev_unlock(bp->dev); 15039 goto ulp_start; 15040 } 15041 bnxt_fw_reset_close(bp); 15042 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 15043 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 15044 tmo = HZ / 10; 15045 } else { 15046 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 15047 tmo = bp->fw_reset_min_dsecs * HZ / 10; 15048 } 15049 netdev_unlock(bp->dev); 15050 bnxt_queue_fw_reset_work(bp, tmo); 15051 return; 15052 } 15053 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 15054 u32 val; 15055 15056 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 15057 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 15058 !bnxt_fw_reset_timeout(bp)) { 15059 bnxt_queue_fw_reset_work(bp, HZ / 5); 15060 return; 15061 } 15062 15063 if (!bp->fw_health->primary) { 15064 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 15065 15066 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 15067 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 15068 return; 15069 } 15070 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 15071 } 15072 fallthrough; 15073 case BNXT_FW_RESET_STATE_RESET_FW: 15074 bnxt_reset_all(bp); 15075 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 15076 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 15077 return; 15078 case BNXT_FW_RESET_STATE_ENABLE_DEV: 15079 bnxt_inv_fw_health_reg(bp); 15080 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 15081 !bp->fw_reset_min_dsecs) { 15082 u16 val; 15083 15084 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 15085 if (val == 0xffff) { 15086 if (bnxt_fw_reset_timeout(bp)) { 15087 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 15088 rc = -ETIMEDOUT; 15089 goto fw_reset_abort; 15090 } 15091 bnxt_queue_fw_reset_work(bp, HZ / 1000); 15092 return; 15093 } 15094 } 15095 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 15096 clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 15097 if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) && 15098 !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state)) 15099 bnxt_dl_remote_reload(bp); 15100 if (pci_enable_device(bp->pdev)) { 15101 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 15102 rc = -ENODEV; 15103 goto fw_reset_abort; 15104 } 15105 pci_set_master(bp->pdev); 15106 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 15107 fallthrough; 15108 case BNXT_FW_RESET_STATE_POLL_FW: 15109 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 15110 rc = bnxt_hwrm_poll(bp); 15111 if (rc) { 15112 if (bnxt_fw_reset_timeout(bp)) { 15113 netdev_err(bp->dev, "Firmware reset aborted\n"); 15114 goto fw_reset_abort_status; 15115 } 15116 bnxt_queue_fw_reset_work(bp, HZ / 5); 15117 return; 15118 } 15119 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 15120 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 15121 fallthrough; 15122 case BNXT_FW_RESET_STATE_OPENING: 15123 while (!netdev_trylock(bp->dev)) { 15124 bnxt_queue_fw_reset_work(bp, HZ / 10); 15125 return; 15126 } 15127 rc = bnxt_open(bp->dev); 15128 if (rc) { 15129 netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); 15130 bnxt_fw_reset_abort(bp, rc); 15131 netdev_unlock(bp->dev); 15132 goto ulp_start; 15133 } 15134 15135 if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) && 15136 bp->fw_health->enabled) { 15137 bp->fw_health->last_fw_reset_cnt = 15138 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 15139 } 15140 bp->fw_reset_state = 0; 15141 /* Make sure fw_reset_state is 0 before clearing the flag */ 15142 smp_mb__before_atomic(); 15143 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 15144 bnxt_ptp_reapply_pps(bp); 15145 clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state); 15146 if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) { 15147 bnxt_dl_health_fw_recovery_done(bp); 15148 bnxt_dl_health_fw_status_update(bp, true); 15149 } 15150 netdev_unlock(bp->dev); 15151 bnxt_ulp_start(bp, 0); 15152 bnxt_reenable_sriov(bp); 15153 netdev_lock(bp->dev); 15154 bnxt_vf_reps_alloc(bp); 15155 bnxt_vf_reps_open(bp); 15156 netdev_unlock(bp->dev); 15157 break; 15158 } 15159 return; 15160 15161 fw_reset_abort_status: 15162 if (bp->fw_health->status_reliable || 15163 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 15164 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 15165 15166 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 15167 } 15168 fw_reset_abort: 15169 netdev_lock(bp->dev); 15170 bnxt_fw_reset_abort(bp, rc); 15171 netdev_unlock(bp->dev); 15172 ulp_start: 15173 bnxt_ulp_start(bp, rc); 15174 } 15175 15176 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 15177 { 15178 int rc; 15179 struct bnxt *bp = netdev_priv(dev); 15180 15181 SET_NETDEV_DEV(dev, &pdev->dev); 15182 15183 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 15184 rc = pci_enable_device(pdev); 15185 if (rc) { 15186 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 15187 goto init_err; 15188 } 15189 15190 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 15191 dev_err(&pdev->dev, 15192 "Cannot find PCI device base address, aborting\n"); 15193 rc = -ENODEV; 15194 goto init_err_disable; 15195 } 15196 15197 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 15198 if (rc) { 15199 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 15200 goto init_err_disable; 15201 } 15202 15203 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 15204 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 15205 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 15206 rc = -EIO; 15207 goto init_err_release; 15208 } 15209 15210 pci_set_master(pdev); 15211 15212 bp->dev = dev; 15213 bp->pdev = pdev; 15214 15215 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 15216 * determines the BAR size. 15217 */ 15218 bp->bar0 = pci_ioremap_bar(pdev, 0); 15219 if (!bp->bar0) { 15220 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 15221 rc = -ENOMEM; 15222 goto init_err_release; 15223 } 15224 15225 bp->bar2 = pci_ioremap_bar(pdev, 4); 15226 if (!bp->bar2) { 15227 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 15228 rc = -ENOMEM; 15229 goto init_err_release; 15230 } 15231 15232 INIT_WORK(&bp->sp_task, bnxt_sp_task); 15233 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 15234 15235 spin_lock_init(&bp->ntp_fltr_lock); 15236 #if BITS_PER_LONG == 32 15237 spin_lock_init(&bp->db_lock); 15238 #endif 15239 15240 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 15241 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 15242 15243 timer_setup(&bp->timer, bnxt_timer, 0); 15244 bp->current_interval = BNXT_TIMER_INTERVAL; 15245 15246 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 15247 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 15248 15249 clear_bit(BNXT_STATE_OPEN, &bp->state); 15250 return 0; 15251 15252 init_err_release: 15253 bnxt_unmap_bars(bp, pdev); 15254 pci_release_regions(pdev); 15255 15256 init_err_disable: 15257 pci_disable_device(pdev); 15258 15259 init_err: 15260 return rc; 15261 } 15262 15263 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 15264 { 15265 struct sockaddr *addr = p; 15266 struct bnxt *bp = netdev_priv(dev); 15267 int rc = 0; 15268 15269 netdev_assert_locked(dev); 15270 15271 if (!is_valid_ether_addr(addr->sa_data)) 15272 return -EADDRNOTAVAIL; 15273 15274 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 15275 return 0; 15276 15277 rc = bnxt_approve_mac(bp, addr->sa_data, true); 15278 if (rc) 15279 return rc; 15280 15281 eth_hw_addr_set(dev, addr->sa_data); 15282 bnxt_clear_usr_fltrs(bp, true); 15283 if (netif_running(dev)) { 15284 bnxt_close_nic(bp, false, false); 15285 rc = bnxt_open_nic(bp, false, false); 15286 } 15287 15288 return rc; 15289 } 15290 15291 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 15292 { 15293 struct bnxt *bp = netdev_priv(dev); 15294 15295 netdev_assert_locked(dev); 15296 15297 if (netif_running(dev)) 15298 bnxt_close_nic(bp, true, false); 15299 15300 WRITE_ONCE(dev->mtu, new_mtu); 15301 15302 /* MTU change may change the AGG ring settings if an XDP multi-buffer 15303 * program is attached. We need to set the AGG rings settings and 15304 * rx_skb_func accordingly. 15305 */ 15306 if (READ_ONCE(bp->xdp_prog)) 15307 bnxt_set_rx_skb_mode(bp, true); 15308 15309 bnxt_set_ring_params(bp); 15310 15311 if (netif_running(dev)) 15312 return bnxt_open_nic(bp, true, false); 15313 15314 return 0; 15315 } 15316 15317 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 15318 { 15319 struct bnxt *bp = netdev_priv(dev); 15320 bool sh = false; 15321 int rc, tx_cp; 15322 15323 if (tc > bp->max_tc) { 15324 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 15325 tc, bp->max_tc); 15326 return -EINVAL; 15327 } 15328 15329 if (bp->num_tc == tc) 15330 return 0; 15331 15332 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 15333 sh = true; 15334 15335 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 15336 sh, tc, bp->tx_nr_rings_xdp); 15337 if (rc) 15338 return rc; 15339 15340 /* Needs to close the device and do hw resource re-allocations */ 15341 if (netif_running(bp->dev)) 15342 bnxt_close_nic(bp, true, false); 15343 15344 if (tc) { 15345 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 15346 netdev_set_num_tc(dev, tc); 15347 bp->num_tc = tc; 15348 } else { 15349 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 15350 netdev_reset_tc(dev); 15351 bp->num_tc = 0; 15352 } 15353 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 15354 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 15355 bp->cp_nr_rings = sh ? max_t(int, tx_cp, bp->rx_nr_rings) : 15356 tx_cp + bp->rx_nr_rings; 15357 15358 if (netif_running(bp->dev)) 15359 return bnxt_open_nic(bp, true, false); 15360 15361 return 0; 15362 } 15363 15364 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 15365 void *cb_priv) 15366 { 15367 struct bnxt *bp = cb_priv; 15368 15369 if (!bnxt_tc_flower_enabled(bp) || 15370 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 15371 return -EOPNOTSUPP; 15372 15373 switch (type) { 15374 case TC_SETUP_CLSFLOWER: 15375 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 15376 default: 15377 return -EOPNOTSUPP; 15378 } 15379 } 15380 15381 LIST_HEAD(bnxt_block_cb_list); 15382 15383 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 15384 void *type_data) 15385 { 15386 struct bnxt *bp = netdev_priv(dev); 15387 15388 switch (type) { 15389 case TC_SETUP_BLOCK: 15390 return flow_block_cb_setup_simple(type_data, 15391 &bnxt_block_cb_list, 15392 bnxt_setup_tc_block_cb, 15393 bp, bp, true); 15394 case TC_SETUP_QDISC_MQPRIO: { 15395 struct tc_mqprio_qopt *mqprio = type_data; 15396 15397 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 15398 15399 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 15400 } 15401 default: 15402 return -EOPNOTSUPP; 15403 } 15404 } 15405 15406 u32 bnxt_get_ntp_filter_idx(struct bnxt *bp, struct flow_keys *fkeys, 15407 const struct sk_buff *skb) 15408 { 15409 struct bnxt_vnic_info *vnic; 15410 15411 if (skb) 15412 return skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 15413 15414 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 15415 return bnxt_toeplitz(bp, fkeys, (void *)vnic->rss_hash_key); 15416 } 15417 15418 int bnxt_insert_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr, 15419 u32 idx) 15420 { 15421 struct hlist_head *head; 15422 int bit_id; 15423 15424 spin_lock_bh(&bp->ntp_fltr_lock); 15425 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, bp->max_fltr, 0); 15426 if (bit_id < 0) { 15427 spin_unlock_bh(&bp->ntp_fltr_lock); 15428 return -ENOMEM; 15429 } 15430 15431 fltr->base.sw_id = (u16)bit_id; 15432 fltr->base.type = BNXT_FLTR_TYPE_NTUPLE; 15433 fltr->base.flags |= BNXT_ACT_RING_DST; 15434 head = &bp->ntp_fltr_hash_tbl[idx]; 15435 hlist_add_head_rcu(&fltr->base.hash, head); 15436 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 15437 bnxt_insert_usr_fltr(bp, &fltr->base); 15438 bp->ntp_fltr_count++; 15439 spin_unlock_bh(&bp->ntp_fltr_lock); 15440 return 0; 15441 } 15442 15443 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 15444 struct bnxt_ntuple_filter *f2) 15445 { 15446 struct bnxt_flow_masks *masks1 = &f1->fmasks; 15447 struct bnxt_flow_masks *masks2 = &f2->fmasks; 15448 struct flow_keys *keys1 = &f1->fkeys; 15449 struct flow_keys *keys2 = &f2->fkeys; 15450 15451 if (keys1->basic.n_proto != keys2->basic.n_proto || 15452 keys1->basic.ip_proto != keys2->basic.ip_proto) 15453 return false; 15454 15455 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 15456 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 15457 masks1->addrs.v4addrs.src != masks2->addrs.v4addrs.src || 15458 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst || 15459 masks1->addrs.v4addrs.dst != masks2->addrs.v4addrs.dst) 15460 return false; 15461 } else { 15462 if (!ipv6_addr_equal(&keys1->addrs.v6addrs.src, 15463 &keys2->addrs.v6addrs.src) || 15464 !ipv6_addr_equal(&masks1->addrs.v6addrs.src, 15465 &masks2->addrs.v6addrs.src) || 15466 !ipv6_addr_equal(&keys1->addrs.v6addrs.dst, 15467 &keys2->addrs.v6addrs.dst) || 15468 !ipv6_addr_equal(&masks1->addrs.v6addrs.dst, 15469 &masks2->addrs.v6addrs.dst)) 15470 return false; 15471 } 15472 15473 return keys1->ports.src == keys2->ports.src && 15474 masks1->ports.src == masks2->ports.src && 15475 keys1->ports.dst == keys2->ports.dst && 15476 masks1->ports.dst == masks2->ports.dst && 15477 keys1->control.flags == keys2->control.flags && 15478 f1->l2_fltr == f2->l2_fltr; 15479 } 15480 15481 struct bnxt_ntuple_filter * 15482 bnxt_lookup_ntp_filter_from_idx(struct bnxt *bp, 15483 struct bnxt_ntuple_filter *fltr, u32 idx) 15484 { 15485 struct bnxt_ntuple_filter *f; 15486 struct hlist_head *head; 15487 15488 head = &bp->ntp_fltr_hash_tbl[idx]; 15489 hlist_for_each_entry_rcu(f, head, base.hash) { 15490 if (bnxt_fltr_match(f, fltr)) 15491 return f; 15492 } 15493 return NULL; 15494 } 15495 15496 #ifdef CONFIG_RFS_ACCEL 15497 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 15498 u16 rxq_index, u32 flow_id) 15499 { 15500 struct bnxt *bp = netdev_priv(dev); 15501 struct bnxt_ntuple_filter *fltr, *new_fltr; 15502 struct flow_keys *fkeys; 15503 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 15504 struct bnxt_l2_filter *l2_fltr; 15505 int rc = 0, idx; 15506 u32 flags; 15507 15508 if (ether_addr_equal(dev->dev_addr, eth->h_dest)) { 15509 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 15510 atomic_inc(&l2_fltr->refcnt); 15511 } else { 15512 struct bnxt_l2_key key; 15513 15514 ether_addr_copy(key.dst_mac_addr, eth->h_dest); 15515 key.vlan = 0; 15516 l2_fltr = bnxt_lookup_l2_filter_from_key(bp, &key); 15517 if (!l2_fltr) 15518 return -EINVAL; 15519 if (l2_fltr->base.flags & BNXT_ACT_FUNC_DST) { 15520 bnxt_del_l2_filter(bp, l2_fltr); 15521 return -EINVAL; 15522 } 15523 } 15524 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 15525 if (!new_fltr) { 15526 bnxt_del_l2_filter(bp, l2_fltr); 15527 return -ENOMEM; 15528 } 15529 15530 fkeys = &new_fltr->fkeys; 15531 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 15532 rc = -EPROTONOSUPPORT; 15533 goto err_free; 15534 } 15535 15536 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 15537 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 15538 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 15539 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 15540 rc = -EPROTONOSUPPORT; 15541 goto err_free; 15542 } 15543 new_fltr->fmasks = BNXT_FLOW_IPV4_MASK_ALL; 15544 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 15545 if (bp->hwrm_spec_code < 0x10601) { 15546 rc = -EPROTONOSUPPORT; 15547 goto err_free; 15548 } 15549 new_fltr->fmasks = BNXT_FLOW_IPV6_MASK_ALL; 15550 } 15551 flags = fkeys->control.flags; 15552 if (((flags & FLOW_DIS_ENCAPSULATION) && 15553 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 15554 rc = -EPROTONOSUPPORT; 15555 goto err_free; 15556 } 15557 new_fltr->l2_fltr = l2_fltr; 15558 15559 idx = bnxt_get_ntp_filter_idx(bp, fkeys, skb); 15560 rcu_read_lock(); 15561 fltr = bnxt_lookup_ntp_filter_from_idx(bp, new_fltr, idx); 15562 if (fltr) { 15563 rc = fltr->base.sw_id; 15564 rcu_read_unlock(); 15565 goto err_free; 15566 } 15567 rcu_read_unlock(); 15568 15569 new_fltr->flow_id = flow_id; 15570 new_fltr->base.rxq = rxq_index; 15571 rc = bnxt_insert_ntp_filter(bp, new_fltr, idx); 15572 if (!rc) { 15573 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 15574 return new_fltr->base.sw_id; 15575 } 15576 15577 err_free: 15578 bnxt_del_l2_filter(bp, l2_fltr); 15579 kfree(new_fltr); 15580 return rc; 15581 } 15582 #endif 15583 15584 void bnxt_del_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr) 15585 { 15586 spin_lock_bh(&bp->ntp_fltr_lock); 15587 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 15588 spin_unlock_bh(&bp->ntp_fltr_lock); 15589 return; 15590 } 15591 hlist_del_rcu(&fltr->base.hash); 15592 bnxt_del_one_usr_fltr(bp, &fltr->base); 15593 bp->ntp_fltr_count--; 15594 spin_unlock_bh(&bp->ntp_fltr_lock); 15595 bnxt_del_l2_filter(bp, fltr->l2_fltr); 15596 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 15597 kfree_rcu(fltr, base.rcu); 15598 } 15599 15600 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 15601 { 15602 #ifdef CONFIG_RFS_ACCEL 15603 int i; 15604 15605 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 15606 struct hlist_head *head; 15607 struct hlist_node *tmp; 15608 struct bnxt_ntuple_filter *fltr; 15609 int rc; 15610 15611 head = &bp->ntp_fltr_hash_tbl[i]; 15612 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 15613 bool del = false; 15614 15615 if (test_bit(BNXT_FLTR_VALID, &fltr->base.state)) { 15616 if (fltr->base.flags & BNXT_ACT_NO_AGING) 15617 continue; 15618 if (rps_may_expire_flow(bp->dev, fltr->base.rxq, 15619 fltr->flow_id, 15620 fltr->base.sw_id)) { 15621 bnxt_hwrm_cfa_ntuple_filter_free(bp, 15622 fltr); 15623 del = true; 15624 } 15625 } else { 15626 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 15627 fltr); 15628 if (rc) 15629 del = true; 15630 else 15631 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 15632 } 15633 15634 if (del) 15635 bnxt_del_ntp_filter(bp, fltr); 15636 } 15637 } 15638 #endif 15639 } 15640 15641 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 15642 unsigned int entry, struct udp_tunnel_info *ti) 15643 { 15644 struct bnxt *bp = netdev_priv(netdev); 15645 unsigned int cmd; 15646 15647 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 15648 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN; 15649 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 15650 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE; 15651 else 15652 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE; 15653 15654 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd); 15655 } 15656 15657 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 15658 unsigned int entry, struct udp_tunnel_info *ti) 15659 { 15660 struct bnxt *bp = netdev_priv(netdev); 15661 unsigned int cmd; 15662 15663 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 15664 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 15665 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 15666 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 15667 else 15668 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE; 15669 15670 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 15671 } 15672 15673 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 15674 .set_port = bnxt_udp_tunnel_set_port, 15675 .unset_port = bnxt_udp_tunnel_unset_port, 15676 .flags = UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 15677 .tables = { 15678 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 15679 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 15680 }, 15681 }, bnxt_udp_tunnels_p7 = { 15682 .set_port = bnxt_udp_tunnel_set_port, 15683 .unset_port = bnxt_udp_tunnel_unset_port, 15684 .flags = UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 15685 .tables = { 15686 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 15687 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 15688 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN_GPE, }, 15689 }, 15690 }; 15691 15692 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 15693 struct net_device *dev, u32 filter_mask, 15694 int nlflags) 15695 { 15696 struct bnxt *bp = netdev_priv(dev); 15697 15698 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 15699 nlflags, filter_mask, NULL); 15700 } 15701 15702 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 15703 u16 flags, struct netlink_ext_ack *extack) 15704 { 15705 struct bnxt *bp = netdev_priv(dev); 15706 struct nlattr *attr, *br_spec; 15707 int rem, rc = 0; 15708 15709 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 15710 return -EOPNOTSUPP; 15711 15712 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 15713 if (!br_spec) 15714 return -EINVAL; 15715 15716 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 15717 u16 mode; 15718 15719 mode = nla_get_u16(attr); 15720 if (mode == bp->br_mode) 15721 break; 15722 15723 rc = bnxt_hwrm_set_br_mode(bp, mode); 15724 if (!rc) 15725 bp->br_mode = mode; 15726 break; 15727 } 15728 return rc; 15729 } 15730 15731 int bnxt_get_port_parent_id(struct net_device *dev, 15732 struct netdev_phys_item_id *ppid) 15733 { 15734 struct bnxt *bp = netdev_priv(dev); 15735 15736 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 15737 return -EOPNOTSUPP; 15738 15739 /* The PF and it's VF-reps only support the switchdev framework */ 15740 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 15741 return -EOPNOTSUPP; 15742 15743 ppid->id_len = sizeof(bp->dsn); 15744 memcpy(ppid->id, bp->dsn, ppid->id_len); 15745 15746 return 0; 15747 } 15748 15749 static const struct net_device_ops bnxt_netdev_ops = { 15750 .ndo_open = bnxt_open, 15751 .ndo_start_xmit = bnxt_start_xmit, 15752 .ndo_stop = bnxt_close, 15753 .ndo_get_stats64 = bnxt_get_stats64, 15754 .ndo_set_rx_mode = bnxt_set_rx_mode, 15755 .ndo_eth_ioctl = bnxt_ioctl, 15756 .ndo_validate_addr = eth_validate_addr, 15757 .ndo_set_mac_address = bnxt_change_mac_addr, 15758 .ndo_change_mtu = bnxt_change_mtu, 15759 .ndo_fix_features = bnxt_fix_features, 15760 .ndo_set_features = bnxt_set_features, 15761 .ndo_features_check = bnxt_features_check, 15762 .ndo_tx_timeout = bnxt_tx_timeout, 15763 #ifdef CONFIG_BNXT_SRIOV 15764 .ndo_get_vf_config = bnxt_get_vf_config, 15765 .ndo_set_vf_mac = bnxt_set_vf_mac, 15766 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 15767 .ndo_set_vf_rate = bnxt_set_vf_bw, 15768 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 15769 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 15770 .ndo_set_vf_trust = bnxt_set_vf_trust, 15771 #endif 15772 .ndo_setup_tc = bnxt_setup_tc, 15773 #ifdef CONFIG_RFS_ACCEL 15774 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 15775 #endif 15776 .ndo_bpf = bnxt_xdp, 15777 .ndo_xdp_xmit = bnxt_xdp_xmit, 15778 .ndo_bridge_getlink = bnxt_bridge_getlink, 15779 .ndo_bridge_setlink = bnxt_bridge_setlink, 15780 }; 15781 15782 static void bnxt_get_queue_stats_rx(struct net_device *dev, int i, 15783 struct netdev_queue_stats_rx *stats) 15784 { 15785 struct bnxt *bp = netdev_priv(dev); 15786 struct bnxt_cp_ring_info *cpr; 15787 u64 *sw; 15788 15789 if (!bp->bnapi) 15790 return; 15791 15792 cpr = &bp->bnapi[i]->cp_ring; 15793 sw = cpr->stats.sw_stats; 15794 15795 stats->packets = 0; 15796 stats->packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 15797 stats->packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 15798 stats->packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 15799 15800 stats->bytes = 0; 15801 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 15802 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 15803 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 15804 15805 stats->alloc_fail = cpr->sw_stats->rx.rx_oom_discards; 15806 } 15807 15808 static void bnxt_get_queue_stats_tx(struct net_device *dev, int i, 15809 struct netdev_queue_stats_tx *stats) 15810 { 15811 struct bnxt *bp = netdev_priv(dev); 15812 struct bnxt_napi *bnapi; 15813 u64 *sw; 15814 15815 if (!bp->tx_ring) 15816 return; 15817 15818 bnapi = bp->tx_ring[bp->tx_ring_map[i]].bnapi; 15819 sw = bnapi->cp_ring.stats.sw_stats; 15820 15821 stats->packets = 0; 15822 stats->packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 15823 stats->packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 15824 stats->packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 15825 15826 stats->bytes = 0; 15827 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 15828 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 15829 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 15830 } 15831 15832 static void bnxt_get_base_stats(struct net_device *dev, 15833 struct netdev_queue_stats_rx *rx, 15834 struct netdev_queue_stats_tx *tx) 15835 { 15836 struct bnxt *bp = netdev_priv(dev); 15837 15838 rx->packets = bp->net_stats_prev.rx_packets; 15839 rx->bytes = bp->net_stats_prev.rx_bytes; 15840 rx->alloc_fail = bp->ring_err_stats_prev.rx_total_oom_discards; 15841 15842 tx->packets = bp->net_stats_prev.tx_packets; 15843 tx->bytes = bp->net_stats_prev.tx_bytes; 15844 } 15845 15846 static const struct netdev_stat_ops bnxt_stat_ops = { 15847 .get_queue_stats_rx = bnxt_get_queue_stats_rx, 15848 .get_queue_stats_tx = bnxt_get_queue_stats_tx, 15849 .get_base_stats = bnxt_get_base_stats, 15850 }; 15851 15852 static int bnxt_queue_mem_alloc(struct net_device *dev, void *qmem, int idx) 15853 { 15854 struct bnxt_rx_ring_info *rxr, *clone; 15855 struct bnxt *bp = netdev_priv(dev); 15856 struct bnxt_ring_struct *ring; 15857 int rc; 15858 15859 if (!bp->rx_ring) 15860 return -ENETDOWN; 15861 15862 rxr = &bp->rx_ring[idx]; 15863 clone = qmem; 15864 memcpy(clone, rxr, sizeof(*rxr)); 15865 bnxt_init_rx_ring_struct(bp, clone); 15866 bnxt_reset_rx_ring_struct(bp, clone); 15867 15868 clone->rx_prod = 0; 15869 clone->rx_agg_prod = 0; 15870 clone->rx_sw_agg_prod = 0; 15871 clone->rx_next_cons = 0; 15872 clone->need_head_pool = false; 15873 15874 rc = bnxt_alloc_rx_page_pool(bp, clone, rxr->page_pool->p.nid); 15875 if (rc) 15876 return rc; 15877 15878 rc = xdp_rxq_info_reg(&clone->xdp_rxq, bp->dev, idx, 0); 15879 if (rc < 0) 15880 goto err_page_pool_destroy; 15881 15882 rc = xdp_rxq_info_reg_mem_model(&clone->xdp_rxq, 15883 MEM_TYPE_PAGE_POOL, 15884 clone->page_pool); 15885 if (rc) 15886 goto err_rxq_info_unreg; 15887 15888 ring = &clone->rx_ring_struct; 15889 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 15890 if (rc) 15891 goto err_free_rx_ring; 15892 15893 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 15894 ring = &clone->rx_agg_ring_struct; 15895 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 15896 if (rc) 15897 goto err_free_rx_agg_ring; 15898 15899 rc = bnxt_alloc_rx_agg_bmap(bp, clone); 15900 if (rc) 15901 goto err_free_rx_agg_ring; 15902 } 15903 15904 if (bp->flags & BNXT_FLAG_TPA) { 15905 rc = bnxt_alloc_one_tpa_info(bp, clone); 15906 if (rc) 15907 goto err_free_tpa_info; 15908 } 15909 15910 bnxt_init_one_rx_ring_rxbd(bp, clone); 15911 bnxt_init_one_rx_agg_ring_rxbd(bp, clone); 15912 15913 bnxt_alloc_one_rx_ring_skb(bp, clone, idx); 15914 if (bp->flags & BNXT_FLAG_AGG_RINGS) 15915 bnxt_alloc_one_rx_ring_netmem(bp, clone, idx); 15916 if (bp->flags & BNXT_FLAG_TPA) 15917 bnxt_alloc_one_tpa_info_data(bp, clone); 15918 15919 return 0; 15920 15921 err_free_tpa_info: 15922 bnxt_free_one_tpa_info(bp, clone); 15923 err_free_rx_agg_ring: 15924 bnxt_free_ring(bp, &clone->rx_agg_ring_struct.ring_mem); 15925 err_free_rx_ring: 15926 bnxt_free_ring(bp, &clone->rx_ring_struct.ring_mem); 15927 err_rxq_info_unreg: 15928 xdp_rxq_info_unreg(&clone->xdp_rxq); 15929 err_page_pool_destroy: 15930 page_pool_destroy(clone->page_pool); 15931 page_pool_destroy(clone->head_pool); 15932 clone->page_pool = NULL; 15933 clone->head_pool = NULL; 15934 return rc; 15935 } 15936 15937 static void bnxt_queue_mem_free(struct net_device *dev, void *qmem) 15938 { 15939 struct bnxt_rx_ring_info *rxr = qmem; 15940 struct bnxt *bp = netdev_priv(dev); 15941 struct bnxt_ring_struct *ring; 15942 15943 bnxt_free_one_rx_ring_skbs(bp, rxr); 15944 bnxt_free_one_tpa_info(bp, rxr); 15945 15946 xdp_rxq_info_unreg(&rxr->xdp_rxq); 15947 15948 page_pool_destroy(rxr->page_pool); 15949 page_pool_destroy(rxr->head_pool); 15950 rxr->page_pool = NULL; 15951 rxr->head_pool = NULL; 15952 15953 ring = &rxr->rx_ring_struct; 15954 bnxt_free_ring(bp, &ring->ring_mem); 15955 15956 ring = &rxr->rx_agg_ring_struct; 15957 bnxt_free_ring(bp, &ring->ring_mem); 15958 15959 kfree(rxr->rx_agg_bmap); 15960 rxr->rx_agg_bmap = NULL; 15961 } 15962 15963 static void bnxt_copy_rx_ring(struct bnxt *bp, 15964 struct bnxt_rx_ring_info *dst, 15965 struct bnxt_rx_ring_info *src) 15966 { 15967 struct bnxt_ring_mem_info *dst_rmem, *src_rmem; 15968 struct bnxt_ring_struct *dst_ring, *src_ring; 15969 int i; 15970 15971 dst_ring = &dst->rx_ring_struct; 15972 dst_rmem = &dst_ring->ring_mem; 15973 src_ring = &src->rx_ring_struct; 15974 src_rmem = &src_ring->ring_mem; 15975 15976 WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages); 15977 WARN_ON(dst_rmem->page_size != src_rmem->page_size); 15978 WARN_ON(dst_rmem->flags != src_rmem->flags); 15979 WARN_ON(dst_rmem->depth != src_rmem->depth); 15980 WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size); 15981 WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem); 15982 15983 dst_rmem->pg_tbl = src_rmem->pg_tbl; 15984 dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map; 15985 *dst_rmem->vmem = *src_rmem->vmem; 15986 for (i = 0; i < dst_rmem->nr_pages; i++) { 15987 dst_rmem->pg_arr[i] = src_rmem->pg_arr[i]; 15988 dst_rmem->dma_arr[i] = src_rmem->dma_arr[i]; 15989 } 15990 15991 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 15992 return; 15993 15994 dst_ring = &dst->rx_agg_ring_struct; 15995 dst_rmem = &dst_ring->ring_mem; 15996 src_ring = &src->rx_agg_ring_struct; 15997 src_rmem = &src_ring->ring_mem; 15998 15999 WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages); 16000 WARN_ON(dst_rmem->page_size != src_rmem->page_size); 16001 WARN_ON(dst_rmem->flags != src_rmem->flags); 16002 WARN_ON(dst_rmem->depth != src_rmem->depth); 16003 WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size); 16004 WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem); 16005 WARN_ON(dst->rx_agg_bmap_size != src->rx_agg_bmap_size); 16006 16007 dst_rmem->pg_tbl = src_rmem->pg_tbl; 16008 dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map; 16009 *dst_rmem->vmem = *src_rmem->vmem; 16010 for (i = 0; i < dst_rmem->nr_pages; i++) { 16011 dst_rmem->pg_arr[i] = src_rmem->pg_arr[i]; 16012 dst_rmem->dma_arr[i] = src_rmem->dma_arr[i]; 16013 } 16014 16015 dst->rx_agg_bmap = src->rx_agg_bmap; 16016 } 16017 16018 static int bnxt_queue_start(struct net_device *dev, void *qmem, int idx) 16019 { 16020 struct bnxt *bp = netdev_priv(dev); 16021 struct bnxt_rx_ring_info *rxr, *clone; 16022 struct bnxt_cp_ring_info *cpr; 16023 struct bnxt_vnic_info *vnic; 16024 struct bnxt_napi *bnapi; 16025 int i, rc; 16026 u16 mru; 16027 16028 rxr = &bp->rx_ring[idx]; 16029 clone = qmem; 16030 16031 rxr->rx_prod = clone->rx_prod; 16032 rxr->rx_agg_prod = clone->rx_agg_prod; 16033 rxr->rx_sw_agg_prod = clone->rx_sw_agg_prod; 16034 rxr->rx_next_cons = clone->rx_next_cons; 16035 rxr->rx_tpa = clone->rx_tpa; 16036 rxr->rx_tpa_idx_map = clone->rx_tpa_idx_map; 16037 rxr->page_pool = clone->page_pool; 16038 rxr->head_pool = clone->head_pool; 16039 rxr->xdp_rxq = clone->xdp_rxq; 16040 rxr->need_head_pool = clone->need_head_pool; 16041 16042 bnxt_copy_rx_ring(bp, rxr, clone); 16043 16044 bnapi = rxr->bnapi; 16045 cpr = &bnapi->cp_ring; 16046 16047 /* All rings have been reserved and previously allocated. 16048 * Reallocating with the same parameters should never fail. 16049 */ 16050 rc = bnxt_hwrm_rx_ring_alloc(bp, rxr); 16051 if (rc) 16052 goto err_reset; 16053 16054 if (bp->tph_mode) { 16055 rc = bnxt_hwrm_cp_ring_alloc_p5(bp, rxr->rx_cpr); 16056 if (rc) 16057 goto err_reset; 16058 } 16059 16060 rc = bnxt_hwrm_rx_agg_ring_alloc(bp, rxr); 16061 if (rc) 16062 goto err_reset; 16063 16064 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 16065 if (bp->flags & BNXT_FLAG_AGG_RINGS) 16066 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 16067 16068 if (bp->flags & BNXT_FLAG_SHARED_RINGS) { 16069 rc = bnxt_tx_queue_start(bp, idx); 16070 if (rc) 16071 goto err_reset; 16072 } 16073 16074 bnxt_enable_rx_page_pool(rxr); 16075 napi_enable_locked(&bnapi->napi); 16076 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 16077 16078 mru = bp->dev->mtu + ETH_HLEN + VLAN_HLEN; 16079 for (i = 0; i < bp->nr_vnics; i++) { 16080 vnic = &bp->vnic_info[i]; 16081 16082 rc = bnxt_set_vnic_mru_p5(bp, vnic, mru, idx); 16083 if (rc) 16084 return rc; 16085 } 16086 return bnxt_set_rss_ctx_vnic_mru(bp, mru, idx); 16087 16088 err_reset: 16089 netdev_err(bp->dev, "Unexpected HWRM error during queue start rc: %d\n", 16090 rc); 16091 napi_enable_locked(&bnapi->napi); 16092 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 16093 bnxt_reset_task(bp, true); 16094 return rc; 16095 } 16096 16097 static int bnxt_queue_stop(struct net_device *dev, void *qmem, int idx) 16098 { 16099 struct bnxt *bp = netdev_priv(dev); 16100 struct bnxt_rx_ring_info *rxr; 16101 struct bnxt_cp_ring_info *cpr; 16102 struct bnxt_vnic_info *vnic; 16103 struct bnxt_napi *bnapi; 16104 int i; 16105 16106 for (i = 0; i < bp->nr_vnics; i++) { 16107 vnic = &bp->vnic_info[i]; 16108 16109 bnxt_set_vnic_mru_p5(bp, vnic, 0, idx); 16110 } 16111 bnxt_set_rss_ctx_vnic_mru(bp, 0, idx); 16112 /* Make sure NAPI sees that the VNIC is disabled */ 16113 synchronize_net(); 16114 rxr = &bp->rx_ring[idx]; 16115 bnapi = rxr->bnapi; 16116 cpr = &bnapi->cp_ring; 16117 cancel_work_sync(&cpr->dim.work); 16118 bnxt_hwrm_rx_ring_free(bp, rxr, false); 16119 bnxt_hwrm_rx_agg_ring_free(bp, rxr, false); 16120 page_pool_disable_direct_recycling(rxr->page_pool); 16121 if (bnxt_separate_head_pool(rxr)) 16122 page_pool_disable_direct_recycling(rxr->head_pool); 16123 16124 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 16125 bnxt_tx_queue_stop(bp, idx); 16126 16127 /* Disable NAPI now after freeing the rings because HWRM_RING_FREE 16128 * completion is handled in NAPI to guarantee no more DMA on that ring 16129 * after seeing the completion. 16130 */ 16131 napi_disable_locked(&bnapi->napi); 16132 16133 if (bp->tph_mode) { 16134 bnxt_hwrm_cp_ring_free(bp, rxr->rx_cpr); 16135 bnxt_clear_one_cp_ring(bp, rxr->rx_cpr); 16136 } 16137 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 16138 16139 memcpy(qmem, rxr, sizeof(*rxr)); 16140 bnxt_init_rx_ring_struct(bp, qmem); 16141 16142 return 0; 16143 } 16144 16145 static const struct netdev_queue_mgmt_ops bnxt_queue_mgmt_ops = { 16146 .ndo_queue_mem_size = sizeof(struct bnxt_rx_ring_info), 16147 .ndo_queue_mem_alloc = bnxt_queue_mem_alloc, 16148 .ndo_queue_mem_free = bnxt_queue_mem_free, 16149 .ndo_queue_start = bnxt_queue_start, 16150 .ndo_queue_stop = bnxt_queue_stop, 16151 }; 16152 16153 static void bnxt_remove_one(struct pci_dev *pdev) 16154 { 16155 struct net_device *dev = pci_get_drvdata(pdev); 16156 struct bnxt *bp = netdev_priv(dev); 16157 16158 if (BNXT_PF(bp)) 16159 bnxt_sriov_disable(bp); 16160 16161 bnxt_rdma_aux_device_del(bp); 16162 16163 unregister_netdev(dev); 16164 bnxt_ptp_clear(bp); 16165 16166 bnxt_rdma_aux_device_uninit(bp); 16167 16168 bnxt_free_l2_filters(bp, true); 16169 bnxt_free_ntp_fltrs(bp, true); 16170 WARN_ON(bp->num_rss_ctx); 16171 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 16172 /* Flush any pending tasks */ 16173 cancel_work_sync(&bp->sp_task); 16174 cancel_delayed_work_sync(&bp->fw_reset_task); 16175 bp->sp_event = 0; 16176 16177 bnxt_dl_fw_reporters_destroy(bp); 16178 bnxt_dl_unregister(bp); 16179 bnxt_shutdown_tc(bp); 16180 16181 bnxt_clear_int_mode(bp); 16182 bnxt_hwrm_func_drv_unrgtr(bp); 16183 bnxt_free_hwrm_resources(bp); 16184 bnxt_hwmon_uninit(bp); 16185 bnxt_ethtool_free(bp); 16186 bnxt_dcb_free(bp); 16187 kfree(bp->ptp_cfg); 16188 bp->ptp_cfg = NULL; 16189 kfree(bp->fw_health); 16190 bp->fw_health = NULL; 16191 bnxt_cleanup_pci(bp); 16192 bnxt_free_ctx_mem(bp, true); 16193 bnxt_free_crash_dump_mem(bp); 16194 kfree(bp->rss_indir_tbl); 16195 bp->rss_indir_tbl = NULL; 16196 bnxt_free_port_stats(bp); 16197 free_netdev(dev); 16198 } 16199 16200 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 16201 { 16202 int rc = 0; 16203 struct bnxt_link_info *link_info = &bp->link_info; 16204 16205 bp->phy_flags = 0; 16206 rc = bnxt_hwrm_phy_qcaps(bp); 16207 if (rc) { 16208 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 16209 rc); 16210 return rc; 16211 } 16212 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 16213 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 16214 else 16215 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 16216 16217 bp->mac_flags = 0; 16218 bnxt_hwrm_mac_qcaps(bp); 16219 16220 if (!fw_dflt) 16221 return 0; 16222 16223 mutex_lock(&bp->link_lock); 16224 rc = bnxt_update_link(bp, false); 16225 if (rc) { 16226 mutex_unlock(&bp->link_lock); 16227 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 16228 rc); 16229 return rc; 16230 } 16231 16232 /* Older firmware does not have supported_auto_speeds, so assume 16233 * that all supported speeds can be autonegotiated. 16234 */ 16235 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 16236 link_info->support_auto_speeds = link_info->support_speeds; 16237 16238 bnxt_init_ethtool_link_settings(bp); 16239 mutex_unlock(&bp->link_lock); 16240 return 0; 16241 } 16242 16243 static int bnxt_get_max_irq(struct pci_dev *pdev) 16244 { 16245 u16 ctrl; 16246 16247 if (!pdev->msix_cap) 16248 return 1; 16249 16250 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 16251 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 16252 } 16253 16254 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 16255 int *max_cp) 16256 { 16257 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 16258 int max_ring_grps = 0, max_irq; 16259 16260 *max_tx = hw_resc->max_tx_rings; 16261 *max_rx = hw_resc->max_rx_rings; 16262 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 16263 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 16264 bnxt_get_ulp_msix_num_in_use(bp), 16265 hw_resc->max_stat_ctxs - 16266 bnxt_get_ulp_stat_ctxs_in_use(bp)); 16267 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 16268 *max_cp = min_t(int, *max_cp, max_irq); 16269 max_ring_grps = hw_resc->max_hw_ring_grps; 16270 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 16271 *max_cp -= 1; 16272 *max_rx -= 2; 16273 } 16274 if (bp->flags & BNXT_FLAG_AGG_RINGS) 16275 *max_rx >>= 1; 16276 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 16277 int rc; 16278 16279 rc = __bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 16280 if (rc) { 16281 *max_rx = 0; 16282 *max_tx = 0; 16283 } 16284 /* On P5 chips, max_cp output param should be available NQs */ 16285 *max_cp = max_irq; 16286 } 16287 *max_rx = min_t(int, *max_rx, max_ring_grps); 16288 } 16289 16290 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 16291 { 16292 int rx, tx, cp; 16293 16294 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 16295 *max_rx = rx; 16296 *max_tx = tx; 16297 if (!rx || !tx || !cp) 16298 return -ENOMEM; 16299 16300 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 16301 } 16302 16303 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 16304 bool shared) 16305 { 16306 int rc; 16307 16308 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 16309 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 16310 /* Not enough rings, try disabling agg rings. */ 16311 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 16312 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 16313 if (rc) { 16314 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 16315 bp->flags |= BNXT_FLAG_AGG_RINGS; 16316 return rc; 16317 } 16318 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 16319 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 16320 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 16321 bnxt_set_ring_params(bp); 16322 } 16323 16324 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 16325 int max_cp, max_stat, max_irq; 16326 16327 /* Reserve minimum resources for RoCE */ 16328 max_cp = bnxt_get_max_func_cp_rings(bp); 16329 max_stat = bnxt_get_max_func_stat_ctxs(bp); 16330 max_irq = bnxt_get_max_func_irqs(bp); 16331 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 16332 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 16333 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 16334 return 0; 16335 16336 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 16337 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 16338 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 16339 max_cp = min_t(int, max_cp, max_irq); 16340 max_cp = min_t(int, max_cp, max_stat); 16341 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 16342 if (rc) 16343 rc = 0; 16344 } 16345 return rc; 16346 } 16347 16348 /* In initial default shared ring setting, each shared ring must have a 16349 * RX/TX ring pair. 16350 */ 16351 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 16352 { 16353 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 16354 bp->rx_nr_rings = bp->cp_nr_rings; 16355 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 16356 bp->tx_nr_rings = bnxt_tx_nr_rings(bp); 16357 } 16358 16359 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 16360 { 16361 int dflt_rings, max_rx_rings, max_tx_rings, rc; 16362 int avail_msix; 16363 16364 if (!bnxt_can_reserve_rings(bp)) 16365 return 0; 16366 16367 if (sh) 16368 bp->flags |= BNXT_FLAG_SHARED_RINGS; 16369 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 16370 /* Reduce default rings on multi-port cards so that total default 16371 * rings do not exceed CPU count. 16372 */ 16373 if (bp->port_count > 1) { 16374 int max_rings = 16375 max_t(int, num_online_cpus() / bp->port_count, 1); 16376 16377 dflt_rings = min_t(int, dflt_rings, max_rings); 16378 } 16379 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 16380 if (rc) 16381 return rc; 16382 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 16383 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 16384 if (sh) 16385 bnxt_trim_dflt_sh_rings(bp); 16386 else 16387 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 16388 bp->tx_nr_rings = bnxt_tx_nr_rings(bp); 16389 16390 avail_msix = bnxt_get_max_func_irqs(bp) - bp->cp_nr_rings; 16391 if (avail_msix >= BNXT_MIN_ROCE_CP_RINGS) { 16392 int ulp_num_msix = min(avail_msix, bp->ulp_num_msix_want); 16393 16394 bnxt_set_ulp_msix_num(bp, ulp_num_msix); 16395 bnxt_set_dflt_ulp_stat_ctxs(bp); 16396 } 16397 16398 rc = __bnxt_reserve_rings(bp); 16399 if (rc && rc != -ENODEV) 16400 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 16401 bp->tx_nr_rings_per_tc = bnxt_tx_nr_rings_per_tc(bp); 16402 if (sh) 16403 bnxt_trim_dflt_sh_rings(bp); 16404 16405 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 16406 if (bnxt_need_reserve_rings(bp)) { 16407 rc = __bnxt_reserve_rings(bp); 16408 if (rc && rc != -ENODEV) 16409 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 16410 bp->tx_nr_rings_per_tc = bnxt_tx_nr_rings_per_tc(bp); 16411 } 16412 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 16413 bp->rx_nr_rings++; 16414 bp->cp_nr_rings++; 16415 } 16416 if (rc) { 16417 bp->tx_nr_rings = 0; 16418 bp->rx_nr_rings = 0; 16419 } 16420 return rc; 16421 } 16422 16423 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 16424 { 16425 int rc; 16426 16427 if (bp->tx_nr_rings) 16428 return 0; 16429 16430 bnxt_ulp_irq_stop(bp); 16431 bnxt_clear_int_mode(bp); 16432 rc = bnxt_set_dflt_rings(bp, true); 16433 if (rc) { 16434 if (BNXT_VF(bp) && rc == -ENODEV) 16435 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 16436 else 16437 netdev_err(bp->dev, "Not enough rings available.\n"); 16438 goto init_dflt_ring_err; 16439 } 16440 rc = bnxt_init_int_mode(bp); 16441 if (rc) 16442 goto init_dflt_ring_err; 16443 16444 bp->tx_nr_rings_per_tc = bnxt_tx_nr_rings_per_tc(bp); 16445 16446 bnxt_set_dflt_rfs(bp); 16447 16448 init_dflt_ring_err: 16449 bnxt_ulp_irq_restart(bp, rc); 16450 return rc; 16451 } 16452 16453 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 16454 { 16455 int rc; 16456 16457 netdev_ops_assert_locked(bp->dev); 16458 bnxt_hwrm_func_qcaps(bp); 16459 16460 if (netif_running(bp->dev)) 16461 __bnxt_close_nic(bp, true, false); 16462 16463 bnxt_ulp_irq_stop(bp); 16464 bnxt_clear_int_mode(bp); 16465 rc = bnxt_init_int_mode(bp); 16466 bnxt_ulp_irq_restart(bp, rc); 16467 16468 if (netif_running(bp->dev)) { 16469 if (rc) 16470 netif_close(bp->dev); 16471 else 16472 rc = bnxt_open_nic(bp, true, false); 16473 } 16474 16475 return rc; 16476 } 16477 16478 static int bnxt_init_mac_addr(struct bnxt *bp) 16479 { 16480 int rc = 0; 16481 16482 if (BNXT_PF(bp)) { 16483 eth_hw_addr_set(bp->dev, bp->pf.mac_addr); 16484 } else { 16485 #ifdef CONFIG_BNXT_SRIOV 16486 struct bnxt_vf_info *vf = &bp->vf; 16487 bool strict_approval = true; 16488 16489 if (is_valid_ether_addr(vf->mac_addr)) { 16490 /* overwrite netdev dev_addr with admin VF MAC */ 16491 eth_hw_addr_set(bp->dev, vf->mac_addr); 16492 /* Older PF driver or firmware may not approve this 16493 * correctly. 16494 */ 16495 strict_approval = false; 16496 } else { 16497 eth_hw_addr_random(bp->dev); 16498 } 16499 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 16500 #endif 16501 } 16502 return rc; 16503 } 16504 16505 static void bnxt_vpd_read_info(struct bnxt *bp) 16506 { 16507 struct pci_dev *pdev = bp->pdev; 16508 unsigned int vpd_size, kw_len; 16509 int pos, size; 16510 u8 *vpd_data; 16511 16512 vpd_data = pci_vpd_alloc(pdev, &vpd_size); 16513 if (IS_ERR(vpd_data)) { 16514 pci_warn(pdev, "Unable to read VPD\n"); 16515 return; 16516 } 16517 16518 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 16519 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); 16520 if (pos < 0) 16521 goto read_sn; 16522 16523 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 16524 memcpy(bp->board_partno, &vpd_data[pos], size); 16525 16526 read_sn: 16527 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 16528 PCI_VPD_RO_KEYWORD_SERIALNO, 16529 &kw_len); 16530 if (pos < 0) 16531 goto exit; 16532 16533 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 16534 memcpy(bp->board_serialno, &vpd_data[pos], size); 16535 exit: 16536 kfree(vpd_data); 16537 } 16538 16539 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 16540 { 16541 struct pci_dev *pdev = bp->pdev; 16542 u64 qword; 16543 16544 qword = pci_get_dsn(pdev); 16545 if (!qword) { 16546 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 16547 return -EOPNOTSUPP; 16548 } 16549 16550 put_unaligned_le64(qword, dsn); 16551 16552 bp->flags |= BNXT_FLAG_DSN_VALID; 16553 return 0; 16554 } 16555 16556 static int bnxt_map_db_bar(struct bnxt *bp) 16557 { 16558 if (!bp->db_size) 16559 return -ENODEV; 16560 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 16561 if (!bp->bar1) 16562 return -ENOMEM; 16563 return 0; 16564 } 16565 16566 void bnxt_print_device_info(struct bnxt *bp) 16567 { 16568 netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n", 16569 board_info[bp->board_idx].name, 16570 (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr); 16571 16572 pcie_print_link_status(bp->pdev); 16573 } 16574 16575 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 16576 { 16577 struct bnxt_hw_resc *hw_resc; 16578 struct net_device *dev; 16579 struct bnxt *bp; 16580 int rc, max_irqs; 16581 16582 if (pci_is_bridge(pdev)) 16583 return -ENODEV; 16584 16585 if (!pdev->msix_cap) { 16586 dev_err(&pdev->dev, "MSIX capability not found, aborting\n"); 16587 return -ENODEV; 16588 } 16589 16590 /* Clear any pending DMA transactions from crash kernel 16591 * while loading driver in capture kernel. 16592 */ 16593 if (is_kdump_kernel()) { 16594 pci_clear_master(pdev); 16595 pcie_flr(pdev); 16596 } 16597 16598 max_irqs = bnxt_get_max_irq(pdev); 16599 dev = alloc_etherdev_mqs(sizeof(*bp), max_irqs * BNXT_MAX_QUEUE, 16600 max_irqs); 16601 if (!dev) 16602 return -ENOMEM; 16603 16604 bp = netdev_priv(dev); 16605 bp->board_idx = ent->driver_data; 16606 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 16607 bnxt_set_max_func_irqs(bp, max_irqs); 16608 16609 if (bnxt_vf_pciid(bp->board_idx)) 16610 bp->flags |= BNXT_FLAG_VF; 16611 16612 /* No devlink port registration in case of a VF */ 16613 if (BNXT_PF(bp)) 16614 SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port); 16615 16616 rc = bnxt_init_board(pdev, dev); 16617 if (rc < 0) 16618 goto init_err_free; 16619 16620 dev->netdev_ops = &bnxt_netdev_ops; 16621 dev->stat_ops = &bnxt_stat_ops; 16622 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 16623 dev->ethtool_ops = &bnxt_ethtool_ops; 16624 pci_set_drvdata(pdev, dev); 16625 16626 rc = bnxt_alloc_hwrm_resources(bp); 16627 if (rc) 16628 goto init_err_pci_clean; 16629 16630 mutex_init(&bp->hwrm_cmd_lock); 16631 mutex_init(&bp->link_lock); 16632 16633 rc = bnxt_fw_init_one_p1(bp); 16634 if (rc) 16635 goto init_err_pci_clean; 16636 16637 if (BNXT_PF(bp)) 16638 bnxt_vpd_read_info(bp); 16639 16640 if (BNXT_CHIP_P5_PLUS(bp)) { 16641 bp->flags |= BNXT_FLAG_CHIP_P5_PLUS; 16642 if (BNXT_CHIP_P7(bp)) 16643 bp->flags |= BNXT_FLAG_CHIP_P7; 16644 } 16645 16646 rc = bnxt_alloc_rss_indir_tbl(bp); 16647 if (rc) 16648 goto init_err_pci_clean; 16649 16650 rc = bnxt_fw_init_one_p2(bp); 16651 if (rc) 16652 goto init_err_pci_clean; 16653 16654 rc = bnxt_map_db_bar(bp); 16655 if (rc) { 16656 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 16657 rc); 16658 goto init_err_pci_clean; 16659 } 16660 16661 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 16662 NETIF_F_TSO | NETIF_F_TSO6 | 16663 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 16664 NETIF_F_GSO_IPXIP4 | 16665 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 16666 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 16667 NETIF_F_RXCSUM | NETIF_F_GRO; 16668 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 16669 dev->hw_features |= NETIF_F_GSO_UDP_L4; 16670 16671 if (BNXT_SUPPORTS_TPA(bp)) 16672 dev->hw_features |= NETIF_F_LRO; 16673 16674 dev->hw_enc_features = 16675 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 16676 NETIF_F_TSO | NETIF_F_TSO6 | 16677 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 16678 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 16679 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 16680 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 16681 dev->hw_enc_features |= NETIF_F_GSO_UDP_L4; 16682 if (bp->flags & BNXT_FLAG_CHIP_P7) 16683 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels_p7; 16684 else 16685 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 16686 16687 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 16688 NETIF_F_GSO_GRE_CSUM; 16689 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 16690 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 16691 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 16692 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 16693 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 16694 if (BNXT_SUPPORTS_TPA(bp)) 16695 dev->hw_features |= NETIF_F_GRO_HW; 16696 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 16697 if (dev->features & NETIF_F_GRO_HW) 16698 dev->features &= ~NETIF_F_LRO; 16699 dev->priv_flags |= IFF_UNICAST_FLT; 16700 16701 netif_set_tso_max_size(dev, GSO_MAX_SIZE); 16702 if (bp->tso_max_segs) 16703 netif_set_tso_max_segs(dev, bp->tso_max_segs); 16704 16705 dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 16706 NETDEV_XDP_ACT_RX_SG; 16707 16708 #ifdef CONFIG_BNXT_SRIOV 16709 init_waitqueue_head(&bp->sriov_cfg_wait); 16710 #endif 16711 if (BNXT_SUPPORTS_TPA(bp)) { 16712 bp->gro_func = bnxt_gro_func_5730x; 16713 if (BNXT_CHIP_P4(bp)) 16714 bp->gro_func = bnxt_gro_func_5731x; 16715 else if (BNXT_CHIP_P5_PLUS(bp)) 16716 bp->gro_func = bnxt_gro_func_5750x; 16717 } 16718 if (!BNXT_CHIP_P4_PLUS(bp)) 16719 bp->flags |= BNXT_FLAG_DOUBLE_DB; 16720 16721 rc = bnxt_init_mac_addr(bp); 16722 if (rc) { 16723 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 16724 rc = -EADDRNOTAVAIL; 16725 goto init_err_pci_clean; 16726 } 16727 16728 if (BNXT_PF(bp)) { 16729 /* Read the adapter's DSN to use as the eswitch switch_id */ 16730 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 16731 } 16732 16733 /* MTU range: 60 - FW defined max */ 16734 dev->min_mtu = ETH_ZLEN; 16735 dev->max_mtu = bp->max_mtu; 16736 16737 rc = bnxt_probe_phy(bp, true); 16738 if (rc) 16739 goto init_err_pci_clean; 16740 16741 hw_resc = &bp->hw_resc; 16742 bp->max_fltr = hw_resc->max_rx_em_flows + hw_resc->max_rx_wm_flows + 16743 BNXT_L2_FLTR_MAX_FLTR; 16744 /* Older firmware may not report these filters properly */ 16745 if (bp->max_fltr < BNXT_MAX_FLTR) 16746 bp->max_fltr = BNXT_MAX_FLTR; 16747 bnxt_init_l2_fltr_tbl(bp); 16748 __bnxt_set_rx_skb_mode(bp, false); 16749 bnxt_set_tpa_flags(bp); 16750 bnxt_init_ring_params(bp); 16751 bnxt_set_ring_params(bp); 16752 bnxt_rdma_aux_device_init(bp); 16753 rc = bnxt_set_dflt_rings(bp, true); 16754 if (rc) { 16755 if (BNXT_VF(bp) && rc == -ENODEV) { 16756 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 16757 } else { 16758 netdev_err(bp->dev, "Not enough rings available.\n"); 16759 rc = -ENOMEM; 16760 } 16761 goto init_err_pci_clean; 16762 } 16763 16764 bnxt_fw_init_one_p3(bp); 16765 16766 bnxt_init_dflt_coal(bp); 16767 16768 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 16769 bp->flags |= BNXT_FLAG_STRIP_VLAN; 16770 16771 rc = bnxt_init_int_mode(bp); 16772 if (rc) 16773 goto init_err_pci_clean; 16774 16775 /* No TC has been set yet and rings may have been trimmed due to 16776 * limited MSIX, so we re-initialize the TX rings per TC. 16777 */ 16778 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 16779 16780 if (BNXT_PF(bp)) { 16781 if (!bnxt_pf_wq) { 16782 bnxt_pf_wq = 16783 create_singlethread_workqueue("bnxt_pf_wq"); 16784 if (!bnxt_pf_wq) { 16785 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 16786 rc = -ENOMEM; 16787 goto init_err_pci_clean; 16788 } 16789 } 16790 rc = bnxt_init_tc(bp); 16791 if (rc) 16792 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 16793 rc); 16794 } 16795 16796 bnxt_inv_fw_health_reg(bp); 16797 rc = bnxt_dl_register(bp); 16798 if (rc) 16799 goto init_err_dl; 16800 16801 INIT_LIST_HEAD(&bp->usr_fltr_list); 16802 16803 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 16804 bp->rss_cap |= BNXT_RSS_CAP_MULTI_RSS_CTX; 16805 if (BNXT_SUPPORTS_QUEUE_API(bp)) 16806 dev->queue_mgmt_ops = &bnxt_queue_mgmt_ops; 16807 dev->request_ops_lock = true; 16808 dev->netmem_tx = true; 16809 16810 rc = register_netdev(dev); 16811 if (rc) 16812 goto init_err_cleanup; 16813 16814 bnxt_dl_fw_reporters_create(bp); 16815 16816 bnxt_rdma_aux_device_add(bp); 16817 16818 bnxt_print_device_info(bp); 16819 16820 pci_save_state(pdev); 16821 16822 return 0; 16823 init_err_cleanup: 16824 bnxt_rdma_aux_device_uninit(bp); 16825 bnxt_dl_unregister(bp); 16826 init_err_dl: 16827 bnxt_shutdown_tc(bp); 16828 bnxt_clear_int_mode(bp); 16829 16830 init_err_pci_clean: 16831 bnxt_hwrm_func_drv_unrgtr(bp); 16832 bnxt_free_hwrm_resources(bp); 16833 bnxt_hwmon_uninit(bp); 16834 bnxt_ethtool_free(bp); 16835 bnxt_ptp_clear(bp); 16836 kfree(bp->ptp_cfg); 16837 bp->ptp_cfg = NULL; 16838 kfree(bp->fw_health); 16839 bp->fw_health = NULL; 16840 bnxt_cleanup_pci(bp); 16841 bnxt_free_ctx_mem(bp, true); 16842 bnxt_free_crash_dump_mem(bp); 16843 kfree(bp->rss_indir_tbl); 16844 bp->rss_indir_tbl = NULL; 16845 16846 init_err_free: 16847 free_netdev(dev); 16848 return rc; 16849 } 16850 16851 static void bnxt_shutdown(struct pci_dev *pdev) 16852 { 16853 struct net_device *dev = pci_get_drvdata(pdev); 16854 struct bnxt *bp; 16855 16856 if (!dev) 16857 return; 16858 16859 rtnl_lock(); 16860 netdev_lock(dev); 16861 bp = netdev_priv(dev); 16862 if (!bp) 16863 goto shutdown_exit; 16864 16865 if (netif_running(dev)) 16866 netif_close(dev); 16867 16868 bnxt_ptp_clear(bp); 16869 bnxt_clear_int_mode(bp); 16870 pci_disable_device(pdev); 16871 16872 if (system_state == SYSTEM_POWER_OFF) { 16873 pci_wake_from_d3(pdev, bp->wol); 16874 pci_set_power_state(pdev, PCI_D3hot); 16875 } 16876 16877 shutdown_exit: 16878 netdev_unlock(dev); 16879 rtnl_unlock(); 16880 } 16881 16882 #ifdef CONFIG_PM_SLEEP 16883 static int bnxt_suspend(struct device *device) 16884 { 16885 struct net_device *dev = dev_get_drvdata(device); 16886 struct bnxt *bp = netdev_priv(dev); 16887 int rc = 0; 16888 16889 bnxt_ulp_stop(bp); 16890 16891 netdev_lock(dev); 16892 if (netif_running(dev)) { 16893 netif_device_detach(dev); 16894 rc = bnxt_close(dev); 16895 } 16896 bnxt_hwrm_func_drv_unrgtr(bp); 16897 bnxt_ptp_clear(bp); 16898 pci_disable_device(bp->pdev); 16899 bnxt_free_ctx_mem(bp, false); 16900 netdev_unlock(dev); 16901 return rc; 16902 } 16903 16904 static int bnxt_resume(struct device *device) 16905 { 16906 struct net_device *dev = dev_get_drvdata(device); 16907 struct bnxt *bp = netdev_priv(dev); 16908 int rc = 0; 16909 16910 netdev_lock(dev); 16911 rc = pci_enable_device(bp->pdev); 16912 if (rc) { 16913 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 16914 rc); 16915 goto resume_exit; 16916 } 16917 pci_set_master(bp->pdev); 16918 if (bnxt_hwrm_ver_get(bp)) { 16919 rc = -ENODEV; 16920 goto resume_exit; 16921 } 16922 rc = bnxt_hwrm_func_reset(bp); 16923 if (rc) { 16924 rc = -EBUSY; 16925 goto resume_exit; 16926 } 16927 16928 rc = bnxt_hwrm_func_qcaps(bp); 16929 if (rc) 16930 goto resume_exit; 16931 16932 bnxt_clear_reservations(bp, true); 16933 16934 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 16935 rc = -ENODEV; 16936 goto resume_exit; 16937 } 16938 if (bp->fw_crash_mem) 16939 bnxt_hwrm_crash_dump_mem_cfg(bp); 16940 16941 if (bnxt_ptp_init(bp)) { 16942 kfree(bp->ptp_cfg); 16943 bp->ptp_cfg = NULL; 16944 } 16945 bnxt_get_wol_settings(bp); 16946 if (netif_running(dev)) { 16947 rc = bnxt_open(dev); 16948 if (!rc) 16949 netif_device_attach(dev); 16950 } 16951 16952 resume_exit: 16953 netdev_unlock(bp->dev); 16954 bnxt_ulp_start(bp, rc); 16955 if (!rc) 16956 bnxt_reenable_sriov(bp); 16957 return rc; 16958 } 16959 16960 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 16961 #define BNXT_PM_OPS (&bnxt_pm_ops) 16962 16963 #else 16964 16965 #define BNXT_PM_OPS NULL 16966 16967 #endif /* CONFIG_PM_SLEEP */ 16968 16969 /** 16970 * bnxt_io_error_detected - called when PCI error is detected 16971 * @pdev: Pointer to PCI device 16972 * @state: The current pci connection state 16973 * 16974 * This function is called after a PCI bus error affecting 16975 * this device has been detected. 16976 */ 16977 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 16978 pci_channel_state_t state) 16979 { 16980 struct net_device *netdev = pci_get_drvdata(pdev); 16981 struct bnxt *bp = netdev_priv(netdev); 16982 bool abort = false; 16983 16984 netdev_info(netdev, "PCI I/O error detected\n"); 16985 16986 bnxt_ulp_stop(bp); 16987 16988 netdev_lock(netdev); 16989 netif_device_detach(netdev); 16990 16991 if (test_and_set_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 16992 netdev_err(bp->dev, "Firmware reset already in progress\n"); 16993 abort = true; 16994 } 16995 16996 if (abort || state == pci_channel_io_perm_failure) { 16997 netdev_unlock(netdev); 16998 return PCI_ERS_RESULT_DISCONNECT; 16999 } 17000 17001 /* Link is not reliable anymore if state is pci_channel_io_frozen 17002 * so we disable bus master to prevent any potential bad DMAs before 17003 * freeing kernel memory. 17004 */ 17005 if (state == pci_channel_io_frozen) { 17006 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 17007 bnxt_fw_fatal_close(bp); 17008 } 17009 17010 if (netif_running(netdev)) 17011 __bnxt_close_nic(bp, true, true); 17012 17013 if (pci_is_enabled(pdev)) 17014 pci_disable_device(pdev); 17015 bnxt_free_ctx_mem(bp, false); 17016 netdev_unlock(netdev); 17017 17018 /* Request a slot reset. */ 17019 return PCI_ERS_RESULT_NEED_RESET; 17020 } 17021 17022 /** 17023 * bnxt_io_slot_reset - called after the pci bus has been reset. 17024 * @pdev: Pointer to PCI device 17025 * 17026 * Restart the card from scratch, as if from a cold-boot. 17027 * At this point, the card has experienced a hard reset, 17028 * followed by fixups by BIOS, and has its config space 17029 * set up identically to what it was at cold boot. 17030 */ 17031 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 17032 { 17033 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 17034 struct net_device *netdev = pci_get_drvdata(pdev); 17035 struct bnxt *bp = netdev_priv(netdev); 17036 int retry = 0; 17037 int err = 0; 17038 int off; 17039 17040 netdev_info(bp->dev, "PCI Slot Reset\n"); 17041 17042 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 17043 test_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state)) 17044 msleep(900); 17045 17046 netdev_lock(netdev); 17047 17048 if (pci_enable_device(pdev)) { 17049 dev_err(&pdev->dev, 17050 "Cannot re-enable PCI device after reset.\n"); 17051 } else { 17052 pci_set_master(pdev); 17053 /* Upon fatal error, our device internal logic that latches to 17054 * BAR value is getting reset and will restore only upon 17055 * rewriting the BARs. 17056 * 17057 * As pci_restore_state() does not re-write the BARs if the 17058 * value is same as saved value earlier, driver needs to 17059 * write the BARs to 0 to force restore, in case of fatal error. 17060 */ 17061 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 17062 &bp->state)) { 17063 for (off = PCI_BASE_ADDRESS_0; 17064 off <= PCI_BASE_ADDRESS_5; off += 4) 17065 pci_write_config_dword(bp->pdev, off, 0); 17066 } 17067 pci_restore_state(pdev); 17068 pci_save_state(pdev); 17069 17070 bnxt_inv_fw_health_reg(bp); 17071 bnxt_try_map_fw_health_reg(bp); 17072 17073 /* In some PCIe AER scenarios, firmware may take up to 17074 * 10 seconds to become ready in the worst case. 17075 */ 17076 do { 17077 err = bnxt_try_recover_fw(bp); 17078 if (!err) 17079 break; 17080 retry++; 17081 } while (retry < BNXT_FW_SLOT_RESET_RETRY); 17082 17083 if (err) { 17084 dev_err(&pdev->dev, "Firmware not ready\n"); 17085 goto reset_exit; 17086 } 17087 17088 err = bnxt_hwrm_func_reset(bp); 17089 if (!err) 17090 result = PCI_ERS_RESULT_RECOVERED; 17091 17092 /* IRQ will be initialized later in bnxt_io_resume */ 17093 bnxt_ulp_irq_stop(bp); 17094 bnxt_clear_int_mode(bp); 17095 } 17096 17097 reset_exit: 17098 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 17099 bnxt_clear_reservations(bp, true); 17100 netdev_unlock(netdev); 17101 17102 return result; 17103 } 17104 17105 /** 17106 * bnxt_io_resume - called when traffic can start flowing again. 17107 * @pdev: Pointer to PCI device 17108 * 17109 * This callback is called when the error recovery driver tells 17110 * us that its OK to resume normal operation. 17111 */ 17112 static void bnxt_io_resume(struct pci_dev *pdev) 17113 { 17114 struct net_device *netdev = pci_get_drvdata(pdev); 17115 struct bnxt *bp = netdev_priv(netdev); 17116 int err; 17117 17118 netdev_info(bp->dev, "PCI Slot Resume\n"); 17119 netdev_lock(netdev); 17120 17121 err = bnxt_hwrm_func_qcaps(bp); 17122 if (!err) { 17123 if (netif_running(netdev)) { 17124 err = bnxt_open(netdev); 17125 } else { 17126 err = bnxt_reserve_rings(bp, true); 17127 if (!err) 17128 err = bnxt_init_int_mode(bp); 17129 } 17130 } 17131 17132 if (!err) 17133 netif_device_attach(netdev); 17134 17135 netdev_unlock(netdev); 17136 bnxt_ulp_start(bp, err); 17137 if (!err) 17138 bnxt_reenable_sriov(bp); 17139 } 17140 17141 static const struct pci_error_handlers bnxt_err_handler = { 17142 .error_detected = bnxt_io_error_detected, 17143 .slot_reset = bnxt_io_slot_reset, 17144 .resume = bnxt_io_resume 17145 }; 17146 17147 static struct pci_driver bnxt_pci_driver = { 17148 .name = DRV_MODULE_NAME, 17149 .id_table = bnxt_pci_tbl, 17150 .probe = bnxt_init_one, 17151 .remove = bnxt_remove_one, 17152 .shutdown = bnxt_shutdown, 17153 .driver.pm = BNXT_PM_OPS, 17154 .err_handler = &bnxt_err_handler, 17155 #if defined(CONFIG_BNXT_SRIOV) 17156 .sriov_configure = bnxt_sriov_configure, 17157 #endif 17158 }; 17159 17160 static int __init bnxt_init(void) 17161 { 17162 int err; 17163 17164 bnxt_debug_init(); 17165 err = pci_register_driver(&bnxt_pci_driver); 17166 if (err) { 17167 bnxt_debug_exit(); 17168 return err; 17169 } 17170 17171 return 0; 17172 } 17173 17174 static void __exit bnxt_exit(void) 17175 { 17176 pci_unregister_driver(&bnxt_pci_driver); 17177 if (bnxt_pf_wq) 17178 destroy_workqueue(bnxt_pf_wq); 17179 bnxt_debug_exit(); 17180 } 17181 17182 module_init(bnxt_init); 17183 module_exit(bnxt_exit); 17184