1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/gro.h> 41 #include <net/ip.h> 42 #include <net/tcp.h> 43 #include <net/udp.h> 44 #include <net/checksum.h> 45 #include <net/ip6_checksum.h> 46 #include <net/udp_tunnel.h> 47 #include <linux/workqueue.h> 48 #include <linux/prefetch.h> 49 #include <linux/cache.h> 50 #include <linux/log2.h> 51 #include <linux/bitmap.h> 52 #include <linux/cpu_rmap.h> 53 #include <linux/cpumask.h> 54 #include <net/pkt_cls.h> 55 #include <net/page_pool/helpers.h> 56 #include <linux/align.h> 57 #include <net/netdev_lock.h> 58 #include <net/netdev_queues.h> 59 #include <net/netdev_rx_queue.h> 60 #include <linux/pci-tph.h> 61 62 #include "bnxt_hsi.h" 63 #include "bnxt.h" 64 #include "bnxt_hwrm.h" 65 #include "bnxt_ulp.h" 66 #include "bnxt_sriov.h" 67 #include "bnxt_ethtool.h" 68 #include "bnxt_dcb.h" 69 #include "bnxt_xdp.h" 70 #include "bnxt_ptp.h" 71 #include "bnxt_vfr.h" 72 #include "bnxt_tc.h" 73 #include "bnxt_devlink.h" 74 #include "bnxt_debugfs.h" 75 #include "bnxt_coredump.h" 76 #include "bnxt_hwmon.h" 77 78 #define BNXT_TX_TIMEOUT (5 * HZ) 79 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \ 80 NETIF_MSG_TX_ERR) 81 82 MODULE_IMPORT_NS("NETDEV_INTERNAL"); 83 MODULE_LICENSE("GPL"); 84 MODULE_DESCRIPTION("Broadcom NetXtreme network driver"); 85 86 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 87 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 88 89 #define BNXT_TX_PUSH_THRESH 164 90 91 /* indexed by enum board_idx */ 92 static const struct { 93 char *name; 94 } board_info[] = { 95 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 96 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 97 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 98 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 99 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 100 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 101 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 102 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 103 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 104 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 105 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 106 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 107 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 108 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 109 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 110 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 111 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 112 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 113 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 114 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 115 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 116 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 117 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 118 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 119 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 120 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 121 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 122 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 123 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 124 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 125 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 126 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 127 [BCM57608] = { "Broadcom BCM57608 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 128 [BCM57604] = { "Broadcom BCM57604 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 129 [BCM57602] = { "Broadcom BCM57602 NetXtreme-E 10Gb/25Gb/50Gb/100Gb Ethernet" }, 130 [BCM57601] = { "Broadcom BCM57601 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 131 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 132 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 133 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 134 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 135 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 136 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 137 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 138 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 139 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 140 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 141 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 142 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 143 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 144 [NETXTREME_E_P7_VF] = { "Broadcom BCM5760X Virtual Function" }, 145 }; 146 147 static const struct pci_device_id bnxt_pci_tbl[] = { 148 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 149 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 150 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 151 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 152 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 153 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 154 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 155 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 156 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 157 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 158 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 159 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 160 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 161 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 162 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 163 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 164 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 165 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 166 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 167 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 168 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 169 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 170 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 171 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 172 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 173 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 174 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 175 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 176 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 177 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 178 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 179 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 180 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 181 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 182 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 183 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 184 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 185 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 186 { PCI_VDEVICE(BROADCOM, 0x1760), .driver_data = BCM57608 }, 187 { PCI_VDEVICE(BROADCOM, 0x1761), .driver_data = BCM57604 }, 188 { PCI_VDEVICE(BROADCOM, 0x1762), .driver_data = BCM57602 }, 189 { PCI_VDEVICE(BROADCOM, 0x1763), .driver_data = BCM57601 }, 190 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR }, 191 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 192 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR }, 193 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR }, 194 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 195 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR }, 196 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 197 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 198 #ifdef CONFIG_BNXT_SRIOV 199 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 200 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 201 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 202 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 203 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 204 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 205 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 206 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 207 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 208 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 209 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 210 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 211 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 212 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 213 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 214 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 215 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 216 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 217 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 218 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 219 { PCI_VDEVICE(BROADCOM, 0x1819), .driver_data = NETXTREME_E_P7_VF }, 220 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 221 #endif 222 { 0 } 223 }; 224 225 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 226 227 static const u16 bnxt_vf_req_snif[] = { 228 HWRM_FUNC_CFG, 229 HWRM_FUNC_VF_CFG, 230 HWRM_PORT_PHY_QCFG, 231 HWRM_CFA_L2_FILTER_ALLOC, 232 }; 233 234 static const u16 bnxt_async_events_arr[] = { 235 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 236 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 237 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 238 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 239 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 240 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 241 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 242 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 243 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 244 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 245 ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE, 246 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 247 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 248 ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP, 249 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT, 250 ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE, 251 ASYNC_EVENT_CMPL_EVENT_ID_DBG_BUF_PRODUCER, 252 }; 253 254 const u16 bnxt_bstore_to_trace[] = { 255 [BNXT_CTX_SRT] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_SRT_TRACE, 256 [BNXT_CTX_SRT2] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_SRT2_TRACE, 257 [BNXT_CTX_CRT] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CRT_TRACE, 258 [BNXT_CTX_CRT2] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CRT2_TRACE, 259 [BNXT_CTX_RIGP0] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_RIGP0_TRACE, 260 [BNXT_CTX_L2HWRM] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_L2_HWRM_TRACE, 261 [BNXT_CTX_REHWRM] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_ROCE_HWRM_TRACE, 262 [BNXT_CTX_CA0] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CA0_TRACE, 263 [BNXT_CTX_CA1] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CA1_TRACE, 264 [BNXT_CTX_CA2] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CA2_TRACE, 265 [BNXT_CTX_RIGP1] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_RIGP1_TRACE, 266 }; 267 268 static struct workqueue_struct *bnxt_pf_wq; 269 270 #define BNXT_IPV6_MASK_ALL {{{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, \ 271 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }}} 272 #define BNXT_IPV6_MASK_NONE {{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }}} 273 274 const struct bnxt_flow_masks BNXT_FLOW_MASK_NONE = { 275 .ports = { 276 .src = 0, 277 .dst = 0, 278 }, 279 .addrs = { 280 .v6addrs = { 281 .src = BNXT_IPV6_MASK_NONE, 282 .dst = BNXT_IPV6_MASK_NONE, 283 }, 284 }, 285 }; 286 287 const struct bnxt_flow_masks BNXT_FLOW_IPV6_MASK_ALL = { 288 .ports = { 289 .src = cpu_to_be16(0xffff), 290 .dst = cpu_to_be16(0xffff), 291 }, 292 .addrs = { 293 .v6addrs = { 294 .src = BNXT_IPV6_MASK_ALL, 295 .dst = BNXT_IPV6_MASK_ALL, 296 }, 297 }, 298 }; 299 300 const struct bnxt_flow_masks BNXT_FLOW_IPV4_MASK_ALL = { 301 .ports = { 302 .src = cpu_to_be16(0xffff), 303 .dst = cpu_to_be16(0xffff), 304 }, 305 .addrs = { 306 .v4addrs = { 307 .src = cpu_to_be32(0xffffffff), 308 .dst = cpu_to_be32(0xffffffff), 309 }, 310 }, 311 }; 312 313 static bool bnxt_vf_pciid(enum board_idx idx) 314 { 315 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 316 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 317 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || 318 idx == NETXTREME_E_P5_VF_HV || idx == NETXTREME_E_P7_VF); 319 } 320 321 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 322 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 323 324 #define BNXT_DB_CQ(db, idx) \ 325 writel(DB_CP_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 326 327 #define BNXT_DB_NQ_P5(db, idx) \ 328 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | DB_RING_IDX(db, idx),\ 329 (db)->doorbell) 330 331 #define BNXT_DB_NQ_P7(db, idx) \ 332 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_MASK | \ 333 DB_RING_IDX(db, idx), (db)->doorbell) 334 335 #define BNXT_DB_CQ_ARM(db, idx) \ 336 writel(DB_CP_REARM_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 337 338 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 339 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | \ 340 DB_RING_IDX(db, idx), (db)->doorbell) 341 342 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 343 { 344 if (bp->flags & BNXT_FLAG_CHIP_P7) 345 BNXT_DB_NQ_P7(db, idx); 346 else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 347 BNXT_DB_NQ_P5(db, idx); 348 else 349 BNXT_DB_CQ(db, idx); 350 } 351 352 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 353 { 354 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 355 BNXT_DB_NQ_ARM_P5(db, idx); 356 else 357 BNXT_DB_CQ_ARM(db, idx); 358 } 359 360 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 361 { 362 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 363 bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL | 364 DB_RING_IDX(db, idx), db->doorbell); 365 else 366 BNXT_DB_CQ(db, idx); 367 } 368 369 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 370 { 371 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 372 return; 373 374 if (BNXT_PF(bp)) 375 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 376 else 377 schedule_delayed_work(&bp->fw_reset_task, delay); 378 } 379 380 static void __bnxt_queue_sp_work(struct bnxt *bp) 381 { 382 if (BNXT_PF(bp)) 383 queue_work(bnxt_pf_wq, &bp->sp_task); 384 else 385 schedule_work(&bp->sp_task); 386 } 387 388 static void bnxt_queue_sp_work(struct bnxt *bp, unsigned int event) 389 { 390 set_bit(event, &bp->sp_event); 391 __bnxt_queue_sp_work(bp); 392 } 393 394 static void bnxt_sched_reset_rxr(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 395 { 396 if (!rxr->bnapi->in_reset) { 397 rxr->bnapi->in_reset = true; 398 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 399 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 400 else 401 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 402 __bnxt_queue_sp_work(bp); 403 } 404 rxr->rx_next_cons = 0xffff; 405 } 406 407 void bnxt_sched_reset_txr(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 408 u16 curr) 409 { 410 struct bnxt_napi *bnapi = txr->bnapi; 411 412 if (bnapi->tx_fault) 413 return; 414 415 netdev_err(bp->dev, "Invalid Tx completion (ring:%d tx_hw_cons:%u cons:%u prod:%u curr:%u)", 416 txr->txq_index, txr->tx_hw_cons, 417 txr->tx_cons, txr->tx_prod, curr); 418 WARN_ON_ONCE(1); 419 bnapi->tx_fault = 1; 420 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 421 } 422 423 const u16 bnxt_lhint_arr[] = { 424 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 425 TX_BD_FLAGS_LHINT_512_TO_1023, 426 TX_BD_FLAGS_LHINT_1024_TO_2047, 427 TX_BD_FLAGS_LHINT_1024_TO_2047, 428 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 429 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 430 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 431 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 432 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 433 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 434 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 435 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 436 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 437 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 438 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 439 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 440 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 441 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 442 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 443 }; 444 445 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 446 { 447 struct metadata_dst *md_dst = skb_metadata_dst(skb); 448 449 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 450 return 0; 451 452 return md_dst->u.port_info.port_id; 453 } 454 455 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 456 u16 prod) 457 { 458 /* Sync BD data before updating doorbell */ 459 wmb(); 460 bnxt_db_write(bp, &txr->tx_db, prod); 461 txr->kick_pending = 0; 462 } 463 464 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 465 { 466 struct bnxt *bp = netdev_priv(dev); 467 struct tx_bd *txbd, *txbd0; 468 struct tx_bd_ext *txbd1; 469 struct netdev_queue *txq; 470 int i; 471 dma_addr_t mapping; 472 unsigned int length, pad = 0; 473 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 474 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 475 struct pci_dev *pdev = bp->pdev; 476 u16 prod, last_frag, txts_prod; 477 struct bnxt_tx_ring_info *txr; 478 struct bnxt_sw_tx_bd *tx_buf; 479 __le32 lflags = 0; 480 481 i = skb_get_queue_mapping(skb); 482 if (unlikely(i >= bp->tx_nr_rings)) { 483 dev_kfree_skb_any(skb); 484 dev_core_stats_tx_dropped_inc(dev); 485 return NETDEV_TX_OK; 486 } 487 488 txq = netdev_get_tx_queue(dev, i); 489 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 490 prod = txr->tx_prod; 491 492 #if (MAX_SKB_FRAGS > TX_MAX_FRAGS) 493 if (skb_shinfo(skb)->nr_frags > TX_MAX_FRAGS) { 494 netdev_warn_once(dev, "SKB has too many (%d) fragments, max supported is %d. SKB will be linearized.\n", 495 skb_shinfo(skb)->nr_frags, TX_MAX_FRAGS); 496 if (skb_linearize(skb)) { 497 dev_kfree_skb_any(skb); 498 dev_core_stats_tx_dropped_inc(dev); 499 return NETDEV_TX_OK; 500 } 501 } 502 #endif 503 free_size = bnxt_tx_avail(bp, txr); 504 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 505 /* We must have raced with NAPI cleanup */ 506 if (net_ratelimit() && txr->kick_pending) 507 netif_warn(bp, tx_err, dev, 508 "bnxt: ring busy w/ flush pending!\n"); 509 if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 510 bp->tx_wake_thresh)) 511 return NETDEV_TX_BUSY; 512 } 513 514 if (unlikely(ipv6_hopopt_jumbo_remove(skb))) 515 goto tx_free; 516 517 length = skb->len; 518 len = skb_headlen(skb); 519 last_frag = skb_shinfo(skb)->nr_frags; 520 521 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 522 523 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 524 tx_buf->skb = skb; 525 tx_buf->nr_frags = last_frag; 526 527 vlan_tag_flags = 0; 528 cfa_action = bnxt_xmit_get_cfa_action(skb); 529 if (skb_vlan_tag_present(skb)) { 530 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 531 skb_vlan_tag_get(skb); 532 /* Currently supports 8021Q, 8021AD vlan offloads 533 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 534 */ 535 if (skb->vlan_proto == htons(ETH_P_8021Q)) 536 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 537 } 538 539 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && ptp && 540 ptp->tx_tstamp_en) { 541 if (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) { 542 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 543 tx_buf->is_ts_pkt = 1; 544 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 545 } else if (!skb_is_gso(skb)) { 546 u16 seq_id, hdr_off; 547 548 if (!bnxt_ptp_parse(skb, &seq_id, &hdr_off) && 549 !bnxt_ptp_get_txts_prod(ptp, &txts_prod)) { 550 if (vlan_tag_flags) 551 hdr_off += VLAN_HLEN; 552 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 553 tx_buf->is_ts_pkt = 1; 554 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 555 556 ptp->txts_req[txts_prod].tx_seqid = seq_id; 557 ptp->txts_req[txts_prod].tx_hdr_off = hdr_off; 558 tx_buf->txts_prod = txts_prod; 559 } 560 } 561 } 562 if (unlikely(skb->no_fcs)) 563 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 564 565 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && 566 !lflags) { 567 struct tx_push_buffer *tx_push_buf = txr->tx_push; 568 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 569 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 570 void __iomem *db = txr->tx_db.doorbell; 571 void *pdata = tx_push_buf->data; 572 u64 *end; 573 int j, push_len; 574 575 /* Set COAL_NOW to be ready quickly for the next push */ 576 tx_push->tx_bd_len_flags_type = 577 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 578 TX_BD_TYPE_LONG_TX_BD | 579 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 580 TX_BD_FLAGS_COAL_NOW | 581 TX_BD_FLAGS_PACKET_END | 582 TX_BD_CNT(2)); 583 584 if (skb->ip_summed == CHECKSUM_PARTIAL) 585 tx_push1->tx_bd_hsize_lflags = 586 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 587 else 588 tx_push1->tx_bd_hsize_lflags = 0; 589 590 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 591 tx_push1->tx_bd_cfa_action = 592 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 593 594 end = pdata + length; 595 end = PTR_ALIGN(end, 8) - 1; 596 *end = 0; 597 598 skb_copy_from_linear_data(skb, pdata, len); 599 pdata += len; 600 for (j = 0; j < last_frag; j++) { 601 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 602 void *fptr; 603 604 fptr = skb_frag_address_safe(frag); 605 if (!fptr) 606 goto normal_tx; 607 608 memcpy(pdata, fptr, skb_frag_size(frag)); 609 pdata += skb_frag_size(frag); 610 } 611 612 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 613 txbd->tx_bd_haddr = txr->data_mapping; 614 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2); 615 prod = NEXT_TX(prod); 616 tx_push->tx_bd_opaque = txbd->tx_bd_opaque; 617 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 618 memcpy(txbd, tx_push1, sizeof(*txbd)); 619 prod = NEXT_TX(prod); 620 tx_push->doorbell = 621 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | 622 DB_RING_IDX(&txr->tx_db, prod)); 623 WRITE_ONCE(txr->tx_prod, prod); 624 625 tx_buf->is_push = 1; 626 netdev_tx_sent_queue(txq, skb->len); 627 wmb(); /* Sync is_push and byte queue before pushing data */ 628 629 push_len = (length + sizeof(*tx_push) + 7) / 8; 630 if (push_len > 16) { 631 __iowrite64_copy(db, tx_push_buf, 16); 632 __iowrite32_copy(db + 4, tx_push_buf + 1, 633 (push_len - 16) << 1); 634 } else { 635 __iowrite64_copy(db, tx_push_buf, push_len); 636 } 637 638 goto tx_done; 639 } 640 641 normal_tx: 642 if (length < BNXT_MIN_PKT_SIZE) { 643 pad = BNXT_MIN_PKT_SIZE - length; 644 if (skb_pad(skb, pad)) 645 /* SKB already freed. */ 646 goto tx_kick_pending; 647 length = BNXT_MIN_PKT_SIZE; 648 } 649 650 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 651 652 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 653 goto tx_free; 654 655 dma_unmap_addr_set(tx_buf, mapping, mapping); 656 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 657 TX_BD_CNT(last_frag + 2); 658 659 txbd->tx_bd_haddr = cpu_to_le64(mapping); 660 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2 + last_frag); 661 662 prod = NEXT_TX(prod); 663 txbd1 = (struct tx_bd_ext *) 664 &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 665 666 txbd1->tx_bd_hsize_lflags = lflags; 667 if (skb_is_gso(skb)) { 668 bool udp_gso = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4); 669 u32 hdr_len; 670 671 if (skb->encapsulation) { 672 if (udp_gso) 673 hdr_len = skb_inner_transport_offset(skb) + 674 sizeof(struct udphdr); 675 else 676 hdr_len = skb_inner_tcp_all_headers(skb); 677 } else if (udp_gso) { 678 hdr_len = skb_transport_offset(skb) + 679 sizeof(struct udphdr); 680 } else { 681 hdr_len = skb_tcp_all_headers(skb); 682 } 683 684 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 685 TX_BD_FLAGS_T_IPID | 686 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 687 length = skb_shinfo(skb)->gso_size; 688 txbd1->tx_bd_mss = cpu_to_le32(length); 689 length += hdr_len; 690 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 691 txbd1->tx_bd_hsize_lflags |= 692 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 693 txbd1->tx_bd_mss = 0; 694 } 695 696 length >>= 9; 697 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 698 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 699 skb->len); 700 i = 0; 701 goto tx_dma_error; 702 } 703 flags |= bnxt_lhint_arr[length]; 704 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 705 706 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 707 txbd1->tx_bd_cfa_action = 708 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 709 txbd0 = txbd; 710 for (i = 0; i < last_frag; i++) { 711 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 712 713 prod = NEXT_TX(prod); 714 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 715 716 len = skb_frag_size(frag); 717 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 718 DMA_TO_DEVICE); 719 720 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 721 goto tx_dma_error; 722 723 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 724 dma_unmap_addr_set(tx_buf, mapping, mapping); 725 726 txbd->tx_bd_haddr = cpu_to_le64(mapping); 727 728 flags = len << TX_BD_LEN_SHIFT; 729 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 730 } 731 732 flags &= ~TX_BD_LEN; 733 txbd->tx_bd_len_flags_type = 734 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 735 TX_BD_FLAGS_PACKET_END); 736 737 netdev_tx_sent_queue(txq, skb->len); 738 739 skb_tx_timestamp(skb); 740 741 prod = NEXT_TX(prod); 742 WRITE_ONCE(txr->tx_prod, prod); 743 744 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) { 745 bnxt_txr_db_kick(bp, txr, prod); 746 } else { 747 if (free_size >= bp->tx_wake_thresh) 748 txbd0->tx_bd_len_flags_type |= 749 cpu_to_le32(TX_BD_FLAGS_NO_CMPL); 750 txr->kick_pending = 1; 751 } 752 753 tx_done: 754 755 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 756 if (netdev_xmit_more() && !tx_buf->is_push) { 757 txbd0->tx_bd_len_flags_type &= 758 cpu_to_le32(~TX_BD_FLAGS_NO_CMPL); 759 bnxt_txr_db_kick(bp, txr, prod); 760 } 761 762 netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 763 bp->tx_wake_thresh); 764 } 765 return NETDEV_TX_OK; 766 767 tx_dma_error: 768 last_frag = i; 769 770 /* start back at beginning and unmap skb */ 771 prod = txr->tx_prod; 772 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 773 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 774 skb_headlen(skb), DMA_TO_DEVICE); 775 prod = NEXT_TX(prod); 776 777 /* unmap remaining mapped pages */ 778 for (i = 0; i < last_frag; i++) { 779 prod = NEXT_TX(prod); 780 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 781 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 782 skb_frag_size(&skb_shinfo(skb)->frags[i]), 783 DMA_TO_DEVICE); 784 } 785 786 tx_free: 787 dev_kfree_skb_any(skb); 788 tx_kick_pending: 789 if (BNXT_TX_PTP_IS_SET(lflags)) { 790 txr->tx_buf_ring[RING_TX(bp, txr->tx_prod)].is_ts_pkt = 0; 791 atomic64_inc(&bp->ptp_cfg->stats.ts_err); 792 if (!(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) 793 /* set SKB to err so PTP worker will clean up */ 794 ptp->txts_req[txts_prod].tx_skb = ERR_PTR(-EIO); 795 } 796 if (txr->kick_pending) 797 bnxt_txr_db_kick(bp, txr, txr->tx_prod); 798 txr->tx_buf_ring[RING_TX(bp, txr->tx_prod)].skb = NULL; 799 dev_core_stats_tx_dropped_inc(dev); 800 return NETDEV_TX_OK; 801 } 802 803 /* Returns true if some remaining TX packets not processed. */ 804 static bool __bnxt_tx_int(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 805 int budget) 806 { 807 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 808 struct pci_dev *pdev = bp->pdev; 809 u16 hw_cons = txr->tx_hw_cons; 810 unsigned int tx_bytes = 0; 811 u16 cons = txr->tx_cons; 812 int tx_pkts = 0; 813 bool rc = false; 814 815 while (RING_TX(bp, cons) != hw_cons) { 816 struct bnxt_sw_tx_bd *tx_buf; 817 struct sk_buff *skb; 818 bool is_ts_pkt; 819 int j, last; 820 821 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 822 skb = tx_buf->skb; 823 824 if (unlikely(!skb)) { 825 bnxt_sched_reset_txr(bp, txr, cons); 826 return rc; 827 } 828 829 is_ts_pkt = tx_buf->is_ts_pkt; 830 if (is_ts_pkt && (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) { 831 rc = true; 832 break; 833 } 834 835 cons = NEXT_TX(cons); 836 tx_pkts++; 837 tx_bytes += skb->len; 838 tx_buf->skb = NULL; 839 tx_buf->is_ts_pkt = 0; 840 841 if (tx_buf->is_push) { 842 tx_buf->is_push = 0; 843 goto next_tx_int; 844 } 845 846 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 847 skb_headlen(skb), DMA_TO_DEVICE); 848 last = tx_buf->nr_frags; 849 850 for (j = 0; j < last; j++) { 851 cons = NEXT_TX(cons); 852 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 853 dma_unmap_page( 854 &pdev->dev, 855 dma_unmap_addr(tx_buf, mapping), 856 skb_frag_size(&skb_shinfo(skb)->frags[j]), 857 DMA_TO_DEVICE); 858 } 859 if (unlikely(is_ts_pkt)) { 860 if (BNXT_CHIP_P5(bp)) { 861 /* PTP worker takes ownership of the skb */ 862 bnxt_get_tx_ts_p5(bp, skb, tx_buf->txts_prod); 863 skb = NULL; 864 } 865 } 866 867 next_tx_int: 868 cons = NEXT_TX(cons); 869 870 dev_consume_skb_any(skb); 871 } 872 873 WRITE_ONCE(txr->tx_cons, cons); 874 875 __netif_txq_completed_wake(txq, tx_pkts, tx_bytes, 876 bnxt_tx_avail(bp, txr), bp->tx_wake_thresh, 877 READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING); 878 879 return rc; 880 } 881 882 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 883 { 884 struct bnxt_tx_ring_info *txr; 885 bool more = false; 886 int i; 887 888 bnxt_for_each_napi_tx(i, bnapi, txr) { 889 if (txr->tx_hw_cons != RING_TX(bp, txr->tx_cons)) 890 more |= __bnxt_tx_int(bp, txr, budget); 891 } 892 if (!more) 893 bnapi->events &= ~BNXT_TX_CMP_EVENT; 894 } 895 896 static bool bnxt_separate_head_pool(void) 897 { 898 return PAGE_SIZE > BNXT_RX_PAGE_SIZE; 899 } 900 901 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 902 struct bnxt_rx_ring_info *rxr, 903 unsigned int *offset, 904 gfp_t gfp) 905 { 906 struct page *page; 907 908 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 909 page = page_pool_dev_alloc_frag(rxr->page_pool, offset, 910 BNXT_RX_PAGE_SIZE); 911 } else { 912 page = page_pool_dev_alloc_pages(rxr->page_pool); 913 *offset = 0; 914 } 915 if (!page) 916 return NULL; 917 918 *mapping = page_pool_get_dma_addr(page) + *offset; 919 return page; 920 } 921 922 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping, 923 struct bnxt_rx_ring_info *rxr, 924 gfp_t gfp) 925 { 926 unsigned int offset; 927 struct page *page; 928 929 page = page_pool_alloc_frag(rxr->head_pool, &offset, 930 bp->rx_buf_size, gfp); 931 if (!page) 932 return NULL; 933 934 *mapping = page_pool_get_dma_addr(page) + bp->rx_dma_offset + offset; 935 return page_address(page) + offset; 936 } 937 938 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 939 u16 prod, gfp_t gfp) 940 { 941 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 942 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 943 dma_addr_t mapping; 944 945 if (BNXT_RX_PAGE_MODE(bp)) { 946 unsigned int offset; 947 struct page *page = 948 __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 949 950 if (!page) 951 return -ENOMEM; 952 953 mapping += bp->rx_dma_offset; 954 rx_buf->data = page; 955 rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset; 956 } else { 957 u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, rxr, gfp); 958 959 if (!data) 960 return -ENOMEM; 961 962 rx_buf->data = data; 963 rx_buf->data_ptr = data + bp->rx_offset; 964 } 965 rx_buf->mapping = mapping; 966 967 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 968 return 0; 969 } 970 971 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 972 { 973 u16 prod = rxr->rx_prod; 974 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 975 struct bnxt *bp = rxr->bnapi->bp; 976 struct rx_bd *cons_bd, *prod_bd; 977 978 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 979 cons_rx_buf = &rxr->rx_buf_ring[cons]; 980 981 prod_rx_buf->data = data; 982 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 983 984 prod_rx_buf->mapping = cons_rx_buf->mapping; 985 986 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 987 cons_bd = &rxr->rx_desc_ring[RX_RING(bp, cons)][RX_IDX(cons)]; 988 989 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 990 } 991 992 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 993 { 994 u16 next, max = rxr->rx_agg_bmap_size; 995 996 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 997 if (next >= max) 998 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 999 return next; 1000 } 1001 1002 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 1003 struct bnxt_rx_ring_info *rxr, 1004 u16 prod, gfp_t gfp) 1005 { 1006 struct rx_bd *rxbd = 1007 &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 1008 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 1009 struct page *page; 1010 dma_addr_t mapping; 1011 u16 sw_prod = rxr->rx_sw_agg_prod; 1012 unsigned int offset = 0; 1013 1014 page = __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 1015 1016 if (!page) 1017 return -ENOMEM; 1018 1019 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 1020 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 1021 1022 __set_bit(sw_prod, rxr->rx_agg_bmap); 1023 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 1024 rxr->rx_sw_agg_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 1025 1026 rx_agg_buf->page = page; 1027 rx_agg_buf->offset = offset; 1028 rx_agg_buf->mapping = mapping; 1029 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 1030 rxbd->rx_bd_opaque = sw_prod; 1031 return 0; 1032 } 1033 1034 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 1035 struct bnxt_cp_ring_info *cpr, 1036 u16 cp_cons, u16 curr) 1037 { 1038 struct rx_agg_cmp *agg; 1039 1040 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 1041 agg = (struct rx_agg_cmp *) 1042 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1043 return agg; 1044 } 1045 1046 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 1047 struct bnxt_rx_ring_info *rxr, 1048 u16 agg_id, u16 curr) 1049 { 1050 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 1051 1052 return &tpa_info->agg_arr[curr]; 1053 } 1054 1055 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 1056 u16 start, u32 agg_bufs, bool tpa) 1057 { 1058 struct bnxt_napi *bnapi = cpr->bnapi; 1059 struct bnxt *bp = bnapi->bp; 1060 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1061 u16 prod = rxr->rx_agg_prod; 1062 u16 sw_prod = rxr->rx_sw_agg_prod; 1063 bool p5_tpa = false; 1064 u32 i; 1065 1066 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1067 p5_tpa = true; 1068 1069 for (i = 0; i < agg_bufs; i++) { 1070 u16 cons; 1071 struct rx_agg_cmp *agg; 1072 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 1073 struct rx_bd *prod_bd; 1074 struct page *page; 1075 1076 if (p5_tpa) 1077 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 1078 else 1079 agg = bnxt_get_agg(bp, cpr, idx, start + i); 1080 cons = agg->rx_agg_cmp_opaque; 1081 __clear_bit(cons, rxr->rx_agg_bmap); 1082 1083 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 1084 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 1085 1086 __set_bit(sw_prod, rxr->rx_agg_bmap); 1087 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 1088 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1089 1090 /* It is possible for sw_prod to be equal to cons, so 1091 * set cons_rx_buf->page to NULL first. 1092 */ 1093 page = cons_rx_buf->page; 1094 cons_rx_buf->page = NULL; 1095 prod_rx_buf->page = page; 1096 prod_rx_buf->offset = cons_rx_buf->offset; 1097 1098 prod_rx_buf->mapping = cons_rx_buf->mapping; 1099 1100 prod_bd = &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 1101 1102 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 1103 prod_bd->rx_bd_opaque = sw_prod; 1104 1105 prod = NEXT_RX_AGG(prod); 1106 sw_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 1107 } 1108 rxr->rx_agg_prod = prod; 1109 rxr->rx_sw_agg_prod = sw_prod; 1110 } 1111 1112 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp, 1113 struct bnxt_rx_ring_info *rxr, 1114 u16 cons, void *data, u8 *data_ptr, 1115 dma_addr_t dma_addr, 1116 unsigned int offset_and_len) 1117 { 1118 unsigned int len = offset_and_len & 0xffff; 1119 struct page *page = data; 1120 u16 prod = rxr->rx_prod; 1121 struct sk_buff *skb; 1122 int err; 1123 1124 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1125 if (unlikely(err)) { 1126 bnxt_reuse_rx_data(rxr, cons, data); 1127 return NULL; 1128 } 1129 dma_addr -= bp->rx_dma_offset; 1130 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1131 bp->rx_dir); 1132 skb = napi_build_skb(data_ptr - bp->rx_offset, BNXT_RX_PAGE_SIZE); 1133 if (!skb) { 1134 page_pool_recycle_direct(rxr->page_pool, page); 1135 return NULL; 1136 } 1137 skb_mark_for_recycle(skb); 1138 skb_reserve(skb, bp->rx_offset); 1139 __skb_put(skb, len); 1140 1141 return skb; 1142 } 1143 1144 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 1145 struct bnxt_rx_ring_info *rxr, 1146 u16 cons, void *data, u8 *data_ptr, 1147 dma_addr_t dma_addr, 1148 unsigned int offset_and_len) 1149 { 1150 unsigned int payload = offset_and_len >> 16; 1151 unsigned int len = offset_and_len & 0xffff; 1152 skb_frag_t *frag; 1153 struct page *page = data; 1154 u16 prod = rxr->rx_prod; 1155 struct sk_buff *skb; 1156 int off, err; 1157 1158 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1159 if (unlikely(err)) { 1160 bnxt_reuse_rx_data(rxr, cons, data); 1161 return NULL; 1162 } 1163 dma_addr -= bp->rx_dma_offset; 1164 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1165 bp->rx_dir); 1166 1167 if (unlikely(!payload)) 1168 payload = eth_get_headlen(bp->dev, data_ptr, len); 1169 1170 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 1171 if (!skb) { 1172 page_pool_recycle_direct(rxr->page_pool, page); 1173 return NULL; 1174 } 1175 1176 skb_mark_for_recycle(skb); 1177 off = (void *)data_ptr - page_address(page); 1178 skb_add_rx_frag(skb, 0, page, off, len, BNXT_RX_PAGE_SIZE); 1179 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 1180 payload + NET_IP_ALIGN); 1181 1182 frag = &skb_shinfo(skb)->frags[0]; 1183 skb_frag_size_sub(frag, payload); 1184 skb_frag_off_add(frag, payload); 1185 skb->data_len -= payload; 1186 skb->tail += payload; 1187 1188 return skb; 1189 } 1190 1191 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 1192 struct bnxt_rx_ring_info *rxr, u16 cons, 1193 void *data, u8 *data_ptr, 1194 dma_addr_t dma_addr, 1195 unsigned int offset_and_len) 1196 { 1197 u16 prod = rxr->rx_prod; 1198 struct sk_buff *skb; 1199 int err; 1200 1201 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1202 if (unlikely(err)) { 1203 bnxt_reuse_rx_data(rxr, cons, data); 1204 return NULL; 1205 } 1206 1207 skb = napi_build_skb(data, bp->rx_buf_size); 1208 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1209 bp->rx_dir); 1210 if (!skb) { 1211 page_pool_free_va(rxr->head_pool, data, true); 1212 return NULL; 1213 } 1214 1215 skb_mark_for_recycle(skb); 1216 skb_reserve(skb, bp->rx_offset); 1217 skb_put(skb, offset_and_len & 0xffff); 1218 return skb; 1219 } 1220 1221 static u32 __bnxt_rx_agg_pages(struct bnxt *bp, 1222 struct bnxt_cp_ring_info *cpr, 1223 struct skb_shared_info *shinfo, 1224 u16 idx, u32 agg_bufs, bool tpa, 1225 struct xdp_buff *xdp) 1226 { 1227 struct bnxt_napi *bnapi = cpr->bnapi; 1228 struct pci_dev *pdev = bp->pdev; 1229 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1230 u16 prod = rxr->rx_agg_prod; 1231 u32 i, total_frag_len = 0; 1232 bool p5_tpa = false; 1233 1234 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1235 p5_tpa = true; 1236 1237 for (i = 0; i < agg_bufs; i++) { 1238 skb_frag_t *frag = &shinfo->frags[i]; 1239 u16 cons, frag_len; 1240 struct rx_agg_cmp *agg; 1241 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1242 struct page *page; 1243 dma_addr_t mapping; 1244 1245 if (p5_tpa) 1246 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1247 else 1248 agg = bnxt_get_agg(bp, cpr, idx, i); 1249 cons = agg->rx_agg_cmp_opaque; 1250 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1251 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1252 1253 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1254 skb_frag_fill_page_desc(frag, cons_rx_buf->page, 1255 cons_rx_buf->offset, frag_len); 1256 shinfo->nr_frags = i + 1; 1257 __clear_bit(cons, rxr->rx_agg_bmap); 1258 1259 /* It is possible for bnxt_alloc_rx_page() to allocate 1260 * a sw_prod index that equals the cons index, so we 1261 * need to clear the cons entry now. 1262 */ 1263 mapping = cons_rx_buf->mapping; 1264 page = cons_rx_buf->page; 1265 cons_rx_buf->page = NULL; 1266 1267 if (xdp && page_is_pfmemalloc(page)) 1268 xdp_buff_set_frag_pfmemalloc(xdp); 1269 1270 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 1271 --shinfo->nr_frags; 1272 cons_rx_buf->page = page; 1273 1274 /* Update prod since possibly some pages have been 1275 * allocated already. 1276 */ 1277 rxr->rx_agg_prod = prod; 1278 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1279 return 0; 1280 } 1281 1282 dma_sync_single_for_cpu(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, 1283 bp->rx_dir); 1284 1285 total_frag_len += frag_len; 1286 prod = NEXT_RX_AGG(prod); 1287 } 1288 rxr->rx_agg_prod = prod; 1289 return total_frag_len; 1290 } 1291 1292 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp, 1293 struct bnxt_cp_ring_info *cpr, 1294 struct sk_buff *skb, u16 idx, 1295 u32 agg_bufs, bool tpa) 1296 { 1297 struct skb_shared_info *shinfo = skb_shinfo(skb); 1298 u32 total_frag_len = 0; 1299 1300 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx, 1301 agg_bufs, tpa, NULL); 1302 if (!total_frag_len) { 1303 skb_mark_for_recycle(skb); 1304 dev_kfree_skb(skb); 1305 return NULL; 1306 } 1307 1308 skb->data_len += total_frag_len; 1309 skb->len += total_frag_len; 1310 skb->truesize += BNXT_RX_PAGE_SIZE * agg_bufs; 1311 return skb; 1312 } 1313 1314 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp, 1315 struct bnxt_cp_ring_info *cpr, 1316 struct xdp_buff *xdp, u16 idx, 1317 u32 agg_bufs, bool tpa) 1318 { 1319 struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp); 1320 u32 total_frag_len = 0; 1321 1322 if (!xdp_buff_has_frags(xdp)) 1323 shinfo->nr_frags = 0; 1324 1325 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, 1326 idx, agg_bufs, tpa, xdp); 1327 if (total_frag_len) { 1328 xdp_buff_set_frags_flag(xdp); 1329 shinfo->nr_frags = agg_bufs; 1330 shinfo->xdp_frags_size = total_frag_len; 1331 } 1332 return total_frag_len; 1333 } 1334 1335 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1336 u8 agg_bufs, u32 *raw_cons) 1337 { 1338 u16 last; 1339 struct rx_agg_cmp *agg; 1340 1341 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1342 last = RING_CMP(*raw_cons); 1343 agg = (struct rx_agg_cmp *) 1344 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1345 return RX_AGG_CMP_VALID(agg, *raw_cons); 1346 } 1347 1348 static struct sk_buff *bnxt_copy_data(struct bnxt_napi *bnapi, u8 *data, 1349 unsigned int len, 1350 dma_addr_t mapping) 1351 { 1352 struct bnxt *bp = bnapi->bp; 1353 struct pci_dev *pdev = bp->pdev; 1354 struct sk_buff *skb; 1355 1356 skb = napi_alloc_skb(&bnapi->napi, len); 1357 if (!skb) 1358 return NULL; 1359 1360 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copybreak, 1361 bp->rx_dir); 1362 1363 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1364 len + NET_IP_ALIGN); 1365 1366 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copybreak, 1367 bp->rx_dir); 1368 1369 skb_put(skb, len); 1370 1371 return skb; 1372 } 1373 1374 static struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1375 unsigned int len, 1376 dma_addr_t mapping) 1377 { 1378 return bnxt_copy_data(bnapi, data, len, mapping); 1379 } 1380 1381 static struct sk_buff *bnxt_copy_xdp(struct bnxt_napi *bnapi, 1382 struct xdp_buff *xdp, 1383 unsigned int len, 1384 dma_addr_t mapping) 1385 { 1386 unsigned int metasize = 0; 1387 u8 *data = xdp->data; 1388 struct sk_buff *skb; 1389 1390 len = xdp->data_end - xdp->data_meta; 1391 metasize = xdp->data - xdp->data_meta; 1392 data = xdp->data_meta; 1393 1394 skb = bnxt_copy_data(bnapi, data, len, mapping); 1395 if (!skb) 1396 return skb; 1397 1398 if (metasize) { 1399 skb_metadata_set(skb, metasize); 1400 __skb_pull(skb, metasize); 1401 } 1402 1403 return skb; 1404 } 1405 1406 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1407 u32 *raw_cons, void *cmp) 1408 { 1409 struct rx_cmp *rxcmp = cmp; 1410 u32 tmp_raw_cons = *raw_cons; 1411 u8 cmp_type, agg_bufs = 0; 1412 1413 cmp_type = RX_CMP_TYPE(rxcmp); 1414 1415 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1416 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1417 RX_CMP_AGG_BUFS) >> 1418 RX_CMP_AGG_BUFS_SHIFT; 1419 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1420 struct rx_tpa_end_cmp *tpa_end = cmp; 1421 1422 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1423 return 0; 1424 1425 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1426 } 1427 1428 if (agg_bufs) { 1429 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1430 return -EBUSY; 1431 } 1432 *raw_cons = tmp_raw_cons; 1433 return 0; 1434 } 1435 1436 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1437 { 1438 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1439 u16 idx = agg_id & MAX_TPA_P5_MASK; 1440 1441 if (test_bit(idx, map->agg_idx_bmap)) 1442 idx = find_first_zero_bit(map->agg_idx_bmap, 1443 BNXT_AGG_IDX_BMAP_SIZE); 1444 __set_bit(idx, map->agg_idx_bmap); 1445 map->agg_id_tbl[agg_id] = idx; 1446 return idx; 1447 } 1448 1449 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1450 { 1451 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1452 1453 __clear_bit(idx, map->agg_idx_bmap); 1454 } 1455 1456 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1457 { 1458 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1459 1460 return map->agg_id_tbl[agg_id]; 1461 } 1462 1463 static void bnxt_tpa_metadata(struct bnxt_tpa_info *tpa_info, 1464 struct rx_tpa_start_cmp *tpa_start, 1465 struct rx_tpa_start_cmp_ext *tpa_start1) 1466 { 1467 tpa_info->cfa_code_valid = 1; 1468 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1469 tpa_info->vlan_valid = 0; 1470 if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) { 1471 tpa_info->vlan_valid = 1; 1472 tpa_info->metadata = 1473 le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1474 } 1475 } 1476 1477 static void bnxt_tpa_metadata_v2(struct bnxt_tpa_info *tpa_info, 1478 struct rx_tpa_start_cmp *tpa_start, 1479 struct rx_tpa_start_cmp_ext *tpa_start1) 1480 { 1481 tpa_info->vlan_valid = 0; 1482 if (TPA_START_VLAN_VALID(tpa_start)) { 1483 u32 tpid_sel = TPA_START_VLAN_TPID_SEL(tpa_start); 1484 u32 vlan_proto = ETH_P_8021Q; 1485 1486 tpa_info->vlan_valid = 1; 1487 if (tpid_sel == RX_TPA_START_METADATA1_TPID_8021AD) 1488 vlan_proto = ETH_P_8021AD; 1489 tpa_info->metadata = vlan_proto << 16 | 1490 TPA_START_METADATA0_TCI(tpa_start1); 1491 } 1492 } 1493 1494 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1495 u8 cmp_type, struct rx_tpa_start_cmp *tpa_start, 1496 struct rx_tpa_start_cmp_ext *tpa_start1) 1497 { 1498 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1499 struct bnxt_tpa_info *tpa_info; 1500 u16 cons, prod, agg_id; 1501 struct rx_bd *prod_bd; 1502 dma_addr_t mapping; 1503 1504 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1505 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1506 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1507 } else { 1508 agg_id = TPA_START_AGG_ID(tpa_start); 1509 } 1510 cons = tpa_start->rx_tpa_start_cmp_opaque; 1511 prod = rxr->rx_prod; 1512 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1513 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 1514 tpa_info = &rxr->rx_tpa[agg_id]; 1515 1516 if (unlikely(cons != rxr->rx_next_cons || 1517 TPA_START_ERROR(tpa_start))) { 1518 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1519 cons, rxr->rx_next_cons, 1520 TPA_START_ERROR_CODE(tpa_start1)); 1521 bnxt_sched_reset_rxr(bp, rxr); 1522 return; 1523 } 1524 prod_rx_buf->data = tpa_info->data; 1525 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1526 1527 mapping = tpa_info->mapping; 1528 prod_rx_buf->mapping = mapping; 1529 1530 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 1531 1532 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1533 1534 tpa_info->data = cons_rx_buf->data; 1535 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1536 cons_rx_buf->data = NULL; 1537 tpa_info->mapping = cons_rx_buf->mapping; 1538 1539 tpa_info->len = 1540 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1541 RX_TPA_START_CMP_LEN_SHIFT; 1542 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1543 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1544 tpa_info->gso_type = SKB_GSO_TCPV4; 1545 if (TPA_START_IS_IPV6(tpa_start1)) 1546 tpa_info->gso_type = SKB_GSO_TCPV6; 1547 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1548 else if (!BNXT_CHIP_P4_PLUS(bp) && 1549 TPA_START_HASH_TYPE(tpa_start) == 3) 1550 tpa_info->gso_type = SKB_GSO_TCPV6; 1551 tpa_info->rss_hash = 1552 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1553 } else { 1554 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1555 tpa_info->gso_type = 0; 1556 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1557 } 1558 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1559 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1560 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) 1561 bnxt_tpa_metadata(tpa_info, tpa_start, tpa_start1); 1562 else 1563 bnxt_tpa_metadata_v2(tpa_info, tpa_start, tpa_start1); 1564 tpa_info->agg_count = 0; 1565 1566 rxr->rx_prod = NEXT_RX(prod); 1567 cons = RING_RX(bp, NEXT_RX(cons)); 1568 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 1569 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1570 1571 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1572 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1573 cons_rx_buf->data = NULL; 1574 } 1575 1576 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1577 { 1578 if (agg_bufs) 1579 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1580 } 1581 1582 #ifdef CONFIG_INET 1583 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1584 { 1585 struct udphdr *uh = NULL; 1586 1587 if (ip_proto == htons(ETH_P_IP)) { 1588 struct iphdr *iph = (struct iphdr *)skb->data; 1589 1590 if (iph->protocol == IPPROTO_UDP) 1591 uh = (struct udphdr *)(iph + 1); 1592 } else { 1593 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1594 1595 if (iph->nexthdr == IPPROTO_UDP) 1596 uh = (struct udphdr *)(iph + 1); 1597 } 1598 if (uh) { 1599 if (uh->check) 1600 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1601 else 1602 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1603 } 1604 } 1605 #endif 1606 1607 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1608 int payload_off, int tcp_ts, 1609 struct sk_buff *skb) 1610 { 1611 #ifdef CONFIG_INET 1612 struct tcphdr *th; 1613 int len, nw_off; 1614 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1615 u32 hdr_info = tpa_info->hdr_info; 1616 bool loopback = false; 1617 1618 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1619 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1620 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1621 1622 /* If the packet is an internal loopback packet, the offsets will 1623 * have an extra 4 bytes. 1624 */ 1625 if (inner_mac_off == 4) { 1626 loopback = true; 1627 } else if (inner_mac_off > 4) { 1628 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1629 ETH_HLEN - 2)); 1630 1631 /* We only support inner iPv4/ipv6. If we don't see the 1632 * correct protocol ID, it must be a loopback packet where 1633 * the offsets are off by 4. 1634 */ 1635 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1636 loopback = true; 1637 } 1638 if (loopback) { 1639 /* internal loopback packet, subtract all offsets by 4 */ 1640 inner_ip_off -= 4; 1641 inner_mac_off -= 4; 1642 outer_ip_off -= 4; 1643 } 1644 1645 nw_off = inner_ip_off - ETH_HLEN; 1646 skb_set_network_header(skb, nw_off); 1647 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1648 struct ipv6hdr *iph = ipv6_hdr(skb); 1649 1650 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1651 len = skb->len - skb_transport_offset(skb); 1652 th = tcp_hdr(skb); 1653 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1654 } else { 1655 struct iphdr *iph = ip_hdr(skb); 1656 1657 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1658 len = skb->len - skb_transport_offset(skb); 1659 th = tcp_hdr(skb); 1660 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1661 } 1662 1663 if (inner_mac_off) { /* tunnel */ 1664 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1665 ETH_HLEN - 2)); 1666 1667 bnxt_gro_tunnel(skb, proto); 1668 } 1669 #endif 1670 return skb; 1671 } 1672 1673 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1674 int payload_off, int tcp_ts, 1675 struct sk_buff *skb) 1676 { 1677 #ifdef CONFIG_INET 1678 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1679 u32 hdr_info = tpa_info->hdr_info; 1680 int iphdr_len, nw_off; 1681 1682 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1683 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1684 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1685 1686 nw_off = inner_ip_off - ETH_HLEN; 1687 skb_set_network_header(skb, nw_off); 1688 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1689 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1690 skb_set_transport_header(skb, nw_off + iphdr_len); 1691 1692 if (inner_mac_off) { /* tunnel */ 1693 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1694 ETH_HLEN - 2)); 1695 1696 bnxt_gro_tunnel(skb, proto); 1697 } 1698 #endif 1699 return skb; 1700 } 1701 1702 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1703 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1704 1705 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1706 int payload_off, int tcp_ts, 1707 struct sk_buff *skb) 1708 { 1709 #ifdef CONFIG_INET 1710 struct tcphdr *th; 1711 int len, nw_off, tcp_opt_len = 0; 1712 1713 if (tcp_ts) 1714 tcp_opt_len = 12; 1715 1716 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1717 struct iphdr *iph; 1718 1719 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1720 ETH_HLEN; 1721 skb_set_network_header(skb, nw_off); 1722 iph = ip_hdr(skb); 1723 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1724 len = skb->len - skb_transport_offset(skb); 1725 th = tcp_hdr(skb); 1726 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1727 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1728 struct ipv6hdr *iph; 1729 1730 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1731 ETH_HLEN; 1732 skb_set_network_header(skb, nw_off); 1733 iph = ipv6_hdr(skb); 1734 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1735 len = skb->len - skb_transport_offset(skb); 1736 th = tcp_hdr(skb); 1737 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1738 } else { 1739 dev_kfree_skb_any(skb); 1740 return NULL; 1741 } 1742 1743 if (nw_off) /* tunnel */ 1744 bnxt_gro_tunnel(skb, skb->protocol); 1745 #endif 1746 return skb; 1747 } 1748 1749 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1750 struct bnxt_tpa_info *tpa_info, 1751 struct rx_tpa_end_cmp *tpa_end, 1752 struct rx_tpa_end_cmp_ext *tpa_end1, 1753 struct sk_buff *skb) 1754 { 1755 #ifdef CONFIG_INET 1756 int payload_off; 1757 u16 segs; 1758 1759 segs = TPA_END_TPA_SEGS(tpa_end); 1760 if (segs == 1) 1761 return skb; 1762 1763 NAPI_GRO_CB(skb)->count = segs; 1764 skb_shinfo(skb)->gso_size = 1765 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1766 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1767 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1768 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1769 else 1770 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1771 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1772 if (likely(skb)) 1773 tcp_gro_complete(skb); 1774 #endif 1775 return skb; 1776 } 1777 1778 /* Given the cfa_code of a received packet determine which 1779 * netdev (vf-rep or PF) the packet is destined to. 1780 */ 1781 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1782 { 1783 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1784 1785 /* if vf-rep dev is NULL, the must belongs to the PF */ 1786 return dev ? dev : bp->dev; 1787 } 1788 1789 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1790 struct bnxt_cp_ring_info *cpr, 1791 u32 *raw_cons, 1792 struct rx_tpa_end_cmp *tpa_end, 1793 struct rx_tpa_end_cmp_ext *tpa_end1, 1794 u8 *event) 1795 { 1796 struct bnxt_napi *bnapi = cpr->bnapi; 1797 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1798 struct net_device *dev = bp->dev; 1799 u8 *data_ptr, agg_bufs; 1800 unsigned int len; 1801 struct bnxt_tpa_info *tpa_info; 1802 dma_addr_t mapping; 1803 struct sk_buff *skb; 1804 u16 idx = 0, agg_id; 1805 void *data; 1806 bool gro; 1807 1808 if (unlikely(bnapi->in_reset)) { 1809 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1810 1811 if (rc < 0) 1812 return ERR_PTR(-EBUSY); 1813 return NULL; 1814 } 1815 1816 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1817 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1818 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1819 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1820 tpa_info = &rxr->rx_tpa[agg_id]; 1821 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1822 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1823 agg_bufs, tpa_info->agg_count); 1824 agg_bufs = tpa_info->agg_count; 1825 } 1826 tpa_info->agg_count = 0; 1827 *event |= BNXT_AGG_EVENT; 1828 bnxt_free_agg_idx(rxr, agg_id); 1829 idx = agg_id; 1830 gro = !!(bp->flags & BNXT_FLAG_GRO); 1831 } else { 1832 agg_id = TPA_END_AGG_ID(tpa_end); 1833 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1834 tpa_info = &rxr->rx_tpa[agg_id]; 1835 idx = RING_CMP(*raw_cons); 1836 if (agg_bufs) { 1837 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1838 return ERR_PTR(-EBUSY); 1839 1840 *event |= BNXT_AGG_EVENT; 1841 idx = NEXT_CMP(idx); 1842 } 1843 gro = !!TPA_END_GRO(tpa_end); 1844 } 1845 data = tpa_info->data; 1846 data_ptr = tpa_info->data_ptr; 1847 prefetch(data_ptr); 1848 len = tpa_info->len; 1849 mapping = tpa_info->mapping; 1850 1851 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1852 bnxt_abort_tpa(cpr, idx, agg_bufs); 1853 if (agg_bufs > MAX_SKB_FRAGS) 1854 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1855 agg_bufs, (int)MAX_SKB_FRAGS); 1856 return NULL; 1857 } 1858 1859 if (len <= bp->rx_copybreak) { 1860 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1861 if (!skb) { 1862 bnxt_abort_tpa(cpr, idx, agg_bufs); 1863 cpr->sw_stats->rx.rx_oom_discards += 1; 1864 return NULL; 1865 } 1866 } else { 1867 u8 *new_data; 1868 dma_addr_t new_mapping; 1869 1870 new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, rxr, 1871 GFP_ATOMIC); 1872 if (!new_data) { 1873 bnxt_abort_tpa(cpr, idx, agg_bufs); 1874 cpr->sw_stats->rx.rx_oom_discards += 1; 1875 return NULL; 1876 } 1877 1878 tpa_info->data = new_data; 1879 tpa_info->data_ptr = new_data + bp->rx_offset; 1880 tpa_info->mapping = new_mapping; 1881 1882 skb = napi_build_skb(data, bp->rx_buf_size); 1883 dma_sync_single_for_cpu(&bp->pdev->dev, mapping, 1884 bp->rx_buf_use_size, bp->rx_dir); 1885 1886 if (!skb) { 1887 page_pool_free_va(rxr->head_pool, data, true); 1888 bnxt_abort_tpa(cpr, idx, agg_bufs); 1889 cpr->sw_stats->rx.rx_oom_discards += 1; 1890 return NULL; 1891 } 1892 skb_mark_for_recycle(skb); 1893 skb_reserve(skb, bp->rx_offset); 1894 skb_put(skb, len); 1895 } 1896 1897 if (agg_bufs) { 1898 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true); 1899 if (!skb) { 1900 /* Page reuse already handled by bnxt_rx_pages(). */ 1901 cpr->sw_stats->rx.rx_oom_discards += 1; 1902 return NULL; 1903 } 1904 } 1905 1906 if (tpa_info->cfa_code_valid) 1907 dev = bnxt_get_pkt_dev(bp, tpa_info->cfa_code); 1908 skb->protocol = eth_type_trans(skb, dev); 1909 1910 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1911 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1912 1913 if (tpa_info->vlan_valid && 1914 (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1915 __be16 vlan_proto = htons(tpa_info->metadata >> 1916 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1917 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1918 1919 if (eth_type_vlan(vlan_proto)) { 1920 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1921 } else { 1922 dev_kfree_skb(skb); 1923 return NULL; 1924 } 1925 } 1926 1927 skb_checksum_none_assert(skb); 1928 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1929 skb->ip_summed = CHECKSUM_UNNECESSARY; 1930 skb->csum_level = 1931 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1932 } 1933 1934 if (gro) 1935 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1936 1937 return skb; 1938 } 1939 1940 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1941 struct rx_agg_cmp *rx_agg) 1942 { 1943 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1944 struct bnxt_tpa_info *tpa_info; 1945 1946 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1947 tpa_info = &rxr->rx_tpa[agg_id]; 1948 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1949 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1950 } 1951 1952 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1953 struct sk_buff *skb) 1954 { 1955 skb_mark_for_recycle(skb); 1956 1957 if (skb->dev != bp->dev) { 1958 /* this packet belongs to a vf-rep */ 1959 bnxt_vf_rep_rx(bp, skb); 1960 return; 1961 } 1962 skb_record_rx_queue(skb, bnapi->index); 1963 napi_gro_receive(&bnapi->napi, skb); 1964 } 1965 1966 static bool bnxt_rx_ts_valid(struct bnxt *bp, u32 flags, 1967 struct rx_cmp_ext *rxcmp1, u32 *cmpl_ts) 1968 { 1969 u32 ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); 1970 1971 if (BNXT_PTP_RX_TS_VALID(flags)) 1972 goto ts_valid; 1973 if (!bp->ptp_all_rx_tstamp || !ts || !BNXT_ALL_RX_TS_VALID(flags)) 1974 return false; 1975 1976 ts_valid: 1977 *cmpl_ts = ts; 1978 return true; 1979 } 1980 1981 static struct sk_buff *bnxt_rx_vlan(struct sk_buff *skb, u8 cmp_type, 1982 struct rx_cmp *rxcmp, 1983 struct rx_cmp_ext *rxcmp1) 1984 { 1985 __be16 vlan_proto; 1986 u16 vtag; 1987 1988 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1989 __le32 flags2 = rxcmp1->rx_cmp_flags2; 1990 u32 meta_data; 1991 1992 if (!(flags2 & cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN))) 1993 return skb; 1994 1995 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 1996 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1997 vlan_proto = htons(meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT); 1998 if (eth_type_vlan(vlan_proto)) 1999 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 2000 else 2001 goto vlan_err; 2002 } else if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2003 if (RX_CMP_VLAN_VALID(rxcmp)) { 2004 u32 tpid_sel = RX_CMP_VLAN_TPID_SEL(rxcmp); 2005 2006 if (tpid_sel == RX_CMP_METADATA1_TPID_8021Q) 2007 vlan_proto = htons(ETH_P_8021Q); 2008 else if (tpid_sel == RX_CMP_METADATA1_TPID_8021AD) 2009 vlan_proto = htons(ETH_P_8021AD); 2010 else 2011 goto vlan_err; 2012 vtag = RX_CMP_METADATA0_TCI(rxcmp1); 2013 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 2014 } 2015 } 2016 return skb; 2017 vlan_err: 2018 dev_kfree_skb(skb); 2019 return NULL; 2020 } 2021 2022 static enum pkt_hash_types bnxt_rss_ext_op(struct bnxt *bp, 2023 struct rx_cmp *rxcmp) 2024 { 2025 u8 ext_op; 2026 2027 ext_op = RX_CMP_V3_HASH_TYPE(bp, rxcmp); 2028 switch (ext_op) { 2029 case EXT_OP_INNER_4: 2030 case EXT_OP_OUTER_4: 2031 case EXT_OP_INNFL_3: 2032 case EXT_OP_OUTFL_3: 2033 return PKT_HASH_TYPE_L4; 2034 default: 2035 return PKT_HASH_TYPE_L3; 2036 } 2037 } 2038 2039 /* returns the following: 2040 * 1 - 1 packet successfully received 2041 * 0 - successful TPA_START, packet not completed yet 2042 * -EBUSY - completion ring does not have all the agg buffers yet 2043 * -ENOMEM - packet aborted due to out of memory 2044 * -EIO - packet aborted due to hw error indicated in BD 2045 */ 2046 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2047 u32 *raw_cons, u8 *event) 2048 { 2049 struct bnxt_napi *bnapi = cpr->bnapi; 2050 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2051 struct net_device *dev = bp->dev; 2052 struct rx_cmp *rxcmp; 2053 struct rx_cmp_ext *rxcmp1; 2054 u32 tmp_raw_cons = *raw_cons; 2055 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 2056 struct skb_shared_info *sinfo; 2057 struct bnxt_sw_rx_bd *rx_buf; 2058 unsigned int len; 2059 u8 *data_ptr, agg_bufs, cmp_type; 2060 bool xdp_active = false; 2061 dma_addr_t dma_addr; 2062 struct sk_buff *skb; 2063 struct xdp_buff xdp; 2064 u32 flags, misc; 2065 u32 cmpl_ts; 2066 void *data; 2067 int rc = 0; 2068 2069 rxcmp = (struct rx_cmp *) 2070 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2071 2072 cmp_type = RX_CMP_TYPE(rxcmp); 2073 2074 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 2075 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 2076 goto next_rx_no_prod_no_len; 2077 } 2078 2079 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2080 cp_cons = RING_CMP(tmp_raw_cons); 2081 rxcmp1 = (struct rx_cmp_ext *) 2082 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2083 2084 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2085 return -EBUSY; 2086 2087 /* The valid test of the entry must be done first before 2088 * reading any further. 2089 */ 2090 dma_rmb(); 2091 prod = rxr->rx_prod; 2092 2093 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP || 2094 cmp_type == CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 2095 bnxt_tpa_start(bp, rxr, cmp_type, 2096 (struct rx_tpa_start_cmp *)rxcmp, 2097 (struct rx_tpa_start_cmp_ext *)rxcmp1); 2098 2099 *event |= BNXT_RX_EVENT; 2100 goto next_rx_no_prod_no_len; 2101 2102 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2103 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 2104 (struct rx_tpa_end_cmp *)rxcmp, 2105 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 2106 2107 if (IS_ERR(skb)) 2108 return -EBUSY; 2109 2110 rc = -ENOMEM; 2111 if (likely(skb)) { 2112 bnxt_deliver_skb(bp, bnapi, skb); 2113 rc = 1; 2114 } 2115 *event |= BNXT_RX_EVENT; 2116 goto next_rx_no_prod_no_len; 2117 } 2118 2119 cons = rxcmp->rx_cmp_opaque; 2120 if (unlikely(cons != rxr->rx_next_cons)) { 2121 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 2122 2123 /* 0xffff is forced error, don't print it */ 2124 if (rxr->rx_next_cons != 0xffff) 2125 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 2126 cons, rxr->rx_next_cons); 2127 bnxt_sched_reset_rxr(bp, rxr); 2128 if (rc1) 2129 return rc1; 2130 goto next_rx_no_prod_no_len; 2131 } 2132 rx_buf = &rxr->rx_buf_ring[cons]; 2133 data = rx_buf->data; 2134 data_ptr = rx_buf->data_ptr; 2135 prefetch(data_ptr); 2136 2137 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 2138 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 2139 2140 if (agg_bufs) { 2141 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 2142 return -EBUSY; 2143 2144 cp_cons = NEXT_CMP(cp_cons); 2145 *event |= BNXT_AGG_EVENT; 2146 } 2147 *event |= BNXT_RX_EVENT; 2148 2149 rx_buf->data = NULL; 2150 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 2151 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 2152 2153 bnxt_reuse_rx_data(rxr, cons, data); 2154 if (agg_bufs) 2155 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 2156 false); 2157 2158 rc = -EIO; 2159 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 2160 bnapi->cp_ring.sw_stats->rx.rx_buf_errors++; 2161 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 2162 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 2163 netdev_warn_once(bp->dev, "RX buffer error %x\n", 2164 rx_err); 2165 bnxt_sched_reset_rxr(bp, rxr); 2166 } 2167 } 2168 goto next_rx_no_len; 2169 } 2170 2171 flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); 2172 len = flags >> RX_CMP_LEN_SHIFT; 2173 dma_addr = rx_buf->mapping; 2174 2175 if (bnxt_xdp_attached(bp, rxr)) { 2176 bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp); 2177 if (agg_bufs) { 2178 u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp, 2179 cp_cons, agg_bufs, 2180 false); 2181 if (!frag_len) 2182 goto oom_next_rx; 2183 2184 } 2185 xdp_active = true; 2186 } 2187 2188 if (xdp_active) { 2189 if (bnxt_rx_xdp(bp, rxr, cons, &xdp, data, &data_ptr, &len, event)) { 2190 rc = 1; 2191 goto next_rx; 2192 } 2193 if (xdp_buff_has_frags(&xdp)) { 2194 sinfo = xdp_get_shared_info_from_buff(&xdp); 2195 agg_bufs = sinfo->nr_frags; 2196 } else { 2197 agg_bufs = 0; 2198 } 2199 } 2200 2201 if (len <= bp->rx_copybreak) { 2202 if (!xdp_active) 2203 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 2204 else 2205 skb = bnxt_copy_xdp(bnapi, &xdp, len, dma_addr); 2206 bnxt_reuse_rx_data(rxr, cons, data); 2207 if (!skb) { 2208 if (agg_bufs) { 2209 if (!xdp_active) 2210 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 2211 agg_bufs, false); 2212 else 2213 bnxt_xdp_buff_frags_free(rxr, &xdp); 2214 } 2215 goto oom_next_rx; 2216 } 2217 } else { 2218 u32 payload; 2219 2220 if (rx_buf->data_ptr == data_ptr) 2221 payload = misc & RX_CMP_PAYLOAD_OFFSET; 2222 else 2223 payload = 0; 2224 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 2225 payload | len); 2226 if (!skb) 2227 goto oom_next_rx; 2228 } 2229 2230 if (agg_bufs) { 2231 if (!xdp_active) { 2232 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false); 2233 if (!skb) 2234 goto oom_next_rx; 2235 } else { 2236 skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, 2237 rxr->page_pool, &xdp); 2238 if (!skb) { 2239 /* we should be able to free the old skb here */ 2240 bnxt_xdp_buff_frags_free(rxr, &xdp); 2241 goto oom_next_rx; 2242 } 2243 } 2244 } 2245 2246 if (RX_CMP_HASH_VALID(rxcmp)) { 2247 enum pkt_hash_types type; 2248 2249 if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2250 type = bnxt_rss_ext_op(bp, rxcmp); 2251 } else { 2252 u32 itypes = RX_CMP_ITYPES(rxcmp); 2253 2254 if (itypes == RX_CMP_FLAGS_ITYPE_TCP || 2255 itypes == RX_CMP_FLAGS_ITYPE_UDP) 2256 type = PKT_HASH_TYPE_L4; 2257 else 2258 type = PKT_HASH_TYPE_L3; 2259 } 2260 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 2261 } 2262 2263 if (cmp_type == CMP_TYPE_RX_L2_CMP) 2264 dev = bnxt_get_pkt_dev(bp, RX_CMP_CFA_CODE(rxcmp1)); 2265 skb->protocol = eth_type_trans(skb, dev); 2266 2267 if (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) { 2268 skb = bnxt_rx_vlan(skb, cmp_type, rxcmp, rxcmp1); 2269 if (!skb) 2270 goto next_rx; 2271 } 2272 2273 skb_checksum_none_assert(skb); 2274 if (RX_CMP_L4_CS_OK(rxcmp1)) { 2275 if (dev->features & NETIF_F_RXCSUM) { 2276 skb->ip_summed = CHECKSUM_UNNECESSARY; 2277 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 2278 } 2279 } else { 2280 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 2281 if (dev->features & NETIF_F_RXCSUM) 2282 bnapi->cp_ring.sw_stats->rx.rx_l4_csum_errors++; 2283 } 2284 } 2285 2286 if (bnxt_rx_ts_valid(bp, flags, rxcmp1, &cmpl_ts)) { 2287 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 2288 u64 ns, ts; 2289 2290 if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { 2291 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2292 2293 ns = bnxt_timecounter_cyc2time(ptp, ts); 2294 memset(skb_hwtstamps(skb), 0, 2295 sizeof(*skb_hwtstamps(skb))); 2296 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 2297 } 2298 } 2299 } 2300 bnxt_deliver_skb(bp, bnapi, skb); 2301 rc = 1; 2302 2303 next_rx: 2304 cpr->rx_packets += 1; 2305 cpr->rx_bytes += len; 2306 2307 next_rx_no_len: 2308 rxr->rx_prod = NEXT_RX(prod); 2309 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 2310 2311 next_rx_no_prod_no_len: 2312 *raw_cons = tmp_raw_cons; 2313 2314 return rc; 2315 2316 oom_next_rx: 2317 cpr->sw_stats->rx.rx_oom_discards += 1; 2318 rc = -ENOMEM; 2319 goto next_rx; 2320 } 2321 2322 /* In netpoll mode, if we are using a combined completion ring, we need to 2323 * discard the rx packets and recycle the buffers. 2324 */ 2325 static int bnxt_force_rx_discard(struct bnxt *bp, 2326 struct bnxt_cp_ring_info *cpr, 2327 u32 *raw_cons, u8 *event) 2328 { 2329 u32 tmp_raw_cons = *raw_cons; 2330 struct rx_cmp_ext *rxcmp1; 2331 struct rx_cmp *rxcmp; 2332 u16 cp_cons; 2333 u8 cmp_type; 2334 int rc; 2335 2336 cp_cons = RING_CMP(tmp_raw_cons); 2337 rxcmp = (struct rx_cmp *) 2338 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2339 2340 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2341 cp_cons = RING_CMP(tmp_raw_cons); 2342 rxcmp1 = (struct rx_cmp_ext *) 2343 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2344 2345 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2346 return -EBUSY; 2347 2348 /* The valid test of the entry must be done first before 2349 * reading any further. 2350 */ 2351 dma_rmb(); 2352 cmp_type = RX_CMP_TYPE(rxcmp); 2353 if (cmp_type == CMP_TYPE_RX_L2_CMP || 2354 cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2355 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2356 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2357 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2358 struct rx_tpa_end_cmp_ext *tpa_end1; 2359 2360 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 2361 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 2362 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 2363 } 2364 rc = bnxt_rx_pkt(bp, cpr, raw_cons, event); 2365 if (rc && rc != -EBUSY) 2366 cpr->sw_stats->rx.rx_netpoll_discards += 1; 2367 return rc; 2368 } 2369 2370 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 2371 { 2372 struct bnxt_fw_health *fw_health = bp->fw_health; 2373 u32 reg = fw_health->regs[reg_idx]; 2374 u32 reg_type, reg_off, val = 0; 2375 2376 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 2377 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 2378 switch (reg_type) { 2379 case BNXT_FW_HEALTH_REG_TYPE_CFG: 2380 pci_read_config_dword(bp->pdev, reg_off, &val); 2381 break; 2382 case BNXT_FW_HEALTH_REG_TYPE_GRC: 2383 reg_off = fw_health->mapped_regs[reg_idx]; 2384 fallthrough; 2385 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 2386 val = readl(bp->bar0 + reg_off); 2387 break; 2388 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 2389 val = readl(bp->bar1 + reg_off); 2390 break; 2391 } 2392 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 2393 val &= fw_health->fw_reset_inprog_reg_mask; 2394 return val; 2395 } 2396 2397 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 2398 { 2399 int i; 2400 2401 for (i = 0; i < bp->rx_nr_rings; i++) { 2402 u16 grp_idx = bp->rx_ring[i].bnapi->index; 2403 struct bnxt_ring_grp_info *grp_info; 2404 2405 grp_info = &bp->grp_info[grp_idx]; 2406 if (grp_info->agg_fw_ring_id == ring_id) 2407 return grp_idx; 2408 } 2409 return INVALID_HW_RING_ID; 2410 } 2411 2412 static u16 bnxt_get_force_speed(struct bnxt_link_info *link_info) 2413 { 2414 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2415 2416 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 2417 return link_info->force_link_speed2; 2418 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4) 2419 return link_info->force_pam4_link_speed; 2420 return link_info->force_link_speed; 2421 } 2422 2423 static void bnxt_set_force_speed(struct bnxt_link_info *link_info) 2424 { 2425 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2426 2427 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2428 link_info->req_link_speed = link_info->force_link_speed2; 2429 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2430 switch (link_info->req_link_speed) { 2431 case BNXT_LINK_SPEED_50GB_PAM4: 2432 case BNXT_LINK_SPEED_100GB_PAM4: 2433 case BNXT_LINK_SPEED_200GB_PAM4: 2434 case BNXT_LINK_SPEED_400GB_PAM4: 2435 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2436 break; 2437 case BNXT_LINK_SPEED_100GB_PAM4_112: 2438 case BNXT_LINK_SPEED_200GB_PAM4_112: 2439 case BNXT_LINK_SPEED_400GB_PAM4_112: 2440 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4_112; 2441 break; 2442 default: 2443 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2444 } 2445 return; 2446 } 2447 link_info->req_link_speed = link_info->force_link_speed; 2448 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2449 if (link_info->force_pam4_link_speed) { 2450 link_info->req_link_speed = link_info->force_pam4_link_speed; 2451 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2452 } 2453 } 2454 2455 static void bnxt_set_auto_speed(struct bnxt_link_info *link_info) 2456 { 2457 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2458 2459 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2460 link_info->advertising = link_info->auto_link_speeds2; 2461 return; 2462 } 2463 link_info->advertising = link_info->auto_link_speeds; 2464 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 2465 } 2466 2467 static bool bnxt_force_speed_updated(struct bnxt_link_info *link_info) 2468 { 2469 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2470 2471 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2472 if (link_info->req_link_speed != link_info->force_link_speed2) 2473 return true; 2474 return false; 2475 } 2476 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 2477 link_info->req_link_speed != link_info->force_link_speed) 2478 return true; 2479 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 2480 link_info->req_link_speed != link_info->force_pam4_link_speed) 2481 return true; 2482 return false; 2483 } 2484 2485 static bool bnxt_auto_speed_updated(struct bnxt_link_info *link_info) 2486 { 2487 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2488 2489 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2490 if (link_info->advertising != link_info->auto_link_speeds2) 2491 return true; 2492 return false; 2493 } 2494 if (link_info->advertising != link_info->auto_link_speeds || 2495 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 2496 return true; 2497 return false; 2498 } 2499 2500 bool bnxt_bs_trace_avail(struct bnxt *bp, u16 type) 2501 { 2502 u32 flags = bp->ctx->ctx_arr[type].flags; 2503 2504 return (flags & BNXT_CTX_MEM_TYPE_VALID) && 2505 ((flags & BNXT_CTX_MEM_FW_TRACE) || 2506 (flags & BNXT_CTX_MEM_FW_BIN_TRACE)); 2507 } 2508 2509 static void bnxt_bs_trace_init(struct bnxt *bp, struct bnxt_ctx_mem_type *ctxm) 2510 { 2511 u32 mem_size, pages, rem_bytes, magic_byte_offset; 2512 u16 trace_type = bnxt_bstore_to_trace[ctxm->type]; 2513 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 2514 struct bnxt_ring_mem_info *rmem, *rmem_pg_tbl; 2515 struct bnxt_bs_trace_info *bs_trace; 2516 int last_pg; 2517 2518 if (ctxm->instance_bmap && ctxm->instance_bmap > 1) 2519 return; 2520 2521 mem_size = ctxm->max_entries * ctxm->entry_size; 2522 rem_bytes = mem_size % BNXT_PAGE_SIZE; 2523 pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 2524 2525 last_pg = (pages - 1) & (MAX_CTX_PAGES - 1); 2526 magic_byte_offset = (rem_bytes ? rem_bytes : BNXT_PAGE_SIZE) - 1; 2527 2528 rmem = &ctx_pg[0].ring_mem; 2529 bs_trace = &bp->bs_trace[trace_type]; 2530 bs_trace->ctx_type = ctxm->type; 2531 bs_trace->trace_type = trace_type; 2532 if (pages > MAX_CTX_PAGES) { 2533 int last_pg_dir = rmem->nr_pages - 1; 2534 2535 rmem_pg_tbl = &ctx_pg[0].ctx_pg_tbl[last_pg_dir]->ring_mem; 2536 bs_trace->magic_byte = rmem_pg_tbl->pg_arr[last_pg]; 2537 } else { 2538 bs_trace->magic_byte = rmem->pg_arr[last_pg]; 2539 } 2540 bs_trace->magic_byte += magic_byte_offset; 2541 *bs_trace->magic_byte = BNXT_TRACE_BUF_MAGIC_BYTE; 2542 } 2543 2544 #define BNXT_EVENT_BUF_PRODUCER_TYPE(data1) \ 2545 (((data1) & ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA1_TYPE_MASK) >>\ 2546 ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA1_TYPE_SFT) 2547 2548 #define BNXT_EVENT_BUF_PRODUCER_OFFSET(data2) \ 2549 (((data2) & \ 2550 ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA2_CURR_OFF_MASK) >>\ 2551 ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA2_CURR_OFF_SFT) 2552 2553 #define BNXT_EVENT_THERMAL_CURRENT_TEMP(data2) \ 2554 ((data2) & \ 2555 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_CURRENT_TEMP_MASK) 2556 2557 #define BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2) \ 2558 (((data2) & \ 2559 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_MASK) >>\ 2560 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_SFT) 2561 2562 #define EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1) \ 2563 ((data1) & \ 2564 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_MASK) 2565 2566 #define EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1) \ 2567 (((data1) & \ 2568 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR) ==\ 2569 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR_INCREASING) 2570 2571 /* Return true if the workqueue has to be scheduled */ 2572 static bool bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2) 2573 { 2574 u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1); 2575 2576 switch (err_type) { 2577 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL: 2578 netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n", 2579 BNXT_EVENT_INVALID_SIGNAL_DATA(data2)); 2580 break; 2581 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM: 2582 netdev_warn(bp->dev, "Pause Storm detected!\n"); 2583 break; 2584 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD: 2585 netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n"); 2586 break; 2587 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_THERMAL_THRESHOLD: { 2588 u32 type = EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1); 2589 char *threshold_type; 2590 bool notify = false; 2591 char *dir_str; 2592 2593 switch (type) { 2594 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_WARN: 2595 threshold_type = "warning"; 2596 break; 2597 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_CRITICAL: 2598 threshold_type = "critical"; 2599 break; 2600 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_FATAL: 2601 threshold_type = "fatal"; 2602 break; 2603 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_SHUTDOWN: 2604 threshold_type = "shutdown"; 2605 break; 2606 default: 2607 netdev_err(bp->dev, "Unknown Thermal threshold type event\n"); 2608 return false; 2609 } 2610 if (EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)) { 2611 dir_str = "above"; 2612 notify = true; 2613 } else { 2614 dir_str = "below"; 2615 } 2616 netdev_warn(bp->dev, "Chip temperature has gone %s the %s thermal threshold!\n", 2617 dir_str, threshold_type); 2618 netdev_warn(bp->dev, "Temperature (In Celsius), Current: %lu, threshold: %lu\n", 2619 BNXT_EVENT_THERMAL_CURRENT_TEMP(data2), 2620 BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2)); 2621 if (notify) { 2622 bp->thermal_threshold_type = type; 2623 set_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event); 2624 return true; 2625 } 2626 return false; 2627 } 2628 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DUAL_DATA_RATE_NOT_SUPPORTED: 2629 netdev_warn(bp->dev, "Speed change not supported with dual rate transceivers on this board\n"); 2630 break; 2631 default: 2632 netdev_err(bp->dev, "FW reported unknown error type %u\n", 2633 err_type); 2634 break; 2635 } 2636 return false; 2637 } 2638 2639 #define BNXT_GET_EVENT_PORT(data) \ 2640 ((data) & \ 2641 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 2642 2643 #define BNXT_EVENT_RING_TYPE(data2) \ 2644 ((data2) & \ 2645 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 2646 2647 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 2648 (BNXT_EVENT_RING_TYPE(data2) == \ 2649 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 2650 2651 #define BNXT_EVENT_PHC_EVENT_TYPE(data1) \ 2652 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\ 2653 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT) 2654 2655 #define BNXT_EVENT_PHC_RTC_UPDATE(data1) \ 2656 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\ 2657 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT) 2658 2659 #define BNXT_PHC_BITS 48 2660 2661 static int bnxt_async_event_process(struct bnxt *bp, 2662 struct hwrm_async_event_cmpl *cmpl) 2663 { 2664 u16 event_id = le16_to_cpu(cmpl->event_id); 2665 u32 data1 = le32_to_cpu(cmpl->event_data1); 2666 u32 data2 = le32_to_cpu(cmpl->event_data2); 2667 2668 netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n", 2669 event_id, data1, data2); 2670 2671 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2672 switch (event_id) { 2673 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2674 struct bnxt_link_info *link_info = &bp->link_info; 2675 2676 if (BNXT_VF(bp)) 2677 goto async_event_process_exit; 2678 2679 /* print unsupported speed warning in forced speed mode only */ 2680 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2681 (data1 & 0x20000)) { 2682 u16 fw_speed = bnxt_get_force_speed(link_info); 2683 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2684 2685 if (speed != SPEED_UNKNOWN) 2686 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2687 speed); 2688 } 2689 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2690 } 2691 fallthrough; 2692 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2693 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2694 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2695 fallthrough; 2696 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2697 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2698 break; 2699 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2700 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2701 break; 2702 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2703 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2704 2705 if (BNXT_VF(bp)) 2706 break; 2707 2708 if (bp->pf.port_id != port_id) 2709 break; 2710 2711 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2712 break; 2713 } 2714 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2715 if (BNXT_PF(bp)) 2716 goto async_event_process_exit; 2717 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2718 break; 2719 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2720 char *type_str = "Solicited"; 2721 2722 if (!bp->fw_health) 2723 goto async_event_process_exit; 2724 2725 bp->fw_reset_timestamp = jiffies; 2726 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2727 if (!bp->fw_reset_min_dsecs) 2728 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2729 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2730 if (!bp->fw_reset_max_dsecs) 2731 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2732 if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) { 2733 set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state); 2734 } else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2735 type_str = "Fatal"; 2736 bp->fw_health->fatalities++; 2737 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2738 } else if (data2 && BNXT_FW_STATUS_HEALTHY != 2739 EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) { 2740 type_str = "Non-fatal"; 2741 bp->fw_health->survivals++; 2742 set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 2743 } 2744 netif_warn(bp, hw, bp->dev, 2745 "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2746 type_str, data1, data2, 2747 bp->fw_reset_min_dsecs * 100, 2748 bp->fw_reset_max_dsecs * 100); 2749 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2750 break; 2751 } 2752 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2753 struct bnxt_fw_health *fw_health = bp->fw_health; 2754 char *status_desc = "healthy"; 2755 u32 status; 2756 2757 if (!fw_health) 2758 goto async_event_process_exit; 2759 2760 if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) { 2761 fw_health->enabled = false; 2762 netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n"); 2763 break; 2764 } 2765 fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2766 fw_health->tmr_multiplier = 2767 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2768 bp->current_interval * 10); 2769 fw_health->tmr_counter = fw_health->tmr_multiplier; 2770 if (!fw_health->enabled) 2771 fw_health->last_fw_heartbeat = 2772 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2773 fw_health->last_fw_reset_cnt = 2774 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2775 status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 2776 if (status != BNXT_FW_STATUS_HEALTHY) 2777 status_desc = "unhealthy"; 2778 netif_info(bp, drv, bp->dev, 2779 "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n", 2780 fw_health->primary ? "primary" : "backup", status, 2781 status_desc, fw_health->last_fw_reset_cnt); 2782 if (!fw_health->enabled) { 2783 /* Make sure tmr_counter is set and visible to 2784 * bnxt_health_check() before setting enabled to true. 2785 */ 2786 smp_wmb(); 2787 fw_health->enabled = true; 2788 } 2789 goto async_event_process_exit; 2790 } 2791 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2792 netif_notice(bp, hw, bp->dev, 2793 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2794 data1, data2); 2795 goto async_event_process_exit; 2796 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2797 struct bnxt_rx_ring_info *rxr; 2798 u16 grp_idx; 2799 2800 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 2801 goto async_event_process_exit; 2802 2803 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2804 BNXT_EVENT_RING_TYPE(data2), data1); 2805 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2806 goto async_event_process_exit; 2807 2808 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2809 if (grp_idx == INVALID_HW_RING_ID) { 2810 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2811 data1); 2812 goto async_event_process_exit; 2813 } 2814 rxr = bp->bnapi[grp_idx]->rx_ring; 2815 bnxt_sched_reset_rxr(bp, rxr); 2816 goto async_event_process_exit; 2817 } 2818 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2819 struct bnxt_fw_health *fw_health = bp->fw_health; 2820 2821 netif_notice(bp, hw, bp->dev, 2822 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2823 data1, data2); 2824 if (fw_health) { 2825 fw_health->echo_req_data1 = data1; 2826 fw_health->echo_req_data2 = data2; 2827 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2828 break; 2829 } 2830 goto async_event_process_exit; 2831 } 2832 case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: { 2833 bnxt_ptp_pps_event(bp, data1, data2); 2834 goto async_event_process_exit; 2835 } 2836 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: { 2837 if (bnxt_event_error_report(bp, data1, data2)) 2838 break; 2839 goto async_event_process_exit; 2840 } 2841 case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: { 2842 switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) { 2843 case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE: 2844 if (BNXT_PTP_USE_RTC(bp)) { 2845 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2846 unsigned long flags; 2847 u64 ns; 2848 2849 if (!ptp) 2850 goto async_event_process_exit; 2851 2852 bnxt_ptp_update_current_time(bp); 2853 ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) << 2854 BNXT_PHC_BITS) | ptp->current_time); 2855 write_seqlock_irqsave(&ptp->ptp_lock, flags); 2856 bnxt_ptp_rtc_timecounter_init(ptp, ns); 2857 write_sequnlock_irqrestore(&ptp->ptp_lock, flags); 2858 } 2859 break; 2860 } 2861 goto async_event_process_exit; 2862 } 2863 case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: { 2864 u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff; 2865 2866 hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED); 2867 goto async_event_process_exit; 2868 } 2869 case ASYNC_EVENT_CMPL_EVENT_ID_DBG_BUF_PRODUCER: { 2870 u16 type = (u16)BNXT_EVENT_BUF_PRODUCER_TYPE(data1); 2871 u32 offset = BNXT_EVENT_BUF_PRODUCER_OFFSET(data2); 2872 2873 bnxt_bs_trace_check_wrap(&bp->bs_trace[type], offset); 2874 goto async_event_process_exit; 2875 } 2876 default: 2877 goto async_event_process_exit; 2878 } 2879 __bnxt_queue_sp_work(bp); 2880 async_event_process_exit: 2881 bnxt_ulp_async_events(bp, cmpl); 2882 return 0; 2883 } 2884 2885 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2886 { 2887 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2888 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2889 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2890 (struct hwrm_fwd_req_cmpl *)txcmp; 2891 2892 switch (cmpl_type) { 2893 case CMPL_BASE_TYPE_HWRM_DONE: 2894 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2895 hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE); 2896 break; 2897 2898 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2899 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2900 2901 if ((vf_id < bp->pf.first_vf_id) || 2902 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2903 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2904 vf_id); 2905 return -EINVAL; 2906 } 2907 2908 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2909 bnxt_queue_sp_work(bp, BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT); 2910 break; 2911 2912 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2913 bnxt_async_event_process(bp, 2914 (struct hwrm_async_event_cmpl *)txcmp); 2915 break; 2916 2917 default: 2918 break; 2919 } 2920 2921 return 0; 2922 } 2923 2924 static bool bnxt_vnic_is_active(struct bnxt *bp) 2925 { 2926 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 2927 2928 return vnic->fw_vnic_id != INVALID_HW_RING_ID && vnic->mru > 0; 2929 } 2930 2931 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2932 { 2933 struct bnxt_napi *bnapi = dev_instance; 2934 struct bnxt *bp = bnapi->bp; 2935 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2936 u32 cons = RING_CMP(cpr->cp_raw_cons); 2937 2938 cpr->event_ctr++; 2939 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2940 napi_schedule(&bnapi->napi); 2941 return IRQ_HANDLED; 2942 } 2943 2944 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2945 { 2946 u32 raw_cons = cpr->cp_raw_cons; 2947 u16 cons = RING_CMP(raw_cons); 2948 struct tx_cmp *txcmp; 2949 2950 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2951 2952 return TX_CMP_VALID(txcmp, raw_cons); 2953 } 2954 2955 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2956 int budget) 2957 { 2958 struct bnxt_napi *bnapi = cpr->bnapi; 2959 u32 raw_cons = cpr->cp_raw_cons; 2960 u32 cons; 2961 int rx_pkts = 0; 2962 u8 event = 0; 2963 struct tx_cmp *txcmp; 2964 2965 cpr->has_more_work = 0; 2966 cpr->had_work_done = 1; 2967 while (1) { 2968 u8 cmp_type; 2969 int rc; 2970 2971 cons = RING_CMP(raw_cons); 2972 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2973 2974 if (!TX_CMP_VALID(txcmp, raw_cons)) 2975 break; 2976 2977 /* The valid test of the entry must be done first before 2978 * reading any further. 2979 */ 2980 dma_rmb(); 2981 cmp_type = TX_CMP_TYPE(txcmp); 2982 if (cmp_type == CMP_TYPE_TX_L2_CMP || 2983 cmp_type == CMP_TYPE_TX_L2_COAL_CMP) { 2984 u32 opaque = txcmp->tx_cmp_opaque; 2985 struct bnxt_tx_ring_info *txr; 2986 u16 tx_freed; 2987 2988 txr = bnapi->tx_ring[TX_OPAQUE_RING(opaque)]; 2989 event |= BNXT_TX_CMP_EVENT; 2990 if (cmp_type == CMP_TYPE_TX_L2_COAL_CMP) 2991 txr->tx_hw_cons = TX_CMP_SQ_CONS_IDX(txcmp); 2992 else 2993 txr->tx_hw_cons = TX_OPAQUE_PROD(bp, opaque); 2994 tx_freed = (txr->tx_hw_cons - txr->tx_cons) & 2995 bp->tx_ring_mask; 2996 /* return full budget so NAPI will complete. */ 2997 if (unlikely(tx_freed >= bp->tx_wake_thresh)) { 2998 rx_pkts = budget; 2999 raw_cons = NEXT_RAW_CMP(raw_cons); 3000 if (budget) 3001 cpr->has_more_work = 1; 3002 break; 3003 } 3004 } else if (cmp_type == CMP_TYPE_TX_L2_PKT_TS_CMP) { 3005 bnxt_tx_ts_cmp(bp, bnapi, (struct tx_ts_cmp *)txcmp); 3006 } else if (cmp_type >= CMP_TYPE_RX_L2_CMP && 3007 cmp_type <= CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 3008 if (likely(budget)) 3009 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 3010 else 3011 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 3012 &event); 3013 if (likely(rc >= 0)) 3014 rx_pkts += rc; 3015 /* Increment rx_pkts when rc is -ENOMEM to count towards 3016 * the NAPI budget. Otherwise, we may potentially loop 3017 * here forever if we consistently cannot allocate 3018 * buffers. 3019 */ 3020 else if (rc == -ENOMEM && budget) 3021 rx_pkts++; 3022 else if (rc == -EBUSY) /* partial completion */ 3023 break; 3024 } else if (unlikely(cmp_type == CMPL_BASE_TYPE_HWRM_DONE || 3025 cmp_type == CMPL_BASE_TYPE_HWRM_FWD_REQ || 3026 cmp_type == CMPL_BASE_TYPE_HWRM_ASYNC_EVENT)) { 3027 bnxt_hwrm_handler(bp, txcmp); 3028 } 3029 raw_cons = NEXT_RAW_CMP(raw_cons); 3030 3031 if (rx_pkts && rx_pkts == budget) { 3032 cpr->has_more_work = 1; 3033 break; 3034 } 3035 } 3036 3037 if (event & BNXT_REDIRECT_EVENT) { 3038 xdp_do_flush(); 3039 event &= ~BNXT_REDIRECT_EVENT; 3040 } 3041 3042 if (event & BNXT_TX_EVENT) { 3043 struct bnxt_tx_ring_info *txr = bnapi->tx_ring[0]; 3044 u16 prod = txr->tx_prod; 3045 3046 /* Sync BD data before updating doorbell */ 3047 wmb(); 3048 3049 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 3050 event &= ~BNXT_TX_EVENT; 3051 } 3052 3053 cpr->cp_raw_cons = raw_cons; 3054 bnapi->events |= event; 3055 return rx_pkts; 3056 } 3057 3058 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi, 3059 int budget) 3060 { 3061 if ((bnapi->events & BNXT_TX_CMP_EVENT) && !bnapi->tx_fault) 3062 bnapi->tx_int(bp, bnapi, budget); 3063 3064 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 3065 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3066 3067 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 3068 bnapi->events &= ~BNXT_RX_EVENT; 3069 } 3070 if (bnapi->events & BNXT_AGG_EVENT) { 3071 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3072 3073 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 3074 bnapi->events &= ~BNXT_AGG_EVENT; 3075 } 3076 } 3077 3078 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 3079 int budget) 3080 { 3081 struct bnxt_napi *bnapi = cpr->bnapi; 3082 int rx_pkts; 3083 3084 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 3085 3086 /* ACK completion ring before freeing tx ring and producing new 3087 * buffers in rx/agg rings to prevent overflowing the completion 3088 * ring. 3089 */ 3090 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 3091 3092 __bnxt_poll_work_done(bp, bnapi, budget); 3093 return rx_pkts; 3094 } 3095 3096 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 3097 { 3098 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3099 struct bnxt *bp = bnapi->bp; 3100 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3101 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3102 struct tx_cmp *txcmp; 3103 struct rx_cmp_ext *rxcmp1; 3104 u32 cp_cons, tmp_raw_cons; 3105 u32 raw_cons = cpr->cp_raw_cons; 3106 bool flush_xdp = false; 3107 u32 rx_pkts = 0; 3108 u8 event = 0; 3109 3110 while (1) { 3111 int rc; 3112 3113 cp_cons = RING_CMP(raw_cons); 3114 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 3115 3116 if (!TX_CMP_VALID(txcmp, raw_cons)) 3117 break; 3118 3119 /* The valid test of the entry must be done first before 3120 * reading any further. 3121 */ 3122 dma_rmb(); 3123 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 3124 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 3125 cp_cons = RING_CMP(tmp_raw_cons); 3126 rxcmp1 = (struct rx_cmp_ext *) 3127 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 3128 3129 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 3130 break; 3131 3132 /* force an error to recycle the buffer */ 3133 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 3134 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 3135 3136 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 3137 if (likely(rc == -EIO) && budget) 3138 rx_pkts++; 3139 else if (rc == -EBUSY) /* partial completion */ 3140 break; 3141 if (event & BNXT_REDIRECT_EVENT) 3142 flush_xdp = true; 3143 } else if (unlikely(TX_CMP_TYPE(txcmp) == 3144 CMPL_BASE_TYPE_HWRM_DONE)) { 3145 bnxt_hwrm_handler(bp, txcmp); 3146 } else { 3147 netdev_err(bp->dev, 3148 "Invalid completion received on special ring\n"); 3149 } 3150 raw_cons = NEXT_RAW_CMP(raw_cons); 3151 3152 if (rx_pkts == budget) 3153 break; 3154 } 3155 3156 cpr->cp_raw_cons = raw_cons; 3157 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 3158 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 3159 3160 if (event & BNXT_AGG_EVENT) 3161 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 3162 if (flush_xdp) 3163 xdp_do_flush(); 3164 3165 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 3166 napi_complete_done(napi, rx_pkts); 3167 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3168 } 3169 return rx_pkts; 3170 } 3171 3172 static int bnxt_poll(struct napi_struct *napi, int budget) 3173 { 3174 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3175 struct bnxt *bp = bnapi->bp; 3176 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3177 int work_done = 0; 3178 3179 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3180 napi_complete(napi); 3181 return 0; 3182 } 3183 while (1) { 3184 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 3185 3186 if (work_done >= budget) { 3187 if (!budget) 3188 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3189 break; 3190 } 3191 3192 if (!bnxt_has_work(bp, cpr)) { 3193 if (napi_complete_done(napi, work_done)) 3194 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3195 break; 3196 } 3197 } 3198 if ((bp->flags & BNXT_FLAG_DIM) && bnxt_vnic_is_active(bp)) { 3199 struct dim_sample dim_sample = {}; 3200 3201 dim_update_sample(cpr->event_ctr, 3202 cpr->rx_packets, 3203 cpr->rx_bytes, 3204 &dim_sample); 3205 net_dim(&cpr->dim, &dim_sample); 3206 } 3207 return work_done; 3208 } 3209 3210 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 3211 { 3212 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3213 int i, work_done = 0; 3214 3215 for (i = 0; i < cpr->cp_ring_count; i++) { 3216 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3217 3218 if (cpr2->had_nqe_notify) { 3219 work_done += __bnxt_poll_work(bp, cpr2, 3220 budget - work_done); 3221 cpr->has_more_work |= cpr2->has_more_work; 3222 } 3223 } 3224 return work_done; 3225 } 3226 3227 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 3228 u64 dbr_type, int budget) 3229 { 3230 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3231 int i; 3232 3233 for (i = 0; i < cpr->cp_ring_count; i++) { 3234 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3235 struct bnxt_db_info *db; 3236 3237 if (cpr2->had_work_done) { 3238 u32 tgl = 0; 3239 3240 if (dbr_type == DBR_TYPE_CQ_ARMALL) { 3241 cpr2->had_nqe_notify = 0; 3242 tgl = cpr2->toggle; 3243 } 3244 db = &cpr2->cp_db; 3245 bnxt_writeq(bp, 3246 db->db_key64 | dbr_type | DB_TOGGLE(tgl) | 3247 DB_RING_IDX(db, cpr2->cp_raw_cons), 3248 db->doorbell); 3249 cpr2->had_work_done = 0; 3250 } 3251 } 3252 __bnxt_poll_work_done(bp, bnapi, budget); 3253 } 3254 3255 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 3256 { 3257 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3258 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3259 struct bnxt_cp_ring_info *cpr_rx; 3260 u32 raw_cons = cpr->cp_raw_cons; 3261 struct bnxt *bp = bnapi->bp; 3262 struct nqe_cn *nqcmp; 3263 int work_done = 0; 3264 u32 cons; 3265 3266 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3267 napi_complete(napi); 3268 return 0; 3269 } 3270 if (cpr->has_more_work) { 3271 cpr->has_more_work = 0; 3272 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 3273 } 3274 while (1) { 3275 u16 type; 3276 3277 cons = RING_CMP(raw_cons); 3278 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 3279 3280 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 3281 if (cpr->has_more_work) 3282 break; 3283 3284 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL, 3285 budget); 3286 cpr->cp_raw_cons = raw_cons; 3287 if (napi_complete_done(napi, work_done)) 3288 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 3289 cpr->cp_raw_cons); 3290 goto poll_done; 3291 } 3292 3293 /* The valid test of the entry must be done first before 3294 * reading any further. 3295 */ 3296 dma_rmb(); 3297 3298 type = le16_to_cpu(nqcmp->type); 3299 if (NQE_CN_TYPE(type) == NQ_CN_TYPE_CQ_NOTIFICATION) { 3300 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 3301 u32 cq_type = BNXT_NQ_HDL_TYPE(idx); 3302 struct bnxt_cp_ring_info *cpr2; 3303 3304 /* No more budget for RX work */ 3305 if (budget && work_done >= budget && 3306 cq_type == BNXT_NQ_HDL_TYPE_RX) 3307 break; 3308 3309 idx = BNXT_NQ_HDL_IDX(idx); 3310 cpr2 = &cpr->cp_ring_arr[idx]; 3311 cpr2->had_nqe_notify = 1; 3312 cpr2->toggle = NQE_CN_TOGGLE(type); 3313 work_done += __bnxt_poll_work(bp, cpr2, 3314 budget - work_done); 3315 cpr->has_more_work |= cpr2->has_more_work; 3316 } else { 3317 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 3318 } 3319 raw_cons = NEXT_RAW_CMP(raw_cons); 3320 } 3321 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget); 3322 if (raw_cons != cpr->cp_raw_cons) { 3323 cpr->cp_raw_cons = raw_cons; 3324 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 3325 } 3326 poll_done: 3327 cpr_rx = &cpr->cp_ring_arr[0]; 3328 if (cpr_rx->cp_ring_type == BNXT_NQ_HDL_TYPE_RX && 3329 (bp->flags & BNXT_FLAG_DIM) && bnxt_vnic_is_active(bp)) { 3330 struct dim_sample dim_sample = {}; 3331 3332 dim_update_sample(cpr->event_ctr, 3333 cpr_rx->rx_packets, 3334 cpr_rx->rx_bytes, 3335 &dim_sample); 3336 net_dim(&cpr->dim, &dim_sample); 3337 } 3338 return work_done; 3339 } 3340 3341 static void bnxt_free_one_tx_ring_skbs(struct bnxt *bp, 3342 struct bnxt_tx_ring_info *txr, int idx) 3343 { 3344 int i, max_idx; 3345 struct pci_dev *pdev = bp->pdev; 3346 3347 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 3348 3349 for (i = 0; i < max_idx;) { 3350 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[i]; 3351 struct sk_buff *skb; 3352 int j, last; 3353 3354 if (idx < bp->tx_nr_rings_xdp && 3355 tx_buf->action == XDP_REDIRECT) { 3356 dma_unmap_single(&pdev->dev, 3357 dma_unmap_addr(tx_buf, mapping), 3358 dma_unmap_len(tx_buf, len), 3359 DMA_TO_DEVICE); 3360 xdp_return_frame(tx_buf->xdpf); 3361 tx_buf->action = 0; 3362 tx_buf->xdpf = NULL; 3363 i++; 3364 continue; 3365 } 3366 3367 skb = tx_buf->skb; 3368 if (!skb) { 3369 i++; 3370 continue; 3371 } 3372 3373 tx_buf->skb = NULL; 3374 3375 if (tx_buf->is_push) { 3376 dev_kfree_skb(skb); 3377 i += 2; 3378 continue; 3379 } 3380 3381 dma_unmap_single(&pdev->dev, 3382 dma_unmap_addr(tx_buf, mapping), 3383 skb_headlen(skb), 3384 DMA_TO_DEVICE); 3385 3386 last = tx_buf->nr_frags; 3387 i += 2; 3388 for (j = 0; j < last; j++, i++) { 3389 int ring_idx = i & bp->tx_ring_mask; 3390 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 3391 3392 tx_buf = &txr->tx_buf_ring[ring_idx]; 3393 dma_unmap_page(&pdev->dev, 3394 dma_unmap_addr(tx_buf, mapping), 3395 skb_frag_size(frag), DMA_TO_DEVICE); 3396 } 3397 dev_kfree_skb(skb); 3398 } 3399 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, idx)); 3400 } 3401 3402 static void bnxt_free_tx_skbs(struct bnxt *bp) 3403 { 3404 int i; 3405 3406 if (!bp->tx_ring) 3407 return; 3408 3409 for (i = 0; i < bp->tx_nr_rings; i++) { 3410 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3411 3412 if (!txr->tx_buf_ring) 3413 continue; 3414 3415 bnxt_free_one_tx_ring_skbs(bp, txr, i); 3416 } 3417 3418 if (bp->ptp_cfg && !(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) 3419 bnxt_ptp_free_txts_skbs(bp->ptp_cfg); 3420 } 3421 3422 static void bnxt_free_one_rx_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3423 { 3424 int i, max_idx; 3425 3426 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 3427 3428 for (i = 0; i < max_idx; i++) { 3429 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 3430 void *data = rx_buf->data; 3431 3432 if (!data) 3433 continue; 3434 3435 rx_buf->data = NULL; 3436 if (BNXT_RX_PAGE_MODE(bp)) 3437 page_pool_recycle_direct(rxr->page_pool, data); 3438 else 3439 page_pool_free_va(rxr->head_pool, data, true); 3440 } 3441 } 3442 3443 static void bnxt_free_one_rx_agg_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3444 { 3445 int i, max_idx; 3446 3447 max_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 3448 3449 for (i = 0; i < max_idx; i++) { 3450 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 3451 struct page *page = rx_agg_buf->page; 3452 3453 if (!page) 3454 continue; 3455 3456 rx_agg_buf->page = NULL; 3457 __clear_bit(i, rxr->rx_agg_bmap); 3458 3459 page_pool_recycle_direct(rxr->page_pool, page); 3460 } 3461 } 3462 3463 static void bnxt_free_one_tpa_info_data(struct bnxt *bp, 3464 struct bnxt_rx_ring_info *rxr) 3465 { 3466 int i; 3467 3468 for (i = 0; i < bp->max_tpa; i++) { 3469 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 3470 u8 *data = tpa_info->data; 3471 3472 if (!data) 3473 continue; 3474 3475 tpa_info->data = NULL; 3476 page_pool_free_va(rxr->head_pool, data, false); 3477 } 3478 } 3479 3480 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, 3481 struct bnxt_rx_ring_info *rxr) 3482 { 3483 struct bnxt_tpa_idx_map *map; 3484 3485 if (!rxr->rx_tpa) 3486 goto skip_rx_tpa_free; 3487 3488 bnxt_free_one_tpa_info_data(bp, rxr); 3489 3490 skip_rx_tpa_free: 3491 if (!rxr->rx_buf_ring) 3492 goto skip_rx_buf_free; 3493 3494 bnxt_free_one_rx_ring(bp, rxr); 3495 3496 skip_rx_buf_free: 3497 if (!rxr->rx_agg_ring) 3498 goto skip_rx_agg_free; 3499 3500 bnxt_free_one_rx_agg_ring(bp, rxr); 3501 3502 skip_rx_agg_free: 3503 map = rxr->rx_tpa_idx_map; 3504 if (map) 3505 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 3506 } 3507 3508 static void bnxt_free_rx_skbs(struct bnxt *bp) 3509 { 3510 int i; 3511 3512 if (!bp->rx_ring) 3513 return; 3514 3515 for (i = 0; i < bp->rx_nr_rings; i++) 3516 bnxt_free_one_rx_ring_skbs(bp, &bp->rx_ring[i]); 3517 } 3518 3519 static void bnxt_free_skbs(struct bnxt *bp) 3520 { 3521 bnxt_free_tx_skbs(bp); 3522 bnxt_free_rx_skbs(bp); 3523 } 3524 3525 static void bnxt_init_ctx_mem(struct bnxt_ctx_mem_type *ctxm, void *p, int len) 3526 { 3527 u8 init_val = ctxm->init_value; 3528 u16 offset = ctxm->init_offset; 3529 u8 *p2 = p; 3530 int i; 3531 3532 if (!init_val) 3533 return; 3534 if (offset == BNXT_CTX_INIT_INVALID_OFFSET) { 3535 memset(p, init_val, len); 3536 return; 3537 } 3538 for (i = 0; i < len; i += ctxm->entry_size) 3539 *(p2 + i + offset) = init_val; 3540 } 3541 3542 static size_t __bnxt_copy_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem, 3543 void *buf, size_t offset, size_t head, 3544 size_t tail) 3545 { 3546 int i, head_page, start_idx, source_offset; 3547 size_t len, rem_len, total_len, max_bytes; 3548 3549 head_page = head / rmem->page_size; 3550 source_offset = head % rmem->page_size; 3551 total_len = (tail - head) & MAX_CTX_BYTES_MASK; 3552 if (!total_len) 3553 total_len = MAX_CTX_BYTES; 3554 start_idx = head_page % MAX_CTX_PAGES; 3555 max_bytes = (rmem->nr_pages - start_idx) * rmem->page_size - 3556 source_offset; 3557 total_len = min(total_len, max_bytes); 3558 rem_len = total_len; 3559 3560 for (i = start_idx; rem_len; i++, source_offset = 0) { 3561 len = min((size_t)(rmem->page_size - source_offset), rem_len); 3562 if (buf) 3563 memcpy(buf + offset, rmem->pg_arr[i] + source_offset, 3564 len); 3565 offset += len; 3566 rem_len -= len; 3567 } 3568 return total_len; 3569 } 3570 3571 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3572 { 3573 struct pci_dev *pdev = bp->pdev; 3574 int i; 3575 3576 if (!rmem->pg_arr) 3577 goto skip_pages; 3578 3579 for (i = 0; i < rmem->nr_pages; i++) { 3580 if (!rmem->pg_arr[i]) 3581 continue; 3582 3583 dma_free_coherent(&pdev->dev, rmem->page_size, 3584 rmem->pg_arr[i], rmem->dma_arr[i]); 3585 3586 rmem->pg_arr[i] = NULL; 3587 } 3588 skip_pages: 3589 if (rmem->pg_tbl) { 3590 size_t pg_tbl_size = rmem->nr_pages * 8; 3591 3592 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3593 pg_tbl_size = rmem->page_size; 3594 dma_free_coherent(&pdev->dev, pg_tbl_size, 3595 rmem->pg_tbl, rmem->pg_tbl_map); 3596 rmem->pg_tbl = NULL; 3597 } 3598 if (rmem->vmem_size && *rmem->vmem) { 3599 vfree(*rmem->vmem); 3600 *rmem->vmem = NULL; 3601 } 3602 } 3603 3604 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3605 { 3606 struct pci_dev *pdev = bp->pdev; 3607 u64 valid_bit = 0; 3608 int i; 3609 3610 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 3611 valid_bit = PTU_PTE_VALID; 3612 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 3613 size_t pg_tbl_size = rmem->nr_pages * 8; 3614 3615 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3616 pg_tbl_size = rmem->page_size; 3617 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 3618 &rmem->pg_tbl_map, 3619 GFP_KERNEL); 3620 if (!rmem->pg_tbl) 3621 return -ENOMEM; 3622 } 3623 3624 for (i = 0; i < rmem->nr_pages; i++) { 3625 u64 extra_bits = valid_bit; 3626 3627 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 3628 rmem->page_size, 3629 &rmem->dma_arr[i], 3630 GFP_KERNEL); 3631 if (!rmem->pg_arr[i]) 3632 return -ENOMEM; 3633 3634 if (rmem->ctx_mem) 3635 bnxt_init_ctx_mem(rmem->ctx_mem, rmem->pg_arr[i], 3636 rmem->page_size); 3637 if (rmem->nr_pages > 1 || rmem->depth > 0) { 3638 if (i == rmem->nr_pages - 2 && 3639 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3640 extra_bits |= PTU_PTE_NEXT_TO_LAST; 3641 else if (i == rmem->nr_pages - 1 && 3642 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3643 extra_bits |= PTU_PTE_LAST; 3644 rmem->pg_tbl[i] = 3645 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 3646 } 3647 } 3648 3649 if (rmem->vmem_size) { 3650 *rmem->vmem = vzalloc(rmem->vmem_size); 3651 if (!(*rmem->vmem)) 3652 return -ENOMEM; 3653 } 3654 return 0; 3655 } 3656 3657 static void bnxt_free_one_tpa_info(struct bnxt *bp, 3658 struct bnxt_rx_ring_info *rxr) 3659 { 3660 int i; 3661 3662 kfree(rxr->rx_tpa_idx_map); 3663 rxr->rx_tpa_idx_map = NULL; 3664 if (rxr->rx_tpa) { 3665 for (i = 0; i < bp->max_tpa; i++) { 3666 kfree(rxr->rx_tpa[i].agg_arr); 3667 rxr->rx_tpa[i].agg_arr = NULL; 3668 } 3669 } 3670 kfree(rxr->rx_tpa); 3671 rxr->rx_tpa = NULL; 3672 } 3673 3674 static void bnxt_free_tpa_info(struct bnxt *bp) 3675 { 3676 int i; 3677 3678 for (i = 0; i < bp->rx_nr_rings; i++) { 3679 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3680 3681 bnxt_free_one_tpa_info(bp, rxr); 3682 } 3683 } 3684 3685 static int bnxt_alloc_one_tpa_info(struct bnxt *bp, 3686 struct bnxt_rx_ring_info *rxr) 3687 { 3688 struct rx_agg_cmp *agg; 3689 int i; 3690 3691 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 3692 GFP_KERNEL); 3693 if (!rxr->rx_tpa) 3694 return -ENOMEM; 3695 3696 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 3697 return 0; 3698 for (i = 0; i < bp->max_tpa; i++) { 3699 agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL); 3700 if (!agg) 3701 return -ENOMEM; 3702 rxr->rx_tpa[i].agg_arr = agg; 3703 } 3704 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 3705 GFP_KERNEL); 3706 if (!rxr->rx_tpa_idx_map) 3707 return -ENOMEM; 3708 3709 return 0; 3710 } 3711 3712 static int bnxt_alloc_tpa_info(struct bnxt *bp) 3713 { 3714 int i, rc; 3715 3716 bp->max_tpa = MAX_TPA; 3717 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 3718 if (!bp->max_tpa_v2) 3719 return 0; 3720 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 3721 } 3722 3723 for (i = 0; i < bp->rx_nr_rings; i++) { 3724 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3725 3726 rc = bnxt_alloc_one_tpa_info(bp, rxr); 3727 if (rc) 3728 return rc; 3729 } 3730 return 0; 3731 } 3732 3733 static void bnxt_free_rx_rings(struct bnxt *bp) 3734 { 3735 int i; 3736 3737 if (!bp->rx_ring) 3738 return; 3739 3740 bnxt_free_tpa_info(bp); 3741 for (i = 0; i < bp->rx_nr_rings; i++) { 3742 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3743 struct bnxt_ring_struct *ring; 3744 3745 if (rxr->xdp_prog) 3746 bpf_prog_put(rxr->xdp_prog); 3747 3748 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 3749 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3750 3751 page_pool_destroy(rxr->page_pool); 3752 if (bnxt_separate_head_pool()) 3753 page_pool_destroy(rxr->head_pool); 3754 rxr->page_pool = rxr->head_pool = NULL; 3755 3756 kfree(rxr->rx_agg_bmap); 3757 rxr->rx_agg_bmap = NULL; 3758 3759 ring = &rxr->rx_ring_struct; 3760 bnxt_free_ring(bp, &ring->ring_mem); 3761 3762 ring = &rxr->rx_agg_ring_struct; 3763 bnxt_free_ring(bp, &ring->ring_mem); 3764 } 3765 } 3766 3767 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 3768 struct bnxt_rx_ring_info *rxr, 3769 int numa_node) 3770 { 3771 struct page_pool_params pp = { 0 }; 3772 struct page_pool *pool; 3773 3774 pp.pool_size = bp->rx_agg_ring_size; 3775 if (BNXT_RX_PAGE_MODE(bp)) 3776 pp.pool_size += bp->rx_ring_size; 3777 pp.nid = numa_node; 3778 pp.napi = &rxr->bnapi->napi; 3779 pp.netdev = bp->dev; 3780 pp.dev = &bp->pdev->dev; 3781 pp.dma_dir = bp->rx_dir; 3782 pp.max_len = PAGE_SIZE; 3783 pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 3784 3785 pool = page_pool_create(&pp); 3786 if (IS_ERR(pool)) 3787 return PTR_ERR(pool); 3788 rxr->page_pool = pool; 3789 3790 if (bnxt_separate_head_pool()) { 3791 pp.pool_size = max(bp->rx_ring_size, 1024); 3792 pool = page_pool_create(&pp); 3793 if (IS_ERR(pool)) 3794 goto err_destroy_pp; 3795 } 3796 rxr->head_pool = pool; 3797 3798 return 0; 3799 3800 err_destroy_pp: 3801 page_pool_destroy(rxr->page_pool); 3802 rxr->page_pool = NULL; 3803 return PTR_ERR(pool); 3804 } 3805 3806 static int bnxt_alloc_rx_agg_bmap(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3807 { 3808 u16 mem_size; 3809 3810 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 3811 mem_size = rxr->rx_agg_bmap_size / 8; 3812 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 3813 if (!rxr->rx_agg_bmap) 3814 return -ENOMEM; 3815 3816 return 0; 3817 } 3818 3819 static int bnxt_alloc_rx_rings(struct bnxt *bp) 3820 { 3821 int numa_node = dev_to_node(&bp->pdev->dev); 3822 int i, rc = 0, agg_rings = 0, cpu; 3823 3824 if (!bp->rx_ring) 3825 return -ENOMEM; 3826 3827 if (bp->flags & BNXT_FLAG_AGG_RINGS) 3828 agg_rings = 1; 3829 3830 for (i = 0; i < bp->rx_nr_rings; i++) { 3831 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3832 struct bnxt_ring_struct *ring; 3833 int cpu_node; 3834 3835 ring = &rxr->rx_ring_struct; 3836 3837 cpu = cpumask_local_spread(i, numa_node); 3838 cpu_node = cpu_to_node(cpu); 3839 netdev_dbg(bp->dev, "Allocating page pool for rx_ring[%d] on numa_node: %d\n", 3840 i, cpu_node); 3841 rc = bnxt_alloc_rx_page_pool(bp, rxr, cpu_node); 3842 if (rc) 3843 return rc; 3844 3845 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 3846 if (rc < 0) 3847 return rc; 3848 3849 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 3850 MEM_TYPE_PAGE_POOL, 3851 rxr->page_pool); 3852 if (rc) { 3853 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3854 return rc; 3855 } 3856 3857 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3858 if (rc) 3859 return rc; 3860 3861 ring->grp_idx = i; 3862 if (agg_rings) { 3863 ring = &rxr->rx_agg_ring_struct; 3864 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3865 if (rc) 3866 return rc; 3867 3868 ring->grp_idx = i; 3869 rc = bnxt_alloc_rx_agg_bmap(bp, rxr); 3870 if (rc) 3871 return rc; 3872 } 3873 } 3874 if (bp->flags & BNXT_FLAG_TPA) 3875 rc = bnxt_alloc_tpa_info(bp); 3876 return rc; 3877 } 3878 3879 static void bnxt_free_tx_rings(struct bnxt *bp) 3880 { 3881 int i; 3882 struct pci_dev *pdev = bp->pdev; 3883 3884 if (!bp->tx_ring) 3885 return; 3886 3887 for (i = 0; i < bp->tx_nr_rings; i++) { 3888 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3889 struct bnxt_ring_struct *ring; 3890 3891 if (txr->tx_push) { 3892 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3893 txr->tx_push, txr->tx_push_mapping); 3894 txr->tx_push = NULL; 3895 } 3896 3897 ring = &txr->tx_ring_struct; 3898 3899 bnxt_free_ring(bp, &ring->ring_mem); 3900 } 3901 } 3902 3903 #define BNXT_TC_TO_RING_BASE(bp, tc) \ 3904 ((tc) * (bp)->tx_nr_rings_per_tc) 3905 3906 #define BNXT_RING_TO_TC_OFF(bp, tx) \ 3907 ((tx) % (bp)->tx_nr_rings_per_tc) 3908 3909 #define BNXT_RING_TO_TC(bp, tx) \ 3910 ((tx) / (bp)->tx_nr_rings_per_tc) 3911 3912 static int bnxt_alloc_tx_rings(struct bnxt *bp) 3913 { 3914 int i, j, rc; 3915 struct pci_dev *pdev = bp->pdev; 3916 3917 bp->tx_push_size = 0; 3918 if (bp->tx_push_thresh) { 3919 int push_size; 3920 3921 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 3922 bp->tx_push_thresh); 3923 3924 if (push_size > 256) { 3925 push_size = 0; 3926 bp->tx_push_thresh = 0; 3927 } 3928 3929 bp->tx_push_size = push_size; 3930 } 3931 3932 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 3933 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3934 struct bnxt_ring_struct *ring; 3935 u8 qidx; 3936 3937 ring = &txr->tx_ring_struct; 3938 3939 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3940 if (rc) 3941 return rc; 3942 3943 ring->grp_idx = txr->bnapi->index; 3944 if (bp->tx_push_size) { 3945 dma_addr_t mapping; 3946 3947 /* One pre-allocated DMA buffer to backup 3948 * TX push operation 3949 */ 3950 txr->tx_push = dma_alloc_coherent(&pdev->dev, 3951 bp->tx_push_size, 3952 &txr->tx_push_mapping, 3953 GFP_KERNEL); 3954 3955 if (!txr->tx_push) 3956 return -ENOMEM; 3957 3958 mapping = txr->tx_push_mapping + 3959 sizeof(struct tx_push_bd); 3960 txr->data_mapping = cpu_to_le64(mapping); 3961 } 3962 qidx = bp->tc_to_qidx[j]; 3963 ring->queue_id = bp->q_info[qidx].queue_id; 3964 spin_lock_init(&txr->xdp_tx_lock); 3965 if (i < bp->tx_nr_rings_xdp) 3966 continue; 3967 if (BNXT_RING_TO_TC_OFF(bp, i) == (bp->tx_nr_rings_per_tc - 1)) 3968 j++; 3969 } 3970 return 0; 3971 } 3972 3973 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr) 3974 { 3975 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3976 3977 kfree(cpr->cp_desc_ring); 3978 cpr->cp_desc_ring = NULL; 3979 ring->ring_mem.pg_arr = NULL; 3980 kfree(cpr->cp_desc_mapping); 3981 cpr->cp_desc_mapping = NULL; 3982 ring->ring_mem.dma_arr = NULL; 3983 } 3984 3985 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n) 3986 { 3987 cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL); 3988 if (!cpr->cp_desc_ring) 3989 return -ENOMEM; 3990 cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping), 3991 GFP_KERNEL); 3992 if (!cpr->cp_desc_mapping) 3993 return -ENOMEM; 3994 return 0; 3995 } 3996 3997 static void bnxt_free_all_cp_arrays(struct bnxt *bp) 3998 { 3999 int i; 4000 4001 if (!bp->bnapi) 4002 return; 4003 for (i = 0; i < bp->cp_nr_rings; i++) { 4004 struct bnxt_napi *bnapi = bp->bnapi[i]; 4005 4006 if (!bnapi) 4007 continue; 4008 bnxt_free_cp_arrays(&bnapi->cp_ring); 4009 } 4010 } 4011 4012 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp) 4013 { 4014 int i, n = bp->cp_nr_pages; 4015 4016 for (i = 0; i < bp->cp_nr_rings; i++) { 4017 struct bnxt_napi *bnapi = bp->bnapi[i]; 4018 int rc; 4019 4020 if (!bnapi) 4021 continue; 4022 rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n); 4023 if (rc) 4024 return rc; 4025 } 4026 return 0; 4027 } 4028 4029 static void bnxt_free_cp_rings(struct bnxt *bp) 4030 { 4031 int i; 4032 4033 if (!bp->bnapi) 4034 return; 4035 4036 for (i = 0; i < bp->cp_nr_rings; i++) { 4037 struct bnxt_napi *bnapi = bp->bnapi[i]; 4038 struct bnxt_cp_ring_info *cpr; 4039 struct bnxt_ring_struct *ring; 4040 int j; 4041 4042 if (!bnapi) 4043 continue; 4044 4045 cpr = &bnapi->cp_ring; 4046 ring = &cpr->cp_ring_struct; 4047 4048 bnxt_free_ring(bp, &ring->ring_mem); 4049 4050 if (!cpr->cp_ring_arr) 4051 continue; 4052 4053 for (j = 0; j < cpr->cp_ring_count; j++) { 4054 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 4055 4056 ring = &cpr2->cp_ring_struct; 4057 bnxt_free_ring(bp, &ring->ring_mem); 4058 bnxt_free_cp_arrays(cpr2); 4059 } 4060 kfree(cpr->cp_ring_arr); 4061 cpr->cp_ring_arr = NULL; 4062 cpr->cp_ring_count = 0; 4063 } 4064 } 4065 4066 static int bnxt_alloc_cp_sub_ring(struct bnxt *bp, 4067 struct bnxt_cp_ring_info *cpr) 4068 { 4069 struct bnxt_ring_mem_info *rmem; 4070 struct bnxt_ring_struct *ring; 4071 int rc; 4072 4073 rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages); 4074 if (rc) { 4075 bnxt_free_cp_arrays(cpr); 4076 return -ENOMEM; 4077 } 4078 ring = &cpr->cp_ring_struct; 4079 rmem = &ring->ring_mem; 4080 rmem->nr_pages = bp->cp_nr_pages; 4081 rmem->page_size = HW_CMPD_RING_SIZE; 4082 rmem->pg_arr = (void **)cpr->cp_desc_ring; 4083 rmem->dma_arr = cpr->cp_desc_mapping; 4084 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 4085 rc = bnxt_alloc_ring(bp, rmem); 4086 if (rc) { 4087 bnxt_free_ring(bp, rmem); 4088 bnxt_free_cp_arrays(cpr); 4089 } 4090 return rc; 4091 } 4092 4093 static int bnxt_alloc_cp_rings(struct bnxt *bp) 4094 { 4095 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 4096 int i, j, rc, ulp_msix; 4097 int tcs = bp->num_tc; 4098 4099 if (!tcs) 4100 tcs = 1; 4101 ulp_msix = bnxt_get_ulp_msix_num(bp); 4102 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 4103 struct bnxt_napi *bnapi = bp->bnapi[i]; 4104 struct bnxt_cp_ring_info *cpr, *cpr2; 4105 struct bnxt_ring_struct *ring; 4106 int cp_count = 0, k; 4107 int rx = 0, tx = 0; 4108 4109 if (!bnapi) 4110 continue; 4111 4112 cpr = &bnapi->cp_ring; 4113 cpr->bnapi = bnapi; 4114 ring = &cpr->cp_ring_struct; 4115 4116 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 4117 if (rc) 4118 return rc; 4119 4120 ring->map_idx = ulp_msix + i; 4121 4122 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4123 continue; 4124 4125 if (i < bp->rx_nr_rings) { 4126 cp_count++; 4127 rx = 1; 4128 } 4129 if (i < bp->tx_nr_rings_xdp) { 4130 cp_count++; 4131 tx = 1; 4132 } else if ((sh && i < bp->tx_nr_rings) || 4133 (!sh && i >= bp->rx_nr_rings)) { 4134 cp_count += tcs; 4135 tx = 1; 4136 } 4137 4138 cpr->cp_ring_arr = kcalloc(cp_count, sizeof(*cpr), 4139 GFP_KERNEL); 4140 if (!cpr->cp_ring_arr) 4141 return -ENOMEM; 4142 cpr->cp_ring_count = cp_count; 4143 4144 for (k = 0; k < cp_count; k++) { 4145 cpr2 = &cpr->cp_ring_arr[k]; 4146 rc = bnxt_alloc_cp_sub_ring(bp, cpr2); 4147 if (rc) 4148 return rc; 4149 cpr2->bnapi = bnapi; 4150 cpr2->sw_stats = cpr->sw_stats; 4151 cpr2->cp_idx = k; 4152 if (!k && rx) { 4153 bp->rx_ring[i].rx_cpr = cpr2; 4154 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_RX; 4155 } else { 4156 int n, tc = k - rx; 4157 4158 n = BNXT_TC_TO_RING_BASE(bp, tc) + j; 4159 bp->tx_ring[n].tx_cpr = cpr2; 4160 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_TX; 4161 } 4162 } 4163 if (tx) 4164 j++; 4165 } 4166 return 0; 4167 } 4168 4169 static void bnxt_init_rx_ring_struct(struct bnxt *bp, 4170 struct bnxt_rx_ring_info *rxr) 4171 { 4172 struct bnxt_ring_mem_info *rmem; 4173 struct bnxt_ring_struct *ring; 4174 4175 ring = &rxr->rx_ring_struct; 4176 rmem = &ring->ring_mem; 4177 rmem->nr_pages = bp->rx_nr_pages; 4178 rmem->page_size = HW_RXBD_RING_SIZE; 4179 rmem->pg_arr = (void **)rxr->rx_desc_ring; 4180 rmem->dma_arr = rxr->rx_desc_mapping; 4181 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 4182 rmem->vmem = (void **)&rxr->rx_buf_ring; 4183 4184 ring = &rxr->rx_agg_ring_struct; 4185 rmem = &ring->ring_mem; 4186 rmem->nr_pages = bp->rx_agg_nr_pages; 4187 rmem->page_size = HW_RXBD_RING_SIZE; 4188 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 4189 rmem->dma_arr = rxr->rx_agg_desc_mapping; 4190 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 4191 rmem->vmem = (void **)&rxr->rx_agg_ring; 4192 } 4193 4194 static void bnxt_reset_rx_ring_struct(struct bnxt *bp, 4195 struct bnxt_rx_ring_info *rxr) 4196 { 4197 struct bnxt_ring_mem_info *rmem; 4198 struct bnxt_ring_struct *ring; 4199 int i; 4200 4201 rxr->page_pool->p.napi = NULL; 4202 rxr->page_pool = NULL; 4203 memset(&rxr->xdp_rxq, 0, sizeof(struct xdp_rxq_info)); 4204 4205 ring = &rxr->rx_ring_struct; 4206 rmem = &ring->ring_mem; 4207 rmem->pg_tbl = NULL; 4208 rmem->pg_tbl_map = 0; 4209 for (i = 0; i < rmem->nr_pages; i++) { 4210 rmem->pg_arr[i] = NULL; 4211 rmem->dma_arr[i] = 0; 4212 } 4213 *rmem->vmem = NULL; 4214 4215 ring = &rxr->rx_agg_ring_struct; 4216 rmem = &ring->ring_mem; 4217 rmem->pg_tbl = NULL; 4218 rmem->pg_tbl_map = 0; 4219 for (i = 0; i < rmem->nr_pages; i++) { 4220 rmem->pg_arr[i] = NULL; 4221 rmem->dma_arr[i] = 0; 4222 } 4223 *rmem->vmem = NULL; 4224 } 4225 4226 static void bnxt_init_ring_struct(struct bnxt *bp) 4227 { 4228 int i, j; 4229 4230 for (i = 0; i < bp->cp_nr_rings; i++) { 4231 struct bnxt_napi *bnapi = bp->bnapi[i]; 4232 struct bnxt_ring_mem_info *rmem; 4233 struct bnxt_cp_ring_info *cpr; 4234 struct bnxt_rx_ring_info *rxr; 4235 struct bnxt_tx_ring_info *txr; 4236 struct bnxt_ring_struct *ring; 4237 4238 if (!bnapi) 4239 continue; 4240 4241 cpr = &bnapi->cp_ring; 4242 ring = &cpr->cp_ring_struct; 4243 rmem = &ring->ring_mem; 4244 rmem->nr_pages = bp->cp_nr_pages; 4245 rmem->page_size = HW_CMPD_RING_SIZE; 4246 rmem->pg_arr = (void **)cpr->cp_desc_ring; 4247 rmem->dma_arr = cpr->cp_desc_mapping; 4248 rmem->vmem_size = 0; 4249 4250 rxr = bnapi->rx_ring; 4251 if (!rxr) 4252 goto skip_rx; 4253 4254 ring = &rxr->rx_ring_struct; 4255 rmem = &ring->ring_mem; 4256 rmem->nr_pages = bp->rx_nr_pages; 4257 rmem->page_size = HW_RXBD_RING_SIZE; 4258 rmem->pg_arr = (void **)rxr->rx_desc_ring; 4259 rmem->dma_arr = rxr->rx_desc_mapping; 4260 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 4261 rmem->vmem = (void **)&rxr->rx_buf_ring; 4262 4263 ring = &rxr->rx_agg_ring_struct; 4264 rmem = &ring->ring_mem; 4265 rmem->nr_pages = bp->rx_agg_nr_pages; 4266 rmem->page_size = HW_RXBD_RING_SIZE; 4267 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 4268 rmem->dma_arr = rxr->rx_agg_desc_mapping; 4269 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 4270 rmem->vmem = (void **)&rxr->rx_agg_ring; 4271 4272 skip_rx: 4273 bnxt_for_each_napi_tx(j, bnapi, txr) { 4274 ring = &txr->tx_ring_struct; 4275 rmem = &ring->ring_mem; 4276 rmem->nr_pages = bp->tx_nr_pages; 4277 rmem->page_size = HW_TXBD_RING_SIZE; 4278 rmem->pg_arr = (void **)txr->tx_desc_ring; 4279 rmem->dma_arr = txr->tx_desc_mapping; 4280 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 4281 rmem->vmem = (void **)&txr->tx_buf_ring; 4282 } 4283 } 4284 } 4285 4286 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 4287 { 4288 int i; 4289 u32 prod; 4290 struct rx_bd **rx_buf_ring; 4291 4292 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 4293 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 4294 int j; 4295 struct rx_bd *rxbd; 4296 4297 rxbd = rx_buf_ring[i]; 4298 if (!rxbd) 4299 continue; 4300 4301 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 4302 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 4303 rxbd->rx_bd_opaque = prod; 4304 } 4305 } 4306 } 4307 4308 static void bnxt_alloc_one_rx_ring_skb(struct bnxt *bp, 4309 struct bnxt_rx_ring_info *rxr, 4310 int ring_nr) 4311 { 4312 u32 prod; 4313 int i; 4314 4315 prod = rxr->rx_prod; 4316 for (i = 0; i < bp->rx_ring_size; i++) { 4317 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 4318 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n", 4319 ring_nr, i, bp->rx_ring_size); 4320 break; 4321 } 4322 prod = NEXT_RX(prod); 4323 } 4324 rxr->rx_prod = prod; 4325 } 4326 4327 static void bnxt_alloc_one_rx_ring_page(struct bnxt *bp, 4328 struct bnxt_rx_ring_info *rxr, 4329 int ring_nr) 4330 { 4331 u32 prod; 4332 int i; 4333 4334 prod = rxr->rx_agg_prod; 4335 for (i = 0; i < bp->rx_agg_ring_size; i++) { 4336 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) { 4337 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d pages only\n", 4338 ring_nr, i, bp->rx_ring_size); 4339 break; 4340 } 4341 prod = NEXT_RX_AGG(prod); 4342 } 4343 rxr->rx_agg_prod = prod; 4344 } 4345 4346 static int bnxt_alloc_one_tpa_info_data(struct bnxt *bp, 4347 struct bnxt_rx_ring_info *rxr) 4348 { 4349 dma_addr_t mapping; 4350 u8 *data; 4351 int i; 4352 4353 for (i = 0; i < bp->max_tpa; i++) { 4354 data = __bnxt_alloc_rx_frag(bp, &mapping, rxr, 4355 GFP_KERNEL); 4356 if (!data) 4357 return -ENOMEM; 4358 4359 rxr->rx_tpa[i].data = data; 4360 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 4361 rxr->rx_tpa[i].mapping = mapping; 4362 } 4363 4364 return 0; 4365 } 4366 4367 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 4368 { 4369 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 4370 int rc; 4371 4372 bnxt_alloc_one_rx_ring_skb(bp, rxr, ring_nr); 4373 4374 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 4375 return 0; 4376 4377 bnxt_alloc_one_rx_ring_page(bp, rxr, ring_nr); 4378 4379 if (rxr->rx_tpa) { 4380 rc = bnxt_alloc_one_tpa_info_data(bp, rxr); 4381 if (rc) 4382 return rc; 4383 } 4384 return 0; 4385 } 4386 4387 static void bnxt_init_one_rx_ring_rxbd(struct bnxt *bp, 4388 struct bnxt_rx_ring_info *rxr) 4389 { 4390 struct bnxt_ring_struct *ring; 4391 u32 type; 4392 4393 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 4394 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 4395 4396 if (NET_IP_ALIGN == 2) 4397 type |= RX_BD_FLAGS_SOP; 4398 4399 ring = &rxr->rx_ring_struct; 4400 bnxt_init_rxbd_pages(ring, type); 4401 ring->fw_ring_id = INVALID_HW_RING_ID; 4402 } 4403 4404 static void bnxt_init_one_rx_agg_ring_rxbd(struct bnxt *bp, 4405 struct bnxt_rx_ring_info *rxr) 4406 { 4407 struct bnxt_ring_struct *ring; 4408 u32 type; 4409 4410 ring = &rxr->rx_agg_ring_struct; 4411 ring->fw_ring_id = INVALID_HW_RING_ID; 4412 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 4413 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 4414 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 4415 4416 bnxt_init_rxbd_pages(ring, type); 4417 } 4418 } 4419 4420 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 4421 { 4422 struct bnxt_rx_ring_info *rxr; 4423 4424 rxr = &bp->rx_ring[ring_nr]; 4425 bnxt_init_one_rx_ring_rxbd(bp, rxr); 4426 4427 netif_queue_set_napi(bp->dev, ring_nr, NETDEV_QUEUE_TYPE_RX, 4428 &rxr->bnapi->napi); 4429 4430 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 4431 bpf_prog_add(bp->xdp_prog, 1); 4432 rxr->xdp_prog = bp->xdp_prog; 4433 } 4434 4435 bnxt_init_one_rx_agg_ring_rxbd(bp, rxr); 4436 4437 return bnxt_alloc_one_rx_ring(bp, ring_nr); 4438 } 4439 4440 static void bnxt_init_cp_rings(struct bnxt *bp) 4441 { 4442 int i, j; 4443 4444 for (i = 0; i < bp->cp_nr_rings; i++) { 4445 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 4446 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4447 4448 ring->fw_ring_id = INVALID_HW_RING_ID; 4449 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4450 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4451 if (!cpr->cp_ring_arr) 4452 continue; 4453 for (j = 0; j < cpr->cp_ring_count; j++) { 4454 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 4455 4456 ring = &cpr2->cp_ring_struct; 4457 ring->fw_ring_id = INVALID_HW_RING_ID; 4458 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4459 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4460 } 4461 } 4462 } 4463 4464 static int bnxt_init_rx_rings(struct bnxt *bp) 4465 { 4466 int i, rc = 0; 4467 4468 if (BNXT_RX_PAGE_MODE(bp)) { 4469 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 4470 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 4471 } else { 4472 bp->rx_offset = BNXT_RX_OFFSET; 4473 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 4474 } 4475 4476 for (i = 0; i < bp->rx_nr_rings; i++) { 4477 rc = bnxt_init_one_rx_ring(bp, i); 4478 if (rc) 4479 break; 4480 } 4481 4482 return rc; 4483 } 4484 4485 static int bnxt_init_tx_rings(struct bnxt *bp) 4486 { 4487 u16 i; 4488 4489 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 4490 BNXT_MIN_TX_DESC_CNT); 4491 4492 for (i = 0; i < bp->tx_nr_rings; i++) { 4493 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4494 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 4495 4496 ring->fw_ring_id = INVALID_HW_RING_ID; 4497 4498 if (i >= bp->tx_nr_rings_xdp) 4499 netif_queue_set_napi(bp->dev, i - bp->tx_nr_rings_xdp, 4500 NETDEV_QUEUE_TYPE_TX, 4501 &txr->bnapi->napi); 4502 } 4503 4504 return 0; 4505 } 4506 4507 static void bnxt_free_ring_grps(struct bnxt *bp) 4508 { 4509 kfree(bp->grp_info); 4510 bp->grp_info = NULL; 4511 } 4512 4513 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 4514 { 4515 int i; 4516 4517 if (irq_re_init) { 4518 bp->grp_info = kcalloc(bp->cp_nr_rings, 4519 sizeof(struct bnxt_ring_grp_info), 4520 GFP_KERNEL); 4521 if (!bp->grp_info) 4522 return -ENOMEM; 4523 } 4524 for (i = 0; i < bp->cp_nr_rings; i++) { 4525 if (irq_re_init) 4526 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 4527 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 4528 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 4529 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 4530 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 4531 } 4532 return 0; 4533 } 4534 4535 static void bnxt_free_vnics(struct bnxt *bp) 4536 { 4537 kfree(bp->vnic_info); 4538 bp->vnic_info = NULL; 4539 bp->nr_vnics = 0; 4540 } 4541 4542 static int bnxt_alloc_vnics(struct bnxt *bp) 4543 { 4544 int num_vnics = 1; 4545 4546 #ifdef CONFIG_RFS_ACCEL 4547 if (bp->flags & BNXT_FLAG_RFS) { 4548 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 4549 num_vnics++; 4550 else if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4551 num_vnics += bp->rx_nr_rings; 4552 } 4553 #endif 4554 4555 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 4556 num_vnics++; 4557 4558 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 4559 GFP_KERNEL); 4560 if (!bp->vnic_info) 4561 return -ENOMEM; 4562 4563 bp->nr_vnics = num_vnics; 4564 return 0; 4565 } 4566 4567 static void bnxt_init_vnics(struct bnxt *bp) 4568 { 4569 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 4570 int i; 4571 4572 for (i = 0; i < bp->nr_vnics; i++) { 4573 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 4574 int j; 4575 4576 vnic->fw_vnic_id = INVALID_HW_RING_ID; 4577 vnic->vnic_id = i; 4578 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 4579 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 4580 4581 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 4582 4583 if (bp->vnic_info[i].rss_hash_key) { 4584 if (i == BNXT_VNIC_DEFAULT) { 4585 u8 *key = (void *)vnic->rss_hash_key; 4586 int k; 4587 4588 if (!bp->rss_hash_key_valid && 4589 !bp->rss_hash_key_updated) { 4590 get_random_bytes(bp->rss_hash_key, 4591 HW_HASH_KEY_SIZE); 4592 bp->rss_hash_key_updated = true; 4593 } 4594 4595 memcpy(vnic->rss_hash_key, bp->rss_hash_key, 4596 HW_HASH_KEY_SIZE); 4597 4598 if (!bp->rss_hash_key_updated) 4599 continue; 4600 4601 bp->rss_hash_key_updated = false; 4602 bp->rss_hash_key_valid = true; 4603 4604 bp->toeplitz_prefix = 0; 4605 for (k = 0; k < 8; k++) { 4606 bp->toeplitz_prefix <<= 8; 4607 bp->toeplitz_prefix |= key[k]; 4608 } 4609 } else { 4610 memcpy(vnic->rss_hash_key, vnic0->rss_hash_key, 4611 HW_HASH_KEY_SIZE); 4612 } 4613 } 4614 } 4615 } 4616 4617 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 4618 { 4619 int pages; 4620 4621 pages = ring_size / desc_per_pg; 4622 4623 if (!pages) 4624 return 1; 4625 4626 pages++; 4627 4628 while (pages & (pages - 1)) 4629 pages++; 4630 4631 return pages; 4632 } 4633 4634 void bnxt_set_tpa_flags(struct bnxt *bp) 4635 { 4636 bp->flags &= ~BNXT_FLAG_TPA; 4637 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 4638 return; 4639 if (bp->dev->features & NETIF_F_LRO) 4640 bp->flags |= BNXT_FLAG_LRO; 4641 else if (bp->dev->features & NETIF_F_GRO_HW) 4642 bp->flags |= BNXT_FLAG_GRO; 4643 } 4644 4645 static void bnxt_init_ring_params(struct bnxt *bp) 4646 { 4647 unsigned int rx_size; 4648 4649 bp->rx_copybreak = BNXT_DEFAULT_RX_COPYBREAK; 4650 /* Try to fit 4 chunks into a 4k page */ 4651 rx_size = SZ_1K - 4652 NET_SKB_PAD - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4653 bp->dev->cfg->hds_thresh = max(BNXT_DEFAULT_RX_COPYBREAK, rx_size); 4654 } 4655 4656 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 4657 * be set on entry. 4658 */ 4659 void bnxt_set_ring_params(struct bnxt *bp) 4660 { 4661 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 4662 u32 agg_factor = 0, agg_ring_size = 0; 4663 4664 /* 8 for CRC and VLAN */ 4665 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 4666 4667 rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) + 4668 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4669 4670 ring_size = bp->rx_ring_size; 4671 bp->rx_agg_ring_size = 0; 4672 bp->rx_agg_nr_pages = 0; 4673 4674 if (bp->flags & BNXT_FLAG_TPA || bp->flags & BNXT_FLAG_HDS) 4675 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 4676 4677 bp->flags &= ~BNXT_FLAG_JUMBO; 4678 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 4679 u32 jumbo_factor; 4680 4681 bp->flags |= BNXT_FLAG_JUMBO; 4682 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 4683 if (jumbo_factor > agg_factor) 4684 agg_factor = jumbo_factor; 4685 } 4686 if (agg_factor) { 4687 if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) { 4688 ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA; 4689 netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n", 4690 bp->rx_ring_size, ring_size); 4691 bp->rx_ring_size = ring_size; 4692 } 4693 agg_ring_size = ring_size * agg_factor; 4694 4695 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 4696 RX_DESC_CNT); 4697 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 4698 u32 tmp = agg_ring_size; 4699 4700 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 4701 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 4702 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 4703 tmp, agg_ring_size); 4704 } 4705 bp->rx_agg_ring_size = agg_ring_size; 4706 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 4707 4708 if (BNXT_RX_PAGE_MODE(bp)) { 4709 rx_space = PAGE_SIZE; 4710 rx_size = PAGE_SIZE - 4711 ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) - 4712 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4713 } else { 4714 rx_size = max3(BNXT_DEFAULT_RX_COPYBREAK, 4715 bp->rx_copybreak, 4716 bp->dev->cfg_pending->hds_thresh); 4717 rx_size = SKB_DATA_ALIGN(rx_size + NET_IP_ALIGN); 4718 rx_space = rx_size + NET_SKB_PAD + 4719 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4720 } 4721 } 4722 4723 bp->rx_buf_use_size = rx_size; 4724 bp->rx_buf_size = rx_space; 4725 4726 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 4727 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 4728 4729 ring_size = bp->tx_ring_size; 4730 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 4731 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 4732 4733 max_rx_cmpl = bp->rx_ring_size; 4734 /* MAX TPA needs to be added because TPA_START completions are 4735 * immediately recycled, so the TPA completions are not bound by 4736 * the RX ring size. 4737 */ 4738 if (bp->flags & BNXT_FLAG_TPA) 4739 max_rx_cmpl += bp->max_tpa; 4740 /* RX and TPA completions are 32-byte, all others are 16-byte */ 4741 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 4742 bp->cp_ring_size = ring_size; 4743 4744 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 4745 if (bp->cp_nr_pages > MAX_CP_PAGES) { 4746 bp->cp_nr_pages = MAX_CP_PAGES; 4747 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 4748 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 4749 ring_size, bp->cp_ring_size); 4750 } 4751 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 4752 bp->cp_ring_mask = bp->cp_bit - 1; 4753 } 4754 4755 /* Changing allocation mode of RX rings. 4756 * TODO: Update when extending xdp_rxq_info to support allocation modes. 4757 */ 4758 static void __bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 4759 { 4760 struct net_device *dev = bp->dev; 4761 4762 if (page_mode) { 4763 bp->flags &= ~(BNXT_FLAG_AGG_RINGS | BNXT_FLAG_NO_AGG_RINGS); 4764 bp->flags |= BNXT_FLAG_RX_PAGE_MODE; 4765 4766 if (bp->xdp_prog->aux->xdp_has_frags) 4767 dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU); 4768 else 4769 dev->max_mtu = 4770 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 4771 if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) { 4772 bp->flags |= BNXT_FLAG_JUMBO; 4773 bp->rx_skb_func = bnxt_rx_multi_page_skb; 4774 } else { 4775 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 4776 bp->rx_skb_func = bnxt_rx_page_skb; 4777 } 4778 bp->rx_dir = DMA_BIDIRECTIONAL; 4779 } else { 4780 dev->max_mtu = bp->max_mtu; 4781 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 4782 bp->rx_dir = DMA_FROM_DEVICE; 4783 bp->rx_skb_func = bnxt_rx_skb; 4784 } 4785 } 4786 4787 void bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 4788 { 4789 __bnxt_set_rx_skb_mode(bp, page_mode); 4790 4791 if (!page_mode) { 4792 int rx, tx; 4793 4794 bnxt_get_max_rings(bp, &rx, &tx, true); 4795 if (rx > 1) { 4796 bp->flags &= ~BNXT_FLAG_NO_AGG_RINGS; 4797 bp->dev->hw_features |= NETIF_F_LRO; 4798 } 4799 } 4800 4801 /* Update LRO and GRO_HW availability */ 4802 netdev_update_features(bp->dev); 4803 } 4804 4805 static void bnxt_free_vnic_attributes(struct bnxt *bp) 4806 { 4807 int i; 4808 struct bnxt_vnic_info *vnic; 4809 struct pci_dev *pdev = bp->pdev; 4810 4811 if (!bp->vnic_info) 4812 return; 4813 4814 for (i = 0; i < bp->nr_vnics; i++) { 4815 vnic = &bp->vnic_info[i]; 4816 4817 kfree(vnic->fw_grp_ids); 4818 vnic->fw_grp_ids = NULL; 4819 4820 kfree(vnic->uc_list); 4821 vnic->uc_list = NULL; 4822 4823 if (vnic->mc_list) { 4824 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 4825 vnic->mc_list, vnic->mc_list_mapping); 4826 vnic->mc_list = NULL; 4827 } 4828 4829 if (vnic->rss_table) { 4830 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 4831 vnic->rss_table, 4832 vnic->rss_table_dma_addr); 4833 vnic->rss_table = NULL; 4834 } 4835 4836 vnic->rss_hash_key = NULL; 4837 vnic->flags = 0; 4838 } 4839 } 4840 4841 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 4842 { 4843 int i, rc = 0, size; 4844 struct bnxt_vnic_info *vnic; 4845 struct pci_dev *pdev = bp->pdev; 4846 int max_rings; 4847 4848 for (i = 0; i < bp->nr_vnics; i++) { 4849 vnic = &bp->vnic_info[i]; 4850 4851 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 4852 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 4853 4854 if (mem_size > 0) { 4855 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 4856 if (!vnic->uc_list) { 4857 rc = -ENOMEM; 4858 goto out; 4859 } 4860 } 4861 } 4862 4863 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 4864 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 4865 vnic->mc_list = 4866 dma_alloc_coherent(&pdev->dev, 4867 vnic->mc_list_size, 4868 &vnic->mc_list_mapping, 4869 GFP_KERNEL); 4870 if (!vnic->mc_list) { 4871 rc = -ENOMEM; 4872 goto out; 4873 } 4874 } 4875 4876 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4877 goto vnic_skip_grps; 4878 4879 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 4880 max_rings = bp->rx_nr_rings; 4881 else 4882 max_rings = 1; 4883 4884 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 4885 if (!vnic->fw_grp_ids) { 4886 rc = -ENOMEM; 4887 goto out; 4888 } 4889 vnic_skip_grps: 4890 if ((bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && 4891 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 4892 continue; 4893 4894 /* Allocate rss table and hash key */ 4895 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 4896 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4897 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 4898 4899 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 4900 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 4901 vnic->rss_table_size, 4902 &vnic->rss_table_dma_addr, 4903 GFP_KERNEL); 4904 if (!vnic->rss_table) { 4905 rc = -ENOMEM; 4906 goto out; 4907 } 4908 4909 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 4910 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 4911 } 4912 return 0; 4913 4914 out: 4915 return rc; 4916 } 4917 4918 static void bnxt_free_hwrm_resources(struct bnxt *bp) 4919 { 4920 struct bnxt_hwrm_wait_token *token; 4921 4922 dma_pool_destroy(bp->hwrm_dma_pool); 4923 bp->hwrm_dma_pool = NULL; 4924 4925 rcu_read_lock(); 4926 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) 4927 WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED); 4928 rcu_read_unlock(); 4929 } 4930 4931 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 4932 { 4933 bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev, 4934 BNXT_HWRM_DMA_SIZE, 4935 BNXT_HWRM_DMA_ALIGN, 0); 4936 if (!bp->hwrm_dma_pool) 4937 return -ENOMEM; 4938 4939 INIT_HLIST_HEAD(&bp->hwrm_pending_list); 4940 4941 return 0; 4942 } 4943 4944 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 4945 { 4946 kfree(stats->hw_masks); 4947 stats->hw_masks = NULL; 4948 kfree(stats->sw_stats); 4949 stats->sw_stats = NULL; 4950 if (stats->hw_stats) { 4951 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 4952 stats->hw_stats_map); 4953 stats->hw_stats = NULL; 4954 } 4955 } 4956 4957 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 4958 bool alloc_masks) 4959 { 4960 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 4961 &stats->hw_stats_map, GFP_KERNEL); 4962 if (!stats->hw_stats) 4963 return -ENOMEM; 4964 4965 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 4966 if (!stats->sw_stats) 4967 goto stats_mem_err; 4968 4969 if (alloc_masks) { 4970 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 4971 if (!stats->hw_masks) 4972 goto stats_mem_err; 4973 } 4974 return 0; 4975 4976 stats_mem_err: 4977 bnxt_free_stats_mem(bp, stats); 4978 return -ENOMEM; 4979 } 4980 4981 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 4982 { 4983 int i; 4984 4985 for (i = 0; i < count; i++) 4986 mask_arr[i] = mask; 4987 } 4988 4989 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 4990 { 4991 int i; 4992 4993 for (i = 0; i < count; i++) 4994 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 4995 } 4996 4997 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 4998 struct bnxt_stats_mem *stats) 4999 { 5000 struct hwrm_func_qstats_ext_output *resp; 5001 struct hwrm_func_qstats_ext_input *req; 5002 __le64 *hw_masks; 5003 int rc; 5004 5005 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 5006 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 5007 return -EOPNOTSUPP; 5008 5009 rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT); 5010 if (rc) 5011 return rc; 5012 5013 req->fid = cpu_to_le16(0xffff); 5014 req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 5015 5016 resp = hwrm_req_hold(bp, req); 5017 rc = hwrm_req_send(bp, req); 5018 if (!rc) { 5019 hw_masks = &resp->rx_ucast_pkts; 5020 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 5021 } 5022 hwrm_req_drop(bp, req); 5023 return rc; 5024 } 5025 5026 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 5027 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 5028 5029 static void bnxt_init_stats(struct bnxt *bp) 5030 { 5031 struct bnxt_napi *bnapi = bp->bnapi[0]; 5032 struct bnxt_cp_ring_info *cpr; 5033 struct bnxt_stats_mem *stats; 5034 __le64 *rx_stats, *tx_stats; 5035 int rc, rx_count, tx_count; 5036 u64 *rx_masks, *tx_masks; 5037 u64 mask; 5038 u8 flags; 5039 5040 cpr = &bnapi->cp_ring; 5041 stats = &cpr->stats; 5042 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 5043 if (rc) { 5044 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 5045 mask = (1ULL << 48) - 1; 5046 else 5047 mask = -1ULL; 5048 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 5049 } 5050 if (bp->flags & BNXT_FLAG_PORT_STATS) { 5051 stats = &bp->port_stats; 5052 rx_stats = stats->hw_stats; 5053 rx_masks = stats->hw_masks; 5054 rx_count = sizeof(struct rx_port_stats) / 8; 5055 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 5056 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 5057 tx_count = sizeof(struct tx_port_stats) / 8; 5058 5059 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 5060 rc = bnxt_hwrm_port_qstats(bp, flags); 5061 if (rc) { 5062 mask = (1ULL << 40) - 1; 5063 5064 bnxt_fill_masks(rx_masks, mask, rx_count); 5065 bnxt_fill_masks(tx_masks, mask, tx_count); 5066 } else { 5067 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 5068 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 5069 bnxt_hwrm_port_qstats(bp, 0); 5070 } 5071 } 5072 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 5073 stats = &bp->rx_port_stats_ext; 5074 rx_stats = stats->hw_stats; 5075 rx_masks = stats->hw_masks; 5076 rx_count = sizeof(struct rx_port_stats_ext) / 8; 5077 stats = &bp->tx_port_stats_ext; 5078 tx_stats = stats->hw_stats; 5079 tx_masks = stats->hw_masks; 5080 tx_count = sizeof(struct tx_port_stats_ext) / 8; 5081 5082 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 5083 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 5084 if (rc) { 5085 mask = (1ULL << 40) - 1; 5086 5087 bnxt_fill_masks(rx_masks, mask, rx_count); 5088 if (tx_stats) 5089 bnxt_fill_masks(tx_masks, mask, tx_count); 5090 } else { 5091 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 5092 if (tx_stats) 5093 bnxt_copy_hw_masks(tx_masks, tx_stats, 5094 tx_count); 5095 bnxt_hwrm_port_qstats_ext(bp, 0); 5096 } 5097 } 5098 } 5099 5100 static void bnxt_free_port_stats(struct bnxt *bp) 5101 { 5102 bp->flags &= ~BNXT_FLAG_PORT_STATS; 5103 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 5104 5105 bnxt_free_stats_mem(bp, &bp->port_stats); 5106 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 5107 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 5108 } 5109 5110 static void bnxt_free_ring_stats(struct bnxt *bp) 5111 { 5112 int i; 5113 5114 if (!bp->bnapi) 5115 return; 5116 5117 for (i = 0; i < bp->cp_nr_rings; i++) { 5118 struct bnxt_napi *bnapi = bp->bnapi[i]; 5119 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5120 5121 bnxt_free_stats_mem(bp, &cpr->stats); 5122 5123 kfree(cpr->sw_stats); 5124 cpr->sw_stats = NULL; 5125 } 5126 } 5127 5128 static int bnxt_alloc_stats(struct bnxt *bp) 5129 { 5130 u32 size, i; 5131 int rc; 5132 5133 size = bp->hw_ring_stats_size; 5134 5135 for (i = 0; i < bp->cp_nr_rings; i++) { 5136 struct bnxt_napi *bnapi = bp->bnapi[i]; 5137 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5138 5139 cpr->sw_stats = kzalloc(sizeof(*cpr->sw_stats), GFP_KERNEL); 5140 if (!cpr->sw_stats) 5141 return -ENOMEM; 5142 5143 cpr->stats.len = size; 5144 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 5145 if (rc) 5146 return rc; 5147 5148 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 5149 } 5150 5151 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 5152 return 0; 5153 5154 if (bp->port_stats.hw_stats) 5155 goto alloc_ext_stats; 5156 5157 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 5158 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 5159 if (rc) 5160 return rc; 5161 5162 bp->flags |= BNXT_FLAG_PORT_STATS; 5163 5164 alloc_ext_stats: 5165 /* Display extended statistics only if FW supports it */ 5166 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 5167 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 5168 return 0; 5169 5170 if (bp->rx_port_stats_ext.hw_stats) 5171 goto alloc_tx_ext_stats; 5172 5173 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 5174 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 5175 /* Extended stats are optional */ 5176 if (rc) 5177 return 0; 5178 5179 alloc_tx_ext_stats: 5180 if (bp->tx_port_stats_ext.hw_stats) 5181 return 0; 5182 5183 if (bp->hwrm_spec_code >= 0x10902 || 5184 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 5185 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 5186 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 5187 /* Extended stats are optional */ 5188 if (rc) 5189 return 0; 5190 } 5191 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 5192 return 0; 5193 } 5194 5195 static void bnxt_clear_ring_indices(struct bnxt *bp) 5196 { 5197 int i, j; 5198 5199 if (!bp->bnapi) 5200 return; 5201 5202 for (i = 0; i < bp->cp_nr_rings; i++) { 5203 struct bnxt_napi *bnapi = bp->bnapi[i]; 5204 struct bnxt_cp_ring_info *cpr; 5205 struct bnxt_rx_ring_info *rxr; 5206 struct bnxt_tx_ring_info *txr; 5207 5208 if (!bnapi) 5209 continue; 5210 5211 cpr = &bnapi->cp_ring; 5212 cpr->cp_raw_cons = 0; 5213 5214 bnxt_for_each_napi_tx(j, bnapi, txr) { 5215 txr->tx_prod = 0; 5216 txr->tx_cons = 0; 5217 txr->tx_hw_cons = 0; 5218 } 5219 5220 rxr = bnapi->rx_ring; 5221 if (rxr) { 5222 rxr->rx_prod = 0; 5223 rxr->rx_agg_prod = 0; 5224 rxr->rx_sw_agg_prod = 0; 5225 rxr->rx_next_cons = 0; 5226 } 5227 bnapi->events = 0; 5228 } 5229 } 5230 5231 void bnxt_insert_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5232 { 5233 u8 type = fltr->type, flags = fltr->flags; 5234 5235 INIT_LIST_HEAD(&fltr->list); 5236 if ((type == BNXT_FLTR_TYPE_L2 && flags & BNXT_ACT_RING_DST) || 5237 (type == BNXT_FLTR_TYPE_NTUPLE && flags & BNXT_ACT_NO_AGING)) 5238 list_add_tail(&fltr->list, &bp->usr_fltr_list); 5239 } 5240 5241 void bnxt_del_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5242 { 5243 if (!list_empty(&fltr->list)) 5244 list_del_init(&fltr->list); 5245 } 5246 5247 static void bnxt_clear_usr_fltrs(struct bnxt *bp, bool all) 5248 { 5249 struct bnxt_filter_base *usr_fltr, *tmp; 5250 5251 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) { 5252 if (!all && usr_fltr->type == BNXT_FLTR_TYPE_L2) 5253 continue; 5254 bnxt_del_one_usr_fltr(bp, usr_fltr); 5255 } 5256 } 5257 5258 static void bnxt_del_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5259 { 5260 hlist_del(&fltr->hash); 5261 bnxt_del_one_usr_fltr(bp, fltr); 5262 if (fltr->flags) { 5263 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 5264 bp->ntp_fltr_count--; 5265 } 5266 kfree(fltr); 5267 } 5268 5269 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool all) 5270 { 5271 int i; 5272 5273 netdev_assert_locked(bp->dev); 5274 5275 /* Under netdev instance lock and all our NAPIs have been disabled. 5276 * It's safe to delete the hash table. 5277 */ 5278 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 5279 struct hlist_head *head; 5280 struct hlist_node *tmp; 5281 struct bnxt_ntuple_filter *fltr; 5282 5283 head = &bp->ntp_fltr_hash_tbl[i]; 5284 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 5285 bnxt_del_l2_filter(bp, fltr->l2_fltr); 5286 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 5287 !list_empty(&fltr->base.list))) 5288 continue; 5289 bnxt_del_fltr(bp, &fltr->base); 5290 } 5291 } 5292 if (!all) 5293 return; 5294 5295 bitmap_free(bp->ntp_fltr_bmap); 5296 bp->ntp_fltr_bmap = NULL; 5297 bp->ntp_fltr_count = 0; 5298 } 5299 5300 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 5301 { 5302 int i, rc = 0; 5303 5304 if (!(bp->flags & BNXT_FLAG_RFS) || bp->ntp_fltr_bmap) 5305 return 0; 5306 5307 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 5308 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 5309 5310 bp->ntp_fltr_count = 0; 5311 bp->ntp_fltr_bmap = bitmap_zalloc(bp->max_fltr, GFP_KERNEL); 5312 5313 if (!bp->ntp_fltr_bmap) 5314 rc = -ENOMEM; 5315 5316 return rc; 5317 } 5318 5319 static void bnxt_free_l2_filters(struct bnxt *bp, bool all) 5320 { 5321 int i; 5322 5323 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) { 5324 struct hlist_head *head; 5325 struct hlist_node *tmp; 5326 struct bnxt_l2_filter *fltr; 5327 5328 head = &bp->l2_fltr_hash_tbl[i]; 5329 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 5330 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 5331 !list_empty(&fltr->base.list))) 5332 continue; 5333 bnxt_del_fltr(bp, &fltr->base); 5334 } 5335 } 5336 } 5337 5338 static void bnxt_init_l2_fltr_tbl(struct bnxt *bp) 5339 { 5340 int i; 5341 5342 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) 5343 INIT_HLIST_HEAD(&bp->l2_fltr_hash_tbl[i]); 5344 get_random_bytes(&bp->hash_seed, sizeof(bp->hash_seed)); 5345 } 5346 5347 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 5348 { 5349 bnxt_free_vnic_attributes(bp); 5350 bnxt_free_tx_rings(bp); 5351 bnxt_free_rx_rings(bp); 5352 bnxt_free_cp_rings(bp); 5353 bnxt_free_all_cp_arrays(bp); 5354 bnxt_free_ntp_fltrs(bp, false); 5355 bnxt_free_l2_filters(bp, false); 5356 if (irq_re_init) { 5357 bnxt_free_ring_stats(bp); 5358 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 5359 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 5360 bnxt_free_port_stats(bp); 5361 bnxt_free_ring_grps(bp); 5362 bnxt_free_vnics(bp); 5363 kfree(bp->tx_ring_map); 5364 bp->tx_ring_map = NULL; 5365 kfree(bp->tx_ring); 5366 bp->tx_ring = NULL; 5367 kfree(bp->rx_ring); 5368 bp->rx_ring = NULL; 5369 kfree(bp->bnapi); 5370 bp->bnapi = NULL; 5371 } else { 5372 bnxt_clear_ring_indices(bp); 5373 } 5374 } 5375 5376 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 5377 { 5378 int i, j, rc, size, arr_size; 5379 void *bnapi; 5380 5381 if (irq_re_init) { 5382 /* Allocate bnapi mem pointer array and mem block for 5383 * all queues 5384 */ 5385 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 5386 bp->cp_nr_rings); 5387 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 5388 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 5389 if (!bnapi) 5390 return -ENOMEM; 5391 5392 bp->bnapi = bnapi; 5393 bnapi += arr_size; 5394 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 5395 bp->bnapi[i] = bnapi; 5396 bp->bnapi[i]->index = i; 5397 bp->bnapi[i]->bp = bp; 5398 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5399 struct bnxt_cp_ring_info *cpr = 5400 &bp->bnapi[i]->cp_ring; 5401 5402 cpr->cp_ring_struct.ring_mem.flags = 5403 BNXT_RMEM_RING_PTE_FLAG; 5404 } 5405 } 5406 5407 bp->rx_ring = kcalloc(bp->rx_nr_rings, 5408 sizeof(struct bnxt_rx_ring_info), 5409 GFP_KERNEL); 5410 if (!bp->rx_ring) 5411 return -ENOMEM; 5412 5413 for (i = 0; i < bp->rx_nr_rings; i++) { 5414 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5415 5416 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5417 rxr->rx_ring_struct.ring_mem.flags = 5418 BNXT_RMEM_RING_PTE_FLAG; 5419 rxr->rx_agg_ring_struct.ring_mem.flags = 5420 BNXT_RMEM_RING_PTE_FLAG; 5421 } else { 5422 rxr->rx_cpr = &bp->bnapi[i]->cp_ring; 5423 } 5424 rxr->bnapi = bp->bnapi[i]; 5425 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 5426 } 5427 5428 bp->tx_ring = kcalloc(bp->tx_nr_rings, 5429 sizeof(struct bnxt_tx_ring_info), 5430 GFP_KERNEL); 5431 if (!bp->tx_ring) 5432 return -ENOMEM; 5433 5434 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 5435 GFP_KERNEL); 5436 5437 if (!bp->tx_ring_map) 5438 return -ENOMEM; 5439 5440 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 5441 j = 0; 5442 else 5443 j = bp->rx_nr_rings; 5444 5445 for (i = 0; i < bp->tx_nr_rings; i++) { 5446 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5447 struct bnxt_napi *bnapi2; 5448 5449 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 5450 txr->tx_ring_struct.ring_mem.flags = 5451 BNXT_RMEM_RING_PTE_FLAG; 5452 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 5453 if (i >= bp->tx_nr_rings_xdp) { 5454 int k = j + BNXT_RING_TO_TC_OFF(bp, i); 5455 5456 bnapi2 = bp->bnapi[k]; 5457 txr->txq_index = i - bp->tx_nr_rings_xdp; 5458 txr->tx_napi_idx = 5459 BNXT_RING_TO_TC(bp, txr->txq_index); 5460 bnapi2->tx_ring[txr->tx_napi_idx] = txr; 5461 bnapi2->tx_int = bnxt_tx_int; 5462 } else { 5463 bnapi2 = bp->bnapi[j]; 5464 bnapi2->flags |= BNXT_NAPI_FLAG_XDP; 5465 bnapi2->tx_ring[0] = txr; 5466 bnapi2->tx_int = bnxt_tx_int_xdp; 5467 j++; 5468 } 5469 txr->bnapi = bnapi2; 5470 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 5471 txr->tx_cpr = &bnapi2->cp_ring; 5472 } 5473 5474 rc = bnxt_alloc_stats(bp); 5475 if (rc) 5476 goto alloc_mem_err; 5477 bnxt_init_stats(bp); 5478 5479 rc = bnxt_alloc_ntp_fltrs(bp); 5480 if (rc) 5481 goto alloc_mem_err; 5482 5483 rc = bnxt_alloc_vnics(bp); 5484 if (rc) 5485 goto alloc_mem_err; 5486 } 5487 5488 rc = bnxt_alloc_all_cp_arrays(bp); 5489 if (rc) 5490 goto alloc_mem_err; 5491 5492 bnxt_init_ring_struct(bp); 5493 5494 rc = bnxt_alloc_rx_rings(bp); 5495 if (rc) 5496 goto alloc_mem_err; 5497 5498 rc = bnxt_alloc_tx_rings(bp); 5499 if (rc) 5500 goto alloc_mem_err; 5501 5502 rc = bnxt_alloc_cp_rings(bp); 5503 if (rc) 5504 goto alloc_mem_err; 5505 5506 bp->vnic_info[BNXT_VNIC_DEFAULT].flags |= BNXT_VNIC_RSS_FLAG | 5507 BNXT_VNIC_MCAST_FLAG | 5508 BNXT_VNIC_UCAST_FLAG; 5509 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp) && (bp->flags & BNXT_FLAG_RFS)) 5510 bp->vnic_info[BNXT_VNIC_NTUPLE].flags |= 5511 BNXT_VNIC_RSS_FLAG | BNXT_VNIC_NTUPLE_FLAG; 5512 5513 rc = bnxt_alloc_vnic_attributes(bp); 5514 if (rc) 5515 goto alloc_mem_err; 5516 return 0; 5517 5518 alloc_mem_err: 5519 bnxt_free_mem(bp, true); 5520 return rc; 5521 } 5522 5523 static void bnxt_disable_int(struct bnxt *bp) 5524 { 5525 int i; 5526 5527 if (!bp->bnapi) 5528 return; 5529 5530 for (i = 0; i < bp->cp_nr_rings; i++) { 5531 struct bnxt_napi *bnapi = bp->bnapi[i]; 5532 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5533 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5534 5535 if (ring->fw_ring_id != INVALID_HW_RING_ID) 5536 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5537 } 5538 } 5539 5540 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 5541 { 5542 struct bnxt_napi *bnapi = bp->bnapi[n]; 5543 struct bnxt_cp_ring_info *cpr; 5544 5545 cpr = &bnapi->cp_ring; 5546 return cpr->cp_ring_struct.map_idx; 5547 } 5548 5549 static void bnxt_disable_int_sync(struct bnxt *bp) 5550 { 5551 int i; 5552 5553 if (!bp->irq_tbl) 5554 return; 5555 5556 atomic_inc(&bp->intr_sem); 5557 5558 bnxt_disable_int(bp); 5559 for (i = 0; i < bp->cp_nr_rings; i++) { 5560 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 5561 5562 synchronize_irq(bp->irq_tbl[map_idx].vector); 5563 } 5564 } 5565 5566 static void bnxt_enable_int(struct bnxt *bp) 5567 { 5568 int i; 5569 5570 atomic_set(&bp->intr_sem, 0); 5571 for (i = 0; i < bp->cp_nr_rings; i++) { 5572 struct bnxt_napi *bnapi = bp->bnapi[i]; 5573 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5574 5575 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 5576 } 5577 } 5578 5579 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 5580 bool async_only) 5581 { 5582 DECLARE_BITMAP(async_events_bmap, 256); 5583 u32 *events = (u32 *)async_events_bmap; 5584 struct hwrm_func_drv_rgtr_output *resp; 5585 struct hwrm_func_drv_rgtr_input *req; 5586 u32 flags; 5587 int rc, i; 5588 5589 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR); 5590 if (rc) 5591 return rc; 5592 5593 req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 5594 FUNC_DRV_RGTR_REQ_ENABLES_VER | 5595 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5596 5597 req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 5598 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 5599 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 5600 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 5601 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 5602 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 5603 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 5604 if (bp->fw_cap & BNXT_FW_CAP_NPAR_1_2) 5605 flags |= FUNC_DRV_RGTR_REQ_FLAGS_NPAR_1_2_SUPPORT; 5606 req->flags = cpu_to_le32(flags); 5607 req->ver_maj_8b = DRV_VER_MAJ; 5608 req->ver_min_8b = DRV_VER_MIN; 5609 req->ver_upd_8b = DRV_VER_UPD; 5610 req->ver_maj = cpu_to_le16(DRV_VER_MAJ); 5611 req->ver_min = cpu_to_le16(DRV_VER_MIN); 5612 req->ver_upd = cpu_to_le16(DRV_VER_UPD); 5613 5614 if (BNXT_PF(bp)) { 5615 u32 data[8]; 5616 int i; 5617 5618 memset(data, 0, sizeof(data)); 5619 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 5620 u16 cmd = bnxt_vf_req_snif[i]; 5621 unsigned int bit, idx; 5622 5623 idx = cmd / 32; 5624 bit = cmd % 32; 5625 data[idx] |= 1 << bit; 5626 } 5627 5628 for (i = 0; i < 8; i++) 5629 req->vf_req_fwd[i] = cpu_to_le32(data[i]); 5630 5631 req->enables |= 5632 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 5633 } 5634 5635 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 5636 req->flags |= cpu_to_le32( 5637 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 5638 5639 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 5640 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 5641 u16 event_id = bnxt_async_events_arr[i]; 5642 5643 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 5644 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 5645 continue; 5646 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE && 5647 !bp->ptp_cfg) 5648 continue; 5649 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 5650 } 5651 if (bmap && bmap_size) { 5652 for (i = 0; i < bmap_size; i++) { 5653 if (test_bit(i, bmap)) 5654 __set_bit(i, async_events_bmap); 5655 } 5656 } 5657 for (i = 0; i < 8; i++) 5658 req->async_event_fwd[i] |= cpu_to_le32(events[i]); 5659 5660 if (async_only) 5661 req->enables = 5662 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5663 5664 resp = hwrm_req_hold(bp, req); 5665 rc = hwrm_req_send(bp, req); 5666 if (!rc) { 5667 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 5668 if (resp->flags & 5669 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 5670 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 5671 } 5672 hwrm_req_drop(bp, req); 5673 return rc; 5674 } 5675 5676 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 5677 { 5678 struct hwrm_func_drv_unrgtr_input *req; 5679 int rc; 5680 5681 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 5682 return 0; 5683 5684 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR); 5685 if (rc) 5686 return rc; 5687 return hwrm_req_send(bp, req); 5688 } 5689 5690 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa); 5691 5692 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 5693 { 5694 struct hwrm_tunnel_dst_port_free_input *req; 5695 int rc; 5696 5697 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN && 5698 bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID) 5699 return 0; 5700 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE && 5701 bp->nge_fw_dst_port_id == INVALID_HW_RING_ID) 5702 return 0; 5703 5704 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE); 5705 if (rc) 5706 return rc; 5707 5708 req->tunnel_type = tunnel_type; 5709 5710 switch (tunnel_type) { 5711 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 5712 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 5713 bp->vxlan_port = 0; 5714 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 5715 break; 5716 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 5717 req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 5718 bp->nge_port = 0; 5719 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 5720 break; 5721 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE: 5722 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_gpe_fw_dst_port_id); 5723 bp->vxlan_gpe_port = 0; 5724 bp->vxlan_gpe_fw_dst_port_id = INVALID_HW_RING_ID; 5725 break; 5726 default: 5727 break; 5728 } 5729 5730 rc = hwrm_req_send(bp, req); 5731 if (rc) 5732 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 5733 rc); 5734 if (bp->flags & BNXT_FLAG_TPA) 5735 bnxt_set_tpa(bp, true); 5736 return rc; 5737 } 5738 5739 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 5740 u8 tunnel_type) 5741 { 5742 struct hwrm_tunnel_dst_port_alloc_output *resp; 5743 struct hwrm_tunnel_dst_port_alloc_input *req; 5744 int rc; 5745 5746 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC); 5747 if (rc) 5748 return rc; 5749 5750 req->tunnel_type = tunnel_type; 5751 req->tunnel_dst_port_val = port; 5752 5753 resp = hwrm_req_hold(bp, req); 5754 rc = hwrm_req_send(bp, req); 5755 if (rc) { 5756 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 5757 rc); 5758 goto err_out; 5759 } 5760 5761 switch (tunnel_type) { 5762 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 5763 bp->vxlan_port = port; 5764 bp->vxlan_fw_dst_port_id = 5765 le16_to_cpu(resp->tunnel_dst_port_id); 5766 break; 5767 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 5768 bp->nge_port = port; 5769 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 5770 break; 5771 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE: 5772 bp->vxlan_gpe_port = port; 5773 bp->vxlan_gpe_fw_dst_port_id = 5774 le16_to_cpu(resp->tunnel_dst_port_id); 5775 break; 5776 default: 5777 break; 5778 } 5779 if (bp->flags & BNXT_FLAG_TPA) 5780 bnxt_set_tpa(bp, true); 5781 5782 err_out: 5783 hwrm_req_drop(bp, req); 5784 return rc; 5785 } 5786 5787 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 5788 { 5789 struct hwrm_cfa_l2_set_rx_mask_input *req; 5790 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5791 int rc; 5792 5793 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK); 5794 if (rc) 5795 return rc; 5796 5797 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5798 if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) { 5799 req->num_mc_entries = cpu_to_le32(vnic->mc_list_count); 5800 req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 5801 } 5802 req->mask = cpu_to_le32(vnic->rx_mask); 5803 return hwrm_req_send_silent(bp, req); 5804 } 5805 5806 void bnxt_del_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5807 { 5808 if (!atomic_dec_and_test(&fltr->refcnt)) 5809 return; 5810 spin_lock_bh(&bp->ntp_fltr_lock); 5811 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 5812 spin_unlock_bh(&bp->ntp_fltr_lock); 5813 return; 5814 } 5815 hlist_del_rcu(&fltr->base.hash); 5816 bnxt_del_one_usr_fltr(bp, &fltr->base); 5817 if (fltr->base.flags) { 5818 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 5819 bp->ntp_fltr_count--; 5820 } 5821 spin_unlock_bh(&bp->ntp_fltr_lock); 5822 kfree_rcu(fltr, base.rcu); 5823 } 5824 5825 static struct bnxt_l2_filter *__bnxt_lookup_l2_filter(struct bnxt *bp, 5826 struct bnxt_l2_key *key, 5827 u32 idx) 5828 { 5829 struct hlist_head *head = &bp->l2_fltr_hash_tbl[idx]; 5830 struct bnxt_l2_filter *fltr; 5831 5832 hlist_for_each_entry_rcu(fltr, head, base.hash) { 5833 struct bnxt_l2_key *l2_key = &fltr->l2_key; 5834 5835 if (ether_addr_equal(l2_key->dst_mac_addr, key->dst_mac_addr) && 5836 l2_key->vlan == key->vlan) 5837 return fltr; 5838 } 5839 return NULL; 5840 } 5841 5842 static struct bnxt_l2_filter *bnxt_lookup_l2_filter(struct bnxt *bp, 5843 struct bnxt_l2_key *key, 5844 u32 idx) 5845 { 5846 struct bnxt_l2_filter *fltr = NULL; 5847 5848 rcu_read_lock(); 5849 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 5850 if (fltr) 5851 atomic_inc(&fltr->refcnt); 5852 rcu_read_unlock(); 5853 return fltr; 5854 } 5855 5856 #define BNXT_IPV4_4TUPLE(bp, fkeys) \ 5857 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5858 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4) || \ 5859 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5860 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4)) 5861 5862 #define BNXT_IPV6_4TUPLE(bp, fkeys) \ 5863 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5864 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6) || \ 5865 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5866 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6)) 5867 5868 static u32 bnxt_get_rss_flow_tuple_len(struct bnxt *bp, struct flow_keys *fkeys) 5869 { 5870 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 5871 if (BNXT_IPV4_4TUPLE(bp, fkeys)) 5872 return sizeof(fkeys->addrs.v4addrs) + 5873 sizeof(fkeys->ports); 5874 5875 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4) 5876 return sizeof(fkeys->addrs.v4addrs); 5877 } 5878 5879 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 5880 if (BNXT_IPV6_4TUPLE(bp, fkeys)) 5881 return sizeof(fkeys->addrs.v6addrs) + 5882 sizeof(fkeys->ports); 5883 5884 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6) 5885 return sizeof(fkeys->addrs.v6addrs); 5886 } 5887 5888 return 0; 5889 } 5890 5891 static u32 bnxt_toeplitz(struct bnxt *bp, struct flow_keys *fkeys, 5892 const unsigned char *key) 5893 { 5894 u64 prefix = bp->toeplitz_prefix, hash = 0; 5895 struct bnxt_ipv4_tuple tuple4; 5896 struct bnxt_ipv6_tuple tuple6; 5897 int i, j, len = 0; 5898 u8 *four_tuple; 5899 5900 len = bnxt_get_rss_flow_tuple_len(bp, fkeys); 5901 if (!len) 5902 return 0; 5903 5904 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 5905 tuple4.v4addrs = fkeys->addrs.v4addrs; 5906 tuple4.ports = fkeys->ports; 5907 four_tuple = (unsigned char *)&tuple4; 5908 } else { 5909 tuple6.v6addrs = fkeys->addrs.v6addrs; 5910 tuple6.ports = fkeys->ports; 5911 four_tuple = (unsigned char *)&tuple6; 5912 } 5913 5914 for (i = 0, j = 8; i < len; i++, j++) { 5915 u8 byte = four_tuple[i]; 5916 int bit; 5917 5918 for (bit = 0; bit < 8; bit++, prefix <<= 1, byte <<= 1) { 5919 if (byte & 0x80) 5920 hash ^= prefix; 5921 } 5922 prefix |= (j < HW_HASH_KEY_SIZE) ? key[j] : 0; 5923 } 5924 5925 /* The valid part of the hash is in the upper 32 bits. */ 5926 return (hash >> 32) & BNXT_NTP_FLTR_HASH_MASK; 5927 } 5928 5929 #ifdef CONFIG_RFS_ACCEL 5930 static struct bnxt_l2_filter * 5931 bnxt_lookup_l2_filter_from_key(struct bnxt *bp, struct bnxt_l2_key *key) 5932 { 5933 struct bnxt_l2_filter *fltr; 5934 u32 idx; 5935 5936 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5937 BNXT_L2_FLTR_HASH_MASK; 5938 fltr = bnxt_lookup_l2_filter(bp, key, idx); 5939 return fltr; 5940 } 5941 #endif 5942 5943 static int bnxt_init_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr, 5944 struct bnxt_l2_key *key, u32 idx) 5945 { 5946 struct hlist_head *head; 5947 5948 ether_addr_copy(fltr->l2_key.dst_mac_addr, key->dst_mac_addr); 5949 fltr->l2_key.vlan = key->vlan; 5950 fltr->base.type = BNXT_FLTR_TYPE_L2; 5951 if (fltr->base.flags) { 5952 int bit_id; 5953 5954 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 5955 bp->max_fltr, 0); 5956 if (bit_id < 0) 5957 return -ENOMEM; 5958 fltr->base.sw_id = (u16)bit_id; 5959 bp->ntp_fltr_count++; 5960 } 5961 head = &bp->l2_fltr_hash_tbl[idx]; 5962 hlist_add_head_rcu(&fltr->base.hash, head); 5963 bnxt_insert_usr_fltr(bp, &fltr->base); 5964 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 5965 atomic_set(&fltr->refcnt, 1); 5966 return 0; 5967 } 5968 5969 static struct bnxt_l2_filter *bnxt_alloc_l2_filter(struct bnxt *bp, 5970 struct bnxt_l2_key *key, 5971 gfp_t gfp) 5972 { 5973 struct bnxt_l2_filter *fltr; 5974 u32 idx; 5975 int rc; 5976 5977 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5978 BNXT_L2_FLTR_HASH_MASK; 5979 fltr = bnxt_lookup_l2_filter(bp, key, idx); 5980 if (fltr) 5981 return fltr; 5982 5983 fltr = kzalloc(sizeof(*fltr), gfp); 5984 if (!fltr) 5985 return ERR_PTR(-ENOMEM); 5986 spin_lock_bh(&bp->ntp_fltr_lock); 5987 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 5988 spin_unlock_bh(&bp->ntp_fltr_lock); 5989 if (rc) { 5990 bnxt_del_l2_filter(bp, fltr); 5991 fltr = ERR_PTR(rc); 5992 } 5993 return fltr; 5994 } 5995 5996 struct bnxt_l2_filter *bnxt_alloc_new_l2_filter(struct bnxt *bp, 5997 struct bnxt_l2_key *key, 5998 u16 flags) 5999 { 6000 struct bnxt_l2_filter *fltr; 6001 u32 idx; 6002 int rc; 6003 6004 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 6005 BNXT_L2_FLTR_HASH_MASK; 6006 spin_lock_bh(&bp->ntp_fltr_lock); 6007 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 6008 if (fltr) { 6009 fltr = ERR_PTR(-EEXIST); 6010 goto l2_filter_exit; 6011 } 6012 fltr = kzalloc(sizeof(*fltr), GFP_ATOMIC); 6013 if (!fltr) { 6014 fltr = ERR_PTR(-ENOMEM); 6015 goto l2_filter_exit; 6016 } 6017 fltr->base.flags = flags; 6018 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 6019 if (rc) { 6020 spin_unlock_bh(&bp->ntp_fltr_lock); 6021 bnxt_del_l2_filter(bp, fltr); 6022 return ERR_PTR(rc); 6023 } 6024 6025 l2_filter_exit: 6026 spin_unlock_bh(&bp->ntp_fltr_lock); 6027 return fltr; 6028 } 6029 6030 static u16 bnxt_vf_target_id(struct bnxt_pf_info *pf, u16 vf_idx) 6031 { 6032 #ifdef CONFIG_BNXT_SRIOV 6033 struct bnxt_vf_info *vf = &pf->vf[vf_idx]; 6034 6035 return vf->fw_fid; 6036 #else 6037 return INVALID_HW_RING_ID; 6038 #endif 6039 } 6040 6041 int bnxt_hwrm_l2_filter_free(struct bnxt *bp, struct bnxt_l2_filter *fltr) 6042 { 6043 struct hwrm_cfa_l2_filter_free_input *req; 6044 u16 target_id = 0xffff; 6045 int rc; 6046 6047 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 6048 struct bnxt_pf_info *pf = &bp->pf; 6049 6050 if (fltr->base.vf_idx >= pf->active_vfs) 6051 return -EINVAL; 6052 6053 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 6054 if (target_id == INVALID_HW_RING_ID) 6055 return -EINVAL; 6056 } 6057 6058 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 6059 if (rc) 6060 return rc; 6061 6062 req->target_id = cpu_to_le16(target_id); 6063 req->l2_filter_id = fltr->base.filter_id; 6064 return hwrm_req_send(bp, req); 6065 } 6066 6067 int bnxt_hwrm_l2_filter_alloc(struct bnxt *bp, struct bnxt_l2_filter *fltr) 6068 { 6069 struct hwrm_cfa_l2_filter_alloc_output *resp; 6070 struct hwrm_cfa_l2_filter_alloc_input *req; 6071 u16 target_id = 0xffff; 6072 int rc; 6073 6074 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 6075 struct bnxt_pf_info *pf = &bp->pf; 6076 6077 if (fltr->base.vf_idx >= pf->active_vfs) 6078 return -EINVAL; 6079 6080 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 6081 } 6082 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC); 6083 if (rc) 6084 return rc; 6085 6086 req->target_id = cpu_to_le16(target_id); 6087 req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 6088 6089 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 6090 req->flags |= 6091 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 6092 req->dst_id = cpu_to_le16(fltr->base.fw_vnic_id); 6093 req->enables = 6094 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 6095 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 6096 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 6097 ether_addr_copy(req->l2_addr, fltr->l2_key.dst_mac_addr); 6098 eth_broadcast_addr(req->l2_addr_mask); 6099 6100 if (fltr->l2_key.vlan) { 6101 req->enables |= 6102 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN | 6103 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN_MASK | 6104 CFA_L2_FILTER_ALLOC_REQ_ENABLES_NUM_VLANS); 6105 req->num_vlans = 1; 6106 req->l2_ivlan = cpu_to_le16(fltr->l2_key.vlan); 6107 req->l2_ivlan_mask = cpu_to_le16(0xfff); 6108 } 6109 6110 resp = hwrm_req_hold(bp, req); 6111 rc = hwrm_req_send(bp, req); 6112 if (!rc) { 6113 fltr->base.filter_id = resp->l2_filter_id; 6114 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 6115 } 6116 hwrm_req_drop(bp, req); 6117 return rc; 6118 } 6119 6120 int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 6121 struct bnxt_ntuple_filter *fltr) 6122 { 6123 struct hwrm_cfa_ntuple_filter_free_input *req; 6124 int rc; 6125 6126 set_bit(BNXT_FLTR_FW_DELETED, &fltr->base.state); 6127 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE); 6128 if (rc) 6129 return rc; 6130 6131 req->ntuple_filter_id = fltr->base.filter_id; 6132 return hwrm_req_send(bp, req); 6133 } 6134 6135 #define BNXT_NTP_FLTR_FLAGS \ 6136 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 6137 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 6138 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 6139 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 6140 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 6141 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 6142 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 6143 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 6144 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 6145 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 6146 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 6147 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 6148 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 6149 6150 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 6151 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 6152 6153 void bnxt_fill_ipv6_mask(__be32 mask[4]) 6154 { 6155 int i; 6156 6157 for (i = 0; i < 4; i++) 6158 mask[i] = cpu_to_be32(~0); 6159 } 6160 6161 static void 6162 bnxt_cfg_rfs_ring_tbl_idx(struct bnxt *bp, 6163 struct hwrm_cfa_ntuple_filter_alloc_input *req, 6164 struct bnxt_ntuple_filter *fltr) 6165 { 6166 u16 rxq = fltr->base.rxq; 6167 6168 if (fltr->base.flags & BNXT_ACT_RSS_CTX) { 6169 struct ethtool_rxfh_context *ctx; 6170 struct bnxt_rss_ctx *rss_ctx; 6171 struct bnxt_vnic_info *vnic; 6172 6173 ctx = xa_load(&bp->dev->ethtool->rss_ctx, 6174 fltr->base.fw_vnic_id); 6175 if (ctx) { 6176 rss_ctx = ethtool_rxfh_context_priv(ctx); 6177 vnic = &rss_ctx->vnic; 6178 6179 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 6180 } 6181 return; 6182 } 6183 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 6184 struct bnxt_vnic_info *vnic; 6185 u32 enables; 6186 6187 vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE]; 6188 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 6189 enables = CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_RFS_RING_TBL_IDX; 6190 req->enables |= cpu_to_le32(enables); 6191 req->rfs_ring_tbl_idx = cpu_to_le16(rxq); 6192 } else { 6193 u32 flags; 6194 6195 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 6196 req->flags |= cpu_to_le32(flags); 6197 req->dst_id = cpu_to_le16(rxq); 6198 } 6199 } 6200 6201 int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 6202 struct bnxt_ntuple_filter *fltr) 6203 { 6204 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 6205 struct hwrm_cfa_ntuple_filter_alloc_input *req; 6206 struct bnxt_flow_masks *masks = &fltr->fmasks; 6207 struct flow_keys *keys = &fltr->fkeys; 6208 struct bnxt_l2_filter *l2_fltr; 6209 struct bnxt_vnic_info *vnic; 6210 int rc; 6211 6212 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC); 6213 if (rc) 6214 return rc; 6215 6216 l2_fltr = fltr->l2_fltr; 6217 req->l2_filter_id = l2_fltr->base.filter_id; 6218 6219 if (fltr->base.flags & BNXT_ACT_DROP) { 6220 req->flags = 6221 cpu_to_le32(CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DROP); 6222 } else if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 6223 bnxt_cfg_rfs_ring_tbl_idx(bp, req, fltr); 6224 } else { 6225 vnic = &bp->vnic_info[fltr->base.rxq + 1]; 6226 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 6227 } 6228 req->enables |= cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 6229 6230 req->ethertype = htons(ETH_P_IP); 6231 req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 6232 req->ip_protocol = keys->basic.ip_proto; 6233 6234 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 6235 req->ethertype = htons(ETH_P_IPV6); 6236 req->ip_addr_type = 6237 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 6238 *(struct in6_addr *)&req->src_ipaddr[0] = keys->addrs.v6addrs.src; 6239 *(struct in6_addr *)&req->src_ipaddr_mask[0] = masks->addrs.v6addrs.src; 6240 *(struct in6_addr *)&req->dst_ipaddr[0] = keys->addrs.v6addrs.dst; 6241 *(struct in6_addr *)&req->dst_ipaddr_mask[0] = masks->addrs.v6addrs.dst; 6242 } else { 6243 req->src_ipaddr[0] = keys->addrs.v4addrs.src; 6244 req->src_ipaddr_mask[0] = masks->addrs.v4addrs.src; 6245 req->dst_ipaddr[0] = keys->addrs.v4addrs.dst; 6246 req->dst_ipaddr_mask[0] = masks->addrs.v4addrs.dst; 6247 } 6248 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 6249 req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 6250 req->tunnel_type = 6251 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 6252 } 6253 6254 req->src_port = keys->ports.src; 6255 req->src_port_mask = masks->ports.src; 6256 req->dst_port = keys->ports.dst; 6257 req->dst_port_mask = masks->ports.dst; 6258 6259 resp = hwrm_req_hold(bp, req); 6260 rc = hwrm_req_send(bp, req); 6261 if (!rc) 6262 fltr->base.filter_id = resp->ntuple_filter_id; 6263 hwrm_req_drop(bp, req); 6264 return rc; 6265 } 6266 6267 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 6268 const u8 *mac_addr) 6269 { 6270 struct bnxt_l2_filter *fltr; 6271 struct bnxt_l2_key key; 6272 int rc; 6273 6274 ether_addr_copy(key.dst_mac_addr, mac_addr); 6275 key.vlan = 0; 6276 fltr = bnxt_alloc_l2_filter(bp, &key, GFP_KERNEL); 6277 if (IS_ERR(fltr)) 6278 return PTR_ERR(fltr); 6279 6280 fltr->base.fw_vnic_id = bp->vnic_info[vnic_id].fw_vnic_id; 6281 rc = bnxt_hwrm_l2_filter_alloc(bp, fltr); 6282 if (rc) 6283 bnxt_del_l2_filter(bp, fltr); 6284 else 6285 bp->vnic_info[vnic_id].l2_filters[idx] = fltr; 6286 return rc; 6287 } 6288 6289 static void bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 6290 { 6291 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 6292 6293 /* Any associated ntuple filters will also be cleared by firmware. */ 6294 for (i = 0; i < num_of_vnics; i++) { 6295 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 6296 6297 for (j = 0; j < vnic->uc_filter_count; j++) { 6298 struct bnxt_l2_filter *fltr = vnic->l2_filters[j]; 6299 6300 bnxt_hwrm_l2_filter_free(bp, fltr); 6301 bnxt_del_l2_filter(bp, fltr); 6302 } 6303 vnic->uc_filter_count = 0; 6304 } 6305 } 6306 6307 #define BNXT_DFLT_TUNL_TPA_BMAP \ 6308 (VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GRE | \ 6309 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV4 | \ 6310 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV6) 6311 6312 static void bnxt_hwrm_vnic_update_tunl_tpa(struct bnxt *bp, 6313 struct hwrm_vnic_tpa_cfg_input *req) 6314 { 6315 u32 tunl_tpa_bmap = BNXT_DFLT_TUNL_TPA_BMAP; 6316 6317 if (!(bp->fw_cap & BNXT_FW_CAP_VNIC_TUNNEL_TPA)) 6318 return; 6319 6320 if (bp->vxlan_port) 6321 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN; 6322 if (bp->vxlan_gpe_port) 6323 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN_GPE; 6324 if (bp->nge_port) 6325 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GENEVE; 6326 6327 req->enables |= cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_TNL_TPA_EN); 6328 req->tnl_tpa_en_bitmap = cpu_to_le32(tunl_tpa_bmap); 6329 } 6330 6331 int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6332 u32 tpa_flags) 6333 { 6334 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 6335 struct hwrm_vnic_tpa_cfg_input *req; 6336 int rc; 6337 6338 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 6339 return 0; 6340 6341 rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG); 6342 if (rc) 6343 return rc; 6344 6345 if (tpa_flags) { 6346 u16 mss = bp->dev->mtu - 40; 6347 u32 nsegs, n, segs = 0, flags; 6348 6349 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 6350 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 6351 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 6352 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 6353 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 6354 if (tpa_flags & BNXT_FLAG_GRO) 6355 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 6356 6357 req->flags = cpu_to_le32(flags); 6358 6359 req->enables = 6360 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 6361 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 6362 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 6363 6364 /* Number of segs are log2 units, and first packet is not 6365 * included as part of this units. 6366 */ 6367 if (mss <= BNXT_RX_PAGE_SIZE) { 6368 n = BNXT_RX_PAGE_SIZE / mss; 6369 nsegs = (MAX_SKB_FRAGS - 1) * n; 6370 } else { 6371 n = mss / BNXT_RX_PAGE_SIZE; 6372 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 6373 n++; 6374 nsegs = (MAX_SKB_FRAGS - n) / n; 6375 } 6376 6377 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6378 segs = MAX_TPA_SEGS_P5; 6379 max_aggs = bp->max_tpa; 6380 } else { 6381 segs = ilog2(nsegs); 6382 } 6383 req->max_agg_segs = cpu_to_le16(segs); 6384 req->max_aggs = cpu_to_le16(max_aggs); 6385 6386 req->min_agg_len = cpu_to_le32(512); 6387 bnxt_hwrm_vnic_update_tunl_tpa(bp, req); 6388 } 6389 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6390 6391 return hwrm_req_send(bp, req); 6392 } 6393 6394 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 6395 { 6396 struct bnxt_ring_grp_info *grp_info; 6397 6398 grp_info = &bp->grp_info[ring->grp_idx]; 6399 return grp_info->cp_fw_ring_id; 6400 } 6401 6402 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 6403 { 6404 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6405 return rxr->rx_cpr->cp_ring_struct.fw_ring_id; 6406 else 6407 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 6408 } 6409 6410 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 6411 { 6412 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6413 return txr->tx_cpr->cp_ring_struct.fw_ring_id; 6414 else 6415 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 6416 } 6417 6418 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp) 6419 { 6420 int entries; 6421 6422 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6423 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 6424 else 6425 entries = HW_HASH_INDEX_SIZE; 6426 6427 bp->rss_indir_tbl_entries = entries; 6428 bp->rss_indir_tbl = 6429 kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), GFP_KERNEL); 6430 if (!bp->rss_indir_tbl) 6431 return -ENOMEM; 6432 6433 return 0; 6434 } 6435 6436 void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp, 6437 struct ethtool_rxfh_context *rss_ctx) 6438 { 6439 u16 max_rings, max_entries, pad, i; 6440 u32 *rss_indir_tbl; 6441 6442 if (!bp->rx_nr_rings) 6443 return; 6444 6445 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6446 max_rings = bp->rx_nr_rings - 1; 6447 else 6448 max_rings = bp->rx_nr_rings; 6449 6450 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 6451 if (rss_ctx) 6452 rss_indir_tbl = ethtool_rxfh_context_indir(rss_ctx); 6453 else 6454 rss_indir_tbl = &bp->rss_indir_tbl[0]; 6455 6456 for (i = 0; i < max_entries; i++) 6457 rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 6458 6459 pad = bp->rss_indir_tbl_entries - max_entries; 6460 if (pad) 6461 memset(&rss_indir_tbl[i], 0, pad * sizeof(*rss_indir_tbl)); 6462 } 6463 6464 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 6465 { 6466 u32 i, tbl_size, max_ring = 0; 6467 6468 if (!bp->rss_indir_tbl) 6469 return 0; 6470 6471 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6472 for (i = 0; i < tbl_size; i++) 6473 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 6474 return max_ring; 6475 } 6476 6477 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 6478 { 6479 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6480 if (!rx_rings) 6481 return 0; 6482 return bnxt_calc_nr_ring_pages(rx_rings - 1, 6483 BNXT_RSS_TABLE_ENTRIES_P5); 6484 } 6485 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6486 return 2; 6487 return 1; 6488 } 6489 6490 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6491 { 6492 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 6493 u16 i, j; 6494 6495 /* Fill the RSS indirection table with ring group ids */ 6496 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 6497 if (!no_rss) 6498 j = bp->rss_indir_tbl[i]; 6499 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 6500 } 6501 } 6502 6503 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 6504 struct bnxt_vnic_info *vnic) 6505 { 6506 __le16 *ring_tbl = vnic->rss_table; 6507 struct bnxt_rx_ring_info *rxr; 6508 u16 tbl_size, i; 6509 6510 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6511 6512 for (i = 0; i < tbl_size; i++) { 6513 u16 ring_id, j; 6514 6515 if (vnic->flags & BNXT_VNIC_NTUPLE_FLAG) 6516 j = ethtool_rxfh_indir_default(i, bp->rx_nr_rings); 6517 else if (vnic->flags & BNXT_VNIC_RSSCTX_FLAG) 6518 j = ethtool_rxfh_context_indir(vnic->rss_ctx)[i]; 6519 else 6520 j = bp->rss_indir_tbl[i]; 6521 rxr = &bp->rx_ring[j]; 6522 6523 ring_id = rxr->rx_ring_struct.fw_ring_id; 6524 *ring_tbl++ = cpu_to_le16(ring_id); 6525 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6526 *ring_tbl++ = cpu_to_le16(ring_id); 6527 } 6528 } 6529 6530 static void 6531 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req, 6532 struct bnxt_vnic_info *vnic) 6533 { 6534 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6535 bnxt_fill_hw_rss_tbl_p5(bp, vnic); 6536 if (bp->flags & BNXT_FLAG_CHIP_P7) 6537 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_IPSEC_HASH_TYPE_CFG_SUPPORT; 6538 } else { 6539 bnxt_fill_hw_rss_tbl(bp, vnic); 6540 } 6541 6542 if (bp->rss_hash_delta) { 6543 req->hash_type = cpu_to_le32(bp->rss_hash_delta); 6544 if (bp->rss_hash_cfg & bp->rss_hash_delta) 6545 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE; 6546 else 6547 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE; 6548 } else { 6549 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 6550 } 6551 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 6552 req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 6553 req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 6554 } 6555 6556 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6557 bool set_rss) 6558 { 6559 struct hwrm_vnic_rss_cfg_input *req; 6560 int rc; 6561 6562 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) || 6563 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 6564 return 0; 6565 6566 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6567 if (rc) 6568 return rc; 6569 6570 if (set_rss) 6571 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6572 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6573 return hwrm_req_send(bp, req); 6574 } 6575 6576 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, 6577 struct bnxt_vnic_info *vnic, bool set_rss) 6578 { 6579 struct hwrm_vnic_rss_cfg_input *req; 6580 dma_addr_t ring_tbl_map; 6581 u32 i, nr_ctxs; 6582 int rc; 6583 6584 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6585 if (rc) 6586 return rc; 6587 6588 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6589 if (!set_rss) 6590 return hwrm_req_send(bp, req); 6591 6592 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6593 ring_tbl_map = vnic->rss_table_dma_addr; 6594 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 6595 6596 hwrm_req_hold(bp, req); 6597 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 6598 req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 6599 req->ring_table_pair_index = i; 6600 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 6601 rc = hwrm_req_send(bp, req); 6602 if (rc) 6603 goto exit; 6604 } 6605 6606 exit: 6607 hwrm_req_drop(bp, req); 6608 return rc; 6609 } 6610 6611 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp) 6612 { 6613 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6614 struct hwrm_vnic_rss_qcfg_output *resp; 6615 struct hwrm_vnic_rss_qcfg_input *req; 6616 6617 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG)) 6618 return; 6619 6620 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6621 /* all contexts configured to same hash_type, zero always exists */ 6622 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6623 resp = hwrm_req_hold(bp, req); 6624 if (!hwrm_req_send(bp, req)) { 6625 bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg; 6626 bp->rss_hash_delta = 0; 6627 } 6628 hwrm_req_drop(bp, req); 6629 } 6630 6631 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6632 { 6633 u16 hds_thresh = (u16)bp->dev->cfg_pending->hds_thresh; 6634 struct hwrm_vnic_plcmodes_cfg_input *req; 6635 int rc; 6636 6637 rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG); 6638 if (rc) 6639 return rc; 6640 6641 req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT); 6642 req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID); 6643 req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size); 6644 6645 if (!BNXT_RX_PAGE_MODE(bp) && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 6646 req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 6647 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 6648 req->enables |= 6649 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 6650 req->hds_threshold = cpu_to_le16(hds_thresh); 6651 } 6652 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 6653 return hwrm_req_send(bp, req); 6654 } 6655 6656 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, 6657 struct bnxt_vnic_info *vnic, 6658 u16 ctx_idx) 6659 { 6660 struct hwrm_vnic_rss_cos_lb_ctx_free_input *req; 6661 6662 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE)) 6663 return; 6664 6665 req->rss_cos_lb_ctx_id = 6666 cpu_to_le16(vnic->fw_rss_cos_lb_ctx[ctx_idx]); 6667 6668 hwrm_req_send(bp, req); 6669 vnic->fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 6670 } 6671 6672 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 6673 { 6674 int i, j; 6675 6676 for (i = 0; i < bp->nr_vnics; i++) { 6677 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 6678 6679 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 6680 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 6681 bnxt_hwrm_vnic_ctx_free_one(bp, vnic, j); 6682 } 6683 } 6684 bp->rsscos_nr_ctxs = 0; 6685 } 6686 6687 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, 6688 struct bnxt_vnic_info *vnic, u16 ctx_idx) 6689 { 6690 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp; 6691 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req; 6692 int rc; 6693 6694 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC); 6695 if (rc) 6696 return rc; 6697 6698 resp = hwrm_req_hold(bp, req); 6699 rc = hwrm_req_send(bp, req); 6700 if (!rc) 6701 vnic->fw_rss_cos_lb_ctx[ctx_idx] = 6702 le16_to_cpu(resp->rss_cos_lb_ctx_id); 6703 hwrm_req_drop(bp, req); 6704 6705 return rc; 6706 } 6707 6708 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 6709 { 6710 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 6711 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 6712 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 6713 } 6714 6715 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6716 { 6717 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6718 struct hwrm_vnic_cfg_input *req; 6719 unsigned int ring = 0, grp_idx; 6720 u16 def_vlan = 0; 6721 int rc; 6722 6723 rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG); 6724 if (rc) 6725 return rc; 6726 6727 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6728 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 6729 6730 req->default_rx_ring_id = 6731 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 6732 req->default_cmpl_ring_id = 6733 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 6734 req->enables = 6735 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 6736 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 6737 goto vnic_mru; 6738 } 6739 req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 6740 /* Only RSS support for now TBD: COS & LB */ 6741 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 6742 req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6743 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6744 VNIC_CFG_REQ_ENABLES_MRU); 6745 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 6746 req->rss_rule = cpu_to_le16(vnic0->fw_rss_cos_lb_ctx[0]); 6747 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6748 VNIC_CFG_REQ_ENABLES_MRU); 6749 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 6750 } else { 6751 req->rss_rule = cpu_to_le16(0xffff); 6752 } 6753 6754 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 6755 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 6756 req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 6757 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 6758 } else { 6759 req->cos_rule = cpu_to_le16(0xffff); 6760 } 6761 6762 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 6763 ring = 0; 6764 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 6765 ring = vnic->vnic_id - 1; 6766 else if ((vnic->vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 6767 ring = bp->rx_nr_rings - 1; 6768 6769 grp_idx = bp->rx_ring[ring].bnapi->index; 6770 req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 6771 req->lb_rule = cpu_to_le16(0xffff); 6772 vnic_mru: 6773 vnic->mru = bp->dev->mtu + ETH_HLEN + VLAN_HLEN; 6774 req->mru = cpu_to_le16(vnic->mru); 6775 6776 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6777 #ifdef CONFIG_BNXT_SRIOV 6778 if (BNXT_VF(bp)) 6779 def_vlan = bp->vf.vlan; 6780 #endif 6781 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 6782 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 6783 if (vnic->vnic_id == BNXT_VNIC_DEFAULT && bnxt_ulp_registered(bp->edev)) 6784 req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 6785 6786 return hwrm_req_send(bp, req); 6787 } 6788 6789 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, 6790 struct bnxt_vnic_info *vnic) 6791 { 6792 if (vnic->fw_vnic_id != INVALID_HW_RING_ID) { 6793 struct hwrm_vnic_free_input *req; 6794 6795 if (hwrm_req_init(bp, req, HWRM_VNIC_FREE)) 6796 return; 6797 6798 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 6799 6800 hwrm_req_send(bp, req); 6801 vnic->fw_vnic_id = INVALID_HW_RING_ID; 6802 } 6803 } 6804 6805 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 6806 { 6807 u16 i; 6808 6809 for (i = 0; i < bp->nr_vnics; i++) 6810 bnxt_hwrm_vnic_free_one(bp, &bp->vnic_info[i]); 6811 } 6812 6813 int bnxt_hwrm_vnic_alloc(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6814 unsigned int start_rx_ring_idx, 6815 unsigned int nr_rings) 6816 { 6817 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 6818 struct hwrm_vnic_alloc_output *resp; 6819 struct hwrm_vnic_alloc_input *req; 6820 int rc; 6821 6822 rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC); 6823 if (rc) 6824 return rc; 6825 6826 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6827 goto vnic_no_ring_grps; 6828 6829 /* map ring groups to this vnic */ 6830 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 6831 grp_idx = bp->rx_ring[i].bnapi->index; 6832 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 6833 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 6834 j, nr_rings); 6835 break; 6836 } 6837 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 6838 } 6839 6840 vnic_no_ring_grps: 6841 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 6842 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 6843 if (vnic->vnic_id == BNXT_VNIC_DEFAULT) 6844 req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 6845 6846 resp = hwrm_req_hold(bp, req); 6847 rc = hwrm_req_send(bp, req); 6848 if (!rc) 6849 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 6850 hwrm_req_drop(bp, req); 6851 return rc; 6852 } 6853 6854 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 6855 { 6856 struct hwrm_vnic_qcaps_output *resp; 6857 struct hwrm_vnic_qcaps_input *req; 6858 int rc; 6859 6860 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 6861 bp->flags &= ~BNXT_FLAG_ROCE_MIRROR_CAP; 6862 bp->rss_cap &= ~BNXT_RSS_CAP_NEW_RSS_CAP; 6863 if (bp->hwrm_spec_code < 0x10600) 6864 return 0; 6865 6866 rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS); 6867 if (rc) 6868 return rc; 6869 6870 resp = hwrm_req_hold(bp, req); 6871 rc = hwrm_req_send(bp, req); 6872 if (!rc) { 6873 u32 flags = le32_to_cpu(resp->flags); 6874 6875 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 6876 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 6877 bp->rss_cap |= BNXT_RSS_CAP_NEW_RSS_CAP; 6878 if (flags & 6879 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 6880 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 6881 6882 /* Older P5 fw before EXT_HW_STATS support did not set 6883 * VLAN_STRIP_CAP properly. 6884 */ 6885 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 6886 (BNXT_CHIP_P5(bp) && 6887 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 6888 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 6889 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP) 6890 bp->rss_cap |= BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA; 6891 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_PROF_TCAM_MODE_ENABLED) 6892 bp->rss_cap |= BNXT_RSS_CAP_RSS_TCAM; 6893 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 6894 if (bp->max_tpa_v2) { 6895 if (BNXT_CHIP_P5(bp)) 6896 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 6897 else 6898 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P7; 6899 } 6900 if (flags & VNIC_QCAPS_RESP_FLAGS_HW_TUNNEL_TPA_CAP) 6901 bp->fw_cap |= BNXT_FW_CAP_VNIC_TUNNEL_TPA; 6902 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV4_CAP) 6903 bp->rss_cap |= BNXT_RSS_CAP_AH_V4_RSS_CAP; 6904 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV6_CAP) 6905 bp->rss_cap |= BNXT_RSS_CAP_AH_V6_RSS_CAP; 6906 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV4_CAP) 6907 bp->rss_cap |= BNXT_RSS_CAP_ESP_V4_RSS_CAP; 6908 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV6_CAP) 6909 bp->rss_cap |= BNXT_RSS_CAP_ESP_V6_RSS_CAP; 6910 if (flags & VNIC_QCAPS_RESP_FLAGS_RE_FLUSH_CAP) 6911 bp->fw_cap |= BNXT_FW_CAP_VNIC_RE_FLUSH; 6912 } 6913 hwrm_req_drop(bp, req); 6914 return rc; 6915 } 6916 6917 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 6918 { 6919 struct hwrm_ring_grp_alloc_output *resp; 6920 struct hwrm_ring_grp_alloc_input *req; 6921 int rc; 6922 u16 i; 6923 6924 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6925 return 0; 6926 6927 rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC); 6928 if (rc) 6929 return rc; 6930 6931 resp = hwrm_req_hold(bp, req); 6932 for (i = 0; i < bp->rx_nr_rings; i++) { 6933 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 6934 6935 req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 6936 req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 6937 req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 6938 req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 6939 6940 rc = hwrm_req_send(bp, req); 6941 6942 if (rc) 6943 break; 6944 6945 bp->grp_info[grp_idx].fw_grp_id = 6946 le32_to_cpu(resp->ring_group_id); 6947 } 6948 hwrm_req_drop(bp, req); 6949 return rc; 6950 } 6951 6952 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 6953 { 6954 struct hwrm_ring_grp_free_input *req; 6955 u16 i; 6956 6957 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 6958 return; 6959 6960 if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE)) 6961 return; 6962 6963 hwrm_req_hold(bp, req); 6964 for (i = 0; i < bp->cp_nr_rings; i++) { 6965 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 6966 continue; 6967 req->ring_group_id = 6968 cpu_to_le32(bp->grp_info[i].fw_grp_id); 6969 6970 hwrm_req_send(bp, req); 6971 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 6972 } 6973 hwrm_req_drop(bp, req); 6974 } 6975 6976 static void bnxt_set_rx_ring_params_p5(struct bnxt *bp, u32 ring_type, 6977 struct hwrm_ring_alloc_input *req, 6978 struct bnxt_ring_struct *ring) 6979 { 6980 struct bnxt_ring_grp_info *grp_info = &bp->grp_info[ring->grp_idx]; 6981 u32 enables = RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID | 6982 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID; 6983 6984 if (ring_type == HWRM_RING_ALLOC_AGG) { 6985 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 6986 req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 6987 req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 6988 enables |= RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID; 6989 } else { 6990 req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 6991 if (NET_IP_ALIGN == 2) 6992 req->flags = 6993 cpu_to_le16(RING_ALLOC_REQ_FLAGS_RX_SOP_PAD); 6994 } 6995 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6996 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 6997 req->enables |= cpu_to_le32(enables); 6998 } 6999 7000 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 7001 struct bnxt_ring_struct *ring, 7002 u32 ring_type, u32 map_index) 7003 { 7004 struct hwrm_ring_alloc_output *resp; 7005 struct hwrm_ring_alloc_input *req; 7006 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 7007 struct bnxt_ring_grp_info *grp_info; 7008 int rc, err = 0; 7009 u16 ring_id; 7010 7011 rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC); 7012 if (rc) 7013 goto exit; 7014 7015 req->enables = 0; 7016 if (rmem->nr_pages > 1) { 7017 req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 7018 /* Page size is in log2 units */ 7019 req->page_size = BNXT_PAGE_SHIFT; 7020 req->page_tbl_depth = 1; 7021 } else { 7022 req->page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 7023 } 7024 req->fbo = 0; 7025 /* Association of ring index with doorbell index and MSIX number */ 7026 req->logical_id = cpu_to_le16(map_index); 7027 7028 switch (ring_type) { 7029 case HWRM_RING_ALLOC_TX: { 7030 struct bnxt_tx_ring_info *txr; 7031 u16 flags = 0; 7032 7033 txr = container_of(ring, struct bnxt_tx_ring_info, 7034 tx_ring_struct); 7035 req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 7036 /* Association of transmit ring with completion ring */ 7037 grp_info = &bp->grp_info[ring->grp_idx]; 7038 req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 7039 req->length = cpu_to_le32(bp->tx_ring_mask + 1); 7040 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 7041 req->queue_id = cpu_to_le16(ring->queue_id); 7042 if (bp->flags & BNXT_FLAG_TX_COAL_CMPL) 7043 req->cmpl_coal_cnt = 7044 RING_ALLOC_REQ_CMPL_COAL_CNT_COAL_64; 7045 if ((bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) && bp->ptp_cfg) 7046 flags |= RING_ALLOC_REQ_FLAGS_TX_PKT_TS_CMPL_ENABLE; 7047 req->flags = cpu_to_le16(flags); 7048 break; 7049 } 7050 case HWRM_RING_ALLOC_RX: 7051 case HWRM_RING_ALLOC_AGG: 7052 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 7053 req->length = (ring_type == HWRM_RING_ALLOC_RX) ? 7054 cpu_to_le32(bp->rx_ring_mask + 1) : 7055 cpu_to_le32(bp->rx_agg_ring_mask + 1); 7056 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7057 bnxt_set_rx_ring_params_p5(bp, ring_type, req, ring); 7058 break; 7059 case HWRM_RING_ALLOC_CMPL: 7060 req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 7061 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 7062 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7063 /* Association of cp ring with nq */ 7064 grp_info = &bp->grp_info[map_index]; 7065 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 7066 req->cq_handle = cpu_to_le64(ring->handle); 7067 req->enables |= cpu_to_le32( 7068 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 7069 } else { 7070 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 7071 } 7072 break; 7073 case HWRM_RING_ALLOC_NQ: 7074 req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 7075 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 7076 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 7077 break; 7078 default: 7079 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 7080 ring_type); 7081 return -1; 7082 } 7083 7084 resp = hwrm_req_hold(bp, req); 7085 rc = hwrm_req_send(bp, req); 7086 err = le16_to_cpu(resp->error_code); 7087 ring_id = le16_to_cpu(resp->ring_id); 7088 hwrm_req_drop(bp, req); 7089 7090 exit: 7091 if (rc || err) { 7092 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 7093 ring_type, rc, err); 7094 return -EIO; 7095 } 7096 ring->fw_ring_id = ring_id; 7097 return rc; 7098 } 7099 7100 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 7101 { 7102 int rc; 7103 7104 if (BNXT_PF(bp)) { 7105 struct hwrm_func_cfg_input *req; 7106 7107 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 7108 if (rc) 7109 return rc; 7110 7111 req->fid = cpu_to_le16(0xffff); 7112 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 7113 req->async_event_cr = cpu_to_le16(idx); 7114 return hwrm_req_send(bp, req); 7115 } else { 7116 struct hwrm_func_vf_cfg_input *req; 7117 7118 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); 7119 if (rc) 7120 return rc; 7121 7122 req->enables = 7123 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 7124 req->async_event_cr = cpu_to_le16(idx); 7125 return hwrm_req_send(bp, req); 7126 } 7127 } 7128 7129 static void bnxt_set_db_mask(struct bnxt *bp, struct bnxt_db_info *db, 7130 u32 ring_type) 7131 { 7132 switch (ring_type) { 7133 case HWRM_RING_ALLOC_TX: 7134 db->db_ring_mask = bp->tx_ring_mask; 7135 break; 7136 case HWRM_RING_ALLOC_RX: 7137 db->db_ring_mask = bp->rx_ring_mask; 7138 break; 7139 case HWRM_RING_ALLOC_AGG: 7140 db->db_ring_mask = bp->rx_agg_ring_mask; 7141 break; 7142 case HWRM_RING_ALLOC_CMPL: 7143 case HWRM_RING_ALLOC_NQ: 7144 db->db_ring_mask = bp->cp_ring_mask; 7145 break; 7146 } 7147 if (bp->flags & BNXT_FLAG_CHIP_P7) { 7148 db->db_epoch_mask = db->db_ring_mask + 1; 7149 db->db_epoch_shift = DBR_EPOCH_SFT - ilog2(db->db_epoch_mask); 7150 } 7151 } 7152 7153 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 7154 u32 map_idx, u32 xid) 7155 { 7156 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7157 switch (ring_type) { 7158 case HWRM_RING_ALLOC_TX: 7159 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 7160 break; 7161 case HWRM_RING_ALLOC_RX: 7162 case HWRM_RING_ALLOC_AGG: 7163 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 7164 break; 7165 case HWRM_RING_ALLOC_CMPL: 7166 db->db_key64 = DBR_PATH_L2; 7167 break; 7168 case HWRM_RING_ALLOC_NQ: 7169 db->db_key64 = DBR_PATH_L2; 7170 break; 7171 } 7172 db->db_key64 |= (u64)xid << DBR_XID_SFT; 7173 7174 if (bp->flags & BNXT_FLAG_CHIP_P7) 7175 db->db_key64 |= DBR_VALID; 7176 7177 db->doorbell = bp->bar1 + bp->db_offset; 7178 } else { 7179 db->doorbell = bp->bar1 + map_idx * 0x80; 7180 switch (ring_type) { 7181 case HWRM_RING_ALLOC_TX: 7182 db->db_key32 = DB_KEY_TX; 7183 break; 7184 case HWRM_RING_ALLOC_RX: 7185 case HWRM_RING_ALLOC_AGG: 7186 db->db_key32 = DB_KEY_RX; 7187 break; 7188 case HWRM_RING_ALLOC_CMPL: 7189 db->db_key32 = DB_KEY_CP; 7190 break; 7191 } 7192 } 7193 bnxt_set_db_mask(bp, db, ring_type); 7194 } 7195 7196 static int bnxt_hwrm_rx_ring_alloc(struct bnxt *bp, 7197 struct bnxt_rx_ring_info *rxr) 7198 { 7199 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 7200 struct bnxt_napi *bnapi = rxr->bnapi; 7201 u32 type = HWRM_RING_ALLOC_RX; 7202 u32 map_idx = bnapi->index; 7203 int rc; 7204 7205 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7206 if (rc) 7207 return rc; 7208 7209 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 7210 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 7211 7212 return 0; 7213 } 7214 7215 static int bnxt_hwrm_rx_agg_ring_alloc(struct bnxt *bp, 7216 struct bnxt_rx_ring_info *rxr) 7217 { 7218 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 7219 u32 type = HWRM_RING_ALLOC_AGG; 7220 u32 grp_idx = ring->grp_idx; 7221 u32 map_idx; 7222 int rc; 7223 7224 map_idx = grp_idx + bp->rx_nr_rings; 7225 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7226 if (rc) 7227 return rc; 7228 7229 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 7230 ring->fw_ring_id); 7231 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 7232 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 7233 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 7234 7235 return 0; 7236 } 7237 7238 static int bnxt_hwrm_cp_ring_alloc_p5(struct bnxt *bp, 7239 struct bnxt_cp_ring_info *cpr) 7240 { 7241 const u32 type = HWRM_RING_ALLOC_CMPL; 7242 struct bnxt_napi *bnapi = cpr->bnapi; 7243 struct bnxt_ring_struct *ring; 7244 u32 map_idx = bnapi->index; 7245 int rc; 7246 7247 ring = &cpr->cp_ring_struct; 7248 ring->handle = BNXT_SET_NQ_HDL(cpr); 7249 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7250 if (rc) 7251 return rc; 7252 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 7253 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 7254 return 0; 7255 } 7256 7257 static int bnxt_hwrm_tx_ring_alloc(struct bnxt *bp, 7258 struct bnxt_tx_ring_info *txr, u32 tx_idx) 7259 { 7260 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 7261 const u32 type = HWRM_RING_ALLOC_TX; 7262 int rc; 7263 7264 rc = hwrm_ring_alloc_send_msg(bp, ring, type, tx_idx); 7265 if (rc) 7266 return rc; 7267 bnxt_set_db(bp, &txr->tx_db, type, tx_idx, ring->fw_ring_id); 7268 return 0; 7269 } 7270 7271 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 7272 { 7273 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 7274 int i, rc = 0; 7275 u32 type; 7276 7277 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7278 type = HWRM_RING_ALLOC_NQ; 7279 else 7280 type = HWRM_RING_ALLOC_CMPL; 7281 for (i = 0; i < bp->cp_nr_rings; i++) { 7282 struct bnxt_napi *bnapi = bp->bnapi[i]; 7283 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7284 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 7285 u32 map_idx = ring->map_idx; 7286 unsigned int vector; 7287 7288 vector = bp->irq_tbl[map_idx].vector; 7289 disable_irq_nosync(vector); 7290 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7291 if (rc) { 7292 enable_irq(vector); 7293 goto err_out; 7294 } 7295 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 7296 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 7297 enable_irq(vector); 7298 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 7299 7300 if (!i) { 7301 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 7302 if (rc) 7303 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 7304 } 7305 } 7306 7307 for (i = 0; i < bp->tx_nr_rings; i++) { 7308 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 7309 7310 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7311 rc = bnxt_hwrm_cp_ring_alloc_p5(bp, txr->tx_cpr); 7312 if (rc) 7313 goto err_out; 7314 } 7315 rc = bnxt_hwrm_tx_ring_alloc(bp, txr, i); 7316 if (rc) 7317 goto err_out; 7318 } 7319 7320 for (i = 0; i < bp->rx_nr_rings; i++) { 7321 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 7322 7323 rc = bnxt_hwrm_rx_ring_alloc(bp, rxr); 7324 if (rc) 7325 goto err_out; 7326 /* If we have agg rings, post agg buffers first. */ 7327 if (!agg_rings) 7328 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 7329 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7330 rc = bnxt_hwrm_cp_ring_alloc_p5(bp, rxr->rx_cpr); 7331 if (rc) 7332 goto err_out; 7333 } 7334 } 7335 7336 if (agg_rings) { 7337 for (i = 0; i < bp->rx_nr_rings; i++) { 7338 rc = bnxt_hwrm_rx_agg_ring_alloc(bp, &bp->rx_ring[i]); 7339 if (rc) 7340 goto err_out; 7341 } 7342 } 7343 err_out: 7344 return rc; 7345 } 7346 7347 static void bnxt_cancel_dim(struct bnxt *bp) 7348 { 7349 int i; 7350 7351 /* DIM work is initialized in bnxt_enable_napi(). Proceed only 7352 * if NAPI is enabled. 7353 */ 7354 if (!bp->bnapi || test_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 7355 return; 7356 7357 /* Make sure NAPI sees that the VNIC is disabled */ 7358 synchronize_net(); 7359 for (i = 0; i < bp->rx_nr_rings; i++) { 7360 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 7361 struct bnxt_napi *bnapi = rxr->bnapi; 7362 7363 cancel_work_sync(&bnapi->cp_ring.dim.work); 7364 } 7365 } 7366 7367 static int hwrm_ring_free_send_msg(struct bnxt *bp, 7368 struct bnxt_ring_struct *ring, 7369 u32 ring_type, int cmpl_ring_id) 7370 { 7371 struct hwrm_ring_free_output *resp; 7372 struct hwrm_ring_free_input *req; 7373 u16 error_code = 0; 7374 int rc; 7375 7376 if (BNXT_NO_FW_ACCESS(bp)) 7377 return 0; 7378 7379 rc = hwrm_req_init(bp, req, HWRM_RING_FREE); 7380 if (rc) 7381 goto exit; 7382 7383 req->cmpl_ring = cpu_to_le16(cmpl_ring_id); 7384 req->ring_type = ring_type; 7385 req->ring_id = cpu_to_le16(ring->fw_ring_id); 7386 7387 resp = hwrm_req_hold(bp, req); 7388 rc = hwrm_req_send(bp, req); 7389 error_code = le16_to_cpu(resp->error_code); 7390 hwrm_req_drop(bp, req); 7391 exit: 7392 if (rc || error_code) { 7393 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 7394 ring_type, rc, error_code); 7395 return -EIO; 7396 } 7397 return 0; 7398 } 7399 7400 static void bnxt_hwrm_tx_ring_free(struct bnxt *bp, 7401 struct bnxt_tx_ring_info *txr, 7402 bool close_path) 7403 { 7404 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 7405 u32 cmpl_ring_id; 7406 7407 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7408 return; 7409 7410 cmpl_ring_id = close_path ? bnxt_cp_ring_for_tx(bp, txr) : 7411 INVALID_HW_RING_ID; 7412 hwrm_ring_free_send_msg(bp, ring, RING_FREE_REQ_RING_TYPE_TX, 7413 cmpl_ring_id); 7414 ring->fw_ring_id = INVALID_HW_RING_ID; 7415 } 7416 7417 static void bnxt_hwrm_rx_ring_free(struct bnxt *bp, 7418 struct bnxt_rx_ring_info *rxr, 7419 bool close_path) 7420 { 7421 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 7422 u32 grp_idx = rxr->bnapi->index; 7423 u32 cmpl_ring_id; 7424 7425 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7426 return; 7427 7428 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 7429 hwrm_ring_free_send_msg(bp, ring, 7430 RING_FREE_REQ_RING_TYPE_RX, 7431 close_path ? cmpl_ring_id : 7432 INVALID_HW_RING_ID); 7433 ring->fw_ring_id = INVALID_HW_RING_ID; 7434 bp->grp_info[grp_idx].rx_fw_ring_id = INVALID_HW_RING_ID; 7435 } 7436 7437 static void bnxt_hwrm_rx_agg_ring_free(struct bnxt *bp, 7438 struct bnxt_rx_ring_info *rxr, 7439 bool close_path) 7440 { 7441 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 7442 u32 grp_idx = rxr->bnapi->index; 7443 u32 type, cmpl_ring_id; 7444 7445 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7446 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 7447 else 7448 type = RING_FREE_REQ_RING_TYPE_RX; 7449 7450 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7451 return; 7452 7453 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 7454 hwrm_ring_free_send_msg(bp, ring, type, 7455 close_path ? cmpl_ring_id : 7456 INVALID_HW_RING_ID); 7457 ring->fw_ring_id = INVALID_HW_RING_ID; 7458 bp->grp_info[grp_idx].agg_fw_ring_id = INVALID_HW_RING_ID; 7459 } 7460 7461 static void bnxt_hwrm_cp_ring_free(struct bnxt *bp, 7462 struct bnxt_cp_ring_info *cpr) 7463 { 7464 struct bnxt_ring_struct *ring; 7465 7466 ring = &cpr->cp_ring_struct; 7467 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7468 return; 7469 7470 hwrm_ring_free_send_msg(bp, ring, RING_FREE_REQ_RING_TYPE_L2_CMPL, 7471 INVALID_HW_RING_ID); 7472 ring->fw_ring_id = INVALID_HW_RING_ID; 7473 } 7474 7475 static void bnxt_clear_one_cp_ring(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 7476 { 7477 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 7478 int i, size = ring->ring_mem.page_size; 7479 7480 cpr->cp_raw_cons = 0; 7481 cpr->toggle = 0; 7482 7483 for (i = 0; i < bp->cp_nr_pages; i++) 7484 if (cpr->cp_desc_ring[i]) 7485 memset(cpr->cp_desc_ring[i], 0, size); 7486 } 7487 7488 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 7489 { 7490 u32 type; 7491 int i; 7492 7493 if (!bp->bnapi) 7494 return; 7495 7496 for (i = 0; i < bp->tx_nr_rings; i++) 7497 bnxt_hwrm_tx_ring_free(bp, &bp->tx_ring[i], close_path); 7498 7499 bnxt_cancel_dim(bp); 7500 for (i = 0; i < bp->rx_nr_rings; i++) { 7501 bnxt_hwrm_rx_ring_free(bp, &bp->rx_ring[i], close_path); 7502 bnxt_hwrm_rx_agg_ring_free(bp, &bp->rx_ring[i], close_path); 7503 } 7504 7505 /* The completion rings are about to be freed. After that the 7506 * IRQ doorbell will not work anymore. So we need to disable 7507 * IRQ here. 7508 */ 7509 bnxt_disable_int_sync(bp); 7510 7511 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7512 type = RING_FREE_REQ_RING_TYPE_NQ; 7513 else 7514 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 7515 for (i = 0; i < bp->cp_nr_rings; i++) { 7516 struct bnxt_napi *bnapi = bp->bnapi[i]; 7517 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7518 struct bnxt_ring_struct *ring; 7519 int j; 7520 7521 for (j = 0; j < cpr->cp_ring_count && cpr->cp_ring_arr; j++) 7522 bnxt_hwrm_cp_ring_free(bp, &cpr->cp_ring_arr[j]); 7523 7524 ring = &cpr->cp_ring_struct; 7525 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 7526 hwrm_ring_free_send_msg(bp, ring, type, 7527 INVALID_HW_RING_ID); 7528 ring->fw_ring_id = INVALID_HW_RING_ID; 7529 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 7530 } 7531 } 7532 } 7533 7534 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7535 bool shared); 7536 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7537 bool shared); 7538 7539 static int bnxt_hwrm_get_rings(struct bnxt *bp) 7540 { 7541 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7542 struct hwrm_func_qcfg_output *resp; 7543 struct hwrm_func_qcfg_input *req; 7544 int rc; 7545 7546 if (bp->hwrm_spec_code < 0x10601) 7547 return 0; 7548 7549 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7550 if (rc) 7551 return rc; 7552 7553 req->fid = cpu_to_le16(0xffff); 7554 resp = hwrm_req_hold(bp, req); 7555 rc = hwrm_req_send(bp, req); 7556 if (rc) { 7557 hwrm_req_drop(bp, req); 7558 return rc; 7559 } 7560 7561 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7562 if (BNXT_NEW_RM(bp)) { 7563 u16 cp, stats; 7564 7565 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 7566 hw_resc->resv_hw_ring_grps = 7567 le32_to_cpu(resp->alloc_hw_ring_grps); 7568 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 7569 hw_resc->resv_rsscos_ctxs = le16_to_cpu(resp->alloc_rsscos_ctx); 7570 cp = le16_to_cpu(resp->alloc_cmpl_rings); 7571 stats = le16_to_cpu(resp->alloc_stat_ctx); 7572 hw_resc->resv_irqs = cp; 7573 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7574 int rx = hw_resc->resv_rx_rings; 7575 int tx = hw_resc->resv_tx_rings; 7576 7577 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7578 rx >>= 1; 7579 if (cp < (rx + tx)) { 7580 rc = __bnxt_trim_rings(bp, &rx, &tx, cp, false); 7581 if (rc) 7582 goto get_rings_exit; 7583 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7584 rx <<= 1; 7585 hw_resc->resv_rx_rings = rx; 7586 hw_resc->resv_tx_rings = tx; 7587 } 7588 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 7589 hw_resc->resv_hw_ring_grps = rx; 7590 } 7591 hw_resc->resv_cp_rings = cp; 7592 hw_resc->resv_stat_ctxs = stats; 7593 } 7594 get_rings_exit: 7595 hwrm_req_drop(bp, req); 7596 return rc; 7597 } 7598 7599 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 7600 { 7601 struct hwrm_func_qcfg_output *resp; 7602 struct hwrm_func_qcfg_input *req; 7603 int rc; 7604 7605 if (bp->hwrm_spec_code < 0x10601) 7606 return 0; 7607 7608 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7609 if (rc) 7610 return rc; 7611 7612 req->fid = cpu_to_le16(fid); 7613 resp = hwrm_req_hold(bp, req); 7614 rc = hwrm_req_send(bp, req); 7615 if (!rc) 7616 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7617 7618 hwrm_req_drop(bp, req); 7619 return rc; 7620 } 7621 7622 static bool bnxt_rfs_supported(struct bnxt *bp); 7623 7624 static struct hwrm_func_cfg_input * 7625 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7626 { 7627 struct hwrm_func_cfg_input *req; 7628 u32 enables = 0; 7629 7630 if (bnxt_hwrm_func_cfg_short_req_init(bp, &req)) 7631 return NULL; 7632 7633 req->fid = cpu_to_le16(0xffff); 7634 enables |= hwr->tx ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7635 req->num_tx_rings = cpu_to_le16(hwr->tx); 7636 if (BNXT_NEW_RM(bp)) { 7637 enables |= hwr->rx ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 7638 enables |= hwr->stat ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7639 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7640 enables |= hwr->cp ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 7641 enables |= hwr->cp_p5 ? 7642 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7643 } else { 7644 enables |= hwr->cp ? 7645 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7646 enables |= hwr->grp ? 7647 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7648 } 7649 enables |= hwr->vnic ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 7650 enables |= hwr->rss_ctx ? FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 7651 0; 7652 req->num_rx_rings = cpu_to_le16(hwr->rx); 7653 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7654 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7655 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7656 req->num_msix = cpu_to_le16(hwr->cp); 7657 } else { 7658 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7659 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7660 } 7661 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7662 req->num_vnics = cpu_to_le16(hwr->vnic); 7663 } 7664 req->enables = cpu_to_le32(enables); 7665 return req; 7666 } 7667 7668 static struct hwrm_func_vf_cfg_input * 7669 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7670 { 7671 struct hwrm_func_vf_cfg_input *req; 7672 u32 enables = 0; 7673 7674 if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG)) 7675 return NULL; 7676 7677 enables |= hwr->tx ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7678 enables |= hwr->rx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 7679 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7680 enables |= hwr->stat ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7681 enables |= hwr->rss_ctx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7682 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7683 enables |= hwr->cp_p5 ? 7684 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7685 } else { 7686 enables |= hwr->cp ? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7687 enables |= hwr->grp ? 7688 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7689 } 7690 enables |= hwr->vnic ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 7691 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 7692 7693 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 7694 req->num_tx_rings = cpu_to_le16(hwr->tx); 7695 req->num_rx_rings = cpu_to_le16(hwr->rx); 7696 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7697 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7698 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7699 } else { 7700 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7701 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7702 } 7703 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7704 req->num_vnics = cpu_to_le16(hwr->vnic); 7705 7706 req->enables = cpu_to_le32(enables); 7707 return req; 7708 } 7709 7710 static int 7711 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7712 { 7713 struct hwrm_func_cfg_input *req; 7714 int rc; 7715 7716 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 7717 if (!req) 7718 return -ENOMEM; 7719 7720 if (!req->enables) { 7721 hwrm_req_drop(bp, req); 7722 return 0; 7723 } 7724 7725 rc = hwrm_req_send(bp, req); 7726 if (rc) 7727 return rc; 7728 7729 if (bp->hwrm_spec_code < 0x10601) 7730 bp->hw_resc.resv_tx_rings = hwr->tx; 7731 7732 return bnxt_hwrm_get_rings(bp); 7733 } 7734 7735 static int 7736 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7737 { 7738 struct hwrm_func_vf_cfg_input *req; 7739 int rc; 7740 7741 if (!BNXT_NEW_RM(bp)) { 7742 bp->hw_resc.resv_tx_rings = hwr->tx; 7743 return 0; 7744 } 7745 7746 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 7747 if (!req) 7748 return -ENOMEM; 7749 7750 rc = hwrm_req_send(bp, req); 7751 if (rc) 7752 return rc; 7753 7754 return bnxt_hwrm_get_rings(bp); 7755 } 7756 7757 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7758 { 7759 if (BNXT_PF(bp)) 7760 return bnxt_hwrm_reserve_pf_rings(bp, hwr); 7761 else 7762 return bnxt_hwrm_reserve_vf_rings(bp, hwr); 7763 } 7764 7765 int bnxt_nq_rings_in_use(struct bnxt *bp) 7766 { 7767 return bp->cp_nr_rings + bnxt_get_ulp_msix_num(bp); 7768 } 7769 7770 static int bnxt_cp_rings_in_use(struct bnxt *bp) 7771 { 7772 int cp; 7773 7774 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7775 return bnxt_nq_rings_in_use(bp); 7776 7777 cp = bp->tx_nr_rings + bp->rx_nr_rings; 7778 return cp; 7779 } 7780 7781 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 7782 { 7783 return bp->cp_nr_rings + bnxt_get_ulp_stat_ctxs(bp); 7784 } 7785 7786 static int bnxt_get_total_rss_ctxs(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7787 { 7788 if (!hwr->grp) 7789 return 0; 7790 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7791 int rss_ctx = bnxt_get_nr_rss_ctxs(bp, hwr->grp); 7792 7793 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7794 rss_ctx *= hwr->vnic; 7795 return rss_ctx; 7796 } 7797 if (BNXT_VF(bp)) 7798 return BNXT_VF_MAX_RSS_CTX; 7799 if (!(bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && bnxt_rfs_supported(bp)) 7800 return hwr->grp + 1; 7801 return 1; 7802 } 7803 7804 /* Check if a default RSS map needs to be setup. This function is only 7805 * used on older firmware that does not require reserving RX rings. 7806 */ 7807 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 7808 { 7809 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7810 7811 /* The RSS map is valid for RX rings set to resv_rx_rings */ 7812 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 7813 hw_resc->resv_rx_rings = bp->rx_nr_rings; 7814 if (!netif_is_rxfh_configured(bp->dev)) 7815 bnxt_set_dflt_rss_indir_tbl(bp, NULL); 7816 } 7817 } 7818 7819 static int bnxt_get_total_vnics(struct bnxt *bp, int rx_rings) 7820 { 7821 if (bp->flags & BNXT_FLAG_RFS) { 7822 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7823 return 2 + bp->num_rss_ctx; 7824 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7825 return rx_rings + 1; 7826 } 7827 return 1; 7828 } 7829 7830 static bool bnxt_need_reserve_rings(struct bnxt *bp) 7831 { 7832 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7833 int cp = bnxt_cp_rings_in_use(bp); 7834 int nq = bnxt_nq_rings_in_use(bp); 7835 int rx = bp->rx_nr_rings, stat; 7836 int vnic, grp = rx; 7837 7838 /* Old firmware does not need RX ring reservations but we still 7839 * need to setup a default RSS map when needed. With new firmware 7840 * we go through RX ring reservations first and then set up the 7841 * RSS map for the successfully reserved RX rings when needed. 7842 */ 7843 if (!BNXT_NEW_RM(bp)) 7844 bnxt_check_rss_tbl_no_rmgr(bp); 7845 7846 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 7847 bp->hwrm_spec_code >= 0x10601) 7848 return true; 7849 7850 if (!BNXT_NEW_RM(bp)) 7851 return false; 7852 7853 vnic = bnxt_get_total_vnics(bp, rx); 7854 7855 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7856 rx <<= 1; 7857 stat = bnxt_get_func_stat_ctxs(bp); 7858 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 7859 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 7860 (hw_resc->resv_hw_ring_grps != grp && 7861 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))) 7862 return true; 7863 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && BNXT_PF(bp) && 7864 hw_resc->resv_irqs != nq) 7865 return true; 7866 return false; 7867 } 7868 7869 static void bnxt_copy_reserved_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7870 { 7871 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7872 7873 hwr->tx = hw_resc->resv_tx_rings; 7874 if (BNXT_NEW_RM(bp)) { 7875 hwr->rx = hw_resc->resv_rx_rings; 7876 hwr->cp = hw_resc->resv_irqs; 7877 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7878 hwr->cp_p5 = hw_resc->resv_cp_rings; 7879 hwr->grp = hw_resc->resv_hw_ring_grps; 7880 hwr->vnic = hw_resc->resv_vnics; 7881 hwr->stat = hw_resc->resv_stat_ctxs; 7882 hwr->rss_ctx = hw_resc->resv_rsscos_ctxs; 7883 } 7884 } 7885 7886 static bool bnxt_rings_ok(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7887 { 7888 return hwr->tx && hwr->rx && hwr->cp && hwr->grp && hwr->vnic && 7889 hwr->stat && (hwr->cp_p5 || !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)); 7890 } 7891 7892 static int bnxt_get_avail_msix(struct bnxt *bp, int num); 7893 7894 static int __bnxt_reserve_rings(struct bnxt *bp) 7895 { 7896 struct bnxt_hw_rings hwr = {0}; 7897 int rx_rings, old_rx_rings, rc; 7898 int cp = bp->cp_nr_rings; 7899 int ulp_msix = 0; 7900 bool sh = false; 7901 int tx_cp; 7902 7903 if (!bnxt_need_reserve_rings(bp)) 7904 return 0; 7905 7906 if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) { 7907 ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want); 7908 if (!ulp_msix) 7909 bnxt_set_ulp_stat_ctxs(bp, 0); 7910 7911 if (ulp_msix > bp->ulp_num_msix_want) 7912 ulp_msix = bp->ulp_num_msix_want; 7913 hwr.cp = cp + ulp_msix; 7914 } else { 7915 hwr.cp = bnxt_nq_rings_in_use(bp); 7916 } 7917 7918 hwr.tx = bp->tx_nr_rings; 7919 hwr.rx = bp->rx_nr_rings; 7920 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 7921 sh = true; 7922 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7923 hwr.cp_p5 = hwr.rx + hwr.tx; 7924 7925 hwr.vnic = bnxt_get_total_vnics(bp, hwr.rx); 7926 7927 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7928 hwr.rx <<= 1; 7929 hwr.grp = bp->rx_nr_rings; 7930 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 7931 hwr.stat = bnxt_get_func_stat_ctxs(bp); 7932 old_rx_rings = bp->hw_resc.resv_rx_rings; 7933 7934 rc = bnxt_hwrm_reserve_rings(bp, &hwr); 7935 if (rc) 7936 return rc; 7937 7938 bnxt_copy_reserved_rings(bp, &hwr); 7939 7940 rx_rings = hwr.rx; 7941 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 7942 if (hwr.rx >= 2) { 7943 rx_rings = hwr.rx >> 1; 7944 } else { 7945 if (netif_running(bp->dev)) 7946 return -ENOMEM; 7947 7948 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 7949 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 7950 bp->dev->hw_features &= ~NETIF_F_LRO; 7951 bp->dev->features &= ~NETIF_F_LRO; 7952 bnxt_set_ring_params(bp); 7953 } 7954 } 7955 rx_rings = min_t(int, rx_rings, hwr.grp); 7956 hwr.cp = min_t(int, hwr.cp, bp->cp_nr_rings); 7957 if (hwr.stat > bnxt_get_ulp_stat_ctxs(bp)) 7958 hwr.stat -= bnxt_get_ulp_stat_ctxs(bp); 7959 hwr.cp = min_t(int, hwr.cp, hwr.stat); 7960 rc = bnxt_trim_rings(bp, &rx_rings, &hwr.tx, hwr.cp, sh); 7961 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7962 hwr.rx = rx_rings << 1; 7963 tx_cp = bnxt_num_tx_to_cp(bp, hwr.tx); 7964 hwr.cp = sh ? max_t(int, tx_cp, rx_rings) : tx_cp + rx_rings; 7965 bp->tx_nr_rings = hwr.tx; 7966 7967 /* If we cannot reserve all the RX rings, reset the RSS map only 7968 * if absolutely necessary 7969 */ 7970 if (rx_rings != bp->rx_nr_rings) { 7971 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 7972 rx_rings, bp->rx_nr_rings); 7973 if (netif_is_rxfh_configured(bp->dev) && 7974 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 7975 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 7976 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 7977 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 7978 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 7979 } 7980 } 7981 bp->rx_nr_rings = rx_rings; 7982 bp->cp_nr_rings = hwr.cp; 7983 7984 if (!bnxt_rings_ok(bp, &hwr)) 7985 return -ENOMEM; 7986 7987 if (old_rx_rings != bp->hw_resc.resv_rx_rings && 7988 !netif_is_rxfh_configured(bp->dev)) 7989 bnxt_set_dflt_rss_indir_tbl(bp, NULL); 7990 7991 if (!bnxt_ulp_registered(bp->edev) && BNXT_NEW_RM(bp)) { 7992 int resv_msix, resv_ctx, ulp_ctxs; 7993 struct bnxt_hw_resc *hw_resc; 7994 7995 hw_resc = &bp->hw_resc; 7996 resv_msix = hw_resc->resv_irqs - bp->cp_nr_rings; 7997 ulp_msix = min_t(int, resv_msix, ulp_msix); 7998 bnxt_set_ulp_msix_num(bp, ulp_msix); 7999 resv_ctx = hw_resc->resv_stat_ctxs - bp->cp_nr_rings; 8000 ulp_ctxs = min(resv_ctx, bnxt_get_ulp_stat_ctxs(bp)); 8001 bnxt_set_ulp_stat_ctxs(bp, ulp_ctxs); 8002 } 8003 8004 return rc; 8005 } 8006 8007 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 8008 { 8009 struct hwrm_func_vf_cfg_input *req; 8010 u32 flags; 8011 8012 if (!BNXT_NEW_RM(bp)) 8013 return 0; 8014 8015 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 8016 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 8017 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 8018 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 8019 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 8020 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 8021 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 8022 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 8023 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 8024 8025 req->flags = cpu_to_le32(flags); 8026 return hwrm_req_send_silent(bp, req); 8027 } 8028 8029 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 8030 { 8031 struct hwrm_func_cfg_input *req; 8032 u32 flags; 8033 8034 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 8035 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 8036 if (BNXT_NEW_RM(bp)) { 8037 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 8038 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 8039 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 8040 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 8041 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 8042 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 8043 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 8044 else 8045 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 8046 } 8047 8048 req->flags = cpu_to_le32(flags); 8049 return hwrm_req_send_silent(bp, req); 8050 } 8051 8052 static int bnxt_hwrm_check_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 8053 { 8054 if (bp->hwrm_spec_code < 0x10801) 8055 return 0; 8056 8057 if (BNXT_PF(bp)) 8058 return bnxt_hwrm_check_pf_rings(bp, hwr); 8059 8060 return bnxt_hwrm_check_vf_rings(bp, hwr); 8061 } 8062 8063 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 8064 { 8065 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 8066 struct hwrm_ring_aggint_qcaps_output *resp; 8067 struct hwrm_ring_aggint_qcaps_input *req; 8068 int rc; 8069 8070 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 8071 coal_cap->num_cmpl_dma_aggr_max = 63; 8072 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 8073 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 8074 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 8075 coal_cap->int_lat_tmr_min_max = 65535; 8076 coal_cap->int_lat_tmr_max_max = 65535; 8077 coal_cap->num_cmpl_aggr_int_max = 65535; 8078 coal_cap->timer_units = 80; 8079 8080 if (bp->hwrm_spec_code < 0x10902) 8081 return; 8082 8083 if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS)) 8084 return; 8085 8086 resp = hwrm_req_hold(bp, req); 8087 rc = hwrm_req_send_silent(bp, req); 8088 if (!rc) { 8089 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 8090 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 8091 coal_cap->num_cmpl_dma_aggr_max = 8092 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 8093 coal_cap->num_cmpl_dma_aggr_during_int_max = 8094 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 8095 coal_cap->cmpl_aggr_dma_tmr_max = 8096 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 8097 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 8098 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 8099 coal_cap->int_lat_tmr_min_max = 8100 le16_to_cpu(resp->int_lat_tmr_min_max); 8101 coal_cap->int_lat_tmr_max_max = 8102 le16_to_cpu(resp->int_lat_tmr_max_max); 8103 coal_cap->num_cmpl_aggr_int_max = 8104 le16_to_cpu(resp->num_cmpl_aggr_int_max); 8105 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 8106 } 8107 hwrm_req_drop(bp, req); 8108 } 8109 8110 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 8111 { 8112 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 8113 8114 return usec * 1000 / coal_cap->timer_units; 8115 } 8116 8117 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 8118 struct bnxt_coal *hw_coal, 8119 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 8120 { 8121 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 8122 u16 val, tmr, max, flags = hw_coal->flags; 8123 u32 cmpl_params = coal_cap->cmpl_params; 8124 8125 max = hw_coal->bufs_per_record * 128; 8126 if (hw_coal->budget) 8127 max = hw_coal->bufs_per_record * hw_coal->budget; 8128 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 8129 8130 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 8131 req->num_cmpl_aggr_int = cpu_to_le16(val); 8132 8133 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 8134 req->num_cmpl_dma_aggr = cpu_to_le16(val); 8135 8136 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 8137 coal_cap->num_cmpl_dma_aggr_during_int_max); 8138 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 8139 8140 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 8141 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 8142 req->int_lat_tmr_max = cpu_to_le16(tmr); 8143 8144 /* min timer set to 1/2 of interrupt timer */ 8145 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 8146 val = tmr / 2; 8147 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 8148 req->int_lat_tmr_min = cpu_to_le16(val); 8149 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 8150 } 8151 8152 /* buf timer set to 1/4 of interrupt timer */ 8153 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 8154 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 8155 8156 if (cmpl_params & 8157 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 8158 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 8159 val = clamp_t(u16, tmr, 1, 8160 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 8161 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 8162 req->enables |= 8163 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 8164 } 8165 8166 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 8167 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 8168 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 8169 req->flags = cpu_to_le16(flags); 8170 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 8171 } 8172 8173 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 8174 struct bnxt_coal *hw_coal) 8175 { 8176 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req; 8177 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8178 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 8179 u32 nq_params = coal_cap->nq_params; 8180 u16 tmr; 8181 int rc; 8182 8183 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 8184 return 0; 8185 8186 rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8187 if (rc) 8188 return rc; 8189 8190 req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 8191 req->flags = 8192 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 8193 8194 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 8195 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 8196 req->int_lat_tmr_min = cpu_to_le16(tmr); 8197 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 8198 return hwrm_req_send(bp, req); 8199 } 8200 8201 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 8202 { 8203 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx; 8204 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8205 struct bnxt_coal coal; 8206 int rc; 8207 8208 /* Tick values in micro seconds. 8209 * 1 coal_buf x bufs_per_record = 1 completion record. 8210 */ 8211 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 8212 8213 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 8214 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 8215 8216 if (!bnapi->rx_ring) 8217 return -ENODEV; 8218 8219 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8220 if (rc) 8221 return rc; 8222 8223 bnxt_hwrm_set_coal_params(bp, &coal, req_rx); 8224 8225 req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 8226 8227 return hwrm_req_send(bp, req_rx); 8228 } 8229 8230 static int 8231 bnxt_hwrm_set_rx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 8232 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 8233 { 8234 u16 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 8235 8236 req->ring_id = cpu_to_le16(ring_id); 8237 return hwrm_req_send(bp, req); 8238 } 8239 8240 static int 8241 bnxt_hwrm_set_tx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 8242 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 8243 { 8244 struct bnxt_tx_ring_info *txr; 8245 int i, rc; 8246 8247 bnxt_for_each_napi_tx(i, bnapi, txr) { 8248 u16 ring_id; 8249 8250 ring_id = bnxt_cp_ring_for_tx(bp, txr); 8251 req->ring_id = cpu_to_le16(ring_id); 8252 rc = hwrm_req_send(bp, req); 8253 if (rc) 8254 return rc; 8255 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 8256 return 0; 8257 } 8258 return 0; 8259 } 8260 8261 int bnxt_hwrm_set_coal(struct bnxt *bp) 8262 { 8263 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx; 8264 int i, rc; 8265 8266 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8267 if (rc) 8268 return rc; 8269 8270 rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8271 if (rc) { 8272 hwrm_req_drop(bp, req_rx); 8273 return rc; 8274 } 8275 8276 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx); 8277 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx); 8278 8279 hwrm_req_hold(bp, req_rx); 8280 hwrm_req_hold(bp, req_tx); 8281 for (i = 0; i < bp->cp_nr_rings; i++) { 8282 struct bnxt_napi *bnapi = bp->bnapi[i]; 8283 struct bnxt_coal *hw_coal; 8284 8285 if (!bnapi->rx_ring) 8286 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 8287 else 8288 rc = bnxt_hwrm_set_rx_coal(bp, bnapi, req_rx); 8289 if (rc) 8290 break; 8291 8292 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 8293 continue; 8294 8295 if (bnapi->rx_ring && bnapi->tx_ring[0]) { 8296 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 8297 if (rc) 8298 break; 8299 } 8300 if (bnapi->rx_ring) 8301 hw_coal = &bp->rx_coal; 8302 else 8303 hw_coal = &bp->tx_coal; 8304 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 8305 } 8306 hwrm_req_drop(bp, req_rx); 8307 hwrm_req_drop(bp, req_tx); 8308 return rc; 8309 } 8310 8311 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 8312 { 8313 struct hwrm_stat_ctx_clr_stats_input *req0 = NULL; 8314 struct hwrm_stat_ctx_free_input *req; 8315 int i; 8316 8317 if (!bp->bnapi) 8318 return; 8319 8320 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8321 return; 8322 8323 if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE)) 8324 return; 8325 if (BNXT_FW_MAJ(bp) <= 20) { 8326 if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) { 8327 hwrm_req_drop(bp, req); 8328 return; 8329 } 8330 hwrm_req_hold(bp, req0); 8331 } 8332 hwrm_req_hold(bp, req); 8333 for (i = 0; i < bp->cp_nr_rings; i++) { 8334 struct bnxt_napi *bnapi = bp->bnapi[i]; 8335 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8336 8337 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 8338 req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 8339 if (req0) { 8340 req0->stat_ctx_id = req->stat_ctx_id; 8341 hwrm_req_send(bp, req0); 8342 } 8343 hwrm_req_send(bp, req); 8344 8345 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 8346 } 8347 } 8348 hwrm_req_drop(bp, req); 8349 if (req0) 8350 hwrm_req_drop(bp, req0); 8351 } 8352 8353 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 8354 { 8355 struct hwrm_stat_ctx_alloc_output *resp; 8356 struct hwrm_stat_ctx_alloc_input *req; 8357 int rc, i; 8358 8359 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8360 return 0; 8361 8362 rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC); 8363 if (rc) 8364 return rc; 8365 8366 req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 8367 req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 8368 8369 resp = hwrm_req_hold(bp, req); 8370 for (i = 0; i < bp->cp_nr_rings; i++) { 8371 struct bnxt_napi *bnapi = bp->bnapi[i]; 8372 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8373 8374 req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 8375 8376 rc = hwrm_req_send(bp, req); 8377 if (rc) 8378 break; 8379 8380 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 8381 8382 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 8383 } 8384 hwrm_req_drop(bp, req); 8385 return rc; 8386 } 8387 8388 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 8389 { 8390 struct hwrm_func_qcfg_output *resp; 8391 struct hwrm_func_qcfg_input *req; 8392 u16 flags; 8393 int rc; 8394 8395 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 8396 if (rc) 8397 return rc; 8398 8399 req->fid = cpu_to_le16(0xffff); 8400 resp = hwrm_req_hold(bp, req); 8401 rc = hwrm_req_send(bp, req); 8402 if (rc) 8403 goto func_qcfg_exit; 8404 8405 flags = le16_to_cpu(resp->flags); 8406 #ifdef CONFIG_BNXT_SRIOV 8407 if (BNXT_VF(bp)) { 8408 struct bnxt_vf_info *vf = &bp->vf; 8409 8410 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 8411 if (flags & FUNC_QCFG_RESP_FLAGS_TRUSTED_VF) 8412 vf->flags |= BNXT_VF_TRUST; 8413 else 8414 vf->flags &= ~BNXT_VF_TRUST; 8415 } else { 8416 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 8417 } 8418 #endif 8419 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 8420 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 8421 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 8422 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 8423 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 8424 } 8425 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 8426 bp->flags |= BNXT_FLAG_MULTI_HOST; 8427 8428 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 8429 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 8430 8431 if (flags & FUNC_QCFG_RESP_FLAGS_ENABLE_RDMA_SRIOV) 8432 bp->fw_cap |= BNXT_FW_CAP_ENABLE_RDMA_SRIOV; 8433 8434 switch (resp->port_partition_type) { 8435 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 8436 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_2: 8437 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 8438 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 8439 bp->port_partition_type = resp->port_partition_type; 8440 break; 8441 } 8442 if (bp->hwrm_spec_code < 0x10707 || 8443 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 8444 bp->br_mode = BRIDGE_MODE_VEB; 8445 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 8446 bp->br_mode = BRIDGE_MODE_VEPA; 8447 else 8448 bp->br_mode = BRIDGE_MODE_UNDEF; 8449 8450 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 8451 if (!bp->max_mtu) 8452 bp->max_mtu = BNXT_MAX_MTU; 8453 8454 if (bp->db_size) 8455 goto func_qcfg_exit; 8456 8457 bp->db_offset = le16_to_cpu(resp->legacy_l2_db_size_kb) * 1024; 8458 if (BNXT_CHIP_P5(bp)) { 8459 if (BNXT_PF(bp)) 8460 bp->db_offset = DB_PF_OFFSET_P5; 8461 else 8462 bp->db_offset = DB_VF_OFFSET_P5; 8463 } 8464 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 8465 1024); 8466 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 8467 bp->db_size <= bp->db_offset) 8468 bp->db_size = pci_resource_len(bp->pdev, 2); 8469 8470 func_qcfg_exit: 8471 hwrm_req_drop(bp, req); 8472 return rc; 8473 } 8474 8475 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_type *ctxm, 8476 u8 init_val, u8 init_offset, 8477 bool init_mask_set) 8478 { 8479 ctxm->init_value = init_val; 8480 ctxm->init_offset = BNXT_CTX_INIT_INVALID_OFFSET; 8481 if (init_mask_set) 8482 ctxm->init_offset = init_offset * 4; 8483 else 8484 ctxm->init_value = 0; 8485 } 8486 8487 static int bnxt_alloc_all_ctx_pg_info(struct bnxt *bp, int ctx_max) 8488 { 8489 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8490 u16 type; 8491 8492 for (type = 0; type < ctx_max; type++) { 8493 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8494 int n = 1; 8495 8496 if (!ctxm->max_entries || ctxm->pg_info) 8497 continue; 8498 8499 if (ctxm->instance_bmap) 8500 n = hweight32(ctxm->instance_bmap); 8501 ctxm->pg_info = kcalloc(n, sizeof(*ctxm->pg_info), GFP_KERNEL); 8502 if (!ctxm->pg_info) 8503 return -ENOMEM; 8504 } 8505 return 0; 8506 } 8507 8508 static void bnxt_free_one_ctx_mem(struct bnxt *bp, 8509 struct bnxt_ctx_mem_type *ctxm, bool force); 8510 8511 #define BNXT_CTX_INIT_VALID(flags) \ 8512 (!!((flags) & \ 8513 FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_ENABLE_CTX_KIND_INIT)) 8514 8515 static int bnxt_hwrm_func_backing_store_qcaps_v2(struct bnxt *bp) 8516 { 8517 struct hwrm_func_backing_store_qcaps_v2_output *resp; 8518 struct hwrm_func_backing_store_qcaps_v2_input *req; 8519 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8520 u16 type; 8521 int rc; 8522 8523 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS_V2); 8524 if (rc) 8525 return rc; 8526 8527 if (!ctx) { 8528 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8529 if (!ctx) 8530 return -ENOMEM; 8531 bp->ctx = ctx; 8532 } 8533 8534 resp = hwrm_req_hold(bp, req); 8535 8536 for (type = 0; type < BNXT_CTX_V2_MAX; ) { 8537 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8538 u8 init_val, init_off, i; 8539 u32 max_entries; 8540 u16 entry_size; 8541 __le32 *p; 8542 u32 flags; 8543 8544 req->type = cpu_to_le16(type); 8545 rc = hwrm_req_send(bp, req); 8546 if (rc) 8547 goto ctx_done; 8548 flags = le32_to_cpu(resp->flags); 8549 type = le16_to_cpu(resp->next_valid_type); 8550 if (!(flags & BNXT_CTX_MEM_TYPE_VALID)) { 8551 bnxt_free_one_ctx_mem(bp, ctxm, true); 8552 continue; 8553 } 8554 entry_size = le16_to_cpu(resp->entry_size); 8555 max_entries = le32_to_cpu(resp->max_num_entries); 8556 if (ctxm->mem_valid) { 8557 if (!(flags & BNXT_CTX_MEM_PERSIST) || 8558 ctxm->entry_size != entry_size || 8559 ctxm->max_entries != max_entries) 8560 bnxt_free_one_ctx_mem(bp, ctxm, true); 8561 else 8562 continue; 8563 } 8564 ctxm->type = le16_to_cpu(resp->type); 8565 ctxm->entry_size = entry_size; 8566 ctxm->flags = flags; 8567 ctxm->instance_bmap = le32_to_cpu(resp->instance_bit_map); 8568 ctxm->entry_multiple = resp->entry_multiple; 8569 ctxm->max_entries = max_entries; 8570 ctxm->min_entries = le32_to_cpu(resp->min_num_entries); 8571 init_val = resp->ctx_init_value; 8572 init_off = resp->ctx_init_offset; 8573 bnxt_init_ctx_initializer(ctxm, init_val, init_off, 8574 BNXT_CTX_INIT_VALID(flags)); 8575 ctxm->split_entry_cnt = min_t(u8, resp->subtype_valid_cnt, 8576 BNXT_MAX_SPLIT_ENTRY); 8577 for (i = 0, p = &resp->split_entry_0; i < ctxm->split_entry_cnt; 8578 i++, p++) 8579 ctxm->split[i] = le32_to_cpu(*p); 8580 } 8581 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_V2_MAX); 8582 8583 ctx_done: 8584 hwrm_req_drop(bp, req); 8585 return rc; 8586 } 8587 8588 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 8589 { 8590 struct hwrm_func_backing_store_qcaps_output *resp; 8591 struct hwrm_func_backing_store_qcaps_input *req; 8592 int rc; 8593 8594 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || 8595 (bp->ctx && bp->ctx->flags & BNXT_CTX_FLAG_INITED)) 8596 return 0; 8597 8598 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 8599 return bnxt_hwrm_func_backing_store_qcaps_v2(bp); 8600 8601 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS); 8602 if (rc) 8603 return rc; 8604 8605 resp = hwrm_req_hold(bp, req); 8606 rc = hwrm_req_send_silent(bp, req); 8607 if (!rc) { 8608 struct bnxt_ctx_mem_type *ctxm; 8609 struct bnxt_ctx_mem_info *ctx; 8610 u8 init_val, init_idx = 0; 8611 u16 init_mask; 8612 8613 ctx = bp->ctx; 8614 if (!ctx) { 8615 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8616 if (!ctx) { 8617 rc = -ENOMEM; 8618 goto ctx_err; 8619 } 8620 bp->ctx = ctx; 8621 } 8622 init_val = resp->ctx_kind_initializer; 8623 init_mask = le16_to_cpu(resp->ctx_init_mask); 8624 8625 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8626 ctxm->max_entries = le32_to_cpu(resp->qp_max_entries); 8627 ctxm->qp_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 8628 ctxm->qp_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 8629 ctxm->qp_fast_qpmd_entries = le16_to_cpu(resp->fast_qpmd_qp_num_entries); 8630 ctxm->entry_size = le16_to_cpu(resp->qp_entry_size); 8631 bnxt_init_ctx_initializer(ctxm, init_val, resp->qp_init_offset, 8632 (init_mask & (1 << init_idx++)) != 0); 8633 8634 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8635 ctxm->srq_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 8636 ctxm->max_entries = le32_to_cpu(resp->srq_max_entries); 8637 ctxm->entry_size = le16_to_cpu(resp->srq_entry_size); 8638 bnxt_init_ctx_initializer(ctxm, init_val, resp->srq_init_offset, 8639 (init_mask & (1 << init_idx++)) != 0); 8640 8641 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8642 ctxm->cq_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 8643 ctxm->max_entries = le32_to_cpu(resp->cq_max_entries); 8644 ctxm->entry_size = le16_to_cpu(resp->cq_entry_size); 8645 bnxt_init_ctx_initializer(ctxm, init_val, resp->cq_init_offset, 8646 (init_mask & (1 << init_idx++)) != 0); 8647 8648 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8649 ctxm->vnic_entries = le16_to_cpu(resp->vnic_max_vnic_entries); 8650 ctxm->max_entries = ctxm->vnic_entries + 8651 le16_to_cpu(resp->vnic_max_ring_table_entries); 8652 ctxm->entry_size = le16_to_cpu(resp->vnic_entry_size); 8653 bnxt_init_ctx_initializer(ctxm, init_val, 8654 resp->vnic_init_offset, 8655 (init_mask & (1 << init_idx++)) != 0); 8656 8657 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8658 ctxm->max_entries = le32_to_cpu(resp->stat_max_entries); 8659 ctxm->entry_size = le16_to_cpu(resp->stat_entry_size); 8660 bnxt_init_ctx_initializer(ctxm, init_val, 8661 resp->stat_init_offset, 8662 (init_mask & (1 << init_idx++)) != 0); 8663 8664 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8665 ctxm->entry_size = le16_to_cpu(resp->tqm_entry_size); 8666 ctxm->min_entries = le32_to_cpu(resp->tqm_min_entries_per_ring); 8667 ctxm->max_entries = le32_to_cpu(resp->tqm_max_entries_per_ring); 8668 ctxm->entry_multiple = resp->tqm_entries_multiple; 8669 if (!ctxm->entry_multiple) 8670 ctxm->entry_multiple = 1; 8671 8672 memcpy(&ctx->ctx_arr[BNXT_CTX_FTQM], ctxm, sizeof(*ctxm)); 8673 8674 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8675 ctxm->max_entries = le32_to_cpu(resp->mrav_max_entries); 8676 ctxm->entry_size = le16_to_cpu(resp->mrav_entry_size); 8677 ctxm->mrav_num_entries_units = 8678 le16_to_cpu(resp->mrav_num_entries_units); 8679 bnxt_init_ctx_initializer(ctxm, init_val, 8680 resp->mrav_init_offset, 8681 (init_mask & (1 << init_idx++)) != 0); 8682 8683 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8684 ctxm->entry_size = le16_to_cpu(resp->tim_entry_size); 8685 ctxm->max_entries = le32_to_cpu(resp->tim_max_entries); 8686 8687 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 8688 if (!ctx->tqm_fp_rings_count) 8689 ctx->tqm_fp_rings_count = bp->max_q; 8690 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 8691 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 8692 8693 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 8694 memcpy(ctxm, &ctx->ctx_arr[BNXT_CTX_STQM], sizeof(*ctxm)); 8695 ctxm->instance_bmap = (1 << ctx->tqm_fp_rings_count) - 1; 8696 8697 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_MAX); 8698 } else { 8699 rc = 0; 8700 } 8701 ctx_err: 8702 hwrm_req_drop(bp, req); 8703 return rc; 8704 } 8705 8706 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 8707 __le64 *pg_dir) 8708 { 8709 if (!rmem->nr_pages) 8710 return; 8711 8712 BNXT_SET_CTX_PAGE_ATTR(*pg_attr); 8713 if (rmem->depth >= 1) { 8714 if (rmem->depth == 2) 8715 *pg_attr |= 2; 8716 else 8717 *pg_attr |= 1; 8718 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 8719 } else { 8720 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 8721 } 8722 } 8723 8724 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 8725 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 8726 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 8727 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 8728 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 8729 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 8730 8731 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 8732 { 8733 struct hwrm_func_backing_store_cfg_input *req; 8734 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8735 struct bnxt_ctx_pg_info *ctx_pg; 8736 struct bnxt_ctx_mem_type *ctxm; 8737 void **__req = (void **)&req; 8738 u32 req_len = sizeof(*req); 8739 __le32 *num_entries; 8740 __le64 *pg_dir; 8741 u32 flags = 0; 8742 u8 *pg_attr; 8743 u32 ena; 8744 int rc; 8745 int i; 8746 8747 if (!ctx) 8748 return 0; 8749 8750 if (req_len > bp->hwrm_max_ext_req_len) 8751 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 8752 rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len); 8753 if (rc) 8754 return rc; 8755 8756 req->enables = cpu_to_le32(enables); 8757 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 8758 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8759 ctx_pg = ctxm->pg_info; 8760 req->qp_num_entries = cpu_to_le32(ctx_pg->entries); 8761 req->qp_num_qp1_entries = cpu_to_le16(ctxm->qp_qp1_entries); 8762 req->qp_num_l2_entries = cpu_to_le16(ctxm->qp_l2_entries); 8763 req->qp_entry_size = cpu_to_le16(ctxm->entry_size); 8764 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8765 &req->qpc_pg_size_qpc_lvl, 8766 &req->qpc_page_dir); 8767 8768 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD) 8769 req->qp_num_fast_qpmd_entries = cpu_to_le16(ctxm->qp_fast_qpmd_entries); 8770 } 8771 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 8772 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8773 ctx_pg = ctxm->pg_info; 8774 req->srq_num_entries = cpu_to_le32(ctx_pg->entries); 8775 req->srq_num_l2_entries = cpu_to_le16(ctxm->srq_l2_entries); 8776 req->srq_entry_size = cpu_to_le16(ctxm->entry_size); 8777 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8778 &req->srq_pg_size_srq_lvl, 8779 &req->srq_page_dir); 8780 } 8781 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 8782 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8783 ctx_pg = ctxm->pg_info; 8784 req->cq_num_entries = cpu_to_le32(ctx_pg->entries); 8785 req->cq_num_l2_entries = cpu_to_le16(ctxm->cq_l2_entries); 8786 req->cq_entry_size = cpu_to_le16(ctxm->entry_size); 8787 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8788 &req->cq_pg_size_cq_lvl, 8789 &req->cq_page_dir); 8790 } 8791 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 8792 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8793 ctx_pg = ctxm->pg_info; 8794 req->vnic_num_vnic_entries = cpu_to_le16(ctxm->vnic_entries); 8795 req->vnic_num_ring_table_entries = 8796 cpu_to_le16(ctxm->max_entries - ctxm->vnic_entries); 8797 req->vnic_entry_size = cpu_to_le16(ctxm->entry_size); 8798 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8799 &req->vnic_pg_size_vnic_lvl, 8800 &req->vnic_page_dir); 8801 } 8802 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 8803 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8804 ctx_pg = ctxm->pg_info; 8805 req->stat_num_entries = cpu_to_le32(ctxm->max_entries); 8806 req->stat_entry_size = cpu_to_le16(ctxm->entry_size); 8807 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8808 &req->stat_pg_size_stat_lvl, 8809 &req->stat_page_dir); 8810 } 8811 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 8812 u32 units; 8813 8814 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8815 ctx_pg = ctxm->pg_info; 8816 req->mrav_num_entries = cpu_to_le32(ctx_pg->entries); 8817 units = ctxm->mrav_num_entries_units; 8818 if (units) { 8819 u32 num_mr, num_ah = ctxm->mrav_av_entries; 8820 u32 entries; 8821 8822 num_mr = ctx_pg->entries - num_ah; 8823 entries = ((num_mr / units) << 16) | (num_ah / units); 8824 req->mrav_num_entries = cpu_to_le32(entries); 8825 flags |= FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 8826 } 8827 req->mrav_entry_size = cpu_to_le16(ctxm->entry_size); 8828 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8829 &req->mrav_pg_size_mrav_lvl, 8830 &req->mrav_page_dir); 8831 } 8832 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 8833 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8834 ctx_pg = ctxm->pg_info; 8835 req->tim_num_entries = cpu_to_le32(ctx_pg->entries); 8836 req->tim_entry_size = cpu_to_le16(ctxm->entry_size); 8837 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8838 &req->tim_pg_size_tim_lvl, 8839 &req->tim_page_dir); 8840 } 8841 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8842 for (i = 0, num_entries = &req->tqm_sp_num_entries, 8843 pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl, 8844 pg_dir = &req->tqm_sp_page_dir, 8845 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP, 8846 ctx_pg = ctxm->pg_info; 8847 i < BNXT_MAX_TQM_RINGS; 8848 ctx_pg = &ctx->ctx_arr[BNXT_CTX_FTQM].pg_info[i], 8849 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 8850 if (!(enables & ena)) 8851 continue; 8852 8853 req->tqm_entry_size = cpu_to_le16(ctxm->entry_size); 8854 *num_entries = cpu_to_le32(ctx_pg->entries); 8855 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 8856 } 8857 req->flags = cpu_to_le32(flags); 8858 return hwrm_req_send(bp, req); 8859 } 8860 8861 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 8862 struct bnxt_ctx_pg_info *ctx_pg) 8863 { 8864 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8865 8866 rmem->page_size = BNXT_PAGE_SIZE; 8867 rmem->pg_arr = ctx_pg->ctx_pg_arr; 8868 rmem->dma_arr = ctx_pg->ctx_dma_arr; 8869 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 8870 if (rmem->depth >= 1) 8871 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 8872 return bnxt_alloc_ring(bp, rmem); 8873 } 8874 8875 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 8876 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 8877 u8 depth, struct bnxt_ctx_mem_type *ctxm) 8878 { 8879 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8880 int rc; 8881 8882 if (!mem_size) 8883 return -EINVAL; 8884 8885 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 8886 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 8887 ctx_pg->nr_pages = 0; 8888 return -EINVAL; 8889 } 8890 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 8891 int nr_tbls, i; 8892 8893 rmem->depth = 2; 8894 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 8895 GFP_KERNEL); 8896 if (!ctx_pg->ctx_pg_tbl) 8897 return -ENOMEM; 8898 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 8899 rmem->nr_pages = nr_tbls; 8900 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 8901 if (rc) 8902 return rc; 8903 for (i = 0; i < nr_tbls; i++) { 8904 struct bnxt_ctx_pg_info *pg_tbl; 8905 8906 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 8907 if (!pg_tbl) 8908 return -ENOMEM; 8909 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 8910 rmem = &pg_tbl->ring_mem; 8911 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 8912 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 8913 rmem->depth = 1; 8914 rmem->nr_pages = MAX_CTX_PAGES; 8915 rmem->ctx_mem = ctxm; 8916 if (i == (nr_tbls - 1)) { 8917 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 8918 8919 if (rem) 8920 rmem->nr_pages = rem; 8921 } 8922 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 8923 if (rc) 8924 break; 8925 } 8926 } else { 8927 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 8928 if (rmem->nr_pages > 1 || depth) 8929 rmem->depth = 1; 8930 rmem->ctx_mem = ctxm; 8931 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 8932 } 8933 return rc; 8934 } 8935 8936 static size_t bnxt_copy_ctx_pg_tbls(struct bnxt *bp, 8937 struct bnxt_ctx_pg_info *ctx_pg, 8938 void *buf, size_t offset, size_t head, 8939 size_t tail) 8940 { 8941 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8942 size_t nr_pages = ctx_pg->nr_pages; 8943 int page_size = rmem->page_size; 8944 size_t len = 0, total_len = 0; 8945 u16 depth = rmem->depth; 8946 8947 tail %= nr_pages * page_size; 8948 do { 8949 if (depth > 1) { 8950 int i = head / (page_size * MAX_CTX_PAGES); 8951 struct bnxt_ctx_pg_info *pg_tbl; 8952 8953 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 8954 rmem = &pg_tbl->ring_mem; 8955 } 8956 len = __bnxt_copy_ring(bp, rmem, buf, offset, head, tail); 8957 head += len; 8958 offset += len; 8959 total_len += len; 8960 if (head >= nr_pages * page_size) 8961 head = 0; 8962 } while (head != tail); 8963 return total_len; 8964 } 8965 8966 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 8967 struct bnxt_ctx_pg_info *ctx_pg) 8968 { 8969 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8970 8971 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 8972 ctx_pg->ctx_pg_tbl) { 8973 int i, nr_tbls = rmem->nr_pages; 8974 8975 for (i = 0; i < nr_tbls; i++) { 8976 struct bnxt_ctx_pg_info *pg_tbl; 8977 struct bnxt_ring_mem_info *rmem2; 8978 8979 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 8980 if (!pg_tbl) 8981 continue; 8982 rmem2 = &pg_tbl->ring_mem; 8983 bnxt_free_ring(bp, rmem2); 8984 ctx_pg->ctx_pg_arr[i] = NULL; 8985 kfree(pg_tbl); 8986 ctx_pg->ctx_pg_tbl[i] = NULL; 8987 } 8988 kfree(ctx_pg->ctx_pg_tbl); 8989 ctx_pg->ctx_pg_tbl = NULL; 8990 } 8991 bnxt_free_ring(bp, rmem); 8992 ctx_pg->nr_pages = 0; 8993 } 8994 8995 static int bnxt_setup_ctxm_pg_tbls(struct bnxt *bp, 8996 struct bnxt_ctx_mem_type *ctxm, u32 entries, 8997 u8 pg_lvl) 8998 { 8999 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 9000 int i, rc = 0, n = 1; 9001 u32 mem_size; 9002 9003 if (!ctxm->entry_size || !ctx_pg) 9004 return -EINVAL; 9005 if (ctxm->instance_bmap) 9006 n = hweight32(ctxm->instance_bmap); 9007 if (ctxm->entry_multiple) 9008 entries = roundup(entries, ctxm->entry_multiple); 9009 entries = clamp_t(u32, entries, ctxm->min_entries, ctxm->max_entries); 9010 mem_size = entries * ctxm->entry_size; 9011 for (i = 0; i < n && !rc; i++) { 9012 ctx_pg[i].entries = entries; 9013 rc = bnxt_alloc_ctx_pg_tbls(bp, &ctx_pg[i], mem_size, pg_lvl, 9014 ctxm->init_value ? ctxm : NULL); 9015 } 9016 if (!rc) 9017 ctxm->mem_valid = 1; 9018 return rc; 9019 } 9020 9021 static int bnxt_hwrm_func_backing_store_cfg_v2(struct bnxt *bp, 9022 struct bnxt_ctx_mem_type *ctxm, 9023 bool last) 9024 { 9025 struct hwrm_func_backing_store_cfg_v2_input *req; 9026 u32 instance_bmap = ctxm->instance_bmap; 9027 int i, j, rc = 0, n = 1; 9028 __le32 *p; 9029 9030 if (!(ctxm->flags & BNXT_CTX_MEM_TYPE_VALID) || !ctxm->pg_info) 9031 return 0; 9032 9033 if (instance_bmap) 9034 n = hweight32(ctxm->instance_bmap); 9035 else 9036 instance_bmap = 1; 9037 9038 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_CFG_V2); 9039 if (rc) 9040 return rc; 9041 hwrm_req_hold(bp, req); 9042 req->type = cpu_to_le16(ctxm->type); 9043 req->entry_size = cpu_to_le16(ctxm->entry_size); 9044 if ((ctxm->flags & BNXT_CTX_MEM_PERSIST) && 9045 bnxt_bs_trace_avail(bp, ctxm->type)) { 9046 struct bnxt_bs_trace_info *bs_trace; 9047 u32 enables; 9048 9049 enables = FUNC_BACKING_STORE_CFG_V2_REQ_ENABLES_NEXT_BS_OFFSET; 9050 req->enables = cpu_to_le32(enables); 9051 bs_trace = &bp->bs_trace[bnxt_bstore_to_trace[ctxm->type]]; 9052 req->next_bs_offset = cpu_to_le32(bs_trace->last_offset); 9053 } 9054 req->subtype_valid_cnt = ctxm->split_entry_cnt; 9055 for (i = 0, p = &req->split_entry_0; i < ctxm->split_entry_cnt; i++) 9056 p[i] = cpu_to_le32(ctxm->split[i]); 9057 for (i = 0, j = 0; j < n && !rc; i++) { 9058 struct bnxt_ctx_pg_info *ctx_pg; 9059 9060 if (!(instance_bmap & (1 << i))) 9061 continue; 9062 req->instance = cpu_to_le16(i); 9063 ctx_pg = &ctxm->pg_info[j++]; 9064 if (!ctx_pg->entries) 9065 continue; 9066 req->num_entries = cpu_to_le32(ctx_pg->entries); 9067 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 9068 &req->page_size_pbl_level, 9069 &req->page_dir); 9070 if (last && j == n) 9071 req->flags = 9072 cpu_to_le32(FUNC_BACKING_STORE_CFG_V2_REQ_FLAGS_BS_CFG_ALL_DONE); 9073 rc = hwrm_req_send(bp, req); 9074 } 9075 hwrm_req_drop(bp, req); 9076 return rc; 9077 } 9078 9079 static int bnxt_backing_store_cfg_v2(struct bnxt *bp, u32 ena) 9080 { 9081 struct bnxt_ctx_mem_info *ctx = bp->ctx; 9082 struct bnxt_ctx_mem_type *ctxm; 9083 u16 last_type = BNXT_CTX_INV; 9084 int rc = 0; 9085 u16 type; 9086 9087 for (type = BNXT_CTX_SRT; type <= BNXT_CTX_RIGP1; type++) { 9088 ctxm = &ctx->ctx_arr[type]; 9089 if (!bnxt_bs_trace_avail(bp, type)) 9090 continue; 9091 if (!ctxm->mem_valid) { 9092 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, 9093 ctxm->max_entries, 1); 9094 if (rc) { 9095 netdev_warn(bp->dev, "Unable to setup ctx page for type:0x%x.\n", 9096 type); 9097 continue; 9098 } 9099 bnxt_bs_trace_init(bp, ctxm); 9100 } 9101 last_type = type; 9102 } 9103 9104 if (last_type == BNXT_CTX_INV) { 9105 if (!ena) 9106 return 0; 9107 else if (ena & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) 9108 last_type = BNXT_CTX_MAX - 1; 9109 else 9110 last_type = BNXT_CTX_L2_MAX - 1; 9111 } 9112 ctx->ctx_arr[last_type].last = 1; 9113 9114 for (type = 0 ; type < BNXT_CTX_V2_MAX; type++) { 9115 ctxm = &ctx->ctx_arr[type]; 9116 9117 if (!ctxm->mem_valid) 9118 continue; 9119 rc = bnxt_hwrm_func_backing_store_cfg_v2(bp, ctxm, ctxm->last); 9120 if (rc) 9121 return rc; 9122 } 9123 return 0; 9124 } 9125 9126 /** 9127 * __bnxt_copy_ctx_mem - copy host context memory 9128 * @bp: The driver context 9129 * @ctxm: The pointer to the context memory type 9130 * @buf: The destination buffer or NULL to just obtain the length 9131 * @offset: The buffer offset to copy the data to 9132 * @head: The head offset of context memory to copy from 9133 * @tail: The tail offset (last byte + 1) of context memory to end the copy 9134 * 9135 * This function is called for debugging purposes to dump the host context 9136 * used by the chip. 9137 * 9138 * Return: Length of memory copied 9139 */ 9140 static size_t __bnxt_copy_ctx_mem(struct bnxt *bp, 9141 struct bnxt_ctx_mem_type *ctxm, void *buf, 9142 size_t offset, size_t head, size_t tail) 9143 { 9144 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 9145 size_t len = 0, total_len = 0; 9146 int i, n = 1; 9147 9148 if (!ctx_pg) 9149 return 0; 9150 9151 if (ctxm->instance_bmap) 9152 n = hweight32(ctxm->instance_bmap); 9153 for (i = 0; i < n; i++) { 9154 len = bnxt_copy_ctx_pg_tbls(bp, &ctx_pg[i], buf, offset, head, 9155 tail); 9156 offset += len; 9157 total_len += len; 9158 } 9159 return total_len; 9160 } 9161 9162 size_t bnxt_copy_ctx_mem(struct bnxt *bp, struct bnxt_ctx_mem_type *ctxm, 9163 void *buf, size_t offset) 9164 { 9165 size_t tail = ctxm->max_entries * ctxm->entry_size; 9166 9167 return __bnxt_copy_ctx_mem(bp, ctxm, buf, offset, 0, tail); 9168 } 9169 9170 static void bnxt_free_one_ctx_mem(struct bnxt *bp, 9171 struct bnxt_ctx_mem_type *ctxm, bool force) 9172 { 9173 struct bnxt_ctx_pg_info *ctx_pg; 9174 int i, n = 1; 9175 9176 ctxm->last = 0; 9177 9178 if (ctxm->mem_valid && !force && (ctxm->flags & BNXT_CTX_MEM_PERSIST)) 9179 return; 9180 9181 ctx_pg = ctxm->pg_info; 9182 if (ctx_pg) { 9183 if (ctxm->instance_bmap) 9184 n = hweight32(ctxm->instance_bmap); 9185 for (i = 0; i < n; i++) 9186 bnxt_free_ctx_pg_tbls(bp, &ctx_pg[i]); 9187 9188 kfree(ctx_pg); 9189 ctxm->pg_info = NULL; 9190 ctxm->mem_valid = 0; 9191 } 9192 memset(ctxm, 0, sizeof(*ctxm)); 9193 } 9194 9195 void bnxt_free_ctx_mem(struct bnxt *bp, bool force) 9196 { 9197 struct bnxt_ctx_mem_info *ctx = bp->ctx; 9198 u16 type; 9199 9200 if (!ctx) 9201 return; 9202 9203 for (type = 0; type < BNXT_CTX_V2_MAX; type++) 9204 bnxt_free_one_ctx_mem(bp, &ctx->ctx_arr[type], force); 9205 9206 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 9207 if (force) { 9208 kfree(ctx); 9209 bp->ctx = NULL; 9210 } 9211 } 9212 9213 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 9214 { 9215 struct bnxt_ctx_mem_type *ctxm; 9216 struct bnxt_ctx_mem_info *ctx; 9217 u32 l2_qps, qp1_qps, max_qps; 9218 u32 ena, entries_sp, entries; 9219 u32 srqs, max_srqs, min; 9220 u32 num_mr, num_ah; 9221 u32 extra_srqs = 0; 9222 u32 extra_qps = 0; 9223 u32 fast_qpmd_qps; 9224 u8 pg_lvl = 1; 9225 int i, rc; 9226 9227 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 9228 if (rc) { 9229 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 9230 rc); 9231 return rc; 9232 } 9233 ctx = bp->ctx; 9234 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 9235 return 0; 9236 9237 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 9238 l2_qps = ctxm->qp_l2_entries; 9239 qp1_qps = ctxm->qp_qp1_entries; 9240 fast_qpmd_qps = ctxm->qp_fast_qpmd_entries; 9241 max_qps = ctxm->max_entries; 9242 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 9243 srqs = ctxm->srq_l2_entries; 9244 max_srqs = ctxm->max_entries; 9245 ena = 0; 9246 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 9247 pg_lvl = 2; 9248 if (BNXT_SW_RES_LMT(bp)) { 9249 extra_qps = max_qps - l2_qps - qp1_qps; 9250 extra_srqs = max_srqs - srqs; 9251 } else { 9252 extra_qps = min_t(u32, 65536, 9253 max_qps - l2_qps - qp1_qps); 9254 /* allocate extra qps if fw supports RoCE fast qp 9255 * destroy feature 9256 */ 9257 extra_qps += fast_qpmd_qps; 9258 extra_srqs = min_t(u32, 8192, max_srqs - srqs); 9259 } 9260 if (fast_qpmd_qps) 9261 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD; 9262 } 9263 9264 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 9265 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 9266 pg_lvl); 9267 if (rc) 9268 return rc; 9269 9270 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 9271 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, srqs + extra_srqs, pg_lvl); 9272 if (rc) 9273 return rc; 9274 9275 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 9276 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->cq_l2_entries + 9277 extra_qps * 2, pg_lvl); 9278 if (rc) 9279 return rc; 9280 9281 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 9282 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 9283 if (rc) 9284 return rc; 9285 9286 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 9287 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 9288 if (rc) 9289 return rc; 9290 9291 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 9292 goto skip_rdma; 9293 9294 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 9295 if (BNXT_SW_RES_LMT(bp) && 9296 ctxm->split_entry_cnt == BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1) { 9297 num_ah = ctxm->mrav_av_entries; 9298 num_mr = ctxm->max_entries - num_ah; 9299 } else { 9300 /* 128K extra is needed to accommodate static AH context 9301 * allocation by f/w. 9302 */ 9303 num_mr = min_t(u32, ctxm->max_entries / 2, 1024 * 256); 9304 num_ah = min_t(u32, num_mr, 1024 * 128); 9305 ctxm->split_entry_cnt = BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1; 9306 if (!ctxm->mrav_av_entries || ctxm->mrav_av_entries > num_ah) 9307 ctxm->mrav_av_entries = num_ah; 9308 } 9309 9310 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, num_mr + num_ah, 2); 9311 if (rc) 9312 return rc; 9313 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 9314 9315 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 9316 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 1); 9317 if (rc) 9318 return rc; 9319 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 9320 9321 skip_rdma: 9322 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 9323 min = ctxm->min_entries; 9324 entries_sp = ctx->ctx_arr[BNXT_CTX_VNIC].vnic_entries + l2_qps + 9325 2 * (extra_qps + qp1_qps) + min; 9326 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries_sp, 2); 9327 if (rc) 9328 return rc; 9329 9330 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 9331 entries = l2_qps + 2 * (extra_qps + qp1_qps); 9332 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries, 2); 9333 if (rc) 9334 return rc; 9335 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 9336 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 9337 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 9338 9339 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 9340 rc = bnxt_backing_store_cfg_v2(bp, ena); 9341 else 9342 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 9343 if (rc) { 9344 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 9345 rc); 9346 return rc; 9347 } 9348 ctx->flags |= BNXT_CTX_FLAG_INITED; 9349 return 0; 9350 } 9351 9352 static int bnxt_hwrm_crash_dump_mem_cfg(struct bnxt *bp) 9353 { 9354 struct hwrm_dbg_crashdump_medium_cfg_input *req; 9355 u16 page_attr; 9356 int rc; 9357 9358 if (!(bp->fw_dbg_cap & DBG_QCAPS_RESP_FLAGS_CRASHDUMP_HOST_DDR)) 9359 return 0; 9360 9361 rc = hwrm_req_init(bp, req, HWRM_DBG_CRASHDUMP_MEDIUM_CFG); 9362 if (rc) 9363 return rc; 9364 9365 if (BNXT_PAGE_SIZE == 0x2000) 9366 page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_8K; 9367 else if (BNXT_PAGE_SIZE == 0x10000) 9368 page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_64K; 9369 else 9370 page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_4K; 9371 req->pg_size_lvl = cpu_to_le16(page_attr | 9372 bp->fw_crash_mem->ring_mem.depth); 9373 req->pbl = cpu_to_le64(bp->fw_crash_mem->ring_mem.pg_tbl_map); 9374 req->size = cpu_to_le32(bp->fw_crash_len); 9375 req->output_dest_flags = cpu_to_le16(BNXT_DBG_CR_DUMP_MDM_CFG_DDR); 9376 return hwrm_req_send(bp, req); 9377 } 9378 9379 static void bnxt_free_crash_dump_mem(struct bnxt *bp) 9380 { 9381 if (bp->fw_crash_mem) { 9382 bnxt_free_ctx_pg_tbls(bp, bp->fw_crash_mem); 9383 kfree(bp->fw_crash_mem); 9384 bp->fw_crash_mem = NULL; 9385 } 9386 } 9387 9388 static int bnxt_alloc_crash_dump_mem(struct bnxt *bp) 9389 { 9390 u32 mem_size = 0; 9391 int rc; 9392 9393 if (!(bp->fw_dbg_cap & DBG_QCAPS_RESP_FLAGS_CRASHDUMP_HOST_DDR)) 9394 return 0; 9395 9396 rc = bnxt_hwrm_get_dump_len(bp, BNXT_DUMP_CRASH, &mem_size); 9397 if (rc) 9398 return rc; 9399 9400 mem_size = round_up(mem_size, 4); 9401 9402 /* keep and use the existing pages */ 9403 if (bp->fw_crash_mem && 9404 mem_size <= bp->fw_crash_mem->nr_pages * BNXT_PAGE_SIZE) 9405 goto alloc_done; 9406 9407 if (bp->fw_crash_mem) 9408 bnxt_free_ctx_pg_tbls(bp, bp->fw_crash_mem); 9409 else 9410 bp->fw_crash_mem = kzalloc(sizeof(*bp->fw_crash_mem), 9411 GFP_KERNEL); 9412 if (!bp->fw_crash_mem) 9413 return -ENOMEM; 9414 9415 rc = bnxt_alloc_ctx_pg_tbls(bp, bp->fw_crash_mem, mem_size, 1, NULL); 9416 if (rc) { 9417 bnxt_free_crash_dump_mem(bp); 9418 return rc; 9419 } 9420 9421 alloc_done: 9422 bp->fw_crash_len = mem_size; 9423 return 0; 9424 } 9425 9426 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 9427 { 9428 struct hwrm_func_resource_qcaps_output *resp; 9429 struct hwrm_func_resource_qcaps_input *req; 9430 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9431 int rc; 9432 9433 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS); 9434 if (rc) 9435 return rc; 9436 9437 req->fid = cpu_to_le16(0xffff); 9438 resp = hwrm_req_hold(bp, req); 9439 rc = hwrm_req_send_silent(bp, req); 9440 if (rc) 9441 goto hwrm_func_resc_qcaps_exit; 9442 9443 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 9444 if (!all) 9445 goto hwrm_func_resc_qcaps_exit; 9446 9447 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 9448 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 9449 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 9450 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 9451 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 9452 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 9453 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 9454 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 9455 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 9456 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 9457 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 9458 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 9459 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 9460 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 9461 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 9462 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 9463 9464 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 9465 u16 max_msix = le16_to_cpu(resp->max_msix); 9466 9467 hw_resc->max_nqs = max_msix; 9468 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 9469 } 9470 9471 if (BNXT_PF(bp)) { 9472 struct bnxt_pf_info *pf = &bp->pf; 9473 9474 pf->vf_resv_strategy = 9475 le16_to_cpu(resp->vf_reservation_strategy); 9476 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 9477 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 9478 } 9479 hwrm_func_resc_qcaps_exit: 9480 hwrm_req_drop(bp, req); 9481 return rc; 9482 } 9483 9484 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) 9485 { 9486 struct hwrm_port_mac_ptp_qcfg_output *resp; 9487 struct hwrm_port_mac_ptp_qcfg_input *req; 9488 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 9489 u8 flags; 9490 int rc; 9491 9492 if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5_PLUS(bp)) { 9493 rc = -ENODEV; 9494 goto no_ptp; 9495 } 9496 9497 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG); 9498 if (rc) 9499 goto no_ptp; 9500 9501 req->port_id = cpu_to_le16(bp->pf.port_id); 9502 resp = hwrm_req_hold(bp, req); 9503 rc = hwrm_req_send(bp, req); 9504 if (rc) 9505 goto exit; 9506 9507 flags = resp->flags; 9508 if (BNXT_CHIP_P5_AND_MINUS(bp) && 9509 !(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { 9510 rc = -ENODEV; 9511 goto exit; 9512 } 9513 if (!ptp) { 9514 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); 9515 if (!ptp) { 9516 rc = -ENOMEM; 9517 goto exit; 9518 } 9519 ptp->bp = bp; 9520 bp->ptp_cfg = ptp; 9521 } 9522 9523 if (flags & 9524 (PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK | 9525 PORT_MAC_PTP_QCFG_RESP_FLAGS_64B_PHC_TIME)) { 9526 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); 9527 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); 9528 } else if (BNXT_CHIP_P5(bp)) { 9529 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; 9530 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; 9531 } else { 9532 rc = -ENODEV; 9533 goto exit; 9534 } 9535 ptp->rtc_configured = 9536 (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0; 9537 rc = bnxt_ptp_init(bp); 9538 if (rc) 9539 netdev_warn(bp->dev, "PTP initialization failed.\n"); 9540 exit: 9541 hwrm_req_drop(bp, req); 9542 if (!rc) 9543 return 0; 9544 9545 no_ptp: 9546 bnxt_ptp_clear(bp); 9547 kfree(ptp); 9548 bp->ptp_cfg = NULL; 9549 return rc; 9550 } 9551 9552 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 9553 { 9554 struct hwrm_func_qcaps_output *resp; 9555 struct hwrm_func_qcaps_input *req; 9556 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9557 u32 flags, flags_ext, flags_ext2; 9558 int rc; 9559 9560 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS); 9561 if (rc) 9562 return rc; 9563 9564 req->fid = cpu_to_le16(0xffff); 9565 resp = hwrm_req_hold(bp, req); 9566 rc = hwrm_req_send(bp, req); 9567 if (rc) 9568 goto hwrm_func_qcaps_exit; 9569 9570 flags = le32_to_cpu(resp->flags); 9571 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 9572 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 9573 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 9574 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 9575 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 9576 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 9577 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 9578 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 9579 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 9580 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 9581 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 9582 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 9583 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 9584 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 9585 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 9586 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 9587 if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED) 9588 bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS; 9589 9590 flags_ext = le32_to_cpu(resp->flags_ext); 9591 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 9592 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 9593 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED)) 9594 bp->fw_cap |= BNXT_FW_CAP_PTP_PPS; 9595 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED) 9596 bp->fw_cap |= BNXT_FW_CAP_PTP_RTC; 9597 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT)) 9598 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF; 9599 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED)) 9600 bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH; 9601 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_NPAR_1_2_SUPPORTED) 9602 bp->fw_cap |= BNXT_FW_CAP_NPAR_1_2; 9603 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_DFLT_VLAN_TPID_PCP_SUPPORTED)) 9604 bp->fw_cap |= BNXT_FW_CAP_DFLT_VLAN_TPID_PCP; 9605 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_BS_V2_SUPPORTED) 9606 bp->fw_cap |= BNXT_FW_CAP_BACKING_STORE_V2; 9607 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_TX_COAL_CMPL_CAP) 9608 bp->flags |= BNXT_FLAG_TX_COAL_CMPL; 9609 9610 flags_ext2 = le32_to_cpu(resp->flags_ext2); 9611 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED) 9612 bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS; 9613 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_UDP_GSO_SUPPORTED) 9614 bp->flags |= BNXT_FLAG_UDP_GSO_CAP; 9615 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_TX_PKT_TS_CMPL_SUPPORTED) 9616 bp->fw_cap |= BNXT_FW_CAP_TX_TS_CMP; 9617 if (flags_ext2 & 9618 FUNC_QCAPS_RESP_FLAGS_EXT2_SW_MAX_RESOURCE_LIMITS_SUPPORTED) 9619 bp->fw_cap |= BNXT_FW_CAP_SW_MAX_RESOURCE_LIMITS; 9620 if (BNXT_PF(bp) && 9621 (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_ROCE_VF_RESOURCE_MGMT_SUPPORTED)) 9622 bp->fw_cap |= BNXT_FW_CAP_ROCE_VF_RESC_MGMT_SUPPORTED; 9623 9624 bp->tx_push_thresh = 0; 9625 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 9626 BNXT_FW_MAJ(bp) > 217) 9627 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 9628 9629 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 9630 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 9631 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 9632 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 9633 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 9634 if (!hw_resc->max_hw_ring_grps) 9635 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 9636 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 9637 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 9638 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 9639 9640 hw_resc->max_encap_records = le32_to_cpu(resp->max_encap_records); 9641 hw_resc->max_decap_records = le32_to_cpu(resp->max_decap_records); 9642 hw_resc->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 9643 hw_resc->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 9644 hw_resc->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 9645 hw_resc->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 9646 9647 if (BNXT_PF(bp)) { 9648 struct bnxt_pf_info *pf = &bp->pf; 9649 9650 pf->fw_fid = le16_to_cpu(resp->fid); 9651 pf->port_id = le16_to_cpu(resp->port_id); 9652 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 9653 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 9654 pf->max_vfs = le16_to_cpu(resp->max_vfs); 9655 bp->flags &= ~BNXT_FLAG_WOL_CAP; 9656 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 9657 bp->flags |= BNXT_FLAG_WOL_CAP; 9658 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { 9659 bp->fw_cap |= BNXT_FW_CAP_PTP; 9660 } else { 9661 bnxt_ptp_clear(bp); 9662 kfree(bp->ptp_cfg); 9663 bp->ptp_cfg = NULL; 9664 } 9665 } else { 9666 #ifdef CONFIG_BNXT_SRIOV 9667 struct bnxt_vf_info *vf = &bp->vf; 9668 9669 vf->fw_fid = le16_to_cpu(resp->fid); 9670 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 9671 #endif 9672 } 9673 bp->tso_max_segs = le16_to_cpu(resp->max_tso_segs); 9674 9675 hwrm_func_qcaps_exit: 9676 hwrm_req_drop(bp, req); 9677 return rc; 9678 } 9679 9680 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp) 9681 { 9682 struct hwrm_dbg_qcaps_output *resp; 9683 struct hwrm_dbg_qcaps_input *req; 9684 int rc; 9685 9686 bp->fw_dbg_cap = 0; 9687 if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS)) 9688 return; 9689 9690 rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS); 9691 if (rc) 9692 return; 9693 9694 req->fid = cpu_to_le16(0xffff); 9695 resp = hwrm_req_hold(bp, req); 9696 rc = hwrm_req_send(bp, req); 9697 if (rc) 9698 goto hwrm_dbg_qcaps_exit; 9699 9700 bp->fw_dbg_cap = le32_to_cpu(resp->flags); 9701 9702 hwrm_dbg_qcaps_exit: 9703 hwrm_req_drop(bp, req); 9704 } 9705 9706 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 9707 9708 int bnxt_hwrm_func_qcaps(struct bnxt *bp) 9709 { 9710 int rc; 9711 9712 rc = __bnxt_hwrm_func_qcaps(bp); 9713 if (rc) 9714 return rc; 9715 9716 bnxt_hwrm_dbg_qcaps(bp); 9717 9718 rc = bnxt_hwrm_queue_qportcfg(bp); 9719 if (rc) { 9720 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 9721 return rc; 9722 } 9723 if (bp->hwrm_spec_code >= 0x10803) { 9724 rc = bnxt_alloc_ctx_mem(bp); 9725 if (rc) 9726 return rc; 9727 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 9728 if (!rc) 9729 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 9730 } 9731 return 0; 9732 } 9733 9734 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 9735 { 9736 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 9737 struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req; 9738 u32 flags; 9739 int rc; 9740 9741 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 9742 return 0; 9743 9744 rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS); 9745 if (rc) 9746 return rc; 9747 9748 resp = hwrm_req_hold(bp, req); 9749 rc = hwrm_req_send(bp, req); 9750 if (rc) 9751 goto hwrm_cfa_adv_qcaps_exit; 9752 9753 flags = le32_to_cpu(resp->flags); 9754 if (flags & 9755 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 9756 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 9757 9758 if (flags & 9759 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V3_SUPPORTED) 9760 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V3; 9761 9762 if (flags & 9763 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_NTUPLE_FLOW_RX_EXT_IP_PROTO_SUPPORTED) 9764 bp->fw_cap |= BNXT_FW_CAP_CFA_NTUPLE_RX_EXT_IP_PROTO; 9765 9766 hwrm_cfa_adv_qcaps_exit: 9767 hwrm_req_drop(bp, req); 9768 return rc; 9769 } 9770 9771 static int __bnxt_alloc_fw_health(struct bnxt *bp) 9772 { 9773 if (bp->fw_health) 9774 return 0; 9775 9776 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 9777 if (!bp->fw_health) 9778 return -ENOMEM; 9779 9780 mutex_init(&bp->fw_health->lock); 9781 return 0; 9782 } 9783 9784 static int bnxt_alloc_fw_health(struct bnxt *bp) 9785 { 9786 int rc; 9787 9788 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 9789 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 9790 return 0; 9791 9792 rc = __bnxt_alloc_fw_health(bp); 9793 if (rc) { 9794 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 9795 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 9796 return rc; 9797 } 9798 9799 return 0; 9800 } 9801 9802 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 9803 { 9804 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 9805 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 9806 BNXT_FW_HEALTH_WIN_MAP_OFF); 9807 } 9808 9809 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 9810 { 9811 struct bnxt_fw_health *fw_health = bp->fw_health; 9812 u32 reg_type; 9813 9814 if (!fw_health) 9815 return; 9816 9817 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 9818 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9819 fw_health->status_reliable = false; 9820 9821 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]); 9822 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9823 fw_health->resets_reliable = false; 9824 } 9825 9826 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 9827 { 9828 void __iomem *hs; 9829 u32 status_loc; 9830 u32 reg_type; 9831 u32 sig; 9832 9833 if (bp->fw_health) 9834 bp->fw_health->status_reliable = false; 9835 9836 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 9837 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 9838 9839 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 9840 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 9841 if (!bp->chip_num) { 9842 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 9843 bp->chip_num = readl(bp->bar0 + 9844 BNXT_FW_HEALTH_WIN_BASE + 9845 BNXT_GRC_REG_CHIP_NUM); 9846 } 9847 if (!BNXT_CHIP_P5_PLUS(bp)) 9848 return; 9849 9850 status_loc = BNXT_GRC_REG_STATUS_P5 | 9851 BNXT_FW_HEALTH_REG_TYPE_BAR0; 9852 } else { 9853 status_loc = readl(hs + offsetof(struct hcomm_status, 9854 fw_status_loc)); 9855 } 9856 9857 if (__bnxt_alloc_fw_health(bp)) { 9858 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 9859 return; 9860 } 9861 9862 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 9863 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 9864 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 9865 __bnxt_map_fw_health_reg(bp, status_loc); 9866 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 9867 BNXT_FW_HEALTH_WIN_OFF(status_loc); 9868 } 9869 9870 bp->fw_health->status_reliable = true; 9871 } 9872 9873 static int bnxt_map_fw_health_regs(struct bnxt *bp) 9874 { 9875 struct bnxt_fw_health *fw_health = bp->fw_health; 9876 u32 reg_base = 0xffffffff; 9877 int i; 9878 9879 bp->fw_health->status_reliable = false; 9880 bp->fw_health->resets_reliable = false; 9881 /* Only pre-map the monitoring GRC registers using window 3 */ 9882 for (i = 0; i < 4; i++) { 9883 u32 reg = fw_health->regs[i]; 9884 9885 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 9886 continue; 9887 if (reg_base == 0xffffffff) 9888 reg_base = reg & BNXT_GRC_BASE_MASK; 9889 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 9890 return -ERANGE; 9891 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 9892 } 9893 bp->fw_health->status_reliable = true; 9894 bp->fw_health->resets_reliable = true; 9895 if (reg_base == 0xffffffff) 9896 return 0; 9897 9898 __bnxt_map_fw_health_reg(bp, reg_base); 9899 return 0; 9900 } 9901 9902 static void bnxt_remap_fw_health_regs(struct bnxt *bp) 9903 { 9904 if (!bp->fw_health) 9905 return; 9906 9907 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) { 9908 bp->fw_health->status_reliable = true; 9909 bp->fw_health->resets_reliable = true; 9910 } else { 9911 bnxt_try_map_fw_health_reg(bp); 9912 } 9913 } 9914 9915 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 9916 { 9917 struct bnxt_fw_health *fw_health = bp->fw_health; 9918 struct hwrm_error_recovery_qcfg_output *resp; 9919 struct hwrm_error_recovery_qcfg_input *req; 9920 int rc, i; 9921 9922 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 9923 return 0; 9924 9925 rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG); 9926 if (rc) 9927 return rc; 9928 9929 resp = hwrm_req_hold(bp, req); 9930 rc = hwrm_req_send(bp, req); 9931 if (rc) 9932 goto err_recovery_out; 9933 fw_health->flags = le32_to_cpu(resp->flags); 9934 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 9935 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 9936 rc = -EINVAL; 9937 goto err_recovery_out; 9938 } 9939 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 9940 fw_health->master_func_wait_dsecs = 9941 le32_to_cpu(resp->master_func_wait_period); 9942 fw_health->normal_func_wait_dsecs = 9943 le32_to_cpu(resp->normal_func_wait_period); 9944 fw_health->post_reset_wait_dsecs = 9945 le32_to_cpu(resp->master_func_wait_period_after_reset); 9946 fw_health->post_reset_max_wait_dsecs = 9947 le32_to_cpu(resp->max_bailout_time_after_reset); 9948 fw_health->regs[BNXT_FW_HEALTH_REG] = 9949 le32_to_cpu(resp->fw_health_status_reg); 9950 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 9951 le32_to_cpu(resp->fw_heartbeat_reg); 9952 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 9953 le32_to_cpu(resp->fw_reset_cnt_reg); 9954 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 9955 le32_to_cpu(resp->reset_inprogress_reg); 9956 fw_health->fw_reset_inprog_reg_mask = 9957 le32_to_cpu(resp->reset_inprogress_reg_mask); 9958 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 9959 if (fw_health->fw_reset_seq_cnt >= 16) { 9960 rc = -EINVAL; 9961 goto err_recovery_out; 9962 } 9963 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 9964 fw_health->fw_reset_seq_regs[i] = 9965 le32_to_cpu(resp->reset_reg[i]); 9966 fw_health->fw_reset_seq_vals[i] = 9967 le32_to_cpu(resp->reset_reg_val[i]); 9968 fw_health->fw_reset_seq_delay_msec[i] = 9969 resp->delay_after_reset[i]; 9970 } 9971 err_recovery_out: 9972 hwrm_req_drop(bp, req); 9973 if (!rc) 9974 rc = bnxt_map_fw_health_regs(bp); 9975 if (rc) 9976 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 9977 return rc; 9978 } 9979 9980 static int bnxt_hwrm_func_reset(struct bnxt *bp) 9981 { 9982 struct hwrm_func_reset_input *req; 9983 int rc; 9984 9985 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET); 9986 if (rc) 9987 return rc; 9988 9989 req->enables = 0; 9990 hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT); 9991 return hwrm_req_send(bp, req); 9992 } 9993 9994 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 9995 { 9996 struct hwrm_nvm_get_dev_info_output nvm_info; 9997 9998 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 9999 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 10000 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 10001 nvm_info.nvm_cfg_ver_upd); 10002 } 10003 10004 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 10005 { 10006 struct hwrm_queue_qportcfg_output *resp; 10007 struct hwrm_queue_qportcfg_input *req; 10008 u8 i, j, *qptr; 10009 bool no_rdma; 10010 int rc = 0; 10011 10012 rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG); 10013 if (rc) 10014 return rc; 10015 10016 resp = hwrm_req_hold(bp, req); 10017 rc = hwrm_req_send(bp, req); 10018 if (rc) 10019 goto qportcfg_exit; 10020 10021 if (!resp->max_configurable_queues) { 10022 rc = -EINVAL; 10023 goto qportcfg_exit; 10024 } 10025 bp->max_tc = resp->max_configurable_queues; 10026 bp->max_lltc = resp->max_configurable_lossless_queues; 10027 if (bp->max_tc > BNXT_MAX_QUEUE) 10028 bp->max_tc = BNXT_MAX_QUEUE; 10029 10030 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 10031 qptr = &resp->queue_id0; 10032 for (i = 0, j = 0; i < bp->max_tc; i++) { 10033 bp->q_info[j].queue_id = *qptr; 10034 bp->q_ids[i] = *qptr++; 10035 bp->q_info[j].queue_profile = *qptr++; 10036 bp->tc_to_qidx[j] = j; 10037 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 10038 (no_rdma && BNXT_PF(bp))) 10039 j++; 10040 } 10041 bp->max_q = bp->max_tc; 10042 bp->max_tc = max_t(u8, j, 1); 10043 10044 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 10045 bp->max_tc = 1; 10046 10047 if (bp->max_lltc > bp->max_tc) 10048 bp->max_lltc = bp->max_tc; 10049 10050 qportcfg_exit: 10051 hwrm_req_drop(bp, req); 10052 return rc; 10053 } 10054 10055 static int bnxt_hwrm_poll(struct bnxt *bp) 10056 { 10057 struct hwrm_ver_get_input *req; 10058 int rc; 10059 10060 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 10061 if (rc) 10062 return rc; 10063 10064 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 10065 req->hwrm_intf_min = HWRM_VERSION_MINOR; 10066 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 10067 10068 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT); 10069 rc = hwrm_req_send(bp, req); 10070 return rc; 10071 } 10072 10073 static int bnxt_hwrm_ver_get(struct bnxt *bp) 10074 { 10075 struct hwrm_ver_get_output *resp; 10076 struct hwrm_ver_get_input *req; 10077 u16 fw_maj, fw_min, fw_bld, fw_rsv; 10078 u32 dev_caps_cfg, hwrm_ver; 10079 int rc, len; 10080 10081 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 10082 if (rc) 10083 return rc; 10084 10085 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 10086 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 10087 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 10088 req->hwrm_intf_min = HWRM_VERSION_MINOR; 10089 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 10090 10091 resp = hwrm_req_hold(bp, req); 10092 rc = hwrm_req_send(bp, req); 10093 if (rc) 10094 goto hwrm_ver_get_exit; 10095 10096 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 10097 10098 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 10099 resp->hwrm_intf_min_8b << 8 | 10100 resp->hwrm_intf_upd_8b; 10101 if (resp->hwrm_intf_maj_8b < 1) { 10102 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 10103 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 10104 resp->hwrm_intf_upd_8b); 10105 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 10106 } 10107 10108 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 10109 HWRM_VERSION_UPDATE; 10110 10111 if (bp->hwrm_spec_code > hwrm_ver) 10112 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 10113 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 10114 HWRM_VERSION_UPDATE); 10115 else 10116 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 10117 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 10118 resp->hwrm_intf_upd_8b); 10119 10120 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 10121 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 10122 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 10123 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 10124 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 10125 len = FW_VER_STR_LEN; 10126 } else { 10127 fw_maj = resp->hwrm_fw_maj_8b; 10128 fw_min = resp->hwrm_fw_min_8b; 10129 fw_bld = resp->hwrm_fw_bld_8b; 10130 fw_rsv = resp->hwrm_fw_rsvd_8b; 10131 len = BC_HWRM_STR_LEN; 10132 } 10133 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 10134 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 10135 fw_rsv); 10136 10137 if (strlen(resp->active_pkg_name)) { 10138 int fw_ver_len = strlen(bp->fw_ver_str); 10139 10140 snprintf(bp->fw_ver_str + fw_ver_len, 10141 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 10142 resp->active_pkg_name); 10143 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 10144 } 10145 10146 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 10147 if (!bp->hwrm_cmd_timeout) 10148 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 10149 bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000; 10150 if (!bp->hwrm_cmd_max_timeout) 10151 bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT; 10152 else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT) 10153 netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n", 10154 bp->hwrm_cmd_max_timeout / 1000); 10155 10156 if (resp->hwrm_intf_maj_8b >= 1) { 10157 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 10158 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 10159 } 10160 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 10161 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 10162 10163 bp->chip_num = le16_to_cpu(resp->chip_num); 10164 bp->chip_rev = resp->chip_rev; 10165 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 10166 !resp->chip_metal) 10167 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 10168 10169 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 10170 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 10171 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 10172 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 10173 10174 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 10175 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 10176 10177 if (dev_caps_cfg & 10178 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 10179 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 10180 10181 if (dev_caps_cfg & 10182 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 10183 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 10184 10185 if (dev_caps_cfg & 10186 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 10187 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 10188 10189 hwrm_ver_get_exit: 10190 hwrm_req_drop(bp, req); 10191 return rc; 10192 } 10193 10194 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 10195 { 10196 struct hwrm_fw_set_time_input *req; 10197 struct tm tm; 10198 time64_t now = ktime_get_real_seconds(); 10199 int rc; 10200 10201 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 10202 bp->hwrm_spec_code < 0x10400) 10203 return -EOPNOTSUPP; 10204 10205 time64_to_tm(now, 0, &tm); 10206 rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME); 10207 if (rc) 10208 return rc; 10209 10210 req->year = cpu_to_le16(1900 + tm.tm_year); 10211 req->month = 1 + tm.tm_mon; 10212 req->day = tm.tm_mday; 10213 req->hour = tm.tm_hour; 10214 req->minute = tm.tm_min; 10215 req->second = tm.tm_sec; 10216 return hwrm_req_send(bp, req); 10217 } 10218 10219 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 10220 { 10221 u64 sw_tmp; 10222 10223 hw &= mask; 10224 sw_tmp = (*sw & ~mask) | hw; 10225 if (hw < (*sw & mask)) 10226 sw_tmp += mask + 1; 10227 WRITE_ONCE(*sw, sw_tmp); 10228 } 10229 10230 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 10231 int count, bool ignore_zero) 10232 { 10233 int i; 10234 10235 for (i = 0; i < count; i++) { 10236 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 10237 10238 if (ignore_zero && !hw) 10239 continue; 10240 10241 if (masks[i] == -1ULL) 10242 sw_stats[i] = hw; 10243 else 10244 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 10245 } 10246 } 10247 10248 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 10249 { 10250 if (!stats->hw_stats) 10251 return; 10252 10253 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 10254 stats->hw_masks, stats->len / 8, false); 10255 } 10256 10257 static void bnxt_accumulate_all_stats(struct bnxt *bp) 10258 { 10259 struct bnxt_stats_mem *ring0_stats; 10260 bool ignore_zero = false; 10261 int i; 10262 10263 /* Chip bug. Counter intermittently becomes 0. */ 10264 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10265 ignore_zero = true; 10266 10267 for (i = 0; i < bp->cp_nr_rings; i++) { 10268 struct bnxt_napi *bnapi = bp->bnapi[i]; 10269 struct bnxt_cp_ring_info *cpr; 10270 struct bnxt_stats_mem *stats; 10271 10272 cpr = &bnapi->cp_ring; 10273 stats = &cpr->stats; 10274 if (!i) 10275 ring0_stats = stats; 10276 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 10277 ring0_stats->hw_masks, 10278 ring0_stats->len / 8, ignore_zero); 10279 } 10280 if (bp->flags & BNXT_FLAG_PORT_STATS) { 10281 struct bnxt_stats_mem *stats = &bp->port_stats; 10282 __le64 *hw_stats = stats->hw_stats; 10283 u64 *sw_stats = stats->sw_stats; 10284 u64 *masks = stats->hw_masks; 10285 int cnt; 10286 10287 cnt = sizeof(struct rx_port_stats) / 8; 10288 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 10289 10290 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10291 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10292 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10293 cnt = sizeof(struct tx_port_stats) / 8; 10294 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 10295 } 10296 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 10297 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 10298 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 10299 } 10300 } 10301 10302 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 10303 { 10304 struct hwrm_port_qstats_input *req; 10305 struct bnxt_pf_info *pf = &bp->pf; 10306 int rc; 10307 10308 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 10309 return 0; 10310 10311 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 10312 return -EOPNOTSUPP; 10313 10314 rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS); 10315 if (rc) 10316 return rc; 10317 10318 req->flags = flags; 10319 req->port_id = cpu_to_le16(pf->port_id); 10320 req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 10321 BNXT_TX_PORT_STATS_BYTE_OFFSET); 10322 req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 10323 return hwrm_req_send(bp, req); 10324 } 10325 10326 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 10327 { 10328 struct hwrm_queue_pri2cos_qcfg_output *resp_qc; 10329 struct hwrm_queue_pri2cos_qcfg_input *req_qc; 10330 struct hwrm_port_qstats_ext_output *resp_qs; 10331 struct hwrm_port_qstats_ext_input *req_qs; 10332 struct bnxt_pf_info *pf = &bp->pf; 10333 u32 tx_stat_size; 10334 int rc; 10335 10336 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 10337 return 0; 10338 10339 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 10340 return -EOPNOTSUPP; 10341 10342 rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT); 10343 if (rc) 10344 return rc; 10345 10346 req_qs->flags = flags; 10347 req_qs->port_id = cpu_to_le16(pf->port_id); 10348 req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 10349 req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 10350 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 10351 sizeof(struct tx_port_stats_ext) : 0; 10352 req_qs->tx_stat_size = cpu_to_le16(tx_stat_size); 10353 req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 10354 resp_qs = hwrm_req_hold(bp, req_qs); 10355 rc = hwrm_req_send(bp, req_qs); 10356 if (!rc) { 10357 bp->fw_rx_stats_ext_size = 10358 le16_to_cpu(resp_qs->rx_stat_size) / 8; 10359 if (BNXT_FW_MAJ(bp) < 220 && 10360 bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY) 10361 bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY; 10362 10363 bp->fw_tx_stats_ext_size = tx_stat_size ? 10364 le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0; 10365 } else { 10366 bp->fw_rx_stats_ext_size = 0; 10367 bp->fw_tx_stats_ext_size = 0; 10368 } 10369 hwrm_req_drop(bp, req_qs); 10370 10371 if (flags) 10372 return rc; 10373 10374 if (bp->fw_tx_stats_ext_size <= 10375 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 10376 bp->pri2cos_valid = 0; 10377 return rc; 10378 } 10379 10380 rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG); 10381 if (rc) 10382 return rc; 10383 10384 req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 10385 10386 resp_qc = hwrm_req_hold(bp, req_qc); 10387 rc = hwrm_req_send(bp, req_qc); 10388 if (!rc) { 10389 u8 *pri2cos; 10390 int i, j; 10391 10392 pri2cos = &resp_qc->pri0_cos_queue_id; 10393 for (i = 0; i < 8; i++) { 10394 u8 queue_id = pri2cos[i]; 10395 u8 queue_idx; 10396 10397 /* Per port queue IDs start from 0, 10, 20, etc */ 10398 queue_idx = queue_id % 10; 10399 if (queue_idx > BNXT_MAX_QUEUE) { 10400 bp->pri2cos_valid = false; 10401 hwrm_req_drop(bp, req_qc); 10402 return rc; 10403 } 10404 for (j = 0; j < bp->max_q; j++) { 10405 if (bp->q_ids[j] == queue_id) 10406 bp->pri2cos_idx[i] = queue_idx; 10407 } 10408 } 10409 bp->pri2cos_valid = true; 10410 } 10411 hwrm_req_drop(bp, req_qc); 10412 10413 return rc; 10414 } 10415 10416 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 10417 { 10418 bnxt_hwrm_tunnel_dst_port_free(bp, 10419 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 10420 bnxt_hwrm_tunnel_dst_port_free(bp, 10421 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 10422 } 10423 10424 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 10425 { 10426 int rc, i; 10427 u32 tpa_flags = 0; 10428 10429 if (set_tpa) 10430 tpa_flags = bp->flags & BNXT_FLAG_TPA; 10431 else if (BNXT_NO_FW_ACCESS(bp)) 10432 return 0; 10433 for (i = 0; i < bp->nr_vnics; i++) { 10434 rc = bnxt_hwrm_vnic_set_tpa(bp, &bp->vnic_info[i], tpa_flags); 10435 if (rc) { 10436 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 10437 i, rc); 10438 return rc; 10439 } 10440 } 10441 return 0; 10442 } 10443 10444 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 10445 { 10446 int i; 10447 10448 for (i = 0; i < bp->nr_vnics; i++) 10449 bnxt_hwrm_vnic_set_rss(bp, &bp->vnic_info[i], false); 10450 } 10451 10452 static void bnxt_clear_vnic(struct bnxt *bp) 10453 { 10454 if (!bp->vnic_info) 10455 return; 10456 10457 bnxt_hwrm_clear_vnic_filter(bp); 10458 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) { 10459 /* clear all RSS setting before free vnic ctx */ 10460 bnxt_hwrm_clear_vnic_rss(bp); 10461 bnxt_hwrm_vnic_ctx_free(bp); 10462 } 10463 /* before free the vnic, undo the vnic tpa settings */ 10464 if (bp->flags & BNXT_FLAG_TPA) 10465 bnxt_set_tpa(bp, false); 10466 bnxt_hwrm_vnic_free(bp); 10467 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10468 bnxt_hwrm_vnic_ctx_free(bp); 10469 } 10470 10471 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 10472 bool irq_re_init) 10473 { 10474 bnxt_clear_vnic(bp); 10475 bnxt_hwrm_ring_free(bp, close_path); 10476 bnxt_hwrm_ring_grp_free(bp); 10477 if (irq_re_init) { 10478 bnxt_hwrm_stat_ctx_free(bp); 10479 bnxt_hwrm_free_tunnel_ports(bp); 10480 } 10481 } 10482 10483 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 10484 { 10485 struct hwrm_func_cfg_input *req; 10486 u8 evb_mode; 10487 int rc; 10488 10489 if (br_mode == BRIDGE_MODE_VEB) 10490 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 10491 else if (br_mode == BRIDGE_MODE_VEPA) 10492 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 10493 else 10494 return -EINVAL; 10495 10496 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 10497 if (rc) 10498 return rc; 10499 10500 req->fid = cpu_to_le16(0xffff); 10501 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 10502 req->evb_mode = evb_mode; 10503 return hwrm_req_send(bp, req); 10504 } 10505 10506 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 10507 { 10508 struct hwrm_func_cfg_input *req; 10509 int rc; 10510 10511 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 10512 return 0; 10513 10514 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 10515 if (rc) 10516 return rc; 10517 10518 req->fid = cpu_to_le16(0xffff); 10519 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 10520 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 10521 if (size == 128) 10522 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 10523 10524 return hwrm_req_send(bp, req); 10525 } 10526 10527 static int __bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10528 { 10529 int rc; 10530 10531 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 10532 goto skip_rss_ctx; 10533 10534 /* allocate context for vnic */ 10535 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 0); 10536 if (rc) { 10537 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 10538 vnic->vnic_id, rc); 10539 goto vnic_setup_err; 10540 } 10541 bp->rsscos_nr_ctxs++; 10542 10543 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10544 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 1); 10545 if (rc) { 10546 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 10547 vnic->vnic_id, rc); 10548 goto vnic_setup_err; 10549 } 10550 bp->rsscos_nr_ctxs++; 10551 } 10552 10553 skip_rss_ctx: 10554 /* configure default vnic, ring grp */ 10555 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10556 if (rc) { 10557 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 10558 vnic->vnic_id, rc); 10559 goto vnic_setup_err; 10560 } 10561 10562 /* Enable RSS hashing on vnic */ 10563 rc = bnxt_hwrm_vnic_set_rss(bp, vnic, true); 10564 if (rc) { 10565 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 10566 vnic->vnic_id, rc); 10567 goto vnic_setup_err; 10568 } 10569 10570 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 10571 rc = bnxt_hwrm_vnic_set_hds(bp, vnic); 10572 if (rc) { 10573 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 10574 vnic->vnic_id, rc); 10575 } 10576 } 10577 10578 vnic_setup_err: 10579 return rc; 10580 } 10581 10582 int bnxt_hwrm_vnic_update(struct bnxt *bp, struct bnxt_vnic_info *vnic, 10583 u8 valid) 10584 { 10585 struct hwrm_vnic_update_input *req; 10586 int rc; 10587 10588 rc = hwrm_req_init(bp, req, HWRM_VNIC_UPDATE); 10589 if (rc) 10590 return rc; 10591 10592 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 10593 10594 if (valid & VNIC_UPDATE_REQ_ENABLES_MRU_VALID) 10595 req->mru = cpu_to_le16(vnic->mru); 10596 10597 req->enables = cpu_to_le32(valid); 10598 10599 return hwrm_req_send(bp, req); 10600 } 10601 10602 int bnxt_hwrm_vnic_rss_cfg_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10603 { 10604 int rc; 10605 10606 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic, true); 10607 if (rc) { 10608 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 10609 vnic->vnic_id, rc); 10610 return rc; 10611 } 10612 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10613 if (rc) 10614 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 10615 vnic->vnic_id, rc); 10616 return rc; 10617 } 10618 10619 int __bnxt_setup_vnic_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10620 { 10621 int rc, i, nr_ctxs; 10622 10623 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 10624 for (i = 0; i < nr_ctxs; i++) { 10625 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, i); 10626 if (rc) { 10627 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 10628 vnic->vnic_id, i, rc); 10629 break; 10630 } 10631 bp->rsscos_nr_ctxs++; 10632 } 10633 if (i < nr_ctxs) 10634 return -ENOMEM; 10635 10636 rc = bnxt_hwrm_vnic_rss_cfg_p5(bp, vnic); 10637 if (rc) 10638 return rc; 10639 10640 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 10641 rc = bnxt_hwrm_vnic_set_hds(bp, vnic); 10642 if (rc) { 10643 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 10644 vnic->vnic_id, rc); 10645 } 10646 } 10647 return rc; 10648 } 10649 10650 static int bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10651 { 10652 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10653 return __bnxt_setup_vnic_p5(bp, vnic); 10654 else 10655 return __bnxt_setup_vnic(bp, vnic); 10656 } 10657 10658 static int bnxt_alloc_and_setup_vnic(struct bnxt *bp, 10659 struct bnxt_vnic_info *vnic, 10660 u16 start_rx_ring_idx, int rx_rings) 10661 { 10662 int rc; 10663 10664 rc = bnxt_hwrm_vnic_alloc(bp, vnic, start_rx_ring_idx, rx_rings); 10665 if (rc) { 10666 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 10667 vnic->vnic_id, rc); 10668 return rc; 10669 } 10670 return bnxt_setup_vnic(bp, vnic); 10671 } 10672 10673 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 10674 { 10675 struct bnxt_vnic_info *vnic; 10676 int i, rc = 0; 10677 10678 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 10679 vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE]; 10680 return bnxt_alloc_and_setup_vnic(bp, vnic, 0, bp->rx_nr_rings); 10681 } 10682 10683 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10684 return 0; 10685 10686 for (i = 0; i < bp->rx_nr_rings; i++) { 10687 u16 vnic_id = i + 1; 10688 u16 ring_id = i; 10689 10690 if (vnic_id >= bp->nr_vnics) 10691 break; 10692 10693 vnic = &bp->vnic_info[vnic_id]; 10694 vnic->flags |= BNXT_VNIC_RFS_FLAG; 10695 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 10696 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 10697 if (bnxt_alloc_and_setup_vnic(bp, &bp->vnic_info[vnic_id], ring_id, 1)) 10698 break; 10699 } 10700 return rc; 10701 } 10702 10703 void bnxt_del_one_rss_ctx(struct bnxt *bp, struct bnxt_rss_ctx *rss_ctx, 10704 bool all) 10705 { 10706 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10707 struct bnxt_filter_base *usr_fltr, *tmp; 10708 struct bnxt_ntuple_filter *ntp_fltr; 10709 int i; 10710 10711 if (netif_running(bp->dev)) { 10712 bnxt_hwrm_vnic_free_one(bp, &rss_ctx->vnic); 10713 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) { 10714 if (vnic->fw_rss_cos_lb_ctx[i] != INVALID_HW_RING_ID) 10715 bnxt_hwrm_vnic_ctx_free_one(bp, vnic, i); 10716 } 10717 } 10718 if (!all) 10719 return; 10720 10721 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) { 10722 if ((usr_fltr->flags & BNXT_ACT_RSS_CTX) && 10723 usr_fltr->fw_vnic_id == rss_ctx->index) { 10724 ntp_fltr = container_of(usr_fltr, 10725 struct bnxt_ntuple_filter, 10726 base); 10727 bnxt_hwrm_cfa_ntuple_filter_free(bp, ntp_fltr); 10728 bnxt_del_ntp_filter(bp, ntp_fltr); 10729 bnxt_del_one_usr_fltr(bp, usr_fltr); 10730 } 10731 } 10732 10733 if (vnic->rss_table) 10734 dma_free_coherent(&bp->pdev->dev, vnic->rss_table_size, 10735 vnic->rss_table, 10736 vnic->rss_table_dma_addr); 10737 bp->num_rss_ctx--; 10738 } 10739 10740 static void bnxt_hwrm_realloc_rss_ctx_vnic(struct bnxt *bp) 10741 { 10742 bool set_tpa = !!(bp->flags & BNXT_FLAG_TPA); 10743 struct ethtool_rxfh_context *ctx; 10744 unsigned long context; 10745 10746 xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) { 10747 struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx); 10748 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10749 10750 if (bnxt_hwrm_vnic_alloc(bp, vnic, 0, bp->rx_nr_rings) || 10751 bnxt_hwrm_vnic_set_tpa(bp, vnic, set_tpa) || 10752 __bnxt_setup_vnic_p5(bp, vnic)) { 10753 netdev_err(bp->dev, "Failed to restore RSS ctx %d\n", 10754 rss_ctx->index); 10755 bnxt_del_one_rss_ctx(bp, rss_ctx, true); 10756 ethtool_rxfh_context_lost(bp->dev, rss_ctx->index); 10757 } 10758 } 10759 } 10760 10761 static void bnxt_clear_rss_ctxs(struct bnxt *bp) 10762 { 10763 struct ethtool_rxfh_context *ctx; 10764 unsigned long context; 10765 10766 xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) { 10767 struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx); 10768 10769 bnxt_del_one_rss_ctx(bp, rss_ctx, false); 10770 } 10771 } 10772 10773 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 10774 static bool bnxt_promisc_ok(struct bnxt *bp) 10775 { 10776 #ifdef CONFIG_BNXT_SRIOV 10777 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 10778 return false; 10779 #endif 10780 return true; 10781 } 10782 10783 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 10784 { 10785 struct bnxt_vnic_info *vnic = &bp->vnic_info[1]; 10786 unsigned int rc = 0; 10787 10788 rc = bnxt_hwrm_vnic_alloc(bp, vnic, bp->rx_nr_rings - 1, 1); 10789 if (rc) { 10790 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 10791 rc); 10792 return rc; 10793 } 10794 10795 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10796 if (rc) { 10797 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 10798 rc); 10799 return rc; 10800 } 10801 return rc; 10802 } 10803 10804 static int bnxt_cfg_rx_mode(struct bnxt *); 10805 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 10806 10807 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 10808 { 10809 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 10810 int rc = 0; 10811 unsigned int rx_nr_rings = bp->rx_nr_rings; 10812 10813 if (irq_re_init) { 10814 rc = bnxt_hwrm_stat_ctx_alloc(bp); 10815 if (rc) { 10816 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 10817 rc); 10818 goto err_out; 10819 } 10820 } 10821 10822 rc = bnxt_hwrm_ring_alloc(bp); 10823 if (rc) { 10824 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 10825 goto err_out; 10826 } 10827 10828 rc = bnxt_hwrm_ring_grp_alloc(bp); 10829 if (rc) { 10830 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 10831 goto err_out; 10832 } 10833 10834 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 10835 rx_nr_rings--; 10836 10837 /* default vnic 0 */ 10838 rc = bnxt_hwrm_vnic_alloc(bp, vnic, 0, rx_nr_rings); 10839 if (rc) { 10840 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 10841 goto err_out; 10842 } 10843 10844 if (BNXT_VF(bp)) 10845 bnxt_hwrm_func_qcfg(bp); 10846 10847 rc = bnxt_setup_vnic(bp, vnic); 10848 if (rc) 10849 goto err_out; 10850 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 10851 bnxt_hwrm_update_rss_hash_cfg(bp); 10852 10853 if (bp->flags & BNXT_FLAG_RFS) { 10854 rc = bnxt_alloc_rfs_vnics(bp); 10855 if (rc) 10856 goto err_out; 10857 } 10858 10859 if (bp->flags & BNXT_FLAG_TPA) { 10860 rc = bnxt_set_tpa(bp, true); 10861 if (rc) 10862 goto err_out; 10863 } 10864 10865 if (BNXT_VF(bp)) 10866 bnxt_update_vf_mac(bp); 10867 10868 /* Filter for default vnic 0 */ 10869 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 10870 if (rc) { 10871 if (BNXT_VF(bp) && rc == -ENODEV) 10872 netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n"); 10873 else 10874 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 10875 goto err_out; 10876 } 10877 vnic->uc_filter_count = 1; 10878 10879 vnic->rx_mask = 0; 10880 if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state)) 10881 goto skip_rx_mask; 10882 10883 if (bp->dev->flags & IFF_BROADCAST) 10884 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 10885 10886 if (bp->dev->flags & IFF_PROMISC) 10887 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10888 10889 if (bp->dev->flags & IFF_ALLMULTI) { 10890 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10891 vnic->mc_list_count = 0; 10892 } else if (bp->dev->flags & IFF_MULTICAST) { 10893 u32 mask = 0; 10894 10895 bnxt_mc_list_updated(bp, &mask); 10896 vnic->rx_mask |= mask; 10897 } 10898 10899 rc = bnxt_cfg_rx_mode(bp); 10900 if (rc) 10901 goto err_out; 10902 10903 skip_rx_mask: 10904 rc = bnxt_hwrm_set_coal(bp); 10905 if (rc) 10906 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 10907 rc); 10908 10909 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10910 rc = bnxt_setup_nitroa0_vnic(bp); 10911 if (rc) 10912 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 10913 rc); 10914 } 10915 10916 if (BNXT_VF(bp)) { 10917 bnxt_hwrm_func_qcfg(bp); 10918 netdev_update_features(bp->dev); 10919 } 10920 10921 return 0; 10922 10923 err_out: 10924 bnxt_hwrm_resource_free(bp, 0, true); 10925 10926 return rc; 10927 } 10928 10929 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 10930 { 10931 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 10932 return 0; 10933 } 10934 10935 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 10936 { 10937 bnxt_init_cp_rings(bp); 10938 bnxt_init_rx_rings(bp); 10939 bnxt_init_tx_rings(bp); 10940 bnxt_init_ring_grps(bp, irq_re_init); 10941 bnxt_init_vnics(bp); 10942 10943 return bnxt_init_chip(bp, irq_re_init); 10944 } 10945 10946 static int bnxt_set_real_num_queues(struct bnxt *bp) 10947 { 10948 int rc; 10949 struct net_device *dev = bp->dev; 10950 10951 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 10952 bp->tx_nr_rings_xdp); 10953 if (rc) 10954 return rc; 10955 10956 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 10957 if (rc) 10958 return rc; 10959 10960 #ifdef CONFIG_RFS_ACCEL 10961 if (bp->flags & BNXT_FLAG_RFS) 10962 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 10963 #endif 10964 10965 return rc; 10966 } 10967 10968 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 10969 bool shared) 10970 { 10971 int _rx = *rx, _tx = *tx; 10972 10973 if (shared) { 10974 *rx = min_t(int, _rx, max); 10975 *tx = min_t(int, _tx, max); 10976 } else { 10977 if (max < 2) 10978 return -ENOMEM; 10979 10980 while (_rx + _tx > max) { 10981 if (_rx > _tx && _rx > 1) 10982 _rx--; 10983 else if (_tx > 1) 10984 _tx--; 10985 } 10986 *rx = _rx; 10987 *tx = _tx; 10988 } 10989 return 0; 10990 } 10991 10992 static int __bnxt_num_tx_to_cp(struct bnxt *bp, int tx, int tx_sets, int tx_xdp) 10993 { 10994 return (tx - tx_xdp) / tx_sets + tx_xdp; 10995 } 10996 10997 int bnxt_num_tx_to_cp(struct bnxt *bp, int tx) 10998 { 10999 int tcs = bp->num_tc; 11000 11001 if (!tcs) 11002 tcs = 1; 11003 return __bnxt_num_tx_to_cp(bp, tx, tcs, bp->tx_nr_rings_xdp); 11004 } 11005 11006 static int bnxt_num_cp_to_tx(struct bnxt *bp, int tx_cp) 11007 { 11008 int tcs = bp->num_tc; 11009 11010 return (tx_cp - bp->tx_nr_rings_xdp) * tcs + 11011 bp->tx_nr_rings_xdp; 11012 } 11013 11014 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 11015 bool sh) 11016 { 11017 int tx_cp = bnxt_num_tx_to_cp(bp, *tx); 11018 11019 if (tx_cp != *tx) { 11020 int tx_saved = tx_cp, rc; 11021 11022 rc = __bnxt_trim_rings(bp, rx, &tx_cp, max, sh); 11023 if (rc) 11024 return rc; 11025 if (tx_cp != tx_saved) 11026 *tx = bnxt_num_cp_to_tx(bp, tx_cp); 11027 return 0; 11028 } 11029 return __bnxt_trim_rings(bp, rx, tx, max, sh); 11030 } 11031 11032 static void bnxt_setup_msix(struct bnxt *bp) 11033 { 11034 const int len = sizeof(bp->irq_tbl[0].name); 11035 struct net_device *dev = bp->dev; 11036 int tcs, i; 11037 11038 tcs = bp->num_tc; 11039 if (tcs) { 11040 int i, off, count; 11041 11042 for (i = 0; i < tcs; i++) { 11043 count = bp->tx_nr_rings_per_tc; 11044 off = BNXT_TC_TO_RING_BASE(bp, i); 11045 netdev_set_tc_queue(dev, i, count, off); 11046 } 11047 } 11048 11049 for (i = 0; i < bp->cp_nr_rings; i++) { 11050 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 11051 char *attr; 11052 11053 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 11054 attr = "TxRx"; 11055 else if (i < bp->rx_nr_rings) 11056 attr = "rx"; 11057 else 11058 attr = "tx"; 11059 11060 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 11061 attr, i); 11062 bp->irq_tbl[map_idx].handler = bnxt_msix; 11063 } 11064 } 11065 11066 static int bnxt_init_int_mode(struct bnxt *bp); 11067 11068 static int bnxt_change_msix(struct bnxt *bp, int total) 11069 { 11070 struct msi_map map; 11071 int i; 11072 11073 /* add MSIX to the end if needed */ 11074 for (i = bp->total_irqs; i < total; i++) { 11075 map = pci_msix_alloc_irq_at(bp->pdev, i, NULL); 11076 if (map.index < 0) 11077 return bp->total_irqs; 11078 bp->irq_tbl[i].vector = map.virq; 11079 bp->total_irqs++; 11080 } 11081 11082 /* trim MSIX from the end if needed */ 11083 for (i = bp->total_irqs; i > total; i--) { 11084 map.index = i - 1; 11085 map.virq = bp->irq_tbl[i - 1].vector; 11086 pci_msix_free_irq(bp->pdev, map); 11087 bp->total_irqs--; 11088 } 11089 return bp->total_irqs; 11090 } 11091 11092 static int bnxt_setup_int_mode(struct bnxt *bp) 11093 { 11094 int rc; 11095 11096 if (!bp->irq_tbl) { 11097 rc = bnxt_init_int_mode(bp); 11098 if (rc || !bp->irq_tbl) 11099 return rc ?: -ENODEV; 11100 } 11101 11102 bnxt_setup_msix(bp); 11103 11104 rc = bnxt_set_real_num_queues(bp); 11105 return rc; 11106 } 11107 11108 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 11109 { 11110 return bp->hw_resc.max_rsscos_ctxs; 11111 } 11112 11113 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 11114 { 11115 return bp->hw_resc.max_vnics; 11116 } 11117 11118 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 11119 { 11120 return bp->hw_resc.max_stat_ctxs; 11121 } 11122 11123 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 11124 { 11125 return bp->hw_resc.max_cp_rings; 11126 } 11127 11128 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 11129 { 11130 unsigned int cp = bp->hw_resc.max_cp_rings; 11131 11132 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 11133 cp -= bnxt_get_ulp_msix_num(bp); 11134 11135 return cp; 11136 } 11137 11138 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 11139 { 11140 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 11141 11142 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 11143 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 11144 11145 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 11146 } 11147 11148 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 11149 { 11150 bp->hw_resc.max_irqs = max_irqs; 11151 } 11152 11153 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 11154 { 11155 unsigned int cp; 11156 11157 cp = bnxt_get_max_func_cp_rings_for_en(bp); 11158 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 11159 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 11160 else 11161 return cp - bp->cp_nr_rings; 11162 } 11163 11164 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 11165 { 11166 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 11167 } 11168 11169 static int bnxt_get_avail_msix(struct bnxt *bp, int num) 11170 { 11171 int max_irq = bnxt_get_max_func_irqs(bp); 11172 int total_req = bp->cp_nr_rings + num; 11173 11174 if (max_irq < total_req) { 11175 num = max_irq - bp->cp_nr_rings; 11176 if (num <= 0) 11177 return 0; 11178 } 11179 return num; 11180 } 11181 11182 static int bnxt_get_num_msix(struct bnxt *bp) 11183 { 11184 if (!BNXT_NEW_RM(bp)) 11185 return bnxt_get_max_func_irqs(bp); 11186 11187 return bnxt_nq_rings_in_use(bp); 11188 } 11189 11190 static int bnxt_init_int_mode(struct bnxt *bp) 11191 { 11192 int i, total_vecs, max, rc = 0, min = 1, ulp_msix, tx_cp, tbl_size; 11193 11194 total_vecs = bnxt_get_num_msix(bp); 11195 max = bnxt_get_max_func_irqs(bp); 11196 if (total_vecs > max) 11197 total_vecs = max; 11198 11199 if (!total_vecs) 11200 return 0; 11201 11202 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 11203 min = 2; 11204 11205 total_vecs = pci_alloc_irq_vectors(bp->pdev, min, total_vecs, 11206 PCI_IRQ_MSIX); 11207 ulp_msix = bnxt_get_ulp_msix_num(bp); 11208 if (total_vecs < 0 || total_vecs < ulp_msix) { 11209 rc = -ENODEV; 11210 goto msix_setup_exit; 11211 } 11212 11213 tbl_size = total_vecs; 11214 if (pci_msix_can_alloc_dyn(bp->pdev)) 11215 tbl_size = max; 11216 bp->irq_tbl = kcalloc(tbl_size, sizeof(*bp->irq_tbl), GFP_KERNEL); 11217 if (bp->irq_tbl) { 11218 for (i = 0; i < total_vecs; i++) 11219 bp->irq_tbl[i].vector = pci_irq_vector(bp->pdev, i); 11220 11221 bp->total_irqs = total_vecs; 11222 /* Trim rings based upon num of vectors allocated */ 11223 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 11224 total_vecs - ulp_msix, min == 1); 11225 if (rc) 11226 goto msix_setup_exit; 11227 11228 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 11229 bp->cp_nr_rings = (min == 1) ? 11230 max_t(int, tx_cp, bp->rx_nr_rings) : 11231 tx_cp + bp->rx_nr_rings; 11232 11233 } else { 11234 rc = -ENOMEM; 11235 goto msix_setup_exit; 11236 } 11237 return 0; 11238 11239 msix_setup_exit: 11240 netdev_err(bp->dev, "bnxt_init_int_mode err: %x\n", rc); 11241 kfree(bp->irq_tbl); 11242 bp->irq_tbl = NULL; 11243 pci_free_irq_vectors(bp->pdev); 11244 return rc; 11245 } 11246 11247 static void bnxt_clear_int_mode(struct bnxt *bp) 11248 { 11249 pci_free_irq_vectors(bp->pdev); 11250 11251 kfree(bp->irq_tbl); 11252 bp->irq_tbl = NULL; 11253 } 11254 11255 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 11256 { 11257 bool irq_cleared = false; 11258 bool irq_change = false; 11259 int tcs = bp->num_tc; 11260 int irqs_required; 11261 int rc; 11262 11263 if (!bnxt_need_reserve_rings(bp)) 11264 return 0; 11265 11266 if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) { 11267 int ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want); 11268 11269 if (ulp_msix > bp->ulp_num_msix_want) 11270 ulp_msix = bp->ulp_num_msix_want; 11271 irqs_required = ulp_msix + bp->cp_nr_rings; 11272 } else { 11273 irqs_required = bnxt_get_num_msix(bp); 11274 } 11275 11276 if (irq_re_init && BNXT_NEW_RM(bp) && irqs_required != bp->total_irqs) { 11277 irq_change = true; 11278 if (!pci_msix_can_alloc_dyn(bp->pdev)) { 11279 bnxt_ulp_irq_stop(bp); 11280 bnxt_clear_int_mode(bp); 11281 irq_cleared = true; 11282 } 11283 } 11284 rc = __bnxt_reserve_rings(bp); 11285 if (irq_cleared) { 11286 if (!rc) 11287 rc = bnxt_init_int_mode(bp); 11288 bnxt_ulp_irq_restart(bp, rc); 11289 } else if (irq_change && !rc) { 11290 if (bnxt_change_msix(bp, irqs_required) != irqs_required) 11291 rc = -ENOSPC; 11292 } 11293 if (rc) { 11294 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 11295 return rc; 11296 } 11297 if (tcs && (bp->tx_nr_rings_per_tc * tcs != 11298 bp->tx_nr_rings - bp->tx_nr_rings_xdp)) { 11299 netdev_err(bp->dev, "tx ring reservation failure\n"); 11300 netdev_reset_tc(bp->dev); 11301 bp->num_tc = 0; 11302 if (bp->tx_nr_rings_xdp) 11303 bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp; 11304 else 11305 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 11306 return -ENOMEM; 11307 } 11308 return 0; 11309 } 11310 11311 static void bnxt_tx_queue_stop(struct bnxt *bp, int idx) 11312 { 11313 struct bnxt_tx_ring_info *txr; 11314 struct netdev_queue *txq; 11315 struct bnxt_napi *bnapi; 11316 int i; 11317 11318 bnapi = bp->bnapi[idx]; 11319 bnxt_for_each_napi_tx(i, bnapi, txr) { 11320 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 11321 synchronize_net(); 11322 11323 if (!(bnapi->flags & BNXT_NAPI_FLAG_XDP)) { 11324 txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 11325 if (txq) { 11326 __netif_tx_lock_bh(txq); 11327 netif_tx_stop_queue(txq); 11328 __netif_tx_unlock_bh(txq); 11329 } 11330 } 11331 11332 if (!bp->tph_mode) 11333 continue; 11334 11335 bnxt_hwrm_tx_ring_free(bp, txr, true); 11336 bnxt_hwrm_cp_ring_free(bp, txr->tx_cpr); 11337 bnxt_free_one_tx_ring_skbs(bp, txr, txr->txq_index); 11338 bnxt_clear_one_cp_ring(bp, txr->tx_cpr); 11339 } 11340 } 11341 11342 static int bnxt_tx_queue_start(struct bnxt *bp, int idx) 11343 { 11344 struct bnxt_tx_ring_info *txr; 11345 struct netdev_queue *txq; 11346 struct bnxt_napi *bnapi; 11347 int rc, i; 11348 11349 bnapi = bp->bnapi[idx]; 11350 /* All rings have been reserved and previously allocated. 11351 * Reallocating with the same parameters should never fail. 11352 */ 11353 bnxt_for_each_napi_tx(i, bnapi, txr) { 11354 if (!bp->tph_mode) 11355 goto start_tx; 11356 11357 rc = bnxt_hwrm_cp_ring_alloc_p5(bp, txr->tx_cpr); 11358 if (rc) 11359 return rc; 11360 11361 rc = bnxt_hwrm_tx_ring_alloc(bp, txr, false); 11362 if (rc) 11363 return rc; 11364 11365 txr->tx_prod = 0; 11366 txr->tx_cons = 0; 11367 txr->tx_hw_cons = 0; 11368 start_tx: 11369 WRITE_ONCE(txr->dev_state, 0); 11370 synchronize_net(); 11371 11372 if (bnapi->flags & BNXT_NAPI_FLAG_XDP) 11373 continue; 11374 11375 txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 11376 if (txq) 11377 netif_tx_start_queue(txq); 11378 } 11379 11380 return 0; 11381 } 11382 11383 static void bnxt_irq_affinity_notify(struct irq_affinity_notify *notify, 11384 const cpumask_t *mask) 11385 { 11386 struct bnxt_irq *irq; 11387 u16 tag; 11388 int err; 11389 11390 irq = container_of(notify, struct bnxt_irq, affinity_notify); 11391 11392 if (!irq->bp->tph_mode) 11393 return; 11394 11395 cpumask_copy(irq->cpu_mask, mask); 11396 11397 if (irq->ring_nr >= irq->bp->rx_nr_rings) 11398 return; 11399 11400 if (pcie_tph_get_cpu_st(irq->bp->pdev, TPH_MEM_TYPE_VM, 11401 cpumask_first(irq->cpu_mask), &tag)) 11402 return; 11403 11404 if (pcie_tph_set_st_entry(irq->bp->pdev, irq->msix_nr, tag)) 11405 return; 11406 11407 netdev_lock(irq->bp->dev); 11408 if (netif_running(irq->bp->dev)) { 11409 err = netdev_rx_queue_restart(irq->bp->dev, irq->ring_nr); 11410 if (err) 11411 netdev_err(irq->bp->dev, 11412 "RX queue restart failed: err=%d\n", err); 11413 } 11414 netdev_unlock(irq->bp->dev); 11415 } 11416 11417 static void bnxt_irq_affinity_release(struct kref *ref) 11418 { 11419 struct irq_affinity_notify *notify = 11420 container_of(ref, struct irq_affinity_notify, kref); 11421 struct bnxt_irq *irq; 11422 11423 irq = container_of(notify, struct bnxt_irq, affinity_notify); 11424 11425 if (!irq->bp->tph_mode) 11426 return; 11427 11428 if (pcie_tph_set_st_entry(irq->bp->pdev, irq->msix_nr, 0)) { 11429 netdev_err(irq->bp->dev, 11430 "Setting ST=0 for MSIX entry %d failed\n", 11431 irq->msix_nr); 11432 return; 11433 } 11434 } 11435 11436 static void bnxt_release_irq_notifier(struct bnxt_irq *irq) 11437 { 11438 irq_set_affinity_notifier(irq->vector, NULL); 11439 } 11440 11441 static void bnxt_register_irq_notifier(struct bnxt *bp, struct bnxt_irq *irq) 11442 { 11443 struct irq_affinity_notify *notify; 11444 11445 irq->bp = bp; 11446 11447 /* Nothing to do if TPH is not enabled */ 11448 if (!bp->tph_mode) 11449 return; 11450 11451 /* Register IRQ affinity notifier */ 11452 notify = &irq->affinity_notify; 11453 notify->irq = irq->vector; 11454 notify->notify = bnxt_irq_affinity_notify; 11455 notify->release = bnxt_irq_affinity_release; 11456 11457 irq_set_affinity_notifier(irq->vector, notify); 11458 } 11459 11460 static void bnxt_free_irq(struct bnxt *bp) 11461 { 11462 struct bnxt_irq *irq; 11463 int i; 11464 11465 #ifdef CONFIG_RFS_ACCEL 11466 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 11467 bp->dev->rx_cpu_rmap = NULL; 11468 #endif 11469 if (!bp->irq_tbl || !bp->bnapi) 11470 return; 11471 11472 for (i = 0; i < bp->cp_nr_rings; i++) { 11473 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 11474 11475 irq = &bp->irq_tbl[map_idx]; 11476 if (irq->requested) { 11477 if (irq->have_cpumask) { 11478 irq_update_affinity_hint(irq->vector, NULL); 11479 free_cpumask_var(irq->cpu_mask); 11480 irq->have_cpumask = 0; 11481 } 11482 11483 bnxt_release_irq_notifier(irq); 11484 11485 free_irq(irq->vector, bp->bnapi[i]); 11486 } 11487 11488 irq->requested = 0; 11489 } 11490 11491 /* Disable TPH support */ 11492 pcie_disable_tph(bp->pdev); 11493 bp->tph_mode = 0; 11494 } 11495 11496 static int bnxt_request_irq(struct bnxt *bp) 11497 { 11498 int i, j, rc = 0; 11499 unsigned long flags = 0; 11500 #ifdef CONFIG_RFS_ACCEL 11501 struct cpu_rmap *rmap; 11502 #endif 11503 11504 rc = bnxt_setup_int_mode(bp); 11505 if (rc) { 11506 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 11507 rc); 11508 return rc; 11509 } 11510 #ifdef CONFIG_RFS_ACCEL 11511 rmap = bp->dev->rx_cpu_rmap; 11512 #endif 11513 11514 /* Enable TPH support as part of IRQ request */ 11515 rc = pcie_enable_tph(bp->pdev, PCI_TPH_ST_IV_MODE); 11516 if (!rc) 11517 bp->tph_mode = PCI_TPH_ST_IV_MODE; 11518 11519 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 11520 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 11521 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 11522 11523 #ifdef CONFIG_RFS_ACCEL 11524 if (rmap && bp->bnapi[i]->rx_ring) { 11525 rc = irq_cpu_rmap_add(rmap, irq->vector); 11526 if (rc) 11527 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 11528 j); 11529 j++; 11530 } 11531 #endif 11532 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 11533 bp->bnapi[i]); 11534 if (rc) 11535 break; 11536 11537 netif_napi_set_irq_locked(&bp->bnapi[i]->napi, irq->vector); 11538 irq->requested = 1; 11539 11540 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 11541 int numa_node = dev_to_node(&bp->pdev->dev); 11542 u16 tag; 11543 11544 irq->have_cpumask = 1; 11545 irq->msix_nr = map_idx; 11546 irq->ring_nr = i; 11547 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 11548 irq->cpu_mask); 11549 rc = irq_update_affinity_hint(irq->vector, irq->cpu_mask); 11550 if (rc) { 11551 netdev_warn(bp->dev, 11552 "Update affinity hint failed, IRQ = %d\n", 11553 irq->vector); 11554 break; 11555 } 11556 11557 bnxt_register_irq_notifier(bp, irq); 11558 11559 /* Init ST table entry */ 11560 if (pcie_tph_get_cpu_st(irq->bp->pdev, TPH_MEM_TYPE_VM, 11561 cpumask_first(irq->cpu_mask), 11562 &tag)) 11563 continue; 11564 11565 pcie_tph_set_st_entry(irq->bp->pdev, irq->msix_nr, tag); 11566 } 11567 } 11568 return rc; 11569 } 11570 11571 static void bnxt_del_napi(struct bnxt *bp) 11572 { 11573 int i; 11574 11575 if (!bp->bnapi) 11576 return; 11577 11578 for (i = 0; i < bp->rx_nr_rings; i++) 11579 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_RX, NULL); 11580 for (i = 0; i < bp->tx_nr_rings - bp->tx_nr_rings_xdp; i++) 11581 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_TX, NULL); 11582 11583 for (i = 0; i < bp->cp_nr_rings; i++) { 11584 struct bnxt_napi *bnapi = bp->bnapi[i]; 11585 11586 __netif_napi_del_locked(&bnapi->napi); 11587 } 11588 /* We called __netif_napi_del_locked(), we need 11589 * to respect an RCU grace period before freeing napi structures. 11590 */ 11591 synchronize_net(); 11592 } 11593 11594 static void bnxt_init_napi(struct bnxt *bp) 11595 { 11596 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 11597 unsigned int cp_nr_rings = bp->cp_nr_rings; 11598 struct bnxt_napi *bnapi; 11599 int i; 11600 11601 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 11602 poll_fn = bnxt_poll_p5; 11603 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 11604 cp_nr_rings--; 11605 for (i = 0; i < cp_nr_rings; i++) { 11606 bnapi = bp->bnapi[i]; 11607 netif_napi_add_config_locked(bp->dev, &bnapi->napi, poll_fn, 11608 bnapi->index); 11609 } 11610 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 11611 bnapi = bp->bnapi[cp_nr_rings]; 11612 netif_napi_add_locked(bp->dev, &bnapi->napi, bnxt_poll_nitroa0); 11613 } 11614 } 11615 11616 static void bnxt_disable_napi(struct bnxt *bp) 11617 { 11618 int i; 11619 11620 if (!bp->bnapi || 11621 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 11622 return; 11623 11624 for (i = 0; i < bp->cp_nr_rings; i++) { 11625 struct bnxt_napi *bnapi = bp->bnapi[i]; 11626 struct bnxt_cp_ring_info *cpr; 11627 11628 cpr = &bnapi->cp_ring; 11629 if (bnapi->tx_fault) 11630 cpr->sw_stats->tx.tx_resets++; 11631 if (bnapi->in_reset) 11632 cpr->sw_stats->rx.rx_resets++; 11633 napi_disable_locked(&bnapi->napi); 11634 } 11635 } 11636 11637 static void bnxt_enable_napi(struct bnxt *bp) 11638 { 11639 int i; 11640 11641 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 11642 for (i = 0; i < bp->cp_nr_rings; i++) { 11643 struct bnxt_napi *bnapi = bp->bnapi[i]; 11644 struct bnxt_cp_ring_info *cpr; 11645 11646 bnapi->tx_fault = 0; 11647 11648 cpr = &bnapi->cp_ring; 11649 bnapi->in_reset = false; 11650 11651 if (bnapi->rx_ring) { 11652 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 11653 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 11654 } 11655 napi_enable_locked(&bnapi->napi); 11656 } 11657 } 11658 11659 void bnxt_tx_disable(struct bnxt *bp) 11660 { 11661 int i; 11662 struct bnxt_tx_ring_info *txr; 11663 11664 if (bp->tx_ring) { 11665 for (i = 0; i < bp->tx_nr_rings; i++) { 11666 txr = &bp->tx_ring[i]; 11667 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 11668 } 11669 } 11670 /* Make sure napi polls see @dev_state change */ 11671 synchronize_net(); 11672 /* Drop carrier first to prevent TX timeout */ 11673 netif_carrier_off(bp->dev); 11674 /* Stop all TX queues */ 11675 netif_tx_disable(bp->dev); 11676 } 11677 11678 void bnxt_tx_enable(struct bnxt *bp) 11679 { 11680 int i; 11681 struct bnxt_tx_ring_info *txr; 11682 11683 for (i = 0; i < bp->tx_nr_rings; i++) { 11684 txr = &bp->tx_ring[i]; 11685 WRITE_ONCE(txr->dev_state, 0); 11686 } 11687 /* Make sure napi polls see @dev_state change */ 11688 synchronize_net(); 11689 netif_tx_wake_all_queues(bp->dev); 11690 if (BNXT_LINK_IS_UP(bp)) 11691 netif_carrier_on(bp->dev); 11692 } 11693 11694 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 11695 { 11696 u8 active_fec = link_info->active_fec_sig_mode & 11697 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 11698 11699 switch (active_fec) { 11700 default: 11701 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 11702 return "None"; 11703 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 11704 return "Clause 74 BaseR"; 11705 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 11706 return "Clause 91 RS(528,514)"; 11707 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 11708 return "Clause 91 RS544_1XN"; 11709 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 11710 return "Clause 91 RS(544,514)"; 11711 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 11712 return "Clause 91 RS272_1XN"; 11713 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 11714 return "Clause 91 RS(272,257)"; 11715 } 11716 } 11717 11718 void bnxt_report_link(struct bnxt *bp) 11719 { 11720 if (BNXT_LINK_IS_UP(bp)) { 11721 const char *signal = ""; 11722 const char *flow_ctrl; 11723 const char *duplex; 11724 u32 speed; 11725 u16 fec; 11726 11727 netif_carrier_on(bp->dev); 11728 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 11729 if (speed == SPEED_UNKNOWN) { 11730 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 11731 return; 11732 } 11733 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 11734 duplex = "full"; 11735 else 11736 duplex = "half"; 11737 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 11738 flow_ctrl = "ON - receive & transmit"; 11739 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 11740 flow_ctrl = "ON - transmit"; 11741 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 11742 flow_ctrl = "ON - receive"; 11743 else 11744 flow_ctrl = "none"; 11745 if (bp->link_info.phy_qcfg_resp.option_flags & 11746 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 11747 u8 sig_mode = bp->link_info.active_fec_sig_mode & 11748 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 11749 switch (sig_mode) { 11750 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 11751 signal = "(NRZ) "; 11752 break; 11753 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 11754 signal = "(PAM4 56Gbps) "; 11755 break; 11756 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4_112: 11757 signal = "(PAM4 112Gbps) "; 11758 break; 11759 default: 11760 break; 11761 } 11762 } 11763 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 11764 speed, signal, duplex, flow_ctrl); 11765 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 11766 netdev_info(bp->dev, "EEE is %s\n", 11767 bp->eee.eee_active ? "active" : 11768 "not active"); 11769 fec = bp->link_info.fec_cfg; 11770 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 11771 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 11772 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 11773 bnxt_report_fec(&bp->link_info)); 11774 } else { 11775 netif_carrier_off(bp->dev); 11776 netdev_err(bp->dev, "NIC Link is Down\n"); 11777 } 11778 } 11779 11780 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 11781 { 11782 if (!resp->supported_speeds_auto_mode && 11783 !resp->supported_speeds_force_mode && 11784 !resp->supported_pam4_speeds_auto_mode && 11785 !resp->supported_pam4_speeds_force_mode && 11786 !resp->supported_speeds2_auto_mode && 11787 !resp->supported_speeds2_force_mode) 11788 return true; 11789 return false; 11790 } 11791 11792 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 11793 { 11794 struct bnxt_link_info *link_info = &bp->link_info; 11795 struct hwrm_port_phy_qcaps_output *resp; 11796 struct hwrm_port_phy_qcaps_input *req; 11797 int rc = 0; 11798 11799 if (bp->hwrm_spec_code < 0x10201) 11800 return 0; 11801 11802 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS); 11803 if (rc) 11804 return rc; 11805 11806 resp = hwrm_req_hold(bp, req); 11807 rc = hwrm_req_send(bp, req); 11808 if (rc) 11809 goto hwrm_phy_qcaps_exit; 11810 11811 bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8); 11812 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 11813 struct ethtool_keee *eee = &bp->eee; 11814 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 11815 11816 _bnxt_fw_to_linkmode(eee->supported, fw_speeds); 11817 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 11818 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 11819 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 11820 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 11821 } 11822 11823 if (bp->hwrm_spec_code >= 0x10a01) { 11824 if (bnxt_phy_qcaps_no_speed(resp)) { 11825 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 11826 netdev_warn(bp->dev, "Ethernet link disabled\n"); 11827 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 11828 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 11829 netdev_info(bp->dev, "Ethernet link enabled\n"); 11830 /* Phy re-enabled, reprobe the speeds */ 11831 link_info->support_auto_speeds = 0; 11832 link_info->support_pam4_auto_speeds = 0; 11833 link_info->support_auto_speeds2 = 0; 11834 } 11835 } 11836 if (resp->supported_speeds_auto_mode) 11837 link_info->support_auto_speeds = 11838 le16_to_cpu(resp->supported_speeds_auto_mode); 11839 if (resp->supported_pam4_speeds_auto_mode) 11840 link_info->support_pam4_auto_speeds = 11841 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 11842 if (resp->supported_speeds2_auto_mode) 11843 link_info->support_auto_speeds2 = 11844 le16_to_cpu(resp->supported_speeds2_auto_mode); 11845 11846 bp->port_count = resp->port_cnt; 11847 11848 hwrm_phy_qcaps_exit: 11849 hwrm_req_drop(bp, req); 11850 return rc; 11851 } 11852 11853 static void bnxt_hwrm_mac_qcaps(struct bnxt *bp) 11854 { 11855 struct hwrm_port_mac_qcaps_output *resp; 11856 struct hwrm_port_mac_qcaps_input *req; 11857 int rc; 11858 11859 if (bp->hwrm_spec_code < 0x10a03) 11860 return; 11861 11862 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_QCAPS); 11863 if (rc) 11864 return; 11865 11866 resp = hwrm_req_hold(bp, req); 11867 rc = hwrm_req_send_silent(bp, req); 11868 if (!rc) 11869 bp->mac_flags = resp->flags; 11870 hwrm_req_drop(bp, req); 11871 } 11872 11873 static bool bnxt_support_dropped(u16 advertising, u16 supported) 11874 { 11875 u16 diff = advertising ^ supported; 11876 11877 return ((supported | diff) != supported); 11878 } 11879 11880 static bool bnxt_support_speed_dropped(struct bnxt_link_info *link_info) 11881 { 11882 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 11883 11884 /* Check if any advertised speeds are no longer supported. The caller 11885 * holds the link_lock mutex, so we can modify link_info settings. 11886 */ 11887 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 11888 if (bnxt_support_dropped(link_info->advertising, 11889 link_info->support_auto_speeds2)) { 11890 link_info->advertising = link_info->support_auto_speeds2; 11891 return true; 11892 } 11893 return false; 11894 } 11895 if (bnxt_support_dropped(link_info->advertising, 11896 link_info->support_auto_speeds)) { 11897 link_info->advertising = link_info->support_auto_speeds; 11898 return true; 11899 } 11900 if (bnxt_support_dropped(link_info->advertising_pam4, 11901 link_info->support_pam4_auto_speeds)) { 11902 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 11903 return true; 11904 } 11905 return false; 11906 } 11907 11908 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 11909 { 11910 struct bnxt_link_info *link_info = &bp->link_info; 11911 struct hwrm_port_phy_qcfg_output *resp; 11912 struct hwrm_port_phy_qcfg_input *req; 11913 u8 link_state = link_info->link_state; 11914 bool support_changed; 11915 int rc; 11916 11917 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG); 11918 if (rc) 11919 return rc; 11920 11921 resp = hwrm_req_hold(bp, req); 11922 rc = hwrm_req_send(bp, req); 11923 if (rc) { 11924 hwrm_req_drop(bp, req); 11925 if (BNXT_VF(bp) && rc == -ENODEV) { 11926 netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n"); 11927 rc = 0; 11928 } 11929 return rc; 11930 } 11931 11932 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 11933 link_info->phy_link_status = resp->link; 11934 link_info->duplex = resp->duplex_cfg; 11935 if (bp->hwrm_spec_code >= 0x10800) 11936 link_info->duplex = resp->duplex_state; 11937 link_info->pause = resp->pause; 11938 link_info->auto_mode = resp->auto_mode; 11939 link_info->auto_pause_setting = resp->auto_pause; 11940 link_info->lp_pause = resp->link_partner_adv_pause; 11941 link_info->force_pause_setting = resp->force_pause; 11942 link_info->duplex_setting = resp->duplex_cfg; 11943 if (link_info->phy_link_status == BNXT_LINK_LINK) { 11944 link_info->link_speed = le16_to_cpu(resp->link_speed); 11945 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 11946 link_info->active_lanes = resp->active_lanes; 11947 } else { 11948 link_info->link_speed = 0; 11949 link_info->active_lanes = 0; 11950 } 11951 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 11952 link_info->force_pam4_link_speed = 11953 le16_to_cpu(resp->force_pam4_link_speed); 11954 link_info->force_link_speed2 = le16_to_cpu(resp->force_link_speeds2); 11955 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 11956 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 11957 link_info->support_speeds2 = le16_to_cpu(resp->support_speeds2); 11958 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 11959 link_info->auto_pam4_link_speeds = 11960 le16_to_cpu(resp->auto_pam4_link_speed_mask); 11961 link_info->auto_link_speeds2 = le16_to_cpu(resp->auto_link_speeds2); 11962 link_info->lp_auto_link_speeds = 11963 le16_to_cpu(resp->link_partner_adv_speeds); 11964 link_info->lp_auto_pam4_link_speeds = 11965 resp->link_partner_pam4_adv_speeds; 11966 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 11967 link_info->phy_ver[0] = resp->phy_maj; 11968 link_info->phy_ver[1] = resp->phy_min; 11969 link_info->phy_ver[2] = resp->phy_bld; 11970 link_info->media_type = resp->media_type; 11971 link_info->phy_type = resp->phy_type; 11972 link_info->transceiver = resp->xcvr_pkg_type; 11973 link_info->phy_addr = resp->eee_config_phy_addr & 11974 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 11975 link_info->module_status = resp->module_status; 11976 11977 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 11978 struct ethtool_keee *eee = &bp->eee; 11979 u16 fw_speeds; 11980 11981 eee->eee_active = 0; 11982 if (resp->eee_config_phy_addr & 11983 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 11984 eee->eee_active = 1; 11985 fw_speeds = le16_to_cpu( 11986 resp->link_partner_adv_eee_link_speed_mask); 11987 _bnxt_fw_to_linkmode(eee->lp_advertised, fw_speeds); 11988 } 11989 11990 /* Pull initial EEE config */ 11991 if (!chng_link_state) { 11992 if (resp->eee_config_phy_addr & 11993 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 11994 eee->eee_enabled = 1; 11995 11996 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 11997 _bnxt_fw_to_linkmode(eee->advertised, fw_speeds); 11998 11999 if (resp->eee_config_phy_addr & 12000 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 12001 __le32 tmr; 12002 12003 eee->tx_lpi_enabled = 1; 12004 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 12005 eee->tx_lpi_timer = le32_to_cpu(tmr) & 12006 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 12007 } 12008 } 12009 } 12010 12011 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 12012 if (bp->hwrm_spec_code >= 0x10504) { 12013 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 12014 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 12015 } 12016 /* TODO: need to add more logic to report VF link */ 12017 if (chng_link_state) { 12018 if (link_info->phy_link_status == BNXT_LINK_LINK) 12019 link_info->link_state = BNXT_LINK_STATE_UP; 12020 else 12021 link_info->link_state = BNXT_LINK_STATE_DOWN; 12022 if (link_state != link_info->link_state) 12023 bnxt_report_link(bp); 12024 } else { 12025 /* always link down if not require to update link state */ 12026 link_info->link_state = BNXT_LINK_STATE_DOWN; 12027 } 12028 hwrm_req_drop(bp, req); 12029 12030 if (!BNXT_PHY_CFG_ABLE(bp)) 12031 return 0; 12032 12033 support_changed = bnxt_support_speed_dropped(link_info); 12034 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 12035 bnxt_hwrm_set_link_setting(bp, true, false); 12036 return 0; 12037 } 12038 12039 static void bnxt_get_port_module_status(struct bnxt *bp) 12040 { 12041 struct bnxt_link_info *link_info = &bp->link_info; 12042 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 12043 u8 module_status; 12044 12045 if (bnxt_update_link(bp, true)) 12046 return; 12047 12048 module_status = link_info->module_status; 12049 switch (module_status) { 12050 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 12051 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 12052 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 12053 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 12054 bp->pf.port_id); 12055 if (bp->hwrm_spec_code >= 0x10201) { 12056 netdev_warn(bp->dev, "Module part number %s\n", 12057 resp->phy_vendor_partnumber); 12058 } 12059 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 12060 netdev_warn(bp->dev, "TX is disabled\n"); 12061 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 12062 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 12063 } 12064 } 12065 12066 static void 12067 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 12068 { 12069 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 12070 if (bp->hwrm_spec_code >= 0x10201) 12071 req->auto_pause = 12072 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 12073 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 12074 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 12075 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 12076 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 12077 req->enables |= 12078 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 12079 } else { 12080 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 12081 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 12082 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 12083 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 12084 req->enables |= 12085 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 12086 if (bp->hwrm_spec_code >= 0x10201) { 12087 req->auto_pause = req->force_pause; 12088 req->enables |= cpu_to_le32( 12089 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 12090 } 12091 } 12092 } 12093 12094 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 12095 { 12096 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 12097 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 12098 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 12099 req->enables |= 12100 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEEDS2_MASK); 12101 req->auto_link_speeds2_mask = cpu_to_le16(bp->link_info.advertising); 12102 } else if (bp->link_info.advertising) { 12103 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 12104 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 12105 } 12106 if (bp->link_info.advertising_pam4) { 12107 req->enables |= 12108 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 12109 req->auto_link_pam4_speed_mask = 12110 cpu_to_le16(bp->link_info.advertising_pam4); 12111 } 12112 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 12113 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 12114 } else { 12115 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 12116 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 12117 req->force_link_speeds2 = cpu_to_le16(bp->link_info.req_link_speed); 12118 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_LINK_SPEEDS2); 12119 netif_info(bp, link, bp->dev, "Forcing FW speed2: %d\n", 12120 (u32)bp->link_info.req_link_speed); 12121 } else if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 12122 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 12123 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 12124 } else { 12125 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 12126 } 12127 } 12128 12129 /* tell chimp that the setting takes effect immediately */ 12130 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 12131 } 12132 12133 int bnxt_hwrm_set_pause(struct bnxt *bp) 12134 { 12135 struct hwrm_port_phy_cfg_input *req; 12136 int rc; 12137 12138 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 12139 if (rc) 12140 return rc; 12141 12142 bnxt_hwrm_set_pause_common(bp, req); 12143 12144 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 12145 bp->link_info.force_link_chng) 12146 bnxt_hwrm_set_link_common(bp, req); 12147 12148 rc = hwrm_req_send(bp, req); 12149 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 12150 /* since changing of pause setting doesn't trigger any link 12151 * change event, the driver needs to update the current pause 12152 * result upon successfully return of the phy_cfg command 12153 */ 12154 bp->link_info.pause = 12155 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 12156 bp->link_info.auto_pause_setting = 0; 12157 if (!bp->link_info.force_link_chng) 12158 bnxt_report_link(bp); 12159 } 12160 bp->link_info.force_link_chng = false; 12161 return rc; 12162 } 12163 12164 static void bnxt_hwrm_set_eee(struct bnxt *bp, 12165 struct hwrm_port_phy_cfg_input *req) 12166 { 12167 struct ethtool_keee *eee = &bp->eee; 12168 12169 if (eee->eee_enabled) { 12170 u16 eee_speeds; 12171 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 12172 12173 if (eee->tx_lpi_enabled) 12174 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 12175 else 12176 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 12177 12178 req->flags |= cpu_to_le32(flags); 12179 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 12180 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 12181 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 12182 } else { 12183 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 12184 } 12185 } 12186 12187 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 12188 { 12189 struct hwrm_port_phy_cfg_input *req; 12190 int rc; 12191 12192 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 12193 if (rc) 12194 return rc; 12195 12196 if (set_pause) 12197 bnxt_hwrm_set_pause_common(bp, req); 12198 12199 bnxt_hwrm_set_link_common(bp, req); 12200 12201 if (set_eee) 12202 bnxt_hwrm_set_eee(bp, req); 12203 return hwrm_req_send(bp, req); 12204 } 12205 12206 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 12207 { 12208 struct hwrm_port_phy_cfg_input *req; 12209 int rc; 12210 12211 if (!BNXT_SINGLE_PF(bp)) 12212 return 0; 12213 12214 if (pci_num_vf(bp->pdev) && 12215 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 12216 return 0; 12217 12218 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 12219 if (rc) 12220 return rc; 12221 12222 req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 12223 rc = hwrm_req_send(bp, req); 12224 if (!rc) { 12225 mutex_lock(&bp->link_lock); 12226 /* Device is not obliged link down in certain scenarios, even 12227 * when forced. Setting the state unknown is consistent with 12228 * driver startup and will force link state to be reported 12229 * during subsequent open based on PORT_PHY_QCFG. 12230 */ 12231 bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN; 12232 mutex_unlock(&bp->link_lock); 12233 } 12234 return rc; 12235 } 12236 12237 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 12238 { 12239 #ifdef CONFIG_TEE_BNXT_FW 12240 int rc = tee_bnxt_fw_load(); 12241 12242 if (rc) 12243 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 12244 12245 return rc; 12246 #else 12247 netdev_err(bp->dev, "OP-TEE not supported\n"); 12248 return -ENODEV; 12249 #endif 12250 } 12251 12252 static int bnxt_try_recover_fw(struct bnxt *bp) 12253 { 12254 if (bp->fw_health && bp->fw_health->status_reliable) { 12255 int retry = 0, rc; 12256 u32 sts; 12257 12258 do { 12259 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12260 rc = bnxt_hwrm_poll(bp); 12261 if (!BNXT_FW_IS_BOOTING(sts) && 12262 !BNXT_FW_IS_RECOVERING(sts)) 12263 break; 12264 retry++; 12265 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 12266 12267 if (!BNXT_FW_IS_HEALTHY(sts)) { 12268 netdev_err(bp->dev, 12269 "Firmware not responding, status: 0x%x\n", 12270 sts); 12271 rc = -ENODEV; 12272 } 12273 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 12274 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 12275 return bnxt_fw_reset_via_optee(bp); 12276 } 12277 return rc; 12278 } 12279 12280 return -ENODEV; 12281 } 12282 12283 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset) 12284 { 12285 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 12286 12287 if (!BNXT_NEW_RM(bp)) 12288 return; /* no resource reservations required */ 12289 12290 hw_resc->resv_cp_rings = 0; 12291 hw_resc->resv_stat_ctxs = 0; 12292 hw_resc->resv_irqs = 0; 12293 hw_resc->resv_tx_rings = 0; 12294 hw_resc->resv_rx_rings = 0; 12295 hw_resc->resv_hw_ring_grps = 0; 12296 hw_resc->resv_vnics = 0; 12297 hw_resc->resv_rsscos_ctxs = 0; 12298 if (!fw_reset) { 12299 bp->tx_nr_rings = 0; 12300 bp->rx_nr_rings = 0; 12301 } 12302 } 12303 12304 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset) 12305 { 12306 int rc; 12307 12308 if (!BNXT_NEW_RM(bp)) 12309 return 0; /* no resource reservations required */ 12310 12311 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 12312 if (rc) 12313 netdev_err(bp->dev, "resc_qcaps failed\n"); 12314 12315 bnxt_clear_reservations(bp, fw_reset); 12316 12317 return rc; 12318 } 12319 12320 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 12321 { 12322 struct hwrm_func_drv_if_change_output *resp; 12323 struct hwrm_func_drv_if_change_input *req; 12324 bool fw_reset = !bp->irq_tbl; 12325 bool resc_reinit = false; 12326 bool caps_change = false; 12327 int rc, retry = 0; 12328 u32 flags = 0; 12329 12330 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 12331 return 0; 12332 12333 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE); 12334 if (rc) 12335 return rc; 12336 12337 if (up) 12338 req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 12339 resp = hwrm_req_hold(bp, req); 12340 12341 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 12342 while (retry < BNXT_FW_IF_RETRY) { 12343 rc = hwrm_req_send(bp, req); 12344 if (rc != -EAGAIN) 12345 break; 12346 12347 msleep(50); 12348 retry++; 12349 } 12350 12351 if (rc == -EAGAIN) { 12352 hwrm_req_drop(bp, req); 12353 return rc; 12354 } else if (!rc) { 12355 flags = le32_to_cpu(resp->flags); 12356 } else if (up) { 12357 rc = bnxt_try_recover_fw(bp); 12358 fw_reset = true; 12359 } 12360 hwrm_req_drop(bp, req); 12361 if (rc) 12362 return rc; 12363 12364 if (!up) { 12365 bnxt_inv_fw_health_reg(bp); 12366 return 0; 12367 } 12368 12369 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 12370 resc_reinit = true; 12371 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE || 12372 test_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) 12373 fw_reset = true; 12374 else 12375 bnxt_remap_fw_health_regs(bp); 12376 12377 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 12378 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 12379 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12380 return -ENODEV; 12381 } 12382 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_CAPS_CHANGE) 12383 caps_change = true; 12384 12385 if (resc_reinit || fw_reset || caps_change) { 12386 if (fw_reset || caps_change) { 12387 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 12388 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 12389 bnxt_ulp_irq_stop(bp); 12390 bnxt_free_ctx_mem(bp, false); 12391 bnxt_dcb_free(bp); 12392 rc = bnxt_fw_init_one(bp); 12393 if (rc) { 12394 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 12395 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12396 return rc; 12397 } 12398 bnxt_clear_int_mode(bp); 12399 rc = bnxt_init_int_mode(bp); 12400 if (rc) { 12401 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 12402 netdev_err(bp->dev, "init int mode failed\n"); 12403 return rc; 12404 } 12405 } 12406 rc = bnxt_cancel_reservations(bp, fw_reset); 12407 } 12408 return rc; 12409 } 12410 12411 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 12412 { 12413 struct hwrm_port_led_qcaps_output *resp; 12414 struct hwrm_port_led_qcaps_input *req; 12415 struct bnxt_pf_info *pf = &bp->pf; 12416 int rc; 12417 12418 bp->num_leds = 0; 12419 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 12420 return 0; 12421 12422 rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS); 12423 if (rc) 12424 return rc; 12425 12426 req->port_id = cpu_to_le16(pf->port_id); 12427 resp = hwrm_req_hold(bp, req); 12428 rc = hwrm_req_send(bp, req); 12429 if (rc) { 12430 hwrm_req_drop(bp, req); 12431 return rc; 12432 } 12433 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 12434 int i; 12435 12436 bp->num_leds = resp->num_leds; 12437 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 12438 bp->num_leds); 12439 for (i = 0; i < bp->num_leds; i++) { 12440 struct bnxt_led_info *led = &bp->leds[i]; 12441 __le16 caps = led->led_state_caps; 12442 12443 if (!led->led_group_id || 12444 !BNXT_LED_ALT_BLINK_CAP(caps)) { 12445 bp->num_leds = 0; 12446 break; 12447 } 12448 } 12449 } 12450 hwrm_req_drop(bp, req); 12451 return 0; 12452 } 12453 12454 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 12455 { 12456 struct hwrm_wol_filter_alloc_output *resp; 12457 struct hwrm_wol_filter_alloc_input *req; 12458 int rc; 12459 12460 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC); 12461 if (rc) 12462 return rc; 12463 12464 req->port_id = cpu_to_le16(bp->pf.port_id); 12465 req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 12466 req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 12467 memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN); 12468 12469 resp = hwrm_req_hold(bp, req); 12470 rc = hwrm_req_send(bp, req); 12471 if (!rc) 12472 bp->wol_filter_id = resp->wol_filter_id; 12473 hwrm_req_drop(bp, req); 12474 return rc; 12475 } 12476 12477 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 12478 { 12479 struct hwrm_wol_filter_free_input *req; 12480 int rc; 12481 12482 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE); 12483 if (rc) 12484 return rc; 12485 12486 req->port_id = cpu_to_le16(bp->pf.port_id); 12487 req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 12488 req->wol_filter_id = bp->wol_filter_id; 12489 12490 return hwrm_req_send(bp, req); 12491 } 12492 12493 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 12494 { 12495 struct hwrm_wol_filter_qcfg_output *resp; 12496 struct hwrm_wol_filter_qcfg_input *req; 12497 u16 next_handle = 0; 12498 int rc; 12499 12500 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG); 12501 if (rc) 12502 return rc; 12503 12504 req->port_id = cpu_to_le16(bp->pf.port_id); 12505 req->handle = cpu_to_le16(handle); 12506 resp = hwrm_req_hold(bp, req); 12507 rc = hwrm_req_send(bp, req); 12508 if (!rc) { 12509 next_handle = le16_to_cpu(resp->next_handle); 12510 if (next_handle != 0) { 12511 if (resp->wol_type == 12512 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 12513 bp->wol = 1; 12514 bp->wol_filter_id = resp->wol_filter_id; 12515 } 12516 } 12517 } 12518 hwrm_req_drop(bp, req); 12519 return next_handle; 12520 } 12521 12522 static void bnxt_get_wol_settings(struct bnxt *bp) 12523 { 12524 u16 handle = 0; 12525 12526 bp->wol = 0; 12527 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 12528 return; 12529 12530 do { 12531 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 12532 } while (handle && handle != 0xffff); 12533 } 12534 12535 static bool bnxt_eee_config_ok(struct bnxt *bp) 12536 { 12537 struct ethtool_keee *eee = &bp->eee; 12538 struct bnxt_link_info *link_info = &bp->link_info; 12539 12540 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 12541 return true; 12542 12543 if (eee->eee_enabled) { 12544 __ETHTOOL_DECLARE_LINK_MODE_MASK(advertising); 12545 __ETHTOOL_DECLARE_LINK_MODE_MASK(tmp); 12546 12547 _bnxt_fw_to_linkmode(advertising, link_info->advertising); 12548 12549 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 12550 eee->eee_enabled = 0; 12551 return false; 12552 } 12553 if (linkmode_andnot(tmp, eee->advertised, advertising)) { 12554 linkmode_and(eee->advertised, advertising, 12555 eee->supported); 12556 return false; 12557 } 12558 } 12559 return true; 12560 } 12561 12562 static int bnxt_update_phy_setting(struct bnxt *bp) 12563 { 12564 int rc; 12565 bool update_link = false; 12566 bool update_pause = false; 12567 bool update_eee = false; 12568 struct bnxt_link_info *link_info = &bp->link_info; 12569 12570 rc = bnxt_update_link(bp, true); 12571 if (rc) { 12572 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 12573 rc); 12574 return rc; 12575 } 12576 if (!BNXT_SINGLE_PF(bp)) 12577 return 0; 12578 12579 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 12580 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 12581 link_info->req_flow_ctrl) 12582 update_pause = true; 12583 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 12584 link_info->force_pause_setting != link_info->req_flow_ctrl) 12585 update_pause = true; 12586 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 12587 if (BNXT_AUTO_MODE(link_info->auto_mode)) 12588 update_link = true; 12589 if (bnxt_force_speed_updated(link_info)) 12590 update_link = true; 12591 if (link_info->req_duplex != link_info->duplex_setting) 12592 update_link = true; 12593 } else { 12594 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 12595 update_link = true; 12596 if (bnxt_auto_speed_updated(link_info)) 12597 update_link = true; 12598 } 12599 12600 /* The last close may have shutdown the link, so need to call 12601 * PHY_CFG to bring it back up. 12602 */ 12603 if (!BNXT_LINK_IS_UP(bp)) 12604 update_link = true; 12605 12606 if (!bnxt_eee_config_ok(bp)) 12607 update_eee = true; 12608 12609 if (update_link) 12610 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 12611 else if (update_pause) 12612 rc = bnxt_hwrm_set_pause(bp); 12613 if (rc) { 12614 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 12615 rc); 12616 return rc; 12617 } 12618 12619 return rc; 12620 } 12621 12622 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 12623 12624 static int bnxt_reinit_after_abort(struct bnxt *bp) 12625 { 12626 int rc; 12627 12628 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 12629 return -EBUSY; 12630 12631 if (bp->dev->reg_state == NETREG_UNREGISTERED) 12632 return -ENODEV; 12633 12634 rc = bnxt_fw_init_one(bp); 12635 if (!rc) { 12636 bnxt_clear_int_mode(bp); 12637 rc = bnxt_init_int_mode(bp); 12638 if (!rc) { 12639 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12640 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 12641 } 12642 } 12643 return rc; 12644 } 12645 12646 static void bnxt_cfg_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 12647 { 12648 struct bnxt_ntuple_filter *ntp_fltr; 12649 struct bnxt_l2_filter *l2_fltr; 12650 12651 if (list_empty(&fltr->list)) 12652 return; 12653 12654 if (fltr->type == BNXT_FLTR_TYPE_NTUPLE) { 12655 ntp_fltr = container_of(fltr, struct bnxt_ntuple_filter, base); 12656 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 12657 atomic_inc(&l2_fltr->refcnt); 12658 ntp_fltr->l2_fltr = l2_fltr; 12659 if (bnxt_hwrm_cfa_ntuple_filter_alloc(bp, ntp_fltr)) { 12660 bnxt_del_ntp_filter(bp, ntp_fltr); 12661 netdev_err(bp->dev, "restoring previously configured ntuple filter id %d failed\n", 12662 fltr->sw_id); 12663 } 12664 } else if (fltr->type == BNXT_FLTR_TYPE_L2) { 12665 l2_fltr = container_of(fltr, struct bnxt_l2_filter, base); 12666 if (bnxt_hwrm_l2_filter_alloc(bp, l2_fltr)) { 12667 bnxt_del_l2_filter(bp, l2_fltr); 12668 netdev_err(bp->dev, "restoring previously configured l2 filter id %d failed\n", 12669 fltr->sw_id); 12670 } 12671 } 12672 } 12673 12674 static void bnxt_cfg_usr_fltrs(struct bnxt *bp) 12675 { 12676 struct bnxt_filter_base *usr_fltr, *tmp; 12677 12678 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) 12679 bnxt_cfg_one_usr_fltr(bp, usr_fltr); 12680 } 12681 12682 static int bnxt_set_xps_mapping(struct bnxt *bp) 12683 { 12684 int numa_node = dev_to_node(&bp->pdev->dev); 12685 unsigned int q_idx, map_idx, cpu, i; 12686 const struct cpumask *cpu_mask_ptr; 12687 int nr_cpus = num_online_cpus(); 12688 cpumask_t *q_map; 12689 int rc = 0; 12690 12691 q_map = kcalloc(bp->tx_nr_rings_per_tc, sizeof(*q_map), GFP_KERNEL); 12692 if (!q_map) 12693 return -ENOMEM; 12694 12695 /* Create CPU mask for all TX queues across MQPRIO traffic classes. 12696 * Each TC has the same number of TX queues. The nth TX queue for each 12697 * TC will have the same CPU mask. 12698 */ 12699 for (i = 0; i < nr_cpus; i++) { 12700 map_idx = i % bp->tx_nr_rings_per_tc; 12701 cpu = cpumask_local_spread(i, numa_node); 12702 cpu_mask_ptr = get_cpu_mask(cpu); 12703 cpumask_or(&q_map[map_idx], &q_map[map_idx], cpu_mask_ptr); 12704 } 12705 12706 /* Register CPU mask for each TX queue except the ones marked for XDP */ 12707 for (q_idx = 0; q_idx < bp->dev->real_num_tx_queues; q_idx++) { 12708 map_idx = q_idx % bp->tx_nr_rings_per_tc; 12709 rc = netif_set_xps_queue(bp->dev, &q_map[map_idx], q_idx); 12710 if (rc) { 12711 netdev_warn(bp->dev, "Error setting XPS for q:%d\n", 12712 q_idx); 12713 break; 12714 } 12715 } 12716 12717 kfree(q_map); 12718 12719 return rc; 12720 } 12721 12722 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12723 { 12724 int rc = 0; 12725 12726 netif_carrier_off(bp->dev); 12727 if (irq_re_init) { 12728 /* Reserve rings now if none were reserved at driver probe. */ 12729 rc = bnxt_init_dflt_ring_mode(bp); 12730 if (rc) { 12731 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 12732 return rc; 12733 } 12734 } 12735 rc = bnxt_reserve_rings(bp, irq_re_init); 12736 if (rc) 12737 return rc; 12738 12739 rc = bnxt_alloc_mem(bp, irq_re_init); 12740 if (rc) { 12741 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 12742 goto open_err_free_mem; 12743 } 12744 12745 if (irq_re_init) { 12746 bnxt_init_napi(bp); 12747 rc = bnxt_request_irq(bp); 12748 if (rc) { 12749 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 12750 goto open_err_irq; 12751 } 12752 } 12753 12754 rc = bnxt_init_nic(bp, irq_re_init); 12755 if (rc) { 12756 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 12757 goto open_err_irq; 12758 } 12759 12760 bnxt_enable_napi(bp); 12761 bnxt_debug_dev_init(bp); 12762 12763 if (link_re_init) { 12764 mutex_lock(&bp->link_lock); 12765 rc = bnxt_update_phy_setting(bp); 12766 mutex_unlock(&bp->link_lock); 12767 if (rc) { 12768 netdev_warn(bp->dev, "failed to update phy settings\n"); 12769 if (BNXT_SINGLE_PF(bp)) { 12770 bp->link_info.phy_retry = true; 12771 bp->link_info.phy_retry_expires = 12772 jiffies + 5 * HZ; 12773 } 12774 } 12775 } 12776 12777 if (irq_re_init) { 12778 udp_tunnel_nic_reset_ntf(bp->dev); 12779 rc = bnxt_set_xps_mapping(bp); 12780 if (rc) 12781 netdev_warn(bp->dev, "failed to set xps mapping\n"); 12782 } 12783 12784 if (bp->tx_nr_rings_xdp < num_possible_cpus()) { 12785 if (!static_key_enabled(&bnxt_xdp_locking_key)) 12786 static_branch_enable(&bnxt_xdp_locking_key); 12787 } else if (static_key_enabled(&bnxt_xdp_locking_key)) { 12788 static_branch_disable(&bnxt_xdp_locking_key); 12789 } 12790 set_bit(BNXT_STATE_OPEN, &bp->state); 12791 bnxt_enable_int(bp); 12792 /* Enable TX queues */ 12793 bnxt_tx_enable(bp); 12794 mod_timer(&bp->timer, jiffies + bp->current_interval); 12795 /* Poll link status and check for SFP+ module status */ 12796 mutex_lock(&bp->link_lock); 12797 bnxt_get_port_module_status(bp); 12798 mutex_unlock(&bp->link_lock); 12799 12800 /* VF-reps may need to be re-opened after the PF is re-opened */ 12801 if (BNXT_PF(bp)) 12802 bnxt_vf_reps_open(bp); 12803 bnxt_ptp_init_rtc(bp, true); 12804 bnxt_ptp_cfg_tstamp_filters(bp); 12805 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 12806 bnxt_hwrm_realloc_rss_ctx_vnic(bp); 12807 bnxt_cfg_usr_fltrs(bp); 12808 return 0; 12809 12810 open_err_irq: 12811 bnxt_del_napi(bp); 12812 12813 open_err_free_mem: 12814 bnxt_free_skbs(bp); 12815 bnxt_free_irq(bp); 12816 bnxt_free_mem(bp, true); 12817 return rc; 12818 } 12819 12820 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12821 { 12822 int rc = 0; 12823 12824 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 12825 rc = -EIO; 12826 if (!rc) 12827 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 12828 if (rc) { 12829 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 12830 netif_close(bp->dev); 12831 } 12832 return rc; 12833 } 12834 12835 /* netdev instance lock held, open the NIC half way by allocating all 12836 * resources, but NAPI, IRQ, and TX are not enabled. This is mainly used 12837 * for offline self tests. 12838 */ 12839 int bnxt_half_open_nic(struct bnxt *bp) 12840 { 12841 int rc = 0; 12842 12843 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12844 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); 12845 rc = -ENODEV; 12846 goto half_open_err; 12847 } 12848 12849 rc = bnxt_alloc_mem(bp, true); 12850 if (rc) { 12851 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 12852 goto half_open_err; 12853 } 12854 bnxt_init_napi(bp); 12855 set_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12856 rc = bnxt_init_nic(bp, true); 12857 if (rc) { 12858 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12859 bnxt_del_napi(bp); 12860 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 12861 goto half_open_err; 12862 } 12863 return 0; 12864 12865 half_open_err: 12866 bnxt_free_skbs(bp); 12867 bnxt_free_mem(bp, true); 12868 netif_close(bp->dev); 12869 return rc; 12870 } 12871 12872 /* netdev instance lock held, this call can only be made after a previous 12873 * successful call to bnxt_half_open_nic(). 12874 */ 12875 void bnxt_half_close_nic(struct bnxt *bp) 12876 { 12877 bnxt_hwrm_resource_free(bp, false, true); 12878 bnxt_del_napi(bp); 12879 bnxt_free_skbs(bp); 12880 bnxt_free_mem(bp, true); 12881 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12882 } 12883 12884 void bnxt_reenable_sriov(struct bnxt *bp) 12885 { 12886 if (BNXT_PF(bp)) { 12887 struct bnxt_pf_info *pf = &bp->pf; 12888 int n = pf->active_vfs; 12889 12890 if (n) 12891 bnxt_cfg_hw_sriov(bp, &n, true); 12892 } 12893 } 12894 12895 static int bnxt_open(struct net_device *dev) 12896 { 12897 struct bnxt *bp = netdev_priv(dev); 12898 int rc; 12899 12900 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12901 rc = bnxt_reinit_after_abort(bp); 12902 if (rc) { 12903 if (rc == -EBUSY) 12904 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 12905 else 12906 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 12907 return -ENODEV; 12908 } 12909 } 12910 12911 rc = bnxt_hwrm_if_change(bp, true); 12912 if (rc) 12913 return rc; 12914 12915 rc = __bnxt_open_nic(bp, true, true); 12916 if (rc) { 12917 bnxt_hwrm_if_change(bp, false); 12918 } else { 12919 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 12920 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 12921 bnxt_queue_sp_work(bp, 12922 BNXT_RESTART_ULP_SP_EVENT); 12923 } 12924 } 12925 12926 return rc; 12927 } 12928 12929 static bool bnxt_drv_busy(struct bnxt *bp) 12930 { 12931 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 12932 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 12933 } 12934 12935 static void bnxt_get_ring_stats(struct bnxt *bp, 12936 struct rtnl_link_stats64 *stats); 12937 12938 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 12939 bool link_re_init) 12940 { 12941 /* Close the VF-reps before closing PF */ 12942 if (BNXT_PF(bp)) 12943 bnxt_vf_reps_close(bp); 12944 12945 /* Change device state to avoid TX queue wake up's */ 12946 bnxt_tx_disable(bp); 12947 12948 clear_bit(BNXT_STATE_OPEN, &bp->state); 12949 smp_mb__after_atomic(); 12950 while (bnxt_drv_busy(bp)) 12951 msleep(20); 12952 12953 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 12954 bnxt_clear_rss_ctxs(bp); 12955 /* Flush rings and disable interrupts */ 12956 bnxt_shutdown_nic(bp, irq_re_init); 12957 12958 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 12959 12960 bnxt_debug_dev_exit(bp); 12961 bnxt_disable_napi(bp); 12962 timer_delete_sync(&bp->timer); 12963 bnxt_free_skbs(bp); 12964 12965 /* Save ring stats before shutdown */ 12966 if (bp->bnapi && irq_re_init) { 12967 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 12968 bnxt_get_ring_err_stats(bp, &bp->ring_err_stats_prev); 12969 } 12970 if (irq_re_init) { 12971 bnxt_free_irq(bp); 12972 bnxt_del_napi(bp); 12973 } 12974 bnxt_free_mem(bp, irq_re_init); 12975 } 12976 12977 void bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12978 { 12979 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 12980 /* If we get here, it means firmware reset is in progress 12981 * while we are trying to close. We can safely proceed with 12982 * the close because we are holding netdev instance lock. 12983 * Some firmware messages may fail as we proceed to close. 12984 * We set the ABORT_ERR flag here so that the FW reset thread 12985 * will later abort when it gets the netdev instance lock 12986 * and sees the flag. 12987 */ 12988 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 12989 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12990 } 12991 12992 #ifdef CONFIG_BNXT_SRIOV 12993 if (bp->sriov_cfg) { 12994 int rc; 12995 12996 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 12997 !bp->sriov_cfg, 12998 BNXT_SRIOV_CFG_WAIT_TMO); 12999 if (!rc) 13000 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete, proceeding to close!\n"); 13001 else if (rc < 0) 13002 netdev_warn(bp->dev, "SRIOV config operation interrupted, proceeding to close!\n"); 13003 } 13004 #endif 13005 __bnxt_close_nic(bp, irq_re_init, link_re_init); 13006 } 13007 13008 static int bnxt_close(struct net_device *dev) 13009 { 13010 struct bnxt *bp = netdev_priv(dev); 13011 13012 bnxt_close_nic(bp, true, true); 13013 bnxt_hwrm_shutdown_link(bp); 13014 bnxt_hwrm_if_change(bp, false); 13015 return 0; 13016 } 13017 13018 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 13019 u16 *val) 13020 { 13021 struct hwrm_port_phy_mdio_read_output *resp; 13022 struct hwrm_port_phy_mdio_read_input *req; 13023 int rc; 13024 13025 if (bp->hwrm_spec_code < 0x10a00) 13026 return -EOPNOTSUPP; 13027 13028 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ); 13029 if (rc) 13030 return rc; 13031 13032 req->port_id = cpu_to_le16(bp->pf.port_id); 13033 req->phy_addr = phy_addr; 13034 req->reg_addr = cpu_to_le16(reg & 0x1f); 13035 if (mdio_phy_id_is_c45(phy_addr)) { 13036 req->cl45_mdio = 1; 13037 req->phy_addr = mdio_phy_id_prtad(phy_addr); 13038 req->dev_addr = mdio_phy_id_devad(phy_addr); 13039 req->reg_addr = cpu_to_le16(reg); 13040 } 13041 13042 resp = hwrm_req_hold(bp, req); 13043 rc = hwrm_req_send(bp, req); 13044 if (!rc) 13045 *val = le16_to_cpu(resp->reg_data); 13046 hwrm_req_drop(bp, req); 13047 return rc; 13048 } 13049 13050 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 13051 u16 val) 13052 { 13053 struct hwrm_port_phy_mdio_write_input *req; 13054 int rc; 13055 13056 if (bp->hwrm_spec_code < 0x10a00) 13057 return -EOPNOTSUPP; 13058 13059 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE); 13060 if (rc) 13061 return rc; 13062 13063 req->port_id = cpu_to_le16(bp->pf.port_id); 13064 req->phy_addr = phy_addr; 13065 req->reg_addr = cpu_to_le16(reg & 0x1f); 13066 if (mdio_phy_id_is_c45(phy_addr)) { 13067 req->cl45_mdio = 1; 13068 req->phy_addr = mdio_phy_id_prtad(phy_addr); 13069 req->dev_addr = mdio_phy_id_devad(phy_addr); 13070 req->reg_addr = cpu_to_le16(reg); 13071 } 13072 req->reg_data = cpu_to_le16(val); 13073 13074 return hwrm_req_send(bp, req); 13075 } 13076 13077 /* netdev instance lock held */ 13078 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 13079 { 13080 struct mii_ioctl_data *mdio = if_mii(ifr); 13081 struct bnxt *bp = netdev_priv(dev); 13082 int rc; 13083 13084 switch (cmd) { 13085 case SIOCGMIIPHY: 13086 mdio->phy_id = bp->link_info.phy_addr; 13087 13088 fallthrough; 13089 case SIOCGMIIREG: { 13090 u16 mii_regval = 0; 13091 13092 if (!netif_running(dev)) 13093 return -EAGAIN; 13094 13095 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 13096 &mii_regval); 13097 mdio->val_out = mii_regval; 13098 return rc; 13099 } 13100 13101 case SIOCSMIIREG: 13102 if (!netif_running(dev)) 13103 return -EAGAIN; 13104 13105 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 13106 mdio->val_in); 13107 13108 case SIOCSHWTSTAMP: 13109 return bnxt_hwtstamp_set(dev, ifr); 13110 13111 case SIOCGHWTSTAMP: 13112 return bnxt_hwtstamp_get(dev, ifr); 13113 13114 default: 13115 /* do nothing */ 13116 break; 13117 } 13118 return -EOPNOTSUPP; 13119 } 13120 13121 static void bnxt_get_ring_stats(struct bnxt *bp, 13122 struct rtnl_link_stats64 *stats) 13123 { 13124 int i; 13125 13126 for (i = 0; i < bp->cp_nr_rings; i++) { 13127 struct bnxt_napi *bnapi = bp->bnapi[i]; 13128 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 13129 u64 *sw = cpr->stats.sw_stats; 13130 13131 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 13132 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 13133 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 13134 13135 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 13136 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 13137 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 13138 13139 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 13140 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 13141 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 13142 13143 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 13144 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 13145 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 13146 13147 stats->rx_missed_errors += 13148 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 13149 13150 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 13151 13152 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 13153 13154 stats->rx_dropped += 13155 cpr->sw_stats->rx.rx_netpoll_discards + 13156 cpr->sw_stats->rx.rx_oom_discards; 13157 } 13158 } 13159 13160 static void bnxt_add_prev_stats(struct bnxt *bp, 13161 struct rtnl_link_stats64 *stats) 13162 { 13163 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 13164 13165 stats->rx_packets += prev_stats->rx_packets; 13166 stats->tx_packets += prev_stats->tx_packets; 13167 stats->rx_bytes += prev_stats->rx_bytes; 13168 stats->tx_bytes += prev_stats->tx_bytes; 13169 stats->rx_missed_errors += prev_stats->rx_missed_errors; 13170 stats->multicast += prev_stats->multicast; 13171 stats->rx_dropped += prev_stats->rx_dropped; 13172 stats->tx_dropped += prev_stats->tx_dropped; 13173 } 13174 13175 static void 13176 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 13177 { 13178 struct bnxt *bp = netdev_priv(dev); 13179 13180 set_bit(BNXT_STATE_READ_STATS, &bp->state); 13181 /* Make sure bnxt_close_nic() sees that we are reading stats before 13182 * we check the BNXT_STATE_OPEN flag. 13183 */ 13184 smp_mb__after_atomic(); 13185 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13186 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 13187 *stats = bp->net_stats_prev; 13188 return; 13189 } 13190 13191 bnxt_get_ring_stats(bp, stats); 13192 bnxt_add_prev_stats(bp, stats); 13193 13194 if (bp->flags & BNXT_FLAG_PORT_STATS) { 13195 u64 *rx = bp->port_stats.sw_stats; 13196 u64 *tx = bp->port_stats.sw_stats + 13197 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 13198 13199 stats->rx_crc_errors = 13200 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 13201 stats->rx_frame_errors = 13202 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 13203 stats->rx_length_errors = 13204 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 13205 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 13206 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 13207 stats->rx_errors = 13208 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 13209 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 13210 stats->collisions = 13211 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 13212 stats->tx_fifo_errors = 13213 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 13214 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 13215 } 13216 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 13217 } 13218 13219 static void bnxt_get_one_ring_err_stats(struct bnxt *bp, 13220 struct bnxt_total_ring_err_stats *stats, 13221 struct bnxt_cp_ring_info *cpr) 13222 { 13223 struct bnxt_sw_stats *sw_stats = cpr->sw_stats; 13224 u64 *hw_stats = cpr->stats.sw_stats; 13225 13226 stats->rx_total_l4_csum_errors += sw_stats->rx.rx_l4_csum_errors; 13227 stats->rx_total_resets += sw_stats->rx.rx_resets; 13228 stats->rx_total_buf_errors += sw_stats->rx.rx_buf_errors; 13229 stats->rx_total_oom_discards += sw_stats->rx.rx_oom_discards; 13230 stats->rx_total_netpoll_discards += sw_stats->rx.rx_netpoll_discards; 13231 stats->rx_total_ring_discards += 13232 BNXT_GET_RING_STATS64(hw_stats, rx_discard_pkts); 13233 stats->tx_total_resets += sw_stats->tx.tx_resets; 13234 stats->tx_total_ring_discards += 13235 BNXT_GET_RING_STATS64(hw_stats, tx_discard_pkts); 13236 stats->total_missed_irqs += sw_stats->cmn.missed_irqs; 13237 } 13238 13239 void bnxt_get_ring_err_stats(struct bnxt *bp, 13240 struct bnxt_total_ring_err_stats *stats) 13241 { 13242 int i; 13243 13244 for (i = 0; i < bp->cp_nr_rings; i++) 13245 bnxt_get_one_ring_err_stats(bp, stats, &bp->bnapi[i]->cp_ring); 13246 } 13247 13248 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 13249 { 13250 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 13251 struct net_device *dev = bp->dev; 13252 struct netdev_hw_addr *ha; 13253 u8 *haddr; 13254 int mc_count = 0; 13255 bool update = false; 13256 int off = 0; 13257 13258 netdev_for_each_mc_addr(ha, dev) { 13259 if (mc_count >= BNXT_MAX_MC_ADDRS) { 13260 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 13261 vnic->mc_list_count = 0; 13262 return false; 13263 } 13264 haddr = ha->addr; 13265 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 13266 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 13267 update = true; 13268 } 13269 off += ETH_ALEN; 13270 mc_count++; 13271 } 13272 if (mc_count) 13273 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 13274 13275 if (mc_count != vnic->mc_list_count) { 13276 vnic->mc_list_count = mc_count; 13277 update = true; 13278 } 13279 return update; 13280 } 13281 13282 static bool bnxt_uc_list_updated(struct bnxt *bp) 13283 { 13284 struct net_device *dev = bp->dev; 13285 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 13286 struct netdev_hw_addr *ha; 13287 int off = 0; 13288 13289 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 13290 return true; 13291 13292 netdev_for_each_uc_addr(ha, dev) { 13293 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 13294 return true; 13295 13296 off += ETH_ALEN; 13297 } 13298 return false; 13299 } 13300 13301 static void bnxt_set_rx_mode(struct net_device *dev) 13302 { 13303 struct bnxt *bp = netdev_priv(dev); 13304 struct bnxt_vnic_info *vnic; 13305 bool mc_update = false; 13306 bool uc_update; 13307 u32 mask; 13308 13309 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 13310 return; 13311 13312 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 13313 mask = vnic->rx_mask; 13314 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 13315 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 13316 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 13317 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 13318 13319 if (dev->flags & IFF_PROMISC) 13320 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 13321 13322 uc_update = bnxt_uc_list_updated(bp); 13323 13324 if (dev->flags & IFF_BROADCAST) 13325 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 13326 if (dev->flags & IFF_ALLMULTI) { 13327 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 13328 vnic->mc_list_count = 0; 13329 } else if (dev->flags & IFF_MULTICAST) { 13330 mc_update = bnxt_mc_list_updated(bp, &mask); 13331 } 13332 13333 if (mask != vnic->rx_mask || uc_update || mc_update) { 13334 vnic->rx_mask = mask; 13335 13336 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 13337 } 13338 } 13339 13340 static int bnxt_cfg_rx_mode(struct bnxt *bp) 13341 { 13342 struct net_device *dev = bp->dev; 13343 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 13344 struct netdev_hw_addr *ha; 13345 int i, off = 0, rc; 13346 bool uc_update; 13347 13348 netif_addr_lock_bh(dev); 13349 uc_update = bnxt_uc_list_updated(bp); 13350 netif_addr_unlock_bh(dev); 13351 13352 if (!uc_update) 13353 goto skip_uc; 13354 13355 for (i = 1; i < vnic->uc_filter_count; i++) { 13356 struct bnxt_l2_filter *fltr = vnic->l2_filters[i]; 13357 13358 bnxt_hwrm_l2_filter_free(bp, fltr); 13359 bnxt_del_l2_filter(bp, fltr); 13360 } 13361 13362 vnic->uc_filter_count = 1; 13363 13364 netif_addr_lock_bh(dev); 13365 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 13366 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 13367 } else { 13368 netdev_for_each_uc_addr(ha, dev) { 13369 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 13370 off += ETH_ALEN; 13371 vnic->uc_filter_count++; 13372 } 13373 } 13374 netif_addr_unlock_bh(dev); 13375 13376 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 13377 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 13378 if (rc) { 13379 if (BNXT_VF(bp) && rc == -ENODEV) { 13380 if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 13381 netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n"); 13382 else 13383 netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n"); 13384 rc = 0; 13385 } else { 13386 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 13387 } 13388 vnic->uc_filter_count = i; 13389 return rc; 13390 } 13391 } 13392 if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 13393 netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n"); 13394 13395 skip_uc: 13396 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 13397 !bnxt_promisc_ok(bp)) 13398 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 13399 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 13400 if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) { 13401 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 13402 rc); 13403 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 13404 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 13405 vnic->mc_list_count = 0; 13406 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 13407 } 13408 if (rc) 13409 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 13410 rc); 13411 13412 return rc; 13413 } 13414 13415 static bool bnxt_can_reserve_rings(struct bnxt *bp) 13416 { 13417 #ifdef CONFIG_BNXT_SRIOV 13418 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 13419 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 13420 13421 /* No minimum rings were provisioned by the PF. Don't 13422 * reserve rings by default when device is down. 13423 */ 13424 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 13425 return true; 13426 13427 if (!netif_running(bp->dev)) 13428 return false; 13429 } 13430 #endif 13431 return true; 13432 } 13433 13434 /* If the chip and firmware supports RFS */ 13435 static bool bnxt_rfs_supported(struct bnxt *bp) 13436 { 13437 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 13438 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 13439 return true; 13440 return false; 13441 } 13442 /* 212 firmware is broken for aRFS */ 13443 if (BNXT_FW_MAJ(bp) == 212) 13444 return false; 13445 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 13446 return true; 13447 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 13448 return true; 13449 return false; 13450 } 13451 13452 /* If runtime conditions support RFS */ 13453 bool bnxt_rfs_capable(struct bnxt *bp, bool new_rss_ctx) 13454 { 13455 struct bnxt_hw_rings hwr = {0}; 13456 int max_vnics, max_rss_ctxs; 13457 13458 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 13459 !BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 13460 return bnxt_rfs_supported(bp); 13461 13462 if (!bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings) 13463 return false; 13464 13465 hwr.grp = bp->rx_nr_rings; 13466 hwr.vnic = bnxt_get_total_vnics(bp, bp->rx_nr_rings); 13467 if (new_rss_ctx) 13468 hwr.vnic++; 13469 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 13470 max_vnics = bnxt_get_max_func_vnics(bp); 13471 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 13472 13473 if (hwr.vnic > max_vnics || hwr.rss_ctx > max_rss_ctxs) { 13474 if (bp->rx_nr_rings > 1) 13475 netdev_warn(bp->dev, 13476 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 13477 min(max_rss_ctxs - 1, max_vnics - 1)); 13478 return false; 13479 } 13480 13481 if (!BNXT_NEW_RM(bp)) 13482 return true; 13483 13484 /* Do not reduce VNIC and RSS ctx reservations. There is a FW 13485 * issue that will mess up the default VNIC if we reduce the 13486 * reservations. 13487 */ 13488 if (hwr.vnic <= bp->hw_resc.resv_vnics && 13489 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 13490 return true; 13491 13492 bnxt_hwrm_reserve_rings(bp, &hwr); 13493 if (hwr.vnic <= bp->hw_resc.resv_vnics && 13494 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 13495 return true; 13496 13497 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 13498 hwr.vnic = 1; 13499 hwr.rss_ctx = 0; 13500 bnxt_hwrm_reserve_rings(bp, &hwr); 13501 return false; 13502 } 13503 13504 static netdev_features_t bnxt_fix_features(struct net_device *dev, 13505 netdev_features_t features) 13506 { 13507 struct bnxt *bp = netdev_priv(dev); 13508 netdev_features_t vlan_features; 13509 13510 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp, false)) 13511 features &= ~NETIF_F_NTUPLE; 13512 13513 if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog) 13514 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 13515 13516 if (!(features & NETIF_F_GRO)) 13517 features &= ~NETIF_F_GRO_HW; 13518 13519 if (features & NETIF_F_GRO_HW) 13520 features &= ~NETIF_F_LRO; 13521 13522 /* Both CTAG and STAG VLAN acceleration on the RX side have to be 13523 * turned on or off together. 13524 */ 13525 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 13526 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 13527 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13528 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 13529 else if (vlan_features) 13530 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 13531 } 13532 #ifdef CONFIG_BNXT_SRIOV 13533 if (BNXT_VF(bp) && bp->vf.vlan) 13534 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 13535 #endif 13536 return features; 13537 } 13538 13539 static int bnxt_reinit_features(struct bnxt *bp, bool irq_re_init, 13540 bool link_re_init, u32 flags, bool update_tpa) 13541 { 13542 bnxt_close_nic(bp, irq_re_init, link_re_init); 13543 bp->flags = flags; 13544 if (update_tpa) 13545 bnxt_set_ring_params(bp); 13546 return bnxt_open_nic(bp, irq_re_init, link_re_init); 13547 } 13548 13549 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 13550 { 13551 bool update_tpa = false, update_ntuple = false; 13552 struct bnxt *bp = netdev_priv(dev); 13553 u32 flags = bp->flags; 13554 u32 changes; 13555 int rc = 0; 13556 bool re_init = false; 13557 13558 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 13559 if (features & NETIF_F_GRO_HW) 13560 flags |= BNXT_FLAG_GRO; 13561 else if (features & NETIF_F_LRO) 13562 flags |= BNXT_FLAG_LRO; 13563 13564 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 13565 flags &= ~BNXT_FLAG_TPA; 13566 13567 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13568 flags |= BNXT_FLAG_STRIP_VLAN; 13569 13570 if (features & NETIF_F_NTUPLE) 13571 flags |= BNXT_FLAG_RFS; 13572 else 13573 bnxt_clear_usr_fltrs(bp, true); 13574 13575 changes = flags ^ bp->flags; 13576 if (changes & BNXT_FLAG_TPA) { 13577 update_tpa = true; 13578 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 13579 (flags & BNXT_FLAG_TPA) == 0 || 13580 (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 13581 re_init = true; 13582 } 13583 13584 if (changes & ~BNXT_FLAG_TPA) 13585 re_init = true; 13586 13587 if (changes & BNXT_FLAG_RFS) 13588 update_ntuple = true; 13589 13590 if (flags != bp->flags) { 13591 u32 old_flags = bp->flags; 13592 13593 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13594 bp->flags = flags; 13595 if (update_tpa) 13596 bnxt_set_ring_params(bp); 13597 return rc; 13598 } 13599 13600 if (update_ntuple) 13601 return bnxt_reinit_features(bp, true, false, flags, update_tpa); 13602 13603 if (re_init) 13604 return bnxt_reinit_features(bp, false, false, flags, update_tpa); 13605 13606 if (update_tpa) { 13607 bp->flags = flags; 13608 rc = bnxt_set_tpa(bp, 13609 (flags & BNXT_FLAG_TPA) ? 13610 true : false); 13611 if (rc) 13612 bp->flags = old_flags; 13613 } 13614 } 13615 return rc; 13616 } 13617 13618 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, 13619 u8 **nextp) 13620 { 13621 struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); 13622 struct hop_jumbo_hdr *jhdr; 13623 int hdr_count = 0; 13624 u8 *nexthdr; 13625 int start; 13626 13627 /* Check that there are at most 2 IPv6 extension headers, no 13628 * fragment header, and each is <= 64 bytes. 13629 */ 13630 start = nw_off + sizeof(*ip6h); 13631 nexthdr = &ip6h->nexthdr; 13632 while (ipv6_ext_hdr(*nexthdr)) { 13633 struct ipv6_opt_hdr *hp; 13634 int hdrlen; 13635 13636 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || 13637 *nexthdr == NEXTHDR_FRAGMENT) 13638 return false; 13639 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, 13640 skb_headlen(skb), NULL); 13641 if (!hp) 13642 return false; 13643 if (*nexthdr == NEXTHDR_AUTH) 13644 hdrlen = ipv6_authlen(hp); 13645 else 13646 hdrlen = ipv6_optlen(hp); 13647 13648 if (hdrlen > 64) 13649 return false; 13650 13651 /* The ext header may be a hop-by-hop header inserted for 13652 * big TCP purposes. This will be removed before sending 13653 * from NIC, so do not count it. 13654 */ 13655 if (*nexthdr == NEXTHDR_HOP) { 13656 if (likely(skb->len <= GRO_LEGACY_MAX_SIZE)) 13657 goto increment_hdr; 13658 13659 jhdr = (struct hop_jumbo_hdr *)hp; 13660 if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 || 13661 jhdr->nexthdr != IPPROTO_TCP) 13662 goto increment_hdr; 13663 13664 goto next_hdr; 13665 } 13666 increment_hdr: 13667 hdr_count++; 13668 next_hdr: 13669 nexthdr = &hp->nexthdr; 13670 start += hdrlen; 13671 } 13672 if (nextp) { 13673 /* Caller will check inner protocol */ 13674 if (skb->encapsulation) { 13675 *nextp = nexthdr; 13676 return true; 13677 } 13678 *nextp = NULL; 13679 } 13680 /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ 13681 return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; 13682 } 13683 13684 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 13685 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) 13686 { 13687 struct udphdr *uh = udp_hdr(skb); 13688 __be16 udp_port = uh->dest; 13689 13690 if (udp_port != bp->vxlan_port && udp_port != bp->nge_port && 13691 udp_port != bp->vxlan_gpe_port) 13692 return false; 13693 if (skb->inner_protocol == htons(ETH_P_TEB)) { 13694 struct ethhdr *eh = inner_eth_hdr(skb); 13695 13696 switch (eh->h_proto) { 13697 case htons(ETH_P_IP): 13698 return true; 13699 case htons(ETH_P_IPV6): 13700 return bnxt_exthdr_check(bp, skb, 13701 skb_inner_network_offset(skb), 13702 NULL); 13703 } 13704 } else if (skb->inner_protocol == htons(ETH_P_IP)) { 13705 return true; 13706 } else if (skb->inner_protocol == htons(ETH_P_IPV6)) { 13707 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 13708 NULL); 13709 } 13710 return false; 13711 } 13712 13713 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) 13714 { 13715 switch (l4_proto) { 13716 case IPPROTO_UDP: 13717 return bnxt_udp_tunl_check(bp, skb); 13718 case IPPROTO_IPIP: 13719 return true; 13720 case IPPROTO_GRE: { 13721 switch (skb->inner_protocol) { 13722 default: 13723 return false; 13724 case htons(ETH_P_IP): 13725 return true; 13726 case htons(ETH_P_IPV6): 13727 fallthrough; 13728 } 13729 } 13730 case IPPROTO_IPV6: 13731 /* Check ext headers of inner ipv6 */ 13732 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 13733 NULL); 13734 } 13735 return false; 13736 } 13737 13738 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 13739 struct net_device *dev, 13740 netdev_features_t features) 13741 { 13742 struct bnxt *bp = netdev_priv(dev); 13743 u8 *l4_proto; 13744 13745 features = vlan_features_check(skb, features); 13746 switch (vlan_get_protocol(skb)) { 13747 case htons(ETH_P_IP): 13748 if (!skb->encapsulation) 13749 return features; 13750 l4_proto = &ip_hdr(skb)->protocol; 13751 if (bnxt_tunl_check(bp, skb, *l4_proto)) 13752 return features; 13753 break; 13754 case htons(ETH_P_IPV6): 13755 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), 13756 &l4_proto)) 13757 break; 13758 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) 13759 return features; 13760 break; 13761 } 13762 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 13763 } 13764 13765 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 13766 u32 *reg_buf) 13767 { 13768 struct hwrm_dbg_read_direct_output *resp; 13769 struct hwrm_dbg_read_direct_input *req; 13770 __le32 *dbg_reg_buf; 13771 dma_addr_t mapping; 13772 int rc, i; 13773 13774 rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT); 13775 if (rc) 13776 return rc; 13777 13778 dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4, 13779 &mapping); 13780 if (!dbg_reg_buf) { 13781 rc = -ENOMEM; 13782 goto dbg_rd_reg_exit; 13783 } 13784 13785 req->host_dest_addr = cpu_to_le64(mapping); 13786 13787 resp = hwrm_req_hold(bp, req); 13788 req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 13789 req->read_len32 = cpu_to_le32(num_words); 13790 13791 rc = hwrm_req_send(bp, req); 13792 if (rc || resp->error_code) { 13793 rc = -EIO; 13794 goto dbg_rd_reg_exit; 13795 } 13796 for (i = 0; i < num_words; i++) 13797 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 13798 13799 dbg_rd_reg_exit: 13800 hwrm_req_drop(bp, req); 13801 return rc; 13802 } 13803 13804 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 13805 u32 ring_id, u32 *prod, u32 *cons) 13806 { 13807 struct hwrm_dbg_ring_info_get_output *resp; 13808 struct hwrm_dbg_ring_info_get_input *req; 13809 int rc; 13810 13811 rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET); 13812 if (rc) 13813 return rc; 13814 13815 req->ring_type = ring_type; 13816 req->fw_ring_id = cpu_to_le32(ring_id); 13817 resp = hwrm_req_hold(bp, req); 13818 rc = hwrm_req_send(bp, req); 13819 if (!rc) { 13820 *prod = le32_to_cpu(resp->producer_index); 13821 *cons = le32_to_cpu(resp->consumer_index); 13822 } 13823 hwrm_req_drop(bp, req); 13824 return rc; 13825 } 13826 13827 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 13828 { 13829 struct bnxt_tx_ring_info *txr; 13830 int i = bnapi->index, j; 13831 13832 bnxt_for_each_napi_tx(j, bnapi, txr) 13833 netdev_info(bnapi->bp->dev, "[%d.%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 13834 i, j, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 13835 txr->tx_cons); 13836 } 13837 13838 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 13839 { 13840 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 13841 int i = bnapi->index; 13842 13843 if (!rxr) 13844 return; 13845 13846 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 13847 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 13848 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 13849 rxr->rx_sw_agg_prod); 13850 } 13851 13852 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 13853 { 13854 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 13855 int i = bnapi->index; 13856 13857 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 13858 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 13859 } 13860 13861 static void bnxt_dbg_dump_states(struct bnxt *bp) 13862 { 13863 int i; 13864 struct bnxt_napi *bnapi; 13865 13866 for (i = 0; i < bp->cp_nr_rings; i++) { 13867 bnapi = bp->bnapi[i]; 13868 if (netif_msg_drv(bp)) { 13869 bnxt_dump_tx_sw_state(bnapi); 13870 bnxt_dump_rx_sw_state(bnapi); 13871 bnxt_dump_cp_sw_state(bnapi); 13872 } 13873 } 13874 } 13875 13876 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 13877 { 13878 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 13879 struct hwrm_ring_reset_input *req; 13880 struct bnxt_napi *bnapi = rxr->bnapi; 13881 struct bnxt_cp_ring_info *cpr; 13882 u16 cp_ring_id; 13883 int rc; 13884 13885 rc = hwrm_req_init(bp, req, HWRM_RING_RESET); 13886 if (rc) 13887 return rc; 13888 13889 cpr = &bnapi->cp_ring; 13890 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 13891 req->cmpl_ring = cpu_to_le16(cp_ring_id); 13892 req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 13893 req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 13894 return hwrm_req_send_silent(bp, req); 13895 } 13896 13897 static void bnxt_reset_task(struct bnxt *bp, bool silent) 13898 { 13899 if (!silent) 13900 bnxt_dbg_dump_states(bp); 13901 if (netif_running(bp->dev)) { 13902 bnxt_close_nic(bp, !silent, false); 13903 bnxt_open_nic(bp, !silent, false); 13904 } 13905 } 13906 13907 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 13908 { 13909 struct bnxt *bp = netdev_priv(dev); 13910 13911 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 13912 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 13913 } 13914 13915 static void bnxt_fw_health_check(struct bnxt *bp) 13916 { 13917 struct bnxt_fw_health *fw_health = bp->fw_health; 13918 struct pci_dev *pdev = bp->pdev; 13919 u32 val; 13920 13921 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 13922 return; 13923 13924 /* Make sure it is enabled before checking the tmr_counter. */ 13925 smp_rmb(); 13926 if (fw_health->tmr_counter) { 13927 fw_health->tmr_counter--; 13928 return; 13929 } 13930 13931 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 13932 if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) { 13933 fw_health->arrests++; 13934 goto fw_reset; 13935 } 13936 13937 fw_health->last_fw_heartbeat = val; 13938 13939 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 13940 if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) { 13941 fw_health->discoveries++; 13942 goto fw_reset; 13943 } 13944 13945 fw_health->tmr_counter = fw_health->tmr_multiplier; 13946 return; 13947 13948 fw_reset: 13949 bnxt_queue_sp_work(bp, BNXT_FW_EXCEPTION_SP_EVENT); 13950 } 13951 13952 static void bnxt_timer(struct timer_list *t) 13953 { 13954 struct bnxt *bp = from_timer(bp, t, timer); 13955 struct net_device *dev = bp->dev; 13956 13957 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 13958 return; 13959 13960 if (atomic_read(&bp->intr_sem) != 0) 13961 goto bnxt_restart_timer; 13962 13963 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 13964 bnxt_fw_health_check(bp); 13965 13966 if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) 13967 bnxt_queue_sp_work(bp, BNXT_PERIODIC_STATS_SP_EVENT); 13968 13969 if (bnxt_tc_flower_enabled(bp)) 13970 bnxt_queue_sp_work(bp, BNXT_FLOW_STATS_SP_EVENT); 13971 13972 #ifdef CONFIG_RFS_ACCEL 13973 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) 13974 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 13975 #endif /*CONFIG_RFS_ACCEL*/ 13976 13977 if (bp->link_info.phy_retry) { 13978 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 13979 bp->link_info.phy_retry = false; 13980 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 13981 } else { 13982 bnxt_queue_sp_work(bp, BNXT_UPDATE_PHY_SP_EVENT); 13983 } 13984 } 13985 13986 if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 13987 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 13988 13989 if ((BNXT_CHIP_P5(bp)) && !bp->chip_rev && netif_carrier_ok(dev)) 13990 bnxt_queue_sp_work(bp, BNXT_RING_COAL_NOW_SP_EVENT); 13991 13992 bnxt_restart_timer: 13993 mod_timer(&bp->timer, jiffies + bp->current_interval); 13994 } 13995 13996 static void bnxt_lock_sp(struct bnxt *bp) 13997 { 13998 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 13999 * set. If the device is being closed, bnxt_close() may be holding 14000 * netdev instance lock and waiting for BNXT_STATE_IN_SP_TASK to clear. 14001 * So we must clear BNXT_STATE_IN_SP_TASK before holding netdev 14002 * instance lock. 14003 */ 14004 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14005 netdev_lock(bp->dev); 14006 } 14007 14008 static void bnxt_unlock_sp(struct bnxt *bp) 14009 { 14010 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14011 netdev_unlock(bp->dev); 14012 } 14013 14014 /* Only called from bnxt_sp_task() */ 14015 static void bnxt_reset(struct bnxt *bp, bool silent) 14016 { 14017 bnxt_lock_sp(bp); 14018 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 14019 bnxt_reset_task(bp, silent); 14020 bnxt_unlock_sp(bp); 14021 } 14022 14023 /* Only called from bnxt_sp_task() */ 14024 static void bnxt_rx_ring_reset(struct bnxt *bp) 14025 { 14026 int i; 14027 14028 bnxt_lock_sp(bp); 14029 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 14030 bnxt_unlock_sp(bp); 14031 return; 14032 } 14033 /* Disable and flush TPA before resetting the RX ring */ 14034 if (bp->flags & BNXT_FLAG_TPA) 14035 bnxt_set_tpa(bp, false); 14036 for (i = 0; i < bp->rx_nr_rings; i++) { 14037 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 14038 struct bnxt_cp_ring_info *cpr; 14039 int rc; 14040 14041 if (!rxr->bnapi->in_reset) 14042 continue; 14043 14044 rc = bnxt_hwrm_rx_ring_reset(bp, i); 14045 if (rc) { 14046 if (rc == -EINVAL || rc == -EOPNOTSUPP) 14047 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 14048 else 14049 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 14050 rc); 14051 bnxt_reset_task(bp, true); 14052 break; 14053 } 14054 bnxt_free_one_rx_ring_skbs(bp, rxr); 14055 rxr->rx_prod = 0; 14056 rxr->rx_agg_prod = 0; 14057 rxr->rx_sw_agg_prod = 0; 14058 rxr->rx_next_cons = 0; 14059 rxr->bnapi->in_reset = false; 14060 bnxt_alloc_one_rx_ring(bp, i); 14061 cpr = &rxr->bnapi->cp_ring; 14062 cpr->sw_stats->rx.rx_resets++; 14063 if (bp->flags & BNXT_FLAG_AGG_RINGS) 14064 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 14065 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 14066 } 14067 if (bp->flags & BNXT_FLAG_TPA) 14068 bnxt_set_tpa(bp, true); 14069 bnxt_unlock_sp(bp); 14070 } 14071 14072 static void bnxt_fw_fatal_close(struct bnxt *bp) 14073 { 14074 bnxt_tx_disable(bp); 14075 bnxt_disable_napi(bp); 14076 bnxt_disable_int_sync(bp); 14077 bnxt_free_irq(bp); 14078 bnxt_clear_int_mode(bp); 14079 pci_disable_device(bp->pdev); 14080 } 14081 14082 static void bnxt_fw_reset_close(struct bnxt *bp) 14083 { 14084 /* When firmware is in fatal state, quiesce device and disable 14085 * bus master to prevent any potential bad DMAs before freeing 14086 * kernel memory. 14087 */ 14088 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 14089 u16 val = 0; 14090 14091 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 14092 if (val == 0xffff) 14093 bp->fw_reset_min_dsecs = 0; 14094 bnxt_fw_fatal_close(bp); 14095 } 14096 __bnxt_close_nic(bp, true, false); 14097 bnxt_vf_reps_free(bp); 14098 bnxt_clear_int_mode(bp); 14099 bnxt_hwrm_func_drv_unrgtr(bp); 14100 if (pci_is_enabled(bp->pdev)) 14101 pci_disable_device(bp->pdev); 14102 bnxt_free_ctx_mem(bp, false); 14103 } 14104 14105 static bool is_bnxt_fw_ok(struct bnxt *bp) 14106 { 14107 struct bnxt_fw_health *fw_health = bp->fw_health; 14108 bool no_heartbeat = false, has_reset = false; 14109 u32 val; 14110 14111 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 14112 if (val == fw_health->last_fw_heartbeat) 14113 no_heartbeat = true; 14114 14115 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 14116 if (val != fw_health->last_fw_reset_cnt) 14117 has_reset = true; 14118 14119 if (!no_heartbeat && has_reset) 14120 return true; 14121 14122 return false; 14123 } 14124 14125 /* netdev instance lock is acquired before calling this function */ 14126 static void bnxt_force_fw_reset(struct bnxt *bp) 14127 { 14128 struct bnxt_fw_health *fw_health = bp->fw_health; 14129 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 14130 u32 wait_dsecs; 14131 14132 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 14133 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 14134 return; 14135 14136 /* we have to serialize with bnxt_refclk_read()*/ 14137 if (ptp) { 14138 unsigned long flags; 14139 14140 write_seqlock_irqsave(&ptp->ptp_lock, flags); 14141 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14142 write_sequnlock_irqrestore(&ptp->ptp_lock, flags); 14143 } else { 14144 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14145 } 14146 bnxt_fw_reset_close(bp); 14147 wait_dsecs = fw_health->master_func_wait_dsecs; 14148 if (fw_health->primary) { 14149 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 14150 wait_dsecs = 0; 14151 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 14152 } else { 14153 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 14154 wait_dsecs = fw_health->normal_func_wait_dsecs; 14155 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14156 } 14157 14158 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 14159 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 14160 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 14161 } 14162 14163 void bnxt_fw_exception(struct bnxt *bp) 14164 { 14165 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 14166 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 14167 bnxt_ulp_stop(bp); 14168 bnxt_lock_sp(bp); 14169 bnxt_force_fw_reset(bp); 14170 bnxt_unlock_sp(bp); 14171 } 14172 14173 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 14174 * < 0 on error. 14175 */ 14176 static int bnxt_get_registered_vfs(struct bnxt *bp) 14177 { 14178 #ifdef CONFIG_BNXT_SRIOV 14179 int rc; 14180 14181 if (!BNXT_PF(bp)) 14182 return 0; 14183 14184 rc = bnxt_hwrm_func_qcfg(bp); 14185 if (rc) { 14186 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 14187 return rc; 14188 } 14189 if (bp->pf.registered_vfs) 14190 return bp->pf.registered_vfs; 14191 if (bp->sriov_cfg) 14192 return 1; 14193 #endif 14194 return 0; 14195 } 14196 14197 void bnxt_fw_reset(struct bnxt *bp) 14198 { 14199 bnxt_ulp_stop(bp); 14200 bnxt_lock_sp(bp); 14201 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 14202 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 14203 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 14204 int n = 0, tmo; 14205 14206 /* we have to serialize with bnxt_refclk_read()*/ 14207 if (ptp) { 14208 unsigned long flags; 14209 14210 write_seqlock_irqsave(&ptp->ptp_lock, flags); 14211 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14212 write_sequnlock_irqrestore(&ptp->ptp_lock, flags); 14213 } else { 14214 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14215 } 14216 if (bp->pf.active_vfs && 14217 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 14218 n = bnxt_get_registered_vfs(bp); 14219 if (n < 0) { 14220 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 14221 n); 14222 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14223 netif_close(bp->dev); 14224 goto fw_reset_exit; 14225 } else if (n > 0) { 14226 u16 vf_tmo_dsecs = n * 10; 14227 14228 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 14229 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 14230 bp->fw_reset_state = 14231 BNXT_FW_RESET_STATE_POLL_VF; 14232 bnxt_queue_fw_reset_work(bp, HZ / 10); 14233 goto fw_reset_exit; 14234 } 14235 bnxt_fw_reset_close(bp); 14236 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 14237 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 14238 tmo = HZ / 10; 14239 } else { 14240 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14241 tmo = bp->fw_reset_min_dsecs * HZ / 10; 14242 } 14243 bnxt_queue_fw_reset_work(bp, tmo); 14244 } 14245 fw_reset_exit: 14246 bnxt_unlock_sp(bp); 14247 } 14248 14249 static void bnxt_chk_missed_irq(struct bnxt *bp) 14250 { 14251 int i; 14252 14253 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 14254 return; 14255 14256 for (i = 0; i < bp->cp_nr_rings; i++) { 14257 struct bnxt_napi *bnapi = bp->bnapi[i]; 14258 struct bnxt_cp_ring_info *cpr; 14259 u32 fw_ring_id; 14260 int j; 14261 14262 if (!bnapi) 14263 continue; 14264 14265 cpr = &bnapi->cp_ring; 14266 for (j = 0; j < cpr->cp_ring_count; j++) { 14267 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 14268 u32 val[2]; 14269 14270 if (cpr2->has_more_work || !bnxt_has_work(bp, cpr2)) 14271 continue; 14272 14273 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 14274 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 14275 continue; 14276 } 14277 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 14278 bnxt_dbg_hwrm_ring_info_get(bp, 14279 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 14280 fw_ring_id, &val[0], &val[1]); 14281 cpr->sw_stats->cmn.missed_irqs++; 14282 } 14283 } 14284 } 14285 14286 static void bnxt_cfg_ntp_filters(struct bnxt *); 14287 14288 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 14289 { 14290 struct bnxt_link_info *link_info = &bp->link_info; 14291 14292 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 14293 link_info->autoneg = BNXT_AUTONEG_SPEED; 14294 if (bp->hwrm_spec_code >= 0x10201) { 14295 if (link_info->auto_pause_setting & 14296 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 14297 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 14298 } else { 14299 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 14300 } 14301 bnxt_set_auto_speed(link_info); 14302 } else { 14303 bnxt_set_force_speed(link_info); 14304 link_info->req_duplex = link_info->duplex_setting; 14305 } 14306 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 14307 link_info->req_flow_ctrl = 14308 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 14309 else 14310 link_info->req_flow_ctrl = link_info->force_pause_setting; 14311 } 14312 14313 static void bnxt_fw_echo_reply(struct bnxt *bp) 14314 { 14315 struct bnxt_fw_health *fw_health = bp->fw_health; 14316 struct hwrm_func_echo_response_input *req; 14317 int rc; 14318 14319 rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE); 14320 if (rc) 14321 return; 14322 req->event_data1 = cpu_to_le32(fw_health->echo_req_data1); 14323 req->event_data2 = cpu_to_le32(fw_health->echo_req_data2); 14324 hwrm_req_send(bp, req); 14325 } 14326 14327 static void bnxt_ulp_restart(struct bnxt *bp) 14328 { 14329 bnxt_ulp_stop(bp); 14330 bnxt_ulp_start(bp, 0); 14331 } 14332 14333 static void bnxt_sp_task(struct work_struct *work) 14334 { 14335 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 14336 14337 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14338 smp_mb__after_atomic(); 14339 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 14340 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14341 return; 14342 } 14343 14344 if (test_and_clear_bit(BNXT_RESTART_ULP_SP_EVENT, &bp->sp_event)) { 14345 bnxt_ulp_restart(bp); 14346 bnxt_reenable_sriov(bp); 14347 } 14348 14349 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 14350 bnxt_cfg_rx_mode(bp); 14351 14352 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 14353 bnxt_cfg_ntp_filters(bp); 14354 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 14355 bnxt_hwrm_exec_fwd_req(bp); 14356 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 14357 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 14358 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 14359 bnxt_hwrm_port_qstats(bp, 0); 14360 bnxt_hwrm_port_qstats_ext(bp, 0); 14361 bnxt_accumulate_all_stats(bp); 14362 } 14363 14364 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 14365 int rc; 14366 14367 mutex_lock(&bp->link_lock); 14368 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 14369 &bp->sp_event)) 14370 bnxt_hwrm_phy_qcaps(bp); 14371 14372 rc = bnxt_update_link(bp, true); 14373 if (rc) 14374 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 14375 rc); 14376 14377 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 14378 &bp->sp_event)) 14379 bnxt_init_ethtool_link_settings(bp); 14380 mutex_unlock(&bp->link_lock); 14381 } 14382 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 14383 int rc; 14384 14385 mutex_lock(&bp->link_lock); 14386 rc = bnxt_update_phy_setting(bp); 14387 mutex_unlock(&bp->link_lock); 14388 if (rc) { 14389 netdev_warn(bp->dev, "update phy settings retry failed\n"); 14390 } else { 14391 bp->link_info.phy_retry = false; 14392 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 14393 } 14394 } 14395 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 14396 mutex_lock(&bp->link_lock); 14397 bnxt_get_port_module_status(bp); 14398 mutex_unlock(&bp->link_lock); 14399 } 14400 14401 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 14402 bnxt_tc_flow_stats_work(bp); 14403 14404 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 14405 bnxt_chk_missed_irq(bp); 14406 14407 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 14408 bnxt_fw_echo_reply(bp); 14409 14410 if (test_and_clear_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event)) 14411 bnxt_hwmon_notify_event(bp); 14412 14413 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 14414 * must be the last functions to be called before exiting. 14415 */ 14416 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 14417 bnxt_reset(bp, false); 14418 14419 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 14420 bnxt_reset(bp, true); 14421 14422 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 14423 bnxt_rx_ring_reset(bp); 14424 14425 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) { 14426 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) || 14427 test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state)) 14428 bnxt_devlink_health_fw_report(bp); 14429 else 14430 bnxt_fw_reset(bp); 14431 } 14432 14433 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 14434 if (!is_bnxt_fw_ok(bp)) 14435 bnxt_devlink_health_fw_report(bp); 14436 } 14437 14438 smp_mb__before_atomic(); 14439 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14440 } 14441 14442 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 14443 int *max_cp); 14444 14445 /* Under netdev instance lock */ 14446 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 14447 int tx_xdp) 14448 { 14449 int max_rx, max_tx, max_cp, tx_sets = 1, tx_cp; 14450 struct bnxt_hw_rings hwr = {0}; 14451 int rx_rings = rx; 14452 int rc; 14453 14454 if (tcs) 14455 tx_sets = tcs; 14456 14457 _bnxt_get_max_rings(bp, &max_rx, &max_tx, &max_cp); 14458 14459 if (max_rx < rx_rings) 14460 return -ENOMEM; 14461 14462 if (bp->flags & BNXT_FLAG_AGG_RINGS) 14463 rx_rings <<= 1; 14464 14465 hwr.rx = rx_rings; 14466 hwr.tx = tx * tx_sets + tx_xdp; 14467 if (max_tx < hwr.tx) 14468 return -ENOMEM; 14469 14470 hwr.vnic = bnxt_get_total_vnics(bp, rx); 14471 14472 tx_cp = __bnxt_num_tx_to_cp(bp, hwr.tx, tx_sets, tx_xdp); 14473 hwr.cp = sh ? max_t(int, tx_cp, rx) : tx_cp + rx; 14474 if (max_cp < hwr.cp) 14475 return -ENOMEM; 14476 hwr.stat = hwr.cp; 14477 if (BNXT_NEW_RM(bp)) { 14478 hwr.cp += bnxt_get_ulp_msix_num_in_use(bp); 14479 hwr.stat += bnxt_get_ulp_stat_ctxs_in_use(bp); 14480 hwr.grp = rx; 14481 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 14482 } 14483 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 14484 hwr.cp_p5 = hwr.tx + rx; 14485 rc = bnxt_hwrm_check_rings(bp, &hwr); 14486 if (!rc && pci_msix_can_alloc_dyn(bp->pdev)) { 14487 if (!bnxt_ulp_registered(bp->edev)) { 14488 hwr.cp += bnxt_get_ulp_msix_num(bp); 14489 hwr.cp = min_t(int, hwr.cp, bnxt_get_max_func_irqs(bp)); 14490 } 14491 if (hwr.cp > bp->total_irqs) { 14492 int total_msix = bnxt_change_msix(bp, hwr.cp); 14493 14494 if (total_msix < hwr.cp) { 14495 netdev_warn(bp->dev, "Unable to allocate %d MSIX vectors, maximum available %d\n", 14496 hwr.cp, total_msix); 14497 rc = -ENOSPC; 14498 } 14499 } 14500 } 14501 return rc; 14502 } 14503 14504 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 14505 { 14506 if (bp->bar2) { 14507 pci_iounmap(pdev, bp->bar2); 14508 bp->bar2 = NULL; 14509 } 14510 14511 if (bp->bar1) { 14512 pci_iounmap(pdev, bp->bar1); 14513 bp->bar1 = NULL; 14514 } 14515 14516 if (bp->bar0) { 14517 pci_iounmap(pdev, bp->bar0); 14518 bp->bar0 = NULL; 14519 } 14520 } 14521 14522 static void bnxt_cleanup_pci(struct bnxt *bp) 14523 { 14524 bnxt_unmap_bars(bp, bp->pdev); 14525 pci_release_regions(bp->pdev); 14526 if (pci_is_enabled(bp->pdev)) 14527 pci_disable_device(bp->pdev); 14528 } 14529 14530 static void bnxt_init_dflt_coal(struct bnxt *bp) 14531 { 14532 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 14533 struct bnxt_coal *coal; 14534 u16 flags = 0; 14535 14536 if (coal_cap->cmpl_params & 14537 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 14538 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 14539 14540 /* Tick values in micro seconds. 14541 * 1 coal_buf x bufs_per_record = 1 completion record. 14542 */ 14543 coal = &bp->rx_coal; 14544 coal->coal_ticks = 10; 14545 coal->coal_bufs = 30; 14546 coal->coal_ticks_irq = 1; 14547 coal->coal_bufs_irq = 2; 14548 coal->idle_thresh = 50; 14549 coal->bufs_per_record = 2; 14550 coal->budget = 64; /* NAPI budget */ 14551 coal->flags = flags; 14552 14553 coal = &bp->tx_coal; 14554 coal->coal_ticks = 28; 14555 coal->coal_bufs = 30; 14556 coal->coal_ticks_irq = 2; 14557 coal->coal_bufs_irq = 2; 14558 coal->bufs_per_record = 1; 14559 coal->flags = flags; 14560 14561 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 14562 } 14563 14564 /* FW that pre-reserves 1 VNIC per function */ 14565 static bool bnxt_fw_pre_resv_vnics(struct bnxt *bp) 14566 { 14567 u16 fw_maj = BNXT_FW_MAJ(bp), fw_bld = BNXT_FW_BLD(bp); 14568 14569 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 14570 (fw_maj > 218 || (fw_maj == 218 && fw_bld >= 18))) 14571 return true; 14572 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 14573 (fw_maj > 216 || (fw_maj == 216 && fw_bld >= 172))) 14574 return true; 14575 return false; 14576 } 14577 14578 static int bnxt_fw_init_one_p1(struct bnxt *bp) 14579 { 14580 int rc; 14581 14582 bp->fw_cap = 0; 14583 rc = bnxt_hwrm_ver_get(bp); 14584 /* FW may be unresponsive after FLR. FLR must complete within 100 msec 14585 * so wait before continuing with recovery. 14586 */ 14587 if (rc) 14588 msleep(100); 14589 bnxt_try_map_fw_health_reg(bp); 14590 if (rc) { 14591 rc = bnxt_try_recover_fw(bp); 14592 if (rc) 14593 return rc; 14594 rc = bnxt_hwrm_ver_get(bp); 14595 if (rc) 14596 return rc; 14597 } 14598 14599 bnxt_nvm_cfg_ver_get(bp); 14600 14601 rc = bnxt_hwrm_func_reset(bp); 14602 if (rc) 14603 return -ENODEV; 14604 14605 bnxt_hwrm_fw_set_time(bp); 14606 return 0; 14607 } 14608 14609 static int bnxt_fw_init_one_p2(struct bnxt *bp) 14610 { 14611 int rc; 14612 14613 /* Get the MAX capabilities for this function */ 14614 rc = bnxt_hwrm_func_qcaps(bp); 14615 if (rc) { 14616 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 14617 rc); 14618 return -ENODEV; 14619 } 14620 14621 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 14622 if (rc) 14623 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 14624 rc); 14625 14626 if (bnxt_alloc_fw_health(bp)) { 14627 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 14628 } else { 14629 rc = bnxt_hwrm_error_recovery_qcfg(bp); 14630 if (rc) 14631 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 14632 rc); 14633 } 14634 14635 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 14636 if (rc) 14637 return -ENODEV; 14638 14639 rc = bnxt_alloc_crash_dump_mem(bp); 14640 if (rc) 14641 netdev_warn(bp->dev, "crash dump mem alloc failure rc: %d\n", 14642 rc); 14643 if (!rc) { 14644 rc = bnxt_hwrm_crash_dump_mem_cfg(bp); 14645 if (rc) { 14646 bnxt_free_crash_dump_mem(bp); 14647 netdev_warn(bp->dev, 14648 "hwrm crash dump mem failure rc: %d\n", rc); 14649 } 14650 } 14651 14652 if (bnxt_fw_pre_resv_vnics(bp)) 14653 bp->fw_cap |= BNXT_FW_CAP_PRE_RESV_VNICS; 14654 14655 bnxt_hwrm_func_qcfg(bp); 14656 bnxt_hwrm_vnic_qcaps(bp); 14657 bnxt_hwrm_port_led_qcaps(bp); 14658 bnxt_ethtool_init(bp); 14659 if (bp->fw_cap & BNXT_FW_CAP_PTP) 14660 __bnxt_hwrm_ptp_qcfg(bp); 14661 bnxt_dcb_init(bp); 14662 bnxt_hwmon_init(bp); 14663 return 0; 14664 } 14665 14666 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 14667 { 14668 bp->rss_cap &= ~BNXT_RSS_CAP_UDP_RSS_CAP; 14669 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 14670 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 14671 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 14672 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 14673 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 14674 bp->rss_hash_delta = bp->rss_hash_cfg; 14675 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 14676 bp->rss_cap |= BNXT_RSS_CAP_UDP_RSS_CAP; 14677 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 14678 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 14679 } 14680 } 14681 14682 static void bnxt_set_dflt_rfs(struct bnxt *bp) 14683 { 14684 struct net_device *dev = bp->dev; 14685 14686 dev->hw_features &= ~NETIF_F_NTUPLE; 14687 dev->features &= ~NETIF_F_NTUPLE; 14688 bp->flags &= ~BNXT_FLAG_RFS; 14689 if (bnxt_rfs_supported(bp)) { 14690 dev->hw_features |= NETIF_F_NTUPLE; 14691 if (bnxt_rfs_capable(bp, false)) { 14692 bp->flags |= BNXT_FLAG_RFS; 14693 dev->features |= NETIF_F_NTUPLE; 14694 } 14695 } 14696 } 14697 14698 static void bnxt_fw_init_one_p3(struct bnxt *bp) 14699 { 14700 struct pci_dev *pdev = bp->pdev; 14701 14702 bnxt_set_dflt_rss_hash_type(bp); 14703 bnxt_set_dflt_rfs(bp); 14704 14705 bnxt_get_wol_settings(bp); 14706 if (bp->flags & BNXT_FLAG_WOL_CAP) 14707 device_set_wakeup_enable(&pdev->dev, bp->wol); 14708 else 14709 device_set_wakeup_capable(&pdev->dev, false); 14710 14711 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 14712 bnxt_hwrm_coal_params_qcaps(bp); 14713 } 14714 14715 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); 14716 14717 int bnxt_fw_init_one(struct bnxt *bp) 14718 { 14719 int rc; 14720 14721 rc = bnxt_fw_init_one_p1(bp); 14722 if (rc) { 14723 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 14724 return rc; 14725 } 14726 rc = bnxt_fw_init_one_p2(bp); 14727 if (rc) { 14728 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 14729 return rc; 14730 } 14731 rc = bnxt_probe_phy(bp, false); 14732 if (rc) 14733 return rc; 14734 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 14735 if (rc) 14736 return rc; 14737 14738 bnxt_fw_init_one_p3(bp); 14739 return 0; 14740 } 14741 14742 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 14743 { 14744 struct bnxt_fw_health *fw_health = bp->fw_health; 14745 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 14746 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 14747 u32 reg_type, reg_off, delay_msecs; 14748 14749 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 14750 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 14751 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 14752 switch (reg_type) { 14753 case BNXT_FW_HEALTH_REG_TYPE_CFG: 14754 pci_write_config_dword(bp->pdev, reg_off, val); 14755 break; 14756 case BNXT_FW_HEALTH_REG_TYPE_GRC: 14757 writel(reg_off & BNXT_GRC_BASE_MASK, 14758 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 14759 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 14760 fallthrough; 14761 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 14762 writel(val, bp->bar0 + reg_off); 14763 break; 14764 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 14765 writel(val, bp->bar1 + reg_off); 14766 break; 14767 } 14768 if (delay_msecs) { 14769 pci_read_config_dword(bp->pdev, 0, &val); 14770 msleep(delay_msecs); 14771 } 14772 } 14773 14774 bool bnxt_hwrm_reset_permitted(struct bnxt *bp) 14775 { 14776 struct hwrm_func_qcfg_output *resp; 14777 struct hwrm_func_qcfg_input *req; 14778 bool result = true; /* firmware will enforce if unknown */ 14779 14780 if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF) 14781 return result; 14782 14783 if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG)) 14784 return result; 14785 14786 req->fid = cpu_to_le16(0xffff); 14787 resp = hwrm_req_hold(bp, req); 14788 if (!hwrm_req_send(bp, req)) 14789 result = !!(le16_to_cpu(resp->flags) & 14790 FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED); 14791 hwrm_req_drop(bp, req); 14792 return result; 14793 } 14794 14795 static void bnxt_reset_all(struct bnxt *bp) 14796 { 14797 struct bnxt_fw_health *fw_health = bp->fw_health; 14798 int i, rc; 14799 14800 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 14801 bnxt_fw_reset_via_optee(bp); 14802 bp->fw_reset_timestamp = jiffies; 14803 return; 14804 } 14805 14806 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 14807 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 14808 bnxt_fw_reset_writel(bp, i); 14809 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 14810 struct hwrm_fw_reset_input *req; 14811 14812 rc = hwrm_req_init(bp, req, HWRM_FW_RESET); 14813 if (!rc) { 14814 req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG); 14815 req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 14816 req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 14817 req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 14818 rc = hwrm_req_send(bp, req); 14819 } 14820 if (rc != -ENODEV) 14821 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 14822 } 14823 bp->fw_reset_timestamp = jiffies; 14824 } 14825 14826 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 14827 { 14828 return time_after(jiffies, bp->fw_reset_timestamp + 14829 (bp->fw_reset_max_dsecs * HZ / 10)); 14830 } 14831 14832 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) 14833 { 14834 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14835 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) 14836 bnxt_dl_health_fw_status_update(bp, false); 14837 bp->fw_reset_state = 0; 14838 netif_close(bp->dev); 14839 } 14840 14841 static void bnxt_fw_reset_task(struct work_struct *work) 14842 { 14843 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 14844 int rc = 0; 14845 14846 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 14847 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 14848 return; 14849 } 14850 14851 switch (bp->fw_reset_state) { 14852 case BNXT_FW_RESET_STATE_POLL_VF: { 14853 int n = bnxt_get_registered_vfs(bp); 14854 int tmo; 14855 14856 if (n < 0) { 14857 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 14858 n, jiffies_to_msecs(jiffies - 14859 bp->fw_reset_timestamp)); 14860 goto fw_reset_abort; 14861 } else if (n > 0) { 14862 if (bnxt_fw_reset_timeout(bp)) { 14863 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14864 bp->fw_reset_state = 0; 14865 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 14866 n); 14867 goto ulp_start; 14868 } 14869 bnxt_queue_fw_reset_work(bp, HZ / 10); 14870 return; 14871 } 14872 bp->fw_reset_timestamp = jiffies; 14873 netdev_lock(bp->dev); 14874 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 14875 bnxt_fw_reset_abort(bp, rc); 14876 netdev_unlock(bp->dev); 14877 goto ulp_start; 14878 } 14879 bnxt_fw_reset_close(bp); 14880 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 14881 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 14882 tmo = HZ / 10; 14883 } else { 14884 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14885 tmo = bp->fw_reset_min_dsecs * HZ / 10; 14886 } 14887 netdev_unlock(bp->dev); 14888 bnxt_queue_fw_reset_work(bp, tmo); 14889 return; 14890 } 14891 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 14892 u32 val; 14893 14894 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 14895 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 14896 !bnxt_fw_reset_timeout(bp)) { 14897 bnxt_queue_fw_reset_work(bp, HZ / 5); 14898 return; 14899 } 14900 14901 if (!bp->fw_health->primary) { 14902 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 14903 14904 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14905 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 14906 return; 14907 } 14908 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 14909 } 14910 fallthrough; 14911 case BNXT_FW_RESET_STATE_RESET_FW: 14912 bnxt_reset_all(bp); 14913 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14914 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 14915 return; 14916 case BNXT_FW_RESET_STATE_ENABLE_DEV: 14917 bnxt_inv_fw_health_reg(bp); 14918 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 14919 !bp->fw_reset_min_dsecs) { 14920 u16 val; 14921 14922 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 14923 if (val == 0xffff) { 14924 if (bnxt_fw_reset_timeout(bp)) { 14925 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 14926 rc = -ETIMEDOUT; 14927 goto fw_reset_abort; 14928 } 14929 bnxt_queue_fw_reset_work(bp, HZ / 1000); 14930 return; 14931 } 14932 } 14933 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 14934 clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 14935 if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) && 14936 !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state)) 14937 bnxt_dl_remote_reload(bp); 14938 if (pci_enable_device(bp->pdev)) { 14939 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 14940 rc = -ENODEV; 14941 goto fw_reset_abort; 14942 } 14943 pci_set_master(bp->pdev); 14944 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 14945 fallthrough; 14946 case BNXT_FW_RESET_STATE_POLL_FW: 14947 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 14948 rc = bnxt_hwrm_poll(bp); 14949 if (rc) { 14950 if (bnxt_fw_reset_timeout(bp)) { 14951 netdev_err(bp->dev, "Firmware reset aborted\n"); 14952 goto fw_reset_abort_status; 14953 } 14954 bnxt_queue_fw_reset_work(bp, HZ / 5); 14955 return; 14956 } 14957 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 14958 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 14959 fallthrough; 14960 case BNXT_FW_RESET_STATE_OPENING: 14961 while (!netdev_trylock(bp->dev)) { 14962 bnxt_queue_fw_reset_work(bp, HZ / 10); 14963 return; 14964 } 14965 rc = bnxt_open(bp->dev); 14966 if (rc) { 14967 netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); 14968 bnxt_fw_reset_abort(bp, rc); 14969 netdev_unlock(bp->dev); 14970 goto ulp_start; 14971 } 14972 14973 if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) && 14974 bp->fw_health->enabled) { 14975 bp->fw_health->last_fw_reset_cnt = 14976 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 14977 } 14978 bp->fw_reset_state = 0; 14979 /* Make sure fw_reset_state is 0 before clearing the flag */ 14980 smp_mb__before_atomic(); 14981 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14982 bnxt_ptp_reapply_pps(bp); 14983 clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state); 14984 if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) { 14985 bnxt_dl_health_fw_recovery_done(bp); 14986 bnxt_dl_health_fw_status_update(bp, true); 14987 } 14988 netdev_unlock(bp->dev); 14989 bnxt_ulp_start(bp, 0); 14990 bnxt_reenable_sriov(bp); 14991 netdev_lock(bp->dev); 14992 bnxt_vf_reps_alloc(bp); 14993 bnxt_vf_reps_open(bp); 14994 netdev_unlock(bp->dev); 14995 break; 14996 } 14997 return; 14998 14999 fw_reset_abort_status: 15000 if (bp->fw_health->status_reliable || 15001 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 15002 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 15003 15004 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 15005 } 15006 fw_reset_abort: 15007 netdev_lock(bp->dev); 15008 bnxt_fw_reset_abort(bp, rc); 15009 netdev_unlock(bp->dev); 15010 ulp_start: 15011 bnxt_ulp_start(bp, rc); 15012 } 15013 15014 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 15015 { 15016 int rc; 15017 struct bnxt *bp = netdev_priv(dev); 15018 15019 SET_NETDEV_DEV(dev, &pdev->dev); 15020 15021 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 15022 rc = pci_enable_device(pdev); 15023 if (rc) { 15024 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 15025 goto init_err; 15026 } 15027 15028 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 15029 dev_err(&pdev->dev, 15030 "Cannot find PCI device base address, aborting\n"); 15031 rc = -ENODEV; 15032 goto init_err_disable; 15033 } 15034 15035 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 15036 if (rc) { 15037 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 15038 goto init_err_disable; 15039 } 15040 15041 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 15042 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 15043 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 15044 rc = -EIO; 15045 goto init_err_release; 15046 } 15047 15048 pci_set_master(pdev); 15049 15050 bp->dev = dev; 15051 bp->pdev = pdev; 15052 15053 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 15054 * determines the BAR size. 15055 */ 15056 bp->bar0 = pci_ioremap_bar(pdev, 0); 15057 if (!bp->bar0) { 15058 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 15059 rc = -ENOMEM; 15060 goto init_err_release; 15061 } 15062 15063 bp->bar2 = pci_ioremap_bar(pdev, 4); 15064 if (!bp->bar2) { 15065 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 15066 rc = -ENOMEM; 15067 goto init_err_release; 15068 } 15069 15070 INIT_WORK(&bp->sp_task, bnxt_sp_task); 15071 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 15072 15073 spin_lock_init(&bp->ntp_fltr_lock); 15074 #if BITS_PER_LONG == 32 15075 spin_lock_init(&bp->db_lock); 15076 #endif 15077 15078 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 15079 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 15080 15081 timer_setup(&bp->timer, bnxt_timer, 0); 15082 bp->current_interval = BNXT_TIMER_INTERVAL; 15083 15084 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 15085 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 15086 15087 clear_bit(BNXT_STATE_OPEN, &bp->state); 15088 return 0; 15089 15090 init_err_release: 15091 bnxt_unmap_bars(bp, pdev); 15092 pci_release_regions(pdev); 15093 15094 init_err_disable: 15095 pci_disable_device(pdev); 15096 15097 init_err: 15098 return rc; 15099 } 15100 15101 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 15102 { 15103 struct sockaddr *addr = p; 15104 struct bnxt *bp = netdev_priv(dev); 15105 int rc = 0; 15106 15107 netdev_assert_locked(dev); 15108 15109 if (!is_valid_ether_addr(addr->sa_data)) 15110 return -EADDRNOTAVAIL; 15111 15112 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 15113 return 0; 15114 15115 rc = bnxt_approve_mac(bp, addr->sa_data, true); 15116 if (rc) 15117 return rc; 15118 15119 eth_hw_addr_set(dev, addr->sa_data); 15120 bnxt_clear_usr_fltrs(bp, true); 15121 if (netif_running(dev)) { 15122 bnxt_close_nic(bp, false, false); 15123 rc = bnxt_open_nic(bp, false, false); 15124 } 15125 15126 return rc; 15127 } 15128 15129 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 15130 { 15131 struct bnxt *bp = netdev_priv(dev); 15132 15133 netdev_assert_locked(dev); 15134 15135 if (netif_running(dev)) 15136 bnxt_close_nic(bp, true, false); 15137 15138 WRITE_ONCE(dev->mtu, new_mtu); 15139 15140 /* MTU change may change the AGG ring settings if an XDP multi-buffer 15141 * program is attached. We need to set the AGG rings settings and 15142 * rx_skb_func accordingly. 15143 */ 15144 if (READ_ONCE(bp->xdp_prog)) 15145 bnxt_set_rx_skb_mode(bp, true); 15146 15147 bnxt_set_ring_params(bp); 15148 15149 if (netif_running(dev)) 15150 return bnxt_open_nic(bp, true, false); 15151 15152 return 0; 15153 } 15154 15155 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 15156 { 15157 struct bnxt *bp = netdev_priv(dev); 15158 bool sh = false; 15159 int rc, tx_cp; 15160 15161 if (tc > bp->max_tc) { 15162 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 15163 tc, bp->max_tc); 15164 return -EINVAL; 15165 } 15166 15167 if (bp->num_tc == tc) 15168 return 0; 15169 15170 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 15171 sh = true; 15172 15173 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 15174 sh, tc, bp->tx_nr_rings_xdp); 15175 if (rc) 15176 return rc; 15177 15178 /* Needs to close the device and do hw resource re-allocations */ 15179 if (netif_running(bp->dev)) 15180 bnxt_close_nic(bp, true, false); 15181 15182 if (tc) { 15183 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 15184 netdev_set_num_tc(dev, tc); 15185 bp->num_tc = tc; 15186 } else { 15187 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 15188 netdev_reset_tc(dev); 15189 bp->num_tc = 0; 15190 } 15191 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 15192 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 15193 bp->cp_nr_rings = sh ? max_t(int, tx_cp, bp->rx_nr_rings) : 15194 tx_cp + bp->rx_nr_rings; 15195 15196 if (netif_running(bp->dev)) 15197 return bnxt_open_nic(bp, true, false); 15198 15199 return 0; 15200 } 15201 15202 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 15203 void *cb_priv) 15204 { 15205 struct bnxt *bp = cb_priv; 15206 15207 if (!bnxt_tc_flower_enabled(bp) || 15208 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 15209 return -EOPNOTSUPP; 15210 15211 switch (type) { 15212 case TC_SETUP_CLSFLOWER: 15213 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 15214 default: 15215 return -EOPNOTSUPP; 15216 } 15217 } 15218 15219 LIST_HEAD(bnxt_block_cb_list); 15220 15221 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 15222 void *type_data) 15223 { 15224 struct bnxt *bp = netdev_priv(dev); 15225 15226 switch (type) { 15227 case TC_SETUP_BLOCK: 15228 return flow_block_cb_setup_simple(type_data, 15229 &bnxt_block_cb_list, 15230 bnxt_setup_tc_block_cb, 15231 bp, bp, true); 15232 case TC_SETUP_QDISC_MQPRIO: { 15233 struct tc_mqprio_qopt *mqprio = type_data; 15234 15235 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 15236 15237 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 15238 } 15239 default: 15240 return -EOPNOTSUPP; 15241 } 15242 } 15243 15244 u32 bnxt_get_ntp_filter_idx(struct bnxt *bp, struct flow_keys *fkeys, 15245 const struct sk_buff *skb) 15246 { 15247 struct bnxt_vnic_info *vnic; 15248 15249 if (skb) 15250 return skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 15251 15252 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 15253 return bnxt_toeplitz(bp, fkeys, (void *)vnic->rss_hash_key); 15254 } 15255 15256 int bnxt_insert_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr, 15257 u32 idx) 15258 { 15259 struct hlist_head *head; 15260 int bit_id; 15261 15262 spin_lock_bh(&bp->ntp_fltr_lock); 15263 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, bp->max_fltr, 0); 15264 if (bit_id < 0) { 15265 spin_unlock_bh(&bp->ntp_fltr_lock); 15266 return -ENOMEM; 15267 } 15268 15269 fltr->base.sw_id = (u16)bit_id; 15270 fltr->base.type = BNXT_FLTR_TYPE_NTUPLE; 15271 fltr->base.flags |= BNXT_ACT_RING_DST; 15272 head = &bp->ntp_fltr_hash_tbl[idx]; 15273 hlist_add_head_rcu(&fltr->base.hash, head); 15274 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 15275 bnxt_insert_usr_fltr(bp, &fltr->base); 15276 bp->ntp_fltr_count++; 15277 spin_unlock_bh(&bp->ntp_fltr_lock); 15278 return 0; 15279 } 15280 15281 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 15282 struct bnxt_ntuple_filter *f2) 15283 { 15284 struct bnxt_flow_masks *masks1 = &f1->fmasks; 15285 struct bnxt_flow_masks *masks2 = &f2->fmasks; 15286 struct flow_keys *keys1 = &f1->fkeys; 15287 struct flow_keys *keys2 = &f2->fkeys; 15288 15289 if (keys1->basic.n_proto != keys2->basic.n_proto || 15290 keys1->basic.ip_proto != keys2->basic.ip_proto) 15291 return false; 15292 15293 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 15294 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 15295 masks1->addrs.v4addrs.src != masks2->addrs.v4addrs.src || 15296 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst || 15297 masks1->addrs.v4addrs.dst != masks2->addrs.v4addrs.dst) 15298 return false; 15299 } else { 15300 if (!ipv6_addr_equal(&keys1->addrs.v6addrs.src, 15301 &keys2->addrs.v6addrs.src) || 15302 !ipv6_addr_equal(&masks1->addrs.v6addrs.src, 15303 &masks2->addrs.v6addrs.src) || 15304 !ipv6_addr_equal(&keys1->addrs.v6addrs.dst, 15305 &keys2->addrs.v6addrs.dst) || 15306 !ipv6_addr_equal(&masks1->addrs.v6addrs.dst, 15307 &masks2->addrs.v6addrs.dst)) 15308 return false; 15309 } 15310 15311 return keys1->ports.src == keys2->ports.src && 15312 masks1->ports.src == masks2->ports.src && 15313 keys1->ports.dst == keys2->ports.dst && 15314 masks1->ports.dst == masks2->ports.dst && 15315 keys1->control.flags == keys2->control.flags && 15316 f1->l2_fltr == f2->l2_fltr; 15317 } 15318 15319 struct bnxt_ntuple_filter * 15320 bnxt_lookup_ntp_filter_from_idx(struct bnxt *bp, 15321 struct bnxt_ntuple_filter *fltr, u32 idx) 15322 { 15323 struct bnxt_ntuple_filter *f; 15324 struct hlist_head *head; 15325 15326 head = &bp->ntp_fltr_hash_tbl[idx]; 15327 hlist_for_each_entry_rcu(f, head, base.hash) { 15328 if (bnxt_fltr_match(f, fltr)) 15329 return f; 15330 } 15331 return NULL; 15332 } 15333 15334 #ifdef CONFIG_RFS_ACCEL 15335 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 15336 u16 rxq_index, u32 flow_id) 15337 { 15338 struct bnxt *bp = netdev_priv(dev); 15339 struct bnxt_ntuple_filter *fltr, *new_fltr; 15340 struct flow_keys *fkeys; 15341 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 15342 struct bnxt_l2_filter *l2_fltr; 15343 int rc = 0, idx; 15344 u32 flags; 15345 15346 if (ether_addr_equal(dev->dev_addr, eth->h_dest)) { 15347 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 15348 atomic_inc(&l2_fltr->refcnt); 15349 } else { 15350 struct bnxt_l2_key key; 15351 15352 ether_addr_copy(key.dst_mac_addr, eth->h_dest); 15353 key.vlan = 0; 15354 l2_fltr = bnxt_lookup_l2_filter_from_key(bp, &key); 15355 if (!l2_fltr) 15356 return -EINVAL; 15357 if (l2_fltr->base.flags & BNXT_ACT_FUNC_DST) { 15358 bnxt_del_l2_filter(bp, l2_fltr); 15359 return -EINVAL; 15360 } 15361 } 15362 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 15363 if (!new_fltr) { 15364 bnxt_del_l2_filter(bp, l2_fltr); 15365 return -ENOMEM; 15366 } 15367 15368 fkeys = &new_fltr->fkeys; 15369 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 15370 rc = -EPROTONOSUPPORT; 15371 goto err_free; 15372 } 15373 15374 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 15375 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 15376 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 15377 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 15378 rc = -EPROTONOSUPPORT; 15379 goto err_free; 15380 } 15381 new_fltr->fmasks = BNXT_FLOW_IPV4_MASK_ALL; 15382 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 15383 if (bp->hwrm_spec_code < 0x10601) { 15384 rc = -EPROTONOSUPPORT; 15385 goto err_free; 15386 } 15387 new_fltr->fmasks = BNXT_FLOW_IPV6_MASK_ALL; 15388 } 15389 flags = fkeys->control.flags; 15390 if (((flags & FLOW_DIS_ENCAPSULATION) && 15391 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 15392 rc = -EPROTONOSUPPORT; 15393 goto err_free; 15394 } 15395 new_fltr->l2_fltr = l2_fltr; 15396 15397 idx = bnxt_get_ntp_filter_idx(bp, fkeys, skb); 15398 rcu_read_lock(); 15399 fltr = bnxt_lookup_ntp_filter_from_idx(bp, new_fltr, idx); 15400 if (fltr) { 15401 rc = fltr->base.sw_id; 15402 rcu_read_unlock(); 15403 goto err_free; 15404 } 15405 rcu_read_unlock(); 15406 15407 new_fltr->flow_id = flow_id; 15408 new_fltr->base.rxq = rxq_index; 15409 rc = bnxt_insert_ntp_filter(bp, new_fltr, idx); 15410 if (!rc) { 15411 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 15412 return new_fltr->base.sw_id; 15413 } 15414 15415 err_free: 15416 bnxt_del_l2_filter(bp, l2_fltr); 15417 kfree(new_fltr); 15418 return rc; 15419 } 15420 #endif 15421 15422 void bnxt_del_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr) 15423 { 15424 spin_lock_bh(&bp->ntp_fltr_lock); 15425 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 15426 spin_unlock_bh(&bp->ntp_fltr_lock); 15427 return; 15428 } 15429 hlist_del_rcu(&fltr->base.hash); 15430 bnxt_del_one_usr_fltr(bp, &fltr->base); 15431 bp->ntp_fltr_count--; 15432 spin_unlock_bh(&bp->ntp_fltr_lock); 15433 bnxt_del_l2_filter(bp, fltr->l2_fltr); 15434 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 15435 kfree_rcu(fltr, base.rcu); 15436 } 15437 15438 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 15439 { 15440 #ifdef CONFIG_RFS_ACCEL 15441 int i; 15442 15443 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 15444 struct hlist_head *head; 15445 struct hlist_node *tmp; 15446 struct bnxt_ntuple_filter *fltr; 15447 int rc; 15448 15449 head = &bp->ntp_fltr_hash_tbl[i]; 15450 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 15451 bool del = false; 15452 15453 if (test_bit(BNXT_FLTR_VALID, &fltr->base.state)) { 15454 if (fltr->base.flags & BNXT_ACT_NO_AGING) 15455 continue; 15456 if (rps_may_expire_flow(bp->dev, fltr->base.rxq, 15457 fltr->flow_id, 15458 fltr->base.sw_id)) { 15459 bnxt_hwrm_cfa_ntuple_filter_free(bp, 15460 fltr); 15461 del = true; 15462 } 15463 } else { 15464 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 15465 fltr); 15466 if (rc) 15467 del = true; 15468 else 15469 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 15470 } 15471 15472 if (del) 15473 bnxt_del_ntp_filter(bp, fltr); 15474 } 15475 } 15476 #endif 15477 } 15478 15479 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 15480 unsigned int entry, struct udp_tunnel_info *ti) 15481 { 15482 struct bnxt *bp = netdev_priv(netdev); 15483 unsigned int cmd; 15484 15485 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 15486 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN; 15487 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 15488 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE; 15489 else 15490 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE; 15491 15492 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd); 15493 } 15494 15495 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 15496 unsigned int entry, struct udp_tunnel_info *ti) 15497 { 15498 struct bnxt *bp = netdev_priv(netdev); 15499 unsigned int cmd; 15500 15501 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 15502 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 15503 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 15504 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 15505 else 15506 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE; 15507 15508 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 15509 } 15510 15511 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 15512 .set_port = bnxt_udp_tunnel_set_port, 15513 .unset_port = bnxt_udp_tunnel_unset_port, 15514 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 15515 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 15516 .tables = { 15517 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 15518 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 15519 }, 15520 }, bnxt_udp_tunnels_p7 = { 15521 .set_port = bnxt_udp_tunnel_set_port, 15522 .unset_port = bnxt_udp_tunnel_unset_port, 15523 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 15524 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 15525 .tables = { 15526 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 15527 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 15528 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN_GPE, }, 15529 }, 15530 }; 15531 15532 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 15533 struct net_device *dev, u32 filter_mask, 15534 int nlflags) 15535 { 15536 struct bnxt *bp = netdev_priv(dev); 15537 15538 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 15539 nlflags, filter_mask, NULL); 15540 } 15541 15542 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 15543 u16 flags, struct netlink_ext_ack *extack) 15544 { 15545 struct bnxt *bp = netdev_priv(dev); 15546 struct nlattr *attr, *br_spec; 15547 int rem, rc = 0; 15548 15549 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 15550 return -EOPNOTSUPP; 15551 15552 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 15553 if (!br_spec) 15554 return -EINVAL; 15555 15556 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 15557 u16 mode; 15558 15559 mode = nla_get_u16(attr); 15560 if (mode == bp->br_mode) 15561 break; 15562 15563 rc = bnxt_hwrm_set_br_mode(bp, mode); 15564 if (!rc) 15565 bp->br_mode = mode; 15566 break; 15567 } 15568 return rc; 15569 } 15570 15571 int bnxt_get_port_parent_id(struct net_device *dev, 15572 struct netdev_phys_item_id *ppid) 15573 { 15574 struct bnxt *bp = netdev_priv(dev); 15575 15576 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 15577 return -EOPNOTSUPP; 15578 15579 /* The PF and it's VF-reps only support the switchdev framework */ 15580 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 15581 return -EOPNOTSUPP; 15582 15583 ppid->id_len = sizeof(bp->dsn); 15584 memcpy(ppid->id, bp->dsn, ppid->id_len); 15585 15586 return 0; 15587 } 15588 15589 static const struct net_device_ops bnxt_netdev_ops = { 15590 .ndo_open = bnxt_open, 15591 .ndo_start_xmit = bnxt_start_xmit, 15592 .ndo_stop = bnxt_close, 15593 .ndo_get_stats64 = bnxt_get_stats64, 15594 .ndo_set_rx_mode = bnxt_set_rx_mode, 15595 .ndo_eth_ioctl = bnxt_ioctl, 15596 .ndo_validate_addr = eth_validate_addr, 15597 .ndo_set_mac_address = bnxt_change_mac_addr, 15598 .ndo_change_mtu = bnxt_change_mtu, 15599 .ndo_fix_features = bnxt_fix_features, 15600 .ndo_set_features = bnxt_set_features, 15601 .ndo_features_check = bnxt_features_check, 15602 .ndo_tx_timeout = bnxt_tx_timeout, 15603 #ifdef CONFIG_BNXT_SRIOV 15604 .ndo_get_vf_config = bnxt_get_vf_config, 15605 .ndo_set_vf_mac = bnxt_set_vf_mac, 15606 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 15607 .ndo_set_vf_rate = bnxt_set_vf_bw, 15608 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 15609 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 15610 .ndo_set_vf_trust = bnxt_set_vf_trust, 15611 #endif 15612 .ndo_setup_tc = bnxt_setup_tc, 15613 #ifdef CONFIG_RFS_ACCEL 15614 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 15615 #endif 15616 .ndo_bpf = bnxt_xdp, 15617 .ndo_xdp_xmit = bnxt_xdp_xmit, 15618 .ndo_bridge_getlink = bnxt_bridge_getlink, 15619 .ndo_bridge_setlink = bnxt_bridge_setlink, 15620 }; 15621 15622 static void bnxt_get_queue_stats_rx(struct net_device *dev, int i, 15623 struct netdev_queue_stats_rx *stats) 15624 { 15625 struct bnxt *bp = netdev_priv(dev); 15626 struct bnxt_cp_ring_info *cpr; 15627 u64 *sw; 15628 15629 if (!bp->bnapi) 15630 return; 15631 15632 cpr = &bp->bnapi[i]->cp_ring; 15633 sw = cpr->stats.sw_stats; 15634 15635 stats->packets = 0; 15636 stats->packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 15637 stats->packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 15638 stats->packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 15639 15640 stats->bytes = 0; 15641 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 15642 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 15643 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 15644 15645 stats->alloc_fail = cpr->sw_stats->rx.rx_oom_discards; 15646 } 15647 15648 static void bnxt_get_queue_stats_tx(struct net_device *dev, int i, 15649 struct netdev_queue_stats_tx *stats) 15650 { 15651 struct bnxt *bp = netdev_priv(dev); 15652 struct bnxt_napi *bnapi; 15653 u64 *sw; 15654 15655 if (!bp->tx_ring) 15656 return; 15657 15658 bnapi = bp->tx_ring[bp->tx_ring_map[i]].bnapi; 15659 sw = bnapi->cp_ring.stats.sw_stats; 15660 15661 stats->packets = 0; 15662 stats->packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 15663 stats->packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 15664 stats->packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 15665 15666 stats->bytes = 0; 15667 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 15668 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 15669 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 15670 } 15671 15672 static void bnxt_get_base_stats(struct net_device *dev, 15673 struct netdev_queue_stats_rx *rx, 15674 struct netdev_queue_stats_tx *tx) 15675 { 15676 struct bnxt *bp = netdev_priv(dev); 15677 15678 rx->packets = bp->net_stats_prev.rx_packets; 15679 rx->bytes = bp->net_stats_prev.rx_bytes; 15680 rx->alloc_fail = bp->ring_err_stats_prev.rx_total_oom_discards; 15681 15682 tx->packets = bp->net_stats_prev.tx_packets; 15683 tx->bytes = bp->net_stats_prev.tx_bytes; 15684 } 15685 15686 static const struct netdev_stat_ops bnxt_stat_ops = { 15687 .get_queue_stats_rx = bnxt_get_queue_stats_rx, 15688 .get_queue_stats_tx = bnxt_get_queue_stats_tx, 15689 .get_base_stats = bnxt_get_base_stats, 15690 }; 15691 15692 static int bnxt_queue_mem_alloc(struct net_device *dev, void *qmem, int idx) 15693 { 15694 struct bnxt_rx_ring_info *rxr, *clone; 15695 struct bnxt *bp = netdev_priv(dev); 15696 struct bnxt_ring_struct *ring; 15697 int rc; 15698 15699 if (!bp->rx_ring) 15700 return -ENETDOWN; 15701 15702 rxr = &bp->rx_ring[idx]; 15703 clone = qmem; 15704 memcpy(clone, rxr, sizeof(*rxr)); 15705 bnxt_init_rx_ring_struct(bp, clone); 15706 bnxt_reset_rx_ring_struct(bp, clone); 15707 15708 clone->rx_prod = 0; 15709 clone->rx_agg_prod = 0; 15710 clone->rx_sw_agg_prod = 0; 15711 clone->rx_next_cons = 0; 15712 15713 rc = bnxt_alloc_rx_page_pool(bp, clone, rxr->page_pool->p.nid); 15714 if (rc) 15715 return rc; 15716 15717 rc = xdp_rxq_info_reg(&clone->xdp_rxq, bp->dev, idx, 0); 15718 if (rc < 0) 15719 goto err_page_pool_destroy; 15720 15721 rc = xdp_rxq_info_reg_mem_model(&clone->xdp_rxq, 15722 MEM_TYPE_PAGE_POOL, 15723 clone->page_pool); 15724 if (rc) 15725 goto err_rxq_info_unreg; 15726 15727 ring = &clone->rx_ring_struct; 15728 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 15729 if (rc) 15730 goto err_free_rx_ring; 15731 15732 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 15733 ring = &clone->rx_agg_ring_struct; 15734 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 15735 if (rc) 15736 goto err_free_rx_agg_ring; 15737 15738 rc = bnxt_alloc_rx_agg_bmap(bp, clone); 15739 if (rc) 15740 goto err_free_rx_agg_ring; 15741 } 15742 15743 if (bp->flags & BNXT_FLAG_TPA) { 15744 rc = bnxt_alloc_one_tpa_info(bp, clone); 15745 if (rc) 15746 goto err_free_tpa_info; 15747 } 15748 15749 bnxt_init_one_rx_ring_rxbd(bp, clone); 15750 bnxt_init_one_rx_agg_ring_rxbd(bp, clone); 15751 15752 bnxt_alloc_one_rx_ring_skb(bp, clone, idx); 15753 if (bp->flags & BNXT_FLAG_AGG_RINGS) 15754 bnxt_alloc_one_rx_ring_page(bp, clone, idx); 15755 if (bp->flags & BNXT_FLAG_TPA) 15756 bnxt_alloc_one_tpa_info_data(bp, clone); 15757 15758 return 0; 15759 15760 err_free_tpa_info: 15761 bnxt_free_one_tpa_info(bp, clone); 15762 err_free_rx_agg_ring: 15763 bnxt_free_ring(bp, &clone->rx_agg_ring_struct.ring_mem); 15764 err_free_rx_ring: 15765 bnxt_free_ring(bp, &clone->rx_ring_struct.ring_mem); 15766 err_rxq_info_unreg: 15767 xdp_rxq_info_unreg(&clone->xdp_rxq); 15768 err_page_pool_destroy: 15769 page_pool_destroy(clone->page_pool); 15770 if (bnxt_separate_head_pool()) 15771 page_pool_destroy(clone->head_pool); 15772 clone->page_pool = NULL; 15773 clone->head_pool = NULL; 15774 return rc; 15775 } 15776 15777 static void bnxt_queue_mem_free(struct net_device *dev, void *qmem) 15778 { 15779 struct bnxt_rx_ring_info *rxr = qmem; 15780 struct bnxt *bp = netdev_priv(dev); 15781 struct bnxt_ring_struct *ring; 15782 15783 bnxt_free_one_rx_ring_skbs(bp, rxr); 15784 bnxt_free_one_tpa_info(bp, rxr); 15785 15786 xdp_rxq_info_unreg(&rxr->xdp_rxq); 15787 15788 page_pool_destroy(rxr->page_pool); 15789 if (bnxt_separate_head_pool()) 15790 page_pool_destroy(rxr->head_pool); 15791 rxr->page_pool = NULL; 15792 rxr->head_pool = NULL; 15793 15794 ring = &rxr->rx_ring_struct; 15795 bnxt_free_ring(bp, &ring->ring_mem); 15796 15797 ring = &rxr->rx_agg_ring_struct; 15798 bnxt_free_ring(bp, &ring->ring_mem); 15799 15800 kfree(rxr->rx_agg_bmap); 15801 rxr->rx_agg_bmap = NULL; 15802 } 15803 15804 static void bnxt_copy_rx_ring(struct bnxt *bp, 15805 struct bnxt_rx_ring_info *dst, 15806 struct bnxt_rx_ring_info *src) 15807 { 15808 struct bnxt_ring_mem_info *dst_rmem, *src_rmem; 15809 struct bnxt_ring_struct *dst_ring, *src_ring; 15810 int i; 15811 15812 dst_ring = &dst->rx_ring_struct; 15813 dst_rmem = &dst_ring->ring_mem; 15814 src_ring = &src->rx_ring_struct; 15815 src_rmem = &src_ring->ring_mem; 15816 15817 WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages); 15818 WARN_ON(dst_rmem->page_size != src_rmem->page_size); 15819 WARN_ON(dst_rmem->flags != src_rmem->flags); 15820 WARN_ON(dst_rmem->depth != src_rmem->depth); 15821 WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size); 15822 WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem); 15823 15824 dst_rmem->pg_tbl = src_rmem->pg_tbl; 15825 dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map; 15826 *dst_rmem->vmem = *src_rmem->vmem; 15827 for (i = 0; i < dst_rmem->nr_pages; i++) { 15828 dst_rmem->pg_arr[i] = src_rmem->pg_arr[i]; 15829 dst_rmem->dma_arr[i] = src_rmem->dma_arr[i]; 15830 } 15831 15832 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 15833 return; 15834 15835 dst_ring = &dst->rx_agg_ring_struct; 15836 dst_rmem = &dst_ring->ring_mem; 15837 src_ring = &src->rx_agg_ring_struct; 15838 src_rmem = &src_ring->ring_mem; 15839 15840 WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages); 15841 WARN_ON(dst_rmem->page_size != src_rmem->page_size); 15842 WARN_ON(dst_rmem->flags != src_rmem->flags); 15843 WARN_ON(dst_rmem->depth != src_rmem->depth); 15844 WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size); 15845 WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem); 15846 WARN_ON(dst->rx_agg_bmap_size != src->rx_agg_bmap_size); 15847 15848 dst_rmem->pg_tbl = src_rmem->pg_tbl; 15849 dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map; 15850 *dst_rmem->vmem = *src_rmem->vmem; 15851 for (i = 0; i < dst_rmem->nr_pages; i++) { 15852 dst_rmem->pg_arr[i] = src_rmem->pg_arr[i]; 15853 dst_rmem->dma_arr[i] = src_rmem->dma_arr[i]; 15854 } 15855 15856 dst->rx_agg_bmap = src->rx_agg_bmap; 15857 } 15858 15859 static int bnxt_queue_start(struct net_device *dev, void *qmem, int idx) 15860 { 15861 struct bnxt *bp = netdev_priv(dev); 15862 struct bnxt_rx_ring_info *rxr, *clone; 15863 struct bnxt_cp_ring_info *cpr; 15864 struct bnxt_vnic_info *vnic; 15865 struct bnxt_napi *bnapi; 15866 int i, rc; 15867 15868 rxr = &bp->rx_ring[idx]; 15869 clone = qmem; 15870 15871 rxr->rx_prod = clone->rx_prod; 15872 rxr->rx_agg_prod = clone->rx_agg_prod; 15873 rxr->rx_sw_agg_prod = clone->rx_sw_agg_prod; 15874 rxr->rx_next_cons = clone->rx_next_cons; 15875 rxr->rx_tpa = clone->rx_tpa; 15876 rxr->rx_tpa_idx_map = clone->rx_tpa_idx_map; 15877 rxr->page_pool = clone->page_pool; 15878 rxr->head_pool = clone->head_pool; 15879 rxr->xdp_rxq = clone->xdp_rxq; 15880 15881 bnxt_copy_rx_ring(bp, rxr, clone); 15882 15883 bnapi = rxr->bnapi; 15884 cpr = &bnapi->cp_ring; 15885 15886 /* All rings have been reserved and previously allocated. 15887 * Reallocating with the same parameters should never fail. 15888 */ 15889 rc = bnxt_hwrm_rx_ring_alloc(bp, rxr); 15890 if (rc) 15891 goto err_reset; 15892 15893 if (bp->tph_mode) { 15894 rc = bnxt_hwrm_cp_ring_alloc_p5(bp, rxr->rx_cpr); 15895 if (rc) 15896 goto err_reset; 15897 } 15898 15899 rc = bnxt_hwrm_rx_agg_ring_alloc(bp, rxr); 15900 if (rc) 15901 goto err_reset; 15902 15903 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 15904 if (bp->flags & BNXT_FLAG_AGG_RINGS) 15905 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 15906 15907 if (bp->flags & BNXT_FLAG_SHARED_RINGS) { 15908 rc = bnxt_tx_queue_start(bp, idx); 15909 if (rc) 15910 goto err_reset; 15911 } 15912 15913 napi_enable_locked(&bnapi->napi); 15914 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 15915 15916 for (i = 0; i < bp->nr_vnics; i++) { 15917 vnic = &bp->vnic_info[i]; 15918 15919 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic, true); 15920 if (rc) { 15921 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 15922 vnic->vnic_id, rc); 15923 return rc; 15924 } 15925 vnic->mru = bp->dev->mtu + ETH_HLEN + VLAN_HLEN; 15926 bnxt_hwrm_vnic_update(bp, vnic, 15927 VNIC_UPDATE_REQ_ENABLES_MRU_VALID); 15928 } 15929 15930 return 0; 15931 15932 err_reset: 15933 netdev_err(bp->dev, "Unexpected HWRM error during queue start rc: %d\n", 15934 rc); 15935 napi_enable_locked(&bnapi->napi); 15936 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 15937 bnxt_reset_task(bp, true); 15938 return rc; 15939 } 15940 15941 static int bnxt_queue_stop(struct net_device *dev, void *qmem, int idx) 15942 { 15943 struct bnxt *bp = netdev_priv(dev); 15944 struct bnxt_rx_ring_info *rxr; 15945 struct bnxt_cp_ring_info *cpr; 15946 struct bnxt_vnic_info *vnic; 15947 struct bnxt_napi *bnapi; 15948 int i; 15949 15950 for (i = 0; i < bp->nr_vnics; i++) { 15951 vnic = &bp->vnic_info[i]; 15952 vnic->mru = 0; 15953 bnxt_hwrm_vnic_update(bp, vnic, 15954 VNIC_UPDATE_REQ_ENABLES_MRU_VALID); 15955 } 15956 /* Make sure NAPI sees that the VNIC is disabled */ 15957 synchronize_net(); 15958 rxr = &bp->rx_ring[idx]; 15959 bnapi = rxr->bnapi; 15960 cpr = &bnapi->cp_ring; 15961 cancel_work_sync(&cpr->dim.work); 15962 bnxt_hwrm_rx_ring_free(bp, rxr, false); 15963 bnxt_hwrm_rx_agg_ring_free(bp, rxr, false); 15964 page_pool_disable_direct_recycling(rxr->page_pool); 15965 if (bnxt_separate_head_pool()) 15966 page_pool_disable_direct_recycling(rxr->head_pool); 15967 15968 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 15969 bnxt_tx_queue_stop(bp, idx); 15970 15971 /* Disable NAPI now after freeing the rings because HWRM_RING_FREE 15972 * completion is handled in NAPI to guarantee no more DMA on that ring 15973 * after seeing the completion. 15974 */ 15975 napi_disable_locked(&bnapi->napi); 15976 15977 if (bp->tph_mode) { 15978 bnxt_hwrm_cp_ring_free(bp, rxr->rx_cpr); 15979 bnxt_clear_one_cp_ring(bp, rxr->rx_cpr); 15980 } 15981 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 15982 15983 memcpy(qmem, rxr, sizeof(*rxr)); 15984 bnxt_init_rx_ring_struct(bp, qmem); 15985 15986 return 0; 15987 } 15988 15989 static const struct netdev_queue_mgmt_ops bnxt_queue_mgmt_ops = { 15990 .ndo_queue_mem_size = sizeof(struct bnxt_rx_ring_info), 15991 .ndo_queue_mem_alloc = bnxt_queue_mem_alloc, 15992 .ndo_queue_mem_free = bnxt_queue_mem_free, 15993 .ndo_queue_start = bnxt_queue_start, 15994 .ndo_queue_stop = bnxt_queue_stop, 15995 }; 15996 15997 static void bnxt_remove_one(struct pci_dev *pdev) 15998 { 15999 struct net_device *dev = pci_get_drvdata(pdev); 16000 struct bnxt *bp = netdev_priv(dev); 16001 16002 if (BNXT_PF(bp)) 16003 bnxt_sriov_disable(bp); 16004 16005 bnxt_rdma_aux_device_del(bp); 16006 16007 bnxt_ptp_clear(bp); 16008 unregister_netdev(dev); 16009 16010 bnxt_rdma_aux_device_uninit(bp); 16011 16012 bnxt_free_l2_filters(bp, true); 16013 bnxt_free_ntp_fltrs(bp, true); 16014 WARN_ON(bp->num_rss_ctx); 16015 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 16016 /* Flush any pending tasks */ 16017 cancel_work_sync(&bp->sp_task); 16018 cancel_delayed_work_sync(&bp->fw_reset_task); 16019 bp->sp_event = 0; 16020 16021 bnxt_dl_fw_reporters_destroy(bp); 16022 bnxt_dl_unregister(bp); 16023 bnxt_shutdown_tc(bp); 16024 16025 bnxt_clear_int_mode(bp); 16026 bnxt_hwrm_func_drv_unrgtr(bp); 16027 bnxt_free_hwrm_resources(bp); 16028 bnxt_hwmon_uninit(bp); 16029 bnxt_ethtool_free(bp); 16030 bnxt_dcb_free(bp); 16031 kfree(bp->ptp_cfg); 16032 bp->ptp_cfg = NULL; 16033 kfree(bp->fw_health); 16034 bp->fw_health = NULL; 16035 bnxt_cleanup_pci(bp); 16036 bnxt_free_ctx_mem(bp, true); 16037 bnxt_free_crash_dump_mem(bp); 16038 kfree(bp->rss_indir_tbl); 16039 bp->rss_indir_tbl = NULL; 16040 bnxt_free_port_stats(bp); 16041 free_netdev(dev); 16042 } 16043 16044 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 16045 { 16046 int rc = 0; 16047 struct bnxt_link_info *link_info = &bp->link_info; 16048 16049 bp->phy_flags = 0; 16050 rc = bnxt_hwrm_phy_qcaps(bp); 16051 if (rc) { 16052 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 16053 rc); 16054 return rc; 16055 } 16056 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 16057 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 16058 else 16059 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 16060 16061 bp->mac_flags = 0; 16062 bnxt_hwrm_mac_qcaps(bp); 16063 16064 if (!fw_dflt) 16065 return 0; 16066 16067 mutex_lock(&bp->link_lock); 16068 rc = bnxt_update_link(bp, false); 16069 if (rc) { 16070 mutex_unlock(&bp->link_lock); 16071 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 16072 rc); 16073 return rc; 16074 } 16075 16076 /* Older firmware does not have supported_auto_speeds, so assume 16077 * that all supported speeds can be autonegotiated. 16078 */ 16079 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 16080 link_info->support_auto_speeds = link_info->support_speeds; 16081 16082 bnxt_init_ethtool_link_settings(bp); 16083 mutex_unlock(&bp->link_lock); 16084 return 0; 16085 } 16086 16087 static int bnxt_get_max_irq(struct pci_dev *pdev) 16088 { 16089 u16 ctrl; 16090 16091 if (!pdev->msix_cap) 16092 return 1; 16093 16094 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 16095 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 16096 } 16097 16098 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 16099 int *max_cp) 16100 { 16101 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 16102 int max_ring_grps = 0, max_irq; 16103 16104 *max_tx = hw_resc->max_tx_rings; 16105 *max_rx = hw_resc->max_rx_rings; 16106 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 16107 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 16108 bnxt_get_ulp_msix_num_in_use(bp), 16109 hw_resc->max_stat_ctxs - 16110 bnxt_get_ulp_stat_ctxs_in_use(bp)); 16111 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 16112 *max_cp = min_t(int, *max_cp, max_irq); 16113 max_ring_grps = hw_resc->max_hw_ring_grps; 16114 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 16115 *max_cp -= 1; 16116 *max_rx -= 2; 16117 } 16118 if (bp->flags & BNXT_FLAG_AGG_RINGS) 16119 *max_rx >>= 1; 16120 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 16121 int rc; 16122 16123 rc = __bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 16124 if (rc) { 16125 *max_rx = 0; 16126 *max_tx = 0; 16127 } 16128 /* On P5 chips, max_cp output param should be available NQs */ 16129 *max_cp = max_irq; 16130 } 16131 *max_rx = min_t(int, *max_rx, max_ring_grps); 16132 } 16133 16134 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 16135 { 16136 int rx, tx, cp; 16137 16138 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 16139 *max_rx = rx; 16140 *max_tx = tx; 16141 if (!rx || !tx || !cp) 16142 return -ENOMEM; 16143 16144 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 16145 } 16146 16147 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 16148 bool shared) 16149 { 16150 int rc; 16151 16152 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 16153 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 16154 /* Not enough rings, try disabling agg rings. */ 16155 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 16156 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 16157 if (rc) { 16158 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 16159 bp->flags |= BNXT_FLAG_AGG_RINGS; 16160 return rc; 16161 } 16162 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 16163 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 16164 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 16165 bnxt_set_ring_params(bp); 16166 } 16167 16168 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 16169 int max_cp, max_stat, max_irq; 16170 16171 /* Reserve minimum resources for RoCE */ 16172 max_cp = bnxt_get_max_func_cp_rings(bp); 16173 max_stat = bnxt_get_max_func_stat_ctxs(bp); 16174 max_irq = bnxt_get_max_func_irqs(bp); 16175 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 16176 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 16177 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 16178 return 0; 16179 16180 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 16181 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 16182 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 16183 max_cp = min_t(int, max_cp, max_irq); 16184 max_cp = min_t(int, max_cp, max_stat); 16185 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 16186 if (rc) 16187 rc = 0; 16188 } 16189 return rc; 16190 } 16191 16192 /* In initial default shared ring setting, each shared ring must have a 16193 * RX/TX ring pair. 16194 */ 16195 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 16196 { 16197 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 16198 bp->rx_nr_rings = bp->cp_nr_rings; 16199 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 16200 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 16201 } 16202 16203 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 16204 { 16205 int dflt_rings, max_rx_rings, max_tx_rings, rc; 16206 int avail_msix; 16207 16208 if (!bnxt_can_reserve_rings(bp)) 16209 return 0; 16210 16211 if (sh) 16212 bp->flags |= BNXT_FLAG_SHARED_RINGS; 16213 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 16214 /* Reduce default rings on multi-port cards so that total default 16215 * rings do not exceed CPU count. 16216 */ 16217 if (bp->port_count > 1) { 16218 int max_rings = 16219 max_t(int, num_online_cpus() / bp->port_count, 1); 16220 16221 dflt_rings = min_t(int, dflt_rings, max_rings); 16222 } 16223 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 16224 if (rc) 16225 return rc; 16226 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 16227 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 16228 if (sh) 16229 bnxt_trim_dflt_sh_rings(bp); 16230 else 16231 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 16232 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 16233 16234 avail_msix = bnxt_get_max_func_irqs(bp) - bp->cp_nr_rings; 16235 if (avail_msix >= BNXT_MIN_ROCE_CP_RINGS) { 16236 int ulp_num_msix = min(avail_msix, bp->ulp_num_msix_want); 16237 16238 bnxt_set_ulp_msix_num(bp, ulp_num_msix); 16239 bnxt_set_dflt_ulp_stat_ctxs(bp); 16240 } 16241 16242 rc = __bnxt_reserve_rings(bp); 16243 if (rc && rc != -ENODEV) 16244 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 16245 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 16246 if (sh) 16247 bnxt_trim_dflt_sh_rings(bp); 16248 16249 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 16250 if (bnxt_need_reserve_rings(bp)) { 16251 rc = __bnxt_reserve_rings(bp); 16252 if (rc && rc != -ENODEV) 16253 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 16254 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 16255 } 16256 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 16257 bp->rx_nr_rings++; 16258 bp->cp_nr_rings++; 16259 } 16260 if (rc) { 16261 bp->tx_nr_rings = 0; 16262 bp->rx_nr_rings = 0; 16263 } 16264 return rc; 16265 } 16266 16267 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 16268 { 16269 int rc; 16270 16271 if (bp->tx_nr_rings) 16272 return 0; 16273 16274 bnxt_ulp_irq_stop(bp); 16275 bnxt_clear_int_mode(bp); 16276 rc = bnxt_set_dflt_rings(bp, true); 16277 if (rc) { 16278 if (BNXT_VF(bp) && rc == -ENODEV) 16279 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 16280 else 16281 netdev_err(bp->dev, "Not enough rings available.\n"); 16282 goto init_dflt_ring_err; 16283 } 16284 rc = bnxt_init_int_mode(bp); 16285 if (rc) 16286 goto init_dflt_ring_err; 16287 16288 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 16289 16290 bnxt_set_dflt_rfs(bp); 16291 16292 init_dflt_ring_err: 16293 bnxt_ulp_irq_restart(bp, rc); 16294 return rc; 16295 } 16296 16297 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 16298 { 16299 int rc; 16300 16301 netdev_ops_assert_locked(bp->dev); 16302 bnxt_hwrm_func_qcaps(bp); 16303 16304 if (netif_running(bp->dev)) 16305 __bnxt_close_nic(bp, true, false); 16306 16307 bnxt_ulp_irq_stop(bp); 16308 bnxt_clear_int_mode(bp); 16309 rc = bnxt_init_int_mode(bp); 16310 bnxt_ulp_irq_restart(bp, rc); 16311 16312 if (netif_running(bp->dev)) { 16313 if (rc) 16314 netif_close(bp->dev); 16315 else 16316 rc = bnxt_open_nic(bp, true, false); 16317 } 16318 16319 return rc; 16320 } 16321 16322 static int bnxt_init_mac_addr(struct bnxt *bp) 16323 { 16324 int rc = 0; 16325 16326 if (BNXT_PF(bp)) { 16327 eth_hw_addr_set(bp->dev, bp->pf.mac_addr); 16328 } else { 16329 #ifdef CONFIG_BNXT_SRIOV 16330 struct bnxt_vf_info *vf = &bp->vf; 16331 bool strict_approval = true; 16332 16333 if (is_valid_ether_addr(vf->mac_addr)) { 16334 /* overwrite netdev dev_addr with admin VF MAC */ 16335 eth_hw_addr_set(bp->dev, vf->mac_addr); 16336 /* Older PF driver or firmware may not approve this 16337 * correctly. 16338 */ 16339 strict_approval = false; 16340 } else { 16341 eth_hw_addr_random(bp->dev); 16342 } 16343 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 16344 #endif 16345 } 16346 return rc; 16347 } 16348 16349 static void bnxt_vpd_read_info(struct bnxt *bp) 16350 { 16351 struct pci_dev *pdev = bp->pdev; 16352 unsigned int vpd_size, kw_len; 16353 int pos, size; 16354 u8 *vpd_data; 16355 16356 vpd_data = pci_vpd_alloc(pdev, &vpd_size); 16357 if (IS_ERR(vpd_data)) { 16358 pci_warn(pdev, "Unable to read VPD\n"); 16359 return; 16360 } 16361 16362 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 16363 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); 16364 if (pos < 0) 16365 goto read_sn; 16366 16367 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 16368 memcpy(bp->board_partno, &vpd_data[pos], size); 16369 16370 read_sn: 16371 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 16372 PCI_VPD_RO_KEYWORD_SERIALNO, 16373 &kw_len); 16374 if (pos < 0) 16375 goto exit; 16376 16377 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 16378 memcpy(bp->board_serialno, &vpd_data[pos], size); 16379 exit: 16380 kfree(vpd_data); 16381 } 16382 16383 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 16384 { 16385 struct pci_dev *pdev = bp->pdev; 16386 u64 qword; 16387 16388 qword = pci_get_dsn(pdev); 16389 if (!qword) { 16390 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 16391 return -EOPNOTSUPP; 16392 } 16393 16394 put_unaligned_le64(qword, dsn); 16395 16396 bp->flags |= BNXT_FLAG_DSN_VALID; 16397 return 0; 16398 } 16399 16400 static int bnxt_map_db_bar(struct bnxt *bp) 16401 { 16402 if (!bp->db_size) 16403 return -ENODEV; 16404 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 16405 if (!bp->bar1) 16406 return -ENOMEM; 16407 return 0; 16408 } 16409 16410 void bnxt_print_device_info(struct bnxt *bp) 16411 { 16412 netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n", 16413 board_info[bp->board_idx].name, 16414 (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr); 16415 16416 pcie_print_link_status(bp->pdev); 16417 } 16418 16419 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 16420 { 16421 struct bnxt_hw_resc *hw_resc; 16422 struct net_device *dev; 16423 struct bnxt *bp; 16424 int rc, max_irqs; 16425 16426 if (pci_is_bridge(pdev)) 16427 return -ENODEV; 16428 16429 if (!pdev->msix_cap) { 16430 dev_err(&pdev->dev, "MSIX capability not found, aborting\n"); 16431 return -ENODEV; 16432 } 16433 16434 /* Clear any pending DMA transactions from crash kernel 16435 * while loading driver in capture kernel. 16436 */ 16437 if (is_kdump_kernel()) { 16438 pci_clear_master(pdev); 16439 pcie_flr(pdev); 16440 } 16441 16442 max_irqs = bnxt_get_max_irq(pdev); 16443 dev = alloc_etherdev_mqs(sizeof(*bp), max_irqs * BNXT_MAX_QUEUE, 16444 max_irqs); 16445 if (!dev) 16446 return -ENOMEM; 16447 16448 bp = netdev_priv(dev); 16449 bp->board_idx = ent->driver_data; 16450 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 16451 bnxt_set_max_func_irqs(bp, max_irqs); 16452 16453 if (bnxt_vf_pciid(bp->board_idx)) 16454 bp->flags |= BNXT_FLAG_VF; 16455 16456 /* No devlink port registration in case of a VF */ 16457 if (BNXT_PF(bp)) 16458 SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port); 16459 16460 rc = bnxt_init_board(pdev, dev); 16461 if (rc < 0) 16462 goto init_err_free; 16463 16464 dev->netdev_ops = &bnxt_netdev_ops; 16465 dev->stat_ops = &bnxt_stat_ops; 16466 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 16467 dev->ethtool_ops = &bnxt_ethtool_ops; 16468 pci_set_drvdata(pdev, dev); 16469 16470 rc = bnxt_alloc_hwrm_resources(bp); 16471 if (rc) 16472 goto init_err_pci_clean; 16473 16474 mutex_init(&bp->hwrm_cmd_lock); 16475 mutex_init(&bp->link_lock); 16476 16477 rc = bnxt_fw_init_one_p1(bp); 16478 if (rc) 16479 goto init_err_pci_clean; 16480 16481 if (BNXT_PF(bp)) 16482 bnxt_vpd_read_info(bp); 16483 16484 if (BNXT_CHIP_P5_PLUS(bp)) { 16485 bp->flags |= BNXT_FLAG_CHIP_P5_PLUS; 16486 if (BNXT_CHIP_P7(bp)) 16487 bp->flags |= BNXT_FLAG_CHIP_P7; 16488 } 16489 16490 rc = bnxt_alloc_rss_indir_tbl(bp); 16491 if (rc) 16492 goto init_err_pci_clean; 16493 16494 rc = bnxt_fw_init_one_p2(bp); 16495 if (rc) 16496 goto init_err_pci_clean; 16497 16498 rc = bnxt_map_db_bar(bp); 16499 if (rc) { 16500 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 16501 rc); 16502 goto init_err_pci_clean; 16503 } 16504 16505 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 16506 NETIF_F_TSO | NETIF_F_TSO6 | 16507 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 16508 NETIF_F_GSO_IPXIP4 | 16509 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 16510 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 16511 NETIF_F_RXCSUM | NETIF_F_GRO; 16512 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 16513 dev->hw_features |= NETIF_F_GSO_UDP_L4; 16514 16515 if (BNXT_SUPPORTS_TPA(bp)) 16516 dev->hw_features |= NETIF_F_LRO; 16517 16518 dev->hw_enc_features = 16519 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 16520 NETIF_F_TSO | NETIF_F_TSO6 | 16521 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 16522 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 16523 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 16524 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 16525 dev->hw_enc_features |= NETIF_F_GSO_UDP_L4; 16526 if (bp->flags & BNXT_FLAG_CHIP_P7) 16527 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels_p7; 16528 else 16529 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 16530 16531 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 16532 NETIF_F_GSO_GRE_CSUM; 16533 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 16534 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 16535 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 16536 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 16537 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 16538 if (BNXT_SUPPORTS_TPA(bp)) 16539 dev->hw_features |= NETIF_F_GRO_HW; 16540 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 16541 if (dev->features & NETIF_F_GRO_HW) 16542 dev->features &= ~NETIF_F_LRO; 16543 dev->priv_flags |= IFF_UNICAST_FLT; 16544 16545 netif_set_tso_max_size(dev, GSO_MAX_SIZE); 16546 if (bp->tso_max_segs) 16547 netif_set_tso_max_segs(dev, bp->tso_max_segs); 16548 16549 dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 16550 NETDEV_XDP_ACT_RX_SG; 16551 16552 #ifdef CONFIG_BNXT_SRIOV 16553 init_waitqueue_head(&bp->sriov_cfg_wait); 16554 #endif 16555 if (BNXT_SUPPORTS_TPA(bp)) { 16556 bp->gro_func = bnxt_gro_func_5730x; 16557 if (BNXT_CHIP_P4(bp)) 16558 bp->gro_func = bnxt_gro_func_5731x; 16559 else if (BNXT_CHIP_P5_PLUS(bp)) 16560 bp->gro_func = bnxt_gro_func_5750x; 16561 } 16562 if (!BNXT_CHIP_P4_PLUS(bp)) 16563 bp->flags |= BNXT_FLAG_DOUBLE_DB; 16564 16565 rc = bnxt_init_mac_addr(bp); 16566 if (rc) { 16567 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 16568 rc = -EADDRNOTAVAIL; 16569 goto init_err_pci_clean; 16570 } 16571 16572 if (BNXT_PF(bp)) { 16573 /* Read the adapter's DSN to use as the eswitch switch_id */ 16574 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 16575 } 16576 16577 /* MTU range: 60 - FW defined max */ 16578 dev->min_mtu = ETH_ZLEN; 16579 dev->max_mtu = bp->max_mtu; 16580 16581 rc = bnxt_probe_phy(bp, true); 16582 if (rc) 16583 goto init_err_pci_clean; 16584 16585 hw_resc = &bp->hw_resc; 16586 bp->max_fltr = hw_resc->max_rx_em_flows + hw_resc->max_rx_wm_flows + 16587 BNXT_L2_FLTR_MAX_FLTR; 16588 /* Older firmware may not report these filters properly */ 16589 if (bp->max_fltr < BNXT_MAX_FLTR) 16590 bp->max_fltr = BNXT_MAX_FLTR; 16591 bnxt_init_l2_fltr_tbl(bp); 16592 __bnxt_set_rx_skb_mode(bp, false); 16593 bnxt_set_tpa_flags(bp); 16594 bnxt_init_ring_params(bp); 16595 bnxt_set_ring_params(bp); 16596 bnxt_rdma_aux_device_init(bp); 16597 rc = bnxt_set_dflt_rings(bp, true); 16598 if (rc) { 16599 if (BNXT_VF(bp) && rc == -ENODEV) { 16600 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 16601 } else { 16602 netdev_err(bp->dev, "Not enough rings available.\n"); 16603 rc = -ENOMEM; 16604 } 16605 goto init_err_pci_clean; 16606 } 16607 16608 bnxt_fw_init_one_p3(bp); 16609 16610 bnxt_init_dflt_coal(bp); 16611 16612 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 16613 bp->flags |= BNXT_FLAG_STRIP_VLAN; 16614 16615 rc = bnxt_init_int_mode(bp); 16616 if (rc) 16617 goto init_err_pci_clean; 16618 16619 /* No TC has been set yet and rings may have been trimmed due to 16620 * limited MSIX, so we re-initialize the TX rings per TC. 16621 */ 16622 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 16623 16624 if (BNXT_PF(bp)) { 16625 if (!bnxt_pf_wq) { 16626 bnxt_pf_wq = 16627 create_singlethread_workqueue("bnxt_pf_wq"); 16628 if (!bnxt_pf_wq) { 16629 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 16630 rc = -ENOMEM; 16631 goto init_err_pci_clean; 16632 } 16633 } 16634 rc = bnxt_init_tc(bp); 16635 if (rc) 16636 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 16637 rc); 16638 } 16639 16640 bnxt_inv_fw_health_reg(bp); 16641 rc = bnxt_dl_register(bp); 16642 if (rc) 16643 goto init_err_dl; 16644 16645 INIT_LIST_HEAD(&bp->usr_fltr_list); 16646 16647 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 16648 bp->rss_cap |= BNXT_RSS_CAP_MULTI_RSS_CTX; 16649 if (BNXT_SUPPORTS_QUEUE_API(bp)) 16650 dev->queue_mgmt_ops = &bnxt_queue_mgmt_ops; 16651 dev->request_ops_lock = true; 16652 16653 rc = register_netdev(dev); 16654 if (rc) 16655 goto init_err_cleanup; 16656 16657 bnxt_dl_fw_reporters_create(bp); 16658 16659 bnxt_rdma_aux_device_add(bp); 16660 16661 bnxt_print_device_info(bp); 16662 16663 pci_save_state(pdev); 16664 16665 return 0; 16666 init_err_cleanup: 16667 bnxt_rdma_aux_device_uninit(bp); 16668 bnxt_dl_unregister(bp); 16669 init_err_dl: 16670 bnxt_shutdown_tc(bp); 16671 bnxt_clear_int_mode(bp); 16672 16673 init_err_pci_clean: 16674 bnxt_hwrm_func_drv_unrgtr(bp); 16675 bnxt_free_hwrm_resources(bp); 16676 bnxt_hwmon_uninit(bp); 16677 bnxt_ethtool_free(bp); 16678 bnxt_ptp_clear(bp); 16679 kfree(bp->ptp_cfg); 16680 bp->ptp_cfg = NULL; 16681 kfree(bp->fw_health); 16682 bp->fw_health = NULL; 16683 bnxt_cleanup_pci(bp); 16684 bnxt_free_ctx_mem(bp, true); 16685 bnxt_free_crash_dump_mem(bp); 16686 kfree(bp->rss_indir_tbl); 16687 bp->rss_indir_tbl = NULL; 16688 16689 init_err_free: 16690 free_netdev(dev); 16691 return rc; 16692 } 16693 16694 static void bnxt_shutdown(struct pci_dev *pdev) 16695 { 16696 struct net_device *dev = pci_get_drvdata(pdev); 16697 struct bnxt *bp; 16698 16699 if (!dev) 16700 return; 16701 16702 rtnl_lock(); 16703 netdev_lock(dev); 16704 bp = netdev_priv(dev); 16705 if (!bp) 16706 goto shutdown_exit; 16707 16708 if (netif_running(dev)) 16709 netif_close(dev); 16710 16711 bnxt_ptp_clear(bp); 16712 bnxt_clear_int_mode(bp); 16713 pci_disable_device(pdev); 16714 16715 if (system_state == SYSTEM_POWER_OFF) { 16716 pci_wake_from_d3(pdev, bp->wol); 16717 pci_set_power_state(pdev, PCI_D3hot); 16718 } 16719 16720 shutdown_exit: 16721 netdev_unlock(dev); 16722 rtnl_unlock(); 16723 } 16724 16725 #ifdef CONFIG_PM_SLEEP 16726 static int bnxt_suspend(struct device *device) 16727 { 16728 struct net_device *dev = dev_get_drvdata(device); 16729 struct bnxt *bp = netdev_priv(dev); 16730 int rc = 0; 16731 16732 bnxt_ulp_stop(bp); 16733 16734 netdev_lock(dev); 16735 if (netif_running(dev)) { 16736 netif_device_detach(dev); 16737 rc = bnxt_close(dev); 16738 } 16739 bnxt_hwrm_func_drv_unrgtr(bp); 16740 bnxt_ptp_clear(bp); 16741 pci_disable_device(bp->pdev); 16742 bnxt_free_ctx_mem(bp, false); 16743 netdev_unlock(dev); 16744 return rc; 16745 } 16746 16747 static int bnxt_resume(struct device *device) 16748 { 16749 struct net_device *dev = dev_get_drvdata(device); 16750 struct bnxt *bp = netdev_priv(dev); 16751 int rc = 0; 16752 16753 netdev_lock(dev); 16754 rc = pci_enable_device(bp->pdev); 16755 if (rc) { 16756 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 16757 rc); 16758 goto resume_exit; 16759 } 16760 pci_set_master(bp->pdev); 16761 if (bnxt_hwrm_ver_get(bp)) { 16762 rc = -ENODEV; 16763 goto resume_exit; 16764 } 16765 rc = bnxt_hwrm_func_reset(bp); 16766 if (rc) { 16767 rc = -EBUSY; 16768 goto resume_exit; 16769 } 16770 16771 rc = bnxt_hwrm_func_qcaps(bp); 16772 if (rc) 16773 goto resume_exit; 16774 16775 bnxt_clear_reservations(bp, true); 16776 16777 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 16778 rc = -ENODEV; 16779 goto resume_exit; 16780 } 16781 if (bp->fw_crash_mem) 16782 bnxt_hwrm_crash_dump_mem_cfg(bp); 16783 16784 if (bnxt_ptp_init(bp)) { 16785 kfree(bp->ptp_cfg); 16786 bp->ptp_cfg = NULL; 16787 } 16788 bnxt_get_wol_settings(bp); 16789 if (netif_running(dev)) { 16790 rc = bnxt_open(dev); 16791 if (!rc) 16792 netif_device_attach(dev); 16793 } 16794 16795 resume_exit: 16796 netdev_unlock(bp->dev); 16797 bnxt_ulp_start(bp, rc); 16798 if (!rc) 16799 bnxt_reenable_sriov(bp); 16800 return rc; 16801 } 16802 16803 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 16804 #define BNXT_PM_OPS (&bnxt_pm_ops) 16805 16806 #else 16807 16808 #define BNXT_PM_OPS NULL 16809 16810 #endif /* CONFIG_PM_SLEEP */ 16811 16812 /** 16813 * bnxt_io_error_detected - called when PCI error is detected 16814 * @pdev: Pointer to PCI device 16815 * @state: The current pci connection state 16816 * 16817 * This function is called after a PCI bus error affecting 16818 * this device has been detected. 16819 */ 16820 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 16821 pci_channel_state_t state) 16822 { 16823 struct net_device *netdev = pci_get_drvdata(pdev); 16824 struct bnxt *bp = netdev_priv(netdev); 16825 bool abort = false; 16826 16827 netdev_info(netdev, "PCI I/O error detected\n"); 16828 16829 bnxt_ulp_stop(bp); 16830 16831 netdev_lock(netdev); 16832 netif_device_detach(netdev); 16833 16834 if (test_and_set_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 16835 netdev_err(bp->dev, "Firmware reset already in progress\n"); 16836 abort = true; 16837 } 16838 16839 if (abort || state == pci_channel_io_perm_failure) { 16840 netdev_unlock(netdev); 16841 return PCI_ERS_RESULT_DISCONNECT; 16842 } 16843 16844 /* Link is not reliable anymore if state is pci_channel_io_frozen 16845 * so we disable bus master to prevent any potential bad DMAs before 16846 * freeing kernel memory. 16847 */ 16848 if (state == pci_channel_io_frozen) { 16849 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 16850 bnxt_fw_fatal_close(bp); 16851 } 16852 16853 if (netif_running(netdev)) 16854 __bnxt_close_nic(bp, true, true); 16855 16856 if (pci_is_enabled(pdev)) 16857 pci_disable_device(pdev); 16858 bnxt_free_ctx_mem(bp, false); 16859 netdev_unlock(netdev); 16860 16861 /* Request a slot slot reset. */ 16862 return PCI_ERS_RESULT_NEED_RESET; 16863 } 16864 16865 /** 16866 * bnxt_io_slot_reset - called after the pci bus has been reset. 16867 * @pdev: Pointer to PCI device 16868 * 16869 * Restart the card from scratch, as if from a cold-boot. 16870 * At this point, the card has experienced a hard reset, 16871 * followed by fixups by BIOS, and has its config space 16872 * set up identically to what it was at cold boot. 16873 */ 16874 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 16875 { 16876 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 16877 struct net_device *netdev = pci_get_drvdata(pdev); 16878 struct bnxt *bp = netdev_priv(netdev); 16879 int retry = 0; 16880 int err = 0; 16881 int off; 16882 16883 netdev_info(bp->dev, "PCI Slot Reset\n"); 16884 16885 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 16886 test_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state)) 16887 msleep(900); 16888 16889 netdev_lock(netdev); 16890 16891 if (pci_enable_device(pdev)) { 16892 dev_err(&pdev->dev, 16893 "Cannot re-enable PCI device after reset.\n"); 16894 } else { 16895 pci_set_master(pdev); 16896 /* Upon fatal error, our device internal logic that latches to 16897 * BAR value is getting reset and will restore only upon 16898 * rewriting the BARs. 16899 * 16900 * As pci_restore_state() does not re-write the BARs if the 16901 * value is same as saved value earlier, driver needs to 16902 * write the BARs to 0 to force restore, in case of fatal error. 16903 */ 16904 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 16905 &bp->state)) { 16906 for (off = PCI_BASE_ADDRESS_0; 16907 off <= PCI_BASE_ADDRESS_5; off += 4) 16908 pci_write_config_dword(bp->pdev, off, 0); 16909 } 16910 pci_restore_state(pdev); 16911 pci_save_state(pdev); 16912 16913 bnxt_inv_fw_health_reg(bp); 16914 bnxt_try_map_fw_health_reg(bp); 16915 16916 /* In some PCIe AER scenarios, firmware may take up to 16917 * 10 seconds to become ready in the worst case. 16918 */ 16919 do { 16920 err = bnxt_try_recover_fw(bp); 16921 if (!err) 16922 break; 16923 retry++; 16924 } while (retry < BNXT_FW_SLOT_RESET_RETRY); 16925 16926 if (err) { 16927 dev_err(&pdev->dev, "Firmware not ready\n"); 16928 goto reset_exit; 16929 } 16930 16931 err = bnxt_hwrm_func_reset(bp); 16932 if (!err) 16933 result = PCI_ERS_RESULT_RECOVERED; 16934 16935 bnxt_ulp_irq_stop(bp); 16936 bnxt_clear_int_mode(bp); 16937 err = bnxt_init_int_mode(bp); 16938 bnxt_ulp_irq_restart(bp, err); 16939 } 16940 16941 reset_exit: 16942 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 16943 bnxt_clear_reservations(bp, true); 16944 netdev_unlock(netdev); 16945 16946 return result; 16947 } 16948 16949 /** 16950 * bnxt_io_resume - called when traffic can start flowing again. 16951 * @pdev: Pointer to PCI device 16952 * 16953 * This callback is called when the error recovery driver tells 16954 * us that its OK to resume normal operation. 16955 */ 16956 static void bnxt_io_resume(struct pci_dev *pdev) 16957 { 16958 struct net_device *netdev = pci_get_drvdata(pdev); 16959 struct bnxt *bp = netdev_priv(netdev); 16960 int err; 16961 16962 netdev_info(bp->dev, "PCI Slot Resume\n"); 16963 netdev_lock(netdev); 16964 16965 err = bnxt_hwrm_func_qcaps(bp); 16966 if (!err) { 16967 if (netif_running(netdev)) 16968 err = bnxt_open(netdev); 16969 else 16970 err = bnxt_reserve_rings(bp, true); 16971 } 16972 16973 if (!err) 16974 netif_device_attach(netdev); 16975 16976 netdev_unlock(netdev); 16977 bnxt_ulp_start(bp, err); 16978 if (!err) 16979 bnxt_reenable_sriov(bp); 16980 } 16981 16982 static const struct pci_error_handlers bnxt_err_handler = { 16983 .error_detected = bnxt_io_error_detected, 16984 .slot_reset = bnxt_io_slot_reset, 16985 .resume = bnxt_io_resume 16986 }; 16987 16988 static struct pci_driver bnxt_pci_driver = { 16989 .name = DRV_MODULE_NAME, 16990 .id_table = bnxt_pci_tbl, 16991 .probe = bnxt_init_one, 16992 .remove = bnxt_remove_one, 16993 .shutdown = bnxt_shutdown, 16994 .driver.pm = BNXT_PM_OPS, 16995 .err_handler = &bnxt_err_handler, 16996 #if defined(CONFIG_BNXT_SRIOV) 16997 .sriov_configure = bnxt_sriov_configure, 16998 #endif 16999 }; 17000 17001 static int __init bnxt_init(void) 17002 { 17003 int err; 17004 17005 bnxt_debug_init(); 17006 err = pci_register_driver(&bnxt_pci_driver); 17007 if (err) { 17008 bnxt_debug_exit(); 17009 return err; 17010 } 17011 17012 return 0; 17013 } 17014 17015 static void __exit bnxt_exit(void) 17016 { 17017 pci_unregister_driver(&bnxt_pci_driver); 17018 if (bnxt_pf_wq) 17019 destroy_workqueue(bnxt_pf_wq); 17020 bnxt_debug_exit(); 17021 } 17022 17023 module_init(bnxt_init); 17024 module_exit(bnxt_exit); 17025