xref: /linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision 4cde72fead4cebb5b6b2fe9425904c2064739184)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/gro.h>
41 #include <net/ip.h>
42 #include <net/tcp.h>
43 #include <net/udp.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 #include <net/udp_tunnel.h>
47 #include <linux/workqueue.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/log2.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <net/page_pool/helpers.h>
56 #include <linux/align.h>
57 #include <net/netdev_queues.h>
58 
59 #include "bnxt_hsi.h"
60 #include "bnxt.h"
61 #include "bnxt_hwrm.h"
62 #include "bnxt_ulp.h"
63 #include "bnxt_sriov.h"
64 #include "bnxt_ethtool.h"
65 #include "bnxt_dcb.h"
66 #include "bnxt_xdp.h"
67 #include "bnxt_ptp.h"
68 #include "bnxt_vfr.h"
69 #include "bnxt_tc.h"
70 #include "bnxt_devlink.h"
71 #include "bnxt_debugfs.h"
72 #include "bnxt_hwmon.h"
73 
74 #define BNXT_TX_TIMEOUT		(5 * HZ)
75 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW | \
76 				 NETIF_MSG_TX_ERR)
77 
78 MODULE_LICENSE("GPL");
79 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
80 
81 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
82 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
83 #define BNXT_RX_COPY_THRESH 256
84 
85 #define BNXT_TX_PUSH_THRESH 164
86 
87 /* indexed by enum board_idx */
88 static const struct {
89 	char *name;
90 } board_info[] = {
91 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
92 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
93 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
94 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
95 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
96 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
97 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
98 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
99 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
100 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
101 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
102 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
103 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
104 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
105 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
106 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
107 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
108 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
109 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
110 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
111 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
112 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
113 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
114 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
115 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
116 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
117 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
118 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
119 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
120 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
121 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
122 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
123 	[BCM57608] = { "Broadcom BCM57608 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" },
124 	[BCM57604] = { "Broadcom BCM57604 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
125 	[BCM57602] = { "Broadcom BCM57602 NetXtreme-E 10Gb/25Gb/50Gb/100Gb Ethernet" },
126 	[BCM57601] = { "Broadcom BCM57601 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" },
127 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
128 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
129 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
130 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
131 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
132 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
133 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
134 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
135 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
136 	[NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
137 	[NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
138 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
139 	[NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
140 };
141 
142 static const struct pci_device_id bnxt_pci_tbl[] = {
143 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
144 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
145 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
146 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
147 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
148 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
149 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
150 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
151 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
152 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
153 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
154 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
155 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
157 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
158 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
159 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
160 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
161 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
162 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
163 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
164 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
165 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
166 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
167 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
168 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
169 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
170 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
171 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
172 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
173 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
174 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
175 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
176 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
177 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
178 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
179 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
180 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
181 	{ PCI_VDEVICE(BROADCOM, 0x1760), .driver_data = BCM57608 },
182 	{ PCI_VDEVICE(BROADCOM, 0x1761), .driver_data = BCM57604 },
183 	{ PCI_VDEVICE(BROADCOM, 0x1762), .driver_data = BCM57602 },
184 	{ PCI_VDEVICE(BROADCOM, 0x1763), .driver_data = BCM57601 },
185 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR },
186 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
187 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR },
188 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR },
189 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
190 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR },
191 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
192 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
193 #ifdef CONFIG_BNXT_SRIOV
194 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
195 	{ PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
196 	{ PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
197 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
198 	{ PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
199 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
200 	{ PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
201 	{ PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
202 	{ PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
203 	{ PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
204 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
205 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
206 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
207 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
208 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
209 	{ PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
210 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
211 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
212 	{ PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
213 	{ PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
214 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
215 #endif
216 	{ 0 }
217 };
218 
219 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
220 
221 static const u16 bnxt_vf_req_snif[] = {
222 	HWRM_FUNC_CFG,
223 	HWRM_FUNC_VF_CFG,
224 	HWRM_PORT_PHY_QCFG,
225 	HWRM_CFA_L2_FILTER_ALLOC,
226 };
227 
228 static const u16 bnxt_async_events_arr[] = {
229 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
230 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
231 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
232 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
233 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
234 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
235 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
236 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
237 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
238 	ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
239 	ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE,
240 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
241 	ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
242 	ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP,
243 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT,
244 	ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE,
245 };
246 
247 static struct workqueue_struct *bnxt_pf_wq;
248 
249 static bool bnxt_vf_pciid(enum board_idx idx)
250 {
251 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
252 		idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
253 		idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
254 		idx == NETXTREME_E_P5_VF_HV);
255 }
256 
257 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
258 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
259 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
260 
261 #define BNXT_CP_DB_IRQ_DIS(db)						\
262 		writel(DB_CP_IRQ_DIS_FLAGS, db)
263 
264 #define BNXT_DB_CQ(db, idx)						\
265 	writel(DB_CP_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell)
266 
267 #define BNXT_DB_NQ_P5(db, idx)						\
268 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | DB_RING_IDX(db, idx),\
269 		    (db)->doorbell)
270 
271 #define BNXT_DB_NQ_P7(db, idx)						\
272 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_MASK |		\
273 		    DB_RING_IDX(db, idx), (db)->doorbell)
274 
275 #define BNXT_DB_CQ_ARM(db, idx)						\
276 	writel(DB_CP_REARM_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell)
277 
278 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
279 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM |		\
280 		    DB_RING_IDX(db, idx), (db)->doorbell)
281 
282 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
283 {
284 	if (bp->flags & BNXT_FLAG_CHIP_P7)
285 		BNXT_DB_NQ_P7(db, idx);
286 	else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
287 		BNXT_DB_NQ_P5(db, idx);
288 	else
289 		BNXT_DB_CQ(db, idx);
290 }
291 
292 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
293 {
294 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
295 		BNXT_DB_NQ_ARM_P5(db, idx);
296 	else
297 		BNXT_DB_CQ_ARM(db, idx);
298 }
299 
300 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
301 {
302 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
303 		bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL |
304 			    DB_RING_IDX(db, idx), db->doorbell);
305 	else
306 		BNXT_DB_CQ(db, idx);
307 }
308 
309 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
310 {
311 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
312 		return;
313 
314 	if (BNXT_PF(bp))
315 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
316 	else
317 		schedule_delayed_work(&bp->fw_reset_task, delay);
318 }
319 
320 static void __bnxt_queue_sp_work(struct bnxt *bp)
321 {
322 	if (BNXT_PF(bp))
323 		queue_work(bnxt_pf_wq, &bp->sp_task);
324 	else
325 		schedule_work(&bp->sp_task);
326 }
327 
328 static void bnxt_queue_sp_work(struct bnxt *bp, unsigned int event)
329 {
330 	set_bit(event, &bp->sp_event);
331 	__bnxt_queue_sp_work(bp);
332 }
333 
334 static void bnxt_sched_reset_rxr(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
335 {
336 	if (!rxr->bnapi->in_reset) {
337 		rxr->bnapi->in_reset = true;
338 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
339 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
340 		else
341 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
342 		__bnxt_queue_sp_work(bp);
343 	}
344 	rxr->rx_next_cons = 0xffff;
345 }
346 
347 void bnxt_sched_reset_txr(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
348 			  u16 curr)
349 {
350 	struct bnxt_napi *bnapi = txr->bnapi;
351 
352 	if (bnapi->tx_fault)
353 		return;
354 
355 	netdev_err(bp->dev, "Invalid Tx completion (ring:%d tx_hw_cons:%u cons:%u prod:%u curr:%u)",
356 		   txr->txq_index, txr->tx_hw_cons,
357 		   txr->tx_cons, txr->tx_prod, curr);
358 	WARN_ON_ONCE(1);
359 	bnapi->tx_fault = 1;
360 	bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT);
361 }
362 
363 const u16 bnxt_lhint_arr[] = {
364 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
365 	TX_BD_FLAGS_LHINT_512_TO_1023,
366 	TX_BD_FLAGS_LHINT_1024_TO_2047,
367 	TX_BD_FLAGS_LHINT_1024_TO_2047,
368 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
369 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
370 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
371 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
372 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
373 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
374 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
375 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
376 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
377 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
378 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
379 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
380 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
381 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
382 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
383 };
384 
385 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
386 {
387 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
388 
389 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
390 		return 0;
391 
392 	return md_dst->u.port_info.port_id;
393 }
394 
395 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
396 			     u16 prod)
397 {
398 	/* Sync BD data before updating doorbell */
399 	wmb();
400 	bnxt_db_write(bp, &txr->tx_db, prod);
401 	txr->kick_pending = 0;
402 }
403 
404 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
405 {
406 	struct bnxt *bp = netdev_priv(dev);
407 	struct tx_bd *txbd, *txbd0;
408 	struct tx_bd_ext *txbd1;
409 	struct netdev_queue *txq;
410 	int i;
411 	dma_addr_t mapping;
412 	unsigned int length, pad = 0;
413 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
414 	u16 prod, last_frag;
415 	struct pci_dev *pdev = bp->pdev;
416 	struct bnxt_tx_ring_info *txr;
417 	struct bnxt_sw_tx_bd *tx_buf;
418 	__le32 lflags = 0;
419 
420 	i = skb_get_queue_mapping(skb);
421 	if (unlikely(i >= bp->tx_nr_rings)) {
422 		dev_kfree_skb_any(skb);
423 		dev_core_stats_tx_dropped_inc(dev);
424 		return NETDEV_TX_OK;
425 	}
426 
427 	txq = netdev_get_tx_queue(dev, i);
428 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
429 	prod = txr->tx_prod;
430 
431 	free_size = bnxt_tx_avail(bp, txr);
432 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
433 		/* We must have raced with NAPI cleanup */
434 		if (net_ratelimit() && txr->kick_pending)
435 			netif_warn(bp, tx_err, dev,
436 				   "bnxt: ring busy w/ flush pending!\n");
437 		if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr),
438 					bp->tx_wake_thresh))
439 			return NETDEV_TX_BUSY;
440 	}
441 
442 	if (unlikely(ipv6_hopopt_jumbo_remove(skb)))
443 		goto tx_free;
444 
445 	length = skb->len;
446 	len = skb_headlen(skb);
447 	last_frag = skb_shinfo(skb)->nr_frags;
448 
449 	txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
450 
451 	tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
452 	tx_buf->skb = skb;
453 	tx_buf->nr_frags = last_frag;
454 
455 	vlan_tag_flags = 0;
456 	cfa_action = bnxt_xmit_get_cfa_action(skb);
457 	if (skb_vlan_tag_present(skb)) {
458 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
459 				 skb_vlan_tag_get(skb);
460 		/* Currently supports 8021Q, 8021AD vlan offloads
461 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
462 		 */
463 		if (skb->vlan_proto == htons(ETH_P_8021Q))
464 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
465 	}
466 
467 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
468 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
469 
470 		if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) &&
471 		    atomic_dec_if_positive(&ptp->tx_avail) >= 0) {
472 			if (!bnxt_ptp_parse(skb, &ptp->tx_seqid,
473 					    &ptp->tx_hdr_off)) {
474 				if (vlan_tag_flags)
475 					ptp->tx_hdr_off += VLAN_HLEN;
476 				lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
477 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
478 			} else {
479 				atomic_inc(&bp->ptp_cfg->tx_avail);
480 			}
481 		}
482 	}
483 
484 	if (unlikely(skb->no_fcs))
485 		lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
486 
487 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh &&
488 	    !lflags) {
489 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
490 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
491 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
492 		void __iomem *db = txr->tx_db.doorbell;
493 		void *pdata = tx_push_buf->data;
494 		u64 *end;
495 		int j, push_len;
496 
497 		/* Set COAL_NOW to be ready quickly for the next push */
498 		tx_push->tx_bd_len_flags_type =
499 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
500 					TX_BD_TYPE_LONG_TX_BD |
501 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
502 					TX_BD_FLAGS_COAL_NOW |
503 					TX_BD_FLAGS_PACKET_END |
504 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
505 
506 		if (skb->ip_summed == CHECKSUM_PARTIAL)
507 			tx_push1->tx_bd_hsize_lflags =
508 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
509 		else
510 			tx_push1->tx_bd_hsize_lflags = 0;
511 
512 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
513 		tx_push1->tx_bd_cfa_action =
514 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
515 
516 		end = pdata + length;
517 		end = PTR_ALIGN(end, 8) - 1;
518 		*end = 0;
519 
520 		skb_copy_from_linear_data(skb, pdata, len);
521 		pdata += len;
522 		for (j = 0; j < last_frag; j++) {
523 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
524 			void *fptr;
525 
526 			fptr = skb_frag_address_safe(frag);
527 			if (!fptr)
528 				goto normal_tx;
529 
530 			memcpy(pdata, fptr, skb_frag_size(frag));
531 			pdata += skb_frag_size(frag);
532 		}
533 
534 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
535 		txbd->tx_bd_haddr = txr->data_mapping;
536 		txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2);
537 		prod = NEXT_TX(prod);
538 		tx_push->tx_bd_opaque = txbd->tx_bd_opaque;
539 		txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
540 		memcpy(txbd, tx_push1, sizeof(*txbd));
541 		prod = NEXT_TX(prod);
542 		tx_push->doorbell =
543 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH |
544 				    DB_RING_IDX(&txr->tx_db, prod));
545 		WRITE_ONCE(txr->tx_prod, prod);
546 
547 		tx_buf->is_push = 1;
548 		netdev_tx_sent_queue(txq, skb->len);
549 		wmb();	/* Sync is_push and byte queue before pushing data */
550 
551 		push_len = (length + sizeof(*tx_push) + 7) / 8;
552 		if (push_len > 16) {
553 			__iowrite64_copy(db, tx_push_buf, 16);
554 			__iowrite32_copy(db + 4, tx_push_buf + 1,
555 					 (push_len - 16) << 1);
556 		} else {
557 			__iowrite64_copy(db, tx_push_buf, push_len);
558 		}
559 
560 		goto tx_done;
561 	}
562 
563 normal_tx:
564 	if (length < BNXT_MIN_PKT_SIZE) {
565 		pad = BNXT_MIN_PKT_SIZE - length;
566 		if (skb_pad(skb, pad))
567 			/* SKB already freed. */
568 			goto tx_kick_pending;
569 		length = BNXT_MIN_PKT_SIZE;
570 	}
571 
572 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
573 
574 	if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
575 		goto tx_free;
576 
577 	dma_unmap_addr_set(tx_buf, mapping, mapping);
578 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
579 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
580 
581 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
582 	txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2 + last_frag);
583 
584 	prod = NEXT_TX(prod);
585 	txbd1 = (struct tx_bd_ext *)
586 		&txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
587 
588 	txbd1->tx_bd_hsize_lflags = lflags;
589 	if (skb_is_gso(skb)) {
590 		bool udp_gso = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4);
591 		u32 hdr_len;
592 
593 		if (skb->encapsulation) {
594 			if (udp_gso)
595 				hdr_len = skb_inner_transport_offset(skb) +
596 					  sizeof(struct udphdr);
597 			else
598 				hdr_len = skb_inner_tcp_all_headers(skb);
599 		} else if (udp_gso) {
600 			hdr_len = skb_transport_offset(skb) +
601 				  sizeof(struct udphdr);
602 		} else {
603 			hdr_len = skb_tcp_all_headers(skb);
604 		}
605 
606 		txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
607 					TX_BD_FLAGS_T_IPID |
608 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
609 		length = skb_shinfo(skb)->gso_size;
610 		txbd1->tx_bd_mss = cpu_to_le32(length);
611 		length += hdr_len;
612 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
613 		txbd1->tx_bd_hsize_lflags |=
614 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
615 		txbd1->tx_bd_mss = 0;
616 	}
617 
618 	length >>= 9;
619 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
620 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
621 				     skb->len);
622 		i = 0;
623 		goto tx_dma_error;
624 	}
625 	flags |= bnxt_lhint_arr[length];
626 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
627 
628 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
629 	txbd1->tx_bd_cfa_action =
630 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
631 	txbd0 = txbd;
632 	for (i = 0; i < last_frag; i++) {
633 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
634 
635 		prod = NEXT_TX(prod);
636 		txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)];
637 
638 		len = skb_frag_size(frag);
639 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
640 					   DMA_TO_DEVICE);
641 
642 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
643 			goto tx_dma_error;
644 
645 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
646 		dma_unmap_addr_set(tx_buf, mapping, mapping);
647 
648 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
649 
650 		flags = len << TX_BD_LEN_SHIFT;
651 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
652 	}
653 
654 	flags &= ~TX_BD_LEN;
655 	txbd->tx_bd_len_flags_type =
656 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
657 			    TX_BD_FLAGS_PACKET_END);
658 
659 	netdev_tx_sent_queue(txq, skb->len);
660 
661 	skb_tx_timestamp(skb);
662 
663 	prod = NEXT_TX(prod);
664 	WRITE_ONCE(txr->tx_prod, prod);
665 
666 	if (!netdev_xmit_more() || netif_xmit_stopped(txq)) {
667 		bnxt_txr_db_kick(bp, txr, prod);
668 	} else {
669 		if (free_size >= bp->tx_wake_thresh)
670 			txbd0->tx_bd_len_flags_type |=
671 				cpu_to_le32(TX_BD_FLAGS_NO_CMPL);
672 		txr->kick_pending = 1;
673 	}
674 
675 tx_done:
676 
677 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
678 		if (netdev_xmit_more() && !tx_buf->is_push) {
679 			txbd0->tx_bd_len_flags_type &=
680 				cpu_to_le32(~TX_BD_FLAGS_NO_CMPL);
681 			bnxt_txr_db_kick(bp, txr, prod);
682 		}
683 
684 		netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr),
685 				   bp->tx_wake_thresh);
686 	}
687 	return NETDEV_TX_OK;
688 
689 tx_dma_error:
690 	if (BNXT_TX_PTP_IS_SET(lflags))
691 		atomic_inc(&bp->ptp_cfg->tx_avail);
692 
693 	last_frag = i;
694 
695 	/* start back at beginning and unmap skb */
696 	prod = txr->tx_prod;
697 	tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
698 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
699 			 skb_headlen(skb), DMA_TO_DEVICE);
700 	prod = NEXT_TX(prod);
701 
702 	/* unmap remaining mapped pages */
703 	for (i = 0; i < last_frag; i++) {
704 		prod = NEXT_TX(prod);
705 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)];
706 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
707 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
708 			       DMA_TO_DEVICE);
709 	}
710 
711 tx_free:
712 	dev_kfree_skb_any(skb);
713 tx_kick_pending:
714 	if (txr->kick_pending)
715 		bnxt_txr_db_kick(bp, txr, txr->tx_prod);
716 	txr->tx_buf_ring[txr->tx_prod].skb = NULL;
717 	dev_core_stats_tx_dropped_inc(dev);
718 	return NETDEV_TX_OK;
719 }
720 
721 static void __bnxt_tx_int(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
722 			  int budget)
723 {
724 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
725 	struct pci_dev *pdev = bp->pdev;
726 	u16 hw_cons = txr->tx_hw_cons;
727 	unsigned int tx_bytes = 0;
728 	u16 cons = txr->tx_cons;
729 	int tx_pkts = 0;
730 
731 	while (RING_TX(bp, cons) != hw_cons) {
732 		struct bnxt_sw_tx_bd *tx_buf;
733 		struct sk_buff *skb;
734 		int j, last;
735 
736 		tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)];
737 		cons = NEXT_TX(cons);
738 		skb = tx_buf->skb;
739 		tx_buf->skb = NULL;
740 
741 		if (unlikely(!skb)) {
742 			bnxt_sched_reset_txr(bp, txr, cons);
743 			return;
744 		}
745 
746 		tx_pkts++;
747 		tx_bytes += skb->len;
748 
749 		if (tx_buf->is_push) {
750 			tx_buf->is_push = 0;
751 			goto next_tx_int;
752 		}
753 
754 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
755 				 skb_headlen(skb), DMA_TO_DEVICE);
756 		last = tx_buf->nr_frags;
757 
758 		for (j = 0; j < last; j++) {
759 			cons = NEXT_TX(cons);
760 			tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)];
761 			dma_unmap_page(
762 				&pdev->dev,
763 				dma_unmap_addr(tx_buf, mapping),
764 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
765 				DMA_TO_DEVICE);
766 		}
767 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
768 			if (BNXT_CHIP_P5(bp)) {
769 				/* PTP worker takes ownership of the skb */
770 				if (!bnxt_get_tx_ts_p5(bp, skb))
771 					skb = NULL;
772 				else
773 					atomic_inc(&bp->ptp_cfg->tx_avail);
774 			}
775 		}
776 
777 next_tx_int:
778 		cons = NEXT_TX(cons);
779 
780 		dev_consume_skb_any(skb);
781 	}
782 
783 	WRITE_ONCE(txr->tx_cons, cons);
784 
785 	__netif_txq_completed_wake(txq, tx_pkts, tx_bytes,
786 				   bnxt_tx_avail(bp, txr), bp->tx_wake_thresh,
787 				   READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING);
788 }
789 
790 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
791 {
792 	struct bnxt_tx_ring_info *txr;
793 	int i;
794 
795 	bnxt_for_each_napi_tx(i, bnapi, txr) {
796 		if (txr->tx_hw_cons != RING_TX(bp, txr->tx_cons))
797 			__bnxt_tx_int(bp, txr, budget);
798 	}
799 	bnapi->events &= ~BNXT_TX_CMP_EVENT;
800 }
801 
802 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
803 					 struct bnxt_rx_ring_info *rxr,
804 					 unsigned int *offset,
805 					 gfp_t gfp)
806 {
807 	struct page *page;
808 
809 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
810 		page = page_pool_dev_alloc_frag(rxr->page_pool, offset,
811 						BNXT_RX_PAGE_SIZE);
812 	} else {
813 		page = page_pool_dev_alloc_pages(rxr->page_pool);
814 		*offset = 0;
815 	}
816 	if (!page)
817 		return NULL;
818 
819 	*mapping = page_pool_get_dma_addr(page) + *offset;
820 	return page;
821 }
822 
823 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping,
824 				       gfp_t gfp)
825 {
826 	u8 *data;
827 	struct pci_dev *pdev = bp->pdev;
828 
829 	if (gfp == GFP_ATOMIC)
830 		data = napi_alloc_frag(bp->rx_buf_size);
831 	else
832 		data = netdev_alloc_frag(bp->rx_buf_size);
833 	if (!data)
834 		return NULL;
835 
836 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
837 					bp->rx_buf_use_size, bp->rx_dir,
838 					DMA_ATTR_WEAK_ORDERING);
839 
840 	if (dma_mapping_error(&pdev->dev, *mapping)) {
841 		skb_free_frag(data);
842 		data = NULL;
843 	}
844 	return data;
845 }
846 
847 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
848 		       u16 prod, gfp_t gfp)
849 {
850 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
851 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
852 	dma_addr_t mapping;
853 
854 	if (BNXT_RX_PAGE_MODE(bp)) {
855 		unsigned int offset;
856 		struct page *page =
857 			__bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp);
858 
859 		if (!page)
860 			return -ENOMEM;
861 
862 		mapping += bp->rx_dma_offset;
863 		rx_buf->data = page;
864 		rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset;
865 	} else {
866 		u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp);
867 
868 		if (!data)
869 			return -ENOMEM;
870 
871 		rx_buf->data = data;
872 		rx_buf->data_ptr = data + bp->rx_offset;
873 	}
874 	rx_buf->mapping = mapping;
875 
876 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
877 	return 0;
878 }
879 
880 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
881 {
882 	u16 prod = rxr->rx_prod;
883 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
884 	struct bnxt *bp = rxr->bnapi->bp;
885 	struct rx_bd *cons_bd, *prod_bd;
886 
887 	prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
888 	cons_rx_buf = &rxr->rx_buf_ring[cons];
889 
890 	prod_rx_buf->data = data;
891 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
892 
893 	prod_rx_buf->mapping = cons_rx_buf->mapping;
894 
895 	prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
896 	cons_bd = &rxr->rx_desc_ring[RX_RING(bp, cons)][RX_IDX(cons)];
897 
898 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
899 }
900 
901 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
902 {
903 	u16 next, max = rxr->rx_agg_bmap_size;
904 
905 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
906 	if (next >= max)
907 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
908 	return next;
909 }
910 
911 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
912 				     struct bnxt_rx_ring_info *rxr,
913 				     u16 prod, gfp_t gfp)
914 {
915 	struct rx_bd *rxbd =
916 		&rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)];
917 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
918 	struct page *page;
919 	dma_addr_t mapping;
920 	u16 sw_prod = rxr->rx_sw_agg_prod;
921 	unsigned int offset = 0;
922 
923 	page = __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp);
924 
925 	if (!page)
926 		return -ENOMEM;
927 
928 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
929 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
930 
931 	__set_bit(sw_prod, rxr->rx_agg_bmap);
932 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
933 	rxr->rx_sw_agg_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod));
934 
935 	rx_agg_buf->page = page;
936 	rx_agg_buf->offset = offset;
937 	rx_agg_buf->mapping = mapping;
938 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
939 	rxbd->rx_bd_opaque = sw_prod;
940 	return 0;
941 }
942 
943 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
944 				       struct bnxt_cp_ring_info *cpr,
945 				       u16 cp_cons, u16 curr)
946 {
947 	struct rx_agg_cmp *agg;
948 
949 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
950 	agg = (struct rx_agg_cmp *)
951 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
952 	return agg;
953 }
954 
955 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
956 					      struct bnxt_rx_ring_info *rxr,
957 					      u16 agg_id, u16 curr)
958 {
959 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
960 
961 	return &tpa_info->agg_arr[curr];
962 }
963 
964 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
965 				   u16 start, u32 agg_bufs, bool tpa)
966 {
967 	struct bnxt_napi *bnapi = cpr->bnapi;
968 	struct bnxt *bp = bnapi->bp;
969 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
970 	u16 prod = rxr->rx_agg_prod;
971 	u16 sw_prod = rxr->rx_sw_agg_prod;
972 	bool p5_tpa = false;
973 	u32 i;
974 
975 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa)
976 		p5_tpa = true;
977 
978 	for (i = 0; i < agg_bufs; i++) {
979 		u16 cons;
980 		struct rx_agg_cmp *agg;
981 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
982 		struct rx_bd *prod_bd;
983 		struct page *page;
984 
985 		if (p5_tpa)
986 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
987 		else
988 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
989 		cons = agg->rx_agg_cmp_opaque;
990 		__clear_bit(cons, rxr->rx_agg_bmap);
991 
992 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
993 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
994 
995 		__set_bit(sw_prod, rxr->rx_agg_bmap);
996 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
997 		cons_rx_buf = &rxr->rx_agg_ring[cons];
998 
999 		/* It is possible for sw_prod to be equal to cons, so
1000 		 * set cons_rx_buf->page to NULL first.
1001 		 */
1002 		page = cons_rx_buf->page;
1003 		cons_rx_buf->page = NULL;
1004 		prod_rx_buf->page = page;
1005 		prod_rx_buf->offset = cons_rx_buf->offset;
1006 
1007 		prod_rx_buf->mapping = cons_rx_buf->mapping;
1008 
1009 		prod_bd = &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)];
1010 
1011 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
1012 		prod_bd->rx_bd_opaque = sw_prod;
1013 
1014 		prod = NEXT_RX_AGG(prod);
1015 		sw_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod));
1016 	}
1017 	rxr->rx_agg_prod = prod;
1018 	rxr->rx_sw_agg_prod = sw_prod;
1019 }
1020 
1021 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp,
1022 					      struct bnxt_rx_ring_info *rxr,
1023 					      u16 cons, void *data, u8 *data_ptr,
1024 					      dma_addr_t dma_addr,
1025 					      unsigned int offset_and_len)
1026 {
1027 	unsigned int len = offset_and_len & 0xffff;
1028 	struct page *page = data;
1029 	u16 prod = rxr->rx_prod;
1030 	struct sk_buff *skb;
1031 	int err;
1032 
1033 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1034 	if (unlikely(err)) {
1035 		bnxt_reuse_rx_data(rxr, cons, data);
1036 		return NULL;
1037 	}
1038 	dma_addr -= bp->rx_dma_offset;
1039 	dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE,
1040 				bp->rx_dir);
1041 	skb = napi_build_skb(data_ptr - bp->rx_offset, BNXT_RX_PAGE_SIZE);
1042 	if (!skb) {
1043 		page_pool_recycle_direct(rxr->page_pool, page);
1044 		return NULL;
1045 	}
1046 	skb_mark_for_recycle(skb);
1047 	skb_reserve(skb, bp->rx_offset);
1048 	__skb_put(skb, len);
1049 
1050 	return skb;
1051 }
1052 
1053 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
1054 					struct bnxt_rx_ring_info *rxr,
1055 					u16 cons, void *data, u8 *data_ptr,
1056 					dma_addr_t dma_addr,
1057 					unsigned int offset_and_len)
1058 {
1059 	unsigned int payload = offset_and_len >> 16;
1060 	unsigned int len = offset_and_len & 0xffff;
1061 	skb_frag_t *frag;
1062 	struct page *page = data;
1063 	u16 prod = rxr->rx_prod;
1064 	struct sk_buff *skb;
1065 	int off, err;
1066 
1067 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1068 	if (unlikely(err)) {
1069 		bnxt_reuse_rx_data(rxr, cons, data);
1070 		return NULL;
1071 	}
1072 	dma_addr -= bp->rx_dma_offset;
1073 	dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE,
1074 				bp->rx_dir);
1075 
1076 	if (unlikely(!payload))
1077 		payload = eth_get_headlen(bp->dev, data_ptr, len);
1078 
1079 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
1080 	if (!skb) {
1081 		page_pool_recycle_direct(rxr->page_pool, page);
1082 		return NULL;
1083 	}
1084 
1085 	skb_mark_for_recycle(skb);
1086 	off = (void *)data_ptr - page_address(page);
1087 	skb_add_rx_frag(skb, 0, page, off, len, BNXT_RX_PAGE_SIZE);
1088 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
1089 	       payload + NET_IP_ALIGN);
1090 
1091 	frag = &skb_shinfo(skb)->frags[0];
1092 	skb_frag_size_sub(frag, payload);
1093 	skb_frag_off_add(frag, payload);
1094 	skb->data_len -= payload;
1095 	skb->tail += payload;
1096 
1097 	return skb;
1098 }
1099 
1100 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
1101 				   struct bnxt_rx_ring_info *rxr, u16 cons,
1102 				   void *data, u8 *data_ptr,
1103 				   dma_addr_t dma_addr,
1104 				   unsigned int offset_and_len)
1105 {
1106 	u16 prod = rxr->rx_prod;
1107 	struct sk_buff *skb;
1108 	int err;
1109 
1110 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1111 	if (unlikely(err)) {
1112 		bnxt_reuse_rx_data(rxr, cons, data);
1113 		return NULL;
1114 	}
1115 
1116 	skb = napi_build_skb(data, bp->rx_buf_size);
1117 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1118 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1119 	if (!skb) {
1120 		skb_free_frag(data);
1121 		return NULL;
1122 	}
1123 
1124 	skb_reserve(skb, bp->rx_offset);
1125 	skb_put(skb, offset_and_len & 0xffff);
1126 	return skb;
1127 }
1128 
1129 static u32 __bnxt_rx_agg_pages(struct bnxt *bp,
1130 			       struct bnxt_cp_ring_info *cpr,
1131 			       struct skb_shared_info *shinfo,
1132 			       u16 idx, u32 agg_bufs, bool tpa,
1133 			       struct xdp_buff *xdp)
1134 {
1135 	struct bnxt_napi *bnapi = cpr->bnapi;
1136 	struct pci_dev *pdev = bp->pdev;
1137 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1138 	u16 prod = rxr->rx_agg_prod;
1139 	u32 i, total_frag_len = 0;
1140 	bool p5_tpa = false;
1141 
1142 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa)
1143 		p5_tpa = true;
1144 
1145 	for (i = 0; i < agg_bufs; i++) {
1146 		skb_frag_t *frag = &shinfo->frags[i];
1147 		u16 cons, frag_len;
1148 		struct rx_agg_cmp *agg;
1149 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1150 		struct page *page;
1151 		dma_addr_t mapping;
1152 
1153 		if (p5_tpa)
1154 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1155 		else
1156 			agg = bnxt_get_agg(bp, cpr, idx, i);
1157 		cons = agg->rx_agg_cmp_opaque;
1158 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1159 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1160 
1161 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1162 		skb_frag_fill_page_desc(frag, cons_rx_buf->page,
1163 					cons_rx_buf->offset, frag_len);
1164 		shinfo->nr_frags = i + 1;
1165 		__clear_bit(cons, rxr->rx_agg_bmap);
1166 
1167 		/* It is possible for bnxt_alloc_rx_page() to allocate
1168 		 * a sw_prod index that equals the cons index, so we
1169 		 * need to clear the cons entry now.
1170 		 */
1171 		mapping = cons_rx_buf->mapping;
1172 		page = cons_rx_buf->page;
1173 		cons_rx_buf->page = NULL;
1174 
1175 		if (xdp && page_is_pfmemalloc(page))
1176 			xdp_buff_set_frag_pfmemalloc(xdp);
1177 
1178 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1179 			--shinfo->nr_frags;
1180 			cons_rx_buf->page = page;
1181 
1182 			/* Update prod since possibly some pages have been
1183 			 * allocated already.
1184 			 */
1185 			rxr->rx_agg_prod = prod;
1186 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1187 			return 0;
1188 		}
1189 
1190 		dma_sync_single_for_cpu(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1191 					bp->rx_dir);
1192 
1193 		total_frag_len += frag_len;
1194 		prod = NEXT_RX_AGG(prod);
1195 	}
1196 	rxr->rx_agg_prod = prod;
1197 	return total_frag_len;
1198 }
1199 
1200 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp,
1201 					     struct bnxt_cp_ring_info *cpr,
1202 					     struct sk_buff *skb, u16 idx,
1203 					     u32 agg_bufs, bool tpa)
1204 {
1205 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1206 	u32 total_frag_len = 0;
1207 
1208 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx,
1209 					     agg_bufs, tpa, NULL);
1210 	if (!total_frag_len) {
1211 		skb_mark_for_recycle(skb);
1212 		dev_kfree_skb(skb);
1213 		return NULL;
1214 	}
1215 
1216 	skb->data_len += total_frag_len;
1217 	skb->len += total_frag_len;
1218 	skb->truesize += BNXT_RX_PAGE_SIZE * agg_bufs;
1219 	return skb;
1220 }
1221 
1222 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp,
1223 				 struct bnxt_cp_ring_info *cpr,
1224 				 struct xdp_buff *xdp, u16 idx,
1225 				 u32 agg_bufs, bool tpa)
1226 {
1227 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp);
1228 	u32 total_frag_len = 0;
1229 
1230 	if (!xdp_buff_has_frags(xdp))
1231 		shinfo->nr_frags = 0;
1232 
1233 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo,
1234 					     idx, agg_bufs, tpa, xdp);
1235 	if (total_frag_len) {
1236 		xdp_buff_set_frags_flag(xdp);
1237 		shinfo->nr_frags = agg_bufs;
1238 		shinfo->xdp_frags_size = total_frag_len;
1239 	}
1240 	return total_frag_len;
1241 }
1242 
1243 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1244 			       u8 agg_bufs, u32 *raw_cons)
1245 {
1246 	u16 last;
1247 	struct rx_agg_cmp *agg;
1248 
1249 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1250 	last = RING_CMP(*raw_cons);
1251 	agg = (struct rx_agg_cmp *)
1252 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1253 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1254 }
1255 
1256 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1257 					    unsigned int len,
1258 					    dma_addr_t mapping)
1259 {
1260 	struct bnxt *bp = bnapi->bp;
1261 	struct pci_dev *pdev = bp->pdev;
1262 	struct sk_buff *skb;
1263 
1264 	skb = napi_alloc_skb(&bnapi->napi, len);
1265 	if (!skb)
1266 		return NULL;
1267 
1268 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1269 				bp->rx_dir);
1270 
1271 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1272 	       len + NET_IP_ALIGN);
1273 
1274 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1275 				   bp->rx_dir);
1276 
1277 	skb_put(skb, len);
1278 	return skb;
1279 }
1280 
1281 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1282 			   u32 *raw_cons, void *cmp)
1283 {
1284 	struct rx_cmp *rxcmp = cmp;
1285 	u32 tmp_raw_cons = *raw_cons;
1286 	u8 cmp_type, agg_bufs = 0;
1287 
1288 	cmp_type = RX_CMP_TYPE(rxcmp);
1289 
1290 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1291 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1292 			    RX_CMP_AGG_BUFS) >>
1293 			   RX_CMP_AGG_BUFS_SHIFT;
1294 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1295 		struct rx_tpa_end_cmp *tpa_end = cmp;
1296 
1297 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
1298 			return 0;
1299 
1300 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1301 	}
1302 
1303 	if (agg_bufs) {
1304 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1305 			return -EBUSY;
1306 	}
1307 	*raw_cons = tmp_raw_cons;
1308 	return 0;
1309 }
1310 
1311 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1312 {
1313 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1314 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1315 
1316 	if (test_bit(idx, map->agg_idx_bmap))
1317 		idx = find_first_zero_bit(map->agg_idx_bmap,
1318 					  BNXT_AGG_IDX_BMAP_SIZE);
1319 	__set_bit(idx, map->agg_idx_bmap);
1320 	map->agg_id_tbl[agg_id] = idx;
1321 	return idx;
1322 }
1323 
1324 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1325 {
1326 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1327 
1328 	__clear_bit(idx, map->agg_idx_bmap);
1329 }
1330 
1331 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1332 {
1333 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1334 
1335 	return map->agg_id_tbl[agg_id];
1336 }
1337 
1338 static void bnxt_tpa_metadata(struct bnxt_tpa_info *tpa_info,
1339 			      struct rx_tpa_start_cmp *tpa_start,
1340 			      struct rx_tpa_start_cmp_ext *tpa_start1)
1341 {
1342 	tpa_info->cfa_code_valid = 1;
1343 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1344 	tpa_info->vlan_valid = 0;
1345 	if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) {
1346 		tpa_info->vlan_valid = 1;
1347 		tpa_info->metadata =
1348 			le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1349 	}
1350 }
1351 
1352 static void bnxt_tpa_metadata_v2(struct bnxt_tpa_info *tpa_info,
1353 				 struct rx_tpa_start_cmp *tpa_start,
1354 				 struct rx_tpa_start_cmp_ext *tpa_start1)
1355 {
1356 	tpa_info->vlan_valid = 0;
1357 	if (TPA_START_VLAN_VALID(tpa_start)) {
1358 		u32 tpid_sel = TPA_START_VLAN_TPID_SEL(tpa_start);
1359 		u32 vlan_proto = ETH_P_8021Q;
1360 
1361 		tpa_info->vlan_valid = 1;
1362 		if (tpid_sel == RX_TPA_START_METADATA1_TPID_8021AD)
1363 			vlan_proto = ETH_P_8021AD;
1364 		tpa_info->metadata = vlan_proto << 16 |
1365 				     TPA_START_METADATA0_TCI(tpa_start1);
1366 	}
1367 }
1368 
1369 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1370 			   u8 cmp_type, struct rx_tpa_start_cmp *tpa_start,
1371 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1372 {
1373 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1374 	struct bnxt_tpa_info *tpa_info;
1375 	u16 cons, prod, agg_id;
1376 	struct rx_bd *prod_bd;
1377 	dma_addr_t mapping;
1378 
1379 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
1380 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1381 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1382 	} else {
1383 		agg_id = TPA_START_AGG_ID(tpa_start);
1384 	}
1385 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1386 	prod = rxr->rx_prod;
1387 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1388 	prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)];
1389 	tpa_info = &rxr->rx_tpa[agg_id];
1390 
1391 	if (unlikely(cons != rxr->rx_next_cons ||
1392 		     TPA_START_ERROR(tpa_start))) {
1393 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1394 			    cons, rxr->rx_next_cons,
1395 			    TPA_START_ERROR_CODE(tpa_start1));
1396 		bnxt_sched_reset_rxr(bp, rxr);
1397 		return;
1398 	}
1399 	prod_rx_buf->data = tpa_info->data;
1400 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1401 
1402 	mapping = tpa_info->mapping;
1403 	prod_rx_buf->mapping = mapping;
1404 
1405 	prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)];
1406 
1407 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1408 
1409 	tpa_info->data = cons_rx_buf->data;
1410 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1411 	cons_rx_buf->data = NULL;
1412 	tpa_info->mapping = cons_rx_buf->mapping;
1413 
1414 	tpa_info->len =
1415 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1416 				RX_TPA_START_CMP_LEN_SHIFT;
1417 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1418 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1419 		tpa_info->gso_type = SKB_GSO_TCPV4;
1420 		if (TPA_START_IS_IPV6(tpa_start1))
1421 			tpa_info->gso_type = SKB_GSO_TCPV6;
1422 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1423 		else if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP &&
1424 			 TPA_START_HASH_TYPE(tpa_start) == 3)
1425 			tpa_info->gso_type = SKB_GSO_TCPV6;
1426 		tpa_info->rss_hash =
1427 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1428 	} else {
1429 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1430 		tpa_info->gso_type = 0;
1431 		netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1432 	}
1433 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1434 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1435 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP)
1436 		bnxt_tpa_metadata(tpa_info, tpa_start, tpa_start1);
1437 	else
1438 		bnxt_tpa_metadata_v2(tpa_info, tpa_start, tpa_start1);
1439 	tpa_info->agg_count = 0;
1440 
1441 	rxr->rx_prod = NEXT_RX(prod);
1442 	cons = RING_RX(bp, NEXT_RX(cons));
1443 	rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons));
1444 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1445 
1446 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1447 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1448 	cons_rx_buf->data = NULL;
1449 }
1450 
1451 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1452 {
1453 	if (agg_bufs)
1454 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1455 }
1456 
1457 #ifdef CONFIG_INET
1458 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1459 {
1460 	struct udphdr *uh = NULL;
1461 
1462 	if (ip_proto == htons(ETH_P_IP)) {
1463 		struct iphdr *iph = (struct iphdr *)skb->data;
1464 
1465 		if (iph->protocol == IPPROTO_UDP)
1466 			uh = (struct udphdr *)(iph + 1);
1467 	} else {
1468 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1469 
1470 		if (iph->nexthdr == IPPROTO_UDP)
1471 			uh = (struct udphdr *)(iph + 1);
1472 	}
1473 	if (uh) {
1474 		if (uh->check)
1475 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1476 		else
1477 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1478 	}
1479 }
1480 #endif
1481 
1482 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1483 					   int payload_off, int tcp_ts,
1484 					   struct sk_buff *skb)
1485 {
1486 #ifdef CONFIG_INET
1487 	struct tcphdr *th;
1488 	int len, nw_off;
1489 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1490 	u32 hdr_info = tpa_info->hdr_info;
1491 	bool loopback = false;
1492 
1493 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1494 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1495 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1496 
1497 	/* If the packet is an internal loopback packet, the offsets will
1498 	 * have an extra 4 bytes.
1499 	 */
1500 	if (inner_mac_off == 4) {
1501 		loopback = true;
1502 	} else if (inner_mac_off > 4) {
1503 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1504 					    ETH_HLEN - 2));
1505 
1506 		/* We only support inner iPv4/ipv6.  If we don't see the
1507 		 * correct protocol ID, it must be a loopback packet where
1508 		 * the offsets are off by 4.
1509 		 */
1510 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1511 			loopback = true;
1512 	}
1513 	if (loopback) {
1514 		/* internal loopback packet, subtract all offsets by 4 */
1515 		inner_ip_off -= 4;
1516 		inner_mac_off -= 4;
1517 		outer_ip_off -= 4;
1518 	}
1519 
1520 	nw_off = inner_ip_off - ETH_HLEN;
1521 	skb_set_network_header(skb, nw_off);
1522 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1523 		struct ipv6hdr *iph = ipv6_hdr(skb);
1524 
1525 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1526 		len = skb->len - skb_transport_offset(skb);
1527 		th = tcp_hdr(skb);
1528 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1529 	} else {
1530 		struct iphdr *iph = ip_hdr(skb);
1531 
1532 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1533 		len = skb->len - skb_transport_offset(skb);
1534 		th = tcp_hdr(skb);
1535 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1536 	}
1537 
1538 	if (inner_mac_off) { /* tunnel */
1539 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1540 					    ETH_HLEN - 2));
1541 
1542 		bnxt_gro_tunnel(skb, proto);
1543 	}
1544 #endif
1545 	return skb;
1546 }
1547 
1548 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1549 					   int payload_off, int tcp_ts,
1550 					   struct sk_buff *skb)
1551 {
1552 #ifdef CONFIG_INET
1553 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1554 	u32 hdr_info = tpa_info->hdr_info;
1555 	int iphdr_len, nw_off;
1556 
1557 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1558 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1559 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1560 
1561 	nw_off = inner_ip_off - ETH_HLEN;
1562 	skb_set_network_header(skb, nw_off);
1563 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1564 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1565 	skb_set_transport_header(skb, nw_off + iphdr_len);
1566 
1567 	if (inner_mac_off) { /* tunnel */
1568 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1569 					    ETH_HLEN - 2));
1570 
1571 		bnxt_gro_tunnel(skb, proto);
1572 	}
1573 #endif
1574 	return skb;
1575 }
1576 
1577 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1578 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1579 
1580 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1581 					   int payload_off, int tcp_ts,
1582 					   struct sk_buff *skb)
1583 {
1584 #ifdef CONFIG_INET
1585 	struct tcphdr *th;
1586 	int len, nw_off, tcp_opt_len = 0;
1587 
1588 	if (tcp_ts)
1589 		tcp_opt_len = 12;
1590 
1591 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1592 		struct iphdr *iph;
1593 
1594 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1595 			 ETH_HLEN;
1596 		skb_set_network_header(skb, nw_off);
1597 		iph = ip_hdr(skb);
1598 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1599 		len = skb->len - skb_transport_offset(skb);
1600 		th = tcp_hdr(skb);
1601 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1602 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1603 		struct ipv6hdr *iph;
1604 
1605 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1606 			 ETH_HLEN;
1607 		skb_set_network_header(skb, nw_off);
1608 		iph = ipv6_hdr(skb);
1609 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1610 		len = skb->len - skb_transport_offset(skb);
1611 		th = tcp_hdr(skb);
1612 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1613 	} else {
1614 		dev_kfree_skb_any(skb);
1615 		return NULL;
1616 	}
1617 
1618 	if (nw_off) /* tunnel */
1619 		bnxt_gro_tunnel(skb, skb->protocol);
1620 #endif
1621 	return skb;
1622 }
1623 
1624 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1625 					   struct bnxt_tpa_info *tpa_info,
1626 					   struct rx_tpa_end_cmp *tpa_end,
1627 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1628 					   struct sk_buff *skb)
1629 {
1630 #ifdef CONFIG_INET
1631 	int payload_off;
1632 	u16 segs;
1633 
1634 	segs = TPA_END_TPA_SEGS(tpa_end);
1635 	if (segs == 1)
1636 		return skb;
1637 
1638 	NAPI_GRO_CB(skb)->count = segs;
1639 	skb_shinfo(skb)->gso_size =
1640 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1641 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1642 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
1643 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1644 	else
1645 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1646 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1647 	if (likely(skb))
1648 		tcp_gro_complete(skb);
1649 #endif
1650 	return skb;
1651 }
1652 
1653 /* Given the cfa_code of a received packet determine which
1654  * netdev (vf-rep or PF) the packet is destined to.
1655  */
1656 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1657 {
1658 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1659 
1660 	/* if vf-rep dev is NULL, the must belongs to the PF */
1661 	return dev ? dev : bp->dev;
1662 }
1663 
1664 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1665 					   struct bnxt_cp_ring_info *cpr,
1666 					   u32 *raw_cons,
1667 					   struct rx_tpa_end_cmp *tpa_end,
1668 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1669 					   u8 *event)
1670 {
1671 	struct bnxt_napi *bnapi = cpr->bnapi;
1672 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1673 	struct net_device *dev = bp->dev;
1674 	u8 *data_ptr, agg_bufs;
1675 	unsigned int len;
1676 	struct bnxt_tpa_info *tpa_info;
1677 	dma_addr_t mapping;
1678 	struct sk_buff *skb;
1679 	u16 idx = 0, agg_id;
1680 	void *data;
1681 	bool gro;
1682 
1683 	if (unlikely(bnapi->in_reset)) {
1684 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1685 
1686 		if (rc < 0)
1687 			return ERR_PTR(-EBUSY);
1688 		return NULL;
1689 	}
1690 
1691 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
1692 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1693 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1694 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1695 		tpa_info = &rxr->rx_tpa[agg_id];
1696 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1697 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1698 				    agg_bufs, tpa_info->agg_count);
1699 			agg_bufs = tpa_info->agg_count;
1700 		}
1701 		tpa_info->agg_count = 0;
1702 		*event |= BNXT_AGG_EVENT;
1703 		bnxt_free_agg_idx(rxr, agg_id);
1704 		idx = agg_id;
1705 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1706 	} else {
1707 		agg_id = TPA_END_AGG_ID(tpa_end);
1708 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1709 		tpa_info = &rxr->rx_tpa[agg_id];
1710 		idx = RING_CMP(*raw_cons);
1711 		if (agg_bufs) {
1712 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1713 				return ERR_PTR(-EBUSY);
1714 
1715 			*event |= BNXT_AGG_EVENT;
1716 			idx = NEXT_CMP(idx);
1717 		}
1718 		gro = !!TPA_END_GRO(tpa_end);
1719 	}
1720 	data = tpa_info->data;
1721 	data_ptr = tpa_info->data_ptr;
1722 	prefetch(data_ptr);
1723 	len = tpa_info->len;
1724 	mapping = tpa_info->mapping;
1725 
1726 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1727 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1728 		if (agg_bufs > MAX_SKB_FRAGS)
1729 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1730 				    agg_bufs, (int)MAX_SKB_FRAGS);
1731 		return NULL;
1732 	}
1733 
1734 	if (len <= bp->rx_copy_thresh) {
1735 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1736 		if (!skb) {
1737 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1738 			cpr->sw_stats.rx.rx_oom_discards += 1;
1739 			return NULL;
1740 		}
1741 	} else {
1742 		u8 *new_data;
1743 		dma_addr_t new_mapping;
1744 
1745 		new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC);
1746 		if (!new_data) {
1747 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1748 			cpr->sw_stats.rx.rx_oom_discards += 1;
1749 			return NULL;
1750 		}
1751 
1752 		tpa_info->data = new_data;
1753 		tpa_info->data_ptr = new_data + bp->rx_offset;
1754 		tpa_info->mapping = new_mapping;
1755 
1756 		skb = napi_build_skb(data, bp->rx_buf_size);
1757 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1758 				       bp->rx_buf_use_size, bp->rx_dir,
1759 				       DMA_ATTR_WEAK_ORDERING);
1760 
1761 		if (!skb) {
1762 			skb_free_frag(data);
1763 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1764 			cpr->sw_stats.rx.rx_oom_discards += 1;
1765 			return NULL;
1766 		}
1767 		skb_reserve(skb, bp->rx_offset);
1768 		skb_put(skb, len);
1769 	}
1770 
1771 	if (agg_bufs) {
1772 		skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true);
1773 		if (!skb) {
1774 			/* Page reuse already handled by bnxt_rx_pages(). */
1775 			cpr->sw_stats.rx.rx_oom_discards += 1;
1776 			return NULL;
1777 		}
1778 	}
1779 
1780 	if (tpa_info->cfa_code_valid)
1781 		dev = bnxt_get_pkt_dev(bp, tpa_info->cfa_code);
1782 	skb->protocol = eth_type_trans(skb, dev);
1783 
1784 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1785 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1786 
1787 	if (tpa_info->vlan_valid &&
1788 	    (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1789 		__be16 vlan_proto = htons(tpa_info->metadata >>
1790 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1791 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1792 
1793 		if (eth_type_vlan(vlan_proto)) {
1794 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1795 		} else {
1796 			dev_kfree_skb(skb);
1797 			return NULL;
1798 		}
1799 	}
1800 
1801 	skb_checksum_none_assert(skb);
1802 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1803 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1804 		skb->csum_level =
1805 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1806 	}
1807 
1808 	if (gro)
1809 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1810 
1811 	return skb;
1812 }
1813 
1814 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1815 			 struct rx_agg_cmp *rx_agg)
1816 {
1817 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1818 	struct bnxt_tpa_info *tpa_info;
1819 
1820 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1821 	tpa_info = &rxr->rx_tpa[agg_id];
1822 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1823 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1824 }
1825 
1826 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1827 			     struct sk_buff *skb)
1828 {
1829 	skb_mark_for_recycle(skb);
1830 
1831 	if (skb->dev != bp->dev) {
1832 		/* this packet belongs to a vf-rep */
1833 		bnxt_vf_rep_rx(bp, skb);
1834 		return;
1835 	}
1836 	skb_record_rx_queue(skb, bnapi->index);
1837 	napi_gro_receive(&bnapi->napi, skb);
1838 }
1839 
1840 static bool bnxt_rx_ts_valid(struct bnxt *bp, u32 flags,
1841 			     struct rx_cmp_ext *rxcmp1, u32 *cmpl_ts)
1842 {
1843 	u32 ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp);
1844 
1845 	if (BNXT_PTP_RX_TS_VALID(flags))
1846 		goto ts_valid;
1847 	if (!bp->ptp_all_rx_tstamp || !ts || !BNXT_ALL_RX_TS_VALID(flags))
1848 		return false;
1849 
1850 ts_valid:
1851 	*cmpl_ts = ts;
1852 	return true;
1853 }
1854 
1855 static struct sk_buff *bnxt_rx_vlan(struct sk_buff *skb, u8 cmp_type,
1856 				    struct rx_cmp *rxcmp,
1857 				    struct rx_cmp_ext *rxcmp1)
1858 {
1859 	__be16 vlan_proto;
1860 	u16 vtag;
1861 
1862 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1863 		__le32 flags2 = rxcmp1->rx_cmp_flags2;
1864 		u32 meta_data;
1865 
1866 		if (!(flags2 & cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)))
1867 			return skb;
1868 
1869 		meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1870 		vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1871 		vlan_proto = htons(meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT);
1872 		if (eth_type_vlan(vlan_proto))
1873 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1874 		else
1875 			goto vlan_err;
1876 	} else if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
1877 		if (RX_CMP_VLAN_VALID(rxcmp)) {
1878 			u32 tpid_sel = RX_CMP_VLAN_TPID_SEL(rxcmp);
1879 
1880 			if (tpid_sel == RX_CMP_METADATA1_TPID_8021Q)
1881 				vlan_proto = htons(ETH_P_8021Q);
1882 			else if (tpid_sel == RX_CMP_METADATA1_TPID_8021AD)
1883 				vlan_proto = htons(ETH_P_8021AD);
1884 			else
1885 				goto vlan_err;
1886 			vtag = RX_CMP_METADATA0_TCI(rxcmp1);
1887 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1888 		}
1889 	}
1890 	return skb;
1891 vlan_err:
1892 	dev_kfree_skb(skb);
1893 	return NULL;
1894 }
1895 
1896 static enum pkt_hash_types bnxt_rss_ext_op(struct bnxt *bp,
1897 					   struct rx_cmp *rxcmp)
1898 {
1899 	u8 ext_op;
1900 
1901 	ext_op = RX_CMP_V3_HASH_TYPE(bp, rxcmp);
1902 	switch (ext_op) {
1903 	case EXT_OP_INNER_4:
1904 	case EXT_OP_OUTER_4:
1905 	case EXT_OP_INNFL_3:
1906 	case EXT_OP_OUTFL_3:
1907 		return PKT_HASH_TYPE_L4;
1908 	default:
1909 		return PKT_HASH_TYPE_L3;
1910 	}
1911 }
1912 
1913 /* returns the following:
1914  * 1       - 1 packet successfully received
1915  * 0       - successful TPA_START, packet not completed yet
1916  * -EBUSY  - completion ring does not have all the agg buffers yet
1917  * -ENOMEM - packet aborted due to out of memory
1918  * -EIO    - packet aborted due to hw error indicated in BD
1919  */
1920 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1921 		       u32 *raw_cons, u8 *event)
1922 {
1923 	struct bnxt_napi *bnapi = cpr->bnapi;
1924 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1925 	struct net_device *dev = bp->dev;
1926 	struct rx_cmp *rxcmp;
1927 	struct rx_cmp_ext *rxcmp1;
1928 	u32 tmp_raw_cons = *raw_cons;
1929 	u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1930 	struct bnxt_sw_rx_bd *rx_buf;
1931 	unsigned int len;
1932 	u8 *data_ptr, agg_bufs, cmp_type;
1933 	bool xdp_active = false;
1934 	dma_addr_t dma_addr;
1935 	struct sk_buff *skb;
1936 	struct xdp_buff xdp;
1937 	u32 flags, misc;
1938 	u32 cmpl_ts;
1939 	void *data;
1940 	int rc = 0;
1941 
1942 	rxcmp = (struct rx_cmp *)
1943 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1944 
1945 	cmp_type = RX_CMP_TYPE(rxcmp);
1946 
1947 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1948 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1949 		goto next_rx_no_prod_no_len;
1950 	}
1951 
1952 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1953 	cp_cons = RING_CMP(tmp_raw_cons);
1954 	rxcmp1 = (struct rx_cmp_ext *)
1955 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1956 
1957 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1958 		return -EBUSY;
1959 
1960 	/* The valid test of the entry must be done first before
1961 	 * reading any further.
1962 	 */
1963 	dma_rmb();
1964 	prod = rxr->rx_prod;
1965 
1966 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP ||
1967 	    cmp_type == CMP_TYPE_RX_L2_TPA_START_V3_CMP) {
1968 		bnxt_tpa_start(bp, rxr, cmp_type,
1969 			       (struct rx_tpa_start_cmp *)rxcmp,
1970 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1971 
1972 		*event |= BNXT_RX_EVENT;
1973 		goto next_rx_no_prod_no_len;
1974 
1975 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1976 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1977 				   (struct rx_tpa_end_cmp *)rxcmp,
1978 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1979 
1980 		if (IS_ERR(skb))
1981 			return -EBUSY;
1982 
1983 		rc = -ENOMEM;
1984 		if (likely(skb)) {
1985 			bnxt_deliver_skb(bp, bnapi, skb);
1986 			rc = 1;
1987 		}
1988 		*event |= BNXT_RX_EVENT;
1989 		goto next_rx_no_prod_no_len;
1990 	}
1991 
1992 	cons = rxcmp->rx_cmp_opaque;
1993 	if (unlikely(cons != rxr->rx_next_cons)) {
1994 		int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
1995 
1996 		/* 0xffff is forced error, don't print it */
1997 		if (rxr->rx_next_cons != 0xffff)
1998 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1999 				    cons, rxr->rx_next_cons);
2000 		bnxt_sched_reset_rxr(bp, rxr);
2001 		if (rc1)
2002 			return rc1;
2003 		goto next_rx_no_prod_no_len;
2004 	}
2005 	rx_buf = &rxr->rx_buf_ring[cons];
2006 	data = rx_buf->data;
2007 	data_ptr = rx_buf->data_ptr;
2008 	prefetch(data_ptr);
2009 
2010 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
2011 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
2012 
2013 	if (agg_bufs) {
2014 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
2015 			return -EBUSY;
2016 
2017 		cp_cons = NEXT_CMP(cp_cons);
2018 		*event |= BNXT_AGG_EVENT;
2019 	}
2020 	*event |= BNXT_RX_EVENT;
2021 
2022 	rx_buf->data = NULL;
2023 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
2024 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
2025 
2026 		bnxt_reuse_rx_data(rxr, cons, data);
2027 		if (agg_bufs)
2028 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
2029 					       false);
2030 
2031 		rc = -EIO;
2032 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
2033 			bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
2034 			if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
2035 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
2036 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
2037 						 rx_err);
2038 				bnxt_sched_reset_rxr(bp, rxr);
2039 			}
2040 		}
2041 		goto next_rx_no_len;
2042 	}
2043 
2044 	flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type);
2045 	len = flags >> RX_CMP_LEN_SHIFT;
2046 	dma_addr = rx_buf->mapping;
2047 
2048 	if (bnxt_xdp_attached(bp, rxr)) {
2049 		bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp);
2050 		if (agg_bufs) {
2051 			u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp,
2052 							     cp_cons, agg_bufs,
2053 							     false);
2054 			if (!frag_len) {
2055 				cpr->sw_stats.rx.rx_oom_discards += 1;
2056 				rc = -ENOMEM;
2057 				goto next_rx;
2058 			}
2059 		}
2060 		xdp_active = true;
2061 	}
2062 
2063 	if (xdp_active) {
2064 		if (bnxt_rx_xdp(bp, rxr, cons, xdp, data, &data_ptr, &len, event)) {
2065 			rc = 1;
2066 			goto next_rx;
2067 		}
2068 	}
2069 
2070 	if (len <= bp->rx_copy_thresh) {
2071 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
2072 		bnxt_reuse_rx_data(rxr, cons, data);
2073 		if (!skb) {
2074 			if (agg_bufs) {
2075 				if (!xdp_active)
2076 					bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
2077 							       agg_bufs, false);
2078 				else
2079 					bnxt_xdp_buff_frags_free(rxr, &xdp);
2080 			}
2081 			cpr->sw_stats.rx.rx_oom_discards += 1;
2082 			rc = -ENOMEM;
2083 			goto next_rx;
2084 		}
2085 	} else {
2086 		u32 payload;
2087 
2088 		if (rx_buf->data_ptr == data_ptr)
2089 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
2090 		else
2091 			payload = 0;
2092 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
2093 				      payload | len);
2094 		if (!skb) {
2095 			cpr->sw_stats.rx.rx_oom_discards += 1;
2096 			rc = -ENOMEM;
2097 			goto next_rx;
2098 		}
2099 	}
2100 
2101 	if (agg_bufs) {
2102 		if (!xdp_active) {
2103 			skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false);
2104 			if (!skb) {
2105 				cpr->sw_stats.rx.rx_oom_discards += 1;
2106 				rc = -ENOMEM;
2107 				goto next_rx;
2108 			}
2109 		} else {
2110 			skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1);
2111 			if (!skb) {
2112 				/* we should be able to free the old skb here */
2113 				bnxt_xdp_buff_frags_free(rxr, &xdp);
2114 				cpr->sw_stats.rx.rx_oom_discards += 1;
2115 				rc = -ENOMEM;
2116 				goto next_rx;
2117 			}
2118 		}
2119 	}
2120 
2121 	if (RX_CMP_HASH_VALID(rxcmp)) {
2122 		enum pkt_hash_types type;
2123 
2124 		if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
2125 			type = bnxt_rss_ext_op(bp, rxcmp);
2126 		} else {
2127 			u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
2128 
2129 			/* RSS profiles 1 and 3 with extract code 0 for inner
2130 			 * 4-tuple
2131 			 */
2132 			if (hash_type != 1 && hash_type != 3)
2133 				type = PKT_HASH_TYPE_L3;
2134 			else
2135 				type = PKT_HASH_TYPE_L4;
2136 		}
2137 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
2138 	}
2139 
2140 	if (cmp_type == CMP_TYPE_RX_L2_CMP)
2141 		dev = bnxt_get_pkt_dev(bp, RX_CMP_CFA_CODE(rxcmp1));
2142 	skb->protocol = eth_type_trans(skb, dev);
2143 
2144 	if (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) {
2145 		skb = bnxt_rx_vlan(skb, cmp_type, rxcmp, rxcmp1);
2146 		if (!skb)
2147 			goto next_rx;
2148 	}
2149 
2150 	skb_checksum_none_assert(skb);
2151 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
2152 		if (dev->features & NETIF_F_RXCSUM) {
2153 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2154 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
2155 		}
2156 	} else {
2157 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
2158 			if (dev->features & NETIF_F_RXCSUM)
2159 				bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
2160 		}
2161 	}
2162 
2163 	if (bnxt_rx_ts_valid(bp, flags, rxcmp1, &cmpl_ts)) {
2164 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
2165 			u64 ns, ts;
2166 
2167 			if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) {
2168 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2169 
2170 				spin_lock_bh(&ptp->ptp_lock);
2171 				ns = timecounter_cyc2time(&ptp->tc, ts);
2172 				spin_unlock_bh(&ptp->ptp_lock);
2173 				memset(skb_hwtstamps(skb), 0,
2174 				       sizeof(*skb_hwtstamps(skb)));
2175 				skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
2176 			}
2177 		}
2178 	}
2179 	bnxt_deliver_skb(bp, bnapi, skb);
2180 	rc = 1;
2181 
2182 next_rx:
2183 	cpr->rx_packets += 1;
2184 	cpr->rx_bytes += len;
2185 
2186 next_rx_no_len:
2187 	rxr->rx_prod = NEXT_RX(prod);
2188 	rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons));
2189 
2190 next_rx_no_prod_no_len:
2191 	*raw_cons = tmp_raw_cons;
2192 
2193 	return rc;
2194 }
2195 
2196 /* In netpoll mode, if we are using a combined completion ring, we need to
2197  * discard the rx packets and recycle the buffers.
2198  */
2199 static int bnxt_force_rx_discard(struct bnxt *bp,
2200 				 struct bnxt_cp_ring_info *cpr,
2201 				 u32 *raw_cons, u8 *event)
2202 {
2203 	u32 tmp_raw_cons = *raw_cons;
2204 	struct rx_cmp_ext *rxcmp1;
2205 	struct rx_cmp *rxcmp;
2206 	u16 cp_cons;
2207 	u8 cmp_type;
2208 	int rc;
2209 
2210 	cp_cons = RING_CMP(tmp_raw_cons);
2211 	rxcmp = (struct rx_cmp *)
2212 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2213 
2214 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2215 	cp_cons = RING_CMP(tmp_raw_cons);
2216 	rxcmp1 = (struct rx_cmp_ext *)
2217 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2218 
2219 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2220 		return -EBUSY;
2221 
2222 	/* The valid test of the entry must be done first before
2223 	 * reading any further.
2224 	 */
2225 	dma_rmb();
2226 	cmp_type = RX_CMP_TYPE(rxcmp);
2227 	if (cmp_type == CMP_TYPE_RX_L2_CMP ||
2228 	    cmp_type == CMP_TYPE_RX_L2_V3_CMP) {
2229 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2230 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2231 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2232 		struct rx_tpa_end_cmp_ext *tpa_end1;
2233 
2234 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
2235 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
2236 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
2237 	}
2238 	rc = bnxt_rx_pkt(bp, cpr, raw_cons, event);
2239 	if (rc && rc != -EBUSY)
2240 		cpr->sw_stats.rx.rx_netpoll_discards += 1;
2241 	return rc;
2242 }
2243 
2244 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
2245 {
2246 	struct bnxt_fw_health *fw_health = bp->fw_health;
2247 	u32 reg = fw_health->regs[reg_idx];
2248 	u32 reg_type, reg_off, val = 0;
2249 
2250 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
2251 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
2252 	switch (reg_type) {
2253 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
2254 		pci_read_config_dword(bp->pdev, reg_off, &val);
2255 		break;
2256 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
2257 		reg_off = fw_health->mapped_regs[reg_idx];
2258 		fallthrough;
2259 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
2260 		val = readl(bp->bar0 + reg_off);
2261 		break;
2262 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
2263 		val = readl(bp->bar1 + reg_off);
2264 		break;
2265 	}
2266 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
2267 		val &= fw_health->fw_reset_inprog_reg_mask;
2268 	return val;
2269 }
2270 
2271 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
2272 {
2273 	int i;
2274 
2275 	for (i = 0; i < bp->rx_nr_rings; i++) {
2276 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
2277 		struct bnxt_ring_grp_info *grp_info;
2278 
2279 		grp_info = &bp->grp_info[grp_idx];
2280 		if (grp_info->agg_fw_ring_id == ring_id)
2281 			return grp_idx;
2282 	}
2283 	return INVALID_HW_RING_ID;
2284 }
2285 
2286 static u16 bnxt_get_force_speed(struct bnxt_link_info *link_info)
2287 {
2288 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2289 
2290 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2)
2291 		return link_info->force_link_speed2;
2292 	if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4)
2293 		return link_info->force_pam4_link_speed;
2294 	return link_info->force_link_speed;
2295 }
2296 
2297 static void bnxt_set_force_speed(struct bnxt_link_info *link_info)
2298 {
2299 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2300 
2301 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2302 		link_info->req_link_speed = link_info->force_link_speed2;
2303 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2304 		switch (link_info->req_link_speed) {
2305 		case BNXT_LINK_SPEED_50GB_PAM4:
2306 		case BNXT_LINK_SPEED_100GB_PAM4:
2307 		case BNXT_LINK_SPEED_200GB_PAM4:
2308 		case BNXT_LINK_SPEED_400GB_PAM4:
2309 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
2310 			break;
2311 		case BNXT_LINK_SPEED_100GB_PAM4_112:
2312 		case BNXT_LINK_SPEED_200GB_PAM4_112:
2313 		case BNXT_LINK_SPEED_400GB_PAM4_112:
2314 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4_112;
2315 			break;
2316 		default:
2317 			link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2318 		}
2319 		return;
2320 	}
2321 	link_info->req_link_speed = link_info->force_link_speed;
2322 	link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
2323 	if (link_info->force_pam4_link_speed) {
2324 		link_info->req_link_speed = link_info->force_pam4_link_speed;
2325 		link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
2326 	}
2327 }
2328 
2329 static void bnxt_set_auto_speed(struct bnxt_link_info *link_info)
2330 {
2331 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2332 
2333 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2334 		link_info->advertising = link_info->auto_link_speeds2;
2335 		return;
2336 	}
2337 	link_info->advertising = link_info->auto_link_speeds;
2338 	link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
2339 }
2340 
2341 static bool bnxt_force_speed_updated(struct bnxt_link_info *link_info)
2342 {
2343 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2344 
2345 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2346 		if (link_info->req_link_speed != link_info->force_link_speed2)
2347 			return true;
2348 		return false;
2349 	}
2350 	if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
2351 	    link_info->req_link_speed != link_info->force_link_speed)
2352 		return true;
2353 	if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
2354 	    link_info->req_link_speed != link_info->force_pam4_link_speed)
2355 		return true;
2356 	return false;
2357 }
2358 
2359 static bool bnxt_auto_speed_updated(struct bnxt_link_info *link_info)
2360 {
2361 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
2362 
2363 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
2364 		if (link_info->advertising != link_info->auto_link_speeds2)
2365 			return true;
2366 		return false;
2367 	}
2368 	if (link_info->advertising != link_info->auto_link_speeds ||
2369 	    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
2370 		return true;
2371 	return false;
2372 }
2373 
2374 #define BNXT_EVENT_THERMAL_CURRENT_TEMP(data2)				\
2375 	((data2) &							\
2376 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_CURRENT_TEMP_MASK)
2377 
2378 #define BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2)			\
2379 	(((data2) &							\
2380 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_MASK) >>\
2381 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_SFT)
2382 
2383 #define EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1)			\
2384 	((data1) &							\
2385 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_MASK)
2386 
2387 #define EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)		\
2388 	(((data1) &							\
2389 	  ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR) ==\
2390 	 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR_INCREASING)
2391 
2392 /* Return true if the workqueue has to be scheduled */
2393 static bool bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2)
2394 {
2395 	u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1);
2396 
2397 	switch (err_type) {
2398 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL:
2399 		netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n",
2400 			   BNXT_EVENT_INVALID_SIGNAL_DATA(data2));
2401 		break;
2402 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM:
2403 		netdev_warn(bp->dev, "Pause Storm detected!\n");
2404 		break;
2405 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD:
2406 		netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n");
2407 		break;
2408 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_THERMAL_THRESHOLD: {
2409 		u32 type = EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1);
2410 		char *threshold_type;
2411 		bool notify = false;
2412 		char *dir_str;
2413 
2414 		switch (type) {
2415 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_WARN:
2416 			threshold_type = "warning";
2417 			break;
2418 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_CRITICAL:
2419 			threshold_type = "critical";
2420 			break;
2421 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_FATAL:
2422 			threshold_type = "fatal";
2423 			break;
2424 		case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_SHUTDOWN:
2425 			threshold_type = "shutdown";
2426 			break;
2427 		default:
2428 			netdev_err(bp->dev, "Unknown Thermal threshold type event\n");
2429 			return false;
2430 		}
2431 		if (EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)) {
2432 			dir_str = "above";
2433 			notify = true;
2434 		} else {
2435 			dir_str = "below";
2436 		}
2437 		netdev_warn(bp->dev, "Chip temperature has gone %s the %s thermal threshold!\n",
2438 			    dir_str, threshold_type);
2439 		netdev_warn(bp->dev, "Temperature (In Celsius), Current: %lu, threshold: %lu\n",
2440 			    BNXT_EVENT_THERMAL_CURRENT_TEMP(data2),
2441 			    BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2));
2442 		if (notify) {
2443 			bp->thermal_threshold_type = type;
2444 			set_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event);
2445 			return true;
2446 		}
2447 		return false;
2448 	}
2449 	default:
2450 		netdev_err(bp->dev, "FW reported unknown error type %u\n",
2451 			   err_type);
2452 		break;
2453 	}
2454 	return false;
2455 }
2456 
2457 #define BNXT_GET_EVENT_PORT(data)	\
2458 	((data) &			\
2459 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
2460 
2461 #define BNXT_EVENT_RING_TYPE(data2)	\
2462 	((data2) &			\
2463 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
2464 
2465 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
2466 	(BNXT_EVENT_RING_TYPE(data2) ==	\
2467 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
2468 
2469 #define BNXT_EVENT_PHC_EVENT_TYPE(data1)	\
2470 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\
2471 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT)
2472 
2473 #define BNXT_EVENT_PHC_RTC_UPDATE(data1)	\
2474 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\
2475 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT)
2476 
2477 #define BNXT_PHC_BITS	48
2478 
2479 static int bnxt_async_event_process(struct bnxt *bp,
2480 				    struct hwrm_async_event_cmpl *cmpl)
2481 {
2482 	u16 event_id = le16_to_cpu(cmpl->event_id);
2483 	u32 data1 = le32_to_cpu(cmpl->event_data1);
2484 	u32 data2 = le32_to_cpu(cmpl->event_data2);
2485 
2486 	netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n",
2487 		   event_id, data1, data2);
2488 
2489 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
2490 	switch (event_id) {
2491 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2492 		struct bnxt_link_info *link_info = &bp->link_info;
2493 
2494 		if (BNXT_VF(bp))
2495 			goto async_event_process_exit;
2496 
2497 		/* print unsupported speed warning in forced speed mode only */
2498 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2499 		    (data1 & 0x20000)) {
2500 			u16 fw_speed = bnxt_get_force_speed(link_info);
2501 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2502 
2503 			if (speed != SPEED_UNKNOWN)
2504 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2505 					    speed);
2506 		}
2507 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2508 	}
2509 		fallthrough;
2510 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2511 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2512 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2513 		fallthrough;
2514 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2515 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2516 		break;
2517 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2518 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2519 		break;
2520 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2521 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2522 
2523 		if (BNXT_VF(bp))
2524 			break;
2525 
2526 		if (bp->pf.port_id != port_id)
2527 			break;
2528 
2529 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2530 		break;
2531 	}
2532 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2533 		if (BNXT_PF(bp))
2534 			goto async_event_process_exit;
2535 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2536 		break;
2537 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2538 		char *type_str = "Solicited";
2539 
2540 		if (!bp->fw_health)
2541 			goto async_event_process_exit;
2542 
2543 		bp->fw_reset_timestamp = jiffies;
2544 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2545 		if (!bp->fw_reset_min_dsecs)
2546 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2547 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2548 		if (!bp->fw_reset_max_dsecs)
2549 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2550 		if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) {
2551 			set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state);
2552 		} else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2553 			type_str = "Fatal";
2554 			bp->fw_health->fatalities++;
2555 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2556 		} else if (data2 && BNXT_FW_STATUS_HEALTHY !=
2557 			   EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) {
2558 			type_str = "Non-fatal";
2559 			bp->fw_health->survivals++;
2560 			set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
2561 		}
2562 		netif_warn(bp, hw, bp->dev,
2563 			   "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2564 			   type_str, data1, data2,
2565 			   bp->fw_reset_min_dsecs * 100,
2566 			   bp->fw_reset_max_dsecs * 100);
2567 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2568 		break;
2569 	}
2570 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2571 		struct bnxt_fw_health *fw_health = bp->fw_health;
2572 		char *status_desc = "healthy";
2573 		u32 status;
2574 
2575 		if (!fw_health)
2576 			goto async_event_process_exit;
2577 
2578 		if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) {
2579 			fw_health->enabled = false;
2580 			netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n");
2581 			break;
2582 		}
2583 		fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2584 		fw_health->tmr_multiplier =
2585 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2586 				     bp->current_interval * 10);
2587 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2588 		if (!fw_health->enabled)
2589 			fw_health->last_fw_heartbeat =
2590 				bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2591 		fw_health->last_fw_reset_cnt =
2592 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2593 		status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
2594 		if (status != BNXT_FW_STATUS_HEALTHY)
2595 			status_desc = "unhealthy";
2596 		netif_info(bp, drv, bp->dev,
2597 			   "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n",
2598 			   fw_health->primary ? "primary" : "backup", status,
2599 			   status_desc, fw_health->last_fw_reset_cnt);
2600 		if (!fw_health->enabled) {
2601 			/* Make sure tmr_counter is set and visible to
2602 			 * bnxt_health_check() before setting enabled to true.
2603 			 */
2604 			smp_wmb();
2605 			fw_health->enabled = true;
2606 		}
2607 		goto async_event_process_exit;
2608 	}
2609 	case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2610 		netif_notice(bp, hw, bp->dev,
2611 			     "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2612 			     data1, data2);
2613 		goto async_event_process_exit;
2614 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2615 		struct bnxt_rx_ring_info *rxr;
2616 		u16 grp_idx;
2617 
2618 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
2619 			goto async_event_process_exit;
2620 
2621 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2622 			    BNXT_EVENT_RING_TYPE(data2), data1);
2623 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2624 			goto async_event_process_exit;
2625 
2626 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2627 		if (grp_idx == INVALID_HW_RING_ID) {
2628 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2629 				    data1);
2630 			goto async_event_process_exit;
2631 		}
2632 		rxr = bp->bnapi[grp_idx]->rx_ring;
2633 		bnxt_sched_reset_rxr(bp, rxr);
2634 		goto async_event_process_exit;
2635 	}
2636 	case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2637 		struct bnxt_fw_health *fw_health = bp->fw_health;
2638 
2639 		netif_notice(bp, hw, bp->dev,
2640 			     "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2641 			     data1, data2);
2642 		if (fw_health) {
2643 			fw_health->echo_req_data1 = data1;
2644 			fw_health->echo_req_data2 = data2;
2645 			set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2646 			break;
2647 		}
2648 		goto async_event_process_exit;
2649 	}
2650 	case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: {
2651 		bnxt_ptp_pps_event(bp, data1, data2);
2652 		goto async_event_process_exit;
2653 	}
2654 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: {
2655 		if (bnxt_event_error_report(bp, data1, data2))
2656 			break;
2657 		goto async_event_process_exit;
2658 	}
2659 	case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: {
2660 		switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) {
2661 		case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE:
2662 			if (BNXT_PTP_USE_RTC(bp)) {
2663 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2664 				u64 ns;
2665 
2666 				if (!ptp)
2667 					goto async_event_process_exit;
2668 
2669 				spin_lock_bh(&ptp->ptp_lock);
2670 				bnxt_ptp_update_current_time(bp);
2671 				ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) <<
2672 				       BNXT_PHC_BITS) | ptp->current_time);
2673 				bnxt_ptp_rtc_timecounter_init(ptp, ns);
2674 				spin_unlock_bh(&ptp->ptp_lock);
2675 			}
2676 			break;
2677 		}
2678 		goto async_event_process_exit;
2679 	}
2680 	case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: {
2681 		u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff;
2682 
2683 		hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED);
2684 		goto async_event_process_exit;
2685 	}
2686 	default:
2687 		goto async_event_process_exit;
2688 	}
2689 	__bnxt_queue_sp_work(bp);
2690 async_event_process_exit:
2691 	return 0;
2692 }
2693 
2694 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2695 {
2696 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2697 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2698 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2699 				(struct hwrm_fwd_req_cmpl *)txcmp;
2700 
2701 	switch (cmpl_type) {
2702 	case CMPL_BASE_TYPE_HWRM_DONE:
2703 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2704 		hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE);
2705 		break;
2706 
2707 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2708 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2709 
2710 		if ((vf_id < bp->pf.first_vf_id) ||
2711 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2712 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2713 				   vf_id);
2714 			return -EINVAL;
2715 		}
2716 
2717 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2718 		bnxt_queue_sp_work(bp, BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT);
2719 		break;
2720 
2721 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2722 		bnxt_async_event_process(bp,
2723 					 (struct hwrm_async_event_cmpl *)txcmp);
2724 		break;
2725 
2726 	default:
2727 		break;
2728 	}
2729 
2730 	return 0;
2731 }
2732 
2733 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2734 {
2735 	struct bnxt_napi *bnapi = dev_instance;
2736 	struct bnxt *bp = bnapi->bp;
2737 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2738 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2739 
2740 	cpr->event_ctr++;
2741 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2742 	napi_schedule(&bnapi->napi);
2743 	return IRQ_HANDLED;
2744 }
2745 
2746 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2747 {
2748 	u32 raw_cons = cpr->cp_raw_cons;
2749 	u16 cons = RING_CMP(raw_cons);
2750 	struct tx_cmp *txcmp;
2751 
2752 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2753 
2754 	return TX_CMP_VALID(txcmp, raw_cons);
2755 }
2756 
2757 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2758 {
2759 	struct bnxt_napi *bnapi = dev_instance;
2760 	struct bnxt *bp = bnapi->bp;
2761 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2762 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2763 	u32 int_status;
2764 
2765 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2766 
2767 	if (!bnxt_has_work(bp, cpr)) {
2768 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2769 		/* return if erroneous interrupt */
2770 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2771 			return IRQ_NONE;
2772 	}
2773 
2774 	/* disable ring IRQ */
2775 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2776 
2777 	/* Return here if interrupt is shared and is disabled. */
2778 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2779 		return IRQ_HANDLED;
2780 
2781 	napi_schedule(&bnapi->napi);
2782 	return IRQ_HANDLED;
2783 }
2784 
2785 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2786 			    int budget)
2787 {
2788 	struct bnxt_napi *bnapi = cpr->bnapi;
2789 	u32 raw_cons = cpr->cp_raw_cons;
2790 	u32 cons;
2791 	int rx_pkts = 0;
2792 	u8 event = 0;
2793 	struct tx_cmp *txcmp;
2794 
2795 	cpr->has_more_work = 0;
2796 	cpr->had_work_done = 1;
2797 	while (1) {
2798 		u8 cmp_type;
2799 		int rc;
2800 
2801 		cons = RING_CMP(raw_cons);
2802 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2803 
2804 		if (!TX_CMP_VALID(txcmp, raw_cons))
2805 			break;
2806 
2807 		/* The valid test of the entry must be done first before
2808 		 * reading any further.
2809 		 */
2810 		dma_rmb();
2811 		cmp_type = TX_CMP_TYPE(txcmp);
2812 		if (cmp_type == CMP_TYPE_TX_L2_CMP ||
2813 		    cmp_type == CMP_TYPE_TX_L2_COAL_CMP) {
2814 			u32 opaque = txcmp->tx_cmp_opaque;
2815 			struct bnxt_tx_ring_info *txr;
2816 			u16 tx_freed;
2817 
2818 			txr = bnapi->tx_ring[TX_OPAQUE_RING(opaque)];
2819 			event |= BNXT_TX_CMP_EVENT;
2820 			if (cmp_type == CMP_TYPE_TX_L2_COAL_CMP)
2821 				txr->tx_hw_cons = TX_CMP_SQ_CONS_IDX(txcmp);
2822 			else
2823 				txr->tx_hw_cons = TX_OPAQUE_PROD(bp, opaque);
2824 			tx_freed = (txr->tx_hw_cons - txr->tx_cons) &
2825 				   bp->tx_ring_mask;
2826 			/* return full budget so NAPI will complete. */
2827 			if (unlikely(tx_freed >= bp->tx_wake_thresh)) {
2828 				rx_pkts = budget;
2829 				raw_cons = NEXT_RAW_CMP(raw_cons);
2830 				if (budget)
2831 					cpr->has_more_work = 1;
2832 				break;
2833 			}
2834 		} else if (cmp_type >= CMP_TYPE_RX_L2_CMP &&
2835 			   cmp_type <= CMP_TYPE_RX_L2_TPA_START_V3_CMP) {
2836 			if (likely(budget))
2837 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2838 			else
2839 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2840 							   &event);
2841 			if (likely(rc >= 0))
2842 				rx_pkts += rc;
2843 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2844 			 * the NAPI budget.  Otherwise, we may potentially loop
2845 			 * here forever if we consistently cannot allocate
2846 			 * buffers.
2847 			 */
2848 			else if (rc == -ENOMEM && budget)
2849 				rx_pkts++;
2850 			else if (rc == -EBUSY)	/* partial completion */
2851 				break;
2852 		} else if (unlikely(cmp_type == CMPL_BASE_TYPE_HWRM_DONE ||
2853 				    cmp_type == CMPL_BASE_TYPE_HWRM_FWD_REQ ||
2854 				    cmp_type == CMPL_BASE_TYPE_HWRM_ASYNC_EVENT)) {
2855 			bnxt_hwrm_handler(bp, txcmp);
2856 		}
2857 		raw_cons = NEXT_RAW_CMP(raw_cons);
2858 
2859 		if (rx_pkts && rx_pkts == budget) {
2860 			cpr->has_more_work = 1;
2861 			break;
2862 		}
2863 	}
2864 
2865 	if (event & BNXT_REDIRECT_EVENT)
2866 		xdp_do_flush();
2867 
2868 	if (event & BNXT_TX_EVENT) {
2869 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring[0];
2870 		u16 prod = txr->tx_prod;
2871 
2872 		/* Sync BD data before updating doorbell */
2873 		wmb();
2874 
2875 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2876 	}
2877 
2878 	cpr->cp_raw_cons = raw_cons;
2879 	bnapi->events |= event;
2880 	return rx_pkts;
2881 }
2882 
2883 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2884 				  int budget)
2885 {
2886 	if ((bnapi->events & BNXT_TX_CMP_EVENT) && !bnapi->tx_fault)
2887 		bnapi->tx_int(bp, bnapi, budget);
2888 
2889 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2890 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2891 
2892 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2893 	}
2894 	if (bnapi->events & BNXT_AGG_EVENT) {
2895 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2896 
2897 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2898 	}
2899 	bnapi->events &= BNXT_TX_CMP_EVENT;
2900 }
2901 
2902 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2903 			  int budget)
2904 {
2905 	struct bnxt_napi *bnapi = cpr->bnapi;
2906 	int rx_pkts;
2907 
2908 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2909 
2910 	/* ACK completion ring before freeing tx ring and producing new
2911 	 * buffers in rx/agg rings to prevent overflowing the completion
2912 	 * ring.
2913 	 */
2914 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2915 
2916 	__bnxt_poll_work_done(bp, bnapi, budget);
2917 	return rx_pkts;
2918 }
2919 
2920 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2921 {
2922 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2923 	struct bnxt *bp = bnapi->bp;
2924 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2925 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2926 	struct tx_cmp *txcmp;
2927 	struct rx_cmp_ext *rxcmp1;
2928 	u32 cp_cons, tmp_raw_cons;
2929 	u32 raw_cons = cpr->cp_raw_cons;
2930 	bool flush_xdp = false;
2931 	u32 rx_pkts = 0;
2932 	u8 event = 0;
2933 
2934 	while (1) {
2935 		int rc;
2936 
2937 		cp_cons = RING_CMP(raw_cons);
2938 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2939 
2940 		if (!TX_CMP_VALID(txcmp, raw_cons))
2941 			break;
2942 
2943 		/* The valid test of the entry must be done first before
2944 		 * reading any further.
2945 		 */
2946 		dma_rmb();
2947 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2948 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2949 			cp_cons = RING_CMP(tmp_raw_cons);
2950 			rxcmp1 = (struct rx_cmp_ext *)
2951 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2952 
2953 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2954 				break;
2955 
2956 			/* force an error to recycle the buffer */
2957 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2958 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2959 
2960 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2961 			if (likely(rc == -EIO) && budget)
2962 				rx_pkts++;
2963 			else if (rc == -EBUSY)	/* partial completion */
2964 				break;
2965 			if (event & BNXT_REDIRECT_EVENT)
2966 				flush_xdp = true;
2967 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2968 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2969 			bnxt_hwrm_handler(bp, txcmp);
2970 		} else {
2971 			netdev_err(bp->dev,
2972 				   "Invalid completion received on special ring\n");
2973 		}
2974 		raw_cons = NEXT_RAW_CMP(raw_cons);
2975 
2976 		if (rx_pkts == budget)
2977 			break;
2978 	}
2979 
2980 	cpr->cp_raw_cons = raw_cons;
2981 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2982 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2983 
2984 	if (event & BNXT_AGG_EVENT)
2985 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2986 	if (flush_xdp)
2987 		xdp_do_flush();
2988 
2989 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2990 		napi_complete_done(napi, rx_pkts);
2991 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2992 	}
2993 	return rx_pkts;
2994 }
2995 
2996 static int bnxt_poll(struct napi_struct *napi, int budget)
2997 {
2998 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2999 	struct bnxt *bp = bnapi->bp;
3000 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3001 	int work_done = 0;
3002 
3003 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
3004 		napi_complete(napi);
3005 		return 0;
3006 	}
3007 	while (1) {
3008 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
3009 
3010 		if (work_done >= budget) {
3011 			if (!budget)
3012 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
3013 			break;
3014 		}
3015 
3016 		if (!bnxt_has_work(bp, cpr)) {
3017 			if (napi_complete_done(napi, work_done))
3018 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
3019 			break;
3020 		}
3021 	}
3022 	if (bp->flags & BNXT_FLAG_DIM) {
3023 		struct dim_sample dim_sample = {};
3024 
3025 		dim_update_sample(cpr->event_ctr,
3026 				  cpr->rx_packets,
3027 				  cpr->rx_bytes,
3028 				  &dim_sample);
3029 		net_dim(&cpr->dim, dim_sample);
3030 	}
3031 	return work_done;
3032 }
3033 
3034 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
3035 {
3036 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3037 	int i, work_done = 0;
3038 
3039 	for (i = 0; i < cpr->cp_ring_count; i++) {
3040 		struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i];
3041 
3042 		if (cpr2->had_nqe_notify) {
3043 			work_done += __bnxt_poll_work(bp, cpr2,
3044 						      budget - work_done);
3045 			cpr->has_more_work |= cpr2->has_more_work;
3046 		}
3047 	}
3048 	return work_done;
3049 }
3050 
3051 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
3052 				 u64 dbr_type, int budget)
3053 {
3054 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3055 	int i;
3056 
3057 	for (i = 0; i < cpr->cp_ring_count; i++) {
3058 		struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i];
3059 		struct bnxt_db_info *db;
3060 
3061 		if (cpr2->had_work_done) {
3062 			u32 tgl = 0;
3063 
3064 			if (dbr_type == DBR_TYPE_CQ_ARMALL) {
3065 				cpr2->had_nqe_notify = 0;
3066 				tgl = cpr2->toggle;
3067 			}
3068 			db = &cpr2->cp_db;
3069 			bnxt_writeq(bp,
3070 				    db->db_key64 | dbr_type | DB_TOGGLE(tgl) |
3071 				    DB_RING_IDX(db, cpr2->cp_raw_cons),
3072 				    db->doorbell);
3073 			cpr2->had_work_done = 0;
3074 		}
3075 	}
3076 	__bnxt_poll_work_done(bp, bnapi, budget);
3077 }
3078 
3079 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
3080 {
3081 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
3082 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3083 	struct bnxt_cp_ring_info *cpr_rx;
3084 	u32 raw_cons = cpr->cp_raw_cons;
3085 	struct bnxt *bp = bnapi->bp;
3086 	struct nqe_cn *nqcmp;
3087 	int work_done = 0;
3088 	u32 cons;
3089 
3090 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
3091 		napi_complete(napi);
3092 		return 0;
3093 	}
3094 	if (cpr->has_more_work) {
3095 		cpr->has_more_work = 0;
3096 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
3097 	}
3098 	while (1) {
3099 		u16 type;
3100 
3101 		cons = RING_CMP(raw_cons);
3102 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
3103 
3104 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
3105 			if (cpr->has_more_work)
3106 				break;
3107 
3108 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL,
3109 					     budget);
3110 			cpr->cp_raw_cons = raw_cons;
3111 			if (napi_complete_done(napi, work_done))
3112 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
3113 						  cpr->cp_raw_cons);
3114 			goto poll_done;
3115 		}
3116 
3117 		/* The valid test of the entry must be done first before
3118 		 * reading any further.
3119 		 */
3120 		dma_rmb();
3121 
3122 		type = le16_to_cpu(nqcmp->type);
3123 		if (NQE_CN_TYPE(type) == NQ_CN_TYPE_CQ_NOTIFICATION) {
3124 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
3125 			u32 cq_type = BNXT_NQ_HDL_TYPE(idx);
3126 			struct bnxt_cp_ring_info *cpr2;
3127 
3128 			/* No more budget for RX work */
3129 			if (budget && work_done >= budget &&
3130 			    cq_type == BNXT_NQ_HDL_TYPE_RX)
3131 				break;
3132 
3133 			idx = BNXT_NQ_HDL_IDX(idx);
3134 			cpr2 = &cpr->cp_ring_arr[idx];
3135 			cpr2->had_nqe_notify = 1;
3136 			cpr2->toggle = NQE_CN_TOGGLE(type);
3137 			work_done += __bnxt_poll_work(bp, cpr2,
3138 						      budget - work_done);
3139 			cpr->has_more_work |= cpr2->has_more_work;
3140 		} else {
3141 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
3142 		}
3143 		raw_cons = NEXT_RAW_CMP(raw_cons);
3144 	}
3145 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget);
3146 	if (raw_cons != cpr->cp_raw_cons) {
3147 		cpr->cp_raw_cons = raw_cons;
3148 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
3149 	}
3150 poll_done:
3151 	cpr_rx = &cpr->cp_ring_arr[0];
3152 	if (cpr_rx->cp_ring_type == BNXT_NQ_HDL_TYPE_RX &&
3153 	    (bp->flags & BNXT_FLAG_DIM)) {
3154 		struct dim_sample dim_sample = {};
3155 
3156 		dim_update_sample(cpr->event_ctr,
3157 				  cpr_rx->rx_packets,
3158 				  cpr_rx->rx_bytes,
3159 				  &dim_sample);
3160 		net_dim(&cpr->dim, dim_sample);
3161 	}
3162 	return work_done;
3163 }
3164 
3165 static void bnxt_free_tx_skbs(struct bnxt *bp)
3166 {
3167 	int i, max_idx;
3168 	struct pci_dev *pdev = bp->pdev;
3169 
3170 	if (!bp->tx_ring)
3171 		return;
3172 
3173 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
3174 	for (i = 0; i < bp->tx_nr_rings; i++) {
3175 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3176 		int j;
3177 
3178 		if (!txr->tx_buf_ring)
3179 			continue;
3180 
3181 		for (j = 0; j < max_idx;) {
3182 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
3183 			struct sk_buff *skb;
3184 			int k, last;
3185 
3186 			if (i < bp->tx_nr_rings_xdp &&
3187 			    tx_buf->action == XDP_REDIRECT) {
3188 				dma_unmap_single(&pdev->dev,
3189 					dma_unmap_addr(tx_buf, mapping),
3190 					dma_unmap_len(tx_buf, len),
3191 					DMA_TO_DEVICE);
3192 				xdp_return_frame(tx_buf->xdpf);
3193 				tx_buf->action = 0;
3194 				tx_buf->xdpf = NULL;
3195 				j++;
3196 				continue;
3197 			}
3198 
3199 			skb = tx_buf->skb;
3200 			if (!skb) {
3201 				j++;
3202 				continue;
3203 			}
3204 
3205 			tx_buf->skb = NULL;
3206 
3207 			if (tx_buf->is_push) {
3208 				dev_kfree_skb(skb);
3209 				j += 2;
3210 				continue;
3211 			}
3212 
3213 			dma_unmap_single(&pdev->dev,
3214 					 dma_unmap_addr(tx_buf, mapping),
3215 					 skb_headlen(skb),
3216 					 DMA_TO_DEVICE);
3217 
3218 			last = tx_buf->nr_frags;
3219 			j += 2;
3220 			for (k = 0; k < last; k++, j++) {
3221 				int ring_idx = j & bp->tx_ring_mask;
3222 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
3223 
3224 				tx_buf = &txr->tx_buf_ring[ring_idx];
3225 				dma_unmap_page(
3226 					&pdev->dev,
3227 					dma_unmap_addr(tx_buf, mapping),
3228 					skb_frag_size(frag), DMA_TO_DEVICE);
3229 			}
3230 			dev_kfree_skb(skb);
3231 		}
3232 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
3233 	}
3234 }
3235 
3236 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
3237 {
3238 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3239 	struct pci_dev *pdev = bp->pdev;
3240 	struct bnxt_tpa_idx_map *map;
3241 	int i, max_idx, max_agg_idx;
3242 
3243 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
3244 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
3245 	if (!rxr->rx_tpa)
3246 		goto skip_rx_tpa_free;
3247 
3248 	for (i = 0; i < bp->max_tpa; i++) {
3249 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
3250 		u8 *data = tpa_info->data;
3251 
3252 		if (!data)
3253 			continue;
3254 
3255 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
3256 				       bp->rx_buf_use_size, bp->rx_dir,
3257 				       DMA_ATTR_WEAK_ORDERING);
3258 
3259 		tpa_info->data = NULL;
3260 
3261 		skb_free_frag(data);
3262 	}
3263 
3264 skip_rx_tpa_free:
3265 	if (!rxr->rx_buf_ring)
3266 		goto skip_rx_buf_free;
3267 
3268 	for (i = 0; i < max_idx; i++) {
3269 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
3270 		dma_addr_t mapping = rx_buf->mapping;
3271 		void *data = rx_buf->data;
3272 
3273 		if (!data)
3274 			continue;
3275 
3276 		rx_buf->data = NULL;
3277 		if (BNXT_RX_PAGE_MODE(bp)) {
3278 			page_pool_recycle_direct(rxr->page_pool, data);
3279 		} else {
3280 			dma_unmap_single_attrs(&pdev->dev, mapping,
3281 					       bp->rx_buf_use_size, bp->rx_dir,
3282 					       DMA_ATTR_WEAK_ORDERING);
3283 			skb_free_frag(data);
3284 		}
3285 	}
3286 
3287 skip_rx_buf_free:
3288 	if (!rxr->rx_agg_ring)
3289 		goto skip_rx_agg_free;
3290 
3291 	for (i = 0; i < max_agg_idx; i++) {
3292 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
3293 		struct page *page = rx_agg_buf->page;
3294 
3295 		if (!page)
3296 			continue;
3297 
3298 		rx_agg_buf->page = NULL;
3299 		__clear_bit(i, rxr->rx_agg_bmap);
3300 
3301 		page_pool_recycle_direct(rxr->page_pool, page);
3302 	}
3303 
3304 skip_rx_agg_free:
3305 	map = rxr->rx_tpa_idx_map;
3306 	if (map)
3307 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
3308 }
3309 
3310 static void bnxt_free_rx_skbs(struct bnxt *bp)
3311 {
3312 	int i;
3313 
3314 	if (!bp->rx_ring)
3315 		return;
3316 
3317 	for (i = 0; i < bp->rx_nr_rings; i++)
3318 		bnxt_free_one_rx_ring_skbs(bp, i);
3319 }
3320 
3321 static void bnxt_free_skbs(struct bnxt *bp)
3322 {
3323 	bnxt_free_tx_skbs(bp);
3324 	bnxt_free_rx_skbs(bp);
3325 }
3326 
3327 static void bnxt_init_ctx_mem(struct bnxt_ctx_mem_type *ctxm, void *p, int len)
3328 {
3329 	u8 init_val = ctxm->init_value;
3330 	u16 offset = ctxm->init_offset;
3331 	u8 *p2 = p;
3332 	int i;
3333 
3334 	if (!init_val)
3335 		return;
3336 	if (offset == BNXT_CTX_INIT_INVALID_OFFSET) {
3337 		memset(p, init_val, len);
3338 		return;
3339 	}
3340 	for (i = 0; i < len; i += ctxm->entry_size)
3341 		*(p2 + i + offset) = init_val;
3342 }
3343 
3344 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3345 {
3346 	struct pci_dev *pdev = bp->pdev;
3347 	int i;
3348 
3349 	if (!rmem->pg_arr)
3350 		goto skip_pages;
3351 
3352 	for (i = 0; i < rmem->nr_pages; i++) {
3353 		if (!rmem->pg_arr[i])
3354 			continue;
3355 
3356 		dma_free_coherent(&pdev->dev, rmem->page_size,
3357 				  rmem->pg_arr[i], rmem->dma_arr[i]);
3358 
3359 		rmem->pg_arr[i] = NULL;
3360 	}
3361 skip_pages:
3362 	if (rmem->pg_tbl) {
3363 		size_t pg_tbl_size = rmem->nr_pages * 8;
3364 
3365 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3366 			pg_tbl_size = rmem->page_size;
3367 		dma_free_coherent(&pdev->dev, pg_tbl_size,
3368 				  rmem->pg_tbl, rmem->pg_tbl_map);
3369 		rmem->pg_tbl = NULL;
3370 	}
3371 	if (rmem->vmem_size && *rmem->vmem) {
3372 		vfree(*rmem->vmem);
3373 		*rmem->vmem = NULL;
3374 	}
3375 }
3376 
3377 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3378 {
3379 	struct pci_dev *pdev = bp->pdev;
3380 	u64 valid_bit = 0;
3381 	int i;
3382 
3383 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
3384 		valid_bit = PTU_PTE_VALID;
3385 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
3386 		size_t pg_tbl_size = rmem->nr_pages * 8;
3387 
3388 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3389 			pg_tbl_size = rmem->page_size;
3390 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
3391 						  &rmem->pg_tbl_map,
3392 						  GFP_KERNEL);
3393 		if (!rmem->pg_tbl)
3394 			return -ENOMEM;
3395 	}
3396 
3397 	for (i = 0; i < rmem->nr_pages; i++) {
3398 		u64 extra_bits = valid_bit;
3399 
3400 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
3401 						     rmem->page_size,
3402 						     &rmem->dma_arr[i],
3403 						     GFP_KERNEL);
3404 		if (!rmem->pg_arr[i])
3405 			return -ENOMEM;
3406 
3407 		if (rmem->ctx_mem)
3408 			bnxt_init_ctx_mem(rmem->ctx_mem, rmem->pg_arr[i],
3409 					  rmem->page_size);
3410 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
3411 			if (i == rmem->nr_pages - 2 &&
3412 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3413 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
3414 			else if (i == rmem->nr_pages - 1 &&
3415 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3416 				extra_bits |= PTU_PTE_LAST;
3417 			rmem->pg_tbl[i] =
3418 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
3419 		}
3420 	}
3421 
3422 	if (rmem->vmem_size) {
3423 		*rmem->vmem = vzalloc(rmem->vmem_size);
3424 		if (!(*rmem->vmem))
3425 			return -ENOMEM;
3426 	}
3427 	return 0;
3428 }
3429 
3430 static void bnxt_free_tpa_info(struct bnxt *bp)
3431 {
3432 	int i, j;
3433 
3434 	for (i = 0; i < bp->rx_nr_rings; i++) {
3435 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3436 
3437 		kfree(rxr->rx_tpa_idx_map);
3438 		rxr->rx_tpa_idx_map = NULL;
3439 		if (rxr->rx_tpa) {
3440 			for (j = 0; j < bp->max_tpa; j++) {
3441 				kfree(rxr->rx_tpa[j].agg_arr);
3442 				rxr->rx_tpa[j].agg_arr = NULL;
3443 			}
3444 		}
3445 		kfree(rxr->rx_tpa);
3446 		rxr->rx_tpa = NULL;
3447 	}
3448 }
3449 
3450 static int bnxt_alloc_tpa_info(struct bnxt *bp)
3451 {
3452 	int i, j;
3453 
3454 	bp->max_tpa = MAX_TPA;
3455 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
3456 		if (!bp->max_tpa_v2)
3457 			return 0;
3458 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
3459 	}
3460 
3461 	for (i = 0; i < bp->rx_nr_rings; i++) {
3462 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3463 		struct rx_agg_cmp *agg;
3464 
3465 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
3466 				      GFP_KERNEL);
3467 		if (!rxr->rx_tpa)
3468 			return -ENOMEM;
3469 
3470 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
3471 			continue;
3472 		for (j = 0; j < bp->max_tpa; j++) {
3473 			agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL);
3474 			if (!agg)
3475 				return -ENOMEM;
3476 			rxr->rx_tpa[j].agg_arr = agg;
3477 		}
3478 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
3479 					      GFP_KERNEL);
3480 		if (!rxr->rx_tpa_idx_map)
3481 			return -ENOMEM;
3482 	}
3483 	return 0;
3484 }
3485 
3486 static void bnxt_free_rx_rings(struct bnxt *bp)
3487 {
3488 	int i;
3489 
3490 	if (!bp->rx_ring)
3491 		return;
3492 
3493 	bnxt_free_tpa_info(bp);
3494 	for (i = 0; i < bp->rx_nr_rings; i++) {
3495 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3496 		struct bnxt_ring_struct *ring;
3497 
3498 		if (rxr->xdp_prog)
3499 			bpf_prog_put(rxr->xdp_prog);
3500 
3501 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
3502 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3503 
3504 		page_pool_destroy(rxr->page_pool);
3505 		rxr->page_pool = NULL;
3506 
3507 		kfree(rxr->rx_agg_bmap);
3508 		rxr->rx_agg_bmap = NULL;
3509 
3510 		ring = &rxr->rx_ring_struct;
3511 		bnxt_free_ring(bp, &ring->ring_mem);
3512 
3513 		ring = &rxr->rx_agg_ring_struct;
3514 		bnxt_free_ring(bp, &ring->ring_mem);
3515 	}
3516 }
3517 
3518 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
3519 				   struct bnxt_rx_ring_info *rxr)
3520 {
3521 	struct page_pool_params pp = { 0 };
3522 
3523 	pp.pool_size = bp->rx_agg_ring_size;
3524 	if (BNXT_RX_PAGE_MODE(bp))
3525 		pp.pool_size += bp->rx_ring_size;
3526 	pp.nid = dev_to_node(&bp->pdev->dev);
3527 	pp.napi = &rxr->bnapi->napi;
3528 	pp.netdev = bp->dev;
3529 	pp.dev = &bp->pdev->dev;
3530 	pp.dma_dir = bp->rx_dir;
3531 	pp.max_len = PAGE_SIZE;
3532 	pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
3533 
3534 	rxr->page_pool = page_pool_create(&pp);
3535 	if (IS_ERR(rxr->page_pool)) {
3536 		int err = PTR_ERR(rxr->page_pool);
3537 
3538 		rxr->page_pool = NULL;
3539 		return err;
3540 	}
3541 	return 0;
3542 }
3543 
3544 static int bnxt_alloc_rx_rings(struct bnxt *bp)
3545 {
3546 	int i, rc = 0, agg_rings = 0;
3547 
3548 	if (!bp->rx_ring)
3549 		return -ENOMEM;
3550 
3551 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
3552 		agg_rings = 1;
3553 
3554 	for (i = 0; i < bp->rx_nr_rings; i++) {
3555 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3556 		struct bnxt_ring_struct *ring;
3557 
3558 		ring = &rxr->rx_ring_struct;
3559 
3560 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
3561 		if (rc)
3562 			return rc;
3563 
3564 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
3565 		if (rc < 0)
3566 			return rc;
3567 
3568 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
3569 						MEM_TYPE_PAGE_POOL,
3570 						rxr->page_pool);
3571 		if (rc) {
3572 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3573 			return rc;
3574 		}
3575 
3576 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3577 		if (rc)
3578 			return rc;
3579 
3580 		ring->grp_idx = i;
3581 		if (agg_rings) {
3582 			u16 mem_size;
3583 
3584 			ring = &rxr->rx_agg_ring_struct;
3585 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3586 			if (rc)
3587 				return rc;
3588 
3589 			ring->grp_idx = i;
3590 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
3591 			mem_size = rxr->rx_agg_bmap_size / 8;
3592 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
3593 			if (!rxr->rx_agg_bmap)
3594 				return -ENOMEM;
3595 		}
3596 	}
3597 	if (bp->flags & BNXT_FLAG_TPA)
3598 		rc = bnxt_alloc_tpa_info(bp);
3599 	return rc;
3600 }
3601 
3602 static void bnxt_free_tx_rings(struct bnxt *bp)
3603 {
3604 	int i;
3605 	struct pci_dev *pdev = bp->pdev;
3606 
3607 	if (!bp->tx_ring)
3608 		return;
3609 
3610 	for (i = 0; i < bp->tx_nr_rings; i++) {
3611 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3612 		struct bnxt_ring_struct *ring;
3613 
3614 		if (txr->tx_push) {
3615 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
3616 					  txr->tx_push, txr->tx_push_mapping);
3617 			txr->tx_push = NULL;
3618 		}
3619 
3620 		ring = &txr->tx_ring_struct;
3621 
3622 		bnxt_free_ring(bp, &ring->ring_mem);
3623 	}
3624 }
3625 
3626 #define BNXT_TC_TO_RING_BASE(bp, tc)	\
3627 	((tc) * (bp)->tx_nr_rings_per_tc)
3628 
3629 #define BNXT_RING_TO_TC_OFF(bp, tx)	\
3630 	((tx) % (bp)->tx_nr_rings_per_tc)
3631 
3632 #define BNXT_RING_TO_TC(bp, tx)		\
3633 	((tx) / (bp)->tx_nr_rings_per_tc)
3634 
3635 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3636 {
3637 	int i, j, rc;
3638 	struct pci_dev *pdev = bp->pdev;
3639 
3640 	bp->tx_push_size = 0;
3641 	if (bp->tx_push_thresh) {
3642 		int push_size;
3643 
3644 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3645 					bp->tx_push_thresh);
3646 
3647 		if (push_size > 256) {
3648 			push_size = 0;
3649 			bp->tx_push_thresh = 0;
3650 		}
3651 
3652 		bp->tx_push_size = push_size;
3653 	}
3654 
3655 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3656 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3657 		struct bnxt_ring_struct *ring;
3658 		u8 qidx;
3659 
3660 		ring = &txr->tx_ring_struct;
3661 
3662 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3663 		if (rc)
3664 			return rc;
3665 
3666 		ring->grp_idx = txr->bnapi->index;
3667 		if (bp->tx_push_size) {
3668 			dma_addr_t mapping;
3669 
3670 			/* One pre-allocated DMA buffer to backup
3671 			 * TX push operation
3672 			 */
3673 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
3674 						bp->tx_push_size,
3675 						&txr->tx_push_mapping,
3676 						GFP_KERNEL);
3677 
3678 			if (!txr->tx_push)
3679 				return -ENOMEM;
3680 
3681 			mapping = txr->tx_push_mapping +
3682 				sizeof(struct tx_push_bd);
3683 			txr->data_mapping = cpu_to_le64(mapping);
3684 		}
3685 		qidx = bp->tc_to_qidx[j];
3686 		ring->queue_id = bp->q_info[qidx].queue_id;
3687 		spin_lock_init(&txr->xdp_tx_lock);
3688 		if (i < bp->tx_nr_rings_xdp)
3689 			continue;
3690 		if (BNXT_RING_TO_TC_OFF(bp, i) == (bp->tx_nr_rings_per_tc - 1))
3691 			j++;
3692 	}
3693 	return 0;
3694 }
3695 
3696 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr)
3697 {
3698 	struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3699 
3700 	kfree(cpr->cp_desc_ring);
3701 	cpr->cp_desc_ring = NULL;
3702 	ring->ring_mem.pg_arr = NULL;
3703 	kfree(cpr->cp_desc_mapping);
3704 	cpr->cp_desc_mapping = NULL;
3705 	ring->ring_mem.dma_arr = NULL;
3706 }
3707 
3708 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n)
3709 {
3710 	cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL);
3711 	if (!cpr->cp_desc_ring)
3712 		return -ENOMEM;
3713 	cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping),
3714 				       GFP_KERNEL);
3715 	if (!cpr->cp_desc_mapping)
3716 		return -ENOMEM;
3717 	return 0;
3718 }
3719 
3720 static void bnxt_free_all_cp_arrays(struct bnxt *bp)
3721 {
3722 	int i;
3723 
3724 	if (!bp->bnapi)
3725 		return;
3726 	for (i = 0; i < bp->cp_nr_rings; i++) {
3727 		struct bnxt_napi *bnapi = bp->bnapi[i];
3728 
3729 		if (!bnapi)
3730 			continue;
3731 		bnxt_free_cp_arrays(&bnapi->cp_ring);
3732 	}
3733 }
3734 
3735 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp)
3736 {
3737 	int i, n = bp->cp_nr_pages;
3738 
3739 	for (i = 0; i < bp->cp_nr_rings; i++) {
3740 		struct bnxt_napi *bnapi = bp->bnapi[i];
3741 		int rc;
3742 
3743 		if (!bnapi)
3744 			continue;
3745 		rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n);
3746 		if (rc)
3747 			return rc;
3748 	}
3749 	return 0;
3750 }
3751 
3752 static void bnxt_free_cp_rings(struct bnxt *bp)
3753 {
3754 	int i;
3755 
3756 	if (!bp->bnapi)
3757 		return;
3758 
3759 	for (i = 0; i < bp->cp_nr_rings; i++) {
3760 		struct bnxt_napi *bnapi = bp->bnapi[i];
3761 		struct bnxt_cp_ring_info *cpr;
3762 		struct bnxt_ring_struct *ring;
3763 		int j;
3764 
3765 		if (!bnapi)
3766 			continue;
3767 
3768 		cpr = &bnapi->cp_ring;
3769 		ring = &cpr->cp_ring_struct;
3770 
3771 		bnxt_free_ring(bp, &ring->ring_mem);
3772 
3773 		if (!cpr->cp_ring_arr)
3774 			continue;
3775 
3776 		for (j = 0; j < cpr->cp_ring_count; j++) {
3777 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
3778 
3779 			ring = &cpr2->cp_ring_struct;
3780 			bnxt_free_ring(bp, &ring->ring_mem);
3781 			bnxt_free_cp_arrays(cpr2);
3782 		}
3783 		kfree(cpr->cp_ring_arr);
3784 		cpr->cp_ring_arr = NULL;
3785 		cpr->cp_ring_count = 0;
3786 	}
3787 }
3788 
3789 static int bnxt_alloc_cp_sub_ring(struct bnxt *bp,
3790 				  struct bnxt_cp_ring_info *cpr)
3791 {
3792 	struct bnxt_ring_mem_info *rmem;
3793 	struct bnxt_ring_struct *ring;
3794 	int rc;
3795 
3796 	rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages);
3797 	if (rc) {
3798 		bnxt_free_cp_arrays(cpr);
3799 		return -ENOMEM;
3800 	}
3801 	ring = &cpr->cp_ring_struct;
3802 	rmem = &ring->ring_mem;
3803 	rmem->nr_pages = bp->cp_nr_pages;
3804 	rmem->page_size = HW_CMPD_RING_SIZE;
3805 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3806 	rmem->dma_arr = cpr->cp_desc_mapping;
3807 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3808 	rc = bnxt_alloc_ring(bp, rmem);
3809 	if (rc) {
3810 		bnxt_free_ring(bp, rmem);
3811 		bnxt_free_cp_arrays(cpr);
3812 	}
3813 	return rc;
3814 }
3815 
3816 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3817 {
3818 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3819 	int i, j, rc, ulp_base_vec, ulp_msix;
3820 	int tcs = netdev_get_num_tc(bp->dev);
3821 
3822 	if (!tcs)
3823 		tcs = 1;
3824 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3825 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3826 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
3827 		struct bnxt_napi *bnapi = bp->bnapi[i];
3828 		struct bnxt_cp_ring_info *cpr, *cpr2;
3829 		struct bnxt_ring_struct *ring;
3830 		int cp_count = 0, k;
3831 		int rx = 0, tx = 0;
3832 
3833 		if (!bnapi)
3834 			continue;
3835 
3836 		cpr = &bnapi->cp_ring;
3837 		cpr->bnapi = bnapi;
3838 		ring = &cpr->cp_ring_struct;
3839 
3840 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3841 		if (rc)
3842 			return rc;
3843 
3844 		if (ulp_msix && i >= ulp_base_vec)
3845 			ring->map_idx = i + ulp_msix;
3846 		else
3847 			ring->map_idx = i;
3848 
3849 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
3850 			continue;
3851 
3852 		if (i < bp->rx_nr_rings) {
3853 			cp_count++;
3854 			rx = 1;
3855 		}
3856 		if (i < bp->tx_nr_rings_xdp) {
3857 			cp_count++;
3858 			tx = 1;
3859 		} else if ((sh && i < bp->tx_nr_rings) ||
3860 			 (!sh && i >= bp->rx_nr_rings)) {
3861 			cp_count += tcs;
3862 			tx = 1;
3863 		}
3864 
3865 		cpr->cp_ring_arr = kcalloc(cp_count, sizeof(*cpr),
3866 					   GFP_KERNEL);
3867 		if (!cpr->cp_ring_arr)
3868 			return -ENOMEM;
3869 		cpr->cp_ring_count = cp_count;
3870 
3871 		for (k = 0; k < cp_count; k++) {
3872 			cpr2 = &cpr->cp_ring_arr[k];
3873 			rc = bnxt_alloc_cp_sub_ring(bp, cpr2);
3874 			if (rc)
3875 				return rc;
3876 			cpr2->bnapi = bnapi;
3877 			cpr2->cp_idx = k;
3878 			if (!k && rx) {
3879 				bp->rx_ring[i].rx_cpr = cpr2;
3880 				cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_RX;
3881 			} else {
3882 				int n, tc = k - rx;
3883 
3884 				n = BNXT_TC_TO_RING_BASE(bp, tc) + j;
3885 				bp->tx_ring[n].tx_cpr = cpr2;
3886 				cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_TX;
3887 			}
3888 		}
3889 		if (tx)
3890 			j++;
3891 	}
3892 	return 0;
3893 }
3894 
3895 static void bnxt_init_ring_struct(struct bnxt *bp)
3896 {
3897 	int i, j;
3898 
3899 	for (i = 0; i < bp->cp_nr_rings; i++) {
3900 		struct bnxt_napi *bnapi = bp->bnapi[i];
3901 		struct bnxt_ring_mem_info *rmem;
3902 		struct bnxt_cp_ring_info *cpr;
3903 		struct bnxt_rx_ring_info *rxr;
3904 		struct bnxt_tx_ring_info *txr;
3905 		struct bnxt_ring_struct *ring;
3906 
3907 		if (!bnapi)
3908 			continue;
3909 
3910 		cpr = &bnapi->cp_ring;
3911 		ring = &cpr->cp_ring_struct;
3912 		rmem = &ring->ring_mem;
3913 		rmem->nr_pages = bp->cp_nr_pages;
3914 		rmem->page_size = HW_CMPD_RING_SIZE;
3915 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3916 		rmem->dma_arr = cpr->cp_desc_mapping;
3917 		rmem->vmem_size = 0;
3918 
3919 		rxr = bnapi->rx_ring;
3920 		if (!rxr)
3921 			goto skip_rx;
3922 
3923 		ring = &rxr->rx_ring_struct;
3924 		rmem = &ring->ring_mem;
3925 		rmem->nr_pages = bp->rx_nr_pages;
3926 		rmem->page_size = HW_RXBD_RING_SIZE;
3927 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3928 		rmem->dma_arr = rxr->rx_desc_mapping;
3929 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3930 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3931 
3932 		ring = &rxr->rx_agg_ring_struct;
3933 		rmem = &ring->ring_mem;
3934 		rmem->nr_pages = bp->rx_agg_nr_pages;
3935 		rmem->page_size = HW_RXBD_RING_SIZE;
3936 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3937 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3938 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3939 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3940 
3941 skip_rx:
3942 		bnxt_for_each_napi_tx(j, bnapi, txr) {
3943 			ring = &txr->tx_ring_struct;
3944 			rmem = &ring->ring_mem;
3945 			rmem->nr_pages = bp->tx_nr_pages;
3946 			rmem->page_size = HW_TXBD_RING_SIZE;
3947 			rmem->pg_arr = (void **)txr->tx_desc_ring;
3948 			rmem->dma_arr = txr->tx_desc_mapping;
3949 			rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3950 			rmem->vmem = (void **)&txr->tx_buf_ring;
3951 		}
3952 	}
3953 }
3954 
3955 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3956 {
3957 	int i;
3958 	u32 prod;
3959 	struct rx_bd **rx_buf_ring;
3960 
3961 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3962 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3963 		int j;
3964 		struct rx_bd *rxbd;
3965 
3966 		rxbd = rx_buf_ring[i];
3967 		if (!rxbd)
3968 			continue;
3969 
3970 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3971 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3972 			rxbd->rx_bd_opaque = prod;
3973 		}
3974 	}
3975 }
3976 
3977 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
3978 {
3979 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3980 	struct net_device *dev = bp->dev;
3981 	u32 prod;
3982 	int i;
3983 
3984 	prod = rxr->rx_prod;
3985 	for (i = 0; i < bp->rx_ring_size; i++) {
3986 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
3987 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3988 				    ring_nr, i, bp->rx_ring_size);
3989 			break;
3990 		}
3991 		prod = NEXT_RX(prod);
3992 	}
3993 	rxr->rx_prod = prod;
3994 
3995 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3996 		return 0;
3997 
3998 	prod = rxr->rx_agg_prod;
3999 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
4000 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
4001 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
4002 				    ring_nr, i, bp->rx_ring_size);
4003 			break;
4004 		}
4005 		prod = NEXT_RX_AGG(prod);
4006 	}
4007 	rxr->rx_agg_prod = prod;
4008 
4009 	if (rxr->rx_tpa) {
4010 		dma_addr_t mapping;
4011 		u8 *data;
4012 
4013 		for (i = 0; i < bp->max_tpa; i++) {
4014 			data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL);
4015 			if (!data)
4016 				return -ENOMEM;
4017 
4018 			rxr->rx_tpa[i].data = data;
4019 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
4020 			rxr->rx_tpa[i].mapping = mapping;
4021 		}
4022 	}
4023 	return 0;
4024 }
4025 
4026 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
4027 {
4028 	struct bnxt_rx_ring_info *rxr;
4029 	struct bnxt_ring_struct *ring;
4030 	u32 type;
4031 
4032 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
4033 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
4034 
4035 	if (NET_IP_ALIGN == 2)
4036 		type |= RX_BD_FLAGS_SOP;
4037 
4038 	rxr = &bp->rx_ring[ring_nr];
4039 	ring = &rxr->rx_ring_struct;
4040 	bnxt_init_rxbd_pages(ring, type);
4041 
4042 	netif_queue_set_napi(bp->dev, ring_nr, NETDEV_QUEUE_TYPE_RX,
4043 			     &rxr->bnapi->napi);
4044 
4045 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
4046 		bpf_prog_add(bp->xdp_prog, 1);
4047 		rxr->xdp_prog = bp->xdp_prog;
4048 	}
4049 	ring->fw_ring_id = INVALID_HW_RING_ID;
4050 
4051 	ring = &rxr->rx_agg_ring_struct;
4052 	ring->fw_ring_id = INVALID_HW_RING_ID;
4053 
4054 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
4055 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
4056 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
4057 
4058 		bnxt_init_rxbd_pages(ring, type);
4059 	}
4060 
4061 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
4062 }
4063 
4064 static void bnxt_init_cp_rings(struct bnxt *bp)
4065 {
4066 	int i, j;
4067 
4068 	for (i = 0; i < bp->cp_nr_rings; i++) {
4069 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
4070 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4071 
4072 		ring->fw_ring_id = INVALID_HW_RING_ID;
4073 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
4074 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
4075 		if (!cpr->cp_ring_arr)
4076 			continue;
4077 		for (j = 0; j < cpr->cp_ring_count; j++) {
4078 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
4079 
4080 			ring = &cpr2->cp_ring_struct;
4081 			ring->fw_ring_id = INVALID_HW_RING_ID;
4082 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
4083 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
4084 		}
4085 	}
4086 }
4087 
4088 static int bnxt_init_rx_rings(struct bnxt *bp)
4089 {
4090 	int i, rc = 0;
4091 
4092 	if (BNXT_RX_PAGE_MODE(bp)) {
4093 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
4094 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
4095 	} else {
4096 		bp->rx_offset = BNXT_RX_OFFSET;
4097 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
4098 	}
4099 
4100 	for (i = 0; i < bp->rx_nr_rings; i++) {
4101 		rc = bnxt_init_one_rx_ring(bp, i);
4102 		if (rc)
4103 			break;
4104 	}
4105 
4106 	return rc;
4107 }
4108 
4109 static int bnxt_init_tx_rings(struct bnxt *bp)
4110 {
4111 	u16 i;
4112 
4113 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
4114 				   BNXT_MIN_TX_DESC_CNT);
4115 
4116 	for (i = 0; i < bp->tx_nr_rings; i++) {
4117 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4118 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4119 
4120 		ring->fw_ring_id = INVALID_HW_RING_ID;
4121 
4122 		if (i >= bp->tx_nr_rings_xdp)
4123 			netif_queue_set_napi(bp->dev, i - bp->tx_nr_rings_xdp,
4124 					     NETDEV_QUEUE_TYPE_TX,
4125 					     &txr->bnapi->napi);
4126 	}
4127 
4128 	return 0;
4129 }
4130 
4131 static void bnxt_free_ring_grps(struct bnxt *bp)
4132 {
4133 	kfree(bp->grp_info);
4134 	bp->grp_info = NULL;
4135 }
4136 
4137 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
4138 {
4139 	int i;
4140 
4141 	if (irq_re_init) {
4142 		bp->grp_info = kcalloc(bp->cp_nr_rings,
4143 				       sizeof(struct bnxt_ring_grp_info),
4144 				       GFP_KERNEL);
4145 		if (!bp->grp_info)
4146 			return -ENOMEM;
4147 	}
4148 	for (i = 0; i < bp->cp_nr_rings; i++) {
4149 		if (irq_re_init)
4150 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
4151 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
4152 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
4153 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
4154 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
4155 	}
4156 	return 0;
4157 }
4158 
4159 static void bnxt_free_vnics(struct bnxt *bp)
4160 {
4161 	kfree(bp->vnic_info);
4162 	bp->vnic_info = NULL;
4163 	bp->nr_vnics = 0;
4164 }
4165 
4166 static int bnxt_alloc_vnics(struct bnxt *bp)
4167 {
4168 	int num_vnics = 1;
4169 
4170 #ifdef CONFIG_RFS_ACCEL
4171 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5_PLUS)) == BNXT_FLAG_RFS)
4172 		num_vnics += bp->rx_nr_rings;
4173 #endif
4174 
4175 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4176 		num_vnics++;
4177 
4178 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
4179 				GFP_KERNEL);
4180 	if (!bp->vnic_info)
4181 		return -ENOMEM;
4182 
4183 	bp->nr_vnics = num_vnics;
4184 	return 0;
4185 }
4186 
4187 static void bnxt_init_vnics(struct bnxt *bp)
4188 {
4189 	int i;
4190 
4191 	for (i = 0; i < bp->nr_vnics; i++) {
4192 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4193 		int j;
4194 
4195 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
4196 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
4197 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
4198 
4199 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
4200 
4201 		if (bp->vnic_info[i].rss_hash_key) {
4202 			if (i == 0)
4203 				get_random_bytes(vnic->rss_hash_key,
4204 					      HW_HASH_KEY_SIZE);
4205 			else
4206 				memcpy(vnic->rss_hash_key,
4207 				       bp->vnic_info[0].rss_hash_key,
4208 				       HW_HASH_KEY_SIZE);
4209 		}
4210 	}
4211 }
4212 
4213 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
4214 {
4215 	int pages;
4216 
4217 	pages = ring_size / desc_per_pg;
4218 
4219 	if (!pages)
4220 		return 1;
4221 
4222 	pages++;
4223 
4224 	while (pages & (pages - 1))
4225 		pages++;
4226 
4227 	return pages;
4228 }
4229 
4230 void bnxt_set_tpa_flags(struct bnxt *bp)
4231 {
4232 	bp->flags &= ~BNXT_FLAG_TPA;
4233 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
4234 		return;
4235 	if (bp->dev->features & NETIF_F_LRO)
4236 		bp->flags |= BNXT_FLAG_LRO;
4237 	else if (bp->dev->features & NETIF_F_GRO_HW)
4238 		bp->flags |= BNXT_FLAG_GRO;
4239 }
4240 
4241 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
4242  * be set on entry.
4243  */
4244 void bnxt_set_ring_params(struct bnxt *bp)
4245 {
4246 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
4247 	u32 agg_factor = 0, agg_ring_size = 0;
4248 
4249 	/* 8 for CRC and VLAN */
4250 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
4251 
4252 	rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) +
4253 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4254 
4255 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
4256 	ring_size = bp->rx_ring_size;
4257 	bp->rx_agg_ring_size = 0;
4258 	bp->rx_agg_nr_pages = 0;
4259 
4260 	if (bp->flags & BNXT_FLAG_TPA)
4261 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
4262 
4263 	bp->flags &= ~BNXT_FLAG_JUMBO;
4264 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
4265 		u32 jumbo_factor;
4266 
4267 		bp->flags |= BNXT_FLAG_JUMBO;
4268 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
4269 		if (jumbo_factor > agg_factor)
4270 			agg_factor = jumbo_factor;
4271 	}
4272 	if (agg_factor) {
4273 		if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) {
4274 			ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA;
4275 			netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n",
4276 				    bp->rx_ring_size, ring_size);
4277 			bp->rx_ring_size = ring_size;
4278 		}
4279 		agg_ring_size = ring_size * agg_factor;
4280 
4281 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
4282 							RX_DESC_CNT);
4283 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
4284 			u32 tmp = agg_ring_size;
4285 
4286 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
4287 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
4288 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
4289 				    tmp, agg_ring_size);
4290 		}
4291 		bp->rx_agg_ring_size = agg_ring_size;
4292 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
4293 
4294 		if (BNXT_RX_PAGE_MODE(bp)) {
4295 			rx_space = PAGE_SIZE;
4296 			rx_size = PAGE_SIZE -
4297 				  ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) -
4298 				  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4299 		} else {
4300 			rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
4301 			rx_space = rx_size + NET_SKB_PAD +
4302 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4303 		}
4304 	}
4305 
4306 	bp->rx_buf_use_size = rx_size;
4307 	bp->rx_buf_size = rx_space;
4308 
4309 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
4310 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
4311 
4312 	ring_size = bp->tx_ring_size;
4313 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
4314 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
4315 
4316 	max_rx_cmpl = bp->rx_ring_size;
4317 	/* MAX TPA needs to be added because TPA_START completions are
4318 	 * immediately recycled, so the TPA completions are not bound by
4319 	 * the RX ring size.
4320 	 */
4321 	if (bp->flags & BNXT_FLAG_TPA)
4322 		max_rx_cmpl += bp->max_tpa;
4323 	/* RX and TPA completions are 32-byte, all others are 16-byte */
4324 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
4325 	bp->cp_ring_size = ring_size;
4326 
4327 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
4328 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
4329 		bp->cp_nr_pages = MAX_CP_PAGES;
4330 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
4331 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
4332 			    ring_size, bp->cp_ring_size);
4333 	}
4334 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
4335 	bp->cp_ring_mask = bp->cp_bit - 1;
4336 }
4337 
4338 /* Changing allocation mode of RX rings.
4339  * TODO: Update when extending xdp_rxq_info to support allocation modes.
4340  */
4341 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
4342 {
4343 	struct net_device *dev = bp->dev;
4344 
4345 	if (page_mode) {
4346 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
4347 		bp->flags |= BNXT_FLAG_RX_PAGE_MODE;
4348 
4349 		if (bp->xdp_prog->aux->xdp_has_frags)
4350 			dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU);
4351 		else
4352 			dev->max_mtu =
4353 				min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
4354 		if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) {
4355 			bp->flags |= BNXT_FLAG_JUMBO;
4356 			bp->rx_skb_func = bnxt_rx_multi_page_skb;
4357 		} else {
4358 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
4359 			bp->rx_skb_func = bnxt_rx_page_skb;
4360 		}
4361 		bp->rx_dir = DMA_BIDIRECTIONAL;
4362 		/* Disable LRO or GRO_HW */
4363 		netdev_update_features(dev);
4364 	} else {
4365 		dev->max_mtu = bp->max_mtu;
4366 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
4367 		bp->rx_dir = DMA_FROM_DEVICE;
4368 		bp->rx_skb_func = bnxt_rx_skb;
4369 	}
4370 	return 0;
4371 }
4372 
4373 static void bnxt_free_vnic_attributes(struct bnxt *bp)
4374 {
4375 	int i;
4376 	struct bnxt_vnic_info *vnic;
4377 	struct pci_dev *pdev = bp->pdev;
4378 
4379 	if (!bp->vnic_info)
4380 		return;
4381 
4382 	for (i = 0; i < bp->nr_vnics; i++) {
4383 		vnic = &bp->vnic_info[i];
4384 
4385 		kfree(vnic->fw_grp_ids);
4386 		vnic->fw_grp_ids = NULL;
4387 
4388 		kfree(vnic->uc_list);
4389 		vnic->uc_list = NULL;
4390 
4391 		if (vnic->mc_list) {
4392 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
4393 					  vnic->mc_list, vnic->mc_list_mapping);
4394 			vnic->mc_list = NULL;
4395 		}
4396 
4397 		if (vnic->rss_table) {
4398 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
4399 					  vnic->rss_table,
4400 					  vnic->rss_table_dma_addr);
4401 			vnic->rss_table = NULL;
4402 		}
4403 
4404 		vnic->rss_hash_key = NULL;
4405 		vnic->flags = 0;
4406 	}
4407 }
4408 
4409 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
4410 {
4411 	int i, rc = 0, size;
4412 	struct bnxt_vnic_info *vnic;
4413 	struct pci_dev *pdev = bp->pdev;
4414 	int max_rings;
4415 
4416 	for (i = 0; i < bp->nr_vnics; i++) {
4417 		vnic = &bp->vnic_info[i];
4418 
4419 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
4420 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
4421 
4422 			if (mem_size > 0) {
4423 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
4424 				if (!vnic->uc_list) {
4425 					rc = -ENOMEM;
4426 					goto out;
4427 				}
4428 			}
4429 		}
4430 
4431 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
4432 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
4433 			vnic->mc_list =
4434 				dma_alloc_coherent(&pdev->dev,
4435 						   vnic->mc_list_size,
4436 						   &vnic->mc_list_mapping,
4437 						   GFP_KERNEL);
4438 			if (!vnic->mc_list) {
4439 				rc = -ENOMEM;
4440 				goto out;
4441 			}
4442 		}
4443 
4444 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4445 			goto vnic_skip_grps;
4446 
4447 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4448 			max_rings = bp->rx_nr_rings;
4449 		else
4450 			max_rings = 1;
4451 
4452 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
4453 		if (!vnic->fw_grp_ids) {
4454 			rc = -ENOMEM;
4455 			goto out;
4456 		}
4457 vnic_skip_grps:
4458 		if ((bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) &&
4459 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
4460 			continue;
4461 
4462 		/* Allocate rss table and hash key */
4463 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
4464 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4465 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
4466 
4467 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
4468 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
4469 						     vnic->rss_table_size,
4470 						     &vnic->rss_table_dma_addr,
4471 						     GFP_KERNEL);
4472 		if (!vnic->rss_table) {
4473 			rc = -ENOMEM;
4474 			goto out;
4475 		}
4476 
4477 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
4478 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
4479 	}
4480 	return 0;
4481 
4482 out:
4483 	return rc;
4484 }
4485 
4486 static void bnxt_free_hwrm_resources(struct bnxt *bp)
4487 {
4488 	struct bnxt_hwrm_wait_token *token;
4489 
4490 	dma_pool_destroy(bp->hwrm_dma_pool);
4491 	bp->hwrm_dma_pool = NULL;
4492 
4493 	rcu_read_lock();
4494 	hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node)
4495 		WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED);
4496 	rcu_read_unlock();
4497 }
4498 
4499 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
4500 {
4501 	bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev,
4502 					    BNXT_HWRM_DMA_SIZE,
4503 					    BNXT_HWRM_DMA_ALIGN, 0);
4504 	if (!bp->hwrm_dma_pool)
4505 		return -ENOMEM;
4506 
4507 	INIT_HLIST_HEAD(&bp->hwrm_pending_list);
4508 
4509 	return 0;
4510 }
4511 
4512 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
4513 {
4514 	kfree(stats->hw_masks);
4515 	stats->hw_masks = NULL;
4516 	kfree(stats->sw_stats);
4517 	stats->sw_stats = NULL;
4518 	if (stats->hw_stats) {
4519 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
4520 				  stats->hw_stats_map);
4521 		stats->hw_stats = NULL;
4522 	}
4523 }
4524 
4525 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
4526 				bool alloc_masks)
4527 {
4528 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
4529 					     &stats->hw_stats_map, GFP_KERNEL);
4530 	if (!stats->hw_stats)
4531 		return -ENOMEM;
4532 
4533 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
4534 	if (!stats->sw_stats)
4535 		goto stats_mem_err;
4536 
4537 	if (alloc_masks) {
4538 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
4539 		if (!stats->hw_masks)
4540 			goto stats_mem_err;
4541 	}
4542 	return 0;
4543 
4544 stats_mem_err:
4545 	bnxt_free_stats_mem(bp, stats);
4546 	return -ENOMEM;
4547 }
4548 
4549 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
4550 {
4551 	int i;
4552 
4553 	for (i = 0; i < count; i++)
4554 		mask_arr[i] = mask;
4555 }
4556 
4557 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
4558 {
4559 	int i;
4560 
4561 	for (i = 0; i < count; i++)
4562 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
4563 }
4564 
4565 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
4566 				    struct bnxt_stats_mem *stats)
4567 {
4568 	struct hwrm_func_qstats_ext_output *resp;
4569 	struct hwrm_func_qstats_ext_input *req;
4570 	__le64 *hw_masks;
4571 	int rc;
4572 
4573 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
4574 	    !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
4575 		return -EOPNOTSUPP;
4576 
4577 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT);
4578 	if (rc)
4579 		return rc;
4580 
4581 	req->fid = cpu_to_le16(0xffff);
4582 	req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4583 
4584 	resp = hwrm_req_hold(bp, req);
4585 	rc = hwrm_req_send(bp, req);
4586 	if (!rc) {
4587 		hw_masks = &resp->rx_ucast_pkts;
4588 		bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
4589 	}
4590 	hwrm_req_drop(bp, req);
4591 	return rc;
4592 }
4593 
4594 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
4595 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
4596 
4597 static void bnxt_init_stats(struct bnxt *bp)
4598 {
4599 	struct bnxt_napi *bnapi = bp->bnapi[0];
4600 	struct bnxt_cp_ring_info *cpr;
4601 	struct bnxt_stats_mem *stats;
4602 	__le64 *rx_stats, *tx_stats;
4603 	int rc, rx_count, tx_count;
4604 	u64 *rx_masks, *tx_masks;
4605 	u64 mask;
4606 	u8 flags;
4607 
4608 	cpr = &bnapi->cp_ring;
4609 	stats = &cpr->stats;
4610 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
4611 	if (rc) {
4612 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4613 			mask = (1ULL << 48) - 1;
4614 		else
4615 			mask = -1ULL;
4616 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
4617 	}
4618 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
4619 		stats = &bp->port_stats;
4620 		rx_stats = stats->hw_stats;
4621 		rx_masks = stats->hw_masks;
4622 		rx_count = sizeof(struct rx_port_stats) / 8;
4623 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4624 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4625 		tx_count = sizeof(struct tx_port_stats) / 8;
4626 
4627 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
4628 		rc = bnxt_hwrm_port_qstats(bp, flags);
4629 		if (rc) {
4630 			mask = (1ULL << 40) - 1;
4631 
4632 			bnxt_fill_masks(rx_masks, mask, rx_count);
4633 			bnxt_fill_masks(tx_masks, mask, tx_count);
4634 		} else {
4635 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4636 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
4637 			bnxt_hwrm_port_qstats(bp, 0);
4638 		}
4639 	}
4640 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
4641 		stats = &bp->rx_port_stats_ext;
4642 		rx_stats = stats->hw_stats;
4643 		rx_masks = stats->hw_masks;
4644 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
4645 		stats = &bp->tx_port_stats_ext;
4646 		tx_stats = stats->hw_stats;
4647 		tx_masks = stats->hw_masks;
4648 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
4649 
4650 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4651 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
4652 		if (rc) {
4653 			mask = (1ULL << 40) - 1;
4654 
4655 			bnxt_fill_masks(rx_masks, mask, rx_count);
4656 			if (tx_stats)
4657 				bnxt_fill_masks(tx_masks, mask, tx_count);
4658 		} else {
4659 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4660 			if (tx_stats)
4661 				bnxt_copy_hw_masks(tx_masks, tx_stats,
4662 						   tx_count);
4663 			bnxt_hwrm_port_qstats_ext(bp, 0);
4664 		}
4665 	}
4666 }
4667 
4668 static void bnxt_free_port_stats(struct bnxt *bp)
4669 {
4670 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
4671 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
4672 
4673 	bnxt_free_stats_mem(bp, &bp->port_stats);
4674 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
4675 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
4676 }
4677 
4678 static void bnxt_free_ring_stats(struct bnxt *bp)
4679 {
4680 	int i;
4681 
4682 	if (!bp->bnapi)
4683 		return;
4684 
4685 	for (i = 0; i < bp->cp_nr_rings; i++) {
4686 		struct bnxt_napi *bnapi = bp->bnapi[i];
4687 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4688 
4689 		bnxt_free_stats_mem(bp, &cpr->stats);
4690 	}
4691 }
4692 
4693 static int bnxt_alloc_stats(struct bnxt *bp)
4694 {
4695 	u32 size, i;
4696 	int rc;
4697 
4698 	size = bp->hw_ring_stats_size;
4699 
4700 	for (i = 0; i < bp->cp_nr_rings; i++) {
4701 		struct bnxt_napi *bnapi = bp->bnapi[i];
4702 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4703 
4704 		cpr->stats.len = size;
4705 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4706 		if (rc)
4707 			return rc;
4708 
4709 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4710 	}
4711 
4712 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4713 		return 0;
4714 
4715 	if (bp->port_stats.hw_stats)
4716 		goto alloc_ext_stats;
4717 
4718 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4719 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4720 	if (rc)
4721 		return rc;
4722 
4723 	bp->flags |= BNXT_FLAG_PORT_STATS;
4724 
4725 alloc_ext_stats:
4726 	/* Display extended statistics only if FW supports it */
4727 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4728 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4729 			return 0;
4730 
4731 	if (bp->rx_port_stats_ext.hw_stats)
4732 		goto alloc_tx_ext_stats;
4733 
4734 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4735 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4736 	/* Extended stats are optional */
4737 	if (rc)
4738 		return 0;
4739 
4740 alloc_tx_ext_stats:
4741 	if (bp->tx_port_stats_ext.hw_stats)
4742 		return 0;
4743 
4744 	if (bp->hwrm_spec_code >= 0x10902 ||
4745 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4746 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4747 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4748 		/* Extended stats are optional */
4749 		if (rc)
4750 			return 0;
4751 	}
4752 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4753 	return 0;
4754 }
4755 
4756 static void bnxt_clear_ring_indices(struct bnxt *bp)
4757 {
4758 	int i, j;
4759 
4760 	if (!bp->bnapi)
4761 		return;
4762 
4763 	for (i = 0; i < bp->cp_nr_rings; i++) {
4764 		struct bnxt_napi *bnapi = bp->bnapi[i];
4765 		struct bnxt_cp_ring_info *cpr;
4766 		struct bnxt_rx_ring_info *rxr;
4767 		struct bnxt_tx_ring_info *txr;
4768 
4769 		if (!bnapi)
4770 			continue;
4771 
4772 		cpr = &bnapi->cp_ring;
4773 		cpr->cp_raw_cons = 0;
4774 
4775 		bnxt_for_each_napi_tx(j, bnapi, txr) {
4776 			txr->tx_prod = 0;
4777 			txr->tx_cons = 0;
4778 			txr->tx_hw_cons = 0;
4779 		}
4780 
4781 		rxr = bnapi->rx_ring;
4782 		if (rxr) {
4783 			rxr->rx_prod = 0;
4784 			rxr->rx_agg_prod = 0;
4785 			rxr->rx_sw_agg_prod = 0;
4786 			rxr->rx_next_cons = 0;
4787 		}
4788 		bnapi->events = 0;
4789 	}
4790 }
4791 
4792 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
4793 {
4794 #ifdef CONFIG_RFS_ACCEL
4795 	int i;
4796 
4797 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
4798 	 * safe to delete the hash table.
4799 	 */
4800 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4801 		struct hlist_head *head;
4802 		struct hlist_node *tmp;
4803 		struct bnxt_ntuple_filter *fltr;
4804 
4805 		head = &bp->ntp_fltr_hash_tbl[i];
4806 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
4807 			hlist_del(&fltr->hash);
4808 			kfree(fltr);
4809 		}
4810 	}
4811 	if (irq_reinit) {
4812 		bitmap_free(bp->ntp_fltr_bmap);
4813 		bp->ntp_fltr_bmap = NULL;
4814 	}
4815 	bp->ntp_fltr_count = 0;
4816 #endif
4817 }
4818 
4819 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4820 {
4821 #ifdef CONFIG_RFS_ACCEL
4822 	int i, rc = 0;
4823 
4824 	if (!(bp->flags & BNXT_FLAG_RFS))
4825 		return 0;
4826 
4827 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4828 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4829 
4830 	bp->ntp_fltr_count = 0;
4831 	bp->ntp_fltr_bmap = bitmap_zalloc(BNXT_NTP_FLTR_MAX_FLTR, GFP_KERNEL);
4832 
4833 	if (!bp->ntp_fltr_bmap)
4834 		rc = -ENOMEM;
4835 
4836 	return rc;
4837 #else
4838 	return 0;
4839 #endif
4840 }
4841 
4842 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4843 {
4844 	bnxt_free_vnic_attributes(bp);
4845 	bnxt_free_tx_rings(bp);
4846 	bnxt_free_rx_rings(bp);
4847 	bnxt_free_cp_rings(bp);
4848 	bnxt_free_all_cp_arrays(bp);
4849 	bnxt_free_ntp_fltrs(bp, irq_re_init);
4850 	if (irq_re_init) {
4851 		bnxt_free_ring_stats(bp);
4852 		if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
4853 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
4854 			bnxt_free_port_stats(bp);
4855 		bnxt_free_ring_grps(bp);
4856 		bnxt_free_vnics(bp);
4857 		kfree(bp->tx_ring_map);
4858 		bp->tx_ring_map = NULL;
4859 		kfree(bp->tx_ring);
4860 		bp->tx_ring = NULL;
4861 		kfree(bp->rx_ring);
4862 		bp->rx_ring = NULL;
4863 		kfree(bp->bnapi);
4864 		bp->bnapi = NULL;
4865 	} else {
4866 		bnxt_clear_ring_indices(bp);
4867 	}
4868 }
4869 
4870 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
4871 {
4872 	int i, j, rc, size, arr_size;
4873 	void *bnapi;
4874 
4875 	if (irq_re_init) {
4876 		/* Allocate bnapi mem pointer array and mem block for
4877 		 * all queues
4878 		 */
4879 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
4880 				bp->cp_nr_rings);
4881 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
4882 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
4883 		if (!bnapi)
4884 			return -ENOMEM;
4885 
4886 		bp->bnapi = bnapi;
4887 		bnapi += arr_size;
4888 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
4889 			bp->bnapi[i] = bnapi;
4890 			bp->bnapi[i]->index = i;
4891 			bp->bnapi[i]->bp = bp;
4892 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
4893 				struct bnxt_cp_ring_info *cpr =
4894 					&bp->bnapi[i]->cp_ring;
4895 
4896 				cpr->cp_ring_struct.ring_mem.flags =
4897 					BNXT_RMEM_RING_PTE_FLAG;
4898 			}
4899 		}
4900 
4901 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
4902 				      sizeof(struct bnxt_rx_ring_info),
4903 				      GFP_KERNEL);
4904 		if (!bp->rx_ring)
4905 			return -ENOMEM;
4906 
4907 		for (i = 0; i < bp->rx_nr_rings; i++) {
4908 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4909 
4910 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
4911 				rxr->rx_ring_struct.ring_mem.flags =
4912 					BNXT_RMEM_RING_PTE_FLAG;
4913 				rxr->rx_agg_ring_struct.ring_mem.flags =
4914 					BNXT_RMEM_RING_PTE_FLAG;
4915 			} else {
4916 				rxr->rx_cpr =  &bp->bnapi[i]->cp_ring;
4917 			}
4918 			rxr->bnapi = bp->bnapi[i];
4919 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4920 		}
4921 
4922 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
4923 				      sizeof(struct bnxt_tx_ring_info),
4924 				      GFP_KERNEL);
4925 		if (!bp->tx_ring)
4926 			return -ENOMEM;
4927 
4928 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4929 					  GFP_KERNEL);
4930 
4931 		if (!bp->tx_ring_map)
4932 			return -ENOMEM;
4933 
4934 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4935 			j = 0;
4936 		else
4937 			j = bp->rx_nr_rings;
4938 
4939 		for (i = 0; i < bp->tx_nr_rings; i++) {
4940 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4941 			struct bnxt_napi *bnapi2;
4942 
4943 			if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
4944 				txr->tx_ring_struct.ring_mem.flags =
4945 					BNXT_RMEM_RING_PTE_FLAG;
4946 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4947 			if (i >= bp->tx_nr_rings_xdp) {
4948 				int k = j + BNXT_RING_TO_TC_OFF(bp, i);
4949 
4950 				bnapi2 = bp->bnapi[k];
4951 				txr->txq_index = i - bp->tx_nr_rings_xdp;
4952 				txr->tx_napi_idx =
4953 					BNXT_RING_TO_TC(bp, txr->txq_index);
4954 				bnapi2->tx_ring[txr->tx_napi_idx] = txr;
4955 				bnapi2->tx_int = bnxt_tx_int;
4956 			} else {
4957 				bnapi2 = bp->bnapi[j];
4958 				bnapi2->flags |= BNXT_NAPI_FLAG_XDP;
4959 				bnapi2->tx_ring[0] = txr;
4960 				bnapi2->tx_int = bnxt_tx_int_xdp;
4961 				j++;
4962 			}
4963 			txr->bnapi = bnapi2;
4964 			if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
4965 				txr->tx_cpr = &bnapi2->cp_ring;
4966 		}
4967 
4968 		rc = bnxt_alloc_stats(bp);
4969 		if (rc)
4970 			goto alloc_mem_err;
4971 		bnxt_init_stats(bp);
4972 
4973 		rc = bnxt_alloc_ntp_fltrs(bp);
4974 		if (rc)
4975 			goto alloc_mem_err;
4976 
4977 		rc = bnxt_alloc_vnics(bp);
4978 		if (rc)
4979 			goto alloc_mem_err;
4980 	}
4981 
4982 	rc = bnxt_alloc_all_cp_arrays(bp);
4983 	if (rc)
4984 		goto alloc_mem_err;
4985 
4986 	bnxt_init_ring_struct(bp);
4987 
4988 	rc = bnxt_alloc_rx_rings(bp);
4989 	if (rc)
4990 		goto alloc_mem_err;
4991 
4992 	rc = bnxt_alloc_tx_rings(bp);
4993 	if (rc)
4994 		goto alloc_mem_err;
4995 
4996 	rc = bnxt_alloc_cp_rings(bp);
4997 	if (rc)
4998 		goto alloc_mem_err;
4999 
5000 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
5001 				  BNXT_VNIC_UCAST_FLAG;
5002 	rc = bnxt_alloc_vnic_attributes(bp);
5003 	if (rc)
5004 		goto alloc_mem_err;
5005 	return 0;
5006 
5007 alloc_mem_err:
5008 	bnxt_free_mem(bp, true);
5009 	return rc;
5010 }
5011 
5012 static void bnxt_disable_int(struct bnxt *bp)
5013 {
5014 	int i;
5015 
5016 	if (!bp->bnapi)
5017 		return;
5018 
5019 	for (i = 0; i < bp->cp_nr_rings; i++) {
5020 		struct bnxt_napi *bnapi = bp->bnapi[i];
5021 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5022 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5023 
5024 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
5025 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5026 	}
5027 }
5028 
5029 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
5030 {
5031 	struct bnxt_napi *bnapi = bp->bnapi[n];
5032 	struct bnxt_cp_ring_info *cpr;
5033 
5034 	cpr = &bnapi->cp_ring;
5035 	return cpr->cp_ring_struct.map_idx;
5036 }
5037 
5038 static void bnxt_disable_int_sync(struct bnxt *bp)
5039 {
5040 	int i;
5041 
5042 	if (!bp->irq_tbl)
5043 		return;
5044 
5045 	atomic_inc(&bp->intr_sem);
5046 
5047 	bnxt_disable_int(bp);
5048 	for (i = 0; i < bp->cp_nr_rings; i++) {
5049 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
5050 
5051 		synchronize_irq(bp->irq_tbl[map_idx].vector);
5052 	}
5053 }
5054 
5055 static void bnxt_enable_int(struct bnxt *bp)
5056 {
5057 	int i;
5058 
5059 	atomic_set(&bp->intr_sem, 0);
5060 	for (i = 0; i < bp->cp_nr_rings; i++) {
5061 		struct bnxt_napi *bnapi = bp->bnapi[i];
5062 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5063 
5064 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
5065 	}
5066 }
5067 
5068 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
5069 			    bool async_only)
5070 {
5071 	DECLARE_BITMAP(async_events_bmap, 256);
5072 	u32 *events = (u32 *)async_events_bmap;
5073 	struct hwrm_func_drv_rgtr_output *resp;
5074 	struct hwrm_func_drv_rgtr_input *req;
5075 	u32 flags;
5076 	int rc, i;
5077 
5078 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR);
5079 	if (rc)
5080 		return rc;
5081 
5082 	req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
5083 				   FUNC_DRV_RGTR_REQ_ENABLES_VER |
5084 				   FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
5085 
5086 	req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
5087 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
5088 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
5089 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
5090 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
5091 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
5092 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
5093 	req->flags = cpu_to_le32(flags);
5094 	req->ver_maj_8b = DRV_VER_MAJ;
5095 	req->ver_min_8b = DRV_VER_MIN;
5096 	req->ver_upd_8b = DRV_VER_UPD;
5097 	req->ver_maj = cpu_to_le16(DRV_VER_MAJ);
5098 	req->ver_min = cpu_to_le16(DRV_VER_MIN);
5099 	req->ver_upd = cpu_to_le16(DRV_VER_UPD);
5100 
5101 	if (BNXT_PF(bp)) {
5102 		u32 data[8];
5103 		int i;
5104 
5105 		memset(data, 0, sizeof(data));
5106 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
5107 			u16 cmd = bnxt_vf_req_snif[i];
5108 			unsigned int bit, idx;
5109 
5110 			idx = cmd / 32;
5111 			bit = cmd % 32;
5112 			data[idx] |= 1 << bit;
5113 		}
5114 
5115 		for (i = 0; i < 8; i++)
5116 			req->vf_req_fwd[i] = cpu_to_le32(data[i]);
5117 
5118 		req->enables |=
5119 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
5120 	}
5121 
5122 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
5123 		req->flags |= cpu_to_le32(
5124 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
5125 
5126 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
5127 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
5128 		u16 event_id = bnxt_async_events_arr[i];
5129 
5130 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
5131 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
5132 			continue;
5133 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE &&
5134 		    !bp->ptp_cfg)
5135 			continue;
5136 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
5137 	}
5138 	if (bmap && bmap_size) {
5139 		for (i = 0; i < bmap_size; i++) {
5140 			if (test_bit(i, bmap))
5141 				__set_bit(i, async_events_bmap);
5142 		}
5143 	}
5144 	for (i = 0; i < 8; i++)
5145 		req->async_event_fwd[i] |= cpu_to_le32(events[i]);
5146 
5147 	if (async_only)
5148 		req->enables =
5149 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
5150 
5151 	resp = hwrm_req_hold(bp, req);
5152 	rc = hwrm_req_send(bp, req);
5153 	if (!rc) {
5154 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
5155 		if (resp->flags &
5156 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
5157 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
5158 	}
5159 	hwrm_req_drop(bp, req);
5160 	return rc;
5161 }
5162 
5163 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
5164 {
5165 	struct hwrm_func_drv_unrgtr_input *req;
5166 	int rc;
5167 
5168 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
5169 		return 0;
5170 
5171 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR);
5172 	if (rc)
5173 		return rc;
5174 	return hwrm_req_send(bp, req);
5175 }
5176 
5177 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa);
5178 
5179 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
5180 {
5181 	struct hwrm_tunnel_dst_port_free_input *req;
5182 	int rc;
5183 
5184 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN &&
5185 	    bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID)
5186 		return 0;
5187 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE &&
5188 	    bp->nge_fw_dst_port_id == INVALID_HW_RING_ID)
5189 		return 0;
5190 
5191 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE);
5192 	if (rc)
5193 		return rc;
5194 
5195 	req->tunnel_type = tunnel_type;
5196 
5197 	switch (tunnel_type) {
5198 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
5199 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
5200 		bp->vxlan_port = 0;
5201 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
5202 		break;
5203 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
5204 		req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
5205 		bp->nge_port = 0;
5206 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
5207 		break;
5208 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE:
5209 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_gpe_fw_dst_port_id);
5210 		bp->vxlan_gpe_port = 0;
5211 		bp->vxlan_gpe_fw_dst_port_id = INVALID_HW_RING_ID;
5212 		break;
5213 	default:
5214 		break;
5215 	}
5216 
5217 	rc = hwrm_req_send(bp, req);
5218 	if (rc)
5219 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
5220 			   rc);
5221 	if (bp->flags & BNXT_FLAG_TPA)
5222 		bnxt_set_tpa(bp, true);
5223 	return rc;
5224 }
5225 
5226 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
5227 					   u8 tunnel_type)
5228 {
5229 	struct hwrm_tunnel_dst_port_alloc_output *resp;
5230 	struct hwrm_tunnel_dst_port_alloc_input *req;
5231 	int rc;
5232 
5233 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC);
5234 	if (rc)
5235 		return rc;
5236 
5237 	req->tunnel_type = tunnel_type;
5238 	req->tunnel_dst_port_val = port;
5239 
5240 	resp = hwrm_req_hold(bp, req);
5241 	rc = hwrm_req_send(bp, req);
5242 	if (rc) {
5243 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
5244 			   rc);
5245 		goto err_out;
5246 	}
5247 
5248 	switch (tunnel_type) {
5249 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
5250 		bp->vxlan_port = port;
5251 		bp->vxlan_fw_dst_port_id =
5252 			le16_to_cpu(resp->tunnel_dst_port_id);
5253 		break;
5254 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
5255 		bp->nge_port = port;
5256 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
5257 		break;
5258 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE:
5259 		bp->vxlan_gpe_port = port;
5260 		bp->vxlan_gpe_fw_dst_port_id =
5261 			le16_to_cpu(resp->tunnel_dst_port_id);
5262 		break;
5263 	default:
5264 		break;
5265 	}
5266 	if (bp->flags & BNXT_FLAG_TPA)
5267 		bnxt_set_tpa(bp, true);
5268 
5269 err_out:
5270 	hwrm_req_drop(bp, req);
5271 	return rc;
5272 }
5273 
5274 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
5275 {
5276 	struct hwrm_cfa_l2_set_rx_mask_input *req;
5277 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5278 	int rc;
5279 
5280 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK);
5281 	if (rc)
5282 		return rc;
5283 
5284 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5285 	if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) {
5286 		req->num_mc_entries = cpu_to_le32(vnic->mc_list_count);
5287 		req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
5288 	}
5289 	req->mask = cpu_to_le32(vnic->rx_mask);
5290 	return hwrm_req_send_silent(bp, req);
5291 }
5292 
5293 #ifdef CONFIG_RFS_ACCEL
5294 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
5295 					    struct bnxt_ntuple_filter *fltr)
5296 {
5297 	struct hwrm_cfa_ntuple_filter_free_input *req;
5298 	int rc;
5299 
5300 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE);
5301 	if (rc)
5302 		return rc;
5303 
5304 	req->ntuple_filter_id = fltr->filter_id;
5305 	return hwrm_req_send(bp, req);
5306 }
5307 
5308 #define BNXT_NTP_FLTR_FLAGS					\
5309 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
5310 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
5311 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
5312 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
5313 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
5314 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
5315 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
5316 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
5317 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
5318 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
5319 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
5320 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
5321 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
5322 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
5323 
5324 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
5325 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
5326 
5327 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
5328 					     struct bnxt_ntuple_filter *fltr)
5329 {
5330 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
5331 	struct hwrm_cfa_ntuple_filter_alloc_input *req;
5332 	struct flow_keys *keys = &fltr->fkeys;
5333 	struct bnxt_vnic_info *vnic;
5334 	u32 flags = 0;
5335 	int rc;
5336 
5337 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC);
5338 	if (rc)
5339 		return rc;
5340 
5341 	req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
5342 
5343 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
5344 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
5345 		req->dst_id = cpu_to_le16(fltr->rxq);
5346 	} else {
5347 		vnic = &bp->vnic_info[fltr->rxq + 1];
5348 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
5349 	}
5350 	req->flags = cpu_to_le32(flags);
5351 	req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
5352 
5353 	req->ethertype = htons(ETH_P_IP);
5354 	memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN);
5355 	req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
5356 	req->ip_protocol = keys->basic.ip_proto;
5357 
5358 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
5359 		int i;
5360 
5361 		req->ethertype = htons(ETH_P_IPV6);
5362 		req->ip_addr_type =
5363 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
5364 		*(struct in6_addr *)&req->src_ipaddr[0] =
5365 			keys->addrs.v6addrs.src;
5366 		*(struct in6_addr *)&req->dst_ipaddr[0] =
5367 			keys->addrs.v6addrs.dst;
5368 		for (i = 0; i < 4; i++) {
5369 			req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
5370 			req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
5371 		}
5372 	} else {
5373 		req->src_ipaddr[0] = keys->addrs.v4addrs.src;
5374 		req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
5375 		req->dst_ipaddr[0] = keys->addrs.v4addrs.dst;
5376 		req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
5377 	}
5378 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
5379 		req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
5380 		req->tunnel_type =
5381 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
5382 	}
5383 
5384 	req->src_port = keys->ports.src;
5385 	req->src_port_mask = cpu_to_be16(0xffff);
5386 	req->dst_port = keys->ports.dst;
5387 	req->dst_port_mask = cpu_to_be16(0xffff);
5388 
5389 	resp = hwrm_req_hold(bp, req);
5390 	rc = hwrm_req_send(bp, req);
5391 	if (!rc)
5392 		fltr->filter_id = resp->ntuple_filter_id;
5393 	hwrm_req_drop(bp, req);
5394 	return rc;
5395 }
5396 #endif
5397 
5398 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
5399 				     const u8 *mac_addr)
5400 {
5401 	struct hwrm_cfa_l2_filter_alloc_output *resp;
5402 	struct hwrm_cfa_l2_filter_alloc_input *req;
5403 	int rc;
5404 
5405 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC);
5406 	if (rc)
5407 		return rc;
5408 
5409 	req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
5410 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
5411 		req->flags |=
5412 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
5413 	req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
5414 	req->enables =
5415 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
5416 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
5417 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
5418 	memcpy(req->l2_addr, mac_addr, ETH_ALEN);
5419 	req->l2_addr_mask[0] = 0xff;
5420 	req->l2_addr_mask[1] = 0xff;
5421 	req->l2_addr_mask[2] = 0xff;
5422 	req->l2_addr_mask[3] = 0xff;
5423 	req->l2_addr_mask[4] = 0xff;
5424 	req->l2_addr_mask[5] = 0xff;
5425 
5426 	resp = hwrm_req_hold(bp, req);
5427 	rc = hwrm_req_send(bp, req);
5428 	if (!rc)
5429 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
5430 							resp->l2_filter_id;
5431 	hwrm_req_drop(bp, req);
5432 	return rc;
5433 }
5434 
5435 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
5436 {
5437 	struct hwrm_cfa_l2_filter_free_input *req;
5438 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
5439 	int rc;
5440 
5441 	/* Any associated ntuple filters will also be cleared by firmware. */
5442 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
5443 	if (rc)
5444 		return rc;
5445 	hwrm_req_hold(bp, req);
5446 	for (i = 0; i < num_of_vnics; i++) {
5447 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5448 
5449 		for (j = 0; j < vnic->uc_filter_count; j++) {
5450 			req->l2_filter_id = vnic->fw_l2_filter_id[j];
5451 
5452 			rc = hwrm_req_send(bp, req);
5453 		}
5454 		vnic->uc_filter_count = 0;
5455 	}
5456 	hwrm_req_drop(bp, req);
5457 	return rc;
5458 }
5459 
5460 #define BNXT_DFLT_TUNL_TPA_BMAP				\
5461 	(VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GRE |	\
5462 	 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV4 |	\
5463 	 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV6)
5464 
5465 static void bnxt_hwrm_vnic_update_tunl_tpa(struct bnxt *bp,
5466 					   struct hwrm_vnic_tpa_cfg_input *req)
5467 {
5468 	u32 tunl_tpa_bmap = BNXT_DFLT_TUNL_TPA_BMAP;
5469 
5470 	if (!(bp->fw_cap & BNXT_FW_CAP_VNIC_TUNNEL_TPA))
5471 		return;
5472 
5473 	if (bp->vxlan_port)
5474 		tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN;
5475 	if (bp->vxlan_gpe_port)
5476 		tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN_GPE;
5477 	if (bp->nge_port)
5478 		tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GENEVE;
5479 
5480 	req->enables |= cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_TNL_TPA_EN);
5481 	req->tnl_tpa_en_bitmap = cpu_to_le32(tunl_tpa_bmap);
5482 }
5483 
5484 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
5485 {
5486 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5487 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
5488 	struct hwrm_vnic_tpa_cfg_input *req;
5489 	int rc;
5490 
5491 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
5492 		return 0;
5493 
5494 	rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG);
5495 	if (rc)
5496 		return rc;
5497 
5498 	if (tpa_flags) {
5499 		u16 mss = bp->dev->mtu - 40;
5500 		u32 nsegs, n, segs = 0, flags;
5501 
5502 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
5503 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
5504 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
5505 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
5506 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
5507 		if (tpa_flags & BNXT_FLAG_GRO)
5508 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
5509 
5510 		req->flags = cpu_to_le32(flags);
5511 
5512 		req->enables =
5513 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
5514 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
5515 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
5516 
5517 		/* Number of segs are log2 units, and first packet is not
5518 		 * included as part of this units.
5519 		 */
5520 		if (mss <= BNXT_RX_PAGE_SIZE) {
5521 			n = BNXT_RX_PAGE_SIZE / mss;
5522 			nsegs = (MAX_SKB_FRAGS - 1) * n;
5523 		} else {
5524 			n = mss / BNXT_RX_PAGE_SIZE;
5525 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
5526 				n++;
5527 			nsegs = (MAX_SKB_FRAGS - n) / n;
5528 		}
5529 
5530 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
5531 			segs = MAX_TPA_SEGS_P5;
5532 			max_aggs = bp->max_tpa;
5533 		} else {
5534 			segs = ilog2(nsegs);
5535 		}
5536 		req->max_agg_segs = cpu_to_le16(segs);
5537 		req->max_aggs = cpu_to_le16(max_aggs);
5538 
5539 		req->min_agg_len = cpu_to_le32(512);
5540 		bnxt_hwrm_vnic_update_tunl_tpa(bp, req);
5541 	}
5542 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5543 
5544 	return hwrm_req_send(bp, req);
5545 }
5546 
5547 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
5548 {
5549 	struct bnxt_ring_grp_info *grp_info;
5550 
5551 	grp_info = &bp->grp_info[ring->grp_idx];
5552 	return grp_info->cp_fw_ring_id;
5553 }
5554 
5555 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
5556 {
5557 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
5558 		return rxr->rx_cpr->cp_ring_struct.fw_ring_id;
5559 	else
5560 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
5561 }
5562 
5563 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
5564 {
5565 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
5566 		return txr->tx_cpr->cp_ring_struct.fw_ring_id;
5567 	else
5568 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
5569 }
5570 
5571 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
5572 {
5573 	int entries;
5574 
5575 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
5576 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
5577 	else
5578 		entries = HW_HASH_INDEX_SIZE;
5579 
5580 	bp->rss_indir_tbl_entries = entries;
5581 	bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
5582 					  GFP_KERNEL);
5583 	if (!bp->rss_indir_tbl)
5584 		return -ENOMEM;
5585 	return 0;
5586 }
5587 
5588 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
5589 {
5590 	u16 max_rings, max_entries, pad, i;
5591 
5592 	if (!bp->rx_nr_rings)
5593 		return;
5594 
5595 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5596 		max_rings = bp->rx_nr_rings - 1;
5597 	else
5598 		max_rings = bp->rx_nr_rings;
5599 
5600 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
5601 
5602 	for (i = 0; i < max_entries; i++)
5603 		bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
5604 
5605 	pad = bp->rss_indir_tbl_entries - max_entries;
5606 	if (pad)
5607 		memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
5608 }
5609 
5610 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
5611 {
5612 	u16 i, tbl_size, max_ring = 0;
5613 
5614 	if (!bp->rss_indir_tbl)
5615 		return 0;
5616 
5617 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5618 	for (i = 0; i < tbl_size; i++)
5619 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
5620 	return max_ring;
5621 }
5622 
5623 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
5624 {
5625 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
5626 		return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
5627 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5628 		return 2;
5629 	return 1;
5630 }
5631 
5632 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5633 {
5634 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
5635 	u16 i, j;
5636 
5637 	/* Fill the RSS indirection table with ring group ids */
5638 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
5639 		if (!no_rss)
5640 			j = bp->rss_indir_tbl[i];
5641 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
5642 	}
5643 }
5644 
5645 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
5646 				    struct bnxt_vnic_info *vnic)
5647 {
5648 	__le16 *ring_tbl = vnic->rss_table;
5649 	struct bnxt_rx_ring_info *rxr;
5650 	u16 tbl_size, i;
5651 
5652 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5653 
5654 	for (i = 0; i < tbl_size; i++) {
5655 		u16 ring_id, j;
5656 
5657 		j = bp->rss_indir_tbl[i];
5658 		rxr = &bp->rx_ring[j];
5659 
5660 		ring_id = rxr->rx_ring_struct.fw_ring_id;
5661 		*ring_tbl++ = cpu_to_le16(ring_id);
5662 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5663 		*ring_tbl++ = cpu_to_le16(ring_id);
5664 	}
5665 }
5666 
5667 static void
5668 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req,
5669 			 struct bnxt_vnic_info *vnic)
5670 {
5671 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
5672 		bnxt_fill_hw_rss_tbl_p5(bp, vnic);
5673 	else
5674 		bnxt_fill_hw_rss_tbl(bp, vnic);
5675 
5676 	if (bp->rss_hash_delta) {
5677 		req->hash_type = cpu_to_le32(bp->rss_hash_delta);
5678 		if (bp->rss_hash_cfg & bp->rss_hash_delta)
5679 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE;
5680 		else
5681 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE;
5682 	} else {
5683 		req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5684 	}
5685 	req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5686 	req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
5687 	req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
5688 }
5689 
5690 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
5691 {
5692 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5693 	struct hwrm_vnic_rss_cfg_input *req;
5694 	int rc;
5695 
5696 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) ||
5697 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
5698 		return 0;
5699 
5700 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5701 	if (rc)
5702 		return rc;
5703 
5704 	if (set_rss)
5705 		__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
5706 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5707 	return hwrm_req_send(bp, req);
5708 }
5709 
5710 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
5711 {
5712 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5713 	struct hwrm_vnic_rss_cfg_input *req;
5714 	dma_addr_t ring_tbl_map;
5715 	u32 i, nr_ctxs;
5716 	int rc;
5717 
5718 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5719 	if (rc)
5720 		return rc;
5721 
5722 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5723 	if (!set_rss)
5724 		return hwrm_req_send(bp, req);
5725 
5726 	__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
5727 	ring_tbl_map = vnic->rss_table_dma_addr;
5728 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
5729 
5730 	hwrm_req_hold(bp, req);
5731 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
5732 		req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
5733 		req->ring_table_pair_index = i;
5734 		req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
5735 		rc = hwrm_req_send(bp, req);
5736 		if (rc)
5737 			goto exit;
5738 	}
5739 
5740 exit:
5741 	hwrm_req_drop(bp, req);
5742 	return rc;
5743 }
5744 
5745 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp)
5746 {
5747 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5748 	struct hwrm_vnic_rss_qcfg_output *resp;
5749 	struct hwrm_vnic_rss_qcfg_input *req;
5750 
5751 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG))
5752 		return;
5753 
5754 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5755 	/* all contexts configured to same hash_type, zero always exists */
5756 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5757 	resp = hwrm_req_hold(bp, req);
5758 	if (!hwrm_req_send(bp, req)) {
5759 		bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg;
5760 		bp->rss_hash_delta = 0;
5761 	}
5762 	hwrm_req_drop(bp, req);
5763 }
5764 
5765 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
5766 {
5767 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5768 	struct hwrm_vnic_plcmodes_cfg_input *req;
5769 	int rc;
5770 
5771 	rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG);
5772 	if (rc)
5773 		return rc;
5774 
5775 	req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT);
5776 	req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID);
5777 
5778 	if (BNXT_RX_PAGE_MODE(bp)) {
5779 		req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size);
5780 	} else {
5781 		req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
5782 					  VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
5783 		req->enables |=
5784 			cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
5785 		req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
5786 		req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
5787 	}
5788 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5789 	return hwrm_req_send(bp, req);
5790 }
5791 
5792 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
5793 					u16 ctx_idx)
5794 {
5795 	struct hwrm_vnic_rss_cos_lb_ctx_free_input *req;
5796 
5797 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE))
5798 		return;
5799 
5800 	req->rss_cos_lb_ctx_id =
5801 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
5802 
5803 	hwrm_req_send(bp, req);
5804 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
5805 }
5806 
5807 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
5808 {
5809 	int i, j;
5810 
5811 	for (i = 0; i < bp->nr_vnics; i++) {
5812 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5813 
5814 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
5815 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
5816 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
5817 		}
5818 	}
5819 	bp->rsscos_nr_ctxs = 0;
5820 }
5821 
5822 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
5823 {
5824 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp;
5825 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req;
5826 	int rc;
5827 
5828 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC);
5829 	if (rc)
5830 		return rc;
5831 
5832 	resp = hwrm_req_hold(bp, req);
5833 	rc = hwrm_req_send(bp, req);
5834 	if (!rc)
5835 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
5836 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
5837 	hwrm_req_drop(bp, req);
5838 
5839 	return rc;
5840 }
5841 
5842 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
5843 {
5844 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
5845 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
5846 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
5847 }
5848 
5849 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
5850 {
5851 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5852 	struct hwrm_vnic_cfg_input *req;
5853 	unsigned int ring = 0, grp_idx;
5854 	u16 def_vlan = 0;
5855 	int rc;
5856 
5857 	rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG);
5858 	if (rc)
5859 		return rc;
5860 
5861 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
5862 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5863 
5864 		req->default_rx_ring_id =
5865 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5866 		req->default_cmpl_ring_id =
5867 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5868 		req->enables =
5869 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5870 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5871 		goto vnic_mru;
5872 	}
5873 	req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5874 	/* Only RSS support for now TBD: COS & LB */
5875 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5876 		req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5877 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5878 					   VNIC_CFG_REQ_ENABLES_MRU);
5879 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5880 		req->rss_rule =
5881 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5882 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5883 					   VNIC_CFG_REQ_ENABLES_MRU);
5884 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5885 	} else {
5886 		req->rss_rule = cpu_to_le16(0xffff);
5887 	}
5888 
5889 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5890 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5891 		req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5892 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5893 	} else {
5894 		req->cos_rule = cpu_to_le16(0xffff);
5895 	}
5896 
5897 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5898 		ring = 0;
5899 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5900 		ring = vnic_id - 1;
5901 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5902 		ring = bp->rx_nr_rings - 1;
5903 
5904 	grp_idx = bp->rx_ring[ring].bnapi->index;
5905 	req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5906 	req->lb_rule = cpu_to_le16(0xffff);
5907 vnic_mru:
5908 	req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
5909 
5910 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5911 #ifdef CONFIG_BNXT_SRIOV
5912 	if (BNXT_VF(bp))
5913 		def_vlan = bp->vf.vlan;
5914 #endif
5915 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5916 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5917 	if (!vnic_id && bnxt_ulp_registered(bp->edev))
5918 		req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5919 
5920 	return hwrm_req_send(bp, req);
5921 }
5922 
5923 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5924 {
5925 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5926 		struct hwrm_vnic_free_input *req;
5927 
5928 		if (hwrm_req_init(bp, req, HWRM_VNIC_FREE))
5929 			return;
5930 
5931 		req->vnic_id =
5932 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5933 
5934 		hwrm_req_send(bp, req);
5935 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5936 	}
5937 }
5938 
5939 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5940 {
5941 	u16 i;
5942 
5943 	for (i = 0; i < bp->nr_vnics; i++)
5944 		bnxt_hwrm_vnic_free_one(bp, i);
5945 }
5946 
5947 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5948 				unsigned int start_rx_ring_idx,
5949 				unsigned int nr_rings)
5950 {
5951 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5952 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5953 	struct hwrm_vnic_alloc_output *resp;
5954 	struct hwrm_vnic_alloc_input *req;
5955 	int rc;
5956 
5957 	rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC);
5958 	if (rc)
5959 		return rc;
5960 
5961 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
5962 		goto vnic_no_ring_grps;
5963 
5964 	/* map ring groups to this vnic */
5965 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5966 		grp_idx = bp->rx_ring[i].bnapi->index;
5967 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5968 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5969 				   j, nr_rings);
5970 			break;
5971 		}
5972 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5973 	}
5974 
5975 vnic_no_ring_grps:
5976 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5977 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5978 	if (vnic_id == 0)
5979 		req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5980 
5981 	resp = hwrm_req_hold(bp, req);
5982 	rc = hwrm_req_send(bp, req);
5983 	if (!rc)
5984 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5985 	hwrm_req_drop(bp, req);
5986 	return rc;
5987 }
5988 
5989 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5990 {
5991 	struct hwrm_vnic_qcaps_output *resp;
5992 	struct hwrm_vnic_qcaps_input *req;
5993 	int rc;
5994 
5995 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5996 	bp->flags &= ~BNXT_FLAG_ROCE_MIRROR_CAP;
5997 	bp->rss_cap &= ~BNXT_RSS_CAP_NEW_RSS_CAP;
5998 	if (bp->hwrm_spec_code < 0x10600)
5999 		return 0;
6000 
6001 	rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS);
6002 	if (rc)
6003 		return rc;
6004 
6005 	resp = hwrm_req_hold(bp, req);
6006 	rc = hwrm_req_send(bp, req);
6007 	if (!rc) {
6008 		u32 flags = le32_to_cpu(resp->flags);
6009 
6010 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
6011 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
6012 			bp->rss_cap |= BNXT_RSS_CAP_NEW_RSS_CAP;
6013 		if (flags &
6014 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
6015 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
6016 
6017 		/* Older P5 fw before EXT_HW_STATS support did not set
6018 		 * VLAN_STRIP_CAP properly.
6019 		 */
6020 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
6021 		    (BNXT_CHIP_P5(bp) &&
6022 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
6023 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
6024 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP)
6025 			bp->rss_cap |= BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA;
6026 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_PROF_TCAM_MODE_ENABLED)
6027 			bp->rss_cap |= BNXT_RSS_CAP_RSS_TCAM;
6028 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
6029 		if (bp->max_tpa_v2) {
6030 			if (BNXT_CHIP_P5(bp))
6031 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
6032 			else
6033 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P7;
6034 		}
6035 		if (flags & VNIC_QCAPS_RESP_FLAGS_HW_TUNNEL_TPA_CAP)
6036 			bp->fw_cap |= BNXT_FW_CAP_VNIC_TUNNEL_TPA;
6037 	}
6038 	hwrm_req_drop(bp, req);
6039 	return rc;
6040 }
6041 
6042 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
6043 {
6044 	struct hwrm_ring_grp_alloc_output *resp;
6045 	struct hwrm_ring_grp_alloc_input *req;
6046 	int rc;
6047 	u16 i;
6048 
6049 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6050 		return 0;
6051 
6052 	rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC);
6053 	if (rc)
6054 		return rc;
6055 
6056 	resp = hwrm_req_hold(bp, req);
6057 	for (i = 0; i < bp->rx_nr_rings; i++) {
6058 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
6059 
6060 		req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
6061 		req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
6062 		req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
6063 		req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
6064 
6065 		rc = hwrm_req_send(bp, req);
6066 
6067 		if (rc)
6068 			break;
6069 
6070 		bp->grp_info[grp_idx].fw_grp_id =
6071 			le32_to_cpu(resp->ring_group_id);
6072 	}
6073 	hwrm_req_drop(bp, req);
6074 	return rc;
6075 }
6076 
6077 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
6078 {
6079 	struct hwrm_ring_grp_free_input *req;
6080 	u16 i;
6081 
6082 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
6083 		return;
6084 
6085 	if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE))
6086 		return;
6087 
6088 	hwrm_req_hold(bp, req);
6089 	for (i = 0; i < bp->cp_nr_rings; i++) {
6090 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
6091 			continue;
6092 		req->ring_group_id =
6093 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
6094 
6095 		hwrm_req_send(bp, req);
6096 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
6097 	}
6098 	hwrm_req_drop(bp, req);
6099 }
6100 
6101 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
6102 				    struct bnxt_ring_struct *ring,
6103 				    u32 ring_type, u32 map_index)
6104 {
6105 	struct hwrm_ring_alloc_output *resp;
6106 	struct hwrm_ring_alloc_input *req;
6107 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
6108 	struct bnxt_ring_grp_info *grp_info;
6109 	int rc, err = 0;
6110 	u16 ring_id;
6111 
6112 	rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC);
6113 	if (rc)
6114 		goto exit;
6115 
6116 	req->enables = 0;
6117 	if (rmem->nr_pages > 1) {
6118 		req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
6119 		/* Page size is in log2 units */
6120 		req->page_size = BNXT_PAGE_SHIFT;
6121 		req->page_tbl_depth = 1;
6122 	} else {
6123 		req->page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
6124 	}
6125 	req->fbo = 0;
6126 	/* Association of ring index with doorbell index and MSIX number */
6127 	req->logical_id = cpu_to_le16(map_index);
6128 
6129 	switch (ring_type) {
6130 	case HWRM_RING_ALLOC_TX: {
6131 		struct bnxt_tx_ring_info *txr;
6132 
6133 		txr = container_of(ring, struct bnxt_tx_ring_info,
6134 				   tx_ring_struct);
6135 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
6136 		/* Association of transmit ring with completion ring */
6137 		grp_info = &bp->grp_info[ring->grp_idx];
6138 		req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
6139 		req->length = cpu_to_le32(bp->tx_ring_mask + 1);
6140 		req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6141 		req->queue_id = cpu_to_le16(ring->queue_id);
6142 		if (bp->flags & BNXT_FLAG_TX_COAL_CMPL)
6143 			req->cmpl_coal_cnt =
6144 				RING_ALLOC_REQ_CMPL_COAL_CNT_COAL_64;
6145 		break;
6146 	}
6147 	case HWRM_RING_ALLOC_RX:
6148 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
6149 		req->length = cpu_to_le32(bp->rx_ring_mask + 1);
6150 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6151 			u16 flags = 0;
6152 
6153 			/* Association of rx ring with stats context */
6154 			grp_info = &bp->grp_info[ring->grp_idx];
6155 			req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
6156 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6157 			req->enables |= cpu_to_le32(
6158 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
6159 			if (NET_IP_ALIGN == 2)
6160 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
6161 			req->flags = cpu_to_le16(flags);
6162 		}
6163 		break;
6164 	case HWRM_RING_ALLOC_AGG:
6165 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6166 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
6167 			/* Association of agg ring with rx ring */
6168 			grp_info = &bp->grp_info[ring->grp_idx];
6169 			req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
6170 			req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
6171 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
6172 			req->enables |= cpu_to_le32(
6173 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
6174 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
6175 		} else {
6176 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
6177 		}
6178 		req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
6179 		break;
6180 	case HWRM_RING_ALLOC_CMPL:
6181 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
6182 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
6183 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6184 			/* Association of cp ring with nq */
6185 			grp_info = &bp->grp_info[map_index];
6186 			req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
6187 			req->cq_handle = cpu_to_le64(ring->handle);
6188 			req->enables |= cpu_to_le32(
6189 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
6190 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
6191 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
6192 		}
6193 		break;
6194 	case HWRM_RING_ALLOC_NQ:
6195 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
6196 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
6197 		if (bp->flags & BNXT_FLAG_USING_MSIX)
6198 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
6199 		break;
6200 	default:
6201 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
6202 			   ring_type);
6203 		return -1;
6204 	}
6205 
6206 	resp = hwrm_req_hold(bp, req);
6207 	rc = hwrm_req_send(bp, req);
6208 	err = le16_to_cpu(resp->error_code);
6209 	ring_id = le16_to_cpu(resp->ring_id);
6210 	hwrm_req_drop(bp, req);
6211 
6212 exit:
6213 	if (rc || err) {
6214 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
6215 			   ring_type, rc, err);
6216 		return -EIO;
6217 	}
6218 	ring->fw_ring_id = ring_id;
6219 	return rc;
6220 }
6221 
6222 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
6223 {
6224 	int rc;
6225 
6226 	if (BNXT_PF(bp)) {
6227 		struct hwrm_func_cfg_input *req;
6228 
6229 		rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
6230 		if (rc)
6231 			return rc;
6232 
6233 		req->fid = cpu_to_le16(0xffff);
6234 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
6235 		req->async_event_cr = cpu_to_le16(idx);
6236 		return hwrm_req_send(bp, req);
6237 	} else {
6238 		struct hwrm_func_vf_cfg_input *req;
6239 
6240 		rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
6241 		if (rc)
6242 			return rc;
6243 
6244 		req->enables =
6245 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
6246 		req->async_event_cr = cpu_to_le16(idx);
6247 		return hwrm_req_send(bp, req);
6248 	}
6249 }
6250 
6251 static void bnxt_set_db_mask(struct bnxt *bp, struct bnxt_db_info *db,
6252 			     u32 ring_type)
6253 {
6254 	switch (ring_type) {
6255 	case HWRM_RING_ALLOC_TX:
6256 		db->db_ring_mask = bp->tx_ring_mask;
6257 		break;
6258 	case HWRM_RING_ALLOC_RX:
6259 		db->db_ring_mask = bp->rx_ring_mask;
6260 		break;
6261 	case HWRM_RING_ALLOC_AGG:
6262 		db->db_ring_mask = bp->rx_agg_ring_mask;
6263 		break;
6264 	case HWRM_RING_ALLOC_CMPL:
6265 	case HWRM_RING_ALLOC_NQ:
6266 		db->db_ring_mask = bp->cp_ring_mask;
6267 		break;
6268 	}
6269 	if (bp->flags & BNXT_FLAG_CHIP_P7) {
6270 		db->db_epoch_mask = db->db_ring_mask + 1;
6271 		db->db_epoch_shift = DBR_EPOCH_SFT - ilog2(db->db_epoch_mask);
6272 	}
6273 }
6274 
6275 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
6276 			u32 map_idx, u32 xid)
6277 {
6278 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6279 		switch (ring_type) {
6280 		case HWRM_RING_ALLOC_TX:
6281 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
6282 			break;
6283 		case HWRM_RING_ALLOC_RX:
6284 		case HWRM_RING_ALLOC_AGG:
6285 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
6286 			break;
6287 		case HWRM_RING_ALLOC_CMPL:
6288 			db->db_key64 = DBR_PATH_L2;
6289 			break;
6290 		case HWRM_RING_ALLOC_NQ:
6291 			db->db_key64 = DBR_PATH_L2;
6292 			break;
6293 		}
6294 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
6295 
6296 		if (bp->flags & BNXT_FLAG_CHIP_P7)
6297 			db->db_key64 |= DBR_VALID;
6298 
6299 		db->doorbell = bp->bar1 + bp->db_offset;
6300 	} else {
6301 		db->doorbell = bp->bar1 + map_idx * 0x80;
6302 		switch (ring_type) {
6303 		case HWRM_RING_ALLOC_TX:
6304 			db->db_key32 = DB_KEY_TX;
6305 			break;
6306 		case HWRM_RING_ALLOC_RX:
6307 		case HWRM_RING_ALLOC_AGG:
6308 			db->db_key32 = DB_KEY_RX;
6309 			break;
6310 		case HWRM_RING_ALLOC_CMPL:
6311 			db->db_key32 = DB_KEY_CP;
6312 			break;
6313 		}
6314 	}
6315 	bnxt_set_db_mask(bp, db, ring_type);
6316 }
6317 
6318 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
6319 {
6320 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
6321 	int i, rc = 0;
6322 	u32 type;
6323 
6324 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6325 		type = HWRM_RING_ALLOC_NQ;
6326 	else
6327 		type = HWRM_RING_ALLOC_CMPL;
6328 	for (i = 0; i < bp->cp_nr_rings; i++) {
6329 		struct bnxt_napi *bnapi = bp->bnapi[i];
6330 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6331 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
6332 		u32 map_idx = ring->map_idx;
6333 		unsigned int vector;
6334 
6335 		vector = bp->irq_tbl[map_idx].vector;
6336 		disable_irq_nosync(vector);
6337 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
6338 		if (rc) {
6339 			enable_irq(vector);
6340 			goto err_out;
6341 		}
6342 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
6343 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
6344 		enable_irq(vector);
6345 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
6346 
6347 		if (!i) {
6348 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
6349 			if (rc)
6350 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
6351 		}
6352 	}
6353 
6354 	type = HWRM_RING_ALLOC_TX;
6355 	for (i = 0; i < bp->tx_nr_rings; i++) {
6356 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
6357 		struct bnxt_ring_struct *ring;
6358 		u32 map_idx;
6359 
6360 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6361 			struct bnxt_cp_ring_info *cpr2 = txr->tx_cpr;
6362 			struct bnxt_napi *bnapi = txr->bnapi;
6363 			u32 type2 = HWRM_RING_ALLOC_CMPL;
6364 
6365 			ring = &cpr2->cp_ring_struct;
6366 			ring->handle = BNXT_SET_NQ_HDL(cpr2);
6367 			map_idx = bnapi->index;
6368 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
6369 			if (rc)
6370 				goto err_out;
6371 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
6372 				    ring->fw_ring_id);
6373 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
6374 		}
6375 		ring = &txr->tx_ring_struct;
6376 		map_idx = i;
6377 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
6378 		if (rc)
6379 			goto err_out;
6380 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
6381 	}
6382 
6383 	type = HWRM_RING_ALLOC_RX;
6384 	for (i = 0; i < bp->rx_nr_rings; i++) {
6385 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6386 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
6387 		struct bnxt_napi *bnapi = rxr->bnapi;
6388 		u32 map_idx = bnapi->index;
6389 
6390 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
6391 		if (rc)
6392 			goto err_out;
6393 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
6394 		/* If we have agg rings, post agg buffers first. */
6395 		if (!agg_rings)
6396 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
6397 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
6398 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6399 			struct bnxt_cp_ring_info *cpr2 = rxr->rx_cpr;
6400 			u32 type2 = HWRM_RING_ALLOC_CMPL;
6401 
6402 			ring = &cpr2->cp_ring_struct;
6403 			ring->handle = BNXT_SET_NQ_HDL(cpr2);
6404 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
6405 			if (rc)
6406 				goto err_out;
6407 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
6408 				    ring->fw_ring_id);
6409 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
6410 		}
6411 	}
6412 
6413 	if (agg_rings) {
6414 		type = HWRM_RING_ALLOC_AGG;
6415 		for (i = 0; i < bp->rx_nr_rings; i++) {
6416 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6417 			struct bnxt_ring_struct *ring =
6418 						&rxr->rx_agg_ring_struct;
6419 			u32 grp_idx = ring->grp_idx;
6420 			u32 map_idx = grp_idx + bp->rx_nr_rings;
6421 
6422 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
6423 			if (rc)
6424 				goto err_out;
6425 
6426 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
6427 				    ring->fw_ring_id);
6428 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
6429 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
6430 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
6431 		}
6432 	}
6433 err_out:
6434 	return rc;
6435 }
6436 
6437 static int hwrm_ring_free_send_msg(struct bnxt *bp,
6438 				   struct bnxt_ring_struct *ring,
6439 				   u32 ring_type, int cmpl_ring_id)
6440 {
6441 	struct hwrm_ring_free_output *resp;
6442 	struct hwrm_ring_free_input *req;
6443 	u16 error_code = 0;
6444 	int rc;
6445 
6446 	if (BNXT_NO_FW_ACCESS(bp))
6447 		return 0;
6448 
6449 	rc = hwrm_req_init(bp, req, HWRM_RING_FREE);
6450 	if (rc)
6451 		goto exit;
6452 
6453 	req->cmpl_ring = cpu_to_le16(cmpl_ring_id);
6454 	req->ring_type = ring_type;
6455 	req->ring_id = cpu_to_le16(ring->fw_ring_id);
6456 
6457 	resp = hwrm_req_hold(bp, req);
6458 	rc = hwrm_req_send(bp, req);
6459 	error_code = le16_to_cpu(resp->error_code);
6460 	hwrm_req_drop(bp, req);
6461 exit:
6462 	if (rc || error_code) {
6463 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
6464 			   ring_type, rc, error_code);
6465 		return -EIO;
6466 	}
6467 	return 0;
6468 }
6469 
6470 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
6471 {
6472 	u32 type;
6473 	int i;
6474 
6475 	if (!bp->bnapi)
6476 		return;
6477 
6478 	for (i = 0; i < bp->tx_nr_rings; i++) {
6479 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
6480 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
6481 
6482 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6483 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
6484 
6485 			hwrm_ring_free_send_msg(bp, ring,
6486 						RING_FREE_REQ_RING_TYPE_TX,
6487 						close_path ? cmpl_ring_id :
6488 						INVALID_HW_RING_ID);
6489 			ring->fw_ring_id = INVALID_HW_RING_ID;
6490 		}
6491 	}
6492 
6493 	for (i = 0; i < bp->rx_nr_rings; i++) {
6494 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6495 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
6496 		u32 grp_idx = rxr->bnapi->index;
6497 
6498 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6499 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6500 
6501 			hwrm_ring_free_send_msg(bp, ring,
6502 						RING_FREE_REQ_RING_TYPE_RX,
6503 						close_path ? cmpl_ring_id :
6504 						INVALID_HW_RING_ID);
6505 			ring->fw_ring_id = INVALID_HW_RING_ID;
6506 			bp->grp_info[grp_idx].rx_fw_ring_id =
6507 				INVALID_HW_RING_ID;
6508 		}
6509 	}
6510 
6511 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6512 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
6513 	else
6514 		type = RING_FREE_REQ_RING_TYPE_RX;
6515 	for (i = 0; i < bp->rx_nr_rings; i++) {
6516 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6517 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
6518 		u32 grp_idx = rxr->bnapi->index;
6519 
6520 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6521 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6522 
6523 			hwrm_ring_free_send_msg(bp, ring, type,
6524 						close_path ? cmpl_ring_id :
6525 						INVALID_HW_RING_ID);
6526 			ring->fw_ring_id = INVALID_HW_RING_ID;
6527 			bp->grp_info[grp_idx].agg_fw_ring_id =
6528 				INVALID_HW_RING_ID;
6529 		}
6530 	}
6531 
6532 	/* The completion rings are about to be freed.  After that the
6533 	 * IRQ doorbell will not work anymore.  So we need to disable
6534 	 * IRQ here.
6535 	 */
6536 	bnxt_disable_int_sync(bp);
6537 
6538 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
6539 		type = RING_FREE_REQ_RING_TYPE_NQ;
6540 	else
6541 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
6542 	for (i = 0; i < bp->cp_nr_rings; i++) {
6543 		struct bnxt_napi *bnapi = bp->bnapi[i];
6544 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6545 		struct bnxt_ring_struct *ring;
6546 		int j;
6547 
6548 		for (j = 0; j < cpr->cp_ring_count && cpr->cp_ring_arr; j++) {
6549 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
6550 
6551 			ring = &cpr2->cp_ring_struct;
6552 			if (ring->fw_ring_id == INVALID_HW_RING_ID)
6553 				continue;
6554 			hwrm_ring_free_send_msg(bp, ring,
6555 						RING_FREE_REQ_RING_TYPE_L2_CMPL,
6556 						INVALID_HW_RING_ID);
6557 			ring->fw_ring_id = INVALID_HW_RING_ID;
6558 		}
6559 		ring = &cpr->cp_ring_struct;
6560 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6561 			hwrm_ring_free_send_msg(bp, ring, type,
6562 						INVALID_HW_RING_ID);
6563 			ring->fw_ring_id = INVALID_HW_RING_ID;
6564 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
6565 		}
6566 	}
6567 }
6568 
6569 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
6570 			     bool shared);
6571 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
6572 			   bool shared);
6573 
6574 static int bnxt_hwrm_get_rings(struct bnxt *bp)
6575 {
6576 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6577 	struct hwrm_func_qcfg_output *resp;
6578 	struct hwrm_func_qcfg_input *req;
6579 	int rc;
6580 
6581 	if (bp->hwrm_spec_code < 0x10601)
6582 		return 0;
6583 
6584 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6585 	if (rc)
6586 		return rc;
6587 
6588 	req->fid = cpu_to_le16(0xffff);
6589 	resp = hwrm_req_hold(bp, req);
6590 	rc = hwrm_req_send(bp, req);
6591 	if (rc) {
6592 		hwrm_req_drop(bp, req);
6593 		return rc;
6594 	}
6595 
6596 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6597 	if (BNXT_NEW_RM(bp)) {
6598 		u16 cp, stats;
6599 
6600 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
6601 		hw_resc->resv_hw_ring_grps =
6602 			le32_to_cpu(resp->alloc_hw_ring_grps);
6603 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
6604 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
6605 		stats = le16_to_cpu(resp->alloc_stat_ctx);
6606 		hw_resc->resv_irqs = cp;
6607 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6608 			int rx = hw_resc->resv_rx_rings;
6609 			int tx = hw_resc->resv_tx_rings;
6610 
6611 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
6612 				rx >>= 1;
6613 			if (cp < (rx + tx)) {
6614 				rc = __bnxt_trim_rings(bp, &rx, &tx, cp, false);
6615 				if (rc)
6616 					return rc;
6617 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
6618 					rx <<= 1;
6619 				hw_resc->resv_rx_rings = rx;
6620 				hw_resc->resv_tx_rings = tx;
6621 			}
6622 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
6623 			hw_resc->resv_hw_ring_grps = rx;
6624 		}
6625 		hw_resc->resv_cp_rings = cp;
6626 		hw_resc->resv_stat_ctxs = stats;
6627 	}
6628 	hwrm_req_drop(bp, req);
6629 	return 0;
6630 }
6631 
6632 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
6633 {
6634 	struct hwrm_func_qcfg_output *resp;
6635 	struct hwrm_func_qcfg_input *req;
6636 	int rc;
6637 
6638 	if (bp->hwrm_spec_code < 0x10601)
6639 		return 0;
6640 
6641 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6642 	if (rc)
6643 		return rc;
6644 
6645 	req->fid = cpu_to_le16(fid);
6646 	resp = hwrm_req_hold(bp, req);
6647 	rc = hwrm_req_send(bp, req);
6648 	if (!rc)
6649 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6650 
6651 	hwrm_req_drop(bp, req);
6652 	return rc;
6653 }
6654 
6655 static bool bnxt_rfs_supported(struct bnxt *bp);
6656 
6657 static struct hwrm_func_cfg_input *
6658 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6659 			     int ring_grps, int cp_rings, int stats, int vnics)
6660 {
6661 	struct hwrm_func_cfg_input *req;
6662 	u32 enables = 0;
6663 
6664 	if (bnxt_hwrm_func_cfg_short_req_init(bp, &req))
6665 		return NULL;
6666 
6667 	req->fid = cpu_to_le16(0xffff);
6668 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6669 	req->num_tx_rings = cpu_to_le16(tx_rings);
6670 	if (BNXT_NEW_RM(bp)) {
6671 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
6672 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6673 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6674 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
6675 			enables |= tx_rings + ring_grps ?
6676 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6677 			enables |= rx_rings ?
6678 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6679 		} else {
6680 			enables |= cp_rings ?
6681 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6682 			enables |= ring_grps ?
6683 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
6684 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6685 		}
6686 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
6687 
6688 		req->num_rx_rings = cpu_to_le16(rx_rings);
6689 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6690 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6691 			req->num_msix = cpu_to_le16(cp_rings);
6692 			req->num_rsscos_ctxs =
6693 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6694 		} else {
6695 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
6696 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6697 			req->num_rsscos_ctxs = cpu_to_le16(1);
6698 			if (!(bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) &&
6699 			    bnxt_rfs_supported(bp))
6700 				req->num_rsscos_ctxs =
6701 					cpu_to_le16(ring_grps + 1);
6702 		}
6703 		req->num_stat_ctxs = cpu_to_le16(stats);
6704 		req->num_vnics = cpu_to_le16(vnics);
6705 	}
6706 	req->enables = cpu_to_le32(enables);
6707 	return req;
6708 }
6709 
6710 static struct hwrm_func_vf_cfg_input *
6711 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6712 			     int ring_grps, int cp_rings, int stats, int vnics)
6713 {
6714 	struct hwrm_func_vf_cfg_input *req;
6715 	u32 enables = 0;
6716 
6717 	if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG))
6718 		return NULL;
6719 
6720 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6721 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
6722 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6723 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6724 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6725 		enables |= tx_rings + ring_grps ?
6726 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6727 	} else {
6728 		enables |= cp_rings ?
6729 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6730 		enables |= ring_grps ?
6731 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
6732 	}
6733 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
6734 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
6735 
6736 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
6737 	req->num_tx_rings = cpu_to_le16(tx_rings);
6738 	req->num_rx_rings = cpu_to_le16(rx_rings);
6739 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
6740 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6741 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6742 	} else {
6743 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
6744 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6745 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
6746 	}
6747 	req->num_stat_ctxs = cpu_to_le16(stats);
6748 	req->num_vnics = cpu_to_le16(vnics);
6749 
6750 	req->enables = cpu_to_le32(enables);
6751 	return req;
6752 }
6753 
6754 static int
6755 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6756 			   int ring_grps, int cp_rings, int stats, int vnics)
6757 {
6758 	struct hwrm_func_cfg_input *req;
6759 	int rc;
6760 
6761 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6762 					   cp_rings, stats, vnics);
6763 	if (!req)
6764 		return -ENOMEM;
6765 
6766 	if (!req->enables) {
6767 		hwrm_req_drop(bp, req);
6768 		return 0;
6769 	}
6770 
6771 	rc = hwrm_req_send(bp, req);
6772 	if (rc)
6773 		return rc;
6774 
6775 	if (bp->hwrm_spec_code < 0x10601)
6776 		bp->hw_resc.resv_tx_rings = tx_rings;
6777 
6778 	return bnxt_hwrm_get_rings(bp);
6779 }
6780 
6781 static int
6782 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6783 			   int ring_grps, int cp_rings, int stats, int vnics)
6784 {
6785 	struct hwrm_func_vf_cfg_input *req;
6786 	int rc;
6787 
6788 	if (!BNXT_NEW_RM(bp)) {
6789 		bp->hw_resc.resv_tx_rings = tx_rings;
6790 		return 0;
6791 	}
6792 
6793 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6794 					   cp_rings, stats, vnics);
6795 	if (!req)
6796 		return -ENOMEM;
6797 
6798 	rc = hwrm_req_send(bp, req);
6799 	if (rc)
6800 		return rc;
6801 
6802 	return bnxt_hwrm_get_rings(bp);
6803 }
6804 
6805 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
6806 				   int cp, int stat, int vnic)
6807 {
6808 	if (BNXT_PF(bp))
6809 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
6810 						  vnic);
6811 	else
6812 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
6813 						  vnic);
6814 }
6815 
6816 int bnxt_nq_rings_in_use(struct bnxt *bp)
6817 {
6818 	int cp = bp->cp_nr_rings;
6819 	int ulp_msix, ulp_base;
6820 
6821 	ulp_msix = bnxt_get_ulp_msix_num(bp);
6822 	if (ulp_msix) {
6823 		ulp_base = bnxt_get_ulp_msix_base(bp);
6824 		cp += ulp_msix;
6825 		if ((ulp_base + ulp_msix) > cp)
6826 			cp = ulp_base + ulp_msix;
6827 	}
6828 	return cp;
6829 }
6830 
6831 static int bnxt_cp_rings_in_use(struct bnxt *bp)
6832 {
6833 	int cp;
6834 
6835 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
6836 		return bnxt_nq_rings_in_use(bp);
6837 
6838 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
6839 	return cp;
6840 }
6841 
6842 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
6843 {
6844 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
6845 	int cp = bp->cp_nr_rings;
6846 
6847 	if (!ulp_stat)
6848 		return cp;
6849 
6850 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
6851 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
6852 
6853 	return cp + ulp_stat;
6854 }
6855 
6856 /* Check if a default RSS map needs to be setup.  This function is only
6857  * used on older firmware that does not require reserving RX rings.
6858  */
6859 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
6860 {
6861 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6862 
6863 	/* The RSS map is valid for RX rings set to resv_rx_rings */
6864 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
6865 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
6866 		if (!netif_is_rxfh_configured(bp->dev))
6867 			bnxt_set_dflt_rss_indir_tbl(bp);
6868 	}
6869 }
6870 
6871 static bool bnxt_need_reserve_rings(struct bnxt *bp)
6872 {
6873 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6874 	int cp = bnxt_cp_rings_in_use(bp);
6875 	int nq = bnxt_nq_rings_in_use(bp);
6876 	int rx = bp->rx_nr_rings, stat;
6877 	int vnic = 1, grp = rx;
6878 
6879 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
6880 	    bp->hwrm_spec_code >= 0x10601)
6881 		return true;
6882 
6883 	/* Old firmware does not need RX ring reservations but we still
6884 	 * need to setup a default RSS map when needed.  With new firmware
6885 	 * we go through RX ring reservations first and then set up the
6886 	 * RSS map for the successfully reserved RX rings when needed.
6887 	 */
6888 	if (!BNXT_NEW_RM(bp)) {
6889 		bnxt_check_rss_tbl_no_rmgr(bp);
6890 		return false;
6891 	}
6892 	if ((bp->flags & BNXT_FLAG_RFS) &&
6893 	    !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
6894 		vnic = rx + 1;
6895 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6896 		rx <<= 1;
6897 	stat = bnxt_get_func_stat_ctxs(bp);
6898 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
6899 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
6900 	    (hw_resc->resv_hw_ring_grps != grp &&
6901 	     !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)))
6902 		return true;
6903 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && BNXT_PF(bp) &&
6904 	    hw_resc->resv_irqs != nq)
6905 		return true;
6906 	return false;
6907 }
6908 
6909 static int __bnxt_reserve_rings(struct bnxt *bp)
6910 {
6911 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6912 	int cp = bnxt_nq_rings_in_use(bp);
6913 	int tx = bp->tx_nr_rings;
6914 	int rx = bp->rx_nr_rings;
6915 	int grp, rx_rings, rc;
6916 	int vnic = 1, stat;
6917 	bool sh = false;
6918 	int tx_cp;
6919 
6920 	if (!bnxt_need_reserve_rings(bp))
6921 		return 0;
6922 
6923 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6924 		sh = true;
6925 	if ((bp->flags & BNXT_FLAG_RFS) &&
6926 	    !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
6927 		vnic = rx + 1;
6928 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6929 		rx <<= 1;
6930 	grp = bp->rx_nr_rings;
6931 	stat = bnxt_get_func_stat_ctxs(bp);
6932 
6933 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
6934 	if (rc)
6935 		return rc;
6936 
6937 	tx = hw_resc->resv_tx_rings;
6938 	if (BNXT_NEW_RM(bp)) {
6939 		rx = hw_resc->resv_rx_rings;
6940 		cp = hw_resc->resv_irqs;
6941 		grp = hw_resc->resv_hw_ring_grps;
6942 		vnic = hw_resc->resv_vnics;
6943 		stat = hw_resc->resv_stat_ctxs;
6944 	}
6945 
6946 	rx_rings = rx;
6947 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6948 		if (rx >= 2) {
6949 			rx_rings = rx >> 1;
6950 		} else {
6951 			if (netif_running(bp->dev))
6952 				return -ENOMEM;
6953 
6954 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
6955 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
6956 			bp->dev->hw_features &= ~NETIF_F_LRO;
6957 			bp->dev->features &= ~NETIF_F_LRO;
6958 			bnxt_set_ring_params(bp);
6959 		}
6960 	}
6961 	rx_rings = min_t(int, rx_rings, grp);
6962 	cp = min_t(int, cp, bp->cp_nr_rings);
6963 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
6964 		stat -= bnxt_get_ulp_stat_ctxs(bp);
6965 	cp = min_t(int, cp, stat);
6966 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
6967 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6968 		rx = rx_rings << 1;
6969 	tx_cp = bnxt_num_tx_to_cp(bp, tx);
6970 	cp = sh ? max_t(int, tx_cp, rx_rings) : tx_cp + rx_rings;
6971 	bp->tx_nr_rings = tx;
6972 
6973 	/* If we cannot reserve all the RX rings, reset the RSS map only
6974 	 * if absolutely necessary
6975 	 */
6976 	if (rx_rings != bp->rx_nr_rings) {
6977 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
6978 			    rx_rings, bp->rx_nr_rings);
6979 		if (netif_is_rxfh_configured(bp->dev) &&
6980 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
6981 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
6982 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
6983 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
6984 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
6985 		}
6986 	}
6987 	bp->rx_nr_rings = rx_rings;
6988 	bp->cp_nr_rings = cp;
6989 
6990 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
6991 		return -ENOMEM;
6992 
6993 	if (!netif_is_rxfh_configured(bp->dev))
6994 		bnxt_set_dflt_rss_indir_tbl(bp);
6995 
6996 	return rc;
6997 }
6998 
6999 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
7000 				    int ring_grps, int cp_rings, int stats,
7001 				    int vnics)
7002 {
7003 	struct hwrm_func_vf_cfg_input *req;
7004 	u32 flags;
7005 
7006 	if (!BNXT_NEW_RM(bp))
7007 		return 0;
7008 
7009 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
7010 					   cp_rings, stats, vnics);
7011 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
7012 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
7013 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
7014 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
7015 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
7016 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
7017 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7018 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
7019 
7020 	req->flags = cpu_to_le32(flags);
7021 	return hwrm_req_send_silent(bp, req);
7022 }
7023 
7024 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
7025 				    int ring_grps, int cp_rings, int stats,
7026 				    int vnics)
7027 {
7028 	struct hwrm_func_cfg_input *req;
7029 	u32 flags;
7030 
7031 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
7032 					   cp_rings, stats, vnics);
7033 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
7034 	if (BNXT_NEW_RM(bp)) {
7035 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
7036 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
7037 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
7038 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
7039 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
7040 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
7041 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
7042 		else
7043 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
7044 	}
7045 
7046 	req->flags = cpu_to_le32(flags);
7047 	return hwrm_req_send_silent(bp, req);
7048 }
7049 
7050 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
7051 				 int ring_grps, int cp_rings, int stats,
7052 				 int vnics)
7053 {
7054 	if (bp->hwrm_spec_code < 0x10801)
7055 		return 0;
7056 
7057 	if (BNXT_PF(bp))
7058 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
7059 						ring_grps, cp_rings, stats,
7060 						vnics);
7061 
7062 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
7063 					cp_rings, stats, vnics);
7064 }
7065 
7066 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
7067 {
7068 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7069 	struct hwrm_ring_aggint_qcaps_output *resp;
7070 	struct hwrm_ring_aggint_qcaps_input *req;
7071 	int rc;
7072 
7073 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
7074 	coal_cap->num_cmpl_dma_aggr_max = 63;
7075 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
7076 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
7077 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
7078 	coal_cap->int_lat_tmr_min_max = 65535;
7079 	coal_cap->int_lat_tmr_max_max = 65535;
7080 	coal_cap->num_cmpl_aggr_int_max = 65535;
7081 	coal_cap->timer_units = 80;
7082 
7083 	if (bp->hwrm_spec_code < 0x10902)
7084 		return;
7085 
7086 	if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS))
7087 		return;
7088 
7089 	resp = hwrm_req_hold(bp, req);
7090 	rc = hwrm_req_send_silent(bp, req);
7091 	if (!rc) {
7092 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
7093 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
7094 		coal_cap->num_cmpl_dma_aggr_max =
7095 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
7096 		coal_cap->num_cmpl_dma_aggr_during_int_max =
7097 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
7098 		coal_cap->cmpl_aggr_dma_tmr_max =
7099 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
7100 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
7101 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
7102 		coal_cap->int_lat_tmr_min_max =
7103 			le16_to_cpu(resp->int_lat_tmr_min_max);
7104 		coal_cap->int_lat_tmr_max_max =
7105 			le16_to_cpu(resp->int_lat_tmr_max_max);
7106 		coal_cap->num_cmpl_aggr_int_max =
7107 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
7108 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
7109 	}
7110 	hwrm_req_drop(bp, req);
7111 }
7112 
7113 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
7114 {
7115 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7116 
7117 	return usec * 1000 / coal_cap->timer_units;
7118 }
7119 
7120 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
7121 	struct bnxt_coal *hw_coal,
7122 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
7123 {
7124 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7125 	u16 val, tmr, max, flags = hw_coal->flags;
7126 	u32 cmpl_params = coal_cap->cmpl_params;
7127 
7128 	max = hw_coal->bufs_per_record * 128;
7129 	if (hw_coal->budget)
7130 		max = hw_coal->bufs_per_record * hw_coal->budget;
7131 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
7132 
7133 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
7134 	req->num_cmpl_aggr_int = cpu_to_le16(val);
7135 
7136 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
7137 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
7138 
7139 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
7140 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
7141 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
7142 
7143 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
7144 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
7145 	req->int_lat_tmr_max = cpu_to_le16(tmr);
7146 
7147 	/* min timer set to 1/2 of interrupt timer */
7148 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
7149 		val = tmr / 2;
7150 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
7151 		req->int_lat_tmr_min = cpu_to_le16(val);
7152 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
7153 	}
7154 
7155 	/* buf timer set to 1/4 of interrupt timer */
7156 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
7157 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
7158 
7159 	if (cmpl_params &
7160 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
7161 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
7162 		val = clamp_t(u16, tmr, 1,
7163 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
7164 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
7165 		req->enables |=
7166 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
7167 	}
7168 
7169 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
7170 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
7171 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
7172 	req->flags = cpu_to_le16(flags);
7173 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
7174 }
7175 
7176 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
7177 				   struct bnxt_coal *hw_coal)
7178 {
7179 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req;
7180 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7181 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
7182 	u32 nq_params = coal_cap->nq_params;
7183 	u16 tmr;
7184 	int rc;
7185 
7186 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
7187 		return 0;
7188 
7189 	rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7190 	if (rc)
7191 		return rc;
7192 
7193 	req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
7194 	req->flags =
7195 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
7196 
7197 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
7198 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
7199 	req->int_lat_tmr_min = cpu_to_le16(tmr);
7200 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
7201 	return hwrm_req_send(bp, req);
7202 }
7203 
7204 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
7205 {
7206 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx;
7207 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7208 	struct bnxt_coal coal;
7209 	int rc;
7210 
7211 	/* Tick values in micro seconds.
7212 	 * 1 coal_buf x bufs_per_record = 1 completion record.
7213 	 */
7214 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
7215 
7216 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
7217 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
7218 
7219 	if (!bnapi->rx_ring)
7220 		return -ENODEV;
7221 
7222 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7223 	if (rc)
7224 		return rc;
7225 
7226 	bnxt_hwrm_set_coal_params(bp, &coal, req_rx);
7227 
7228 	req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
7229 
7230 	return hwrm_req_send(bp, req_rx);
7231 }
7232 
7233 static int
7234 bnxt_hwrm_set_rx_coal(struct bnxt *bp, struct bnxt_napi *bnapi,
7235 		      struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
7236 {
7237 	u16 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
7238 
7239 	req->ring_id = cpu_to_le16(ring_id);
7240 	return hwrm_req_send(bp, req);
7241 }
7242 
7243 static int
7244 bnxt_hwrm_set_tx_coal(struct bnxt *bp, struct bnxt_napi *bnapi,
7245 		      struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
7246 {
7247 	struct bnxt_tx_ring_info *txr;
7248 	int i, rc;
7249 
7250 	bnxt_for_each_napi_tx(i, bnapi, txr) {
7251 		u16 ring_id;
7252 
7253 		ring_id = bnxt_cp_ring_for_tx(bp, txr);
7254 		req->ring_id = cpu_to_le16(ring_id);
7255 		rc = hwrm_req_send(bp, req);
7256 		if (rc)
7257 			return rc;
7258 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7259 			return 0;
7260 	}
7261 	return 0;
7262 }
7263 
7264 int bnxt_hwrm_set_coal(struct bnxt *bp)
7265 {
7266 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx;
7267 	int i, rc;
7268 
7269 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7270 	if (rc)
7271 		return rc;
7272 
7273 	rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
7274 	if (rc) {
7275 		hwrm_req_drop(bp, req_rx);
7276 		return rc;
7277 	}
7278 
7279 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx);
7280 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx);
7281 
7282 	hwrm_req_hold(bp, req_rx);
7283 	hwrm_req_hold(bp, req_tx);
7284 	for (i = 0; i < bp->cp_nr_rings; i++) {
7285 		struct bnxt_napi *bnapi = bp->bnapi[i];
7286 		struct bnxt_coal *hw_coal;
7287 
7288 		if (!bnapi->rx_ring)
7289 			rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx);
7290 		else
7291 			rc = bnxt_hwrm_set_rx_coal(bp, bnapi, req_rx);
7292 		if (rc)
7293 			break;
7294 
7295 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
7296 			continue;
7297 
7298 		if (bnapi->rx_ring && bnapi->tx_ring[0]) {
7299 			rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx);
7300 			if (rc)
7301 				break;
7302 		}
7303 		if (bnapi->rx_ring)
7304 			hw_coal = &bp->rx_coal;
7305 		else
7306 			hw_coal = &bp->tx_coal;
7307 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
7308 	}
7309 	hwrm_req_drop(bp, req_rx);
7310 	hwrm_req_drop(bp, req_tx);
7311 	return rc;
7312 }
7313 
7314 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
7315 {
7316 	struct hwrm_stat_ctx_clr_stats_input *req0 = NULL;
7317 	struct hwrm_stat_ctx_free_input *req;
7318 	int i;
7319 
7320 	if (!bp->bnapi)
7321 		return;
7322 
7323 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
7324 		return;
7325 
7326 	if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE))
7327 		return;
7328 	if (BNXT_FW_MAJ(bp) <= 20) {
7329 		if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) {
7330 			hwrm_req_drop(bp, req);
7331 			return;
7332 		}
7333 		hwrm_req_hold(bp, req0);
7334 	}
7335 	hwrm_req_hold(bp, req);
7336 	for (i = 0; i < bp->cp_nr_rings; i++) {
7337 		struct bnxt_napi *bnapi = bp->bnapi[i];
7338 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7339 
7340 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
7341 			req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
7342 			if (req0) {
7343 				req0->stat_ctx_id = req->stat_ctx_id;
7344 				hwrm_req_send(bp, req0);
7345 			}
7346 			hwrm_req_send(bp, req);
7347 
7348 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
7349 		}
7350 	}
7351 	hwrm_req_drop(bp, req);
7352 	if (req0)
7353 		hwrm_req_drop(bp, req0);
7354 }
7355 
7356 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
7357 {
7358 	struct hwrm_stat_ctx_alloc_output *resp;
7359 	struct hwrm_stat_ctx_alloc_input *req;
7360 	int rc, i;
7361 
7362 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
7363 		return 0;
7364 
7365 	rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC);
7366 	if (rc)
7367 		return rc;
7368 
7369 	req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
7370 	req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
7371 
7372 	resp = hwrm_req_hold(bp, req);
7373 	for (i = 0; i < bp->cp_nr_rings; i++) {
7374 		struct bnxt_napi *bnapi = bp->bnapi[i];
7375 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7376 
7377 		req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
7378 
7379 		rc = hwrm_req_send(bp, req);
7380 		if (rc)
7381 			break;
7382 
7383 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
7384 
7385 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
7386 	}
7387 	hwrm_req_drop(bp, req);
7388 	return rc;
7389 }
7390 
7391 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
7392 {
7393 	struct hwrm_func_qcfg_output *resp;
7394 	struct hwrm_func_qcfg_input *req;
7395 	u16 flags;
7396 	int rc;
7397 
7398 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
7399 	if (rc)
7400 		return rc;
7401 
7402 	req->fid = cpu_to_le16(0xffff);
7403 	resp = hwrm_req_hold(bp, req);
7404 	rc = hwrm_req_send(bp, req);
7405 	if (rc)
7406 		goto func_qcfg_exit;
7407 
7408 #ifdef CONFIG_BNXT_SRIOV
7409 	if (BNXT_VF(bp)) {
7410 		struct bnxt_vf_info *vf = &bp->vf;
7411 
7412 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
7413 	} else {
7414 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
7415 	}
7416 #endif
7417 	flags = le16_to_cpu(resp->flags);
7418 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
7419 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
7420 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
7421 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
7422 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
7423 	}
7424 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
7425 		bp->flags |= BNXT_FLAG_MULTI_HOST;
7426 
7427 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
7428 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
7429 
7430 	switch (resp->port_partition_type) {
7431 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
7432 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
7433 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
7434 		bp->port_partition_type = resp->port_partition_type;
7435 		break;
7436 	}
7437 	if (bp->hwrm_spec_code < 0x10707 ||
7438 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
7439 		bp->br_mode = BRIDGE_MODE_VEB;
7440 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
7441 		bp->br_mode = BRIDGE_MODE_VEPA;
7442 	else
7443 		bp->br_mode = BRIDGE_MODE_UNDEF;
7444 
7445 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
7446 	if (!bp->max_mtu)
7447 		bp->max_mtu = BNXT_MAX_MTU;
7448 
7449 	if (bp->db_size)
7450 		goto func_qcfg_exit;
7451 
7452 	bp->db_offset = le16_to_cpu(resp->legacy_l2_db_size_kb) * 1024;
7453 	if (BNXT_CHIP_P5(bp)) {
7454 		if (BNXT_PF(bp))
7455 			bp->db_offset = DB_PF_OFFSET_P5;
7456 		else
7457 			bp->db_offset = DB_VF_OFFSET_P5;
7458 	}
7459 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
7460 				 1024);
7461 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
7462 	    bp->db_size <= bp->db_offset)
7463 		bp->db_size = pci_resource_len(bp->pdev, 2);
7464 
7465 func_qcfg_exit:
7466 	hwrm_req_drop(bp, req);
7467 	return rc;
7468 }
7469 
7470 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_type *ctxm,
7471 				      u8 init_val, u8 init_offset,
7472 				      bool init_mask_set)
7473 {
7474 	ctxm->init_value = init_val;
7475 	ctxm->init_offset = BNXT_CTX_INIT_INVALID_OFFSET;
7476 	if (init_mask_set)
7477 		ctxm->init_offset = init_offset * 4;
7478 	else
7479 		ctxm->init_value = 0;
7480 }
7481 
7482 static int bnxt_alloc_all_ctx_pg_info(struct bnxt *bp, int ctx_max)
7483 {
7484 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7485 	u16 type;
7486 
7487 	for (type = 0; type < ctx_max; type++) {
7488 		struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type];
7489 		int n = 1;
7490 
7491 		if (!ctxm->max_entries)
7492 			continue;
7493 
7494 		if (ctxm->instance_bmap)
7495 			n = hweight32(ctxm->instance_bmap);
7496 		ctxm->pg_info = kcalloc(n, sizeof(*ctxm->pg_info), GFP_KERNEL);
7497 		if (!ctxm->pg_info)
7498 			return -ENOMEM;
7499 	}
7500 	return 0;
7501 }
7502 
7503 #define BNXT_CTX_INIT_VALID(flags)	\
7504 	(!!((flags) &			\
7505 	    FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_ENABLE_CTX_KIND_INIT))
7506 
7507 static int bnxt_hwrm_func_backing_store_qcaps_v2(struct bnxt *bp)
7508 {
7509 	struct hwrm_func_backing_store_qcaps_v2_output *resp;
7510 	struct hwrm_func_backing_store_qcaps_v2_input *req;
7511 	struct bnxt_ctx_mem_info *ctx;
7512 	u16 type;
7513 	int rc;
7514 
7515 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS_V2);
7516 	if (rc)
7517 		return rc;
7518 
7519 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
7520 	if (!ctx)
7521 		return -ENOMEM;
7522 	bp->ctx = ctx;
7523 
7524 	resp = hwrm_req_hold(bp, req);
7525 
7526 	for (type = 0; type < BNXT_CTX_V2_MAX; ) {
7527 		struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type];
7528 		u8 init_val, init_off, i;
7529 		__le32 *p;
7530 		u32 flags;
7531 
7532 		req->type = cpu_to_le16(type);
7533 		rc = hwrm_req_send(bp, req);
7534 		if (rc)
7535 			goto ctx_done;
7536 		flags = le32_to_cpu(resp->flags);
7537 		type = le16_to_cpu(resp->next_valid_type);
7538 		if (!(flags & FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_TYPE_VALID))
7539 			continue;
7540 
7541 		ctxm->type = le16_to_cpu(resp->type);
7542 		ctxm->entry_size = le16_to_cpu(resp->entry_size);
7543 		ctxm->flags = flags;
7544 		ctxm->instance_bmap = le32_to_cpu(resp->instance_bit_map);
7545 		ctxm->entry_multiple = resp->entry_multiple;
7546 		ctxm->max_entries = le32_to_cpu(resp->max_num_entries);
7547 		ctxm->min_entries = le32_to_cpu(resp->min_num_entries);
7548 		init_val = resp->ctx_init_value;
7549 		init_off = resp->ctx_init_offset;
7550 		bnxt_init_ctx_initializer(ctxm, init_val, init_off,
7551 					  BNXT_CTX_INIT_VALID(flags));
7552 		ctxm->split_entry_cnt = min_t(u8, resp->subtype_valid_cnt,
7553 					      BNXT_MAX_SPLIT_ENTRY);
7554 		for (i = 0, p = &resp->split_entry_0; i < ctxm->split_entry_cnt;
7555 		     i++, p++)
7556 			ctxm->split[i] = le32_to_cpu(*p);
7557 	}
7558 	rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_V2_MAX);
7559 
7560 ctx_done:
7561 	hwrm_req_drop(bp, req);
7562 	return rc;
7563 }
7564 
7565 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
7566 {
7567 	struct hwrm_func_backing_store_qcaps_output *resp;
7568 	struct hwrm_func_backing_store_qcaps_input *req;
7569 	int rc;
7570 
7571 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
7572 		return 0;
7573 
7574 	if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2)
7575 		return bnxt_hwrm_func_backing_store_qcaps_v2(bp);
7576 
7577 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS);
7578 	if (rc)
7579 		return rc;
7580 
7581 	resp = hwrm_req_hold(bp, req);
7582 	rc = hwrm_req_send_silent(bp, req);
7583 	if (!rc) {
7584 		struct bnxt_ctx_mem_type *ctxm;
7585 		struct bnxt_ctx_mem_info *ctx;
7586 		u8 init_val, init_idx = 0;
7587 		u16 init_mask;
7588 
7589 		ctx = bp->ctx;
7590 		if (!ctx) {
7591 			ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
7592 			if (!ctx) {
7593 				rc = -ENOMEM;
7594 				goto ctx_err;
7595 			}
7596 			bp->ctx = ctx;
7597 		}
7598 		init_val = resp->ctx_kind_initializer;
7599 		init_mask = le16_to_cpu(resp->ctx_init_mask);
7600 
7601 		ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
7602 		ctxm->max_entries = le32_to_cpu(resp->qp_max_entries);
7603 		ctxm->qp_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
7604 		ctxm->qp_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
7605 		ctxm->qp_fast_qpmd_entries = le16_to_cpu(resp->fast_qpmd_qp_num_entries);
7606 		ctxm->entry_size = le16_to_cpu(resp->qp_entry_size);
7607 		bnxt_init_ctx_initializer(ctxm, init_val, resp->qp_init_offset,
7608 					  (init_mask & (1 << init_idx++)) != 0);
7609 
7610 		ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
7611 		ctxm->srq_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
7612 		ctxm->max_entries = le32_to_cpu(resp->srq_max_entries);
7613 		ctxm->entry_size = le16_to_cpu(resp->srq_entry_size);
7614 		bnxt_init_ctx_initializer(ctxm, init_val, resp->srq_init_offset,
7615 					  (init_mask & (1 << init_idx++)) != 0);
7616 
7617 		ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
7618 		ctxm->cq_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
7619 		ctxm->max_entries = le32_to_cpu(resp->cq_max_entries);
7620 		ctxm->entry_size = le16_to_cpu(resp->cq_entry_size);
7621 		bnxt_init_ctx_initializer(ctxm, init_val, resp->cq_init_offset,
7622 					  (init_mask & (1 << init_idx++)) != 0);
7623 
7624 		ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
7625 		ctxm->vnic_entries = le16_to_cpu(resp->vnic_max_vnic_entries);
7626 		ctxm->max_entries = ctxm->vnic_entries +
7627 			le16_to_cpu(resp->vnic_max_ring_table_entries);
7628 		ctxm->entry_size = le16_to_cpu(resp->vnic_entry_size);
7629 		bnxt_init_ctx_initializer(ctxm, init_val,
7630 					  resp->vnic_init_offset,
7631 					  (init_mask & (1 << init_idx++)) != 0);
7632 
7633 		ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
7634 		ctxm->max_entries = le32_to_cpu(resp->stat_max_entries);
7635 		ctxm->entry_size = le16_to_cpu(resp->stat_entry_size);
7636 		bnxt_init_ctx_initializer(ctxm, init_val,
7637 					  resp->stat_init_offset,
7638 					  (init_mask & (1 << init_idx++)) != 0);
7639 
7640 		ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
7641 		ctxm->entry_size = le16_to_cpu(resp->tqm_entry_size);
7642 		ctxm->min_entries = le32_to_cpu(resp->tqm_min_entries_per_ring);
7643 		ctxm->max_entries = le32_to_cpu(resp->tqm_max_entries_per_ring);
7644 		ctxm->entry_multiple = resp->tqm_entries_multiple;
7645 		if (!ctxm->entry_multiple)
7646 			ctxm->entry_multiple = 1;
7647 
7648 		memcpy(&ctx->ctx_arr[BNXT_CTX_FTQM], ctxm, sizeof(*ctxm));
7649 
7650 		ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
7651 		ctxm->max_entries = le32_to_cpu(resp->mrav_max_entries);
7652 		ctxm->entry_size = le16_to_cpu(resp->mrav_entry_size);
7653 		ctxm->mrav_num_entries_units =
7654 			le16_to_cpu(resp->mrav_num_entries_units);
7655 		bnxt_init_ctx_initializer(ctxm, init_val,
7656 					  resp->mrav_init_offset,
7657 					  (init_mask & (1 << init_idx++)) != 0);
7658 
7659 		ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
7660 		ctxm->entry_size = le16_to_cpu(resp->tim_entry_size);
7661 		ctxm->max_entries = le32_to_cpu(resp->tim_max_entries);
7662 
7663 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
7664 		if (!ctx->tqm_fp_rings_count)
7665 			ctx->tqm_fp_rings_count = bp->max_q;
7666 		else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
7667 			ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
7668 
7669 		ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM];
7670 		memcpy(ctxm, &ctx->ctx_arr[BNXT_CTX_STQM], sizeof(*ctxm));
7671 		ctxm->instance_bmap = (1 << ctx->tqm_fp_rings_count) - 1;
7672 
7673 		rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_MAX);
7674 	} else {
7675 		rc = 0;
7676 	}
7677 ctx_err:
7678 	hwrm_req_drop(bp, req);
7679 	return rc;
7680 }
7681 
7682 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
7683 				  __le64 *pg_dir)
7684 {
7685 	if (!rmem->nr_pages)
7686 		return;
7687 
7688 	BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
7689 	if (rmem->depth >= 1) {
7690 		if (rmem->depth == 2)
7691 			*pg_attr |= 2;
7692 		else
7693 			*pg_attr |= 1;
7694 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
7695 	} else {
7696 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
7697 	}
7698 }
7699 
7700 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
7701 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
7702 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
7703 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
7704 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
7705 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
7706 
7707 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
7708 {
7709 	struct hwrm_func_backing_store_cfg_input *req;
7710 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7711 	struct bnxt_ctx_pg_info *ctx_pg;
7712 	struct bnxt_ctx_mem_type *ctxm;
7713 	void **__req = (void **)&req;
7714 	u32 req_len = sizeof(*req);
7715 	__le32 *num_entries;
7716 	__le64 *pg_dir;
7717 	u32 flags = 0;
7718 	u8 *pg_attr;
7719 	u32 ena;
7720 	int rc;
7721 	int i;
7722 
7723 	if (!ctx)
7724 		return 0;
7725 
7726 	if (req_len > bp->hwrm_max_ext_req_len)
7727 		req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
7728 	rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len);
7729 	if (rc)
7730 		return rc;
7731 
7732 	req->enables = cpu_to_le32(enables);
7733 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
7734 		ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
7735 		ctx_pg = ctxm->pg_info;
7736 		req->qp_num_entries = cpu_to_le32(ctx_pg->entries);
7737 		req->qp_num_qp1_entries = cpu_to_le16(ctxm->qp_qp1_entries);
7738 		req->qp_num_l2_entries = cpu_to_le16(ctxm->qp_l2_entries);
7739 		req->qp_entry_size = cpu_to_le16(ctxm->entry_size);
7740 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7741 				      &req->qpc_pg_size_qpc_lvl,
7742 				      &req->qpc_page_dir);
7743 
7744 		if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD)
7745 			req->qp_num_fast_qpmd_entries = cpu_to_le16(ctxm->qp_fast_qpmd_entries);
7746 	}
7747 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
7748 		ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
7749 		ctx_pg = ctxm->pg_info;
7750 		req->srq_num_entries = cpu_to_le32(ctx_pg->entries);
7751 		req->srq_num_l2_entries = cpu_to_le16(ctxm->srq_l2_entries);
7752 		req->srq_entry_size = cpu_to_le16(ctxm->entry_size);
7753 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7754 				      &req->srq_pg_size_srq_lvl,
7755 				      &req->srq_page_dir);
7756 	}
7757 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
7758 		ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
7759 		ctx_pg = ctxm->pg_info;
7760 		req->cq_num_entries = cpu_to_le32(ctx_pg->entries);
7761 		req->cq_num_l2_entries = cpu_to_le16(ctxm->cq_l2_entries);
7762 		req->cq_entry_size = cpu_to_le16(ctxm->entry_size);
7763 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7764 				      &req->cq_pg_size_cq_lvl,
7765 				      &req->cq_page_dir);
7766 	}
7767 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
7768 		ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
7769 		ctx_pg = ctxm->pg_info;
7770 		req->vnic_num_vnic_entries = cpu_to_le16(ctxm->vnic_entries);
7771 		req->vnic_num_ring_table_entries =
7772 			cpu_to_le16(ctxm->max_entries - ctxm->vnic_entries);
7773 		req->vnic_entry_size = cpu_to_le16(ctxm->entry_size);
7774 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7775 				      &req->vnic_pg_size_vnic_lvl,
7776 				      &req->vnic_page_dir);
7777 	}
7778 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
7779 		ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
7780 		ctx_pg = ctxm->pg_info;
7781 		req->stat_num_entries = cpu_to_le32(ctxm->max_entries);
7782 		req->stat_entry_size = cpu_to_le16(ctxm->entry_size);
7783 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7784 				      &req->stat_pg_size_stat_lvl,
7785 				      &req->stat_page_dir);
7786 	}
7787 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
7788 		u32 units;
7789 
7790 		ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
7791 		ctx_pg = ctxm->pg_info;
7792 		req->mrav_num_entries = cpu_to_le32(ctx_pg->entries);
7793 		units = ctxm->mrav_num_entries_units;
7794 		if (units) {
7795 			u32 num_mr, num_ah = ctxm->mrav_av_entries;
7796 			u32 entries;
7797 
7798 			num_mr = ctx_pg->entries - num_ah;
7799 			entries = ((num_mr / units) << 16) | (num_ah / units);
7800 			req->mrav_num_entries = cpu_to_le32(entries);
7801 			flags |= FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
7802 		}
7803 		req->mrav_entry_size = cpu_to_le16(ctxm->entry_size);
7804 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7805 				      &req->mrav_pg_size_mrav_lvl,
7806 				      &req->mrav_page_dir);
7807 	}
7808 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
7809 		ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
7810 		ctx_pg = ctxm->pg_info;
7811 		req->tim_num_entries = cpu_to_le32(ctx_pg->entries);
7812 		req->tim_entry_size = cpu_to_le16(ctxm->entry_size);
7813 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7814 				      &req->tim_pg_size_tim_lvl,
7815 				      &req->tim_page_dir);
7816 	}
7817 	ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
7818 	for (i = 0, num_entries = &req->tqm_sp_num_entries,
7819 	     pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl,
7820 	     pg_dir = &req->tqm_sp_page_dir,
7821 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP,
7822 	     ctx_pg = ctxm->pg_info;
7823 	     i < BNXT_MAX_TQM_RINGS;
7824 	     ctx_pg = &ctx->ctx_arr[BNXT_CTX_FTQM].pg_info[i],
7825 	     i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
7826 		if (!(enables & ena))
7827 			continue;
7828 
7829 		req->tqm_entry_size = cpu_to_le16(ctxm->entry_size);
7830 		*num_entries = cpu_to_le32(ctx_pg->entries);
7831 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
7832 	}
7833 	req->flags = cpu_to_le32(flags);
7834 	return hwrm_req_send(bp, req);
7835 }
7836 
7837 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
7838 				  struct bnxt_ctx_pg_info *ctx_pg)
7839 {
7840 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7841 
7842 	rmem->page_size = BNXT_PAGE_SIZE;
7843 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
7844 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
7845 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
7846 	if (rmem->depth >= 1)
7847 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
7848 	return bnxt_alloc_ring(bp, rmem);
7849 }
7850 
7851 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
7852 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
7853 				  u8 depth, struct bnxt_ctx_mem_type *ctxm)
7854 {
7855 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7856 	int rc;
7857 
7858 	if (!mem_size)
7859 		return -EINVAL;
7860 
7861 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7862 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
7863 		ctx_pg->nr_pages = 0;
7864 		return -EINVAL;
7865 	}
7866 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
7867 		int nr_tbls, i;
7868 
7869 		rmem->depth = 2;
7870 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
7871 					     GFP_KERNEL);
7872 		if (!ctx_pg->ctx_pg_tbl)
7873 			return -ENOMEM;
7874 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
7875 		rmem->nr_pages = nr_tbls;
7876 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7877 		if (rc)
7878 			return rc;
7879 		for (i = 0; i < nr_tbls; i++) {
7880 			struct bnxt_ctx_pg_info *pg_tbl;
7881 
7882 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
7883 			if (!pg_tbl)
7884 				return -ENOMEM;
7885 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
7886 			rmem = &pg_tbl->ring_mem;
7887 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
7888 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
7889 			rmem->depth = 1;
7890 			rmem->nr_pages = MAX_CTX_PAGES;
7891 			rmem->ctx_mem = ctxm;
7892 			if (i == (nr_tbls - 1)) {
7893 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
7894 
7895 				if (rem)
7896 					rmem->nr_pages = rem;
7897 			}
7898 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
7899 			if (rc)
7900 				break;
7901 		}
7902 	} else {
7903 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7904 		if (rmem->nr_pages > 1 || depth)
7905 			rmem->depth = 1;
7906 		rmem->ctx_mem = ctxm;
7907 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7908 	}
7909 	return rc;
7910 }
7911 
7912 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
7913 				  struct bnxt_ctx_pg_info *ctx_pg)
7914 {
7915 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7916 
7917 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
7918 	    ctx_pg->ctx_pg_tbl) {
7919 		int i, nr_tbls = rmem->nr_pages;
7920 
7921 		for (i = 0; i < nr_tbls; i++) {
7922 			struct bnxt_ctx_pg_info *pg_tbl;
7923 			struct bnxt_ring_mem_info *rmem2;
7924 
7925 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
7926 			if (!pg_tbl)
7927 				continue;
7928 			rmem2 = &pg_tbl->ring_mem;
7929 			bnxt_free_ring(bp, rmem2);
7930 			ctx_pg->ctx_pg_arr[i] = NULL;
7931 			kfree(pg_tbl);
7932 			ctx_pg->ctx_pg_tbl[i] = NULL;
7933 		}
7934 		kfree(ctx_pg->ctx_pg_tbl);
7935 		ctx_pg->ctx_pg_tbl = NULL;
7936 	}
7937 	bnxt_free_ring(bp, rmem);
7938 	ctx_pg->nr_pages = 0;
7939 }
7940 
7941 static int bnxt_setup_ctxm_pg_tbls(struct bnxt *bp,
7942 				   struct bnxt_ctx_mem_type *ctxm, u32 entries,
7943 				   u8 pg_lvl)
7944 {
7945 	struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info;
7946 	int i, rc = 0, n = 1;
7947 	u32 mem_size;
7948 
7949 	if (!ctxm->entry_size || !ctx_pg)
7950 		return -EINVAL;
7951 	if (ctxm->instance_bmap)
7952 		n = hweight32(ctxm->instance_bmap);
7953 	if (ctxm->entry_multiple)
7954 		entries = roundup(entries, ctxm->entry_multiple);
7955 	entries = clamp_t(u32, entries, ctxm->min_entries, ctxm->max_entries);
7956 	mem_size = entries * ctxm->entry_size;
7957 	for (i = 0; i < n && !rc; i++) {
7958 		ctx_pg[i].entries = entries;
7959 		rc = bnxt_alloc_ctx_pg_tbls(bp, &ctx_pg[i], mem_size, pg_lvl,
7960 					    ctxm->init_value ? ctxm : NULL);
7961 	}
7962 	return rc;
7963 }
7964 
7965 static int bnxt_hwrm_func_backing_store_cfg_v2(struct bnxt *bp,
7966 					       struct bnxt_ctx_mem_type *ctxm,
7967 					       bool last)
7968 {
7969 	struct hwrm_func_backing_store_cfg_v2_input *req;
7970 	u32 instance_bmap = ctxm->instance_bmap;
7971 	int i, j, rc = 0, n = 1;
7972 	__le32 *p;
7973 
7974 	if (!(ctxm->flags & BNXT_CTX_MEM_TYPE_VALID) || !ctxm->pg_info)
7975 		return 0;
7976 
7977 	if (instance_bmap)
7978 		n = hweight32(ctxm->instance_bmap);
7979 	else
7980 		instance_bmap = 1;
7981 
7982 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_CFG_V2);
7983 	if (rc)
7984 		return rc;
7985 	hwrm_req_hold(bp, req);
7986 	req->type = cpu_to_le16(ctxm->type);
7987 	req->entry_size = cpu_to_le16(ctxm->entry_size);
7988 	req->subtype_valid_cnt = ctxm->split_entry_cnt;
7989 	for (i = 0, p = &req->split_entry_0; i < ctxm->split_entry_cnt; i++)
7990 		p[i] = cpu_to_le32(ctxm->split[i]);
7991 	for (i = 0, j = 0; j < n && !rc; i++) {
7992 		struct bnxt_ctx_pg_info *ctx_pg;
7993 
7994 		if (!(instance_bmap & (1 << i)))
7995 			continue;
7996 		req->instance = cpu_to_le16(i);
7997 		ctx_pg = &ctxm->pg_info[j++];
7998 		if (!ctx_pg->entries)
7999 			continue;
8000 		req->num_entries = cpu_to_le32(ctx_pg->entries);
8001 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
8002 				      &req->page_size_pbl_level,
8003 				      &req->page_dir);
8004 		if (last && j == n)
8005 			req->flags =
8006 				cpu_to_le32(FUNC_BACKING_STORE_CFG_V2_REQ_FLAGS_BS_CFG_ALL_DONE);
8007 		rc = hwrm_req_send(bp, req);
8008 	}
8009 	hwrm_req_drop(bp, req);
8010 	return rc;
8011 }
8012 
8013 static int bnxt_backing_store_cfg_v2(struct bnxt *bp, u32 ena)
8014 {
8015 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8016 	struct bnxt_ctx_mem_type *ctxm;
8017 	u16 last_type;
8018 	int rc = 0;
8019 	u16 type;
8020 
8021 	if (!ena)
8022 		return 0;
8023 	else if (ena & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM)
8024 		last_type = BNXT_CTX_MAX - 1;
8025 	else
8026 		last_type = BNXT_CTX_L2_MAX - 1;
8027 	ctx->ctx_arr[last_type].last = 1;
8028 
8029 	for (type = 0 ; type < BNXT_CTX_V2_MAX; type++) {
8030 		ctxm = &ctx->ctx_arr[type];
8031 
8032 		rc = bnxt_hwrm_func_backing_store_cfg_v2(bp, ctxm, ctxm->last);
8033 		if (rc)
8034 			return rc;
8035 	}
8036 	return 0;
8037 }
8038 
8039 void bnxt_free_ctx_mem(struct bnxt *bp)
8040 {
8041 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
8042 	u16 type;
8043 
8044 	if (!ctx)
8045 		return;
8046 
8047 	for (type = 0; type < BNXT_CTX_V2_MAX; type++) {
8048 		struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type];
8049 		struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info;
8050 		int i, n = 1;
8051 
8052 		if (!ctx_pg)
8053 			continue;
8054 		if (ctxm->instance_bmap)
8055 			n = hweight32(ctxm->instance_bmap);
8056 		for (i = 0; i < n; i++)
8057 			bnxt_free_ctx_pg_tbls(bp, &ctx_pg[i]);
8058 
8059 		kfree(ctx_pg);
8060 		ctxm->pg_info = NULL;
8061 	}
8062 
8063 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
8064 	kfree(ctx);
8065 	bp->ctx = NULL;
8066 }
8067 
8068 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
8069 {
8070 	struct bnxt_ctx_mem_type *ctxm;
8071 	struct bnxt_ctx_mem_info *ctx;
8072 	u32 l2_qps, qp1_qps, max_qps;
8073 	u32 ena, entries_sp, entries;
8074 	u32 srqs, max_srqs, min;
8075 	u32 num_mr, num_ah;
8076 	u32 extra_srqs = 0;
8077 	u32 extra_qps = 0;
8078 	u32 fast_qpmd_qps;
8079 	u8 pg_lvl = 1;
8080 	int i, rc;
8081 
8082 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
8083 	if (rc) {
8084 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
8085 			   rc);
8086 		return rc;
8087 	}
8088 	ctx = bp->ctx;
8089 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
8090 		return 0;
8091 
8092 	ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8093 	l2_qps = ctxm->qp_l2_entries;
8094 	qp1_qps = ctxm->qp_qp1_entries;
8095 	fast_qpmd_qps = ctxm->qp_fast_qpmd_entries;
8096 	max_qps = ctxm->max_entries;
8097 	ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8098 	srqs = ctxm->srq_l2_entries;
8099 	max_srqs = ctxm->max_entries;
8100 	ena = 0;
8101 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
8102 		pg_lvl = 2;
8103 		extra_qps = min_t(u32, 65536, max_qps - l2_qps - qp1_qps);
8104 		/* allocate extra qps if fw supports RoCE fast qp destroy feature */
8105 		extra_qps += fast_qpmd_qps;
8106 		extra_srqs = min_t(u32, 8192, max_srqs - srqs);
8107 		if (fast_qpmd_qps)
8108 			ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD;
8109 	}
8110 
8111 	ctxm = &ctx->ctx_arr[BNXT_CTX_QP];
8112 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps,
8113 				     pg_lvl);
8114 	if (rc)
8115 		return rc;
8116 
8117 	ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ];
8118 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, srqs + extra_srqs, pg_lvl);
8119 	if (rc)
8120 		return rc;
8121 
8122 	ctxm = &ctx->ctx_arr[BNXT_CTX_CQ];
8123 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->cq_l2_entries +
8124 				     extra_qps * 2, pg_lvl);
8125 	if (rc)
8126 		return rc;
8127 
8128 	ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC];
8129 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1);
8130 	if (rc)
8131 		return rc;
8132 
8133 	ctxm = &ctx->ctx_arr[BNXT_CTX_STAT];
8134 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1);
8135 	if (rc)
8136 		return rc;
8137 
8138 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
8139 		goto skip_rdma;
8140 
8141 	ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV];
8142 	/* 128K extra is needed to accommodate static AH context
8143 	 * allocation by f/w.
8144 	 */
8145 	num_mr = min_t(u32, ctxm->max_entries / 2, 1024 * 256);
8146 	num_ah = min_t(u32, num_mr, 1024 * 128);
8147 	ctxm->split_entry_cnt = BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1;
8148 	if (!ctxm->mrav_av_entries || ctxm->mrav_av_entries > num_ah)
8149 		ctxm->mrav_av_entries = num_ah;
8150 
8151 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, num_mr + num_ah, 2);
8152 	if (rc)
8153 		return rc;
8154 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
8155 
8156 	ctxm = &ctx->ctx_arr[BNXT_CTX_TIM];
8157 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 1);
8158 	if (rc)
8159 		return rc;
8160 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
8161 
8162 skip_rdma:
8163 	ctxm = &ctx->ctx_arr[BNXT_CTX_STQM];
8164 	min = ctxm->min_entries;
8165 	entries_sp = ctx->ctx_arr[BNXT_CTX_VNIC].vnic_entries + l2_qps +
8166 		     2 * (extra_qps + qp1_qps) + min;
8167 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries_sp, 2);
8168 	if (rc)
8169 		return rc;
8170 
8171 	ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM];
8172 	entries = l2_qps + 2 * (extra_qps + qp1_qps);
8173 	rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries, 2);
8174 	if (rc)
8175 		return rc;
8176 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
8177 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
8178 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
8179 
8180 	if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2)
8181 		rc = bnxt_backing_store_cfg_v2(bp, ena);
8182 	else
8183 		rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
8184 	if (rc) {
8185 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
8186 			   rc);
8187 		return rc;
8188 	}
8189 	ctx->flags |= BNXT_CTX_FLAG_INITED;
8190 	return 0;
8191 }
8192 
8193 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
8194 {
8195 	struct hwrm_func_resource_qcaps_output *resp;
8196 	struct hwrm_func_resource_qcaps_input *req;
8197 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8198 	int rc;
8199 
8200 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS);
8201 	if (rc)
8202 		return rc;
8203 
8204 	req->fid = cpu_to_le16(0xffff);
8205 	resp = hwrm_req_hold(bp, req);
8206 	rc = hwrm_req_send_silent(bp, req);
8207 	if (rc)
8208 		goto hwrm_func_resc_qcaps_exit;
8209 
8210 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
8211 	if (!all)
8212 		goto hwrm_func_resc_qcaps_exit;
8213 
8214 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
8215 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
8216 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
8217 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
8218 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
8219 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
8220 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
8221 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
8222 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
8223 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
8224 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
8225 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
8226 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
8227 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
8228 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
8229 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
8230 
8231 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
8232 		u16 max_msix = le16_to_cpu(resp->max_msix);
8233 
8234 		hw_resc->max_nqs = max_msix;
8235 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
8236 	}
8237 
8238 	if (BNXT_PF(bp)) {
8239 		struct bnxt_pf_info *pf = &bp->pf;
8240 
8241 		pf->vf_resv_strategy =
8242 			le16_to_cpu(resp->vf_reservation_strategy);
8243 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
8244 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
8245 	}
8246 hwrm_func_resc_qcaps_exit:
8247 	hwrm_req_drop(bp, req);
8248 	return rc;
8249 }
8250 
8251 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
8252 {
8253 	struct hwrm_port_mac_ptp_qcfg_output *resp;
8254 	struct hwrm_port_mac_ptp_qcfg_input *req;
8255 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
8256 	bool phc_cfg;
8257 	u8 flags;
8258 	int rc;
8259 
8260 	if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5(bp)) {
8261 		rc = -ENODEV;
8262 		goto no_ptp;
8263 	}
8264 
8265 	rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG);
8266 	if (rc)
8267 		goto no_ptp;
8268 
8269 	req->port_id = cpu_to_le16(bp->pf.port_id);
8270 	resp = hwrm_req_hold(bp, req);
8271 	rc = hwrm_req_send(bp, req);
8272 	if (rc)
8273 		goto exit;
8274 
8275 	flags = resp->flags;
8276 	if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) {
8277 		rc = -ENODEV;
8278 		goto exit;
8279 	}
8280 	if (!ptp) {
8281 		ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
8282 		if (!ptp) {
8283 			rc = -ENOMEM;
8284 			goto exit;
8285 		}
8286 		ptp->bp = bp;
8287 		bp->ptp_cfg = ptp;
8288 	}
8289 	if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) {
8290 		ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower);
8291 		ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper);
8292 	} else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
8293 		ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER;
8294 		ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER;
8295 	} else {
8296 		rc = -ENODEV;
8297 		goto exit;
8298 	}
8299 	phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0;
8300 	rc = bnxt_ptp_init(bp, phc_cfg);
8301 	if (rc)
8302 		netdev_warn(bp->dev, "PTP initialization failed.\n");
8303 exit:
8304 	hwrm_req_drop(bp, req);
8305 	if (!rc)
8306 		return 0;
8307 
8308 no_ptp:
8309 	bnxt_ptp_clear(bp);
8310 	kfree(ptp);
8311 	bp->ptp_cfg = NULL;
8312 	return rc;
8313 }
8314 
8315 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
8316 {
8317 	struct hwrm_func_qcaps_output *resp;
8318 	struct hwrm_func_qcaps_input *req;
8319 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8320 	u32 flags, flags_ext, flags_ext2;
8321 	int rc;
8322 
8323 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS);
8324 	if (rc)
8325 		return rc;
8326 
8327 	req->fid = cpu_to_le16(0xffff);
8328 	resp = hwrm_req_hold(bp, req);
8329 	rc = hwrm_req_send(bp, req);
8330 	if (rc)
8331 		goto hwrm_func_qcaps_exit;
8332 
8333 	flags = le32_to_cpu(resp->flags);
8334 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
8335 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
8336 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
8337 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
8338 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
8339 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
8340 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
8341 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
8342 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
8343 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
8344 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
8345 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
8346 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
8347 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
8348 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
8349 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
8350 	if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED)
8351 		bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS;
8352 
8353 	flags_ext = le32_to_cpu(resp->flags_ext);
8354 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
8355 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
8356 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED))
8357 		bp->fw_cap |= BNXT_FW_CAP_PTP_PPS;
8358 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED)
8359 		bp->fw_cap |= BNXT_FW_CAP_PTP_RTC;
8360 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT))
8361 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF;
8362 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED))
8363 		bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH;
8364 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_BS_V2_SUPPORTED)
8365 		bp->fw_cap |= BNXT_FW_CAP_BACKING_STORE_V2;
8366 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_TX_COAL_CMPL_CAP)
8367 		bp->flags |= BNXT_FLAG_TX_COAL_CMPL;
8368 
8369 	flags_ext2 = le32_to_cpu(resp->flags_ext2);
8370 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED)
8371 		bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS;
8372 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_UDP_GSO_SUPPORTED)
8373 		bp->flags |= BNXT_FLAG_UDP_GSO_CAP;
8374 
8375 	bp->tx_push_thresh = 0;
8376 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
8377 	    BNXT_FW_MAJ(bp) > 217)
8378 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
8379 
8380 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
8381 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
8382 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
8383 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
8384 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
8385 	if (!hw_resc->max_hw_ring_grps)
8386 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
8387 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
8388 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
8389 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
8390 
8391 	if (BNXT_PF(bp)) {
8392 		struct bnxt_pf_info *pf = &bp->pf;
8393 
8394 		pf->fw_fid = le16_to_cpu(resp->fid);
8395 		pf->port_id = le16_to_cpu(resp->port_id);
8396 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
8397 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
8398 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
8399 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
8400 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
8401 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
8402 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
8403 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
8404 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
8405 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
8406 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
8407 			bp->flags |= BNXT_FLAG_WOL_CAP;
8408 		if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) {
8409 			bp->fw_cap |= BNXT_FW_CAP_PTP;
8410 		} else {
8411 			bnxt_ptp_clear(bp);
8412 			kfree(bp->ptp_cfg);
8413 			bp->ptp_cfg = NULL;
8414 		}
8415 	} else {
8416 #ifdef CONFIG_BNXT_SRIOV
8417 		struct bnxt_vf_info *vf = &bp->vf;
8418 
8419 		vf->fw_fid = le16_to_cpu(resp->fid);
8420 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
8421 #endif
8422 	}
8423 
8424 hwrm_func_qcaps_exit:
8425 	hwrm_req_drop(bp, req);
8426 	return rc;
8427 }
8428 
8429 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp)
8430 {
8431 	struct hwrm_dbg_qcaps_output *resp;
8432 	struct hwrm_dbg_qcaps_input *req;
8433 	int rc;
8434 
8435 	bp->fw_dbg_cap = 0;
8436 	if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS))
8437 		return;
8438 
8439 	rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS);
8440 	if (rc)
8441 		return;
8442 
8443 	req->fid = cpu_to_le16(0xffff);
8444 	resp = hwrm_req_hold(bp, req);
8445 	rc = hwrm_req_send(bp, req);
8446 	if (rc)
8447 		goto hwrm_dbg_qcaps_exit;
8448 
8449 	bp->fw_dbg_cap = le32_to_cpu(resp->flags);
8450 
8451 hwrm_dbg_qcaps_exit:
8452 	hwrm_req_drop(bp, req);
8453 }
8454 
8455 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
8456 
8457 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
8458 {
8459 	int rc;
8460 
8461 	rc = __bnxt_hwrm_func_qcaps(bp);
8462 	if (rc)
8463 		return rc;
8464 
8465 	bnxt_hwrm_dbg_qcaps(bp);
8466 
8467 	rc = bnxt_hwrm_queue_qportcfg(bp);
8468 	if (rc) {
8469 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
8470 		return rc;
8471 	}
8472 	if (bp->hwrm_spec_code >= 0x10803) {
8473 		rc = bnxt_alloc_ctx_mem(bp);
8474 		if (rc)
8475 			return rc;
8476 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
8477 		if (!rc)
8478 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
8479 	}
8480 	return 0;
8481 }
8482 
8483 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
8484 {
8485 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
8486 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req;
8487 	u32 flags;
8488 	int rc;
8489 
8490 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
8491 		return 0;
8492 
8493 	rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS);
8494 	if (rc)
8495 		return rc;
8496 
8497 	resp = hwrm_req_hold(bp, req);
8498 	rc = hwrm_req_send(bp, req);
8499 	if (rc)
8500 		goto hwrm_cfa_adv_qcaps_exit;
8501 
8502 	flags = le32_to_cpu(resp->flags);
8503 	if (flags &
8504 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
8505 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
8506 
8507 hwrm_cfa_adv_qcaps_exit:
8508 	hwrm_req_drop(bp, req);
8509 	return rc;
8510 }
8511 
8512 static int __bnxt_alloc_fw_health(struct bnxt *bp)
8513 {
8514 	if (bp->fw_health)
8515 		return 0;
8516 
8517 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
8518 	if (!bp->fw_health)
8519 		return -ENOMEM;
8520 
8521 	mutex_init(&bp->fw_health->lock);
8522 	return 0;
8523 }
8524 
8525 static int bnxt_alloc_fw_health(struct bnxt *bp)
8526 {
8527 	int rc;
8528 
8529 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
8530 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
8531 		return 0;
8532 
8533 	rc = __bnxt_alloc_fw_health(bp);
8534 	if (rc) {
8535 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
8536 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
8537 		return rc;
8538 	}
8539 
8540 	return 0;
8541 }
8542 
8543 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
8544 {
8545 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
8546 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
8547 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
8548 }
8549 
8550 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
8551 {
8552 	struct bnxt_fw_health *fw_health = bp->fw_health;
8553 	u32 reg_type;
8554 
8555 	if (!fw_health)
8556 		return;
8557 
8558 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
8559 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
8560 		fw_health->status_reliable = false;
8561 
8562 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]);
8563 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
8564 		fw_health->resets_reliable = false;
8565 }
8566 
8567 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
8568 {
8569 	void __iomem *hs;
8570 	u32 status_loc;
8571 	u32 reg_type;
8572 	u32 sig;
8573 
8574 	if (bp->fw_health)
8575 		bp->fw_health->status_reliable = false;
8576 
8577 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
8578 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
8579 
8580 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
8581 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
8582 		if (!bp->chip_num) {
8583 			__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
8584 			bp->chip_num = readl(bp->bar0 +
8585 					     BNXT_FW_HEALTH_WIN_BASE +
8586 					     BNXT_GRC_REG_CHIP_NUM);
8587 		}
8588 		if (!BNXT_CHIP_P5(bp))
8589 			return;
8590 
8591 		status_loc = BNXT_GRC_REG_STATUS_P5 |
8592 			     BNXT_FW_HEALTH_REG_TYPE_BAR0;
8593 	} else {
8594 		status_loc = readl(hs + offsetof(struct hcomm_status,
8595 						 fw_status_loc));
8596 	}
8597 
8598 	if (__bnxt_alloc_fw_health(bp)) {
8599 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
8600 		return;
8601 	}
8602 
8603 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
8604 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
8605 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
8606 		__bnxt_map_fw_health_reg(bp, status_loc);
8607 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
8608 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
8609 	}
8610 
8611 	bp->fw_health->status_reliable = true;
8612 }
8613 
8614 static int bnxt_map_fw_health_regs(struct bnxt *bp)
8615 {
8616 	struct bnxt_fw_health *fw_health = bp->fw_health;
8617 	u32 reg_base = 0xffffffff;
8618 	int i;
8619 
8620 	bp->fw_health->status_reliable = false;
8621 	bp->fw_health->resets_reliable = false;
8622 	/* Only pre-map the monitoring GRC registers using window 3 */
8623 	for (i = 0; i < 4; i++) {
8624 		u32 reg = fw_health->regs[i];
8625 
8626 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
8627 			continue;
8628 		if (reg_base == 0xffffffff)
8629 			reg_base = reg & BNXT_GRC_BASE_MASK;
8630 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
8631 			return -ERANGE;
8632 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
8633 	}
8634 	bp->fw_health->status_reliable = true;
8635 	bp->fw_health->resets_reliable = true;
8636 	if (reg_base == 0xffffffff)
8637 		return 0;
8638 
8639 	__bnxt_map_fw_health_reg(bp, reg_base);
8640 	return 0;
8641 }
8642 
8643 static void bnxt_remap_fw_health_regs(struct bnxt *bp)
8644 {
8645 	if (!bp->fw_health)
8646 		return;
8647 
8648 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) {
8649 		bp->fw_health->status_reliable = true;
8650 		bp->fw_health->resets_reliable = true;
8651 	} else {
8652 		bnxt_try_map_fw_health_reg(bp);
8653 	}
8654 }
8655 
8656 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
8657 {
8658 	struct bnxt_fw_health *fw_health = bp->fw_health;
8659 	struct hwrm_error_recovery_qcfg_output *resp;
8660 	struct hwrm_error_recovery_qcfg_input *req;
8661 	int rc, i;
8662 
8663 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
8664 		return 0;
8665 
8666 	rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG);
8667 	if (rc)
8668 		return rc;
8669 
8670 	resp = hwrm_req_hold(bp, req);
8671 	rc = hwrm_req_send(bp, req);
8672 	if (rc)
8673 		goto err_recovery_out;
8674 	fw_health->flags = le32_to_cpu(resp->flags);
8675 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
8676 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
8677 		rc = -EINVAL;
8678 		goto err_recovery_out;
8679 	}
8680 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
8681 	fw_health->master_func_wait_dsecs =
8682 		le32_to_cpu(resp->master_func_wait_period);
8683 	fw_health->normal_func_wait_dsecs =
8684 		le32_to_cpu(resp->normal_func_wait_period);
8685 	fw_health->post_reset_wait_dsecs =
8686 		le32_to_cpu(resp->master_func_wait_period_after_reset);
8687 	fw_health->post_reset_max_wait_dsecs =
8688 		le32_to_cpu(resp->max_bailout_time_after_reset);
8689 	fw_health->regs[BNXT_FW_HEALTH_REG] =
8690 		le32_to_cpu(resp->fw_health_status_reg);
8691 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
8692 		le32_to_cpu(resp->fw_heartbeat_reg);
8693 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
8694 		le32_to_cpu(resp->fw_reset_cnt_reg);
8695 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
8696 		le32_to_cpu(resp->reset_inprogress_reg);
8697 	fw_health->fw_reset_inprog_reg_mask =
8698 		le32_to_cpu(resp->reset_inprogress_reg_mask);
8699 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
8700 	if (fw_health->fw_reset_seq_cnt >= 16) {
8701 		rc = -EINVAL;
8702 		goto err_recovery_out;
8703 	}
8704 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
8705 		fw_health->fw_reset_seq_regs[i] =
8706 			le32_to_cpu(resp->reset_reg[i]);
8707 		fw_health->fw_reset_seq_vals[i] =
8708 			le32_to_cpu(resp->reset_reg_val[i]);
8709 		fw_health->fw_reset_seq_delay_msec[i] =
8710 			resp->delay_after_reset[i];
8711 	}
8712 err_recovery_out:
8713 	hwrm_req_drop(bp, req);
8714 	if (!rc)
8715 		rc = bnxt_map_fw_health_regs(bp);
8716 	if (rc)
8717 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
8718 	return rc;
8719 }
8720 
8721 static int bnxt_hwrm_func_reset(struct bnxt *bp)
8722 {
8723 	struct hwrm_func_reset_input *req;
8724 	int rc;
8725 
8726 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET);
8727 	if (rc)
8728 		return rc;
8729 
8730 	req->enables = 0;
8731 	hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT);
8732 	return hwrm_req_send(bp, req);
8733 }
8734 
8735 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
8736 {
8737 	struct hwrm_nvm_get_dev_info_output nvm_info;
8738 
8739 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
8740 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
8741 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
8742 			 nvm_info.nvm_cfg_ver_upd);
8743 }
8744 
8745 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
8746 {
8747 	struct hwrm_queue_qportcfg_output *resp;
8748 	struct hwrm_queue_qportcfg_input *req;
8749 	u8 i, j, *qptr;
8750 	bool no_rdma;
8751 	int rc = 0;
8752 
8753 	rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG);
8754 	if (rc)
8755 		return rc;
8756 
8757 	resp = hwrm_req_hold(bp, req);
8758 	rc = hwrm_req_send(bp, req);
8759 	if (rc)
8760 		goto qportcfg_exit;
8761 
8762 	if (!resp->max_configurable_queues) {
8763 		rc = -EINVAL;
8764 		goto qportcfg_exit;
8765 	}
8766 	bp->max_tc = resp->max_configurable_queues;
8767 	bp->max_lltc = resp->max_configurable_lossless_queues;
8768 	if (bp->max_tc > BNXT_MAX_QUEUE)
8769 		bp->max_tc = BNXT_MAX_QUEUE;
8770 
8771 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
8772 	qptr = &resp->queue_id0;
8773 	for (i = 0, j = 0; i < bp->max_tc; i++) {
8774 		bp->q_info[j].queue_id = *qptr;
8775 		bp->q_ids[i] = *qptr++;
8776 		bp->q_info[j].queue_profile = *qptr++;
8777 		bp->tc_to_qidx[j] = j;
8778 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
8779 		    (no_rdma && BNXT_PF(bp)))
8780 			j++;
8781 	}
8782 	bp->max_q = bp->max_tc;
8783 	bp->max_tc = max_t(u8, j, 1);
8784 
8785 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
8786 		bp->max_tc = 1;
8787 
8788 	if (bp->max_lltc > bp->max_tc)
8789 		bp->max_lltc = bp->max_tc;
8790 
8791 qportcfg_exit:
8792 	hwrm_req_drop(bp, req);
8793 	return rc;
8794 }
8795 
8796 static int bnxt_hwrm_poll(struct bnxt *bp)
8797 {
8798 	struct hwrm_ver_get_input *req;
8799 	int rc;
8800 
8801 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8802 	if (rc)
8803 		return rc;
8804 
8805 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8806 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8807 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8808 
8809 	hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT);
8810 	rc = hwrm_req_send(bp, req);
8811 	return rc;
8812 }
8813 
8814 static int bnxt_hwrm_ver_get(struct bnxt *bp)
8815 {
8816 	struct hwrm_ver_get_output *resp;
8817 	struct hwrm_ver_get_input *req;
8818 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
8819 	u32 dev_caps_cfg, hwrm_ver;
8820 	int rc, len;
8821 
8822 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8823 	if (rc)
8824 		return rc;
8825 
8826 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
8827 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
8828 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8829 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8830 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8831 
8832 	resp = hwrm_req_hold(bp, req);
8833 	rc = hwrm_req_send(bp, req);
8834 	if (rc)
8835 		goto hwrm_ver_get_exit;
8836 
8837 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
8838 
8839 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
8840 			     resp->hwrm_intf_min_8b << 8 |
8841 			     resp->hwrm_intf_upd_8b;
8842 	if (resp->hwrm_intf_maj_8b < 1) {
8843 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
8844 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8845 			    resp->hwrm_intf_upd_8b);
8846 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
8847 	}
8848 
8849 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
8850 			HWRM_VERSION_UPDATE;
8851 
8852 	if (bp->hwrm_spec_code > hwrm_ver)
8853 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8854 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
8855 			 HWRM_VERSION_UPDATE);
8856 	else
8857 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8858 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8859 			 resp->hwrm_intf_upd_8b);
8860 
8861 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
8862 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
8863 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
8864 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
8865 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
8866 		len = FW_VER_STR_LEN;
8867 	} else {
8868 		fw_maj = resp->hwrm_fw_maj_8b;
8869 		fw_min = resp->hwrm_fw_min_8b;
8870 		fw_bld = resp->hwrm_fw_bld_8b;
8871 		fw_rsv = resp->hwrm_fw_rsvd_8b;
8872 		len = BC_HWRM_STR_LEN;
8873 	}
8874 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
8875 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
8876 		 fw_rsv);
8877 
8878 	if (strlen(resp->active_pkg_name)) {
8879 		int fw_ver_len = strlen(bp->fw_ver_str);
8880 
8881 		snprintf(bp->fw_ver_str + fw_ver_len,
8882 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
8883 			 resp->active_pkg_name);
8884 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
8885 	}
8886 
8887 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
8888 	if (!bp->hwrm_cmd_timeout)
8889 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
8890 	bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000;
8891 	if (!bp->hwrm_cmd_max_timeout)
8892 		bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT;
8893 	else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT)
8894 		netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n",
8895 			    bp->hwrm_cmd_max_timeout / 1000);
8896 
8897 	if (resp->hwrm_intf_maj_8b >= 1) {
8898 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
8899 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
8900 	}
8901 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
8902 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
8903 
8904 	bp->chip_num = le16_to_cpu(resp->chip_num);
8905 	bp->chip_rev = resp->chip_rev;
8906 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
8907 	    !resp->chip_metal)
8908 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
8909 
8910 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
8911 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
8912 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
8913 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
8914 
8915 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
8916 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
8917 
8918 	if (dev_caps_cfg &
8919 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
8920 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
8921 
8922 	if (dev_caps_cfg &
8923 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
8924 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
8925 
8926 	if (dev_caps_cfg &
8927 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
8928 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
8929 
8930 hwrm_ver_get_exit:
8931 	hwrm_req_drop(bp, req);
8932 	return rc;
8933 }
8934 
8935 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
8936 {
8937 	struct hwrm_fw_set_time_input *req;
8938 	struct tm tm;
8939 	time64_t now = ktime_get_real_seconds();
8940 	int rc;
8941 
8942 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
8943 	    bp->hwrm_spec_code < 0x10400)
8944 		return -EOPNOTSUPP;
8945 
8946 	time64_to_tm(now, 0, &tm);
8947 	rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME);
8948 	if (rc)
8949 		return rc;
8950 
8951 	req->year = cpu_to_le16(1900 + tm.tm_year);
8952 	req->month = 1 + tm.tm_mon;
8953 	req->day = tm.tm_mday;
8954 	req->hour = tm.tm_hour;
8955 	req->minute = tm.tm_min;
8956 	req->second = tm.tm_sec;
8957 	return hwrm_req_send(bp, req);
8958 }
8959 
8960 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
8961 {
8962 	u64 sw_tmp;
8963 
8964 	hw &= mask;
8965 	sw_tmp = (*sw & ~mask) | hw;
8966 	if (hw < (*sw & mask))
8967 		sw_tmp += mask + 1;
8968 	WRITE_ONCE(*sw, sw_tmp);
8969 }
8970 
8971 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
8972 				    int count, bool ignore_zero)
8973 {
8974 	int i;
8975 
8976 	for (i = 0; i < count; i++) {
8977 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
8978 
8979 		if (ignore_zero && !hw)
8980 			continue;
8981 
8982 		if (masks[i] == -1ULL)
8983 			sw_stats[i] = hw;
8984 		else
8985 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
8986 	}
8987 }
8988 
8989 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
8990 {
8991 	if (!stats->hw_stats)
8992 		return;
8993 
8994 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8995 				stats->hw_masks, stats->len / 8, false);
8996 }
8997 
8998 static void bnxt_accumulate_all_stats(struct bnxt *bp)
8999 {
9000 	struct bnxt_stats_mem *ring0_stats;
9001 	bool ignore_zero = false;
9002 	int i;
9003 
9004 	/* Chip bug.  Counter intermittently becomes 0. */
9005 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9006 		ignore_zero = true;
9007 
9008 	for (i = 0; i < bp->cp_nr_rings; i++) {
9009 		struct bnxt_napi *bnapi = bp->bnapi[i];
9010 		struct bnxt_cp_ring_info *cpr;
9011 		struct bnxt_stats_mem *stats;
9012 
9013 		cpr = &bnapi->cp_ring;
9014 		stats = &cpr->stats;
9015 		if (!i)
9016 			ring0_stats = stats;
9017 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
9018 					ring0_stats->hw_masks,
9019 					ring0_stats->len / 8, ignore_zero);
9020 	}
9021 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
9022 		struct bnxt_stats_mem *stats = &bp->port_stats;
9023 		__le64 *hw_stats = stats->hw_stats;
9024 		u64 *sw_stats = stats->sw_stats;
9025 		u64 *masks = stats->hw_masks;
9026 		int cnt;
9027 
9028 		cnt = sizeof(struct rx_port_stats) / 8;
9029 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
9030 
9031 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
9032 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
9033 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
9034 		cnt = sizeof(struct tx_port_stats) / 8;
9035 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
9036 	}
9037 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
9038 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
9039 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
9040 	}
9041 }
9042 
9043 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
9044 {
9045 	struct hwrm_port_qstats_input *req;
9046 	struct bnxt_pf_info *pf = &bp->pf;
9047 	int rc;
9048 
9049 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
9050 		return 0;
9051 
9052 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
9053 		return -EOPNOTSUPP;
9054 
9055 	rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS);
9056 	if (rc)
9057 		return rc;
9058 
9059 	req->flags = flags;
9060 	req->port_id = cpu_to_le16(pf->port_id);
9061 	req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
9062 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
9063 	req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
9064 	return hwrm_req_send(bp, req);
9065 }
9066 
9067 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
9068 {
9069 	struct hwrm_queue_pri2cos_qcfg_output *resp_qc;
9070 	struct hwrm_queue_pri2cos_qcfg_input *req_qc;
9071 	struct hwrm_port_qstats_ext_output *resp_qs;
9072 	struct hwrm_port_qstats_ext_input *req_qs;
9073 	struct bnxt_pf_info *pf = &bp->pf;
9074 	u32 tx_stat_size;
9075 	int rc;
9076 
9077 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
9078 		return 0;
9079 
9080 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
9081 		return -EOPNOTSUPP;
9082 
9083 	rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT);
9084 	if (rc)
9085 		return rc;
9086 
9087 	req_qs->flags = flags;
9088 	req_qs->port_id = cpu_to_le16(pf->port_id);
9089 	req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
9090 	req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
9091 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
9092 		       sizeof(struct tx_port_stats_ext) : 0;
9093 	req_qs->tx_stat_size = cpu_to_le16(tx_stat_size);
9094 	req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
9095 	resp_qs = hwrm_req_hold(bp, req_qs);
9096 	rc = hwrm_req_send(bp, req_qs);
9097 	if (!rc) {
9098 		bp->fw_rx_stats_ext_size =
9099 			le16_to_cpu(resp_qs->rx_stat_size) / 8;
9100 		if (BNXT_FW_MAJ(bp) < 220 &&
9101 		    bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY)
9102 			bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY;
9103 
9104 		bp->fw_tx_stats_ext_size = tx_stat_size ?
9105 			le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0;
9106 	} else {
9107 		bp->fw_rx_stats_ext_size = 0;
9108 		bp->fw_tx_stats_ext_size = 0;
9109 	}
9110 	hwrm_req_drop(bp, req_qs);
9111 
9112 	if (flags)
9113 		return rc;
9114 
9115 	if (bp->fw_tx_stats_ext_size <=
9116 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
9117 		bp->pri2cos_valid = 0;
9118 		return rc;
9119 	}
9120 
9121 	rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG);
9122 	if (rc)
9123 		return rc;
9124 
9125 	req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
9126 
9127 	resp_qc = hwrm_req_hold(bp, req_qc);
9128 	rc = hwrm_req_send(bp, req_qc);
9129 	if (!rc) {
9130 		u8 *pri2cos;
9131 		int i, j;
9132 
9133 		pri2cos = &resp_qc->pri0_cos_queue_id;
9134 		for (i = 0; i < 8; i++) {
9135 			u8 queue_id = pri2cos[i];
9136 			u8 queue_idx;
9137 
9138 			/* Per port queue IDs start from 0, 10, 20, etc */
9139 			queue_idx = queue_id % 10;
9140 			if (queue_idx > BNXT_MAX_QUEUE) {
9141 				bp->pri2cos_valid = false;
9142 				hwrm_req_drop(bp, req_qc);
9143 				return rc;
9144 			}
9145 			for (j = 0; j < bp->max_q; j++) {
9146 				if (bp->q_ids[j] == queue_id)
9147 					bp->pri2cos_idx[i] = queue_idx;
9148 			}
9149 		}
9150 		bp->pri2cos_valid = true;
9151 	}
9152 	hwrm_req_drop(bp, req_qc);
9153 
9154 	return rc;
9155 }
9156 
9157 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
9158 {
9159 	bnxt_hwrm_tunnel_dst_port_free(bp,
9160 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
9161 	bnxt_hwrm_tunnel_dst_port_free(bp,
9162 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
9163 }
9164 
9165 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
9166 {
9167 	int rc, i;
9168 	u32 tpa_flags = 0;
9169 
9170 	if (set_tpa)
9171 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
9172 	else if (BNXT_NO_FW_ACCESS(bp))
9173 		return 0;
9174 	for (i = 0; i < bp->nr_vnics; i++) {
9175 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
9176 		if (rc) {
9177 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
9178 				   i, rc);
9179 			return rc;
9180 		}
9181 	}
9182 	return 0;
9183 }
9184 
9185 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
9186 {
9187 	int i;
9188 
9189 	for (i = 0; i < bp->nr_vnics; i++)
9190 		bnxt_hwrm_vnic_set_rss(bp, i, false);
9191 }
9192 
9193 static void bnxt_clear_vnic(struct bnxt *bp)
9194 {
9195 	if (!bp->vnic_info)
9196 		return;
9197 
9198 	bnxt_hwrm_clear_vnic_filter(bp);
9199 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) {
9200 		/* clear all RSS setting before free vnic ctx */
9201 		bnxt_hwrm_clear_vnic_rss(bp);
9202 		bnxt_hwrm_vnic_ctx_free(bp);
9203 	}
9204 	/* before free the vnic, undo the vnic tpa settings */
9205 	if (bp->flags & BNXT_FLAG_TPA)
9206 		bnxt_set_tpa(bp, false);
9207 	bnxt_hwrm_vnic_free(bp);
9208 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9209 		bnxt_hwrm_vnic_ctx_free(bp);
9210 }
9211 
9212 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
9213 				    bool irq_re_init)
9214 {
9215 	bnxt_clear_vnic(bp);
9216 	bnxt_hwrm_ring_free(bp, close_path);
9217 	bnxt_hwrm_ring_grp_free(bp);
9218 	if (irq_re_init) {
9219 		bnxt_hwrm_stat_ctx_free(bp);
9220 		bnxt_hwrm_free_tunnel_ports(bp);
9221 	}
9222 }
9223 
9224 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
9225 {
9226 	struct hwrm_func_cfg_input *req;
9227 	u8 evb_mode;
9228 	int rc;
9229 
9230 	if (br_mode == BRIDGE_MODE_VEB)
9231 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
9232 	else if (br_mode == BRIDGE_MODE_VEPA)
9233 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
9234 	else
9235 		return -EINVAL;
9236 
9237 	rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
9238 	if (rc)
9239 		return rc;
9240 
9241 	req->fid = cpu_to_le16(0xffff);
9242 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
9243 	req->evb_mode = evb_mode;
9244 	return hwrm_req_send(bp, req);
9245 }
9246 
9247 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
9248 {
9249 	struct hwrm_func_cfg_input *req;
9250 	int rc;
9251 
9252 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
9253 		return 0;
9254 
9255 	rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
9256 	if (rc)
9257 		return rc;
9258 
9259 	req->fid = cpu_to_le16(0xffff);
9260 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
9261 	req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
9262 	if (size == 128)
9263 		req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
9264 
9265 	return hwrm_req_send(bp, req);
9266 }
9267 
9268 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
9269 {
9270 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
9271 	int rc;
9272 
9273 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
9274 		goto skip_rss_ctx;
9275 
9276 	/* allocate context for vnic */
9277 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
9278 	if (rc) {
9279 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
9280 			   vnic_id, rc);
9281 		goto vnic_setup_err;
9282 	}
9283 	bp->rsscos_nr_ctxs++;
9284 
9285 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
9286 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
9287 		if (rc) {
9288 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
9289 				   vnic_id, rc);
9290 			goto vnic_setup_err;
9291 		}
9292 		bp->rsscos_nr_ctxs++;
9293 	}
9294 
9295 skip_rss_ctx:
9296 	/* configure default vnic, ring grp */
9297 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
9298 	if (rc) {
9299 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
9300 			   vnic_id, rc);
9301 		goto vnic_setup_err;
9302 	}
9303 
9304 	/* Enable RSS hashing on vnic */
9305 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
9306 	if (rc) {
9307 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
9308 			   vnic_id, rc);
9309 		goto vnic_setup_err;
9310 	}
9311 
9312 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
9313 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
9314 		if (rc) {
9315 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
9316 				   vnic_id, rc);
9317 		}
9318 	}
9319 
9320 vnic_setup_err:
9321 	return rc;
9322 }
9323 
9324 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
9325 {
9326 	int rc, i, nr_ctxs;
9327 
9328 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
9329 	for (i = 0; i < nr_ctxs; i++) {
9330 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
9331 		if (rc) {
9332 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
9333 				   vnic_id, i, rc);
9334 			break;
9335 		}
9336 		bp->rsscos_nr_ctxs++;
9337 	}
9338 	if (i < nr_ctxs)
9339 		return -ENOMEM;
9340 
9341 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
9342 	if (rc) {
9343 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
9344 			   vnic_id, rc);
9345 		return rc;
9346 	}
9347 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
9348 	if (rc) {
9349 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
9350 			   vnic_id, rc);
9351 		return rc;
9352 	}
9353 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
9354 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
9355 		if (rc) {
9356 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
9357 				   vnic_id, rc);
9358 		}
9359 	}
9360 	return rc;
9361 }
9362 
9363 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
9364 {
9365 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9366 		return __bnxt_setup_vnic_p5(bp, vnic_id);
9367 	else
9368 		return __bnxt_setup_vnic(bp, vnic_id);
9369 }
9370 
9371 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
9372 {
9373 #ifdef CONFIG_RFS_ACCEL
9374 	int i, rc = 0;
9375 
9376 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9377 		return 0;
9378 
9379 	for (i = 0; i < bp->rx_nr_rings; i++) {
9380 		struct bnxt_vnic_info *vnic;
9381 		u16 vnic_id = i + 1;
9382 		u16 ring_id = i;
9383 
9384 		if (vnic_id >= bp->nr_vnics)
9385 			break;
9386 
9387 		vnic = &bp->vnic_info[vnic_id];
9388 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
9389 		if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP)
9390 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
9391 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
9392 		if (rc) {
9393 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
9394 				   vnic_id, rc);
9395 			break;
9396 		}
9397 		rc = bnxt_setup_vnic(bp, vnic_id);
9398 		if (rc)
9399 			break;
9400 	}
9401 	return rc;
9402 #else
9403 	return 0;
9404 #endif
9405 }
9406 
9407 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
9408 static bool bnxt_promisc_ok(struct bnxt *bp)
9409 {
9410 #ifdef CONFIG_BNXT_SRIOV
9411 	if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
9412 		return false;
9413 #endif
9414 	return true;
9415 }
9416 
9417 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
9418 {
9419 	unsigned int rc = 0;
9420 
9421 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
9422 	if (rc) {
9423 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
9424 			   rc);
9425 		return rc;
9426 	}
9427 
9428 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
9429 	if (rc) {
9430 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
9431 			   rc);
9432 		return rc;
9433 	}
9434 	return rc;
9435 }
9436 
9437 static int bnxt_cfg_rx_mode(struct bnxt *);
9438 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
9439 
9440 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
9441 {
9442 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9443 	int rc = 0;
9444 	unsigned int rx_nr_rings = bp->rx_nr_rings;
9445 
9446 	if (irq_re_init) {
9447 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
9448 		if (rc) {
9449 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
9450 				   rc);
9451 			goto err_out;
9452 		}
9453 	}
9454 
9455 	rc = bnxt_hwrm_ring_alloc(bp);
9456 	if (rc) {
9457 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
9458 		goto err_out;
9459 	}
9460 
9461 	rc = bnxt_hwrm_ring_grp_alloc(bp);
9462 	if (rc) {
9463 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
9464 		goto err_out;
9465 	}
9466 
9467 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
9468 		rx_nr_rings--;
9469 
9470 	/* default vnic 0 */
9471 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
9472 	if (rc) {
9473 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
9474 		goto err_out;
9475 	}
9476 
9477 	if (BNXT_VF(bp))
9478 		bnxt_hwrm_func_qcfg(bp);
9479 
9480 	rc = bnxt_setup_vnic(bp, 0);
9481 	if (rc)
9482 		goto err_out;
9483 	if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA)
9484 		bnxt_hwrm_update_rss_hash_cfg(bp);
9485 
9486 	if (bp->flags & BNXT_FLAG_RFS) {
9487 		rc = bnxt_alloc_rfs_vnics(bp);
9488 		if (rc)
9489 			goto err_out;
9490 	}
9491 
9492 	if (bp->flags & BNXT_FLAG_TPA) {
9493 		rc = bnxt_set_tpa(bp, true);
9494 		if (rc)
9495 			goto err_out;
9496 	}
9497 
9498 	if (BNXT_VF(bp))
9499 		bnxt_update_vf_mac(bp);
9500 
9501 	/* Filter for default vnic 0 */
9502 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
9503 	if (rc) {
9504 		if (BNXT_VF(bp) && rc == -ENODEV)
9505 			netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n");
9506 		else
9507 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
9508 		goto err_out;
9509 	}
9510 	vnic->uc_filter_count = 1;
9511 
9512 	vnic->rx_mask = 0;
9513 	if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state))
9514 		goto skip_rx_mask;
9515 
9516 	if (bp->dev->flags & IFF_BROADCAST)
9517 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
9518 
9519 	if (bp->dev->flags & IFF_PROMISC)
9520 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
9521 
9522 	if (bp->dev->flags & IFF_ALLMULTI) {
9523 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9524 		vnic->mc_list_count = 0;
9525 	} else if (bp->dev->flags & IFF_MULTICAST) {
9526 		u32 mask = 0;
9527 
9528 		bnxt_mc_list_updated(bp, &mask);
9529 		vnic->rx_mask |= mask;
9530 	}
9531 
9532 	rc = bnxt_cfg_rx_mode(bp);
9533 	if (rc)
9534 		goto err_out;
9535 
9536 skip_rx_mask:
9537 	rc = bnxt_hwrm_set_coal(bp);
9538 	if (rc)
9539 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
9540 				rc);
9541 
9542 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
9543 		rc = bnxt_setup_nitroa0_vnic(bp);
9544 		if (rc)
9545 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
9546 				   rc);
9547 	}
9548 
9549 	if (BNXT_VF(bp)) {
9550 		bnxt_hwrm_func_qcfg(bp);
9551 		netdev_update_features(bp->dev);
9552 	}
9553 
9554 	return 0;
9555 
9556 err_out:
9557 	bnxt_hwrm_resource_free(bp, 0, true);
9558 
9559 	return rc;
9560 }
9561 
9562 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
9563 {
9564 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
9565 	return 0;
9566 }
9567 
9568 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
9569 {
9570 	bnxt_init_cp_rings(bp);
9571 	bnxt_init_rx_rings(bp);
9572 	bnxt_init_tx_rings(bp);
9573 	bnxt_init_ring_grps(bp, irq_re_init);
9574 	bnxt_init_vnics(bp);
9575 
9576 	return bnxt_init_chip(bp, irq_re_init);
9577 }
9578 
9579 static int bnxt_set_real_num_queues(struct bnxt *bp)
9580 {
9581 	int rc;
9582 	struct net_device *dev = bp->dev;
9583 
9584 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
9585 					  bp->tx_nr_rings_xdp);
9586 	if (rc)
9587 		return rc;
9588 
9589 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
9590 	if (rc)
9591 		return rc;
9592 
9593 #ifdef CONFIG_RFS_ACCEL
9594 	if (bp->flags & BNXT_FLAG_RFS)
9595 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
9596 #endif
9597 
9598 	return rc;
9599 }
9600 
9601 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
9602 			     bool shared)
9603 {
9604 	int _rx = *rx, _tx = *tx;
9605 
9606 	if (shared) {
9607 		*rx = min_t(int, _rx, max);
9608 		*tx = min_t(int, _tx, max);
9609 	} else {
9610 		if (max < 2)
9611 			return -ENOMEM;
9612 
9613 		while (_rx + _tx > max) {
9614 			if (_rx > _tx && _rx > 1)
9615 				_rx--;
9616 			else if (_tx > 1)
9617 				_tx--;
9618 		}
9619 		*rx = _rx;
9620 		*tx = _tx;
9621 	}
9622 	return 0;
9623 }
9624 
9625 static int __bnxt_num_tx_to_cp(struct bnxt *bp, int tx, int tx_sets, int tx_xdp)
9626 {
9627 	return (tx - tx_xdp) / tx_sets + tx_xdp;
9628 }
9629 
9630 int bnxt_num_tx_to_cp(struct bnxt *bp, int tx)
9631 {
9632 	int tcs = netdev_get_num_tc(bp->dev);
9633 
9634 	if (!tcs)
9635 		tcs = 1;
9636 	return __bnxt_num_tx_to_cp(bp, tx, tcs, bp->tx_nr_rings_xdp);
9637 }
9638 
9639 static int bnxt_num_cp_to_tx(struct bnxt *bp, int tx_cp)
9640 {
9641 	int tcs = netdev_get_num_tc(bp->dev);
9642 
9643 	return (tx_cp - bp->tx_nr_rings_xdp) * tcs +
9644 	       bp->tx_nr_rings_xdp;
9645 }
9646 
9647 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
9648 			   bool sh)
9649 {
9650 	int tx_cp = bnxt_num_tx_to_cp(bp, *tx);
9651 
9652 	if (tx_cp != *tx) {
9653 		int tx_saved = tx_cp, rc;
9654 
9655 		rc = __bnxt_trim_rings(bp, rx, &tx_cp, max, sh);
9656 		if (rc)
9657 			return rc;
9658 		if (tx_cp != tx_saved)
9659 			*tx = bnxt_num_cp_to_tx(bp, tx_cp);
9660 		return 0;
9661 	}
9662 	return __bnxt_trim_rings(bp, rx, tx, max, sh);
9663 }
9664 
9665 static void bnxt_setup_msix(struct bnxt *bp)
9666 {
9667 	const int len = sizeof(bp->irq_tbl[0].name);
9668 	struct net_device *dev = bp->dev;
9669 	int tcs, i;
9670 
9671 	tcs = netdev_get_num_tc(dev);
9672 	if (tcs) {
9673 		int i, off, count;
9674 
9675 		for (i = 0; i < tcs; i++) {
9676 			count = bp->tx_nr_rings_per_tc;
9677 			off = BNXT_TC_TO_RING_BASE(bp, i);
9678 			netdev_set_tc_queue(dev, i, count, off);
9679 		}
9680 	}
9681 
9682 	for (i = 0; i < bp->cp_nr_rings; i++) {
9683 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9684 		char *attr;
9685 
9686 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
9687 			attr = "TxRx";
9688 		else if (i < bp->rx_nr_rings)
9689 			attr = "rx";
9690 		else
9691 			attr = "tx";
9692 
9693 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
9694 			 attr, i);
9695 		bp->irq_tbl[map_idx].handler = bnxt_msix;
9696 	}
9697 }
9698 
9699 static void bnxt_setup_inta(struct bnxt *bp)
9700 {
9701 	const int len = sizeof(bp->irq_tbl[0].name);
9702 
9703 	if (netdev_get_num_tc(bp->dev))
9704 		netdev_reset_tc(bp->dev);
9705 
9706 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
9707 		 0);
9708 	bp->irq_tbl[0].handler = bnxt_inta;
9709 }
9710 
9711 static int bnxt_init_int_mode(struct bnxt *bp);
9712 
9713 static int bnxt_setup_int_mode(struct bnxt *bp)
9714 {
9715 	int rc;
9716 
9717 	if (!bp->irq_tbl) {
9718 		rc = bnxt_init_int_mode(bp);
9719 		if (rc || !bp->irq_tbl)
9720 			return rc ?: -ENODEV;
9721 	}
9722 
9723 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9724 		bnxt_setup_msix(bp);
9725 	else
9726 		bnxt_setup_inta(bp);
9727 
9728 	rc = bnxt_set_real_num_queues(bp);
9729 	return rc;
9730 }
9731 
9732 #ifdef CONFIG_RFS_ACCEL
9733 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
9734 {
9735 	return bp->hw_resc.max_rsscos_ctxs;
9736 }
9737 
9738 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
9739 {
9740 	return bp->hw_resc.max_vnics;
9741 }
9742 #endif
9743 
9744 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
9745 {
9746 	return bp->hw_resc.max_stat_ctxs;
9747 }
9748 
9749 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
9750 {
9751 	return bp->hw_resc.max_cp_rings;
9752 }
9753 
9754 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
9755 {
9756 	unsigned int cp = bp->hw_resc.max_cp_rings;
9757 
9758 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
9759 		cp -= bnxt_get_ulp_msix_num(bp);
9760 
9761 	return cp;
9762 }
9763 
9764 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
9765 {
9766 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9767 
9768 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9769 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
9770 
9771 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
9772 }
9773 
9774 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
9775 {
9776 	bp->hw_resc.max_irqs = max_irqs;
9777 }
9778 
9779 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
9780 {
9781 	unsigned int cp;
9782 
9783 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
9784 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
9785 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
9786 	else
9787 		return cp - bp->cp_nr_rings;
9788 }
9789 
9790 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
9791 {
9792 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
9793 }
9794 
9795 int bnxt_get_avail_msix(struct bnxt *bp, int num)
9796 {
9797 	int max_cp = bnxt_get_max_func_cp_rings(bp);
9798 	int max_irq = bnxt_get_max_func_irqs(bp);
9799 	int total_req = bp->cp_nr_rings + num;
9800 	int max_idx, avail_msix;
9801 
9802 	max_idx = bp->total_irqs;
9803 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
9804 		max_idx = min_t(int, bp->total_irqs, max_cp);
9805 	avail_msix = max_idx - bp->cp_nr_rings;
9806 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
9807 		return avail_msix;
9808 
9809 	if (max_irq < total_req) {
9810 		num = max_irq - bp->cp_nr_rings;
9811 		if (num <= 0)
9812 			return 0;
9813 	}
9814 	return num;
9815 }
9816 
9817 static int bnxt_get_num_msix(struct bnxt *bp)
9818 {
9819 	if (!BNXT_NEW_RM(bp))
9820 		return bnxt_get_max_func_irqs(bp);
9821 
9822 	return bnxt_nq_rings_in_use(bp);
9823 }
9824 
9825 static int bnxt_init_msix(struct bnxt *bp)
9826 {
9827 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix, tx_cp;
9828 	struct msix_entry *msix_ent;
9829 
9830 	total_vecs = bnxt_get_num_msix(bp);
9831 	max = bnxt_get_max_func_irqs(bp);
9832 	if (total_vecs > max)
9833 		total_vecs = max;
9834 
9835 	if (!total_vecs)
9836 		return 0;
9837 
9838 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
9839 	if (!msix_ent)
9840 		return -ENOMEM;
9841 
9842 	for (i = 0; i < total_vecs; i++) {
9843 		msix_ent[i].entry = i;
9844 		msix_ent[i].vector = 0;
9845 	}
9846 
9847 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
9848 		min = 2;
9849 
9850 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
9851 	ulp_msix = bnxt_get_ulp_msix_num(bp);
9852 	if (total_vecs < 0 || total_vecs < ulp_msix) {
9853 		rc = -ENODEV;
9854 		goto msix_setup_exit;
9855 	}
9856 
9857 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
9858 	if (bp->irq_tbl) {
9859 		for (i = 0; i < total_vecs; i++)
9860 			bp->irq_tbl[i].vector = msix_ent[i].vector;
9861 
9862 		bp->total_irqs = total_vecs;
9863 		/* Trim rings based upon num of vectors allocated */
9864 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
9865 				     total_vecs - ulp_msix, min == 1);
9866 		if (rc)
9867 			goto msix_setup_exit;
9868 
9869 		tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings);
9870 		bp->cp_nr_rings = (min == 1) ?
9871 				  max_t(int, tx_cp, bp->rx_nr_rings) :
9872 				  tx_cp + bp->rx_nr_rings;
9873 
9874 	} else {
9875 		rc = -ENOMEM;
9876 		goto msix_setup_exit;
9877 	}
9878 	bp->flags |= BNXT_FLAG_USING_MSIX;
9879 	kfree(msix_ent);
9880 	return 0;
9881 
9882 msix_setup_exit:
9883 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
9884 	kfree(bp->irq_tbl);
9885 	bp->irq_tbl = NULL;
9886 	pci_disable_msix(bp->pdev);
9887 	kfree(msix_ent);
9888 	return rc;
9889 }
9890 
9891 static int bnxt_init_inta(struct bnxt *bp)
9892 {
9893 	bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL);
9894 	if (!bp->irq_tbl)
9895 		return -ENOMEM;
9896 
9897 	bp->total_irqs = 1;
9898 	bp->rx_nr_rings = 1;
9899 	bp->tx_nr_rings = 1;
9900 	bp->cp_nr_rings = 1;
9901 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
9902 	bp->irq_tbl[0].vector = bp->pdev->irq;
9903 	return 0;
9904 }
9905 
9906 static int bnxt_init_int_mode(struct bnxt *bp)
9907 {
9908 	int rc = -ENODEV;
9909 
9910 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
9911 		rc = bnxt_init_msix(bp);
9912 
9913 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
9914 		/* fallback to INTA */
9915 		rc = bnxt_init_inta(bp);
9916 	}
9917 	return rc;
9918 }
9919 
9920 static void bnxt_clear_int_mode(struct bnxt *bp)
9921 {
9922 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9923 		pci_disable_msix(bp->pdev);
9924 
9925 	kfree(bp->irq_tbl);
9926 	bp->irq_tbl = NULL;
9927 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
9928 }
9929 
9930 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
9931 {
9932 	int tcs = netdev_get_num_tc(bp->dev);
9933 	bool irq_cleared = false;
9934 	int rc;
9935 
9936 	if (!bnxt_need_reserve_rings(bp))
9937 		return 0;
9938 
9939 	if (irq_re_init && BNXT_NEW_RM(bp) &&
9940 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
9941 		bnxt_ulp_irq_stop(bp);
9942 		bnxt_clear_int_mode(bp);
9943 		irq_cleared = true;
9944 	}
9945 	rc = __bnxt_reserve_rings(bp);
9946 	if (irq_cleared) {
9947 		if (!rc)
9948 			rc = bnxt_init_int_mode(bp);
9949 		bnxt_ulp_irq_restart(bp, rc);
9950 	}
9951 	if (rc) {
9952 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
9953 		return rc;
9954 	}
9955 	if (tcs && (bp->tx_nr_rings_per_tc * tcs !=
9956 		    bp->tx_nr_rings - bp->tx_nr_rings_xdp)) {
9957 		netdev_err(bp->dev, "tx ring reservation failure\n");
9958 		netdev_reset_tc(bp->dev);
9959 		if (bp->tx_nr_rings_xdp)
9960 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp;
9961 		else
9962 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
9963 		return -ENOMEM;
9964 	}
9965 	return 0;
9966 }
9967 
9968 static void bnxt_free_irq(struct bnxt *bp)
9969 {
9970 	struct bnxt_irq *irq;
9971 	int i;
9972 
9973 #ifdef CONFIG_RFS_ACCEL
9974 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
9975 	bp->dev->rx_cpu_rmap = NULL;
9976 #endif
9977 	if (!bp->irq_tbl || !bp->bnapi)
9978 		return;
9979 
9980 	for (i = 0; i < bp->cp_nr_rings; i++) {
9981 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9982 
9983 		irq = &bp->irq_tbl[map_idx];
9984 		if (irq->requested) {
9985 			if (irq->have_cpumask) {
9986 				irq_set_affinity_hint(irq->vector, NULL);
9987 				free_cpumask_var(irq->cpu_mask);
9988 				irq->have_cpumask = 0;
9989 			}
9990 			free_irq(irq->vector, bp->bnapi[i]);
9991 		}
9992 
9993 		irq->requested = 0;
9994 	}
9995 }
9996 
9997 static int bnxt_request_irq(struct bnxt *bp)
9998 {
9999 	int i, j, rc = 0;
10000 	unsigned long flags = 0;
10001 #ifdef CONFIG_RFS_ACCEL
10002 	struct cpu_rmap *rmap;
10003 #endif
10004 
10005 	rc = bnxt_setup_int_mode(bp);
10006 	if (rc) {
10007 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
10008 			   rc);
10009 		return rc;
10010 	}
10011 #ifdef CONFIG_RFS_ACCEL
10012 	rmap = bp->dev->rx_cpu_rmap;
10013 #endif
10014 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
10015 		flags = IRQF_SHARED;
10016 
10017 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
10018 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
10019 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
10020 
10021 #ifdef CONFIG_RFS_ACCEL
10022 		if (rmap && bp->bnapi[i]->rx_ring) {
10023 			rc = irq_cpu_rmap_add(rmap, irq->vector);
10024 			if (rc)
10025 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
10026 					    j);
10027 			j++;
10028 		}
10029 #endif
10030 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
10031 				 bp->bnapi[i]);
10032 		if (rc)
10033 			break;
10034 
10035 		netif_napi_set_irq(&bp->bnapi[i]->napi, irq->vector);
10036 		irq->requested = 1;
10037 
10038 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
10039 			int numa_node = dev_to_node(&bp->pdev->dev);
10040 
10041 			irq->have_cpumask = 1;
10042 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
10043 					irq->cpu_mask);
10044 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
10045 			if (rc) {
10046 				netdev_warn(bp->dev,
10047 					    "Set affinity failed, IRQ = %d\n",
10048 					    irq->vector);
10049 				break;
10050 			}
10051 		}
10052 	}
10053 	return rc;
10054 }
10055 
10056 static void bnxt_del_napi(struct bnxt *bp)
10057 {
10058 	int i;
10059 
10060 	if (!bp->bnapi)
10061 		return;
10062 
10063 	for (i = 0; i < bp->rx_nr_rings; i++)
10064 		netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_RX, NULL);
10065 	for (i = 0; i < bp->tx_nr_rings - bp->tx_nr_rings_xdp; i++)
10066 		netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_TX, NULL);
10067 
10068 	for (i = 0; i < bp->cp_nr_rings; i++) {
10069 		struct bnxt_napi *bnapi = bp->bnapi[i];
10070 
10071 		__netif_napi_del(&bnapi->napi);
10072 	}
10073 	/* We called __netif_napi_del(), we need
10074 	 * to respect an RCU grace period before freeing napi structures.
10075 	 */
10076 	synchronize_net();
10077 }
10078 
10079 static void bnxt_init_napi(struct bnxt *bp)
10080 {
10081 	int i;
10082 	unsigned int cp_nr_rings = bp->cp_nr_rings;
10083 	struct bnxt_napi *bnapi;
10084 
10085 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
10086 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
10087 
10088 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
10089 			poll_fn = bnxt_poll_p5;
10090 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
10091 			cp_nr_rings--;
10092 		for (i = 0; i < cp_nr_rings; i++) {
10093 			bnapi = bp->bnapi[i];
10094 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn);
10095 		}
10096 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
10097 			bnapi = bp->bnapi[cp_nr_rings];
10098 			netif_napi_add(bp->dev, &bnapi->napi,
10099 				       bnxt_poll_nitroa0);
10100 		}
10101 	} else {
10102 		bnapi = bp->bnapi[0];
10103 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll);
10104 	}
10105 }
10106 
10107 static void bnxt_disable_napi(struct bnxt *bp)
10108 {
10109 	int i;
10110 
10111 	if (!bp->bnapi ||
10112 	    test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
10113 		return;
10114 
10115 	for (i = 0; i < bp->cp_nr_rings; i++) {
10116 		struct bnxt_napi *bnapi = bp->bnapi[i];
10117 		struct bnxt_cp_ring_info *cpr;
10118 
10119 		cpr = &bnapi->cp_ring;
10120 		if (bnapi->tx_fault)
10121 			cpr->sw_stats.tx.tx_resets++;
10122 		if (bnapi->in_reset)
10123 			cpr->sw_stats.rx.rx_resets++;
10124 		napi_disable(&bnapi->napi);
10125 		if (bnapi->rx_ring)
10126 			cancel_work_sync(&cpr->dim.work);
10127 	}
10128 }
10129 
10130 static void bnxt_enable_napi(struct bnxt *bp)
10131 {
10132 	int i;
10133 
10134 	clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
10135 	for (i = 0; i < bp->cp_nr_rings; i++) {
10136 		struct bnxt_napi *bnapi = bp->bnapi[i];
10137 		struct bnxt_cp_ring_info *cpr;
10138 
10139 		bnapi->tx_fault = 0;
10140 
10141 		cpr = &bnapi->cp_ring;
10142 		bnapi->in_reset = false;
10143 
10144 		if (bnapi->rx_ring) {
10145 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
10146 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
10147 		}
10148 		napi_enable(&bnapi->napi);
10149 	}
10150 }
10151 
10152 void bnxt_tx_disable(struct bnxt *bp)
10153 {
10154 	int i;
10155 	struct bnxt_tx_ring_info *txr;
10156 
10157 	if (bp->tx_ring) {
10158 		for (i = 0; i < bp->tx_nr_rings; i++) {
10159 			txr = &bp->tx_ring[i];
10160 			WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
10161 		}
10162 	}
10163 	/* Make sure napi polls see @dev_state change */
10164 	synchronize_net();
10165 	/* Drop carrier first to prevent TX timeout */
10166 	netif_carrier_off(bp->dev);
10167 	/* Stop all TX queues */
10168 	netif_tx_disable(bp->dev);
10169 }
10170 
10171 void bnxt_tx_enable(struct bnxt *bp)
10172 {
10173 	int i;
10174 	struct bnxt_tx_ring_info *txr;
10175 
10176 	for (i = 0; i < bp->tx_nr_rings; i++) {
10177 		txr = &bp->tx_ring[i];
10178 		WRITE_ONCE(txr->dev_state, 0);
10179 	}
10180 	/* Make sure napi polls see @dev_state change */
10181 	synchronize_net();
10182 	netif_tx_wake_all_queues(bp->dev);
10183 	if (BNXT_LINK_IS_UP(bp))
10184 		netif_carrier_on(bp->dev);
10185 }
10186 
10187 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
10188 {
10189 	u8 active_fec = link_info->active_fec_sig_mode &
10190 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
10191 
10192 	switch (active_fec) {
10193 	default:
10194 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
10195 		return "None";
10196 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
10197 		return "Clause 74 BaseR";
10198 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
10199 		return "Clause 91 RS(528,514)";
10200 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
10201 		return "Clause 91 RS544_1XN";
10202 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
10203 		return "Clause 91 RS(544,514)";
10204 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
10205 		return "Clause 91 RS272_1XN";
10206 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
10207 		return "Clause 91 RS(272,257)";
10208 	}
10209 }
10210 
10211 void bnxt_report_link(struct bnxt *bp)
10212 {
10213 	if (BNXT_LINK_IS_UP(bp)) {
10214 		const char *signal = "";
10215 		const char *flow_ctrl;
10216 		const char *duplex;
10217 		u32 speed;
10218 		u16 fec;
10219 
10220 		netif_carrier_on(bp->dev);
10221 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
10222 		if (speed == SPEED_UNKNOWN) {
10223 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
10224 			return;
10225 		}
10226 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
10227 			duplex = "full";
10228 		else
10229 			duplex = "half";
10230 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
10231 			flow_ctrl = "ON - receive & transmit";
10232 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
10233 			flow_ctrl = "ON - transmit";
10234 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
10235 			flow_ctrl = "ON - receive";
10236 		else
10237 			flow_ctrl = "none";
10238 		if (bp->link_info.phy_qcfg_resp.option_flags &
10239 		    PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
10240 			u8 sig_mode = bp->link_info.active_fec_sig_mode &
10241 				      PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
10242 			switch (sig_mode) {
10243 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
10244 				signal = "(NRZ) ";
10245 				break;
10246 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
10247 				signal = "(PAM4 56Gbps) ";
10248 				break;
10249 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4_112:
10250 				signal = "(PAM4 112Gbps) ";
10251 				break;
10252 			default:
10253 				break;
10254 			}
10255 		}
10256 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
10257 			    speed, signal, duplex, flow_ctrl);
10258 		if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
10259 			netdev_info(bp->dev, "EEE is %s\n",
10260 				    bp->eee.eee_active ? "active" :
10261 							 "not active");
10262 		fec = bp->link_info.fec_cfg;
10263 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
10264 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
10265 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
10266 				    bnxt_report_fec(&bp->link_info));
10267 	} else {
10268 		netif_carrier_off(bp->dev);
10269 		netdev_err(bp->dev, "NIC Link is Down\n");
10270 	}
10271 }
10272 
10273 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
10274 {
10275 	if (!resp->supported_speeds_auto_mode &&
10276 	    !resp->supported_speeds_force_mode &&
10277 	    !resp->supported_pam4_speeds_auto_mode &&
10278 	    !resp->supported_pam4_speeds_force_mode &&
10279 	    !resp->supported_speeds2_auto_mode &&
10280 	    !resp->supported_speeds2_force_mode)
10281 		return true;
10282 	return false;
10283 }
10284 
10285 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
10286 {
10287 	struct bnxt_link_info *link_info = &bp->link_info;
10288 	struct hwrm_port_phy_qcaps_output *resp;
10289 	struct hwrm_port_phy_qcaps_input *req;
10290 	int rc = 0;
10291 
10292 	if (bp->hwrm_spec_code < 0x10201)
10293 		return 0;
10294 
10295 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS);
10296 	if (rc)
10297 		return rc;
10298 
10299 	resp = hwrm_req_hold(bp, req);
10300 	rc = hwrm_req_send(bp, req);
10301 	if (rc)
10302 		goto hwrm_phy_qcaps_exit;
10303 
10304 	bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8);
10305 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
10306 		struct ethtool_eee *eee = &bp->eee;
10307 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
10308 
10309 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
10310 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
10311 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
10312 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
10313 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
10314 	}
10315 
10316 	if (bp->hwrm_spec_code >= 0x10a01) {
10317 		if (bnxt_phy_qcaps_no_speed(resp)) {
10318 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
10319 			netdev_warn(bp->dev, "Ethernet link disabled\n");
10320 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
10321 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
10322 			netdev_info(bp->dev, "Ethernet link enabled\n");
10323 			/* Phy re-enabled, reprobe the speeds */
10324 			link_info->support_auto_speeds = 0;
10325 			link_info->support_pam4_auto_speeds = 0;
10326 			link_info->support_auto_speeds2 = 0;
10327 		}
10328 	}
10329 	if (resp->supported_speeds_auto_mode)
10330 		link_info->support_auto_speeds =
10331 			le16_to_cpu(resp->supported_speeds_auto_mode);
10332 	if (resp->supported_pam4_speeds_auto_mode)
10333 		link_info->support_pam4_auto_speeds =
10334 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
10335 	if (resp->supported_speeds2_auto_mode)
10336 		link_info->support_auto_speeds2 =
10337 			le16_to_cpu(resp->supported_speeds2_auto_mode);
10338 
10339 	bp->port_count = resp->port_cnt;
10340 
10341 hwrm_phy_qcaps_exit:
10342 	hwrm_req_drop(bp, req);
10343 	return rc;
10344 }
10345 
10346 static bool bnxt_support_dropped(u16 advertising, u16 supported)
10347 {
10348 	u16 diff = advertising ^ supported;
10349 
10350 	return ((supported | diff) != supported);
10351 }
10352 
10353 static bool bnxt_support_speed_dropped(struct bnxt_link_info *link_info)
10354 {
10355 	struct bnxt *bp = container_of(link_info, struct bnxt, link_info);
10356 
10357 	/* Check if any advertised speeds are no longer supported. The caller
10358 	 * holds the link_lock mutex, so we can modify link_info settings.
10359 	 */
10360 	if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
10361 		if (bnxt_support_dropped(link_info->advertising,
10362 					 link_info->support_auto_speeds2)) {
10363 			link_info->advertising = link_info->support_auto_speeds2;
10364 			return true;
10365 		}
10366 		return false;
10367 	}
10368 	if (bnxt_support_dropped(link_info->advertising,
10369 				 link_info->support_auto_speeds)) {
10370 		link_info->advertising = link_info->support_auto_speeds;
10371 		return true;
10372 	}
10373 	if (bnxt_support_dropped(link_info->advertising_pam4,
10374 				 link_info->support_pam4_auto_speeds)) {
10375 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
10376 		return true;
10377 	}
10378 	return false;
10379 }
10380 
10381 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
10382 {
10383 	struct bnxt_link_info *link_info = &bp->link_info;
10384 	struct hwrm_port_phy_qcfg_output *resp;
10385 	struct hwrm_port_phy_qcfg_input *req;
10386 	u8 link_state = link_info->link_state;
10387 	bool support_changed;
10388 	int rc;
10389 
10390 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG);
10391 	if (rc)
10392 		return rc;
10393 
10394 	resp = hwrm_req_hold(bp, req);
10395 	rc = hwrm_req_send(bp, req);
10396 	if (rc) {
10397 		hwrm_req_drop(bp, req);
10398 		if (BNXT_VF(bp) && rc == -ENODEV) {
10399 			netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n");
10400 			rc = 0;
10401 		}
10402 		return rc;
10403 	}
10404 
10405 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
10406 	link_info->phy_link_status = resp->link;
10407 	link_info->duplex = resp->duplex_cfg;
10408 	if (bp->hwrm_spec_code >= 0x10800)
10409 		link_info->duplex = resp->duplex_state;
10410 	link_info->pause = resp->pause;
10411 	link_info->auto_mode = resp->auto_mode;
10412 	link_info->auto_pause_setting = resp->auto_pause;
10413 	link_info->lp_pause = resp->link_partner_adv_pause;
10414 	link_info->force_pause_setting = resp->force_pause;
10415 	link_info->duplex_setting = resp->duplex_cfg;
10416 	if (link_info->phy_link_status == BNXT_LINK_LINK) {
10417 		link_info->link_speed = le16_to_cpu(resp->link_speed);
10418 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2)
10419 			link_info->active_lanes = resp->active_lanes;
10420 	} else {
10421 		link_info->link_speed = 0;
10422 		link_info->active_lanes = 0;
10423 	}
10424 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
10425 	link_info->force_pam4_link_speed =
10426 		le16_to_cpu(resp->force_pam4_link_speed);
10427 	link_info->force_link_speed2 = le16_to_cpu(resp->force_link_speeds2);
10428 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
10429 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
10430 	link_info->support_speeds2 = le16_to_cpu(resp->support_speeds2);
10431 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
10432 	link_info->auto_pam4_link_speeds =
10433 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
10434 	link_info->auto_link_speeds2 = le16_to_cpu(resp->auto_link_speeds2);
10435 	link_info->lp_auto_link_speeds =
10436 		le16_to_cpu(resp->link_partner_adv_speeds);
10437 	link_info->lp_auto_pam4_link_speeds =
10438 		resp->link_partner_pam4_adv_speeds;
10439 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
10440 	link_info->phy_ver[0] = resp->phy_maj;
10441 	link_info->phy_ver[1] = resp->phy_min;
10442 	link_info->phy_ver[2] = resp->phy_bld;
10443 	link_info->media_type = resp->media_type;
10444 	link_info->phy_type = resp->phy_type;
10445 	link_info->transceiver = resp->xcvr_pkg_type;
10446 	link_info->phy_addr = resp->eee_config_phy_addr &
10447 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
10448 	link_info->module_status = resp->module_status;
10449 
10450 	if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
10451 		struct ethtool_eee *eee = &bp->eee;
10452 		u16 fw_speeds;
10453 
10454 		eee->eee_active = 0;
10455 		if (resp->eee_config_phy_addr &
10456 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
10457 			eee->eee_active = 1;
10458 			fw_speeds = le16_to_cpu(
10459 				resp->link_partner_adv_eee_link_speed_mask);
10460 			eee->lp_advertised =
10461 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
10462 		}
10463 
10464 		/* Pull initial EEE config */
10465 		if (!chng_link_state) {
10466 			if (resp->eee_config_phy_addr &
10467 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
10468 				eee->eee_enabled = 1;
10469 
10470 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
10471 			eee->advertised =
10472 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
10473 
10474 			if (resp->eee_config_phy_addr &
10475 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
10476 				__le32 tmr;
10477 
10478 				eee->tx_lpi_enabled = 1;
10479 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
10480 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
10481 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
10482 			}
10483 		}
10484 	}
10485 
10486 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
10487 	if (bp->hwrm_spec_code >= 0x10504) {
10488 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
10489 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
10490 	}
10491 	/* TODO: need to add more logic to report VF link */
10492 	if (chng_link_state) {
10493 		if (link_info->phy_link_status == BNXT_LINK_LINK)
10494 			link_info->link_state = BNXT_LINK_STATE_UP;
10495 		else
10496 			link_info->link_state = BNXT_LINK_STATE_DOWN;
10497 		if (link_state != link_info->link_state)
10498 			bnxt_report_link(bp);
10499 	} else {
10500 		/* always link down if not require to update link state */
10501 		link_info->link_state = BNXT_LINK_STATE_DOWN;
10502 	}
10503 	hwrm_req_drop(bp, req);
10504 
10505 	if (!BNXT_PHY_CFG_ABLE(bp))
10506 		return 0;
10507 
10508 	support_changed = bnxt_support_speed_dropped(link_info);
10509 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
10510 		bnxt_hwrm_set_link_setting(bp, true, false);
10511 	return 0;
10512 }
10513 
10514 static void bnxt_get_port_module_status(struct bnxt *bp)
10515 {
10516 	struct bnxt_link_info *link_info = &bp->link_info;
10517 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
10518 	u8 module_status;
10519 
10520 	if (bnxt_update_link(bp, true))
10521 		return;
10522 
10523 	module_status = link_info->module_status;
10524 	switch (module_status) {
10525 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
10526 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
10527 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
10528 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
10529 			    bp->pf.port_id);
10530 		if (bp->hwrm_spec_code >= 0x10201) {
10531 			netdev_warn(bp->dev, "Module part number %s\n",
10532 				    resp->phy_vendor_partnumber);
10533 		}
10534 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
10535 			netdev_warn(bp->dev, "TX is disabled\n");
10536 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
10537 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
10538 	}
10539 }
10540 
10541 static void
10542 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
10543 {
10544 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
10545 		if (bp->hwrm_spec_code >= 0x10201)
10546 			req->auto_pause =
10547 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
10548 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
10549 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
10550 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
10551 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
10552 		req->enables |=
10553 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
10554 	} else {
10555 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
10556 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
10557 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
10558 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
10559 		req->enables |=
10560 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
10561 		if (bp->hwrm_spec_code >= 0x10201) {
10562 			req->auto_pause = req->force_pause;
10563 			req->enables |= cpu_to_le32(
10564 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
10565 		}
10566 	}
10567 }
10568 
10569 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
10570 {
10571 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
10572 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
10573 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
10574 			req->enables |=
10575 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEEDS2_MASK);
10576 			req->auto_link_speeds2_mask = cpu_to_le16(bp->link_info.advertising);
10577 		} else if (bp->link_info.advertising) {
10578 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
10579 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
10580 		}
10581 		if (bp->link_info.advertising_pam4) {
10582 			req->enables |=
10583 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
10584 			req->auto_link_pam4_speed_mask =
10585 				cpu_to_le16(bp->link_info.advertising_pam4);
10586 		}
10587 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
10588 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
10589 	} else {
10590 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
10591 		if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) {
10592 			req->force_link_speeds2 = cpu_to_le16(bp->link_info.req_link_speed);
10593 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_LINK_SPEEDS2);
10594 			netif_info(bp, link, bp->dev, "Forcing FW speed2: %d\n",
10595 				   (u32)bp->link_info.req_link_speed);
10596 		} else if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
10597 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
10598 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
10599 		} else {
10600 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
10601 		}
10602 	}
10603 
10604 	/* tell chimp that the setting takes effect immediately */
10605 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
10606 }
10607 
10608 int bnxt_hwrm_set_pause(struct bnxt *bp)
10609 {
10610 	struct hwrm_port_phy_cfg_input *req;
10611 	int rc;
10612 
10613 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
10614 	if (rc)
10615 		return rc;
10616 
10617 	bnxt_hwrm_set_pause_common(bp, req);
10618 
10619 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
10620 	    bp->link_info.force_link_chng)
10621 		bnxt_hwrm_set_link_common(bp, req);
10622 
10623 	rc = hwrm_req_send(bp, req);
10624 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
10625 		/* since changing of pause setting doesn't trigger any link
10626 		 * change event, the driver needs to update the current pause
10627 		 * result upon successfully return of the phy_cfg command
10628 		 */
10629 		bp->link_info.pause =
10630 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
10631 		bp->link_info.auto_pause_setting = 0;
10632 		if (!bp->link_info.force_link_chng)
10633 			bnxt_report_link(bp);
10634 	}
10635 	bp->link_info.force_link_chng = false;
10636 	return rc;
10637 }
10638 
10639 static void bnxt_hwrm_set_eee(struct bnxt *bp,
10640 			      struct hwrm_port_phy_cfg_input *req)
10641 {
10642 	struct ethtool_eee *eee = &bp->eee;
10643 
10644 	if (eee->eee_enabled) {
10645 		u16 eee_speeds;
10646 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
10647 
10648 		if (eee->tx_lpi_enabled)
10649 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
10650 		else
10651 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
10652 
10653 		req->flags |= cpu_to_le32(flags);
10654 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
10655 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
10656 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
10657 	} else {
10658 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
10659 	}
10660 }
10661 
10662 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
10663 {
10664 	struct hwrm_port_phy_cfg_input *req;
10665 	int rc;
10666 
10667 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
10668 	if (rc)
10669 		return rc;
10670 
10671 	if (set_pause)
10672 		bnxt_hwrm_set_pause_common(bp, req);
10673 
10674 	bnxt_hwrm_set_link_common(bp, req);
10675 
10676 	if (set_eee)
10677 		bnxt_hwrm_set_eee(bp, req);
10678 	return hwrm_req_send(bp, req);
10679 }
10680 
10681 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
10682 {
10683 	struct hwrm_port_phy_cfg_input *req;
10684 	int rc;
10685 
10686 	if (!BNXT_SINGLE_PF(bp))
10687 		return 0;
10688 
10689 	if (pci_num_vf(bp->pdev) &&
10690 	    !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
10691 		return 0;
10692 
10693 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
10694 	if (rc)
10695 		return rc;
10696 
10697 	req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
10698 	rc = hwrm_req_send(bp, req);
10699 	if (!rc) {
10700 		mutex_lock(&bp->link_lock);
10701 		/* Device is not obliged link down in certain scenarios, even
10702 		 * when forced. Setting the state unknown is consistent with
10703 		 * driver startup and will force link state to be reported
10704 		 * during subsequent open based on PORT_PHY_QCFG.
10705 		 */
10706 		bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN;
10707 		mutex_unlock(&bp->link_lock);
10708 	}
10709 	return rc;
10710 }
10711 
10712 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
10713 {
10714 #ifdef CONFIG_TEE_BNXT_FW
10715 	int rc = tee_bnxt_fw_load();
10716 
10717 	if (rc)
10718 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
10719 
10720 	return rc;
10721 #else
10722 	netdev_err(bp->dev, "OP-TEE not supported\n");
10723 	return -ENODEV;
10724 #endif
10725 }
10726 
10727 static int bnxt_try_recover_fw(struct bnxt *bp)
10728 {
10729 	if (bp->fw_health && bp->fw_health->status_reliable) {
10730 		int retry = 0, rc;
10731 		u32 sts;
10732 
10733 		do {
10734 			sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
10735 			rc = bnxt_hwrm_poll(bp);
10736 			if (!BNXT_FW_IS_BOOTING(sts) &&
10737 			    !BNXT_FW_IS_RECOVERING(sts))
10738 				break;
10739 			retry++;
10740 		} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
10741 
10742 		if (!BNXT_FW_IS_HEALTHY(sts)) {
10743 			netdev_err(bp->dev,
10744 				   "Firmware not responding, status: 0x%x\n",
10745 				   sts);
10746 			rc = -ENODEV;
10747 		}
10748 		if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
10749 			netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
10750 			return bnxt_fw_reset_via_optee(bp);
10751 		}
10752 		return rc;
10753 	}
10754 
10755 	return -ENODEV;
10756 }
10757 
10758 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset)
10759 {
10760 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10761 
10762 	if (!BNXT_NEW_RM(bp))
10763 		return; /* no resource reservations required */
10764 
10765 	hw_resc->resv_cp_rings = 0;
10766 	hw_resc->resv_stat_ctxs = 0;
10767 	hw_resc->resv_irqs = 0;
10768 	hw_resc->resv_tx_rings = 0;
10769 	hw_resc->resv_rx_rings = 0;
10770 	hw_resc->resv_hw_ring_grps = 0;
10771 	hw_resc->resv_vnics = 0;
10772 	if (!fw_reset) {
10773 		bp->tx_nr_rings = 0;
10774 		bp->rx_nr_rings = 0;
10775 	}
10776 }
10777 
10778 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset)
10779 {
10780 	int rc;
10781 
10782 	if (!BNXT_NEW_RM(bp))
10783 		return 0; /* no resource reservations required */
10784 
10785 	rc = bnxt_hwrm_func_resc_qcaps(bp, true);
10786 	if (rc)
10787 		netdev_err(bp->dev, "resc_qcaps failed\n");
10788 
10789 	bnxt_clear_reservations(bp, fw_reset);
10790 
10791 	return rc;
10792 }
10793 
10794 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
10795 {
10796 	struct hwrm_func_drv_if_change_output *resp;
10797 	struct hwrm_func_drv_if_change_input *req;
10798 	bool fw_reset = !bp->irq_tbl;
10799 	bool resc_reinit = false;
10800 	int rc, retry = 0;
10801 	u32 flags = 0;
10802 
10803 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
10804 		return 0;
10805 
10806 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE);
10807 	if (rc)
10808 		return rc;
10809 
10810 	if (up)
10811 		req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
10812 	resp = hwrm_req_hold(bp, req);
10813 
10814 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
10815 	while (retry < BNXT_FW_IF_RETRY) {
10816 		rc = hwrm_req_send(bp, req);
10817 		if (rc != -EAGAIN)
10818 			break;
10819 
10820 		msleep(50);
10821 		retry++;
10822 	}
10823 
10824 	if (rc == -EAGAIN) {
10825 		hwrm_req_drop(bp, req);
10826 		return rc;
10827 	} else if (!rc) {
10828 		flags = le32_to_cpu(resp->flags);
10829 	} else if (up) {
10830 		rc = bnxt_try_recover_fw(bp);
10831 		fw_reset = true;
10832 	}
10833 	hwrm_req_drop(bp, req);
10834 	if (rc)
10835 		return rc;
10836 
10837 	if (!up) {
10838 		bnxt_inv_fw_health_reg(bp);
10839 		return 0;
10840 	}
10841 
10842 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
10843 		resc_reinit = true;
10844 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE ||
10845 	    test_bit(BNXT_STATE_FW_RESET_DET, &bp->state))
10846 		fw_reset = true;
10847 	else
10848 		bnxt_remap_fw_health_regs(bp);
10849 
10850 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
10851 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
10852 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10853 		return -ENODEV;
10854 	}
10855 	if (resc_reinit || fw_reset) {
10856 		if (fw_reset) {
10857 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10858 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10859 				bnxt_ulp_stop(bp);
10860 			bnxt_free_ctx_mem(bp);
10861 			bnxt_dcb_free(bp);
10862 			rc = bnxt_fw_init_one(bp);
10863 			if (rc) {
10864 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10865 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10866 				return rc;
10867 			}
10868 			bnxt_clear_int_mode(bp);
10869 			rc = bnxt_init_int_mode(bp);
10870 			if (rc) {
10871 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10872 				netdev_err(bp->dev, "init int mode failed\n");
10873 				return rc;
10874 			}
10875 		}
10876 		rc = bnxt_cancel_reservations(bp, fw_reset);
10877 	}
10878 	return rc;
10879 }
10880 
10881 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
10882 {
10883 	struct hwrm_port_led_qcaps_output *resp;
10884 	struct hwrm_port_led_qcaps_input *req;
10885 	struct bnxt_pf_info *pf = &bp->pf;
10886 	int rc;
10887 
10888 	bp->num_leds = 0;
10889 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
10890 		return 0;
10891 
10892 	rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS);
10893 	if (rc)
10894 		return rc;
10895 
10896 	req->port_id = cpu_to_le16(pf->port_id);
10897 	resp = hwrm_req_hold(bp, req);
10898 	rc = hwrm_req_send(bp, req);
10899 	if (rc) {
10900 		hwrm_req_drop(bp, req);
10901 		return rc;
10902 	}
10903 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
10904 		int i;
10905 
10906 		bp->num_leds = resp->num_leds;
10907 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
10908 						 bp->num_leds);
10909 		for (i = 0; i < bp->num_leds; i++) {
10910 			struct bnxt_led_info *led = &bp->leds[i];
10911 			__le16 caps = led->led_state_caps;
10912 
10913 			if (!led->led_group_id ||
10914 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
10915 				bp->num_leds = 0;
10916 				break;
10917 			}
10918 		}
10919 	}
10920 	hwrm_req_drop(bp, req);
10921 	return 0;
10922 }
10923 
10924 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
10925 {
10926 	struct hwrm_wol_filter_alloc_output *resp;
10927 	struct hwrm_wol_filter_alloc_input *req;
10928 	int rc;
10929 
10930 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC);
10931 	if (rc)
10932 		return rc;
10933 
10934 	req->port_id = cpu_to_le16(bp->pf.port_id);
10935 	req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
10936 	req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
10937 	memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN);
10938 
10939 	resp = hwrm_req_hold(bp, req);
10940 	rc = hwrm_req_send(bp, req);
10941 	if (!rc)
10942 		bp->wol_filter_id = resp->wol_filter_id;
10943 	hwrm_req_drop(bp, req);
10944 	return rc;
10945 }
10946 
10947 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
10948 {
10949 	struct hwrm_wol_filter_free_input *req;
10950 	int rc;
10951 
10952 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE);
10953 	if (rc)
10954 		return rc;
10955 
10956 	req->port_id = cpu_to_le16(bp->pf.port_id);
10957 	req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
10958 	req->wol_filter_id = bp->wol_filter_id;
10959 
10960 	return hwrm_req_send(bp, req);
10961 }
10962 
10963 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
10964 {
10965 	struct hwrm_wol_filter_qcfg_output *resp;
10966 	struct hwrm_wol_filter_qcfg_input *req;
10967 	u16 next_handle = 0;
10968 	int rc;
10969 
10970 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG);
10971 	if (rc)
10972 		return rc;
10973 
10974 	req->port_id = cpu_to_le16(bp->pf.port_id);
10975 	req->handle = cpu_to_le16(handle);
10976 	resp = hwrm_req_hold(bp, req);
10977 	rc = hwrm_req_send(bp, req);
10978 	if (!rc) {
10979 		next_handle = le16_to_cpu(resp->next_handle);
10980 		if (next_handle != 0) {
10981 			if (resp->wol_type ==
10982 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
10983 				bp->wol = 1;
10984 				bp->wol_filter_id = resp->wol_filter_id;
10985 			}
10986 		}
10987 	}
10988 	hwrm_req_drop(bp, req);
10989 	return next_handle;
10990 }
10991 
10992 static void bnxt_get_wol_settings(struct bnxt *bp)
10993 {
10994 	u16 handle = 0;
10995 
10996 	bp->wol = 0;
10997 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
10998 		return;
10999 
11000 	do {
11001 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
11002 	} while (handle && handle != 0xffff);
11003 }
11004 
11005 static bool bnxt_eee_config_ok(struct bnxt *bp)
11006 {
11007 	struct ethtool_eee *eee = &bp->eee;
11008 	struct bnxt_link_info *link_info = &bp->link_info;
11009 
11010 	if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
11011 		return true;
11012 
11013 	if (eee->eee_enabled) {
11014 		u32 advertising =
11015 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
11016 
11017 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
11018 			eee->eee_enabled = 0;
11019 			return false;
11020 		}
11021 		if (eee->advertised & ~advertising) {
11022 			eee->advertised = advertising & eee->supported;
11023 			return false;
11024 		}
11025 	}
11026 	return true;
11027 }
11028 
11029 static int bnxt_update_phy_setting(struct bnxt *bp)
11030 {
11031 	int rc;
11032 	bool update_link = false;
11033 	bool update_pause = false;
11034 	bool update_eee = false;
11035 	struct bnxt_link_info *link_info = &bp->link_info;
11036 
11037 	rc = bnxt_update_link(bp, true);
11038 	if (rc) {
11039 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
11040 			   rc);
11041 		return rc;
11042 	}
11043 	if (!BNXT_SINGLE_PF(bp))
11044 		return 0;
11045 
11046 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
11047 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
11048 	    link_info->req_flow_ctrl)
11049 		update_pause = true;
11050 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
11051 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
11052 		update_pause = true;
11053 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
11054 		if (BNXT_AUTO_MODE(link_info->auto_mode))
11055 			update_link = true;
11056 		if (bnxt_force_speed_updated(link_info))
11057 			update_link = true;
11058 		if (link_info->req_duplex != link_info->duplex_setting)
11059 			update_link = true;
11060 	} else {
11061 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
11062 			update_link = true;
11063 		if (bnxt_auto_speed_updated(link_info))
11064 			update_link = true;
11065 	}
11066 
11067 	/* The last close may have shutdown the link, so need to call
11068 	 * PHY_CFG to bring it back up.
11069 	 */
11070 	if (!BNXT_LINK_IS_UP(bp))
11071 		update_link = true;
11072 
11073 	if (!bnxt_eee_config_ok(bp))
11074 		update_eee = true;
11075 
11076 	if (update_link)
11077 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
11078 	else if (update_pause)
11079 		rc = bnxt_hwrm_set_pause(bp);
11080 	if (rc) {
11081 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
11082 			   rc);
11083 		return rc;
11084 	}
11085 
11086 	return rc;
11087 }
11088 
11089 /* Common routine to pre-map certain register block to different GRC window.
11090  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
11091  * in PF and 3 windows in VF that can be customized to map in different
11092  * register blocks.
11093  */
11094 static void bnxt_preset_reg_win(struct bnxt *bp)
11095 {
11096 	if (BNXT_PF(bp)) {
11097 		/* CAG registers map to GRC window #4 */
11098 		writel(BNXT_CAG_REG_BASE,
11099 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
11100 	}
11101 }
11102 
11103 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
11104 
11105 static int bnxt_reinit_after_abort(struct bnxt *bp)
11106 {
11107 	int rc;
11108 
11109 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11110 		return -EBUSY;
11111 
11112 	if (bp->dev->reg_state == NETREG_UNREGISTERED)
11113 		return -ENODEV;
11114 
11115 	rc = bnxt_fw_init_one(bp);
11116 	if (!rc) {
11117 		bnxt_clear_int_mode(bp);
11118 		rc = bnxt_init_int_mode(bp);
11119 		if (!rc) {
11120 			clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
11121 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
11122 		}
11123 	}
11124 	return rc;
11125 }
11126 
11127 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
11128 {
11129 	int rc = 0;
11130 
11131 	bnxt_preset_reg_win(bp);
11132 	netif_carrier_off(bp->dev);
11133 	if (irq_re_init) {
11134 		/* Reserve rings now if none were reserved at driver probe. */
11135 		rc = bnxt_init_dflt_ring_mode(bp);
11136 		if (rc) {
11137 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
11138 			return rc;
11139 		}
11140 	}
11141 	rc = bnxt_reserve_rings(bp, irq_re_init);
11142 	if (rc)
11143 		return rc;
11144 	if ((bp->flags & BNXT_FLAG_RFS) &&
11145 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
11146 		/* disable RFS if falling back to INTA */
11147 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
11148 		bp->flags &= ~BNXT_FLAG_RFS;
11149 	}
11150 
11151 	rc = bnxt_alloc_mem(bp, irq_re_init);
11152 	if (rc) {
11153 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
11154 		goto open_err_free_mem;
11155 	}
11156 
11157 	if (irq_re_init) {
11158 		bnxt_init_napi(bp);
11159 		rc = bnxt_request_irq(bp);
11160 		if (rc) {
11161 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
11162 			goto open_err_irq;
11163 		}
11164 	}
11165 
11166 	rc = bnxt_init_nic(bp, irq_re_init);
11167 	if (rc) {
11168 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
11169 		goto open_err_irq;
11170 	}
11171 
11172 	bnxt_enable_napi(bp);
11173 	bnxt_debug_dev_init(bp);
11174 
11175 	if (link_re_init) {
11176 		mutex_lock(&bp->link_lock);
11177 		rc = bnxt_update_phy_setting(bp);
11178 		mutex_unlock(&bp->link_lock);
11179 		if (rc) {
11180 			netdev_warn(bp->dev, "failed to update phy settings\n");
11181 			if (BNXT_SINGLE_PF(bp)) {
11182 				bp->link_info.phy_retry = true;
11183 				bp->link_info.phy_retry_expires =
11184 					jiffies + 5 * HZ;
11185 			}
11186 		}
11187 	}
11188 
11189 	if (irq_re_init)
11190 		udp_tunnel_nic_reset_ntf(bp->dev);
11191 
11192 	if (bp->tx_nr_rings_xdp < num_possible_cpus()) {
11193 		if (!static_key_enabled(&bnxt_xdp_locking_key))
11194 			static_branch_enable(&bnxt_xdp_locking_key);
11195 	} else if (static_key_enabled(&bnxt_xdp_locking_key)) {
11196 		static_branch_disable(&bnxt_xdp_locking_key);
11197 	}
11198 	set_bit(BNXT_STATE_OPEN, &bp->state);
11199 	bnxt_enable_int(bp);
11200 	/* Enable TX queues */
11201 	bnxt_tx_enable(bp);
11202 	mod_timer(&bp->timer, jiffies + bp->current_interval);
11203 	/* Poll link status and check for SFP+ module status */
11204 	mutex_lock(&bp->link_lock);
11205 	bnxt_get_port_module_status(bp);
11206 	mutex_unlock(&bp->link_lock);
11207 
11208 	/* VF-reps may need to be re-opened after the PF is re-opened */
11209 	if (BNXT_PF(bp))
11210 		bnxt_vf_reps_open(bp);
11211 	bnxt_ptp_init_rtc(bp, true);
11212 	bnxt_ptp_cfg_tstamp_filters(bp);
11213 	return 0;
11214 
11215 open_err_irq:
11216 	bnxt_del_napi(bp);
11217 
11218 open_err_free_mem:
11219 	bnxt_free_skbs(bp);
11220 	bnxt_free_irq(bp);
11221 	bnxt_free_mem(bp, true);
11222 	return rc;
11223 }
11224 
11225 /* rtnl_lock held */
11226 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
11227 {
11228 	int rc = 0;
11229 
11230 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
11231 		rc = -EIO;
11232 	if (!rc)
11233 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
11234 	if (rc) {
11235 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
11236 		dev_close(bp->dev);
11237 	}
11238 	return rc;
11239 }
11240 
11241 /* rtnl_lock held, open the NIC half way by allocating all resources, but
11242  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
11243  * self tests.
11244  */
11245 int bnxt_half_open_nic(struct bnxt *bp)
11246 {
11247 	int rc = 0;
11248 
11249 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
11250 		netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n");
11251 		rc = -ENODEV;
11252 		goto half_open_err;
11253 	}
11254 
11255 	rc = bnxt_alloc_mem(bp, true);
11256 	if (rc) {
11257 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
11258 		goto half_open_err;
11259 	}
11260 	set_bit(BNXT_STATE_HALF_OPEN, &bp->state);
11261 	rc = bnxt_init_nic(bp, true);
11262 	if (rc) {
11263 		clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
11264 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
11265 		goto half_open_err;
11266 	}
11267 	return 0;
11268 
11269 half_open_err:
11270 	bnxt_free_skbs(bp);
11271 	bnxt_free_mem(bp, true);
11272 	dev_close(bp->dev);
11273 	return rc;
11274 }
11275 
11276 /* rtnl_lock held, this call can only be made after a previous successful
11277  * call to bnxt_half_open_nic().
11278  */
11279 void bnxt_half_close_nic(struct bnxt *bp)
11280 {
11281 	bnxt_hwrm_resource_free(bp, false, true);
11282 	bnxt_free_skbs(bp);
11283 	bnxt_free_mem(bp, true);
11284 	clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
11285 }
11286 
11287 void bnxt_reenable_sriov(struct bnxt *bp)
11288 {
11289 	if (BNXT_PF(bp)) {
11290 		struct bnxt_pf_info *pf = &bp->pf;
11291 		int n = pf->active_vfs;
11292 
11293 		if (n)
11294 			bnxt_cfg_hw_sriov(bp, &n, true);
11295 	}
11296 }
11297 
11298 static int bnxt_open(struct net_device *dev)
11299 {
11300 	struct bnxt *bp = netdev_priv(dev);
11301 	int rc;
11302 
11303 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
11304 		rc = bnxt_reinit_after_abort(bp);
11305 		if (rc) {
11306 			if (rc == -EBUSY)
11307 				netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
11308 			else
11309 				netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
11310 			return -ENODEV;
11311 		}
11312 	}
11313 
11314 	rc = bnxt_hwrm_if_change(bp, true);
11315 	if (rc)
11316 		return rc;
11317 
11318 	rc = __bnxt_open_nic(bp, true, true);
11319 	if (rc) {
11320 		bnxt_hwrm_if_change(bp, false);
11321 	} else {
11322 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
11323 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11324 				bnxt_ulp_start(bp, 0);
11325 				bnxt_reenable_sriov(bp);
11326 			}
11327 		}
11328 	}
11329 
11330 	return rc;
11331 }
11332 
11333 static bool bnxt_drv_busy(struct bnxt *bp)
11334 {
11335 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
11336 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
11337 }
11338 
11339 static void bnxt_get_ring_stats(struct bnxt *bp,
11340 				struct rtnl_link_stats64 *stats);
11341 
11342 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
11343 			     bool link_re_init)
11344 {
11345 	/* Close the VF-reps before closing PF */
11346 	if (BNXT_PF(bp))
11347 		bnxt_vf_reps_close(bp);
11348 
11349 	/* Change device state to avoid TX queue wake up's */
11350 	bnxt_tx_disable(bp);
11351 
11352 	clear_bit(BNXT_STATE_OPEN, &bp->state);
11353 	smp_mb__after_atomic();
11354 	while (bnxt_drv_busy(bp))
11355 		msleep(20);
11356 
11357 	/* Flush rings and disable interrupts */
11358 	bnxt_shutdown_nic(bp, irq_re_init);
11359 
11360 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
11361 
11362 	bnxt_debug_dev_exit(bp);
11363 	bnxt_disable_napi(bp);
11364 	del_timer_sync(&bp->timer);
11365 	bnxt_free_skbs(bp);
11366 
11367 	/* Save ring stats before shutdown */
11368 	if (bp->bnapi && irq_re_init) {
11369 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
11370 		bnxt_get_ring_err_stats(bp, &bp->ring_err_stats_prev);
11371 	}
11372 	if (irq_re_init) {
11373 		bnxt_free_irq(bp);
11374 		bnxt_del_napi(bp);
11375 	}
11376 	bnxt_free_mem(bp, irq_re_init);
11377 }
11378 
11379 void bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
11380 {
11381 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11382 		/* If we get here, it means firmware reset is in progress
11383 		 * while we are trying to close.  We can safely proceed with
11384 		 * the close because we are holding rtnl_lock().  Some firmware
11385 		 * messages may fail as we proceed to close.  We set the
11386 		 * ABORT_ERR flag here so that the FW reset thread will later
11387 		 * abort when it gets the rtnl_lock() and sees the flag.
11388 		 */
11389 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
11390 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
11391 	}
11392 
11393 #ifdef CONFIG_BNXT_SRIOV
11394 	if (bp->sriov_cfg) {
11395 		int rc;
11396 
11397 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
11398 						      !bp->sriov_cfg,
11399 						      BNXT_SRIOV_CFG_WAIT_TMO);
11400 		if (!rc)
11401 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete, proceeding to close!\n");
11402 		else if (rc < 0)
11403 			netdev_warn(bp->dev, "SRIOV config operation interrupted, proceeding to close!\n");
11404 	}
11405 #endif
11406 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
11407 }
11408 
11409 static int bnxt_close(struct net_device *dev)
11410 {
11411 	struct bnxt *bp = netdev_priv(dev);
11412 
11413 	bnxt_close_nic(bp, true, true);
11414 	bnxt_hwrm_shutdown_link(bp);
11415 	bnxt_hwrm_if_change(bp, false);
11416 	return 0;
11417 }
11418 
11419 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
11420 				   u16 *val)
11421 {
11422 	struct hwrm_port_phy_mdio_read_output *resp;
11423 	struct hwrm_port_phy_mdio_read_input *req;
11424 	int rc;
11425 
11426 	if (bp->hwrm_spec_code < 0x10a00)
11427 		return -EOPNOTSUPP;
11428 
11429 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ);
11430 	if (rc)
11431 		return rc;
11432 
11433 	req->port_id = cpu_to_le16(bp->pf.port_id);
11434 	req->phy_addr = phy_addr;
11435 	req->reg_addr = cpu_to_le16(reg & 0x1f);
11436 	if (mdio_phy_id_is_c45(phy_addr)) {
11437 		req->cl45_mdio = 1;
11438 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
11439 		req->dev_addr = mdio_phy_id_devad(phy_addr);
11440 		req->reg_addr = cpu_to_le16(reg);
11441 	}
11442 
11443 	resp = hwrm_req_hold(bp, req);
11444 	rc = hwrm_req_send(bp, req);
11445 	if (!rc)
11446 		*val = le16_to_cpu(resp->reg_data);
11447 	hwrm_req_drop(bp, req);
11448 	return rc;
11449 }
11450 
11451 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
11452 				    u16 val)
11453 {
11454 	struct hwrm_port_phy_mdio_write_input *req;
11455 	int rc;
11456 
11457 	if (bp->hwrm_spec_code < 0x10a00)
11458 		return -EOPNOTSUPP;
11459 
11460 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE);
11461 	if (rc)
11462 		return rc;
11463 
11464 	req->port_id = cpu_to_le16(bp->pf.port_id);
11465 	req->phy_addr = phy_addr;
11466 	req->reg_addr = cpu_to_le16(reg & 0x1f);
11467 	if (mdio_phy_id_is_c45(phy_addr)) {
11468 		req->cl45_mdio = 1;
11469 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
11470 		req->dev_addr = mdio_phy_id_devad(phy_addr);
11471 		req->reg_addr = cpu_to_le16(reg);
11472 	}
11473 	req->reg_data = cpu_to_le16(val);
11474 
11475 	return hwrm_req_send(bp, req);
11476 }
11477 
11478 /* rtnl_lock held */
11479 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
11480 {
11481 	struct mii_ioctl_data *mdio = if_mii(ifr);
11482 	struct bnxt *bp = netdev_priv(dev);
11483 	int rc;
11484 
11485 	switch (cmd) {
11486 	case SIOCGMIIPHY:
11487 		mdio->phy_id = bp->link_info.phy_addr;
11488 
11489 		fallthrough;
11490 	case SIOCGMIIREG: {
11491 		u16 mii_regval = 0;
11492 
11493 		if (!netif_running(dev))
11494 			return -EAGAIN;
11495 
11496 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
11497 					     &mii_regval);
11498 		mdio->val_out = mii_regval;
11499 		return rc;
11500 	}
11501 
11502 	case SIOCSMIIREG:
11503 		if (!netif_running(dev))
11504 			return -EAGAIN;
11505 
11506 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
11507 						mdio->val_in);
11508 
11509 	case SIOCSHWTSTAMP:
11510 		return bnxt_hwtstamp_set(dev, ifr);
11511 
11512 	case SIOCGHWTSTAMP:
11513 		return bnxt_hwtstamp_get(dev, ifr);
11514 
11515 	default:
11516 		/* do nothing */
11517 		break;
11518 	}
11519 	return -EOPNOTSUPP;
11520 }
11521 
11522 static void bnxt_get_ring_stats(struct bnxt *bp,
11523 				struct rtnl_link_stats64 *stats)
11524 {
11525 	int i;
11526 
11527 	for (i = 0; i < bp->cp_nr_rings; i++) {
11528 		struct bnxt_napi *bnapi = bp->bnapi[i];
11529 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
11530 		u64 *sw = cpr->stats.sw_stats;
11531 
11532 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
11533 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
11534 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
11535 
11536 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
11537 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
11538 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
11539 
11540 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
11541 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
11542 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
11543 
11544 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
11545 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
11546 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
11547 
11548 		stats->rx_missed_errors +=
11549 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
11550 
11551 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
11552 
11553 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
11554 
11555 		stats->rx_dropped +=
11556 			cpr->sw_stats.rx.rx_netpoll_discards +
11557 			cpr->sw_stats.rx.rx_oom_discards;
11558 	}
11559 }
11560 
11561 static void bnxt_add_prev_stats(struct bnxt *bp,
11562 				struct rtnl_link_stats64 *stats)
11563 {
11564 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
11565 
11566 	stats->rx_packets += prev_stats->rx_packets;
11567 	stats->tx_packets += prev_stats->tx_packets;
11568 	stats->rx_bytes += prev_stats->rx_bytes;
11569 	stats->tx_bytes += prev_stats->tx_bytes;
11570 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
11571 	stats->multicast += prev_stats->multicast;
11572 	stats->rx_dropped += prev_stats->rx_dropped;
11573 	stats->tx_dropped += prev_stats->tx_dropped;
11574 }
11575 
11576 static void
11577 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
11578 {
11579 	struct bnxt *bp = netdev_priv(dev);
11580 
11581 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
11582 	/* Make sure bnxt_close_nic() sees that we are reading stats before
11583 	 * we check the BNXT_STATE_OPEN flag.
11584 	 */
11585 	smp_mb__after_atomic();
11586 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11587 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
11588 		*stats = bp->net_stats_prev;
11589 		return;
11590 	}
11591 
11592 	bnxt_get_ring_stats(bp, stats);
11593 	bnxt_add_prev_stats(bp, stats);
11594 
11595 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
11596 		u64 *rx = bp->port_stats.sw_stats;
11597 		u64 *tx = bp->port_stats.sw_stats +
11598 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
11599 
11600 		stats->rx_crc_errors =
11601 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
11602 		stats->rx_frame_errors =
11603 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
11604 		stats->rx_length_errors =
11605 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
11606 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
11607 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
11608 		stats->rx_errors =
11609 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
11610 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
11611 		stats->collisions =
11612 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
11613 		stats->tx_fifo_errors =
11614 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
11615 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
11616 	}
11617 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
11618 }
11619 
11620 static void bnxt_get_one_ring_err_stats(struct bnxt *bp,
11621 					struct bnxt_total_ring_err_stats *stats,
11622 					struct bnxt_cp_ring_info *cpr)
11623 {
11624 	struct bnxt_sw_stats *sw_stats = &cpr->sw_stats;
11625 	u64 *hw_stats = cpr->stats.sw_stats;
11626 
11627 	stats->rx_total_l4_csum_errors += sw_stats->rx.rx_l4_csum_errors;
11628 	stats->rx_total_resets += sw_stats->rx.rx_resets;
11629 	stats->rx_total_buf_errors += sw_stats->rx.rx_buf_errors;
11630 	stats->rx_total_oom_discards += sw_stats->rx.rx_oom_discards;
11631 	stats->rx_total_netpoll_discards += sw_stats->rx.rx_netpoll_discards;
11632 	stats->rx_total_ring_discards +=
11633 		BNXT_GET_RING_STATS64(hw_stats, rx_discard_pkts);
11634 	stats->tx_total_resets += sw_stats->tx.tx_resets;
11635 	stats->tx_total_ring_discards +=
11636 		BNXT_GET_RING_STATS64(hw_stats, tx_discard_pkts);
11637 	stats->total_missed_irqs += sw_stats->cmn.missed_irqs;
11638 }
11639 
11640 void bnxt_get_ring_err_stats(struct bnxt *bp,
11641 			     struct bnxt_total_ring_err_stats *stats)
11642 {
11643 	int i;
11644 
11645 	for (i = 0; i < bp->cp_nr_rings; i++)
11646 		bnxt_get_one_ring_err_stats(bp, stats, &bp->bnapi[i]->cp_ring);
11647 }
11648 
11649 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
11650 {
11651 	struct net_device *dev = bp->dev;
11652 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11653 	struct netdev_hw_addr *ha;
11654 	u8 *haddr;
11655 	int mc_count = 0;
11656 	bool update = false;
11657 	int off = 0;
11658 
11659 	netdev_for_each_mc_addr(ha, dev) {
11660 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
11661 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
11662 			vnic->mc_list_count = 0;
11663 			return false;
11664 		}
11665 		haddr = ha->addr;
11666 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
11667 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
11668 			update = true;
11669 		}
11670 		off += ETH_ALEN;
11671 		mc_count++;
11672 	}
11673 	if (mc_count)
11674 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
11675 
11676 	if (mc_count != vnic->mc_list_count) {
11677 		vnic->mc_list_count = mc_count;
11678 		update = true;
11679 	}
11680 	return update;
11681 }
11682 
11683 static bool bnxt_uc_list_updated(struct bnxt *bp)
11684 {
11685 	struct net_device *dev = bp->dev;
11686 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11687 	struct netdev_hw_addr *ha;
11688 	int off = 0;
11689 
11690 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
11691 		return true;
11692 
11693 	netdev_for_each_uc_addr(ha, dev) {
11694 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
11695 			return true;
11696 
11697 		off += ETH_ALEN;
11698 	}
11699 	return false;
11700 }
11701 
11702 static void bnxt_set_rx_mode(struct net_device *dev)
11703 {
11704 	struct bnxt *bp = netdev_priv(dev);
11705 	struct bnxt_vnic_info *vnic;
11706 	bool mc_update = false;
11707 	bool uc_update;
11708 	u32 mask;
11709 
11710 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
11711 		return;
11712 
11713 	vnic = &bp->vnic_info[0];
11714 	mask = vnic->rx_mask;
11715 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
11716 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
11717 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
11718 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
11719 
11720 	if (dev->flags & IFF_PROMISC)
11721 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11722 
11723 	uc_update = bnxt_uc_list_updated(bp);
11724 
11725 	if (dev->flags & IFF_BROADCAST)
11726 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
11727 	if (dev->flags & IFF_ALLMULTI) {
11728 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
11729 		vnic->mc_list_count = 0;
11730 	} else if (dev->flags & IFF_MULTICAST) {
11731 		mc_update = bnxt_mc_list_updated(bp, &mask);
11732 	}
11733 
11734 	if (mask != vnic->rx_mask || uc_update || mc_update) {
11735 		vnic->rx_mask = mask;
11736 
11737 		bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT);
11738 	}
11739 }
11740 
11741 static int bnxt_cfg_rx_mode(struct bnxt *bp)
11742 {
11743 	struct net_device *dev = bp->dev;
11744 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11745 	struct hwrm_cfa_l2_filter_free_input *req;
11746 	struct netdev_hw_addr *ha;
11747 	int i, off = 0, rc;
11748 	bool uc_update;
11749 
11750 	netif_addr_lock_bh(dev);
11751 	uc_update = bnxt_uc_list_updated(bp);
11752 	netif_addr_unlock_bh(dev);
11753 
11754 	if (!uc_update)
11755 		goto skip_uc;
11756 
11757 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
11758 	if (rc)
11759 		return rc;
11760 	hwrm_req_hold(bp, req);
11761 	for (i = 1; i < vnic->uc_filter_count; i++) {
11762 		req->l2_filter_id = vnic->fw_l2_filter_id[i];
11763 
11764 		rc = hwrm_req_send(bp, req);
11765 	}
11766 	hwrm_req_drop(bp, req);
11767 
11768 	vnic->uc_filter_count = 1;
11769 
11770 	netif_addr_lock_bh(dev);
11771 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
11772 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11773 	} else {
11774 		netdev_for_each_uc_addr(ha, dev) {
11775 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
11776 			off += ETH_ALEN;
11777 			vnic->uc_filter_count++;
11778 		}
11779 	}
11780 	netif_addr_unlock_bh(dev);
11781 
11782 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
11783 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
11784 		if (rc) {
11785 			if (BNXT_VF(bp) && rc == -ENODEV) {
11786 				if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
11787 					netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n");
11788 				else
11789 					netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n");
11790 				rc = 0;
11791 			} else {
11792 				netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
11793 			}
11794 			vnic->uc_filter_count = i;
11795 			return rc;
11796 		}
11797 	}
11798 	if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
11799 		netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n");
11800 
11801 skip_uc:
11802 	if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
11803 	    !bnxt_promisc_ok(bp))
11804 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11805 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
11806 	if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) {
11807 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
11808 			    rc);
11809 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
11810 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
11811 		vnic->mc_list_count = 0;
11812 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
11813 	}
11814 	if (rc)
11815 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
11816 			   rc);
11817 
11818 	return rc;
11819 }
11820 
11821 static bool bnxt_can_reserve_rings(struct bnxt *bp)
11822 {
11823 #ifdef CONFIG_BNXT_SRIOV
11824 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
11825 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
11826 
11827 		/* No minimum rings were provisioned by the PF.  Don't
11828 		 * reserve rings by default when device is down.
11829 		 */
11830 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
11831 			return true;
11832 
11833 		if (!netif_running(bp->dev))
11834 			return false;
11835 	}
11836 #endif
11837 	return true;
11838 }
11839 
11840 /* If the chip and firmware supports RFS */
11841 static bool bnxt_rfs_supported(struct bnxt *bp)
11842 {
11843 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
11844 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
11845 			return true;
11846 		return false;
11847 	}
11848 	/* 212 firmware is broken for aRFS */
11849 	if (BNXT_FW_MAJ(bp) == 212)
11850 		return false;
11851 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
11852 		return true;
11853 	if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP)
11854 		return true;
11855 	return false;
11856 }
11857 
11858 /* If runtime conditions support RFS */
11859 static bool bnxt_rfs_capable(struct bnxt *bp)
11860 {
11861 #ifdef CONFIG_RFS_ACCEL
11862 	int vnics, max_vnics, max_rss_ctxs;
11863 
11864 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
11865 		return bnxt_rfs_supported(bp);
11866 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings)
11867 		return false;
11868 
11869 	vnics = 1 + bp->rx_nr_rings;
11870 	max_vnics = bnxt_get_max_func_vnics(bp);
11871 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
11872 
11873 	/* RSS contexts not a limiting factor */
11874 	if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP)
11875 		max_rss_ctxs = max_vnics;
11876 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
11877 		if (bp->rx_nr_rings > 1)
11878 			netdev_warn(bp->dev,
11879 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
11880 				    min(max_rss_ctxs - 1, max_vnics - 1));
11881 		return false;
11882 	}
11883 
11884 	if (!BNXT_NEW_RM(bp))
11885 		return true;
11886 
11887 	if (vnics == bp->hw_resc.resv_vnics)
11888 		return true;
11889 
11890 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
11891 	if (vnics <= bp->hw_resc.resv_vnics)
11892 		return true;
11893 
11894 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
11895 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
11896 	return false;
11897 #else
11898 	return false;
11899 #endif
11900 }
11901 
11902 static netdev_features_t bnxt_fix_features(struct net_device *dev,
11903 					   netdev_features_t features)
11904 {
11905 	struct bnxt *bp = netdev_priv(dev);
11906 	netdev_features_t vlan_features;
11907 
11908 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
11909 		features &= ~NETIF_F_NTUPLE;
11910 
11911 	if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog)
11912 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11913 
11914 	if (!(features & NETIF_F_GRO))
11915 		features &= ~NETIF_F_GRO_HW;
11916 
11917 	if (features & NETIF_F_GRO_HW)
11918 		features &= ~NETIF_F_LRO;
11919 
11920 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
11921 	 * turned on or off together.
11922 	 */
11923 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
11924 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
11925 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11926 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11927 		else if (vlan_features)
11928 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
11929 	}
11930 #ifdef CONFIG_BNXT_SRIOV
11931 	if (BNXT_VF(bp) && bp->vf.vlan)
11932 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11933 #endif
11934 	return features;
11935 }
11936 
11937 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
11938 {
11939 	struct bnxt *bp = netdev_priv(dev);
11940 	u32 flags = bp->flags;
11941 	u32 changes;
11942 	int rc = 0;
11943 	bool re_init = false;
11944 	bool update_tpa = false;
11945 
11946 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
11947 	if (features & NETIF_F_GRO_HW)
11948 		flags |= BNXT_FLAG_GRO;
11949 	else if (features & NETIF_F_LRO)
11950 		flags |= BNXT_FLAG_LRO;
11951 
11952 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
11953 		flags &= ~BNXT_FLAG_TPA;
11954 
11955 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11956 		flags |= BNXT_FLAG_STRIP_VLAN;
11957 
11958 	if (features & NETIF_F_NTUPLE)
11959 		flags |= BNXT_FLAG_RFS;
11960 
11961 	changes = flags ^ bp->flags;
11962 	if (changes & BNXT_FLAG_TPA) {
11963 		update_tpa = true;
11964 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
11965 		    (flags & BNXT_FLAG_TPA) == 0 ||
11966 		    (bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
11967 			re_init = true;
11968 	}
11969 
11970 	if (changes & ~BNXT_FLAG_TPA)
11971 		re_init = true;
11972 
11973 	if (flags != bp->flags) {
11974 		u32 old_flags = bp->flags;
11975 
11976 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11977 			bp->flags = flags;
11978 			if (update_tpa)
11979 				bnxt_set_ring_params(bp);
11980 			return rc;
11981 		}
11982 
11983 		if (re_init) {
11984 			bnxt_close_nic(bp, false, false);
11985 			bp->flags = flags;
11986 			if (update_tpa)
11987 				bnxt_set_ring_params(bp);
11988 
11989 			return bnxt_open_nic(bp, false, false);
11990 		}
11991 		if (update_tpa) {
11992 			bp->flags = flags;
11993 			rc = bnxt_set_tpa(bp,
11994 					  (flags & BNXT_FLAG_TPA) ?
11995 					  true : false);
11996 			if (rc)
11997 				bp->flags = old_flags;
11998 		}
11999 	}
12000 	return rc;
12001 }
12002 
12003 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
12004 			      u8 **nextp)
12005 {
12006 	struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
12007 	struct hop_jumbo_hdr *jhdr;
12008 	int hdr_count = 0;
12009 	u8 *nexthdr;
12010 	int start;
12011 
12012 	/* Check that there are at most 2 IPv6 extension headers, no
12013 	 * fragment header, and each is <= 64 bytes.
12014 	 */
12015 	start = nw_off + sizeof(*ip6h);
12016 	nexthdr = &ip6h->nexthdr;
12017 	while (ipv6_ext_hdr(*nexthdr)) {
12018 		struct ipv6_opt_hdr *hp;
12019 		int hdrlen;
12020 
12021 		if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
12022 		    *nexthdr == NEXTHDR_FRAGMENT)
12023 			return false;
12024 		hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
12025 					  skb_headlen(skb), NULL);
12026 		if (!hp)
12027 			return false;
12028 		if (*nexthdr == NEXTHDR_AUTH)
12029 			hdrlen = ipv6_authlen(hp);
12030 		else
12031 			hdrlen = ipv6_optlen(hp);
12032 
12033 		if (hdrlen > 64)
12034 			return false;
12035 
12036 		/* The ext header may be a hop-by-hop header inserted for
12037 		 * big TCP purposes. This will be removed before sending
12038 		 * from NIC, so do not count it.
12039 		 */
12040 		if (*nexthdr == NEXTHDR_HOP) {
12041 			if (likely(skb->len <= GRO_LEGACY_MAX_SIZE))
12042 				goto increment_hdr;
12043 
12044 			jhdr = (struct hop_jumbo_hdr *)hp;
12045 			if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 ||
12046 			    jhdr->nexthdr != IPPROTO_TCP)
12047 				goto increment_hdr;
12048 
12049 			goto next_hdr;
12050 		}
12051 increment_hdr:
12052 		hdr_count++;
12053 next_hdr:
12054 		nexthdr = &hp->nexthdr;
12055 		start += hdrlen;
12056 	}
12057 	if (nextp) {
12058 		/* Caller will check inner protocol */
12059 		if (skb->encapsulation) {
12060 			*nextp = nexthdr;
12061 			return true;
12062 		}
12063 		*nextp = NULL;
12064 	}
12065 	/* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
12066 	return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
12067 }
12068 
12069 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
12070 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
12071 {
12072 	struct udphdr *uh = udp_hdr(skb);
12073 	__be16 udp_port = uh->dest;
12074 
12075 	if (udp_port != bp->vxlan_port && udp_port != bp->nge_port &&
12076 	    udp_port != bp->vxlan_gpe_port)
12077 		return false;
12078 	if (skb->inner_protocol == htons(ETH_P_TEB)) {
12079 		struct ethhdr *eh = inner_eth_hdr(skb);
12080 
12081 		switch (eh->h_proto) {
12082 		case htons(ETH_P_IP):
12083 			return true;
12084 		case htons(ETH_P_IPV6):
12085 			return bnxt_exthdr_check(bp, skb,
12086 						 skb_inner_network_offset(skb),
12087 						 NULL);
12088 		}
12089 	} else if (skb->inner_protocol == htons(ETH_P_IP)) {
12090 		return true;
12091 	} else if (skb->inner_protocol == htons(ETH_P_IPV6)) {
12092 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
12093 					 NULL);
12094 	}
12095 	return false;
12096 }
12097 
12098 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
12099 {
12100 	switch (l4_proto) {
12101 	case IPPROTO_UDP:
12102 		return bnxt_udp_tunl_check(bp, skb);
12103 	case IPPROTO_IPIP:
12104 		return true;
12105 	case IPPROTO_GRE: {
12106 		switch (skb->inner_protocol) {
12107 		default:
12108 			return false;
12109 		case htons(ETH_P_IP):
12110 			return true;
12111 		case htons(ETH_P_IPV6):
12112 			fallthrough;
12113 		}
12114 	}
12115 	case IPPROTO_IPV6:
12116 		/* Check ext headers of inner ipv6 */
12117 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
12118 					 NULL);
12119 	}
12120 	return false;
12121 }
12122 
12123 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
12124 					     struct net_device *dev,
12125 					     netdev_features_t features)
12126 {
12127 	struct bnxt *bp = netdev_priv(dev);
12128 	u8 *l4_proto;
12129 
12130 	features = vlan_features_check(skb, features);
12131 	switch (vlan_get_protocol(skb)) {
12132 	case htons(ETH_P_IP):
12133 		if (!skb->encapsulation)
12134 			return features;
12135 		l4_proto = &ip_hdr(skb)->protocol;
12136 		if (bnxt_tunl_check(bp, skb, *l4_proto))
12137 			return features;
12138 		break;
12139 	case htons(ETH_P_IPV6):
12140 		if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
12141 				       &l4_proto))
12142 			break;
12143 		if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
12144 			return features;
12145 		break;
12146 	}
12147 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
12148 }
12149 
12150 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
12151 			 u32 *reg_buf)
12152 {
12153 	struct hwrm_dbg_read_direct_output *resp;
12154 	struct hwrm_dbg_read_direct_input *req;
12155 	__le32 *dbg_reg_buf;
12156 	dma_addr_t mapping;
12157 	int rc, i;
12158 
12159 	rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT);
12160 	if (rc)
12161 		return rc;
12162 
12163 	dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4,
12164 					 &mapping);
12165 	if (!dbg_reg_buf) {
12166 		rc = -ENOMEM;
12167 		goto dbg_rd_reg_exit;
12168 	}
12169 
12170 	req->host_dest_addr = cpu_to_le64(mapping);
12171 
12172 	resp = hwrm_req_hold(bp, req);
12173 	req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
12174 	req->read_len32 = cpu_to_le32(num_words);
12175 
12176 	rc = hwrm_req_send(bp, req);
12177 	if (rc || resp->error_code) {
12178 		rc = -EIO;
12179 		goto dbg_rd_reg_exit;
12180 	}
12181 	for (i = 0; i < num_words; i++)
12182 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
12183 
12184 dbg_rd_reg_exit:
12185 	hwrm_req_drop(bp, req);
12186 	return rc;
12187 }
12188 
12189 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
12190 				       u32 ring_id, u32 *prod, u32 *cons)
12191 {
12192 	struct hwrm_dbg_ring_info_get_output *resp;
12193 	struct hwrm_dbg_ring_info_get_input *req;
12194 	int rc;
12195 
12196 	rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET);
12197 	if (rc)
12198 		return rc;
12199 
12200 	req->ring_type = ring_type;
12201 	req->fw_ring_id = cpu_to_le32(ring_id);
12202 	resp = hwrm_req_hold(bp, req);
12203 	rc = hwrm_req_send(bp, req);
12204 	if (!rc) {
12205 		*prod = le32_to_cpu(resp->producer_index);
12206 		*cons = le32_to_cpu(resp->consumer_index);
12207 	}
12208 	hwrm_req_drop(bp, req);
12209 	return rc;
12210 }
12211 
12212 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
12213 {
12214 	struct bnxt_tx_ring_info *txr;
12215 	int i = bnapi->index, j;
12216 
12217 	bnxt_for_each_napi_tx(j, bnapi, txr)
12218 		netdev_info(bnapi->bp->dev, "[%d.%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
12219 			    i, j, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
12220 			    txr->tx_cons);
12221 }
12222 
12223 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
12224 {
12225 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
12226 	int i = bnapi->index;
12227 
12228 	if (!rxr)
12229 		return;
12230 
12231 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
12232 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
12233 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
12234 		    rxr->rx_sw_agg_prod);
12235 }
12236 
12237 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
12238 {
12239 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
12240 	int i = bnapi->index;
12241 
12242 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
12243 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
12244 }
12245 
12246 static void bnxt_dbg_dump_states(struct bnxt *bp)
12247 {
12248 	int i;
12249 	struct bnxt_napi *bnapi;
12250 
12251 	for (i = 0; i < bp->cp_nr_rings; i++) {
12252 		bnapi = bp->bnapi[i];
12253 		if (netif_msg_drv(bp)) {
12254 			bnxt_dump_tx_sw_state(bnapi);
12255 			bnxt_dump_rx_sw_state(bnapi);
12256 			bnxt_dump_cp_sw_state(bnapi);
12257 		}
12258 	}
12259 }
12260 
12261 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
12262 {
12263 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
12264 	struct hwrm_ring_reset_input *req;
12265 	struct bnxt_napi *bnapi = rxr->bnapi;
12266 	struct bnxt_cp_ring_info *cpr;
12267 	u16 cp_ring_id;
12268 	int rc;
12269 
12270 	rc = hwrm_req_init(bp, req, HWRM_RING_RESET);
12271 	if (rc)
12272 		return rc;
12273 
12274 	cpr = &bnapi->cp_ring;
12275 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
12276 	req->cmpl_ring = cpu_to_le16(cp_ring_id);
12277 	req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
12278 	req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
12279 	return hwrm_req_send_silent(bp, req);
12280 }
12281 
12282 static void bnxt_reset_task(struct bnxt *bp, bool silent)
12283 {
12284 	if (!silent)
12285 		bnxt_dbg_dump_states(bp);
12286 	if (netif_running(bp->dev)) {
12287 		int rc;
12288 
12289 		if (silent) {
12290 			bnxt_close_nic(bp, false, false);
12291 			bnxt_open_nic(bp, false, false);
12292 		} else {
12293 			bnxt_ulp_stop(bp);
12294 			bnxt_close_nic(bp, true, false);
12295 			rc = bnxt_open_nic(bp, true, false);
12296 			bnxt_ulp_start(bp, rc);
12297 		}
12298 	}
12299 }
12300 
12301 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
12302 {
12303 	struct bnxt *bp = netdev_priv(dev);
12304 
12305 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
12306 	bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT);
12307 }
12308 
12309 static void bnxt_fw_health_check(struct bnxt *bp)
12310 {
12311 	struct bnxt_fw_health *fw_health = bp->fw_health;
12312 	struct pci_dev *pdev = bp->pdev;
12313 	u32 val;
12314 
12315 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
12316 		return;
12317 
12318 	/* Make sure it is enabled before checking the tmr_counter. */
12319 	smp_rmb();
12320 	if (fw_health->tmr_counter) {
12321 		fw_health->tmr_counter--;
12322 		return;
12323 	}
12324 
12325 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
12326 	if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) {
12327 		fw_health->arrests++;
12328 		goto fw_reset;
12329 	}
12330 
12331 	fw_health->last_fw_heartbeat = val;
12332 
12333 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
12334 	if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) {
12335 		fw_health->discoveries++;
12336 		goto fw_reset;
12337 	}
12338 
12339 	fw_health->tmr_counter = fw_health->tmr_multiplier;
12340 	return;
12341 
12342 fw_reset:
12343 	bnxt_queue_sp_work(bp, BNXT_FW_EXCEPTION_SP_EVENT);
12344 }
12345 
12346 static void bnxt_timer(struct timer_list *t)
12347 {
12348 	struct bnxt *bp = from_timer(bp, t, timer);
12349 	struct net_device *dev = bp->dev;
12350 
12351 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
12352 		return;
12353 
12354 	if (atomic_read(&bp->intr_sem) != 0)
12355 		goto bnxt_restart_timer;
12356 
12357 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
12358 		bnxt_fw_health_check(bp);
12359 
12360 	if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks)
12361 		bnxt_queue_sp_work(bp, BNXT_PERIODIC_STATS_SP_EVENT);
12362 
12363 	if (bnxt_tc_flower_enabled(bp))
12364 		bnxt_queue_sp_work(bp, BNXT_FLOW_STATS_SP_EVENT);
12365 
12366 #ifdef CONFIG_RFS_ACCEL
12367 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count)
12368 		bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT);
12369 #endif /*CONFIG_RFS_ACCEL*/
12370 
12371 	if (bp->link_info.phy_retry) {
12372 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
12373 			bp->link_info.phy_retry = false;
12374 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
12375 		} else {
12376 			bnxt_queue_sp_work(bp, BNXT_UPDATE_PHY_SP_EVENT);
12377 		}
12378 	}
12379 
12380 	if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
12381 		bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT);
12382 
12383 	if ((BNXT_CHIP_P5(bp)) && !bp->chip_rev && netif_carrier_ok(dev))
12384 		bnxt_queue_sp_work(bp, BNXT_RING_COAL_NOW_SP_EVENT);
12385 
12386 bnxt_restart_timer:
12387 	mod_timer(&bp->timer, jiffies + bp->current_interval);
12388 }
12389 
12390 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
12391 {
12392 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
12393 	 * set.  If the device is being closed, bnxt_close() may be holding
12394 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
12395 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
12396 	 */
12397 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12398 	rtnl_lock();
12399 }
12400 
12401 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
12402 {
12403 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12404 	rtnl_unlock();
12405 }
12406 
12407 /* Only called from bnxt_sp_task() */
12408 static void bnxt_reset(struct bnxt *bp, bool silent)
12409 {
12410 	bnxt_rtnl_lock_sp(bp);
12411 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
12412 		bnxt_reset_task(bp, silent);
12413 	bnxt_rtnl_unlock_sp(bp);
12414 }
12415 
12416 /* Only called from bnxt_sp_task() */
12417 static void bnxt_rx_ring_reset(struct bnxt *bp)
12418 {
12419 	int i;
12420 
12421 	bnxt_rtnl_lock_sp(bp);
12422 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
12423 		bnxt_rtnl_unlock_sp(bp);
12424 		return;
12425 	}
12426 	/* Disable and flush TPA before resetting the RX ring */
12427 	if (bp->flags & BNXT_FLAG_TPA)
12428 		bnxt_set_tpa(bp, false);
12429 	for (i = 0; i < bp->rx_nr_rings; i++) {
12430 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
12431 		struct bnxt_cp_ring_info *cpr;
12432 		int rc;
12433 
12434 		if (!rxr->bnapi->in_reset)
12435 			continue;
12436 
12437 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
12438 		if (rc) {
12439 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
12440 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
12441 			else
12442 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
12443 					    rc);
12444 			bnxt_reset_task(bp, true);
12445 			break;
12446 		}
12447 		bnxt_free_one_rx_ring_skbs(bp, i);
12448 		rxr->rx_prod = 0;
12449 		rxr->rx_agg_prod = 0;
12450 		rxr->rx_sw_agg_prod = 0;
12451 		rxr->rx_next_cons = 0;
12452 		rxr->bnapi->in_reset = false;
12453 		bnxt_alloc_one_rx_ring(bp, i);
12454 		cpr = &rxr->bnapi->cp_ring;
12455 		cpr->sw_stats.rx.rx_resets++;
12456 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
12457 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
12458 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
12459 	}
12460 	if (bp->flags & BNXT_FLAG_TPA)
12461 		bnxt_set_tpa(bp, true);
12462 	bnxt_rtnl_unlock_sp(bp);
12463 }
12464 
12465 static void bnxt_fw_reset_close(struct bnxt *bp)
12466 {
12467 	bnxt_ulp_stop(bp);
12468 	/* When firmware is in fatal state, quiesce device and disable
12469 	 * bus master to prevent any potential bad DMAs before freeing
12470 	 * kernel memory.
12471 	 */
12472 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
12473 		u16 val = 0;
12474 
12475 		pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
12476 		if (val == 0xffff)
12477 			bp->fw_reset_min_dsecs = 0;
12478 		bnxt_tx_disable(bp);
12479 		bnxt_disable_napi(bp);
12480 		bnxt_disable_int_sync(bp);
12481 		bnxt_free_irq(bp);
12482 		bnxt_clear_int_mode(bp);
12483 		pci_disable_device(bp->pdev);
12484 	}
12485 	__bnxt_close_nic(bp, true, false);
12486 	bnxt_vf_reps_free(bp);
12487 	bnxt_clear_int_mode(bp);
12488 	bnxt_hwrm_func_drv_unrgtr(bp);
12489 	if (pci_is_enabled(bp->pdev))
12490 		pci_disable_device(bp->pdev);
12491 	bnxt_free_ctx_mem(bp);
12492 }
12493 
12494 static bool is_bnxt_fw_ok(struct bnxt *bp)
12495 {
12496 	struct bnxt_fw_health *fw_health = bp->fw_health;
12497 	bool no_heartbeat = false, has_reset = false;
12498 	u32 val;
12499 
12500 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
12501 	if (val == fw_health->last_fw_heartbeat)
12502 		no_heartbeat = true;
12503 
12504 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
12505 	if (val != fw_health->last_fw_reset_cnt)
12506 		has_reset = true;
12507 
12508 	if (!no_heartbeat && has_reset)
12509 		return true;
12510 
12511 	return false;
12512 }
12513 
12514 /* rtnl_lock is acquired before calling this function */
12515 static void bnxt_force_fw_reset(struct bnxt *bp)
12516 {
12517 	struct bnxt_fw_health *fw_health = bp->fw_health;
12518 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
12519 	u32 wait_dsecs;
12520 
12521 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
12522 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
12523 		return;
12524 
12525 	if (ptp) {
12526 		spin_lock_bh(&ptp->ptp_lock);
12527 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12528 		spin_unlock_bh(&ptp->ptp_lock);
12529 	} else {
12530 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12531 	}
12532 	bnxt_fw_reset_close(bp);
12533 	wait_dsecs = fw_health->master_func_wait_dsecs;
12534 	if (fw_health->primary) {
12535 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
12536 			wait_dsecs = 0;
12537 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
12538 	} else {
12539 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
12540 		wait_dsecs = fw_health->normal_func_wait_dsecs;
12541 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12542 	}
12543 
12544 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
12545 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
12546 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
12547 }
12548 
12549 void bnxt_fw_exception(struct bnxt *bp)
12550 {
12551 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
12552 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
12553 	bnxt_rtnl_lock_sp(bp);
12554 	bnxt_force_fw_reset(bp);
12555 	bnxt_rtnl_unlock_sp(bp);
12556 }
12557 
12558 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
12559  * < 0 on error.
12560  */
12561 static int bnxt_get_registered_vfs(struct bnxt *bp)
12562 {
12563 #ifdef CONFIG_BNXT_SRIOV
12564 	int rc;
12565 
12566 	if (!BNXT_PF(bp))
12567 		return 0;
12568 
12569 	rc = bnxt_hwrm_func_qcfg(bp);
12570 	if (rc) {
12571 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
12572 		return rc;
12573 	}
12574 	if (bp->pf.registered_vfs)
12575 		return bp->pf.registered_vfs;
12576 	if (bp->sriov_cfg)
12577 		return 1;
12578 #endif
12579 	return 0;
12580 }
12581 
12582 void bnxt_fw_reset(struct bnxt *bp)
12583 {
12584 	bnxt_rtnl_lock_sp(bp);
12585 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
12586 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
12587 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
12588 		int n = 0, tmo;
12589 
12590 		if (ptp) {
12591 			spin_lock_bh(&ptp->ptp_lock);
12592 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12593 			spin_unlock_bh(&ptp->ptp_lock);
12594 		} else {
12595 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12596 		}
12597 		if (bp->pf.active_vfs &&
12598 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
12599 			n = bnxt_get_registered_vfs(bp);
12600 		if (n < 0) {
12601 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
12602 				   n);
12603 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12604 			dev_close(bp->dev);
12605 			goto fw_reset_exit;
12606 		} else if (n > 0) {
12607 			u16 vf_tmo_dsecs = n * 10;
12608 
12609 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
12610 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
12611 			bp->fw_reset_state =
12612 				BNXT_FW_RESET_STATE_POLL_VF;
12613 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12614 			goto fw_reset_exit;
12615 		}
12616 		bnxt_fw_reset_close(bp);
12617 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12618 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
12619 			tmo = HZ / 10;
12620 		} else {
12621 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12622 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
12623 		}
12624 		bnxt_queue_fw_reset_work(bp, tmo);
12625 	}
12626 fw_reset_exit:
12627 	bnxt_rtnl_unlock_sp(bp);
12628 }
12629 
12630 static void bnxt_chk_missed_irq(struct bnxt *bp)
12631 {
12632 	int i;
12633 
12634 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
12635 		return;
12636 
12637 	for (i = 0; i < bp->cp_nr_rings; i++) {
12638 		struct bnxt_napi *bnapi = bp->bnapi[i];
12639 		struct bnxt_cp_ring_info *cpr;
12640 		u32 fw_ring_id;
12641 		int j;
12642 
12643 		if (!bnapi)
12644 			continue;
12645 
12646 		cpr = &bnapi->cp_ring;
12647 		for (j = 0; j < cpr->cp_ring_count; j++) {
12648 			struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j];
12649 			u32 val[2];
12650 
12651 			if (cpr2->has_more_work || !bnxt_has_work(bp, cpr2))
12652 				continue;
12653 
12654 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
12655 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
12656 				continue;
12657 			}
12658 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
12659 			bnxt_dbg_hwrm_ring_info_get(bp,
12660 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
12661 				fw_ring_id, &val[0], &val[1]);
12662 			cpr->sw_stats.cmn.missed_irqs++;
12663 		}
12664 	}
12665 }
12666 
12667 static void bnxt_cfg_ntp_filters(struct bnxt *);
12668 
12669 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
12670 {
12671 	struct bnxt_link_info *link_info = &bp->link_info;
12672 
12673 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
12674 		link_info->autoneg = BNXT_AUTONEG_SPEED;
12675 		if (bp->hwrm_spec_code >= 0x10201) {
12676 			if (link_info->auto_pause_setting &
12677 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
12678 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
12679 		} else {
12680 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
12681 		}
12682 		bnxt_set_auto_speed(link_info);
12683 	} else {
12684 		bnxt_set_force_speed(link_info);
12685 		link_info->req_duplex = link_info->duplex_setting;
12686 	}
12687 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
12688 		link_info->req_flow_ctrl =
12689 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
12690 	else
12691 		link_info->req_flow_ctrl = link_info->force_pause_setting;
12692 }
12693 
12694 static void bnxt_fw_echo_reply(struct bnxt *bp)
12695 {
12696 	struct bnxt_fw_health *fw_health = bp->fw_health;
12697 	struct hwrm_func_echo_response_input *req;
12698 	int rc;
12699 
12700 	rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE);
12701 	if (rc)
12702 		return;
12703 	req->event_data1 = cpu_to_le32(fw_health->echo_req_data1);
12704 	req->event_data2 = cpu_to_le32(fw_health->echo_req_data2);
12705 	hwrm_req_send(bp, req);
12706 }
12707 
12708 static void bnxt_sp_task(struct work_struct *work)
12709 {
12710 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
12711 
12712 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12713 	smp_mb__after_atomic();
12714 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
12715 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12716 		return;
12717 	}
12718 
12719 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
12720 		bnxt_cfg_rx_mode(bp);
12721 
12722 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
12723 		bnxt_cfg_ntp_filters(bp);
12724 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
12725 		bnxt_hwrm_exec_fwd_req(bp);
12726 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
12727 		bnxt_hwrm_port_qstats(bp, 0);
12728 		bnxt_hwrm_port_qstats_ext(bp, 0);
12729 		bnxt_accumulate_all_stats(bp);
12730 	}
12731 
12732 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
12733 		int rc;
12734 
12735 		mutex_lock(&bp->link_lock);
12736 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
12737 				       &bp->sp_event))
12738 			bnxt_hwrm_phy_qcaps(bp);
12739 
12740 		rc = bnxt_update_link(bp, true);
12741 		if (rc)
12742 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
12743 				   rc);
12744 
12745 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
12746 				       &bp->sp_event))
12747 			bnxt_init_ethtool_link_settings(bp);
12748 		mutex_unlock(&bp->link_lock);
12749 	}
12750 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
12751 		int rc;
12752 
12753 		mutex_lock(&bp->link_lock);
12754 		rc = bnxt_update_phy_setting(bp);
12755 		mutex_unlock(&bp->link_lock);
12756 		if (rc) {
12757 			netdev_warn(bp->dev, "update phy settings retry failed\n");
12758 		} else {
12759 			bp->link_info.phy_retry = false;
12760 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
12761 		}
12762 	}
12763 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
12764 		mutex_lock(&bp->link_lock);
12765 		bnxt_get_port_module_status(bp);
12766 		mutex_unlock(&bp->link_lock);
12767 	}
12768 
12769 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
12770 		bnxt_tc_flow_stats_work(bp);
12771 
12772 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
12773 		bnxt_chk_missed_irq(bp);
12774 
12775 	if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
12776 		bnxt_fw_echo_reply(bp);
12777 
12778 	if (test_and_clear_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event))
12779 		bnxt_hwmon_notify_event(bp);
12780 
12781 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
12782 	 * must be the last functions to be called before exiting.
12783 	 */
12784 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
12785 		bnxt_reset(bp, false);
12786 
12787 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
12788 		bnxt_reset(bp, true);
12789 
12790 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
12791 		bnxt_rx_ring_reset(bp);
12792 
12793 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) {
12794 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) ||
12795 		    test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state))
12796 			bnxt_devlink_health_fw_report(bp);
12797 		else
12798 			bnxt_fw_reset(bp);
12799 	}
12800 
12801 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
12802 		if (!is_bnxt_fw_ok(bp))
12803 			bnxt_devlink_health_fw_report(bp);
12804 	}
12805 
12806 	smp_mb__before_atomic();
12807 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12808 }
12809 
12810 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
12811 				int *max_cp);
12812 
12813 /* Under rtnl_lock */
12814 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
12815 		     int tx_xdp)
12816 {
12817 	int max_rx, max_tx, max_cp, tx_sets = 1, tx_cp;
12818 	int tx_rings_needed, stats;
12819 	int rx_rings = rx;
12820 	int cp, vnics;
12821 
12822 	if (tcs)
12823 		tx_sets = tcs;
12824 
12825 	_bnxt_get_max_rings(bp, &max_rx, &max_tx, &max_cp);
12826 
12827 	if (max_rx < rx_rings)
12828 		return -ENOMEM;
12829 
12830 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
12831 		rx_rings <<= 1;
12832 
12833 	tx_rings_needed = tx * tx_sets + tx_xdp;
12834 	if (max_tx < tx_rings_needed)
12835 		return -ENOMEM;
12836 
12837 	vnics = 1;
12838 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5_PLUS)) ==
12839 	    BNXT_FLAG_RFS)
12840 		vnics += rx;
12841 
12842 	tx_cp = __bnxt_num_tx_to_cp(bp, tx_rings_needed, tx_sets, tx_xdp);
12843 	cp = sh ? max_t(int, tx_cp, rx) : tx_cp + rx;
12844 	if (max_cp < cp)
12845 		return -ENOMEM;
12846 	stats = cp;
12847 	if (BNXT_NEW_RM(bp)) {
12848 		cp += bnxt_get_ulp_msix_num(bp);
12849 		stats += bnxt_get_ulp_stat_ctxs(bp);
12850 	}
12851 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
12852 				     stats, vnics);
12853 }
12854 
12855 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
12856 {
12857 	if (bp->bar2) {
12858 		pci_iounmap(pdev, bp->bar2);
12859 		bp->bar2 = NULL;
12860 	}
12861 
12862 	if (bp->bar1) {
12863 		pci_iounmap(pdev, bp->bar1);
12864 		bp->bar1 = NULL;
12865 	}
12866 
12867 	if (bp->bar0) {
12868 		pci_iounmap(pdev, bp->bar0);
12869 		bp->bar0 = NULL;
12870 	}
12871 }
12872 
12873 static void bnxt_cleanup_pci(struct bnxt *bp)
12874 {
12875 	bnxt_unmap_bars(bp, bp->pdev);
12876 	pci_release_regions(bp->pdev);
12877 	if (pci_is_enabled(bp->pdev))
12878 		pci_disable_device(bp->pdev);
12879 }
12880 
12881 static void bnxt_init_dflt_coal(struct bnxt *bp)
12882 {
12883 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
12884 	struct bnxt_coal *coal;
12885 	u16 flags = 0;
12886 
12887 	if (coal_cap->cmpl_params &
12888 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
12889 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
12890 
12891 	/* Tick values in micro seconds.
12892 	 * 1 coal_buf x bufs_per_record = 1 completion record.
12893 	 */
12894 	coal = &bp->rx_coal;
12895 	coal->coal_ticks = 10;
12896 	coal->coal_bufs = 30;
12897 	coal->coal_ticks_irq = 1;
12898 	coal->coal_bufs_irq = 2;
12899 	coal->idle_thresh = 50;
12900 	coal->bufs_per_record = 2;
12901 	coal->budget = 64;		/* NAPI budget */
12902 	coal->flags = flags;
12903 
12904 	coal = &bp->tx_coal;
12905 	coal->coal_ticks = 28;
12906 	coal->coal_bufs = 30;
12907 	coal->coal_ticks_irq = 2;
12908 	coal->coal_bufs_irq = 2;
12909 	coal->bufs_per_record = 1;
12910 	coal->flags = flags;
12911 
12912 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
12913 }
12914 
12915 /* FW that pre-reserves 1 VNIC per function */
12916 static bool bnxt_fw_pre_resv_vnics(struct bnxt *bp)
12917 {
12918 	u16 fw_maj = BNXT_FW_MAJ(bp), fw_bld = BNXT_FW_BLD(bp);
12919 
12920 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
12921 	    (fw_maj > 218 || (fw_maj == 218 && fw_bld >= 18)))
12922 		return true;
12923 	if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) &&
12924 	    (fw_maj > 216 || (fw_maj == 216 && fw_bld >= 172)))
12925 		return true;
12926 	return false;
12927 }
12928 
12929 static int bnxt_fw_init_one_p1(struct bnxt *bp)
12930 {
12931 	int rc;
12932 
12933 	bp->fw_cap = 0;
12934 	rc = bnxt_hwrm_ver_get(bp);
12935 	bnxt_try_map_fw_health_reg(bp);
12936 	if (rc) {
12937 		rc = bnxt_try_recover_fw(bp);
12938 		if (rc)
12939 			return rc;
12940 		rc = bnxt_hwrm_ver_get(bp);
12941 		if (rc)
12942 			return rc;
12943 	}
12944 
12945 	bnxt_nvm_cfg_ver_get(bp);
12946 
12947 	rc = bnxt_hwrm_func_reset(bp);
12948 	if (rc)
12949 		return -ENODEV;
12950 
12951 	bnxt_hwrm_fw_set_time(bp);
12952 	return 0;
12953 }
12954 
12955 static int bnxt_fw_init_one_p2(struct bnxt *bp)
12956 {
12957 	int rc;
12958 
12959 	/* Get the MAX capabilities for this function */
12960 	rc = bnxt_hwrm_func_qcaps(bp);
12961 	if (rc) {
12962 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
12963 			   rc);
12964 		return -ENODEV;
12965 	}
12966 
12967 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
12968 	if (rc)
12969 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
12970 			    rc);
12971 
12972 	if (bnxt_alloc_fw_health(bp)) {
12973 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
12974 	} else {
12975 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
12976 		if (rc)
12977 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
12978 				    rc);
12979 	}
12980 
12981 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
12982 	if (rc)
12983 		return -ENODEV;
12984 
12985 	if (bnxt_fw_pre_resv_vnics(bp))
12986 		bp->fw_cap |= BNXT_FW_CAP_PRE_RESV_VNICS;
12987 
12988 	bnxt_hwrm_func_qcfg(bp);
12989 	bnxt_hwrm_vnic_qcaps(bp);
12990 	bnxt_hwrm_port_led_qcaps(bp);
12991 	bnxt_ethtool_init(bp);
12992 	if (bp->fw_cap & BNXT_FW_CAP_PTP)
12993 		__bnxt_hwrm_ptp_qcfg(bp);
12994 	bnxt_dcb_init(bp);
12995 	bnxt_hwmon_init(bp);
12996 	return 0;
12997 }
12998 
12999 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
13000 {
13001 	bp->rss_cap &= ~BNXT_RSS_CAP_UDP_RSS_CAP;
13002 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
13003 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
13004 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
13005 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
13006 	if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA)
13007 		bp->rss_hash_delta = bp->rss_hash_cfg;
13008 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
13009 		bp->rss_cap |= BNXT_RSS_CAP_UDP_RSS_CAP;
13010 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
13011 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
13012 	}
13013 }
13014 
13015 static void bnxt_set_dflt_rfs(struct bnxt *bp)
13016 {
13017 	struct net_device *dev = bp->dev;
13018 
13019 	dev->hw_features &= ~NETIF_F_NTUPLE;
13020 	dev->features &= ~NETIF_F_NTUPLE;
13021 	bp->flags &= ~BNXT_FLAG_RFS;
13022 	if (bnxt_rfs_supported(bp)) {
13023 		dev->hw_features |= NETIF_F_NTUPLE;
13024 		if (bnxt_rfs_capable(bp)) {
13025 			bp->flags |= BNXT_FLAG_RFS;
13026 			dev->features |= NETIF_F_NTUPLE;
13027 		}
13028 	}
13029 }
13030 
13031 static void bnxt_fw_init_one_p3(struct bnxt *bp)
13032 {
13033 	struct pci_dev *pdev = bp->pdev;
13034 
13035 	bnxt_set_dflt_rss_hash_type(bp);
13036 	bnxt_set_dflt_rfs(bp);
13037 
13038 	bnxt_get_wol_settings(bp);
13039 	if (bp->flags & BNXT_FLAG_WOL_CAP)
13040 		device_set_wakeup_enable(&pdev->dev, bp->wol);
13041 	else
13042 		device_set_wakeup_capable(&pdev->dev, false);
13043 
13044 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
13045 	bnxt_hwrm_coal_params_qcaps(bp);
13046 }
13047 
13048 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt);
13049 
13050 int bnxt_fw_init_one(struct bnxt *bp)
13051 {
13052 	int rc;
13053 
13054 	rc = bnxt_fw_init_one_p1(bp);
13055 	if (rc) {
13056 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
13057 		return rc;
13058 	}
13059 	rc = bnxt_fw_init_one_p2(bp);
13060 	if (rc) {
13061 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
13062 		return rc;
13063 	}
13064 	rc = bnxt_probe_phy(bp, false);
13065 	if (rc)
13066 		return rc;
13067 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
13068 	if (rc)
13069 		return rc;
13070 
13071 	bnxt_fw_init_one_p3(bp);
13072 	return 0;
13073 }
13074 
13075 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
13076 {
13077 	struct bnxt_fw_health *fw_health = bp->fw_health;
13078 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
13079 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
13080 	u32 reg_type, reg_off, delay_msecs;
13081 
13082 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
13083 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
13084 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
13085 	switch (reg_type) {
13086 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
13087 		pci_write_config_dword(bp->pdev, reg_off, val);
13088 		break;
13089 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
13090 		writel(reg_off & BNXT_GRC_BASE_MASK,
13091 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
13092 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
13093 		fallthrough;
13094 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
13095 		writel(val, bp->bar0 + reg_off);
13096 		break;
13097 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
13098 		writel(val, bp->bar1 + reg_off);
13099 		break;
13100 	}
13101 	if (delay_msecs) {
13102 		pci_read_config_dword(bp->pdev, 0, &val);
13103 		msleep(delay_msecs);
13104 	}
13105 }
13106 
13107 bool bnxt_hwrm_reset_permitted(struct bnxt *bp)
13108 {
13109 	struct hwrm_func_qcfg_output *resp;
13110 	struct hwrm_func_qcfg_input *req;
13111 	bool result = true; /* firmware will enforce if unknown */
13112 
13113 	if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF)
13114 		return result;
13115 
13116 	if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG))
13117 		return result;
13118 
13119 	req->fid = cpu_to_le16(0xffff);
13120 	resp = hwrm_req_hold(bp, req);
13121 	if (!hwrm_req_send(bp, req))
13122 		result = !!(le16_to_cpu(resp->flags) &
13123 			    FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED);
13124 	hwrm_req_drop(bp, req);
13125 	return result;
13126 }
13127 
13128 static void bnxt_reset_all(struct bnxt *bp)
13129 {
13130 	struct bnxt_fw_health *fw_health = bp->fw_health;
13131 	int i, rc;
13132 
13133 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
13134 		bnxt_fw_reset_via_optee(bp);
13135 		bp->fw_reset_timestamp = jiffies;
13136 		return;
13137 	}
13138 
13139 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
13140 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
13141 			bnxt_fw_reset_writel(bp, i);
13142 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
13143 		struct hwrm_fw_reset_input *req;
13144 
13145 		rc = hwrm_req_init(bp, req, HWRM_FW_RESET);
13146 		if (!rc) {
13147 			req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG);
13148 			req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
13149 			req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
13150 			req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
13151 			rc = hwrm_req_send(bp, req);
13152 		}
13153 		if (rc != -ENODEV)
13154 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
13155 	}
13156 	bp->fw_reset_timestamp = jiffies;
13157 }
13158 
13159 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
13160 {
13161 	return time_after(jiffies, bp->fw_reset_timestamp +
13162 			  (bp->fw_reset_max_dsecs * HZ / 10));
13163 }
13164 
13165 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc)
13166 {
13167 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13168 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) {
13169 		bnxt_ulp_start(bp, rc);
13170 		bnxt_dl_health_fw_status_update(bp, false);
13171 	}
13172 	bp->fw_reset_state = 0;
13173 	dev_close(bp->dev);
13174 }
13175 
13176 static void bnxt_fw_reset_task(struct work_struct *work)
13177 {
13178 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
13179 	int rc = 0;
13180 
13181 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
13182 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
13183 		return;
13184 	}
13185 
13186 	switch (bp->fw_reset_state) {
13187 	case BNXT_FW_RESET_STATE_POLL_VF: {
13188 		int n = bnxt_get_registered_vfs(bp);
13189 		int tmo;
13190 
13191 		if (n < 0) {
13192 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
13193 				   n, jiffies_to_msecs(jiffies -
13194 				   bp->fw_reset_timestamp));
13195 			goto fw_reset_abort;
13196 		} else if (n > 0) {
13197 			if (bnxt_fw_reset_timeout(bp)) {
13198 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13199 				bp->fw_reset_state = 0;
13200 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
13201 					   n);
13202 				return;
13203 			}
13204 			bnxt_queue_fw_reset_work(bp, HZ / 10);
13205 			return;
13206 		}
13207 		bp->fw_reset_timestamp = jiffies;
13208 		rtnl_lock();
13209 		if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
13210 			bnxt_fw_reset_abort(bp, rc);
13211 			rtnl_unlock();
13212 			return;
13213 		}
13214 		bnxt_fw_reset_close(bp);
13215 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
13216 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
13217 			tmo = HZ / 10;
13218 		} else {
13219 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
13220 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
13221 		}
13222 		rtnl_unlock();
13223 		bnxt_queue_fw_reset_work(bp, tmo);
13224 		return;
13225 	}
13226 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
13227 		u32 val;
13228 
13229 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
13230 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
13231 		    !bnxt_fw_reset_timeout(bp)) {
13232 			bnxt_queue_fw_reset_work(bp, HZ / 5);
13233 			return;
13234 		}
13235 
13236 		if (!bp->fw_health->primary) {
13237 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
13238 
13239 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
13240 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
13241 			return;
13242 		}
13243 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
13244 	}
13245 		fallthrough;
13246 	case BNXT_FW_RESET_STATE_RESET_FW:
13247 		bnxt_reset_all(bp);
13248 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
13249 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
13250 		return;
13251 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
13252 		bnxt_inv_fw_health_reg(bp);
13253 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
13254 		    !bp->fw_reset_min_dsecs) {
13255 			u16 val;
13256 
13257 			pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
13258 			if (val == 0xffff) {
13259 				if (bnxt_fw_reset_timeout(bp)) {
13260 					netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
13261 					rc = -ETIMEDOUT;
13262 					goto fw_reset_abort;
13263 				}
13264 				bnxt_queue_fw_reset_work(bp, HZ / 1000);
13265 				return;
13266 			}
13267 		}
13268 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
13269 		clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
13270 		if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) &&
13271 		    !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state))
13272 			bnxt_dl_remote_reload(bp);
13273 		if (pci_enable_device(bp->pdev)) {
13274 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
13275 			rc = -ENODEV;
13276 			goto fw_reset_abort;
13277 		}
13278 		pci_set_master(bp->pdev);
13279 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
13280 		fallthrough;
13281 	case BNXT_FW_RESET_STATE_POLL_FW:
13282 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
13283 		rc = bnxt_hwrm_poll(bp);
13284 		if (rc) {
13285 			if (bnxt_fw_reset_timeout(bp)) {
13286 				netdev_err(bp->dev, "Firmware reset aborted\n");
13287 				goto fw_reset_abort_status;
13288 			}
13289 			bnxt_queue_fw_reset_work(bp, HZ / 5);
13290 			return;
13291 		}
13292 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
13293 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
13294 		fallthrough;
13295 	case BNXT_FW_RESET_STATE_OPENING:
13296 		while (!rtnl_trylock()) {
13297 			bnxt_queue_fw_reset_work(bp, HZ / 10);
13298 			return;
13299 		}
13300 		rc = bnxt_open(bp->dev);
13301 		if (rc) {
13302 			netdev_err(bp->dev, "bnxt_open() failed during FW reset\n");
13303 			bnxt_fw_reset_abort(bp, rc);
13304 			rtnl_unlock();
13305 			return;
13306 		}
13307 
13308 		if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) &&
13309 		    bp->fw_health->enabled) {
13310 			bp->fw_health->last_fw_reset_cnt =
13311 				bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
13312 		}
13313 		bp->fw_reset_state = 0;
13314 		/* Make sure fw_reset_state is 0 before clearing the flag */
13315 		smp_mb__before_atomic();
13316 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13317 		bnxt_ulp_start(bp, 0);
13318 		bnxt_reenable_sriov(bp);
13319 		bnxt_vf_reps_alloc(bp);
13320 		bnxt_vf_reps_open(bp);
13321 		bnxt_ptp_reapply_pps(bp);
13322 		clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state);
13323 		if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) {
13324 			bnxt_dl_health_fw_recovery_done(bp);
13325 			bnxt_dl_health_fw_status_update(bp, true);
13326 		}
13327 		rtnl_unlock();
13328 		break;
13329 	}
13330 	return;
13331 
13332 fw_reset_abort_status:
13333 	if (bp->fw_health->status_reliable ||
13334 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
13335 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
13336 
13337 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
13338 	}
13339 fw_reset_abort:
13340 	rtnl_lock();
13341 	bnxt_fw_reset_abort(bp, rc);
13342 	rtnl_unlock();
13343 }
13344 
13345 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
13346 {
13347 	int rc;
13348 	struct bnxt *bp = netdev_priv(dev);
13349 
13350 	SET_NETDEV_DEV(dev, &pdev->dev);
13351 
13352 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
13353 	rc = pci_enable_device(pdev);
13354 	if (rc) {
13355 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
13356 		goto init_err;
13357 	}
13358 
13359 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13360 		dev_err(&pdev->dev,
13361 			"Cannot find PCI device base address, aborting\n");
13362 		rc = -ENODEV;
13363 		goto init_err_disable;
13364 	}
13365 
13366 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13367 	if (rc) {
13368 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
13369 		goto init_err_disable;
13370 	}
13371 
13372 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
13373 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
13374 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
13375 		rc = -EIO;
13376 		goto init_err_release;
13377 	}
13378 
13379 	pci_set_master(pdev);
13380 
13381 	bp->dev = dev;
13382 	bp->pdev = pdev;
13383 
13384 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
13385 	 * determines the BAR size.
13386 	 */
13387 	bp->bar0 = pci_ioremap_bar(pdev, 0);
13388 	if (!bp->bar0) {
13389 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
13390 		rc = -ENOMEM;
13391 		goto init_err_release;
13392 	}
13393 
13394 	bp->bar2 = pci_ioremap_bar(pdev, 4);
13395 	if (!bp->bar2) {
13396 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
13397 		rc = -ENOMEM;
13398 		goto init_err_release;
13399 	}
13400 
13401 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
13402 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
13403 
13404 	spin_lock_init(&bp->ntp_fltr_lock);
13405 #if BITS_PER_LONG == 32
13406 	spin_lock_init(&bp->db_lock);
13407 #endif
13408 
13409 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
13410 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
13411 
13412 	timer_setup(&bp->timer, bnxt_timer, 0);
13413 	bp->current_interval = BNXT_TIMER_INTERVAL;
13414 
13415 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
13416 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
13417 
13418 	clear_bit(BNXT_STATE_OPEN, &bp->state);
13419 	return 0;
13420 
13421 init_err_release:
13422 	bnxt_unmap_bars(bp, pdev);
13423 	pci_release_regions(pdev);
13424 
13425 init_err_disable:
13426 	pci_disable_device(pdev);
13427 
13428 init_err:
13429 	return rc;
13430 }
13431 
13432 /* rtnl_lock held */
13433 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
13434 {
13435 	struct sockaddr *addr = p;
13436 	struct bnxt *bp = netdev_priv(dev);
13437 	int rc = 0;
13438 
13439 	if (!is_valid_ether_addr(addr->sa_data))
13440 		return -EADDRNOTAVAIL;
13441 
13442 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
13443 		return 0;
13444 
13445 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
13446 	if (rc)
13447 		return rc;
13448 
13449 	eth_hw_addr_set(dev, addr->sa_data);
13450 	if (netif_running(dev)) {
13451 		bnxt_close_nic(bp, false, false);
13452 		rc = bnxt_open_nic(bp, false, false);
13453 	}
13454 
13455 	return rc;
13456 }
13457 
13458 /* rtnl_lock held */
13459 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
13460 {
13461 	struct bnxt *bp = netdev_priv(dev);
13462 
13463 	if (netif_running(dev))
13464 		bnxt_close_nic(bp, true, false);
13465 
13466 	dev->mtu = new_mtu;
13467 	bnxt_set_ring_params(bp);
13468 
13469 	if (netif_running(dev))
13470 		return bnxt_open_nic(bp, true, false);
13471 
13472 	return 0;
13473 }
13474 
13475 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
13476 {
13477 	struct bnxt *bp = netdev_priv(dev);
13478 	bool sh = false;
13479 	int rc, tx_cp;
13480 
13481 	if (tc > bp->max_tc) {
13482 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
13483 			   tc, bp->max_tc);
13484 		return -EINVAL;
13485 	}
13486 
13487 	if (netdev_get_num_tc(dev) == tc)
13488 		return 0;
13489 
13490 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
13491 		sh = true;
13492 
13493 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
13494 			      sh, tc, bp->tx_nr_rings_xdp);
13495 	if (rc)
13496 		return rc;
13497 
13498 	/* Needs to close the device and do hw resource re-allocations */
13499 	if (netif_running(bp->dev))
13500 		bnxt_close_nic(bp, true, false);
13501 
13502 	if (tc) {
13503 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
13504 		netdev_set_num_tc(dev, tc);
13505 	} else {
13506 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13507 		netdev_reset_tc(dev);
13508 	}
13509 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
13510 	tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings);
13511 	bp->cp_nr_rings = sh ? max_t(int, tx_cp, bp->rx_nr_rings) :
13512 			       tx_cp + bp->rx_nr_rings;
13513 
13514 	if (netif_running(bp->dev))
13515 		return bnxt_open_nic(bp, true, false);
13516 
13517 	return 0;
13518 }
13519 
13520 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
13521 				  void *cb_priv)
13522 {
13523 	struct bnxt *bp = cb_priv;
13524 
13525 	if (!bnxt_tc_flower_enabled(bp) ||
13526 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
13527 		return -EOPNOTSUPP;
13528 
13529 	switch (type) {
13530 	case TC_SETUP_CLSFLOWER:
13531 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
13532 	default:
13533 		return -EOPNOTSUPP;
13534 	}
13535 }
13536 
13537 LIST_HEAD(bnxt_block_cb_list);
13538 
13539 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
13540 			 void *type_data)
13541 {
13542 	struct bnxt *bp = netdev_priv(dev);
13543 
13544 	switch (type) {
13545 	case TC_SETUP_BLOCK:
13546 		return flow_block_cb_setup_simple(type_data,
13547 						  &bnxt_block_cb_list,
13548 						  bnxt_setup_tc_block_cb,
13549 						  bp, bp, true);
13550 	case TC_SETUP_QDISC_MQPRIO: {
13551 		struct tc_mqprio_qopt *mqprio = type_data;
13552 
13553 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
13554 
13555 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
13556 	}
13557 	default:
13558 		return -EOPNOTSUPP;
13559 	}
13560 }
13561 
13562 #ifdef CONFIG_RFS_ACCEL
13563 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
13564 			    struct bnxt_ntuple_filter *f2)
13565 {
13566 	struct flow_keys *keys1 = &f1->fkeys;
13567 	struct flow_keys *keys2 = &f2->fkeys;
13568 
13569 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
13570 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
13571 		return false;
13572 
13573 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
13574 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
13575 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
13576 			return false;
13577 	} else {
13578 		if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
13579 			   sizeof(keys1->addrs.v6addrs.src)) ||
13580 		    memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
13581 			   sizeof(keys1->addrs.v6addrs.dst)))
13582 			return false;
13583 	}
13584 
13585 	if (keys1->ports.ports == keys2->ports.ports &&
13586 	    keys1->control.flags == keys2->control.flags &&
13587 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
13588 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
13589 		return true;
13590 
13591 	return false;
13592 }
13593 
13594 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
13595 			      u16 rxq_index, u32 flow_id)
13596 {
13597 	struct bnxt *bp = netdev_priv(dev);
13598 	struct bnxt_ntuple_filter *fltr, *new_fltr;
13599 	struct flow_keys *fkeys;
13600 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
13601 	int rc = 0, idx, bit_id, l2_idx = 0;
13602 	struct hlist_head *head;
13603 	u32 flags;
13604 
13605 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
13606 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
13607 		int off = 0, j;
13608 
13609 		netif_addr_lock_bh(dev);
13610 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
13611 			if (ether_addr_equal(eth->h_dest,
13612 					     vnic->uc_list + off)) {
13613 				l2_idx = j + 1;
13614 				break;
13615 			}
13616 		}
13617 		netif_addr_unlock_bh(dev);
13618 		if (!l2_idx)
13619 			return -EINVAL;
13620 	}
13621 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
13622 	if (!new_fltr)
13623 		return -ENOMEM;
13624 
13625 	fkeys = &new_fltr->fkeys;
13626 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
13627 		rc = -EPROTONOSUPPORT;
13628 		goto err_free;
13629 	}
13630 
13631 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
13632 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
13633 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
13634 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
13635 		rc = -EPROTONOSUPPORT;
13636 		goto err_free;
13637 	}
13638 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
13639 	    bp->hwrm_spec_code < 0x10601) {
13640 		rc = -EPROTONOSUPPORT;
13641 		goto err_free;
13642 	}
13643 	flags = fkeys->control.flags;
13644 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
13645 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
13646 		rc = -EPROTONOSUPPORT;
13647 		goto err_free;
13648 	}
13649 
13650 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
13651 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
13652 
13653 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
13654 	head = &bp->ntp_fltr_hash_tbl[idx];
13655 	rcu_read_lock();
13656 	hlist_for_each_entry_rcu(fltr, head, hash) {
13657 		if (bnxt_fltr_match(fltr, new_fltr)) {
13658 			rc = fltr->sw_id;
13659 			rcu_read_unlock();
13660 			goto err_free;
13661 		}
13662 	}
13663 	rcu_read_unlock();
13664 
13665 	spin_lock_bh(&bp->ntp_fltr_lock);
13666 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
13667 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
13668 	if (bit_id < 0) {
13669 		spin_unlock_bh(&bp->ntp_fltr_lock);
13670 		rc = -ENOMEM;
13671 		goto err_free;
13672 	}
13673 
13674 	new_fltr->sw_id = (u16)bit_id;
13675 	new_fltr->flow_id = flow_id;
13676 	new_fltr->l2_fltr_idx = l2_idx;
13677 	new_fltr->rxq = rxq_index;
13678 	hlist_add_head_rcu(&new_fltr->hash, head);
13679 	bp->ntp_fltr_count++;
13680 	spin_unlock_bh(&bp->ntp_fltr_lock);
13681 
13682 	bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT);
13683 
13684 	return new_fltr->sw_id;
13685 
13686 err_free:
13687 	kfree(new_fltr);
13688 	return rc;
13689 }
13690 
13691 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
13692 {
13693 	int i;
13694 
13695 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
13696 		struct hlist_head *head;
13697 		struct hlist_node *tmp;
13698 		struct bnxt_ntuple_filter *fltr;
13699 		int rc;
13700 
13701 		head = &bp->ntp_fltr_hash_tbl[i];
13702 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
13703 			bool del = false;
13704 
13705 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
13706 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
13707 							fltr->flow_id,
13708 							fltr->sw_id)) {
13709 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
13710 									 fltr);
13711 					del = true;
13712 				}
13713 			} else {
13714 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
13715 								       fltr);
13716 				if (rc)
13717 					del = true;
13718 				else
13719 					set_bit(BNXT_FLTR_VALID, &fltr->state);
13720 			}
13721 
13722 			if (del) {
13723 				spin_lock_bh(&bp->ntp_fltr_lock);
13724 				hlist_del_rcu(&fltr->hash);
13725 				bp->ntp_fltr_count--;
13726 				spin_unlock_bh(&bp->ntp_fltr_lock);
13727 				synchronize_rcu();
13728 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
13729 				kfree(fltr);
13730 			}
13731 		}
13732 	}
13733 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
13734 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
13735 }
13736 
13737 #else
13738 
13739 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
13740 {
13741 }
13742 
13743 #endif /* CONFIG_RFS_ACCEL */
13744 
13745 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
13746 				    unsigned int entry, struct udp_tunnel_info *ti)
13747 {
13748 	struct bnxt *bp = netdev_priv(netdev);
13749 	unsigned int cmd;
13750 
13751 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
13752 		cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
13753 	else if (ti->type == UDP_TUNNEL_TYPE_GENEVE)
13754 		cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE;
13755 	else
13756 		cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE;
13757 
13758 	return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd);
13759 }
13760 
13761 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
13762 				      unsigned int entry, struct udp_tunnel_info *ti)
13763 {
13764 	struct bnxt *bp = netdev_priv(netdev);
13765 	unsigned int cmd;
13766 
13767 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
13768 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
13769 	else if (ti->type == UDP_TUNNEL_TYPE_GENEVE)
13770 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
13771 	else
13772 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE;
13773 
13774 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
13775 }
13776 
13777 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
13778 	.set_port	= bnxt_udp_tunnel_set_port,
13779 	.unset_port	= bnxt_udp_tunnel_unset_port,
13780 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
13781 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
13782 	.tables		= {
13783 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
13784 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
13785 	},
13786 }, bnxt_udp_tunnels_p7 = {
13787 	.set_port	= bnxt_udp_tunnel_set_port,
13788 	.unset_port	= bnxt_udp_tunnel_unset_port,
13789 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
13790 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
13791 	.tables		= {
13792 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
13793 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
13794 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN_GPE, },
13795 	},
13796 };
13797 
13798 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
13799 			       struct net_device *dev, u32 filter_mask,
13800 			       int nlflags)
13801 {
13802 	struct bnxt *bp = netdev_priv(dev);
13803 
13804 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
13805 				       nlflags, filter_mask, NULL);
13806 }
13807 
13808 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
13809 			       u16 flags, struct netlink_ext_ack *extack)
13810 {
13811 	struct bnxt *bp = netdev_priv(dev);
13812 	struct nlattr *attr, *br_spec;
13813 	int rem, rc = 0;
13814 
13815 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
13816 		return -EOPNOTSUPP;
13817 
13818 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
13819 	if (!br_spec)
13820 		return -EINVAL;
13821 
13822 	nla_for_each_nested(attr, br_spec, rem) {
13823 		u16 mode;
13824 
13825 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
13826 			continue;
13827 
13828 		mode = nla_get_u16(attr);
13829 		if (mode == bp->br_mode)
13830 			break;
13831 
13832 		rc = bnxt_hwrm_set_br_mode(bp, mode);
13833 		if (!rc)
13834 			bp->br_mode = mode;
13835 		break;
13836 	}
13837 	return rc;
13838 }
13839 
13840 int bnxt_get_port_parent_id(struct net_device *dev,
13841 			    struct netdev_phys_item_id *ppid)
13842 {
13843 	struct bnxt *bp = netdev_priv(dev);
13844 
13845 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
13846 		return -EOPNOTSUPP;
13847 
13848 	/* The PF and it's VF-reps only support the switchdev framework */
13849 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
13850 		return -EOPNOTSUPP;
13851 
13852 	ppid->id_len = sizeof(bp->dsn);
13853 	memcpy(ppid->id, bp->dsn, ppid->id_len);
13854 
13855 	return 0;
13856 }
13857 
13858 static const struct net_device_ops bnxt_netdev_ops = {
13859 	.ndo_open		= bnxt_open,
13860 	.ndo_start_xmit		= bnxt_start_xmit,
13861 	.ndo_stop		= bnxt_close,
13862 	.ndo_get_stats64	= bnxt_get_stats64,
13863 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
13864 	.ndo_eth_ioctl		= bnxt_ioctl,
13865 	.ndo_validate_addr	= eth_validate_addr,
13866 	.ndo_set_mac_address	= bnxt_change_mac_addr,
13867 	.ndo_change_mtu		= bnxt_change_mtu,
13868 	.ndo_fix_features	= bnxt_fix_features,
13869 	.ndo_set_features	= bnxt_set_features,
13870 	.ndo_features_check	= bnxt_features_check,
13871 	.ndo_tx_timeout		= bnxt_tx_timeout,
13872 #ifdef CONFIG_BNXT_SRIOV
13873 	.ndo_get_vf_config	= bnxt_get_vf_config,
13874 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
13875 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
13876 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
13877 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
13878 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
13879 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
13880 #endif
13881 	.ndo_setup_tc           = bnxt_setup_tc,
13882 #ifdef CONFIG_RFS_ACCEL
13883 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
13884 #endif
13885 	.ndo_bpf		= bnxt_xdp,
13886 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
13887 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
13888 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
13889 };
13890 
13891 static void bnxt_remove_one(struct pci_dev *pdev)
13892 {
13893 	struct net_device *dev = pci_get_drvdata(pdev);
13894 	struct bnxt *bp = netdev_priv(dev);
13895 
13896 	if (BNXT_PF(bp))
13897 		bnxt_sriov_disable(bp);
13898 
13899 	bnxt_rdma_aux_device_uninit(bp);
13900 
13901 	bnxt_ptp_clear(bp);
13902 	unregister_netdev(dev);
13903 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13904 	/* Flush any pending tasks */
13905 	cancel_work_sync(&bp->sp_task);
13906 	cancel_delayed_work_sync(&bp->fw_reset_task);
13907 	bp->sp_event = 0;
13908 
13909 	bnxt_dl_fw_reporters_destroy(bp);
13910 	bnxt_dl_unregister(bp);
13911 	bnxt_shutdown_tc(bp);
13912 
13913 	bnxt_clear_int_mode(bp);
13914 	bnxt_hwrm_func_drv_unrgtr(bp);
13915 	bnxt_free_hwrm_resources(bp);
13916 	bnxt_hwmon_uninit(bp);
13917 	bnxt_ethtool_free(bp);
13918 	bnxt_dcb_free(bp);
13919 	kfree(bp->ptp_cfg);
13920 	bp->ptp_cfg = NULL;
13921 	kfree(bp->fw_health);
13922 	bp->fw_health = NULL;
13923 	bnxt_cleanup_pci(bp);
13924 	bnxt_free_ctx_mem(bp);
13925 	kfree(bp->rss_indir_tbl);
13926 	bp->rss_indir_tbl = NULL;
13927 	bnxt_free_port_stats(bp);
13928 	free_netdev(dev);
13929 }
13930 
13931 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
13932 {
13933 	int rc = 0;
13934 	struct bnxt_link_info *link_info = &bp->link_info;
13935 
13936 	bp->phy_flags = 0;
13937 	rc = bnxt_hwrm_phy_qcaps(bp);
13938 	if (rc) {
13939 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
13940 			   rc);
13941 		return rc;
13942 	}
13943 	if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
13944 		bp->dev->priv_flags |= IFF_SUPP_NOFCS;
13945 	else
13946 		bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
13947 	if (!fw_dflt)
13948 		return 0;
13949 
13950 	mutex_lock(&bp->link_lock);
13951 	rc = bnxt_update_link(bp, false);
13952 	if (rc) {
13953 		mutex_unlock(&bp->link_lock);
13954 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
13955 			   rc);
13956 		return rc;
13957 	}
13958 
13959 	/* Older firmware does not have supported_auto_speeds, so assume
13960 	 * that all supported speeds can be autonegotiated.
13961 	 */
13962 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
13963 		link_info->support_auto_speeds = link_info->support_speeds;
13964 
13965 	bnxt_init_ethtool_link_settings(bp);
13966 	mutex_unlock(&bp->link_lock);
13967 	return 0;
13968 }
13969 
13970 static int bnxt_get_max_irq(struct pci_dev *pdev)
13971 {
13972 	u16 ctrl;
13973 
13974 	if (!pdev->msix_cap)
13975 		return 1;
13976 
13977 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
13978 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
13979 }
13980 
13981 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13982 				int *max_cp)
13983 {
13984 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
13985 	int max_ring_grps = 0, max_irq;
13986 
13987 	*max_tx = hw_resc->max_tx_rings;
13988 	*max_rx = hw_resc->max_rx_rings;
13989 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
13990 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
13991 			bnxt_get_ulp_msix_num(bp),
13992 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
13993 	if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
13994 		*max_cp = min_t(int, *max_cp, max_irq);
13995 	max_ring_grps = hw_resc->max_hw_ring_grps;
13996 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
13997 		*max_cp -= 1;
13998 		*max_rx -= 2;
13999 	}
14000 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
14001 		*max_rx >>= 1;
14002 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
14003 		int rc;
14004 
14005 		rc = __bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
14006 		if (rc) {
14007 			*max_rx = 0;
14008 			*max_tx = 0;
14009 		}
14010 		/* On P5 chips, max_cp output param should be available NQs */
14011 		*max_cp = max_irq;
14012 	}
14013 	*max_rx = min_t(int, *max_rx, max_ring_grps);
14014 }
14015 
14016 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
14017 {
14018 	int rx, tx, cp;
14019 
14020 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
14021 	*max_rx = rx;
14022 	*max_tx = tx;
14023 	if (!rx || !tx || !cp)
14024 		return -ENOMEM;
14025 
14026 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
14027 }
14028 
14029 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
14030 			       bool shared)
14031 {
14032 	int rc;
14033 
14034 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
14035 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
14036 		/* Not enough rings, try disabling agg rings. */
14037 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
14038 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
14039 		if (rc) {
14040 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
14041 			bp->flags |= BNXT_FLAG_AGG_RINGS;
14042 			return rc;
14043 		}
14044 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
14045 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
14046 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
14047 		bnxt_set_ring_params(bp);
14048 	}
14049 
14050 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
14051 		int max_cp, max_stat, max_irq;
14052 
14053 		/* Reserve minimum resources for RoCE */
14054 		max_cp = bnxt_get_max_func_cp_rings(bp);
14055 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
14056 		max_irq = bnxt_get_max_func_irqs(bp);
14057 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
14058 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
14059 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
14060 			return 0;
14061 
14062 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
14063 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
14064 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
14065 		max_cp = min_t(int, max_cp, max_irq);
14066 		max_cp = min_t(int, max_cp, max_stat);
14067 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
14068 		if (rc)
14069 			rc = 0;
14070 	}
14071 	return rc;
14072 }
14073 
14074 /* In initial default shared ring setting, each shared ring must have a
14075  * RX/TX ring pair.
14076  */
14077 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
14078 {
14079 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
14080 	bp->rx_nr_rings = bp->cp_nr_rings;
14081 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
14082 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
14083 }
14084 
14085 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
14086 {
14087 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
14088 
14089 	if (!bnxt_can_reserve_rings(bp))
14090 		return 0;
14091 
14092 	if (sh)
14093 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
14094 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
14095 	/* Reduce default rings on multi-port cards so that total default
14096 	 * rings do not exceed CPU count.
14097 	 */
14098 	if (bp->port_count > 1) {
14099 		int max_rings =
14100 			max_t(int, num_online_cpus() / bp->port_count, 1);
14101 
14102 		dflt_rings = min_t(int, dflt_rings, max_rings);
14103 	}
14104 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
14105 	if (rc)
14106 		return rc;
14107 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
14108 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
14109 	if (sh)
14110 		bnxt_trim_dflt_sh_rings(bp);
14111 	else
14112 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
14113 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
14114 
14115 	rc = __bnxt_reserve_rings(bp);
14116 	if (rc && rc != -ENODEV)
14117 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
14118 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
14119 	if (sh)
14120 		bnxt_trim_dflt_sh_rings(bp);
14121 
14122 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
14123 	if (bnxt_need_reserve_rings(bp)) {
14124 		rc = __bnxt_reserve_rings(bp);
14125 		if (rc && rc != -ENODEV)
14126 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
14127 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
14128 	}
14129 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
14130 		bp->rx_nr_rings++;
14131 		bp->cp_nr_rings++;
14132 	}
14133 	if (rc) {
14134 		bp->tx_nr_rings = 0;
14135 		bp->rx_nr_rings = 0;
14136 	}
14137 	return rc;
14138 }
14139 
14140 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
14141 {
14142 	int rc;
14143 
14144 	if (bp->tx_nr_rings)
14145 		return 0;
14146 
14147 	bnxt_ulp_irq_stop(bp);
14148 	bnxt_clear_int_mode(bp);
14149 	rc = bnxt_set_dflt_rings(bp, true);
14150 	if (rc) {
14151 		if (BNXT_VF(bp) && rc == -ENODEV)
14152 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
14153 		else
14154 			netdev_err(bp->dev, "Not enough rings available.\n");
14155 		goto init_dflt_ring_err;
14156 	}
14157 	rc = bnxt_init_int_mode(bp);
14158 	if (rc)
14159 		goto init_dflt_ring_err;
14160 
14161 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
14162 
14163 	bnxt_set_dflt_rfs(bp);
14164 
14165 init_dflt_ring_err:
14166 	bnxt_ulp_irq_restart(bp, rc);
14167 	return rc;
14168 }
14169 
14170 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
14171 {
14172 	int rc;
14173 
14174 	ASSERT_RTNL();
14175 	bnxt_hwrm_func_qcaps(bp);
14176 
14177 	if (netif_running(bp->dev))
14178 		__bnxt_close_nic(bp, true, false);
14179 
14180 	bnxt_ulp_irq_stop(bp);
14181 	bnxt_clear_int_mode(bp);
14182 	rc = bnxt_init_int_mode(bp);
14183 	bnxt_ulp_irq_restart(bp, rc);
14184 
14185 	if (netif_running(bp->dev)) {
14186 		if (rc)
14187 			dev_close(bp->dev);
14188 		else
14189 			rc = bnxt_open_nic(bp, true, false);
14190 	}
14191 
14192 	return rc;
14193 }
14194 
14195 static int bnxt_init_mac_addr(struct bnxt *bp)
14196 {
14197 	int rc = 0;
14198 
14199 	if (BNXT_PF(bp)) {
14200 		eth_hw_addr_set(bp->dev, bp->pf.mac_addr);
14201 	} else {
14202 #ifdef CONFIG_BNXT_SRIOV
14203 		struct bnxt_vf_info *vf = &bp->vf;
14204 		bool strict_approval = true;
14205 
14206 		if (is_valid_ether_addr(vf->mac_addr)) {
14207 			/* overwrite netdev dev_addr with admin VF MAC */
14208 			eth_hw_addr_set(bp->dev, vf->mac_addr);
14209 			/* Older PF driver or firmware may not approve this
14210 			 * correctly.
14211 			 */
14212 			strict_approval = false;
14213 		} else {
14214 			eth_hw_addr_random(bp->dev);
14215 		}
14216 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
14217 #endif
14218 	}
14219 	return rc;
14220 }
14221 
14222 static void bnxt_vpd_read_info(struct bnxt *bp)
14223 {
14224 	struct pci_dev *pdev = bp->pdev;
14225 	unsigned int vpd_size, kw_len;
14226 	int pos, size;
14227 	u8 *vpd_data;
14228 
14229 	vpd_data = pci_vpd_alloc(pdev, &vpd_size);
14230 	if (IS_ERR(vpd_data)) {
14231 		pci_warn(pdev, "Unable to read VPD\n");
14232 		return;
14233 	}
14234 
14235 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
14236 					   PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
14237 	if (pos < 0)
14238 		goto read_sn;
14239 
14240 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
14241 	memcpy(bp->board_partno, &vpd_data[pos], size);
14242 
14243 read_sn:
14244 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
14245 					   PCI_VPD_RO_KEYWORD_SERIALNO,
14246 					   &kw_len);
14247 	if (pos < 0)
14248 		goto exit;
14249 
14250 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
14251 	memcpy(bp->board_serialno, &vpd_data[pos], size);
14252 exit:
14253 	kfree(vpd_data);
14254 }
14255 
14256 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
14257 {
14258 	struct pci_dev *pdev = bp->pdev;
14259 	u64 qword;
14260 
14261 	qword = pci_get_dsn(pdev);
14262 	if (!qword) {
14263 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
14264 		return -EOPNOTSUPP;
14265 	}
14266 
14267 	put_unaligned_le64(qword, dsn);
14268 
14269 	bp->flags |= BNXT_FLAG_DSN_VALID;
14270 	return 0;
14271 }
14272 
14273 static int bnxt_map_db_bar(struct bnxt *bp)
14274 {
14275 	if (!bp->db_size)
14276 		return -ENODEV;
14277 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
14278 	if (!bp->bar1)
14279 		return -ENOMEM;
14280 	return 0;
14281 }
14282 
14283 void bnxt_print_device_info(struct bnxt *bp)
14284 {
14285 	netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n",
14286 		    board_info[bp->board_idx].name,
14287 		    (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr);
14288 
14289 	pcie_print_link_status(bp->pdev);
14290 }
14291 
14292 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
14293 {
14294 	struct net_device *dev;
14295 	struct bnxt *bp;
14296 	int rc, max_irqs;
14297 
14298 	if (pci_is_bridge(pdev))
14299 		return -ENODEV;
14300 
14301 	/* Clear any pending DMA transactions from crash kernel
14302 	 * while loading driver in capture kernel.
14303 	 */
14304 	if (is_kdump_kernel()) {
14305 		pci_clear_master(pdev);
14306 		pcie_flr(pdev);
14307 	}
14308 
14309 	max_irqs = bnxt_get_max_irq(pdev);
14310 	dev = alloc_etherdev_mqs(sizeof(*bp), max_irqs * BNXT_MAX_QUEUE,
14311 				 max_irqs);
14312 	if (!dev)
14313 		return -ENOMEM;
14314 
14315 	bp = netdev_priv(dev);
14316 	bp->board_idx = ent->driver_data;
14317 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
14318 	bnxt_set_max_func_irqs(bp, max_irqs);
14319 
14320 	if (bnxt_vf_pciid(bp->board_idx))
14321 		bp->flags |= BNXT_FLAG_VF;
14322 
14323 	/* No devlink port registration in case of a VF */
14324 	if (BNXT_PF(bp))
14325 		SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port);
14326 
14327 	if (pdev->msix_cap)
14328 		bp->flags |= BNXT_FLAG_MSIX_CAP;
14329 
14330 	rc = bnxt_init_board(pdev, dev);
14331 	if (rc < 0)
14332 		goto init_err_free;
14333 
14334 	dev->netdev_ops = &bnxt_netdev_ops;
14335 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
14336 	dev->ethtool_ops = &bnxt_ethtool_ops;
14337 	pci_set_drvdata(pdev, dev);
14338 
14339 	rc = bnxt_alloc_hwrm_resources(bp);
14340 	if (rc)
14341 		goto init_err_pci_clean;
14342 
14343 	mutex_init(&bp->hwrm_cmd_lock);
14344 	mutex_init(&bp->link_lock);
14345 
14346 	rc = bnxt_fw_init_one_p1(bp);
14347 	if (rc)
14348 		goto init_err_pci_clean;
14349 
14350 	if (BNXT_PF(bp))
14351 		bnxt_vpd_read_info(bp);
14352 
14353 	if (BNXT_CHIP_P5_PLUS(bp)) {
14354 		bp->flags |= BNXT_FLAG_CHIP_P5_PLUS;
14355 		if (BNXT_CHIP_P7(bp))
14356 			bp->flags |= BNXT_FLAG_CHIP_P7;
14357 	}
14358 
14359 	rc = bnxt_alloc_rss_indir_tbl(bp);
14360 	if (rc)
14361 		goto init_err_pci_clean;
14362 
14363 	rc = bnxt_fw_init_one_p2(bp);
14364 	if (rc)
14365 		goto init_err_pci_clean;
14366 
14367 	rc = bnxt_map_db_bar(bp);
14368 	if (rc) {
14369 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
14370 			rc);
14371 		goto init_err_pci_clean;
14372 	}
14373 
14374 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
14375 			   NETIF_F_TSO | NETIF_F_TSO6 |
14376 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
14377 			   NETIF_F_GSO_IPXIP4 |
14378 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
14379 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
14380 			   NETIF_F_RXCSUM | NETIF_F_GRO;
14381 	if (bp->flags & BNXT_FLAG_UDP_GSO_CAP)
14382 		dev->hw_features |= NETIF_F_GSO_UDP_L4;
14383 
14384 	if (BNXT_SUPPORTS_TPA(bp))
14385 		dev->hw_features |= NETIF_F_LRO;
14386 
14387 	dev->hw_enc_features =
14388 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
14389 			NETIF_F_TSO | NETIF_F_TSO6 |
14390 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
14391 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
14392 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
14393 	if (bp->flags & BNXT_FLAG_UDP_GSO_CAP)
14394 		dev->hw_enc_features |= NETIF_F_GSO_UDP_L4;
14395 	if (bp->flags & BNXT_FLAG_CHIP_P7)
14396 		dev->udp_tunnel_nic_info = &bnxt_udp_tunnels_p7;
14397 	else
14398 		dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
14399 
14400 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
14401 				    NETIF_F_GSO_GRE_CSUM;
14402 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
14403 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
14404 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
14405 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
14406 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
14407 	if (BNXT_SUPPORTS_TPA(bp))
14408 		dev->hw_features |= NETIF_F_GRO_HW;
14409 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
14410 	if (dev->features & NETIF_F_GRO_HW)
14411 		dev->features &= ~NETIF_F_LRO;
14412 	dev->priv_flags |= IFF_UNICAST_FLT;
14413 
14414 	netif_set_tso_max_size(dev, GSO_MAX_SIZE);
14415 
14416 	dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
14417 			    NETDEV_XDP_ACT_RX_SG;
14418 
14419 #ifdef CONFIG_BNXT_SRIOV
14420 	init_waitqueue_head(&bp->sriov_cfg_wait);
14421 #endif
14422 	if (BNXT_SUPPORTS_TPA(bp)) {
14423 		bp->gro_func = bnxt_gro_func_5730x;
14424 		if (BNXT_CHIP_P4(bp))
14425 			bp->gro_func = bnxt_gro_func_5731x;
14426 		else if (BNXT_CHIP_P5_PLUS(bp))
14427 			bp->gro_func = bnxt_gro_func_5750x;
14428 	}
14429 	if (!BNXT_CHIP_P4_PLUS(bp))
14430 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
14431 
14432 	rc = bnxt_init_mac_addr(bp);
14433 	if (rc) {
14434 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
14435 		rc = -EADDRNOTAVAIL;
14436 		goto init_err_pci_clean;
14437 	}
14438 
14439 	if (BNXT_PF(bp)) {
14440 		/* Read the adapter's DSN to use as the eswitch switch_id */
14441 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
14442 	}
14443 
14444 	/* MTU range: 60 - FW defined max */
14445 	dev->min_mtu = ETH_ZLEN;
14446 	dev->max_mtu = bp->max_mtu;
14447 
14448 	rc = bnxt_probe_phy(bp, true);
14449 	if (rc)
14450 		goto init_err_pci_clean;
14451 
14452 	bnxt_set_rx_skb_mode(bp, false);
14453 	bnxt_set_tpa_flags(bp);
14454 	bnxt_set_ring_params(bp);
14455 	rc = bnxt_set_dflt_rings(bp, true);
14456 	if (rc) {
14457 		if (BNXT_VF(bp) && rc == -ENODEV) {
14458 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
14459 		} else {
14460 			netdev_err(bp->dev, "Not enough rings available.\n");
14461 			rc = -ENOMEM;
14462 		}
14463 		goto init_err_pci_clean;
14464 	}
14465 
14466 	bnxt_fw_init_one_p3(bp);
14467 
14468 	bnxt_init_dflt_coal(bp);
14469 
14470 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
14471 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
14472 
14473 	rc = bnxt_init_int_mode(bp);
14474 	if (rc)
14475 		goto init_err_pci_clean;
14476 
14477 	/* No TC has been set yet and rings may have been trimmed due to
14478 	 * limited MSIX, so we re-initialize the TX rings per TC.
14479 	 */
14480 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
14481 
14482 	if (BNXT_PF(bp)) {
14483 		if (!bnxt_pf_wq) {
14484 			bnxt_pf_wq =
14485 				create_singlethread_workqueue("bnxt_pf_wq");
14486 			if (!bnxt_pf_wq) {
14487 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
14488 				rc = -ENOMEM;
14489 				goto init_err_pci_clean;
14490 			}
14491 		}
14492 		rc = bnxt_init_tc(bp);
14493 		if (rc)
14494 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
14495 				   rc);
14496 	}
14497 
14498 	bnxt_inv_fw_health_reg(bp);
14499 	rc = bnxt_dl_register(bp);
14500 	if (rc)
14501 		goto init_err_dl;
14502 
14503 	rc = register_netdev(dev);
14504 	if (rc)
14505 		goto init_err_cleanup;
14506 
14507 	bnxt_dl_fw_reporters_create(bp);
14508 
14509 	bnxt_rdma_aux_device_init(bp);
14510 
14511 	bnxt_print_device_info(bp);
14512 
14513 	pci_save_state(pdev);
14514 
14515 	return 0;
14516 init_err_cleanup:
14517 	bnxt_dl_unregister(bp);
14518 init_err_dl:
14519 	bnxt_shutdown_tc(bp);
14520 	bnxt_clear_int_mode(bp);
14521 
14522 init_err_pci_clean:
14523 	bnxt_hwrm_func_drv_unrgtr(bp);
14524 	bnxt_free_hwrm_resources(bp);
14525 	bnxt_hwmon_uninit(bp);
14526 	bnxt_ethtool_free(bp);
14527 	bnxt_ptp_clear(bp);
14528 	kfree(bp->ptp_cfg);
14529 	bp->ptp_cfg = NULL;
14530 	kfree(bp->fw_health);
14531 	bp->fw_health = NULL;
14532 	bnxt_cleanup_pci(bp);
14533 	bnxt_free_ctx_mem(bp);
14534 	kfree(bp->rss_indir_tbl);
14535 	bp->rss_indir_tbl = NULL;
14536 
14537 init_err_free:
14538 	free_netdev(dev);
14539 	return rc;
14540 }
14541 
14542 static void bnxt_shutdown(struct pci_dev *pdev)
14543 {
14544 	struct net_device *dev = pci_get_drvdata(pdev);
14545 	struct bnxt *bp;
14546 
14547 	if (!dev)
14548 		return;
14549 
14550 	rtnl_lock();
14551 	bp = netdev_priv(dev);
14552 	if (!bp)
14553 		goto shutdown_exit;
14554 
14555 	if (netif_running(dev))
14556 		dev_close(dev);
14557 
14558 	bnxt_clear_int_mode(bp);
14559 	pci_disable_device(pdev);
14560 
14561 	if (system_state == SYSTEM_POWER_OFF) {
14562 		pci_wake_from_d3(pdev, bp->wol);
14563 		pci_set_power_state(pdev, PCI_D3hot);
14564 	}
14565 
14566 shutdown_exit:
14567 	rtnl_unlock();
14568 }
14569 
14570 #ifdef CONFIG_PM_SLEEP
14571 static int bnxt_suspend(struct device *device)
14572 {
14573 	struct net_device *dev = dev_get_drvdata(device);
14574 	struct bnxt *bp = netdev_priv(dev);
14575 	int rc = 0;
14576 
14577 	rtnl_lock();
14578 	bnxt_ulp_stop(bp);
14579 	if (netif_running(dev)) {
14580 		netif_device_detach(dev);
14581 		rc = bnxt_close(dev);
14582 	}
14583 	bnxt_hwrm_func_drv_unrgtr(bp);
14584 	pci_disable_device(bp->pdev);
14585 	bnxt_free_ctx_mem(bp);
14586 	rtnl_unlock();
14587 	return rc;
14588 }
14589 
14590 static int bnxt_resume(struct device *device)
14591 {
14592 	struct net_device *dev = dev_get_drvdata(device);
14593 	struct bnxt *bp = netdev_priv(dev);
14594 	int rc = 0;
14595 
14596 	rtnl_lock();
14597 	rc = pci_enable_device(bp->pdev);
14598 	if (rc) {
14599 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
14600 			   rc);
14601 		goto resume_exit;
14602 	}
14603 	pci_set_master(bp->pdev);
14604 	if (bnxt_hwrm_ver_get(bp)) {
14605 		rc = -ENODEV;
14606 		goto resume_exit;
14607 	}
14608 	rc = bnxt_hwrm_func_reset(bp);
14609 	if (rc) {
14610 		rc = -EBUSY;
14611 		goto resume_exit;
14612 	}
14613 
14614 	rc = bnxt_hwrm_func_qcaps(bp);
14615 	if (rc)
14616 		goto resume_exit;
14617 
14618 	bnxt_clear_reservations(bp, true);
14619 
14620 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
14621 		rc = -ENODEV;
14622 		goto resume_exit;
14623 	}
14624 
14625 	bnxt_get_wol_settings(bp);
14626 	if (netif_running(dev)) {
14627 		rc = bnxt_open(dev);
14628 		if (!rc)
14629 			netif_device_attach(dev);
14630 	}
14631 
14632 resume_exit:
14633 	bnxt_ulp_start(bp, rc);
14634 	if (!rc)
14635 		bnxt_reenable_sriov(bp);
14636 	rtnl_unlock();
14637 	return rc;
14638 }
14639 
14640 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
14641 #define BNXT_PM_OPS (&bnxt_pm_ops)
14642 
14643 #else
14644 
14645 #define BNXT_PM_OPS NULL
14646 
14647 #endif /* CONFIG_PM_SLEEP */
14648 
14649 /**
14650  * bnxt_io_error_detected - called when PCI error is detected
14651  * @pdev: Pointer to PCI device
14652  * @state: The current pci connection state
14653  *
14654  * This function is called after a PCI bus error affecting
14655  * this device has been detected.
14656  */
14657 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
14658 					       pci_channel_state_t state)
14659 {
14660 	struct net_device *netdev = pci_get_drvdata(pdev);
14661 	struct bnxt *bp = netdev_priv(netdev);
14662 
14663 	netdev_info(netdev, "PCI I/O error detected\n");
14664 
14665 	rtnl_lock();
14666 	netif_device_detach(netdev);
14667 
14668 	bnxt_ulp_stop(bp);
14669 
14670 	if (state == pci_channel_io_perm_failure) {
14671 		rtnl_unlock();
14672 		return PCI_ERS_RESULT_DISCONNECT;
14673 	}
14674 
14675 	if (state == pci_channel_io_frozen)
14676 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
14677 
14678 	if (netif_running(netdev))
14679 		bnxt_close(netdev);
14680 
14681 	if (pci_is_enabled(pdev))
14682 		pci_disable_device(pdev);
14683 	bnxt_free_ctx_mem(bp);
14684 	rtnl_unlock();
14685 
14686 	/* Request a slot slot reset. */
14687 	return PCI_ERS_RESULT_NEED_RESET;
14688 }
14689 
14690 /**
14691  * bnxt_io_slot_reset - called after the pci bus has been reset.
14692  * @pdev: Pointer to PCI device
14693  *
14694  * Restart the card from scratch, as if from a cold-boot.
14695  * At this point, the card has exprienced a hard reset,
14696  * followed by fixups by BIOS, and has its config space
14697  * set up identically to what it was at cold boot.
14698  */
14699 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
14700 {
14701 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
14702 	struct net_device *netdev = pci_get_drvdata(pdev);
14703 	struct bnxt *bp = netdev_priv(netdev);
14704 	int retry = 0;
14705 	int err = 0;
14706 	int off;
14707 
14708 	netdev_info(bp->dev, "PCI Slot Reset\n");
14709 
14710 	rtnl_lock();
14711 
14712 	if (pci_enable_device(pdev)) {
14713 		dev_err(&pdev->dev,
14714 			"Cannot re-enable PCI device after reset.\n");
14715 	} else {
14716 		pci_set_master(pdev);
14717 		/* Upon fatal error, our device internal logic that latches to
14718 		 * BAR value is getting reset and will restore only upon
14719 		 * rewritting the BARs.
14720 		 *
14721 		 * As pci_restore_state() does not re-write the BARs if the
14722 		 * value is same as saved value earlier, driver needs to
14723 		 * write the BARs to 0 to force restore, in case of fatal error.
14724 		 */
14725 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
14726 				       &bp->state)) {
14727 			for (off = PCI_BASE_ADDRESS_0;
14728 			     off <= PCI_BASE_ADDRESS_5; off += 4)
14729 				pci_write_config_dword(bp->pdev, off, 0);
14730 		}
14731 		pci_restore_state(pdev);
14732 		pci_save_state(pdev);
14733 
14734 		bnxt_inv_fw_health_reg(bp);
14735 		bnxt_try_map_fw_health_reg(bp);
14736 
14737 		/* In some PCIe AER scenarios, firmware may take up to
14738 		 * 10 seconds to become ready in the worst case.
14739 		 */
14740 		do {
14741 			err = bnxt_try_recover_fw(bp);
14742 			if (!err)
14743 				break;
14744 			retry++;
14745 		} while (retry < BNXT_FW_SLOT_RESET_RETRY);
14746 
14747 		if (err) {
14748 			dev_err(&pdev->dev, "Firmware not ready\n");
14749 			goto reset_exit;
14750 		}
14751 
14752 		err = bnxt_hwrm_func_reset(bp);
14753 		if (!err)
14754 			result = PCI_ERS_RESULT_RECOVERED;
14755 
14756 		bnxt_ulp_irq_stop(bp);
14757 		bnxt_clear_int_mode(bp);
14758 		err = bnxt_init_int_mode(bp);
14759 		bnxt_ulp_irq_restart(bp, err);
14760 	}
14761 
14762 reset_exit:
14763 	bnxt_clear_reservations(bp, true);
14764 	rtnl_unlock();
14765 
14766 	return result;
14767 }
14768 
14769 /**
14770  * bnxt_io_resume - called when traffic can start flowing again.
14771  * @pdev: Pointer to PCI device
14772  *
14773  * This callback is called when the error recovery driver tells
14774  * us that its OK to resume normal operation.
14775  */
14776 static void bnxt_io_resume(struct pci_dev *pdev)
14777 {
14778 	struct net_device *netdev = pci_get_drvdata(pdev);
14779 	struct bnxt *bp = netdev_priv(netdev);
14780 	int err;
14781 
14782 	netdev_info(bp->dev, "PCI Slot Resume\n");
14783 	rtnl_lock();
14784 
14785 	err = bnxt_hwrm_func_qcaps(bp);
14786 	if (!err && netif_running(netdev))
14787 		err = bnxt_open(netdev);
14788 
14789 	bnxt_ulp_start(bp, err);
14790 	if (!err) {
14791 		bnxt_reenable_sriov(bp);
14792 		netif_device_attach(netdev);
14793 	}
14794 
14795 	rtnl_unlock();
14796 }
14797 
14798 static const struct pci_error_handlers bnxt_err_handler = {
14799 	.error_detected	= bnxt_io_error_detected,
14800 	.slot_reset	= bnxt_io_slot_reset,
14801 	.resume		= bnxt_io_resume
14802 };
14803 
14804 static struct pci_driver bnxt_pci_driver = {
14805 	.name		= DRV_MODULE_NAME,
14806 	.id_table	= bnxt_pci_tbl,
14807 	.probe		= bnxt_init_one,
14808 	.remove		= bnxt_remove_one,
14809 	.shutdown	= bnxt_shutdown,
14810 	.driver.pm	= BNXT_PM_OPS,
14811 	.err_handler	= &bnxt_err_handler,
14812 #if defined(CONFIG_BNXT_SRIOV)
14813 	.sriov_configure = bnxt_sriov_configure,
14814 #endif
14815 };
14816 
14817 static int __init bnxt_init(void)
14818 {
14819 	int err;
14820 
14821 	bnxt_debug_init();
14822 	err = pci_register_driver(&bnxt_pci_driver);
14823 	if (err) {
14824 		bnxt_debug_exit();
14825 		return err;
14826 	}
14827 
14828 	return 0;
14829 }
14830 
14831 static void __exit bnxt_exit(void)
14832 {
14833 	pci_unregister_driver(&bnxt_pci_driver);
14834 	if (bnxt_pf_wq)
14835 		destroy_workqueue(bnxt_pf_wq);
14836 	bnxt_debug_exit();
14837 }
14838 
14839 module_init(bnxt_init);
14840 module_exit(bnxt_exit);
14841