xref: /linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/gro.h>
41 #include <net/ip.h>
42 #include <net/tcp.h>
43 #include <net/udp.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 #include <net/udp_tunnel.h>
47 #include <linux/workqueue.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/log2.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <net/page_pool/helpers.h>
56 #include <linux/align.h>
57 #include <net/netdev_queues.h>
58 
59 #include "bnxt_hsi.h"
60 #include "bnxt.h"
61 #include "bnxt_hwrm.h"
62 #include "bnxt_ulp.h"
63 #include "bnxt_sriov.h"
64 #include "bnxt_ethtool.h"
65 #include "bnxt_dcb.h"
66 #include "bnxt_xdp.h"
67 #include "bnxt_ptp.h"
68 #include "bnxt_vfr.h"
69 #include "bnxt_tc.h"
70 #include "bnxt_devlink.h"
71 #include "bnxt_debugfs.h"
72 #include "bnxt_coredump.h"
73 #include "bnxt_hwmon.h"
74 
75 #define BNXT_TX_TIMEOUT		(5 * HZ)
76 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW | \
77 				 NETIF_MSG_TX_ERR)
78 
79 MODULE_LICENSE("GPL");
80 MODULE_DESCRIPTION("Broadcom NetXtreme network driver");
81 
82 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
83 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
84 #define BNXT_RX_COPY_THRESH 256
85 
86 #define BNXT_TX_PUSH_THRESH 164
87 
88 /* indexed by enum board_idx */
89 static const struct {
90 	char *name;
91 } board_info[] = {
92 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
93 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
94 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
95 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
96 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
97 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
98 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
99 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
100 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
101 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
102 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
103 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
104 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
105 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
106 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
107 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
108 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
109 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
110 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
111 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
112 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
113 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
114 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
115 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
116 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
117 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
118 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
119 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
120 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
121 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
122 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
123 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
124 	[BCM57608] = { "Broadcom BCM57608 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" },
125 	[BCM57604] = { "Broadcom BCM57604 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
126 	[BCM57602] = { "Broadcom BCM57602 NetXtreme-E 10Gb/25Gb/50Gb/100Gb Ethernet" },
127 	[BCM57601] = { "Broadcom BCM57601 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" },
128 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
129 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
130 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
131 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
132 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
133 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
134 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
135 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
136 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
137 	[NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
138 	[NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
139 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
140 	[NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
141 	[NETXTREME_E_P7_VF] = { "Broadcom BCM5760X Virtual Function" },
142 };
143 
144 static const struct pci_device_id bnxt_pci_tbl[] = {
145 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
146 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
147 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
148 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
149 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
150 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
151 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
152 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
153 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
154 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
155 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
157 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
158 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
159 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
160 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
161 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
162 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
163 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
164 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
165 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
166 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
167 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
168 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
169 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
170 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
171 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
172 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
173 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
174 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
175 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
176 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
177 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
178 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
179 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
180 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
181 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
182 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
183 	{ PCI_VDEVICE(BROADCOM, 0x1760), .driver_data = BCM57608 },
184 	{ PCI_VDEVICE(BROADCOM, 0x1761), .driver_data = BCM57604 },
185 	{ PCI_VDEVICE(BROADCOM, 0x1762), .driver_data = BCM57602 },
186 	{ PCI_VDEVICE(BROADCOM, 0x1763), .driver_data = BCM57601 },
187 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR },
188 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
189 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR },
190 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR },
191 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
192 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR },
193 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
194 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
195 #ifdef CONFIG_BNXT_SRIOV
196 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
197 	{ PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
198 	{ PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
199 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
200 	{ PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
201 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
202 	{ PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
203 	{ PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
204 	{ PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
205 	{ PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
206 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
207 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
208 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
209 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
210 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
211 	{ PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
212 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
213 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
214 	{ PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
215 	{ PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
216 	{ PCI_VDEVICE(BROADCOM, 0x1819), .driver_data = NETXTREME_E_P7_VF },
217 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
218 #endif
219 	{ 0 }
220 };
221 
222 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
223 
224 static const u16 bnxt_vf_req_snif[] = {
225 	HWRM_FUNC_CFG,
226 	HWRM_FUNC_VF_CFG,
227 	HWRM_PORT_PHY_QCFG,
228 	HWRM_CFA_L2_FILTER_ALLOC,
229 };
230 
231 static const u16 bnxt_async_events_arr[] = {
232 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
233 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
234 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
235 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
236 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
237 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
238 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
239 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
240 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
241 	ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
242 	ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE,
243 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
244 	ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
245 	ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP,
246 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT,
247 	ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE,
248 };
249 
250 static struct workqueue_struct *bnxt_pf_wq;
251 
252 #define BNXT_IPV6_MASK_ALL {{{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, \
253 			       0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }}}
254 #define BNXT_IPV6_MASK_NONE {{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }}}
255 
256 const struct bnxt_flow_masks BNXT_FLOW_MASK_NONE = {
257 	.ports = {
258 		.src = 0,
259 		.dst = 0,
260 	},
261 	.addrs = {
262 		.v6addrs = {
263 			.src = BNXT_IPV6_MASK_NONE,
264 			.dst = BNXT_IPV6_MASK_NONE,
265 		},
266 	},
267 };
268 
269 const struct bnxt_flow_masks BNXT_FLOW_IPV6_MASK_ALL = {
270 	.ports = {
271 		.src = cpu_to_be16(0xffff),
272 		.dst = cpu_to_be16(0xffff),
273 	},
274 	.addrs = {
275 		.v6addrs = {
276 			.src = BNXT_IPV6_MASK_ALL,
277 			.dst = BNXT_IPV6_MASK_ALL,
278 		},
279 	},
280 };
281 
282 const struct bnxt_flow_masks BNXT_FLOW_IPV4_MASK_ALL = {
283 	.ports = {
284 		.src = cpu_to_be16(0xffff),
285 		.dst = cpu_to_be16(0xffff),
286 	},
287 	.addrs = {
288 		.v4addrs = {
289 			.src = cpu_to_be32(0xffffffff),
290 			.dst = cpu_to_be32(0xffffffff),
291 		},
292 	},
293 };
294 
295 static bool bnxt_vf_pciid(enum board_idx idx)
296 {
297 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
298 		idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
299 		idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
300 		idx == NETXTREME_E_P5_VF_HV || idx == NETXTREME_E_P7_VF);
301 }
302 
303 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
304 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
305 
306 #define BNXT_DB_CQ(db, idx)						\
307 	writel(DB_CP_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell)
308 
309 #define BNXT_DB_NQ_P5(db, idx)						\
310 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | DB_RING_IDX(db, idx),\
311 		    (db)->doorbell)
312 
313 #define BNXT_DB_NQ_P7(db, idx)						\
314 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_MASK |		\
315 		    DB_RING_IDX(db, idx), (db)->doorbell)
316 
317 #define BNXT_DB_CQ_ARM(db, idx)						\
318 	writel(DB_CP_REARM_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell)
319 
320 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
321 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM |		\
322 		    DB_RING_IDX(db, idx), (db)->doorbell)
323 
324 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
325 {
326 	if (bp->flags & BNXT_FLAG_CHIP_P7)
327 		BNXT_DB_NQ_P7(db, idx);
328 	else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
329 		BNXT_DB_NQ_P5(db, idx);
330 	else
331 		BNXT_DB_CQ(db, idx);
332 }
333 
334 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
335 {
336 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
337 		BNXT_DB_NQ_ARM_P5(db, idx);
338 	else
339 		BNXT_DB_CQ_ARM(db, idx);
340 }
341 
342 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
343 {
344 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
345 		bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL |
346 			    DB_RING_IDX(db, idx), db->doorbell);
347 	else
348 		BNXT_DB_CQ(db, idx);
349 }
350 
351 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
352 {
353 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
354 		return;
355 
356 	if (BNXT_PF(bp))
357 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
358 	else
359 		schedule_delayed_work(&bp->fw_reset_task, delay);
360 }
361 
362 static void __bnxt_queue_sp_work(struct bnxt *bp)
363 {
364 	if (BNXT_PF(bp))
365 		queue_work(bnxt_pf_wq, &bp->sp_task);
366 	else
367 		schedule_work(&bp->sp_task);
368 }
369 
370 static void bnxt_queue_sp_work(struct bnxt *bp, unsigned int event)
371 {
372 	set_bit(event, &bp->sp_event);
373 	__bnxt_queue_sp_work(bp);
374 }
375 
376 static void bnxt_sched_reset_rxr(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
377 {
378 	if (!rxr->bnapi->in_reset) {
379 		rxr->bnapi->in_reset = true;
380 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
381 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
382 		else
383 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
384 		__bnxt_queue_sp_work(bp);
385 	}
386 	rxr->rx_next_cons = 0xffff;
387 }
388 
389 void bnxt_sched_reset_txr(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
390 			  u16 curr)
391 {
392 	struct bnxt_napi *bnapi = txr->bnapi;
393 
394 	if (bnapi->tx_fault)
395 		return;
396 
397 	netdev_err(bp->dev, "Invalid Tx completion (ring:%d tx_hw_cons:%u cons:%u prod:%u curr:%u)",
398 		   txr->txq_index, txr->tx_hw_cons,
399 		   txr->tx_cons, txr->tx_prod, curr);
400 	WARN_ON_ONCE(1);
401 	bnapi->tx_fault = 1;
402 	bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT);
403 }
404 
405 const u16 bnxt_lhint_arr[] = {
406 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
407 	TX_BD_FLAGS_LHINT_512_TO_1023,
408 	TX_BD_FLAGS_LHINT_1024_TO_2047,
409 	TX_BD_FLAGS_LHINT_1024_TO_2047,
410 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
411 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
412 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
413 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
414 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
415 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
416 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
417 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
418 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
419 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
420 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
421 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
422 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
423 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
424 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
425 };
426 
427 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
428 {
429 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
430 
431 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
432 		return 0;
433 
434 	return md_dst->u.port_info.port_id;
435 }
436 
437 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
438 			     u16 prod)
439 {
440 	/* Sync BD data before updating doorbell */
441 	wmb();
442 	bnxt_db_write(bp, &txr->tx_db, prod);
443 	txr->kick_pending = 0;
444 }
445 
446 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
447 {
448 	struct bnxt *bp = netdev_priv(dev);
449 	struct tx_bd *txbd, *txbd0;
450 	struct tx_bd_ext *txbd1;
451 	struct netdev_queue *txq;
452 	int i;
453 	dma_addr_t mapping;
454 	unsigned int length, pad = 0;
455 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
456 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
457 	struct pci_dev *pdev = bp->pdev;
458 	u16 prod, last_frag, txts_prod;
459 	struct bnxt_tx_ring_info *txr;
460 	struct bnxt_sw_tx_bd *tx_buf;
461 	__le32 lflags = 0;
462 
463 	i = skb_get_queue_mapping(skb);
464 	if (unlikely(i >= bp->tx_nr_rings)) {
465 		dev_kfree_skb_any(skb);
466 		dev_core_stats_tx_dropped_inc(dev);
467 		return NETDEV_TX_OK;
468 	}
469 
470 	txq = netdev_get_tx_queue(dev, i);
471 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
472 	prod = txr->tx_prod;
473 
474 	free_size = bnxt_tx_avail(bp, txr);
475 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
476 		/* We must have raced with NAPI cleanup */
477 		if (net_ratelimit() && txr->kick_pending)
478 			netif_warn(bp, tx_err, dev,
479 				   "bnxt: ring busy w/ flush pending!\n");
480 		if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr),
481 					bp->tx_wake_thresh))
482 			return NETDEV_TX_BUSY;
483 	}
484 
485 	if (unlikely(ipv6_hopopt_jumbo_remove(skb)))
486 		goto tx_free;
487 
488 	length = skb->len;
489 	len = skb_headlen(skb);
490 	last_frag = skb_shinfo(skb)->nr_frags;
491 
492 	txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
493 
494 	tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
495 	tx_buf->skb = skb;
496 	tx_buf->nr_frags = last_frag;
497 
498 	vlan_tag_flags = 0;
499 	cfa_action = bnxt_xmit_get_cfa_action(skb);
500 	if (skb_vlan_tag_present(skb)) {
501 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
502 				 skb_vlan_tag_get(skb);
503 		/* Currently supports 8021Q, 8021AD vlan offloads
504 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
505 		 */
506 		if (skb->vlan_proto == htons(ETH_P_8021Q))
507 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
508 	}
509 
510 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && ptp &&
511 	    ptp->tx_tstamp_en) {
512 		if (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) {
513 			lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
514 			tx_buf->is_ts_pkt = 1;
515 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
516 		} else if (!skb_is_gso(skb)) {
517 			u16 seq_id, hdr_off;
518 
519 			if (!bnxt_ptp_parse(skb, &seq_id, &hdr_off) &&
520 			    !bnxt_ptp_get_txts_prod(ptp, &txts_prod)) {
521 				if (vlan_tag_flags)
522 					hdr_off += VLAN_HLEN;
523 				lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
524 				tx_buf->is_ts_pkt = 1;
525 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
526 
527 				ptp->txts_req[txts_prod].tx_seqid = seq_id;
528 				ptp->txts_req[txts_prod].tx_hdr_off = hdr_off;
529 				tx_buf->txts_prod = txts_prod;
530 			}
531 		}
532 	}
533 	if (unlikely(skb->no_fcs))
534 		lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
535 
536 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh &&
537 	    !lflags) {
538 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
539 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
540 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
541 		void __iomem *db = txr->tx_db.doorbell;
542 		void *pdata = tx_push_buf->data;
543 		u64 *end;
544 		int j, push_len;
545 
546 		/* Set COAL_NOW to be ready quickly for the next push */
547 		tx_push->tx_bd_len_flags_type =
548 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
549 					TX_BD_TYPE_LONG_TX_BD |
550 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
551 					TX_BD_FLAGS_COAL_NOW |
552 					TX_BD_FLAGS_PACKET_END |
553 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
554 
555 		if (skb->ip_summed == CHECKSUM_PARTIAL)
556 			tx_push1->tx_bd_hsize_lflags =
557 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
558 		else
559 			tx_push1->tx_bd_hsize_lflags = 0;
560 
561 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
562 		tx_push1->tx_bd_cfa_action =
563 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
564 
565 		end = pdata + length;
566 		end = PTR_ALIGN(end, 8) - 1;
567 		*end = 0;
568 
569 		skb_copy_from_linear_data(skb, pdata, len);
570 		pdata += len;
571 		for (j = 0; j < last_frag; j++) {
572 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
573 			void *fptr;
574 
575 			fptr = skb_frag_address_safe(frag);
576 			if (!fptr)
577 				goto normal_tx;
578 
579 			memcpy(pdata, fptr, skb_frag_size(frag));
580 			pdata += skb_frag_size(frag);
581 		}
582 
583 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
584 		txbd->tx_bd_haddr = txr->data_mapping;
585 		txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2);
586 		prod = NEXT_TX(prod);
587 		tx_push->tx_bd_opaque = txbd->tx_bd_opaque;
588 		txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
589 		memcpy(txbd, tx_push1, sizeof(*txbd));
590 		prod = NEXT_TX(prod);
591 		tx_push->doorbell =
592 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH |
593 				    DB_RING_IDX(&txr->tx_db, prod));
594 		WRITE_ONCE(txr->tx_prod, prod);
595 
596 		tx_buf->is_push = 1;
597 		netdev_tx_sent_queue(txq, skb->len);
598 		wmb();	/* Sync is_push and byte queue before pushing data */
599 
600 		push_len = (length + sizeof(*tx_push) + 7) / 8;
601 		if (push_len > 16) {
602 			__iowrite64_copy(db, tx_push_buf, 16);
603 			__iowrite32_copy(db + 4, tx_push_buf + 1,
604 					 (push_len - 16) << 1);
605 		} else {
606 			__iowrite64_copy(db, tx_push_buf, push_len);
607 		}
608 
609 		goto tx_done;
610 	}
611 
612 normal_tx:
613 	if (length < BNXT_MIN_PKT_SIZE) {
614 		pad = BNXT_MIN_PKT_SIZE - length;
615 		if (skb_pad(skb, pad))
616 			/* SKB already freed. */
617 			goto tx_kick_pending;
618 		length = BNXT_MIN_PKT_SIZE;
619 	}
620 
621 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
622 
623 	if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
624 		goto tx_free;
625 
626 	dma_unmap_addr_set(tx_buf, mapping, mapping);
627 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
628 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
629 
630 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
631 	txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2 + last_frag);
632 
633 	prod = NEXT_TX(prod);
634 	txbd1 = (struct tx_bd_ext *)
635 		&txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
636 
637 	txbd1->tx_bd_hsize_lflags = lflags;
638 	if (skb_is_gso(skb)) {
639 		bool udp_gso = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4);
640 		u32 hdr_len;
641 
642 		if (skb->encapsulation) {
643 			if (udp_gso)
644 				hdr_len = skb_inner_transport_offset(skb) +
645 					  sizeof(struct udphdr);
646 			else
647 				hdr_len = skb_inner_tcp_all_headers(skb);
648 		} else if (udp_gso) {
649 			hdr_len = skb_transport_offset(skb) +
650 				  sizeof(struct udphdr);
651 		} else {
652 			hdr_len = skb_tcp_all_headers(skb);
653 		}
654 
655 		txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
656 					TX_BD_FLAGS_T_IPID |
657 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
658 		length = skb_shinfo(skb)->gso_size;
659 		txbd1->tx_bd_mss = cpu_to_le32(length);
660 		length += hdr_len;
661 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
662 		txbd1->tx_bd_hsize_lflags |=
663 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
664 		txbd1->tx_bd_mss = 0;
665 	}
666 
667 	length >>= 9;
668 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
669 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
670 				     skb->len);
671 		i = 0;
672 		goto tx_dma_error;
673 	}
674 	flags |= bnxt_lhint_arr[length];
675 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
676 
677 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
678 	txbd1->tx_bd_cfa_action =
679 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
680 	txbd0 = txbd;
681 	for (i = 0; i < last_frag; i++) {
682 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
683 
684 		prod = NEXT_TX(prod);
685 		txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
686 
687 		len = skb_frag_size(frag);
688 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
689 					   DMA_TO_DEVICE);
690 
691 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
692 			goto tx_dma_error;
693 
694 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
695 		dma_unmap_addr_set(tx_buf, mapping, mapping);
696 
697 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
698 
699 		flags = len << TX_BD_LEN_SHIFT;
700 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
701 	}
702 
703 	flags &= ~TX_BD_LEN;
704 	txbd->tx_bd_len_flags_type =
705 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
706 			    TX_BD_FLAGS_PACKET_END);
707 
708 	netdev_tx_sent_queue(txq, skb->len);
709 
710 	skb_tx_timestamp(skb);
711 
712 	prod = NEXT_TX(prod);
713 	WRITE_ONCE(txr->tx_prod, prod);
714 
715 	if (!netdev_xmit_more() || netif_xmit_stopped(txq)) {
716 		bnxt_txr_db_kick(bp, txr, prod);
717 	} else {
718 		if (free_size >= bp->tx_wake_thresh)
719 			txbd0->tx_bd_len_flags_type |=
720 				cpu_to_le32(TX_BD_FLAGS_NO_CMPL);
721 		txr->kick_pending = 1;
722 	}
723 
724 tx_done:
725 
726 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
727 		if (netdev_xmit_more() && !tx_buf->is_push) {
728 			txbd0->tx_bd_len_flags_type &=
729 				cpu_to_le32(~TX_BD_FLAGS_NO_CMPL);
730 			bnxt_txr_db_kick(bp, txr, prod);
731 		}
732 
733 		netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr),
734 				   bp->tx_wake_thresh);
735 	}
736 	return NETDEV_TX_OK;
737 
738 tx_dma_error:
739 	last_frag = i;
740 
741 	/* start back at beginning and unmap skb */
742 	prod = txr->tx_prod;
743 	tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
744 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
745 			 skb_headlen(skb), DMA_TO_DEVICE);
746 	prod = NEXT_TX(prod);
747 
748 	/* unmap remaining mapped pages */
749 	for (i = 0; i < last_frag; i++) {
750 		prod = NEXT_TX(prod);
751 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
752 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
753 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
754 			       DMA_TO_DEVICE);
755 	}
756 
757 tx_free:
758 	dev_kfree_skb_any(skb);
759 tx_kick_pending:
760 	if (BNXT_TX_PTP_IS_SET(lflags)) {
761 		txr->tx_buf_ring[txr->tx_prod].is_ts_pkt = 0;
762 		atomic64_inc(&bp->ptp_cfg->stats.ts_err);
763 		if (!(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP))
764 			/* set SKB to err so PTP worker will clean up */
765 			ptp->txts_req[txts_prod].tx_skb = ERR_PTR(-EIO);
766 	}
767 	if (txr->kick_pending)
768 		bnxt_txr_db_kick(bp, txr, txr->tx_prod);
769 	txr->tx_buf_ring[txr->tx_prod].skb = NULL;
770 	dev_core_stats_tx_dropped_inc(dev);
771 	return NETDEV_TX_OK;
772 }
773 
774 /* Returns true if some remaining TX packets not processed. */
775 static bool __bnxt_tx_int(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
776 			  int budget)
777 {
778 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
779 	struct pci_dev *pdev = bp->pdev;
780 	u16 hw_cons = txr->tx_hw_cons;
781 	unsigned int tx_bytes = 0;
782 	u16 cons = txr->tx_cons;
783 	int tx_pkts = 0;
784 	bool rc = false;
785 
786 	while (RING_TX(bp, cons) != hw_cons) {
787 		struct bnxt_sw_tx_bd *tx_buf;
788 		struct sk_buff *skb;
789 		bool is_ts_pkt;
790 		int j, last;
791 
792 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)];
793 		skb = tx_buf->skb;
794 
795 		if (unlikely(!skb)) {
796 			bnxt_sched_reset_txr(bp, txr, cons);
797 			return rc;
798 		}
799 
800 		is_ts_pkt = tx_buf->is_ts_pkt;
801 		if (is_ts_pkt && (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) {
802 			rc = true;
803 			break;
804 		}
805 
806 		cons = NEXT_TX(cons);
807 		tx_pkts++;
808 		tx_bytes += skb->len;
809 		tx_buf->skb = NULL;
810 		tx_buf->is_ts_pkt = 0;
811 
812 		if (tx_buf->is_push) {
813 			tx_buf->is_push = 0;
814 			goto next_tx_int;
815 		}
816 
817 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
818 				 skb_headlen(skb), DMA_TO_DEVICE);
819 		last = tx_buf->nr_frags;
820 
821 		for (j = 0; j < last; j++) {
822 			cons = NEXT_TX(cons);
823 			tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)];
824 			dma_unmap_page(
825 				&pdev->dev,
826 				dma_unmap_addr(tx_buf, mapping),
827 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
828 				DMA_TO_DEVICE);
829 		}
830 		if (unlikely(is_ts_pkt)) {
831 			if (BNXT_CHIP_P5(bp)) {
832 				/* PTP worker takes ownership of the skb */
833 				bnxt_get_tx_ts_p5(bp, skb, tx_buf->txts_prod);
834 				skb = NULL;
835 			}
836 		}
837 
838 next_tx_int:
839 		cons = NEXT_TX(cons);
840 
841 		dev_consume_skb_any(skb);
842 	}
843 
844 	WRITE_ONCE(txr->tx_cons, cons);
845 
846 	__netif_txq_completed_wake(txq, tx_pkts, tx_bytes,
847 				   bnxt_tx_avail(bp, txr), bp->tx_wake_thresh,
848 				   READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING);
849 
850 	return rc;
851 }
852 
853 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
854 {
855 	struct bnxt_tx_ring_info *txr;
856 	bool more = false;
857 	int i;
858 
859 	bnxt_for_each_napi_tx(i, bnapi, txr) {
860 		if (txr->tx_hw_cons != RING_TX(bp, txr->tx_cons))
861 			more |= __bnxt_tx_int(bp, txr, budget);
862 	}
863 	if (!more)
864 		bnapi->events &= ~BNXT_TX_CMP_EVENT;
865 }
866 
867 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
868 					 struct bnxt_rx_ring_info *rxr,
869 					 unsigned int *offset,
870 					 gfp_t gfp)
871 {
872 	struct page *page;
873 
874 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
875 		page = page_pool_dev_alloc_frag(rxr->page_pool, offset,
876 						BNXT_RX_PAGE_SIZE);
877 	} else {
878 		page = page_pool_dev_alloc_pages(rxr->page_pool);
879 		*offset = 0;
880 	}
881 	if (!page)
882 		return NULL;
883 
884 	*mapping = page_pool_get_dma_addr(page) + *offset;
885 	return page;
886 }
887 
888 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping,
889 				       gfp_t gfp)
890 {
891 	u8 *data;
892 	struct pci_dev *pdev = bp->pdev;
893 
894 	if (gfp == GFP_ATOMIC)
895 		data = napi_alloc_frag(bp->rx_buf_size);
896 	else
897 		data = netdev_alloc_frag(bp->rx_buf_size);
898 	if (!data)
899 		return NULL;
900 
901 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
902 					bp->rx_buf_use_size, bp->rx_dir,
903 					DMA_ATTR_WEAK_ORDERING);
904 
905 	if (dma_mapping_error(&pdev->dev, *mapping)) {
906 		skb_free_frag(data);
907 		data = NULL;
908 	}
909 	return data;
910 }
911 
912 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
913 		       u16 prod, gfp_t gfp)
914 {
915 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
916 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
917 	dma_addr_t mapping;
918 
919 	if (BNXT_RX_PAGE_MODE(bp)) {
920 		unsigned int offset;
921 		struct page *page =
922 			__bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp);
923 
924 		if (!page)
925 			return -ENOMEM;
926 
927 		mapping += bp->rx_dma_offset;
928 		rx_buf->data = page;
929 		rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset;
930 	} else {
931 		u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp);
932 
933 		if (!data)
934 			return -ENOMEM;
935 
936 		rx_buf->data = data;
937 		rx_buf->data_ptr = data + bp->rx_offset;
938 	}
939 	rx_buf->mapping = mapping;
940 
941 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
942 	return 0;
943 }
944 
945 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
946 {
947 	u16 prod = rxr->rx_prod;
948 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
949 	struct bnxt *bp = rxr->bnapi->bp;
950 	struct rx_bd *cons_bd, *prod_bd;
951 
952 	prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
953 	cons_rx_buf = &rxr->rx_buf_ring[cons];
954 
955 	prod_rx_buf->data = data;
956 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
957 
958 	prod_rx_buf->mapping = cons_rx_buf->mapping;
959 
960 	prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
961 	cons_bd = &rxr->rx_desc_ring[RX_RING(bp, cons)][RX_IDX(cons)];
962 
963 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
964 }
965 
966 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
967 {
968 	u16 next, max = rxr->rx_agg_bmap_size;
969 
970 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
971 	if (next >= max)
972 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
973 	return next;
974 }
975 
976 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
977 				     struct bnxt_rx_ring_info *rxr,
978 				     u16 prod, gfp_t gfp)
979 {
980 	struct rx_bd *rxbd =
981 		&rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)];
982 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
983 	struct page *page;
984 	dma_addr_t mapping;
985 	u16 sw_prod = rxr->rx_sw_agg_prod;
986 	unsigned int offset = 0;
987 
988 	page = __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp);
989 
990 	if (!page)
991 		return -ENOMEM;
992 
993 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
994 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
995 
996 	__set_bit(sw_prod, rxr->rx_agg_bmap);
997 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
998 	rxr->rx_sw_agg_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod));
999 
1000 	rx_agg_buf->page = page;
1001 	rx_agg_buf->offset = offset;
1002 	rx_agg_buf->mapping = mapping;
1003 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
1004 	rxbd->rx_bd_opaque = sw_prod;
1005 	return 0;
1006 }
1007 
1008 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
1009 				       struct bnxt_cp_ring_info *cpr,
1010 				       u16 cp_cons, u16 curr)
1011 {
1012 	struct rx_agg_cmp *agg;
1013 
1014 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
1015 	agg = (struct rx_agg_cmp *)
1016 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1017 	return agg;
1018 }
1019 
1020 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
1021 					      struct bnxt_rx_ring_info *rxr,
1022 					      u16 agg_id, u16 curr)
1023 {
1024 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
1025 
1026 	return &tpa_info->agg_arr[curr];
1027 }
1028 
1029 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
1030 				   u16 start, u32 agg_bufs, bool tpa)
1031 {
1032 	struct bnxt_napi *bnapi = cpr->bnapi;
1033 	struct bnxt *bp = bnapi->bp;
1034 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1035 	u16 prod = rxr->rx_agg_prod;
1036 	u16 sw_prod = rxr->rx_sw_agg_prod;
1037 	bool p5_tpa = false;
1038 	u32 i;
1039 
1040 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa)
1041 		p5_tpa = true;
1042 
1043 	for (i = 0; i < agg_bufs; i++) {
1044 		u16 cons;
1045 		struct rx_agg_cmp *agg;
1046 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
1047 		struct rx_bd *prod_bd;
1048 		struct page *page;
1049 
1050 		if (p5_tpa)
1051 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
1052 		else
1053 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
1054 		cons = agg->rx_agg_cmp_opaque;
1055 		__clear_bit(cons, rxr->rx_agg_bmap);
1056 
1057 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
1058 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
1059 
1060 		__set_bit(sw_prod, rxr->rx_agg_bmap);
1061 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
1062 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1063 
1064 		/* It is possible for sw_prod to be equal to cons, so
1065 		 * set cons_rx_buf->page to NULL first.
1066 		 */
1067 		page = cons_rx_buf->page;
1068 		cons_rx_buf->page = NULL;
1069 		prod_rx_buf->page = page;
1070 		prod_rx_buf->offset = cons_rx_buf->offset;
1071 
1072 		prod_rx_buf->mapping = cons_rx_buf->mapping;
1073 
1074 		prod_bd = &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)];
1075 
1076 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
1077 		prod_bd->rx_bd_opaque = sw_prod;
1078 
1079 		prod = NEXT_RX_AGG(prod);
1080 		sw_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod));
1081 	}
1082 	rxr->rx_agg_prod = prod;
1083 	rxr->rx_sw_agg_prod = sw_prod;
1084 }
1085 
1086 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp,
1087 					      struct bnxt_rx_ring_info *rxr,
1088 					      u16 cons, void *data, u8 *data_ptr,
1089 					      dma_addr_t dma_addr,
1090 					      unsigned int offset_and_len)
1091 {
1092 	unsigned int len = offset_and_len & 0xffff;
1093 	struct page *page = data;
1094 	u16 prod = rxr->rx_prod;
1095 	struct sk_buff *skb;
1096 	int err;
1097 
1098 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1099 	if (unlikely(err)) {
1100 		bnxt_reuse_rx_data(rxr, cons, data);
1101 		return NULL;
1102 	}
1103 	dma_addr -= bp->rx_dma_offset;
1104 	dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE,
1105 				bp->rx_dir);
1106 	skb = napi_build_skb(data_ptr - bp->rx_offset, BNXT_RX_PAGE_SIZE);
1107 	if (!skb) {
1108 		page_pool_recycle_direct(rxr->page_pool, page);
1109 		return NULL;
1110 	}
1111 	skb_mark_for_recycle(skb);
1112 	skb_reserve(skb, bp->rx_offset);
1113 	__skb_put(skb, len);
1114 
1115 	return skb;
1116 }
1117 
1118 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
1119 					struct bnxt_rx_ring_info *rxr,
1120 					u16 cons, void *data, u8 *data_ptr,
1121 					dma_addr_t dma_addr,
1122 					unsigned int offset_and_len)
1123 {
1124 	unsigned int payload = offset_and_len >> 16;
1125 	unsigned int len = offset_and_len & 0xffff;
1126 	skb_frag_t *frag;
1127 	struct page *page = data;
1128 	u16 prod = rxr->rx_prod;
1129 	struct sk_buff *skb;
1130 	int off, err;
1131 
1132 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1133 	if (unlikely(err)) {
1134 		bnxt_reuse_rx_data(rxr, cons, data);
1135 		return NULL;
1136 	}
1137 	dma_addr -= bp->rx_dma_offset;
1138 	dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE,
1139 				bp->rx_dir);
1140 
1141 	if (unlikely(!payload))
1142 		payload = eth_get_headlen(bp->dev, data_ptr, len);
1143 
1144 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
1145 	if (!skb) {
1146 		page_pool_recycle_direct(rxr->page_pool, page);
1147 		return NULL;
1148 	}
1149 
1150 	skb_mark_for_recycle(skb);
1151 	off = (void *)data_ptr - page_address(page);
1152 	skb_add_rx_frag(skb, 0, page, off, len, BNXT_RX_PAGE_SIZE);
1153 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
1154 	       payload + NET_IP_ALIGN);
1155 
1156 	frag = &skb_shinfo(skb)->frags[0];
1157 	skb_frag_size_sub(frag, payload);
1158 	skb_frag_off_add(frag, payload);
1159 	skb->data_len -= payload;
1160 	skb->tail += payload;
1161 
1162 	return skb;
1163 }
1164 
1165 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
1166 				   struct bnxt_rx_ring_info *rxr, u16 cons,
1167 				   void *data, u8 *data_ptr,
1168 				   dma_addr_t dma_addr,
1169 				   unsigned int offset_and_len)
1170 {
1171 	u16 prod = rxr->rx_prod;
1172 	struct sk_buff *skb;
1173 	int err;
1174 
1175 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1176 	if (unlikely(err)) {
1177 		bnxt_reuse_rx_data(rxr, cons, data);
1178 		return NULL;
1179 	}
1180 
1181 	skb = napi_build_skb(data, bp->rx_buf_size);
1182 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1183 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1184 	if (!skb) {
1185 		skb_free_frag(data);
1186 		return NULL;
1187 	}
1188 
1189 	skb_reserve(skb, bp->rx_offset);
1190 	skb_put(skb, offset_and_len & 0xffff);
1191 	return skb;
1192 }
1193 
1194 static u32 __bnxt_rx_agg_pages(struct bnxt *bp,
1195 			       struct bnxt_cp_ring_info *cpr,
1196 			       struct skb_shared_info *shinfo,
1197 			       u16 idx, u32 agg_bufs, bool tpa,
1198 			       struct xdp_buff *xdp)
1199 {
1200 	struct bnxt_napi *bnapi = cpr->bnapi;
1201 	struct pci_dev *pdev = bp->pdev;
1202 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1203 	u16 prod = rxr->rx_agg_prod;
1204 	u32 i, total_frag_len = 0;
1205 	bool p5_tpa = false;
1206 
1207 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa)
1208 		p5_tpa = true;
1209 
1210 	for (i = 0; i < agg_bufs; i++) {
1211 		skb_frag_t *frag = &shinfo->frags[i];
1212 		u16 cons, frag_len;
1213 		struct rx_agg_cmp *agg;
1214 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1215 		struct page *page;
1216 		dma_addr_t mapping;
1217 
1218 		if (p5_tpa)
1219 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1220 		else
1221 			agg = bnxt_get_agg(bp, cpr, idx, i);
1222 		cons = agg->rx_agg_cmp_opaque;
1223 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1224 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1225 
1226 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1227 		skb_frag_fill_page_desc(frag, cons_rx_buf->page,
1228 					cons_rx_buf->offset, frag_len);
1229 		shinfo->nr_frags = i + 1;
1230 		__clear_bit(cons, rxr->rx_agg_bmap);
1231 
1232 		/* It is possible for bnxt_alloc_rx_page() to allocate
1233 		 * a sw_prod index that equals the cons index, so we
1234 		 * need to clear the cons entry now.
1235 		 */
1236 		mapping = cons_rx_buf->mapping;
1237 		page = cons_rx_buf->page;
1238 		cons_rx_buf->page = NULL;
1239 
1240 		if (xdp && page_is_pfmemalloc(page))
1241 			xdp_buff_set_frag_pfmemalloc(xdp);
1242 
1243 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1244 			--shinfo->nr_frags;
1245 			cons_rx_buf->page = page;
1246 
1247 			/* Update prod since possibly some pages have been
1248 			 * allocated already.
1249 			 */
1250 			rxr->rx_agg_prod = prod;
1251 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1252 			return 0;
1253 		}
1254 
1255 		dma_sync_single_for_cpu(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1256 					bp->rx_dir);
1257 
1258 		total_frag_len += frag_len;
1259 		prod = NEXT_RX_AGG(prod);
1260 	}
1261 	rxr->rx_agg_prod = prod;
1262 	return total_frag_len;
1263 }
1264 
1265 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp,
1266 					     struct bnxt_cp_ring_info *cpr,
1267 					     struct sk_buff *skb, u16 idx,
1268 					     u32 agg_bufs, bool tpa)
1269 {
1270 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1271 	u32 total_frag_len = 0;
1272 
1273 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx,
1274 					     agg_bufs, tpa, NULL);
1275 	if (!total_frag_len) {
1276 		skb_mark_for_recycle(skb);
1277 		dev_kfree_skb(skb);
1278 		return NULL;
1279 	}
1280 
1281 	skb->data_len += total_frag_len;
1282 	skb->len += total_frag_len;
1283 	skb->truesize += BNXT_RX_PAGE_SIZE * agg_bufs;
1284 	return skb;
1285 }
1286 
1287 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp,
1288 				 struct bnxt_cp_ring_info *cpr,
1289 				 struct xdp_buff *xdp, u16 idx,
1290 				 u32 agg_bufs, bool tpa)
1291 {
1292 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp);
1293 	u32 total_frag_len = 0;
1294 
1295 	if (!xdp_buff_has_frags(xdp))
1296 		shinfo->nr_frags = 0;
1297 
1298 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo,
1299 					     idx, agg_bufs, tpa, xdp);
1300 	if (total_frag_len) {
1301 		xdp_buff_set_frags_flag(xdp);
1302 		shinfo->nr_frags = agg_bufs;
1303 		shinfo->xdp_frags_size = total_frag_len;
1304 	}
1305 	return total_frag_len;
1306 }
1307 
1308 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1309 			       u8 agg_bufs, u32 *raw_cons)
1310 {
1311 	u16 last;
1312 	struct rx_agg_cmp *agg;
1313 
1314 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1315 	last = RING_CMP(*raw_cons);
1316 	agg = (struct rx_agg_cmp *)
1317 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1318 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1319 }
1320 
1321 static struct sk_buff *bnxt_copy_data(struct bnxt_napi *bnapi, u8 *data,
1322 				      unsigned int len,
1323 				      dma_addr_t mapping)
1324 {
1325 	struct bnxt *bp = bnapi->bp;
1326 	struct pci_dev *pdev = bp->pdev;
1327 	struct sk_buff *skb;
1328 
1329 	skb = napi_alloc_skb(&bnapi->napi, len);
1330 	if (!skb)
1331 		return NULL;
1332 
1333 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1334 				bp->rx_dir);
1335 
1336 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1337 	       len + NET_IP_ALIGN);
1338 
1339 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1340 				   bp->rx_dir);
1341 
1342 	skb_put(skb, len);
1343 
1344 	return skb;
1345 }
1346 
1347 static struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1348 				     unsigned int len,
1349 				     dma_addr_t mapping)
1350 {
1351 	return bnxt_copy_data(bnapi, data, len, mapping);
1352 }
1353 
1354 static struct sk_buff *bnxt_copy_xdp(struct bnxt_napi *bnapi,
1355 				     struct xdp_buff *xdp,
1356 				     unsigned int len,
1357 				     dma_addr_t mapping)
1358 {
1359 	unsigned int metasize = 0;
1360 	u8 *data = xdp->data;
1361 	struct sk_buff *skb;
1362 
1363 	len = xdp->data_end - xdp->data_meta;
1364 	metasize = xdp->data - xdp->data_meta;
1365 	data = xdp->data_meta;
1366 
1367 	skb = bnxt_copy_data(bnapi, data, len, mapping);
1368 	if (!skb)
1369 		return skb;
1370 
1371 	if (metasize) {
1372 		skb_metadata_set(skb, metasize);
1373 		__skb_pull(skb, metasize);
1374 	}
1375 
1376 	return skb;
1377 }
1378 
1379 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1380 			   u32 *raw_cons, void *cmp)
1381 {
1382 	struct rx_cmp *rxcmp = cmp;
1383 	u32 tmp_raw_cons = *raw_cons;
1384 	u8 cmp_type, agg_bufs = 0;
1385 
1386 	cmp_type = RX_CMP_TYPE(rxcmp);
1387 
1388 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1389 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1390 			    RX_CMP_AGG_BUFS) >>
1391 			   RX_CMP_AGG_BUFS_SHIFT;
1392 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1393 		struct rx_tpa_end_cmp *tpa_end = cmp;
1394 
1395 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
1396 			return 0;
1397 
1398 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1399 	}
1400 
1401 	if (agg_bufs) {
1402 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1403 			return -EBUSY;
1404 	}
1405 	*raw_cons = tmp_raw_cons;
1406 	return 0;
1407 }
1408 
1409 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1410 {
1411 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1412 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1413 
1414 	if (test_bit(idx, map->agg_idx_bmap))
1415 		idx = find_first_zero_bit(map->agg_idx_bmap,
1416 					  BNXT_AGG_IDX_BMAP_SIZE);
1417 	__set_bit(idx, map->agg_idx_bmap);
1418 	map->agg_id_tbl[agg_id] = idx;
1419 	return idx;
1420 }
1421 
1422 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1423 {
1424 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1425 
1426 	__clear_bit(idx, map->agg_idx_bmap);
1427 }
1428 
1429 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1430 {
1431 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1432 
1433 	return map->agg_id_tbl[agg_id];
1434 }
1435 
1436 static void bnxt_tpa_metadata(struct bnxt_tpa_info *tpa_info,
1437 			      struct rx_tpa_start_cmp *tpa_start,
1438 			      struct rx_tpa_start_cmp_ext *tpa_start1)
1439 {
1440 	tpa_info->cfa_code_valid = 1;
1441 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1442 	tpa_info->vlan_valid = 0;
1443 	if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) {
1444 		tpa_info->vlan_valid = 1;
1445 		tpa_info->metadata =
1446 			le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1447 	}
1448 }
1449 
1450 static void bnxt_tpa_metadata_v2(struct bnxt_tpa_info *tpa_info,
1451 				 struct rx_tpa_start_cmp *tpa_start,
1452 				 struct rx_tpa_start_cmp_ext *tpa_start1)
1453 {
1454 	tpa_info->vlan_valid = 0;
1455 	if (TPA_START_VLAN_VALID(tpa_start)) {
1456 		u32 tpid_sel = TPA_START_VLAN_TPID_SEL(tpa_start);
1457 		u32 vlan_proto = ETH_P_8021Q;
1458 
1459 		tpa_info->vlan_valid = 1;
1460 		if (tpid_sel == RX_TPA_START_METADATA1_TPID_8021AD)
1461 			vlan_proto = ETH_P_8021AD;
1462 		tpa_info->metadata = vlan_proto << 16 |
1463 				     TPA_START_METADATA0_TCI(tpa_start1);
1464 	}
1465 }
1466 
1467 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1468 			   u8 cmp_type, struct rx_tpa_start_cmp *tpa_start,
1469 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1470 {
1471 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1472 	struct bnxt_tpa_info *tpa_info;
1473 	u16 cons, prod, agg_id;
1474 	struct rx_bd *prod_bd;
1475 	dma_addr_t mapping;
1476 
1477 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
1478 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1479 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1480 	} else {
1481 		agg_id = TPA_START_AGG_ID(tpa_start);
1482 	}
1483 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1484 	prod = rxr->rx_prod;
1485 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1486 	prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
1487 	tpa_info = &rxr->rx_tpa[agg_id];
1488 
1489 	if (unlikely(cons != rxr->rx_next_cons ||
1490 		     TPA_START_ERROR(tpa_start))) {
1491 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1492 			    cons, rxr->rx_next_cons,
1493 			    TPA_START_ERROR_CODE(tpa_start1));
1494 		bnxt_sched_reset_rxr(bp, rxr);
1495 		return;
1496 	}
1497 	prod_rx_buf->data = tpa_info->data;
1498 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1499 
1500 	mapping = tpa_info->mapping;
1501 	prod_rx_buf->mapping = mapping;
1502 
1503 	prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
1504 
1505 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1506 
1507 	tpa_info->data = cons_rx_buf->data;
1508 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1509 	cons_rx_buf->data = NULL;
1510 	tpa_info->mapping = cons_rx_buf->mapping;
1511 
1512 	tpa_info->len =
1513 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1514 				RX_TPA_START_CMP_LEN_SHIFT;
1515 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1516 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1517 		tpa_info->gso_type = SKB_GSO_TCPV4;
1518 		if (TPA_START_IS_IPV6(tpa_start1))
1519 			tpa_info->gso_type = SKB_GSO_TCPV6;
1520 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1521 		else if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP &&
1522 			 TPA_START_HASH_TYPE(tpa_start) == 3)
1523 			tpa_info->gso_type = SKB_GSO_TCPV6;
1524 		tpa_info->rss_hash =
1525 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1526 	} else {
1527 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1528 		tpa_info->gso_type = 0;
1529 		netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1530 	}
1531 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1532 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1533 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP)
1534 		bnxt_tpa_metadata(tpa_info, tpa_start, tpa_start1);
1535 	else
1536 		bnxt_tpa_metadata_v2(tpa_info, tpa_start, tpa_start1);
1537 	tpa_info->agg_count = 0;
1538 
1539 	rxr->rx_prod = NEXT_RX(prod);
1540 	cons = RING_RX(bp, NEXT_RX(cons));
1541 	rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons));
1542 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1543 
1544 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1545 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1546 	cons_rx_buf->data = NULL;
1547 }
1548 
1549 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1550 {
1551 	if (agg_bufs)
1552 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1553 }
1554 
1555 #ifdef CONFIG_INET
1556 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1557 {
1558 	struct udphdr *uh = NULL;
1559 
1560 	if (ip_proto == htons(ETH_P_IP)) {
1561 		struct iphdr *iph = (struct iphdr *)skb->data;
1562 
1563 		if (iph->protocol == IPPROTO_UDP)
1564 			uh = (struct udphdr *)(iph + 1);
1565 	} else {
1566 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1567 
1568 		if (iph->nexthdr == IPPROTO_UDP)
1569 			uh = (struct udphdr *)(iph + 1);
1570 	}
1571 	if (uh) {
1572 		if (uh->check)
1573 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1574 		else
1575 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1576 	}
1577 }
1578 #endif
1579 
1580 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1581 					   int payload_off, int tcp_ts,
1582 					   struct sk_buff *skb)
1583 {
1584 #ifdef CONFIG_INET
1585 	struct tcphdr *th;
1586 	int len, nw_off;
1587 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1588 	u32 hdr_info = tpa_info->hdr_info;
1589 	bool loopback = false;
1590 
1591 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1592 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1593 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1594 
1595 	/* If the packet is an internal loopback packet, the offsets will
1596 	 * have an extra 4 bytes.
1597 	 */
1598 	if (inner_mac_off == 4) {
1599 		loopback = true;
1600 	} else if (inner_mac_off > 4) {
1601 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1602 					    ETH_HLEN - 2));
1603 
1604 		/* We only support inner iPv4/ipv6.  If we don't see the
1605 		 * correct protocol ID, it must be a loopback packet where
1606 		 * the offsets are off by 4.
1607 		 */
1608 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1609 			loopback = true;
1610 	}
1611 	if (loopback) {
1612 		/* internal loopback packet, subtract all offsets by 4 */
1613 		inner_ip_off -= 4;
1614 		inner_mac_off -= 4;
1615 		outer_ip_off -= 4;
1616 	}
1617 
1618 	nw_off = inner_ip_off - ETH_HLEN;
1619 	skb_set_network_header(skb, nw_off);
1620 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1621 		struct ipv6hdr *iph = ipv6_hdr(skb);
1622 
1623 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1624 		len = skb->len - skb_transport_offset(skb);
1625 		th = tcp_hdr(skb);
1626 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1627 	} else {
1628 		struct iphdr *iph = ip_hdr(skb);
1629 
1630 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1631 		len = skb->len - skb_transport_offset(skb);
1632 		th = tcp_hdr(skb);
1633 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1634 	}
1635 
1636 	if (inner_mac_off) { /* tunnel */
1637 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1638 					    ETH_HLEN - 2));
1639 
1640 		bnxt_gro_tunnel(skb, proto);
1641 	}
1642 #endif
1643 	return skb;
1644 }
1645 
1646 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1647 					   int payload_off, int tcp_ts,
1648 					   struct sk_buff *skb)
1649 {
1650 #ifdef CONFIG_INET
1651 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1652 	u32 hdr_info = tpa_info->hdr_info;
1653 	int iphdr_len, nw_off;
1654 
1655 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1656 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1657 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1658 
1659 	nw_off = inner_ip_off - ETH_HLEN;
1660 	skb_set_network_header(skb, nw_off);
1661 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1662 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1663 	skb_set_transport_header(skb, nw_off + iphdr_len);
1664 
1665 	if (inner_mac_off) { /* tunnel */
1666 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1667 					    ETH_HLEN - 2));
1668 
1669 		bnxt_gro_tunnel(skb, proto);
1670 	}
1671 #endif
1672 	return skb;
1673 }
1674 
1675 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1676 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1677 
1678 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1679 					   int payload_off, int tcp_ts,
1680 					   struct sk_buff *skb)
1681 {
1682 #ifdef CONFIG_INET
1683 	struct tcphdr *th;
1684 	int len, nw_off, tcp_opt_len = 0;
1685 
1686 	if (tcp_ts)
1687 		tcp_opt_len = 12;
1688 
1689 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1690 		struct iphdr *iph;
1691 
1692 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1693 			 ETH_HLEN;
1694 		skb_set_network_header(skb, nw_off);
1695 		iph = ip_hdr(skb);
1696 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1697 		len = skb->len - skb_transport_offset(skb);
1698 		th = tcp_hdr(skb);
1699 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1700 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1701 		struct ipv6hdr *iph;
1702 
1703 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1704 			 ETH_HLEN;
1705 		skb_set_network_header(skb, nw_off);
1706 		iph = ipv6_hdr(skb);
1707 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1708 		len = skb->len - skb_transport_offset(skb);
1709 		th = tcp_hdr(skb);
1710 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1711 	} else {
1712 		dev_kfree_skb_any(skb);
1713 		return NULL;
1714 	}
1715 
1716 	if (nw_off) /* tunnel */
1717 		bnxt_gro_tunnel(skb, skb->protocol);
1718 #endif
1719 	return skb;
1720 }
1721 
1722 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1723 					   struct bnxt_tpa_info *tpa_info,
1724 					   struct rx_tpa_end_cmp *tpa_end,
1725 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1726 					   struct sk_buff *skb)
1727 {
1728 #ifdef CONFIG_INET
1729 	int payload_off;
1730 	u16 segs;
1731 
1732 	segs = TPA_END_TPA_SEGS(tpa_end);
1733 	if (segs == 1)
1734 		return skb;
1735 
1736 	NAPI_GRO_CB(skb)->count = segs;
1737 	skb_shinfo(skb)->gso_size =
1738 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1739 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1740 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
1741 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1742 	else
1743 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1744 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1745 	if (likely(skb))
1746 		tcp_gro_complete(skb);
1747 #endif
1748 	return skb;
1749 }
1750 
1751 /* Given the cfa_code of a received packet determine which
1752  * netdev (vf-rep or PF) the packet is destined to.
1753  */
1754 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1755 {
1756 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1757 
1758 	/* if vf-rep dev is NULL, the must belongs to the PF */
1759 	return dev ? dev : bp->dev;
1760 }
1761 
1762 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1763 					   struct bnxt_cp_ring_info *cpr,
1764 					   u32 *raw_cons,
1765 					   struct rx_tpa_end_cmp *tpa_end,
1766 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1767 					   u8 *event)
1768 {
1769 	struct bnxt_napi *bnapi = cpr->bnapi;
1770 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1771 	struct net_device *dev = bp->dev;
1772 	u8 *data_ptr, agg_bufs;
1773 	unsigned int len;
1774 	struct bnxt_tpa_info *tpa_info;
1775 	dma_addr_t mapping;
1776 	struct sk_buff *skb;
1777 	u16 idx = 0, agg_id;
1778 	void *data;
1779 	bool gro;
1780 
1781 	if (unlikely(bnapi->in_reset)) {
1782 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1783 
1784 		if (rc < 0)
1785 			return ERR_PTR(-EBUSY);
1786 		return NULL;
1787 	}
1788 
1789 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
1790 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1791 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1792 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1793 		tpa_info = &rxr->rx_tpa[agg_id];
1794 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1795 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1796 				    agg_bufs, tpa_info->agg_count);
1797 			agg_bufs = tpa_info->agg_count;
1798 		}
1799 		tpa_info->agg_count = 0;
1800 		*event |= BNXT_AGG_EVENT;
1801 		bnxt_free_agg_idx(rxr, agg_id);
1802 		idx = agg_id;
1803 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1804 	} else {
1805 		agg_id = TPA_END_AGG_ID(tpa_end);
1806 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1807 		tpa_info = &rxr->rx_tpa[agg_id];
1808 		idx = RING_CMP(*raw_cons);
1809 		if (agg_bufs) {
1810 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1811 				return ERR_PTR(-EBUSY);
1812 
1813 			*event |= BNXT_AGG_EVENT;
1814 			idx = NEXT_CMP(idx);
1815 		}
1816 		gro = !!TPA_END_GRO(tpa_end);
1817 	}
1818 	data = tpa_info->data;
1819 	data_ptr = tpa_info->data_ptr;
1820 	prefetch(data_ptr);
1821 	len = tpa_info->len;
1822 	mapping = tpa_info->mapping;
1823 
1824 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1825 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1826 		if (agg_bufs > MAX_SKB_FRAGS)
1827 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1828 				    agg_bufs, (int)MAX_SKB_FRAGS);
1829 		return NULL;
1830 	}
1831 
1832 	if (len <= bp->rx_copy_thresh) {
1833 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1834 		if (!skb) {
1835 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1836 			cpr->sw_stats->rx.rx_oom_discards += 1;
1837 			return NULL;
1838 		}
1839 	} else {
1840 		u8 *new_data;
1841 		dma_addr_t new_mapping;
1842 
1843 		new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC);
1844 		if (!new_data) {
1845 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1846 			cpr->sw_stats->rx.rx_oom_discards += 1;
1847 			return NULL;
1848 		}
1849 
1850 		tpa_info->data = new_data;
1851 		tpa_info->data_ptr = new_data + bp->rx_offset;
1852 		tpa_info->mapping = new_mapping;
1853 
1854 		skb = napi_build_skb(data, bp->rx_buf_size);
1855 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1856 				       bp->rx_buf_use_size, bp->rx_dir,
1857 				       DMA_ATTR_WEAK_ORDERING);
1858 
1859 		if (!skb) {
1860 			skb_free_frag(data);
1861 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1862 			cpr->sw_stats->rx.rx_oom_discards += 1;
1863 			return NULL;
1864 		}
1865 		skb_reserve(skb, bp->rx_offset);
1866 		skb_put(skb, len);
1867 	}
1868 
1869 	if (agg_bufs) {
1870 		skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true);
1871 		if (!skb) {
1872 			/* Page reuse already handled by bnxt_rx_pages(). */
1873 			cpr->sw_stats->rx.rx_oom_discards += 1;
1874 			return NULL;
1875 		}
1876 	}
1877 
1878 	if (tpa_info->cfa_code_valid)
1879 		dev = bnxt_get_pkt_dev(bp, tpa_info->cfa_code);
1880 	skb->protocol = eth_type_trans(skb, dev);
1881 
1882 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1883 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1884 
1885 	if (tpa_info->vlan_valid &&
1886 	    (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1887 		__be16 vlan_proto = htons(tpa_info->metadata >>
1888 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1889 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1890 
1891 		if (eth_type_vlan(vlan_proto)) {
1892 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1893 		} else {
1894 			dev_kfree_skb(skb);
1895 			return NULL;
1896 		}
1897 	}
1898 
1899 	skb_checksum_none_assert(skb);
1900 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1901 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1902 		skb->csum_level =
1903 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1904 	}
1905 
1906 	if (gro)
1907 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1908 
1909 	return skb;
1910 }
1911 
1912 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1913 			 struct rx_agg_cmp *rx_agg)
1914 {
1915 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1916 	struct bnxt_tpa_info *tpa_info;
1917 
1918 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1919 	tpa_info = &rxr->rx_tpa[agg_id];
1920 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1921 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1922 }
1923 
1924 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1925 			     struct sk_buff *skb)
1926 {
1927 	skb_mark_for_recycle(skb);
1928 
1929 	if (skb->dev != bp->dev) {
1930 		/* this packet belongs to a vf-rep */
1931 		bnxt_vf_rep_rx(bp, skb);
1932 		return;
1933 	}
1934 	skb_record_rx_queue(skb, bnapi->index);
1935 	napi_gro_receive(&bnapi->napi, skb);
1936 }
1937 
1938 static bool bnxt_rx_ts_valid(struct bnxt *bp, u32 flags,
1939 			     struct rx_cmp_ext *rxcmp1, u32 *cmpl_ts)
1940 {
1941 	u32 ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp);
1942 
1943 	if (BNXT_PTP_RX_TS_VALID(flags))
1944 		goto ts_valid;
1945 	if (!bp->ptp_all_rx_tstamp || !ts || !BNXT_ALL_RX_TS_VALID(flags))
1946 		return false;
1947 
1948 ts_valid:
1949 	*cmpl_ts = ts;
1950 	return true;
1951 }
1952 
1953 static struct sk_buff *bnxt_rx_vlan(struct sk_buff *skb, u8 cmp_type,
1954 				    struct rx_cmp *rxcmp,
1955 				    struct rx_cmp_ext *rxcmp1)
1956 {
1957 	__be16 vlan_proto;
1958 	u16 vtag;
1959 
1960 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1961 		__le32 flags2 = rxcmp1->rx_cmp_flags2;
1962 		u32 meta_data;
1963 
1964 		if (!(flags2 & cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)))
1965 			return skb;
1966 
1967 		meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1968 		vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1969 		vlan_proto = htons(meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT);
1970 		if (eth_type_vlan(vlan_proto))
1971 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1972 		else
1973 			goto vlan_err;
1974 	} else if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
1975 		if (RX_CMP_VLAN_VALID(rxcmp)) {
1976 			u32 tpid_sel = RX_CMP_VLAN_TPID_SEL(rxcmp);
1977 
1978 			if (tpid_sel == RX_CMP_METADATA1_TPID_8021Q)
1979 				vlan_proto = htons(ETH_P_8021Q);
1980 			else if (tpid_sel == RX_CMP_METADATA1_TPID_8021AD)
1981 				vlan_proto = htons(ETH_P_8021AD);
1982 			else
1983 				goto vlan_err;
1984 			vtag = RX_CMP_METADATA0_TCI(rxcmp1);
1985 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1986 		}
1987 	}
1988 	return skb;
1989 vlan_err:
1990 	dev_kfree_skb(skb);
1991 	return NULL;
1992 }
1993 
1994 static enum pkt_hash_types bnxt_rss_ext_op(struct bnxt *bp,
1995 					   struct rx_cmp *rxcmp)
1996 {
1997 	u8 ext_op;
1998 
1999 	ext_op = RX_CMP_V3_HASH_TYPE(bp, rxcmp);
2000 	switch (ext_op) {
2001 	case EXT_OP_INNER_4:
2002 	case EXT_OP_OUTER_4:
2003 	case EXT_OP_INNFL_3:
2004 	case EXT_OP_OUTFL_3:
2005 		return PKT_HASH_TYPE_L4;
2006 	default:
2007 		return PKT_HASH_TYPE_L3;
2008 	}
2009 }
2010 
2011 /* returns the following:
2012  * 1       - 1 packet successfully received
2013  * 0       - successful TPA_START, packet not completed yet
2014  * -EBUSY  - completion ring does not have all the agg buffers yet
2015  * -ENOMEM - packet aborted due to out of memory
2016  * -EIO    - packet aborted due to hw error indicated in BD
2017  */
2018 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2019 		       u32 *raw_cons, u8 *event)
2020 {
2021 	struct bnxt_napi *bnapi = cpr->bnapi;
2022 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2023 	struct net_device *dev = bp->dev;
2024 	struct rx_cmp *rxcmp;
2025 	struct rx_cmp_ext *rxcmp1;
2026 	u32 tmp_raw_cons = *raw_cons;
2027 	u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
2028 	struct bnxt_sw_rx_bd *rx_buf;
2029 	unsigned int len;
2030 	u8 *data_ptr, agg_bufs, cmp_type;
2031 	bool xdp_active = false;
2032 	dma_addr_t dma_addr;
2033 	struct sk_buff *skb;
2034 	struct xdp_buff xdp;
2035 	u32 flags, misc;
2036 	u32 cmpl_ts;
2037 	void *data;
2038 	int rc = 0;
2039 
2040 	rxcmp = (struct rx_cmp *)
2041 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2042 
2043 	cmp_type = RX_CMP_TYPE(rxcmp);
2044 
2045 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
2046 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
2047 		goto next_rx_no_prod_no_len;
2048 	}
2049 
2050 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2051 	cp_cons = RING_CMP(tmp_raw_cons);
2052 	rxcmp1 = (struct rx_cmp_ext *)
2053 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2054 
2055 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2056 		return -EBUSY;
2057 
2058 	/* The valid test of the entry must be done first before
2059 	 * reading any further.
2060 	 */
2061 	dma_rmb();
2062 	prod = rxr->rx_prod;
2063 
2064 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP ||
2065 	    cmp_type == CMP_TYPE_RX_L2_TPA_START_V3_CMP) {
2066 		bnxt_tpa_start(bp, rxr, cmp_type,
2067 			       (struct rx_tpa_start_cmp *)rxcmp,
2068 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
2069 
2070 		*event |= BNXT_RX_EVENT;
2071 		goto next_rx_no_prod_no_len;
2072 
2073 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2074 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
2075 				   (struct rx_tpa_end_cmp *)rxcmp,
2076 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
2077 
2078 		if (IS_ERR(skb))
2079 			return -EBUSY;
2080 
2081 		rc = -ENOMEM;
2082 		if (likely(skb)) {
2083 			bnxt_deliver_skb(bp, bnapi, skb);
2084 			rc = 1;
2085 		}
2086 		*event |= BNXT_RX_EVENT;
2087 		goto next_rx_no_prod_no_len;
2088 	}
2089 
2090 	cons = rxcmp->rx_cmp_opaque;
2091 	if (unlikely(cons != rxr->rx_next_cons)) {
2092 		int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
2093 
2094 		/* 0xffff is forced error, don't print it */
2095 		if (rxr->rx_next_cons != 0xffff)
2096 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
2097 				    cons, rxr->rx_next_cons);
2098 		bnxt_sched_reset_rxr(bp, rxr);
2099 		if (rc1)
2100 			return rc1;
2101 		goto next_rx_no_prod_no_len;
2102 	}
2103 	rx_buf = &rxr->rx_buf_ring[cons];
2104 	data = rx_buf->data;
2105 	data_ptr = rx_buf->data_ptr;
2106 	prefetch(data_ptr);
2107 
2108 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
2109 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
2110 
2111 	if (agg_bufs) {
2112 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
2113 			return -EBUSY;
2114 
2115 		cp_cons = NEXT_CMP(cp_cons);
2116 		*event |= BNXT_AGG_EVENT;
2117 	}
2118 	*event |= BNXT_RX_EVENT;
2119 
2120 	rx_buf->data = NULL;
2121 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
2122 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
2123 
2124 		bnxt_reuse_rx_data(rxr, cons, data);
2125 		if (agg_bufs)
2126 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
2127 					       false);
2128 
2129 		rc = -EIO;
2130 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
2131 			bnapi->cp_ring.sw_stats->rx.rx_buf_errors++;
2132 			if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
2133 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
2134 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
2135 						 rx_err);
2136 				bnxt_sched_reset_rxr(bp, rxr);
2137 			}
2138 		}
2139 		goto next_rx_no_len;
2140 	}
2141 
2142 	flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type);
2143 	len = flags >> RX_CMP_LEN_SHIFT;
2144 	dma_addr = rx_buf->mapping;
2145 
2146 	if (bnxt_xdp_attached(bp, rxr)) {
2147 		bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp);
2148 		if (agg_bufs) {
2149 			u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp,
2150 							     cp_cons, agg_bufs,
2151 							     false);
2152 			if (!frag_len)
2153 				goto oom_next_rx;
2154 		}
2155 		xdp_active = true;
2156 	}
2157 
2158 	if (xdp_active) {
2159 		if (bnxt_rx_xdp(bp, rxr, cons, &xdp, data, &data_ptr, &len, event)) {
2160 			rc = 1;
2161 			goto next_rx;
2162 		}
2163 	}
2164 
2165 	if (len <= bp->rx_copy_thresh) {
2166 		if (!xdp_active)
2167 			skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
2168 		else
2169 			skb = bnxt_copy_xdp(bnapi, &xdp, len, dma_addr);
2170 		bnxt_reuse_rx_data(rxr, cons, data);
2171 		if (!skb) {
2172 			if (agg_bufs) {
2173 				if (!xdp_active)
2174 					bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
2175 							       agg_bufs, false);
2176 				else
2177 					bnxt_xdp_buff_frags_free(rxr, &xdp);
2178 			}
2179 			goto oom_next_rx;
2180 		}
2181 	} else {
2182 		u32 payload;
2183 
2184 		if (rx_buf->data_ptr == data_ptr)
2185 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
2186 		else
2187 			payload = 0;
2188 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
2189 				      payload | len);
2190 		if (!skb)
2191 			goto oom_next_rx;
2192 	}
2193 
2194 	if (agg_bufs) {
2195 		if (!xdp_active) {
2196 			skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false);
2197 			if (!skb)
2198 				goto oom_next_rx;
2199 		} else {
2200 			skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1);
2201 			if (!skb) {
2202 				/* we should be able to free the old skb here */
2203 				bnxt_xdp_buff_frags_free(rxr, &xdp);
2204 				goto oom_next_rx;
2205 			}
2206 		}
2207 	}
2208 
2209 	if (RX_CMP_HASH_VALID(rxcmp)) {
2210 		enum pkt_hash_types type;
2211 
2212 		if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
2213 			type = bnxt_rss_ext_op(bp, rxcmp);
2214 		} else {
2215 			u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
2216 
2217 			/* RSS profiles 1 and 3 with extract code 0 for inner
2218 			 * 4-tuple
2219 			 */
2220 			if (hash_type != 1 && hash_type != 3)
2221 				type = PKT_HASH_TYPE_L3;
2222 			else
2223 				type = PKT_HASH_TYPE_L4;
2224 		}
2225 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
2226 	}
2227 
2228 	if (cmp_type == CMP_TYPE_RX_L2_CMP)
2229 		dev = bnxt_get_pkt_dev(bp, RX_CMP_CFA_CODE(rxcmp1));
2230 	skb->protocol = eth_type_trans(skb, dev);
2231 
2232 	if (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) {
2233 		skb = bnxt_rx_vlan(skb, cmp_type, rxcmp, rxcmp1);
2234 		if (!skb)
2235 			goto next_rx;
2236 	}
2237 
2238 	skb_checksum_none_assert(skb);
2239 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
2240 		if (dev->features & NETIF_F_RXCSUM) {
2241 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2242 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
2243 		}
2244 	} else {
2245 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
2246 			if (dev->features & NETIF_F_RXCSUM)
2247 				bnapi->cp_ring.sw_stats->rx.rx_l4_csum_errors++;
2248 		}
2249 	}
2250 
2251 	if (bnxt_rx_ts_valid(bp, flags, rxcmp1, &cmpl_ts)) {
2252 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
2253 			u64 ns, ts;
2254 
2255 			if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) {
2256 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2257 
2258 				spin_lock_bh(&ptp->ptp_lock);
2259 				ns = timecounter_cyc2time(&ptp->tc, ts);
2260 				spin_unlock_bh(&ptp->ptp_lock);
2261 				memset(skb_hwtstamps(skb), 0,
2262 				       sizeof(*skb_hwtstamps(skb)));
2263 				skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
2264 			}
2265 		}
2266 	}
2267 	bnxt_deliver_skb(bp, bnapi, skb);
2268 	rc = 1;
2269 
2270 next_rx:
2271 	cpr->rx_packets += 1;
2272 	cpr->rx_bytes += len;
2273 
2274 next_rx_no_len:
2275 	rxr->rx_prod = NEXT_RX(prod);
2276 	rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons));
2277 
2278 next_rx_no_prod_no_len:
2279 	*raw_cons = tmp_raw_cons;
2280 
2281 	return rc;
2282 
2283 oom_next_rx:
2284 	cpr->sw_stats->rx.rx_oom_discards += 1;
2285 	rc = -ENOMEM;
2286 	goto next_rx;
2287 }
2288 
2289 /* In netpoll mode, if we are using a combined completion ring, we need to
2290  * discard the rx packets and recycle the buffers.
2291  */
2292 static int bnxt_force_rx_discard(struct bnxt *bp,
2293 				 struct bnxt_cp_ring_info *cpr,
2294 				 u32 *raw_cons, u8 *event)
2295 {
2296 	u32 tmp_raw_cons = *raw_cons;
2297 	struct rx_cmp_ext *rxcmp1;
2298 	struct rx_cmp *rxcmp;
2299 	u16 cp_cons;
2300 	u8 cmp_type;
2301 	int rc;
2302 
2303 	cp_cons = RING_CMP(tmp_raw_cons);
2304 	rxcmp = (struct rx_cmp *)
2305 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2306 
2307 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2308 	cp_cons = RING_CMP(tmp_raw_cons);
2309 	rxcmp1 = (struct rx_cmp_ext *)
2310 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2311 
2312 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2313 		return -EBUSY;
2314 
2315 	/* The valid test of the entry must be done first before
2316 	 * reading any further.
2317 	 */
2318 	dma_rmb();
2319 	cmp_type = RX_CMP_TYPE(rxcmp);
2320 	if (cmp_type == CMP_TYPE_RX_L2_CMP ||
2321 	    cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
2322 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2323 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2324 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2325 		struct rx_tpa_end_cmp_ext *tpa_end1;
2326 
2327 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
2328 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
2329 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
2330 	}
2331 	rc = bnxt_rx_pkt(bp, cpr, raw_cons, event);
2332 	if (rc && rc != -EBUSY)
2333 		cpr->sw_stats->rx.rx_netpoll_discards += 1;
2334 	return rc;
2335 }
2336 
2337 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
2338 {
2339 	struct bnxt_fw_health *fw_health = bp->fw_health;
2340 	u32 reg = fw_health->regs[reg_idx];
2341 	u32 reg_type, reg_off, val = 0;
2342 
2343 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
2344 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
2345 	switch (reg_type) {
2346 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
2347 		pci_read_config_dword(bp->pdev, reg_off, &val);
2348 		break;
2349 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
2350 		reg_off = fw_health->mapped_regs[reg_idx];
2351 		fallthrough;
2352 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
2353 		val = readl(bp->bar0 + reg_off);
2354 		break;
2355 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
2356 		val = readl(bp->bar1 + reg_off);
2357 		break;
2358 	}
2359 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
2360 		val &= fw_health->fw_reset_inprog_reg_mask;
2361 	return val;
2362 }
2363 
2364 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
2365 {
2366 	int i;
2367 
2368 	for (i = 0; i < bp->rx_nr_rings; i++) {
2369 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
2370 		struct bnxt_ring_grp_info *grp_info;
2371 
2372 		grp_info = &bp->grp_info[grp_idx];
2373 		if (grp_info->agg_fw_ring_id == ring_id)
2374 			return grp_idx;
2375 	}
2376 	return INVALID_HW_RING_ID;
2377 }
2378 
2379 static u16 bnxt_get_force_speed(struct bnxt_link_info *link_info)
2380 {
2381 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2382 
2383 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2)
2384 		return link_info->force_link_speed2;
2385 	if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4)
2386 		return link_info->force_pam4_link_speed;
2387 	return link_info->force_link_speed;
2388 }
2389 
2390 static void bnxt_set_force_speed(struct bnxt_link_info *link_info)
2391 {
2392 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2393 
2394 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2395 		link_info->req_link_speed = link_info->force_link_speed2;
2396 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2397 		switch (link_info->req_link_speed) {
2398 		case BNXT_LINK_SPEED_50GB_PAM4:
2399 		case BNXT_LINK_SPEED_100GB_PAM4:
2400 		case BNXT_LINK_SPEED_200GB_PAM4:
2401 		case BNXT_LINK_SPEED_400GB_PAM4:
2402 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
2403 			break;
2404 		case BNXT_LINK_SPEED_100GB_PAM4_112:
2405 		case BNXT_LINK_SPEED_200GB_PAM4_112:
2406 		case BNXT_LINK_SPEED_400GB_PAM4_112:
2407 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4_112;
2408 			break;
2409 		default:
2410 			link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2411 		}
2412 		return;
2413 	}
2414 	link_info->req_link_speed = link_info->force_link_speed;
2415 	link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2416 	if (link_info->force_pam4_link_speed) {
2417 		link_info->req_link_speed = link_info->force_pam4_link_speed;
2418 		link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
2419 	}
2420 }
2421 
2422 static void bnxt_set_auto_speed(struct bnxt_link_info *link_info)
2423 {
2424 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2425 
2426 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2427 		link_info->advertising = link_info->auto_link_speeds2;
2428 		return;
2429 	}
2430 	link_info->advertising = link_info->auto_link_speeds;
2431 	link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
2432 }
2433 
2434 static bool bnxt_force_speed_updated(struct bnxt_link_info *link_info)
2435 {
2436 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2437 
2438 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2439 		if (link_info->req_link_speed != link_info->force_link_speed2)
2440 			return true;
2441 		return false;
2442 	}
2443 	if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
2444 	    link_info->req_link_speed != link_info->force_link_speed)
2445 		return true;
2446 	if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
2447 	    link_info->req_link_speed != link_info->force_pam4_link_speed)
2448 		return true;
2449 	return false;
2450 }
2451 
2452 static bool bnxt_auto_speed_updated(struct bnxt_link_info *link_info)
2453 {
2454 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2455 
2456 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2457 		if (link_info->advertising != link_info->auto_link_speeds2)
2458 			return true;
2459 		return false;
2460 	}
2461 	if (link_info->advertising != link_info->auto_link_speeds ||
2462 	    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
2463 		return true;
2464 	return false;
2465 }
2466 
2467 #define BNXT_EVENT_THERMAL_CURRENT_TEMP(data2)				\
2468 	((data2) &							\
2469 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_CURRENT_TEMP_MASK)
2470 
2471 #define BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2)			\
2472 	(((data2) &							\
2473 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_MASK) >>\
2474 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_SFT)
2475 
2476 #define EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1)			\
2477 	((data1) &							\
2478 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_MASK)
2479 
2480 #define EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)		\
2481 	(((data1) &							\
2482 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR) ==\
2483 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR_INCREASING)
2484 
2485 /* Return true if the workqueue has to be scheduled */
2486 static bool bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2)
2487 {
2488 	u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1);
2489 
2490 	switch (err_type) {
2491 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL:
2492 		netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n",
2493 			   BNXT_EVENT_INVALID_SIGNAL_DATA(data2));
2494 		break;
2495 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM:
2496 		netdev_warn(bp->dev, "Pause Storm detected!\n");
2497 		break;
2498 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD:
2499 		netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n");
2500 		break;
2501 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_THERMAL_THRESHOLD: {
2502 		u32 type = EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1);
2503 		char *threshold_type;
2504 		bool notify = false;
2505 		char *dir_str;
2506 
2507 		switch (type) {
2508 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_WARN:
2509 			threshold_type = "warning";
2510 			break;
2511 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_CRITICAL:
2512 			threshold_type = "critical";
2513 			break;
2514 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_FATAL:
2515 			threshold_type = "fatal";
2516 			break;
2517 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_SHUTDOWN:
2518 			threshold_type = "shutdown";
2519 			break;
2520 		default:
2521 			netdev_err(bp->dev, "Unknown Thermal threshold type event\n");
2522 			return false;
2523 		}
2524 		if (EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)) {
2525 			dir_str = "above";
2526 			notify = true;
2527 		} else {
2528 			dir_str = "below";
2529 		}
2530 		netdev_warn(bp->dev, "Chip temperature has gone %s the %s thermal threshold!\n",
2531 			    dir_str, threshold_type);
2532 		netdev_warn(bp->dev, "Temperature (In Celsius), Current: %lu, threshold: %lu\n",
2533 			    BNXT_EVENT_THERMAL_CURRENT_TEMP(data2),
2534 			    BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2));
2535 		if (notify) {
2536 			bp->thermal_threshold_type = type;
2537 			set_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event);
2538 			return true;
2539 		}
2540 		return false;
2541 	}
2542 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DUAL_DATA_RATE_NOT_SUPPORTED:
2543 		netdev_warn(bp->dev, "Speed change not supported with dual rate transceivers on this board\n");
2544 		break;
2545 	default:
2546 		netdev_err(bp->dev, "FW reported unknown error type %u\n",
2547 			   err_type);
2548 		break;
2549 	}
2550 	return false;
2551 }
2552 
2553 #define BNXT_GET_EVENT_PORT(data)	\
2554 	((data) &			\
2555 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
2556 
2557 #define BNXT_EVENT_RING_TYPE(data2)	\
2558 	((data2) &			\
2559 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
2560 
2561 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
2562 	(BNXT_EVENT_RING_TYPE(data2) ==	\
2563 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
2564 
2565 #define BNXT_EVENT_PHC_EVENT_TYPE(data1)	\
2566 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\
2567 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT)
2568 
2569 #define BNXT_EVENT_PHC_RTC_UPDATE(data1)	\
2570 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\
2571 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT)
2572 
2573 #define BNXT_PHC_BITS	48
2574 
2575 static int bnxt_async_event_process(struct bnxt *bp,
2576 				    struct hwrm_async_event_cmpl *cmpl)
2577 {
2578 	u16 event_id = le16_to_cpu(cmpl->event_id);
2579 	u32 data1 = le32_to_cpu(cmpl->event_data1);
2580 	u32 data2 = le32_to_cpu(cmpl->event_data2);
2581 
2582 	netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n",
2583 		   event_id, data1, data2);
2584 
2585 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
2586 	switch (event_id) {
2587 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2588 		struct bnxt_link_info *link_info = &bp->link_info;
2589 
2590 		if (BNXT_VF(bp))
2591 			goto async_event_process_exit;
2592 
2593 		/* print unsupported speed warning in forced speed mode only */
2594 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2595 		    (data1 & 0x20000)) {
2596 			u16 fw_speed = bnxt_get_force_speed(link_info);
2597 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2598 
2599 			if (speed != SPEED_UNKNOWN)
2600 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2601 					    speed);
2602 		}
2603 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2604 	}
2605 		fallthrough;
2606 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2607 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2608 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2609 		fallthrough;
2610 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2611 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2612 		break;
2613 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2614 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2615 		break;
2616 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2617 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2618 
2619 		if (BNXT_VF(bp))
2620 			break;
2621 
2622 		if (bp->pf.port_id != port_id)
2623 			break;
2624 
2625 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2626 		break;
2627 	}
2628 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2629 		if (BNXT_PF(bp))
2630 			goto async_event_process_exit;
2631 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2632 		break;
2633 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2634 		char *type_str = "Solicited";
2635 
2636 		if (!bp->fw_health)
2637 			goto async_event_process_exit;
2638 
2639 		bp->fw_reset_timestamp = jiffies;
2640 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2641 		if (!bp->fw_reset_min_dsecs)
2642 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2643 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2644 		if (!bp->fw_reset_max_dsecs)
2645 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2646 		if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) {
2647 			set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state);
2648 		} else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2649 			type_str = "Fatal";
2650 			bp->fw_health->fatalities++;
2651 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2652 		} else if (data2 && BNXT_FW_STATUS_HEALTHY !=
2653 			   EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) {
2654 			type_str = "Non-fatal";
2655 			bp->fw_health->survivals++;
2656 			set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
2657 		}
2658 		netif_warn(bp, hw, bp->dev,
2659 			   "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2660 			   type_str, data1, data2,
2661 			   bp->fw_reset_min_dsecs * 100,
2662 			   bp->fw_reset_max_dsecs * 100);
2663 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2664 		break;
2665 	}
2666 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2667 		struct bnxt_fw_health *fw_health = bp->fw_health;
2668 		char *status_desc = "healthy";
2669 		u32 status;
2670 
2671 		if (!fw_health)
2672 			goto async_event_process_exit;
2673 
2674 		if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) {
2675 			fw_health->enabled = false;
2676 			netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n");
2677 			break;
2678 		}
2679 		fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2680 		fw_health->tmr_multiplier =
2681 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2682 				     bp->current_interval * 10);
2683 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2684 		if (!fw_health->enabled)
2685 			fw_health->last_fw_heartbeat =
2686 				bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2687 		fw_health->last_fw_reset_cnt =
2688 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2689 		status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
2690 		if (status != BNXT_FW_STATUS_HEALTHY)
2691 			status_desc = "unhealthy";
2692 		netif_info(bp, drv, bp->dev,
2693 			   "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n",
2694 			   fw_health->primary ? "primary" : "backup", status,
2695 			   status_desc, fw_health->last_fw_reset_cnt);
2696 		if (!fw_health->enabled) {
2697 			/* Make sure tmr_counter is set and visible to
2698 			 * bnxt_health_check() before setting enabled to true.
2699 			 */
2700 			smp_wmb();
2701 			fw_health->enabled = true;
2702 		}
2703 		goto async_event_process_exit;
2704 	}
2705 	case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2706 		netif_notice(bp, hw, bp->dev,
2707 			     "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2708 			     data1, data2);
2709 		goto async_event_process_exit;
2710 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2711 		struct bnxt_rx_ring_info *rxr;
2712 		u16 grp_idx;
2713 
2714 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
2715 			goto async_event_process_exit;
2716 
2717 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2718 			    BNXT_EVENT_RING_TYPE(data2), data1);
2719 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2720 			goto async_event_process_exit;
2721 
2722 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2723 		if (grp_idx == INVALID_HW_RING_ID) {
2724 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2725 				    data1);
2726 			goto async_event_process_exit;
2727 		}
2728 		rxr = bp->bnapi[grp_idx]->rx_ring;
2729 		bnxt_sched_reset_rxr(bp, rxr);
2730 		goto async_event_process_exit;
2731 	}
2732 	case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2733 		struct bnxt_fw_health *fw_health = bp->fw_health;
2734 
2735 		netif_notice(bp, hw, bp->dev,
2736 			     "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2737 			     data1, data2);
2738 		if (fw_health) {
2739 			fw_health->echo_req_data1 = data1;
2740 			fw_health->echo_req_data2 = data2;
2741 			set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2742 			break;
2743 		}
2744 		goto async_event_process_exit;
2745 	}
2746 	case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: {
2747 		bnxt_ptp_pps_event(bp, data1, data2);
2748 		goto async_event_process_exit;
2749 	}
2750 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: {
2751 		if (bnxt_event_error_report(bp, data1, data2))
2752 			break;
2753 		goto async_event_process_exit;
2754 	}
2755 	case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: {
2756 		switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) {
2757 		case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE:
2758 			if (BNXT_PTP_USE_RTC(bp)) {
2759 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2760 				u64 ns;
2761 
2762 				if (!ptp)
2763 					goto async_event_process_exit;
2764 
2765 				spin_lock_bh(&ptp->ptp_lock);
2766 				bnxt_ptp_update_current_time(bp);
2767 				ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) <<
2768 				       BNXT_PHC_BITS) | ptp->current_time);
2769 				bnxt_ptp_rtc_timecounter_init(ptp, ns);
2770 				spin_unlock_bh(&ptp->ptp_lock);
2771 			}
2772 			break;
2773 		}
2774 		goto async_event_process_exit;
2775 	}
2776 	case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: {
2777 		u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff;
2778 
2779 		hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED);
2780 		goto async_event_process_exit;
2781 	}
2782 	default:
2783 		goto async_event_process_exit;
2784 	}
2785 	__bnxt_queue_sp_work(bp);
2786 async_event_process_exit:
2787 	return 0;
2788 }
2789 
2790 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2791 {
2792 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2793 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2794 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2795 				(struct hwrm_fwd_req_cmpl *)txcmp;
2796 
2797 	switch (cmpl_type) {
2798 	case CMPL_BASE_TYPE_HWRM_DONE:
2799 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2800 		hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE);
2801 		break;
2802 
2803 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2804 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2805 
2806 		if ((vf_id < bp->pf.first_vf_id) ||
2807 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2808 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2809 				   vf_id);
2810 			return -EINVAL;
2811 		}
2812 
2813 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2814 		bnxt_queue_sp_work(bp, BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT);
2815 		break;
2816 
2817 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2818 		bnxt_async_event_process(bp,
2819 					 (struct hwrm_async_event_cmpl *)txcmp);
2820 		break;
2821 
2822 	default:
2823 		break;
2824 	}
2825 
2826 	return 0;
2827 }
2828 
2829 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2830 {
2831 	struct bnxt_napi *bnapi = dev_instance;
2832 	struct bnxt *bp = bnapi->bp;
2833 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2834 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2835 
2836 	cpr->event_ctr++;
2837 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2838 	napi_schedule(&bnapi->napi);
2839 	return IRQ_HANDLED;
2840 }
2841 
2842 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2843 {
2844 	u32 raw_cons = cpr->cp_raw_cons;
2845 	u16 cons = RING_CMP(raw_cons);
2846 	struct tx_cmp *txcmp;
2847 
2848 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2849 
2850 	return TX_CMP_VALID(txcmp, raw_cons);
2851 }
2852 
2853 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2854 			    int budget)
2855 {
2856 	struct bnxt_napi *bnapi = cpr->bnapi;
2857 	u32 raw_cons = cpr->cp_raw_cons;
2858 	u32 cons;
2859 	int rx_pkts = 0;
2860 	u8 event = 0;
2861 	struct tx_cmp *txcmp;
2862 
2863 	cpr->has_more_work = 0;
2864 	cpr->had_work_done = 1;
2865 	while (1) {
2866 		u8 cmp_type;
2867 		int rc;
2868 
2869 		cons = RING_CMP(raw_cons);
2870 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2871 
2872 		if (!TX_CMP_VALID(txcmp, raw_cons))
2873 			break;
2874 
2875 		/* The valid test of the entry must be done first before
2876 		 * reading any further.
2877 		 */
2878 		dma_rmb();
2879 		cmp_type = TX_CMP_TYPE(txcmp);
2880 		if (cmp_type == CMP_TYPE_TX_L2_CMP ||
2881 		    cmp_type == CMP_TYPE_TX_L2_COAL_CMP) {
2882 			u32 opaque = txcmp->tx_cmp_opaque;
2883 			struct bnxt_tx_ring_info *txr;
2884 			u16 tx_freed;
2885 
2886 			txr = bnapi->tx_ring[TX_OPAQUE_RING(opaque)];
2887 			event |= BNXT_TX_CMP_EVENT;
2888 			if (cmp_type == CMP_TYPE_TX_L2_COAL_CMP)
2889 				txr->tx_hw_cons = TX_CMP_SQ_CONS_IDX(txcmp);
2890 			else
2891 				txr->tx_hw_cons = TX_OPAQUE_PROD(bp, opaque);
2892 			tx_freed = (txr->tx_hw_cons - txr->tx_cons) &
2893 				   bp->tx_ring_mask;
2894 			/* return full budget so NAPI will complete. */
2895 			if (unlikely(tx_freed >= bp->tx_wake_thresh)) {
2896 				rx_pkts = budget;
2897 				raw_cons = NEXT_RAW_CMP(raw_cons);
2898 				if (budget)
2899 					cpr->has_more_work = 1;
2900 				break;
2901 			}
2902 		} else if (cmp_type == CMP_TYPE_TX_L2_PKT_TS_CMP) {
2903 			bnxt_tx_ts_cmp(bp, bnapi, (struct tx_ts_cmp *)txcmp);
2904 		} else if (cmp_type >= CMP_TYPE_RX_L2_CMP &&
2905 			   cmp_type <= CMP_TYPE_RX_L2_TPA_START_V3_CMP) {
2906 			if (likely(budget))
2907 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2908 			else
2909 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2910 							   &event);
2911 			if (likely(rc >= 0))
2912 				rx_pkts += rc;
2913 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2914 			 * the NAPI budget.  Otherwise, we may potentially loop
2915 			 * here forever if we consistently cannot allocate
2916 			 * buffers.
2917 			 */
2918 			else if (rc == -ENOMEM && budget)
2919 				rx_pkts++;
2920 			else if (rc == -EBUSY)	/* partial completion */
2921 				break;
2922 		} else if (unlikely(cmp_type == CMPL_BASE_TYPE_HWRM_DONE ||
2923 				    cmp_type == CMPL_BASE_TYPE_HWRM_FWD_REQ ||
2924 				    cmp_type == CMPL_BASE_TYPE_HWRM_ASYNC_EVENT)) {
2925 			bnxt_hwrm_handler(bp, txcmp);
2926 		}
2927 		raw_cons = NEXT_RAW_CMP(raw_cons);
2928 
2929 		if (rx_pkts && rx_pkts == budget) {
2930 			cpr->has_more_work = 1;
2931 			break;
2932 		}
2933 	}
2934 
2935 	if (event & BNXT_REDIRECT_EVENT) {
2936 		xdp_do_flush();
2937 		event &= ~BNXT_REDIRECT_EVENT;
2938 	}
2939 
2940 	if (event & BNXT_TX_EVENT) {
2941 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring[0];
2942 		u16 prod = txr->tx_prod;
2943 
2944 		/* Sync BD data before updating doorbell */
2945 		wmb();
2946 
2947 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2948 		event &= ~BNXT_TX_EVENT;
2949 	}
2950 
2951 	cpr->cp_raw_cons = raw_cons;
2952 	bnapi->events |= event;
2953 	return rx_pkts;
2954 }
2955 
2956 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2957 				  int budget)
2958 {
2959 	if ((bnapi->events & BNXT_TX_CMP_EVENT) && !bnapi->tx_fault)
2960 		bnapi->tx_int(bp, bnapi, budget);
2961 
2962 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2963 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2964 
2965 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2966 		bnapi->events &= ~BNXT_RX_EVENT;
2967 	}
2968 	if (bnapi->events & BNXT_AGG_EVENT) {
2969 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2970 
2971 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2972 		bnapi->events &= ~BNXT_AGG_EVENT;
2973 	}
2974 }
2975 
2976 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2977 			  int budget)
2978 {
2979 	struct bnxt_napi *bnapi = cpr->bnapi;
2980 	int rx_pkts;
2981 
2982 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2983 
2984 	/* ACK completion ring before freeing tx ring and producing new
2985 	 * buffers in rx/agg rings to prevent overflowing the completion
2986 	 * ring.
2987 	 */
2988 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2989 
2990 	__bnxt_poll_work_done(bp, bnapi, budget);
2991 	return rx_pkts;
2992 }
2993 
2994 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2995 {
2996 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2997 	struct bnxt *bp = bnapi->bp;
2998 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2999 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
3000 	struct tx_cmp *txcmp;
3001 	struct rx_cmp_ext *rxcmp1;
3002 	u32 cp_cons, tmp_raw_cons;
3003 	u32 raw_cons = cpr->cp_raw_cons;
3004 	bool flush_xdp = false;
3005 	u32 rx_pkts = 0;
3006 	u8 event = 0;
3007 
3008 	while (1) {
3009 		int rc;
3010 
3011 		cp_cons = RING_CMP(raw_cons);
3012 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
3013 
3014 		if (!TX_CMP_VALID(txcmp, raw_cons))
3015 			break;
3016 
3017 		/* The valid test of the entry must be done first before
3018 		 * reading any further.
3019 		 */
3020 		dma_rmb();
3021 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
3022 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
3023 			cp_cons = RING_CMP(tmp_raw_cons);
3024 			rxcmp1 = (struct rx_cmp_ext *)
3025 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
3026 
3027 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
3028 				break;
3029 
3030 			/* force an error to recycle the buffer */
3031 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
3032 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
3033 
3034 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
3035 			if (likely(rc == -EIO) && budget)
3036 				rx_pkts++;
3037 			else if (rc == -EBUSY)	/* partial completion */
3038 				break;
3039 			if (event & BNXT_REDIRECT_EVENT)
3040 				flush_xdp = true;
3041 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
3042 				    CMPL_BASE_TYPE_HWRM_DONE)) {
3043 			bnxt_hwrm_handler(bp, txcmp);
3044 		} else {
3045 			netdev_err(bp->dev,
3046 				   "Invalid completion received on special ring\n");
3047 		}
3048 		raw_cons = NEXT_RAW_CMP(raw_cons);
3049 
3050 		if (rx_pkts == budget)
3051 			break;
3052 	}
3053 
3054 	cpr->cp_raw_cons = raw_cons;
3055 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
3056 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
3057 
3058 	if (event & BNXT_AGG_EVENT)
3059 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
3060 	if (flush_xdp)
3061 		xdp_do_flush();
3062 
3063 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
3064 		napi_complete_done(napi, rx_pkts);
3065 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
3066 	}
3067 	return rx_pkts;
3068 }
3069 
3070 static int bnxt_poll(struct napi_struct *napi, int budget)
3071 {
3072 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
3073 	struct bnxt *bp = bnapi->bp;
3074 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3075 	int work_done = 0;
3076 
3077 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
3078 		napi_complete(napi);
3079 		return 0;
3080 	}
3081 	while (1) {
3082 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
3083 
3084 		if (work_done >= budget) {
3085 			if (!budget)
3086 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
3087 			break;
3088 		}
3089 
3090 		if (!bnxt_has_work(bp, cpr)) {
3091 			if (napi_complete_done(napi, work_done))
3092 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
3093 			break;
3094 		}
3095 	}
3096 	if (bp->flags & BNXT_FLAG_DIM) {
3097 		struct dim_sample dim_sample = {};
3098 
3099 		dim_update_sample(cpr->event_ctr,
3100 				  cpr->rx_packets,
3101 				  cpr->rx_bytes,
3102 				  &dim_sample);
3103 		net_dim(&cpr->dim, dim_sample);
3104 	}
3105 	return work_done;
3106 }
3107 
3108 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
3109 {
3110 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3111 	int i, work_done = 0;
3112 
3113 	for (i = 0; i < cpr->cp_ring_count; i++) {
3114 		struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i];
3115 
3116 		if (cpr2->had_nqe_notify) {
3117 			work_done += __bnxt_poll_work(bp, cpr2,
3118 						      budget - work_done);
3119 			cpr->has_more_work |= cpr2->has_more_work;
3120 		}
3121 	}
3122 	return work_done;
3123 }
3124 
3125 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
3126 				 u64 dbr_type, int budget)
3127 {
3128 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3129 	int i;
3130 
3131 	for (i = 0; i < cpr->cp_ring_count; i++) {
3132 		struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i];
3133 		struct bnxt_db_info *db;
3134 
3135 		if (cpr2->had_work_done) {
3136 			u32 tgl = 0;
3137 
3138 			if (dbr_type == DBR_TYPE_CQ_ARMALL) {
3139 				cpr2->had_nqe_notify = 0;
3140 				tgl = cpr2->toggle;
3141 			}
3142 			db = &cpr2->cp_db;
3143 			bnxt_writeq(bp,
3144 				    db->db_key64 | dbr_type | DB_TOGGLE(tgl) |
3145 				    DB_RING_IDX(db, cpr2->cp_raw_cons),
3146 				    db->doorbell);
3147 			cpr2->had_work_done = 0;
3148 		}
3149 	}
3150 	__bnxt_poll_work_done(bp, bnapi, budget);
3151 }
3152 
3153 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
3154 {
3155 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
3156 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3157 	struct bnxt_cp_ring_info *cpr_rx;
3158 	u32 raw_cons = cpr->cp_raw_cons;
3159 	struct bnxt *bp = bnapi->bp;
3160 	struct nqe_cn *nqcmp;
3161 	int work_done = 0;
3162 	u32 cons;
3163 
3164 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
3165 		napi_complete(napi);
3166 		return 0;
3167 	}
3168 	if (cpr->has_more_work) {
3169 		cpr->has_more_work = 0;
3170 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
3171 	}
3172 	while (1) {
3173 		u16 type;
3174 
3175 		cons = RING_CMP(raw_cons);
3176 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
3177 
3178 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
3179 			if (cpr->has_more_work)
3180 				break;
3181 
3182 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL,
3183 					     budget);
3184 			cpr->cp_raw_cons = raw_cons;
3185 			if (napi_complete_done(napi, work_done))
3186 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
3187 						  cpr->cp_raw_cons);
3188 			goto poll_done;
3189 		}
3190 
3191 		/* The valid test of the entry must be done first before
3192 		 * reading any further.
3193 		 */
3194 		dma_rmb();
3195 
3196 		type = le16_to_cpu(nqcmp->type);
3197 		if (NQE_CN_TYPE(type) == NQ_CN_TYPE_CQ_NOTIFICATION) {
3198 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
3199 			u32 cq_type = BNXT_NQ_HDL_TYPE(idx);
3200 			struct bnxt_cp_ring_info *cpr2;
3201 
3202 			/* No more budget for RX work */
3203 			if (budget && work_done >= budget &&
3204 			    cq_type == BNXT_NQ_HDL_TYPE_RX)
3205 				break;
3206 
3207 			idx = BNXT_NQ_HDL_IDX(idx);
3208 			cpr2 = &cpr->cp_ring_arr[idx];
3209 			cpr2->had_nqe_notify = 1;
3210 			cpr2->toggle = NQE_CN_TOGGLE(type);
3211 			work_done += __bnxt_poll_work(bp, cpr2,
3212 						      budget - work_done);
3213 			cpr->has_more_work |= cpr2->has_more_work;
3214 		} else {
3215 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
3216 		}
3217 		raw_cons = NEXT_RAW_CMP(raw_cons);
3218 	}
3219 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget);
3220 	if (raw_cons != cpr->cp_raw_cons) {
3221 		cpr->cp_raw_cons = raw_cons;
3222 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
3223 	}
3224 poll_done:
3225 	cpr_rx = &cpr->cp_ring_arr[0];
3226 	if (cpr_rx->cp_ring_type == BNXT_NQ_HDL_TYPE_RX &&
3227 	    (bp->flags & BNXT_FLAG_DIM)) {
3228 		struct dim_sample dim_sample = {};
3229 
3230 		dim_update_sample(cpr->event_ctr,
3231 				  cpr_rx->rx_packets,
3232 				  cpr_rx->rx_bytes,
3233 				  &dim_sample);
3234 		net_dim(&cpr->dim, dim_sample);
3235 	}
3236 	return work_done;
3237 }
3238 
3239 static void bnxt_free_tx_skbs(struct bnxt *bp)
3240 {
3241 	int i, max_idx;
3242 	struct pci_dev *pdev = bp->pdev;
3243 
3244 	if (!bp->tx_ring)
3245 		return;
3246 
3247 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
3248 	for (i = 0; i < bp->tx_nr_rings; i++) {
3249 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3250 		int j;
3251 
3252 		if (!txr->tx_buf_ring)
3253 			continue;
3254 
3255 		for (j = 0; j < max_idx;) {
3256 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
3257 			struct sk_buff *skb;
3258 			int k, last;
3259 
3260 			if (i < bp->tx_nr_rings_xdp &&
3261 			    tx_buf->action == XDP_REDIRECT) {
3262 				dma_unmap_single(&pdev->dev,
3263 					dma_unmap_addr(tx_buf, mapping),
3264 					dma_unmap_len(tx_buf, len),
3265 					DMA_TO_DEVICE);
3266 				xdp_return_frame(tx_buf->xdpf);
3267 				tx_buf->action = 0;
3268 				tx_buf->xdpf = NULL;
3269 				j++;
3270 				continue;
3271 			}
3272 
3273 			skb = tx_buf->skb;
3274 			if (!skb) {
3275 				j++;
3276 				continue;
3277 			}
3278 
3279 			tx_buf->skb = NULL;
3280 
3281 			if (tx_buf->is_push) {
3282 				dev_kfree_skb(skb);
3283 				j += 2;
3284 				continue;
3285 			}
3286 
3287 			dma_unmap_single(&pdev->dev,
3288 					 dma_unmap_addr(tx_buf, mapping),
3289 					 skb_headlen(skb),
3290 					 DMA_TO_DEVICE);
3291 
3292 			last = tx_buf->nr_frags;
3293 			j += 2;
3294 			for (k = 0; k < last; k++, j++) {
3295 				int ring_idx = j & bp->tx_ring_mask;
3296 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
3297 
3298 				tx_buf = &txr->tx_buf_ring[ring_idx];
3299 				dma_unmap_page(
3300 					&pdev->dev,
3301 					dma_unmap_addr(tx_buf, mapping),
3302 					skb_frag_size(frag), DMA_TO_DEVICE);
3303 			}
3304 			dev_kfree_skb(skb);
3305 		}
3306 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
3307 	}
3308 }
3309 
3310 static void bnxt_free_one_rx_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
3311 {
3312 	struct pci_dev *pdev = bp->pdev;
3313 	int i, max_idx;
3314 
3315 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
3316 
3317 	for (i = 0; i < max_idx; i++) {
3318 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
3319 		dma_addr_t mapping = rx_buf->mapping;
3320 		void *data = rx_buf->data;
3321 
3322 		if (!data)
3323 			continue;
3324 
3325 		rx_buf->data = NULL;
3326 		if (BNXT_RX_PAGE_MODE(bp)) {
3327 			page_pool_recycle_direct(rxr->page_pool, data);
3328 		} else {
3329 			dma_unmap_single_attrs(&pdev->dev, mapping,
3330 					       bp->rx_buf_use_size, bp->rx_dir,
3331 					       DMA_ATTR_WEAK_ORDERING);
3332 			skb_free_frag(data);
3333 		}
3334 	}
3335 }
3336 
3337 static void bnxt_free_one_rx_agg_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
3338 {
3339 	int i, max_idx;
3340 
3341 	max_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
3342 
3343 	for (i = 0; i < max_idx; i++) {
3344 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
3345 		struct page *page = rx_agg_buf->page;
3346 
3347 		if (!page)
3348 			continue;
3349 
3350 		rx_agg_buf->page = NULL;
3351 		__clear_bit(i, rxr->rx_agg_bmap);
3352 
3353 		page_pool_recycle_direct(rxr->page_pool, page);
3354 	}
3355 }
3356 
3357 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
3358 {
3359 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3360 	struct pci_dev *pdev = bp->pdev;
3361 	struct bnxt_tpa_idx_map *map;
3362 	int i;
3363 
3364 	if (!rxr->rx_tpa)
3365 		goto skip_rx_tpa_free;
3366 
3367 	for (i = 0; i < bp->max_tpa; i++) {
3368 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
3369 		u8 *data = tpa_info->data;
3370 
3371 		if (!data)
3372 			continue;
3373 
3374 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
3375 				       bp->rx_buf_use_size, bp->rx_dir,
3376 				       DMA_ATTR_WEAK_ORDERING);
3377 
3378 		tpa_info->data = NULL;
3379 
3380 		skb_free_frag(data);
3381 	}
3382 
3383 skip_rx_tpa_free:
3384 	if (!rxr->rx_buf_ring)
3385 		goto skip_rx_buf_free;
3386 
3387 	bnxt_free_one_rx_ring(bp, rxr);
3388 
3389 skip_rx_buf_free:
3390 	if (!rxr->rx_agg_ring)
3391 		goto skip_rx_agg_free;
3392 
3393 	bnxt_free_one_rx_agg_ring(bp, rxr);
3394 
3395 skip_rx_agg_free:
3396 	map = rxr->rx_tpa_idx_map;
3397 	if (map)
3398 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
3399 }
3400 
3401 static void bnxt_free_rx_skbs(struct bnxt *bp)
3402 {
3403 	int i;
3404 
3405 	if (!bp->rx_ring)
3406 		return;
3407 
3408 	for (i = 0; i < bp->rx_nr_rings; i++)
3409 		bnxt_free_one_rx_ring_skbs(bp, i);
3410 }
3411 
3412 static void bnxt_free_skbs(struct bnxt *bp)
3413 {
3414 	bnxt_free_tx_skbs(bp);
3415 	bnxt_free_rx_skbs(bp);
3416 }
3417 
3418 static void bnxt_init_ctx_mem(struct bnxt_ctx_mem_type *ctxm, void *p, int len)
3419 {
3420 	u8 init_val = ctxm->init_value;
3421 	u16 offset = ctxm->init_offset;
3422 	u8 *p2 = p;
3423 	int i;
3424 
3425 	if (!init_val)
3426 		return;
3427 	if (offset == BNXT_CTX_INIT_INVALID_OFFSET) {
3428 		memset(p, init_val, len);
3429 		return;
3430 	}
3431 	for (i = 0; i < len; i += ctxm->entry_size)
3432 		*(p2 + i + offset) = init_val;
3433 }
3434 
3435 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3436 {
3437 	struct pci_dev *pdev = bp->pdev;
3438 	int i;
3439 
3440 	if (!rmem->pg_arr)
3441 		goto skip_pages;
3442 
3443 	for (i = 0; i < rmem->nr_pages; i++) {
3444 		if (!rmem->pg_arr[i])
3445 			continue;
3446 
3447 		dma_free_coherent(&pdev->dev, rmem->page_size,
3448 				  rmem->pg_arr[i], rmem->dma_arr[i]);
3449 
3450 		rmem->pg_arr[i] = NULL;
3451 	}
3452 skip_pages:
3453 	if (rmem->pg_tbl) {
3454 		size_t pg_tbl_size = rmem->nr_pages * 8;
3455 
3456 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3457 			pg_tbl_size = rmem->page_size;
3458 		dma_free_coherent(&pdev->dev, pg_tbl_size,
3459 				  rmem->pg_tbl, rmem->pg_tbl_map);
3460 		rmem->pg_tbl = NULL;
3461 	}
3462 	if (rmem->vmem_size && *rmem->vmem) {
3463 		vfree(*rmem->vmem);
3464 		*rmem->vmem = NULL;
3465 	}
3466 }
3467 
3468 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3469 {
3470 	struct pci_dev *pdev = bp->pdev;
3471 	u64 valid_bit = 0;
3472 	int i;
3473 
3474 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
3475 		valid_bit = PTU_PTE_VALID;
3476 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
3477 		size_t pg_tbl_size = rmem->nr_pages * 8;
3478 
3479 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3480 			pg_tbl_size = rmem->page_size;
3481 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
3482 						  &rmem->pg_tbl_map,
3483 						  GFP_KERNEL);
3484 		if (!rmem->pg_tbl)
3485 			return -ENOMEM;
3486 	}
3487 
3488 	for (i = 0; i < rmem->nr_pages; i++) {
3489 		u64 extra_bits = valid_bit;
3490 
3491 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
3492 						     rmem->page_size,
3493 						     &rmem->dma_arr[i],
3494 						     GFP_KERNEL);
3495 		if (!rmem->pg_arr[i])
3496 			return -ENOMEM;
3497 
3498 		if (rmem->ctx_mem)
3499 			bnxt_init_ctx_mem(rmem->ctx_mem, rmem->pg_arr[i],
3500 					  rmem->page_size);
3501 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
3502 			if (i == rmem->nr_pages - 2 &&
3503 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3504 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
3505 			else if (i == rmem->nr_pages - 1 &&
3506 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3507 				extra_bits |= PTU_PTE_LAST;
3508 			rmem->pg_tbl[i] =
3509 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
3510 		}
3511 	}
3512 
3513 	if (rmem->vmem_size) {
3514 		*rmem->vmem = vzalloc(rmem->vmem_size);
3515 		if (!(*rmem->vmem))
3516 			return -ENOMEM;
3517 	}
3518 	return 0;
3519 }
3520 
3521 static void bnxt_free_tpa_info(struct bnxt *bp)
3522 {
3523 	int i, j;
3524 
3525 	for (i = 0; i < bp->rx_nr_rings; i++) {
3526 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3527 
3528 		kfree(rxr->rx_tpa_idx_map);
3529 		rxr->rx_tpa_idx_map = NULL;
3530 		if (rxr->rx_tpa) {
3531 			for (j = 0; j < bp->max_tpa; j++) {
3532 				kfree(rxr->rx_tpa[j].agg_arr);
3533 				rxr->rx_tpa[j].agg_arr = NULL;
3534 			}
3535 		}
3536 		kfree(rxr->rx_tpa);
3537 		rxr->rx_tpa = NULL;
3538 	}
3539 }
3540 
3541 static int bnxt_alloc_tpa_info(struct bnxt *bp)
3542 {
3543 	int i, j;
3544 
3545 	bp->max_tpa = MAX_TPA;
3546 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
3547 		if (!bp->max_tpa_v2)
3548 			return 0;
3549 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
3550 	}
3551 
3552 	for (i = 0; i < bp->rx_nr_rings; i++) {
3553 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3554 		struct rx_agg_cmp *agg;
3555 
3556 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
3557 				      GFP_KERNEL);
3558 		if (!rxr->rx_tpa)
3559 			return -ENOMEM;
3560 
3561 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
3562 			continue;
3563 		for (j = 0; j < bp->max_tpa; j++) {
3564 			agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL);
3565 			if (!agg)
3566 				return -ENOMEM;
3567 			rxr->rx_tpa[j].agg_arr = agg;
3568 		}
3569 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
3570 					      GFP_KERNEL);
3571 		if (!rxr->rx_tpa_idx_map)
3572 			return -ENOMEM;
3573 	}
3574 	return 0;
3575 }
3576 
3577 static void bnxt_free_rx_rings(struct bnxt *bp)
3578 {
3579 	int i;
3580 
3581 	if (!bp->rx_ring)
3582 		return;
3583 
3584 	bnxt_free_tpa_info(bp);
3585 	for (i = 0; i < bp->rx_nr_rings; i++) {
3586 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3587 		struct bnxt_ring_struct *ring;
3588 
3589 		if (rxr->xdp_prog)
3590 			bpf_prog_put(rxr->xdp_prog);
3591 
3592 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
3593 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3594 
3595 		page_pool_destroy(rxr->page_pool);
3596 		rxr->page_pool = NULL;
3597 
3598 		kfree(rxr->rx_agg_bmap);
3599 		rxr->rx_agg_bmap = NULL;
3600 
3601 		ring = &rxr->rx_ring_struct;
3602 		bnxt_free_ring(bp, &ring->ring_mem);
3603 
3604 		ring = &rxr->rx_agg_ring_struct;
3605 		bnxt_free_ring(bp, &ring->ring_mem);
3606 	}
3607 }
3608 
3609 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
3610 				   struct bnxt_rx_ring_info *rxr,
3611 				   int numa_node)
3612 {
3613 	struct page_pool_params pp = { 0 };
3614 
3615 	pp.pool_size = bp->rx_agg_ring_size;
3616 	if (BNXT_RX_PAGE_MODE(bp))
3617 		pp.pool_size += bp->rx_ring_size;
3618 	pp.nid = numa_node;
3619 	pp.napi = &rxr->bnapi->napi;
3620 	pp.netdev = bp->dev;
3621 	pp.dev = &bp->pdev->dev;
3622 	pp.dma_dir = bp->rx_dir;
3623 	pp.max_len = PAGE_SIZE;
3624 	pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
3625 
3626 	rxr->page_pool = page_pool_create(&pp);
3627 	if (IS_ERR(rxr->page_pool)) {
3628 		int err = PTR_ERR(rxr->page_pool);
3629 
3630 		rxr->page_pool = NULL;
3631 		return err;
3632 	}
3633 	return 0;
3634 }
3635 
3636 static int bnxt_alloc_rx_rings(struct bnxt *bp)
3637 {
3638 	int numa_node = dev_to_node(&bp->pdev->dev);
3639 	int i, rc = 0, agg_rings = 0, cpu;
3640 
3641 	if (!bp->rx_ring)
3642 		return -ENOMEM;
3643 
3644 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
3645 		agg_rings = 1;
3646 
3647 	for (i = 0; i < bp->rx_nr_rings; i++) {
3648 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3649 		struct bnxt_ring_struct *ring;
3650 		int cpu_node;
3651 
3652 		ring = &rxr->rx_ring_struct;
3653 
3654 		cpu = cpumask_local_spread(i, numa_node);
3655 		cpu_node = cpu_to_node(cpu);
3656 		netdev_dbg(bp->dev, "Allocating page pool for rx_ring[%d] on numa_node: %d\n",
3657 			   i, cpu_node);
3658 		rc = bnxt_alloc_rx_page_pool(bp, rxr, cpu_node);
3659 		if (rc)
3660 			return rc;
3661 
3662 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
3663 		if (rc < 0)
3664 			return rc;
3665 
3666 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
3667 						MEM_TYPE_PAGE_POOL,
3668 						rxr->page_pool);
3669 		if (rc) {
3670 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3671 			return rc;
3672 		}
3673 
3674 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3675 		if (rc)
3676 			return rc;
3677 
3678 		ring->grp_idx = i;
3679 		if (agg_rings) {
3680 			u16 mem_size;
3681 
3682 			ring = &rxr->rx_agg_ring_struct;
3683 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3684 			if (rc)
3685 				return rc;
3686 
3687 			ring->grp_idx = i;
3688 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
3689 			mem_size = rxr->rx_agg_bmap_size / 8;
3690 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
3691 			if (!rxr->rx_agg_bmap)
3692 				return -ENOMEM;
3693 		}
3694 	}
3695 	if (bp->flags & BNXT_FLAG_TPA)
3696 		rc = bnxt_alloc_tpa_info(bp);
3697 	return rc;
3698 }
3699 
3700 static void bnxt_free_tx_rings(struct bnxt *bp)
3701 {
3702 	int i;
3703 	struct pci_dev *pdev = bp->pdev;
3704 
3705 	if (!bp->tx_ring)
3706 		return;
3707 
3708 	for (i = 0; i < bp->tx_nr_rings; i++) {
3709 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3710 		struct bnxt_ring_struct *ring;
3711 
3712 		if (txr->tx_push) {
3713 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
3714 					  txr->tx_push, txr->tx_push_mapping);
3715 			txr->tx_push = NULL;
3716 		}
3717 
3718 		ring = &txr->tx_ring_struct;
3719 
3720 		bnxt_free_ring(bp, &ring->ring_mem);
3721 	}
3722 }
3723 
3724 #define BNXT_TC_TO_RING_BASE(bp, tc)	\
3725 	((tc) * (bp)->tx_nr_rings_per_tc)
3726 
3727 #define BNXT_RING_TO_TC_OFF(bp, tx)	\
3728 	((tx) % (bp)->tx_nr_rings_per_tc)
3729 
3730 #define BNXT_RING_TO_TC(bp, tx)		\
3731 	((tx) / (bp)->tx_nr_rings_per_tc)
3732 
3733 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3734 {
3735 	int i, j, rc;
3736 	struct pci_dev *pdev = bp->pdev;
3737 
3738 	bp->tx_push_size = 0;
3739 	if (bp->tx_push_thresh) {
3740 		int push_size;
3741 
3742 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3743 					bp->tx_push_thresh);
3744 
3745 		if (push_size > 256) {
3746 			push_size = 0;
3747 			bp->tx_push_thresh = 0;
3748 		}
3749 
3750 		bp->tx_push_size = push_size;
3751 	}
3752 
3753 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3754 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3755 		struct bnxt_ring_struct *ring;
3756 		u8 qidx;
3757 
3758 		ring = &txr->tx_ring_struct;
3759 
3760 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3761 		if (rc)
3762 			return rc;
3763 
3764 		ring->grp_idx = txr->bnapi->index;
3765 		if (bp->tx_push_size) {
3766 			dma_addr_t mapping;
3767 
3768 			/* One pre-allocated DMA buffer to backup
3769 			 * TX push operation
3770 			 */
3771 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
3772 						bp->tx_push_size,
3773 						&txr->tx_push_mapping,
3774 						GFP_KERNEL);
3775 
3776 			if (!txr->tx_push)
3777 				return -ENOMEM;
3778 
3779 			mapping = txr->tx_push_mapping +
3780 				sizeof(struct tx_push_bd);
3781 			txr->data_mapping = cpu_to_le64(mapping);
3782 		}
3783 		qidx = bp->tc_to_qidx[j];
3784 		ring->queue_id = bp->q_info[qidx].queue_id;
3785 		spin_lock_init(&txr->xdp_tx_lock);
3786 		if (i < bp->tx_nr_rings_xdp)
3787 			continue;
3788 		if (BNXT_RING_TO_TC_OFF(bp, i) == (bp->tx_nr_rings_per_tc - 1))
3789 			j++;
3790 	}
3791 	return 0;
3792 }
3793 
3794 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr)
3795 {
3796 	struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3797 
3798 	kfree(cpr->cp_desc_ring);
3799 	cpr->cp_desc_ring = NULL;
3800 	ring->ring_mem.pg_arr = NULL;
3801 	kfree(cpr->cp_desc_mapping);
3802 	cpr->cp_desc_mapping = NULL;
3803 	ring->ring_mem.dma_arr = NULL;
3804 }
3805 
3806 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n)
3807 {
3808 	cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL);
3809 	if (!cpr->cp_desc_ring)
3810 		return -ENOMEM;
3811 	cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping),
3812 				       GFP_KERNEL);
3813 	if (!cpr->cp_desc_mapping)
3814 		return -ENOMEM;
3815 	return 0;
3816 }
3817 
3818 static void bnxt_free_all_cp_arrays(struct bnxt *bp)
3819 {
3820 	int i;
3821 
3822 	if (!bp->bnapi)
3823 		return;
3824 	for (i = 0; i < bp->cp_nr_rings; i++) {
3825 		struct bnxt_napi *bnapi = bp->bnapi[i];
3826 
3827 		if (!bnapi)
3828 			continue;
3829 		bnxt_free_cp_arrays(&bnapi->cp_ring);
3830 	}
3831 }
3832 
3833 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp)
3834 {
3835 	int i, n = bp->cp_nr_pages;
3836 
3837 	for (i = 0; i < bp->cp_nr_rings; i++) {
3838 		struct bnxt_napi *bnapi = bp->bnapi[i];
3839 		int rc;
3840 
3841 		if (!bnapi)
3842 			continue;
3843 		rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n);
3844 		if (rc)
3845 			return rc;
3846 	}
3847 	return 0;
3848 }
3849 
3850 static void bnxt_free_cp_rings(struct bnxt *bp)
3851 {
3852 	int i;
3853 
3854 	if (!bp->bnapi)
3855 		return;
3856 
3857 	for (i = 0; i < bp->cp_nr_rings; i++) {
3858 		struct bnxt_napi *bnapi = bp->bnapi[i];
3859 		struct bnxt_cp_ring_info *cpr;
3860 		struct bnxt_ring_struct *ring;
3861 		int j;
3862 
3863 		if (!bnapi)
3864 			continue;
3865 
3866 		cpr = &bnapi->cp_ring;
3867 		ring = &cpr->cp_ring_struct;
3868 
3869 		bnxt_free_ring(bp, &ring->ring_mem);
3870 
3871 		if (!cpr->cp_ring_arr)
3872 			continue;
3873 
3874 		for (j = 0; j < cpr->cp_ring_count; j++) {
3875 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
3876 
3877 			ring = &cpr2->cp_ring_struct;
3878 			bnxt_free_ring(bp, &ring->ring_mem);
3879 			bnxt_free_cp_arrays(cpr2);
3880 		}
3881 		kfree(cpr->cp_ring_arr);
3882 		cpr->cp_ring_arr = NULL;
3883 		cpr->cp_ring_count = 0;
3884 	}
3885 }
3886 
3887 static int bnxt_alloc_cp_sub_ring(struct bnxt *bp,
3888 				  struct bnxt_cp_ring_info *cpr)
3889 {
3890 	struct bnxt_ring_mem_info *rmem;
3891 	struct bnxt_ring_struct *ring;
3892 	int rc;
3893 
3894 	rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages);
3895 	if (rc) {
3896 		bnxt_free_cp_arrays(cpr);
3897 		return -ENOMEM;
3898 	}
3899 	ring = &cpr->cp_ring_struct;
3900 	rmem = &ring->ring_mem;
3901 	rmem->nr_pages = bp->cp_nr_pages;
3902 	rmem->page_size = HW_CMPD_RING_SIZE;
3903 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3904 	rmem->dma_arr = cpr->cp_desc_mapping;
3905 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3906 	rc = bnxt_alloc_ring(bp, rmem);
3907 	if (rc) {
3908 		bnxt_free_ring(bp, rmem);
3909 		bnxt_free_cp_arrays(cpr);
3910 	}
3911 	return rc;
3912 }
3913 
3914 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3915 {
3916 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3917 	int i, j, rc, ulp_msix;
3918 	int tcs = bp->num_tc;
3919 
3920 	if (!tcs)
3921 		tcs = 1;
3922 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3923 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
3924 		struct bnxt_napi *bnapi = bp->bnapi[i];
3925 		struct bnxt_cp_ring_info *cpr, *cpr2;
3926 		struct bnxt_ring_struct *ring;
3927 		int cp_count = 0, k;
3928 		int rx = 0, tx = 0;
3929 
3930 		if (!bnapi)
3931 			continue;
3932 
3933 		cpr = &bnapi->cp_ring;
3934 		cpr->bnapi = bnapi;
3935 		ring = &cpr->cp_ring_struct;
3936 
3937 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3938 		if (rc)
3939 			return rc;
3940 
3941 		ring->map_idx = ulp_msix + i;
3942 
3943 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
3944 			continue;
3945 
3946 		if (i < bp->rx_nr_rings) {
3947 			cp_count++;
3948 			rx = 1;
3949 		}
3950 		if (i < bp->tx_nr_rings_xdp) {
3951 			cp_count++;
3952 			tx = 1;
3953 		} else if ((sh && i < bp->tx_nr_rings) ||
3954 			 (!sh && i >= bp->rx_nr_rings)) {
3955 			cp_count += tcs;
3956 			tx = 1;
3957 		}
3958 
3959 		cpr->cp_ring_arr = kcalloc(cp_count, sizeof(*cpr),
3960 					   GFP_KERNEL);
3961 		if (!cpr->cp_ring_arr)
3962 			return -ENOMEM;
3963 		cpr->cp_ring_count = cp_count;
3964 
3965 		for (k = 0; k < cp_count; k++) {
3966 			cpr2 = &cpr->cp_ring_arr[k];
3967 			rc = bnxt_alloc_cp_sub_ring(bp, cpr2);
3968 			if (rc)
3969 				return rc;
3970 			cpr2->bnapi = bnapi;
3971 			cpr2->sw_stats = cpr->sw_stats;
3972 			cpr2->cp_idx = k;
3973 			if (!k && rx) {
3974 				bp->rx_ring[i].rx_cpr = cpr2;
3975 				cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_RX;
3976 			} else {
3977 				int n, tc = k - rx;
3978 
3979 				n = BNXT_TC_TO_RING_BASE(bp, tc) + j;
3980 				bp->tx_ring[n].tx_cpr = cpr2;
3981 				cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_TX;
3982 			}
3983 		}
3984 		if (tx)
3985 			j++;
3986 	}
3987 	return 0;
3988 }
3989 
3990 static void bnxt_init_rx_ring_struct(struct bnxt *bp,
3991 				     struct bnxt_rx_ring_info *rxr)
3992 {
3993 	struct bnxt_ring_mem_info *rmem;
3994 	struct bnxt_ring_struct *ring;
3995 
3996 	ring = &rxr->rx_ring_struct;
3997 	rmem = &ring->ring_mem;
3998 	rmem->nr_pages = bp->rx_nr_pages;
3999 	rmem->page_size = HW_RXBD_RING_SIZE;
4000 	rmem->pg_arr = (void **)rxr->rx_desc_ring;
4001 	rmem->dma_arr = rxr->rx_desc_mapping;
4002 	rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
4003 	rmem->vmem = (void **)&rxr->rx_buf_ring;
4004 
4005 	ring = &rxr->rx_agg_ring_struct;
4006 	rmem = &ring->ring_mem;
4007 	rmem->nr_pages = bp->rx_agg_nr_pages;
4008 	rmem->page_size = HW_RXBD_RING_SIZE;
4009 	rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
4010 	rmem->dma_arr = rxr->rx_agg_desc_mapping;
4011 	rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
4012 	rmem->vmem = (void **)&rxr->rx_agg_ring;
4013 }
4014 
4015 static void bnxt_reset_rx_ring_struct(struct bnxt *bp,
4016 				      struct bnxt_rx_ring_info *rxr)
4017 {
4018 	struct bnxt_ring_mem_info *rmem;
4019 	struct bnxt_ring_struct *ring;
4020 	int i;
4021 
4022 	rxr->page_pool->p.napi = NULL;
4023 	rxr->page_pool = NULL;
4024 	memset(&rxr->xdp_rxq, 0, sizeof(struct xdp_rxq_info));
4025 
4026 	ring = &rxr->rx_ring_struct;
4027 	rmem = &ring->ring_mem;
4028 	rmem->pg_tbl = NULL;
4029 	rmem->pg_tbl_map = 0;
4030 	for (i = 0; i < rmem->nr_pages; i++) {
4031 		rmem->pg_arr[i] = NULL;
4032 		rmem->dma_arr[i] = 0;
4033 	}
4034 	*rmem->vmem = NULL;
4035 
4036 	ring = &rxr->rx_agg_ring_struct;
4037 	rmem = &ring->ring_mem;
4038 	rmem->pg_tbl = NULL;
4039 	rmem->pg_tbl_map = 0;
4040 	for (i = 0; i < rmem->nr_pages; i++) {
4041 		rmem->pg_arr[i] = NULL;
4042 		rmem->dma_arr[i] = 0;
4043 	}
4044 	*rmem->vmem = NULL;
4045 }
4046 
4047 static void bnxt_init_ring_struct(struct bnxt *bp)
4048 {
4049 	int i, j;
4050 
4051 	for (i = 0; i < bp->cp_nr_rings; i++) {
4052 		struct bnxt_napi *bnapi = bp->bnapi[i];
4053 		struct bnxt_ring_mem_info *rmem;
4054 		struct bnxt_cp_ring_info *cpr;
4055 		struct bnxt_rx_ring_info *rxr;
4056 		struct bnxt_tx_ring_info *txr;
4057 		struct bnxt_ring_struct *ring;
4058 
4059 		if (!bnapi)
4060 			continue;
4061 
4062 		cpr = &bnapi->cp_ring;
4063 		ring = &cpr->cp_ring_struct;
4064 		rmem = &ring->ring_mem;
4065 		rmem->nr_pages = bp->cp_nr_pages;
4066 		rmem->page_size = HW_CMPD_RING_SIZE;
4067 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
4068 		rmem->dma_arr = cpr->cp_desc_mapping;
4069 		rmem->vmem_size = 0;
4070 
4071 		rxr = bnapi->rx_ring;
4072 		if (!rxr)
4073 			goto skip_rx;
4074 
4075 		ring = &rxr->rx_ring_struct;
4076 		rmem = &ring->ring_mem;
4077 		rmem->nr_pages = bp->rx_nr_pages;
4078 		rmem->page_size = HW_RXBD_RING_SIZE;
4079 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
4080 		rmem->dma_arr = rxr->rx_desc_mapping;
4081 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
4082 		rmem->vmem = (void **)&rxr->rx_buf_ring;
4083 
4084 		ring = &rxr->rx_agg_ring_struct;
4085 		rmem = &ring->ring_mem;
4086 		rmem->nr_pages = bp->rx_agg_nr_pages;
4087 		rmem->page_size = HW_RXBD_RING_SIZE;
4088 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
4089 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
4090 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
4091 		rmem->vmem = (void **)&rxr->rx_agg_ring;
4092 
4093 skip_rx:
4094 		bnxt_for_each_napi_tx(j, bnapi, txr) {
4095 			ring = &txr->tx_ring_struct;
4096 			rmem = &ring->ring_mem;
4097 			rmem->nr_pages = bp->tx_nr_pages;
4098 			rmem->page_size = HW_TXBD_RING_SIZE;
4099 			rmem->pg_arr = (void **)txr->tx_desc_ring;
4100 			rmem->dma_arr = txr->tx_desc_mapping;
4101 			rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
4102 			rmem->vmem = (void **)&txr->tx_buf_ring;
4103 		}
4104 	}
4105 }
4106 
4107 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
4108 {
4109 	int i;
4110 	u32 prod;
4111 	struct rx_bd **rx_buf_ring;
4112 
4113 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
4114 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
4115 		int j;
4116 		struct rx_bd *rxbd;
4117 
4118 		rxbd = rx_buf_ring[i];
4119 		if (!rxbd)
4120 			continue;
4121 
4122 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
4123 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
4124 			rxbd->rx_bd_opaque = prod;
4125 		}
4126 	}
4127 }
4128 
4129 static void bnxt_alloc_one_rx_ring_skb(struct bnxt *bp,
4130 				       struct bnxt_rx_ring_info *rxr,
4131 				       int ring_nr)
4132 {
4133 	u32 prod;
4134 	int i;
4135 
4136 	prod = rxr->rx_prod;
4137 	for (i = 0; i < bp->rx_ring_size; i++) {
4138 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
4139 			netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
4140 				    ring_nr, i, bp->rx_ring_size);
4141 			break;
4142 		}
4143 		prod = NEXT_RX(prod);
4144 	}
4145 	rxr->rx_prod = prod;
4146 }
4147 
4148 static void bnxt_alloc_one_rx_ring_page(struct bnxt *bp,
4149 					struct bnxt_rx_ring_info *rxr,
4150 					int ring_nr)
4151 {
4152 	u32 prod;
4153 	int i;
4154 
4155 	prod = rxr->rx_agg_prod;
4156 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
4157 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
4158 			netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d pages only\n",
4159 				    ring_nr, i, bp->rx_ring_size);
4160 			break;
4161 		}
4162 		prod = NEXT_RX_AGG(prod);
4163 	}
4164 	rxr->rx_agg_prod = prod;
4165 }
4166 
4167 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
4168 {
4169 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
4170 	int i;
4171 
4172 	bnxt_alloc_one_rx_ring_skb(bp, rxr, ring_nr);
4173 
4174 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
4175 		return 0;
4176 
4177 	bnxt_alloc_one_rx_ring_page(bp, rxr, ring_nr);
4178 
4179 	if (rxr->rx_tpa) {
4180 		dma_addr_t mapping;
4181 		u8 *data;
4182 
4183 		for (i = 0; i < bp->max_tpa; i++) {
4184 			data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL);
4185 			if (!data)
4186 				return -ENOMEM;
4187 
4188 			rxr->rx_tpa[i].data = data;
4189 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
4190 			rxr->rx_tpa[i].mapping = mapping;
4191 		}
4192 	}
4193 	return 0;
4194 }
4195 
4196 static void bnxt_init_one_rx_ring_rxbd(struct bnxt *bp,
4197 				       struct bnxt_rx_ring_info *rxr)
4198 {
4199 	struct bnxt_ring_struct *ring;
4200 	u32 type;
4201 
4202 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
4203 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
4204 
4205 	if (NET_IP_ALIGN == 2)
4206 		type |= RX_BD_FLAGS_SOP;
4207 
4208 	ring = &rxr->rx_ring_struct;
4209 	bnxt_init_rxbd_pages(ring, type);
4210 	ring->fw_ring_id = INVALID_HW_RING_ID;
4211 }
4212 
4213 static void bnxt_init_one_rx_agg_ring_rxbd(struct bnxt *bp,
4214 					   struct bnxt_rx_ring_info *rxr)
4215 {
4216 	struct bnxt_ring_struct *ring;
4217 	u32 type;
4218 
4219 	ring = &rxr->rx_agg_ring_struct;
4220 	ring->fw_ring_id = INVALID_HW_RING_ID;
4221 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
4222 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
4223 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
4224 
4225 		bnxt_init_rxbd_pages(ring, type);
4226 	}
4227 }
4228 
4229 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
4230 {
4231 	struct bnxt_rx_ring_info *rxr;
4232 
4233 	rxr = &bp->rx_ring[ring_nr];
4234 	bnxt_init_one_rx_ring_rxbd(bp, rxr);
4235 
4236 	netif_queue_set_napi(bp->dev, ring_nr, NETDEV_QUEUE_TYPE_RX,
4237 			     &rxr->bnapi->napi);
4238 
4239 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
4240 		bpf_prog_add(bp->xdp_prog, 1);
4241 		rxr->xdp_prog = bp->xdp_prog;
4242 	}
4243 
4244 	bnxt_init_one_rx_agg_ring_rxbd(bp, rxr);
4245 
4246 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
4247 }
4248 
4249 static void bnxt_init_cp_rings(struct bnxt *bp)
4250 {
4251 	int i, j;
4252 
4253 	for (i = 0; i < bp->cp_nr_rings; i++) {
4254 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
4255 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4256 
4257 		ring->fw_ring_id = INVALID_HW_RING_ID;
4258 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
4259 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
4260 		if (!cpr->cp_ring_arr)
4261 			continue;
4262 		for (j = 0; j < cpr->cp_ring_count; j++) {
4263 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
4264 
4265 			ring = &cpr2->cp_ring_struct;
4266 			ring->fw_ring_id = INVALID_HW_RING_ID;
4267 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
4268 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
4269 		}
4270 	}
4271 }
4272 
4273 static int bnxt_init_rx_rings(struct bnxt *bp)
4274 {
4275 	int i, rc = 0;
4276 
4277 	if (BNXT_RX_PAGE_MODE(bp)) {
4278 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
4279 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
4280 	} else {
4281 		bp->rx_offset = BNXT_RX_OFFSET;
4282 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
4283 	}
4284 
4285 	for (i = 0; i < bp->rx_nr_rings; i++) {
4286 		rc = bnxt_init_one_rx_ring(bp, i);
4287 		if (rc)
4288 			break;
4289 	}
4290 
4291 	return rc;
4292 }
4293 
4294 static int bnxt_init_tx_rings(struct bnxt *bp)
4295 {
4296 	u16 i;
4297 
4298 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
4299 				   BNXT_MIN_TX_DESC_CNT);
4300 
4301 	for (i = 0; i < bp->tx_nr_rings; i++) {
4302 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4303 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4304 
4305 		ring->fw_ring_id = INVALID_HW_RING_ID;
4306 
4307 		if (i >= bp->tx_nr_rings_xdp)
4308 			netif_queue_set_napi(bp->dev, i - bp->tx_nr_rings_xdp,
4309 					     NETDEV_QUEUE_TYPE_TX,
4310 					     &txr->bnapi->napi);
4311 	}
4312 
4313 	return 0;
4314 }
4315 
4316 static void bnxt_free_ring_grps(struct bnxt *bp)
4317 {
4318 	kfree(bp->grp_info);
4319 	bp->grp_info = NULL;
4320 }
4321 
4322 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
4323 {
4324 	int i;
4325 
4326 	if (irq_re_init) {
4327 		bp->grp_info = kcalloc(bp->cp_nr_rings,
4328 				       sizeof(struct bnxt_ring_grp_info),
4329 				       GFP_KERNEL);
4330 		if (!bp->grp_info)
4331 			return -ENOMEM;
4332 	}
4333 	for (i = 0; i < bp->cp_nr_rings; i++) {
4334 		if (irq_re_init)
4335 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
4336 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
4337 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
4338 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
4339 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
4340 	}
4341 	return 0;
4342 }
4343 
4344 static void bnxt_free_vnics(struct bnxt *bp)
4345 {
4346 	kfree(bp->vnic_info);
4347 	bp->vnic_info = NULL;
4348 	bp->nr_vnics = 0;
4349 }
4350 
4351 static int bnxt_alloc_vnics(struct bnxt *bp)
4352 {
4353 	int num_vnics = 1;
4354 
4355 #ifdef CONFIG_RFS_ACCEL
4356 	if (bp->flags & BNXT_FLAG_RFS) {
4357 		if (BNXT_SUPPORTS_NTUPLE_VNIC(bp))
4358 			num_vnics++;
4359 		else if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
4360 			num_vnics += bp->rx_nr_rings;
4361 	}
4362 #endif
4363 
4364 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4365 		num_vnics++;
4366 
4367 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
4368 				GFP_KERNEL);
4369 	if (!bp->vnic_info)
4370 		return -ENOMEM;
4371 
4372 	bp->nr_vnics = num_vnics;
4373 	return 0;
4374 }
4375 
4376 static void bnxt_init_vnics(struct bnxt *bp)
4377 {
4378 	struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT];
4379 	int i;
4380 
4381 	for (i = 0; i < bp->nr_vnics; i++) {
4382 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4383 		int j;
4384 
4385 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
4386 		vnic->vnic_id = i;
4387 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
4388 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
4389 
4390 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
4391 
4392 		if (bp->vnic_info[i].rss_hash_key) {
4393 			if (i == BNXT_VNIC_DEFAULT) {
4394 				u8 *key = (void *)vnic->rss_hash_key;
4395 				int k;
4396 
4397 				if (!bp->rss_hash_key_valid &&
4398 				    !bp->rss_hash_key_updated) {
4399 					get_random_bytes(bp->rss_hash_key,
4400 							 HW_HASH_KEY_SIZE);
4401 					bp->rss_hash_key_updated = true;
4402 				}
4403 
4404 				memcpy(vnic->rss_hash_key, bp->rss_hash_key,
4405 				       HW_HASH_KEY_SIZE);
4406 
4407 				if (!bp->rss_hash_key_updated)
4408 					continue;
4409 
4410 				bp->rss_hash_key_updated = false;
4411 				bp->rss_hash_key_valid = true;
4412 
4413 				bp->toeplitz_prefix = 0;
4414 				for (k = 0; k < 8; k++) {
4415 					bp->toeplitz_prefix <<= 8;
4416 					bp->toeplitz_prefix |= key[k];
4417 				}
4418 			} else {
4419 				memcpy(vnic->rss_hash_key, vnic0->rss_hash_key,
4420 				       HW_HASH_KEY_SIZE);
4421 			}
4422 		}
4423 	}
4424 }
4425 
4426 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
4427 {
4428 	int pages;
4429 
4430 	pages = ring_size / desc_per_pg;
4431 
4432 	if (!pages)
4433 		return 1;
4434 
4435 	pages++;
4436 
4437 	while (pages & (pages - 1))
4438 		pages++;
4439 
4440 	return pages;
4441 }
4442 
4443 void bnxt_set_tpa_flags(struct bnxt *bp)
4444 {
4445 	bp->flags &= ~BNXT_FLAG_TPA;
4446 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
4447 		return;
4448 	if (bp->dev->features & NETIF_F_LRO)
4449 		bp->flags |= BNXT_FLAG_LRO;
4450 	else if (bp->dev->features & NETIF_F_GRO_HW)
4451 		bp->flags |= BNXT_FLAG_GRO;
4452 }
4453 
4454 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
4455  * be set on entry.
4456  */
4457 void bnxt_set_ring_params(struct bnxt *bp)
4458 {
4459 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
4460 	u32 agg_factor = 0, agg_ring_size = 0;
4461 
4462 	/* 8 for CRC and VLAN */
4463 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
4464 
4465 	rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) +
4466 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4467 
4468 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
4469 	ring_size = bp->rx_ring_size;
4470 	bp->rx_agg_ring_size = 0;
4471 	bp->rx_agg_nr_pages = 0;
4472 
4473 	if (bp->flags & BNXT_FLAG_TPA)
4474 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
4475 
4476 	bp->flags &= ~BNXT_FLAG_JUMBO;
4477 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
4478 		u32 jumbo_factor;
4479 
4480 		bp->flags |= BNXT_FLAG_JUMBO;
4481 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
4482 		if (jumbo_factor > agg_factor)
4483 			agg_factor = jumbo_factor;
4484 	}
4485 	if (agg_factor) {
4486 		if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) {
4487 			ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA;
4488 			netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n",
4489 				    bp->rx_ring_size, ring_size);
4490 			bp->rx_ring_size = ring_size;
4491 		}
4492 		agg_ring_size = ring_size * agg_factor;
4493 
4494 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
4495 							RX_DESC_CNT);
4496 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
4497 			u32 tmp = agg_ring_size;
4498 
4499 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
4500 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
4501 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
4502 				    tmp, agg_ring_size);
4503 		}
4504 		bp->rx_agg_ring_size = agg_ring_size;
4505 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
4506 
4507 		if (BNXT_RX_PAGE_MODE(bp)) {
4508 			rx_space = PAGE_SIZE;
4509 			rx_size = PAGE_SIZE -
4510 				  ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) -
4511 				  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4512 		} else {
4513 			rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
4514 			rx_space = rx_size + NET_SKB_PAD +
4515 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4516 		}
4517 	}
4518 
4519 	bp->rx_buf_use_size = rx_size;
4520 	bp->rx_buf_size = rx_space;
4521 
4522 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
4523 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
4524 
4525 	ring_size = bp->tx_ring_size;
4526 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
4527 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
4528 
4529 	max_rx_cmpl = bp->rx_ring_size;
4530 	/* MAX TPA needs to be added because TPA_START completions are
4531 	 * immediately recycled, so the TPA completions are not bound by
4532 	 * the RX ring size.
4533 	 */
4534 	if (bp->flags & BNXT_FLAG_TPA)
4535 		max_rx_cmpl += bp->max_tpa;
4536 	/* RX and TPA completions are 32-byte, all others are 16-byte */
4537 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
4538 	bp->cp_ring_size = ring_size;
4539 
4540 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
4541 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
4542 		bp->cp_nr_pages = MAX_CP_PAGES;
4543 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
4544 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
4545 			    ring_size, bp->cp_ring_size);
4546 	}
4547 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
4548 	bp->cp_ring_mask = bp->cp_bit - 1;
4549 }
4550 
4551 /* Changing allocation mode of RX rings.
4552  * TODO: Update when extending xdp_rxq_info to support allocation modes.
4553  */
4554 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
4555 {
4556 	struct net_device *dev = bp->dev;
4557 
4558 	if (page_mode) {
4559 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
4560 		bp->flags |= BNXT_FLAG_RX_PAGE_MODE;
4561 
4562 		if (bp->xdp_prog->aux->xdp_has_frags)
4563 			dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU);
4564 		else
4565 			dev->max_mtu =
4566 				min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
4567 		if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) {
4568 			bp->flags |= BNXT_FLAG_JUMBO;
4569 			bp->rx_skb_func = bnxt_rx_multi_page_skb;
4570 		} else {
4571 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
4572 			bp->rx_skb_func = bnxt_rx_page_skb;
4573 		}
4574 		bp->rx_dir = DMA_BIDIRECTIONAL;
4575 		/* Disable LRO or GRO_HW */
4576 		netdev_update_features(dev);
4577 	} else {
4578 		dev->max_mtu = bp->max_mtu;
4579 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
4580 		bp->rx_dir = DMA_FROM_DEVICE;
4581 		bp->rx_skb_func = bnxt_rx_skb;
4582 	}
4583 	return 0;
4584 }
4585 
4586 static void bnxt_free_vnic_attributes(struct bnxt *bp)
4587 {
4588 	int i;
4589 	struct bnxt_vnic_info *vnic;
4590 	struct pci_dev *pdev = bp->pdev;
4591 
4592 	if (!bp->vnic_info)
4593 		return;
4594 
4595 	for (i = 0; i < bp->nr_vnics; i++) {
4596 		vnic = &bp->vnic_info[i];
4597 
4598 		kfree(vnic->fw_grp_ids);
4599 		vnic->fw_grp_ids = NULL;
4600 
4601 		kfree(vnic->uc_list);
4602 		vnic->uc_list = NULL;
4603 
4604 		if (vnic->mc_list) {
4605 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
4606 					  vnic->mc_list, vnic->mc_list_mapping);
4607 			vnic->mc_list = NULL;
4608 		}
4609 
4610 		if (vnic->rss_table) {
4611 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
4612 					  vnic->rss_table,
4613 					  vnic->rss_table_dma_addr);
4614 			vnic->rss_table = NULL;
4615 		}
4616 
4617 		vnic->rss_hash_key = NULL;
4618 		vnic->flags = 0;
4619 	}
4620 }
4621 
4622 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
4623 {
4624 	int i, rc = 0, size;
4625 	struct bnxt_vnic_info *vnic;
4626 	struct pci_dev *pdev = bp->pdev;
4627 	int max_rings;
4628 
4629 	for (i = 0; i < bp->nr_vnics; i++) {
4630 		vnic = &bp->vnic_info[i];
4631 
4632 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
4633 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
4634 
4635 			if (mem_size > 0) {
4636 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
4637 				if (!vnic->uc_list) {
4638 					rc = -ENOMEM;
4639 					goto out;
4640 				}
4641 			}
4642 		}
4643 
4644 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
4645 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
4646 			vnic->mc_list =
4647 				dma_alloc_coherent(&pdev->dev,
4648 						   vnic->mc_list_size,
4649 						   &vnic->mc_list_mapping,
4650 						   GFP_KERNEL);
4651 			if (!vnic->mc_list) {
4652 				rc = -ENOMEM;
4653 				goto out;
4654 			}
4655 		}
4656 
4657 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4658 			goto vnic_skip_grps;
4659 
4660 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4661 			max_rings = bp->rx_nr_rings;
4662 		else
4663 			max_rings = 1;
4664 
4665 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
4666 		if (!vnic->fw_grp_ids) {
4667 			rc = -ENOMEM;
4668 			goto out;
4669 		}
4670 vnic_skip_grps:
4671 		if ((bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) &&
4672 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
4673 			continue;
4674 
4675 		/* Allocate rss table and hash key */
4676 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
4677 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4678 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
4679 
4680 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
4681 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
4682 						     vnic->rss_table_size,
4683 						     &vnic->rss_table_dma_addr,
4684 						     GFP_KERNEL);
4685 		if (!vnic->rss_table) {
4686 			rc = -ENOMEM;
4687 			goto out;
4688 		}
4689 
4690 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
4691 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
4692 	}
4693 	return 0;
4694 
4695 out:
4696 	return rc;
4697 }
4698 
4699 static void bnxt_free_hwrm_resources(struct bnxt *bp)
4700 {
4701 	struct bnxt_hwrm_wait_token *token;
4702 
4703 	dma_pool_destroy(bp->hwrm_dma_pool);
4704 	bp->hwrm_dma_pool = NULL;
4705 
4706 	rcu_read_lock();
4707 	hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node)
4708 		WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED);
4709 	rcu_read_unlock();
4710 }
4711 
4712 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
4713 {
4714 	bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev,
4715 					    BNXT_HWRM_DMA_SIZE,
4716 					    BNXT_HWRM_DMA_ALIGN, 0);
4717 	if (!bp->hwrm_dma_pool)
4718 		return -ENOMEM;
4719 
4720 	INIT_HLIST_HEAD(&bp->hwrm_pending_list);
4721 
4722 	return 0;
4723 }
4724 
4725 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
4726 {
4727 	kfree(stats->hw_masks);
4728 	stats->hw_masks = NULL;
4729 	kfree(stats->sw_stats);
4730 	stats->sw_stats = NULL;
4731 	if (stats->hw_stats) {
4732 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
4733 				  stats->hw_stats_map);
4734 		stats->hw_stats = NULL;
4735 	}
4736 }
4737 
4738 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
4739 				bool alloc_masks)
4740 {
4741 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
4742 					     &stats->hw_stats_map, GFP_KERNEL);
4743 	if (!stats->hw_stats)
4744 		return -ENOMEM;
4745 
4746 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
4747 	if (!stats->sw_stats)
4748 		goto stats_mem_err;
4749 
4750 	if (alloc_masks) {
4751 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
4752 		if (!stats->hw_masks)
4753 			goto stats_mem_err;
4754 	}
4755 	return 0;
4756 
4757 stats_mem_err:
4758 	bnxt_free_stats_mem(bp, stats);
4759 	return -ENOMEM;
4760 }
4761 
4762 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
4763 {
4764 	int i;
4765 
4766 	for (i = 0; i < count; i++)
4767 		mask_arr[i] = mask;
4768 }
4769 
4770 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
4771 {
4772 	int i;
4773 
4774 	for (i = 0; i < count; i++)
4775 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
4776 }
4777 
4778 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
4779 				    struct bnxt_stats_mem *stats)
4780 {
4781 	struct hwrm_func_qstats_ext_output *resp;
4782 	struct hwrm_func_qstats_ext_input *req;
4783 	__le64 *hw_masks;
4784 	int rc;
4785 
4786 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
4787 	    !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
4788 		return -EOPNOTSUPP;
4789 
4790 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT);
4791 	if (rc)
4792 		return rc;
4793 
4794 	req->fid = cpu_to_le16(0xffff);
4795 	req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4796 
4797 	resp = hwrm_req_hold(bp, req);
4798 	rc = hwrm_req_send(bp, req);
4799 	if (!rc) {
4800 		hw_masks = &resp->rx_ucast_pkts;
4801 		bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
4802 	}
4803 	hwrm_req_drop(bp, req);
4804 	return rc;
4805 }
4806 
4807 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
4808 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
4809 
4810 static void bnxt_init_stats(struct bnxt *bp)
4811 {
4812 	struct bnxt_napi *bnapi = bp->bnapi[0];
4813 	struct bnxt_cp_ring_info *cpr;
4814 	struct bnxt_stats_mem *stats;
4815 	__le64 *rx_stats, *tx_stats;
4816 	int rc, rx_count, tx_count;
4817 	u64 *rx_masks, *tx_masks;
4818 	u64 mask;
4819 	u8 flags;
4820 
4821 	cpr = &bnapi->cp_ring;
4822 	stats = &cpr->stats;
4823 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
4824 	if (rc) {
4825 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4826 			mask = (1ULL << 48) - 1;
4827 		else
4828 			mask = -1ULL;
4829 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
4830 	}
4831 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
4832 		stats = &bp->port_stats;
4833 		rx_stats = stats->hw_stats;
4834 		rx_masks = stats->hw_masks;
4835 		rx_count = sizeof(struct rx_port_stats) / 8;
4836 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4837 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4838 		tx_count = sizeof(struct tx_port_stats) / 8;
4839 
4840 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
4841 		rc = bnxt_hwrm_port_qstats(bp, flags);
4842 		if (rc) {
4843 			mask = (1ULL << 40) - 1;
4844 
4845 			bnxt_fill_masks(rx_masks, mask, rx_count);
4846 			bnxt_fill_masks(tx_masks, mask, tx_count);
4847 		} else {
4848 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4849 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
4850 			bnxt_hwrm_port_qstats(bp, 0);
4851 		}
4852 	}
4853 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
4854 		stats = &bp->rx_port_stats_ext;
4855 		rx_stats = stats->hw_stats;
4856 		rx_masks = stats->hw_masks;
4857 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
4858 		stats = &bp->tx_port_stats_ext;
4859 		tx_stats = stats->hw_stats;
4860 		tx_masks = stats->hw_masks;
4861 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
4862 
4863 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4864 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
4865 		if (rc) {
4866 			mask = (1ULL << 40) - 1;
4867 
4868 			bnxt_fill_masks(rx_masks, mask, rx_count);
4869 			if (tx_stats)
4870 				bnxt_fill_masks(tx_masks, mask, tx_count);
4871 		} else {
4872 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4873 			if (tx_stats)
4874 				bnxt_copy_hw_masks(tx_masks, tx_stats,
4875 						   tx_count);
4876 			bnxt_hwrm_port_qstats_ext(bp, 0);
4877 		}
4878 	}
4879 }
4880 
4881 static void bnxt_free_port_stats(struct bnxt *bp)
4882 {
4883 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
4884 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
4885 
4886 	bnxt_free_stats_mem(bp, &bp->port_stats);
4887 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
4888 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
4889 }
4890 
4891 static void bnxt_free_ring_stats(struct bnxt *bp)
4892 {
4893 	int i;
4894 
4895 	if (!bp->bnapi)
4896 		return;
4897 
4898 	for (i = 0; i < bp->cp_nr_rings; i++) {
4899 		struct bnxt_napi *bnapi = bp->bnapi[i];
4900 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4901 
4902 		bnxt_free_stats_mem(bp, &cpr->stats);
4903 
4904 		kfree(cpr->sw_stats);
4905 		cpr->sw_stats = NULL;
4906 	}
4907 }
4908 
4909 static int bnxt_alloc_stats(struct bnxt *bp)
4910 {
4911 	u32 size, i;
4912 	int rc;
4913 
4914 	size = bp->hw_ring_stats_size;
4915 
4916 	for (i = 0; i < bp->cp_nr_rings; i++) {
4917 		struct bnxt_napi *bnapi = bp->bnapi[i];
4918 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4919 
4920 		cpr->sw_stats = kzalloc(sizeof(*cpr->sw_stats), GFP_KERNEL);
4921 		if (!cpr->sw_stats)
4922 			return -ENOMEM;
4923 
4924 		cpr->stats.len = size;
4925 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4926 		if (rc)
4927 			return rc;
4928 
4929 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4930 	}
4931 
4932 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4933 		return 0;
4934 
4935 	if (bp->port_stats.hw_stats)
4936 		goto alloc_ext_stats;
4937 
4938 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4939 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4940 	if (rc)
4941 		return rc;
4942 
4943 	bp->flags |= BNXT_FLAG_PORT_STATS;
4944 
4945 alloc_ext_stats:
4946 	/* Display extended statistics only if FW supports it */
4947 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4948 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4949 			return 0;
4950 
4951 	if (bp->rx_port_stats_ext.hw_stats)
4952 		goto alloc_tx_ext_stats;
4953 
4954 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4955 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4956 	/* Extended stats are optional */
4957 	if (rc)
4958 		return 0;
4959 
4960 alloc_tx_ext_stats:
4961 	if (bp->tx_port_stats_ext.hw_stats)
4962 		return 0;
4963 
4964 	if (bp->hwrm_spec_code >= 0x10902 ||
4965 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4966 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4967 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4968 		/* Extended stats are optional */
4969 		if (rc)
4970 			return 0;
4971 	}
4972 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4973 	return 0;
4974 }
4975 
4976 static void bnxt_clear_ring_indices(struct bnxt *bp)
4977 {
4978 	int i, j;
4979 
4980 	if (!bp->bnapi)
4981 		return;
4982 
4983 	for (i = 0; i < bp->cp_nr_rings; i++) {
4984 		struct bnxt_napi *bnapi = bp->bnapi[i];
4985 		struct bnxt_cp_ring_info *cpr;
4986 		struct bnxt_rx_ring_info *rxr;
4987 		struct bnxt_tx_ring_info *txr;
4988 
4989 		if (!bnapi)
4990 			continue;
4991 
4992 		cpr = &bnapi->cp_ring;
4993 		cpr->cp_raw_cons = 0;
4994 
4995 		bnxt_for_each_napi_tx(j, bnapi, txr) {
4996 			txr->tx_prod = 0;
4997 			txr->tx_cons = 0;
4998 			txr->tx_hw_cons = 0;
4999 		}
5000 
5001 		rxr = bnapi->rx_ring;
5002 		if (rxr) {
5003 			rxr->rx_prod = 0;
5004 			rxr->rx_agg_prod = 0;
5005 			rxr->rx_sw_agg_prod = 0;
5006 			rxr->rx_next_cons = 0;
5007 		}
5008 		bnapi->events = 0;
5009 	}
5010 }
5011 
5012 void bnxt_insert_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr)
5013 {
5014 	u8 type = fltr->type, flags = fltr->flags;
5015 
5016 	INIT_LIST_HEAD(&fltr->list);
5017 	if ((type == BNXT_FLTR_TYPE_L2 && flags & BNXT_ACT_RING_DST) ||
5018 	    (type == BNXT_FLTR_TYPE_NTUPLE && flags & BNXT_ACT_NO_AGING))
5019 		list_add_tail(&fltr->list, &bp->usr_fltr_list);
5020 }
5021 
5022 void bnxt_del_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr)
5023 {
5024 	if (!list_empty(&fltr->list))
5025 		list_del_init(&fltr->list);
5026 }
5027 
5028 static void bnxt_clear_usr_fltrs(struct bnxt *bp, bool all)
5029 {
5030 	struct bnxt_filter_base *usr_fltr, *tmp;
5031 
5032 	list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) {
5033 		if (!all && usr_fltr->type == BNXT_FLTR_TYPE_L2)
5034 			continue;
5035 		bnxt_del_one_usr_fltr(bp, usr_fltr);
5036 	}
5037 }
5038 
5039 static void bnxt_del_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr)
5040 {
5041 	hlist_del(&fltr->hash);
5042 	bnxt_del_one_usr_fltr(bp, fltr);
5043 	if (fltr->flags) {
5044 		clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
5045 		bp->ntp_fltr_count--;
5046 	}
5047 	kfree(fltr);
5048 }
5049 
5050 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool all)
5051 {
5052 	int i;
5053 
5054 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
5055 	 * safe to delete the hash table.
5056 	 */
5057 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
5058 		struct hlist_head *head;
5059 		struct hlist_node *tmp;
5060 		struct bnxt_ntuple_filter *fltr;
5061 
5062 		head = &bp->ntp_fltr_hash_tbl[i];
5063 		hlist_for_each_entry_safe(fltr, tmp, head, base.hash) {
5064 			bnxt_del_l2_filter(bp, fltr->l2_fltr);
5065 			if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) ||
5066 				     !list_empty(&fltr->base.list)))
5067 				continue;
5068 			bnxt_del_fltr(bp, &fltr->base);
5069 		}
5070 	}
5071 	if (!all)
5072 		return;
5073 
5074 	bitmap_free(bp->ntp_fltr_bmap);
5075 	bp->ntp_fltr_bmap = NULL;
5076 	bp->ntp_fltr_count = 0;
5077 }
5078 
5079 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
5080 {
5081 	int i, rc = 0;
5082 
5083 	if (!(bp->flags & BNXT_FLAG_RFS) || bp->ntp_fltr_bmap)
5084 		return 0;
5085 
5086 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
5087 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
5088 
5089 	bp->ntp_fltr_count = 0;
5090 	bp->ntp_fltr_bmap = bitmap_zalloc(bp->max_fltr, GFP_KERNEL);
5091 
5092 	if (!bp->ntp_fltr_bmap)
5093 		rc = -ENOMEM;
5094 
5095 	return rc;
5096 }
5097 
5098 static void bnxt_free_l2_filters(struct bnxt *bp, bool all)
5099 {
5100 	int i;
5101 
5102 	for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) {
5103 		struct hlist_head *head;
5104 		struct hlist_node *tmp;
5105 		struct bnxt_l2_filter *fltr;
5106 
5107 		head = &bp->l2_fltr_hash_tbl[i];
5108 		hlist_for_each_entry_safe(fltr, tmp, head, base.hash) {
5109 			if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) ||
5110 				     !list_empty(&fltr->base.list)))
5111 				continue;
5112 			bnxt_del_fltr(bp, &fltr->base);
5113 		}
5114 	}
5115 }
5116 
5117 static void bnxt_init_l2_fltr_tbl(struct bnxt *bp)
5118 {
5119 	int i;
5120 
5121 	for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++)
5122 		INIT_HLIST_HEAD(&bp->l2_fltr_hash_tbl[i]);
5123 	get_random_bytes(&bp->hash_seed, sizeof(bp->hash_seed));
5124 }
5125 
5126 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
5127 {
5128 	bnxt_free_vnic_attributes(bp);
5129 	bnxt_free_tx_rings(bp);
5130 	bnxt_free_rx_rings(bp);
5131 	bnxt_free_cp_rings(bp);
5132 	bnxt_free_all_cp_arrays(bp);
5133 	bnxt_free_ntp_fltrs(bp, false);
5134 	bnxt_free_l2_filters(bp, false);
5135 	if (irq_re_init) {
5136 		bnxt_free_ring_stats(bp);
5137 		if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
5138 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
5139 			bnxt_free_port_stats(bp);
5140 		bnxt_free_ring_grps(bp);
5141 		bnxt_free_vnics(bp);
5142 		kfree(bp->tx_ring_map);
5143 		bp->tx_ring_map = NULL;
5144 		kfree(bp->tx_ring);
5145 		bp->tx_ring = NULL;
5146 		kfree(bp->rx_ring);
5147 		bp->rx_ring = NULL;
5148 		kfree(bp->bnapi);
5149 		bp->bnapi = NULL;
5150 	} else {
5151 		bnxt_clear_ring_indices(bp);
5152 	}
5153 }
5154 
5155 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
5156 {
5157 	int i, j, rc, size, arr_size;
5158 	void *bnapi;
5159 
5160 	if (irq_re_init) {
5161 		/* Allocate bnapi mem pointer array and mem block for
5162 		 * all queues
5163 		 */
5164 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
5165 				bp->cp_nr_rings);
5166 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
5167 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
5168 		if (!bnapi)
5169 			return -ENOMEM;
5170 
5171 		bp->bnapi = bnapi;
5172 		bnapi += arr_size;
5173 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
5174 			bp->bnapi[i] = bnapi;
5175 			bp->bnapi[i]->index = i;
5176 			bp->bnapi[i]->bp = bp;
5177 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
5178 				struct bnxt_cp_ring_info *cpr =
5179 					&bp->bnapi[i]->cp_ring;
5180 
5181 				cpr->cp_ring_struct.ring_mem.flags =
5182 					BNXT_RMEM_RING_PTE_FLAG;
5183 			}
5184 		}
5185 
5186 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
5187 				      sizeof(struct bnxt_rx_ring_info),
5188 				      GFP_KERNEL);
5189 		if (!bp->rx_ring)
5190 			return -ENOMEM;
5191 
5192 		for (i = 0; i < bp->rx_nr_rings; i++) {
5193 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5194 
5195 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
5196 				rxr->rx_ring_struct.ring_mem.flags =
5197 					BNXT_RMEM_RING_PTE_FLAG;
5198 				rxr->rx_agg_ring_struct.ring_mem.flags =
5199 					BNXT_RMEM_RING_PTE_FLAG;
5200 			} else {
5201 				rxr->rx_cpr =  &bp->bnapi[i]->cp_ring;
5202 			}
5203 			rxr->bnapi = bp->bnapi[i];
5204 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
5205 		}
5206 
5207 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
5208 				      sizeof(struct bnxt_tx_ring_info),
5209 				      GFP_KERNEL);
5210 		if (!bp->tx_ring)
5211 			return -ENOMEM;
5212 
5213 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
5214 					  GFP_KERNEL);
5215 
5216 		if (!bp->tx_ring_map)
5217 			return -ENOMEM;
5218 
5219 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5220 			j = 0;
5221 		else
5222 			j = bp->rx_nr_rings;
5223 
5224 		for (i = 0; i < bp->tx_nr_rings; i++) {
5225 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5226 			struct bnxt_napi *bnapi2;
5227 
5228 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
5229 				txr->tx_ring_struct.ring_mem.flags =
5230 					BNXT_RMEM_RING_PTE_FLAG;
5231 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
5232 			if (i >= bp->tx_nr_rings_xdp) {
5233 				int k = j + BNXT_RING_TO_TC_OFF(bp, i);
5234 
5235 				bnapi2 = bp->bnapi[k];
5236 				txr->txq_index = i - bp->tx_nr_rings_xdp;
5237 				txr->tx_napi_idx =
5238 					BNXT_RING_TO_TC(bp, txr->txq_index);
5239 				bnapi2->tx_ring[txr->tx_napi_idx] = txr;
5240 				bnapi2->tx_int = bnxt_tx_int;
5241 			} else {
5242 				bnapi2 = bp->bnapi[j];
5243 				bnapi2->flags |= BNXT_NAPI_FLAG_XDP;
5244 				bnapi2->tx_ring[0] = txr;
5245 				bnapi2->tx_int = bnxt_tx_int_xdp;
5246 				j++;
5247 			}
5248 			txr->bnapi = bnapi2;
5249 			if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
5250 				txr->tx_cpr = &bnapi2->cp_ring;
5251 		}
5252 
5253 		rc = bnxt_alloc_stats(bp);
5254 		if (rc)
5255 			goto alloc_mem_err;
5256 		bnxt_init_stats(bp);
5257 
5258 		rc = bnxt_alloc_ntp_fltrs(bp);
5259 		if (rc)
5260 			goto alloc_mem_err;
5261 
5262 		rc = bnxt_alloc_vnics(bp);
5263 		if (rc)
5264 			goto alloc_mem_err;
5265 	}
5266 
5267 	rc = bnxt_alloc_all_cp_arrays(bp);
5268 	if (rc)
5269 		goto alloc_mem_err;
5270 
5271 	bnxt_init_ring_struct(bp);
5272 
5273 	rc = bnxt_alloc_rx_rings(bp);
5274 	if (rc)
5275 		goto alloc_mem_err;
5276 
5277 	rc = bnxt_alloc_tx_rings(bp);
5278 	if (rc)
5279 		goto alloc_mem_err;
5280 
5281 	rc = bnxt_alloc_cp_rings(bp);
5282 	if (rc)
5283 		goto alloc_mem_err;
5284 
5285 	bp->vnic_info[BNXT_VNIC_DEFAULT].flags |= BNXT_VNIC_RSS_FLAG |
5286 						  BNXT_VNIC_MCAST_FLAG |
5287 						  BNXT_VNIC_UCAST_FLAG;
5288 	if (BNXT_SUPPORTS_NTUPLE_VNIC(bp) && (bp->flags & BNXT_FLAG_RFS))
5289 		bp->vnic_info[BNXT_VNIC_NTUPLE].flags |=
5290 			BNXT_VNIC_RSS_FLAG | BNXT_VNIC_NTUPLE_FLAG;
5291 
5292 	rc = bnxt_alloc_vnic_attributes(bp);
5293 	if (rc)
5294 		goto alloc_mem_err;
5295 	return 0;
5296 
5297 alloc_mem_err:
5298 	bnxt_free_mem(bp, true);
5299 	return rc;
5300 }
5301 
5302 static void bnxt_disable_int(struct bnxt *bp)
5303 {
5304 	int i;
5305 
5306 	if (!bp->bnapi)
5307 		return;
5308 
5309 	for (i = 0; i < bp->cp_nr_rings; i++) {
5310 		struct bnxt_napi *bnapi = bp->bnapi[i];
5311 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5312 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5313 
5314 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
5315 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5316 	}
5317 }
5318 
5319 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
5320 {
5321 	struct bnxt_napi *bnapi = bp->bnapi[n];
5322 	struct bnxt_cp_ring_info *cpr;
5323 
5324 	cpr = &bnapi->cp_ring;
5325 	return cpr->cp_ring_struct.map_idx;
5326 }
5327 
5328 static void bnxt_disable_int_sync(struct bnxt *bp)
5329 {
5330 	int i;
5331 
5332 	if (!bp->irq_tbl)
5333 		return;
5334 
5335 	atomic_inc(&bp->intr_sem);
5336 
5337 	bnxt_disable_int(bp);
5338 	for (i = 0; i < bp->cp_nr_rings; i++) {
5339 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
5340 
5341 		synchronize_irq(bp->irq_tbl[map_idx].vector);
5342 	}
5343 }
5344 
5345 static void bnxt_enable_int(struct bnxt *bp)
5346 {
5347 	int i;
5348 
5349 	atomic_set(&bp->intr_sem, 0);
5350 	for (i = 0; i < bp->cp_nr_rings; i++) {
5351 		struct bnxt_napi *bnapi = bp->bnapi[i];
5352 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5353 
5354 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
5355 	}
5356 }
5357 
5358 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
5359 			    bool async_only)
5360 {
5361 	DECLARE_BITMAP(async_events_bmap, 256);
5362 	u32 *events = (u32 *)async_events_bmap;
5363 	struct hwrm_func_drv_rgtr_output *resp;
5364 	struct hwrm_func_drv_rgtr_input *req;
5365 	u32 flags;
5366 	int rc, i;
5367 
5368 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR);
5369 	if (rc)
5370 		return rc;
5371 
5372 	req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
5373 				   FUNC_DRV_RGTR_REQ_ENABLES_VER |
5374 				   FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
5375 
5376 	req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
5377 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
5378 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
5379 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
5380 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
5381 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
5382 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
5383 	req->flags = cpu_to_le32(flags);
5384 	req->ver_maj_8b = DRV_VER_MAJ;
5385 	req->ver_min_8b = DRV_VER_MIN;
5386 	req->ver_upd_8b = DRV_VER_UPD;
5387 	req->ver_maj = cpu_to_le16(DRV_VER_MAJ);
5388 	req->ver_min = cpu_to_le16(DRV_VER_MIN);
5389 	req->ver_upd = cpu_to_le16(DRV_VER_UPD);
5390 
5391 	if (BNXT_PF(bp)) {
5392 		u32 data[8];
5393 		int i;
5394 
5395 		memset(data, 0, sizeof(data));
5396 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
5397 			u16 cmd = bnxt_vf_req_snif[i];
5398 			unsigned int bit, idx;
5399 
5400 			idx = cmd / 32;
5401 			bit = cmd % 32;
5402 			data[idx] |= 1 << bit;
5403 		}
5404 
5405 		for (i = 0; i < 8; i++)
5406 			req->vf_req_fwd[i] = cpu_to_le32(data[i]);
5407 
5408 		req->enables |=
5409 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
5410 	}
5411 
5412 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
5413 		req->flags |= cpu_to_le32(
5414 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
5415 
5416 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
5417 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
5418 		u16 event_id = bnxt_async_events_arr[i];
5419 
5420 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
5421 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
5422 			continue;
5423 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE &&
5424 		    !bp->ptp_cfg)
5425 			continue;
5426 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
5427 	}
5428 	if (bmap && bmap_size) {
5429 		for (i = 0; i < bmap_size; i++) {
5430 			if (test_bit(i, bmap))
5431 				__set_bit(i, async_events_bmap);
5432 		}
5433 	}
5434 	for (i = 0; i < 8; i++)
5435 		req->async_event_fwd[i] |= cpu_to_le32(events[i]);
5436 
5437 	if (async_only)
5438 		req->enables =
5439 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
5440 
5441 	resp = hwrm_req_hold(bp, req);
5442 	rc = hwrm_req_send(bp, req);
5443 	if (!rc) {
5444 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
5445 		if (resp->flags &
5446 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
5447 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
5448 	}
5449 	hwrm_req_drop(bp, req);
5450 	return rc;
5451 }
5452 
5453 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
5454 {
5455 	struct hwrm_func_drv_unrgtr_input *req;
5456 	int rc;
5457 
5458 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
5459 		return 0;
5460 
5461 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR);
5462 	if (rc)
5463 		return rc;
5464 	return hwrm_req_send(bp, req);
5465 }
5466 
5467 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa);
5468 
5469 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
5470 {
5471 	struct hwrm_tunnel_dst_port_free_input *req;
5472 	int rc;
5473 
5474 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN &&
5475 	    bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID)
5476 		return 0;
5477 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE &&
5478 	    bp->nge_fw_dst_port_id == INVALID_HW_RING_ID)
5479 		return 0;
5480 
5481 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE);
5482 	if (rc)
5483 		return rc;
5484 
5485 	req->tunnel_type = tunnel_type;
5486 
5487 	switch (tunnel_type) {
5488 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
5489 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
5490 		bp->vxlan_port = 0;
5491 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
5492 		break;
5493 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
5494 		req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
5495 		bp->nge_port = 0;
5496 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
5497 		break;
5498 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE:
5499 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_gpe_fw_dst_port_id);
5500 		bp->vxlan_gpe_port = 0;
5501 		bp->vxlan_gpe_fw_dst_port_id = INVALID_HW_RING_ID;
5502 		break;
5503 	default:
5504 		break;
5505 	}
5506 
5507 	rc = hwrm_req_send(bp, req);
5508 	if (rc)
5509 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
5510 			   rc);
5511 	if (bp->flags & BNXT_FLAG_TPA)
5512 		bnxt_set_tpa(bp, true);
5513 	return rc;
5514 }
5515 
5516 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
5517 					   u8 tunnel_type)
5518 {
5519 	struct hwrm_tunnel_dst_port_alloc_output *resp;
5520 	struct hwrm_tunnel_dst_port_alloc_input *req;
5521 	int rc;
5522 
5523 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC);
5524 	if (rc)
5525 		return rc;
5526 
5527 	req->tunnel_type = tunnel_type;
5528 	req->tunnel_dst_port_val = port;
5529 
5530 	resp = hwrm_req_hold(bp, req);
5531 	rc = hwrm_req_send(bp, req);
5532 	if (rc) {
5533 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
5534 			   rc);
5535 		goto err_out;
5536 	}
5537 
5538 	switch (tunnel_type) {
5539 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
5540 		bp->vxlan_port = port;
5541 		bp->vxlan_fw_dst_port_id =
5542 			le16_to_cpu(resp->tunnel_dst_port_id);
5543 		break;
5544 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
5545 		bp->nge_port = port;
5546 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
5547 		break;
5548 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE:
5549 		bp->vxlan_gpe_port = port;
5550 		bp->vxlan_gpe_fw_dst_port_id =
5551 			le16_to_cpu(resp->tunnel_dst_port_id);
5552 		break;
5553 	default:
5554 		break;
5555 	}
5556 	if (bp->flags & BNXT_FLAG_TPA)
5557 		bnxt_set_tpa(bp, true);
5558 
5559 err_out:
5560 	hwrm_req_drop(bp, req);
5561 	return rc;
5562 }
5563 
5564 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
5565 {
5566 	struct hwrm_cfa_l2_set_rx_mask_input *req;
5567 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5568 	int rc;
5569 
5570 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK);
5571 	if (rc)
5572 		return rc;
5573 
5574 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5575 	if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) {
5576 		req->num_mc_entries = cpu_to_le32(vnic->mc_list_count);
5577 		req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
5578 	}
5579 	req->mask = cpu_to_le32(vnic->rx_mask);
5580 	return hwrm_req_send_silent(bp, req);
5581 }
5582 
5583 void bnxt_del_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr)
5584 {
5585 	if (!atomic_dec_and_test(&fltr->refcnt))
5586 		return;
5587 	spin_lock_bh(&bp->ntp_fltr_lock);
5588 	if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) {
5589 		spin_unlock_bh(&bp->ntp_fltr_lock);
5590 		return;
5591 	}
5592 	hlist_del_rcu(&fltr->base.hash);
5593 	bnxt_del_one_usr_fltr(bp, &fltr->base);
5594 	if (fltr->base.flags) {
5595 		clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap);
5596 		bp->ntp_fltr_count--;
5597 	}
5598 	spin_unlock_bh(&bp->ntp_fltr_lock);
5599 	kfree_rcu(fltr, base.rcu);
5600 }
5601 
5602 static struct bnxt_l2_filter *__bnxt_lookup_l2_filter(struct bnxt *bp,
5603 						      struct bnxt_l2_key *key,
5604 						      u32 idx)
5605 {
5606 	struct hlist_head *head = &bp->l2_fltr_hash_tbl[idx];
5607 	struct bnxt_l2_filter *fltr;
5608 
5609 	hlist_for_each_entry_rcu(fltr, head, base.hash) {
5610 		struct bnxt_l2_key *l2_key = &fltr->l2_key;
5611 
5612 		if (ether_addr_equal(l2_key->dst_mac_addr, key->dst_mac_addr) &&
5613 		    l2_key->vlan == key->vlan)
5614 			return fltr;
5615 	}
5616 	return NULL;
5617 }
5618 
5619 static struct bnxt_l2_filter *bnxt_lookup_l2_filter(struct bnxt *bp,
5620 						    struct bnxt_l2_key *key,
5621 						    u32 idx)
5622 {
5623 	struct bnxt_l2_filter *fltr = NULL;
5624 
5625 	rcu_read_lock();
5626 	fltr = __bnxt_lookup_l2_filter(bp, key, idx);
5627 	if (fltr)
5628 		atomic_inc(&fltr->refcnt);
5629 	rcu_read_unlock();
5630 	return fltr;
5631 }
5632 
5633 #define BNXT_IPV4_4TUPLE(bp, fkeys)					\
5634 	(((fkeys)->basic.ip_proto == IPPROTO_TCP &&			\
5635 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4) ||	\
5636 	 ((fkeys)->basic.ip_proto == IPPROTO_UDP &&			\
5637 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4))
5638 
5639 #define BNXT_IPV6_4TUPLE(bp, fkeys)					\
5640 	(((fkeys)->basic.ip_proto == IPPROTO_TCP &&			\
5641 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6) ||	\
5642 	 ((fkeys)->basic.ip_proto == IPPROTO_UDP &&			\
5643 	  (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6))
5644 
5645 static u32 bnxt_get_rss_flow_tuple_len(struct bnxt *bp, struct flow_keys *fkeys)
5646 {
5647 	if (fkeys->basic.n_proto == htons(ETH_P_IP)) {
5648 		if (BNXT_IPV4_4TUPLE(bp, fkeys))
5649 			return sizeof(fkeys->addrs.v4addrs) +
5650 			       sizeof(fkeys->ports);
5651 
5652 		if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4)
5653 			return sizeof(fkeys->addrs.v4addrs);
5654 	}
5655 
5656 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) {
5657 		if (BNXT_IPV6_4TUPLE(bp, fkeys))
5658 			return sizeof(fkeys->addrs.v6addrs) +
5659 			       sizeof(fkeys->ports);
5660 
5661 		if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6)
5662 			return sizeof(fkeys->addrs.v6addrs);
5663 	}
5664 
5665 	return 0;
5666 }
5667 
5668 static u32 bnxt_toeplitz(struct bnxt *bp, struct flow_keys *fkeys,
5669 			 const unsigned char *key)
5670 {
5671 	u64 prefix = bp->toeplitz_prefix, hash = 0;
5672 	struct bnxt_ipv4_tuple tuple4;
5673 	struct bnxt_ipv6_tuple tuple6;
5674 	int i, j, len = 0;
5675 	u8 *four_tuple;
5676 
5677 	len = bnxt_get_rss_flow_tuple_len(bp, fkeys);
5678 	if (!len)
5679 		return 0;
5680 
5681 	if (fkeys->basic.n_proto == htons(ETH_P_IP)) {
5682 		tuple4.v4addrs = fkeys->addrs.v4addrs;
5683 		tuple4.ports = fkeys->ports;
5684 		four_tuple = (unsigned char *)&tuple4;
5685 	} else {
5686 		tuple6.v6addrs = fkeys->addrs.v6addrs;
5687 		tuple6.ports = fkeys->ports;
5688 		four_tuple = (unsigned char *)&tuple6;
5689 	}
5690 
5691 	for (i = 0, j = 8; i < len; i++, j++) {
5692 		u8 byte = four_tuple[i];
5693 		int bit;
5694 
5695 		for (bit = 0; bit < 8; bit++, prefix <<= 1, byte <<= 1) {
5696 			if (byte & 0x80)
5697 				hash ^= prefix;
5698 		}
5699 		prefix |= (j < HW_HASH_KEY_SIZE) ? key[j] : 0;
5700 	}
5701 
5702 	/* The valid part of the hash is in the upper 32 bits. */
5703 	return (hash >> 32) & BNXT_NTP_FLTR_HASH_MASK;
5704 }
5705 
5706 #ifdef CONFIG_RFS_ACCEL
5707 static struct bnxt_l2_filter *
5708 bnxt_lookup_l2_filter_from_key(struct bnxt *bp, struct bnxt_l2_key *key)
5709 {
5710 	struct bnxt_l2_filter *fltr;
5711 	u32 idx;
5712 
5713 	idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) &
5714 	      BNXT_L2_FLTR_HASH_MASK;
5715 	fltr = bnxt_lookup_l2_filter(bp, key, idx);
5716 	return fltr;
5717 }
5718 #endif
5719 
5720 static int bnxt_init_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr,
5721 			       struct bnxt_l2_key *key, u32 idx)
5722 {
5723 	struct hlist_head *head;
5724 
5725 	ether_addr_copy(fltr->l2_key.dst_mac_addr, key->dst_mac_addr);
5726 	fltr->l2_key.vlan = key->vlan;
5727 	fltr->base.type = BNXT_FLTR_TYPE_L2;
5728 	if (fltr->base.flags) {
5729 		int bit_id;
5730 
5731 		bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
5732 						 bp->max_fltr, 0);
5733 		if (bit_id < 0)
5734 			return -ENOMEM;
5735 		fltr->base.sw_id = (u16)bit_id;
5736 		bp->ntp_fltr_count++;
5737 	}
5738 	head = &bp->l2_fltr_hash_tbl[idx];
5739 	hlist_add_head_rcu(&fltr->base.hash, head);
5740 	bnxt_insert_usr_fltr(bp, &fltr->base);
5741 	set_bit(BNXT_FLTR_INSERTED, &fltr->base.state);
5742 	atomic_set(&fltr->refcnt, 1);
5743 	return 0;
5744 }
5745 
5746 static struct bnxt_l2_filter *bnxt_alloc_l2_filter(struct bnxt *bp,
5747 						   struct bnxt_l2_key *key,
5748 						   gfp_t gfp)
5749 {
5750 	struct bnxt_l2_filter *fltr;
5751 	u32 idx;
5752 	int rc;
5753 
5754 	idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) &
5755 	      BNXT_L2_FLTR_HASH_MASK;
5756 	fltr = bnxt_lookup_l2_filter(bp, key, idx);
5757 	if (fltr)
5758 		return fltr;
5759 
5760 	fltr = kzalloc(sizeof(*fltr), gfp);
5761 	if (!fltr)
5762 		return ERR_PTR(-ENOMEM);
5763 	spin_lock_bh(&bp->ntp_fltr_lock);
5764 	rc = bnxt_init_l2_filter(bp, fltr, key, idx);
5765 	spin_unlock_bh(&bp->ntp_fltr_lock);
5766 	if (rc) {
5767 		bnxt_del_l2_filter(bp, fltr);
5768 		fltr = ERR_PTR(rc);
5769 	}
5770 	return fltr;
5771 }
5772 
5773 struct bnxt_l2_filter *bnxt_alloc_new_l2_filter(struct bnxt *bp,
5774 						struct bnxt_l2_key *key,
5775 						u16 flags)
5776 {
5777 	struct bnxt_l2_filter *fltr;
5778 	u32 idx;
5779 	int rc;
5780 
5781 	idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) &
5782 	      BNXT_L2_FLTR_HASH_MASK;
5783 	spin_lock_bh(&bp->ntp_fltr_lock);
5784 	fltr = __bnxt_lookup_l2_filter(bp, key, idx);
5785 	if (fltr) {
5786 		fltr = ERR_PTR(-EEXIST);
5787 		goto l2_filter_exit;
5788 	}
5789 	fltr = kzalloc(sizeof(*fltr), GFP_ATOMIC);
5790 	if (!fltr) {
5791 		fltr = ERR_PTR(-ENOMEM);
5792 		goto l2_filter_exit;
5793 	}
5794 	fltr->base.flags = flags;
5795 	rc = bnxt_init_l2_filter(bp, fltr, key, idx);
5796 	if (rc) {
5797 		spin_unlock_bh(&bp->ntp_fltr_lock);
5798 		bnxt_del_l2_filter(bp, fltr);
5799 		return ERR_PTR(rc);
5800 	}
5801 
5802 l2_filter_exit:
5803 	spin_unlock_bh(&bp->ntp_fltr_lock);
5804 	return fltr;
5805 }
5806 
5807 static u16 bnxt_vf_target_id(struct bnxt_pf_info *pf, u16 vf_idx)
5808 {
5809 #ifdef CONFIG_BNXT_SRIOV
5810 	struct bnxt_vf_info *vf = &pf->vf[vf_idx];
5811 
5812 	return vf->fw_fid;
5813 #else
5814 	return INVALID_HW_RING_ID;
5815 #endif
5816 }
5817 
5818 int bnxt_hwrm_l2_filter_free(struct bnxt *bp, struct bnxt_l2_filter *fltr)
5819 {
5820 	struct hwrm_cfa_l2_filter_free_input *req;
5821 	u16 target_id = 0xffff;
5822 	int rc;
5823 
5824 	if (fltr->base.flags & BNXT_ACT_FUNC_DST) {
5825 		struct bnxt_pf_info *pf = &bp->pf;
5826 
5827 		if (fltr->base.vf_idx >= pf->active_vfs)
5828 			return -EINVAL;
5829 
5830 		target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx);
5831 		if (target_id == INVALID_HW_RING_ID)
5832 			return -EINVAL;
5833 	}
5834 
5835 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
5836 	if (rc)
5837 		return rc;
5838 
5839 	req->target_id = cpu_to_le16(target_id);
5840 	req->l2_filter_id = fltr->base.filter_id;
5841 	return hwrm_req_send(bp, req);
5842 }
5843 
5844 int bnxt_hwrm_l2_filter_alloc(struct bnxt *bp, struct bnxt_l2_filter *fltr)
5845 {
5846 	struct hwrm_cfa_l2_filter_alloc_output *resp;
5847 	struct hwrm_cfa_l2_filter_alloc_input *req;
5848 	u16 target_id = 0xffff;
5849 	int rc;
5850 
5851 	if (fltr->base.flags & BNXT_ACT_FUNC_DST) {
5852 		struct bnxt_pf_info *pf = &bp->pf;
5853 
5854 		if (fltr->base.vf_idx >= pf->active_vfs)
5855 			return -EINVAL;
5856 
5857 		target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx);
5858 	}
5859 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC);
5860 	if (rc)
5861 		return rc;
5862 
5863 	req->target_id = cpu_to_le16(target_id);
5864 	req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
5865 
5866 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
5867 		req->flags |=
5868 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
5869 	req->dst_id = cpu_to_le16(fltr->base.fw_vnic_id);
5870 	req->enables =
5871 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
5872 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
5873 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
5874 	ether_addr_copy(req->l2_addr, fltr->l2_key.dst_mac_addr);
5875 	eth_broadcast_addr(req->l2_addr_mask);
5876 
5877 	if (fltr->l2_key.vlan) {
5878 		req->enables |=
5879 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN |
5880 				CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN_MASK |
5881 				CFA_L2_FILTER_ALLOC_REQ_ENABLES_NUM_VLANS);
5882 		req->num_vlans = 1;
5883 		req->l2_ivlan = cpu_to_le16(fltr->l2_key.vlan);
5884 		req->l2_ivlan_mask = cpu_to_le16(0xfff);
5885 	}
5886 
5887 	resp = hwrm_req_hold(bp, req);
5888 	rc = hwrm_req_send(bp, req);
5889 	if (!rc) {
5890 		fltr->base.filter_id = resp->l2_filter_id;
5891 		set_bit(BNXT_FLTR_VALID, &fltr->base.state);
5892 	}
5893 	hwrm_req_drop(bp, req);
5894 	return rc;
5895 }
5896 
5897 int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
5898 				     struct bnxt_ntuple_filter *fltr)
5899 {
5900 	struct hwrm_cfa_ntuple_filter_free_input *req;
5901 	int rc;
5902 
5903 	set_bit(BNXT_FLTR_FW_DELETED, &fltr->base.state);
5904 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE);
5905 	if (rc)
5906 		return rc;
5907 
5908 	req->ntuple_filter_id = fltr->base.filter_id;
5909 	return hwrm_req_send(bp, req);
5910 }
5911 
5912 #define BNXT_NTP_FLTR_FLAGS					\
5913 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
5914 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
5915 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
5916 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
5917 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
5918 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
5919 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
5920 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
5921 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
5922 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
5923 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
5924 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
5925 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
5926 
5927 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
5928 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
5929 
5930 void bnxt_fill_ipv6_mask(__be32 mask[4])
5931 {
5932 	int i;
5933 
5934 	for (i = 0; i < 4; i++)
5935 		mask[i] = cpu_to_be32(~0);
5936 }
5937 
5938 static void
5939 bnxt_cfg_rfs_ring_tbl_idx(struct bnxt *bp,
5940 			  struct hwrm_cfa_ntuple_filter_alloc_input *req,
5941 			  struct bnxt_ntuple_filter *fltr)
5942 {
5943 	u16 rxq = fltr->base.rxq;
5944 
5945 	if (fltr->base.flags & BNXT_ACT_RSS_CTX) {
5946 		struct ethtool_rxfh_context *ctx;
5947 		struct bnxt_rss_ctx *rss_ctx;
5948 		struct bnxt_vnic_info *vnic;
5949 
5950 		ctx = xa_load(&bp->dev->ethtool->rss_ctx,
5951 			      fltr->base.fw_vnic_id);
5952 		if (ctx) {
5953 			rss_ctx = ethtool_rxfh_context_priv(ctx);
5954 			vnic = &rss_ctx->vnic;
5955 
5956 			req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
5957 		}
5958 		return;
5959 	}
5960 	if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) {
5961 		struct bnxt_vnic_info *vnic;
5962 		u32 enables;
5963 
5964 		vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE];
5965 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
5966 		enables = CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_RFS_RING_TBL_IDX;
5967 		req->enables |= cpu_to_le32(enables);
5968 		req->rfs_ring_tbl_idx = cpu_to_le16(rxq);
5969 	} else {
5970 		u32 flags;
5971 
5972 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
5973 		req->flags |= cpu_to_le32(flags);
5974 		req->dst_id = cpu_to_le16(rxq);
5975 	}
5976 }
5977 
5978 int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
5979 				      struct bnxt_ntuple_filter *fltr)
5980 {
5981 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
5982 	struct hwrm_cfa_ntuple_filter_alloc_input *req;
5983 	struct bnxt_flow_masks *masks = &fltr->fmasks;
5984 	struct flow_keys *keys = &fltr->fkeys;
5985 	struct bnxt_l2_filter *l2_fltr;
5986 	struct bnxt_vnic_info *vnic;
5987 	int rc;
5988 
5989 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC);
5990 	if (rc)
5991 		return rc;
5992 
5993 	l2_fltr = fltr->l2_fltr;
5994 	req->l2_filter_id = l2_fltr->base.filter_id;
5995 
5996 	if (fltr->base.flags & BNXT_ACT_DROP) {
5997 		req->flags =
5998 			cpu_to_le32(CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DROP);
5999 	} else if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
6000 		bnxt_cfg_rfs_ring_tbl_idx(bp, req, fltr);
6001 	} else {
6002 		vnic = &bp->vnic_info[fltr->base.rxq + 1];
6003 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
6004 	}
6005 	req->enables |= cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
6006 
6007 	req->ethertype = htons(ETH_P_IP);
6008 	req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
6009 	req->ip_protocol = keys->basic.ip_proto;
6010 
6011 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
6012 		req->ethertype = htons(ETH_P_IPV6);
6013 		req->ip_addr_type =
6014 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
6015 		*(struct in6_addr *)&req->src_ipaddr[0] = keys->addrs.v6addrs.src;
6016 		*(struct in6_addr *)&req->src_ipaddr_mask[0] = masks->addrs.v6addrs.src;
6017 		*(struct in6_addr *)&req->dst_ipaddr[0] = keys->addrs.v6addrs.dst;
6018 		*(struct in6_addr *)&req->dst_ipaddr_mask[0] = masks->addrs.v6addrs.dst;
6019 	} else {
6020 		req->src_ipaddr[0] = keys->addrs.v4addrs.src;
6021 		req->src_ipaddr_mask[0] = masks->addrs.v4addrs.src;
6022 		req->dst_ipaddr[0] = keys->addrs.v4addrs.dst;
6023 		req->dst_ipaddr_mask[0] = masks->addrs.v4addrs.dst;
6024 	}
6025 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
6026 		req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
6027 		req->tunnel_type =
6028 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
6029 	}
6030 
6031 	req->src_port = keys->ports.src;
6032 	req->src_port_mask = masks->ports.src;
6033 	req->dst_port = keys->ports.dst;
6034 	req->dst_port_mask = masks->ports.dst;
6035 
6036 	resp = hwrm_req_hold(bp, req);
6037 	rc = hwrm_req_send(bp, req);
6038 	if (!rc)
6039 		fltr->base.filter_id = resp->ntuple_filter_id;
6040 	hwrm_req_drop(bp, req);
6041 	return rc;
6042 }
6043 
6044 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
6045 				     const u8 *mac_addr)
6046 {
6047 	struct bnxt_l2_filter *fltr;
6048 	struct bnxt_l2_key key;
6049 	int rc;
6050 
6051 	ether_addr_copy(key.dst_mac_addr, mac_addr);
6052 	key.vlan = 0;
6053 	fltr = bnxt_alloc_l2_filter(bp, &key, GFP_KERNEL);
6054 	if (IS_ERR(fltr))
6055 		return PTR_ERR(fltr);
6056 
6057 	fltr->base.fw_vnic_id = bp->vnic_info[vnic_id].fw_vnic_id;
6058 	rc = bnxt_hwrm_l2_filter_alloc(bp, fltr);
6059 	if (rc)
6060 		bnxt_del_l2_filter(bp, fltr);
6061 	else
6062 		bp->vnic_info[vnic_id].l2_filters[idx] = fltr;
6063 	return rc;
6064 }
6065 
6066 static void bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
6067 {
6068 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
6069 
6070 	/* Any associated ntuple filters will also be cleared by firmware. */
6071 	for (i = 0; i < num_of_vnics; i++) {
6072 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
6073 
6074 		for (j = 0; j < vnic->uc_filter_count; j++) {
6075 			struct bnxt_l2_filter *fltr = vnic->l2_filters[j];
6076 
6077 			bnxt_hwrm_l2_filter_free(bp, fltr);
6078 			bnxt_del_l2_filter(bp, fltr);
6079 		}
6080 		vnic->uc_filter_count = 0;
6081 	}
6082 }
6083 
6084 #define BNXT_DFLT_TUNL_TPA_BMAP				\
6085 	(VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GRE |	\
6086 	 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV4 |	\
6087 	 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV6)
6088 
6089 static void bnxt_hwrm_vnic_update_tunl_tpa(struct bnxt *bp,
6090 					   struct hwrm_vnic_tpa_cfg_input *req)
6091 {
6092 	u32 tunl_tpa_bmap = BNXT_DFLT_TUNL_TPA_BMAP;
6093 
6094 	if (!(bp->fw_cap & BNXT_FW_CAP_VNIC_TUNNEL_TPA))
6095 		return;
6096 
6097 	if (bp->vxlan_port)
6098 		tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN;
6099 	if (bp->vxlan_gpe_port)
6100 		tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN_GPE;
6101 	if (bp->nge_port)
6102 		tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GENEVE;
6103 
6104 	req->enables |= cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_TNL_TPA_EN);
6105 	req->tnl_tpa_en_bitmap = cpu_to_le32(tunl_tpa_bmap);
6106 }
6107 
6108 int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, struct bnxt_vnic_info *vnic,
6109 			   u32 tpa_flags)
6110 {
6111 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
6112 	struct hwrm_vnic_tpa_cfg_input *req;
6113 	int rc;
6114 
6115 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
6116 		return 0;
6117 
6118 	rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG);
6119 	if (rc)
6120 		return rc;
6121 
6122 	if (tpa_flags) {
6123 		u16 mss = bp->dev->mtu - 40;
6124 		u32 nsegs, n, segs = 0, flags;
6125 
6126 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
6127 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
6128 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
6129 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
6130 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
6131 		if (tpa_flags & BNXT_FLAG_GRO)
6132 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
6133 
6134 		req->flags = cpu_to_le32(flags);
6135 
6136 		req->enables =
6137 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
6138 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
6139 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
6140 
6141 		/* Number of segs are log2 units, and first packet is not
6142 		 * included as part of this units.
6143 		 */
6144 		if (mss <= BNXT_RX_PAGE_SIZE) {
6145 			n = BNXT_RX_PAGE_SIZE / mss;
6146 			nsegs = (MAX_SKB_FRAGS - 1) * n;
6147 		} else {
6148 			n = mss / BNXT_RX_PAGE_SIZE;
6149 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
6150 				n++;
6151 			nsegs = (MAX_SKB_FRAGS - n) / n;
6152 		}
6153 
6154 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6155 			segs = MAX_TPA_SEGS_P5;
6156 			max_aggs = bp->max_tpa;
6157 		} else {
6158 			segs = ilog2(nsegs);
6159 		}
6160 		req->max_agg_segs = cpu_to_le16(segs);
6161 		req->max_aggs = cpu_to_le16(max_aggs);
6162 
6163 		req->min_agg_len = cpu_to_le32(512);
6164 		bnxt_hwrm_vnic_update_tunl_tpa(bp, req);
6165 	}
6166 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6167 
6168 	return hwrm_req_send(bp, req);
6169 }
6170 
6171 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
6172 {
6173 	struct bnxt_ring_grp_info *grp_info;
6174 
6175 	grp_info = &bp->grp_info[ring->grp_idx];
6176 	return grp_info->cp_fw_ring_id;
6177 }
6178 
6179 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
6180 {
6181 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6182 		return rxr->rx_cpr->cp_ring_struct.fw_ring_id;
6183 	else
6184 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
6185 }
6186 
6187 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
6188 {
6189 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6190 		return txr->tx_cpr->cp_ring_struct.fw_ring_id;
6191 	else
6192 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
6193 }
6194 
6195 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
6196 {
6197 	int entries;
6198 
6199 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6200 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
6201 	else
6202 		entries = HW_HASH_INDEX_SIZE;
6203 
6204 	bp->rss_indir_tbl_entries = entries;
6205 	bp->rss_indir_tbl =
6206 		kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), GFP_KERNEL);
6207 	if (!bp->rss_indir_tbl)
6208 		return -ENOMEM;
6209 
6210 	return 0;
6211 }
6212 
6213 void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp,
6214 				 struct ethtool_rxfh_context *rss_ctx)
6215 {
6216 	u16 max_rings, max_entries, pad, i;
6217 	u32 *rss_indir_tbl;
6218 
6219 	if (!bp->rx_nr_rings)
6220 		return;
6221 
6222 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6223 		max_rings = bp->rx_nr_rings - 1;
6224 	else
6225 		max_rings = bp->rx_nr_rings;
6226 
6227 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
6228 	if (rss_ctx)
6229 		rss_indir_tbl = ethtool_rxfh_context_indir(rss_ctx);
6230 	else
6231 		rss_indir_tbl = &bp->rss_indir_tbl[0];
6232 
6233 	for (i = 0; i < max_entries; i++)
6234 		rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
6235 
6236 	pad = bp->rss_indir_tbl_entries - max_entries;
6237 	if (pad)
6238 		memset(&rss_indir_tbl[i], 0, pad * sizeof(*rss_indir_tbl));
6239 }
6240 
6241 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
6242 {
6243 	u32 i, tbl_size, max_ring = 0;
6244 
6245 	if (!bp->rss_indir_tbl)
6246 		return 0;
6247 
6248 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
6249 	for (i = 0; i < tbl_size; i++)
6250 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
6251 	return max_ring;
6252 }
6253 
6254 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
6255 {
6256 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6257 		if (!rx_rings)
6258 			return 0;
6259 		return bnxt_calc_nr_ring_pages(rx_rings - 1,
6260 					       BNXT_RSS_TABLE_ENTRIES_P5);
6261 	}
6262 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6263 		return 2;
6264 	return 1;
6265 }
6266 
6267 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
6268 {
6269 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
6270 	u16 i, j;
6271 
6272 	/* Fill the RSS indirection table with ring group ids */
6273 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
6274 		if (!no_rss)
6275 			j = bp->rss_indir_tbl[i];
6276 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
6277 	}
6278 }
6279 
6280 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
6281 				    struct bnxt_vnic_info *vnic)
6282 {
6283 	__le16 *ring_tbl = vnic->rss_table;
6284 	struct bnxt_rx_ring_info *rxr;
6285 	u16 tbl_size, i;
6286 
6287 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
6288 
6289 	for (i = 0; i < tbl_size; i++) {
6290 		u16 ring_id, j;
6291 
6292 		if (vnic->flags & BNXT_VNIC_NTUPLE_FLAG)
6293 			j = ethtool_rxfh_indir_default(i, bp->rx_nr_rings);
6294 		else if (vnic->flags & BNXT_VNIC_RSSCTX_FLAG)
6295 			j = ethtool_rxfh_context_indir(vnic->rss_ctx)[i];
6296 		else
6297 			j = bp->rss_indir_tbl[i];
6298 		rxr = &bp->rx_ring[j];
6299 
6300 		ring_id = rxr->rx_ring_struct.fw_ring_id;
6301 		*ring_tbl++ = cpu_to_le16(ring_id);
6302 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6303 		*ring_tbl++ = cpu_to_le16(ring_id);
6304 	}
6305 }
6306 
6307 static void
6308 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req,
6309 			 struct bnxt_vnic_info *vnic)
6310 {
6311 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6312 		bnxt_fill_hw_rss_tbl_p5(bp, vnic);
6313 		if (bp->flags & BNXT_FLAG_CHIP_P7)
6314 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_IPSEC_HASH_TYPE_CFG_SUPPORT;
6315 	} else {
6316 		bnxt_fill_hw_rss_tbl(bp, vnic);
6317 	}
6318 
6319 	if (bp->rss_hash_delta) {
6320 		req->hash_type = cpu_to_le32(bp->rss_hash_delta);
6321 		if (bp->rss_hash_cfg & bp->rss_hash_delta)
6322 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE;
6323 		else
6324 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE;
6325 	} else {
6326 		req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
6327 	}
6328 	req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
6329 	req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
6330 	req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
6331 }
6332 
6333 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct bnxt_vnic_info *vnic,
6334 				  bool set_rss)
6335 {
6336 	struct hwrm_vnic_rss_cfg_input *req;
6337 	int rc;
6338 
6339 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) ||
6340 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
6341 		return 0;
6342 
6343 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
6344 	if (rc)
6345 		return rc;
6346 
6347 	if (set_rss)
6348 		__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
6349 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
6350 	return hwrm_req_send(bp, req);
6351 }
6352 
6353 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp,
6354 				     struct bnxt_vnic_info *vnic, bool set_rss)
6355 {
6356 	struct hwrm_vnic_rss_cfg_input *req;
6357 	dma_addr_t ring_tbl_map;
6358 	u32 i, nr_ctxs;
6359 	int rc;
6360 
6361 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
6362 	if (rc)
6363 		return rc;
6364 
6365 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6366 	if (!set_rss)
6367 		return hwrm_req_send(bp, req);
6368 
6369 	__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
6370 	ring_tbl_map = vnic->rss_table_dma_addr;
6371 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
6372 
6373 	hwrm_req_hold(bp, req);
6374 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
6375 		req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
6376 		req->ring_table_pair_index = i;
6377 		req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
6378 		rc = hwrm_req_send(bp, req);
6379 		if (rc)
6380 			goto exit;
6381 	}
6382 
6383 exit:
6384 	hwrm_req_drop(bp, req);
6385 	return rc;
6386 }
6387 
6388 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp)
6389 {
6390 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
6391 	struct hwrm_vnic_rss_qcfg_output *resp;
6392 	struct hwrm_vnic_rss_qcfg_input *req;
6393 
6394 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG))
6395 		return;
6396 
6397 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6398 	/* all contexts configured to same hash_type, zero always exists */
6399 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
6400 	resp = hwrm_req_hold(bp, req);
6401 	if (!hwrm_req_send(bp, req)) {
6402 		bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg;
6403 		bp->rss_hash_delta = 0;
6404 	}
6405 	hwrm_req_drop(bp, req);
6406 }
6407 
6408 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, struct bnxt_vnic_info *vnic)
6409 {
6410 	struct hwrm_vnic_plcmodes_cfg_input *req;
6411 	int rc;
6412 
6413 	rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG);
6414 	if (rc)
6415 		return rc;
6416 
6417 	req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT);
6418 	req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID);
6419 
6420 	if (BNXT_RX_PAGE_MODE(bp)) {
6421 		req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size);
6422 	} else {
6423 		req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
6424 					  VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
6425 		req->enables |=
6426 			cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
6427 		req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
6428 		req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
6429 	}
6430 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
6431 	return hwrm_req_send(bp, req);
6432 }
6433 
6434 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp,
6435 					struct bnxt_vnic_info *vnic,
6436 					u16 ctx_idx)
6437 {
6438 	struct hwrm_vnic_rss_cos_lb_ctx_free_input *req;
6439 
6440 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE))
6441 		return;
6442 
6443 	req->rss_cos_lb_ctx_id =
6444 		cpu_to_le16(vnic->fw_rss_cos_lb_ctx[ctx_idx]);
6445 
6446 	hwrm_req_send(bp, req);
6447 	vnic->fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
6448 }
6449 
6450 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
6451 {
6452 	int i, j;
6453 
6454 	for (i = 0; i < bp->nr_vnics; i++) {
6455 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
6456 
6457 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
6458 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
6459 				bnxt_hwrm_vnic_ctx_free_one(bp, vnic, j);
6460 		}
6461 	}
6462 	bp->rsscos_nr_ctxs = 0;
6463 }
6464 
6465 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp,
6466 				    struct bnxt_vnic_info *vnic, u16 ctx_idx)
6467 {
6468 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp;
6469 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req;
6470 	int rc;
6471 
6472 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC);
6473 	if (rc)
6474 		return rc;
6475 
6476 	resp = hwrm_req_hold(bp, req);
6477 	rc = hwrm_req_send(bp, req);
6478 	if (!rc)
6479 		vnic->fw_rss_cos_lb_ctx[ctx_idx] =
6480 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
6481 	hwrm_req_drop(bp, req);
6482 
6483 	return rc;
6484 }
6485 
6486 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
6487 {
6488 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
6489 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
6490 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
6491 }
6492 
6493 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, struct bnxt_vnic_info *vnic)
6494 {
6495 	struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT];
6496 	struct hwrm_vnic_cfg_input *req;
6497 	unsigned int ring = 0, grp_idx;
6498 	u16 def_vlan = 0;
6499 	int rc;
6500 
6501 	rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG);
6502 	if (rc)
6503 		return rc;
6504 
6505 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6506 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
6507 
6508 		req->default_rx_ring_id =
6509 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
6510 		req->default_cmpl_ring_id =
6511 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
6512 		req->enables =
6513 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
6514 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
6515 		goto vnic_mru;
6516 	}
6517 	req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
6518 	/* Only RSS support for now TBD: COS & LB */
6519 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
6520 		req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
6521 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
6522 					   VNIC_CFG_REQ_ENABLES_MRU);
6523 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
6524 		req->rss_rule = cpu_to_le16(vnic0->fw_rss_cos_lb_ctx[0]);
6525 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
6526 					   VNIC_CFG_REQ_ENABLES_MRU);
6527 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
6528 	} else {
6529 		req->rss_rule = cpu_to_le16(0xffff);
6530 	}
6531 
6532 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
6533 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
6534 		req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
6535 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
6536 	} else {
6537 		req->cos_rule = cpu_to_le16(0xffff);
6538 	}
6539 
6540 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
6541 		ring = 0;
6542 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
6543 		ring = vnic->vnic_id - 1;
6544 	else if ((vnic->vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
6545 		ring = bp->rx_nr_rings - 1;
6546 
6547 	grp_idx = bp->rx_ring[ring].bnapi->index;
6548 	req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
6549 	req->lb_rule = cpu_to_le16(0xffff);
6550 vnic_mru:
6551 	vnic->mru = bp->dev->mtu + ETH_HLEN + VLAN_HLEN;
6552 	req->mru = cpu_to_le16(vnic->mru);
6553 
6554 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
6555 #ifdef CONFIG_BNXT_SRIOV
6556 	if (BNXT_VF(bp))
6557 		def_vlan = bp->vf.vlan;
6558 #endif
6559 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
6560 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
6561 	if (vnic->vnic_id == BNXT_VNIC_DEFAULT && bnxt_ulp_registered(bp->edev))
6562 		req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
6563 
6564 	return hwrm_req_send(bp, req);
6565 }
6566 
6567 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp,
6568 				    struct bnxt_vnic_info *vnic)
6569 {
6570 	if (vnic->fw_vnic_id != INVALID_HW_RING_ID) {
6571 		struct hwrm_vnic_free_input *req;
6572 
6573 		if (hwrm_req_init(bp, req, HWRM_VNIC_FREE))
6574 			return;
6575 
6576 		req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
6577 
6578 		hwrm_req_send(bp, req);
6579 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
6580 	}
6581 }
6582 
6583 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
6584 {
6585 	u16 i;
6586 
6587 	for (i = 0; i < bp->nr_vnics; i++)
6588 		bnxt_hwrm_vnic_free_one(bp, &bp->vnic_info[i]);
6589 }
6590 
6591 int bnxt_hwrm_vnic_alloc(struct bnxt *bp, struct bnxt_vnic_info *vnic,
6592 			 unsigned int start_rx_ring_idx,
6593 			 unsigned int nr_rings)
6594 {
6595 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
6596 	struct hwrm_vnic_alloc_output *resp;
6597 	struct hwrm_vnic_alloc_input *req;
6598 	int rc;
6599 
6600 	rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC);
6601 	if (rc)
6602 		return rc;
6603 
6604 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6605 		goto vnic_no_ring_grps;
6606 
6607 	/* map ring groups to this vnic */
6608 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
6609 		grp_idx = bp->rx_ring[i].bnapi->index;
6610 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
6611 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
6612 				   j, nr_rings);
6613 			break;
6614 		}
6615 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
6616 	}
6617 
6618 vnic_no_ring_grps:
6619 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
6620 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
6621 	if (vnic->vnic_id == BNXT_VNIC_DEFAULT)
6622 		req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
6623 
6624 	resp = hwrm_req_hold(bp, req);
6625 	rc = hwrm_req_send(bp, req);
6626 	if (!rc)
6627 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
6628 	hwrm_req_drop(bp, req);
6629 	return rc;
6630 }
6631 
6632 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
6633 {
6634 	struct hwrm_vnic_qcaps_output *resp;
6635 	struct hwrm_vnic_qcaps_input *req;
6636 	int rc;
6637 
6638 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
6639 	bp->flags &= ~BNXT_FLAG_ROCE_MIRROR_CAP;
6640 	bp->rss_cap &= ~BNXT_RSS_CAP_NEW_RSS_CAP;
6641 	if (bp->hwrm_spec_code < 0x10600)
6642 		return 0;
6643 
6644 	rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS);
6645 	if (rc)
6646 		return rc;
6647 
6648 	resp = hwrm_req_hold(bp, req);
6649 	rc = hwrm_req_send(bp, req);
6650 	if (!rc) {
6651 		u32 flags = le32_to_cpu(resp->flags);
6652 
6653 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
6654 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
6655 			bp->rss_cap |= BNXT_RSS_CAP_NEW_RSS_CAP;
6656 		if (flags &
6657 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
6658 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
6659 
6660 		/* Older P5 fw before EXT_HW_STATS support did not set
6661 		 * VLAN_STRIP_CAP properly.
6662 		 */
6663 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
6664 		    (BNXT_CHIP_P5(bp) &&
6665 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
6666 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
6667 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP)
6668 			bp->rss_cap |= BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA;
6669 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_PROF_TCAM_MODE_ENABLED)
6670 			bp->rss_cap |= BNXT_RSS_CAP_RSS_TCAM;
6671 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
6672 		if (bp->max_tpa_v2) {
6673 			if (BNXT_CHIP_P5(bp))
6674 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
6675 			else
6676 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P7;
6677 		}
6678 		if (flags & VNIC_QCAPS_RESP_FLAGS_HW_TUNNEL_TPA_CAP)
6679 			bp->fw_cap |= BNXT_FW_CAP_VNIC_TUNNEL_TPA;
6680 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV4_CAP)
6681 			bp->rss_cap |= BNXT_RSS_CAP_AH_V4_RSS_CAP;
6682 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV6_CAP)
6683 			bp->rss_cap |= BNXT_RSS_CAP_AH_V6_RSS_CAP;
6684 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV4_CAP)
6685 			bp->rss_cap |= BNXT_RSS_CAP_ESP_V4_RSS_CAP;
6686 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV6_CAP)
6687 			bp->rss_cap |= BNXT_RSS_CAP_ESP_V6_RSS_CAP;
6688 		if (flags & VNIC_QCAPS_RESP_FLAGS_RE_FLUSH_CAP)
6689 			bp->fw_cap |= BNXT_FW_CAP_VNIC_RE_FLUSH;
6690 	}
6691 	hwrm_req_drop(bp, req);
6692 	return rc;
6693 }
6694 
6695 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
6696 {
6697 	struct hwrm_ring_grp_alloc_output *resp;
6698 	struct hwrm_ring_grp_alloc_input *req;
6699 	int rc;
6700 	u16 i;
6701 
6702 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6703 		return 0;
6704 
6705 	rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC);
6706 	if (rc)
6707 		return rc;
6708 
6709 	resp = hwrm_req_hold(bp, req);
6710 	for (i = 0; i < bp->rx_nr_rings; i++) {
6711 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
6712 
6713 		req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
6714 		req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
6715 		req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
6716 		req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
6717 
6718 		rc = hwrm_req_send(bp, req);
6719 
6720 		if (rc)
6721 			break;
6722 
6723 		bp->grp_info[grp_idx].fw_grp_id =
6724 			le32_to_cpu(resp->ring_group_id);
6725 	}
6726 	hwrm_req_drop(bp, req);
6727 	return rc;
6728 }
6729 
6730 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
6731 {
6732 	struct hwrm_ring_grp_free_input *req;
6733 	u16 i;
6734 
6735 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
6736 		return;
6737 
6738 	if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE))
6739 		return;
6740 
6741 	hwrm_req_hold(bp, req);
6742 	for (i = 0; i < bp->cp_nr_rings; i++) {
6743 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
6744 			continue;
6745 		req->ring_group_id =
6746 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
6747 
6748 		hwrm_req_send(bp, req);
6749 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
6750 	}
6751 	hwrm_req_drop(bp, req);
6752 }
6753 
6754 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
6755 				    struct bnxt_ring_struct *ring,
6756 				    u32 ring_type, u32 map_index)
6757 {
6758 	struct hwrm_ring_alloc_output *resp;
6759 	struct hwrm_ring_alloc_input *req;
6760 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
6761 	struct bnxt_ring_grp_info *grp_info;
6762 	int rc, err = 0;
6763 	u16 ring_id;
6764 
6765 	rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC);
6766 	if (rc)
6767 		goto exit;
6768 
6769 	req->enables = 0;
6770 	if (rmem->nr_pages > 1) {
6771 		req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
6772 		/* Page size is in log2 units */
6773 		req->page_size = BNXT_PAGE_SHIFT;
6774 		req->page_tbl_depth = 1;
6775 	} else {
6776 		req->page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
6777 	}
6778 	req->fbo = 0;
6779 	/* Association of ring index with doorbell index and MSIX number */
6780 	req->logical_id = cpu_to_le16(map_index);
6781 
6782 	switch (ring_type) {
6783 	case HWRM_RING_ALLOC_TX: {
6784 		struct bnxt_tx_ring_info *txr;
6785 		u16 flags = 0;
6786 
6787 		txr = container_of(ring, struct bnxt_tx_ring_info,
6788 				   tx_ring_struct);
6789 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
6790 		/* Association of transmit ring with completion ring */
6791 		grp_info = &bp->grp_info[ring->grp_idx];
6792 		req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
6793 		req->length = cpu_to_le32(bp->tx_ring_mask + 1);
6794 		req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6795 		req->queue_id = cpu_to_le16(ring->queue_id);
6796 		if (bp->flags & BNXT_FLAG_TX_COAL_CMPL)
6797 			req->cmpl_coal_cnt =
6798 				RING_ALLOC_REQ_CMPL_COAL_CNT_COAL_64;
6799 		if ((bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) && bp->ptp_cfg)
6800 			flags |= RING_ALLOC_REQ_FLAGS_TX_PKT_TS_CMPL_ENABLE;
6801 		req->flags = cpu_to_le16(flags);
6802 		break;
6803 	}
6804 	case HWRM_RING_ALLOC_RX:
6805 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
6806 		req->length = cpu_to_le32(bp->rx_ring_mask + 1);
6807 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6808 			u16 flags = 0;
6809 
6810 			/* Association of rx ring with stats context */
6811 			grp_info = &bp->grp_info[ring->grp_idx];
6812 			req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
6813 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6814 			req->enables |= cpu_to_le32(
6815 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
6816 			if (NET_IP_ALIGN == 2)
6817 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
6818 			req->flags = cpu_to_le16(flags);
6819 		}
6820 		break;
6821 	case HWRM_RING_ALLOC_AGG:
6822 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6823 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
6824 			/* Association of agg ring with rx ring */
6825 			grp_info = &bp->grp_info[ring->grp_idx];
6826 			req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
6827 			req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
6828 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6829 			req->enables |= cpu_to_le32(
6830 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
6831 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
6832 		} else {
6833 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
6834 		}
6835 		req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
6836 		break;
6837 	case HWRM_RING_ALLOC_CMPL:
6838 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
6839 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
6840 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6841 			/* Association of cp ring with nq */
6842 			grp_info = &bp->grp_info[map_index];
6843 			req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
6844 			req->cq_handle = cpu_to_le64(ring->handle);
6845 			req->enables |= cpu_to_le32(
6846 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
6847 		} else {
6848 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
6849 		}
6850 		break;
6851 	case HWRM_RING_ALLOC_NQ:
6852 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
6853 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
6854 		req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
6855 		break;
6856 	default:
6857 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
6858 			   ring_type);
6859 		return -1;
6860 	}
6861 
6862 	resp = hwrm_req_hold(bp, req);
6863 	rc = hwrm_req_send(bp, req);
6864 	err = le16_to_cpu(resp->error_code);
6865 	ring_id = le16_to_cpu(resp->ring_id);
6866 	hwrm_req_drop(bp, req);
6867 
6868 exit:
6869 	if (rc || err) {
6870 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
6871 			   ring_type, rc, err);
6872 		return -EIO;
6873 	}
6874 	ring->fw_ring_id = ring_id;
6875 	return rc;
6876 }
6877 
6878 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
6879 {
6880 	int rc;
6881 
6882 	if (BNXT_PF(bp)) {
6883 		struct hwrm_func_cfg_input *req;
6884 
6885 		rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
6886 		if (rc)
6887 			return rc;
6888 
6889 		req->fid = cpu_to_le16(0xffff);
6890 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
6891 		req->async_event_cr = cpu_to_le16(idx);
6892 		return hwrm_req_send(bp, req);
6893 	} else {
6894 		struct hwrm_func_vf_cfg_input *req;
6895 
6896 		rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
6897 		if (rc)
6898 			return rc;
6899 
6900 		req->enables =
6901 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
6902 		req->async_event_cr = cpu_to_le16(idx);
6903 		return hwrm_req_send(bp, req);
6904 	}
6905 }
6906 
6907 static void bnxt_set_db_mask(struct bnxt *bp, struct bnxt_db_info *db,
6908 			     u32 ring_type)
6909 {
6910 	switch (ring_type) {
6911 	case HWRM_RING_ALLOC_TX:
6912 		db->db_ring_mask = bp->tx_ring_mask;
6913 		break;
6914 	case HWRM_RING_ALLOC_RX:
6915 		db->db_ring_mask = bp->rx_ring_mask;
6916 		break;
6917 	case HWRM_RING_ALLOC_AGG:
6918 		db->db_ring_mask = bp->rx_agg_ring_mask;
6919 		break;
6920 	case HWRM_RING_ALLOC_CMPL:
6921 	case HWRM_RING_ALLOC_NQ:
6922 		db->db_ring_mask = bp->cp_ring_mask;
6923 		break;
6924 	}
6925 	if (bp->flags & BNXT_FLAG_CHIP_P7) {
6926 		db->db_epoch_mask = db->db_ring_mask + 1;
6927 		db->db_epoch_shift = DBR_EPOCH_SFT - ilog2(db->db_epoch_mask);
6928 	}
6929 }
6930 
6931 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
6932 			u32 map_idx, u32 xid)
6933 {
6934 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6935 		switch (ring_type) {
6936 		case HWRM_RING_ALLOC_TX:
6937 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
6938 			break;
6939 		case HWRM_RING_ALLOC_RX:
6940 		case HWRM_RING_ALLOC_AGG:
6941 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
6942 			break;
6943 		case HWRM_RING_ALLOC_CMPL:
6944 			db->db_key64 = DBR_PATH_L2;
6945 			break;
6946 		case HWRM_RING_ALLOC_NQ:
6947 			db->db_key64 = DBR_PATH_L2;
6948 			break;
6949 		}
6950 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
6951 
6952 		if (bp->flags & BNXT_FLAG_CHIP_P7)
6953 			db->db_key64 |= DBR_VALID;
6954 
6955 		db->doorbell = bp->bar1 + bp->db_offset;
6956 	} else {
6957 		db->doorbell = bp->bar1 + map_idx * 0x80;
6958 		switch (ring_type) {
6959 		case HWRM_RING_ALLOC_TX:
6960 			db->db_key32 = DB_KEY_TX;
6961 			break;
6962 		case HWRM_RING_ALLOC_RX:
6963 		case HWRM_RING_ALLOC_AGG:
6964 			db->db_key32 = DB_KEY_RX;
6965 			break;
6966 		case HWRM_RING_ALLOC_CMPL:
6967 			db->db_key32 = DB_KEY_CP;
6968 			break;
6969 		}
6970 	}
6971 	bnxt_set_db_mask(bp, db, ring_type);
6972 }
6973 
6974 static int bnxt_hwrm_rx_ring_alloc(struct bnxt *bp,
6975 				   struct bnxt_rx_ring_info *rxr)
6976 {
6977 	struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
6978 	struct bnxt_napi *bnapi = rxr->bnapi;
6979 	u32 type = HWRM_RING_ALLOC_RX;
6980 	u32 map_idx = bnapi->index;
6981 	int rc;
6982 
6983 	rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
6984 	if (rc)
6985 		return rc;
6986 
6987 	bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
6988 	bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
6989 
6990 	return 0;
6991 }
6992 
6993 static int bnxt_hwrm_rx_agg_ring_alloc(struct bnxt *bp,
6994 				       struct bnxt_rx_ring_info *rxr)
6995 {
6996 	struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
6997 	u32 type = HWRM_RING_ALLOC_AGG;
6998 	u32 grp_idx = ring->grp_idx;
6999 	u32 map_idx;
7000 	int rc;
7001 
7002 	map_idx = grp_idx + bp->rx_nr_rings;
7003 	rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
7004 	if (rc)
7005 		return rc;
7006 
7007 	bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
7008 		    ring->fw_ring_id);
7009 	bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
7010 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
7011 	bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
7012 
7013 	return 0;
7014 }
7015 
7016 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
7017 {
7018 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
7019 	int i, rc = 0;
7020 	u32 type;
7021 
7022 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7023 		type = HWRM_RING_ALLOC_NQ;
7024 	else
7025 		type = HWRM_RING_ALLOC_CMPL;
7026 	for (i = 0; i < bp->cp_nr_rings; i++) {
7027 		struct bnxt_napi *bnapi = bp->bnapi[i];
7028 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7029 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
7030 		u32 map_idx = ring->map_idx;
7031 		unsigned int vector;
7032 
7033 		vector = bp->irq_tbl[map_idx].vector;
7034 		disable_irq_nosync(vector);
7035 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
7036 		if (rc) {
7037 			enable_irq(vector);
7038 			goto err_out;
7039 		}
7040 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
7041 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
7042 		enable_irq(vector);
7043 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
7044 
7045 		if (!i) {
7046 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
7047 			if (rc)
7048 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
7049 		}
7050 	}
7051 
7052 	type = HWRM_RING_ALLOC_TX;
7053 	for (i = 0; i < bp->tx_nr_rings; i++) {
7054 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
7055 		struct bnxt_ring_struct *ring;
7056 		u32 map_idx;
7057 
7058 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7059 			struct bnxt_cp_ring_info *cpr2 = txr->tx_cpr;
7060 			struct bnxt_napi *bnapi = txr->bnapi;
7061 			u32 type2 = HWRM_RING_ALLOC_CMPL;
7062 
7063 			ring = &cpr2->cp_ring_struct;
7064 			ring->handle = BNXT_SET_NQ_HDL(cpr2);
7065 			map_idx = bnapi->index;
7066 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
7067 			if (rc)
7068 				goto err_out;
7069 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
7070 				    ring->fw_ring_id);
7071 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
7072 		}
7073 		ring = &txr->tx_ring_struct;
7074 		map_idx = i;
7075 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
7076 		if (rc)
7077 			goto err_out;
7078 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
7079 	}
7080 
7081 	for (i = 0; i < bp->rx_nr_rings; i++) {
7082 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
7083 
7084 		rc = bnxt_hwrm_rx_ring_alloc(bp, rxr);
7085 		if (rc)
7086 			goto err_out;
7087 		/* If we have agg rings, post agg buffers first. */
7088 		if (!agg_rings)
7089 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
7090 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7091 			struct bnxt_cp_ring_info *cpr2 = rxr->rx_cpr;
7092 			struct bnxt_napi *bnapi = rxr->bnapi;
7093 			u32 type2 = HWRM_RING_ALLOC_CMPL;
7094 			struct bnxt_ring_struct *ring;
7095 			u32 map_idx = bnapi->index;
7096 
7097 			ring = &cpr2->cp_ring_struct;
7098 			ring->handle = BNXT_SET_NQ_HDL(cpr2);
7099 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
7100 			if (rc)
7101 				goto err_out;
7102 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
7103 				    ring->fw_ring_id);
7104 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
7105 		}
7106 	}
7107 
7108 	if (agg_rings) {
7109 		for (i = 0; i < bp->rx_nr_rings; i++) {
7110 			rc = bnxt_hwrm_rx_agg_ring_alloc(bp, &bp->rx_ring[i]);
7111 			if (rc)
7112 				goto err_out;
7113 		}
7114 	}
7115 err_out:
7116 	return rc;
7117 }
7118 
7119 static int hwrm_ring_free_send_msg(struct bnxt *bp,
7120 				   struct bnxt_ring_struct *ring,
7121 				   u32 ring_type, int cmpl_ring_id)
7122 {
7123 	struct hwrm_ring_free_output *resp;
7124 	struct hwrm_ring_free_input *req;
7125 	u16 error_code = 0;
7126 	int rc;
7127 
7128 	if (BNXT_NO_FW_ACCESS(bp))
7129 		return 0;
7130 
7131 	rc = hwrm_req_init(bp, req, HWRM_RING_FREE);
7132 	if (rc)
7133 		goto exit;
7134 
7135 	req->cmpl_ring = cpu_to_le16(cmpl_ring_id);
7136 	req->ring_type = ring_type;
7137 	req->ring_id = cpu_to_le16(ring->fw_ring_id);
7138 
7139 	resp = hwrm_req_hold(bp, req);
7140 	rc = hwrm_req_send(bp, req);
7141 	error_code = le16_to_cpu(resp->error_code);
7142 	hwrm_req_drop(bp, req);
7143 exit:
7144 	if (rc || error_code) {
7145 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
7146 			   ring_type, rc, error_code);
7147 		return -EIO;
7148 	}
7149 	return 0;
7150 }
7151 
7152 static void bnxt_hwrm_rx_ring_free(struct bnxt *bp,
7153 				   struct bnxt_rx_ring_info *rxr,
7154 				   bool close_path)
7155 {
7156 	struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
7157 	u32 grp_idx = rxr->bnapi->index;
7158 	u32 cmpl_ring_id;
7159 
7160 	if (ring->fw_ring_id == INVALID_HW_RING_ID)
7161 		return;
7162 
7163 	cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
7164 	hwrm_ring_free_send_msg(bp, ring,
7165 				RING_FREE_REQ_RING_TYPE_RX,
7166 				close_path ? cmpl_ring_id :
7167 				INVALID_HW_RING_ID);
7168 	ring->fw_ring_id = INVALID_HW_RING_ID;
7169 	bp->grp_info[grp_idx].rx_fw_ring_id = INVALID_HW_RING_ID;
7170 }
7171 
7172 static void bnxt_hwrm_rx_agg_ring_free(struct bnxt *bp,
7173 				       struct bnxt_rx_ring_info *rxr,
7174 				       bool close_path)
7175 {
7176 	struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
7177 	u32 grp_idx = rxr->bnapi->index;
7178 	u32 type, cmpl_ring_id;
7179 
7180 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7181 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
7182 	else
7183 		type = RING_FREE_REQ_RING_TYPE_RX;
7184 
7185 	if (ring->fw_ring_id == INVALID_HW_RING_ID)
7186 		return;
7187 
7188 	cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
7189 	hwrm_ring_free_send_msg(bp, ring, type,
7190 				close_path ? cmpl_ring_id :
7191 				INVALID_HW_RING_ID);
7192 	ring->fw_ring_id = INVALID_HW_RING_ID;
7193 	bp->grp_info[grp_idx].agg_fw_ring_id = INVALID_HW_RING_ID;
7194 }
7195 
7196 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
7197 {
7198 	u32 type;
7199 	int i;
7200 
7201 	if (!bp->bnapi)
7202 		return;
7203 
7204 	for (i = 0; i < bp->tx_nr_rings; i++) {
7205 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
7206 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
7207 
7208 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
7209 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
7210 
7211 			hwrm_ring_free_send_msg(bp, ring,
7212 						RING_FREE_REQ_RING_TYPE_TX,
7213 						close_path ? cmpl_ring_id :
7214 						INVALID_HW_RING_ID);
7215 			ring->fw_ring_id = INVALID_HW_RING_ID;
7216 		}
7217 	}
7218 
7219 	for (i = 0; i < bp->rx_nr_rings; i++) {
7220 		bnxt_hwrm_rx_ring_free(bp, &bp->rx_ring[i], close_path);
7221 		bnxt_hwrm_rx_agg_ring_free(bp, &bp->rx_ring[i], close_path);
7222 	}
7223 
7224 	/* The completion rings are about to be freed.  After that the
7225 	 * IRQ doorbell will not work anymore.  So we need to disable
7226 	 * IRQ here.
7227 	 */
7228 	bnxt_disable_int_sync(bp);
7229 
7230 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7231 		type = RING_FREE_REQ_RING_TYPE_NQ;
7232 	else
7233 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
7234 	for (i = 0; i < bp->cp_nr_rings; i++) {
7235 		struct bnxt_napi *bnapi = bp->bnapi[i];
7236 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7237 		struct bnxt_ring_struct *ring;
7238 		int j;
7239 
7240 		for (j = 0; j < cpr->cp_ring_count && cpr->cp_ring_arr; j++) {
7241 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
7242 
7243 			ring = &cpr2->cp_ring_struct;
7244 			if (ring->fw_ring_id == INVALID_HW_RING_ID)
7245 				continue;
7246 			hwrm_ring_free_send_msg(bp, ring,
7247 						RING_FREE_REQ_RING_TYPE_L2_CMPL,
7248 						INVALID_HW_RING_ID);
7249 			ring->fw_ring_id = INVALID_HW_RING_ID;
7250 		}
7251 		ring = &cpr->cp_ring_struct;
7252 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
7253 			hwrm_ring_free_send_msg(bp, ring, type,
7254 						INVALID_HW_RING_ID);
7255 			ring->fw_ring_id = INVALID_HW_RING_ID;
7256 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
7257 		}
7258 	}
7259 }
7260 
7261 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
7262 			     bool shared);
7263 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
7264 			   bool shared);
7265 
7266 static int bnxt_hwrm_get_rings(struct bnxt *bp)
7267 {
7268 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7269 	struct hwrm_func_qcfg_output *resp;
7270 	struct hwrm_func_qcfg_input *req;
7271 	int rc;
7272 
7273 	if (bp->hwrm_spec_code < 0x10601)
7274 		return 0;
7275 
7276 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
7277 	if (rc)
7278 		return rc;
7279 
7280 	req->fid = cpu_to_le16(0xffff);
7281 	resp = hwrm_req_hold(bp, req);
7282 	rc = hwrm_req_send(bp, req);
7283 	if (rc) {
7284 		hwrm_req_drop(bp, req);
7285 		return rc;
7286 	}
7287 
7288 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
7289 	if (BNXT_NEW_RM(bp)) {
7290 		u16 cp, stats;
7291 
7292 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
7293 		hw_resc->resv_hw_ring_grps =
7294 			le32_to_cpu(resp->alloc_hw_ring_grps);
7295 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
7296 		hw_resc->resv_rsscos_ctxs = le16_to_cpu(resp->alloc_rsscos_ctx);
7297 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
7298 		stats = le16_to_cpu(resp->alloc_stat_ctx);
7299 		hw_resc->resv_irqs = cp;
7300 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7301 			int rx = hw_resc->resv_rx_rings;
7302 			int tx = hw_resc->resv_tx_rings;
7303 
7304 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
7305 				rx >>= 1;
7306 			if (cp < (rx + tx)) {
7307 				rc = __bnxt_trim_rings(bp, &rx, &tx, cp, false);
7308 				if (rc)
7309 					goto get_rings_exit;
7310 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
7311 					rx <<= 1;
7312 				hw_resc->resv_rx_rings = rx;
7313 				hw_resc->resv_tx_rings = tx;
7314 			}
7315 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
7316 			hw_resc->resv_hw_ring_grps = rx;
7317 		}
7318 		hw_resc->resv_cp_rings = cp;
7319 		hw_resc->resv_stat_ctxs = stats;
7320 	}
7321 get_rings_exit:
7322 	hwrm_req_drop(bp, req);
7323 	return rc;
7324 }
7325 
7326 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
7327 {
7328 	struct hwrm_func_qcfg_output *resp;
7329 	struct hwrm_func_qcfg_input *req;
7330 	int rc;
7331 
7332 	if (bp->hwrm_spec_code < 0x10601)
7333 		return 0;
7334 
7335 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
7336 	if (rc)
7337 		return rc;
7338 
7339 	req->fid = cpu_to_le16(fid);
7340 	resp = hwrm_req_hold(bp, req);
7341 	rc = hwrm_req_send(bp, req);
7342 	if (!rc)
7343 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
7344 
7345 	hwrm_req_drop(bp, req);
7346 	return rc;
7347 }
7348 
7349 static bool bnxt_rfs_supported(struct bnxt *bp);
7350 
7351 static struct hwrm_func_cfg_input *
7352 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7353 {
7354 	struct hwrm_func_cfg_input *req;
7355 	u32 enables = 0;
7356 
7357 	if (bnxt_hwrm_func_cfg_short_req_init(bp, &req))
7358 		return NULL;
7359 
7360 	req->fid = cpu_to_le16(0xffff);
7361 	enables |= hwr->tx ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
7362 	req->num_tx_rings = cpu_to_le16(hwr->tx);
7363 	if (BNXT_NEW_RM(bp)) {
7364 		enables |= hwr->rx ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
7365 		enables |= hwr->stat ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
7366 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7367 			enables |= hwr->cp ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
7368 			enables |= hwr->cp_p5 ?
7369 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
7370 		} else {
7371 			enables |= hwr->cp ?
7372 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
7373 			enables |= hwr->grp ?
7374 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
7375 		}
7376 		enables |= hwr->vnic ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
7377 		enables |= hwr->rss_ctx ? FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS :
7378 					  0;
7379 		req->num_rx_rings = cpu_to_le16(hwr->rx);
7380 		req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx);
7381 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7382 			req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5);
7383 			req->num_msix = cpu_to_le16(hwr->cp);
7384 		} else {
7385 			req->num_cmpl_rings = cpu_to_le16(hwr->cp);
7386 			req->num_hw_ring_grps = cpu_to_le16(hwr->grp);
7387 		}
7388 		req->num_stat_ctxs = cpu_to_le16(hwr->stat);
7389 		req->num_vnics = cpu_to_le16(hwr->vnic);
7390 	}
7391 	req->enables = cpu_to_le32(enables);
7392 	return req;
7393 }
7394 
7395 static struct hwrm_func_vf_cfg_input *
7396 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7397 {
7398 	struct hwrm_func_vf_cfg_input *req;
7399 	u32 enables = 0;
7400 
7401 	if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG))
7402 		return NULL;
7403 
7404 	enables |= hwr->tx ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
7405 	enables |= hwr->rx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
7406 			     FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
7407 	enables |= hwr->stat ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
7408 	enables |= hwr->rss_ctx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
7409 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7410 		enables |= hwr->cp_p5 ?
7411 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
7412 	} else {
7413 		enables |= hwr->cp ? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
7414 		enables |= hwr->grp ?
7415 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
7416 	}
7417 	enables |= hwr->vnic ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
7418 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
7419 
7420 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
7421 	req->num_tx_rings = cpu_to_le16(hwr->tx);
7422 	req->num_rx_rings = cpu_to_le16(hwr->rx);
7423 	req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx);
7424 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7425 		req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5);
7426 	} else {
7427 		req->num_cmpl_rings = cpu_to_le16(hwr->cp);
7428 		req->num_hw_ring_grps = cpu_to_le16(hwr->grp);
7429 	}
7430 	req->num_stat_ctxs = cpu_to_le16(hwr->stat);
7431 	req->num_vnics = cpu_to_le16(hwr->vnic);
7432 
7433 	req->enables = cpu_to_le32(enables);
7434 	return req;
7435 }
7436 
7437 static int
7438 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7439 {
7440 	struct hwrm_func_cfg_input *req;
7441 	int rc;
7442 
7443 	req = __bnxt_hwrm_reserve_pf_rings(bp, hwr);
7444 	if (!req)
7445 		return -ENOMEM;
7446 
7447 	if (!req->enables) {
7448 		hwrm_req_drop(bp, req);
7449 		return 0;
7450 	}
7451 
7452 	rc = hwrm_req_send(bp, req);
7453 	if (rc)
7454 		return rc;
7455 
7456 	if (bp->hwrm_spec_code < 0x10601)
7457 		bp->hw_resc.resv_tx_rings = hwr->tx;
7458 
7459 	return bnxt_hwrm_get_rings(bp);
7460 }
7461 
7462 static int
7463 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7464 {
7465 	struct hwrm_func_vf_cfg_input *req;
7466 	int rc;
7467 
7468 	if (!BNXT_NEW_RM(bp)) {
7469 		bp->hw_resc.resv_tx_rings = hwr->tx;
7470 		return 0;
7471 	}
7472 
7473 	req = __bnxt_hwrm_reserve_vf_rings(bp, hwr);
7474 	if (!req)
7475 		return -ENOMEM;
7476 
7477 	rc = hwrm_req_send(bp, req);
7478 	if (rc)
7479 		return rc;
7480 
7481 	return bnxt_hwrm_get_rings(bp);
7482 }
7483 
7484 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7485 {
7486 	if (BNXT_PF(bp))
7487 		return bnxt_hwrm_reserve_pf_rings(bp, hwr);
7488 	else
7489 		return bnxt_hwrm_reserve_vf_rings(bp, hwr);
7490 }
7491 
7492 int bnxt_nq_rings_in_use(struct bnxt *bp)
7493 {
7494 	return bp->cp_nr_rings + bnxt_get_ulp_msix_num(bp);
7495 }
7496 
7497 static int bnxt_cp_rings_in_use(struct bnxt *bp)
7498 {
7499 	int cp;
7500 
7501 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7502 		return bnxt_nq_rings_in_use(bp);
7503 
7504 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
7505 	return cp;
7506 }
7507 
7508 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
7509 {
7510 	return bp->cp_nr_rings + bnxt_get_ulp_stat_ctxs(bp);
7511 }
7512 
7513 static int bnxt_get_total_rss_ctxs(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7514 {
7515 	if (!hwr->grp)
7516 		return 0;
7517 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
7518 		int rss_ctx = bnxt_get_nr_rss_ctxs(bp, hwr->grp);
7519 
7520 		if (BNXT_SUPPORTS_NTUPLE_VNIC(bp))
7521 			rss_ctx *= hwr->vnic;
7522 		return rss_ctx;
7523 	}
7524 	if (BNXT_VF(bp))
7525 		return BNXT_VF_MAX_RSS_CTX;
7526 	if (!(bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && bnxt_rfs_supported(bp))
7527 		return hwr->grp + 1;
7528 	return 1;
7529 }
7530 
7531 /* Check if a default RSS map needs to be setup.  This function is only
7532  * used on older firmware that does not require reserving RX rings.
7533  */
7534 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
7535 {
7536 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7537 
7538 	/* The RSS map is valid for RX rings set to resv_rx_rings */
7539 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
7540 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
7541 		if (!netif_is_rxfh_configured(bp->dev))
7542 			bnxt_set_dflt_rss_indir_tbl(bp, NULL);
7543 	}
7544 }
7545 
7546 static int bnxt_get_total_vnics(struct bnxt *bp, int rx_rings)
7547 {
7548 	if (bp->flags & BNXT_FLAG_RFS) {
7549 		if (BNXT_SUPPORTS_NTUPLE_VNIC(bp))
7550 			return 2 + bp->num_rss_ctx;
7551 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7552 			return rx_rings + 1;
7553 	}
7554 	return 1;
7555 }
7556 
7557 static bool bnxt_need_reserve_rings(struct bnxt *bp)
7558 {
7559 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7560 	int cp = bnxt_cp_rings_in_use(bp);
7561 	int nq = bnxt_nq_rings_in_use(bp);
7562 	int rx = bp->rx_nr_rings, stat;
7563 	int vnic, grp = rx;
7564 
7565 	/* Old firmware does not need RX ring reservations but we still
7566 	 * need to setup a default RSS map when needed.  With new firmware
7567 	 * we go through RX ring reservations first and then set up the
7568 	 * RSS map for the successfully reserved RX rings when needed.
7569 	 */
7570 	if (!BNXT_NEW_RM(bp))
7571 		bnxt_check_rss_tbl_no_rmgr(bp);
7572 
7573 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
7574 	    bp->hwrm_spec_code >= 0x10601)
7575 		return true;
7576 
7577 	if (!BNXT_NEW_RM(bp))
7578 		return false;
7579 
7580 	vnic = bnxt_get_total_vnics(bp, rx);
7581 
7582 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7583 		rx <<= 1;
7584 	stat = bnxt_get_func_stat_ctxs(bp);
7585 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
7586 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
7587 	    (hw_resc->resv_hw_ring_grps != grp &&
7588 	     !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)))
7589 		return true;
7590 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && BNXT_PF(bp) &&
7591 	    hw_resc->resv_irqs != nq)
7592 		return true;
7593 	return false;
7594 }
7595 
7596 static void bnxt_copy_reserved_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7597 {
7598 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7599 
7600 	hwr->tx = hw_resc->resv_tx_rings;
7601 	if (BNXT_NEW_RM(bp)) {
7602 		hwr->rx = hw_resc->resv_rx_rings;
7603 		hwr->cp = hw_resc->resv_irqs;
7604 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7605 			hwr->cp_p5 = hw_resc->resv_cp_rings;
7606 		hwr->grp = hw_resc->resv_hw_ring_grps;
7607 		hwr->vnic = hw_resc->resv_vnics;
7608 		hwr->stat = hw_resc->resv_stat_ctxs;
7609 		hwr->rss_ctx = hw_resc->resv_rsscos_ctxs;
7610 	}
7611 }
7612 
7613 static bool bnxt_rings_ok(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7614 {
7615 	return hwr->tx && hwr->rx && hwr->cp && hwr->grp && hwr->vnic &&
7616 	       hwr->stat && (hwr->cp_p5 || !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS));
7617 }
7618 
7619 static int bnxt_get_avail_msix(struct bnxt *bp, int num);
7620 
7621 static int __bnxt_reserve_rings(struct bnxt *bp)
7622 {
7623 	struct bnxt_hw_rings hwr = {0};
7624 	int rx_rings, old_rx_rings, rc;
7625 	int cp = bp->cp_nr_rings;
7626 	int ulp_msix = 0;
7627 	bool sh = false;
7628 	int tx_cp;
7629 
7630 	if (!bnxt_need_reserve_rings(bp))
7631 		return 0;
7632 
7633 	if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) {
7634 		ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want);
7635 		if (!ulp_msix)
7636 			bnxt_set_ulp_stat_ctxs(bp, 0);
7637 
7638 		if (ulp_msix > bp->ulp_num_msix_want)
7639 			ulp_msix = bp->ulp_num_msix_want;
7640 		hwr.cp = cp + ulp_msix;
7641 	} else {
7642 		hwr.cp = bnxt_nq_rings_in_use(bp);
7643 	}
7644 
7645 	hwr.tx = bp->tx_nr_rings;
7646 	hwr.rx = bp->rx_nr_rings;
7647 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7648 		sh = true;
7649 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7650 		hwr.cp_p5 = hwr.rx + hwr.tx;
7651 
7652 	hwr.vnic = bnxt_get_total_vnics(bp, hwr.rx);
7653 
7654 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7655 		hwr.rx <<= 1;
7656 	hwr.grp = bp->rx_nr_rings;
7657 	hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr);
7658 	hwr.stat = bnxt_get_func_stat_ctxs(bp);
7659 	old_rx_rings = bp->hw_resc.resv_rx_rings;
7660 
7661 	rc = bnxt_hwrm_reserve_rings(bp, &hwr);
7662 	if (rc)
7663 		return rc;
7664 
7665 	bnxt_copy_reserved_rings(bp, &hwr);
7666 
7667 	rx_rings = hwr.rx;
7668 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
7669 		if (hwr.rx >= 2) {
7670 			rx_rings = hwr.rx >> 1;
7671 		} else {
7672 			if (netif_running(bp->dev))
7673 				return -ENOMEM;
7674 
7675 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
7676 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
7677 			bp->dev->hw_features &= ~NETIF_F_LRO;
7678 			bp->dev->features &= ~NETIF_F_LRO;
7679 			bnxt_set_ring_params(bp);
7680 		}
7681 	}
7682 	rx_rings = min_t(int, rx_rings, hwr.grp);
7683 	hwr.cp = min_t(int, hwr.cp, bp->cp_nr_rings);
7684 	if (hwr.stat > bnxt_get_ulp_stat_ctxs(bp))
7685 		hwr.stat -= bnxt_get_ulp_stat_ctxs(bp);
7686 	hwr.cp = min_t(int, hwr.cp, hwr.stat);
7687 	rc = bnxt_trim_rings(bp, &rx_rings, &hwr.tx, hwr.cp, sh);
7688 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7689 		hwr.rx = rx_rings << 1;
7690 	tx_cp = bnxt_num_tx_to_cp(bp, hwr.tx);
7691 	hwr.cp = sh ? max_t(int, tx_cp, rx_rings) : tx_cp + rx_rings;
7692 	bp->tx_nr_rings = hwr.tx;
7693 
7694 	/* If we cannot reserve all the RX rings, reset the RSS map only
7695 	 * if absolutely necessary
7696 	 */
7697 	if (rx_rings != bp->rx_nr_rings) {
7698 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
7699 			    rx_rings, bp->rx_nr_rings);
7700 		if (netif_is_rxfh_configured(bp->dev) &&
7701 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
7702 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
7703 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
7704 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
7705 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
7706 		}
7707 	}
7708 	bp->rx_nr_rings = rx_rings;
7709 	bp->cp_nr_rings = hwr.cp;
7710 
7711 	if (!bnxt_rings_ok(bp, &hwr))
7712 		return -ENOMEM;
7713 
7714 	if (old_rx_rings != bp->hw_resc.resv_rx_rings &&
7715 	    !netif_is_rxfh_configured(bp->dev))
7716 		bnxt_set_dflt_rss_indir_tbl(bp, NULL);
7717 
7718 	if (!bnxt_ulp_registered(bp->edev) && BNXT_NEW_RM(bp)) {
7719 		int resv_msix, resv_ctx, ulp_ctxs;
7720 		struct bnxt_hw_resc *hw_resc;
7721 
7722 		hw_resc = &bp->hw_resc;
7723 		resv_msix = hw_resc->resv_irqs - bp->cp_nr_rings;
7724 		ulp_msix = min_t(int, resv_msix, ulp_msix);
7725 		bnxt_set_ulp_msix_num(bp, ulp_msix);
7726 		resv_ctx = hw_resc->resv_stat_ctxs  - bp->cp_nr_rings;
7727 		ulp_ctxs = min(resv_ctx, bnxt_get_ulp_stat_ctxs(bp));
7728 		bnxt_set_ulp_stat_ctxs(bp, ulp_ctxs);
7729 	}
7730 
7731 	return rc;
7732 }
7733 
7734 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7735 {
7736 	struct hwrm_func_vf_cfg_input *req;
7737 	u32 flags;
7738 
7739 	if (!BNXT_NEW_RM(bp))
7740 		return 0;
7741 
7742 	req = __bnxt_hwrm_reserve_vf_rings(bp, hwr);
7743 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
7744 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
7745 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
7746 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
7747 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
7748 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
7749 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7750 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
7751 
7752 	req->flags = cpu_to_le32(flags);
7753 	return hwrm_req_send_silent(bp, req);
7754 }
7755 
7756 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7757 {
7758 	struct hwrm_func_cfg_input *req;
7759 	u32 flags;
7760 
7761 	req = __bnxt_hwrm_reserve_pf_rings(bp, hwr);
7762 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
7763 	if (BNXT_NEW_RM(bp)) {
7764 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
7765 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
7766 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
7767 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
7768 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7769 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
7770 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
7771 		else
7772 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
7773 	}
7774 
7775 	req->flags = cpu_to_le32(flags);
7776 	return hwrm_req_send_silent(bp, req);
7777 }
7778 
7779 static int bnxt_hwrm_check_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr)
7780 {
7781 	if (bp->hwrm_spec_code < 0x10801)
7782 		return 0;
7783 
7784 	if (BNXT_PF(bp))
7785 		return bnxt_hwrm_check_pf_rings(bp, hwr);
7786 
7787 	return bnxt_hwrm_check_vf_rings(bp, hwr);
7788 }
7789 
7790 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
7791 {
7792 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7793 	struct hwrm_ring_aggint_qcaps_output *resp;
7794 	struct hwrm_ring_aggint_qcaps_input *req;
7795 	int rc;
7796 
7797 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
7798 	coal_cap->num_cmpl_dma_aggr_max = 63;
7799 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
7800 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
7801 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
7802 	coal_cap->int_lat_tmr_min_max = 65535;
7803 	coal_cap->int_lat_tmr_max_max = 65535;
7804 	coal_cap->num_cmpl_aggr_int_max = 65535;
7805 	coal_cap->timer_units = 80;
7806 
7807 	if (bp->hwrm_spec_code < 0x10902)
7808 		return;
7809 
7810 	if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS))
7811 		return;
7812 
7813 	resp = hwrm_req_hold(bp, req);
7814 	rc = hwrm_req_send_silent(bp, req);
7815 	if (!rc) {
7816 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
7817 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
7818 		coal_cap->num_cmpl_dma_aggr_max =
7819 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
7820 		coal_cap->num_cmpl_dma_aggr_during_int_max =
7821 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
7822 		coal_cap->cmpl_aggr_dma_tmr_max =
7823 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
7824 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
7825 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
7826 		coal_cap->int_lat_tmr_min_max =
7827 			le16_to_cpu(resp->int_lat_tmr_min_max);
7828 		coal_cap->int_lat_tmr_max_max =
7829 			le16_to_cpu(resp->int_lat_tmr_max_max);
7830 		coal_cap->num_cmpl_aggr_int_max =
7831 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
7832 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
7833 	}
7834 	hwrm_req_drop(bp, req);
7835 }
7836 
7837 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
7838 {
7839 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7840 
7841 	return usec * 1000 / coal_cap->timer_units;
7842 }
7843 
7844 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
7845 	struct bnxt_coal *hw_coal,
7846 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
7847 {
7848 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7849 	u16 val, tmr, max, flags = hw_coal->flags;
7850 	u32 cmpl_params = coal_cap->cmpl_params;
7851 
7852 	max = hw_coal->bufs_per_record * 128;
7853 	if (hw_coal->budget)
7854 		max = hw_coal->bufs_per_record * hw_coal->budget;
7855 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
7856 
7857 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
7858 	req->num_cmpl_aggr_int = cpu_to_le16(val);
7859 
7860 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
7861 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
7862 
7863 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
7864 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
7865 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
7866 
7867 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
7868 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
7869 	req->int_lat_tmr_max = cpu_to_le16(tmr);
7870 
7871 	/* min timer set to 1/2 of interrupt timer */
7872 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
7873 		val = tmr / 2;
7874 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
7875 		req->int_lat_tmr_min = cpu_to_le16(val);
7876 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
7877 	}
7878 
7879 	/* buf timer set to 1/4 of interrupt timer */
7880 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
7881 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
7882 
7883 	if (cmpl_params &
7884 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
7885 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
7886 		val = clamp_t(u16, tmr, 1,
7887 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
7888 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
7889 		req->enables |=
7890 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
7891 	}
7892 
7893 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
7894 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
7895 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
7896 	req->flags = cpu_to_le16(flags);
7897 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
7898 }
7899 
7900 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
7901 				   struct bnxt_coal *hw_coal)
7902 {
7903 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req;
7904 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7905 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7906 	u32 nq_params = coal_cap->nq_params;
7907 	u16 tmr;
7908 	int rc;
7909 
7910 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
7911 		return 0;
7912 
7913 	rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7914 	if (rc)
7915 		return rc;
7916 
7917 	req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
7918 	req->flags =
7919 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
7920 
7921 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
7922 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
7923 	req->int_lat_tmr_min = cpu_to_le16(tmr);
7924 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
7925 	return hwrm_req_send(bp, req);
7926 }
7927 
7928 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
7929 {
7930 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx;
7931 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7932 	struct bnxt_coal coal;
7933 	int rc;
7934 
7935 	/* Tick values in micro seconds.
7936 	 * 1 coal_buf x bufs_per_record = 1 completion record.
7937 	 */
7938 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
7939 
7940 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
7941 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
7942 
7943 	if (!bnapi->rx_ring)
7944 		return -ENODEV;
7945 
7946 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7947 	if (rc)
7948 		return rc;
7949 
7950 	bnxt_hwrm_set_coal_params(bp, &coal, req_rx);
7951 
7952 	req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
7953 
7954 	return hwrm_req_send(bp, req_rx);
7955 }
7956 
7957 static int
7958 bnxt_hwrm_set_rx_coal(struct bnxt *bp, struct bnxt_napi *bnapi,
7959 		      struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
7960 {
7961 	u16 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
7962 
7963 	req->ring_id = cpu_to_le16(ring_id);
7964 	return hwrm_req_send(bp, req);
7965 }
7966 
7967 static int
7968 bnxt_hwrm_set_tx_coal(struct bnxt *bp, struct bnxt_napi *bnapi,
7969 		      struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
7970 {
7971 	struct bnxt_tx_ring_info *txr;
7972 	int i, rc;
7973 
7974 	bnxt_for_each_napi_tx(i, bnapi, txr) {
7975 		u16 ring_id;
7976 
7977 		ring_id = bnxt_cp_ring_for_tx(bp, txr);
7978 		req->ring_id = cpu_to_le16(ring_id);
7979 		rc = hwrm_req_send(bp, req);
7980 		if (rc)
7981 			return rc;
7982 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7983 			return 0;
7984 	}
7985 	return 0;
7986 }
7987 
7988 int bnxt_hwrm_set_coal(struct bnxt *bp)
7989 {
7990 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx;
7991 	int i, rc;
7992 
7993 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7994 	if (rc)
7995 		return rc;
7996 
7997 	rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7998 	if (rc) {
7999 		hwrm_req_drop(bp, req_rx);
8000 		return rc;
8001 	}
8002 
8003 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx);
8004 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx);
8005 
8006 	hwrm_req_hold(bp, req_rx);
8007 	hwrm_req_hold(bp, req_tx);
8008 	for (i = 0; i < bp->cp_nr_rings; i++) {
8009 		struct bnxt_napi *bnapi = bp->bnapi[i];
8010 		struct bnxt_coal *hw_coal;
8011 
8012 		if (!bnapi->rx_ring)
8013 			rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx);
8014 		else
8015 			rc = bnxt_hwrm_set_rx_coal(bp, bnapi, req_rx);
8016 		if (rc)
8017 			break;
8018 
8019 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
8020 			continue;
8021 
8022 		if (bnapi->rx_ring && bnapi->tx_ring[0]) {
8023 			rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx);
8024 			if (rc)
8025 				break;
8026 		}
8027 		if (bnapi->rx_ring)
8028 			hw_coal = &bp->rx_coal;
8029 		else
8030 			hw_coal = &bp->tx_coal;
8031 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
8032 	}
8033 	hwrm_req_drop(bp, req_rx);
8034 	hwrm_req_drop(bp, req_tx);
8035 	return rc;
8036 }
8037 
8038 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
8039 {
8040 	struct hwrm_stat_ctx_clr_stats_input *req0 = NULL;
8041 	struct hwrm_stat_ctx_free_input *req;
8042 	int i;
8043 
8044 	if (!bp->bnapi)
8045 		return;
8046 
8047 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8048 		return;
8049 
8050 	if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE))
8051 		return;
8052 	if (BNXT_FW_MAJ(bp) <= 20) {
8053 		if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) {
8054 			hwrm_req_drop(bp, req);
8055 			return;
8056 		}
8057 		hwrm_req_hold(bp, req0);
8058 	}
8059 	hwrm_req_hold(bp, req);
8060 	for (i = 0; i < bp->cp_nr_rings; i++) {
8061 		struct bnxt_napi *bnapi = bp->bnapi[i];
8062 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
8063 
8064 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
8065 			req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
8066 			if (req0) {
8067 				req0->stat_ctx_id = req->stat_ctx_id;
8068 				hwrm_req_send(bp, req0);
8069 			}
8070 			hwrm_req_send(bp, req);
8071 
8072 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
8073 		}
8074 	}
8075 	hwrm_req_drop(bp, req);
8076 	if (req0)
8077 		hwrm_req_drop(bp, req0);
8078 }
8079 
8080 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
8081 {
8082 	struct hwrm_stat_ctx_alloc_output *resp;
8083 	struct hwrm_stat_ctx_alloc_input *req;
8084 	int rc, i;
8085 
8086 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8087 		return 0;
8088 
8089 	rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC);
8090 	if (rc)
8091 		return rc;
8092 
8093 	req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
8094 	req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
8095 
8096 	resp = hwrm_req_hold(bp, req);
8097 	for (i = 0; i < bp->cp_nr_rings; i++) {
8098 		struct bnxt_napi *bnapi = bp->bnapi[i];
8099 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
8100 
8101 		req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
8102 
8103 		rc = hwrm_req_send(bp, req);
8104 		if (rc)
8105 			break;
8106 
8107 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
8108 
8109 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
8110 	}
8111 	hwrm_req_drop(bp, req);
8112 	return rc;
8113 }
8114 
8115 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
8116 {
8117 	struct hwrm_func_qcfg_output *resp;
8118 	struct hwrm_func_qcfg_input *req;
8119 	u16 flags;
8120 	int rc;
8121 
8122 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
8123 	if (rc)
8124 		return rc;
8125 
8126 	req->fid = cpu_to_le16(0xffff);
8127 	resp = hwrm_req_hold(bp, req);
8128 	rc = hwrm_req_send(bp, req);
8129 	if (rc)
8130 		goto func_qcfg_exit;
8131 
8132 #ifdef CONFIG_BNXT_SRIOV
8133 	if (BNXT_VF(bp)) {
8134 		struct bnxt_vf_info *vf = &bp->vf;
8135 
8136 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
8137 	} else {
8138 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
8139 	}
8140 #endif
8141 	flags = le16_to_cpu(resp->flags);
8142 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
8143 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
8144 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
8145 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
8146 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
8147 	}
8148 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
8149 		bp->flags |= BNXT_FLAG_MULTI_HOST;
8150 
8151 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
8152 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
8153 
8154 	switch (resp->port_partition_type) {
8155 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
8156 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
8157 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
8158 		bp->port_partition_type = resp->port_partition_type;
8159 		break;
8160 	}
8161 	if (bp->hwrm_spec_code < 0x10707 ||
8162 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
8163 		bp->br_mode = BRIDGE_MODE_VEB;
8164 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
8165 		bp->br_mode = BRIDGE_MODE_VEPA;
8166 	else
8167 		bp->br_mode = BRIDGE_MODE_UNDEF;
8168 
8169 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
8170 	if (!bp->max_mtu)
8171 		bp->max_mtu = BNXT_MAX_MTU;
8172 
8173 	if (bp->db_size)
8174 		goto func_qcfg_exit;
8175 
8176 	bp->db_offset = le16_to_cpu(resp->legacy_l2_db_size_kb) * 1024;
8177 	if (BNXT_CHIP_P5(bp)) {
8178 		if (BNXT_PF(bp))
8179 			bp->db_offset = DB_PF_OFFSET_P5;
8180 		else
8181 			bp->db_offset = DB_VF_OFFSET_P5;
8182 	}
8183 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
8184 				 1024);
8185 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
8186 	    bp->db_size <= bp->db_offset)
8187 		bp->db_size = pci_resource_len(bp->pdev, 2);
8188 
8189 func_qcfg_exit:
8190 	hwrm_req_drop(bp, req);
8191 	return rc;
8192 }
8193 
8194 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_type *ctxm,
8195 				      u8 init_val, u8 init_offset,
8196 				      bool init_mask_set)
8197 {
8198 	ctxm->init_value = init_val;
8199 	ctxm->init_offset = BNXT_CTX_INIT_INVALID_OFFSET;
8200 	if (init_mask_set)
8201 		ctxm->init_offset = init_offset * 4;
8202 	else
8203 		ctxm->init_value = 0;
8204 }
8205 
8206 static int bnxt_alloc_all_ctx_pg_info(struct bnxt *bp, int ctx_max)
8207 {
8208 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8209 	u16 type;
8210 
8211 	for (type = 0; type < ctx_max; type++) {
8212 		struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type];
8213 		int n = 1;
8214 
8215 		if (!ctxm->max_entries)
8216 			continue;
8217 
8218 		if (ctxm->instance_bmap)
8219 			n = hweight32(ctxm->instance_bmap);
8220 		ctxm->pg_info = kcalloc(n, sizeof(*ctxm->pg_info), GFP_KERNEL);
8221 		if (!ctxm->pg_info)
8222 			return -ENOMEM;
8223 	}
8224 	return 0;
8225 }
8226 
8227 #define BNXT_CTX_INIT_VALID(flags)	\
8228 	(!!((flags) &			\
8229 	    FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_ENABLE_CTX_KIND_INIT))
8230 
8231 static int bnxt_hwrm_func_backing_store_qcaps_v2(struct bnxt *bp)
8232 {
8233 	struct hwrm_func_backing_store_qcaps_v2_output *resp;
8234 	struct hwrm_func_backing_store_qcaps_v2_input *req;
8235 	struct bnxt_ctx_mem_info *ctx;
8236 	u16 type;
8237 	int rc;
8238 
8239 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS_V2);
8240 	if (rc)
8241 		return rc;
8242 
8243 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
8244 	if (!ctx)
8245 		return -ENOMEM;
8246 	bp->ctx = ctx;
8247 
8248 	resp = hwrm_req_hold(bp, req);
8249 
8250 	for (type = 0; type < BNXT_CTX_V2_MAX; ) {
8251 		struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type];
8252 		u8 init_val, init_off, i;
8253 		__le32 *p;
8254 		u32 flags;
8255 
8256 		req->type = cpu_to_le16(type);
8257 		rc = hwrm_req_send(bp, req);
8258 		if (rc)
8259 			goto ctx_done;
8260 		flags = le32_to_cpu(resp->flags);
8261 		type = le16_to_cpu(resp->next_valid_type);
8262 		if (!(flags & FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_TYPE_VALID))
8263 			continue;
8264 
8265 		ctxm->type = le16_to_cpu(resp->type);
8266 		ctxm->entry_size = le16_to_cpu(resp->entry_size);
8267 		ctxm->flags = flags;
8268 		ctxm->instance_bmap = le32_to_cpu(resp->instance_bit_map);
8269 		ctxm->entry_multiple = resp->entry_multiple;
8270 		ctxm->max_entries = le32_to_cpu(resp->max_num_entries);
8271 		ctxm->min_entries = le32_to_cpu(resp->min_num_entries);
8272 		init_val = resp->ctx_init_value;
8273 		init_off = resp->ctx_init_offset;
8274 		bnxt_init_ctx_initializer(ctxm, init_val, init_off,
8275 					  BNXT_CTX_INIT_VALID(flags));
8276 		ctxm->split_entry_cnt = min_t(u8, resp->subtype_valid_cnt,
8277 					      BNXT_MAX_SPLIT_ENTRY);
8278 		for (i = 0, p = &resp->split_entry_0; i < ctxm->split_entry_cnt;
8279 		     i++, p++)
8280 			ctxm->split[i] = le32_to_cpu(*p);
8281 	}
8282 	rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_V2_MAX);
8283 
8284 ctx_done:
8285 	hwrm_req_drop(bp, req);
8286 	return rc;
8287 }
8288 
8289 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
8290 {
8291 	struct hwrm_func_backing_store_qcaps_output *resp;
8292 	struct hwrm_func_backing_store_qcaps_input *req;
8293 	int rc;
8294 
8295 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
8296 		return 0;
8297 
8298 	if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2)
8299 		return bnxt_hwrm_func_backing_store_qcaps_v2(bp);
8300 
8301 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS);
8302 	if (rc)
8303 		return rc;
8304 
8305 	resp = hwrm_req_hold(bp, req);
8306 	rc = hwrm_req_send_silent(bp, req);
8307 	if (!rc) {
8308 		struct bnxt_ctx_mem_type *ctxm;
8309 		struct bnxt_ctx_mem_info *ctx;
8310 		u8 init_val, init_idx = 0;
8311 		u16 init_mask;
8312 
8313 		ctx = bp->ctx;
8314 		if (!ctx) {
8315 			ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
8316 			if (!ctx) {
8317 				rc = -ENOMEM;
8318 				goto ctx_err;
8319 			}
8320 			bp->ctx = ctx;
8321 		}
8322 		init_val = resp->ctx_kind_initializer;
8323 		init_mask = le16_to_cpu(resp->ctx_init_mask);
8324 
8325 		ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8326 		ctxm->max_entries = le32_to_cpu(resp->qp_max_entries);
8327 		ctxm->qp_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
8328 		ctxm->qp_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
8329 		ctxm->qp_fast_qpmd_entries = le16_to_cpu(resp->fast_qpmd_qp_num_entries);
8330 		ctxm->entry_size = le16_to_cpu(resp->qp_entry_size);
8331 		bnxt_init_ctx_initializer(ctxm, init_val, resp->qp_init_offset,
8332 					  (init_mask & (1 << init_idx++)) != 0);
8333 
8334 		ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8335 		ctxm->srq_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
8336 		ctxm->max_entries = le32_to_cpu(resp->srq_max_entries);
8337 		ctxm->entry_size = le16_to_cpu(resp->srq_entry_size);
8338 		bnxt_init_ctx_initializer(ctxm, init_val, resp->srq_init_offset,
8339 					  (init_mask & (1 << init_idx++)) != 0);
8340 
8341 		ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
8342 		ctxm->cq_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
8343 		ctxm->max_entries = le32_to_cpu(resp->cq_max_entries);
8344 		ctxm->entry_size = le16_to_cpu(resp->cq_entry_size);
8345 		bnxt_init_ctx_initializer(ctxm, init_val, resp->cq_init_offset,
8346 					  (init_mask & (1 << init_idx++)) != 0);
8347 
8348 		ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
8349 		ctxm->vnic_entries = le16_to_cpu(resp->vnic_max_vnic_entries);
8350 		ctxm->max_entries = ctxm->vnic_entries +
8351 			le16_to_cpu(resp->vnic_max_ring_table_entries);
8352 		ctxm->entry_size = le16_to_cpu(resp->vnic_entry_size);
8353 		bnxt_init_ctx_initializer(ctxm, init_val,
8354 					  resp->vnic_init_offset,
8355 					  (init_mask & (1 << init_idx++)) != 0);
8356 
8357 		ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
8358 		ctxm->max_entries = le32_to_cpu(resp->stat_max_entries);
8359 		ctxm->entry_size = le16_to_cpu(resp->stat_entry_size);
8360 		bnxt_init_ctx_initializer(ctxm, init_val,
8361 					  resp->stat_init_offset,
8362 					  (init_mask & (1 << init_idx++)) != 0);
8363 
8364 		ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
8365 		ctxm->entry_size = le16_to_cpu(resp->tqm_entry_size);
8366 		ctxm->min_entries = le32_to_cpu(resp->tqm_min_entries_per_ring);
8367 		ctxm->max_entries = le32_to_cpu(resp->tqm_max_entries_per_ring);
8368 		ctxm->entry_multiple = resp->tqm_entries_multiple;
8369 		if (!ctxm->entry_multiple)
8370 			ctxm->entry_multiple = 1;
8371 
8372 		memcpy(&ctx->ctx_arr[BNXT_CTX_FTQM], ctxm, sizeof(*ctxm));
8373 
8374 		ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
8375 		ctxm->max_entries = le32_to_cpu(resp->mrav_max_entries);
8376 		ctxm->entry_size = le16_to_cpu(resp->mrav_entry_size);
8377 		ctxm->mrav_num_entries_units =
8378 			le16_to_cpu(resp->mrav_num_entries_units);
8379 		bnxt_init_ctx_initializer(ctxm, init_val,
8380 					  resp->mrav_init_offset,
8381 					  (init_mask & (1 << init_idx++)) != 0);
8382 
8383 		ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
8384 		ctxm->entry_size = le16_to_cpu(resp->tim_entry_size);
8385 		ctxm->max_entries = le32_to_cpu(resp->tim_max_entries);
8386 
8387 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
8388 		if (!ctx->tqm_fp_rings_count)
8389 			ctx->tqm_fp_rings_count = bp->max_q;
8390 		else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
8391 			ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
8392 
8393 		ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM];
8394 		memcpy(ctxm, &ctx->ctx_arr[BNXT_CTX_STQM], sizeof(*ctxm));
8395 		ctxm->instance_bmap = (1 << ctx->tqm_fp_rings_count) - 1;
8396 
8397 		rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_MAX);
8398 	} else {
8399 		rc = 0;
8400 	}
8401 ctx_err:
8402 	hwrm_req_drop(bp, req);
8403 	return rc;
8404 }
8405 
8406 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
8407 				  __le64 *pg_dir)
8408 {
8409 	if (!rmem->nr_pages)
8410 		return;
8411 
8412 	BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
8413 	if (rmem->depth >= 1) {
8414 		if (rmem->depth == 2)
8415 			*pg_attr |= 2;
8416 		else
8417 			*pg_attr |= 1;
8418 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
8419 	} else {
8420 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
8421 	}
8422 }
8423 
8424 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
8425 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
8426 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
8427 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
8428 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
8429 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
8430 
8431 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
8432 {
8433 	struct hwrm_func_backing_store_cfg_input *req;
8434 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8435 	struct bnxt_ctx_pg_info *ctx_pg;
8436 	struct bnxt_ctx_mem_type *ctxm;
8437 	void **__req = (void **)&req;
8438 	u32 req_len = sizeof(*req);
8439 	__le32 *num_entries;
8440 	__le64 *pg_dir;
8441 	u32 flags = 0;
8442 	u8 *pg_attr;
8443 	u32 ena;
8444 	int rc;
8445 	int i;
8446 
8447 	if (!ctx)
8448 		return 0;
8449 
8450 	if (req_len > bp->hwrm_max_ext_req_len)
8451 		req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
8452 	rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len);
8453 	if (rc)
8454 		return rc;
8455 
8456 	req->enables = cpu_to_le32(enables);
8457 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
8458 		ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8459 		ctx_pg = ctxm->pg_info;
8460 		req->qp_num_entries = cpu_to_le32(ctx_pg->entries);
8461 		req->qp_num_qp1_entries = cpu_to_le16(ctxm->qp_qp1_entries);
8462 		req->qp_num_l2_entries = cpu_to_le16(ctxm->qp_l2_entries);
8463 		req->qp_entry_size = cpu_to_le16(ctxm->entry_size);
8464 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8465 				      &req->qpc_pg_size_qpc_lvl,
8466 				      &req->qpc_page_dir);
8467 
8468 		if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD)
8469 			req->qp_num_fast_qpmd_entries = cpu_to_le16(ctxm->qp_fast_qpmd_entries);
8470 	}
8471 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
8472 		ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8473 		ctx_pg = ctxm->pg_info;
8474 		req->srq_num_entries = cpu_to_le32(ctx_pg->entries);
8475 		req->srq_num_l2_entries = cpu_to_le16(ctxm->srq_l2_entries);
8476 		req->srq_entry_size = cpu_to_le16(ctxm->entry_size);
8477 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8478 				      &req->srq_pg_size_srq_lvl,
8479 				      &req->srq_page_dir);
8480 	}
8481 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
8482 		ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
8483 		ctx_pg = ctxm->pg_info;
8484 		req->cq_num_entries = cpu_to_le32(ctx_pg->entries);
8485 		req->cq_num_l2_entries = cpu_to_le16(ctxm->cq_l2_entries);
8486 		req->cq_entry_size = cpu_to_le16(ctxm->entry_size);
8487 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8488 				      &req->cq_pg_size_cq_lvl,
8489 				      &req->cq_page_dir);
8490 	}
8491 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
8492 		ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
8493 		ctx_pg = ctxm->pg_info;
8494 		req->vnic_num_vnic_entries = cpu_to_le16(ctxm->vnic_entries);
8495 		req->vnic_num_ring_table_entries =
8496 			cpu_to_le16(ctxm->max_entries - ctxm->vnic_entries);
8497 		req->vnic_entry_size = cpu_to_le16(ctxm->entry_size);
8498 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8499 				      &req->vnic_pg_size_vnic_lvl,
8500 				      &req->vnic_page_dir);
8501 	}
8502 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
8503 		ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
8504 		ctx_pg = ctxm->pg_info;
8505 		req->stat_num_entries = cpu_to_le32(ctxm->max_entries);
8506 		req->stat_entry_size = cpu_to_le16(ctxm->entry_size);
8507 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8508 				      &req->stat_pg_size_stat_lvl,
8509 				      &req->stat_page_dir);
8510 	}
8511 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
8512 		u32 units;
8513 
8514 		ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
8515 		ctx_pg = ctxm->pg_info;
8516 		req->mrav_num_entries = cpu_to_le32(ctx_pg->entries);
8517 		units = ctxm->mrav_num_entries_units;
8518 		if (units) {
8519 			u32 num_mr, num_ah = ctxm->mrav_av_entries;
8520 			u32 entries;
8521 
8522 			num_mr = ctx_pg->entries - num_ah;
8523 			entries = ((num_mr / units) << 16) | (num_ah / units);
8524 			req->mrav_num_entries = cpu_to_le32(entries);
8525 			flags |= FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
8526 		}
8527 		req->mrav_entry_size = cpu_to_le16(ctxm->entry_size);
8528 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8529 				      &req->mrav_pg_size_mrav_lvl,
8530 				      &req->mrav_page_dir);
8531 	}
8532 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
8533 		ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
8534 		ctx_pg = ctxm->pg_info;
8535 		req->tim_num_entries = cpu_to_le32(ctx_pg->entries);
8536 		req->tim_entry_size = cpu_to_le16(ctxm->entry_size);
8537 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8538 				      &req->tim_pg_size_tim_lvl,
8539 				      &req->tim_page_dir);
8540 	}
8541 	ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
8542 	for (i = 0, num_entries = &req->tqm_sp_num_entries,
8543 	     pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl,
8544 	     pg_dir = &req->tqm_sp_page_dir,
8545 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP,
8546 	     ctx_pg = ctxm->pg_info;
8547 	     i < BNXT_MAX_TQM_RINGS;
8548 	     ctx_pg = &ctx->ctx_arr[BNXT_CTX_FTQM].pg_info[i],
8549 	     i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
8550 		if (!(enables & ena))
8551 			continue;
8552 
8553 		req->tqm_entry_size = cpu_to_le16(ctxm->entry_size);
8554 		*num_entries = cpu_to_le32(ctx_pg->entries);
8555 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
8556 	}
8557 	req->flags = cpu_to_le32(flags);
8558 	return hwrm_req_send(bp, req);
8559 }
8560 
8561 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
8562 				  struct bnxt_ctx_pg_info *ctx_pg)
8563 {
8564 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
8565 
8566 	rmem->page_size = BNXT_PAGE_SIZE;
8567 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
8568 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
8569 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
8570 	if (rmem->depth >= 1)
8571 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
8572 	return bnxt_alloc_ring(bp, rmem);
8573 }
8574 
8575 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
8576 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
8577 				  u8 depth, struct bnxt_ctx_mem_type *ctxm)
8578 {
8579 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
8580 	int rc;
8581 
8582 	if (!mem_size)
8583 		return -EINVAL;
8584 
8585 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
8586 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
8587 		ctx_pg->nr_pages = 0;
8588 		return -EINVAL;
8589 	}
8590 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
8591 		int nr_tbls, i;
8592 
8593 		rmem->depth = 2;
8594 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
8595 					     GFP_KERNEL);
8596 		if (!ctx_pg->ctx_pg_tbl)
8597 			return -ENOMEM;
8598 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
8599 		rmem->nr_pages = nr_tbls;
8600 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
8601 		if (rc)
8602 			return rc;
8603 		for (i = 0; i < nr_tbls; i++) {
8604 			struct bnxt_ctx_pg_info *pg_tbl;
8605 
8606 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
8607 			if (!pg_tbl)
8608 				return -ENOMEM;
8609 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
8610 			rmem = &pg_tbl->ring_mem;
8611 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
8612 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
8613 			rmem->depth = 1;
8614 			rmem->nr_pages = MAX_CTX_PAGES;
8615 			rmem->ctx_mem = ctxm;
8616 			if (i == (nr_tbls - 1)) {
8617 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
8618 
8619 				if (rem)
8620 					rmem->nr_pages = rem;
8621 			}
8622 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
8623 			if (rc)
8624 				break;
8625 		}
8626 	} else {
8627 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
8628 		if (rmem->nr_pages > 1 || depth)
8629 			rmem->depth = 1;
8630 		rmem->ctx_mem = ctxm;
8631 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
8632 	}
8633 	return rc;
8634 }
8635 
8636 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
8637 				  struct bnxt_ctx_pg_info *ctx_pg)
8638 {
8639 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
8640 
8641 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
8642 	    ctx_pg->ctx_pg_tbl) {
8643 		int i, nr_tbls = rmem->nr_pages;
8644 
8645 		for (i = 0; i < nr_tbls; i++) {
8646 			struct bnxt_ctx_pg_info *pg_tbl;
8647 			struct bnxt_ring_mem_info *rmem2;
8648 
8649 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
8650 			if (!pg_tbl)
8651 				continue;
8652 			rmem2 = &pg_tbl->ring_mem;
8653 			bnxt_free_ring(bp, rmem2);
8654 			ctx_pg->ctx_pg_arr[i] = NULL;
8655 			kfree(pg_tbl);
8656 			ctx_pg->ctx_pg_tbl[i] = NULL;
8657 		}
8658 		kfree(ctx_pg->ctx_pg_tbl);
8659 		ctx_pg->ctx_pg_tbl = NULL;
8660 	}
8661 	bnxt_free_ring(bp, rmem);
8662 	ctx_pg->nr_pages = 0;
8663 }
8664 
8665 static int bnxt_setup_ctxm_pg_tbls(struct bnxt *bp,
8666 				   struct bnxt_ctx_mem_type *ctxm, u32 entries,
8667 				   u8 pg_lvl)
8668 {
8669 	struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info;
8670 	int i, rc = 0, n = 1;
8671 	u32 mem_size;
8672 
8673 	if (!ctxm->entry_size || !ctx_pg)
8674 		return -EINVAL;
8675 	if (ctxm->instance_bmap)
8676 		n = hweight32(ctxm->instance_bmap);
8677 	if (ctxm->entry_multiple)
8678 		entries = roundup(entries, ctxm->entry_multiple);
8679 	entries = clamp_t(u32, entries, ctxm->min_entries, ctxm->max_entries);
8680 	mem_size = entries * ctxm->entry_size;
8681 	for (i = 0; i < n && !rc; i++) {
8682 		ctx_pg[i].entries = entries;
8683 		rc = bnxt_alloc_ctx_pg_tbls(bp, &ctx_pg[i], mem_size, pg_lvl,
8684 					    ctxm->init_value ? ctxm : NULL);
8685 	}
8686 	return rc;
8687 }
8688 
8689 static int bnxt_hwrm_func_backing_store_cfg_v2(struct bnxt *bp,
8690 					       struct bnxt_ctx_mem_type *ctxm,
8691 					       bool last)
8692 {
8693 	struct hwrm_func_backing_store_cfg_v2_input *req;
8694 	u32 instance_bmap = ctxm->instance_bmap;
8695 	int i, j, rc = 0, n = 1;
8696 	__le32 *p;
8697 
8698 	if (!(ctxm->flags & BNXT_CTX_MEM_TYPE_VALID) || !ctxm->pg_info)
8699 		return 0;
8700 
8701 	if (instance_bmap)
8702 		n = hweight32(ctxm->instance_bmap);
8703 	else
8704 		instance_bmap = 1;
8705 
8706 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_CFG_V2);
8707 	if (rc)
8708 		return rc;
8709 	hwrm_req_hold(bp, req);
8710 	req->type = cpu_to_le16(ctxm->type);
8711 	req->entry_size = cpu_to_le16(ctxm->entry_size);
8712 	req->subtype_valid_cnt = ctxm->split_entry_cnt;
8713 	for (i = 0, p = &req->split_entry_0; i < ctxm->split_entry_cnt; i++)
8714 		p[i] = cpu_to_le32(ctxm->split[i]);
8715 	for (i = 0, j = 0; j < n && !rc; i++) {
8716 		struct bnxt_ctx_pg_info *ctx_pg;
8717 
8718 		if (!(instance_bmap & (1 << i)))
8719 			continue;
8720 		req->instance = cpu_to_le16(i);
8721 		ctx_pg = &ctxm->pg_info[j++];
8722 		if (!ctx_pg->entries)
8723 			continue;
8724 		req->num_entries = cpu_to_le32(ctx_pg->entries);
8725 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8726 				      &req->page_size_pbl_level,
8727 				      &req->page_dir);
8728 		if (last && j == n)
8729 			req->flags =
8730 				cpu_to_le32(FUNC_BACKING_STORE_CFG_V2_REQ_FLAGS_BS_CFG_ALL_DONE);
8731 		rc = hwrm_req_send(bp, req);
8732 	}
8733 	hwrm_req_drop(bp, req);
8734 	return rc;
8735 }
8736 
8737 static int bnxt_backing_store_cfg_v2(struct bnxt *bp, u32 ena)
8738 {
8739 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8740 	struct bnxt_ctx_mem_type *ctxm;
8741 	u16 last_type;
8742 	int rc = 0;
8743 	u16 type;
8744 
8745 	if (!ena)
8746 		return 0;
8747 	else if (ena & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM)
8748 		last_type = BNXT_CTX_MAX - 1;
8749 	else
8750 		last_type = BNXT_CTX_L2_MAX - 1;
8751 	ctx->ctx_arr[last_type].last = 1;
8752 
8753 	for (type = 0 ; type < BNXT_CTX_V2_MAX; type++) {
8754 		ctxm = &ctx->ctx_arr[type];
8755 
8756 		rc = bnxt_hwrm_func_backing_store_cfg_v2(bp, ctxm, ctxm->last);
8757 		if (rc)
8758 			return rc;
8759 	}
8760 	return 0;
8761 }
8762 
8763 void bnxt_free_ctx_mem(struct bnxt *bp)
8764 {
8765 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8766 	u16 type;
8767 
8768 	if (!ctx)
8769 		return;
8770 
8771 	for (type = 0; type < BNXT_CTX_V2_MAX; type++) {
8772 		struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type];
8773 		struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info;
8774 		int i, n = 1;
8775 
8776 		if (!ctx_pg)
8777 			continue;
8778 		if (ctxm->instance_bmap)
8779 			n = hweight32(ctxm->instance_bmap);
8780 		for (i = 0; i < n; i++)
8781 			bnxt_free_ctx_pg_tbls(bp, &ctx_pg[i]);
8782 
8783 		kfree(ctx_pg);
8784 		ctxm->pg_info = NULL;
8785 	}
8786 
8787 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
8788 	kfree(ctx);
8789 	bp->ctx = NULL;
8790 }
8791 
8792 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
8793 {
8794 	struct bnxt_ctx_mem_type *ctxm;
8795 	struct bnxt_ctx_mem_info *ctx;
8796 	u32 l2_qps, qp1_qps, max_qps;
8797 	u32 ena, entries_sp, entries;
8798 	u32 srqs, max_srqs, min;
8799 	u32 num_mr, num_ah;
8800 	u32 extra_srqs = 0;
8801 	u32 extra_qps = 0;
8802 	u32 fast_qpmd_qps;
8803 	u8 pg_lvl = 1;
8804 	int i, rc;
8805 
8806 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
8807 	if (rc) {
8808 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
8809 			   rc);
8810 		return rc;
8811 	}
8812 	ctx = bp->ctx;
8813 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
8814 		return 0;
8815 
8816 	ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8817 	l2_qps = ctxm->qp_l2_entries;
8818 	qp1_qps = ctxm->qp_qp1_entries;
8819 	fast_qpmd_qps = ctxm->qp_fast_qpmd_entries;
8820 	max_qps = ctxm->max_entries;
8821 	ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8822 	srqs = ctxm->srq_l2_entries;
8823 	max_srqs = ctxm->max_entries;
8824 	ena = 0;
8825 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
8826 		pg_lvl = 2;
8827 		extra_qps = min_t(u32, 65536, max_qps - l2_qps - qp1_qps);
8828 		/* allocate extra qps if fw supports RoCE fast qp destroy feature */
8829 		extra_qps += fast_qpmd_qps;
8830 		extra_srqs = min_t(u32, 8192, max_srqs - srqs);
8831 		if (fast_qpmd_qps)
8832 			ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD;
8833 	}
8834 
8835 	ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8836 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps,
8837 				     pg_lvl);
8838 	if (rc)
8839 		return rc;
8840 
8841 	ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8842 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, srqs + extra_srqs, pg_lvl);
8843 	if (rc)
8844 		return rc;
8845 
8846 	ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
8847 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->cq_l2_entries +
8848 				     extra_qps * 2, pg_lvl);
8849 	if (rc)
8850 		return rc;
8851 
8852 	ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
8853 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1);
8854 	if (rc)
8855 		return rc;
8856 
8857 	ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
8858 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1);
8859 	if (rc)
8860 		return rc;
8861 
8862 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
8863 		goto skip_rdma;
8864 
8865 	ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
8866 	/* 128K extra is needed to accommodate static AH context
8867 	 * allocation by f/w.
8868 	 */
8869 	num_mr = min_t(u32, ctxm->max_entries / 2, 1024 * 256);
8870 	num_ah = min_t(u32, num_mr, 1024 * 128);
8871 	ctxm->split_entry_cnt = BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1;
8872 	if (!ctxm->mrav_av_entries || ctxm->mrav_av_entries > num_ah)
8873 		ctxm->mrav_av_entries = num_ah;
8874 
8875 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, num_mr + num_ah, 2);
8876 	if (rc)
8877 		return rc;
8878 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
8879 
8880 	ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
8881 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 1);
8882 	if (rc)
8883 		return rc;
8884 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
8885 
8886 skip_rdma:
8887 	ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
8888 	min = ctxm->min_entries;
8889 	entries_sp = ctx->ctx_arr[BNXT_CTX_VNIC].vnic_entries + l2_qps +
8890 		     2 * (extra_qps + qp1_qps) + min;
8891 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries_sp, 2);
8892 	if (rc)
8893 		return rc;
8894 
8895 	ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM];
8896 	entries = l2_qps + 2 * (extra_qps + qp1_qps);
8897 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries, 2);
8898 	if (rc)
8899 		return rc;
8900 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
8901 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
8902 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
8903 
8904 	if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2)
8905 		rc = bnxt_backing_store_cfg_v2(bp, ena);
8906 	else
8907 		rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
8908 	if (rc) {
8909 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
8910 			   rc);
8911 		return rc;
8912 	}
8913 	ctx->flags |= BNXT_CTX_FLAG_INITED;
8914 	return 0;
8915 }
8916 
8917 static int bnxt_hwrm_crash_dump_mem_cfg(struct bnxt *bp)
8918 {
8919 	struct hwrm_dbg_crashdump_medium_cfg_input *req;
8920 	u16 page_attr;
8921 	int rc;
8922 
8923 	if (!(bp->fw_dbg_cap & DBG_QCAPS_RESP_FLAGS_CRASHDUMP_HOST_DDR))
8924 		return 0;
8925 
8926 	rc = hwrm_req_init(bp, req, HWRM_DBG_CRASHDUMP_MEDIUM_CFG);
8927 	if (rc)
8928 		return rc;
8929 
8930 	if (BNXT_PAGE_SIZE == 0x2000)
8931 		page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_8K;
8932 	else if (BNXT_PAGE_SIZE == 0x10000)
8933 		page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_64K;
8934 	else
8935 		page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_4K;
8936 	req->pg_size_lvl = cpu_to_le16(page_attr |
8937 				       bp->fw_crash_mem->ring_mem.depth);
8938 	req->pbl = cpu_to_le64(bp->fw_crash_mem->ring_mem.pg_tbl_map);
8939 	req->size = cpu_to_le32(bp->fw_crash_len);
8940 	req->output_dest_flags = cpu_to_le16(BNXT_DBG_CR_DUMP_MDM_CFG_DDR);
8941 	return hwrm_req_send(bp, req);
8942 }
8943 
8944 static void bnxt_free_crash_dump_mem(struct bnxt *bp)
8945 {
8946 	if (bp->fw_crash_mem) {
8947 		bnxt_free_ctx_pg_tbls(bp, bp->fw_crash_mem);
8948 		kfree(bp->fw_crash_mem);
8949 		bp->fw_crash_mem = NULL;
8950 	}
8951 }
8952 
8953 static int bnxt_alloc_crash_dump_mem(struct bnxt *bp)
8954 {
8955 	u32 mem_size = 0;
8956 	int rc;
8957 
8958 	if (!(bp->fw_dbg_cap & DBG_QCAPS_RESP_FLAGS_CRASHDUMP_HOST_DDR))
8959 		return 0;
8960 
8961 	rc = bnxt_hwrm_get_dump_len(bp, BNXT_DUMP_CRASH, &mem_size);
8962 	if (rc)
8963 		return rc;
8964 
8965 	mem_size = round_up(mem_size, 4);
8966 
8967 	/* keep and use the existing pages */
8968 	if (bp->fw_crash_mem &&
8969 	    mem_size <= bp->fw_crash_mem->nr_pages * BNXT_PAGE_SIZE)
8970 		goto alloc_done;
8971 
8972 	if (bp->fw_crash_mem)
8973 		bnxt_free_ctx_pg_tbls(bp, bp->fw_crash_mem);
8974 	else
8975 		bp->fw_crash_mem = kzalloc(sizeof(*bp->fw_crash_mem),
8976 					   GFP_KERNEL);
8977 	if (!bp->fw_crash_mem)
8978 		return -ENOMEM;
8979 
8980 	rc = bnxt_alloc_ctx_pg_tbls(bp, bp->fw_crash_mem, mem_size, 1, NULL);
8981 	if (rc) {
8982 		bnxt_free_crash_dump_mem(bp);
8983 		return rc;
8984 	}
8985 
8986 alloc_done:
8987 	bp->fw_crash_len = mem_size;
8988 	return 0;
8989 }
8990 
8991 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
8992 {
8993 	struct hwrm_func_resource_qcaps_output *resp;
8994 	struct hwrm_func_resource_qcaps_input *req;
8995 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8996 	int rc;
8997 
8998 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS);
8999 	if (rc)
9000 		return rc;
9001 
9002 	req->fid = cpu_to_le16(0xffff);
9003 	resp = hwrm_req_hold(bp, req);
9004 	rc = hwrm_req_send_silent(bp, req);
9005 	if (rc)
9006 		goto hwrm_func_resc_qcaps_exit;
9007 
9008 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
9009 	if (!all)
9010 		goto hwrm_func_resc_qcaps_exit;
9011 
9012 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
9013 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
9014 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
9015 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
9016 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
9017 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
9018 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
9019 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
9020 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
9021 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
9022 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
9023 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
9024 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
9025 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
9026 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
9027 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
9028 
9029 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
9030 		u16 max_msix = le16_to_cpu(resp->max_msix);
9031 
9032 		hw_resc->max_nqs = max_msix;
9033 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
9034 	}
9035 
9036 	if (BNXT_PF(bp)) {
9037 		struct bnxt_pf_info *pf = &bp->pf;
9038 
9039 		pf->vf_resv_strategy =
9040 			le16_to_cpu(resp->vf_reservation_strategy);
9041 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
9042 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
9043 	}
9044 hwrm_func_resc_qcaps_exit:
9045 	hwrm_req_drop(bp, req);
9046 	return rc;
9047 }
9048 
9049 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
9050 {
9051 	struct hwrm_port_mac_ptp_qcfg_output *resp;
9052 	struct hwrm_port_mac_ptp_qcfg_input *req;
9053 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
9054 	bool phc_cfg;
9055 	u8 flags;
9056 	int rc;
9057 
9058 	if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5_PLUS(bp)) {
9059 		rc = -ENODEV;
9060 		goto no_ptp;
9061 	}
9062 
9063 	rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG);
9064 	if (rc)
9065 		goto no_ptp;
9066 
9067 	req->port_id = cpu_to_le16(bp->pf.port_id);
9068 	resp = hwrm_req_hold(bp, req);
9069 	rc = hwrm_req_send(bp, req);
9070 	if (rc)
9071 		goto exit;
9072 
9073 	flags = resp->flags;
9074 	if (BNXT_CHIP_P5_AND_MINUS(bp) &&
9075 	    !(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) {
9076 		rc = -ENODEV;
9077 		goto exit;
9078 	}
9079 	if (!ptp) {
9080 		ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
9081 		if (!ptp) {
9082 			rc = -ENOMEM;
9083 			goto exit;
9084 		}
9085 		ptp->bp = bp;
9086 		bp->ptp_cfg = ptp;
9087 	}
9088 
9089 	if (flags &
9090 	    (PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK |
9091 	     PORT_MAC_PTP_QCFG_RESP_FLAGS_64B_PHC_TIME)) {
9092 		ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower);
9093 		ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper);
9094 	} else if (BNXT_CHIP_P5(bp)) {
9095 		ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER;
9096 		ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER;
9097 	} else {
9098 		rc = -ENODEV;
9099 		goto exit;
9100 	}
9101 	phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0;
9102 	rc = bnxt_ptp_init(bp, phc_cfg);
9103 	if (rc)
9104 		netdev_warn(bp->dev, "PTP initialization failed.\n");
9105 exit:
9106 	hwrm_req_drop(bp, req);
9107 	if (!rc)
9108 		return 0;
9109 
9110 no_ptp:
9111 	bnxt_ptp_clear(bp);
9112 	kfree(ptp);
9113 	bp->ptp_cfg = NULL;
9114 	return rc;
9115 }
9116 
9117 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
9118 {
9119 	struct hwrm_func_qcaps_output *resp;
9120 	struct hwrm_func_qcaps_input *req;
9121 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9122 	u32 flags, flags_ext, flags_ext2;
9123 	int rc;
9124 
9125 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS);
9126 	if (rc)
9127 		return rc;
9128 
9129 	req->fid = cpu_to_le16(0xffff);
9130 	resp = hwrm_req_hold(bp, req);
9131 	rc = hwrm_req_send(bp, req);
9132 	if (rc)
9133 		goto hwrm_func_qcaps_exit;
9134 
9135 	flags = le32_to_cpu(resp->flags);
9136 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
9137 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
9138 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
9139 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
9140 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
9141 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
9142 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
9143 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
9144 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
9145 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
9146 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
9147 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
9148 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
9149 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
9150 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
9151 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
9152 	if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED)
9153 		bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS;
9154 
9155 	flags_ext = le32_to_cpu(resp->flags_ext);
9156 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
9157 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
9158 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED))
9159 		bp->fw_cap |= BNXT_FW_CAP_PTP_PPS;
9160 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED)
9161 		bp->fw_cap |= BNXT_FW_CAP_PTP_RTC;
9162 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT))
9163 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF;
9164 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED))
9165 		bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH;
9166 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_DFLT_VLAN_TPID_PCP_SUPPORTED))
9167 		bp->fw_cap |= BNXT_FW_CAP_DFLT_VLAN_TPID_PCP;
9168 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_BS_V2_SUPPORTED)
9169 		bp->fw_cap |= BNXT_FW_CAP_BACKING_STORE_V2;
9170 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_TX_COAL_CMPL_CAP)
9171 		bp->flags |= BNXT_FLAG_TX_COAL_CMPL;
9172 
9173 	flags_ext2 = le32_to_cpu(resp->flags_ext2);
9174 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED)
9175 		bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS;
9176 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_UDP_GSO_SUPPORTED)
9177 		bp->flags |= BNXT_FLAG_UDP_GSO_CAP;
9178 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_TX_PKT_TS_CMPL_SUPPORTED)
9179 		bp->fw_cap |= BNXT_FW_CAP_TX_TS_CMP;
9180 
9181 	bp->tx_push_thresh = 0;
9182 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
9183 	    BNXT_FW_MAJ(bp) > 217)
9184 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
9185 
9186 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
9187 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
9188 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
9189 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
9190 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
9191 	if (!hw_resc->max_hw_ring_grps)
9192 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
9193 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
9194 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
9195 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
9196 
9197 	hw_resc->max_encap_records = le32_to_cpu(resp->max_encap_records);
9198 	hw_resc->max_decap_records = le32_to_cpu(resp->max_decap_records);
9199 	hw_resc->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
9200 	hw_resc->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
9201 	hw_resc->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
9202 	hw_resc->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
9203 
9204 	if (BNXT_PF(bp)) {
9205 		struct bnxt_pf_info *pf = &bp->pf;
9206 
9207 		pf->fw_fid = le16_to_cpu(resp->fid);
9208 		pf->port_id = le16_to_cpu(resp->port_id);
9209 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
9210 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
9211 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
9212 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
9213 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
9214 			bp->flags |= BNXT_FLAG_WOL_CAP;
9215 		if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) {
9216 			bp->fw_cap |= BNXT_FW_CAP_PTP;
9217 		} else {
9218 			bnxt_ptp_clear(bp);
9219 			kfree(bp->ptp_cfg);
9220 			bp->ptp_cfg = NULL;
9221 		}
9222 	} else {
9223 #ifdef CONFIG_BNXT_SRIOV
9224 		struct bnxt_vf_info *vf = &bp->vf;
9225 
9226 		vf->fw_fid = le16_to_cpu(resp->fid);
9227 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
9228 #endif
9229 	}
9230 	bp->tso_max_segs = le16_to_cpu(resp->max_tso_segs);
9231 
9232 hwrm_func_qcaps_exit:
9233 	hwrm_req_drop(bp, req);
9234 	return rc;
9235 }
9236 
9237 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp)
9238 {
9239 	struct hwrm_dbg_qcaps_output *resp;
9240 	struct hwrm_dbg_qcaps_input *req;
9241 	int rc;
9242 
9243 	bp->fw_dbg_cap = 0;
9244 	if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS))
9245 		return;
9246 
9247 	rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS);
9248 	if (rc)
9249 		return;
9250 
9251 	req->fid = cpu_to_le16(0xffff);
9252 	resp = hwrm_req_hold(bp, req);
9253 	rc = hwrm_req_send(bp, req);
9254 	if (rc)
9255 		goto hwrm_dbg_qcaps_exit;
9256 
9257 	bp->fw_dbg_cap = le32_to_cpu(resp->flags);
9258 
9259 hwrm_dbg_qcaps_exit:
9260 	hwrm_req_drop(bp, req);
9261 }
9262 
9263 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
9264 
9265 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
9266 {
9267 	int rc;
9268 
9269 	rc = __bnxt_hwrm_func_qcaps(bp);
9270 	if (rc)
9271 		return rc;
9272 
9273 	bnxt_hwrm_dbg_qcaps(bp);
9274 
9275 	rc = bnxt_hwrm_queue_qportcfg(bp);
9276 	if (rc) {
9277 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
9278 		return rc;
9279 	}
9280 	if (bp->hwrm_spec_code >= 0x10803) {
9281 		rc = bnxt_alloc_ctx_mem(bp);
9282 		if (rc)
9283 			return rc;
9284 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
9285 		if (!rc)
9286 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
9287 	}
9288 	return 0;
9289 }
9290 
9291 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
9292 {
9293 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
9294 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req;
9295 	u32 flags;
9296 	int rc;
9297 
9298 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
9299 		return 0;
9300 
9301 	rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS);
9302 	if (rc)
9303 		return rc;
9304 
9305 	resp = hwrm_req_hold(bp, req);
9306 	rc = hwrm_req_send(bp, req);
9307 	if (rc)
9308 		goto hwrm_cfa_adv_qcaps_exit;
9309 
9310 	flags = le32_to_cpu(resp->flags);
9311 	if (flags &
9312 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
9313 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
9314 
9315 	if (flags &
9316 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V3_SUPPORTED)
9317 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V3;
9318 
9319 	if (flags &
9320 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_NTUPLE_FLOW_RX_EXT_IP_PROTO_SUPPORTED)
9321 		bp->fw_cap |= BNXT_FW_CAP_CFA_NTUPLE_RX_EXT_IP_PROTO;
9322 
9323 hwrm_cfa_adv_qcaps_exit:
9324 	hwrm_req_drop(bp, req);
9325 	return rc;
9326 }
9327 
9328 static int __bnxt_alloc_fw_health(struct bnxt *bp)
9329 {
9330 	if (bp->fw_health)
9331 		return 0;
9332 
9333 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
9334 	if (!bp->fw_health)
9335 		return -ENOMEM;
9336 
9337 	mutex_init(&bp->fw_health->lock);
9338 	return 0;
9339 }
9340 
9341 static int bnxt_alloc_fw_health(struct bnxt *bp)
9342 {
9343 	int rc;
9344 
9345 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
9346 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
9347 		return 0;
9348 
9349 	rc = __bnxt_alloc_fw_health(bp);
9350 	if (rc) {
9351 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
9352 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
9353 		return rc;
9354 	}
9355 
9356 	return 0;
9357 }
9358 
9359 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
9360 {
9361 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
9362 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
9363 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
9364 }
9365 
9366 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
9367 {
9368 	struct bnxt_fw_health *fw_health = bp->fw_health;
9369 	u32 reg_type;
9370 
9371 	if (!fw_health)
9372 		return;
9373 
9374 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
9375 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
9376 		fw_health->status_reliable = false;
9377 
9378 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]);
9379 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
9380 		fw_health->resets_reliable = false;
9381 }
9382 
9383 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
9384 {
9385 	void __iomem *hs;
9386 	u32 status_loc;
9387 	u32 reg_type;
9388 	u32 sig;
9389 
9390 	if (bp->fw_health)
9391 		bp->fw_health->status_reliable = false;
9392 
9393 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
9394 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
9395 
9396 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
9397 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
9398 		if (!bp->chip_num) {
9399 			__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
9400 			bp->chip_num = readl(bp->bar0 +
9401 					     BNXT_FW_HEALTH_WIN_BASE +
9402 					     BNXT_GRC_REG_CHIP_NUM);
9403 		}
9404 		if (!BNXT_CHIP_P5_PLUS(bp))
9405 			return;
9406 
9407 		status_loc = BNXT_GRC_REG_STATUS_P5 |
9408 			     BNXT_FW_HEALTH_REG_TYPE_BAR0;
9409 	} else {
9410 		status_loc = readl(hs + offsetof(struct hcomm_status,
9411 						 fw_status_loc));
9412 	}
9413 
9414 	if (__bnxt_alloc_fw_health(bp)) {
9415 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
9416 		return;
9417 	}
9418 
9419 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
9420 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
9421 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
9422 		__bnxt_map_fw_health_reg(bp, status_loc);
9423 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
9424 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
9425 	}
9426 
9427 	bp->fw_health->status_reliable = true;
9428 }
9429 
9430 static int bnxt_map_fw_health_regs(struct bnxt *bp)
9431 {
9432 	struct bnxt_fw_health *fw_health = bp->fw_health;
9433 	u32 reg_base = 0xffffffff;
9434 	int i;
9435 
9436 	bp->fw_health->status_reliable = false;
9437 	bp->fw_health->resets_reliable = false;
9438 	/* Only pre-map the monitoring GRC registers using window 3 */
9439 	for (i = 0; i < 4; i++) {
9440 		u32 reg = fw_health->regs[i];
9441 
9442 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
9443 			continue;
9444 		if (reg_base == 0xffffffff)
9445 			reg_base = reg & BNXT_GRC_BASE_MASK;
9446 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
9447 			return -ERANGE;
9448 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
9449 	}
9450 	bp->fw_health->status_reliable = true;
9451 	bp->fw_health->resets_reliable = true;
9452 	if (reg_base == 0xffffffff)
9453 		return 0;
9454 
9455 	__bnxt_map_fw_health_reg(bp, reg_base);
9456 	return 0;
9457 }
9458 
9459 static void bnxt_remap_fw_health_regs(struct bnxt *bp)
9460 {
9461 	if (!bp->fw_health)
9462 		return;
9463 
9464 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) {
9465 		bp->fw_health->status_reliable = true;
9466 		bp->fw_health->resets_reliable = true;
9467 	} else {
9468 		bnxt_try_map_fw_health_reg(bp);
9469 	}
9470 }
9471 
9472 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
9473 {
9474 	struct bnxt_fw_health *fw_health = bp->fw_health;
9475 	struct hwrm_error_recovery_qcfg_output *resp;
9476 	struct hwrm_error_recovery_qcfg_input *req;
9477 	int rc, i;
9478 
9479 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
9480 		return 0;
9481 
9482 	rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG);
9483 	if (rc)
9484 		return rc;
9485 
9486 	resp = hwrm_req_hold(bp, req);
9487 	rc = hwrm_req_send(bp, req);
9488 	if (rc)
9489 		goto err_recovery_out;
9490 	fw_health->flags = le32_to_cpu(resp->flags);
9491 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
9492 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
9493 		rc = -EINVAL;
9494 		goto err_recovery_out;
9495 	}
9496 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
9497 	fw_health->master_func_wait_dsecs =
9498 		le32_to_cpu(resp->master_func_wait_period);
9499 	fw_health->normal_func_wait_dsecs =
9500 		le32_to_cpu(resp->normal_func_wait_period);
9501 	fw_health->post_reset_wait_dsecs =
9502 		le32_to_cpu(resp->master_func_wait_period_after_reset);
9503 	fw_health->post_reset_max_wait_dsecs =
9504 		le32_to_cpu(resp->max_bailout_time_after_reset);
9505 	fw_health->regs[BNXT_FW_HEALTH_REG] =
9506 		le32_to_cpu(resp->fw_health_status_reg);
9507 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
9508 		le32_to_cpu(resp->fw_heartbeat_reg);
9509 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
9510 		le32_to_cpu(resp->fw_reset_cnt_reg);
9511 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
9512 		le32_to_cpu(resp->reset_inprogress_reg);
9513 	fw_health->fw_reset_inprog_reg_mask =
9514 		le32_to_cpu(resp->reset_inprogress_reg_mask);
9515 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
9516 	if (fw_health->fw_reset_seq_cnt >= 16) {
9517 		rc = -EINVAL;
9518 		goto err_recovery_out;
9519 	}
9520 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
9521 		fw_health->fw_reset_seq_regs[i] =
9522 			le32_to_cpu(resp->reset_reg[i]);
9523 		fw_health->fw_reset_seq_vals[i] =
9524 			le32_to_cpu(resp->reset_reg_val[i]);
9525 		fw_health->fw_reset_seq_delay_msec[i] =
9526 			resp->delay_after_reset[i];
9527 	}
9528 err_recovery_out:
9529 	hwrm_req_drop(bp, req);
9530 	if (!rc)
9531 		rc = bnxt_map_fw_health_regs(bp);
9532 	if (rc)
9533 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
9534 	return rc;
9535 }
9536 
9537 static int bnxt_hwrm_func_reset(struct bnxt *bp)
9538 {
9539 	struct hwrm_func_reset_input *req;
9540 	int rc;
9541 
9542 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET);
9543 	if (rc)
9544 		return rc;
9545 
9546 	req->enables = 0;
9547 	hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT);
9548 	return hwrm_req_send(bp, req);
9549 }
9550 
9551 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
9552 {
9553 	struct hwrm_nvm_get_dev_info_output nvm_info;
9554 
9555 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
9556 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
9557 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
9558 			 nvm_info.nvm_cfg_ver_upd);
9559 }
9560 
9561 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
9562 {
9563 	struct hwrm_queue_qportcfg_output *resp;
9564 	struct hwrm_queue_qportcfg_input *req;
9565 	u8 i, j, *qptr;
9566 	bool no_rdma;
9567 	int rc = 0;
9568 
9569 	rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG);
9570 	if (rc)
9571 		return rc;
9572 
9573 	resp = hwrm_req_hold(bp, req);
9574 	rc = hwrm_req_send(bp, req);
9575 	if (rc)
9576 		goto qportcfg_exit;
9577 
9578 	if (!resp->max_configurable_queues) {
9579 		rc = -EINVAL;
9580 		goto qportcfg_exit;
9581 	}
9582 	bp->max_tc = resp->max_configurable_queues;
9583 	bp->max_lltc = resp->max_configurable_lossless_queues;
9584 	if (bp->max_tc > BNXT_MAX_QUEUE)
9585 		bp->max_tc = BNXT_MAX_QUEUE;
9586 
9587 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
9588 	qptr = &resp->queue_id0;
9589 	for (i = 0, j = 0; i < bp->max_tc; i++) {
9590 		bp->q_info[j].queue_id = *qptr;
9591 		bp->q_ids[i] = *qptr++;
9592 		bp->q_info[j].queue_profile = *qptr++;
9593 		bp->tc_to_qidx[j] = j;
9594 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
9595 		    (no_rdma && BNXT_PF(bp)))
9596 			j++;
9597 	}
9598 	bp->max_q = bp->max_tc;
9599 	bp->max_tc = max_t(u8, j, 1);
9600 
9601 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
9602 		bp->max_tc = 1;
9603 
9604 	if (bp->max_lltc > bp->max_tc)
9605 		bp->max_lltc = bp->max_tc;
9606 
9607 qportcfg_exit:
9608 	hwrm_req_drop(bp, req);
9609 	return rc;
9610 }
9611 
9612 static int bnxt_hwrm_poll(struct bnxt *bp)
9613 {
9614 	struct hwrm_ver_get_input *req;
9615 	int rc;
9616 
9617 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
9618 	if (rc)
9619 		return rc;
9620 
9621 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
9622 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
9623 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
9624 
9625 	hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT);
9626 	rc = hwrm_req_send(bp, req);
9627 	return rc;
9628 }
9629 
9630 static int bnxt_hwrm_ver_get(struct bnxt *bp)
9631 {
9632 	struct hwrm_ver_get_output *resp;
9633 	struct hwrm_ver_get_input *req;
9634 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
9635 	u32 dev_caps_cfg, hwrm_ver;
9636 	int rc, len;
9637 
9638 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
9639 	if (rc)
9640 		return rc;
9641 
9642 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
9643 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
9644 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
9645 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
9646 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
9647 
9648 	resp = hwrm_req_hold(bp, req);
9649 	rc = hwrm_req_send(bp, req);
9650 	if (rc)
9651 		goto hwrm_ver_get_exit;
9652 
9653 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
9654 
9655 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
9656 			     resp->hwrm_intf_min_8b << 8 |
9657 			     resp->hwrm_intf_upd_8b;
9658 	if (resp->hwrm_intf_maj_8b < 1) {
9659 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
9660 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
9661 			    resp->hwrm_intf_upd_8b);
9662 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
9663 	}
9664 
9665 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
9666 			HWRM_VERSION_UPDATE;
9667 
9668 	if (bp->hwrm_spec_code > hwrm_ver)
9669 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
9670 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
9671 			 HWRM_VERSION_UPDATE);
9672 	else
9673 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
9674 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
9675 			 resp->hwrm_intf_upd_8b);
9676 
9677 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
9678 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
9679 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
9680 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
9681 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
9682 		len = FW_VER_STR_LEN;
9683 	} else {
9684 		fw_maj = resp->hwrm_fw_maj_8b;
9685 		fw_min = resp->hwrm_fw_min_8b;
9686 		fw_bld = resp->hwrm_fw_bld_8b;
9687 		fw_rsv = resp->hwrm_fw_rsvd_8b;
9688 		len = BC_HWRM_STR_LEN;
9689 	}
9690 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
9691 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
9692 		 fw_rsv);
9693 
9694 	if (strlen(resp->active_pkg_name)) {
9695 		int fw_ver_len = strlen(bp->fw_ver_str);
9696 
9697 		snprintf(bp->fw_ver_str + fw_ver_len,
9698 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
9699 			 resp->active_pkg_name);
9700 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
9701 	}
9702 
9703 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
9704 	if (!bp->hwrm_cmd_timeout)
9705 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
9706 	bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000;
9707 	if (!bp->hwrm_cmd_max_timeout)
9708 		bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT;
9709 	else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT)
9710 		netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n",
9711 			    bp->hwrm_cmd_max_timeout / 1000);
9712 
9713 	if (resp->hwrm_intf_maj_8b >= 1) {
9714 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
9715 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
9716 	}
9717 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
9718 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
9719 
9720 	bp->chip_num = le16_to_cpu(resp->chip_num);
9721 	bp->chip_rev = resp->chip_rev;
9722 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
9723 	    !resp->chip_metal)
9724 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
9725 
9726 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
9727 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
9728 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
9729 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
9730 
9731 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
9732 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
9733 
9734 	if (dev_caps_cfg &
9735 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
9736 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
9737 
9738 	if (dev_caps_cfg &
9739 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
9740 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
9741 
9742 	if (dev_caps_cfg &
9743 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
9744 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
9745 
9746 hwrm_ver_get_exit:
9747 	hwrm_req_drop(bp, req);
9748 	return rc;
9749 }
9750 
9751 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
9752 {
9753 	struct hwrm_fw_set_time_input *req;
9754 	struct tm tm;
9755 	time64_t now = ktime_get_real_seconds();
9756 	int rc;
9757 
9758 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
9759 	    bp->hwrm_spec_code < 0x10400)
9760 		return -EOPNOTSUPP;
9761 
9762 	time64_to_tm(now, 0, &tm);
9763 	rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME);
9764 	if (rc)
9765 		return rc;
9766 
9767 	req->year = cpu_to_le16(1900 + tm.tm_year);
9768 	req->month = 1 + tm.tm_mon;
9769 	req->day = tm.tm_mday;
9770 	req->hour = tm.tm_hour;
9771 	req->minute = tm.tm_min;
9772 	req->second = tm.tm_sec;
9773 	return hwrm_req_send(bp, req);
9774 }
9775 
9776 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
9777 {
9778 	u64 sw_tmp;
9779 
9780 	hw &= mask;
9781 	sw_tmp = (*sw & ~mask) | hw;
9782 	if (hw < (*sw & mask))
9783 		sw_tmp += mask + 1;
9784 	WRITE_ONCE(*sw, sw_tmp);
9785 }
9786 
9787 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
9788 				    int count, bool ignore_zero)
9789 {
9790 	int i;
9791 
9792 	for (i = 0; i < count; i++) {
9793 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
9794 
9795 		if (ignore_zero && !hw)
9796 			continue;
9797 
9798 		if (masks[i] == -1ULL)
9799 			sw_stats[i] = hw;
9800 		else
9801 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
9802 	}
9803 }
9804 
9805 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
9806 {
9807 	if (!stats->hw_stats)
9808 		return;
9809 
9810 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
9811 				stats->hw_masks, stats->len / 8, false);
9812 }
9813 
9814 static void bnxt_accumulate_all_stats(struct bnxt *bp)
9815 {
9816 	struct bnxt_stats_mem *ring0_stats;
9817 	bool ignore_zero = false;
9818 	int i;
9819 
9820 	/* Chip bug.  Counter intermittently becomes 0. */
9821 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9822 		ignore_zero = true;
9823 
9824 	for (i = 0; i < bp->cp_nr_rings; i++) {
9825 		struct bnxt_napi *bnapi = bp->bnapi[i];
9826 		struct bnxt_cp_ring_info *cpr;
9827 		struct bnxt_stats_mem *stats;
9828 
9829 		cpr = &bnapi->cp_ring;
9830 		stats = &cpr->stats;
9831 		if (!i)
9832 			ring0_stats = stats;
9833 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
9834 					ring0_stats->hw_masks,
9835 					ring0_stats->len / 8, ignore_zero);
9836 	}
9837 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
9838 		struct bnxt_stats_mem *stats = &bp->port_stats;
9839 		__le64 *hw_stats = stats->hw_stats;
9840 		u64 *sw_stats = stats->sw_stats;
9841 		u64 *masks = stats->hw_masks;
9842 		int cnt;
9843 
9844 		cnt = sizeof(struct rx_port_stats) / 8;
9845 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
9846 
9847 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
9848 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
9849 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
9850 		cnt = sizeof(struct tx_port_stats) / 8;
9851 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
9852 	}
9853 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
9854 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
9855 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
9856 	}
9857 }
9858 
9859 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
9860 {
9861 	struct hwrm_port_qstats_input *req;
9862 	struct bnxt_pf_info *pf = &bp->pf;
9863 	int rc;
9864 
9865 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
9866 		return 0;
9867 
9868 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
9869 		return -EOPNOTSUPP;
9870 
9871 	rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS);
9872 	if (rc)
9873 		return rc;
9874 
9875 	req->flags = flags;
9876 	req->port_id = cpu_to_le16(pf->port_id);
9877 	req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
9878 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
9879 	req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
9880 	return hwrm_req_send(bp, req);
9881 }
9882 
9883 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
9884 {
9885 	struct hwrm_queue_pri2cos_qcfg_output *resp_qc;
9886 	struct hwrm_queue_pri2cos_qcfg_input *req_qc;
9887 	struct hwrm_port_qstats_ext_output *resp_qs;
9888 	struct hwrm_port_qstats_ext_input *req_qs;
9889 	struct bnxt_pf_info *pf = &bp->pf;
9890 	u32 tx_stat_size;
9891 	int rc;
9892 
9893 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
9894 		return 0;
9895 
9896 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
9897 		return -EOPNOTSUPP;
9898 
9899 	rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT);
9900 	if (rc)
9901 		return rc;
9902 
9903 	req_qs->flags = flags;
9904 	req_qs->port_id = cpu_to_le16(pf->port_id);
9905 	req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
9906 	req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
9907 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
9908 		       sizeof(struct tx_port_stats_ext) : 0;
9909 	req_qs->tx_stat_size = cpu_to_le16(tx_stat_size);
9910 	req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
9911 	resp_qs = hwrm_req_hold(bp, req_qs);
9912 	rc = hwrm_req_send(bp, req_qs);
9913 	if (!rc) {
9914 		bp->fw_rx_stats_ext_size =
9915 			le16_to_cpu(resp_qs->rx_stat_size) / 8;
9916 		if (BNXT_FW_MAJ(bp) < 220 &&
9917 		    bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY)
9918 			bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY;
9919 
9920 		bp->fw_tx_stats_ext_size = tx_stat_size ?
9921 			le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0;
9922 	} else {
9923 		bp->fw_rx_stats_ext_size = 0;
9924 		bp->fw_tx_stats_ext_size = 0;
9925 	}
9926 	hwrm_req_drop(bp, req_qs);
9927 
9928 	if (flags)
9929 		return rc;
9930 
9931 	if (bp->fw_tx_stats_ext_size <=
9932 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
9933 		bp->pri2cos_valid = 0;
9934 		return rc;
9935 	}
9936 
9937 	rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG);
9938 	if (rc)
9939 		return rc;
9940 
9941 	req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
9942 
9943 	resp_qc = hwrm_req_hold(bp, req_qc);
9944 	rc = hwrm_req_send(bp, req_qc);
9945 	if (!rc) {
9946 		u8 *pri2cos;
9947 		int i, j;
9948 
9949 		pri2cos = &resp_qc->pri0_cos_queue_id;
9950 		for (i = 0; i < 8; i++) {
9951 			u8 queue_id = pri2cos[i];
9952 			u8 queue_idx;
9953 
9954 			/* Per port queue IDs start from 0, 10, 20, etc */
9955 			queue_idx = queue_id % 10;
9956 			if (queue_idx > BNXT_MAX_QUEUE) {
9957 				bp->pri2cos_valid = false;
9958 				hwrm_req_drop(bp, req_qc);
9959 				return rc;
9960 			}
9961 			for (j = 0; j < bp->max_q; j++) {
9962 				if (bp->q_ids[j] == queue_id)
9963 					bp->pri2cos_idx[i] = queue_idx;
9964 			}
9965 		}
9966 		bp->pri2cos_valid = true;
9967 	}
9968 	hwrm_req_drop(bp, req_qc);
9969 
9970 	return rc;
9971 }
9972 
9973 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
9974 {
9975 	bnxt_hwrm_tunnel_dst_port_free(bp,
9976 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
9977 	bnxt_hwrm_tunnel_dst_port_free(bp,
9978 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
9979 }
9980 
9981 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
9982 {
9983 	int rc, i;
9984 	u32 tpa_flags = 0;
9985 
9986 	if (set_tpa)
9987 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
9988 	else if (BNXT_NO_FW_ACCESS(bp))
9989 		return 0;
9990 	for (i = 0; i < bp->nr_vnics; i++) {
9991 		rc = bnxt_hwrm_vnic_set_tpa(bp, &bp->vnic_info[i], tpa_flags);
9992 		if (rc) {
9993 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
9994 				   i, rc);
9995 			return rc;
9996 		}
9997 	}
9998 	return 0;
9999 }
10000 
10001 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
10002 {
10003 	int i;
10004 
10005 	for (i = 0; i < bp->nr_vnics; i++)
10006 		bnxt_hwrm_vnic_set_rss(bp, &bp->vnic_info[i], false);
10007 }
10008 
10009 static void bnxt_clear_vnic(struct bnxt *bp)
10010 {
10011 	if (!bp->vnic_info)
10012 		return;
10013 
10014 	bnxt_hwrm_clear_vnic_filter(bp);
10015 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) {
10016 		/* clear all RSS setting before free vnic ctx */
10017 		bnxt_hwrm_clear_vnic_rss(bp);
10018 		bnxt_hwrm_vnic_ctx_free(bp);
10019 	}
10020 	/* before free the vnic, undo the vnic tpa settings */
10021 	if (bp->flags & BNXT_FLAG_TPA)
10022 		bnxt_set_tpa(bp, false);
10023 	bnxt_hwrm_vnic_free(bp);
10024 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10025 		bnxt_hwrm_vnic_ctx_free(bp);
10026 }
10027 
10028 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
10029 				    bool irq_re_init)
10030 {
10031 	bnxt_clear_vnic(bp);
10032 	bnxt_hwrm_ring_free(bp, close_path);
10033 	bnxt_hwrm_ring_grp_free(bp);
10034 	if (irq_re_init) {
10035 		bnxt_hwrm_stat_ctx_free(bp);
10036 		bnxt_hwrm_free_tunnel_ports(bp);
10037 	}
10038 }
10039 
10040 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
10041 {
10042 	struct hwrm_func_cfg_input *req;
10043 	u8 evb_mode;
10044 	int rc;
10045 
10046 	if (br_mode == BRIDGE_MODE_VEB)
10047 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
10048 	else if (br_mode == BRIDGE_MODE_VEPA)
10049 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
10050 	else
10051 		return -EINVAL;
10052 
10053 	rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
10054 	if (rc)
10055 		return rc;
10056 
10057 	req->fid = cpu_to_le16(0xffff);
10058 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
10059 	req->evb_mode = evb_mode;
10060 	return hwrm_req_send(bp, req);
10061 }
10062 
10063 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
10064 {
10065 	struct hwrm_func_cfg_input *req;
10066 	int rc;
10067 
10068 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
10069 		return 0;
10070 
10071 	rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
10072 	if (rc)
10073 		return rc;
10074 
10075 	req->fid = cpu_to_le16(0xffff);
10076 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
10077 	req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
10078 	if (size == 128)
10079 		req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
10080 
10081 	return hwrm_req_send(bp, req);
10082 }
10083 
10084 static int __bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic)
10085 {
10086 	int rc;
10087 
10088 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
10089 		goto skip_rss_ctx;
10090 
10091 	/* allocate context for vnic */
10092 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 0);
10093 	if (rc) {
10094 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
10095 			   vnic->vnic_id, rc);
10096 		goto vnic_setup_err;
10097 	}
10098 	bp->rsscos_nr_ctxs++;
10099 
10100 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
10101 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 1);
10102 		if (rc) {
10103 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
10104 				   vnic->vnic_id, rc);
10105 			goto vnic_setup_err;
10106 		}
10107 		bp->rsscos_nr_ctxs++;
10108 	}
10109 
10110 skip_rss_ctx:
10111 	/* configure default vnic, ring grp */
10112 	rc = bnxt_hwrm_vnic_cfg(bp, vnic);
10113 	if (rc) {
10114 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
10115 			   vnic->vnic_id, rc);
10116 		goto vnic_setup_err;
10117 	}
10118 
10119 	/* Enable RSS hashing on vnic */
10120 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic, true);
10121 	if (rc) {
10122 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
10123 			   vnic->vnic_id, rc);
10124 		goto vnic_setup_err;
10125 	}
10126 
10127 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
10128 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic);
10129 		if (rc) {
10130 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
10131 				   vnic->vnic_id, rc);
10132 		}
10133 	}
10134 
10135 vnic_setup_err:
10136 	return rc;
10137 }
10138 
10139 int bnxt_hwrm_vnic_update(struct bnxt *bp, struct bnxt_vnic_info *vnic,
10140 			  u8 valid)
10141 {
10142 	struct hwrm_vnic_update_input *req;
10143 	int rc;
10144 
10145 	rc = hwrm_req_init(bp, req, HWRM_VNIC_UPDATE);
10146 	if (rc)
10147 		return rc;
10148 
10149 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
10150 
10151 	if (valid & VNIC_UPDATE_REQ_ENABLES_MRU_VALID)
10152 		req->mru = cpu_to_le16(vnic->mru);
10153 
10154 	req->enables = cpu_to_le32(valid);
10155 
10156 	return hwrm_req_send(bp, req);
10157 }
10158 
10159 int bnxt_hwrm_vnic_rss_cfg_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic)
10160 {
10161 	int rc;
10162 
10163 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic, true);
10164 	if (rc) {
10165 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
10166 			   vnic->vnic_id, rc);
10167 		return rc;
10168 	}
10169 	rc = bnxt_hwrm_vnic_cfg(bp, vnic);
10170 	if (rc)
10171 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
10172 			   vnic->vnic_id, rc);
10173 	return rc;
10174 }
10175 
10176 int __bnxt_setup_vnic_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic)
10177 {
10178 	int rc, i, nr_ctxs;
10179 
10180 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
10181 	for (i = 0; i < nr_ctxs; i++) {
10182 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, i);
10183 		if (rc) {
10184 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
10185 				   vnic->vnic_id, i, rc);
10186 			break;
10187 		}
10188 		bp->rsscos_nr_ctxs++;
10189 	}
10190 	if (i < nr_ctxs)
10191 		return -ENOMEM;
10192 
10193 	rc = bnxt_hwrm_vnic_rss_cfg_p5(bp, vnic);
10194 	if (rc)
10195 		return rc;
10196 
10197 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
10198 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic);
10199 		if (rc) {
10200 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
10201 				   vnic->vnic_id, rc);
10202 		}
10203 	}
10204 	return rc;
10205 }
10206 
10207 static int bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic)
10208 {
10209 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10210 		return __bnxt_setup_vnic_p5(bp, vnic);
10211 	else
10212 		return __bnxt_setup_vnic(bp, vnic);
10213 }
10214 
10215 static int bnxt_alloc_and_setup_vnic(struct bnxt *bp,
10216 				     struct bnxt_vnic_info *vnic,
10217 				     u16 start_rx_ring_idx, int rx_rings)
10218 {
10219 	int rc;
10220 
10221 	rc = bnxt_hwrm_vnic_alloc(bp, vnic, start_rx_ring_idx, rx_rings);
10222 	if (rc) {
10223 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
10224 			   vnic->vnic_id, rc);
10225 		return rc;
10226 	}
10227 	return bnxt_setup_vnic(bp, vnic);
10228 }
10229 
10230 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
10231 {
10232 	struct bnxt_vnic_info *vnic;
10233 	int i, rc = 0;
10234 
10235 	if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) {
10236 		vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE];
10237 		return bnxt_alloc_and_setup_vnic(bp, vnic, 0, bp->rx_nr_rings);
10238 	}
10239 
10240 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10241 		return 0;
10242 
10243 	for (i = 0; i < bp->rx_nr_rings; i++) {
10244 		u16 vnic_id = i + 1;
10245 		u16 ring_id = i;
10246 
10247 		if (vnic_id >= bp->nr_vnics)
10248 			break;
10249 
10250 		vnic = &bp->vnic_info[vnic_id];
10251 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
10252 		if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP)
10253 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
10254 		if (bnxt_alloc_and_setup_vnic(bp, &bp->vnic_info[vnic_id], ring_id, 1))
10255 			break;
10256 	}
10257 	return rc;
10258 }
10259 
10260 void bnxt_del_one_rss_ctx(struct bnxt *bp, struct bnxt_rss_ctx *rss_ctx,
10261 			  bool all)
10262 {
10263 	struct bnxt_vnic_info *vnic = &rss_ctx->vnic;
10264 	struct bnxt_filter_base *usr_fltr, *tmp;
10265 	struct bnxt_ntuple_filter *ntp_fltr;
10266 	int i;
10267 
10268 	if (netif_running(bp->dev)) {
10269 		bnxt_hwrm_vnic_free_one(bp, &rss_ctx->vnic);
10270 		for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) {
10271 			if (vnic->fw_rss_cos_lb_ctx[i] != INVALID_HW_RING_ID)
10272 				bnxt_hwrm_vnic_ctx_free_one(bp, vnic, i);
10273 		}
10274 	}
10275 	if (!all)
10276 		return;
10277 
10278 	list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) {
10279 		if ((usr_fltr->flags & BNXT_ACT_RSS_CTX) &&
10280 		    usr_fltr->fw_vnic_id == rss_ctx->index) {
10281 			ntp_fltr = container_of(usr_fltr,
10282 						struct bnxt_ntuple_filter,
10283 						base);
10284 			bnxt_hwrm_cfa_ntuple_filter_free(bp, ntp_fltr);
10285 			bnxt_del_ntp_filter(bp, ntp_fltr);
10286 			bnxt_del_one_usr_fltr(bp, usr_fltr);
10287 		}
10288 	}
10289 
10290 	if (vnic->rss_table)
10291 		dma_free_coherent(&bp->pdev->dev, vnic->rss_table_size,
10292 				  vnic->rss_table,
10293 				  vnic->rss_table_dma_addr);
10294 	bp->num_rss_ctx--;
10295 }
10296 
10297 static void bnxt_hwrm_realloc_rss_ctx_vnic(struct bnxt *bp)
10298 {
10299 	bool set_tpa = !!(bp->flags & BNXT_FLAG_TPA);
10300 	struct ethtool_rxfh_context *ctx;
10301 	unsigned long context;
10302 
10303 	xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) {
10304 		struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx);
10305 		struct bnxt_vnic_info *vnic = &rss_ctx->vnic;
10306 
10307 		if (bnxt_hwrm_vnic_alloc(bp, vnic, 0, bp->rx_nr_rings) ||
10308 		    bnxt_hwrm_vnic_set_tpa(bp, vnic, set_tpa) ||
10309 		    __bnxt_setup_vnic_p5(bp, vnic)) {
10310 			netdev_err(bp->dev, "Failed to restore RSS ctx %d\n",
10311 				   rss_ctx->index);
10312 			bnxt_del_one_rss_ctx(bp, rss_ctx, true);
10313 			ethtool_rxfh_context_lost(bp->dev, rss_ctx->index);
10314 		}
10315 	}
10316 }
10317 
10318 static void bnxt_clear_rss_ctxs(struct bnxt *bp)
10319 {
10320 	struct ethtool_rxfh_context *ctx;
10321 	unsigned long context;
10322 
10323 	xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) {
10324 		struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx);
10325 
10326 		bnxt_del_one_rss_ctx(bp, rss_ctx, false);
10327 	}
10328 }
10329 
10330 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
10331 static bool bnxt_promisc_ok(struct bnxt *bp)
10332 {
10333 #ifdef CONFIG_BNXT_SRIOV
10334 	if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
10335 		return false;
10336 #endif
10337 	return true;
10338 }
10339 
10340 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
10341 {
10342 	struct bnxt_vnic_info *vnic = &bp->vnic_info[1];
10343 	unsigned int rc = 0;
10344 
10345 	rc = bnxt_hwrm_vnic_alloc(bp, vnic, bp->rx_nr_rings - 1, 1);
10346 	if (rc) {
10347 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
10348 			   rc);
10349 		return rc;
10350 	}
10351 
10352 	rc = bnxt_hwrm_vnic_cfg(bp, vnic);
10353 	if (rc) {
10354 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
10355 			   rc);
10356 		return rc;
10357 	}
10358 	return rc;
10359 }
10360 
10361 static int bnxt_cfg_rx_mode(struct bnxt *);
10362 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
10363 
10364 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
10365 {
10366 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
10367 	int rc = 0;
10368 	unsigned int rx_nr_rings = bp->rx_nr_rings;
10369 
10370 	if (irq_re_init) {
10371 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
10372 		if (rc) {
10373 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
10374 				   rc);
10375 			goto err_out;
10376 		}
10377 	}
10378 
10379 	rc = bnxt_hwrm_ring_alloc(bp);
10380 	if (rc) {
10381 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
10382 		goto err_out;
10383 	}
10384 
10385 	rc = bnxt_hwrm_ring_grp_alloc(bp);
10386 	if (rc) {
10387 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
10388 		goto err_out;
10389 	}
10390 
10391 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
10392 		rx_nr_rings--;
10393 
10394 	/* default vnic 0 */
10395 	rc = bnxt_hwrm_vnic_alloc(bp, vnic, 0, rx_nr_rings);
10396 	if (rc) {
10397 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
10398 		goto err_out;
10399 	}
10400 
10401 	if (BNXT_VF(bp))
10402 		bnxt_hwrm_func_qcfg(bp);
10403 
10404 	rc = bnxt_setup_vnic(bp, vnic);
10405 	if (rc)
10406 		goto err_out;
10407 	if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA)
10408 		bnxt_hwrm_update_rss_hash_cfg(bp);
10409 
10410 	if (bp->flags & BNXT_FLAG_RFS) {
10411 		rc = bnxt_alloc_rfs_vnics(bp);
10412 		if (rc)
10413 			goto err_out;
10414 	}
10415 
10416 	if (bp->flags & BNXT_FLAG_TPA) {
10417 		rc = bnxt_set_tpa(bp, true);
10418 		if (rc)
10419 			goto err_out;
10420 	}
10421 
10422 	if (BNXT_VF(bp))
10423 		bnxt_update_vf_mac(bp);
10424 
10425 	/* Filter for default vnic 0 */
10426 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
10427 	if (rc) {
10428 		if (BNXT_VF(bp) && rc == -ENODEV)
10429 			netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n");
10430 		else
10431 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
10432 		goto err_out;
10433 	}
10434 	vnic->uc_filter_count = 1;
10435 
10436 	vnic->rx_mask = 0;
10437 	if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state))
10438 		goto skip_rx_mask;
10439 
10440 	if (bp->dev->flags & IFF_BROADCAST)
10441 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
10442 
10443 	if (bp->dev->flags & IFF_PROMISC)
10444 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10445 
10446 	if (bp->dev->flags & IFF_ALLMULTI) {
10447 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10448 		vnic->mc_list_count = 0;
10449 	} else if (bp->dev->flags & IFF_MULTICAST) {
10450 		u32 mask = 0;
10451 
10452 		bnxt_mc_list_updated(bp, &mask);
10453 		vnic->rx_mask |= mask;
10454 	}
10455 
10456 	rc = bnxt_cfg_rx_mode(bp);
10457 	if (rc)
10458 		goto err_out;
10459 
10460 skip_rx_mask:
10461 	rc = bnxt_hwrm_set_coal(bp);
10462 	if (rc)
10463 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
10464 				rc);
10465 
10466 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
10467 		rc = bnxt_setup_nitroa0_vnic(bp);
10468 		if (rc)
10469 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
10470 				   rc);
10471 	}
10472 
10473 	if (BNXT_VF(bp)) {
10474 		bnxt_hwrm_func_qcfg(bp);
10475 		netdev_update_features(bp->dev);
10476 	}
10477 
10478 	return 0;
10479 
10480 err_out:
10481 	bnxt_hwrm_resource_free(bp, 0, true);
10482 
10483 	return rc;
10484 }
10485 
10486 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
10487 {
10488 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
10489 	return 0;
10490 }
10491 
10492 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
10493 {
10494 	bnxt_init_cp_rings(bp);
10495 	bnxt_init_rx_rings(bp);
10496 	bnxt_init_tx_rings(bp);
10497 	bnxt_init_ring_grps(bp, irq_re_init);
10498 	bnxt_init_vnics(bp);
10499 
10500 	return bnxt_init_chip(bp, irq_re_init);
10501 }
10502 
10503 static int bnxt_set_real_num_queues(struct bnxt *bp)
10504 {
10505 	int rc;
10506 	struct net_device *dev = bp->dev;
10507 
10508 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
10509 					  bp->tx_nr_rings_xdp);
10510 	if (rc)
10511 		return rc;
10512 
10513 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
10514 	if (rc)
10515 		return rc;
10516 
10517 #ifdef CONFIG_RFS_ACCEL
10518 	if (bp->flags & BNXT_FLAG_RFS)
10519 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
10520 #endif
10521 
10522 	return rc;
10523 }
10524 
10525 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
10526 			     bool shared)
10527 {
10528 	int _rx = *rx, _tx = *tx;
10529 
10530 	if (shared) {
10531 		*rx = min_t(int, _rx, max);
10532 		*tx = min_t(int, _tx, max);
10533 	} else {
10534 		if (max < 2)
10535 			return -ENOMEM;
10536 
10537 		while (_rx + _tx > max) {
10538 			if (_rx > _tx && _rx > 1)
10539 				_rx--;
10540 			else if (_tx > 1)
10541 				_tx--;
10542 		}
10543 		*rx = _rx;
10544 		*tx = _tx;
10545 	}
10546 	return 0;
10547 }
10548 
10549 static int __bnxt_num_tx_to_cp(struct bnxt *bp, int tx, int tx_sets, int tx_xdp)
10550 {
10551 	return (tx - tx_xdp) / tx_sets + tx_xdp;
10552 }
10553 
10554 int bnxt_num_tx_to_cp(struct bnxt *bp, int tx)
10555 {
10556 	int tcs = bp->num_tc;
10557 
10558 	if (!tcs)
10559 		tcs = 1;
10560 	return __bnxt_num_tx_to_cp(bp, tx, tcs, bp->tx_nr_rings_xdp);
10561 }
10562 
10563 static int bnxt_num_cp_to_tx(struct bnxt *bp, int tx_cp)
10564 {
10565 	int tcs = bp->num_tc;
10566 
10567 	return (tx_cp - bp->tx_nr_rings_xdp) * tcs +
10568 	       bp->tx_nr_rings_xdp;
10569 }
10570 
10571 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
10572 			   bool sh)
10573 {
10574 	int tx_cp = bnxt_num_tx_to_cp(bp, *tx);
10575 
10576 	if (tx_cp != *tx) {
10577 		int tx_saved = tx_cp, rc;
10578 
10579 		rc = __bnxt_trim_rings(bp, rx, &tx_cp, max, sh);
10580 		if (rc)
10581 			return rc;
10582 		if (tx_cp != tx_saved)
10583 			*tx = bnxt_num_cp_to_tx(bp, tx_cp);
10584 		return 0;
10585 	}
10586 	return __bnxt_trim_rings(bp, rx, tx, max, sh);
10587 }
10588 
10589 static void bnxt_setup_msix(struct bnxt *bp)
10590 {
10591 	const int len = sizeof(bp->irq_tbl[0].name);
10592 	struct net_device *dev = bp->dev;
10593 	int tcs, i;
10594 
10595 	tcs = bp->num_tc;
10596 	if (tcs) {
10597 		int i, off, count;
10598 
10599 		for (i = 0; i < tcs; i++) {
10600 			count = bp->tx_nr_rings_per_tc;
10601 			off = BNXT_TC_TO_RING_BASE(bp, i);
10602 			netdev_set_tc_queue(dev, i, count, off);
10603 		}
10604 	}
10605 
10606 	for (i = 0; i < bp->cp_nr_rings; i++) {
10607 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
10608 		char *attr;
10609 
10610 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
10611 			attr = "TxRx";
10612 		else if (i < bp->rx_nr_rings)
10613 			attr = "rx";
10614 		else
10615 			attr = "tx";
10616 
10617 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
10618 			 attr, i);
10619 		bp->irq_tbl[map_idx].handler = bnxt_msix;
10620 	}
10621 }
10622 
10623 static int bnxt_init_int_mode(struct bnxt *bp);
10624 
10625 static int bnxt_change_msix(struct bnxt *bp, int total)
10626 {
10627 	struct msi_map map;
10628 	int i;
10629 
10630 	/* add MSIX to the end if needed */
10631 	for (i = bp->total_irqs; i < total; i++) {
10632 		map = pci_msix_alloc_irq_at(bp->pdev, i, NULL);
10633 		if (map.index < 0)
10634 			return bp->total_irqs;
10635 		bp->irq_tbl[i].vector = map.virq;
10636 		bp->total_irqs++;
10637 	}
10638 
10639 	/* trim MSIX from the end if needed */
10640 	for (i = bp->total_irqs; i > total; i--) {
10641 		map.index = i - 1;
10642 		map.virq = bp->irq_tbl[i - 1].vector;
10643 		pci_msix_free_irq(bp->pdev, map);
10644 		bp->total_irqs--;
10645 	}
10646 	return bp->total_irqs;
10647 }
10648 
10649 static int bnxt_setup_int_mode(struct bnxt *bp)
10650 {
10651 	int rc;
10652 
10653 	if (!bp->irq_tbl) {
10654 		rc = bnxt_init_int_mode(bp);
10655 		if (rc || !bp->irq_tbl)
10656 			return rc ?: -ENODEV;
10657 	}
10658 
10659 	bnxt_setup_msix(bp);
10660 
10661 	rc = bnxt_set_real_num_queues(bp);
10662 	return rc;
10663 }
10664 
10665 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
10666 {
10667 	return bp->hw_resc.max_rsscos_ctxs;
10668 }
10669 
10670 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
10671 {
10672 	return bp->hw_resc.max_vnics;
10673 }
10674 
10675 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
10676 {
10677 	return bp->hw_resc.max_stat_ctxs;
10678 }
10679 
10680 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
10681 {
10682 	return bp->hw_resc.max_cp_rings;
10683 }
10684 
10685 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
10686 {
10687 	unsigned int cp = bp->hw_resc.max_cp_rings;
10688 
10689 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
10690 		cp -= bnxt_get_ulp_msix_num(bp);
10691 
10692 	return cp;
10693 }
10694 
10695 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
10696 {
10697 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10698 
10699 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10700 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
10701 
10702 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
10703 }
10704 
10705 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
10706 {
10707 	bp->hw_resc.max_irqs = max_irqs;
10708 }
10709 
10710 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
10711 {
10712 	unsigned int cp;
10713 
10714 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
10715 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10716 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
10717 	else
10718 		return cp - bp->cp_nr_rings;
10719 }
10720 
10721 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
10722 {
10723 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
10724 }
10725 
10726 static int bnxt_get_avail_msix(struct bnxt *bp, int num)
10727 {
10728 	int max_irq = bnxt_get_max_func_irqs(bp);
10729 	int total_req = bp->cp_nr_rings + num;
10730 
10731 	if (max_irq < total_req) {
10732 		num = max_irq - bp->cp_nr_rings;
10733 		if (num <= 0)
10734 			return 0;
10735 	}
10736 	return num;
10737 }
10738 
10739 static int bnxt_get_num_msix(struct bnxt *bp)
10740 {
10741 	if (!BNXT_NEW_RM(bp))
10742 		return bnxt_get_max_func_irqs(bp);
10743 
10744 	return bnxt_nq_rings_in_use(bp);
10745 }
10746 
10747 static int bnxt_init_int_mode(struct bnxt *bp)
10748 {
10749 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix, tx_cp, tbl_size;
10750 
10751 	total_vecs = bnxt_get_num_msix(bp);
10752 	max = bnxt_get_max_func_irqs(bp);
10753 	if (total_vecs > max)
10754 		total_vecs = max;
10755 
10756 	if (!total_vecs)
10757 		return 0;
10758 
10759 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
10760 		min = 2;
10761 
10762 	total_vecs = pci_alloc_irq_vectors(bp->pdev, min, total_vecs,
10763 					   PCI_IRQ_MSIX);
10764 	ulp_msix = bnxt_get_ulp_msix_num(bp);
10765 	if (total_vecs < 0 || total_vecs < ulp_msix) {
10766 		rc = -ENODEV;
10767 		goto msix_setup_exit;
10768 	}
10769 
10770 	tbl_size = total_vecs;
10771 	if (pci_msix_can_alloc_dyn(bp->pdev))
10772 		tbl_size = max;
10773 	bp->irq_tbl = kcalloc(tbl_size, sizeof(*bp->irq_tbl), GFP_KERNEL);
10774 	if (bp->irq_tbl) {
10775 		for (i = 0; i < total_vecs; i++)
10776 			bp->irq_tbl[i].vector = pci_irq_vector(bp->pdev, i);
10777 
10778 		bp->total_irqs = total_vecs;
10779 		/* Trim rings based upon num of vectors allocated */
10780 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
10781 				     total_vecs - ulp_msix, min == 1);
10782 		if (rc)
10783 			goto msix_setup_exit;
10784 
10785 		tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings);
10786 		bp->cp_nr_rings = (min == 1) ?
10787 				  max_t(int, tx_cp, bp->rx_nr_rings) :
10788 				  tx_cp + bp->rx_nr_rings;
10789 
10790 	} else {
10791 		rc = -ENOMEM;
10792 		goto msix_setup_exit;
10793 	}
10794 	return 0;
10795 
10796 msix_setup_exit:
10797 	netdev_err(bp->dev, "bnxt_init_int_mode err: %x\n", rc);
10798 	kfree(bp->irq_tbl);
10799 	bp->irq_tbl = NULL;
10800 	pci_free_irq_vectors(bp->pdev);
10801 	return rc;
10802 }
10803 
10804 static void bnxt_clear_int_mode(struct bnxt *bp)
10805 {
10806 	pci_free_irq_vectors(bp->pdev);
10807 
10808 	kfree(bp->irq_tbl);
10809 	bp->irq_tbl = NULL;
10810 }
10811 
10812 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
10813 {
10814 	bool irq_cleared = false;
10815 	bool irq_change = false;
10816 	int tcs = bp->num_tc;
10817 	int irqs_required;
10818 	int rc;
10819 
10820 	if (!bnxt_need_reserve_rings(bp))
10821 		return 0;
10822 
10823 	if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) {
10824 		int ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want);
10825 
10826 		if (ulp_msix > bp->ulp_num_msix_want)
10827 			ulp_msix = bp->ulp_num_msix_want;
10828 		irqs_required = ulp_msix + bp->cp_nr_rings;
10829 	} else {
10830 		irqs_required = bnxt_get_num_msix(bp);
10831 	}
10832 
10833 	if (irq_re_init && BNXT_NEW_RM(bp) && irqs_required != bp->total_irqs) {
10834 		irq_change = true;
10835 		if (!pci_msix_can_alloc_dyn(bp->pdev)) {
10836 			bnxt_ulp_irq_stop(bp);
10837 			bnxt_clear_int_mode(bp);
10838 			irq_cleared = true;
10839 		}
10840 	}
10841 	rc = __bnxt_reserve_rings(bp);
10842 	if (irq_cleared) {
10843 		if (!rc)
10844 			rc = bnxt_init_int_mode(bp);
10845 		bnxt_ulp_irq_restart(bp, rc);
10846 	} else if (irq_change && !rc) {
10847 		if (bnxt_change_msix(bp, irqs_required) != irqs_required)
10848 			rc = -ENOSPC;
10849 	}
10850 	if (rc) {
10851 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
10852 		return rc;
10853 	}
10854 	if (tcs && (bp->tx_nr_rings_per_tc * tcs !=
10855 		    bp->tx_nr_rings - bp->tx_nr_rings_xdp)) {
10856 		netdev_err(bp->dev, "tx ring reservation failure\n");
10857 		netdev_reset_tc(bp->dev);
10858 		bp->num_tc = 0;
10859 		if (bp->tx_nr_rings_xdp)
10860 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp;
10861 		else
10862 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10863 		return -ENOMEM;
10864 	}
10865 	return 0;
10866 }
10867 
10868 static void bnxt_free_irq(struct bnxt *bp)
10869 {
10870 	struct bnxt_irq *irq;
10871 	int i;
10872 
10873 #ifdef CONFIG_RFS_ACCEL
10874 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
10875 	bp->dev->rx_cpu_rmap = NULL;
10876 #endif
10877 	if (!bp->irq_tbl || !bp->bnapi)
10878 		return;
10879 
10880 	for (i = 0; i < bp->cp_nr_rings; i++) {
10881 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
10882 
10883 		irq = &bp->irq_tbl[map_idx];
10884 		if (irq->requested) {
10885 			if (irq->have_cpumask) {
10886 				irq_set_affinity_hint(irq->vector, NULL);
10887 				free_cpumask_var(irq->cpu_mask);
10888 				irq->have_cpumask = 0;
10889 			}
10890 			free_irq(irq->vector, bp->bnapi[i]);
10891 		}
10892 
10893 		irq->requested = 0;
10894 	}
10895 }
10896 
10897 static int bnxt_request_irq(struct bnxt *bp)
10898 {
10899 	int i, j, rc = 0;
10900 	unsigned long flags = 0;
10901 #ifdef CONFIG_RFS_ACCEL
10902 	struct cpu_rmap *rmap;
10903 #endif
10904 
10905 	rc = bnxt_setup_int_mode(bp);
10906 	if (rc) {
10907 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
10908 			   rc);
10909 		return rc;
10910 	}
10911 #ifdef CONFIG_RFS_ACCEL
10912 	rmap = bp->dev->rx_cpu_rmap;
10913 #endif
10914 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
10915 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
10916 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
10917 
10918 #ifdef CONFIG_RFS_ACCEL
10919 		if (rmap && bp->bnapi[i]->rx_ring) {
10920 			rc = irq_cpu_rmap_add(rmap, irq->vector);
10921 			if (rc)
10922 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
10923 					    j);
10924 			j++;
10925 		}
10926 #endif
10927 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
10928 				 bp->bnapi[i]);
10929 		if (rc)
10930 			break;
10931 
10932 		netif_napi_set_irq(&bp->bnapi[i]->napi, irq->vector);
10933 		irq->requested = 1;
10934 
10935 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
10936 			int numa_node = dev_to_node(&bp->pdev->dev);
10937 
10938 			irq->have_cpumask = 1;
10939 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
10940 					irq->cpu_mask);
10941 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
10942 			if (rc) {
10943 				netdev_warn(bp->dev,
10944 					    "Set affinity failed, IRQ = %d\n",
10945 					    irq->vector);
10946 				break;
10947 			}
10948 		}
10949 	}
10950 	return rc;
10951 }
10952 
10953 static void bnxt_del_napi(struct bnxt *bp)
10954 {
10955 	int i;
10956 
10957 	if (!bp->bnapi)
10958 		return;
10959 
10960 	for (i = 0; i < bp->rx_nr_rings; i++)
10961 		netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_RX, NULL);
10962 	for (i = 0; i < bp->tx_nr_rings - bp->tx_nr_rings_xdp; i++)
10963 		netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_TX, NULL);
10964 
10965 	for (i = 0; i < bp->cp_nr_rings; i++) {
10966 		struct bnxt_napi *bnapi = bp->bnapi[i];
10967 
10968 		__netif_napi_del(&bnapi->napi);
10969 	}
10970 	/* We called __netif_napi_del(), we need
10971 	 * to respect an RCU grace period before freeing napi structures.
10972 	 */
10973 	synchronize_net();
10974 }
10975 
10976 static void bnxt_init_napi(struct bnxt *bp)
10977 {
10978 	int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
10979 	unsigned int cp_nr_rings = bp->cp_nr_rings;
10980 	struct bnxt_napi *bnapi;
10981 	int i;
10982 
10983 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10984 		poll_fn = bnxt_poll_p5;
10985 	else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
10986 		cp_nr_rings--;
10987 	for (i = 0; i < cp_nr_rings; i++) {
10988 		bnapi = bp->bnapi[i];
10989 		netif_napi_add(bp->dev, &bnapi->napi, poll_fn);
10990 	}
10991 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
10992 		bnapi = bp->bnapi[cp_nr_rings];
10993 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll_nitroa0);
10994 	}
10995 }
10996 
10997 static void bnxt_disable_napi(struct bnxt *bp)
10998 {
10999 	int i;
11000 
11001 	if (!bp->bnapi ||
11002 	    test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
11003 		return;
11004 
11005 	for (i = 0; i < bp->cp_nr_rings; i++) {
11006 		struct bnxt_napi *bnapi = bp->bnapi[i];
11007 		struct bnxt_cp_ring_info *cpr;
11008 
11009 		cpr = &bnapi->cp_ring;
11010 		if (bnapi->tx_fault)
11011 			cpr->sw_stats->tx.tx_resets++;
11012 		if (bnapi->in_reset)
11013 			cpr->sw_stats->rx.rx_resets++;
11014 		napi_disable(&bnapi->napi);
11015 		if (bnapi->rx_ring)
11016 			cancel_work_sync(&cpr->dim.work);
11017 	}
11018 }
11019 
11020 static void bnxt_enable_napi(struct bnxt *bp)
11021 {
11022 	int i;
11023 
11024 	clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
11025 	for (i = 0; i < bp->cp_nr_rings; i++) {
11026 		struct bnxt_napi *bnapi = bp->bnapi[i];
11027 		struct bnxt_cp_ring_info *cpr;
11028 
11029 		bnapi->tx_fault = 0;
11030 
11031 		cpr = &bnapi->cp_ring;
11032 		bnapi->in_reset = false;
11033 
11034 		if (bnapi->rx_ring) {
11035 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
11036 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
11037 		}
11038 		napi_enable(&bnapi->napi);
11039 	}
11040 }
11041 
11042 void bnxt_tx_disable(struct bnxt *bp)
11043 {
11044 	int i;
11045 	struct bnxt_tx_ring_info *txr;
11046 
11047 	if (bp->tx_ring) {
11048 		for (i = 0; i < bp->tx_nr_rings; i++) {
11049 			txr = &bp->tx_ring[i];
11050 			WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
11051 		}
11052 	}
11053 	/* Make sure napi polls see @dev_state change */
11054 	synchronize_net();
11055 	/* Drop carrier first to prevent TX timeout */
11056 	netif_carrier_off(bp->dev);
11057 	/* Stop all TX queues */
11058 	netif_tx_disable(bp->dev);
11059 }
11060 
11061 void bnxt_tx_enable(struct bnxt *bp)
11062 {
11063 	int i;
11064 	struct bnxt_tx_ring_info *txr;
11065 
11066 	for (i = 0; i < bp->tx_nr_rings; i++) {
11067 		txr = &bp->tx_ring[i];
11068 		WRITE_ONCE(txr->dev_state, 0);
11069 	}
11070 	/* Make sure napi polls see @dev_state change */
11071 	synchronize_net();
11072 	netif_tx_wake_all_queues(bp->dev);
11073 	if (BNXT_LINK_IS_UP(bp))
11074 		netif_carrier_on(bp->dev);
11075 }
11076 
11077 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
11078 {
11079 	u8 active_fec = link_info->active_fec_sig_mode &
11080 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
11081 
11082 	switch (active_fec) {
11083 	default:
11084 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
11085 		return "None";
11086 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
11087 		return "Clause 74 BaseR";
11088 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
11089 		return "Clause 91 RS(528,514)";
11090 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
11091 		return "Clause 91 RS544_1XN";
11092 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
11093 		return "Clause 91 RS(544,514)";
11094 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
11095 		return "Clause 91 RS272_1XN";
11096 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
11097 		return "Clause 91 RS(272,257)";
11098 	}
11099 }
11100 
11101 void bnxt_report_link(struct bnxt *bp)
11102 {
11103 	if (BNXT_LINK_IS_UP(bp)) {
11104 		const char *signal = "";
11105 		const char *flow_ctrl;
11106 		const char *duplex;
11107 		u32 speed;
11108 		u16 fec;
11109 
11110 		netif_carrier_on(bp->dev);
11111 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
11112 		if (speed == SPEED_UNKNOWN) {
11113 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
11114 			return;
11115 		}
11116 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
11117 			duplex = "full";
11118 		else
11119 			duplex = "half";
11120 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
11121 			flow_ctrl = "ON - receive & transmit";
11122 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
11123 			flow_ctrl = "ON - transmit";
11124 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
11125 			flow_ctrl = "ON - receive";
11126 		else
11127 			flow_ctrl = "none";
11128 		if (bp->link_info.phy_qcfg_resp.option_flags &
11129 		    PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
11130 			u8 sig_mode = bp->link_info.active_fec_sig_mode &
11131 				      PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
11132 			switch (sig_mode) {
11133 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
11134 				signal = "(NRZ) ";
11135 				break;
11136 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
11137 				signal = "(PAM4 56Gbps) ";
11138 				break;
11139 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4_112:
11140 				signal = "(PAM4 112Gbps) ";
11141 				break;
11142 			default:
11143 				break;
11144 			}
11145 		}
11146 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
11147 			    speed, signal, duplex, flow_ctrl);
11148 		if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
11149 			netdev_info(bp->dev, "EEE is %s\n",
11150 				    bp->eee.eee_active ? "active" :
11151 							 "not active");
11152 		fec = bp->link_info.fec_cfg;
11153 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
11154 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
11155 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
11156 				    bnxt_report_fec(&bp->link_info));
11157 	} else {
11158 		netif_carrier_off(bp->dev);
11159 		netdev_err(bp->dev, "NIC Link is Down\n");
11160 	}
11161 }
11162 
11163 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
11164 {
11165 	if (!resp->supported_speeds_auto_mode &&
11166 	    !resp->supported_speeds_force_mode &&
11167 	    !resp->supported_pam4_speeds_auto_mode &&
11168 	    !resp->supported_pam4_speeds_force_mode &&
11169 	    !resp->supported_speeds2_auto_mode &&
11170 	    !resp->supported_speeds2_force_mode)
11171 		return true;
11172 	return false;
11173 }
11174 
11175 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
11176 {
11177 	struct bnxt_link_info *link_info = &bp->link_info;
11178 	struct hwrm_port_phy_qcaps_output *resp;
11179 	struct hwrm_port_phy_qcaps_input *req;
11180 	int rc = 0;
11181 
11182 	if (bp->hwrm_spec_code < 0x10201)
11183 		return 0;
11184 
11185 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS);
11186 	if (rc)
11187 		return rc;
11188 
11189 	resp = hwrm_req_hold(bp, req);
11190 	rc = hwrm_req_send(bp, req);
11191 	if (rc)
11192 		goto hwrm_phy_qcaps_exit;
11193 
11194 	bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8);
11195 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
11196 		struct ethtool_keee *eee = &bp->eee;
11197 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
11198 
11199 		_bnxt_fw_to_linkmode(eee->supported, fw_speeds);
11200 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
11201 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
11202 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
11203 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
11204 	}
11205 
11206 	if (bp->hwrm_spec_code >= 0x10a01) {
11207 		if (bnxt_phy_qcaps_no_speed(resp)) {
11208 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
11209 			netdev_warn(bp->dev, "Ethernet link disabled\n");
11210 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
11211 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
11212 			netdev_info(bp->dev, "Ethernet link enabled\n");
11213 			/* Phy re-enabled, reprobe the speeds */
11214 			link_info->support_auto_speeds = 0;
11215 			link_info->support_pam4_auto_speeds = 0;
11216 			link_info->support_auto_speeds2 = 0;
11217 		}
11218 	}
11219 	if (resp->supported_speeds_auto_mode)
11220 		link_info->support_auto_speeds =
11221 			le16_to_cpu(resp->supported_speeds_auto_mode);
11222 	if (resp->supported_pam4_speeds_auto_mode)
11223 		link_info->support_pam4_auto_speeds =
11224 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
11225 	if (resp->supported_speeds2_auto_mode)
11226 		link_info->support_auto_speeds2 =
11227 			le16_to_cpu(resp->supported_speeds2_auto_mode);
11228 
11229 	bp->port_count = resp->port_cnt;
11230 
11231 hwrm_phy_qcaps_exit:
11232 	hwrm_req_drop(bp, req);
11233 	return rc;
11234 }
11235 
11236 static bool bnxt_support_dropped(u16 advertising, u16 supported)
11237 {
11238 	u16 diff = advertising ^ supported;
11239 
11240 	return ((supported | diff) != supported);
11241 }
11242 
11243 static bool bnxt_support_speed_dropped(struct bnxt_link_info *link_info)
11244 {
11245 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
11246 
11247 	/* Check if any advertised speeds are no longer supported. The caller
11248 	 * holds the link_lock mutex, so we can modify link_info settings.
11249 	 */
11250 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
11251 		if (bnxt_support_dropped(link_info->advertising,
11252 					 link_info->support_auto_speeds2)) {
11253 			link_info->advertising = link_info->support_auto_speeds2;
11254 			return true;
11255 		}
11256 		return false;
11257 	}
11258 	if (bnxt_support_dropped(link_info->advertising,
11259 				 link_info->support_auto_speeds)) {
11260 		link_info->advertising = link_info->support_auto_speeds;
11261 		return true;
11262 	}
11263 	if (bnxt_support_dropped(link_info->advertising_pam4,
11264 				 link_info->support_pam4_auto_speeds)) {
11265 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
11266 		return true;
11267 	}
11268 	return false;
11269 }
11270 
11271 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
11272 {
11273 	struct bnxt_link_info *link_info = &bp->link_info;
11274 	struct hwrm_port_phy_qcfg_output *resp;
11275 	struct hwrm_port_phy_qcfg_input *req;
11276 	u8 link_state = link_info->link_state;
11277 	bool support_changed;
11278 	int rc;
11279 
11280 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG);
11281 	if (rc)
11282 		return rc;
11283 
11284 	resp = hwrm_req_hold(bp, req);
11285 	rc = hwrm_req_send(bp, req);
11286 	if (rc) {
11287 		hwrm_req_drop(bp, req);
11288 		if (BNXT_VF(bp) && rc == -ENODEV) {
11289 			netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n");
11290 			rc = 0;
11291 		}
11292 		return rc;
11293 	}
11294 
11295 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
11296 	link_info->phy_link_status = resp->link;
11297 	link_info->duplex = resp->duplex_cfg;
11298 	if (bp->hwrm_spec_code >= 0x10800)
11299 		link_info->duplex = resp->duplex_state;
11300 	link_info->pause = resp->pause;
11301 	link_info->auto_mode = resp->auto_mode;
11302 	link_info->auto_pause_setting = resp->auto_pause;
11303 	link_info->lp_pause = resp->link_partner_adv_pause;
11304 	link_info->force_pause_setting = resp->force_pause;
11305 	link_info->duplex_setting = resp->duplex_cfg;
11306 	if (link_info->phy_link_status == BNXT_LINK_LINK) {
11307 		link_info->link_speed = le16_to_cpu(resp->link_speed);
11308 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2)
11309 			link_info->active_lanes = resp->active_lanes;
11310 	} else {
11311 		link_info->link_speed = 0;
11312 		link_info->active_lanes = 0;
11313 	}
11314 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
11315 	link_info->force_pam4_link_speed =
11316 		le16_to_cpu(resp->force_pam4_link_speed);
11317 	link_info->force_link_speed2 = le16_to_cpu(resp->force_link_speeds2);
11318 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
11319 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
11320 	link_info->support_speeds2 = le16_to_cpu(resp->support_speeds2);
11321 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
11322 	link_info->auto_pam4_link_speeds =
11323 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
11324 	link_info->auto_link_speeds2 = le16_to_cpu(resp->auto_link_speeds2);
11325 	link_info->lp_auto_link_speeds =
11326 		le16_to_cpu(resp->link_partner_adv_speeds);
11327 	link_info->lp_auto_pam4_link_speeds =
11328 		resp->link_partner_pam4_adv_speeds;
11329 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
11330 	link_info->phy_ver[0] = resp->phy_maj;
11331 	link_info->phy_ver[1] = resp->phy_min;
11332 	link_info->phy_ver[2] = resp->phy_bld;
11333 	link_info->media_type = resp->media_type;
11334 	link_info->phy_type = resp->phy_type;
11335 	link_info->transceiver = resp->xcvr_pkg_type;
11336 	link_info->phy_addr = resp->eee_config_phy_addr &
11337 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
11338 	link_info->module_status = resp->module_status;
11339 
11340 	if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
11341 		struct ethtool_keee *eee = &bp->eee;
11342 		u16 fw_speeds;
11343 
11344 		eee->eee_active = 0;
11345 		if (resp->eee_config_phy_addr &
11346 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
11347 			eee->eee_active = 1;
11348 			fw_speeds = le16_to_cpu(
11349 				resp->link_partner_adv_eee_link_speed_mask);
11350 			_bnxt_fw_to_linkmode(eee->lp_advertised, fw_speeds);
11351 		}
11352 
11353 		/* Pull initial EEE config */
11354 		if (!chng_link_state) {
11355 			if (resp->eee_config_phy_addr &
11356 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
11357 				eee->eee_enabled = 1;
11358 
11359 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
11360 			_bnxt_fw_to_linkmode(eee->advertised, fw_speeds);
11361 
11362 			if (resp->eee_config_phy_addr &
11363 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
11364 				__le32 tmr;
11365 
11366 				eee->tx_lpi_enabled = 1;
11367 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
11368 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
11369 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
11370 			}
11371 		}
11372 	}
11373 
11374 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
11375 	if (bp->hwrm_spec_code >= 0x10504) {
11376 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
11377 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
11378 	}
11379 	/* TODO: need to add more logic to report VF link */
11380 	if (chng_link_state) {
11381 		if (link_info->phy_link_status == BNXT_LINK_LINK)
11382 			link_info->link_state = BNXT_LINK_STATE_UP;
11383 		else
11384 			link_info->link_state = BNXT_LINK_STATE_DOWN;
11385 		if (link_state != link_info->link_state)
11386 			bnxt_report_link(bp);
11387 	} else {
11388 		/* always link down if not require to update link state */
11389 		link_info->link_state = BNXT_LINK_STATE_DOWN;
11390 	}
11391 	hwrm_req_drop(bp, req);
11392 
11393 	if (!BNXT_PHY_CFG_ABLE(bp))
11394 		return 0;
11395 
11396 	support_changed = bnxt_support_speed_dropped(link_info);
11397 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
11398 		bnxt_hwrm_set_link_setting(bp, true, false);
11399 	return 0;
11400 }
11401 
11402 static void bnxt_get_port_module_status(struct bnxt *bp)
11403 {
11404 	struct bnxt_link_info *link_info = &bp->link_info;
11405 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
11406 	u8 module_status;
11407 
11408 	if (bnxt_update_link(bp, true))
11409 		return;
11410 
11411 	module_status = link_info->module_status;
11412 	switch (module_status) {
11413 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
11414 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
11415 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
11416 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
11417 			    bp->pf.port_id);
11418 		if (bp->hwrm_spec_code >= 0x10201) {
11419 			netdev_warn(bp->dev, "Module part number %s\n",
11420 				    resp->phy_vendor_partnumber);
11421 		}
11422 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
11423 			netdev_warn(bp->dev, "TX is disabled\n");
11424 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
11425 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
11426 	}
11427 }
11428 
11429 static void
11430 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
11431 {
11432 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
11433 		if (bp->hwrm_spec_code >= 0x10201)
11434 			req->auto_pause =
11435 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
11436 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
11437 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
11438 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
11439 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
11440 		req->enables |=
11441 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
11442 	} else {
11443 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
11444 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
11445 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
11446 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
11447 		req->enables |=
11448 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
11449 		if (bp->hwrm_spec_code >= 0x10201) {
11450 			req->auto_pause = req->force_pause;
11451 			req->enables |= cpu_to_le32(
11452 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
11453 		}
11454 	}
11455 }
11456 
11457 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
11458 {
11459 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
11460 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
11461 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
11462 			req->enables |=
11463 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEEDS2_MASK);
11464 			req->auto_link_speeds2_mask = cpu_to_le16(bp->link_info.advertising);
11465 		} else if (bp->link_info.advertising) {
11466 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
11467 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
11468 		}
11469 		if (bp->link_info.advertising_pam4) {
11470 			req->enables |=
11471 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
11472 			req->auto_link_pam4_speed_mask =
11473 				cpu_to_le16(bp->link_info.advertising_pam4);
11474 		}
11475 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
11476 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
11477 	} else {
11478 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
11479 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
11480 			req->force_link_speeds2 = cpu_to_le16(bp->link_info.req_link_speed);
11481 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_LINK_SPEEDS2);
11482 			netif_info(bp, link, bp->dev, "Forcing FW speed2: %d\n",
11483 				   (u32)bp->link_info.req_link_speed);
11484 		} else if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
11485 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
11486 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
11487 		} else {
11488 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
11489 		}
11490 	}
11491 
11492 	/* tell chimp that the setting takes effect immediately */
11493 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
11494 }
11495 
11496 int bnxt_hwrm_set_pause(struct bnxt *bp)
11497 {
11498 	struct hwrm_port_phy_cfg_input *req;
11499 	int rc;
11500 
11501 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
11502 	if (rc)
11503 		return rc;
11504 
11505 	bnxt_hwrm_set_pause_common(bp, req);
11506 
11507 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
11508 	    bp->link_info.force_link_chng)
11509 		bnxt_hwrm_set_link_common(bp, req);
11510 
11511 	rc = hwrm_req_send(bp, req);
11512 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
11513 		/* since changing of pause setting doesn't trigger any link
11514 		 * change event, the driver needs to update the current pause
11515 		 * result upon successfully return of the phy_cfg command
11516 		 */
11517 		bp->link_info.pause =
11518 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
11519 		bp->link_info.auto_pause_setting = 0;
11520 		if (!bp->link_info.force_link_chng)
11521 			bnxt_report_link(bp);
11522 	}
11523 	bp->link_info.force_link_chng = false;
11524 	return rc;
11525 }
11526 
11527 static void bnxt_hwrm_set_eee(struct bnxt *bp,
11528 			      struct hwrm_port_phy_cfg_input *req)
11529 {
11530 	struct ethtool_keee *eee = &bp->eee;
11531 
11532 	if (eee->eee_enabled) {
11533 		u16 eee_speeds;
11534 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
11535 
11536 		if (eee->tx_lpi_enabled)
11537 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
11538 		else
11539 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
11540 
11541 		req->flags |= cpu_to_le32(flags);
11542 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
11543 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
11544 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
11545 	} else {
11546 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
11547 	}
11548 }
11549 
11550 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
11551 {
11552 	struct hwrm_port_phy_cfg_input *req;
11553 	int rc;
11554 
11555 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
11556 	if (rc)
11557 		return rc;
11558 
11559 	if (set_pause)
11560 		bnxt_hwrm_set_pause_common(bp, req);
11561 
11562 	bnxt_hwrm_set_link_common(bp, req);
11563 
11564 	if (set_eee)
11565 		bnxt_hwrm_set_eee(bp, req);
11566 	return hwrm_req_send(bp, req);
11567 }
11568 
11569 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
11570 {
11571 	struct hwrm_port_phy_cfg_input *req;
11572 	int rc;
11573 
11574 	if (!BNXT_SINGLE_PF(bp))
11575 		return 0;
11576 
11577 	if (pci_num_vf(bp->pdev) &&
11578 	    !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
11579 		return 0;
11580 
11581 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
11582 	if (rc)
11583 		return rc;
11584 
11585 	req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
11586 	rc = hwrm_req_send(bp, req);
11587 	if (!rc) {
11588 		mutex_lock(&bp->link_lock);
11589 		/* Device is not obliged link down in certain scenarios, even
11590 		 * when forced. Setting the state unknown is consistent with
11591 		 * driver startup and will force link state to be reported
11592 		 * during subsequent open based on PORT_PHY_QCFG.
11593 		 */
11594 		bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN;
11595 		mutex_unlock(&bp->link_lock);
11596 	}
11597 	return rc;
11598 }
11599 
11600 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
11601 {
11602 #ifdef CONFIG_TEE_BNXT_FW
11603 	int rc = tee_bnxt_fw_load();
11604 
11605 	if (rc)
11606 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
11607 
11608 	return rc;
11609 #else
11610 	netdev_err(bp->dev, "OP-TEE not supported\n");
11611 	return -ENODEV;
11612 #endif
11613 }
11614 
11615 static int bnxt_try_recover_fw(struct bnxt *bp)
11616 {
11617 	if (bp->fw_health && bp->fw_health->status_reliable) {
11618 		int retry = 0, rc;
11619 		u32 sts;
11620 
11621 		do {
11622 			sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
11623 			rc = bnxt_hwrm_poll(bp);
11624 			if (!BNXT_FW_IS_BOOTING(sts) &&
11625 			    !BNXT_FW_IS_RECOVERING(sts))
11626 				break;
11627 			retry++;
11628 		} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
11629 
11630 		if (!BNXT_FW_IS_HEALTHY(sts)) {
11631 			netdev_err(bp->dev,
11632 				   "Firmware not responding, status: 0x%x\n",
11633 				   sts);
11634 			rc = -ENODEV;
11635 		}
11636 		if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
11637 			netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
11638 			return bnxt_fw_reset_via_optee(bp);
11639 		}
11640 		return rc;
11641 	}
11642 
11643 	return -ENODEV;
11644 }
11645 
11646 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset)
11647 {
11648 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
11649 
11650 	if (!BNXT_NEW_RM(bp))
11651 		return; /* no resource reservations required */
11652 
11653 	hw_resc->resv_cp_rings = 0;
11654 	hw_resc->resv_stat_ctxs = 0;
11655 	hw_resc->resv_irqs = 0;
11656 	hw_resc->resv_tx_rings = 0;
11657 	hw_resc->resv_rx_rings = 0;
11658 	hw_resc->resv_hw_ring_grps = 0;
11659 	hw_resc->resv_vnics = 0;
11660 	hw_resc->resv_rsscos_ctxs = 0;
11661 	if (!fw_reset) {
11662 		bp->tx_nr_rings = 0;
11663 		bp->rx_nr_rings = 0;
11664 	}
11665 }
11666 
11667 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset)
11668 {
11669 	int rc;
11670 
11671 	if (!BNXT_NEW_RM(bp))
11672 		return 0; /* no resource reservations required */
11673 
11674 	rc = bnxt_hwrm_func_resc_qcaps(bp, true);
11675 	if (rc)
11676 		netdev_err(bp->dev, "resc_qcaps failed\n");
11677 
11678 	bnxt_clear_reservations(bp, fw_reset);
11679 
11680 	return rc;
11681 }
11682 
11683 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
11684 {
11685 	struct hwrm_func_drv_if_change_output *resp;
11686 	struct hwrm_func_drv_if_change_input *req;
11687 	bool fw_reset = !bp->irq_tbl;
11688 	bool resc_reinit = false;
11689 	int rc, retry = 0;
11690 	u32 flags = 0;
11691 
11692 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
11693 		return 0;
11694 
11695 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE);
11696 	if (rc)
11697 		return rc;
11698 
11699 	if (up)
11700 		req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
11701 	resp = hwrm_req_hold(bp, req);
11702 
11703 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
11704 	while (retry < BNXT_FW_IF_RETRY) {
11705 		rc = hwrm_req_send(bp, req);
11706 		if (rc != -EAGAIN)
11707 			break;
11708 
11709 		msleep(50);
11710 		retry++;
11711 	}
11712 
11713 	if (rc == -EAGAIN) {
11714 		hwrm_req_drop(bp, req);
11715 		return rc;
11716 	} else if (!rc) {
11717 		flags = le32_to_cpu(resp->flags);
11718 	} else if (up) {
11719 		rc = bnxt_try_recover_fw(bp);
11720 		fw_reset = true;
11721 	}
11722 	hwrm_req_drop(bp, req);
11723 	if (rc)
11724 		return rc;
11725 
11726 	if (!up) {
11727 		bnxt_inv_fw_health_reg(bp);
11728 		return 0;
11729 	}
11730 
11731 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
11732 		resc_reinit = true;
11733 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE ||
11734 	    test_bit(BNXT_STATE_FW_RESET_DET, &bp->state))
11735 		fw_reset = true;
11736 	else
11737 		bnxt_remap_fw_health_regs(bp);
11738 
11739 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
11740 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
11741 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
11742 		return -ENODEV;
11743 	}
11744 	if (resc_reinit || fw_reset) {
11745 		if (fw_reset) {
11746 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
11747 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11748 				bnxt_ulp_irq_stop(bp);
11749 			bnxt_free_ctx_mem(bp);
11750 			bnxt_dcb_free(bp);
11751 			rc = bnxt_fw_init_one(bp);
11752 			if (rc) {
11753 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
11754 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
11755 				return rc;
11756 			}
11757 			bnxt_clear_int_mode(bp);
11758 			rc = bnxt_init_int_mode(bp);
11759 			if (rc) {
11760 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
11761 				netdev_err(bp->dev, "init int mode failed\n");
11762 				return rc;
11763 			}
11764 		}
11765 		rc = bnxt_cancel_reservations(bp, fw_reset);
11766 	}
11767 	return rc;
11768 }
11769 
11770 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
11771 {
11772 	struct hwrm_port_led_qcaps_output *resp;
11773 	struct hwrm_port_led_qcaps_input *req;
11774 	struct bnxt_pf_info *pf = &bp->pf;
11775 	int rc;
11776 
11777 	bp->num_leds = 0;
11778 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
11779 		return 0;
11780 
11781 	rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS);
11782 	if (rc)
11783 		return rc;
11784 
11785 	req->port_id = cpu_to_le16(pf->port_id);
11786 	resp = hwrm_req_hold(bp, req);
11787 	rc = hwrm_req_send(bp, req);
11788 	if (rc) {
11789 		hwrm_req_drop(bp, req);
11790 		return rc;
11791 	}
11792 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
11793 		int i;
11794 
11795 		bp->num_leds = resp->num_leds;
11796 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
11797 						 bp->num_leds);
11798 		for (i = 0; i < bp->num_leds; i++) {
11799 			struct bnxt_led_info *led = &bp->leds[i];
11800 			__le16 caps = led->led_state_caps;
11801 
11802 			if (!led->led_group_id ||
11803 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
11804 				bp->num_leds = 0;
11805 				break;
11806 			}
11807 		}
11808 	}
11809 	hwrm_req_drop(bp, req);
11810 	return 0;
11811 }
11812 
11813 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
11814 {
11815 	struct hwrm_wol_filter_alloc_output *resp;
11816 	struct hwrm_wol_filter_alloc_input *req;
11817 	int rc;
11818 
11819 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC);
11820 	if (rc)
11821 		return rc;
11822 
11823 	req->port_id = cpu_to_le16(bp->pf.port_id);
11824 	req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
11825 	req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
11826 	memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN);
11827 
11828 	resp = hwrm_req_hold(bp, req);
11829 	rc = hwrm_req_send(bp, req);
11830 	if (!rc)
11831 		bp->wol_filter_id = resp->wol_filter_id;
11832 	hwrm_req_drop(bp, req);
11833 	return rc;
11834 }
11835 
11836 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
11837 {
11838 	struct hwrm_wol_filter_free_input *req;
11839 	int rc;
11840 
11841 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE);
11842 	if (rc)
11843 		return rc;
11844 
11845 	req->port_id = cpu_to_le16(bp->pf.port_id);
11846 	req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
11847 	req->wol_filter_id = bp->wol_filter_id;
11848 
11849 	return hwrm_req_send(bp, req);
11850 }
11851 
11852 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
11853 {
11854 	struct hwrm_wol_filter_qcfg_output *resp;
11855 	struct hwrm_wol_filter_qcfg_input *req;
11856 	u16 next_handle = 0;
11857 	int rc;
11858 
11859 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG);
11860 	if (rc)
11861 		return rc;
11862 
11863 	req->port_id = cpu_to_le16(bp->pf.port_id);
11864 	req->handle = cpu_to_le16(handle);
11865 	resp = hwrm_req_hold(bp, req);
11866 	rc = hwrm_req_send(bp, req);
11867 	if (!rc) {
11868 		next_handle = le16_to_cpu(resp->next_handle);
11869 		if (next_handle != 0) {
11870 			if (resp->wol_type ==
11871 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
11872 				bp->wol = 1;
11873 				bp->wol_filter_id = resp->wol_filter_id;
11874 			}
11875 		}
11876 	}
11877 	hwrm_req_drop(bp, req);
11878 	return next_handle;
11879 }
11880 
11881 static void bnxt_get_wol_settings(struct bnxt *bp)
11882 {
11883 	u16 handle = 0;
11884 
11885 	bp->wol = 0;
11886 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
11887 		return;
11888 
11889 	do {
11890 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
11891 	} while (handle && handle != 0xffff);
11892 }
11893 
11894 static bool bnxt_eee_config_ok(struct bnxt *bp)
11895 {
11896 	struct ethtool_keee *eee = &bp->eee;
11897 	struct bnxt_link_info *link_info = &bp->link_info;
11898 
11899 	if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
11900 		return true;
11901 
11902 	if (eee->eee_enabled) {
11903 		__ETHTOOL_DECLARE_LINK_MODE_MASK(advertising);
11904 		__ETHTOOL_DECLARE_LINK_MODE_MASK(tmp);
11905 
11906 		_bnxt_fw_to_linkmode(advertising, link_info->advertising);
11907 
11908 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
11909 			eee->eee_enabled = 0;
11910 			return false;
11911 		}
11912 		if (linkmode_andnot(tmp, eee->advertised, advertising)) {
11913 			linkmode_and(eee->advertised, advertising,
11914 				     eee->supported);
11915 			return false;
11916 		}
11917 	}
11918 	return true;
11919 }
11920 
11921 static int bnxt_update_phy_setting(struct bnxt *bp)
11922 {
11923 	int rc;
11924 	bool update_link = false;
11925 	bool update_pause = false;
11926 	bool update_eee = false;
11927 	struct bnxt_link_info *link_info = &bp->link_info;
11928 
11929 	rc = bnxt_update_link(bp, true);
11930 	if (rc) {
11931 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
11932 			   rc);
11933 		return rc;
11934 	}
11935 	if (!BNXT_SINGLE_PF(bp))
11936 		return 0;
11937 
11938 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
11939 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
11940 	    link_info->req_flow_ctrl)
11941 		update_pause = true;
11942 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
11943 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
11944 		update_pause = true;
11945 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
11946 		if (BNXT_AUTO_MODE(link_info->auto_mode))
11947 			update_link = true;
11948 		if (bnxt_force_speed_updated(link_info))
11949 			update_link = true;
11950 		if (link_info->req_duplex != link_info->duplex_setting)
11951 			update_link = true;
11952 	} else {
11953 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
11954 			update_link = true;
11955 		if (bnxt_auto_speed_updated(link_info))
11956 			update_link = true;
11957 	}
11958 
11959 	/* The last close may have shutdown the link, so need to call
11960 	 * PHY_CFG to bring it back up.
11961 	 */
11962 	if (!BNXT_LINK_IS_UP(bp))
11963 		update_link = true;
11964 
11965 	if (!bnxt_eee_config_ok(bp))
11966 		update_eee = true;
11967 
11968 	if (update_link)
11969 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
11970 	else if (update_pause)
11971 		rc = bnxt_hwrm_set_pause(bp);
11972 	if (rc) {
11973 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
11974 			   rc);
11975 		return rc;
11976 	}
11977 
11978 	return rc;
11979 }
11980 
11981 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
11982 
11983 static int bnxt_reinit_after_abort(struct bnxt *bp)
11984 {
11985 	int rc;
11986 
11987 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11988 		return -EBUSY;
11989 
11990 	if (bp->dev->reg_state == NETREG_UNREGISTERED)
11991 		return -ENODEV;
11992 
11993 	rc = bnxt_fw_init_one(bp);
11994 	if (!rc) {
11995 		bnxt_clear_int_mode(bp);
11996 		rc = bnxt_init_int_mode(bp);
11997 		if (!rc) {
11998 			clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
11999 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
12000 		}
12001 	}
12002 	return rc;
12003 }
12004 
12005 static void bnxt_cfg_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr)
12006 {
12007 	struct bnxt_ntuple_filter *ntp_fltr;
12008 	struct bnxt_l2_filter *l2_fltr;
12009 
12010 	if (list_empty(&fltr->list))
12011 		return;
12012 
12013 	if (fltr->type == BNXT_FLTR_TYPE_NTUPLE) {
12014 		ntp_fltr = container_of(fltr, struct bnxt_ntuple_filter, base);
12015 		l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0];
12016 		atomic_inc(&l2_fltr->refcnt);
12017 		ntp_fltr->l2_fltr = l2_fltr;
12018 		if (bnxt_hwrm_cfa_ntuple_filter_alloc(bp, ntp_fltr)) {
12019 			bnxt_del_ntp_filter(bp, ntp_fltr);
12020 			netdev_err(bp->dev, "restoring previously configured ntuple filter id %d failed\n",
12021 				   fltr->sw_id);
12022 		}
12023 	} else if (fltr->type == BNXT_FLTR_TYPE_L2) {
12024 		l2_fltr = container_of(fltr, struct bnxt_l2_filter, base);
12025 		if (bnxt_hwrm_l2_filter_alloc(bp, l2_fltr)) {
12026 			bnxt_del_l2_filter(bp, l2_fltr);
12027 			netdev_err(bp->dev, "restoring previously configured l2 filter id %d failed\n",
12028 				   fltr->sw_id);
12029 		}
12030 	}
12031 }
12032 
12033 static void bnxt_cfg_usr_fltrs(struct bnxt *bp)
12034 {
12035 	struct bnxt_filter_base *usr_fltr, *tmp;
12036 
12037 	list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list)
12038 		bnxt_cfg_one_usr_fltr(bp, usr_fltr);
12039 }
12040 
12041 static int bnxt_set_xps_mapping(struct bnxt *bp)
12042 {
12043 	int numa_node = dev_to_node(&bp->pdev->dev);
12044 	unsigned int q_idx, map_idx, cpu, i;
12045 	const struct cpumask *cpu_mask_ptr;
12046 	int nr_cpus = num_online_cpus();
12047 	cpumask_t *q_map;
12048 	int rc = 0;
12049 
12050 	q_map = kcalloc(bp->tx_nr_rings_per_tc, sizeof(*q_map), GFP_KERNEL);
12051 	if (!q_map)
12052 		return -ENOMEM;
12053 
12054 	/* Create CPU mask for all TX queues across MQPRIO traffic classes.
12055 	 * Each TC has the same number of TX queues. The nth TX queue for each
12056 	 * TC will have the same CPU mask.
12057 	 */
12058 	for (i = 0; i < nr_cpus; i++) {
12059 		map_idx = i % bp->tx_nr_rings_per_tc;
12060 		cpu = cpumask_local_spread(i, numa_node);
12061 		cpu_mask_ptr = get_cpu_mask(cpu);
12062 		cpumask_or(&q_map[map_idx], &q_map[map_idx], cpu_mask_ptr);
12063 	}
12064 
12065 	/* Register CPU mask for each TX queue except the ones marked for XDP */
12066 	for (q_idx = 0; q_idx < bp->dev->real_num_tx_queues; q_idx++) {
12067 		map_idx = q_idx % bp->tx_nr_rings_per_tc;
12068 		rc = netif_set_xps_queue(bp->dev, &q_map[map_idx], q_idx);
12069 		if (rc) {
12070 			netdev_warn(bp->dev, "Error setting XPS for q:%d\n",
12071 				    q_idx);
12072 			break;
12073 		}
12074 	}
12075 
12076 	kfree(q_map);
12077 
12078 	return rc;
12079 }
12080 
12081 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
12082 {
12083 	int rc = 0;
12084 
12085 	netif_carrier_off(bp->dev);
12086 	if (irq_re_init) {
12087 		/* Reserve rings now if none were reserved at driver probe. */
12088 		rc = bnxt_init_dflt_ring_mode(bp);
12089 		if (rc) {
12090 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
12091 			return rc;
12092 		}
12093 	}
12094 	rc = bnxt_reserve_rings(bp, irq_re_init);
12095 	if (rc)
12096 		return rc;
12097 
12098 	rc = bnxt_alloc_mem(bp, irq_re_init);
12099 	if (rc) {
12100 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
12101 		goto open_err_free_mem;
12102 	}
12103 
12104 	if (irq_re_init) {
12105 		bnxt_init_napi(bp);
12106 		rc = bnxt_request_irq(bp);
12107 		if (rc) {
12108 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
12109 			goto open_err_irq;
12110 		}
12111 	}
12112 
12113 	rc = bnxt_init_nic(bp, irq_re_init);
12114 	if (rc) {
12115 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
12116 		goto open_err_irq;
12117 	}
12118 
12119 	bnxt_enable_napi(bp);
12120 	bnxt_debug_dev_init(bp);
12121 
12122 	if (link_re_init) {
12123 		mutex_lock(&bp->link_lock);
12124 		rc = bnxt_update_phy_setting(bp);
12125 		mutex_unlock(&bp->link_lock);
12126 		if (rc) {
12127 			netdev_warn(bp->dev, "failed to update phy settings\n");
12128 			if (BNXT_SINGLE_PF(bp)) {
12129 				bp->link_info.phy_retry = true;
12130 				bp->link_info.phy_retry_expires =
12131 					jiffies + 5 * HZ;
12132 			}
12133 		}
12134 	}
12135 
12136 	if (irq_re_init) {
12137 		udp_tunnel_nic_reset_ntf(bp->dev);
12138 		rc = bnxt_set_xps_mapping(bp);
12139 		if (rc)
12140 			netdev_warn(bp->dev, "failed to set xps mapping\n");
12141 	}
12142 
12143 	if (bp->tx_nr_rings_xdp < num_possible_cpus()) {
12144 		if (!static_key_enabled(&bnxt_xdp_locking_key))
12145 			static_branch_enable(&bnxt_xdp_locking_key);
12146 	} else if (static_key_enabled(&bnxt_xdp_locking_key)) {
12147 		static_branch_disable(&bnxt_xdp_locking_key);
12148 	}
12149 	set_bit(BNXT_STATE_OPEN, &bp->state);
12150 	bnxt_enable_int(bp);
12151 	/* Enable TX queues */
12152 	bnxt_tx_enable(bp);
12153 	mod_timer(&bp->timer, jiffies + bp->current_interval);
12154 	/* Poll link status and check for SFP+ module status */
12155 	mutex_lock(&bp->link_lock);
12156 	bnxt_get_port_module_status(bp);
12157 	mutex_unlock(&bp->link_lock);
12158 
12159 	/* VF-reps may need to be re-opened after the PF is re-opened */
12160 	if (BNXT_PF(bp))
12161 		bnxt_vf_reps_open(bp);
12162 	if (bp->ptp_cfg && !(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP))
12163 		WRITE_ONCE(bp->ptp_cfg->tx_avail, BNXT_MAX_TX_TS);
12164 	bnxt_ptp_init_rtc(bp, true);
12165 	bnxt_ptp_cfg_tstamp_filters(bp);
12166 	if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp))
12167 		bnxt_hwrm_realloc_rss_ctx_vnic(bp);
12168 	bnxt_cfg_usr_fltrs(bp);
12169 	return 0;
12170 
12171 open_err_irq:
12172 	bnxt_del_napi(bp);
12173 
12174 open_err_free_mem:
12175 	bnxt_free_skbs(bp);
12176 	bnxt_free_irq(bp);
12177 	bnxt_free_mem(bp, true);
12178 	return rc;
12179 }
12180 
12181 /* rtnl_lock held */
12182 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
12183 {
12184 	int rc = 0;
12185 
12186 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
12187 		rc = -EIO;
12188 	if (!rc)
12189 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
12190 	if (rc) {
12191 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
12192 		dev_close(bp->dev);
12193 	}
12194 	return rc;
12195 }
12196 
12197 /* rtnl_lock held, open the NIC half way by allocating all resources, but
12198  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
12199  * self tests.
12200  */
12201 int bnxt_half_open_nic(struct bnxt *bp)
12202 {
12203 	int rc = 0;
12204 
12205 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
12206 		netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n");
12207 		rc = -ENODEV;
12208 		goto half_open_err;
12209 	}
12210 
12211 	rc = bnxt_alloc_mem(bp, true);
12212 	if (rc) {
12213 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
12214 		goto half_open_err;
12215 	}
12216 	bnxt_init_napi(bp);
12217 	set_bit(BNXT_STATE_HALF_OPEN, &bp->state);
12218 	rc = bnxt_init_nic(bp, true);
12219 	if (rc) {
12220 		clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
12221 		bnxt_del_napi(bp);
12222 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
12223 		goto half_open_err;
12224 	}
12225 	return 0;
12226 
12227 half_open_err:
12228 	bnxt_free_skbs(bp);
12229 	bnxt_free_mem(bp, true);
12230 	dev_close(bp->dev);
12231 	return rc;
12232 }
12233 
12234 /* rtnl_lock held, this call can only be made after a previous successful
12235  * call to bnxt_half_open_nic().
12236  */
12237 void bnxt_half_close_nic(struct bnxt *bp)
12238 {
12239 	bnxt_hwrm_resource_free(bp, false, true);
12240 	bnxt_del_napi(bp);
12241 	bnxt_free_skbs(bp);
12242 	bnxt_free_mem(bp, true);
12243 	clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
12244 }
12245 
12246 void bnxt_reenable_sriov(struct bnxt *bp)
12247 {
12248 	if (BNXT_PF(bp)) {
12249 		struct bnxt_pf_info *pf = &bp->pf;
12250 		int n = pf->active_vfs;
12251 
12252 		if (n)
12253 			bnxt_cfg_hw_sriov(bp, &n, true);
12254 	}
12255 }
12256 
12257 static int bnxt_open(struct net_device *dev)
12258 {
12259 	struct bnxt *bp = netdev_priv(dev);
12260 	int rc;
12261 
12262 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
12263 		rc = bnxt_reinit_after_abort(bp);
12264 		if (rc) {
12265 			if (rc == -EBUSY)
12266 				netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
12267 			else
12268 				netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
12269 			return -ENODEV;
12270 		}
12271 	}
12272 
12273 	rc = bnxt_hwrm_if_change(bp, true);
12274 	if (rc)
12275 		return rc;
12276 
12277 	rc = __bnxt_open_nic(bp, true, true);
12278 	if (rc) {
12279 		bnxt_hwrm_if_change(bp, false);
12280 	} else {
12281 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
12282 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
12283 				bnxt_queue_sp_work(bp,
12284 						   BNXT_RESTART_ULP_SP_EVENT);
12285 		}
12286 	}
12287 
12288 	return rc;
12289 }
12290 
12291 static bool bnxt_drv_busy(struct bnxt *bp)
12292 {
12293 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
12294 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
12295 }
12296 
12297 static void bnxt_get_ring_stats(struct bnxt *bp,
12298 				struct rtnl_link_stats64 *stats);
12299 
12300 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
12301 			     bool link_re_init)
12302 {
12303 	/* Close the VF-reps before closing PF */
12304 	if (BNXT_PF(bp))
12305 		bnxt_vf_reps_close(bp);
12306 
12307 	/* Change device state to avoid TX queue wake up's */
12308 	bnxt_tx_disable(bp);
12309 
12310 	clear_bit(BNXT_STATE_OPEN, &bp->state);
12311 	smp_mb__after_atomic();
12312 	while (bnxt_drv_busy(bp))
12313 		msleep(20);
12314 
12315 	if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp))
12316 		bnxt_clear_rss_ctxs(bp);
12317 	/* Flush rings and disable interrupts */
12318 	bnxt_shutdown_nic(bp, irq_re_init);
12319 
12320 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
12321 
12322 	bnxt_debug_dev_exit(bp);
12323 	bnxt_disable_napi(bp);
12324 	del_timer_sync(&bp->timer);
12325 	bnxt_free_skbs(bp);
12326 
12327 	/* Save ring stats before shutdown */
12328 	if (bp->bnapi && irq_re_init) {
12329 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
12330 		bnxt_get_ring_err_stats(bp, &bp->ring_err_stats_prev);
12331 	}
12332 	if (irq_re_init) {
12333 		bnxt_free_irq(bp);
12334 		bnxt_del_napi(bp);
12335 	}
12336 	bnxt_free_mem(bp, irq_re_init);
12337 }
12338 
12339 void bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
12340 {
12341 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
12342 		/* If we get here, it means firmware reset is in progress
12343 		 * while we are trying to close.  We can safely proceed with
12344 		 * the close because we are holding rtnl_lock().  Some firmware
12345 		 * messages may fail as we proceed to close.  We set the
12346 		 * ABORT_ERR flag here so that the FW reset thread will later
12347 		 * abort when it gets the rtnl_lock() and sees the flag.
12348 		 */
12349 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
12350 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
12351 	}
12352 
12353 #ifdef CONFIG_BNXT_SRIOV
12354 	if (bp->sriov_cfg) {
12355 		int rc;
12356 
12357 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
12358 						      !bp->sriov_cfg,
12359 						      BNXT_SRIOV_CFG_WAIT_TMO);
12360 		if (!rc)
12361 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete, proceeding to close!\n");
12362 		else if (rc < 0)
12363 			netdev_warn(bp->dev, "SRIOV config operation interrupted, proceeding to close!\n");
12364 	}
12365 #endif
12366 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
12367 }
12368 
12369 static int bnxt_close(struct net_device *dev)
12370 {
12371 	struct bnxt *bp = netdev_priv(dev);
12372 
12373 	bnxt_close_nic(bp, true, true);
12374 	bnxt_hwrm_shutdown_link(bp);
12375 	bnxt_hwrm_if_change(bp, false);
12376 	return 0;
12377 }
12378 
12379 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
12380 				   u16 *val)
12381 {
12382 	struct hwrm_port_phy_mdio_read_output *resp;
12383 	struct hwrm_port_phy_mdio_read_input *req;
12384 	int rc;
12385 
12386 	if (bp->hwrm_spec_code < 0x10a00)
12387 		return -EOPNOTSUPP;
12388 
12389 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ);
12390 	if (rc)
12391 		return rc;
12392 
12393 	req->port_id = cpu_to_le16(bp->pf.port_id);
12394 	req->phy_addr = phy_addr;
12395 	req->reg_addr = cpu_to_le16(reg & 0x1f);
12396 	if (mdio_phy_id_is_c45(phy_addr)) {
12397 		req->cl45_mdio = 1;
12398 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
12399 		req->dev_addr = mdio_phy_id_devad(phy_addr);
12400 		req->reg_addr = cpu_to_le16(reg);
12401 	}
12402 
12403 	resp = hwrm_req_hold(bp, req);
12404 	rc = hwrm_req_send(bp, req);
12405 	if (!rc)
12406 		*val = le16_to_cpu(resp->reg_data);
12407 	hwrm_req_drop(bp, req);
12408 	return rc;
12409 }
12410 
12411 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
12412 				    u16 val)
12413 {
12414 	struct hwrm_port_phy_mdio_write_input *req;
12415 	int rc;
12416 
12417 	if (bp->hwrm_spec_code < 0x10a00)
12418 		return -EOPNOTSUPP;
12419 
12420 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE);
12421 	if (rc)
12422 		return rc;
12423 
12424 	req->port_id = cpu_to_le16(bp->pf.port_id);
12425 	req->phy_addr = phy_addr;
12426 	req->reg_addr = cpu_to_le16(reg & 0x1f);
12427 	if (mdio_phy_id_is_c45(phy_addr)) {
12428 		req->cl45_mdio = 1;
12429 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
12430 		req->dev_addr = mdio_phy_id_devad(phy_addr);
12431 		req->reg_addr = cpu_to_le16(reg);
12432 	}
12433 	req->reg_data = cpu_to_le16(val);
12434 
12435 	return hwrm_req_send(bp, req);
12436 }
12437 
12438 /* rtnl_lock held */
12439 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12440 {
12441 	struct mii_ioctl_data *mdio = if_mii(ifr);
12442 	struct bnxt *bp = netdev_priv(dev);
12443 	int rc;
12444 
12445 	switch (cmd) {
12446 	case SIOCGMIIPHY:
12447 		mdio->phy_id = bp->link_info.phy_addr;
12448 
12449 		fallthrough;
12450 	case SIOCGMIIREG: {
12451 		u16 mii_regval = 0;
12452 
12453 		if (!netif_running(dev))
12454 			return -EAGAIN;
12455 
12456 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
12457 					     &mii_regval);
12458 		mdio->val_out = mii_regval;
12459 		return rc;
12460 	}
12461 
12462 	case SIOCSMIIREG:
12463 		if (!netif_running(dev))
12464 			return -EAGAIN;
12465 
12466 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
12467 						mdio->val_in);
12468 
12469 	case SIOCSHWTSTAMP:
12470 		return bnxt_hwtstamp_set(dev, ifr);
12471 
12472 	case SIOCGHWTSTAMP:
12473 		return bnxt_hwtstamp_get(dev, ifr);
12474 
12475 	default:
12476 		/* do nothing */
12477 		break;
12478 	}
12479 	return -EOPNOTSUPP;
12480 }
12481 
12482 static void bnxt_get_ring_stats(struct bnxt *bp,
12483 				struct rtnl_link_stats64 *stats)
12484 {
12485 	int i;
12486 
12487 	for (i = 0; i < bp->cp_nr_rings; i++) {
12488 		struct bnxt_napi *bnapi = bp->bnapi[i];
12489 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
12490 		u64 *sw = cpr->stats.sw_stats;
12491 
12492 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
12493 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
12494 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
12495 
12496 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
12497 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
12498 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
12499 
12500 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
12501 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
12502 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
12503 
12504 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
12505 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
12506 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
12507 
12508 		stats->rx_missed_errors +=
12509 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
12510 
12511 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
12512 
12513 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
12514 
12515 		stats->rx_dropped +=
12516 			cpr->sw_stats->rx.rx_netpoll_discards +
12517 			cpr->sw_stats->rx.rx_oom_discards;
12518 	}
12519 }
12520 
12521 static void bnxt_add_prev_stats(struct bnxt *bp,
12522 				struct rtnl_link_stats64 *stats)
12523 {
12524 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
12525 
12526 	stats->rx_packets += prev_stats->rx_packets;
12527 	stats->tx_packets += prev_stats->tx_packets;
12528 	stats->rx_bytes += prev_stats->rx_bytes;
12529 	stats->tx_bytes += prev_stats->tx_bytes;
12530 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
12531 	stats->multicast += prev_stats->multicast;
12532 	stats->rx_dropped += prev_stats->rx_dropped;
12533 	stats->tx_dropped += prev_stats->tx_dropped;
12534 }
12535 
12536 static void
12537 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
12538 {
12539 	struct bnxt *bp = netdev_priv(dev);
12540 
12541 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
12542 	/* Make sure bnxt_close_nic() sees that we are reading stats before
12543 	 * we check the BNXT_STATE_OPEN flag.
12544 	 */
12545 	smp_mb__after_atomic();
12546 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
12547 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
12548 		*stats = bp->net_stats_prev;
12549 		return;
12550 	}
12551 
12552 	bnxt_get_ring_stats(bp, stats);
12553 	bnxt_add_prev_stats(bp, stats);
12554 
12555 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
12556 		u64 *rx = bp->port_stats.sw_stats;
12557 		u64 *tx = bp->port_stats.sw_stats +
12558 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
12559 
12560 		stats->rx_crc_errors =
12561 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
12562 		stats->rx_frame_errors =
12563 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
12564 		stats->rx_length_errors =
12565 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
12566 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
12567 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
12568 		stats->rx_errors =
12569 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
12570 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
12571 		stats->collisions =
12572 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
12573 		stats->tx_fifo_errors =
12574 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
12575 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
12576 	}
12577 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
12578 }
12579 
12580 static void bnxt_get_one_ring_err_stats(struct bnxt *bp,
12581 					struct bnxt_total_ring_err_stats *stats,
12582 					struct bnxt_cp_ring_info *cpr)
12583 {
12584 	struct bnxt_sw_stats *sw_stats = cpr->sw_stats;
12585 	u64 *hw_stats = cpr->stats.sw_stats;
12586 
12587 	stats->rx_total_l4_csum_errors += sw_stats->rx.rx_l4_csum_errors;
12588 	stats->rx_total_resets += sw_stats->rx.rx_resets;
12589 	stats->rx_total_buf_errors += sw_stats->rx.rx_buf_errors;
12590 	stats->rx_total_oom_discards += sw_stats->rx.rx_oom_discards;
12591 	stats->rx_total_netpoll_discards += sw_stats->rx.rx_netpoll_discards;
12592 	stats->rx_total_ring_discards +=
12593 		BNXT_GET_RING_STATS64(hw_stats, rx_discard_pkts);
12594 	stats->tx_total_resets += sw_stats->tx.tx_resets;
12595 	stats->tx_total_ring_discards +=
12596 		BNXT_GET_RING_STATS64(hw_stats, tx_discard_pkts);
12597 	stats->total_missed_irqs += sw_stats->cmn.missed_irqs;
12598 }
12599 
12600 void bnxt_get_ring_err_stats(struct bnxt *bp,
12601 			     struct bnxt_total_ring_err_stats *stats)
12602 {
12603 	int i;
12604 
12605 	for (i = 0; i < bp->cp_nr_rings; i++)
12606 		bnxt_get_one_ring_err_stats(bp, stats, &bp->bnapi[i]->cp_ring);
12607 }
12608 
12609 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
12610 {
12611 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
12612 	struct net_device *dev = bp->dev;
12613 	struct netdev_hw_addr *ha;
12614 	u8 *haddr;
12615 	int mc_count = 0;
12616 	bool update = false;
12617 	int off = 0;
12618 
12619 	netdev_for_each_mc_addr(ha, dev) {
12620 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
12621 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
12622 			vnic->mc_list_count = 0;
12623 			return false;
12624 		}
12625 		haddr = ha->addr;
12626 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
12627 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
12628 			update = true;
12629 		}
12630 		off += ETH_ALEN;
12631 		mc_count++;
12632 	}
12633 	if (mc_count)
12634 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
12635 
12636 	if (mc_count != vnic->mc_list_count) {
12637 		vnic->mc_list_count = mc_count;
12638 		update = true;
12639 	}
12640 	return update;
12641 }
12642 
12643 static bool bnxt_uc_list_updated(struct bnxt *bp)
12644 {
12645 	struct net_device *dev = bp->dev;
12646 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
12647 	struct netdev_hw_addr *ha;
12648 	int off = 0;
12649 
12650 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
12651 		return true;
12652 
12653 	netdev_for_each_uc_addr(ha, dev) {
12654 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
12655 			return true;
12656 
12657 		off += ETH_ALEN;
12658 	}
12659 	return false;
12660 }
12661 
12662 static void bnxt_set_rx_mode(struct net_device *dev)
12663 {
12664 	struct bnxt *bp = netdev_priv(dev);
12665 	struct bnxt_vnic_info *vnic;
12666 	bool mc_update = false;
12667 	bool uc_update;
12668 	u32 mask;
12669 
12670 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
12671 		return;
12672 
12673 	vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
12674 	mask = vnic->rx_mask;
12675 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
12676 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
12677 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
12678 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
12679 
12680 	if (dev->flags & IFF_PROMISC)
12681 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
12682 
12683 	uc_update = bnxt_uc_list_updated(bp);
12684 
12685 	if (dev->flags & IFF_BROADCAST)
12686 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
12687 	if (dev->flags & IFF_ALLMULTI) {
12688 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
12689 		vnic->mc_list_count = 0;
12690 	} else if (dev->flags & IFF_MULTICAST) {
12691 		mc_update = bnxt_mc_list_updated(bp, &mask);
12692 	}
12693 
12694 	if (mask != vnic->rx_mask || uc_update || mc_update) {
12695 		vnic->rx_mask = mask;
12696 
12697 		bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT);
12698 	}
12699 }
12700 
12701 static int bnxt_cfg_rx_mode(struct bnxt *bp)
12702 {
12703 	struct net_device *dev = bp->dev;
12704 	struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
12705 	struct netdev_hw_addr *ha;
12706 	int i, off = 0, rc;
12707 	bool uc_update;
12708 
12709 	netif_addr_lock_bh(dev);
12710 	uc_update = bnxt_uc_list_updated(bp);
12711 	netif_addr_unlock_bh(dev);
12712 
12713 	if (!uc_update)
12714 		goto skip_uc;
12715 
12716 	for (i = 1; i < vnic->uc_filter_count; i++) {
12717 		struct bnxt_l2_filter *fltr = vnic->l2_filters[i];
12718 
12719 		bnxt_hwrm_l2_filter_free(bp, fltr);
12720 		bnxt_del_l2_filter(bp, fltr);
12721 	}
12722 
12723 	vnic->uc_filter_count = 1;
12724 
12725 	netif_addr_lock_bh(dev);
12726 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
12727 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
12728 	} else {
12729 		netdev_for_each_uc_addr(ha, dev) {
12730 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
12731 			off += ETH_ALEN;
12732 			vnic->uc_filter_count++;
12733 		}
12734 	}
12735 	netif_addr_unlock_bh(dev);
12736 
12737 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
12738 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
12739 		if (rc) {
12740 			if (BNXT_VF(bp) && rc == -ENODEV) {
12741 				if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
12742 					netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n");
12743 				else
12744 					netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n");
12745 				rc = 0;
12746 			} else {
12747 				netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
12748 			}
12749 			vnic->uc_filter_count = i;
12750 			return rc;
12751 		}
12752 	}
12753 	if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
12754 		netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n");
12755 
12756 skip_uc:
12757 	if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
12758 	    !bnxt_promisc_ok(bp))
12759 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
12760 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
12761 	if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) {
12762 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
12763 			    rc);
12764 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
12765 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
12766 		vnic->mc_list_count = 0;
12767 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
12768 	}
12769 	if (rc)
12770 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
12771 			   rc);
12772 
12773 	return rc;
12774 }
12775 
12776 static bool bnxt_can_reserve_rings(struct bnxt *bp)
12777 {
12778 #ifdef CONFIG_BNXT_SRIOV
12779 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
12780 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
12781 
12782 		/* No minimum rings were provisioned by the PF.  Don't
12783 		 * reserve rings by default when device is down.
12784 		 */
12785 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
12786 			return true;
12787 
12788 		if (!netif_running(bp->dev))
12789 			return false;
12790 	}
12791 #endif
12792 	return true;
12793 }
12794 
12795 /* If the chip and firmware supports RFS */
12796 static bool bnxt_rfs_supported(struct bnxt *bp)
12797 {
12798 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
12799 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
12800 			return true;
12801 		return false;
12802 	}
12803 	/* 212 firmware is broken for aRFS */
12804 	if (BNXT_FW_MAJ(bp) == 212)
12805 		return false;
12806 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
12807 		return true;
12808 	if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP)
12809 		return true;
12810 	return false;
12811 }
12812 
12813 /* If runtime conditions support RFS */
12814 bool bnxt_rfs_capable(struct bnxt *bp, bool new_rss_ctx)
12815 {
12816 	struct bnxt_hw_rings hwr = {0};
12817 	int max_vnics, max_rss_ctxs;
12818 
12819 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
12820 	    !BNXT_SUPPORTS_NTUPLE_VNIC(bp))
12821 		return bnxt_rfs_supported(bp);
12822 
12823 	if (!bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings)
12824 		return false;
12825 
12826 	hwr.grp = bp->rx_nr_rings;
12827 	hwr.vnic = bnxt_get_total_vnics(bp, bp->rx_nr_rings);
12828 	if (new_rss_ctx)
12829 		hwr.vnic++;
12830 	hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr);
12831 	max_vnics = bnxt_get_max_func_vnics(bp);
12832 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
12833 
12834 	if (hwr.vnic > max_vnics || hwr.rss_ctx > max_rss_ctxs) {
12835 		if (bp->rx_nr_rings > 1)
12836 			netdev_warn(bp->dev,
12837 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
12838 				    min(max_rss_ctxs - 1, max_vnics - 1));
12839 		return false;
12840 	}
12841 
12842 	if (!BNXT_NEW_RM(bp))
12843 		return true;
12844 
12845 	/* Do not reduce VNIC and RSS ctx reservations.  There is a FW
12846 	 * issue that will mess up the default VNIC if we reduce the
12847 	 * reservations.
12848 	 */
12849 	if (hwr.vnic <= bp->hw_resc.resv_vnics &&
12850 	    hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs)
12851 		return true;
12852 
12853 	bnxt_hwrm_reserve_rings(bp, &hwr);
12854 	if (hwr.vnic <= bp->hw_resc.resv_vnics &&
12855 	    hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs)
12856 		return true;
12857 
12858 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
12859 	hwr.vnic = 1;
12860 	hwr.rss_ctx = 0;
12861 	bnxt_hwrm_reserve_rings(bp, &hwr);
12862 	return false;
12863 }
12864 
12865 static netdev_features_t bnxt_fix_features(struct net_device *dev,
12866 					   netdev_features_t features)
12867 {
12868 	struct bnxt *bp = netdev_priv(dev);
12869 	netdev_features_t vlan_features;
12870 
12871 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp, false))
12872 		features &= ~NETIF_F_NTUPLE;
12873 
12874 	if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog)
12875 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12876 
12877 	if (!(features & NETIF_F_GRO))
12878 		features &= ~NETIF_F_GRO_HW;
12879 
12880 	if (features & NETIF_F_GRO_HW)
12881 		features &= ~NETIF_F_LRO;
12882 
12883 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
12884 	 * turned on or off together.
12885 	 */
12886 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
12887 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
12888 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
12889 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
12890 		else if (vlan_features)
12891 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
12892 	}
12893 #ifdef CONFIG_BNXT_SRIOV
12894 	if (BNXT_VF(bp) && bp->vf.vlan)
12895 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
12896 #endif
12897 	return features;
12898 }
12899 
12900 static int bnxt_reinit_features(struct bnxt *bp, bool irq_re_init,
12901 				bool link_re_init, u32 flags, bool update_tpa)
12902 {
12903 	bnxt_close_nic(bp, irq_re_init, link_re_init);
12904 	bp->flags = flags;
12905 	if (update_tpa)
12906 		bnxt_set_ring_params(bp);
12907 	return bnxt_open_nic(bp, irq_re_init, link_re_init);
12908 }
12909 
12910 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
12911 {
12912 	bool update_tpa = false, update_ntuple = false;
12913 	struct bnxt *bp = netdev_priv(dev);
12914 	u32 flags = bp->flags;
12915 	u32 changes;
12916 	int rc = 0;
12917 	bool re_init = false;
12918 
12919 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
12920 	if (features & NETIF_F_GRO_HW)
12921 		flags |= BNXT_FLAG_GRO;
12922 	else if (features & NETIF_F_LRO)
12923 		flags |= BNXT_FLAG_LRO;
12924 
12925 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
12926 		flags &= ~BNXT_FLAG_TPA;
12927 
12928 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
12929 		flags |= BNXT_FLAG_STRIP_VLAN;
12930 
12931 	if (features & NETIF_F_NTUPLE)
12932 		flags |= BNXT_FLAG_RFS;
12933 	else
12934 		bnxt_clear_usr_fltrs(bp, true);
12935 
12936 	changes = flags ^ bp->flags;
12937 	if (changes & BNXT_FLAG_TPA) {
12938 		update_tpa = true;
12939 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
12940 		    (flags & BNXT_FLAG_TPA) == 0 ||
12941 		    (bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
12942 			re_init = true;
12943 	}
12944 
12945 	if (changes & ~BNXT_FLAG_TPA)
12946 		re_init = true;
12947 
12948 	if (changes & BNXT_FLAG_RFS)
12949 		update_ntuple = true;
12950 
12951 	if (flags != bp->flags) {
12952 		u32 old_flags = bp->flags;
12953 
12954 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
12955 			bp->flags = flags;
12956 			if (update_tpa)
12957 				bnxt_set_ring_params(bp);
12958 			return rc;
12959 		}
12960 
12961 		if (update_ntuple)
12962 			return bnxt_reinit_features(bp, true, false, flags, update_tpa);
12963 
12964 		if (re_init)
12965 			return bnxt_reinit_features(bp, false, false, flags, update_tpa);
12966 
12967 		if (update_tpa) {
12968 			bp->flags = flags;
12969 			rc = bnxt_set_tpa(bp,
12970 					  (flags & BNXT_FLAG_TPA) ?
12971 					  true : false);
12972 			if (rc)
12973 				bp->flags = old_flags;
12974 		}
12975 	}
12976 	return rc;
12977 }
12978 
12979 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
12980 			      u8 **nextp)
12981 {
12982 	struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
12983 	struct hop_jumbo_hdr *jhdr;
12984 	int hdr_count = 0;
12985 	u8 *nexthdr;
12986 	int start;
12987 
12988 	/* Check that there are at most 2 IPv6 extension headers, no
12989 	 * fragment header, and each is <= 64 bytes.
12990 	 */
12991 	start = nw_off + sizeof(*ip6h);
12992 	nexthdr = &ip6h->nexthdr;
12993 	while (ipv6_ext_hdr(*nexthdr)) {
12994 		struct ipv6_opt_hdr *hp;
12995 		int hdrlen;
12996 
12997 		if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
12998 		    *nexthdr == NEXTHDR_FRAGMENT)
12999 			return false;
13000 		hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
13001 					  skb_headlen(skb), NULL);
13002 		if (!hp)
13003 			return false;
13004 		if (*nexthdr == NEXTHDR_AUTH)
13005 			hdrlen = ipv6_authlen(hp);
13006 		else
13007 			hdrlen = ipv6_optlen(hp);
13008 
13009 		if (hdrlen > 64)
13010 			return false;
13011 
13012 		/* The ext header may be a hop-by-hop header inserted for
13013 		 * big TCP purposes. This will be removed before sending
13014 		 * from NIC, so do not count it.
13015 		 */
13016 		if (*nexthdr == NEXTHDR_HOP) {
13017 			if (likely(skb->len <= GRO_LEGACY_MAX_SIZE))
13018 				goto increment_hdr;
13019 
13020 			jhdr = (struct hop_jumbo_hdr *)hp;
13021 			if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 ||
13022 			    jhdr->nexthdr != IPPROTO_TCP)
13023 				goto increment_hdr;
13024 
13025 			goto next_hdr;
13026 		}
13027 increment_hdr:
13028 		hdr_count++;
13029 next_hdr:
13030 		nexthdr = &hp->nexthdr;
13031 		start += hdrlen;
13032 	}
13033 	if (nextp) {
13034 		/* Caller will check inner protocol */
13035 		if (skb->encapsulation) {
13036 			*nextp = nexthdr;
13037 			return true;
13038 		}
13039 		*nextp = NULL;
13040 	}
13041 	/* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
13042 	return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
13043 }
13044 
13045 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
13046 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
13047 {
13048 	struct udphdr *uh = udp_hdr(skb);
13049 	__be16 udp_port = uh->dest;
13050 
13051 	if (udp_port != bp->vxlan_port && udp_port != bp->nge_port &&
13052 	    udp_port != bp->vxlan_gpe_port)
13053 		return false;
13054 	if (skb->inner_protocol == htons(ETH_P_TEB)) {
13055 		struct ethhdr *eh = inner_eth_hdr(skb);
13056 
13057 		switch (eh->h_proto) {
13058 		case htons(ETH_P_IP):
13059 			return true;
13060 		case htons(ETH_P_IPV6):
13061 			return bnxt_exthdr_check(bp, skb,
13062 						 skb_inner_network_offset(skb),
13063 						 NULL);
13064 		}
13065 	} else if (skb->inner_protocol == htons(ETH_P_IP)) {
13066 		return true;
13067 	} else if (skb->inner_protocol == htons(ETH_P_IPV6)) {
13068 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
13069 					 NULL);
13070 	}
13071 	return false;
13072 }
13073 
13074 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
13075 {
13076 	switch (l4_proto) {
13077 	case IPPROTO_UDP:
13078 		return bnxt_udp_tunl_check(bp, skb);
13079 	case IPPROTO_IPIP:
13080 		return true;
13081 	case IPPROTO_GRE: {
13082 		switch (skb->inner_protocol) {
13083 		default:
13084 			return false;
13085 		case htons(ETH_P_IP):
13086 			return true;
13087 		case htons(ETH_P_IPV6):
13088 			fallthrough;
13089 		}
13090 	}
13091 	case IPPROTO_IPV6:
13092 		/* Check ext headers of inner ipv6 */
13093 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
13094 					 NULL);
13095 	}
13096 	return false;
13097 }
13098 
13099 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
13100 					     struct net_device *dev,
13101 					     netdev_features_t features)
13102 {
13103 	struct bnxt *bp = netdev_priv(dev);
13104 	u8 *l4_proto;
13105 
13106 	features = vlan_features_check(skb, features);
13107 	switch (vlan_get_protocol(skb)) {
13108 	case htons(ETH_P_IP):
13109 		if (!skb->encapsulation)
13110 			return features;
13111 		l4_proto = &ip_hdr(skb)->protocol;
13112 		if (bnxt_tunl_check(bp, skb, *l4_proto))
13113 			return features;
13114 		break;
13115 	case htons(ETH_P_IPV6):
13116 		if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
13117 				       &l4_proto))
13118 			break;
13119 		if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
13120 			return features;
13121 		break;
13122 	}
13123 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
13124 }
13125 
13126 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
13127 			 u32 *reg_buf)
13128 {
13129 	struct hwrm_dbg_read_direct_output *resp;
13130 	struct hwrm_dbg_read_direct_input *req;
13131 	__le32 *dbg_reg_buf;
13132 	dma_addr_t mapping;
13133 	int rc, i;
13134 
13135 	rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT);
13136 	if (rc)
13137 		return rc;
13138 
13139 	dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4,
13140 					 &mapping);
13141 	if (!dbg_reg_buf) {
13142 		rc = -ENOMEM;
13143 		goto dbg_rd_reg_exit;
13144 	}
13145 
13146 	req->host_dest_addr = cpu_to_le64(mapping);
13147 
13148 	resp = hwrm_req_hold(bp, req);
13149 	req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
13150 	req->read_len32 = cpu_to_le32(num_words);
13151 
13152 	rc = hwrm_req_send(bp, req);
13153 	if (rc || resp->error_code) {
13154 		rc = -EIO;
13155 		goto dbg_rd_reg_exit;
13156 	}
13157 	for (i = 0; i < num_words; i++)
13158 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
13159 
13160 dbg_rd_reg_exit:
13161 	hwrm_req_drop(bp, req);
13162 	return rc;
13163 }
13164 
13165 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
13166 				       u32 ring_id, u32 *prod, u32 *cons)
13167 {
13168 	struct hwrm_dbg_ring_info_get_output *resp;
13169 	struct hwrm_dbg_ring_info_get_input *req;
13170 	int rc;
13171 
13172 	rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET);
13173 	if (rc)
13174 		return rc;
13175 
13176 	req->ring_type = ring_type;
13177 	req->fw_ring_id = cpu_to_le32(ring_id);
13178 	resp = hwrm_req_hold(bp, req);
13179 	rc = hwrm_req_send(bp, req);
13180 	if (!rc) {
13181 		*prod = le32_to_cpu(resp->producer_index);
13182 		*cons = le32_to_cpu(resp->consumer_index);
13183 	}
13184 	hwrm_req_drop(bp, req);
13185 	return rc;
13186 }
13187 
13188 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
13189 {
13190 	struct bnxt_tx_ring_info *txr;
13191 	int i = bnapi->index, j;
13192 
13193 	bnxt_for_each_napi_tx(j, bnapi, txr)
13194 		netdev_info(bnapi->bp->dev, "[%d.%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
13195 			    i, j, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
13196 			    txr->tx_cons);
13197 }
13198 
13199 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
13200 {
13201 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
13202 	int i = bnapi->index;
13203 
13204 	if (!rxr)
13205 		return;
13206 
13207 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
13208 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
13209 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
13210 		    rxr->rx_sw_agg_prod);
13211 }
13212 
13213 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
13214 {
13215 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
13216 	int i = bnapi->index;
13217 
13218 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
13219 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
13220 }
13221 
13222 static void bnxt_dbg_dump_states(struct bnxt *bp)
13223 {
13224 	int i;
13225 	struct bnxt_napi *bnapi;
13226 
13227 	for (i = 0; i < bp->cp_nr_rings; i++) {
13228 		bnapi = bp->bnapi[i];
13229 		if (netif_msg_drv(bp)) {
13230 			bnxt_dump_tx_sw_state(bnapi);
13231 			bnxt_dump_rx_sw_state(bnapi);
13232 			bnxt_dump_cp_sw_state(bnapi);
13233 		}
13234 	}
13235 }
13236 
13237 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
13238 {
13239 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
13240 	struct hwrm_ring_reset_input *req;
13241 	struct bnxt_napi *bnapi = rxr->bnapi;
13242 	struct bnxt_cp_ring_info *cpr;
13243 	u16 cp_ring_id;
13244 	int rc;
13245 
13246 	rc = hwrm_req_init(bp, req, HWRM_RING_RESET);
13247 	if (rc)
13248 		return rc;
13249 
13250 	cpr = &bnapi->cp_ring;
13251 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
13252 	req->cmpl_ring = cpu_to_le16(cp_ring_id);
13253 	req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
13254 	req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
13255 	return hwrm_req_send_silent(bp, req);
13256 }
13257 
13258 static void bnxt_reset_task(struct bnxt *bp, bool silent)
13259 {
13260 	if (!silent)
13261 		bnxt_dbg_dump_states(bp);
13262 	if (netif_running(bp->dev)) {
13263 		bnxt_close_nic(bp, !silent, false);
13264 		bnxt_open_nic(bp, !silent, false);
13265 	}
13266 }
13267 
13268 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
13269 {
13270 	struct bnxt *bp = netdev_priv(dev);
13271 
13272 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
13273 	bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT);
13274 }
13275 
13276 static void bnxt_fw_health_check(struct bnxt *bp)
13277 {
13278 	struct bnxt_fw_health *fw_health = bp->fw_health;
13279 	struct pci_dev *pdev = bp->pdev;
13280 	u32 val;
13281 
13282 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
13283 		return;
13284 
13285 	/* Make sure it is enabled before checking the tmr_counter. */
13286 	smp_rmb();
13287 	if (fw_health->tmr_counter) {
13288 		fw_health->tmr_counter--;
13289 		return;
13290 	}
13291 
13292 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
13293 	if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) {
13294 		fw_health->arrests++;
13295 		goto fw_reset;
13296 	}
13297 
13298 	fw_health->last_fw_heartbeat = val;
13299 
13300 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
13301 	if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) {
13302 		fw_health->discoveries++;
13303 		goto fw_reset;
13304 	}
13305 
13306 	fw_health->tmr_counter = fw_health->tmr_multiplier;
13307 	return;
13308 
13309 fw_reset:
13310 	bnxt_queue_sp_work(bp, BNXT_FW_EXCEPTION_SP_EVENT);
13311 }
13312 
13313 static void bnxt_timer(struct timer_list *t)
13314 {
13315 	struct bnxt *bp = from_timer(bp, t, timer);
13316 	struct net_device *dev = bp->dev;
13317 
13318 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
13319 		return;
13320 
13321 	if (atomic_read(&bp->intr_sem) != 0)
13322 		goto bnxt_restart_timer;
13323 
13324 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
13325 		bnxt_fw_health_check(bp);
13326 
13327 	if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks)
13328 		bnxt_queue_sp_work(bp, BNXT_PERIODIC_STATS_SP_EVENT);
13329 
13330 	if (bnxt_tc_flower_enabled(bp))
13331 		bnxt_queue_sp_work(bp, BNXT_FLOW_STATS_SP_EVENT);
13332 
13333 #ifdef CONFIG_RFS_ACCEL
13334 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count)
13335 		bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT);
13336 #endif /*CONFIG_RFS_ACCEL*/
13337 
13338 	if (bp->link_info.phy_retry) {
13339 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
13340 			bp->link_info.phy_retry = false;
13341 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
13342 		} else {
13343 			bnxt_queue_sp_work(bp, BNXT_UPDATE_PHY_SP_EVENT);
13344 		}
13345 	}
13346 
13347 	if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
13348 		bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT);
13349 
13350 	if ((BNXT_CHIP_P5(bp)) && !bp->chip_rev && netif_carrier_ok(dev))
13351 		bnxt_queue_sp_work(bp, BNXT_RING_COAL_NOW_SP_EVENT);
13352 
13353 bnxt_restart_timer:
13354 	mod_timer(&bp->timer, jiffies + bp->current_interval);
13355 }
13356 
13357 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
13358 {
13359 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
13360 	 * set.  If the device is being closed, bnxt_close() may be holding
13361 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
13362 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
13363 	 */
13364 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13365 	rtnl_lock();
13366 }
13367 
13368 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
13369 {
13370 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13371 	rtnl_unlock();
13372 }
13373 
13374 /* Only called from bnxt_sp_task() */
13375 static void bnxt_reset(struct bnxt *bp, bool silent)
13376 {
13377 	bnxt_rtnl_lock_sp(bp);
13378 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
13379 		bnxt_reset_task(bp, silent);
13380 	bnxt_rtnl_unlock_sp(bp);
13381 }
13382 
13383 /* Only called from bnxt_sp_task() */
13384 static void bnxt_rx_ring_reset(struct bnxt *bp)
13385 {
13386 	int i;
13387 
13388 	bnxt_rtnl_lock_sp(bp);
13389 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
13390 		bnxt_rtnl_unlock_sp(bp);
13391 		return;
13392 	}
13393 	/* Disable and flush TPA before resetting the RX ring */
13394 	if (bp->flags & BNXT_FLAG_TPA)
13395 		bnxt_set_tpa(bp, false);
13396 	for (i = 0; i < bp->rx_nr_rings; i++) {
13397 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
13398 		struct bnxt_cp_ring_info *cpr;
13399 		int rc;
13400 
13401 		if (!rxr->bnapi->in_reset)
13402 			continue;
13403 
13404 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
13405 		if (rc) {
13406 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
13407 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
13408 			else
13409 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
13410 					    rc);
13411 			bnxt_reset_task(bp, true);
13412 			break;
13413 		}
13414 		bnxt_free_one_rx_ring_skbs(bp, i);
13415 		rxr->rx_prod = 0;
13416 		rxr->rx_agg_prod = 0;
13417 		rxr->rx_sw_agg_prod = 0;
13418 		rxr->rx_next_cons = 0;
13419 		rxr->bnapi->in_reset = false;
13420 		bnxt_alloc_one_rx_ring(bp, i);
13421 		cpr = &rxr->bnapi->cp_ring;
13422 		cpr->sw_stats->rx.rx_resets++;
13423 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
13424 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
13425 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
13426 	}
13427 	if (bp->flags & BNXT_FLAG_TPA)
13428 		bnxt_set_tpa(bp, true);
13429 	bnxt_rtnl_unlock_sp(bp);
13430 }
13431 
13432 static void bnxt_fw_fatal_close(struct bnxt *bp)
13433 {
13434 	bnxt_tx_disable(bp);
13435 	bnxt_disable_napi(bp);
13436 	bnxt_disable_int_sync(bp);
13437 	bnxt_free_irq(bp);
13438 	bnxt_clear_int_mode(bp);
13439 	pci_disable_device(bp->pdev);
13440 }
13441 
13442 static void bnxt_fw_reset_close(struct bnxt *bp)
13443 {
13444 	/* When firmware is in fatal state, quiesce device and disable
13445 	 * bus master to prevent any potential bad DMAs before freeing
13446 	 * kernel memory.
13447 	 */
13448 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
13449 		u16 val = 0;
13450 
13451 		pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
13452 		if (val == 0xffff)
13453 			bp->fw_reset_min_dsecs = 0;
13454 		bnxt_fw_fatal_close(bp);
13455 	}
13456 	__bnxt_close_nic(bp, true, false);
13457 	bnxt_vf_reps_free(bp);
13458 	bnxt_clear_int_mode(bp);
13459 	bnxt_hwrm_func_drv_unrgtr(bp);
13460 	if (pci_is_enabled(bp->pdev))
13461 		pci_disable_device(bp->pdev);
13462 	bnxt_free_ctx_mem(bp);
13463 }
13464 
13465 static bool is_bnxt_fw_ok(struct bnxt *bp)
13466 {
13467 	struct bnxt_fw_health *fw_health = bp->fw_health;
13468 	bool no_heartbeat = false, has_reset = false;
13469 	u32 val;
13470 
13471 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
13472 	if (val == fw_health->last_fw_heartbeat)
13473 		no_heartbeat = true;
13474 
13475 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
13476 	if (val != fw_health->last_fw_reset_cnt)
13477 		has_reset = true;
13478 
13479 	if (!no_heartbeat && has_reset)
13480 		return true;
13481 
13482 	return false;
13483 }
13484 
13485 /* rtnl_lock is acquired before calling this function */
13486 static void bnxt_force_fw_reset(struct bnxt *bp)
13487 {
13488 	struct bnxt_fw_health *fw_health = bp->fw_health;
13489 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
13490 	u32 wait_dsecs;
13491 
13492 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
13493 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
13494 		return;
13495 
13496 	if (ptp) {
13497 		spin_lock_bh(&ptp->ptp_lock);
13498 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13499 		spin_unlock_bh(&ptp->ptp_lock);
13500 	} else {
13501 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13502 	}
13503 	bnxt_fw_reset_close(bp);
13504 	wait_dsecs = fw_health->master_func_wait_dsecs;
13505 	if (fw_health->primary) {
13506 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
13507 			wait_dsecs = 0;
13508 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
13509 	} else {
13510 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
13511 		wait_dsecs = fw_health->normal_func_wait_dsecs;
13512 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
13513 	}
13514 
13515 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
13516 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
13517 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
13518 }
13519 
13520 void bnxt_fw_exception(struct bnxt *bp)
13521 {
13522 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
13523 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
13524 	bnxt_ulp_stop(bp);
13525 	bnxt_rtnl_lock_sp(bp);
13526 	bnxt_force_fw_reset(bp);
13527 	bnxt_rtnl_unlock_sp(bp);
13528 }
13529 
13530 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
13531  * < 0 on error.
13532  */
13533 static int bnxt_get_registered_vfs(struct bnxt *bp)
13534 {
13535 #ifdef CONFIG_BNXT_SRIOV
13536 	int rc;
13537 
13538 	if (!BNXT_PF(bp))
13539 		return 0;
13540 
13541 	rc = bnxt_hwrm_func_qcfg(bp);
13542 	if (rc) {
13543 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
13544 		return rc;
13545 	}
13546 	if (bp->pf.registered_vfs)
13547 		return bp->pf.registered_vfs;
13548 	if (bp->sriov_cfg)
13549 		return 1;
13550 #endif
13551 	return 0;
13552 }
13553 
13554 void bnxt_fw_reset(struct bnxt *bp)
13555 {
13556 	bnxt_ulp_stop(bp);
13557 	bnxt_rtnl_lock_sp(bp);
13558 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
13559 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
13560 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
13561 		int n = 0, tmo;
13562 
13563 		if (ptp) {
13564 			spin_lock_bh(&ptp->ptp_lock);
13565 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13566 			spin_unlock_bh(&ptp->ptp_lock);
13567 		} else {
13568 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13569 		}
13570 		if (bp->pf.active_vfs &&
13571 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
13572 			n = bnxt_get_registered_vfs(bp);
13573 		if (n < 0) {
13574 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
13575 				   n);
13576 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13577 			dev_close(bp->dev);
13578 			goto fw_reset_exit;
13579 		} else if (n > 0) {
13580 			u16 vf_tmo_dsecs = n * 10;
13581 
13582 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
13583 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
13584 			bp->fw_reset_state =
13585 				BNXT_FW_RESET_STATE_POLL_VF;
13586 			bnxt_queue_fw_reset_work(bp, HZ / 10);
13587 			goto fw_reset_exit;
13588 		}
13589 		bnxt_fw_reset_close(bp);
13590 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
13591 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
13592 			tmo = HZ / 10;
13593 		} else {
13594 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
13595 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
13596 		}
13597 		bnxt_queue_fw_reset_work(bp, tmo);
13598 	}
13599 fw_reset_exit:
13600 	bnxt_rtnl_unlock_sp(bp);
13601 }
13602 
13603 static void bnxt_chk_missed_irq(struct bnxt *bp)
13604 {
13605 	int i;
13606 
13607 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
13608 		return;
13609 
13610 	for (i = 0; i < bp->cp_nr_rings; i++) {
13611 		struct bnxt_napi *bnapi = bp->bnapi[i];
13612 		struct bnxt_cp_ring_info *cpr;
13613 		u32 fw_ring_id;
13614 		int j;
13615 
13616 		if (!bnapi)
13617 			continue;
13618 
13619 		cpr = &bnapi->cp_ring;
13620 		for (j = 0; j < cpr->cp_ring_count; j++) {
13621 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
13622 			u32 val[2];
13623 
13624 			if (cpr2->has_more_work || !bnxt_has_work(bp, cpr2))
13625 				continue;
13626 
13627 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
13628 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
13629 				continue;
13630 			}
13631 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
13632 			bnxt_dbg_hwrm_ring_info_get(bp,
13633 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
13634 				fw_ring_id, &val[0], &val[1]);
13635 			cpr->sw_stats->cmn.missed_irqs++;
13636 		}
13637 	}
13638 }
13639 
13640 static void bnxt_cfg_ntp_filters(struct bnxt *);
13641 
13642 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
13643 {
13644 	struct bnxt_link_info *link_info = &bp->link_info;
13645 
13646 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
13647 		link_info->autoneg = BNXT_AUTONEG_SPEED;
13648 		if (bp->hwrm_spec_code >= 0x10201) {
13649 			if (link_info->auto_pause_setting &
13650 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
13651 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
13652 		} else {
13653 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
13654 		}
13655 		bnxt_set_auto_speed(link_info);
13656 	} else {
13657 		bnxt_set_force_speed(link_info);
13658 		link_info->req_duplex = link_info->duplex_setting;
13659 	}
13660 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
13661 		link_info->req_flow_ctrl =
13662 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
13663 	else
13664 		link_info->req_flow_ctrl = link_info->force_pause_setting;
13665 }
13666 
13667 static void bnxt_fw_echo_reply(struct bnxt *bp)
13668 {
13669 	struct bnxt_fw_health *fw_health = bp->fw_health;
13670 	struct hwrm_func_echo_response_input *req;
13671 	int rc;
13672 
13673 	rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE);
13674 	if (rc)
13675 		return;
13676 	req->event_data1 = cpu_to_le32(fw_health->echo_req_data1);
13677 	req->event_data2 = cpu_to_le32(fw_health->echo_req_data2);
13678 	hwrm_req_send(bp, req);
13679 }
13680 
13681 static void bnxt_ulp_restart(struct bnxt *bp)
13682 {
13683 	bnxt_ulp_stop(bp);
13684 	bnxt_ulp_start(bp, 0);
13685 }
13686 
13687 static void bnxt_sp_task(struct work_struct *work)
13688 {
13689 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
13690 
13691 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13692 	smp_mb__after_atomic();
13693 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
13694 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13695 		return;
13696 	}
13697 
13698 	if (test_and_clear_bit(BNXT_RESTART_ULP_SP_EVENT, &bp->sp_event)) {
13699 		bnxt_ulp_restart(bp);
13700 		bnxt_reenable_sriov(bp);
13701 	}
13702 
13703 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
13704 		bnxt_cfg_rx_mode(bp);
13705 
13706 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
13707 		bnxt_cfg_ntp_filters(bp);
13708 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
13709 		bnxt_hwrm_exec_fwd_req(bp);
13710 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
13711 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
13712 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
13713 		bnxt_hwrm_port_qstats(bp, 0);
13714 		bnxt_hwrm_port_qstats_ext(bp, 0);
13715 		bnxt_accumulate_all_stats(bp);
13716 	}
13717 
13718 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
13719 		int rc;
13720 
13721 		mutex_lock(&bp->link_lock);
13722 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
13723 				       &bp->sp_event))
13724 			bnxt_hwrm_phy_qcaps(bp);
13725 
13726 		rc = bnxt_update_link(bp, true);
13727 		if (rc)
13728 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
13729 				   rc);
13730 
13731 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
13732 				       &bp->sp_event))
13733 			bnxt_init_ethtool_link_settings(bp);
13734 		mutex_unlock(&bp->link_lock);
13735 	}
13736 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
13737 		int rc;
13738 
13739 		mutex_lock(&bp->link_lock);
13740 		rc = bnxt_update_phy_setting(bp);
13741 		mutex_unlock(&bp->link_lock);
13742 		if (rc) {
13743 			netdev_warn(bp->dev, "update phy settings retry failed\n");
13744 		} else {
13745 			bp->link_info.phy_retry = false;
13746 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
13747 		}
13748 	}
13749 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
13750 		mutex_lock(&bp->link_lock);
13751 		bnxt_get_port_module_status(bp);
13752 		mutex_unlock(&bp->link_lock);
13753 	}
13754 
13755 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
13756 		bnxt_tc_flow_stats_work(bp);
13757 
13758 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
13759 		bnxt_chk_missed_irq(bp);
13760 
13761 	if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
13762 		bnxt_fw_echo_reply(bp);
13763 
13764 	if (test_and_clear_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event))
13765 		bnxt_hwmon_notify_event(bp);
13766 
13767 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
13768 	 * must be the last functions to be called before exiting.
13769 	 */
13770 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
13771 		bnxt_reset(bp, false);
13772 
13773 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
13774 		bnxt_reset(bp, true);
13775 
13776 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
13777 		bnxt_rx_ring_reset(bp);
13778 
13779 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) {
13780 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) ||
13781 		    test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state))
13782 			bnxt_devlink_health_fw_report(bp);
13783 		else
13784 			bnxt_fw_reset(bp);
13785 	}
13786 
13787 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
13788 		if (!is_bnxt_fw_ok(bp))
13789 			bnxt_devlink_health_fw_report(bp);
13790 	}
13791 
13792 	smp_mb__before_atomic();
13793 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
13794 }
13795 
13796 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13797 				int *max_cp);
13798 
13799 /* Under rtnl_lock */
13800 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
13801 		     int tx_xdp)
13802 {
13803 	int max_rx, max_tx, max_cp, tx_sets = 1, tx_cp;
13804 	struct bnxt_hw_rings hwr = {0};
13805 	int rx_rings = rx;
13806 	int rc;
13807 
13808 	if (tcs)
13809 		tx_sets = tcs;
13810 
13811 	_bnxt_get_max_rings(bp, &max_rx, &max_tx, &max_cp);
13812 
13813 	if (max_rx < rx_rings)
13814 		return -ENOMEM;
13815 
13816 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
13817 		rx_rings <<= 1;
13818 
13819 	hwr.rx = rx_rings;
13820 	hwr.tx = tx * tx_sets + tx_xdp;
13821 	if (max_tx < hwr.tx)
13822 		return -ENOMEM;
13823 
13824 	hwr.vnic = bnxt_get_total_vnics(bp, rx);
13825 
13826 	tx_cp = __bnxt_num_tx_to_cp(bp, hwr.tx, tx_sets, tx_xdp);
13827 	hwr.cp = sh ? max_t(int, tx_cp, rx) : tx_cp + rx;
13828 	if (max_cp < hwr.cp)
13829 		return -ENOMEM;
13830 	hwr.stat = hwr.cp;
13831 	if (BNXT_NEW_RM(bp)) {
13832 		hwr.cp += bnxt_get_ulp_msix_num_in_use(bp);
13833 		hwr.stat += bnxt_get_ulp_stat_ctxs_in_use(bp);
13834 		hwr.grp = rx;
13835 		hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr);
13836 	}
13837 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
13838 		hwr.cp_p5 = hwr.tx + rx;
13839 	rc = bnxt_hwrm_check_rings(bp, &hwr);
13840 	if (!rc && pci_msix_can_alloc_dyn(bp->pdev)) {
13841 		if (!bnxt_ulp_registered(bp->edev)) {
13842 			hwr.cp += bnxt_get_ulp_msix_num(bp);
13843 			hwr.cp = min_t(int, hwr.cp, bnxt_get_max_func_irqs(bp));
13844 		}
13845 		if (hwr.cp > bp->total_irqs) {
13846 			int total_msix = bnxt_change_msix(bp, hwr.cp);
13847 
13848 			if (total_msix < hwr.cp) {
13849 				netdev_warn(bp->dev, "Unable to allocate %d MSIX vectors, maximum available %d\n",
13850 					    hwr.cp, total_msix);
13851 				rc = -ENOSPC;
13852 			}
13853 		}
13854 	}
13855 	return rc;
13856 }
13857 
13858 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
13859 {
13860 	if (bp->bar2) {
13861 		pci_iounmap(pdev, bp->bar2);
13862 		bp->bar2 = NULL;
13863 	}
13864 
13865 	if (bp->bar1) {
13866 		pci_iounmap(pdev, bp->bar1);
13867 		bp->bar1 = NULL;
13868 	}
13869 
13870 	if (bp->bar0) {
13871 		pci_iounmap(pdev, bp->bar0);
13872 		bp->bar0 = NULL;
13873 	}
13874 }
13875 
13876 static void bnxt_cleanup_pci(struct bnxt *bp)
13877 {
13878 	bnxt_unmap_bars(bp, bp->pdev);
13879 	pci_release_regions(bp->pdev);
13880 	if (pci_is_enabled(bp->pdev))
13881 		pci_disable_device(bp->pdev);
13882 }
13883 
13884 static void bnxt_init_dflt_coal(struct bnxt *bp)
13885 {
13886 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
13887 	struct bnxt_coal *coal;
13888 	u16 flags = 0;
13889 
13890 	if (coal_cap->cmpl_params &
13891 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
13892 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
13893 
13894 	/* Tick values in micro seconds.
13895 	 * 1 coal_buf x bufs_per_record = 1 completion record.
13896 	 */
13897 	coal = &bp->rx_coal;
13898 	coal->coal_ticks = 10;
13899 	coal->coal_bufs = 30;
13900 	coal->coal_ticks_irq = 1;
13901 	coal->coal_bufs_irq = 2;
13902 	coal->idle_thresh = 50;
13903 	coal->bufs_per_record = 2;
13904 	coal->budget = 64;		/* NAPI budget */
13905 	coal->flags = flags;
13906 
13907 	coal = &bp->tx_coal;
13908 	coal->coal_ticks = 28;
13909 	coal->coal_bufs = 30;
13910 	coal->coal_ticks_irq = 2;
13911 	coal->coal_bufs_irq = 2;
13912 	coal->bufs_per_record = 1;
13913 	coal->flags = flags;
13914 
13915 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
13916 }
13917 
13918 /* FW that pre-reserves 1 VNIC per function */
13919 static bool bnxt_fw_pre_resv_vnics(struct bnxt *bp)
13920 {
13921 	u16 fw_maj = BNXT_FW_MAJ(bp), fw_bld = BNXT_FW_BLD(bp);
13922 
13923 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
13924 	    (fw_maj > 218 || (fw_maj == 218 && fw_bld >= 18)))
13925 		return true;
13926 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
13927 	    (fw_maj > 216 || (fw_maj == 216 && fw_bld >= 172)))
13928 		return true;
13929 	return false;
13930 }
13931 
13932 static int bnxt_fw_init_one_p1(struct bnxt *bp)
13933 {
13934 	int rc;
13935 
13936 	bp->fw_cap = 0;
13937 	rc = bnxt_hwrm_ver_get(bp);
13938 	/* FW may be unresponsive after FLR. FLR must complete within 100 msec
13939 	 * so wait before continuing with recovery.
13940 	 */
13941 	if (rc)
13942 		msleep(100);
13943 	bnxt_try_map_fw_health_reg(bp);
13944 	if (rc) {
13945 		rc = bnxt_try_recover_fw(bp);
13946 		if (rc)
13947 			return rc;
13948 		rc = bnxt_hwrm_ver_get(bp);
13949 		if (rc)
13950 			return rc;
13951 	}
13952 
13953 	bnxt_nvm_cfg_ver_get(bp);
13954 
13955 	rc = bnxt_hwrm_func_reset(bp);
13956 	if (rc)
13957 		return -ENODEV;
13958 
13959 	bnxt_hwrm_fw_set_time(bp);
13960 	return 0;
13961 }
13962 
13963 static int bnxt_fw_init_one_p2(struct bnxt *bp)
13964 {
13965 	int rc;
13966 
13967 	/* Get the MAX capabilities for this function */
13968 	rc = bnxt_hwrm_func_qcaps(bp);
13969 	if (rc) {
13970 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
13971 			   rc);
13972 		return -ENODEV;
13973 	}
13974 
13975 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
13976 	if (rc)
13977 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
13978 			    rc);
13979 
13980 	if (bnxt_alloc_fw_health(bp)) {
13981 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
13982 	} else {
13983 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
13984 		if (rc)
13985 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
13986 				    rc);
13987 	}
13988 
13989 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
13990 	if (rc)
13991 		return -ENODEV;
13992 
13993 	rc = bnxt_alloc_crash_dump_mem(bp);
13994 	if (rc)
13995 		netdev_warn(bp->dev, "crash dump mem alloc failure rc: %d\n",
13996 			    rc);
13997 	if (!rc) {
13998 		rc = bnxt_hwrm_crash_dump_mem_cfg(bp);
13999 		if (rc) {
14000 			bnxt_free_crash_dump_mem(bp);
14001 			netdev_warn(bp->dev,
14002 				    "hwrm crash dump mem failure rc: %d\n", rc);
14003 		}
14004 	}
14005 
14006 	if (bnxt_fw_pre_resv_vnics(bp))
14007 		bp->fw_cap |= BNXT_FW_CAP_PRE_RESV_VNICS;
14008 
14009 	bnxt_hwrm_func_qcfg(bp);
14010 	bnxt_hwrm_vnic_qcaps(bp);
14011 	bnxt_hwrm_port_led_qcaps(bp);
14012 	bnxt_ethtool_init(bp);
14013 	if (bp->fw_cap & BNXT_FW_CAP_PTP)
14014 		__bnxt_hwrm_ptp_qcfg(bp);
14015 	bnxt_dcb_init(bp);
14016 	bnxt_hwmon_init(bp);
14017 	return 0;
14018 }
14019 
14020 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
14021 {
14022 	bp->rss_cap &= ~BNXT_RSS_CAP_UDP_RSS_CAP;
14023 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
14024 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
14025 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
14026 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
14027 	if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA)
14028 		bp->rss_hash_delta = bp->rss_hash_cfg;
14029 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
14030 		bp->rss_cap |= BNXT_RSS_CAP_UDP_RSS_CAP;
14031 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
14032 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
14033 	}
14034 }
14035 
14036 static void bnxt_set_dflt_rfs(struct bnxt *bp)
14037 {
14038 	struct net_device *dev = bp->dev;
14039 
14040 	dev->hw_features &= ~NETIF_F_NTUPLE;
14041 	dev->features &= ~NETIF_F_NTUPLE;
14042 	bp->flags &= ~BNXT_FLAG_RFS;
14043 	if (bnxt_rfs_supported(bp)) {
14044 		dev->hw_features |= NETIF_F_NTUPLE;
14045 		if (bnxt_rfs_capable(bp, false)) {
14046 			bp->flags |= BNXT_FLAG_RFS;
14047 			dev->features |= NETIF_F_NTUPLE;
14048 		}
14049 	}
14050 }
14051 
14052 static void bnxt_fw_init_one_p3(struct bnxt *bp)
14053 {
14054 	struct pci_dev *pdev = bp->pdev;
14055 
14056 	bnxt_set_dflt_rss_hash_type(bp);
14057 	bnxt_set_dflt_rfs(bp);
14058 
14059 	bnxt_get_wol_settings(bp);
14060 	if (bp->flags & BNXT_FLAG_WOL_CAP)
14061 		device_set_wakeup_enable(&pdev->dev, bp->wol);
14062 	else
14063 		device_set_wakeup_capable(&pdev->dev, false);
14064 
14065 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
14066 	bnxt_hwrm_coal_params_qcaps(bp);
14067 }
14068 
14069 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt);
14070 
14071 int bnxt_fw_init_one(struct bnxt *bp)
14072 {
14073 	int rc;
14074 
14075 	rc = bnxt_fw_init_one_p1(bp);
14076 	if (rc) {
14077 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
14078 		return rc;
14079 	}
14080 	rc = bnxt_fw_init_one_p2(bp);
14081 	if (rc) {
14082 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
14083 		return rc;
14084 	}
14085 	rc = bnxt_probe_phy(bp, false);
14086 	if (rc)
14087 		return rc;
14088 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
14089 	if (rc)
14090 		return rc;
14091 
14092 	bnxt_fw_init_one_p3(bp);
14093 	return 0;
14094 }
14095 
14096 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
14097 {
14098 	struct bnxt_fw_health *fw_health = bp->fw_health;
14099 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
14100 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
14101 	u32 reg_type, reg_off, delay_msecs;
14102 
14103 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
14104 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
14105 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
14106 	switch (reg_type) {
14107 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
14108 		pci_write_config_dword(bp->pdev, reg_off, val);
14109 		break;
14110 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
14111 		writel(reg_off & BNXT_GRC_BASE_MASK,
14112 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
14113 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
14114 		fallthrough;
14115 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
14116 		writel(val, bp->bar0 + reg_off);
14117 		break;
14118 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
14119 		writel(val, bp->bar1 + reg_off);
14120 		break;
14121 	}
14122 	if (delay_msecs) {
14123 		pci_read_config_dword(bp->pdev, 0, &val);
14124 		msleep(delay_msecs);
14125 	}
14126 }
14127 
14128 bool bnxt_hwrm_reset_permitted(struct bnxt *bp)
14129 {
14130 	struct hwrm_func_qcfg_output *resp;
14131 	struct hwrm_func_qcfg_input *req;
14132 	bool result = true; /* firmware will enforce if unknown */
14133 
14134 	if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF)
14135 		return result;
14136 
14137 	if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG))
14138 		return result;
14139 
14140 	req->fid = cpu_to_le16(0xffff);
14141 	resp = hwrm_req_hold(bp, req);
14142 	if (!hwrm_req_send(bp, req))
14143 		result = !!(le16_to_cpu(resp->flags) &
14144 			    FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED);
14145 	hwrm_req_drop(bp, req);
14146 	return result;
14147 }
14148 
14149 static void bnxt_reset_all(struct bnxt *bp)
14150 {
14151 	struct bnxt_fw_health *fw_health = bp->fw_health;
14152 	int i, rc;
14153 
14154 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
14155 		bnxt_fw_reset_via_optee(bp);
14156 		bp->fw_reset_timestamp = jiffies;
14157 		return;
14158 	}
14159 
14160 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
14161 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
14162 			bnxt_fw_reset_writel(bp, i);
14163 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
14164 		struct hwrm_fw_reset_input *req;
14165 
14166 		rc = hwrm_req_init(bp, req, HWRM_FW_RESET);
14167 		if (!rc) {
14168 			req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG);
14169 			req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
14170 			req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
14171 			req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
14172 			rc = hwrm_req_send(bp, req);
14173 		}
14174 		if (rc != -ENODEV)
14175 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
14176 	}
14177 	bp->fw_reset_timestamp = jiffies;
14178 }
14179 
14180 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
14181 {
14182 	return time_after(jiffies, bp->fw_reset_timestamp +
14183 			  (bp->fw_reset_max_dsecs * HZ / 10));
14184 }
14185 
14186 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc)
14187 {
14188 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
14189 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF)
14190 		bnxt_dl_health_fw_status_update(bp, false);
14191 	bp->fw_reset_state = 0;
14192 	dev_close(bp->dev);
14193 }
14194 
14195 static void bnxt_fw_reset_task(struct work_struct *work)
14196 {
14197 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
14198 	int rc = 0;
14199 
14200 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
14201 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
14202 		return;
14203 	}
14204 
14205 	switch (bp->fw_reset_state) {
14206 	case BNXT_FW_RESET_STATE_POLL_VF: {
14207 		int n = bnxt_get_registered_vfs(bp);
14208 		int tmo;
14209 
14210 		if (n < 0) {
14211 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
14212 				   n, jiffies_to_msecs(jiffies -
14213 				   bp->fw_reset_timestamp));
14214 			goto fw_reset_abort;
14215 		} else if (n > 0) {
14216 			if (bnxt_fw_reset_timeout(bp)) {
14217 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
14218 				bp->fw_reset_state = 0;
14219 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
14220 					   n);
14221 				goto ulp_start;
14222 			}
14223 			bnxt_queue_fw_reset_work(bp, HZ / 10);
14224 			return;
14225 		}
14226 		bp->fw_reset_timestamp = jiffies;
14227 		rtnl_lock();
14228 		if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
14229 			bnxt_fw_reset_abort(bp, rc);
14230 			rtnl_unlock();
14231 			goto ulp_start;
14232 		}
14233 		bnxt_fw_reset_close(bp);
14234 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
14235 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
14236 			tmo = HZ / 10;
14237 		} else {
14238 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
14239 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
14240 		}
14241 		rtnl_unlock();
14242 		bnxt_queue_fw_reset_work(bp, tmo);
14243 		return;
14244 	}
14245 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
14246 		u32 val;
14247 
14248 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
14249 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
14250 		    !bnxt_fw_reset_timeout(bp)) {
14251 			bnxt_queue_fw_reset_work(bp, HZ / 5);
14252 			return;
14253 		}
14254 
14255 		if (!bp->fw_health->primary) {
14256 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
14257 
14258 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
14259 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
14260 			return;
14261 		}
14262 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
14263 	}
14264 		fallthrough;
14265 	case BNXT_FW_RESET_STATE_RESET_FW:
14266 		bnxt_reset_all(bp);
14267 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
14268 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
14269 		return;
14270 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
14271 		bnxt_inv_fw_health_reg(bp);
14272 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
14273 		    !bp->fw_reset_min_dsecs) {
14274 			u16 val;
14275 
14276 			pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
14277 			if (val == 0xffff) {
14278 				if (bnxt_fw_reset_timeout(bp)) {
14279 					netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
14280 					rc = -ETIMEDOUT;
14281 					goto fw_reset_abort;
14282 				}
14283 				bnxt_queue_fw_reset_work(bp, HZ / 1000);
14284 				return;
14285 			}
14286 		}
14287 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
14288 		clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
14289 		if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) &&
14290 		    !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state))
14291 			bnxt_dl_remote_reload(bp);
14292 		if (pci_enable_device(bp->pdev)) {
14293 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
14294 			rc = -ENODEV;
14295 			goto fw_reset_abort;
14296 		}
14297 		pci_set_master(bp->pdev);
14298 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
14299 		fallthrough;
14300 	case BNXT_FW_RESET_STATE_POLL_FW:
14301 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
14302 		rc = bnxt_hwrm_poll(bp);
14303 		if (rc) {
14304 			if (bnxt_fw_reset_timeout(bp)) {
14305 				netdev_err(bp->dev, "Firmware reset aborted\n");
14306 				goto fw_reset_abort_status;
14307 			}
14308 			bnxt_queue_fw_reset_work(bp, HZ / 5);
14309 			return;
14310 		}
14311 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
14312 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
14313 		fallthrough;
14314 	case BNXT_FW_RESET_STATE_OPENING:
14315 		while (!rtnl_trylock()) {
14316 			bnxt_queue_fw_reset_work(bp, HZ / 10);
14317 			return;
14318 		}
14319 		rc = bnxt_open(bp->dev);
14320 		if (rc) {
14321 			netdev_err(bp->dev, "bnxt_open() failed during FW reset\n");
14322 			bnxt_fw_reset_abort(bp, rc);
14323 			rtnl_unlock();
14324 			goto ulp_start;
14325 		}
14326 
14327 		if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) &&
14328 		    bp->fw_health->enabled) {
14329 			bp->fw_health->last_fw_reset_cnt =
14330 				bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
14331 		}
14332 		bp->fw_reset_state = 0;
14333 		/* Make sure fw_reset_state is 0 before clearing the flag */
14334 		smp_mb__before_atomic();
14335 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
14336 		bnxt_ptp_reapply_pps(bp);
14337 		clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state);
14338 		if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) {
14339 			bnxt_dl_health_fw_recovery_done(bp);
14340 			bnxt_dl_health_fw_status_update(bp, true);
14341 		}
14342 		rtnl_unlock();
14343 		bnxt_ulp_start(bp, 0);
14344 		bnxt_reenable_sriov(bp);
14345 		rtnl_lock();
14346 		bnxt_vf_reps_alloc(bp);
14347 		bnxt_vf_reps_open(bp);
14348 		rtnl_unlock();
14349 		break;
14350 	}
14351 	return;
14352 
14353 fw_reset_abort_status:
14354 	if (bp->fw_health->status_reliable ||
14355 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
14356 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
14357 
14358 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
14359 	}
14360 fw_reset_abort:
14361 	rtnl_lock();
14362 	bnxt_fw_reset_abort(bp, rc);
14363 	rtnl_unlock();
14364 ulp_start:
14365 	bnxt_ulp_start(bp, rc);
14366 }
14367 
14368 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
14369 {
14370 	int rc;
14371 	struct bnxt *bp = netdev_priv(dev);
14372 
14373 	SET_NETDEV_DEV(dev, &pdev->dev);
14374 
14375 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
14376 	rc = pci_enable_device(pdev);
14377 	if (rc) {
14378 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
14379 		goto init_err;
14380 	}
14381 
14382 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
14383 		dev_err(&pdev->dev,
14384 			"Cannot find PCI device base address, aborting\n");
14385 		rc = -ENODEV;
14386 		goto init_err_disable;
14387 	}
14388 
14389 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
14390 	if (rc) {
14391 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
14392 		goto init_err_disable;
14393 	}
14394 
14395 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
14396 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
14397 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
14398 		rc = -EIO;
14399 		goto init_err_release;
14400 	}
14401 
14402 	pci_set_master(pdev);
14403 
14404 	bp->dev = dev;
14405 	bp->pdev = pdev;
14406 
14407 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
14408 	 * determines the BAR size.
14409 	 */
14410 	bp->bar0 = pci_ioremap_bar(pdev, 0);
14411 	if (!bp->bar0) {
14412 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
14413 		rc = -ENOMEM;
14414 		goto init_err_release;
14415 	}
14416 
14417 	bp->bar2 = pci_ioremap_bar(pdev, 4);
14418 	if (!bp->bar2) {
14419 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
14420 		rc = -ENOMEM;
14421 		goto init_err_release;
14422 	}
14423 
14424 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
14425 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
14426 
14427 	spin_lock_init(&bp->ntp_fltr_lock);
14428 #if BITS_PER_LONG == 32
14429 	spin_lock_init(&bp->db_lock);
14430 #endif
14431 
14432 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
14433 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
14434 
14435 	timer_setup(&bp->timer, bnxt_timer, 0);
14436 	bp->current_interval = BNXT_TIMER_INTERVAL;
14437 
14438 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
14439 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
14440 
14441 	clear_bit(BNXT_STATE_OPEN, &bp->state);
14442 	return 0;
14443 
14444 init_err_release:
14445 	bnxt_unmap_bars(bp, pdev);
14446 	pci_release_regions(pdev);
14447 
14448 init_err_disable:
14449 	pci_disable_device(pdev);
14450 
14451 init_err:
14452 	return rc;
14453 }
14454 
14455 /* rtnl_lock held */
14456 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
14457 {
14458 	struct sockaddr *addr = p;
14459 	struct bnxt *bp = netdev_priv(dev);
14460 	int rc = 0;
14461 
14462 	if (!is_valid_ether_addr(addr->sa_data))
14463 		return -EADDRNOTAVAIL;
14464 
14465 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
14466 		return 0;
14467 
14468 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
14469 	if (rc)
14470 		return rc;
14471 
14472 	eth_hw_addr_set(dev, addr->sa_data);
14473 	bnxt_clear_usr_fltrs(bp, true);
14474 	if (netif_running(dev)) {
14475 		bnxt_close_nic(bp, false, false);
14476 		rc = bnxt_open_nic(bp, false, false);
14477 	}
14478 
14479 	return rc;
14480 }
14481 
14482 /* rtnl_lock held */
14483 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
14484 {
14485 	struct bnxt *bp = netdev_priv(dev);
14486 
14487 	if (netif_running(dev))
14488 		bnxt_close_nic(bp, true, false);
14489 
14490 	WRITE_ONCE(dev->mtu, new_mtu);
14491 	bnxt_set_ring_params(bp);
14492 
14493 	if (netif_running(dev))
14494 		return bnxt_open_nic(bp, true, false);
14495 
14496 	return 0;
14497 }
14498 
14499 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
14500 {
14501 	struct bnxt *bp = netdev_priv(dev);
14502 	bool sh = false;
14503 	int rc, tx_cp;
14504 
14505 	if (tc > bp->max_tc) {
14506 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
14507 			   tc, bp->max_tc);
14508 		return -EINVAL;
14509 	}
14510 
14511 	if (bp->num_tc == tc)
14512 		return 0;
14513 
14514 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
14515 		sh = true;
14516 
14517 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
14518 			      sh, tc, bp->tx_nr_rings_xdp);
14519 	if (rc)
14520 		return rc;
14521 
14522 	/* Needs to close the device and do hw resource re-allocations */
14523 	if (netif_running(bp->dev))
14524 		bnxt_close_nic(bp, true, false);
14525 
14526 	if (tc) {
14527 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
14528 		netdev_set_num_tc(dev, tc);
14529 		bp->num_tc = tc;
14530 	} else {
14531 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
14532 		netdev_reset_tc(dev);
14533 		bp->num_tc = 0;
14534 	}
14535 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
14536 	tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings);
14537 	bp->cp_nr_rings = sh ? max_t(int, tx_cp, bp->rx_nr_rings) :
14538 			       tx_cp + bp->rx_nr_rings;
14539 
14540 	if (netif_running(bp->dev))
14541 		return bnxt_open_nic(bp, true, false);
14542 
14543 	return 0;
14544 }
14545 
14546 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
14547 				  void *cb_priv)
14548 {
14549 	struct bnxt *bp = cb_priv;
14550 
14551 	if (!bnxt_tc_flower_enabled(bp) ||
14552 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
14553 		return -EOPNOTSUPP;
14554 
14555 	switch (type) {
14556 	case TC_SETUP_CLSFLOWER:
14557 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
14558 	default:
14559 		return -EOPNOTSUPP;
14560 	}
14561 }
14562 
14563 LIST_HEAD(bnxt_block_cb_list);
14564 
14565 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
14566 			 void *type_data)
14567 {
14568 	struct bnxt *bp = netdev_priv(dev);
14569 
14570 	switch (type) {
14571 	case TC_SETUP_BLOCK:
14572 		return flow_block_cb_setup_simple(type_data,
14573 						  &bnxt_block_cb_list,
14574 						  bnxt_setup_tc_block_cb,
14575 						  bp, bp, true);
14576 	case TC_SETUP_QDISC_MQPRIO: {
14577 		struct tc_mqprio_qopt *mqprio = type_data;
14578 
14579 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
14580 
14581 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
14582 	}
14583 	default:
14584 		return -EOPNOTSUPP;
14585 	}
14586 }
14587 
14588 u32 bnxt_get_ntp_filter_idx(struct bnxt *bp, struct flow_keys *fkeys,
14589 			    const struct sk_buff *skb)
14590 {
14591 	struct bnxt_vnic_info *vnic;
14592 
14593 	if (skb)
14594 		return skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
14595 
14596 	vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT];
14597 	return bnxt_toeplitz(bp, fkeys, (void *)vnic->rss_hash_key);
14598 }
14599 
14600 int bnxt_insert_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr,
14601 			   u32 idx)
14602 {
14603 	struct hlist_head *head;
14604 	int bit_id;
14605 
14606 	spin_lock_bh(&bp->ntp_fltr_lock);
14607 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, bp->max_fltr, 0);
14608 	if (bit_id < 0) {
14609 		spin_unlock_bh(&bp->ntp_fltr_lock);
14610 		return -ENOMEM;
14611 	}
14612 
14613 	fltr->base.sw_id = (u16)bit_id;
14614 	fltr->base.type = BNXT_FLTR_TYPE_NTUPLE;
14615 	fltr->base.flags |= BNXT_ACT_RING_DST;
14616 	head = &bp->ntp_fltr_hash_tbl[idx];
14617 	hlist_add_head_rcu(&fltr->base.hash, head);
14618 	set_bit(BNXT_FLTR_INSERTED, &fltr->base.state);
14619 	bnxt_insert_usr_fltr(bp, &fltr->base);
14620 	bp->ntp_fltr_count++;
14621 	spin_unlock_bh(&bp->ntp_fltr_lock);
14622 	return 0;
14623 }
14624 
14625 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
14626 			    struct bnxt_ntuple_filter *f2)
14627 {
14628 	struct bnxt_flow_masks *masks1 = &f1->fmasks;
14629 	struct bnxt_flow_masks *masks2 = &f2->fmasks;
14630 	struct flow_keys *keys1 = &f1->fkeys;
14631 	struct flow_keys *keys2 = &f2->fkeys;
14632 
14633 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
14634 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
14635 		return false;
14636 
14637 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
14638 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
14639 		    masks1->addrs.v4addrs.src != masks2->addrs.v4addrs.src ||
14640 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst ||
14641 		    masks1->addrs.v4addrs.dst != masks2->addrs.v4addrs.dst)
14642 			return false;
14643 	} else {
14644 		if (!ipv6_addr_equal(&keys1->addrs.v6addrs.src,
14645 				     &keys2->addrs.v6addrs.src) ||
14646 		    !ipv6_addr_equal(&masks1->addrs.v6addrs.src,
14647 				     &masks2->addrs.v6addrs.src) ||
14648 		    !ipv6_addr_equal(&keys1->addrs.v6addrs.dst,
14649 				     &keys2->addrs.v6addrs.dst) ||
14650 		    !ipv6_addr_equal(&masks1->addrs.v6addrs.dst,
14651 				     &masks2->addrs.v6addrs.dst))
14652 			return false;
14653 	}
14654 
14655 	return keys1->ports.src == keys2->ports.src &&
14656 	       masks1->ports.src == masks2->ports.src &&
14657 	       keys1->ports.dst == keys2->ports.dst &&
14658 	       masks1->ports.dst == masks2->ports.dst &&
14659 	       keys1->control.flags == keys2->control.flags &&
14660 	       f1->l2_fltr == f2->l2_fltr;
14661 }
14662 
14663 struct bnxt_ntuple_filter *
14664 bnxt_lookup_ntp_filter_from_idx(struct bnxt *bp,
14665 				struct bnxt_ntuple_filter *fltr, u32 idx)
14666 {
14667 	struct bnxt_ntuple_filter *f;
14668 	struct hlist_head *head;
14669 
14670 	head = &bp->ntp_fltr_hash_tbl[idx];
14671 	hlist_for_each_entry_rcu(f, head, base.hash) {
14672 		if (bnxt_fltr_match(f, fltr))
14673 			return f;
14674 	}
14675 	return NULL;
14676 }
14677 
14678 #ifdef CONFIG_RFS_ACCEL
14679 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
14680 			      u16 rxq_index, u32 flow_id)
14681 {
14682 	struct bnxt *bp = netdev_priv(dev);
14683 	struct bnxt_ntuple_filter *fltr, *new_fltr;
14684 	struct flow_keys *fkeys;
14685 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
14686 	struct bnxt_l2_filter *l2_fltr;
14687 	int rc = 0, idx;
14688 	u32 flags;
14689 
14690 	if (ether_addr_equal(dev->dev_addr, eth->h_dest)) {
14691 		l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0];
14692 		atomic_inc(&l2_fltr->refcnt);
14693 	} else {
14694 		struct bnxt_l2_key key;
14695 
14696 		ether_addr_copy(key.dst_mac_addr, eth->h_dest);
14697 		key.vlan = 0;
14698 		l2_fltr = bnxt_lookup_l2_filter_from_key(bp, &key);
14699 		if (!l2_fltr)
14700 			return -EINVAL;
14701 		if (l2_fltr->base.flags & BNXT_ACT_FUNC_DST) {
14702 			bnxt_del_l2_filter(bp, l2_fltr);
14703 			return -EINVAL;
14704 		}
14705 	}
14706 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
14707 	if (!new_fltr) {
14708 		bnxt_del_l2_filter(bp, l2_fltr);
14709 		return -ENOMEM;
14710 	}
14711 
14712 	fkeys = &new_fltr->fkeys;
14713 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
14714 		rc = -EPROTONOSUPPORT;
14715 		goto err_free;
14716 	}
14717 
14718 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
14719 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
14720 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
14721 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
14722 		rc = -EPROTONOSUPPORT;
14723 		goto err_free;
14724 	}
14725 	new_fltr->fmasks = BNXT_FLOW_IPV4_MASK_ALL;
14726 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) {
14727 		if (bp->hwrm_spec_code < 0x10601) {
14728 			rc = -EPROTONOSUPPORT;
14729 			goto err_free;
14730 		}
14731 		new_fltr->fmasks = BNXT_FLOW_IPV6_MASK_ALL;
14732 	}
14733 	flags = fkeys->control.flags;
14734 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
14735 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
14736 		rc = -EPROTONOSUPPORT;
14737 		goto err_free;
14738 	}
14739 	new_fltr->l2_fltr = l2_fltr;
14740 
14741 	idx = bnxt_get_ntp_filter_idx(bp, fkeys, skb);
14742 	rcu_read_lock();
14743 	fltr = bnxt_lookup_ntp_filter_from_idx(bp, new_fltr, idx);
14744 	if (fltr) {
14745 		rc = fltr->base.sw_id;
14746 		rcu_read_unlock();
14747 		goto err_free;
14748 	}
14749 	rcu_read_unlock();
14750 
14751 	new_fltr->flow_id = flow_id;
14752 	new_fltr->base.rxq = rxq_index;
14753 	rc = bnxt_insert_ntp_filter(bp, new_fltr, idx);
14754 	if (!rc) {
14755 		bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT);
14756 		return new_fltr->base.sw_id;
14757 	}
14758 
14759 err_free:
14760 	bnxt_del_l2_filter(bp, l2_fltr);
14761 	kfree(new_fltr);
14762 	return rc;
14763 }
14764 #endif
14765 
14766 void bnxt_del_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr)
14767 {
14768 	spin_lock_bh(&bp->ntp_fltr_lock);
14769 	if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) {
14770 		spin_unlock_bh(&bp->ntp_fltr_lock);
14771 		return;
14772 	}
14773 	hlist_del_rcu(&fltr->base.hash);
14774 	bnxt_del_one_usr_fltr(bp, &fltr->base);
14775 	bp->ntp_fltr_count--;
14776 	spin_unlock_bh(&bp->ntp_fltr_lock);
14777 	bnxt_del_l2_filter(bp, fltr->l2_fltr);
14778 	clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap);
14779 	kfree_rcu(fltr, base.rcu);
14780 }
14781 
14782 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
14783 {
14784 #ifdef CONFIG_RFS_ACCEL
14785 	int i;
14786 
14787 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
14788 		struct hlist_head *head;
14789 		struct hlist_node *tmp;
14790 		struct bnxt_ntuple_filter *fltr;
14791 		int rc;
14792 
14793 		head = &bp->ntp_fltr_hash_tbl[i];
14794 		hlist_for_each_entry_safe(fltr, tmp, head, base.hash) {
14795 			bool del = false;
14796 
14797 			if (test_bit(BNXT_FLTR_VALID, &fltr->base.state)) {
14798 				if (fltr->base.flags & BNXT_ACT_NO_AGING)
14799 					continue;
14800 				if (rps_may_expire_flow(bp->dev, fltr->base.rxq,
14801 							fltr->flow_id,
14802 							fltr->base.sw_id)) {
14803 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
14804 									 fltr);
14805 					del = true;
14806 				}
14807 			} else {
14808 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
14809 								       fltr);
14810 				if (rc)
14811 					del = true;
14812 				else
14813 					set_bit(BNXT_FLTR_VALID, &fltr->base.state);
14814 			}
14815 
14816 			if (del)
14817 				bnxt_del_ntp_filter(bp, fltr);
14818 		}
14819 	}
14820 #endif
14821 }
14822 
14823 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
14824 				    unsigned int entry, struct udp_tunnel_info *ti)
14825 {
14826 	struct bnxt *bp = netdev_priv(netdev);
14827 	unsigned int cmd;
14828 
14829 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
14830 		cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
14831 	else if (ti->type == UDP_TUNNEL_TYPE_GENEVE)
14832 		cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE;
14833 	else
14834 		cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE;
14835 
14836 	return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd);
14837 }
14838 
14839 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
14840 				      unsigned int entry, struct udp_tunnel_info *ti)
14841 {
14842 	struct bnxt *bp = netdev_priv(netdev);
14843 	unsigned int cmd;
14844 
14845 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
14846 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
14847 	else if (ti->type == UDP_TUNNEL_TYPE_GENEVE)
14848 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
14849 	else
14850 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE;
14851 
14852 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
14853 }
14854 
14855 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
14856 	.set_port	= bnxt_udp_tunnel_set_port,
14857 	.unset_port	= bnxt_udp_tunnel_unset_port,
14858 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
14859 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
14860 	.tables		= {
14861 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
14862 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
14863 	},
14864 }, bnxt_udp_tunnels_p7 = {
14865 	.set_port	= bnxt_udp_tunnel_set_port,
14866 	.unset_port	= bnxt_udp_tunnel_unset_port,
14867 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
14868 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
14869 	.tables		= {
14870 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
14871 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
14872 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN_GPE, },
14873 	},
14874 };
14875 
14876 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
14877 			       struct net_device *dev, u32 filter_mask,
14878 			       int nlflags)
14879 {
14880 	struct bnxt *bp = netdev_priv(dev);
14881 
14882 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
14883 				       nlflags, filter_mask, NULL);
14884 }
14885 
14886 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
14887 			       u16 flags, struct netlink_ext_ack *extack)
14888 {
14889 	struct bnxt *bp = netdev_priv(dev);
14890 	struct nlattr *attr, *br_spec;
14891 	int rem, rc = 0;
14892 
14893 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
14894 		return -EOPNOTSUPP;
14895 
14896 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
14897 	if (!br_spec)
14898 		return -EINVAL;
14899 
14900 	nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) {
14901 		u16 mode;
14902 
14903 		mode = nla_get_u16(attr);
14904 		if (mode == bp->br_mode)
14905 			break;
14906 
14907 		rc = bnxt_hwrm_set_br_mode(bp, mode);
14908 		if (!rc)
14909 			bp->br_mode = mode;
14910 		break;
14911 	}
14912 	return rc;
14913 }
14914 
14915 int bnxt_get_port_parent_id(struct net_device *dev,
14916 			    struct netdev_phys_item_id *ppid)
14917 {
14918 	struct bnxt *bp = netdev_priv(dev);
14919 
14920 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
14921 		return -EOPNOTSUPP;
14922 
14923 	/* The PF and it's VF-reps only support the switchdev framework */
14924 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
14925 		return -EOPNOTSUPP;
14926 
14927 	ppid->id_len = sizeof(bp->dsn);
14928 	memcpy(ppid->id, bp->dsn, ppid->id_len);
14929 
14930 	return 0;
14931 }
14932 
14933 static const struct net_device_ops bnxt_netdev_ops = {
14934 	.ndo_open		= bnxt_open,
14935 	.ndo_start_xmit		= bnxt_start_xmit,
14936 	.ndo_stop		= bnxt_close,
14937 	.ndo_get_stats64	= bnxt_get_stats64,
14938 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
14939 	.ndo_eth_ioctl		= bnxt_ioctl,
14940 	.ndo_validate_addr	= eth_validate_addr,
14941 	.ndo_set_mac_address	= bnxt_change_mac_addr,
14942 	.ndo_change_mtu		= bnxt_change_mtu,
14943 	.ndo_fix_features	= bnxt_fix_features,
14944 	.ndo_set_features	= bnxt_set_features,
14945 	.ndo_features_check	= bnxt_features_check,
14946 	.ndo_tx_timeout		= bnxt_tx_timeout,
14947 #ifdef CONFIG_BNXT_SRIOV
14948 	.ndo_get_vf_config	= bnxt_get_vf_config,
14949 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
14950 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
14951 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
14952 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
14953 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
14954 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
14955 #endif
14956 	.ndo_setup_tc           = bnxt_setup_tc,
14957 #ifdef CONFIG_RFS_ACCEL
14958 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
14959 #endif
14960 	.ndo_bpf		= bnxt_xdp,
14961 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
14962 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
14963 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
14964 };
14965 
14966 static void bnxt_get_queue_stats_rx(struct net_device *dev, int i,
14967 				    struct netdev_queue_stats_rx *stats)
14968 {
14969 	struct bnxt *bp = netdev_priv(dev);
14970 	struct bnxt_cp_ring_info *cpr;
14971 	u64 *sw;
14972 
14973 	cpr = &bp->bnapi[i]->cp_ring;
14974 	sw = cpr->stats.sw_stats;
14975 
14976 	stats->packets = 0;
14977 	stats->packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
14978 	stats->packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
14979 	stats->packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
14980 
14981 	stats->bytes = 0;
14982 	stats->bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
14983 	stats->bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
14984 	stats->bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
14985 
14986 	stats->alloc_fail = cpr->sw_stats->rx.rx_oom_discards;
14987 }
14988 
14989 static void bnxt_get_queue_stats_tx(struct net_device *dev, int i,
14990 				    struct netdev_queue_stats_tx *stats)
14991 {
14992 	struct bnxt *bp = netdev_priv(dev);
14993 	struct bnxt_napi *bnapi;
14994 	u64 *sw;
14995 
14996 	bnapi = bp->tx_ring[bp->tx_ring_map[i]].bnapi;
14997 	sw = bnapi->cp_ring.stats.sw_stats;
14998 
14999 	stats->packets = 0;
15000 	stats->packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
15001 	stats->packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
15002 	stats->packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
15003 
15004 	stats->bytes = 0;
15005 	stats->bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
15006 	stats->bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
15007 	stats->bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
15008 }
15009 
15010 static void bnxt_get_base_stats(struct net_device *dev,
15011 				struct netdev_queue_stats_rx *rx,
15012 				struct netdev_queue_stats_tx *tx)
15013 {
15014 	struct bnxt *bp = netdev_priv(dev);
15015 
15016 	rx->packets = bp->net_stats_prev.rx_packets;
15017 	rx->bytes = bp->net_stats_prev.rx_bytes;
15018 	rx->alloc_fail = bp->ring_err_stats_prev.rx_total_oom_discards;
15019 
15020 	tx->packets = bp->net_stats_prev.tx_packets;
15021 	tx->bytes = bp->net_stats_prev.tx_bytes;
15022 }
15023 
15024 static const struct netdev_stat_ops bnxt_stat_ops = {
15025 	.get_queue_stats_rx	= bnxt_get_queue_stats_rx,
15026 	.get_queue_stats_tx	= bnxt_get_queue_stats_tx,
15027 	.get_base_stats		= bnxt_get_base_stats,
15028 };
15029 
15030 static int bnxt_alloc_rx_agg_bmap(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
15031 {
15032 	u16 mem_size;
15033 
15034 	rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
15035 	mem_size = rxr->rx_agg_bmap_size / 8;
15036 	rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
15037 	if (!rxr->rx_agg_bmap)
15038 		return -ENOMEM;
15039 
15040 	return 0;
15041 }
15042 
15043 static int bnxt_queue_mem_alloc(struct net_device *dev, void *qmem, int idx)
15044 {
15045 	struct bnxt_rx_ring_info *rxr, *clone;
15046 	struct bnxt *bp = netdev_priv(dev);
15047 	struct bnxt_ring_struct *ring;
15048 	int rc;
15049 
15050 	rxr = &bp->rx_ring[idx];
15051 	clone = qmem;
15052 	memcpy(clone, rxr, sizeof(*rxr));
15053 	bnxt_init_rx_ring_struct(bp, clone);
15054 	bnxt_reset_rx_ring_struct(bp, clone);
15055 
15056 	clone->rx_prod = 0;
15057 	clone->rx_agg_prod = 0;
15058 	clone->rx_sw_agg_prod = 0;
15059 	clone->rx_next_cons = 0;
15060 
15061 	rc = bnxt_alloc_rx_page_pool(bp, clone, rxr->page_pool->p.nid);
15062 	if (rc)
15063 		return rc;
15064 
15065 	rc = xdp_rxq_info_reg(&clone->xdp_rxq, bp->dev, idx, 0);
15066 	if (rc < 0)
15067 		goto err_page_pool_destroy;
15068 
15069 	rc = xdp_rxq_info_reg_mem_model(&clone->xdp_rxq,
15070 					MEM_TYPE_PAGE_POOL,
15071 					clone->page_pool);
15072 	if (rc)
15073 		goto err_rxq_info_unreg;
15074 
15075 	ring = &clone->rx_ring_struct;
15076 	rc = bnxt_alloc_ring(bp, &ring->ring_mem);
15077 	if (rc)
15078 		goto err_free_rx_ring;
15079 
15080 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
15081 		ring = &clone->rx_agg_ring_struct;
15082 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
15083 		if (rc)
15084 			goto err_free_rx_agg_ring;
15085 
15086 		rc = bnxt_alloc_rx_agg_bmap(bp, clone);
15087 		if (rc)
15088 			goto err_free_rx_agg_ring;
15089 	}
15090 
15091 	bnxt_init_one_rx_ring_rxbd(bp, clone);
15092 	bnxt_init_one_rx_agg_ring_rxbd(bp, clone);
15093 
15094 	bnxt_alloc_one_rx_ring_skb(bp, clone, idx);
15095 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
15096 		bnxt_alloc_one_rx_ring_page(bp, clone, idx);
15097 
15098 	return 0;
15099 
15100 err_free_rx_agg_ring:
15101 	bnxt_free_ring(bp, &clone->rx_agg_ring_struct.ring_mem);
15102 err_free_rx_ring:
15103 	bnxt_free_ring(bp, &clone->rx_ring_struct.ring_mem);
15104 err_rxq_info_unreg:
15105 	xdp_rxq_info_unreg(&clone->xdp_rxq);
15106 err_page_pool_destroy:
15107 	clone->page_pool->p.napi = NULL;
15108 	page_pool_destroy(clone->page_pool);
15109 	clone->page_pool = NULL;
15110 	return rc;
15111 }
15112 
15113 static void bnxt_queue_mem_free(struct net_device *dev, void *qmem)
15114 {
15115 	struct bnxt_rx_ring_info *rxr = qmem;
15116 	struct bnxt *bp = netdev_priv(dev);
15117 	struct bnxt_ring_struct *ring;
15118 
15119 	bnxt_free_one_rx_ring(bp, rxr);
15120 	bnxt_free_one_rx_agg_ring(bp, rxr);
15121 
15122 	xdp_rxq_info_unreg(&rxr->xdp_rxq);
15123 
15124 	page_pool_destroy(rxr->page_pool);
15125 	rxr->page_pool = NULL;
15126 
15127 	ring = &rxr->rx_ring_struct;
15128 	bnxt_free_ring(bp, &ring->ring_mem);
15129 
15130 	ring = &rxr->rx_agg_ring_struct;
15131 	bnxt_free_ring(bp, &ring->ring_mem);
15132 
15133 	kfree(rxr->rx_agg_bmap);
15134 	rxr->rx_agg_bmap = NULL;
15135 }
15136 
15137 static void bnxt_copy_rx_ring(struct bnxt *bp,
15138 			      struct bnxt_rx_ring_info *dst,
15139 			      struct bnxt_rx_ring_info *src)
15140 {
15141 	struct bnxt_ring_mem_info *dst_rmem, *src_rmem;
15142 	struct bnxt_ring_struct *dst_ring, *src_ring;
15143 	int i;
15144 
15145 	dst_ring = &dst->rx_ring_struct;
15146 	dst_rmem = &dst_ring->ring_mem;
15147 	src_ring = &src->rx_ring_struct;
15148 	src_rmem = &src_ring->ring_mem;
15149 
15150 	WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages);
15151 	WARN_ON(dst_rmem->page_size != src_rmem->page_size);
15152 	WARN_ON(dst_rmem->flags != src_rmem->flags);
15153 	WARN_ON(dst_rmem->depth != src_rmem->depth);
15154 	WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size);
15155 	WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem);
15156 
15157 	dst_rmem->pg_tbl = src_rmem->pg_tbl;
15158 	dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map;
15159 	*dst_rmem->vmem = *src_rmem->vmem;
15160 	for (i = 0; i < dst_rmem->nr_pages; i++) {
15161 		dst_rmem->pg_arr[i] = src_rmem->pg_arr[i];
15162 		dst_rmem->dma_arr[i] = src_rmem->dma_arr[i];
15163 	}
15164 
15165 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
15166 		return;
15167 
15168 	dst_ring = &dst->rx_agg_ring_struct;
15169 	dst_rmem = &dst_ring->ring_mem;
15170 	src_ring = &src->rx_agg_ring_struct;
15171 	src_rmem = &src_ring->ring_mem;
15172 
15173 	WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages);
15174 	WARN_ON(dst_rmem->page_size != src_rmem->page_size);
15175 	WARN_ON(dst_rmem->flags != src_rmem->flags);
15176 	WARN_ON(dst_rmem->depth != src_rmem->depth);
15177 	WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size);
15178 	WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem);
15179 	WARN_ON(dst->rx_agg_bmap_size != src->rx_agg_bmap_size);
15180 
15181 	dst_rmem->pg_tbl = src_rmem->pg_tbl;
15182 	dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map;
15183 	*dst_rmem->vmem = *src_rmem->vmem;
15184 	for (i = 0; i < dst_rmem->nr_pages; i++) {
15185 		dst_rmem->pg_arr[i] = src_rmem->pg_arr[i];
15186 		dst_rmem->dma_arr[i] = src_rmem->dma_arr[i];
15187 	}
15188 
15189 	dst->rx_agg_bmap = src->rx_agg_bmap;
15190 }
15191 
15192 static int bnxt_queue_start(struct net_device *dev, void *qmem, int idx)
15193 {
15194 	struct bnxt *bp = netdev_priv(dev);
15195 	struct bnxt_rx_ring_info *rxr, *clone;
15196 	struct bnxt_cp_ring_info *cpr;
15197 	struct bnxt_vnic_info *vnic;
15198 	int i, rc;
15199 
15200 	rxr = &bp->rx_ring[idx];
15201 	clone = qmem;
15202 
15203 	rxr->rx_prod = clone->rx_prod;
15204 	rxr->rx_agg_prod = clone->rx_agg_prod;
15205 	rxr->rx_sw_agg_prod = clone->rx_sw_agg_prod;
15206 	rxr->rx_next_cons = clone->rx_next_cons;
15207 	rxr->page_pool = clone->page_pool;
15208 	rxr->xdp_rxq = clone->xdp_rxq;
15209 
15210 	bnxt_copy_rx_ring(bp, rxr, clone);
15211 
15212 	rc = bnxt_hwrm_rx_ring_alloc(bp, rxr);
15213 	if (rc)
15214 		return rc;
15215 	rc = bnxt_hwrm_rx_agg_ring_alloc(bp, rxr);
15216 	if (rc)
15217 		goto err_free_hwrm_rx_ring;
15218 
15219 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
15220 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
15221 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
15222 
15223 	cpr = &rxr->bnapi->cp_ring;
15224 	cpr->sw_stats->rx.rx_resets++;
15225 
15226 	for (i = 0; i <= BNXT_VNIC_NTUPLE; i++) {
15227 		vnic = &bp->vnic_info[i];
15228 		vnic->mru = bp->dev->mtu + ETH_HLEN + VLAN_HLEN;
15229 		bnxt_hwrm_vnic_update(bp, vnic,
15230 				      VNIC_UPDATE_REQ_ENABLES_MRU_VALID);
15231 	}
15232 
15233 	return 0;
15234 
15235 err_free_hwrm_rx_ring:
15236 	bnxt_hwrm_rx_ring_free(bp, rxr, false);
15237 	return rc;
15238 }
15239 
15240 static int bnxt_queue_stop(struct net_device *dev, void *qmem, int idx)
15241 {
15242 	struct bnxt *bp = netdev_priv(dev);
15243 	struct bnxt_rx_ring_info *rxr;
15244 	struct bnxt_vnic_info *vnic;
15245 	int i;
15246 
15247 	for (i = 0; i <= BNXT_VNIC_NTUPLE; i++) {
15248 		vnic = &bp->vnic_info[i];
15249 		vnic->mru = 0;
15250 		bnxt_hwrm_vnic_update(bp, vnic,
15251 				      VNIC_UPDATE_REQ_ENABLES_MRU_VALID);
15252 	}
15253 
15254 	rxr = &bp->rx_ring[idx];
15255 	bnxt_hwrm_rx_ring_free(bp, rxr, false);
15256 	bnxt_hwrm_rx_agg_ring_free(bp, rxr, false);
15257 	rxr->rx_next_cons = 0;
15258 	page_pool_disable_direct_recycling(rxr->page_pool);
15259 
15260 	memcpy(qmem, rxr, sizeof(*rxr));
15261 	bnxt_init_rx_ring_struct(bp, qmem);
15262 
15263 	return 0;
15264 }
15265 
15266 static const struct netdev_queue_mgmt_ops bnxt_queue_mgmt_ops = {
15267 	.ndo_queue_mem_size	= sizeof(struct bnxt_rx_ring_info),
15268 	.ndo_queue_mem_alloc	= bnxt_queue_mem_alloc,
15269 	.ndo_queue_mem_free	= bnxt_queue_mem_free,
15270 	.ndo_queue_start	= bnxt_queue_start,
15271 	.ndo_queue_stop		= bnxt_queue_stop,
15272 };
15273 
15274 static void bnxt_remove_one(struct pci_dev *pdev)
15275 {
15276 	struct net_device *dev = pci_get_drvdata(pdev);
15277 	struct bnxt *bp = netdev_priv(dev);
15278 
15279 	if (BNXT_PF(bp))
15280 		bnxt_sriov_disable(bp);
15281 
15282 	bnxt_rdma_aux_device_del(bp);
15283 
15284 	bnxt_ptp_clear(bp);
15285 	unregister_netdev(dev);
15286 
15287 	bnxt_rdma_aux_device_uninit(bp);
15288 
15289 	bnxt_free_l2_filters(bp, true);
15290 	bnxt_free_ntp_fltrs(bp, true);
15291 	WARN_ON(bp->num_rss_ctx);
15292 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
15293 	/* Flush any pending tasks */
15294 	cancel_work_sync(&bp->sp_task);
15295 	cancel_delayed_work_sync(&bp->fw_reset_task);
15296 	bp->sp_event = 0;
15297 
15298 	bnxt_dl_fw_reporters_destroy(bp);
15299 	bnxt_dl_unregister(bp);
15300 	bnxt_shutdown_tc(bp);
15301 
15302 	bnxt_clear_int_mode(bp);
15303 	bnxt_hwrm_func_drv_unrgtr(bp);
15304 	bnxt_free_hwrm_resources(bp);
15305 	bnxt_hwmon_uninit(bp);
15306 	bnxt_ethtool_free(bp);
15307 	bnxt_dcb_free(bp);
15308 	kfree(bp->ptp_cfg);
15309 	bp->ptp_cfg = NULL;
15310 	kfree(bp->fw_health);
15311 	bp->fw_health = NULL;
15312 	bnxt_cleanup_pci(bp);
15313 	bnxt_free_ctx_mem(bp);
15314 	bnxt_free_crash_dump_mem(bp);
15315 	kfree(bp->rss_indir_tbl);
15316 	bp->rss_indir_tbl = NULL;
15317 	bnxt_free_port_stats(bp);
15318 	free_netdev(dev);
15319 }
15320 
15321 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
15322 {
15323 	int rc = 0;
15324 	struct bnxt_link_info *link_info = &bp->link_info;
15325 
15326 	bp->phy_flags = 0;
15327 	rc = bnxt_hwrm_phy_qcaps(bp);
15328 	if (rc) {
15329 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
15330 			   rc);
15331 		return rc;
15332 	}
15333 	if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
15334 		bp->dev->priv_flags |= IFF_SUPP_NOFCS;
15335 	else
15336 		bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
15337 	if (!fw_dflt)
15338 		return 0;
15339 
15340 	mutex_lock(&bp->link_lock);
15341 	rc = bnxt_update_link(bp, false);
15342 	if (rc) {
15343 		mutex_unlock(&bp->link_lock);
15344 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
15345 			   rc);
15346 		return rc;
15347 	}
15348 
15349 	/* Older firmware does not have supported_auto_speeds, so assume
15350 	 * that all supported speeds can be autonegotiated.
15351 	 */
15352 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
15353 		link_info->support_auto_speeds = link_info->support_speeds;
15354 
15355 	bnxt_init_ethtool_link_settings(bp);
15356 	mutex_unlock(&bp->link_lock);
15357 	return 0;
15358 }
15359 
15360 static int bnxt_get_max_irq(struct pci_dev *pdev)
15361 {
15362 	u16 ctrl;
15363 
15364 	if (!pdev->msix_cap)
15365 		return 1;
15366 
15367 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
15368 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
15369 }
15370 
15371 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
15372 				int *max_cp)
15373 {
15374 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
15375 	int max_ring_grps = 0, max_irq;
15376 
15377 	*max_tx = hw_resc->max_tx_rings;
15378 	*max_rx = hw_resc->max_rx_rings;
15379 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
15380 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
15381 			bnxt_get_ulp_msix_num_in_use(bp),
15382 			hw_resc->max_stat_ctxs -
15383 			bnxt_get_ulp_stat_ctxs_in_use(bp));
15384 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
15385 		*max_cp = min_t(int, *max_cp, max_irq);
15386 	max_ring_grps = hw_resc->max_hw_ring_grps;
15387 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
15388 		*max_cp -= 1;
15389 		*max_rx -= 2;
15390 	}
15391 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
15392 		*max_rx >>= 1;
15393 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
15394 		int rc;
15395 
15396 		rc = __bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
15397 		if (rc) {
15398 			*max_rx = 0;
15399 			*max_tx = 0;
15400 		}
15401 		/* On P5 chips, max_cp output param should be available NQs */
15402 		*max_cp = max_irq;
15403 	}
15404 	*max_rx = min_t(int, *max_rx, max_ring_grps);
15405 }
15406 
15407 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
15408 {
15409 	int rx, tx, cp;
15410 
15411 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
15412 	*max_rx = rx;
15413 	*max_tx = tx;
15414 	if (!rx || !tx || !cp)
15415 		return -ENOMEM;
15416 
15417 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
15418 }
15419 
15420 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
15421 			       bool shared)
15422 {
15423 	int rc;
15424 
15425 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
15426 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
15427 		/* Not enough rings, try disabling agg rings. */
15428 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
15429 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
15430 		if (rc) {
15431 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
15432 			bp->flags |= BNXT_FLAG_AGG_RINGS;
15433 			return rc;
15434 		}
15435 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
15436 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
15437 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
15438 		bnxt_set_ring_params(bp);
15439 	}
15440 
15441 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
15442 		int max_cp, max_stat, max_irq;
15443 
15444 		/* Reserve minimum resources for RoCE */
15445 		max_cp = bnxt_get_max_func_cp_rings(bp);
15446 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
15447 		max_irq = bnxt_get_max_func_irqs(bp);
15448 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
15449 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
15450 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
15451 			return 0;
15452 
15453 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
15454 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
15455 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
15456 		max_cp = min_t(int, max_cp, max_irq);
15457 		max_cp = min_t(int, max_cp, max_stat);
15458 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
15459 		if (rc)
15460 			rc = 0;
15461 	}
15462 	return rc;
15463 }
15464 
15465 /* In initial default shared ring setting, each shared ring must have a
15466  * RX/TX ring pair.
15467  */
15468 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
15469 {
15470 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
15471 	bp->rx_nr_rings = bp->cp_nr_rings;
15472 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
15473 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
15474 }
15475 
15476 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
15477 {
15478 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
15479 	int avail_msix;
15480 
15481 	if (!bnxt_can_reserve_rings(bp))
15482 		return 0;
15483 
15484 	if (sh)
15485 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
15486 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
15487 	/* Reduce default rings on multi-port cards so that total default
15488 	 * rings do not exceed CPU count.
15489 	 */
15490 	if (bp->port_count > 1) {
15491 		int max_rings =
15492 			max_t(int, num_online_cpus() / bp->port_count, 1);
15493 
15494 		dflt_rings = min_t(int, dflt_rings, max_rings);
15495 	}
15496 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
15497 	if (rc)
15498 		return rc;
15499 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
15500 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
15501 	if (sh)
15502 		bnxt_trim_dflt_sh_rings(bp);
15503 	else
15504 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
15505 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
15506 
15507 	avail_msix = bnxt_get_max_func_irqs(bp) - bp->cp_nr_rings;
15508 	if (avail_msix >= BNXT_MIN_ROCE_CP_RINGS) {
15509 		int ulp_num_msix = min(avail_msix, bp->ulp_num_msix_want);
15510 
15511 		bnxt_set_ulp_msix_num(bp, ulp_num_msix);
15512 		bnxt_set_dflt_ulp_stat_ctxs(bp);
15513 	}
15514 
15515 	rc = __bnxt_reserve_rings(bp);
15516 	if (rc && rc != -ENODEV)
15517 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
15518 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
15519 	if (sh)
15520 		bnxt_trim_dflt_sh_rings(bp);
15521 
15522 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
15523 	if (bnxt_need_reserve_rings(bp)) {
15524 		rc = __bnxt_reserve_rings(bp);
15525 		if (rc && rc != -ENODEV)
15526 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
15527 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
15528 	}
15529 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
15530 		bp->rx_nr_rings++;
15531 		bp->cp_nr_rings++;
15532 	}
15533 	if (rc) {
15534 		bp->tx_nr_rings = 0;
15535 		bp->rx_nr_rings = 0;
15536 	}
15537 	return rc;
15538 }
15539 
15540 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
15541 {
15542 	int rc;
15543 
15544 	if (bp->tx_nr_rings)
15545 		return 0;
15546 
15547 	bnxt_ulp_irq_stop(bp);
15548 	bnxt_clear_int_mode(bp);
15549 	rc = bnxt_set_dflt_rings(bp, true);
15550 	if (rc) {
15551 		if (BNXT_VF(bp) && rc == -ENODEV)
15552 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
15553 		else
15554 			netdev_err(bp->dev, "Not enough rings available.\n");
15555 		goto init_dflt_ring_err;
15556 	}
15557 	rc = bnxt_init_int_mode(bp);
15558 	if (rc)
15559 		goto init_dflt_ring_err;
15560 
15561 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
15562 
15563 	bnxt_set_dflt_rfs(bp);
15564 
15565 init_dflt_ring_err:
15566 	bnxt_ulp_irq_restart(bp, rc);
15567 	return rc;
15568 }
15569 
15570 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
15571 {
15572 	int rc;
15573 
15574 	ASSERT_RTNL();
15575 	bnxt_hwrm_func_qcaps(bp);
15576 
15577 	if (netif_running(bp->dev))
15578 		__bnxt_close_nic(bp, true, false);
15579 
15580 	bnxt_ulp_irq_stop(bp);
15581 	bnxt_clear_int_mode(bp);
15582 	rc = bnxt_init_int_mode(bp);
15583 	bnxt_ulp_irq_restart(bp, rc);
15584 
15585 	if (netif_running(bp->dev)) {
15586 		if (rc)
15587 			dev_close(bp->dev);
15588 		else
15589 			rc = bnxt_open_nic(bp, true, false);
15590 	}
15591 
15592 	return rc;
15593 }
15594 
15595 static int bnxt_init_mac_addr(struct bnxt *bp)
15596 {
15597 	int rc = 0;
15598 
15599 	if (BNXT_PF(bp)) {
15600 		eth_hw_addr_set(bp->dev, bp->pf.mac_addr);
15601 	} else {
15602 #ifdef CONFIG_BNXT_SRIOV
15603 		struct bnxt_vf_info *vf = &bp->vf;
15604 		bool strict_approval = true;
15605 
15606 		if (is_valid_ether_addr(vf->mac_addr)) {
15607 			/* overwrite netdev dev_addr with admin VF MAC */
15608 			eth_hw_addr_set(bp->dev, vf->mac_addr);
15609 			/* Older PF driver or firmware may not approve this
15610 			 * correctly.
15611 			 */
15612 			strict_approval = false;
15613 		} else {
15614 			eth_hw_addr_random(bp->dev);
15615 		}
15616 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
15617 #endif
15618 	}
15619 	return rc;
15620 }
15621 
15622 static void bnxt_vpd_read_info(struct bnxt *bp)
15623 {
15624 	struct pci_dev *pdev = bp->pdev;
15625 	unsigned int vpd_size, kw_len;
15626 	int pos, size;
15627 	u8 *vpd_data;
15628 
15629 	vpd_data = pci_vpd_alloc(pdev, &vpd_size);
15630 	if (IS_ERR(vpd_data)) {
15631 		pci_warn(pdev, "Unable to read VPD\n");
15632 		return;
15633 	}
15634 
15635 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
15636 					   PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
15637 	if (pos < 0)
15638 		goto read_sn;
15639 
15640 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
15641 	memcpy(bp->board_partno, &vpd_data[pos], size);
15642 
15643 read_sn:
15644 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
15645 					   PCI_VPD_RO_KEYWORD_SERIALNO,
15646 					   &kw_len);
15647 	if (pos < 0)
15648 		goto exit;
15649 
15650 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
15651 	memcpy(bp->board_serialno, &vpd_data[pos], size);
15652 exit:
15653 	kfree(vpd_data);
15654 }
15655 
15656 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
15657 {
15658 	struct pci_dev *pdev = bp->pdev;
15659 	u64 qword;
15660 
15661 	qword = pci_get_dsn(pdev);
15662 	if (!qword) {
15663 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
15664 		return -EOPNOTSUPP;
15665 	}
15666 
15667 	put_unaligned_le64(qword, dsn);
15668 
15669 	bp->flags |= BNXT_FLAG_DSN_VALID;
15670 	return 0;
15671 }
15672 
15673 static int bnxt_map_db_bar(struct bnxt *bp)
15674 {
15675 	if (!bp->db_size)
15676 		return -ENODEV;
15677 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
15678 	if (!bp->bar1)
15679 		return -ENOMEM;
15680 	return 0;
15681 }
15682 
15683 void bnxt_print_device_info(struct bnxt *bp)
15684 {
15685 	netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n",
15686 		    board_info[bp->board_idx].name,
15687 		    (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr);
15688 
15689 	pcie_print_link_status(bp->pdev);
15690 }
15691 
15692 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
15693 {
15694 	struct bnxt_hw_resc *hw_resc;
15695 	struct net_device *dev;
15696 	struct bnxt *bp;
15697 	int rc, max_irqs;
15698 
15699 	if (pci_is_bridge(pdev))
15700 		return -ENODEV;
15701 
15702 	if (!pdev->msix_cap) {
15703 		dev_err(&pdev->dev, "MSIX capability not found, aborting\n");
15704 		return -ENODEV;
15705 	}
15706 
15707 	/* Clear any pending DMA transactions from crash kernel
15708 	 * while loading driver in capture kernel.
15709 	 */
15710 	if (is_kdump_kernel()) {
15711 		pci_clear_master(pdev);
15712 		pcie_flr(pdev);
15713 	}
15714 
15715 	max_irqs = bnxt_get_max_irq(pdev);
15716 	dev = alloc_etherdev_mqs(sizeof(*bp), max_irqs * BNXT_MAX_QUEUE,
15717 				 max_irqs);
15718 	if (!dev)
15719 		return -ENOMEM;
15720 
15721 	bp = netdev_priv(dev);
15722 	bp->board_idx = ent->driver_data;
15723 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
15724 	bnxt_set_max_func_irqs(bp, max_irqs);
15725 
15726 	if (bnxt_vf_pciid(bp->board_idx))
15727 		bp->flags |= BNXT_FLAG_VF;
15728 
15729 	/* No devlink port registration in case of a VF */
15730 	if (BNXT_PF(bp))
15731 		SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port);
15732 
15733 	rc = bnxt_init_board(pdev, dev);
15734 	if (rc < 0)
15735 		goto init_err_free;
15736 
15737 	dev->netdev_ops = &bnxt_netdev_ops;
15738 	dev->stat_ops = &bnxt_stat_ops;
15739 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
15740 	dev->ethtool_ops = &bnxt_ethtool_ops;
15741 	pci_set_drvdata(pdev, dev);
15742 
15743 	rc = bnxt_alloc_hwrm_resources(bp);
15744 	if (rc)
15745 		goto init_err_pci_clean;
15746 
15747 	mutex_init(&bp->hwrm_cmd_lock);
15748 	mutex_init(&bp->link_lock);
15749 
15750 	rc = bnxt_fw_init_one_p1(bp);
15751 	if (rc)
15752 		goto init_err_pci_clean;
15753 
15754 	if (BNXT_PF(bp))
15755 		bnxt_vpd_read_info(bp);
15756 
15757 	if (BNXT_CHIP_P5_PLUS(bp)) {
15758 		bp->flags |= BNXT_FLAG_CHIP_P5_PLUS;
15759 		if (BNXT_CHIP_P7(bp))
15760 			bp->flags |= BNXT_FLAG_CHIP_P7;
15761 	}
15762 
15763 	rc = bnxt_alloc_rss_indir_tbl(bp);
15764 	if (rc)
15765 		goto init_err_pci_clean;
15766 
15767 	rc = bnxt_fw_init_one_p2(bp);
15768 	if (rc)
15769 		goto init_err_pci_clean;
15770 
15771 	rc = bnxt_map_db_bar(bp);
15772 	if (rc) {
15773 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
15774 			rc);
15775 		goto init_err_pci_clean;
15776 	}
15777 
15778 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
15779 			   NETIF_F_TSO | NETIF_F_TSO6 |
15780 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
15781 			   NETIF_F_GSO_IPXIP4 |
15782 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
15783 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
15784 			   NETIF_F_RXCSUM | NETIF_F_GRO;
15785 	if (bp->flags & BNXT_FLAG_UDP_GSO_CAP)
15786 		dev->hw_features |= NETIF_F_GSO_UDP_L4;
15787 
15788 	if (BNXT_SUPPORTS_TPA(bp))
15789 		dev->hw_features |= NETIF_F_LRO;
15790 
15791 	dev->hw_enc_features =
15792 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
15793 			NETIF_F_TSO | NETIF_F_TSO6 |
15794 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
15795 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
15796 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
15797 	if (bp->flags & BNXT_FLAG_UDP_GSO_CAP)
15798 		dev->hw_enc_features |= NETIF_F_GSO_UDP_L4;
15799 	if (bp->flags & BNXT_FLAG_CHIP_P7)
15800 		dev->udp_tunnel_nic_info = &bnxt_udp_tunnels_p7;
15801 	else
15802 		dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
15803 
15804 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
15805 				    NETIF_F_GSO_GRE_CSUM;
15806 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
15807 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
15808 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
15809 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
15810 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
15811 	if (BNXT_SUPPORTS_TPA(bp))
15812 		dev->hw_features |= NETIF_F_GRO_HW;
15813 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
15814 	if (dev->features & NETIF_F_GRO_HW)
15815 		dev->features &= ~NETIF_F_LRO;
15816 	dev->priv_flags |= IFF_UNICAST_FLT;
15817 
15818 	netif_set_tso_max_size(dev, GSO_MAX_SIZE);
15819 	if (bp->tso_max_segs)
15820 		netif_set_tso_max_segs(dev, bp->tso_max_segs);
15821 
15822 	dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
15823 			    NETDEV_XDP_ACT_RX_SG;
15824 
15825 #ifdef CONFIG_BNXT_SRIOV
15826 	init_waitqueue_head(&bp->sriov_cfg_wait);
15827 #endif
15828 	if (BNXT_SUPPORTS_TPA(bp)) {
15829 		bp->gro_func = bnxt_gro_func_5730x;
15830 		if (BNXT_CHIP_P4(bp))
15831 			bp->gro_func = bnxt_gro_func_5731x;
15832 		else if (BNXT_CHIP_P5_PLUS(bp))
15833 			bp->gro_func = bnxt_gro_func_5750x;
15834 	}
15835 	if (!BNXT_CHIP_P4_PLUS(bp))
15836 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
15837 
15838 	rc = bnxt_init_mac_addr(bp);
15839 	if (rc) {
15840 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
15841 		rc = -EADDRNOTAVAIL;
15842 		goto init_err_pci_clean;
15843 	}
15844 
15845 	if (BNXT_PF(bp)) {
15846 		/* Read the adapter's DSN to use as the eswitch switch_id */
15847 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
15848 	}
15849 
15850 	/* MTU range: 60 - FW defined max */
15851 	dev->min_mtu = ETH_ZLEN;
15852 	dev->max_mtu = bp->max_mtu;
15853 
15854 	rc = bnxt_probe_phy(bp, true);
15855 	if (rc)
15856 		goto init_err_pci_clean;
15857 
15858 	hw_resc = &bp->hw_resc;
15859 	bp->max_fltr = hw_resc->max_rx_em_flows + hw_resc->max_rx_wm_flows +
15860 		       BNXT_L2_FLTR_MAX_FLTR;
15861 	/* Older firmware may not report these filters properly */
15862 	if (bp->max_fltr < BNXT_MAX_FLTR)
15863 		bp->max_fltr = BNXT_MAX_FLTR;
15864 	bnxt_init_l2_fltr_tbl(bp);
15865 	bnxt_set_rx_skb_mode(bp, false);
15866 	bnxt_set_tpa_flags(bp);
15867 	bnxt_set_ring_params(bp);
15868 	bnxt_rdma_aux_device_init(bp);
15869 	rc = bnxt_set_dflt_rings(bp, true);
15870 	if (rc) {
15871 		if (BNXT_VF(bp) && rc == -ENODEV) {
15872 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
15873 		} else {
15874 			netdev_err(bp->dev, "Not enough rings available.\n");
15875 			rc = -ENOMEM;
15876 		}
15877 		goto init_err_pci_clean;
15878 	}
15879 
15880 	bnxt_fw_init_one_p3(bp);
15881 
15882 	bnxt_init_dflt_coal(bp);
15883 
15884 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
15885 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
15886 
15887 	rc = bnxt_init_int_mode(bp);
15888 	if (rc)
15889 		goto init_err_pci_clean;
15890 
15891 	/* No TC has been set yet and rings may have been trimmed due to
15892 	 * limited MSIX, so we re-initialize the TX rings per TC.
15893 	 */
15894 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
15895 
15896 	if (BNXT_PF(bp)) {
15897 		if (!bnxt_pf_wq) {
15898 			bnxt_pf_wq =
15899 				create_singlethread_workqueue("bnxt_pf_wq");
15900 			if (!bnxt_pf_wq) {
15901 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
15902 				rc = -ENOMEM;
15903 				goto init_err_pci_clean;
15904 			}
15905 		}
15906 		rc = bnxt_init_tc(bp);
15907 		if (rc)
15908 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
15909 				   rc);
15910 	}
15911 
15912 	bnxt_inv_fw_health_reg(bp);
15913 	rc = bnxt_dl_register(bp);
15914 	if (rc)
15915 		goto init_err_dl;
15916 
15917 	INIT_LIST_HEAD(&bp->usr_fltr_list);
15918 
15919 	if (BNXT_SUPPORTS_NTUPLE_VNIC(bp))
15920 		bp->rss_cap |= BNXT_RSS_CAP_MULTI_RSS_CTX;
15921 	if (BNXT_SUPPORTS_QUEUE_API(bp))
15922 		dev->queue_mgmt_ops = &bnxt_queue_mgmt_ops;
15923 
15924 	rc = register_netdev(dev);
15925 	if (rc)
15926 		goto init_err_cleanup;
15927 
15928 	bnxt_dl_fw_reporters_create(bp);
15929 
15930 	bnxt_rdma_aux_device_add(bp);
15931 
15932 	bnxt_print_device_info(bp);
15933 
15934 	pci_save_state(pdev);
15935 
15936 	return 0;
15937 init_err_cleanup:
15938 	bnxt_rdma_aux_device_uninit(bp);
15939 	bnxt_dl_unregister(bp);
15940 init_err_dl:
15941 	bnxt_shutdown_tc(bp);
15942 	bnxt_clear_int_mode(bp);
15943 
15944 init_err_pci_clean:
15945 	bnxt_hwrm_func_drv_unrgtr(bp);
15946 	bnxt_free_hwrm_resources(bp);
15947 	bnxt_hwmon_uninit(bp);
15948 	bnxt_ethtool_free(bp);
15949 	bnxt_ptp_clear(bp);
15950 	kfree(bp->ptp_cfg);
15951 	bp->ptp_cfg = NULL;
15952 	kfree(bp->fw_health);
15953 	bp->fw_health = NULL;
15954 	bnxt_cleanup_pci(bp);
15955 	bnxt_free_ctx_mem(bp);
15956 	bnxt_free_crash_dump_mem(bp);
15957 	kfree(bp->rss_indir_tbl);
15958 	bp->rss_indir_tbl = NULL;
15959 
15960 init_err_free:
15961 	free_netdev(dev);
15962 	return rc;
15963 }
15964 
15965 static void bnxt_shutdown(struct pci_dev *pdev)
15966 {
15967 	struct net_device *dev = pci_get_drvdata(pdev);
15968 	struct bnxt *bp;
15969 
15970 	if (!dev)
15971 		return;
15972 
15973 	rtnl_lock();
15974 	bp = netdev_priv(dev);
15975 	if (!bp)
15976 		goto shutdown_exit;
15977 
15978 	if (netif_running(dev))
15979 		dev_close(dev);
15980 
15981 	bnxt_clear_int_mode(bp);
15982 	pci_disable_device(pdev);
15983 
15984 	if (system_state == SYSTEM_POWER_OFF) {
15985 		pci_wake_from_d3(pdev, bp->wol);
15986 		pci_set_power_state(pdev, PCI_D3hot);
15987 	}
15988 
15989 shutdown_exit:
15990 	rtnl_unlock();
15991 }
15992 
15993 #ifdef CONFIG_PM_SLEEP
15994 static int bnxt_suspend(struct device *device)
15995 {
15996 	struct net_device *dev = dev_get_drvdata(device);
15997 	struct bnxt *bp = netdev_priv(dev);
15998 	int rc = 0;
15999 
16000 	bnxt_ulp_stop(bp);
16001 
16002 	rtnl_lock();
16003 	if (netif_running(dev)) {
16004 		netif_device_detach(dev);
16005 		rc = bnxt_close(dev);
16006 	}
16007 	bnxt_hwrm_func_drv_unrgtr(bp);
16008 	pci_disable_device(bp->pdev);
16009 	bnxt_free_ctx_mem(bp);
16010 	rtnl_unlock();
16011 	return rc;
16012 }
16013 
16014 static int bnxt_resume(struct device *device)
16015 {
16016 	struct net_device *dev = dev_get_drvdata(device);
16017 	struct bnxt *bp = netdev_priv(dev);
16018 	int rc = 0;
16019 
16020 	rtnl_lock();
16021 	rc = pci_enable_device(bp->pdev);
16022 	if (rc) {
16023 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
16024 			   rc);
16025 		goto resume_exit;
16026 	}
16027 	pci_set_master(bp->pdev);
16028 	if (bnxt_hwrm_ver_get(bp)) {
16029 		rc = -ENODEV;
16030 		goto resume_exit;
16031 	}
16032 	rc = bnxt_hwrm_func_reset(bp);
16033 	if (rc) {
16034 		rc = -EBUSY;
16035 		goto resume_exit;
16036 	}
16037 
16038 	rc = bnxt_hwrm_func_qcaps(bp);
16039 	if (rc)
16040 		goto resume_exit;
16041 
16042 	bnxt_clear_reservations(bp, true);
16043 
16044 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
16045 		rc = -ENODEV;
16046 		goto resume_exit;
16047 	}
16048 	if (bp->fw_crash_mem)
16049 		bnxt_hwrm_crash_dump_mem_cfg(bp);
16050 
16051 	bnxt_get_wol_settings(bp);
16052 	if (netif_running(dev)) {
16053 		rc = bnxt_open(dev);
16054 		if (!rc)
16055 			netif_device_attach(dev);
16056 	}
16057 
16058 resume_exit:
16059 	rtnl_unlock();
16060 	bnxt_ulp_start(bp, rc);
16061 	if (!rc)
16062 		bnxt_reenable_sriov(bp);
16063 	return rc;
16064 }
16065 
16066 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
16067 #define BNXT_PM_OPS (&bnxt_pm_ops)
16068 
16069 #else
16070 
16071 #define BNXT_PM_OPS NULL
16072 
16073 #endif /* CONFIG_PM_SLEEP */
16074 
16075 /**
16076  * bnxt_io_error_detected - called when PCI error is detected
16077  * @pdev: Pointer to PCI device
16078  * @state: The current pci connection state
16079  *
16080  * This function is called after a PCI bus error affecting
16081  * this device has been detected.
16082  */
16083 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
16084 					       pci_channel_state_t state)
16085 {
16086 	struct net_device *netdev = pci_get_drvdata(pdev);
16087 	struct bnxt *bp = netdev_priv(netdev);
16088 	bool abort = false;
16089 
16090 	netdev_info(netdev, "PCI I/O error detected\n");
16091 
16092 	bnxt_ulp_stop(bp);
16093 
16094 	rtnl_lock();
16095 	netif_device_detach(netdev);
16096 
16097 	if (test_and_set_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
16098 		netdev_err(bp->dev, "Firmware reset already in progress\n");
16099 		abort = true;
16100 	}
16101 
16102 	if (abort || state == pci_channel_io_perm_failure) {
16103 		rtnl_unlock();
16104 		return PCI_ERS_RESULT_DISCONNECT;
16105 	}
16106 
16107 	/* Link is not reliable anymore if state is pci_channel_io_frozen
16108 	 * so we disable bus master to prevent any potential bad DMAs before
16109 	 * freeing kernel memory.
16110 	 */
16111 	if (state == pci_channel_io_frozen) {
16112 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
16113 		bnxt_fw_fatal_close(bp);
16114 	}
16115 
16116 	if (netif_running(netdev))
16117 		__bnxt_close_nic(bp, true, true);
16118 
16119 	if (pci_is_enabled(pdev))
16120 		pci_disable_device(pdev);
16121 	bnxt_free_ctx_mem(bp);
16122 	rtnl_unlock();
16123 
16124 	/* Request a slot slot reset. */
16125 	return PCI_ERS_RESULT_NEED_RESET;
16126 }
16127 
16128 /**
16129  * bnxt_io_slot_reset - called after the pci bus has been reset.
16130  * @pdev: Pointer to PCI device
16131  *
16132  * Restart the card from scratch, as if from a cold-boot.
16133  * At this point, the card has exprienced a hard reset,
16134  * followed by fixups by BIOS, and has its config space
16135  * set up identically to what it was at cold boot.
16136  */
16137 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
16138 {
16139 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
16140 	struct net_device *netdev = pci_get_drvdata(pdev);
16141 	struct bnxt *bp = netdev_priv(netdev);
16142 	int retry = 0;
16143 	int err = 0;
16144 	int off;
16145 
16146 	netdev_info(bp->dev, "PCI Slot Reset\n");
16147 
16148 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
16149 	    test_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state))
16150 		msleep(900);
16151 
16152 	rtnl_lock();
16153 
16154 	if (pci_enable_device(pdev)) {
16155 		dev_err(&pdev->dev,
16156 			"Cannot re-enable PCI device after reset.\n");
16157 	} else {
16158 		pci_set_master(pdev);
16159 		/* Upon fatal error, our device internal logic that latches to
16160 		 * BAR value is getting reset and will restore only upon
16161 		 * rewritting the BARs.
16162 		 *
16163 		 * As pci_restore_state() does not re-write the BARs if the
16164 		 * value is same as saved value earlier, driver needs to
16165 		 * write the BARs to 0 to force restore, in case of fatal error.
16166 		 */
16167 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
16168 				       &bp->state)) {
16169 			for (off = PCI_BASE_ADDRESS_0;
16170 			     off <= PCI_BASE_ADDRESS_5; off += 4)
16171 				pci_write_config_dword(bp->pdev, off, 0);
16172 		}
16173 		pci_restore_state(pdev);
16174 		pci_save_state(pdev);
16175 
16176 		bnxt_inv_fw_health_reg(bp);
16177 		bnxt_try_map_fw_health_reg(bp);
16178 
16179 		/* In some PCIe AER scenarios, firmware may take up to
16180 		 * 10 seconds to become ready in the worst case.
16181 		 */
16182 		do {
16183 			err = bnxt_try_recover_fw(bp);
16184 			if (!err)
16185 				break;
16186 			retry++;
16187 		} while (retry < BNXT_FW_SLOT_RESET_RETRY);
16188 
16189 		if (err) {
16190 			dev_err(&pdev->dev, "Firmware not ready\n");
16191 			goto reset_exit;
16192 		}
16193 
16194 		err = bnxt_hwrm_func_reset(bp);
16195 		if (!err)
16196 			result = PCI_ERS_RESULT_RECOVERED;
16197 
16198 		bnxt_ulp_irq_stop(bp);
16199 		bnxt_clear_int_mode(bp);
16200 		err = bnxt_init_int_mode(bp);
16201 		bnxt_ulp_irq_restart(bp, err);
16202 	}
16203 
16204 reset_exit:
16205 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
16206 	bnxt_clear_reservations(bp, true);
16207 	rtnl_unlock();
16208 
16209 	return result;
16210 }
16211 
16212 /**
16213  * bnxt_io_resume - called when traffic can start flowing again.
16214  * @pdev: Pointer to PCI device
16215  *
16216  * This callback is called when the error recovery driver tells
16217  * us that its OK to resume normal operation.
16218  */
16219 static void bnxt_io_resume(struct pci_dev *pdev)
16220 {
16221 	struct net_device *netdev = pci_get_drvdata(pdev);
16222 	struct bnxt *bp = netdev_priv(netdev);
16223 	int err;
16224 
16225 	netdev_info(bp->dev, "PCI Slot Resume\n");
16226 	rtnl_lock();
16227 
16228 	err = bnxt_hwrm_func_qcaps(bp);
16229 	if (!err && netif_running(netdev))
16230 		err = bnxt_open(netdev);
16231 
16232 	if (!err)
16233 		netif_device_attach(netdev);
16234 
16235 	rtnl_unlock();
16236 	bnxt_ulp_start(bp, err);
16237 	if (!err)
16238 		bnxt_reenable_sriov(bp);
16239 }
16240 
16241 static const struct pci_error_handlers bnxt_err_handler = {
16242 	.error_detected	= bnxt_io_error_detected,
16243 	.slot_reset	= bnxt_io_slot_reset,
16244 	.resume		= bnxt_io_resume
16245 };
16246 
16247 static struct pci_driver bnxt_pci_driver = {
16248 	.name		= DRV_MODULE_NAME,
16249 	.id_table	= bnxt_pci_tbl,
16250 	.probe		= bnxt_init_one,
16251 	.remove		= bnxt_remove_one,
16252 	.shutdown	= bnxt_shutdown,
16253 	.driver.pm	= BNXT_PM_OPS,
16254 	.err_handler	= &bnxt_err_handler,
16255 #if defined(CONFIG_BNXT_SRIOV)
16256 	.sriov_configure = bnxt_sriov_configure,
16257 #endif
16258 };
16259 
16260 static int __init bnxt_init(void)
16261 {
16262 	int err;
16263 
16264 	bnxt_debug_init();
16265 	err = pci_register_driver(&bnxt_pci_driver);
16266 	if (err) {
16267 		bnxt_debug_exit();
16268 		return err;
16269 	}
16270 
16271 	return 0;
16272 }
16273 
16274 static void __exit bnxt_exit(void)
16275 {
16276 	pci_unregister_driver(&bnxt_pci_driver);
16277 	if (bnxt_pf_wq)
16278 		destroy_workqueue(bnxt_pf_wq);
16279 	bnxt_debug_exit();
16280 }
16281 
16282 module_init(bnxt_init);
16283 module_exit(bnxt_exit);
16284