1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/gro.h> 41 #include <net/ip.h> 42 #include <net/tcp.h> 43 #include <net/udp.h> 44 #include <net/checksum.h> 45 #include <net/ip6_checksum.h> 46 #include <net/udp_tunnel.h> 47 #include <linux/workqueue.h> 48 #include <linux/prefetch.h> 49 #include <linux/cache.h> 50 #include <linux/log2.h> 51 #include <linux/bitmap.h> 52 #include <linux/cpu_rmap.h> 53 #include <linux/cpumask.h> 54 #include <net/pkt_cls.h> 55 #include <net/page_pool/helpers.h> 56 #include <linux/align.h> 57 #include <net/netdev_queues.h> 58 59 #include "bnxt_hsi.h" 60 #include "bnxt.h" 61 #include "bnxt_hwrm.h" 62 #include "bnxt_ulp.h" 63 #include "bnxt_sriov.h" 64 #include "bnxt_ethtool.h" 65 #include "bnxt_dcb.h" 66 #include "bnxt_xdp.h" 67 #include "bnxt_ptp.h" 68 #include "bnxt_vfr.h" 69 #include "bnxt_tc.h" 70 #include "bnxt_devlink.h" 71 #include "bnxt_debugfs.h" 72 #include "bnxt_hwmon.h" 73 74 #define BNXT_TX_TIMEOUT (5 * HZ) 75 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \ 76 NETIF_MSG_TX_ERR) 77 78 MODULE_LICENSE("GPL"); 79 MODULE_DESCRIPTION("Broadcom BCM573xx network driver"); 80 81 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 82 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 83 #define BNXT_RX_COPY_THRESH 256 84 85 #define BNXT_TX_PUSH_THRESH 164 86 87 /* indexed by enum board_idx */ 88 static const struct { 89 char *name; 90 } board_info[] = { 91 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 92 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 93 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 94 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 95 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 96 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 97 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 98 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 99 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 100 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 101 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 102 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 103 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 104 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 105 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 106 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 107 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 108 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 109 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 110 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 111 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 112 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 113 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 114 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 115 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 116 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 117 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 118 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 119 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 120 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 121 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 122 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 123 [BCM57608] = { "Broadcom BCM57608 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 124 [BCM57604] = { "Broadcom BCM57604 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 125 [BCM57602] = { "Broadcom BCM57602 NetXtreme-E 10Gb/25Gb/50Gb/100Gb Ethernet" }, 126 [BCM57601] = { "Broadcom BCM57601 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 127 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 128 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 129 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 130 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 131 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 132 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 133 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 134 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 135 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 136 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 137 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 138 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 139 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 140 }; 141 142 static const struct pci_device_id bnxt_pci_tbl[] = { 143 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 144 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 145 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 146 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 147 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 148 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 149 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 150 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 151 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 152 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 153 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 154 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 155 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 156 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 157 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 158 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 159 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 160 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 161 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 162 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 163 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 164 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 165 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 166 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 167 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 168 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 169 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 170 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 171 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 172 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 173 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 174 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 175 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 176 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 177 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 178 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 179 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 180 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 181 { PCI_VDEVICE(BROADCOM, 0x1760), .driver_data = BCM57608 }, 182 { PCI_VDEVICE(BROADCOM, 0x1761), .driver_data = BCM57604 }, 183 { PCI_VDEVICE(BROADCOM, 0x1762), .driver_data = BCM57602 }, 184 { PCI_VDEVICE(BROADCOM, 0x1763), .driver_data = BCM57601 }, 185 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR }, 186 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 187 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR }, 188 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR }, 189 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 190 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR }, 191 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 192 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 193 #ifdef CONFIG_BNXT_SRIOV 194 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 195 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 196 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 197 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 198 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 199 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 200 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 201 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 202 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 203 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 204 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 205 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 206 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 207 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 208 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 209 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 210 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 211 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 212 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 213 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 214 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 215 #endif 216 { 0 } 217 }; 218 219 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 220 221 static const u16 bnxt_vf_req_snif[] = { 222 HWRM_FUNC_CFG, 223 HWRM_FUNC_VF_CFG, 224 HWRM_PORT_PHY_QCFG, 225 HWRM_CFA_L2_FILTER_ALLOC, 226 }; 227 228 static const u16 bnxt_async_events_arr[] = { 229 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 230 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 231 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 232 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 233 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 234 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 235 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 236 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 237 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 238 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 239 ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE, 240 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 241 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 242 ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP, 243 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT, 244 ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE, 245 }; 246 247 static struct workqueue_struct *bnxt_pf_wq; 248 249 static bool bnxt_vf_pciid(enum board_idx idx) 250 { 251 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 252 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 253 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || 254 idx == NETXTREME_E_P5_VF_HV); 255 } 256 257 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 258 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 259 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) 260 261 #define BNXT_CP_DB_IRQ_DIS(db) \ 262 writel(DB_CP_IRQ_DIS_FLAGS, db) 263 264 #define BNXT_DB_CQ(db, idx) \ 265 writel(DB_CP_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 266 267 #define BNXT_DB_NQ_P5(db, idx) \ 268 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | DB_RING_IDX(db, idx),\ 269 (db)->doorbell) 270 271 #define BNXT_DB_NQ_P7(db, idx) \ 272 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_MASK | \ 273 DB_RING_IDX(db, idx), (db)->doorbell) 274 275 #define BNXT_DB_CQ_ARM(db, idx) \ 276 writel(DB_CP_REARM_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 277 278 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 279 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | \ 280 DB_RING_IDX(db, idx), (db)->doorbell) 281 282 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 283 { 284 if (bp->flags & BNXT_FLAG_CHIP_P7) 285 BNXT_DB_NQ_P7(db, idx); 286 else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 287 BNXT_DB_NQ_P5(db, idx); 288 else 289 BNXT_DB_CQ(db, idx); 290 } 291 292 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 293 { 294 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 295 BNXT_DB_NQ_ARM_P5(db, idx); 296 else 297 BNXT_DB_CQ_ARM(db, idx); 298 } 299 300 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 301 { 302 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 303 bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL | 304 DB_RING_IDX(db, idx), db->doorbell); 305 else 306 BNXT_DB_CQ(db, idx); 307 } 308 309 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 310 { 311 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 312 return; 313 314 if (BNXT_PF(bp)) 315 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 316 else 317 schedule_delayed_work(&bp->fw_reset_task, delay); 318 } 319 320 static void __bnxt_queue_sp_work(struct bnxt *bp) 321 { 322 if (BNXT_PF(bp)) 323 queue_work(bnxt_pf_wq, &bp->sp_task); 324 else 325 schedule_work(&bp->sp_task); 326 } 327 328 static void bnxt_queue_sp_work(struct bnxt *bp, unsigned int event) 329 { 330 set_bit(event, &bp->sp_event); 331 __bnxt_queue_sp_work(bp); 332 } 333 334 static void bnxt_sched_reset_rxr(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 335 { 336 if (!rxr->bnapi->in_reset) { 337 rxr->bnapi->in_reset = true; 338 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 339 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 340 else 341 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 342 __bnxt_queue_sp_work(bp); 343 } 344 rxr->rx_next_cons = 0xffff; 345 } 346 347 void bnxt_sched_reset_txr(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 348 u16 curr) 349 { 350 struct bnxt_napi *bnapi = txr->bnapi; 351 352 if (bnapi->tx_fault) 353 return; 354 355 netdev_err(bp->dev, "Invalid Tx completion (ring:%d tx_hw_cons:%u cons:%u prod:%u curr:%u)", 356 txr->txq_index, txr->tx_hw_cons, 357 txr->tx_cons, txr->tx_prod, curr); 358 WARN_ON_ONCE(1); 359 bnapi->tx_fault = 1; 360 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 361 } 362 363 const u16 bnxt_lhint_arr[] = { 364 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 365 TX_BD_FLAGS_LHINT_512_TO_1023, 366 TX_BD_FLAGS_LHINT_1024_TO_2047, 367 TX_BD_FLAGS_LHINT_1024_TO_2047, 368 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 369 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 370 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 371 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 372 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 373 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 374 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 375 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 376 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 377 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 378 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 379 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 380 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 381 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 382 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 383 }; 384 385 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 386 { 387 struct metadata_dst *md_dst = skb_metadata_dst(skb); 388 389 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 390 return 0; 391 392 return md_dst->u.port_info.port_id; 393 } 394 395 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 396 u16 prod) 397 { 398 /* Sync BD data before updating doorbell */ 399 wmb(); 400 bnxt_db_write(bp, &txr->tx_db, prod); 401 txr->kick_pending = 0; 402 } 403 404 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 405 { 406 struct bnxt *bp = netdev_priv(dev); 407 struct tx_bd *txbd, *txbd0; 408 struct tx_bd_ext *txbd1; 409 struct netdev_queue *txq; 410 int i; 411 dma_addr_t mapping; 412 unsigned int length, pad = 0; 413 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 414 u16 prod, last_frag; 415 struct pci_dev *pdev = bp->pdev; 416 struct bnxt_tx_ring_info *txr; 417 struct bnxt_sw_tx_bd *tx_buf; 418 __le32 lflags = 0; 419 420 i = skb_get_queue_mapping(skb); 421 if (unlikely(i >= bp->tx_nr_rings)) { 422 dev_kfree_skb_any(skb); 423 dev_core_stats_tx_dropped_inc(dev); 424 return NETDEV_TX_OK; 425 } 426 427 txq = netdev_get_tx_queue(dev, i); 428 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 429 prod = txr->tx_prod; 430 431 free_size = bnxt_tx_avail(bp, txr); 432 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 433 /* We must have raced with NAPI cleanup */ 434 if (net_ratelimit() && txr->kick_pending) 435 netif_warn(bp, tx_err, dev, 436 "bnxt: ring busy w/ flush pending!\n"); 437 if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 438 bp->tx_wake_thresh)) 439 return NETDEV_TX_BUSY; 440 } 441 442 if (unlikely(ipv6_hopopt_jumbo_remove(skb))) 443 goto tx_free; 444 445 length = skb->len; 446 len = skb_headlen(skb); 447 last_frag = skb_shinfo(skb)->nr_frags; 448 449 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 450 451 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 452 tx_buf->skb = skb; 453 tx_buf->nr_frags = last_frag; 454 455 vlan_tag_flags = 0; 456 cfa_action = bnxt_xmit_get_cfa_action(skb); 457 if (skb_vlan_tag_present(skb)) { 458 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 459 skb_vlan_tag_get(skb); 460 /* Currently supports 8021Q, 8021AD vlan offloads 461 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 462 */ 463 if (skb->vlan_proto == htons(ETH_P_8021Q)) 464 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 465 } 466 467 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 468 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 469 470 if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) && 471 atomic_dec_if_positive(&ptp->tx_avail) >= 0) { 472 if (!bnxt_ptp_parse(skb, &ptp->tx_seqid, 473 &ptp->tx_hdr_off)) { 474 if (vlan_tag_flags) 475 ptp->tx_hdr_off += VLAN_HLEN; 476 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 477 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 478 } else { 479 atomic_inc(&bp->ptp_cfg->tx_avail); 480 } 481 } 482 } 483 484 if (unlikely(skb->no_fcs)) 485 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 486 487 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && 488 !lflags) { 489 struct tx_push_buffer *tx_push_buf = txr->tx_push; 490 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 491 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 492 void __iomem *db = txr->tx_db.doorbell; 493 void *pdata = tx_push_buf->data; 494 u64 *end; 495 int j, push_len; 496 497 /* Set COAL_NOW to be ready quickly for the next push */ 498 tx_push->tx_bd_len_flags_type = 499 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 500 TX_BD_TYPE_LONG_TX_BD | 501 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 502 TX_BD_FLAGS_COAL_NOW | 503 TX_BD_FLAGS_PACKET_END | 504 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 505 506 if (skb->ip_summed == CHECKSUM_PARTIAL) 507 tx_push1->tx_bd_hsize_lflags = 508 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 509 else 510 tx_push1->tx_bd_hsize_lflags = 0; 511 512 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 513 tx_push1->tx_bd_cfa_action = 514 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 515 516 end = pdata + length; 517 end = PTR_ALIGN(end, 8) - 1; 518 *end = 0; 519 520 skb_copy_from_linear_data(skb, pdata, len); 521 pdata += len; 522 for (j = 0; j < last_frag; j++) { 523 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 524 void *fptr; 525 526 fptr = skb_frag_address_safe(frag); 527 if (!fptr) 528 goto normal_tx; 529 530 memcpy(pdata, fptr, skb_frag_size(frag)); 531 pdata += skb_frag_size(frag); 532 } 533 534 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 535 txbd->tx_bd_haddr = txr->data_mapping; 536 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2); 537 prod = NEXT_TX(prod); 538 tx_push->tx_bd_opaque = txbd->tx_bd_opaque; 539 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 540 memcpy(txbd, tx_push1, sizeof(*txbd)); 541 prod = NEXT_TX(prod); 542 tx_push->doorbell = 543 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | 544 DB_RING_IDX(&txr->tx_db, prod)); 545 WRITE_ONCE(txr->tx_prod, prod); 546 547 tx_buf->is_push = 1; 548 netdev_tx_sent_queue(txq, skb->len); 549 wmb(); /* Sync is_push and byte queue before pushing data */ 550 551 push_len = (length + sizeof(*tx_push) + 7) / 8; 552 if (push_len > 16) { 553 __iowrite64_copy(db, tx_push_buf, 16); 554 __iowrite32_copy(db + 4, tx_push_buf + 1, 555 (push_len - 16) << 1); 556 } else { 557 __iowrite64_copy(db, tx_push_buf, push_len); 558 } 559 560 goto tx_done; 561 } 562 563 normal_tx: 564 if (length < BNXT_MIN_PKT_SIZE) { 565 pad = BNXT_MIN_PKT_SIZE - length; 566 if (skb_pad(skb, pad)) 567 /* SKB already freed. */ 568 goto tx_kick_pending; 569 length = BNXT_MIN_PKT_SIZE; 570 } 571 572 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 573 574 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 575 goto tx_free; 576 577 dma_unmap_addr_set(tx_buf, mapping, mapping); 578 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 579 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 580 581 txbd->tx_bd_haddr = cpu_to_le64(mapping); 582 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2 + last_frag); 583 584 prod = NEXT_TX(prod); 585 txbd1 = (struct tx_bd_ext *) 586 &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 587 588 txbd1->tx_bd_hsize_lflags = lflags; 589 if (skb_is_gso(skb)) { 590 bool udp_gso = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4); 591 u32 hdr_len; 592 593 if (skb->encapsulation) { 594 if (udp_gso) 595 hdr_len = skb_inner_transport_offset(skb) + 596 sizeof(struct udphdr); 597 else 598 hdr_len = skb_inner_tcp_all_headers(skb); 599 } else if (udp_gso) { 600 hdr_len = skb_transport_offset(skb) + 601 sizeof(struct udphdr); 602 } else { 603 hdr_len = skb_tcp_all_headers(skb); 604 } 605 606 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 607 TX_BD_FLAGS_T_IPID | 608 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 609 length = skb_shinfo(skb)->gso_size; 610 txbd1->tx_bd_mss = cpu_to_le32(length); 611 length += hdr_len; 612 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 613 txbd1->tx_bd_hsize_lflags |= 614 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 615 txbd1->tx_bd_mss = 0; 616 } 617 618 length >>= 9; 619 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 620 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 621 skb->len); 622 i = 0; 623 goto tx_dma_error; 624 } 625 flags |= bnxt_lhint_arr[length]; 626 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 627 628 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 629 txbd1->tx_bd_cfa_action = 630 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 631 txbd0 = txbd; 632 for (i = 0; i < last_frag; i++) { 633 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 634 635 prod = NEXT_TX(prod); 636 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 637 638 len = skb_frag_size(frag); 639 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 640 DMA_TO_DEVICE); 641 642 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 643 goto tx_dma_error; 644 645 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 646 dma_unmap_addr_set(tx_buf, mapping, mapping); 647 648 txbd->tx_bd_haddr = cpu_to_le64(mapping); 649 650 flags = len << TX_BD_LEN_SHIFT; 651 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 652 } 653 654 flags &= ~TX_BD_LEN; 655 txbd->tx_bd_len_flags_type = 656 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 657 TX_BD_FLAGS_PACKET_END); 658 659 netdev_tx_sent_queue(txq, skb->len); 660 661 skb_tx_timestamp(skb); 662 663 prod = NEXT_TX(prod); 664 WRITE_ONCE(txr->tx_prod, prod); 665 666 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) { 667 bnxt_txr_db_kick(bp, txr, prod); 668 } else { 669 if (free_size >= bp->tx_wake_thresh) 670 txbd0->tx_bd_len_flags_type |= 671 cpu_to_le32(TX_BD_FLAGS_NO_CMPL); 672 txr->kick_pending = 1; 673 } 674 675 tx_done: 676 677 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 678 if (netdev_xmit_more() && !tx_buf->is_push) { 679 txbd0->tx_bd_len_flags_type &= 680 cpu_to_le32(~TX_BD_FLAGS_NO_CMPL); 681 bnxt_txr_db_kick(bp, txr, prod); 682 } 683 684 netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 685 bp->tx_wake_thresh); 686 } 687 return NETDEV_TX_OK; 688 689 tx_dma_error: 690 if (BNXT_TX_PTP_IS_SET(lflags)) 691 atomic_inc(&bp->ptp_cfg->tx_avail); 692 693 last_frag = i; 694 695 /* start back at beginning and unmap skb */ 696 prod = txr->tx_prod; 697 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 698 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 699 skb_headlen(skb), DMA_TO_DEVICE); 700 prod = NEXT_TX(prod); 701 702 /* unmap remaining mapped pages */ 703 for (i = 0; i < last_frag; i++) { 704 prod = NEXT_TX(prod); 705 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 706 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 707 skb_frag_size(&skb_shinfo(skb)->frags[i]), 708 DMA_TO_DEVICE); 709 } 710 711 tx_free: 712 dev_kfree_skb_any(skb); 713 tx_kick_pending: 714 if (txr->kick_pending) 715 bnxt_txr_db_kick(bp, txr, txr->tx_prod); 716 txr->tx_buf_ring[txr->tx_prod].skb = NULL; 717 dev_core_stats_tx_dropped_inc(dev); 718 return NETDEV_TX_OK; 719 } 720 721 static void __bnxt_tx_int(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 722 int budget) 723 { 724 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 725 struct pci_dev *pdev = bp->pdev; 726 u16 hw_cons = txr->tx_hw_cons; 727 unsigned int tx_bytes = 0; 728 u16 cons = txr->tx_cons; 729 int tx_pkts = 0; 730 731 while (RING_TX(bp, cons) != hw_cons) { 732 struct bnxt_sw_tx_bd *tx_buf; 733 struct sk_buff *skb; 734 int j, last; 735 736 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 737 cons = NEXT_TX(cons); 738 skb = tx_buf->skb; 739 tx_buf->skb = NULL; 740 741 if (unlikely(!skb)) { 742 bnxt_sched_reset_txr(bp, txr, cons); 743 return; 744 } 745 746 tx_pkts++; 747 tx_bytes += skb->len; 748 749 if (tx_buf->is_push) { 750 tx_buf->is_push = 0; 751 goto next_tx_int; 752 } 753 754 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 755 skb_headlen(skb), DMA_TO_DEVICE); 756 last = tx_buf->nr_frags; 757 758 for (j = 0; j < last; j++) { 759 cons = NEXT_TX(cons); 760 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 761 dma_unmap_page( 762 &pdev->dev, 763 dma_unmap_addr(tx_buf, mapping), 764 skb_frag_size(&skb_shinfo(skb)->frags[j]), 765 DMA_TO_DEVICE); 766 } 767 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 768 if (BNXT_CHIP_P5(bp)) { 769 /* PTP worker takes ownership of the skb */ 770 if (!bnxt_get_tx_ts_p5(bp, skb)) 771 skb = NULL; 772 else 773 atomic_inc(&bp->ptp_cfg->tx_avail); 774 } 775 } 776 777 next_tx_int: 778 cons = NEXT_TX(cons); 779 780 dev_consume_skb_any(skb); 781 } 782 783 WRITE_ONCE(txr->tx_cons, cons); 784 785 __netif_txq_completed_wake(txq, tx_pkts, tx_bytes, 786 bnxt_tx_avail(bp, txr), bp->tx_wake_thresh, 787 READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING); 788 } 789 790 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 791 { 792 struct bnxt_tx_ring_info *txr; 793 int i; 794 795 bnxt_for_each_napi_tx(i, bnapi, txr) { 796 if (txr->tx_hw_cons != RING_TX(bp, txr->tx_cons)) 797 __bnxt_tx_int(bp, txr, budget); 798 } 799 bnapi->events &= ~BNXT_TX_CMP_EVENT; 800 } 801 802 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 803 struct bnxt_rx_ring_info *rxr, 804 unsigned int *offset, 805 gfp_t gfp) 806 { 807 struct page *page; 808 809 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 810 page = page_pool_dev_alloc_frag(rxr->page_pool, offset, 811 BNXT_RX_PAGE_SIZE); 812 } else { 813 page = page_pool_dev_alloc_pages(rxr->page_pool); 814 *offset = 0; 815 } 816 if (!page) 817 return NULL; 818 819 *mapping = page_pool_get_dma_addr(page) + *offset; 820 return page; 821 } 822 823 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping, 824 gfp_t gfp) 825 { 826 u8 *data; 827 struct pci_dev *pdev = bp->pdev; 828 829 if (gfp == GFP_ATOMIC) 830 data = napi_alloc_frag(bp->rx_buf_size); 831 else 832 data = netdev_alloc_frag(bp->rx_buf_size); 833 if (!data) 834 return NULL; 835 836 *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset, 837 bp->rx_buf_use_size, bp->rx_dir, 838 DMA_ATTR_WEAK_ORDERING); 839 840 if (dma_mapping_error(&pdev->dev, *mapping)) { 841 skb_free_frag(data); 842 data = NULL; 843 } 844 return data; 845 } 846 847 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 848 u16 prod, gfp_t gfp) 849 { 850 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 851 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 852 dma_addr_t mapping; 853 854 if (BNXT_RX_PAGE_MODE(bp)) { 855 unsigned int offset; 856 struct page *page = 857 __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 858 859 if (!page) 860 return -ENOMEM; 861 862 mapping += bp->rx_dma_offset; 863 rx_buf->data = page; 864 rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset; 865 } else { 866 u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp); 867 868 if (!data) 869 return -ENOMEM; 870 871 rx_buf->data = data; 872 rx_buf->data_ptr = data + bp->rx_offset; 873 } 874 rx_buf->mapping = mapping; 875 876 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 877 return 0; 878 } 879 880 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 881 { 882 u16 prod = rxr->rx_prod; 883 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 884 struct bnxt *bp = rxr->bnapi->bp; 885 struct rx_bd *cons_bd, *prod_bd; 886 887 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 888 cons_rx_buf = &rxr->rx_buf_ring[cons]; 889 890 prod_rx_buf->data = data; 891 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 892 893 prod_rx_buf->mapping = cons_rx_buf->mapping; 894 895 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 896 cons_bd = &rxr->rx_desc_ring[RX_RING(bp, cons)][RX_IDX(cons)]; 897 898 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 899 } 900 901 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 902 { 903 u16 next, max = rxr->rx_agg_bmap_size; 904 905 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 906 if (next >= max) 907 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 908 return next; 909 } 910 911 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 912 struct bnxt_rx_ring_info *rxr, 913 u16 prod, gfp_t gfp) 914 { 915 struct rx_bd *rxbd = 916 &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 917 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 918 struct page *page; 919 dma_addr_t mapping; 920 u16 sw_prod = rxr->rx_sw_agg_prod; 921 unsigned int offset = 0; 922 923 page = __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 924 925 if (!page) 926 return -ENOMEM; 927 928 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 929 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 930 931 __set_bit(sw_prod, rxr->rx_agg_bmap); 932 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 933 rxr->rx_sw_agg_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 934 935 rx_agg_buf->page = page; 936 rx_agg_buf->offset = offset; 937 rx_agg_buf->mapping = mapping; 938 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 939 rxbd->rx_bd_opaque = sw_prod; 940 return 0; 941 } 942 943 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 944 struct bnxt_cp_ring_info *cpr, 945 u16 cp_cons, u16 curr) 946 { 947 struct rx_agg_cmp *agg; 948 949 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 950 agg = (struct rx_agg_cmp *) 951 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 952 return agg; 953 } 954 955 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 956 struct bnxt_rx_ring_info *rxr, 957 u16 agg_id, u16 curr) 958 { 959 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 960 961 return &tpa_info->agg_arr[curr]; 962 } 963 964 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 965 u16 start, u32 agg_bufs, bool tpa) 966 { 967 struct bnxt_napi *bnapi = cpr->bnapi; 968 struct bnxt *bp = bnapi->bp; 969 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 970 u16 prod = rxr->rx_agg_prod; 971 u16 sw_prod = rxr->rx_sw_agg_prod; 972 bool p5_tpa = false; 973 u32 i; 974 975 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 976 p5_tpa = true; 977 978 for (i = 0; i < agg_bufs; i++) { 979 u16 cons; 980 struct rx_agg_cmp *agg; 981 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 982 struct rx_bd *prod_bd; 983 struct page *page; 984 985 if (p5_tpa) 986 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 987 else 988 agg = bnxt_get_agg(bp, cpr, idx, start + i); 989 cons = agg->rx_agg_cmp_opaque; 990 __clear_bit(cons, rxr->rx_agg_bmap); 991 992 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 993 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 994 995 __set_bit(sw_prod, rxr->rx_agg_bmap); 996 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 997 cons_rx_buf = &rxr->rx_agg_ring[cons]; 998 999 /* It is possible for sw_prod to be equal to cons, so 1000 * set cons_rx_buf->page to NULL first. 1001 */ 1002 page = cons_rx_buf->page; 1003 cons_rx_buf->page = NULL; 1004 prod_rx_buf->page = page; 1005 prod_rx_buf->offset = cons_rx_buf->offset; 1006 1007 prod_rx_buf->mapping = cons_rx_buf->mapping; 1008 1009 prod_bd = &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 1010 1011 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 1012 prod_bd->rx_bd_opaque = sw_prod; 1013 1014 prod = NEXT_RX_AGG(prod); 1015 sw_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 1016 } 1017 rxr->rx_agg_prod = prod; 1018 rxr->rx_sw_agg_prod = sw_prod; 1019 } 1020 1021 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp, 1022 struct bnxt_rx_ring_info *rxr, 1023 u16 cons, void *data, u8 *data_ptr, 1024 dma_addr_t dma_addr, 1025 unsigned int offset_and_len) 1026 { 1027 unsigned int len = offset_and_len & 0xffff; 1028 struct page *page = data; 1029 u16 prod = rxr->rx_prod; 1030 struct sk_buff *skb; 1031 int err; 1032 1033 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1034 if (unlikely(err)) { 1035 bnxt_reuse_rx_data(rxr, cons, data); 1036 return NULL; 1037 } 1038 dma_addr -= bp->rx_dma_offset; 1039 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1040 bp->rx_dir); 1041 skb = napi_build_skb(data_ptr - bp->rx_offset, BNXT_RX_PAGE_SIZE); 1042 if (!skb) { 1043 page_pool_recycle_direct(rxr->page_pool, page); 1044 return NULL; 1045 } 1046 skb_mark_for_recycle(skb); 1047 skb_reserve(skb, bp->rx_offset); 1048 __skb_put(skb, len); 1049 1050 return skb; 1051 } 1052 1053 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 1054 struct bnxt_rx_ring_info *rxr, 1055 u16 cons, void *data, u8 *data_ptr, 1056 dma_addr_t dma_addr, 1057 unsigned int offset_and_len) 1058 { 1059 unsigned int payload = offset_and_len >> 16; 1060 unsigned int len = offset_and_len & 0xffff; 1061 skb_frag_t *frag; 1062 struct page *page = data; 1063 u16 prod = rxr->rx_prod; 1064 struct sk_buff *skb; 1065 int off, err; 1066 1067 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1068 if (unlikely(err)) { 1069 bnxt_reuse_rx_data(rxr, cons, data); 1070 return NULL; 1071 } 1072 dma_addr -= bp->rx_dma_offset; 1073 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1074 bp->rx_dir); 1075 1076 if (unlikely(!payload)) 1077 payload = eth_get_headlen(bp->dev, data_ptr, len); 1078 1079 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 1080 if (!skb) { 1081 page_pool_recycle_direct(rxr->page_pool, page); 1082 return NULL; 1083 } 1084 1085 skb_mark_for_recycle(skb); 1086 off = (void *)data_ptr - page_address(page); 1087 skb_add_rx_frag(skb, 0, page, off, len, BNXT_RX_PAGE_SIZE); 1088 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 1089 payload + NET_IP_ALIGN); 1090 1091 frag = &skb_shinfo(skb)->frags[0]; 1092 skb_frag_size_sub(frag, payload); 1093 skb_frag_off_add(frag, payload); 1094 skb->data_len -= payload; 1095 skb->tail += payload; 1096 1097 return skb; 1098 } 1099 1100 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 1101 struct bnxt_rx_ring_info *rxr, u16 cons, 1102 void *data, u8 *data_ptr, 1103 dma_addr_t dma_addr, 1104 unsigned int offset_and_len) 1105 { 1106 u16 prod = rxr->rx_prod; 1107 struct sk_buff *skb; 1108 int err; 1109 1110 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1111 if (unlikely(err)) { 1112 bnxt_reuse_rx_data(rxr, cons, data); 1113 return NULL; 1114 } 1115 1116 skb = napi_build_skb(data, bp->rx_buf_size); 1117 dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1118 bp->rx_dir, DMA_ATTR_WEAK_ORDERING); 1119 if (!skb) { 1120 skb_free_frag(data); 1121 return NULL; 1122 } 1123 1124 skb_reserve(skb, bp->rx_offset); 1125 skb_put(skb, offset_and_len & 0xffff); 1126 return skb; 1127 } 1128 1129 static u32 __bnxt_rx_agg_pages(struct bnxt *bp, 1130 struct bnxt_cp_ring_info *cpr, 1131 struct skb_shared_info *shinfo, 1132 u16 idx, u32 agg_bufs, bool tpa, 1133 struct xdp_buff *xdp) 1134 { 1135 struct bnxt_napi *bnapi = cpr->bnapi; 1136 struct pci_dev *pdev = bp->pdev; 1137 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1138 u16 prod = rxr->rx_agg_prod; 1139 u32 i, total_frag_len = 0; 1140 bool p5_tpa = false; 1141 1142 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1143 p5_tpa = true; 1144 1145 for (i = 0; i < agg_bufs; i++) { 1146 skb_frag_t *frag = &shinfo->frags[i]; 1147 u16 cons, frag_len; 1148 struct rx_agg_cmp *agg; 1149 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1150 struct page *page; 1151 dma_addr_t mapping; 1152 1153 if (p5_tpa) 1154 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1155 else 1156 agg = bnxt_get_agg(bp, cpr, idx, i); 1157 cons = agg->rx_agg_cmp_opaque; 1158 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1159 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1160 1161 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1162 skb_frag_fill_page_desc(frag, cons_rx_buf->page, 1163 cons_rx_buf->offset, frag_len); 1164 shinfo->nr_frags = i + 1; 1165 __clear_bit(cons, rxr->rx_agg_bmap); 1166 1167 /* It is possible for bnxt_alloc_rx_page() to allocate 1168 * a sw_prod index that equals the cons index, so we 1169 * need to clear the cons entry now. 1170 */ 1171 mapping = cons_rx_buf->mapping; 1172 page = cons_rx_buf->page; 1173 cons_rx_buf->page = NULL; 1174 1175 if (xdp && page_is_pfmemalloc(page)) 1176 xdp_buff_set_frag_pfmemalloc(xdp); 1177 1178 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 1179 --shinfo->nr_frags; 1180 cons_rx_buf->page = page; 1181 1182 /* Update prod since possibly some pages have been 1183 * allocated already. 1184 */ 1185 rxr->rx_agg_prod = prod; 1186 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1187 return 0; 1188 } 1189 1190 dma_sync_single_for_cpu(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, 1191 bp->rx_dir); 1192 1193 total_frag_len += frag_len; 1194 prod = NEXT_RX_AGG(prod); 1195 } 1196 rxr->rx_agg_prod = prod; 1197 return total_frag_len; 1198 } 1199 1200 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp, 1201 struct bnxt_cp_ring_info *cpr, 1202 struct sk_buff *skb, u16 idx, 1203 u32 agg_bufs, bool tpa) 1204 { 1205 struct skb_shared_info *shinfo = skb_shinfo(skb); 1206 u32 total_frag_len = 0; 1207 1208 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx, 1209 agg_bufs, tpa, NULL); 1210 if (!total_frag_len) { 1211 skb_mark_for_recycle(skb); 1212 dev_kfree_skb(skb); 1213 return NULL; 1214 } 1215 1216 skb->data_len += total_frag_len; 1217 skb->len += total_frag_len; 1218 skb->truesize += BNXT_RX_PAGE_SIZE * agg_bufs; 1219 return skb; 1220 } 1221 1222 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp, 1223 struct bnxt_cp_ring_info *cpr, 1224 struct xdp_buff *xdp, u16 idx, 1225 u32 agg_bufs, bool tpa) 1226 { 1227 struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp); 1228 u32 total_frag_len = 0; 1229 1230 if (!xdp_buff_has_frags(xdp)) 1231 shinfo->nr_frags = 0; 1232 1233 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, 1234 idx, agg_bufs, tpa, xdp); 1235 if (total_frag_len) { 1236 xdp_buff_set_frags_flag(xdp); 1237 shinfo->nr_frags = agg_bufs; 1238 shinfo->xdp_frags_size = total_frag_len; 1239 } 1240 return total_frag_len; 1241 } 1242 1243 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1244 u8 agg_bufs, u32 *raw_cons) 1245 { 1246 u16 last; 1247 struct rx_agg_cmp *agg; 1248 1249 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1250 last = RING_CMP(*raw_cons); 1251 agg = (struct rx_agg_cmp *) 1252 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1253 return RX_AGG_CMP_VALID(agg, *raw_cons); 1254 } 1255 1256 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1257 unsigned int len, 1258 dma_addr_t mapping) 1259 { 1260 struct bnxt *bp = bnapi->bp; 1261 struct pci_dev *pdev = bp->pdev; 1262 struct sk_buff *skb; 1263 1264 skb = napi_alloc_skb(&bnapi->napi, len); 1265 if (!skb) 1266 return NULL; 1267 1268 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh, 1269 bp->rx_dir); 1270 1271 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1272 len + NET_IP_ALIGN); 1273 1274 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh, 1275 bp->rx_dir); 1276 1277 skb_put(skb, len); 1278 return skb; 1279 } 1280 1281 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1282 u32 *raw_cons, void *cmp) 1283 { 1284 struct rx_cmp *rxcmp = cmp; 1285 u32 tmp_raw_cons = *raw_cons; 1286 u8 cmp_type, agg_bufs = 0; 1287 1288 cmp_type = RX_CMP_TYPE(rxcmp); 1289 1290 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1291 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1292 RX_CMP_AGG_BUFS) >> 1293 RX_CMP_AGG_BUFS_SHIFT; 1294 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1295 struct rx_tpa_end_cmp *tpa_end = cmp; 1296 1297 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1298 return 0; 1299 1300 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1301 } 1302 1303 if (agg_bufs) { 1304 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1305 return -EBUSY; 1306 } 1307 *raw_cons = tmp_raw_cons; 1308 return 0; 1309 } 1310 1311 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1312 { 1313 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1314 u16 idx = agg_id & MAX_TPA_P5_MASK; 1315 1316 if (test_bit(idx, map->agg_idx_bmap)) 1317 idx = find_first_zero_bit(map->agg_idx_bmap, 1318 BNXT_AGG_IDX_BMAP_SIZE); 1319 __set_bit(idx, map->agg_idx_bmap); 1320 map->agg_id_tbl[agg_id] = idx; 1321 return idx; 1322 } 1323 1324 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1325 { 1326 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1327 1328 __clear_bit(idx, map->agg_idx_bmap); 1329 } 1330 1331 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1332 { 1333 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1334 1335 return map->agg_id_tbl[agg_id]; 1336 } 1337 1338 static void bnxt_tpa_metadata(struct bnxt_tpa_info *tpa_info, 1339 struct rx_tpa_start_cmp *tpa_start, 1340 struct rx_tpa_start_cmp_ext *tpa_start1) 1341 { 1342 tpa_info->cfa_code_valid = 1; 1343 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1344 tpa_info->vlan_valid = 0; 1345 if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) { 1346 tpa_info->vlan_valid = 1; 1347 tpa_info->metadata = 1348 le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1349 } 1350 } 1351 1352 static void bnxt_tpa_metadata_v2(struct bnxt_tpa_info *tpa_info, 1353 struct rx_tpa_start_cmp *tpa_start, 1354 struct rx_tpa_start_cmp_ext *tpa_start1) 1355 { 1356 tpa_info->vlan_valid = 0; 1357 if (TPA_START_VLAN_VALID(tpa_start)) { 1358 u32 tpid_sel = TPA_START_VLAN_TPID_SEL(tpa_start); 1359 u32 vlan_proto = ETH_P_8021Q; 1360 1361 tpa_info->vlan_valid = 1; 1362 if (tpid_sel == RX_TPA_START_METADATA1_TPID_8021AD) 1363 vlan_proto = ETH_P_8021AD; 1364 tpa_info->metadata = vlan_proto << 16 | 1365 TPA_START_METADATA0_TCI(tpa_start1); 1366 } 1367 } 1368 1369 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1370 u8 cmp_type, struct rx_tpa_start_cmp *tpa_start, 1371 struct rx_tpa_start_cmp_ext *tpa_start1) 1372 { 1373 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1374 struct bnxt_tpa_info *tpa_info; 1375 u16 cons, prod, agg_id; 1376 struct rx_bd *prod_bd; 1377 dma_addr_t mapping; 1378 1379 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1380 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1381 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1382 } else { 1383 agg_id = TPA_START_AGG_ID(tpa_start); 1384 } 1385 cons = tpa_start->rx_tpa_start_cmp_opaque; 1386 prod = rxr->rx_prod; 1387 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1388 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 1389 tpa_info = &rxr->rx_tpa[agg_id]; 1390 1391 if (unlikely(cons != rxr->rx_next_cons || 1392 TPA_START_ERROR(tpa_start))) { 1393 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1394 cons, rxr->rx_next_cons, 1395 TPA_START_ERROR_CODE(tpa_start1)); 1396 bnxt_sched_reset_rxr(bp, rxr); 1397 return; 1398 } 1399 prod_rx_buf->data = tpa_info->data; 1400 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1401 1402 mapping = tpa_info->mapping; 1403 prod_rx_buf->mapping = mapping; 1404 1405 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 1406 1407 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1408 1409 tpa_info->data = cons_rx_buf->data; 1410 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1411 cons_rx_buf->data = NULL; 1412 tpa_info->mapping = cons_rx_buf->mapping; 1413 1414 tpa_info->len = 1415 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1416 RX_TPA_START_CMP_LEN_SHIFT; 1417 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1418 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1419 tpa_info->gso_type = SKB_GSO_TCPV4; 1420 if (TPA_START_IS_IPV6(tpa_start1)) 1421 tpa_info->gso_type = SKB_GSO_TCPV6; 1422 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1423 else if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP && 1424 TPA_START_HASH_TYPE(tpa_start) == 3) 1425 tpa_info->gso_type = SKB_GSO_TCPV6; 1426 tpa_info->rss_hash = 1427 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1428 } else { 1429 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1430 tpa_info->gso_type = 0; 1431 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1432 } 1433 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1434 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1435 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) 1436 bnxt_tpa_metadata(tpa_info, tpa_start, tpa_start1); 1437 else 1438 bnxt_tpa_metadata_v2(tpa_info, tpa_start, tpa_start1); 1439 tpa_info->agg_count = 0; 1440 1441 rxr->rx_prod = NEXT_RX(prod); 1442 cons = RING_RX(bp, NEXT_RX(cons)); 1443 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 1444 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1445 1446 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1447 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1448 cons_rx_buf->data = NULL; 1449 } 1450 1451 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1452 { 1453 if (agg_bufs) 1454 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1455 } 1456 1457 #ifdef CONFIG_INET 1458 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1459 { 1460 struct udphdr *uh = NULL; 1461 1462 if (ip_proto == htons(ETH_P_IP)) { 1463 struct iphdr *iph = (struct iphdr *)skb->data; 1464 1465 if (iph->protocol == IPPROTO_UDP) 1466 uh = (struct udphdr *)(iph + 1); 1467 } else { 1468 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1469 1470 if (iph->nexthdr == IPPROTO_UDP) 1471 uh = (struct udphdr *)(iph + 1); 1472 } 1473 if (uh) { 1474 if (uh->check) 1475 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1476 else 1477 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1478 } 1479 } 1480 #endif 1481 1482 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1483 int payload_off, int tcp_ts, 1484 struct sk_buff *skb) 1485 { 1486 #ifdef CONFIG_INET 1487 struct tcphdr *th; 1488 int len, nw_off; 1489 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1490 u32 hdr_info = tpa_info->hdr_info; 1491 bool loopback = false; 1492 1493 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1494 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1495 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1496 1497 /* If the packet is an internal loopback packet, the offsets will 1498 * have an extra 4 bytes. 1499 */ 1500 if (inner_mac_off == 4) { 1501 loopback = true; 1502 } else if (inner_mac_off > 4) { 1503 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1504 ETH_HLEN - 2)); 1505 1506 /* We only support inner iPv4/ipv6. If we don't see the 1507 * correct protocol ID, it must be a loopback packet where 1508 * the offsets are off by 4. 1509 */ 1510 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1511 loopback = true; 1512 } 1513 if (loopback) { 1514 /* internal loopback packet, subtract all offsets by 4 */ 1515 inner_ip_off -= 4; 1516 inner_mac_off -= 4; 1517 outer_ip_off -= 4; 1518 } 1519 1520 nw_off = inner_ip_off - ETH_HLEN; 1521 skb_set_network_header(skb, nw_off); 1522 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1523 struct ipv6hdr *iph = ipv6_hdr(skb); 1524 1525 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1526 len = skb->len - skb_transport_offset(skb); 1527 th = tcp_hdr(skb); 1528 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1529 } else { 1530 struct iphdr *iph = ip_hdr(skb); 1531 1532 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1533 len = skb->len - skb_transport_offset(skb); 1534 th = tcp_hdr(skb); 1535 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1536 } 1537 1538 if (inner_mac_off) { /* tunnel */ 1539 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1540 ETH_HLEN - 2)); 1541 1542 bnxt_gro_tunnel(skb, proto); 1543 } 1544 #endif 1545 return skb; 1546 } 1547 1548 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1549 int payload_off, int tcp_ts, 1550 struct sk_buff *skb) 1551 { 1552 #ifdef CONFIG_INET 1553 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1554 u32 hdr_info = tpa_info->hdr_info; 1555 int iphdr_len, nw_off; 1556 1557 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1558 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1559 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1560 1561 nw_off = inner_ip_off - ETH_HLEN; 1562 skb_set_network_header(skb, nw_off); 1563 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1564 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1565 skb_set_transport_header(skb, nw_off + iphdr_len); 1566 1567 if (inner_mac_off) { /* tunnel */ 1568 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1569 ETH_HLEN - 2)); 1570 1571 bnxt_gro_tunnel(skb, proto); 1572 } 1573 #endif 1574 return skb; 1575 } 1576 1577 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1578 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1579 1580 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1581 int payload_off, int tcp_ts, 1582 struct sk_buff *skb) 1583 { 1584 #ifdef CONFIG_INET 1585 struct tcphdr *th; 1586 int len, nw_off, tcp_opt_len = 0; 1587 1588 if (tcp_ts) 1589 tcp_opt_len = 12; 1590 1591 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1592 struct iphdr *iph; 1593 1594 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1595 ETH_HLEN; 1596 skb_set_network_header(skb, nw_off); 1597 iph = ip_hdr(skb); 1598 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1599 len = skb->len - skb_transport_offset(skb); 1600 th = tcp_hdr(skb); 1601 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1602 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1603 struct ipv6hdr *iph; 1604 1605 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1606 ETH_HLEN; 1607 skb_set_network_header(skb, nw_off); 1608 iph = ipv6_hdr(skb); 1609 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1610 len = skb->len - skb_transport_offset(skb); 1611 th = tcp_hdr(skb); 1612 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1613 } else { 1614 dev_kfree_skb_any(skb); 1615 return NULL; 1616 } 1617 1618 if (nw_off) /* tunnel */ 1619 bnxt_gro_tunnel(skb, skb->protocol); 1620 #endif 1621 return skb; 1622 } 1623 1624 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1625 struct bnxt_tpa_info *tpa_info, 1626 struct rx_tpa_end_cmp *tpa_end, 1627 struct rx_tpa_end_cmp_ext *tpa_end1, 1628 struct sk_buff *skb) 1629 { 1630 #ifdef CONFIG_INET 1631 int payload_off; 1632 u16 segs; 1633 1634 segs = TPA_END_TPA_SEGS(tpa_end); 1635 if (segs == 1) 1636 return skb; 1637 1638 NAPI_GRO_CB(skb)->count = segs; 1639 skb_shinfo(skb)->gso_size = 1640 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1641 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1642 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1643 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1644 else 1645 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1646 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1647 if (likely(skb)) 1648 tcp_gro_complete(skb); 1649 #endif 1650 return skb; 1651 } 1652 1653 /* Given the cfa_code of a received packet determine which 1654 * netdev (vf-rep or PF) the packet is destined to. 1655 */ 1656 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1657 { 1658 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1659 1660 /* if vf-rep dev is NULL, the must belongs to the PF */ 1661 return dev ? dev : bp->dev; 1662 } 1663 1664 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1665 struct bnxt_cp_ring_info *cpr, 1666 u32 *raw_cons, 1667 struct rx_tpa_end_cmp *tpa_end, 1668 struct rx_tpa_end_cmp_ext *tpa_end1, 1669 u8 *event) 1670 { 1671 struct bnxt_napi *bnapi = cpr->bnapi; 1672 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1673 struct net_device *dev = bp->dev; 1674 u8 *data_ptr, agg_bufs; 1675 unsigned int len; 1676 struct bnxt_tpa_info *tpa_info; 1677 dma_addr_t mapping; 1678 struct sk_buff *skb; 1679 u16 idx = 0, agg_id; 1680 void *data; 1681 bool gro; 1682 1683 if (unlikely(bnapi->in_reset)) { 1684 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1685 1686 if (rc < 0) 1687 return ERR_PTR(-EBUSY); 1688 return NULL; 1689 } 1690 1691 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1692 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1693 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1694 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1695 tpa_info = &rxr->rx_tpa[agg_id]; 1696 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1697 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1698 agg_bufs, tpa_info->agg_count); 1699 agg_bufs = tpa_info->agg_count; 1700 } 1701 tpa_info->agg_count = 0; 1702 *event |= BNXT_AGG_EVENT; 1703 bnxt_free_agg_idx(rxr, agg_id); 1704 idx = agg_id; 1705 gro = !!(bp->flags & BNXT_FLAG_GRO); 1706 } else { 1707 agg_id = TPA_END_AGG_ID(tpa_end); 1708 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1709 tpa_info = &rxr->rx_tpa[agg_id]; 1710 idx = RING_CMP(*raw_cons); 1711 if (agg_bufs) { 1712 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1713 return ERR_PTR(-EBUSY); 1714 1715 *event |= BNXT_AGG_EVENT; 1716 idx = NEXT_CMP(idx); 1717 } 1718 gro = !!TPA_END_GRO(tpa_end); 1719 } 1720 data = tpa_info->data; 1721 data_ptr = tpa_info->data_ptr; 1722 prefetch(data_ptr); 1723 len = tpa_info->len; 1724 mapping = tpa_info->mapping; 1725 1726 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1727 bnxt_abort_tpa(cpr, idx, agg_bufs); 1728 if (agg_bufs > MAX_SKB_FRAGS) 1729 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1730 agg_bufs, (int)MAX_SKB_FRAGS); 1731 return NULL; 1732 } 1733 1734 if (len <= bp->rx_copy_thresh) { 1735 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1736 if (!skb) { 1737 bnxt_abort_tpa(cpr, idx, agg_bufs); 1738 cpr->sw_stats.rx.rx_oom_discards += 1; 1739 return NULL; 1740 } 1741 } else { 1742 u8 *new_data; 1743 dma_addr_t new_mapping; 1744 1745 new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC); 1746 if (!new_data) { 1747 bnxt_abort_tpa(cpr, idx, agg_bufs); 1748 cpr->sw_stats.rx.rx_oom_discards += 1; 1749 return NULL; 1750 } 1751 1752 tpa_info->data = new_data; 1753 tpa_info->data_ptr = new_data + bp->rx_offset; 1754 tpa_info->mapping = new_mapping; 1755 1756 skb = napi_build_skb(data, bp->rx_buf_size); 1757 dma_unmap_single_attrs(&bp->pdev->dev, mapping, 1758 bp->rx_buf_use_size, bp->rx_dir, 1759 DMA_ATTR_WEAK_ORDERING); 1760 1761 if (!skb) { 1762 skb_free_frag(data); 1763 bnxt_abort_tpa(cpr, idx, agg_bufs); 1764 cpr->sw_stats.rx.rx_oom_discards += 1; 1765 return NULL; 1766 } 1767 skb_reserve(skb, bp->rx_offset); 1768 skb_put(skb, len); 1769 } 1770 1771 if (agg_bufs) { 1772 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true); 1773 if (!skb) { 1774 /* Page reuse already handled by bnxt_rx_pages(). */ 1775 cpr->sw_stats.rx.rx_oom_discards += 1; 1776 return NULL; 1777 } 1778 } 1779 1780 if (tpa_info->cfa_code_valid) 1781 dev = bnxt_get_pkt_dev(bp, tpa_info->cfa_code); 1782 skb->protocol = eth_type_trans(skb, dev); 1783 1784 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1785 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1786 1787 if (tpa_info->vlan_valid && 1788 (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1789 __be16 vlan_proto = htons(tpa_info->metadata >> 1790 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1791 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1792 1793 if (eth_type_vlan(vlan_proto)) { 1794 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1795 } else { 1796 dev_kfree_skb(skb); 1797 return NULL; 1798 } 1799 } 1800 1801 skb_checksum_none_assert(skb); 1802 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1803 skb->ip_summed = CHECKSUM_UNNECESSARY; 1804 skb->csum_level = 1805 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1806 } 1807 1808 if (gro) 1809 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1810 1811 return skb; 1812 } 1813 1814 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1815 struct rx_agg_cmp *rx_agg) 1816 { 1817 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1818 struct bnxt_tpa_info *tpa_info; 1819 1820 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1821 tpa_info = &rxr->rx_tpa[agg_id]; 1822 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1823 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1824 } 1825 1826 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1827 struct sk_buff *skb) 1828 { 1829 skb_mark_for_recycle(skb); 1830 1831 if (skb->dev != bp->dev) { 1832 /* this packet belongs to a vf-rep */ 1833 bnxt_vf_rep_rx(bp, skb); 1834 return; 1835 } 1836 skb_record_rx_queue(skb, bnapi->index); 1837 napi_gro_receive(&bnapi->napi, skb); 1838 } 1839 1840 static bool bnxt_rx_ts_valid(struct bnxt *bp, u32 flags, 1841 struct rx_cmp_ext *rxcmp1, u32 *cmpl_ts) 1842 { 1843 u32 ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); 1844 1845 if (BNXT_PTP_RX_TS_VALID(flags)) 1846 goto ts_valid; 1847 if (!bp->ptp_all_rx_tstamp || !ts || !BNXT_ALL_RX_TS_VALID(flags)) 1848 return false; 1849 1850 ts_valid: 1851 *cmpl_ts = ts; 1852 return true; 1853 } 1854 1855 static struct sk_buff *bnxt_rx_vlan(struct sk_buff *skb, u8 cmp_type, 1856 struct rx_cmp *rxcmp, 1857 struct rx_cmp_ext *rxcmp1) 1858 { 1859 __be16 vlan_proto; 1860 u16 vtag; 1861 1862 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1863 __le32 flags2 = rxcmp1->rx_cmp_flags2; 1864 u32 meta_data; 1865 1866 if (!(flags2 & cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN))) 1867 return skb; 1868 1869 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 1870 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1871 vlan_proto = htons(meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT); 1872 if (eth_type_vlan(vlan_proto)) 1873 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1874 else 1875 goto vlan_err; 1876 } else if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 1877 if (RX_CMP_VLAN_VALID(rxcmp)) { 1878 u32 tpid_sel = RX_CMP_VLAN_TPID_SEL(rxcmp); 1879 1880 if (tpid_sel == RX_CMP_METADATA1_TPID_8021Q) 1881 vlan_proto = htons(ETH_P_8021Q); 1882 else if (tpid_sel == RX_CMP_METADATA1_TPID_8021AD) 1883 vlan_proto = htons(ETH_P_8021AD); 1884 else 1885 goto vlan_err; 1886 vtag = RX_CMP_METADATA0_TCI(rxcmp1); 1887 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1888 } 1889 } 1890 return skb; 1891 vlan_err: 1892 dev_kfree_skb(skb); 1893 return NULL; 1894 } 1895 1896 static enum pkt_hash_types bnxt_rss_ext_op(struct bnxt *bp, 1897 struct rx_cmp *rxcmp) 1898 { 1899 u8 ext_op; 1900 1901 ext_op = RX_CMP_V3_HASH_TYPE(bp, rxcmp); 1902 switch (ext_op) { 1903 case EXT_OP_INNER_4: 1904 case EXT_OP_OUTER_4: 1905 case EXT_OP_INNFL_3: 1906 case EXT_OP_OUTFL_3: 1907 return PKT_HASH_TYPE_L4; 1908 default: 1909 return PKT_HASH_TYPE_L3; 1910 } 1911 } 1912 1913 /* returns the following: 1914 * 1 - 1 packet successfully received 1915 * 0 - successful TPA_START, packet not completed yet 1916 * -EBUSY - completion ring does not have all the agg buffers yet 1917 * -ENOMEM - packet aborted due to out of memory 1918 * -EIO - packet aborted due to hw error indicated in BD 1919 */ 1920 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1921 u32 *raw_cons, u8 *event) 1922 { 1923 struct bnxt_napi *bnapi = cpr->bnapi; 1924 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1925 struct net_device *dev = bp->dev; 1926 struct rx_cmp *rxcmp; 1927 struct rx_cmp_ext *rxcmp1; 1928 u32 tmp_raw_cons = *raw_cons; 1929 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 1930 struct bnxt_sw_rx_bd *rx_buf; 1931 unsigned int len; 1932 u8 *data_ptr, agg_bufs, cmp_type; 1933 bool xdp_active = false; 1934 dma_addr_t dma_addr; 1935 struct sk_buff *skb; 1936 struct xdp_buff xdp; 1937 u32 flags, misc; 1938 u32 cmpl_ts; 1939 void *data; 1940 int rc = 0; 1941 1942 rxcmp = (struct rx_cmp *) 1943 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1944 1945 cmp_type = RX_CMP_TYPE(rxcmp); 1946 1947 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 1948 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 1949 goto next_rx_no_prod_no_len; 1950 } 1951 1952 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1953 cp_cons = RING_CMP(tmp_raw_cons); 1954 rxcmp1 = (struct rx_cmp_ext *) 1955 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1956 1957 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1958 return -EBUSY; 1959 1960 /* The valid test of the entry must be done first before 1961 * reading any further. 1962 */ 1963 dma_rmb(); 1964 prod = rxr->rx_prod; 1965 1966 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP || 1967 cmp_type == CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 1968 bnxt_tpa_start(bp, rxr, cmp_type, 1969 (struct rx_tpa_start_cmp *)rxcmp, 1970 (struct rx_tpa_start_cmp_ext *)rxcmp1); 1971 1972 *event |= BNXT_RX_EVENT; 1973 goto next_rx_no_prod_no_len; 1974 1975 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1976 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 1977 (struct rx_tpa_end_cmp *)rxcmp, 1978 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 1979 1980 if (IS_ERR(skb)) 1981 return -EBUSY; 1982 1983 rc = -ENOMEM; 1984 if (likely(skb)) { 1985 bnxt_deliver_skb(bp, bnapi, skb); 1986 rc = 1; 1987 } 1988 *event |= BNXT_RX_EVENT; 1989 goto next_rx_no_prod_no_len; 1990 } 1991 1992 cons = rxcmp->rx_cmp_opaque; 1993 if (unlikely(cons != rxr->rx_next_cons)) { 1994 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 1995 1996 /* 0xffff is forced error, don't print it */ 1997 if (rxr->rx_next_cons != 0xffff) 1998 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 1999 cons, rxr->rx_next_cons); 2000 bnxt_sched_reset_rxr(bp, rxr); 2001 if (rc1) 2002 return rc1; 2003 goto next_rx_no_prod_no_len; 2004 } 2005 rx_buf = &rxr->rx_buf_ring[cons]; 2006 data = rx_buf->data; 2007 data_ptr = rx_buf->data_ptr; 2008 prefetch(data_ptr); 2009 2010 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 2011 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 2012 2013 if (agg_bufs) { 2014 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 2015 return -EBUSY; 2016 2017 cp_cons = NEXT_CMP(cp_cons); 2018 *event |= BNXT_AGG_EVENT; 2019 } 2020 *event |= BNXT_RX_EVENT; 2021 2022 rx_buf->data = NULL; 2023 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 2024 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 2025 2026 bnxt_reuse_rx_data(rxr, cons, data); 2027 if (agg_bufs) 2028 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 2029 false); 2030 2031 rc = -EIO; 2032 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 2033 bnapi->cp_ring.sw_stats.rx.rx_buf_errors++; 2034 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 2035 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 2036 netdev_warn_once(bp->dev, "RX buffer error %x\n", 2037 rx_err); 2038 bnxt_sched_reset_rxr(bp, rxr); 2039 } 2040 } 2041 goto next_rx_no_len; 2042 } 2043 2044 flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); 2045 len = flags >> RX_CMP_LEN_SHIFT; 2046 dma_addr = rx_buf->mapping; 2047 2048 if (bnxt_xdp_attached(bp, rxr)) { 2049 bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp); 2050 if (agg_bufs) { 2051 u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp, 2052 cp_cons, agg_bufs, 2053 false); 2054 if (!frag_len) { 2055 cpr->sw_stats.rx.rx_oom_discards += 1; 2056 rc = -ENOMEM; 2057 goto next_rx; 2058 } 2059 } 2060 xdp_active = true; 2061 } 2062 2063 if (xdp_active) { 2064 if (bnxt_rx_xdp(bp, rxr, cons, xdp, data, &data_ptr, &len, event)) { 2065 rc = 1; 2066 goto next_rx; 2067 } 2068 } 2069 2070 if (len <= bp->rx_copy_thresh) { 2071 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 2072 bnxt_reuse_rx_data(rxr, cons, data); 2073 if (!skb) { 2074 if (agg_bufs) { 2075 if (!xdp_active) 2076 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 2077 agg_bufs, false); 2078 else 2079 bnxt_xdp_buff_frags_free(rxr, &xdp); 2080 } 2081 cpr->sw_stats.rx.rx_oom_discards += 1; 2082 rc = -ENOMEM; 2083 goto next_rx; 2084 } 2085 } else { 2086 u32 payload; 2087 2088 if (rx_buf->data_ptr == data_ptr) 2089 payload = misc & RX_CMP_PAYLOAD_OFFSET; 2090 else 2091 payload = 0; 2092 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 2093 payload | len); 2094 if (!skb) { 2095 cpr->sw_stats.rx.rx_oom_discards += 1; 2096 rc = -ENOMEM; 2097 goto next_rx; 2098 } 2099 } 2100 2101 if (agg_bufs) { 2102 if (!xdp_active) { 2103 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false); 2104 if (!skb) { 2105 cpr->sw_stats.rx.rx_oom_discards += 1; 2106 rc = -ENOMEM; 2107 goto next_rx; 2108 } 2109 } else { 2110 skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1); 2111 if (!skb) { 2112 /* we should be able to free the old skb here */ 2113 bnxt_xdp_buff_frags_free(rxr, &xdp); 2114 cpr->sw_stats.rx.rx_oom_discards += 1; 2115 rc = -ENOMEM; 2116 goto next_rx; 2117 } 2118 } 2119 } 2120 2121 if (RX_CMP_HASH_VALID(rxcmp)) { 2122 enum pkt_hash_types type; 2123 2124 if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2125 type = bnxt_rss_ext_op(bp, rxcmp); 2126 } else { 2127 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 2128 2129 /* RSS profiles 1 and 3 with extract code 0 for inner 2130 * 4-tuple 2131 */ 2132 if (hash_type != 1 && hash_type != 3) 2133 type = PKT_HASH_TYPE_L3; 2134 else 2135 type = PKT_HASH_TYPE_L4; 2136 } 2137 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 2138 } 2139 2140 if (cmp_type == CMP_TYPE_RX_L2_CMP) 2141 dev = bnxt_get_pkt_dev(bp, RX_CMP_CFA_CODE(rxcmp1)); 2142 skb->protocol = eth_type_trans(skb, dev); 2143 2144 if (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) { 2145 skb = bnxt_rx_vlan(skb, cmp_type, rxcmp, rxcmp1); 2146 if (!skb) 2147 goto next_rx; 2148 } 2149 2150 skb_checksum_none_assert(skb); 2151 if (RX_CMP_L4_CS_OK(rxcmp1)) { 2152 if (dev->features & NETIF_F_RXCSUM) { 2153 skb->ip_summed = CHECKSUM_UNNECESSARY; 2154 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 2155 } 2156 } else { 2157 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 2158 if (dev->features & NETIF_F_RXCSUM) 2159 bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++; 2160 } 2161 } 2162 2163 if (bnxt_rx_ts_valid(bp, flags, rxcmp1, &cmpl_ts)) { 2164 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 2165 u64 ns, ts; 2166 2167 if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { 2168 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2169 2170 spin_lock_bh(&ptp->ptp_lock); 2171 ns = timecounter_cyc2time(&ptp->tc, ts); 2172 spin_unlock_bh(&ptp->ptp_lock); 2173 memset(skb_hwtstamps(skb), 0, 2174 sizeof(*skb_hwtstamps(skb))); 2175 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 2176 } 2177 } 2178 } 2179 bnxt_deliver_skb(bp, bnapi, skb); 2180 rc = 1; 2181 2182 next_rx: 2183 cpr->rx_packets += 1; 2184 cpr->rx_bytes += len; 2185 2186 next_rx_no_len: 2187 rxr->rx_prod = NEXT_RX(prod); 2188 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 2189 2190 next_rx_no_prod_no_len: 2191 *raw_cons = tmp_raw_cons; 2192 2193 return rc; 2194 } 2195 2196 /* In netpoll mode, if we are using a combined completion ring, we need to 2197 * discard the rx packets and recycle the buffers. 2198 */ 2199 static int bnxt_force_rx_discard(struct bnxt *bp, 2200 struct bnxt_cp_ring_info *cpr, 2201 u32 *raw_cons, u8 *event) 2202 { 2203 u32 tmp_raw_cons = *raw_cons; 2204 struct rx_cmp_ext *rxcmp1; 2205 struct rx_cmp *rxcmp; 2206 u16 cp_cons; 2207 u8 cmp_type; 2208 int rc; 2209 2210 cp_cons = RING_CMP(tmp_raw_cons); 2211 rxcmp = (struct rx_cmp *) 2212 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2213 2214 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2215 cp_cons = RING_CMP(tmp_raw_cons); 2216 rxcmp1 = (struct rx_cmp_ext *) 2217 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2218 2219 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2220 return -EBUSY; 2221 2222 /* The valid test of the entry must be done first before 2223 * reading any further. 2224 */ 2225 dma_rmb(); 2226 cmp_type = RX_CMP_TYPE(rxcmp); 2227 if (cmp_type == CMP_TYPE_RX_L2_CMP || 2228 cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2229 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2230 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2231 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2232 struct rx_tpa_end_cmp_ext *tpa_end1; 2233 2234 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 2235 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 2236 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 2237 } 2238 rc = bnxt_rx_pkt(bp, cpr, raw_cons, event); 2239 if (rc && rc != -EBUSY) 2240 cpr->sw_stats.rx.rx_netpoll_discards += 1; 2241 return rc; 2242 } 2243 2244 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 2245 { 2246 struct bnxt_fw_health *fw_health = bp->fw_health; 2247 u32 reg = fw_health->regs[reg_idx]; 2248 u32 reg_type, reg_off, val = 0; 2249 2250 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 2251 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 2252 switch (reg_type) { 2253 case BNXT_FW_HEALTH_REG_TYPE_CFG: 2254 pci_read_config_dword(bp->pdev, reg_off, &val); 2255 break; 2256 case BNXT_FW_HEALTH_REG_TYPE_GRC: 2257 reg_off = fw_health->mapped_regs[reg_idx]; 2258 fallthrough; 2259 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 2260 val = readl(bp->bar0 + reg_off); 2261 break; 2262 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 2263 val = readl(bp->bar1 + reg_off); 2264 break; 2265 } 2266 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 2267 val &= fw_health->fw_reset_inprog_reg_mask; 2268 return val; 2269 } 2270 2271 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 2272 { 2273 int i; 2274 2275 for (i = 0; i < bp->rx_nr_rings; i++) { 2276 u16 grp_idx = bp->rx_ring[i].bnapi->index; 2277 struct bnxt_ring_grp_info *grp_info; 2278 2279 grp_info = &bp->grp_info[grp_idx]; 2280 if (grp_info->agg_fw_ring_id == ring_id) 2281 return grp_idx; 2282 } 2283 return INVALID_HW_RING_ID; 2284 } 2285 2286 static u16 bnxt_get_force_speed(struct bnxt_link_info *link_info) 2287 { 2288 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2289 2290 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 2291 return link_info->force_link_speed2; 2292 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4) 2293 return link_info->force_pam4_link_speed; 2294 return link_info->force_link_speed; 2295 } 2296 2297 static void bnxt_set_force_speed(struct bnxt_link_info *link_info) 2298 { 2299 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2300 2301 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2302 link_info->req_link_speed = link_info->force_link_speed2; 2303 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2304 switch (link_info->req_link_speed) { 2305 case BNXT_LINK_SPEED_50GB_PAM4: 2306 case BNXT_LINK_SPEED_100GB_PAM4: 2307 case BNXT_LINK_SPEED_200GB_PAM4: 2308 case BNXT_LINK_SPEED_400GB_PAM4: 2309 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2310 break; 2311 case BNXT_LINK_SPEED_100GB_PAM4_112: 2312 case BNXT_LINK_SPEED_200GB_PAM4_112: 2313 case BNXT_LINK_SPEED_400GB_PAM4_112: 2314 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4_112; 2315 break; 2316 default: 2317 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2318 } 2319 return; 2320 } 2321 link_info->req_link_speed = link_info->force_link_speed; 2322 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2323 if (link_info->force_pam4_link_speed) { 2324 link_info->req_link_speed = link_info->force_pam4_link_speed; 2325 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2326 } 2327 } 2328 2329 static void bnxt_set_auto_speed(struct bnxt_link_info *link_info) 2330 { 2331 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2332 2333 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2334 link_info->advertising = link_info->auto_link_speeds2; 2335 return; 2336 } 2337 link_info->advertising = link_info->auto_link_speeds; 2338 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 2339 } 2340 2341 static bool bnxt_force_speed_updated(struct bnxt_link_info *link_info) 2342 { 2343 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2344 2345 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2346 if (link_info->req_link_speed != link_info->force_link_speed2) 2347 return true; 2348 return false; 2349 } 2350 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 2351 link_info->req_link_speed != link_info->force_link_speed) 2352 return true; 2353 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 2354 link_info->req_link_speed != link_info->force_pam4_link_speed) 2355 return true; 2356 return false; 2357 } 2358 2359 static bool bnxt_auto_speed_updated(struct bnxt_link_info *link_info) 2360 { 2361 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2362 2363 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2364 if (link_info->advertising != link_info->auto_link_speeds2) 2365 return true; 2366 return false; 2367 } 2368 if (link_info->advertising != link_info->auto_link_speeds || 2369 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 2370 return true; 2371 return false; 2372 } 2373 2374 #define BNXT_EVENT_THERMAL_CURRENT_TEMP(data2) \ 2375 ((data2) & \ 2376 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_CURRENT_TEMP_MASK) 2377 2378 #define BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2) \ 2379 (((data2) & \ 2380 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_MASK) >>\ 2381 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_SFT) 2382 2383 #define EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1) \ 2384 ((data1) & \ 2385 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_MASK) 2386 2387 #define EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1) \ 2388 (((data1) & \ 2389 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR) ==\ 2390 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR_INCREASING) 2391 2392 /* Return true if the workqueue has to be scheduled */ 2393 static bool bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2) 2394 { 2395 u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1); 2396 2397 switch (err_type) { 2398 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL: 2399 netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n", 2400 BNXT_EVENT_INVALID_SIGNAL_DATA(data2)); 2401 break; 2402 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM: 2403 netdev_warn(bp->dev, "Pause Storm detected!\n"); 2404 break; 2405 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD: 2406 netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n"); 2407 break; 2408 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_THERMAL_THRESHOLD: { 2409 u32 type = EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1); 2410 char *threshold_type; 2411 bool notify = false; 2412 char *dir_str; 2413 2414 switch (type) { 2415 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_WARN: 2416 threshold_type = "warning"; 2417 break; 2418 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_CRITICAL: 2419 threshold_type = "critical"; 2420 break; 2421 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_FATAL: 2422 threshold_type = "fatal"; 2423 break; 2424 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_SHUTDOWN: 2425 threshold_type = "shutdown"; 2426 break; 2427 default: 2428 netdev_err(bp->dev, "Unknown Thermal threshold type event\n"); 2429 return false; 2430 } 2431 if (EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)) { 2432 dir_str = "above"; 2433 notify = true; 2434 } else { 2435 dir_str = "below"; 2436 } 2437 netdev_warn(bp->dev, "Chip temperature has gone %s the %s thermal threshold!\n", 2438 dir_str, threshold_type); 2439 netdev_warn(bp->dev, "Temperature (In Celsius), Current: %lu, threshold: %lu\n", 2440 BNXT_EVENT_THERMAL_CURRENT_TEMP(data2), 2441 BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2)); 2442 if (notify) { 2443 bp->thermal_threshold_type = type; 2444 set_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event); 2445 return true; 2446 } 2447 return false; 2448 } 2449 default: 2450 netdev_err(bp->dev, "FW reported unknown error type %u\n", 2451 err_type); 2452 break; 2453 } 2454 return false; 2455 } 2456 2457 #define BNXT_GET_EVENT_PORT(data) \ 2458 ((data) & \ 2459 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 2460 2461 #define BNXT_EVENT_RING_TYPE(data2) \ 2462 ((data2) & \ 2463 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 2464 2465 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 2466 (BNXT_EVENT_RING_TYPE(data2) == \ 2467 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 2468 2469 #define BNXT_EVENT_PHC_EVENT_TYPE(data1) \ 2470 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\ 2471 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT) 2472 2473 #define BNXT_EVENT_PHC_RTC_UPDATE(data1) \ 2474 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\ 2475 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT) 2476 2477 #define BNXT_PHC_BITS 48 2478 2479 static int bnxt_async_event_process(struct bnxt *bp, 2480 struct hwrm_async_event_cmpl *cmpl) 2481 { 2482 u16 event_id = le16_to_cpu(cmpl->event_id); 2483 u32 data1 = le32_to_cpu(cmpl->event_data1); 2484 u32 data2 = le32_to_cpu(cmpl->event_data2); 2485 2486 netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n", 2487 event_id, data1, data2); 2488 2489 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2490 switch (event_id) { 2491 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2492 struct bnxt_link_info *link_info = &bp->link_info; 2493 2494 if (BNXT_VF(bp)) 2495 goto async_event_process_exit; 2496 2497 /* print unsupported speed warning in forced speed mode only */ 2498 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2499 (data1 & 0x20000)) { 2500 u16 fw_speed = bnxt_get_force_speed(link_info); 2501 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2502 2503 if (speed != SPEED_UNKNOWN) 2504 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2505 speed); 2506 } 2507 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2508 } 2509 fallthrough; 2510 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2511 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2512 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2513 fallthrough; 2514 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2515 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2516 break; 2517 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2518 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2519 break; 2520 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2521 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2522 2523 if (BNXT_VF(bp)) 2524 break; 2525 2526 if (bp->pf.port_id != port_id) 2527 break; 2528 2529 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2530 break; 2531 } 2532 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2533 if (BNXT_PF(bp)) 2534 goto async_event_process_exit; 2535 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2536 break; 2537 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2538 char *type_str = "Solicited"; 2539 2540 if (!bp->fw_health) 2541 goto async_event_process_exit; 2542 2543 bp->fw_reset_timestamp = jiffies; 2544 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2545 if (!bp->fw_reset_min_dsecs) 2546 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2547 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2548 if (!bp->fw_reset_max_dsecs) 2549 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2550 if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) { 2551 set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state); 2552 } else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2553 type_str = "Fatal"; 2554 bp->fw_health->fatalities++; 2555 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2556 } else if (data2 && BNXT_FW_STATUS_HEALTHY != 2557 EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) { 2558 type_str = "Non-fatal"; 2559 bp->fw_health->survivals++; 2560 set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 2561 } 2562 netif_warn(bp, hw, bp->dev, 2563 "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2564 type_str, data1, data2, 2565 bp->fw_reset_min_dsecs * 100, 2566 bp->fw_reset_max_dsecs * 100); 2567 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2568 break; 2569 } 2570 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2571 struct bnxt_fw_health *fw_health = bp->fw_health; 2572 char *status_desc = "healthy"; 2573 u32 status; 2574 2575 if (!fw_health) 2576 goto async_event_process_exit; 2577 2578 if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) { 2579 fw_health->enabled = false; 2580 netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n"); 2581 break; 2582 } 2583 fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2584 fw_health->tmr_multiplier = 2585 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2586 bp->current_interval * 10); 2587 fw_health->tmr_counter = fw_health->tmr_multiplier; 2588 if (!fw_health->enabled) 2589 fw_health->last_fw_heartbeat = 2590 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2591 fw_health->last_fw_reset_cnt = 2592 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2593 status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 2594 if (status != BNXT_FW_STATUS_HEALTHY) 2595 status_desc = "unhealthy"; 2596 netif_info(bp, drv, bp->dev, 2597 "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n", 2598 fw_health->primary ? "primary" : "backup", status, 2599 status_desc, fw_health->last_fw_reset_cnt); 2600 if (!fw_health->enabled) { 2601 /* Make sure tmr_counter is set and visible to 2602 * bnxt_health_check() before setting enabled to true. 2603 */ 2604 smp_wmb(); 2605 fw_health->enabled = true; 2606 } 2607 goto async_event_process_exit; 2608 } 2609 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2610 netif_notice(bp, hw, bp->dev, 2611 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2612 data1, data2); 2613 goto async_event_process_exit; 2614 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2615 struct bnxt_rx_ring_info *rxr; 2616 u16 grp_idx; 2617 2618 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 2619 goto async_event_process_exit; 2620 2621 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2622 BNXT_EVENT_RING_TYPE(data2), data1); 2623 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2624 goto async_event_process_exit; 2625 2626 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2627 if (grp_idx == INVALID_HW_RING_ID) { 2628 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2629 data1); 2630 goto async_event_process_exit; 2631 } 2632 rxr = bp->bnapi[grp_idx]->rx_ring; 2633 bnxt_sched_reset_rxr(bp, rxr); 2634 goto async_event_process_exit; 2635 } 2636 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2637 struct bnxt_fw_health *fw_health = bp->fw_health; 2638 2639 netif_notice(bp, hw, bp->dev, 2640 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2641 data1, data2); 2642 if (fw_health) { 2643 fw_health->echo_req_data1 = data1; 2644 fw_health->echo_req_data2 = data2; 2645 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2646 break; 2647 } 2648 goto async_event_process_exit; 2649 } 2650 case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: { 2651 bnxt_ptp_pps_event(bp, data1, data2); 2652 goto async_event_process_exit; 2653 } 2654 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: { 2655 if (bnxt_event_error_report(bp, data1, data2)) 2656 break; 2657 goto async_event_process_exit; 2658 } 2659 case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: { 2660 switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) { 2661 case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE: 2662 if (BNXT_PTP_USE_RTC(bp)) { 2663 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2664 u64 ns; 2665 2666 if (!ptp) 2667 goto async_event_process_exit; 2668 2669 spin_lock_bh(&ptp->ptp_lock); 2670 bnxt_ptp_update_current_time(bp); 2671 ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) << 2672 BNXT_PHC_BITS) | ptp->current_time); 2673 bnxt_ptp_rtc_timecounter_init(ptp, ns); 2674 spin_unlock_bh(&ptp->ptp_lock); 2675 } 2676 break; 2677 } 2678 goto async_event_process_exit; 2679 } 2680 case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: { 2681 u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff; 2682 2683 hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED); 2684 goto async_event_process_exit; 2685 } 2686 default: 2687 goto async_event_process_exit; 2688 } 2689 __bnxt_queue_sp_work(bp); 2690 async_event_process_exit: 2691 return 0; 2692 } 2693 2694 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2695 { 2696 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2697 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2698 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2699 (struct hwrm_fwd_req_cmpl *)txcmp; 2700 2701 switch (cmpl_type) { 2702 case CMPL_BASE_TYPE_HWRM_DONE: 2703 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2704 hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE); 2705 break; 2706 2707 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2708 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2709 2710 if ((vf_id < bp->pf.first_vf_id) || 2711 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2712 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2713 vf_id); 2714 return -EINVAL; 2715 } 2716 2717 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2718 bnxt_queue_sp_work(bp, BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT); 2719 break; 2720 2721 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2722 bnxt_async_event_process(bp, 2723 (struct hwrm_async_event_cmpl *)txcmp); 2724 break; 2725 2726 default: 2727 break; 2728 } 2729 2730 return 0; 2731 } 2732 2733 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2734 { 2735 struct bnxt_napi *bnapi = dev_instance; 2736 struct bnxt *bp = bnapi->bp; 2737 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2738 u32 cons = RING_CMP(cpr->cp_raw_cons); 2739 2740 cpr->event_ctr++; 2741 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2742 napi_schedule(&bnapi->napi); 2743 return IRQ_HANDLED; 2744 } 2745 2746 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2747 { 2748 u32 raw_cons = cpr->cp_raw_cons; 2749 u16 cons = RING_CMP(raw_cons); 2750 struct tx_cmp *txcmp; 2751 2752 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2753 2754 return TX_CMP_VALID(txcmp, raw_cons); 2755 } 2756 2757 static irqreturn_t bnxt_inta(int irq, void *dev_instance) 2758 { 2759 struct bnxt_napi *bnapi = dev_instance; 2760 struct bnxt *bp = bnapi->bp; 2761 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2762 u32 cons = RING_CMP(cpr->cp_raw_cons); 2763 u32 int_status; 2764 2765 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2766 2767 if (!bnxt_has_work(bp, cpr)) { 2768 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); 2769 /* return if erroneous interrupt */ 2770 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) 2771 return IRQ_NONE; 2772 } 2773 2774 /* disable ring IRQ */ 2775 BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell); 2776 2777 /* Return here if interrupt is shared and is disabled. */ 2778 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 2779 return IRQ_HANDLED; 2780 2781 napi_schedule(&bnapi->napi); 2782 return IRQ_HANDLED; 2783 } 2784 2785 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2786 int budget) 2787 { 2788 struct bnxt_napi *bnapi = cpr->bnapi; 2789 u32 raw_cons = cpr->cp_raw_cons; 2790 u32 cons; 2791 int rx_pkts = 0; 2792 u8 event = 0; 2793 struct tx_cmp *txcmp; 2794 2795 cpr->has_more_work = 0; 2796 cpr->had_work_done = 1; 2797 while (1) { 2798 u8 cmp_type; 2799 int rc; 2800 2801 cons = RING_CMP(raw_cons); 2802 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2803 2804 if (!TX_CMP_VALID(txcmp, raw_cons)) 2805 break; 2806 2807 /* The valid test of the entry must be done first before 2808 * reading any further. 2809 */ 2810 dma_rmb(); 2811 cmp_type = TX_CMP_TYPE(txcmp); 2812 if (cmp_type == CMP_TYPE_TX_L2_CMP || 2813 cmp_type == CMP_TYPE_TX_L2_COAL_CMP) { 2814 u32 opaque = txcmp->tx_cmp_opaque; 2815 struct bnxt_tx_ring_info *txr; 2816 u16 tx_freed; 2817 2818 txr = bnapi->tx_ring[TX_OPAQUE_RING(opaque)]; 2819 event |= BNXT_TX_CMP_EVENT; 2820 if (cmp_type == CMP_TYPE_TX_L2_COAL_CMP) 2821 txr->tx_hw_cons = TX_CMP_SQ_CONS_IDX(txcmp); 2822 else 2823 txr->tx_hw_cons = TX_OPAQUE_PROD(bp, opaque); 2824 tx_freed = (txr->tx_hw_cons - txr->tx_cons) & 2825 bp->tx_ring_mask; 2826 /* return full budget so NAPI will complete. */ 2827 if (unlikely(tx_freed >= bp->tx_wake_thresh)) { 2828 rx_pkts = budget; 2829 raw_cons = NEXT_RAW_CMP(raw_cons); 2830 if (budget) 2831 cpr->has_more_work = 1; 2832 break; 2833 } 2834 } else if (cmp_type >= CMP_TYPE_RX_L2_CMP && 2835 cmp_type <= CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 2836 if (likely(budget)) 2837 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2838 else 2839 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 2840 &event); 2841 if (likely(rc >= 0)) 2842 rx_pkts += rc; 2843 /* Increment rx_pkts when rc is -ENOMEM to count towards 2844 * the NAPI budget. Otherwise, we may potentially loop 2845 * here forever if we consistently cannot allocate 2846 * buffers. 2847 */ 2848 else if (rc == -ENOMEM && budget) 2849 rx_pkts++; 2850 else if (rc == -EBUSY) /* partial completion */ 2851 break; 2852 } else if (unlikely(cmp_type == CMPL_BASE_TYPE_HWRM_DONE || 2853 cmp_type == CMPL_BASE_TYPE_HWRM_FWD_REQ || 2854 cmp_type == CMPL_BASE_TYPE_HWRM_ASYNC_EVENT)) { 2855 bnxt_hwrm_handler(bp, txcmp); 2856 } 2857 raw_cons = NEXT_RAW_CMP(raw_cons); 2858 2859 if (rx_pkts && rx_pkts == budget) { 2860 cpr->has_more_work = 1; 2861 break; 2862 } 2863 } 2864 2865 if (event & BNXT_REDIRECT_EVENT) 2866 xdp_do_flush(); 2867 2868 if (event & BNXT_TX_EVENT) { 2869 struct bnxt_tx_ring_info *txr = bnapi->tx_ring[0]; 2870 u16 prod = txr->tx_prod; 2871 2872 /* Sync BD data before updating doorbell */ 2873 wmb(); 2874 2875 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 2876 } 2877 2878 cpr->cp_raw_cons = raw_cons; 2879 bnapi->events |= event; 2880 return rx_pkts; 2881 } 2882 2883 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi, 2884 int budget) 2885 { 2886 if ((bnapi->events & BNXT_TX_CMP_EVENT) && !bnapi->tx_fault) 2887 bnapi->tx_int(bp, bnapi, budget); 2888 2889 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 2890 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2891 2892 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2893 } 2894 if (bnapi->events & BNXT_AGG_EVENT) { 2895 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2896 2897 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2898 } 2899 bnapi->events &= BNXT_TX_CMP_EVENT; 2900 } 2901 2902 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2903 int budget) 2904 { 2905 struct bnxt_napi *bnapi = cpr->bnapi; 2906 int rx_pkts; 2907 2908 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 2909 2910 /* ACK completion ring before freeing tx ring and producing new 2911 * buffers in rx/agg rings to prevent overflowing the completion 2912 * ring. 2913 */ 2914 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 2915 2916 __bnxt_poll_work_done(bp, bnapi, budget); 2917 return rx_pkts; 2918 } 2919 2920 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 2921 { 2922 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2923 struct bnxt *bp = bnapi->bp; 2924 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2925 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2926 struct tx_cmp *txcmp; 2927 struct rx_cmp_ext *rxcmp1; 2928 u32 cp_cons, tmp_raw_cons; 2929 u32 raw_cons = cpr->cp_raw_cons; 2930 bool flush_xdp = false; 2931 u32 rx_pkts = 0; 2932 u8 event = 0; 2933 2934 while (1) { 2935 int rc; 2936 2937 cp_cons = RING_CMP(raw_cons); 2938 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2939 2940 if (!TX_CMP_VALID(txcmp, raw_cons)) 2941 break; 2942 2943 /* The valid test of the entry must be done first before 2944 * reading any further. 2945 */ 2946 dma_rmb(); 2947 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2948 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 2949 cp_cons = RING_CMP(tmp_raw_cons); 2950 rxcmp1 = (struct rx_cmp_ext *) 2951 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2952 2953 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2954 break; 2955 2956 /* force an error to recycle the buffer */ 2957 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2958 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2959 2960 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2961 if (likely(rc == -EIO) && budget) 2962 rx_pkts++; 2963 else if (rc == -EBUSY) /* partial completion */ 2964 break; 2965 if (event & BNXT_REDIRECT_EVENT) 2966 flush_xdp = true; 2967 } else if (unlikely(TX_CMP_TYPE(txcmp) == 2968 CMPL_BASE_TYPE_HWRM_DONE)) { 2969 bnxt_hwrm_handler(bp, txcmp); 2970 } else { 2971 netdev_err(bp->dev, 2972 "Invalid completion received on special ring\n"); 2973 } 2974 raw_cons = NEXT_RAW_CMP(raw_cons); 2975 2976 if (rx_pkts == budget) 2977 break; 2978 } 2979 2980 cpr->cp_raw_cons = raw_cons; 2981 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 2982 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2983 2984 if (event & BNXT_AGG_EVENT) 2985 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2986 if (flush_xdp) 2987 xdp_do_flush(); 2988 2989 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 2990 napi_complete_done(napi, rx_pkts); 2991 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2992 } 2993 return rx_pkts; 2994 } 2995 2996 static int bnxt_poll(struct napi_struct *napi, int budget) 2997 { 2998 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2999 struct bnxt *bp = bnapi->bp; 3000 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3001 int work_done = 0; 3002 3003 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3004 napi_complete(napi); 3005 return 0; 3006 } 3007 while (1) { 3008 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 3009 3010 if (work_done >= budget) { 3011 if (!budget) 3012 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3013 break; 3014 } 3015 3016 if (!bnxt_has_work(bp, cpr)) { 3017 if (napi_complete_done(napi, work_done)) 3018 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3019 break; 3020 } 3021 } 3022 if (bp->flags & BNXT_FLAG_DIM) { 3023 struct dim_sample dim_sample = {}; 3024 3025 dim_update_sample(cpr->event_ctr, 3026 cpr->rx_packets, 3027 cpr->rx_bytes, 3028 &dim_sample); 3029 net_dim(&cpr->dim, dim_sample); 3030 } 3031 return work_done; 3032 } 3033 3034 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 3035 { 3036 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3037 int i, work_done = 0; 3038 3039 for (i = 0; i < cpr->cp_ring_count; i++) { 3040 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3041 3042 if (cpr2->had_nqe_notify) { 3043 work_done += __bnxt_poll_work(bp, cpr2, 3044 budget - work_done); 3045 cpr->has_more_work |= cpr2->has_more_work; 3046 } 3047 } 3048 return work_done; 3049 } 3050 3051 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 3052 u64 dbr_type, int budget) 3053 { 3054 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3055 int i; 3056 3057 for (i = 0; i < cpr->cp_ring_count; i++) { 3058 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3059 struct bnxt_db_info *db; 3060 3061 if (cpr2->had_work_done) { 3062 u32 tgl = 0; 3063 3064 if (dbr_type == DBR_TYPE_CQ_ARMALL) { 3065 cpr2->had_nqe_notify = 0; 3066 tgl = cpr2->toggle; 3067 } 3068 db = &cpr2->cp_db; 3069 bnxt_writeq(bp, 3070 db->db_key64 | dbr_type | DB_TOGGLE(tgl) | 3071 DB_RING_IDX(db, cpr2->cp_raw_cons), 3072 db->doorbell); 3073 cpr2->had_work_done = 0; 3074 } 3075 } 3076 __bnxt_poll_work_done(bp, bnapi, budget); 3077 } 3078 3079 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 3080 { 3081 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3082 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3083 struct bnxt_cp_ring_info *cpr_rx; 3084 u32 raw_cons = cpr->cp_raw_cons; 3085 struct bnxt *bp = bnapi->bp; 3086 struct nqe_cn *nqcmp; 3087 int work_done = 0; 3088 u32 cons; 3089 3090 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3091 napi_complete(napi); 3092 return 0; 3093 } 3094 if (cpr->has_more_work) { 3095 cpr->has_more_work = 0; 3096 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 3097 } 3098 while (1) { 3099 u16 type; 3100 3101 cons = RING_CMP(raw_cons); 3102 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 3103 3104 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 3105 if (cpr->has_more_work) 3106 break; 3107 3108 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL, 3109 budget); 3110 cpr->cp_raw_cons = raw_cons; 3111 if (napi_complete_done(napi, work_done)) 3112 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 3113 cpr->cp_raw_cons); 3114 goto poll_done; 3115 } 3116 3117 /* The valid test of the entry must be done first before 3118 * reading any further. 3119 */ 3120 dma_rmb(); 3121 3122 type = le16_to_cpu(nqcmp->type); 3123 if (NQE_CN_TYPE(type) == NQ_CN_TYPE_CQ_NOTIFICATION) { 3124 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 3125 u32 cq_type = BNXT_NQ_HDL_TYPE(idx); 3126 struct bnxt_cp_ring_info *cpr2; 3127 3128 /* No more budget for RX work */ 3129 if (budget && work_done >= budget && 3130 cq_type == BNXT_NQ_HDL_TYPE_RX) 3131 break; 3132 3133 idx = BNXT_NQ_HDL_IDX(idx); 3134 cpr2 = &cpr->cp_ring_arr[idx]; 3135 cpr2->had_nqe_notify = 1; 3136 cpr2->toggle = NQE_CN_TOGGLE(type); 3137 work_done += __bnxt_poll_work(bp, cpr2, 3138 budget - work_done); 3139 cpr->has_more_work |= cpr2->has_more_work; 3140 } else { 3141 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 3142 } 3143 raw_cons = NEXT_RAW_CMP(raw_cons); 3144 } 3145 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget); 3146 if (raw_cons != cpr->cp_raw_cons) { 3147 cpr->cp_raw_cons = raw_cons; 3148 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 3149 } 3150 poll_done: 3151 cpr_rx = &cpr->cp_ring_arr[0]; 3152 if (cpr_rx->cp_ring_type == BNXT_NQ_HDL_TYPE_RX && 3153 (bp->flags & BNXT_FLAG_DIM)) { 3154 struct dim_sample dim_sample = {}; 3155 3156 dim_update_sample(cpr->event_ctr, 3157 cpr_rx->rx_packets, 3158 cpr_rx->rx_bytes, 3159 &dim_sample); 3160 net_dim(&cpr->dim, dim_sample); 3161 } 3162 return work_done; 3163 } 3164 3165 static void bnxt_free_tx_skbs(struct bnxt *bp) 3166 { 3167 int i, max_idx; 3168 struct pci_dev *pdev = bp->pdev; 3169 3170 if (!bp->tx_ring) 3171 return; 3172 3173 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 3174 for (i = 0; i < bp->tx_nr_rings; i++) { 3175 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3176 int j; 3177 3178 if (!txr->tx_buf_ring) 3179 continue; 3180 3181 for (j = 0; j < max_idx;) { 3182 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 3183 struct sk_buff *skb; 3184 int k, last; 3185 3186 if (i < bp->tx_nr_rings_xdp && 3187 tx_buf->action == XDP_REDIRECT) { 3188 dma_unmap_single(&pdev->dev, 3189 dma_unmap_addr(tx_buf, mapping), 3190 dma_unmap_len(tx_buf, len), 3191 DMA_TO_DEVICE); 3192 xdp_return_frame(tx_buf->xdpf); 3193 tx_buf->action = 0; 3194 tx_buf->xdpf = NULL; 3195 j++; 3196 continue; 3197 } 3198 3199 skb = tx_buf->skb; 3200 if (!skb) { 3201 j++; 3202 continue; 3203 } 3204 3205 tx_buf->skb = NULL; 3206 3207 if (tx_buf->is_push) { 3208 dev_kfree_skb(skb); 3209 j += 2; 3210 continue; 3211 } 3212 3213 dma_unmap_single(&pdev->dev, 3214 dma_unmap_addr(tx_buf, mapping), 3215 skb_headlen(skb), 3216 DMA_TO_DEVICE); 3217 3218 last = tx_buf->nr_frags; 3219 j += 2; 3220 for (k = 0; k < last; k++, j++) { 3221 int ring_idx = j & bp->tx_ring_mask; 3222 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 3223 3224 tx_buf = &txr->tx_buf_ring[ring_idx]; 3225 dma_unmap_page( 3226 &pdev->dev, 3227 dma_unmap_addr(tx_buf, mapping), 3228 skb_frag_size(frag), DMA_TO_DEVICE); 3229 } 3230 dev_kfree_skb(skb); 3231 } 3232 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 3233 } 3234 } 3235 3236 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr) 3237 { 3238 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 3239 struct pci_dev *pdev = bp->pdev; 3240 struct bnxt_tpa_idx_map *map; 3241 int i, max_idx, max_agg_idx; 3242 3243 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 3244 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 3245 if (!rxr->rx_tpa) 3246 goto skip_rx_tpa_free; 3247 3248 for (i = 0; i < bp->max_tpa; i++) { 3249 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 3250 u8 *data = tpa_info->data; 3251 3252 if (!data) 3253 continue; 3254 3255 dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping, 3256 bp->rx_buf_use_size, bp->rx_dir, 3257 DMA_ATTR_WEAK_ORDERING); 3258 3259 tpa_info->data = NULL; 3260 3261 skb_free_frag(data); 3262 } 3263 3264 skip_rx_tpa_free: 3265 if (!rxr->rx_buf_ring) 3266 goto skip_rx_buf_free; 3267 3268 for (i = 0; i < max_idx; i++) { 3269 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 3270 dma_addr_t mapping = rx_buf->mapping; 3271 void *data = rx_buf->data; 3272 3273 if (!data) 3274 continue; 3275 3276 rx_buf->data = NULL; 3277 if (BNXT_RX_PAGE_MODE(bp)) { 3278 page_pool_recycle_direct(rxr->page_pool, data); 3279 } else { 3280 dma_unmap_single_attrs(&pdev->dev, mapping, 3281 bp->rx_buf_use_size, bp->rx_dir, 3282 DMA_ATTR_WEAK_ORDERING); 3283 skb_free_frag(data); 3284 } 3285 } 3286 3287 skip_rx_buf_free: 3288 if (!rxr->rx_agg_ring) 3289 goto skip_rx_agg_free; 3290 3291 for (i = 0; i < max_agg_idx; i++) { 3292 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 3293 struct page *page = rx_agg_buf->page; 3294 3295 if (!page) 3296 continue; 3297 3298 rx_agg_buf->page = NULL; 3299 __clear_bit(i, rxr->rx_agg_bmap); 3300 3301 page_pool_recycle_direct(rxr->page_pool, page); 3302 } 3303 3304 skip_rx_agg_free: 3305 map = rxr->rx_tpa_idx_map; 3306 if (map) 3307 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 3308 } 3309 3310 static void bnxt_free_rx_skbs(struct bnxt *bp) 3311 { 3312 int i; 3313 3314 if (!bp->rx_ring) 3315 return; 3316 3317 for (i = 0; i < bp->rx_nr_rings; i++) 3318 bnxt_free_one_rx_ring_skbs(bp, i); 3319 } 3320 3321 static void bnxt_free_skbs(struct bnxt *bp) 3322 { 3323 bnxt_free_tx_skbs(bp); 3324 bnxt_free_rx_skbs(bp); 3325 } 3326 3327 static void bnxt_init_ctx_mem(struct bnxt_ctx_mem_type *ctxm, void *p, int len) 3328 { 3329 u8 init_val = ctxm->init_value; 3330 u16 offset = ctxm->init_offset; 3331 u8 *p2 = p; 3332 int i; 3333 3334 if (!init_val) 3335 return; 3336 if (offset == BNXT_CTX_INIT_INVALID_OFFSET) { 3337 memset(p, init_val, len); 3338 return; 3339 } 3340 for (i = 0; i < len; i += ctxm->entry_size) 3341 *(p2 + i + offset) = init_val; 3342 } 3343 3344 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3345 { 3346 struct pci_dev *pdev = bp->pdev; 3347 int i; 3348 3349 if (!rmem->pg_arr) 3350 goto skip_pages; 3351 3352 for (i = 0; i < rmem->nr_pages; i++) { 3353 if (!rmem->pg_arr[i]) 3354 continue; 3355 3356 dma_free_coherent(&pdev->dev, rmem->page_size, 3357 rmem->pg_arr[i], rmem->dma_arr[i]); 3358 3359 rmem->pg_arr[i] = NULL; 3360 } 3361 skip_pages: 3362 if (rmem->pg_tbl) { 3363 size_t pg_tbl_size = rmem->nr_pages * 8; 3364 3365 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3366 pg_tbl_size = rmem->page_size; 3367 dma_free_coherent(&pdev->dev, pg_tbl_size, 3368 rmem->pg_tbl, rmem->pg_tbl_map); 3369 rmem->pg_tbl = NULL; 3370 } 3371 if (rmem->vmem_size && *rmem->vmem) { 3372 vfree(*rmem->vmem); 3373 *rmem->vmem = NULL; 3374 } 3375 } 3376 3377 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3378 { 3379 struct pci_dev *pdev = bp->pdev; 3380 u64 valid_bit = 0; 3381 int i; 3382 3383 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 3384 valid_bit = PTU_PTE_VALID; 3385 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 3386 size_t pg_tbl_size = rmem->nr_pages * 8; 3387 3388 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3389 pg_tbl_size = rmem->page_size; 3390 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 3391 &rmem->pg_tbl_map, 3392 GFP_KERNEL); 3393 if (!rmem->pg_tbl) 3394 return -ENOMEM; 3395 } 3396 3397 for (i = 0; i < rmem->nr_pages; i++) { 3398 u64 extra_bits = valid_bit; 3399 3400 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 3401 rmem->page_size, 3402 &rmem->dma_arr[i], 3403 GFP_KERNEL); 3404 if (!rmem->pg_arr[i]) 3405 return -ENOMEM; 3406 3407 if (rmem->ctx_mem) 3408 bnxt_init_ctx_mem(rmem->ctx_mem, rmem->pg_arr[i], 3409 rmem->page_size); 3410 if (rmem->nr_pages > 1 || rmem->depth > 0) { 3411 if (i == rmem->nr_pages - 2 && 3412 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3413 extra_bits |= PTU_PTE_NEXT_TO_LAST; 3414 else if (i == rmem->nr_pages - 1 && 3415 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3416 extra_bits |= PTU_PTE_LAST; 3417 rmem->pg_tbl[i] = 3418 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 3419 } 3420 } 3421 3422 if (rmem->vmem_size) { 3423 *rmem->vmem = vzalloc(rmem->vmem_size); 3424 if (!(*rmem->vmem)) 3425 return -ENOMEM; 3426 } 3427 return 0; 3428 } 3429 3430 static void bnxt_free_tpa_info(struct bnxt *bp) 3431 { 3432 int i, j; 3433 3434 for (i = 0; i < bp->rx_nr_rings; i++) { 3435 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3436 3437 kfree(rxr->rx_tpa_idx_map); 3438 rxr->rx_tpa_idx_map = NULL; 3439 if (rxr->rx_tpa) { 3440 for (j = 0; j < bp->max_tpa; j++) { 3441 kfree(rxr->rx_tpa[j].agg_arr); 3442 rxr->rx_tpa[j].agg_arr = NULL; 3443 } 3444 } 3445 kfree(rxr->rx_tpa); 3446 rxr->rx_tpa = NULL; 3447 } 3448 } 3449 3450 static int bnxt_alloc_tpa_info(struct bnxt *bp) 3451 { 3452 int i, j; 3453 3454 bp->max_tpa = MAX_TPA; 3455 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 3456 if (!bp->max_tpa_v2) 3457 return 0; 3458 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 3459 } 3460 3461 for (i = 0; i < bp->rx_nr_rings; i++) { 3462 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3463 struct rx_agg_cmp *agg; 3464 3465 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 3466 GFP_KERNEL); 3467 if (!rxr->rx_tpa) 3468 return -ENOMEM; 3469 3470 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 3471 continue; 3472 for (j = 0; j < bp->max_tpa; j++) { 3473 agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL); 3474 if (!agg) 3475 return -ENOMEM; 3476 rxr->rx_tpa[j].agg_arr = agg; 3477 } 3478 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 3479 GFP_KERNEL); 3480 if (!rxr->rx_tpa_idx_map) 3481 return -ENOMEM; 3482 } 3483 return 0; 3484 } 3485 3486 static void bnxt_free_rx_rings(struct bnxt *bp) 3487 { 3488 int i; 3489 3490 if (!bp->rx_ring) 3491 return; 3492 3493 bnxt_free_tpa_info(bp); 3494 for (i = 0; i < bp->rx_nr_rings; i++) { 3495 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3496 struct bnxt_ring_struct *ring; 3497 3498 if (rxr->xdp_prog) 3499 bpf_prog_put(rxr->xdp_prog); 3500 3501 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 3502 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3503 3504 page_pool_destroy(rxr->page_pool); 3505 rxr->page_pool = NULL; 3506 3507 kfree(rxr->rx_agg_bmap); 3508 rxr->rx_agg_bmap = NULL; 3509 3510 ring = &rxr->rx_ring_struct; 3511 bnxt_free_ring(bp, &ring->ring_mem); 3512 3513 ring = &rxr->rx_agg_ring_struct; 3514 bnxt_free_ring(bp, &ring->ring_mem); 3515 } 3516 } 3517 3518 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 3519 struct bnxt_rx_ring_info *rxr) 3520 { 3521 struct page_pool_params pp = { 0 }; 3522 3523 pp.pool_size = bp->rx_agg_ring_size; 3524 if (BNXT_RX_PAGE_MODE(bp)) 3525 pp.pool_size += bp->rx_ring_size; 3526 pp.nid = dev_to_node(&bp->pdev->dev); 3527 pp.napi = &rxr->bnapi->napi; 3528 pp.netdev = bp->dev; 3529 pp.dev = &bp->pdev->dev; 3530 pp.dma_dir = bp->rx_dir; 3531 pp.max_len = PAGE_SIZE; 3532 pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 3533 3534 rxr->page_pool = page_pool_create(&pp); 3535 if (IS_ERR(rxr->page_pool)) { 3536 int err = PTR_ERR(rxr->page_pool); 3537 3538 rxr->page_pool = NULL; 3539 return err; 3540 } 3541 return 0; 3542 } 3543 3544 static int bnxt_alloc_rx_rings(struct bnxt *bp) 3545 { 3546 int i, rc = 0, agg_rings = 0; 3547 3548 if (!bp->rx_ring) 3549 return -ENOMEM; 3550 3551 if (bp->flags & BNXT_FLAG_AGG_RINGS) 3552 agg_rings = 1; 3553 3554 for (i = 0; i < bp->rx_nr_rings; i++) { 3555 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3556 struct bnxt_ring_struct *ring; 3557 3558 ring = &rxr->rx_ring_struct; 3559 3560 rc = bnxt_alloc_rx_page_pool(bp, rxr); 3561 if (rc) 3562 return rc; 3563 3564 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 3565 if (rc < 0) 3566 return rc; 3567 3568 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 3569 MEM_TYPE_PAGE_POOL, 3570 rxr->page_pool); 3571 if (rc) { 3572 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3573 return rc; 3574 } 3575 3576 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3577 if (rc) 3578 return rc; 3579 3580 ring->grp_idx = i; 3581 if (agg_rings) { 3582 u16 mem_size; 3583 3584 ring = &rxr->rx_agg_ring_struct; 3585 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3586 if (rc) 3587 return rc; 3588 3589 ring->grp_idx = i; 3590 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 3591 mem_size = rxr->rx_agg_bmap_size / 8; 3592 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 3593 if (!rxr->rx_agg_bmap) 3594 return -ENOMEM; 3595 } 3596 } 3597 if (bp->flags & BNXT_FLAG_TPA) 3598 rc = bnxt_alloc_tpa_info(bp); 3599 return rc; 3600 } 3601 3602 static void bnxt_free_tx_rings(struct bnxt *bp) 3603 { 3604 int i; 3605 struct pci_dev *pdev = bp->pdev; 3606 3607 if (!bp->tx_ring) 3608 return; 3609 3610 for (i = 0; i < bp->tx_nr_rings; i++) { 3611 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3612 struct bnxt_ring_struct *ring; 3613 3614 if (txr->tx_push) { 3615 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3616 txr->tx_push, txr->tx_push_mapping); 3617 txr->tx_push = NULL; 3618 } 3619 3620 ring = &txr->tx_ring_struct; 3621 3622 bnxt_free_ring(bp, &ring->ring_mem); 3623 } 3624 } 3625 3626 #define BNXT_TC_TO_RING_BASE(bp, tc) \ 3627 ((tc) * (bp)->tx_nr_rings_per_tc) 3628 3629 #define BNXT_RING_TO_TC_OFF(bp, tx) \ 3630 ((tx) % (bp)->tx_nr_rings_per_tc) 3631 3632 #define BNXT_RING_TO_TC(bp, tx) \ 3633 ((tx) / (bp)->tx_nr_rings_per_tc) 3634 3635 static int bnxt_alloc_tx_rings(struct bnxt *bp) 3636 { 3637 int i, j, rc; 3638 struct pci_dev *pdev = bp->pdev; 3639 3640 bp->tx_push_size = 0; 3641 if (bp->tx_push_thresh) { 3642 int push_size; 3643 3644 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 3645 bp->tx_push_thresh); 3646 3647 if (push_size > 256) { 3648 push_size = 0; 3649 bp->tx_push_thresh = 0; 3650 } 3651 3652 bp->tx_push_size = push_size; 3653 } 3654 3655 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 3656 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3657 struct bnxt_ring_struct *ring; 3658 u8 qidx; 3659 3660 ring = &txr->tx_ring_struct; 3661 3662 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3663 if (rc) 3664 return rc; 3665 3666 ring->grp_idx = txr->bnapi->index; 3667 if (bp->tx_push_size) { 3668 dma_addr_t mapping; 3669 3670 /* One pre-allocated DMA buffer to backup 3671 * TX push operation 3672 */ 3673 txr->tx_push = dma_alloc_coherent(&pdev->dev, 3674 bp->tx_push_size, 3675 &txr->tx_push_mapping, 3676 GFP_KERNEL); 3677 3678 if (!txr->tx_push) 3679 return -ENOMEM; 3680 3681 mapping = txr->tx_push_mapping + 3682 sizeof(struct tx_push_bd); 3683 txr->data_mapping = cpu_to_le64(mapping); 3684 } 3685 qidx = bp->tc_to_qidx[j]; 3686 ring->queue_id = bp->q_info[qidx].queue_id; 3687 spin_lock_init(&txr->xdp_tx_lock); 3688 if (i < bp->tx_nr_rings_xdp) 3689 continue; 3690 if (BNXT_RING_TO_TC_OFF(bp, i) == (bp->tx_nr_rings_per_tc - 1)) 3691 j++; 3692 } 3693 return 0; 3694 } 3695 3696 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr) 3697 { 3698 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3699 3700 kfree(cpr->cp_desc_ring); 3701 cpr->cp_desc_ring = NULL; 3702 ring->ring_mem.pg_arr = NULL; 3703 kfree(cpr->cp_desc_mapping); 3704 cpr->cp_desc_mapping = NULL; 3705 ring->ring_mem.dma_arr = NULL; 3706 } 3707 3708 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n) 3709 { 3710 cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL); 3711 if (!cpr->cp_desc_ring) 3712 return -ENOMEM; 3713 cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping), 3714 GFP_KERNEL); 3715 if (!cpr->cp_desc_mapping) 3716 return -ENOMEM; 3717 return 0; 3718 } 3719 3720 static void bnxt_free_all_cp_arrays(struct bnxt *bp) 3721 { 3722 int i; 3723 3724 if (!bp->bnapi) 3725 return; 3726 for (i = 0; i < bp->cp_nr_rings; i++) { 3727 struct bnxt_napi *bnapi = bp->bnapi[i]; 3728 3729 if (!bnapi) 3730 continue; 3731 bnxt_free_cp_arrays(&bnapi->cp_ring); 3732 } 3733 } 3734 3735 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp) 3736 { 3737 int i, n = bp->cp_nr_pages; 3738 3739 for (i = 0; i < bp->cp_nr_rings; i++) { 3740 struct bnxt_napi *bnapi = bp->bnapi[i]; 3741 int rc; 3742 3743 if (!bnapi) 3744 continue; 3745 rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n); 3746 if (rc) 3747 return rc; 3748 } 3749 return 0; 3750 } 3751 3752 static void bnxt_free_cp_rings(struct bnxt *bp) 3753 { 3754 int i; 3755 3756 if (!bp->bnapi) 3757 return; 3758 3759 for (i = 0; i < bp->cp_nr_rings; i++) { 3760 struct bnxt_napi *bnapi = bp->bnapi[i]; 3761 struct bnxt_cp_ring_info *cpr; 3762 struct bnxt_ring_struct *ring; 3763 int j; 3764 3765 if (!bnapi) 3766 continue; 3767 3768 cpr = &bnapi->cp_ring; 3769 ring = &cpr->cp_ring_struct; 3770 3771 bnxt_free_ring(bp, &ring->ring_mem); 3772 3773 if (!cpr->cp_ring_arr) 3774 continue; 3775 3776 for (j = 0; j < cpr->cp_ring_count; j++) { 3777 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 3778 3779 ring = &cpr2->cp_ring_struct; 3780 bnxt_free_ring(bp, &ring->ring_mem); 3781 bnxt_free_cp_arrays(cpr2); 3782 } 3783 kfree(cpr->cp_ring_arr); 3784 cpr->cp_ring_arr = NULL; 3785 cpr->cp_ring_count = 0; 3786 } 3787 } 3788 3789 static int bnxt_alloc_cp_sub_ring(struct bnxt *bp, 3790 struct bnxt_cp_ring_info *cpr) 3791 { 3792 struct bnxt_ring_mem_info *rmem; 3793 struct bnxt_ring_struct *ring; 3794 int rc; 3795 3796 rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages); 3797 if (rc) { 3798 bnxt_free_cp_arrays(cpr); 3799 return -ENOMEM; 3800 } 3801 ring = &cpr->cp_ring_struct; 3802 rmem = &ring->ring_mem; 3803 rmem->nr_pages = bp->cp_nr_pages; 3804 rmem->page_size = HW_CMPD_RING_SIZE; 3805 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3806 rmem->dma_arr = cpr->cp_desc_mapping; 3807 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 3808 rc = bnxt_alloc_ring(bp, rmem); 3809 if (rc) { 3810 bnxt_free_ring(bp, rmem); 3811 bnxt_free_cp_arrays(cpr); 3812 } 3813 return rc; 3814 } 3815 3816 static int bnxt_alloc_cp_rings(struct bnxt *bp) 3817 { 3818 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 3819 int i, j, rc, ulp_base_vec, ulp_msix; 3820 int tcs = netdev_get_num_tc(bp->dev); 3821 3822 if (!tcs) 3823 tcs = 1; 3824 ulp_msix = bnxt_get_ulp_msix_num(bp); 3825 ulp_base_vec = bnxt_get_ulp_msix_base(bp); 3826 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 3827 struct bnxt_napi *bnapi = bp->bnapi[i]; 3828 struct bnxt_cp_ring_info *cpr, *cpr2; 3829 struct bnxt_ring_struct *ring; 3830 int cp_count = 0, k; 3831 int rx = 0, tx = 0; 3832 3833 if (!bnapi) 3834 continue; 3835 3836 cpr = &bnapi->cp_ring; 3837 cpr->bnapi = bnapi; 3838 ring = &cpr->cp_ring_struct; 3839 3840 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3841 if (rc) 3842 return rc; 3843 3844 if (ulp_msix && i >= ulp_base_vec) 3845 ring->map_idx = i + ulp_msix; 3846 else 3847 ring->map_idx = i; 3848 3849 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 3850 continue; 3851 3852 if (i < bp->rx_nr_rings) { 3853 cp_count++; 3854 rx = 1; 3855 } 3856 if (i < bp->tx_nr_rings_xdp) { 3857 cp_count++; 3858 tx = 1; 3859 } else if ((sh && i < bp->tx_nr_rings) || 3860 (!sh && i >= bp->rx_nr_rings)) { 3861 cp_count += tcs; 3862 tx = 1; 3863 } 3864 3865 cpr->cp_ring_arr = kcalloc(cp_count, sizeof(*cpr), 3866 GFP_KERNEL); 3867 if (!cpr->cp_ring_arr) 3868 return -ENOMEM; 3869 cpr->cp_ring_count = cp_count; 3870 3871 for (k = 0; k < cp_count; k++) { 3872 cpr2 = &cpr->cp_ring_arr[k]; 3873 rc = bnxt_alloc_cp_sub_ring(bp, cpr2); 3874 if (rc) 3875 return rc; 3876 cpr2->bnapi = bnapi; 3877 cpr2->cp_idx = k; 3878 if (!k && rx) { 3879 bp->rx_ring[i].rx_cpr = cpr2; 3880 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_RX; 3881 } else { 3882 int n, tc = k - rx; 3883 3884 n = BNXT_TC_TO_RING_BASE(bp, tc) + j; 3885 bp->tx_ring[n].tx_cpr = cpr2; 3886 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_TX; 3887 } 3888 } 3889 if (tx) 3890 j++; 3891 } 3892 return 0; 3893 } 3894 3895 static void bnxt_init_ring_struct(struct bnxt *bp) 3896 { 3897 int i, j; 3898 3899 for (i = 0; i < bp->cp_nr_rings; i++) { 3900 struct bnxt_napi *bnapi = bp->bnapi[i]; 3901 struct bnxt_ring_mem_info *rmem; 3902 struct bnxt_cp_ring_info *cpr; 3903 struct bnxt_rx_ring_info *rxr; 3904 struct bnxt_tx_ring_info *txr; 3905 struct bnxt_ring_struct *ring; 3906 3907 if (!bnapi) 3908 continue; 3909 3910 cpr = &bnapi->cp_ring; 3911 ring = &cpr->cp_ring_struct; 3912 rmem = &ring->ring_mem; 3913 rmem->nr_pages = bp->cp_nr_pages; 3914 rmem->page_size = HW_CMPD_RING_SIZE; 3915 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3916 rmem->dma_arr = cpr->cp_desc_mapping; 3917 rmem->vmem_size = 0; 3918 3919 rxr = bnapi->rx_ring; 3920 if (!rxr) 3921 goto skip_rx; 3922 3923 ring = &rxr->rx_ring_struct; 3924 rmem = &ring->ring_mem; 3925 rmem->nr_pages = bp->rx_nr_pages; 3926 rmem->page_size = HW_RXBD_RING_SIZE; 3927 rmem->pg_arr = (void **)rxr->rx_desc_ring; 3928 rmem->dma_arr = rxr->rx_desc_mapping; 3929 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 3930 rmem->vmem = (void **)&rxr->rx_buf_ring; 3931 3932 ring = &rxr->rx_agg_ring_struct; 3933 rmem = &ring->ring_mem; 3934 rmem->nr_pages = bp->rx_agg_nr_pages; 3935 rmem->page_size = HW_RXBD_RING_SIZE; 3936 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 3937 rmem->dma_arr = rxr->rx_agg_desc_mapping; 3938 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 3939 rmem->vmem = (void **)&rxr->rx_agg_ring; 3940 3941 skip_rx: 3942 bnxt_for_each_napi_tx(j, bnapi, txr) { 3943 ring = &txr->tx_ring_struct; 3944 rmem = &ring->ring_mem; 3945 rmem->nr_pages = bp->tx_nr_pages; 3946 rmem->page_size = HW_TXBD_RING_SIZE; 3947 rmem->pg_arr = (void **)txr->tx_desc_ring; 3948 rmem->dma_arr = txr->tx_desc_mapping; 3949 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 3950 rmem->vmem = (void **)&txr->tx_buf_ring; 3951 } 3952 } 3953 } 3954 3955 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 3956 { 3957 int i; 3958 u32 prod; 3959 struct rx_bd **rx_buf_ring; 3960 3961 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 3962 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 3963 int j; 3964 struct rx_bd *rxbd; 3965 3966 rxbd = rx_buf_ring[i]; 3967 if (!rxbd) 3968 continue; 3969 3970 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 3971 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 3972 rxbd->rx_bd_opaque = prod; 3973 } 3974 } 3975 } 3976 3977 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 3978 { 3979 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 3980 struct net_device *dev = bp->dev; 3981 u32 prod; 3982 int i; 3983 3984 prod = rxr->rx_prod; 3985 for (i = 0; i < bp->rx_ring_size; i++) { 3986 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 3987 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n", 3988 ring_nr, i, bp->rx_ring_size); 3989 break; 3990 } 3991 prod = NEXT_RX(prod); 3992 } 3993 rxr->rx_prod = prod; 3994 3995 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 3996 return 0; 3997 3998 prod = rxr->rx_agg_prod; 3999 for (i = 0; i < bp->rx_agg_ring_size; i++) { 4000 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) { 4001 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n", 4002 ring_nr, i, bp->rx_ring_size); 4003 break; 4004 } 4005 prod = NEXT_RX_AGG(prod); 4006 } 4007 rxr->rx_agg_prod = prod; 4008 4009 if (rxr->rx_tpa) { 4010 dma_addr_t mapping; 4011 u8 *data; 4012 4013 for (i = 0; i < bp->max_tpa; i++) { 4014 data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL); 4015 if (!data) 4016 return -ENOMEM; 4017 4018 rxr->rx_tpa[i].data = data; 4019 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 4020 rxr->rx_tpa[i].mapping = mapping; 4021 } 4022 } 4023 return 0; 4024 } 4025 4026 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 4027 { 4028 struct bnxt_rx_ring_info *rxr; 4029 struct bnxt_ring_struct *ring; 4030 u32 type; 4031 4032 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 4033 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 4034 4035 if (NET_IP_ALIGN == 2) 4036 type |= RX_BD_FLAGS_SOP; 4037 4038 rxr = &bp->rx_ring[ring_nr]; 4039 ring = &rxr->rx_ring_struct; 4040 bnxt_init_rxbd_pages(ring, type); 4041 4042 netif_queue_set_napi(bp->dev, ring_nr, NETDEV_QUEUE_TYPE_RX, 4043 &rxr->bnapi->napi); 4044 4045 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 4046 bpf_prog_add(bp->xdp_prog, 1); 4047 rxr->xdp_prog = bp->xdp_prog; 4048 } 4049 ring->fw_ring_id = INVALID_HW_RING_ID; 4050 4051 ring = &rxr->rx_agg_ring_struct; 4052 ring->fw_ring_id = INVALID_HW_RING_ID; 4053 4054 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 4055 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 4056 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 4057 4058 bnxt_init_rxbd_pages(ring, type); 4059 } 4060 4061 return bnxt_alloc_one_rx_ring(bp, ring_nr); 4062 } 4063 4064 static void bnxt_init_cp_rings(struct bnxt *bp) 4065 { 4066 int i, j; 4067 4068 for (i = 0; i < bp->cp_nr_rings; i++) { 4069 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 4070 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4071 4072 ring->fw_ring_id = INVALID_HW_RING_ID; 4073 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4074 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4075 if (!cpr->cp_ring_arr) 4076 continue; 4077 for (j = 0; j < cpr->cp_ring_count; j++) { 4078 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 4079 4080 ring = &cpr2->cp_ring_struct; 4081 ring->fw_ring_id = INVALID_HW_RING_ID; 4082 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4083 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4084 } 4085 } 4086 } 4087 4088 static int bnxt_init_rx_rings(struct bnxt *bp) 4089 { 4090 int i, rc = 0; 4091 4092 if (BNXT_RX_PAGE_MODE(bp)) { 4093 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 4094 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 4095 } else { 4096 bp->rx_offset = BNXT_RX_OFFSET; 4097 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 4098 } 4099 4100 for (i = 0; i < bp->rx_nr_rings; i++) { 4101 rc = bnxt_init_one_rx_ring(bp, i); 4102 if (rc) 4103 break; 4104 } 4105 4106 return rc; 4107 } 4108 4109 static int bnxt_init_tx_rings(struct bnxt *bp) 4110 { 4111 u16 i; 4112 4113 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 4114 BNXT_MIN_TX_DESC_CNT); 4115 4116 for (i = 0; i < bp->tx_nr_rings; i++) { 4117 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4118 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 4119 4120 ring->fw_ring_id = INVALID_HW_RING_ID; 4121 4122 if (i >= bp->tx_nr_rings_xdp) 4123 netif_queue_set_napi(bp->dev, i - bp->tx_nr_rings_xdp, 4124 NETDEV_QUEUE_TYPE_TX, 4125 &txr->bnapi->napi); 4126 } 4127 4128 return 0; 4129 } 4130 4131 static void bnxt_free_ring_grps(struct bnxt *bp) 4132 { 4133 kfree(bp->grp_info); 4134 bp->grp_info = NULL; 4135 } 4136 4137 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 4138 { 4139 int i; 4140 4141 if (irq_re_init) { 4142 bp->grp_info = kcalloc(bp->cp_nr_rings, 4143 sizeof(struct bnxt_ring_grp_info), 4144 GFP_KERNEL); 4145 if (!bp->grp_info) 4146 return -ENOMEM; 4147 } 4148 for (i = 0; i < bp->cp_nr_rings; i++) { 4149 if (irq_re_init) 4150 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 4151 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 4152 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 4153 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 4154 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 4155 } 4156 return 0; 4157 } 4158 4159 static void bnxt_free_vnics(struct bnxt *bp) 4160 { 4161 kfree(bp->vnic_info); 4162 bp->vnic_info = NULL; 4163 bp->nr_vnics = 0; 4164 } 4165 4166 static int bnxt_alloc_vnics(struct bnxt *bp) 4167 { 4168 int num_vnics = 1; 4169 4170 #ifdef CONFIG_RFS_ACCEL 4171 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5_PLUS)) == BNXT_FLAG_RFS) 4172 num_vnics += bp->rx_nr_rings; 4173 #endif 4174 4175 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 4176 num_vnics++; 4177 4178 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 4179 GFP_KERNEL); 4180 if (!bp->vnic_info) 4181 return -ENOMEM; 4182 4183 bp->nr_vnics = num_vnics; 4184 return 0; 4185 } 4186 4187 static void bnxt_init_vnics(struct bnxt *bp) 4188 { 4189 int i; 4190 4191 for (i = 0; i < bp->nr_vnics; i++) { 4192 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 4193 int j; 4194 4195 vnic->fw_vnic_id = INVALID_HW_RING_ID; 4196 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 4197 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 4198 4199 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 4200 4201 if (bp->vnic_info[i].rss_hash_key) { 4202 if (i == 0) 4203 get_random_bytes(vnic->rss_hash_key, 4204 HW_HASH_KEY_SIZE); 4205 else 4206 memcpy(vnic->rss_hash_key, 4207 bp->vnic_info[0].rss_hash_key, 4208 HW_HASH_KEY_SIZE); 4209 } 4210 } 4211 } 4212 4213 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 4214 { 4215 int pages; 4216 4217 pages = ring_size / desc_per_pg; 4218 4219 if (!pages) 4220 return 1; 4221 4222 pages++; 4223 4224 while (pages & (pages - 1)) 4225 pages++; 4226 4227 return pages; 4228 } 4229 4230 void bnxt_set_tpa_flags(struct bnxt *bp) 4231 { 4232 bp->flags &= ~BNXT_FLAG_TPA; 4233 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 4234 return; 4235 if (bp->dev->features & NETIF_F_LRO) 4236 bp->flags |= BNXT_FLAG_LRO; 4237 else if (bp->dev->features & NETIF_F_GRO_HW) 4238 bp->flags |= BNXT_FLAG_GRO; 4239 } 4240 4241 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 4242 * be set on entry. 4243 */ 4244 void bnxt_set_ring_params(struct bnxt *bp) 4245 { 4246 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 4247 u32 agg_factor = 0, agg_ring_size = 0; 4248 4249 /* 8 for CRC and VLAN */ 4250 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 4251 4252 rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) + 4253 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4254 4255 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 4256 ring_size = bp->rx_ring_size; 4257 bp->rx_agg_ring_size = 0; 4258 bp->rx_agg_nr_pages = 0; 4259 4260 if (bp->flags & BNXT_FLAG_TPA) 4261 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 4262 4263 bp->flags &= ~BNXT_FLAG_JUMBO; 4264 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 4265 u32 jumbo_factor; 4266 4267 bp->flags |= BNXT_FLAG_JUMBO; 4268 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 4269 if (jumbo_factor > agg_factor) 4270 agg_factor = jumbo_factor; 4271 } 4272 if (agg_factor) { 4273 if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) { 4274 ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA; 4275 netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n", 4276 bp->rx_ring_size, ring_size); 4277 bp->rx_ring_size = ring_size; 4278 } 4279 agg_ring_size = ring_size * agg_factor; 4280 4281 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 4282 RX_DESC_CNT); 4283 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 4284 u32 tmp = agg_ring_size; 4285 4286 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 4287 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 4288 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 4289 tmp, agg_ring_size); 4290 } 4291 bp->rx_agg_ring_size = agg_ring_size; 4292 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 4293 4294 if (BNXT_RX_PAGE_MODE(bp)) { 4295 rx_space = PAGE_SIZE; 4296 rx_size = PAGE_SIZE - 4297 ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) - 4298 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4299 } else { 4300 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 4301 rx_space = rx_size + NET_SKB_PAD + 4302 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4303 } 4304 } 4305 4306 bp->rx_buf_use_size = rx_size; 4307 bp->rx_buf_size = rx_space; 4308 4309 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 4310 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 4311 4312 ring_size = bp->tx_ring_size; 4313 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 4314 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 4315 4316 max_rx_cmpl = bp->rx_ring_size; 4317 /* MAX TPA needs to be added because TPA_START completions are 4318 * immediately recycled, so the TPA completions are not bound by 4319 * the RX ring size. 4320 */ 4321 if (bp->flags & BNXT_FLAG_TPA) 4322 max_rx_cmpl += bp->max_tpa; 4323 /* RX and TPA completions are 32-byte, all others are 16-byte */ 4324 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 4325 bp->cp_ring_size = ring_size; 4326 4327 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 4328 if (bp->cp_nr_pages > MAX_CP_PAGES) { 4329 bp->cp_nr_pages = MAX_CP_PAGES; 4330 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 4331 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 4332 ring_size, bp->cp_ring_size); 4333 } 4334 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 4335 bp->cp_ring_mask = bp->cp_bit - 1; 4336 } 4337 4338 /* Changing allocation mode of RX rings. 4339 * TODO: Update when extending xdp_rxq_info to support allocation modes. 4340 */ 4341 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 4342 { 4343 struct net_device *dev = bp->dev; 4344 4345 if (page_mode) { 4346 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 4347 bp->flags |= BNXT_FLAG_RX_PAGE_MODE; 4348 4349 if (bp->xdp_prog->aux->xdp_has_frags) 4350 dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU); 4351 else 4352 dev->max_mtu = 4353 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 4354 if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) { 4355 bp->flags |= BNXT_FLAG_JUMBO; 4356 bp->rx_skb_func = bnxt_rx_multi_page_skb; 4357 } else { 4358 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 4359 bp->rx_skb_func = bnxt_rx_page_skb; 4360 } 4361 bp->rx_dir = DMA_BIDIRECTIONAL; 4362 /* Disable LRO or GRO_HW */ 4363 netdev_update_features(dev); 4364 } else { 4365 dev->max_mtu = bp->max_mtu; 4366 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 4367 bp->rx_dir = DMA_FROM_DEVICE; 4368 bp->rx_skb_func = bnxt_rx_skb; 4369 } 4370 return 0; 4371 } 4372 4373 static void bnxt_free_vnic_attributes(struct bnxt *bp) 4374 { 4375 int i; 4376 struct bnxt_vnic_info *vnic; 4377 struct pci_dev *pdev = bp->pdev; 4378 4379 if (!bp->vnic_info) 4380 return; 4381 4382 for (i = 0; i < bp->nr_vnics; i++) { 4383 vnic = &bp->vnic_info[i]; 4384 4385 kfree(vnic->fw_grp_ids); 4386 vnic->fw_grp_ids = NULL; 4387 4388 kfree(vnic->uc_list); 4389 vnic->uc_list = NULL; 4390 4391 if (vnic->mc_list) { 4392 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 4393 vnic->mc_list, vnic->mc_list_mapping); 4394 vnic->mc_list = NULL; 4395 } 4396 4397 if (vnic->rss_table) { 4398 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 4399 vnic->rss_table, 4400 vnic->rss_table_dma_addr); 4401 vnic->rss_table = NULL; 4402 } 4403 4404 vnic->rss_hash_key = NULL; 4405 vnic->flags = 0; 4406 } 4407 } 4408 4409 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 4410 { 4411 int i, rc = 0, size; 4412 struct bnxt_vnic_info *vnic; 4413 struct pci_dev *pdev = bp->pdev; 4414 int max_rings; 4415 4416 for (i = 0; i < bp->nr_vnics; i++) { 4417 vnic = &bp->vnic_info[i]; 4418 4419 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 4420 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 4421 4422 if (mem_size > 0) { 4423 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 4424 if (!vnic->uc_list) { 4425 rc = -ENOMEM; 4426 goto out; 4427 } 4428 } 4429 } 4430 4431 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 4432 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 4433 vnic->mc_list = 4434 dma_alloc_coherent(&pdev->dev, 4435 vnic->mc_list_size, 4436 &vnic->mc_list_mapping, 4437 GFP_KERNEL); 4438 if (!vnic->mc_list) { 4439 rc = -ENOMEM; 4440 goto out; 4441 } 4442 } 4443 4444 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4445 goto vnic_skip_grps; 4446 4447 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 4448 max_rings = bp->rx_nr_rings; 4449 else 4450 max_rings = 1; 4451 4452 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 4453 if (!vnic->fw_grp_ids) { 4454 rc = -ENOMEM; 4455 goto out; 4456 } 4457 vnic_skip_grps: 4458 if ((bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && 4459 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 4460 continue; 4461 4462 /* Allocate rss table and hash key */ 4463 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 4464 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4465 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 4466 4467 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 4468 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 4469 vnic->rss_table_size, 4470 &vnic->rss_table_dma_addr, 4471 GFP_KERNEL); 4472 if (!vnic->rss_table) { 4473 rc = -ENOMEM; 4474 goto out; 4475 } 4476 4477 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 4478 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 4479 } 4480 return 0; 4481 4482 out: 4483 return rc; 4484 } 4485 4486 static void bnxt_free_hwrm_resources(struct bnxt *bp) 4487 { 4488 struct bnxt_hwrm_wait_token *token; 4489 4490 dma_pool_destroy(bp->hwrm_dma_pool); 4491 bp->hwrm_dma_pool = NULL; 4492 4493 rcu_read_lock(); 4494 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) 4495 WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED); 4496 rcu_read_unlock(); 4497 } 4498 4499 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 4500 { 4501 bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev, 4502 BNXT_HWRM_DMA_SIZE, 4503 BNXT_HWRM_DMA_ALIGN, 0); 4504 if (!bp->hwrm_dma_pool) 4505 return -ENOMEM; 4506 4507 INIT_HLIST_HEAD(&bp->hwrm_pending_list); 4508 4509 return 0; 4510 } 4511 4512 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 4513 { 4514 kfree(stats->hw_masks); 4515 stats->hw_masks = NULL; 4516 kfree(stats->sw_stats); 4517 stats->sw_stats = NULL; 4518 if (stats->hw_stats) { 4519 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 4520 stats->hw_stats_map); 4521 stats->hw_stats = NULL; 4522 } 4523 } 4524 4525 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 4526 bool alloc_masks) 4527 { 4528 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 4529 &stats->hw_stats_map, GFP_KERNEL); 4530 if (!stats->hw_stats) 4531 return -ENOMEM; 4532 4533 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 4534 if (!stats->sw_stats) 4535 goto stats_mem_err; 4536 4537 if (alloc_masks) { 4538 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 4539 if (!stats->hw_masks) 4540 goto stats_mem_err; 4541 } 4542 return 0; 4543 4544 stats_mem_err: 4545 bnxt_free_stats_mem(bp, stats); 4546 return -ENOMEM; 4547 } 4548 4549 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 4550 { 4551 int i; 4552 4553 for (i = 0; i < count; i++) 4554 mask_arr[i] = mask; 4555 } 4556 4557 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 4558 { 4559 int i; 4560 4561 for (i = 0; i < count; i++) 4562 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 4563 } 4564 4565 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 4566 struct bnxt_stats_mem *stats) 4567 { 4568 struct hwrm_func_qstats_ext_output *resp; 4569 struct hwrm_func_qstats_ext_input *req; 4570 __le64 *hw_masks; 4571 int rc; 4572 4573 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 4574 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4575 return -EOPNOTSUPP; 4576 4577 rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT); 4578 if (rc) 4579 return rc; 4580 4581 req->fid = cpu_to_le16(0xffff); 4582 req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4583 4584 resp = hwrm_req_hold(bp, req); 4585 rc = hwrm_req_send(bp, req); 4586 if (!rc) { 4587 hw_masks = &resp->rx_ucast_pkts; 4588 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 4589 } 4590 hwrm_req_drop(bp, req); 4591 return rc; 4592 } 4593 4594 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 4595 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 4596 4597 static void bnxt_init_stats(struct bnxt *bp) 4598 { 4599 struct bnxt_napi *bnapi = bp->bnapi[0]; 4600 struct bnxt_cp_ring_info *cpr; 4601 struct bnxt_stats_mem *stats; 4602 __le64 *rx_stats, *tx_stats; 4603 int rc, rx_count, tx_count; 4604 u64 *rx_masks, *tx_masks; 4605 u64 mask; 4606 u8 flags; 4607 4608 cpr = &bnapi->cp_ring; 4609 stats = &cpr->stats; 4610 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 4611 if (rc) { 4612 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4613 mask = (1ULL << 48) - 1; 4614 else 4615 mask = -1ULL; 4616 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 4617 } 4618 if (bp->flags & BNXT_FLAG_PORT_STATS) { 4619 stats = &bp->port_stats; 4620 rx_stats = stats->hw_stats; 4621 rx_masks = stats->hw_masks; 4622 rx_count = sizeof(struct rx_port_stats) / 8; 4623 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4624 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4625 tx_count = sizeof(struct tx_port_stats) / 8; 4626 4627 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 4628 rc = bnxt_hwrm_port_qstats(bp, flags); 4629 if (rc) { 4630 mask = (1ULL << 40) - 1; 4631 4632 bnxt_fill_masks(rx_masks, mask, rx_count); 4633 bnxt_fill_masks(tx_masks, mask, tx_count); 4634 } else { 4635 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4636 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 4637 bnxt_hwrm_port_qstats(bp, 0); 4638 } 4639 } 4640 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 4641 stats = &bp->rx_port_stats_ext; 4642 rx_stats = stats->hw_stats; 4643 rx_masks = stats->hw_masks; 4644 rx_count = sizeof(struct rx_port_stats_ext) / 8; 4645 stats = &bp->tx_port_stats_ext; 4646 tx_stats = stats->hw_stats; 4647 tx_masks = stats->hw_masks; 4648 tx_count = sizeof(struct tx_port_stats_ext) / 8; 4649 4650 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4651 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 4652 if (rc) { 4653 mask = (1ULL << 40) - 1; 4654 4655 bnxt_fill_masks(rx_masks, mask, rx_count); 4656 if (tx_stats) 4657 bnxt_fill_masks(tx_masks, mask, tx_count); 4658 } else { 4659 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4660 if (tx_stats) 4661 bnxt_copy_hw_masks(tx_masks, tx_stats, 4662 tx_count); 4663 bnxt_hwrm_port_qstats_ext(bp, 0); 4664 } 4665 } 4666 } 4667 4668 static void bnxt_free_port_stats(struct bnxt *bp) 4669 { 4670 bp->flags &= ~BNXT_FLAG_PORT_STATS; 4671 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 4672 4673 bnxt_free_stats_mem(bp, &bp->port_stats); 4674 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 4675 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 4676 } 4677 4678 static void bnxt_free_ring_stats(struct bnxt *bp) 4679 { 4680 int i; 4681 4682 if (!bp->bnapi) 4683 return; 4684 4685 for (i = 0; i < bp->cp_nr_rings; i++) { 4686 struct bnxt_napi *bnapi = bp->bnapi[i]; 4687 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4688 4689 bnxt_free_stats_mem(bp, &cpr->stats); 4690 } 4691 } 4692 4693 static int bnxt_alloc_stats(struct bnxt *bp) 4694 { 4695 u32 size, i; 4696 int rc; 4697 4698 size = bp->hw_ring_stats_size; 4699 4700 for (i = 0; i < bp->cp_nr_rings; i++) { 4701 struct bnxt_napi *bnapi = bp->bnapi[i]; 4702 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4703 4704 cpr->stats.len = size; 4705 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 4706 if (rc) 4707 return rc; 4708 4709 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 4710 } 4711 4712 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 4713 return 0; 4714 4715 if (bp->port_stats.hw_stats) 4716 goto alloc_ext_stats; 4717 4718 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 4719 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 4720 if (rc) 4721 return rc; 4722 4723 bp->flags |= BNXT_FLAG_PORT_STATS; 4724 4725 alloc_ext_stats: 4726 /* Display extended statistics only if FW supports it */ 4727 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 4728 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 4729 return 0; 4730 4731 if (bp->rx_port_stats_ext.hw_stats) 4732 goto alloc_tx_ext_stats; 4733 4734 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 4735 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 4736 /* Extended stats are optional */ 4737 if (rc) 4738 return 0; 4739 4740 alloc_tx_ext_stats: 4741 if (bp->tx_port_stats_ext.hw_stats) 4742 return 0; 4743 4744 if (bp->hwrm_spec_code >= 0x10902 || 4745 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 4746 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 4747 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 4748 /* Extended stats are optional */ 4749 if (rc) 4750 return 0; 4751 } 4752 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 4753 return 0; 4754 } 4755 4756 static void bnxt_clear_ring_indices(struct bnxt *bp) 4757 { 4758 int i, j; 4759 4760 if (!bp->bnapi) 4761 return; 4762 4763 for (i = 0; i < bp->cp_nr_rings; i++) { 4764 struct bnxt_napi *bnapi = bp->bnapi[i]; 4765 struct bnxt_cp_ring_info *cpr; 4766 struct bnxt_rx_ring_info *rxr; 4767 struct bnxt_tx_ring_info *txr; 4768 4769 if (!bnapi) 4770 continue; 4771 4772 cpr = &bnapi->cp_ring; 4773 cpr->cp_raw_cons = 0; 4774 4775 bnxt_for_each_napi_tx(j, bnapi, txr) { 4776 txr->tx_prod = 0; 4777 txr->tx_cons = 0; 4778 txr->tx_hw_cons = 0; 4779 } 4780 4781 rxr = bnapi->rx_ring; 4782 if (rxr) { 4783 rxr->rx_prod = 0; 4784 rxr->rx_agg_prod = 0; 4785 rxr->rx_sw_agg_prod = 0; 4786 rxr->rx_next_cons = 0; 4787 } 4788 bnapi->events = 0; 4789 } 4790 } 4791 4792 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit) 4793 { 4794 #ifdef CONFIG_RFS_ACCEL 4795 int i; 4796 4797 /* Under rtnl_lock and all our NAPIs have been disabled. It's 4798 * safe to delete the hash table. 4799 */ 4800 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 4801 struct hlist_head *head; 4802 struct hlist_node *tmp; 4803 struct bnxt_ntuple_filter *fltr; 4804 4805 head = &bp->ntp_fltr_hash_tbl[i]; 4806 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 4807 hlist_del(&fltr->hash); 4808 kfree(fltr); 4809 } 4810 } 4811 if (irq_reinit) { 4812 bitmap_free(bp->ntp_fltr_bmap); 4813 bp->ntp_fltr_bmap = NULL; 4814 } 4815 bp->ntp_fltr_count = 0; 4816 #endif 4817 } 4818 4819 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 4820 { 4821 #ifdef CONFIG_RFS_ACCEL 4822 int i, rc = 0; 4823 4824 if (!(bp->flags & BNXT_FLAG_RFS)) 4825 return 0; 4826 4827 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 4828 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 4829 4830 bp->ntp_fltr_count = 0; 4831 bp->ntp_fltr_bmap = bitmap_zalloc(BNXT_NTP_FLTR_MAX_FLTR, GFP_KERNEL); 4832 4833 if (!bp->ntp_fltr_bmap) 4834 rc = -ENOMEM; 4835 4836 return rc; 4837 #else 4838 return 0; 4839 #endif 4840 } 4841 4842 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 4843 { 4844 bnxt_free_vnic_attributes(bp); 4845 bnxt_free_tx_rings(bp); 4846 bnxt_free_rx_rings(bp); 4847 bnxt_free_cp_rings(bp); 4848 bnxt_free_all_cp_arrays(bp); 4849 bnxt_free_ntp_fltrs(bp, irq_re_init); 4850 if (irq_re_init) { 4851 bnxt_free_ring_stats(bp); 4852 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 4853 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 4854 bnxt_free_port_stats(bp); 4855 bnxt_free_ring_grps(bp); 4856 bnxt_free_vnics(bp); 4857 kfree(bp->tx_ring_map); 4858 bp->tx_ring_map = NULL; 4859 kfree(bp->tx_ring); 4860 bp->tx_ring = NULL; 4861 kfree(bp->rx_ring); 4862 bp->rx_ring = NULL; 4863 kfree(bp->bnapi); 4864 bp->bnapi = NULL; 4865 } else { 4866 bnxt_clear_ring_indices(bp); 4867 } 4868 } 4869 4870 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 4871 { 4872 int i, j, rc, size, arr_size; 4873 void *bnapi; 4874 4875 if (irq_re_init) { 4876 /* Allocate bnapi mem pointer array and mem block for 4877 * all queues 4878 */ 4879 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 4880 bp->cp_nr_rings); 4881 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 4882 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 4883 if (!bnapi) 4884 return -ENOMEM; 4885 4886 bp->bnapi = bnapi; 4887 bnapi += arr_size; 4888 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 4889 bp->bnapi[i] = bnapi; 4890 bp->bnapi[i]->index = i; 4891 bp->bnapi[i]->bp = bp; 4892 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 4893 struct bnxt_cp_ring_info *cpr = 4894 &bp->bnapi[i]->cp_ring; 4895 4896 cpr->cp_ring_struct.ring_mem.flags = 4897 BNXT_RMEM_RING_PTE_FLAG; 4898 } 4899 } 4900 4901 bp->rx_ring = kcalloc(bp->rx_nr_rings, 4902 sizeof(struct bnxt_rx_ring_info), 4903 GFP_KERNEL); 4904 if (!bp->rx_ring) 4905 return -ENOMEM; 4906 4907 for (i = 0; i < bp->rx_nr_rings; i++) { 4908 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 4909 4910 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 4911 rxr->rx_ring_struct.ring_mem.flags = 4912 BNXT_RMEM_RING_PTE_FLAG; 4913 rxr->rx_agg_ring_struct.ring_mem.flags = 4914 BNXT_RMEM_RING_PTE_FLAG; 4915 } else { 4916 rxr->rx_cpr = &bp->bnapi[i]->cp_ring; 4917 } 4918 rxr->bnapi = bp->bnapi[i]; 4919 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 4920 } 4921 4922 bp->tx_ring = kcalloc(bp->tx_nr_rings, 4923 sizeof(struct bnxt_tx_ring_info), 4924 GFP_KERNEL); 4925 if (!bp->tx_ring) 4926 return -ENOMEM; 4927 4928 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 4929 GFP_KERNEL); 4930 4931 if (!bp->tx_ring_map) 4932 return -ENOMEM; 4933 4934 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 4935 j = 0; 4936 else 4937 j = bp->rx_nr_rings; 4938 4939 for (i = 0; i < bp->tx_nr_rings; i++) { 4940 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4941 struct bnxt_napi *bnapi2; 4942 4943 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4944 txr->tx_ring_struct.ring_mem.flags = 4945 BNXT_RMEM_RING_PTE_FLAG; 4946 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 4947 if (i >= bp->tx_nr_rings_xdp) { 4948 int k = j + BNXT_RING_TO_TC_OFF(bp, i); 4949 4950 bnapi2 = bp->bnapi[k]; 4951 txr->txq_index = i - bp->tx_nr_rings_xdp; 4952 txr->tx_napi_idx = 4953 BNXT_RING_TO_TC(bp, txr->txq_index); 4954 bnapi2->tx_ring[txr->tx_napi_idx] = txr; 4955 bnapi2->tx_int = bnxt_tx_int; 4956 } else { 4957 bnapi2 = bp->bnapi[j]; 4958 bnapi2->flags |= BNXT_NAPI_FLAG_XDP; 4959 bnapi2->tx_ring[0] = txr; 4960 bnapi2->tx_int = bnxt_tx_int_xdp; 4961 j++; 4962 } 4963 txr->bnapi = bnapi2; 4964 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4965 txr->tx_cpr = &bnapi2->cp_ring; 4966 } 4967 4968 rc = bnxt_alloc_stats(bp); 4969 if (rc) 4970 goto alloc_mem_err; 4971 bnxt_init_stats(bp); 4972 4973 rc = bnxt_alloc_ntp_fltrs(bp); 4974 if (rc) 4975 goto alloc_mem_err; 4976 4977 rc = bnxt_alloc_vnics(bp); 4978 if (rc) 4979 goto alloc_mem_err; 4980 } 4981 4982 rc = bnxt_alloc_all_cp_arrays(bp); 4983 if (rc) 4984 goto alloc_mem_err; 4985 4986 bnxt_init_ring_struct(bp); 4987 4988 rc = bnxt_alloc_rx_rings(bp); 4989 if (rc) 4990 goto alloc_mem_err; 4991 4992 rc = bnxt_alloc_tx_rings(bp); 4993 if (rc) 4994 goto alloc_mem_err; 4995 4996 rc = bnxt_alloc_cp_rings(bp); 4997 if (rc) 4998 goto alloc_mem_err; 4999 5000 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG | 5001 BNXT_VNIC_UCAST_FLAG; 5002 rc = bnxt_alloc_vnic_attributes(bp); 5003 if (rc) 5004 goto alloc_mem_err; 5005 return 0; 5006 5007 alloc_mem_err: 5008 bnxt_free_mem(bp, true); 5009 return rc; 5010 } 5011 5012 static void bnxt_disable_int(struct bnxt *bp) 5013 { 5014 int i; 5015 5016 if (!bp->bnapi) 5017 return; 5018 5019 for (i = 0; i < bp->cp_nr_rings; i++) { 5020 struct bnxt_napi *bnapi = bp->bnapi[i]; 5021 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5022 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5023 5024 if (ring->fw_ring_id != INVALID_HW_RING_ID) 5025 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5026 } 5027 } 5028 5029 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 5030 { 5031 struct bnxt_napi *bnapi = bp->bnapi[n]; 5032 struct bnxt_cp_ring_info *cpr; 5033 5034 cpr = &bnapi->cp_ring; 5035 return cpr->cp_ring_struct.map_idx; 5036 } 5037 5038 static void bnxt_disable_int_sync(struct bnxt *bp) 5039 { 5040 int i; 5041 5042 if (!bp->irq_tbl) 5043 return; 5044 5045 atomic_inc(&bp->intr_sem); 5046 5047 bnxt_disable_int(bp); 5048 for (i = 0; i < bp->cp_nr_rings; i++) { 5049 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 5050 5051 synchronize_irq(bp->irq_tbl[map_idx].vector); 5052 } 5053 } 5054 5055 static void bnxt_enable_int(struct bnxt *bp) 5056 { 5057 int i; 5058 5059 atomic_set(&bp->intr_sem, 0); 5060 for (i = 0; i < bp->cp_nr_rings; i++) { 5061 struct bnxt_napi *bnapi = bp->bnapi[i]; 5062 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5063 5064 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 5065 } 5066 } 5067 5068 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 5069 bool async_only) 5070 { 5071 DECLARE_BITMAP(async_events_bmap, 256); 5072 u32 *events = (u32 *)async_events_bmap; 5073 struct hwrm_func_drv_rgtr_output *resp; 5074 struct hwrm_func_drv_rgtr_input *req; 5075 u32 flags; 5076 int rc, i; 5077 5078 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR); 5079 if (rc) 5080 return rc; 5081 5082 req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 5083 FUNC_DRV_RGTR_REQ_ENABLES_VER | 5084 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5085 5086 req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 5087 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 5088 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 5089 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 5090 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 5091 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 5092 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 5093 req->flags = cpu_to_le32(flags); 5094 req->ver_maj_8b = DRV_VER_MAJ; 5095 req->ver_min_8b = DRV_VER_MIN; 5096 req->ver_upd_8b = DRV_VER_UPD; 5097 req->ver_maj = cpu_to_le16(DRV_VER_MAJ); 5098 req->ver_min = cpu_to_le16(DRV_VER_MIN); 5099 req->ver_upd = cpu_to_le16(DRV_VER_UPD); 5100 5101 if (BNXT_PF(bp)) { 5102 u32 data[8]; 5103 int i; 5104 5105 memset(data, 0, sizeof(data)); 5106 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 5107 u16 cmd = bnxt_vf_req_snif[i]; 5108 unsigned int bit, idx; 5109 5110 idx = cmd / 32; 5111 bit = cmd % 32; 5112 data[idx] |= 1 << bit; 5113 } 5114 5115 for (i = 0; i < 8; i++) 5116 req->vf_req_fwd[i] = cpu_to_le32(data[i]); 5117 5118 req->enables |= 5119 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 5120 } 5121 5122 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 5123 req->flags |= cpu_to_le32( 5124 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 5125 5126 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 5127 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 5128 u16 event_id = bnxt_async_events_arr[i]; 5129 5130 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 5131 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 5132 continue; 5133 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE && 5134 !bp->ptp_cfg) 5135 continue; 5136 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 5137 } 5138 if (bmap && bmap_size) { 5139 for (i = 0; i < bmap_size; i++) { 5140 if (test_bit(i, bmap)) 5141 __set_bit(i, async_events_bmap); 5142 } 5143 } 5144 for (i = 0; i < 8; i++) 5145 req->async_event_fwd[i] |= cpu_to_le32(events[i]); 5146 5147 if (async_only) 5148 req->enables = 5149 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5150 5151 resp = hwrm_req_hold(bp, req); 5152 rc = hwrm_req_send(bp, req); 5153 if (!rc) { 5154 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 5155 if (resp->flags & 5156 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 5157 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 5158 } 5159 hwrm_req_drop(bp, req); 5160 return rc; 5161 } 5162 5163 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 5164 { 5165 struct hwrm_func_drv_unrgtr_input *req; 5166 int rc; 5167 5168 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 5169 return 0; 5170 5171 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR); 5172 if (rc) 5173 return rc; 5174 return hwrm_req_send(bp, req); 5175 } 5176 5177 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa); 5178 5179 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 5180 { 5181 struct hwrm_tunnel_dst_port_free_input *req; 5182 int rc; 5183 5184 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN && 5185 bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID) 5186 return 0; 5187 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE && 5188 bp->nge_fw_dst_port_id == INVALID_HW_RING_ID) 5189 return 0; 5190 5191 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE); 5192 if (rc) 5193 return rc; 5194 5195 req->tunnel_type = tunnel_type; 5196 5197 switch (tunnel_type) { 5198 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 5199 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 5200 bp->vxlan_port = 0; 5201 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 5202 break; 5203 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 5204 req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 5205 bp->nge_port = 0; 5206 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 5207 break; 5208 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE: 5209 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_gpe_fw_dst_port_id); 5210 bp->vxlan_gpe_port = 0; 5211 bp->vxlan_gpe_fw_dst_port_id = INVALID_HW_RING_ID; 5212 break; 5213 default: 5214 break; 5215 } 5216 5217 rc = hwrm_req_send(bp, req); 5218 if (rc) 5219 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 5220 rc); 5221 if (bp->flags & BNXT_FLAG_TPA) 5222 bnxt_set_tpa(bp, true); 5223 return rc; 5224 } 5225 5226 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 5227 u8 tunnel_type) 5228 { 5229 struct hwrm_tunnel_dst_port_alloc_output *resp; 5230 struct hwrm_tunnel_dst_port_alloc_input *req; 5231 int rc; 5232 5233 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC); 5234 if (rc) 5235 return rc; 5236 5237 req->tunnel_type = tunnel_type; 5238 req->tunnel_dst_port_val = port; 5239 5240 resp = hwrm_req_hold(bp, req); 5241 rc = hwrm_req_send(bp, req); 5242 if (rc) { 5243 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 5244 rc); 5245 goto err_out; 5246 } 5247 5248 switch (tunnel_type) { 5249 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 5250 bp->vxlan_port = port; 5251 bp->vxlan_fw_dst_port_id = 5252 le16_to_cpu(resp->tunnel_dst_port_id); 5253 break; 5254 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 5255 bp->nge_port = port; 5256 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 5257 break; 5258 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE: 5259 bp->vxlan_gpe_port = port; 5260 bp->vxlan_gpe_fw_dst_port_id = 5261 le16_to_cpu(resp->tunnel_dst_port_id); 5262 break; 5263 default: 5264 break; 5265 } 5266 if (bp->flags & BNXT_FLAG_TPA) 5267 bnxt_set_tpa(bp, true); 5268 5269 err_out: 5270 hwrm_req_drop(bp, req); 5271 return rc; 5272 } 5273 5274 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 5275 { 5276 struct hwrm_cfa_l2_set_rx_mask_input *req; 5277 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5278 int rc; 5279 5280 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK); 5281 if (rc) 5282 return rc; 5283 5284 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5285 if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) { 5286 req->num_mc_entries = cpu_to_le32(vnic->mc_list_count); 5287 req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 5288 } 5289 req->mask = cpu_to_le32(vnic->rx_mask); 5290 return hwrm_req_send_silent(bp, req); 5291 } 5292 5293 #ifdef CONFIG_RFS_ACCEL 5294 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 5295 struct bnxt_ntuple_filter *fltr) 5296 { 5297 struct hwrm_cfa_ntuple_filter_free_input *req; 5298 int rc; 5299 5300 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE); 5301 if (rc) 5302 return rc; 5303 5304 req->ntuple_filter_id = fltr->filter_id; 5305 return hwrm_req_send(bp, req); 5306 } 5307 5308 #define BNXT_NTP_FLTR_FLAGS \ 5309 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 5310 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 5311 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \ 5312 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 5313 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 5314 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 5315 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 5316 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 5317 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 5318 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 5319 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 5320 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 5321 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 5322 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 5323 5324 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 5325 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 5326 5327 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 5328 struct bnxt_ntuple_filter *fltr) 5329 { 5330 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 5331 struct hwrm_cfa_ntuple_filter_alloc_input *req; 5332 struct flow_keys *keys = &fltr->fkeys; 5333 struct bnxt_vnic_info *vnic; 5334 u32 flags = 0; 5335 int rc; 5336 5337 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC); 5338 if (rc) 5339 return rc; 5340 5341 req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx]; 5342 5343 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 5344 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 5345 req->dst_id = cpu_to_le16(fltr->rxq); 5346 } else { 5347 vnic = &bp->vnic_info[fltr->rxq + 1]; 5348 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 5349 } 5350 req->flags = cpu_to_le32(flags); 5351 req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 5352 5353 req->ethertype = htons(ETH_P_IP); 5354 memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN); 5355 req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 5356 req->ip_protocol = keys->basic.ip_proto; 5357 5358 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 5359 int i; 5360 5361 req->ethertype = htons(ETH_P_IPV6); 5362 req->ip_addr_type = 5363 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 5364 *(struct in6_addr *)&req->src_ipaddr[0] = 5365 keys->addrs.v6addrs.src; 5366 *(struct in6_addr *)&req->dst_ipaddr[0] = 5367 keys->addrs.v6addrs.dst; 5368 for (i = 0; i < 4; i++) { 5369 req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 5370 req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 5371 } 5372 } else { 5373 req->src_ipaddr[0] = keys->addrs.v4addrs.src; 5374 req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 5375 req->dst_ipaddr[0] = keys->addrs.v4addrs.dst; 5376 req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 5377 } 5378 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 5379 req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 5380 req->tunnel_type = 5381 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 5382 } 5383 5384 req->src_port = keys->ports.src; 5385 req->src_port_mask = cpu_to_be16(0xffff); 5386 req->dst_port = keys->ports.dst; 5387 req->dst_port_mask = cpu_to_be16(0xffff); 5388 5389 resp = hwrm_req_hold(bp, req); 5390 rc = hwrm_req_send(bp, req); 5391 if (!rc) 5392 fltr->filter_id = resp->ntuple_filter_id; 5393 hwrm_req_drop(bp, req); 5394 return rc; 5395 } 5396 #endif 5397 5398 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 5399 const u8 *mac_addr) 5400 { 5401 struct hwrm_cfa_l2_filter_alloc_output *resp; 5402 struct hwrm_cfa_l2_filter_alloc_input *req; 5403 int rc; 5404 5405 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC); 5406 if (rc) 5407 return rc; 5408 5409 req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 5410 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 5411 req->flags |= 5412 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 5413 req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id); 5414 req->enables = 5415 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 5416 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 5417 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 5418 memcpy(req->l2_addr, mac_addr, ETH_ALEN); 5419 req->l2_addr_mask[0] = 0xff; 5420 req->l2_addr_mask[1] = 0xff; 5421 req->l2_addr_mask[2] = 0xff; 5422 req->l2_addr_mask[3] = 0xff; 5423 req->l2_addr_mask[4] = 0xff; 5424 req->l2_addr_mask[5] = 0xff; 5425 5426 resp = hwrm_req_hold(bp, req); 5427 rc = hwrm_req_send(bp, req); 5428 if (!rc) 5429 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] = 5430 resp->l2_filter_id; 5431 hwrm_req_drop(bp, req); 5432 return rc; 5433 } 5434 5435 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 5436 { 5437 struct hwrm_cfa_l2_filter_free_input *req; 5438 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 5439 int rc; 5440 5441 /* Any associated ntuple filters will also be cleared by firmware. */ 5442 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 5443 if (rc) 5444 return rc; 5445 hwrm_req_hold(bp, req); 5446 for (i = 0; i < num_of_vnics; i++) { 5447 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 5448 5449 for (j = 0; j < vnic->uc_filter_count; j++) { 5450 req->l2_filter_id = vnic->fw_l2_filter_id[j]; 5451 5452 rc = hwrm_req_send(bp, req); 5453 } 5454 vnic->uc_filter_count = 0; 5455 } 5456 hwrm_req_drop(bp, req); 5457 return rc; 5458 } 5459 5460 #define BNXT_DFLT_TUNL_TPA_BMAP \ 5461 (VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GRE | \ 5462 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV4 | \ 5463 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV6) 5464 5465 static void bnxt_hwrm_vnic_update_tunl_tpa(struct bnxt *bp, 5466 struct hwrm_vnic_tpa_cfg_input *req) 5467 { 5468 u32 tunl_tpa_bmap = BNXT_DFLT_TUNL_TPA_BMAP; 5469 5470 if (!(bp->fw_cap & BNXT_FW_CAP_VNIC_TUNNEL_TPA)) 5471 return; 5472 5473 if (bp->vxlan_port) 5474 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN; 5475 if (bp->vxlan_gpe_port) 5476 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN_GPE; 5477 if (bp->nge_port) 5478 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GENEVE; 5479 5480 req->enables |= cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_TNL_TPA_EN); 5481 req->tnl_tpa_en_bitmap = cpu_to_le32(tunl_tpa_bmap); 5482 } 5483 5484 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags) 5485 { 5486 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5487 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 5488 struct hwrm_vnic_tpa_cfg_input *req; 5489 int rc; 5490 5491 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 5492 return 0; 5493 5494 rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG); 5495 if (rc) 5496 return rc; 5497 5498 if (tpa_flags) { 5499 u16 mss = bp->dev->mtu - 40; 5500 u32 nsegs, n, segs = 0, flags; 5501 5502 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 5503 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 5504 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 5505 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 5506 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 5507 if (tpa_flags & BNXT_FLAG_GRO) 5508 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 5509 5510 req->flags = cpu_to_le32(flags); 5511 5512 req->enables = 5513 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 5514 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 5515 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 5516 5517 /* Number of segs are log2 units, and first packet is not 5518 * included as part of this units. 5519 */ 5520 if (mss <= BNXT_RX_PAGE_SIZE) { 5521 n = BNXT_RX_PAGE_SIZE / mss; 5522 nsegs = (MAX_SKB_FRAGS - 1) * n; 5523 } else { 5524 n = mss / BNXT_RX_PAGE_SIZE; 5525 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 5526 n++; 5527 nsegs = (MAX_SKB_FRAGS - n) / n; 5528 } 5529 5530 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5531 segs = MAX_TPA_SEGS_P5; 5532 max_aggs = bp->max_tpa; 5533 } else { 5534 segs = ilog2(nsegs); 5535 } 5536 req->max_agg_segs = cpu_to_le16(segs); 5537 req->max_aggs = cpu_to_le16(max_aggs); 5538 5539 req->min_agg_len = cpu_to_le32(512); 5540 bnxt_hwrm_vnic_update_tunl_tpa(bp, req); 5541 } 5542 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5543 5544 return hwrm_req_send(bp, req); 5545 } 5546 5547 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 5548 { 5549 struct bnxt_ring_grp_info *grp_info; 5550 5551 grp_info = &bp->grp_info[ring->grp_idx]; 5552 return grp_info->cp_fw_ring_id; 5553 } 5554 5555 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 5556 { 5557 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 5558 return rxr->rx_cpr->cp_ring_struct.fw_ring_id; 5559 else 5560 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 5561 } 5562 5563 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 5564 { 5565 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 5566 return txr->tx_cpr->cp_ring_struct.fw_ring_id; 5567 else 5568 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 5569 } 5570 5571 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp) 5572 { 5573 int entries; 5574 5575 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 5576 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 5577 else 5578 entries = HW_HASH_INDEX_SIZE; 5579 5580 bp->rss_indir_tbl_entries = entries; 5581 bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), 5582 GFP_KERNEL); 5583 if (!bp->rss_indir_tbl) 5584 return -ENOMEM; 5585 return 0; 5586 } 5587 5588 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp) 5589 { 5590 u16 max_rings, max_entries, pad, i; 5591 5592 if (!bp->rx_nr_rings) 5593 return; 5594 5595 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5596 max_rings = bp->rx_nr_rings - 1; 5597 else 5598 max_rings = bp->rx_nr_rings; 5599 5600 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 5601 5602 for (i = 0; i < max_entries; i++) 5603 bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 5604 5605 pad = bp->rss_indir_tbl_entries - max_entries; 5606 if (pad) 5607 memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16)); 5608 } 5609 5610 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 5611 { 5612 u16 i, tbl_size, max_ring = 0; 5613 5614 if (!bp->rss_indir_tbl) 5615 return 0; 5616 5617 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5618 for (i = 0; i < tbl_size; i++) 5619 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 5620 return max_ring; 5621 } 5622 5623 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 5624 { 5625 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 5626 return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5); 5627 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5628 return 2; 5629 return 1; 5630 } 5631 5632 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 5633 { 5634 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 5635 u16 i, j; 5636 5637 /* Fill the RSS indirection table with ring group ids */ 5638 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 5639 if (!no_rss) 5640 j = bp->rss_indir_tbl[i]; 5641 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 5642 } 5643 } 5644 5645 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 5646 struct bnxt_vnic_info *vnic) 5647 { 5648 __le16 *ring_tbl = vnic->rss_table; 5649 struct bnxt_rx_ring_info *rxr; 5650 u16 tbl_size, i; 5651 5652 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5653 5654 for (i = 0; i < tbl_size; i++) { 5655 u16 ring_id, j; 5656 5657 j = bp->rss_indir_tbl[i]; 5658 rxr = &bp->rx_ring[j]; 5659 5660 ring_id = rxr->rx_ring_struct.fw_ring_id; 5661 *ring_tbl++ = cpu_to_le16(ring_id); 5662 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5663 *ring_tbl++ = cpu_to_le16(ring_id); 5664 } 5665 } 5666 5667 static void 5668 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req, 5669 struct bnxt_vnic_info *vnic) 5670 { 5671 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 5672 bnxt_fill_hw_rss_tbl_p5(bp, vnic); 5673 else 5674 bnxt_fill_hw_rss_tbl(bp, vnic); 5675 5676 if (bp->rss_hash_delta) { 5677 req->hash_type = cpu_to_le32(bp->rss_hash_delta); 5678 if (bp->rss_hash_cfg & bp->rss_hash_delta) 5679 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE; 5680 else 5681 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE; 5682 } else { 5683 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 5684 } 5685 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 5686 req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 5687 req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 5688 } 5689 5690 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss) 5691 { 5692 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5693 struct hwrm_vnic_rss_cfg_input *req; 5694 int rc; 5695 5696 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) || 5697 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 5698 return 0; 5699 5700 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 5701 if (rc) 5702 return rc; 5703 5704 if (set_rss) 5705 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 5706 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5707 return hwrm_req_send(bp, req); 5708 } 5709 5710 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss) 5711 { 5712 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5713 struct hwrm_vnic_rss_cfg_input *req; 5714 dma_addr_t ring_tbl_map; 5715 u32 i, nr_ctxs; 5716 int rc; 5717 5718 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 5719 if (rc) 5720 return rc; 5721 5722 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5723 if (!set_rss) 5724 return hwrm_req_send(bp, req); 5725 5726 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 5727 ring_tbl_map = vnic->rss_table_dma_addr; 5728 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 5729 5730 hwrm_req_hold(bp, req); 5731 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 5732 req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 5733 req->ring_table_pair_index = i; 5734 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 5735 rc = hwrm_req_send(bp, req); 5736 if (rc) 5737 goto exit; 5738 } 5739 5740 exit: 5741 hwrm_req_drop(bp, req); 5742 return rc; 5743 } 5744 5745 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp) 5746 { 5747 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 5748 struct hwrm_vnic_rss_qcfg_output *resp; 5749 struct hwrm_vnic_rss_qcfg_input *req; 5750 5751 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG)) 5752 return; 5753 5754 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5755 /* all contexts configured to same hash_type, zero always exists */ 5756 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5757 resp = hwrm_req_hold(bp, req); 5758 if (!hwrm_req_send(bp, req)) { 5759 bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg; 5760 bp->rss_hash_delta = 0; 5761 } 5762 hwrm_req_drop(bp, req); 5763 } 5764 5765 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id) 5766 { 5767 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5768 struct hwrm_vnic_plcmodes_cfg_input *req; 5769 int rc; 5770 5771 rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG); 5772 if (rc) 5773 return rc; 5774 5775 req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT); 5776 req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID); 5777 5778 if (BNXT_RX_PAGE_MODE(bp)) { 5779 req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size); 5780 } else { 5781 req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 5782 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 5783 req->enables |= 5784 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 5785 req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 5786 req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 5787 } 5788 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5789 return hwrm_req_send(bp, req); 5790 } 5791 5792 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id, 5793 u16 ctx_idx) 5794 { 5795 struct hwrm_vnic_rss_cos_lb_ctx_free_input *req; 5796 5797 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE)) 5798 return; 5799 5800 req->rss_cos_lb_ctx_id = 5801 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]); 5802 5803 hwrm_req_send(bp, req); 5804 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 5805 } 5806 5807 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 5808 { 5809 int i, j; 5810 5811 for (i = 0; i < bp->nr_vnics; i++) { 5812 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 5813 5814 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 5815 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 5816 bnxt_hwrm_vnic_ctx_free_one(bp, i, j); 5817 } 5818 } 5819 bp->rsscos_nr_ctxs = 0; 5820 } 5821 5822 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx) 5823 { 5824 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp; 5825 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req; 5826 int rc; 5827 5828 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC); 5829 if (rc) 5830 return rc; 5831 5832 resp = hwrm_req_hold(bp, req); 5833 rc = hwrm_req_send(bp, req); 5834 if (!rc) 5835 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = 5836 le16_to_cpu(resp->rss_cos_lb_ctx_id); 5837 hwrm_req_drop(bp, req); 5838 5839 return rc; 5840 } 5841 5842 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 5843 { 5844 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 5845 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 5846 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 5847 } 5848 5849 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id) 5850 { 5851 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5852 struct hwrm_vnic_cfg_input *req; 5853 unsigned int ring = 0, grp_idx; 5854 u16 def_vlan = 0; 5855 int rc; 5856 5857 rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG); 5858 if (rc) 5859 return rc; 5860 5861 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5862 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 5863 5864 req->default_rx_ring_id = 5865 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 5866 req->default_cmpl_ring_id = 5867 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 5868 req->enables = 5869 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 5870 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 5871 goto vnic_mru; 5872 } 5873 req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 5874 /* Only RSS support for now TBD: COS & LB */ 5875 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 5876 req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5877 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5878 VNIC_CFG_REQ_ENABLES_MRU); 5879 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 5880 req->rss_rule = 5881 cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]); 5882 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5883 VNIC_CFG_REQ_ENABLES_MRU); 5884 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 5885 } else { 5886 req->rss_rule = cpu_to_le16(0xffff); 5887 } 5888 5889 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 5890 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 5891 req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 5892 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 5893 } else { 5894 req->cos_rule = cpu_to_le16(0xffff); 5895 } 5896 5897 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 5898 ring = 0; 5899 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 5900 ring = vnic_id - 1; 5901 else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 5902 ring = bp->rx_nr_rings - 1; 5903 5904 grp_idx = bp->rx_ring[ring].bnapi->index; 5905 req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 5906 req->lb_rule = cpu_to_le16(0xffff); 5907 vnic_mru: 5908 req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN); 5909 5910 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5911 #ifdef CONFIG_BNXT_SRIOV 5912 if (BNXT_VF(bp)) 5913 def_vlan = bp->vf.vlan; 5914 #endif 5915 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 5916 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 5917 if (!vnic_id && bnxt_ulp_registered(bp->edev)) 5918 req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 5919 5920 return hwrm_req_send(bp, req); 5921 } 5922 5923 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id) 5924 { 5925 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) { 5926 struct hwrm_vnic_free_input *req; 5927 5928 if (hwrm_req_init(bp, req, HWRM_VNIC_FREE)) 5929 return; 5930 5931 req->vnic_id = 5932 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id); 5933 5934 hwrm_req_send(bp, req); 5935 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID; 5936 } 5937 } 5938 5939 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 5940 { 5941 u16 i; 5942 5943 for (i = 0; i < bp->nr_vnics; i++) 5944 bnxt_hwrm_vnic_free_one(bp, i); 5945 } 5946 5947 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id, 5948 unsigned int start_rx_ring_idx, 5949 unsigned int nr_rings) 5950 { 5951 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 5952 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5953 struct hwrm_vnic_alloc_output *resp; 5954 struct hwrm_vnic_alloc_input *req; 5955 int rc; 5956 5957 rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC); 5958 if (rc) 5959 return rc; 5960 5961 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 5962 goto vnic_no_ring_grps; 5963 5964 /* map ring groups to this vnic */ 5965 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 5966 grp_idx = bp->rx_ring[i].bnapi->index; 5967 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 5968 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 5969 j, nr_rings); 5970 break; 5971 } 5972 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 5973 } 5974 5975 vnic_no_ring_grps: 5976 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 5977 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 5978 if (vnic_id == 0) 5979 req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 5980 5981 resp = hwrm_req_hold(bp, req); 5982 rc = hwrm_req_send(bp, req); 5983 if (!rc) 5984 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 5985 hwrm_req_drop(bp, req); 5986 return rc; 5987 } 5988 5989 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 5990 { 5991 struct hwrm_vnic_qcaps_output *resp; 5992 struct hwrm_vnic_qcaps_input *req; 5993 int rc; 5994 5995 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 5996 bp->flags &= ~BNXT_FLAG_ROCE_MIRROR_CAP; 5997 bp->rss_cap &= ~BNXT_RSS_CAP_NEW_RSS_CAP; 5998 if (bp->hwrm_spec_code < 0x10600) 5999 return 0; 6000 6001 rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS); 6002 if (rc) 6003 return rc; 6004 6005 resp = hwrm_req_hold(bp, req); 6006 rc = hwrm_req_send(bp, req); 6007 if (!rc) { 6008 u32 flags = le32_to_cpu(resp->flags); 6009 6010 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 6011 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 6012 bp->rss_cap |= BNXT_RSS_CAP_NEW_RSS_CAP; 6013 if (flags & 6014 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 6015 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 6016 6017 /* Older P5 fw before EXT_HW_STATS support did not set 6018 * VLAN_STRIP_CAP properly. 6019 */ 6020 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 6021 (BNXT_CHIP_P5(bp) && 6022 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 6023 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 6024 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP) 6025 bp->rss_cap |= BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA; 6026 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_PROF_TCAM_MODE_ENABLED) 6027 bp->rss_cap |= BNXT_RSS_CAP_RSS_TCAM; 6028 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 6029 if (bp->max_tpa_v2) { 6030 if (BNXT_CHIP_P5(bp)) 6031 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 6032 else 6033 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P7; 6034 } 6035 if (flags & VNIC_QCAPS_RESP_FLAGS_HW_TUNNEL_TPA_CAP) 6036 bp->fw_cap |= BNXT_FW_CAP_VNIC_TUNNEL_TPA; 6037 } 6038 hwrm_req_drop(bp, req); 6039 return rc; 6040 } 6041 6042 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 6043 { 6044 struct hwrm_ring_grp_alloc_output *resp; 6045 struct hwrm_ring_grp_alloc_input *req; 6046 int rc; 6047 u16 i; 6048 6049 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6050 return 0; 6051 6052 rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC); 6053 if (rc) 6054 return rc; 6055 6056 resp = hwrm_req_hold(bp, req); 6057 for (i = 0; i < bp->rx_nr_rings; i++) { 6058 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 6059 6060 req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 6061 req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 6062 req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 6063 req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 6064 6065 rc = hwrm_req_send(bp, req); 6066 6067 if (rc) 6068 break; 6069 6070 bp->grp_info[grp_idx].fw_grp_id = 6071 le32_to_cpu(resp->ring_group_id); 6072 } 6073 hwrm_req_drop(bp, req); 6074 return rc; 6075 } 6076 6077 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 6078 { 6079 struct hwrm_ring_grp_free_input *req; 6080 u16 i; 6081 6082 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 6083 return; 6084 6085 if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE)) 6086 return; 6087 6088 hwrm_req_hold(bp, req); 6089 for (i = 0; i < bp->cp_nr_rings; i++) { 6090 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 6091 continue; 6092 req->ring_group_id = 6093 cpu_to_le32(bp->grp_info[i].fw_grp_id); 6094 6095 hwrm_req_send(bp, req); 6096 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 6097 } 6098 hwrm_req_drop(bp, req); 6099 } 6100 6101 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 6102 struct bnxt_ring_struct *ring, 6103 u32 ring_type, u32 map_index) 6104 { 6105 struct hwrm_ring_alloc_output *resp; 6106 struct hwrm_ring_alloc_input *req; 6107 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 6108 struct bnxt_ring_grp_info *grp_info; 6109 int rc, err = 0; 6110 u16 ring_id; 6111 6112 rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC); 6113 if (rc) 6114 goto exit; 6115 6116 req->enables = 0; 6117 if (rmem->nr_pages > 1) { 6118 req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 6119 /* Page size is in log2 units */ 6120 req->page_size = BNXT_PAGE_SHIFT; 6121 req->page_tbl_depth = 1; 6122 } else { 6123 req->page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 6124 } 6125 req->fbo = 0; 6126 /* Association of ring index with doorbell index and MSIX number */ 6127 req->logical_id = cpu_to_le16(map_index); 6128 6129 switch (ring_type) { 6130 case HWRM_RING_ALLOC_TX: { 6131 struct bnxt_tx_ring_info *txr; 6132 6133 txr = container_of(ring, struct bnxt_tx_ring_info, 6134 tx_ring_struct); 6135 req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 6136 /* Association of transmit ring with completion ring */ 6137 grp_info = &bp->grp_info[ring->grp_idx]; 6138 req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 6139 req->length = cpu_to_le32(bp->tx_ring_mask + 1); 6140 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6141 req->queue_id = cpu_to_le16(ring->queue_id); 6142 if (bp->flags & BNXT_FLAG_TX_COAL_CMPL) 6143 req->cmpl_coal_cnt = 6144 RING_ALLOC_REQ_CMPL_COAL_CNT_COAL_64; 6145 break; 6146 } 6147 case HWRM_RING_ALLOC_RX: 6148 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 6149 req->length = cpu_to_le32(bp->rx_ring_mask + 1); 6150 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6151 u16 flags = 0; 6152 6153 /* Association of rx ring with stats context */ 6154 grp_info = &bp->grp_info[ring->grp_idx]; 6155 req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 6156 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6157 req->enables |= cpu_to_le32( 6158 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 6159 if (NET_IP_ALIGN == 2) 6160 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD; 6161 req->flags = cpu_to_le16(flags); 6162 } 6163 break; 6164 case HWRM_RING_ALLOC_AGG: 6165 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6166 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 6167 /* Association of agg ring with rx ring */ 6168 grp_info = &bp->grp_info[ring->grp_idx]; 6169 req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 6170 req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 6171 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6172 req->enables |= cpu_to_le32( 6173 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID | 6174 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 6175 } else { 6176 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 6177 } 6178 req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 6179 break; 6180 case HWRM_RING_ALLOC_CMPL: 6181 req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 6182 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 6183 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6184 /* Association of cp ring with nq */ 6185 grp_info = &bp->grp_info[map_index]; 6186 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 6187 req->cq_handle = cpu_to_le64(ring->handle); 6188 req->enables |= cpu_to_le32( 6189 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 6190 } else if (bp->flags & BNXT_FLAG_USING_MSIX) { 6191 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 6192 } 6193 break; 6194 case HWRM_RING_ALLOC_NQ: 6195 req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 6196 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 6197 if (bp->flags & BNXT_FLAG_USING_MSIX) 6198 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 6199 break; 6200 default: 6201 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 6202 ring_type); 6203 return -1; 6204 } 6205 6206 resp = hwrm_req_hold(bp, req); 6207 rc = hwrm_req_send(bp, req); 6208 err = le16_to_cpu(resp->error_code); 6209 ring_id = le16_to_cpu(resp->ring_id); 6210 hwrm_req_drop(bp, req); 6211 6212 exit: 6213 if (rc || err) { 6214 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 6215 ring_type, rc, err); 6216 return -EIO; 6217 } 6218 ring->fw_ring_id = ring_id; 6219 return rc; 6220 } 6221 6222 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 6223 { 6224 int rc; 6225 6226 if (BNXT_PF(bp)) { 6227 struct hwrm_func_cfg_input *req; 6228 6229 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 6230 if (rc) 6231 return rc; 6232 6233 req->fid = cpu_to_le16(0xffff); 6234 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 6235 req->async_event_cr = cpu_to_le16(idx); 6236 return hwrm_req_send(bp, req); 6237 } else { 6238 struct hwrm_func_vf_cfg_input *req; 6239 6240 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); 6241 if (rc) 6242 return rc; 6243 6244 req->enables = 6245 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 6246 req->async_event_cr = cpu_to_le16(idx); 6247 return hwrm_req_send(bp, req); 6248 } 6249 } 6250 6251 static void bnxt_set_db_mask(struct bnxt *bp, struct bnxt_db_info *db, 6252 u32 ring_type) 6253 { 6254 switch (ring_type) { 6255 case HWRM_RING_ALLOC_TX: 6256 db->db_ring_mask = bp->tx_ring_mask; 6257 break; 6258 case HWRM_RING_ALLOC_RX: 6259 db->db_ring_mask = bp->rx_ring_mask; 6260 break; 6261 case HWRM_RING_ALLOC_AGG: 6262 db->db_ring_mask = bp->rx_agg_ring_mask; 6263 break; 6264 case HWRM_RING_ALLOC_CMPL: 6265 case HWRM_RING_ALLOC_NQ: 6266 db->db_ring_mask = bp->cp_ring_mask; 6267 break; 6268 } 6269 if (bp->flags & BNXT_FLAG_CHIP_P7) { 6270 db->db_epoch_mask = db->db_ring_mask + 1; 6271 db->db_epoch_shift = DBR_EPOCH_SFT - ilog2(db->db_epoch_mask); 6272 } 6273 } 6274 6275 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 6276 u32 map_idx, u32 xid) 6277 { 6278 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6279 switch (ring_type) { 6280 case HWRM_RING_ALLOC_TX: 6281 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 6282 break; 6283 case HWRM_RING_ALLOC_RX: 6284 case HWRM_RING_ALLOC_AGG: 6285 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 6286 break; 6287 case HWRM_RING_ALLOC_CMPL: 6288 db->db_key64 = DBR_PATH_L2; 6289 break; 6290 case HWRM_RING_ALLOC_NQ: 6291 db->db_key64 = DBR_PATH_L2; 6292 break; 6293 } 6294 db->db_key64 |= (u64)xid << DBR_XID_SFT; 6295 6296 if (bp->flags & BNXT_FLAG_CHIP_P7) 6297 db->db_key64 |= DBR_VALID; 6298 6299 db->doorbell = bp->bar1 + bp->db_offset; 6300 } else { 6301 db->doorbell = bp->bar1 + map_idx * 0x80; 6302 switch (ring_type) { 6303 case HWRM_RING_ALLOC_TX: 6304 db->db_key32 = DB_KEY_TX; 6305 break; 6306 case HWRM_RING_ALLOC_RX: 6307 case HWRM_RING_ALLOC_AGG: 6308 db->db_key32 = DB_KEY_RX; 6309 break; 6310 case HWRM_RING_ALLOC_CMPL: 6311 db->db_key32 = DB_KEY_CP; 6312 break; 6313 } 6314 } 6315 bnxt_set_db_mask(bp, db, ring_type); 6316 } 6317 6318 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 6319 { 6320 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 6321 int i, rc = 0; 6322 u32 type; 6323 6324 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6325 type = HWRM_RING_ALLOC_NQ; 6326 else 6327 type = HWRM_RING_ALLOC_CMPL; 6328 for (i = 0; i < bp->cp_nr_rings; i++) { 6329 struct bnxt_napi *bnapi = bp->bnapi[i]; 6330 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6331 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 6332 u32 map_idx = ring->map_idx; 6333 unsigned int vector; 6334 6335 vector = bp->irq_tbl[map_idx].vector; 6336 disable_irq_nosync(vector); 6337 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 6338 if (rc) { 6339 enable_irq(vector); 6340 goto err_out; 6341 } 6342 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 6343 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 6344 enable_irq(vector); 6345 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 6346 6347 if (!i) { 6348 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 6349 if (rc) 6350 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 6351 } 6352 } 6353 6354 type = HWRM_RING_ALLOC_TX; 6355 for (i = 0; i < bp->tx_nr_rings; i++) { 6356 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 6357 struct bnxt_ring_struct *ring; 6358 u32 map_idx; 6359 6360 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6361 struct bnxt_cp_ring_info *cpr2 = txr->tx_cpr; 6362 struct bnxt_napi *bnapi = txr->bnapi; 6363 u32 type2 = HWRM_RING_ALLOC_CMPL; 6364 6365 ring = &cpr2->cp_ring_struct; 6366 ring->handle = BNXT_SET_NQ_HDL(cpr2); 6367 map_idx = bnapi->index; 6368 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 6369 if (rc) 6370 goto err_out; 6371 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 6372 ring->fw_ring_id); 6373 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 6374 } 6375 ring = &txr->tx_ring_struct; 6376 map_idx = i; 6377 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 6378 if (rc) 6379 goto err_out; 6380 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id); 6381 } 6382 6383 type = HWRM_RING_ALLOC_RX; 6384 for (i = 0; i < bp->rx_nr_rings; i++) { 6385 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6386 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 6387 struct bnxt_napi *bnapi = rxr->bnapi; 6388 u32 map_idx = bnapi->index; 6389 6390 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 6391 if (rc) 6392 goto err_out; 6393 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 6394 /* If we have agg rings, post agg buffers first. */ 6395 if (!agg_rings) 6396 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 6397 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 6398 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6399 struct bnxt_cp_ring_info *cpr2 = rxr->rx_cpr; 6400 u32 type2 = HWRM_RING_ALLOC_CMPL; 6401 6402 ring = &cpr2->cp_ring_struct; 6403 ring->handle = BNXT_SET_NQ_HDL(cpr2); 6404 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 6405 if (rc) 6406 goto err_out; 6407 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 6408 ring->fw_ring_id); 6409 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 6410 } 6411 } 6412 6413 if (agg_rings) { 6414 type = HWRM_RING_ALLOC_AGG; 6415 for (i = 0; i < bp->rx_nr_rings; i++) { 6416 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6417 struct bnxt_ring_struct *ring = 6418 &rxr->rx_agg_ring_struct; 6419 u32 grp_idx = ring->grp_idx; 6420 u32 map_idx = grp_idx + bp->rx_nr_rings; 6421 6422 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 6423 if (rc) 6424 goto err_out; 6425 6426 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 6427 ring->fw_ring_id); 6428 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 6429 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 6430 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 6431 } 6432 } 6433 err_out: 6434 return rc; 6435 } 6436 6437 static int hwrm_ring_free_send_msg(struct bnxt *bp, 6438 struct bnxt_ring_struct *ring, 6439 u32 ring_type, int cmpl_ring_id) 6440 { 6441 struct hwrm_ring_free_output *resp; 6442 struct hwrm_ring_free_input *req; 6443 u16 error_code = 0; 6444 int rc; 6445 6446 if (BNXT_NO_FW_ACCESS(bp)) 6447 return 0; 6448 6449 rc = hwrm_req_init(bp, req, HWRM_RING_FREE); 6450 if (rc) 6451 goto exit; 6452 6453 req->cmpl_ring = cpu_to_le16(cmpl_ring_id); 6454 req->ring_type = ring_type; 6455 req->ring_id = cpu_to_le16(ring->fw_ring_id); 6456 6457 resp = hwrm_req_hold(bp, req); 6458 rc = hwrm_req_send(bp, req); 6459 error_code = le16_to_cpu(resp->error_code); 6460 hwrm_req_drop(bp, req); 6461 exit: 6462 if (rc || error_code) { 6463 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 6464 ring_type, rc, error_code); 6465 return -EIO; 6466 } 6467 return 0; 6468 } 6469 6470 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 6471 { 6472 u32 type; 6473 int i; 6474 6475 if (!bp->bnapi) 6476 return; 6477 6478 for (i = 0; i < bp->tx_nr_rings; i++) { 6479 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 6480 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 6481 6482 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6483 u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr); 6484 6485 hwrm_ring_free_send_msg(bp, ring, 6486 RING_FREE_REQ_RING_TYPE_TX, 6487 close_path ? cmpl_ring_id : 6488 INVALID_HW_RING_ID); 6489 ring->fw_ring_id = INVALID_HW_RING_ID; 6490 } 6491 } 6492 6493 for (i = 0; i < bp->rx_nr_rings; i++) { 6494 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6495 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 6496 u32 grp_idx = rxr->bnapi->index; 6497 6498 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6499 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6500 6501 hwrm_ring_free_send_msg(bp, ring, 6502 RING_FREE_REQ_RING_TYPE_RX, 6503 close_path ? cmpl_ring_id : 6504 INVALID_HW_RING_ID); 6505 ring->fw_ring_id = INVALID_HW_RING_ID; 6506 bp->grp_info[grp_idx].rx_fw_ring_id = 6507 INVALID_HW_RING_ID; 6508 } 6509 } 6510 6511 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6512 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 6513 else 6514 type = RING_FREE_REQ_RING_TYPE_RX; 6515 for (i = 0; i < bp->rx_nr_rings; i++) { 6516 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6517 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 6518 u32 grp_idx = rxr->bnapi->index; 6519 6520 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6521 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6522 6523 hwrm_ring_free_send_msg(bp, ring, type, 6524 close_path ? cmpl_ring_id : 6525 INVALID_HW_RING_ID); 6526 ring->fw_ring_id = INVALID_HW_RING_ID; 6527 bp->grp_info[grp_idx].agg_fw_ring_id = 6528 INVALID_HW_RING_ID; 6529 } 6530 } 6531 6532 /* The completion rings are about to be freed. After that the 6533 * IRQ doorbell will not work anymore. So we need to disable 6534 * IRQ here. 6535 */ 6536 bnxt_disable_int_sync(bp); 6537 6538 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6539 type = RING_FREE_REQ_RING_TYPE_NQ; 6540 else 6541 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 6542 for (i = 0; i < bp->cp_nr_rings; i++) { 6543 struct bnxt_napi *bnapi = bp->bnapi[i]; 6544 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6545 struct bnxt_ring_struct *ring; 6546 int j; 6547 6548 for (j = 0; j < cpr->cp_ring_count && cpr->cp_ring_arr; j++) { 6549 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 6550 6551 ring = &cpr2->cp_ring_struct; 6552 if (ring->fw_ring_id == INVALID_HW_RING_ID) 6553 continue; 6554 hwrm_ring_free_send_msg(bp, ring, 6555 RING_FREE_REQ_RING_TYPE_L2_CMPL, 6556 INVALID_HW_RING_ID); 6557 ring->fw_ring_id = INVALID_HW_RING_ID; 6558 } 6559 ring = &cpr->cp_ring_struct; 6560 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6561 hwrm_ring_free_send_msg(bp, ring, type, 6562 INVALID_HW_RING_ID); 6563 ring->fw_ring_id = INVALID_HW_RING_ID; 6564 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 6565 } 6566 } 6567 } 6568 6569 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 6570 bool shared); 6571 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 6572 bool shared); 6573 6574 static int bnxt_hwrm_get_rings(struct bnxt *bp) 6575 { 6576 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6577 struct hwrm_func_qcfg_output *resp; 6578 struct hwrm_func_qcfg_input *req; 6579 int rc; 6580 6581 if (bp->hwrm_spec_code < 0x10601) 6582 return 0; 6583 6584 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 6585 if (rc) 6586 return rc; 6587 6588 req->fid = cpu_to_le16(0xffff); 6589 resp = hwrm_req_hold(bp, req); 6590 rc = hwrm_req_send(bp, req); 6591 if (rc) { 6592 hwrm_req_drop(bp, req); 6593 return rc; 6594 } 6595 6596 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 6597 if (BNXT_NEW_RM(bp)) { 6598 u16 cp, stats; 6599 6600 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 6601 hw_resc->resv_hw_ring_grps = 6602 le32_to_cpu(resp->alloc_hw_ring_grps); 6603 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 6604 cp = le16_to_cpu(resp->alloc_cmpl_rings); 6605 stats = le16_to_cpu(resp->alloc_stat_ctx); 6606 hw_resc->resv_irqs = cp; 6607 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6608 int rx = hw_resc->resv_rx_rings; 6609 int tx = hw_resc->resv_tx_rings; 6610 6611 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6612 rx >>= 1; 6613 if (cp < (rx + tx)) { 6614 rc = __bnxt_trim_rings(bp, &rx, &tx, cp, false); 6615 if (rc) 6616 return rc; 6617 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6618 rx <<= 1; 6619 hw_resc->resv_rx_rings = rx; 6620 hw_resc->resv_tx_rings = tx; 6621 } 6622 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 6623 hw_resc->resv_hw_ring_grps = rx; 6624 } 6625 hw_resc->resv_cp_rings = cp; 6626 hw_resc->resv_stat_ctxs = stats; 6627 } 6628 hwrm_req_drop(bp, req); 6629 return 0; 6630 } 6631 6632 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 6633 { 6634 struct hwrm_func_qcfg_output *resp; 6635 struct hwrm_func_qcfg_input *req; 6636 int rc; 6637 6638 if (bp->hwrm_spec_code < 0x10601) 6639 return 0; 6640 6641 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 6642 if (rc) 6643 return rc; 6644 6645 req->fid = cpu_to_le16(fid); 6646 resp = hwrm_req_hold(bp, req); 6647 rc = hwrm_req_send(bp, req); 6648 if (!rc) 6649 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 6650 6651 hwrm_req_drop(bp, req); 6652 return rc; 6653 } 6654 6655 static bool bnxt_rfs_supported(struct bnxt *bp); 6656 6657 static struct hwrm_func_cfg_input * 6658 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6659 int ring_grps, int cp_rings, int stats, int vnics) 6660 { 6661 struct hwrm_func_cfg_input *req; 6662 u32 enables = 0; 6663 6664 if (bnxt_hwrm_func_cfg_short_req_init(bp, &req)) 6665 return NULL; 6666 6667 req->fid = cpu_to_le16(0xffff); 6668 enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6669 req->num_tx_rings = cpu_to_le16(tx_rings); 6670 if (BNXT_NEW_RM(bp)) { 6671 enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 6672 enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6673 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6674 enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 6675 enables |= tx_rings + ring_grps ? 6676 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6677 enables |= rx_rings ? 6678 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6679 } else { 6680 enables |= cp_rings ? 6681 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6682 enables |= ring_grps ? 6683 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS | 6684 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6685 } 6686 enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 6687 6688 req->num_rx_rings = cpu_to_le16(rx_rings); 6689 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6690 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6691 req->num_msix = cpu_to_le16(cp_rings); 6692 req->num_rsscos_ctxs = 6693 cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6694 } else { 6695 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6696 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6697 req->num_rsscos_ctxs = cpu_to_le16(1); 6698 if (!(bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && 6699 bnxt_rfs_supported(bp)) 6700 req->num_rsscos_ctxs = 6701 cpu_to_le16(ring_grps + 1); 6702 } 6703 req->num_stat_ctxs = cpu_to_le16(stats); 6704 req->num_vnics = cpu_to_le16(vnics); 6705 } 6706 req->enables = cpu_to_le32(enables); 6707 return req; 6708 } 6709 6710 static struct hwrm_func_vf_cfg_input * 6711 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6712 int ring_grps, int cp_rings, int stats, int vnics) 6713 { 6714 struct hwrm_func_vf_cfg_input *req; 6715 u32 enables = 0; 6716 6717 if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG)) 6718 return NULL; 6719 6720 enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6721 enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 6722 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6723 enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6724 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6725 enables |= tx_rings + ring_grps ? 6726 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6727 } else { 6728 enables |= cp_rings ? 6729 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6730 enables |= ring_grps ? 6731 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 6732 } 6733 enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 6734 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 6735 6736 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 6737 req->num_tx_rings = cpu_to_le16(tx_rings); 6738 req->num_rx_rings = cpu_to_le16(rx_rings); 6739 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6740 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6741 req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6742 } else { 6743 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6744 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6745 req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX); 6746 } 6747 req->num_stat_ctxs = cpu_to_le16(stats); 6748 req->num_vnics = cpu_to_le16(vnics); 6749 6750 req->enables = cpu_to_le32(enables); 6751 return req; 6752 } 6753 6754 static int 6755 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6756 int ring_grps, int cp_rings, int stats, int vnics) 6757 { 6758 struct hwrm_func_cfg_input *req; 6759 int rc; 6760 6761 req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps, 6762 cp_rings, stats, vnics); 6763 if (!req) 6764 return -ENOMEM; 6765 6766 if (!req->enables) { 6767 hwrm_req_drop(bp, req); 6768 return 0; 6769 } 6770 6771 rc = hwrm_req_send(bp, req); 6772 if (rc) 6773 return rc; 6774 6775 if (bp->hwrm_spec_code < 0x10601) 6776 bp->hw_resc.resv_tx_rings = tx_rings; 6777 6778 return bnxt_hwrm_get_rings(bp); 6779 } 6780 6781 static int 6782 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6783 int ring_grps, int cp_rings, int stats, int vnics) 6784 { 6785 struct hwrm_func_vf_cfg_input *req; 6786 int rc; 6787 6788 if (!BNXT_NEW_RM(bp)) { 6789 bp->hw_resc.resv_tx_rings = tx_rings; 6790 return 0; 6791 } 6792 6793 req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6794 cp_rings, stats, vnics); 6795 if (!req) 6796 return -ENOMEM; 6797 6798 rc = hwrm_req_send(bp, req); 6799 if (rc) 6800 return rc; 6801 6802 return bnxt_hwrm_get_rings(bp); 6803 } 6804 6805 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp, 6806 int cp, int stat, int vnic) 6807 { 6808 if (BNXT_PF(bp)) 6809 return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat, 6810 vnic); 6811 else 6812 return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat, 6813 vnic); 6814 } 6815 6816 int bnxt_nq_rings_in_use(struct bnxt *bp) 6817 { 6818 int cp = bp->cp_nr_rings; 6819 int ulp_msix, ulp_base; 6820 6821 ulp_msix = bnxt_get_ulp_msix_num(bp); 6822 if (ulp_msix) { 6823 ulp_base = bnxt_get_ulp_msix_base(bp); 6824 cp += ulp_msix; 6825 if ((ulp_base + ulp_msix) > cp) 6826 cp = ulp_base + ulp_msix; 6827 } 6828 return cp; 6829 } 6830 6831 static int bnxt_cp_rings_in_use(struct bnxt *bp) 6832 { 6833 int cp; 6834 6835 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 6836 return bnxt_nq_rings_in_use(bp); 6837 6838 cp = bp->tx_nr_rings + bp->rx_nr_rings; 6839 return cp; 6840 } 6841 6842 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 6843 { 6844 int ulp_stat = bnxt_get_ulp_stat_ctxs(bp); 6845 int cp = bp->cp_nr_rings; 6846 6847 if (!ulp_stat) 6848 return cp; 6849 6850 if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp)) 6851 return bnxt_get_ulp_msix_base(bp) + ulp_stat; 6852 6853 return cp + ulp_stat; 6854 } 6855 6856 /* Check if a default RSS map needs to be setup. This function is only 6857 * used on older firmware that does not require reserving RX rings. 6858 */ 6859 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 6860 { 6861 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6862 6863 /* The RSS map is valid for RX rings set to resv_rx_rings */ 6864 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 6865 hw_resc->resv_rx_rings = bp->rx_nr_rings; 6866 if (!netif_is_rxfh_configured(bp->dev)) 6867 bnxt_set_dflt_rss_indir_tbl(bp); 6868 } 6869 } 6870 6871 static bool bnxt_need_reserve_rings(struct bnxt *bp) 6872 { 6873 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6874 int cp = bnxt_cp_rings_in_use(bp); 6875 int nq = bnxt_nq_rings_in_use(bp); 6876 int rx = bp->rx_nr_rings, stat; 6877 int vnic = 1, grp = rx; 6878 6879 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 6880 bp->hwrm_spec_code >= 0x10601) 6881 return true; 6882 6883 /* Old firmware does not need RX ring reservations but we still 6884 * need to setup a default RSS map when needed. With new firmware 6885 * we go through RX ring reservations first and then set up the 6886 * RSS map for the successfully reserved RX rings when needed. 6887 */ 6888 if (!BNXT_NEW_RM(bp)) { 6889 bnxt_check_rss_tbl_no_rmgr(bp); 6890 return false; 6891 } 6892 if ((bp->flags & BNXT_FLAG_RFS) && 6893 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 6894 vnic = rx + 1; 6895 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6896 rx <<= 1; 6897 stat = bnxt_get_func_stat_ctxs(bp); 6898 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 6899 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 6900 (hw_resc->resv_hw_ring_grps != grp && 6901 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))) 6902 return true; 6903 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && BNXT_PF(bp) && 6904 hw_resc->resv_irqs != nq) 6905 return true; 6906 return false; 6907 } 6908 6909 static int __bnxt_reserve_rings(struct bnxt *bp) 6910 { 6911 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6912 int cp = bnxt_nq_rings_in_use(bp); 6913 int tx = bp->tx_nr_rings; 6914 int rx = bp->rx_nr_rings; 6915 int grp, rx_rings, rc; 6916 int vnic = 1, stat; 6917 bool sh = false; 6918 int tx_cp; 6919 6920 if (!bnxt_need_reserve_rings(bp)) 6921 return 0; 6922 6923 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 6924 sh = true; 6925 if ((bp->flags & BNXT_FLAG_RFS) && 6926 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 6927 vnic = rx + 1; 6928 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6929 rx <<= 1; 6930 grp = bp->rx_nr_rings; 6931 stat = bnxt_get_func_stat_ctxs(bp); 6932 6933 rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic); 6934 if (rc) 6935 return rc; 6936 6937 tx = hw_resc->resv_tx_rings; 6938 if (BNXT_NEW_RM(bp)) { 6939 rx = hw_resc->resv_rx_rings; 6940 cp = hw_resc->resv_irqs; 6941 grp = hw_resc->resv_hw_ring_grps; 6942 vnic = hw_resc->resv_vnics; 6943 stat = hw_resc->resv_stat_ctxs; 6944 } 6945 6946 rx_rings = rx; 6947 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 6948 if (rx >= 2) { 6949 rx_rings = rx >> 1; 6950 } else { 6951 if (netif_running(bp->dev)) 6952 return -ENOMEM; 6953 6954 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 6955 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 6956 bp->dev->hw_features &= ~NETIF_F_LRO; 6957 bp->dev->features &= ~NETIF_F_LRO; 6958 bnxt_set_ring_params(bp); 6959 } 6960 } 6961 rx_rings = min_t(int, rx_rings, grp); 6962 cp = min_t(int, cp, bp->cp_nr_rings); 6963 if (stat > bnxt_get_ulp_stat_ctxs(bp)) 6964 stat -= bnxt_get_ulp_stat_ctxs(bp); 6965 cp = min_t(int, cp, stat); 6966 rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh); 6967 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6968 rx = rx_rings << 1; 6969 tx_cp = bnxt_num_tx_to_cp(bp, tx); 6970 cp = sh ? max_t(int, tx_cp, rx_rings) : tx_cp + rx_rings; 6971 bp->tx_nr_rings = tx; 6972 6973 /* If we cannot reserve all the RX rings, reset the RSS map only 6974 * if absolutely necessary 6975 */ 6976 if (rx_rings != bp->rx_nr_rings) { 6977 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 6978 rx_rings, bp->rx_nr_rings); 6979 if (netif_is_rxfh_configured(bp->dev) && 6980 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 6981 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 6982 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 6983 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 6984 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 6985 } 6986 } 6987 bp->rx_nr_rings = rx_rings; 6988 bp->cp_nr_rings = cp; 6989 6990 if (!tx || !rx || !cp || !grp || !vnic || !stat) 6991 return -ENOMEM; 6992 6993 if (!netif_is_rxfh_configured(bp->dev)) 6994 bnxt_set_dflt_rss_indir_tbl(bp); 6995 6996 return rc; 6997 } 6998 6999 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 7000 int ring_grps, int cp_rings, int stats, 7001 int vnics) 7002 { 7003 struct hwrm_func_vf_cfg_input *req; 7004 u32 flags; 7005 7006 if (!BNXT_NEW_RM(bp)) 7007 return 0; 7008 7009 req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps, 7010 cp_rings, stats, vnics); 7011 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 7012 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 7013 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 7014 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 7015 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 7016 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 7017 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7018 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 7019 7020 req->flags = cpu_to_le32(flags); 7021 return hwrm_req_send_silent(bp, req); 7022 } 7023 7024 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 7025 int ring_grps, int cp_rings, int stats, 7026 int vnics) 7027 { 7028 struct hwrm_func_cfg_input *req; 7029 u32 flags; 7030 7031 req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps, 7032 cp_rings, stats, vnics); 7033 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 7034 if (BNXT_NEW_RM(bp)) { 7035 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 7036 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 7037 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 7038 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 7039 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7040 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 7041 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 7042 else 7043 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 7044 } 7045 7046 req->flags = cpu_to_le32(flags); 7047 return hwrm_req_send_silent(bp, req); 7048 } 7049 7050 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings, 7051 int ring_grps, int cp_rings, int stats, 7052 int vnics) 7053 { 7054 if (bp->hwrm_spec_code < 0x10801) 7055 return 0; 7056 7057 if (BNXT_PF(bp)) 7058 return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings, 7059 ring_grps, cp_rings, stats, 7060 vnics); 7061 7062 return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps, 7063 cp_rings, stats, vnics); 7064 } 7065 7066 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 7067 { 7068 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7069 struct hwrm_ring_aggint_qcaps_output *resp; 7070 struct hwrm_ring_aggint_qcaps_input *req; 7071 int rc; 7072 7073 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 7074 coal_cap->num_cmpl_dma_aggr_max = 63; 7075 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 7076 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 7077 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 7078 coal_cap->int_lat_tmr_min_max = 65535; 7079 coal_cap->int_lat_tmr_max_max = 65535; 7080 coal_cap->num_cmpl_aggr_int_max = 65535; 7081 coal_cap->timer_units = 80; 7082 7083 if (bp->hwrm_spec_code < 0x10902) 7084 return; 7085 7086 if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS)) 7087 return; 7088 7089 resp = hwrm_req_hold(bp, req); 7090 rc = hwrm_req_send_silent(bp, req); 7091 if (!rc) { 7092 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 7093 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 7094 coal_cap->num_cmpl_dma_aggr_max = 7095 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 7096 coal_cap->num_cmpl_dma_aggr_during_int_max = 7097 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 7098 coal_cap->cmpl_aggr_dma_tmr_max = 7099 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 7100 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 7101 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 7102 coal_cap->int_lat_tmr_min_max = 7103 le16_to_cpu(resp->int_lat_tmr_min_max); 7104 coal_cap->int_lat_tmr_max_max = 7105 le16_to_cpu(resp->int_lat_tmr_max_max); 7106 coal_cap->num_cmpl_aggr_int_max = 7107 le16_to_cpu(resp->num_cmpl_aggr_int_max); 7108 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 7109 } 7110 hwrm_req_drop(bp, req); 7111 } 7112 7113 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 7114 { 7115 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7116 7117 return usec * 1000 / coal_cap->timer_units; 7118 } 7119 7120 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 7121 struct bnxt_coal *hw_coal, 7122 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 7123 { 7124 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7125 u16 val, tmr, max, flags = hw_coal->flags; 7126 u32 cmpl_params = coal_cap->cmpl_params; 7127 7128 max = hw_coal->bufs_per_record * 128; 7129 if (hw_coal->budget) 7130 max = hw_coal->bufs_per_record * hw_coal->budget; 7131 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 7132 7133 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 7134 req->num_cmpl_aggr_int = cpu_to_le16(val); 7135 7136 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 7137 req->num_cmpl_dma_aggr = cpu_to_le16(val); 7138 7139 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 7140 coal_cap->num_cmpl_dma_aggr_during_int_max); 7141 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 7142 7143 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 7144 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 7145 req->int_lat_tmr_max = cpu_to_le16(tmr); 7146 7147 /* min timer set to 1/2 of interrupt timer */ 7148 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 7149 val = tmr / 2; 7150 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 7151 req->int_lat_tmr_min = cpu_to_le16(val); 7152 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 7153 } 7154 7155 /* buf timer set to 1/4 of interrupt timer */ 7156 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 7157 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 7158 7159 if (cmpl_params & 7160 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 7161 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 7162 val = clamp_t(u16, tmr, 1, 7163 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 7164 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 7165 req->enables |= 7166 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 7167 } 7168 7169 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 7170 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 7171 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 7172 req->flags = cpu_to_le16(flags); 7173 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 7174 } 7175 7176 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 7177 struct bnxt_coal *hw_coal) 7178 { 7179 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req; 7180 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7181 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7182 u32 nq_params = coal_cap->nq_params; 7183 u16 tmr; 7184 int rc; 7185 7186 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 7187 return 0; 7188 7189 rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 7190 if (rc) 7191 return rc; 7192 7193 req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 7194 req->flags = 7195 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 7196 7197 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 7198 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 7199 req->int_lat_tmr_min = cpu_to_le16(tmr); 7200 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 7201 return hwrm_req_send(bp, req); 7202 } 7203 7204 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 7205 { 7206 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx; 7207 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7208 struct bnxt_coal coal; 7209 int rc; 7210 7211 /* Tick values in micro seconds. 7212 * 1 coal_buf x bufs_per_record = 1 completion record. 7213 */ 7214 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 7215 7216 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 7217 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 7218 7219 if (!bnapi->rx_ring) 7220 return -ENODEV; 7221 7222 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 7223 if (rc) 7224 return rc; 7225 7226 bnxt_hwrm_set_coal_params(bp, &coal, req_rx); 7227 7228 req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 7229 7230 return hwrm_req_send(bp, req_rx); 7231 } 7232 7233 static int 7234 bnxt_hwrm_set_rx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 7235 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 7236 { 7237 u16 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 7238 7239 req->ring_id = cpu_to_le16(ring_id); 7240 return hwrm_req_send(bp, req); 7241 } 7242 7243 static int 7244 bnxt_hwrm_set_tx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 7245 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 7246 { 7247 struct bnxt_tx_ring_info *txr; 7248 int i, rc; 7249 7250 bnxt_for_each_napi_tx(i, bnapi, txr) { 7251 u16 ring_id; 7252 7253 ring_id = bnxt_cp_ring_for_tx(bp, txr); 7254 req->ring_id = cpu_to_le16(ring_id); 7255 rc = hwrm_req_send(bp, req); 7256 if (rc) 7257 return rc; 7258 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7259 return 0; 7260 } 7261 return 0; 7262 } 7263 7264 int bnxt_hwrm_set_coal(struct bnxt *bp) 7265 { 7266 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx; 7267 int i, rc; 7268 7269 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 7270 if (rc) 7271 return rc; 7272 7273 rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 7274 if (rc) { 7275 hwrm_req_drop(bp, req_rx); 7276 return rc; 7277 } 7278 7279 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx); 7280 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx); 7281 7282 hwrm_req_hold(bp, req_rx); 7283 hwrm_req_hold(bp, req_tx); 7284 for (i = 0; i < bp->cp_nr_rings; i++) { 7285 struct bnxt_napi *bnapi = bp->bnapi[i]; 7286 struct bnxt_coal *hw_coal; 7287 7288 if (!bnapi->rx_ring) 7289 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 7290 else 7291 rc = bnxt_hwrm_set_rx_coal(bp, bnapi, req_rx); 7292 if (rc) 7293 break; 7294 7295 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7296 continue; 7297 7298 if (bnapi->rx_ring && bnapi->tx_ring[0]) { 7299 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 7300 if (rc) 7301 break; 7302 } 7303 if (bnapi->rx_ring) 7304 hw_coal = &bp->rx_coal; 7305 else 7306 hw_coal = &bp->tx_coal; 7307 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 7308 } 7309 hwrm_req_drop(bp, req_rx); 7310 hwrm_req_drop(bp, req_tx); 7311 return rc; 7312 } 7313 7314 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 7315 { 7316 struct hwrm_stat_ctx_clr_stats_input *req0 = NULL; 7317 struct hwrm_stat_ctx_free_input *req; 7318 int i; 7319 7320 if (!bp->bnapi) 7321 return; 7322 7323 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 7324 return; 7325 7326 if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE)) 7327 return; 7328 if (BNXT_FW_MAJ(bp) <= 20) { 7329 if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) { 7330 hwrm_req_drop(bp, req); 7331 return; 7332 } 7333 hwrm_req_hold(bp, req0); 7334 } 7335 hwrm_req_hold(bp, req); 7336 for (i = 0; i < bp->cp_nr_rings; i++) { 7337 struct bnxt_napi *bnapi = bp->bnapi[i]; 7338 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7339 7340 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 7341 req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 7342 if (req0) { 7343 req0->stat_ctx_id = req->stat_ctx_id; 7344 hwrm_req_send(bp, req0); 7345 } 7346 hwrm_req_send(bp, req); 7347 7348 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 7349 } 7350 } 7351 hwrm_req_drop(bp, req); 7352 if (req0) 7353 hwrm_req_drop(bp, req0); 7354 } 7355 7356 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 7357 { 7358 struct hwrm_stat_ctx_alloc_output *resp; 7359 struct hwrm_stat_ctx_alloc_input *req; 7360 int rc, i; 7361 7362 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 7363 return 0; 7364 7365 rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC); 7366 if (rc) 7367 return rc; 7368 7369 req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 7370 req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 7371 7372 resp = hwrm_req_hold(bp, req); 7373 for (i = 0; i < bp->cp_nr_rings; i++) { 7374 struct bnxt_napi *bnapi = bp->bnapi[i]; 7375 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7376 7377 req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 7378 7379 rc = hwrm_req_send(bp, req); 7380 if (rc) 7381 break; 7382 7383 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 7384 7385 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 7386 } 7387 hwrm_req_drop(bp, req); 7388 return rc; 7389 } 7390 7391 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 7392 { 7393 struct hwrm_func_qcfg_output *resp; 7394 struct hwrm_func_qcfg_input *req; 7395 u16 flags; 7396 int rc; 7397 7398 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7399 if (rc) 7400 return rc; 7401 7402 req->fid = cpu_to_le16(0xffff); 7403 resp = hwrm_req_hold(bp, req); 7404 rc = hwrm_req_send(bp, req); 7405 if (rc) 7406 goto func_qcfg_exit; 7407 7408 #ifdef CONFIG_BNXT_SRIOV 7409 if (BNXT_VF(bp)) { 7410 struct bnxt_vf_info *vf = &bp->vf; 7411 7412 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 7413 } else { 7414 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 7415 } 7416 #endif 7417 flags = le16_to_cpu(resp->flags); 7418 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 7419 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 7420 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 7421 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 7422 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 7423 } 7424 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 7425 bp->flags |= BNXT_FLAG_MULTI_HOST; 7426 7427 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 7428 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 7429 7430 switch (resp->port_partition_type) { 7431 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 7432 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 7433 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 7434 bp->port_partition_type = resp->port_partition_type; 7435 break; 7436 } 7437 if (bp->hwrm_spec_code < 0x10707 || 7438 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 7439 bp->br_mode = BRIDGE_MODE_VEB; 7440 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 7441 bp->br_mode = BRIDGE_MODE_VEPA; 7442 else 7443 bp->br_mode = BRIDGE_MODE_UNDEF; 7444 7445 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 7446 if (!bp->max_mtu) 7447 bp->max_mtu = BNXT_MAX_MTU; 7448 7449 if (bp->db_size) 7450 goto func_qcfg_exit; 7451 7452 bp->db_offset = le16_to_cpu(resp->legacy_l2_db_size_kb) * 1024; 7453 if (BNXT_CHIP_P5(bp)) { 7454 if (BNXT_PF(bp)) 7455 bp->db_offset = DB_PF_OFFSET_P5; 7456 else 7457 bp->db_offset = DB_VF_OFFSET_P5; 7458 } 7459 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 7460 1024); 7461 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 7462 bp->db_size <= bp->db_offset) 7463 bp->db_size = pci_resource_len(bp->pdev, 2); 7464 7465 func_qcfg_exit: 7466 hwrm_req_drop(bp, req); 7467 return rc; 7468 } 7469 7470 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_type *ctxm, 7471 u8 init_val, u8 init_offset, 7472 bool init_mask_set) 7473 { 7474 ctxm->init_value = init_val; 7475 ctxm->init_offset = BNXT_CTX_INIT_INVALID_OFFSET; 7476 if (init_mask_set) 7477 ctxm->init_offset = init_offset * 4; 7478 else 7479 ctxm->init_value = 0; 7480 } 7481 7482 static int bnxt_alloc_all_ctx_pg_info(struct bnxt *bp, int ctx_max) 7483 { 7484 struct bnxt_ctx_mem_info *ctx = bp->ctx; 7485 u16 type; 7486 7487 for (type = 0; type < ctx_max; type++) { 7488 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 7489 int n = 1; 7490 7491 if (!ctxm->max_entries) 7492 continue; 7493 7494 if (ctxm->instance_bmap) 7495 n = hweight32(ctxm->instance_bmap); 7496 ctxm->pg_info = kcalloc(n, sizeof(*ctxm->pg_info), GFP_KERNEL); 7497 if (!ctxm->pg_info) 7498 return -ENOMEM; 7499 } 7500 return 0; 7501 } 7502 7503 #define BNXT_CTX_INIT_VALID(flags) \ 7504 (!!((flags) & \ 7505 FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_ENABLE_CTX_KIND_INIT)) 7506 7507 static int bnxt_hwrm_func_backing_store_qcaps_v2(struct bnxt *bp) 7508 { 7509 struct hwrm_func_backing_store_qcaps_v2_output *resp; 7510 struct hwrm_func_backing_store_qcaps_v2_input *req; 7511 struct bnxt_ctx_mem_info *ctx; 7512 u16 type; 7513 int rc; 7514 7515 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS_V2); 7516 if (rc) 7517 return rc; 7518 7519 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 7520 if (!ctx) 7521 return -ENOMEM; 7522 bp->ctx = ctx; 7523 7524 resp = hwrm_req_hold(bp, req); 7525 7526 for (type = 0; type < BNXT_CTX_V2_MAX; ) { 7527 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 7528 u8 init_val, init_off, i; 7529 __le32 *p; 7530 u32 flags; 7531 7532 req->type = cpu_to_le16(type); 7533 rc = hwrm_req_send(bp, req); 7534 if (rc) 7535 goto ctx_done; 7536 flags = le32_to_cpu(resp->flags); 7537 type = le16_to_cpu(resp->next_valid_type); 7538 if (!(flags & FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_TYPE_VALID)) 7539 continue; 7540 7541 ctxm->type = le16_to_cpu(resp->type); 7542 ctxm->entry_size = le16_to_cpu(resp->entry_size); 7543 ctxm->flags = flags; 7544 ctxm->instance_bmap = le32_to_cpu(resp->instance_bit_map); 7545 ctxm->entry_multiple = resp->entry_multiple; 7546 ctxm->max_entries = le32_to_cpu(resp->max_num_entries); 7547 ctxm->min_entries = le32_to_cpu(resp->min_num_entries); 7548 init_val = resp->ctx_init_value; 7549 init_off = resp->ctx_init_offset; 7550 bnxt_init_ctx_initializer(ctxm, init_val, init_off, 7551 BNXT_CTX_INIT_VALID(flags)); 7552 ctxm->split_entry_cnt = min_t(u8, resp->subtype_valid_cnt, 7553 BNXT_MAX_SPLIT_ENTRY); 7554 for (i = 0, p = &resp->split_entry_0; i < ctxm->split_entry_cnt; 7555 i++, p++) 7556 ctxm->split[i] = le32_to_cpu(*p); 7557 } 7558 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_V2_MAX); 7559 7560 ctx_done: 7561 hwrm_req_drop(bp, req); 7562 return rc; 7563 } 7564 7565 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 7566 { 7567 struct hwrm_func_backing_store_qcaps_output *resp; 7568 struct hwrm_func_backing_store_qcaps_input *req; 7569 int rc; 7570 7571 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx) 7572 return 0; 7573 7574 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 7575 return bnxt_hwrm_func_backing_store_qcaps_v2(bp); 7576 7577 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS); 7578 if (rc) 7579 return rc; 7580 7581 resp = hwrm_req_hold(bp, req); 7582 rc = hwrm_req_send_silent(bp, req); 7583 if (!rc) { 7584 struct bnxt_ctx_mem_type *ctxm; 7585 struct bnxt_ctx_mem_info *ctx; 7586 u8 init_val, init_idx = 0; 7587 u16 init_mask; 7588 7589 ctx = bp->ctx; 7590 if (!ctx) { 7591 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 7592 if (!ctx) { 7593 rc = -ENOMEM; 7594 goto ctx_err; 7595 } 7596 bp->ctx = ctx; 7597 } 7598 init_val = resp->ctx_kind_initializer; 7599 init_mask = le16_to_cpu(resp->ctx_init_mask); 7600 7601 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 7602 ctxm->max_entries = le32_to_cpu(resp->qp_max_entries); 7603 ctxm->qp_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 7604 ctxm->qp_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 7605 ctxm->qp_fast_qpmd_entries = le16_to_cpu(resp->fast_qpmd_qp_num_entries); 7606 ctxm->entry_size = le16_to_cpu(resp->qp_entry_size); 7607 bnxt_init_ctx_initializer(ctxm, init_val, resp->qp_init_offset, 7608 (init_mask & (1 << init_idx++)) != 0); 7609 7610 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 7611 ctxm->srq_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 7612 ctxm->max_entries = le32_to_cpu(resp->srq_max_entries); 7613 ctxm->entry_size = le16_to_cpu(resp->srq_entry_size); 7614 bnxt_init_ctx_initializer(ctxm, init_val, resp->srq_init_offset, 7615 (init_mask & (1 << init_idx++)) != 0); 7616 7617 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 7618 ctxm->cq_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 7619 ctxm->max_entries = le32_to_cpu(resp->cq_max_entries); 7620 ctxm->entry_size = le16_to_cpu(resp->cq_entry_size); 7621 bnxt_init_ctx_initializer(ctxm, init_val, resp->cq_init_offset, 7622 (init_mask & (1 << init_idx++)) != 0); 7623 7624 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 7625 ctxm->vnic_entries = le16_to_cpu(resp->vnic_max_vnic_entries); 7626 ctxm->max_entries = ctxm->vnic_entries + 7627 le16_to_cpu(resp->vnic_max_ring_table_entries); 7628 ctxm->entry_size = le16_to_cpu(resp->vnic_entry_size); 7629 bnxt_init_ctx_initializer(ctxm, init_val, 7630 resp->vnic_init_offset, 7631 (init_mask & (1 << init_idx++)) != 0); 7632 7633 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 7634 ctxm->max_entries = le32_to_cpu(resp->stat_max_entries); 7635 ctxm->entry_size = le16_to_cpu(resp->stat_entry_size); 7636 bnxt_init_ctx_initializer(ctxm, init_val, 7637 resp->stat_init_offset, 7638 (init_mask & (1 << init_idx++)) != 0); 7639 7640 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 7641 ctxm->entry_size = le16_to_cpu(resp->tqm_entry_size); 7642 ctxm->min_entries = le32_to_cpu(resp->tqm_min_entries_per_ring); 7643 ctxm->max_entries = le32_to_cpu(resp->tqm_max_entries_per_ring); 7644 ctxm->entry_multiple = resp->tqm_entries_multiple; 7645 if (!ctxm->entry_multiple) 7646 ctxm->entry_multiple = 1; 7647 7648 memcpy(&ctx->ctx_arr[BNXT_CTX_FTQM], ctxm, sizeof(*ctxm)); 7649 7650 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 7651 ctxm->max_entries = le32_to_cpu(resp->mrav_max_entries); 7652 ctxm->entry_size = le16_to_cpu(resp->mrav_entry_size); 7653 ctxm->mrav_num_entries_units = 7654 le16_to_cpu(resp->mrav_num_entries_units); 7655 bnxt_init_ctx_initializer(ctxm, init_val, 7656 resp->mrav_init_offset, 7657 (init_mask & (1 << init_idx++)) != 0); 7658 7659 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 7660 ctxm->entry_size = le16_to_cpu(resp->tim_entry_size); 7661 ctxm->max_entries = le32_to_cpu(resp->tim_max_entries); 7662 7663 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 7664 if (!ctx->tqm_fp_rings_count) 7665 ctx->tqm_fp_rings_count = bp->max_q; 7666 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 7667 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 7668 7669 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 7670 memcpy(ctxm, &ctx->ctx_arr[BNXT_CTX_STQM], sizeof(*ctxm)); 7671 ctxm->instance_bmap = (1 << ctx->tqm_fp_rings_count) - 1; 7672 7673 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_MAX); 7674 } else { 7675 rc = 0; 7676 } 7677 ctx_err: 7678 hwrm_req_drop(bp, req); 7679 return rc; 7680 } 7681 7682 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 7683 __le64 *pg_dir) 7684 { 7685 if (!rmem->nr_pages) 7686 return; 7687 7688 BNXT_SET_CTX_PAGE_ATTR(*pg_attr); 7689 if (rmem->depth >= 1) { 7690 if (rmem->depth == 2) 7691 *pg_attr |= 2; 7692 else 7693 *pg_attr |= 1; 7694 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 7695 } else { 7696 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 7697 } 7698 } 7699 7700 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 7701 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 7702 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 7703 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 7704 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 7705 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 7706 7707 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 7708 { 7709 struct hwrm_func_backing_store_cfg_input *req; 7710 struct bnxt_ctx_mem_info *ctx = bp->ctx; 7711 struct bnxt_ctx_pg_info *ctx_pg; 7712 struct bnxt_ctx_mem_type *ctxm; 7713 void **__req = (void **)&req; 7714 u32 req_len = sizeof(*req); 7715 __le32 *num_entries; 7716 __le64 *pg_dir; 7717 u32 flags = 0; 7718 u8 *pg_attr; 7719 u32 ena; 7720 int rc; 7721 int i; 7722 7723 if (!ctx) 7724 return 0; 7725 7726 if (req_len > bp->hwrm_max_ext_req_len) 7727 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 7728 rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len); 7729 if (rc) 7730 return rc; 7731 7732 req->enables = cpu_to_le32(enables); 7733 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 7734 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 7735 ctx_pg = ctxm->pg_info; 7736 req->qp_num_entries = cpu_to_le32(ctx_pg->entries); 7737 req->qp_num_qp1_entries = cpu_to_le16(ctxm->qp_qp1_entries); 7738 req->qp_num_l2_entries = cpu_to_le16(ctxm->qp_l2_entries); 7739 req->qp_entry_size = cpu_to_le16(ctxm->entry_size); 7740 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7741 &req->qpc_pg_size_qpc_lvl, 7742 &req->qpc_page_dir); 7743 7744 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD) 7745 req->qp_num_fast_qpmd_entries = cpu_to_le16(ctxm->qp_fast_qpmd_entries); 7746 } 7747 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 7748 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 7749 ctx_pg = ctxm->pg_info; 7750 req->srq_num_entries = cpu_to_le32(ctx_pg->entries); 7751 req->srq_num_l2_entries = cpu_to_le16(ctxm->srq_l2_entries); 7752 req->srq_entry_size = cpu_to_le16(ctxm->entry_size); 7753 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7754 &req->srq_pg_size_srq_lvl, 7755 &req->srq_page_dir); 7756 } 7757 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 7758 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 7759 ctx_pg = ctxm->pg_info; 7760 req->cq_num_entries = cpu_to_le32(ctx_pg->entries); 7761 req->cq_num_l2_entries = cpu_to_le16(ctxm->cq_l2_entries); 7762 req->cq_entry_size = cpu_to_le16(ctxm->entry_size); 7763 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7764 &req->cq_pg_size_cq_lvl, 7765 &req->cq_page_dir); 7766 } 7767 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 7768 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 7769 ctx_pg = ctxm->pg_info; 7770 req->vnic_num_vnic_entries = cpu_to_le16(ctxm->vnic_entries); 7771 req->vnic_num_ring_table_entries = 7772 cpu_to_le16(ctxm->max_entries - ctxm->vnic_entries); 7773 req->vnic_entry_size = cpu_to_le16(ctxm->entry_size); 7774 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7775 &req->vnic_pg_size_vnic_lvl, 7776 &req->vnic_page_dir); 7777 } 7778 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 7779 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 7780 ctx_pg = ctxm->pg_info; 7781 req->stat_num_entries = cpu_to_le32(ctxm->max_entries); 7782 req->stat_entry_size = cpu_to_le16(ctxm->entry_size); 7783 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7784 &req->stat_pg_size_stat_lvl, 7785 &req->stat_page_dir); 7786 } 7787 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 7788 u32 units; 7789 7790 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 7791 ctx_pg = ctxm->pg_info; 7792 req->mrav_num_entries = cpu_to_le32(ctx_pg->entries); 7793 units = ctxm->mrav_num_entries_units; 7794 if (units) { 7795 u32 num_mr, num_ah = ctxm->mrav_av_entries; 7796 u32 entries; 7797 7798 num_mr = ctx_pg->entries - num_ah; 7799 entries = ((num_mr / units) << 16) | (num_ah / units); 7800 req->mrav_num_entries = cpu_to_le32(entries); 7801 flags |= FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 7802 } 7803 req->mrav_entry_size = cpu_to_le16(ctxm->entry_size); 7804 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7805 &req->mrav_pg_size_mrav_lvl, 7806 &req->mrav_page_dir); 7807 } 7808 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 7809 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 7810 ctx_pg = ctxm->pg_info; 7811 req->tim_num_entries = cpu_to_le32(ctx_pg->entries); 7812 req->tim_entry_size = cpu_to_le16(ctxm->entry_size); 7813 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7814 &req->tim_pg_size_tim_lvl, 7815 &req->tim_page_dir); 7816 } 7817 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 7818 for (i = 0, num_entries = &req->tqm_sp_num_entries, 7819 pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl, 7820 pg_dir = &req->tqm_sp_page_dir, 7821 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP, 7822 ctx_pg = ctxm->pg_info; 7823 i < BNXT_MAX_TQM_RINGS; 7824 ctx_pg = &ctx->ctx_arr[BNXT_CTX_FTQM].pg_info[i], 7825 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 7826 if (!(enables & ena)) 7827 continue; 7828 7829 req->tqm_entry_size = cpu_to_le16(ctxm->entry_size); 7830 *num_entries = cpu_to_le32(ctx_pg->entries); 7831 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 7832 } 7833 req->flags = cpu_to_le32(flags); 7834 return hwrm_req_send(bp, req); 7835 } 7836 7837 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 7838 struct bnxt_ctx_pg_info *ctx_pg) 7839 { 7840 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7841 7842 rmem->page_size = BNXT_PAGE_SIZE; 7843 rmem->pg_arr = ctx_pg->ctx_pg_arr; 7844 rmem->dma_arr = ctx_pg->ctx_dma_arr; 7845 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 7846 if (rmem->depth >= 1) 7847 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 7848 return bnxt_alloc_ring(bp, rmem); 7849 } 7850 7851 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 7852 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 7853 u8 depth, struct bnxt_ctx_mem_type *ctxm) 7854 { 7855 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7856 int rc; 7857 7858 if (!mem_size) 7859 return -EINVAL; 7860 7861 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7862 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 7863 ctx_pg->nr_pages = 0; 7864 return -EINVAL; 7865 } 7866 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 7867 int nr_tbls, i; 7868 7869 rmem->depth = 2; 7870 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 7871 GFP_KERNEL); 7872 if (!ctx_pg->ctx_pg_tbl) 7873 return -ENOMEM; 7874 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 7875 rmem->nr_pages = nr_tbls; 7876 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7877 if (rc) 7878 return rc; 7879 for (i = 0; i < nr_tbls; i++) { 7880 struct bnxt_ctx_pg_info *pg_tbl; 7881 7882 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 7883 if (!pg_tbl) 7884 return -ENOMEM; 7885 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 7886 rmem = &pg_tbl->ring_mem; 7887 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 7888 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 7889 rmem->depth = 1; 7890 rmem->nr_pages = MAX_CTX_PAGES; 7891 rmem->ctx_mem = ctxm; 7892 if (i == (nr_tbls - 1)) { 7893 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 7894 7895 if (rem) 7896 rmem->nr_pages = rem; 7897 } 7898 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 7899 if (rc) 7900 break; 7901 } 7902 } else { 7903 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7904 if (rmem->nr_pages > 1 || depth) 7905 rmem->depth = 1; 7906 rmem->ctx_mem = ctxm; 7907 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7908 } 7909 return rc; 7910 } 7911 7912 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 7913 struct bnxt_ctx_pg_info *ctx_pg) 7914 { 7915 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7916 7917 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 7918 ctx_pg->ctx_pg_tbl) { 7919 int i, nr_tbls = rmem->nr_pages; 7920 7921 for (i = 0; i < nr_tbls; i++) { 7922 struct bnxt_ctx_pg_info *pg_tbl; 7923 struct bnxt_ring_mem_info *rmem2; 7924 7925 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 7926 if (!pg_tbl) 7927 continue; 7928 rmem2 = &pg_tbl->ring_mem; 7929 bnxt_free_ring(bp, rmem2); 7930 ctx_pg->ctx_pg_arr[i] = NULL; 7931 kfree(pg_tbl); 7932 ctx_pg->ctx_pg_tbl[i] = NULL; 7933 } 7934 kfree(ctx_pg->ctx_pg_tbl); 7935 ctx_pg->ctx_pg_tbl = NULL; 7936 } 7937 bnxt_free_ring(bp, rmem); 7938 ctx_pg->nr_pages = 0; 7939 } 7940 7941 static int bnxt_setup_ctxm_pg_tbls(struct bnxt *bp, 7942 struct bnxt_ctx_mem_type *ctxm, u32 entries, 7943 u8 pg_lvl) 7944 { 7945 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 7946 int i, rc = 0, n = 1; 7947 u32 mem_size; 7948 7949 if (!ctxm->entry_size || !ctx_pg) 7950 return -EINVAL; 7951 if (ctxm->instance_bmap) 7952 n = hweight32(ctxm->instance_bmap); 7953 if (ctxm->entry_multiple) 7954 entries = roundup(entries, ctxm->entry_multiple); 7955 entries = clamp_t(u32, entries, ctxm->min_entries, ctxm->max_entries); 7956 mem_size = entries * ctxm->entry_size; 7957 for (i = 0; i < n && !rc; i++) { 7958 ctx_pg[i].entries = entries; 7959 rc = bnxt_alloc_ctx_pg_tbls(bp, &ctx_pg[i], mem_size, pg_lvl, 7960 ctxm->init_value ? ctxm : NULL); 7961 } 7962 return rc; 7963 } 7964 7965 static int bnxt_hwrm_func_backing_store_cfg_v2(struct bnxt *bp, 7966 struct bnxt_ctx_mem_type *ctxm, 7967 bool last) 7968 { 7969 struct hwrm_func_backing_store_cfg_v2_input *req; 7970 u32 instance_bmap = ctxm->instance_bmap; 7971 int i, j, rc = 0, n = 1; 7972 __le32 *p; 7973 7974 if (!(ctxm->flags & BNXT_CTX_MEM_TYPE_VALID) || !ctxm->pg_info) 7975 return 0; 7976 7977 if (instance_bmap) 7978 n = hweight32(ctxm->instance_bmap); 7979 else 7980 instance_bmap = 1; 7981 7982 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_CFG_V2); 7983 if (rc) 7984 return rc; 7985 hwrm_req_hold(bp, req); 7986 req->type = cpu_to_le16(ctxm->type); 7987 req->entry_size = cpu_to_le16(ctxm->entry_size); 7988 req->subtype_valid_cnt = ctxm->split_entry_cnt; 7989 for (i = 0, p = &req->split_entry_0; i < ctxm->split_entry_cnt; i++) 7990 p[i] = cpu_to_le32(ctxm->split[i]); 7991 for (i = 0, j = 0; j < n && !rc; i++) { 7992 struct bnxt_ctx_pg_info *ctx_pg; 7993 7994 if (!(instance_bmap & (1 << i))) 7995 continue; 7996 req->instance = cpu_to_le16(i); 7997 ctx_pg = &ctxm->pg_info[j++]; 7998 if (!ctx_pg->entries) 7999 continue; 8000 req->num_entries = cpu_to_le32(ctx_pg->entries); 8001 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8002 &req->page_size_pbl_level, 8003 &req->page_dir); 8004 if (last && j == n) 8005 req->flags = 8006 cpu_to_le32(FUNC_BACKING_STORE_CFG_V2_REQ_FLAGS_BS_CFG_ALL_DONE); 8007 rc = hwrm_req_send(bp, req); 8008 } 8009 hwrm_req_drop(bp, req); 8010 return rc; 8011 } 8012 8013 static int bnxt_backing_store_cfg_v2(struct bnxt *bp, u32 ena) 8014 { 8015 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8016 struct bnxt_ctx_mem_type *ctxm; 8017 u16 last_type; 8018 int rc = 0; 8019 u16 type; 8020 8021 if (!ena) 8022 return 0; 8023 else if (ena & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) 8024 last_type = BNXT_CTX_MAX - 1; 8025 else 8026 last_type = BNXT_CTX_L2_MAX - 1; 8027 ctx->ctx_arr[last_type].last = 1; 8028 8029 for (type = 0 ; type < BNXT_CTX_V2_MAX; type++) { 8030 ctxm = &ctx->ctx_arr[type]; 8031 8032 rc = bnxt_hwrm_func_backing_store_cfg_v2(bp, ctxm, ctxm->last); 8033 if (rc) 8034 return rc; 8035 } 8036 return 0; 8037 } 8038 8039 void bnxt_free_ctx_mem(struct bnxt *bp) 8040 { 8041 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8042 u16 type; 8043 8044 if (!ctx) 8045 return; 8046 8047 for (type = 0; type < BNXT_CTX_V2_MAX; type++) { 8048 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8049 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 8050 int i, n = 1; 8051 8052 if (!ctx_pg) 8053 continue; 8054 if (ctxm->instance_bmap) 8055 n = hweight32(ctxm->instance_bmap); 8056 for (i = 0; i < n; i++) 8057 bnxt_free_ctx_pg_tbls(bp, &ctx_pg[i]); 8058 8059 kfree(ctx_pg); 8060 ctxm->pg_info = NULL; 8061 } 8062 8063 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 8064 kfree(ctx); 8065 bp->ctx = NULL; 8066 } 8067 8068 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 8069 { 8070 struct bnxt_ctx_mem_type *ctxm; 8071 struct bnxt_ctx_mem_info *ctx; 8072 u32 l2_qps, qp1_qps, max_qps; 8073 u32 ena, entries_sp, entries; 8074 u32 srqs, max_srqs, min; 8075 u32 num_mr, num_ah; 8076 u32 extra_srqs = 0; 8077 u32 extra_qps = 0; 8078 u32 fast_qpmd_qps; 8079 u8 pg_lvl = 1; 8080 int i, rc; 8081 8082 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 8083 if (rc) { 8084 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 8085 rc); 8086 return rc; 8087 } 8088 ctx = bp->ctx; 8089 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 8090 return 0; 8091 8092 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8093 l2_qps = ctxm->qp_l2_entries; 8094 qp1_qps = ctxm->qp_qp1_entries; 8095 fast_qpmd_qps = ctxm->qp_fast_qpmd_entries; 8096 max_qps = ctxm->max_entries; 8097 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8098 srqs = ctxm->srq_l2_entries; 8099 max_srqs = ctxm->max_entries; 8100 ena = 0; 8101 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 8102 pg_lvl = 2; 8103 extra_qps = min_t(u32, 65536, max_qps - l2_qps - qp1_qps); 8104 /* allocate extra qps if fw supports RoCE fast qp destroy feature */ 8105 extra_qps += fast_qpmd_qps; 8106 extra_srqs = min_t(u32, 8192, max_srqs - srqs); 8107 if (fast_qpmd_qps) 8108 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD; 8109 } 8110 8111 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8112 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 8113 pg_lvl); 8114 if (rc) 8115 return rc; 8116 8117 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8118 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, srqs + extra_srqs, pg_lvl); 8119 if (rc) 8120 return rc; 8121 8122 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8123 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->cq_l2_entries + 8124 extra_qps * 2, pg_lvl); 8125 if (rc) 8126 return rc; 8127 8128 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8129 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 8130 if (rc) 8131 return rc; 8132 8133 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8134 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 8135 if (rc) 8136 return rc; 8137 8138 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 8139 goto skip_rdma; 8140 8141 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8142 /* 128K extra is needed to accommodate static AH context 8143 * allocation by f/w. 8144 */ 8145 num_mr = min_t(u32, ctxm->max_entries / 2, 1024 * 256); 8146 num_ah = min_t(u32, num_mr, 1024 * 128); 8147 ctxm->split_entry_cnt = BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1; 8148 if (!ctxm->mrav_av_entries || ctxm->mrav_av_entries > num_ah) 8149 ctxm->mrav_av_entries = num_ah; 8150 8151 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, num_mr + num_ah, 2); 8152 if (rc) 8153 return rc; 8154 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 8155 8156 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8157 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 1); 8158 if (rc) 8159 return rc; 8160 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 8161 8162 skip_rdma: 8163 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8164 min = ctxm->min_entries; 8165 entries_sp = ctx->ctx_arr[BNXT_CTX_VNIC].vnic_entries + l2_qps + 8166 2 * (extra_qps + qp1_qps) + min; 8167 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries_sp, 2); 8168 if (rc) 8169 return rc; 8170 8171 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 8172 entries = l2_qps + 2 * (extra_qps + qp1_qps); 8173 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries, 2); 8174 if (rc) 8175 return rc; 8176 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 8177 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 8178 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 8179 8180 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 8181 rc = bnxt_backing_store_cfg_v2(bp, ena); 8182 else 8183 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 8184 if (rc) { 8185 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 8186 rc); 8187 return rc; 8188 } 8189 ctx->flags |= BNXT_CTX_FLAG_INITED; 8190 return 0; 8191 } 8192 8193 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 8194 { 8195 struct hwrm_func_resource_qcaps_output *resp; 8196 struct hwrm_func_resource_qcaps_input *req; 8197 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 8198 int rc; 8199 8200 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS); 8201 if (rc) 8202 return rc; 8203 8204 req->fid = cpu_to_le16(0xffff); 8205 resp = hwrm_req_hold(bp, req); 8206 rc = hwrm_req_send_silent(bp, req); 8207 if (rc) 8208 goto hwrm_func_resc_qcaps_exit; 8209 8210 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 8211 if (!all) 8212 goto hwrm_func_resc_qcaps_exit; 8213 8214 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 8215 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 8216 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 8217 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 8218 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 8219 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 8220 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 8221 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 8222 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 8223 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 8224 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 8225 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 8226 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 8227 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 8228 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 8229 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 8230 8231 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 8232 u16 max_msix = le16_to_cpu(resp->max_msix); 8233 8234 hw_resc->max_nqs = max_msix; 8235 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 8236 } 8237 8238 if (BNXT_PF(bp)) { 8239 struct bnxt_pf_info *pf = &bp->pf; 8240 8241 pf->vf_resv_strategy = 8242 le16_to_cpu(resp->vf_reservation_strategy); 8243 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 8244 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 8245 } 8246 hwrm_func_resc_qcaps_exit: 8247 hwrm_req_drop(bp, req); 8248 return rc; 8249 } 8250 8251 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) 8252 { 8253 struct hwrm_port_mac_ptp_qcfg_output *resp; 8254 struct hwrm_port_mac_ptp_qcfg_input *req; 8255 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 8256 bool phc_cfg; 8257 u8 flags; 8258 int rc; 8259 8260 if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5(bp)) { 8261 rc = -ENODEV; 8262 goto no_ptp; 8263 } 8264 8265 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG); 8266 if (rc) 8267 goto no_ptp; 8268 8269 req->port_id = cpu_to_le16(bp->pf.port_id); 8270 resp = hwrm_req_hold(bp, req); 8271 rc = hwrm_req_send(bp, req); 8272 if (rc) 8273 goto exit; 8274 8275 flags = resp->flags; 8276 if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { 8277 rc = -ENODEV; 8278 goto exit; 8279 } 8280 if (!ptp) { 8281 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); 8282 if (!ptp) { 8283 rc = -ENOMEM; 8284 goto exit; 8285 } 8286 ptp->bp = bp; 8287 bp->ptp_cfg = ptp; 8288 } 8289 if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) { 8290 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); 8291 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); 8292 } else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 8293 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; 8294 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; 8295 } else { 8296 rc = -ENODEV; 8297 goto exit; 8298 } 8299 phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0; 8300 rc = bnxt_ptp_init(bp, phc_cfg); 8301 if (rc) 8302 netdev_warn(bp->dev, "PTP initialization failed.\n"); 8303 exit: 8304 hwrm_req_drop(bp, req); 8305 if (!rc) 8306 return 0; 8307 8308 no_ptp: 8309 bnxt_ptp_clear(bp); 8310 kfree(ptp); 8311 bp->ptp_cfg = NULL; 8312 return rc; 8313 } 8314 8315 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 8316 { 8317 struct hwrm_func_qcaps_output *resp; 8318 struct hwrm_func_qcaps_input *req; 8319 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 8320 u32 flags, flags_ext, flags_ext2; 8321 int rc; 8322 8323 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS); 8324 if (rc) 8325 return rc; 8326 8327 req->fid = cpu_to_le16(0xffff); 8328 resp = hwrm_req_hold(bp, req); 8329 rc = hwrm_req_send(bp, req); 8330 if (rc) 8331 goto hwrm_func_qcaps_exit; 8332 8333 flags = le32_to_cpu(resp->flags); 8334 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 8335 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 8336 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 8337 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 8338 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 8339 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 8340 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 8341 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 8342 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 8343 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 8344 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 8345 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 8346 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 8347 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 8348 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 8349 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 8350 if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED) 8351 bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS; 8352 8353 flags_ext = le32_to_cpu(resp->flags_ext); 8354 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 8355 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 8356 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED)) 8357 bp->fw_cap |= BNXT_FW_CAP_PTP_PPS; 8358 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED) 8359 bp->fw_cap |= BNXT_FW_CAP_PTP_RTC; 8360 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT)) 8361 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF; 8362 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED)) 8363 bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH; 8364 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_BS_V2_SUPPORTED) 8365 bp->fw_cap |= BNXT_FW_CAP_BACKING_STORE_V2; 8366 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_TX_COAL_CMPL_CAP) 8367 bp->flags |= BNXT_FLAG_TX_COAL_CMPL; 8368 8369 flags_ext2 = le32_to_cpu(resp->flags_ext2); 8370 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED) 8371 bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS; 8372 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_UDP_GSO_SUPPORTED) 8373 bp->flags |= BNXT_FLAG_UDP_GSO_CAP; 8374 8375 bp->tx_push_thresh = 0; 8376 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 8377 BNXT_FW_MAJ(bp) > 217) 8378 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 8379 8380 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 8381 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 8382 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 8383 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 8384 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 8385 if (!hw_resc->max_hw_ring_grps) 8386 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 8387 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 8388 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 8389 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 8390 8391 if (BNXT_PF(bp)) { 8392 struct bnxt_pf_info *pf = &bp->pf; 8393 8394 pf->fw_fid = le16_to_cpu(resp->fid); 8395 pf->port_id = le16_to_cpu(resp->port_id); 8396 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 8397 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 8398 pf->max_vfs = le16_to_cpu(resp->max_vfs); 8399 pf->max_encap_records = le32_to_cpu(resp->max_encap_records); 8400 pf->max_decap_records = le32_to_cpu(resp->max_decap_records); 8401 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 8402 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 8403 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 8404 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 8405 bp->flags &= ~BNXT_FLAG_WOL_CAP; 8406 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 8407 bp->flags |= BNXT_FLAG_WOL_CAP; 8408 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { 8409 bp->fw_cap |= BNXT_FW_CAP_PTP; 8410 } else { 8411 bnxt_ptp_clear(bp); 8412 kfree(bp->ptp_cfg); 8413 bp->ptp_cfg = NULL; 8414 } 8415 } else { 8416 #ifdef CONFIG_BNXT_SRIOV 8417 struct bnxt_vf_info *vf = &bp->vf; 8418 8419 vf->fw_fid = le16_to_cpu(resp->fid); 8420 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 8421 #endif 8422 } 8423 8424 hwrm_func_qcaps_exit: 8425 hwrm_req_drop(bp, req); 8426 return rc; 8427 } 8428 8429 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp) 8430 { 8431 struct hwrm_dbg_qcaps_output *resp; 8432 struct hwrm_dbg_qcaps_input *req; 8433 int rc; 8434 8435 bp->fw_dbg_cap = 0; 8436 if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS)) 8437 return; 8438 8439 rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS); 8440 if (rc) 8441 return; 8442 8443 req->fid = cpu_to_le16(0xffff); 8444 resp = hwrm_req_hold(bp, req); 8445 rc = hwrm_req_send(bp, req); 8446 if (rc) 8447 goto hwrm_dbg_qcaps_exit; 8448 8449 bp->fw_dbg_cap = le32_to_cpu(resp->flags); 8450 8451 hwrm_dbg_qcaps_exit: 8452 hwrm_req_drop(bp, req); 8453 } 8454 8455 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 8456 8457 int bnxt_hwrm_func_qcaps(struct bnxt *bp) 8458 { 8459 int rc; 8460 8461 rc = __bnxt_hwrm_func_qcaps(bp); 8462 if (rc) 8463 return rc; 8464 8465 bnxt_hwrm_dbg_qcaps(bp); 8466 8467 rc = bnxt_hwrm_queue_qportcfg(bp); 8468 if (rc) { 8469 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 8470 return rc; 8471 } 8472 if (bp->hwrm_spec_code >= 0x10803) { 8473 rc = bnxt_alloc_ctx_mem(bp); 8474 if (rc) 8475 return rc; 8476 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 8477 if (!rc) 8478 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 8479 } 8480 return 0; 8481 } 8482 8483 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 8484 { 8485 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 8486 struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req; 8487 u32 flags; 8488 int rc; 8489 8490 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 8491 return 0; 8492 8493 rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS); 8494 if (rc) 8495 return rc; 8496 8497 resp = hwrm_req_hold(bp, req); 8498 rc = hwrm_req_send(bp, req); 8499 if (rc) 8500 goto hwrm_cfa_adv_qcaps_exit; 8501 8502 flags = le32_to_cpu(resp->flags); 8503 if (flags & 8504 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 8505 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 8506 8507 hwrm_cfa_adv_qcaps_exit: 8508 hwrm_req_drop(bp, req); 8509 return rc; 8510 } 8511 8512 static int __bnxt_alloc_fw_health(struct bnxt *bp) 8513 { 8514 if (bp->fw_health) 8515 return 0; 8516 8517 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 8518 if (!bp->fw_health) 8519 return -ENOMEM; 8520 8521 mutex_init(&bp->fw_health->lock); 8522 return 0; 8523 } 8524 8525 static int bnxt_alloc_fw_health(struct bnxt *bp) 8526 { 8527 int rc; 8528 8529 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 8530 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 8531 return 0; 8532 8533 rc = __bnxt_alloc_fw_health(bp); 8534 if (rc) { 8535 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 8536 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 8537 return rc; 8538 } 8539 8540 return 0; 8541 } 8542 8543 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 8544 { 8545 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 8546 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 8547 BNXT_FW_HEALTH_WIN_MAP_OFF); 8548 } 8549 8550 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 8551 { 8552 struct bnxt_fw_health *fw_health = bp->fw_health; 8553 u32 reg_type; 8554 8555 if (!fw_health) 8556 return; 8557 8558 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 8559 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 8560 fw_health->status_reliable = false; 8561 8562 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]); 8563 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 8564 fw_health->resets_reliable = false; 8565 } 8566 8567 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 8568 { 8569 void __iomem *hs; 8570 u32 status_loc; 8571 u32 reg_type; 8572 u32 sig; 8573 8574 if (bp->fw_health) 8575 bp->fw_health->status_reliable = false; 8576 8577 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 8578 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 8579 8580 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 8581 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 8582 if (!bp->chip_num) { 8583 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 8584 bp->chip_num = readl(bp->bar0 + 8585 BNXT_FW_HEALTH_WIN_BASE + 8586 BNXT_GRC_REG_CHIP_NUM); 8587 } 8588 if (!BNXT_CHIP_P5(bp)) 8589 return; 8590 8591 status_loc = BNXT_GRC_REG_STATUS_P5 | 8592 BNXT_FW_HEALTH_REG_TYPE_BAR0; 8593 } else { 8594 status_loc = readl(hs + offsetof(struct hcomm_status, 8595 fw_status_loc)); 8596 } 8597 8598 if (__bnxt_alloc_fw_health(bp)) { 8599 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 8600 return; 8601 } 8602 8603 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 8604 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 8605 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 8606 __bnxt_map_fw_health_reg(bp, status_loc); 8607 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 8608 BNXT_FW_HEALTH_WIN_OFF(status_loc); 8609 } 8610 8611 bp->fw_health->status_reliable = true; 8612 } 8613 8614 static int bnxt_map_fw_health_regs(struct bnxt *bp) 8615 { 8616 struct bnxt_fw_health *fw_health = bp->fw_health; 8617 u32 reg_base = 0xffffffff; 8618 int i; 8619 8620 bp->fw_health->status_reliable = false; 8621 bp->fw_health->resets_reliable = false; 8622 /* Only pre-map the monitoring GRC registers using window 3 */ 8623 for (i = 0; i < 4; i++) { 8624 u32 reg = fw_health->regs[i]; 8625 8626 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 8627 continue; 8628 if (reg_base == 0xffffffff) 8629 reg_base = reg & BNXT_GRC_BASE_MASK; 8630 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 8631 return -ERANGE; 8632 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 8633 } 8634 bp->fw_health->status_reliable = true; 8635 bp->fw_health->resets_reliable = true; 8636 if (reg_base == 0xffffffff) 8637 return 0; 8638 8639 __bnxt_map_fw_health_reg(bp, reg_base); 8640 return 0; 8641 } 8642 8643 static void bnxt_remap_fw_health_regs(struct bnxt *bp) 8644 { 8645 if (!bp->fw_health) 8646 return; 8647 8648 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) { 8649 bp->fw_health->status_reliable = true; 8650 bp->fw_health->resets_reliable = true; 8651 } else { 8652 bnxt_try_map_fw_health_reg(bp); 8653 } 8654 } 8655 8656 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 8657 { 8658 struct bnxt_fw_health *fw_health = bp->fw_health; 8659 struct hwrm_error_recovery_qcfg_output *resp; 8660 struct hwrm_error_recovery_qcfg_input *req; 8661 int rc, i; 8662 8663 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 8664 return 0; 8665 8666 rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG); 8667 if (rc) 8668 return rc; 8669 8670 resp = hwrm_req_hold(bp, req); 8671 rc = hwrm_req_send(bp, req); 8672 if (rc) 8673 goto err_recovery_out; 8674 fw_health->flags = le32_to_cpu(resp->flags); 8675 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 8676 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 8677 rc = -EINVAL; 8678 goto err_recovery_out; 8679 } 8680 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 8681 fw_health->master_func_wait_dsecs = 8682 le32_to_cpu(resp->master_func_wait_period); 8683 fw_health->normal_func_wait_dsecs = 8684 le32_to_cpu(resp->normal_func_wait_period); 8685 fw_health->post_reset_wait_dsecs = 8686 le32_to_cpu(resp->master_func_wait_period_after_reset); 8687 fw_health->post_reset_max_wait_dsecs = 8688 le32_to_cpu(resp->max_bailout_time_after_reset); 8689 fw_health->regs[BNXT_FW_HEALTH_REG] = 8690 le32_to_cpu(resp->fw_health_status_reg); 8691 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 8692 le32_to_cpu(resp->fw_heartbeat_reg); 8693 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 8694 le32_to_cpu(resp->fw_reset_cnt_reg); 8695 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 8696 le32_to_cpu(resp->reset_inprogress_reg); 8697 fw_health->fw_reset_inprog_reg_mask = 8698 le32_to_cpu(resp->reset_inprogress_reg_mask); 8699 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 8700 if (fw_health->fw_reset_seq_cnt >= 16) { 8701 rc = -EINVAL; 8702 goto err_recovery_out; 8703 } 8704 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 8705 fw_health->fw_reset_seq_regs[i] = 8706 le32_to_cpu(resp->reset_reg[i]); 8707 fw_health->fw_reset_seq_vals[i] = 8708 le32_to_cpu(resp->reset_reg_val[i]); 8709 fw_health->fw_reset_seq_delay_msec[i] = 8710 resp->delay_after_reset[i]; 8711 } 8712 err_recovery_out: 8713 hwrm_req_drop(bp, req); 8714 if (!rc) 8715 rc = bnxt_map_fw_health_regs(bp); 8716 if (rc) 8717 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 8718 return rc; 8719 } 8720 8721 static int bnxt_hwrm_func_reset(struct bnxt *bp) 8722 { 8723 struct hwrm_func_reset_input *req; 8724 int rc; 8725 8726 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET); 8727 if (rc) 8728 return rc; 8729 8730 req->enables = 0; 8731 hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT); 8732 return hwrm_req_send(bp, req); 8733 } 8734 8735 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 8736 { 8737 struct hwrm_nvm_get_dev_info_output nvm_info; 8738 8739 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 8740 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 8741 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 8742 nvm_info.nvm_cfg_ver_upd); 8743 } 8744 8745 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 8746 { 8747 struct hwrm_queue_qportcfg_output *resp; 8748 struct hwrm_queue_qportcfg_input *req; 8749 u8 i, j, *qptr; 8750 bool no_rdma; 8751 int rc = 0; 8752 8753 rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG); 8754 if (rc) 8755 return rc; 8756 8757 resp = hwrm_req_hold(bp, req); 8758 rc = hwrm_req_send(bp, req); 8759 if (rc) 8760 goto qportcfg_exit; 8761 8762 if (!resp->max_configurable_queues) { 8763 rc = -EINVAL; 8764 goto qportcfg_exit; 8765 } 8766 bp->max_tc = resp->max_configurable_queues; 8767 bp->max_lltc = resp->max_configurable_lossless_queues; 8768 if (bp->max_tc > BNXT_MAX_QUEUE) 8769 bp->max_tc = BNXT_MAX_QUEUE; 8770 8771 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 8772 qptr = &resp->queue_id0; 8773 for (i = 0, j = 0; i < bp->max_tc; i++) { 8774 bp->q_info[j].queue_id = *qptr; 8775 bp->q_ids[i] = *qptr++; 8776 bp->q_info[j].queue_profile = *qptr++; 8777 bp->tc_to_qidx[j] = j; 8778 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 8779 (no_rdma && BNXT_PF(bp))) 8780 j++; 8781 } 8782 bp->max_q = bp->max_tc; 8783 bp->max_tc = max_t(u8, j, 1); 8784 8785 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 8786 bp->max_tc = 1; 8787 8788 if (bp->max_lltc > bp->max_tc) 8789 bp->max_lltc = bp->max_tc; 8790 8791 qportcfg_exit: 8792 hwrm_req_drop(bp, req); 8793 return rc; 8794 } 8795 8796 static int bnxt_hwrm_poll(struct bnxt *bp) 8797 { 8798 struct hwrm_ver_get_input *req; 8799 int rc; 8800 8801 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 8802 if (rc) 8803 return rc; 8804 8805 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 8806 req->hwrm_intf_min = HWRM_VERSION_MINOR; 8807 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 8808 8809 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT); 8810 rc = hwrm_req_send(bp, req); 8811 return rc; 8812 } 8813 8814 static int bnxt_hwrm_ver_get(struct bnxt *bp) 8815 { 8816 struct hwrm_ver_get_output *resp; 8817 struct hwrm_ver_get_input *req; 8818 u16 fw_maj, fw_min, fw_bld, fw_rsv; 8819 u32 dev_caps_cfg, hwrm_ver; 8820 int rc, len; 8821 8822 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 8823 if (rc) 8824 return rc; 8825 8826 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 8827 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 8828 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 8829 req->hwrm_intf_min = HWRM_VERSION_MINOR; 8830 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 8831 8832 resp = hwrm_req_hold(bp, req); 8833 rc = hwrm_req_send(bp, req); 8834 if (rc) 8835 goto hwrm_ver_get_exit; 8836 8837 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 8838 8839 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 8840 resp->hwrm_intf_min_8b << 8 | 8841 resp->hwrm_intf_upd_8b; 8842 if (resp->hwrm_intf_maj_8b < 1) { 8843 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 8844 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 8845 resp->hwrm_intf_upd_8b); 8846 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 8847 } 8848 8849 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 8850 HWRM_VERSION_UPDATE; 8851 8852 if (bp->hwrm_spec_code > hwrm_ver) 8853 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 8854 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 8855 HWRM_VERSION_UPDATE); 8856 else 8857 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 8858 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 8859 resp->hwrm_intf_upd_8b); 8860 8861 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 8862 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 8863 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 8864 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 8865 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 8866 len = FW_VER_STR_LEN; 8867 } else { 8868 fw_maj = resp->hwrm_fw_maj_8b; 8869 fw_min = resp->hwrm_fw_min_8b; 8870 fw_bld = resp->hwrm_fw_bld_8b; 8871 fw_rsv = resp->hwrm_fw_rsvd_8b; 8872 len = BC_HWRM_STR_LEN; 8873 } 8874 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 8875 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 8876 fw_rsv); 8877 8878 if (strlen(resp->active_pkg_name)) { 8879 int fw_ver_len = strlen(bp->fw_ver_str); 8880 8881 snprintf(bp->fw_ver_str + fw_ver_len, 8882 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 8883 resp->active_pkg_name); 8884 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 8885 } 8886 8887 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 8888 if (!bp->hwrm_cmd_timeout) 8889 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 8890 bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000; 8891 if (!bp->hwrm_cmd_max_timeout) 8892 bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT; 8893 else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT) 8894 netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n", 8895 bp->hwrm_cmd_max_timeout / 1000); 8896 8897 if (resp->hwrm_intf_maj_8b >= 1) { 8898 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 8899 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 8900 } 8901 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 8902 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 8903 8904 bp->chip_num = le16_to_cpu(resp->chip_num); 8905 bp->chip_rev = resp->chip_rev; 8906 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 8907 !resp->chip_metal) 8908 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 8909 8910 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 8911 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 8912 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 8913 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 8914 8915 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 8916 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 8917 8918 if (dev_caps_cfg & 8919 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 8920 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 8921 8922 if (dev_caps_cfg & 8923 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 8924 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 8925 8926 if (dev_caps_cfg & 8927 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 8928 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 8929 8930 hwrm_ver_get_exit: 8931 hwrm_req_drop(bp, req); 8932 return rc; 8933 } 8934 8935 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 8936 { 8937 struct hwrm_fw_set_time_input *req; 8938 struct tm tm; 8939 time64_t now = ktime_get_real_seconds(); 8940 int rc; 8941 8942 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 8943 bp->hwrm_spec_code < 0x10400) 8944 return -EOPNOTSUPP; 8945 8946 time64_to_tm(now, 0, &tm); 8947 rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME); 8948 if (rc) 8949 return rc; 8950 8951 req->year = cpu_to_le16(1900 + tm.tm_year); 8952 req->month = 1 + tm.tm_mon; 8953 req->day = tm.tm_mday; 8954 req->hour = tm.tm_hour; 8955 req->minute = tm.tm_min; 8956 req->second = tm.tm_sec; 8957 return hwrm_req_send(bp, req); 8958 } 8959 8960 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 8961 { 8962 u64 sw_tmp; 8963 8964 hw &= mask; 8965 sw_tmp = (*sw & ~mask) | hw; 8966 if (hw < (*sw & mask)) 8967 sw_tmp += mask + 1; 8968 WRITE_ONCE(*sw, sw_tmp); 8969 } 8970 8971 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 8972 int count, bool ignore_zero) 8973 { 8974 int i; 8975 8976 for (i = 0; i < count; i++) { 8977 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 8978 8979 if (ignore_zero && !hw) 8980 continue; 8981 8982 if (masks[i] == -1ULL) 8983 sw_stats[i] = hw; 8984 else 8985 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 8986 } 8987 } 8988 8989 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 8990 { 8991 if (!stats->hw_stats) 8992 return; 8993 8994 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 8995 stats->hw_masks, stats->len / 8, false); 8996 } 8997 8998 static void bnxt_accumulate_all_stats(struct bnxt *bp) 8999 { 9000 struct bnxt_stats_mem *ring0_stats; 9001 bool ignore_zero = false; 9002 int i; 9003 9004 /* Chip bug. Counter intermittently becomes 0. */ 9005 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 9006 ignore_zero = true; 9007 9008 for (i = 0; i < bp->cp_nr_rings; i++) { 9009 struct bnxt_napi *bnapi = bp->bnapi[i]; 9010 struct bnxt_cp_ring_info *cpr; 9011 struct bnxt_stats_mem *stats; 9012 9013 cpr = &bnapi->cp_ring; 9014 stats = &cpr->stats; 9015 if (!i) 9016 ring0_stats = stats; 9017 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 9018 ring0_stats->hw_masks, 9019 ring0_stats->len / 8, ignore_zero); 9020 } 9021 if (bp->flags & BNXT_FLAG_PORT_STATS) { 9022 struct bnxt_stats_mem *stats = &bp->port_stats; 9023 __le64 *hw_stats = stats->hw_stats; 9024 u64 *sw_stats = stats->sw_stats; 9025 u64 *masks = stats->hw_masks; 9026 int cnt; 9027 9028 cnt = sizeof(struct rx_port_stats) / 8; 9029 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 9030 9031 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 9032 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 9033 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 9034 cnt = sizeof(struct tx_port_stats) / 8; 9035 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 9036 } 9037 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 9038 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 9039 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 9040 } 9041 } 9042 9043 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 9044 { 9045 struct hwrm_port_qstats_input *req; 9046 struct bnxt_pf_info *pf = &bp->pf; 9047 int rc; 9048 9049 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 9050 return 0; 9051 9052 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 9053 return -EOPNOTSUPP; 9054 9055 rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS); 9056 if (rc) 9057 return rc; 9058 9059 req->flags = flags; 9060 req->port_id = cpu_to_le16(pf->port_id); 9061 req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 9062 BNXT_TX_PORT_STATS_BYTE_OFFSET); 9063 req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 9064 return hwrm_req_send(bp, req); 9065 } 9066 9067 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 9068 { 9069 struct hwrm_queue_pri2cos_qcfg_output *resp_qc; 9070 struct hwrm_queue_pri2cos_qcfg_input *req_qc; 9071 struct hwrm_port_qstats_ext_output *resp_qs; 9072 struct hwrm_port_qstats_ext_input *req_qs; 9073 struct bnxt_pf_info *pf = &bp->pf; 9074 u32 tx_stat_size; 9075 int rc; 9076 9077 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 9078 return 0; 9079 9080 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 9081 return -EOPNOTSUPP; 9082 9083 rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT); 9084 if (rc) 9085 return rc; 9086 9087 req_qs->flags = flags; 9088 req_qs->port_id = cpu_to_le16(pf->port_id); 9089 req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 9090 req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 9091 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 9092 sizeof(struct tx_port_stats_ext) : 0; 9093 req_qs->tx_stat_size = cpu_to_le16(tx_stat_size); 9094 req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 9095 resp_qs = hwrm_req_hold(bp, req_qs); 9096 rc = hwrm_req_send(bp, req_qs); 9097 if (!rc) { 9098 bp->fw_rx_stats_ext_size = 9099 le16_to_cpu(resp_qs->rx_stat_size) / 8; 9100 if (BNXT_FW_MAJ(bp) < 220 && 9101 bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY) 9102 bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY; 9103 9104 bp->fw_tx_stats_ext_size = tx_stat_size ? 9105 le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0; 9106 } else { 9107 bp->fw_rx_stats_ext_size = 0; 9108 bp->fw_tx_stats_ext_size = 0; 9109 } 9110 hwrm_req_drop(bp, req_qs); 9111 9112 if (flags) 9113 return rc; 9114 9115 if (bp->fw_tx_stats_ext_size <= 9116 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 9117 bp->pri2cos_valid = 0; 9118 return rc; 9119 } 9120 9121 rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG); 9122 if (rc) 9123 return rc; 9124 9125 req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 9126 9127 resp_qc = hwrm_req_hold(bp, req_qc); 9128 rc = hwrm_req_send(bp, req_qc); 9129 if (!rc) { 9130 u8 *pri2cos; 9131 int i, j; 9132 9133 pri2cos = &resp_qc->pri0_cos_queue_id; 9134 for (i = 0; i < 8; i++) { 9135 u8 queue_id = pri2cos[i]; 9136 u8 queue_idx; 9137 9138 /* Per port queue IDs start from 0, 10, 20, etc */ 9139 queue_idx = queue_id % 10; 9140 if (queue_idx > BNXT_MAX_QUEUE) { 9141 bp->pri2cos_valid = false; 9142 hwrm_req_drop(bp, req_qc); 9143 return rc; 9144 } 9145 for (j = 0; j < bp->max_q; j++) { 9146 if (bp->q_ids[j] == queue_id) 9147 bp->pri2cos_idx[i] = queue_idx; 9148 } 9149 } 9150 bp->pri2cos_valid = true; 9151 } 9152 hwrm_req_drop(bp, req_qc); 9153 9154 return rc; 9155 } 9156 9157 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 9158 { 9159 bnxt_hwrm_tunnel_dst_port_free(bp, 9160 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 9161 bnxt_hwrm_tunnel_dst_port_free(bp, 9162 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 9163 } 9164 9165 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 9166 { 9167 int rc, i; 9168 u32 tpa_flags = 0; 9169 9170 if (set_tpa) 9171 tpa_flags = bp->flags & BNXT_FLAG_TPA; 9172 else if (BNXT_NO_FW_ACCESS(bp)) 9173 return 0; 9174 for (i = 0; i < bp->nr_vnics; i++) { 9175 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags); 9176 if (rc) { 9177 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 9178 i, rc); 9179 return rc; 9180 } 9181 } 9182 return 0; 9183 } 9184 9185 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 9186 { 9187 int i; 9188 9189 for (i = 0; i < bp->nr_vnics; i++) 9190 bnxt_hwrm_vnic_set_rss(bp, i, false); 9191 } 9192 9193 static void bnxt_clear_vnic(struct bnxt *bp) 9194 { 9195 if (!bp->vnic_info) 9196 return; 9197 9198 bnxt_hwrm_clear_vnic_filter(bp); 9199 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) { 9200 /* clear all RSS setting before free vnic ctx */ 9201 bnxt_hwrm_clear_vnic_rss(bp); 9202 bnxt_hwrm_vnic_ctx_free(bp); 9203 } 9204 /* before free the vnic, undo the vnic tpa settings */ 9205 if (bp->flags & BNXT_FLAG_TPA) 9206 bnxt_set_tpa(bp, false); 9207 bnxt_hwrm_vnic_free(bp); 9208 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 9209 bnxt_hwrm_vnic_ctx_free(bp); 9210 } 9211 9212 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 9213 bool irq_re_init) 9214 { 9215 bnxt_clear_vnic(bp); 9216 bnxt_hwrm_ring_free(bp, close_path); 9217 bnxt_hwrm_ring_grp_free(bp); 9218 if (irq_re_init) { 9219 bnxt_hwrm_stat_ctx_free(bp); 9220 bnxt_hwrm_free_tunnel_ports(bp); 9221 } 9222 } 9223 9224 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 9225 { 9226 struct hwrm_func_cfg_input *req; 9227 u8 evb_mode; 9228 int rc; 9229 9230 if (br_mode == BRIDGE_MODE_VEB) 9231 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 9232 else if (br_mode == BRIDGE_MODE_VEPA) 9233 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 9234 else 9235 return -EINVAL; 9236 9237 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 9238 if (rc) 9239 return rc; 9240 9241 req->fid = cpu_to_le16(0xffff); 9242 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 9243 req->evb_mode = evb_mode; 9244 return hwrm_req_send(bp, req); 9245 } 9246 9247 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 9248 { 9249 struct hwrm_func_cfg_input *req; 9250 int rc; 9251 9252 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 9253 return 0; 9254 9255 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 9256 if (rc) 9257 return rc; 9258 9259 req->fid = cpu_to_le16(0xffff); 9260 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 9261 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 9262 if (size == 128) 9263 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 9264 9265 return hwrm_req_send(bp, req); 9266 } 9267 9268 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 9269 { 9270 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 9271 int rc; 9272 9273 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 9274 goto skip_rss_ctx; 9275 9276 /* allocate context for vnic */ 9277 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0); 9278 if (rc) { 9279 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 9280 vnic_id, rc); 9281 goto vnic_setup_err; 9282 } 9283 bp->rsscos_nr_ctxs++; 9284 9285 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 9286 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1); 9287 if (rc) { 9288 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 9289 vnic_id, rc); 9290 goto vnic_setup_err; 9291 } 9292 bp->rsscos_nr_ctxs++; 9293 } 9294 9295 skip_rss_ctx: 9296 /* configure default vnic, ring grp */ 9297 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 9298 if (rc) { 9299 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 9300 vnic_id, rc); 9301 goto vnic_setup_err; 9302 } 9303 9304 /* Enable RSS hashing on vnic */ 9305 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true); 9306 if (rc) { 9307 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 9308 vnic_id, rc); 9309 goto vnic_setup_err; 9310 } 9311 9312 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 9313 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 9314 if (rc) { 9315 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 9316 vnic_id, rc); 9317 } 9318 } 9319 9320 vnic_setup_err: 9321 return rc; 9322 } 9323 9324 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id) 9325 { 9326 int rc, i, nr_ctxs; 9327 9328 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 9329 for (i = 0; i < nr_ctxs; i++) { 9330 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i); 9331 if (rc) { 9332 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 9333 vnic_id, i, rc); 9334 break; 9335 } 9336 bp->rsscos_nr_ctxs++; 9337 } 9338 if (i < nr_ctxs) 9339 return -ENOMEM; 9340 9341 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true); 9342 if (rc) { 9343 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 9344 vnic_id, rc); 9345 return rc; 9346 } 9347 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 9348 if (rc) { 9349 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 9350 vnic_id, rc); 9351 return rc; 9352 } 9353 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 9354 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 9355 if (rc) { 9356 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 9357 vnic_id, rc); 9358 } 9359 } 9360 return rc; 9361 } 9362 9363 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 9364 { 9365 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 9366 return __bnxt_setup_vnic_p5(bp, vnic_id); 9367 else 9368 return __bnxt_setup_vnic(bp, vnic_id); 9369 } 9370 9371 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 9372 { 9373 #ifdef CONFIG_RFS_ACCEL 9374 int i, rc = 0; 9375 9376 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 9377 return 0; 9378 9379 for (i = 0; i < bp->rx_nr_rings; i++) { 9380 struct bnxt_vnic_info *vnic; 9381 u16 vnic_id = i + 1; 9382 u16 ring_id = i; 9383 9384 if (vnic_id >= bp->nr_vnics) 9385 break; 9386 9387 vnic = &bp->vnic_info[vnic_id]; 9388 vnic->flags |= BNXT_VNIC_RFS_FLAG; 9389 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 9390 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 9391 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1); 9392 if (rc) { 9393 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 9394 vnic_id, rc); 9395 break; 9396 } 9397 rc = bnxt_setup_vnic(bp, vnic_id); 9398 if (rc) 9399 break; 9400 } 9401 return rc; 9402 #else 9403 return 0; 9404 #endif 9405 } 9406 9407 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 9408 static bool bnxt_promisc_ok(struct bnxt *bp) 9409 { 9410 #ifdef CONFIG_BNXT_SRIOV 9411 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 9412 return false; 9413 #endif 9414 return true; 9415 } 9416 9417 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 9418 { 9419 unsigned int rc = 0; 9420 9421 rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1); 9422 if (rc) { 9423 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 9424 rc); 9425 return rc; 9426 } 9427 9428 rc = bnxt_hwrm_vnic_cfg(bp, 1); 9429 if (rc) { 9430 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 9431 rc); 9432 return rc; 9433 } 9434 return rc; 9435 } 9436 9437 static int bnxt_cfg_rx_mode(struct bnxt *); 9438 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 9439 9440 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 9441 { 9442 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 9443 int rc = 0; 9444 unsigned int rx_nr_rings = bp->rx_nr_rings; 9445 9446 if (irq_re_init) { 9447 rc = bnxt_hwrm_stat_ctx_alloc(bp); 9448 if (rc) { 9449 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 9450 rc); 9451 goto err_out; 9452 } 9453 } 9454 9455 rc = bnxt_hwrm_ring_alloc(bp); 9456 if (rc) { 9457 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 9458 goto err_out; 9459 } 9460 9461 rc = bnxt_hwrm_ring_grp_alloc(bp); 9462 if (rc) { 9463 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 9464 goto err_out; 9465 } 9466 9467 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 9468 rx_nr_rings--; 9469 9470 /* default vnic 0 */ 9471 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings); 9472 if (rc) { 9473 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 9474 goto err_out; 9475 } 9476 9477 if (BNXT_VF(bp)) 9478 bnxt_hwrm_func_qcfg(bp); 9479 9480 rc = bnxt_setup_vnic(bp, 0); 9481 if (rc) 9482 goto err_out; 9483 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 9484 bnxt_hwrm_update_rss_hash_cfg(bp); 9485 9486 if (bp->flags & BNXT_FLAG_RFS) { 9487 rc = bnxt_alloc_rfs_vnics(bp); 9488 if (rc) 9489 goto err_out; 9490 } 9491 9492 if (bp->flags & BNXT_FLAG_TPA) { 9493 rc = bnxt_set_tpa(bp, true); 9494 if (rc) 9495 goto err_out; 9496 } 9497 9498 if (BNXT_VF(bp)) 9499 bnxt_update_vf_mac(bp); 9500 9501 /* Filter for default vnic 0 */ 9502 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 9503 if (rc) { 9504 if (BNXT_VF(bp) && rc == -ENODEV) 9505 netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n"); 9506 else 9507 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 9508 goto err_out; 9509 } 9510 vnic->uc_filter_count = 1; 9511 9512 vnic->rx_mask = 0; 9513 if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state)) 9514 goto skip_rx_mask; 9515 9516 if (bp->dev->flags & IFF_BROADCAST) 9517 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 9518 9519 if (bp->dev->flags & IFF_PROMISC) 9520 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 9521 9522 if (bp->dev->flags & IFF_ALLMULTI) { 9523 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 9524 vnic->mc_list_count = 0; 9525 } else if (bp->dev->flags & IFF_MULTICAST) { 9526 u32 mask = 0; 9527 9528 bnxt_mc_list_updated(bp, &mask); 9529 vnic->rx_mask |= mask; 9530 } 9531 9532 rc = bnxt_cfg_rx_mode(bp); 9533 if (rc) 9534 goto err_out; 9535 9536 skip_rx_mask: 9537 rc = bnxt_hwrm_set_coal(bp); 9538 if (rc) 9539 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 9540 rc); 9541 9542 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 9543 rc = bnxt_setup_nitroa0_vnic(bp); 9544 if (rc) 9545 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 9546 rc); 9547 } 9548 9549 if (BNXT_VF(bp)) { 9550 bnxt_hwrm_func_qcfg(bp); 9551 netdev_update_features(bp->dev); 9552 } 9553 9554 return 0; 9555 9556 err_out: 9557 bnxt_hwrm_resource_free(bp, 0, true); 9558 9559 return rc; 9560 } 9561 9562 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 9563 { 9564 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 9565 return 0; 9566 } 9567 9568 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 9569 { 9570 bnxt_init_cp_rings(bp); 9571 bnxt_init_rx_rings(bp); 9572 bnxt_init_tx_rings(bp); 9573 bnxt_init_ring_grps(bp, irq_re_init); 9574 bnxt_init_vnics(bp); 9575 9576 return bnxt_init_chip(bp, irq_re_init); 9577 } 9578 9579 static int bnxt_set_real_num_queues(struct bnxt *bp) 9580 { 9581 int rc; 9582 struct net_device *dev = bp->dev; 9583 9584 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 9585 bp->tx_nr_rings_xdp); 9586 if (rc) 9587 return rc; 9588 9589 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 9590 if (rc) 9591 return rc; 9592 9593 #ifdef CONFIG_RFS_ACCEL 9594 if (bp->flags & BNXT_FLAG_RFS) 9595 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 9596 #endif 9597 9598 return rc; 9599 } 9600 9601 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 9602 bool shared) 9603 { 9604 int _rx = *rx, _tx = *tx; 9605 9606 if (shared) { 9607 *rx = min_t(int, _rx, max); 9608 *tx = min_t(int, _tx, max); 9609 } else { 9610 if (max < 2) 9611 return -ENOMEM; 9612 9613 while (_rx + _tx > max) { 9614 if (_rx > _tx && _rx > 1) 9615 _rx--; 9616 else if (_tx > 1) 9617 _tx--; 9618 } 9619 *rx = _rx; 9620 *tx = _tx; 9621 } 9622 return 0; 9623 } 9624 9625 static int __bnxt_num_tx_to_cp(struct bnxt *bp, int tx, int tx_sets, int tx_xdp) 9626 { 9627 return (tx - tx_xdp) / tx_sets + tx_xdp; 9628 } 9629 9630 int bnxt_num_tx_to_cp(struct bnxt *bp, int tx) 9631 { 9632 int tcs = netdev_get_num_tc(bp->dev); 9633 9634 if (!tcs) 9635 tcs = 1; 9636 return __bnxt_num_tx_to_cp(bp, tx, tcs, bp->tx_nr_rings_xdp); 9637 } 9638 9639 static int bnxt_num_cp_to_tx(struct bnxt *bp, int tx_cp) 9640 { 9641 int tcs = netdev_get_num_tc(bp->dev); 9642 9643 return (tx_cp - bp->tx_nr_rings_xdp) * tcs + 9644 bp->tx_nr_rings_xdp; 9645 } 9646 9647 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 9648 bool sh) 9649 { 9650 int tx_cp = bnxt_num_tx_to_cp(bp, *tx); 9651 9652 if (tx_cp != *tx) { 9653 int tx_saved = tx_cp, rc; 9654 9655 rc = __bnxt_trim_rings(bp, rx, &tx_cp, max, sh); 9656 if (rc) 9657 return rc; 9658 if (tx_cp != tx_saved) 9659 *tx = bnxt_num_cp_to_tx(bp, tx_cp); 9660 return 0; 9661 } 9662 return __bnxt_trim_rings(bp, rx, tx, max, sh); 9663 } 9664 9665 static void bnxt_setup_msix(struct bnxt *bp) 9666 { 9667 const int len = sizeof(bp->irq_tbl[0].name); 9668 struct net_device *dev = bp->dev; 9669 int tcs, i; 9670 9671 tcs = netdev_get_num_tc(dev); 9672 if (tcs) { 9673 int i, off, count; 9674 9675 for (i = 0; i < tcs; i++) { 9676 count = bp->tx_nr_rings_per_tc; 9677 off = BNXT_TC_TO_RING_BASE(bp, i); 9678 netdev_set_tc_queue(dev, i, count, off); 9679 } 9680 } 9681 9682 for (i = 0; i < bp->cp_nr_rings; i++) { 9683 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9684 char *attr; 9685 9686 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 9687 attr = "TxRx"; 9688 else if (i < bp->rx_nr_rings) 9689 attr = "rx"; 9690 else 9691 attr = "tx"; 9692 9693 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 9694 attr, i); 9695 bp->irq_tbl[map_idx].handler = bnxt_msix; 9696 } 9697 } 9698 9699 static void bnxt_setup_inta(struct bnxt *bp) 9700 { 9701 const int len = sizeof(bp->irq_tbl[0].name); 9702 9703 if (netdev_get_num_tc(bp->dev)) 9704 netdev_reset_tc(bp->dev); 9705 9706 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx", 9707 0); 9708 bp->irq_tbl[0].handler = bnxt_inta; 9709 } 9710 9711 static int bnxt_init_int_mode(struct bnxt *bp); 9712 9713 static int bnxt_setup_int_mode(struct bnxt *bp) 9714 { 9715 int rc; 9716 9717 if (!bp->irq_tbl) { 9718 rc = bnxt_init_int_mode(bp); 9719 if (rc || !bp->irq_tbl) 9720 return rc ?: -ENODEV; 9721 } 9722 9723 if (bp->flags & BNXT_FLAG_USING_MSIX) 9724 bnxt_setup_msix(bp); 9725 else 9726 bnxt_setup_inta(bp); 9727 9728 rc = bnxt_set_real_num_queues(bp); 9729 return rc; 9730 } 9731 9732 #ifdef CONFIG_RFS_ACCEL 9733 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 9734 { 9735 return bp->hw_resc.max_rsscos_ctxs; 9736 } 9737 9738 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 9739 { 9740 return bp->hw_resc.max_vnics; 9741 } 9742 #endif 9743 9744 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 9745 { 9746 return bp->hw_resc.max_stat_ctxs; 9747 } 9748 9749 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 9750 { 9751 return bp->hw_resc.max_cp_rings; 9752 } 9753 9754 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 9755 { 9756 unsigned int cp = bp->hw_resc.max_cp_rings; 9757 9758 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 9759 cp -= bnxt_get_ulp_msix_num(bp); 9760 9761 return cp; 9762 } 9763 9764 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 9765 { 9766 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9767 9768 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 9769 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 9770 9771 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 9772 } 9773 9774 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 9775 { 9776 bp->hw_resc.max_irqs = max_irqs; 9777 } 9778 9779 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 9780 { 9781 unsigned int cp; 9782 9783 cp = bnxt_get_max_func_cp_rings_for_en(bp); 9784 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 9785 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 9786 else 9787 return cp - bp->cp_nr_rings; 9788 } 9789 9790 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 9791 { 9792 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 9793 } 9794 9795 int bnxt_get_avail_msix(struct bnxt *bp, int num) 9796 { 9797 int max_cp = bnxt_get_max_func_cp_rings(bp); 9798 int max_irq = bnxt_get_max_func_irqs(bp); 9799 int total_req = bp->cp_nr_rings + num; 9800 int max_idx, avail_msix; 9801 9802 max_idx = bp->total_irqs; 9803 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 9804 max_idx = min_t(int, bp->total_irqs, max_cp); 9805 avail_msix = max_idx - bp->cp_nr_rings; 9806 if (!BNXT_NEW_RM(bp) || avail_msix >= num) 9807 return avail_msix; 9808 9809 if (max_irq < total_req) { 9810 num = max_irq - bp->cp_nr_rings; 9811 if (num <= 0) 9812 return 0; 9813 } 9814 return num; 9815 } 9816 9817 static int bnxt_get_num_msix(struct bnxt *bp) 9818 { 9819 if (!BNXT_NEW_RM(bp)) 9820 return bnxt_get_max_func_irqs(bp); 9821 9822 return bnxt_nq_rings_in_use(bp); 9823 } 9824 9825 static int bnxt_init_msix(struct bnxt *bp) 9826 { 9827 int i, total_vecs, max, rc = 0, min = 1, ulp_msix, tx_cp; 9828 struct msix_entry *msix_ent; 9829 9830 total_vecs = bnxt_get_num_msix(bp); 9831 max = bnxt_get_max_func_irqs(bp); 9832 if (total_vecs > max) 9833 total_vecs = max; 9834 9835 if (!total_vecs) 9836 return 0; 9837 9838 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); 9839 if (!msix_ent) 9840 return -ENOMEM; 9841 9842 for (i = 0; i < total_vecs; i++) { 9843 msix_ent[i].entry = i; 9844 msix_ent[i].vector = 0; 9845 } 9846 9847 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 9848 min = 2; 9849 9850 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs); 9851 ulp_msix = bnxt_get_ulp_msix_num(bp); 9852 if (total_vecs < 0 || total_vecs < ulp_msix) { 9853 rc = -ENODEV; 9854 goto msix_setup_exit; 9855 } 9856 9857 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); 9858 if (bp->irq_tbl) { 9859 for (i = 0; i < total_vecs; i++) 9860 bp->irq_tbl[i].vector = msix_ent[i].vector; 9861 9862 bp->total_irqs = total_vecs; 9863 /* Trim rings based upon num of vectors allocated */ 9864 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 9865 total_vecs - ulp_msix, min == 1); 9866 if (rc) 9867 goto msix_setup_exit; 9868 9869 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 9870 bp->cp_nr_rings = (min == 1) ? 9871 max_t(int, tx_cp, bp->rx_nr_rings) : 9872 tx_cp + bp->rx_nr_rings; 9873 9874 } else { 9875 rc = -ENOMEM; 9876 goto msix_setup_exit; 9877 } 9878 bp->flags |= BNXT_FLAG_USING_MSIX; 9879 kfree(msix_ent); 9880 return 0; 9881 9882 msix_setup_exit: 9883 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc); 9884 kfree(bp->irq_tbl); 9885 bp->irq_tbl = NULL; 9886 pci_disable_msix(bp->pdev); 9887 kfree(msix_ent); 9888 return rc; 9889 } 9890 9891 static int bnxt_init_inta(struct bnxt *bp) 9892 { 9893 bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL); 9894 if (!bp->irq_tbl) 9895 return -ENOMEM; 9896 9897 bp->total_irqs = 1; 9898 bp->rx_nr_rings = 1; 9899 bp->tx_nr_rings = 1; 9900 bp->cp_nr_rings = 1; 9901 bp->flags |= BNXT_FLAG_SHARED_RINGS; 9902 bp->irq_tbl[0].vector = bp->pdev->irq; 9903 return 0; 9904 } 9905 9906 static int bnxt_init_int_mode(struct bnxt *bp) 9907 { 9908 int rc = -ENODEV; 9909 9910 if (bp->flags & BNXT_FLAG_MSIX_CAP) 9911 rc = bnxt_init_msix(bp); 9912 9913 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) { 9914 /* fallback to INTA */ 9915 rc = bnxt_init_inta(bp); 9916 } 9917 return rc; 9918 } 9919 9920 static void bnxt_clear_int_mode(struct bnxt *bp) 9921 { 9922 if (bp->flags & BNXT_FLAG_USING_MSIX) 9923 pci_disable_msix(bp->pdev); 9924 9925 kfree(bp->irq_tbl); 9926 bp->irq_tbl = NULL; 9927 bp->flags &= ~BNXT_FLAG_USING_MSIX; 9928 } 9929 9930 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 9931 { 9932 int tcs = netdev_get_num_tc(bp->dev); 9933 bool irq_cleared = false; 9934 int rc; 9935 9936 if (!bnxt_need_reserve_rings(bp)) 9937 return 0; 9938 9939 if (irq_re_init && BNXT_NEW_RM(bp) && 9940 bnxt_get_num_msix(bp) != bp->total_irqs) { 9941 bnxt_ulp_irq_stop(bp); 9942 bnxt_clear_int_mode(bp); 9943 irq_cleared = true; 9944 } 9945 rc = __bnxt_reserve_rings(bp); 9946 if (irq_cleared) { 9947 if (!rc) 9948 rc = bnxt_init_int_mode(bp); 9949 bnxt_ulp_irq_restart(bp, rc); 9950 } 9951 if (rc) { 9952 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 9953 return rc; 9954 } 9955 if (tcs && (bp->tx_nr_rings_per_tc * tcs != 9956 bp->tx_nr_rings - bp->tx_nr_rings_xdp)) { 9957 netdev_err(bp->dev, "tx ring reservation failure\n"); 9958 netdev_reset_tc(bp->dev); 9959 if (bp->tx_nr_rings_xdp) 9960 bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp; 9961 else 9962 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 9963 return -ENOMEM; 9964 } 9965 return 0; 9966 } 9967 9968 static void bnxt_free_irq(struct bnxt *bp) 9969 { 9970 struct bnxt_irq *irq; 9971 int i; 9972 9973 #ifdef CONFIG_RFS_ACCEL 9974 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 9975 bp->dev->rx_cpu_rmap = NULL; 9976 #endif 9977 if (!bp->irq_tbl || !bp->bnapi) 9978 return; 9979 9980 for (i = 0; i < bp->cp_nr_rings; i++) { 9981 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9982 9983 irq = &bp->irq_tbl[map_idx]; 9984 if (irq->requested) { 9985 if (irq->have_cpumask) { 9986 irq_set_affinity_hint(irq->vector, NULL); 9987 free_cpumask_var(irq->cpu_mask); 9988 irq->have_cpumask = 0; 9989 } 9990 free_irq(irq->vector, bp->bnapi[i]); 9991 } 9992 9993 irq->requested = 0; 9994 } 9995 } 9996 9997 static int bnxt_request_irq(struct bnxt *bp) 9998 { 9999 int i, j, rc = 0; 10000 unsigned long flags = 0; 10001 #ifdef CONFIG_RFS_ACCEL 10002 struct cpu_rmap *rmap; 10003 #endif 10004 10005 rc = bnxt_setup_int_mode(bp); 10006 if (rc) { 10007 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 10008 rc); 10009 return rc; 10010 } 10011 #ifdef CONFIG_RFS_ACCEL 10012 rmap = bp->dev->rx_cpu_rmap; 10013 #endif 10014 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) 10015 flags = IRQF_SHARED; 10016 10017 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 10018 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 10019 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 10020 10021 #ifdef CONFIG_RFS_ACCEL 10022 if (rmap && bp->bnapi[i]->rx_ring) { 10023 rc = irq_cpu_rmap_add(rmap, irq->vector); 10024 if (rc) 10025 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 10026 j); 10027 j++; 10028 } 10029 #endif 10030 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 10031 bp->bnapi[i]); 10032 if (rc) 10033 break; 10034 10035 netif_napi_set_irq(&bp->bnapi[i]->napi, irq->vector); 10036 irq->requested = 1; 10037 10038 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 10039 int numa_node = dev_to_node(&bp->pdev->dev); 10040 10041 irq->have_cpumask = 1; 10042 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 10043 irq->cpu_mask); 10044 rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask); 10045 if (rc) { 10046 netdev_warn(bp->dev, 10047 "Set affinity failed, IRQ = %d\n", 10048 irq->vector); 10049 break; 10050 } 10051 } 10052 } 10053 return rc; 10054 } 10055 10056 static void bnxt_del_napi(struct bnxt *bp) 10057 { 10058 int i; 10059 10060 if (!bp->bnapi) 10061 return; 10062 10063 for (i = 0; i < bp->rx_nr_rings; i++) 10064 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_RX, NULL); 10065 for (i = 0; i < bp->tx_nr_rings - bp->tx_nr_rings_xdp; i++) 10066 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_TX, NULL); 10067 10068 for (i = 0; i < bp->cp_nr_rings; i++) { 10069 struct bnxt_napi *bnapi = bp->bnapi[i]; 10070 10071 __netif_napi_del(&bnapi->napi); 10072 } 10073 /* We called __netif_napi_del(), we need 10074 * to respect an RCU grace period before freeing napi structures. 10075 */ 10076 synchronize_net(); 10077 } 10078 10079 static void bnxt_init_napi(struct bnxt *bp) 10080 { 10081 int i; 10082 unsigned int cp_nr_rings = bp->cp_nr_rings; 10083 struct bnxt_napi *bnapi; 10084 10085 if (bp->flags & BNXT_FLAG_USING_MSIX) { 10086 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 10087 10088 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10089 poll_fn = bnxt_poll_p5; 10090 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 10091 cp_nr_rings--; 10092 for (i = 0; i < cp_nr_rings; i++) { 10093 bnapi = bp->bnapi[i]; 10094 netif_napi_add(bp->dev, &bnapi->napi, poll_fn); 10095 } 10096 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10097 bnapi = bp->bnapi[cp_nr_rings]; 10098 netif_napi_add(bp->dev, &bnapi->napi, 10099 bnxt_poll_nitroa0); 10100 } 10101 } else { 10102 bnapi = bp->bnapi[0]; 10103 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll); 10104 } 10105 } 10106 10107 static void bnxt_disable_napi(struct bnxt *bp) 10108 { 10109 int i; 10110 10111 if (!bp->bnapi || 10112 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 10113 return; 10114 10115 for (i = 0; i < bp->cp_nr_rings; i++) { 10116 struct bnxt_napi *bnapi = bp->bnapi[i]; 10117 struct bnxt_cp_ring_info *cpr; 10118 10119 cpr = &bnapi->cp_ring; 10120 if (bnapi->tx_fault) 10121 cpr->sw_stats.tx.tx_resets++; 10122 if (bnapi->in_reset) 10123 cpr->sw_stats.rx.rx_resets++; 10124 napi_disable(&bnapi->napi); 10125 if (bnapi->rx_ring) 10126 cancel_work_sync(&cpr->dim.work); 10127 } 10128 } 10129 10130 static void bnxt_enable_napi(struct bnxt *bp) 10131 { 10132 int i; 10133 10134 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 10135 for (i = 0; i < bp->cp_nr_rings; i++) { 10136 struct bnxt_napi *bnapi = bp->bnapi[i]; 10137 struct bnxt_cp_ring_info *cpr; 10138 10139 bnapi->tx_fault = 0; 10140 10141 cpr = &bnapi->cp_ring; 10142 bnapi->in_reset = false; 10143 10144 if (bnapi->rx_ring) { 10145 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 10146 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 10147 } 10148 napi_enable(&bnapi->napi); 10149 } 10150 } 10151 10152 void bnxt_tx_disable(struct bnxt *bp) 10153 { 10154 int i; 10155 struct bnxt_tx_ring_info *txr; 10156 10157 if (bp->tx_ring) { 10158 for (i = 0; i < bp->tx_nr_rings; i++) { 10159 txr = &bp->tx_ring[i]; 10160 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 10161 } 10162 } 10163 /* Make sure napi polls see @dev_state change */ 10164 synchronize_net(); 10165 /* Drop carrier first to prevent TX timeout */ 10166 netif_carrier_off(bp->dev); 10167 /* Stop all TX queues */ 10168 netif_tx_disable(bp->dev); 10169 } 10170 10171 void bnxt_tx_enable(struct bnxt *bp) 10172 { 10173 int i; 10174 struct bnxt_tx_ring_info *txr; 10175 10176 for (i = 0; i < bp->tx_nr_rings; i++) { 10177 txr = &bp->tx_ring[i]; 10178 WRITE_ONCE(txr->dev_state, 0); 10179 } 10180 /* Make sure napi polls see @dev_state change */ 10181 synchronize_net(); 10182 netif_tx_wake_all_queues(bp->dev); 10183 if (BNXT_LINK_IS_UP(bp)) 10184 netif_carrier_on(bp->dev); 10185 } 10186 10187 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 10188 { 10189 u8 active_fec = link_info->active_fec_sig_mode & 10190 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 10191 10192 switch (active_fec) { 10193 default: 10194 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 10195 return "None"; 10196 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 10197 return "Clause 74 BaseR"; 10198 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 10199 return "Clause 91 RS(528,514)"; 10200 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 10201 return "Clause 91 RS544_1XN"; 10202 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 10203 return "Clause 91 RS(544,514)"; 10204 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 10205 return "Clause 91 RS272_1XN"; 10206 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 10207 return "Clause 91 RS(272,257)"; 10208 } 10209 } 10210 10211 void bnxt_report_link(struct bnxt *bp) 10212 { 10213 if (BNXT_LINK_IS_UP(bp)) { 10214 const char *signal = ""; 10215 const char *flow_ctrl; 10216 const char *duplex; 10217 u32 speed; 10218 u16 fec; 10219 10220 netif_carrier_on(bp->dev); 10221 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 10222 if (speed == SPEED_UNKNOWN) { 10223 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 10224 return; 10225 } 10226 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 10227 duplex = "full"; 10228 else 10229 duplex = "half"; 10230 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 10231 flow_ctrl = "ON - receive & transmit"; 10232 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 10233 flow_ctrl = "ON - transmit"; 10234 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 10235 flow_ctrl = "ON - receive"; 10236 else 10237 flow_ctrl = "none"; 10238 if (bp->link_info.phy_qcfg_resp.option_flags & 10239 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 10240 u8 sig_mode = bp->link_info.active_fec_sig_mode & 10241 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 10242 switch (sig_mode) { 10243 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 10244 signal = "(NRZ) "; 10245 break; 10246 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 10247 signal = "(PAM4 56Gbps) "; 10248 break; 10249 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4_112: 10250 signal = "(PAM4 112Gbps) "; 10251 break; 10252 default: 10253 break; 10254 } 10255 } 10256 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 10257 speed, signal, duplex, flow_ctrl); 10258 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 10259 netdev_info(bp->dev, "EEE is %s\n", 10260 bp->eee.eee_active ? "active" : 10261 "not active"); 10262 fec = bp->link_info.fec_cfg; 10263 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 10264 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 10265 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 10266 bnxt_report_fec(&bp->link_info)); 10267 } else { 10268 netif_carrier_off(bp->dev); 10269 netdev_err(bp->dev, "NIC Link is Down\n"); 10270 } 10271 } 10272 10273 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 10274 { 10275 if (!resp->supported_speeds_auto_mode && 10276 !resp->supported_speeds_force_mode && 10277 !resp->supported_pam4_speeds_auto_mode && 10278 !resp->supported_pam4_speeds_force_mode && 10279 !resp->supported_speeds2_auto_mode && 10280 !resp->supported_speeds2_force_mode) 10281 return true; 10282 return false; 10283 } 10284 10285 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 10286 { 10287 struct bnxt_link_info *link_info = &bp->link_info; 10288 struct hwrm_port_phy_qcaps_output *resp; 10289 struct hwrm_port_phy_qcaps_input *req; 10290 int rc = 0; 10291 10292 if (bp->hwrm_spec_code < 0x10201) 10293 return 0; 10294 10295 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS); 10296 if (rc) 10297 return rc; 10298 10299 resp = hwrm_req_hold(bp, req); 10300 rc = hwrm_req_send(bp, req); 10301 if (rc) 10302 goto hwrm_phy_qcaps_exit; 10303 10304 bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8); 10305 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 10306 struct ethtool_eee *eee = &bp->eee; 10307 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 10308 10309 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 10310 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 10311 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 10312 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 10313 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 10314 } 10315 10316 if (bp->hwrm_spec_code >= 0x10a01) { 10317 if (bnxt_phy_qcaps_no_speed(resp)) { 10318 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 10319 netdev_warn(bp->dev, "Ethernet link disabled\n"); 10320 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 10321 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 10322 netdev_info(bp->dev, "Ethernet link enabled\n"); 10323 /* Phy re-enabled, reprobe the speeds */ 10324 link_info->support_auto_speeds = 0; 10325 link_info->support_pam4_auto_speeds = 0; 10326 link_info->support_auto_speeds2 = 0; 10327 } 10328 } 10329 if (resp->supported_speeds_auto_mode) 10330 link_info->support_auto_speeds = 10331 le16_to_cpu(resp->supported_speeds_auto_mode); 10332 if (resp->supported_pam4_speeds_auto_mode) 10333 link_info->support_pam4_auto_speeds = 10334 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 10335 if (resp->supported_speeds2_auto_mode) 10336 link_info->support_auto_speeds2 = 10337 le16_to_cpu(resp->supported_speeds2_auto_mode); 10338 10339 bp->port_count = resp->port_cnt; 10340 10341 hwrm_phy_qcaps_exit: 10342 hwrm_req_drop(bp, req); 10343 return rc; 10344 } 10345 10346 static bool bnxt_support_dropped(u16 advertising, u16 supported) 10347 { 10348 u16 diff = advertising ^ supported; 10349 10350 return ((supported | diff) != supported); 10351 } 10352 10353 static bool bnxt_support_speed_dropped(struct bnxt_link_info *link_info) 10354 { 10355 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 10356 10357 /* Check if any advertised speeds are no longer supported. The caller 10358 * holds the link_lock mutex, so we can modify link_info settings. 10359 */ 10360 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 10361 if (bnxt_support_dropped(link_info->advertising, 10362 link_info->support_auto_speeds2)) { 10363 link_info->advertising = link_info->support_auto_speeds2; 10364 return true; 10365 } 10366 return false; 10367 } 10368 if (bnxt_support_dropped(link_info->advertising, 10369 link_info->support_auto_speeds)) { 10370 link_info->advertising = link_info->support_auto_speeds; 10371 return true; 10372 } 10373 if (bnxt_support_dropped(link_info->advertising_pam4, 10374 link_info->support_pam4_auto_speeds)) { 10375 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 10376 return true; 10377 } 10378 return false; 10379 } 10380 10381 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 10382 { 10383 struct bnxt_link_info *link_info = &bp->link_info; 10384 struct hwrm_port_phy_qcfg_output *resp; 10385 struct hwrm_port_phy_qcfg_input *req; 10386 u8 link_state = link_info->link_state; 10387 bool support_changed; 10388 int rc; 10389 10390 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG); 10391 if (rc) 10392 return rc; 10393 10394 resp = hwrm_req_hold(bp, req); 10395 rc = hwrm_req_send(bp, req); 10396 if (rc) { 10397 hwrm_req_drop(bp, req); 10398 if (BNXT_VF(bp) && rc == -ENODEV) { 10399 netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n"); 10400 rc = 0; 10401 } 10402 return rc; 10403 } 10404 10405 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 10406 link_info->phy_link_status = resp->link; 10407 link_info->duplex = resp->duplex_cfg; 10408 if (bp->hwrm_spec_code >= 0x10800) 10409 link_info->duplex = resp->duplex_state; 10410 link_info->pause = resp->pause; 10411 link_info->auto_mode = resp->auto_mode; 10412 link_info->auto_pause_setting = resp->auto_pause; 10413 link_info->lp_pause = resp->link_partner_adv_pause; 10414 link_info->force_pause_setting = resp->force_pause; 10415 link_info->duplex_setting = resp->duplex_cfg; 10416 if (link_info->phy_link_status == BNXT_LINK_LINK) { 10417 link_info->link_speed = le16_to_cpu(resp->link_speed); 10418 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 10419 link_info->active_lanes = resp->active_lanes; 10420 } else { 10421 link_info->link_speed = 0; 10422 link_info->active_lanes = 0; 10423 } 10424 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 10425 link_info->force_pam4_link_speed = 10426 le16_to_cpu(resp->force_pam4_link_speed); 10427 link_info->force_link_speed2 = le16_to_cpu(resp->force_link_speeds2); 10428 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 10429 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 10430 link_info->support_speeds2 = le16_to_cpu(resp->support_speeds2); 10431 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 10432 link_info->auto_pam4_link_speeds = 10433 le16_to_cpu(resp->auto_pam4_link_speed_mask); 10434 link_info->auto_link_speeds2 = le16_to_cpu(resp->auto_link_speeds2); 10435 link_info->lp_auto_link_speeds = 10436 le16_to_cpu(resp->link_partner_adv_speeds); 10437 link_info->lp_auto_pam4_link_speeds = 10438 resp->link_partner_pam4_adv_speeds; 10439 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 10440 link_info->phy_ver[0] = resp->phy_maj; 10441 link_info->phy_ver[1] = resp->phy_min; 10442 link_info->phy_ver[2] = resp->phy_bld; 10443 link_info->media_type = resp->media_type; 10444 link_info->phy_type = resp->phy_type; 10445 link_info->transceiver = resp->xcvr_pkg_type; 10446 link_info->phy_addr = resp->eee_config_phy_addr & 10447 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 10448 link_info->module_status = resp->module_status; 10449 10450 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 10451 struct ethtool_eee *eee = &bp->eee; 10452 u16 fw_speeds; 10453 10454 eee->eee_active = 0; 10455 if (resp->eee_config_phy_addr & 10456 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 10457 eee->eee_active = 1; 10458 fw_speeds = le16_to_cpu( 10459 resp->link_partner_adv_eee_link_speed_mask); 10460 eee->lp_advertised = 10461 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 10462 } 10463 10464 /* Pull initial EEE config */ 10465 if (!chng_link_state) { 10466 if (resp->eee_config_phy_addr & 10467 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 10468 eee->eee_enabled = 1; 10469 10470 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 10471 eee->advertised = 10472 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 10473 10474 if (resp->eee_config_phy_addr & 10475 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 10476 __le32 tmr; 10477 10478 eee->tx_lpi_enabled = 1; 10479 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 10480 eee->tx_lpi_timer = le32_to_cpu(tmr) & 10481 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 10482 } 10483 } 10484 } 10485 10486 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 10487 if (bp->hwrm_spec_code >= 0x10504) { 10488 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 10489 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 10490 } 10491 /* TODO: need to add more logic to report VF link */ 10492 if (chng_link_state) { 10493 if (link_info->phy_link_status == BNXT_LINK_LINK) 10494 link_info->link_state = BNXT_LINK_STATE_UP; 10495 else 10496 link_info->link_state = BNXT_LINK_STATE_DOWN; 10497 if (link_state != link_info->link_state) 10498 bnxt_report_link(bp); 10499 } else { 10500 /* always link down if not require to update link state */ 10501 link_info->link_state = BNXT_LINK_STATE_DOWN; 10502 } 10503 hwrm_req_drop(bp, req); 10504 10505 if (!BNXT_PHY_CFG_ABLE(bp)) 10506 return 0; 10507 10508 support_changed = bnxt_support_speed_dropped(link_info); 10509 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 10510 bnxt_hwrm_set_link_setting(bp, true, false); 10511 return 0; 10512 } 10513 10514 static void bnxt_get_port_module_status(struct bnxt *bp) 10515 { 10516 struct bnxt_link_info *link_info = &bp->link_info; 10517 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 10518 u8 module_status; 10519 10520 if (bnxt_update_link(bp, true)) 10521 return; 10522 10523 module_status = link_info->module_status; 10524 switch (module_status) { 10525 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 10526 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 10527 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 10528 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 10529 bp->pf.port_id); 10530 if (bp->hwrm_spec_code >= 0x10201) { 10531 netdev_warn(bp->dev, "Module part number %s\n", 10532 resp->phy_vendor_partnumber); 10533 } 10534 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 10535 netdev_warn(bp->dev, "TX is disabled\n"); 10536 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 10537 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 10538 } 10539 } 10540 10541 static void 10542 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 10543 { 10544 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 10545 if (bp->hwrm_spec_code >= 0x10201) 10546 req->auto_pause = 10547 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 10548 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 10549 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 10550 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 10551 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 10552 req->enables |= 10553 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 10554 } else { 10555 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 10556 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 10557 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 10558 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 10559 req->enables |= 10560 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 10561 if (bp->hwrm_spec_code >= 0x10201) { 10562 req->auto_pause = req->force_pause; 10563 req->enables |= cpu_to_le32( 10564 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 10565 } 10566 } 10567 } 10568 10569 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 10570 { 10571 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 10572 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 10573 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 10574 req->enables |= 10575 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEEDS2_MASK); 10576 req->auto_link_speeds2_mask = cpu_to_le16(bp->link_info.advertising); 10577 } else if (bp->link_info.advertising) { 10578 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 10579 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 10580 } 10581 if (bp->link_info.advertising_pam4) { 10582 req->enables |= 10583 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 10584 req->auto_link_pam4_speed_mask = 10585 cpu_to_le16(bp->link_info.advertising_pam4); 10586 } 10587 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 10588 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 10589 } else { 10590 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 10591 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 10592 req->force_link_speeds2 = cpu_to_le16(bp->link_info.req_link_speed); 10593 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_LINK_SPEEDS2); 10594 netif_info(bp, link, bp->dev, "Forcing FW speed2: %d\n", 10595 (u32)bp->link_info.req_link_speed); 10596 } else if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 10597 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 10598 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 10599 } else { 10600 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 10601 } 10602 } 10603 10604 /* tell chimp that the setting takes effect immediately */ 10605 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 10606 } 10607 10608 int bnxt_hwrm_set_pause(struct bnxt *bp) 10609 { 10610 struct hwrm_port_phy_cfg_input *req; 10611 int rc; 10612 10613 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 10614 if (rc) 10615 return rc; 10616 10617 bnxt_hwrm_set_pause_common(bp, req); 10618 10619 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 10620 bp->link_info.force_link_chng) 10621 bnxt_hwrm_set_link_common(bp, req); 10622 10623 rc = hwrm_req_send(bp, req); 10624 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 10625 /* since changing of pause setting doesn't trigger any link 10626 * change event, the driver needs to update the current pause 10627 * result upon successfully return of the phy_cfg command 10628 */ 10629 bp->link_info.pause = 10630 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 10631 bp->link_info.auto_pause_setting = 0; 10632 if (!bp->link_info.force_link_chng) 10633 bnxt_report_link(bp); 10634 } 10635 bp->link_info.force_link_chng = false; 10636 return rc; 10637 } 10638 10639 static void bnxt_hwrm_set_eee(struct bnxt *bp, 10640 struct hwrm_port_phy_cfg_input *req) 10641 { 10642 struct ethtool_eee *eee = &bp->eee; 10643 10644 if (eee->eee_enabled) { 10645 u16 eee_speeds; 10646 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 10647 10648 if (eee->tx_lpi_enabled) 10649 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 10650 else 10651 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 10652 10653 req->flags |= cpu_to_le32(flags); 10654 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 10655 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 10656 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 10657 } else { 10658 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 10659 } 10660 } 10661 10662 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 10663 { 10664 struct hwrm_port_phy_cfg_input *req; 10665 int rc; 10666 10667 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 10668 if (rc) 10669 return rc; 10670 10671 if (set_pause) 10672 bnxt_hwrm_set_pause_common(bp, req); 10673 10674 bnxt_hwrm_set_link_common(bp, req); 10675 10676 if (set_eee) 10677 bnxt_hwrm_set_eee(bp, req); 10678 return hwrm_req_send(bp, req); 10679 } 10680 10681 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 10682 { 10683 struct hwrm_port_phy_cfg_input *req; 10684 int rc; 10685 10686 if (!BNXT_SINGLE_PF(bp)) 10687 return 0; 10688 10689 if (pci_num_vf(bp->pdev) && 10690 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 10691 return 0; 10692 10693 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 10694 if (rc) 10695 return rc; 10696 10697 req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 10698 rc = hwrm_req_send(bp, req); 10699 if (!rc) { 10700 mutex_lock(&bp->link_lock); 10701 /* Device is not obliged link down in certain scenarios, even 10702 * when forced. Setting the state unknown is consistent with 10703 * driver startup and will force link state to be reported 10704 * during subsequent open based on PORT_PHY_QCFG. 10705 */ 10706 bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN; 10707 mutex_unlock(&bp->link_lock); 10708 } 10709 return rc; 10710 } 10711 10712 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 10713 { 10714 #ifdef CONFIG_TEE_BNXT_FW 10715 int rc = tee_bnxt_fw_load(); 10716 10717 if (rc) 10718 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 10719 10720 return rc; 10721 #else 10722 netdev_err(bp->dev, "OP-TEE not supported\n"); 10723 return -ENODEV; 10724 #endif 10725 } 10726 10727 static int bnxt_try_recover_fw(struct bnxt *bp) 10728 { 10729 if (bp->fw_health && bp->fw_health->status_reliable) { 10730 int retry = 0, rc; 10731 u32 sts; 10732 10733 do { 10734 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 10735 rc = bnxt_hwrm_poll(bp); 10736 if (!BNXT_FW_IS_BOOTING(sts) && 10737 !BNXT_FW_IS_RECOVERING(sts)) 10738 break; 10739 retry++; 10740 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 10741 10742 if (!BNXT_FW_IS_HEALTHY(sts)) { 10743 netdev_err(bp->dev, 10744 "Firmware not responding, status: 0x%x\n", 10745 sts); 10746 rc = -ENODEV; 10747 } 10748 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 10749 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 10750 return bnxt_fw_reset_via_optee(bp); 10751 } 10752 return rc; 10753 } 10754 10755 return -ENODEV; 10756 } 10757 10758 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset) 10759 { 10760 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 10761 10762 if (!BNXT_NEW_RM(bp)) 10763 return; /* no resource reservations required */ 10764 10765 hw_resc->resv_cp_rings = 0; 10766 hw_resc->resv_stat_ctxs = 0; 10767 hw_resc->resv_irqs = 0; 10768 hw_resc->resv_tx_rings = 0; 10769 hw_resc->resv_rx_rings = 0; 10770 hw_resc->resv_hw_ring_grps = 0; 10771 hw_resc->resv_vnics = 0; 10772 if (!fw_reset) { 10773 bp->tx_nr_rings = 0; 10774 bp->rx_nr_rings = 0; 10775 } 10776 } 10777 10778 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset) 10779 { 10780 int rc; 10781 10782 if (!BNXT_NEW_RM(bp)) 10783 return 0; /* no resource reservations required */ 10784 10785 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 10786 if (rc) 10787 netdev_err(bp->dev, "resc_qcaps failed\n"); 10788 10789 bnxt_clear_reservations(bp, fw_reset); 10790 10791 return rc; 10792 } 10793 10794 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 10795 { 10796 struct hwrm_func_drv_if_change_output *resp; 10797 struct hwrm_func_drv_if_change_input *req; 10798 bool fw_reset = !bp->irq_tbl; 10799 bool resc_reinit = false; 10800 int rc, retry = 0; 10801 u32 flags = 0; 10802 10803 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 10804 return 0; 10805 10806 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE); 10807 if (rc) 10808 return rc; 10809 10810 if (up) 10811 req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 10812 resp = hwrm_req_hold(bp, req); 10813 10814 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 10815 while (retry < BNXT_FW_IF_RETRY) { 10816 rc = hwrm_req_send(bp, req); 10817 if (rc != -EAGAIN) 10818 break; 10819 10820 msleep(50); 10821 retry++; 10822 } 10823 10824 if (rc == -EAGAIN) { 10825 hwrm_req_drop(bp, req); 10826 return rc; 10827 } else if (!rc) { 10828 flags = le32_to_cpu(resp->flags); 10829 } else if (up) { 10830 rc = bnxt_try_recover_fw(bp); 10831 fw_reset = true; 10832 } 10833 hwrm_req_drop(bp, req); 10834 if (rc) 10835 return rc; 10836 10837 if (!up) { 10838 bnxt_inv_fw_health_reg(bp); 10839 return 0; 10840 } 10841 10842 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 10843 resc_reinit = true; 10844 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE || 10845 test_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) 10846 fw_reset = true; 10847 else 10848 bnxt_remap_fw_health_regs(bp); 10849 10850 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 10851 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 10852 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10853 return -ENODEV; 10854 } 10855 if (resc_reinit || fw_reset) { 10856 if (fw_reset) { 10857 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 10858 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 10859 bnxt_ulp_stop(bp); 10860 bnxt_free_ctx_mem(bp); 10861 bnxt_dcb_free(bp); 10862 rc = bnxt_fw_init_one(bp); 10863 if (rc) { 10864 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 10865 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10866 return rc; 10867 } 10868 bnxt_clear_int_mode(bp); 10869 rc = bnxt_init_int_mode(bp); 10870 if (rc) { 10871 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 10872 netdev_err(bp->dev, "init int mode failed\n"); 10873 return rc; 10874 } 10875 } 10876 rc = bnxt_cancel_reservations(bp, fw_reset); 10877 } 10878 return rc; 10879 } 10880 10881 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 10882 { 10883 struct hwrm_port_led_qcaps_output *resp; 10884 struct hwrm_port_led_qcaps_input *req; 10885 struct bnxt_pf_info *pf = &bp->pf; 10886 int rc; 10887 10888 bp->num_leds = 0; 10889 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 10890 return 0; 10891 10892 rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS); 10893 if (rc) 10894 return rc; 10895 10896 req->port_id = cpu_to_le16(pf->port_id); 10897 resp = hwrm_req_hold(bp, req); 10898 rc = hwrm_req_send(bp, req); 10899 if (rc) { 10900 hwrm_req_drop(bp, req); 10901 return rc; 10902 } 10903 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 10904 int i; 10905 10906 bp->num_leds = resp->num_leds; 10907 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 10908 bp->num_leds); 10909 for (i = 0; i < bp->num_leds; i++) { 10910 struct bnxt_led_info *led = &bp->leds[i]; 10911 __le16 caps = led->led_state_caps; 10912 10913 if (!led->led_group_id || 10914 !BNXT_LED_ALT_BLINK_CAP(caps)) { 10915 bp->num_leds = 0; 10916 break; 10917 } 10918 } 10919 } 10920 hwrm_req_drop(bp, req); 10921 return 0; 10922 } 10923 10924 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 10925 { 10926 struct hwrm_wol_filter_alloc_output *resp; 10927 struct hwrm_wol_filter_alloc_input *req; 10928 int rc; 10929 10930 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC); 10931 if (rc) 10932 return rc; 10933 10934 req->port_id = cpu_to_le16(bp->pf.port_id); 10935 req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 10936 req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 10937 memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN); 10938 10939 resp = hwrm_req_hold(bp, req); 10940 rc = hwrm_req_send(bp, req); 10941 if (!rc) 10942 bp->wol_filter_id = resp->wol_filter_id; 10943 hwrm_req_drop(bp, req); 10944 return rc; 10945 } 10946 10947 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 10948 { 10949 struct hwrm_wol_filter_free_input *req; 10950 int rc; 10951 10952 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE); 10953 if (rc) 10954 return rc; 10955 10956 req->port_id = cpu_to_le16(bp->pf.port_id); 10957 req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 10958 req->wol_filter_id = bp->wol_filter_id; 10959 10960 return hwrm_req_send(bp, req); 10961 } 10962 10963 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 10964 { 10965 struct hwrm_wol_filter_qcfg_output *resp; 10966 struct hwrm_wol_filter_qcfg_input *req; 10967 u16 next_handle = 0; 10968 int rc; 10969 10970 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG); 10971 if (rc) 10972 return rc; 10973 10974 req->port_id = cpu_to_le16(bp->pf.port_id); 10975 req->handle = cpu_to_le16(handle); 10976 resp = hwrm_req_hold(bp, req); 10977 rc = hwrm_req_send(bp, req); 10978 if (!rc) { 10979 next_handle = le16_to_cpu(resp->next_handle); 10980 if (next_handle != 0) { 10981 if (resp->wol_type == 10982 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 10983 bp->wol = 1; 10984 bp->wol_filter_id = resp->wol_filter_id; 10985 } 10986 } 10987 } 10988 hwrm_req_drop(bp, req); 10989 return next_handle; 10990 } 10991 10992 static void bnxt_get_wol_settings(struct bnxt *bp) 10993 { 10994 u16 handle = 0; 10995 10996 bp->wol = 0; 10997 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 10998 return; 10999 11000 do { 11001 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 11002 } while (handle && handle != 0xffff); 11003 } 11004 11005 static bool bnxt_eee_config_ok(struct bnxt *bp) 11006 { 11007 struct ethtool_eee *eee = &bp->eee; 11008 struct bnxt_link_info *link_info = &bp->link_info; 11009 11010 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 11011 return true; 11012 11013 if (eee->eee_enabled) { 11014 u32 advertising = 11015 _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0); 11016 11017 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 11018 eee->eee_enabled = 0; 11019 return false; 11020 } 11021 if (eee->advertised & ~advertising) { 11022 eee->advertised = advertising & eee->supported; 11023 return false; 11024 } 11025 } 11026 return true; 11027 } 11028 11029 static int bnxt_update_phy_setting(struct bnxt *bp) 11030 { 11031 int rc; 11032 bool update_link = false; 11033 bool update_pause = false; 11034 bool update_eee = false; 11035 struct bnxt_link_info *link_info = &bp->link_info; 11036 11037 rc = bnxt_update_link(bp, true); 11038 if (rc) { 11039 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 11040 rc); 11041 return rc; 11042 } 11043 if (!BNXT_SINGLE_PF(bp)) 11044 return 0; 11045 11046 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 11047 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 11048 link_info->req_flow_ctrl) 11049 update_pause = true; 11050 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 11051 link_info->force_pause_setting != link_info->req_flow_ctrl) 11052 update_pause = true; 11053 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 11054 if (BNXT_AUTO_MODE(link_info->auto_mode)) 11055 update_link = true; 11056 if (bnxt_force_speed_updated(link_info)) 11057 update_link = true; 11058 if (link_info->req_duplex != link_info->duplex_setting) 11059 update_link = true; 11060 } else { 11061 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 11062 update_link = true; 11063 if (bnxt_auto_speed_updated(link_info)) 11064 update_link = true; 11065 } 11066 11067 /* The last close may have shutdown the link, so need to call 11068 * PHY_CFG to bring it back up. 11069 */ 11070 if (!BNXT_LINK_IS_UP(bp)) 11071 update_link = true; 11072 11073 if (!bnxt_eee_config_ok(bp)) 11074 update_eee = true; 11075 11076 if (update_link) 11077 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 11078 else if (update_pause) 11079 rc = bnxt_hwrm_set_pause(bp); 11080 if (rc) { 11081 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 11082 rc); 11083 return rc; 11084 } 11085 11086 return rc; 11087 } 11088 11089 /* Common routine to pre-map certain register block to different GRC window. 11090 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows 11091 * in PF and 3 windows in VF that can be customized to map in different 11092 * register blocks. 11093 */ 11094 static void bnxt_preset_reg_win(struct bnxt *bp) 11095 { 11096 if (BNXT_PF(bp)) { 11097 /* CAG registers map to GRC window #4 */ 11098 writel(BNXT_CAG_REG_BASE, 11099 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); 11100 } 11101 } 11102 11103 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 11104 11105 static int bnxt_reinit_after_abort(struct bnxt *bp) 11106 { 11107 int rc; 11108 11109 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11110 return -EBUSY; 11111 11112 if (bp->dev->reg_state == NETREG_UNREGISTERED) 11113 return -ENODEV; 11114 11115 rc = bnxt_fw_init_one(bp); 11116 if (!rc) { 11117 bnxt_clear_int_mode(bp); 11118 rc = bnxt_init_int_mode(bp); 11119 if (!rc) { 11120 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 11121 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 11122 } 11123 } 11124 return rc; 11125 } 11126 11127 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 11128 { 11129 int rc = 0; 11130 11131 bnxt_preset_reg_win(bp); 11132 netif_carrier_off(bp->dev); 11133 if (irq_re_init) { 11134 /* Reserve rings now if none were reserved at driver probe. */ 11135 rc = bnxt_init_dflt_ring_mode(bp); 11136 if (rc) { 11137 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 11138 return rc; 11139 } 11140 } 11141 rc = bnxt_reserve_rings(bp, irq_re_init); 11142 if (rc) 11143 return rc; 11144 if ((bp->flags & BNXT_FLAG_RFS) && 11145 !(bp->flags & BNXT_FLAG_USING_MSIX)) { 11146 /* disable RFS if falling back to INTA */ 11147 bp->dev->hw_features &= ~NETIF_F_NTUPLE; 11148 bp->flags &= ~BNXT_FLAG_RFS; 11149 } 11150 11151 rc = bnxt_alloc_mem(bp, irq_re_init); 11152 if (rc) { 11153 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 11154 goto open_err_free_mem; 11155 } 11156 11157 if (irq_re_init) { 11158 bnxt_init_napi(bp); 11159 rc = bnxt_request_irq(bp); 11160 if (rc) { 11161 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 11162 goto open_err_irq; 11163 } 11164 } 11165 11166 rc = bnxt_init_nic(bp, irq_re_init); 11167 if (rc) { 11168 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 11169 goto open_err_irq; 11170 } 11171 11172 bnxt_enable_napi(bp); 11173 bnxt_debug_dev_init(bp); 11174 11175 if (link_re_init) { 11176 mutex_lock(&bp->link_lock); 11177 rc = bnxt_update_phy_setting(bp); 11178 mutex_unlock(&bp->link_lock); 11179 if (rc) { 11180 netdev_warn(bp->dev, "failed to update phy settings\n"); 11181 if (BNXT_SINGLE_PF(bp)) { 11182 bp->link_info.phy_retry = true; 11183 bp->link_info.phy_retry_expires = 11184 jiffies + 5 * HZ; 11185 } 11186 } 11187 } 11188 11189 if (irq_re_init) 11190 udp_tunnel_nic_reset_ntf(bp->dev); 11191 11192 if (bp->tx_nr_rings_xdp < num_possible_cpus()) { 11193 if (!static_key_enabled(&bnxt_xdp_locking_key)) 11194 static_branch_enable(&bnxt_xdp_locking_key); 11195 } else if (static_key_enabled(&bnxt_xdp_locking_key)) { 11196 static_branch_disable(&bnxt_xdp_locking_key); 11197 } 11198 set_bit(BNXT_STATE_OPEN, &bp->state); 11199 bnxt_enable_int(bp); 11200 /* Enable TX queues */ 11201 bnxt_tx_enable(bp); 11202 mod_timer(&bp->timer, jiffies + bp->current_interval); 11203 /* Poll link status and check for SFP+ module status */ 11204 mutex_lock(&bp->link_lock); 11205 bnxt_get_port_module_status(bp); 11206 mutex_unlock(&bp->link_lock); 11207 11208 /* VF-reps may need to be re-opened after the PF is re-opened */ 11209 if (BNXT_PF(bp)) 11210 bnxt_vf_reps_open(bp); 11211 bnxt_ptp_init_rtc(bp, true); 11212 bnxt_ptp_cfg_tstamp_filters(bp); 11213 return 0; 11214 11215 open_err_irq: 11216 bnxt_del_napi(bp); 11217 11218 open_err_free_mem: 11219 bnxt_free_skbs(bp); 11220 bnxt_free_irq(bp); 11221 bnxt_free_mem(bp, true); 11222 return rc; 11223 } 11224 11225 /* rtnl_lock held */ 11226 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 11227 { 11228 int rc = 0; 11229 11230 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 11231 rc = -EIO; 11232 if (!rc) 11233 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 11234 if (rc) { 11235 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 11236 dev_close(bp->dev); 11237 } 11238 return rc; 11239 } 11240 11241 /* rtnl_lock held, open the NIC half way by allocating all resources, but 11242 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline 11243 * self tests. 11244 */ 11245 int bnxt_half_open_nic(struct bnxt *bp) 11246 { 11247 int rc = 0; 11248 11249 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 11250 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); 11251 rc = -ENODEV; 11252 goto half_open_err; 11253 } 11254 11255 rc = bnxt_alloc_mem(bp, true); 11256 if (rc) { 11257 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 11258 goto half_open_err; 11259 } 11260 set_bit(BNXT_STATE_HALF_OPEN, &bp->state); 11261 rc = bnxt_init_nic(bp, true); 11262 if (rc) { 11263 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 11264 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 11265 goto half_open_err; 11266 } 11267 return 0; 11268 11269 half_open_err: 11270 bnxt_free_skbs(bp); 11271 bnxt_free_mem(bp, true); 11272 dev_close(bp->dev); 11273 return rc; 11274 } 11275 11276 /* rtnl_lock held, this call can only be made after a previous successful 11277 * call to bnxt_half_open_nic(). 11278 */ 11279 void bnxt_half_close_nic(struct bnxt *bp) 11280 { 11281 bnxt_hwrm_resource_free(bp, false, true); 11282 bnxt_free_skbs(bp); 11283 bnxt_free_mem(bp, true); 11284 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 11285 } 11286 11287 void bnxt_reenable_sriov(struct bnxt *bp) 11288 { 11289 if (BNXT_PF(bp)) { 11290 struct bnxt_pf_info *pf = &bp->pf; 11291 int n = pf->active_vfs; 11292 11293 if (n) 11294 bnxt_cfg_hw_sriov(bp, &n, true); 11295 } 11296 } 11297 11298 static int bnxt_open(struct net_device *dev) 11299 { 11300 struct bnxt *bp = netdev_priv(dev); 11301 int rc; 11302 11303 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 11304 rc = bnxt_reinit_after_abort(bp); 11305 if (rc) { 11306 if (rc == -EBUSY) 11307 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 11308 else 11309 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 11310 return -ENODEV; 11311 } 11312 } 11313 11314 rc = bnxt_hwrm_if_change(bp, true); 11315 if (rc) 11316 return rc; 11317 11318 rc = __bnxt_open_nic(bp, true, true); 11319 if (rc) { 11320 bnxt_hwrm_if_change(bp, false); 11321 } else { 11322 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 11323 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 11324 bnxt_ulp_start(bp, 0); 11325 bnxt_reenable_sriov(bp); 11326 } 11327 } 11328 } 11329 11330 return rc; 11331 } 11332 11333 static bool bnxt_drv_busy(struct bnxt *bp) 11334 { 11335 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 11336 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 11337 } 11338 11339 static void bnxt_get_ring_stats(struct bnxt *bp, 11340 struct rtnl_link_stats64 *stats); 11341 11342 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 11343 bool link_re_init) 11344 { 11345 /* Close the VF-reps before closing PF */ 11346 if (BNXT_PF(bp)) 11347 bnxt_vf_reps_close(bp); 11348 11349 /* Change device state to avoid TX queue wake up's */ 11350 bnxt_tx_disable(bp); 11351 11352 clear_bit(BNXT_STATE_OPEN, &bp->state); 11353 smp_mb__after_atomic(); 11354 while (bnxt_drv_busy(bp)) 11355 msleep(20); 11356 11357 /* Flush rings and disable interrupts */ 11358 bnxt_shutdown_nic(bp, irq_re_init); 11359 11360 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 11361 11362 bnxt_debug_dev_exit(bp); 11363 bnxt_disable_napi(bp); 11364 del_timer_sync(&bp->timer); 11365 bnxt_free_skbs(bp); 11366 11367 /* Save ring stats before shutdown */ 11368 if (bp->bnapi && irq_re_init) { 11369 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 11370 bnxt_get_ring_err_stats(bp, &bp->ring_err_stats_prev); 11371 } 11372 if (irq_re_init) { 11373 bnxt_free_irq(bp); 11374 bnxt_del_napi(bp); 11375 } 11376 bnxt_free_mem(bp, irq_re_init); 11377 } 11378 11379 void bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 11380 { 11381 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 11382 /* If we get here, it means firmware reset is in progress 11383 * while we are trying to close. We can safely proceed with 11384 * the close because we are holding rtnl_lock(). Some firmware 11385 * messages may fail as we proceed to close. We set the 11386 * ABORT_ERR flag here so that the FW reset thread will later 11387 * abort when it gets the rtnl_lock() and sees the flag. 11388 */ 11389 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 11390 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 11391 } 11392 11393 #ifdef CONFIG_BNXT_SRIOV 11394 if (bp->sriov_cfg) { 11395 int rc; 11396 11397 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 11398 !bp->sriov_cfg, 11399 BNXT_SRIOV_CFG_WAIT_TMO); 11400 if (!rc) 11401 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete, proceeding to close!\n"); 11402 else if (rc < 0) 11403 netdev_warn(bp->dev, "SRIOV config operation interrupted, proceeding to close!\n"); 11404 } 11405 #endif 11406 __bnxt_close_nic(bp, irq_re_init, link_re_init); 11407 } 11408 11409 static int bnxt_close(struct net_device *dev) 11410 { 11411 struct bnxt *bp = netdev_priv(dev); 11412 11413 bnxt_close_nic(bp, true, true); 11414 bnxt_hwrm_shutdown_link(bp); 11415 bnxt_hwrm_if_change(bp, false); 11416 return 0; 11417 } 11418 11419 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 11420 u16 *val) 11421 { 11422 struct hwrm_port_phy_mdio_read_output *resp; 11423 struct hwrm_port_phy_mdio_read_input *req; 11424 int rc; 11425 11426 if (bp->hwrm_spec_code < 0x10a00) 11427 return -EOPNOTSUPP; 11428 11429 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ); 11430 if (rc) 11431 return rc; 11432 11433 req->port_id = cpu_to_le16(bp->pf.port_id); 11434 req->phy_addr = phy_addr; 11435 req->reg_addr = cpu_to_le16(reg & 0x1f); 11436 if (mdio_phy_id_is_c45(phy_addr)) { 11437 req->cl45_mdio = 1; 11438 req->phy_addr = mdio_phy_id_prtad(phy_addr); 11439 req->dev_addr = mdio_phy_id_devad(phy_addr); 11440 req->reg_addr = cpu_to_le16(reg); 11441 } 11442 11443 resp = hwrm_req_hold(bp, req); 11444 rc = hwrm_req_send(bp, req); 11445 if (!rc) 11446 *val = le16_to_cpu(resp->reg_data); 11447 hwrm_req_drop(bp, req); 11448 return rc; 11449 } 11450 11451 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 11452 u16 val) 11453 { 11454 struct hwrm_port_phy_mdio_write_input *req; 11455 int rc; 11456 11457 if (bp->hwrm_spec_code < 0x10a00) 11458 return -EOPNOTSUPP; 11459 11460 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE); 11461 if (rc) 11462 return rc; 11463 11464 req->port_id = cpu_to_le16(bp->pf.port_id); 11465 req->phy_addr = phy_addr; 11466 req->reg_addr = cpu_to_le16(reg & 0x1f); 11467 if (mdio_phy_id_is_c45(phy_addr)) { 11468 req->cl45_mdio = 1; 11469 req->phy_addr = mdio_phy_id_prtad(phy_addr); 11470 req->dev_addr = mdio_phy_id_devad(phy_addr); 11471 req->reg_addr = cpu_to_le16(reg); 11472 } 11473 req->reg_data = cpu_to_le16(val); 11474 11475 return hwrm_req_send(bp, req); 11476 } 11477 11478 /* rtnl_lock held */ 11479 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 11480 { 11481 struct mii_ioctl_data *mdio = if_mii(ifr); 11482 struct bnxt *bp = netdev_priv(dev); 11483 int rc; 11484 11485 switch (cmd) { 11486 case SIOCGMIIPHY: 11487 mdio->phy_id = bp->link_info.phy_addr; 11488 11489 fallthrough; 11490 case SIOCGMIIREG: { 11491 u16 mii_regval = 0; 11492 11493 if (!netif_running(dev)) 11494 return -EAGAIN; 11495 11496 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 11497 &mii_regval); 11498 mdio->val_out = mii_regval; 11499 return rc; 11500 } 11501 11502 case SIOCSMIIREG: 11503 if (!netif_running(dev)) 11504 return -EAGAIN; 11505 11506 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 11507 mdio->val_in); 11508 11509 case SIOCSHWTSTAMP: 11510 return bnxt_hwtstamp_set(dev, ifr); 11511 11512 case SIOCGHWTSTAMP: 11513 return bnxt_hwtstamp_get(dev, ifr); 11514 11515 default: 11516 /* do nothing */ 11517 break; 11518 } 11519 return -EOPNOTSUPP; 11520 } 11521 11522 static void bnxt_get_ring_stats(struct bnxt *bp, 11523 struct rtnl_link_stats64 *stats) 11524 { 11525 int i; 11526 11527 for (i = 0; i < bp->cp_nr_rings; i++) { 11528 struct bnxt_napi *bnapi = bp->bnapi[i]; 11529 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 11530 u64 *sw = cpr->stats.sw_stats; 11531 11532 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 11533 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 11534 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 11535 11536 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 11537 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 11538 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 11539 11540 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 11541 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 11542 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 11543 11544 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 11545 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 11546 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 11547 11548 stats->rx_missed_errors += 11549 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 11550 11551 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 11552 11553 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 11554 11555 stats->rx_dropped += 11556 cpr->sw_stats.rx.rx_netpoll_discards + 11557 cpr->sw_stats.rx.rx_oom_discards; 11558 } 11559 } 11560 11561 static void bnxt_add_prev_stats(struct bnxt *bp, 11562 struct rtnl_link_stats64 *stats) 11563 { 11564 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 11565 11566 stats->rx_packets += prev_stats->rx_packets; 11567 stats->tx_packets += prev_stats->tx_packets; 11568 stats->rx_bytes += prev_stats->rx_bytes; 11569 stats->tx_bytes += prev_stats->tx_bytes; 11570 stats->rx_missed_errors += prev_stats->rx_missed_errors; 11571 stats->multicast += prev_stats->multicast; 11572 stats->rx_dropped += prev_stats->rx_dropped; 11573 stats->tx_dropped += prev_stats->tx_dropped; 11574 } 11575 11576 static void 11577 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 11578 { 11579 struct bnxt *bp = netdev_priv(dev); 11580 11581 set_bit(BNXT_STATE_READ_STATS, &bp->state); 11582 /* Make sure bnxt_close_nic() sees that we are reading stats before 11583 * we check the BNXT_STATE_OPEN flag. 11584 */ 11585 smp_mb__after_atomic(); 11586 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11587 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 11588 *stats = bp->net_stats_prev; 11589 return; 11590 } 11591 11592 bnxt_get_ring_stats(bp, stats); 11593 bnxt_add_prev_stats(bp, stats); 11594 11595 if (bp->flags & BNXT_FLAG_PORT_STATS) { 11596 u64 *rx = bp->port_stats.sw_stats; 11597 u64 *tx = bp->port_stats.sw_stats + 11598 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 11599 11600 stats->rx_crc_errors = 11601 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 11602 stats->rx_frame_errors = 11603 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 11604 stats->rx_length_errors = 11605 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 11606 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 11607 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 11608 stats->rx_errors = 11609 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 11610 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 11611 stats->collisions = 11612 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 11613 stats->tx_fifo_errors = 11614 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 11615 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 11616 } 11617 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 11618 } 11619 11620 static void bnxt_get_one_ring_err_stats(struct bnxt *bp, 11621 struct bnxt_total_ring_err_stats *stats, 11622 struct bnxt_cp_ring_info *cpr) 11623 { 11624 struct bnxt_sw_stats *sw_stats = &cpr->sw_stats; 11625 u64 *hw_stats = cpr->stats.sw_stats; 11626 11627 stats->rx_total_l4_csum_errors += sw_stats->rx.rx_l4_csum_errors; 11628 stats->rx_total_resets += sw_stats->rx.rx_resets; 11629 stats->rx_total_buf_errors += sw_stats->rx.rx_buf_errors; 11630 stats->rx_total_oom_discards += sw_stats->rx.rx_oom_discards; 11631 stats->rx_total_netpoll_discards += sw_stats->rx.rx_netpoll_discards; 11632 stats->rx_total_ring_discards += 11633 BNXT_GET_RING_STATS64(hw_stats, rx_discard_pkts); 11634 stats->tx_total_resets += sw_stats->tx.tx_resets; 11635 stats->tx_total_ring_discards += 11636 BNXT_GET_RING_STATS64(hw_stats, tx_discard_pkts); 11637 stats->total_missed_irqs += sw_stats->cmn.missed_irqs; 11638 } 11639 11640 void bnxt_get_ring_err_stats(struct bnxt *bp, 11641 struct bnxt_total_ring_err_stats *stats) 11642 { 11643 int i; 11644 11645 for (i = 0; i < bp->cp_nr_rings; i++) 11646 bnxt_get_one_ring_err_stats(bp, stats, &bp->bnapi[i]->cp_ring); 11647 } 11648 11649 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 11650 { 11651 struct net_device *dev = bp->dev; 11652 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 11653 struct netdev_hw_addr *ha; 11654 u8 *haddr; 11655 int mc_count = 0; 11656 bool update = false; 11657 int off = 0; 11658 11659 netdev_for_each_mc_addr(ha, dev) { 11660 if (mc_count >= BNXT_MAX_MC_ADDRS) { 11661 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 11662 vnic->mc_list_count = 0; 11663 return false; 11664 } 11665 haddr = ha->addr; 11666 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 11667 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 11668 update = true; 11669 } 11670 off += ETH_ALEN; 11671 mc_count++; 11672 } 11673 if (mc_count) 11674 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 11675 11676 if (mc_count != vnic->mc_list_count) { 11677 vnic->mc_list_count = mc_count; 11678 update = true; 11679 } 11680 return update; 11681 } 11682 11683 static bool bnxt_uc_list_updated(struct bnxt *bp) 11684 { 11685 struct net_device *dev = bp->dev; 11686 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 11687 struct netdev_hw_addr *ha; 11688 int off = 0; 11689 11690 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 11691 return true; 11692 11693 netdev_for_each_uc_addr(ha, dev) { 11694 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 11695 return true; 11696 11697 off += ETH_ALEN; 11698 } 11699 return false; 11700 } 11701 11702 static void bnxt_set_rx_mode(struct net_device *dev) 11703 { 11704 struct bnxt *bp = netdev_priv(dev); 11705 struct bnxt_vnic_info *vnic; 11706 bool mc_update = false; 11707 bool uc_update; 11708 u32 mask; 11709 11710 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 11711 return; 11712 11713 vnic = &bp->vnic_info[0]; 11714 mask = vnic->rx_mask; 11715 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 11716 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 11717 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 11718 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 11719 11720 if (dev->flags & IFF_PROMISC) 11721 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 11722 11723 uc_update = bnxt_uc_list_updated(bp); 11724 11725 if (dev->flags & IFF_BROADCAST) 11726 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 11727 if (dev->flags & IFF_ALLMULTI) { 11728 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 11729 vnic->mc_list_count = 0; 11730 } else if (dev->flags & IFF_MULTICAST) { 11731 mc_update = bnxt_mc_list_updated(bp, &mask); 11732 } 11733 11734 if (mask != vnic->rx_mask || uc_update || mc_update) { 11735 vnic->rx_mask = mask; 11736 11737 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 11738 } 11739 } 11740 11741 static int bnxt_cfg_rx_mode(struct bnxt *bp) 11742 { 11743 struct net_device *dev = bp->dev; 11744 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 11745 struct hwrm_cfa_l2_filter_free_input *req; 11746 struct netdev_hw_addr *ha; 11747 int i, off = 0, rc; 11748 bool uc_update; 11749 11750 netif_addr_lock_bh(dev); 11751 uc_update = bnxt_uc_list_updated(bp); 11752 netif_addr_unlock_bh(dev); 11753 11754 if (!uc_update) 11755 goto skip_uc; 11756 11757 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 11758 if (rc) 11759 return rc; 11760 hwrm_req_hold(bp, req); 11761 for (i = 1; i < vnic->uc_filter_count; i++) { 11762 req->l2_filter_id = vnic->fw_l2_filter_id[i]; 11763 11764 rc = hwrm_req_send(bp, req); 11765 } 11766 hwrm_req_drop(bp, req); 11767 11768 vnic->uc_filter_count = 1; 11769 11770 netif_addr_lock_bh(dev); 11771 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 11772 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 11773 } else { 11774 netdev_for_each_uc_addr(ha, dev) { 11775 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 11776 off += ETH_ALEN; 11777 vnic->uc_filter_count++; 11778 } 11779 } 11780 netif_addr_unlock_bh(dev); 11781 11782 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 11783 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 11784 if (rc) { 11785 if (BNXT_VF(bp) && rc == -ENODEV) { 11786 if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 11787 netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n"); 11788 else 11789 netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n"); 11790 rc = 0; 11791 } else { 11792 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 11793 } 11794 vnic->uc_filter_count = i; 11795 return rc; 11796 } 11797 } 11798 if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 11799 netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n"); 11800 11801 skip_uc: 11802 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 11803 !bnxt_promisc_ok(bp)) 11804 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 11805 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 11806 if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) { 11807 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 11808 rc); 11809 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 11810 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 11811 vnic->mc_list_count = 0; 11812 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 11813 } 11814 if (rc) 11815 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 11816 rc); 11817 11818 return rc; 11819 } 11820 11821 static bool bnxt_can_reserve_rings(struct bnxt *bp) 11822 { 11823 #ifdef CONFIG_BNXT_SRIOV 11824 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 11825 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 11826 11827 /* No minimum rings were provisioned by the PF. Don't 11828 * reserve rings by default when device is down. 11829 */ 11830 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 11831 return true; 11832 11833 if (!netif_running(bp->dev)) 11834 return false; 11835 } 11836 #endif 11837 return true; 11838 } 11839 11840 /* If the chip and firmware supports RFS */ 11841 static bool bnxt_rfs_supported(struct bnxt *bp) 11842 { 11843 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 11844 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 11845 return true; 11846 return false; 11847 } 11848 /* 212 firmware is broken for aRFS */ 11849 if (BNXT_FW_MAJ(bp) == 212) 11850 return false; 11851 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 11852 return true; 11853 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 11854 return true; 11855 return false; 11856 } 11857 11858 /* If runtime conditions support RFS */ 11859 static bool bnxt_rfs_capable(struct bnxt *bp) 11860 { 11861 #ifdef CONFIG_RFS_ACCEL 11862 int vnics, max_vnics, max_rss_ctxs; 11863 11864 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 11865 return bnxt_rfs_supported(bp); 11866 if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings) 11867 return false; 11868 11869 vnics = 1 + bp->rx_nr_rings; 11870 max_vnics = bnxt_get_max_func_vnics(bp); 11871 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 11872 11873 /* RSS contexts not a limiting factor */ 11874 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 11875 max_rss_ctxs = max_vnics; 11876 if (vnics > max_vnics || vnics > max_rss_ctxs) { 11877 if (bp->rx_nr_rings > 1) 11878 netdev_warn(bp->dev, 11879 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 11880 min(max_rss_ctxs - 1, max_vnics - 1)); 11881 return false; 11882 } 11883 11884 if (!BNXT_NEW_RM(bp)) 11885 return true; 11886 11887 if (vnics == bp->hw_resc.resv_vnics) 11888 return true; 11889 11890 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics); 11891 if (vnics <= bp->hw_resc.resv_vnics) 11892 return true; 11893 11894 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 11895 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1); 11896 return false; 11897 #else 11898 return false; 11899 #endif 11900 } 11901 11902 static netdev_features_t bnxt_fix_features(struct net_device *dev, 11903 netdev_features_t features) 11904 { 11905 struct bnxt *bp = netdev_priv(dev); 11906 netdev_features_t vlan_features; 11907 11908 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp)) 11909 features &= ~NETIF_F_NTUPLE; 11910 11911 if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog) 11912 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 11913 11914 if (!(features & NETIF_F_GRO)) 11915 features &= ~NETIF_F_GRO_HW; 11916 11917 if (features & NETIF_F_GRO_HW) 11918 features &= ~NETIF_F_LRO; 11919 11920 /* Both CTAG and STAG VLAN accelaration on the RX side have to be 11921 * turned on or off together. 11922 */ 11923 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 11924 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 11925 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 11926 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 11927 else if (vlan_features) 11928 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 11929 } 11930 #ifdef CONFIG_BNXT_SRIOV 11931 if (BNXT_VF(bp) && bp->vf.vlan) 11932 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 11933 #endif 11934 return features; 11935 } 11936 11937 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 11938 { 11939 struct bnxt *bp = netdev_priv(dev); 11940 u32 flags = bp->flags; 11941 u32 changes; 11942 int rc = 0; 11943 bool re_init = false; 11944 bool update_tpa = false; 11945 11946 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 11947 if (features & NETIF_F_GRO_HW) 11948 flags |= BNXT_FLAG_GRO; 11949 else if (features & NETIF_F_LRO) 11950 flags |= BNXT_FLAG_LRO; 11951 11952 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 11953 flags &= ~BNXT_FLAG_TPA; 11954 11955 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 11956 flags |= BNXT_FLAG_STRIP_VLAN; 11957 11958 if (features & NETIF_F_NTUPLE) 11959 flags |= BNXT_FLAG_RFS; 11960 11961 changes = flags ^ bp->flags; 11962 if (changes & BNXT_FLAG_TPA) { 11963 update_tpa = true; 11964 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 11965 (flags & BNXT_FLAG_TPA) == 0 || 11966 (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 11967 re_init = true; 11968 } 11969 11970 if (changes & ~BNXT_FLAG_TPA) 11971 re_init = true; 11972 11973 if (flags != bp->flags) { 11974 u32 old_flags = bp->flags; 11975 11976 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11977 bp->flags = flags; 11978 if (update_tpa) 11979 bnxt_set_ring_params(bp); 11980 return rc; 11981 } 11982 11983 if (re_init) { 11984 bnxt_close_nic(bp, false, false); 11985 bp->flags = flags; 11986 if (update_tpa) 11987 bnxt_set_ring_params(bp); 11988 11989 return bnxt_open_nic(bp, false, false); 11990 } 11991 if (update_tpa) { 11992 bp->flags = flags; 11993 rc = bnxt_set_tpa(bp, 11994 (flags & BNXT_FLAG_TPA) ? 11995 true : false); 11996 if (rc) 11997 bp->flags = old_flags; 11998 } 11999 } 12000 return rc; 12001 } 12002 12003 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, 12004 u8 **nextp) 12005 { 12006 struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); 12007 struct hop_jumbo_hdr *jhdr; 12008 int hdr_count = 0; 12009 u8 *nexthdr; 12010 int start; 12011 12012 /* Check that there are at most 2 IPv6 extension headers, no 12013 * fragment header, and each is <= 64 bytes. 12014 */ 12015 start = nw_off + sizeof(*ip6h); 12016 nexthdr = &ip6h->nexthdr; 12017 while (ipv6_ext_hdr(*nexthdr)) { 12018 struct ipv6_opt_hdr *hp; 12019 int hdrlen; 12020 12021 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || 12022 *nexthdr == NEXTHDR_FRAGMENT) 12023 return false; 12024 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, 12025 skb_headlen(skb), NULL); 12026 if (!hp) 12027 return false; 12028 if (*nexthdr == NEXTHDR_AUTH) 12029 hdrlen = ipv6_authlen(hp); 12030 else 12031 hdrlen = ipv6_optlen(hp); 12032 12033 if (hdrlen > 64) 12034 return false; 12035 12036 /* The ext header may be a hop-by-hop header inserted for 12037 * big TCP purposes. This will be removed before sending 12038 * from NIC, so do not count it. 12039 */ 12040 if (*nexthdr == NEXTHDR_HOP) { 12041 if (likely(skb->len <= GRO_LEGACY_MAX_SIZE)) 12042 goto increment_hdr; 12043 12044 jhdr = (struct hop_jumbo_hdr *)hp; 12045 if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 || 12046 jhdr->nexthdr != IPPROTO_TCP) 12047 goto increment_hdr; 12048 12049 goto next_hdr; 12050 } 12051 increment_hdr: 12052 hdr_count++; 12053 next_hdr: 12054 nexthdr = &hp->nexthdr; 12055 start += hdrlen; 12056 } 12057 if (nextp) { 12058 /* Caller will check inner protocol */ 12059 if (skb->encapsulation) { 12060 *nextp = nexthdr; 12061 return true; 12062 } 12063 *nextp = NULL; 12064 } 12065 /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ 12066 return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; 12067 } 12068 12069 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 12070 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) 12071 { 12072 struct udphdr *uh = udp_hdr(skb); 12073 __be16 udp_port = uh->dest; 12074 12075 if (udp_port != bp->vxlan_port && udp_port != bp->nge_port && 12076 udp_port != bp->vxlan_gpe_port) 12077 return false; 12078 if (skb->inner_protocol == htons(ETH_P_TEB)) { 12079 struct ethhdr *eh = inner_eth_hdr(skb); 12080 12081 switch (eh->h_proto) { 12082 case htons(ETH_P_IP): 12083 return true; 12084 case htons(ETH_P_IPV6): 12085 return bnxt_exthdr_check(bp, skb, 12086 skb_inner_network_offset(skb), 12087 NULL); 12088 } 12089 } else if (skb->inner_protocol == htons(ETH_P_IP)) { 12090 return true; 12091 } else if (skb->inner_protocol == htons(ETH_P_IPV6)) { 12092 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 12093 NULL); 12094 } 12095 return false; 12096 } 12097 12098 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) 12099 { 12100 switch (l4_proto) { 12101 case IPPROTO_UDP: 12102 return bnxt_udp_tunl_check(bp, skb); 12103 case IPPROTO_IPIP: 12104 return true; 12105 case IPPROTO_GRE: { 12106 switch (skb->inner_protocol) { 12107 default: 12108 return false; 12109 case htons(ETH_P_IP): 12110 return true; 12111 case htons(ETH_P_IPV6): 12112 fallthrough; 12113 } 12114 } 12115 case IPPROTO_IPV6: 12116 /* Check ext headers of inner ipv6 */ 12117 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 12118 NULL); 12119 } 12120 return false; 12121 } 12122 12123 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 12124 struct net_device *dev, 12125 netdev_features_t features) 12126 { 12127 struct bnxt *bp = netdev_priv(dev); 12128 u8 *l4_proto; 12129 12130 features = vlan_features_check(skb, features); 12131 switch (vlan_get_protocol(skb)) { 12132 case htons(ETH_P_IP): 12133 if (!skb->encapsulation) 12134 return features; 12135 l4_proto = &ip_hdr(skb)->protocol; 12136 if (bnxt_tunl_check(bp, skb, *l4_proto)) 12137 return features; 12138 break; 12139 case htons(ETH_P_IPV6): 12140 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), 12141 &l4_proto)) 12142 break; 12143 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) 12144 return features; 12145 break; 12146 } 12147 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 12148 } 12149 12150 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 12151 u32 *reg_buf) 12152 { 12153 struct hwrm_dbg_read_direct_output *resp; 12154 struct hwrm_dbg_read_direct_input *req; 12155 __le32 *dbg_reg_buf; 12156 dma_addr_t mapping; 12157 int rc, i; 12158 12159 rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT); 12160 if (rc) 12161 return rc; 12162 12163 dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4, 12164 &mapping); 12165 if (!dbg_reg_buf) { 12166 rc = -ENOMEM; 12167 goto dbg_rd_reg_exit; 12168 } 12169 12170 req->host_dest_addr = cpu_to_le64(mapping); 12171 12172 resp = hwrm_req_hold(bp, req); 12173 req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 12174 req->read_len32 = cpu_to_le32(num_words); 12175 12176 rc = hwrm_req_send(bp, req); 12177 if (rc || resp->error_code) { 12178 rc = -EIO; 12179 goto dbg_rd_reg_exit; 12180 } 12181 for (i = 0; i < num_words; i++) 12182 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 12183 12184 dbg_rd_reg_exit: 12185 hwrm_req_drop(bp, req); 12186 return rc; 12187 } 12188 12189 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 12190 u32 ring_id, u32 *prod, u32 *cons) 12191 { 12192 struct hwrm_dbg_ring_info_get_output *resp; 12193 struct hwrm_dbg_ring_info_get_input *req; 12194 int rc; 12195 12196 rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET); 12197 if (rc) 12198 return rc; 12199 12200 req->ring_type = ring_type; 12201 req->fw_ring_id = cpu_to_le32(ring_id); 12202 resp = hwrm_req_hold(bp, req); 12203 rc = hwrm_req_send(bp, req); 12204 if (!rc) { 12205 *prod = le32_to_cpu(resp->producer_index); 12206 *cons = le32_to_cpu(resp->consumer_index); 12207 } 12208 hwrm_req_drop(bp, req); 12209 return rc; 12210 } 12211 12212 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 12213 { 12214 struct bnxt_tx_ring_info *txr; 12215 int i = bnapi->index, j; 12216 12217 bnxt_for_each_napi_tx(j, bnapi, txr) 12218 netdev_info(bnapi->bp->dev, "[%d.%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 12219 i, j, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 12220 txr->tx_cons); 12221 } 12222 12223 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 12224 { 12225 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 12226 int i = bnapi->index; 12227 12228 if (!rxr) 12229 return; 12230 12231 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 12232 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 12233 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 12234 rxr->rx_sw_agg_prod); 12235 } 12236 12237 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 12238 { 12239 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 12240 int i = bnapi->index; 12241 12242 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 12243 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 12244 } 12245 12246 static void bnxt_dbg_dump_states(struct bnxt *bp) 12247 { 12248 int i; 12249 struct bnxt_napi *bnapi; 12250 12251 for (i = 0; i < bp->cp_nr_rings; i++) { 12252 bnapi = bp->bnapi[i]; 12253 if (netif_msg_drv(bp)) { 12254 bnxt_dump_tx_sw_state(bnapi); 12255 bnxt_dump_rx_sw_state(bnapi); 12256 bnxt_dump_cp_sw_state(bnapi); 12257 } 12258 } 12259 } 12260 12261 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 12262 { 12263 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 12264 struct hwrm_ring_reset_input *req; 12265 struct bnxt_napi *bnapi = rxr->bnapi; 12266 struct bnxt_cp_ring_info *cpr; 12267 u16 cp_ring_id; 12268 int rc; 12269 12270 rc = hwrm_req_init(bp, req, HWRM_RING_RESET); 12271 if (rc) 12272 return rc; 12273 12274 cpr = &bnapi->cp_ring; 12275 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 12276 req->cmpl_ring = cpu_to_le16(cp_ring_id); 12277 req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 12278 req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 12279 return hwrm_req_send_silent(bp, req); 12280 } 12281 12282 static void bnxt_reset_task(struct bnxt *bp, bool silent) 12283 { 12284 if (!silent) 12285 bnxt_dbg_dump_states(bp); 12286 if (netif_running(bp->dev)) { 12287 int rc; 12288 12289 if (silent) { 12290 bnxt_close_nic(bp, false, false); 12291 bnxt_open_nic(bp, false, false); 12292 } else { 12293 bnxt_ulp_stop(bp); 12294 bnxt_close_nic(bp, true, false); 12295 rc = bnxt_open_nic(bp, true, false); 12296 bnxt_ulp_start(bp, rc); 12297 } 12298 } 12299 } 12300 12301 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 12302 { 12303 struct bnxt *bp = netdev_priv(dev); 12304 12305 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 12306 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 12307 } 12308 12309 static void bnxt_fw_health_check(struct bnxt *bp) 12310 { 12311 struct bnxt_fw_health *fw_health = bp->fw_health; 12312 struct pci_dev *pdev = bp->pdev; 12313 u32 val; 12314 12315 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 12316 return; 12317 12318 /* Make sure it is enabled before checking the tmr_counter. */ 12319 smp_rmb(); 12320 if (fw_health->tmr_counter) { 12321 fw_health->tmr_counter--; 12322 return; 12323 } 12324 12325 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 12326 if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) { 12327 fw_health->arrests++; 12328 goto fw_reset; 12329 } 12330 12331 fw_health->last_fw_heartbeat = val; 12332 12333 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 12334 if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) { 12335 fw_health->discoveries++; 12336 goto fw_reset; 12337 } 12338 12339 fw_health->tmr_counter = fw_health->tmr_multiplier; 12340 return; 12341 12342 fw_reset: 12343 bnxt_queue_sp_work(bp, BNXT_FW_EXCEPTION_SP_EVENT); 12344 } 12345 12346 static void bnxt_timer(struct timer_list *t) 12347 { 12348 struct bnxt *bp = from_timer(bp, t, timer); 12349 struct net_device *dev = bp->dev; 12350 12351 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 12352 return; 12353 12354 if (atomic_read(&bp->intr_sem) != 0) 12355 goto bnxt_restart_timer; 12356 12357 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 12358 bnxt_fw_health_check(bp); 12359 12360 if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) 12361 bnxt_queue_sp_work(bp, BNXT_PERIODIC_STATS_SP_EVENT); 12362 12363 if (bnxt_tc_flower_enabled(bp)) 12364 bnxt_queue_sp_work(bp, BNXT_FLOW_STATS_SP_EVENT); 12365 12366 #ifdef CONFIG_RFS_ACCEL 12367 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) 12368 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 12369 #endif /*CONFIG_RFS_ACCEL*/ 12370 12371 if (bp->link_info.phy_retry) { 12372 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 12373 bp->link_info.phy_retry = false; 12374 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 12375 } else { 12376 bnxt_queue_sp_work(bp, BNXT_UPDATE_PHY_SP_EVENT); 12377 } 12378 } 12379 12380 if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 12381 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 12382 12383 if ((BNXT_CHIP_P5(bp)) && !bp->chip_rev && netif_carrier_ok(dev)) 12384 bnxt_queue_sp_work(bp, BNXT_RING_COAL_NOW_SP_EVENT); 12385 12386 bnxt_restart_timer: 12387 mod_timer(&bp->timer, jiffies + bp->current_interval); 12388 } 12389 12390 static void bnxt_rtnl_lock_sp(struct bnxt *bp) 12391 { 12392 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 12393 * set. If the device is being closed, bnxt_close() may be holding 12394 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we 12395 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). 12396 */ 12397 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 12398 rtnl_lock(); 12399 } 12400 12401 static void bnxt_rtnl_unlock_sp(struct bnxt *bp) 12402 { 12403 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 12404 rtnl_unlock(); 12405 } 12406 12407 /* Only called from bnxt_sp_task() */ 12408 static void bnxt_reset(struct bnxt *bp, bool silent) 12409 { 12410 bnxt_rtnl_lock_sp(bp); 12411 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 12412 bnxt_reset_task(bp, silent); 12413 bnxt_rtnl_unlock_sp(bp); 12414 } 12415 12416 /* Only called from bnxt_sp_task() */ 12417 static void bnxt_rx_ring_reset(struct bnxt *bp) 12418 { 12419 int i; 12420 12421 bnxt_rtnl_lock_sp(bp); 12422 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 12423 bnxt_rtnl_unlock_sp(bp); 12424 return; 12425 } 12426 /* Disable and flush TPA before resetting the RX ring */ 12427 if (bp->flags & BNXT_FLAG_TPA) 12428 bnxt_set_tpa(bp, false); 12429 for (i = 0; i < bp->rx_nr_rings; i++) { 12430 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 12431 struct bnxt_cp_ring_info *cpr; 12432 int rc; 12433 12434 if (!rxr->bnapi->in_reset) 12435 continue; 12436 12437 rc = bnxt_hwrm_rx_ring_reset(bp, i); 12438 if (rc) { 12439 if (rc == -EINVAL || rc == -EOPNOTSUPP) 12440 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 12441 else 12442 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 12443 rc); 12444 bnxt_reset_task(bp, true); 12445 break; 12446 } 12447 bnxt_free_one_rx_ring_skbs(bp, i); 12448 rxr->rx_prod = 0; 12449 rxr->rx_agg_prod = 0; 12450 rxr->rx_sw_agg_prod = 0; 12451 rxr->rx_next_cons = 0; 12452 rxr->bnapi->in_reset = false; 12453 bnxt_alloc_one_rx_ring(bp, i); 12454 cpr = &rxr->bnapi->cp_ring; 12455 cpr->sw_stats.rx.rx_resets++; 12456 if (bp->flags & BNXT_FLAG_AGG_RINGS) 12457 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 12458 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 12459 } 12460 if (bp->flags & BNXT_FLAG_TPA) 12461 bnxt_set_tpa(bp, true); 12462 bnxt_rtnl_unlock_sp(bp); 12463 } 12464 12465 static void bnxt_fw_reset_close(struct bnxt *bp) 12466 { 12467 bnxt_ulp_stop(bp); 12468 /* When firmware is in fatal state, quiesce device and disable 12469 * bus master to prevent any potential bad DMAs before freeing 12470 * kernel memory. 12471 */ 12472 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 12473 u16 val = 0; 12474 12475 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 12476 if (val == 0xffff) 12477 bp->fw_reset_min_dsecs = 0; 12478 bnxt_tx_disable(bp); 12479 bnxt_disable_napi(bp); 12480 bnxt_disable_int_sync(bp); 12481 bnxt_free_irq(bp); 12482 bnxt_clear_int_mode(bp); 12483 pci_disable_device(bp->pdev); 12484 } 12485 __bnxt_close_nic(bp, true, false); 12486 bnxt_vf_reps_free(bp); 12487 bnxt_clear_int_mode(bp); 12488 bnxt_hwrm_func_drv_unrgtr(bp); 12489 if (pci_is_enabled(bp->pdev)) 12490 pci_disable_device(bp->pdev); 12491 bnxt_free_ctx_mem(bp); 12492 } 12493 12494 static bool is_bnxt_fw_ok(struct bnxt *bp) 12495 { 12496 struct bnxt_fw_health *fw_health = bp->fw_health; 12497 bool no_heartbeat = false, has_reset = false; 12498 u32 val; 12499 12500 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 12501 if (val == fw_health->last_fw_heartbeat) 12502 no_heartbeat = true; 12503 12504 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 12505 if (val != fw_health->last_fw_reset_cnt) 12506 has_reset = true; 12507 12508 if (!no_heartbeat && has_reset) 12509 return true; 12510 12511 return false; 12512 } 12513 12514 /* rtnl_lock is acquired before calling this function */ 12515 static void bnxt_force_fw_reset(struct bnxt *bp) 12516 { 12517 struct bnxt_fw_health *fw_health = bp->fw_health; 12518 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 12519 u32 wait_dsecs; 12520 12521 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 12522 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 12523 return; 12524 12525 if (ptp) { 12526 spin_lock_bh(&ptp->ptp_lock); 12527 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12528 spin_unlock_bh(&ptp->ptp_lock); 12529 } else { 12530 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12531 } 12532 bnxt_fw_reset_close(bp); 12533 wait_dsecs = fw_health->master_func_wait_dsecs; 12534 if (fw_health->primary) { 12535 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 12536 wait_dsecs = 0; 12537 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 12538 } else { 12539 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 12540 wait_dsecs = fw_health->normal_func_wait_dsecs; 12541 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12542 } 12543 12544 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 12545 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 12546 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 12547 } 12548 12549 void bnxt_fw_exception(struct bnxt *bp) 12550 { 12551 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 12552 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 12553 bnxt_rtnl_lock_sp(bp); 12554 bnxt_force_fw_reset(bp); 12555 bnxt_rtnl_unlock_sp(bp); 12556 } 12557 12558 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 12559 * < 0 on error. 12560 */ 12561 static int bnxt_get_registered_vfs(struct bnxt *bp) 12562 { 12563 #ifdef CONFIG_BNXT_SRIOV 12564 int rc; 12565 12566 if (!BNXT_PF(bp)) 12567 return 0; 12568 12569 rc = bnxt_hwrm_func_qcfg(bp); 12570 if (rc) { 12571 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 12572 return rc; 12573 } 12574 if (bp->pf.registered_vfs) 12575 return bp->pf.registered_vfs; 12576 if (bp->sriov_cfg) 12577 return 1; 12578 #endif 12579 return 0; 12580 } 12581 12582 void bnxt_fw_reset(struct bnxt *bp) 12583 { 12584 bnxt_rtnl_lock_sp(bp); 12585 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 12586 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 12587 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 12588 int n = 0, tmo; 12589 12590 if (ptp) { 12591 spin_lock_bh(&ptp->ptp_lock); 12592 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12593 spin_unlock_bh(&ptp->ptp_lock); 12594 } else { 12595 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12596 } 12597 if (bp->pf.active_vfs && 12598 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 12599 n = bnxt_get_registered_vfs(bp); 12600 if (n < 0) { 12601 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 12602 n); 12603 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12604 dev_close(bp->dev); 12605 goto fw_reset_exit; 12606 } else if (n > 0) { 12607 u16 vf_tmo_dsecs = n * 10; 12608 12609 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 12610 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 12611 bp->fw_reset_state = 12612 BNXT_FW_RESET_STATE_POLL_VF; 12613 bnxt_queue_fw_reset_work(bp, HZ / 10); 12614 goto fw_reset_exit; 12615 } 12616 bnxt_fw_reset_close(bp); 12617 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 12618 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 12619 tmo = HZ / 10; 12620 } else { 12621 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12622 tmo = bp->fw_reset_min_dsecs * HZ / 10; 12623 } 12624 bnxt_queue_fw_reset_work(bp, tmo); 12625 } 12626 fw_reset_exit: 12627 bnxt_rtnl_unlock_sp(bp); 12628 } 12629 12630 static void bnxt_chk_missed_irq(struct bnxt *bp) 12631 { 12632 int i; 12633 12634 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 12635 return; 12636 12637 for (i = 0; i < bp->cp_nr_rings; i++) { 12638 struct bnxt_napi *bnapi = bp->bnapi[i]; 12639 struct bnxt_cp_ring_info *cpr; 12640 u32 fw_ring_id; 12641 int j; 12642 12643 if (!bnapi) 12644 continue; 12645 12646 cpr = &bnapi->cp_ring; 12647 for (j = 0; j < cpr->cp_ring_count; j++) { 12648 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 12649 u32 val[2]; 12650 12651 if (cpr2->has_more_work || !bnxt_has_work(bp, cpr2)) 12652 continue; 12653 12654 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 12655 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 12656 continue; 12657 } 12658 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 12659 bnxt_dbg_hwrm_ring_info_get(bp, 12660 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 12661 fw_ring_id, &val[0], &val[1]); 12662 cpr->sw_stats.cmn.missed_irqs++; 12663 } 12664 } 12665 } 12666 12667 static void bnxt_cfg_ntp_filters(struct bnxt *); 12668 12669 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 12670 { 12671 struct bnxt_link_info *link_info = &bp->link_info; 12672 12673 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 12674 link_info->autoneg = BNXT_AUTONEG_SPEED; 12675 if (bp->hwrm_spec_code >= 0x10201) { 12676 if (link_info->auto_pause_setting & 12677 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 12678 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 12679 } else { 12680 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 12681 } 12682 bnxt_set_auto_speed(link_info); 12683 } else { 12684 bnxt_set_force_speed(link_info); 12685 link_info->req_duplex = link_info->duplex_setting; 12686 } 12687 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 12688 link_info->req_flow_ctrl = 12689 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 12690 else 12691 link_info->req_flow_ctrl = link_info->force_pause_setting; 12692 } 12693 12694 static void bnxt_fw_echo_reply(struct bnxt *bp) 12695 { 12696 struct bnxt_fw_health *fw_health = bp->fw_health; 12697 struct hwrm_func_echo_response_input *req; 12698 int rc; 12699 12700 rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE); 12701 if (rc) 12702 return; 12703 req->event_data1 = cpu_to_le32(fw_health->echo_req_data1); 12704 req->event_data2 = cpu_to_le32(fw_health->echo_req_data2); 12705 hwrm_req_send(bp, req); 12706 } 12707 12708 static void bnxt_sp_task(struct work_struct *work) 12709 { 12710 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 12711 12712 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 12713 smp_mb__after_atomic(); 12714 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 12715 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 12716 return; 12717 } 12718 12719 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 12720 bnxt_cfg_rx_mode(bp); 12721 12722 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 12723 bnxt_cfg_ntp_filters(bp); 12724 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 12725 bnxt_hwrm_exec_fwd_req(bp); 12726 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 12727 bnxt_hwrm_port_qstats(bp, 0); 12728 bnxt_hwrm_port_qstats_ext(bp, 0); 12729 bnxt_accumulate_all_stats(bp); 12730 } 12731 12732 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 12733 int rc; 12734 12735 mutex_lock(&bp->link_lock); 12736 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 12737 &bp->sp_event)) 12738 bnxt_hwrm_phy_qcaps(bp); 12739 12740 rc = bnxt_update_link(bp, true); 12741 if (rc) 12742 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 12743 rc); 12744 12745 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 12746 &bp->sp_event)) 12747 bnxt_init_ethtool_link_settings(bp); 12748 mutex_unlock(&bp->link_lock); 12749 } 12750 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 12751 int rc; 12752 12753 mutex_lock(&bp->link_lock); 12754 rc = bnxt_update_phy_setting(bp); 12755 mutex_unlock(&bp->link_lock); 12756 if (rc) { 12757 netdev_warn(bp->dev, "update phy settings retry failed\n"); 12758 } else { 12759 bp->link_info.phy_retry = false; 12760 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 12761 } 12762 } 12763 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 12764 mutex_lock(&bp->link_lock); 12765 bnxt_get_port_module_status(bp); 12766 mutex_unlock(&bp->link_lock); 12767 } 12768 12769 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 12770 bnxt_tc_flow_stats_work(bp); 12771 12772 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 12773 bnxt_chk_missed_irq(bp); 12774 12775 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 12776 bnxt_fw_echo_reply(bp); 12777 12778 if (test_and_clear_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event)) 12779 bnxt_hwmon_notify_event(bp); 12780 12781 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 12782 * must be the last functions to be called before exiting. 12783 */ 12784 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 12785 bnxt_reset(bp, false); 12786 12787 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 12788 bnxt_reset(bp, true); 12789 12790 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 12791 bnxt_rx_ring_reset(bp); 12792 12793 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) { 12794 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) || 12795 test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state)) 12796 bnxt_devlink_health_fw_report(bp); 12797 else 12798 bnxt_fw_reset(bp); 12799 } 12800 12801 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 12802 if (!is_bnxt_fw_ok(bp)) 12803 bnxt_devlink_health_fw_report(bp); 12804 } 12805 12806 smp_mb__before_atomic(); 12807 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 12808 } 12809 12810 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 12811 int *max_cp); 12812 12813 /* Under rtnl_lock */ 12814 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 12815 int tx_xdp) 12816 { 12817 int max_rx, max_tx, max_cp, tx_sets = 1, tx_cp; 12818 int tx_rings_needed, stats; 12819 int rx_rings = rx; 12820 int cp, vnics; 12821 12822 if (tcs) 12823 tx_sets = tcs; 12824 12825 _bnxt_get_max_rings(bp, &max_rx, &max_tx, &max_cp); 12826 12827 if (max_rx < rx_rings) 12828 return -ENOMEM; 12829 12830 if (bp->flags & BNXT_FLAG_AGG_RINGS) 12831 rx_rings <<= 1; 12832 12833 tx_rings_needed = tx * tx_sets + tx_xdp; 12834 if (max_tx < tx_rings_needed) 12835 return -ENOMEM; 12836 12837 vnics = 1; 12838 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5_PLUS)) == 12839 BNXT_FLAG_RFS) 12840 vnics += rx; 12841 12842 tx_cp = __bnxt_num_tx_to_cp(bp, tx_rings_needed, tx_sets, tx_xdp); 12843 cp = sh ? max_t(int, tx_cp, rx) : tx_cp + rx; 12844 if (max_cp < cp) 12845 return -ENOMEM; 12846 stats = cp; 12847 if (BNXT_NEW_RM(bp)) { 12848 cp += bnxt_get_ulp_msix_num(bp); 12849 stats += bnxt_get_ulp_stat_ctxs(bp); 12850 } 12851 return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp, 12852 stats, vnics); 12853 } 12854 12855 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 12856 { 12857 if (bp->bar2) { 12858 pci_iounmap(pdev, bp->bar2); 12859 bp->bar2 = NULL; 12860 } 12861 12862 if (bp->bar1) { 12863 pci_iounmap(pdev, bp->bar1); 12864 bp->bar1 = NULL; 12865 } 12866 12867 if (bp->bar0) { 12868 pci_iounmap(pdev, bp->bar0); 12869 bp->bar0 = NULL; 12870 } 12871 } 12872 12873 static void bnxt_cleanup_pci(struct bnxt *bp) 12874 { 12875 bnxt_unmap_bars(bp, bp->pdev); 12876 pci_release_regions(bp->pdev); 12877 if (pci_is_enabled(bp->pdev)) 12878 pci_disable_device(bp->pdev); 12879 } 12880 12881 static void bnxt_init_dflt_coal(struct bnxt *bp) 12882 { 12883 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 12884 struct bnxt_coal *coal; 12885 u16 flags = 0; 12886 12887 if (coal_cap->cmpl_params & 12888 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 12889 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 12890 12891 /* Tick values in micro seconds. 12892 * 1 coal_buf x bufs_per_record = 1 completion record. 12893 */ 12894 coal = &bp->rx_coal; 12895 coal->coal_ticks = 10; 12896 coal->coal_bufs = 30; 12897 coal->coal_ticks_irq = 1; 12898 coal->coal_bufs_irq = 2; 12899 coal->idle_thresh = 50; 12900 coal->bufs_per_record = 2; 12901 coal->budget = 64; /* NAPI budget */ 12902 coal->flags = flags; 12903 12904 coal = &bp->tx_coal; 12905 coal->coal_ticks = 28; 12906 coal->coal_bufs = 30; 12907 coal->coal_ticks_irq = 2; 12908 coal->coal_bufs_irq = 2; 12909 coal->bufs_per_record = 1; 12910 coal->flags = flags; 12911 12912 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 12913 } 12914 12915 /* FW that pre-reserves 1 VNIC per function */ 12916 static bool bnxt_fw_pre_resv_vnics(struct bnxt *bp) 12917 { 12918 u16 fw_maj = BNXT_FW_MAJ(bp), fw_bld = BNXT_FW_BLD(bp); 12919 12920 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 12921 (fw_maj > 218 || (fw_maj == 218 && fw_bld >= 18))) 12922 return true; 12923 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 12924 (fw_maj > 216 || (fw_maj == 216 && fw_bld >= 172))) 12925 return true; 12926 return false; 12927 } 12928 12929 static int bnxt_fw_init_one_p1(struct bnxt *bp) 12930 { 12931 int rc; 12932 12933 bp->fw_cap = 0; 12934 rc = bnxt_hwrm_ver_get(bp); 12935 bnxt_try_map_fw_health_reg(bp); 12936 if (rc) { 12937 rc = bnxt_try_recover_fw(bp); 12938 if (rc) 12939 return rc; 12940 rc = bnxt_hwrm_ver_get(bp); 12941 if (rc) 12942 return rc; 12943 } 12944 12945 bnxt_nvm_cfg_ver_get(bp); 12946 12947 rc = bnxt_hwrm_func_reset(bp); 12948 if (rc) 12949 return -ENODEV; 12950 12951 bnxt_hwrm_fw_set_time(bp); 12952 return 0; 12953 } 12954 12955 static int bnxt_fw_init_one_p2(struct bnxt *bp) 12956 { 12957 int rc; 12958 12959 /* Get the MAX capabilities for this function */ 12960 rc = bnxt_hwrm_func_qcaps(bp); 12961 if (rc) { 12962 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 12963 rc); 12964 return -ENODEV; 12965 } 12966 12967 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 12968 if (rc) 12969 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 12970 rc); 12971 12972 if (bnxt_alloc_fw_health(bp)) { 12973 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 12974 } else { 12975 rc = bnxt_hwrm_error_recovery_qcfg(bp); 12976 if (rc) 12977 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 12978 rc); 12979 } 12980 12981 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 12982 if (rc) 12983 return -ENODEV; 12984 12985 if (bnxt_fw_pre_resv_vnics(bp)) 12986 bp->fw_cap |= BNXT_FW_CAP_PRE_RESV_VNICS; 12987 12988 bnxt_hwrm_func_qcfg(bp); 12989 bnxt_hwrm_vnic_qcaps(bp); 12990 bnxt_hwrm_port_led_qcaps(bp); 12991 bnxt_ethtool_init(bp); 12992 if (bp->fw_cap & BNXT_FW_CAP_PTP) 12993 __bnxt_hwrm_ptp_qcfg(bp); 12994 bnxt_dcb_init(bp); 12995 bnxt_hwmon_init(bp); 12996 return 0; 12997 } 12998 12999 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 13000 { 13001 bp->rss_cap &= ~BNXT_RSS_CAP_UDP_RSS_CAP; 13002 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 13003 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 13004 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 13005 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 13006 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 13007 bp->rss_hash_delta = bp->rss_hash_cfg; 13008 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 13009 bp->rss_cap |= BNXT_RSS_CAP_UDP_RSS_CAP; 13010 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 13011 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 13012 } 13013 } 13014 13015 static void bnxt_set_dflt_rfs(struct bnxt *bp) 13016 { 13017 struct net_device *dev = bp->dev; 13018 13019 dev->hw_features &= ~NETIF_F_NTUPLE; 13020 dev->features &= ~NETIF_F_NTUPLE; 13021 bp->flags &= ~BNXT_FLAG_RFS; 13022 if (bnxt_rfs_supported(bp)) { 13023 dev->hw_features |= NETIF_F_NTUPLE; 13024 if (bnxt_rfs_capable(bp)) { 13025 bp->flags |= BNXT_FLAG_RFS; 13026 dev->features |= NETIF_F_NTUPLE; 13027 } 13028 } 13029 } 13030 13031 static void bnxt_fw_init_one_p3(struct bnxt *bp) 13032 { 13033 struct pci_dev *pdev = bp->pdev; 13034 13035 bnxt_set_dflt_rss_hash_type(bp); 13036 bnxt_set_dflt_rfs(bp); 13037 13038 bnxt_get_wol_settings(bp); 13039 if (bp->flags & BNXT_FLAG_WOL_CAP) 13040 device_set_wakeup_enable(&pdev->dev, bp->wol); 13041 else 13042 device_set_wakeup_capable(&pdev->dev, false); 13043 13044 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 13045 bnxt_hwrm_coal_params_qcaps(bp); 13046 } 13047 13048 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); 13049 13050 int bnxt_fw_init_one(struct bnxt *bp) 13051 { 13052 int rc; 13053 13054 rc = bnxt_fw_init_one_p1(bp); 13055 if (rc) { 13056 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 13057 return rc; 13058 } 13059 rc = bnxt_fw_init_one_p2(bp); 13060 if (rc) { 13061 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 13062 return rc; 13063 } 13064 rc = bnxt_probe_phy(bp, false); 13065 if (rc) 13066 return rc; 13067 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 13068 if (rc) 13069 return rc; 13070 13071 bnxt_fw_init_one_p3(bp); 13072 return 0; 13073 } 13074 13075 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 13076 { 13077 struct bnxt_fw_health *fw_health = bp->fw_health; 13078 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 13079 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 13080 u32 reg_type, reg_off, delay_msecs; 13081 13082 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 13083 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 13084 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 13085 switch (reg_type) { 13086 case BNXT_FW_HEALTH_REG_TYPE_CFG: 13087 pci_write_config_dword(bp->pdev, reg_off, val); 13088 break; 13089 case BNXT_FW_HEALTH_REG_TYPE_GRC: 13090 writel(reg_off & BNXT_GRC_BASE_MASK, 13091 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 13092 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 13093 fallthrough; 13094 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 13095 writel(val, bp->bar0 + reg_off); 13096 break; 13097 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 13098 writel(val, bp->bar1 + reg_off); 13099 break; 13100 } 13101 if (delay_msecs) { 13102 pci_read_config_dword(bp->pdev, 0, &val); 13103 msleep(delay_msecs); 13104 } 13105 } 13106 13107 bool bnxt_hwrm_reset_permitted(struct bnxt *bp) 13108 { 13109 struct hwrm_func_qcfg_output *resp; 13110 struct hwrm_func_qcfg_input *req; 13111 bool result = true; /* firmware will enforce if unknown */ 13112 13113 if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF) 13114 return result; 13115 13116 if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG)) 13117 return result; 13118 13119 req->fid = cpu_to_le16(0xffff); 13120 resp = hwrm_req_hold(bp, req); 13121 if (!hwrm_req_send(bp, req)) 13122 result = !!(le16_to_cpu(resp->flags) & 13123 FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED); 13124 hwrm_req_drop(bp, req); 13125 return result; 13126 } 13127 13128 static void bnxt_reset_all(struct bnxt *bp) 13129 { 13130 struct bnxt_fw_health *fw_health = bp->fw_health; 13131 int i, rc; 13132 13133 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 13134 bnxt_fw_reset_via_optee(bp); 13135 bp->fw_reset_timestamp = jiffies; 13136 return; 13137 } 13138 13139 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 13140 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 13141 bnxt_fw_reset_writel(bp, i); 13142 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 13143 struct hwrm_fw_reset_input *req; 13144 13145 rc = hwrm_req_init(bp, req, HWRM_FW_RESET); 13146 if (!rc) { 13147 req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG); 13148 req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 13149 req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 13150 req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 13151 rc = hwrm_req_send(bp, req); 13152 } 13153 if (rc != -ENODEV) 13154 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 13155 } 13156 bp->fw_reset_timestamp = jiffies; 13157 } 13158 13159 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 13160 { 13161 return time_after(jiffies, bp->fw_reset_timestamp + 13162 (bp->fw_reset_max_dsecs * HZ / 10)); 13163 } 13164 13165 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) 13166 { 13167 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13168 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) { 13169 bnxt_ulp_start(bp, rc); 13170 bnxt_dl_health_fw_status_update(bp, false); 13171 } 13172 bp->fw_reset_state = 0; 13173 dev_close(bp->dev); 13174 } 13175 13176 static void bnxt_fw_reset_task(struct work_struct *work) 13177 { 13178 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 13179 int rc = 0; 13180 13181 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 13182 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 13183 return; 13184 } 13185 13186 switch (bp->fw_reset_state) { 13187 case BNXT_FW_RESET_STATE_POLL_VF: { 13188 int n = bnxt_get_registered_vfs(bp); 13189 int tmo; 13190 13191 if (n < 0) { 13192 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 13193 n, jiffies_to_msecs(jiffies - 13194 bp->fw_reset_timestamp)); 13195 goto fw_reset_abort; 13196 } else if (n > 0) { 13197 if (bnxt_fw_reset_timeout(bp)) { 13198 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13199 bp->fw_reset_state = 0; 13200 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 13201 n); 13202 return; 13203 } 13204 bnxt_queue_fw_reset_work(bp, HZ / 10); 13205 return; 13206 } 13207 bp->fw_reset_timestamp = jiffies; 13208 rtnl_lock(); 13209 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 13210 bnxt_fw_reset_abort(bp, rc); 13211 rtnl_unlock(); 13212 return; 13213 } 13214 bnxt_fw_reset_close(bp); 13215 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 13216 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 13217 tmo = HZ / 10; 13218 } else { 13219 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 13220 tmo = bp->fw_reset_min_dsecs * HZ / 10; 13221 } 13222 rtnl_unlock(); 13223 bnxt_queue_fw_reset_work(bp, tmo); 13224 return; 13225 } 13226 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 13227 u32 val; 13228 13229 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 13230 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 13231 !bnxt_fw_reset_timeout(bp)) { 13232 bnxt_queue_fw_reset_work(bp, HZ / 5); 13233 return; 13234 } 13235 13236 if (!bp->fw_health->primary) { 13237 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 13238 13239 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 13240 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 13241 return; 13242 } 13243 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 13244 } 13245 fallthrough; 13246 case BNXT_FW_RESET_STATE_RESET_FW: 13247 bnxt_reset_all(bp); 13248 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 13249 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 13250 return; 13251 case BNXT_FW_RESET_STATE_ENABLE_DEV: 13252 bnxt_inv_fw_health_reg(bp); 13253 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 13254 !bp->fw_reset_min_dsecs) { 13255 u16 val; 13256 13257 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 13258 if (val == 0xffff) { 13259 if (bnxt_fw_reset_timeout(bp)) { 13260 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 13261 rc = -ETIMEDOUT; 13262 goto fw_reset_abort; 13263 } 13264 bnxt_queue_fw_reset_work(bp, HZ / 1000); 13265 return; 13266 } 13267 } 13268 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 13269 clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 13270 if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) && 13271 !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state)) 13272 bnxt_dl_remote_reload(bp); 13273 if (pci_enable_device(bp->pdev)) { 13274 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 13275 rc = -ENODEV; 13276 goto fw_reset_abort; 13277 } 13278 pci_set_master(bp->pdev); 13279 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 13280 fallthrough; 13281 case BNXT_FW_RESET_STATE_POLL_FW: 13282 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 13283 rc = bnxt_hwrm_poll(bp); 13284 if (rc) { 13285 if (bnxt_fw_reset_timeout(bp)) { 13286 netdev_err(bp->dev, "Firmware reset aborted\n"); 13287 goto fw_reset_abort_status; 13288 } 13289 bnxt_queue_fw_reset_work(bp, HZ / 5); 13290 return; 13291 } 13292 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 13293 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 13294 fallthrough; 13295 case BNXT_FW_RESET_STATE_OPENING: 13296 while (!rtnl_trylock()) { 13297 bnxt_queue_fw_reset_work(bp, HZ / 10); 13298 return; 13299 } 13300 rc = bnxt_open(bp->dev); 13301 if (rc) { 13302 netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); 13303 bnxt_fw_reset_abort(bp, rc); 13304 rtnl_unlock(); 13305 return; 13306 } 13307 13308 if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) && 13309 bp->fw_health->enabled) { 13310 bp->fw_health->last_fw_reset_cnt = 13311 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 13312 } 13313 bp->fw_reset_state = 0; 13314 /* Make sure fw_reset_state is 0 before clearing the flag */ 13315 smp_mb__before_atomic(); 13316 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13317 bnxt_ulp_start(bp, 0); 13318 bnxt_reenable_sriov(bp); 13319 bnxt_vf_reps_alloc(bp); 13320 bnxt_vf_reps_open(bp); 13321 bnxt_ptp_reapply_pps(bp); 13322 clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state); 13323 if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) { 13324 bnxt_dl_health_fw_recovery_done(bp); 13325 bnxt_dl_health_fw_status_update(bp, true); 13326 } 13327 rtnl_unlock(); 13328 break; 13329 } 13330 return; 13331 13332 fw_reset_abort_status: 13333 if (bp->fw_health->status_reliable || 13334 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 13335 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 13336 13337 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 13338 } 13339 fw_reset_abort: 13340 rtnl_lock(); 13341 bnxt_fw_reset_abort(bp, rc); 13342 rtnl_unlock(); 13343 } 13344 13345 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 13346 { 13347 int rc; 13348 struct bnxt *bp = netdev_priv(dev); 13349 13350 SET_NETDEV_DEV(dev, &pdev->dev); 13351 13352 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 13353 rc = pci_enable_device(pdev); 13354 if (rc) { 13355 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 13356 goto init_err; 13357 } 13358 13359 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 13360 dev_err(&pdev->dev, 13361 "Cannot find PCI device base address, aborting\n"); 13362 rc = -ENODEV; 13363 goto init_err_disable; 13364 } 13365 13366 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 13367 if (rc) { 13368 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 13369 goto init_err_disable; 13370 } 13371 13372 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 13373 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 13374 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 13375 rc = -EIO; 13376 goto init_err_release; 13377 } 13378 13379 pci_set_master(pdev); 13380 13381 bp->dev = dev; 13382 bp->pdev = pdev; 13383 13384 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 13385 * determines the BAR size. 13386 */ 13387 bp->bar0 = pci_ioremap_bar(pdev, 0); 13388 if (!bp->bar0) { 13389 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 13390 rc = -ENOMEM; 13391 goto init_err_release; 13392 } 13393 13394 bp->bar2 = pci_ioremap_bar(pdev, 4); 13395 if (!bp->bar2) { 13396 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 13397 rc = -ENOMEM; 13398 goto init_err_release; 13399 } 13400 13401 INIT_WORK(&bp->sp_task, bnxt_sp_task); 13402 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 13403 13404 spin_lock_init(&bp->ntp_fltr_lock); 13405 #if BITS_PER_LONG == 32 13406 spin_lock_init(&bp->db_lock); 13407 #endif 13408 13409 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 13410 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 13411 13412 timer_setup(&bp->timer, bnxt_timer, 0); 13413 bp->current_interval = BNXT_TIMER_INTERVAL; 13414 13415 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 13416 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 13417 13418 clear_bit(BNXT_STATE_OPEN, &bp->state); 13419 return 0; 13420 13421 init_err_release: 13422 bnxt_unmap_bars(bp, pdev); 13423 pci_release_regions(pdev); 13424 13425 init_err_disable: 13426 pci_disable_device(pdev); 13427 13428 init_err: 13429 return rc; 13430 } 13431 13432 /* rtnl_lock held */ 13433 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 13434 { 13435 struct sockaddr *addr = p; 13436 struct bnxt *bp = netdev_priv(dev); 13437 int rc = 0; 13438 13439 if (!is_valid_ether_addr(addr->sa_data)) 13440 return -EADDRNOTAVAIL; 13441 13442 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 13443 return 0; 13444 13445 rc = bnxt_approve_mac(bp, addr->sa_data, true); 13446 if (rc) 13447 return rc; 13448 13449 eth_hw_addr_set(dev, addr->sa_data); 13450 if (netif_running(dev)) { 13451 bnxt_close_nic(bp, false, false); 13452 rc = bnxt_open_nic(bp, false, false); 13453 } 13454 13455 return rc; 13456 } 13457 13458 /* rtnl_lock held */ 13459 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 13460 { 13461 struct bnxt *bp = netdev_priv(dev); 13462 13463 if (netif_running(dev)) 13464 bnxt_close_nic(bp, true, false); 13465 13466 dev->mtu = new_mtu; 13467 bnxt_set_ring_params(bp); 13468 13469 if (netif_running(dev)) 13470 return bnxt_open_nic(bp, true, false); 13471 13472 return 0; 13473 } 13474 13475 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 13476 { 13477 struct bnxt *bp = netdev_priv(dev); 13478 bool sh = false; 13479 int rc, tx_cp; 13480 13481 if (tc > bp->max_tc) { 13482 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 13483 tc, bp->max_tc); 13484 return -EINVAL; 13485 } 13486 13487 if (netdev_get_num_tc(dev) == tc) 13488 return 0; 13489 13490 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 13491 sh = true; 13492 13493 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 13494 sh, tc, bp->tx_nr_rings_xdp); 13495 if (rc) 13496 return rc; 13497 13498 /* Needs to close the device and do hw resource re-allocations */ 13499 if (netif_running(bp->dev)) 13500 bnxt_close_nic(bp, true, false); 13501 13502 if (tc) { 13503 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 13504 netdev_set_num_tc(dev, tc); 13505 } else { 13506 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 13507 netdev_reset_tc(dev); 13508 } 13509 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 13510 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 13511 bp->cp_nr_rings = sh ? max_t(int, tx_cp, bp->rx_nr_rings) : 13512 tx_cp + bp->rx_nr_rings; 13513 13514 if (netif_running(bp->dev)) 13515 return bnxt_open_nic(bp, true, false); 13516 13517 return 0; 13518 } 13519 13520 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 13521 void *cb_priv) 13522 { 13523 struct bnxt *bp = cb_priv; 13524 13525 if (!bnxt_tc_flower_enabled(bp) || 13526 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 13527 return -EOPNOTSUPP; 13528 13529 switch (type) { 13530 case TC_SETUP_CLSFLOWER: 13531 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 13532 default: 13533 return -EOPNOTSUPP; 13534 } 13535 } 13536 13537 LIST_HEAD(bnxt_block_cb_list); 13538 13539 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 13540 void *type_data) 13541 { 13542 struct bnxt *bp = netdev_priv(dev); 13543 13544 switch (type) { 13545 case TC_SETUP_BLOCK: 13546 return flow_block_cb_setup_simple(type_data, 13547 &bnxt_block_cb_list, 13548 bnxt_setup_tc_block_cb, 13549 bp, bp, true); 13550 case TC_SETUP_QDISC_MQPRIO: { 13551 struct tc_mqprio_qopt *mqprio = type_data; 13552 13553 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 13554 13555 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 13556 } 13557 default: 13558 return -EOPNOTSUPP; 13559 } 13560 } 13561 13562 #ifdef CONFIG_RFS_ACCEL 13563 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 13564 struct bnxt_ntuple_filter *f2) 13565 { 13566 struct flow_keys *keys1 = &f1->fkeys; 13567 struct flow_keys *keys2 = &f2->fkeys; 13568 13569 if (keys1->basic.n_proto != keys2->basic.n_proto || 13570 keys1->basic.ip_proto != keys2->basic.ip_proto) 13571 return false; 13572 13573 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 13574 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 13575 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst) 13576 return false; 13577 } else { 13578 if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src, 13579 sizeof(keys1->addrs.v6addrs.src)) || 13580 memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst, 13581 sizeof(keys1->addrs.v6addrs.dst))) 13582 return false; 13583 } 13584 13585 if (keys1->ports.ports == keys2->ports.ports && 13586 keys1->control.flags == keys2->control.flags && 13587 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) && 13588 ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr)) 13589 return true; 13590 13591 return false; 13592 } 13593 13594 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 13595 u16 rxq_index, u32 flow_id) 13596 { 13597 struct bnxt *bp = netdev_priv(dev); 13598 struct bnxt_ntuple_filter *fltr, *new_fltr; 13599 struct flow_keys *fkeys; 13600 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 13601 int rc = 0, idx, bit_id, l2_idx = 0; 13602 struct hlist_head *head; 13603 u32 flags; 13604 13605 if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) { 13606 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 13607 int off = 0, j; 13608 13609 netif_addr_lock_bh(dev); 13610 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) { 13611 if (ether_addr_equal(eth->h_dest, 13612 vnic->uc_list + off)) { 13613 l2_idx = j + 1; 13614 break; 13615 } 13616 } 13617 netif_addr_unlock_bh(dev); 13618 if (!l2_idx) 13619 return -EINVAL; 13620 } 13621 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 13622 if (!new_fltr) 13623 return -ENOMEM; 13624 13625 fkeys = &new_fltr->fkeys; 13626 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 13627 rc = -EPROTONOSUPPORT; 13628 goto err_free; 13629 } 13630 13631 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 13632 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 13633 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 13634 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 13635 rc = -EPROTONOSUPPORT; 13636 goto err_free; 13637 } 13638 if (fkeys->basic.n_proto == htons(ETH_P_IPV6) && 13639 bp->hwrm_spec_code < 0x10601) { 13640 rc = -EPROTONOSUPPORT; 13641 goto err_free; 13642 } 13643 flags = fkeys->control.flags; 13644 if (((flags & FLOW_DIS_ENCAPSULATION) && 13645 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 13646 rc = -EPROTONOSUPPORT; 13647 goto err_free; 13648 } 13649 13650 memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN); 13651 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN); 13652 13653 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 13654 head = &bp->ntp_fltr_hash_tbl[idx]; 13655 rcu_read_lock(); 13656 hlist_for_each_entry_rcu(fltr, head, hash) { 13657 if (bnxt_fltr_match(fltr, new_fltr)) { 13658 rc = fltr->sw_id; 13659 rcu_read_unlock(); 13660 goto err_free; 13661 } 13662 } 13663 rcu_read_unlock(); 13664 13665 spin_lock_bh(&bp->ntp_fltr_lock); 13666 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 13667 BNXT_NTP_FLTR_MAX_FLTR, 0); 13668 if (bit_id < 0) { 13669 spin_unlock_bh(&bp->ntp_fltr_lock); 13670 rc = -ENOMEM; 13671 goto err_free; 13672 } 13673 13674 new_fltr->sw_id = (u16)bit_id; 13675 new_fltr->flow_id = flow_id; 13676 new_fltr->l2_fltr_idx = l2_idx; 13677 new_fltr->rxq = rxq_index; 13678 hlist_add_head_rcu(&new_fltr->hash, head); 13679 bp->ntp_fltr_count++; 13680 spin_unlock_bh(&bp->ntp_fltr_lock); 13681 13682 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 13683 13684 return new_fltr->sw_id; 13685 13686 err_free: 13687 kfree(new_fltr); 13688 return rc; 13689 } 13690 13691 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 13692 { 13693 int i; 13694 13695 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 13696 struct hlist_head *head; 13697 struct hlist_node *tmp; 13698 struct bnxt_ntuple_filter *fltr; 13699 int rc; 13700 13701 head = &bp->ntp_fltr_hash_tbl[i]; 13702 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 13703 bool del = false; 13704 13705 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) { 13706 if (rps_may_expire_flow(bp->dev, fltr->rxq, 13707 fltr->flow_id, 13708 fltr->sw_id)) { 13709 bnxt_hwrm_cfa_ntuple_filter_free(bp, 13710 fltr); 13711 del = true; 13712 } 13713 } else { 13714 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 13715 fltr); 13716 if (rc) 13717 del = true; 13718 else 13719 set_bit(BNXT_FLTR_VALID, &fltr->state); 13720 } 13721 13722 if (del) { 13723 spin_lock_bh(&bp->ntp_fltr_lock); 13724 hlist_del_rcu(&fltr->hash); 13725 bp->ntp_fltr_count--; 13726 spin_unlock_bh(&bp->ntp_fltr_lock); 13727 synchronize_rcu(); 13728 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 13729 kfree(fltr); 13730 } 13731 } 13732 } 13733 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 13734 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 13735 } 13736 13737 #else 13738 13739 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 13740 { 13741 } 13742 13743 #endif /* CONFIG_RFS_ACCEL */ 13744 13745 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 13746 unsigned int entry, struct udp_tunnel_info *ti) 13747 { 13748 struct bnxt *bp = netdev_priv(netdev); 13749 unsigned int cmd; 13750 13751 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 13752 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN; 13753 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 13754 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE; 13755 else 13756 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE; 13757 13758 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd); 13759 } 13760 13761 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 13762 unsigned int entry, struct udp_tunnel_info *ti) 13763 { 13764 struct bnxt *bp = netdev_priv(netdev); 13765 unsigned int cmd; 13766 13767 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 13768 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 13769 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 13770 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 13771 else 13772 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE; 13773 13774 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 13775 } 13776 13777 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 13778 .set_port = bnxt_udp_tunnel_set_port, 13779 .unset_port = bnxt_udp_tunnel_unset_port, 13780 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 13781 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 13782 .tables = { 13783 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 13784 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 13785 }, 13786 }, bnxt_udp_tunnels_p7 = { 13787 .set_port = bnxt_udp_tunnel_set_port, 13788 .unset_port = bnxt_udp_tunnel_unset_port, 13789 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 13790 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 13791 .tables = { 13792 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 13793 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 13794 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN_GPE, }, 13795 }, 13796 }; 13797 13798 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 13799 struct net_device *dev, u32 filter_mask, 13800 int nlflags) 13801 { 13802 struct bnxt *bp = netdev_priv(dev); 13803 13804 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 13805 nlflags, filter_mask, NULL); 13806 } 13807 13808 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 13809 u16 flags, struct netlink_ext_ack *extack) 13810 { 13811 struct bnxt *bp = netdev_priv(dev); 13812 struct nlattr *attr, *br_spec; 13813 int rem, rc = 0; 13814 13815 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 13816 return -EOPNOTSUPP; 13817 13818 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 13819 if (!br_spec) 13820 return -EINVAL; 13821 13822 nla_for_each_nested(attr, br_spec, rem) { 13823 u16 mode; 13824 13825 if (nla_type(attr) != IFLA_BRIDGE_MODE) 13826 continue; 13827 13828 mode = nla_get_u16(attr); 13829 if (mode == bp->br_mode) 13830 break; 13831 13832 rc = bnxt_hwrm_set_br_mode(bp, mode); 13833 if (!rc) 13834 bp->br_mode = mode; 13835 break; 13836 } 13837 return rc; 13838 } 13839 13840 int bnxt_get_port_parent_id(struct net_device *dev, 13841 struct netdev_phys_item_id *ppid) 13842 { 13843 struct bnxt *bp = netdev_priv(dev); 13844 13845 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 13846 return -EOPNOTSUPP; 13847 13848 /* The PF and it's VF-reps only support the switchdev framework */ 13849 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 13850 return -EOPNOTSUPP; 13851 13852 ppid->id_len = sizeof(bp->dsn); 13853 memcpy(ppid->id, bp->dsn, ppid->id_len); 13854 13855 return 0; 13856 } 13857 13858 static const struct net_device_ops bnxt_netdev_ops = { 13859 .ndo_open = bnxt_open, 13860 .ndo_start_xmit = bnxt_start_xmit, 13861 .ndo_stop = bnxt_close, 13862 .ndo_get_stats64 = bnxt_get_stats64, 13863 .ndo_set_rx_mode = bnxt_set_rx_mode, 13864 .ndo_eth_ioctl = bnxt_ioctl, 13865 .ndo_validate_addr = eth_validate_addr, 13866 .ndo_set_mac_address = bnxt_change_mac_addr, 13867 .ndo_change_mtu = bnxt_change_mtu, 13868 .ndo_fix_features = bnxt_fix_features, 13869 .ndo_set_features = bnxt_set_features, 13870 .ndo_features_check = bnxt_features_check, 13871 .ndo_tx_timeout = bnxt_tx_timeout, 13872 #ifdef CONFIG_BNXT_SRIOV 13873 .ndo_get_vf_config = bnxt_get_vf_config, 13874 .ndo_set_vf_mac = bnxt_set_vf_mac, 13875 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 13876 .ndo_set_vf_rate = bnxt_set_vf_bw, 13877 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 13878 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 13879 .ndo_set_vf_trust = bnxt_set_vf_trust, 13880 #endif 13881 .ndo_setup_tc = bnxt_setup_tc, 13882 #ifdef CONFIG_RFS_ACCEL 13883 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 13884 #endif 13885 .ndo_bpf = bnxt_xdp, 13886 .ndo_xdp_xmit = bnxt_xdp_xmit, 13887 .ndo_bridge_getlink = bnxt_bridge_getlink, 13888 .ndo_bridge_setlink = bnxt_bridge_setlink, 13889 }; 13890 13891 static void bnxt_remove_one(struct pci_dev *pdev) 13892 { 13893 struct net_device *dev = pci_get_drvdata(pdev); 13894 struct bnxt *bp = netdev_priv(dev); 13895 13896 if (BNXT_PF(bp)) 13897 bnxt_sriov_disable(bp); 13898 13899 bnxt_rdma_aux_device_uninit(bp); 13900 13901 bnxt_ptp_clear(bp); 13902 unregister_netdev(dev); 13903 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13904 /* Flush any pending tasks */ 13905 cancel_work_sync(&bp->sp_task); 13906 cancel_delayed_work_sync(&bp->fw_reset_task); 13907 bp->sp_event = 0; 13908 13909 bnxt_dl_fw_reporters_destroy(bp); 13910 bnxt_dl_unregister(bp); 13911 bnxt_shutdown_tc(bp); 13912 13913 bnxt_clear_int_mode(bp); 13914 bnxt_hwrm_func_drv_unrgtr(bp); 13915 bnxt_free_hwrm_resources(bp); 13916 bnxt_hwmon_uninit(bp); 13917 bnxt_ethtool_free(bp); 13918 bnxt_dcb_free(bp); 13919 kfree(bp->ptp_cfg); 13920 bp->ptp_cfg = NULL; 13921 kfree(bp->fw_health); 13922 bp->fw_health = NULL; 13923 bnxt_cleanup_pci(bp); 13924 bnxt_free_ctx_mem(bp); 13925 kfree(bp->rss_indir_tbl); 13926 bp->rss_indir_tbl = NULL; 13927 bnxt_free_port_stats(bp); 13928 free_netdev(dev); 13929 } 13930 13931 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 13932 { 13933 int rc = 0; 13934 struct bnxt_link_info *link_info = &bp->link_info; 13935 13936 bp->phy_flags = 0; 13937 rc = bnxt_hwrm_phy_qcaps(bp); 13938 if (rc) { 13939 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 13940 rc); 13941 return rc; 13942 } 13943 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 13944 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 13945 else 13946 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 13947 if (!fw_dflt) 13948 return 0; 13949 13950 mutex_lock(&bp->link_lock); 13951 rc = bnxt_update_link(bp, false); 13952 if (rc) { 13953 mutex_unlock(&bp->link_lock); 13954 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 13955 rc); 13956 return rc; 13957 } 13958 13959 /* Older firmware does not have supported_auto_speeds, so assume 13960 * that all supported speeds can be autonegotiated. 13961 */ 13962 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 13963 link_info->support_auto_speeds = link_info->support_speeds; 13964 13965 bnxt_init_ethtool_link_settings(bp); 13966 mutex_unlock(&bp->link_lock); 13967 return 0; 13968 } 13969 13970 static int bnxt_get_max_irq(struct pci_dev *pdev) 13971 { 13972 u16 ctrl; 13973 13974 if (!pdev->msix_cap) 13975 return 1; 13976 13977 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 13978 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 13979 } 13980 13981 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 13982 int *max_cp) 13983 { 13984 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 13985 int max_ring_grps = 0, max_irq; 13986 13987 *max_tx = hw_resc->max_tx_rings; 13988 *max_rx = hw_resc->max_rx_rings; 13989 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 13990 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 13991 bnxt_get_ulp_msix_num(bp), 13992 hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp)); 13993 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 13994 *max_cp = min_t(int, *max_cp, max_irq); 13995 max_ring_grps = hw_resc->max_hw_ring_grps; 13996 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 13997 *max_cp -= 1; 13998 *max_rx -= 2; 13999 } 14000 if (bp->flags & BNXT_FLAG_AGG_RINGS) 14001 *max_rx >>= 1; 14002 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 14003 int rc; 14004 14005 rc = __bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 14006 if (rc) { 14007 *max_rx = 0; 14008 *max_tx = 0; 14009 } 14010 /* On P5 chips, max_cp output param should be available NQs */ 14011 *max_cp = max_irq; 14012 } 14013 *max_rx = min_t(int, *max_rx, max_ring_grps); 14014 } 14015 14016 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 14017 { 14018 int rx, tx, cp; 14019 14020 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 14021 *max_rx = rx; 14022 *max_tx = tx; 14023 if (!rx || !tx || !cp) 14024 return -ENOMEM; 14025 14026 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 14027 } 14028 14029 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 14030 bool shared) 14031 { 14032 int rc; 14033 14034 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 14035 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 14036 /* Not enough rings, try disabling agg rings. */ 14037 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 14038 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 14039 if (rc) { 14040 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 14041 bp->flags |= BNXT_FLAG_AGG_RINGS; 14042 return rc; 14043 } 14044 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 14045 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 14046 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 14047 bnxt_set_ring_params(bp); 14048 } 14049 14050 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 14051 int max_cp, max_stat, max_irq; 14052 14053 /* Reserve minimum resources for RoCE */ 14054 max_cp = bnxt_get_max_func_cp_rings(bp); 14055 max_stat = bnxt_get_max_func_stat_ctxs(bp); 14056 max_irq = bnxt_get_max_func_irqs(bp); 14057 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 14058 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 14059 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 14060 return 0; 14061 14062 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 14063 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 14064 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 14065 max_cp = min_t(int, max_cp, max_irq); 14066 max_cp = min_t(int, max_cp, max_stat); 14067 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 14068 if (rc) 14069 rc = 0; 14070 } 14071 return rc; 14072 } 14073 14074 /* In initial default shared ring setting, each shared ring must have a 14075 * RX/TX ring pair. 14076 */ 14077 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 14078 { 14079 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 14080 bp->rx_nr_rings = bp->cp_nr_rings; 14081 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 14082 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 14083 } 14084 14085 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 14086 { 14087 int dflt_rings, max_rx_rings, max_tx_rings, rc; 14088 14089 if (!bnxt_can_reserve_rings(bp)) 14090 return 0; 14091 14092 if (sh) 14093 bp->flags |= BNXT_FLAG_SHARED_RINGS; 14094 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 14095 /* Reduce default rings on multi-port cards so that total default 14096 * rings do not exceed CPU count. 14097 */ 14098 if (bp->port_count > 1) { 14099 int max_rings = 14100 max_t(int, num_online_cpus() / bp->port_count, 1); 14101 14102 dflt_rings = min_t(int, dflt_rings, max_rings); 14103 } 14104 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 14105 if (rc) 14106 return rc; 14107 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 14108 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 14109 if (sh) 14110 bnxt_trim_dflt_sh_rings(bp); 14111 else 14112 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 14113 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 14114 14115 rc = __bnxt_reserve_rings(bp); 14116 if (rc && rc != -ENODEV) 14117 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 14118 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 14119 if (sh) 14120 bnxt_trim_dflt_sh_rings(bp); 14121 14122 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 14123 if (bnxt_need_reserve_rings(bp)) { 14124 rc = __bnxt_reserve_rings(bp); 14125 if (rc && rc != -ENODEV) 14126 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 14127 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 14128 } 14129 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 14130 bp->rx_nr_rings++; 14131 bp->cp_nr_rings++; 14132 } 14133 if (rc) { 14134 bp->tx_nr_rings = 0; 14135 bp->rx_nr_rings = 0; 14136 } 14137 return rc; 14138 } 14139 14140 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 14141 { 14142 int rc; 14143 14144 if (bp->tx_nr_rings) 14145 return 0; 14146 14147 bnxt_ulp_irq_stop(bp); 14148 bnxt_clear_int_mode(bp); 14149 rc = bnxt_set_dflt_rings(bp, true); 14150 if (rc) { 14151 if (BNXT_VF(bp) && rc == -ENODEV) 14152 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 14153 else 14154 netdev_err(bp->dev, "Not enough rings available.\n"); 14155 goto init_dflt_ring_err; 14156 } 14157 rc = bnxt_init_int_mode(bp); 14158 if (rc) 14159 goto init_dflt_ring_err; 14160 14161 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 14162 14163 bnxt_set_dflt_rfs(bp); 14164 14165 init_dflt_ring_err: 14166 bnxt_ulp_irq_restart(bp, rc); 14167 return rc; 14168 } 14169 14170 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 14171 { 14172 int rc; 14173 14174 ASSERT_RTNL(); 14175 bnxt_hwrm_func_qcaps(bp); 14176 14177 if (netif_running(bp->dev)) 14178 __bnxt_close_nic(bp, true, false); 14179 14180 bnxt_ulp_irq_stop(bp); 14181 bnxt_clear_int_mode(bp); 14182 rc = bnxt_init_int_mode(bp); 14183 bnxt_ulp_irq_restart(bp, rc); 14184 14185 if (netif_running(bp->dev)) { 14186 if (rc) 14187 dev_close(bp->dev); 14188 else 14189 rc = bnxt_open_nic(bp, true, false); 14190 } 14191 14192 return rc; 14193 } 14194 14195 static int bnxt_init_mac_addr(struct bnxt *bp) 14196 { 14197 int rc = 0; 14198 14199 if (BNXT_PF(bp)) { 14200 eth_hw_addr_set(bp->dev, bp->pf.mac_addr); 14201 } else { 14202 #ifdef CONFIG_BNXT_SRIOV 14203 struct bnxt_vf_info *vf = &bp->vf; 14204 bool strict_approval = true; 14205 14206 if (is_valid_ether_addr(vf->mac_addr)) { 14207 /* overwrite netdev dev_addr with admin VF MAC */ 14208 eth_hw_addr_set(bp->dev, vf->mac_addr); 14209 /* Older PF driver or firmware may not approve this 14210 * correctly. 14211 */ 14212 strict_approval = false; 14213 } else { 14214 eth_hw_addr_random(bp->dev); 14215 } 14216 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 14217 #endif 14218 } 14219 return rc; 14220 } 14221 14222 static void bnxt_vpd_read_info(struct bnxt *bp) 14223 { 14224 struct pci_dev *pdev = bp->pdev; 14225 unsigned int vpd_size, kw_len; 14226 int pos, size; 14227 u8 *vpd_data; 14228 14229 vpd_data = pci_vpd_alloc(pdev, &vpd_size); 14230 if (IS_ERR(vpd_data)) { 14231 pci_warn(pdev, "Unable to read VPD\n"); 14232 return; 14233 } 14234 14235 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 14236 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); 14237 if (pos < 0) 14238 goto read_sn; 14239 14240 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 14241 memcpy(bp->board_partno, &vpd_data[pos], size); 14242 14243 read_sn: 14244 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 14245 PCI_VPD_RO_KEYWORD_SERIALNO, 14246 &kw_len); 14247 if (pos < 0) 14248 goto exit; 14249 14250 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 14251 memcpy(bp->board_serialno, &vpd_data[pos], size); 14252 exit: 14253 kfree(vpd_data); 14254 } 14255 14256 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 14257 { 14258 struct pci_dev *pdev = bp->pdev; 14259 u64 qword; 14260 14261 qword = pci_get_dsn(pdev); 14262 if (!qword) { 14263 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 14264 return -EOPNOTSUPP; 14265 } 14266 14267 put_unaligned_le64(qword, dsn); 14268 14269 bp->flags |= BNXT_FLAG_DSN_VALID; 14270 return 0; 14271 } 14272 14273 static int bnxt_map_db_bar(struct bnxt *bp) 14274 { 14275 if (!bp->db_size) 14276 return -ENODEV; 14277 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 14278 if (!bp->bar1) 14279 return -ENOMEM; 14280 return 0; 14281 } 14282 14283 void bnxt_print_device_info(struct bnxt *bp) 14284 { 14285 netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n", 14286 board_info[bp->board_idx].name, 14287 (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr); 14288 14289 pcie_print_link_status(bp->pdev); 14290 } 14291 14292 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 14293 { 14294 struct net_device *dev; 14295 struct bnxt *bp; 14296 int rc, max_irqs; 14297 14298 if (pci_is_bridge(pdev)) 14299 return -ENODEV; 14300 14301 /* Clear any pending DMA transactions from crash kernel 14302 * while loading driver in capture kernel. 14303 */ 14304 if (is_kdump_kernel()) { 14305 pci_clear_master(pdev); 14306 pcie_flr(pdev); 14307 } 14308 14309 max_irqs = bnxt_get_max_irq(pdev); 14310 dev = alloc_etherdev_mqs(sizeof(*bp), max_irqs * BNXT_MAX_QUEUE, 14311 max_irqs); 14312 if (!dev) 14313 return -ENOMEM; 14314 14315 bp = netdev_priv(dev); 14316 bp->board_idx = ent->driver_data; 14317 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 14318 bnxt_set_max_func_irqs(bp, max_irqs); 14319 14320 if (bnxt_vf_pciid(bp->board_idx)) 14321 bp->flags |= BNXT_FLAG_VF; 14322 14323 /* No devlink port registration in case of a VF */ 14324 if (BNXT_PF(bp)) 14325 SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port); 14326 14327 if (pdev->msix_cap) 14328 bp->flags |= BNXT_FLAG_MSIX_CAP; 14329 14330 rc = bnxt_init_board(pdev, dev); 14331 if (rc < 0) 14332 goto init_err_free; 14333 14334 dev->netdev_ops = &bnxt_netdev_ops; 14335 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 14336 dev->ethtool_ops = &bnxt_ethtool_ops; 14337 pci_set_drvdata(pdev, dev); 14338 14339 rc = bnxt_alloc_hwrm_resources(bp); 14340 if (rc) 14341 goto init_err_pci_clean; 14342 14343 mutex_init(&bp->hwrm_cmd_lock); 14344 mutex_init(&bp->link_lock); 14345 14346 rc = bnxt_fw_init_one_p1(bp); 14347 if (rc) 14348 goto init_err_pci_clean; 14349 14350 if (BNXT_PF(bp)) 14351 bnxt_vpd_read_info(bp); 14352 14353 if (BNXT_CHIP_P5_PLUS(bp)) { 14354 bp->flags |= BNXT_FLAG_CHIP_P5_PLUS; 14355 if (BNXT_CHIP_P7(bp)) 14356 bp->flags |= BNXT_FLAG_CHIP_P7; 14357 } 14358 14359 rc = bnxt_alloc_rss_indir_tbl(bp); 14360 if (rc) 14361 goto init_err_pci_clean; 14362 14363 rc = bnxt_fw_init_one_p2(bp); 14364 if (rc) 14365 goto init_err_pci_clean; 14366 14367 rc = bnxt_map_db_bar(bp); 14368 if (rc) { 14369 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 14370 rc); 14371 goto init_err_pci_clean; 14372 } 14373 14374 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 14375 NETIF_F_TSO | NETIF_F_TSO6 | 14376 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 14377 NETIF_F_GSO_IPXIP4 | 14378 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 14379 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 14380 NETIF_F_RXCSUM | NETIF_F_GRO; 14381 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 14382 dev->hw_features |= NETIF_F_GSO_UDP_L4; 14383 14384 if (BNXT_SUPPORTS_TPA(bp)) 14385 dev->hw_features |= NETIF_F_LRO; 14386 14387 dev->hw_enc_features = 14388 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 14389 NETIF_F_TSO | NETIF_F_TSO6 | 14390 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 14391 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 14392 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 14393 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 14394 dev->hw_enc_features |= NETIF_F_GSO_UDP_L4; 14395 if (bp->flags & BNXT_FLAG_CHIP_P7) 14396 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels_p7; 14397 else 14398 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 14399 14400 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 14401 NETIF_F_GSO_GRE_CSUM; 14402 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 14403 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 14404 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 14405 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 14406 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 14407 if (BNXT_SUPPORTS_TPA(bp)) 14408 dev->hw_features |= NETIF_F_GRO_HW; 14409 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 14410 if (dev->features & NETIF_F_GRO_HW) 14411 dev->features &= ~NETIF_F_LRO; 14412 dev->priv_flags |= IFF_UNICAST_FLT; 14413 14414 netif_set_tso_max_size(dev, GSO_MAX_SIZE); 14415 14416 dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 14417 NETDEV_XDP_ACT_RX_SG; 14418 14419 #ifdef CONFIG_BNXT_SRIOV 14420 init_waitqueue_head(&bp->sriov_cfg_wait); 14421 #endif 14422 if (BNXT_SUPPORTS_TPA(bp)) { 14423 bp->gro_func = bnxt_gro_func_5730x; 14424 if (BNXT_CHIP_P4(bp)) 14425 bp->gro_func = bnxt_gro_func_5731x; 14426 else if (BNXT_CHIP_P5_PLUS(bp)) 14427 bp->gro_func = bnxt_gro_func_5750x; 14428 } 14429 if (!BNXT_CHIP_P4_PLUS(bp)) 14430 bp->flags |= BNXT_FLAG_DOUBLE_DB; 14431 14432 rc = bnxt_init_mac_addr(bp); 14433 if (rc) { 14434 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 14435 rc = -EADDRNOTAVAIL; 14436 goto init_err_pci_clean; 14437 } 14438 14439 if (BNXT_PF(bp)) { 14440 /* Read the adapter's DSN to use as the eswitch switch_id */ 14441 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 14442 } 14443 14444 /* MTU range: 60 - FW defined max */ 14445 dev->min_mtu = ETH_ZLEN; 14446 dev->max_mtu = bp->max_mtu; 14447 14448 rc = bnxt_probe_phy(bp, true); 14449 if (rc) 14450 goto init_err_pci_clean; 14451 14452 bnxt_set_rx_skb_mode(bp, false); 14453 bnxt_set_tpa_flags(bp); 14454 bnxt_set_ring_params(bp); 14455 rc = bnxt_set_dflt_rings(bp, true); 14456 if (rc) { 14457 if (BNXT_VF(bp) && rc == -ENODEV) { 14458 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 14459 } else { 14460 netdev_err(bp->dev, "Not enough rings available.\n"); 14461 rc = -ENOMEM; 14462 } 14463 goto init_err_pci_clean; 14464 } 14465 14466 bnxt_fw_init_one_p3(bp); 14467 14468 bnxt_init_dflt_coal(bp); 14469 14470 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 14471 bp->flags |= BNXT_FLAG_STRIP_VLAN; 14472 14473 rc = bnxt_init_int_mode(bp); 14474 if (rc) 14475 goto init_err_pci_clean; 14476 14477 /* No TC has been set yet and rings may have been trimmed due to 14478 * limited MSIX, so we re-initialize the TX rings per TC. 14479 */ 14480 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 14481 14482 if (BNXT_PF(bp)) { 14483 if (!bnxt_pf_wq) { 14484 bnxt_pf_wq = 14485 create_singlethread_workqueue("bnxt_pf_wq"); 14486 if (!bnxt_pf_wq) { 14487 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 14488 rc = -ENOMEM; 14489 goto init_err_pci_clean; 14490 } 14491 } 14492 rc = bnxt_init_tc(bp); 14493 if (rc) 14494 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 14495 rc); 14496 } 14497 14498 bnxt_inv_fw_health_reg(bp); 14499 rc = bnxt_dl_register(bp); 14500 if (rc) 14501 goto init_err_dl; 14502 14503 rc = register_netdev(dev); 14504 if (rc) 14505 goto init_err_cleanup; 14506 14507 bnxt_dl_fw_reporters_create(bp); 14508 14509 bnxt_rdma_aux_device_init(bp); 14510 14511 bnxt_print_device_info(bp); 14512 14513 pci_save_state(pdev); 14514 14515 return 0; 14516 init_err_cleanup: 14517 bnxt_dl_unregister(bp); 14518 init_err_dl: 14519 bnxt_shutdown_tc(bp); 14520 bnxt_clear_int_mode(bp); 14521 14522 init_err_pci_clean: 14523 bnxt_hwrm_func_drv_unrgtr(bp); 14524 bnxt_free_hwrm_resources(bp); 14525 bnxt_hwmon_uninit(bp); 14526 bnxt_ethtool_free(bp); 14527 bnxt_ptp_clear(bp); 14528 kfree(bp->ptp_cfg); 14529 bp->ptp_cfg = NULL; 14530 kfree(bp->fw_health); 14531 bp->fw_health = NULL; 14532 bnxt_cleanup_pci(bp); 14533 bnxt_free_ctx_mem(bp); 14534 kfree(bp->rss_indir_tbl); 14535 bp->rss_indir_tbl = NULL; 14536 14537 init_err_free: 14538 free_netdev(dev); 14539 return rc; 14540 } 14541 14542 static void bnxt_shutdown(struct pci_dev *pdev) 14543 { 14544 struct net_device *dev = pci_get_drvdata(pdev); 14545 struct bnxt *bp; 14546 14547 if (!dev) 14548 return; 14549 14550 rtnl_lock(); 14551 bp = netdev_priv(dev); 14552 if (!bp) 14553 goto shutdown_exit; 14554 14555 if (netif_running(dev)) 14556 dev_close(dev); 14557 14558 bnxt_clear_int_mode(bp); 14559 pci_disable_device(pdev); 14560 14561 if (system_state == SYSTEM_POWER_OFF) { 14562 pci_wake_from_d3(pdev, bp->wol); 14563 pci_set_power_state(pdev, PCI_D3hot); 14564 } 14565 14566 shutdown_exit: 14567 rtnl_unlock(); 14568 } 14569 14570 #ifdef CONFIG_PM_SLEEP 14571 static int bnxt_suspend(struct device *device) 14572 { 14573 struct net_device *dev = dev_get_drvdata(device); 14574 struct bnxt *bp = netdev_priv(dev); 14575 int rc = 0; 14576 14577 rtnl_lock(); 14578 bnxt_ulp_stop(bp); 14579 if (netif_running(dev)) { 14580 netif_device_detach(dev); 14581 rc = bnxt_close(dev); 14582 } 14583 bnxt_hwrm_func_drv_unrgtr(bp); 14584 pci_disable_device(bp->pdev); 14585 bnxt_free_ctx_mem(bp); 14586 rtnl_unlock(); 14587 return rc; 14588 } 14589 14590 static int bnxt_resume(struct device *device) 14591 { 14592 struct net_device *dev = dev_get_drvdata(device); 14593 struct bnxt *bp = netdev_priv(dev); 14594 int rc = 0; 14595 14596 rtnl_lock(); 14597 rc = pci_enable_device(bp->pdev); 14598 if (rc) { 14599 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 14600 rc); 14601 goto resume_exit; 14602 } 14603 pci_set_master(bp->pdev); 14604 if (bnxt_hwrm_ver_get(bp)) { 14605 rc = -ENODEV; 14606 goto resume_exit; 14607 } 14608 rc = bnxt_hwrm_func_reset(bp); 14609 if (rc) { 14610 rc = -EBUSY; 14611 goto resume_exit; 14612 } 14613 14614 rc = bnxt_hwrm_func_qcaps(bp); 14615 if (rc) 14616 goto resume_exit; 14617 14618 bnxt_clear_reservations(bp, true); 14619 14620 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 14621 rc = -ENODEV; 14622 goto resume_exit; 14623 } 14624 14625 bnxt_get_wol_settings(bp); 14626 if (netif_running(dev)) { 14627 rc = bnxt_open(dev); 14628 if (!rc) 14629 netif_device_attach(dev); 14630 } 14631 14632 resume_exit: 14633 bnxt_ulp_start(bp, rc); 14634 if (!rc) 14635 bnxt_reenable_sriov(bp); 14636 rtnl_unlock(); 14637 return rc; 14638 } 14639 14640 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 14641 #define BNXT_PM_OPS (&bnxt_pm_ops) 14642 14643 #else 14644 14645 #define BNXT_PM_OPS NULL 14646 14647 #endif /* CONFIG_PM_SLEEP */ 14648 14649 /** 14650 * bnxt_io_error_detected - called when PCI error is detected 14651 * @pdev: Pointer to PCI device 14652 * @state: The current pci connection state 14653 * 14654 * This function is called after a PCI bus error affecting 14655 * this device has been detected. 14656 */ 14657 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 14658 pci_channel_state_t state) 14659 { 14660 struct net_device *netdev = pci_get_drvdata(pdev); 14661 struct bnxt *bp = netdev_priv(netdev); 14662 14663 netdev_info(netdev, "PCI I/O error detected\n"); 14664 14665 rtnl_lock(); 14666 netif_device_detach(netdev); 14667 14668 bnxt_ulp_stop(bp); 14669 14670 if (state == pci_channel_io_perm_failure) { 14671 rtnl_unlock(); 14672 return PCI_ERS_RESULT_DISCONNECT; 14673 } 14674 14675 if (state == pci_channel_io_frozen) 14676 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 14677 14678 if (netif_running(netdev)) 14679 bnxt_close(netdev); 14680 14681 if (pci_is_enabled(pdev)) 14682 pci_disable_device(pdev); 14683 bnxt_free_ctx_mem(bp); 14684 rtnl_unlock(); 14685 14686 /* Request a slot slot reset. */ 14687 return PCI_ERS_RESULT_NEED_RESET; 14688 } 14689 14690 /** 14691 * bnxt_io_slot_reset - called after the pci bus has been reset. 14692 * @pdev: Pointer to PCI device 14693 * 14694 * Restart the card from scratch, as if from a cold-boot. 14695 * At this point, the card has exprienced a hard reset, 14696 * followed by fixups by BIOS, and has its config space 14697 * set up identically to what it was at cold boot. 14698 */ 14699 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 14700 { 14701 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 14702 struct net_device *netdev = pci_get_drvdata(pdev); 14703 struct bnxt *bp = netdev_priv(netdev); 14704 int retry = 0; 14705 int err = 0; 14706 int off; 14707 14708 netdev_info(bp->dev, "PCI Slot Reset\n"); 14709 14710 rtnl_lock(); 14711 14712 if (pci_enable_device(pdev)) { 14713 dev_err(&pdev->dev, 14714 "Cannot re-enable PCI device after reset.\n"); 14715 } else { 14716 pci_set_master(pdev); 14717 /* Upon fatal error, our device internal logic that latches to 14718 * BAR value is getting reset and will restore only upon 14719 * rewritting the BARs. 14720 * 14721 * As pci_restore_state() does not re-write the BARs if the 14722 * value is same as saved value earlier, driver needs to 14723 * write the BARs to 0 to force restore, in case of fatal error. 14724 */ 14725 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 14726 &bp->state)) { 14727 for (off = PCI_BASE_ADDRESS_0; 14728 off <= PCI_BASE_ADDRESS_5; off += 4) 14729 pci_write_config_dword(bp->pdev, off, 0); 14730 } 14731 pci_restore_state(pdev); 14732 pci_save_state(pdev); 14733 14734 bnxt_inv_fw_health_reg(bp); 14735 bnxt_try_map_fw_health_reg(bp); 14736 14737 /* In some PCIe AER scenarios, firmware may take up to 14738 * 10 seconds to become ready in the worst case. 14739 */ 14740 do { 14741 err = bnxt_try_recover_fw(bp); 14742 if (!err) 14743 break; 14744 retry++; 14745 } while (retry < BNXT_FW_SLOT_RESET_RETRY); 14746 14747 if (err) { 14748 dev_err(&pdev->dev, "Firmware not ready\n"); 14749 goto reset_exit; 14750 } 14751 14752 err = bnxt_hwrm_func_reset(bp); 14753 if (!err) 14754 result = PCI_ERS_RESULT_RECOVERED; 14755 14756 bnxt_ulp_irq_stop(bp); 14757 bnxt_clear_int_mode(bp); 14758 err = bnxt_init_int_mode(bp); 14759 bnxt_ulp_irq_restart(bp, err); 14760 } 14761 14762 reset_exit: 14763 bnxt_clear_reservations(bp, true); 14764 rtnl_unlock(); 14765 14766 return result; 14767 } 14768 14769 /** 14770 * bnxt_io_resume - called when traffic can start flowing again. 14771 * @pdev: Pointer to PCI device 14772 * 14773 * This callback is called when the error recovery driver tells 14774 * us that its OK to resume normal operation. 14775 */ 14776 static void bnxt_io_resume(struct pci_dev *pdev) 14777 { 14778 struct net_device *netdev = pci_get_drvdata(pdev); 14779 struct bnxt *bp = netdev_priv(netdev); 14780 int err; 14781 14782 netdev_info(bp->dev, "PCI Slot Resume\n"); 14783 rtnl_lock(); 14784 14785 err = bnxt_hwrm_func_qcaps(bp); 14786 if (!err && netif_running(netdev)) 14787 err = bnxt_open(netdev); 14788 14789 bnxt_ulp_start(bp, err); 14790 if (!err) { 14791 bnxt_reenable_sriov(bp); 14792 netif_device_attach(netdev); 14793 } 14794 14795 rtnl_unlock(); 14796 } 14797 14798 static const struct pci_error_handlers bnxt_err_handler = { 14799 .error_detected = bnxt_io_error_detected, 14800 .slot_reset = bnxt_io_slot_reset, 14801 .resume = bnxt_io_resume 14802 }; 14803 14804 static struct pci_driver bnxt_pci_driver = { 14805 .name = DRV_MODULE_NAME, 14806 .id_table = bnxt_pci_tbl, 14807 .probe = bnxt_init_one, 14808 .remove = bnxt_remove_one, 14809 .shutdown = bnxt_shutdown, 14810 .driver.pm = BNXT_PM_OPS, 14811 .err_handler = &bnxt_err_handler, 14812 #if defined(CONFIG_BNXT_SRIOV) 14813 .sriov_configure = bnxt_sriov_configure, 14814 #endif 14815 }; 14816 14817 static int __init bnxt_init(void) 14818 { 14819 int err; 14820 14821 bnxt_debug_init(); 14822 err = pci_register_driver(&bnxt_pci_driver); 14823 if (err) { 14824 bnxt_debug_exit(); 14825 return err; 14826 } 14827 14828 return 0; 14829 } 14830 14831 static void __exit bnxt_exit(void) 14832 { 14833 pci_unregister_driver(&bnxt_pci_driver); 14834 if (bnxt_pf_wq) 14835 destroy_workqueue(bnxt_pf_wq); 14836 bnxt_debug_exit(); 14837 } 14838 14839 module_init(bnxt_init); 14840 module_exit(bnxt_exit); 14841