xref: /linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision 52ffe0ff02fc053a025c381d5808e9ecd3206dfe)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2015 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  */
9 
10 #include <linux/module.h>
11 
12 #include <linux/stringify.h>
13 #include <linux/kernel.h>
14 #include <linux/timer.h>
15 #include <linux/errno.h>
16 #include <linux/ioport.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 #include <linux/interrupt.h>
20 #include <linux/pci.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/delay.h>
29 #include <asm/byteorder.h>
30 #include <asm/page.h>
31 #include <linux/time.h>
32 #include <linux/mii.h>
33 #include <linux/if.h>
34 #include <linux/if_vlan.h>
35 #include <net/ip.h>
36 #include <net/tcp.h>
37 #include <net/udp.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
41 #include <net/vxlan.h>
42 #endif
43 #ifdef CONFIG_NET_RX_BUSY_POLL
44 #include <net/busy_poll.h>
45 #endif
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 
54 #include "bnxt_hsi.h"
55 #include "bnxt.h"
56 #include "bnxt_sriov.h"
57 #include "bnxt_ethtool.h"
58 
59 #define BNXT_TX_TIMEOUT		(5 * HZ)
60 
61 static const char version[] =
62 	"Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
63 
64 MODULE_LICENSE("GPL");
65 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
66 MODULE_VERSION(DRV_MODULE_VERSION);
67 
68 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
69 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
70 #define BNXT_RX_COPY_THRESH 256
71 
72 #define BNXT_TX_PUSH_THRESH 164
73 
74 enum board_idx {
75 	BCM57301,
76 	BCM57302,
77 	BCM57304,
78 	BCM57402,
79 	BCM57404,
80 	BCM57406,
81 	BCM57304_VF,
82 	BCM57404_VF,
83 };
84 
85 /* indexed by enum above */
86 static const struct {
87 	char *name;
88 } board_info[] = {
89 	{ "Broadcom BCM57301 NetXtreme-C Single-port 10Gb Ethernet" },
90 	{ "Broadcom BCM57302 NetXtreme-C Dual-port 10Gb/25Gb Ethernet" },
91 	{ "Broadcom BCM57304 NetXtreme-C Dual-port 10Gb/25Gb/40Gb/50Gb Ethernet" },
92 	{ "Broadcom BCM57402 NetXtreme-E Dual-port 10Gb Ethernet" },
93 	{ "Broadcom BCM57404 NetXtreme-E Dual-port 10Gb/25Gb Ethernet" },
94 	{ "Broadcom BCM57406 NetXtreme-E Dual-port 10GBase-T Ethernet" },
95 	{ "Broadcom BCM57304 NetXtreme-C Ethernet Virtual Function" },
96 	{ "Broadcom BCM57404 NetXtreme-E Ethernet Virtual Function" },
97 };
98 
99 static const struct pci_device_id bnxt_pci_tbl[] = {
100 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
101 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
102 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
103 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
104 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
105 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
106 #ifdef CONFIG_BNXT_SRIOV
107 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = BCM57304_VF },
108 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = BCM57404_VF },
109 #endif
110 	{ 0 }
111 };
112 
113 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
114 
115 static const u16 bnxt_vf_req_snif[] = {
116 	HWRM_FUNC_CFG,
117 	HWRM_PORT_PHY_QCFG,
118 	HWRM_CFA_L2_FILTER_ALLOC,
119 };
120 
121 static bool bnxt_vf_pciid(enum board_idx idx)
122 {
123 	return (idx == BCM57304_VF || idx == BCM57404_VF);
124 }
125 
126 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
127 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
128 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
129 
130 #define BNXT_CP_DB_REARM(db, raw_cons)					\
131 		writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
132 
133 #define BNXT_CP_DB(db, raw_cons)					\
134 		writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
135 
136 #define BNXT_CP_DB_IRQ_DIS(db)						\
137 		writel(DB_CP_IRQ_DIS_FLAGS, db)
138 
139 static inline u32 bnxt_tx_avail(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
140 {
141 	/* Tell compiler to fetch tx indices from memory. */
142 	barrier();
143 
144 	return bp->tx_ring_size -
145 		((txr->tx_prod - txr->tx_cons) & bp->tx_ring_mask);
146 }
147 
148 static const u16 bnxt_lhint_arr[] = {
149 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
150 	TX_BD_FLAGS_LHINT_512_TO_1023,
151 	TX_BD_FLAGS_LHINT_1024_TO_2047,
152 	TX_BD_FLAGS_LHINT_1024_TO_2047,
153 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
154 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
155 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
156 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
157 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
158 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
159 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
160 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
161 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
162 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
163 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
164 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
165 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
166 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
167 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
168 };
169 
170 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
171 {
172 	struct bnxt *bp = netdev_priv(dev);
173 	struct tx_bd *txbd;
174 	struct tx_bd_ext *txbd1;
175 	struct netdev_queue *txq;
176 	int i;
177 	dma_addr_t mapping;
178 	unsigned int length, pad = 0;
179 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
180 	u16 prod, last_frag;
181 	struct pci_dev *pdev = bp->pdev;
182 	struct bnxt_tx_ring_info *txr;
183 	struct bnxt_sw_tx_bd *tx_buf;
184 
185 	i = skb_get_queue_mapping(skb);
186 	if (unlikely(i >= bp->tx_nr_rings)) {
187 		dev_kfree_skb_any(skb);
188 		return NETDEV_TX_OK;
189 	}
190 
191 	txr = &bp->tx_ring[i];
192 	txq = netdev_get_tx_queue(dev, i);
193 	prod = txr->tx_prod;
194 
195 	free_size = bnxt_tx_avail(bp, txr);
196 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
197 		netif_tx_stop_queue(txq);
198 		return NETDEV_TX_BUSY;
199 	}
200 
201 	length = skb->len;
202 	len = skb_headlen(skb);
203 	last_frag = skb_shinfo(skb)->nr_frags;
204 
205 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
206 
207 	txbd->tx_bd_opaque = prod;
208 
209 	tx_buf = &txr->tx_buf_ring[prod];
210 	tx_buf->skb = skb;
211 	tx_buf->nr_frags = last_frag;
212 
213 	vlan_tag_flags = 0;
214 	cfa_action = 0;
215 	if (skb_vlan_tag_present(skb)) {
216 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
217 				 skb_vlan_tag_get(skb);
218 		/* Currently supports 8021Q, 8021AD vlan offloads
219 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
220 		 */
221 		if (skb->vlan_proto == htons(ETH_P_8021Q))
222 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
223 	}
224 
225 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
226 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
227 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
228 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
229 		void *pdata = tx_push_buf->data;
230 		u64 *end;
231 		int j, push_len;
232 
233 		/* Set COAL_NOW to be ready quickly for the next push */
234 		tx_push->tx_bd_len_flags_type =
235 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
236 					TX_BD_TYPE_LONG_TX_BD |
237 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
238 					TX_BD_FLAGS_COAL_NOW |
239 					TX_BD_FLAGS_PACKET_END |
240 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
241 
242 		if (skb->ip_summed == CHECKSUM_PARTIAL)
243 			tx_push1->tx_bd_hsize_lflags =
244 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
245 		else
246 			tx_push1->tx_bd_hsize_lflags = 0;
247 
248 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
249 		tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
250 
251 		end = pdata + length;
252 		end = PTR_ALIGN(end, 8) - 1;
253 		*end = 0;
254 
255 		skb_copy_from_linear_data(skb, pdata, len);
256 		pdata += len;
257 		for (j = 0; j < last_frag; j++) {
258 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
259 			void *fptr;
260 
261 			fptr = skb_frag_address_safe(frag);
262 			if (!fptr)
263 				goto normal_tx;
264 
265 			memcpy(pdata, fptr, skb_frag_size(frag));
266 			pdata += skb_frag_size(frag);
267 		}
268 
269 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
270 		txbd->tx_bd_haddr = txr->data_mapping;
271 		prod = NEXT_TX(prod);
272 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
273 		memcpy(txbd, tx_push1, sizeof(*txbd));
274 		prod = NEXT_TX(prod);
275 		tx_push->doorbell =
276 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
277 		txr->tx_prod = prod;
278 
279 		netdev_tx_sent_queue(txq, skb->len);
280 
281 		push_len = (length + sizeof(*tx_push) + 7) / 8;
282 		if (push_len > 16) {
283 			__iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
284 			__iowrite64_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
285 					 push_len - 16);
286 		} else {
287 			__iowrite64_copy(txr->tx_doorbell, tx_push_buf,
288 					 push_len);
289 		}
290 
291 		tx_buf->is_push = 1;
292 		goto tx_done;
293 	}
294 
295 normal_tx:
296 	if (length < BNXT_MIN_PKT_SIZE) {
297 		pad = BNXT_MIN_PKT_SIZE - length;
298 		if (skb_pad(skb, pad)) {
299 			/* SKB already freed. */
300 			tx_buf->skb = NULL;
301 			return NETDEV_TX_OK;
302 		}
303 		length = BNXT_MIN_PKT_SIZE;
304 	}
305 
306 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
307 
308 	if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
309 		dev_kfree_skb_any(skb);
310 		tx_buf->skb = NULL;
311 		return NETDEV_TX_OK;
312 	}
313 
314 	dma_unmap_addr_set(tx_buf, mapping, mapping);
315 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
316 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
317 
318 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
319 
320 	prod = NEXT_TX(prod);
321 	txbd1 = (struct tx_bd_ext *)
322 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
323 
324 	txbd1->tx_bd_hsize_lflags = 0;
325 	if (skb_is_gso(skb)) {
326 		u32 hdr_len;
327 
328 		if (skb->encapsulation)
329 			hdr_len = skb_inner_network_offset(skb) +
330 				skb_inner_network_header_len(skb) +
331 				inner_tcp_hdrlen(skb);
332 		else
333 			hdr_len = skb_transport_offset(skb) +
334 				tcp_hdrlen(skb);
335 
336 		txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
337 					TX_BD_FLAGS_T_IPID |
338 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
339 		length = skb_shinfo(skb)->gso_size;
340 		txbd1->tx_bd_mss = cpu_to_le32(length);
341 		length += hdr_len;
342 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
343 		txbd1->tx_bd_hsize_lflags =
344 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
345 		txbd1->tx_bd_mss = 0;
346 	}
347 
348 	length >>= 9;
349 	flags |= bnxt_lhint_arr[length];
350 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
351 
352 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
353 	txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
354 	for (i = 0; i < last_frag; i++) {
355 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
356 
357 		prod = NEXT_TX(prod);
358 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
359 
360 		len = skb_frag_size(frag);
361 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
362 					   DMA_TO_DEVICE);
363 
364 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
365 			goto tx_dma_error;
366 
367 		tx_buf = &txr->tx_buf_ring[prod];
368 		dma_unmap_addr_set(tx_buf, mapping, mapping);
369 
370 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
371 
372 		flags = len << TX_BD_LEN_SHIFT;
373 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
374 	}
375 
376 	flags &= ~TX_BD_LEN;
377 	txbd->tx_bd_len_flags_type =
378 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
379 			    TX_BD_FLAGS_PACKET_END);
380 
381 	netdev_tx_sent_queue(txq, skb->len);
382 
383 	/* Sync BD data before updating doorbell */
384 	wmb();
385 
386 	prod = NEXT_TX(prod);
387 	txr->tx_prod = prod;
388 
389 	writel(DB_KEY_TX | prod, txr->tx_doorbell);
390 	writel(DB_KEY_TX | prod, txr->tx_doorbell);
391 
392 tx_done:
393 
394 	mmiowb();
395 
396 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
397 		netif_tx_stop_queue(txq);
398 
399 		/* netif_tx_stop_queue() must be done before checking
400 		 * tx index in bnxt_tx_avail() below, because in
401 		 * bnxt_tx_int(), we update tx index before checking for
402 		 * netif_tx_queue_stopped().
403 		 */
404 		smp_mb();
405 		if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
406 			netif_tx_wake_queue(txq);
407 	}
408 	return NETDEV_TX_OK;
409 
410 tx_dma_error:
411 	last_frag = i;
412 
413 	/* start back at beginning and unmap skb */
414 	prod = txr->tx_prod;
415 	tx_buf = &txr->tx_buf_ring[prod];
416 	tx_buf->skb = NULL;
417 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
418 			 skb_headlen(skb), PCI_DMA_TODEVICE);
419 	prod = NEXT_TX(prod);
420 
421 	/* unmap remaining mapped pages */
422 	for (i = 0; i < last_frag; i++) {
423 		prod = NEXT_TX(prod);
424 		tx_buf = &txr->tx_buf_ring[prod];
425 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
426 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
427 			       PCI_DMA_TODEVICE);
428 	}
429 
430 	dev_kfree_skb_any(skb);
431 	return NETDEV_TX_OK;
432 }
433 
434 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
435 {
436 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
437 	int index = txr - &bp->tx_ring[0];
438 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, index);
439 	u16 cons = txr->tx_cons;
440 	struct pci_dev *pdev = bp->pdev;
441 	int i;
442 	unsigned int tx_bytes = 0;
443 
444 	for (i = 0; i < nr_pkts; i++) {
445 		struct bnxt_sw_tx_bd *tx_buf;
446 		struct sk_buff *skb;
447 		int j, last;
448 
449 		tx_buf = &txr->tx_buf_ring[cons];
450 		cons = NEXT_TX(cons);
451 		skb = tx_buf->skb;
452 		tx_buf->skb = NULL;
453 
454 		if (tx_buf->is_push) {
455 			tx_buf->is_push = 0;
456 			goto next_tx_int;
457 		}
458 
459 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
460 				 skb_headlen(skb), PCI_DMA_TODEVICE);
461 		last = tx_buf->nr_frags;
462 
463 		for (j = 0; j < last; j++) {
464 			cons = NEXT_TX(cons);
465 			tx_buf = &txr->tx_buf_ring[cons];
466 			dma_unmap_page(
467 				&pdev->dev,
468 				dma_unmap_addr(tx_buf, mapping),
469 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
470 				PCI_DMA_TODEVICE);
471 		}
472 
473 next_tx_int:
474 		cons = NEXT_TX(cons);
475 
476 		tx_bytes += skb->len;
477 		dev_kfree_skb_any(skb);
478 	}
479 
480 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
481 	txr->tx_cons = cons;
482 
483 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
484 	 * before checking for netif_tx_queue_stopped().  Without the
485 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
486 	 * will miss it and cause the queue to be stopped forever.
487 	 */
488 	smp_mb();
489 
490 	if (unlikely(netif_tx_queue_stopped(txq)) &&
491 	    (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
492 		__netif_tx_lock(txq, smp_processor_id());
493 		if (netif_tx_queue_stopped(txq) &&
494 		    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
495 		    txr->dev_state != BNXT_DEV_STATE_CLOSING)
496 			netif_tx_wake_queue(txq);
497 		__netif_tx_unlock(txq);
498 	}
499 }
500 
501 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
502 				       gfp_t gfp)
503 {
504 	u8 *data;
505 	struct pci_dev *pdev = bp->pdev;
506 
507 	data = kmalloc(bp->rx_buf_size, gfp);
508 	if (!data)
509 		return NULL;
510 
511 	*mapping = dma_map_single(&pdev->dev, data + BNXT_RX_DMA_OFFSET,
512 				  bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
513 
514 	if (dma_mapping_error(&pdev->dev, *mapping)) {
515 		kfree(data);
516 		data = NULL;
517 	}
518 	return data;
519 }
520 
521 static inline int bnxt_alloc_rx_data(struct bnxt *bp,
522 				     struct bnxt_rx_ring_info *rxr,
523 				     u16 prod, gfp_t gfp)
524 {
525 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
526 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
527 	u8 *data;
528 	dma_addr_t mapping;
529 
530 	data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
531 	if (!data)
532 		return -ENOMEM;
533 
534 	rx_buf->data = data;
535 	dma_unmap_addr_set(rx_buf, mapping, mapping);
536 
537 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
538 
539 	return 0;
540 }
541 
542 static void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons,
543 			       u8 *data)
544 {
545 	u16 prod = rxr->rx_prod;
546 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
547 	struct rx_bd *cons_bd, *prod_bd;
548 
549 	prod_rx_buf = &rxr->rx_buf_ring[prod];
550 	cons_rx_buf = &rxr->rx_buf_ring[cons];
551 
552 	prod_rx_buf->data = data;
553 
554 	dma_unmap_addr_set(prod_rx_buf, mapping,
555 			   dma_unmap_addr(cons_rx_buf, mapping));
556 
557 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
558 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
559 
560 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
561 }
562 
563 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
564 {
565 	u16 next, max = rxr->rx_agg_bmap_size;
566 
567 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
568 	if (next >= max)
569 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
570 	return next;
571 }
572 
573 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
574 				     struct bnxt_rx_ring_info *rxr,
575 				     u16 prod, gfp_t gfp)
576 {
577 	struct rx_bd *rxbd =
578 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
579 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
580 	struct pci_dev *pdev = bp->pdev;
581 	struct page *page;
582 	dma_addr_t mapping;
583 	u16 sw_prod = rxr->rx_sw_agg_prod;
584 	unsigned int offset = 0;
585 
586 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
587 		page = rxr->rx_page;
588 		if (!page) {
589 			page = alloc_page(gfp);
590 			if (!page)
591 				return -ENOMEM;
592 			rxr->rx_page = page;
593 			rxr->rx_page_offset = 0;
594 		}
595 		offset = rxr->rx_page_offset;
596 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
597 		if (rxr->rx_page_offset == PAGE_SIZE)
598 			rxr->rx_page = NULL;
599 		else
600 			get_page(page);
601 	} else {
602 		page = alloc_page(gfp);
603 		if (!page)
604 			return -ENOMEM;
605 	}
606 
607 	mapping = dma_map_page(&pdev->dev, page, offset, BNXT_RX_PAGE_SIZE,
608 			       PCI_DMA_FROMDEVICE);
609 	if (dma_mapping_error(&pdev->dev, mapping)) {
610 		__free_page(page);
611 		return -EIO;
612 	}
613 
614 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
615 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
616 
617 	__set_bit(sw_prod, rxr->rx_agg_bmap);
618 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
619 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
620 
621 	rx_agg_buf->page = page;
622 	rx_agg_buf->offset = offset;
623 	rx_agg_buf->mapping = mapping;
624 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
625 	rxbd->rx_bd_opaque = sw_prod;
626 	return 0;
627 }
628 
629 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
630 				   u32 agg_bufs)
631 {
632 	struct bnxt *bp = bnapi->bp;
633 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
634 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
635 	u16 prod = rxr->rx_agg_prod;
636 	u16 sw_prod = rxr->rx_sw_agg_prod;
637 	u32 i;
638 
639 	for (i = 0; i < agg_bufs; i++) {
640 		u16 cons;
641 		struct rx_agg_cmp *agg;
642 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
643 		struct rx_bd *prod_bd;
644 		struct page *page;
645 
646 		agg = (struct rx_agg_cmp *)
647 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
648 		cons = agg->rx_agg_cmp_opaque;
649 		__clear_bit(cons, rxr->rx_agg_bmap);
650 
651 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
652 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
653 
654 		__set_bit(sw_prod, rxr->rx_agg_bmap);
655 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
656 		cons_rx_buf = &rxr->rx_agg_ring[cons];
657 
658 		/* It is possible for sw_prod to be equal to cons, so
659 		 * set cons_rx_buf->page to NULL first.
660 		 */
661 		page = cons_rx_buf->page;
662 		cons_rx_buf->page = NULL;
663 		prod_rx_buf->page = page;
664 		prod_rx_buf->offset = cons_rx_buf->offset;
665 
666 		prod_rx_buf->mapping = cons_rx_buf->mapping;
667 
668 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
669 
670 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
671 		prod_bd->rx_bd_opaque = sw_prod;
672 
673 		prod = NEXT_RX_AGG(prod);
674 		sw_prod = NEXT_RX_AGG(sw_prod);
675 		cp_cons = NEXT_CMP(cp_cons);
676 	}
677 	rxr->rx_agg_prod = prod;
678 	rxr->rx_sw_agg_prod = sw_prod;
679 }
680 
681 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
682 				   struct bnxt_rx_ring_info *rxr, u16 cons,
683 				   u16 prod, u8 *data, dma_addr_t dma_addr,
684 				   unsigned int len)
685 {
686 	int err;
687 	struct sk_buff *skb;
688 
689 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
690 	if (unlikely(err)) {
691 		bnxt_reuse_rx_data(rxr, cons, data);
692 		return NULL;
693 	}
694 
695 	skb = build_skb(data, 0);
696 	dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
697 			 PCI_DMA_FROMDEVICE);
698 	if (!skb) {
699 		kfree(data);
700 		return NULL;
701 	}
702 
703 	skb_reserve(skb, BNXT_RX_OFFSET);
704 	skb_put(skb, len);
705 	return skb;
706 }
707 
708 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
709 				     struct sk_buff *skb, u16 cp_cons,
710 				     u32 agg_bufs)
711 {
712 	struct pci_dev *pdev = bp->pdev;
713 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
714 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
715 	u16 prod = rxr->rx_agg_prod;
716 	u32 i;
717 
718 	for (i = 0; i < agg_bufs; i++) {
719 		u16 cons, frag_len;
720 		struct rx_agg_cmp *agg;
721 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
722 		struct page *page;
723 		dma_addr_t mapping;
724 
725 		agg = (struct rx_agg_cmp *)
726 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
727 		cons = agg->rx_agg_cmp_opaque;
728 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
729 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
730 
731 		cons_rx_buf = &rxr->rx_agg_ring[cons];
732 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
733 				   cons_rx_buf->offset, frag_len);
734 		__clear_bit(cons, rxr->rx_agg_bmap);
735 
736 		/* It is possible for bnxt_alloc_rx_page() to allocate
737 		 * a sw_prod index that equals the cons index, so we
738 		 * need to clear the cons entry now.
739 		 */
740 		mapping = dma_unmap_addr(cons_rx_buf, mapping);
741 		page = cons_rx_buf->page;
742 		cons_rx_buf->page = NULL;
743 
744 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
745 			struct skb_shared_info *shinfo;
746 			unsigned int nr_frags;
747 
748 			shinfo = skb_shinfo(skb);
749 			nr_frags = --shinfo->nr_frags;
750 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
751 
752 			dev_kfree_skb(skb);
753 
754 			cons_rx_buf->page = page;
755 
756 			/* Update prod since possibly some pages have been
757 			 * allocated already.
758 			 */
759 			rxr->rx_agg_prod = prod;
760 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
761 			return NULL;
762 		}
763 
764 		dma_unmap_page(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
765 			       PCI_DMA_FROMDEVICE);
766 
767 		skb->data_len += frag_len;
768 		skb->len += frag_len;
769 		skb->truesize += PAGE_SIZE;
770 
771 		prod = NEXT_RX_AGG(prod);
772 		cp_cons = NEXT_CMP(cp_cons);
773 	}
774 	rxr->rx_agg_prod = prod;
775 	return skb;
776 }
777 
778 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
779 			       u8 agg_bufs, u32 *raw_cons)
780 {
781 	u16 last;
782 	struct rx_agg_cmp *agg;
783 
784 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
785 	last = RING_CMP(*raw_cons);
786 	agg = (struct rx_agg_cmp *)
787 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
788 	return RX_AGG_CMP_VALID(agg, *raw_cons);
789 }
790 
791 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
792 					    unsigned int len,
793 					    dma_addr_t mapping)
794 {
795 	struct bnxt *bp = bnapi->bp;
796 	struct pci_dev *pdev = bp->pdev;
797 	struct sk_buff *skb;
798 
799 	skb = napi_alloc_skb(&bnapi->napi, len);
800 	if (!skb)
801 		return NULL;
802 
803 	dma_sync_single_for_cpu(&pdev->dev, mapping,
804 				bp->rx_copy_thresh, PCI_DMA_FROMDEVICE);
805 
806 	memcpy(skb->data - BNXT_RX_OFFSET, data, len + BNXT_RX_OFFSET);
807 
808 	dma_sync_single_for_device(&pdev->dev, mapping,
809 				   bp->rx_copy_thresh,
810 				   PCI_DMA_FROMDEVICE);
811 
812 	skb_put(skb, len);
813 	return skb;
814 }
815 
816 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
817 			   u32 *raw_cons, void *cmp)
818 {
819 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
820 	struct rx_cmp *rxcmp = cmp;
821 	u32 tmp_raw_cons = *raw_cons;
822 	u8 cmp_type, agg_bufs = 0;
823 
824 	cmp_type = RX_CMP_TYPE(rxcmp);
825 
826 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
827 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
828 			    RX_CMP_AGG_BUFS) >>
829 			   RX_CMP_AGG_BUFS_SHIFT;
830 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
831 		struct rx_tpa_end_cmp *tpa_end = cmp;
832 
833 		agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
834 			    RX_TPA_END_CMP_AGG_BUFS) >>
835 			   RX_TPA_END_CMP_AGG_BUFS_SHIFT;
836 	}
837 
838 	if (agg_bufs) {
839 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
840 			return -EBUSY;
841 	}
842 	*raw_cons = tmp_raw_cons;
843 	return 0;
844 }
845 
846 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
847 {
848 	if (!rxr->bnapi->in_reset) {
849 		rxr->bnapi->in_reset = true;
850 		set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
851 		schedule_work(&bp->sp_task);
852 	}
853 	rxr->rx_next_cons = 0xffff;
854 }
855 
856 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
857 			   struct rx_tpa_start_cmp *tpa_start,
858 			   struct rx_tpa_start_cmp_ext *tpa_start1)
859 {
860 	u8 agg_id = TPA_START_AGG_ID(tpa_start);
861 	u16 cons, prod;
862 	struct bnxt_tpa_info *tpa_info;
863 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
864 	struct rx_bd *prod_bd;
865 	dma_addr_t mapping;
866 
867 	cons = tpa_start->rx_tpa_start_cmp_opaque;
868 	prod = rxr->rx_prod;
869 	cons_rx_buf = &rxr->rx_buf_ring[cons];
870 	prod_rx_buf = &rxr->rx_buf_ring[prod];
871 	tpa_info = &rxr->rx_tpa[agg_id];
872 
873 	if (unlikely(cons != rxr->rx_next_cons)) {
874 		bnxt_sched_reset(bp, rxr);
875 		return;
876 	}
877 
878 	prod_rx_buf->data = tpa_info->data;
879 
880 	mapping = tpa_info->mapping;
881 	dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
882 
883 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
884 
885 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
886 
887 	tpa_info->data = cons_rx_buf->data;
888 	cons_rx_buf->data = NULL;
889 	tpa_info->mapping = dma_unmap_addr(cons_rx_buf, mapping);
890 
891 	tpa_info->len =
892 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
893 				RX_TPA_START_CMP_LEN_SHIFT;
894 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
895 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
896 
897 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
898 		tpa_info->gso_type = SKB_GSO_TCPV4;
899 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
900 		if (hash_type == 3)
901 			tpa_info->gso_type = SKB_GSO_TCPV6;
902 		tpa_info->rss_hash =
903 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
904 	} else {
905 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
906 		tpa_info->gso_type = 0;
907 		if (netif_msg_rx_err(bp))
908 			netdev_warn(bp->dev, "TPA packet without valid hash\n");
909 	}
910 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
911 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
912 
913 	rxr->rx_prod = NEXT_RX(prod);
914 	cons = NEXT_RX(cons);
915 	rxr->rx_next_cons = NEXT_RX(cons);
916 	cons_rx_buf = &rxr->rx_buf_ring[cons];
917 
918 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
919 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
920 	cons_rx_buf->data = NULL;
921 }
922 
923 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
924 			   u16 cp_cons, u32 agg_bufs)
925 {
926 	if (agg_bufs)
927 		bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
928 }
929 
930 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
931 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
932 
933 static inline struct sk_buff *bnxt_gro_skb(struct bnxt_tpa_info *tpa_info,
934 					   struct rx_tpa_end_cmp *tpa_end,
935 					   struct rx_tpa_end_cmp_ext *tpa_end1,
936 					   struct sk_buff *skb)
937 {
938 #ifdef CONFIG_INET
939 	struct tcphdr *th;
940 	int payload_off, tcp_opt_len = 0;
941 	int len, nw_off;
942 	u16 segs;
943 
944 	segs = TPA_END_TPA_SEGS(tpa_end);
945 	if (segs == 1)
946 		return skb;
947 
948 	NAPI_GRO_CB(skb)->count = segs;
949 	skb_shinfo(skb)->gso_size =
950 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
951 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
952 	payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
953 		       RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
954 		      RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
955 	if (TPA_END_GRO_TS(tpa_end))
956 		tcp_opt_len = 12;
957 
958 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
959 		struct iphdr *iph;
960 
961 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
962 			 ETH_HLEN;
963 		skb_set_network_header(skb, nw_off);
964 		iph = ip_hdr(skb);
965 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
966 		len = skb->len - skb_transport_offset(skb);
967 		th = tcp_hdr(skb);
968 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
969 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
970 		struct ipv6hdr *iph;
971 
972 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
973 			 ETH_HLEN;
974 		skb_set_network_header(skb, nw_off);
975 		iph = ipv6_hdr(skb);
976 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
977 		len = skb->len - skb_transport_offset(skb);
978 		th = tcp_hdr(skb);
979 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
980 	} else {
981 		dev_kfree_skb_any(skb);
982 		return NULL;
983 	}
984 	tcp_gro_complete(skb);
985 
986 	if (nw_off) { /* tunnel */
987 		struct udphdr *uh = NULL;
988 
989 		if (skb->protocol == htons(ETH_P_IP)) {
990 			struct iphdr *iph = (struct iphdr *)skb->data;
991 
992 			if (iph->protocol == IPPROTO_UDP)
993 				uh = (struct udphdr *)(iph + 1);
994 		} else {
995 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
996 
997 			if (iph->nexthdr == IPPROTO_UDP)
998 				uh = (struct udphdr *)(iph + 1);
999 		}
1000 		if (uh) {
1001 			if (uh->check)
1002 				skb_shinfo(skb)->gso_type |=
1003 					SKB_GSO_UDP_TUNNEL_CSUM;
1004 			else
1005 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1006 		}
1007 	}
1008 #endif
1009 	return skb;
1010 }
1011 
1012 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1013 					   struct bnxt_napi *bnapi,
1014 					   u32 *raw_cons,
1015 					   struct rx_tpa_end_cmp *tpa_end,
1016 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1017 					   bool *agg_event)
1018 {
1019 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1020 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1021 	u8 agg_id = TPA_END_AGG_ID(tpa_end);
1022 	u8 *data, agg_bufs;
1023 	u16 cp_cons = RING_CMP(*raw_cons);
1024 	unsigned int len;
1025 	struct bnxt_tpa_info *tpa_info;
1026 	dma_addr_t mapping;
1027 	struct sk_buff *skb;
1028 
1029 	if (unlikely(bnapi->in_reset)) {
1030 		int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
1031 
1032 		if (rc < 0)
1033 			return ERR_PTR(-EBUSY);
1034 		return NULL;
1035 	}
1036 
1037 	tpa_info = &rxr->rx_tpa[agg_id];
1038 	data = tpa_info->data;
1039 	prefetch(data);
1040 	len = tpa_info->len;
1041 	mapping = tpa_info->mapping;
1042 
1043 	agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1044 		    RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1045 
1046 	if (agg_bufs) {
1047 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1048 			return ERR_PTR(-EBUSY);
1049 
1050 		*agg_event = true;
1051 		cp_cons = NEXT_CMP(cp_cons);
1052 	}
1053 
1054 	if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
1055 		bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1056 		netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1057 			    agg_bufs, (int)MAX_SKB_FRAGS);
1058 		return NULL;
1059 	}
1060 
1061 	if (len <= bp->rx_copy_thresh) {
1062 		skb = bnxt_copy_skb(bnapi, data, len, mapping);
1063 		if (!skb) {
1064 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1065 			return NULL;
1066 		}
1067 	} else {
1068 		u8 *new_data;
1069 		dma_addr_t new_mapping;
1070 
1071 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1072 		if (!new_data) {
1073 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1074 			return NULL;
1075 		}
1076 
1077 		tpa_info->data = new_data;
1078 		tpa_info->mapping = new_mapping;
1079 
1080 		skb = build_skb(data, 0);
1081 		dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
1082 				 PCI_DMA_FROMDEVICE);
1083 
1084 		if (!skb) {
1085 			kfree(data);
1086 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1087 			return NULL;
1088 		}
1089 		skb_reserve(skb, BNXT_RX_OFFSET);
1090 		skb_put(skb, len);
1091 	}
1092 
1093 	if (agg_bufs) {
1094 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1095 		if (!skb) {
1096 			/* Page reuse already handled by bnxt_rx_pages(). */
1097 			return NULL;
1098 		}
1099 	}
1100 	skb->protocol = eth_type_trans(skb, bp->dev);
1101 
1102 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1103 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1104 
1105 	if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) {
1106 		netdev_features_t features = skb->dev->features;
1107 		u16 vlan_proto = tpa_info->metadata >>
1108 			RX_CMP_FLAGS2_METADATA_TPID_SFT;
1109 
1110 		if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1111 		     vlan_proto == ETH_P_8021Q) ||
1112 		    ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1113 		     vlan_proto == ETH_P_8021AD)) {
1114 			__vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1115 					       tpa_info->metadata &
1116 					       RX_CMP_FLAGS2_METADATA_VID_MASK);
1117 		}
1118 	}
1119 
1120 	skb_checksum_none_assert(skb);
1121 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1122 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1123 		skb->csum_level =
1124 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1125 	}
1126 
1127 	if (TPA_END_GRO(tpa_end))
1128 		skb = bnxt_gro_skb(tpa_info, tpa_end, tpa_end1, skb);
1129 
1130 	return skb;
1131 }
1132 
1133 /* returns the following:
1134  * 1       - 1 packet successfully received
1135  * 0       - successful TPA_START, packet not completed yet
1136  * -EBUSY  - completion ring does not have all the agg buffers yet
1137  * -ENOMEM - packet aborted due to out of memory
1138  * -EIO    - packet aborted due to hw error indicated in BD
1139  */
1140 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1141 		       bool *agg_event)
1142 {
1143 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1144 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1145 	struct net_device *dev = bp->dev;
1146 	struct rx_cmp *rxcmp;
1147 	struct rx_cmp_ext *rxcmp1;
1148 	u32 tmp_raw_cons = *raw_cons;
1149 	u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1150 	struct bnxt_sw_rx_bd *rx_buf;
1151 	unsigned int len;
1152 	u8 *data, agg_bufs, cmp_type;
1153 	dma_addr_t dma_addr;
1154 	struct sk_buff *skb;
1155 	int rc = 0;
1156 
1157 	rxcmp = (struct rx_cmp *)
1158 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1159 
1160 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1161 	cp_cons = RING_CMP(tmp_raw_cons);
1162 	rxcmp1 = (struct rx_cmp_ext *)
1163 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1164 
1165 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1166 		return -EBUSY;
1167 
1168 	cmp_type = RX_CMP_TYPE(rxcmp);
1169 
1170 	prod = rxr->rx_prod;
1171 
1172 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1173 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1174 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1175 
1176 		goto next_rx_no_prod;
1177 
1178 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1179 		skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1180 				   (struct rx_tpa_end_cmp *)rxcmp,
1181 				   (struct rx_tpa_end_cmp_ext *)rxcmp1,
1182 				   agg_event);
1183 
1184 		if (unlikely(IS_ERR(skb)))
1185 			return -EBUSY;
1186 
1187 		rc = -ENOMEM;
1188 		if (likely(skb)) {
1189 			skb_record_rx_queue(skb, bnapi->index);
1190 			skb_mark_napi_id(skb, &bnapi->napi);
1191 			if (bnxt_busy_polling(bnapi))
1192 				netif_receive_skb(skb);
1193 			else
1194 				napi_gro_receive(&bnapi->napi, skb);
1195 			rc = 1;
1196 		}
1197 		goto next_rx_no_prod;
1198 	}
1199 
1200 	cons = rxcmp->rx_cmp_opaque;
1201 	rx_buf = &rxr->rx_buf_ring[cons];
1202 	data = rx_buf->data;
1203 	if (unlikely(cons != rxr->rx_next_cons)) {
1204 		int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
1205 
1206 		bnxt_sched_reset(bp, rxr);
1207 		return rc1;
1208 	}
1209 	prefetch(data);
1210 
1211 	agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & RX_CMP_AGG_BUFS) >>
1212 				RX_CMP_AGG_BUFS_SHIFT;
1213 
1214 	if (agg_bufs) {
1215 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1216 			return -EBUSY;
1217 
1218 		cp_cons = NEXT_CMP(cp_cons);
1219 		*agg_event = true;
1220 	}
1221 
1222 	rx_buf->data = NULL;
1223 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1224 		bnxt_reuse_rx_data(rxr, cons, data);
1225 		if (agg_bufs)
1226 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1227 
1228 		rc = -EIO;
1229 		goto next_rx;
1230 	}
1231 
1232 	len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1233 	dma_addr = dma_unmap_addr(rx_buf, mapping);
1234 
1235 	if (len <= bp->rx_copy_thresh) {
1236 		skb = bnxt_copy_skb(bnapi, data, len, dma_addr);
1237 		bnxt_reuse_rx_data(rxr, cons, data);
1238 		if (!skb) {
1239 			rc = -ENOMEM;
1240 			goto next_rx;
1241 		}
1242 	} else {
1243 		skb = bnxt_rx_skb(bp, rxr, cons, prod, data, dma_addr, len);
1244 		if (!skb) {
1245 			rc = -ENOMEM;
1246 			goto next_rx;
1247 		}
1248 	}
1249 
1250 	if (agg_bufs) {
1251 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1252 		if (!skb) {
1253 			rc = -ENOMEM;
1254 			goto next_rx;
1255 		}
1256 	}
1257 
1258 	if (RX_CMP_HASH_VALID(rxcmp)) {
1259 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1260 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1261 
1262 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1263 		if (hash_type != 1 && hash_type != 3)
1264 			type = PKT_HASH_TYPE_L3;
1265 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1266 	}
1267 
1268 	skb->protocol = eth_type_trans(skb, dev);
1269 
1270 	if (rxcmp1->rx_cmp_flags2 &
1271 	    cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) {
1272 		netdev_features_t features = skb->dev->features;
1273 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1274 		u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1275 
1276 		if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1277 		     vlan_proto == ETH_P_8021Q) ||
1278 		    ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1279 		     vlan_proto == ETH_P_8021AD))
1280 			__vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1281 					       meta_data &
1282 					       RX_CMP_FLAGS2_METADATA_VID_MASK);
1283 	}
1284 
1285 	skb_checksum_none_assert(skb);
1286 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1287 		if (dev->features & NETIF_F_RXCSUM) {
1288 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1289 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1290 		}
1291 	} else {
1292 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1293 			if (dev->features & NETIF_F_RXCSUM)
1294 				cpr->rx_l4_csum_errors++;
1295 		}
1296 	}
1297 
1298 	skb_record_rx_queue(skb, bnapi->index);
1299 	skb_mark_napi_id(skb, &bnapi->napi);
1300 	if (bnxt_busy_polling(bnapi))
1301 		netif_receive_skb(skb);
1302 	else
1303 		napi_gro_receive(&bnapi->napi, skb);
1304 	rc = 1;
1305 
1306 next_rx:
1307 	rxr->rx_prod = NEXT_RX(prod);
1308 	rxr->rx_next_cons = NEXT_RX(cons);
1309 
1310 next_rx_no_prod:
1311 	*raw_cons = tmp_raw_cons;
1312 
1313 	return rc;
1314 }
1315 
1316 static int bnxt_async_event_process(struct bnxt *bp,
1317 				    struct hwrm_async_event_cmpl *cmpl)
1318 {
1319 	u16 event_id = le16_to_cpu(cmpl->event_id);
1320 
1321 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
1322 	switch (event_id) {
1323 	case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1324 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1325 		break;
1326 	case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1327 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1328 		break;
1329 	default:
1330 		netdev_err(bp->dev, "unhandled ASYNC event (id 0x%x)\n",
1331 			   event_id);
1332 		goto async_event_process_exit;
1333 	}
1334 	schedule_work(&bp->sp_task);
1335 async_event_process_exit:
1336 	return 0;
1337 }
1338 
1339 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1340 {
1341 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1342 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1343 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1344 				(struct hwrm_fwd_req_cmpl *)txcmp;
1345 
1346 	switch (cmpl_type) {
1347 	case CMPL_BASE_TYPE_HWRM_DONE:
1348 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
1349 		if (seq_id == bp->hwrm_intr_seq_id)
1350 			bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1351 		else
1352 			netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1353 		break;
1354 
1355 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1356 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1357 
1358 		if ((vf_id < bp->pf.first_vf_id) ||
1359 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1360 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1361 				   vf_id);
1362 			return -EINVAL;
1363 		}
1364 
1365 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1366 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1367 		schedule_work(&bp->sp_task);
1368 		break;
1369 
1370 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1371 		bnxt_async_event_process(bp,
1372 					 (struct hwrm_async_event_cmpl *)txcmp);
1373 
1374 	default:
1375 		break;
1376 	}
1377 
1378 	return 0;
1379 }
1380 
1381 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1382 {
1383 	struct bnxt_napi *bnapi = dev_instance;
1384 	struct bnxt *bp = bnapi->bp;
1385 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1386 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1387 
1388 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1389 	napi_schedule(&bnapi->napi);
1390 	return IRQ_HANDLED;
1391 }
1392 
1393 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1394 {
1395 	u32 raw_cons = cpr->cp_raw_cons;
1396 	u16 cons = RING_CMP(raw_cons);
1397 	struct tx_cmp *txcmp;
1398 
1399 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1400 
1401 	return TX_CMP_VALID(txcmp, raw_cons);
1402 }
1403 
1404 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1405 {
1406 	struct bnxt_napi *bnapi = dev_instance;
1407 	struct bnxt *bp = bnapi->bp;
1408 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1409 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1410 	u32 int_status;
1411 
1412 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1413 
1414 	if (!bnxt_has_work(bp, cpr)) {
1415 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1416 		/* return if erroneous interrupt */
1417 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1418 			return IRQ_NONE;
1419 	}
1420 
1421 	/* disable ring IRQ */
1422 	BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1423 
1424 	/* Return here if interrupt is shared and is disabled. */
1425 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
1426 		return IRQ_HANDLED;
1427 
1428 	napi_schedule(&bnapi->napi);
1429 	return IRQ_HANDLED;
1430 }
1431 
1432 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1433 {
1434 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1435 	u32 raw_cons = cpr->cp_raw_cons;
1436 	u32 cons;
1437 	int tx_pkts = 0;
1438 	int rx_pkts = 0;
1439 	bool rx_event = false;
1440 	bool agg_event = false;
1441 	struct tx_cmp *txcmp;
1442 
1443 	while (1) {
1444 		int rc;
1445 
1446 		cons = RING_CMP(raw_cons);
1447 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1448 
1449 		if (!TX_CMP_VALID(txcmp, raw_cons))
1450 			break;
1451 
1452 		/* The valid test of the entry must be done first before
1453 		 * reading any further.
1454 		 */
1455 		rmb();
1456 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1457 			tx_pkts++;
1458 			/* return full budget so NAPI will complete. */
1459 			if (unlikely(tx_pkts > bp->tx_wake_thresh))
1460 				rx_pkts = budget;
1461 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1462 			rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event);
1463 			if (likely(rc >= 0))
1464 				rx_pkts += rc;
1465 			else if (rc == -EBUSY)	/* partial completion */
1466 				break;
1467 			rx_event = true;
1468 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
1469 				     CMPL_BASE_TYPE_HWRM_DONE) ||
1470 				    (TX_CMP_TYPE(txcmp) ==
1471 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1472 				    (TX_CMP_TYPE(txcmp) ==
1473 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1474 			bnxt_hwrm_handler(bp, txcmp);
1475 		}
1476 		raw_cons = NEXT_RAW_CMP(raw_cons);
1477 
1478 		if (rx_pkts == budget)
1479 			break;
1480 	}
1481 
1482 	cpr->cp_raw_cons = raw_cons;
1483 	/* ACK completion ring before freeing tx ring and producing new
1484 	 * buffers in rx/agg rings to prevent overflowing the completion
1485 	 * ring.
1486 	 */
1487 	BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1488 
1489 	if (tx_pkts)
1490 		bnxt_tx_int(bp, bnapi, tx_pkts);
1491 
1492 	if (rx_event) {
1493 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1494 
1495 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1496 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1497 		if (agg_event) {
1498 			writel(DB_KEY_RX | rxr->rx_agg_prod,
1499 			       rxr->rx_agg_doorbell);
1500 			writel(DB_KEY_RX | rxr->rx_agg_prod,
1501 			       rxr->rx_agg_doorbell);
1502 		}
1503 	}
1504 	return rx_pkts;
1505 }
1506 
1507 static int bnxt_poll(struct napi_struct *napi, int budget)
1508 {
1509 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1510 	struct bnxt *bp = bnapi->bp;
1511 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1512 	int work_done = 0;
1513 
1514 	if (!bnxt_lock_napi(bnapi))
1515 		return budget;
1516 
1517 	while (1) {
1518 		work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1519 
1520 		if (work_done >= budget)
1521 			break;
1522 
1523 		if (!bnxt_has_work(bp, cpr)) {
1524 			napi_complete(napi);
1525 			BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1526 			break;
1527 		}
1528 	}
1529 	mmiowb();
1530 	bnxt_unlock_napi(bnapi);
1531 	return work_done;
1532 }
1533 
1534 #ifdef CONFIG_NET_RX_BUSY_POLL
1535 static int bnxt_busy_poll(struct napi_struct *napi)
1536 {
1537 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1538 	struct bnxt *bp = bnapi->bp;
1539 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1540 	int rx_work, budget = 4;
1541 
1542 	if (atomic_read(&bp->intr_sem) != 0)
1543 		return LL_FLUSH_FAILED;
1544 
1545 	if (!bnxt_lock_poll(bnapi))
1546 		return LL_FLUSH_BUSY;
1547 
1548 	rx_work = bnxt_poll_work(bp, bnapi, budget);
1549 
1550 	BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1551 
1552 	bnxt_unlock_poll(bnapi);
1553 	return rx_work;
1554 }
1555 #endif
1556 
1557 static void bnxt_free_tx_skbs(struct bnxt *bp)
1558 {
1559 	int i, max_idx;
1560 	struct pci_dev *pdev = bp->pdev;
1561 
1562 	if (!bp->tx_ring)
1563 		return;
1564 
1565 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1566 	for (i = 0; i < bp->tx_nr_rings; i++) {
1567 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1568 		int j;
1569 
1570 		for (j = 0; j < max_idx;) {
1571 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1572 			struct sk_buff *skb = tx_buf->skb;
1573 			int k, last;
1574 
1575 			if (!skb) {
1576 				j++;
1577 				continue;
1578 			}
1579 
1580 			tx_buf->skb = NULL;
1581 
1582 			if (tx_buf->is_push) {
1583 				dev_kfree_skb(skb);
1584 				j += 2;
1585 				continue;
1586 			}
1587 
1588 			dma_unmap_single(&pdev->dev,
1589 					 dma_unmap_addr(tx_buf, mapping),
1590 					 skb_headlen(skb),
1591 					 PCI_DMA_TODEVICE);
1592 
1593 			last = tx_buf->nr_frags;
1594 			j += 2;
1595 			for (k = 0; k < last; k++, j++) {
1596 				int ring_idx = j & bp->tx_ring_mask;
1597 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1598 
1599 				tx_buf = &txr->tx_buf_ring[ring_idx];
1600 				dma_unmap_page(
1601 					&pdev->dev,
1602 					dma_unmap_addr(tx_buf, mapping),
1603 					skb_frag_size(frag), PCI_DMA_TODEVICE);
1604 			}
1605 			dev_kfree_skb(skb);
1606 		}
1607 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1608 	}
1609 }
1610 
1611 static void bnxt_free_rx_skbs(struct bnxt *bp)
1612 {
1613 	int i, max_idx, max_agg_idx;
1614 	struct pci_dev *pdev = bp->pdev;
1615 
1616 	if (!bp->rx_ring)
1617 		return;
1618 
1619 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
1620 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
1621 	for (i = 0; i < bp->rx_nr_rings; i++) {
1622 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1623 		int j;
1624 
1625 		if (rxr->rx_tpa) {
1626 			for (j = 0; j < MAX_TPA; j++) {
1627 				struct bnxt_tpa_info *tpa_info =
1628 							&rxr->rx_tpa[j];
1629 				u8 *data = tpa_info->data;
1630 
1631 				if (!data)
1632 					continue;
1633 
1634 				dma_unmap_single(
1635 					&pdev->dev,
1636 					dma_unmap_addr(tpa_info, mapping),
1637 					bp->rx_buf_use_size,
1638 					PCI_DMA_FROMDEVICE);
1639 
1640 				tpa_info->data = NULL;
1641 
1642 				kfree(data);
1643 			}
1644 		}
1645 
1646 		for (j = 0; j < max_idx; j++) {
1647 			struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
1648 			u8 *data = rx_buf->data;
1649 
1650 			if (!data)
1651 				continue;
1652 
1653 			dma_unmap_single(&pdev->dev,
1654 					 dma_unmap_addr(rx_buf, mapping),
1655 					 bp->rx_buf_use_size,
1656 					 PCI_DMA_FROMDEVICE);
1657 
1658 			rx_buf->data = NULL;
1659 
1660 			kfree(data);
1661 		}
1662 
1663 		for (j = 0; j < max_agg_idx; j++) {
1664 			struct bnxt_sw_rx_agg_bd *rx_agg_buf =
1665 				&rxr->rx_agg_ring[j];
1666 			struct page *page = rx_agg_buf->page;
1667 
1668 			if (!page)
1669 				continue;
1670 
1671 			dma_unmap_page(&pdev->dev,
1672 				       dma_unmap_addr(rx_agg_buf, mapping),
1673 				       BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE);
1674 
1675 			rx_agg_buf->page = NULL;
1676 			__clear_bit(j, rxr->rx_agg_bmap);
1677 
1678 			__free_page(page);
1679 		}
1680 		if (rxr->rx_page) {
1681 			__free_page(rxr->rx_page);
1682 			rxr->rx_page = NULL;
1683 		}
1684 	}
1685 }
1686 
1687 static void bnxt_free_skbs(struct bnxt *bp)
1688 {
1689 	bnxt_free_tx_skbs(bp);
1690 	bnxt_free_rx_skbs(bp);
1691 }
1692 
1693 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1694 {
1695 	struct pci_dev *pdev = bp->pdev;
1696 	int i;
1697 
1698 	for (i = 0; i < ring->nr_pages; i++) {
1699 		if (!ring->pg_arr[i])
1700 			continue;
1701 
1702 		dma_free_coherent(&pdev->dev, ring->page_size,
1703 				  ring->pg_arr[i], ring->dma_arr[i]);
1704 
1705 		ring->pg_arr[i] = NULL;
1706 	}
1707 	if (ring->pg_tbl) {
1708 		dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
1709 				  ring->pg_tbl, ring->pg_tbl_map);
1710 		ring->pg_tbl = NULL;
1711 	}
1712 	if (ring->vmem_size && *ring->vmem) {
1713 		vfree(*ring->vmem);
1714 		*ring->vmem = NULL;
1715 	}
1716 }
1717 
1718 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1719 {
1720 	int i;
1721 	struct pci_dev *pdev = bp->pdev;
1722 
1723 	if (ring->nr_pages > 1) {
1724 		ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
1725 						  ring->nr_pages * 8,
1726 						  &ring->pg_tbl_map,
1727 						  GFP_KERNEL);
1728 		if (!ring->pg_tbl)
1729 			return -ENOMEM;
1730 	}
1731 
1732 	for (i = 0; i < ring->nr_pages; i++) {
1733 		ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
1734 						     ring->page_size,
1735 						     &ring->dma_arr[i],
1736 						     GFP_KERNEL);
1737 		if (!ring->pg_arr[i])
1738 			return -ENOMEM;
1739 
1740 		if (ring->nr_pages > 1)
1741 			ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
1742 	}
1743 
1744 	if (ring->vmem_size) {
1745 		*ring->vmem = vzalloc(ring->vmem_size);
1746 		if (!(*ring->vmem))
1747 			return -ENOMEM;
1748 	}
1749 	return 0;
1750 }
1751 
1752 static void bnxt_free_rx_rings(struct bnxt *bp)
1753 {
1754 	int i;
1755 
1756 	if (!bp->rx_ring)
1757 		return;
1758 
1759 	for (i = 0; i < bp->rx_nr_rings; i++) {
1760 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1761 		struct bnxt_ring_struct *ring;
1762 
1763 		kfree(rxr->rx_tpa);
1764 		rxr->rx_tpa = NULL;
1765 
1766 		kfree(rxr->rx_agg_bmap);
1767 		rxr->rx_agg_bmap = NULL;
1768 
1769 		ring = &rxr->rx_ring_struct;
1770 		bnxt_free_ring(bp, ring);
1771 
1772 		ring = &rxr->rx_agg_ring_struct;
1773 		bnxt_free_ring(bp, ring);
1774 	}
1775 }
1776 
1777 static int bnxt_alloc_rx_rings(struct bnxt *bp)
1778 {
1779 	int i, rc, agg_rings = 0, tpa_rings = 0;
1780 
1781 	if (!bp->rx_ring)
1782 		return -ENOMEM;
1783 
1784 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
1785 		agg_rings = 1;
1786 
1787 	if (bp->flags & BNXT_FLAG_TPA)
1788 		tpa_rings = 1;
1789 
1790 	for (i = 0; i < bp->rx_nr_rings; i++) {
1791 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1792 		struct bnxt_ring_struct *ring;
1793 
1794 		ring = &rxr->rx_ring_struct;
1795 
1796 		rc = bnxt_alloc_ring(bp, ring);
1797 		if (rc)
1798 			return rc;
1799 
1800 		if (agg_rings) {
1801 			u16 mem_size;
1802 
1803 			ring = &rxr->rx_agg_ring_struct;
1804 			rc = bnxt_alloc_ring(bp, ring);
1805 			if (rc)
1806 				return rc;
1807 
1808 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
1809 			mem_size = rxr->rx_agg_bmap_size / 8;
1810 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
1811 			if (!rxr->rx_agg_bmap)
1812 				return -ENOMEM;
1813 
1814 			if (tpa_rings) {
1815 				rxr->rx_tpa = kcalloc(MAX_TPA,
1816 						sizeof(struct bnxt_tpa_info),
1817 						GFP_KERNEL);
1818 				if (!rxr->rx_tpa)
1819 					return -ENOMEM;
1820 			}
1821 		}
1822 	}
1823 	return 0;
1824 }
1825 
1826 static void bnxt_free_tx_rings(struct bnxt *bp)
1827 {
1828 	int i;
1829 	struct pci_dev *pdev = bp->pdev;
1830 
1831 	if (!bp->tx_ring)
1832 		return;
1833 
1834 	for (i = 0; i < bp->tx_nr_rings; i++) {
1835 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1836 		struct bnxt_ring_struct *ring;
1837 
1838 		if (txr->tx_push) {
1839 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
1840 					  txr->tx_push, txr->tx_push_mapping);
1841 			txr->tx_push = NULL;
1842 		}
1843 
1844 		ring = &txr->tx_ring_struct;
1845 
1846 		bnxt_free_ring(bp, ring);
1847 	}
1848 }
1849 
1850 static int bnxt_alloc_tx_rings(struct bnxt *bp)
1851 {
1852 	int i, j, rc;
1853 	struct pci_dev *pdev = bp->pdev;
1854 
1855 	bp->tx_push_size = 0;
1856 	if (bp->tx_push_thresh) {
1857 		int push_size;
1858 
1859 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
1860 					bp->tx_push_thresh);
1861 
1862 		if (push_size > 256) {
1863 			push_size = 0;
1864 			bp->tx_push_thresh = 0;
1865 		}
1866 
1867 		bp->tx_push_size = push_size;
1868 	}
1869 
1870 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
1871 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1872 		struct bnxt_ring_struct *ring;
1873 
1874 		ring = &txr->tx_ring_struct;
1875 
1876 		rc = bnxt_alloc_ring(bp, ring);
1877 		if (rc)
1878 			return rc;
1879 
1880 		if (bp->tx_push_size) {
1881 			dma_addr_t mapping;
1882 
1883 			/* One pre-allocated DMA buffer to backup
1884 			 * TX push operation
1885 			 */
1886 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
1887 						bp->tx_push_size,
1888 						&txr->tx_push_mapping,
1889 						GFP_KERNEL);
1890 
1891 			if (!txr->tx_push)
1892 				return -ENOMEM;
1893 
1894 			mapping = txr->tx_push_mapping +
1895 				sizeof(struct tx_push_bd);
1896 			txr->data_mapping = cpu_to_le64(mapping);
1897 
1898 			memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
1899 		}
1900 		ring->queue_id = bp->q_info[j].queue_id;
1901 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
1902 			j++;
1903 	}
1904 	return 0;
1905 }
1906 
1907 static void bnxt_free_cp_rings(struct bnxt *bp)
1908 {
1909 	int i;
1910 
1911 	if (!bp->bnapi)
1912 		return;
1913 
1914 	for (i = 0; i < bp->cp_nr_rings; i++) {
1915 		struct bnxt_napi *bnapi = bp->bnapi[i];
1916 		struct bnxt_cp_ring_info *cpr;
1917 		struct bnxt_ring_struct *ring;
1918 
1919 		if (!bnapi)
1920 			continue;
1921 
1922 		cpr = &bnapi->cp_ring;
1923 		ring = &cpr->cp_ring_struct;
1924 
1925 		bnxt_free_ring(bp, ring);
1926 	}
1927 }
1928 
1929 static int bnxt_alloc_cp_rings(struct bnxt *bp)
1930 {
1931 	int i, rc;
1932 
1933 	for (i = 0; i < bp->cp_nr_rings; i++) {
1934 		struct bnxt_napi *bnapi = bp->bnapi[i];
1935 		struct bnxt_cp_ring_info *cpr;
1936 		struct bnxt_ring_struct *ring;
1937 
1938 		if (!bnapi)
1939 			continue;
1940 
1941 		cpr = &bnapi->cp_ring;
1942 		ring = &cpr->cp_ring_struct;
1943 
1944 		rc = bnxt_alloc_ring(bp, ring);
1945 		if (rc)
1946 			return rc;
1947 	}
1948 	return 0;
1949 }
1950 
1951 static void bnxt_init_ring_struct(struct bnxt *bp)
1952 {
1953 	int i;
1954 
1955 	for (i = 0; i < bp->cp_nr_rings; i++) {
1956 		struct bnxt_napi *bnapi = bp->bnapi[i];
1957 		struct bnxt_cp_ring_info *cpr;
1958 		struct bnxt_rx_ring_info *rxr;
1959 		struct bnxt_tx_ring_info *txr;
1960 		struct bnxt_ring_struct *ring;
1961 
1962 		if (!bnapi)
1963 			continue;
1964 
1965 		cpr = &bnapi->cp_ring;
1966 		ring = &cpr->cp_ring_struct;
1967 		ring->nr_pages = bp->cp_nr_pages;
1968 		ring->page_size = HW_CMPD_RING_SIZE;
1969 		ring->pg_arr = (void **)cpr->cp_desc_ring;
1970 		ring->dma_arr = cpr->cp_desc_mapping;
1971 		ring->vmem_size = 0;
1972 
1973 		rxr = bnapi->rx_ring;
1974 		if (!rxr)
1975 			goto skip_rx;
1976 
1977 		ring = &rxr->rx_ring_struct;
1978 		ring->nr_pages = bp->rx_nr_pages;
1979 		ring->page_size = HW_RXBD_RING_SIZE;
1980 		ring->pg_arr = (void **)rxr->rx_desc_ring;
1981 		ring->dma_arr = rxr->rx_desc_mapping;
1982 		ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
1983 		ring->vmem = (void **)&rxr->rx_buf_ring;
1984 
1985 		ring = &rxr->rx_agg_ring_struct;
1986 		ring->nr_pages = bp->rx_agg_nr_pages;
1987 		ring->page_size = HW_RXBD_RING_SIZE;
1988 		ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
1989 		ring->dma_arr = rxr->rx_agg_desc_mapping;
1990 		ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
1991 		ring->vmem = (void **)&rxr->rx_agg_ring;
1992 
1993 skip_rx:
1994 		txr = bnapi->tx_ring;
1995 		if (!txr)
1996 			continue;
1997 
1998 		ring = &txr->tx_ring_struct;
1999 		ring->nr_pages = bp->tx_nr_pages;
2000 		ring->page_size = HW_RXBD_RING_SIZE;
2001 		ring->pg_arr = (void **)txr->tx_desc_ring;
2002 		ring->dma_arr = txr->tx_desc_mapping;
2003 		ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2004 		ring->vmem = (void **)&txr->tx_buf_ring;
2005 	}
2006 }
2007 
2008 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2009 {
2010 	int i;
2011 	u32 prod;
2012 	struct rx_bd **rx_buf_ring;
2013 
2014 	rx_buf_ring = (struct rx_bd **)ring->pg_arr;
2015 	for (i = 0, prod = 0; i < ring->nr_pages; i++) {
2016 		int j;
2017 		struct rx_bd *rxbd;
2018 
2019 		rxbd = rx_buf_ring[i];
2020 		if (!rxbd)
2021 			continue;
2022 
2023 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2024 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2025 			rxbd->rx_bd_opaque = prod;
2026 		}
2027 	}
2028 }
2029 
2030 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2031 {
2032 	struct net_device *dev = bp->dev;
2033 	struct bnxt_rx_ring_info *rxr;
2034 	struct bnxt_ring_struct *ring;
2035 	u32 prod, type;
2036 	int i;
2037 
2038 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2039 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2040 
2041 	if (NET_IP_ALIGN == 2)
2042 		type |= RX_BD_FLAGS_SOP;
2043 
2044 	rxr = &bp->rx_ring[ring_nr];
2045 	ring = &rxr->rx_ring_struct;
2046 	bnxt_init_rxbd_pages(ring, type);
2047 
2048 	prod = rxr->rx_prod;
2049 	for (i = 0; i < bp->rx_ring_size; i++) {
2050 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2051 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2052 				    ring_nr, i, bp->rx_ring_size);
2053 			break;
2054 		}
2055 		prod = NEXT_RX(prod);
2056 	}
2057 	rxr->rx_prod = prod;
2058 	ring->fw_ring_id = INVALID_HW_RING_ID;
2059 
2060 	ring = &rxr->rx_agg_ring_struct;
2061 	ring->fw_ring_id = INVALID_HW_RING_ID;
2062 
2063 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2064 		return 0;
2065 
2066 	type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2067 		RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2068 
2069 	bnxt_init_rxbd_pages(ring, type);
2070 
2071 	prod = rxr->rx_agg_prod;
2072 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
2073 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2074 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2075 				    ring_nr, i, bp->rx_ring_size);
2076 			break;
2077 		}
2078 		prod = NEXT_RX_AGG(prod);
2079 	}
2080 	rxr->rx_agg_prod = prod;
2081 
2082 	if (bp->flags & BNXT_FLAG_TPA) {
2083 		if (rxr->rx_tpa) {
2084 			u8 *data;
2085 			dma_addr_t mapping;
2086 
2087 			for (i = 0; i < MAX_TPA; i++) {
2088 				data = __bnxt_alloc_rx_data(bp, &mapping,
2089 							    GFP_KERNEL);
2090 				if (!data)
2091 					return -ENOMEM;
2092 
2093 				rxr->rx_tpa[i].data = data;
2094 				rxr->rx_tpa[i].mapping = mapping;
2095 			}
2096 		} else {
2097 			netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2098 			return -ENOMEM;
2099 		}
2100 	}
2101 
2102 	return 0;
2103 }
2104 
2105 static int bnxt_init_rx_rings(struct bnxt *bp)
2106 {
2107 	int i, rc = 0;
2108 
2109 	for (i = 0; i < bp->rx_nr_rings; i++) {
2110 		rc = bnxt_init_one_rx_ring(bp, i);
2111 		if (rc)
2112 			break;
2113 	}
2114 
2115 	return rc;
2116 }
2117 
2118 static int bnxt_init_tx_rings(struct bnxt *bp)
2119 {
2120 	u16 i;
2121 
2122 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2123 				   MAX_SKB_FRAGS + 1);
2124 
2125 	for (i = 0; i < bp->tx_nr_rings; i++) {
2126 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2127 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2128 
2129 		ring->fw_ring_id = INVALID_HW_RING_ID;
2130 	}
2131 
2132 	return 0;
2133 }
2134 
2135 static void bnxt_free_ring_grps(struct bnxt *bp)
2136 {
2137 	kfree(bp->grp_info);
2138 	bp->grp_info = NULL;
2139 }
2140 
2141 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2142 {
2143 	int i;
2144 
2145 	if (irq_re_init) {
2146 		bp->grp_info = kcalloc(bp->cp_nr_rings,
2147 				       sizeof(struct bnxt_ring_grp_info),
2148 				       GFP_KERNEL);
2149 		if (!bp->grp_info)
2150 			return -ENOMEM;
2151 	}
2152 	for (i = 0; i < bp->cp_nr_rings; i++) {
2153 		if (irq_re_init)
2154 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2155 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2156 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2157 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2158 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2159 	}
2160 	return 0;
2161 }
2162 
2163 static void bnxt_free_vnics(struct bnxt *bp)
2164 {
2165 	kfree(bp->vnic_info);
2166 	bp->vnic_info = NULL;
2167 	bp->nr_vnics = 0;
2168 }
2169 
2170 static int bnxt_alloc_vnics(struct bnxt *bp)
2171 {
2172 	int num_vnics = 1;
2173 
2174 #ifdef CONFIG_RFS_ACCEL
2175 	if (bp->flags & BNXT_FLAG_RFS)
2176 		num_vnics += bp->rx_nr_rings;
2177 #endif
2178 
2179 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2180 				GFP_KERNEL);
2181 	if (!bp->vnic_info)
2182 		return -ENOMEM;
2183 
2184 	bp->nr_vnics = num_vnics;
2185 	return 0;
2186 }
2187 
2188 static void bnxt_init_vnics(struct bnxt *bp)
2189 {
2190 	int i;
2191 
2192 	for (i = 0; i < bp->nr_vnics; i++) {
2193 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2194 
2195 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
2196 		vnic->fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
2197 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2198 
2199 		if (bp->vnic_info[i].rss_hash_key) {
2200 			if (i == 0)
2201 				prandom_bytes(vnic->rss_hash_key,
2202 					      HW_HASH_KEY_SIZE);
2203 			else
2204 				memcpy(vnic->rss_hash_key,
2205 				       bp->vnic_info[0].rss_hash_key,
2206 				       HW_HASH_KEY_SIZE);
2207 		}
2208 	}
2209 }
2210 
2211 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2212 {
2213 	int pages;
2214 
2215 	pages = ring_size / desc_per_pg;
2216 
2217 	if (!pages)
2218 		return 1;
2219 
2220 	pages++;
2221 
2222 	while (pages & (pages - 1))
2223 		pages++;
2224 
2225 	return pages;
2226 }
2227 
2228 static void bnxt_set_tpa_flags(struct bnxt *bp)
2229 {
2230 	bp->flags &= ~BNXT_FLAG_TPA;
2231 	if (bp->dev->features & NETIF_F_LRO)
2232 		bp->flags |= BNXT_FLAG_LRO;
2233 	if ((bp->dev->features & NETIF_F_GRO) && (bp->pdev->revision > 0))
2234 		bp->flags |= BNXT_FLAG_GRO;
2235 }
2236 
2237 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2238  * be set on entry.
2239  */
2240 void bnxt_set_ring_params(struct bnxt *bp)
2241 {
2242 	u32 ring_size, rx_size, rx_space;
2243 	u32 agg_factor = 0, agg_ring_size = 0;
2244 
2245 	/* 8 for CRC and VLAN */
2246 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2247 
2248 	rx_space = rx_size + NET_SKB_PAD +
2249 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2250 
2251 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2252 	ring_size = bp->rx_ring_size;
2253 	bp->rx_agg_ring_size = 0;
2254 	bp->rx_agg_nr_pages = 0;
2255 
2256 	if (bp->flags & BNXT_FLAG_TPA)
2257 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
2258 
2259 	bp->flags &= ~BNXT_FLAG_JUMBO;
2260 	if (rx_space > PAGE_SIZE) {
2261 		u32 jumbo_factor;
2262 
2263 		bp->flags |= BNXT_FLAG_JUMBO;
2264 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2265 		if (jumbo_factor > agg_factor)
2266 			agg_factor = jumbo_factor;
2267 	}
2268 	agg_ring_size = ring_size * agg_factor;
2269 
2270 	if (agg_ring_size) {
2271 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2272 							RX_DESC_CNT);
2273 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2274 			u32 tmp = agg_ring_size;
2275 
2276 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2277 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2278 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2279 				    tmp, agg_ring_size);
2280 		}
2281 		bp->rx_agg_ring_size = agg_ring_size;
2282 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2283 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2284 		rx_space = rx_size + NET_SKB_PAD +
2285 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2286 	}
2287 
2288 	bp->rx_buf_use_size = rx_size;
2289 	bp->rx_buf_size = rx_space;
2290 
2291 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2292 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2293 
2294 	ring_size = bp->tx_ring_size;
2295 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2296 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2297 
2298 	ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2299 	bp->cp_ring_size = ring_size;
2300 
2301 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2302 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
2303 		bp->cp_nr_pages = MAX_CP_PAGES;
2304 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2305 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2306 			    ring_size, bp->cp_ring_size);
2307 	}
2308 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2309 	bp->cp_ring_mask = bp->cp_bit - 1;
2310 }
2311 
2312 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2313 {
2314 	int i;
2315 	struct bnxt_vnic_info *vnic;
2316 	struct pci_dev *pdev = bp->pdev;
2317 
2318 	if (!bp->vnic_info)
2319 		return;
2320 
2321 	for (i = 0; i < bp->nr_vnics; i++) {
2322 		vnic = &bp->vnic_info[i];
2323 
2324 		kfree(vnic->fw_grp_ids);
2325 		vnic->fw_grp_ids = NULL;
2326 
2327 		kfree(vnic->uc_list);
2328 		vnic->uc_list = NULL;
2329 
2330 		if (vnic->mc_list) {
2331 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2332 					  vnic->mc_list, vnic->mc_list_mapping);
2333 			vnic->mc_list = NULL;
2334 		}
2335 
2336 		if (vnic->rss_table) {
2337 			dma_free_coherent(&pdev->dev, PAGE_SIZE,
2338 					  vnic->rss_table,
2339 					  vnic->rss_table_dma_addr);
2340 			vnic->rss_table = NULL;
2341 		}
2342 
2343 		vnic->rss_hash_key = NULL;
2344 		vnic->flags = 0;
2345 	}
2346 }
2347 
2348 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2349 {
2350 	int i, rc = 0, size;
2351 	struct bnxt_vnic_info *vnic;
2352 	struct pci_dev *pdev = bp->pdev;
2353 	int max_rings;
2354 
2355 	for (i = 0; i < bp->nr_vnics; i++) {
2356 		vnic = &bp->vnic_info[i];
2357 
2358 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2359 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2360 
2361 			if (mem_size > 0) {
2362 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2363 				if (!vnic->uc_list) {
2364 					rc = -ENOMEM;
2365 					goto out;
2366 				}
2367 			}
2368 		}
2369 
2370 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2371 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2372 			vnic->mc_list =
2373 				dma_alloc_coherent(&pdev->dev,
2374 						   vnic->mc_list_size,
2375 						   &vnic->mc_list_mapping,
2376 						   GFP_KERNEL);
2377 			if (!vnic->mc_list) {
2378 				rc = -ENOMEM;
2379 				goto out;
2380 			}
2381 		}
2382 
2383 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2384 			max_rings = bp->rx_nr_rings;
2385 		else
2386 			max_rings = 1;
2387 
2388 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2389 		if (!vnic->fw_grp_ids) {
2390 			rc = -ENOMEM;
2391 			goto out;
2392 		}
2393 
2394 		/* Allocate rss table and hash key */
2395 		vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2396 						     &vnic->rss_table_dma_addr,
2397 						     GFP_KERNEL);
2398 		if (!vnic->rss_table) {
2399 			rc = -ENOMEM;
2400 			goto out;
2401 		}
2402 
2403 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2404 
2405 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2406 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2407 	}
2408 	return 0;
2409 
2410 out:
2411 	return rc;
2412 }
2413 
2414 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2415 {
2416 	struct pci_dev *pdev = bp->pdev;
2417 
2418 	dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2419 			  bp->hwrm_cmd_resp_dma_addr);
2420 
2421 	bp->hwrm_cmd_resp_addr = NULL;
2422 	if (bp->hwrm_dbg_resp_addr) {
2423 		dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2424 				  bp->hwrm_dbg_resp_addr,
2425 				  bp->hwrm_dbg_resp_dma_addr);
2426 
2427 		bp->hwrm_dbg_resp_addr = NULL;
2428 	}
2429 }
2430 
2431 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2432 {
2433 	struct pci_dev *pdev = bp->pdev;
2434 
2435 	bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2436 						   &bp->hwrm_cmd_resp_dma_addr,
2437 						   GFP_KERNEL);
2438 	if (!bp->hwrm_cmd_resp_addr)
2439 		return -ENOMEM;
2440 	bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2441 						    HWRM_DBG_REG_BUF_SIZE,
2442 						    &bp->hwrm_dbg_resp_dma_addr,
2443 						    GFP_KERNEL);
2444 	if (!bp->hwrm_dbg_resp_addr)
2445 		netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2446 
2447 	return 0;
2448 }
2449 
2450 static void bnxt_free_stats(struct bnxt *bp)
2451 {
2452 	u32 size, i;
2453 	struct pci_dev *pdev = bp->pdev;
2454 
2455 	if (bp->hw_rx_port_stats) {
2456 		dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
2457 				  bp->hw_rx_port_stats,
2458 				  bp->hw_rx_port_stats_map);
2459 		bp->hw_rx_port_stats = NULL;
2460 		bp->flags &= ~BNXT_FLAG_PORT_STATS;
2461 	}
2462 
2463 	if (!bp->bnapi)
2464 		return;
2465 
2466 	size = sizeof(struct ctx_hw_stats);
2467 
2468 	for (i = 0; i < bp->cp_nr_rings; i++) {
2469 		struct bnxt_napi *bnapi = bp->bnapi[i];
2470 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2471 
2472 		if (cpr->hw_stats) {
2473 			dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2474 					  cpr->hw_stats_map);
2475 			cpr->hw_stats = NULL;
2476 		}
2477 	}
2478 }
2479 
2480 static int bnxt_alloc_stats(struct bnxt *bp)
2481 {
2482 	u32 size, i;
2483 	struct pci_dev *pdev = bp->pdev;
2484 
2485 	size = sizeof(struct ctx_hw_stats);
2486 
2487 	for (i = 0; i < bp->cp_nr_rings; i++) {
2488 		struct bnxt_napi *bnapi = bp->bnapi[i];
2489 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2490 
2491 		cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2492 						   &cpr->hw_stats_map,
2493 						   GFP_KERNEL);
2494 		if (!cpr->hw_stats)
2495 			return -ENOMEM;
2496 
2497 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2498 	}
2499 
2500 	if (BNXT_PF(bp)) {
2501 		bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
2502 					 sizeof(struct tx_port_stats) + 1024;
2503 
2504 		bp->hw_rx_port_stats =
2505 			dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
2506 					   &bp->hw_rx_port_stats_map,
2507 					   GFP_KERNEL);
2508 		if (!bp->hw_rx_port_stats)
2509 			return -ENOMEM;
2510 
2511 		bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
2512 				       512;
2513 		bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
2514 					   sizeof(struct rx_port_stats) + 512;
2515 		bp->flags |= BNXT_FLAG_PORT_STATS;
2516 	}
2517 	return 0;
2518 }
2519 
2520 static void bnxt_clear_ring_indices(struct bnxt *bp)
2521 {
2522 	int i;
2523 
2524 	if (!bp->bnapi)
2525 		return;
2526 
2527 	for (i = 0; i < bp->cp_nr_rings; i++) {
2528 		struct bnxt_napi *bnapi = bp->bnapi[i];
2529 		struct bnxt_cp_ring_info *cpr;
2530 		struct bnxt_rx_ring_info *rxr;
2531 		struct bnxt_tx_ring_info *txr;
2532 
2533 		if (!bnapi)
2534 			continue;
2535 
2536 		cpr = &bnapi->cp_ring;
2537 		cpr->cp_raw_cons = 0;
2538 
2539 		txr = bnapi->tx_ring;
2540 		if (txr) {
2541 			txr->tx_prod = 0;
2542 			txr->tx_cons = 0;
2543 		}
2544 
2545 		rxr = bnapi->rx_ring;
2546 		if (rxr) {
2547 			rxr->rx_prod = 0;
2548 			rxr->rx_agg_prod = 0;
2549 			rxr->rx_sw_agg_prod = 0;
2550 			rxr->rx_next_cons = 0;
2551 		}
2552 	}
2553 }
2554 
2555 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
2556 {
2557 #ifdef CONFIG_RFS_ACCEL
2558 	int i;
2559 
2560 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
2561 	 * safe to delete the hash table.
2562 	 */
2563 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
2564 		struct hlist_head *head;
2565 		struct hlist_node *tmp;
2566 		struct bnxt_ntuple_filter *fltr;
2567 
2568 		head = &bp->ntp_fltr_hash_tbl[i];
2569 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
2570 			hlist_del(&fltr->hash);
2571 			kfree(fltr);
2572 		}
2573 	}
2574 	if (irq_reinit) {
2575 		kfree(bp->ntp_fltr_bmap);
2576 		bp->ntp_fltr_bmap = NULL;
2577 	}
2578 	bp->ntp_fltr_count = 0;
2579 #endif
2580 }
2581 
2582 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
2583 {
2584 #ifdef CONFIG_RFS_ACCEL
2585 	int i, rc = 0;
2586 
2587 	if (!(bp->flags & BNXT_FLAG_RFS))
2588 		return 0;
2589 
2590 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
2591 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
2592 
2593 	bp->ntp_fltr_count = 0;
2594 	bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
2595 				    GFP_KERNEL);
2596 
2597 	if (!bp->ntp_fltr_bmap)
2598 		rc = -ENOMEM;
2599 
2600 	return rc;
2601 #else
2602 	return 0;
2603 #endif
2604 }
2605 
2606 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
2607 {
2608 	bnxt_free_vnic_attributes(bp);
2609 	bnxt_free_tx_rings(bp);
2610 	bnxt_free_rx_rings(bp);
2611 	bnxt_free_cp_rings(bp);
2612 	bnxt_free_ntp_fltrs(bp, irq_re_init);
2613 	if (irq_re_init) {
2614 		bnxt_free_stats(bp);
2615 		bnxt_free_ring_grps(bp);
2616 		bnxt_free_vnics(bp);
2617 		kfree(bp->tx_ring);
2618 		bp->tx_ring = NULL;
2619 		kfree(bp->rx_ring);
2620 		bp->rx_ring = NULL;
2621 		kfree(bp->bnapi);
2622 		bp->bnapi = NULL;
2623 	} else {
2624 		bnxt_clear_ring_indices(bp);
2625 	}
2626 }
2627 
2628 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
2629 {
2630 	int i, j, rc, size, arr_size;
2631 	void *bnapi;
2632 
2633 	if (irq_re_init) {
2634 		/* Allocate bnapi mem pointer array and mem block for
2635 		 * all queues
2636 		 */
2637 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
2638 				bp->cp_nr_rings);
2639 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
2640 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
2641 		if (!bnapi)
2642 			return -ENOMEM;
2643 
2644 		bp->bnapi = bnapi;
2645 		bnapi += arr_size;
2646 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
2647 			bp->bnapi[i] = bnapi;
2648 			bp->bnapi[i]->index = i;
2649 			bp->bnapi[i]->bp = bp;
2650 		}
2651 
2652 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
2653 				      sizeof(struct bnxt_rx_ring_info),
2654 				      GFP_KERNEL);
2655 		if (!bp->rx_ring)
2656 			return -ENOMEM;
2657 
2658 		for (i = 0; i < bp->rx_nr_rings; i++) {
2659 			bp->rx_ring[i].bnapi = bp->bnapi[i];
2660 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
2661 		}
2662 
2663 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
2664 				      sizeof(struct bnxt_tx_ring_info),
2665 				      GFP_KERNEL);
2666 		if (!bp->tx_ring)
2667 			return -ENOMEM;
2668 
2669 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
2670 			j = 0;
2671 		else
2672 			j = bp->rx_nr_rings;
2673 
2674 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
2675 			bp->tx_ring[i].bnapi = bp->bnapi[j];
2676 			bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
2677 		}
2678 
2679 		rc = bnxt_alloc_stats(bp);
2680 		if (rc)
2681 			goto alloc_mem_err;
2682 
2683 		rc = bnxt_alloc_ntp_fltrs(bp);
2684 		if (rc)
2685 			goto alloc_mem_err;
2686 
2687 		rc = bnxt_alloc_vnics(bp);
2688 		if (rc)
2689 			goto alloc_mem_err;
2690 	}
2691 
2692 	bnxt_init_ring_struct(bp);
2693 
2694 	rc = bnxt_alloc_rx_rings(bp);
2695 	if (rc)
2696 		goto alloc_mem_err;
2697 
2698 	rc = bnxt_alloc_tx_rings(bp);
2699 	if (rc)
2700 		goto alloc_mem_err;
2701 
2702 	rc = bnxt_alloc_cp_rings(bp);
2703 	if (rc)
2704 		goto alloc_mem_err;
2705 
2706 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
2707 				  BNXT_VNIC_UCAST_FLAG;
2708 	rc = bnxt_alloc_vnic_attributes(bp);
2709 	if (rc)
2710 		goto alloc_mem_err;
2711 	return 0;
2712 
2713 alloc_mem_err:
2714 	bnxt_free_mem(bp, true);
2715 	return rc;
2716 }
2717 
2718 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
2719 			    u16 cmpl_ring, u16 target_id)
2720 {
2721 	struct input *req = request;
2722 
2723 	req->req_type = cpu_to_le16(req_type);
2724 	req->cmpl_ring = cpu_to_le16(cmpl_ring);
2725 	req->target_id = cpu_to_le16(target_id);
2726 	req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
2727 }
2728 
2729 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
2730 				 int timeout, bool silent)
2731 {
2732 	int i, intr_process, rc;
2733 	struct input *req = msg;
2734 	u32 *data = msg;
2735 	__le32 *resp_len, *valid;
2736 	u16 cp_ring_id, len = 0;
2737 	struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
2738 
2739 	req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
2740 	memset(resp, 0, PAGE_SIZE);
2741 	cp_ring_id = le16_to_cpu(req->cmpl_ring);
2742 	intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
2743 
2744 	/* Write request msg to hwrm channel */
2745 	__iowrite32_copy(bp->bar0, data, msg_len / 4);
2746 
2747 	for (i = msg_len; i < BNXT_HWRM_MAX_REQ_LEN; i += 4)
2748 		writel(0, bp->bar0 + i);
2749 
2750 	/* currently supports only one outstanding message */
2751 	if (intr_process)
2752 		bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
2753 
2754 	/* Ring channel doorbell */
2755 	writel(1, bp->bar0 + 0x100);
2756 
2757 	if (!timeout)
2758 		timeout = DFLT_HWRM_CMD_TIMEOUT;
2759 
2760 	i = 0;
2761 	if (intr_process) {
2762 		/* Wait until hwrm response cmpl interrupt is processed */
2763 		while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
2764 		       i++ < timeout) {
2765 			usleep_range(600, 800);
2766 		}
2767 
2768 		if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
2769 			netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
2770 				   le16_to_cpu(req->req_type));
2771 			return -1;
2772 		}
2773 	} else {
2774 		/* Check if response len is updated */
2775 		resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
2776 		for (i = 0; i < timeout; i++) {
2777 			len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
2778 			      HWRM_RESP_LEN_SFT;
2779 			if (len)
2780 				break;
2781 			usleep_range(600, 800);
2782 		}
2783 
2784 		if (i >= timeout) {
2785 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
2786 				   timeout, le16_to_cpu(req->req_type),
2787 				   le16_to_cpu(req->seq_id), *resp_len);
2788 			return -1;
2789 		}
2790 
2791 		/* Last word of resp contains valid bit */
2792 		valid = bp->hwrm_cmd_resp_addr + len - 4;
2793 		for (i = 0; i < timeout; i++) {
2794 			if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
2795 				break;
2796 			usleep_range(600, 800);
2797 		}
2798 
2799 		if (i >= timeout) {
2800 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
2801 				   timeout, le16_to_cpu(req->req_type),
2802 				   le16_to_cpu(req->seq_id), len, *valid);
2803 			return -1;
2804 		}
2805 	}
2806 
2807 	rc = le16_to_cpu(resp->error_code);
2808 	if (rc && !silent)
2809 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
2810 			   le16_to_cpu(resp->req_type),
2811 			   le16_to_cpu(resp->seq_id), rc);
2812 	return rc;
2813 }
2814 
2815 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2816 {
2817 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
2818 }
2819 
2820 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2821 {
2822 	int rc;
2823 
2824 	mutex_lock(&bp->hwrm_cmd_lock);
2825 	rc = _hwrm_send_message(bp, msg, msg_len, timeout);
2826 	mutex_unlock(&bp->hwrm_cmd_lock);
2827 	return rc;
2828 }
2829 
2830 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
2831 			     int timeout)
2832 {
2833 	int rc;
2834 
2835 	mutex_lock(&bp->hwrm_cmd_lock);
2836 	rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
2837 	mutex_unlock(&bp->hwrm_cmd_lock);
2838 	return rc;
2839 }
2840 
2841 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
2842 {
2843 	struct hwrm_func_drv_rgtr_input req = {0};
2844 	int i;
2845 
2846 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
2847 
2848 	req.enables =
2849 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
2850 			    FUNC_DRV_RGTR_REQ_ENABLES_VER |
2851 			    FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
2852 
2853 	/* TODO: current async event fwd bits are not defined and the firmware
2854 	 * only checks if it is non-zero to enable async event forwarding
2855 	 */
2856 	req.async_event_fwd[0] |= cpu_to_le32(1);
2857 	req.os_type = cpu_to_le16(1);
2858 	req.ver_maj = DRV_VER_MAJ;
2859 	req.ver_min = DRV_VER_MIN;
2860 	req.ver_upd = DRV_VER_UPD;
2861 
2862 	if (BNXT_PF(bp)) {
2863 		DECLARE_BITMAP(vf_req_snif_bmap, 256);
2864 		u32 *data = (u32 *)vf_req_snif_bmap;
2865 
2866 		memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
2867 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
2868 			__set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
2869 
2870 		for (i = 0; i < 8; i++)
2871 			req.vf_req_fwd[i] = cpu_to_le32(data[i]);
2872 
2873 		req.enables |=
2874 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
2875 	}
2876 
2877 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2878 }
2879 
2880 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
2881 {
2882 	struct hwrm_func_drv_unrgtr_input req = {0};
2883 
2884 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
2885 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2886 }
2887 
2888 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
2889 {
2890 	u32 rc = 0;
2891 	struct hwrm_tunnel_dst_port_free_input req = {0};
2892 
2893 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
2894 	req.tunnel_type = tunnel_type;
2895 
2896 	switch (tunnel_type) {
2897 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
2898 		req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
2899 		break;
2900 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
2901 		req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
2902 		break;
2903 	default:
2904 		break;
2905 	}
2906 
2907 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2908 	if (rc)
2909 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
2910 			   rc);
2911 	return rc;
2912 }
2913 
2914 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
2915 					   u8 tunnel_type)
2916 {
2917 	u32 rc = 0;
2918 	struct hwrm_tunnel_dst_port_alloc_input req = {0};
2919 	struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2920 
2921 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
2922 
2923 	req.tunnel_type = tunnel_type;
2924 	req.tunnel_dst_port_val = port;
2925 
2926 	mutex_lock(&bp->hwrm_cmd_lock);
2927 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2928 	if (rc) {
2929 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
2930 			   rc);
2931 		goto err_out;
2932 	}
2933 
2934 	if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN)
2935 		bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
2936 
2937 	else if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE)
2938 		bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
2939 err_out:
2940 	mutex_unlock(&bp->hwrm_cmd_lock);
2941 	return rc;
2942 }
2943 
2944 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
2945 {
2946 	struct hwrm_cfa_l2_set_rx_mask_input req = {0};
2947 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2948 
2949 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
2950 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
2951 
2952 	req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
2953 	req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
2954 	req.mask = cpu_to_le32(vnic->rx_mask);
2955 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2956 }
2957 
2958 #ifdef CONFIG_RFS_ACCEL
2959 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
2960 					    struct bnxt_ntuple_filter *fltr)
2961 {
2962 	struct hwrm_cfa_ntuple_filter_free_input req = {0};
2963 
2964 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
2965 	req.ntuple_filter_id = fltr->filter_id;
2966 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2967 }
2968 
2969 #define BNXT_NTP_FLTR_FLAGS					\
2970 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
2971 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
2972 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
2973 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
2974 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
2975 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
2976 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
2977 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
2978 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
2979 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
2980 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
2981 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
2982 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
2983 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
2984 
2985 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
2986 					     struct bnxt_ntuple_filter *fltr)
2987 {
2988 	int rc = 0;
2989 	struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
2990 	struct hwrm_cfa_ntuple_filter_alloc_output *resp =
2991 		bp->hwrm_cmd_resp_addr;
2992 	struct flow_keys *keys = &fltr->fkeys;
2993 	struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
2994 
2995 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
2996 	req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[0];
2997 
2998 	req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
2999 
3000 	req.ethertype = htons(ETH_P_IP);
3001 	memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
3002 	req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
3003 	req.ip_protocol = keys->basic.ip_proto;
3004 
3005 	req.src_ipaddr[0] = keys->addrs.v4addrs.src;
3006 	req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3007 	req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
3008 	req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3009 
3010 	req.src_port = keys->ports.src;
3011 	req.src_port_mask = cpu_to_be16(0xffff);
3012 	req.dst_port = keys->ports.dst;
3013 	req.dst_port_mask = cpu_to_be16(0xffff);
3014 
3015 	req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
3016 	mutex_lock(&bp->hwrm_cmd_lock);
3017 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3018 	if (!rc)
3019 		fltr->filter_id = resp->ntuple_filter_id;
3020 	mutex_unlock(&bp->hwrm_cmd_lock);
3021 	return rc;
3022 }
3023 #endif
3024 
3025 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
3026 				     u8 *mac_addr)
3027 {
3028 	u32 rc = 0;
3029 	struct hwrm_cfa_l2_filter_alloc_input req = {0};
3030 	struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3031 
3032 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
3033 	req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX |
3034 				CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
3035 	req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
3036 	req.enables =
3037 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
3038 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
3039 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
3040 	memcpy(req.l2_addr, mac_addr, ETH_ALEN);
3041 	req.l2_addr_mask[0] = 0xff;
3042 	req.l2_addr_mask[1] = 0xff;
3043 	req.l2_addr_mask[2] = 0xff;
3044 	req.l2_addr_mask[3] = 0xff;
3045 	req.l2_addr_mask[4] = 0xff;
3046 	req.l2_addr_mask[5] = 0xff;
3047 
3048 	mutex_lock(&bp->hwrm_cmd_lock);
3049 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3050 	if (!rc)
3051 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
3052 							resp->l2_filter_id;
3053 	mutex_unlock(&bp->hwrm_cmd_lock);
3054 	return rc;
3055 }
3056 
3057 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
3058 {
3059 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
3060 	int rc = 0;
3061 
3062 	/* Any associated ntuple filters will also be cleared by firmware. */
3063 	mutex_lock(&bp->hwrm_cmd_lock);
3064 	for (i = 0; i < num_of_vnics; i++) {
3065 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3066 
3067 		for (j = 0; j < vnic->uc_filter_count; j++) {
3068 			struct hwrm_cfa_l2_filter_free_input req = {0};
3069 
3070 			bnxt_hwrm_cmd_hdr_init(bp, &req,
3071 					       HWRM_CFA_L2_FILTER_FREE, -1, -1);
3072 
3073 			req.l2_filter_id = vnic->fw_l2_filter_id[j];
3074 
3075 			rc = _hwrm_send_message(bp, &req, sizeof(req),
3076 						HWRM_CMD_TIMEOUT);
3077 		}
3078 		vnic->uc_filter_count = 0;
3079 	}
3080 	mutex_unlock(&bp->hwrm_cmd_lock);
3081 
3082 	return rc;
3083 }
3084 
3085 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
3086 {
3087 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3088 	struct hwrm_vnic_tpa_cfg_input req = {0};
3089 
3090 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3091 
3092 	if (tpa_flags) {
3093 		u16 mss = bp->dev->mtu - 40;
3094 		u32 nsegs, n, segs = 0, flags;
3095 
3096 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3097 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3098 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3099 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3100 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3101 		if (tpa_flags & BNXT_FLAG_GRO)
3102 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3103 
3104 		req.flags = cpu_to_le32(flags);
3105 
3106 		req.enables =
3107 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3108 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3109 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3110 
3111 		/* Number of segs are log2 units, and first packet is not
3112 		 * included as part of this units.
3113 		 */
3114 		if (mss <= BNXT_RX_PAGE_SIZE) {
3115 			n = BNXT_RX_PAGE_SIZE / mss;
3116 			nsegs = (MAX_SKB_FRAGS - 1) * n;
3117 		} else {
3118 			n = mss / BNXT_RX_PAGE_SIZE;
3119 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
3120 				n++;
3121 			nsegs = (MAX_SKB_FRAGS - n) / n;
3122 		}
3123 
3124 		segs = ilog2(nsegs);
3125 		req.max_agg_segs = cpu_to_le16(segs);
3126 		req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3127 
3128 		req.min_agg_len = cpu_to_le32(512);
3129 	}
3130 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3131 
3132 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3133 }
3134 
3135 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3136 {
3137 	u32 i, j, max_rings;
3138 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3139 	struct hwrm_vnic_rss_cfg_input req = {0};
3140 
3141 	if (vnic->fw_rss_cos_lb_ctx == INVALID_HW_RING_ID)
3142 		return 0;
3143 
3144 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3145 	if (set_rss) {
3146 		vnic->hash_type = BNXT_RSS_HASH_TYPE_FLAG_IPV4 |
3147 				 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV4 |
3148 				 BNXT_RSS_HASH_TYPE_FLAG_IPV6 |
3149 				 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV6;
3150 
3151 		req.hash_type = cpu_to_le32(vnic->hash_type);
3152 
3153 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3154 			max_rings = bp->rx_nr_rings;
3155 		else
3156 			max_rings = 1;
3157 
3158 		/* Fill the RSS indirection table with ring group ids */
3159 		for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3160 			if (j == max_rings)
3161 				j = 0;
3162 			vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3163 		}
3164 
3165 		req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3166 		req.hash_key_tbl_addr =
3167 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
3168 	}
3169 	req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3170 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3171 }
3172 
3173 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3174 {
3175 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3176 	struct hwrm_vnic_plcmodes_cfg_input req = {0};
3177 
3178 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3179 	req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3180 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3181 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3182 	req.enables =
3183 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3184 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3185 	/* thresholds not implemented in firmware yet */
3186 	req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3187 	req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3188 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3189 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3190 }
3191 
3192 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id)
3193 {
3194 	struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3195 
3196 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3197 	req.rss_cos_lb_ctx_id =
3198 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx);
3199 
3200 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3201 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3202 }
3203 
3204 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3205 {
3206 	int i;
3207 
3208 	for (i = 0; i < bp->nr_vnics; i++) {
3209 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3210 
3211 		if (vnic->fw_rss_cos_lb_ctx != INVALID_HW_RING_ID)
3212 			bnxt_hwrm_vnic_ctx_free_one(bp, i);
3213 	}
3214 	bp->rsscos_nr_ctxs = 0;
3215 }
3216 
3217 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id)
3218 {
3219 	int rc;
3220 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3221 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3222 						bp->hwrm_cmd_resp_addr;
3223 
3224 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3225 			       -1);
3226 
3227 	mutex_lock(&bp->hwrm_cmd_lock);
3228 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3229 	if (!rc)
3230 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx =
3231 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
3232 	mutex_unlock(&bp->hwrm_cmd_lock);
3233 
3234 	return rc;
3235 }
3236 
3237 static int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3238 {
3239 	unsigned int ring = 0, grp_idx;
3240 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3241 	struct hwrm_vnic_cfg_input req = {0};
3242 
3243 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3244 	/* Only RSS support for now TBD: COS & LB */
3245 	req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP |
3246 				  VNIC_CFG_REQ_ENABLES_RSS_RULE);
3247 	req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3248 	req.cos_rule = cpu_to_le16(0xffff);
3249 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3250 		ring = 0;
3251 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3252 		ring = vnic_id - 1;
3253 
3254 	grp_idx = bp->rx_ring[ring].bnapi->index;
3255 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3256 	req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3257 
3258 	req.lb_rule = cpu_to_le16(0xffff);
3259 	req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3260 			      VLAN_HLEN);
3261 
3262 	if (bp->flags & BNXT_FLAG_STRIP_VLAN)
3263 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3264 
3265 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3266 }
3267 
3268 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3269 {
3270 	u32 rc = 0;
3271 
3272 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3273 		struct hwrm_vnic_free_input req = {0};
3274 
3275 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3276 		req.vnic_id =
3277 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3278 
3279 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3280 		if (rc)
3281 			return rc;
3282 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3283 	}
3284 	return rc;
3285 }
3286 
3287 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3288 {
3289 	u16 i;
3290 
3291 	for (i = 0; i < bp->nr_vnics; i++)
3292 		bnxt_hwrm_vnic_free_one(bp, i);
3293 }
3294 
3295 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
3296 				unsigned int start_rx_ring_idx,
3297 				unsigned int nr_rings)
3298 {
3299 	int rc = 0;
3300 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
3301 	struct hwrm_vnic_alloc_input req = {0};
3302 	struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3303 
3304 	/* map ring groups to this vnic */
3305 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
3306 		grp_idx = bp->rx_ring[i].bnapi->index;
3307 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
3308 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3309 				   j, nr_rings);
3310 			break;
3311 		}
3312 		bp->vnic_info[vnic_id].fw_grp_ids[j] =
3313 					bp->grp_info[grp_idx].fw_grp_id;
3314 	}
3315 
3316 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3317 	if (vnic_id == 0)
3318 		req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3319 
3320 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3321 
3322 	mutex_lock(&bp->hwrm_cmd_lock);
3323 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3324 	if (!rc)
3325 		bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3326 	mutex_unlock(&bp->hwrm_cmd_lock);
3327 	return rc;
3328 }
3329 
3330 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3331 {
3332 	u16 i;
3333 	u32 rc = 0;
3334 
3335 	mutex_lock(&bp->hwrm_cmd_lock);
3336 	for (i = 0; i < bp->rx_nr_rings; i++) {
3337 		struct hwrm_ring_grp_alloc_input req = {0};
3338 		struct hwrm_ring_grp_alloc_output *resp =
3339 					bp->hwrm_cmd_resp_addr;
3340 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
3341 
3342 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3343 
3344 		req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
3345 		req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
3346 		req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
3347 		req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
3348 
3349 		rc = _hwrm_send_message(bp, &req, sizeof(req),
3350 					HWRM_CMD_TIMEOUT);
3351 		if (rc)
3352 			break;
3353 
3354 		bp->grp_info[grp_idx].fw_grp_id =
3355 			le32_to_cpu(resp->ring_group_id);
3356 	}
3357 	mutex_unlock(&bp->hwrm_cmd_lock);
3358 	return rc;
3359 }
3360 
3361 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3362 {
3363 	u16 i;
3364 	u32 rc = 0;
3365 	struct hwrm_ring_grp_free_input req = {0};
3366 
3367 	if (!bp->grp_info)
3368 		return 0;
3369 
3370 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3371 
3372 	mutex_lock(&bp->hwrm_cmd_lock);
3373 	for (i = 0; i < bp->cp_nr_rings; i++) {
3374 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3375 			continue;
3376 		req.ring_group_id =
3377 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
3378 
3379 		rc = _hwrm_send_message(bp, &req, sizeof(req),
3380 					HWRM_CMD_TIMEOUT);
3381 		if (rc)
3382 			break;
3383 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3384 	}
3385 	mutex_unlock(&bp->hwrm_cmd_lock);
3386 	return rc;
3387 }
3388 
3389 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
3390 				    struct bnxt_ring_struct *ring,
3391 				    u32 ring_type, u32 map_index,
3392 				    u32 stats_ctx_id)
3393 {
3394 	int rc = 0, err = 0;
3395 	struct hwrm_ring_alloc_input req = {0};
3396 	struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3397 	u16 ring_id;
3398 
3399 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
3400 
3401 	req.enables = 0;
3402 	if (ring->nr_pages > 1) {
3403 		req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
3404 		/* Page size is in log2 units */
3405 		req.page_size = BNXT_PAGE_SHIFT;
3406 		req.page_tbl_depth = 1;
3407 	} else {
3408 		req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
3409 	}
3410 	req.fbo = 0;
3411 	/* Association of ring index with doorbell index and MSIX number */
3412 	req.logical_id = cpu_to_le16(map_index);
3413 
3414 	switch (ring_type) {
3415 	case HWRM_RING_ALLOC_TX:
3416 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
3417 		/* Association of transmit ring with completion ring */
3418 		req.cmpl_ring_id =
3419 			cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
3420 		req.length = cpu_to_le32(bp->tx_ring_mask + 1);
3421 		req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
3422 		req.queue_id = cpu_to_le16(ring->queue_id);
3423 		break;
3424 	case HWRM_RING_ALLOC_RX:
3425 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3426 		req.length = cpu_to_le32(bp->rx_ring_mask + 1);
3427 		break;
3428 	case HWRM_RING_ALLOC_AGG:
3429 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3430 		req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
3431 		break;
3432 	case HWRM_RING_ALLOC_CMPL:
3433 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_CMPL;
3434 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
3435 		if (bp->flags & BNXT_FLAG_USING_MSIX)
3436 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
3437 		break;
3438 	default:
3439 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
3440 			   ring_type);
3441 		return -1;
3442 	}
3443 
3444 	mutex_lock(&bp->hwrm_cmd_lock);
3445 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3446 	err = le16_to_cpu(resp->error_code);
3447 	ring_id = le16_to_cpu(resp->ring_id);
3448 	mutex_unlock(&bp->hwrm_cmd_lock);
3449 
3450 	if (rc || err) {
3451 		switch (ring_type) {
3452 		case RING_FREE_REQ_RING_TYPE_CMPL:
3453 			netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
3454 				   rc, err);
3455 			return -1;
3456 
3457 		case RING_FREE_REQ_RING_TYPE_RX:
3458 			netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
3459 				   rc, err);
3460 			return -1;
3461 
3462 		case RING_FREE_REQ_RING_TYPE_TX:
3463 			netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
3464 				   rc, err);
3465 			return -1;
3466 
3467 		default:
3468 			netdev_err(bp->dev, "Invalid ring\n");
3469 			return -1;
3470 		}
3471 	}
3472 	ring->fw_ring_id = ring_id;
3473 	return rc;
3474 }
3475 
3476 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
3477 {
3478 	int i, rc = 0;
3479 
3480 	for (i = 0; i < bp->cp_nr_rings; i++) {
3481 		struct bnxt_napi *bnapi = bp->bnapi[i];
3482 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3483 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3484 
3485 		cpr->cp_doorbell = bp->bar1 + i * 0x80;
3486 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
3487 					      INVALID_STATS_CTX_ID);
3488 		if (rc)
3489 			goto err_out;
3490 		BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3491 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
3492 	}
3493 
3494 	for (i = 0; i < bp->tx_nr_rings; i++) {
3495 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3496 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3497 		u32 map_idx = txr->bnapi->index;
3498 		u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
3499 
3500 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
3501 					      map_idx, fw_stats_ctx);
3502 		if (rc)
3503 			goto err_out;
3504 		txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
3505 	}
3506 
3507 	for (i = 0; i < bp->rx_nr_rings; i++) {
3508 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3509 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3510 		u32 map_idx = rxr->bnapi->index;
3511 
3512 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
3513 					      map_idx, INVALID_STATS_CTX_ID);
3514 		if (rc)
3515 			goto err_out;
3516 		rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
3517 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
3518 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
3519 	}
3520 
3521 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3522 		for (i = 0; i < bp->rx_nr_rings; i++) {
3523 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3524 			struct bnxt_ring_struct *ring =
3525 						&rxr->rx_agg_ring_struct;
3526 			u32 grp_idx = rxr->bnapi->index;
3527 			u32 map_idx = grp_idx + bp->rx_nr_rings;
3528 
3529 			rc = hwrm_ring_alloc_send_msg(bp, ring,
3530 						      HWRM_RING_ALLOC_AGG,
3531 						      map_idx,
3532 						      INVALID_STATS_CTX_ID);
3533 			if (rc)
3534 				goto err_out;
3535 
3536 			rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
3537 			writel(DB_KEY_RX | rxr->rx_agg_prod,
3538 			       rxr->rx_agg_doorbell);
3539 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
3540 		}
3541 	}
3542 err_out:
3543 	return rc;
3544 }
3545 
3546 static int hwrm_ring_free_send_msg(struct bnxt *bp,
3547 				   struct bnxt_ring_struct *ring,
3548 				   u32 ring_type, int cmpl_ring_id)
3549 {
3550 	int rc;
3551 	struct hwrm_ring_free_input req = {0};
3552 	struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
3553 	u16 error_code;
3554 
3555 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
3556 	req.ring_type = ring_type;
3557 	req.ring_id = cpu_to_le16(ring->fw_ring_id);
3558 
3559 	mutex_lock(&bp->hwrm_cmd_lock);
3560 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3561 	error_code = le16_to_cpu(resp->error_code);
3562 	mutex_unlock(&bp->hwrm_cmd_lock);
3563 
3564 	if (rc || error_code) {
3565 		switch (ring_type) {
3566 		case RING_FREE_REQ_RING_TYPE_CMPL:
3567 			netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
3568 				   rc);
3569 			return rc;
3570 		case RING_FREE_REQ_RING_TYPE_RX:
3571 			netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
3572 				   rc);
3573 			return rc;
3574 		case RING_FREE_REQ_RING_TYPE_TX:
3575 			netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
3576 				   rc);
3577 			return rc;
3578 		default:
3579 			netdev_err(bp->dev, "Invalid ring\n");
3580 			return -1;
3581 		}
3582 	}
3583 	return 0;
3584 }
3585 
3586 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
3587 {
3588 	int i;
3589 
3590 	if (!bp->bnapi)
3591 		return;
3592 
3593 	for (i = 0; i < bp->tx_nr_rings; i++) {
3594 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3595 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3596 		u32 grp_idx = txr->bnapi->index;
3597 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3598 
3599 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3600 			hwrm_ring_free_send_msg(bp, ring,
3601 						RING_FREE_REQ_RING_TYPE_TX,
3602 						close_path ? cmpl_ring_id :
3603 						INVALID_HW_RING_ID);
3604 			ring->fw_ring_id = INVALID_HW_RING_ID;
3605 		}
3606 	}
3607 
3608 	for (i = 0; i < bp->rx_nr_rings; i++) {
3609 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3610 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3611 		u32 grp_idx = rxr->bnapi->index;
3612 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3613 
3614 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3615 			hwrm_ring_free_send_msg(bp, ring,
3616 						RING_FREE_REQ_RING_TYPE_RX,
3617 						close_path ? cmpl_ring_id :
3618 						INVALID_HW_RING_ID);
3619 			ring->fw_ring_id = INVALID_HW_RING_ID;
3620 			bp->grp_info[grp_idx].rx_fw_ring_id =
3621 				INVALID_HW_RING_ID;
3622 		}
3623 	}
3624 
3625 	for (i = 0; i < bp->rx_nr_rings; i++) {
3626 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3627 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
3628 		u32 grp_idx = rxr->bnapi->index;
3629 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3630 
3631 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3632 			hwrm_ring_free_send_msg(bp, ring,
3633 						RING_FREE_REQ_RING_TYPE_RX,
3634 						close_path ? cmpl_ring_id :
3635 						INVALID_HW_RING_ID);
3636 			ring->fw_ring_id = INVALID_HW_RING_ID;
3637 			bp->grp_info[grp_idx].agg_fw_ring_id =
3638 				INVALID_HW_RING_ID;
3639 		}
3640 	}
3641 
3642 	for (i = 0; i < bp->cp_nr_rings; i++) {
3643 		struct bnxt_napi *bnapi = bp->bnapi[i];
3644 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3645 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3646 
3647 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3648 			hwrm_ring_free_send_msg(bp, ring,
3649 						RING_FREE_REQ_RING_TYPE_CMPL,
3650 						INVALID_HW_RING_ID);
3651 			ring->fw_ring_id = INVALID_HW_RING_ID;
3652 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3653 		}
3654 	}
3655 }
3656 
3657 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, u32 max_bufs,
3658 	u32 buf_tmrs, u16 flags,
3659 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
3660 {
3661 	req->flags = cpu_to_le16(flags);
3662 	req->num_cmpl_dma_aggr = cpu_to_le16((u16)max_bufs);
3663 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(max_bufs >> 16);
3664 	req->cmpl_aggr_dma_tmr = cpu_to_le16((u16)buf_tmrs);
3665 	req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmrs >> 16);
3666 	/* Minimum time between 2 interrupts set to buf_tmr x 2 */
3667 	req->int_lat_tmr_min = cpu_to_le16((u16)buf_tmrs * 2);
3668 	req->int_lat_tmr_max = cpu_to_le16((u16)buf_tmrs * 4);
3669 	req->num_cmpl_aggr_int = cpu_to_le16((u16)max_bufs * 4);
3670 }
3671 
3672 int bnxt_hwrm_set_coal(struct bnxt *bp)
3673 {
3674 	int i, rc = 0;
3675 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
3676 							   req_tx = {0}, *req;
3677 	u16 max_buf, max_buf_irq;
3678 	u16 buf_tmr, buf_tmr_irq;
3679 	u32 flags;
3680 
3681 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
3682 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
3683 	bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
3684 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
3685 
3686 	/* Each rx completion (2 records) should be DMAed immediately.
3687 	 * DMA 1/4 of the completion buffers at a time.
3688 	 */
3689 	max_buf = min_t(u16, bp->rx_coal_bufs / 4, 2);
3690 	/* max_buf must not be zero */
3691 	max_buf = clamp_t(u16, max_buf, 1, 63);
3692 	max_buf_irq = clamp_t(u16, bp->rx_coal_bufs_irq, 1, 63);
3693 	buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks);
3694 	/* buf timer set to 1/4 of interrupt timer */
3695 	buf_tmr = max_t(u16, buf_tmr / 4, 1);
3696 	buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks_irq);
3697 	buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
3698 
3699 	flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
3700 
3701 	/* RING_IDLE generates more IRQs for lower latency.  Enable it only
3702 	 * if coal_ticks is less than 25 us.
3703 	 */
3704 	if (bp->rx_coal_ticks < 25)
3705 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
3706 
3707 	bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
3708 				  buf_tmr_irq << 16 | buf_tmr, flags, &req_rx);
3709 
3710 	/* max_buf must not be zero */
3711 	max_buf = clamp_t(u16, bp->tx_coal_bufs, 1, 63);
3712 	max_buf_irq = clamp_t(u16, bp->tx_coal_bufs_irq, 1, 63);
3713 	buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks);
3714 	/* buf timer set to 1/4 of interrupt timer */
3715 	buf_tmr = max_t(u16, buf_tmr / 4, 1);
3716 	buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks_irq);
3717 	buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
3718 
3719 	flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
3720 	bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
3721 				  buf_tmr_irq << 16 | buf_tmr, flags, &req_tx);
3722 
3723 	mutex_lock(&bp->hwrm_cmd_lock);
3724 	for (i = 0; i < bp->cp_nr_rings; i++) {
3725 		struct bnxt_napi *bnapi = bp->bnapi[i];
3726 
3727 		req = &req_rx;
3728 		if (!bnapi->rx_ring)
3729 			req = &req_tx;
3730 		req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
3731 
3732 		rc = _hwrm_send_message(bp, req, sizeof(*req),
3733 					HWRM_CMD_TIMEOUT);
3734 		if (rc)
3735 			break;
3736 	}
3737 	mutex_unlock(&bp->hwrm_cmd_lock);
3738 	return rc;
3739 }
3740 
3741 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
3742 {
3743 	int rc = 0, i;
3744 	struct hwrm_stat_ctx_free_input req = {0};
3745 
3746 	if (!bp->bnapi)
3747 		return 0;
3748 
3749 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
3750 
3751 	mutex_lock(&bp->hwrm_cmd_lock);
3752 	for (i = 0; i < bp->cp_nr_rings; i++) {
3753 		struct bnxt_napi *bnapi = bp->bnapi[i];
3754 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3755 
3756 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
3757 			req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
3758 
3759 			rc = _hwrm_send_message(bp, &req, sizeof(req),
3760 						HWRM_CMD_TIMEOUT);
3761 			if (rc)
3762 				break;
3763 
3764 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3765 		}
3766 	}
3767 	mutex_unlock(&bp->hwrm_cmd_lock);
3768 	return rc;
3769 }
3770 
3771 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
3772 {
3773 	int rc = 0, i;
3774 	struct hwrm_stat_ctx_alloc_input req = {0};
3775 	struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3776 
3777 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
3778 
3779 	req.update_period_ms = cpu_to_le32(1000);
3780 
3781 	mutex_lock(&bp->hwrm_cmd_lock);
3782 	for (i = 0; i < bp->cp_nr_rings; i++) {
3783 		struct bnxt_napi *bnapi = bp->bnapi[i];
3784 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3785 
3786 		req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
3787 
3788 		rc = _hwrm_send_message(bp, &req, sizeof(req),
3789 					HWRM_CMD_TIMEOUT);
3790 		if (rc)
3791 			break;
3792 
3793 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
3794 
3795 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
3796 	}
3797 	mutex_unlock(&bp->hwrm_cmd_lock);
3798 	return 0;
3799 }
3800 
3801 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
3802 {
3803 	int rc = 0;
3804 	struct hwrm_func_qcaps_input req = {0};
3805 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
3806 
3807 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
3808 	req.fid = cpu_to_le16(0xffff);
3809 
3810 	mutex_lock(&bp->hwrm_cmd_lock);
3811 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3812 	if (rc)
3813 		goto hwrm_func_qcaps_exit;
3814 
3815 	if (BNXT_PF(bp)) {
3816 		struct bnxt_pf_info *pf = &bp->pf;
3817 
3818 		pf->fw_fid = le16_to_cpu(resp->fid);
3819 		pf->port_id = le16_to_cpu(resp->port_id);
3820 		memcpy(pf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3821 		memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
3822 		pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3823 		pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3824 		pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3825 		pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3826 		pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3827 		if (!pf->max_hw_ring_grps)
3828 			pf->max_hw_ring_grps = pf->max_tx_rings;
3829 		pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3830 		pf->max_vnics = le16_to_cpu(resp->max_vnics);
3831 		pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3832 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
3833 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
3834 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
3835 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
3836 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
3837 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
3838 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
3839 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
3840 	} else {
3841 #ifdef CONFIG_BNXT_SRIOV
3842 		struct bnxt_vf_info *vf = &bp->vf;
3843 
3844 		vf->fw_fid = le16_to_cpu(resp->fid);
3845 		memcpy(vf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3846 		if (is_valid_ether_addr(vf->mac_addr))
3847 			/* overwrite netdev dev_adr with admin VF MAC */
3848 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
3849 		else
3850 			random_ether_addr(bp->dev->dev_addr);
3851 
3852 		vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3853 		vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3854 		vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3855 		vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3856 		vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3857 		if (!vf->max_hw_ring_grps)
3858 			vf->max_hw_ring_grps = vf->max_tx_rings;
3859 		vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3860 		vf->max_vnics = le16_to_cpu(resp->max_vnics);
3861 		vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3862 #endif
3863 	}
3864 
3865 	bp->tx_push_thresh = 0;
3866 	if (resp->flags &
3867 	    cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
3868 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
3869 
3870 hwrm_func_qcaps_exit:
3871 	mutex_unlock(&bp->hwrm_cmd_lock);
3872 	return rc;
3873 }
3874 
3875 static int bnxt_hwrm_func_reset(struct bnxt *bp)
3876 {
3877 	struct hwrm_func_reset_input req = {0};
3878 
3879 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
3880 	req.enables = 0;
3881 
3882 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
3883 }
3884 
3885 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
3886 {
3887 	int rc = 0;
3888 	struct hwrm_queue_qportcfg_input req = {0};
3889 	struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
3890 	u8 i, *qptr;
3891 
3892 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
3893 
3894 	mutex_lock(&bp->hwrm_cmd_lock);
3895 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3896 	if (rc)
3897 		goto qportcfg_exit;
3898 
3899 	if (!resp->max_configurable_queues) {
3900 		rc = -EINVAL;
3901 		goto qportcfg_exit;
3902 	}
3903 	bp->max_tc = resp->max_configurable_queues;
3904 	if (bp->max_tc > BNXT_MAX_QUEUE)
3905 		bp->max_tc = BNXT_MAX_QUEUE;
3906 
3907 	qptr = &resp->queue_id0;
3908 	for (i = 0; i < bp->max_tc; i++) {
3909 		bp->q_info[i].queue_id = *qptr++;
3910 		bp->q_info[i].queue_profile = *qptr++;
3911 	}
3912 
3913 qportcfg_exit:
3914 	mutex_unlock(&bp->hwrm_cmd_lock);
3915 	return rc;
3916 }
3917 
3918 static int bnxt_hwrm_ver_get(struct bnxt *bp)
3919 {
3920 	int rc;
3921 	struct hwrm_ver_get_input req = {0};
3922 	struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
3923 
3924 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
3925 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
3926 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
3927 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
3928 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
3929 	mutex_lock(&bp->hwrm_cmd_lock);
3930 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3931 	if (rc)
3932 		goto hwrm_ver_get_exit;
3933 
3934 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
3935 
3936 	if (resp->hwrm_intf_maj < 1) {
3937 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
3938 			    resp->hwrm_intf_maj, resp->hwrm_intf_min,
3939 			    resp->hwrm_intf_upd);
3940 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
3941 	}
3942 	snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d/%d.%d.%d",
3943 		 resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
3944 		 resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
3945 
3946 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
3947 	if (!bp->hwrm_cmd_timeout)
3948 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
3949 
3950 	if (resp->hwrm_intf_maj >= 1)
3951 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
3952 
3953 hwrm_ver_get_exit:
3954 	mutex_unlock(&bp->hwrm_cmd_lock);
3955 	return rc;
3956 }
3957 
3958 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
3959 {
3960 	int rc;
3961 	struct bnxt_pf_info *pf = &bp->pf;
3962 	struct hwrm_port_qstats_input req = {0};
3963 
3964 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
3965 		return 0;
3966 
3967 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
3968 	req.port_id = cpu_to_le16(pf->port_id);
3969 	req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
3970 	req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
3971 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3972 	return rc;
3973 }
3974 
3975 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
3976 {
3977 	if (bp->vxlan_port_cnt) {
3978 		bnxt_hwrm_tunnel_dst_port_free(
3979 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
3980 	}
3981 	bp->vxlan_port_cnt = 0;
3982 	if (bp->nge_port_cnt) {
3983 		bnxt_hwrm_tunnel_dst_port_free(
3984 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
3985 	}
3986 	bp->nge_port_cnt = 0;
3987 }
3988 
3989 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
3990 {
3991 	int rc, i;
3992 	u32 tpa_flags = 0;
3993 
3994 	if (set_tpa)
3995 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
3996 	for (i = 0; i < bp->nr_vnics; i++) {
3997 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
3998 		if (rc) {
3999 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
4000 				   rc, i);
4001 			return rc;
4002 		}
4003 	}
4004 	return 0;
4005 }
4006 
4007 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
4008 {
4009 	int i;
4010 
4011 	for (i = 0; i < bp->nr_vnics; i++)
4012 		bnxt_hwrm_vnic_set_rss(bp, i, false);
4013 }
4014 
4015 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
4016 				    bool irq_re_init)
4017 {
4018 	if (bp->vnic_info) {
4019 		bnxt_hwrm_clear_vnic_filter(bp);
4020 		/* clear all RSS setting before free vnic ctx */
4021 		bnxt_hwrm_clear_vnic_rss(bp);
4022 		bnxt_hwrm_vnic_ctx_free(bp);
4023 		/* before free the vnic, undo the vnic tpa settings */
4024 		if (bp->flags & BNXT_FLAG_TPA)
4025 			bnxt_set_tpa(bp, false);
4026 		bnxt_hwrm_vnic_free(bp);
4027 	}
4028 	bnxt_hwrm_ring_free(bp, close_path);
4029 	bnxt_hwrm_ring_grp_free(bp);
4030 	if (irq_re_init) {
4031 		bnxt_hwrm_stat_ctx_free(bp);
4032 		bnxt_hwrm_free_tunnel_ports(bp);
4033 	}
4034 }
4035 
4036 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
4037 {
4038 	int rc;
4039 
4040 	/* allocate context for vnic */
4041 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id);
4042 	if (rc) {
4043 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4044 			   vnic_id, rc);
4045 		goto vnic_setup_err;
4046 	}
4047 	bp->rsscos_nr_ctxs++;
4048 
4049 	/* configure default vnic, ring grp */
4050 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
4051 	if (rc) {
4052 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
4053 			   vnic_id, rc);
4054 		goto vnic_setup_err;
4055 	}
4056 
4057 	/* Enable RSS hashing on vnic */
4058 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
4059 	if (rc) {
4060 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
4061 			   vnic_id, rc);
4062 		goto vnic_setup_err;
4063 	}
4064 
4065 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4066 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
4067 		if (rc) {
4068 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
4069 				   vnic_id, rc);
4070 		}
4071 	}
4072 
4073 vnic_setup_err:
4074 	return rc;
4075 }
4076 
4077 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
4078 {
4079 #ifdef CONFIG_RFS_ACCEL
4080 	int i, rc = 0;
4081 
4082 	for (i = 0; i < bp->rx_nr_rings; i++) {
4083 		u16 vnic_id = i + 1;
4084 		u16 ring_id = i;
4085 
4086 		if (vnic_id >= bp->nr_vnics)
4087 			break;
4088 
4089 		bp->vnic_info[vnic_id].flags |= BNXT_VNIC_RFS_FLAG;
4090 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
4091 		if (rc) {
4092 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4093 				   vnic_id, rc);
4094 			break;
4095 		}
4096 		rc = bnxt_setup_vnic(bp, vnic_id);
4097 		if (rc)
4098 			break;
4099 	}
4100 	return rc;
4101 #else
4102 	return 0;
4103 #endif
4104 }
4105 
4106 static int bnxt_cfg_rx_mode(struct bnxt *);
4107 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
4108 
4109 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
4110 {
4111 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4112 	int rc = 0;
4113 
4114 	if (irq_re_init) {
4115 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
4116 		if (rc) {
4117 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
4118 				   rc);
4119 			goto err_out;
4120 		}
4121 	}
4122 
4123 	rc = bnxt_hwrm_ring_alloc(bp);
4124 	if (rc) {
4125 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
4126 		goto err_out;
4127 	}
4128 
4129 	rc = bnxt_hwrm_ring_grp_alloc(bp);
4130 	if (rc) {
4131 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
4132 		goto err_out;
4133 	}
4134 
4135 	/* default vnic 0 */
4136 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, bp->rx_nr_rings);
4137 	if (rc) {
4138 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
4139 		goto err_out;
4140 	}
4141 
4142 	rc = bnxt_setup_vnic(bp, 0);
4143 	if (rc)
4144 		goto err_out;
4145 
4146 	if (bp->flags & BNXT_FLAG_RFS) {
4147 		rc = bnxt_alloc_rfs_vnics(bp);
4148 		if (rc)
4149 			goto err_out;
4150 	}
4151 
4152 	if (bp->flags & BNXT_FLAG_TPA) {
4153 		rc = bnxt_set_tpa(bp, true);
4154 		if (rc)
4155 			goto err_out;
4156 	}
4157 
4158 	if (BNXT_VF(bp))
4159 		bnxt_update_vf_mac(bp);
4160 
4161 	/* Filter for default vnic 0 */
4162 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
4163 	if (rc) {
4164 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
4165 		goto err_out;
4166 	}
4167 	vnic->uc_filter_count = 1;
4168 
4169 	vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
4170 
4171 	if ((bp->dev->flags & IFF_PROMISC) && BNXT_PF(bp))
4172 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4173 
4174 	if (bp->dev->flags & IFF_ALLMULTI) {
4175 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4176 		vnic->mc_list_count = 0;
4177 	} else {
4178 		u32 mask = 0;
4179 
4180 		bnxt_mc_list_updated(bp, &mask);
4181 		vnic->rx_mask |= mask;
4182 	}
4183 
4184 	rc = bnxt_cfg_rx_mode(bp);
4185 	if (rc)
4186 		goto err_out;
4187 
4188 	rc = bnxt_hwrm_set_coal(bp);
4189 	if (rc)
4190 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
4191 			    rc);
4192 
4193 	return 0;
4194 
4195 err_out:
4196 	bnxt_hwrm_resource_free(bp, 0, true);
4197 
4198 	return rc;
4199 }
4200 
4201 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
4202 {
4203 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
4204 	return 0;
4205 }
4206 
4207 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
4208 {
4209 	bnxt_init_rx_rings(bp);
4210 	bnxt_init_tx_rings(bp);
4211 	bnxt_init_ring_grps(bp, irq_re_init);
4212 	bnxt_init_vnics(bp);
4213 
4214 	return bnxt_init_chip(bp, irq_re_init);
4215 }
4216 
4217 static void bnxt_disable_int(struct bnxt *bp)
4218 {
4219 	int i;
4220 
4221 	if (!bp->bnapi)
4222 		return;
4223 
4224 	for (i = 0; i < bp->cp_nr_rings; i++) {
4225 		struct bnxt_napi *bnapi = bp->bnapi[i];
4226 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4227 
4228 		BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4229 	}
4230 }
4231 
4232 static void bnxt_enable_int(struct bnxt *bp)
4233 {
4234 	int i;
4235 
4236 	atomic_set(&bp->intr_sem, 0);
4237 	for (i = 0; i < bp->cp_nr_rings; i++) {
4238 		struct bnxt_napi *bnapi = bp->bnapi[i];
4239 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4240 
4241 		BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
4242 	}
4243 }
4244 
4245 static int bnxt_set_real_num_queues(struct bnxt *bp)
4246 {
4247 	int rc;
4248 	struct net_device *dev = bp->dev;
4249 
4250 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings);
4251 	if (rc)
4252 		return rc;
4253 
4254 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
4255 	if (rc)
4256 		return rc;
4257 
4258 #ifdef CONFIG_RFS_ACCEL
4259 	if (bp->flags & BNXT_FLAG_RFS)
4260 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
4261 #endif
4262 
4263 	return rc;
4264 }
4265 
4266 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
4267 			   bool shared)
4268 {
4269 	int _rx = *rx, _tx = *tx;
4270 
4271 	if (shared) {
4272 		*rx = min_t(int, _rx, max);
4273 		*tx = min_t(int, _tx, max);
4274 	} else {
4275 		if (max < 2)
4276 			return -ENOMEM;
4277 
4278 		while (_rx + _tx > max) {
4279 			if (_rx > _tx && _rx > 1)
4280 				_rx--;
4281 			else if (_tx > 1)
4282 				_tx--;
4283 		}
4284 		*rx = _rx;
4285 		*tx = _tx;
4286 	}
4287 	return 0;
4288 }
4289 
4290 static int bnxt_setup_msix(struct bnxt *bp)
4291 {
4292 	struct msix_entry *msix_ent;
4293 	struct net_device *dev = bp->dev;
4294 	int i, total_vecs, rc = 0, min = 1;
4295 	const int len = sizeof(bp->irq_tbl[0].name);
4296 
4297 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
4298 	total_vecs = bp->cp_nr_rings;
4299 
4300 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
4301 	if (!msix_ent)
4302 		return -ENOMEM;
4303 
4304 	for (i = 0; i < total_vecs; i++) {
4305 		msix_ent[i].entry = i;
4306 		msix_ent[i].vector = 0;
4307 	}
4308 
4309 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
4310 		min = 2;
4311 
4312 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
4313 	if (total_vecs < 0) {
4314 		rc = -ENODEV;
4315 		goto msix_setup_exit;
4316 	}
4317 
4318 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
4319 	if (bp->irq_tbl) {
4320 		int tcs;
4321 
4322 		/* Trim rings based upon num of vectors allocated */
4323 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
4324 				     total_vecs, min == 1);
4325 		if (rc)
4326 			goto msix_setup_exit;
4327 
4328 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4329 		tcs = netdev_get_num_tc(dev);
4330 		if (tcs > 1) {
4331 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings / tcs;
4332 			if (bp->tx_nr_rings_per_tc == 0) {
4333 				netdev_reset_tc(dev);
4334 				bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4335 			} else {
4336 				int i, off, count;
4337 
4338 				bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tcs;
4339 				for (i = 0; i < tcs; i++) {
4340 					count = bp->tx_nr_rings_per_tc;
4341 					off = i * count;
4342 					netdev_set_tc_queue(dev, i, count, off);
4343 				}
4344 			}
4345 		}
4346 		bp->cp_nr_rings = total_vecs;
4347 
4348 		for (i = 0; i < bp->cp_nr_rings; i++) {
4349 			char *attr;
4350 
4351 			bp->irq_tbl[i].vector = msix_ent[i].vector;
4352 			if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4353 				attr = "TxRx";
4354 			else if (i < bp->rx_nr_rings)
4355 				attr = "rx";
4356 			else
4357 				attr = "tx";
4358 
4359 			snprintf(bp->irq_tbl[i].name, len,
4360 				 "%s-%s-%d", dev->name, attr, i);
4361 			bp->irq_tbl[i].handler = bnxt_msix;
4362 		}
4363 		rc = bnxt_set_real_num_queues(bp);
4364 		if (rc)
4365 			goto msix_setup_exit;
4366 	} else {
4367 		rc = -ENOMEM;
4368 		goto msix_setup_exit;
4369 	}
4370 	bp->flags |= BNXT_FLAG_USING_MSIX;
4371 	kfree(msix_ent);
4372 	return 0;
4373 
4374 msix_setup_exit:
4375 	netdev_err(bp->dev, "bnxt_setup_msix err: %x\n", rc);
4376 	pci_disable_msix(bp->pdev);
4377 	kfree(msix_ent);
4378 	return rc;
4379 }
4380 
4381 static int bnxt_setup_inta(struct bnxt *bp)
4382 {
4383 	int rc;
4384 	const int len = sizeof(bp->irq_tbl[0].name);
4385 
4386 	if (netdev_get_num_tc(bp->dev))
4387 		netdev_reset_tc(bp->dev);
4388 
4389 	bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
4390 	if (!bp->irq_tbl) {
4391 		rc = -ENOMEM;
4392 		return rc;
4393 	}
4394 	bp->rx_nr_rings = 1;
4395 	bp->tx_nr_rings = 1;
4396 	bp->cp_nr_rings = 1;
4397 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4398 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
4399 	bp->irq_tbl[0].vector = bp->pdev->irq;
4400 	snprintf(bp->irq_tbl[0].name, len,
4401 		 "%s-%s-%d", bp->dev->name, "TxRx", 0);
4402 	bp->irq_tbl[0].handler = bnxt_inta;
4403 	rc = bnxt_set_real_num_queues(bp);
4404 	return rc;
4405 }
4406 
4407 static int bnxt_setup_int_mode(struct bnxt *bp)
4408 {
4409 	int rc = 0;
4410 
4411 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
4412 		rc = bnxt_setup_msix(bp);
4413 
4414 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
4415 		/* fallback to INTA */
4416 		rc = bnxt_setup_inta(bp);
4417 	}
4418 	return rc;
4419 }
4420 
4421 static void bnxt_free_irq(struct bnxt *bp)
4422 {
4423 	struct bnxt_irq *irq;
4424 	int i;
4425 
4426 #ifdef CONFIG_RFS_ACCEL
4427 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
4428 	bp->dev->rx_cpu_rmap = NULL;
4429 #endif
4430 	if (!bp->irq_tbl)
4431 		return;
4432 
4433 	for (i = 0; i < bp->cp_nr_rings; i++) {
4434 		irq = &bp->irq_tbl[i];
4435 		if (irq->requested)
4436 			free_irq(irq->vector, bp->bnapi[i]);
4437 		irq->requested = 0;
4438 	}
4439 	if (bp->flags & BNXT_FLAG_USING_MSIX)
4440 		pci_disable_msix(bp->pdev);
4441 	kfree(bp->irq_tbl);
4442 	bp->irq_tbl = NULL;
4443 }
4444 
4445 static int bnxt_request_irq(struct bnxt *bp)
4446 {
4447 	int i, j, rc = 0;
4448 	unsigned long flags = 0;
4449 #ifdef CONFIG_RFS_ACCEL
4450 	struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
4451 #endif
4452 
4453 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
4454 		flags = IRQF_SHARED;
4455 
4456 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
4457 		struct bnxt_irq *irq = &bp->irq_tbl[i];
4458 #ifdef CONFIG_RFS_ACCEL
4459 		if (rmap && bp->bnapi[i]->rx_ring) {
4460 			rc = irq_cpu_rmap_add(rmap, irq->vector);
4461 			if (rc)
4462 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
4463 					    j);
4464 			j++;
4465 		}
4466 #endif
4467 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
4468 				 bp->bnapi[i]);
4469 		if (rc)
4470 			break;
4471 
4472 		irq->requested = 1;
4473 	}
4474 	return rc;
4475 }
4476 
4477 static void bnxt_del_napi(struct bnxt *bp)
4478 {
4479 	int i;
4480 
4481 	if (!bp->bnapi)
4482 		return;
4483 
4484 	for (i = 0; i < bp->cp_nr_rings; i++) {
4485 		struct bnxt_napi *bnapi = bp->bnapi[i];
4486 
4487 		napi_hash_del(&bnapi->napi);
4488 		netif_napi_del(&bnapi->napi);
4489 	}
4490 }
4491 
4492 static void bnxt_init_napi(struct bnxt *bp)
4493 {
4494 	int i;
4495 	struct bnxt_napi *bnapi;
4496 
4497 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
4498 		for (i = 0; i < bp->cp_nr_rings; i++) {
4499 			bnapi = bp->bnapi[i];
4500 			netif_napi_add(bp->dev, &bnapi->napi,
4501 				       bnxt_poll, 64);
4502 		}
4503 	} else {
4504 		bnapi = bp->bnapi[0];
4505 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
4506 	}
4507 }
4508 
4509 static void bnxt_disable_napi(struct bnxt *bp)
4510 {
4511 	int i;
4512 
4513 	if (!bp->bnapi)
4514 		return;
4515 
4516 	for (i = 0; i < bp->cp_nr_rings; i++) {
4517 		napi_disable(&bp->bnapi[i]->napi);
4518 		bnxt_disable_poll(bp->bnapi[i]);
4519 	}
4520 }
4521 
4522 static void bnxt_enable_napi(struct bnxt *bp)
4523 {
4524 	int i;
4525 
4526 	for (i = 0; i < bp->cp_nr_rings; i++) {
4527 		bp->bnapi[i]->in_reset = false;
4528 		bnxt_enable_poll(bp->bnapi[i]);
4529 		napi_enable(&bp->bnapi[i]->napi);
4530 	}
4531 }
4532 
4533 static void bnxt_tx_disable(struct bnxt *bp)
4534 {
4535 	int i;
4536 	struct bnxt_tx_ring_info *txr;
4537 	struct netdev_queue *txq;
4538 
4539 	if (bp->tx_ring) {
4540 		for (i = 0; i < bp->tx_nr_rings; i++) {
4541 			txr = &bp->tx_ring[i];
4542 			txq = netdev_get_tx_queue(bp->dev, i);
4543 			__netif_tx_lock(txq, smp_processor_id());
4544 			txr->dev_state = BNXT_DEV_STATE_CLOSING;
4545 			__netif_tx_unlock(txq);
4546 		}
4547 	}
4548 	/* Stop all TX queues */
4549 	netif_tx_disable(bp->dev);
4550 	netif_carrier_off(bp->dev);
4551 }
4552 
4553 static void bnxt_tx_enable(struct bnxt *bp)
4554 {
4555 	int i;
4556 	struct bnxt_tx_ring_info *txr;
4557 	struct netdev_queue *txq;
4558 
4559 	for (i = 0; i < bp->tx_nr_rings; i++) {
4560 		txr = &bp->tx_ring[i];
4561 		txq = netdev_get_tx_queue(bp->dev, i);
4562 		txr->dev_state = 0;
4563 	}
4564 	netif_tx_wake_all_queues(bp->dev);
4565 	if (bp->link_info.link_up)
4566 		netif_carrier_on(bp->dev);
4567 }
4568 
4569 static void bnxt_report_link(struct bnxt *bp)
4570 {
4571 	if (bp->link_info.link_up) {
4572 		const char *duplex;
4573 		const char *flow_ctrl;
4574 		u16 speed;
4575 
4576 		netif_carrier_on(bp->dev);
4577 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
4578 			duplex = "full";
4579 		else
4580 			duplex = "half";
4581 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
4582 			flow_ctrl = "ON - receive & transmit";
4583 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
4584 			flow_ctrl = "ON - transmit";
4585 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
4586 			flow_ctrl = "ON - receive";
4587 		else
4588 			flow_ctrl = "none";
4589 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
4590 		netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
4591 			    speed, duplex, flow_ctrl);
4592 	} else {
4593 		netif_carrier_off(bp->dev);
4594 		netdev_err(bp->dev, "NIC Link is Down\n");
4595 	}
4596 }
4597 
4598 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
4599 {
4600 	int rc = 0;
4601 	struct bnxt_link_info *link_info = &bp->link_info;
4602 	struct hwrm_port_phy_qcfg_input req = {0};
4603 	struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4604 	u8 link_up = link_info->link_up;
4605 
4606 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
4607 
4608 	mutex_lock(&bp->hwrm_cmd_lock);
4609 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4610 	if (rc) {
4611 		mutex_unlock(&bp->hwrm_cmd_lock);
4612 		return rc;
4613 	}
4614 
4615 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
4616 	link_info->phy_link_status = resp->link;
4617 	link_info->duplex =  resp->duplex;
4618 	link_info->pause = resp->pause;
4619 	link_info->auto_mode = resp->auto_mode;
4620 	link_info->auto_pause_setting = resp->auto_pause;
4621 	link_info->lp_pause = resp->link_partner_adv_pause;
4622 	link_info->force_pause_setting = resp->force_pause;
4623 	link_info->duplex_setting = resp->duplex;
4624 	if (link_info->phy_link_status == BNXT_LINK_LINK)
4625 		link_info->link_speed = le16_to_cpu(resp->link_speed);
4626 	else
4627 		link_info->link_speed = 0;
4628 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
4629 	link_info->auto_link_speed = le16_to_cpu(resp->auto_link_speed);
4630 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
4631 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
4632 	link_info->lp_auto_link_speeds =
4633 		le16_to_cpu(resp->link_partner_adv_speeds);
4634 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
4635 	link_info->phy_ver[0] = resp->phy_maj;
4636 	link_info->phy_ver[1] = resp->phy_min;
4637 	link_info->phy_ver[2] = resp->phy_bld;
4638 	link_info->media_type = resp->media_type;
4639 	link_info->transceiver = resp->transceiver_type;
4640 	link_info->phy_addr = resp->phy_addr;
4641 
4642 	/* TODO: need to add more logic to report VF link */
4643 	if (chng_link_state) {
4644 		if (link_info->phy_link_status == BNXT_LINK_LINK)
4645 			link_info->link_up = 1;
4646 		else
4647 			link_info->link_up = 0;
4648 		if (link_up != link_info->link_up)
4649 			bnxt_report_link(bp);
4650 	} else {
4651 		/* alwasy link down if not require to update link state */
4652 		link_info->link_up = 0;
4653 	}
4654 	mutex_unlock(&bp->hwrm_cmd_lock);
4655 	return 0;
4656 }
4657 
4658 static void
4659 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
4660 {
4661 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
4662 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4663 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4664 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4665 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
4666 		req->enables |=
4667 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
4668 	} else {
4669 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4670 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
4671 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4672 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
4673 		req->enables |=
4674 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
4675 	}
4676 }
4677 
4678 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
4679 				      struct hwrm_port_phy_cfg_input *req)
4680 {
4681 	u8 autoneg = bp->link_info.autoneg;
4682 	u16 fw_link_speed = bp->link_info.req_link_speed;
4683 	u32 advertising = bp->link_info.advertising;
4684 
4685 	if (autoneg & BNXT_AUTONEG_SPEED) {
4686 		req->auto_mode |=
4687 			PORT_PHY_CFG_REQ_AUTO_MODE_MASK;
4688 
4689 		req->enables |= cpu_to_le32(
4690 			PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
4691 		req->auto_link_speed_mask = cpu_to_le16(advertising);
4692 
4693 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
4694 		req->flags |=
4695 			cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
4696 	} else {
4697 		req->force_link_speed = cpu_to_le16(fw_link_speed);
4698 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
4699 	}
4700 
4701 	/* currently don't support half duplex */
4702 	req->auto_duplex = PORT_PHY_CFG_REQ_AUTO_DUPLEX_FULL;
4703 	req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_DUPLEX);
4704 	/* tell chimp that the setting takes effect immediately */
4705 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
4706 }
4707 
4708 int bnxt_hwrm_set_pause(struct bnxt *bp)
4709 {
4710 	struct hwrm_port_phy_cfg_input req = {0};
4711 	int rc;
4712 
4713 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4714 	bnxt_hwrm_set_pause_common(bp, &req);
4715 
4716 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
4717 	    bp->link_info.force_link_chng)
4718 		bnxt_hwrm_set_link_common(bp, &req);
4719 
4720 	mutex_lock(&bp->hwrm_cmd_lock);
4721 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4722 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
4723 		/* since changing of pause setting doesn't trigger any link
4724 		 * change event, the driver needs to update the current pause
4725 		 * result upon successfully return of the phy_cfg command
4726 		 */
4727 		bp->link_info.pause =
4728 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
4729 		bp->link_info.auto_pause_setting = 0;
4730 		if (!bp->link_info.force_link_chng)
4731 			bnxt_report_link(bp);
4732 	}
4733 	bp->link_info.force_link_chng = false;
4734 	mutex_unlock(&bp->hwrm_cmd_lock);
4735 	return rc;
4736 }
4737 
4738 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause)
4739 {
4740 	struct hwrm_port_phy_cfg_input req = {0};
4741 
4742 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4743 	if (set_pause)
4744 		bnxt_hwrm_set_pause_common(bp, &req);
4745 
4746 	bnxt_hwrm_set_link_common(bp, &req);
4747 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4748 }
4749 
4750 static int bnxt_update_phy_setting(struct bnxt *bp)
4751 {
4752 	int rc;
4753 	bool update_link = false;
4754 	bool update_pause = false;
4755 	struct bnxt_link_info *link_info = &bp->link_info;
4756 
4757 	rc = bnxt_update_link(bp, true);
4758 	if (rc) {
4759 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
4760 			   rc);
4761 		return rc;
4762 	}
4763 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4764 	    link_info->auto_pause_setting != link_info->req_flow_ctrl)
4765 		update_pause = true;
4766 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4767 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
4768 		update_pause = true;
4769 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
4770 		if (BNXT_AUTO_MODE(link_info->auto_mode))
4771 			update_link = true;
4772 		if (link_info->req_link_speed != link_info->force_link_speed)
4773 			update_link = true;
4774 		if (link_info->req_duplex != link_info->duplex_setting)
4775 			update_link = true;
4776 	} else {
4777 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
4778 			update_link = true;
4779 		if (link_info->advertising != link_info->auto_link_speeds)
4780 			update_link = true;
4781 	}
4782 
4783 	if (update_link)
4784 		rc = bnxt_hwrm_set_link_setting(bp, update_pause);
4785 	else if (update_pause)
4786 		rc = bnxt_hwrm_set_pause(bp);
4787 	if (rc) {
4788 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
4789 			   rc);
4790 		return rc;
4791 	}
4792 
4793 	return rc;
4794 }
4795 
4796 /* Common routine to pre-map certain register block to different GRC window.
4797  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
4798  * in PF and 3 windows in VF that can be customized to map in different
4799  * register blocks.
4800  */
4801 static void bnxt_preset_reg_win(struct bnxt *bp)
4802 {
4803 	if (BNXT_PF(bp)) {
4804 		/* CAG registers map to GRC window #4 */
4805 		writel(BNXT_CAG_REG_BASE,
4806 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
4807 	}
4808 }
4809 
4810 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4811 {
4812 	int rc = 0;
4813 
4814 	bnxt_preset_reg_win(bp);
4815 	netif_carrier_off(bp->dev);
4816 	if (irq_re_init) {
4817 		rc = bnxt_setup_int_mode(bp);
4818 		if (rc) {
4819 			netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
4820 				   rc);
4821 			return rc;
4822 		}
4823 	}
4824 	if ((bp->flags & BNXT_FLAG_RFS) &&
4825 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
4826 		/* disable RFS if falling back to INTA */
4827 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
4828 		bp->flags &= ~BNXT_FLAG_RFS;
4829 	}
4830 
4831 	rc = bnxt_alloc_mem(bp, irq_re_init);
4832 	if (rc) {
4833 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
4834 		goto open_err_free_mem;
4835 	}
4836 
4837 	if (irq_re_init) {
4838 		bnxt_init_napi(bp);
4839 		rc = bnxt_request_irq(bp);
4840 		if (rc) {
4841 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
4842 			goto open_err;
4843 		}
4844 	}
4845 
4846 	bnxt_enable_napi(bp);
4847 
4848 	rc = bnxt_init_nic(bp, irq_re_init);
4849 	if (rc) {
4850 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
4851 		goto open_err;
4852 	}
4853 
4854 	if (link_re_init) {
4855 		rc = bnxt_update_phy_setting(bp);
4856 		if (rc)
4857 			netdev_warn(bp->dev, "failed to update phy settings\n");
4858 	}
4859 
4860 	if (irq_re_init) {
4861 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
4862 		vxlan_get_rx_port(bp->dev);
4863 #endif
4864 		if (!bnxt_hwrm_tunnel_dst_port_alloc(
4865 				bp, htons(0x17c1),
4866 				TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE))
4867 			bp->nge_port_cnt = 1;
4868 	}
4869 
4870 	set_bit(BNXT_STATE_OPEN, &bp->state);
4871 	bnxt_enable_int(bp);
4872 	/* Enable TX queues */
4873 	bnxt_tx_enable(bp);
4874 	mod_timer(&bp->timer, jiffies + bp->current_interval);
4875 	bnxt_update_link(bp, true);
4876 
4877 	return 0;
4878 
4879 open_err:
4880 	bnxt_disable_napi(bp);
4881 	bnxt_del_napi(bp);
4882 
4883 open_err_free_mem:
4884 	bnxt_free_skbs(bp);
4885 	bnxt_free_irq(bp);
4886 	bnxt_free_mem(bp, true);
4887 	return rc;
4888 }
4889 
4890 /* rtnl_lock held */
4891 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4892 {
4893 	int rc = 0;
4894 
4895 	rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
4896 	if (rc) {
4897 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
4898 		dev_close(bp->dev);
4899 	}
4900 	return rc;
4901 }
4902 
4903 static int bnxt_open(struct net_device *dev)
4904 {
4905 	struct bnxt *bp = netdev_priv(dev);
4906 	int rc = 0;
4907 
4908 	rc = bnxt_hwrm_func_reset(bp);
4909 	if (rc) {
4910 		netdev_err(bp->dev, "hwrm chip reset failure rc: %x\n",
4911 			   rc);
4912 		rc = -1;
4913 		return rc;
4914 	}
4915 	return __bnxt_open_nic(bp, true, true);
4916 }
4917 
4918 static void bnxt_disable_int_sync(struct bnxt *bp)
4919 {
4920 	int i;
4921 
4922 	atomic_inc(&bp->intr_sem);
4923 	if (!netif_running(bp->dev))
4924 		return;
4925 
4926 	bnxt_disable_int(bp);
4927 	for (i = 0; i < bp->cp_nr_rings; i++)
4928 		synchronize_irq(bp->irq_tbl[i].vector);
4929 }
4930 
4931 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4932 {
4933 	int rc = 0;
4934 
4935 #ifdef CONFIG_BNXT_SRIOV
4936 	if (bp->sriov_cfg) {
4937 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
4938 						      !bp->sriov_cfg,
4939 						      BNXT_SRIOV_CFG_WAIT_TMO);
4940 		if (rc)
4941 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
4942 	}
4943 #endif
4944 	/* Change device state to avoid TX queue wake up's */
4945 	bnxt_tx_disable(bp);
4946 
4947 	clear_bit(BNXT_STATE_OPEN, &bp->state);
4948 	smp_mb__after_atomic();
4949 	while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
4950 		msleep(20);
4951 
4952 	/* Flush rings before disabling interrupts */
4953 	bnxt_shutdown_nic(bp, irq_re_init);
4954 
4955 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
4956 
4957 	bnxt_disable_napi(bp);
4958 	bnxt_disable_int_sync(bp);
4959 	del_timer_sync(&bp->timer);
4960 	bnxt_free_skbs(bp);
4961 
4962 	if (irq_re_init) {
4963 		bnxt_free_irq(bp);
4964 		bnxt_del_napi(bp);
4965 	}
4966 	bnxt_free_mem(bp, irq_re_init);
4967 	return rc;
4968 }
4969 
4970 static int bnxt_close(struct net_device *dev)
4971 {
4972 	struct bnxt *bp = netdev_priv(dev);
4973 
4974 	bnxt_close_nic(bp, true, true);
4975 	return 0;
4976 }
4977 
4978 /* rtnl_lock held */
4979 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4980 {
4981 	switch (cmd) {
4982 	case SIOCGMIIPHY:
4983 		/* fallthru */
4984 	case SIOCGMIIREG: {
4985 		if (!netif_running(dev))
4986 			return -EAGAIN;
4987 
4988 		return 0;
4989 	}
4990 
4991 	case SIOCSMIIREG:
4992 		if (!netif_running(dev))
4993 			return -EAGAIN;
4994 
4995 		return 0;
4996 
4997 	default:
4998 		/* do nothing */
4999 		break;
5000 	}
5001 	return -EOPNOTSUPP;
5002 }
5003 
5004 static struct rtnl_link_stats64 *
5005 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
5006 {
5007 	u32 i;
5008 	struct bnxt *bp = netdev_priv(dev);
5009 
5010 	memset(stats, 0, sizeof(struct rtnl_link_stats64));
5011 
5012 	if (!bp->bnapi)
5013 		return stats;
5014 
5015 	/* TODO check if we need to synchronize with bnxt_close path */
5016 	for (i = 0; i < bp->cp_nr_rings; i++) {
5017 		struct bnxt_napi *bnapi = bp->bnapi[i];
5018 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5019 		struct ctx_hw_stats *hw_stats = cpr->hw_stats;
5020 
5021 		stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
5022 		stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
5023 		stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
5024 
5025 		stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
5026 		stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
5027 		stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
5028 
5029 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
5030 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
5031 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
5032 
5033 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
5034 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
5035 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
5036 
5037 		stats->rx_missed_errors +=
5038 			le64_to_cpu(hw_stats->rx_discard_pkts);
5039 
5040 		stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
5041 
5042 		stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
5043 	}
5044 
5045 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
5046 		struct rx_port_stats *rx = bp->hw_rx_port_stats;
5047 		struct tx_port_stats *tx = bp->hw_tx_port_stats;
5048 
5049 		stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
5050 		stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
5051 		stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
5052 					  le64_to_cpu(rx->rx_ovrsz_frames) +
5053 					  le64_to_cpu(rx->rx_runt_frames);
5054 		stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
5055 				   le64_to_cpu(rx->rx_jbr_frames);
5056 		stats->collisions = le64_to_cpu(tx->tx_total_collisions);
5057 		stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
5058 		stats->tx_errors = le64_to_cpu(tx->tx_err);
5059 	}
5060 
5061 	return stats;
5062 }
5063 
5064 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
5065 {
5066 	struct net_device *dev = bp->dev;
5067 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5068 	struct netdev_hw_addr *ha;
5069 	u8 *haddr;
5070 	int mc_count = 0;
5071 	bool update = false;
5072 	int off = 0;
5073 
5074 	netdev_for_each_mc_addr(ha, dev) {
5075 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
5076 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5077 			vnic->mc_list_count = 0;
5078 			return false;
5079 		}
5080 		haddr = ha->addr;
5081 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
5082 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
5083 			update = true;
5084 		}
5085 		off += ETH_ALEN;
5086 		mc_count++;
5087 	}
5088 	if (mc_count)
5089 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
5090 
5091 	if (mc_count != vnic->mc_list_count) {
5092 		vnic->mc_list_count = mc_count;
5093 		update = true;
5094 	}
5095 	return update;
5096 }
5097 
5098 static bool bnxt_uc_list_updated(struct bnxt *bp)
5099 {
5100 	struct net_device *dev = bp->dev;
5101 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5102 	struct netdev_hw_addr *ha;
5103 	int off = 0;
5104 
5105 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
5106 		return true;
5107 
5108 	netdev_for_each_uc_addr(ha, dev) {
5109 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
5110 			return true;
5111 
5112 		off += ETH_ALEN;
5113 	}
5114 	return false;
5115 }
5116 
5117 static void bnxt_set_rx_mode(struct net_device *dev)
5118 {
5119 	struct bnxt *bp = netdev_priv(dev);
5120 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5121 	u32 mask = vnic->rx_mask;
5122 	bool mc_update = false;
5123 	bool uc_update;
5124 
5125 	if (!netif_running(dev))
5126 		return;
5127 
5128 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
5129 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
5130 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
5131 
5132 	/* Only allow PF to be in promiscuous mode */
5133 	if ((dev->flags & IFF_PROMISC) && BNXT_PF(bp))
5134 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5135 
5136 	uc_update = bnxt_uc_list_updated(bp);
5137 
5138 	if (dev->flags & IFF_ALLMULTI) {
5139 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5140 		vnic->mc_list_count = 0;
5141 	} else {
5142 		mc_update = bnxt_mc_list_updated(bp, &mask);
5143 	}
5144 
5145 	if (mask != vnic->rx_mask || uc_update || mc_update) {
5146 		vnic->rx_mask = mask;
5147 
5148 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
5149 		schedule_work(&bp->sp_task);
5150 	}
5151 }
5152 
5153 static int bnxt_cfg_rx_mode(struct bnxt *bp)
5154 {
5155 	struct net_device *dev = bp->dev;
5156 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5157 	struct netdev_hw_addr *ha;
5158 	int i, off = 0, rc;
5159 	bool uc_update;
5160 
5161 	netif_addr_lock_bh(dev);
5162 	uc_update = bnxt_uc_list_updated(bp);
5163 	netif_addr_unlock_bh(dev);
5164 
5165 	if (!uc_update)
5166 		goto skip_uc;
5167 
5168 	mutex_lock(&bp->hwrm_cmd_lock);
5169 	for (i = 1; i < vnic->uc_filter_count; i++) {
5170 		struct hwrm_cfa_l2_filter_free_input req = {0};
5171 
5172 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
5173 				       -1);
5174 
5175 		req.l2_filter_id = vnic->fw_l2_filter_id[i];
5176 
5177 		rc = _hwrm_send_message(bp, &req, sizeof(req),
5178 					HWRM_CMD_TIMEOUT);
5179 	}
5180 	mutex_unlock(&bp->hwrm_cmd_lock);
5181 
5182 	vnic->uc_filter_count = 1;
5183 
5184 	netif_addr_lock_bh(dev);
5185 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
5186 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5187 	} else {
5188 		netdev_for_each_uc_addr(ha, dev) {
5189 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
5190 			off += ETH_ALEN;
5191 			vnic->uc_filter_count++;
5192 		}
5193 	}
5194 	netif_addr_unlock_bh(dev);
5195 
5196 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
5197 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
5198 		if (rc) {
5199 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
5200 				   rc);
5201 			vnic->uc_filter_count = i;
5202 			return rc;
5203 		}
5204 	}
5205 
5206 skip_uc:
5207 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
5208 	if (rc)
5209 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
5210 			   rc);
5211 
5212 	return rc;
5213 }
5214 
5215 static bool bnxt_rfs_capable(struct bnxt *bp)
5216 {
5217 #ifdef CONFIG_RFS_ACCEL
5218 	struct bnxt_pf_info *pf = &bp->pf;
5219 	int vnics;
5220 
5221 	if (BNXT_VF(bp) || !(bp->flags & BNXT_FLAG_MSIX_CAP))
5222 		return false;
5223 
5224 	vnics = 1 + bp->rx_nr_rings;
5225 	if (vnics > pf->max_rsscos_ctxs || vnics > pf->max_vnics)
5226 		return false;
5227 
5228 	return true;
5229 #else
5230 	return false;
5231 #endif
5232 }
5233 
5234 static netdev_features_t bnxt_fix_features(struct net_device *dev,
5235 					   netdev_features_t features)
5236 {
5237 	struct bnxt *bp = netdev_priv(dev);
5238 
5239 	if (!bnxt_rfs_capable(bp))
5240 		features &= ~NETIF_F_NTUPLE;
5241 	return features;
5242 }
5243 
5244 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
5245 {
5246 	struct bnxt *bp = netdev_priv(dev);
5247 	u32 flags = bp->flags;
5248 	u32 changes;
5249 	int rc = 0;
5250 	bool re_init = false;
5251 	bool update_tpa = false;
5252 
5253 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
5254 	if ((features & NETIF_F_GRO) && (bp->pdev->revision > 0))
5255 		flags |= BNXT_FLAG_GRO;
5256 	if (features & NETIF_F_LRO)
5257 		flags |= BNXT_FLAG_LRO;
5258 
5259 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
5260 		flags |= BNXT_FLAG_STRIP_VLAN;
5261 
5262 	if (features & NETIF_F_NTUPLE)
5263 		flags |= BNXT_FLAG_RFS;
5264 
5265 	changes = flags ^ bp->flags;
5266 	if (changes & BNXT_FLAG_TPA) {
5267 		update_tpa = true;
5268 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
5269 		    (flags & BNXT_FLAG_TPA) == 0)
5270 			re_init = true;
5271 	}
5272 
5273 	if (changes & ~BNXT_FLAG_TPA)
5274 		re_init = true;
5275 
5276 	if (flags != bp->flags) {
5277 		u32 old_flags = bp->flags;
5278 
5279 		bp->flags = flags;
5280 
5281 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5282 			if (update_tpa)
5283 				bnxt_set_ring_params(bp);
5284 			return rc;
5285 		}
5286 
5287 		if (re_init) {
5288 			bnxt_close_nic(bp, false, false);
5289 			if (update_tpa)
5290 				bnxt_set_ring_params(bp);
5291 
5292 			return bnxt_open_nic(bp, false, false);
5293 		}
5294 		if (update_tpa) {
5295 			rc = bnxt_set_tpa(bp,
5296 					  (flags & BNXT_FLAG_TPA) ?
5297 					  true : false);
5298 			if (rc)
5299 				bp->flags = old_flags;
5300 		}
5301 	}
5302 	return rc;
5303 }
5304 
5305 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
5306 {
5307 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
5308 	int i = bnapi->index;
5309 
5310 	if (!txr)
5311 		return;
5312 
5313 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
5314 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
5315 		    txr->tx_cons);
5316 }
5317 
5318 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
5319 {
5320 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
5321 	int i = bnapi->index;
5322 
5323 	if (!rxr)
5324 		return;
5325 
5326 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
5327 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
5328 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
5329 		    rxr->rx_sw_agg_prod);
5330 }
5331 
5332 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
5333 {
5334 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5335 	int i = bnapi->index;
5336 
5337 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
5338 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
5339 }
5340 
5341 static void bnxt_dbg_dump_states(struct bnxt *bp)
5342 {
5343 	int i;
5344 	struct bnxt_napi *bnapi;
5345 
5346 	for (i = 0; i < bp->cp_nr_rings; i++) {
5347 		bnapi = bp->bnapi[i];
5348 		if (netif_msg_drv(bp)) {
5349 			bnxt_dump_tx_sw_state(bnapi);
5350 			bnxt_dump_rx_sw_state(bnapi);
5351 			bnxt_dump_cp_sw_state(bnapi);
5352 		}
5353 	}
5354 }
5355 
5356 static void bnxt_reset_task(struct bnxt *bp)
5357 {
5358 	bnxt_dbg_dump_states(bp);
5359 	if (netif_running(bp->dev)) {
5360 		bnxt_close_nic(bp, false, false);
5361 		bnxt_open_nic(bp, false, false);
5362 	}
5363 }
5364 
5365 static void bnxt_tx_timeout(struct net_device *dev)
5366 {
5367 	struct bnxt *bp = netdev_priv(dev);
5368 
5369 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
5370 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
5371 	schedule_work(&bp->sp_task);
5372 }
5373 
5374 #ifdef CONFIG_NET_POLL_CONTROLLER
5375 static void bnxt_poll_controller(struct net_device *dev)
5376 {
5377 	struct bnxt *bp = netdev_priv(dev);
5378 	int i;
5379 
5380 	for (i = 0; i < bp->cp_nr_rings; i++) {
5381 		struct bnxt_irq *irq = &bp->irq_tbl[i];
5382 
5383 		disable_irq(irq->vector);
5384 		irq->handler(irq->vector, bp->bnapi[i]);
5385 		enable_irq(irq->vector);
5386 	}
5387 }
5388 #endif
5389 
5390 static void bnxt_timer(unsigned long data)
5391 {
5392 	struct bnxt *bp = (struct bnxt *)data;
5393 	struct net_device *dev = bp->dev;
5394 
5395 	if (!netif_running(dev))
5396 		return;
5397 
5398 	if (atomic_read(&bp->intr_sem) != 0)
5399 		goto bnxt_restart_timer;
5400 
5401 	if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS)) {
5402 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
5403 		schedule_work(&bp->sp_task);
5404 	}
5405 bnxt_restart_timer:
5406 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5407 }
5408 
5409 static void bnxt_cfg_ntp_filters(struct bnxt *);
5410 
5411 static void bnxt_sp_task(struct work_struct *work)
5412 {
5413 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
5414 	int rc;
5415 
5416 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5417 	smp_mb__after_atomic();
5418 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5419 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5420 		return;
5421 	}
5422 
5423 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
5424 		bnxt_cfg_rx_mode(bp);
5425 
5426 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
5427 		bnxt_cfg_ntp_filters(bp);
5428 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
5429 		rc = bnxt_update_link(bp, true);
5430 		if (rc)
5431 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
5432 				   rc);
5433 	}
5434 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
5435 		bnxt_hwrm_exec_fwd_req(bp);
5436 	if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
5437 		bnxt_hwrm_tunnel_dst_port_alloc(
5438 			bp, bp->vxlan_port,
5439 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5440 	}
5441 	if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
5442 		bnxt_hwrm_tunnel_dst_port_free(
5443 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5444 	}
5445 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) {
5446 		/* bnxt_reset_task() calls bnxt_close_nic() which waits
5447 		 * for BNXT_STATE_IN_SP_TASK to clear.
5448 		 */
5449 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5450 		rtnl_lock();
5451 		bnxt_reset_task(bp);
5452 		set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5453 		rtnl_unlock();
5454 	}
5455 
5456 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event))
5457 		bnxt_hwrm_port_qstats(bp);
5458 
5459 	smp_mb__before_atomic();
5460 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5461 }
5462 
5463 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
5464 {
5465 	int rc;
5466 	struct bnxt *bp = netdev_priv(dev);
5467 
5468 	SET_NETDEV_DEV(dev, &pdev->dev);
5469 
5470 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
5471 	rc = pci_enable_device(pdev);
5472 	if (rc) {
5473 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
5474 		goto init_err;
5475 	}
5476 
5477 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5478 		dev_err(&pdev->dev,
5479 			"Cannot find PCI device base address, aborting\n");
5480 		rc = -ENODEV;
5481 		goto init_err_disable;
5482 	}
5483 
5484 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
5485 	if (rc) {
5486 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
5487 		goto init_err_disable;
5488 	}
5489 
5490 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
5491 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
5492 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
5493 		goto init_err_disable;
5494 	}
5495 
5496 	pci_set_master(pdev);
5497 
5498 	bp->dev = dev;
5499 	bp->pdev = pdev;
5500 
5501 	bp->bar0 = pci_ioremap_bar(pdev, 0);
5502 	if (!bp->bar0) {
5503 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5504 		rc = -ENOMEM;
5505 		goto init_err_release;
5506 	}
5507 
5508 	bp->bar1 = pci_ioremap_bar(pdev, 2);
5509 	if (!bp->bar1) {
5510 		dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
5511 		rc = -ENOMEM;
5512 		goto init_err_release;
5513 	}
5514 
5515 	bp->bar2 = pci_ioremap_bar(pdev, 4);
5516 	if (!bp->bar2) {
5517 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
5518 		rc = -ENOMEM;
5519 		goto init_err_release;
5520 	}
5521 
5522 	pci_enable_pcie_error_reporting(pdev);
5523 
5524 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
5525 
5526 	spin_lock_init(&bp->ntp_fltr_lock);
5527 
5528 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
5529 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
5530 
5531 	/* tick values in micro seconds */
5532 	bp->rx_coal_ticks = 12;
5533 	bp->rx_coal_bufs = 30;
5534 	bp->rx_coal_ticks_irq = 1;
5535 	bp->rx_coal_bufs_irq = 2;
5536 
5537 	bp->tx_coal_ticks = 25;
5538 	bp->tx_coal_bufs = 30;
5539 	bp->tx_coal_ticks_irq = 2;
5540 	bp->tx_coal_bufs_irq = 2;
5541 
5542 	init_timer(&bp->timer);
5543 	bp->timer.data = (unsigned long)bp;
5544 	bp->timer.function = bnxt_timer;
5545 	bp->current_interval = BNXT_TIMER_INTERVAL;
5546 
5547 	clear_bit(BNXT_STATE_OPEN, &bp->state);
5548 
5549 	return 0;
5550 
5551 init_err_release:
5552 	if (bp->bar2) {
5553 		pci_iounmap(pdev, bp->bar2);
5554 		bp->bar2 = NULL;
5555 	}
5556 
5557 	if (bp->bar1) {
5558 		pci_iounmap(pdev, bp->bar1);
5559 		bp->bar1 = NULL;
5560 	}
5561 
5562 	if (bp->bar0) {
5563 		pci_iounmap(pdev, bp->bar0);
5564 		bp->bar0 = NULL;
5565 	}
5566 
5567 	pci_release_regions(pdev);
5568 
5569 init_err_disable:
5570 	pci_disable_device(pdev);
5571 
5572 init_err:
5573 	return rc;
5574 }
5575 
5576 /* rtnl_lock held */
5577 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
5578 {
5579 	struct sockaddr *addr = p;
5580 	struct bnxt *bp = netdev_priv(dev);
5581 	int rc = 0;
5582 
5583 	if (!is_valid_ether_addr(addr->sa_data))
5584 		return -EADDRNOTAVAIL;
5585 
5586 #ifdef CONFIG_BNXT_SRIOV
5587 	if (BNXT_VF(bp) && is_valid_ether_addr(bp->vf.mac_addr))
5588 		return -EADDRNOTAVAIL;
5589 #endif
5590 
5591 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
5592 		return 0;
5593 
5594 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5595 	if (netif_running(dev)) {
5596 		bnxt_close_nic(bp, false, false);
5597 		rc = bnxt_open_nic(bp, false, false);
5598 	}
5599 
5600 	return rc;
5601 }
5602 
5603 /* rtnl_lock held */
5604 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
5605 {
5606 	struct bnxt *bp = netdev_priv(dev);
5607 
5608 	if (new_mtu < 60 || new_mtu > 9000)
5609 		return -EINVAL;
5610 
5611 	if (netif_running(dev))
5612 		bnxt_close_nic(bp, false, false);
5613 
5614 	dev->mtu = new_mtu;
5615 	bnxt_set_ring_params(bp);
5616 
5617 	if (netif_running(dev))
5618 		return bnxt_open_nic(bp, false, false);
5619 
5620 	return 0;
5621 }
5622 
5623 static int bnxt_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
5624 			 struct tc_to_netdev *ntc)
5625 {
5626 	struct bnxt *bp = netdev_priv(dev);
5627 	u8 tc;
5628 
5629 	if (ntc->type != TC_SETUP_MQPRIO)
5630 		return -EINVAL;
5631 
5632 	tc = ntc->tc;
5633 
5634 	if (tc > bp->max_tc) {
5635 		netdev_err(dev, "too many traffic classes requested: %d Max supported is %d\n",
5636 			   tc, bp->max_tc);
5637 		return -EINVAL;
5638 	}
5639 
5640 	if (netdev_get_num_tc(dev) == tc)
5641 		return 0;
5642 
5643 	if (tc) {
5644 		int max_rx_rings, max_tx_rings, rc;
5645 		bool sh = false;
5646 
5647 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5648 			sh = true;
5649 
5650 		rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
5651 		if (rc || bp->tx_nr_rings_per_tc * tc > max_tx_rings)
5652 			return -ENOMEM;
5653 	}
5654 
5655 	/* Needs to close the device and do hw resource re-allocations */
5656 	if (netif_running(bp->dev))
5657 		bnxt_close_nic(bp, true, false);
5658 
5659 	if (tc) {
5660 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
5661 		netdev_set_num_tc(dev, tc);
5662 	} else {
5663 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5664 		netdev_reset_tc(dev);
5665 	}
5666 	bp->cp_nr_rings = max_t(int, bp->tx_nr_rings, bp->rx_nr_rings);
5667 	bp->num_stat_ctxs = bp->cp_nr_rings;
5668 
5669 	if (netif_running(bp->dev))
5670 		return bnxt_open_nic(bp, true, false);
5671 
5672 	return 0;
5673 }
5674 
5675 #ifdef CONFIG_RFS_ACCEL
5676 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
5677 			    struct bnxt_ntuple_filter *f2)
5678 {
5679 	struct flow_keys *keys1 = &f1->fkeys;
5680 	struct flow_keys *keys2 = &f2->fkeys;
5681 
5682 	if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
5683 	    keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
5684 	    keys1->ports.ports == keys2->ports.ports &&
5685 	    keys1->basic.ip_proto == keys2->basic.ip_proto &&
5686 	    keys1->basic.n_proto == keys2->basic.n_proto &&
5687 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr))
5688 		return true;
5689 
5690 	return false;
5691 }
5692 
5693 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
5694 			      u16 rxq_index, u32 flow_id)
5695 {
5696 	struct bnxt *bp = netdev_priv(dev);
5697 	struct bnxt_ntuple_filter *fltr, *new_fltr;
5698 	struct flow_keys *fkeys;
5699 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
5700 	int rc = 0, idx, bit_id;
5701 	struct hlist_head *head;
5702 
5703 	if (skb->encapsulation)
5704 		return -EPROTONOSUPPORT;
5705 
5706 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
5707 	if (!new_fltr)
5708 		return -ENOMEM;
5709 
5710 	fkeys = &new_fltr->fkeys;
5711 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
5712 		rc = -EPROTONOSUPPORT;
5713 		goto err_free;
5714 	}
5715 
5716 	if ((fkeys->basic.n_proto != htons(ETH_P_IP)) ||
5717 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
5718 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
5719 		rc = -EPROTONOSUPPORT;
5720 		goto err_free;
5721 	}
5722 
5723 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
5724 
5725 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
5726 	head = &bp->ntp_fltr_hash_tbl[idx];
5727 	rcu_read_lock();
5728 	hlist_for_each_entry_rcu(fltr, head, hash) {
5729 		if (bnxt_fltr_match(fltr, new_fltr)) {
5730 			rcu_read_unlock();
5731 			rc = 0;
5732 			goto err_free;
5733 		}
5734 	}
5735 	rcu_read_unlock();
5736 
5737 	spin_lock_bh(&bp->ntp_fltr_lock);
5738 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
5739 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
5740 	if (bit_id < 0) {
5741 		spin_unlock_bh(&bp->ntp_fltr_lock);
5742 		rc = -ENOMEM;
5743 		goto err_free;
5744 	}
5745 
5746 	new_fltr->sw_id = (u16)bit_id;
5747 	new_fltr->flow_id = flow_id;
5748 	new_fltr->rxq = rxq_index;
5749 	hlist_add_head_rcu(&new_fltr->hash, head);
5750 	bp->ntp_fltr_count++;
5751 	spin_unlock_bh(&bp->ntp_fltr_lock);
5752 
5753 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
5754 	schedule_work(&bp->sp_task);
5755 
5756 	return new_fltr->sw_id;
5757 
5758 err_free:
5759 	kfree(new_fltr);
5760 	return rc;
5761 }
5762 
5763 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5764 {
5765 	int i;
5766 
5767 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
5768 		struct hlist_head *head;
5769 		struct hlist_node *tmp;
5770 		struct bnxt_ntuple_filter *fltr;
5771 		int rc;
5772 
5773 		head = &bp->ntp_fltr_hash_tbl[i];
5774 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
5775 			bool del = false;
5776 
5777 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
5778 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
5779 							fltr->flow_id,
5780 							fltr->sw_id)) {
5781 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
5782 									 fltr);
5783 					del = true;
5784 				}
5785 			} else {
5786 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
5787 								       fltr);
5788 				if (rc)
5789 					del = true;
5790 				else
5791 					set_bit(BNXT_FLTR_VALID, &fltr->state);
5792 			}
5793 
5794 			if (del) {
5795 				spin_lock_bh(&bp->ntp_fltr_lock);
5796 				hlist_del_rcu(&fltr->hash);
5797 				bp->ntp_fltr_count--;
5798 				spin_unlock_bh(&bp->ntp_fltr_lock);
5799 				synchronize_rcu();
5800 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
5801 				kfree(fltr);
5802 			}
5803 		}
5804 	}
5805 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
5806 		netdev_info(bp->dev, "Receive PF driver unload event!");
5807 }
5808 
5809 #else
5810 
5811 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5812 {
5813 }
5814 
5815 #endif /* CONFIG_RFS_ACCEL */
5816 
5817 static void bnxt_add_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5818 				__be16 port)
5819 {
5820 	struct bnxt *bp = netdev_priv(dev);
5821 
5822 	if (!netif_running(dev))
5823 		return;
5824 
5825 	if (sa_family != AF_INET6 && sa_family != AF_INET)
5826 		return;
5827 
5828 	if (bp->vxlan_port_cnt && bp->vxlan_port != port)
5829 		return;
5830 
5831 	bp->vxlan_port_cnt++;
5832 	if (bp->vxlan_port_cnt == 1) {
5833 		bp->vxlan_port = port;
5834 		set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
5835 		schedule_work(&bp->sp_task);
5836 	}
5837 }
5838 
5839 static void bnxt_del_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5840 				__be16 port)
5841 {
5842 	struct bnxt *bp = netdev_priv(dev);
5843 
5844 	if (!netif_running(dev))
5845 		return;
5846 
5847 	if (sa_family != AF_INET6 && sa_family != AF_INET)
5848 		return;
5849 
5850 	if (bp->vxlan_port_cnt && bp->vxlan_port == port) {
5851 		bp->vxlan_port_cnt--;
5852 
5853 		if (bp->vxlan_port_cnt == 0) {
5854 			set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
5855 			schedule_work(&bp->sp_task);
5856 		}
5857 	}
5858 }
5859 
5860 static const struct net_device_ops bnxt_netdev_ops = {
5861 	.ndo_open		= bnxt_open,
5862 	.ndo_start_xmit		= bnxt_start_xmit,
5863 	.ndo_stop		= bnxt_close,
5864 	.ndo_get_stats64	= bnxt_get_stats64,
5865 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
5866 	.ndo_do_ioctl		= bnxt_ioctl,
5867 	.ndo_validate_addr	= eth_validate_addr,
5868 	.ndo_set_mac_address	= bnxt_change_mac_addr,
5869 	.ndo_change_mtu		= bnxt_change_mtu,
5870 	.ndo_fix_features	= bnxt_fix_features,
5871 	.ndo_set_features	= bnxt_set_features,
5872 	.ndo_tx_timeout		= bnxt_tx_timeout,
5873 #ifdef CONFIG_BNXT_SRIOV
5874 	.ndo_get_vf_config	= bnxt_get_vf_config,
5875 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
5876 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
5877 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
5878 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
5879 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
5880 #endif
5881 #ifdef CONFIG_NET_POLL_CONTROLLER
5882 	.ndo_poll_controller	= bnxt_poll_controller,
5883 #endif
5884 	.ndo_setup_tc           = bnxt_setup_tc,
5885 #ifdef CONFIG_RFS_ACCEL
5886 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
5887 #endif
5888 	.ndo_add_vxlan_port	= bnxt_add_vxlan_port,
5889 	.ndo_del_vxlan_port	= bnxt_del_vxlan_port,
5890 #ifdef CONFIG_NET_RX_BUSY_POLL
5891 	.ndo_busy_poll		= bnxt_busy_poll,
5892 #endif
5893 };
5894 
5895 static void bnxt_remove_one(struct pci_dev *pdev)
5896 {
5897 	struct net_device *dev = pci_get_drvdata(pdev);
5898 	struct bnxt *bp = netdev_priv(dev);
5899 
5900 	if (BNXT_PF(bp))
5901 		bnxt_sriov_disable(bp);
5902 
5903 	pci_disable_pcie_error_reporting(pdev);
5904 	unregister_netdev(dev);
5905 	cancel_work_sync(&bp->sp_task);
5906 	bp->sp_event = 0;
5907 
5908 	bnxt_hwrm_func_drv_unrgtr(bp);
5909 	bnxt_free_hwrm_resources(bp);
5910 	pci_iounmap(pdev, bp->bar2);
5911 	pci_iounmap(pdev, bp->bar1);
5912 	pci_iounmap(pdev, bp->bar0);
5913 	free_netdev(dev);
5914 
5915 	pci_release_regions(pdev);
5916 	pci_disable_device(pdev);
5917 }
5918 
5919 static int bnxt_probe_phy(struct bnxt *bp)
5920 {
5921 	int rc = 0;
5922 	struct bnxt_link_info *link_info = &bp->link_info;
5923 
5924 	rc = bnxt_update_link(bp, false);
5925 	if (rc) {
5926 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
5927 			   rc);
5928 		return rc;
5929 	}
5930 
5931 	/*initialize the ethool setting copy with NVM settings */
5932 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
5933 		link_info->autoneg = BNXT_AUTONEG_SPEED |
5934 				     BNXT_AUTONEG_FLOW_CTRL;
5935 		link_info->advertising = link_info->auto_link_speeds;
5936 		link_info->req_flow_ctrl = link_info->auto_pause_setting;
5937 	} else {
5938 		link_info->req_link_speed = link_info->force_link_speed;
5939 		link_info->req_duplex = link_info->duplex_setting;
5940 		link_info->req_flow_ctrl = link_info->force_pause_setting;
5941 	}
5942 	return rc;
5943 }
5944 
5945 static int bnxt_get_max_irq(struct pci_dev *pdev)
5946 {
5947 	u16 ctrl;
5948 
5949 	if (!pdev->msix_cap)
5950 		return 1;
5951 
5952 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
5953 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
5954 }
5955 
5956 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
5957 				int *max_cp)
5958 {
5959 	int max_ring_grps = 0;
5960 
5961 #ifdef CONFIG_BNXT_SRIOV
5962 	if (!BNXT_PF(bp)) {
5963 		*max_tx = bp->vf.max_tx_rings;
5964 		*max_rx = bp->vf.max_rx_rings;
5965 		*max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
5966 		*max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
5967 		max_ring_grps = bp->vf.max_hw_ring_grps;
5968 	} else
5969 #endif
5970 	{
5971 		*max_tx = bp->pf.max_tx_rings;
5972 		*max_rx = bp->pf.max_rx_rings;
5973 		*max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
5974 		*max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
5975 		max_ring_grps = bp->pf.max_hw_ring_grps;
5976 	}
5977 
5978 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
5979 		*max_rx >>= 1;
5980 	*max_rx = min_t(int, *max_rx, max_ring_grps);
5981 }
5982 
5983 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
5984 {
5985 	int rx, tx, cp;
5986 
5987 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
5988 	if (!rx || !tx || !cp)
5989 		return -ENOMEM;
5990 
5991 	*max_rx = rx;
5992 	*max_tx = tx;
5993 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
5994 }
5995 
5996 static int bnxt_set_dflt_rings(struct bnxt *bp)
5997 {
5998 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
5999 	bool sh = true;
6000 
6001 	if (sh)
6002 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
6003 	dflt_rings = netif_get_num_default_rss_queues();
6004 	rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
6005 	if (rc)
6006 		return rc;
6007 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
6008 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
6009 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
6010 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
6011 			       bp->tx_nr_rings + bp->rx_nr_rings;
6012 	bp->num_stat_ctxs = bp->cp_nr_rings;
6013 	return rc;
6014 }
6015 
6016 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6017 {
6018 	static int version_printed;
6019 	struct net_device *dev;
6020 	struct bnxt *bp;
6021 	int rc, max_irqs;
6022 
6023 	if (version_printed++ == 0)
6024 		pr_info("%s", version);
6025 
6026 	max_irqs = bnxt_get_max_irq(pdev);
6027 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
6028 	if (!dev)
6029 		return -ENOMEM;
6030 
6031 	bp = netdev_priv(dev);
6032 
6033 	if (bnxt_vf_pciid(ent->driver_data))
6034 		bp->flags |= BNXT_FLAG_VF;
6035 
6036 	if (pdev->msix_cap)
6037 		bp->flags |= BNXT_FLAG_MSIX_CAP;
6038 
6039 	rc = bnxt_init_board(pdev, dev);
6040 	if (rc < 0)
6041 		goto init_err_free;
6042 
6043 	dev->netdev_ops = &bnxt_netdev_ops;
6044 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
6045 	dev->ethtool_ops = &bnxt_ethtool_ops;
6046 
6047 	pci_set_drvdata(pdev, dev);
6048 
6049 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
6050 			   NETIF_F_TSO | NETIF_F_TSO6 |
6051 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
6052 			   NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT |
6053 			   NETIF_F_RXHASH |
6054 			   NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO;
6055 
6056 	dev->hw_enc_features =
6057 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
6058 			NETIF_F_TSO | NETIF_F_TSO6 |
6059 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
6060 			NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
6061 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
6062 	dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6063 			    NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
6064 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
6065 	dev->priv_flags |= IFF_UNICAST_FLT;
6066 
6067 #ifdef CONFIG_BNXT_SRIOV
6068 	init_waitqueue_head(&bp->sriov_cfg_wait);
6069 #endif
6070 	rc = bnxt_alloc_hwrm_resources(bp);
6071 	if (rc)
6072 		goto init_err;
6073 
6074 	mutex_init(&bp->hwrm_cmd_lock);
6075 	bnxt_hwrm_ver_get(bp);
6076 
6077 	rc = bnxt_hwrm_func_drv_rgtr(bp);
6078 	if (rc)
6079 		goto init_err;
6080 
6081 	/* Get the MAX capabilities for this function */
6082 	rc = bnxt_hwrm_func_qcaps(bp);
6083 	if (rc) {
6084 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
6085 			   rc);
6086 		rc = -1;
6087 		goto init_err;
6088 	}
6089 
6090 	rc = bnxt_hwrm_queue_qportcfg(bp);
6091 	if (rc) {
6092 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
6093 			   rc);
6094 		rc = -1;
6095 		goto init_err;
6096 	}
6097 
6098 	bnxt_set_tpa_flags(bp);
6099 	bnxt_set_ring_params(bp);
6100 	if (BNXT_PF(bp))
6101 		bp->pf.max_irqs = max_irqs;
6102 #if defined(CONFIG_BNXT_SRIOV)
6103 	else
6104 		bp->vf.max_irqs = max_irqs;
6105 #endif
6106 	bnxt_set_dflt_rings(bp);
6107 
6108 	if (BNXT_PF(bp)) {
6109 		dev->hw_features |= NETIF_F_NTUPLE;
6110 		if (bnxt_rfs_capable(bp)) {
6111 			bp->flags |= BNXT_FLAG_RFS;
6112 			dev->features |= NETIF_F_NTUPLE;
6113 		}
6114 	}
6115 
6116 	if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
6117 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
6118 
6119 	rc = bnxt_probe_phy(bp);
6120 	if (rc)
6121 		goto init_err;
6122 
6123 	rc = register_netdev(dev);
6124 	if (rc)
6125 		goto init_err;
6126 
6127 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
6128 		    board_info[ent->driver_data].name,
6129 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
6130 
6131 	return 0;
6132 
6133 init_err:
6134 	pci_iounmap(pdev, bp->bar0);
6135 	pci_release_regions(pdev);
6136 	pci_disable_device(pdev);
6137 
6138 init_err_free:
6139 	free_netdev(dev);
6140 	return rc;
6141 }
6142 
6143 /**
6144  * bnxt_io_error_detected - called when PCI error is detected
6145  * @pdev: Pointer to PCI device
6146  * @state: The current pci connection state
6147  *
6148  * This function is called after a PCI bus error affecting
6149  * this device has been detected.
6150  */
6151 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
6152 					       pci_channel_state_t state)
6153 {
6154 	struct net_device *netdev = pci_get_drvdata(pdev);
6155 
6156 	netdev_info(netdev, "PCI I/O error detected\n");
6157 
6158 	rtnl_lock();
6159 	netif_device_detach(netdev);
6160 
6161 	if (state == pci_channel_io_perm_failure) {
6162 		rtnl_unlock();
6163 		return PCI_ERS_RESULT_DISCONNECT;
6164 	}
6165 
6166 	if (netif_running(netdev))
6167 		bnxt_close(netdev);
6168 
6169 	pci_disable_device(pdev);
6170 	rtnl_unlock();
6171 
6172 	/* Request a slot slot reset. */
6173 	return PCI_ERS_RESULT_NEED_RESET;
6174 }
6175 
6176 /**
6177  * bnxt_io_slot_reset - called after the pci bus has been reset.
6178  * @pdev: Pointer to PCI device
6179  *
6180  * Restart the card from scratch, as if from a cold-boot.
6181  * At this point, the card has exprienced a hard reset,
6182  * followed by fixups by BIOS, and has its config space
6183  * set up identically to what it was at cold boot.
6184  */
6185 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
6186 {
6187 	struct net_device *netdev = pci_get_drvdata(pdev);
6188 	struct bnxt *bp = netdev_priv(netdev);
6189 	int err = 0;
6190 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
6191 
6192 	netdev_info(bp->dev, "PCI Slot Reset\n");
6193 
6194 	rtnl_lock();
6195 
6196 	if (pci_enable_device(pdev)) {
6197 		dev_err(&pdev->dev,
6198 			"Cannot re-enable PCI device after reset.\n");
6199 	} else {
6200 		pci_set_master(pdev);
6201 
6202 		if (netif_running(netdev))
6203 			err = bnxt_open(netdev);
6204 
6205 		if (!err)
6206 			result = PCI_ERS_RESULT_RECOVERED;
6207 	}
6208 
6209 	if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
6210 		dev_close(netdev);
6211 
6212 	rtnl_unlock();
6213 
6214 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
6215 	if (err) {
6216 		dev_err(&pdev->dev,
6217 			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
6218 			 err); /* non-fatal, continue */
6219 	}
6220 
6221 	return PCI_ERS_RESULT_RECOVERED;
6222 }
6223 
6224 /**
6225  * bnxt_io_resume - called when traffic can start flowing again.
6226  * @pdev: Pointer to PCI device
6227  *
6228  * This callback is called when the error recovery driver tells
6229  * us that its OK to resume normal operation.
6230  */
6231 static void bnxt_io_resume(struct pci_dev *pdev)
6232 {
6233 	struct net_device *netdev = pci_get_drvdata(pdev);
6234 
6235 	rtnl_lock();
6236 
6237 	netif_device_attach(netdev);
6238 
6239 	rtnl_unlock();
6240 }
6241 
6242 static const struct pci_error_handlers bnxt_err_handler = {
6243 	.error_detected	= bnxt_io_error_detected,
6244 	.slot_reset	= bnxt_io_slot_reset,
6245 	.resume		= bnxt_io_resume
6246 };
6247 
6248 static struct pci_driver bnxt_pci_driver = {
6249 	.name		= DRV_MODULE_NAME,
6250 	.id_table	= bnxt_pci_tbl,
6251 	.probe		= bnxt_init_one,
6252 	.remove		= bnxt_remove_one,
6253 	.err_handler	= &bnxt_err_handler,
6254 #if defined(CONFIG_BNXT_SRIOV)
6255 	.sriov_configure = bnxt_sriov_configure,
6256 #endif
6257 };
6258 
6259 module_pci_driver(bnxt_pci_driver);
6260