1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2015 Broadcom Corporation 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation. 8 */ 9 10 #include <linux/module.h> 11 12 #include <linux/stringify.h> 13 #include <linux/kernel.h> 14 #include <linux/timer.h> 15 #include <linux/errno.h> 16 #include <linux/ioport.h> 17 #include <linux/slab.h> 18 #include <linux/vmalloc.h> 19 #include <linux/interrupt.h> 20 #include <linux/pci.h> 21 #include <linux/netdevice.h> 22 #include <linux/etherdevice.h> 23 #include <linux/skbuff.h> 24 #include <linux/dma-mapping.h> 25 #include <linux/bitops.h> 26 #include <linux/io.h> 27 #include <linux/irq.h> 28 #include <linux/delay.h> 29 #include <asm/byteorder.h> 30 #include <asm/page.h> 31 #include <linux/time.h> 32 #include <linux/mii.h> 33 #include <linux/if.h> 34 #include <linux/if_vlan.h> 35 #include <net/ip.h> 36 #include <net/tcp.h> 37 #include <net/udp.h> 38 #include <net/checksum.h> 39 #include <net/ip6_checksum.h> 40 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE) 41 #include <net/vxlan.h> 42 #endif 43 #ifdef CONFIG_NET_RX_BUSY_POLL 44 #include <net/busy_poll.h> 45 #endif 46 #include <linux/workqueue.h> 47 #include <linux/prefetch.h> 48 #include <linux/cache.h> 49 #include <linux/log2.h> 50 #include <linux/aer.h> 51 #include <linux/bitmap.h> 52 #include <linux/cpu_rmap.h> 53 54 #include "bnxt_hsi.h" 55 #include "bnxt.h" 56 #include "bnxt_sriov.h" 57 #include "bnxt_ethtool.h" 58 59 #define BNXT_TX_TIMEOUT (5 * HZ) 60 61 static const char version[] = 62 "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n"; 63 64 MODULE_LICENSE("GPL"); 65 MODULE_DESCRIPTION("Broadcom BCM573xx network driver"); 66 MODULE_VERSION(DRV_MODULE_VERSION); 67 68 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 69 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 70 #define BNXT_RX_COPY_THRESH 256 71 72 #define BNXT_TX_PUSH_THRESH 164 73 74 enum board_idx { 75 BCM57301, 76 BCM57302, 77 BCM57304, 78 BCM57402, 79 BCM57404, 80 BCM57406, 81 BCM57304_VF, 82 BCM57404_VF, 83 }; 84 85 /* indexed by enum above */ 86 static const struct { 87 char *name; 88 } board_info[] = { 89 { "Broadcom BCM57301 NetXtreme-C Single-port 10Gb Ethernet" }, 90 { "Broadcom BCM57302 NetXtreme-C Dual-port 10Gb/25Gb Ethernet" }, 91 { "Broadcom BCM57304 NetXtreme-C Dual-port 10Gb/25Gb/40Gb/50Gb Ethernet" }, 92 { "Broadcom BCM57402 NetXtreme-E Dual-port 10Gb Ethernet" }, 93 { "Broadcom BCM57404 NetXtreme-E Dual-port 10Gb/25Gb Ethernet" }, 94 { "Broadcom BCM57406 NetXtreme-E Dual-port 10GBase-T Ethernet" }, 95 { "Broadcom BCM57304 NetXtreme-C Ethernet Virtual Function" }, 96 { "Broadcom BCM57404 NetXtreme-E Ethernet Virtual Function" }, 97 }; 98 99 static const struct pci_device_id bnxt_pci_tbl[] = { 100 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 101 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 102 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 103 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 104 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 105 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 106 #ifdef CONFIG_BNXT_SRIOV 107 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = BCM57304_VF }, 108 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = BCM57404_VF }, 109 #endif 110 { 0 } 111 }; 112 113 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 114 115 static const u16 bnxt_vf_req_snif[] = { 116 HWRM_FUNC_CFG, 117 HWRM_PORT_PHY_QCFG, 118 HWRM_CFA_L2_FILTER_ALLOC, 119 }; 120 121 static bool bnxt_vf_pciid(enum board_idx idx) 122 { 123 return (idx == BCM57304_VF || idx == BCM57404_VF); 124 } 125 126 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 127 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 128 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) 129 130 #define BNXT_CP_DB_REARM(db, raw_cons) \ 131 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db) 132 133 #define BNXT_CP_DB(db, raw_cons) \ 134 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db) 135 136 #define BNXT_CP_DB_IRQ_DIS(db) \ 137 writel(DB_CP_IRQ_DIS_FLAGS, db) 138 139 static inline u32 bnxt_tx_avail(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 140 { 141 /* Tell compiler to fetch tx indices from memory. */ 142 barrier(); 143 144 return bp->tx_ring_size - 145 ((txr->tx_prod - txr->tx_cons) & bp->tx_ring_mask); 146 } 147 148 static const u16 bnxt_lhint_arr[] = { 149 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 150 TX_BD_FLAGS_LHINT_512_TO_1023, 151 TX_BD_FLAGS_LHINT_1024_TO_2047, 152 TX_BD_FLAGS_LHINT_1024_TO_2047, 153 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 154 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 155 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 156 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 157 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 158 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 159 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 160 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 161 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 162 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 163 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 164 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 165 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 166 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 167 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 168 }; 169 170 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 171 { 172 struct bnxt *bp = netdev_priv(dev); 173 struct tx_bd *txbd; 174 struct tx_bd_ext *txbd1; 175 struct netdev_queue *txq; 176 int i; 177 dma_addr_t mapping; 178 unsigned int length, pad = 0; 179 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 180 u16 prod, last_frag; 181 struct pci_dev *pdev = bp->pdev; 182 struct bnxt_tx_ring_info *txr; 183 struct bnxt_sw_tx_bd *tx_buf; 184 185 i = skb_get_queue_mapping(skb); 186 if (unlikely(i >= bp->tx_nr_rings)) { 187 dev_kfree_skb_any(skb); 188 return NETDEV_TX_OK; 189 } 190 191 txr = &bp->tx_ring[i]; 192 txq = netdev_get_tx_queue(dev, i); 193 prod = txr->tx_prod; 194 195 free_size = bnxt_tx_avail(bp, txr); 196 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 197 netif_tx_stop_queue(txq); 198 return NETDEV_TX_BUSY; 199 } 200 201 length = skb->len; 202 len = skb_headlen(skb); 203 last_frag = skb_shinfo(skb)->nr_frags; 204 205 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 206 207 txbd->tx_bd_opaque = prod; 208 209 tx_buf = &txr->tx_buf_ring[prod]; 210 tx_buf->skb = skb; 211 tx_buf->nr_frags = last_frag; 212 213 vlan_tag_flags = 0; 214 cfa_action = 0; 215 if (skb_vlan_tag_present(skb)) { 216 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 217 skb_vlan_tag_get(skb); 218 /* Currently supports 8021Q, 8021AD vlan offloads 219 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 220 */ 221 if (skb->vlan_proto == htons(ETH_P_8021Q)) 222 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 223 } 224 225 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) { 226 struct tx_push_buffer *tx_push_buf = txr->tx_push; 227 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 228 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 229 void *pdata = tx_push_buf->data; 230 u64 *end; 231 int j, push_len; 232 233 /* Set COAL_NOW to be ready quickly for the next push */ 234 tx_push->tx_bd_len_flags_type = 235 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 236 TX_BD_TYPE_LONG_TX_BD | 237 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 238 TX_BD_FLAGS_COAL_NOW | 239 TX_BD_FLAGS_PACKET_END | 240 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 241 242 if (skb->ip_summed == CHECKSUM_PARTIAL) 243 tx_push1->tx_bd_hsize_lflags = 244 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 245 else 246 tx_push1->tx_bd_hsize_lflags = 0; 247 248 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 249 tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action); 250 251 end = pdata + length; 252 end = PTR_ALIGN(end, 8) - 1; 253 *end = 0; 254 255 skb_copy_from_linear_data(skb, pdata, len); 256 pdata += len; 257 for (j = 0; j < last_frag; j++) { 258 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 259 void *fptr; 260 261 fptr = skb_frag_address_safe(frag); 262 if (!fptr) 263 goto normal_tx; 264 265 memcpy(pdata, fptr, skb_frag_size(frag)); 266 pdata += skb_frag_size(frag); 267 } 268 269 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 270 txbd->tx_bd_haddr = txr->data_mapping; 271 prod = NEXT_TX(prod); 272 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 273 memcpy(txbd, tx_push1, sizeof(*txbd)); 274 prod = NEXT_TX(prod); 275 tx_push->doorbell = 276 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod); 277 txr->tx_prod = prod; 278 279 netdev_tx_sent_queue(txq, skb->len); 280 281 push_len = (length + sizeof(*tx_push) + 7) / 8; 282 if (push_len > 16) { 283 __iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16); 284 __iowrite64_copy(txr->tx_doorbell + 4, tx_push_buf + 1, 285 push_len - 16); 286 } else { 287 __iowrite64_copy(txr->tx_doorbell, tx_push_buf, 288 push_len); 289 } 290 291 tx_buf->is_push = 1; 292 goto tx_done; 293 } 294 295 normal_tx: 296 if (length < BNXT_MIN_PKT_SIZE) { 297 pad = BNXT_MIN_PKT_SIZE - length; 298 if (skb_pad(skb, pad)) { 299 /* SKB already freed. */ 300 tx_buf->skb = NULL; 301 return NETDEV_TX_OK; 302 } 303 length = BNXT_MIN_PKT_SIZE; 304 } 305 306 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 307 308 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) { 309 dev_kfree_skb_any(skb); 310 tx_buf->skb = NULL; 311 return NETDEV_TX_OK; 312 } 313 314 dma_unmap_addr_set(tx_buf, mapping, mapping); 315 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 316 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 317 318 txbd->tx_bd_haddr = cpu_to_le64(mapping); 319 320 prod = NEXT_TX(prod); 321 txbd1 = (struct tx_bd_ext *) 322 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 323 324 txbd1->tx_bd_hsize_lflags = 0; 325 if (skb_is_gso(skb)) { 326 u32 hdr_len; 327 328 if (skb->encapsulation) 329 hdr_len = skb_inner_network_offset(skb) + 330 skb_inner_network_header_len(skb) + 331 inner_tcp_hdrlen(skb); 332 else 333 hdr_len = skb_transport_offset(skb) + 334 tcp_hdrlen(skb); 335 336 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO | 337 TX_BD_FLAGS_T_IPID | 338 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 339 length = skb_shinfo(skb)->gso_size; 340 txbd1->tx_bd_mss = cpu_to_le32(length); 341 length += hdr_len; 342 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 343 txbd1->tx_bd_hsize_lflags = 344 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 345 txbd1->tx_bd_mss = 0; 346 } 347 348 length >>= 9; 349 flags |= bnxt_lhint_arr[length]; 350 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 351 352 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 353 txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action); 354 for (i = 0; i < last_frag; i++) { 355 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 356 357 prod = NEXT_TX(prod); 358 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 359 360 len = skb_frag_size(frag); 361 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 362 DMA_TO_DEVICE); 363 364 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 365 goto tx_dma_error; 366 367 tx_buf = &txr->tx_buf_ring[prod]; 368 dma_unmap_addr_set(tx_buf, mapping, mapping); 369 370 txbd->tx_bd_haddr = cpu_to_le64(mapping); 371 372 flags = len << TX_BD_LEN_SHIFT; 373 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 374 } 375 376 flags &= ~TX_BD_LEN; 377 txbd->tx_bd_len_flags_type = 378 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 379 TX_BD_FLAGS_PACKET_END); 380 381 netdev_tx_sent_queue(txq, skb->len); 382 383 /* Sync BD data before updating doorbell */ 384 wmb(); 385 386 prod = NEXT_TX(prod); 387 txr->tx_prod = prod; 388 389 writel(DB_KEY_TX | prod, txr->tx_doorbell); 390 writel(DB_KEY_TX | prod, txr->tx_doorbell); 391 392 tx_done: 393 394 mmiowb(); 395 396 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 397 netif_tx_stop_queue(txq); 398 399 /* netif_tx_stop_queue() must be done before checking 400 * tx index in bnxt_tx_avail() below, because in 401 * bnxt_tx_int(), we update tx index before checking for 402 * netif_tx_queue_stopped(). 403 */ 404 smp_mb(); 405 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh) 406 netif_tx_wake_queue(txq); 407 } 408 return NETDEV_TX_OK; 409 410 tx_dma_error: 411 last_frag = i; 412 413 /* start back at beginning and unmap skb */ 414 prod = txr->tx_prod; 415 tx_buf = &txr->tx_buf_ring[prod]; 416 tx_buf->skb = NULL; 417 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 418 skb_headlen(skb), PCI_DMA_TODEVICE); 419 prod = NEXT_TX(prod); 420 421 /* unmap remaining mapped pages */ 422 for (i = 0; i < last_frag; i++) { 423 prod = NEXT_TX(prod); 424 tx_buf = &txr->tx_buf_ring[prod]; 425 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 426 skb_frag_size(&skb_shinfo(skb)->frags[i]), 427 PCI_DMA_TODEVICE); 428 } 429 430 dev_kfree_skb_any(skb); 431 return NETDEV_TX_OK; 432 } 433 434 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts) 435 { 436 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 437 int index = txr - &bp->tx_ring[0]; 438 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, index); 439 u16 cons = txr->tx_cons; 440 struct pci_dev *pdev = bp->pdev; 441 int i; 442 unsigned int tx_bytes = 0; 443 444 for (i = 0; i < nr_pkts; i++) { 445 struct bnxt_sw_tx_bd *tx_buf; 446 struct sk_buff *skb; 447 int j, last; 448 449 tx_buf = &txr->tx_buf_ring[cons]; 450 cons = NEXT_TX(cons); 451 skb = tx_buf->skb; 452 tx_buf->skb = NULL; 453 454 if (tx_buf->is_push) { 455 tx_buf->is_push = 0; 456 goto next_tx_int; 457 } 458 459 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 460 skb_headlen(skb), PCI_DMA_TODEVICE); 461 last = tx_buf->nr_frags; 462 463 for (j = 0; j < last; j++) { 464 cons = NEXT_TX(cons); 465 tx_buf = &txr->tx_buf_ring[cons]; 466 dma_unmap_page( 467 &pdev->dev, 468 dma_unmap_addr(tx_buf, mapping), 469 skb_frag_size(&skb_shinfo(skb)->frags[j]), 470 PCI_DMA_TODEVICE); 471 } 472 473 next_tx_int: 474 cons = NEXT_TX(cons); 475 476 tx_bytes += skb->len; 477 dev_kfree_skb_any(skb); 478 } 479 480 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes); 481 txr->tx_cons = cons; 482 483 /* Need to make the tx_cons update visible to bnxt_start_xmit() 484 * before checking for netif_tx_queue_stopped(). Without the 485 * memory barrier, there is a small possibility that bnxt_start_xmit() 486 * will miss it and cause the queue to be stopped forever. 487 */ 488 smp_mb(); 489 490 if (unlikely(netif_tx_queue_stopped(txq)) && 491 (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) { 492 __netif_tx_lock(txq, smp_processor_id()); 493 if (netif_tx_queue_stopped(txq) && 494 bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh && 495 txr->dev_state != BNXT_DEV_STATE_CLOSING) 496 netif_tx_wake_queue(txq); 497 __netif_tx_unlock(txq); 498 } 499 } 500 501 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping, 502 gfp_t gfp) 503 { 504 u8 *data; 505 struct pci_dev *pdev = bp->pdev; 506 507 data = kmalloc(bp->rx_buf_size, gfp); 508 if (!data) 509 return NULL; 510 511 *mapping = dma_map_single(&pdev->dev, data + BNXT_RX_DMA_OFFSET, 512 bp->rx_buf_use_size, PCI_DMA_FROMDEVICE); 513 514 if (dma_mapping_error(&pdev->dev, *mapping)) { 515 kfree(data); 516 data = NULL; 517 } 518 return data; 519 } 520 521 static inline int bnxt_alloc_rx_data(struct bnxt *bp, 522 struct bnxt_rx_ring_info *rxr, 523 u16 prod, gfp_t gfp) 524 { 525 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 526 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod]; 527 u8 *data; 528 dma_addr_t mapping; 529 530 data = __bnxt_alloc_rx_data(bp, &mapping, gfp); 531 if (!data) 532 return -ENOMEM; 533 534 rx_buf->data = data; 535 dma_unmap_addr_set(rx_buf, mapping, mapping); 536 537 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 538 539 return 0; 540 } 541 542 static void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, 543 u8 *data) 544 { 545 u16 prod = rxr->rx_prod; 546 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 547 struct rx_bd *cons_bd, *prod_bd; 548 549 prod_rx_buf = &rxr->rx_buf_ring[prod]; 550 cons_rx_buf = &rxr->rx_buf_ring[cons]; 551 552 prod_rx_buf->data = data; 553 554 dma_unmap_addr_set(prod_rx_buf, mapping, 555 dma_unmap_addr(cons_rx_buf, mapping)); 556 557 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 558 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)]; 559 560 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 561 } 562 563 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 564 { 565 u16 next, max = rxr->rx_agg_bmap_size; 566 567 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 568 if (next >= max) 569 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 570 return next; 571 } 572 573 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 574 struct bnxt_rx_ring_info *rxr, 575 u16 prod, gfp_t gfp) 576 { 577 struct rx_bd *rxbd = 578 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 579 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 580 struct pci_dev *pdev = bp->pdev; 581 struct page *page; 582 dma_addr_t mapping; 583 u16 sw_prod = rxr->rx_sw_agg_prod; 584 unsigned int offset = 0; 585 586 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 587 page = rxr->rx_page; 588 if (!page) { 589 page = alloc_page(gfp); 590 if (!page) 591 return -ENOMEM; 592 rxr->rx_page = page; 593 rxr->rx_page_offset = 0; 594 } 595 offset = rxr->rx_page_offset; 596 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE; 597 if (rxr->rx_page_offset == PAGE_SIZE) 598 rxr->rx_page = NULL; 599 else 600 get_page(page); 601 } else { 602 page = alloc_page(gfp); 603 if (!page) 604 return -ENOMEM; 605 } 606 607 mapping = dma_map_page(&pdev->dev, page, offset, BNXT_RX_PAGE_SIZE, 608 PCI_DMA_FROMDEVICE); 609 if (dma_mapping_error(&pdev->dev, mapping)) { 610 __free_page(page); 611 return -EIO; 612 } 613 614 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 615 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 616 617 __set_bit(sw_prod, rxr->rx_agg_bmap); 618 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 619 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod); 620 621 rx_agg_buf->page = page; 622 rx_agg_buf->offset = offset; 623 rx_agg_buf->mapping = mapping; 624 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 625 rxbd->rx_bd_opaque = sw_prod; 626 return 0; 627 } 628 629 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons, 630 u32 agg_bufs) 631 { 632 struct bnxt *bp = bnapi->bp; 633 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 634 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 635 u16 prod = rxr->rx_agg_prod; 636 u16 sw_prod = rxr->rx_sw_agg_prod; 637 u32 i; 638 639 for (i = 0; i < agg_bufs; i++) { 640 u16 cons; 641 struct rx_agg_cmp *agg; 642 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 643 struct rx_bd *prod_bd; 644 struct page *page; 645 646 agg = (struct rx_agg_cmp *) 647 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 648 cons = agg->rx_agg_cmp_opaque; 649 __clear_bit(cons, rxr->rx_agg_bmap); 650 651 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 652 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 653 654 __set_bit(sw_prod, rxr->rx_agg_bmap); 655 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 656 cons_rx_buf = &rxr->rx_agg_ring[cons]; 657 658 /* It is possible for sw_prod to be equal to cons, so 659 * set cons_rx_buf->page to NULL first. 660 */ 661 page = cons_rx_buf->page; 662 cons_rx_buf->page = NULL; 663 prod_rx_buf->page = page; 664 prod_rx_buf->offset = cons_rx_buf->offset; 665 666 prod_rx_buf->mapping = cons_rx_buf->mapping; 667 668 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 669 670 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 671 prod_bd->rx_bd_opaque = sw_prod; 672 673 prod = NEXT_RX_AGG(prod); 674 sw_prod = NEXT_RX_AGG(sw_prod); 675 cp_cons = NEXT_CMP(cp_cons); 676 } 677 rxr->rx_agg_prod = prod; 678 rxr->rx_sw_agg_prod = sw_prod; 679 } 680 681 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 682 struct bnxt_rx_ring_info *rxr, u16 cons, 683 u16 prod, u8 *data, dma_addr_t dma_addr, 684 unsigned int len) 685 { 686 int err; 687 struct sk_buff *skb; 688 689 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 690 if (unlikely(err)) { 691 bnxt_reuse_rx_data(rxr, cons, data); 692 return NULL; 693 } 694 695 skb = build_skb(data, 0); 696 dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 697 PCI_DMA_FROMDEVICE); 698 if (!skb) { 699 kfree(data); 700 return NULL; 701 } 702 703 skb_reserve(skb, BNXT_RX_OFFSET); 704 skb_put(skb, len); 705 return skb; 706 } 707 708 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi, 709 struct sk_buff *skb, u16 cp_cons, 710 u32 agg_bufs) 711 { 712 struct pci_dev *pdev = bp->pdev; 713 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 714 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 715 u16 prod = rxr->rx_agg_prod; 716 u32 i; 717 718 for (i = 0; i < agg_bufs; i++) { 719 u16 cons, frag_len; 720 struct rx_agg_cmp *agg; 721 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 722 struct page *page; 723 dma_addr_t mapping; 724 725 agg = (struct rx_agg_cmp *) 726 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 727 cons = agg->rx_agg_cmp_opaque; 728 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 729 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 730 731 cons_rx_buf = &rxr->rx_agg_ring[cons]; 732 skb_fill_page_desc(skb, i, cons_rx_buf->page, 733 cons_rx_buf->offset, frag_len); 734 __clear_bit(cons, rxr->rx_agg_bmap); 735 736 /* It is possible for bnxt_alloc_rx_page() to allocate 737 * a sw_prod index that equals the cons index, so we 738 * need to clear the cons entry now. 739 */ 740 mapping = dma_unmap_addr(cons_rx_buf, mapping); 741 page = cons_rx_buf->page; 742 cons_rx_buf->page = NULL; 743 744 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 745 struct skb_shared_info *shinfo; 746 unsigned int nr_frags; 747 748 shinfo = skb_shinfo(skb); 749 nr_frags = --shinfo->nr_frags; 750 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL); 751 752 dev_kfree_skb(skb); 753 754 cons_rx_buf->page = page; 755 756 /* Update prod since possibly some pages have been 757 * allocated already. 758 */ 759 rxr->rx_agg_prod = prod; 760 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i); 761 return NULL; 762 } 763 764 dma_unmap_page(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, 765 PCI_DMA_FROMDEVICE); 766 767 skb->data_len += frag_len; 768 skb->len += frag_len; 769 skb->truesize += PAGE_SIZE; 770 771 prod = NEXT_RX_AGG(prod); 772 cp_cons = NEXT_CMP(cp_cons); 773 } 774 rxr->rx_agg_prod = prod; 775 return skb; 776 } 777 778 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 779 u8 agg_bufs, u32 *raw_cons) 780 { 781 u16 last; 782 struct rx_agg_cmp *agg; 783 784 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 785 last = RING_CMP(*raw_cons); 786 agg = (struct rx_agg_cmp *) 787 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 788 return RX_AGG_CMP_VALID(agg, *raw_cons); 789 } 790 791 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 792 unsigned int len, 793 dma_addr_t mapping) 794 { 795 struct bnxt *bp = bnapi->bp; 796 struct pci_dev *pdev = bp->pdev; 797 struct sk_buff *skb; 798 799 skb = napi_alloc_skb(&bnapi->napi, len); 800 if (!skb) 801 return NULL; 802 803 dma_sync_single_for_cpu(&pdev->dev, mapping, 804 bp->rx_copy_thresh, PCI_DMA_FROMDEVICE); 805 806 memcpy(skb->data - BNXT_RX_OFFSET, data, len + BNXT_RX_OFFSET); 807 808 dma_sync_single_for_device(&pdev->dev, mapping, 809 bp->rx_copy_thresh, 810 PCI_DMA_FROMDEVICE); 811 812 skb_put(skb, len); 813 return skb; 814 } 815 816 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi, 817 u32 *raw_cons, void *cmp) 818 { 819 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 820 struct rx_cmp *rxcmp = cmp; 821 u32 tmp_raw_cons = *raw_cons; 822 u8 cmp_type, agg_bufs = 0; 823 824 cmp_type = RX_CMP_TYPE(rxcmp); 825 826 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 827 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 828 RX_CMP_AGG_BUFS) >> 829 RX_CMP_AGG_BUFS_SHIFT; 830 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 831 struct rx_tpa_end_cmp *tpa_end = cmp; 832 833 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) & 834 RX_TPA_END_CMP_AGG_BUFS) >> 835 RX_TPA_END_CMP_AGG_BUFS_SHIFT; 836 } 837 838 if (agg_bufs) { 839 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 840 return -EBUSY; 841 } 842 *raw_cons = tmp_raw_cons; 843 return 0; 844 } 845 846 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 847 { 848 if (!rxr->bnapi->in_reset) { 849 rxr->bnapi->in_reset = true; 850 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 851 schedule_work(&bp->sp_task); 852 } 853 rxr->rx_next_cons = 0xffff; 854 } 855 856 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 857 struct rx_tpa_start_cmp *tpa_start, 858 struct rx_tpa_start_cmp_ext *tpa_start1) 859 { 860 u8 agg_id = TPA_START_AGG_ID(tpa_start); 861 u16 cons, prod; 862 struct bnxt_tpa_info *tpa_info; 863 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 864 struct rx_bd *prod_bd; 865 dma_addr_t mapping; 866 867 cons = tpa_start->rx_tpa_start_cmp_opaque; 868 prod = rxr->rx_prod; 869 cons_rx_buf = &rxr->rx_buf_ring[cons]; 870 prod_rx_buf = &rxr->rx_buf_ring[prod]; 871 tpa_info = &rxr->rx_tpa[agg_id]; 872 873 if (unlikely(cons != rxr->rx_next_cons)) { 874 bnxt_sched_reset(bp, rxr); 875 return; 876 } 877 878 prod_rx_buf->data = tpa_info->data; 879 880 mapping = tpa_info->mapping; 881 dma_unmap_addr_set(prod_rx_buf, mapping, mapping); 882 883 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 884 885 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 886 887 tpa_info->data = cons_rx_buf->data; 888 cons_rx_buf->data = NULL; 889 tpa_info->mapping = dma_unmap_addr(cons_rx_buf, mapping); 890 891 tpa_info->len = 892 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 893 RX_TPA_START_CMP_LEN_SHIFT; 894 if (likely(TPA_START_HASH_VALID(tpa_start))) { 895 u32 hash_type = TPA_START_HASH_TYPE(tpa_start); 896 897 tpa_info->hash_type = PKT_HASH_TYPE_L4; 898 tpa_info->gso_type = SKB_GSO_TCPV4; 899 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 900 if (hash_type == 3) 901 tpa_info->gso_type = SKB_GSO_TCPV6; 902 tpa_info->rss_hash = 903 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 904 } else { 905 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 906 tpa_info->gso_type = 0; 907 if (netif_msg_rx_err(bp)) 908 netdev_warn(bp->dev, "TPA packet without valid hash\n"); 909 } 910 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 911 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 912 913 rxr->rx_prod = NEXT_RX(prod); 914 cons = NEXT_RX(cons); 915 rxr->rx_next_cons = NEXT_RX(cons); 916 cons_rx_buf = &rxr->rx_buf_ring[cons]; 917 918 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 919 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 920 cons_rx_buf->data = NULL; 921 } 922 923 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi, 924 u16 cp_cons, u32 agg_bufs) 925 { 926 if (agg_bufs) 927 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs); 928 } 929 930 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 931 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 932 933 static inline struct sk_buff *bnxt_gro_skb(struct bnxt_tpa_info *tpa_info, 934 struct rx_tpa_end_cmp *tpa_end, 935 struct rx_tpa_end_cmp_ext *tpa_end1, 936 struct sk_buff *skb) 937 { 938 #ifdef CONFIG_INET 939 struct tcphdr *th; 940 int payload_off, tcp_opt_len = 0; 941 int len, nw_off; 942 u16 segs; 943 944 segs = TPA_END_TPA_SEGS(tpa_end); 945 if (segs == 1) 946 return skb; 947 948 NAPI_GRO_CB(skb)->count = segs; 949 skb_shinfo(skb)->gso_size = 950 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 951 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 952 payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) & 953 RX_TPA_END_CMP_PAYLOAD_OFFSET) >> 954 RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT; 955 if (TPA_END_GRO_TS(tpa_end)) 956 tcp_opt_len = 12; 957 958 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 959 struct iphdr *iph; 960 961 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 962 ETH_HLEN; 963 skb_set_network_header(skb, nw_off); 964 iph = ip_hdr(skb); 965 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 966 len = skb->len - skb_transport_offset(skb); 967 th = tcp_hdr(skb); 968 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 969 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 970 struct ipv6hdr *iph; 971 972 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 973 ETH_HLEN; 974 skb_set_network_header(skb, nw_off); 975 iph = ipv6_hdr(skb); 976 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 977 len = skb->len - skb_transport_offset(skb); 978 th = tcp_hdr(skb); 979 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 980 } else { 981 dev_kfree_skb_any(skb); 982 return NULL; 983 } 984 tcp_gro_complete(skb); 985 986 if (nw_off) { /* tunnel */ 987 struct udphdr *uh = NULL; 988 989 if (skb->protocol == htons(ETH_P_IP)) { 990 struct iphdr *iph = (struct iphdr *)skb->data; 991 992 if (iph->protocol == IPPROTO_UDP) 993 uh = (struct udphdr *)(iph + 1); 994 } else { 995 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 996 997 if (iph->nexthdr == IPPROTO_UDP) 998 uh = (struct udphdr *)(iph + 1); 999 } 1000 if (uh) { 1001 if (uh->check) 1002 skb_shinfo(skb)->gso_type |= 1003 SKB_GSO_UDP_TUNNEL_CSUM; 1004 else 1005 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1006 } 1007 } 1008 #endif 1009 return skb; 1010 } 1011 1012 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1013 struct bnxt_napi *bnapi, 1014 u32 *raw_cons, 1015 struct rx_tpa_end_cmp *tpa_end, 1016 struct rx_tpa_end_cmp_ext *tpa_end1, 1017 bool *agg_event) 1018 { 1019 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 1020 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1021 u8 agg_id = TPA_END_AGG_ID(tpa_end); 1022 u8 *data, agg_bufs; 1023 u16 cp_cons = RING_CMP(*raw_cons); 1024 unsigned int len; 1025 struct bnxt_tpa_info *tpa_info; 1026 dma_addr_t mapping; 1027 struct sk_buff *skb; 1028 1029 if (unlikely(bnapi->in_reset)) { 1030 int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end); 1031 1032 if (rc < 0) 1033 return ERR_PTR(-EBUSY); 1034 return NULL; 1035 } 1036 1037 tpa_info = &rxr->rx_tpa[agg_id]; 1038 data = tpa_info->data; 1039 prefetch(data); 1040 len = tpa_info->len; 1041 mapping = tpa_info->mapping; 1042 1043 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) & 1044 RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT; 1045 1046 if (agg_bufs) { 1047 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1048 return ERR_PTR(-EBUSY); 1049 1050 *agg_event = true; 1051 cp_cons = NEXT_CMP(cp_cons); 1052 } 1053 1054 if (unlikely(agg_bufs > MAX_SKB_FRAGS)) { 1055 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs); 1056 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1057 agg_bufs, (int)MAX_SKB_FRAGS); 1058 return NULL; 1059 } 1060 1061 if (len <= bp->rx_copy_thresh) { 1062 skb = bnxt_copy_skb(bnapi, data, len, mapping); 1063 if (!skb) { 1064 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs); 1065 return NULL; 1066 } 1067 } else { 1068 u8 *new_data; 1069 dma_addr_t new_mapping; 1070 1071 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC); 1072 if (!new_data) { 1073 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs); 1074 return NULL; 1075 } 1076 1077 tpa_info->data = new_data; 1078 tpa_info->mapping = new_mapping; 1079 1080 skb = build_skb(data, 0); 1081 dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size, 1082 PCI_DMA_FROMDEVICE); 1083 1084 if (!skb) { 1085 kfree(data); 1086 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs); 1087 return NULL; 1088 } 1089 skb_reserve(skb, BNXT_RX_OFFSET); 1090 skb_put(skb, len); 1091 } 1092 1093 if (agg_bufs) { 1094 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs); 1095 if (!skb) { 1096 /* Page reuse already handled by bnxt_rx_pages(). */ 1097 return NULL; 1098 } 1099 } 1100 skb->protocol = eth_type_trans(skb, bp->dev); 1101 1102 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1103 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1104 1105 if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) { 1106 netdev_features_t features = skb->dev->features; 1107 u16 vlan_proto = tpa_info->metadata >> 1108 RX_CMP_FLAGS2_METADATA_TPID_SFT; 1109 1110 if (((features & NETIF_F_HW_VLAN_CTAG_RX) && 1111 vlan_proto == ETH_P_8021Q) || 1112 ((features & NETIF_F_HW_VLAN_STAG_RX) && 1113 vlan_proto == ETH_P_8021AD)) { 1114 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), 1115 tpa_info->metadata & 1116 RX_CMP_FLAGS2_METADATA_VID_MASK); 1117 } 1118 } 1119 1120 skb_checksum_none_assert(skb); 1121 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1122 skb->ip_summed = CHECKSUM_UNNECESSARY; 1123 skb->csum_level = 1124 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1125 } 1126 1127 if (TPA_END_GRO(tpa_end)) 1128 skb = bnxt_gro_skb(tpa_info, tpa_end, tpa_end1, skb); 1129 1130 return skb; 1131 } 1132 1133 /* returns the following: 1134 * 1 - 1 packet successfully received 1135 * 0 - successful TPA_START, packet not completed yet 1136 * -EBUSY - completion ring does not have all the agg buffers yet 1137 * -ENOMEM - packet aborted due to out of memory 1138 * -EIO - packet aborted due to hw error indicated in BD 1139 */ 1140 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons, 1141 bool *agg_event) 1142 { 1143 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 1144 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1145 struct net_device *dev = bp->dev; 1146 struct rx_cmp *rxcmp; 1147 struct rx_cmp_ext *rxcmp1; 1148 u32 tmp_raw_cons = *raw_cons; 1149 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 1150 struct bnxt_sw_rx_bd *rx_buf; 1151 unsigned int len; 1152 u8 *data, agg_bufs, cmp_type; 1153 dma_addr_t dma_addr; 1154 struct sk_buff *skb; 1155 int rc = 0; 1156 1157 rxcmp = (struct rx_cmp *) 1158 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1159 1160 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1161 cp_cons = RING_CMP(tmp_raw_cons); 1162 rxcmp1 = (struct rx_cmp_ext *) 1163 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1164 1165 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1166 return -EBUSY; 1167 1168 cmp_type = RX_CMP_TYPE(rxcmp); 1169 1170 prod = rxr->rx_prod; 1171 1172 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) { 1173 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp, 1174 (struct rx_tpa_start_cmp_ext *)rxcmp1); 1175 1176 goto next_rx_no_prod; 1177 1178 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1179 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons, 1180 (struct rx_tpa_end_cmp *)rxcmp, 1181 (struct rx_tpa_end_cmp_ext *)rxcmp1, 1182 agg_event); 1183 1184 if (unlikely(IS_ERR(skb))) 1185 return -EBUSY; 1186 1187 rc = -ENOMEM; 1188 if (likely(skb)) { 1189 skb_record_rx_queue(skb, bnapi->index); 1190 skb_mark_napi_id(skb, &bnapi->napi); 1191 if (bnxt_busy_polling(bnapi)) 1192 netif_receive_skb(skb); 1193 else 1194 napi_gro_receive(&bnapi->napi, skb); 1195 rc = 1; 1196 } 1197 goto next_rx_no_prod; 1198 } 1199 1200 cons = rxcmp->rx_cmp_opaque; 1201 rx_buf = &rxr->rx_buf_ring[cons]; 1202 data = rx_buf->data; 1203 if (unlikely(cons != rxr->rx_next_cons)) { 1204 int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp); 1205 1206 bnxt_sched_reset(bp, rxr); 1207 return rc1; 1208 } 1209 prefetch(data); 1210 1211 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & RX_CMP_AGG_BUFS) >> 1212 RX_CMP_AGG_BUFS_SHIFT; 1213 1214 if (agg_bufs) { 1215 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1216 return -EBUSY; 1217 1218 cp_cons = NEXT_CMP(cp_cons); 1219 *agg_event = true; 1220 } 1221 1222 rx_buf->data = NULL; 1223 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 1224 bnxt_reuse_rx_data(rxr, cons, data); 1225 if (agg_bufs) 1226 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs); 1227 1228 rc = -EIO; 1229 goto next_rx; 1230 } 1231 1232 len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT; 1233 dma_addr = dma_unmap_addr(rx_buf, mapping); 1234 1235 if (len <= bp->rx_copy_thresh) { 1236 skb = bnxt_copy_skb(bnapi, data, len, dma_addr); 1237 bnxt_reuse_rx_data(rxr, cons, data); 1238 if (!skb) { 1239 rc = -ENOMEM; 1240 goto next_rx; 1241 } 1242 } else { 1243 skb = bnxt_rx_skb(bp, rxr, cons, prod, data, dma_addr, len); 1244 if (!skb) { 1245 rc = -ENOMEM; 1246 goto next_rx; 1247 } 1248 } 1249 1250 if (agg_bufs) { 1251 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs); 1252 if (!skb) { 1253 rc = -ENOMEM; 1254 goto next_rx; 1255 } 1256 } 1257 1258 if (RX_CMP_HASH_VALID(rxcmp)) { 1259 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 1260 enum pkt_hash_types type = PKT_HASH_TYPE_L4; 1261 1262 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1263 if (hash_type != 1 && hash_type != 3) 1264 type = PKT_HASH_TYPE_L3; 1265 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 1266 } 1267 1268 skb->protocol = eth_type_trans(skb, dev); 1269 1270 if (rxcmp1->rx_cmp_flags2 & 1271 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) { 1272 netdev_features_t features = skb->dev->features; 1273 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 1274 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT; 1275 1276 if (((features & NETIF_F_HW_VLAN_CTAG_RX) && 1277 vlan_proto == ETH_P_8021Q) || 1278 ((features & NETIF_F_HW_VLAN_STAG_RX) && 1279 vlan_proto == ETH_P_8021AD)) 1280 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), 1281 meta_data & 1282 RX_CMP_FLAGS2_METADATA_VID_MASK); 1283 } 1284 1285 skb_checksum_none_assert(skb); 1286 if (RX_CMP_L4_CS_OK(rxcmp1)) { 1287 if (dev->features & NETIF_F_RXCSUM) { 1288 skb->ip_summed = CHECKSUM_UNNECESSARY; 1289 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 1290 } 1291 } else { 1292 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 1293 if (dev->features & NETIF_F_RXCSUM) 1294 cpr->rx_l4_csum_errors++; 1295 } 1296 } 1297 1298 skb_record_rx_queue(skb, bnapi->index); 1299 skb_mark_napi_id(skb, &bnapi->napi); 1300 if (bnxt_busy_polling(bnapi)) 1301 netif_receive_skb(skb); 1302 else 1303 napi_gro_receive(&bnapi->napi, skb); 1304 rc = 1; 1305 1306 next_rx: 1307 rxr->rx_prod = NEXT_RX(prod); 1308 rxr->rx_next_cons = NEXT_RX(cons); 1309 1310 next_rx_no_prod: 1311 *raw_cons = tmp_raw_cons; 1312 1313 return rc; 1314 } 1315 1316 static int bnxt_async_event_process(struct bnxt *bp, 1317 struct hwrm_async_event_cmpl *cmpl) 1318 { 1319 u16 event_id = le16_to_cpu(cmpl->event_id); 1320 1321 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 1322 switch (event_id) { 1323 case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 1324 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 1325 break; 1326 case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 1327 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 1328 break; 1329 default: 1330 netdev_err(bp->dev, "unhandled ASYNC event (id 0x%x)\n", 1331 event_id); 1332 goto async_event_process_exit; 1333 } 1334 schedule_work(&bp->sp_task); 1335 async_event_process_exit: 1336 return 0; 1337 } 1338 1339 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 1340 { 1341 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 1342 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 1343 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 1344 (struct hwrm_fwd_req_cmpl *)txcmp; 1345 1346 switch (cmpl_type) { 1347 case CMPL_BASE_TYPE_HWRM_DONE: 1348 seq_id = le16_to_cpu(h_cmpl->sequence_id); 1349 if (seq_id == bp->hwrm_intr_seq_id) 1350 bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID; 1351 else 1352 netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id); 1353 break; 1354 1355 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 1356 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 1357 1358 if ((vf_id < bp->pf.first_vf_id) || 1359 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 1360 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 1361 vf_id); 1362 return -EINVAL; 1363 } 1364 1365 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 1366 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event); 1367 schedule_work(&bp->sp_task); 1368 break; 1369 1370 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 1371 bnxt_async_event_process(bp, 1372 (struct hwrm_async_event_cmpl *)txcmp); 1373 1374 default: 1375 break; 1376 } 1377 1378 return 0; 1379 } 1380 1381 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 1382 { 1383 struct bnxt_napi *bnapi = dev_instance; 1384 struct bnxt *bp = bnapi->bp; 1385 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 1386 u32 cons = RING_CMP(cpr->cp_raw_cons); 1387 1388 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 1389 napi_schedule(&bnapi->napi); 1390 return IRQ_HANDLED; 1391 } 1392 1393 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 1394 { 1395 u32 raw_cons = cpr->cp_raw_cons; 1396 u16 cons = RING_CMP(raw_cons); 1397 struct tx_cmp *txcmp; 1398 1399 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 1400 1401 return TX_CMP_VALID(txcmp, raw_cons); 1402 } 1403 1404 static irqreturn_t bnxt_inta(int irq, void *dev_instance) 1405 { 1406 struct bnxt_napi *bnapi = dev_instance; 1407 struct bnxt *bp = bnapi->bp; 1408 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 1409 u32 cons = RING_CMP(cpr->cp_raw_cons); 1410 u32 int_status; 1411 1412 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 1413 1414 if (!bnxt_has_work(bp, cpr)) { 1415 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); 1416 /* return if erroneous interrupt */ 1417 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) 1418 return IRQ_NONE; 1419 } 1420 1421 /* disable ring IRQ */ 1422 BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell); 1423 1424 /* Return here if interrupt is shared and is disabled. */ 1425 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 1426 return IRQ_HANDLED; 1427 1428 napi_schedule(&bnapi->napi); 1429 return IRQ_HANDLED; 1430 } 1431 1432 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 1433 { 1434 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 1435 u32 raw_cons = cpr->cp_raw_cons; 1436 u32 cons; 1437 int tx_pkts = 0; 1438 int rx_pkts = 0; 1439 bool rx_event = false; 1440 bool agg_event = false; 1441 struct tx_cmp *txcmp; 1442 1443 while (1) { 1444 int rc; 1445 1446 cons = RING_CMP(raw_cons); 1447 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 1448 1449 if (!TX_CMP_VALID(txcmp, raw_cons)) 1450 break; 1451 1452 /* The valid test of the entry must be done first before 1453 * reading any further. 1454 */ 1455 rmb(); 1456 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) { 1457 tx_pkts++; 1458 /* return full budget so NAPI will complete. */ 1459 if (unlikely(tx_pkts > bp->tx_wake_thresh)) 1460 rx_pkts = budget; 1461 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 1462 rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event); 1463 if (likely(rc >= 0)) 1464 rx_pkts += rc; 1465 else if (rc == -EBUSY) /* partial completion */ 1466 break; 1467 rx_event = true; 1468 } else if (unlikely((TX_CMP_TYPE(txcmp) == 1469 CMPL_BASE_TYPE_HWRM_DONE) || 1470 (TX_CMP_TYPE(txcmp) == 1471 CMPL_BASE_TYPE_HWRM_FWD_REQ) || 1472 (TX_CMP_TYPE(txcmp) == 1473 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) { 1474 bnxt_hwrm_handler(bp, txcmp); 1475 } 1476 raw_cons = NEXT_RAW_CMP(raw_cons); 1477 1478 if (rx_pkts == budget) 1479 break; 1480 } 1481 1482 cpr->cp_raw_cons = raw_cons; 1483 /* ACK completion ring before freeing tx ring and producing new 1484 * buffers in rx/agg rings to prevent overflowing the completion 1485 * ring. 1486 */ 1487 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons); 1488 1489 if (tx_pkts) 1490 bnxt_tx_int(bp, bnapi, tx_pkts); 1491 1492 if (rx_event) { 1493 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1494 1495 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell); 1496 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell); 1497 if (agg_event) { 1498 writel(DB_KEY_RX | rxr->rx_agg_prod, 1499 rxr->rx_agg_doorbell); 1500 writel(DB_KEY_RX | rxr->rx_agg_prod, 1501 rxr->rx_agg_doorbell); 1502 } 1503 } 1504 return rx_pkts; 1505 } 1506 1507 static int bnxt_poll(struct napi_struct *napi, int budget) 1508 { 1509 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 1510 struct bnxt *bp = bnapi->bp; 1511 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 1512 int work_done = 0; 1513 1514 if (!bnxt_lock_napi(bnapi)) 1515 return budget; 1516 1517 while (1) { 1518 work_done += bnxt_poll_work(bp, bnapi, budget - work_done); 1519 1520 if (work_done >= budget) 1521 break; 1522 1523 if (!bnxt_has_work(bp, cpr)) { 1524 napi_complete(napi); 1525 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons); 1526 break; 1527 } 1528 } 1529 mmiowb(); 1530 bnxt_unlock_napi(bnapi); 1531 return work_done; 1532 } 1533 1534 #ifdef CONFIG_NET_RX_BUSY_POLL 1535 static int bnxt_busy_poll(struct napi_struct *napi) 1536 { 1537 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 1538 struct bnxt *bp = bnapi->bp; 1539 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 1540 int rx_work, budget = 4; 1541 1542 if (atomic_read(&bp->intr_sem) != 0) 1543 return LL_FLUSH_FAILED; 1544 1545 if (!bnxt_lock_poll(bnapi)) 1546 return LL_FLUSH_BUSY; 1547 1548 rx_work = bnxt_poll_work(bp, bnapi, budget); 1549 1550 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons); 1551 1552 bnxt_unlock_poll(bnapi); 1553 return rx_work; 1554 } 1555 #endif 1556 1557 static void bnxt_free_tx_skbs(struct bnxt *bp) 1558 { 1559 int i, max_idx; 1560 struct pci_dev *pdev = bp->pdev; 1561 1562 if (!bp->tx_ring) 1563 return; 1564 1565 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 1566 for (i = 0; i < bp->tx_nr_rings; i++) { 1567 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 1568 int j; 1569 1570 for (j = 0; j < max_idx;) { 1571 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 1572 struct sk_buff *skb = tx_buf->skb; 1573 int k, last; 1574 1575 if (!skb) { 1576 j++; 1577 continue; 1578 } 1579 1580 tx_buf->skb = NULL; 1581 1582 if (tx_buf->is_push) { 1583 dev_kfree_skb(skb); 1584 j += 2; 1585 continue; 1586 } 1587 1588 dma_unmap_single(&pdev->dev, 1589 dma_unmap_addr(tx_buf, mapping), 1590 skb_headlen(skb), 1591 PCI_DMA_TODEVICE); 1592 1593 last = tx_buf->nr_frags; 1594 j += 2; 1595 for (k = 0; k < last; k++, j++) { 1596 int ring_idx = j & bp->tx_ring_mask; 1597 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 1598 1599 tx_buf = &txr->tx_buf_ring[ring_idx]; 1600 dma_unmap_page( 1601 &pdev->dev, 1602 dma_unmap_addr(tx_buf, mapping), 1603 skb_frag_size(frag), PCI_DMA_TODEVICE); 1604 } 1605 dev_kfree_skb(skb); 1606 } 1607 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 1608 } 1609 } 1610 1611 static void bnxt_free_rx_skbs(struct bnxt *bp) 1612 { 1613 int i, max_idx, max_agg_idx; 1614 struct pci_dev *pdev = bp->pdev; 1615 1616 if (!bp->rx_ring) 1617 return; 1618 1619 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 1620 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 1621 for (i = 0; i < bp->rx_nr_rings; i++) { 1622 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 1623 int j; 1624 1625 if (rxr->rx_tpa) { 1626 for (j = 0; j < MAX_TPA; j++) { 1627 struct bnxt_tpa_info *tpa_info = 1628 &rxr->rx_tpa[j]; 1629 u8 *data = tpa_info->data; 1630 1631 if (!data) 1632 continue; 1633 1634 dma_unmap_single( 1635 &pdev->dev, 1636 dma_unmap_addr(tpa_info, mapping), 1637 bp->rx_buf_use_size, 1638 PCI_DMA_FROMDEVICE); 1639 1640 tpa_info->data = NULL; 1641 1642 kfree(data); 1643 } 1644 } 1645 1646 for (j = 0; j < max_idx; j++) { 1647 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j]; 1648 u8 *data = rx_buf->data; 1649 1650 if (!data) 1651 continue; 1652 1653 dma_unmap_single(&pdev->dev, 1654 dma_unmap_addr(rx_buf, mapping), 1655 bp->rx_buf_use_size, 1656 PCI_DMA_FROMDEVICE); 1657 1658 rx_buf->data = NULL; 1659 1660 kfree(data); 1661 } 1662 1663 for (j = 0; j < max_agg_idx; j++) { 1664 struct bnxt_sw_rx_agg_bd *rx_agg_buf = 1665 &rxr->rx_agg_ring[j]; 1666 struct page *page = rx_agg_buf->page; 1667 1668 if (!page) 1669 continue; 1670 1671 dma_unmap_page(&pdev->dev, 1672 dma_unmap_addr(rx_agg_buf, mapping), 1673 BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE); 1674 1675 rx_agg_buf->page = NULL; 1676 __clear_bit(j, rxr->rx_agg_bmap); 1677 1678 __free_page(page); 1679 } 1680 if (rxr->rx_page) { 1681 __free_page(rxr->rx_page); 1682 rxr->rx_page = NULL; 1683 } 1684 } 1685 } 1686 1687 static void bnxt_free_skbs(struct bnxt *bp) 1688 { 1689 bnxt_free_tx_skbs(bp); 1690 bnxt_free_rx_skbs(bp); 1691 } 1692 1693 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring) 1694 { 1695 struct pci_dev *pdev = bp->pdev; 1696 int i; 1697 1698 for (i = 0; i < ring->nr_pages; i++) { 1699 if (!ring->pg_arr[i]) 1700 continue; 1701 1702 dma_free_coherent(&pdev->dev, ring->page_size, 1703 ring->pg_arr[i], ring->dma_arr[i]); 1704 1705 ring->pg_arr[i] = NULL; 1706 } 1707 if (ring->pg_tbl) { 1708 dma_free_coherent(&pdev->dev, ring->nr_pages * 8, 1709 ring->pg_tbl, ring->pg_tbl_map); 1710 ring->pg_tbl = NULL; 1711 } 1712 if (ring->vmem_size && *ring->vmem) { 1713 vfree(*ring->vmem); 1714 *ring->vmem = NULL; 1715 } 1716 } 1717 1718 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring) 1719 { 1720 int i; 1721 struct pci_dev *pdev = bp->pdev; 1722 1723 if (ring->nr_pages > 1) { 1724 ring->pg_tbl = dma_alloc_coherent(&pdev->dev, 1725 ring->nr_pages * 8, 1726 &ring->pg_tbl_map, 1727 GFP_KERNEL); 1728 if (!ring->pg_tbl) 1729 return -ENOMEM; 1730 } 1731 1732 for (i = 0; i < ring->nr_pages; i++) { 1733 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 1734 ring->page_size, 1735 &ring->dma_arr[i], 1736 GFP_KERNEL); 1737 if (!ring->pg_arr[i]) 1738 return -ENOMEM; 1739 1740 if (ring->nr_pages > 1) 1741 ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]); 1742 } 1743 1744 if (ring->vmem_size) { 1745 *ring->vmem = vzalloc(ring->vmem_size); 1746 if (!(*ring->vmem)) 1747 return -ENOMEM; 1748 } 1749 return 0; 1750 } 1751 1752 static void bnxt_free_rx_rings(struct bnxt *bp) 1753 { 1754 int i; 1755 1756 if (!bp->rx_ring) 1757 return; 1758 1759 for (i = 0; i < bp->rx_nr_rings; i++) { 1760 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 1761 struct bnxt_ring_struct *ring; 1762 1763 kfree(rxr->rx_tpa); 1764 rxr->rx_tpa = NULL; 1765 1766 kfree(rxr->rx_agg_bmap); 1767 rxr->rx_agg_bmap = NULL; 1768 1769 ring = &rxr->rx_ring_struct; 1770 bnxt_free_ring(bp, ring); 1771 1772 ring = &rxr->rx_agg_ring_struct; 1773 bnxt_free_ring(bp, ring); 1774 } 1775 } 1776 1777 static int bnxt_alloc_rx_rings(struct bnxt *bp) 1778 { 1779 int i, rc, agg_rings = 0, tpa_rings = 0; 1780 1781 if (!bp->rx_ring) 1782 return -ENOMEM; 1783 1784 if (bp->flags & BNXT_FLAG_AGG_RINGS) 1785 agg_rings = 1; 1786 1787 if (bp->flags & BNXT_FLAG_TPA) 1788 tpa_rings = 1; 1789 1790 for (i = 0; i < bp->rx_nr_rings; i++) { 1791 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 1792 struct bnxt_ring_struct *ring; 1793 1794 ring = &rxr->rx_ring_struct; 1795 1796 rc = bnxt_alloc_ring(bp, ring); 1797 if (rc) 1798 return rc; 1799 1800 if (agg_rings) { 1801 u16 mem_size; 1802 1803 ring = &rxr->rx_agg_ring_struct; 1804 rc = bnxt_alloc_ring(bp, ring); 1805 if (rc) 1806 return rc; 1807 1808 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 1809 mem_size = rxr->rx_agg_bmap_size / 8; 1810 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 1811 if (!rxr->rx_agg_bmap) 1812 return -ENOMEM; 1813 1814 if (tpa_rings) { 1815 rxr->rx_tpa = kcalloc(MAX_TPA, 1816 sizeof(struct bnxt_tpa_info), 1817 GFP_KERNEL); 1818 if (!rxr->rx_tpa) 1819 return -ENOMEM; 1820 } 1821 } 1822 } 1823 return 0; 1824 } 1825 1826 static void bnxt_free_tx_rings(struct bnxt *bp) 1827 { 1828 int i; 1829 struct pci_dev *pdev = bp->pdev; 1830 1831 if (!bp->tx_ring) 1832 return; 1833 1834 for (i = 0; i < bp->tx_nr_rings; i++) { 1835 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 1836 struct bnxt_ring_struct *ring; 1837 1838 if (txr->tx_push) { 1839 dma_free_coherent(&pdev->dev, bp->tx_push_size, 1840 txr->tx_push, txr->tx_push_mapping); 1841 txr->tx_push = NULL; 1842 } 1843 1844 ring = &txr->tx_ring_struct; 1845 1846 bnxt_free_ring(bp, ring); 1847 } 1848 } 1849 1850 static int bnxt_alloc_tx_rings(struct bnxt *bp) 1851 { 1852 int i, j, rc; 1853 struct pci_dev *pdev = bp->pdev; 1854 1855 bp->tx_push_size = 0; 1856 if (bp->tx_push_thresh) { 1857 int push_size; 1858 1859 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 1860 bp->tx_push_thresh); 1861 1862 if (push_size > 256) { 1863 push_size = 0; 1864 bp->tx_push_thresh = 0; 1865 } 1866 1867 bp->tx_push_size = push_size; 1868 } 1869 1870 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 1871 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 1872 struct bnxt_ring_struct *ring; 1873 1874 ring = &txr->tx_ring_struct; 1875 1876 rc = bnxt_alloc_ring(bp, ring); 1877 if (rc) 1878 return rc; 1879 1880 if (bp->tx_push_size) { 1881 dma_addr_t mapping; 1882 1883 /* One pre-allocated DMA buffer to backup 1884 * TX push operation 1885 */ 1886 txr->tx_push = dma_alloc_coherent(&pdev->dev, 1887 bp->tx_push_size, 1888 &txr->tx_push_mapping, 1889 GFP_KERNEL); 1890 1891 if (!txr->tx_push) 1892 return -ENOMEM; 1893 1894 mapping = txr->tx_push_mapping + 1895 sizeof(struct tx_push_bd); 1896 txr->data_mapping = cpu_to_le64(mapping); 1897 1898 memset(txr->tx_push, 0, sizeof(struct tx_push_bd)); 1899 } 1900 ring->queue_id = bp->q_info[j].queue_id; 1901 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1)) 1902 j++; 1903 } 1904 return 0; 1905 } 1906 1907 static void bnxt_free_cp_rings(struct bnxt *bp) 1908 { 1909 int i; 1910 1911 if (!bp->bnapi) 1912 return; 1913 1914 for (i = 0; i < bp->cp_nr_rings; i++) { 1915 struct bnxt_napi *bnapi = bp->bnapi[i]; 1916 struct bnxt_cp_ring_info *cpr; 1917 struct bnxt_ring_struct *ring; 1918 1919 if (!bnapi) 1920 continue; 1921 1922 cpr = &bnapi->cp_ring; 1923 ring = &cpr->cp_ring_struct; 1924 1925 bnxt_free_ring(bp, ring); 1926 } 1927 } 1928 1929 static int bnxt_alloc_cp_rings(struct bnxt *bp) 1930 { 1931 int i, rc; 1932 1933 for (i = 0; i < bp->cp_nr_rings; i++) { 1934 struct bnxt_napi *bnapi = bp->bnapi[i]; 1935 struct bnxt_cp_ring_info *cpr; 1936 struct bnxt_ring_struct *ring; 1937 1938 if (!bnapi) 1939 continue; 1940 1941 cpr = &bnapi->cp_ring; 1942 ring = &cpr->cp_ring_struct; 1943 1944 rc = bnxt_alloc_ring(bp, ring); 1945 if (rc) 1946 return rc; 1947 } 1948 return 0; 1949 } 1950 1951 static void bnxt_init_ring_struct(struct bnxt *bp) 1952 { 1953 int i; 1954 1955 for (i = 0; i < bp->cp_nr_rings; i++) { 1956 struct bnxt_napi *bnapi = bp->bnapi[i]; 1957 struct bnxt_cp_ring_info *cpr; 1958 struct bnxt_rx_ring_info *rxr; 1959 struct bnxt_tx_ring_info *txr; 1960 struct bnxt_ring_struct *ring; 1961 1962 if (!bnapi) 1963 continue; 1964 1965 cpr = &bnapi->cp_ring; 1966 ring = &cpr->cp_ring_struct; 1967 ring->nr_pages = bp->cp_nr_pages; 1968 ring->page_size = HW_CMPD_RING_SIZE; 1969 ring->pg_arr = (void **)cpr->cp_desc_ring; 1970 ring->dma_arr = cpr->cp_desc_mapping; 1971 ring->vmem_size = 0; 1972 1973 rxr = bnapi->rx_ring; 1974 if (!rxr) 1975 goto skip_rx; 1976 1977 ring = &rxr->rx_ring_struct; 1978 ring->nr_pages = bp->rx_nr_pages; 1979 ring->page_size = HW_RXBD_RING_SIZE; 1980 ring->pg_arr = (void **)rxr->rx_desc_ring; 1981 ring->dma_arr = rxr->rx_desc_mapping; 1982 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 1983 ring->vmem = (void **)&rxr->rx_buf_ring; 1984 1985 ring = &rxr->rx_agg_ring_struct; 1986 ring->nr_pages = bp->rx_agg_nr_pages; 1987 ring->page_size = HW_RXBD_RING_SIZE; 1988 ring->pg_arr = (void **)rxr->rx_agg_desc_ring; 1989 ring->dma_arr = rxr->rx_agg_desc_mapping; 1990 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 1991 ring->vmem = (void **)&rxr->rx_agg_ring; 1992 1993 skip_rx: 1994 txr = bnapi->tx_ring; 1995 if (!txr) 1996 continue; 1997 1998 ring = &txr->tx_ring_struct; 1999 ring->nr_pages = bp->tx_nr_pages; 2000 ring->page_size = HW_RXBD_RING_SIZE; 2001 ring->pg_arr = (void **)txr->tx_desc_ring; 2002 ring->dma_arr = txr->tx_desc_mapping; 2003 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 2004 ring->vmem = (void **)&txr->tx_buf_ring; 2005 } 2006 } 2007 2008 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 2009 { 2010 int i; 2011 u32 prod; 2012 struct rx_bd **rx_buf_ring; 2013 2014 rx_buf_ring = (struct rx_bd **)ring->pg_arr; 2015 for (i = 0, prod = 0; i < ring->nr_pages; i++) { 2016 int j; 2017 struct rx_bd *rxbd; 2018 2019 rxbd = rx_buf_ring[i]; 2020 if (!rxbd) 2021 continue; 2022 2023 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 2024 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 2025 rxbd->rx_bd_opaque = prod; 2026 } 2027 } 2028 } 2029 2030 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 2031 { 2032 struct net_device *dev = bp->dev; 2033 struct bnxt_rx_ring_info *rxr; 2034 struct bnxt_ring_struct *ring; 2035 u32 prod, type; 2036 int i; 2037 2038 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 2039 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 2040 2041 if (NET_IP_ALIGN == 2) 2042 type |= RX_BD_FLAGS_SOP; 2043 2044 rxr = &bp->rx_ring[ring_nr]; 2045 ring = &rxr->rx_ring_struct; 2046 bnxt_init_rxbd_pages(ring, type); 2047 2048 prod = rxr->rx_prod; 2049 for (i = 0; i < bp->rx_ring_size; i++) { 2050 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) { 2051 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n", 2052 ring_nr, i, bp->rx_ring_size); 2053 break; 2054 } 2055 prod = NEXT_RX(prod); 2056 } 2057 rxr->rx_prod = prod; 2058 ring->fw_ring_id = INVALID_HW_RING_ID; 2059 2060 ring = &rxr->rx_agg_ring_struct; 2061 ring->fw_ring_id = INVALID_HW_RING_ID; 2062 2063 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 2064 return 0; 2065 2066 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 2067 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 2068 2069 bnxt_init_rxbd_pages(ring, type); 2070 2071 prod = rxr->rx_agg_prod; 2072 for (i = 0; i < bp->rx_agg_ring_size; i++) { 2073 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) { 2074 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n", 2075 ring_nr, i, bp->rx_ring_size); 2076 break; 2077 } 2078 prod = NEXT_RX_AGG(prod); 2079 } 2080 rxr->rx_agg_prod = prod; 2081 2082 if (bp->flags & BNXT_FLAG_TPA) { 2083 if (rxr->rx_tpa) { 2084 u8 *data; 2085 dma_addr_t mapping; 2086 2087 for (i = 0; i < MAX_TPA; i++) { 2088 data = __bnxt_alloc_rx_data(bp, &mapping, 2089 GFP_KERNEL); 2090 if (!data) 2091 return -ENOMEM; 2092 2093 rxr->rx_tpa[i].data = data; 2094 rxr->rx_tpa[i].mapping = mapping; 2095 } 2096 } else { 2097 netdev_err(bp->dev, "No resource allocated for LRO/GRO\n"); 2098 return -ENOMEM; 2099 } 2100 } 2101 2102 return 0; 2103 } 2104 2105 static int bnxt_init_rx_rings(struct bnxt *bp) 2106 { 2107 int i, rc = 0; 2108 2109 for (i = 0; i < bp->rx_nr_rings; i++) { 2110 rc = bnxt_init_one_rx_ring(bp, i); 2111 if (rc) 2112 break; 2113 } 2114 2115 return rc; 2116 } 2117 2118 static int bnxt_init_tx_rings(struct bnxt *bp) 2119 { 2120 u16 i; 2121 2122 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 2123 MAX_SKB_FRAGS + 1); 2124 2125 for (i = 0; i < bp->tx_nr_rings; i++) { 2126 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 2127 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 2128 2129 ring->fw_ring_id = INVALID_HW_RING_ID; 2130 } 2131 2132 return 0; 2133 } 2134 2135 static void bnxt_free_ring_grps(struct bnxt *bp) 2136 { 2137 kfree(bp->grp_info); 2138 bp->grp_info = NULL; 2139 } 2140 2141 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 2142 { 2143 int i; 2144 2145 if (irq_re_init) { 2146 bp->grp_info = kcalloc(bp->cp_nr_rings, 2147 sizeof(struct bnxt_ring_grp_info), 2148 GFP_KERNEL); 2149 if (!bp->grp_info) 2150 return -ENOMEM; 2151 } 2152 for (i = 0; i < bp->cp_nr_rings; i++) { 2153 if (irq_re_init) 2154 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 2155 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 2156 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 2157 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 2158 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 2159 } 2160 return 0; 2161 } 2162 2163 static void bnxt_free_vnics(struct bnxt *bp) 2164 { 2165 kfree(bp->vnic_info); 2166 bp->vnic_info = NULL; 2167 bp->nr_vnics = 0; 2168 } 2169 2170 static int bnxt_alloc_vnics(struct bnxt *bp) 2171 { 2172 int num_vnics = 1; 2173 2174 #ifdef CONFIG_RFS_ACCEL 2175 if (bp->flags & BNXT_FLAG_RFS) 2176 num_vnics += bp->rx_nr_rings; 2177 #endif 2178 2179 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 2180 GFP_KERNEL); 2181 if (!bp->vnic_info) 2182 return -ENOMEM; 2183 2184 bp->nr_vnics = num_vnics; 2185 return 0; 2186 } 2187 2188 static void bnxt_init_vnics(struct bnxt *bp) 2189 { 2190 int i; 2191 2192 for (i = 0; i < bp->nr_vnics; i++) { 2193 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 2194 2195 vnic->fw_vnic_id = INVALID_HW_RING_ID; 2196 vnic->fw_rss_cos_lb_ctx = INVALID_HW_RING_ID; 2197 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 2198 2199 if (bp->vnic_info[i].rss_hash_key) { 2200 if (i == 0) 2201 prandom_bytes(vnic->rss_hash_key, 2202 HW_HASH_KEY_SIZE); 2203 else 2204 memcpy(vnic->rss_hash_key, 2205 bp->vnic_info[0].rss_hash_key, 2206 HW_HASH_KEY_SIZE); 2207 } 2208 } 2209 } 2210 2211 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 2212 { 2213 int pages; 2214 2215 pages = ring_size / desc_per_pg; 2216 2217 if (!pages) 2218 return 1; 2219 2220 pages++; 2221 2222 while (pages & (pages - 1)) 2223 pages++; 2224 2225 return pages; 2226 } 2227 2228 static void bnxt_set_tpa_flags(struct bnxt *bp) 2229 { 2230 bp->flags &= ~BNXT_FLAG_TPA; 2231 if (bp->dev->features & NETIF_F_LRO) 2232 bp->flags |= BNXT_FLAG_LRO; 2233 if ((bp->dev->features & NETIF_F_GRO) && (bp->pdev->revision > 0)) 2234 bp->flags |= BNXT_FLAG_GRO; 2235 } 2236 2237 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 2238 * be set on entry. 2239 */ 2240 void bnxt_set_ring_params(struct bnxt *bp) 2241 { 2242 u32 ring_size, rx_size, rx_space; 2243 u32 agg_factor = 0, agg_ring_size = 0; 2244 2245 /* 8 for CRC and VLAN */ 2246 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 2247 2248 rx_space = rx_size + NET_SKB_PAD + 2249 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2250 2251 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 2252 ring_size = bp->rx_ring_size; 2253 bp->rx_agg_ring_size = 0; 2254 bp->rx_agg_nr_pages = 0; 2255 2256 if (bp->flags & BNXT_FLAG_TPA) 2257 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 2258 2259 bp->flags &= ~BNXT_FLAG_JUMBO; 2260 if (rx_space > PAGE_SIZE) { 2261 u32 jumbo_factor; 2262 2263 bp->flags |= BNXT_FLAG_JUMBO; 2264 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 2265 if (jumbo_factor > agg_factor) 2266 agg_factor = jumbo_factor; 2267 } 2268 agg_ring_size = ring_size * agg_factor; 2269 2270 if (agg_ring_size) { 2271 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 2272 RX_DESC_CNT); 2273 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 2274 u32 tmp = agg_ring_size; 2275 2276 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 2277 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 2278 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 2279 tmp, agg_ring_size); 2280 } 2281 bp->rx_agg_ring_size = agg_ring_size; 2282 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 2283 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 2284 rx_space = rx_size + NET_SKB_PAD + 2285 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2286 } 2287 2288 bp->rx_buf_use_size = rx_size; 2289 bp->rx_buf_size = rx_space; 2290 2291 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 2292 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 2293 2294 ring_size = bp->tx_ring_size; 2295 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 2296 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 2297 2298 ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size; 2299 bp->cp_ring_size = ring_size; 2300 2301 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 2302 if (bp->cp_nr_pages > MAX_CP_PAGES) { 2303 bp->cp_nr_pages = MAX_CP_PAGES; 2304 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 2305 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 2306 ring_size, bp->cp_ring_size); 2307 } 2308 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 2309 bp->cp_ring_mask = bp->cp_bit - 1; 2310 } 2311 2312 static void bnxt_free_vnic_attributes(struct bnxt *bp) 2313 { 2314 int i; 2315 struct bnxt_vnic_info *vnic; 2316 struct pci_dev *pdev = bp->pdev; 2317 2318 if (!bp->vnic_info) 2319 return; 2320 2321 for (i = 0; i < bp->nr_vnics; i++) { 2322 vnic = &bp->vnic_info[i]; 2323 2324 kfree(vnic->fw_grp_ids); 2325 vnic->fw_grp_ids = NULL; 2326 2327 kfree(vnic->uc_list); 2328 vnic->uc_list = NULL; 2329 2330 if (vnic->mc_list) { 2331 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 2332 vnic->mc_list, vnic->mc_list_mapping); 2333 vnic->mc_list = NULL; 2334 } 2335 2336 if (vnic->rss_table) { 2337 dma_free_coherent(&pdev->dev, PAGE_SIZE, 2338 vnic->rss_table, 2339 vnic->rss_table_dma_addr); 2340 vnic->rss_table = NULL; 2341 } 2342 2343 vnic->rss_hash_key = NULL; 2344 vnic->flags = 0; 2345 } 2346 } 2347 2348 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 2349 { 2350 int i, rc = 0, size; 2351 struct bnxt_vnic_info *vnic; 2352 struct pci_dev *pdev = bp->pdev; 2353 int max_rings; 2354 2355 for (i = 0; i < bp->nr_vnics; i++) { 2356 vnic = &bp->vnic_info[i]; 2357 2358 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 2359 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 2360 2361 if (mem_size > 0) { 2362 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 2363 if (!vnic->uc_list) { 2364 rc = -ENOMEM; 2365 goto out; 2366 } 2367 } 2368 } 2369 2370 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 2371 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 2372 vnic->mc_list = 2373 dma_alloc_coherent(&pdev->dev, 2374 vnic->mc_list_size, 2375 &vnic->mc_list_mapping, 2376 GFP_KERNEL); 2377 if (!vnic->mc_list) { 2378 rc = -ENOMEM; 2379 goto out; 2380 } 2381 } 2382 2383 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 2384 max_rings = bp->rx_nr_rings; 2385 else 2386 max_rings = 1; 2387 2388 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 2389 if (!vnic->fw_grp_ids) { 2390 rc = -ENOMEM; 2391 goto out; 2392 } 2393 2394 /* Allocate rss table and hash key */ 2395 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE, 2396 &vnic->rss_table_dma_addr, 2397 GFP_KERNEL); 2398 if (!vnic->rss_table) { 2399 rc = -ENOMEM; 2400 goto out; 2401 } 2402 2403 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 2404 2405 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 2406 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 2407 } 2408 return 0; 2409 2410 out: 2411 return rc; 2412 } 2413 2414 static void bnxt_free_hwrm_resources(struct bnxt *bp) 2415 { 2416 struct pci_dev *pdev = bp->pdev; 2417 2418 dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr, 2419 bp->hwrm_cmd_resp_dma_addr); 2420 2421 bp->hwrm_cmd_resp_addr = NULL; 2422 if (bp->hwrm_dbg_resp_addr) { 2423 dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE, 2424 bp->hwrm_dbg_resp_addr, 2425 bp->hwrm_dbg_resp_dma_addr); 2426 2427 bp->hwrm_dbg_resp_addr = NULL; 2428 } 2429 } 2430 2431 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 2432 { 2433 struct pci_dev *pdev = bp->pdev; 2434 2435 bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE, 2436 &bp->hwrm_cmd_resp_dma_addr, 2437 GFP_KERNEL); 2438 if (!bp->hwrm_cmd_resp_addr) 2439 return -ENOMEM; 2440 bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev, 2441 HWRM_DBG_REG_BUF_SIZE, 2442 &bp->hwrm_dbg_resp_dma_addr, 2443 GFP_KERNEL); 2444 if (!bp->hwrm_dbg_resp_addr) 2445 netdev_warn(bp->dev, "fail to alloc debug register dma mem\n"); 2446 2447 return 0; 2448 } 2449 2450 static void bnxt_free_stats(struct bnxt *bp) 2451 { 2452 u32 size, i; 2453 struct pci_dev *pdev = bp->pdev; 2454 2455 if (bp->hw_rx_port_stats) { 2456 dma_free_coherent(&pdev->dev, bp->hw_port_stats_size, 2457 bp->hw_rx_port_stats, 2458 bp->hw_rx_port_stats_map); 2459 bp->hw_rx_port_stats = NULL; 2460 bp->flags &= ~BNXT_FLAG_PORT_STATS; 2461 } 2462 2463 if (!bp->bnapi) 2464 return; 2465 2466 size = sizeof(struct ctx_hw_stats); 2467 2468 for (i = 0; i < bp->cp_nr_rings; i++) { 2469 struct bnxt_napi *bnapi = bp->bnapi[i]; 2470 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2471 2472 if (cpr->hw_stats) { 2473 dma_free_coherent(&pdev->dev, size, cpr->hw_stats, 2474 cpr->hw_stats_map); 2475 cpr->hw_stats = NULL; 2476 } 2477 } 2478 } 2479 2480 static int bnxt_alloc_stats(struct bnxt *bp) 2481 { 2482 u32 size, i; 2483 struct pci_dev *pdev = bp->pdev; 2484 2485 size = sizeof(struct ctx_hw_stats); 2486 2487 for (i = 0; i < bp->cp_nr_rings; i++) { 2488 struct bnxt_napi *bnapi = bp->bnapi[i]; 2489 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2490 2491 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size, 2492 &cpr->hw_stats_map, 2493 GFP_KERNEL); 2494 if (!cpr->hw_stats) 2495 return -ENOMEM; 2496 2497 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 2498 } 2499 2500 if (BNXT_PF(bp)) { 2501 bp->hw_port_stats_size = sizeof(struct rx_port_stats) + 2502 sizeof(struct tx_port_stats) + 1024; 2503 2504 bp->hw_rx_port_stats = 2505 dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size, 2506 &bp->hw_rx_port_stats_map, 2507 GFP_KERNEL); 2508 if (!bp->hw_rx_port_stats) 2509 return -ENOMEM; 2510 2511 bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) + 2512 512; 2513 bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map + 2514 sizeof(struct rx_port_stats) + 512; 2515 bp->flags |= BNXT_FLAG_PORT_STATS; 2516 } 2517 return 0; 2518 } 2519 2520 static void bnxt_clear_ring_indices(struct bnxt *bp) 2521 { 2522 int i; 2523 2524 if (!bp->bnapi) 2525 return; 2526 2527 for (i = 0; i < bp->cp_nr_rings; i++) { 2528 struct bnxt_napi *bnapi = bp->bnapi[i]; 2529 struct bnxt_cp_ring_info *cpr; 2530 struct bnxt_rx_ring_info *rxr; 2531 struct bnxt_tx_ring_info *txr; 2532 2533 if (!bnapi) 2534 continue; 2535 2536 cpr = &bnapi->cp_ring; 2537 cpr->cp_raw_cons = 0; 2538 2539 txr = bnapi->tx_ring; 2540 if (txr) { 2541 txr->tx_prod = 0; 2542 txr->tx_cons = 0; 2543 } 2544 2545 rxr = bnapi->rx_ring; 2546 if (rxr) { 2547 rxr->rx_prod = 0; 2548 rxr->rx_agg_prod = 0; 2549 rxr->rx_sw_agg_prod = 0; 2550 rxr->rx_next_cons = 0; 2551 } 2552 } 2553 } 2554 2555 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit) 2556 { 2557 #ifdef CONFIG_RFS_ACCEL 2558 int i; 2559 2560 /* Under rtnl_lock and all our NAPIs have been disabled. It's 2561 * safe to delete the hash table. 2562 */ 2563 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 2564 struct hlist_head *head; 2565 struct hlist_node *tmp; 2566 struct bnxt_ntuple_filter *fltr; 2567 2568 head = &bp->ntp_fltr_hash_tbl[i]; 2569 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 2570 hlist_del(&fltr->hash); 2571 kfree(fltr); 2572 } 2573 } 2574 if (irq_reinit) { 2575 kfree(bp->ntp_fltr_bmap); 2576 bp->ntp_fltr_bmap = NULL; 2577 } 2578 bp->ntp_fltr_count = 0; 2579 #endif 2580 } 2581 2582 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 2583 { 2584 #ifdef CONFIG_RFS_ACCEL 2585 int i, rc = 0; 2586 2587 if (!(bp->flags & BNXT_FLAG_RFS)) 2588 return 0; 2589 2590 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 2591 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 2592 2593 bp->ntp_fltr_count = 0; 2594 bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR), 2595 GFP_KERNEL); 2596 2597 if (!bp->ntp_fltr_bmap) 2598 rc = -ENOMEM; 2599 2600 return rc; 2601 #else 2602 return 0; 2603 #endif 2604 } 2605 2606 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 2607 { 2608 bnxt_free_vnic_attributes(bp); 2609 bnxt_free_tx_rings(bp); 2610 bnxt_free_rx_rings(bp); 2611 bnxt_free_cp_rings(bp); 2612 bnxt_free_ntp_fltrs(bp, irq_re_init); 2613 if (irq_re_init) { 2614 bnxt_free_stats(bp); 2615 bnxt_free_ring_grps(bp); 2616 bnxt_free_vnics(bp); 2617 kfree(bp->tx_ring); 2618 bp->tx_ring = NULL; 2619 kfree(bp->rx_ring); 2620 bp->rx_ring = NULL; 2621 kfree(bp->bnapi); 2622 bp->bnapi = NULL; 2623 } else { 2624 bnxt_clear_ring_indices(bp); 2625 } 2626 } 2627 2628 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 2629 { 2630 int i, j, rc, size, arr_size; 2631 void *bnapi; 2632 2633 if (irq_re_init) { 2634 /* Allocate bnapi mem pointer array and mem block for 2635 * all queues 2636 */ 2637 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 2638 bp->cp_nr_rings); 2639 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 2640 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 2641 if (!bnapi) 2642 return -ENOMEM; 2643 2644 bp->bnapi = bnapi; 2645 bnapi += arr_size; 2646 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 2647 bp->bnapi[i] = bnapi; 2648 bp->bnapi[i]->index = i; 2649 bp->bnapi[i]->bp = bp; 2650 } 2651 2652 bp->rx_ring = kcalloc(bp->rx_nr_rings, 2653 sizeof(struct bnxt_rx_ring_info), 2654 GFP_KERNEL); 2655 if (!bp->rx_ring) 2656 return -ENOMEM; 2657 2658 for (i = 0; i < bp->rx_nr_rings; i++) { 2659 bp->rx_ring[i].bnapi = bp->bnapi[i]; 2660 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 2661 } 2662 2663 bp->tx_ring = kcalloc(bp->tx_nr_rings, 2664 sizeof(struct bnxt_tx_ring_info), 2665 GFP_KERNEL); 2666 if (!bp->tx_ring) 2667 return -ENOMEM; 2668 2669 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 2670 j = 0; 2671 else 2672 j = bp->rx_nr_rings; 2673 2674 for (i = 0; i < bp->tx_nr_rings; i++, j++) { 2675 bp->tx_ring[i].bnapi = bp->bnapi[j]; 2676 bp->bnapi[j]->tx_ring = &bp->tx_ring[i]; 2677 } 2678 2679 rc = bnxt_alloc_stats(bp); 2680 if (rc) 2681 goto alloc_mem_err; 2682 2683 rc = bnxt_alloc_ntp_fltrs(bp); 2684 if (rc) 2685 goto alloc_mem_err; 2686 2687 rc = bnxt_alloc_vnics(bp); 2688 if (rc) 2689 goto alloc_mem_err; 2690 } 2691 2692 bnxt_init_ring_struct(bp); 2693 2694 rc = bnxt_alloc_rx_rings(bp); 2695 if (rc) 2696 goto alloc_mem_err; 2697 2698 rc = bnxt_alloc_tx_rings(bp); 2699 if (rc) 2700 goto alloc_mem_err; 2701 2702 rc = bnxt_alloc_cp_rings(bp); 2703 if (rc) 2704 goto alloc_mem_err; 2705 2706 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG | 2707 BNXT_VNIC_UCAST_FLAG; 2708 rc = bnxt_alloc_vnic_attributes(bp); 2709 if (rc) 2710 goto alloc_mem_err; 2711 return 0; 2712 2713 alloc_mem_err: 2714 bnxt_free_mem(bp, true); 2715 return rc; 2716 } 2717 2718 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type, 2719 u16 cmpl_ring, u16 target_id) 2720 { 2721 struct input *req = request; 2722 2723 req->req_type = cpu_to_le16(req_type); 2724 req->cmpl_ring = cpu_to_le16(cmpl_ring); 2725 req->target_id = cpu_to_le16(target_id); 2726 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr); 2727 } 2728 2729 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len, 2730 int timeout, bool silent) 2731 { 2732 int i, intr_process, rc; 2733 struct input *req = msg; 2734 u32 *data = msg; 2735 __le32 *resp_len, *valid; 2736 u16 cp_ring_id, len = 0; 2737 struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr; 2738 2739 req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++); 2740 memset(resp, 0, PAGE_SIZE); 2741 cp_ring_id = le16_to_cpu(req->cmpl_ring); 2742 intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1; 2743 2744 /* Write request msg to hwrm channel */ 2745 __iowrite32_copy(bp->bar0, data, msg_len / 4); 2746 2747 for (i = msg_len; i < BNXT_HWRM_MAX_REQ_LEN; i += 4) 2748 writel(0, bp->bar0 + i); 2749 2750 /* currently supports only one outstanding message */ 2751 if (intr_process) 2752 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id); 2753 2754 /* Ring channel doorbell */ 2755 writel(1, bp->bar0 + 0x100); 2756 2757 if (!timeout) 2758 timeout = DFLT_HWRM_CMD_TIMEOUT; 2759 2760 i = 0; 2761 if (intr_process) { 2762 /* Wait until hwrm response cmpl interrupt is processed */ 2763 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID && 2764 i++ < timeout) { 2765 usleep_range(600, 800); 2766 } 2767 2768 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) { 2769 netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n", 2770 le16_to_cpu(req->req_type)); 2771 return -1; 2772 } 2773 } else { 2774 /* Check if response len is updated */ 2775 resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET; 2776 for (i = 0; i < timeout; i++) { 2777 len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >> 2778 HWRM_RESP_LEN_SFT; 2779 if (len) 2780 break; 2781 usleep_range(600, 800); 2782 } 2783 2784 if (i >= timeout) { 2785 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n", 2786 timeout, le16_to_cpu(req->req_type), 2787 le16_to_cpu(req->seq_id), *resp_len); 2788 return -1; 2789 } 2790 2791 /* Last word of resp contains valid bit */ 2792 valid = bp->hwrm_cmd_resp_addr + len - 4; 2793 for (i = 0; i < timeout; i++) { 2794 if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK) 2795 break; 2796 usleep_range(600, 800); 2797 } 2798 2799 if (i >= timeout) { 2800 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n", 2801 timeout, le16_to_cpu(req->req_type), 2802 le16_to_cpu(req->seq_id), len, *valid); 2803 return -1; 2804 } 2805 } 2806 2807 rc = le16_to_cpu(resp->error_code); 2808 if (rc && !silent) 2809 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n", 2810 le16_to_cpu(resp->req_type), 2811 le16_to_cpu(resp->seq_id), rc); 2812 return rc; 2813 } 2814 2815 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout) 2816 { 2817 return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false); 2818 } 2819 2820 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout) 2821 { 2822 int rc; 2823 2824 mutex_lock(&bp->hwrm_cmd_lock); 2825 rc = _hwrm_send_message(bp, msg, msg_len, timeout); 2826 mutex_unlock(&bp->hwrm_cmd_lock); 2827 return rc; 2828 } 2829 2830 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len, 2831 int timeout) 2832 { 2833 int rc; 2834 2835 mutex_lock(&bp->hwrm_cmd_lock); 2836 rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true); 2837 mutex_unlock(&bp->hwrm_cmd_lock); 2838 return rc; 2839 } 2840 2841 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp) 2842 { 2843 struct hwrm_func_drv_rgtr_input req = {0}; 2844 int i; 2845 2846 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1); 2847 2848 req.enables = 2849 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 2850 FUNC_DRV_RGTR_REQ_ENABLES_VER | 2851 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 2852 2853 /* TODO: current async event fwd bits are not defined and the firmware 2854 * only checks if it is non-zero to enable async event forwarding 2855 */ 2856 req.async_event_fwd[0] |= cpu_to_le32(1); 2857 req.os_type = cpu_to_le16(1); 2858 req.ver_maj = DRV_VER_MAJ; 2859 req.ver_min = DRV_VER_MIN; 2860 req.ver_upd = DRV_VER_UPD; 2861 2862 if (BNXT_PF(bp)) { 2863 DECLARE_BITMAP(vf_req_snif_bmap, 256); 2864 u32 *data = (u32 *)vf_req_snif_bmap; 2865 2866 memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap)); 2867 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) 2868 __set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap); 2869 2870 for (i = 0; i < 8; i++) 2871 req.vf_req_fwd[i] = cpu_to_le32(data[i]); 2872 2873 req.enables |= 2874 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 2875 } 2876 2877 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 2878 } 2879 2880 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 2881 { 2882 struct hwrm_func_drv_unrgtr_input req = {0}; 2883 2884 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1); 2885 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 2886 } 2887 2888 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 2889 { 2890 u32 rc = 0; 2891 struct hwrm_tunnel_dst_port_free_input req = {0}; 2892 2893 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1); 2894 req.tunnel_type = tunnel_type; 2895 2896 switch (tunnel_type) { 2897 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 2898 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id; 2899 break; 2900 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 2901 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id; 2902 break; 2903 default: 2904 break; 2905 } 2906 2907 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 2908 if (rc) 2909 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 2910 rc); 2911 return rc; 2912 } 2913 2914 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 2915 u8 tunnel_type) 2916 { 2917 u32 rc = 0; 2918 struct hwrm_tunnel_dst_port_alloc_input req = {0}; 2919 struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr; 2920 2921 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1); 2922 2923 req.tunnel_type = tunnel_type; 2924 req.tunnel_dst_port_val = port; 2925 2926 mutex_lock(&bp->hwrm_cmd_lock); 2927 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 2928 if (rc) { 2929 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 2930 rc); 2931 goto err_out; 2932 } 2933 2934 if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN) 2935 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id; 2936 2937 else if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE) 2938 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id; 2939 err_out: 2940 mutex_unlock(&bp->hwrm_cmd_lock); 2941 return rc; 2942 } 2943 2944 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 2945 { 2946 struct hwrm_cfa_l2_set_rx_mask_input req = {0}; 2947 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 2948 2949 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1); 2950 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id); 2951 2952 req.num_mc_entries = cpu_to_le32(vnic->mc_list_count); 2953 req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 2954 req.mask = cpu_to_le32(vnic->rx_mask); 2955 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 2956 } 2957 2958 #ifdef CONFIG_RFS_ACCEL 2959 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 2960 struct bnxt_ntuple_filter *fltr) 2961 { 2962 struct hwrm_cfa_ntuple_filter_free_input req = {0}; 2963 2964 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1); 2965 req.ntuple_filter_id = fltr->filter_id; 2966 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 2967 } 2968 2969 #define BNXT_NTP_FLTR_FLAGS \ 2970 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 2971 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 2972 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \ 2973 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 2974 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 2975 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 2976 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 2977 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 2978 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 2979 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 2980 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 2981 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 2982 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 2983 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 2984 2985 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 2986 struct bnxt_ntuple_filter *fltr) 2987 { 2988 int rc = 0; 2989 struct hwrm_cfa_ntuple_filter_alloc_input req = {0}; 2990 struct hwrm_cfa_ntuple_filter_alloc_output *resp = 2991 bp->hwrm_cmd_resp_addr; 2992 struct flow_keys *keys = &fltr->fkeys; 2993 struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1]; 2994 2995 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1); 2996 req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[0]; 2997 2998 req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 2999 3000 req.ethertype = htons(ETH_P_IP); 3001 memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN); 3002 req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 3003 req.ip_protocol = keys->basic.ip_proto; 3004 3005 req.src_ipaddr[0] = keys->addrs.v4addrs.src; 3006 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 3007 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst; 3008 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 3009 3010 req.src_port = keys->ports.src; 3011 req.src_port_mask = cpu_to_be16(0xffff); 3012 req.dst_port = keys->ports.dst; 3013 req.dst_port_mask = cpu_to_be16(0xffff); 3014 3015 req.dst_id = cpu_to_le16(vnic->fw_vnic_id); 3016 mutex_lock(&bp->hwrm_cmd_lock); 3017 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3018 if (!rc) 3019 fltr->filter_id = resp->ntuple_filter_id; 3020 mutex_unlock(&bp->hwrm_cmd_lock); 3021 return rc; 3022 } 3023 #endif 3024 3025 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 3026 u8 *mac_addr) 3027 { 3028 u32 rc = 0; 3029 struct hwrm_cfa_l2_filter_alloc_input req = {0}; 3030 struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr; 3031 3032 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1); 3033 req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX | 3034 CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 3035 req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id); 3036 req.enables = 3037 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 3038 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 3039 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 3040 memcpy(req.l2_addr, mac_addr, ETH_ALEN); 3041 req.l2_addr_mask[0] = 0xff; 3042 req.l2_addr_mask[1] = 0xff; 3043 req.l2_addr_mask[2] = 0xff; 3044 req.l2_addr_mask[3] = 0xff; 3045 req.l2_addr_mask[4] = 0xff; 3046 req.l2_addr_mask[5] = 0xff; 3047 3048 mutex_lock(&bp->hwrm_cmd_lock); 3049 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3050 if (!rc) 3051 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] = 3052 resp->l2_filter_id; 3053 mutex_unlock(&bp->hwrm_cmd_lock); 3054 return rc; 3055 } 3056 3057 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 3058 { 3059 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 3060 int rc = 0; 3061 3062 /* Any associated ntuple filters will also be cleared by firmware. */ 3063 mutex_lock(&bp->hwrm_cmd_lock); 3064 for (i = 0; i < num_of_vnics; i++) { 3065 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 3066 3067 for (j = 0; j < vnic->uc_filter_count; j++) { 3068 struct hwrm_cfa_l2_filter_free_input req = {0}; 3069 3070 bnxt_hwrm_cmd_hdr_init(bp, &req, 3071 HWRM_CFA_L2_FILTER_FREE, -1, -1); 3072 3073 req.l2_filter_id = vnic->fw_l2_filter_id[j]; 3074 3075 rc = _hwrm_send_message(bp, &req, sizeof(req), 3076 HWRM_CMD_TIMEOUT); 3077 } 3078 vnic->uc_filter_count = 0; 3079 } 3080 mutex_unlock(&bp->hwrm_cmd_lock); 3081 3082 return rc; 3083 } 3084 3085 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags) 3086 { 3087 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 3088 struct hwrm_vnic_tpa_cfg_input req = {0}; 3089 3090 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1); 3091 3092 if (tpa_flags) { 3093 u16 mss = bp->dev->mtu - 40; 3094 u32 nsegs, n, segs = 0, flags; 3095 3096 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 3097 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 3098 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 3099 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 3100 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 3101 if (tpa_flags & BNXT_FLAG_GRO) 3102 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 3103 3104 req.flags = cpu_to_le32(flags); 3105 3106 req.enables = 3107 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 3108 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 3109 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 3110 3111 /* Number of segs are log2 units, and first packet is not 3112 * included as part of this units. 3113 */ 3114 if (mss <= BNXT_RX_PAGE_SIZE) { 3115 n = BNXT_RX_PAGE_SIZE / mss; 3116 nsegs = (MAX_SKB_FRAGS - 1) * n; 3117 } else { 3118 n = mss / BNXT_RX_PAGE_SIZE; 3119 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 3120 n++; 3121 nsegs = (MAX_SKB_FRAGS - n) / n; 3122 } 3123 3124 segs = ilog2(nsegs); 3125 req.max_agg_segs = cpu_to_le16(segs); 3126 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX); 3127 3128 req.min_agg_len = cpu_to_le32(512); 3129 } 3130 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); 3131 3132 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3133 } 3134 3135 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss) 3136 { 3137 u32 i, j, max_rings; 3138 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 3139 struct hwrm_vnic_rss_cfg_input req = {0}; 3140 3141 if (vnic->fw_rss_cos_lb_ctx == INVALID_HW_RING_ID) 3142 return 0; 3143 3144 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1); 3145 if (set_rss) { 3146 vnic->hash_type = BNXT_RSS_HASH_TYPE_FLAG_IPV4 | 3147 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV4 | 3148 BNXT_RSS_HASH_TYPE_FLAG_IPV6 | 3149 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV6; 3150 3151 req.hash_type = cpu_to_le32(vnic->hash_type); 3152 3153 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 3154 max_rings = bp->rx_nr_rings; 3155 else 3156 max_rings = 1; 3157 3158 /* Fill the RSS indirection table with ring group ids */ 3159 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) { 3160 if (j == max_rings) 3161 j = 0; 3162 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 3163 } 3164 3165 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 3166 req.hash_key_tbl_addr = 3167 cpu_to_le64(vnic->rss_hash_key_dma_addr); 3168 } 3169 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx); 3170 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3171 } 3172 3173 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id) 3174 { 3175 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 3176 struct hwrm_vnic_plcmodes_cfg_input req = {0}; 3177 3178 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1); 3179 req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT | 3180 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 3181 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 3182 req.enables = 3183 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID | 3184 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 3185 /* thresholds not implemented in firmware yet */ 3186 req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 3187 req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 3188 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id); 3189 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3190 } 3191 3192 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id) 3193 { 3194 struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0}; 3195 3196 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1); 3197 req.rss_cos_lb_ctx_id = 3198 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx); 3199 3200 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3201 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID; 3202 } 3203 3204 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 3205 { 3206 int i; 3207 3208 for (i = 0; i < bp->nr_vnics; i++) { 3209 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 3210 3211 if (vnic->fw_rss_cos_lb_ctx != INVALID_HW_RING_ID) 3212 bnxt_hwrm_vnic_ctx_free_one(bp, i); 3213 } 3214 bp->rsscos_nr_ctxs = 0; 3215 } 3216 3217 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id) 3218 { 3219 int rc; 3220 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0}; 3221 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp = 3222 bp->hwrm_cmd_resp_addr; 3223 3224 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1, 3225 -1); 3226 3227 mutex_lock(&bp->hwrm_cmd_lock); 3228 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3229 if (!rc) 3230 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = 3231 le16_to_cpu(resp->rss_cos_lb_ctx_id); 3232 mutex_unlock(&bp->hwrm_cmd_lock); 3233 3234 return rc; 3235 } 3236 3237 static int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id) 3238 { 3239 unsigned int ring = 0, grp_idx; 3240 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 3241 struct hwrm_vnic_cfg_input req = {0}; 3242 3243 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1); 3244 /* Only RSS support for now TBD: COS & LB */ 3245 req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP | 3246 VNIC_CFG_REQ_ENABLES_RSS_RULE); 3247 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx); 3248 req.cos_rule = cpu_to_le16(0xffff); 3249 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 3250 ring = 0; 3251 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 3252 ring = vnic_id - 1; 3253 3254 grp_idx = bp->rx_ring[ring].bnapi->index; 3255 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); 3256 req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 3257 3258 req.lb_rule = cpu_to_le16(0xffff); 3259 req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN + 3260 VLAN_HLEN); 3261 3262 if (bp->flags & BNXT_FLAG_STRIP_VLAN) 3263 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 3264 3265 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3266 } 3267 3268 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id) 3269 { 3270 u32 rc = 0; 3271 3272 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) { 3273 struct hwrm_vnic_free_input req = {0}; 3274 3275 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1); 3276 req.vnic_id = 3277 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id); 3278 3279 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3280 if (rc) 3281 return rc; 3282 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID; 3283 } 3284 return rc; 3285 } 3286 3287 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 3288 { 3289 u16 i; 3290 3291 for (i = 0; i < bp->nr_vnics; i++) 3292 bnxt_hwrm_vnic_free_one(bp, i); 3293 } 3294 3295 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id, 3296 unsigned int start_rx_ring_idx, 3297 unsigned int nr_rings) 3298 { 3299 int rc = 0; 3300 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 3301 struct hwrm_vnic_alloc_input req = {0}; 3302 struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr; 3303 3304 /* map ring groups to this vnic */ 3305 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 3306 grp_idx = bp->rx_ring[i].bnapi->index; 3307 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 3308 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 3309 j, nr_rings); 3310 break; 3311 } 3312 bp->vnic_info[vnic_id].fw_grp_ids[j] = 3313 bp->grp_info[grp_idx].fw_grp_id; 3314 } 3315 3316 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID; 3317 if (vnic_id == 0) 3318 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 3319 3320 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1); 3321 3322 mutex_lock(&bp->hwrm_cmd_lock); 3323 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3324 if (!rc) 3325 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id); 3326 mutex_unlock(&bp->hwrm_cmd_lock); 3327 return rc; 3328 } 3329 3330 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 3331 { 3332 u16 i; 3333 u32 rc = 0; 3334 3335 mutex_lock(&bp->hwrm_cmd_lock); 3336 for (i = 0; i < bp->rx_nr_rings; i++) { 3337 struct hwrm_ring_grp_alloc_input req = {0}; 3338 struct hwrm_ring_grp_alloc_output *resp = 3339 bp->hwrm_cmd_resp_addr; 3340 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 3341 3342 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1); 3343 3344 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 3345 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 3346 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 3347 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 3348 3349 rc = _hwrm_send_message(bp, &req, sizeof(req), 3350 HWRM_CMD_TIMEOUT); 3351 if (rc) 3352 break; 3353 3354 bp->grp_info[grp_idx].fw_grp_id = 3355 le32_to_cpu(resp->ring_group_id); 3356 } 3357 mutex_unlock(&bp->hwrm_cmd_lock); 3358 return rc; 3359 } 3360 3361 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp) 3362 { 3363 u16 i; 3364 u32 rc = 0; 3365 struct hwrm_ring_grp_free_input req = {0}; 3366 3367 if (!bp->grp_info) 3368 return 0; 3369 3370 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1); 3371 3372 mutex_lock(&bp->hwrm_cmd_lock); 3373 for (i = 0; i < bp->cp_nr_rings; i++) { 3374 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 3375 continue; 3376 req.ring_group_id = 3377 cpu_to_le32(bp->grp_info[i].fw_grp_id); 3378 3379 rc = _hwrm_send_message(bp, &req, sizeof(req), 3380 HWRM_CMD_TIMEOUT); 3381 if (rc) 3382 break; 3383 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 3384 } 3385 mutex_unlock(&bp->hwrm_cmd_lock); 3386 return rc; 3387 } 3388 3389 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 3390 struct bnxt_ring_struct *ring, 3391 u32 ring_type, u32 map_index, 3392 u32 stats_ctx_id) 3393 { 3394 int rc = 0, err = 0; 3395 struct hwrm_ring_alloc_input req = {0}; 3396 struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr; 3397 u16 ring_id; 3398 3399 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1); 3400 3401 req.enables = 0; 3402 if (ring->nr_pages > 1) { 3403 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map); 3404 /* Page size is in log2 units */ 3405 req.page_size = BNXT_PAGE_SHIFT; 3406 req.page_tbl_depth = 1; 3407 } else { 3408 req.page_tbl_addr = cpu_to_le64(ring->dma_arr[0]); 3409 } 3410 req.fbo = 0; 3411 /* Association of ring index with doorbell index and MSIX number */ 3412 req.logical_id = cpu_to_le16(map_index); 3413 3414 switch (ring_type) { 3415 case HWRM_RING_ALLOC_TX: 3416 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 3417 /* Association of transmit ring with completion ring */ 3418 req.cmpl_ring_id = 3419 cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id); 3420 req.length = cpu_to_le32(bp->tx_ring_mask + 1); 3421 req.stat_ctx_id = cpu_to_le32(stats_ctx_id); 3422 req.queue_id = cpu_to_le16(ring->queue_id); 3423 break; 3424 case HWRM_RING_ALLOC_RX: 3425 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 3426 req.length = cpu_to_le32(bp->rx_ring_mask + 1); 3427 break; 3428 case HWRM_RING_ALLOC_AGG: 3429 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 3430 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 3431 break; 3432 case HWRM_RING_ALLOC_CMPL: 3433 req.ring_type = RING_ALLOC_REQ_RING_TYPE_CMPL; 3434 req.length = cpu_to_le32(bp->cp_ring_mask + 1); 3435 if (bp->flags & BNXT_FLAG_USING_MSIX) 3436 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 3437 break; 3438 default: 3439 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 3440 ring_type); 3441 return -1; 3442 } 3443 3444 mutex_lock(&bp->hwrm_cmd_lock); 3445 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3446 err = le16_to_cpu(resp->error_code); 3447 ring_id = le16_to_cpu(resp->ring_id); 3448 mutex_unlock(&bp->hwrm_cmd_lock); 3449 3450 if (rc || err) { 3451 switch (ring_type) { 3452 case RING_FREE_REQ_RING_TYPE_CMPL: 3453 netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n", 3454 rc, err); 3455 return -1; 3456 3457 case RING_FREE_REQ_RING_TYPE_RX: 3458 netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n", 3459 rc, err); 3460 return -1; 3461 3462 case RING_FREE_REQ_RING_TYPE_TX: 3463 netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n", 3464 rc, err); 3465 return -1; 3466 3467 default: 3468 netdev_err(bp->dev, "Invalid ring\n"); 3469 return -1; 3470 } 3471 } 3472 ring->fw_ring_id = ring_id; 3473 return rc; 3474 } 3475 3476 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 3477 { 3478 int i, rc = 0; 3479 3480 for (i = 0; i < bp->cp_nr_rings; i++) { 3481 struct bnxt_napi *bnapi = bp->bnapi[i]; 3482 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3483 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3484 3485 cpr->cp_doorbell = bp->bar1 + i * 0x80; 3486 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i, 3487 INVALID_STATS_CTX_ID); 3488 if (rc) 3489 goto err_out; 3490 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons); 3491 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 3492 } 3493 3494 for (i = 0; i < bp->tx_nr_rings; i++) { 3495 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3496 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 3497 u32 map_idx = txr->bnapi->index; 3498 u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx; 3499 3500 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX, 3501 map_idx, fw_stats_ctx); 3502 if (rc) 3503 goto err_out; 3504 txr->tx_doorbell = bp->bar1 + map_idx * 0x80; 3505 } 3506 3507 for (i = 0; i < bp->rx_nr_rings; i++) { 3508 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3509 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 3510 u32 map_idx = rxr->bnapi->index; 3511 3512 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX, 3513 map_idx, INVALID_STATS_CTX_ID); 3514 if (rc) 3515 goto err_out; 3516 rxr->rx_doorbell = bp->bar1 + map_idx * 0x80; 3517 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell); 3518 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 3519 } 3520 3521 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 3522 for (i = 0; i < bp->rx_nr_rings; i++) { 3523 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3524 struct bnxt_ring_struct *ring = 3525 &rxr->rx_agg_ring_struct; 3526 u32 grp_idx = rxr->bnapi->index; 3527 u32 map_idx = grp_idx + bp->rx_nr_rings; 3528 3529 rc = hwrm_ring_alloc_send_msg(bp, ring, 3530 HWRM_RING_ALLOC_AGG, 3531 map_idx, 3532 INVALID_STATS_CTX_ID); 3533 if (rc) 3534 goto err_out; 3535 3536 rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80; 3537 writel(DB_KEY_RX | rxr->rx_agg_prod, 3538 rxr->rx_agg_doorbell); 3539 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 3540 } 3541 } 3542 err_out: 3543 return rc; 3544 } 3545 3546 static int hwrm_ring_free_send_msg(struct bnxt *bp, 3547 struct bnxt_ring_struct *ring, 3548 u32 ring_type, int cmpl_ring_id) 3549 { 3550 int rc; 3551 struct hwrm_ring_free_input req = {0}; 3552 struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr; 3553 u16 error_code; 3554 3555 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1); 3556 req.ring_type = ring_type; 3557 req.ring_id = cpu_to_le16(ring->fw_ring_id); 3558 3559 mutex_lock(&bp->hwrm_cmd_lock); 3560 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3561 error_code = le16_to_cpu(resp->error_code); 3562 mutex_unlock(&bp->hwrm_cmd_lock); 3563 3564 if (rc || error_code) { 3565 switch (ring_type) { 3566 case RING_FREE_REQ_RING_TYPE_CMPL: 3567 netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n", 3568 rc); 3569 return rc; 3570 case RING_FREE_REQ_RING_TYPE_RX: 3571 netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n", 3572 rc); 3573 return rc; 3574 case RING_FREE_REQ_RING_TYPE_TX: 3575 netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n", 3576 rc); 3577 return rc; 3578 default: 3579 netdev_err(bp->dev, "Invalid ring\n"); 3580 return -1; 3581 } 3582 } 3583 return 0; 3584 } 3585 3586 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 3587 { 3588 int i; 3589 3590 if (!bp->bnapi) 3591 return; 3592 3593 for (i = 0; i < bp->tx_nr_rings; i++) { 3594 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3595 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 3596 u32 grp_idx = txr->bnapi->index; 3597 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id; 3598 3599 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 3600 hwrm_ring_free_send_msg(bp, ring, 3601 RING_FREE_REQ_RING_TYPE_TX, 3602 close_path ? cmpl_ring_id : 3603 INVALID_HW_RING_ID); 3604 ring->fw_ring_id = INVALID_HW_RING_ID; 3605 } 3606 } 3607 3608 for (i = 0; i < bp->rx_nr_rings; i++) { 3609 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3610 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 3611 u32 grp_idx = rxr->bnapi->index; 3612 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id; 3613 3614 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 3615 hwrm_ring_free_send_msg(bp, ring, 3616 RING_FREE_REQ_RING_TYPE_RX, 3617 close_path ? cmpl_ring_id : 3618 INVALID_HW_RING_ID); 3619 ring->fw_ring_id = INVALID_HW_RING_ID; 3620 bp->grp_info[grp_idx].rx_fw_ring_id = 3621 INVALID_HW_RING_ID; 3622 } 3623 } 3624 3625 for (i = 0; i < bp->rx_nr_rings; i++) { 3626 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3627 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 3628 u32 grp_idx = rxr->bnapi->index; 3629 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id; 3630 3631 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 3632 hwrm_ring_free_send_msg(bp, ring, 3633 RING_FREE_REQ_RING_TYPE_RX, 3634 close_path ? cmpl_ring_id : 3635 INVALID_HW_RING_ID); 3636 ring->fw_ring_id = INVALID_HW_RING_ID; 3637 bp->grp_info[grp_idx].agg_fw_ring_id = 3638 INVALID_HW_RING_ID; 3639 } 3640 } 3641 3642 for (i = 0; i < bp->cp_nr_rings; i++) { 3643 struct bnxt_napi *bnapi = bp->bnapi[i]; 3644 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3645 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3646 3647 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 3648 hwrm_ring_free_send_msg(bp, ring, 3649 RING_FREE_REQ_RING_TYPE_CMPL, 3650 INVALID_HW_RING_ID); 3651 ring->fw_ring_id = INVALID_HW_RING_ID; 3652 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 3653 } 3654 } 3655 } 3656 3657 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, u32 max_bufs, 3658 u32 buf_tmrs, u16 flags, 3659 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 3660 { 3661 req->flags = cpu_to_le16(flags); 3662 req->num_cmpl_dma_aggr = cpu_to_le16((u16)max_bufs); 3663 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(max_bufs >> 16); 3664 req->cmpl_aggr_dma_tmr = cpu_to_le16((u16)buf_tmrs); 3665 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmrs >> 16); 3666 /* Minimum time between 2 interrupts set to buf_tmr x 2 */ 3667 req->int_lat_tmr_min = cpu_to_le16((u16)buf_tmrs * 2); 3668 req->int_lat_tmr_max = cpu_to_le16((u16)buf_tmrs * 4); 3669 req->num_cmpl_aggr_int = cpu_to_le16((u16)max_bufs * 4); 3670 } 3671 3672 int bnxt_hwrm_set_coal(struct bnxt *bp) 3673 { 3674 int i, rc = 0; 3675 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0}, 3676 req_tx = {0}, *req; 3677 u16 max_buf, max_buf_irq; 3678 u16 buf_tmr, buf_tmr_irq; 3679 u32 flags; 3680 3681 bnxt_hwrm_cmd_hdr_init(bp, &req_rx, 3682 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1); 3683 bnxt_hwrm_cmd_hdr_init(bp, &req_tx, 3684 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1); 3685 3686 /* Each rx completion (2 records) should be DMAed immediately. 3687 * DMA 1/4 of the completion buffers at a time. 3688 */ 3689 max_buf = min_t(u16, bp->rx_coal_bufs / 4, 2); 3690 /* max_buf must not be zero */ 3691 max_buf = clamp_t(u16, max_buf, 1, 63); 3692 max_buf_irq = clamp_t(u16, bp->rx_coal_bufs_irq, 1, 63); 3693 buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks); 3694 /* buf timer set to 1/4 of interrupt timer */ 3695 buf_tmr = max_t(u16, buf_tmr / 4, 1); 3696 buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks_irq); 3697 buf_tmr_irq = max_t(u16, buf_tmr_irq, 1); 3698 3699 flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 3700 3701 /* RING_IDLE generates more IRQs for lower latency. Enable it only 3702 * if coal_ticks is less than 25 us. 3703 */ 3704 if (bp->rx_coal_ticks < 25) 3705 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 3706 3707 bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf, 3708 buf_tmr_irq << 16 | buf_tmr, flags, &req_rx); 3709 3710 /* max_buf must not be zero */ 3711 max_buf = clamp_t(u16, bp->tx_coal_bufs, 1, 63); 3712 max_buf_irq = clamp_t(u16, bp->tx_coal_bufs_irq, 1, 63); 3713 buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks); 3714 /* buf timer set to 1/4 of interrupt timer */ 3715 buf_tmr = max_t(u16, buf_tmr / 4, 1); 3716 buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks_irq); 3717 buf_tmr_irq = max_t(u16, buf_tmr_irq, 1); 3718 3719 flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 3720 bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf, 3721 buf_tmr_irq << 16 | buf_tmr, flags, &req_tx); 3722 3723 mutex_lock(&bp->hwrm_cmd_lock); 3724 for (i = 0; i < bp->cp_nr_rings; i++) { 3725 struct bnxt_napi *bnapi = bp->bnapi[i]; 3726 3727 req = &req_rx; 3728 if (!bnapi->rx_ring) 3729 req = &req_tx; 3730 req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id); 3731 3732 rc = _hwrm_send_message(bp, req, sizeof(*req), 3733 HWRM_CMD_TIMEOUT); 3734 if (rc) 3735 break; 3736 } 3737 mutex_unlock(&bp->hwrm_cmd_lock); 3738 return rc; 3739 } 3740 3741 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 3742 { 3743 int rc = 0, i; 3744 struct hwrm_stat_ctx_free_input req = {0}; 3745 3746 if (!bp->bnapi) 3747 return 0; 3748 3749 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1); 3750 3751 mutex_lock(&bp->hwrm_cmd_lock); 3752 for (i = 0; i < bp->cp_nr_rings; i++) { 3753 struct bnxt_napi *bnapi = bp->bnapi[i]; 3754 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3755 3756 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 3757 req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 3758 3759 rc = _hwrm_send_message(bp, &req, sizeof(req), 3760 HWRM_CMD_TIMEOUT); 3761 if (rc) 3762 break; 3763 3764 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 3765 } 3766 } 3767 mutex_unlock(&bp->hwrm_cmd_lock); 3768 return rc; 3769 } 3770 3771 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 3772 { 3773 int rc = 0, i; 3774 struct hwrm_stat_ctx_alloc_input req = {0}; 3775 struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr; 3776 3777 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1); 3778 3779 req.update_period_ms = cpu_to_le32(1000); 3780 3781 mutex_lock(&bp->hwrm_cmd_lock); 3782 for (i = 0; i < bp->cp_nr_rings; i++) { 3783 struct bnxt_napi *bnapi = bp->bnapi[i]; 3784 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3785 3786 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map); 3787 3788 rc = _hwrm_send_message(bp, &req, sizeof(req), 3789 HWRM_CMD_TIMEOUT); 3790 if (rc) 3791 break; 3792 3793 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 3794 3795 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 3796 } 3797 mutex_unlock(&bp->hwrm_cmd_lock); 3798 return 0; 3799 } 3800 3801 int bnxt_hwrm_func_qcaps(struct bnxt *bp) 3802 { 3803 int rc = 0; 3804 struct hwrm_func_qcaps_input req = {0}; 3805 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 3806 3807 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1); 3808 req.fid = cpu_to_le16(0xffff); 3809 3810 mutex_lock(&bp->hwrm_cmd_lock); 3811 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3812 if (rc) 3813 goto hwrm_func_qcaps_exit; 3814 3815 if (BNXT_PF(bp)) { 3816 struct bnxt_pf_info *pf = &bp->pf; 3817 3818 pf->fw_fid = le16_to_cpu(resp->fid); 3819 pf->port_id = le16_to_cpu(resp->port_id); 3820 memcpy(pf->mac_addr, resp->perm_mac_address, ETH_ALEN); 3821 memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN); 3822 pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 3823 pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 3824 pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 3825 pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 3826 pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 3827 if (!pf->max_hw_ring_grps) 3828 pf->max_hw_ring_grps = pf->max_tx_rings; 3829 pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 3830 pf->max_vnics = le16_to_cpu(resp->max_vnics); 3831 pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 3832 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 3833 pf->max_vfs = le16_to_cpu(resp->max_vfs); 3834 pf->max_encap_records = le32_to_cpu(resp->max_encap_records); 3835 pf->max_decap_records = le32_to_cpu(resp->max_decap_records); 3836 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 3837 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 3838 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 3839 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 3840 } else { 3841 #ifdef CONFIG_BNXT_SRIOV 3842 struct bnxt_vf_info *vf = &bp->vf; 3843 3844 vf->fw_fid = le16_to_cpu(resp->fid); 3845 memcpy(vf->mac_addr, resp->perm_mac_address, ETH_ALEN); 3846 if (is_valid_ether_addr(vf->mac_addr)) 3847 /* overwrite netdev dev_adr with admin VF MAC */ 3848 memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN); 3849 else 3850 random_ether_addr(bp->dev->dev_addr); 3851 3852 vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 3853 vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 3854 vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 3855 vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 3856 vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 3857 if (!vf->max_hw_ring_grps) 3858 vf->max_hw_ring_grps = vf->max_tx_rings; 3859 vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 3860 vf->max_vnics = le16_to_cpu(resp->max_vnics); 3861 vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 3862 #endif 3863 } 3864 3865 bp->tx_push_thresh = 0; 3866 if (resp->flags & 3867 cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED)) 3868 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 3869 3870 hwrm_func_qcaps_exit: 3871 mutex_unlock(&bp->hwrm_cmd_lock); 3872 return rc; 3873 } 3874 3875 static int bnxt_hwrm_func_reset(struct bnxt *bp) 3876 { 3877 struct hwrm_func_reset_input req = {0}; 3878 3879 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1); 3880 req.enables = 0; 3881 3882 return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT); 3883 } 3884 3885 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 3886 { 3887 int rc = 0; 3888 struct hwrm_queue_qportcfg_input req = {0}; 3889 struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr; 3890 u8 i, *qptr; 3891 3892 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1); 3893 3894 mutex_lock(&bp->hwrm_cmd_lock); 3895 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3896 if (rc) 3897 goto qportcfg_exit; 3898 3899 if (!resp->max_configurable_queues) { 3900 rc = -EINVAL; 3901 goto qportcfg_exit; 3902 } 3903 bp->max_tc = resp->max_configurable_queues; 3904 if (bp->max_tc > BNXT_MAX_QUEUE) 3905 bp->max_tc = BNXT_MAX_QUEUE; 3906 3907 qptr = &resp->queue_id0; 3908 for (i = 0; i < bp->max_tc; i++) { 3909 bp->q_info[i].queue_id = *qptr++; 3910 bp->q_info[i].queue_profile = *qptr++; 3911 } 3912 3913 qportcfg_exit: 3914 mutex_unlock(&bp->hwrm_cmd_lock); 3915 return rc; 3916 } 3917 3918 static int bnxt_hwrm_ver_get(struct bnxt *bp) 3919 { 3920 int rc; 3921 struct hwrm_ver_get_input req = {0}; 3922 struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr; 3923 3924 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 3925 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1); 3926 req.hwrm_intf_maj = HWRM_VERSION_MAJOR; 3927 req.hwrm_intf_min = HWRM_VERSION_MINOR; 3928 req.hwrm_intf_upd = HWRM_VERSION_UPDATE; 3929 mutex_lock(&bp->hwrm_cmd_lock); 3930 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3931 if (rc) 3932 goto hwrm_ver_get_exit; 3933 3934 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 3935 3936 if (resp->hwrm_intf_maj < 1) { 3937 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 3938 resp->hwrm_intf_maj, resp->hwrm_intf_min, 3939 resp->hwrm_intf_upd); 3940 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 3941 } 3942 snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d/%d.%d.%d", 3943 resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld, 3944 resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd); 3945 3946 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 3947 if (!bp->hwrm_cmd_timeout) 3948 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 3949 3950 if (resp->hwrm_intf_maj >= 1) 3951 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 3952 3953 hwrm_ver_get_exit: 3954 mutex_unlock(&bp->hwrm_cmd_lock); 3955 return rc; 3956 } 3957 3958 static int bnxt_hwrm_port_qstats(struct bnxt *bp) 3959 { 3960 int rc; 3961 struct bnxt_pf_info *pf = &bp->pf; 3962 struct hwrm_port_qstats_input req = {0}; 3963 3964 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 3965 return 0; 3966 3967 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1); 3968 req.port_id = cpu_to_le16(pf->port_id); 3969 req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map); 3970 req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map); 3971 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3972 return rc; 3973 } 3974 3975 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 3976 { 3977 if (bp->vxlan_port_cnt) { 3978 bnxt_hwrm_tunnel_dst_port_free( 3979 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 3980 } 3981 bp->vxlan_port_cnt = 0; 3982 if (bp->nge_port_cnt) { 3983 bnxt_hwrm_tunnel_dst_port_free( 3984 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 3985 } 3986 bp->nge_port_cnt = 0; 3987 } 3988 3989 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 3990 { 3991 int rc, i; 3992 u32 tpa_flags = 0; 3993 3994 if (set_tpa) 3995 tpa_flags = bp->flags & BNXT_FLAG_TPA; 3996 for (i = 0; i < bp->nr_vnics; i++) { 3997 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags); 3998 if (rc) { 3999 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 4000 rc, i); 4001 return rc; 4002 } 4003 } 4004 return 0; 4005 } 4006 4007 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 4008 { 4009 int i; 4010 4011 for (i = 0; i < bp->nr_vnics; i++) 4012 bnxt_hwrm_vnic_set_rss(bp, i, false); 4013 } 4014 4015 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 4016 bool irq_re_init) 4017 { 4018 if (bp->vnic_info) { 4019 bnxt_hwrm_clear_vnic_filter(bp); 4020 /* clear all RSS setting before free vnic ctx */ 4021 bnxt_hwrm_clear_vnic_rss(bp); 4022 bnxt_hwrm_vnic_ctx_free(bp); 4023 /* before free the vnic, undo the vnic tpa settings */ 4024 if (bp->flags & BNXT_FLAG_TPA) 4025 bnxt_set_tpa(bp, false); 4026 bnxt_hwrm_vnic_free(bp); 4027 } 4028 bnxt_hwrm_ring_free(bp, close_path); 4029 bnxt_hwrm_ring_grp_free(bp); 4030 if (irq_re_init) { 4031 bnxt_hwrm_stat_ctx_free(bp); 4032 bnxt_hwrm_free_tunnel_ports(bp); 4033 } 4034 } 4035 4036 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 4037 { 4038 int rc; 4039 4040 /* allocate context for vnic */ 4041 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id); 4042 if (rc) { 4043 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 4044 vnic_id, rc); 4045 goto vnic_setup_err; 4046 } 4047 bp->rsscos_nr_ctxs++; 4048 4049 /* configure default vnic, ring grp */ 4050 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 4051 if (rc) { 4052 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 4053 vnic_id, rc); 4054 goto vnic_setup_err; 4055 } 4056 4057 /* Enable RSS hashing on vnic */ 4058 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true); 4059 if (rc) { 4060 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 4061 vnic_id, rc); 4062 goto vnic_setup_err; 4063 } 4064 4065 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 4066 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 4067 if (rc) { 4068 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 4069 vnic_id, rc); 4070 } 4071 } 4072 4073 vnic_setup_err: 4074 return rc; 4075 } 4076 4077 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 4078 { 4079 #ifdef CONFIG_RFS_ACCEL 4080 int i, rc = 0; 4081 4082 for (i = 0; i < bp->rx_nr_rings; i++) { 4083 u16 vnic_id = i + 1; 4084 u16 ring_id = i; 4085 4086 if (vnic_id >= bp->nr_vnics) 4087 break; 4088 4089 bp->vnic_info[vnic_id].flags |= BNXT_VNIC_RFS_FLAG; 4090 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1); 4091 if (rc) { 4092 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 4093 vnic_id, rc); 4094 break; 4095 } 4096 rc = bnxt_setup_vnic(bp, vnic_id); 4097 if (rc) 4098 break; 4099 } 4100 return rc; 4101 #else 4102 return 0; 4103 #endif 4104 } 4105 4106 static int bnxt_cfg_rx_mode(struct bnxt *); 4107 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 4108 4109 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 4110 { 4111 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 4112 int rc = 0; 4113 4114 if (irq_re_init) { 4115 rc = bnxt_hwrm_stat_ctx_alloc(bp); 4116 if (rc) { 4117 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 4118 rc); 4119 goto err_out; 4120 } 4121 } 4122 4123 rc = bnxt_hwrm_ring_alloc(bp); 4124 if (rc) { 4125 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 4126 goto err_out; 4127 } 4128 4129 rc = bnxt_hwrm_ring_grp_alloc(bp); 4130 if (rc) { 4131 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 4132 goto err_out; 4133 } 4134 4135 /* default vnic 0 */ 4136 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, bp->rx_nr_rings); 4137 if (rc) { 4138 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 4139 goto err_out; 4140 } 4141 4142 rc = bnxt_setup_vnic(bp, 0); 4143 if (rc) 4144 goto err_out; 4145 4146 if (bp->flags & BNXT_FLAG_RFS) { 4147 rc = bnxt_alloc_rfs_vnics(bp); 4148 if (rc) 4149 goto err_out; 4150 } 4151 4152 if (bp->flags & BNXT_FLAG_TPA) { 4153 rc = bnxt_set_tpa(bp, true); 4154 if (rc) 4155 goto err_out; 4156 } 4157 4158 if (BNXT_VF(bp)) 4159 bnxt_update_vf_mac(bp); 4160 4161 /* Filter for default vnic 0 */ 4162 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 4163 if (rc) { 4164 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 4165 goto err_out; 4166 } 4167 vnic->uc_filter_count = 1; 4168 4169 vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 4170 4171 if ((bp->dev->flags & IFF_PROMISC) && BNXT_PF(bp)) 4172 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 4173 4174 if (bp->dev->flags & IFF_ALLMULTI) { 4175 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 4176 vnic->mc_list_count = 0; 4177 } else { 4178 u32 mask = 0; 4179 4180 bnxt_mc_list_updated(bp, &mask); 4181 vnic->rx_mask |= mask; 4182 } 4183 4184 rc = bnxt_cfg_rx_mode(bp); 4185 if (rc) 4186 goto err_out; 4187 4188 rc = bnxt_hwrm_set_coal(bp); 4189 if (rc) 4190 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 4191 rc); 4192 4193 return 0; 4194 4195 err_out: 4196 bnxt_hwrm_resource_free(bp, 0, true); 4197 4198 return rc; 4199 } 4200 4201 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 4202 { 4203 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 4204 return 0; 4205 } 4206 4207 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 4208 { 4209 bnxt_init_rx_rings(bp); 4210 bnxt_init_tx_rings(bp); 4211 bnxt_init_ring_grps(bp, irq_re_init); 4212 bnxt_init_vnics(bp); 4213 4214 return bnxt_init_chip(bp, irq_re_init); 4215 } 4216 4217 static void bnxt_disable_int(struct bnxt *bp) 4218 { 4219 int i; 4220 4221 if (!bp->bnapi) 4222 return; 4223 4224 for (i = 0; i < bp->cp_nr_rings; i++) { 4225 struct bnxt_napi *bnapi = bp->bnapi[i]; 4226 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4227 4228 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons); 4229 } 4230 } 4231 4232 static void bnxt_enable_int(struct bnxt *bp) 4233 { 4234 int i; 4235 4236 atomic_set(&bp->intr_sem, 0); 4237 for (i = 0; i < bp->cp_nr_rings; i++) { 4238 struct bnxt_napi *bnapi = bp->bnapi[i]; 4239 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4240 4241 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons); 4242 } 4243 } 4244 4245 static int bnxt_set_real_num_queues(struct bnxt *bp) 4246 { 4247 int rc; 4248 struct net_device *dev = bp->dev; 4249 4250 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings); 4251 if (rc) 4252 return rc; 4253 4254 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 4255 if (rc) 4256 return rc; 4257 4258 #ifdef CONFIG_RFS_ACCEL 4259 if (bp->flags & BNXT_FLAG_RFS) 4260 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 4261 #endif 4262 4263 return rc; 4264 } 4265 4266 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 4267 bool shared) 4268 { 4269 int _rx = *rx, _tx = *tx; 4270 4271 if (shared) { 4272 *rx = min_t(int, _rx, max); 4273 *tx = min_t(int, _tx, max); 4274 } else { 4275 if (max < 2) 4276 return -ENOMEM; 4277 4278 while (_rx + _tx > max) { 4279 if (_rx > _tx && _rx > 1) 4280 _rx--; 4281 else if (_tx > 1) 4282 _tx--; 4283 } 4284 *rx = _rx; 4285 *tx = _tx; 4286 } 4287 return 0; 4288 } 4289 4290 static int bnxt_setup_msix(struct bnxt *bp) 4291 { 4292 struct msix_entry *msix_ent; 4293 struct net_device *dev = bp->dev; 4294 int i, total_vecs, rc = 0, min = 1; 4295 const int len = sizeof(bp->irq_tbl[0].name); 4296 4297 bp->flags &= ~BNXT_FLAG_USING_MSIX; 4298 total_vecs = bp->cp_nr_rings; 4299 4300 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); 4301 if (!msix_ent) 4302 return -ENOMEM; 4303 4304 for (i = 0; i < total_vecs; i++) { 4305 msix_ent[i].entry = i; 4306 msix_ent[i].vector = 0; 4307 } 4308 4309 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 4310 min = 2; 4311 4312 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs); 4313 if (total_vecs < 0) { 4314 rc = -ENODEV; 4315 goto msix_setup_exit; 4316 } 4317 4318 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); 4319 if (bp->irq_tbl) { 4320 int tcs; 4321 4322 /* Trim rings based upon num of vectors allocated */ 4323 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 4324 total_vecs, min == 1); 4325 if (rc) 4326 goto msix_setup_exit; 4327 4328 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 4329 tcs = netdev_get_num_tc(dev); 4330 if (tcs > 1) { 4331 bp->tx_nr_rings_per_tc = bp->tx_nr_rings / tcs; 4332 if (bp->tx_nr_rings_per_tc == 0) { 4333 netdev_reset_tc(dev); 4334 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 4335 } else { 4336 int i, off, count; 4337 4338 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tcs; 4339 for (i = 0; i < tcs; i++) { 4340 count = bp->tx_nr_rings_per_tc; 4341 off = i * count; 4342 netdev_set_tc_queue(dev, i, count, off); 4343 } 4344 } 4345 } 4346 bp->cp_nr_rings = total_vecs; 4347 4348 for (i = 0; i < bp->cp_nr_rings; i++) { 4349 char *attr; 4350 4351 bp->irq_tbl[i].vector = msix_ent[i].vector; 4352 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 4353 attr = "TxRx"; 4354 else if (i < bp->rx_nr_rings) 4355 attr = "rx"; 4356 else 4357 attr = "tx"; 4358 4359 snprintf(bp->irq_tbl[i].name, len, 4360 "%s-%s-%d", dev->name, attr, i); 4361 bp->irq_tbl[i].handler = bnxt_msix; 4362 } 4363 rc = bnxt_set_real_num_queues(bp); 4364 if (rc) 4365 goto msix_setup_exit; 4366 } else { 4367 rc = -ENOMEM; 4368 goto msix_setup_exit; 4369 } 4370 bp->flags |= BNXT_FLAG_USING_MSIX; 4371 kfree(msix_ent); 4372 return 0; 4373 4374 msix_setup_exit: 4375 netdev_err(bp->dev, "bnxt_setup_msix err: %x\n", rc); 4376 pci_disable_msix(bp->pdev); 4377 kfree(msix_ent); 4378 return rc; 4379 } 4380 4381 static int bnxt_setup_inta(struct bnxt *bp) 4382 { 4383 int rc; 4384 const int len = sizeof(bp->irq_tbl[0].name); 4385 4386 if (netdev_get_num_tc(bp->dev)) 4387 netdev_reset_tc(bp->dev); 4388 4389 bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL); 4390 if (!bp->irq_tbl) { 4391 rc = -ENOMEM; 4392 return rc; 4393 } 4394 bp->rx_nr_rings = 1; 4395 bp->tx_nr_rings = 1; 4396 bp->cp_nr_rings = 1; 4397 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 4398 bp->flags |= BNXT_FLAG_SHARED_RINGS; 4399 bp->irq_tbl[0].vector = bp->pdev->irq; 4400 snprintf(bp->irq_tbl[0].name, len, 4401 "%s-%s-%d", bp->dev->name, "TxRx", 0); 4402 bp->irq_tbl[0].handler = bnxt_inta; 4403 rc = bnxt_set_real_num_queues(bp); 4404 return rc; 4405 } 4406 4407 static int bnxt_setup_int_mode(struct bnxt *bp) 4408 { 4409 int rc = 0; 4410 4411 if (bp->flags & BNXT_FLAG_MSIX_CAP) 4412 rc = bnxt_setup_msix(bp); 4413 4414 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) { 4415 /* fallback to INTA */ 4416 rc = bnxt_setup_inta(bp); 4417 } 4418 return rc; 4419 } 4420 4421 static void bnxt_free_irq(struct bnxt *bp) 4422 { 4423 struct bnxt_irq *irq; 4424 int i; 4425 4426 #ifdef CONFIG_RFS_ACCEL 4427 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 4428 bp->dev->rx_cpu_rmap = NULL; 4429 #endif 4430 if (!bp->irq_tbl) 4431 return; 4432 4433 for (i = 0; i < bp->cp_nr_rings; i++) { 4434 irq = &bp->irq_tbl[i]; 4435 if (irq->requested) 4436 free_irq(irq->vector, bp->bnapi[i]); 4437 irq->requested = 0; 4438 } 4439 if (bp->flags & BNXT_FLAG_USING_MSIX) 4440 pci_disable_msix(bp->pdev); 4441 kfree(bp->irq_tbl); 4442 bp->irq_tbl = NULL; 4443 } 4444 4445 static int bnxt_request_irq(struct bnxt *bp) 4446 { 4447 int i, j, rc = 0; 4448 unsigned long flags = 0; 4449 #ifdef CONFIG_RFS_ACCEL 4450 struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap; 4451 #endif 4452 4453 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) 4454 flags = IRQF_SHARED; 4455 4456 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 4457 struct bnxt_irq *irq = &bp->irq_tbl[i]; 4458 #ifdef CONFIG_RFS_ACCEL 4459 if (rmap && bp->bnapi[i]->rx_ring) { 4460 rc = irq_cpu_rmap_add(rmap, irq->vector); 4461 if (rc) 4462 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 4463 j); 4464 j++; 4465 } 4466 #endif 4467 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 4468 bp->bnapi[i]); 4469 if (rc) 4470 break; 4471 4472 irq->requested = 1; 4473 } 4474 return rc; 4475 } 4476 4477 static void bnxt_del_napi(struct bnxt *bp) 4478 { 4479 int i; 4480 4481 if (!bp->bnapi) 4482 return; 4483 4484 for (i = 0; i < bp->cp_nr_rings; i++) { 4485 struct bnxt_napi *bnapi = bp->bnapi[i]; 4486 4487 napi_hash_del(&bnapi->napi); 4488 netif_napi_del(&bnapi->napi); 4489 } 4490 } 4491 4492 static void bnxt_init_napi(struct bnxt *bp) 4493 { 4494 int i; 4495 struct bnxt_napi *bnapi; 4496 4497 if (bp->flags & BNXT_FLAG_USING_MSIX) { 4498 for (i = 0; i < bp->cp_nr_rings; i++) { 4499 bnapi = bp->bnapi[i]; 4500 netif_napi_add(bp->dev, &bnapi->napi, 4501 bnxt_poll, 64); 4502 } 4503 } else { 4504 bnapi = bp->bnapi[0]; 4505 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64); 4506 } 4507 } 4508 4509 static void bnxt_disable_napi(struct bnxt *bp) 4510 { 4511 int i; 4512 4513 if (!bp->bnapi) 4514 return; 4515 4516 for (i = 0; i < bp->cp_nr_rings; i++) { 4517 napi_disable(&bp->bnapi[i]->napi); 4518 bnxt_disable_poll(bp->bnapi[i]); 4519 } 4520 } 4521 4522 static void bnxt_enable_napi(struct bnxt *bp) 4523 { 4524 int i; 4525 4526 for (i = 0; i < bp->cp_nr_rings; i++) { 4527 bp->bnapi[i]->in_reset = false; 4528 bnxt_enable_poll(bp->bnapi[i]); 4529 napi_enable(&bp->bnapi[i]->napi); 4530 } 4531 } 4532 4533 static void bnxt_tx_disable(struct bnxt *bp) 4534 { 4535 int i; 4536 struct bnxt_tx_ring_info *txr; 4537 struct netdev_queue *txq; 4538 4539 if (bp->tx_ring) { 4540 for (i = 0; i < bp->tx_nr_rings; i++) { 4541 txr = &bp->tx_ring[i]; 4542 txq = netdev_get_tx_queue(bp->dev, i); 4543 __netif_tx_lock(txq, smp_processor_id()); 4544 txr->dev_state = BNXT_DEV_STATE_CLOSING; 4545 __netif_tx_unlock(txq); 4546 } 4547 } 4548 /* Stop all TX queues */ 4549 netif_tx_disable(bp->dev); 4550 netif_carrier_off(bp->dev); 4551 } 4552 4553 static void bnxt_tx_enable(struct bnxt *bp) 4554 { 4555 int i; 4556 struct bnxt_tx_ring_info *txr; 4557 struct netdev_queue *txq; 4558 4559 for (i = 0; i < bp->tx_nr_rings; i++) { 4560 txr = &bp->tx_ring[i]; 4561 txq = netdev_get_tx_queue(bp->dev, i); 4562 txr->dev_state = 0; 4563 } 4564 netif_tx_wake_all_queues(bp->dev); 4565 if (bp->link_info.link_up) 4566 netif_carrier_on(bp->dev); 4567 } 4568 4569 static void bnxt_report_link(struct bnxt *bp) 4570 { 4571 if (bp->link_info.link_up) { 4572 const char *duplex; 4573 const char *flow_ctrl; 4574 u16 speed; 4575 4576 netif_carrier_on(bp->dev); 4577 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 4578 duplex = "full"; 4579 else 4580 duplex = "half"; 4581 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 4582 flow_ctrl = "ON - receive & transmit"; 4583 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 4584 flow_ctrl = "ON - transmit"; 4585 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 4586 flow_ctrl = "ON - receive"; 4587 else 4588 flow_ctrl = "none"; 4589 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 4590 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 4591 speed, duplex, flow_ctrl); 4592 } else { 4593 netif_carrier_off(bp->dev); 4594 netdev_err(bp->dev, "NIC Link is Down\n"); 4595 } 4596 } 4597 4598 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 4599 { 4600 int rc = 0; 4601 struct bnxt_link_info *link_info = &bp->link_info; 4602 struct hwrm_port_phy_qcfg_input req = {0}; 4603 struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 4604 u8 link_up = link_info->link_up; 4605 4606 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1); 4607 4608 mutex_lock(&bp->hwrm_cmd_lock); 4609 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4610 if (rc) { 4611 mutex_unlock(&bp->hwrm_cmd_lock); 4612 return rc; 4613 } 4614 4615 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 4616 link_info->phy_link_status = resp->link; 4617 link_info->duplex = resp->duplex; 4618 link_info->pause = resp->pause; 4619 link_info->auto_mode = resp->auto_mode; 4620 link_info->auto_pause_setting = resp->auto_pause; 4621 link_info->lp_pause = resp->link_partner_adv_pause; 4622 link_info->force_pause_setting = resp->force_pause; 4623 link_info->duplex_setting = resp->duplex; 4624 if (link_info->phy_link_status == BNXT_LINK_LINK) 4625 link_info->link_speed = le16_to_cpu(resp->link_speed); 4626 else 4627 link_info->link_speed = 0; 4628 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 4629 link_info->auto_link_speed = le16_to_cpu(resp->auto_link_speed); 4630 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 4631 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 4632 link_info->lp_auto_link_speeds = 4633 le16_to_cpu(resp->link_partner_adv_speeds); 4634 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 4635 link_info->phy_ver[0] = resp->phy_maj; 4636 link_info->phy_ver[1] = resp->phy_min; 4637 link_info->phy_ver[2] = resp->phy_bld; 4638 link_info->media_type = resp->media_type; 4639 link_info->transceiver = resp->transceiver_type; 4640 link_info->phy_addr = resp->phy_addr; 4641 4642 /* TODO: need to add more logic to report VF link */ 4643 if (chng_link_state) { 4644 if (link_info->phy_link_status == BNXT_LINK_LINK) 4645 link_info->link_up = 1; 4646 else 4647 link_info->link_up = 0; 4648 if (link_up != link_info->link_up) 4649 bnxt_report_link(bp); 4650 } else { 4651 /* alwasy link down if not require to update link state */ 4652 link_info->link_up = 0; 4653 } 4654 mutex_unlock(&bp->hwrm_cmd_lock); 4655 return 0; 4656 } 4657 4658 static void 4659 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 4660 { 4661 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 4662 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 4663 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 4664 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 4665 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 4666 req->enables |= 4667 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 4668 } else { 4669 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 4670 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 4671 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 4672 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 4673 req->enables |= 4674 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 4675 } 4676 } 4677 4678 static void bnxt_hwrm_set_link_common(struct bnxt *bp, 4679 struct hwrm_port_phy_cfg_input *req) 4680 { 4681 u8 autoneg = bp->link_info.autoneg; 4682 u16 fw_link_speed = bp->link_info.req_link_speed; 4683 u32 advertising = bp->link_info.advertising; 4684 4685 if (autoneg & BNXT_AUTONEG_SPEED) { 4686 req->auto_mode |= 4687 PORT_PHY_CFG_REQ_AUTO_MODE_MASK; 4688 4689 req->enables |= cpu_to_le32( 4690 PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 4691 req->auto_link_speed_mask = cpu_to_le16(advertising); 4692 4693 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 4694 req->flags |= 4695 cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 4696 } else { 4697 req->force_link_speed = cpu_to_le16(fw_link_speed); 4698 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 4699 } 4700 4701 /* currently don't support half duplex */ 4702 req->auto_duplex = PORT_PHY_CFG_REQ_AUTO_DUPLEX_FULL; 4703 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_DUPLEX); 4704 /* tell chimp that the setting takes effect immediately */ 4705 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 4706 } 4707 4708 int bnxt_hwrm_set_pause(struct bnxt *bp) 4709 { 4710 struct hwrm_port_phy_cfg_input req = {0}; 4711 int rc; 4712 4713 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); 4714 bnxt_hwrm_set_pause_common(bp, &req); 4715 4716 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 4717 bp->link_info.force_link_chng) 4718 bnxt_hwrm_set_link_common(bp, &req); 4719 4720 mutex_lock(&bp->hwrm_cmd_lock); 4721 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4722 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 4723 /* since changing of pause setting doesn't trigger any link 4724 * change event, the driver needs to update the current pause 4725 * result upon successfully return of the phy_cfg command 4726 */ 4727 bp->link_info.pause = 4728 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 4729 bp->link_info.auto_pause_setting = 0; 4730 if (!bp->link_info.force_link_chng) 4731 bnxt_report_link(bp); 4732 } 4733 bp->link_info.force_link_chng = false; 4734 mutex_unlock(&bp->hwrm_cmd_lock); 4735 return rc; 4736 } 4737 4738 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause) 4739 { 4740 struct hwrm_port_phy_cfg_input req = {0}; 4741 4742 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); 4743 if (set_pause) 4744 bnxt_hwrm_set_pause_common(bp, &req); 4745 4746 bnxt_hwrm_set_link_common(bp, &req); 4747 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4748 } 4749 4750 static int bnxt_update_phy_setting(struct bnxt *bp) 4751 { 4752 int rc; 4753 bool update_link = false; 4754 bool update_pause = false; 4755 struct bnxt_link_info *link_info = &bp->link_info; 4756 4757 rc = bnxt_update_link(bp, true); 4758 if (rc) { 4759 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 4760 rc); 4761 return rc; 4762 } 4763 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 4764 link_info->auto_pause_setting != link_info->req_flow_ctrl) 4765 update_pause = true; 4766 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 4767 link_info->force_pause_setting != link_info->req_flow_ctrl) 4768 update_pause = true; 4769 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 4770 if (BNXT_AUTO_MODE(link_info->auto_mode)) 4771 update_link = true; 4772 if (link_info->req_link_speed != link_info->force_link_speed) 4773 update_link = true; 4774 if (link_info->req_duplex != link_info->duplex_setting) 4775 update_link = true; 4776 } else { 4777 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 4778 update_link = true; 4779 if (link_info->advertising != link_info->auto_link_speeds) 4780 update_link = true; 4781 } 4782 4783 if (update_link) 4784 rc = bnxt_hwrm_set_link_setting(bp, update_pause); 4785 else if (update_pause) 4786 rc = bnxt_hwrm_set_pause(bp); 4787 if (rc) { 4788 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 4789 rc); 4790 return rc; 4791 } 4792 4793 return rc; 4794 } 4795 4796 /* Common routine to pre-map certain register block to different GRC window. 4797 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows 4798 * in PF and 3 windows in VF that can be customized to map in different 4799 * register blocks. 4800 */ 4801 static void bnxt_preset_reg_win(struct bnxt *bp) 4802 { 4803 if (BNXT_PF(bp)) { 4804 /* CAG registers map to GRC window #4 */ 4805 writel(BNXT_CAG_REG_BASE, 4806 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); 4807 } 4808 } 4809 4810 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 4811 { 4812 int rc = 0; 4813 4814 bnxt_preset_reg_win(bp); 4815 netif_carrier_off(bp->dev); 4816 if (irq_re_init) { 4817 rc = bnxt_setup_int_mode(bp); 4818 if (rc) { 4819 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 4820 rc); 4821 return rc; 4822 } 4823 } 4824 if ((bp->flags & BNXT_FLAG_RFS) && 4825 !(bp->flags & BNXT_FLAG_USING_MSIX)) { 4826 /* disable RFS if falling back to INTA */ 4827 bp->dev->hw_features &= ~NETIF_F_NTUPLE; 4828 bp->flags &= ~BNXT_FLAG_RFS; 4829 } 4830 4831 rc = bnxt_alloc_mem(bp, irq_re_init); 4832 if (rc) { 4833 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 4834 goto open_err_free_mem; 4835 } 4836 4837 if (irq_re_init) { 4838 bnxt_init_napi(bp); 4839 rc = bnxt_request_irq(bp); 4840 if (rc) { 4841 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 4842 goto open_err; 4843 } 4844 } 4845 4846 bnxt_enable_napi(bp); 4847 4848 rc = bnxt_init_nic(bp, irq_re_init); 4849 if (rc) { 4850 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 4851 goto open_err; 4852 } 4853 4854 if (link_re_init) { 4855 rc = bnxt_update_phy_setting(bp); 4856 if (rc) 4857 netdev_warn(bp->dev, "failed to update phy settings\n"); 4858 } 4859 4860 if (irq_re_init) { 4861 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE) 4862 vxlan_get_rx_port(bp->dev); 4863 #endif 4864 if (!bnxt_hwrm_tunnel_dst_port_alloc( 4865 bp, htons(0x17c1), 4866 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE)) 4867 bp->nge_port_cnt = 1; 4868 } 4869 4870 set_bit(BNXT_STATE_OPEN, &bp->state); 4871 bnxt_enable_int(bp); 4872 /* Enable TX queues */ 4873 bnxt_tx_enable(bp); 4874 mod_timer(&bp->timer, jiffies + bp->current_interval); 4875 bnxt_update_link(bp, true); 4876 4877 return 0; 4878 4879 open_err: 4880 bnxt_disable_napi(bp); 4881 bnxt_del_napi(bp); 4882 4883 open_err_free_mem: 4884 bnxt_free_skbs(bp); 4885 bnxt_free_irq(bp); 4886 bnxt_free_mem(bp, true); 4887 return rc; 4888 } 4889 4890 /* rtnl_lock held */ 4891 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 4892 { 4893 int rc = 0; 4894 4895 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 4896 if (rc) { 4897 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 4898 dev_close(bp->dev); 4899 } 4900 return rc; 4901 } 4902 4903 static int bnxt_open(struct net_device *dev) 4904 { 4905 struct bnxt *bp = netdev_priv(dev); 4906 int rc = 0; 4907 4908 rc = bnxt_hwrm_func_reset(bp); 4909 if (rc) { 4910 netdev_err(bp->dev, "hwrm chip reset failure rc: %x\n", 4911 rc); 4912 rc = -1; 4913 return rc; 4914 } 4915 return __bnxt_open_nic(bp, true, true); 4916 } 4917 4918 static void bnxt_disable_int_sync(struct bnxt *bp) 4919 { 4920 int i; 4921 4922 atomic_inc(&bp->intr_sem); 4923 if (!netif_running(bp->dev)) 4924 return; 4925 4926 bnxt_disable_int(bp); 4927 for (i = 0; i < bp->cp_nr_rings; i++) 4928 synchronize_irq(bp->irq_tbl[i].vector); 4929 } 4930 4931 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 4932 { 4933 int rc = 0; 4934 4935 #ifdef CONFIG_BNXT_SRIOV 4936 if (bp->sriov_cfg) { 4937 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 4938 !bp->sriov_cfg, 4939 BNXT_SRIOV_CFG_WAIT_TMO); 4940 if (rc) 4941 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n"); 4942 } 4943 #endif 4944 /* Change device state to avoid TX queue wake up's */ 4945 bnxt_tx_disable(bp); 4946 4947 clear_bit(BNXT_STATE_OPEN, &bp->state); 4948 smp_mb__after_atomic(); 4949 while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state)) 4950 msleep(20); 4951 4952 /* Flush rings before disabling interrupts */ 4953 bnxt_shutdown_nic(bp, irq_re_init); 4954 4955 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 4956 4957 bnxt_disable_napi(bp); 4958 bnxt_disable_int_sync(bp); 4959 del_timer_sync(&bp->timer); 4960 bnxt_free_skbs(bp); 4961 4962 if (irq_re_init) { 4963 bnxt_free_irq(bp); 4964 bnxt_del_napi(bp); 4965 } 4966 bnxt_free_mem(bp, irq_re_init); 4967 return rc; 4968 } 4969 4970 static int bnxt_close(struct net_device *dev) 4971 { 4972 struct bnxt *bp = netdev_priv(dev); 4973 4974 bnxt_close_nic(bp, true, true); 4975 return 0; 4976 } 4977 4978 /* rtnl_lock held */ 4979 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 4980 { 4981 switch (cmd) { 4982 case SIOCGMIIPHY: 4983 /* fallthru */ 4984 case SIOCGMIIREG: { 4985 if (!netif_running(dev)) 4986 return -EAGAIN; 4987 4988 return 0; 4989 } 4990 4991 case SIOCSMIIREG: 4992 if (!netif_running(dev)) 4993 return -EAGAIN; 4994 4995 return 0; 4996 4997 default: 4998 /* do nothing */ 4999 break; 5000 } 5001 return -EOPNOTSUPP; 5002 } 5003 5004 static struct rtnl_link_stats64 * 5005 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 5006 { 5007 u32 i; 5008 struct bnxt *bp = netdev_priv(dev); 5009 5010 memset(stats, 0, sizeof(struct rtnl_link_stats64)); 5011 5012 if (!bp->bnapi) 5013 return stats; 5014 5015 /* TODO check if we need to synchronize with bnxt_close path */ 5016 for (i = 0; i < bp->cp_nr_rings; i++) { 5017 struct bnxt_napi *bnapi = bp->bnapi[i]; 5018 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5019 struct ctx_hw_stats *hw_stats = cpr->hw_stats; 5020 5021 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts); 5022 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts); 5023 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts); 5024 5025 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts); 5026 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts); 5027 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts); 5028 5029 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes); 5030 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes); 5031 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes); 5032 5033 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes); 5034 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes); 5035 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes); 5036 5037 stats->rx_missed_errors += 5038 le64_to_cpu(hw_stats->rx_discard_pkts); 5039 5040 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts); 5041 5042 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts); 5043 } 5044 5045 if (bp->flags & BNXT_FLAG_PORT_STATS) { 5046 struct rx_port_stats *rx = bp->hw_rx_port_stats; 5047 struct tx_port_stats *tx = bp->hw_tx_port_stats; 5048 5049 stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames); 5050 stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames); 5051 stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) + 5052 le64_to_cpu(rx->rx_ovrsz_frames) + 5053 le64_to_cpu(rx->rx_runt_frames); 5054 stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) + 5055 le64_to_cpu(rx->rx_jbr_frames); 5056 stats->collisions = le64_to_cpu(tx->tx_total_collisions); 5057 stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns); 5058 stats->tx_errors = le64_to_cpu(tx->tx_err); 5059 } 5060 5061 return stats; 5062 } 5063 5064 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 5065 { 5066 struct net_device *dev = bp->dev; 5067 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 5068 struct netdev_hw_addr *ha; 5069 u8 *haddr; 5070 int mc_count = 0; 5071 bool update = false; 5072 int off = 0; 5073 5074 netdev_for_each_mc_addr(ha, dev) { 5075 if (mc_count >= BNXT_MAX_MC_ADDRS) { 5076 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 5077 vnic->mc_list_count = 0; 5078 return false; 5079 } 5080 haddr = ha->addr; 5081 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 5082 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 5083 update = true; 5084 } 5085 off += ETH_ALEN; 5086 mc_count++; 5087 } 5088 if (mc_count) 5089 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 5090 5091 if (mc_count != vnic->mc_list_count) { 5092 vnic->mc_list_count = mc_count; 5093 update = true; 5094 } 5095 return update; 5096 } 5097 5098 static bool bnxt_uc_list_updated(struct bnxt *bp) 5099 { 5100 struct net_device *dev = bp->dev; 5101 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 5102 struct netdev_hw_addr *ha; 5103 int off = 0; 5104 5105 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 5106 return true; 5107 5108 netdev_for_each_uc_addr(ha, dev) { 5109 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 5110 return true; 5111 5112 off += ETH_ALEN; 5113 } 5114 return false; 5115 } 5116 5117 static void bnxt_set_rx_mode(struct net_device *dev) 5118 { 5119 struct bnxt *bp = netdev_priv(dev); 5120 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 5121 u32 mask = vnic->rx_mask; 5122 bool mc_update = false; 5123 bool uc_update; 5124 5125 if (!netif_running(dev)) 5126 return; 5127 5128 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 5129 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 5130 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST); 5131 5132 /* Only allow PF to be in promiscuous mode */ 5133 if ((dev->flags & IFF_PROMISC) && BNXT_PF(bp)) 5134 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 5135 5136 uc_update = bnxt_uc_list_updated(bp); 5137 5138 if (dev->flags & IFF_ALLMULTI) { 5139 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 5140 vnic->mc_list_count = 0; 5141 } else { 5142 mc_update = bnxt_mc_list_updated(bp, &mask); 5143 } 5144 5145 if (mask != vnic->rx_mask || uc_update || mc_update) { 5146 vnic->rx_mask = mask; 5147 5148 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event); 5149 schedule_work(&bp->sp_task); 5150 } 5151 } 5152 5153 static int bnxt_cfg_rx_mode(struct bnxt *bp) 5154 { 5155 struct net_device *dev = bp->dev; 5156 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 5157 struct netdev_hw_addr *ha; 5158 int i, off = 0, rc; 5159 bool uc_update; 5160 5161 netif_addr_lock_bh(dev); 5162 uc_update = bnxt_uc_list_updated(bp); 5163 netif_addr_unlock_bh(dev); 5164 5165 if (!uc_update) 5166 goto skip_uc; 5167 5168 mutex_lock(&bp->hwrm_cmd_lock); 5169 for (i = 1; i < vnic->uc_filter_count; i++) { 5170 struct hwrm_cfa_l2_filter_free_input req = {0}; 5171 5172 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1, 5173 -1); 5174 5175 req.l2_filter_id = vnic->fw_l2_filter_id[i]; 5176 5177 rc = _hwrm_send_message(bp, &req, sizeof(req), 5178 HWRM_CMD_TIMEOUT); 5179 } 5180 mutex_unlock(&bp->hwrm_cmd_lock); 5181 5182 vnic->uc_filter_count = 1; 5183 5184 netif_addr_lock_bh(dev); 5185 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 5186 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 5187 } else { 5188 netdev_for_each_uc_addr(ha, dev) { 5189 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 5190 off += ETH_ALEN; 5191 vnic->uc_filter_count++; 5192 } 5193 } 5194 netif_addr_unlock_bh(dev); 5195 5196 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 5197 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 5198 if (rc) { 5199 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", 5200 rc); 5201 vnic->uc_filter_count = i; 5202 return rc; 5203 } 5204 } 5205 5206 skip_uc: 5207 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 5208 if (rc) 5209 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n", 5210 rc); 5211 5212 return rc; 5213 } 5214 5215 static bool bnxt_rfs_capable(struct bnxt *bp) 5216 { 5217 #ifdef CONFIG_RFS_ACCEL 5218 struct bnxt_pf_info *pf = &bp->pf; 5219 int vnics; 5220 5221 if (BNXT_VF(bp) || !(bp->flags & BNXT_FLAG_MSIX_CAP)) 5222 return false; 5223 5224 vnics = 1 + bp->rx_nr_rings; 5225 if (vnics > pf->max_rsscos_ctxs || vnics > pf->max_vnics) 5226 return false; 5227 5228 return true; 5229 #else 5230 return false; 5231 #endif 5232 } 5233 5234 static netdev_features_t bnxt_fix_features(struct net_device *dev, 5235 netdev_features_t features) 5236 { 5237 struct bnxt *bp = netdev_priv(dev); 5238 5239 if (!bnxt_rfs_capable(bp)) 5240 features &= ~NETIF_F_NTUPLE; 5241 return features; 5242 } 5243 5244 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 5245 { 5246 struct bnxt *bp = netdev_priv(dev); 5247 u32 flags = bp->flags; 5248 u32 changes; 5249 int rc = 0; 5250 bool re_init = false; 5251 bool update_tpa = false; 5252 5253 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 5254 if ((features & NETIF_F_GRO) && (bp->pdev->revision > 0)) 5255 flags |= BNXT_FLAG_GRO; 5256 if (features & NETIF_F_LRO) 5257 flags |= BNXT_FLAG_LRO; 5258 5259 if (features & NETIF_F_HW_VLAN_CTAG_RX) 5260 flags |= BNXT_FLAG_STRIP_VLAN; 5261 5262 if (features & NETIF_F_NTUPLE) 5263 flags |= BNXT_FLAG_RFS; 5264 5265 changes = flags ^ bp->flags; 5266 if (changes & BNXT_FLAG_TPA) { 5267 update_tpa = true; 5268 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 5269 (flags & BNXT_FLAG_TPA) == 0) 5270 re_init = true; 5271 } 5272 5273 if (changes & ~BNXT_FLAG_TPA) 5274 re_init = true; 5275 5276 if (flags != bp->flags) { 5277 u32 old_flags = bp->flags; 5278 5279 bp->flags = flags; 5280 5281 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 5282 if (update_tpa) 5283 bnxt_set_ring_params(bp); 5284 return rc; 5285 } 5286 5287 if (re_init) { 5288 bnxt_close_nic(bp, false, false); 5289 if (update_tpa) 5290 bnxt_set_ring_params(bp); 5291 5292 return bnxt_open_nic(bp, false, false); 5293 } 5294 if (update_tpa) { 5295 rc = bnxt_set_tpa(bp, 5296 (flags & BNXT_FLAG_TPA) ? 5297 true : false); 5298 if (rc) 5299 bp->flags = old_flags; 5300 } 5301 } 5302 return rc; 5303 } 5304 5305 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 5306 { 5307 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 5308 int i = bnapi->index; 5309 5310 if (!txr) 5311 return; 5312 5313 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 5314 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 5315 txr->tx_cons); 5316 } 5317 5318 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 5319 { 5320 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 5321 int i = bnapi->index; 5322 5323 if (!rxr) 5324 return; 5325 5326 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 5327 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 5328 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 5329 rxr->rx_sw_agg_prod); 5330 } 5331 5332 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 5333 { 5334 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5335 int i = bnapi->index; 5336 5337 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 5338 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 5339 } 5340 5341 static void bnxt_dbg_dump_states(struct bnxt *bp) 5342 { 5343 int i; 5344 struct bnxt_napi *bnapi; 5345 5346 for (i = 0; i < bp->cp_nr_rings; i++) { 5347 bnapi = bp->bnapi[i]; 5348 if (netif_msg_drv(bp)) { 5349 bnxt_dump_tx_sw_state(bnapi); 5350 bnxt_dump_rx_sw_state(bnapi); 5351 bnxt_dump_cp_sw_state(bnapi); 5352 } 5353 } 5354 } 5355 5356 static void bnxt_reset_task(struct bnxt *bp) 5357 { 5358 bnxt_dbg_dump_states(bp); 5359 if (netif_running(bp->dev)) { 5360 bnxt_close_nic(bp, false, false); 5361 bnxt_open_nic(bp, false, false); 5362 } 5363 } 5364 5365 static void bnxt_tx_timeout(struct net_device *dev) 5366 { 5367 struct bnxt *bp = netdev_priv(dev); 5368 5369 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 5370 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 5371 schedule_work(&bp->sp_task); 5372 } 5373 5374 #ifdef CONFIG_NET_POLL_CONTROLLER 5375 static void bnxt_poll_controller(struct net_device *dev) 5376 { 5377 struct bnxt *bp = netdev_priv(dev); 5378 int i; 5379 5380 for (i = 0; i < bp->cp_nr_rings; i++) { 5381 struct bnxt_irq *irq = &bp->irq_tbl[i]; 5382 5383 disable_irq(irq->vector); 5384 irq->handler(irq->vector, bp->bnapi[i]); 5385 enable_irq(irq->vector); 5386 } 5387 } 5388 #endif 5389 5390 static void bnxt_timer(unsigned long data) 5391 { 5392 struct bnxt *bp = (struct bnxt *)data; 5393 struct net_device *dev = bp->dev; 5394 5395 if (!netif_running(dev)) 5396 return; 5397 5398 if (atomic_read(&bp->intr_sem) != 0) 5399 goto bnxt_restart_timer; 5400 5401 if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS)) { 5402 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event); 5403 schedule_work(&bp->sp_task); 5404 } 5405 bnxt_restart_timer: 5406 mod_timer(&bp->timer, jiffies + bp->current_interval); 5407 } 5408 5409 static void bnxt_cfg_ntp_filters(struct bnxt *); 5410 5411 static void bnxt_sp_task(struct work_struct *work) 5412 { 5413 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 5414 int rc; 5415 5416 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 5417 smp_mb__after_atomic(); 5418 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 5419 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 5420 return; 5421 } 5422 5423 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 5424 bnxt_cfg_rx_mode(bp); 5425 5426 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 5427 bnxt_cfg_ntp_filters(bp); 5428 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 5429 rc = bnxt_update_link(bp, true); 5430 if (rc) 5431 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 5432 rc); 5433 } 5434 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 5435 bnxt_hwrm_exec_fwd_req(bp); 5436 if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) { 5437 bnxt_hwrm_tunnel_dst_port_alloc( 5438 bp, bp->vxlan_port, 5439 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 5440 } 5441 if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) { 5442 bnxt_hwrm_tunnel_dst_port_free( 5443 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 5444 } 5445 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) { 5446 /* bnxt_reset_task() calls bnxt_close_nic() which waits 5447 * for BNXT_STATE_IN_SP_TASK to clear. 5448 */ 5449 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 5450 rtnl_lock(); 5451 bnxt_reset_task(bp); 5452 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 5453 rtnl_unlock(); 5454 } 5455 5456 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) 5457 bnxt_hwrm_port_qstats(bp); 5458 5459 smp_mb__before_atomic(); 5460 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 5461 } 5462 5463 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 5464 { 5465 int rc; 5466 struct bnxt *bp = netdev_priv(dev); 5467 5468 SET_NETDEV_DEV(dev, &pdev->dev); 5469 5470 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 5471 rc = pci_enable_device(pdev); 5472 if (rc) { 5473 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 5474 goto init_err; 5475 } 5476 5477 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 5478 dev_err(&pdev->dev, 5479 "Cannot find PCI device base address, aborting\n"); 5480 rc = -ENODEV; 5481 goto init_err_disable; 5482 } 5483 5484 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 5485 if (rc) { 5486 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 5487 goto init_err_disable; 5488 } 5489 5490 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 5491 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 5492 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 5493 goto init_err_disable; 5494 } 5495 5496 pci_set_master(pdev); 5497 5498 bp->dev = dev; 5499 bp->pdev = pdev; 5500 5501 bp->bar0 = pci_ioremap_bar(pdev, 0); 5502 if (!bp->bar0) { 5503 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 5504 rc = -ENOMEM; 5505 goto init_err_release; 5506 } 5507 5508 bp->bar1 = pci_ioremap_bar(pdev, 2); 5509 if (!bp->bar1) { 5510 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n"); 5511 rc = -ENOMEM; 5512 goto init_err_release; 5513 } 5514 5515 bp->bar2 = pci_ioremap_bar(pdev, 4); 5516 if (!bp->bar2) { 5517 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 5518 rc = -ENOMEM; 5519 goto init_err_release; 5520 } 5521 5522 pci_enable_pcie_error_reporting(pdev); 5523 5524 INIT_WORK(&bp->sp_task, bnxt_sp_task); 5525 5526 spin_lock_init(&bp->ntp_fltr_lock); 5527 5528 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 5529 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 5530 5531 /* tick values in micro seconds */ 5532 bp->rx_coal_ticks = 12; 5533 bp->rx_coal_bufs = 30; 5534 bp->rx_coal_ticks_irq = 1; 5535 bp->rx_coal_bufs_irq = 2; 5536 5537 bp->tx_coal_ticks = 25; 5538 bp->tx_coal_bufs = 30; 5539 bp->tx_coal_ticks_irq = 2; 5540 bp->tx_coal_bufs_irq = 2; 5541 5542 init_timer(&bp->timer); 5543 bp->timer.data = (unsigned long)bp; 5544 bp->timer.function = bnxt_timer; 5545 bp->current_interval = BNXT_TIMER_INTERVAL; 5546 5547 clear_bit(BNXT_STATE_OPEN, &bp->state); 5548 5549 return 0; 5550 5551 init_err_release: 5552 if (bp->bar2) { 5553 pci_iounmap(pdev, bp->bar2); 5554 bp->bar2 = NULL; 5555 } 5556 5557 if (bp->bar1) { 5558 pci_iounmap(pdev, bp->bar1); 5559 bp->bar1 = NULL; 5560 } 5561 5562 if (bp->bar0) { 5563 pci_iounmap(pdev, bp->bar0); 5564 bp->bar0 = NULL; 5565 } 5566 5567 pci_release_regions(pdev); 5568 5569 init_err_disable: 5570 pci_disable_device(pdev); 5571 5572 init_err: 5573 return rc; 5574 } 5575 5576 /* rtnl_lock held */ 5577 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 5578 { 5579 struct sockaddr *addr = p; 5580 struct bnxt *bp = netdev_priv(dev); 5581 int rc = 0; 5582 5583 if (!is_valid_ether_addr(addr->sa_data)) 5584 return -EADDRNOTAVAIL; 5585 5586 #ifdef CONFIG_BNXT_SRIOV 5587 if (BNXT_VF(bp) && is_valid_ether_addr(bp->vf.mac_addr)) 5588 return -EADDRNOTAVAIL; 5589 #endif 5590 5591 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 5592 return 0; 5593 5594 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 5595 if (netif_running(dev)) { 5596 bnxt_close_nic(bp, false, false); 5597 rc = bnxt_open_nic(bp, false, false); 5598 } 5599 5600 return rc; 5601 } 5602 5603 /* rtnl_lock held */ 5604 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 5605 { 5606 struct bnxt *bp = netdev_priv(dev); 5607 5608 if (new_mtu < 60 || new_mtu > 9000) 5609 return -EINVAL; 5610 5611 if (netif_running(dev)) 5612 bnxt_close_nic(bp, false, false); 5613 5614 dev->mtu = new_mtu; 5615 bnxt_set_ring_params(bp); 5616 5617 if (netif_running(dev)) 5618 return bnxt_open_nic(bp, false, false); 5619 5620 return 0; 5621 } 5622 5623 static int bnxt_setup_tc(struct net_device *dev, u32 handle, __be16 proto, 5624 struct tc_to_netdev *ntc) 5625 { 5626 struct bnxt *bp = netdev_priv(dev); 5627 u8 tc; 5628 5629 if (ntc->type != TC_SETUP_MQPRIO) 5630 return -EINVAL; 5631 5632 tc = ntc->tc; 5633 5634 if (tc > bp->max_tc) { 5635 netdev_err(dev, "too many traffic classes requested: %d Max supported is %d\n", 5636 tc, bp->max_tc); 5637 return -EINVAL; 5638 } 5639 5640 if (netdev_get_num_tc(dev) == tc) 5641 return 0; 5642 5643 if (tc) { 5644 int max_rx_rings, max_tx_rings, rc; 5645 bool sh = false; 5646 5647 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 5648 sh = true; 5649 5650 rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh); 5651 if (rc || bp->tx_nr_rings_per_tc * tc > max_tx_rings) 5652 return -ENOMEM; 5653 } 5654 5655 /* Needs to close the device and do hw resource re-allocations */ 5656 if (netif_running(bp->dev)) 5657 bnxt_close_nic(bp, true, false); 5658 5659 if (tc) { 5660 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 5661 netdev_set_num_tc(dev, tc); 5662 } else { 5663 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 5664 netdev_reset_tc(dev); 5665 } 5666 bp->cp_nr_rings = max_t(int, bp->tx_nr_rings, bp->rx_nr_rings); 5667 bp->num_stat_ctxs = bp->cp_nr_rings; 5668 5669 if (netif_running(bp->dev)) 5670 return bnxt_open_nic(bp, true, false); 5671 5672 return 0; 5673 } 5674 5675 #ifdef CONFIG_RFS_ACCEL 5676 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 5677 struct bnxt_ntuple_filter *f2) 5678 { 5679 struct flow_keys *keys1 = &f1->fkeys; 5680 struct flow_keys *keys2 = &f2->fkeys; 5681 5682 if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src && 5683 keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst && 5684 keys1->ports.ports == keys2->ports.ports && 5685 keys1->basic.ip_proto == keys2->basic.ip_proto && 5686 keys1->basic.n_proto == keys2->basic.n_proto && 5687 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr)) 5688 return true; 5689 5690 return false; 5691 } 5692 5693 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 5694 u16 rxq_index, u32 flow_id) 5695 { 5696 struct bnxt *bp = netdev_priv(dev); 5697 struct bnxt_ntuple_filter *fltr, *new_fltr; 5698 struct flow_keys *fkeys; 5699 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 5700 int rc = 0, idx, bit_id; 5701 struct hlist_head *head; 5702 5703 if (skb->encapsulation) 5704 return -EPROTONOSUPPORT; 5705 5706 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 5707 if (!new_fltr) 5708 return -ENOMEM; 5709 5710 fkeys = &new_fltr->fkeys; 5711 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 5712 rc = -EPROTONOSUPPORT; 5713 goto err_free; 5714 } 5715 5716 if ((fkeys->basic.n_proto != htons(ETH_P_IP)) || 5717 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 5718 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 5719 rc = -EPROTONOSUPPORT; 5720 goto err_free; 5721 } 5722 5723 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN); 5724 5725 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 5726 head = &bp->ntp_fltr_hash_tbl[idx]; 5727 rcu_read_lock(); 5728 hlist_for_each_entry_rcu(fltr, head, hash) { 5729 if (bnxt_fltr_match(fltr, new_fltr)) { 5730 rcu_read_unlock(); 5731 rc = 0; 5732 goto err_free; 5733 } 5734 } 5735 rcu_read_unlock(); 5736 5737 spin_lock_bh(&bp->ntp_fltr_lock); 5738 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 5739 BNXT_NTP_FLTR_MAX_FLTR, 0); 5740 if (bit_id < 0) { 5741 spin_unlock_bh(&bp->ntp_fltr_lock); 5742 rc = -ENOMEM; 5743 goto err_free; 5744 } 5745 5746 new_fltr->sw_id = (u16)bit_id; 5747 new_fltr->flow_id = flow_id; 5748 new_fltr->rxq = rxq_index; 5749 hlist_add_head_rcu(&new_fltr->hash, head); 5750 bp->ntp_fltr_count++; 5751 spin_unlock_bh(&bp->ntp_fltr_lock); 5752 5753 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 5754 schedule_work(&bp->sp_task); 5755 5756 return new_fltr->sw_id; 5757 5758 err_free: 5759 kfree(new_fltr); 5760 return rc; 5761 } 5762 5763 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 5764 { 5765 int i; 5766 5767 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 5768 struct hlist_head *head; 5769 struct hlist_node *tmp; 5770 struct bnxt_ntuple_filter *fltr; 5771 int rc; 5772 5773 head = &bp->ntp_fltr_hash_tbl[i]; 5774 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 5775 bool del = false; 5776 5777 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) { 5778 if (rps_may_expire_flow(bp->dev, fltr->rxq, 5779 fltr->flow_id, 5780 fltr->sw_id)) { 5781 bnxt_hwrm_cfa_ntuple_filter_free(bp, 5782 fltr); 5783 del = true; 5784 } 5785 } else { 5786 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 5787 fltr); 5788 if (rc) 5789 del = true; 5790 else 5791 set_bit(BNXT_FLTR_VALID, &fltr->state); 5792 } 5793 5794 if (del) { 5795 spin_lock_bh(&bp->ntp_fltr_lock); 5796 hlist_del_rcu(&fltr->hash); 5797 bp->ntp_fltr_count--; 5798 spin_unlock_bh(&bp->ntp_fltr_lock); 5799 synchronize_rcu(); 5800 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 5801 kfree(fltr); 5802 } 5803 } 5804 } 5805 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 5806 netdev_info(bp->dev, "Receive PF driver unload event!"); 5807 } 5808 5809 #else 5810 5811 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 5812 { 5813 } 5814 5815 #endif /* CONFIG_RFS_ACCEL */ 5816 5817 static void bnxt_add_vxlan_port(struct net_device *dev, sa_family_t sa_family, 5818 __be16 port) 5819 { 5820 struct bnxt *bp = netdev_priv(dev); 5821 5822 if (!netif_running(dev)) 5823 return; 5824 5825 if (sa_family != AF_INET6 && sa_family != AF_INET) 5826 return; 5827 5828 if (bp->vxlan_port_cnt && bp->vxlan_port != port) 5829 return; 5830 5831 bp->vxlan_port_cnt++; 5832 if (bp->vxlan_port_cnt == 1) { 5833 bp->vxlan_port = port; 5834 set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event); 5835 schedule_work(&bp->sp_task); 5836 } 5837 } 5838 5839 static void bnxt_del_vxlan_port(struct net_device *dev, sa_family_t sa_family, 5840 __be16 port) 5841 { 5842 struct bnxt *bp = netdev_priv(dev); 5843 5844 if (!netif_running(dev)) 5845 return; 5846 5847 if (sa_family != AF_INET6 && sa_family != AF_INET) 5848 return; 5849 5850 if (bp->vxlan_port_cnt && bp->vxlan_port == port) { 5851 bp->vxlan_port_cnt--; 5852 5853 if (bp->vxlan_port_cnt == 0) { 5854 set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event); 5855 schedule_work(&bp->sp_task); 5856 } 5857 } 5858 } 5859 5860 static const struct net_device_ops bnxt_netdev_ops = { 5861 .ndo_open = bnxt_open, 5862 .ndo_start_xmit = bnxt_start_xmit, 5863 .ndo_stop = bnxt_close, 5864 .ndo_get_stats64 = bnxt_get_stats64, 5865 .ndo_set_rx_mode = bnxt_set_rx_mode, 5866 .ndo_do_ioctl = bnxt_ioctl, 5867 .ndo_validate_addr = eth_validate_addr, 5868 .ndo_set_mac_address = bnxt_change_mac_addr, 5869 .ndo_change_mtu = bnxt_change_mtu, 5870 .ndo_fix_features = bnxt_fix_features, 5871 .ndo_set_features = bnxt_set_features, 5872 .ndo_tx_timeout = bnxt_tx_timeout, 5873 #ifdef CONFIG_BNXT_SRIOV 5874 .ndo_get_vf_config = bnxt_get_vf_config, 5875 .ndo_set_vf_mac = bnxt_set_vf_mac, 5876 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 5877 .ndo_set_vf_rate = bnxt_set_vf_bw, 5878 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 5879 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 5880 #endif 5881 #ifdef CONFIG_NET_POLL_CONTROLLER 5882 .ndo_poll_controller = bnxt_poll_controller, 5883 #endif 5884 .ndo_setup_tc = bnxt_setup_tc, 5885 #ifdef CONFIG_RFS_ACCEL 5886 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 5887 #endif 5888 .ndo_add_vxlan_port = bnxt_add_vxlan_port, 5889 .ndo_del_vxlan_port = bnxt_del_vxlan_port, 5890 #ifdef CONFIG_NET_RX_BUSY_POLL 5891 .ndo_busy_poll = bnxt_busy_poll, 5892 #endif 5893 }; 5894 5895 static void bnxt_remove_one(struct pci_dev *pdev) 5896 { 5897 struct net_device *dev = pci_get_drvdata(pdev); 5898 struct bnxt *bp = netdev_priv(dev); 5899 5900 if (BNXT_PF(bp)) 5901 bnxt_sriov_disable(bp); 5902 5903 pci_disable_pcie_error_reporting(pdev); 5904 unregister_netdev(dev); 5905 cancel_work_sync(&bp->sp_task); 5906 bp->sp_event = 0; 5907 5908 bnxt_hwrm_func_drv_unrgtr(bp); 5909 bnxt_free_hwrm_resources(bp); 5910 pci_iounmap(pdev, bp->bar2); 5911 pci_iounmap(pdev, bp->bar1); 5912 pci_iounmap(pdev, bp->bar0); 5913 free_netdev(dev); 5914 5915 pci_release_regions(pdev); 5916 pci_disable_device(pdev); 5917 } 5918 5919 static int bnxt_probe_phy(struct bnxt *bp) 5920 { 5921 int rc = 0; 5922 struct bnxt_link_info *link_info = &bp->link_info; 5923 5924 rc = bnxt_update_link(bp, false); 5925 if (rc) { 5926 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 5927 rc); 5928 return rc; 5929 } 5930 5931 /*initialize the ethool setting copy with NVM settings */ 5932 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 5933 link_info->autoneg = BNXT_AUTONEG_SPEED | 5934 BNXT_AUTONEG_FLOW_CTRL; 5935 link_info->advertising = link_info->auto_link_speeds; 5936 link_info->req_flow_ctrl = link_info->auto_pause_setting; 5937 } else { 5938 link_info->req_link_speed = link_info->force_link_speed; 5939 link_info->req_duplex = link_info->duplex_setting; 5940 link_info->req_flow_ctrl = link_info->force_pause_setting; 5941 } 5942 return rc; 5943 } 5944 5945 static int bnxt_get_max_irq(struct pci_dev *pdev) 5946 { 5947 u16 ctrl; 5948 5949 if (!pdev->msix_cap) 5950 return 1; 5951 5952 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 5953 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 5954 } 5955 5956 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 5957 int *max_cp) 5958 { 5959 int max_ring_grps = 0; 5960 5961 #ifdef CONFIG_BNXT_SRIOV 5962 if (!BNXT_PF(bp)) { 5963 *max_tx = bp->vf.max_tx_rings; 5964 *max_rx = bp->vf.max_rx_rings; 5965 *max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings); 5966 *max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs); 5967 max_ring_grps = bp->vf.max_hw_ring_grps; 5968 } else 5969 #endif 5970 { 5971 *max_tx = bp->pf.max_tx_rings; 5972 *max_rx = bp->pf.max_rx_rings; 5973 *max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings); 5974 *max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs); 5975 max_ring_grps = bp->pf.max_hw_ring_grps; 5976 } 5977 5978 if (bp->flags & BNXT_FLAG_AGG_RINGS) 5979 *max_rx >>= 1; 5980 *max_rx = min_t(int, *max_rx, max_ring_grps); 5981 } 5982 5983 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 5984 { 5985 int rx, tx, cp; 5986 5987 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 5988 if (!rx || !tx || !cp) 5989 return -ENOMEM; 5990 5991 *max_rx = rx; 5992 *max_tx = tx; 5993 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 5994 } 5995 5996 static int bnxt_set_dflt_rings(struct bnxt *bp) 5997 { 5998 int dflt_rings, max_rx_rings, max_tx_rings, rc; 5999 bool sh = true; 6000 6001 if (sh) 6002 bp->flags |= BNXT_FLAG_SHARED_RINGS; 6003 dflt_rings = netif_get_num_default_rss_queues(); 6004 rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh); 6005 if (rc) 6006 return rc; 6007 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 6008 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 6009 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 6010 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 6011 bp->tx_nr_rings + bp->rx_nr_rings; 6012 bp->num_stat_ctxs = bp->cp_nr_rings; 6013 return rc; 6014 } 6015 6016 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 6017 { 6018 static int version_printed; 6019 struct net_device *dev; 6020 struct bnxt *bp; 6021 int rc, max_irqs; 6022 6023 if (version_printed++ == 0) 6024 pr_info("%s", version); 6025 6026 max_irqs = bnxt_get_max_irq(pdev); 6027 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs); 6028 if (!dev) 6029 return -ENOMEM; 6030 6031 bp = netdev_priv(dev); 6032 6033 if (bnxt_vf_pciid(ent->driver_data)) 6034 bp->flags |= BNXT_FLAG_VF; 6035 6036 if (pdev->msix_cap) 6037 bp->flags |= BNXT_FLAG_MSIX_CAP; 6038 6039 rc = bnxt_init_board(pdev, dev); 6040 if (rc < 0) 6041 goto init_err_free; 6042 6043 dev->netdev_ops = &bnxt_netdev_ops; 6044 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 6045 dev->ethtool_ops = &bnxt_ethtool_ops; 6046 6047 pci_set_drvdata(pdev, dev); 6048 6049 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 6050 NETIF_F_TSO | NETIF_F_TSO6 | 6051 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 6052 NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT | 6053 NETIF_F_RXHASH | 6054 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO; 6055 6056 dev->hw_enc_features = 6057 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 6058 NETIF_F_TSO | NETIF_F_TSO6 | 6059 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 6060 NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT; 6061 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 6062 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX | 6063 NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX; 6064 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 6065 dev->priv_flags |= IFF_UNICAST_FLT; 6066 6067 #ifdef CONFIG_BNXT_SRIOV 6068 init_waitqueue_head(&bp->sriov_cfg_wait); 6069 #endif 6070 rc = bnxt_alloc_hwrm_resources(bp); 6071 if (rc) 6072 goto init_err; 6073 6074 mutex_init(&bp->hwrm_cmd_lock); 6075 bnxt_hwrm_ver_get(bp); 6076 6077 rc = bnxt_hwrm_func_drv_rgtr(bp); 6078 if (rc) 6079 goto init_err; 6080 6081 /* Get the MAX capabilities for this function */ 6082 rc = bnxt_hwrm_func_qcaps(bp); 6083 if (rc) { 6084 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 6085 rc); 6086 rc = -1; 6087 goto init_err; 6088 } 6089 6090 rc = bnxt_hwrm_queue_qportcfg(bp); 6091 if (rc) { 6092 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n", 6093 rc); 6094 rc = -1; 6095 goto init_err; 6096 } 6097 6098 bnxt_set_tpa_flags(bp); 6099 bnxt_set_ring_params(bp); 6100 if (BNXT_PF(bp)) 6101 bp->pf.max_irqs = max_irqs; 6102 #if defined(CONFIG_BNXT_SRIOV) 6103 else 6104 bp->vf.max_irqs = max_irqs; 6105 #endif 6106 bnxt_set_dflt_rings(bp); 6107 6108 if (BNXT_PF(bp)) { 6109 dev->hw_features |= NETIF_F_NTUPLE; 6110 if (bnxt_rfs_capable(bp)) { 6111 bp->flags |= BNXT_FLAG_RFS; 6112 dev->features |= NETIF_F_NTUPLE; 6113 } 6114 } 6115 6116 if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX) 6117 bp->flags |= BNXT_FLAG_STRIP_VLAN; 6118 6119 rc = bnxt_probe_phy(bp); 6120 if (rc) 6121 goto init_err; 6122 6123 rc = register_netdev(dev); 6124 if (rc) 6125 goto init_err; 6126 6127 netdev_info(dev, "%s found at mem %lx, node addr %pM\n", 6128 board_info[ent->driver_data].name, 6129 (long)pci_resource_start(pdev, 0), dev->dev_addr); 6130 6131 return 0; 6132 6133 init_err: 6134 pci_iounmap(pdev, bp->bar0); 6135 pci_release_regions(pdev); 6136 pci_disable_device(pdev); 6137 6138 init_err_free: 6139 free_netdev(dev); 6140 return rc; 6141 } 6142 6143 /** 6144 * bnxt_io_error_detected - called when PCI error is detected 6145 * @pdev: Pointer to PCI device 6146 * @state: The current pci connection state 6147 * 6148 * This function is called after a PCI bus error affecting 6149 * this device has been detected. 6150 */ 6151 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 6152 pci_channel_state_t state) 6153 { 6154 struct net_device *netdev = pci_get_drvdata(pdev); 6155 6156 netdev_info(netdev, "PCI I/O error detected\n"); 6157 6158 rtnl_lock(); 6159 netif_device_detach(netdev); 6160 6161 if (state == pci_channel_io_perm_failure) { 6162 rtnl_unlock(); 6163 return PCI_ERS_RESULT_DISCONNECT; 6164 } 6165 6166 if (netif_running(netdev)) 6167 bnxt_close(netdev); 6168 6169 pci_disable_device(pdev); 6170 rtnl_unlock(); 6171 6172 /* Request a slot slot reset. */ 6173 return PCI_ERS_RESULT_NEED_RESET; 6174 } 6175 6176 /** 6177 * bnxt_io_slot_reset - called after the pci bus has been reset. 6178 * @pdev: Pointer to PCI device 6179 * 6180 * Restart the card from scratch, as if from a cold-boot. 6181 * At this point, the card has exprienced a hard reset, 6182 * followed by fixups by BIOS, and has its config space 6183 * set up identically to what it was at cold boot. 6184 */ 6185 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 6186 { 6187 struct net_device *netdev = pci_get_drvdata(pdev); 6188 struct bnxt *bp = netdev_priv(netdev); 6189 int err = 0; 6190 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 6191 6192 netdev_info(bp->dev, "PCI Slot Reset\n"); 6193 6194 rtnl_lock(); 6195 6196 if (pci_enable_device(pdev)) { 6197 dev_err(&pdev->dev, 6198 "Cannot re-enable PCI device after reset.\n"); 6199 } else { 6200 pci_set_master(pdev); 6201 6202 if (netif_running(netdev)) 6203 err = bnxt_open(netdev); 6204 6205 if (!err) 6206 result = PCI_ERS_RESULT_RECOVERED; 6207 } 6208 6209 if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev)) 6210 dev_close(netdev); 6211 6212 rtnl_unlock(); 6213 6214 err = pci_cleanup_aer_uncorrect_error_status(pdev); 6215 if (err) { 6216 dev_err(&pdev->dev, 6217 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n", 6218 err); /* non-fatal, continue */ 6219 } 6220 6221 return PCI_ERS_RESULT_RECOVERED; 6222 } 6223 6224 /** 6225 * bnxt_io_resume - called when traffic can start flowing again. 6226 * @pdev: Pointer to PCI device 6227 * 6228 * This callback is called when the error recovery driver tells 6229 * us that its OK to resume normal operation. 6230 */ 6231 static void bnxt_io_resume(struct pci_dev *pdev) 6232 { 6233 struct net_device *netdev = pci_get_drvdata(pdev); 6234 6235 rtnl_lock(); 6236 6237 netif_device_attach(netdev); 6238 6239 rtnl_unlock(); 6240 } 6241 6242 static const struct pci_error_handlers bnxt_err_handler = { 6243 .error_detected = bnxt_io_error_detected, 6244 .slot_reset = bnxt_io_slot_reset, 6245 .resume = bnxt_io_resume 6246 }; 6247 6248 static struct pci_driver bnxt_pci_driver = { 6249 .name = DRV_MODULE_NAME, 6250 .id_table = bnxt_pci_tbl, 6251 .probe = bnxt_init_one, 6252 .remove = bnxt_remove_one, 6253 .err_handler = &bnxt_err_handler, 6254 #if defined(CONFIG_BNXT_SRIOV) 6255 .sriov_configure = bnxt_sriov_configure, 6256 #endif 6257 }; 6258 6259 module_pci_driver(bnxt_pci_driver); 6260